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The Independent University of Moscow
and Student Sessions at the IUM

Student Sessions at the Independent University of Moscow is a new tradition
in the mathematical life of Moscow. The Independent University (briefly the
IUM) itself is a young child of the new times in Russia. In this introduction, a
brief description of the IUM is presented.

The history of the IUM begins with a meeting held in the summer of 1991
at Moscow High School No. 57. The meeting was initiated by N. Konstantinov.
According to his suggestion, the future team of the Independent University
simply decided to start teaching university courses in mathematics, beginning
in September 1991. The subsequent history of this meeting characterizes the
historical period when it occurred. Had it taken place in Stalin’s time, all
the participants of the meeting would have been immediately arrested. Had it
opened in Brezhnev’s time, nothing would have resulted from the meeting. Since
it happened in Gorbachev’s time, it turned out to be the beginning of the history
of the Independent University of Moscow. The founders of the Independent
University instituted a small fund from which the IUM was supported during
the first period of its work.

The founders were organized into the Scientific Council of the IUM, presided
over by V. I. Arnold and consisting of A. A. Beilinson, the late R. L. Dobrushin,
L. D. Faddeev, B. M. Feigin, Yu. S. Ilyashenko, A. G. Khovanskii, A. A. Kirillov,
S. P. Novikov, A. N. Rudakov, M. A. Shubin, Ya. G. Sinai, and V. M. Tikho-
mirov. Professors P. Deligne and R. MacPherson, both of whom have actively
supported the IUM since its foundation, are Honorary Members of the Scientific
Council.

In the first years, the administration was carried out by N. Konstantinov
with his students and friends working as assistants: S. Komarov was responsi-
ble for economic and financial matters, V. Imaikin prepared the lecture notes,
M. Vyalyi organized the teaching process. During the first year, the IUM
worked in the School of Informational Technologies near Moscow State Univer-
sity. During the next four academic years, Moscow High School No. 2 kindly
invited the IUM to have classes in its building in the evenings. We are especially
grateful to the director of the school, P. V. Khmilinskii, for his hospitality.

In 1994, the Prefect of the Central District of Moscow, A. Muzykantskii,
proposed that we organize a new institution, related both to high school and
university mathematics, to which a building might be officially presented by

vii



viii The Independent University of Moscow and Student Sessions at the IUM

the authorities. The bureaucratic work needed for the functioning of this new
institution and for solving numerous administrative problems related to getting
the new building was enormous. We began to look for an executive director for
this new institution who would be able to carry out this work. As I said to one of
my older friends and colleagues, we needed a person who would be a professional
in the administrative world and would understand our university ideals. “Don’t
bother,” my friend answered, “such a person simply does not exist.” But we
were lucky to find two people of the kind we were dreaming about: I. Yashchenko
and V. Furin, both alumni of the Moscow State University. At that time, both
had successful enterprises; in parallel, I. Yashchenko continued his mathematical
research work.

Producing all the necessary documentation was a full time job, and in half a
year it resulted in a gift from the Moscow government: in June 1995, the Major
of Moscow, Yu. Luzhkov, signed the ordinance giving a new institution, the
Moscow Center of Continuous Mathematical Education, an unfinished building
in the historical center of Moscow. The IUM was required to find, by its own
efforts, $1 000 000 needed to finish the construction of the building.

At that time, it was a brick four-story house without a roof, with unfinished
staircases and floors covered by crushed bricks, like after a bombing. We then
declared that we would find the necessary sum, having no concrete sources
whatever in mind, only hoping that, for such a good enterprise, the money
would eventually be found. Indeed, in August 1995, the Moscow government
granted $1 500 000 for finishing the construction of the building and furnishing
it, and in a year it was concluded, according to a project presented by the IUM
team. On September 26, 1996, the inauguration ceremony of the new building
took place, and two closely related institutions, the IUM and the MCCME,
began to work in it.

Besides the support of the IUM, the MCCME carries on a lot of activities
related to high school education: various mathematical olympiads, lectures for
high school teachers, conferences dedicated to educational problems, and so on.

During the last twelve years, when the Moscow Mathematical Society, and
later the MCCME, became directly involved in the organization of the famous
Moscow Mathematical Olympiads, it regained and exceeded its former pop-
ularity. Last year, three thousand high school students participated in the
Olympiad, and the number of awards equalled the total number of participants
of the Moscow Olympiad of 1992.

Other activities of the MCCME include a conference on educational prob-
lems, organized in 2000. Beginning in 2001, the MCCME organizes an annual
Summer School, which brings together high school and university students with
lecturers of the highest level, academicians Anosov, Arnold, and the late Boli-



The Independent University of Moscow and Student Sessions at the IUM ix

brukh included.
The present status of the Independent University is as follows. The first

President of the Independent University was M. Polivanov, a mathematical
physicist and philosopher, who passed away a year after the beginning of his
Presidency. The IUM has two colleges, the Higher College of Mathematics and
the Higher College of Mathematical Physics. The former was first headed by
A. Rudakov, and now it is headed by Yu. Ilyashenko; the latter was headed by
O. Zavialov, now by A. I. Kirillov. We have about 100 students in both colleges
and about 40 freshmen each year. The graduate school of the IUM was founded
in 1993 as a result of the initiative of A. Beilinson, B. Feigin, and V. Ginzburg.
Twenty seven people have graduated from this school and passed their Ph.D.
theses as of now.

At present, most of our male students study in parallel at two universities,
say Moscow State and the IUM, in order to have military draft exemption.
Therefore, our classes take place in the evenings.

The IUM gives a chance to create their own mathematical schools to mathe-
maticians not involved in the teaching process at Moscow State University. The
seminars of B. Feigin, S. Natanzon, O. Sheinman, O. Shvartsman, M. Tsfasman,
and V. Vassiliev have been continuing for several years at the IUM.

Lecture courses at the IUM were given by D. V. Anosov, V. I. Arnold,
A. A. Kirillov, S. P. Novikov, Ya. G. Sinai, V. A. Vassiliev, A. A. Belavin,
V. K. Beloshapka, B. M. Feigin, S. M. Gusein-Zade, Yu. S. Ilyashenko,
A. G. Khovanskii, I. M. Krichever, A. N. Rudakov, A. G. Sergeev, V. M. Tikho-
mirov, M. A. Tsfasman, and many others. The courses of Arnold (PDE),
Vassiliev (Topology), and Anosov (Dynamical Systems) were published as books
later.

The IUM provides teaching possibilities to professors who have full time po-
sitions in the West now. They are realized in the form of crash courses, usually
one month long but so intensive that they are equivalent to semester courses.
Such courses were given by A. A. Kirillov, A. Khovanski, I. Krichever, A. Katok
(who is a Foreign Member of the IUM faculty), P. Cartier, and D. Anosov. In
1995–96, A. Khovanski gave a regular course in honors calculus; he got permis-
sion to be on leave from Toronto University, where he had a full position at the
time.

The IUM tries to be a place to which Russian mathematicians can return
after their work abroad, if they will. At present, we have seven young faculty
members who obtained their Ph.D. abroad but are now teaching at the IUM.

Beginning in 2001, the IUM launched a new periodical, the Moscow Math-
ematical Journal. Among the authors of the papers already published and
presented are V. I. Arnold, P. Deligne, G. Faltings, V. Ginzburg, A. Given-
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tal, A. J. de Jong, A. and S. Katok, C. Kenig, A. Khovanski, A. A. Kirillov,
Ya. Sinai, M. Tsfasman, A. Varchenko, D. Zagier, and many others.

In the spring of 2001, the IUM organized a Study Abroad Program, called
Math in Moscow (MIM), for foreign students. They are invited to the IUM for
one semester to take mathematical and nonmathematical courses and to plunge
into Russian cultural life. The credits for these courses are transferable to
North American and Canadian universities. Up to now, the MIM program was
attended by students from Berkeley, Cornell, Harvard, MIT, McHill, universities
of Montreal and Toronto, Penn State, and many others.

In order to support young researchers, the Möbius Competition for the
best research work of undergraduate or graduate students was organized in
1997 and sponsored by V. Balikoev and A. Kokin, both alumni of the Moscow
Institute of Mathematics and Electronics. The winners were A. Kuznetsov
(1997), V. Timorin (1998), A. Bufetov (1999) (all from the IUM), S. Shadrin
and A. Melnikhov (2000) (MSU), A. Ershler (2001) (St. Petersburg Univer-
sity), V. Kleptsyn and L. Rybnikov (2002), S. Chulkov (2003, first place), and
S. Oblezin and S. Shadrin (2004, second place). Recently, thanks to the initia-
tive of V. Kaloshin (Caltech) who raised extra funds, the number of stipends
was increased from one to three, and the duration was extended from one to
two years.

Last but not least, the IUM has organized Student Sessions, which were
held beginning in 1997. The first lecture was delivered by Arnold, one of our
Founding Fathers, President of the Scientific Council of the IUM. The lectures
given in 1998–2000 are presented to the reader. The lectures were intended
for a large audience, from students to professional researchers. They contained
no proofs or technical details. The objective was to give panoramas of whole
research areas and describe new ideas.

Beginning in 2001, the Sessions were transformed into a regular mathematics
research seminar, called Globus. This seminar brings together mathematicians
from all sides of Moscow. It is in a sense parallel to the sessions of the Moscow
Mathematical Society and intended for a similar audience. The lectures are
taped and collected into volumes. Two volumes of these lectures will appear in
Russian soon.

Of course, numerically the IUM plays a negligible role in Russian cultural
life, but its influence, in my opinion, is far from negligible. It may be charac-
terized by a quotation from the Gospel:

The Kingdom of Heaven is like unto leaven, that a women took and hit into
three measures of meal till the whole was leavened. (Mt, 13:33)
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The lectures at the Student Sessions and later at the Globus seminars were
tape recorded. Then these records were decoded and edited by Professor V. Pra-
solov, translated into English, and sent to the authors to make final corrections.
It is a hard job to transform speech into written text. This volume, as well as
the subsequent ones prepared for publication in Russian, would never have ap-
peared without the energy and devotion of V. Prasolov. The organizers of the
Student Sessions, as well as of the Globus seminars, are cordially grateful to
him.





V. I. Arnold

Mysterious mathematical trinities

Lecture on May 21, 1997

I shall try to tell about some phenomena in mathematics that make me sur-
prised. In most cases, they are not formalized. They cannot even be formulated
as conjectures. A conjecture differs in that it can be disproved; it is either true
or false.

We shall consider certain observations that lead to numerous theorems and
conjectures, which can be proved or disproved. But these observations are most
interesting when considered from a general point of view.

I shall explain this general point of view for a simple example from linear
algebra.

The theory of linear operators is described in modern mathematics as the
theory of Lie algebras of series An, i.e., sl(n + 1), and formulated in terms
of root systems. A root system can be assigned to any Coxeter group, that
is, a finite group generated by reflections (at least, to any crystallographic
group). If we take a statement of linear algebra which refers to this special
case of the group An and remove all the content from its formulation, so as to
banish all mentions of eigenvalues and eigenvectors and retain only roots, we
will obtain something that can be applied to the other series, Bn, Cn, and Dn,
including the exceptional ones E6, E7, E8, F4, and G2 (and, sometimes, even
to all the Coxeter systems, including the noncrystallographic symmetry groups
of polygons, of the icosahedron, and of the hypericosahedron, which lives is
four-dimensional space).

From this point of view, the geometries of other series (B, C, ...) are
not geometries of vector spaces with additional structures, such as Euclidean,
symplectic, etc. (although formally, they, of course, are); they are not daughters
of A-geometry but its sisters enjoying equal rights.

The above classification of simple Lie algebras, which is due to Killing (and,
hence, attributed to Cartan), has an infinite-dimensional analogue – in analysis.
The algebraic problem solved by Killing, Cartan, and Coxeter has an infinite-
dimensional analogue in the theory of Lie algebras of diffeomorphism groups.
Given a manifold M , the group Diff(M) of all diffeomorphisms of M naturally
arises. This group (more precisely, the connected component of the identity
element in this group) is algebraically simple, i.e., it has no normal divisors.
There exist other similar “simple” theories, which resemble the geometry of

1



2 V. I. Arnold

manifolds but differ from it. They were also classified by Cartan at one time.1

Having imposed a few fairly natural constraints, he discovered that there exist
six series of such groups:

Diff(M);
SDiff(M), the group of diffeomorphisms preserving a given form of volume;
SpDiff(M, ω2), the group of symplectomorphisms.
Next, there are complex manifolds and groups of holomorphic diffeomor-

phisms.
There is also the very important contact group, the group of contactomor-

phisms.
Finally, there are conformal versions of some of these theories. I shall not

describe them in detail.
The idea which I mentioned is that, in these theories, there is something

similar to the passage from theorems of linear algebra, i.e., from the An root
system, to other root systems. In other words, in the whole of mathematics
(at least, of the geometry of manifolds), there are higher-level operations (e.g.,
symplectization) that assign analogues from the theory of manifolds with vol-
ume elements or of symplectic manifolds to each definition and each theorem of
manifold theory. This is by no means a rigorous statement; such an operation
is not a true functor.

For example, an element of the Lie algebra of the diffeomorphism group
is a vector field. The symplectization of a vector field is a Hamiltonian field
determining the Hamilton equation

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
.

Other situations are more involved. It is difficult to understand what be-
comes of notions of linear algebra under the passage to other geometries. But
even dealing with the symplectomorphism group, we take only the vector fields
that are determined by a single-valued Hamiltonian function rather than the
entire Lie algebra of this group. These vector fields form the commutator of the
Lie algebra, which does not coincide with the entire Lie algebra of the symplec-
tomorphism group. Still, when we are able to find regular analogues for some
notions of some geometry in another geometry, the reward is very significant.

Consider two examples.
1. Symplectization. So-called Arnold’s conjectures (1965) about fixed points

of symplectomorphisms were stated in an attempt to symplectize the Poincaré–
Euler theorem that the sum of indices of the singular points of a vector field

1 See, in particular, E. Cartan. Selected Works (Moscow: MTsMNO, 1998) [in Russian].
(Editor’s note)
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Figure 1

on a manifold is equal to the Euler characteristic. They estimate the number
of closed trajectories for Hamiltonian vector fields by means of the Morse in-
equalities (i.e., in terms of the number of critical points of a function on the
manifold).2

We start with formulating the following simpler assertion. It was stated by
Poincaré as a conjecture and proved by Birkhoff.

Theorem 1. Suppose that a self-diffeomorphism of a circular annulus preserves
area and moves the points of each of the boundary circles in the same direction
and the points of different circles in opposite directions (Fig. 1). Then this
diffeomorphism has at least two fixed points.

This assertion follows from a slightly more general theorem about fixed
points of diffeomorphisms of the torus.

Theorem 2. Let F be a diffeomorphism of the torus T 2 = R2/Z2 defined by
x �→ x+f(x) in the standard coordinate system. Suppose that F preserves area
and “preserves the center of gravity,” i.e., the mean value of the function f
(considered as a function on the torus with standard metric) is zero. Then F
has at least four fixed points.

This is related to the fact that the sum of Betti numbers for the torus is
equal to 4.

The first proof of this theorem was obtained by Y. Eliashberg. But nobody
had verified this proof. A surely correct proof was published in 1983 by Conley
and Zehnder, and this proof initiated a whole large theory – symplectic topol-
ogy (developed by Chaperon, Laudenbach, Sikorav, Chekanov, Gromov, Floer,
Hofer, Givental, and many other authors).3 In recent months, there have been

2 V. I. Arnold. On one topological property of globally canonical mappings of classical
mechanics. In V. I. Arnold. Selected Works–60 (Moscow: Fazis, 1997) [in Russian], pp. 81–
86. (Editor’s note)

3 On symplectic topology see, e.g., V. I. Arnold. The first steps of symplectic topology. In
V. I. Arnold. Selected Works–60 (Moscow: Fazis, 1997) [in Russian], pp. 365–389. See also
the references cited on p. XL of this book. (Editor’s note)
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communications that the initial conjectures (that the number of fixed points
of an exact symplectomorphism is not smaller than the minimum number of
critical points of a function on the manifold, at least for symplectomorphisms
and generic functions) had been proved at last (by several independent groups
in different countries).

2. Another example: the passage from R to C. Using this example, it is,
possibly, easier to explain the essence of the matter. We shall consider the
passage from the real case to the complex one. There are real geometry and
complex geometry. How can we pass from real geometry to complex geometry?
For example, in real geometry, there is the notion of manifold with boundary,
on which the notions of homology and homotopy are based. In general, the
whole of topology essentially uses the notion of boundary.

We may ask: What becomes of the notion of boundary under complexifica-
tion?

If we admit that all mathematics can be complexified, then, in particular,
we must admit that various notions of mathematics can be complexified. Let
us compose a table of transformations of various mathematical notions under
complexification.

The complexification of the real numbers is, obviously, the complex num-
bers. Here the matter is very simple.

In the real case, there is Morse theory. Functions have critical points and
critical values. Morse theory describes how level sets change when passing
through critical values. What shall we obtain if we try to complexify Morse
theory?

The complexification of real functions is holomorphic (complex analytic)
functions. Their level sets have complex codimension 1, i.e., real codimension 2.
In particular, they do not split the ambient manifold; the complement to a level
set is by no means disconnected.

In the real case, the set of critical values of a function does split the real
line. Therefore, generally, passing through a critical value affects the topology
of a level set. For the complex analytic functions, this is not so. Their sets of
critical values do not split the plane of the complex variable. Therefore, in the
complex case, the level sets of a function that correspond to different noncritical
values have the same topological structure. But in going around a critical value,
a monodromy arises. This is a self-mapping of the set level (determined up to
isotopy).

In the real case, the complement to a critical value consists of two compo-
nents; thus, its homotopy group π0 is Z2. In the complex case, the complement
to a critical value is connected and has fundamental group Z. Therefore, it
is natural to regard π1 as the complexification of π0 and the group Z as the
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complexification of the group Z2.
Going further, we see that this approach turns out to be quite consistent.

The complexification of the Morse surgeries (which refer to elements of the
group π0 of the set of noncritical values of a real function) is a monodromy
(a representation of the group π1 of the set of noncritical values of a complex
function).

Monodromies are described by the Picard–Lefschetz theory, which is a the-
ory of branching integrals.4 In this sense, as the complexification of Morse
theory we can regard the Picard–Lefschetz theory. As the complexification of a
Morse surgery (attachment of a handle to a level set) we take the monodromy
in a neighborhood of a nondegenerate critical point of a holomorphic function.
This operation is the so-called Seifert transformation, that is, twisting a cycle
on a level set. It consists in twisting a cylinder in such a way that one base
of the cylinder remains fixed and the other base makes a full turn. In both
cases, real and complex, the simplest operations correspond to singular points
determined by sums of squares.

We can go even further. In the real theory, there are Stiefel–Whitney classes
with values in Z2. Under complexification, they become Chern classes with
values in Z. Everything is consistent: the complexification of Z2 is indeed Z.

The complexification of the projective line RP1 = S1 is the complex pro-
jective line CP1 = S2 (the Riemann sphere). Thus, the Riemann sphere is
the complexification of the circle. It contains a circle (the equator). On this
sphere, there is the theory of Fourier series defined on this circle and the theory
of Laurent series which have two poles (at the poles of the sphere).

Let us find out what the complexification of the boundary of a real man-
ifold is. First, we must algebraize the notion of boundary. A manifold with
boundary is specified by an inequality of the form f(x) � 0. The correct
complexification of this inequality is the equation f(x) = y2. This equation
specifies a hypersurface in the (x, y)-space, the standard projection of which on
the x-space determines a double branched covering with branching along the
boundary. Thus, the complexification of a manifold with boundary is a double
covering with branching over the complex boundary.

This approach proved very fruitful. I invented the trick with a covering
in 1970, when working on Hilbert’s 16th problem about the arrangement of
ovals of an algebraic curve of given degree n.5 A polynomial of degree n in
two variables determines a set of curves in the (real projective) plane. Hilbert’s

4 See V. A. Vasil’ev. Branching integrals (Moscow: MTsNMO, 2000) [in Russian]. (Editor’s
note)

5 References to the literature on Hilbert’s 16th problem are cited in D. Hilbert. Selected
Works (Moscow: Factorial, 1998) [in Russian], vol. 2, p. 584. (Editor’s note)
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a) b) c)

Figure 2

problem is to find all possible arrangements for a given n. In the cases of n = 1
and n = 2, this problem has been solved by ancient Greeks. The cases of n = 3
and 4 have been studied by Descartes and Newton. The case of n = 5 has been
handled too, and the case of n = 6 resisted until the second half of this century,
and it was included in Hilbert’s problem. This part of the problem was solved
by D. A. Gudkov.

For the degree 8, the question of how these ovals can be arranged is open,
even for generic curves.

For n = 6, the answer to this question was given by Gudkov. Namely, the
maximum possible number of ovals is 11, and the ovals can be arranged in the
projective plane in three ways: ten ovals have pairwise disjoint interiors, and
the eleventh oval contains one, five, or nine of them inside (Fig. 2, a–c). (On
the projective plane, the complement to a disk is a Möbius band. Therefore,
the notion “inside” is well-defined.)

Gudkov noticed that, for all arrangements which he managed to construct,
the number of ovals satisfied certain congruences modulo 8. For example, the
numbers 1, 5, and 9 differ by 4, and the Euler characteristics of the positivity
sets of the polynomials that specify the curves, by 8. In all other examples,
similar congruences hold. This suggests that there are four-dimensional mani-
folds somewhere about, because, as is well known, congruences modulo 8 and
modulo 16 play a crucial role in the topology of 4-manifolds.

Thus, we have to find a 4-manifold related to a real algebraic curve. After
several-month efforts to construct a suitable 4-manifold from an algebraic curve,
I had guessed at last that what should be taken is precisely the double covering
of the complement to the algebraic curve. Applying the powerful methods of
four-dimensional topology to this 4-manifold, Rokhlin6 (1972) and I7 (1971)
succeeded in proving that there exist no real algebraic curves not satisfying

6 The works of V. A. Rokhlin on real algebraic geometry are collected in V. A. Rokhlin.
Selected Works (Moscow: MTsNMO, 1999) [in Russian]. (Editor’s note)

7 V. I. Arnold. On the arrangement of the ovals of real plane algebraic curves, involutions
of four-dimensional smooth manifolds, and the arithmetic of integer quadratic forms. In
V. I. Arnold. Selected Works–60 (Moscow: Fazis, 1997) [in Russian], pp. 175–187. (Editor’s
note)
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Gudkov’s congruences. The new field of mathematics, real algebraic geometry,
that emerged in this way was later developed very far by Viro, Kharlamov,
Nikulin, Shustin, Khovanskii, and many other mathematicians.

For n = 8, the proved constraints leave about 90 possible arrangements of
22 ovals. And about 80 arrangements have been constructed.

The same construction works in the theory of singularities. First, singular-
ities for Coxeter schemes with simple constraints, i.e., for the series A, D, and
E, were constructed. There remain B, C, F , and G, for which angles between
vectors different from 90◦ and 120◦ occur. These cases resisted all the attempts
to describe them by means of singularities, until I guessed that the same con-
struction of a double branched covering should be applied. This construction
makes it possible to construct singularities of caustics and wave fronts, which
correspond to the remaining Weyl groups (with the only exception of G2).

The correctness of a complexification can be confirmed only by results. Per
se, it has no a priori definition. The situation is similar to what happened in
the past century, when it was discovered that the theory of integral equations is
parallel to the theory of linear operators. And even earlier, the same situation
occurred in projective duality. Projective duality remained mysterious until its
meaning was clarified. Similarly, until functional analysis was developed, the
parallelism between theorems about integral equations and analogous theorems
of linear algebra, including the Fredholm theorems, remained mysterious.

Nowadays, a similar situation occurs when physicists use the operation of
summation over a continuous index, and mathematicians do not want to un-
derstand what it means.

What is more, mathematicians were using real numbers for thousands of
years, but they knew nothing rigorous about these numbers except the ancient
Greek discovery that not all of them exist: no rational number raised to the
second power can equal two. All numbers in Greek mathematics were rational;
thus, on the one hand, real numbers were used, but on the other hand, nobody
knew what they were, because there was no rigorous definition.

Approximately the same happens to what I am going to talk about – the
ternarity phenomenon.

The Ternarity Phenomenon

The ternarity phenomenon is that, to all of the pairs considered above, a third
term can be added. In mathematics, objects very often occur in triplets. In
many cases, these triplets form commutative diagrams.

The simplest triplet is obtained by adding the quaternions H to the real and
complex numbers. But there are other triplets too.
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a) E6 b)E7 c)E8

Figure 3

A3 B3 H3

5

Figure 4

Example 1. The simple Lie algebras E6, E7, and E8. They correspond to
the Dynkin diagram shown in Fig. 3, a–c, respectively. Each vertex of the
graph corresponds to a vector. If vertices are joined by an edge, then the angle
between the corresponding vectors is equal to 120◦, and if they are not joined,
then this angle is equal to 90◦. The group generated by the reflections with
respect to the orthogonal complements to these basis vectors in Euclidean space
is precisely the Weyl group.

Example 2. In stationery stores, triangles of three types are sold: equilateral
triangles, right-angled triangles with angles of 45◦, and right-angled triangles
with angles of 30◦. It turns out that these triangles correspond to the diagrams
E6, E7, and E8; together with these diagrams, they form a 3× 2 commutative
diagram.

In this mystic theory of ternarities, many nontrivial theorems and similar
commutative diagrams have already been obtained. Proving everything in this
lecture is out of the question. First, I shall write out examples, and then,
explain the relations between them.

Example 3. The tetrahedron, octahedron, and icosahedron. Their symme-
try groups are the Weyl groups A3, B3, and H3, respectively. Their Dynkin
diagrams (which were introduced earlier by Witt and Coxeter) are shown in
Fig. 4.

The numbers of edges in the corresponding polyhedra are 6, 12, and 30,
respectively. These numbers have the forms 2 · 3, 3 · 4, and 5 · 6. As we might
expect, subtracting 1 from the first factors in these products, we obtain 1, 2,
and 4, i.e., the real dimensions of R, C, and H.

Let us describe the symmetry group of the tetrahedron. It is generated
by the reflections with respect to its symmetry planes, the number of which is
equal to the number of edges, i.e., to 6. These planes split space into 24 parts,
called the Weyl chambers. Let us describe these chambers. All the planes pass
through the center. Therefore, they can be represented by projective lines in
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Figure 5

RP2. These lines divide the projective plane into 12 parts (see Fig. 5). Take
one of these parts. It corresponds to a trihedral angle, which is represented by a
triangle in the projective plane (this triangle is hatched in Fig. 5). Let us extend
the sides of the triangle (the extensions are shown by thick lines in Fig. 5). In
the 3-space model, these three lines correspond to three planes passing through
the origin. They divide space into eight parts. In the projective plane, these
parts correspond to four parts, being four large triangles composed of 12 small
triangles. The large triangles contain 1, 3, 3, and 5 small triangles, respectively
(in Fig. 5, only one of the large triangles looks like a real triangle; this is the
one consisting of five small triangles). Thus, we obtain the formula

24 = 2(1 + 3 + 3 + 5).

The number of chambers – 24 – is, of course, the order of the symmetry group of
the tetrahedron. Similarly, the order of the symmetry group of the octahedron
equals

48 = 2(1 + 5 + 7 + 11),

and for the icosahedron, we have

120 = 2(1 + 11 + 19 + 29).

Note that, increasing the terms in these three formulas by 1, we obtain
systems of weights (powers of basis invariants) for A4, B4, and H4, respectively.
A propos, these weights are precisely the numbers of vertices, faces, and edges
in the tetrahedron, octahedron, and icosahedron (possibly, two is the number
of three-dimensional faces?).

The polyhedra corresponding to the above Weyl groups determine the poly-
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nomials

E6 = x3 + y4 + z2, E7 = x3 + xy3 + z2, E8 = x3 + y5 + z2.

Ẽ6 = x3 + y3 + z3, Ẽ7 = x4 + y4 + z2, Ẽ8 = x3 + y6 + z2.

The corresponding singularities are called elliptic and parabolic (the latter are
related to the so-called affine root systems). We shall briefly describe the pas-
sage from polyhedra to polynomials further on.

We continue the list of trinities.
The characteristic classes:

Stiefel–Whitney classes, Chern classes, Pontryagin classes.

Next is the row-trinity

S1 → S1 = RP1, S3 → S2 = CP1, S7 → S4 = HP1.

The first mapping is the double covering of the boundary of the Möbius
band over its base S1. The second is the Hopf bundle with fiber S1. By the
way, this demonstrates that complexification is a delicate operation. The point
is that the complexification of S1 is S3 in one case and S2 in the other. This is
explained by that the two circles in the covering of the Möbius band are quite
different. One circle is RP1, and the other is SO(2). Under complexification,
RP1 transforms into CP1 and SO(2) transforms into SU(2) ∼= S3.

The third mapping is the Hopf bundle with fiber S3.
I shall write out several more trinities. I am more or less sure of the next

two rows, but the meaning of the rows following them is not completely clear
so far.

S0-bundle, S1-bundle, SU(2)-bundle?

The first object refers to a mere double covering, the second to a bundle
into complex lines, and the third, apparently, to a bundle into quaternion lines
(maybe, endowed with some “hyperconnection” complexifying the complex con-
nection of the second row).

They correspond to

monodromy of a flat
connection,

curvature of a connection
(2-form),

4-form
(hypercurvature?).

The degree to which the objects labeled by the question mark are twisted
must be measured by some 4-forms leading to the Pontryagin characteristic
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classes. These forms must measure some hyper-Kähler incompatibility of com-
plex structures.

Yet another trinity:

polynomials, trigonometric
polynomials, modular polynomials.

The polynomials are the holomorphic self-mappings of the sphere under
which infinity has precisely one preimage. The trigonometric polynomials are
the Laurent polynomials from C[t, t−1] for which one of the points has two
preimages. The modular polynomials are the rational functions for which the
preimage of one point consists of three points, 0, 1, and ∞.

The last trinity was suggested by Givental:

homology, K-theory, elliptic homology.

As mentioned, the polyhedron corresponding to a Weyl group is related to
a polynomial in three variables. We shall describe this correspondence for the
example of the icosahedron, whose symmetry group consists of 120 elements.
The orientation-preserving symmetries form a subgroup of order 60 in SO(3) ∼=
RP3. Consider the double covering of the group SO(3) by the group Spin(3) =
SU(2) ∼= S3. Each element of SO(3) corresponds to two points from S3. The
60-point subgroup in SO(3) under consideration corresponds to 120 points in
S3. It is these points that form the binary group of the icosahedron.

The binary group of the icosahedron is contained in SU(2); therefore, it
acts on C2. Let us denote the orbit space of this action by X. The orbit space
X is a two-dimensional complex surface with singularities embedded in C3. It
is described by the equation x3 + y5 + z2 = 0. This is proved by means of
the theory of invariants. Namely, we are looking for basis invariants. They
are binary forms with zeros at the vertices, the midpoints of the edges, and the
centers of the faces of the icosahedron, respectively. The degrees of these binary
forms are equal to 12, 20, and 30. Then, we seek a relation between them; it
is called a syzygy. Such a syzygy was found in the past century by Schwarz.
Under an appropriate normalization of the basis invariants x, y, and z, it takes
the form x3 + y5 + z2 = 0.

Now, let us explain how to construct E6, E7, and E8 from formulas (poly-
nomials). Instead of equating the polynomials to zero, we equate them to some
ε �= 0, i.e., consider the surface x3 + y5 + z2 = ε �= 0, known as the Milnor
fiber. For the Milnor fiber, we can consider homology in the middle dimen-
sion. The Milnor fiber is a complex 2-manifold; its real dimension equals 4,
and therefore the middle dimension is 2. On the two-dimensional homology of
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the Milnor fiber, the monodromy group acts; it is described by paths in the
base space of the versal deformation. When we go around the discriminant
of the corresponding family of polynomials which has such a singular point at
the worst parameter value, the Picard–Lefschetz theory arises, which describes
self-mappings of the Milnor fiber. It turns out that the intersection form of
the Milnor fiber is the very Euclidean structure in which the basis cycles are
specified by the Dynkin diagram, and the monodromy corresponding to the
simplest course around the discriminant (the Seifert transformation) is pre-
cisely the reflection in the corresponding mirror. Therefore, E6, E7, and E8 are
the monodromy groups corresponding to the singularities determined by the
polynomials specified above.

Finally, let me explain how Ẽ6, Ẽ7, and Ẽ8 are obtained from polyhedra.
Take a simplest standard representation of the corresponding symmetry group
of a polyhedron in 2-space and consider the tensor product of some represen-
tation with the standard one. This tensor product decomposes into irreducible
terms with some coefficients. The matrix of these coefficients is the “Cartan
matrix,” which describes the corresponding affine root system.

The table summarizing the trinities looks as follows:

R C H

E6 E7 E8

A3 B3 H3

D4 F4 H4

x3 + y4 + z2 x3 + xy3 + z2 x3 + y5 + z2

x3 + y3 + z3 x4 + y4 + z2 x3 + y6 + z2

60◦, 60◦, 60◦ 45◦, 45◦, 90◦ 30◦, 60◦, 90◦

tetrahedron octahedron icosahedron

6 = 2 · 3 12 = 3 · 4 30 = 5 · 6
quadratic forms Hermitian forms hyper-Hermitian forms

Stiefel–Whitney classes Chern classes Pontryagin classes

S1 → S1 = RP1 S3 → S2 = CP1 S7 → S4 = HP1

double coverings S1-bundles SU(2)-bundles

monodromy of flat
connection

curvature of connection
(2-form) 4-form (hypercurvature?)

polynomials trigonometric
polynomials modular polynomials

homology K-theory elliptic homology
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The principle of topological economy in algebraic
geometry

Lecture on May 21, 1997

This part of the lecture is not related to the first part, so it can be understood
independently. We start with an example.

Example 1. In CPn, consider two algebraic varieties X and Y of complemen-
tary dimensions. In general position, they intersect in finitely many points. Let
[X] and [Y ] be the homology classes realized by the varieties X and Y , and let
[X] ◦ [Y ] be the intersection index of these classes (which is an integer). It is
equal to the number of “positive” intersection points of X with Y minus the
number of “negative” intersection points. Thus, the number #(X ∩ Y ) of all
intersection points is not smaller than the intersection index [X] ◦ [Y ] (and has
the same parity). The Bézout Theorem asserts that #(X ∩ Y ) is equal to the
number [X] ◦ [Y ], i.e., there is no inequality! The point is that the orientation
of complex manifolds is such that each intersection makes a contribution of +1,
not −1, in the total intersection index. Negative intersections are “expensive,”
they increase the number of intersection points of X with Y in comparison with
the “topologically necessary” number. A propos, the same considerations imply
that a polynomial of degree n has precisely n roots, not more.

This (well-known) and the following (newer) examples lead to a “princi-
ple of economy,” which, in its turn, can be used to state further conjectures.
These conjectures can be verified in particular cases; sometimes, they can be
proved and become theorems. But in most cases, they remain conjectures, i.e.,
assertions which we may try to disprove, for a long time.

Example 2. The following assertion has long been a conjecture. Consider
a Riemannian surface X of genus g specified by an irreducible polynomial of
degree n in CP2. Its homology class [X] ⊂ H2(CP2, Z) is the generator [CP1]
of the group H2(CP2, Z) = Z taken n times; the number n is the degree of the
polynomial. As is known, the genus g of the surface X can be calculated by the
Riemann formula (though, some people say that Riemann did not know what
the genus is). The formula is

g =
(n− 1)(n− 2)

2
.

13
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The question arises: Is it possible to realize the homology class [X] by another
smooth surface, maybe real rather than complex, of smaller genus? In other
words, does a complex algebraic variety realize the minimum genus for a given
homology class [X] ? The Thom conjecture is that a complex surface with
g = (n − 1)(n − 2)/2 handles is indeed the most economical realization of the
class n · [CP1] ⊂ H2(CP2, Z). Any smooth real surface realizing this class has as
many handles or more. This conjecture was proved only recently by Kronheimer
and Mrowka, who employed “heavy artillery,” namely, the theory of Donaldson,
Gromov, Witten, etc., which originates from the ideas of quantum field theory.

Example 3 (Milnor’s conjecture). This conjecture was also proved only
recently by the same authors. Given an arbitrary knot, we can always transform
it into an unknotted circle in several unknottings. An unknotting is a crossing
change (passing above is changed for passing below) on a suitable diagram (that
is, projection on the plane) of the given knot. Unknotting is made by a sword;
Alexander the Great used the same method to untie the Gordian knot. The
Gordian (unknotting) number of a knot is the minimum number of crossing
changes necessary to transform the given knot into the trivial one.

Knots are related to singularities as follows. Consider an algebraic curve
K2 with a singularity at the origin and a small sphere S3 ⊂ C2 centered at
zero. The intersection N1 = K2 ∩ S3 is a knot (or link) in S3. For example,
the semicubic singularity x2 = y3 of a curve in C2 corresponds to the trefoil
knot.1 Milnor considered the question how to obtain the unknotting number
of a knot N from the algebraic properties of the polynomial specifying the
curve K. He suggested the following method for untying. Let us specify the
curve K parametrically; in the case under consideration, its equations are

x = t3, y = t2.

In the general case, the similar equations x = tn and y = f(t), where f(t) is
a holomorphic function, are given by the theory of Puiseux series (which was
discovered by Newton). We transfer the functions x(t) and y(t) into general
position by adding terms of lower degrees, for example,

x = t3 − εt, y = t2.

We obtain a curve K ′ without singular points (at least near the origin) except
some number δ of self-intersection points. This number δ (the Milnor number)
can be expressed in terms of certain algebraic invariants of the curve K. It is a

1 This fact is proved in, e.g., J. Milnor. Singular Points of Complex Hypersurfaces (Princeton
(USA): Princeton Univ. Press, 1968), Section 1.
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“candidate” for the unknotting number. The point is that there exists a method
for performing unknottings “corresponding” to double points; the number of
unknottings equals the number of double points. The Milnor conjecture is that
this “algebraic” method for untying the knot of a singularity is most economical;
the knot cannot be made trivial in less than δ unknottings. This is yet another
manifestation of the economy principle.

The recent proof of this conjecture uses the same “heavy artillery” (essen-
tially originating from quantum physics) as the proof of the Thom conjecture.

Example 4 (the Möbius theorem). Possibly, Möbius came to the Möbius
band in working on the following problem. Consider a projective line RP1 in
the projective plane RP2. This is an infinitely degenerate curve: its curvature
vanishes at each point. Under a small perturbation, a generic curve with a finite
number of inflection points arises. What is the minimum number of inflection
points?

Let us try to apply the economy principle rather than guess the answer
by experimenting. According to the principle, we must consider the simplest
algebraic model of the phenomenon we are interested in, namely, the appearance
of inflection points under a perturbation of the line. Probably, this model
is most economical, i.e., contains the minimum possible number of inflection
points.

Thus, we must deform the line in the class of algebraic curves of degree as
small as possible and count the number of emerging inflection points. Accord-
ing to the principle of topological economy, it is impossible to obtain a smaller
number of inflection points. We cannot manage with first-degree curves, be-
cause these are straight lines. The second-degree curves are not suitable either,
because they have a quite different topology: the line RP1 is not contractible
in RP2, while the circle (as well as other quadrics) is.

The curves of the third degree are sufficient. For example, we can specify
the line in affine coordinates x, y by the equation y = 0 and its perturbation by
the equation y · f(x, y) = ε, where ε is a small number and f(x, y) is a second-
degree polynomial having no real roots. Examining curves of the third degree,
we see that most economical is the curve y(1+x2) = 1, or y = 1/(1+x2). It has
three inflection points, two with abscissas ±1/

√
3 and one at infinity. Indeed,

any curve having no inflection point at infinity lies on one side of the tangent
at the infinite point in a neighborhood of this point, and in the affine chart,
it lies on both sides from the asymptote, as the hyperbola. The curve under
consideration approaches the asymptote y = 0 from above both times when
going to infinity. Thus, at the infinite point, the curve intersects its tangent;
this is possible only at an inflection point.
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Figure 2

It is worth noting that the notion of an inflection point is purely projective.
It is based only on the multiplicity of the intersection of the curve with its
tangent at a given point and involves no metric. Indeed, the multiplicity of the
intersection of two curves is preserved by any diffeomorphism, and projective
transformations take projective lines to projective lines.

The curve shown in Fig. 1 on the left has two finite inflection points and
one infinite inflection point; on the right, all of the three inflection points are
finite. In any case, the total number of inflections points is odd, which is implied
by the nonorientability of the Möbius band (a neighborhood of RP1 in RP2 is
precisely the Möbius band).

The Möbius theorem asserts that the number of inflection points is an odd
number not smaller than three, i.e., it cannot equal 1.

In this connection, I shall formulate one more theorem and yet another
conjecture. If a line is deformed strongly, the number of inflection points is still
no less than three as long as the line remains embedded. Continuing to deform
the line, we can obtain an immersed (not embedded) curve (Fig. 2) having only
one inflection point. The conjecture is that obtaining a (regular homotopy)
curve with one inflection point from an embedded curve with three inflection
points requires changing the Legendre type of the knot; i.e., there must occur a
moment when the curve is tangent to itself and the orientation of two branches
at the point of tangency coincide.

At this moment, a self-intersection of the Legendre knot corresponding to
the curve under consideration in the space of contact elements of the plane
occurs. Thus, this conjecture (it is similar to the Chekanov conjecture on quasi-
functions, which generalizes the conjectures on fixed points and on Lagrangian
intersections that I stated at the beginning of the preceding lecture; see p. 2)
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asserts that the number of inflection points cannot become equal to 1 until the
Legendre type of the corresponding knot is changed.

At present, it is proved (by D. Panov) that, to remove two out of the
three inflection points (i.e., to leave only one inflection point) while leaving
the Legendre knot intact, it is necessary to create at least nine inflection points
on some curve in the course of homotopy.

Example 5. For small deformations of the line, the Möbius theorem is a special
case of the Sturm theorem, which gives an estimate for the number of zeros of
trigonometric Fourier series. Let f be a 2π-periodic function whose Fourier
expansion begins with harmonics of the nth order:

f(x) =
∑
k�n

(ak cos kx + bk sin kx).

What minimum number of zeros can f have on one period? According to the
general principle, we must consider the simplest case, i.e., the series consisting
of only one harmonic, f(x) = cos kx (or f(x) = sin kx, which is the same thing).
This function has 2k zeros. The Sturm theorem (proved by Hurwitz) asserts
that the number of zeros of the Fourier series is not smaller than that of its
first nonzero harmonic.

A similar assertion for the Fourier integral is not yet proved. Let

F (x) =
∫

f(k)e−ikx dk,

where f(−k) = f̄(k) (thus, F is a real function). Suppose that f(k) = 0 for
|k| � ω. The Grinevich conjecture is that the average number of zeros of F (x)
in a long interval is not smaller than that for the “first harmonic” sinωx, i.e.,
than π/ω. This assertion, which illustrates the general economy principle, is
very likely to be true, but it has not been proved so far.

Let me explain why the Möbius theorem is implied by the Sturm theorem
(for small deformations). Consider the projective plane with an embedded de-
formed line. On the sphere (which doubly covers RP2), we have the deformation
of the equator described by an odd function f(φ) (f(φ + π) = −f(φ)), where φ
is the longitude and f(φ) is the perturbation of the latitude at the point φ. Cal-
culations show that the inflection points of the perturbed equator correspond
to the values of φ for which

f ′′(φ) + f(φ) = 0. (∗)

Actually, this is true only in the first approximation; but the question about the
number of inflection points still does reduce to the question about the number
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of the roots of an equation that has form (∗) but involves a different function f̃
instead of f : f̃ ′′(φ) + f̃(φ) = 0. From the oddness of f , we can derive that the
function f̃ is also odd, i.e., its Fourier expansion contains only harmonics with
odd numbers: the first, third, fifth, etc. Thus, the Fourier series of the function
Lf̃ = f̃ ′′ + f̃ starts with at least third harmonic, because (sin φ)′′ + sin φ = 0
and (cos φ)′′ + cos φ = 0: the differential operator

L =
d2

dφ2
+ 1

kills sinφ and cos φ. Therefore, the equation Lf̃ = 0 has at least six roots in
the interval [0, 2π], and the number of inflection points of the perturbed line in
RP2 is two times less; thus, it is at least three.

As well as the Möbius theorem, the Sturm theorem (which generalizes it)
must have (and indeed has) generalizations to the case of large deformations,
where variations of some curves in multidimensional spaces are considered in-
stead of functions. This gives rise to a theory of convex curves in the projective
space, which contains many interesting problems (see, e.g., V. I. Arnold. Topo-
logical problem of wave propagation theory. Usp. Math. Nauk, 51 (1) (1996),
3–50 and the references cited therein).

Example 6. Let us try to find generalizations of the Möbius theorem to sur-
faces and, accordingly, of the Sturm theorem to functions of two variables.
Consider the projective plane RP2 embedded in projective space RP3. Take a
small deformation of the embedding. How many “inflection points” does the
obtained surface have?

First, we must explain what “inflection” means. The points of a surface are
divided into elliptic, parabolic, and hyperbolic points, depending on the second
quadratic form. At an elliptic point, the surface is convex, at a hyperbolic point,
the two principal curvatures have different signs, and at a parabolic point, one
of the two principal curvatures vanishes. Here we can manage without the
second quadratic form, metric, etc.; elliptic, hyperbolic, and parabolic points are
defined projectively invariantly. It is sufficient to consider the pair formed by the
surface and its tangent plane at a given point. The distance from a close point of
the surface to this tangent plane determines a quadratic form whose degeneracy
(nondegeneracy) and signature do not change under projective transformations.

Thus, the parabolic points (which play the role of inflection points in the
case under consideration) form quite definite curves on surfaces in projective
space. How many domains of ellipticity (bounded by parabolic curves) do ap-
pear under infinitesimal deformations of the plane? This problem is not solved.
However, our method immediately yields the conjecture that this number is
never smaller than in the case of a simplest algebraic deformation. Such an
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algebraic deformation was studied by B. Segre in 1942. It turned out that, on
each cubic surface in RP3 being a deformation of RP2 (i.e., having no han-
dles; surfaces with handles were also examined by Segre), there are four curves
of parabolic points. F. Aicardi from Trieste conjectured that the number of
parabolic curves is always at least four and performed many computer experi-
ments confirming this conjecture. The conjecture of Aicardi is that the situation
is similar to that of the Sturm theorem: given a lower harmonic with 2k ze-
ros (a cubic deformation with four inflection lines), it is impossible to reduce
the number of zeros (inflection curves) by adding harmonics (perturbations) of
higher degree, even with large coefficients.

This conjecture has numerous special cases. Some of them were proved, but
the conjecture itself resists all efforts; even approaches to proving it are not seen.
There exist fairly many different proofs of the Möbius and Sturm theorems, but
all of them have obscure origination. It is also unclear how to generalize these
proofs to the multidimensional case. The conjecture stated above is, probably,
the simplest multidimensional generalization of the assertions of these theorems.

Remark 1. A generic surface has even more special, “inflection,” points than
parabolic points. At each hyperbolic point, there are two asymptotic directions;
straight lines with these directions have an abnormal (� 2) order of tangency
with the given surface. They are also tangent to the intersection curves of
the surface with the tangent plane at the given hyperbolic point. Thus, in
a hyperbolic domain, there is a field of crosses. As a byproduct, the question
about global topological constraints on these fields of crosses arises: What fields
of crosses can be realized by surfaces? The same question can be asked about
affine surfaces and even about surfaces being the graphs of functions z = f(x, y).
This problem is studied very poorly. I shall tell about one related invariant.

Approaching a parabolic curve, the asymptotic directions move toward one
another, and the field of crosses in a hyperbolic domain transforms into a field of
(asymptotic) directions on the parabolic curve. At some points, it is tangent to
the curve itself. These points are even more special: they are vertices of swallow
tails of the dual surface. Segre established that, on a cubic surface, there are
precisely six such points. This suggests the second conjecture of Aicardi that,
under arbitrary (not necessarily cubic) deformations of the projective plane, at
least six tangency points of an asymptotic direction with the parabolic curve
emerge.2

2 In the beginning of September 1997, D. Panov communicated that he disproved both
conjectures of Aicardi by constructing a surface with only one parabolic curve without special
points. Apparently, the dual surface (front) is fairly complex, so there still remains a possibility
to generalize the Möbius theorem by proving that it is separated from the cubic surfaces by
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Remark 2. Consider the surface M in the space of all lines tangent to the initial
surface in projective space formed by the asymptotic directions of this initial
surface. Topologically, it is the double of the hyperbolic domain N . On this
surface, there is a smooth single-valued field of directions (with singularities only
at the special points where the asymptotic direction is tangent to the parabolic
curve), which is projected to the field of crosses on the hyperbolic domain.
Every point inside N has two preimages in M , at which the projection M → N
is regular, and every point on the boundary of N has one preimage in M , which
is a fold point. The surface M has as many handles as many ellipticity domains
are contained inside N . On M , there is a smooth dynamical system whose
integral curves (they are called asymptotic lines) are tangent to the given field
of directions; the projection M → N maps the (smooth) asymptotic lines to
curves with semicubic singular points on the parabolic curve ∂N . Very little
is known about the properties of this dynamical system. It is known that
(in the case of a cubic surface) it has 27 periodic solutions (in the complex
domain), that is, straight lines on the cubic surface which are, obviously, its
asymptotic lines. This dynamical system suggests many interesting questions.
What properties does it have? For example, is it integrable? What will studying
this system by the usual means of perturbation theory near periodic solutions
give? What are the properties of the Poincaré first-return map, which moves
the curve of parabolic points along integral curves? Is this system generic? Is
there chaos?

To conclude, I shall show how simpler problems can be obtained from the
problem under consideration. We need a method for deforming a plane in space
in such a way that we could control the curvature of the obtained surface and
keep track of the parabolic points. There are several such methods; each of them
gives an algorithm that determines the set of parabolic curves and, sometimes,
the points of tangency of a parabolic curve with an asymptotic direction from
some combinatorial data.

One of the methods is as follows: we take a triangulation of the initial plane
and slightly move each vertex away from the plane, upward or downward. We
obtain a polyhedral surface, which is a deformation of the plane. Certainly, it
must be smoothed in some way that would allow us to trace the emergence of
parabolic points. It is easy to apply this method to the Möbius theorem, because
it is clear where the inflection edges of the polygonal line approximating our
curve are. For polyhedra, we can define parabolic curves too; we can define them
on the very polyhedron or on (some “standard”) smoothing of this polyhedron.
Next, for a given perturbation of the triangulation, we define (combinatorially!)

some suitable discriminant, in addition to the obviously necessary discriminant of the birth
of swallow tails on the dual surface.
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a certain number, which must be no smaller than 4 if the Aicardi conjecture is
true.

Another method is based on considering partial differential equations and
leads to the following conjecture (I omit the details). Consider the odd functions
on the sphere S2 in R3; they have the property f(−x) = −f(x), where −x is
the point diametrically opposite to x. It is these functions that describe the
deformations of projective plane. Now, consider the spherical functions, i.e.,
the functions on the sphere that are eigenfunctions for the spherical Laplace
operator. Thus, x, y, and z are eigenfunctions with eigenvalue −2, and the
equation ∆f + 2f = 0 has no other solutions – its solution space is three-
dimensional. So, the spherical functions of degree 1 are precisely all linear
homogeneous functions of x, y, and z; all of them are odd. However, it turns
out that there exists a different theory of spherical functions, which has not
been considered by the classics for some reason. We can consider spherical
functions with singularities, e.g., with poles of multiplicity not exceeding a
certain number. Then the equation ∆f + 2f = 0 has generalized solutions, in
addition to the usual spherical functions. To be more precise, the right-hand
side of the equation is then equal to some linear combination of δ-functions
(and their derivatives) supported at the points where the function f has poles
(rather than vanishes). It turns out that almost all points of a surface for
which the deformation is determined by such a function are hyperbolic, and only
smoothing around the poles yields curves of parabolic points bounding domains
of ellipticity. In addition, at some particular points, the second quadratic form
of such a surface vanishes completely. As a rule, near such a point, the surface
has the form of a monkey saddle. This approach leads to the conjecture that
the number of singular points + the number of monkey saddles � 8. Here
8 = 2 · 4, because we consider the sphere S2 instead of RP2. We take into
account monkey saddles because there may be points at which the function f
is too well approximated by a linear function, i.e., points where the second
differential d2f is not merely degenerate but vanishes.

Vanishing of d2f usually occurs at isolated points. A simplest example is
f(x, y) = x3 − 3xy2; it is easy to show that all points of this surface (except
zero) are hyperbolic; it has no elliptic points, and the form d2f vanishes only
at the point (0, 0).

In general, we can consider (in a fixed local chart) the mapping

(x, y) �−→
(

A B
B C

)
, (∗)

where

A =
∂2f

∂x2
, B =

∂2f

∂x ∂y
=

∂2f

∂y ∂x
, C =

∂2f

∂y2
.
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Thus, to a function f(x, y), we can relate a surface on the three-dimensional
space with coordinates A, B, C that is the symmetric square of the cotangent
space. We have obtained, so to speak, the second Gaussian mapping.

In this space, there is a cone of degenerate forms; it is specified by the
equation AC = B2. Inside the cone are positive and negative definite forms,
and outside it are hyperbolic forms. The Laplace equation A + C = 0 (as well
as some other equations) means that the entire surface-image of the mapping
under consideration lies in the hyperbolic domain completed by the point 0
(for the Laplace equation, in the plane A + C = 0, which intersects the cone
only at the origin). Hence there are no elliptic points on the surface-preimage;
only vanishing of d2f at some points is possible. If we slightly move the func-
tion f , then the image of the corresponding surface will also slightly move, and
parabolic curves (corresponding to the intersections of the surface-image with
the cone) will spring up. Therefore, the monkey saddles must be taken into
account as well as the poles, because, under a small deformation, they also give
birth to parabolic curves. This is where the last conjecture comes from.

Finally, I shall state one more conjecture (by M. Herman), which fits into
the framework of the same theory of extremal algebraic objects. Although, in
this case, the role of algebraic object is played by versal deformations. But it
is known that, in the theory of singularities, versal deformations “behave like
algebraic objects.” For some reason, Herman stated this conjecture for caustics
of the Lagrangian, or gradient, mapping. But the same question is, probably,
open not only for the gradient mapping but also for an arbitrary mapping from
Rn to Rn.

Thus, consider a generic mapping f : Mn → Mn or a projection f : L →
Rn of a Lagrangian submanifold L ⊂ R2n of the symplectic space. A typical
example is y = grad f(x), where x ∈ Rn and f : Rn → R. (To such a form, any
Lagrangian mapping can be reduced by a suitable choice of coordinates.)

Consider the critical points of this mapping, i.e., the points where
det(∂y/∂x) = 0, and the corresponding critical values of y; in the symplec-
tic case, the set of critical values forms a caustic.

The degree of a mapping at a point y is defined as follows. We take a regular
value y′ close to y and count (as usual, with orientation taken into account) the
preimages of y′ – not all of them but only those close to x.

The degree thus defined does not depend on the choice of the point y′.
Suppose that it vanishes. The conjecture asserts that, in this case, the point y′

can be chosen so that it has no preimages at all (in a neighborhood of x). If
the degree equals k, then the conjecture asserts that there exists a point having
precisely k preimages, not more.

Further comments on these problems had been published in:
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Yu. I. Manin

Rational curves, elliptic curves, and the Painlevé
equation

Lecture on October 1, 1997

I would like to tell you a story, which – as it seems – can be instructive in various
aspects. On the one hand, it is an attempt to solve a very recent problem. On
the other hand, it turns out that in the solution one has to use very classical
results, which have been obtained during the first 30 years of the twentieth
century, and then the interest in them has somehow disappeared. They were
forgotten, then reconsidered for completely different reasons, and so on.

This is a story of only a partial success. Starting to work with pleasure,
like a hound following a fresh track, you reach a certain place, but the problem
wagging its tail disappears somewhere behind a corner. So there is something
left to do. I hope very much that those who cannot or do not want to follow all
the mathematics still will be involved, interested in other things. And among
those wanting to follow the mathematics in detail, somebody will be interested
enough to work on the problem itself.

Technically, the problem I am speaking about concerns the attempt to un-
derstand the structure of the potential of quantum cohomology of the projective
plane. I am just going to write down explicitly what this means. The projec-
tive plane, say over the field of complex numbers, yields its three-dimensional
cohomology space, which is spanned by the cohomology classes of the whole
plane ∆0, of a line ∆1, and of a point ∆2. This three-dimensional space has
coordinates which I denote by x, y, z:

H∗(P2, C) = {x∆0 + y∆1 + z∆2}.

The theory of quantum cohomology yields a formal series (the quantum poten-
tial of this cohomology) that looks as follows:

Φ(x, y, z) =
1
2
(xy2 + x2z) +

∞∑
d=1

N(d)
z3d−1

(3d− 1)!
edy,

N(d) being the number of rational curves of degree d on the plane which pass
through 3d−1 points in a general position. Thus, N(1) is the number of straight
lines passing through two points, i.e., N(1) = 1. Then, N(2) is the number of
conics passing through 5 points; this is also 1. The reader can try to check that

24
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N(3) = 7; this is somewhat more difficult. Of course, the fact that this problem
has a finite number of solutions, is easily checked by counting constants: a curve
is given by parameters, then one imposes linear conditions on these parameters
(namely, the requirement to pass through given points). This being not very
easy to do, however, a little of algebraic geometry enables one to expose this
argument correctly.

It is striking that these numbers N(d) satisfy absolutely nontrivial bilinear
relations allowing us to express them consecutively, one through another.

Removing from Φ(x, y, z) the classical contribution 1
2(xy2+x2z) whose sense

I explained yesterday in my lecture at the Moscow Mathematical Society, one
gets the function

φ(y, z) =
∞∑

d=1

N(d)
z3d−1

(3d− 1)!
edy

that already does not depend on x. A theorem proved by Maxim Kontsevich
a few years ago, which constitutes a motivation for our joint work on quantum
cohomology, looks as follows.

Theorem 1 (Kontsevich). The function φ satisfies the differential equation

φzzz = φ2
yyz − φyyyφyzz.

This single equation is equivalent to all the associativity equations for the
function Φ(x, y, z). (The associativity equations state that the third partial
derivatives of the function Φ(x, y, z) are the structure constants of an associative
algebra.)

This equation is also equivalent to the following recurrent formula:

N(d) =
∑

k+l=d

N(k)N(l)k2l

[
l

(
3d− 4
3k − 2

)
− k

(
3d− 4
3k − 1

)]

for d � 2, and N(1) = 1.
If you forget the above-mentioned interpretation of the numbers N(d), then

the equivalence of the three statements is easily checked by a straightforward
computation. However, the proof of the fact that the above defined numbers
N(d) defined above satisfy this recurrence relation, is an algebraic geometry
argument requiring considerable effort. However, if one is allowed some hand-
waving, then it can be proved in a rather intuitive way.

The problem that I have in mind and that excites me until now is to un-
derstand the analytical behavior of the function φ. It is given by the formal
series in a neighborhood of zero. It is not difficult to show that it has a nonzero
convergence domain. And then everything becomes unclear: the function has
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singularities, but of an uncertain type. And, it is generally unclear what func-
tion it is. Maybe it is something known: a solution of the hypergeometric
equation, or a zeta function, or a modular function. Most likely, it is neither
of these three. The work I am going to tell you about, arose from attempts to
understand the nature of this function.

Although the differential equation for the function φ is simple, it is of some-
what nonclassical kind. However, it was known that this differential equation
can be reduced by rather cumbersome nonlinear changes of variables to one
of classical equations which are called “Painlevé-six.” These equations form
a four-parameter family depending on the parameters α, β, γ, δ. There is a
standard notation PVIα,β,γ,δ for these equations which is almost a century old:

d2X

dt2
=

1
2

(
1
X

+
1

X − 1
+

1
X − t

)(
dX

dt

)2

−
(

1
t

+
1

t− 1
+

1
X − t

)
dX

dt

+
X(X − 1)(X − t)

t2(t− 1)2

(
α + β

t

x2
+ γ

t− 1
(X − 1)2

+ δ
t(t− 1)
(X − t)2

)
.

Here I shall omit the explanation of how and why the initial equation for
φ can be reduced to PVI, and devote the rest of the lecture to an attempt to
understand what this implies for the initial mysterious function.

At the beginning of the century Painlevé studied the following classification
problem. Consider a differential equation, to begin with, say, of the following
kind:

dy

dt
= F (y, t),

with the initial condition y(t0) = c, the function F being complex analytic.
You start to continue the solution analytically and look where you shall meet a
singularity. The singularity can be of various kinds: it can be a usual pole, or a
branching point, or an essential singularity. The position of the singularity, in
general, depends on the value of the initial constant c. Here various situations
can arise: some singularities can move and some can remain fixed. The question
was the following. (Its motivation is not completely clear to me up to now, but
maybe there was some inner logic of the development of analysis up to the
time when this question was posed.) One wants to understand what can be
differential equations with the property that only their poles can move and
everything essential (essential singular points and branching points) does not
depend on c. It turned out that for small orders of the equation (for the first and
even for the second order) the answer to this question yields a classification: one
can write explicitly a reasonably small family of equations to which everything
is reduced by changes of variables. With the first order everything is simple,
and the answer was known long ago. With the second order, Painlevé and his
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students tried to succeed for a long time. And when Painlevé wrote his final
paper on the subject, he missed PVI. The calculations were huge, and he made
a computational error. No more than a year latter the error was found. The
first to write out PVI correctly was B. Gambier (1906). The second was Fuchs
who did it independently of Gambier and from a completely different viewpoint.

To miss PVI is a great pity, because – in some sense – the beginning of the
list consists of classical equations, and this is the first nonclassical one. In this
list of nonclassical equations PVI is the most general, all the rest are obtained
by specialization and passing to an appropriate limit. Painlevé missed, due to
his error, not a special, but a general, even the most general equation. This can
happen to everybody, and I generally request you not to be severe to errors in
good papers. The very fact that a paper stated a right question, gave a half-
right answer and stimulated further research, is much more important than
this or that error of the author. We are all human, and I quite disapprove a
widely spread custom to attribute a proof of a theorem to the person who has
corrected the last mistake in somebody else’s proof. This is unfair, and, as it
seems to me, leads to a wrong appreciation of mathematics.

Thus, we have the Painlevé-six equation, written in fact by Gambier and
Fuchs (the son of the famous Fuchs; his paper is in a sense devoted to papers
of his father, that he mentions with great respect). What is more interesting
in the Fuchs paper (which I read with great pleasure and which I should have
read 20 years earlier, but simply did not know about its existence) is that he
obtained this family of equations by a method completely different from that of
Painlevé. Fuchs’ method is much nearer to me. More precisely, Fuchs obtained
these equations in two ways. The first one is via so called isomonodromic
deformations of linear differential equations, but let us not stop at this point.
The other way is related to the fact that he discovered a very nice and geometric
way to write out these equations.1

When you look at the equation PVI, if you have ever worked with elliptic
curves, you realize immediately that the curve

Y 2 = X(X − 1)(X − t)

should play some role here. Though it is not quite clear what this role is:
the equation looks cumbersome. And Fuchs wrote this equation in a very
remarkable way, which made me almost jump up as soon as I saw it.

Before I continue the history of PVI, I would like to recall what we have
begun with. We have a four-parameter family of equations plus two more pa-

1 On Painlevé equations and isomonodromic deformations, see K. Iwasaki, H. Kimusa,
S. Shimomusa, and M. Yoshida M. From Gauss to Painlevé (Braunschweig: Vieweg Verlag,
1991). (Editor’s note)
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rameters coming from the initial conditions. Thus, we have a six-parameter
family of functions, which contain the function describing the quantum poten-
tial of P2, with which I have started. What would we like to do in order to
describe this function? We would like to calculate which constants and which
initial conditions are related to the quantum potential. And then, after we cal-
culate all this, we would like to see what the Painlevé equation says about the
function with such constants and initial conditions. Unfortunately, a priori we
do not expect but a moderate success. And this is one more interesting story
related to the history of PVI. Many efforts were applied to a precise statement
and proof of the theorem which Painlevé stated as follows: “Almost all solu-
tions of this new system of equations are nonclassical functions.” This is hard
to formulate, hard to prove, and hard to believe that this statement is useful.
Indeed, one must give a precise definition of what is a classical function. You
define an iterative process: those functions that you already have can be taken
as coefficients of a new linear differential equation; the solutions of this equation
can be added. Then they can be taken as coefficients of an algebraic equation,
and solutions to this equation can also be added. However, you never know
whether you did not miss some important operation. For example, it seems to
me that in the statement and proof of this theorem one very important opera-
tion was indeed missed, namely, taking the inverse function. But nevertheless,
the general belief is that most of Painlevé transcendental functions are some
new functions. However, it is not excluded a priori that the only function we
are interested in is nevertheless classical. Because among the PVI solutions a
lot of classical functions are known. We are interested in one point in a six-
dimensional space. We want to find its analytic sense and do not know the
answer. This is what I meant when I said that you run what you think to be
the right track, but the problem wags its tail and disappears behind a corner.

Now I return to the theorem of Fuchs (1907). Consider the integral∫ (X,Y )

∞

dx√
x(x− 1)(x− t)

.

It is defined only up to an integral over a closed contour on the elliptic curve
corresponding to the given value of t, i.e., defined up to a period. Periods of
an elliptic curve satisfy a linear differential equation, hence one can remove the
indefiniteness of the integral by applying a differential operator. Let us do so
and write down an equation

t(t− 1)
[
t(t− 1)

d2

dt2
+ (1− 2t)

d

dt
− 1

4

] ∫ (X,Y )

∞

dx√
x(x− 1)(x− t)

= αY + β
tY

x2
+ γ

(t− 1)Y
(x− 1)2

+
(

δ − 1
2

)
t(t− 1)Y
(x− t)2

,
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where Y 2 = X(X − 1)(X − t). This equation is equivalent to the previous form
of PVI.

This new form is better, because the left-hand side has now a transparent
algebraic geometry sense, and a very wide context is known in which such
equations can be generalized, in contrast to the Painlevé equations, which are
naturally embedded into an absolutely different context.

This new form takes the problem away to a completely different area,
namely, to the realm of algebraic geometry, which is nice: the initial prob-
lem being algebro-geometric, we embedded it into some nonlinear differential
equations, and then return again to algebraic geometry.

I prefer to look at this equation as at a nonhomogeneous Picard–Fuchs
equation. By a Picard–Fuchs equation I mean an equation of the following
type. You have a family of tori, or curves, or algebraic varieties, and you
take their periods over closed cycles which depend on the parameters. These
periods – as functions of a parameter – satisfy homogeneous linear differential
equations whose right-hand side equals zero. It turns out that if in the right-
hand side one writes not zero but what is written above, then one gets the
Painlevé equation.

What I have done after that should have been done many, many years
ago. I do not understand why this story did not develop further. If you have
obtained such an elliptic curve, then it is quite obvious that you can calculate
this equation in other geometric representations of the same object. And the
most natural geometric representation of the same object is, of course, the
following. You change the t plane to the upper half-plane with the coordinate
τ , by interpreting a point of the upper half-plane as a generator of the period
lattice of the torus. Then over the point τ you have the torus C/〈1, τ〉. The
differential turns simply into the differential dz. The integral becomes just equal
to z. Hence, without any computations, we know that the differential operator
written above turns into d2/dτ2. The reason is that the above operator was
of the second order and annihilated two periods. We now have periods 1 and
τ , hence the operator annihilating them is nothing but d2/dτ2. Hence all the
left-hand side turns into d2/dτ2: you see how much shorter it becomes. The
right-hand side is not quite trivial. To write the answer, one should use a series
of classical formulas from the theory of elliptic functions. Now, let me write
the answer, it is rather simple:

d2z

dτ2
=

1
(2πi)2

3∑
j=0

αj℘z

(
z +

Tj

2
, τ

)
.

Here Tj are the periods (0, 1, τ, 1 + τ); the constants αi are the same as above
but suitably renormalized: (αj) = (α,−β, γ, 1/2− δ); ℘z is the derivative over



30 Yu. I. Manin

z of the Weierstrass function

℘(z, τ) =
1
z2

+
∑′

m,n

(
1

(z + mτ + n)2
− 1

(mτ + n)2

)
.

The Weierstrass function is the simplest series which one can construct from z
and τ so that it be double periodic with periods 1 and τ .

This form of the Painlevé equation is already simple enough; I myself can
memorize it. Why this form of the Painlevé equation was not known before my
paper is for me a full and absolute mystery. Or rather it is a proof of the fact
that the interest to the Painlevé equation has disappeared for some reasons,
and when it reappeared again, people did not look at the classical papers on
PVI.

What is nice in this reformulation, is that one can immediately notice some-
thing. Let us remember that we are interested in solutions of PVI, and even if
we believe that most of them are nonclassical, it may happen that our solution
is classical. And, generally, let us look whether there are classical solutions.
One of them is seen immediately; if all αj are zero, then we get the equation
d2z/dτ2 = 0, whose all solutions are linear functions. By the way, in the initial
form of the equation this solution is not seen. Actually this simple remark can
be used in an absolutely nontrivial way, by the reasons which are hidden very
deeply. I shall speak about this below.

Corollary 1. For (α, β, γ, δ) = (0, 0, 0, 1/2), all solutions are classical func-
tions.

Those of you who do not want to think geometrically should just imagine
that passage from X, Y, t to z, τ is but a substitution, a nonlinear change of
variables. Though, of course, it is much more efficient to look at this geomet-
rically.

Before we move further, I shall state one corollary more. Classical Weier-
strass functions satisfy many identities, and in particular the so called Landen
identities. These identities relate the Weierstrass functions of the arguments
z and τ and of the arguments z (with a shift on a semiperiod) and 2τ . It is
rather clear that if one changes τ by 2τ , then one passes to functions which are
periodic with respect to a smaller lattice (a sublattice of index 2). Averaging
such functions over semiperiods, one can again obtain a function periodic with
respect to the initial lattice. This leads to the Landen identities which I shall
not write out explicitly. Now, if one looks whether the Painlevé equation can
be transformed so as to pass to a sublattice of index 2, then we come to some
unexpected symmetries.
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Corollary 2. The Painlevé equation with constants (α0, α1, α0, α1) can be
transformed according to the Landen transform, and one gets the formulas which
calculate the relation between solutions with these constants and solutions of the
equation with the constants (4α0, 4α1, 0, 0).

Having calculated the constants corresponding to the equation responsible
for quantum cohomology, we obtain that it is of a magnificent kind:

d2z

dτ2
= − 1

2π2
℘z(z, τ).

Those of you who worked in symplectic geometry and Hamiltonian mechan-
ics, looking at this equation can easily see that it is Hamiltonian.

Corollary 3. The PVI equation is Hamiltonian:

dz

dτ
=

∂H

∂y
,

dy

dτ
= −∂H

∂z
,

where

H =
y2

2
− 1

(2πi)2
∑

αj℘

(
z +

Tj

2
, τ

)
.

The Hamiltonian essentially depends on τ (the parameter τ plays the role
of complex time).

The fact that the equation PVI is Hamiltonian was known in classics. How-
ever, the formulas were tremendous, and their geometric sense was unclear.
The new representation makes it clear that the equation is Hamiltonian and it
also helps us to study its geometric sense. I shall omit precise statements here.

The main general result on the six-parameter family of solutions of the
Painlevé equation is a completely mysterious symmetry; I am going to pass to
its description.

All the hope on the symmetries is that we know a number of classical so-
lutions, and the symmetry group enables us to construct new solutions out of
known ones. It is surprising that here the group of symmetries is very large
and absolutely nonevident. These symmetries were discovered and rediscovered
many times. However, up to very recent times they could not be understood
and written out in a comprehensible form. I would like to mention the names
of Schlesinger and Okamoto, and also add the names of Arinkin and Lysenko.
These are two students of Drinfeld who have written a very nice paper which
partially clarifies what is going on here. Let me state the answer.

I must introduce new parameters a2
i = 2αi. On the space with the coordi-

nates (ai) one has an action of the group of symmetries W generated by the
following transformations:
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(a) (ai) �→ (±ai);
(b) permutations of ai;
(c) (ai) �→ (ai + ni), where ni ∈ Z and

∑3
i=0 ni is even.

The main series of symmetries is c). This group of symmetries can be lifted
to an action on the whole structure and, in particular, it transforms solutions
of the Painlevé equation with given parameters to solutions with some other
parameters.

The main discovery here is due to Schlesinger (1924). Schlesinger embedded
this problem into a series of others which are now called Schlesinger equations
or the theory of isomonodromic deformations of linear differential equations.
He founded the basics of this theory, and discovered a great number of discrete
transforms from one equations to others. A particular case of these transforms
is the group of symmetries described above. Later on, there appeared physical
papers where consequences of all these symmetries were described. Japanese
school made a lot here. Okamoto discovered a subset on which these transforms
form a group (Schlesinger transforms form only a semigroup and they mix
equations with one another; this is a rather incomprehensible thing). And
Okamoto discovered that on PVI the transforms form a group. Arinkin and
Lysenko, whom I mentioned above, in a sense returned to Schlesinger’s ideology
for the particular case of an equation on P1 with four singular points to which
the Painlevé equation is reduced. They showed that in a certain reasonable
sense this construction gives the full group of birational automorphisms of a
properly defined geometric object.

Corollary 4. All the PVI with (ai) ∈ Z4 with the even sum of ai have com-
pletely classical solutions.

Indeed, we know this for ai = 0.
Recently, the Painlevé equation has been much studied by Hitchin. In one

of his papers it is proven that for the constants (0, 0, 0, 2) the solutions are
completely classical, and explicit formulas are given. He did not notice that
this point is just one element of an infinite orbit.

At this step, I became rather optimistic and decided that certainly the
equation for the quantum potential is covered by this net. It is indeed almost
covered: it lies in the middle between two classical solutions, namely, in our
case one has the parameters (ai) = (0, 0, 0, 1) which lie at the middle point
between (0, 0, 0, 0) and (0, 0, 0, 2) and for them it is known that the solutions
are classical. However, we know nothing about the middle. For example, it
can happen that these points possess not a two-parameter family of classical
solutions but a one-parameter one.
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Perhaps here I should mention the two remaining parameters. Four param-
eters give the place of the equation in the hierarchy, and two more parameters
are the initial conditions for the concrete function of interest for me.

For me it turned out convenient to calculate the initial conditions for the
most degenerate curve with complex multiplication: τ0 = e2πi/3. It is interesting
that the initial condition was the following: z(τ0) is a point of third order on
the elliptic curve.

We must stop here.2

Note (January 14, 1998). After this lecture, I have got by electronic mail
a reference to a note by Painlevé dated 1906, in which he deduces the form of
his equation with the Weierstrass ℘-function. I breathed with relief. So this
formula was discovered at its proper time and simply forgotten, and good ideas,
even being forgotten, necessarily reappear again.
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A. A. Kirillov

The orbit method and finite groups

Lectures on December 28, 1997 and January 3, 1998

1

Truly, I am somewhat confused by what I would call an overqualified audience,
for I was promised second- and first-year students. But let us hope that at least
the notes of this lecture will be delivered at the right door.

I shall start with a topic not related to the lecture, namely, what is the news
in mathematics. This is a separate topic, which can take the whole two hours.
But still, I would like to touch upon two things. I shall only briefly mention
the first of them: this is the last paper of Maxim Kontsevich, which has closed
the topic of deformation quantization and which is being agitated at all math-
ematical centers.1 The second is a trivial proof of the so-called cosmological
theorem of Conway. This topic is intended for first-year students. Conway is
a quite extraordinary mathematician, who deals with quite unexpected things.
For example, it came to his mind to investigate the so-called audioactive op-
erator. Imagine that you are like a Chukchi man, who goes in the tundra and
sings whatever he sees. Suppose, you see a number, say one. You see one one,
and you write: “One one (11).” Thereby, the second term of our sequence is
obtained. You see the second term of the sequence, two ones, and write: “Two
ones (21).” This is the third term of the sequence. Reading it aloud, we obtain:
“One two, one one (1211).” The next term is “One one, one two, two ones
(111221).” As a result, we obtain the sequence

1, 11, 21, 1211, 111221, 312211, . . . .

Conway became interested in the asymptotic properties of this sequence. It
is a fairly easy exercise to prove that it contains no digits other than 1, 2, and 3.
The next easy exercise is to prove that, if the first and second terms of such a
sequence contain only 1, 2, and 3, then the other terms also contain only these
digits.

It turns out that the pronunciation operator has precisely one fixed point,
22. All the other sequences begin to grow, but in a very irregular manner:

1 M. Kontsevich. Formality conjecture. Deformation theory and symplectic geometry. In
Math. Phys. Stud., 20 (Dordrecht: Klüwer Acad. Publ., 1996), pp. 139–156. (Editor’s note)
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the length increases sometimes very strongly and sometimes not very strongly.
Conway proved that, for all sequences consisting of digits 1, 2, and 3 (except
the sequence at the fixed point 22), the ratio between the lengths of the words
an and an−1 tends to a certain limit, which equals 1.301577269 . . . . This limit
is an algebraic number, and the experts in dynamical systems, certainly, guess
that this is the maximum eigenvalue of some operator, but I shall omit the
details.

This is not related to the topic of the lecture, but I spent several minutes
expressly so that everyone who wanted to come would come and sit down.

Now, I proceed to the lecture. I am going to briefly tell about some prob-
lems arising in relation to the application of the orbit method to finite groups.
Since the lecture is intended for able first-year students, I shall sometimes say
words which the listeners must not understand at the moment. Later, they
can ask elder friends, or guess themselves, or read in a book what these words
mean and, thereby, settle a local incomprehension. There should be no concep-
tual incomprehensions, because I am going to change the paradigm (as Yurii
Ivanovich Manin says) every several minutes, so that, at any moment, you can
forget everything said before and start to attend afresh.

On the whole, the lecture is about representation theory. I believe that every
first-year student at Independent University has an idea of groups, linear spaces,
linear operators, and linear representations of groups (i.e., in a more scientific
language, homomorphisms of groups to groups of invertible linear operators)
and understands that this science is useful; representation theory has diverse
applications, which I shall not talk about now.

My contribution to representation theory is that I have suggested the orbit
method. To a certain degree, this method is a combination of two things, sym-
plectic geometry and representation theory. Or, at a higher level of abstraction,
this is a combination of modern mathematical physics and mathematics. The
point is that mathematical physics already gradually supplants mathematics
in canonically steady mathematical fields and invents new approaches and new
problems, solving old ones as a byproduct. About half of mathematical journals
are gradually being filled by papers in which mathematical physics plays a role,
sometimes decisive.

I shall spend several minutes explaining what symplectic geometry is, al-
though I have been told that this subject is not quite unfamiliar here. I shall
start with considering a smooth manifold M . A smooth manifold is something
on which mathematical analysis can be developed. Namely, this is a set M
which locally has the structure of Euclidean space. This means that the set
M can be covered by open domains2 Ui in such a way that each domain ad-

2 When I talk about open domains, I imply that M is a topological space rather than a
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mits a one-to-one mapping to a domain in Euclidean space: Ui
φ→ Vi ⊂ Rn.

So everything that we know from mathematical analysis, namely, the rules for
handling functions of many variables, differentiation, integration, substitutions,
differential equations, and so on can be transferred to the manifold M .

The simplest example of a manifold is the circle S1. It is impossible to
introduce one coordinate on the circle. Again, this is a problem for first-year
students: Prove that any continuous function on the circle takes one value at
two different points and, therefore, cannot serve as a coordinate. On the other
hand, it is easy to figure out how to specify two domains on the circle so that
such a coordinate would exist on each of them. We can introduce a coordinate
on the entire circle except at the top point by projecting the circle from the
top onto the horizontal line. The top point itself has no image, but we can
use another projection, from the bottom point, and map everything except this
point to the same horizontal line. We obtain two charts; together they cover
our manifold, the circle. We call these local coordinates x+ and x−. For a circle
of radius 1, they are related as x+x− = 1 (x+x− = r2 for a circle of radius r).

So far, our main object is a manifold, i.e., a set on which we can do math-
ematical analysis. I also said the word “group.” In a group, elements can be
multiplied. Usually, groups arise as groups of transformations of something.
Combining the two structures, of a group and of a manifold, we obtain a Lie
group. This is our main object of study.

A Lie group is an object being a manifold and a group simultaneously. This
means that it is endowed simultaneously with local coordinates and with a
multiplication law possessing the usual properties of associativity, existence of
inverse elements, and the existence of an identity element.

The same circle is an excellent example of a group. The simplest way to
introduce multiplication is as follows. Imagine that the circle has radius 1 and
lies not simply in the real plane but in the complex plane. Then we can specify
it by the equation |z| = 1 and introduce a group law in the form of the usual
multiplication of complex numbers: z1z2. If two numbers have modulus 1, then
their product also has modulus 1.

I forgot to say that the two structures, of a group and of a manifold, must
be related to each other in a natural way. Namely, on the manifold, the no-
tion of a smooth function is defined. Defining a manifold, I intentionally forgot
to mention that the correspondence Ui

φ→ Vi is arbitrary, but at the regions
where two coordinate systems arise, we must require that the transition from
one coordinate system to the other is implemented by means of smooth func-
tions. Smoothness means the existence of several (one, two, three, and so on)

mere set, i.e., open and closed subsets of M are defined.
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continuous derivatives. As a rule, it is convenient to assume that all functions
are infinitely differentiable. So, the relation between the group axioms and the
axioms of a manifold is very simple: the group law and the mapping which
takes each element to its inverse must be smooth functions.

Exercise. Write down the group law for the circle in the coordinates x+ and
x− and show that it is a continuous function.

In what follows, we shall deal with representation theory. I shall consider
only unitary representations. This means that a group G is mapped to the
group aut(H), where H is a Hilbert space. A Hilbert space is a generalization
of a linear space in two directions. Namely, the dimension of the space is not
bounded and can be infinite. Secondly, as a rule, the complex rather than real
field is considered. We could consider real representations too, but they reduce
to complex representations, and many facts and theorems over the complex
field are much simpler. For a Hilbert space, there is a notion of the inner
product of two vectors, which is inherited from finite-dimensional spaces. Thus,
we can introduce norms of vectors and the notion of orthogonal vectors. By
the automorphisms of H I understand the operators which preserve all the
structures in H, namely, the structure of linear space and inner product. Such
operators are called unitary.

Thus, to each element g of the group G we assign a unitary operator U(g)
in such a way that the functional equation U(g1g2) = U(g1)U(g2) holds: a
product of elements of the group is mapped to a product of operators. There
is a fairly well-developed science about how to deal with unitary representa-
tions. In particular, there are natural notions of equivalent representations and
of decomposition of representations into sums. The representations that do
not admit decompositions into direct sums are called indecomposable. They
turn out to be irreducible, i.e., they have no nontrivial subrepresentations. The
first problem that arises in considering any group is to describe the set of all
irreducible unitary representations of this group up to equivalence. The set of
equivalence classes of irreducible unitary representations of a group G is denoted
by Ĝ. In the English mathematical-physical language, there is a very conve-
nient abbreviation for this long term, namely, unirrep (UNItary IRREducible
REPresentation). These unirreps are the main object of our study; it would be
good if, for each group, we had a list of such unirreps and their properties: how
they behave under restriction to a subgroup, or under induction (I shall not say
what it means at the moment) to a larger group, what their matrix elements,
characters, and infinitesimal characters are, and so on.

There arise as many problems as there are groups. Since groups occur in all
areas of mathematics and its applications, these problems also arise everywhere.
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They are solved by different methods in different areas, and the solutions are
sometimes quite unlike. Thus, there is one set of theorems for compact groups,
a second set of theorems for semisimple groups, a third set of theorems for
nilpotent groups, and so on.

The orbit method, which I shall talk about, has the advantage that it con-
siders all groups at once and gives a universal recipe for describing the set of
irreducible representations and answering most of the related questions. I shall
not describe this method in detail.3 I shall only mention the related notions
and explain what the method does. The most popular among all my fascinat-
ing enterprises is the so-called User’s Guide. When you buy an electric iron or
something else, an owner’s manual is included. Such a manual exists for the or-
bit method too. It says what you must know and do to obtain an answer – what
you must evaluate, multiply, add, and so on.

I shall list the basic ingredients and, then, proceed to the main topic of my
lecture, which is how to apply the orbit method to finite groups. For beginning
mathematicians, it is always more pleasant to deal with something tangible
and finite. When I was a first-year student, I believed that I could solve any
problem concerned with a finite set of objects. This turned out to be not very
true; there are quite finite problems which people cannot solve so far. I shall
try to formulate some of such problems later on. Right now, I shall finish the
description of the orbit method and say how it can be applied to finite groups.

Our next object is a Lie algebra g = Lie(G). The letter g, lowercase
Gothic g, has become a conventional notation for the Lie algebra associated
with a Lie group G. The theory of Lie groups and representation theory have
been reformed many times, and each epoch had its own notation. At present, it
is more or less conventional to denote Lie groups by capital Latin letters and Lie
algebras by lowercase Gothic letters. Although, there are retrograde scientists,
who use obsolete notation, and progressive scientists, who invent their own new
notation. But I shall adopt the most common notation.

A Lie algebra is what remains of a group when only infinitesimal neighbor-
hoods of the identity are considered. Namely, we take the tangent space TeG to
a Lie group G at its identity e and interpret the vectors of this tangent space as
points infinitely close to the identity. What does remain of the group law when
only the points very close to the identity are considered? If we introduce local
coordinates with origin at the identity, each element of the group will be repre-
sented by a vector. Take two such vectors �x = (x1, . . . , xn) and �y = (y1, . . . , yn)
and consider their product �x · �y = �z in the Lie group. The coordinates of the

3 See A. A. Kirillov. Elements of Representation Theory (Moscow: Nauka, 1972) [in Rus-
sian]. (Editor’s note)
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obtained vector �z are functions of �x and �y:

zk = φk(�x, �y).

It turns out that the associativity of multiplication and the condition that the
multiplication of any element by the identity yields the same element imposes
strong constraints on the function φk, and under a suitable choice of local
coordinates, it has the following remarkable form:

φk(�x, �y) = �x + �y + [�x, �y] + . . .

(the ellipsis denotes terms of the third and higher orders). This formula means
that, on any Lie group, the group law is commutative in the first approximation
and determined by a bilinear skew-symmetric expression [·, ·] satisfying the
Jacobi identity in the second approximation. This bilinear operation transforms
the tangent space to the group at the identity into the so-called Lie algebra.
To every Lie group, a Lie algebra is associated.

Suppose that a Lie algebra has basis X1, . . . , Xn; then, to specify the struc-
ture of this Lie algebra, it is sufficient to specify the products of basis vectors:
[Xi, Xj ] = ck

ijXk. I use standard Einstein’s rule that the presence in some ex-
pression of the same index as a superscript and as a subscript mean summation
over this index. Thus, a Lie algebra is simply a set of structural constants ck

ij .
The great discovery of Sophus Lie is that this set of structural constants con-
tains all the information about the Lie group. In principle, you can extract
everything you want to know about this group from the set of structural con-
stants. A little later, I shall say how this affects the problems which we shall
deal with.

Geometrically, what we need is not the space g itself but its dual space,
which is denoted by g∗. This is the space of linear functionals on g. If the initial
space has basis X1, . . . , Xn, then we can introduce dual functionals F 1, . . . , Fn

in such a way that each functional takes the value 1 at the vector with the same
number, vanishes at the remaining basis vectors, and is extended to the other
vectors by linearity.

The space g∗, as opposed to the Lie algebra g, carries no multiplication –
functionals cannot be multiplied. Although, we can introduce multiplication
by force, thus obtaining a very interesting construction known as a bialgebra.
It is related to quantum groups, Drinfeld algebras, and other things. This is
a separate science, and I shall not touch it here. We are interested in g∗ as a
linear space.

The last ingredient from the general theory of groups and Lie algebras which
I need today is the action of a Lie group G on the algebra Lie g and the dual
action on the space g∗. This action can be defined in many equivalent ways.
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The simplest way to show that such an action exists is as follows. For each
x ∈ G, consider the transformation A(x) : g �→ xgx−1. This transformation
is an automorphism of the group. In addition, this is a smooth transforma-
tion of the manifold G leaving the point e fixed. Hence there is a derivative
mapping, which acts in the tangent space and is denoted by Adx. It takes an
element X of the tangent space to another element of the tangent space, which
I conventionally denote by xXx−1. Such a notation is justified, because the
overwhelming majority of Lie groups can be realized as subgroups of matrix
groups (if infinite matrices are allowed, then all Lie groups can be realized so;
if only matrices of finite order are considered, then there are exceptions), and
for a matrix group, this formula can be understood literally. This is what most
physicists do, because for physicists, any group consists of matrices.

We have described the action on the Lie algebra itself, while we need an
action on the dual space. I denote the action of an element x on the dual space
g∗ by K(x) (K is an abbreviation for the Russian term ,
which means coadjoint : the representation Adx is said to be adjoint, and the
representation K(x), coadjoint). The action of K(x) on a functional F is defined
by

〈K(x)F, X〉 = 〈F, Ad x−1X〉.

The matrix of the coadjoint representation differs from the matrix of adjoint
representation in that it is replaced by the inverse matrix and transposed. Seem-
ingly, the difference is minor. But it turns out that the adjoint representation
and the coadjoint representation look quite different. Roughly speaking, the
coadjoint representation has much more properties than the adjoint one.

One of the evident geometric properties is that all coadjoint orbits are
symplectic manifolds, and the action of the group preserves the symplectic
structure. “Coadjoint orbits” is a jargon term used in place of “orbits of the
coadjoint representation.” An orbit is obtained by applying K(x) to a func-
tional F for all x ∈ G.

Now, I shall make yet another brief digression, this time on symplectic
manifolds. This notion came from mechanics. In a certain sense, symplectic
manifolds are an odd analogue of Riemannian manifolds. Maybe, Riemannian
manifolds are even closer to beginning mathematicians. These are manifolds
on which lengths can be measured; i.e., for each of them, a positive definite
quadratic form on the tangent space is defined. For a symplectic manifold,
instead of a quadratic form on the tangent space, a skew-symmetric bilinear
form, i.e., a skew-symmetric inner product, is defined. Roughly speaking, this
is an odd analogue of a metric. In general, at present, people are inclined to
believe that each notion must have an odd analogue, and we can gain a proper
understanding of various phenomena only by considering objects and their odd
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analogues simultaneously.
A more accurate analogy between Riemannian manifolds and symplectic

manifolds is obtained when taking into account that the very basic attribute
of Riemannian manifolds is curvature. Spaces may be flat or nonflat, and this
nonflatness manifests itself in that the metric has curvature. When the metric is
replaced by a skew-symmetric quadratic form, the notion of curvature persists.
So, symplectic manifolds are an odd analogue of flat Riemannian manifolds,
i.e., they have curvature zero. This can be expressed in the coordinate from as
follows. If we write locally the skew-symmetric form in the form ω = ωijdxi ∧
dxj , then the flatness condition takes the form

dω =
∂ωij

∂xk
dxi ∧ dxj ∧ dxk = 0.

As is known, any flat metric can be made constant in a suitable coordinate
system. A symplectic structure also becomes a constant symplectic structure
in a suitable coordinate system; i.e., we can choose a local coordinate system in
such a way that the coefficients ωij are constant numbers. Symplectic geometry
has no local invariants. But it does have global invariants, and this is a very
interesting science – symplectic topology. Everybody can become acquainted
with it in the recently published collection of works of Arnold.4 A propos, it is
interesting in many other respects too.

Each orbit of the coadjoint representation has the canonical structure of a
symplectic manifold, and the symplectic form ω on the orbit is invariant with
respect to the action of the group. This property, whose formulation seems
to be very complicated, has a clear easy-to-formulate consequence; namely, all
coadjoint orbits necessarily have even dimension.

The simplest example is as follows. If the initial group is the rotation group
of three-dimensional space, then the corresponding Lie algebra is the usual
three-dimensional space, the adjoint representation is the so-called tautological
representation (each rotation of three-dimensional space acts precisely as a ro-
tation of three-dimensional space), and the orbits are two-dimensional spheres
or the origin. As you see, only dimensions 0 and 2 occur.

The basic principle of the orbit method is that the following two sets, al-
though not precisely coinciding, are in a certain sense close to and responsible
for each other. These are the set Ĝ (the equivalence classes of unitary irre-
ducible representations, briefly unirreps) and the set g/G of coadjoint orbits:

Ĝ ∼= g/G.

4 See the reference on p. 3. (Editor’s note)
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This correspondence looks like something very universal; it must be valid for
any Lie group. Therefore, it is natural to regard this relation as some general
principle, which is valid whenever its both sides make sense. For example, a
Lie group can be understood in a somewhat generalized sense. We can assume
that it is not a classical smooth manifold with real coordinates but, say, a
complex manifold, or a manifold over another field (an algebraic variety). We
can assume also that it is an infinite-dimensional manifold. Finally, we can
assume that this is a quantum group, which is not a group at all but still does
have an associated Lie algebra and a coadjoint representation. Of most interest
to me today is the case where the group is an algebraic variety over a finite
field. Then it itself is finite as a group. All theorems and conjectures which
I am going to talk about refer to the very simple and comprehensible object,
finite groups. Remarkably, some of the results obtained by applying the orbit
method turn out to be well-known correct theorems, some are new (although
still correct) theorems, some turn out to be false, and, finally, some remain
open problems. The problems are the first thing I want to talk about.

The general principle of the orbit method is that this method is a linear
or, differently, quasiclassical approximation to the true representation theory.
Namely, instead of a nonlinear manifold (Lie group), we take a linear manifold
(its Lie algebra) and consider the multiplication law only up to quadratic terms,
which is the first step of approximation. Thus, the closer the Lie group to its
Lie algebra the better the method works.

Each Lie group is related to its Lie algebra by a natural mapping from the
Lie algebra to the Lie group. Given a tangent vector, i.e., a direction of motion
from the identity, you can move along this direction in the most natural way, so
that the trajectory of motion is a one-parameter subgroup. The parameter on
this curve can be chosen in such a way that the following two conditions hold:

(1) gtgs = gt+s (this can be achieved by virtue of the general theorem that
any one-dimensional group is locally the additive group of real numbers);

(2) .
g0 = X, where X is a given vector.

This system of ordinary differential equations with such an initial condition
has a unique solution, and g1 is denoted by expX. This notation is chosen
because, for the matrix Lie group, we have expX =

∑
k�0

Xk/k!, i.e., the true

exponential is obtained.
The mapping exp is defined on the entire Lie algebra. But the image of

this mapping covers the Lie group not entirely. Therefore, the inverse mapping
(it would be natural to call it logarithm) is defined not anywhere, is one-to-
one not anywhere, and, in general, has much worse properties than the direct
mapping exp.
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The orbit method works most simply when the mapping exp is one-to-one.
The most remarkable example for which this mapping is one-to-one is my main
object of consideration today.

Let Gn denote the algebraic group of upper triangular matrices. I shall make
a brief digression on algebraic varieties. This is a very important notion; to be
more precise, of most importance is the related ideology rather than the notion
itself. At the dawn of this science, the term algebraic variety was used for the
set of consistent solutions to an algebraic system of equations. In due course,
people understood that this point of view was incorrect. For example, if you
consider the real numbers, then the equations x2 + y2 = −1 and x2 + y2 = −3
are equivalent, because each of them has no solutions. At the same time,
clearly, these are slightly different equations, and they must describe different
sets. Indeed, if we consider the complex numbers, then these two equations
have different solutions. Yet, consider the equation x + y = x + y + 2. It also
has no solutions and, therefore, must be considered equivalent to the first two
equations. But, clearly, it is impossible to think up a transformation of these
equations into each in other. These are different objects. An whereas the first
two equations can be rescued by considering complex solutions, the third one
has no complex solutions. But when we consider solutions in, e.g., the field
of residues modulo 2, this equation determines the entire plane, i.e., any pair
(x, y) is its solution.

Systems of equations have different solution sets when we consider them
over different fields or, more general, over different algebras. Little by little,
people understood that a system of equations is a functor from the category
of algebras to the category of sets. Namely, given a system of equations with
coefficient from some field k and an algebra A over this field, the solution set
over this algebra is some set XA. Thus, we have a correspondence A �→ XA,
and this correspondence is a functor. I shall not explain what a functor is; ask
your clever neighbor about it.

This understanding of an algebraic variety is already correct. Another ques-
tion is what algebras should be considered. Sometimes, we must consider the
complex numbers, and sometimes narrower structures are sufficient. In some
situations, it is useful to consider noncommutative algebras A. This refers to
the science called noncommutative algebraic geometry.

An algebraic group is simultaneously a group and an algebraic variety. But
we must remember that an algebraic variety is not a set. It becomes a set only
after some algebra A is chosen. Thus, an algebraic group is not a group in the
usual sense, merely because it is not a set, whereas group theory teaches us
that groups are sets.

An algebraic group is something that becomes a group after you choose
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an algebra A and consider the solution set of the corresponding system of
equations over the algebra A. As you understand, this is a whole family of
groups depending on the choice of the algebra.

After this prelude, I shall write an example of an algebraic group. This
group Gn is an algebraic subvariety in the set of all matrices: Gn ⊂ Matn. And
it is determined by the system of equations xij = 0 for i > j and xij = 1 for
i = j. We can consider solutions to this system over any field and over any
algebra. I claim that Gn is an algebraic group. I shall not carefully define what
it means; I shall only verify that, as soon as we consider solutions over some
algebra, we obtain a group. For simplicity, let n = 3. Then the solution set of
this system over a given algebra A looks like1 a12 a13

0 1 a23

0 0 1

 ,

where aij ∈ A. Such matrices are said to be strictly upper triangular (strictly
because of the ones on the diagonal). For any algebra A, the set of strictly
upper triangular matrices is a group under the usual matrix multiplication.

Now, I can already specify the subject matter of today’s lecture. Namely, I
can describe what the orbit method can say about the representations of this
group in the case where A = Fq is a finite field with q elements. Here q = 2, 3,
4, 5, 7, 8, 9, 11, 13, . . . . There exist no fields comprising 6, 10, or 12 elements.
The most interesting test example is the field with 4 elements: there exists a
field with 4 elements, but it is not the field of residues modulo 4.

Interesting problems arise when the so-called asymptotic representation the-
ory is engaged. This means that we consider a whole infinite series of finite
groups, rather than one finite group, and examine its asymptotic properties.
For example, we might ask whether these asymptotic properties can be inter-
preted as some results of the theory of representations of some ideal object at
infinity.

The group Gn(Fq) ⊂ Matn(Fq) has two parameters, n and q. They play
quite different roles, although there is a curious argument implying that there
must be a relation between these two parameters. We can proceed in two
ways. First, we can fix n and vary q. This means that we consider the same
algebraic group over different fields. It turns out that the orbit method is
perfectly adjusted to such a variation and gives a universal description for the
representations of all these groups with certain additional corrections depending
on n. But when we fix q and let n tend to infinity, the problem becomes much
more interesting, and even the simplest questions still have no answers. It is
this problem that I want to discuss: What does the representation theory of
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the group of upper triangular matrices of very large order with elements from a
given finite field look like? As to the field, it often affects hardly anything, and
the results are approximately the same for all fields. For this reason, we only
consider the simplest field, namely, the field F2 = {0, 1} with two elements.

The field F2 = {0, 1} is the simplest one by virtue of the axiom 0 �= 1.
This and only this axiom prohibits a field consisting of only one element. In
some cases, it makes sense to consider a field consisting of one element. The
axiom is violated, but there are no other obstructions. Interestingly, some
formulas make sense even when q is equal to 1. More than that, there exists a
metamathematical philosophy which says that the case of q = 1 corresponds in
a certain sense to an infinite field, namely, to the complex field C. Furthermore,
q = −1 corresponds to the field R . But this is another topic, which I do not
want to discuss because of time limitations. Those who wish to learn more
about it might want to look up Arnold’s Selected Works.5

In what follows, I shall often restrict myself to the simplest field with two
elements, although there are interesting questions for general fields too.

We start with describing coadjoint orbits. As we believe that the orbit
method works, i.e., that irreducible representations correspond to coadjoint
orbits, it would be good to learn to somehow describe the coadjoint orbits.
This gives rise to the following question. In algebraic geometry, there is a
notion of generic elements. Generic orbits are usually easy to describe; at
least, they are easy to describe for the triangular group. Next are degenerate
orbits, and the higher the degree to which a class of orbits is degenerate the
more difficult the problem of classifying them. This problem is not completely
solved as yet. Moreover, it is not solved for any field. For the real field, the
problem arose very long (about thirty years) ago. It was known even then. And
even then, it was unclear how to classify the representations of the triangular
group with real elements. After the orbit method had been invented, it became
clear that classifying representations is the same thing as classifying coadjoint
orbits. Seemingly, the problem becomes substantially simpler, because it now
deals with quite a finite object – the finite-dimensional triangular matrices
and a finite-dimensional group acting on them in a certain way – instead of
infinite-dimensional representations in a Hilbert space. Nevertheless, the orbits
still resist classification. Moreover, there are considerations which suggest that
the solution must be nontrivial. On the other hand, everyone who thought
of this classification became convinced that, even if such a classification could
be obtained, it should not strongly depend on the field. Whatever the field
(complex, real, or finite), the classification is approximately the same. It is
only unknown what it is. Thus, the case of the simplest field is of greatest

5 V. I. Arnold. Selected Works–60 (Moscow: Fazis, 1997). (Editor’s note)
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interest.
Now, I shall write several simple formulas which show what the coadjoint

representation for the triangular group looks like. The group Gn itself consists
of elements

g =


1 ∗
0 1 ∗
0 0 1 ∗
0 0 0 1 ∗
0 0 0 0 1

 .

(We take n = 5 by way of example.) The entries on the diagonal are ones,
under the diagonal zeros, and above the diagonal arbitrary elements.

The Lie algebra is the tangent space. The set Gn is no longer a manifold,
and it has no formal tangent space, but we can define a tangent space for an
arbitrary algebraic variety. In the case under consideration, the tangent space
consists of the same elements with ones replaced by zeros on the main diagonal:

gn � X =


0 ∗
0 0 ∗
0 0 0 ∗
0 0 0 0 ∗
0 0 0 0 0

 .

It is convenient to represent the elements of the dual space in the form of
lower triangular matrices:

g∗n � F =


0 . . . .
∗ 0 . . .
∗ 0 . .
∗ 0 .
∗ 0

 .

There are zeros on the diagonal and some elements under the diagonal; I do
not want to write zeros above the diagonal, so I put dots. Let me explain why.
If some space is a subspace in the space of matrices, then the dual space is a
quotient space of the dual space of matrices. The passage to the dual space
is a contravariant functor, which interchanges subspaces and quotient spaces.
The space of matrices is self-dual. The trace tr(F · X) is a bilinear function
depending on matrices F and X. For a fixed F , it is a linear functional of X, and
for a fixed X, it is a linear functional of F . And each linear function of X can
be represented in this form for a suitable matrix F . Thus, the space Matn(Fq)
is dual to itself. Moreover, most importantly, this duality is invariant with
respect to conjugation: the replacement of X and F by xXx−1 and xFx−1
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does not affect the result. Therefore, the duality survives the adjoint action
on X and, simultaneously, the coadjoint action on F . But if X ranges only
over some (upper triangular) matrices rather than over all of them, then as F
we must take the quotient space of all matrices modulo the matrices that kill
the upper triangular matrices. The dots above the main diagonal represent
arbitrary numbers, which we ignore.

Now, the coadjoint action can be written as

K(x)F = [xFx−1]lower part.

The matrix F can be thought of as the lower part of some matrix also, because
the lower part of a transformed matrix depends only on the lower part of the
initial matrix.

After this preliminary, I can write out explicit formulas for the orbits of the
action of the coadjoint representation. We multiply the matrix F by an upper
triangular matrix g on the left and by the upper triangular matrix g−1 on the
right:

g g−1

As is known, multiplication by a triangular matrix g of the specified form on
the left leaves the bottom row intact, adds the bottom row with some coefficient
to the row next to bottom, adds a linear combination of the two bottom rows
to the row which is next to the next to the bottom row, and so on. The
left arrow shows that the procedure goes on from bottom to top. Similarly,
multiplication by the matrix g−1 on the right leaves the first column intact, add
the first column multiplied by a coefficient to the second column, and so on. The
bottom arrow indicates the direction of the process. We see that the changes
propagate from the bottom left corner to the right and upward. In particular,
the bottom left element remains unchanged. This is an example of what is called
invariants. Similarly, the minor composed of the last two rows and the first two
columns also remains unchanged. To its second column, we add the first with
some coefficient, but this does not affect the determinant. The same refers to
the rows. The bottom left minors, which I denote by ∆1, ∆2, . . . ,∆[n/2], are
invariants; that is, they do not change under the coadjoint action. It turns out
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that the system of equations

∆1 = c1, ∆2 = c2, . . . , ∆[n/2] = c[n/2],

obtained by equating these invariants to constants determines a set which is
invariant with respect to the coadjoint action and consists of precisely one
orbit for generic (typical) values of the constants. What does “typical” mean?
For example, it is sufficient that all these constants, except the last one when n
is odd, be nonzero. If some constants vanish, then this system of equations
still determines an invariant set, but it may decompose into smaller orbits.
The pattern of the decomposition of a large invariant set into small orbits
becomes more complicated as the number of vanishing invariants increases, i.e.,
as the dimension of the corresponding coadjoint orbit decreases. The structure
resembles a branching tree. There is a generic invariant set; as a rule, this is
simply one orbit. Some exceptional sets turn out to be not orbits; in these
sets, additional invariants arise. They are not invariants in general, but they
are invariants on the particular set under consideration. This gives rise to a
further partitioning, where typical parts are again orbits and exceptional parts
provide additional invariants of the third level, etc. This branching process
continues while orbits of dimension zero (i.e., points) are obtained. An adequate
apparatus for describing the whole process has not yet been invented.

Now, I enter a new domain, which is related to two things. The first is ex-
perimental mathematics. Somebody sits and calculates something and obtains
some result. Then he calculates something else and obtains another result.
When several results are obtained, he figures whether they can be fitted into
some theory. Usually, the success depends on the amount of preliminary cal-
culations. In the nineteenth century, people were coverings kilograms of paper
with writing for years. Now people work on computers, and for months rather
than for years, because they must write papers, compete for positions, etc. The
life accelerates, and we have less and less time for thinking. But nevertheless,
experimental mathematics flourishes. Maybe, this is partly because there are
people who do not worry about their positions and can spend unlimited time
thinking. There are at least two eminent mathematicians, Conway and Coxeter,
who sit in their positions so firmly that they do not have to think about the bare
necessities, and they can think about the purport of life and of mathematics.
Recently, they both invented several perfectly unexpected things, which could
be thought up only by someone having unlimited free time. The last invention
of Coxeter is very suitable for a mathematical contest.

Experimental mathematics is only one part. The second is a science which,
maybe, does not even exist as a science but only as a direction. This is the the-
ory of partly completely integrable systems. Integrable systems are mechanical
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systems for which solutions, roughly speaking, can be written explicitly. When
quantum, rather than classical, systems are considered, matrices whose eigen-
values and eigenvectors can be written explicitly are meant. Such matrices are
few, and they are usually related to some symmetry. The presence of symmetry
facilitates finding eigenvalues and eigenvectors. But about ten years ago, it was
discovered that there are matrices for which only the first several eigenvalues
and eigenvectors can be written and the others resist all efforts – not because
of human stupidity but because of the nature of things: the first eigenvalues
are good, after which a chaos sets in and nothing can be said.

A similar phenomenon is observed in the science which I am talking about.
It manifests itself as follows. Let us do a piece of experimental mathematics,
namely, take the simplest field with two elements and perform routine calcu-
lations. Taking matrices of orders 1, 2, 3, etc. and calculating the numbers of
adjoint orbits for them, we obtain some sequence. I shall write out its first
several terms. To be more convincing, I shall perform the calculations until
they become too cumbersome.

Let us start with matrices of order 1. The Lie group consists of one matrix
with element 1, and the Lie algebra consists of one matrix with element 0. This
matrix is the unique orbit.

For matrices of order 2, the Lie group consists of the matrices(
1 a
0 1

)
,

and the dual space to the Lie algebra consists of the matrices(
0 .
x 0

)
.

Over the field with two elements, we obtain two orbits, because the group is then
commutative and its action is trivial, and the element x itself takes two values.

The case of order 3 involves some computing. The Lie group consists of the
matrices 1 a b

0 1 c
0 0 1

 .

The dual space consists of the matrices0 . .
x 0 .
z y 0

 .

The transformation is (x, y, z) �→ (x + az, y − bz, z).
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I shall draw the set orbits. We are interested in the field with two elements,
but the picture is the same for all fields, so I shall draw it over the field of
real numbers. The orbits look as follows. Since z is an invariant (this is the
invariant ∆1 that we have considered in the general case), each plane z = const
is an invariant set. If z �= 0, then we can make x and y arbitrary by selecting a
and b, i.e., the entire plane consists of one orbit. This agrees with the general
geometric fact that all orbits must be even-dimensional. If z = 0, then all
additions are also zero, and all points are fixed. This means that the coordinate
plane z = 0 is partitioned into one-point orbits. The dimension of a point is
also even.

x

y

z

z = const �= 0

The set of orbits can be represented visually as follows. We draw a thick
axis z consisting of thick points; they correspond to orbits. The point z = 0
must be removed and replaced by a whole plane consisting of meager points.
The result is the orbit space together with its natural topology: approaching
zero along the thick z-axis, we obtain all meager points as a limit. Such a
topology is typical of orbit spaces. A propos, it is used in representation theory
too. The set of irreducible representations also has its own natural topology,
and it turns out to coincide with the topology of the orbit space.

Now, we return to the finite field. The number of thick orbits equals q − 1,
and the number of meager orbits equals q2. In all, we have q − 1 + q2 orbits.
Note that the number of orbits is a polynomial in q. This is a general fact: for
any n, the number of orbits is a polynomial in q.

Continuing the calculations, we obtain the table

n −1 0 1 2 3 4 5
O(n) 1 1 1 2 5 16 61

I have supplemented the table by the two initial terms, the numbers of orbits
for n = 0 and for n = −1. The point is that such a sequence arises also from
quite different considerations, and the first three terms of this other sequence
are ones.
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Now, I shall make a digression on partly exactly solvable problems. It
turns out that the fragment of the sequence written above coincides with the
respective fragment of another sequence, which is very remarkable and occurs in
many other situations. The trouble is that the next position in this well-known
sequence is occupied by 272, while the number of orbits for n = 6 is 275. The
formula for the sequence Kn mentioned above is∑

n�0

Kn
xn

n!
= tan x + sec x.

The numbers of orbits start well, but then they unexpectedly deviate from this
good sequence.

This status quo remained unchanged for a comparatively long time; I gave
my first talk on this subject about two years ago. At that time, these two
sequences and their divergence in the sixth term had already been known. It
turns out that, when the field with q (rather than two) elements is considered,
there arises a q-analogue of the sequence Kn. The terms of this sequence are
polynomials in q. As well as the numbers Kn, they are determined from the
so-called Euler–Bernoulli triangle. It is described in Arnold’s Selected Works.6

The Euler–Bernoulli triangle has a remarkable q-analogue, whose elements are
polynomials in q. Actually, it involves yet another auxiliary parameter t, and
polynomials in two variables are obtained; they become polynomials in q at
t = 1. So, it turned out that the difference, when considered over the field with
an arbitrary number q of elements, is divisible by (t− q)(t− q2). In particular,
if the parameter t takes one of the exceptional values q and q2, the discrepancy
vanishes.

Now, I shall explain this in detail. We partition the set g∗n(Fq) into orbits
(here n is the order of the triangular matrices). This set is a linear space over the
field Fq with dimension equal to the number of nonzero elements in the trian-
gular matrices. Therefore, |g∗n(Fq)| = qn(n−1)/2. This finite set decomposes into
orbits. Each orbit Ω is even-dimensional (over a finite field, this assertion has
a quite definite meaning, namely, that the orbit Ω consists of q2r points). We
can classify orbits according to their dimensions. This is a fairly contrived clas-
sification, but it makes some sense. Let ar

n(q) be the number of 2r-dimensional
orbits in g∗n(Fq). For the sequence ar

n(q) depending on the parameters n and r,
it is natural to introduce the generating function

Pn(t, q) =
∑

ar
n(q)tr.

Now, we have a sequence of polynomials which depend on two variables, t
and q. These polynomials can be included in the generalized Euler–Bernoulli

6 V. I. Arnold. Selected Works–60 (Moscow: Fazis, 1997), p. 688. (Editor’s note)
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triangle up to n = 5. For n = 6, there is a difference, but it is divisible by
(t−q)(t−q2). At t = q or q2, this difference vanishes. This is not surprising for
t = q2. Roughly speaking, t classifies the orbits according to dimension, and
setting t = q2, we replace each orbit of dimension 2r by a q2r-point set. This
is merely the number of points in the orbit, and the total number of points is
easier to count than the number of orbits; it is known. Therefore, divisibility by
t− q2 is proved very simply. But when t = q, we obtain the square root of the
number of points in an orbit. According to the orbit method, this number can
be interpreted as the dimension of the irreducible representation. Therefore,
we obtain the sum of the dimensions of irreducible representations rather that
the number of orbits. This sum of dimensions behaves better than the number
of orbits. For example, it better agrees with the predictions of the theory. It
turned out that, for t = q, the coincidence of the two sequences extends further;
it had been verified up to n = 11. This required a large amount of computation;
personally, I am uncapable of doing such a work, but I have found a coauthor,
Anna Mel’nikova from the Weizman Institute, who was able to accomplish the
task. She performed all the calculations and found that the formulas coincide
up to n = 11. We were about to rejoice when the news that the formula cannot
be valid for n = 13 arrived. The point is that this formula has a corollary, which
I shall state below, and this corollary was disproved by a certain example.

This is not quite a counterexample; it contradicts the much more general
assertion, I would even say the bold assertion, that the orbit method applies
literally to the sequence of groups under consideration. If this were so, then
the orbit method would give, in particular, an explicit formula for the char-
acters of irreducible representations. And if this formula were valid, then all
the characters of irreducible representations would be real (for the field with
two elements). As every expert in group theory knows, this implies that each
element of the group is conjugate to its inverse: g ∼ g−1. The conjugacy classes
differ in characters, and the value of a character at an element g is the conjugate
value of this character at the element g−1. For the real numbers, they coincide.

This gives rise to a problem which can be formulated in a way easy to
understand for a first-year student. Given a triangular matrix with elements
from F2, determine whether or not it is conjugate to its inverse matrix inside
the triangular group. If we considered the group of all matrices, then the
answer would be positive. The point is that a triangular matrix reduces to
a set of Jordan blocks, and each matrix under consideration has the same
Jordan blocks as its inverse. But inside the triangular group, the answer is
not that obvious. For matrices of order 13, it has been shown with the aid
of a computer that there is precisely one counterexample. Therefore, only the
formula for characters that is obtained by literally applying the orbit method is
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incorrect. It is a pity, because if such an application were valid, we could prove
the coincidence of all the polynomials.

In fact, I made a little hasty conclusion. The existence of a counterexample
does not imply that the polynomials are different for t = q. It only implies that
the proof which I have in mind does not work. The polynomials themselves are
so beautiful that, maybe, they do work.



2

Although this lecture is a continuation of the first one, it can be listened to
independently. I hope to tell about more specific things. I want to tell about
problems related to representations of finite groups which arise from the orbit
method. Although the orbit method deals with infinite (and even infinite-
dimensional) groups, it turns out that, when being interpreted correctly, it
applies to finite groups too.

I shall start with a conjecture; understanding it requires nothing at all.
This is in the spirit of the young mathematician’s studies here, at Independent
University, and follows the traditions of school study groups on mathematics.
I shall tell about one remarkable sequence of polynomials. I believe that it is
remarkable, and one of the reasons for this belief is that this sequence has at
least five different definitions, which have not been proved to be equivalent.

We shall consider sequences of polynomials denoted by An(q), Bn(q), Cn(q),
Dn(q), and Yn(q). These polynomials bear no relation to simple Lie algebras
of series A, B, C, and D. I remind those who have attended the past lecture
that we considered representation theory. One of the representation-theoretic
characteristics of a finite group G is the set of dimensions of the irreducible
complex representations of this group. For the set of irreducible complex rep-
resentations of a group G considered up to equivalence I use the notation Ĝ. I
denote an element of the set Ĝ by λ and a representation from the equivalence
class λ by πλ. Thus, πλ is a homomorphism G → GL(d(λ), C). Since the group
is finite, each of its finite-dimensional representation is equivalent to a unitary
representation, and we can assume that πλ : G → U(d(λ)) ⊂ GL(d(λ), C).

The set of positive integers d(λ) has several remarkable properties. For
example, all these numbers divide the order of the group. In addition, there is
the celebrated Burnside identity∑

d2(λ) = #G.

(Here #G denotes the number of elements in the group G.) And if we take the
sum of zeroth powers, we obtain∑

d0(λ) = #Ĝ.

It would be good to interpolate these two identities and insert the sum of d(λ)
between them:

∑
d(λ) = ? In reality, it is not known whether this sum has

some good properties. But there is a special case in which it does have good

54
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properties. This is the case where all the representations are real (a priori, they
are complex).

Now, I shall make a digression to remind those who know it and inform
those who do not that each complex irreducible representation πλ of a group
has one of the following three types:

real type: the representation πλ is equivalent to a real representation, i.e., in
a suitable basis, all operators of the representation are represented by
matrices with real coefficients;

complex type: the complex conjugate representation πλ is not equivalent to the
representation πλ (for each representation, we can construct its complex
conjugate representation by choosing a basis and replacing each element
in each matrix of the representation by its complex conjugate: complex
conjugation is an automorphism of the complex field, so all identities are
preserved and the representation remains a representation);

quaternion type: the representation πλ is not equivalent to a real representation
but πλ ∼ πλ.

I would say that the quaternion type is the most interesting type of rep-
resentations. It arises when the complex dimension of the representation is
even and this even-dimensional complex space is obtained from the quaternion
space of half the dimension by restricting the scalar field. The operators of the
representation can then be written with the use of quaternion matrices.

The best-known example is the group SU(2), which is itself the group of
quaternions with modulus 1. This group is infinite, but it has many finite sub-
groups. The tautological representation of the group SU(2) by one-dimensional
quaternion matrices is an example of a quaternion representation.

As is known, each quaternion can be represented by a complex matrix of
order 2; therefore, each quaternion representation of dimension n can be con-
sidered as a complex representation of dimension 2n, if desired. This is a
representation of quaternion type.

We define the index of a representation λ as

indλ =


1 if the representation λ is of real type,
0 if the representation λ is of complex type,
−1 if the representation λ is of quaternion type.

There exists a remarkable formula due to Hermann Weil which computes this
index, namely,

indλ =
1

#G

∑
g∈G

tr πλ(g2).
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I suggest that you prove this equality as an exercise. It is not easy. Even
some of the experts in representation theory whom I asked could not prove this
equality at once (unless they already knew the proof). Thus, I should give a
hint. I do not know whether there exist many different proofs. I like the proof
that I invented myself very much, and I want to advertise it.

Consider the space C[G] of all complex-valued functions on our group. For
any finite group, there exists a Fourier transform which maps this space to the
space of matrix functions on the dual object, i.e., on Ĝ. Let us denote this space
by CMat[Ĝ]. Being the Fourier transform, this correspondence is one-to-one.
The precise formula is as follows: a function f ∈ C[G] is transformed into the
function

f̃(λ) =
∑
g∈G

f(g)πλ(g).

For every class λ, the representation πλ assigns a matrix πλ(g) of order d(λ)
to each element g. It can be verified that, if G is the circle or the line rather
than a finite group, then this procedure yields the Fourier series or integral,
respectively.

The injectivity of the Fourier transform implies, in particular, the coinci-
dence of the dimensions of the spaces C[G] and CMat[Ĝ]. A propos, this is
precisely the Burnside identity. The Fourier transform is not only an isomor-
phism of spaces but also an isomorphism of algebras: it takes a convolution of
functions to a product of matrices.

In the space C[G], consider the linear operator V that maps each function f
to the function f̌ defined by f̌(g) = f(g−1). Let us calculate the trace of this
operator in two different ways. First, we calculate the trace of the operator in
the initial space C[G] by choosing the natural basis {χg}, where each function χg

takes the value 1 at the element g and 0 at all other elements. The trace is
the sum of the diagonal elements; therefore, it is equal to the number of the
elements in the group that coincide with their inverses, because only these basis
elements are mapped to themselves; all the other basis elements are mapped to
different basis elements and correspond to nondiagonal elements of the matrix.
The equality g = g−1 can be written in the form g2 = 1. The transformations
whose squares are the identity transformation are called involutions. Thus, if
Inv(G) is the set of all involutions in the group G, then trV = # Inv(G).

The trace of the operator V can also be calculated by applying the Fourier
transform. When this method is used, the elements of the space are sets of
matrices rather than functions on the group. The number of these matrices is
equal to the number of irreducible representations, and their orders are equal to
the dimensions of the irreducible representations. A function f corresponds to a
set of matrices f̃(λ1), . . . , f̃(λn) of orders d1 = d(λ1), . . . , dk. Let us determine
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how the operator V acts on these matrices.
If the representation is of real type, then the operator V takes the matrix

to its transpose: A �→ At = TA. The contribution of each real representation
to the trace is easy to evaluate. The nondiagonal elements are mapped to
other nondiagonal elements, and they make no contribution, while each diagonal
element contributes 1. Therefore, each real representation makes a contribution
equal to its dimension.

The representations of complex type are even easier to handle: they make
no contribution at all. The representations πλ and πλ are not equivalent. The
transformation V simply interchanges values at different points: the represen-
tations λ and λ are not equivalent, these are two different points in the space Ĝ.
So the transformation V interchanges different elements of the matrix, which
gives no contribution to the trace.

Evaluating the contribution to the trace for representations of quaternion
type is more difficult. It involves computing, and we must know precisely how
quaternions transform into matrices of the second order under complexification
and what happens to them. I shall say the result without proof. Each complex
representation of quaternion type makes a contribution equal to the negative
of its dimension.

Comparing these results with the definition of the index, we obtain the
following final result:

# Inv(G) = tr(V ) =
∑
λ∈Ĝ

ind(λ)d(λ).

The number of involutions in a group is expressed as the alternating sum of the
dimensions of its irreducible representations. This formula takes an especially
simple form in the case where all the representations are real. Then the sub-
script is identically equal to 1, and we obtain simply the sum of the dimensions
of the irreducible representations. Thus, if all the irreducible representations
are real, then

# Inv(G) =
∑
λ∈Ĝ

d(λ).

Everything said above is a prelude to the definition of the first sequence
of polynomials. In today’s lecture, I shall define five sequences of polynomials
and state the conjecture that these five sequences coincide. I am almost ready
to define the first sequence of polynomials, but still only almost. Some more
information about finite fields is needed. In the past lecture, I introduced the
notation Fq for the finite field with q elements, where q = pk and p is a prime.
In what follows, we shall consider polynomials in q. It would be rather strange
if an independent variable could take only several values. There have been
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various attempts to interpret the values of these polynomials for q �= pk. But
the problem is not only unsolved, it is not even stated. For this reason, I shall
not discuss it. Although, as Arnold mentions in his book, the most interesting
problems are those which are not even stated. This is an example of such a
problem.

Consider the group Gn(Fq) consisting of the upper triangular matrices g of
order n which have ones on the diagonals and arbitrary elements of the field Fq

above the diagonal. The order of this group equals qn(n−1)/2, because each of
the n(n−1)/2 elements above the diagonal can take precisely q different values.

Generally, this group admits representations of all the three types – real,
complex, and quaternion. But if q = 2l and n is small, then all representations
of this group are real; at n = 13, there is an example of a nonreal representation.
We ignore this example and assume that all the representations are real (in the
case of q = 2l) as a first approximation. Then the equality

# Inv(G) =
∑
λ∈Ĝ

d(λ)

gives an expression for the number of involutions in the group in terms of the
dimensions of its irreducible representations. For fields with even numbers of
elements, the involutions are very easy to calculate. Namely, let us write the
matrix g in the form g = 1n + X, where 1n is the identity matrix of order n.
Then g2 = 1n + 2X + X2 = 1n + X2, because 2X = 0 in a field with even
number of elements. Therefore, the equation g2 = 1n is equivalent to the
equation X2 = 0.

Consider the problem: How many upper triangular matrices X with ele-
ments from the field Fq such that X2 = 0 exist?

Now, we can give the definition of the first sequence of polynomials. We
define An(q) as the number of solutions to the equation X2 = 0 among the
upper triangular matrices of order n with elements from the field Fq. Here q is
an arbitrary number for which a field with q elements exists.

Problem. Prove that An(q) is a polynomial in q.

This is a good combinatorial problem. Given a finite object, it is required to
calculate the number of points in this object. This is the fundamental problem
of combinatorics. In this respect, combinatorics in not quite a science, because
for every problem a separate theory is invented. But many other sciences are
not sciences in this sense either. Yurii Ivanovich Manin once explained to me
that algebraic geometry is not a science, because it consists of a set of solved
problems, and each problem requires its own method. Certainly, there are
some general notions and tricks, but, as a rule, they work in two or, at most,



The orbit method and finite groups 59

three cases; methods that apply to a larger number of problems occur very
rarely. The most interesting results in algebraic geometry involve individual
tricks. The same applies to combinatorics. As well as algebraic geometry, it is
only able to solve several special problems. Several may be several thousand,
but this means only that there are several thousand particular problems which
combinatorics is able to solve.

How can our particular combinatorial problem be solved? It is natural to
try to obtain a recursive expression of An+1(q) in terms of An(q). But I cannot
do this, and, as far as I known, nobody can. We have no choice but apply one
of the few standard tricks, namely, to complicate the problem so as to make it
easier to solve. Let us divide the set of all solutions into types according to the
ranks of the matrices:

Ar
n(q) = {X ∈ An(q) | rkX = r}.

Seemingly, the problem becomes more complicated, because we must calculate
many numbers at once instead of only one number. On the other hand, as in
many other cases, such a complication results in simplification, because for the
numbers Ar

n(q) a recursive relation exists.
This recursive relation is obtained as follows. Consider the matrix X =(

X x
0 0

)
. Clearly, X 2 =

(
X2 Xx
0 0

)
. Therefore, X 2 = 0 if and only if X2 = 0

and Xx = 0. By assumption, we already know the number of solutions to the
equation X2 = 0: it has been obtained at the preceding step. And the number
of solutions to the equation Xx = 0 depends on the rank of the matrix X.
Therefore, in the general case, the number of solutions to this equation is not
known. But if we know that rkX = r, then we know the number of solutions
too. Moreover, knowing something from linear algebra, we can easily figure out
the rank of the matrix X . It either does not change or increases by 1. This
depends on the relation between X and x, which is easy to control. At this
point, I conclude my explanation and write out the recursive relation:

Ar+1
n+1(q) = qr+1Ar+1

n (q) + (qn−r − qr)Ar
n(q).

Now, we can forget that q takes only very special values and use the recursive
relation. It defines polynomials Ar

n, which can be evaluated in turn provided
that the very first polynomial A0

0 is known. And this first polynomial is, natu-
rally, equal to 1. We obtain a table of polynomials of very general form; all of
their coefficients are nonzero, and we can say nothing good about them. But
considering

∑
r

Ar
n(q) = An(q), we see that a magical reduction occurs – al-

most all terms cancel each other. By way of proof, I shall draw the table of
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polynomials An:

A0 = 1,

A1 = 1,

A2 = q,

A3 = 2q2 − q,

A4 = 2q4 − q2,

A5 = 5q6 − 4q5,

A6 = 5q9 − 5q7 + q5,

A7 = 14q12 − 14q11 + q7,

A8 = 14q16 − 20q14 + 7q12,

A9 = 42q20 − 48q19 + 8q15 − q12,

A10 = 42q25 − 75q23 + 35q21 − q15,

A11 = 132q30 − 165q29 + 44q25 − 10q22.

I recall that A2(q) is the number of solutions to the equation X2 = 0 among
the second-order upper triangular matrices. The equality X2 = 0 holds for
all second-order upper triangular matrices (with zeros on the diagonal). This
means that A2(q) = q.

In the table, first are three polynomials with one monomial, then three
polynomials with two monomials, then three polynomials with three monomials,
and then three polynomial with four monomials. I was looking at this table of
polynomials for two or even three days (it was written out up to dimension 20)
and found many properties which could be used to extend it unlimitedly. And
only after that, I guessed what answer was correct.

The leading coefficients of the polynomials are Catalan numbers. Everybody
knows how the Pascal triangle is constructed. We construct a similar triangle
but place a mirror and prohibit going beyond this mirror:

1
1

1 1
2 1

2 3 1
5 4 1

5 9 5 1

The elements of the first column are precisely the Catalan numbers. But the
mirror hinders. It would be good to remove it while retaining the law. As
is well known from physics, a mirror can be replaced by a reflection. In the
mirror world, we must in addition change the signs. Then we obtain a triangle
constructed by precisely the same rule as the Pascal triangle. The very mirror



The orbit method and finite groups 61

is filled with zeros:

−1 1
−1 0 1

−1 −1 1 1
−1 −2 0 2 1

−1 −3 −2 2 3 1
−1 −4 −5 0 5 4 1

−1 −5 −9 −5 5 9 5 1

It is easy to figure out that this is merely the difference of two Pascal triangles,
one growing from 1 and the other from −1.

Now, I suggest to extend the Catalan triangle and compare it with the table
of polynomials. This is an excellent example of how a formula can be revealed
in experimental mathematics. But this does not yet mean that it can be proved.
It was proved comparatively recently, and this required efforts of two prominent
experts in combinatorics. They proved the formula by using their recent theory.
At present, there is a book entitled “A = B.” The contents of this book are a
construction of an algorithm; given a formula A = B, this algorithm outputs a
proof of this formula provided that the formula is true. One of the authors of
this book is my colleague at the university in Philadelphia. When I informed
him that I has a formula which I could not prove, he said that they had a book
in which this formula was proved. I suggested that they processed my formula
with their book. They did. The algorithm did not work at once, but they
exerted themselves and carried through the proof.

Assuming that the first row of the Catalan triangle contains the numbers
c1,−1 = −1 and c−1,1 = 1, we can write the recursive formula

ck,l = ck−1,l−1 + ck−1,l+1

for the numbers ck,l. To draw a triangular table, we heed two indices, and it
would be good if these indices had the same parity.

Now, let us introduce a new sequence of polynomials; I denote it by Cn in
honor of Catalan:

Cn(q) =
∑

s≡n+1(2)≡(−1)n(3)

cn+1,s q
n2

4
+ 1−s2

12 .

This is an experimental rule, which says what numbers from the Catalan tri-
angle give the coefficients of the polynomials An.

Theorem 1. An(q) = Cn(q).
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This theorem is proved with the help of the book “A = B.”

We have already accomplished a significant part of the program, namely,
defined two sequences of polynomials. We know an explicit formula for the
polynomials Cn, but we know no other interpretation of these polynomials. We
know an interpretation of the polynomials An (if q is a power of two, then
An(q) is the number of solutions to the equation X2 = 0 among the upper
triangular matrices over the field Fq), but we know no explicit formula for these
polynomials. The theorem gives both an explicit formula and an interpretation.
A propos, I am not quite satisfied with the proof of this theorem, at least because
I cannot understand a single word in it. Thus, if somebody will think up a more
intelligible proof, this shall be quite a step in science, and we shall publish it
with pleasure.

In addition to the Pascal triangle, there is a much smarter triangle about
which I personally learned from a lecture delivered by Arnold four years ago.
And from the new book of Arnold, I learned that this triangle has been known
for more than 100 years. But the book did not say to whom and where. Im-
plicitly, it was not Arnold who invented the triangle, because he is less than
100 years old yet. This is the so-called Euler–Bernoulli triangle. It is con-
structed similarly to the Pascal triangle, but with the use of a shuttle motion.
The rule is as follows: we move from left to right along the odd rows and from
right to left along the even rows, every time starting with zero. Otherwise, the
rules of the Pascal triangle apply.

The zeroth row consists of one element 1. The first row comprises two
elements, 0 and 1. The second row begins from the right. We put 0 and move
to the left; at each step, we take the sum of the preceding number in the same
row and the preceding number in the preceding row, i.e., of the nearest right
and upper-right numbers. The next row starts from the left. The first element
is always 0, and then we write the sums of pairs of numbers already obtained:

1
0 1

1 1 0
0 1 2 2

5 5 4 2 0
0 5 10 14 16 16

61 61 56 46 32 16 0

On the left-hand side of the triangle, every other element is 0 by definition.
The remaining numbers (1, 1, 5, 61, . . . ) are well known. They are called the
Euler numbers. Any handbook on special functions contains a table of Euler
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numbers. They are denoted by En and defined by the relation∑
n�0

En
xn

n!
=

1
cos x

.

I believe, this is the original definition of Euler.
Taking the right-hand diagonal, we obtain different numbers, namely, the

normalized Bernoulli numbers. As is known, the Bernoulli numbers proper
are rational. But we obtain the so-called normalized Bernoulli numbers, which
are integer. The normalized Bernoulli number B̃n is obtained from the usual
Bernoulli number Bn by the formula

B̃n = Bn
22n(22n − 1)

2n
.

The normalized Bernoulli numbers are defined by the relation∑
n>0

B̃n
xn

n!
= tan x.

So (this fact is usually concealed from the students of the mechanics and
mathematics faculty) not only do sine and cosine have simple Taylor expan-
sions; secant and tangent also have Taylor expansions which can be described
explicitly (in terms of the Euler and Bernoulli numbers).

It is hard to compute the Euler and Bernoulli numbers separately, while the
whole triangle is computed very easily.

A generating function for the entire triangle can be written. This is also a
good exercise.

My contribution to this science is that the correct understanding of the
Euler–Bernoulli triangle requires replacing numbers by polynomials. Moreover,
the polynomials must be in two variables, q and t. Replacing numbers by
polynomials is a well-known principle of mathematics. It is sometimes called the
principle of q-analogue. Many mathematical values, which seem to be integers,
must be interpreted as polynomials. One of the explanations is as follows. Most
frequently, integers arise in mathematics as dimensions of some spaces. On the
other hand, spaces are often graded, i.e., represented as sums of subspaces
enumerated by integers. To take grading into account, we must consider the
dimension of each homogeneous component separately rather than only the
dimension of the entire space. Such dimensions can be coded by polynomials:
the free term is equal to the dimension of the zeroth-grade space, the coefficient
of q is the dimension of the first-grade space, etc. Thus, whenever we have a
graded space, instead of its dimension, we can consider the graded dimension,
i.e., a polynomial.
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A well-known example is n!. The correct interpretation of the number n! is

the polynomial
∏n

k=1
1 − qk

1 − q
. The degree of this polynomial equals n(n− 1)/2.

At q = 1, this polynomial takes the value n!. (Considering the fractions 1 − qk

1 − q
,

we must calculate the limit as q tends to 1.) As opposed to n!, the expression
n∏

k=1

1 − qk

1 − q
has a deep well-known geometric meaning: this is the dimension

of a homology group of the flag space. The homology groups are graded by
dimension; therefore, instead of numbers, the polynomials defined by the above
formula arise. The flag space is one of the most remarkable existing manifolds.
Very much is known about it. To a certain degree, this explains why n! occurs in
various formulas. For example, why does xn like being divided by (n!)? Because
the flag space exists. I shall not explain this now. There exist numerous books
where this is explained.

Let me give yet another example where numbers are replaced by polynomi-
als. Consider the number of combinations

Ck
n =

(
n

k

)
=

n!
k!(n− k)!

.

This expression has a q-analogue; for example, we can replace each factorial
by the polynomial specified above. In fact, the q-analogue of the binomial
coefficient was invented earlier than the q-analogue of the number n!. It was
invented by Gauss, who argued as follows. What is the number of combinations
of k objects out of n? This is the number of k-point subsets in an n-point set.
But this is a bad object, because finite sets have no structure. This object is too
weak for being considered by mathematicians. Let us take a more interesting
object, e.g., a linear space. But if we take a real or complex space, then the
object is infinite, and it is impossible to count its points. The way out is to take
a space over a finite field. It has finitely many points. What is the right analogue
of q-point subsets in an n-point set? This is a q-dimensional subspace in the
n-dimensional space over the field Fq. The number of q-dimensional subspaces
in the n-space over Fq is a polynomial in q. At q = 1, this polynomial equals the
binomial coefficient. To interpret it as a limit, we can define the n-dimensional
linear space over the field with one element as a mere n-point set. This is one
of the possible interpretations of the limit as q → 1, but it is far from being
unique.

There are at least two or three other ways of replacing numbers by polynomi-
als. By tradition, the polynomials are in q, but the letter q denotes completely
different things under different approaches. In the last example, q was the
number of elements in a finite field. In the example about the flag space, q was
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the dimension of a homology group. Other situations also occur. Sometimes,
q is a certain root of unity. Sometimes, it is a small parameter. Perhaps, most
remarkable fact is that different approaches lead to the same expressions. This
refers to experimental mathematics. My explanation is that the reasonable ex-
pressions are few, while the nature is immense. Therefore, the nature is bound
to use the same expressions many times, simply because there are not enough
reasonable expressions to serve all natural phenomena.

After this digression, I want to tell how to turn the Euler–Bernoulli triangle
into a triangle whose elements are polynomials in q. A precise definition involves
polynomials in two variables, q and t. But the considerations which I have
briefly mentioned in my preceding lecture allow us to put t = q and deal with
polynomials in one variable. Now, I shall write the rule according to which the
q-analogue of the Euler–Bernoulli triangle is constructed. A minor modification
of the rule for constructing the Euler–Bernoulli triangle yields the rule

bk,l = q−1bk−1,l+1 + (ql+1 − ql)bl,k−1

for k > 0. In addition, b0,l = qlbl−1,0 and b0,0 = 1.
The set of these rules makes it possible to reconstruct the entire triangle.

Note that, in the recursive formula, the indices k and l of the last term are
interchanged. This is a consequence of shuttling: every number depends on
numbers either on the left or on the right. For this reason, k and l interchange.

At this point, I want to state two unsolved problem.
1. We have a recursive relation, i.e., can write the triangle, but we do not

know a formula for it.
2. Even the asymptotic growth of the elements of the triangle is unknown.
The second problem is, perhaps, more interesting: How rapidly do the ele-

ments of the triangle grow at a fixed q?
The third sequence of polynomials is defined as Bn(q) = bn−1,0(q).
Thus, we have defined three out of five sequences of polynomials. There

remain the most interesting polynomials Dn and Yn. To intrigue the listeners,
I shall write the formula for Dn at once:

Dn(q) = ζGn(Fq)(−1), where q = 2l.

Here Gn(Fq) is the group of strictly upper triangular matrices of order n with
elements from Fq.

Let me remind you of the definition of the classical Riemann zeta-function:
ζ(s) =

∑
n�1

n−s. This function is very famous. The last unsolved great problem

of mathematics is to find the zeros of the zeta-function. The well-known conjec-
ture of Riemann is that they lie on the line Re s = 1/2. To share in Riemann’s
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fame, many people tried to generalize the zeta-function. For an expert in rep-
resentation theory, generalizing the zeta-function is a piece of cake, because
the positive integers are the dimensions of irreducible representations of the
simplest noncommutative compact group, namely, of SU(2). This group has
precisely one irreducible representation in each dimension (up to equivalence).
Therefore, given an arbitrary group G with finite-dimensional irreducible rep-
resentations (e.g., a finite or compact group), we can define a zeta-function
related to this group as

ζG(s) =
∑
λ∈Ĝ

d(λ)−s.

Strange as it seems, this function has not attracted much attention so far.
Maybe, this is because all related meaningful examples about which something
making sense can be said reduce to the usual zeta-function. Although, certainly,
some known identities can be rewritten as identities for the values of the zeta-
function. For example, the Burnside identity, which I have written out above,
means that, for a finite group G, we have

ζG(−2) = #G.

At the beginning of this lecture, I mentioned that, for finite groups, the
expression

ζG(0) = #Ĝ

makes sense. Sometimes, the expression

ζG(−1) =
∑

d(λ)

also makes sense. Namely, in some cases, the equality ζG(−1) = # Inv G holds.
The definition of the polynomials Dn involves numbers of precisely this form,
ζG(−1).

Under our definition, it is quite unclear why Dn are polynomials.
The last thing which I want to talk about is the definition of the fifth

sequence of polynomials Yn. These polynomials are related to the description
of coadjoint orbits for the group of upper triangular matrices over a finite field.
I explained in the first lecture what a coadjoint orbit is. This is some trajectory
described by a point under the action of a group. If the field were real, these
trajectories would be fairly simple algebraic varieties. And there is a remarkable
theorem, which is not proved in full generality, that if we have a good algebraic
variety, i.e., a set determined by algebraic equations, and if these equations
make sense over a finite field (e.g., if their coefficients are integer), then the
number of solutions to these equations over the field Fq is a polynomial in q.
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For example, the equation x2 + y2 = 1 over the field Fq has a finite number
of solutions, and this number of solutions is a polynomial in q. This is a very
beautiful problem. I highly recommend to those who wish to better acquaint
themselves with finite fields that they try to solve this problem.

There is yet another conjecture; for varieties of dimension 1, it was stated
by Andre Weil, one of the most outstanding mathematicians of our century, and
proved comparatively recently by another outstanding mathematician, Pierre
Deligne. The conjecture is that the number of solutions is a polynomial whose
coefficients are expressed in terms of the structure of the solution set over the
complex field.

The same equation x2 + y2 = 1 over the complex field determines a set
homeomorphic to C \ {0}. A natural compactification of this set is the two-
dimensional sphere S2 � CP1.

Unfortunately, this theorem is not proved in full generality. It is not known
what algebraic varieties have the remarkable property that, when considered
over the field Fq, they have cardinalities polynomial in q. The meaning of the
coefficients of these polynomials is not known either. But there is a mnemonic
rule. These coefficients must correspond to the dimensions of the homology
groups of the variety over the real or complex field. To be more precise, q = 1
corresponds to the complex field and q = −1 corresponds to the real field. An
approximate informal explanation is as follows. A variety is in a certain sense
made up of cells which have the structure of usual affine space. Over the real
field, a cell of dimension n makes a contribution of (−1)n to the homology in
dimension n. Over the complex field, a cell always makes a contribution of 1
to the homology in dimension 2n. And over a finite field, a cell of dimension n
makes a contribution equal to qn. Therefore, if a variety admits a cell decom-
position consistent with its structure of an algebraic manifold (for instance,
the circle admits a decomposition into a point and a straight line), then we
obtain a proof. This “proof” is very simple and convincing, but it is incorrect,
because the varieties admitting such cell decompositions are too few. But the
assertion itself is valid in much more general situations, when there are no cell
decompositions.

I do not know whether or not this theorem is true in the case of interest to
me. The experts whom I asked about this could not say anything at once. So,
the last polynomial Yn(q) describes the number of coadjoint orbits for our group.
This number can be interpreted as the number of points in some algebraic
variety over a finite field. If certain known theorems from this area apply to
the variety, then Yn is a polynomial in q.

The polynomial Yn can be interpreted in the spirit of modern quantum
statistical physics. This theory is rather poor in terminology. One must know
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the words state, Gibbs distribution, energy, and statistical sum. Nothing else is
required. A system of states is a lattice, a system of nodes, or something with
cells, edges, and vertices; this is a two- or, in the last resort, three-dimensional
formation. States are usually obtained by assigning some particular value, most
frequently 0 or 1, to each element of the system.

In the case under consideration, as a system we can treat a strictly upper
triangular matrix; a state of the system is obtained when each cell above the
diagonal is occupied by an element of the finite field. It is also interesting to
consider a composite system made up of upper triangular matrices X and Y
and a lower triangular matrix F . The number of states for this system is equal
to q3n(n−1)/2. This number is fairly large. The first interesting case is that of
q = 2 and n = 13. In this case, there are 2228 states.

Given a system and states, it is required to think up some function being
evidently better than all other functions. Usually, when someone devises such
a function, he (or she) calls this function energy, denotes it by H, and takes
the sum ∑

s

e−βH(s)

over all states s. Here β is a parameter usually interpreted as the reciprocal
temperature, i.e., β = 1/kT , where T is the absolute temperature on the Kelvin
scale and k is the Boltzmann constant. Calculating such a sum, we obtain
a function of β. While the whole process is completely uncontrollable, it is
sometimes possible to say something about this function of β. For example,
sometimes, it can be proved to be smooth. In this case, the system is of no
physical interest, for it admits no phase transitions. Sometimes, this function is
not smooth. Then the system has phase transitions. In very rare cases, we can
calculate this function explicitly and see the phase transitions with the naked
eye: the answer is then specified by one formula in one interval and by another
formula in another interval.

Let us return to our example. What function is most interesting among
those determined by three matrices (two upper triangular and one lower trian-
gular)? I claim that the most interesting function is tr(F · [X, Y ]). The values
of this function belong to a finite field. But we must attach a meaning to the
exponential of this function rather than to the function itself. It is well known
what the exponential is. The exponential is a function satisfying the functional
condition that addition must become multiplication. For a finite field, this is
the so-called additive character χ. We obtain the sum∑

X,Y,F

χ(tr(F · [X, Y ])).
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There is a conjecture that this sum equals qn(n−1)/2Yn(q). This means that the
function very strongly oscillates, and almost all terms cancel each other. For
this reason, it is extremely difficult to evaluate the sum. Usually, such sums
are computed by the Monte Carlo method, but it does not apply to strongly
oscillating functions.

Now, I can state the general conjecture: All the five sequences of polynomials
coincide.

What is known in this connection? The results are as follows.
1. An = Cn for all n. I repeat that the proof of this assertion exists and

is published.7 The fashionable modern journal in which it is published has no
physical body; it is not printed on paper and exists only in electronic files. But
all subscribers can have it on their computers. I printed out the proof but did
not understand anything, I must confess. Thus, if somebody would explain the
proof to me without referring to that paper, I would be pleased greatly.

2. The assertion An = Bn has been checked experimentally for n � 26.
From my point of view, this leaves no doubts in its validity. But there are
examples of similar coincidence. For instance, the polynomial n2−n+41 gives
primes for the first 40 values of n.

3. The equality An = Bn = Cn = Dn = Yn has been verified experimentally
for n � 11.

4. Apparently, An �= Dn for n = 13. This was explained in the preceding
lecture. Recently, it has turned out that there exists a triangular matrix of
order 13 over the field with two elements which is not conjugate to its inverse.
It has Jordan blocks of sizes 4, 5, and 4.

At this point, I want to conclude the lecture. In case somebody becomes
interested and ready to discuss what I was talking about, I am always available
by electronic mail at

kirillov@math.upenn.edu

7 S. B. Ekhad and D. Zeilberger. The number of solutions of X2 = 0 in triangular matrices
over GF(q). Electronic J. Combin., 3 (1996), #R2.

The interested reader can find details in:
A. A. Kirillov. On the number of solutions to the equation X2 = 0 in triangular matrices

over a finite field. Funktsional. Anal. i Prilozhen., 29 (1) (1995), 82–87.
A. A. Kirillov. Merits and demerits of the orbit method, Bull. Amer. Math. Soc., 36 (4)

(1999), 433–488. (Editor’s note)
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Preface

This essay on the achievements of the theory of dynamical systems (DS) and
related areas of the theory of ordinary differential equations and other mathe-
matical disciplines over the past approximately 25 years1 is very brief and in-
complete, especially in comparison with the surveys of the same subject covering
earlier periods that were published in the well-known VINITI series “Progress in
Science and Technology” and “Current Problems in Mathematics. Fundamen-
tal Directions” (the most recent of them partially cover the period considered in
this essay). In this connection, I refer to the recent survey of Yoccoz [1], which
considers the subject from a different angle and substantially supplements the
list of topics considered in this paper.2 An extensive material, including quite
fresh results, is contained in the voluminous book [2], which has recently been
translated into Russian.

Not only Yoccoz but also a number of other speakers who delivered plenary
and large sectional talks at international mathematical congresses told about
dynamical systems. All these reports can be recommended as authoritative
surveys of various aspects of the subject, which give both prospects and the
most current state of the art. I distinguish Yoccoz’s report because of its broad
scope. Later, a fairly extensive report was made by J. Moser [3].

The features according to which the material for the first two sections was
selected are evident from the titles. The selection was based on clear formal
criteria; I believe, it is free of subjectivity in this respect. These criteria are reli-
able in the sense that the corresponding results deserve some discussion anyway;
certainly, it was necessary to say about the emergence or renaissance of whole
large branches of the DS theory; and when I mention a name of a prominent

1 In the course of our exposition, we sometimes touch upon earlier works; yet, some topics
fit more naturally in longer time intervals, and it would be inexpedient to artificially “cut off”
their beginnings.

2 First, I did not write or wrote more briefly about the topics covered in Yoccoz’s survey.
Besides, clearly, I know works of Russian mathematicians better than Yoccoz knows them,
while Yoccoz knows works of western mathematicians better than I do.
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scientist together with a problem, this is most frequently not merely the state-
ment that the problem was posed by this scientist but also an acknowledgement
of its importance.3 (Celebrated names are rarely mentioned in relation to not
very significant problems, although there is hardly a celebrity who did not state
such problems for students. Certainly, any problem has its author (in the last
resort, the author of a problem is the author of its solution), but the authors
of the problems from Section 2 are very prominent mathematicians, and these
problems are customarily mentioned along with their names.)

As to more or less broad new (or renewed) directions, I believe, all of them
are mentioned in Section 1; but significant achievements not always consist
in solving some named problem and are far from being exhausted by what is
covered in Section 2.4 In Section 3, I briefly mention some of these achievements.
I did not have such plain criteria for selecting material as those used in the
preceding sections, so the choice was unavoidably incomplete (I did not even
write about what I much dealt with myself in recent years, that is, about flows
on surfaces and related geometric questions) and, probably, subjective to some
extent. Besides, with the best will the world, I could not write in Section 3 about
everything as thoroughly as in the first sections (if the exposition of Sections 1
and 2 can be called thorough) remaining within reasonable space and time
limits. Yet, I hope that, even when I, in essence, only briefly mention results
and names and give a slightly, so to speak, annotated (and very incomplete)
list of references, this may still be useful as an initial information about what is
going on in the world. If the reader becomes interested in something, even the
incomplete bibliography which I could provide will help to at least start more
seriously studying the subject.

I tried to take into account works (known to me) concerning not only smooth
but also topological or purely metric (in the sense of measure) systems. But
the topics considered in most detail largely refer to smooth systems. This is
not because such systems are the center of my interests; I hope that I am
familiar with at least the most striking results about other systems (because
striking results are often mentioned in conversations with colleagues). If I
were writing about earlier works, the balance would be different, but in the
past quarter century, neither new directions (with one exception) nor named

3 When talking about “named” problems, I also mention some related questions. Sometimes,
I even allot more space for these questions, so the named problem is used as a cause for
reviewing a whole domain.

4 And they must not be less important than the results given in Section 1, because the
intrinsic content of events of lower “taxonomy” level may be as significant as that of high-
level events (it suffices to recall the creation of KAM (Kolmogorov–Arnold–Moser) theory and
the “hyperbolic revolution” in the 1960s, which did not go beyond the framework of smooth
DSs).
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problems related to topological or purely metric systems arose. Something
about them appears only at the end of Section 3, not counting the subsection
about group actions in Section 1.

During my work on this paper, I asked various questions of my acquain-
tances among mathematicians (and, sometimes, of mathematicians with whom
I was not acquainted in person). Of course, they were largely participants of my
seminars at the Steklov Mathematical Institute and Moscow State University
and mathematicians from Nizhnii Novgorod,5 but I also obtained some infor-
mation from other, including foreign, colleagues. I thank all of them and hope
that, using this information as I thought best and in accordance with my plans,
I did not garble it. (If I did, this is my fault.)

Now, let me comment the bibliography. I tried to refer to most recent
publications, to surveys, or to papers containing more or less detailed (not
necessarily original) presentations of certain circles of questions (that is, to
what is called expository papers). This allowed me to save space, and I ask the
reader to regard with understanding the fact that I sometimes economize on
references to pioneering works.

Reading this paper requires, first, the general mathematical grounding that
is usually provided for university students of mathematics during the first three
years of study (after that, the study usually becomes specialized) and, secondly,
some knowledge of DSs, mainly smooth ones.6 I had presented the contents of
this paper in lectures for students who had special grounding in smooth DSs.
For this reason, talking about ergodic theory, I made more explanations than
in other places. The paper inherited this special feature of the lectures.

A fairly comprehensive, although not new, textbook on ergodic theory is [4].
In the time elapsed since the publication of the Russian version of this

article, two fundamental reference books dealing with all the various branches
of DSs, of a total length of over 2200 pages, have appeared:
Handbook of Dynamical Systems, vol. 1a, eds. B. Hasselblatt and A. Katok
(Amsterdam: North-Holland, 2002).
Handbook of Dynamical Systems, vol. 2, ed. B. Fiedler (Amsterdam: North-
Holland, 2002).
One more volume (1b) is expected.

5 It is not by accident that S. Smale “enrolled” me in the Nizhnii Novgorod school, although
he knew that I am a Muscovite.

6 In addition to textbooks, I recommend reading the surveys from the VINITI series already
mentioned above (some, but not all, of them are included in the bibliography) and articles in
Mathematical Encyclopaedia, which contain not only definitions and brief summaries but also
fairly extensive references.
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I shall also mention here S. Smale’s article “Mathematical problems for
the next century” in Mathematics. Frontiers and Perspectives, eds. V. Arnold,
M. Atiyah, P. Lax, and B. Mazur (Providence, RI: Amer. Math. Soc., 2000),
pp. 221–244. A considerable part of this paper is devoted to DSs. It does not
only summarize results of development but rather poses problems for the future
research; of course, discussing them, Smale talks about the contemporary state
of the art.

Unfortunately, I did not have the time to give an account of new works, even
in the succinct, “first approximation,” style in which my article was written.
I had therefore to limit myself to adding a few disparate remarks, but I hope,
they will not be superfluous.



1 New or “renewed” directions

1.1 Symplectic geometry

By the beginning of the past quarter century, DS theory (including related
questions) had steadily branched into four main parts, each characterized by
the presence (and use) of a certain structure on phase spaces that in a sense
determines the DSs under consideration; these are differential dynamics (the
theory of smooth DSs),7 topological dynamics (the theory of topological DSs),
ergodic theory (in which the phase space is assumed to be a measurable space
or, even more frequently, a space with measure), and the analytic theory (in
which the phase space and independent variable, “time,” are assumed to be
complex). Certainly, other structures emerged too, but they were taken into
account, so to speak, within the framework of one of these four theories. Thus,
Hamiltonian systems have their own specific features related to the symplectic

7 Essentially the same branch of DS theory is known as the “qualitative theory of ordinary
differential equations”; the choice of a name depends on the traditions of scientific schools.
In what follows, the term “local theory” is used many times. This is the conventional name
of the part of smooth DS theory that deals with the behavior of the trajectories of a flow
near an equilibrium point or with the behavior of a periodic solution or trajectories of an
iterated mapping near a fixed or periodic point. The “global theory” considers the behavior
of trajectories on the entire phase space or, at least, in some “more or less extensive” domain.

As the difference between the local and global theories was mentioned, it should be said that
this difference is partly conventional: if the coordinates of the phase velocity v(x) of a (local)
flow on Rn are homogeneous polynomials of degree k in the coordinates of x, then studying the
behavior of the trajectories near the origin (being an equilibrium point) is largely equivalent
to a global study of a certain flow on (n− 1)-dimensional projective space RPn−1 onto which
the trajectories are “projected” along radii. (Strictly speaking, when the trajectories are
projected onto RPn−1, a field of directions (tangent lines), rather than a vector field, is
obtained. However, this does not affect our further considerations, although requires a certain
attention.) In this way, we can obtain (for a suitable k) flows on RPn−1 of a form general
enough to realize (for n � 4) various patterns of the complex behavior of trajectories known
in the global theory. We can also make the corresponding trajectories on Rn to lie entirely in
a neighborhood of 0 and behave as complexly as those on RPn−1. Thus, the n-dimensional
local theory, so to speak, includes the (n − 1)-dimensional global theory (or, at least, a very
significant part of it), so it cannot be simpler that the global theory.

But, in practice, this fundamental observation is not that important. The point is that,
for k > 1, the equilibrium point 0 is degenerate, and the codimension of degeneracy (the
“degree” characterizing it) grows rapidly with k. The local theory hardly deals with cases so
degenerate. What is said above means only that (at least, in the multidimensional case) the
local theory cannot pretend to completely investigate all the possibilities, because they are
immense in the global situation. But such pretensions have never been advanced.
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structure, but they were always studied as a part of the theory of smooth DSs.
During the past 20 years, a new discipline, symplectic geometry (or sym-

plectic topology), has arisen; in the hierarchy of mathematical disciplines, it is
at at least the same level as the four traditional branches of DS theory and even
partially goes beyond it. New disciplines of such a high level emerge rarely, and
this event attracts special attention.

A symplectic manifold is a smooth manifold M together with a closed exte-
rior differential 2-form ω defined on M and nondegenerate at all of its points.
As it is usual in the theory of exterior differential 2-forms, the closedness of ω
means that dω = 0, where d is the exterior differential. The notion of non-
degeneracy can be introduced for arbitrary (not only skew-symmetric) bilinear
forms on a vector space (on the tangent space TxM in the case under consid-
eration). Such a form is said to be nondegenerate if its coefficient matrix is
nondegenerate. This definition presumes the use of coordinates; in linear alge-
bra, equivalent coordinate-free formulations are given. I mention at once that a
skew-symmetric form can be nondegenerate only in the even-dimensional case
(dim TxM = 2n). Finally, we assume that, in terms of local coordinates, the
coefficients of ω are smooth functions of their arguments (the degree of smooth-
ness depends on a particular problem, but very often, or even in most cases,
C∞-smoothness can be assumed).

Thus, a symplectic manifold is not merely a manifold M but a pair (M, ω).
Although, an explicit mention of ω is often missing from the notation of a
symplectic manifold, and it is denoted simply by M .

The definition given above is similar to the definition of a Riemannian man-
ifold. The latter involves a symmetric bilinear differential form g instead of
skew-symmetric form ω; g is usually not only nondegenerate but also positive
definite8 (both conditions can hold in odd dimensions as well); no differential
conditions are imposed on it (while ω must be closed).

However, the similarity between Riemannian and symplectic geometry does
not go beyond the initial definitions. In the Riemannian case, different mani-
folds may have different local structures; there is an extensive system of local
invariants – the curvature tensor and its covariant derivatives. In the sym-
plectic case, according to a theorem of G. Darboux,9 near any point x ∈ M ,
there exist so-called symplectic, or canonical, coordinates (Darboux coordi-

8 This means that the corresponding quadratic form is positive definite. If the form is not
positive definite, then the corresponding manifold is often said to be pseudo-Riemannian and
the inner product in the tangent spaces, pseudo-Euclidean.

9 It was also proved by G. Frobenius, but, for some reason, he is not usually mentioned in
the standard references to the theorem.
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nates) p1, . . . , pn, q1, . . . , qn in terms of which ω is locally expressed in the form

ω =
n∑

i=1

dpi ∧ dqi. (1)

Therefore, any two symplectic manifolds (M1, ω1) and (M2, ω2) of the same
dimension have the same local structure; namely, any two points x1 ∈ M1 and
x2 ∈ M2 have neighborhoods U1 and U2 between which there is a diffeomor-
phism f : U1 → U2 such that f transforms the forms into each other (that is,
f∗ω2 = ω1).10 A propos, such a diffeomorphism is called a symplectomorphism.
In the case under consideration, it is local in the obvious sense, but there exist
global symplectomorphisms too; these are diffeomorphisms f : M1 → M2 for
which f∗ω2 = ω1.

Although symplectic manifolds themselves have no local invariants (except
dimension), submanifolds of a symplectic manifold may be different even when
their dimensions coincide. Thus, an important role is played by the Lagrangian
submanifolds, that is, submanifolds N of dimension equal to half the dimension
of the ambient manifold and such that the restrictions ω � N of the form ω
to these submanifolds vanish identically;11 at the same time, there exist sub-
manifolds of the same dimension with nonzero restrictions ω � N . Still, even
for submanifolds, the number of invariants is much less than that in Riemann
or Euclidean geometry. For example, if N1 and N2 are submanifolds of a sym-
plectic manifold (M, ω) and Ui ⊂ Ni are neighborhoods of points ai ∈ Ni,
and if there exists a diffeomorphism f : U1 → U2 for which f(a1) = a2 and
f∗(ω � U2) = ω � U1, then there exists a symplectomorphism g : V1 → V2 be-
tween some neighborhoods Vi of the points ai in the entire M which locally
extends f in the sense that it coincides with f on V1 ∩ U1. In the case un-
der consideration, locally, the intrinsic geometry of a submanifold completely
determines its extrinsic geometry (compare this with curves in Rn!).

I believe that this scarcity of local invariants delayed the emergence of sym-
plectic geometry, because it was not clear in advance what to study.

10 In this respect, the situation is similar to that for flat Riemannian manifolds. Thus, there
is some analogy between the closedness of the form ω and vanishing of the curvature tensor.
However, it does not seem to be deep, if only because closedness is a differential condition
of the first order, while zero curvature is that of the second order. This distinction may
appear too formal, but there is also a quite meaningful difference: the group of isometries of a
connected Riemannian manifold is finite-dimensional, while the group of symplectomorphisms
of a symplectic manifold is infinite-dimensional.

11 Lagrangian submanifolds, as well as some related objects, are present implicitly in the
mathematical apparatus of classical analytical mechanics, but the explicit definition is due to
V. P. Maslov and V. I. Arnold.
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Symplectic manifolds arise in mathematics largely in relation to Hamilto-
nian systems of classical mechanics and to Kähler manifolds. A usual Hamilto-
nian system is a system of differential equations with 2n unknowns p1, . . . , pn

(momenta) and q1, . . . , qn (coordinates) of the form

dpi

dt
= −∂H

∂qi

,
dqi

dt
= ∂H

∂pi

, (2)

where H is a function of the unknowns and, possibly, time (it is called the
Hamiltonian of the system). The vector field V of the phase velocity of this
system is related to the differential dH and symplectic form (1) as follows: for
any vector U ,

ω(V, U) = −dH(U) = −U ·H,

where U ·H means that the vector U acts on H in a definite way as a first-order
linear differential operator (when this operator is to be distinguished from the
vector, it is denoted by DU or LU ). In other words, with the help of ω, we pass
from the vector V to the covector (i.e., a linear functional, or a linear form on
vectors) defined by U �→ ω(V, U); this covector coincides with dH up to sign. In
the general case, with a function H on a symplectic manifold (M, ω) one can as-
sociate a vector field V on M by precisely the same rule; V is called the globally
Hamiltonian vector field (with Hamiltonian H). In the Darboux coordinates,
the coordinates (components) of this field are precisely the right-hand sides of
system (2). In classical mechanics, the initial form ω often has form (1), but
even then further transformations (especially those reducing dimension with the
use of symmetries) may change ω. A (local) flow with Hamiltonian vector field
of phase velocity is also called a Hamiltonian. Such a flow {φt} preserves the
form ω, i.e., the mappings φt are symplectomorphisms (φ∗

t ω = ω). Conversely,
if a flow {φt} with phase velocity field preserves ω, then both the flow and
the field are locally Hamiltonian: each point of the manifold M lies in some
domain W in which the field V is obtained by the method described above
from some function (local Hamiltonian) HW defined in W . But generally, it is
impossible to pass from a system of local Hamiltonians {HW } defined in do-
mains W covering M to one “global” Hamiltonian (defined on the entire M
and determining the field V as specified above).

There is a different source of symplectic manifolds. I assume that the reader
is familiar with the notion of a complex analytic manifold. On such manifolds,
it is natural to consider so-called Hermitian metrics instead of usual Riemann
metrics, because the tangent space to a complex manifold M is naturally a
complex vector space, and instead of a Euclidean inner product on this space,
it is natural to consider a Hermitian inner product (a sesquilinear form in the
terminology of Bourbaki). If such a form is defined in each tangent space and
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has sufficiently smooth coefficients in local coordinates, then we say that M has
a Hermitian structure, or that it is a Hermitian manifold. The real part g of the
Hermitian form is a Euclidean inner product; thus, any Hermitian manifold is
automatically Riemannian. (The prefix “pseudo” can be inserted everywhere.)
But the imaginary part of a Hermitian form is a nondegenerate skew-symmetric
2-form ω. If it is closed, then the Hermitian manifold is called Kähler. On the
one hand, this definition is short; on the other hand, it is this definition that
is largely used in dealing with Kähler manifolds. But at first sight, it seems
somewhat formal and unmotivated. For this reason, I shall give a different
definition, which is natural enough geometrically. A Riemannian metric g de-
termines a Levi-Cività connection on M in a definite way. This allows us to
perform a parallel transport of vectors from the tangent space along any smooth
curve γ(t) on M . We obtain linear mappings Tγ(t1)M → Tγ(t2)M . They pre-
serve the Euclidean inner product; but we deal with the complex situation, and
it is desirable that they preserve the entire Hermitian inner product and be
linear not only over R but also over C (i.e., that they preserve multiplication of
vectors by complex numbers in the obvious sense). It turns out that this desire
is precisely equivalent to the property of being Kähler.

There are fairly many Kähler manifolds. Complex projective space has a
natural Kähler metric (the Fubini–Study metric); it induces Kähler metrics on
algebraic subvarieties of this space. (On the other hand, there exist Kähler
manifolds not being algebraic varieties.)

That “symplectic” considerations and results constitute a relatively inde-
pendent and unified complex of notions and methods was repeatedly (starting
with the mid-1960s) emphasized by V. I. Arnold, who often dealt with this com-
plex and (as opposed to other researchers) in relation to various topics (such as
Hamiltonian DSs, Lagrangian surgery (or perestroikas), and asymptotic meth-
ods in the theory of partial differential equations).12 A kind of “forerunner,”
which has later become an organic component, of the new discipline was the
theory of Lagrangian and Legendrian perestroikas and singularities together
with a number of related questions developed in the preceding two decades. An
especially significant progress in this area was made by V. I. Arnold and his
school and by A. Weinstein. The theory is exposed in [5]. The fundamental
distinguishing feature of this stage in comparison with the current state of the
art was the lack of the discovery of global invariants of symplectic manifolds
themselves (not only of some objects related to them).

A stimulating role in the development of symplectic geometry was played by

12 Naturally, the ultimate sources of the symplectic manifolds arising in his work were in
the same spirit as the two sources specified above, but immediate reasons for considering such
manifolds were different.
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a paper of C. Conley and E. Zehnder in which the following Arnold’s conjecture
was proved for the 2n-torus T2n considered with the natural symplectic struc-
ture (which comes from the standard symplectic structure in R2n under the
standard factorization): for a symplectic diffeomorphism g1 of a compact sym-
plectic manifold M homotopic to the identity diffeomorphism g0 in the class of
symplectic diffeomorphisms by means of a deformation {gt} whose rate dgt

dt
has

single-valued Hamiltonian for all t,13 there exist at least as many fixed points as
the number of critical points for a smooth function on M (for M = T2n, there
are 2n + 1 of such points, and if they are nondegenerate, then their number is
equal to 22n). The proof combined two earlier ideas (which had already been
used to solve other problems), namely, P. Rabinowitz’s idea of a new varia-
tional approach to periodic solutions to Hamiltonian systems and C. Conley’s
idea of a topological characterization of the behavior of a flow near certain (so-
called isolated or locally maximal) invariant sets by means of a generalization
of the classical Morse index of equilibrium points of the gradient flow (Morse
considered critical points of functions, which is equivalent).

At present, Arnold’s conjecture is proved in a number of other cases, and
several authors announced its proof in the general form.

The last step, after which symplectic topology had become an undoubtedly
autonomous discipline, was made by M. Gromov [6]. Before proceeding to his
approach, I shall mention some of his results. Gromov introduced several sym-
plectic invariants (i.e., invariants with respect to symplectomorphisms). The
only invariant known earlier was the volume. The usefulness of the new in-
variants is seen from the following statement due to Gromov,14 which seems
surprising and has an evident formulation; it is known under the expressive
name “theorem about the impassability of a symplectic camel through the eye
of a needle”: For an n > 1, there exist no continuous family of symplecto-
morphisms {ψt; 0 � t � 1} in R2n with coordinates pi, qi (i = 1, . . . , n) that
preserve (1) (see p. 76) and transfer a ball B of radius R from the half-space
p1 < 0 into the half-space p1 > 0 is such a way that, in the process of deforma-
tion, the intersection

ψtB ∩ {(p, q); p1 = 0}

is strictly inside some (2n − 1)-dimensional ball of radius r � R. (Certainly,
an octopus, which is subject only to the condition of volume preservation, can

13 This is one of the equivalent conditions on g1 imposed in this conjecture. More fre-
quently, it is given in a different formulation involving so-called asymptotic cycles, which are
a homological analogue of the Poincaré rotation number (it refers to homeomorphisms of the
circle).

14 The first outline of the proof was given by Gromov together with Y. M. Eliashberg.
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push its way through a small hole; this is confirmed by the experience of keeping
these animals in confinement.) I also mention, not going into details, that this
approach allowed Gromov to obtain an unexpected information about the global
properties of Lagrangian submanifolds and even of submanifolds in the usual
Euclidean space (with coordinates pi, qi and form (1)), although it was unclear
a priori why they would have some special properties.

As mentioned, a Kähler manifold M has a symplectic structure “nicely”
related to the corresponding complex and Riemann structures. In the ter-
minology of Gromov, the corresponding pseudo-complex structure15 on M is
“tamed” by the symplectic structure (Gromov describes precisely what rela-
tions he means by taming). Such pseudo-complex structures are diverse, and
everybody knows that the true complex Kähler structure is much better than
all the others. It turns out that a symplectic manifold admits many pseudo-
complex structures tamed by the symplectic one; not trying to distinguish one
“good” structure among them, Gromov suggested to consider all these struc-
tures at once (Riemannian metrics then arise naturally). In a certain sense,
all the “bad” structures together proved a suitable substitute for one “good”
structure! For each of them, pseudo-holomorphic mappings of the disk to the
manifold under consideration can be considered (for the sake of brevity, they
are referred to as pseudo-holomorphic disks); they are defined by directly gen-
eralizing the usual holomorphy. The pseudo-holomorphy condition is written
in the form of a quasilinear system of partial differential equations generalizing
the classical Cauchy–Riemann system. Gromov studied this system and proved,
roughly speaking, that it has many solutions, as in the classical case. Gromov’s
symplectic invariants are defined with the use of the pseudo-holomorphic disks
corresponding to all possible pseudo-complex structures tamed by the initial
symplectic structure.

As we see, Gromov’s approach involves partial differential equations instead
of DSs. But some of the results (as well as ideas and methods) proved useful
for DS theory. Other authors gave a different interpretation of this approach
(or, more precisely, of something similar to it), which is closer to DS theory.
In this way, the best results on periodic solutions to Hamiltonian systems were
obtained (they are due to C. Viterbo, H. Hofer, and E. Zehnder; see also the
theorem of Hofer cited at the end of Section 2.5). This aspect of the matter
is well presented in [7]. The collection of papers [8] considers a wider circle of
questions of symplectic topology, including some relations to DSs not mentioned
in [7] (especially as far as invariant Lagrangian manifolds, tori largely, are con-

15 That is, the structure of complex space on each tangent space TxM smoothly depending
on x in the obvious sense; in the case under consideration, it is determined by the initial
complex structure of M , but in the general case, it may be obtained otherwise.
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cerned; for them, a number of qualitative problems was not even stated until
the new symplectic ideas penetrated DS theory (not counting, of course, the
special case of invariant curves with two-dimensional diffeomorphisms, which
were mentioned even by G. Birkhoff). As far as I know, there are no surveys
on this topic. In addition to the referenced cited above, there are [9, 10].) A
textbook on symplectic topology proper is [11]. In recent years, reports on
symplectic geometry (both in relation to DSs and independently of them) were
delivered at international and European mathematical congresses, and in their
proceedings many information on the state of the art in this area can be found.

I cannot discuss here Floer’s theory of cohomologies, which appeared in
connection to symplectic geometry and part of which (but, of course, only
part) is to some extent sketchy at present. As far as I know, there is no detailed
textbook exposition of this material.

Let us mention two more somewhat related cycles of papers (they, especially
the second one, are indeed related to the topic only to some extent).

Continuing and developing the study initiated earlier, V. I. Arnold and his
collaborators tackled a series of questions known as nonlinear Morse theory [12].
It considers the variability and intersection properties of certain curves or more
general manifolds, which can be regarded as generalizations of the well-known
theorems of Sturm and Morse; the latter are then related to the special cases
where these curves are graphs of certain functions or even of solutions to linear
differential equations.

The second cycle consists of two proofs of the theorem that, on a two-
dimensional sphere with an arbitrary Riemann metric, there exist infinitely
many closed geodesics (the earlier result, whose proof was essentially contained
in works of L. A. Lusternik and L. G. Schnirelmann of the 1920s but finished
off only half a century later [13, 14], was concerned with three closed geodesics;
though, those three geodesics had no self-intersections). One proof starts with
V. Bangert’s reduction of the problem to two cases, which were proved by
Bangert himself and J. Franks [15, 16]. A gap in [16] was filled in J. Franks’
paper “Area preserving homeomorphisms of open surfaces on genus zero.” New
York J. Math., 2 (1996), 1–19. This proof of the theorem is distinguished by a
remarkable combination of novelty and tradition (and of a kind of “elementa-
rization”). The case treated by Franks was noticed even by G. Birkhoff. This
is the case in which there is a “simple” (having no self-intersections) closed
geodesic L such that any geodesic intersecting L necessarily intersects L again.
(This case includes, in particular, the quite classical case of a metric of pos-
itive curvature.) Birkhoff observed that, in this case, the problem reduces
to studying a certain self-mapping of an annulus-like domain. Franks proved
that this mapping has infinitely many periodic points, which is equivalent to



82 D. V. Anosov

the existence of infinitely many closed geodesics. (As is known, Birkhoff himself
obtained a result about self-mappings of an annulus, namely, a proof of the con-
jecture stated by A. Poincaré and known as “Poincaré’s last theorem,” although
Poincaré published it as a conjecture. A propos, this theorem stimulated Arnold
to state the conjecture mentioned above, while Franks started his work in this
domain with obtaining a different proof of the Birkhoff theorem and related
results.) Franks used some results of M. Handel (related to Arnold’s conjec-
ture mentioned above; since Handel did not published the proofs, Franks gave
them under additional assumptions sufficient for his purposes. Then Franks
returned to this circle of questions again; this time, in addition to the Handel
theorem, he proved Arnold’s conjecture for diffeomorphisms of surfaces no re-
ferring to general symplectic theory16) [17]. (Later, S. Matsumoto, continuing
this line of study, suggested a complete proof in the general case of homeo-
morphisms both for Arnold’s conjecture – for surfaces17 – and for the Handel
theorem announced in [18].) Soon after the appearance of the papers of Franks
and Bangert, N. Hingston suggested a second proof of the theorem about an
infinite number of closed geodesics, which was based on variational considera-
tions [19]. It is closer in spirit to the traditions of differential geometry (and
the further from the topic of this section).

I must say that, in Russia, the cycle of studies of A. T. Fomenko and his
students on the topology of integrable Hamiltonian systems (see their recent
book [20]) is also referred to symplectic geometry. Certainly, this is a geome-
try, and it is related to the corresponding symplectic structure (without which
Hamiltonian systems cannot be considered), but the contents of this cycle of
studies are fairly far from the topic of this section; I would rather classify them
with the theory of integrable systems (some other aspects of this theory are
considered in Section 3.5).

S. Kobayashi writes almost at the very beginning of his book Transformation
Groups in Differential Geometry : “Not all geometric structures are created
equal: some of them are creations of the nature, while the others are products
of the human mind. Among the former, Riemannian and complex structures
are distinguished by their beauty and wealth.” This book was published in
1972. It seems that, at that time, symplectic manifolds were rather products of
the human mind, but now the efforts of the human mind turn them gradually

16 Here I mean this conjecture for area-preserving homeomorphisms of orientable surfaces
of genus > 1. A. Floer had already proved it by “general symplectic” methods at that time.

17 In the two-dimensional case, the symplecticity of a mapping reduces to preservation of
area, and the latter property can be considered not only for diffeomorphisms but also for
homeomorphisms.
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into creatures of nature “refreshingly unlike”18 its other creations.

1.2 Conformal dynamics

Another direction, being extensively developed in these years but not going
beyond the limits of the theory of dynamical systems and constituting a part
of differential dynamics, is conformal dynamics, which studies iterations of an-
alytic functions in the complex domain. The phase space is some domain D in
the complex plane (even the cases in which D is the entire plane C or the plane
extended to the Riemann sphere are very interesting) and the dynamical system
under consideration is a system defined in D and having discrete time {fn},
where f is an analytic function (it may be polynomial, and even polynomial of
the second degree!).

This direction is not new; it goes back to the classical works of P. Fatou and
G. Julia in the beginning of this century (not counting the earlier works on local
questions19). Even then, the complex behavior of trajectories resembling that
in hyperbolic theory was noticed. This theory did not exist yet, but the com-
plex behavior of geodesics on surfaces of negative curvature had already been
discovered (by J. Hadamard for the first time); however, at that time, these two
cases of complex behavior were not compared. In the course of time, the work
in conformal dynamics ceased, and this direction fell in a long “hibernation”
(although, there appeared some occasional papers; especially worthwhile is the
1942 brilliant local result of C. Siegel20); it awoke about 1970, apparently be-
cause of the recognition of relations or analogies with hyperbolic theory, which
had already emerged at that time. Of great importance were also numerical
experiments; they helped to discover a number of new phenomena and state a
number of conjectures, working on which meant very much for the whole the-
ory. The initiative in the experiments was taken by B. Mandelbrot; later, due
to the widespread use of sufficiently powerful personal computers, performing
such experiments became commonly available (although requiring certain care
sometimes).

In conformal dynamics (as well as in studying real one-dimensional map-
pings, which were also very popular during the period in question), we have

18 These are words of V. I. Arnold said on a humbler occasion, namely, when comparing
linear algebra in the symplectic space (Rn, ω) where ω is a constant (has constant coefficients)
with the usual Euclidean geometry.

19 The basic local question is: Let f(a) = a; under what conditions is the conformal mapping
f conjugate to its linear approximation, i.e., to the linear mapping x �→ a + f ′(a)(x − a)
near a? and, if there is no conjugation, what is the obstruction? If |f ′(a)| �= 1, the conjugacy
is comparatively easy to prove; otherwise, the situation is much more complicated (see [1]).

20 That was the first positive result for |f ′(a)| = 1.
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an almost unique opportunity to fairly completely study the complex behavior
of DSs, both in the sense of qualitative patterns in the phase space and in the
sense of dependences on parameters. It is possible to investigate DSs for which
opposite types of behavior of trajectories are realized in different parts of the
phase space: in one part, it may be hyperbolic (conformal dynamics often deals
with weakened versions of hyperbolicity, which are being successfully studied
in the case under consideration), while in another part, it may be quasiperiodic
or something like that.

Some notion of this direction is given by [21]. This book is unlike usual
mathematical books, where figures illustrate the text; [21] most resembles an
album with beautiful computer pictures, which are explained in the text. As
a rule, precise statements of theorems are given, but the proofs are sometimes
omitted. The book contains an extensive bibliography and detailed historical
comments; in this respect, [21] does meet the traditionally high requirements
to a textbook-survey. (In addition, it contains remarks on computational diffi-
culties arising in some cases.) We also mention surveys [22, 23] and book [24];
finally, the newest information is contained in the proceedings of the last inter-
national mathematical congresses, at which conformal dynamics was invariably
paid a considerable attention.

A few pictures from [21] can give a much better idea of sets arising in
conformal dynamics than several lectures without pictures. I only mention
the following, by way of example. In some sense, all the “complexity” of the
dynamics {fn} is concentrated on the so-called Julia set J = Jf , which may
look fairly complicated and strikingly beautiful. Putting aside beauty, other
sections of DS theory also deal with objects of complicated structure, which play
a similar role. Now, let f = fc depend on a parameter c (a quite meaningful and
not yet completely investigated example is fc(z) = z2 + c). Then there arises
the question about bifurcations, i.e., changes of the qualitative pattern under
variation of c. The corresponding values of c are mostly elements of the so-
called Mandelbrot set M . At this point, all the other sections of DS theory lag
far behind conformal dynamics, for they have nothing like the detailed images
of M from [21].

In some sense, the set M bears a striking resemblance to the Julia sets,
although this similarity is somewhat imperceptible; and it cannot have a simple
description, because there are infinitely many Julia sets and only one M for
the family {fc} specified above. Globally, M and J are quite different, and the
similarity manifests itself in their local structures. In a paper of Lei Tan (she is a
student of one of the well-known figures in this area, A. Douady), it is explained
that the local structure of M near certain points c ∈ M and the local structure
of Jfc near certain points z ∈ J are asymptotically the same: examining these
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sets through a microscope, we would see that the higher magnification the closer
the similarity in the field of vision of the microscope. This is an example of a
theorem suggested by computer experiments. Lei Tan accomplished her work
almost 15 years ago; this is a long period for the domain under consideration,
and her theorem may be considered easy according to current standards. But
the following statement is an example of a very difficult “computer-stimulated”
conjecture: For the given (very simple outwardly!) family {fc}, the Mandelbrot
set is locally connected (this statement is known as the MLC conjecture). It has
attracted a very close attention of experts (the statement is interesting in its
own right, and it turns out that, in addition, it has interesting consequences, but
I shall not dwell on this), and still, the existence of arbitrarily small connected
neighborhoods is proved not for all points of M . The existing proof for part
of the points of M again turns to account for some local similarity between M
and J (the first significant progress was made by J.-C. Yoccoz, and the most
recent results known to me are due to M. Lyubich [25]).

B. Mandelbrot rejoiced very much when he obtained the first (poor from the
modern point of view) images of Julia sets and of the set M (which he intro-
duced himself and which now bears his name), because they provided new and
important examples of what he called fractal sets, or, briefly, fractals; this had
strengthened his confidence in their importance and gave a valuable material
for propaganda. The word “fractal” comes from “fraction” and is used because
fractals usually have fractional Hausdorff dimensions. But, whereas Hausdorff
dimension is a precise mathematical notion, fractals are not such. Mandelbrot
said that all the figures which he had studied and called fractals had the prop-
erty of being “irregular but self-similar” to his mind. According to Mandelbrot,
the word “similar” not always has the classical meaning of being linearly di-
lated or contracted, but it always harmonizes with the convenient and broad
meaning of the word “alike.” (“Self-similarity” is understood in approximately
the same sense in which “the same local structure” was understood above.)
This is, certainly, an informal description rather than a definition. Mandelbrot
explains that a set of fractional Hausdorff dimension is, of course, “irregular,”
but it is not necessarily self-similar, and a set of integer Hausdorff dimension
may be “irregular” (say, “indented”) and have or have not the property of local
self-similarity; thus, “fractality” must not be understood literally. So fractal-
ity is a property defined not quite precisely; rather, is it described in more or
less detail by employing numerous examples both from mathematics and from
natural sciences. Fractals are a rocky coast, a chain of mountains, a fluttering
flame, a cloud, a mold colony... Mandelbrot even specifies quantitative char-
acteristics of self-similarity for various natural-science examples. Certainly, in
these examples, as opposed to mathematical ones, self-similarity occurs only
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within a certain scale range. According to Mandelbrot, in inanimate nature,
the extreme scales of this range can differ approximately by a factor of 104, and
in biological examples, by a factor of 102.

These ideas and observations of Mandelbrot became rather popular, and, in
his wake, many other authors began to discover fractals in nature. Apparently,
indeed, together with objects whose shapes are fairly accurately described by fa-
miliar “Euclidean” figures, there are natural objects that have “fractal” shapes.
Certainly, this is a mere phenomenology; the question arises, why a given ob-
ject has fractal shape, and why this shape has given quantitative characteristics.
As far as I know, in the “mathematical natural sciences” (understood in a very
broad sense), things with this question are not going too well. But it is worth-
while to recall that understanding the nature of the familiar “Euclidean” shapes
has progressed fairly slow and is not completed so far;21 thus, it is not surpris-
ing that the corresponding questions as applied to the new forms still remain
unanswered. At the same time, fractals have became “fashionable,” with all
the usual consequences22 (cf. catastrophe theory mentioned in Section 1.4).

Let us return to mathematics. Stressing the “self-similarity” of fractals,
Mandelbrot drew the attention of mathematicians to the essential property of
a number of irregular sets with complex structure occurring in mathematics.
Certainly, self-similarity may be an artifact, i.e., something made by human
beings; this is the case for classical examples such as nowhere differentiable
functions of K. Weierstrass and B. van der Waerden, the curves of G. Peano,
H. Koch, and D. Hilbert, and the carpet of W. Sierpinski. In all these ex-
amples, some objects were constructed in infinitely many steps and, certainly,

21 For instance, the regular shape of crystals is known since ancient times; even in the past
century, their quantitative characteristics and the fact that a given substance always crystal-
lizes into one crystal form or into one several crystal forms with characteristics inherent in the
substance were known; it was conjectured long ago that the reason for that was the location of
atoms or molecules at the nodes of some crystal lattice; a quantitative substantiation of this
conjecture was given by E. S. Fedorov and Shönflies over one hundred years ago. But only
about 90 years ago, this conjecture was proved by means of X-ray diffraction on crystals; as to
the crystal phase transitions of most substances at low temperatures, the first results in this
direction were obtained in statistical thermodynamics only comparatively recently (a propos,
they bear some relation to DS theory; see the mention of phase transitions in Section 1.3).
Finally, the experimental study of the crystal growth mechanism, in particular, the discovery
of the dislocation growth mechanism dates almost exclusively from the after-war period (the
important idea of dislocation emerged earlier, but on a different account). I believe, obtaining
a growth mechanism “from first principles” has not been considered at all so far.

22 Perhaps, fractals had reached the summit of their fame in this walk of life when the follow-
ing words were written: “It can be said that Jesus Christ is at the center of a multidimensional
fractal that propagates according to certain generation rules, which can be described in binary
terms” (M. Eliadis and I. Kuliano. Dictionary of Religions, Fancies, and Beliefs (Moscow:
Rudomino; St.-Petersburg: Universitetskaya Kniga, 1997)).
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the authors strove to make these steps similar to each other, in order that the
construction be easier to describe. But in other cases, such as those of J and
M , self-similarity is not implied directly by the initial definition or construction
and is an important feature.

At the beginning of this century, when conformal dynamics originated, the
main tool was the methods of the “pure” theory of functions of a complex vari-
able. In studying local questions, expansions in series and majorants were used,
and in global problems, an important role was played by considerations related
to the compactness of various sets of analytic functions (P. Montel shaped them
into the theory of normal families of analytic functions, which has various ap-
plications, at approximately the same time). Starting with K. Siegel, many
authors employed various tricks to fight small denominators, such as more in-
volved constructions of majorants used by Siegel himself and, later, the KAM
(A. N. Kolmogorov–V. I. Arnold–J. Moser) method. Instead of expansions in se-
ries, this method uses a more complicated process with infinitely many changes
of variables, which converges more rapidly; another aspect of the method is
somewhat analogous to Newton’s method for solving nonlinear equations (Kol-
mogorov said that he was partly guided by this analogy). These two tricks
are of “general mathematical” value; later, for the same purpose, more special
methods (related to what is known as renormalization and to the “geometry” of
the pertinent number-theoretic problem of small denominator) were developed.
Being specialized, they made it possible to obtain better results, but (so far?)
only for one-dimensional problems (real or complex). The extensive develop-
ment of new methods in the 1970s was related partly to the progress in the
theory of functions of a complex variable (e.g., the Teichmüller spaces, about
which much had been known at that time, proved useful). Employment of qua-
siconformal mappings turned out to be a very happy idea. At first glance, the
trick looks like a foolish escapade. Wishing to construct a conformal mapping
with certain properties, we take a mapping f which is good in all respects except
it is not conformal; however, it is conformal with respect to some nonstandard
complex structure deserving offensive epithets among which the mildest would
be “absurd” and “useless.” If only we managed to correct f so as to make it
conformal in the usual sense... And here, a deux ex machina comes on; this is
the measurable Riemann mapping theorem23 asserting that f is quasiconfor-

23 This theorem has this appellation in conformal dynamics; it is generally referred to as
the existence theorem for quasiconformal homeomorphisms (the appellation does not specify
precisely what homeomorphisms are meant, neither shall I). The theorem has been generalized
gradually; what conformal dynamics needs is the latest version, which is due to L. Ahlfors,
L. Bers, I. N. Vekua, and C. Morrey. The idea to use it in conformal dynamics is due to
D. Sullivan. Apparently, the possibility of applying it to the theory of Klein groups (published
somewhat earlier) was also noticed by Sullivan. In the meantime, starting with 1981, the



88 D. V. Anosov

mally conjugate to some truly conformal mapping. Finally, there is the already
mentioned renormalization trick, which is not related in a specific way to the
one-dimensional complex situation.24 To a certain extent, renormalization is
related to the general idea of local self-similarity, but it is applied not only to
sets but also (and largely) to mappings. Though, I do not think that those who
invented this trick have been influenced by the general idea of Mandelbrot. It
seems that the idea must have had some effect, because this method was used
to study the above-mentioned questions concerning J and M , but the point is
that the method appeared much earlier, first in relation to mathematical ques-
tions of statistical physics and then in works on one-dimensional dynamics in a
real domain.

By the way, I said nothing about one-dimensional dynamics in a real do-
main. It has also been extensively developed, starting with the 1970s. But
at present, I believe, conformal dynamics is a direction more significant in all
respects, and it exercises more influence; thus, although I want by no means
to diminish the importance of one-dimensional real dynamics, I shall confine
myself to merely mentioning it and refer the reader to book [26] (see also the
end of Section 2.1). Comparing the two theories, we cannot help but perceive
that both of them essentially use the special features of objects under exami-
nation, but in conformal dynamics these specifics constitute the subject of the
rich and deep theory of functions of a complex variable, while in real dynamics
they are no more than properties of the straight line. It is amazing that a
theory as rich in content as real dynamics has arisen and continues being suc-
cessfully developed on such a humble foundation. It is worth mentioning that
some recent advances in this theory were made by carrying over considerations
to the complex domain for a while25 (see, e.g., the end of Section 2.1). Even
earlier, the passage to the complex domain was used in relation to Feigenbaum
universality26 [26]. At large, such a trick is, to put it mildly, not new (it has

measurable Riemann mapping theorem had found independent applications to local questions
(S. M. Voronin, B. Malgrange, and J. Martinet with J. P. Ramis). The idea of Sullivan was
used by A. Douady and J. Hubbard in other problems of conformal dynamics, after which it,
so to speak, “took root” in minds of researchers in this domain.

24 Seemingly, this contradicts what was said above; but above we meant a particular trick
using renormalization together with the “geometry” of a certain number-theoretic problem,
rather than the general idea of renormalization; it is understanding of this “geometry” that
the multidimensional situation lacks.

25 Sometimes, it is possible to apply this trick even to nonanalytic mappings, which can be
extended over the complex domain to mappings that are not analytic but, roughly speaking,
differ little from analytic mappings.

26 This is a certain law (which is also a kind of self-similarity) of the infinite sequence of
period-doubling bifurcations of a one-dimensional mapping. (When such a bifurcation occurs,
the periodic point loses stability and gives birth to a stable period-doubled point.) It is
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been known for almost 450 years in algebra), but in DS theory, complexifica-
tion worked well only in local and related questions.27 Apparently, here, on the
bounded “spot” of one-dimensional dynamics, we are witnessing the beginning
of the penetration of this old but eternally youthful idea into the much younger
theory of dynamical systems.

1.3 Nonclassical transformation groups

In most of this paper, by a DS we usually mean an action of the group or
semigroup Z, R, Z+, or R+

28 on a phase space X (where X has a certain
structure and the action is compatible with this structure in a certain sense).
But we might consider actions of other groups as well. In this case, we say
that we consider “transformation groups”; but if we wish to emphasize that we
are interested in questions similar in many respects to those about the usual
DSs, then we say that we deal with a “DS with nonclassical time” (ranging
over the group or semigroup G), while the usual DSs are “DSs with classical
time.” Such a terminology is justified, the more so that, for historical reasons,

proved that this law is a “generic property”; M. Feigenbaum discovered it in the course of
numerical experiments. (As Feigenbaum said somewhat humorously, it helped him a lot that
he performed his computations on a programmable pocket calculator, for this made him to
organize computations more carefully than when using a more powerful computer). Although
it involves directly only one-dimensional mappings, the corresponding sequences of bifurcations
occur for multidimensional DSs (including flows) too, because it is quite likely to happen that
the “main events” are still “one-dimensional.” See the story about this discovery and its
(partly hypothetical) role told by Feigenbaum himself in [27].

27 By questions related to the local ones I mean here questions concerning bifurcations which
are more or less global in the phase space but local with respect to a parameter; see the end
of Section 2.3.

28 A left action of a (semi)group G on X is a mapping

G × X → X (g, x) �→ φg(x)

such that
φe(x) = x for all x

(e is the identity element) and

φg ◦ φh = φgh for all g and h.

A right action is defined similarly. This is the same thing as a left action for a commutative
G, but in the general case, left and right actions are different. It should be mentioned that,
following Bourbaki, we use the notations Z+ and R+ for the sets of all nonnegative elements
of Z and R, respectively (thus, the sign + is not to be understood too literally). We also use
the notation N = Z+ \ {0}.

By analogy with the case of classical time, the set {φg(x); g ∈ G} is called the trajectory
(or orbit) of the point x (under the action of G); this will be needed later on.
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the term “transformation groups” is mainly used when talking either about a
continuous action of a compact group or about an algebraic action of an alge-
braic group satisfying a strong regularity condition; in both cases, the questions
under examination are of a different character.

The direction which we shall consider is the ergodic theory of DSs with
nonclassical time. But we shall start with a digression.

In what follows, amenable groups are mentioned. Although their definition
was given by J. von Neumann as early as 1929, it is not generally known so far.
For this reason, I shall give two later equivalent definitions29 only for the case
of a discrete group G; this group is even assumed to be finitely generated in
the second definition. (The general case is that of a locally compact topological
group or semigroup.)

The definition of E. Fölner postulates the existence of a certain system {Fn}
of subsets of G, which is now known as a Fölner system. They play approxi-
mately the same role as the intervals [−n, n] play for Z: as n increases, they
cover the entire G; we can average over them; and under a shift by a fixed
element of the group, the averages over sufficiently large sets from the Fölner
system almost do not change.

Another definition (going back to H. Kesten and improved by R. I. Grig-
orchuk) is suitable for a finitely generated group G. If G has n generators,
then it can be represented as the quotient group G = Fn/H of the free group
with n generators by a normal subgroup H. Let f(k) denote the number of all
irreducible words from Fn having length � k, and let h(k) be the number of irre-
ducible words that belong to H. It is almost obvious that f(k) = 2n(2n−1)k−1.
The group G is amenable if lim

k→∞
k
√

h(k) = 2n− 1, i.e., if the number of words

of length � k in H increases (with k) at approximately the same rate as that
in Fn. Thus, the factorization of Fn modulo H is very substantial: very many
words in the generators are equal to 1 in G! Nevertheless, there does remain
something: all commutative, nilpotent, and even solvable groups are amenable.

Amenable groups are considered in [28] (although, the second definition is
more recent than the book).

Now, we can proceed to the topic. Soon after the first ergodic theorems
(the “statistical” theorem of J. von Neumann and the “individual” theorem of
G. Birkhoff) were proved, efforts to transfer them to other transformation group
and semigroup with invariant measure were made. Analogues of ergodic theo-
rems for Zn, Rn, Zn

+, and Rn
+ were obtained fairly quickly; next was the turn of

different or more general groups. Apparently, a natural class of groups (semi-

29 They are more classical in spirit than the original definition of Neumann involving the
possibility of a certain transfinite construction (which yields the so-called left-invariant Banach
mean) in the space of bounded functions on G.
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groups) for which there is a hope to obtain ergodic theorems more or less parallel
to classical time theorems is the class of locally compact amenable groups (semi-
groups). The statistical ergodic theorem is proved in precisely this generality.
As to the individual ergodic theorem, the situation is more complicated. We
shall consider only discrete groups.30 Let (X, µ) be a space with finite31 measure
on which a discrete amenable group G acts by measure-preserving transforma-
tions {φg}. By analogy with the classical case, the individual ergodic theorem
must involve the means fn(x) := 1

#Fn

∑
g∈Fn

f(φg(x)), where Fn is a set from the

Fölner system {Fn} and #Fn is the number of its elements. It turns out that
we cannot always assert that the sequence fn(x) converges almost everywhere.
A sufficient condition is that the system {Fn} increases (i.e., Fn ⊂ Fn+1) and,
which is most important,

sup
n∈N

#(F−1
n Fn)

#Fn

<∞

(the latter condition was specified by A. Calderon). Fölner systems satisfying
the Calderon condition exist for almost nilpotent groups (i.e., for groups having
nilpotent subgroups of finite index).32 They also exist for countable locally
finite groups. It is not known whether there exists another significant class of
groups admitting such Fölner systems and whether the Calderon condition can
be replaced by something more general. Thus, an individual ergodic theorem
whose statement is fairly close to that of the classical theorem is proved for
almost nilpotent and for locally finite groups G. For other groups, there are
only some announcements, which remain not supported by detailed publications
suspiciously long.

30 In the literature, actions of locally compact groups and semigroups were considered as
well. The discreteness assumption is made for the sake of simplicity (at this point, there
is no noticeable difference between the discrete and locally compact cases, although such a
difference arises at some places further on).

31 It is well known that, for classical time, there are ergodic theorems in spaces with infinite
measure too, and their formulations and proofs for such spaces are almost the same; however,
for the further development of the theory, the cases of finite and infinite measure turn out to be
fundamentally different, and now this development deals mainly with spaces of finite measure.
In the nonclassical case, the situation with individual ergodic theorem is still unclear; thus, it
is natural to consider first spaces of finite measure, as is usually done.

32 In [29], it is said that the countable groups admitting Fölner systems satisfying the
conditions specified above, of which the Calderon condition is most important, are essentially
groups of polynomial growth, i.e., finitely generated groups for which the function f(k) defined
above has polynomial growth, and M. Gromov proved that such groups are almost nilpotent.
It is not specified in [29] what “essentially” means; since polynomial growth can be considered
only for finitely generated groups, possibly, it is these groups that are meant. But, as far as
I know, that the Calderon condition implies a polynomial growth of f(k) is not proved even
for them.
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Ergodic theorems for amenable groups are presented in [29, 30].
Recently, E. Lindenstrauss announced the following general result. In any

countable amenable group, there is a Fölner system {Fn} such that, for any
action with finite invariant measure, the individual ergodic theorem holds for
the averages over {Fn}. (Thus, “some Fölner systems are more Fölner than
others.”) There is no detailed publication so far, but the announcement is
recent, so “suspiciously long” does not apply.

It turns out that ergodic theorems may have place beyond the class of
amenable groups. Thus, R. I. Grigorchuk proved an individual ergodic theorem
for the finitely generated free groups (semigroups) and some groups close to
them, whereas it is believed (and partly seen from the second definition) that
the free groups are most unlike amenable groups.33 The point is that Grig-
orchuk changed the method for averaging “in time,” that is, over the group. I
would compare this change to the passage from the usual convergence to Cesàro
means in the theory of series. As is known, there are many different summation
methods. Something similar may take place in ergodic theory; or, maybe, there
is a universal method, at least for finitely generated groups.

But I mentioned nonclassical time not only in order to discuss ergodic the-
orems (if it were so, the title of this subsection would hardly suit). Ergodic
theorems constitute only a part of the ergodic theory of systems with classical
time. Historically, this part was developed first, and it gave the name for the
entire theory; but in the past half century, it became only a part, not even half,
of the theory. The “abstract” – “purely metric” – sections of ergodic theory
consider various properties of ergodic systems, including their partial classifi-
cation. Usually, instead of arbitrary spaces with measure (even if normalized),
Lebesgue spaces are considered;34 although, this hardly restricts the generality

33 Initially, Grigorchuk published a communication about his results only in the proceedings
of a provincial conference [31] (and considered only free groups; though, he did not require
the finiteness of the invariant measure). It received no attention, and, later, other authors
published similar papers [32]. Analogous theorems for action of some semisimple Lie groups
were also considered [33, 34].

I shall not discuss the earlier papers [35, 36]. That they are valuable as pioneering works
is undoubted, but they consider special situations and have specific features; it is desirable
to understand them from general positions, but I (and, I believe, not only I) am not ready
for this. (For example, in [36], averaging over a solvable group is performed in such a way as
if the group were free.) I shall only mention the statistical ergodic theorem for free groups
proved in [37].

34 A Lebesgue space is a space with measure isomorphic (in the sense natural for spaces with
measure) to the standard object, interval [0, 1] with normalized Lebesgue–Stieltjes measure.
Equivalently, a Lebesgue space is isomorphic to the interval [0, a] with a Lebesgue measure to
which no more than a countable number of “atoms” with measures pn are added; in addition,
the normalization condition a +

∑
pn = 1 must hold. This definition takes into account some
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of the results from the point of view of their application to particular examples.
Other sections, which can be conventionally called “applied,” study the prop-
erties of special systems or of some classes of such systems. (These systems are
frequently smooth or topological; thus, in principle, studying them could be
referred to topological or smooth dynamics, but when we consider properties
related to “abstract” ergodic theory, the studies of the corresponding (classes
of) particular systems are usually also included in ergodic theory.)

For systems with nonclassical time, a few studies of this kind have been done
before 1970, but an extensive development started about 1970 or a little later.
In some cases, a similarity to the classical case was revealed, while other cases
turned out to be different from it; moreover, the interface between common and
unusual situations depends on the question under consideration. Frequently, the
case of amenable groups is similar to the classical case, as above, but sometimes,
even the case of Z2 fundamentally differs from that of Z.

As above, it is impossible to tell about a whole science in a few words.
I shall only give several examples (since I am trying to characterize the area
as a whole, some of these examples date from a period earlier than the past
quarter century). I shall consider only actions of discrete groups (although many
(but not all) considerations apply to separable locally compact semigroups35);
moreover, in the first examples ((a)–(c)), I shall assume that the group G acts
on a Lebesgue space (X, µ) and that all transformations under consideration
preserve the measure µ.

(a) One of the sections of ergodic theory, spectral theory, starts with as-
signing operators Ug in L2(X, µ) to elements g ∈ G:

(Ugf)(x) = f(φ−1
g (x)). (3)

The operators Ug are unitary, and Ugh = UgUh; thus, we have a unitary repre-
sentation36 of the group G. This gives rise to the problem of investigating the

useful special features of the majority of particular examples encountered in ergodic theory,
which allow a much further progress in analyzing purely metric questions than for general
spaces with measure. That the class of Lebesgue spaces is sufficiently large is witnessed
by the fact that any metrizable compact set with normalized measure (defined on its Borel
subsets) is a Lebesgue space.

The theory of Lebesgue spaces was developed by J. von Neumann and P. Halmos (they used
a different term) and, especially, by V. A. Rokhlin.

35 Even for noncommutative topological groups, difficulties may arise because of the differ-
ence between left- and right-invariant Haar measures. This is something new in comparison
with the case of discrete groups.

36 If we took φg instead of φ−1
g on the right-hand side of (3), we would obtain an antirepre-

sentation, for which Ugh = UhUg; generally, it is no worse than a usual representation, but it
is less familiar. Dealing with semigroups, we would have to consider antirepresentations, and
(which is more essential) the operators Ug would be isometric rather than unitary.
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properties of this representation and determining to what extent they reflect
the properties of the initial DS. When we change a DS for a metrically isomor-
phic one, the corresponding representation is replaced by a unitary equivalent
representation. In functional analysis, there is a system of notions that refer
to the properties of unitary representations invariant with respect to unitary
equivalence. In the simplest case of the powers Un of a unitary operator U
(i.e., when we deal with a representation of Z), everything reduces to the spec-
trum of this operator; for this reason,the corresponding notions, invariants, and
properties are called spectral, and they retain this name in more general cases.
The constants are always invariant with respect to (3), and they form a one-
dimensional subspace; for this reason, consideration of this representation is
tacitly restricted to the subspace H ⊂ L2(X, µ) orthogonal to the constants;
the corresponding spectral properties are called also properties of the DS {φg}.
I must say that, in the case under consideration, even for one operator U , the
spectrum is understood in a more delicate sense than in the elementary courses
of functional analysis, where the spectrum of a linear operator A is defined as
the set of those λ ∈ C for which the operator A − λI has no bounded inverse
defined on the entire space. Under this definition, the spectrum of the DS {φn}
coincides with the unit circle in all practically interesting cases; thus, the in-
variant which it provides is almost always the same and, therefore, useless.
But for various special (and yet important) classes of operators considered in
functional analysis, there are more delicate versions of the notion of spectrum;
most important for us is such a refined notion of spectrum for a unitary oper-
ator U and a self-adjoint operator A (the latter appears in studying flows as
the generating operator of the corresponding one-parameter group of unitary
operators). Because of space limitations, I refer the reader to advanced text-
books on functional analysis for this notion (it is also given, at least partially,
in some books on ergodic theory).37 I shall only mention that the spectrum
is said to be continuous when U or A has no eigenfunctions (on H), discrete
when the eigenfunctions form a complete system (in H and, hence, in the entire
L2(X, µ)), and mixed otherwise.

Note that the unitary equivalence of the representations corresponding to
two DSs does not generally imply that the DSs are metrically isomorphic.
Therefore, generally, the properties of a DS are not completely determined
by its spectral properties. But sometimes they are. In the classical situation
of a metric automorphism φ or a flow with invariant measure φt, this happens
when the DS is ergodic38 and the spectrum of the corresponding U or A is

37 See also Section 3.9.
38 In the “abstract” ergodic theory of DSs with classical time, it is proved that each system

uniquely decomposes into ergodic components in a certain natural sense; for this reason, it
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discrete. In this case, the spectrum completely determines the DS up to metric
isomorphism. In the nonclassical situation, G. Mackey39 distinguished a case
similar in many respects to that specified above; because of this similarity, it is
given the same name. This is the case where the representation under consid-
eration decomposes into a discrete direct sum of irreducible finite-dimensional
representations. The description of this decomposition is conventionally called
a spectrum. If G is commutative, then the situation is quite similar to the
classical one, but for general groups, this is not so; in particular, a discrete
spectrum may not determine a DS up to metric isomorphism.

What we known about the case of nondiscrete spectrum (even for classical
time) can hardly be called a general theory; this is rather a set of examples and
classes of examples. For nonclassical time, even less is known. I shall mention
only one fact, which contrasts with the classical situation. S. Banach once
noticed that, in all classical examples with Lebesgue spectrum known to him,
the spectra are countably multiple, and asked whether this is always the case.
At present, more examples are known, and all of them confirm the observation
of Banach, but the answer to his question is still unknown.40 At the same time,
for the multiplicative group of nonzero rational numbers, there is an example
of an action with Lebesgue spectrum of multiplicity 1 (M. E. Novodvorskii).

Let me mention, at the same time, an example which shows the contrast
between the classical and nonclassical amenable cases, although this example is
not “spectral” (at least, it is not directly related to spectrality).41 V. A. Rokhlin
conjectured that, if a DS with classical time has the mixing property, then it
has the property of mixing of any multiplicity. This problem also remains open,

is accepted that the properties of “general” DSs, as it were, reduce to the properties of their
ergodic components, and it is ergodic DSs that should mainly be studied (whereas in the
“applied” theory, we must try to determine whether each particular DS is ergodic or not).
For a DS with nonclassical time, this is the case if G is a locally compact group with countable
base (and the measure in the phase space may be only quasi-invariant rather than invariant).
For more general groups G, different definitions of ergodicity and of decomposition into er-
godic component become nonequivalent (see the article “Metric transitivity” in Mathematical
Encyclopaedia); still, the aforesaid approach does apply to a certain extent.

39 It should be mentioned that, during the first two thirds of the 1960s, there was hardly any-
one but Mackey who propagated a study of DSs with nonclassical time beyond the framework
of ergodic theorems.

40 If the spectrum has not only a Lebesgue component but also a singular one, then the
multiplicity of the Lebesgue component may be finite; see [38], where references to earlier
examples of this kind are also given.

41 The mixing involved in this example is a “spectral” property, that is, it is determined by
some property of the spectrum of the corresponding {U} or {Ut}, while multiple mixing is
not characterized in terms of spectra (although, the validity of the Rokhlin conjecture stated
below would eventually imply the existence of such a characteristic).



96 D. V. Anosov

whereas for G = Z2, F. Ledrappier constructed an example of a DS with mixing
but without multiple mixing.

(b) Another large section of ergodic theory is entropy theory, which not only
defines a metric invariant called entropy and studies its properties but also con-
siders a number of related questions. It can be carried over to amenable groups
to a large extent; the first steps in this direction were made by A. M. Stepin,
who defined an entropy hµ for an action of an amenable group G with invariant
normalized measure µ in the late 1960s. Later, together with A. T. Tagi-zade,
he defined a topological entropy for a continuous action of G on a metric com-
pact set and proved that it coincides with supµ hµ, where the least upper bound
is taken over all invariant normalized measures of this action. (Thereby, it is
implied that such measures exist; see (d).) This generalizes the theorem of
E. I. Dinaburg, T. Goodman, and L. Goodwin, which refers to classical time;
see also (f ).

(c) Yet another example where the class of amenable groups is a natural
class to which a well-known result obtained initially for classical time carries
over is as follows. Any two measure-preserving ergodic actions of two countable
discrete amenable groups on a Lebesgue space X are trajectory equivalent, i.e.,
there exists a metric isomorphism X → X which takes the trajectories of one
system to trajectories of the other (A. Connes, J. Feldman, and B. Weiss,
1981). Thus, from the purely metric point of view, an ergodic action admits
only one partitioning into trajectories; as a “standard pattern,” we can take,
say, the partitioning of the circle into the trajectories of rotation through an
“irrational” angle.42

A nonamenable group has trajectory nonequivalent ergodic actions. The
following 1980 result of R. Zimmer contrasts with the Connes–Feldman–Weiss
theorem especially sharply. Let G and H be connected semisimple Lie group
of rank larger than 1 without center and finite quotient groups. Suppose that
{φg} and {ψh} are their actions on a Lebesgue space (X, µ) such that they pre-
serve the measure µ, are ergodic, and remain ergodic when being restricted to
an arbitrary nonidentity normal subgroup; suppose also that any nonidentity
element of each of the groups moves all or almost all43 points of X. If these
actions are trajectory equivalent, then G and H are isomorphic, and the appro-
priate identification of their elements makes the actions metrically isomorphic.

42 That is, through an angle incommensurable with the “full” angle of 360◦. When the circle
is represented as R/Z, this is a shift by an irrational (in the usual sense) number. Note that
the partitioning of the circle into the trajectories of this shift is involved in constructing the
best-known example of a nonmeasurable set.

43 In the first case, the action is said to be free. In the second case, Mackey and Zimmer
call the action “essentially free.”
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In other words, there exist an isomorphism of Lie groups f : G → H and a
metric automorphism h : X → X such that hφg = ψf(g) for all g ∈ G.

When something admits only one realization (up to obvious modifications
such as “twistings” by f and h described above), the term “rigidity”44 is often
used. When the paper of Zimmer appeared, a number of results (mainly due
to G. Mostow and G. A. Margulis) on the rigidity of discrete subgroups of Lie
groups had already been obtained; Zimmer himself mentioned that they had
an influence on his work (possibly, in respect of conceptual associations more
than in the sense of direct logical dependence)45). Later, papers (mainly by
A. Katok and his collaborators) on some rigidity phenomena in a smoother
situation bordering on hyperbolic theory were published.

(d) There is a well-known theorem of N. M. Krylov and N. N. Bogolyubov on
the borderline between topological dynamics and ergodic theory. It asserts that
a classical-time topological dynamical system with compact phase space has at
least one normalized invariant measure. Soon after it was published, in 1939,
Bogolyubov noticed that precisely the same theorem is valid for continuous
actions of amenable groups46 on compact spaces (see [39] for more details). It
can be proved that, conversely, if any continuous action of a locally compact
group on a compact space admits a finite invariant measure, then the group is
amenable.

(e) This theorem of Bogolyubov, as well as the “classical” Krylov–Bogolyu-
bov theorem, says nothing about the properties of invariant measures. These
properties may be different in different examples; it may even happen that one
system has many normalized invariant measures, including ergodic ones, with
essentially different properties. One measure may be concentrated on one point
(fixed for all φg), while another may be positive for all open sets. The former
measure is ergodic,47 but, certainly, no meaningful assertions about a system
with such a measure (except that it has a fixed point) can be made. In the
latter case, the measure may or may not be ergodic; if it is ergodic, then it
may have or have not stronger properties of “quasi-random” character (such

44 Apparently, this term came from the geometry of surfaces; however, some of the most
respectable experts in this area prefer the term “single-valuedness” and use “rigidity” only
for a certain infinitesimal version of single-valuedness.

45 However, Zimmer has proved a theorem (unfortunately, its formulation is too cumber-
some) which implies both his rigidity result and some results of Mostow and Margulis; thus,
a formal link also takes place.

46 At that time, Bogolyubov called such groups Banach, because they are characterized by
the existence of a Banach mean.

47 When different invariant measures on one topological DS are considered simultaneously,
the ergodicity of the DS with respect to a measure µ is often referred to as the ergodicity of
a measure µ.
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as mixing, positive entropy, etc. in the classical situation). Sometimes, the ex-
istence of an invariant measure which definitely deserves special attention is
known in advance (such is the case we run into in the classical situation when
considering Hamiltonian systems); sometimes, there is no a priori “privileged”
invariant measure, and the problem of the existence of not merely invariant
measures but measures with certain interesting properties is to be solved sep-
arately. Naturally, it is considered in much more special situations than the
general situations of the Krylov–Bogolyubov and Bogolyubov theorems.

An interesting and important class of examples for which this question is
studied arises from statistical physics, or is at least suggested by it. Let us
imagine that, in each point of the lattice Zm, a particle in one of k possible states
is placed (this is a “lattice system”). We denote the phase space of states of one
particle by A (for example, we can take A = {1, . . . , k}, if there is no particular
reason for using some other notation for particle states). Then the state of the
entire infinite system of particles is described by the function ξ : Zm → A, where
ξ(g) is the state of the particle in the point g ∈ Zm. I expressly denote a point
of Zm by g, in order to pass at once from Zm to an arbitrary group G (in fact, in
the larger part of this section, a semigroup is sufficient, but we consider groups
to obviate the necessity for making stipulations in what follows). Certainly, in
the case of G �= Zm, we can no longer imagine a crystal placed in Rm, but still,
we can consider functions ξ : G → A. The set Ω := AG of all such functions is
the phase space of our infinite system. It is endowed with a natural topology
(the Tychonoff product topology of the direct product of an infinite number
of copies of the space A)48 and with a somewhat less natural metric. The
metric is somewhat less natural because there exist many metrics generating
this topology, and a priori, there are no reasons for preferring one of them.
The experience shows that, in the case of G = Zm, the following metric is well
suited for our purposes. We take some (no matter which one) metric d on A
(for example, we can assume that the distance between different points of A
equals 1 or set d(i, j) = |i− j|) and an arbitrary number a ∈ (0, 1) and put

|g| =
∑

r

|gr| for g = (g1, . . . , gk) ∈ Zm

and
ρ(ξ, η) =

∑
g∈Zm

a|g|d(ξ(g), η(g)).

48 A reader not familiar with the Tychonoff product topology may assume that this is the
topology generated by the metric ρ introduced below; this can be regarded as its definition in
the case under consideration.
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It is easy to verify that the topology on Ω generated by this metric is precisely
the Tychonoff product topology. For other groups, we can take something
similar; instead of a|g|, we must take a suitable function of g which, so to speak,
sufficiently rapidly decreases as g moves away from the identity element of the
group; I shall not dwell on this. Thus, Ω is a metric compact space.

Finally, there is a natural action of G on Ω, namely,

(g, ξ) �→ φg(ξ), where (φg(ξ))(h) = ξ(gh) for all h ∈ G. (4)

Here we write the group operation as multiplication ((g, h) �→ gh) rather than
as addition ((g, h) �→ g + h), because G may be noncommutative. (Of course,
when Zm is considered, the sign + is used, because the group operation is the
usual addition). The mappings φg are homeomorphisms of Ω.

The object obtained, that is, the metrizable compact space Ω together with
the group G acting on it as specified, is called a Bernoulli topological DS, or the
topological Bernoulli action of the group G. It is called so because, for G = Z,
an element ξ ∈ Ω can be interpreted as the record of the results of an infinite
sequence of trials with the same possible outcomes that form the set A; ξ(n) is
the outcome of the trial performed at time n (time is discrete and ranges over
the entire Z). The ξ(n) with n � 0 are the outcomes of the already performed
trials (in particular, ξ(0) is the outcome of the trial performed “now”), and the
ξ(n) with n > 0 are the outcomes of future trials; the former are known to us,
while the latter are not. More frequently, the two-sided infinite sequence

. . . , ξ(−n), ξ(−n + 1), . . . , ξ(−1), ξ(0); ξ(1), ξ(2), . . . , ξ(n), . . . , (5)

is considered; its elements are written precisely as above, from left to right
in the order of increasing “time.” To distinguish the position of the element
number zero, a semicolon is used. The action of Z on Ω reduces to iterations
of the “Bernoulli topological shift”

σ : Ω → Ω, ξ �→ σξ, (σξ)(n) := ξ(n + 1)

and its inverse mapping σ−1. Under the shift, sequence (5) shifts to the left
with respect to the semicolon; the previous ξ(1) becomes the element number
zero, so we can imagine that we have repeated the trial and know this element
now. Let us denote the projection of the infinite product

Ω = AZ = . . . A×A× . . .×A× . . .

onto its “zero” factor A by π0, so that π0ξ = ξ(0). Then we can say that, in
successive trials, the outcome π0(σnξ) is observed at time n.
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Thus, we see that, for G = Z, the same object (Ω, σ) can be interpreted
two-fold. From the point of view of statistical physics, with which we started,
the object under consideration is the states of an infinite chain. No dynamics
in the usual sense (in the sense of the evolution of a system with changing time)
is involved, because true time is not mentioned at all. In (5), n is the number
of an element of the chain, and the action σ corresponds to the spatial shift of
the chain by one “link.” From the probabilistic point of view, to which we pro-
ceed, n can be regarded as “true,” “physical” time: in time n, a point ξ of the
phase space is transformed into σnξ. This corresponds to the representation of
the trials included in the given sequence of trials as being performed one after
another; in addition, in each trial, only π0ξ (rather than ξ) is observed, so the
quantities observed with changing time are π0σ

nξ, which coincide with ξ(n)
in the case under consideration. (In more general cases, the phase space Ω
and mapping σ : Ω → Ω may be different, and the observed quantity may be
some function f : Ω → R, so that, in the course of time, observations give the
sequence f(σnξ).) The statistical physics approach is also suitable for G = Zm

with m > 1; again, “dynamics” means the action of spatial shifts (translations)
on the system under consideration rather than a change of state with time
(which is absent). But a sequence of experiments can no longer be considered,
although we could imagine trials numbered for some reason by elements of Zm

(perhaps, this even has a (quasi)realistic interpretation) or by elements of a
general group G. For G �= Zm, the statistical physics interpretation also be-
comes a conventionality suggested by the analogy with the physically real cases
of G = Z, Z2, and Z3.

Although we have partly used the language of probability theory and even
mentioned Bernoulli, we have used no probabilities so far. As is known, the
name of Jacob Bernoulli is connected with the study of a sequence of identi-
cal independent trials. In this case, each possible outcome a ∈ A has some
probability p(a), and the independence of the trials manifests itself in that
the outcome at time n does not depend on the outcomes at different moments
of time. Therefore, the probability that the outcomes at times n1, . . . , nl are
a1, . . . , al is equal to p(a1) · . . . · p(al). In fact, we have described a measure µ
on Ω with respect to which the sequence of random variables π0(σnξ) describes
a sequence of independent identical trials. Let us repeat the description once
more and, simultaneously, transfer it to the general case of Ω = AG, where the
probabilistic interpretation (in terms of a sequence of trials) loses its original
meaning, although, conventionally, we can continue using the probabilistic lan-
guage. (In such cases, the term “random field” is used in probability theory;
this agrees with the “intuitive meaning” of these words when G = Zm.)

The elements a ∈ A must be assigned probabilities or measures p(a) � 0
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in advance; the sum of the probabilities or measures must equal 1. Thereby,
a subset B ⊂ A is assigned the measure p(B) =

∑
a∈B

p(a), and we obtain a

measure on the finite set A, which is, of course, trivial. The measure on Ω
constructed below depends on these p(a), i.e., on this measure p on A.

A cylindrical subset of the space Ω is a set of the form

C = {ξ; ξ(g1) ∈ B1, . . . , ξ(gl) ∈ Bl}, (6)

where g1, . . . , gl ∈ G and B1, . . . , Bl ⊂ A. It is assigned the measure

µ(C) = p(B1) · . . . · p(Bl). (7)

In measure theory, it is proved that, on the σ-algebra of Borel subsets of a
compact space Ω, there exists a unique measure µ which takes value (7) for
each cylindrical set (6). From the point of view of measure theory, it is the
direct product

pG = . . .× p× p× . . .× p× . . .

of the measures p on the factors A of the direct product AG. It is almost obvious
that this measure is invariant with respect to the action (4) of the group G and
that the action is ergodic with respect to this measure.

In the classical case, the shift σ considered with respect to the constructed
measure is called the Bernoulli metric automorphism. It is natural to call the
measure itself also Bernoulli. The properties of the DS {σn} with this measure
differ drastically from the properties of ergodic DSs with discrete spectra. The
system ({σn}, µ) has mixing of all degrees, Lebesgue spectrum of countable
multiplicity, and positive but finite (metric) entropy. In general, the Bernoulli
automorphism is, as it were, a specimen of a DS with “quasi-random” properties
(as it should be because of its origination); moreover, it is, so to speak, an
extreme such specimen, not counting DSs with infinite entropy. In the case of
nonclassical time, the Bernoulli DSs play a similar role.

The definition of a Bernoulli DS and a Bernoulli measure as such does not
depend on whether G is amenable. But the further considerations in this and
the next subsections require amenability.

A significant achievement of DS theory is the theorem of D. Ornstein, ac-
cording to which Bernoulli automorphisms with equal entropies are metrically
isomorphic. D. Ornstein and B. Weiss showed that this theorem can be carried
over to Bernoulli actions of amenable groups [40, 41].

(f ) The measure on A (i.e., the system of numbers p(a) � 0 satisfying
the condition

∑
p(a) = 1) can be chosen arbitrarily; thus, for a Bernoulli

topological DS, there are continuum many invariant ergodic measures. But it



102 D. V. Anosov

turns out that, in addition to the measures constructed above, this DS has very
many other invariant normalized measures, including ergodic ones. Some of
them undoubtedly deserve special attention.

For G = Z, some measures, as Bernoulli ones, are distinguished (from the
very large set of invariant measures) or introduced (independently of what we
know about other measures) on the basis of probabilistic considerations. Prob-
ability theory considers some sequences of identical experiments which are not
independent. Especially important are the cases where {π0(σnξ); n ∈ Z} is
a Markov process. They correspond to new invariant normalized measures µ
on A, which may be ergodic or not. But, under the passage from Z to G, the
definition of the Markov property loses sense. A reasonable modification of this
definition exists for G = Zm, but at present, as far as I know, the correspond-
ing objects play a noticeable role in the theory of random fields rather than
in ergodic theory. We leave them aside and turn from probability theory to
statistical physics, which we started with but abandoned.

From the physical point of view, the Bernoulli measures correspond to the
situation where the states of the particles at the vertices of the lattice Zm do
not depend on each other. Certainly, this occurs when the particles do not
interact, but of interest is the case where an interaction does take place. In this
case, considerations borrowed from statistical physics lead to new normalized
invariant measures. As we shall see, they can be defined in such a way that
the definition make sense not only for a topological Bernoulli DS but also for
an action of a group G (amenable, as previously) on a compact metric space.
Although, it may happen that there exist no measures satisfying this condition.
But if such measures exist, then they deserve attention. I must warn the reader
that, since our subject-matter is DS theory rather than statistical physics after
all, the constructions presented below may involve some inconsistencies with
statistical physics, even as applied to lattice systems. It can be proved that
these inconsistencies do not affect the final results for such systems, but we
shall simply ignore them, because what is borrowed from statistical physics
plays a rather heuristic role in our considerations.

In statistical physics, for a system having a finite number of states α1, . . . , αN

with energies E(αj), the so-called statistical sum

Z =
N∑

j=1

e−βE(αj) (8)

is introduced. Here β is the reciprocal temperature expressed in suitable units;
since temperature is measured in degrees from time immemorial, to pass to
“suitable” units, we must multiply it by the Boltzmann constant k; thus, β =



On the development of the theory of dynamical systems 103

1

kT
. For a macroscopic system, its free energy F considered in phenomenological

thermodynamics is expressed in terms of Z as

F = − ln Z

β
. (9)

In thermodynamical equilibrium (corresponding to a given temperature T ), the
state αj has probability

p(αj) = e−βE(αj)/Z. (10)

One of the possible characterizations of this probability distribution is as fol-
lows: given β and E(αj), the value∑

piE(αi) + 1

β

∑
pi ln pi (11)

attains its minimum over all distributions of the probabilities (p1, . . . , pN ) at
pi = p(αi). Substituting these pi into (11), we obtain precisely F .

Naturally, we assume that, in (11), pi ln pi = 0 at pi = 0, because lim
p→0

p ln p =

0. Thus, we can assume that (11) involves only positive pi’s. When we remove
the terms with those j for which pj = 0 from (8), the statistical sum Z can
only decrease, and if we prove that∑

piE(αi) + 1

β

∑
pi ln pi � − 1

β
lnZ for pi > 0 such that

∑
pi = 1 (12)

for this decreased Z, we will thereby prove it for the initial Z. The function
lnx is concave, i.e., its graph is convex upward; hence, we have∑

pi lnxi � ln
∑

pixi

for any xi > 0. In particular,∑
pi ln(e−βE(αi)/pi) � ln

∑
pie

−βE(αi)/pi = ln
∑

e−βE(αi),

which is equivalent to (12).
Note a propos that, if we substitute pi = p(αi) in (11), then the first term

will become equal to the energy of our system in the given equilibrium state
and the second will be −TS, where S := −k

∑
pi ln pi is the entropy (measured

in the macroscopic units used in phenomenological thermodynamics). Thus,
F = E − TS. This relation is the definition of F in phenomenological thermo-
dynamics.

After this brief excursus in statistical physics, we return to our lattice sys-
tem or, more generally, to a Bernoulli DS (with an amenable group G). First,
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let me make one terminological comment. It happens that, to the same term,
quite different meanings are attached in different sciences. If the sciences are
far from each other, this does not lead to misunderstandings; for example, it is
hard to imagine how topological cells could be confused with cells in biology.
But sometimes the same word means different things in fairly close sciences,
which are adjacent and even partially overlap. Then the terminology should
be made more precise. Such is the case of the term “state.” In DS theory, a
state is a point in the phase space. In statistical physics, a state is a proba-
bility distribution (measure) on the phase space. (At the end of the preceding
paragraph, the word “state” was used in precisely this sense one time.) If we
adhere to the statistical physics terminology, then we must not regard points of
the phase space as states. In the theory of lattice systems, they are often called
configurations.49 But this paper is written from different positions, so – why
not call a measure a measure?

The total energy of the entire infinite lattice system is generally infinite and
cannot be dealt with. But it is reasonable to assume that we can, so to speak,
separate out a part corresponding to one particle, and that for a particle located
at a point g, this contribution is equal to the value of some function E(g, ξ)
depending on g and on the state ξ of the entire lattice system. We assume that
the interaction is invariant with respect to the left group shifts. Therefore, if
the particle at a point g is in a state ξ(g) and the particles at the points gh
(with all possible h) are in states ξ(gh) (as is the case for the state ξ of the
entire system), then the energy contribution corresponding to the “gth” particle
is equal to the energy contribution corresponding to the “eth” particle (e is the
identity element of the group) provided that it is in the state ξ(g) and the “hth”
particles are in the states ξ(gh). This takes place when the state of the entire
system is φg(ξ). Thus, E(g, ξ) = E(e, φg(ξ)), and it is sufficient to consider the
function f(ξ) := −E(e, ξ); we assume it to be continuous. (The minus sign has
no physical motivation, but it is commonly used in the relevant mathematical

49 There are certain grounds. In classical mechanics, the configuration of a system is the
arrangement of its parts without taking into account velocities. Now, we deal with equilibrium
statistical physics, where no motion is involved. (If desired, we can imagine that, even if there
are some motions, they are “concealed,” “hidden inside states,” and that they are effectively
taken into account only in the energy characteristic f mentioned below. Though, physical
problems involving lattice particles with finite numbers of states refer to spin, and spin is not
at all described in the classical terms, which distinguish between coordinates and momenta
and where energy is divided into potential and kinetic. As we have touched upon this topic,
it should be mentioned that, actually, the quantum mechanical description of a spin is much
more complicated than the primitive situation considered here, where it is said only that a
particle has finitely many states (with corresponding energy characteristics). Nevertheless,
sometimes (and, apparently, more frequently than it might be expected) the primitive model
described above gives a sufficiently good approximation).
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literature, because it somewhat simplifies some formulas. The theory being
discussed, although suggested by statistical physics, is mathematical after all,
and, in the general case, the values it involves by no means can have a physical
meaning such as in the example under consideration.) We then have

E(g, ξ) = −f(φg(ξ)). (13)

(Under a more realistic approach, in the case of G = Zm, the consideration
starts with reducing the interaction to pair, triple, ..., r-fold, ... interactions;
however, under the assumption that all interactions rapidly decrease with in-
creasing the number of particles and the distance, the final result is the same.)

Our plan is as follows. First, we consider a finite “piece” Sn of the lattice
system that is formed by the particles located at those points of the lattice Zm

that lie in a cube or, more generally, by the imaginary particles enumerated by
the elements of the Fölner set Fn. Now, we want to pass to the limit of n →∞.
Formula (9) suggests that it is reasonable to take

− ln ZFn

β #Fn

, (14)

where #Fn is, as above, the number in elements of Fn. In the limit of n →∞
(of course, its existence is to be proved), we obtain the free energy per one
particle. (The “total” free energy of the entire infinite lattice system, which
should be understood as the limit of − lnZFn/β, is, most likely, infinite).

In the accomplishment of this plan, the implementation of some details is
quite different from what might seem more natural.

First, in (14), the minus sign is omitted, and the corresponding limit is
called “pressure” rather than “free energy” (per one particle); accordingly, it
is denoted by P . To leave aside the “everyday” meaning of the word “pres-
sure,” in thermodynamics, the pressure of a macroscopic continuous physical
system is understood as follows: we must express F in terms of the volume V
and temperature T of the system (possibly, this expression includes also some
parameters); then P = −∂F (V, T )/∂V . Apparently, limit (14) with the nega-
tive sign is called pressure because, for a lattice system, it is natural to replace
the derivative of F with respect to volume by the increment of F obtained by
adding one particle; this gives (14) (without the minus sign, if the increment,
as well as the derivative in the case of a continuous system, is taken with the
minus sign). However, I believe that pressure for lattice systems is not defined
in statistical physics.

Secondly, β = 1 is usually taken. This corresponds to multiplication of the
function f(ξ) by a constant factor, which is not essential. (This becomes essen-
tial when, for some reasons, we need to consider a family βf with parameter β
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rather than a single function f . In physics, such a need has solid grounds: we
must bear in mind that the same system is to be considered at various temper-
atures. In DS theory, there are no reasons for paying special attention to the
family βf ; if such a reason arises (this happens sometimes), nothing prevents
us from replacing f by βf .)

Thirdly (this is more serious), ZFn is defined as follows. The states Sn are
elements of AFn (i.e., functions Fn → A). We somehow extend every such
function α to a mapping ξα : F → A and set (cf. (13))

ZFn :=
∑

α∈AFn

e
−

∑
g∈Fn

E(g,ξα)

=
∑

α∈AFn

e

∑
g∈Fn

f(φg(ξα))

. (15)

In the exponent, the interaction between the “gth” particle (where g ∈ Fn)
and all remaining particles of the “lattice,” not necessarily corresponding to
elements of Fn, are taken into account. From the point of view of statistical
physics, we could take into account only the interactions between particles
from Sn, considering the distinguished “piece” Sn as an isolated system. (Then
it would be unnecessary to extend α : Fn → A to ξα : F → A.) I repeat that,
actually (under natural assumptions about interactions), this does not affect
the final result and is not that important for us. The quantity ZFn depends on
the particular choice of the extensions of α to ξα. But it turns out that, under
any choice, the limit

P (f) = lim
n→∞

1

#Fn

ln ZFn (16)

exists and depends neither on the particular choice of ξα nor on the Fölner
system. The number P (f) is called the topological pressure corresponding to
the continuous function f : Ω → R. (Certainly, it depends on G, on A, and,
in a more general situation which we shall consider soon, on the DS under
consideration; but usually, G, A, and the DS are assumed to be fixed, and
they are not indicated explicitly in the notation of P .) Expression (11), as is
explained below, also has a natural analogue (“per one particle”) for a lattice
system, in which the role of a finite distribution of probabilities (p1, . . . , pN )
is played by a {φg}-invariant measure µ on the phase space. It is natural to
compare this analogue with P (f) (that is, up to a sign, with free energy per
one particle) and examine the measures for which these two values coincide (if
they exist).

So far, we considered a Bernoulli topological DS (we used the Bernoulli
property when taking a “piece” Sn and extending a state α to ξα). Now, we
proceed to a general topological DS with an amenable group G and compact
phase space X; we assume also that a continuous f : X → R is given.



On the development of the theory of dynamical systems 107

Let U = {U1, . . . , Ul} be a finite open cover of X. We set φ−1
g U :=

{φ−1
g U1, . . . , φ

−1
g Ul} and

UFn :=
∨

g∈Fn

φ−1
g U ,

where the following notation is used: for several finite covers Ut, where t ∈ T ,∨
t Ut denotes the cover whose elements are all nonempty intersections

⋂
t∈T Ukt

with Ukt ∈ Ut. We set

ZFn,U :=
∑

U∈UFn

e
sup
x∈U

∑
g∈Fn

f(φgx)

. (17)

P (f) := sup
U

lim
n→∞

ZFn,U
#Fn

, (18)

where supU is taken over all possible finite covers of the space X. Such a
definition, as opposed to (15) and (16), is no longer related to particular phase
space and group action. At the same time, for a Bernoulli DS, it leads to the
same number P (f). (Definitions (17), (18) and (15), (16) differ mainly in that,
for a Bernoulli DS, only one cover

U = {Ua; a ∈ A}, where Ua := {ξ; π0(ξ) = a} (19)

is used; note that

UFn = {Uα; α ∈ AFn}, where Uα := {ξ; ξ � Fn = α},

so the previous ξα belong to Uα. It turns out that, in the case under consider-
ation, the least upper bound supU involved in (18) is attained on the U from
(19). In addition, the ξα ∈ Uα on the right-hand side of (15) are arbitrary, and
in the exponent in (17), the least upper bound over all such ξα is taken; it turns
out that this does not affect the limit 1

#Fn

lnZFn,U for given DS and U .)

We have obtained an analogue of “free energy per one particle.” Now, let us
see what an analogue of (11) may be. The sum

∑
pi ln pi is, of course, the neg-

ative entropy50 of the distribution of probabilities (p1, . . . , pN ). The analogue
of this distribution for a general DS is an invariant normalized measure µ, and
the analogue of entropy is the entropy hµ mentioned in (b). In its turn, the
analogue of the (average) energy per one particle is −

∫
X f dµ (the minus sign

50 In information theory, it is natural to use binary, rather than natural, logarithm. But in
statistical physics, as well as in more analytical mathematical questions, natural logarithm is
used; the corresponding values are only multiplied by some constant factor.
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is used because it is used in the definition of f). Thus, the analogue of (11)
taken with the inverse sign is

hµ +
∫

X
f dµ (20)

(the entropy hµ has already been discussed in (b)). In the special case of a
Bernoulli DS, we could trace the passage from (11) to (20) in more detail, as
for P (f). But in the case of P (f), this gave us a heuristic motivation for the
definition (otherwise, it would seem that it was taken out of the blue), which is
needed for neither term in (20). (In fact, something of this kind could be done
for the definition of hµ missing from (b). I have not done this because, for a DS
with classical time, the definition of hµ is known fairly well, and transferring it
to the general case is straightforward.)

After everything said above, the reader, probably, will find the following
theorem quite natural (still, it must be proved, and the proof is by no means
easy):

sup
µ

(
hµ +

∫
X

f dµ
)

= P (f), (21)

where the least upper bound is taken over all invariant normalized measures
of the topological DS under consideration. As opposed to the simple case of a
system with finitely many states, the least upper bound is not always attained
at a unique measure, if attained at all. If the upper bound is attained, then
the corresponding measures are called equilibrium measures (or equilibrium
states, where the meaning of the term “state” is again statistical-physical rather
than DS-theoretic). Relation (21) is known as the “variational principle for
topological pressure.” The study of related questions is the object of the so-
called “thermodynamical formalism” for DSs.

I shall mention only one point. In the case of a Bernoulli DS with G = Zm,
the existence of an equilibrium measure is proved for an arbitrary continuous
function f , but there is a fundamental difference between the cases of m = 1
and m > 1. In the former case, an equilibrium measure for a Hölder function f
is unique, and in the latter, it may be nonunique. For a lattice system, the
nonuniqueness of an equilibrium measure corresponds to the well known (not
only to humans but also to animals51) physical phenomenon of phase transfor-
mation.

For DSs with classical time, foundations for the thermodynamical formal-
ism in the spirit of the approach sketched above were laid by P. Walters and

51 Although, animals are familiar with phase transformation only in a continuous system
(water); about phase transformation in lattice systems only humans have learned, when they
began to study magnetic and electric phenomena in crystals.
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D. Ruelle in the early 1970s; in particular, Walters and Ruelle proved the varia-
tional principle. This kind of activity was quite natural for Ruelle, the more so
that he had done much work on mathematical questions of statistical physics
before. For the same reason, he was also the first or one of the first to begin
extending this theory to actions of Zm. Passage to general amenable groups G
was performed by A. M. Stepin and A. T. Tagi-zade in [42].

There is a different approach to defining and studying interesting measures;
it was suggested for DSs with classical time by Ya. G. Sinai, also about 1970 [43]
(Sinai mentioned at once that this approach is suitable for nonclassical time too
and, by way of example, pointed out that, for a Bernoulli DS, this approach
gives measures arising in statistical physics). The corresponding measures are
called Gibbs measures.52 A Gibbs measure for a DS {φg; g ∈ G} in a com-
pact space X is determined by a given normalized invariant measure µ0 and a
function f ∈ L∞(X, µ0). These data are used to construct a sequence of mea-
sures µn absolutely continuous with respect to µ0 and having “density” (i.e.,
Radon–Nikodym derivative)

e

∑
g∈Fn

f(φgx)∫
X

e

∑
g∈Fn

f(φgy)

dµ0(y)

.

The Gibbs measures are limit points of the sequence of measures µn (in the sense
of weak convergence of measures). They may be noninvariant.53 But if a Gibbs
measure is a limit rather than merely a limit point, then it is invariant. The
invariant Gibbs measures are equilibrium, while the converse does not generally
hold. For a DS with classical time and hyperbolic behavior of trajectories, the
converse assertion holds if the function f is “good.”

In studying equilibrium and Gibbs measures for DSs with hyperbolic be-
havior of trajectories, the trick of coding is used; it allows us to represent (in
a certain sense) the DS under consideration as a subsystem of a Bernoulli DS.
Literally, a subsystem of a Bernoulli system is an invariant subset A in the
corresponding Ω; in the topological context, it is natural to consider closed

52 They indeed resemble the Gibbs distributions in classical statistical physics and, even
more, the Gibbs DLR-measures for infinite systems of type AZn , which were introduced by
Dobrushin, Lanford, and Ruelle. For a DS with classical time, the definition given below
has already passed “checking by practice,” but for nonclassical time, this definition is to be
checked yet (except in the case known from statistical physics; but even in this case, various
aspects of the relation between this definition and the DLR construction are to be clarified).

53 In statistical physics, measures not being translation-invariant may be quite natural: it
suffices to imagine that there is one phase in one half-space and a different phase in the other.
This is just as possible as the situation where the entire space is filled with one phase and the
corresponding measure is translation-invariant.
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subsets A. I said “in a certain sense” because such an A is zero-dimensional, so
a system with phase space of larger dimension cannot be topologically equiva-
lent to the restriction {φg � A} of a Bernoulli DS to A. But it certainly can be a
quotient system of such a DS, i.e., it can be obtained from it by a factorization
modulo some equivalence relation invariant with respect to the DS. Sometimes,
the set A and the factorization admit a fairly detailed description, and, although
points of A are glued together under factorization, the “majority” of points are
not glued together with anything. This trick (when it works) makes it possible
to reduce a number of questions about the DS under examination to questions
about {φg � A}. Certainly, the success depends on whether we are able to find
a “felicitous” coding. For systems with most manifest hyperbolic behavior of
trajectories (such as the Anosov systems and basic hyperbolic sets), felicitous
codings are related to so-called Markov partitionings, which were introduced
by R. Adler and B. Weiss for hyperbolic automorphisms of the 2-torus and,
almost simultaneously, by I. G. Sinai for Anosov systems; then, an improved
construction suitable also for basic hyperbolic sets was suggested by D. Ruelle
and R. Bowen [44].

Sinai, Ruelle, and Bowen not only constructed new invariant measures but
also distinguished the cases where these measures are especially interesting.
Afterwards, their approach54 was transferred to other types of systems with
somewhat (slightly) “spoiled” hyperbolicity, such as billiards, pseudo-Anosov
surface homeomorphisms, or Lorentz-type attractors. As to actions of amenable
groups, I am not aware of any advanced applications of this approach beyond
the scope of lattice systems.

Although above we repeatedly emphasized the special position of amenable
groups, in reality, works on ergodic theory (or on related questions of statistical
physics) where the groups are not amenable are far from being exhausted by
the few papers cited (or implied) above. There are a number of works in which
some additional structures are used, unlike in works on amenable groups. For
example, we can fix generators of the group55 or some partitioning or cover of
the phase space. (Even for Zm, we started the consideration of a Bernoulli DS
with employing a fixed covering (19) (which is simultaneously a partitioning
in the case under consideration); to be more precise, it was so natural at that

54 Strictly, their approaches do not completely coincide formally: Bowen did not introduce
a general notion of a Gibbs measure at all (this notion per se, as well as the notion of an
equilibrium measure, is not related to coding), he simply used this name for the measures
that he constructed for the systems which he considered. But altogether, from a broader
point of view, this is the same approach.

55 Even the above-mentioned modified method of averaging over a group suggested by
R. I. Grigorchuk formally depends on the choice of group generators. It is not known whether
the result depends on it in the general case (but in the ergodic case, it does not).
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point that we did not even mentioned it first. We began to talk about other
partitionings only after proceeding to more general group actions.) However,
at present, it would be difficult to characterize studies of this kind by some
general features.

I am not aware of new surveys on the topic of Section 1.3. The state of the
art in the beginning of the last quarter century is surveyed in [45].

1.4 Bifurcations

During the past quarter century, the appearance and role of one of the fields
of the theory of smooth DSs – bifurcation theory – have changed. The term
“bifurcation” in its literal meaning is used in, e.g., anatomy (bronchus bifur-
cation). In mathematics, this term has the broader meaning of a qualitative
change of the objects under consideration caused by a variation of the parame-
ters on which these objects depend. More precise general formulations cannot
be given, because the objects and their properties of interest to researchers are
diverse. Precise formulations refer to particular problems.

Initially, bifurcations in mathematics were considered in relation to equi-
librium figures of a rotating fluid. Namely, consider the problem: under what
conditions a body consisting of a homogeneous fluid on whose particles only
the mutual attraction forces implied by Newton’s gravitation law act can ro-
tate as a solid body? The corresponding figures are said to be equilibrium.
The only known exact solutions to this problem are certain ellipsoidal figures
(the MacLaurin and Jacobi ellipsoids) and annuli, but it is known also that
there exist other figures close to those mentioned above. These figures were
revealed with the use of bifurcation considerations. Namely, take an ellipsoidal
equilibrium figure Eλ continuously depending on some parameter λ on which
the problem under examination depends; it turns out that, when λ passes some
value λ0 (it is said to be bifurcation value), there arises a new (not necessarily
ellipsoidal) equilibrium figure E′

λ, which is the closer to Eλ the closer λ to λ0;
thus, we can say that the family of figures E′

λ “branches off”from the family Eλ

at λ = λ0. In this case, the meaning of “bifurcation” is fairly close to its literal
meaning: as the parameter increases, Eλ, so to speak, forks into Eλ and E′

λ. An-
alytically, the question reduces to studying a certain integral equation;56 thus,
it is natural that the “bifurcation” terminology has found common use in study-
ing general integral equations depending on a parameter. Since a prominent
figure in the theory of equilibrium figures of rotating fluids was H. Poincaré,
it is no surprise that he carried over this terminology to the qualitative theory
of ordinary differential equations; simultaneously, he started to apply it in a

56 It is fairly unusual: the integrand is known, while the domain of integration is not.
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broader sense, to any qualitative changes.
R. Thom suggested to use the term “catastrophes” instead of “bifurca-

tions.” This word is also not to be understood literally. For example, the
following problems were seriously considered in catastrophe theory: violation
of the stability of an elastic construction (this may be a catastrophe indeed);
the formation of a bright line on the bottom of a brook by solar rays refracting
in water (this can hardly excite somebody, except probably children who see
this for the first time). As a possible (but not brought into the form of a mathe-
matical model57) example of a catastrophe, an abrupt change in the course of a
disease, after which the patient recovers very quickly, is mentioned sometimes;
even if this event is a catastrophe, it is such only for bacteria.

As “catastrophe” is a synonym for “bifurcation,” we may ask which term is
better. As is clear from the aforesaid, neither term is to be understood literally.
But the word “catastrophe” belongs to the common (literature and colloquial)
language and has a definite, emotionally colored, meaning, while the initial
meaning of the word “bifurcation” is known to much fewer people, and even
these people hardly associate it with some emotions. Therefore, for science, the
neutral word “bifurcation” is suited better; “catastrophe” is more appropriate
for mass publications.

The very rich-in-content mathematical ideas of R. Thom about the singular-
ities of smooth mappings and bifurcations of critical points of functions (Thom
continued the pioneering work of H. Whitney but went significantly further)
are far beyond the scope of this paper (neither the date nor contents fit). The
later works on this topic do not fit either (at least in contents). Their direct
applications to the theory of dynamical systems are as follows. We consider a
system whose some variables (say, y; this is generally a vector rather than a
number) vary rapidly and the others (say, x) vary slowly (such systems occur
in reality and are fairly important); it is assumed that, when x is fixed, the fast
variables y satisfy the gradient system

dy(t)

dt
= −∇f(x, y)

(such a situation occurs too, but more rarely). Thus, y(t) rapidly approaches
a stable equilibrium point of this system, i.e., a critical point (namely, local
minimum) of f regarded as a function of x. The further motion is such that
x(t) gradually changes, and the corresponding critical point of the function
y �→ f(x, y), which coincides with y(t) almost precisely, changes too. At some

57 To be more precise, mathematical models of such a phenomenon have been suggested,
but, as far as I know, they were studied only numerically, without reference to catastrophe
theory.
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moment, the critical point bifurcates; say, it merges with another critical point
and disappears, after which y(t) must tend to a different critical point. Clearly,
in such a situation, results about the bifurcations of critical points of functions
are very important for understanding the qualitative picture, but, at this level
of approximation, we shall restrict ourselves to fairly trivial and more or less
direct references to these results. Next, it is claimed that, even not knowing the
differential equations but only assuming that they are of the character described
above and observing the changes in the real “physical” system,58 we can make
qualitative conclusions about the singularities of the function f and, thereby,
understand the most essential properties of the system under consideration. In
the end, some hypothetical interpretation of the experimental data is suggested.
There are no other grounds (it is easy to believe that there exist fast and slow
variables, but what economic, psychological, or social laws do allow us to think
that the fast variables must move along the gradient of some function? if
they do, then this function itself has, apparently, some economic, biological,
psychological, or sociological meaning). Everything this is in a suspiciously
natural-philosophic style,59 and natural philosophy became factually obsolete
even in Newton’s times, although it flourished for over a century longer.60

58 It may also be economic, biological, and even (as I heard) psychological or sociological.
For systems that come from physics, their mathematical models or, at least, general features
of such models are usually known to a certain extent. In these cases, the application of
catastrophe theory does not cause doubts.

59 Certainly, in the old times, the questions of psychology, economy, and sociology were not
referred to natural philosophy; this is clear even from the appellation. But I am telling about
the style only.

60 As I have touched upon this matter, I shall mention the following. There is a well-known
trick for illustrating interrelations between logical notions, the Euler–Venn disks. Suppose
that we want to illustrate the interrelation between the notions of domestic animals, mam-
mals, cats, and dogs. We draw two partly overlapping disks (which may be ovals, if it is
more convenient for drawing) – “mammals” and “domestic animals”; inside the first disk, we
draw two disks, “cats” and “dogs,” which do not overlap, but each of them partly intersects
“domestic animals.” Nobody thinks that the set of animals is two-dimensional in a certain
sense and that the four sets of interest to us are indeed disks or ovals. Could it then hap-
pen that, sometimes, the pictures drawn by catastrophers can be interpreted as conventional
images of some interrelations, which are not necessarily related to the special models under
consideration (in the likeness of the Euler–Venn disks, for which it is inessential that these are
disks and that they are drawn in the plane)? This can be assumed if the factual aspect of the
matter in economic and other questions is indeed such as described by catastrophers; on the
other hand, the models in these cases are doubtful, as the critics of catastrophe theory say.
Thom believed that catastrophe theory gives a new language of forms and that more com-
plex systems and interrelations between them are, as it were, constructed from elementary
blocks described according to what was said above by means of special systems with special
singularities from a certain list. (A propos, the list has turned out to be incomplete.) But
if there are no grounds for assuming that the physical system under consideration is indeed
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The booklet [46] of V. I. Arnold contains several pages where this subject
is described in somewhat more detail but from the same critical positions as
here.61 It also contains a bibliography. The popular paper [48] is written from
different positions; the attitude of its author to the nonphysical use of the
“catastrophic” ideology is positive. Finally, the authors of book [49] considered
diverse applications of catastrophe theory, from those not provoking essential
objections to much more “natural-philosophic” (in style) ones, on the basis
of the information from the theory of singularities which is thoroughly but
elementarily described in the first part of this book.

What is said above does not imply that the theory of singularities of smooth
mappings and bifurcations of critical points of functions made a small contribu-
tion in DS theory and that its contribution rather directly used achievements
of topologists. The conceptual influence of the former theory on the latter
turned out to be significant; the role of a herald of this influence was played
by V. I. Arnold about 1970. It should be mentioned that Thom claimed from
the very beginning that the catastrophe theory as described above was only
the first, elementary of part some more extensive theory (which would surely
be universal). But he never made this general declaration more specific, and
Arnold’s point of departure was the concrete factual contents of the theory of
singularities of smooth mappings rather than this uncertain declaration (incan-
tation). He never proclaimed that this approach was universal (at the moment
of his talk, some facts eliminating such a universality had already been known),
but he reasonably pointed out that it had a fairly large, although not unlim-
ited, domain of application, and that the boundaries of this domain could be
outlined fairly precisely in some cases. A kind of the first manifesto of the
new trend was his paper [50], where he explained that, to the theory of lo-
cal bifurcations of DSs, a number of notions initially emerged in the theory of
singularities or, more generally, in smooth topology (such as codimension, strat-
ification, transversality, universal and versal families, moduli and their number,
bifurcation diagrams, and finite definiteness) can be carried over in a natural
way.

I shall briefly describe only one (probably, the simplest) idea advertised
in [50]. Nonremovable degenerations of codimension k occur only in k-para-
meter families;62 therefore, it is expedient to consider such equilibrium positions

such as described above (i.e., with slow and fast variables, the latter being partly unknown
and varying along a gradient), how could these blocks and pictures be interpreted otherwise?

61 Of course, the main contents of this booklet are the notions of the theory of singularities,
its applications and history, and the earlier history of the theory of DS bifurcations, rather
that a critical discussion of catastrophe theory. Arnold says even less about catastrophe theory
and more about the other things in his survey [47].

62 This means that there exist k-parameter families of DSs such that, for these families and
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(i.e., those which are codim-k-degenerate) in an appropriate bifurcation con-
text.63 (Though, there may be other reasons for the occurrence of degenerations
of fairly high codimensions; first of all, these may be the presence of symme-
tries. A set of equilibrium positions having a high codimension in some class of
“general” DSs may be a set of equilibrium positions “with symmetries” whose
codimension in the class of DSs with these symmetries is small or even zero.
But can we always be confident of the exactness of these symmetries, espe-
cially if they are not consequences of laws of nature? Could not the symmetries
be slightly violated in reality, and should not we be curious about what hap-
pens under such a violation?64) Thus, the theory of local bifurcations is not
an exterior supplement to the local qualitative theory but its substantial part.
Even this mere change of a point of view (although not quite new, it had never
been precisely outlined on such a large scale before) substantially affected the
appearance of not only bifurcation theory but also the entire local qualitative
theory.

Certainly, in [50], only a part of the program could be accomplished. (Al-
though, at the time when [50] was written, Arnold’s group has already done
a certain amount of work in this direction. In addition, in [50], it was shown
how some earlier significant results fit into the new theory.65) After [50] had
appeared, Arnold’s group and some other mathematicians did much work on a
particular implementation of the new approach. For plane flows, typical local
bifurcations66 in two- and three-parameter families were studied in almost as
much detail as local bifurcation in one-parameter families were studied earlier.
(Here we need to note a book of F. Dumortier, R. Roussarie, J. Sotomayor, and
H. Z̊oladek. Bifurcations of Planar Vector Fields (Berlin: Springer, 1991).)

In the cases of larger dimension, the picture is far from being exhaustive

for all families sufficiently close to them, the DS corresponding to a certain parameter value
has a degeneration of the type under consideration. (Closeness is understood as proximity
in the sense of Cm, where m depends on the particular type of degenerations.) At the same
time, given a (k − 1)-parameter family, we can always obtain a family of DSs none of which
has degenerations of the given type by an arbitrarily small perturbation.

63 Undoubtedly, the authors of classical works (that appeared in the period (−∞, t[50])) in
self-explanatory notation felt this (as they felt many things related to the new paradigm).
But they gave explanations (if any) only as applied to problems of interest to them and to the
cases of small codimension considered in these problems. This largely sailed past the mind of
the broader community.

64 Some work in this direction has been done both in the special context of catastrophe
theory (see the information in [49]) and beyond this context.

65 A part of this material was exposed at the end of Arnold’s textbook [51] in more detail.
66 That is, bifurcations related to objects of the local qualitative theory, such as equilibrium

points and periodic trajectories of flows or fixed and periodic points of diffeomorphisms.
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yet, but still, it is fairly complete, because the question about local bifurcations
in such families is largely reduced to a similar question for plane flows.67

Along with local bifurcations, “global” bifurcations can be considered; these
are bifurcations that change the phase picture as a whole and are not localized
near equilibrium points or periodic trajectories. In most cases, it would be
more correct to call them semilocal, because when we study such bifurcations,
we pay attention not only to what is going on near some “local” object under
a perturbation but also to what happens in some region of the phase space
(“far away” from the local object, if a certain local object plays a role), usually
in a neighborhood of an invariant set of the unperturbed system that does
not reduce to an equilibrium point, and so on. However, a total control of
the entire phase space is generally out of the question, so the term “global
bifurcation” is, perhaps, an exaggeration. On the other hand, the classical
papers by A. A. Andronov and his collaborators (the works went back to pre-war
times, although some of them were published later) considered the change of the
entire “phase portrait” of a flow on the entire phase plane, i.e., very true global
bifurcations. Nevertheless, although the problem goes back to the old questions
mentioned above, apparently, only in the last 25 years, or thereabouts, it has
been eventually determined what must be added to the previous information
about local or semilocal bifurcations in order to obtain a complete description
of the changes of the global qualitative picture for bifurcations in typical one-
parameter families for plane flows.

The results related to these (local and semilocal) questions obtained by the
mid-1980s are presented in [52]; I am not aware of newer publications contain-
ing any extensive summaries of results. For typical two- and three-parameter
plane flows, the passage from local and semilocal bifurcations to “truly” global
ones is not studied as far as I know. For such flows, after [52] was published, bi-
furcations of so-called “polycycles,” which generalize the bifurcations of closed
separatrices, were studied in detail [53].

Another significant change in bifurcation theory is connected with the study
of such semilocal (and, sometimes, global) bifurcations in dimensions > 2 for
diffeomorphisms and > 3 for flows related to the complex behavior of trajecto-
ries.68 This direction is new in principle. It is paid due attention in [52], but

67 In a number of cases, the use of central manifolds automatically yields a complete reduc-
tion to plane flows, but sometimes, the central manifold has dimension 3 or 4; in these cases,
the situation is more complex. Still, there is an artificial method which gives a reduction
(although not so complete) to the two-dimensional case.

68 Of course, semilocal bifurcations more or less similar to the corresponding bifurcations for
plane flows but not related to the complex behavior of trajectories were studied too. Studying
them is a necessary component of the theory (and they are mentioned in [52]), but they are
not that interesting for us.
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the further development seems to be more significant. Unfortunately, I must
repeat what was said on a different occasion, namely, that there are no newer
surveys comparable with [52] in completeness.

By the early 1970s, dynamical systems with complex behavior of trajecto-
ries had been more or less successfully studied in the cases where this behavior
was determined by hyperbolicity. Even then (and much more now) the hy-
perbolic theory was complete to a certain extent, although there still remain
unsolved problems, and papers on this topic appear even nowadays. The bal-
ance has definitely shifted to bifurcations. This is because of the discovery of a
complex of phenomena related to nontransversal homoclinic trajectories. These
phenomena are so numerous and diverse that their study is far from complete,
even in the first approximation. The first to notice the fundamentally new
bifurcation phenomena related in a certain way to nontransversal homoclinic
trajectories was L. P. Shil’nikov, who mentioned them in his joint paper with
N. G. Gavrilov [54] in 1972 (and, partly, in 1970). Specifically, in [54], four
different types of bifurcations, one of which can occur on the boundaries of
systems with simple dynamics (Morse–Smale systems), were discovered. For
Morse–Smale systems, a symbolic description of the arising hyperbolic sets was
given and secondary bifurcations under which stable periodic trajectories are
born and die were specified. The closer the parameter value to the critical
point, the more such trajectories can arise.69

After that, a possibility to study the complex behavior of trajectories in
some situations beyond the scope of “pure” hyperbolic theory took shape. It
is hardly an overstatement to say that, at present, bifurcation theory has be-
come the main (although not unique) source of examples of DSs with complex
behavior of trajectories that survive (in a certain sense) small perturbations
(at least “many” of them). For comparison, note that, in the preceding period,
hyperbolic sets were discovered independently of bifurcation theory; the same
refers largely to the Lorenz attractor mentioned below. It was discovered in
studying the corresponding DS with a wide range of parameter values, which
revealed various bifurcations in such a system, including those related to the

69 In [54], a three-dimensional flow was considered (in fact, this covers the case of a two-
dimensional diffeomorphism). Multidimensional analogues of the situation studied in [54]
were considered in [55–57]; in the last two papers, the study goes further than an account of
analogues of the results from [54]. In [54], as in a number of other papers on this topic, it is
assumed that the first-return map for the initial periodic trajectory is smoothly conjugate to
a linear mapping (although conjugacy with a linear mapping was used there only for stable
periodic trajectories birth, all other results were obtained without this assumption); in [55–57],
this assumption is not made. Note that in studying homoclinic bifurcations, the assumption of
smooth linearization simplifies technicalities, but it also often restricts the scope of problems
to be considered, even if, actually, for some of these problems results do not depend upon the
assumption.
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Lorenz attractor; but the properties of this attractor are considered irrespective
of bifurcations.70

At approximately the same time, S. Newhouse paid attention to nontrans-
versal homoclinic trajectories of hyperbolic sets that do not reduce to periodic
trajectories [59] (first, he considered such trajectories only for two-dimensional
diffeomorphisms). Later, he called a hyperbolic set A (which is usually assumed
to be locally maximal71 and topologically transitive) which does not reduce to
periodic trajectories and has a nontransversal homoclinic trajectory (thus, the
unstable and stable manifolds of some trajectory from A are tangent to each
other somewhere) a wild hyperbolic set (the existence of such a set in a DS is
referred to as wild hyperbolicity). The term “wild” suggests that such a set
is related to a number of unexpected bifurcation phenomena. First, Newhouse
found an example in which wild hyperbolicity is preserved under arbitrary small
perturbations72, although the set A is Cantor-like; thus, between the stable
manifolds of it trajectories, there are strips containing no such manifolds, and
seemingly, all arcs of unstable manifolds of the trajectories from A that have
unsuitable directions (between these manifolds, there are “gaps” too) could be
moved to these strips by small perturbations. In A, the periodic trajectories are
dense, and it can be shown that they have nontransversal homoclinic trajecto-
ries for an everywhere dense set of parameter values. Thus, Newhouse revealed
that the space of DSs contains regions in which DSs with nontransversal homo-
clinic trajectories are everywhere dense. They are known as Newhouse regions
now. Newhouse regions in typical finite-parameter families of DSs (the meaning
of this term is evident)73 are considered too.

70 The aforesaid refers partly to the very important Henon attractor, which was introduced
independently of bifurcation theory. However, later, it turned out to be closely related to
this theory: first, it arises (and plays an important role) in certain bifurcations; secondly
(historically, this was discovered earlier), the description of its properties is obtained at certain
values of the parameters on which it depends; undoubtedly, the properties may be different
at other parameter values, although (so far?) this has not been studied in detail. I do not
talk about the Henon attractor here for the only reason that it is considered by Yoccoz in [1]
(see also his report [58] at the Bourbaki seminar).

71 This means that A is a maximal invariant set in some of its neighborhood. Locally
maximal invariant sets (not necessarily hyperbolic) are also called isolated.

72 In this section, I rather describe results than give precise statements. In particular, the
smallness of perturbations is understood in the sense of some Cr, but I say nothing about
this r (in may be different in different cases)

73 I must warn the reader that the precise statements which refer to domains in the space of
DSs and to domains in families of DSs are somewhat different. In particular, many results for
regions in a space of dynamical systems are correct, or they are obtained under the assumption
of smooth linearization, and to the contrary, they lose their generality for regions of families.
Since I only approximately describe these results, I ignore the differences as technical.
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The further studies were directed both toward discovering Newhouse regions
in various situations and toward studying the properties of DSs from such re-
gions. Both questions were stated explicitly in [60], where it was asserted that
(i) under certain conditions, near a system with homoclinic tangency, there
exist Newhouse regions; (ii) in such domains, there exist DSs with countably
many stable periodic trajectories, and the number of such DSs is large in a cer-
tain sense. (Obviously, this assertion by itself is stronger and more surprising
than that the number of such solutions increases as the parameter approaches
the bifurcation value (this was discovered in [54]), but combining the result of
[54] with (i) makes it not that surprising).

After Newhouse, bifurcations related to nontransversal homoclinic trajecto-
ries became popular throughout the world. However, in [60], assertion (i) was
rather guessed (while (ii) could be considered more or less proved, although
under assumptions that turned out to be too restrictive afterwards). A very
substantial progress was made in the fundamental paper [61] of Newhouse (see
also C. Robinson’s paper [62], which supplements [61]). After the appearance
of [61, 62], the assertions about two-dimensional diffeomorphisms stated above
could be considered mainly proved and even improved thanks to the removal of
redundant conditions (although, apparently, some of the later publications may
be regarded as final elaborations of questions going back to the mid-1970s). Pa-
pers [63, 64] are concerned with some multidimensional analogues of the same
circle of questions (the conditions imposed in [63] were weakened in [65]).

In parallel, a number of other questions about nonlocal bifurcations were
studied. The qualitative picture in such problems is so complex that it is doubt-
ful that this picture at fixed parameter values and its change under parameter
variation can be completely described. In particular, systems in Newhouse
regions do not admit complete description of dynamics in finite-dimensional
families, since such regions contain dense sets of systems with arbitrary highly
degenerate periodic trajectories and homoclinic tangencies of any order. De-
scriptions (somewhat incomplete) are often given only for some sets of pa-
rameter values; certainly, they are especially interesting when these sets are
“significant” in some sense. In this respect, the recent papers often cannot in
principle pretend to give a description of the qualitative picture as complete
as that given in many cases by the theory of plane flows or of systems with
uniformly hyperbolic behavior of trajectories. Naturally, in describing changes
of the qualitative picture, only some essential features are often considered. In
this respect, the completeness of the results on complex bifurcations is far from
that inherent in the theory in Andronov’s time. But this, apparently, is related
to the essence of the matter. A drawback of the current state of the art is
the absence of concise general specifications of what features of the qualitative
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picture are interesting. These features are specified in particular problems, but
they are different in different contexts. It seems that the time of generalizing
statements has not come yet.

The state of the art in the theory of nonlocal bifurcations in the mid-1980s
is described in [52]. Yoccoz’s report [1] contains several newer results and a
bibliography. I draw special attention to the book of J. Palis and F. Takens
[66] cited therein. In addition, I would like to mention several new papers of
the group of L. P. Shil’nikov, because the works of this group (including the
earlier ones) are not known well enough.74

The title of [67] refers to the bifurcation phenomenon when some periodic
trajectory unboundedly lengthens and, in the limit, disappears; moreover, it
does not leave a visible trace, as a separatrix loop or something like that
(it “disappears in the blue sky”; hence the term “blue-sky catastrophe” for
such bifurcations (apparently, for the first time, it was used as a joke)). For
two-dimensional flows, this phenomenon was discovered by F. Fuller (who did
not name it) and studied in more detail by V. S. Medvedev (under the name
of “blue-sky catastrophe,” which had been thought up already at that time).
In [67], the same bifurcation was considered in the three-dimensional case. It
had codimension 1, i.e., was typical, and occurred when passing through a
certain hypersurface in the space of all systems. Simultaneously, a different
bifurcation of codimension 1, maybe more interesting, was described.

It is of obvious interest to consider the question: How can an attractor75

with complex structure arise in a smooth system of differential equations? This
question is related to the following observation. So far, attractors of the type of
basis sets of A axiom flows (not reducible to periodic trajectories) have arisen
in no applied problems. It is therefore natural to try to construct such attrac-
tors by bifurcation methods. In [67], the following related problem is solved:
How to obtain a field with a strange attractor76 from a simple (Morse–Smale)

74 In particular, [66] contains only one reference to an earlier paper of Shil’nikov, which was
written before his main works on bifurcation theory were done (although, it goes beyond the
scope of uniform hyperbolicity).

75 This term is used for sets which, as it were, attract close trajectories. There are various
formalizations of the property of attracting trajectories in the literature. In this paper, by
an attractor, we mainly understand a compact invariant set A which is stable in the sense of
Lyapunov (i.e., any neighborhood V of this set contains another neighborhood W such that
all positive semitrajectories beginning in W never leave V ) and such that all positive semitra-
jectories beginning in some neighborhood of A approach A arbitrarily closely with increasing
time. (This is an almost word-for-word paraphrase of the definition of the asymptotic stability
of an equilibrium point given by A. M. Lyapunov.)

76 As far as I can judge, “strange” and “chaotic” attractors are not exact terms; rather,
these are somewhat indefinite names (cf. the “fractals” of Mandelbrot), which in addition
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vector field by means of a simple bifurcation of a smooth vector field? In [67], a
bifurcation of codimension 1 leading to the occurrence of a hyperbolic strange
attractor supported on a Smale–Williams solenoid was revealed and studied. In-
terestingly, when approaching the bifurcation hypersurface, the solenoid suffers
no bifurcations, and the length of any closed trajectory in it tends to infinity.

Another example of the occurrence of a strange attractor under a bifurcation
was considered in [68]. This attractor exists in some interval of perturbation
parameter values and contains a wild hyperbolic set at all parameter values
from this interval, which ensures plenty of bifurcation phenomena.77

In [56, 57, 69, 70], it was shown that, in a Newhouse region, DSs with saddle-
node periodic trajectories of arbitrarily high multiplicity are everywhere dense.
Using the results of these papers, V. Yu. Kaloshin [71] showed that, in a New-
house region, there exist DSs where the number Nper(T ) of periodic trajectories
with period � T increases arbitrarily rapidly as T → ∞. Moreover, for any
function f(T ), the DSs for which Nper(T ) � f(T ) at sufficiently large values of T
form a second-category set in this domain with Cn-topology (for any positive in-
teger n); thus, the phenomenon under consideration is by no means exceptional.
Actually, the result follows from the above-mentioned results on density in the
Cr-topology in Newhouse regions of systems with countable sets of periodic
trajectories of undetermined order of degeneracy, i.e., periodic trajectories of
period T for which the corresponding Poincaré map looks like x̄ = x + o(‖x‖r).
Thus, by perturbing the identity map in the Cr-topology, we can obtain any
large (> f(T )) number of fixed points of the Poincaré map and, accordingly,
periodic trajectories of period � T ; these trajectories are structurally stable,
and consequently they survive under small perturbations. This answers a ques-
tion raised about 30 years ago. Although, for analytic systems, the question
about the possibility of a superexponential (in T ) growth of the number of peri-

carry a shadow of emotion (the initial surprise). As a rule, the term “strange attractors”
is used for attractors (i.e., sets which, so to speak, attract trajectories) that are “complex”
and “strange” in some sense; they are not manifolds or something like that (say, they are not
composed of several “pieces” of manifolds). Chaotic attractors are characterized by the quasi-
random behavior of their trajectories. Already in the early 1970s, V. M. Alekseev suggested to
formalize “quasi-randomness” as the positivity of topological entropy. (But there are different
(nonequivalent) formalizations (see [66]) which make it possible to treat some attractors with
zero entropy as chaotic.) The chaoticity and strangeness understood in this sense are not
synonyms: an attractor may be a manifold but have positive entropy; it may have zero
entropy but be not a manifold and, in general, have more or less complex structure. That the
majority of known strange attractors are chaotic is a different matter (this is because they are
somewhat hyperbolic, although to a lesser extent than the true hyperbolic sets).

77 Paper [66] contains references to earlier works of western authors, who also mentioned
the emergence of strange attractors under certain bifurcations. Usually these attractors were
Lorenz-type attractors (see below) rather than uniformly hyperbolic attractors.
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odic trajectories with period � T remains open. Subsequently, Kaloshin proved
that, nevertheless, in a sense it is “typical” that the growth of Nper(T ) is not
much faster than exponential.

In [72, 73], it was shown that sometimes, in the presence of a nonrough
heteroclinic contour, bifurcation phenomena similar to those related to non-
transversal homoclinic trajectories may occur. But there are also significant
differences. Thus, if the contour contains saddles with different “divergences,”
then Newhouse regions can exist arbitrarily close to the system considered such
that these regions contain dense sets of systems having simultaneously count-
able sets of saddle, stable, and unstable periodic trajectories.

The recent (and partly semipopular) survey of Shil’nikov [74] contains an
additional information (with references) on bifurcations related to nontransver-
sal homoclinic trajectories.

Yet another significant achievement related to semilocal bifurcations is the
study of the bifurcations of the Lorenz attractor. This attractor, as its name
suggest, was discovered by E. Lorenz in the course of a numerical experiment
on a special third-order system, which was interesting because of hydrodynamic
considerations. Lorenz’s discovery had attracted attention only about 10 years
later; moreover, applied (in the broad sense of the word) and pure mathemati-
cians had become interested in it for different reasons. Applied mathematicians
had become convinced of the real existence of strange (or chaotic) attractors;
most of them were not aware of the hyperbolic strange attractors discovered
by theoreticians, because such attractors did not arise in problems which come
from the natural sciences. For mathematicians, the Lorenz attractor was inter-
esting not merely as yet another manifestation of the already known possibility
of weird behavior of trajectories but, on the contrary, as an object which, al-
though having some properties close to those of hyperbolic attractors (applied
mathematicians were most impressed by these properties), differ from them
in other properties (it is these niceties that were interesting for mathemati-
cians). The mathematical interpretation of Lorenz’s results was initiated by
J. Guckenheimer in a paper entitled “A strange, strange attractor.” The word
“strange” is repeated not only because the movie of S. Cramer suggests so, but
also because (i) the attractor under consideration is strange in the sense that
its trajectories have dynamically complex structure (they have countably many
saddle periodic trajectories, continuum many Poisson stable trajectories, etc.),
while being preserved under small perturbations (this resembles the uniformly
hyperbolic attractors, which had already been known at that time but still were
regarded as something strange by many); (ii) it is not uniformly hyperbolic (al-
though it has certain hyperbolic properties); (iii) the intrinsic structure of this
attractor, as opposed to that of uniformly hyperbolic sets, does not remain in-
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variable under small perturbations; to be more precise, it continuously changes
in any one-parameter family of generic systems with such an attractor. Thus,
if we treat bifurcations as arbitrary qualitative changes, bifurcations occur for
all values of the parameter of such a family, and this phenomenon is nonre-
movable in the sense that it is inherent in all sufficiently close families of DSs.
Such a phenomenon per se is not new: it takes place for the old example of
the family of flows on the torus that has the form .

x = 1, .
y = λ in coordi-

nates x, y mod 1. But, arbitrarily slightly varying this family, we can ensure
that the bifurcations occur only when λ belongs to the complement to some
open dense set (thus, from the topological point view, the bifurcation param-
eter values are exceptional78). At the time when the paper of Guckenheimer
appeared, the nonremovability was not quite new either: a similar phenomenon
was revealed before by S. Smale and R. Abraham for a different example,79 but
Guckenheimer described this phenomenon in a different situation.80

Because of what is said above, as applied to the Lorenz attractor, bifur-
cations are understood not as mere changes of its intrinsic structure but as
changes that are substantial in a certain sense. Certainly, such are the bifur-
cations under which the Lorenz attractor appears or disappears, but there are
also some other bifurcations of this kind. The particular specification of what
qualitative changes are substantial is determined by a particular description
of the Lorenz attractor and is somewhat tied to a particular situation in this
sense.

A model of the Lorenz attractor was suggested by R. Williams, who de-
veloped Guckengeimer’s approach. His model is often called the “geometric
Lorenz attractor.” In this model, we can study the intrinsic structure of a
given attractor (including the behavior of the trajectories contained in it); it
can also be proved that there do indeed exist third-order systems with such an
attractor, and that the attractor survives under small perturbations. However,
the system under consideration was subject to a number of constraints, which

78 At this point, a collision between the topological and metric points of view, which was
mentioned by A. N. Kolmogorov on a different occasion, occurs: if the families under con-
sideration are sufficiently smooth, then the set of bifurcation values of the parameter always
has positive measure. Similar questions refer to KAM theory and, as applied to the example
under consideration, to the more special theory of M. Herman and J.-C. Yoccoz; I mentioned
his report at the very beginning.

79 Yet earlier, H.-C. Andersen described the princess on a pea, who tried to reduce herself
to general position all night long in order to make the feelings that bothered her exceptional,
but she did not succeed.

80 It is clear from what has been said about Newhouse regions that this phenomenon is
observed for these regions too. But, as mentioned, the results on Newhouse regions obtained
by the mid-1970 were rather guessed than rigorously proved.
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might hold in some systems but did not hold in the initial Lorenz system; thus,
strictly speaking, it remained unclear whether Lorenz had actually dealt with
the attractor named after him (i.e., whether the attractor arising in his system
is the geometric Lorenz attractor as described by Guckenheimer and Williams).

These questions were answered in [75], where the conditions ensuring the
existence of a Lorenz attractor were relaxed to geometric condition on a certain
first-return map. The verification of these conditions for the Lorenz system
itself still relies in part on a numerical experiment, but such an experiment
has been performed many times by various groups of mathematicians with the
use of different programs, so the results do not cause doubts.81 The intrinsic
structure of the attractor considered in [75] is the same as that of the attrac-
tor considered by Williams (only some changes under certain bifurcations are
unlike), but the properties of the system near the attractor are different (the
attraction of trajectories to the attractor may be weaker). In subsequent works
of other authors (largely concerned with the ergodic properties of the Lorenz
attractor; the other problems have mainly been solved82), the Lorenz attractor
was understood in the sense of [75]. In addition, in [75], its intrinsic structure
was studied in more detail (in particular, its symbolic description well suited
for bifurcation problems was given).

For us, it is important that, in [75], not only the preservation of the Lorenz
attractor under small perturbations and the constant variation of its structure
was confirmed for the model under consideration, but also the scenario of the
birth of such an attractor, i.e., a sequence of bifurcations leading to its birth,
was described, and bifurcations occurring after its birth were considered; in
particular, the scenario of the destruction of the Lorenz attractor was presented.

A later article by Tucker (W. Tucker, A rigorous ODE solver and Smale’s
14th problem. Found. Comput. Math., 2 (1) (2002), 53–117) describes a nu-
merical experiment for the Lorenz system with rational arithmetic and granted
error estimate.

However, strangely enough, this (automatically irreproachable, it would
seem) paper raises some doubts. According to Tucker, he succeeded in veri-
fying the original conditions from Guckenheimer’s paper for the Lorenz system
(with appropriate parameter values), and, accordingly, the attractor turned out

81 I emphasize again that the truth of the fundamental fact of the existence of a DS with
a Lorenz attractor had became clear as soon as the first publications of J. Guckenheimer
and R. Williams appeared; simple special systems of differential equations for which a Lorenz
attractor is born under some bifurcation are given in the papers cited in [66]; neither result
is related to numerical experiments. Numerical experiments are needed “only” to verify the
presence of a Lorenz attractor in the system considered by Lorenz.

82 See [76] for details.
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to be not only qualitatively, but even quantitatively the same as in the Williams
model; however, Tucker did not check the later and less restrictive condition of
Shil’nikov (which he does not even mention), although, according to previous
numerical experiments, it is accepted that the Lorenz system satisfies only the
Shil’nikov conditions.

Investigations of the Lorenz attractor were also carried out by means of
reliable computations in the following papers:
K. Mischaikow and M. Mrozek. Chaos in the Lorenz equations: A computer
assisted proof. Bull. Amer. Math. Soc., 32 (1) (1995), 66–72.
K. Mischaikow and M. Mrozek. Chaos in the Lorenz equations: A computer
assisted proof. Part II. The details. Math. Comput., 67 (223) (1998), 1023–
1046.
K. Mischaikow, M. Mrozek, and A. Szymczak. Chaos in the Lorenz equations:
A computer assisted proof. Part III. Classical parameter values. J. Diff. Equa-
tions, 169 (1) (2001), 17–56.

The results of the last three papers are not as complete as those of Tucker,
in the sense that (as far as I can judge) they do not discuss the coincidence
of this attractor with the geometric attractor in the sense of Guckenheimer–
Williams, but only prove that several properties (actually the most interesting
ones) of the latter coincide with those of the former.



2 “Named” problems

2.1 Structurally stable systems

Even the simplest examples show that the qualitative properties of DSs may
change or remain intact under arbitrarily small perturbations. A trivial ex-
ample is a DS in which no motion occurs, when the identity diffeomorphism
or a flow with zero phase velocity field is considered. Certainly, arbitrarily
small perturbations may then give different qualitative pictures. A less degen-
erate example is when the diffeomorphism has a fixed point or the flow has
an equilibrium point (at which the corresponding vector field vanishes) that is
asymptotically but not exponentially stable. Then, under an arbitrarily small
(in the sense of C1) perturbation, the fixed (equilibrium) point may disappear
at all, or it may happen that the point does not disappear but stability is vi-
olated. If the fixed point is exponentially stable, then it does not disappear
and remains asymptotically stable under a C1-small perturbation; the same
refers to an exponentially stable equilibrium point. In this case, the local qual-
itative picture (near the fixed or equilibrium point) is preserved. The cases
where the qualitative picture in the entire phase space survives small perturba-
tions deserve special attention. In this connection, the following definition was
introduced (the idea was due to A. A. Andronov and L. S. Pontryagin (1937)).

A diffeomorphism f of a smooth closed manifold M is said to be structurally
stable (the literal translation of the original Russian term is “rough”) if, for
any diffeomorphism g sufficiently C1-close to f , there exists a homeomorphism
χ : M → M that conjugates f and g in the sense that

χ ◦ f = g ◦ χ. (22)

A flow {φt} on a smooth closed manifold M determined by a smooth phase
velocity field v (so that d

dt
φt(x) = v(φt(x))) is said to be structurally stable if

any vector field w sufficiently C1-close to v determines a flow {ψt} equivalent
to the flow {φt} in the sense that there exists a homeomorphism χ : M → M
that maps the trajectories of the first flow to trajectories of the second flow and
preserves the direction of motion on the trajectories. It is worthwhile to mention
some special features of this definition (see [77] for more details). In the case of
continuous time, it is not required that the homeomorphism χ conjugates the
unperturbed and perturbed flows in the sense that

χ ◦ φt = ψt ◦ χ for all t (23)

126
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(which may seem to be the natural analogue of (22)). The point is that, if a
flow has a closed trajectory, then the period of this trajectory may change under
perturbation, and (23) is then impossible; at the same time, we do not regard
a change in the period as a change of the qualitative picture. It is not required
that χ is a diffeomorphism either, because, if the diffeomorphism f has a fixed
point (which must be preserved under small perturbations for a structurally
stable diffeomorphism), then the eigenvalues of the corresponding matrix of
linear approximation may change under a perturbation, while if χ in (22) were
a diffeomorphism, this could not occur. For flows, similar considerations are
somewhat harder to formulate (because we require equivalence rather than the
fulfillment of (23)), but the conclusion is the same – χ cannot generally be a
diffeomorphism. The definition of Andronov and Pontryagin required in addi-
tion that the homeomorphism χ be C0-close to the identity homeomorphism
whenever g is sufficiently close to f or w to v. Later, M. M. Peixoto suggested
to remove this condition; thus, there exist two logically different versions of
structural stability, in the sense of Andronov and Pontryagin and in the sense
of Peixoto. The former is formally more restrictive than the latter, but it has
been proved that, actually, these versions are equivalent. Thus, I shall not
distinguish between them, although their equivalence is a very nontrivial fact
(I shall talk about this further on). Instead of “structural stability,” the term
“roughness” is used sometimes (especially in Russia).

After A. A. Andronov and L. S. Pontryagin had introduced the notion of
a structurally stable system and characterized structurally stable flows on the
plane (to be more precise, on the two-dimensional sphere) in their classical work,
the problem of a qualitative characterization of the behavior of trajectories
in structurally stable systems in other cases naturally arose. The definition
said what happens under perturbations; the characterization which I mean
was concerned only with the behavior of the trajectories of the unperturbed
system. M. M. Peixoto transferred the Andronov–Pontryagin theorem to flows
on closed surfaces; the statement remained almost unchanged. In all these cases,
structurally stable flows form an open everywhere dense set in the space of all
flows with the C1 topology. Naturally, there arose the question of what systems
are structurally stable in multidimensional cases (for systems with discrete time,
this question was interesting even in the two-dimensional case83). The very
direct generalization of the structural stability conditions for two-dimensional
flows leads to the so-called Morse–Smale systems; by analogy with this case, we
might conjecture that the structurally stable systems form an open everywhere

83 The structurally stable diffeomorphisms of the circle were described by A. A. Mayer
shortly after the appearance of the paper of Andronov and Pontryagin. They also form an
open everywhere dense set in the space of all C1-diffeomorphisms.
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dense set in the space of all DSs on the manifold under consideration with C1-
topology. But these conjectures turned out to be false, except the conjecture for
the Morse–Smale systems. The fairly dramatic story of the study in this domain
was described by many authors, including myself (see below); therefore, I shall
proceed to the answer at once. In the course of the “hyperbolic revolution,”
S. Smale conjectured that structural stability is equivalent to the hyperbolicity84

of the set of nonwandering points (this is the main condition), the density
of the periodic points in this set (the combination of these two conditions is
called the Smale A axiom), and the transversality of the intersections of the
corresponding stable and unstable manifolds (this is the strong transversality
condition). The sufficiency of these conditions was proved (by R. C. Robinson in
complete generality) in the end of the preceding two decades, and their necessity
was proved only now, although a very important step was made long ago by
C. Pugh, who proved a seemingly simple but actually difficult closure lemma. It
asserts that, if a given smooth system has a nonwandering point x, then x can be
made periodic by an arbitrarily C1-small perturbation. A somewhat simplified
and refined (in comparison with the initial) proof is given in [80]; in the same
paper, it is shown that a similar lemma is valid in the class of Hamiltonian
systems. (In this class, as well and in the class of volume-preserving DSs, the
Ck-analogue of this lemma for a sufficiently large k is not valid! The references
to the paper of M. Herman and Z. Xia on this topic are given in [1].) But even
after this lemma was proved, the proof of the necessity of the structural stability
conditions conjectured by Smale took much time. For dynamical systems with
discrete time, the necessity was proved by R. Mañé [82, 83], and for flows, by
S. Hayashi [85]. (In [77], some “intermediate” works are cited, which also played
a role.) It is worth mentioning that Mañé and Hayashi had to supplement
the closure lemma by some similar assertions (as “obvious” as this lemma).
Toyoshiba indicated that Hayashi’s paper requires certain modifications and
indicated which (H. Toyoshiba. A property of vector fields without singularity
on G1(M). Ergodic Theory and Dynam. Syst., 1 (2001), 303–314).

The above-mentioned equivalence of Andronov–Pontryagin structural sta-
bility and Peixoto structural stability follows from the sufficiency for the former
of conditions necessary for the later. No simpler proof of this equivalence is
known, although, seemingly, this fact should be more elementary.

A property somewhat weaker than structural stability is Ω-stability; roughly

84 The definitions of the Morse–Smale systems and hyperbolic sets are given in textbooks
on smooth dynamical systems, in surveys [78, 79], and in the relevant articles in Mathematical
Encyclopaedia. It is worth mentioning that, as applied to equilibrium points, the terminology
commonly used in the theory of smooth dynamical systems starting with 1960s differs from
the previous one: since then, exponentially stable (unstable) foci and nodes are also classified
with hyperbolic equilibrium points, while earlier, only saddles were said to be hyperbolic.
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speaking, this is the preservation under small perturbations of the set of non-
wandering points together with the dynamics on it. A precise definition can be
found in any textbook on hyperbolic dynamics or in survey [78] on hyperbolic
sets. The term is because the set of nonwandering points is often denoted by Ω.
We also use this notation. A necessary and sufficient condition for Ω-stability
was stated as a conjecture by S. Smale and J. Palis. Its main component is
the hyperbolicity of the set of nonwandering points; in addition, it involves the
density of the periodic points in this set and the so-called acyclicity. There are
equivalent conditions, which require either the hyperbolicity and acyclicity of
some other set, which is formally smaller than Ω a priori, or only the hyper-
bolicity of a certain set (the set of chain recurrent points), which is formally
larger than Ω; in reality, if the above-mentioned conditions holds, then all these
sets coincide with Ω. The equivalence of these conditions and their sufficiency
were proved by S. Smale and his collaborators; by modern standards, the proof
is comparatively easy (sufficiency is easier to prove than the sufficiency of the
corresponding condition for structural stability). The proof of necessity turned
out to be as difficult as for structural stability. For systems with discrete time,
it was obtained by J. Palis [84] right after the appearance of Mañé’s paper; for
flows, it was given by S. Hayashi.

Survey [77] describes the state of the art in the early 1980s. (The historical
account is supplemented by M. Peixoto reminiscences [81].) For more recent
advances, see [82–85].

The definition of structurally stable systems involves C1-small perturba-
tions. Considering diffeomorphisms f, g, . . . (vector fields v,w, . . . ) of class Ck

and understanding the closeness of g to f (of w to v) in the definition of the
structural stability of the initial DS (determined by f or v) in the sense of
Ck-closeness, we obtain the definition of the property which is natural to call
Ck-structural stability. (As previously, the homeomorphism χ is not required
to be smooth, and we may require or not the closeness of χ to the identity
transformation, so there are two versions of Ck-structural stability, in the sense
of Andronov and Pontryagin and in the sense of Peixoto.) In the new termi-
nology, structural stability is C1-structural stability. What can be said about
Ck-structural stability for k > 1?

So far, nothing contradicts the conjecture that Ck-structural stability is
equivalent to C1-structural stability (except, certainly, that the notion of Ck-
structural stability applies only to DSs of class Ck). However, there are only two
positive results concerning this conjecture: (i) in dimension 1 (both for flows and
for diffeomorphisms); (ii) for flows on orientable two-dimensional closed mani-
folds and on the three simplest nonorientable two-dimensional closed manifolds,
namely, for those with Euler characteristics 1 (projective plane), 0 (torus),
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and −1. In all these cases, Ck-structurally stable systems form an open ev-
erywhere dense set in the space of all DSs of class Ck on the given manifold.
In other cases, the efforts to find necessary conditions for Ck-structural stability
by using the approach that has led to success for k = 1 depend on the validity
of the Ck-version of the closure lemma. In light of the above considerations,
the prospects are uncertain. It can be added that the somewhat (seemingly,
quite naturally) strengthened assertion of the closure lemma is not valid even
in the C2 case; see the reference to a paper by C. Gutierrez cited in [1] and [86]
(the strengthening of the lemma which is shown in [86] to be false for k = 2 is
close to the assertions proved and used by Mañé and Hayashi for k = 1).

The notion of structural stability can be defined for systems with noncom-
pact phase manifolds and for flows on compact manifolds with boundary. The
situation in these cases is far from being completely clarified. It is known that
it differs in some respect from that described above.

I am not aware of works related to the topic of the last three paragraphs
that are more recent than those cited in [77].

Finally, I would like to dwell on the structural stability of smooth self-
mappings of the interval [0, 1] that are not one-to-one (for diffeomorphisms
of the interval, the question is trivial). The definition of structural stability
is carried over to this case word for word (with “diffeomorphism” replaced
by “smooth mapping”). One new circumstance is evident: in the presence
of critical points (that is, points x where f ′(x) = 0), the mapping f cannot
be C1-structurally stable. Indeed, by an arbitrarily C1-small perturbation,
we can change the character of a critical point so strongly that the change
is “sensed” even by our fairly crude approach, when everything is considered
up to topological conjugacy. For example, we can ensure that the perturbed
mapping take some interval to one point, or, vice versa, that each point have
only finitely many preimages. Therefore, in the presence of critical points, a
rich-in-content theory must consider Ck-structural stability for k > 1. What is
said above makes it clear that this involves significant difficulties.

Using the specifics of the one-dimensional case and transferring consid-
eration to the complex domain (where, fortunately, some useful results had
been obtained), O. S. Kozlovskii was able to overcome these difficulties in the
simplest nontrivial case of the so-called unimodal mappings, that is, smooth
self-mappings of the interval with precisely one critical point [87]. The result is
that, for any k > 1, a unimodal Ck-smooth self-mapping of the interval is Ck-
structurally stable if and only if it satisfies the A axiom (suitably reformulated
for one-dimensional mappings with critical points) and its critical point is non-
degenerate (its second derivative does not vanish). Kozlovskii proved also that
the unimodal mappings satisfying the A axiom (to which the condition that the
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critical point must be nondegenerate is trivially added) are everywhere dense in
the space of all unimodal mappings of class Ck. Properly speaking, this is the
main result, which comparatively easily implies the necessity of the structural
stability condition stated above; its sufficiency had been known earlier.

2.2 Hilbert’s 21st problem

In this section, we shall deal with the linear system of ordinary differential
equations in the complex domain

dy

dx
= C(x)y, y = (y1, . . . , yp) ∈ Cp. (24)

Except in one case specified below, it is assumed to be holomorphic in the entire
extended complex plane (the Riemann sphere) C, except at several singular
points a1, . . . , an. Denote S = C \ {a1, . . . , an}. The holomorphy of the system
at a point x ∈ C means simply the holomorphy at this point of the coefficients
of the matrix C(x). If ∞ is not among the points ai, then system (24) must be
holomorphic at the point ∞; this means that, if we rewrite (24) in terms of the
new independent variable ζ := 1/z, then the coefficients of the resulting system

dy

dζ
= − 1

ζ2 C
(

1

ζ

)
y (25)

must have a removable singularity at the point ζ = 0. Generally, solutions to
system (24) branch (the simplest example is

p = 1, n = 2, S := C \ {0,∞}, dy

dx
= α

x
y; (26)

the solutions are y = Cxα). But they can be treated as functions on the
universal covering surface S̃ of the domain S, on which they are single-valued
holomorphic functions. (Any solution to a linear system can indeed be extended
to the entire surface S̃; this is proved in approximately the same way as the
assertion (probably familiar to the reader) that, in the real domain, the solutions
to a linear system can be extended over the entire interval (or half-line, or line R)
where the coefficients of this system are defined and continuous. For nonlinear
systems, neither the complex nor real versions of the extension theorem are
generally valid.) I shall denote the points of S̃ by tilde, assuming that x̃ lies
over x ∈ S; thus, it is better to denote solutions to (24) by y(x̃). It may happen
that some solution to a particular system of form (24) becomes single-valued
already when lifted to a covering surface of the domain S which is lower than
S̃ (sometimes, a solution is unique even on the very domain S). But nothing
prevents us from lifting it to S̃ anyway.
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We denote the projection S̃ → S that maps each point x̃ ∈ S̃ to the point
x ∈ S covered by it as π. The homeomorphisms σ : S̃ → S̃ for which π◦σ = σ◦π
(i.e., which permute points x̃ over the same x) are called deck transformations.
The group of all deck transformations is denoted by ∆. It is isomorphic to a
more concrete object, namely, to the fundamental group π1(S, x0); in the case
under consideration, this is the free group with n− 1 generators corresponding
to passages around some n−1 points among the points ai. However, the groups
π1(S, x0), as opposed to ∆, partly depend on x0 (these groups with different x0

are isomorphic, but there is no “standard” isomorphism between them, as there
is no “standard” isomorphism π1(S, x0) → ∆).

A sum of two solutions to a linear system is a again a solution, and a
solution multiplied by a constant scalar is a solution; therefore, the solutions to
(24) form a vector space Y, which is complex in the case under consideration.
Since a solution is uniquely determined by its value at some x̃0, the space
Y is p-dimensional. The basis in Y is what is called a fundamental system of
solutions in the theory of differential equations. In addition to the vector-matrix
system (24), we consider the matrix system

dY

dx
= C(x)Y, (27)

where Y is a square matrix of the pth order. Its columns are solutions to (24),
and their linear independence is equivalent to the nondegeneracy of the matrix
Y (x̃) (for any x̃ = x̃0; to prove nondegeneracy for any x̃0, it is sufficient to
prove it for some x̃0); if the matrix Y (x̃) is nondegenerate, then it is called
a fundamental matrix of system (24) (thus, a fundamental matrix is a matrix
whose columns form a fundamental system of solutions). A general solution
to (24) has the form y = Y (x̃)c with a constant c ∈ Cp. When the basis in Y

formed by the columns Y (x̃) is used, the coordinates of this y form the column
vector c.

Everything said above is analogous to definitions and statements of the
theory of linear systems in the real domain. But the following assertion is new:
If y(x̃) is a solution to (24) or Y (x̃) is a solution to (27) and σ ∈ ∆, then
x̃ �→ y(σx̃) or x̃ �→ Y (σx̃) is also a solution to (24) or (27), respectively. Indeed,
any point x̃0 ∈ S̃ has a neighborhood Ũ in S̃ such that π homeomorphically
maps it to a neighborhood U := π(Ũ) of the point x0 = πx̃0 in S; clearly, σŨ
is a neighborhood of σx̃0 in S̃ which is also homeomorphically mapped to U
under π, and

σ(π � Ũ)−1 = (π � σŨ)−1. (28)

That y(x̃) is a solution to (24) in Ũ means that y1(x) := y((π � Ũ)−1x) is a
solution to (24) in U . That x̃ �→ y(σx̃) is a solution to (24) in Ũ means that
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y2(x) := y(σ(π � Ũ)−1x) is a solution to (24). But, by virtue of (28), we have
y2(x) = y((π � σŨ)−1x), and this is indeed a solution to (24), because y(x̃) is a
solution in σŨ (and in the entire domain S̃). Thus, y(σx̃) is indeed a solution
to (24) near any point x̃0 ∈ S̃. Using the isomorphism ∆ ≈ π1(S, x0), we
can describe the passage from y(x̃) to y(σx̃) as a change of a solution to (24)
under its analytic continuation over a chain of disks along the closed path
corresponding to σ. Such an interpretation involves several identifications of
different objects: ∆ is identified with π1(S, x0) and holomorphic functions on S̃,
with the Weierstrass sets of their elements.

In his way, there arises the transformation

σ∗ : Y→ Y, (σ∗y)(x̃) = y(σ−1x̃),

which is obviously linear and nondegenerate. We have (σ∗τ∗) = σ∗τ∗ (if we
defined (σ∗y)(x̃) as y(σx̃), then we would obtain (σ∗τ∗) = τ∗σ∗, as in 1.3, (a)).
Denoting the group of nondegenerate linear transformations of the space Y by
GL(Y), we obtain a representation

∆ → GL(Y), σ �→ σ∗; (29)

it is called a monodromy representation (for (24)). Taking some basis in Y, i.e.,
a fundamental system of solutions united into a fundamental matrix Y (x̃), we
can pass to a matrix representation χ : ∆ → GL(p, C), for which χ(σ) describes
the change of coordinates in this basis of an element y ∈ Y under the passage
to σ∗y. It is easy to see that Y (x̃) = Y (σx̃)χ(σ), which can be taken as an
equivalent definition of χ. The representation χ is also called a monodromy
representation. It is determined by n − 1 nondegenerate matrices being the
images of generators of ∆ (this means that these matrices describe an analytic
continuation of the solutions under going around n − 1 singular points); so
it is a more concrete object than (29). But system (24) itself determines χ
not quite uniquely: when a basis in Y is changed, the representation χ is
replaced by the conjugate representation CχC−1, where C is some constant
matrix. In this connection, the term “monodromy” is used for the whole class
of conjugate representations {CχC−1; C ∈ GL(p, C)} (it is indeed determined
by system (24)).

We are interested in systems (24) having singularities of a comparatively
“weak” type. A singular point ai �= ∞ is said to be Fuchsian if C(z) has a
pole of the first order at this point; the singular point ∞ is said to be Fuchsian
if the coefficients of (25) have a pole of the first order at the point ζ = 0. A
system whose all singular points are Fuchsian is called a Fuchsian system. It
can be proved that, for Fuchsian systems with singular points a1, . . . , an and,
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possibly, ∞, the matrix C(x) has the form

C(x) =
n∑

i=1

Bi

x − ai

,

where Bi are constant matrices. The point∞ is singular if and only if
∑

Bi �= 0.
The “weakness” of the Fuchsian singularities manifests itself in the behavior

of solutions near singular points. If x tends to a Fuchsian special point a, then
|y(x)| may increase or decrease not faster that some power of |x−a|. This needs
be refined, because even for (26) with Imα �= 0, we can ensure an arbitrarily
rapid growth of |y| with decreasing |x| if 0 is approached on a spiral along which
|y| decreases slowly in comparison with the number of turns around 0 (then |y|
changes mainly at the expense of these turns). The required refinement is very
simple: |y| must increase or decrease not faster than some power of |x − a| as
x tends to a remaining inside a fixed angle with vertex a.

An isolated singular point a of system (24) is said to be regular if, for
this point, the same condition of no more than power increase or decrease of
solutions as x tends to a holds (with the same refinement concerning an angle).
It turns out that, at a regular singular point, the coefficients on the right-hand
side of the system have a pole (not necessarily of the first order), so there
exist regular singular points that are not Fuchsian. But even for a pole of
the second order, the singular point may be not regular. Only about 10 years
ago, an algorithm that makes it possible (if it is possible to perform all the
computation) to determine whether a singular point is regular was constructed.
It turned out to be very burdensome. It would be imprudent to assert that it
cannot be simplified but, apparently, the arrangement of the regular systems
among all systems whose coefficients have a pole at a is rather complex, so an
algorithm “recognizing” them cannot be very simple.

If all singular points of a system are regular, then the system itself is said
to be regular.

Now, we can proceed to the topic of this section, which is Hilbert’s 21st
problem (it is also known as the Riemann–Hilbert problem). The problem is:
Show that there always exists a linear differential equation (actually, a system of
equations rather that one equation is meant) of Fuchsian type with given singu-
lar points and given monodromy group (the modern statement of the problem
refers of a monodromy representation, which is more precise). Hilbert might
have meant not only the systems which are called Fuchsian today but also
regular (in modern terminology) systems. Irrespective of the obscurity related
to the terminology of the beginning of the century, there exist two problems,
“Fuchsian” and “regular.” The latter had shortly been solved positively by
J. Plemelj (a propos, actually, that was the first felicitous use of the theory of
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singular integral equations; the foundations of this theory were laid by Plemelj
at precisely that moment, although formally Plemelj did not mention them in
this connection). Plemelj tried also to derive a positive solution to the problem
in the Fuchsian setting, but in reality, his reduction works only under a certain
additional condition on the monodromy representation; thus, what he obtained
was a sufficient condition for the positive solvability of the Fuchsian version of
the 21st problem. The condition is that at least one of the monodromy ma-
trices corresponding to going around the singular points a1, . . . , an reduces to
a diagonal form. But this was recognized much later. Yu. S. Il’yashenko said
that he noticed a gap in Plemelj’s proof in 1975, when talking about Fuchsian
systems in the course of his lectures. In the literature, the incompleteness of
Plemelj’s argument was mentioned, apparently, only in the 1985 survey [88].
But at that time, there still remained the hope that the answer was always pos-
itive for Fuchsian systems. The discovery by A. A. Bolibrukh of a contradicting
example [89]85 was quite a surprise. Continuing his work in this direction,
Bolibrukh, on the one hand, constructed a series of counterexamples of various
types and, on the other had, found new sufficient conditions of various degrees
of generality for the problem to have a positive solution; in this work, other
authors participated too. One of the new sufficient conditions, which is due
to V. P. Kostov and A. A. Bolibrukh, is that the representation χ must be
irreducible.

The new methods found application in some other problems of the analytic
theory (such as the Birkhoff problem about the standard form of a system in
a neighborhood of an irregular special point). It should be mentioned that
Bolibrukh usually considered vector bundles instead of integral equations; such
a geometric approach was used for the first time by H. Rohrl exactly in the
beginning of the past two decades (his paper contains, in particular, a different
proof of the Plemelj theorem); another persistent “ingredient” of his papers is
A. Levelt’s improvement (1961) of the classical local theory constructed in the
past century (largely by L. Fuchs and H. Poincaré). A presentation of this topic
(although it has become already not quite complete) is given in [90].

A nonlinear analogue of the Riemann–Hilbert problem can be stated (and
investigated) [91].

A. A. Bolibruch’s posthumous paper “Differential equations with meromor-
phic coefficients” in Contemporary Problems of Mathematics, issue 1 (Moscow:
Mat. Inst. im. V. A. Steklova, 2003), pp. 29–83, contains a survey of some of his

85 This, undoubtedly, was one of the best papers among those published in Matematicheskie
Zametki (if not the best one). Although Zametki are translated into English (as Mathematical
Notes), this paper was not translated, because, at that time, the rubric of brief communica-
tions (where the most recent novelties are published) was not translated at all!
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results. Note also his lectures Fuchsian Differential Equations and Holomorphic
Bundles (Moscow: MTsNMO, 2000) [in Russian].

2.3 The Dulac conjecture

The conjecture was that the system of two equations
.
x = f(x, y), .

y = g(x, y) (30)

in R2, where f and g are polynomials (say, of the nth degree), can have only
finitely many limit cycles. Below, we denote the number of these cycles by
L(f, g). H. Dulac himself regarded the statement “L(f, g) < ∞” as a theorem
which he proved (1923) rather than as a conjecture. In reality, Dulac correctly
understood that the proof reduces to analyzing the first-return map along a
polycycle86 and that the difficulty of the problem is related to the nonanalyticity
of this mapping; he established some properties of the first-return map, but
they were insufficient for making the required conclusion that it could have
only finitely many fixed points. In 1977, F. Dumortier cast doubts on the
completeness of Dulac’s argument. In the summer of 1981, R. Moussu made
these doubts a subject of an extensive discussion by writing to several colleagues
about them. Independently, in the same summer, Yu. S. Il’yashenko found
a mistake in Dulac’s memoir (his position was more categorical: he directly
indicated a mistake at a particular place), after which the Dulac theorem was
renamed the Dulac conjecture. In the literature, renaming was accomplished,
apparently, in the preprint of Yu. S. Il’yashenko cited in the survey [88] already
mentioned and, then, in this survey. Paper [92] summarizes this stage of critical
familiarization with Dulac’s memoir (to which, certainly, many other things
were added).

Now, the Dulac conjecture is proved completely. For n = 2, this was done
by R. Bamon (R. Bamon. Quadratic vector fields in the plane have a finite
number of limit cycles. Inst. Hautes Etudes Sci. Publ. Math., 64 (1987), 111–
142) and in the general case, by Yu. S. Il’yashenko and J. Ecalle [93, 94]. The
methods used by Il’yashenko and Ecalle are different; both of them were ap-
plied to other problems too. The theory of Il’yashenko is called geometric,

86 A polycycle is a closed curve L formed by separatrices joining some equilibrium points
and by these points themselves, where the directions of motion (with increasing t) along
the separatrices correspond to the same traversal direction of L. If L has points of self-
intersection (they can be only equilibrium points), it is additionally required in fact that a
small deformation of the oriented curve L could yield a closed curve without self-intersections
(otherwise, the birth of a limit cycle from the oriented curve L is out of the question).

The term “polycycle” has become popular in recent years, although it is not quite standard
yet, as far as I know. Earlier, the terms “separatrix contour (polygon),” “complex cycle,” etc.
were often used.
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while the approach of Ecalle is related to a new process of summation of diver-
gent series, which is well suited for the analytic theory of ordinary differential
equations. Il’yashenko’s paper “Finiteness theorem for limit cycles” (Usp. Mat.
Nauk, 45 (2) (1990), 143–200) is an introduction to [91], while a brief exposi-
tion of Ecalle’s approach is contained in [95].87 The predecessors of Ecalle (as
far as his summation process is concerned, but not with regard to the Dulac
problem) were J.-P. Ramis and W. Balser. Books [96] and Formal Power Se-
ries and Linear Systems of Meromorphic Ordinary Differential Equations (New
York: Springer, 2000) by Balser is a simplified exposition of this process (from
positions slightly different from Ecalle’s) and a number of its applications (to
problems interesting for Balser himself). Book [96] ends with the proof of a
theorem of B. Braaksma, according to which the formal solutions to nonlinear
meromorphic ordinary differential equations are always summable by the new
process, so there is nothing better to desire!

In this item, it is pertinent to recall Hilbert’s 16th problem. Its first half
refers to real algebraic geometry and the second, to the theory of differential
equations. Each of the halves is an aptly stated large-scale scientific problem,
but, as far as I can judge, they not only formally refer to different fields of
mathematics but also are far from each other in essence, although Hilbert,
apparently, did not completely realize this. We are interested in the second
part of the 16th problem. It consists in obtaining an upper bound for the
number of limit cycles of system (30), where f and g are polynomials of the
nth degree, in the form of an explicit function of n. The very setting of the
problem implies that

H(n) := max
{
L(f, g); f and g are nth-degree polynomials

}
< ∞ (31)

for any n. So far, it is unknown whether this is true.
At one time, I. G. Petrovskii and E. M. Landis [97–99] believed that they

had managed to prove (31) and obtain a bound for H(n); in particular, they
claimed that H(2) = 3. However, it is known now that system (30) in which f
and g are second-degree polynomials can have four limit cycles (the example is
due to Shi Songlin; it is presented in [92, 100]).

Certainly, it often happens that somebody finds a correct approach to a
problem but makes a mistake in implementing it. Sometimes, this is a mere
unfortunate oversight, and sometimes, something essential is missing. But in

87 Concerning [93, 94], Smale remarked in his article mentioned in the preface (S. Smale.
Mathematical problems for the next century. In Mathematics. Frontiers and Perspectives,
eds. V. Arnold, M. Atiyah, P. Lax, and B. Mazur (Providence, RI: Amer. Math. Soc., 2000),
pp. 221–244) that “these two papers have yet to be thoroughly digested by the mathematical
community.”



138 D. V. Anosov

the case under consideration, the situation turned out to be more complicated.
Landis and Petrovskii’s papers contain valuable ideas which influenced the fur-
ther development of the theory of ordinary differential equations in the complex
domain, but as to Hilbert’s 16th problem, the approach suggested in [97, 98] is
blocked by obstacles that have not been overcome so far.

In [97, 98], considerations were transferred to the complex domain, where
the geometric object corresponding to system (30) is a two-dimensional foliation
(foliation with two-dimensional leaves) with singularities (these are the points
where f = g = 0) rather than a system of curves (trajectories). Landis and
Petrovskii discussed some properties of this foliation; for this purpose, they
introduced a system of relevant notions having many things in common with
the general theory of foliations, which arose somewhat earlier and began to
successfully develop at approximately the same time. In other places of [97, 98],
special features of the foliations corresponding to (30) with polynomial f and
g were mentioned; in particular, a discussion of the typical properties of such
foliations was begun. All these considerations are very rich in content. But it
turns out that, in the complex domain, system (30) may have infinitely many
limit cycles (apparently, Petrovskii and Landis allowed such a possibility. Its
careful examination was performed by Yu. S. Il’yashenko; a reference is given
in [88]). Thus, Petrovskii and Landis tried to prove that the number of those
complex limit cycles that can fall in the real domain is comparatively small
and can be estimated explicitly. A systematic verification organized in the
late 1960s by S. P. Novikov at a seminar specially organized for this purpose
(in which I actively participated as “devil’s advocate”) showed that this part
of [97, 98] was groundless (the same conclusion was independently made by
Yu. S. Il’yashenko). But for Hilbert’s 16th problem, this part is crucial.88

Some progress was made in studying two local (with respect to the parame-
ter) versions of Hilbert’s 16th problem. The first version, the study of which was
initiated by Yu. S. Il’yashenko, is concerned with estimating (in terms of the
degree of the corresponding polynomials) the maximum number of limit cycles
which can be born under a polynomial perturbation of a polynomial Hamilto-
nian system (as a rule, of a system with polynomial Hamiltonian). The state
of the art in the mid-1980s is surveyed in [88] (in the section about “weakened
Hilbert’s problem”); after this survey had appeared, the study continued, but
no more recent summary of results was published, as far as I know. Another

88 The part of [97, 98] where the general properties of the foliations under consideration
are discussed contains gaps and inaccuracies (this was mentioned at once by several people),
but the defects of this part can largely be corrected by refining formulations. Landis and
Petrovskii corrected most of them in [99]. But they agreed with the criticism concerning the
passage from general questions to Hilbert’s 16th problem proper only later [101] (after the
seminar mentioned above was held).
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version was suggested by V. I. Arnold. Its initial formulation turned out to be
too optimistic [102]. Now, a weak version is studied; it is known as “Hilbert–
Arnold’s problem,” although formally neither Hilbert nor Arnold stated such
a problem: Prove that, in a typical k-parametric family of vector fields in the
plane R2 (or, after natural extensions, on the projective plane RP2), a polycy-
cle gives birth to only a finite number of limit cycles, which is estimated from
above by a constant depending only on k. This conjecture is proved for poly-
cycles containing only elementary singular points (i.e., such that at least one
eigenvalue of the matrix of linear approximation is nonzero). V. Yu. Kaloshin
obtained a bound of the form eck2

(c is a constant) for the number of possible
limit cycles born in such a situation. (Supposedly, a bound which is polynomial
in k must exist.)

2.4 Homogeneous flows and the Raghunathan conjecture

A significant advance in the theory of DSs of algebraic origin – homogeneous
flows – was M. Ratner’s proof of M. Raghunathan’s conjecture and its metric
analogue (because of this analogy, references to the metric Raghunathan con-
jecture are sometimes encountered; strictly speaking, this is incorrect. Raghu-
nathan himself stated his conjecture only for a special case; the general state-
ment and the metric analogue were suggested by S. Dani). I shall give the
necessary definitions and, simultaneously, some information about homoge-
neous flows.

A homogeneous flow is a DS on a homogeneous space G/D, where G is
a Lie group and D is its closed subgroup; this system is determined by the
left89 action on G/D of some subgroup H ⊂ G: under the action of an element
h ∈ H, a coset gD (an element of G/D) is mapped to hgD. Strictly, the entire
group G acts on G/D on the left, but we are (ultimately) interested only in the
restriction of this action to H. In what follows, we always assume that G/D has
finite volume; this means that there is a finite measure µ on G/D invariant with
respect to the given action of G. (The facts known about more general cases
are largely examples.) In the most popular (and old) examples, the subgroup
H is one-parameter, i.e., H = {ht; t ∈ R}; thus, a flow in the usual sense
(with classical time) is obtained; however, multidimensional subgroups H can
be considered too.

We denote the Lie algebra of the group G by g and the Lie group of all
linear transformations g treated as a vector space by GL(g). The theory of Lie

89 It is assumed that G/D consists of left cosets gD. If we considered right cosets Dg (it
would be better to denote the set of right cosets by D\G, but the standard notation is G/D),
then the homogeneous flow would be determined by the right action.
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groups considered the so-called adjoint representation Ad, which is a certain
homomorphism of Lie groups

Ad: G → GL(g), g �→ Adg

(and determines an action of G on g according to the rule (g,X) �→ Adg x).
Its definition in the general case requires knowing a number of basic facts from
the theory of Lie groups; citing them would take space, while a reader familiar
with these facts should be familiar with the definition of Ad too. But it is easy
to give the definition of Ad in the important special case where G is a matrix
Lie group, i.e., a subgroup of the group of nondegenerate matrices GL(n, R) or
GL(n, C) (with some n) being a smooth submanifold of this group. The group
GL(n, R) or GL(n, C) is an open subset in the space Mat(n, R) or Mat(n, C)
of all matrices (including degenerate ones) of order n. As a vector space (i.e.,
with matrix multiplication disregarded), the matrix space is isomorphic to Rn2

or Cn2
(we consider the matrix coefficients as usual coordinates in Rn2

or Cn2

enumerated differently). Thus, in the case under consideration, G is a subset
of a vector space, and it is clear what G being a smooth submanifold means.
It turns out that g can be regarded merely as the tangent space to G at the
point being the identity matrix I, but it is more convenient to move this space
in parallel to itself from I to 0 (the zero matrix). (Thus, the usual tangent lines
to G at I are the lines I + tA, where t ∈ R or C and A ∈ g.) In this case, the
action of G on g reduces to a mere conjugation of matrices:

Adg X = gXg−1 (g ∈ G ⊂ GL(n, R) or GL(n, C), X ∈ g).

An element g ∈ G is said to be unipotent if all the eigenvalues of the
transformation Adg are equal to 1. A Lie subgroup U ⊂ G is unipotent if
all of its elements are unipotent. A special case is the so-called horospherical
subgroups. A subgroup H ⊂ G is said to be horospherical if there exists an
element g ∈ G such that gnhg−n → e as n → ∞ for all h ∈ H (e is the
identity element of the group G). The term is because, in one special case,
such subgroups are closely related to the so-called horospheres in Lobachevskii
geometry. (The explanation of this relation would be a too lengthy digression,
since it would require describing the group-theoretic interpretation of geodesic
flows on manifolds (or, at least, on surfaces) of constant negative curvature. The
reader familiar with this interpretation, probably, knows about the relation.)
A one-parameter horospherical subgroup is said to be horocycle (because of the
same relation).

A homogeneous flow (generally, with multidimensional time) on a quotient
space G/D of a Lie group G which is obtained under the action of a unipotent
subgroup U ⊂ G on the cosets by left translations is said to be unipotent.
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If the subgroup is horospherical (horocycle), then the flow is also said to be
horospherical (horocycle).

The Raghunathan–Dani conjectures refer to unipotent flows (possibly, with
multidimensional “time”) on quotient spaces G/D of finite volume. The first
conjecture says that the closure of each trajectory of such a flow is a homoge-
neous subspace of finite volume and the second, that if an ergodic measure for
this flow is finite on the compact sets, then is concentrated on a homogeneous
subspace of finite volume and has a simple algebraic description there; to be
more precise, it originates from the Haar measure on the subgroup determin-
ing this homogeneous subspace. The second conjecture was proved by Ratner
without the assumption that G/D has finite volume; only the finiteness of the
ergodic measure under consideration was required.

An important role in the proof is played by a property of one-parameter
unipotent subgroups defined by Ratner (it is called the Ratner property). Ac-
cording to Ratner, this property was suggested to her by her previous works on
homogeneous flows, which were formally concerned with quite different ques-
tions. (In these works, the rigidity phenomenon for horocycle flows was discov-
ered: in certain cases, the existence of a metric isomorphism between two such
flows implies that this isomorphism has an algebraic origin, being obtained from
some inner automorphism of G in combination with a translation by a constant
time along trajectories.) On the other hand, there are a number of papers where
special cases of both conjectures are proved. Most of them are concerned with
horospherical subgroups; the first result of this kind was obtained as early as
1936 by G. A. Hedlund. However, by modern standards, the case of horospher-
ical flows is too simple, and these papers not only considered the conjecture of
Raghunathan and Dani but also (and to a larger extent) contained far-reaching
studies of the topological and metric properties of such flows. G. A. Margulis
established the validity of the topological Raghunathan conjecture in a signif-
icantly more complicated case, namely, for certain one-parameter90 unipotent
(but not horocycle) flows on SL(3, R)/SL(3, Z). This allowed him to prove the
Oppenheim–Davenport conjecture about quadratic forms, which is well known
in number theory (the idea to use unipotent flows in proving this conjecture
dates back to Raghunathan). Then, Margulis and Dani proved the topological
Raghunathan conjecture for all “generic” unipotent flows in the same space and
obtained some results supplementing the preceding number-theoretic results of
Margulis. (In general, it seems that, in works of Margulis et al., a new area of
geometric number theory emerges, where the “scene” is Lie groups and their
homogeneous spaces rather than Euclidean space and the torus. The case of
nilpotent groups, which is closest to the Euclidean case, was considered in this

90 That is, obtained under actions of one-parameter subgroups.
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context before the work of Margulis, but those considerations were aimed to
“group and dynamical” interpretation of known facts rather than to obtaining
new number-theoretic results.)

After both conjectures (topological and metric) were proved, the validity of
some of their generalizations was established. Although, they were not quite
generalizations, because they required the connectedness of U (the question to
what degree this additional requirement is necessary is being discussed), but in
other respects, the conditions on U were relaxed to the following requirements:
(i) U is generated by unipotent elements (Ratner); (ii) U is generated by quasi-
unipotent elements, i.e., by elements g for which the eigenvalues of Adg are
of modulus 1 (A. N. Starkov). In case (i), the conclusions remain the same
as above, and in case (ii), they are somewhat modified (e.g., the closure of a
trajectory is still a manifold, but it is not necessarily a homogeneous space; it
is only related to a homogeneous space in a certain way).

In relation to the Ratner theorem, it is worth mentioning that cases where
the closures of some trajectories are not manifolds had been known for a long
time. G. A. Margulis pointed out that this phenomenon certainly has place if a
one-parameter homogeneous flow has the property of uniform partial hyperbol-
icity, which is well known in the theory of smooth dynamical systems (in the
case under consideration, it is equivalent to the flow being non-quasi-unipotent).

For completeness, I shall mention several older results on homogeneous
flows. In a certain sense, the theory of homogeneous flows reduces to the the-
ory of ergodic homogeneous flows. Namely, in the nonergodic case, Starkov
described a partitioning of G/D into ergodic components which are finite-fold
covered by homogeneous spaces (although the components themselves are not
necessarily homogeneous spaces); moreover, the restriction of the initial flow to
each component can be lifted to a homogeneous flow on the covering. For this
reason, ergodic flows deserve paramount attention; much information about
their properties related to ergodic theory is gathered. There is a criterion for
the ergodicity of a homogeneous flow in terms of algebraic conditions on the
“input data” that determine the flow. Its main ingredients were obtained by
L. Auslander (the solvable case), C. Moore (the semisimple case), and S. Dani
(the general case); some finishing touches were put independently by Starkov
and D. Witte. Spectra of homogeneous flows were described. For homogeneous
flows, the conjecture of V. A. Rokhlin mentioned in Section 1.3, (a) was proved
(by Starkov on the basis of the Ratner metric theorem). For the special case
where G = SL(2, R), fairly many results about the properties of homogeneous
flows (i.e., geodesic and horocycle flows on surfaces G/D of constant negative
curvature) were obtained even without the finiteness assumption on the volume
(which is area in the case under consideration) of the surface G/D (although
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the question is far from exhausted). This is closely related to actions of Fuch-
sian groups on the Poincaré disk, and these actions attract attention for more
than 100 years already. The summary of results given in [103] makes it possible
to compare properties of flows and actions.

Homogeneous flows are the subject-matter of Ratner’s report [104], surveys
[105–107], and book [108].

2.5 The Seifert conjecture

This conjecture was that a smooth flow without equilibrium points on the
three-dimensional sphere S3 must have a closed trajectory. It was bases on
the theorem of G. Seifert according to which all flows obtained by small per-
turbations of the Hopf flow, which is described below, have closed trajectories.

Let us represent the three-dimensional sphere S3 as the set of those points
(z, w) of the two-dimensional complex plane C2 (which is four-dimensional from
the real point of view) for which |z|2 + |w|2 = 1. The phase velocity of the Hopf
flow is the vector field that assigns the vector (iz, iw) to a point (z, w). The
trajectories of the Hopf flow are the circles {eitz, eitw}; the partitioning of S3

into these circles is the Hopf fibration,91 which is well known in topology; hence
the term “flow.” In addition to the proof given by Seifert himself, there exist at
least two other proofs of his theorem due to F. B. Fuller and M. Bottkol (some
references and an exposition of Fuller’s idea are given in [79]). Fuller used
the Fuller index, which is a topological characteristic (introduced by Fuller) of
the behavior of trajectories near a closed trajectory,92 while Bottkol used an
ingenious version of perturbation theory (suggested by Jürgen Moser in one
paper about periodic solutions near an equilibrium point). Thus, the methods
of these works are more general than the results (which can hardly be said about
the proof of Seifert himself). But they also apply only to small perturbations
of the Hopf flow.

The Seifert conjecture is related to the following torus conjecture: if a phase
velocity field on the boundary of the solid torus D2× S1 is directed everywhere
inside (or everywhere outside) the solid torus and has no equilibrium points,
then there is a closed trajectory. Intuitively, this trajectory must make one
turn around the solid torus; thus, the example constructed by Fuller, in which

91 To be more precise, the Hopf fibration is the mapping S3 → S2 obtained by identifying
each of the circles specified into a point. It is related to H. Hopf’s discovery (unexpected at
that time) that the homotopy group π3(S

2) is nontrivial.
92 This index has nothing in common (except the term “index”) with the Conley index

mentioned in Section 1.1. As to classical roots, the Fuller index is related to the Kronecker–
Poincaré index rather than to the Morse index.
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a closed trajectory exists but is homotopic to zero in the solid torus, was a
“warning bell” against too much confidence in näıve intuition.

Both conjectures have been disproved even for analytic flows. This ser-
vice was mainly rendered by K. Kuperberg [109, 110], who constructed C∞-
counterexamples, after which W. Thurston and E. Ghys specified an analytic
modification of the construction. It is worthwhile to mention the contribu-
tions made by previous authors. F. W. Wilson constructed counterexamples to
multidimensional analogues of the Seifert conjecture. That was not a great sur-
prise, since it was rather obvious that, in the multidimensional case, quasiperi-
odic trajectories can completely “replace” periodic trajectories (as in Wilson’s
examples), but part of technical tricks proved useful afterwards. A surprise
was the 1974 counterexample of P. Schweitzer93 (which was “genuine,” three-
dimensional) with flow of smoothness C1. After that, smooth versions of both
conjectures did not inspire great confidence, but it required much effort to im-
prove the smoothness of counterexamples even to C2 (J. Harrison).

Interestingly, the Seifert conjecture is true for the so-called contact flows
(H. Hofer [112]). Contact flows live on odd-dimensional manifolds M2n+1. Such
a flow is defined with the use of a so-called contact form λ, that is, a Pfaffian
form for which the (2n + 1)-dimensional form

λ ∧ dλ ∧ . . . ∧ dλ︸ ︷︷ ︸
n times

(32)

is everywhere nonvanishing. (I omit the smoothness specification.) This defini-
tion resembles the definition of a symplectic structure on an even-dimensional
manifold,94 but there is at least one essential distinction. A symplectic form
does not distinguish any directions at points of M , while a contact form de-
termines a one-dimensional direction at every point x; this is the degeneracy
direction of the form dλ: a vector X ∈ TxM has this direction if

dλ(X, Y ) = 0 for any Y ∈ TxM.

93 The example of Schweitzer is described in Tamura’s book [111].
94 The similarity becomes even more manifest when the following theorem of G. Dar-

boux is taken into account: In a neighborhood of any point x, there are local coordinates
(x1, y1, . . . , xn, yn, z) such that λ = dz +

∑
yi dxi. However, a contact structure is usually

defined not as a mere pair (M, λ) with contact form λ but as the field of 2n-dimensional
tangent subspaces Ex ⊂ TxM , where

Ex = {X ∈ TxM ; λ(X) = 0},
determined by this form on M . Let us specify that only a field Ex of 2n-dimensional tangent
subspaces which is obtained in this way, with the use of some contact form, is called a contact
structure. Equivalently, all contact forms fλ, where f are scalar functions, determine the
same contact structure as λ.
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In addition, a vector Xx ∈ TxM with this direction for which λ(Xx) = 1 is
fixed. The vector field X is sometimes called the field of G. Reeb. A contact
flow is a flow with phase velocity field X.

In reality, the Hofer theorem is more general; it asserts that, if the one-
dimensional cohomology group H1(M, R) for a closed three-dimensional mani-
fold M is trivial, then any contact flow on M has a closed trajectory. This is a
special case of A. Weinstein’s conjecture, in which the manifold is not assumed
to be three-dimensional.

Form (32) can be taken for a volume form on M . (Those who relate the
notion of volume to Riemann geometry should take into account that, if a
nowhere vanishing exterior m-form Ω on a smooth m-manifold M is given,
then M admits a Riemannian metric for which the volume element is expressed
by the form Ω.) It is easy to prove that the contact flows preserve the volume
determined by this form. There arises the question as to whether the Seifert
conjecture is true for any flows preserving volume. G. Kuperberg (K. Kuper-
berg’s son) constructed a counterexample to this conjecture (see a reference
in [110]).



3 Some other achievements

I repeat that the style of this section is often even briefer than that of the
preceding sections; frequently, instead of explaining results, I only cite them.
But I still give references to the literature where part of important results are
presented and references to other papers are made.

3.1

First, there are domains which attracted attention much more than a quarter
century ago and which still remain domains of extensive studies; the directions
of study are more or less the same as before, although these domains were en-
riched by important new ideas, notions, methods, etc. The report of Yoccoz [1]
considers two such directions, which differ in the character of the motions un-
der examination. One of them is concerned with quasiperiodic trajectories and
trajectories close to quasiperiodic in some respect (such as “cantori”), and the
other deals with the hyperbolic behavior of trajectories; again, not only “pure
hyperbolicity” as it was shaped in the 1960s but also similar cases are consid-
ered. As I said, I am not going to duplicate Yoccoz’s report. I shall make only
several small literature additions.

(a) A specific part of the “hyperbolic” theory is formed by the results (ob-
tained largely by French mathematicians, although the initiative was
W. Thurston’s) about three-dimensional Anosov flows and related geometric
questions. The 1991 situation is described in [78]. One of the most recent
works in this area is [113].

(b) In the 1960s, in studying a classical geometric object – geodesic flows
on manifolds of negative curvature – the role played by geometry was definitely
second to the role played by DS theory. During the past 20 years, the role of
geometry noticeably increased, especially when the curvature is assumed to be
only nonnegative rather than strictly negative; see the survey [114] and papers
[115, 116],95 where newer examples (and more references) are given.

95 In [115], for one class of closed manifolds of nonpositive curvature (the so-called manifolds
of rank 1), a partitioning of the unit tangent bundles into two invariant sets (introduced earlier)
such that the behavior of trajectories in infinitesimal terms (in terms of variational equations)
on one of them is, so to speak, more hyperbolic than on the other was studied. If we can
rely on the infinitesimal characteristics, then we can expect that the behavior of trajectories
on the first set is “more stochastic” than on the second. It is shown in [115] that this is so
in two respects (which are closely related), in respect of topological entropy and in respect of
the asymptotic behavior of the number of closed geodesics of length � T with increasing T .

146
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(c) Yoccoz paid comparatively little attention to special properties of in-
variant measures in the case where the trajectories have hyperbolic behavior.
Relatively old results (part of which are supposed to be known in [1]) are given
in [2]. Next, I mention the recent paper [117] (where some references to earlier
works are cited), which has completed the many-year efforts in studying some
old well-known questions about hyperbolic measures. A compactly supported
normalized measure µ invariant with respect to a diffeomorphism f : M → M
(which is assumed to be of class C1+ε in what follows) is said to be hyperbolic if
the iterations of the mapping f (to be more precise, of its “tangent extension,”
“differential,” or “derivative” Tf) “exponentially” change the tangent vectors
almost everywhere (in the sense of this measure), i.e., if

lim
n→∞

ln ‖TxfnX‖
n

�= 0

for all X ∈ TxM at almost all x ∈M .
The main result of [117] is a metric analogue of the well-known topological

fact about the local structure of hyperbolic sets, which is mentioned in any
textbook or survey on hyperbolic theory. If A is a locally maximal hyperbolic
set, then locally (in a neighborhood of any point x ∈ A) is has the structure
of the direct product of some set B in the local unstable fiber W u

loc(x) and
some set C in the locally stable fiber W s

loc(x); a point (y, z) ∈ B × C corre-
sponds to the point of the set A that lies in the intersection of the local stable
fiber W s

loc(y) passing through y with the locally unstable fiber W u
loc(z) passing

through z. (I omit the details.) This fact is frequently used, and its weakened
version holds for nonuniform hyperbolicity. Having the local structure of direct
product, it is natural to ask whether each hyperbolic invariant measure can be
represented as the direct product of a measure on W u

loc(x) and a measure on
W s

loc(x). For nonhyperbolic measures, it would be unnatural to expect that
such a representation holds, and even for hyperbolic measures, there is no hope
to obtain a decomposition of this kind in the general case. However, in [117],
a weakened analogue of a local representation of hyperbolic measures in the
form of such a direct products is obtained; roughly speaking, the representa-
tion holds with an error, which is an additional multiplier that varies slower
than an arbitrarily small power of ε with decreasing the size of the spherical
ε-neighborhood of a point x. An additional information about the properties
of the measure-“factors” is also obtained.

Although [115] is outwardly as analytical as the 1960s works, it uses, in addition to the notion
of rank 1 and the two sets mentioned above, the following objects of geometric origin: the
Buseman function, the absolute, and some measures on the absolute constructed with the use
of a trick similar to the Poincaré series in the theory of automorphic forms.
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In relation to this question, it is also proved in [117] that hyperbolic mea-
sures have some “good” properties, which do not generally hold for arbitrary
invariant measures of dynamical systems. For example, as is known, there ex-
ist different notions of the dimension of a set; each of them reflects, in some
reasonable way, properties that are natural to regard as “dimensional.” In the
general case, different dimensions do not coincide, but they do coincide for
“good” sets. It is less well-known that, similarly, there exist different notions of
dimension for measures. It turns out that, for hyperbolic measures, a number
of dimensions coincide.

The very statements of these results may seem “technical” (in other places,
I cited results whose statements sounded more “directly”), but since I have
once played a certain role in the creation of hyperbolic theory, I believe, I may
permit myself to rely on my impression of their importance. Yet, I have already
mentioned that the selection of material for Section 3 was more subjective than
for Sections 1 and 2.

(d) In addition to [1], where cantori were considered, there are earlier pa-
pers concerning similar objects for certain flows [118–120] and papers in which
three approaches different from that of [1] were developed. A. B. Katok [121]
mentioned the possibility of employing old ideas of G. Birkhoff to study the cor-
responding invariant sets for two-dimensional diffeomorphisms. A. Fathi [122]
treats cantori as a kind of generalized solutions (of the type of their most recent
version, the so-called viscous solutions) to the Hamilton–Jacobi equation. Fi-
nally, R. Mañé made new observations related to superlinear Lagrangians; they
concern not only cantori (see [123, 124]).

Another example of a successful continuation of the activity begun earlier
is the works of A. D. Bruno and his collaborators in local theory (see [88, 125]).
From the time of Poincaré (or even earlier), the most important method of
local theory consists in constructing a formal (i.e., represented by formal power
series) “normalizing” transformation which reduces a (local) flow near an equi-
librium point or a diffeomorphism near a fixed point to a certain simpler form,
called the normal form. The members of Bruno’s group have studied a wide
circle of related questions with maximal completeness and considered many
applications. The questions concerning normal forms include constructing nor-
malizing transformations (one of the services rendered by A. D. Bruno earlier
is a geometric trick, which applies to the multidimensional case and generalizes
the Newton polygon96), studying the structure of normal forms and the possi-
bilities suggested by the ambiguity of the construction (when it takes place),

96 This method applies also to locally studying systems of algebraic equations; as is known,
the polygon was invented by Newton for precisely this purpose in the special case of one
equation with two unknowns.
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and analyzing the convergence of the constructed transformations. The appli-
cations refer not only to ordinary differential equations proper (including those
depending on parameters, which is important for bifurcation theory), but also
to some partial differential equations.

When some method is well elaborated, the “nontriviality” of a problem
can be estimated by the degree of completeness to which it can be studied by
this method and the amount of additional considerations needed to solve it.
Some people do not understand this; hence the epigraph (quotation from Mark
Twain) to Bruno’s book alluding to an uncle who wondered what happens
to failed mechanics, gunsmith, shoemakers, metalworkers, engineers... Mark
Twain believed that they become watch-makers, while Bruno hinted that their
“abilities” can find a different application...

3.2 The theory of singular perturbations

This is one more example of a successful continuation of studies begun earlier.
The theory deals with systems of ordinary differential equations of the form

ε
.
x = f(x, y, ε), .

y = g(x, y, ε), (33)

where ε is a small parameter. “Singular” means that the small parameter is
included as a multiplier of the derivative rather than as a mere parameter on
which the right-hand side of the system depends (the right-hand side of (33)
may depend on ε too, but this is not so essential). Certainly, we can introduce
a new (“slow”) time s := t/ε and, denoting differentiation with respect to it by
prime, rewrite (33) as

.
x = f(x, y, ε), .

y = εg(x, y, ε). (34)

Now, ε is contained only in the right-hand side, but in the new terms, to an
interval of time t having finite length T , there corresponds an interval of slow
time s having length T/ε, which unboundedly increases as ε → 0 (whereas we,
naturally, want to study the behavior of solutions to (33) at least on a finite
time interval not decreasing as ε→ 0); thus, anyway, the obtained perturbation
problem is not quite usual.

In any case, clearly, x varies much faster than y, and therefore, the properties
of the solutions depend mainly on the properties of the system of “fast motions”

.
x = f(x, y, 0), (35)

in which y plays the role of a constant parameter. Under additional assumptions
about (35), an attempt to describe slower variation of y can be made.
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The simplest case is in which the solutions to (35) tend (as t → ∞) to an
exponentially stable equilibrium point x0(y), which, in general, depends on the
“parameter” y. In this case, it is natural to assume that this y in system (33)
changes with time approximately as a solution to the system

.
y = g(x0(y), y, 0). (36)

If the solutions to (36) tend to an exponentially stable equilibrium point y0 or
to an exponentially stable closed trajectory l0 with increasing time, then the
solutions to (33) also tend to an equilibrium point (namely, to (x0(y0), y0)) or,
respectively, to a closed trajectory Lε near the curve L0 := {(x0(y), y); y ∈ l0}.
Results of this kind (certainly, under appropriately refined conditions on the
system) were obtained about 50 years ago. It is possible not only to prove
the assertion about the limit of trajectories as ε → 0 but also to study their
dependence on ε in more detail, namely, to obtain an asymptotic expansion up
to an arbitrary power of ε for these trajectories. For the periodic trajectory Lε,
an asymptotic series in the powers of ε is obtained, while for trajectories with
a fixed initial value (x′, y′), where x′ �= x0(y′), the corresponding expansion
contains also terms including ln ε. The uniqueness of a closed trajectory Lε

near L0 can be proved as well. This result somewhat differs in character from
that on the asymptotic behavior of Lε. Indeed, a priori, there might exist two
closed trajectories L′

ε and L′′
ε at a “distance” of higher order of smallness than

any power of ε apart, say, of exponential order O(e−1/ε) or O(e−1/
√

ε). The
above-mentioned asymptotic expansion up to an arbitrary εn could not “feel”
this.

A more complicated situation occurs when, at some (“bifurcation”) values
of y, two equilibrium points of system (35) (the stable point x0(y) and some
unstable point) merge but (35) has a stable equilibrium point x1(y) somewhere
away from this “junction” point to which the trajectory under consideration can
be “attracted” after passing the bifurcation value y. Suppose that those y for
which such a junction occurs form a smooth hypersurface M in the y space (to
be more precise, analytical condition on M under which this is so are imposed)
and that trajectories of system (36) reach M having direction transversal to M
(this can be stated in the form of explicit conditions on f and g). If this is
so for a trajectory of system (36) to which the y-component of the trajectory
of system (33) under consideration is close, then it is natural to suppose that,
after this moment, the latter trajectory quickly passes to x1(y) and, then, its
y-component is close to the trajectory y(t) of system (36) in which x0(y) is
replaced by x1(y) and the x-component is close to x1(y(t)). This process may
repeat itself. Then, we may expect that the trajectories of system (33) consist
of arcs of two types: some of them are similar to those described above in the
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simpler situation and close to arcs of the form {(xi(yi(t)), yi(t))}, where the
yi are solutions to systems of form (36) (with some xi(y) instead of x0(y)), and
the others are close to some arcs each going from two merged equilibrium points
of system (35) to some stable equilibrium point. The arcs of the first type can
be traversed in finite time, and the arcs of the second type can be traversed
very quickly. It is easy to understand that such a system of arcs may form a
closed curve L0. In this case, we may expect that (again, under appropriately
refined conditions), for small ε, (33) has a closed trajectory Lε near L0. It is
worth mentioning that such objects are known in physics, where they provide
a mathematical description for some types of relaxation oscillations.97

The study of these questions began in the 1940s with a consideration of the
case where x and y are “one-dimensional” (by J. Haag and A. A. Dorodnitsyn).
In the 1950s, L. S. Pontryagin and E. F. Mishchenko obtained important results
in the multidimensional case. They determined the first terms of asymptotic
expansions for various arcs of trajectories and for the periodic trajectory Lε

and its period. These asymptotic expansions turned out to be significantly
more complex than in the case considered above (they involve fractional powers
of ε), and they could hardly be predicted. Somewhat later, N. Kh. Rozov
clarified the structure of the entire asymptotic expansion in the case of one-
dimensional x and y. In this case, the uniqueness of a closed trajectory Lε is
proved very easily, so the theory had acquired a certain completeness, while in
the multidimensional case, the questions about the uniqueness of Lε and about
the structure of the whole asymptotic expansion remained open. (The state of

97 The original meaning of this term was related to the physical nature of oscillatory sys-
tems. Relaxation systems were opposed to systems of different (more usual) character (which
were called Thomson type systems at one time); an example of the latter is the usual ra-
diogenerator. It includes an oscillation contour, supplied with energy; on the other hand,
the contour “loses” energy, mainly because of generator’s radiation (which is the generator is
created for) and partly because of resistance. The stable periodic trajectory describing the
generated oscillations is close to one of the trajectories describing the free oscillations of the
contour, and its amplitude is determined by the balance between the supplied and lost en-
ergy. In a relaxation oscillatory system, oscillations arise otherwise: first, in some part of the
system, energy is somehow accumulated, and then, the accumulated energy is “discharged”
in a different part of the system (hence the term, which comes from relaxation – relief, dis-
charge). Depending on the structure of the system, this process can be “balanced” in such a
way that the oscillations be similar to harmonic oscillations (although there is no oscillatory
contour); but the discharge may also be very fast in comparison with the slower accumulation
of energy, and the oscillation is then “close to discontinuous” (“discontinuity” corresponds to
discharge). In the latter case, a mathematical description of the system is often given by a
system of form (33), in which, as the “slow” variable y varies, the phenomena briefly described
above (junction of two equilibrium points, etc.) occur; the small parameter ε is “responsible”
for the rate of discharge. In the mathematical literature, there is the tradition to use the term
“relaxation oscillations” only in this latter case.
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the art in the beginning of the period under consideration is described in detail
in [126].)

Answers to these questions were found about 10 years ago. The uniqueness
of Lε was proved independently by C. Bonet and four Russian mathematicians,
E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov (see [127]).

Recall that one of the conditions above was that, when a trajectory of sys-
tem (36) reaches the hypersurface M (where stable and unstable equilibrium
points of system (35) merge), the vector g(x0(y), y, 0) (determining the direc-
tion of this trajectory) is transversal to M . The question arises: How do the
trajectories of system (33) near the point where g(x0(y), y, 0) is tangent to M
behave? The existence of such points is a phenomenon fairly “typical” in the
obvious sense, except in the case where y is “one-dimensional,” so the question
cannot be brushed aside as referring to some exceptional situation. If y is one-
dimensional (so that M is merely a point), then the question does refer to an
exceptional situation, but if (33) depends on a parameter a, then such a situa-
tion may arise for some a = a0, and it becomes sufficiently “typical.” In such
a case, the natural problem of studying the behavior of solutions to (33) not
only for a = a0 but also for values of a close to a0 arises. Replacing ε by 0 on
the right-hand side of (33), we obtain a somewhat simplified system for which
the point M is equilibrium. When a varies on some interval, in system (33)
(not simplified), an equilibrium point close to M experiences a bifurcation. Of
special interest is the case where this is a Hopf bifurcation; it is interesting to
watch how the newborn limit cycle, first small and having almost elliptic form,
grows with varying a into a quite different “almost discontinuous” limit cycle
considered above.

This last question was investigated first. The study was performed in the be-
ginning of the period under consideration by a group of French mathematicians
related to Strasbourg (E. Benoit, F. and M. Dieners, J.-L. Callot, A. Troesch,
E. Urlacher, and others); the initiative was due to G. Reeb (renowned for his
contribution to foliation theory); see [128–131]. Somebody found the “grow-
ing” (with changing a) limit cycle to resemble a flying duck at some values of a;
its different parts were given the corresponding names, from “bill” to “tail.”
Soon, all the trajectories involved in these problems (including those where the
parameter a was absent but y was “non-one-dimensional”) came to be called
“duck trajectories” (even nonclosed ones, let alone the absence of similarity
with ducks – flying, swimming, walking, or fried), and the whole research area
was called “hunting ducks.” A distinguishing feature of the French works was a
systematic use of nonstandard analysis (see [128, 129]). Apparently, the French
authors, as well as the authors of [129], believed that the language of nonstan-
dard analysis is more convenient for arguing in problems of this kind (including
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constructing various asymptotic expansions). The statements of final asser-
tions, even when given in the nonstandard language, are easy to translate into
the standard language; moreover, the authors of [128, 129] sometimes expressly
explain how to do this. Though, the paper [130] initiated the employment of
only standard mathematics in “hunting ducks.” In [127], a number of questions
about “ducks” for “non-one-dimensional” y was studied within the framework
of standard analysis.

Obviously, as y varies, an equilibrium x0(y) of system (35) may suffer a bifur-
cation of a different kind, when a stable limit cycle branches off this equilibrium
and the equilibrium itself persists but becomes unstable. Seemingly, we might
then expect that the trajectory of system (33) rapidly approaches the limit cy-
cle. But in reality, the situation is more complex. The phenomenon of “stability
loss delay,” when the x-component of the trajectory remains near x0(y) for a
long time after the bifurcation (while the y-component changes approximately
according to (36)), is possible (and even typical in a certain sense). The study
of this phenomenon was initiated by L. S. Pontryagin and M. A. Shishkova in
1973 for one special (but quite “representative”) case. Fairly complete results
in the general case were obtained over 10 years later by A. I. Neishtadt. Ref-
erences are given in [52]; see also [131–133]. In [134], a similar phenomenon
related to the loss of stability of a cycle is discussed.

Furthermore, for all the y under consideration, the trajectories of (35) may
tend to a stable closed trajectory C(y) rather than to an equilibrium. In this
case, it is natural to expect that the x-component of the solution to (33) with
initial value (x′, y′) rapidly approaches C(y′) and, then, always remains near
C(y), where y is the y-component of the trajectory under consideration, and the
evolution of y is approximately described by the equation .

y = g(x, y, 0) averaged
along C(y). Again, we can consider the case where the averaged system has
an exponentially stable equilibrium or an exponentially stable closed trajectory.
The main work has essentially been done by N. M. Krylov and N. N. Bogolyubov
(and by a number of other authors in special cases) long before the beginning of
the period under consideration, but they considered the problem in a somewhat
different setting; in the spirit of the approach presented here, the problem has
been studied by L. S. Pontryagin and L. V. Rodygin in 1960 (see [126]).

In the case considered above, in system (35), a one-frequency oscillation
mode is established. It is also quite possible that multifrequency oscillations
occur from the very beginning (without a transition process). If they do not
depend on y, then the question reduces to studying the behavior of the so-
lutions to the equation .

y = g(t, y, φ) with “multifrequency” dependence of g
on t. Important results on problems of this type were obtained (also before the
period we are interested in) by N. N. Bogolyubov and his collaborators (first of
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all, by Yu. A. Mitropol’skii). Of a different character is the situation where the
multifrequency oscillations in (35) depend on y. Seemingly, in this case, general
results can hardly be obtained, because in realistic problems, the character of
the corresponding trajectory of (35) may change substantially under an arbi-
trarily small change of the initial values (x′, y′). For example, it may be dense
on a torus of large dimension or be a closed trajectory for very close initial
values. Over what should the equation for y be averaged in such a situation?

In 1960, I pointed out that it is possible to obtain a completely satisfactory
answer in a sufficiently general case98 by considering the behavior of only a
“majority” of trajectories rather than that of all of them. The “exceptional”
trajectories, for which the averaging method in its natural (or “näıve”?) setting
does not work, correspond to a set of initial values whose measure tends to zero
as ε → 0. To be more precise, for fixed δ > 0 and T > 0, the measure µδ,T (ε)
of the set of those (x′, y′) for which the error of the averaging method on the
interval [0, T ] exceeds δ tends to zero. What we consider is, so to speak, the
convergence of solutions (as ε → 0) in the measure of initial values. Simulta-
neously, related but less general (at least, formally) results were obtained by
T. Kasuga.

I did not estimate µδ,T (ε) but only proved that this value tends to 0 as
ε → 0, because the theorem was so general that I could not hope for such an
estimate (at least, for any satisfactory estimate). About 15 years later, i.e.,
in the beginning of the period under consideration, it turned out that such an
estimate can be obtained under reasonable restrictions, namely, when there are
“true” multifrequency oscillations in (35) (solutions are quasiperiodic). The
most essential step was made by A. I. Neishtadt, who considered the important
case where the dependence of the basis frequencies of these oscillations on y is
nondegenerate. He showed that µδ,T (ε) is at most proportional to

√
ε/δ, and

in the class of power estimates this result is final: there exist examples where
µδ,T (ε) differs from

√
ε/δ only by a not very substantial logarithmic factor.

Later, by the same methods, results of this kind were extended (with suitable
modifications) to some systems with degenerate dependence of frequencies on y;
most of the progress was made by V. I. Bakhtin [135]. References to earlier
works are given in [136].

98 Properly speaking, we do not even assume the presence of multifrequency oscillations in
system (35); we suppose that, for each y, the system has a “good” invariant measure and a
“good” system of first integrals I1(x, y), . . . , Ik(x, y), and it is ergodic on almost all surfaces
Ij = const.
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3.3 Exponentially small effects in perturbation theory

Properly speaking, even many of the results mentioned in Section 3.2 go beyond
the “power” perturbation theory, because even for analytic systems, the corre-
sponding series in powers of the small parameter usually diverge, and therefore,
any assertion about the existence and uniqueness of a closed trajectory (much
more, of a quasiperiodic solution) are related to something beyond this theory.
But these are assertions of qualitative character. During the past 25 years, a
number of quantitative results which refer to exponentially small effects were
obtained. The results on stability loss mentioned in Section 3.2 are partly of
such a character. Some other directions in which such results were obtained are

(a) the problem of separating motions;
(b) the problem of splitting separatrices;
(c) the problem about the preservation of adiabatic invariants;
(d) Nekhoroshev’s theory;
(e) the problem about Arnold diffusion.

Some information and references can be found in [52, 136, 137]. Additional
references are (only works of the past 25-years are included, but they contain
references to those comparatively few earlier works that are not mentioned in
the books cited above):

(a) [132, 134, 138];
(b) [139–142];
(d) [143–145];
(e) [144].

3.4 The entropy formula

Even before the period under consideration began, the conjecture that, for any
compact smooth manifold M and smooth mapping f : M → M , the topo-
logical entropy htop(f) is not smaller than the spectral radius of the induced
mapping f∗ in the “complete” homology group H∗(M, R) :=

⊕
Hi(M, R) with

real coefficients was stated. The situation in the beginning of this period is
described in [146]. This conjecture has been proved by Yomdin [147–149].

3.5 Integrable and nonintegrable systems

The problem of integrating differential equations (i.e., solving them) is as old
as the theory of differential equations itself. Some time (before Cauchy), the
theory of differential equations (which was not formally regarded as a sepa-
rate section of analysis at that time) consisted mainly of tricks developed for
integrating certain equations or classes of equations. (Though, almost simul-
taneously, methods of perturbation theory arose in celestial mechanics. But
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apparently, at that time, they were regarded as a part of celestial mechanics
rather than of the theory of differential equations.) Sometimes, first integrals
instead of solutions are found. (The authors who say “solution” instead of
“integral” often abbreviate “first integral” to “integral.”)

It is pertinent here to explain what is the origin of the terminology. The
term “integration” is used because solving a differential equation can be re-
garded as a generalization of usual integration (

∫
f(x) dx is a solution to the

simplest differential equation dy

dx
= f(x)). For this reason, the functions which

are solutions to differential equations (and tuples of functions which are solu-
tions to systems of differential equations) are called integrals of these equations
(systems). Nowadays, they are most often called simply solutions (as in this
paper), although the same term then refers to a function satisfying an equation
and to the process of finding this function. (Still, Bourbaki retained the archaic
terminology.) As opposed to an integral, a first integral is a function constant
along a solution. The term is used because the first stage in seeking a solution
(“integral”) is finding a first integral or, in the case of a system, a “complete”
system of first integrals, i.e., a system of functions F1, . . . , Fk such that any
solution satisfies the system of equations

F1 = c1 = const, . . . , Fk = ck = const (37)

for some c1, . . . , ck. When such functions Fi are known, solving a system of
differential equations reduces to solving the “finite” system (37). It was believed
that the latter system is simpler and, anyway, solving it is beyond the scope of
the theory of differential equations. In practice, when the first integrals were
any complicated, this second stage of solution turned out be far from easy.
In problems that were solved in practice (except in very simple ones), at this
stage, complicated elliptic-type functions were employed. It is easy to believe
that, for more complex first integrals, system (37) can be solved only on a
computer, which is, generally, not at all easier (it is often even harder) than
numerical integration of the initial system of differential equations. Even so,
the knowledge of the first integrals may allow us to make qualitative conclusions
about the behavior of solutions that by no means can be immediately seen from
the system of differential equations itself.

Naturally, at the early stage of the development of the theory, a large number
of relatively simple problems were integrated; integrating them was often a
matter of luck. Any handbook contains many examples of this kind, which are,
so to speak, “odd” in the sense that each of them was integrated on its own,
out of any relation to other problems. Many of the integrated problems refer to
analytical mechanics, which had long been the main “consumer” of the theory
of differential equations and of analysis in general.
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Integrability has somewhat different meanings in the “general” theory of
ordinary differential equations and in analytical mechanics (which deals with
Euler–Lagrange or Hamilton equations). In the general theory, integrability
usually means that the function f of interest to us (which is a solution or a
first integral; in the case of a system of ordinary differential equations, several
first integrals forming a complete system may be considered) is obtained from
the simplest functions, polynomials, by applying certain operations. These
operations are the algebraic operations, differentiation, (indefinite) integration,
and exponentiation (passage from g to eg). Obviously, such an f has an explicit
expression, which generally contains integrals (“quadratures”) that may not
always be “taken”; for this reason, f is said to be represented by quadratures,
and the differential equation (system) is said to be integrated by quadratures.
The list of operations does not include a number of “elementary functions,” such
as logarithm and direct and inverse trigonometric functions. However, it is easy
to see that, in constructing f , they can be replaced by the operations specified

above. For example, ln g =
∫ g′

g
dx. Sometimes, one more operation is added

to the list, namely, that of solving an algebraic equation whose coefficients
are already constructed functions. In this case, generally, f has no explicit
expression, and it is said to be represented by generalized quadratures.

In analytical mechanics, integrability usually means the existence of a com-
plete system of first integrals which are either comparatively simple (algebraic)
or arbitrary analytic functions of coordinates in the phase space. The case
where the first integrals are represented by quadratures is not distinguished.
In the problems that have been integrated, both classical and new, the first
integrals are often algebraic (or even rational) functions of suitably introduced
coordinates. Negative results (that a certain system has no first integrals or
has no complete system of first integrals) are usually much easier to obtain for
algebraic integrals than for analytic ones. At the same time, the answer to
the question whether or not a given function on the phase space is algebraic
depends on the coordinates; thus, negative results on algebraic first integrals
also depend on coordinates, and we cannot be sure that the system would not
become integrable if some other phase variables were used.

There is yet another version of the notion of integrability, which goes back
to S. V. Kovalevskaya. It is generally known that she found a new case where
the equations of motion of a heavy solid body admit a fourth integral99 and,
eventually, a complete system of first integrals. It is less well-known that her
work was largely related to the problem: In what cases all solutions, when

99 To pedantically observe the distinction between “integrals” and “first integrals,” we
should say “a fourth first integral,” strange as it sounds.
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considered in the complex domain, are meromorphic functions of time?100 (The
existence of the fourth integral in the new case which she revealed (as well as
in the cases known earlier) was obtained as a byproduct.) In this connection,
the term “Kovalevskaya integrability” has come into use.

There exist no general integration methods as universal as the differenti-
ation rules. Still, a number of important problems of analytical mechanics
(which are stated mathematically in the form of Euler–Lagrange or Hamilton
equations) was solved on the basis of only two (partially overlapping) methods.
First, in the presence of continuous symmetry groups, these problems have the
corresponding first integrals (this is a theorem of E. Noether). Secondly, we can
pass to a certain partial differential equation (the Hamilton–Jacobi equation)
and try to choose coordinates in which the variables are separated. There is no
guarantee that one of these methods applies in a particular case; in return, a
number of integrable problems of analytical mechanics were found by proceed-
ing in the reverse direction and trying to find problems to which these methods
do apply. Note that solving problems of this kind (I mean those of them that
have been solved) is usually especially distinctly divided into the two stages
specified above, finding a sufficiently complete system of first integrals and us-
ing these integrals to obtain explicit expressions for the time dependences of
coordinates and momenta. At the first stage, an important role is played by
a theorem of J. Liouville,101 according to which, for a “mechanical” DS with
n degrees of freedom, it is sufficient to find n functionally independent first inte-
grals F1, . . . , Fn such that all the Poisson brackets {Fi, Fj} vanish (in this case,
we say that these integrals are in involution). Even at this stage, far-reaching
qualitative conclusions about the behavior of trajectories can be made; people
were making such conclusions in special cases for a long time, but the general
observation is due to V. I. Arnold (for this reason, the corresponding theorem
is often referred to as the Liouville–Arnold theorem). In principle, when the
variables are separated, the first stage can be obviated, at least, the first in-
tegrals can be not involved explicitly. However, in practice, these integrals do

100 Kovalevskaya pointed out that her results apply also to the more general question: When
are all solutions single-valued functions of complex time? The validity of this assertion was
confirmed by A. M. Lyapunov.

101 As far as I understand, this theorem for the most important case of an autonomous
(i.e., not including time explicitly) n-degree-of-freedom system of equations of mechanics was
first published by little-known mathematician E. Bour, while Liouville generalized it to the
nonautonomous case, which does not play a noticeable role. (Although, Liouville referred to
his earlier oral report. In addition, he proved earlier the special case of this theorem for n = 2,
but this case was essentially known to C. Jacobi and S.-D. Poisson before Liouville.) This
confirms the saying that the affluent gain and the indigent lose. When the conditions of the
Liouville theorem hold, the system is said to be Liouville integrable.



On the development of the theory of dynamical systems 159

arise, and they are given special attention.
Shortly before the beginning of the period under consideration, P. Lax sug-

gested a new, third, integration method (in the sense of finding a system of
first integrals), which is now known as the (L, A)-pair method. To be more
precise, this is a third method for finding integrable problems. It is not re-
lated in some special way to analytic dynamics, but most of its applications
deal with Hamiltonian systems and provide Liouville integrable systems. The
method applies to partial differential equations; actually, it originates from a
study of one of such equations (the Korteweg–de Vries equation), which was
previously considered from different positions. (First, this equation was studied
by numerical methods, and this study was related to earlier works concerned
with other equations and different questions; this is an instructive and dra-
matic story, but it would lead us too far away from our theme. The analytical
study initiated in this connection has led to a discovery of another method for
integrating this equation, which is related to the inverse problem of scattering
theory. Apparently, Lax wanted to comprehend the obtained results from a
different standpoint.) But Lax had understood at once that his method had a
wider domain of applicability.

Probably, the majority of modern applications of the (L, A)-pair method and
its modifications, including the most interesting applications, refer to partial
differential equations. However, the method has produced fairly many results
on ordinary differential equations too.

The method of (L, A)-pairs per se refers to the first stage (finding first
integrals). But very soon after it was discovered, P. Lax and S. P. Novikov
added very important considerations related to the second stage.

If we try to directly apply the proof of the Liouville theorem in order to
obtain explicit expressions for coordinates and momenta as functions of time,
we will find that, for a number of classical problems of mechanics, it first seems
that the analytic functions involved are fairly complicated; however, the answer
can be expressed in terms of comparatively simpler functions by employing
various special considerations. Such simplifications look usually as results of
incidental coincidences. It would be desirable to have some general statements
more directly specifying the functions which are indeed necessary to use. Such
statements can hardly be formulated in a satisfactory and natural way in the
same terms in which the Liouville theorem is stated (if they could, they would
be found approximately a century ago). But it turned out that they can be
formulated with the use of a certain modification of (L, A)-pairs, namely, of
(L, A)-pairs with spectral parameter. Such pairs do not always exist, and when
they do exist, they are harder to find than mere (L, A)-pairs. But in return,
they give much more.
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As well as the “usual” method of (L, A)-pairs, the method of spectral (L, A)-
pairs was extensively applied not only to ordinary differential equations but
also to partial differential equations. This led to a deep study of the algebro-
geometric aspects of integrable systems – so deep that it provoked a discovery
of new facts even in algebraic geometry proper. Although, this discovery was
somewhat related to partial differential equations; in general, in a number of
most important publications on the algebro-geometric aspects of integrable sys-
tems, most attention was given to partial differential equations.102 But recently,
a book has appeared in which the exposition is entirely oriented to Hamiltonian
systems from the very beginning [150]. I also draw reader’s attention to the
recent collection [151] of Russian translations of older papers by J. Moser on
integrable systems.

During the past 25 years, in addition to the discovery of new integrable
systems and study of their properties, some “opposite” results were obtained;
namely, the nonintegrability103 of a number of special systems was proved. The
first results of this kind were obtained about 1900, but the results of that period
were mostly of fairly bounded character. It was usually proved that a system of
mechanical origin had no complete system of algebraic first integrals. Obviously,
the algebraicity of a first integral depends on a coordinate system. Certainly,
when a mechanical problem is said to have no algebraic first integrals except
those already known in mechanics, the coordinates which naturally arise in the
very statement of the problem are meant. Nevertheless, such a result makes an
impression of incompleteness, because it is still possible that “additional” (not
yet known) first integrals exist but are expressed by transcendental functions
in the “natural” coordinates.

To prove “true” nonintegrability, geometric rather algebraic considerations
are needed. Although even Poincaré used them, a systematic interpretation
of these questions was initiated in works of V. M. Alekseev, which appeared
a little less than 10 years before the period under consideration. Then, a sig-
nificant contribution was made by V. V. Kozlov and S. L. Ziglin; see Kozlov’s
survey [152] and [136]. The more recent book [153] contains newer nonintegra-
bility results (in addition to a “positive” information on the integration of a
number of special systems104). Important works of I. A. Taimanov and G. Pa-
ternain are devoted to geodesic flows (see [154]).

102 If I would write a survey on partial differential equations, I should include this subsection
in the section “New or “renewed” directions.” But I write about DS theory, and, as you see,
I included it in Section 3.

103 Here and in what follows, by nonintegrability we mean the lack of Liouville integrability.
104 The method of (L, A)-pairs is mentioned in [153] under the name “Heisenberg represen-

tation.” Spectral (L, A)-pairs are not considered.
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In some cases, the nonexistence of analytic first integrals is considered. To
what degree is analyticity essential? Sometimes it is essential, and sometimes
it is not. An extreme example of the latter situation is Anosov systems with
“good” invariant measure; they do not even have measurable first integrals
(because of ergodicity). But this, as I said, is an extreme example. For systems
with two degrees of freedom, there are fairly good results that ensure (under
certain assumptions) the absence of “additional” first integrals with any decent
smoothness. The main role (as Poincaré anticipated) is played by homoclinic
trajectories (and by the related hyperbolic sets); the other conditions imposed
in nonintegrability theorems are, so to speak, additional. When the number
of degrees of freedom is larger than two, the situation becomes substantially
more complicated: no sufficiently convenient additional conditions are known
yet (leaving aside analytic first integrals).

L. Butler [155] constructed a series of (related to each other) examples
of analytic Riemannian metrics with integrable geodesic flows for which the
“additional” (to the energy integral) first integrals are of class C∞ but not
analytic and the partitioning of the phase space into regions filled with invariant
tori (which are involved in the Liouville–Arnold theorem) do not possess the
geometric properties which would be implied by the analyticity of the first
integrals and which are used to derive constraints on the geometry of the phase
space of an integrable system. Accordingly, these constraints themselves do
not hold. Using the idea of Butler, A. V. Bolsinov and I. A. Taimanov [156]
constructed “improved” examples in which integrable analytic geodesic flows
have positive topological entropies. Moreover, the restrictions of these flows to
certain “exceptional” invariant submanifolds are Anosov flows (notwithstanding
that the properties of Anosov flows and those of integrable flows are, as it were,
two opposite extremes).

3.6 The Conley theory

Up to about 1970, any far-reaching applications of topological methods were
only concerned with systems of a few special types (such as those of variational
nature). The applications of topology to systems of, so to speak, general char-
acter were fairly primitive (this, of course, does not mean that they were not
important). They were largely somehow related to rotation of vector fields on
the boundaries of domains and to the Poincaré–Kronecker index105 of the zeros

105 As is known, in mathematics, there are many objects of various nature called indices
(not counting subscripts and superscripts); for this reason, to avoid confusion, it is necessary
to add some identifying words to the term “index”; these are often the names of the authors
of the corresponding notions. When it is clear from context which index is meant, we say
simply “index.”
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of a vector field. In essence, purely topological (and fairly simple) notions and
assertions were used; they bore no specific relation to dynamical systems.106

There was also the Wazewski principle (to which Conley’s ideas were closely
related). But this principle had long occupied a special, isolated position.

The new notions introduced by Conley are essentially related to dynamical
systems (as well as the Wazewski principle, though), and they require no a pri-
ori assumptions about the special features of the system under consideration.107

Conley emphasizes another aspect of the matter, namely, a kind of “roughness”
(in the same sense as in the phrase “roughly but reliably”) of the corresponding
objects. His theory involves a far-reaching generalization of the classical notion
of Morse index. The point of departure of M. Morse was variational problems,
and he considered indices of nondegenerate critical points of functions; but it is
known for a long time that the Morse index can be considered from a different
angle – from the point of view of the theory of dynamical systems. Namely,
a critical point of a function is an equilibrium point of the corresponding gra-
dient flow, and its Morse index can be interpreted naturally in terms of the
properties of the flow near this equilibrium point. The Conley theory considers
not only equilibrium points but also a large class of so-called isolated (or lo-
cally maximal) compact invariant (i.e., consisting of trajectories) subsets in the
phase space of the flow, which is not necessarily gradient. For these sets, some
topological characteristics are introduced, which retain the name “indices.” To
be more precise, these indices characterize not only the intrinsic structure of
this set proper; rather, they characterize some special features of the behavior
of trajectories near this set. The new indices are more general and complex ob-
jects than the original Morse indices, but they essentially reduce to the Morse
indices in the cases considered by Morse; this justifies the use of the term.

As soon as the new theory emerged, papers on its applications to mathe-
matical questions of celestial mechanics (such as the three-body problem and
related questions) and to problems related to traveling waves started to appear;
later, it was applied to the theory of partial differential equations. Unexpected
was the use of index considerations in the works of C. Conley and E. Zehn-
der mentioned in Section 1.1, which, as I said, played a noticeable role in the
formation of symplectic geometry as a separate discipline of high taxonomy
rank. Although, now the role of “index” considerations in this discipline has

106 Although the work which has to be done to fit a problem under examination into the
corresponding topological framework may be quite nontrivial and essentially depend on the
special features of the dynamical system under consideration.

107 Although, the application of the Conley theory to a given system may be meaningless
or nonimplementable in practice. Such a possibility should be taken into account whenever
and whatever general theory is applied.
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apparently decreased.
The term “Conley theory” is justified by the role played by C. Conley in

the creation and development of this theory. Conley himself pointed out that
R. Easton also played an important role in its creation. Later, a whole group
of authors worked on its development and applications.

A brief exposition of the basic notions of the Conley theory is contained
in [79]. To this theory, the lectures of Conley [157] and Mischaikow [158] are
devoted.

3.7 Singularities in the n-body problem

The problem is to describe the motion of material points (particles) attracting
each other according to Newton’s law. A mathematical description of such a
system is given by a Hamiltonian system in the 6n-dimensional phase space with
variables pi and qi, where i = 1, . . . , 3n. Here q3i−2, q3i−1, q3i are the usual coor-
dinates of the ith particle in the usual (physical) space R3 and p3i−2, p3i−1, p3i

are the projections of its momenta to the coordinate axes in R3. Even not
writing out the system, we can easily understand that it has singularities at
those points where the coordinates of the ith particle coincide with those of
the jth particle for some i �= j. Let us denote the set of such points in the
configuration space (the space of qi variables) by Σ; then the singular points of
the system are the points of the set Σ × R3n. If the initial values (p(0), q(0))
are taken outside this set, then, locally, there exists a solution (p(t), q(t)). It
is not necessarily extendable over the entire positive semi-axis of t values. If
the maximal interval of existence of the solution is finite, say, it is an interval
[0, T ), where T < ∞ (we consider only positive values of t, although this is
inessential), then we say that the solution has a singularity at t = T . (The
vector-function (p(t), q(t)) indeed has a singularity at t = T .) It is easy to
prove that q(t) unboundedly approaches Σ as t → T . If the limit lim q(t) as
t → T exists (it unavoidably belongs Σ), then we say that a collision occurs in
the system at t = T . (The etymology is obvious: in the limit of t → T , two or
more particles are at the same point of the physical space R3). Until recently,
the question whether there exist singularities different from collisions remained
open. It is known that there are no such singularities for n � 3. For n = 2, this
assertion is obvious, and for n = 3, it was proved about 100 years ago.

If a collision is double, then the further motion of the system (during some
time) can be defined in a reasonable (and quite evident) way; this observation
was made very long ago, by L. Euler.108 Euler’s definition of motion after a

108 Voltaire criticized Euler on this account; he said (certainly, he was right) that Euler’s
description of motion after a collision was physically unreal. However, the motion of particles
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double collision does increase the maximal interval of existence of the solution,
but (except in the case of n = 2) not necessarily to infinity. Thus, for n = 3,
the motion may end up with a triple collision (before that, double collisions
may occur, but during a finite time interval ending strictly before the triple
collision).109

Just before the beginning of the past quarter century, J. Mather and
R. McGehee [159] discovered that, even at n = 4, singularities of a differ-
ent type are possible. They found an example where infinitely many double
collisions occur during a finite time T . All four bodies move along the same
stright line in the same direction. In the end, as t → T , the three bodies
move away to infinity; one of them move in one direction and the two others
move in another direction, unboundedly approaching each other (this gives en-
ergy for the whole process). The fourth body oscillates between the two latter
bodies, alternately colliding with each of them. The question arises: Do there
exist singularities which are not collisions and which occur at the end of some
collision-free interval [0, T )? This question cannot be answered by considering
only the one-dimensional case, which complicates the problem. In 1992, Z. Xia
[160] showed that such a phenomenon can occur at n � 5.110 The question
remains open only for n = 4.111

3.8 Stable ergodicity

The C2-smooth Anosov systems with “good” invariant measure are ergodic and
remain ergodic under small (only C1-small) perturbations that break neither the
C2-smoothness of the system nor the presence of a “good” invariant measure.
This property of systems (that they remain ergodic under small (in the sense of
some Cr) perturbations that does not break the presence of a “good” invariant
measure) may be called “stable ergodicity.” The question is: Do there exist
other stably ergodic systems?

which fly very close to each other but still do not collide is real. Euler’s motion after collision
describes the limit of such a motion as the distance between the flying particles under con-
sideration tends to zero. Though, Euler himself motivated his definition of motion for t > T
otherwise, on the basis of its analytical properties.

109 In addition to this qualitative picture, there is an analytical theory, which deals with the
character of functions describing singularities of various collision types. Thus, the situation of
singularities at n = 3 as a whole cannot be summarized in a few sentences. An approximately
fifteen-years-old survey is contained in [136].

110 Xia points out that J. Gerver has established the possibility of singularities which do
not reduce to collisions by a different method in the n-body problem with some large n.

111 The idea to consider motions close to the motions described by Mather and McGehee
but not “fitting” in a straight line but going on in the plane or in R3 suggests itself. However,
so far, this approach has not led to success.



On the development of the theory of dynamical systems 165

A positive answer to this question is due to C. Pugh and M. Shub (whom
other authors joined). First, only separate examples were considered, then
some (although fairly special) classes of stably ergodic systems were revealed.
Certainly, their other ergodic properties (and the behavior of these properties
under perturbations) are interesting too. For some classes of systems, as well as
for the Anosov systems, not only stable ergodicity but also “stable K-property”
and even “stable Bernoulli property” (defined similarly) hold. Undoubtedly, a
new chapter in smooth ergodic theory has begun.

At the time where I was writing this paper, many works in this domain
existed only as preprints. The publications known to me are [161–164]. Close
questions are considered in [165, 166]. These papers consider DSs of special
form (certain skew products) and the preservation of ergodicity and stronger
properties under small perturbations in classes of such systems.

3.9 “Abstract” (purely metric) ergodic theory

My interests are related largely to smooth dynamical systems, which unavoid-
ably determines my attitude to this topic in a very general aspect. During the
preceding period, the main achievements in purely metric ergodic theory were
the development of “entropy” theory and, then, of the Ornstein theory, which
borders on entropy theory; the influence of these achievements on “smooth”
theory is hard to overrate. The achievements of the past 25 years, as far as
I can judge, do not have such an effect. References to works of the preceding
period are given in [4, 45, 167].

On the structure of systems with invariant measure

In what follows, by a DS we understand a dynamical system {φn} with discrete
time in a “good” space X with normalized invariant measure µ (defined on a σ-
algebra B of subsets of X). H. Furstenberg and R. Zimmer [168–171] developed
a theory in which a DS is represented in the form of the “inverse limit” of a
sequence (possibly, transfinite) of DSs which starts with the trivial DS in a space
reducible to one point and in which every DS is a so-called “primitive extension”
of the preceding one (each DS whose number is a transfinite ordinal α being the
limit of an increasing sequence of ordinals is the inverse limit of the sequence of
DSs with numbers β < α). Here, three new notions arise: inverse (or projective)
limit, extension, and primitive extension. I shall not give a precise definition of
any of these notions, but I shall try to explain what they are, at least in part,
neglecting some details and employing analogies.

First, I must tell about extensions of spaces with measure. These are a
kind of analogue of bundles in topology. A space with measure (X, B, λ) is an
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extension of a space with measure (Y,C, µ) (which might be called a base in the
spirit of topology but is more frequently referred to as a factor of (X, B, λ)) if
there is fixed a surjection (“onto” mapping) π : X → Y (“projection” to the
base (factor)) which is measurable (if A ∈ C, then π−1A ∈ B) and preserves
measure (under the same assumption, λ(π−1A) = µ(A)). By analogy with
topology, the sets π−1(y), where y ∈ Y , are called fibers. An example is the
projection of the direct product Y × Z of spaces with measure (Y, C, µ) and
(Z,D, ν), which is endowed with the corresponding σ-algebra of measurable
sets and the measure λ := µ× ν, onto one of the “factors” Y or Z (say, on Z).
In this example, the fiber is π−1(z) = Y × {z}, and on the fiber, the natural
measure λz is defined; this is simply the measure µ of Y “transferred” to the
fiber

(
λz(A × {z}) := µ(A)

)
. By the Fubini theorem, for a measurable set

A ⊂ Y × Z, we have

λ(A) =
∫

Z
λz(A ∩ π−1(z)) dν(z). (38)

Interpreting measures as probabilities, we can (in the spirit of probability the-
ory) interpret λz(A ∩ π−1(z)) as the conditional probability of the “event” A
under the condition z. (Note that, generally, the set of these “conditions” (i.e.,
of points z ∈ Z) is uncountable; therefore, in the case under consideration,
the notion of conditional probability is fairly delicate.) Alternatively, in “pure”
measure theory, a “conditional measure” is considered. It turns out that, for
“good” spaces with measure, a system of “conditional measures” arises on the
fibers of the extension π : X → Y ; each fiber π−1(y) is endowed with its own
measure λy and

λ(A) =
∫

Y
λy(A ∩ π−1(y)) dµ(y),

by analogy with (38). Here and in what follows, I omit the necessary stipulations
on the neglect of sets of measure zero and measurability of various objects. For a
function f on X, such carelessness is admissible when we consider the L2-norms
of its restrictions to various fibers, i.e.,

‖f‖y :=
∫

π−1(y)
|f(x)|2 dλy(x).

In what follows, an analogue of the “layerwise product” of two bundles
is also encountered (it is largely considered as applied to the case of vector
bundles, in which it is called the Whitney sum). Let (X, B, λ) and (Y,C, ν) be
extensions of (Z, D, ν) with projections π and ρ. Their fiberwise product is

X ×Z Y := {(x, y); x ∈ X, y ∈ Y, π(x) = ρ(y)}.
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It is assumed to be endowed with the measure λ×Z µ, where

λ×Z µ(A) :=
∫

Z
λz(A ∩ π−1z)µz(A ∩ ρ−1(z)) dν(z).

The measurable subsets of the space X ×Z Y are defined in such a way that
the last definition makes sense for them; I shall not explain this in more detail.
Note that X ×Z Y can be regarded as a natural extension of Z.

A DS {ψn} in a phase space (X, B, λ) is called an extension of a DS {φn}
in (Y,C, µ) if the former space is represented as an extension of the latter with
projection π and this projection commutes with the corresponding transforma-
tions, i.e., φ ◦ π = π ◦ ψ. If DSs {χn} in X and {ψn} in Y are extensions of a
DS {φn} in Z, then their fiberwise product {(χ×Z ψ)n} is the DS in X ×Z Y
for which

(χ×Z ψ)(x, y) := (χ(x), ψ(y)).

It preserves the fiberwise products of the corresponding measures and is an
extension of the DS {φn} in Z.

Some classes of DS extensions are introduced. We need two classes, “weakly
mixing” and “compact.” In the case where the base reduces to one point, the
corresponding DSs are weakly mixing or metrically isomorphic to group trans-
lations of compact commutative groups. (The DSs of the latter type can also be
characterized as follows: the orbits of the corresponding unitary operator Uφ on
the Hilbert space L2(X, λ) (here (Uφf)(x) := f(φx)) are conditionally compact.
Hence the term. Applying the general definition of a compact extension to the
special case under consideration, we obtain immediately this property.) As is
known, weak mixing is equivalent to the continuity of the DS spectrum (i.e., of
the operator Uφ considered on the orthogonal complement to the constants); in
addition, if the DS is ergodic, then compactness is equivalent to the discrete-
ness of the spectrum. Thus, for ergodic DSs, the two classes introduced above
correspond to DSs with continuous and discrete, respectively, spectra, but now
this is not done in spectral terms.

In the general case, when the base is nontrivial, a weakly mixing extension
of a DS {φn} in Y is defined as an extension {ψn} in X such that its “fiber-
wise square” {(ψ ×Y ψ)n} has no invariant sets except the full preimages of
the invariant sets of the DS {φn} (treated as a quotient DS of {(ψ ×Y ψ)n}).
When Y reduces to one point, we obtain the well-known definition of spectrum
continuity: the Cartesian square ψ×ψ acting on X × X is ergodic. One of the
definitions of a compact extension is as follows. In L2(X, B, λ), the functions f
such that the restrictions

{Uφnf � π−1(y); n is arbitrary} ⊂ L2(π−1(y), λy) (39)
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of the functions Uφnf with all possible n to the fibers π−1 are conditionally
compact subsets are dense; moreover, the ε-nets for such sets with different y
can be chosen so that they are compatible in a certain sense; namely, for any
ε > 0, there exist g1, . . . , gk ∈ L2(X, B, λ) such that their restrictions to the
fibers are ε-networks for sets (39). Thus, both definitions (of weakly mixing and
compact extensions) are, as it were, “fiberwise” modifications of the definitions
of weakly mixing and conditionally compact orbits {Uφnf}.

A primitive extension is an extension which is either weakly mixing or com-
pact. Finally, the limit of an inverse system is defined in virtually the same
way as in algebra and topology with the only difference that, in the case under
consideration, we deal with different structures (spaces with measure on which
transformations act), and we must take care of the corresponding structure on
the limit space.

The above definitions and main structural theorem can be generalized to
DSs with nonclassical time ranging over a commutative group G of finite rank.
The most significant change is in the definition of primitive extensions. In the
nonclassical case, an extension is called primitive if G can be represented as
a direct product G1 × G2 in such a way that the extension is compact when
treated as an extension of a DS with time ranging over G1 and weakly mixing
when treated as an extension of a DS with time ranging over G2. Thus, we
cannot ensure that each term of our sequence of extensions is of one of the
two simplest types, but we can ensure that, in each term, these two types are
combined in a simple way.

An application of the ideas of ergodic theory or topological dynamics (such
as the structural theorem [168, 169] or the much simpler considerations from
[172, 169], depending on the situation) to Bernoulli DSs made it possible to
obtain comparatively simple and uniform proofs of a number of theorems of
number theory, including the well-known van der Waerden theorem (which
does not require applying the structural theorem) and the theorem of E. Sze-
meredi, which is the far-reaching development of the van der Waerden theorem
conjectured by P. Erdös and P. Turan. (These two theorems are stated below.)
Many of these theorems were known earlier but, e.g., the n-parameter analogue
of the Szemeredi theorem turned out to be new; its proof in the spirit of original
Szemeredi’s argument would be, apparently, very cumbersome (if possible at
all).

I shall explain the character of such applications of DS theory for the ex-
ample of the van der Waerden theorem, which asserts that, if Z+ (it is a little
more convenient to start with zero) is divided into m disjoint subsets Ai, then,
for any l ∈ N, there exists an i such that Ai contains a “segment” of an arith-
metic progression of length l. It is fairly easy to prove the following assertion:
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If φ : X → X is a continuous self-mapping of a metric compact space, then,
for any l ∈ N, there exist a sequence nk → ∞ and a point x ∈ X such that
φinkx → x for all i = 1, . . . , l. Take a point ξ = {ξn} in {1, . . . , r}Z+ for which
ξn is equal to number of the set Ai that contains n. Let us apply the above-
mentioned assertion to the restriction of the topological Bernoulli shift σ to the
closure X of the trajectory {σnξ}. For the corresponding point x = {xn} and
sufficiently large values of k, the zeroth coordinate of each of the points σinkx
with i = 1, . . . , l coincides with the zeroth coordinate of the point x, i.e.,

x0 = xnk
= x2nk

= x3nk
= . . . = xlnk

.

Since x belongs to the closure of the set {σnξ}, the first lnk coordinates of
the point σjξ coincide with the first lnk coordinates of the point x for some j.
Therefore,

ξj = ξj+nk
= ξj+2nk

= ξj+3nk
= . . . = ξj+lnk

,

which means that the numbers j, j + nk, j + 2nk, j + 3nk, . . . , j + lnk (which
form a segment of an arithmetic progression of length l) belong to the same Ai.

The Szemeredi theorem asserts that, if a subset A ⊂ Z+ has “positive upper
density,” i.e., if

lim
n→∞

the number of elements in A ∩ [an, bn]

bn − an

> 0

for some an, bn ∈ Z+ such that bn − an →∞, then A contains arbitrarily long
segments of geometric progressions. The idea that this theorem can be proved
with the use of some metric (in the sense of measure) analogue of the topo-
logical assertion which so easily implies the van der Waerden theorem suggests
itself. This guess is correct, but the proof of the needed metric assertion112 is
much harder than that of the topological assertion. It is obtained by applying
the structural theorem when “moving” step by step along the corresponding
“sequence” of extensions (this sequence is generally transfinite, so the aforesaid
should be understood cum grano salis).

Multiplicities of spectra

One of the versions of the spectral theorem for a unitary operator U in a
separable Hilbert space H is that U has a model, which is a fairly precisely
determined operator V in an as precisely determined Hilbert space K. The

112 This assertion is that, if φ is an endomorphism of a the Lebesgue space, then, for any
l > 0 and any measurable A with µ(A) > 0, there exists an i > 0 such that

µ(A ∩ φiA ∩ . . . ∩ φliA) > 0.
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operator V is a model for U in the sense that it is conjugate to U by a unitary
isomorphism W : H → K. In this model, K is constructed from a finite or
infinite number of mutually orthogonal “blocks,” which are the spaces L2(S1, ν),
where S1 := {λ ∈ C; |λ| = 1} and ν is a measure on S1. The measures ν on
different blocks either are orthogonal or coincide; n1 blocks correspond to the
measure ν1, n2 > n1 blocks correspond to the measure ν2, etc.; there may
be an infinite number of blocks corresponding to some measure ν∞. Finally,
the operator V is such that the blocks are invariant with respect to it and, if
g belongs to one of the blocks, say, if g ∈ L2(S1, ν), then (V g)(λ) = λg(λ). The
set {n1, n2, . . . } (it may be finite or infinite; it may end with the symbol ∞, or
it may not contain this symbol) is called the set of spectral multiplicities for U .
It is uniquely determined by the operator, and all operators unitary conjugate
to U have the same set of spectral multiplicities (while each measure νi is
determined up to passage to an equivalent measure).

As soon as an automorphism φ of a Lebesgue space was assigned a unitary
operator Uφ (by B. Koopman in the late 1920s), the question arose as to what
operators can be obtained in this way, at least in the case of an ergodic φ (which
is the most important case for “abstract” ergodic theory). In particular, what
sets of spectral multiplicities can these operators have? The question about
the corresponding measures (more precisely, about the corresponding classes of
equivalent measures) is not posed at this point, but I shall distinguish between
the cases of discrete, continuous, and mixed spectra.

In the case of a discrete spectrum, the answer is almost obvious: only {1}.
Examples of continuous (even Lebesgue113) spectra for which the sets of multi-
plicities are {∞} have been known for a long time. After World War II, fairly
many examples with other sets of spectral multiplicities, mostly {1} (which
is called the simple spectrum, or the spectrum of multiplicity 1), were grad-
ually collected; very significant progress has been made over the past decade.
It is easy to show that, for a mixed spectrum, the set of multiplicities must
start with 1 (because of the discrete component); it turns out that any such
set is realized for some φ. This was proved by different methods in the paper
of J. Kwiatkowski and M. Lemanczyk cited in [173] and in the paper [174] of
O. N. Ageev. In the case of a continuous spectrum, the problem has not yet
been completely solved, but it was proved that any set beginning with 1 can be
realized [175]. For sets beginning with n1 > 1, the situation is not quite clear;
among various examples the following one deserves special mention. When ex-
amples with {1} appeared, V. A. Rokhlin asked whether there exists a φ with
“double” continuous spectrum (with set of multiplicities {2}); recently, Ageev
and V. V. Ryzhikov gave a positive answer. There is a recent survey [173] of

113 Recall of the Banach problem mentioned in Section 1.3 (a).
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this topic. I have written up a detailed and somewhat simplified version of the
results of Ageev and Ryzhikov (D. V. Anosov. On spectral multiplicities in
ergodic theory. In Problems of Comtemporary Mathematics, issue 3 (Moscow:
MTsNMO, 2003)). Ageev has announced a new result: For any natural num-
ber n, there is an ergodic automorphism φ of the Lebesgue space such that the
spectrum of Uφ is continuous, homogeneous, and of multiplicity n.

Approximations by periodic transformations and joinings

The best-known ideas and notions of ergodic theory refer to spectra and entropy.
The simplest prototypes of the former arise in quasiperiodic oscillations and
of the latter, in sequences of independent random trials. The prototypes per
se bear no special relation to ergodic theory; they were known long before
this theory emerged. The far-reaching development of the corresponding ideas
has led to wider applications of these prototypes, not only to the “abstract”
(purely metric) theory but also to “applied” ergodic theory, which should not
surprise us if we recall where these ideas have come from. (The use of ideas
of probabilistic origin in studying DSs with hyperbolic behavior of trajectories
might seem somewhat unexpected for an outside observer, but such a use can
also be regarded as a realization of the prophetic sentences of H. Poincaré (in
his book on the probability theory114) that instability generates stochasticity.)

During the past three decades or thereabout, a new direction – a new system
of notions and ideas – was formed, and its origin is indeed intrinsic. Possibly,
this is the reason why the applications of the new direction to smooth DSs are
scarce; the examples are mainly of combinatorial character (say, in spaces of
sequences). It seems that the only well-known example of a smooth DS that
refers to this direction is a horocycle flow. (There also exist artificial smooth
examples.) But, as is known, most frequently, it takes half century for new
ideas to find extensive applications outside their native domains; by now, only
half of this term has passed.

I shall define only two notions from this area (actually, there are much more
of them).

Let φ be an automorphism of a Lebesgue space (X, µ), and let A ⊂ X be a
measurable subset such that the sets

A, φA, . . . , φhA (40)

are pairwise disjoint. Such sets are said to form a Rokhlin tower (for φ) of

114 My impression is that, at the very end of the nineteenth–beginning of the twentieth
century, several physicists expressed the same point of view (I remember two names: W. Kelvin
and M. Smoluchowski). But I cannot give references.
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height h. If µ

(
X \

h⋃
i=0

φiA

)
< ε, I shall call such a tower a Rokhlin ε-tower.

To understand the meaning of this notion, let us artificially close the chain of
mappings

A
φ→ φA

φ→ . . .
φ→ φhA

for a while by the mapping that takes each point of the form φhx, where x ∈

A, to x. We obtain a periodic transformation ψ of the space
h⋃

i=0
φiA, which

coincides with φ at least on the set
h−1⋃
i=0

φiA, whose measure is > 1− (ε + 1/n).

If h is large and ε is small, then ψ, as it were, approximates φ with a high
accuracy.

It turns out that, for virtually any φ (with some trivial exceptions), there
exist Rokhlin ε-towers of height h, where h is arbitrarily large and ε is arbi-
trarily small. V. A. Rokhlin used this fact to prove that the set of weakly
mixing φ is “massive” in the space of all automorphisms φ with uniform (much
more, with weak) topology. In the late 1960s, A. B. Katok, V. I. Oseledets, and
A. M. Stepin used approximation considerations to study particular automor-
phisms φ and to construct φ with certain properties. Their statements were not
merely direct applications of Rokhlin towers; they involved a quantitative con-
dition on the rate of approximation by periodic transformations (see the article
“Approximation by periodic transformations” in Mathematical Encyclopaedia
or [167]). If no conditions were imposed, φ could be virtually arbitrary, and we
could say nothing particular about its properties. Then, D. Ornstein suggested
a modification of the same idea in which the qualitative condition was replaced
by a requirement of qualitative character. The Ornstein condition is as follows:
For any ε > 0 and any measurable set B, there exists a Rokhlin ε-tower (40)
such that the set B can be approximated by a union A′ of some of the sets
from (40) up to ε, i.e., so that the measure of the symmetric difference between
B and A′ is µ(B�A′) < ε. When this condition holds, φ (and the DS {φn}) is
said to have rank 1.

The automorphisms φ of rank 1 have a number of common properties. Thus,
all of them are LB-automorphisms115 and have simple spectra; an automor-
phism ψ commuting with φ is the weak limit of some sequence φni , which
readily implies that the centralizer of φ either reduces to {φn} (this is always
the case if φ is mixing) or is uncountable (the φ with uncountable centralizers
have been classified). At the same time, in many respects, the properties of

115 LB is an abbreviation for loosely Bernoulli. Initially, such automorphisms were also
called standard, but now, this term is abandoned. See the section about the equivalence of
DSs in the sense of Kakutani in [176].
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DSs of rank 1 are very diverse (already the preceding sentence describes an in-
stance of this diversity). For example, an ergodic automorphism with discrete
spectrum is of rank 1, but the converse is not necessarily true. An automor-
phism φ of rank 1 may have square root116 (it may even have continuum many
pairwise nonisomorphic roots), or it may have no square roots at all; it may
even happen that φ2 has roots of all orders. Two automorphisms of rank 1 may
be weakly isomorphic (i.e., each of them may be isomorphic to a factor of the
other) not being isomorphic. Many unexpected examples of this kind (some of
which contradict assumptions that might seem natural otherwise) are interest-
ing, if only because they are examples of automorphisms of the Lebesgue space,
irrespective of the fact that their constructions give automorphisms of rank 1.
It should be mentioned that the constructions rarely use directly the definition
of a DS of rank 1 given above; instead, some equivalent, more constructive,
definitions are used as a rule. These definitions are longer, but they involve ex-
plicitly the parameters of certain constructions providing all automorphisms φ
of rank 1. The success of a construction of an example depends on whether we
are able to control the influence of these parameters on the properties of a φ to
be constructed.

As there exist automorphisms of rank 1, there must be automorphisms of
other ranks. The idea is that they should be well approximated in terms of
several Rokhlin towers.

A detailed exposition of the theory of DSs of finite rank is contained in [177].
I shall only mention three facts. For a k ∈ N, we have

rank φk = k · rank φ.

The elements of the set of spectral multiplicities do not exceed the rank, but
even the simplicity of the spectrum does not ensure the finiteness of the rank.
For automorphisms of finite rank, the Rokhlin conjecture (mentioned in Sec-
tion 1.3) that the mixing property implies mixing of all degrees is proved.

The second notion which I shall dwell on is that of joinings, which goes back
to works of H. Furstenberg and D. Ornstein; a systematic use of joinings was
initiated by D. Rudolf.

A joining of an automorphism φ of a measure space (X, µ) is an invariant
normalized ergodic measure ν on the Cartesian power

φ×n : Xn → Xn, (x1, . . . , xn) �→ (φx1, . . . , φxn)

which is projected to µ under the natural projection of Xn onto any of the
factors X. (Note that, strictly speaking, we deviate from the orthodox concept

116 That is, there may exist an automorphism ψ such that, at the same time, ψ2 = φ. Other
roots are defined similarly.
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of purely metric theory according to which everything should take place in a
Lebesgue space. In the theory of Lebesgue spaces, Xn is considered only with
the measure

µ×n = µ× . . .× µ︸ ︷︷ ︸
n times

;

it is a joining, but the other joinings of a weakly mixing φ are concentrated on
sets with zero measure µ×n, which must be neglected from the orthodox point
of view. Thus, we have to represent the space (X, µ) not as a Lebesgue space
but as a space of a different type, usually as a “standard Mackey” space, and
verify afterwards that the result (information about joinings) does not depend
on the choice of a particular realization.)

The “joining” distinctions between DSs refer to the amount of joinings:
some DSs have “few” joinings, while other DSs have “many” of them. A DS
{φn} always has joinings which are direct products of measures of the form

A1 × . . .×Ak �→ µ(ψ1A1 ∩ . . . ∩ ψkAk),

where ψi are automorphisms commuting with φ. If there are no other joinings
(i.e., the joining are “few” in this sense), then the automorphism φ is said to
be simple. M. Ratner proved that, for a horocycle flow {φt} on a closed surface
of constant negative curvature (and in some other cases), all the φt with t �= 0
are simple. The joinings are “particularly few” if φ is simple and its centralizer
reduces to {φn}; in this case, we say that φ has minimal self-joinings.

The notion of joinings per se bears no relation to approximation by periodic
transformations. However, in almost all cases in which joinings have been
found or any important information on joinings has been obtained, φ admits
a rapid (in some sense) approximation. The work of Ratner is exceptional in
this respect, as well as the proof of the Rokhlin conjecture for φ with singular
spectrum obtained by B. Host through the use of joinings.

Joinings are the subject matter of the survey [178]; the paper [179] supple-
ments it.

3.10 New periodic trajectories in the three-body problem

After the Russian text of this paper was published, I became aware of the
discovery of principally new closed trajectories in the three-body problem:
A. Chenciner and R. Montgomery. A remarkable periodic solution of the three
body problem in the case of equal masses. Ann. Math., 152 (3) (2000), 881–901.
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(the multidimensional case). Dokl. Ross. Akad. Nauk, 329 (4) (1993),
404–407.

[65] N. Romero. Persistence of homoclinic tangencies in higher dimensions.
Ergod. Theory and Dyn. Dystems, 15 (4) (1995), 735–757.

[66] J. Palis and F. Takens. Hyperbolicity and Sensitive Chaotic Dynamics at
Homoclinic Bifurcations (Cambridge: Cambridge University Press, 1993).

[67] L. P. Shil’nikov and D. V. Turaev. On blue-sky catastrophes. Dokl. Ross.
Akad. Nauk, 342 (5) (1995), 596–599.

[68] D. V. Turaev and L. P. Shil’nikov. An example of a wild strange attractor.
Mat. Sb., 189 (2) (1998), 137–160.

[69] S. V. Gonchenko, L. P. Shilnikov, and D. V. Turaev. On models with
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[123] R.Mañé. Lagrangian flows: the dynamics of globally minimizing orbits.
Bol. Soc. Brasil. Mat. (N.S.), 28 (2) (1997), 141–153.

[124] G. Contreras, R. Iturriaga, G. P. Paternain, and M. Paternain. La-
grangian graphs, minimizing measures and Mane’s critical values. Ge-
ometric and Functional Analysis, 8 (5) (1998), 788–809.

[125] A. D. Bruno. Power Geometry in Algebraic and Differential Equations
(Moscow: Nauka–Fizmatlit, 1998) [in Russian].

[126] E. F. Mishchenko and N. Kh. Rozov. Differential Equations with a Small
Parameter and Relaxation Oscilaltions (Moscow: Nauka, 1975) [in Rus-
sian].

[127] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Pe-
riodic Motions and Bifurkation Processes in Singularly Perturbed Systems
(Moscow: Nauka–Fizmatlit, 1995) [in Russian].

[128] P. Cartier. Singular perturbations of ordinary differential equations and
nonstandard analysis. Uspekhi Mat. Nauk, 39 (2) (1984), 57–76.

[129] A. K. Zvonkin and M. A. Shubin. Nonstandard analysis and singular
perturbations of ordinary differential equations. Uspekhi Mat. Nauk, 39
(2) (1984), 77–127.

[130] W. Eckhaus. Relaxation oscillations including a standard chase on french
ducks. In Asymptotic Analysis II (Berlin: Springer, 1983), pp. 449–494.



On the development of the theory of dynamical systems 183

[131] Dynamic Bifurcations, ed. E. Benoit (Berlin: Springer, 1991).
[132] A. I. Neishtadt. On tightening of stability loss under dynamic bifurcations.

I. Differents. Uravneniya, 23 (12) (1987), 2060–2067.
[133] A. I. Neishtadt. On tightening of stability loss under dynamic bifurcations.

II. Differents. Uravneniya, 24 (2) (1988), 226–233.
[134] A. I. Neishtadt, C. Simo, and D. V. Treschev. On stability loss delay for

a periodic trajectory. In Nonlinear Dynamical Systems and Chaos, eds.
H. Broer et al. (Basel: Birkhäuser, 1996), pp. 253–278.
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A. A. Razborov

Foundations of computational complexity theory

Lecture on April 23, 1998

This lecture is intended for those who are not acquainted with the theory of
computational complexity. For this reason, I shall talk only about the foun-
dations of this theory and its very first results. I shall try to deliver the main
ideas which guide the researchers in this field of science.

The setting of my narrative are stories about one personage called M (for
“mathematician”). I shall start with the following story.

1 Prehistory

Once upon a time, M sat at home trying to prove some (maybe important, or
maybe not) theorem T . He tried to prove this theorem for a week, two weeks,
a month, ..., but with no result. In the end, he gave up and asked quite the
natural question:

Why, can this theorem be proved at all?

The question was addressed to nobody; most likely, it would fly away if another
personage, L (for “logician”), would not pass by.

L heard the question, came into the room, and explained that such questions
started to interest mathematicians some time in the beginning of the twentieth
century. In a general setting, this question is contained in the famous Hilbert’s
Program devoted to the notion of mathematical proof.

This program, in particular, included the following three items.

Formalization of the notion of proof. Before asking whether or not an asser-
tion can be proved, we must give a rigorous mathematical definition of
provability.

Completeness. After the notion of proof is formalized, it is necessary to estab-
lish the completeness of the constructed formal theory. This means that
any true proposition T must be provable in this formalization. In partic-
ular, for certain historical reasons, Hilbert himself was largely interested
in the question about the provability of a properly formalized statement
about the consistency of mathematics.

186



Foundations of computational complexity theory 187

Decidability. The next goal of the program was to construct a computing device
capable of determining whether a theorem T formulated in some formal
language is provable (it was assumed that, according to the second item
of the program, provability was equivalent to being true).

It is well known that the first goal of the program has been accomplished
successfully. At present, the majority of mathematicians use the word “theo-
rem” for a proposition that can be proved by means of the Zermelo–Fraenkel
set theory (even if not all of them recognize this).

As to the remaining two items of the program, the situation happened to be
much worse. The first shock, which rocked the whole mathematical community
in the 1930s, was the result of Kurt Gödel that no sufficiently strong theory
where the set of axioms is specified by an explicit list can be complete. More
precisely, if such a theory is consistent and provides means for formalizing all
arguments about positive integers, then there exists a proposition which cannot
be neither proved nor disproved; moreover, an example of such a proposition
is the statement that Hilbert was interested in, namely, that the theory under
consideration is consistent.

Today, we deal with computations, so of greater interest to us is the 1936
theorem of Church. Church proved that there exists no algorithm capable of
automatically verifying whether or not a given proposition is provable.

Thus, mathematician M learned from logician L that the question about the
provability of a mathematical statement cannot be answered in full generality.

By that moment, however, he had already begun to doubt that theorem T
was true, and he decided to look for a counterexample. M went to a computer
room and wrote a program P which would successively check all input strings
until a counterexample for T would be found. He launched the program and
waited for its termination.

The program was running for an hour, two hours, a day, a week, ... Again,
the mathematician worried and asked another question, namely,

Will P ever terminate?

The mathematician already knew whom to ask. He found the logician and asked
him: Does there exist a method for learning whether a given program would
terminate or it would be running eternally? Again, L gave quite a qualified
answer. By a theorem proved by Turing in the 1930s, there exists no algorithm
determining whether or not a given program will terminate, i.e., the termination
problem is undecidable.
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2 Point of departure

After that, the mathematician went home. He had a child, who studied geome-
try at school; as it happens sometimes, the kid asked dad to help him with the
homework. People believe that mathematicians are able to calculate well and
solve quadratic equations and various problems from elementary geometry (in
reality, this is not always true).

Thus, the mathematician started to solve the problem suggested by his child,
and realized that he had completely forgotten his geometry from elementary
school. He, however, remembered that any geometric problem can be written
using Cartesian coordinates in the language of real numbers.

A question occurred to him: Does there exist a universal algorithm for
solving elementary geometry problems? After the conversation with the logi-
cian, he knew that if the positive integers are expressible in some theory, then
this theory is undecidable. Intuition suggested that the theory dealing with
real numbers, which are much more abundant, must be undecidable too. Still,
to be on the safe side, he telephoned the logician to make sure that he was
right. Strange as it seems, it turned out that he was not. The classical 1948
result of Tarski asserts the existence of an algorithm checking the provability
of statements of elementary geometry.1

The mathematician rejoiced. He had nearly believed that logic was of no
use; now, he saw that logic had very practical applications to real life.

Thus, M asked the kid to wait and went to a software shop. He found two
compact disks with programs for solving geometric problems,

Tarski for Windows 95 and Collins for Windows 95.

The first CD was $30 and the second $300. Naturally, M tried to find out the
reason for such a difference in the price. He failed to get any explanations, so
he bought the cheaper disk, Tarski for Windows 95.

M came home and inserted the CD in the computer. He wanted to test
the program on a problem from the school textbook. However, the same thing
happened again. The program was running for an hour, two hours, ... but it
was not apparently going to output a solution. The mathematician halted the
program and asked it to prove some elementary theorem, e.g., that the sum
of angles in a triangle equals 180 degrees. Very little changed; the program
continued thinking for an hour, two hours, a day, another day, ... Then M
telephoned the logician and asked him (somewhat angrily) what was going on.

1 And, moreover, of any propositions about real numbers formulated in terms of arithmetic
operations, elementary logical connectives (negation, conjunction, disjunction, and implica-
tion), and quantifiers over the set of all real numbers: “for all (real numbers)” and “there
exists (a real number) such that...”; the set of such propositions is called the Tarski algebra.
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L answered that it was none of his business. Tarski proved the theorem about
the existence of an algorithm, and surely, the algorithm had been correctly
implemented in the program on the CD. What happens then bears no relation
to mathematics or logic.

This is the point where computational complexity theory begins. We are
interested not merely in the existence of algorithms for solving a problem but
also in their efficiency.

Of course, the story told above is somewhat stylized, but it reflects the
actual development of research that has led to the modern state of the art.
In particular, the idea that some algorithms may be better than others and
this is important was clearly understood in the 1960s. At that time, the first
real computers (they had the scary name electronic computing machines) were
designed, such as BESM (probably, many of you do not even know what it is).
It became clear that a mathematical theory was necessary.

3 Foundations of the theory: basic notions

We put aside stories from M’s life for a while; we shall keep returning to them
later.

Let us try to give a few definitions.
The first observation made by M when he tried to understand this theory

was that the overwhelming majority of algorithmic problems can be encoded
as problems of evaluating some mapping

f : {0, 1}∗ → {0, 1}∗

from the set of finite binary words to itself. It is such mappings that we shall
deal with.

The second question is: What devices are we going to employ for comput-
ing our mapping? There exists a huge diversity of algorithmic languages and
computer architectures, but to what degree are the differences between them
essential? It is the answer to this question that distinguishes computational
complexity theory from other related fields. Thus, let us consider this question
in more detail.

As an example we take the program most frequently used by mathematicians
who are not engaged in programming. This is the TEX word processor. The
choice of TEX is of no special importance; we could consider any other program
instead.

Thus, we have a mapping f ; in the case under consideration, this is a
mapping

paper.tex −→ paper.dvi
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transforming a file paper.tex into a file paper.dvi (we treat both files as long
binary words). This transformation is implemented by an algorithm
texdvi.exe translated for execution on a 286 processor (those who tried to
run TEX on a 286 processor remember how it was).

At the moment, we are interested in the running time of an algorithm. It is
this complexity measure (in the language of the science we deal with) that will
be most often considered today. There are other characteristics, like memory
(this complexity measure is second in importance), but we cannot discuss them
in detail because of time limitations.

So far as our problem is concerned, the progress was made in two directions.
First, as everybody knows, processors were improved:

Intel 286, Intel 386, Intel 486, . . .

More and more powerful models were designed, diverse engineering contrivances
accelerating their operations were invented, etc. Secondly, the algorithm itself
was improved, and its new versions were released:

texdvi1.exe, . . . texdvi10.exe, . . .

Subject to certain restrictions, the following formula is valid:〈 total running
time

〉
=

〈 number of operations
in the algorithm

〉
×

〈 time taken by
one operation

〉
.

The terms of this simple formula improve more or less independently. Roughly
speaking, software is responsible for the first factor and hardware for the second.

What is going on from the mathematical point of view? Suppose that
we have an algorithm involving t operations. When the performance of our
processor improves, the time required for solving our problem is multiplied by
a constant.

For this reason, there is the tradition in computational complexity theory to
measure the running time of an algorithm up to a multiplicative constant (“up
to O(·),” as mathematicians say). This is very important. Such an approach
allows us to disregard the choice of a particular computational model, the time
required to perform one operation, the system of commands used to operate
the computer, and so on. It is this approach that allows us to build a rather
beautiful mathematical theory.

The theory of computational complexity somewhat differs from the all-
embracing (by definition) Marxism–Leninism theory (apparently, not all of you
know what it is, which is good): when a formula involves two terms and our
theory is by no means responsible for the second one, this is declared explicitly.
The improvement of processors is other people’s business; we are concerned
with improving algorithms up to a multiplicative constant.
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We proceed to build a rigorous theory. One of the immediate advantages of
the convention introduced above is that we are not very much concerned with
the choice of a particular model. As a rule, changing a model (this time, I mean
an abstract mathematical model) improves or slows down performance only by
a constant factor, and we agreed to ignore such changes.

The standard definition of a computational model is as follows. An al-
gorithm is executed on a machine with addressable memory whose cells are
indexed by positive integers, each cell can store positive integers, the machine
can perform arithmetic operations, and so on. The details are of little inter-
est, because our O(·)-convention allows us not to pay that much attention to
them. If we replace “up to O(·)” with “up to a polynomial,” then all realistic
computing devices whatsoever will become equivalent.

So, fix some computational model. Given a machine M , which computes
a function f , and input data x (some binary word), we can define our basic
function T (M, x) equal to the number of operations (elementary steps) needed
for the machine M to process the input word x.

4 The speed-up theorem

Now, let us study this function T (M, x). The first thing that comes to mind is
to choose the best algorithm for solving our algorithmic problem f and define
the complexity of this problem as the complexity of this best algorithm.

It turns out that, unfortunately, such an intuitively obvious approach cannot
be used because of the Blum speed-up theorem. Loosely speaking, this theorem
asserts that the notion of “the best machine” for a given problem cannot be
defined (at least for some problems).

The Blum theorem began a series of theorems underlying the modern theory
of computational complexity. All these theorems were proved around 1970; for
example, Blum proved his speed-up theorem in 1967. At approximately the
same time, the concept of NP-completeness was developed; a description of this
concept will conclude our introductory story about computational complexity
theory.

In what follows, we shall need yet another important notion. The function
T (M, x) behaves very irregularly. Consider the example of the TEX processor.
For the overwhelming majority of files, the program terminates at the very
beginning because of the noncompliance with the input TEX format, and for
some files termination may never occur because of infinite looping. In the
general case, there is no way of studying this function, because it is too loose.
We want to extract from this function another function of a positive integer
argument, i.e., to obtain a function of positive integers to positive integers
which would reflect the behavior of T (M, x). There are several approaches
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to this task. We shall consider only the most popular one; the corresponding
mapping of positive integers is called the worst-case complexity. It is defined
by the formula

tM (n) = max
|x|�n

T (M, x).

Among all words of bit length not exceeding n we choose the word for which
the machine works worst of all (i.e., most slowly). The time taken to process
such a word is called the worst-case complexity and denoted by tM (n). The
machine surely terminates on any input word of length not exceeding n within
time tM (n). Of course, for some words it may happen earlier.

Below, we give a simplified version of Blum’s theorem; in fact, log t can be
replaced by an arbitrary “reasonable” function tending to infinity.

Theorem (Blum, 1967). There exists a computable2 function f such that any
machine M computing f can be sped up in the sense that there exists another
machine M ′, which also computes f , such that

tM ′(n) � log tM (n)

for almost all n.

The function mentioned in the statement of the Blum theorem is fairly ex-
otic (the theorem implies that the worst-case time of its computation grows
very rapidly for any machine). One of the “ideological” problems in computa-
tional complexity theory is to develop the theory to get rid of such pathological
phenomena whenever possible. The proof of the Blum theorem involves a con-
struction using the technique of diagonalization, and the resulting function
bears no relation to real-life computations or to mathematics in general. But
nevertheless, since we develop a mathematical theory, there is nothing we can
do about it; we must admit that the chosen approach is not suitable and try
others.

5 Complexity classes

Thus, we cannot hope to design the best machine computing a given function
for every function. The alternative is the notion of complexity classes, which is
one of the central notions of complexity theory.

There is a somewhat loose analogy with the definitions of integrals in the
senses of Riemann and Lebesgue. If we cannot integrate in the sense of Rie-
mann, we change the axis and start summation over a different axis. In the

2 A computable function is a function such that there exists at least one algorithm evaluating
it.
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situation under consideration, we cannot say what the best machine for a func-
tion is; so, let us change the axis. We consider the set of all acceptable machines
and call the class of all functions computable by such machines a complexity
class. Perhaps, it is easier to give an example right away rather than launch
into a long discussion:

DTIME(t(n)) := {f | ∃M : (M calculates f) & (tM (n) = O(t(n)))}.

This is one of the central definitions in complexity theory. The letter D denotes
deterministic algorithms (other algorithms exist too) and TIME means precisely
what you think. Given an arbitrary function t(n) of a positive integer argument,
we form the complexity class consisting of all functions f such that there exists
a machine M computing f for which the time-signalizing function is bounded
by the initial function t(n) up to a multiplicative constant. The Blum theorem
cited above is valid only for some special functions. But if we want to speed
up computation by a factor of, say, 10, we can do this for any function by,
e.g., increasing the number of available computer commands. This is why the
O-estimate appears on the right-hand side of the definition.

Now, we shall define one of the most important complexity classes, namely,

P =
⋃
k�0

DTIME(nk).

The class P consists of the functions that can be computed by the machines
under consideration and the time taken to compute them is polynomial in
the input length. It is very convenient both practically and theoretically. In
practice, it gives a rather good approximation for the class of functions that
can be computed in reasonable time on real-life computers (some exceptions are
discussed below). From the mathematical point of view, this class is extremely
convenient because it is closed with respect to superposition. We shall see later
on that it is this fact that makes a computability theory for the class P possible.

There are similar classes of languages recognizable in exponential time

EXPTIME =
⋃
k�0

DTIME
(
2nk)

;

we can also define the double exponential time

DOUBLEEXPTIME =
⋃
k�0

DTIME
(
22nk)

,

and so on.
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6 The hierarchy theorem and complexity of elementary geom-
etry

Now, let us return to mathematician M. It turns out that the running time of
the Tarski algorithm, which M used when trying to solve problems of elementary
geometry, belongs to none of the classes considered above. It is bounded from
below as

tTarsky(n) � 22..
.2
}

εn
.

As you remember, there was yet another compact disk, Collins for Win-
dows 95, with software for verifying propositions from the Tarski algebra.

Theorem (Collins). The Tarski algebra belongs to the complexity class DOU-

BLEEXPTIME.

Now, M was able to understand the difference between the CDs: the running
time of Collins’ algorithm is much, much less than that of Tarski’s algorithm
(although it may still be very large; the doubly exponential upper bound does
not even guarantee that the time required to prove the theorem about the sum
of angles in a triangle is less than the existence time of the Universe).

The question arises: Is it possible to further improve the decision algo-
rithm for the Tarski algebra? A more general question is: Is it possible to
improve any algorithm whatsoever? It might happen that, for example, any
computable function belongs to the class P. Or, at least, any function from
DOUBLEEXPTIME belongs to P.

In other words, the question is whether we have an object of study at all or
the Blum speed-up theorem applies to all functions.

The second corner-stone of complexity theory is the hierarchy theorem.
The formulation of the hierarchy theorem given below, just as the formula-

tion of the speed-up theorem given above, is far from being most general.

Theorem (Hartmanis, Stearns (1965)). P �= EXPTIME.

Thus, not all complexity classes coincide, so we do have an object of study.
I cannot deny myself the pleasure of giving an almost complete proof of

this theorem. If you still remember mathematician M, in the second episode of
his misadventures, he asked whether the program would terminate ever. Now,
taught by bitter experience, he asked the following question:

Will this program terminate before New Year’s Day?

It turns out that, if the time remaining to New Year’s Day is precisely exponen-
tial, then this problem is what separates EXPTIME from P. Because there is a
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very simple algorithm for verifying whether the program will terminate before
New Year’s Day; namely, we should simply wait until New Year’s Day, and the
problem will be solved automatically. The hierarchy theorem asserts that this
problem cannot be solved substantially faster.

Of course, the proof contains some technical details, but its essence is as
described.

After that, mathematician M was ready to comprehend the following theo-
rem.

Theorem (Fisher–Rabin (1974)). The Tarski algebra does not belong to the
class P. The running time of any decision algorithm for the Tarski algebra is
at least 2εn, where ε is an absolute constant.

Such a large lower bound explains why our mathematician failed to solve
problems in the Tarski algebra in practice.

The most complicated and, apparently, most important domain of com-
plexity theory is precisely that related to obtaining lower bounds. In the
English-language literature, the part of complexity theory which deals with
designing algorithms is called the theory of algorithms, and complexity theory
per se refers to establishing lower bounds. Thus, complexity theory tries to
prove that there exist no efficient algorithms.

Already the example of Tarski algebra exhibits two difficulties which people
trying to prove lower bounds must overcome. Look, there was the Tarski the-
orem; all the efforts to improve it yielded no result. It was natural to suppose
that the estimate was optimal. After that, an algorithm based on completely
different ideas was designed. The algorithms are diverse: there are complicated
algorithms, there are various algorithms. Still, we try to prove that more effi-
cient algorithm can never be designed and at the same time analyze properties
of algorithms from a fairly large class.

7 Reducibility and completeness

Let us proceed with our theory. The notion of complexity classes was introduced
not to make the statements of theorems more economical (after all, the Fischer–
Rabin theorem can be stated without mentioning any complexity classes – it
is sufficient to leave only the second sentence in its formulation). The notion
of complexity classes becomes important at the moment when the notion of
reducibility emerges; this is the second central notion of the modern theory of
computational complexity. There exist several versions of reducibility; I shall
consider only the most important ones.
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Karp reducibility

This reducibility is very simple. First, recall that we deal with computation of
functions that map finite words to finite words. But, in many cases, it is much
more convenient (and, as a rule, this involves no loss of generality) to consider
so-called languages. A language L is a set of words L ⊆ {0, 1}∗; it can also be
interpreted as a mapping of the form φ : {0, 1}∗ → {0, 1} (then L = φ−1(1)).
The passage to languages is not very restrictive: any function from words to
words can be associated with a language, namely, with the set of pairs (x, i)
such that the ith bit of f(x) equals 1.

Definition. A language L1 reduces to a language L2 in the sense of Karp (this
is denoted by L1 �p L2) if there exists a function f from P such that

∀x : (x ∈ L1 ≡ f(x) ∈ L2) .

Reducibility means that, in order to recognize words from the language L1,
we can run a subprogram converting the initial word x into f(x) and apply
an algorithm recognizing the words from the language L2 to f(x). Under this
definition of reducibility, the recognition program for L2 is called in only once;
allowing arbitrarily many calls to this subprogram, we obtain a different re-
ducibility (in the sense of Turing). At the moment, the difference does not
matter to us.

The reducibility relation is a preorder. It is reflexive and transitive. Its
most fundamental property is that, if L2 ∈ P, then L1 ∈ P. It is important
here that the class of polynomials is closed with respect to the superposition
operation.

For example, EXP-reducibility will not work out. There would be no transi-
tivity with respect to such a reducibility. The closure would be the finite towers
of exponents, i.e., the class of elementary recursive functions.

Among the natural classes containing at least one reasonable function and
closed with respect to superposition we can mention the class of quasipolynomi-
als 2(log n)O(1)

and the class of quasilinear functions n logO(1) n. In recent years,
quasilinear functions have become a focus of attention because of the belief that
good algorithms are precisely those having quasilinear running time.

Anyway, the class P is central to the theory, so we shall consider polynomial
reducibility.

It is easy to see that the class EXPTIME is closed with respect to this
reducibility. Therefore, it is natural to ask whether there exist the most com-
plex languages in this class, that is, such that any other language from this
class reduces to them. If such languages exist, then we can solve any problem
from EXPTIME by using an arbitrary recognition algorithm for such a complex
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language and the polynomial reducibility. The languages from a certain com-
plexity class to which any language from this class can be reduced are called
complete (with respect to the given class and the given type of reducibility).
Omitting the requirement that the language itself must belong to the class
under consideration, we obtain the definition of a hard language.

The Fischer–Rabin theorem is proved in precisely this way. The nonexis-
tence of a polynomial algorithm for the Tarski algebra is not proved directly;
instead, it is proved that the Tarski algebra is hard for the class EXPTIME.
Thus, a polynomial algorithm for the Tarski algebra would provide a polyno-
mial algorithm for all other problems from this class. But we know that there
are problems in EXPTIME that cannot be solved in polynomial time (as that
of termination of a program before New Year’s Day).

Such an argument is typical of complexity theory. Problems are reduced to
each other rather than solved directly. Naturally, the more problems from a
given class reduce to the problem under consideration, the better is the situa-
tion.

The success of this area is judged by practice: numerous complete problems
arise in various situations, and they are more natural than the termination
problem.

8 Are all polynomial algorithms good?

Now, it is the right time to return to our poor mathematician M and talk
about exceptions to the rule “the class P = the class of effectively computable
functions.” One day, for some purposes, M needed to solve a system of linear
inequalities

n∑
j=1

aijxj � bi (i = 1, . . . , m).

In other words, he needed a linear programming package. Experts in com-
putational complexity theory always study the literature before purchasing
software, and M, taught by bitter experience, decided to adopt this rule too.
Of course, he had heard about the simplex method used to solve linear pro-
gramming problems almost everywhere, including the military department of
Moscow University. But M read a paper proving that the simplex method is not
polynomial. After that, M found a 1979 paper of Khachiyan where a polynomial
algorithm for solving the linear programming problem was constructed. Thus,
he went to the Mitino radio market and looked for something like Khachiyan for
Windows 95. Surprisingly, he could not find anything like that. All the CDs for
sale contained software based on the simplex method and its variations. It turns
out that, although the algorithm for solving linear programming problems by
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the simplex method is exponential and Khachiyan’s algorithm is polynomial, in
practice, the former is faster than the latter. It is pretty hard to construct an
example of the linear programming problem such that solving it by the simplex
method takes a long time, while the running time of the polynomial algorithm
of Khachiyan is approximately the same for all input data (the exponent is 6,
which is pretty very bad).

This is the best-known exception to the rule that polynomial algorithms are
good and exponential algorithms are bad. But in reality, this exception only
confirms the rule: although nobody uses Khachiyan’s algorithm to solve linear
programming problems, this algorithm solves problems that cannot be solved
by the simplex method in principle. For example, suppose we are given a convex
body K and a direction. It is required to maximize the corresponding linear
form on K. We know nothing about the convex body: it is specified with the
use of a black box, or an oracle. This means that, when you choose a point p,
the oracle says whether or not this point belongs to the body K and, if not,
specifies a hyperplane separating p from K. The oracle’s answers are correct
to a certain accuracy ε. The solution must have the same accuracy. Clearly,
the simplex method, which works by searching vertices, does not apply to this
problem, because there are no vertices at all. Both the Khachiyan algorithm
and the science emerged from it perfectly (that is, polynomially) copes with
such problems. The role of the parameter n describing the input size is played
by d · (log ε−1), where d is the dimension and ε is the precision of computation.

Such exceptions are very few. The second well-known example is primality
testing.3 As a rule, if you have an algorithm which theoretically works well,
and this is an algorithm for a normal problem which arose from somewhere
rather than constructed with hooligan purposes, then this algorithm works well
in practice, too. In particular, the exponent k in the bound nk for the running
time of an algorithm is usually small, and when it is large, it can be reduced
by various tricks. For the overwhelming majority of natural problems, the
exponent does not exceed 3.

9 Nondeterministic computations

Apparently, those who came to this lecture, wish to learn something about the
best-known open problem in this domain, P

?

�= NP. I have already explained a
little what P is. Now, let us proceed to NP.

For this purpose, we again return to M. While he was learning complexity
theory, his son entered a university and started to study mathematical logic. As

3 In 2002, a polynomial-time algorithm for this problem was designed, which removed it
from the list of exceptions. (A.R. – added in proof)
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you know, the course in mathematical logic begins with the celebrated propo-
sitional calculus. Suppose, you have a propositional formula Φ(p1, . . . , pn); it
is called a tautology if it is always true, no matter what p1, . . . , pn may be.
One of the unpleasant exercises when learning propositional calculus consist in
verifying whether or not a given propositional formula is a tautology. It was
this question that M’s son asked his dad this time. Naturally, M, being an
expert in complexity theory, did not go to shop for software but tried to fit
the problem into one of the known complexity classes. To use the standard
notation, we shall consider the dual problem SAT of satisfiability: Is there at
least one assignment to variables that makes the formula true?

Superimposing this problem on the whole picture of complexity classes, M
saw at once that SAT ∈ EXPTIME. An algorithm for solving the problem SAT
in exponential time is evident: there are 2n possible assignments to the vari-
ables, and the time required to evaluate the formula for any given assignment
is polynomial. The next step is to classify the problem: Does it belong to P,
or is it complete in EXPTIME? This question, which arose in the early 1970s
years, is still open. It is hard to explain (at least, I would not undertake this
task) why the experts who were trying to solve this problem for almost 30 years
failed to construct a polynomial algorithm. But the fact that the proof of the
completeness of this problem in EXPTIME is elusive does have an explanation.
Looking at real exponential algorithms, such as the decision algorithm for the
analogue of the Tarski algebra over the complex field, and comparing them
with the above childish argument, we see the difference at once with the naked
eye: the algorithm suggested above for solving SAT uses exponential time very
little, only for the exhaustive search of the exponential number of possibilities,
whereas every possibility is processed in a polynomial time.

An explosion in computational complexity theory was initiated by defin-
ing the class NP of languages that can be recognized by such search algo-
rithms. More scientific name for search algorithms is nondeterministic algo-
rithms. Thus, NP is the class of languages that can be recognized within
nondeterministic polynomial time.

Now, let us give a definition of this class. This definition, as well as the
definition of the class P, contains the word “machine”; more precisely, it involves
a nondeterministic Turing machine (NTM), although people dealing with real-
life machines may feel displeased by the use of the word “machine” in this
context. By a nondeterministic machine, we mean a machine which operates
as a usual machine with the only difference that it can put a question mark in
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some cell, after which its operation forks into two branches, 0 and 1:

���
���

1

0
?

(the branches correspond to writing 0 and 1 in the cell). Then the machine
continues to work. At some moment, the operation may branch again. A com-
putation tree arises. Along each branch of the computation tree, the NTM
operates as a usual computer, but the result obtained by such a machine de-
pends on the results obtained along all the branches. Let us determine this
result in the case of verifying whether a word x belongs to a language L. Each
computational branch gives one of the two possible answers “yes” and “no.”
An NTM recognizes the language L when a word x belongs to L if and only if
the answer “yes” is obtained on at least one computational branch.

Let us illustrate the power of NTMs on the example of the satisfiability
of propositional formulas. Very frequently, when a student (polynomial deter-
ministic Turing machine) fails to solve a problem, the teacher plays the role
of a nondeterministic machine and communicates the correct answer (prepared
in advance), which can be easily verified. In other words, an NTM “is eager”
to prove the assertion x ∈ L, and at the moments of branching, it acquires
an unlimited intellectual ability and makes the best choice. If there exists a
computation branch for which the answer is “yes,” then x ∈ L. Otherwise, no
branching leads to a positive result (a word does not belong to the language
only when the NTM has no possibility whatsoever to prove the converse).

Do not ask me about the physics of the process, that is, how branching goes
on, where such a machine is, whether it is possible to look at it... Such ma-
chines do not exist in reality. One of the most significant recent achievements
in complexity theory was the development of a quantum computation model.
Quantum computers are one of the candidates for the role of such a machine in
the real world. At least, physicists have no essential objections to the existence
of quantum computers and experts in complexity theory have no imperative
objections to the possibility of simulating nondeterministic machines by quan-
tum computers. Moreover, abstract quantum computers are already capable of
solving some of the most important search problems, such as factorization of
numbers.4

I emphasize again that a nondeterministic machine is a purely theoretical
notion. The convenience offered by this notion, however, is truly fantastic.

4 At the last International Congress (Berlin, August 1998), American mathematician P. Shor
was awarded the Nevanlinna Prize for this research.
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That was the very first fictitious model in computational complexity theory.
At present, there are a lot of such models, which are much more complicated,
such as interactive proofs and so on. These models do not arise by themselves
but are constructed for the purposes of defining complexity classes and classi-
fying natural problems.

It is intuitively clear that the notion of an NTM is perfectly adjusted to
modeling search algorithms. In fact, we have already shown how to do this. If
we have an algorithm which tries to search through some set of possibilities, then
our machine can guess which of these possibilities is good and, then, simulate
the second part (a polynomial verification of a particular choice). Proving the
converse assertion is somewhat more complicated, but still, it is fairly simple.
An NTM generates a calculation tree, and we must perform an exhaustive
search over all possible branches.

The modern theory of computational complexity was initiated by works of
Cook, Karp, and Levin (who obtained his results independently) in the early
1970s (1970–1972). They proved the following series of theorems.

1. The satisfiability problem (SAT) is complete for the class NP (this is a
theorem of Cook). Thus, the problem which mathematician M tried to solve
(whether a polynomial algorithm for solving the SAT problem can be designed)
is equivalent to the question whether the classes P and NP coincide (P

?

�=
NP). If there is no polynomial algorithm, then these classes do not coincide,
since the problem SAT separates them; if there is such an algorithm, then any
problem from the class NP can be solved efficiently. The satisfiability problem is
responsible for the class NP. Roughly speaking, NP is nothing but the problems
that reduce to the satisfiability of propositional formulas.

2. Naturally, such a result may meet some rejection, because the satisfia-
bility problem is not that important, and it is hardly expedient to construct a
whole theory of solving it. But the next step was a 1971 paper of Karp, where
21 complete problems for the class NP were formulated. All these problems are
equivalent.

At present, the list of NP-complete problems, which arise in literally all
the domains of mathematics, contains thousands of problems. Search problems
arise wherever algorithms do. This is no surprise, because programmer’s work
largely consists in choosing a better possibility. It is much more surprising that,
very often (in fact, with some exceptions, almost always), particular search
problems are comparatively easy to classify as polynomial-time computable or
NP-complete.

This is the way the theory of search problems was developed. It has acquired
great importance, because search algorithms arise almost anywhere. In the
opinion of American topologist Smale, the P

?

�= NP problem will be one of the
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most important questions of mathematical science in the forthcoming century.
The story about what makes, so to speak, the core of computational com-

plexity theory is nearing an end. It should not leave the impression that the
entire complexity theory only works on the relation P

?

�= NP. The scheme of
research described above, which unites problems into complexity classes and
studies them by means of reducibility, proved surprisingly efficient and fruitful
in many diverse situations.

Let us briefly mention several most important possibilities (in addition to
quantum calculations already mentioned).

There is algebraic complexity. For example, if we are interested in com-
putation of some polynomial, it is determined by the number of additions and
multiplications involved in the computation. The details of bitwise computation
and of the implementation of arithmetic operations are ignored.

There is also geometric complexity related to the Voronoi diagrams and
similar things, but I shall not speak about it.

Finally, there is Boolean complexity, which differs from the complexity con-
sidered today in that it deals with functions f : {0, 1}n → {0, 1} defined on
words of fixed length.

In each of these domains, there are plenty of very interesting problems which
fit into the framework of this general ideology.
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The Schrödinger equation and symplectic geometry

Lecture on June 25, 1998

This lecture is concerned with fairly elementary things. I shall acquaint you
with some useful notions of mathematical physics. Before proceeding to what I
am going to talk about (this is some exotic operators on graphs), let me remind
you of the Schrödinger equation. This is the equation

−ψ′′ + u(x)ψ = λψ;

the value u(x) is called a potential. Sometimes, this equation is considered
formally, but if the Schrödinger equation arises from quantum mechanics, then
it is usually assumed that ψ ∈ L2(R), i.e.,∫

R

|ψ(x)|2dx < ∞.

The space L2(R) is Hilbert. The spectral problem is considered for vectors
from this space.

Unlike in the traditional matrix situations where the problem on eigenvalues
arises, in the case under consideration, the notion of continuous spectrum arises.

We assume that the function ψ(x) sufficiently rapidly tends to zero as
x → ∞. To obviate the necessity of substantiating the convergence, we shall
even assume that the function ψ(x) is compactly supported, i.e., it identically
vanishes outside a bounded domain.

1 Quantum scattering

We are interested in the notion of quantum scattering. When the potential
is compactly supported, it is natural to assume that there exist solutions ψ±
such that ψ±(x) → e±ikx as x → −∞ (here k2 = λ). This is one basis of the
solution space. The second basis is obtained by considering solutions φ± such
that φ±(x) → e±ikx as x→ +∞.

The solution space of a second-order differential equation with an arbitrary
fixed λ is two-dimensional; therefore,

aψ+ + bψ− = φ+, cψ+ + dψ− = φ−. (1)

203
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The matrix T =
(

a b
c d

)
arises. In some purely mathematical books, this

matrix is incorrectly called the scattering matrix. The correct term is the
monodromy matrix. Monodromy matrices are encountered in various fields of
mathematics, e.g., in the complex theory of differential equations, very fre-
quently. A monodromy matrix is the matrix of transfer from −∞ to +∞ along
the x-axis, i.e., the matrix of transfer from left to right. This matrix has a
whole series of very interesting properties. In particular, consider the question
about scattering. Consider a λ ∈ R . We know that self-conjugate matrices
have real spectrum. The same is true of operators if they are self-conjugate
in a certain reasonable sense. Moreover, it is easy to see that, in the case un-
der consideration, a spectrum of interest to us occurs only for positive λ. For
k2 = λ, this means that k ∈ R . We refer to the domain λ � 0 on the real line
as the scattering zone.

Now, I shall say what the scattering matrix is. For k ∈ R , we have ψ+ =

ψ− and φ+ = φ−, and the matrix T has the form T =
(

a b

b a

)
; moreover,

detT = |a|2−|b|2 = 1 for certain reasons, which we are especially interested in.
Such matrices form the group SU(1, 1). These are the special unitary matrix,
which preserve indefinite Hermitian inner product with one positive square and
one negative square. I recommend proving that SU(1, 1) ∼= SL2(R) as a useful
algebraic exercise. The point is that we have obtained a complex matrix for a
purely real equation: we require that the function u(x) be real (usually, u has
the meaning of an electric potential). If we took cos kx and sin kx instead of
e±ikx at ±∞ when selecting a basis, then the monodromy matrix would be a
real matrix from the group SL2(R).

We have changed the basis ψ+, ψ− for the basis φ+, φ−. It can be proved
that, when the basis φ−, ψ− is changed for the basis φ+, ψ+, the transition
matrix is unitary (although not every unitary matrix can be obtained in this
way). This matrix is denoted by S(λ) and called the scattering matrix.

This is elementary material, which is commonly taught to second-year
physics students. Mathematics students do not always study it at all. But
the course in ordinary differential equations for students in theoretical physics
follows precisely this scheme.

The transition from the matrix T (λ) ∈ SU(1, 1) to the matrix S(λ) ∈ U(2)
is called the Cayley transformation.

There is yet another useful exercise; I borrowed it from the good textbook of
V. I. Arnold entitled Additional Chapters of the Theory of Ordinary Differential
Equations. Consider a pair of vectors e1 and e2 and the matrix T ∈ SL2(R)
mapping these vectors to vectors e′1 and e′2. In four-dimensional space R4, we
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introduce the basis e1, e2, e
′
1, e

′
2 and define a skew-symmetric inner product in

such a way that 〈e1, e2〉 = −〈e′1, e′2〉 = 1 and the remaining products of basis
elements vanish (certainly, 〈e2, e1〉 = −〈e′2, e′1〉 = −1). The space R4 with this
skew-symmetric inner product is called the space of symplectic geometry, or the
space of symplectic linear algebra. Note that the graph of the mapping T on
R4 is a two-dimensional subspace of this space.

Exercise. The graph of the mapping T is a Lagrangian subspace, i.e., if η is
an arbitrary vector and ξ = Tη, then 〈η, ξ〉 = 0.

Now, I can tell about analogues of scattering theory which arise in graph
theory. A graph Γ is a one-dimensional simplicial complex; it has only edges
and vertices. We require that the graph have no double edges, i.e., that the
intersection of any two edges either be empty or consist of one vertex. In
addition, we require that the graph have no end-vertices. This means that, if
there is an edge going to a vertex, then there must be another edge going from
this vertex. For a vertex P , we denote the number of edges going from this
vertex by nP . We assume that nP < ∞; the graphs themselves may sometimes
be infinite.

The simplest example of an infinite graph is the discretized line R with
marked integer points.

2 Schrödinger operators on graphs

There are two Schrödinger operators on graphs. One of them acts on functions
of vertices, and the other acts on functions of edges.

Definition. The Schrödinger operator acts on the space of functions whose
variables are vertices of a graph by the rule

(Lψ)P =
∑
P ′

bP,P ′ψP ′ ,

where bP,P ′ = bP ′,P ∈ R and bP,P ′ �= 0 only if P = P ′ or P ∪ P ′ = ∂R is the
boundary of an edge R.

The number bP,P ′ is called a potential. Only neighboring vertices can in-
teract. There are thousands of papers on probability theory and combinatorics
which study the Schrödinger operator (it is also called the second-order opera-
tor) acting on functions of graph vertices.

The Schrödinger operator acting on functions of edges is defined similarly
as

(Lψ)R =
∑
R′

dR,R′ψR′ .



206 S. P. Novikov

z1

z2

zk

zk−1

Figure 1. A graph with k tails

The condition is also similar, namely, dR,R′ �= 0 only for edges being nearest
neighbors of each other. By nearest neighbors, we mean either coinciding edges
or edges having a common vertex.

The edge operators do not reduce to vertex operators.
The simplest example of the Schrödinger operator on a simplicial complex

(acting on simplices of arbitrary dimensions) is the so-called Laplace–Beltrami
operators; they have been extensively used by topologists, starting with the fa-
mous paper of Singer and his coauthors, where the so-called Ray–Reidemeister–
Singer torsion was studied. Thus, the multidimensional situation has been
considered.

Consider the simplest situation of the discretized line. The Schrödinger
and Sturm–Liouville equations were discretized in computational mathematics
since the advent of this science; naturally, the discrete Schrödinger has been
extensively studied. In the case of the discretized line, the edge and vertex
Schrödinger operators coincide. To every edge Rn and vertex Pn we can assign
the number n. The Schrödinger equation on the discretized line is then written
as

cn−1ψn−1 + cn+1ψn+1 + vnψn = λnψn.

In the theory of solitons, this equation was extensively used to study the so-
called discrete systems. In classical computational mathematics, it was assumed
that cn = 1 for all n. This constraint is inconvenient. Afterwards, it turned
out that, in the theory of solitons and in quantum physics, it is convenient to
consider the general class of Schrödinger operators.

On the discretized line, as well as in the continuous case, each λ determines
a two-dimensional solution space. A monodromy operator naturally arises. If
the coefficients approach certain constants at ±∞, then a scattering matrix
with the same properties as above arises. This case differs little from that of
the continuous line.
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Consider a graph Γ with k tails z1, . . . , zk (Fig. 1). Each tail is a discretized
half-line. We require that cn = 1 and vn = 0 outside a bounded domain, i.e.,
the Schrödinger equation has the form

ψn−1 + ψn+1 = λψn. (2)

What the solutions to equation (2) look like? The answer is very simple:
we can take ψn,± = an

±, where

a± = 1

2

(
λ±

√
λ2 − 4

)
.

The scattering zone (the zone of continuous spectrum) is |a±| = 1 (or, equiva-
lently, −2 � λ � 2). It is for this zone that we want to construct scattering.

In each tail zj , we choose solutions ψ+,j and ψ−,j . It may happen that these
solutions cannot be extended over the entire graph. The solutions ψ± are of
exponential type. We can also introduce solutions cj and sj being analogues of
cosine and sine. They are obtained as follows:

cj + a±sj = ψ±,j .

This is a convenient real basis.
Let us introduce the space of asymptotic states

R2k =
k⊕

j=1

R2
j ,

where R2
j = {cj , sj} is the space of solutions on the jth tail.

Consider the value (we call it Wronskian) defined by

W
R(φ, ψ) = bP,P ′(φP ′ψP − ψP ′φP )

for the vertex operator and by

W
R(φ, ψ) =
∑

R′∩
R=P

dR,R′(φR′ψR − ψR′φR)

for the edge operator. Here �R = PP ′ is an oriented edge.
What is the continuous analogue of this value? Given the Schrödinger op-

erator −ψ′′ + u(x)ψ = λψ, the Wronski determinant W (φ, ψ) for a pair of
solutions (φ, ψ) has the form

W (φ, ψ) = φ′ψ − φψ′.

In the continuous case, the main property of the Wronskian is that W (φ, ψ) =
const. This theorem has a direct analogue for Schrödinger operators on graphs.
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Theorem 1. (a) W
R(φ, ψ) is a well-defined function whose arguments are a
pair of solutions and an oriented edge. This function is skew-symmetric: it
changes sign under the permutation of the solutions and under the change of
the orientation of the edge;

(b) ∂W = 0, i.e., W is a cycle.

The physical interpretation of W being a cycle is Kirchhoff’s first law. If
Φ = φ + iψ is interpreted as a field, then −2iW (φ, ψ) = jΦ is a current, and
the equality ∂W = 0 expresses the first law of Kirchhoff.

The cycle W is open; this means that, if the graph has an infinite tail, then
this cycle has no finite support. The assertion that W is a cycle corresponds
to the constancy of the Wronskian in the continuous case. Indeed, for the line,
any open cycle is merely a line with some coefficient.

We interpret W as a skew-symmetric inner product on pairs of solutions.
This inner product takes vector values. Thus, we treat W as an element of the
one-dimensional homology group of the graph H1(Γ, R).

This may be useful only if there are more than one solutions at the given λ.
Indeed, any skew-symmetric bilinear form on one-dimensional space identically
vanishes. Very frequently, the solution space has dimension larger than 1 pro-
vided that the graph has symmetry. The second case which I want to explain
is that of a graph without symmetry but with k infinite tails. In this case, the
solution space is at least k-dimensional.

My point of departure in studying these questions was as follows. The
classics in number theory, starting with Selberg, and modern geometers, in-
cluding Sarnak, considered the Laplace–Beltrami operator in various domains
on the Lobachevskii plane. I mean domains related to discrete groups, for
which the fundamental domains have finite areas. The corresponding domains
in the Lobachevskii plane have finitely many ends. As early as the 1950s,
I. M. Gelfand called attention to the results of Selberg and mentioned that
they were worth translating into the language of scattering theory. This task
was accomplished by the members of Faddeev’s Leningrad school, who exploited
the idea of Gel’fand, but only in the case of no more than two tails. M. Gro-
mov developed and advertised a similar general, thought fairly evident, idea. If
you look at the hyperbolic geometry from infinity, it appears as a purely one-
dimensional formation. The nearer the vertices of a triangle to the boundary,
the smaller its area and the more closely it resembles a graph. This suggests
that it is natural to model spectral theory, especially for the continuous spectra
of the Laplace–Beltrami operators, with the use of the theory of graphs with
tails.

Suppose given a graph Γ with k tails z1, . . . , zk. I have introduced the space
of asymptotic states R2k =

⊕k
j=1 R2

j . This is the space of solutions to the
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Schrödinger equation on the tails under the assumption that the coefficients of
the operator on the tails tend to the standard values which I have written out
above. Namely,

ψ±,j,n = cj,n + a±sj,n.

Here j is the number of the tail and n is the number of the vertex.
The Wronskian can be used to turn the space of asymptotic states into a

symplectic space as follows. We require that 〈cj , sj′〉 = δj,j′ and introduce the
corresponding skew-symmetric inner product. It coincides with the Wronskian
for two solutions on each tail.

Now, let us make the following observation. Suppose that φ and ψ are a
pair of solutions to the equation Lψ = λψ. To the (real) solution ψ we assign
its asymptotic value being an element of the space R2k:

ψ �→ ψas ∈ R2k.

This correspondence is defined as follows. Every solution to the Schrödinger
equation on a graph is equal to something on each tail. We take the direct sum
of these states. I am considering real solutions, but it is always possible to pass
to complex solutions by means of complexification.

Theorem 2. If Lψ = λψ and Lφ = λφ, then 〈φas, ψas〉 = 0.

This theorem means that, if two sets of asymptotic values specified arbitrar-
ily on each tail can be extended to solutions to the Schrödinger equation on the
entire graph, then their inner product always vanishes. In reality, this property
completely determines all the unitarity property of the scattering process. In
other words, as symplectic geometers say, the set of all asymptotic values of
solutions existing in reality forms a Lagrangian subspace of dimension k in a
space of dimension 2k.

In essence, this fact is purely topological. Suppose given a graph Γ with k
tails z1, z2, z3, . . . , zk. Consider a pair of solutions Lψ = λψ and Lφ = λφ. It
does not matter whether the Schrödinger operators under consideration are edge
or vertex, because they do not differ on the tails. Consider the Wronskian W .
Its boundary vanishes.

Exercise. The Wronskian W being a cycle implies that W can be represented
in the form

W =
k∑

i=1

αizi + something finite;

i.e., if W contains an edge of a tail with some coefficient, then all other edges
of this tail have the same coefficient in W .
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Note also that one tail can never be extended to a cycle on the entire graph.
Only differences of tails can; yet, we can extend them in different ways. The
differences of the extensions are some finite cycles in the graph.

Exercise. W =
k∑

j=2
βj(z1 − zj) + something finite.

Comparing the last two expressions, we see that
∑

αj = 0. Indeed, α1 =∑k
j=2 βj and αj = −βj for j > 1. The equality

∑
αj = 0 is equivalent to

〈φas, ψas〉 = 0. Thus, the fact that the asymptotic solutions form a Lagrangian
plane in a neighborhood of infinity is fundamental. Next, it is easy to show
that this plane is determined by k equations; therefore, its dimension is at least
k. On the other hand, a Lagrangian plane cannot have dimension larger than
k.

Therefore, the operator assigning asymptotic values to solutions determines
a k-dimensional subspace for any λ. It may have a kernel, which consists
of the eigenfunctions identically vanishing on all tails. They have interesting
analogues in the spectrum related geometry, the study of which was initiated
by Selberg. For generic graphs, they can be removed by a small perturbation.
But for graphs with group symmetry, they cannot be removed.

The scattering matrix is constructed as follows. In the Lagrangian plane,
we choose a basis of vectors of the form

ψj = ψ+,j +
∑

q

sjq(λ)ψ−,j .

The scattering matrix is (sjq(λ)) (by definition).
If the basis chosen in the Lagrangian space is purely real, then the scattering

matrix S is unitary and symmetric. This can be explained as follows. Take a
unitary matrix A and write the matrix S in the form S = AAt. Let us see how
many such matrices exist. If we replace A by AO, where O is a matrix from the
real orthogonal group, then AAt will be replaced by AOOtAt = AAt. Therefore,
S ∈ Uk/Ok. As is known, the set of all Lagrangian planes is isomorphic to
precisely Uk/Ok.

For the first time, the discretized line with complete set of coefficients arose
in integrating the so-called Todd chain; such a Schrödinger operator proved to
have much better properties than its special cases considered in computational
mathematics.
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Rings and algebraic varieties

Lecture on February 19, 1999

Let k be an algebraically closed field (e.g., k = C). We shall consider only
rings of the form R = k[x1, . . . , xn] /I, where I is a prime ideal. In other
words, we shall consider finitely generated algebras without zero divisors over
an algebraically closed field.

A ring R can be assigned its affine scheme Spec R, which is the set of
all prime ideals of R. For a reasonable ring, the maximal ideals are close to
the geometric notion of point. Prime ideals are close to the geometric notion
of irreducible subvariety, and in the cases we are interested in are completely
determined by the maximal ideals. (More precisely, every prime ideal is an
intersection of maximal ideals.)

We regard the affine scheme as an algebraic variety V in affine space An (if
k = C , then An = Cn), rather than as a set. An algebraic variety V is the set of
all points in the space An at which all polynomials from the ideal I vanish. An
identification of SpecR with V corresponds to a choice of coordinates x1, . . . , xn.

Conversely, to an algebraic variety V , there corresponds the ring k[V ] of
polynomial functions on V ; this ring coincides with R.

Any mathematician has heard of algebraic varieties as zero sets of some
polynomials. There are two approaches:

(1) given equations, it is required to determine a set of points;
(2) given a geometric object, it is required to specify it as an algebraic

variety (i.e., immerse it in affine space and specify by equations).

Example. Suppose that, on affine space C2, a finite group G ⊂ GL(2, C) of
linear transformations acts. We want to endow the quotient space C2/G with
the structure of an algebraic variety.

For example, what is the ring of functions? A likely candidate is as follows.
Take the ring of invariant functions k[x,y]G in the polynomial ring k[x, y]. This
ring has the form k[x, y]G = k[u1, . . . , un] /I. Indeed, we choose an invariant
polynomial u1, then u2, and so on, until there remain no new (independent)
polynomials. The ideal I corresponds to the relations between the chosen in-
variant polynomials.

Miles Reid, Professor at Warwick University (Great Britain).
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If the group G is generated by a mapping x, y �→ −x,−y, then all invariant
polynomials are expressed in terms of x2 = u, xy = v, and y2 = w. These
polynomials are related by uw = v2. As a result, we obtain a mapping C2 →
Q ⊂ C3, where Q is the quadric defined by the equation uw = v2. This mapping
identifies all points on each orbits and no other points.

This example can be generalized. Let ε = exp(2πi/r). Consider the group
generated by the mapping x, y �→ εx, ε−1y. The invariant polynomials are
xr = u, xy = v, and yr = w. They are related by uw = vr. We obtain a
mapping C2 → X ⊂ C3, where X is defined by the equation uw = vr. This
equation determines a singularity of type Ar−1.

We can also consider the group generated by the mapping x, y �→ εx, ε3y,
where ε7 = 1. In this case, the invariant polynomials are x7 = u1, x4y = u2,
xy2 = u3, and y7 = v. The relations between them can be written in the form

rk
(u1 u2 u2

3

u2 u3 v

)
� 1.

Exercise. Prove that the polynomials specified above generate the whole ring
of invariant polynomials, and the relations generate the whole ideal of relations.

Now, we proceed to define a projective variety. In this case, R is a graded
ring, i.e., R =

⊕
n�0

Rn, where R0 = k and it is assumed that xnym ⊂ Rn+m for

homogeneous polynomials. We also assume that the ring is finitely generated
and has no zero divisors. Thus, R = [x1, . . . , xn] /I, where the generator xi

has weight ai (not necessarily equal to 1) and I is a prime homogeneous (with
respect to the weights) ideal.

The graded ring R is assigned ProjR, which is the set of all homogeneous
prime ideals P ⊂ R not containing the trivial prime ideal m0 =

⊕
n>0

Rn. In

the situation under consideration, an ideal that is maximal with respect to this
condition correspond to a geometric of ProjR, and all the homogeneous prime
ideals are determined in terms of these.

The projective variety X = ProjR is a union of affine varieties. Namely,
X =

⋃
Xf , where the affine variety Xf (0 /∈ Xf ⊂ Rn) has the form Xf =(

R
[

1
f

])
0

=
{ g

fk

}
(the subscript 0 indicates that only elements of degree 0 are

taken); here deg g = nk.
Choosing coordinates, we embed X in the weighted projective space

P(a0, a1, . . . , an) defined as follows. Let us introduce the equivalence relation

(x0, x1, . . . , xn) ∼ (λa0x0, λ
a1x1, . . . , xnλan)

on the set Cn+1 \ {0} and consider the quotient space modulo this equivalence.
If all the ai are equal to 1, then we obtain the usual projective space.
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1
3
(1, 2)

1
2
(1, 1)

Figure 1

Example. The weighted projective space P(1, 2, 3) is the projective plane P2

with two horns (Fig. 1). These horns are the quotient singularities 1
2(1, 1) and

1
3(1, 2). (They are the very same quotient singularities as those we have just
encountered.)

The equivalence relation in the space C3 has the form (x, y, z) ∼ (λx, λ2y,
λ3z) in the case under consideration. There arise exceptional orbits. For ex-
ample, consider the restriction to the y axis, i.e., the orbit of the point (0, 1, 0).
The action of the element λ = −1 leaves the point (0, 1, 0) fixed. This means
that the orbit has a nontrivial stabilizer. But when the stabilizer increases,
quotient singularities occur.

Why is the quotient singularity equal to one half? On the orbit under
consideration, the only nonzero function equals to y (up to proportionality).
Therefore, the denominator contains only y:(

R
[ 1
f

])
0

=
(
k [x, y, z]

1
y

)
0

=
{ g

yk

}
.

Here y has degree 2; hence the degree of the polynomial g must be even rather
than is arbitrary.

In other words, if we set η =
√

y, then the local coordinates in a neighbor-
hood of the point (0, 1, 0) are x/η and z/η3. These are coordinates on a cyclic
covering of the variety rather than on the variety itself.

The situation in a neighborhood of the point (0, 0, 1) is considered similarly.
The weighted projective space P(1, 2, 3) can be embedded in the usual pro-

jective space of larger dimension. Namely, we can embed it in P6. For this
purpose, we take the ring k [x, y, z][6] of polynomials whose degrees are multi-
ples of 6. The basis polynomials are

x6 x4y x2y2 y3

x3z xyz

x2

The nine relations between these monomials specify a del Pezzo surface S6 ⊂ P6.
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E

Figure 2

Applications

To the ring R = k[X] (of all polynomial functions on X) we assign the affine
algebraic variety X = SpecR. To obtain a projective variety, we must fix an
ample divisor; then X = ProjR. But this is a complicated matter. We refer
the interested reader to the second chapter of Hartshorne’s book.

We shall consider only one simple case in which E is an elliptic curve with a
given point P ∈ E. The elliptic curve can be understood as either a nonsingular
plane cubic curve or a compact Riemannian surface of genus 1. The problem is
to immerse it in projective space and find an equation specifying it.

Let L(nP ) be the spaces from the Riemann–Roch theorem, i.e., the spaces
of global meromorphic functions having poles only at the point P of multiplicity
not higher than n. According to the Riemann–Roch theorem,

dimL(nP ) =
{

n for n > 0,
1 for n = 0.

Consider the graded ring R(E, P ) =
⊕
n�0

L(nP ). (We can do this for an

arbitrary algebraic variety with a given ample divisor.)
The spaces R0 and R1 correspond to the same functions. Indeed, if an

elliptic function is allowed to have only one simple (nonmultiple) pole, then such
an elliptic function is constant. Therefore, R0 and R1 contain only constant
functions. But we consider the direct sum; hence the same function corresponds
to different elements of the ring R(E, P ), depending on whether we consider
this function as an element of R0 or of R1. For convenience, we set R0 = k and
R1 = k · x (here x corresponds to the function identically equal to 1 treated as
an element of R1).

Theorem. R(E, P ) = k[x, y, z] /(f6), where dimx = 1, dim y = 2, and dim z =
3. The ideal (f6) is generated by a homogeneous relation of the form z2 + · · · =
y3+. . . . (Any such relation can be reduced to the form z2 = y3+a4(x)y+b6(x).)

According to this theorem, E is embedded in P(1, 2, 3) as a hyperplane
section. The presence of the term z2 shows that, under this embedding, the
elliptic curve is disjoint from the singular points of the weighted projective space
P(1, 2, 3) (Fig. 2).
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Proof of the theorem. The space L(0) is generated by the element 1.
The space L(P ) is generated by the element x.
The space L(2P ) is generated by the elements x2 and y.
The space L(3P ) is generated by the elements x3, xy, and z.
Up to L(5P ), the number of monomials equals the dimension of the space.

But dimL(6P ) = 6, whereas there are the seven monomials displayed above,
and therefore there is a relation between them.

The monomials are linearly independent because the mapping E → P6

determined by x2 and y is not constant (i.e., x2 and y are algebraically inde-
pendent).

The process can be algorithmized. Consider a graded ring R for which
dimRn = l(n), where l(n) = n for n > 0 and l(0) = 1. To this graded ring we
can assign the Poincaré series L(t) =

∑
l(n)tn. For a finitely generated ring,

the Poincaré series is a rational function. The form of this rational function
depends on the dimensions of the generators and on the number of relations
and their dimensions. For example, in the case under consideration,

L(l) =
1− t6

(1− t)(1− t2)(1− t3)
. (1)

This means that there are three generators of dimensions 1, 2, and 3 and one
relation of dimension 6.

Equality (1) can be proved, e.g., as follows. By definition, L(t) = 1 + t +
2t2 + 3t3 + . . . . Therefore,

(1− t)L(t) = 1 + t2 + t3 + t4 + . . . ,

whence
(1− t2)(1− t)L(t) = 1 + t3 =

1− t6

1− t3
.

Experts in commutative algebra know that this is a very general construc-
tion. If M is a graded module and the ring has an element v not being a zero
divisor, then multiplication by v induces the exact sequence

0 → M
v→ M/v.

Here M/v is a module over a smaller ring, namely, over the ring obtained by
substituting v = 0. The multiplication of the series considered above corre-
sponds precisely to this reduction.

All the issues in this lecture are dealt with in much greater detail in two
introductory chapters of my projected book; see

http://www.maths.warwick.ac.uk/~miles/surf
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Billiard table as a playground for a mathematician

Lecture on March 10, 1999

The title of this lecture can be understood in two ways. Literally, in a somewhat
facetious sense: mathematicians are playing by launching billiard balls on ta-
bles of various forms and observing (and also trying to predict) what happens.
In a more serious sense, the expression “playground” should be understood as
“testing area”: various questions, conjectures, methods of solution, etc. in the
theory of dynamical systems are “tested” on various types of billiard problems.
I hope to demonstrate convincingly that at least the second interpretation de-
serves serious attention.

The literature concerning billiards is rather large, including scientific papers
as well as monographs, textbooks, and popular literature. Short brochures by
G. A. Galperin and A. N. Zemlyakov [4] and by G. A. Galperin and N. I. Cher-
nov [5] are written in a rather accessible manner, and touch a broad circle
of questions. An introduction to problems related with billiards for a more
advanced reader is contained in Chapter 6 of the book [9]. The next level is
represented by a very well written book of S. Tabachnikov [14], whose pub-
lication in Russian is unfortunately delayed. The book by the author and
B. Hasselblatt [8] contains a rather detailed modern exposition of the theory of
convex billiards and twisting maps. A serious but rather accessible exposition
of modern state of the theory of parabolic billiards is contained in a survey
paper by H. Masur and S. Tabachnikov which will be published (in English)
in spring 2002 [11]. The collection of papers [12] contains rich material on hy-
perbolic billiards and related questions. More special references will be given
below during the exposition.

1 Elliptic, parabolic, and hyperbolic phenomena in
dynamics

The problem of motion of a billiard ball is stated in a very simple way. One
has a closed curve Γ ⊂ R2. Inside the domain B bounded by the curve, one has
a uniformly moving point which covers segments of straight lines, and when
the point meets the curve, it is reflected according to the rule “the angle of
incidence equals the angle of reflection.” The problem is to understand the
nature of this motion at a large time.

216
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Here we have a dynamical system which is in general not everywhere defined.
For example, if in a domain with a piecewise smooth boundary the point hits
an angle, then it is unclear how to continue the trajectory. There are also more
delicate effects: for some initial conditions it is possible that during a finite
time an infinite number of hits of the boundary occurs and the motion cannot
be continued. But these effects are pathological; one can say that we have a
dynamical system.

The solution of the problem of motion of a ball depends on the domain.
One of the reasons of interest to this problem is that the formal description of
the motion is very simple and only the essential part is to be investigated. The
second, more serious reason has been already mentioned. It is related to the
fact that if one attempts to somehow classify problems of theory of dynamical
systems, then, in a somewhat rough manner, they can be divided into elliptic,
parabolic, and hyperbolic ones (see Fig. 1). Thus, a billiard table is a testing
area on which one can test methods, conjectures, questions, arising in various
fields of theory of dynamical systems.

There is nothing new in using these words for expressing some trichotomy.
The corresponding classification in theory of partial differential equations is
well known. But for dynamical systems, such a classification seemingly has not
been carried out systematically.

In the case of billiards, elliptic effects arise, for example, for an ellipse. This
coincidence is not completely accidental, but it cannot be extended to billiards
inside a parabola or a hyperbola. A more general situation in which elliptic
effects occur, is as follows: the curve is smooth (of a sufficiently large class of
smoothness), convex, and its curvature nowhere vanishes. The study of the
billiard problem inside such domains gives a good example for demonstration
of problems and results related to elliptic behavior of dynamical systems.

In a parabolic situation, the domain is a usual polygon. For simplicity one
can even take a right-angled triangle whose angles differ from 30◦ and 45◦. A
right-angled triangle with the angle π/8 already gives an example of a dynamical
system with parabolic behavior.

The hyperbolic situation is well represented by three examples (see Fig. 1):
a square with a small disk removed, a “stadium,” and a cardioida.

The idea about at least a dichotomy which exists in the theory of dynamical
systems has been widely accepted in the last years. One of the most remark-
able books on the theory of dynamical systems written in the second half of
the twentieth century is the book by Yorgen Moser “Stable and random mo-
tion in dynamical systems.” “Stable” means elliptic effects, “random” means
hyperbolic effects. Parabolic effects are not discussed in Moser’s book.

To give some idea on the nature of the trichotomy arising here, let me explain
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Ellipse

A smooth convex
curve of class Cr,
r is large; k �= 0

Polygon

Angle �= 30◦, 45◦

Cardioid

Figure 1. Elliptic, parabolic, and hyperbolic billiards

the origin of these terms. For linear mappings the corresponding trichotomy is
well known. For a linear mapping L : R2n → R2n three main kinds of behavior
are possible:

(1) Stable behavior. It arises when all the eigenvalues λi have absolute value
1 and there are no nontrivial Jordan blocks: SpL ⊂ S1. In this situation all the
orbits come back and are stable. This is elliptic behavior.

(2) Again |λi| = 1, but there are nontrivial Jordan blocks. A Jordan block
has an eigenvector, therefore there are stable orbits. But in this situation,
typical is the polynomial growth of distance between orbits. This is parabolic
behavior.

(3) Hyperbolic behavior: SpL ∩ S1 = ∅. In this situation the distance
between any two orbits exponentially grows either in the positive or in the
negative direction.

Combinations of these three paradigms are also possible. For example, a
rather important situation is what is called partially hyperbolic behavior, when
the spectrum contains a hyperbolic component and something else. This is a
very important paradigm in dynamics.

It would be very naive to attempt to construct a concept of nonlinear dif-
ferential dynamics based only on these three models. What is the subject of
nonlinear differential dynamics? It is the analysis of asymptotic behavior of
smooth systems for which one has the notion of local infinitesimal behavior of
the system and, on the other hand, due to compactness of the phase space,
there is the phenomenon of returning of orbits arbitrarily closely to their initial
position. Roughly speaking, dividing nonlinear dynamical systems into elliptic,
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parabolic, and hyperbolic ones corresponds to the situations when the linear
behavior, which is more or less approximated by these three types, is combined
with the nontrivial nature of returning.

This approach ignores a very essential part of problems of theory of dynam-
ical systems, for example, such things as analysis of Morse–Smale systems or
effects related with bifurcations. These are situations when returning is simple,
and interesting phenomena are related, for example, to how the phase space is
divided into basins of attraction to several attracting points or limit cycles. All
of this is ignored. We are now speaking only on the part of dynamics which is
related to recurrent behavior. Nonrecurrent behavior is more or less ignored by
us now.

To interpret phenomena interesting to us correctly, one must understand
what is a linearization of a dynamical system. Let f : M → M be a given map
acting on the phase space. We assume that the phase space is a smooth object,
hence one can speak about the action on tangent vectors. For any point x ∈ M
one has the linear map Dfx : TxM → Tf(x)M . Such a map is interesting by itself
only in the case of a fixed point. But in the general case in dynamics one can
consider the iterations Dfn

x . Introducing a Riemannian metric, one can speak
about the asymptotic speed of growth of length of vectors. A Riemannian
metric can be introduced not uniquely, but on a compact manifold any two
metrics differ no more than by a multiplicative constant, therefore the speed of
growth of vectors is defined correctly.

The elliptic behavior arises when in the linearized system either there is no
growth of length of vectors at all, or it is slower than a linear one (a sublinear
growth).

A Jordan block of minimal size 2 already corresponds to a linear growth.
The parabolic behavior is a subexponential growth (usually a polynomial one).

The hyperbolic paradigm is the most well understood one. It corresponds to
the situation when the system splits and in some directions one has exponential
growth, and in the other directions one has exponential decay. When the time
is reversed, these directions are exchanged with one another.

Sometimes mixed situations occur. For example, one can take the direct
product of two systems of different type. But as a metastatement, one can
say that the hyperbolic paradigm dominates: if there is a nontrivial hyperbolic
effect and something else, then usually the behavior of the system can be un-
derstood based on its hyperbolic part. This is not true literally. For example,
this is not true for the direct product of dynamical systems. But for a typical
dynamical system the hyperbolic behavior dominates everything else.

One can also make the following interesting remark. When the dimension
of the phase space is small, mixed behavior is impossible. For example, when
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the dimension of the phase space equals 2, the partially hyperbolic behavior is
impossible, because for the hyperbolic behavior one needs at least one extending
and one compressing direction. By the same reason in small dimensions the
elliptic or parabolic behavior occurs more often.

The most pure example of elliptic behavior is the situation when one has
a smooth isometry. In this case there is no growth. For smooth isometries
dynamics can be understood rather easily. If on a compact phase space there
is a smooth isometry, then the phase space splits into invariant tori, and on
each torus a parallel translation arises (or a rotation, if one uses multiplicative
notation). In particular, if the manifold itself is not a torus, then such motion
is not transitive.

Of course, it is a particular case of what is well known in Hamiltonian me-
chanics, namely, it corresponds to completely integrable Hamiltonian systems.
This is a good example of interaction of paradigms, because, if one looks at
a completely integrable system naively, then it should be attributed to the
parabolic paradigm. Indeed, the linear part of a completely integrable system
is parabolic, because in the direction transversal to the invariant tori one has
a twisting. On the other hand, the space splits into invariant tori, and on each
torus analysis is carried out with elliptic methods.

This situation is typical. This is the reason why the elliptic paradigm is
important. It is a rather rare case that the global behavior on the whole phase
space is characterized by absence of growth. But rather frequently one has
some elements inside the phase space, where the behavior can be described by
means of the elliptic paradigm.

The hyperbolic situation is the most well studied. In a sense, it is the only
universal paradigm of complex behavior in dynamics. It can be well under-
stood with the help of Markov chains and simple stochastic models. From the
viewpoint of applications of dynamics, if the hyperbolic behavior is established,
then one can apply a rather powerful machinery which makes it possible to
study the behavior of nonlinear systems. All this arises due to the interaction
of a certain behavior of the linearized system with more or less a priori existing
returning. In linear systems hyperbolicity is followed just by running away of
the system to infinity. But if there is no space to run away, if one necessarily
has to return, then the above mentioned and well understood types of complex
behavior arise.

In contrast to elliptic and hyperbolic behavior, parabolic behavior is, firstly,
unstable, and, secondly, it is characterized by absence of standard models. In
the elliptic situation one has a universal model, namely, rotation on the torus
(or some of its avatars), and in the hyperbolic situation one has the Markov
model which describes everything. In the parabolic situation, seemingly, one
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even cannot say that there is a set of models to which everything is more or less
reduced. Nevertheless, there are rather typical phenomena which occur in con-
crete classes of systems. One of these phenomena consists in that frequently the
effect of moderate stretch can be replaced by the effect of cutting. For example,
if one has a system which locally looks like an isometry but has discontinuities,
then such a system is concerned with the parabolic paradigm.

A well known example is exchange of segments. We cut a segment into
pairs and exchange them according to a permutation given a priori. Locally
this system looks like an elliptic one, but there is the effect of cutting. It
is rather easy to realize that this system should be considered as a parabolic
one: during the iterations the number of segments grows in a linear way. This
linearity is not the result of twisting, but it is the result of cutting. But the
effect is approximately the same.

Thus, parabolic behavior is frequently related to the presence of moderate
singularities in systems. So it is not occasional that a polygon was drawn on
the picture illustrating parabolic behavior.

2 Billiards in smooth convex domains

George K. Birkhoff was the first to consider billiards systematically as models
for problems of classical mechanics. Birkhoff considered billiards only in smooth
convex domains. Of course, he did not think about billiards in polygons, and
all the more in nonconvex domains.

First of all, one can perform the reduction to the billiard mapping. The
initial dynamical system for a billiard is a system with continuous time. But
the trajectory inside the billiard table can be easily reconstructed if one knows
what happens at the moments of reflection. Therefore it suffices to consider the
so-called billiard mapping. The phase space of the billiard mapping looks as
follows. The vector v outcoming after reflection is characterized by the cyclic
coordinate φ ∈ S1 which fixes the position of the point on the curve Γ, and the
angle θ ∈ [0, 2π) between the tangent vector and the vector v (Fig. 2).

The phase space of the billiard mapping is a cylinder. After the reflection
we obtain a new point φ1 and a new outcoming vector, which corresponds to the
angle θ1. The map T (φ0, θ0) = (φ1, θ1) is what is called the billiard mapping.
It maps the open cylinder into itself; by continuity it can be extended to the
closed cylinder. The points with θ = 0 are fixed (we assume that the curve Γ
does not contain straight segments).

Exercise 1. Show that the presence of straight segments in the boundary
implies discontinuity of the billiard mapping.
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Figure 2. Vector coordinates after reflection

Figure 3. Twisting

Exercise 2. Find conditions under which the billiard mapping is differentiable
(one or infinitely many times) on the boundary of the cylinder.

The billiard mapping possesses two important qualitative properties.
1) Conservation of area. The element of area

dA = sin θdθdφ = dαdφ, where α = cos θ,

is conserved. (To introduce coordinates in which area is conserved, one should
take cos θ = α instead of θ.)

2) Twisting. Let us fix the coordinate φ0 and change the coordinate θ. Then
the coordinate φ of the image will change monotonously until it passes all the
circle and comes back (Fig. 3). The image of a vertical line is twisted.

These two properties allow one to realize that one has elliptic behavior. The
problems arising in connection with elliptic behavior are divided into two parts:

1) caustics,
2) Birkhoff orbits and Aubry–Maser sets.
Let me begin with the second part. We want to find periodic orbits of the

billiard system. Periodic orbits can be various. They differ not only by the
period, but also by some combinatorics. For example, two orbits of period 5
in Fig. 4 have different combinatorics. In the first case there is one rotation,
and in the second case there are two. These orbits are regular: the order of



Billiard table as a playground for a mathematician 223

(1, 5) (2, 5)

Figure 4. Orbits with equal periods and different combinatorics

points on the orbit is conserved; it is the same as in the rotation. It is these
(regular) orbits that are called Birkhoff orbits. This name is related to the fact
that he has proved a remarkable and relatively simple theorem on existence of
regular orbits. Seemingly, this theorem was the starting point of application of
variational methods in dynamics.

Theorem 1 (Birkhoff). For any two coprime numbers p and q there exist at
least two periodic orbits of the type (p, q).

Sketch of the proof. The proof uses only convexity and smoothness. Consider
various inscribed polygons with the required combinatorial properties. Let us
call such polygons by states. The states form a finite-dimensional space. On
the space of states there is the functional of length. If we allow the vertices
of polygons to coincide, then we obtain a compact space. Hence the length
functional has maxima.

Any extremal point of the length functional is a billiard orbit (if this point
is not on the boundary). This is a local statement. It is easy to check that the
derivative of the length vanishes if and only if the angles are equal. The linear
part of variation of the functional depends just on the difference of the angles.

It is easy to prove that the maximum cannot be achieved on the boundary,
i.e., the vertices of a polygon cannot coincide.

Thus, the longest polygon is a required periodic orbit. But this is still only
the easiest part of the theorem. One has to find another periodic orbit. This
can be done in the following way. Cyclic renumeration of the vertices of the
orbit we have found gives q maxima. Let us deform one of these maxima into
another one. If we go from one maximum to another one, then we have to go
down. Let us try to lose a smallest possible height. In this case we need to pass
a saddle (Fig. 5), because if at the lowest point we were not on a saddle, then
we could change the trajectory a little and decrease the lack of height. A saddle
is also a critical point, i.e., the required periodic orbit.

If we do not lose height at all, then in this case one has a whole family of
periodic orbits.
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Figure 5. A saddle

This proof shows concisely how one can change a difficulty by another one.
The difficult point of this argument is in how to keep aside from the boundary.
This can be easily achieved if we just do not consider the boundary, and consider
all states. Evidently, the function in question is bounded: any edge is no longer
than the diameter of the curve. One can omit the condition of ordering of
points and then prove that the global maximum is necessarily approached on
a correctly ordered orbit. If, for instance, we consider globally maximal orbits
which make two rotations during a full round, then they do it in a correct order.
And instead we can prove that one can avoid the boundary inside an ordered
family.

The importance of the Birkhoff theorem is in that we immediately find
infinitely many periodic orbits.

Now an interesting story begins on how Birkhoff missed an important dis-
covery.

Birkhoff presents his variational argument, and then he says that in exactly
the same manner one can purely topologically prove the so-called last geometric
theorem of Poincaré: “If the bases of a cylinder rotate in different directions
with area being conserved, then such a diffeomorphism has at least two fixed
points.” Moreover, if the angles of rotation on the upper and lower bases are
different, then for any rational angle of rotation one can find a corresponding
periodic orbit, even without the condition of twisting.

Birkhoff was extremely proud to prove the last geometric theorem of
Poincaré. But he missed a very remarkable conclusion of his own elementary
proof. This conclusion is the following. Let us look what happens in passing
to the limit pn/qn → α, where α is an irrational number. Usually in dynamics
such tricks would not work, because the asymptotic behavior is unstable with
respect to initial data, and one cannot pass to the limit. But here, just because
we are dealing with the elliptic situation, a simple but surprising phenomenon
arises. If we consider a Birkhoff orbit on the cylinder, then it consists of a finite
number of points. If the number qn is large, then the number of points will
be also large and they will be strongly condensed. It is rather easy to prove
that these points always lie on a Lipschitz graph (i.e., on the graph of a func-
tion satisfying the Lipschitz condition). The Lipschitz constant here is fixed,
it does not depend on the length of an orbit. The set of Lipschitz functions
with a given Lipschitz constant is compact, hence one can pass to a limit. In a
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Figure 6. The Denjoy counterexample

somewhat different way, one can say the following: let us take finite orbits and
consider their limit in the Hausdorff topology. In the Hausdorff topology closed
subsets of a compact set form a compact set, hence the limit exists, which is
not surprising. But the limit is an invariant set which is a subset of a Lipschitz
graph, because in the Hausdorff topology subsets of Lipschitz graphs form a
closed subset.

We still don’t know what is the geometry of the obtained graph, but we
know what is its dynamics. Its dynamics is the same as the one of the rotation
on the angle α, nothing else can occur. Indeed, the order in which the points
are transposed under rotation on the angle α, is uniquely determined by the
orders in which the points are transposed under rotations on the angles pn/qn

approximating the angle α. Hence on any finite segment in the limit combina-
torics will be the same as needed, because on any finite segment combinatorics
is stabilized and is the same as under rotation on the angle α.

Thus, a closed invariant set on a circle arises (since topologically the limit
Lipschitz graph is a circle). This set has a dynamics which preserves the order
and exactly reconstructs rotation on the angle α. From the times of Poincaré
it is known when this is possible: either the invariant set is the whole circle,
the orbits are dense and the transform is conjugate to a rotation of the circle
(this is, of course, elliptic behavior, at least in the topological sense), or the
circle contains an invariant Cantor set which arises in the so-called Denjoy
counterexample (see, for example, Chapters 11 and 12 in [8]). The Denjoy
counterexample looks as follows. Let us take a point on the circle and blow
it up into an interval. Then its image and preimage should be also blown up
into intervals (Fig. 6), etc. To have convergence, one needs these intervals to
be smaller and smaller. This is rather easy to make topologically. As a result,
one gets a transform of the circle which contains an invariant Cantor set and
which is half-conjugated to a rotation (there exists a continuous mapping which
makes it a rotation, but these intervals shrink into points).

For transforms of a circle such a behavior is exotic, because by Denjoy’s
theorem this is impossible in the class C2, it is possible only in the class C1.
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Figure 7. Confocal ellipses

A1 A1A2
B1 B2

Figure 8. Trajectories in the phase space

But for twisting maps this is rather normal behavior (of course, if it did not
happen that we get a full circle). Thus, an interesting alternative arises. When
one has accumulation of Birkhoff orbits on an invariant set (this is exactly
the Aubry–Maser set), this invariant set is either a Cantor set (possibly with
some additions) or the whole circle. The case of the whole circle is called a
caustic. One of these two cases holds always and for any rotation number.
The corresponding Cantor set is unique, i.e., if one removes from the invariant
set the wandering part corresponding to separate wandering points, then the
remaining Cantor set is unique. But this does not obstruct the existence of
other Cantor sets which have the same rotation number and on which the order
is preserved, but this order, although compatible with the cyclic order, would
not be compatible with the order on this set. The Cantor set constructed as
the limit of Birkhoff orbits of maximal length is special; it is called minimal. It
is the set of minimal energy.

The next question is the following: does it happen that one obtains the
whole circle? The answer to this question is illustrated by Fig. 7. Let us
take a big ellipse as a billiard table and consider the orbit which is tangent to
an inner confocal ellipse. It turns out that this orbit will be tangent to this
ellipse further. The same is true for confocal hyperbolas. However, a hyperbola
consists of two branches, but if an orbit is tangent to one of the branches of a
hyperbola, then it will be further tangent to this hyperbola, and the branches
tangent to the orbit will alternate, one after another.

This is a picture in the configuration space. And what will be in the phase
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space? The picture in the phase space is also well known, it looks very much
like the picture for a pendulum (Fig. 8; in this figure the cylinder is unwound).
Namely, there are two orbits of period 2 corresponding to the large and small
diameters of the ellipse. An “eight” trajectory corresponds to orbits passing
through the foci of the ellipse (if an orbit passes through a focus, then it will
further pass through the foci, one after another). The trajectories situated
outside this eight correspond to orbits tangent to ellipses. And the trajectories
inside the eight correspond to the orbits tangent to hyperbolas.

Which of these orbits correspond to Birkhoff and Aubry–Maser orbits, and
which do not correspond to them? In other words, which of these orbits can
be obtained by Birkhoff’s and Aubry–Maser’s constructions and which cannot
be obtained? The orbits with rational rotation numbers tangent to ellipses
are obtained by Birkhoff’s construction, and the rest of the orbits tangent to
ellipses are obtained by Aubry–Maser’s construction. And hyperbolas cannot
be obtained by such constructions. Indeed, for the rotation number 1/2 one
has one minimal orbit and one minimax orbit.

It is interesting to understand what happens in passing to the inverse limit,
i.e., when we pass from irrational to rational numbers. In the situation under
consideration the answer is rather simple. We obtain an invariant circle, but
it is not fully covered by Birkhoff orbits. It consists of Birkhoff orbits and
asymptotical curves. This is a rather general phenomenon, with the exception
that not always one obtains a full circle.

We have considered billiard tables of a rather special form. The following
rather famous question has not yet got a definite answer: “What can be other
billiard tables for which at least a neighborhood of the upper and lower base of
the cylinder is fibered into invariant curves?” In other words, when the system
is completely integrable? It is assumed that this can happen only for an ellipse.

Much more fundamental is the following question: when at least some curves
are conserved? It is rather remarkable that necessary and sufficient conditions
of the existence of at least one invariant curve are rather simple. Of course,
we mean an invariant curve passing around the cylinder. Only such a curve
can arise as the limit of Birkhoff orbits. It is not difficult to prove that if one
has an invariant curve on which the order is preserved and the rotation number
equals α, then such a curve is unique if α is irrational, and it is the limit of
Birkhoff orbits.

If we are interested in the question: what arises as the limit of Birkhoff
orbits, whether it is a curve or a Cantor set, then it is natural to ask when it
is a curve. Let us assume that the curve which bounds the table is sufficiently
smooth, for example, of the class C∞ (it suffices to require that the curve
be of the class C6). In this case, a theorem proved by Vladimir Fedorovich
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Figure 9. Reordering of points

Lazutkin (1941–2000) [10] states that an invariant circumference exists when
the curvature of the boundary vanishes nowhere. Actually in this situation
there are infinitely many invariant circumferences.

Lazutkin’s proof is an adaptation for this case of the celebrated Kolmogorov
theorem on perturbations of Hamiltonian systems. Formally the Kolmogorov
theorem does not cover this situation, because here we deal with behavior of
a degenerating system. One must appropriately change the coordinates to ap-
ply anything. The nonzero curvature is needed just to make this change of
coordinates possible.

If the curvature vanishes, then there are no invariant curves. This much
more simple fact has been proved by John Maser. In fact, one can prove a
stronger statement. Namely, if the boundary contains a flat point, then no
Aubry–Maser set can pass through this point. And on an invariant circle one
must have not only points corresponding to Birkhoff orbits but also points
corresponding to Aubry–Maser orbits. (See, for example, Section 13.5 in [8].)

This argument is rather simple. A reflection with respect to a line changes
the order of points (Fig. 9). If first is the point 1 and second is the point 2, then
after a reflection first is the point 2 and second is the point 1. In Fig. 9 the lines
are parallel, but the same effect holds if the lines are different. Thus, after a
reflection with respect to a line the order of points must change. Infinitesimally
the same happens during reflection with respect to a curve at a point with the
zero curvature.

Here some interesting geometric effects arise. Consider the inverse problem:
how to construct a billiard table for which caustics exist? To this end, one can
use a construction which is well known for the case of an ellipse. One can take
an ellipse and throw on it a lace whose length is greater than the length of the
ellipse. Then one should stretch this lace and draw a curve (Fig. 10). As a
result one obtains a confocal ellipse. For the larger ellipse the smaller one will
be a caustic.

The same construction works for an arbitrary curve. If one takes an arbi-
trary curve and a lace longer than the curve, and then stretches the lace and
draws a new curve, then for the new curve the initial curve will be a caustic.

Sometimes a nonsmooth inner curve yields a smooth billiard table. For
example, if for the inner curve one chooses an astroida, then as a result one
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Figure 10.
Construction of a
confocal ellipse

Figure 11. A billiard table
for the astroid

Figure 12. The cut out circle

obtains a smooth table for which the astroida is a caustic (Fig. 11).
It is rather clear why elliptic billiards can be considered as a testing area.

Firstly, they give examples of twisting maps. Billiards give some geometric
intuition which can be developed and then used for arbitrary twisting maps,
and twisting maps cover many interesting cases besides billiards. And, secondly,
billiards give an example of a standard difficulty in dynamics. How can one take
into account the Lagrangian structure? The picture on a cylinder, where one has
the coordinate and the impulse, is a Hamiltonian picture, it is a picture in the
phase space. And a billiard is a Lagrangian structure. The Lagrangian structure
is not invariant, it is related with division into coordinates and impulses.

For instance, let us consider the following question. Can a billiard have an
open set of periodic orbits? For a Hamiltonian twisting map an example is
constructed very easily. One should cut out a small circle from the cylinder,
make a rational rotation, and then glue the circle back (Fig. 12). There are no
Hamiltonian obstructions. However, there are some reasons to expect that for
billiards nothing similar is possible. And this is not an idle question, because,
for example, estimates of remainder terms in the Weyl asymptotics for eigen-
functions of the Laplace operator depend on the assumption that in a billiard
the set of periodic orbits has the zero measure. This is proved only for orbits
of period 3.

We will finish the discussion of elliptic effects by describing a natural
“bridge” to the parabolic case.
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Consider a convex polygon P possessing the property that the group gener-
ated by reflections with respect to its sides generates a “covering” of the plane.
In other words, the images of P under the action of elements of this group cover
the plane and if two such images intersect each other, then they coincide. There
are just a few such polygons: rectangles, right triangles, right-angled triangles
with the angles 45◦ and 30◦. The group generated by reflections with respect to
sides of such a polygon contains a normal subgroup of finite index consisting of
parallel translations. In the four cases the indices equal respectively 4, 6, 8, and
12. Taking representatives of congruence classes of the subgroup of translations
and acting by them on the initial polygon, we obtain a fundamental domain
for the subgroup of translations, and this domain is a torus. Let us make a
partial unfolding of the billiard flow by means of the chosen fundamental do-
main, i.e., instead of reflecting the trajectory let us reflect the polygon. Some
pairs of parallel sides will be then identified by translations, and the billiard
flow will be thus represented as the free motion of a particle on a (flat) torus:
each tangent vector moves in its direction with the velocity equal to one. This
is a completely integrable system: the initial angle is a first integral, the phase
space is fibered into invariant tori, and on each torus a flow of isometries acts.
Each such flow is a standard elliptic system.

3 Parabolic behavior: billiards in polygons

A simplest parabolic billiard table is a right-angled triangle with the angle π/8.
When a trajectory meets the boundary, let us reflect the triangle instead of
reflecting the trajectory. In this concrete case everything stops rather soon. If
one takes 16 copies of the triangle and makes from them an octagon (Fig. 13),
then the motion turns into the parallel flow on this octagon, the opposite sides
being identified. The obtained object is a Riemann surface (in this case of
genus 2) with a quadratic differential. When the vertices of the octagon are
glued together, one obtains the angle 6π. To resolve this singularity one should
take the cubic root. Then one can obtain a Riemann surface with a field of
directions. The field of directions has one singular point which is a saddle with
6 separatrices. This field of directions can be realized by means of a quadratic
differential.

This flow has a first integral, it is the angle (in the octagon the direction of
movement is preserved). This first integral has singularities.

Exercise 3. Analyze, in a similar manner, billiards in a right hexagon and a
“gnomon.”

Such a construction holds in all cases when the angles of the triangle are
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Figure 13. The simplest elliptic billiard

commensurable with π. In this case one can construct a Riemann surface with
a quadratic differential from a finite number of copies of the billiard table.
This flow has a first integral, and what is obtained can be studied using rather
powerful methods from Teichmuller theory. As a result one achieves a rather
good understanding of what is going on. Here one meets typical parabolic
effects. For example, on all invariant manifolds (in this case, for the fixed
value of the angle), the system is topologically transitive; and also on almost
all invariant manifolds the system is strictly ergodic, i.e., the invariant measure
is unique. And in the exceptional cases, when the invariant measure is non-
unique, the number of invariant measures does not exceed the genus of the
surface. These are typical parabolic effects; the invariant measure is not always
unique, but usually the number of nontrivial invariant measures is finite.

Thus, a billiard system in a polygon with the angles commensurable with π,
namely πpi/qi, where pi and qi are coprime integers, generates a one-parameter
family of flows on some surface whose genus is determined by the geometry of
the polygon and arithmetic properties of the numbers pi/qi. One should not fall
into the illusion that the structure of these flows is rather simple. For example,
the genus of the surface (and hence, in typical cases, the number of fixed points
of the flow) is proportional to the least common multiple of the denominators
qi.

Nevertheless, these one-parameter families possess more complicated ver-
sions of some properties of the family of linear flows on a torus (which, as it
was explained above, correspond to billiards in rectangles and some simple tri-
angles). As I have already mentioned, for almost all values of the first integral
the flow has the unique invariant measure (point supported measures corre-
sponding to equilibrium states are not taken into account). But, in contrast to
the case of flows on a torus, the set of exceptional values of the parameter is
noncountable. Recall that on a torus one has a simple dichotomy between the
slope angles whose tangents are rational, when all the orbits are closed, and the
angles whose tangents are irrational, when the invariant measure is unique and
hence any orbit is uniformly distributed with respect to the Lebesgue measure.
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In the case of families of flows generated by quadratic differentials on surfaces
of genus greater than one (in particular, for the families of flows arising from
billiards in rational polygons), the situation is more complex. Still there is a
countable number of “rational” values of the parameter for which all the tra-
jectories are closed. Note that, in contrast to the case of the torus, there are
several different homotopic types of closed orbits. The number of such types
can be estimated using the simple argument that the orbits from different fam-
ilies do not intersect each other and hence their number does not exceed the
genus of the surface. Besides that, there exists a set of values of the parameter
which has zero measure but positive Hausdorff dimension, for which the flow is
quasiminimal (i.e., any semitrajectory which does not tend to a fixed point is
dense), but there exist more than one non-atomic invariant measure.

A more deep consideration shows that this difference is a reflection of the
dichotomy between Diophantine irrational numbers or vectors, for which the
speed of rational approximation is not very high, and Liouville numbers or
vectors, for which “anomalous good approximation” arises. In the case of linear
flows on a torus, for Diophantine slope angles, time averages for sufficiently
smooth functions converge very rapidly. Moreover, Diophantine flows are rather
stable: time changes and even small nonlinear perturbations preserving the
rotation number of such flows can be “straightened.” For Liouville slope angles,
time averages can behave rather irregularly: from time to time they can be very
close to the integral or rather far from it, so that the speed of convergence over
some sequences of moments of time is very high, and over other sequences
it is rather low. Respectively, even smooth changes of time can essentially
change large time dynamics: for example, eigenfunctions, even measurable, can
disappear, and the flow becomes weakly mixing.

For flows arising from quadratic differentials and for billiards in rational
polygons, the values of parameters for which there is more than one invari-
ant measure, correspond to the slope angles with irrational Liouville tangents.
Therefore it is not surprising that similar but more bright phenomena arise: in-
stead of slow convergence of averages to the integral by the Lebesgue measure,
there is no convergence at all. On the other hand, for a set of values of the
parameter of full measure corresponding to slope angles with Diophantine tan-
gents, one has similar though much more complex stability phenomena. They
were discovered and studied during the last five years by the young mathe-
matician Giovanni Forni; his papers constitute one of the most bright modern
achievements in the theory of dynamical systems. The central observation due
to Forni is that although the invariant measure is unique, there are also invariant
distributions (generalized functions), i.e., invariant continuous linear function-
als defined on smaller spaces of functions than all continuous functions. For
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functions of a given class of smoothness, the space of invariant distributions
is finite-dimensional, but the dimension tends to infinity with the growth of
smoothness class. Combination of strict ergodicity (uniqueness of an invariant
measure) with the existence of an infinite set of independent invariant distri-
butions is rather typical for dynamical systems with parabolic behavior. The
simplest example, in which full investigation can be carried out with the help of
elementary Fourier analysis, is the affine mapping of the two-dimensional torus

(x, y) �→ (x + α, x + y) (mod 1),

where α is an irrational number. A more interesting example which is studied
by means of the theory of infinite-dimensional unitary representations of the
group SL(2, R), is the oricyclic flow on a surface of constant negative curvature.

Returning to flows on surfaces, note that according to Forni’s results, invari-
ant distributions determine the speed of convergence of time averages. Roughly
speaking, one has some typical power speed; if the first group of invariant dis-
tributions vanishes, then this speed increases, and this happens several times,
until one obtains the maximal possible speed of decreasing of averages which
is inverse proportional to time. Vanishing of a sufficient number of invariant
distributions also guarantees that the flow obtained by a change of time can be
straightened.

Even in the case of polygons with rational angles the description of the
billiard is not completely reduced to considering separately the flows on invari-
ant manifolds. For example, let us consider the question on the growth of the
number of periodic trajectories of length no greater than T as a function of T .
Of course, periodic orbits arise in families which consist of “parallel” orbits of
equal length. Hence one should count the number P (T ) of such families. In
the case of a billiard in a rectangle (which, as we mentioned several times, is
reduced to the geodesic flow, i.e., the free motion of a particle on a flat torus),
this problem amounts, after a suitable renormalization, to counting the number
of points with integer coordinates in the circle of radius T with center at the
origin. Therefore,

lim
T→∞

P (T )
πT 2

= 1.

For general rational billiards, the growth of P (T ) is also quadratic, i.e.,

0 < lim inf
T→∞

P (T )
T 2

� lim sup
T→∞

P (T )
T 2

<∞.

Besides that, it is known that periodic orbits are dense in the phase space. The
question on existence of the limit P (T )

T 2 as T → ∞ for an arbitrary rational
rectangle still remains open. The positive answer is obtained, on the one hand,
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for some special polygons which amount to quadratic differentials on surfaces
with a large number of symmetries (Veech surfaces), and on the other hand,
for generic quadratic differentials. It is rather likely that there exist polygons
with pathological behavior of the function P (T ). Note that our first nontrivial
example of a billiard in a right-angled triangle with the angle π/8 and the
hypotenuse 1 yields a Veech surface, and for it we can find limT→∞

P (T )
T 2 .

For billiards in polygons in which not all angles are commensurable with
π, surprisingly little is known. Such billiards are good examples of parabolic
systems of sufficiently general kind. One has to say that the methods of analysis
available now are insufficient for serious investigation of such systems. Indeed,
successful study of parabolic systems is related with two special situations:

(1) flows on surfaces discussed above, where the dimension of the phase
space is very small (in complement to the dimension corresponding to orbits
one has only one transversal direction), and

(2) flows on homogeneous spaces, where one has large local symmetry.
Two main open questions concerning arbitrary billiards, are the description

of global complexity of behavior of trajectories and the asymptotic behavior of
typical trajectories with respect to the Lebesgue measure. Let us begin with
the second question. Here a lot is known, and at the same time very little.
If one fixes the type of the billiard table (for instance, convex polygons with a
given number of edges), then the angles are the natural parameters in the space
of such billiards. Billiards with angles commensurable with π, for which, as it
was explained above, a lot is known, form a dense set in this space. Starting
with ergodicity of rational billiards on most invariant submanifolds and taking
into account the fact that for large denominators each such manifold almost
uniformly covers the phase space, one can show by rather standard categorical
arguments that for a dense Gδ in the space of parameters the billiard is ergodic
in the whole phase space. However, this topologically ample set of billiards
is rather thin from the metric point of view: not only its Lebesgue measure
but also its Hausdorff dimension in the space of parameters equals zero. This
set reminds one of the set of numbers admitting a rational approximation with
extremely high speed, like a triple exponent. It is assumed that for typical
Diophantine values of the vector of angles the billiard is ergodic. Up to now
no serious approaches to this problem are known. Also more subtle statistical
properties, such as mixing, are not known for any irrational billiards including
the Liouville situation described above for which ergodicity is proved. The
structure of singular invariant measures for irrational billiards is also not known.

Of course, a particular case of this last question is description of periodic
trajectories, since each such trajectory generates a singular ergodic invariant
measure. On the one hand, it is unknown whether for an arbitrary polygon



Billiard table as a playground for a mathematician 235

Figure 14. Orbits of periods 3 and 6 in an acute triangle

there exists at least one periodic billiard trajectory. As it was mentioned above,
for rational polygons there are infinitely many such trajectories and they are
dense in the phase space. However, one has not succeeded in passing to a limit
for irrational polygons, even of a special kind. The problem here is that as
the denominator increases, invariant manifolds become surfaces of a very high
genus and periodic orbits have very complicated homotopical type, and hence
are very long. However, there are some special situations when periodic orbits
with simple combinatorics arise which are conserved during small perturbations
of angles. A classical example is the orbit of period 3 formed by the bases of
altitudes in an arbitrary acute-angled triangle. Of course, this orbit admits a
variational description. But, in contrast to Birkhoff orbits in convex billiards,
the triangle formed by the bases of altitudes has the minimal perimeter among
all inscribed triangles. And the maximal and minimax triangles degenerate
into the double maximal altitude. The orbit of period 3 thus constructed is
surrounded by a family of parallel orbits of period 6 (see Fig. 14). Note that
these are the only periodic orbits whose existence is known for all acute-angled
triangles. The question on the density or at least the existence of an infinite
number of parallel families of periodic orbits remains open.

For an arbitrary right-angled triangle the existence of periodic orbits has
been proved just a few years ago. Unfortunately, these orbits are somewhat
disappointing. These are trajectories which are reflected orthogonally from one
of the sides and after a finite number of reflections return to the same side
also in the orthogonal direction. Evidently, such an orbit is reflected then back
and repeats its way in the backward direction. This is an example of orbits
with stable combinatorics. It turns out that for almost any initial position the
orbit orthogonal to a side returns back to this side in the orthogonal direction
and therefore is periodic. This is a rather easy consequence of conservation of
measure and of the fact that possible directions of an orbit form the unique
trajectory of the infinite dihedral group generated by reflections with respect
to the two nonperpendicular sides of the triangle. This argument can be gener-
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alized to some polygons “close” to rational ones, i.e., those for which the values
of angles modulo π lie in a one-dimensional space over rational numbers. For
an arbitrary obtuse-angled triangle this argument cannot be applied, and the
existence of even one periodic orbit is unknown.

The existence of periodic orbits is closely related to the question on the
global complexity of the behavior of trajectories. The growth of the number of
distinguishable trajectories with the time can be estimated in different ways.
The most natural way is related to coding. To each trajectory one assigns
a sequence of symbols in correspondence with the reflections with respect to
sides of the polygon, so that each side is denoted by its own symbol. Of course,
in this way one naturally encodes billiard maps, i.e., returning maps of the
billiard flows to the boundary. In order to obtain full information on the flow,
one should also indicate the time between two consecutive reflections. The
growth of complexity for the billiard mapping (respectively, flow) is given by
the function S(N) (respectively, S(T )) equal to the number of different codes
of length n (respectively, to the number of different codes arising for segments
of trajectories of length T ). Obviously, each family of parallel periodic orbits
generates an infinite periodic code, and it is almost also obvious that, vice versa,
each infinite periodic code corresponds to a family of parallel periodic orbits.
These orbits can be closed either after one period or after two periods (as orbits
of period 6 parallel to the Faniano triangle in an acute-angled triangle).

In the case of polygons with rational relative to π angles, both functions
admit a quadratic estimate:

0 < lim inf
N→∞

S(N)
N2

� lim sup
N→∞

S(N)
N2

<∞

and
0 < lim inf

T→∞

S(T )
T 2

� lim sup
T→∞

S(T )
T 2

<∞.

Note that in this case a positive part of all admissible codes is realized by
periodic trajectories.

An alternative way of describing complexity is to compute the number of
ways in which codes can change. Obviously, the code changes when the tra-
jectory hits an angle. It is also obvious that there is only a finite number of
segments of trajectories of bounded length which hit angles both in the positive
and negative directions. By rather evident reasons, such singular trajectories
are called generalized diagonals of a polygon. Define D(N) (respectively, D(T ))
as the number of generalized diagonals with � N edges (respectively, as the
number of generalized diagonals of length � T ). As above, these quantities
admit a quadratic estimate for rational polygons.
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It is natural to assume that for arbitrary polygons the growth of trajectories
should not be much more rapid than for rational ones, since the local geometric
structure of the billiard flow is the same in both cases. However, the only known
fact in this direction consists in much more weak subexponential estimates:

lim
N→∞

log S(N)
N

= lim
N→∞

log D(N)
N

= lim
T→∞

logS(T )
T

= lim
T→∞

logD(T )
T

= 0.

4 Hyperbolic behavior: billiards of Sinai,
Bunimovich, Wojtkowski and other authors

As we have already mentioned, hyperbolic behavior is rather common and al-
lows one to establish the basic elements of stochastic or “chaotic” behavior.
The domination of hyperbolic behavior is natural by analogy with linear sys-
tems. Indeed, a randomly chosen matrix most likely has no eigenvalues whose
absolute value equals one. Even if one a priori restricts oneself to matrices with
the determinant equal to one, this is still true for matrices of size 3×3 or more.
Although this analogy cannot be literally transferred to nonlinear systems, it
at least shows the importance of the hyperbolic paradigm.

Historically the first examples of hyperbolic behavior of billiards were found
by Ya. G. Sinai [13]. The simplest examples of a Sinai type billiard are, firstly,
a square with a circle cut out, and, secondly, a convex polygon whose sides
are replaced by arcs convex inwards (see Fig. 1). From the point of view of
rigorous mathematical analysis, the second example turns out to be somewhat
more easy than the first one. Hyperbolic behavior in Sinai billiards is related
to the phenomenon of scattering of light well known from geometric optics: a
parallel or divergent flow of light becomes more divergent after reflection with
respect to a convex mirror. Not too complicated computations show that if
the reflection is sufficiently regular, then the angle measure of a sheaf grows
exponentially. This yields hyperbolicity of the linearized system.

In the analysis of scattering billiards two technical difficulties arise.
Firstly, one must achieve sufficient regularity of reflections with respect to

convex inwards parts of the boundary. It is clear why to this extent the second
example is better than the first one: in the second example the time between
two consecutive reflections is bounded. And in the first example there are pe-
riodic trajectories parallel to the sides of the square which do not meet the
obstacle at all. Of course, such trajectories form a set of zero measure, but
trajectories which form very little angles with them meet the obstacle only in
a very large time. This phenomenon is called infinite horizon; respectively,
boundedness of the time between two reflections corresponds to finite horizon.
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Infinite horizon implies non-uniformity of hyperbolic estimates over the phase
space. Although this yields essential technical complications in proofs of er-
godicity, mixing and other stochastic properties, this also confirms the role of
billiards as an important testing area for various methods and tools of analysis
of dynamics. Indeed, non-uniform hyperbolicity is much more common than
uniform one. For example, global uniform hyperbolic behavior for classical con-
servative systems imposes restrictions on the topology of the phase space. But
non-uniform hyperbolicity is compatible with any topology. This fact, although
predicted rather long ago, has been established in full generality only recently
by D. Dolgopyat and Ya. Pesin [6].

The second difficulty in the analysis of dispersing billiards is the presence
of singularities (discontinuities and unboundedness of derivatives) in a system.
Here is the difference between these systems and billiards in smooth convex
domains, considered above, where the billiard mapping is smooth. Singular-
ities arise at tangent points of trajectories with convex inwards parts of the
boundary. Of course, they also arise when a trajectory hits an angle. Singu-
larities of the second type arise also in parabolic billiards, and in the case of
scattering billiards they yield not significant complications. Such singularities
yield discontinuities of the first kind for functions representing dynamics: a
surface of discontinuity arises, and functions are smooth on both sides of the
surface. Thus, the differential along a billiard trajectory which does not hit
a discontinuity point behaves rather regularly. For trajectories tangent to the
boundary from inside, the derivatives near these trajectories are unbounded, so
that the discontinuities are more serious. Note that elastic collisions and more
complex effects of this kind naturally arise in many important problems of clas-
sical mechanics, for example, in the problem of n bodies. The influence of such
phenomena on the large time behavior of trajectories is one of the central prob-
lems in mechanics. Here also billiards, and especially their multidimensional
analogs, play the role of an important testing area.

Scattering billiards are rather essential for the mathematical background
of models of statistical physics. This is an important and interesting subject,
which however we will not touch here. From the view point of geometry, scat-
tering billiards possess some defects, for example, inavoidable singularities on
the boundary. However, if one considers billiards not on plain domains but on
domains on a flat torus, this defect can be avoided. For example, the billiard
on a torus with a circle removed is a classical example of a Sinai billiard. Nev-
ertheless, it is interesting to know how hyperbolic behavior can arise in other
ways than scattering by convex inwards parts of the boundary. The first answer
to this question is given by a rather celebrated example of a “stadium,” i.e.,
two semicircumferences connected by segments of common tangent lines (see
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Figure 15

Fig. 15). This is an example of the so-called Bunimovich billiards [2], where hy-
perbolic behavior arises as a result of consecutive focusing of sheaves of orbits.
From the point of view of configuration space this picture dramatically differs
from the case of scattering billiards; however, in the phase space, where both
coordinates and velocities are taken into account, uniform exponential growth
arises.

Bunimovich billiards were discovered in an interesting way. In the beginning
of the 70’s L. A. Bunimovich, who was then a graduate student of Sinai, was
working on extending the class of billiards with exponential running away and
stochastic behavior of orbits. He discovered that if one adds little “pockets”
to a scattering billiard, then the billiard on the thus obtained table in which
convex parts are followed by concave ones, possesses exponential running away
of trajectories. Actually Bunimovich discovered a new important mechanism
of hyperbolicity. However, he himself firstly considered his work as just a little
generalization of the results on scattering billiards. During Bunimovich’s talk
on a seminar at MIAS1 directed by D. V. Anosov and the author, the natural
question on the mechanism of hyperbolicity arose, and in particular on whether
the presence of any scattering components is necessary. I draw the speaker’s
attention to the fact that his arguments seemingly did not imply this necessity,
and proposed a stadium as a model for verification of this conjecture. The rest
of Bunimovich’s geometric conditions were satisfied, at least if full circles did not
intersect each other (see Fig. 15). After thinking a little Bunimovich said that
his arguments should hold in this case, and in the next version of his paper he
stated conditions which did not require the presence of scattering components.
Moreover, it turned out that the initial geometric conditions can be weakened,
so that, for example, in the case of a stadium, the distance between the circles
can be arbitrarily small.

Among Bunimovich billiards there are a lot of other interesting and rather
simple forms, but they all have the common property that the boundary can
contain, except scattering parts, only segments of straight lines and arcs of
circumferences. The natural question, how essential is this condition, has been
studied by specialists for about ten years. A technical difficulty is the following.
Hyperbolicity is established with the help of a system of cones in tangent spaces

1 Mathematical Institute of the Academy of Sciences (Moscow).
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F (x, y) = (x + y, y)

−−−−−−−−−−−−−−−→

Figure 16. The action of the parabolic transformation on the cone

to points of the phase space, which are transformed to themselves under the
action of dynamics. For simplicity and geometric visualization, it is better to
think about the billiard mapping rather than the flow. In this case the phase
space is two-dimensional, and the cones in question are the interior parts of two
opposite angles formed by a pair of lines intersecting at the origin. The system
of cones which is invariant, both in scattering billiards and Bunimovich billiards
is the same. Geometrically, these cones are defined as the sets of infinitesimal
dispersing pieces of trajectories. For hyperbolicity it is necessary that the cone
together with its boundary be mapped strictly inside the corresponding cone in
the image. Of course, this holds in the case of scattering billiards already after
one reflection. And in the case of flat and circumference mirrors, the cone goes
into itself, but one of its sides is left invariant. This is a typically parabolic
effect, since in this way unipotent matrices act. Let us take, for instance, the

matrix
(

1 1
0 1

)
. The cone in question is defined by the condition x1x2 > 0, i.e.,

it is the union of the first and the third quadrant on the plane. Its image is
the cone |x1| > |x2|, x1x2 > 0 (see Fig. 16). After further iterations the image
becomes more and more thin, but it is still “glued” to the horizontal axis.
In order to get hyperbolicity, Bunimovich uses a geometric condition which
yields strict invariance of cones after the reflection with respect to different
circumference parts of the boundary (as in the case of a stadium). Since the
trajectory which is reflected from the circumference part under a very small
angle, continues to do this many times, it seemed that the explicit form of the
iteration after reflection with respect to circumference parts (integrability of
the billiard in a circle) played an essential role. This way I explained for myself
rigid Bunimovich’s conditions.

However, it turned out that one can overcome this difficulty. Billiards with
convex parts of the boundary can be hyperbolic by many reasons. As soon as
the method based on the use of systems of invariant cones was invented, the
problem of finding new classes of hyperbolic billiards became easy. Note that
Bunimovich used another technique which is formally equivalent to the system
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of invariant cones, but is much less visual. The pioneers of the use of the method
of invariant cones in dynamics were V. M. Alekseyev (1932–1980) and Yorgen
Moser (1928–1999). An essential step was introducing this method in non-
uniformly hyperbolic situation. The author used this method for constructing
examples of smooth systems with stochastic behavior on various manifolds.
However, the most essential progress here is due to Maczei Wojtkowski. And
again billiards turned out to be an ideal testing area. Having understood the key
role of systems of cones, Wojtkowski realized that the problem could be solved
in the inverse order, namely, to find classes of billiard tables corresponding
to a given system of cones. The preprint of his key paper on this subject [3]
was called “Principles for the design of billiards with nonvanishing Lyapunov
exponents.” As a square or torus with a removed circle is a quintessence of
the phenomenon discovered by Sinai, and the stadium symbolizes Bunimovich
billiards, in the same way a typical example of Wojtkowski billiards is given by
cardioida (see Fig. 1). The importance of Wojtkowski’s result in the theory of
billiards is in that he discovered classes of hyperbolic examples which are open
in C2 topology, and thus [11] this property does not depend on small variations
of mirrors.

As I have already mentioned, constructing new classes of hyperbolic billiards
became possible with the use of the method of invariant cones. As an example
of flexibility of this method, let us mention the following result due to Victor
Donnay [7]: any sufficiently small piece of a convex curve is a part of the
boundary of a piecewise smooth convex hyperbolic billiard. Note also that the
use of the method of invariant cones allowed one to obtain many remarkable
examples of classical dynamical systems with non-uniform hyperbolic behavior.

Important unsolved problems are related with existence of hyperbolic bil-
liards with smooth (at least twice differentiable) boundary. Note that the
boundary of the stadium is differentiable, but the curvature (and hence the
second derivative) is discontinuous. Even twice differentiable examples with
nonconvex or non-simply-connected boundary are unknown.

What does hyperbolicity give? It allows one to show that in many cases
a deterministic dynamical system behaves in many respects as a sequence of
independent random quantities. In a sense, this statement is true literally:
under some (often rather easily checked) conditions, in complement to (even
non-uniform) hyperbolicity, the phase space of a system conserving finite vol-
ume can be divided into a finite number of sets A1, . . . , An of positive measure
so that, firstly, each point of the phase space is encoded by the sequence of hits
to these sets at positive and negative moments of time, and, secondly, these
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sets are completely independent with respect to the dynamics F , i.e.,

vol

(
n⋂

k=0

F k(Aik)

)
=

n∏
i=0

volAik .

Although these sets are of exotic nature, this property, which is naturally called
the Bernoulli property, implies many important properties: convergence of time
averages to the space average (ergodicity), decrease of correlation (mixing),
asymptotic independence of the future from the past (the K-property, or the
Kolmogorov property).
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A. N. Rudakov

The Fibonacci numbers and simplicity of 2127−1

Lecture on April 3, 1999

1 Introduction

For a long time, from 1877 to 1951, the number M = 2127−1 had been a cham-
pion, being the largest known prime. The primality of 2127 − 1 was established
by Édouard Lucas. He invented a remarkable method for proving primality.
For M = 2127 − 1, the computation took about 100 hours, but it involved no
divisions by smaller primes. I am going to describe the mathematical part of
Lucas’ algorithm and discuss some elegant results of finite arithmetic. We shall
not perform the computation proper.

I personally consider this theme a very good illustration of the general idea
that constructing a good algorithm needs a good theory. Though, there are
expositions of Lucas’ result which employ a significantly smaller amount of
theory than my exposition in this lecture (see [1, 2]).

A detailed historical study of the work of Lucas and of other works on
finding primes is contained in [3].

2 The Fibonacci numbers and the main theorem

As is known, the sequence of Fibonacci numbers is obtained as follows: we
take u1 = 1 and u2 = 1 and define each next number by the formula un+1 =
un + un−1. The Fibonacci numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

have many remarkable properties. For example, the first two numbers are odd,
the next number is even, then two odd numbers go again, etc. A simple way
to see this is to consider Fibonacci numbers modulo 2. Knowing un−1 and un

modulo 2 and taking into account that un+1 is congruent to their sum modulo 2,
we can write the sequence

u3 ≡ 1 + 1 ≡ 0 (mod 2),
u4 ≡ 0 + 1 ≡ 1 (mod 2),
u5 ≡ 1 + 0 ≡ 1 (mod 2),

. . . . . . . . . ,
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or 1, 1, 0, 1, 1, 0, 1, 1, 0, . . . . Thus, every third number is even and the numbers
going before and after it are odd.

It can be shown that every fifth number is divisible by 5. For this purpose, it
suffices to consider the Fibonacci numbers modulo 5. This yields the sequence

1, 1, 2, 3, 0, 3, 3, 6, 9≡− 1, 0, −1, −1, −2, −3, 0, −3, −3, . . . .

After the 20th term, the sequence repeats, and every fifth position is occupied
by zero.

Problem 1. Show that every fourth Fibonacci number is divisible by 3.

Problem 2. Show that, if m divides uk, then m divides u2k, u3k, u4k, . . . .

There exists a formula for the Fibonacci numbers. It is very well known,
but let me remind you of the argument. Let us forget the “initial data” u1 = 1
and u2 = 1 and consider only the transition equation

xn+1 = xn + xn−1. (1)

Certainly, there are many sequences satisfying this equation. One of them,
which is sometimes called Lucas numbers, is

v1 = 1, v2 = 3, v3 = 4, . . . , vn+1 = vn + vn−1.

There also exist other such sequences, and if {an} and {bn} are two of them,
we can construct one more by taking their linear combination with some coef-
ficients, e.g., cn = 2an + 3bn. We took the coefficients 2 and 3, but they can be
arbitrary. In particular, if

α =
1 +

√
5

2
and β =

1−
√

5
2

,

i.e., if α and β are the roots of the equation x2 = x + 1, then the sequences
an = αn and bn = βn satisfy the transition equation (1), and therefore, all their
linear combinations have this property. Since α + β = 1 and α2 + β2 = 3, the
sum of these sequences gives the Lucas numbers:

αn + βn = vn. (2)

To obtain the Fibonacci numbers, we must select the coefficients more carefully.
As a result, we obtain

un =
αn − βn

α− β
. (3)

In particular, this implies u2n = un · vn.
Now, I would like to state the main theorem, which is essentially the Lucas

theorem (1886), although Lucas formulated it differently. A modern exposition
of historical details is contained in [3].
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Theorem 1. Suppose that q is a prime of the form 4k + 3 and M = 2q − 1.
Then M is a prime if and only if vM+1

2
≡ 0 (mod M).

This result is a base of the algorithm for establishing the primality of the
number 2127 − 1; we must only add a “fast” method for computing vM+1

2
. We

shall discuss it later on.

3 Complex numbers in finite arithmetics

Let us slightly modify the terminology: instead of “a is comparable with b mod-
ulo m,” or “a ≡ b (mod m),” we shall say “a equals b in arithmetic modulo m,”
or “a =(m) b.” Formally, this changes nothing, we simply use slightly different
words; but this provokes us to imagine that there are some numbers of “arith-
metic modulo m,” which are denoted by the same symbols as the integers but
differ from them otherwise. For example, 6 and −1 are two denotations for the
same number of “arithmetic modulo 7.”

This approach leads us to the question as to whether the realm of num-
bers can be extended by adding, e.g., “complex numbers.” After all, complex
numbers are pairs of reals, and pairs of numbers can be considered in finite
arithmetics too. Let us consider “complex numbers modulo 7.” We define such
a complex number z as a pair z = (a, b), where a and b are “numbers modulo 7.”
Addition and multiplication are defined in the usual way, addition by

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

and multiplication by

(a1, b1) · (a2, b2) = (a1a2 − b1b2, a1b2 + a2b1).

It is fairly easy to show that this is a good definition, that is, there are zero and
identity elements, associativity, commutativity... We can also calculate inverse
elements: if z = (a, b), then

z−1 =
( a

a2 + b2
,
−b

a2 + b2

)
.

However, it may happen that a2 + b2 =(7) 0, and the inverse element is not
defined.

This can be verified directly, because 7 is a very small number. All elements
modulo 7 are easy to write out; these are

0, 1, 2, 3, 4, 5, 6.
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The squares are 0, 1, 4, and 2. That is all. The sums of two squares are

0, 1, 4, 2; 1, 2, 5, 3; 4, 5, 3, 6; 2, 3, 6, 4.

We see that 0 occurs only once as 0 = 02 + 02; all the remaining sums are
nonzero. Therefore, each nonzero complex number has an inverse. We have
constructed a good arithmetic with all the four operations; such an object is
otherwise called a field, or, to be more precise, a field which is the quadratic
extension of the prime field with seven elements.

A propos, 7 cannot be replaced by 5, because 12 + 22 =(5) 0 in arithmetic
modulo 5. We need to think what numbers in arithmetic modulo p are to be
considered “negative.” Recall that, to construct the usual complex field, we
take −1, i.e., a negative number for which a square root does not exist, and
formally “add” this square root, that is, write z = a+bi, where i2 = −1. Then,
the rules for extending the operations emerge by themselves, from multiplying
out:

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i,

(a1 + b1i) · (a2 + b2i) = (a1a2 + b1b2(−1)) + (a1b2 + a2b1)i.

We could take another negative number, −2 say, and represent complex num-
bers in the form z = a+bj, where j2 = −2. The result is the same, in particular,
operations also emerge by themselves, from multiplying out:

(a1 + b1j) + (a2 + b2j) = (a1 + a2) + (b1 + b2)j,

(a1 + b1j) · (a2 + b2j) = (a1a2 + b1b2(−2)) + (a1b2 + a2b1)j.

The only difference occurs at the place where j2 appears. The formula for the
inverse element is

(a + bj)−1 =
a

a2 + 2b2
+

−b

a2 + 2b2
j;

since a2 + 2b2 �= 0 whenever (a, b) �= (0, 0), there are no problems.

Problem 3. Verify that a quadratic extension of the prime field with 5 elements
can be constructed by considering the numbers a + bj, where j2 = −2. All the
four arithmetic operations are well-defined.

Let me introduce the following definition: we shall say that an element a is
negative in arithmetic modulo p, where p is a prime, if the equation x2 =(p) a
has no solutions; otherwise, we say that it is positive (provided that a �=(p) 0).
For example, the numbers 1 and 4 modulo 5 are positive, while 2 and 3 are
negative. Since −1 =(5) 4, the number −1 is also positive; strange as it seems,
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this is so. But modulo 7, the numbers 1, 2, and 4 are positive and −1, −2,
and −4 (or 6, 5, and 3) are negative. What might naturally be called the sign of
an element is historically referred to as the Legendre symbol

(
a
p

)
. By definition,

(
a

p

)
=


+1 if a is positive modulo p,

−1 if a is negative modulo p,

0 if a =(p) 0.

It can be verified that, for an odd prime p, precisely half
(
i.e., p−1

2

)
of

nonzero numbers modulo p are positive and precisely half are negative, and
that the product of two negative numbers is always positive.

Problem 4. Prove that, if
(

a
p

)
= −1 and

(
b
p

)
= −1, then

(
ab
p

)
= +1.

Problem 5. Verify that, if t is negative modulo p, then the numbers a + bj,
where j2 = t, form a quadratic extension of the prime field with p elements
(where all the four arithmetic operations are well-defined).

The main application of what is said above to our considerations is as fol-
lows. Let p be a prime. Whenever 5 is positive or negative modulo p, the
numbers α = 1+

√
5

2 and β = 1−
√

5
2 are defined, in the latter case, as complex

numbers modulo p (i.e., as elements of the quadratic extension), and formu-
las (2) and (3) for the Lucas and Fibonacci numbers still make sense modulo p.

4 Complex conjugation for numbers modulo p

An essential structural component of the usual complex numbers is the opera-
tion of complex conjugation: if z = a + bi, then z̄ = a− bi. We know that the
conjugate of a sum is the sum of conjugates, and the same is valid for products:

(z1 + z2) = z̄1 + z̄2, (z1 · z2) = z̄1 · z̄2.

We easily conclude that, if α is a complex root of an equation

x2 + ax + b = 0

with real coefficients, then ᾱ is also a root of this equation.
We can define conjugation in the quadratic extension of the field with p

elements by
(a + b · j) := a− b · j.

Clearly, the conjugate of a sum is the sum of conjugates, and the conjugate of
a product is the product of conjugates. In addition, the following remarkable
formula holds.
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Let p be a prime; suppose that t is negative modulo p, i.e.,
(

t
p

)
= −1. We

construct complex numbers as the numbers of the form a + b · j, where a and b
are numbers modulo p and j2 = t.

Proposition 1. Under these conditions, if z = a + bj and z̄ = a− bj, then

z̄ = zp. (4)

In particular, zp+1 = zz̄ = a2−tb2; thus, the (p+1)th power of a “complex”
number is necessarily a “real” number.

Let us prove (4). Note that

(x + y)p =(p) xp + yp

for our numbers. This is so because the coefficients of Newton’s binomial,(
p
i

)
= p!

i!(p−i)! , are integers divisible by p for 0 < i < p. Thus, we can write

(a + b · j)p =(p) ap + bp · jp.

Using Fermat’s little theorem, we conclude that ap =(p) a and bp =(p) b. It
remains to calculate jp. Obviously,

jp = jp−1 · j = t(p−1)/2 · j.

We must show that t(p−1)/2 =(p) −1 for a negative element t. Note that the
number (p− 1)/2 is integer, and if s is a positive element, then s = a2 and

s(p−1)/2 =(p) ap−1 =(p) 1;

the latter equality follows from Fermat’s theorem. Thus, the positive elements
provide (p− 1)/2 roots of the polynomial equation

x(p−1)/2 = 1

in the field of “elements modulo p.” By Bézout’s theorem, the number of roots
of a polynomial equation cannot exceed its degree; therefore, for a negative
element t, we have

t(p−1)/2 �=(p) 1.

At the same time, tp−1 =(p) 1, and the relation

tp−1 − 1 =(p) (t(p−1)/2 − 1)(t(p−1)/2 + 1)

leaves the only possibility t(p−1)/2 =(p) −1. This completes the proof of the
formula.
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Corollary. Suppose that p is a prime and 5 is negative modulo p. Then, for
α = 1+

√
5

2 and β = 1−
√

5
2 , the following relations hold :

(i) αp =(p) β and βp =(p) α;
(ii) αp+1 =(p) βp+1 =(p) α · β =(p)−1.

Applying this result to the Fibonacci and Lucas numbers, we obtain

up+1 =
αp+1 − βp+1

α− β
≡ 0 (mod p);

vp = αp + βp ≡ α + β ≡ 1 (mod p).

To use these congruences, we must be able to determine whether 5 is positive
or negative modulo a given p. Let us try to learn to do this.

5 The square root of 5 modulo p

The assertion which I want to state easily follows from more general and fairly
deep results about the Legendre symbol; together, they constitute the quadratic
reciprocity law. We need only a special case of this general law, which was
discovered by Euler and Legendre and proved in full generality by Gauss and
which is a pearl of “elementary” number theory.

Proposition 2. (
5
p

)
=

{
+1 if p ≡ ±1 (mod 5),
−1 if p ≡ ±2 (mod 5).

First, we state two general lemmas.

Lemma 1 (Legendre).

a(p−1)/2 ≡
(

a

p

)
(mod p).

Actually, this means that the ((p − 1)/2)th power of a modulo p is equal
to +1 if a is positive and to −1 is a is negative. We have discussed this in the
preceding section.

Note that any nonzero number modulo p is equal to one of the num-
bers 1, 2, . . . , (p − 1)/2 up to sign. Let us denote the set of these numbers
by P:

P = {1, 2, . . . , (p− 1)/2};

then, for any nonzero x modulo p, either x ∈ P or −x ∈ P. Take a p and an
a �=(p) 0.
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Lemma 2 (Gauss). Suppose that, for k = 1, 2, . . . , (p− 1)/2, the numbers εk

are equal to +1 or −1 and a · k · εk ∈ P modulo p. Then(
a

p

)
=

(p−1)/2∏
k=1

εk.

Indeed, note that, if numbers k′ and k′′ from P are different, then the
products a · k′ · εk′ and a · k′′ · εk′′ are also different. They might coincide only
if we had a · k′ =(p) a · k′′ or a · k′ =(p) −a · k′′, but both these relations are
impossible. Therefore, as k runs over the set P, the products a · k · εk also run
over this set. Let K be the product of all elements from P. We have

K =
(p−1)/2∏

k=1

a · k · εk =(p) a(p−1)/2 ·K ·
(p−1)/2∏

k=1

εk.

Cancelling K, we obtain 1 =(p) a(p−1)/2 ·
(p−1)/2∏

k=1

εk; this and Legendre’s lemma

prove the lemma of Gauss.

Remark 1. Our proof may be said to generalize one of the well-known proofs
of the Fermat little theorem.

Now, we can proceed to prove the proposition. We have a = 5. For an
odd p,

p ≡ ±1 (mod 5) ⇐⇒ p = 10n + 1 or p = 10n + 9,

p ≡ ±2 (mod 5) ⇐⇒ p = 10n + 3 or p = 10n + 7.

Let us apply Gauss’ lemma to p = 10n + 1. Here (p− 1)/2 = 5n, and we must
consider k = 1, 2, . . . , 5n.

For k = 1, 2, . . . , n, we have

5k = 5, 10, . . . , 5n and εk = +1.

For k = n + 1, . . . , 2n, we have

5k = 5n + 5, . . . , 10n and εk = −1.

For k = 2n + 1, . . . , 3n, we have

5k = (10n + 1) + 4, . . . , (10n + 1) + 5(n− 1) + 4 and εk = +1.

Similarly, for k = 3n+1, . . . , 4n, we have εk = −1, and for k = 4n+1, . . . , 5n,
we have εk = +1 again.
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Thus, −1 occurs 2n times, and
∏

εk = +1. This means that if p = 10n + 1,
then

(
5
p

)
= +1.

If p = 10n+3, the argument is quite similar. In this case, (p−1)/2 = 5n+1.
For k = 1, . . . , n, we have εk = +1.
For k = n + 1, . . . , 2n, we have εk = −1.
For k = 2n + 1, . . . , 3n, we have εk = +1.
For k = 3n + 1, . . . , 4n, we have εk = −1.
If k = 4n + 1, then 5k = 20n + 5 = (10n + 3) + (10n + 2), which gives

εk = −1.
For k = 4n + 2, . . . , 5n + 1, we have εk = +1.
As a result, we obtain 2n + 1 negative ones, which is larger by one than the

number of ones. Therefore,
(

5
p

)
= −1 in this case. We leave the two remaining

cases to the reader and regard Proposition 2 as being proved.

6 Proof of the main theorem

We return to the proof of the main theorem stated at the end of Section 2. Let
N = 2q−1 = M+1

2 , i.e., M + 1 = 2N .
First, note that we can calculate M (mod 5). We know that 24 ≡ 1 (mod 5)

and that
M = 2q − 1 = 24k+3 − 1 ≡ 23 − 1 ≡ 2 (mod 5).

Let us memorize this: under the conditions of the theorem, M ≡ 2 (mod 5).
Now, suppose that M is a prime. Then

(
5
M

)
= −1, and we can apply the

lemma and the corollary from Section 4. In particular,

αM+1 ≡ βM+1 ≡ −1 (mod M),

and hence vM+1 ≡ −2 (mod M).
Note that

(vN )2 = (αN + βN )2 = α2N + β2N + 2(αβ)N = v2N + 2 · (−1)N . (5)

We know that N is even; therefore,

(vN )2 = v2N + 2 ≡ −2 + 2 ≡ 0 (mod M).

This proves the theorem in this case.
Conversely, suppose, we know that vN ≡ 0 (mod M). It is required to prove

that M is a prime. We can assert at once that not all prime divisors p of M
have the form p ≡ ±1 (mod 5) (because M ≡ 2 (mod 5)); there exists a prime
divisor p for which p ≡ ±2 (mod 5), i.e.,

(
5
p

)
= −1. Therefore, the number 5

is negative modulo p, and we can apply the results of Section 4. In particular,



252 A. N. Rudakov

αp+1 =(p) βp+1 =(p) −1. Since p divides M and vN ≡ 0 (mod M) (and hence
vN ≡ 0 (mod p)), we have

vN = αN + βN =(p) 0.

Let ε = α/β. It follows from the above considerations that

εN =(p)−1, (6)

but, according to the corollary, εp+1 =(p) 1.
Note that (6) implies ε2N =(p) +1.

Lemma 3. Suppose that εa = 1, εb = 1, and division with a remainder yields
a = b · c + r. Then εr = 1.

Indeed, 1 = εa = (εb)c · εr = 1 · εr = εr.
Let d be the minimum positive number for which εd =(p) 1. Then, by the

lemma, d divides 2N (and therefore, d = 2s) and d divides p+1. If s < q, and d
divides N = 2q−1, whence εN = (εd)N/d =(p) 1, which contradicts (6). Thus,
s = q, and d = 2q = p + 1 divided 2N = M + 1. But p � M ; therefore, p = M ,
and we conclude that M is prime. This completes the proof of the theorem.

Thus, the primality of the number M = 2q−1 depends on the value of v2q−1

modulo M .
Remarkably, formula (5) can be applied to calculate v2i . Put ri = v2i . Then

r0 = v1 = 1. Formula (5) gives r1 = r2
0 + 2 = 3 (here N is odd). At i � 1,

applying (5) with an even N , we obtain

ri+1 = r2
i − 2, r1 = 3,

and the main result takes the following form.

Theorem 2. If q is a prime of the form 4k + 3, then M = 2q − 1 is a prime if
and only if rq−1 ≡ 0 (mod M).

7 Organization of computation. Examples

It is convenient to compute ri in the binary system, i.e., with the use of binary
representations. We have r1 = 11.

For r2, we obtain
1 1×
1 1
1 1

+
1 1.. . . . . . .

− 1 0
r2 = 1 1 1
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Thus, r2 = 111, which is 7 in the decimal representation.
For r3, we have

1 1 1×
1 1 1
1 1 1

1 1 1
1 1 1.. . . . . . . . . . . . . . .

− 1 0
r3 = 1 0 1 1 1 1

Thus, r3 = 101111, which is the decimal 47.
This already gives a special case of the theorem: for q = 3, M = 7 is prime

and r2 = 7 ≡ 0 (mod 7).
The next q is q = 7, for which M = 27 − 1 = 127. Certainly, we could

verify the primality of the number 127 by mere divisions, but let us see how
the algorithm works.

We must calculate r4, r5, and r6 (mod 127). A pleasant feature of the
algorithm is that we can reduce by 127 even in the process of computation;
such a reduction corresponds to the “shift” of the binary representation by
seven digits:

27 ≡ 1 (mod 27 − 1), therefore, 27+k ≡ 2k (mod 27 − 1).

Thus, r4 modulo 127 can be computed as follows:

: 1 0 1 1 1 1
: 1 0 1 1 1 1

+ 1 : 0 1 1 1 1
1 0 : 1 1 1 1

1 0 1 1 : 1 1.. . . . . . . . . . . . . . . . . . . . . . . . . . . .
− 1 0

After rearrangement, we obtain

: 1 0 1 1 1 1
: 1 0 1 1 1 1 0
: 0 1 1 1 1 0 1
: 1 1 1 1 0 1 0
: 1 1 0 1 0 1 1. . . . . . . . . . . . . . . . . . . .

− 1 0
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Now, we must compute “cyclically,” carrying each one that occurs on the left
of the seven digits to the right. We obtain

1 0 1 1 0 1
1 0 1 1 1 1 0

+ 0 1 1 1 1 0 1
1 1 1 1 0 1 0
1 1 0 1 0 1 1
0 1 1 0 0 0 0

Thus, r4 ≡ 0110000 (mod 127).
Now, for r5, we have

0 0 0 0 1 1 0
+

0 0 0 1 1 0 0.. . . . . . . . . . . . . . . .
− 0 0 0 0 0 1 0

0 0 1 0 0 0 0

This means that r5 ≡ 24 (mod 127). Next, r6 ≡ 28− 2 ≡ 2− 2 ≡ 0 (mod 127).
Therefore, 127 is a prime.

The primality of the number M = 2127 − 1 was verified similarly, but the
binary numbers subjected to cyclic additions had length 127. According to
Williams [3], Lucas made a checkerboard and arranged numbers on its rows by
placing pieces in the positions of ones and leaving the squares of zeros empty.
The cyclic additions can be implemented as a game with a few simple rules.
Lucas computed r127 modulo 2127−1 by playing this game for about 100 hours.
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[3] H. C. Williams. Édouard Lucas and Primality Testing (New York: Wiley,
1998).



Stephen Smale

On problems of computational complexity

Lecture on May 20, 1999

We shall discuss one problem which has elementary form and yet illustrates the
main difficulties of computational complexity theory. For a polynomial f ∈ Z[t],
we define a number τ(f) as follows. Consider the sequence (1, t, u1, . . . , um = f)
where each successive term is obtained from some two preceding terms, i.e.,
uk = ui ◦ uj for some i, j < k; the symbol ◦ denotes one of the three arithmetic
operations (addition, subtraction, and multiplication). The invariant τ(f) is
equal to the least possible m.

There is the Shub–Smale conjecture that the number of different integer
roots of a polynomial f does not exceed τ(f)c, where c is some absolute constant.

Example. The sequence 1, t, t2, t2
2
, . . . , t2

k
, t2

k − 1 witnesses that τ(t2
k − 1) �

k+1. But the polynomial t2
k −1 has 2k different roots. Therefore, for different

complex roots, the conjecture is false.

A similar example can be constructed with the use of the Chebyshev polyno-
mials. The Chebyshev polynomials are calculated by a simple recursive formula.
They also give an example of polynomials of high degree with small τ . All roots
of the Chebyshev polynomials are real and pairwise different. Thus, for different
real roots, the conjecture is false too.

Theorem 1 (Shub–Smale). The Shub–Smale conjecture implies P �= NP/C .

Now, I must explain what P �= NP/C means.
First, note that in algebra, nontrivial problems usually begin with Diophan-

tine equations corresponding to algebraic curves, i.e., with two variables. We
have problems even in the case of one variable.

If we forget about C , we obtain the P �= NP problem, which is one of
the key problems in computer science. Moreover, this problem, together with
the Poincaré conjecture and the conjecture about the zeros of Riemann’s zeta-
function, is one of the most important problems of mathematics; this is a present
from computer science.

Consider polynomials f1(z1, . . . , zn), . . . , fk(z1, . . . , zn) over C . Do they
have a common zero? This is a problem of recognizing a property: the condi-
tions are the polynomials f1, . . . , fk (to be more precise, the several complex

Stephen Smale, Professor at the University of California (USA).
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numbers being the coefficients of these polynomials), and the result should be
one of the two answers, yes (there is a common zero) or no (there is no common
zero).

Hilbert’s Nullstellensatz (zero point theorem) gives the following answer:
there is no common zero if and only if there exist polynomials g1, . . . , gk such
that

∑
gifi = 1.

Hilbert’s Nullstellensatz is a criterion rather than a method. It provides
no algorithm. But approximately ten years ago, Brownawell1 showed that, in
Hilbert’s Nullstellensatz, it can be assumed that

deg gi � max(3, max deg fi)n,

and this result is unimprovable.
The theorem of Brownawell gives an algorithm, for it reduces the problem

to solving a system of linear equations for the coefficients of the polynomials
gi.

Now, consider the question about the speed of this algorithm: How many
arithmetic operations is required to answer the question? We shall refer to the
number of the coefficients in the polynomials fi as the size of the input data and
to the number of arithmetic operations as the running time of the algorithm.
We say that a given algorithm is polynomial-time if

time � (size)C , (1)

where C is a constant.
Polynomial-time algorithms are precisely the algorithms which are sensible

to implement on a computer. If, say, time exponentially depends on size, then,
as the size of the input data increases, time quickly grows beyond all reasonable
limits. The algorithm of Brownawell is an exponential-time algorithm. An
exponential upper bound for the running time of this algorithm can easily be
derived from, e.g., the Gaussian elimination method for solving systems of linear
equations.

The conjecture is as follows: the problem HN/C (of whether a system of
polynomial equations over C has a common zero) is hard, i.e., there exists no
polynomial-time algorithm for solving this problem.

By algorithms we mean algorithms over C rather than Turing machines.
Namely, an algorithm is an oriented graph with one vertex to which no edge
goes (the input). The graph may have cycles. It determines the operation of a
computational machine as follows. The machine is fed by a sequence of com-
plex numbers (. . . , 0, z1, . . . , zn, 0, . . . ) infinite in both directions; among these

1 W. Brownawell. Bounds for the degrees in the Nullstellensatz. Ann. Math., 126 (3) (1987),
577–591.
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numbers only z1, . . . , zn can be different from zero. There are no constraints
on the value of n; thus, such a computational machine can process arbitrarily
long sequences of numbers. The graph has vertices of three types:

Outputs. No edges go away from these vertices. When such a vertex is reached,
processing terminates.

Computing nodes. One edge goes to a computing node and one edge goes out
from it. At a computational node, an arithmetic operation on some terms
of the sequence is performed, and one term of the sequence is replaced by
the result. In addition, all terms of the sequence can be multiplied by the
same number or shifted.

Branching nodes. One edge goes to a branching node and two edges with marks
“yes” and “no” go from it. At a branching node, it is determined whether
zi = 0. If zi = 0, then we go along the edge with mark “yes,” and if
zi �= 0, then we go along the edge with mark “no.” (If the computations
are over R , then inequalities of the type xi > 0 or xi � 0 can be verified.)

The algorithm outputs a sequence of numbers. The algorithm HN/C of
interest to us outputs only one nonzero element, which can take precisely two
values corresponding to the answers “yes” and “no.”

This definition of an algorithm was given by L. Blum, M. Shub, and S. Smale
in the late 1980s. It is strange that nobody had thought out this very natural
definition before. A more detailed exposition of the theory of such algorithms is
contained in the book L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity
and Real Computation (Springer Verlag, 1997).

The algorithm described above is naturally associated with an input–output
function. This function is defined on a certain set of input data (for instance,
the computer cannot perform division by zero, so the algorithm terminates
when being fed by certain input data).

The number n is referred to as the size of the input data and the length
of the path from an input to an output is the running time for this input
(the path may vary with the input). The polynomial-time algorithms satisfy
inequality (1) with some constant C for all inputs. The class of such algorithms
is denoted by P/C .

After this definition is given, the question about the existence of a polynom-
ial-time algorithm for the HN/C problem acquires a rigorous mathematical
meaning. Note that the statement that there exists no such algorithm is equiv-
alent to the statement P �= NP/C (I shall not give the definition of NP/C in
this lecture).
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Instead of the field C , we can take any field K and define a computational
machine over an arbitrary field. For example, the field K = Z2 corresponds to
the definition of an algorithm conventional in logic and computer science.

We could also consider the problem about common zeros of polynomials
over Z2. The conjecture that there is no polynomial-time algorithm for solving
this problem is equivalent to the P �= NP conjecture in its classical setting.

For a number m ∈ Z, we can define an invariant τ(m) by analogy with the
invariant τ for polynomials. Namely, we take sequences (1, m1, . . . , mk = m)
similar to those considered above and define τ(m) as the least possible k. Using
the Stirling formula, we can prove that τ(m!) � (lnm)C . There is the conjecture
that a lower bound of the form (lnm)C′ � τ(m!) holds too; this problem is
related to prime decomposition.

At first sight, these two problems (about the invariant τ for polynomials
and for numbers) are not related to each other.

Let us return to the problem P �= NP/K . We shall not define NP/K ; in-
stead, we shall talk about an equivalent problem – Hilbert’s Nullstellen-problem
HN/K /∈ P/K over an arbitrary field K. (Hilbert’s Nullstellensatz is not valid
if the field is not algebraically closed, but the problem about common zeros of
a system of polynomials makes sense for any field; I mean this problem here.)

In the case of a non-algebraically closed field, the following assertion is valid.

Theorem 2. If a field K is not algebraically closed and char K = 0, then
P �= NP/K .

For the field Z2, which is non-algebraically closed but has nonzero charac-
teristic, the question remains open.

Let us return to algebraically closed fields. For an algebraically closed field
K (with char K = 0), the problem P �= NP/K is equivalent to the problem
P �= NP/C . Thus, the problem reduces to considering one field, say C or Q

(this is the notation for the algebraic closure of the field Q). This is one of
the main results of the book mentioned above. Its proof uses the notion of the
height of an algebraic number.

It is very likely that P/K = P/F2 for any finite field K. But for fields of
finite characteristic, there are more questions than answers.

Consider the question about the equivalence of the problems over C and
over Q . One of the main difficulties in the passage from complex to algebraic
numbers is involved in getting rid of complex constants which may be used in
computations. In general, they might strongly simplify the computations, but
it is proved that they do not.

Classical computer science is concerned with the problem P �= NP/Z2 . In
the book mentioned above, the question about the relation between P �= NP/Z2
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and P �= NP/C was not considered. In the preface to the book, Dick Karp
conjectured that these problems are in no way related. But after the book had
been written, Smale made the following observation.

Recall that the polynomial-time algorithms are so interesting because they
can be implemented efficiently on a computer. But at present, one more impor-
tant class of algorithms is used, the so-called BPP-algorithms. These algorithms
are allowed to “toss a coin” and perform calculations depending on the result.
It is required that the correct answer be obtained in a “qualified majority” of
cases. Repeating computations many times, we can obtain a result which is
correct with a very high probability. For example, if a correct result is ob-
tained with probability 3/4, then after 50 repetitions the probability of error
will amount to one divided by the number of atoms in the Universe.

From the mathematical point of view, the BPP condition imposes weaker
constraints than the P condition, but in practice, BPP-algorithms are as good
as P-algorithms.

Theorem 3 (Smale). If BPP �⊇ NP, then P �= NP/C .

From the point of view of modern computer science, BPP �⊇ NP resembles
P �= NP very much.
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Values of the ζ-function

Lecture on May 21, 1999

The lecture has four parts:
1. Values of the ζ-function;
2. Polylogarithmic functions;
3. Generalization of polylogarithmic functions and multiple values of the

ζ-function (MZVs);
4. Conjectures on the nature of some numbers.

1 Values of the ζ-function

The beginning is very classical. I start with calculating the sum of the series
∞∑

n=1

1
n2 . In 1739, Euler proved that the sum of this series equals π2

6 . First

he calculated the partial sums and then guessed the answer. It should be
mentioned that this series converges very slowly. Thus, to evaluate the sum of
this series, Euler had to develop special numerical methods.

Euler invented a kind of “proof,” which I shall repeat in a few words. Let
P (x) = cNxN + cN−1x

N−1 + · · · + c0 be a polynomial of degree N with roots

ξ1, . . . , ξN . Then ξ1 . . . ξN = (−1)N c0
cN

and
N∑

i=1
ξ1 . . . ξ̂i . . . ξN = (−1)N−1 c1

cN
.

These two equalities imply
N∑

i=1

1
ξi

= − c1
c0

. Another way to prove this is to

consider a polynomial with roots 1
ξi

. We could also prove the formula
∑
i<j

1
ξiξj

=

c2
c0

in a similar manner. Thus, if c1 = 0, then
N∑

i=1

1
ξ2
i

= −2 c2
c0

. Euler, certainly,

knew all these formulas.
Now, suppose that we have a “polynomial” with roots 1, 2, 3, . . . . Then we

can use it to calculate
∞∑

n=1

1
n2 . That this “polynomial” has infinitely many roots

did not confuse Euler. Consider the function sin πx
πx = s(x). The roots of the

“polynomial” s(x) are the roots of the equation sinπx = 0, where x �= 0. The

Pierre Cartier, Institut de Mathématiques de Paris–Jussieu, CCNRS, Paris, France.
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Figure 1. Saw-tooth function

positive roots are precisely what we need. But taking account of the negative

roots, we obtain the doubled sum of the series
∞∑

n=1

1
n2 .

Expanding the sine in a series, we see that

s(x) = 1− π2

6
x2 + . . . .

Thus, c0 = 1, c1 = 0, and c2 = −π2

6 . Therefore, 2
∞∑

n=1

1
n2 = −2 c2

c0
, and hence

∞∑
n=1

1
n2 = − c2

c0
= π2

6 .

Certainly, this proof is not satisfactory. For instance, applying such an ar-
gument to the function ex2

, we come to an absurd conclusion. Only Weierstrass
(1860) and Hadamard (1895) had eventually cleared up this point by consider-
ing factorization of entire functions of a complex variable. For entire functions
satisfying certain growth conditions at infinity, Euler’s argument leads to a
correct result.

There is another proof, which is easier to express in terms of Fourier series.
The Fourier series were successfully used in the eighteenth century, although
they were rigorously substantiated only a century later. Consider a saw-tooth
function φ(x) (Fig. 1). It is periodic with period 1, and φ(x) = x − 1

2 for
x ∈]0, 1[. Clearly,

∫ 1
0 φ(x) dx = 0. Introducing the Fourier coefficients cn =∫ 1

0 φ(x)e2πinx dx = 1
2πin (for n �= 0), we obtain

φ(x) =
∑

n

cne−2πinx =
∑
n
=0

e2πinx

2πin
.

The Parseval theorem shows that∫ 1

0
|φ(x)|2 dx =

∑
n
=0

|cn|2 =
1

2π2

∞∑
n=1

1
n2

.

On the other hand, ∫ 1

0
|φ(x)|2 dx =

∫ 1

0

∣∣∣x− 1
2

∣∣∣2 dx =
1
12

.
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This is indeed a proof.
In textbooks, yet other proofs can be found. For instance, the Cauchy

residue formula can be used. Namely, consider the meromorphic function
1

x2(e2πix−1)
. This function has a pole of order 3 at the point x = 0 and poles of

order 1 at the points x = n �= 0. Applying the Cauchy residue formula to this
function, we obtain the same result.

Euler did more: he calculated the sums 1+2+3+ . . . and 12+22+32 + . . . .
I shall not repeat these calculations. They refer to what I call “mathemagic,”
when calculations are performed without a proper substantiation and some
results are obtained. After that, many years pass before they are substantiated.
In modern times, such is the situation with the Feynman path integrals. People
evaluate them, but these evaluations are not corroborated. The calculations of
Feynman resemble those of Euler. They have not been substantiated so far,
but they will some time.

Now, let me introduce the classical Riemann zeta function ζ(s) =
∞∑

n=1

1
ns . It

is assumed that s ∈ C and Re s > 1; in this case, the series absolutely converges.
We have already found that ζ(2) = π2

6 . Both methods of calculation (through
polynomials and by using the Fourier series) apply to calculating ζ(4) and give
the same result ζ(4) = π4

90 . The substantiation of the calculation with the
use of the Fourier series is even simpler, because, in this case, the Fourier series
converges absolutely. Similarly, we can prove that if k is a positive integer, then
ζ(2k) = π2kr, where r is a rational. But the Fourier series method gives nothing
in the case of ζ(3), ζ(5), . . . . The only thing known about these numbers is that
ζ(3) �∈ Q (it is not even known whether the number ζ(3) is transcendental).
The irrationality of ζ(3) was proved by R. Apéry in 1978. Then Don Zagier and
H. Cohen simplified and clarified the proof of Apéry, and in August 1978 Cohen
presented the proof of Apéry at the International Congress of Mathematicians
in Helsinki.

An integral representation for the function ζ(s)

Consider the gamma function Γ(s) =
∫∞
0 e−xxs−1 dx; here Re s > 0. The

change x = nξ yields

n−s =
1

Γ(s)

∫ ∞

0
e−nξξs−1 dξ, n = 1, 2, . . . .
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Considering the sum
∞∑

n=1
n−s, we reduce the right-hand side to an expression

containing a geometric progression, which we can sum. As a result, we obtain

ζ(s) =
∞∑

n=1

n−s =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx. (1)

There is a method of Hadamard, which is well presented and developed
in the book Generalized Functions by I. M. Gel’fand and G. E. Shilov. The
method is as follows. Consider the integral Φ(s) =

∫∞
0 F (x)xs−1 dx, where F is

a function of class C∞ which has a Taylor expansion even at zero and rapidly
decreases as x →∞ together with its all derivatives.

Example 1. F (x) = e−x.

The function Φ = ΦF can be extended over C as a meromorphic function
with simple poles at the points 0, −1, −2, . . . . This can easily be proved by
integrating by parts. Indeed, integration by parts gives the functional equa-
tion ΦF ′(s + 1) = −sΦF (s); this functional equation is a generalization of the
functional equation for Γ(s). Thus, the function Φ(s)/Γ(s) has no poles. For-
mula (1) contains a function of precisely this form. Unfortunately, in the case
of interest to us, the function F (x) = 1

ex−1 has a singularity at zero, so this
argument does not apply. We must change the function; for instance, we can
set F (x) = x

ex−1 and use the decomposition xs−1 = x · xs−2. As a result, we
obtain the integral representation

Γ(s)ζ(s) =
∫ ∞

0

x

ex − 1
xs−2 dx.

We have shifted the poles by 1: the poles of the function Γ(s) ζ(s) are at the
points 1, 0, −1, −2, . . . , while the poles of Γ(s) are at the points 0, −1, −2,
. . . . Therefore, the function ζ(s) has a unique pole, at the point 1.

The general result is
(

Φ
Γ

)
(−k) = (−1)kF (k)(0). This can be expressed

differently by the formula xs−1

Γ(s)

∣∣∣
s=−k

= δ(k)(x), where δ(k) is the kth derivative

of the Dirac function. This point of view is well explained in the book of
Gel’fand and Shilov mentioned above. Applying this equality to the function
ζ(s), we obtain

−kζ(1− k) = (−1)k dk

dxk

( x

ex − 1

)∣∣∣
x=0

; (2)

here we have taken into account the shift by 1.
Consider the Bernoulli numbers Bk, which are defined by the identity

x

ex − 1
=

∞∑
k=0

Bk
xk

k !
.
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Formula (2) gives

ζ(1− k) = (−1)k+1Bk/k, k = 1, 2, 3, . . . .

For instance, ζ(0) = B1 = −1/2, ζ(−1) = −B2/2 = −1/12, and ζ(−2) = 0.
Formally, ζ(−1) = 1 + 2 + 3 + . . . and ζ(−2) = 12 + 22 + 32 + . . . . These are
precisely the sums which we wanted to calculate.

Now, it is time for yet another portion of mathemagic. Let us formally set
Bk = Bk = B × · · · × B and consider eBx. The equality x

ex−1 = eBx implies
x = (ex− 1)eBx = e(B+1)x− eBx. Therefore, for n �= 1, we have (B +1)n = Bn.
For instance,

0 = (B + 1)2 −B2 = 2B1 + B0 = 2B1 + B0.

We know that B0 = 1; hence B1 = −1/2. In a similar way, we obtain the
equality 3B2 + 3B1 + B0 = 0 and calculate B2, etc.

This construction can be formally described as follows. Consider the ring of
polynomials over C in one variable B. Consider the linear mapping ev : C [B]→
C defined at the basis elements by ev(Bk) = Bk and extended over the entire
C [B] by linearity. The mapping ev takes formal series in two variables B and x
to formal series in one variable x. Now, we can repeat the above calculations,
applying the mapping ev when needed. This is explained in Bourbaki’s textbook
on elementary analysis; it contains a chapter about the Bernoulli numbers.

It can also be proved (see the end of Section 2) that

ζ(2k) = (−1)k+1 (2π)2k

2 · (2k)!
B2k.

Note that B3 = 0, B5 = 0, . . . . An attempt to evaluate the zeta function
at odd points by the same method leads to the equality 0 = 0, which gives
nothing. The reason why this happens is explained at the end of the second
part.

2 Polylogarithmic functions

The polylogarithmic functions are specified by the equalities

Lik(z) =
∞∑

n=1

zn

nk
.

This definition is related to the equality Lik(1) = ζ(k). It is our hope that we
might obtain some information about the zeta function by using polylogarithmic
functions.
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In the complex domain, the series for Lik(z) converges at |z| < 1. The first
problem is to construct an analytic continuation. The beginning is very simple:

Li0(z) =
∞∑

n=1

zn =
z

1− z
.

This is a rational function with pole z = 1.
My teacher Henri Cartan forbade me make cuts on the complex plane,

because such an approach is not invariant. He required to always consider only
Riemann surfaces. If you open his (very good) textbook on complex analysis,
you will find definitions of analytic continuation in terms of sheaves or whatever,
but none of them involves cuts. Nevertheless, I see no contradiction in cuts of
the plane and, therefore, make a cut.

Consider the open simply connected set U = C \ [1, +∞ [. If Φ is holomor-
phic on such a simply connected set, then it has a primitive function Ψ on this
set. This function satisfies the normalizing condition Ψ(0) = 0, and dΨ

dz = Φ.
The function Ψ is also holomorphic in the domain U .

It is easy to verify that z d
dzLik(z) = Lik−1(z). The function Li0 is holo-

morphic in the domain U and Li0(0) = 0; therefore, the function Li1 is also
holomorphic in the domain U . Proceeding, we see that the same is true of Li2,
Li3, . . . . All these functions can be analytically continued over U .

To go further, we need to investigate the limit behavior of these functions
when they approach the cut from different sides, from above and from below.
I consider only the case

Li1(z) = z +
z2

2
+

z3

3
+ · · · = ln

1
1− z

.

The values of the logarithm above and under the cut differ by a constant. If
γ1 is the monodromy around 1, then γ1(Li1(z)) = −2πi. A monodromy is the
difference between two branches.1 A difference between two branches can again
be analytically continued to the entire plane. This monodromy was studied
in detail by many algebraic geometers, such as Bloch, Deligne, Drinfeld, and
others.

Let us refer to mathemagic again and ask Euler the question: How can we

calculate the sum of the series
∞∑

n=−∞
zn? Euler answers: this sum equals 0. He

argues as follows. Consider the sum z + z2 + · · ·+ zn + · · · = z
1−z = Li0(z). It

1 More precisely,
γ1(Li1(z)) = Li1(z − i0) − Li1(z + i0)

for z in ]1, +∞[.
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converges at |z| < 1. Now, consider the sum of reciprocals z−1 + z−2 + · · · +
z−n + · · · = −1

1−z = Li0
(

1
z

)
. It converges at |z| > 1. Recall that we have

performed an analytic continuation. Both functions z
1−z and −1

1−z are rational;
they are defined everywhere except at the pole at 1. To calculate the required
sum, we must add 1 to these two functions:

1 + Li0(z) + Li0

(
1
z

)
= 1 +

z − 1
1− z

= 0.

We can step-by-step generalize this argument and obtain the following
result. The function Lik(z) is holomorphic outside [1, +∞ [, and the func-
tion Lik

(
1
z

)
is holomorphic outside [0, 1]. Therefore, the function Lik(z) +

(−1)kLik
(

1
z

)
is holomorphic outside [1, +∞ [ ∪ [0, 1] = [0,∞ [.

The logarithm is usually considered for the cut ] − ∞, 0], but it can be
defined for the cut [0,∞ [ too. We shall assume that the function ln z is defined
with the use of the cut [0,∞ [ and choose a branch of this logarithm in such a
way that, approaching the cut from above, we obtain the usual real logarithm.2

For a logarithm so defined, we obtain the following formula:

Lik(z) + (−1)kLik

(
1
z

)
= −(2πi)k

k !
Bk

(
ln z

2πi

)
. (3)

Here Bk(t) is the Bernoulli polynomial. Informally, it is defined by Bk(t) =
(B + t)k. To obtain a formal definition, we must apply the mapping ev: first
we consider a polynomial in the variables B and t and then replace each mono-
mial Bk with Bk.

The Bernoulli polynomials can also be defined by the following properties,
which completely characterize them:

• d
dtBk(t) = kBk−1(t);

• Bk(t + 1)−Bk(t) = ktk−1;

• B0(t) = 1;

• Bk(0) = Bk.

It is an easy exercise in algebra to prove that these properties uniquely
determine some sequence of polynomials.

2 Hence ln(reiθ) = ln r + iθ for 0 < θ < 2π.
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We can write the corresponding generating function:

∞∑
k=0

Bk(t)
xk

k !
=

xext

ex − 1
.

In particular, for t = 0, we obtain Bk(0) = Bk.
Setting z = 1 + iε, where ε > 0, in (3) and letting ε tend to zero, we obtain

(for k � 2)

ζ(k) + (−1)kζ(k) = −(2πi)k

k !
Bk.

For odd k, this formula gives no information: we obtain the identity 0 = 0. For
even k, we obtain the very formula mentioned at the end of Section 1.

3 Generalizations of polylogarithmic functions

We have seen that Li1(z) = ln 1
1−z . For this reason, Li2 is called a dilogarithm,

Li3 is called a trilogarithm, etc.
We want to generalize this class of functions. And we want that the new

class of functions include the usual logarithm, which is defined on the complex
plane cut from −∞ to 0. From now on, we shall use this standard definition of
logarithm, rather than that used above.

All functions which we shall define will be holomorphic in the complex
plane cut from 1 to +∞ and from −∞ to 0. The simplest way to define these
functions is to use a differential equation. Recall that, for a polylogarithm, we
have proved the formula

∂zLik(z) =
1
z

Lik−1(z),

where ∂z denotes differentiation with respect to z. The function to be defined
is parameterized by indices k1, . . . , kt; it is denoted by Lik1,...,kt(z).

Before proceeding to expand the function Lik1,...,kt(z) in a series, I shall write
a differential equation for it. Let us introduce two noncommuting variables X0

and X1. Consider the sequence ε = (ε1, . . . , εφ), where εi ∈ {0, 1}. Every
such sequence can be assigned the product Xε = Xε1 . . . Xεφ

. For example,
X010 = X0X1X0.

Consider the differential equation

∂zΛ(z) =
(

X0

z
+

X1

1− z

)
Λ(z).

In particular, if X0 and X1 are square matrices of order p, then this equation is a
system of ordinary differential equations. This system is holomorphic, but it has
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singularities at the points 0 and 1. Solutions to this system should be considered
in a simply connected domain not containing the points 0 and 1. For instance,
we can take the complex plane cut as above. According to the general theory
of holomorphic differential equations, the system has a holomorphic solution in
such a domain. Note that the Gauss equation for a hypergeometric function
can be written in such a form with p = 2; X0 and X1 are then some particular
matrices of order 2. A solution to the equation is a vector-function, i.e., a set of
two functions, each of which is a variant of the Gauss hypergeometric function
2F1(a, b; c; z).

Let us return to general noncommuting variables X0 and X1. We seek
solutions of the form

Λ(z) =
∑

ε

Λε(z)Xε =

= Λ∅(z) + Λ0(z)X0 + Λ1(z)X1+

+ Λ00(z)X2
0 + Λ01(z)X0X1 + Λ10(z)X1X0 + Λ11(z)X2

1 + . . . .

If X0 and X1 are matrices, then, as can be proved, this infinite series converges.
But now, I am not interested in its convergence; I consider a formal series.
Solving the differential equation for a formal series, we obtain the recursive
relations

∂zΛ0ε(z) =
1
z
Λε(z), ∂zΛ1ε(z) =

1
1− z

Λε(z).

For simplicity, we set Λ∅(z) = 1. Then

∂zΛ0(z) =
1
z
, ∂zΛ00(z) =

1
z
Λ0(z)

∂zΛ1(z) =
1

1− z
, ∂zΛ10(z) =

1
1− z

Λ0(z), . . . .

Therefore, Λ0(z) = ln z + C0; this expression is defined on the complex plane
with two cuts. Next,

Λ00(z) =
1
2

ln2 z + C0 ln z + C1.

We normalize the solutions by Λ0...0(z) = 1
p! lnp z.

I apply the well-known fact that the integral
∫
0 xλ lnp x dx converges for

λ � 0 (such an expression means that the integral converges at zero). The only
singularity at zero is due to the logarithm.

The other equation gives

Λ1(z) = ln
1

1− z
.
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Here a constant could appear, but I impose the normalizing condition that the
function must vanish at z = 0.

If we want to completely write out the asymptotic condition normalizing
the function Λ, we can do this as follows. Let us write

Λ(z) = Λ̃(z) exp(X0 ln z), (4)

where

exp(X0 ln z) =
∞∑

p=0

1
p!

lnp z X0 . . . X0︸ ︷︷ ︸
p

.

Here Λ̃ is holomorphic in a neighborhood of zero and Λ̃(0) = 1. This is the
asymptotic condition on the function Λ.

Let us write the initial differential equation in the form

dΛ =
(

X0
dz

z
+ X1

dz

1− z

)
Λ.

In a neighborhood of zero, the term X1
dz

1−z is regular. If this regular term
were absent, then the solution to the equation would be precisely the above
exponential. Formula (4) is a special case of the Fuchsian form of a solution to
a differential equation with singular points.

Certainly, if we replace X0 and X1 with matrices, we must give meaning
to everything written above; in particular, we must define the exponentials.
For instance, if X0 = diag(λ1, . . . , λn), then the corresponding function is
diag(zλ1 , . . . , zλn). This is what arises usually in the Fuchs theory. One of
the difficulties about the classical Fuchs theory is that the theory does not
work in the case where one of the differences λi − λj is an integer. But we do
not encounter this difficulty, because we consider formal series.

It turns out that our conditions uniquely determine the function Λ̃: a dif-
ferential equation with such initial conditions has a unique solution.

The situation for z = 0 is symmetric to that for z = 1. Indeed, the mapping
z �→ 1 − z interchanges the two cuts, and the situation remains the same.
(Although, the asymptotic expansion of the function Λ(z) at the point z = 1
is, certainly, different.)

Let us again write a solution as an infinite series

Λ(z) =
∑

ε

Λε(z)Xε,

where ε is a finite sequence of zeros and ones. I have to alter the notation a
little. First, I shall assume that ε = (ε1, . . . , εp), where εp = 1. It is easy to
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show that, in this case, Λε has no singularities at zero: for the terms whose
right-hand sides do not contain X0, the multiplication kills the negative powers
of z. These are the polylogarithmic functions which we wanted to define.

Let us introduce the following notation: Y1 = X1, Y2 = X0X1, Y3 =
X0X0X1, . . . . Then we can represent the product Xε1 . . . Xεp−1X1 in the form
Yk1 . . . Ykt , where k1 � 1, . . . , kt � 1. For instance,

X1X0X0X1X0X1 = Y1Y3Y2.

The polylogarithmic function is defined by

Lik1,...,kt(z) = Λε(z).

For the remaining ε (with εp = 0), the functions Λε are represented as finite
sums of the form ∑

Lik(z) ln? z,

where k = (k1, . . . , kt) and ln? z denotes some power of the logarithm.
The expansion of the function Lik in a power series has the form

Lik(z) =
∑

n1>···>nt

zn1

nk1
1 . . . nkt

t

.

The radius of convergence of this series equals 1.
We set Lik(1) = ζ(k). For example, ζ(3, 2) =

∑
m>n

1
m3n2 . We refer to the

numbers ζ(k) so defined as multiple zeta values (MZVs). It is easy to prove that
the series under consideration converges for k1 � 2. But for, e.g., k = (1, 1), we

obtain the series
∑

m>n

1
mn , which diverges. Indeed, the sum

m−1∑
n=1

1
n approximately

equals lnm, and the series
∑ ln m

m diverges. A similar argument shows that the
series

∑
m>n

1
m2n

converges, because the series
∑ ln m

m2 converges.

This means the following. A polylogarithmic function is regular at zero. But
for regularity near the point z = 1, some additional assumptions are required.
For example, at k1 � 2, the series absolutely converges on the unit circle.
Thus, the function has a limit at the point z = 1, but it cannot be extended to
a holomorphic function in a neighborhood of this point.

We can also consider polylogarithmic functions of many variables:

Lik(z1, . . . , zs) =
∑

n1>···>nt

zn1
1 . . . zns

s

nk1
1 . . . nkt

t

, s � t.
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We have defined the multiple zeta values by setting z = 1. Goncharov and
some physicists discovered that very interesting numbers are obtained by taking

a root of unity as z, i.e., by considering the series
∞∑

n=1

αn

nk , where αp = 1. The

sum of such a series can also be written in the form
p−1∑
j=0

αj
∑

n≡j (mod p)

1
nk .

4 Conjectures on the nature of some numbers

We shall consider the numbers ζ(k1, . . . , kt), where k1 � 2, t � 1, k2 � 1, . . . ,
kt � 1. All these numbers are real. Among them are the familiar numbers
ζ(2) = π2

6 and ζ(4) = ζ(2)2 × 2
5 . We are not interested3 in the numbers ζ(2k).

But the numbers ζ(3), ζ(5), . . . are of great interest to us.
The number p = p(k) = k1 + · · ·+ kt is the weight of ζ(k1, . . . , kt), and the

number t is its depth. Let us denote the set of all rational linear combinations
of all MZVs with weight p by Zp (in honor of Zagier). We conventionally set
Z0 = Q and Z1 = (0), because Z1 can contain only the number ζ(1) =

∑ 1
n =

+∞. (Zagier suggested to replace ζ(1) with the sum of the series
∑ 1

n “in the
sense of Euler,” i.e., with the Euler constant

C = lim
n→∞

(
1 +

1
2

+ · · ·+ 1
n
− lnn

)
= lim

s→1

[
ζ(s)− 1

s− 1

]
,

but this solution is not obviously right.) We have already found that Z2 = Qπ2.
It can also be proved that Z3 = Qζ(3), since ζ(3) = ζ(2, 1) (see below).

There are several conjectures on the spaces Zp, which are not completely
independent of each other.

1. The sum of the vector spaces Z0, Z1, . . . , Zp is direct, i.e., if z0 + z1 +
· · ·+ zp = 0, where zj ∈ Zj for j = 0, 1, . . . , p, then zj = 0 for all j.

Concerning this conjecture, it has been verified that, if p(kj) = j for 0 �
j � 17 and |mj | � 1010 for mj ∈ Z, then |

∑
j mjζ(kj)| � 10−50 (except for

m0 = · · · = m17).
2. Let dp = [Zp : Q ] (the dimension of Zp over Q). Then, as Zagier

conjectured,
∞∑

p=0

dpt
p =

1
1− t2 − t3

.

More detailed conjectures are based on the following observation. Consider,
for example, the product ζ(2) ζ(3) =

∑ 1
n2

∑ 1
m3 . Here m and n range over the

3 By a previous formula, ζ(2k)/π2k is a rational number, and we know that π is a transcen-
dental number.
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m

n

Figure 2

part of the integer lattice contained in the positive quadrant. Let us divide this
set into three subsets: the diagonal elements, the superdiagonal elements, and
the subdiagonal elements (Fig. 2).

It is easy to verify that the summation over the diagonal elements gives ζ(5),
the summation over the subdiagonal elements gives ζ(2, 3), and the summation
over the superdiagonal elements gives ζ(3, 2). Therefore,

ζ(2) ζ(3) = ζ(5) + ζ(2, 3) + ζ(3, 2).

Generalizing this argument, we can obtain a relation of the form

ζ(a1, . . . , as) ζ(b1, . . . , bt) =
∑

ζ(c1, . . . ).

Here the number ζ(a1, . . . , as) is obtained by summation over the sequences
n1 > · · · > ns, and the number ζ(b1, . . . , bt) is obtained by summation over
the sequences m1 > · · · > mt. We must shuffle these sequences, i.e., take their
union and arrange the numbers in decreasing order (taking account of possible
repetitions).

This is the first set of multiplicative relations. There is one more set of
multiplicative relations. It is obtained as follows. We have proved above that

ζ(3) =
1
2!

∫ ∞

0

x2

ex − 1
dx.

Making the change x = ln t, we obtain

ζ(3) =
1
2

∫ ∞

1

(ln t)2

t− 1
dt

t
.

After some transformations, we come to the expression

ζ(3) =
∫∫∫

1>x1>x2>x3>0

dx1

x1

dx2

x2

dx3

1− x3
.
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Recall that, in combinatorial notation, ζ(3) corresponds to the product
Y3 = X0X0X1, and the denominators of the three fractions in the integral are
x1 − 0, x2 − 0, and 1 − x3. In the general case, the formula looks as follows.
Put ω0(x) = dx

x and ω1(x) = dx
1−x . Then

ζε1,...,εp =
∫

. . .

∫
1>x1>···>xp>0

ωε1(x1) . . . ωεp(xp).

To calculate ζ(k1, . . . , kt), we have to consider the product

Yk1 . . . Ykt = Xε1 . . . Xεp

(here p = k1 + · · ·+ kt). By definition, ζ(k1, . . . , kt) = ζε1,...,εp .
The number ζ(2) is expressed similarly in the form of a double integral as

ζ(2) =
∫∫

1>x1>x2>0

dx1

x1

dx2

1− x2
.

Therefore, ζ(2) ζ(3) is represented in the form of a quintuple integral. The
variables must be shuffled (and ordered). The same argument as above gives
a sum of expressions. But, in this case, the situation is simpler, because the
diagonal is of measure zero and we can disregard it.

These considerations give the second set of multiplicative relations.
For ζ(2)ζ(3), we obtain two expressions. One of them has the form

ζ(2)ζ(3) = ζ(5) + ζ(2, 3) + ζ(3, 2).

(We could write out an explicit form of the other relation too, but we shall
not do this.) As a result, we obtain one linear relation between MZVs of given
weights p = 5. The integral representation gives also the equality ζ(3) = ζ(2, 1).

The main conjecture is that all independent linear relations with rational
coefficients between MZVs of given weights can be obtained by this method.
Maybe, it is possible to derive the two conjectures formulated above from this
one in a purely algebraic way. My students are working on this reduction, but
the work is not finished yet. It is not easy.

This conjecture is very strong. In particular, it implies that the numbers
ζ(3), ζ(5), . . . are transcendental and algebraically independent over the field
of rationals. For instance, it is not known whether the number ζ(3) is transcen-
dental and whether the number ζ(5) is irrational.



Pierre Cartier

Combinatorics of trees

Lecture on May 24, 1999

I shall start with the definition of the Catalan numbers, which are often encoun-
tered in combinatorics. The Catalan numbers are 1, 1, 2, 5, 14, 42, 132, 429,
1430, 4862, . . . . This sequence of numbers is defined by the first term c1 = 1

and the recursive relation cn =
∑

p+q=n
cpcq =

n−1∑
p=1

cpcn−p. (It is convenient to set

c0 = 0.)
To obtain an explicit formula for the Catalan numbers, consider the generat-

ing function c(t) = c1t+c2t
2+. . . . The recursive relation implies c(t) = t+c(t)2.

Solving this quadratic equation and taking into account that c0 = 0, we obtain
c(t) = 1

2(1−
√

1− 4t). Therefore, cn = 1
n

(
2n−2
n−1

)
.

The Catalan numbers admit plenty of different combinatorial interpreta-
tions. For me, most important is the interpretation suggested by Cayley (1860).
Namely, cn is the number of different triangulations of a regular convex (n+1)-
gon. Thus, the square has precisely two triangulations (Fig. 1); accordingly,
c3 = 2. The hexagon admits three different types of triangulations (Fig. 2); un-
der each of these triangulations, the number of different triangulations of this
type is written. The total number of different triangulations of the hexagon
equals 6 + 2 + 6 = 14 = c5.

Figure 1. Triangulations of the square

6 2 6

Figure 2. Triangulations of the hexagon

Let c′n be the number of different triangulations of the (n+1)-gon. To prove

Pierre Cartier, Institut de Mathématiques de Paris–Jussieu, CCNRS, Paris, France.
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the equality c′n = cn, it is sufficient to verify that c′n =
∑

p+q=n
c′pc

′
q. (Obviously,

c′2 = 1, and by convention c′1 = 1.) I shall give the proof for the example of the
hexagon. Let us mark its sides by the numbers 0, 1, 2, 3, 4, and 5. Consider
a triangle from some triangulation that contains the side marked by 0 (Fig. 3).
We mark the diagonals being the sides of this triangle also by 0. As a result (in
the situation shown on Fig. 3), we obtain a (3+1)-gon and a (2+1)-gon, which
are to be triangulated somehow. In the general case, we obtain a (p + 1)-gon
and a (q + 1)-gon, where p + q = n.

1

2

3

4

5 = n

0

0
0

Figure 3. Marks on sides and diagonals

Exercise. Prove that a triangulation of a convex (n + 1)-gon uses precisely
n− 2 diagonals, and precisely n− 1 triangles are obtained.

Another interpretation of the Catalan numbers is related to rooted planar
binary trees with n leaves. To a triangulation of the (n+1)-gon we can assign a
tree with n+1 free (i.e., belonging to only one edge) vertices, as shown in Fig. 4.
The unique free vertex corresponding to the side marked by 0 is distinguished.
We call the marked vertex of the tree root and the remaining free vertices leaves.

z0

z1

z2

z3

z4

0 0

z1

z0 z2

z3 z4

Figure 4. Construction of a tree from a triangulation

Now, let me explain what a tree and a planar binary tree are. A reduced
graph is a subset E ⊂

(
V
2

)
, where

(
V
2

)
are the two-element subsets in V . The

elements of the set V are the vertices of the graph, and the elements of the set E
are its edges. The reducedness of a graph means that it has no loops (edges
which begin and end in the same vertex) and no double edges. A graph is
said to be disconnected if the vertex set V can be divided into two (nonempty)
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disjoint sets V ′ and V ′′ in such a way that both ends of any edge lie in V ′

or in V ′′. A tree is a connected graph without cycles. (A cycle is a sequence
of edges forming a polygon.) A disconnected graph without cycles is called a
forest.

A planar tree is a tree with a fixed embedding in the plane. From the com-
binatorial point of view, this means that, for each vertex, an order of traversing
the edges incident to this vertex is fixed.

Now, let us define a rooted binary tree. First, this is a tree each of whose
vertices is incident to either one or three edges. (The vertices incident to only
one edge are the leaves and the root.) In addition, the edges of the tree must be
oriented in such a way that each interior vertex is left by precisely two (hence
the qualification “binary tree”) edges and entered by precisely one edge. The
root is left by one edge and each leaf is entered by one edge.

Let us denote the set of rooted planar binary trees with n leaves by Tn. It
can be proved that there is a one-to-one correspondence between the rooted
planar binary trees with n leaves and the triangulations of the (n+1)-gon; the
triangles in a triangulation correspond to interior vertices, and its diagonals
correspond to interior edges. Thus, cn = |Tn|.

0

1

2

3

4

1

1 2

1 2
3 4

1 2 3 4

Figure 5. Distance from the roots

Any two vertices of a tree are joined by precisely one path. Therefore, we
can determine the distance from each vertex to the root. Let us arrange the
vertices in levels according to their distances from the root (Fig. 5). Suppose
that Gk is the set of vertices of level k. To each vertex we assign the beginning
of the edge entering it; this gives the sequence of mappings

G0 ← G1 ← G2 ← G3 ← G4 ← . . . .

To encode this sequence, we enumerate the vertices of each level from left to
right (for a planar tree, this order is determined uniquely). Let us introduce
the notation [n] = {1, 2, . . . , n}. We have Gj � [γj ], where γj is the number of
elements in the set Gj . The sequence of mappings takes the form

[γ0] ← [γ1] ← [γ2]← [γ3]← [γ4] ← . . . .
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These mappings are nondecreasing: if numbers p and q are mapped to p′ and q′,
then p > q implies p′ � q′.

1 The universal algebra

We call an arbitrary mapping µ : X × X → X a magma; this term is chosen
because we impose no conditions on the binary composition law (ab) = µ(a, b)
(magma has no structure).

a b

c d

e f

0

Figure 6. Parenthesization with the use of a tree

A rooted planar binary tree with n leaves determines a parenthesization of
an n-tuple, that is, it determines an order in which the binary operation µ is
applied to n elements. For example, the tree shown in Fig. 6 corresponds to the
following arrangement of parentheses: (((ab)c)(d(ef))). This parenthesization
(i.e., the order in which the operations are performed) is obtained as follows.
Take a pair of free edges with a common vertex, e.g., the edges with end-
vertices a and b. We cut off this pair of edges and assign the element µ(a, b)
to the new free vertex. As a result, we obtain a tree with a smaller number of
leaves. For some pair of its free edges with a common vertex, we repeat the
same procedure, and so on.

Thus, each tree T ∈ Tn determines a mapping µT : Xn → X. This mapping
can be expressed as follows. Suppose that the rooted tree T has l(T ) leaves.
Let us denote

⊔
T

{T} × X l(T ) by M(X). The magma µ induces the mapping

µ̃ : M(X) → X that takes (T, x1, . . . , xl(T )) to µT (x1, . . . , xl(T )).

The universal property

(1) For any set X, the tree product (T ′, T ′′) �→ T ′∗T ′′ (Fig. 7) induces a multi-
plication on the set M(X).

(2) If Y is a set with multiplication ν : Y × Y → Y , then any mapping
φ : X → Y can be uniquely extended to a mapping Φ: M(X) → Y consistent



278 Pierre Cartier

T ′ T ′′ T ′ ∗ T ′′

Figure 7. Tree product

with multiplication:

X
φ ��

⊂
��

Y

M(X)
Φ

����������

.

The embedding X ⊂ M(X) is as follows. The set T1 comprises one tree τ ; to
each element x ∈ X we assign (τ, x).

The universal property means that M(X) is the free magma over X. Thus,
we have obtained an explicit construction of the free magma.

Now, let us give a combinatorial interpretation of the identity c(t) = t+c(t)2.
Suppose that |X| = t. Let M(X)p denote the set of all trees T with l(T ) = p.

Then M(X)p = Tp×Xp, and the set M(X) decomposes as M(X) =
∞⊔

p=1
M(X)p.

Consider the Poincaré series
∑

cpt
p for M(X). The identity c(t) = t + c(t)2

follows from M(X) = X � M(X)2. Indeed, any element of the set M(X)
either lies in M(X)1 or is uniquely represented in the form of a product of two
elements of M(X) (Fig. 8).

either
x

0

1
or

x1 x2 x3

x4 x5

x1 x2 x3

x4 x5

Figure 8. Tree decomposition

2 The Stasheff polyhedra

The polyhedron P2 is the singleton; dimP2 = 0. The number of vertices in this
polyhedron equals 1 = c2.

The polyhedron P3 is the closed interval; dimP3 = 1. The number of
vertices in this polyhedron equals 2 = c3.
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The polyhedron P4 is the pentagon; dimP4 = 2. The number of vertices in
this polyhedron equals 5 = c4.

The polyhedron P5 is harder to describe. The number of its vertices must
equal c5 = 14. Its dimension must be 3. In addition, all Stasheff polyhedra
are simple (in dimension 3, this means that the section near each vertex is a
triangle). The Stasheff polyhedron P5 is obtained as follows. We glue together
two tetrahedra by a common triangular face. The obtained polyhedron has
three vertices, near which the sections are squares. But if we cut off each of
these three vertices by a plane, we shall obtain a simple polyhedron (Fig. 9).
This is precisely the polyhedron P5.

Figure 9. The Stasheff polyhedron P5

The Stasheff polyhedra are related to triangulations of polygons; moreover,
there is a one-to-one correspondence between the vertices of the polyhedron
Pn and the triangulations of the (n + 1)-gon. The simplest case is that of P3

(Fig. 10); the vertices of the interval P3 correspond to the two triangulations
of the square, and the interior of the interval corresponds to the square itself.

Figure 10. The Stasheff polyhedron P3

Next in complexity is the polyhedron P4 (a pentagon); its vertices are in one-
to-one correspondence with the triangulations of the pentagon (Fig. 11). The
interior of P4 corresponds to the pentagon without diagonals; each side of P4

corresponds to the pentagon with one diagonal; each vertex of P4 corresponds
to the pentagon with two diagonals. The two diagonals corresponding to a
vertex of P4 are precisely the two diagonals determined by the two sides of P4

containing this vertex.
Similarly, for the cells of P5, we can establish the following correspondence:

each vertex (0-cell) of P5 corresponds to a hexagon with three disjoint diagonals;
each 1-cell of P5 corresponds to this hexagon with two disjoint diagonals; each
2-cell of P5 corresponds to the hexagon with one diagonal; and the 3-cell of P5

corresponds to the hexagon itself.
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Figure 11. The Stasheff polyhedron P4

The boundary ∂P5 consists of six pentagons (i.e., polyhedra P4) and three
squares (i.e., polyhedra P3×P3). The polyhedron P2 is the singleton; therefore,
P4 = P2×P4 = P4×P2. Thus, ∂P5 consists of 2P2×P4, 4P4×P2, and 3P3×P3.
In the general case, it is natural to expect that ∂Pn =

⋃
p+q=n+1

pPp × Pq. In

this case, we can define mappings ∂k : Pp × Pq → ∂Pn for 1 � k � p.
The polyhedron Pn can be realized in the space Rn−2 with coordinates

t1, . . . , tn−2 by the following model. Consider the set specified by the system of
inequalities t1 � 0, t2 � 0, . . . , tn−2 � 0 and t1 � 1, t1 + t2 � 2, t1 + t2 + t3 � 3,
. . . , t1 + · · ·+ tn−2 � n− 2 (Fig. 12 shows this set for n = 2). The polyhedron
Pn can be obtained by additionally partitioning some faces of this polyhedron.
I leave this to the reader as an exercise.

t1

t2

Figure 12. The model of the polyhedron P4

Now, let us describe the combinatorial construction of Pn as an abstract
CW-complex. Let n � 2. Take a convex (n+1)-gon and a number 0 � k � n−2.
We define Γk (the of set k-cells) as follows: each element γ ∈ Γk corresponds to
a set of n−2−k disjoint diagonals in the (n+1)-gon. Thus, for k = n−2, there
is precisely one cell Γn−2, and the 0-cells Γ0 correspond to the triangulations of
the (n + 1)-gon.



Combinatorics of trees 281

It remains to define an incidence relation. Suppose that γ ∈ Γk and δ ∈ Γl,
where k > l. The cell δ is incident to the cell γ (geometrically, δ ⊂ ∂γ) if γ ⊂ δ
(as sets of diagonals).

The polyhedron Pn is defined as a geometric realization of this complex.
Under such an approach, the proof that the geometric realization of this complex
is homeomorphic to the (n− 2)-cell is nontrivial.

3 The space of (real) configurations

Consider the real projective line. Topologists denote it by RP1, and algebraic
geometers use the notation P1(R), or even simply P1. The standard definition
is as follows: a point of P1 is a straight line passing through 0 in the vector
space V = R2 with dimV = 2. Suppose that u0, . . . , un are different points in
P1 considered up to projective transformation. In other words, sets u0, . . . , un

and v0, . . . , vn are equivalent if there exists an element g ∈ G = GL2(R) such
that gui = vi.

In addition to the group G, there is another important group, G+ ⊂ G,
which consists of the matrices with positive determinants. The index [G : G+]
equals 2. The transformations from the group G+ preserve the orientation of
P1.

We are interested in sets of points u0, . . . , un considered up to a trans-
formation from the group G+. Let us introduce the normalization u0 = ∞.
Then u1, . . . , un ∈ R are different points considered up to a transformation
ui �→ aui + b, where a > 0 and b ∈ R .

On this set, the symmetric group Sn acts: an element σ ∈ Sn takes a set
u1, . . . , un to the set uσ(1), . . . , uσ(n).

The space of sets of points has n! connected components. Each element of
the group Sn permutes these connected components. Let us choose the compo-
nent for which u1 < · · · < un. Such sets of points are called real configurations.
The space of real configurations is denoted by conf +

n+1.
The transformation group under consideration admits a normalization of

points such that u1 = 0 and un = 1. The configuration space for n = 4 is
shown in Fig. 13. Indeed, in this case, 0 = u1 < u2 < u3 < u4 = 1.

u2

u3

Figure 13. The configuration space
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It is it is easy to obtain the pentagon P5 from the configuration space conf +
5

(Fig. 14). The intersection points of triples of lines correspond to unstable
configurations, where three points collide. At these points, blowing-ups are
required.

Figure 14. The compactification of the configuration space

Kapranov proved that, in the general case, the polyhedron Pn is a natural
compactification of the space conf +

n+1. The interior of the polyhedron Pn is
identified with the space conf +

n+1; the dimensions of these spaces are equal to
n− 2. The interior of the polyhedron Pn parameterizes the configurations.

Now, consider the interior points of the (n − 3)-faces of the polyhedron
Pn. Such points belong to one of the sets intPp × intPq, where p + q =
n + 1. To a point of such a set we assign a composition of two configurations
(Fig. 15). For this purpose, we glue together two projective lines at one point.
The configurations on one projective line are parametrized by intPp, and the
configurations on the other are parametrized by intPq. For the first line, we
label the point of tangency by the number k, and for the second line, we label
this point by 0. We have 1 � k � p, as it must be (p. 280).

In the general case, gluing together projective lines, we obtain a binary tree
(Fig. 16).

p

q

k o

0

1

2

1
2

Figure 15. A composition of
configurations

Figure 16. A tree of
configurations
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What is an operad?

Lecture on May 27, 1999

The lecture consists of the following parts:
1. What is an operad?
2. (Co)homological operations;
3. Returning to the configuration space;
4. Conclusion: physics.

1 What is an operad?

The theory of operads is the theory of combining operations. Suppose given a
magma X×X → X, a, b �→ (ab). From this binary operation, we can construct
more complicated operations.

Consider a function f(x1, . . . , xn) ∈ X, where xi ∈ X. In the language
of computation theory, we can say that x1, . . . , xn are input variables and
f(x1, . . . , xn) is an output (Fig. 1).

This operation can be assigned an (n+1)-gon; the side number 0 corresponds
to the output, and the sides with numbers 1, . . . , n correspond to the input
variables (the sides are enumerated clockwise; see Fig. 2).

f

x1

x2

xn

Figure 1. Operation

1

2

3

n
0

f

Figure 2. The polygon corresponding to the
operation

Now, let us define an operation f◦ig. Suppose given a function f(x1, . . . , xn),
a number 1 � i � n, and a function g(y1, . . . , yp). Then we can make the sub-
stitution xi = g(y1, . . . , yp). We treat the function

f(x1, . . . , xi−1, g(y1, . . . , yp), xi+1, . . . , xn)

Pierre Cartier, Institut de Mathématiques de Paris–Jussieu, CCNRS, Paris, France.
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as a function of n + p− 1 variables x1, . . . , xn+p−1; for this purpose, we write it
in the form

f(x1, . . . , xi−1, g(xi, . . . , xi+p−1), xi+p, . . . , xn+p−1) = h(x1, . . . , xn+p−1).

The operations f ◦i g can be interpreted both in terms of graphs (Fig. 3)
and in terms of polygons (Fig. 4). Graphs are convenient because their vertices
need not be enumerated: it is sufficient to define an orientation in the horizontal
direction (e.g., from left to right, as in Fig. 3). When polyhedra are used, the
0th side of the polygon g is attached to the ith side of the polygon f .

f

g

i

n = 3

i = 2

p = 4

Figure 3. Gluing of graphs

f

0

1

2

3

g 1

23

4

0

0
1

2

34

5

6

Figure 4. Gluing of polygons

These interpretations show that combining operations is related to both trees
and polygons with distinguished disjoint diagonals. The binary trees correspond
to binary operations (Fig. 5).

µ

Figure 5. A binary operation

Let X be a set with a binary operation µ : X×X → X (a magma!). We put
Pn = Map(X×n, X). In particular, P0 = X and P1 = Map(X, X). If f ∈ Pn

and g ∈ Pp, then f ◦i g ∈ Pn+p−1. Thus, a mapping

◦i : Pn × Pp → Pn+p−1

arises. On Pn, the symmetric group Sn acts by permutations of variables:

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

For x = (x1, . . . , xn), we set x·f = f(x1, . . . , xn). We assume that xσ·f = x·σf .
Notice that each rooted planar binary tree T defines an operation µT in Pn
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and, hence, a map Tn → Pn, namely, T �→ µn. More generally, an operad
is a family Pn of operations, where n = 0, 1, . . . , together with actions of Sn

on Pn and with compositions ◦i. We do not spell out explicitly the axioms,
of associativity and permutation, respectively. The preceding discussion shows
that the collection T =

⊔
n
Tn of all rooted binary planar trees can be considered

as an operad corresponding to the category of magmas.
An operad is linear if Pn are vector spaces (over a field K), the actions of

the groups Sn are linear, and the compositions are bilinear.
For example, let

Pn = HomK(V ⊗n, V ), where V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

.

Here K is a field of characteristic zero and V is a vector space of dimension
d < +∞. On the space V ⊗n, the group G = GL(V ) acts as

g(v1 ⊗ · · · ⊗ vn) = gv1 ⊗ · · · ⊗ gvn

and the group Sn acts as

σ(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n).

These actions commute. In addition, V ⊗n is a semisimple Sn-module, i.e.,

V ⊗n = P1 ⊕ · · · ⊕ Pl,

where Pi are irreducible (simple) Sn-modules. In this decomposition, we can
combine like terms, applying the relations P⊕P = P⊗K2, P⊕P⊕P = P⊗K3,
. . . . As a result, we obtain the decomposition

V ⊗n =
⊕
D

PD ⊗ FD.

We have σ(pD ⊗ fD) = σpD ⊗ fD and g(pD ⊗ fD) = pD ⊗ gfD. In the sta-
ble domain, where d � n, the irreducible representations of the groups Sn

and GLd(K) are parametrized by the same Young diagrams D. This is the
Schur–Weyl duality.

Consider one more example (due to Macdonald and Milnor). Suppose that
Vectf

K is the category of finite-dimensional vector spaces over the field K and
VectK is the category of vector spaces (not necessarily finite-dimensional) over
the field K. Let T be a functor from the category Vectf

K to the same category
Vectf

K . The functor T maps a vector space V to a vector space T (V ) and a
linear mapping φ : V → W to a linear mapping T (φ) : T (V ) → T (W ). The
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linear mappings φ and T (φ) are represented by matrices (of different sizes). We
require that the elements of the matrix T (φ) be expressed in terms of elements
of the matrix φ as homogeneous polynomials of degree t. In this case, we say
that T is a homogeneous functor of degree t. For t = 0, 1, 2, . . . , let Jt be a
vector space over K with a given action of the group St. We let St act on V ⊗t

as above and on V ⊗t ⊗ Jt, by the diagonal action σ(w ⊗ j) = σw ⊗ σj. We set

Tt(V ) =
((

V ⊗ · · · ⊗ V︸ ︷︷ ︸
t

)
⊗ Jt

)St

(the fixed points of St) and TT =
∞⊕

t=0
Tt. As a result, we obtain a functor

TT from Vectf
K to VectK . Any functor which decomposes as a direct sum of

homogeneous functors acts uniquely in this way.
The next examples are from universal algebra. Let V be a vector space

(over the field K) with basis e1, . . . , ed, and let Sym(V ) = K[e1, . . . , ed]. Then

Sym(V ) =
∞⊕

t=0

Symt(V ),

where Symt(V ) =

(
V ⊗ · · · ⊗ V︸ ︷︷ ︸

t

)St

is the symmetric part. This corresponds

to the preceding example in which Jt = K and the action of the group St is
trivial.

Let ComK be the category of commutative associative algebras with unity
over the field K. Taking into account that Sym1(V ) = V , we obtain the
inclusion V ⊂ Sym(V ); note that Sym(V ) is an object in the category ComK .
Let A be an object in the category ComK . Then any linear mapping λ : V → A
is uniquely extended to a homomorphism Λ: Sym(V ) → A. We assume that Jt

is the space K with trivial action of the group St. We denote the multiplication
operation in A by µ(a, b) = a · b. Let

P(A)n = HomK(A⊗n, A).

Clearly, µ ∈ P(A)2. Consider the minimal suboperad C(A) in P(A) containing
µ. The associativity of multiplication implies that all trees of a given size
determine the same operation. Hence C(A)n is equal to K · µn with

µn(a1 ⊗ · · · ⊗ an) = a1 . . . an.

Moreover, σµn = µn for σ in Sn and µp ⊕i µq = µp+q−1 for 1 � i � p. This
describes the operad ComK = A(A) associated to the category ComK .
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If the multiplication is not only associative but also commutative, then in-
variance with respect to the action of Sn holds. In the absence of commutativity,
we obtain the universal algebra

T (V ) =
∞⊕

t=0

V ⊗ · · · ⊗ V︸ ︷︷ ︸
t

.

If Jt = KSt is the regular representation (dimJt = t!), we proceed as above and
obtain the operad AssK associated to the category AssK of associative algebras
with unity.

Let V be a vector space. The free Lie algebra Lie(V ) over V is defined
as follows. Consider the linear mapping ∆: T (V ) → T (V ) ⊗ T (V ) such that
∆(tt′) = ∆(t) ⊗∆(t′) and, for a v ∈ V , it has the form ∆(v) = v ⊗ 1 + 1 ⊗ v.
We have

Lie(V ) = {u ∈ T (V ) : ∆(u) = u⊗ 1 + 1⊗ u}.

In particular, V ⊂ Lie(V ). In Lie(V ), we consider the commutator [u, u′] =
uu′ − u′u.

The Lie functor is a direct sum of homogeneous functors. Hence it is of the
form

Liet(V ) =

(
V ⊗ · · · ⊗ V︸ ︷︷ ︸

t

⊗Lt

)St

,

where L0 = 0, L1 = 0, the space L2 is generated by [x, y] = − [y, x], and the
space L3 is generated by the elements [x, [y, z]], [y, [z, x]], and [z, [x, y]] related
by the Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. The action of the
symmetric group is via permutation of the variables x, y, . . . . To the category
LieK of Lie algebras over K is therefore associated an operad L〉"K , which
describes all “natural” operations that can be defined on a Lie algebra.

Now, let us define the Hochschild cohomology. Let A be an associative
algebra with unity over the field K. We set

Cp = HomK(A⊗p, A).

An element c(a1, . . . , ap) ∈ Cp is called a cochain of degree p = |c| = deg(c).
Clearly, µ ∈ C2, where µ(a1, a2) = a1a2. We define the product of two cochains
by

c ◦ c′ = c ◦1 c′ ± c ◦2 c′ ± c ◦3 c′ ± . . .

with suitable signs and put

[c, c′] = c ◦ c′ + (−1)|c|+|c′|+|c||c′|c′ ◦ c.



288 Pierre Cartier

As Gerstenhaber noticed (in the 1960s), the Jacobi identity

[[c, c′], c′′] = [c, [c′, c′′]] + (−1)|c|+|c′|+|c||c′|[c′, [c, c′′]]

holds (up to sign). In addition,

[c′, c] = (−1)|c|+|c′|+|c||c′|[c, c′].

Moreover, deg[c, c′] = deg c + deg c′ − 1. In particular, µ2 = µ ◦ µ = 1
2 [µ, µ] has

degree 3. By associativity, µ2(a, b, c) = (ab)c− a(bc) = 0.
Let bc = [µ, c]. Then b : Cp → Cp+1, and the Jacobi identity implies bb = 0.

The homology of the complex C with differential b is called the Hochschild
cohomology and denoted by HH∗(A, A).

On the Hochschild cohomology, there are two operations, the Gerstenhaber
commutator [ , ]G (its degree equals −1) and the ∪-product, which is defined
by

c ∪ c′(a1, . . . , ap, ap+1, . . . , ap+q) = c(a1, . . . , ap)c′(ap+1, . . . , ap+q);

the degree of the ∪-product equals 0.
These operations have the following properties: the ∪-product is associative,

and at the cohomology level it is even commutative up to sign; the operation
[ , ]G is commutative up to sign and satisfies the Jacobi identity up to sign. At
the cohomology level, the following Leibniz rule holds:

[c, c′ ∪ c′′]G = [c, c′]G ∪ c′′ ± c′ ∪ [c, c′′]G.

2 (Co)homological operations

Now, we shall describe the construction of topological operads suggested by
Stasheff in the 1960s. We start with defining the Pontryagin multiplication in
homology. Let X be a topological space, and let µ : X × X → X be a con-
tinuous mapping. Consider the rational homology. By the Künneth formula,
H∗(X × X) = H∗(X) ⊗ H∗(X); therefore, the mapping µ induces a mapping
H∗(µ) : H∗(X) ⊗ H∗(X) = H∗(X × X) → H∗(X) (the Pontryagin multiplica-
tion). Thus, a multiplication in the space determines a multiplication in the
homology. If the multiplication µ is associative or commutative, then so is the
multiplication in homology.

The two trees shown in Fig. 6 correspond to the two different parenthesiza-
tions of the product of three elements. For a topological space with multipli-
cation µ : X × X → X, these two parenthesizations determine two mappings
X×X×X → X. If X is an H-space, that is, if these mappings are homotopic,
then the multiplication in H∗ is associative.
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The two trees considered above correspond to the two triangulations of
the square (Fig. 7), and these two triangulations correspond to the Stasheff
polyhedron P3 (Fig. 8).

Figure 6. The two trees

0

13

2

0

13

2

Figure 7. The two triangulations

Figure 8. The polyhedron P3

If µ is homotopy associative, a homotopy between the two triple products
corresponds to a continuous mapping P3 ×X3 → X.

Hence, for n equal to 2 or 3, we hap a mapping

φn : Pn ×Xn → X.

The mapping φ2 corresponds to the definition of the multiplication µ in X, since
P2 is reduced to a point, and φ3 corresponds to the homotopy associativity of
µ. Going over to the rational homology, a mapping φn as above defines defines
a mapping

H∗(φn) : H∗(Pn)⊗H∗(X)⊗ · · · ⊗H∗(X) → H∗(X).

Here Pn is the topological (n− 2)-cell; therefore, H0(Pn) = Q and Hi(Pn) = 0
for i � 1. As a result, we obtain a multilinear operation of order n on H∗(X).



290 Pierre Cartier

The fact that the multiplication H∗(µ) in H∗(X) is associative is a conse-
quence of the two embeddings of the point P2×P2 into ∂P3. In order to express
the finer homotopy properties of an H-space, Stasheff introduces a collection of
mappings φ2, φ3, φ4, . . . as above and expresses the compatibility with respect
to the p mappings ∂i : Pp × Pn+1−p → Pn corresponding to the decomposition
∂Pn =

⋃
p+q=n+1

pPp × Pq. But this is nothing else than an action on X of the

topological operad X defined in the next section.

3 Returning to the configuration space

Since the space M0,n+1(R) is homeomorphic to Sn × intPn, we have

M0,n+1(R) ≈ Sn × Pn.

In positive dimensions, the homologies H∗(M0,n+1(R)) are trivial.
Let Πn = H0(M0,n+1(R), Q). Then Πn = QSn is a regular representation

of the group Sn.
Consider the family of sets Xn = M0,n+1(R), where n = 0, 1, . . . . The

group Sn acts on Xn. For 1 � i � p, we can form a composition ◦i as shown in
Fig. 9. As a result, we obtain a degenerate configuration; all such degenerate
configurations form a space homeomorphic to int(Pp × Pq). Compactifying it,
we obtain a mapping ◦i from Xp×Xq to Xp+q−1. Thus, the Stasheff polyhedra
(or configuration spaces) can be organized in a topological operad X .

i
1

2

q

0 1

2p

Figure 9. Composition

From a topological operad we can obtain an algebraic operad by employing
homologies. The Stasheff topological operad X gives the trivial algebraic operad
AssQ . But in the complex case, the theory is nontrivial.

The complex theory is constructed as follows. Consider the space
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M0,n+1(C) obtained by factoring the space

Cn
∗ = {z = (z0, . . . , zn) ∈ Cn : zj �= zk if j �= k}

modulo the action of the affine group z �→ az + b. The construction of the
compactification M0,n+1(C) is fairly complicated; it was described by Deligne
and Mumford. The spaces M0,n+1(C) can be organized into a topological
operad. We have already explained how to do this in the real case. In the
real case, the compositions are represented by real polynomials with rational
coefficients; they can be complexified by replacing real variables with complex
ones.

In the real case, the homologies obtained are trivial, while in the complex
case, the homologies H∗(M0,n+1(C), Q) are very interesting. They form an
algebraic operad ΠC . This algebraic operad has two special elements, which
generate it in a certain sense; these are the cup-product ∪ and the Gerstenhaber
product [ , ]G. Thus, the operad ΠC acts on HH∗(A). This is proved by
calculations. The question is why this is so.

In 1970, Arnold calculated the homologies H∗(Cn
∗ ). This makes it possible

to calculate the homology of a noncompactified space. The question is why it is
the homologies H∗(M0,n+1(C), Q) that control the operations in the Hochschild
cohomologies. It is desirable to construct an action at the level of cochains.

4 Conclusion: physics

Now, we shall briefly outline the relation to physics. One of the most important
problems at present is to obtain exact solutions to the Yang–Baxter equations.
Their solutions can be obtained by solving certain differential equations, known
as the Knizhnik–Zamolodchikov equations, which are constructed on Cn

∗ . In
solving these equations, Drinfeld obtained power series related to the MZVs
considered in the first lecture.

There is also a relation to the Feynman diagrams and to the scattering
matrix.
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The orbit method beyond Lie groups.
Infinite-dimensional groups

Lecture on September 2, 1999

My today’s and tomorrow’s lectures are in some sense a continuation of the
lectures delivered here in the winter of 1997/98. Those two lectures were entitled
“The Orbit Method and Finite Groups,” and these two lectures are entitled
“The Orbit Method beyond Lie Groups.” I shall not dwell on the orbit method.
I only mention that it is applied to Lie groups. Thus, the main object under
consideration is Lie groups. But the orbit method applies also to other groups,
which are not Lie groups. I have prepared three series of such examples:

(1) infinite-dimensional groups;
(2) finite groups;
(3) quantum groups.
My last-year lectures were concerned with the second series, finite groups; so

I shall not talk about them, although an interesting progress has been made in
this direction. Today I shall talk about infinite-dimensional groups, and tomor-
row, about quantum groups. Quantum groups is a very fashionable direction
in modern mathematics. Their success is largely due to the sonorous name.
The fine point is that the quantum groups are not groups; this is an object of a
different nature. But they still have some group features, and we could try to
apply the orbit method to them. I shall talk about these attempts tomorrow.
Today I shall talk about infinite-dimensional groups, which are not Lie groups
either.

The usual Lie groups are (finite-dimensional) manifolds endowed with a
group structure which is compatible in a certain sense with the structure of
a manifold. Infinite-dimensional groups are almost the same thing, but the
manifolds are infinite-dimensional, i.e., local coordinate systems are infinite-
dimensional. But, whereas all finite-dimensional spaces of the same dimension
over the real number field are isomorphic, the infinite-dimensional spaces are
not. There are many different infinite-dimensional spaces, and it is not al-
ways clear which of them should be considered. A typical example of infinite-
dimensional spaces is spaces of functions. For instance, we can consider func-
tions on the real line. But there are various functions on the line. First,
we might consider all functions whatever, but this makes no sense; usually,
functions with certain properties are considered. We can consider continuous
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functions; this makes more sense. It is even better to consider smooth function,
which have one, two, three... or infinitely many derivatives. We can consider
analytic functions. We can also impose some conditions at infinity, e.g., con-
sider rapidly decreasing functions or compactly supported functions, which do
not vanish only in a finite domain. As you see, there are plenty of infinite-
dimensional spaces. In this respect, infinite-dimensional groups are not specific
sets, as well as algebraic manifolds. They usually consist of functions and be-
come sets only after these functions are specified. Before that, we only have a
mere rule determining a group law.

The problems which arise in the attempt to apply the orbit method to
infinite-dimensional groups are very interesting. Sometimes, they coincide with
well-known classical problems, solved or not. Sometimes, new problems emerge.
A part of these new problems I want to discuss today.

Now, let me digress for a moment. People are often interested in news in
mathematics, and I usually try to satisfy audience’s curiosity, as far as I can.
At present, mathematics manifests a special interest in exceptions, apart from
general theories, which cover many special examples. There have always been
lovers of exceptions, but now the role of exceptions is growing more and more
important. All sciences have exceptional objects. For example, among the com-
plex simple Lie groups are four infinite series of groups and five special groups
which fit into none of these series. Similar things occur in other sciences too.
I shall tell about one such example in more detail. There is an object related
to the theory of Lie groups, to geometry, and to many physical applications; I
mean lattices. A lattice is a discrete subgroup in Euclidean n-space such that
the quotient group by this subgroup is compact (such subgroups are sometimes
called cocompact). For any lattice on the line, we can choose a scale in such a
way that the lattice consist of all integers numbers. In this case, the problem
of classification of lattices is trivial.

From the point of view of group theory, all lattices in n-space are the same:
they are all isomorphic to Zn. But geometrically, these lattices may be different.
For example, there is the standard integer lattice in the plane. Another lattice
can be constructed as follows. Consider three coordinate axes in the plane that
make angles of 120◦ with each other (Fig. 1). To each point we assign three
coordinates (x, y, z) (signed projections) rather than two. These coordinates
are related by x + y + z = 0. The points for which all the three coordinates x,
y, and z are integer form a lattice (Fig. 2).

We can compare the densities of these two lattices. The density of a lattice
is defined as follows. At all points of the lattice, we place balls of maximal size
in such a way that these balls be disjoint. The ratio of the area covered by the
balls to the entire area is the density of the lattice. We see that the second
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x

y z

Figure 1. Coordinates on the plane

x

y

z

Figure 2. The lattice on the plane

lattice is denser than the rectangular one. In reality, the rectangular lattice is
one of the sparsest lattices, and the second lattice is the densest one.

The theory of lattices was initiated long ago, in the nineteenth century.
First, it was a very popular direction; then it had been forgotten a little, but
currently, this theory is attracting attention of mathematicians again. In the
theory of lattices, in addition to series of lattices, there are singular, exotic,
lattices, which do not fit into these series. One of such lattices is related to the
existence in 4-space of much more regular polyhedra than in the other spaces. In
3-space, there are 5 regular convex polyhedra: the regular tetrahedron, cube,
octahedron, icosahedron, and dodecahedron. In 4-space, there are 6 regular
polyhedra (there is a polyhedron bounded by 24 octahedra, which has no ana-
logues in spaces of other dimensions). All the other spaces have only 3 regular
polyhedra (the regular simplex, cube, and the polyhedron dual to cube). Thus,
4-space is exceptional, and it has an exceptional lattice related to the regular 24-
hedron. This lattice consists of points with integer coordinates x1, x2, x3, and
x4 such that all of them are even or odd simultaneously. It can be verified that
each point has precisely 24 nearest neighborhoods; the distance between neigh-
boring points equals 2. For example, the origin has eight neighboring points of
the form (±2, 0, 0, 0) and 16 neighboring points of the form (±1,±1,±1,±1).
All points in the lattice are equivalent: any point can be mapped to any other
point by a symmetry of the lattice.

These examples of lattices are fairly simple. A more interesting example
is the Leech lattice in space R24. This lattice was discovered by geometers; in
recent years, it has often been used by physicists in relation to string theories.
I shall give the “physical” definition of the Leech lattice rather than the original
one. Many physicists believe that we live in Minkowski 26-space R1,25, in
which one coordinate is time and 25 coordinates are spatial: (t, x0, . . . , x24).
Our senses say to us that we live in the 4-dimensional world with one time
and three spatial coordinates. But our senses are very imperfect, they cannot
distinguish between a very small 10-manifold and a point. Thus, the space
may be of very small size in 22 directions, on the order of 10−33 cm say; this is
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quite sufficient for preventing any instrument from detecting these directions.
The remaining three spatial directions are visible. But this is a digression. Let
us return to mathematics. The Minkowski space R1,25 is endowed with the
quadratic form t2 − x2

0 − · · · − x2
24, and the light cone contains the remarkable

integer vector (70, 0, 1, 2, . . . , 24) = ρ. Consider an integer lattice M in R1,25.
Take the orthogonal complement ρ⊥ in R1,25; we have ρ⊥ � ρ. Consider the
quotient space ρ⊥/Rρ, which has dimension 24. Taking the integer points in ρ⊥

and factoring them modulo Rρ, we obtain an integer lattice in 24-space, which
is remarkable in many respects. This lattice has no analogues in spaces of other
dimensions.

Now, I return to the main topic – the orbit method for infinite-dimensional
groups. I want to consider two infinite-dimensional groups, the first of which
is well studied and the second is hardly studied at all. As a rule, abstract
groups arise from transformation groups, and transformation groups are usu-
ally formed of transformations which preserve something; i.e., usually, we take a
set with some structure and consider all one-to-one transformations preserving
this structure. For example, we can take the plane as the set and the distance
between points as the structure. Then we obtain the group of motions and
reflections, i.e., the isometry group. We could also consider the larger group
of the transformations preserving the projective structure on the plane, or of
the transformations preserving the topology on the plane (that is, continu-
ous transformations). The group of continuous transformations of the plane is
infinite-dimensional.

One of the best-studied infinite-dimensional groups is the group of one-
to-one smooth transformations of the circle; it is denoted by Diff(S1). We can
represent the circle as the quotient space S1 = R/Z, i.e., introduce a coordinate
t (mod 1) (two points on the straight line are identified if the difference between
them is integer). A diffeomorphism of the circle is specified by a function
s = f(t); here s is a new coordinate. The difference between f(t + 1) and f(t)
must be integer. The function f can be either monotonically increasing or
monotonically decreasing. Clearly, this determines two connected components
of the group Diff(S1). We shall consider the connected component that contains
the identity element; we denote it by Diff+(S1). The condition on this group
is f(t + 1) = f(t) + 1. The function f is smooth and satisfies the condition
f ′(t) > 0. The condition f(t+1) = f(t)+1 in terms of the derivative is written
as ∫ 1

0
f ′(t) dt = 1.

In addition, f ′(t + 1) = f ′(t).
This group has a fairly evident description. If the role of parameter is
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played by f ′ rather than by f , then the group consists of positive periodic
functions (with period 1) for which the integral over the period is equal to 1.
Topologically, this set is trivial: it is contractible, being a convex set in a linear
space. Both conditions (that the derivative is positive and its integral equals 1)
are convex. But to obtain the group itself, we must pass from derivatives
to functions. For this purpose, it is sufficient to specify an initial condition
belonging to the circle. Thus, we see that the group Diff+(S1) of interest
to us is homotopy equivalent to the circle. Sometimes, it is convenient to
consider simply connected groups. We can obtain a simply connected group by
considering monotonic functions instead of factorizing modulo integer-valued
functions. The obtained group D̃iff+(S1) is the universal covering of the group
Diff+(S1).

Now, let us discuss how the orbit method can be applied to the group
G = D̃iff+(S1). For this purpose, we must first pass from the Lie group G
to the Lie algebra g = Lie(G). The Lie algebra is the tangent space at the
identity, i.e., it consists of the infinitesimal transformations of the circle. As a
geometric object, the Lie algebra consists of vector fields on the circle. Indeed,
we consider transformations t �→ t + εv(t). In the group under consideration,
the group law corresponds to superposition of functions f1 ◦ f2(t) = f1(f2(t)).
At the level of the Lie algebra, the group law transforms into the commutator
[v, w] = vw′− v′w; here v′ = dv(t)/dt. As is known, every Lie group acts on its
Lie algebra by linear transformations (this is the adjoint representation of the
Lie group). In the case under consideration, the group consists of changes of
variables t = t(s) (coordinate systems) on the circle. For vector fields, we can
make changes of coordinate systems too; that is, a vector field can be written
in various coordinate systems. It turns out that the adjoint representation of a
group is precisely the same changes of variables, but for vector fields.

We can specify a vector field by a function v(t). But the geometric meaning
of this function is that it determines a vector field. Thus, it is more correct to
write v(t) d

dt rather than v(t). For vector fields, a change of variables t = t(s)
gives

v(t)
d

dt
�→ v(t(s))

d

dt(s)
= v(t(s))

d

t′s ds
.

If we trace only the coefficient, then, introducing the notation t = f(s), we
obtain

v �→ v ◦ t

t′
=

v ◦ f

f ′ .

The orbit method deals with the dual space g∗ rather than with the Lie
algebra g itself; it consists of linear functionals on g. What is the geometric
meaning of the objects dual to vector fields? The dual object together with the
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vector field gives a number. It turns out that the dual object is a quadratic
differential, i.e., an expression of the form p(t)(dt)2. Under a change of variables
t = f(s), the quadratic differential changes as p(t)(dt)2 �→ p ◦ f (f ′)2. It can
be verified that, if we have a vector field v(t) d

dt and a quadratic differential
p(t)(dt)2, then the expression p(t)v(t) dt composed of them is a differential
form, i.e., under a change of variables, it is multiplied by the first power of
the derivative. Being a differential form, it can be integrated. The integral∫
S1 p(t)v(t) dt does not depend on the choice of parameter. Thus, the quadratic

differential is a linear functional on the space of vector fields. We chose the
notation in such a way that the action of the group on the space g∗ dual to
the natural action on the space g is natural as well: this is the usual change of
variables for quadratic differentials according to the formula written above.

Generally, the function p is a distribution. But we are interested in the
case where p is a usual smooth function, because most interesting examples of
coadjoint orbits are related to such functions p.

I have to make yet another remark. The orbit method is used to construct
and study infinite-dimensional unitary representations. But for the main ap-
plications of infinite-dimensional unitary representations (quantum field theory
and quantum mechanics in general), usual representations are not so important
as projective representations. The set of symmetries of a quantum system is
the projective space corresponding to the set of unitary operators rather than
the unitary operators themselves. Two proportional unitary operators are not
distinguished from each other, because two wave functions differing by a mul-
tiplier with absolute value 1 coincide. Thus, the usual representations, which
are functions on the group that satisfy the relation

π(g1g2) = π(g1)π(g2),

are replaced by the projective representations, which are functions on the group
that satisfy the relation

π(g1g2) = c(g1, g2)π(g1)π(g2),

where c(g1, g2) ∈ C and |c(g1, g2)| = 1.
The projective representations of a group G reduce to usual representations

of a slightly larger group, namely, of a central extension of the group G. If
the group has no nontrivial central extensions for some reason, then each pro-
jective representation is actually a usual representation. But many interesting
groups have nontrivial central extensions and, hence, admit nontrivial projec-
tive representations that do not reduce to usual representations. For example,
the diffeomorphism group Vect(S1) of the circle does have a nontrivial central
extension.
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The orbit method must respond. We replace a group by its central ex-
tension; the Lie algebra is then also replaced by a central extension, and the
coadjoint action is replaced by a slightly more complicated action. The coad-
joint action of a central extension differs from the initial action in that a linear
action becomes affine.

The group G and its central extension G̃ are included in the exact sequence

0→ R → G̃ → G → 1.

I started with zero, because R is an additive group, and I ended with unity,
because the group G is usually represented in the multiplicative form; each of
the groups 0 and 1 comprises precisely one element.

For Lie algebras, the exact sequence looks as

0 → R → g̃ → g → 0.

There is also the dual sequence

0 ← R ← g̃∗ ← g∗ ← 0.

At the level of linear spaces, this exact sequence splits; therefore, we can
assume that g̃∗ and g∗⊕R coincide as linear spaces. As we know, the space g∗

consists of quadratic differentials; the elements of this space are called momenta.
An extended momentum consists of a quadratic differential and a number. We
must define an action of the group on the set of pairs of quadratic differentials
and numbers. This action must look as

K(f)(p, c) = (p ◦ f (f ′)2 + cS(f), c). (1)

That c remains the same is a general fact for all central extensions; the addi-
tional parameter does not change under the coadjoint action. Because of this,
it is sometimes called a charge. An affine transformation of p consists of two
parts. We already know the linear part p ◦ f (f ′)2. The additional term does
not depend on p, and it depends linearly on c; therefore, it has the form cS(f).
For (1) to be an action, the quadratic differential S(f) must have the following
property:

S(f1 ◦ f2) = S(f1) ◦ f2 (f ′
2)

2 + S(f2).

The lovers of cohomologies might say that this expression is the equation of a
cocycle.

There exists precisely one S with the required property, namely,

S(f) =
f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

. (2)
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Now, we can forget everything said above and consider that as a mere
motivation. The mathematical setting of the problem is as follows. It is required
to classify the coadjoint orbits, i.e., periodic functions of an argument t, with
respect to the transformations of form (1).

Expression (2) has been well known to mathematicians since the nineteenth
century. It was discovered by the German mathematician Schwarz; for this
reason, S(f) was called the Schwarz derivative. It is quite natural to ask what
the functions for which S(f) = 0 are. The functions for which the Schwarz
derivative vanishes have the remarkable property that they form a group with
respect to composition. These functions are solutions to a differential equation
of order 3, so the corresponding group has dimension 3. There are not that many
three-dimensional Lie groups; the group in question is isomorphic to the group
PSL2 and can be represented as a group of linear-fractional transformations.
Thus, the general solution to the equation S(f) = 0 looks like f(x) = ax+b

cx+d .
The even more remarkable property of the Schwarz derivative is that the

value of the Schwarz derivative of some good function is usually a number of a
simple form. For example, if f(x) = eλx, then

S(f) =
λ3eλx

λeλx
− 3

2

(
λ2eλx

λeλx

)2

= −λ2

2
.

For the function tanx, the result is also a number, but I shall not say what
number.

We have to solve the following difficult problem: reduce a function to a sim-
plest form by using transformations that act by the complicated rule described
above. This problem seems to be very artificial. But if I state it differently, it
will look quite natural. It turns out that this problem is equivalent the following
geometric problem. Let us define a notion of projective manifold structure for
the circle S1. To obtain a usual smooth manifold, we cover a topological space
by local coordinate systems and require that the transitions between the coor-
dinate systems be smooth functions. Now, we impose an additional condition.
Suppose that two local coordinate systems with coordinates t and s intersect.
On the intersection, we have two coordinates, and one of them is a function
of the other, say t = f(s). The usual definition of a manifold requires only
that the function f be smooth. We narrow the class of functions and require
that this function be linear-fractional, i.e., that t = as+b

cs+d . The result is called
a projective structure on the circle. The question is: Can we introduce any
projective structure whatever on the circle, and if we can, then in how many
ways?

As is known, it is impossible to cover the circle by one chart. But using
the stereographic projection, we can introduce two coordinates on the circle
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N

S

M

s t

Figure 3. The projective structure on the circle

(Fig. 3). Suppose that N is the north pole, S is the south pole, and M is a point
on the circle. We can project the point M onto the x-axis from the point N
or from the point S. As a result, we obtain two coordinates, t and s. The
coordinate t is defined everywhere except at the north pole N ; the coordinate s
is defined everywhere except at the south pole S. In the domain where both
coordinates are defined, they are related by st = 1. This relation is linear-
fractional: t = 1/s. Thus, we have defined a projective structure on the circle.
It turns out that the circle admits other projective structures.

Theorem. A classification of the momenta for a central extension of the circle
diffeomorphism group is equivalent to a description of the projective structures
on the circle.

The circle in not the simplest one-dimensional manifold. The simplest 1-
manifold is the straight line. Let us try to solve the problem of describing the
projective structures on the line. The line has one trivial projective structure:
we can introduce one local coordinate x (it is also a global coordinate). Another
example of a projective structure can be obtained as follows. Let us map the
line on the circle by the rule x �→ eix. There is a projective structure on the
circle; we can transfer it to the line. We obtain a projective structure different
from that determined by the coordinate x. These projective structures are not
equivalent, because there exists no function which expresses x in terms of the
coordinates on the circle and is linear-fractional.

Now, I shall give one more example of a projective structure on the straight
line, which makes it possible to describe all projective structures on the straight
line. First, note that the interval (0, 1) with a coordinate y varying from 0 to 1
is not projectively equivalent to the straight line. As smooth manifolds, the line
and the interval coincide: there exists a smooth mapping of the line onto the
interval for which the inverse mapping is smooth too. But this function cannot
be linear-fractional. It is also clear that the half-line with a coordinate z varying
from 0 to +∞ is projectively equivalent to the interval. Indeed, as the transition
function we can take y = z

z+1 .
Let us denote the line with trivial projective structure by R and the line



The orbit method beyond Lie groups. Infinite-dimensional groups 301

0

0

x

y

x = − 1
y

Figure 4. The projective structure 3
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y = − 1
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Figure 5. The projective structure 2R

with the projective structure of the half-line by 1
2R . Now, we shall manufacture

a projective manifold, which we shall call 3
2R (Fig. 4). For this purpose, we take

two straight lines with coordinates x and y and attach the positive ray (0, +∞)
of the first line to the negative ray (−∞, 0) of the second line by the rule x = − 1

y .
The projective manifold 3

2R contains projective submanifolds 1
2R and R , but

it differs from them.
Developing this construction, we obtain a projective manifold 2R . To this

end, we take three lines with coordinates x, y, and z and additionally attach
the positive ray of the second line to the negative ray of the third line by the
rule y = −1

z (Fig. 5). The projective manifold 3
2R does not contain 2R as a

projective submanifold.
Similarly, we can define projective structures m

2 R on the straight line,
where m is an arbitrary positive integer or ∞. In reality, there are only three
possibilities for an infinite straight line: infinite to the right, infinite to the left,
and infinite in both directions. (The last case corresponds to the projective
structure transferred to the line from the circle.) It can be proved that these
exhaust all projective structures on the straight line. The invariant which dis-
tinguishes between these projective structures is the minimum number of charts
required to cover the entire line.

Such is the answer for the straight line. For the circle, things are much more
interesting. The answer for the circle is equivalent to a description of the orbits
of coadjoint representation for the diffeomorphism group of the circle.

I spent a lot of time stating solved problems; now, I shall state one unsolved
problem. Consider the group G = Diff(D, ∂D, σ), where

D = {(x, y) ∈ R2: x2 + y2 � 1}, ∂D = {(x, y) ∈ R2: x2 + y2 = 1},

and σ = dx dy is the area form. This means that G is the group of the diffeo-
morphisms of the disk D that are smoothly extended to the boundary ∂D and
preserve the form σ.

An example of a transformation from the group G is a rotation of the disk.
It is not that easy to write an explicit formula for a different transformation
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from the group G, except for

r �→ r, φ �→ φ + f(r).

For this group, I want to state the problem of classifying the coadjoint orbits
and discuss it. First, we must figure out what the Lie algebra of this group is.
If we took all the diffeomorphisms, we would obtain the algebra of vector fields
tangent to the boundary on the boundary. But we want that vector fields be
such that the small shifts along them preserve area. As is known, such vector
fields are called divergence-free. A vector field

v = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

is divergence-free if

div v =
∂a

∂x
+

∂b

∂y
= 0.

Under this condition, a small shift along the vector field preserves area.
Now, let us discuss the dimension of the group under consideration. For

infinite-dimensional groups, the notion of dimension does make sense, but this
dimension is functional. In topology, the topological invariance of dimension
for finite-dimensional spaces is proved: spaces of different dimensions are not
homeomorphic. For infinite-dimensional manifolds, the situation is not so sim-
ple; nevertheless, those who deal with the so-called global analysis know that
there is the notion of functional dimension. For example, the functions of
one variable form a space of functional dimension 1, and the functions of two
variables form a space of functional dimension 2. Therefore, functions of two
variables cannot be expressed through functions of one variable. You might
argue that there is Hilbert’s 13th problem, which was solved by Kolmogorov
and Arnold, who managed to express an arbitrary function of n variables as
a superposition of functions of one variable. But there is something fishy, be-
cause they consider continuous functions. Continuous functions are something
incomprehensible; there is no way of describing them. As to smooth or analytic
functions, a function of two variables contains much more information than
functions of one variable; no finite set of functions of one variable is sufficient
to replace one function of two variables. So, the diffeomorphism group of the
plane has functional dimension corresponding to two functions of two variables,
i.e., 2∞2. Indeed, a diffeomorphism of the plane is determined by two functions
of two variables. The Lie algebra in this case has the same dimension, because a
vector field on the plane is also determined by a pair of functions. But we have
the additional condition div v = 0. Hence there exists a function h for which
a = −∂h

∂y and b = ∂h
∂x . (The vector field v is called the skew gradient of the
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Figure 6. The tree of the components of level lines

function h and denoted by v = s-grad h; the skew gradient is the usual gradient
rotated through 90◦.) Thus, the group under consideration has dimension ∞2.

The condition that a vector field is tangent to the boundary has a very
simple expression, namely, h � ∂D = const. Indeed, the skew gradient of the
function h is tangent to the boundary; therefore, the usual gradient is perpen-
dicular to the boundary. Hence the boundary is a level line, i.e., the function
is constant on the boundary. The skew gradient, as well as the usual gradient,
does not change under the addition of a constant to the function. Therefore, we
can assume that h � ∂D = 0. Then the Lie algebra g = C∞(D, ∂D) is the space
of smooth functions on the disk vanishing on the boundary. The commutator
in this Lie algebra is the usual Poisson bracket [f, g] = f ′

xg′y − f ′
yg

′
x. The dual

space g∗ consists of the generalized functions F for which 〈F, f〉 =
∫∫

D Ffσ. We
consider only the smooth part of the space g∗, i.e., assume that F is a smooth
function. Then the coadjoint action is the usual action of diffeomorphisms on
functions.

We have arrived at the following problem. Suppose given a smooth function
on the disk. Two functions are considered equivalent if one of them can be
transformed into the other by an area-preserving change of variables. What
possibilities do we have?

This problem is far from being trivial. Apparently, it has a comprehensible
solution. I shall outline it. Each function f ∈ C∞(D, ∂D) is related to the
interesting topological invariant Yf – the tree of the components of the level
lines of the function f (Fig. 6). It is defined as follows. Consider a level
line. It may consist of several connected components. We treat each connected
component as a separate point. The set of such points has a natural topology.
The corresponding topological space is the tree of level components.

Clearly, the tree of the components of level lines is invariant with respect
to changes of variables, including the area-preserving changes of variables. The
functions for which the trees of level line components have the simplest form
(two vertices joined by an edge) admit precisely one invariant with respect to
area-preserving changes of variables. This is an unusual, functional, invariant.
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π

0

Figure 7. The graph of the function S

Namely, consider the function

S(c) = area{x : f(x) � c}.

If f is nonnegative, then S(0) = 0, S(∞) = π, and the graph of this function
has the form shown in Fig. 7. A theorem, which is neither very simple nor
very difficult, asserts that, for functions with simplest trees of components, this
invariant is unique. This means that, if we know the function S, then we know
the function f up to an area-preserving change of variables. To be more precise,
we can change variables in such a way that the function f depend only on the
radius (knowing the function S, we can easily determine the precise form of
this dependence).

Conjecturally, a similar theorem is valid for any tree of components, but
this is not proved. We must modify the function S and specify its values for
each edge of the tree separately. Such a function is still invariant, but it is not
known whether there are other invariants.

The infinite Lie group Diff(D, ∂D, σ) and its Lie algebra are, apparently,
a rich source for new studies. The point is that this algebra is dual to itself,
because it has the form 〈F, f〉 =

∫∫
D Ffσ, which is invariant with respect to

the coadjoint representation. Thus, the adjoint representation is equivalent
to the coadjoint representation. This allows us to treat such a Lie algebra
as a usual compact Lie algebra, and transferring the basic finite-dimensional
constructions to this infinite-dimensional case is a very promising enterprise.
In particular, describing the flag manifold for this group is a very challenging
problem, to which I draw the attention of young mathematicians. Although,
there are several flag manifolds rather than one; they correspond to different
types of trees.

I had not enough time to tell about the symplectic structure of orbits and
about the complex structure, which is also encountered sometimes.
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The orbit method beyond Lie groups.
Quantum groups

Lecture on September 3, 1999

Today I shall talk about quantum groups. First, I shall tell about my under-
standing of what quantum groups are. A usual Lie group is simultaneously a
smooth manifold and a group. I shall not discuss the group structure at the
moment, but I shall talk a little about the structure of a smooth manifold.
There exist various definitions of smooth manifolds. One of them is algebraic;
it frequently turns out to be most useful from the computational point of view.
The general principle of computations in mathematics is that everything must
be reduced to algebraic problems, which can be solved algorithmically. How
can we replace a construction as geometric as a smooth manifold by a purely
algebraic notion? For this purpose, instead of a smooth manifold M , we con-
sider the algebra A(M) of smooth (real-valued) compactly supported functions
on M . “Compactly supported” means that each function vanishes outside some
compact set. If the manifold is compact, then this requirement is not needed.
For compact manifolds, the entire approach looks simpler; the theorems have
shorter formulations and simpler proofs. But for the result to be general, I state
it for all manifolds.

The algebra A(M) is topological; in this algebra, the notion of limit is
defined. Convergence on compact manifolds means the convergence of functions
together with all their derivatives. The algebra A(M) completely describes the
manifold M . Thereby, all geometry is banished and algebra alone remains.

How can we reconstruct the manifold M? If there is another manifold N and
a smooth mapping φ : M → N is given, then we can construct a dual mapping
of function algebras φ∗ : A(N) → A(M). Namely, to a function f ∈ A(N)
we assign φ∗(f) = f ◦ φ. The question arises as to whether the compactly
supported functions remain compactly supported. For a compact manifold,
the answer is clear, but if the manifold is noncompact, a compactly supported
function may be mapped to a noncompactly supported one. Therefore, for
noncompact manifolds, we must restrict the class of mappings and consider only
proper mappings, under which the preimages of all compact sets are compact.
They map compactly supported functions to compactly supported ones. This
is not very convenient; for example, such a mapping never takes a noncompact
manifold to a compact manifold, because the preimage of the compact manifold
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itself must be compact.
The mapping φ∗ is a homomorphism of algebras, so the geometric notion

of a smooth mapping of manifolds is replaced by an algebraic notion. Most
remarkably, any homomorphism of function algebras is generated by a smooth
mapping of manifolds. This assertion also requires certain reservations, but I
shall not discuss them now.

First, consider the simplest case where the manifold M0 consists of one
point. Clearly, A(M0) = R ; therefore, a smooth mapping φ : M0 → M induces
a homomorphism φ∗ : A(M) → R . In this special case, the above theorem is
stated as follows.

Theorem 1. Any nonzero continuous homomorphism

χ : A(M) → R

has the form χm, where m ∈ M and χm(f) = f(m).

Proof. The kernel Kerχ = {f ∈ A(M) : χ(f) = 0} of the homomorphism χ is
an ideal; we denote it by Iχ.

Lemma. For any nontrivial ideal in the algebra of functions on a manifold,
there exists a point in the manifold at which all functions from the ideal vanish.

Proof. Suppose that there are no such points. Then, for any point m ∈ M , there
exists a function fm ∈ Iχ such that fm(m) �= 0. Choose a neighborhood Um of
the point m in which the function fm does not vanish.

Take any function g ∈ A(M). We want to prove that this function also
belongs to the ideal Iχ. This implies Iχ = A(M), which contradicts the non-
triviality of the ideal.

By definition, the function g is compactly supported, i.e., it vanishes outside
some compact set K. The set K can be covered by a finite family U1, . . . , UN of
the neighborhoods defined above. They correspond to functions f1, . . . , fN from

the ideal. Consider the function f =
N∑

i=1
f2

i . Clearly, f > 0 on K. Therefore,

g = fh, where h is a smooth function. But f ∈ Iχ; hence g ∈ Iχ.

In the case under consideration, the ideal has codimension 1, because the
entire algebra is mapped to a one-dimensional space. For such an ideal, there
can exist only one point at which all functions from the ideal vanish. Therefore,
the homomorphism evaluates the functions at this point.

Thus, the entire theory of smooth manifolds can be set in purely algebraic
terms; the role of points of manifolds is played by algebras of functions. The
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next step is most important. Consider the question: Can we replace the algebra
of smooth functions by some more general algebras, say noncommutative? It
turns out that we can. The result of such a replacement is now called a non-
commutative manifold. This is not a manifold in the classical sense; we cannot
consider points of this manifold. We can only consider the algebra of functions
on this manifold, and this algebra of functions can be arbitrary, in particular,
noncommutative. The benefit is that the intuition of smooth manifolds is car-
ried over to noncommutative algebras. An effort to carry over constructions
from the theory of smooth manifolds to noncommutative algebras brings forth
many interesting things. In particular, we can define a noncommutative Lie
group; its noncommutativity means that it is noncommutative as a manifold
rather than as a group.

We have come to the following definition: a quantum group is a noncommu-
tative manifold which is simultaneously a group. We must only explain what
“a noncommutative manifold which is simultaneously a group” means, because
noncommutative manifolds are not sets. We must formulate the condition that
some set is a group in the language of algebras of functions on sets, i.e., we
must abandon points and only deal with functions.

The usual definition of a group is as follows. A group is a set G together
with a mapping G × G

Π−→ G possessing certain properties. For a Lie group,
this mapping must be smooth. It is also required that taking the inverse el-
ement is smooth, but I leave formulating the corresponding assertion as an
exercise. Now, I shall translate the associativity property of multiplication
into the language of functions. Under the usual definition, associativity is the
commutativity of the diagram

G×G
Π

���������

G×G×G

Π×1 �����������

1×Π ����������� G.

G×G
Π

���������

.

For algebras of functions, we have the mapping A(G) Π∗
−−→ A(G × G). If the

group is finite, then A(G × G) algebraically coincide with the usual tensor
product A(G)⊗A(G). For infinite groups, this is not so. In this case, we must
take the completed (in the topological sense) tensor product A(G)⊗̂A(G). The



308 A. A. Kirillov

associativity of the group then corresponds to the commutativity of the diagram

A(G) ⊗̂A(G)
Π∗×1

����������������

A(G)

Π∗
������������

Π∗
������������� A(G) ⊗̂A(G) ⊗̂A(G)

A(G) ⊗̂A(G)
1×Π∗

																

.

This definition makes sense for noncommutative manifolds as well.
Now, we can define a quantum group as an algebra A with a mapping

A
Π∗
−−→ A ⊗̂A such that the corresponding diagram is commutative. In addition,

the condition corresponding to the existence of an inverse for each element must
hold, but I leave formulating it as an exercise.

A special case of quantum groups is the usual Lie groups.
In reality, the term quantum groups is used for a very special class of non-

commutative manifolds, for which the function algebras, while noncommutative,
are small deformations of commutative algebras. The definition given above is
suitable for any noncommutative algebras, but little can be said in such gener-
ality. The most interesting examples require introducing additional structures.
So, let us restrict the class of noncommutative algebras.

Why are quantum groups called quantum? The point is that one of the
ways to attach a mathematical meaning to the notion of quantization consists
in replacing an appropriate commutative operation by a noncommutative one.
There are also other approaches. For example, some people believe that quan-
tization consists in replacing continuous parameters by discrete parameters. Or
in replacing some simple construction by complicated ones. The term “quan-
tization” has no adequate translation into the mathematical language. It has
several translations, but they are not equivalent. This is quite natural, because
physics and mathematics are two different languages, and their scopes of notions
must not coincide. The point is simply that there is no word in mathematics
that has the same scope of notions as the word “quantization” in physics.

We shall deal with a special class of noncommutative algebras. Namely, con-
sider the space of formal power series in a parameter h over some commutative
(and associative) algebra A. In this space, we can introduce a noncommu-
tative multiplication as follows. Take an a = a0 + ha1 + h2a2 + . . . and a
b = b0 + hb1 + h2b2 + . . . . It is required to multiply these elements. They
can be multiplied as formal power series, but this multiplication is commuta-
tive. Let us try to define a noncommutative multiplication which acts as the
multiplication of series in the zeroth approximation and may differ from it for
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terms containing higher powers of h. Under the assumption that h commutes
with the other elements, it is sufficient to learn to multiply the elements of the
algebra A itself. Then we will be able to multiply power series. Now, we define
multiplication as follows:

a h©b = a0b0 + h{a, b}1 + h2{a, b}2 + . . .

The sign h© symbolizes the dependence of multiplication on h. The braces
{a, b}i denote bilinear operations in the algebra. The associativity of multi-
plication implies plenty of relations between braces. These relations can be
resolved in a certain sense. I shall not describe the overall science, which is
called the theory of deformations of associative algebras; I shall only state its
results.

The theory of deformations of associative algebras, as well as all the other
sciences, strongly depends on the notion of homology. Its results are represented
by some cohomology classes, i.e., by some cocycles modulo coboundaries. In
the simple language, this means that we might make some change of variables
in the algebra A itself, i.e., replace each power series by a new power series
all of whose terms are uniquely determined by the zeroth term: a = a0 +
hA1(a0) + h2A2(a0) + . . . , b = b0 + hA1(b0) + h2A2(b0) + . . . . This gives the
new multiplication law

{a, b}new
1 = {a, b}old1 + aA1(b)−A1(ab) + A1(a)b.

This change should be considered trivial: we have written the same multiplica-
tion in different coordinates. It turns out that the equation to which the brace
satisfies says that the general brace is the sum of such a trivial added brace and
a skew-symmetric expression. Therefore, up to a change of variables, we can
assume that multiplication is anticommutative for the first term; the symmetric
part can be removed. For the zeroth term, multiplication is always commuta-
tive, and for the first term, it can be made anticommutative. Next, it turns
out that the associativity of multiplication for the new brace is equivalent to
the Jacobi identity. We might foresee this, because there is a general theorem
which says that the Jacobi identity is an odd analogue of associativity.

For the algebra of smooth functions on a manifold, this looks as follows.
Let f1, f2 ∈ C∞(M). Then

f1 h© f2(m) = f1(m)f2(m) + h{f1, f2}(m).

This series can be extended, but the first terms are interesting enough. Under
the additional physically sensible requirement that the support of the product
must be contained in the intersection of the supports of the factors, any bilinear



310 A. A. Kirillov

operation not increasing the supports must be determined by a differential
operator. If, moreover, the Jacobi identity holds, then the differential operator
contains no derivatives of order higher than 1. Therefore, in local coordinates,
the brace has the form

cij(m) ∂if1 ∂jf2.

The constants cij are skew-symmetric with respect to i and j and satisfy a
quadratic relation implied by the Jacobi identity. Such a geometric structure
on a manifold is called a Poisson structure, and a manifold with such a structure
is a Poisson manifold.

Geometrically, a Poisson structure is determined by a bivector cij . The
abbreviated notation is cij ∂i ∧ ∂j . The polyvector fields on a manifold can
be defined as expressions which have the following form in local coordinate
systems:

ci1...ik ∂i1 ∧ · · · ∧ ∂ik .

Under changes of coordinate system, these expressions are transformed in a
standard way, as partial derivatives; the exterior product is also transformed
in a standard way, as a skew-symmetric associative multiplication. It turns out
that there exists a natural bilinear operation

Vectk(M)×Vectl(M) → Vectk+l−1(M),

where Vectk(M) is the set of all k-vector fields on the manifold M . In particular,
a pair of vector fields is assigned a vector field, namely, the usual commutator
of these vector fields. A pair of bivector fields is assigned a trivector field. This
operation is natural in the sense that it does not depend on the choice of local
coordinates. The operation is anticommutative on vector fields and commuta-
tive on the bivector fields. I is always either commutative or anticommutative.

On bivectors, the operation acts as follows:

[c, c]ijk = cs[i∂sc
jk];

the brackets on the right-hand side denote antisymmetrization with respect to
the superscripts. The Jacobi identity is equivalent to the relation [c, c] = 0. To
see this, it is sufficient to recall that

{f1, f2} = cij(m) ∂if1 ∂jf2

and write out the Jacobi identity for the left-hand side. We obtain a skew-
symmetric relation involving three functions, which determine a trivector. This
trivector is precisely [c, c].

We return to quantum groups. I remind you that a quantum group is related
to a noncommutative manifold. We already have the first approximation to
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this noncommutative manifold; we have considered two terms of the series,
the zeroth (commutative) and the first (anticommutative). This quasi-classical
approximation to a quantum group is determined by a completely classical
object, a Lie group with Poisson structure. Such objects are called Poisson–Lie
groups.

A Poisson–Lie group consists of a Lie group G and a bivector field c on G
satisfying two conditions:

• the Jacobi identity [c, c] = 0 holds;

• if Lx is the left translation by x and Ry is the right translation by y, then

c(xy) = Lxc(y) + Ryc(x). (1)

The first condition can be formulated not only for a Lie group but also for an
arbitrary manifold. The second condition is the translation of the associativity
of multiplication into the language of homomorphisms of function algebras.

The second condition is computationally inconvenient, because c is a section
of a bundle rather than a function. The value of the bivector c at a given point x
belongs to the space of bivectors tangent to G at the point x. Therefore, its
values at different points belong to different spaces. But the Lie groups are
parallelizable; hence we can introduce a new function, namely,

γ(x) = L−1
x c(x).

This γ is a usual function on G taking values in g∧g, because c(x) takes values
in the exterior square of the tangent space at the point x and L−1(x) maps the
tangent space at the point x to the tangent space at the identity, i.e., to g. For
the function γ, equality (1) takes the form

γ(xy) = γ(y) + Ad y−1γ(x). (2)

This is a functional equation. We can easily reduce it to a differential equation
by setting y = exp(tY ) and differentiating with respect to t:

Y γ(x) = Y γ(1)− ead Y Y (x). (3)

We have obtained a system of ordinary differential equations with respect to
the function γ(x); the right-hand side contains its first derivative at the initial
point. A propos, setting x = y = 1 in (2) gives γ(1) = 0. The right-hand
side of (3) contains only the first derivatives of γ at the point 1; therefore, the
bivector γ is completely determined by this differential equations, provided that
its first derivatives at 1 are known.
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The first derivative of a bivector at the point 1 is a three-index tensor; in-
deed, a bivector acts on functions, but simultaneously, it linearly depends on
the tangent vector. This gives an element of the space g∗ ⊗ g ∧ g, which is iso-
morphic to Hom(g, g∧ g). This element completely determines the Poisson–Lie
group. It must satisfy certain conditions, and yet it contains all the information
about the Poisson–Lie group. This situation strongly resembles the very no-
tion of Lie group. As is known, Lie groups are largely determined by their Lie
algebras, and Lie algebras are determined by sets of structural constants. The
structural constants are a third-rank tensor. The set of structural constants
determines a mapping g ∧ g → g, and for a Poisson–Lie algebra, we obtain a
mapping in the reverse direction, g → g ∧ g. But we can easily pass from one
kind of mappings to the other by considering dual mappings. For a Poisson–Lie
algebra, the dual mapping has the form g∗∧g∗ → g∗. Thus, there is a complete
analogy. A Lie group is determined by the structural constants ck

ij , and in a
Poisson–Lie group, a bivector cij

k defining multiplication on the dual space is
added. It turns out that the conditions imposed on this bivector ensure that
the second set of cij

k is a set of structural constants in the dual space, i.e., the
multiplication defined by this set also satisfies the Jacobi identity.

Thus, a very beautiful algebraic construction arises. There is a space g,
which is a Lie algebra with commutator [ , ], and a dual space g∗, which is
also a Lie algebra with some commutator [ , ]∗. Certainly, to yield a Poisson–
Lie group, these structures must be related. Algebraists have considered this
question. The final solution is as follows. The mapping g → g ∧ g treated as a
1-chain on the Lie algebra g with values in g ∧ g must be a 1-cycle. The dual
condition on the mapping g∗ → g∗ ∧ g∗ is equivalent to the first condition.

Ten years ago, a remarkable interpretation of both these equivalent condi-
tions was discovered; it is easy to memorize even for people not dealing with
cohomology. What is the simplest way to make the commutators in a space
consistent with the commutators in the dual space? We start with coding the
notion of dual space. For this purpose, consider the direct sum g ⊕ g∗ = D.
The space D has an additional structure; namely, we can define a bilinear form
on D such that it vanishes on g and on g∗, and if one argument belongs to g

and the other belongs to g∗, then the usual value of a functional at a vector
is taken. This form is nondegenerate on D, and the subspaces g and g∗ are
isotropic with respect to it. In addition, g and (separately) g∗ are endowed
with Lie algebra structures. It turns out that all the additional conditions in-
volving cocycles are equivalent to the requirement that, on D, there exists a
Lie algebra structure such that it preserves this bilinear form (i.e., all the ad
operators are skew-symmetric with respect to the corresponding inner product)
and the restrictions of this Lie algebra structure to g and to g∗ coincide with
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the Lie algebra structures given on these spaces.
The invariance of the bilinear form corresponds to the condition

([x, y], z) = ([y, z], x).

The resulting object assigned to a Poisson–Lie group is what is called a
Manin triple. It consists of a Lie algebra D with a nondegenerate invariant
bilinear form and of two subalgebras g and g∗ isotropic with respect to this
bilinear form. These algebraic data completely code a Poisson–Lie group, which
is a geometric object.

Now, I shall tell about what this has to do with the orbit method. Consider
a trivial Poisson–Lie group, i.e., a Lie group G with bivector c = 0. The
corresponding Manin triple is g ⊕ g∗, where the commutator operation in g

coincides with that in the usual Lie algebra and the commutator in g∗ is zero.
The bilinear form is as it should be on the direct sum of a space and its dual. For
this reason alone, the commutators of elements from g and from g∗ are uniquely
determined by the condition of form invariance. Namely, a commutator is the
coadjoint action of an element from g on a functional on the Lie algebra. Thus,
the Lie algebra D corresponds to the Lie group G � g∗ being the semidirect
product of the Lie group G and the space g∗ dual to the Lie algebra. The
group action is as follows: on G, it is as it should be, g∗ is an Abelian group
under addition, and G acts on g∗ coadjointly. We obtain the main object of
the orbit method – the coadjoint action of a Lie group G on the space g∗. This
object arises from the consideration of the trivial Poisson–Lie group with zero
bivector c. In the general case, we obtain a Lie group D with two subgroups G
and G∗. It should be mentioned that, in this construction, G and G∗ play fully
symmetric roles. The quantum groups related to deformations occur in pairs.
To each group G, the group G∗ is associated. If G is a usual Lie group, then
G∗ is the space dual to its Lie algebra.

The Lie algebra of the group D is the direct sum of the Lie algebras of
the groups G and G∗; therefore, in the first approximation, D is the product
of G and G∗; but in the general case, this is not so. The situation resembles
decomposing a group of matrices into the product of upper triangular and lower
triangular matrices: such a decomposition is possible for general matrices, but
it is not possible for special matrices. Thus, not every element of D is a product
of an element from G and an element from G∗.

I find it useful to study the action of G not only on the space g∗ but also
on the group G∗. This action is no longer linear.

If G = SO(3) or SL(2), then G∗ is a solvable group. In general, the group
dual to a simple Lie group is always solvable. The group G∗ depends on the
choice of braces. But for a simple group G, all groups G∗ can be described.
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As I said, they are related to certain cocycles, and all cocycles for a simple
group are trivial, i.e., all of them are coboundaries. Therefore, the required
cocycle can be written out explicitly. If this cocycle (which is a coboundary)
is sufficiently nondegenerate, then a fairly explicit description is obtained. It is
due to Belavin and Drinfel’d.

For G = SO(3), one dual group is obtained, and for SL(2), there are three
dual groups, because SL(2) has elements of three types – elliptic, parabolic,
and hyperbolic.

A problem studied not at all is to describe the Manin triple for an infinite-
dimensional Lie algebra, namely, for the algebra discussed in the last lecture. As
the Lie algebra A I suggest to take the algebra of smooth complex functions on
the disk D that vanishes on the boundary, and as the invariant inner product,

(f1, f2) = Im
∫

D
f1f2 dσ.

In the finite-dimensional situation, any Lie algebra is associated with some Lie
group. But this infinite-dimensional Lie algebra is associated with no Lie group;
in the infinite-dimensional case, there are many examples of this kind. In return,
A can be represented as the direct sum of subspaces g and g∗ that are isotropic
with respect to the inner product defined above and are Lie algebras associated
with Lie groups. Namely, as g we take the real-valued functions C∞

R (D, ∂D)
(this space is isotropic because we take the imaginary part of the integral,
and for real-valued functions the imaginary part of the integral vanishes). The
space g∗ is constructed as follows. Let us write a function on the disk in the
form

f = f(r, φ) =
∑
k∈Z

ck(r)eikφ.

It is convenient to replace r by a different coordinate. In mechanics, there are
canonical coordinates called action–angle coordinates. In these coordinates,
the form is represented as a product of differentials of coordinates. In the case
under consideration,

σ = r dr ∧ dφ = d(πr2) ∧ d

(
φ

2π

)
= dS ∧ dθ;

here S is the area (action in mechanics) and θ is the normal angle. We set

g∗ =
{

f =
∑
k�0

ck(S)e2πikθ

}
.

The operation in the Lie algebra is the Poisson bracket. The Poisson bracket
can be taken in arbitrary coordinates satisfying the only condition that the area
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has the standard expression dx dy. In particular, as canonical coordinates S
and θ can serve. Then

{f1(S)e2πikθ, f2(S)e2πilθ} = 2πi
(
lf ′

1(S)f2(S)− kf1(S)f ′
2(S)

)
e2πi(k+l)θ.

The numbers k and l are added together, hence the functions for which k � 0
form a subalgebra (the positive harmonics form a subalgebra).

Thus, it is possible to manufacture a Manin triple from a Lie algebra A.
The space is infinite-dimensional, so all familiar finite-dimensional constructions
must be studied all over again. This problem has been untouched so far.

It often happens in science that, when some problem is known to be very
difficult, nobody tackles it. And, then, a young man who does not know that
it is difficult comes across this problem and solves it. People ask him: “How
did you manage to solve such a difficult problem?” And he replies: “I did not
know that it is difficult.” So, I appeal to everybody who does not yet recognize
all the difficulties involved to tackle this problem.
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Conformal mappings and the Whitham equations

Lecture on December 23, 1999

The topic named in the first part of the title of this lecture is familiar to every
student. My ultimate goal is to show how the theory of integrable equations,
which has been extensively developed during the past twenty years, and the
Whitham theory, which already has a ten-year history, are related to the clas-
sical problem of complex analysis. The Riemann theorem asserts that, if a
domain in the complex plane has a boundary containing more than two points,
then there exists a conformal mapping of this domain onto the unit disk. This
is an existence theorem. Many applied sciences are engaged in constructing
such conformal mappings in particular situations; moreover, these problems
are related to applications in hydrodynamics, in the theory of oil-fields, and
in aerodynamics. The necessity of constructing conformal mappings of special
domains emerges very often.

I want to present a recent remarkable observation of Zabrodin and Wieg-
mann, who discovered a relation between the classical problem on conformal
mappings of domains and the dispersionless Toda lattice a couple of months
ago. I shall tell about the development of this observation in our joint paper
(not yet published), namely, about its generalization to nonsimply connected
domains and about the role which the methods of algebraic geometry play in
it.

Before proceeding to the problem proper, I want to give a brief overview of
the entire context in which it has arisen, in order to clarify what the Whitham
equations are. Surprisingly, the same structures related to the Whitham equa-
tions arise in various fields of mathematics, not only in the theory of conformal
mappings. For example, they arise in the problem of constructing n-orthogonal
curvilinear coordinates, which was the central problem of differential geome-
try in the nineteenth century. Let xi(u) be a curvilinear coordinate system in
Rn, where xi are the Cartesian coordinates expressed in terms of curvilinear
coordinates u. Such a coordinate system is called n-orthogonal if all the level
hypersurfaces ui = const intersect at a right angle. An example of such a coor-
dinate system is polar coordinates. In the two-dimensional case, the problem is
trivial, but starting with dimension 3, it becomes very rich. Theoretically, this
problem was solved by Darboux, again at the level of an existence theorem.
He proved that the local problem of constructing an n-orthogonal curvilinear
coordinate system depends on n(n − 1)/2 functions of two variables. There
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are fairly many particular examples of n-orthogonal coordinates system. One
of such examples is elliptic coordinates. In essence, solving a given system of
differential equations reduces to constructing apt coordinates, in which the sys-
tem becomes trivial. This is why good coordinate systems are so important:
they increase the chances of solving the equation.

The problem about n-orthogonal coordinate systems can be set in intrinsic
terms as the problem of finding flat diagonal metrics ds2 =

∑
H2

i (u)(du)2.
Egorov considered such metrics satisfying the additional condition H2

i = ∂iΦ.
This is the metric symmetry condition. Such metrics are called Darboux–Egorov
metrics. They have many special features.

This problem, the Whitham equations, and the problem about conformal
mappings belong to one complex of ideas and methods. A little later, I shall
tell how the problem about n-orthogonal curvilinear coordinates is related to
topological quantum models of field theory.

Another theme, which has eventually united all these diverse problem, is
the theory of integrable equations, commonly referred to nowadays as soliton
equations. This theory emerged about 30 years ago. The best-known (and
oldest) soliton equation is the Korteweg–de Vries (KdV) equation

ut −
3
2
uux +

1
4
uxxx = 0.

There are many other soliton equations (fortunately, having important appli-
cations) which can be integrated by the methods of soliton theory. I shall not
talk about these methods; they were largely developed 10–20 years ago and
continue being developed at present.

Korteweg and de Vries found the simplest solution to the KdV equation very
shortly after they wrote it. This is a stationary solution u(x, t) not depending
on t. In this case, ut = 0, and we can integrate the equation:

3
4
u2 =

1
4
uxx + g2.

Then, we can multiply it by ux and integrate again:

1
2
(ux)2 = u3 + g2u + g3.

The solutions to such an equation are expressed in terms of the Weierstrass
function as

u = 2℘(x + const; ω1, ω2);

the Weierstrass function ℘ is a doubly periodic function with periods 2ω1

and 2ω2 having a second-order pole at zero; i.e., ℘ = 1
x2 + O(x) at zero. This
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solution depends on three constants; thus, we have obtained the complete set
of solutions, because the equation is of the third order.

A stationary solution is constructed from an elliptic curve, i.e., a curve
of genus 1. In the 1970s and in the early 1980s, in a cycle of papers by
Dubrovin, Novikov, Matveev, myself, and a number of other authors, the so-
called algebro-geometric methods for constructing solutions to soliton equations
were developed; given a set of algebro-geometric data, they yield solutions to
various nonlinear equations, including the KdV equation, the sine-Gordon equa-
tion, and other equations pertaining to this science. A solution is obtained by
processing data by a machine called finite-zone integration. A solution is rep-
resented explicitly, but in terms of the Riemann theta-functions rather than
in terms of elliptic functions. The algebro-geometric data set consists of a
Riemann surface Γg of genus g with fixed points P1, . . . , PN and fixed local
coordinates z1, . . . , zN in neighborhoods of these points; it also includes a fixed
point on the complex multidimensional torus J(Γg) being the Jacobian of this
surface. A solution is constructed from such data. This makes it possible to
solve very diverse equations, depending on the number of fixed points and on
the classes of curves.

For the stationary solution to the KdV equation, the algebro-geometric data
set includes an elliptic curve y2 = E3 + g2E + g3 and a fixed point at infinity.
These data play the role of integrals, for they do not change with time. But the
point on the Jacobian moves. The phase space of the equation looks as follows.
There is a space of integrals being curves with marked points and fixed local
coordinates at these points; over each point of the space of integrals, a torus
hangs. The motion on the torus is a rectilinear winding, in full accordance with
the spirit of the theory of completely integrable finite-dimensional systems, i.e.,
with Liouville theory.

Such is the answer for soliton equations. The procedure for constructing so-
lutions is another story. I shall not tell it now. Instead, I want to tell about what
happened to this science thereafter, starting with the mid-1980s. At that time,
a particular emphasis was placed on the theory of perturbations of integrable
equations. Usually, we are interested not only in a specific equation but also
in what happens in its neighborhood. The basic element of the perturbation
theory of integrable equations is Whitham theory.

Before proceeding to Whitham theory, I want to write one formula; its var-
ious forms are encountered in all the sciences mentioned above. As I said,
the description of motion for soliton equations in terms of systems of integrals
and rectilinear windings of the torus is fully consistent with Liouville theory.
The ultimate goal of Liouville theory is specification of action–angle variables.
A Hamiltonian system is constructed from a manifold M2n (phase space), a
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symplectic structure ω on it, and a Hamiltonian H. A Hamiltonian system
is called completely integrable if, in addition to a Hamiltonian, it has n in-
tegrals in involution, for which {Fi, Fj} = 0. The compact surface levels of
these integrals must be n-dimensional tori, and the motions on them must be
rectilinear windings. The torus has natural coordinates, cycles. If Φi are the
angular coordinates for the basis cycles, then the action variables are defined
as the coordinates Ai canonically conjugate to the angular variables, i.e., such
that the symplectic structure in these coordinates has the standard Darboux
form ω =

∑
dAi∧dΦi. Selecting such coordinate systems among all coordinate

systems is a separate nontrivial problem. The Liouville theorem in Arnold’s
setting says that we must integrate the primitive form over the basis cycles.
But it is unclear how to explicitly describe this n-dimensional torus in the
2n-dimensional manifold. Thus, this theorem also has the character of an exis-
tence theorem. All attempts to explicitly construct action–angle variables have
failed. In the early 1980s, Novikov and Veselov made a remarkable observation.
Analyzing the first integrable Hamiltonian equations known at that time, they
discovered that the action–angle variables have the same form for all these sys-
tems. Namely, integration over a cycle on n-space is replaced by integration
over a cycle on the corresponding Riemann surface, that is,

Ai =
∮

ai

QdE. (1)

Here Q is a meromorphic differential; to each Hamiltonian system, its own
differential Q corresponds. These differentials may be multivalued. Nobody
knew why this is so. Novikov and Veselov called these formulas analytic Poisson
brackets. Their nature has been explained analytically only recently, three
years ago, in my joint paper with Phong (in Journal of Differential Geometry).
We analyzed the answers for the symplectic structures which arise in Seiberg–
Witten theory for the supersymmetric Yang–Mills model and noticed that the
same symplectic brackets as those describing the case of hyperelliptic curves (I
should mention that everything considered by Novikov and Veselov referred to
the case of hyperelliptic curves) were rediscovered by Seiberg and Witten.

Memorize formula (1), because precisely the same integral of a multivalued
differential solves the problem about conformal mappings of domains.

What are the Whitham equations? Suppose that we have slightly changed
(perturbed) the equation. Then the integrals of the initial equation cease to be
integrals. They begin to slowly vary; as physicists say, they become adiabatic
integrals. For the nonperturbed equation, a point of the phase space moves on
a torus. As soon as we perturb the equation, a slow drift along the space of
integrals begins. The system of equations on the moduli space of curves with
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Figure 1. An overturning wave

marked points describing this motion is precisely the Whitham equations. It
turns out that they are themselves integrable.

I shall not talk about algebro-geometric data any longer. I shall continue
the discussion at a quite elementary level, where only curves of genus 0 are
considered. The point is that the solution to the KdV equation that involves
the Weierstrass function is not the simplest one; the simplest solution is a
constant. In the theory of KdV equation, curves of genus 0 are trivial, and
nobody was interested in this solution. But when we consider perturbations of a
constant solution rather than this solution itself, the theory becomes interesting.
In Whitham theory, genus 0 plays a nontrivial role. This case is called the
dispersionless limit of soliton equations. It can be treated as a special case of a
more general problem or considered separately.

Why “dispersionless”? The coefficients in a KdV equation are inessential,
because it can be reduced to the form ut = uux +uxxx by scale transformations.
In what follows, I shall not trace the coefficients. If a solution is almost constant,
we can forget about the third derivative. A good approximation is the equation
ut = uux. It is this equation that is called the dispersionless limit, because in
the KdV equation, the term uxxx is responsible for dispersion. The equation
ut = uux is the simplest Whitham equation.

The KdV equation is an infinite-dimensional analogue of integrable (in the
sense of Liouville) Hamiltonian systems; the equation ut = uux is also inte-
grable, but in a completely different sense. Solving the equation ut = uux (it
is called the Riemann–Hopf equation) is child’s play. Indeed, take an arbitrary
function f(ξ) and consider the equation u = f(x+ut). This equation implicitly
defines a function u(x, t). This function is a solution to the equation ut = uux.
Moreover, all the solutions are obtained in this way.

This solution is commonly used as a basis for explaining the role of non-
linearity in hydrodynamics. Treating u as altitude (wave amplitude), we see
that velocity of a point is proportional to its altitude. Therefore, if the function
is not monotone, then the “hump” begins to outrun everything else; the wave
becomes steeper and overturns (Fig. 1). At the overturning point, the third
derivatives cannot be neglected, for they grow large. Hydrodynamics explains
this as regularization of the behavior of the wave by dispersion (viscosity).

All Whitham equations are integrated by similar methods, which consist in
writing some implicit expression for a solution.
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What is the more general setting of dispersionless Lax equations? Let me
remind you that constructing solutions to soliton equations is based on the Lax
representation

.
L = [L, A]. For the KdV equation, we have L = ∂ 2 + u(x, t)

(the Sturm–Liouville operator) and A = ∂ 3 + 3
2u∂ + 3

4u4. The generalizations
of the KdV equation have arisen from consideration of operators with matrix
coefficient and higher-order operators

L = ∂ n + un−2∂
n−2 + · · ·+ u0.

The Lax representation is a consistency condition for the overdetermined system
of linear equations Lψ = Eψ, L2ψ = Aψ. In general, the idea of the inverse
problem method is not to start from the equation but go in the reverse direction,
i.e., construct an operator and a solution from a given function ψ.

As we have agreed to begin with considering the simplest solutions to
Lax equations (when u is a constant), we can solve the corresponding lin-
ear differential equation very easily. The solution is an exponential, and the
eigenvalues are polynomials. Taking the eigenfunction ψ = epx, we obtain
E(p) = pn + un−2p

n−2 + · · · + u0 (the symbol of the corresponding differen-
tial operator). The Whitham equations are written as ∂iE = {E i/n

+ , E}; here
{f, g} = fpgx− fxgp is the Poisson bracket. We shall express ud(X, T ) in terms
of the slow variables X = εx and T = εt.

The subscript i is not a misprint. Each integrable equation arises as a part
of the large hierarchy formed by a whole family of integrals commuting with
this equation. This is in the spirit of Liouville integrability: if we have a set of
integrals in involution, then each of these integrals regarded as a Hamiltonian
generates its own Hamiltonian dynamics. That the integrals are in involution
means that the corresponding dynamics commute.

Now, I shall explain what E
i/n
+ is. Let E1/n(p) = p +

∑
vip

−i be the
Laurent expansion. Then E i/n(p) = pi + · · · + O(p−1); E

i/n
+ means that only

nonnegative powers of p are taken, i.e., O(p−1) is crossed out. We obtain a
polynomial whose coefficients are polynomials in u. Therefore, the result is a
closed system of equations, which is the dispersionless limit of Lax equations.
In the simplest case, where E = p2 +u and i = 3, we obtain the Riemann–Hopf
equation mentioned above.

How does the general solution procedure for a dispersionless limit look like?
Consider the space of pairs (Q, E), where E and Q are polynomials of forms
E = pn +un−2p

n−2 + · · ·+u0 and Q = b0p+ · · ·+bm−1p
m, respectively. On this

space, we can introduce the Whitham coordinates Ti = 1
i res∞(E−i/nQdE).

The Ti so defined are functions of u and b (they linearly depend on b and
polynomially on u). These Ti vanish at large i; there are precisely as many
nonzero Ti as required. We can locally invert the Ti as functions of u and b
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and obtain functions u(T ) and b(T ). Substituting these values u(T ) into E, we
obtain a function E(T ). It turns out that E(T ) is a solution to an equation
of dispersionless hierarchy. The polynomial Q seems to play an auxiliary role.
But Q(T ) is also a solution to the same equation with the same Hamiltonian;
namely, ∂iQ = {E i/n

+ , Q}. Moreover, we always have {Q, E} = 1. The equation
{Q, E} = 1 is called the string equation.

In the dispersionless limit, as opposed to the usual hierarchy of Lax equa-
tions, only one solution survives, since all solutions are parametrized by different
higher times; the general solution satisfies a suitable string equation.

The dispersionless science had been known for several years when Dijkgraaf,
Verlinde, and Witten published a paper. They considered a quite different prob-
lem, namely, classification of the topological models of field theory. Solving this
problem, they obtained the very same formula in a completely different con-
text. It became clear that, behind the dispersionless science, a very important
element was hidden; now, it is known as the tau-function. The whole structure
related to the dispersionless limit of the KdV equation or of the general Lax
equation is coded by only one function

F (t) =
1
2

res∞(
∞∑
i=1

Tik
idS).

Here dS = QdE =
∑∞

i=1 Tidki +O(k−1) and k = E1/n(p) = k(p) = p+O(p−1).
I remind you that we deal with the case of a curve of genus 0; the marked point
can be driven to infinity. The only surviving parameter is the local coordinate p.
It can be verified, although this is far from being obvious, that the derivatives
of the function F with respect to times Ti give all the remaining coefficients.
For example, ∂iF = res∞(ki dS) and ∂ 2

ijF = res∞(ki dΩj), where Ωj = E
j/n
+ .

There is the remarkable formula

∂ 3
ijkF =

∑
qs

res∞
(dΩi dΩj dΩk

dQdt

)
,

where the summation is over the critical points of the polynomial E (such that
dE(qs) = 0).

Now, I return to the initial problem about conformal mappings. I shall
consider only the case of domains bounded by analytic curves. Let us denote
the interior domain by D and the exterior domain by D. I shall be interested in
schlicht conformal mappings of the exterior of the unit disk to D. For reading, I
recommend the book A. N. Varchenko and P. I. Etingof. Why the Boundary of
a Round Drop Becomes a Curve of Order Four (Providence, RI: Amer. Math.
Soc., 1992). It contains many beautiful particular examples of conformal map-
pings related to the following problem, which arises in the oil industry. Imagine
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that the domain under consideration is an oil-field. There are several oil wells
through which the oil is pumped out. This somehow deforms the domain. The
equation describing the dynamics of the domain boundary is as follows. Let Φ
be a solution to the equation

∆Φ =
∑

qi δ(z − zi)

with zero boundary condition Φ � ∂D. Then gradΦ is the velocity of the
boundary.

This problem is integrable in a certain sense. It turns out that the final
shape of the drop does not depend on the oil pumping schedule, as it must be
for commuting flows. The result depends only on the amount of oil pumped out
through each oil well; the particular procedure of pumping does not matter.

The main contribution to this science was made by Richardson, who discov-
ered an infinite set of integrals. It is these integrals that I am going to discuss
next.

It is fairly easy to prove that any domain (simply connected or not) is
completely determined by its harmonic moments. The harmonic moments of a
domain D are defined as follows. Let u(x, y) be a harmonic function. Then the
corresponding harmonic moment is equal to

tu =
∫∫

D
u(x, y) dx dy.

When the domain changes, the harmonic moment of some function also changes.
This is a local assertion. The harmonic moments are local coordinates.

It is not necessary to consider all harmonic moments; it is sufficient to take
only some of the functions. For example, the set of functions

tn =
∫∫

D
z−n dz dz̄, n � 1

together with the function

t0 =
∫∫

D
dz dz̄,

where D is the exterior domain, is a local set of coordinates for a simply con-
nected domain.

The fundamental observation made by Wiegmann and Zabrodin is a follows.
Consider, in addition, the moments

vn =
∫∫

D
zn dz dz̄
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of the complement. Clearly, the functions vn can be expressed in terms of
t0, t1, . . . . It turns out that

∂vn

∂tm
=

∂vm

∂tn
.

This means that there exists a function F (t) for which ∂nF (t) = vn. It turns out
that ∂0 ∂nF are the expansion coefficients of a schlicht function implementing
a conformal mapping. We assume that this function is normalized as follows.
In the complement to the unit disk, there is a coordinate w, and in D, a
coordinate z. We consider the mapping of the exteriors and suppose that infinity
is mapped to infinity; moreover, we assume that z = rw+O(w−1). In this case,
w(z) = r−1z +

∑
(∂0 ∂nF )z−n. Again, it turns out that all the conformal

mappings are coded by one function. This is precisely the function which I
mentioned above.

First, I want to give a new proof that locally, the coordinates tn form a
complete coordinate system. From the proof, it will be seen how this all is
related to the dispersionless science.

I need the notion of the Schwarz function. Locally, a smooth curve can be
specified in the form y = f(x). In the complex form, this can be written as
z̄ = S(z). The function S is called the Schwarz function of the curve. For
example, for the unit circle, we obtain the equation z̄ = z−1.

For a real-analytic curve (without corners), the function S can be extended
to a complex-analytic function in a small neighborhood of the curve.

The first assertion which I want to prove is as follows. Suppose that a
contour deforms, i.e., we have a family of Schwarz functions S(z, t), where t is
a deformation parameter. If none of the harmonic moments tn changes under
such a deformation, then the curve is fixed, i.e., the deformation is trivial.

Assertion 1. The 1-differential St(z, t) dz is purely imaginary on the con-
tour ∂D, i.e., all of its values on the vectors tangent to the contour are purely
imaginary.

This follows easily from the definition of the Schwarz function.
The next assertion uses the specifics of the coordinates tn under considera-

tion.

Assertion 2. If ∂ttn = 0, then the holomorphic differential ∂tS dz defined in
a small neighborhood of the curve can be extended to a holomorphic differential
on the entire exterior.

Before proving the second assertion, I shall explain how to derive the re-
quired result from these two assertions. Any domain D ⊂ C with coordinate z
determines a closed Riemann surface. To construct it, we take another copy of
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the same domain with coordinate z̄ and attach it to the given domain along the
boundary. The obtained Riemann surface is called the Schottky double. Let
us apply the Schwarz symmetry principle: any function analytic in the upper
half-plane and real on the real axis can be analytically continued to the lower
half-plane. We have a holomorphic differential in D. It can be extended to
the complex conjugate, because it is purely imaginary on the boundary. As a
result, we obtain a holomorphic differential on the sphere. But there are no
nonzero holomorphic differentials on the sphere.

We proceed to prove the assertion that the holomorphic differential ∂tS dz
can be extended to the entire exterior. Using the Cauchy integral, we can
represent an arbitrary function on a smooth contour as the difference of a
function holomorphic in the exterior domain and a function holomorphic in the
interior domain. Let

Ŝ(z) =
∮

∂D

∂tS(w) dw

z − w
.

The function Ŝ(z) is holomorphic outside the contour, it can be extended to
the boundary, and S+ − S− = ∂tS. If the origin lies inside the domain and
|z| < |w|, then

Ŝ(z) =
∑

zn

∮
∂D

∂tS(w)w−n dw =
∑

zn∂ttn,

because
tn =

∫∫
D

z−n dz dz̄ =
∮

∂D
z−nz̄ dz

by the Stokes theorem.
If the moments do not vary, then the expansion coefficients of Ŝ at z = 0 are

identically zero. Therefore, the function S− is identically zero in some neigh-
borhood of z = 0. But this function is analytic; hence it vanishes identically.
For ∂tS dz to be holomorphic, one more coefficient should be zero, because we
have multiplied the function by dz, and the differential has a pole of the second
order.

Now, it is clear what changes when we differentiate with respect to tn. The
first assertion is valid for an arbitrary variable. The expansion coefficients are
no longer identically zero; one of the coefficients is nonzero. This means, in
particular, that ∂t0S dz is a meromorphic differential with a simple pole at
infinity.

When we take the double, a second pole emerges according to the symmetry
principle. We obtain a differential having residue ±1 at two points. (There is
only one such differential.) This is a global property, as the Liouville theorem.
An analytic function on a compact surface is constant. These two facts allow us
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to use global properties. The first fact makes it possible to pass from a domain
with boundary to a compact surface. And the second fact, which requires
special assumptions, gives an analytic continuation to a meromorphic object.

Thus, we have proved that ∂0z̄ dz = dw
w . Here we differentiate z̄ at a con-

stant z. An equivalent expression is

{z(w, t0), z̄(w, t0)} = 1.

This is an assertion about the zeroth moment. The assertion about all the
remaining moments is ∂nz̄ dz = dzn

+. Here the following notation is used. Let
z(w) = w + . . . . Then zn(w) = wn + . . . . The plus sign means that we take
only the positive part (a polynomial on the sphere).

You may ask why the differential has a pole at only one point, although,
by the symmetry principle, it must have another pole at the symmetric point.
But the functions tn are not analytic; these are functions of both the real and
imaginary parts: tn = xn + iyn. We have

∂

∂tn
=

∂

∂xn
− i

∂

∂yn
.

Therefore,
∂

∂xn
z̄ dz = dzn

+ − dz̄n
+

and
∂

∂yn
z̄ dz = i(dzn

+ + dz̄n
+).

The point is that we can write down hierarchies with respect to tn and with
respect to the complex conjugate variable t̄n. The result is a dispersionless
Toda lattice.

The following remarkable formula holds:

F (t) = − t20
2

+
∑
n�0

(n− 2)(tnvn + t̄nv̄n).

This formula contains a plenty of nontrivial identities. For example, the identity
∂nF = vn looks almost näıve. But the vn themselves depend on tn in a puzzling
way. Substituting and differentiating these dependences, we obtain precisely vn.

For the ellipse, the function F can be calculated explicitly:

F =
1
2
t20 ln t0 −

3
4
t20 −

1
2

ln(1− 4|t2|2) + t0
|t1|2 + t21t̄2 + t̄2

1t2
1− 4t2t̄2

.

This example shows how F depends on the first three moments. (The comple-
ment to the ellipse has only three nonzero moments.)
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For nonsimply connected domains, the first assertion (about the derivative
of the Schwarz function) remains valid. The second one relies on the summation
of a geometric progression for a Cauchy integral. In the late 1980s, studying
the quantization operator for boson strings, Novikov and I developed a Fourier–
Laurent theory for arbitrary Riemann surfaces. The basis zn is replaced by
another basis.

The formula written above is symmetric with respect to t and v. This
suggests that it makes sense to try to apply it to the old classical problem of
constructing a mapping of domains from a schlicht conformal mapping of their
complements. The relation between these mappings may be nontrivial. For
example, the complement of the ellipse is mapped onto the complement of the
disk by a simple algebraic function, while the mapping of the interior of the
ellipse to the interior of the disk is an elliptic function.



V. Yu. Ovsienko

Projective differential geometry: old and new

Lecture on January 6, 2000

1 Symmetry groups and differential invariants

I shall talk about projective and differential geometry and some classical theo-
rems of the theory of smooth curves, which is now known as Sturm theory.

Let M be a smooth manifold. Following Klein (or Thurston), by a differen-
tial geometry on M I understand the study of the invariants of the action of a
Lie group G (this action is assumed to be defined at least locally). I shall begin
with examples.

Example 1. The manifold M is Rn on which the Euclidean group E(n) =
SO(n) � Rn (the semidirect product of the rotation group and the translation
group) acts.

Euclidean geometry studies the invariants of the action of the group E(n).
The basic invariant is the metric g =

∑
(dxi)2. The metric can be used to

calculate diverse curvatures (of curves, surfaces, etc.).

Example 2. The manifold M is Rn on which the affine group Aff(n) = GL(n)�
Rn acts.

There exists no Aff-invariant metric. Nevertheless, the notion of curvature
can be defined.

For simplicity, consider the case of n = 2. Let γ(t) be a locally convex
curve, i.e., a curve having no inflection points. Then the vectors .

γ and ..
γ are not

collinear (Fig. 1). In Euclidean geometry, curvature can be defined as a function
of curves distinguishing between curves up to Euclidean transformations. The
same approach can be used in the affine case. We have assumed that the vectors

.
γ

..
γ

γ(t)

Figure 1. The curve γ
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.
γ and ..

γ are not collinear. Let us write the vector ...
γ in the form of their linear

combination as
...
γ = a

.
γ + b

..
γ.

The curve γ(t) is determined by the functions a(t) and b(t). Let us choose a
parameter t so as to get rid of one of these functions. Namely, we choose t in
such a way that the area of the parallelogram spanned by the vectors .

γ and ..
γ

be constant: [ .γ,
..
γ] = const. Differentiating this equality, we obtain [ .γ,

...
γ ] = 0,

i.e., ...
γ = k(t) .

γ. The function k(t) is called the affine curvature. It can be
proved that two curves are affine-equivalent if and only if they have equal affine
curvatures.

Note that the condition [ .γ,
..
γ] = const is affine-invariant, because the area

form is affine-invariant up to multiplication by a constant.

Exercise. Prove that
k(t) =

[...γ ,
..
γ]

[ .γ,
..
γ]

.

Example 3. The manifold M is the projective space RPn, i.e., the set of
straight lines in Rn+1 passing through the origin.

This is our basic example.
It is convenient to choose affine coordinates on each affine hyperplane not

passing through the origin. Almost all points of the projective space are
parametrized by the intersection points of the lines with this hyperplane. The
exception is the points belonging to a projective subspace of codimension 1.

On the linear space Rn+1, the group G = SL(n + 1, R) acts (this is the
group of volume-preserving linear transformations). This action carries over
to RPn, because it transforms straight lines into straight lines.

According to our definition, projective geometry must study all invariants
of geometric objects (curves, submanifolds, diffeomorphisms) in the projective
space with respect to the action of this group.

Projective geometry used to be extremely popular. Why is it interesting?
It is easy to see that the group SL(n + 1, R) contains both the Euclidean and
affine groups as subgroups. It turns out that the projective symmetry group is
maximal in a certain sense. Namely, no Lie group containing SL(n + 1, R) can
act on an n-dimensional manifold even locally. Thus, if we define projective
invariants (curvature and so on), these will be the strongest invariants, being
invariants with respect to the maximal group; they are most difficult to find.

There is yet another example of a symmetry group maximal in the same
sense. This is the group of conformal transformations. There are other maxi-
mal groups too; classification of maximal geometries was considered by many
authors.
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u

v

x

Figure 2. Coordinates on the projective line

In dimension 1, conformal geometry coincides with projective geometry.
We shall start with this simplest case, namely, consider the geometry of the
projective line.

2 The Schwarz derivative

Let us fix a coordinate x = u
v on the projective line M = RP1 (Fig. 2). The

group G = SL(2, R) acts on the projective line as(
a b
c d

)
x =

ax + b

cx + d
.

The action of the center {±1} is trivial. The quotient group which effectively
acts on RP1 is

PSL(2, R) = SL(2, R)/{±1}.
In this case, the only natural objects whose invariants can be studied are

the diffeomorphisms f : RP1 → RP1. For such a diffeomorphism, we define the
Schwarz derivative by the formula

S(f) =
f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

.

The meaning of this complicated expression is explained by the following clas-
sical theorem.

Theorem 1. Diffeomorphisms f and g are projectively equivalent
(
i.e., g(x) =

af(x)+b
cf(x)+d

)
if and only if S(f) = S(g).

The proof of the only if part is simple. But the proof of the if part is
difficult.

Remark 1. In the one-dimensional case, the Euclidean transformations reduce
to translations; therefore, two diffeomorphisms f and g of the straight line are
equivalent with respect to the Euclidean group if and only if f(x) = g(x) +
const. The equivalent condition is f ′ = g′. Hence, in the Euclidean case,
diffeomorphisms are distinguished from each other by the usual derivative.
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Exercise. Prove that, on the affine line, the role of derivative is played by the
logarithmic derivative f ′′/f ′.

Now, let us find out where the Schwarz derivative arises from. I must
say that this object is very universal; it emerges in tens or even hundreds of
contexts. I have selected the two most classical and simple among them.

The usual derivative measures the degree to which a diffeomorphism f fails
to preserve the distance between two close points x and x + ε:

f(x + ε)− f(x) = εf ′(x) + (ε2).

In projective geometry, the distance between two points makes no sense, because
any two (and even three) points can be mapped to any two other points by
a projective transformation. But quadruples of points x1, x2, x3, x4 on the
projective line do have a (unique) invariant; this is the cross ratio

[x1, x2, x3, x4] =
(x3 − x1)(x4 − x2)
(x2 − x1)(x4 − x3)

.

Traditionally, projective geometry begins with this invariant, which has been
known since the time of the ancient Greeks. In projective geometry, the cross
ratio plays the same role as the distance plays in Euclidean geometry. And the
Schwarz derivative arises in the same way as the usual derivative. I found the
following definition in a work of Elie Cartan, but probably, it had been known
earlier. Consider points x, x+ε, x+2ε, and x+3ε. Applying a diffeomorphism f
and calculating the difference of the cross ratios, we obtain

[f(x), f(x+ ε), f(x+2ε), f(x+3ε)]− [x, x+ ε, x+2ε, x+3ε] = −2ε2S(f)+ (ε3).

However, historically, the Schwarz derivative was defined (in the nineteenth
century) in a different way. Consider the simplest differential equation of the
second order

y′′(x) + u(x) · y(x) = 0, u(x) ∈ C∞(R).

Take arbitrary linearly independent solutions y1(x) and y2(x) and consider the
function f(x) = y1(x)

y2(x) (in the domain where y2(x) �= 0). It turns out that
u(x) = 1

2S(f). This is the second definition of the Schwarz derivative.
The space of solutions is two-dimensional. Therefore, if ỹ1(x) and ỹ2(x) is

another pair of linearly independent solutions, then

f̃(x) =
ỹ1(x)
ỹ2(x)

=
ay1(x) + by2(x)
cy1(x) + dy2(x)

=
af(x) + b

cf(x) + d
.
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Figure 3. An osculating circle

From this we can obtain a proof of the if part of Theorem 1. But it is difficult
to prove that the space of solutions is two-dimensional; for this reason, the
proof of the if part of the theorem is difficult.

These are only two of the many ways to obtain the Schwarz derivative. It
has an enormous number of various properties and is used in many sciences,
such as complex analysis, the theory of dynamical systems, and mathematical
physics.

3 A remarkable property of curvatures

The classical four-vertex theorem is as follows. Let γ be a closed convex curve
on the plane. Then its Euclidean curvature has at least four critical points, i.e.,
the curvature function has at least four extrema. The points of extremum of
the curvature are called vertices.

This theorem was proved in 1909 by Indian mathematician Mukhopadhyaya.
Let us give two geometric interpretations for a vertex of a curve. Consider

a generic curve γ. For each point on the curve, we can construct an osculating
circle that approximates the curve with second-order accuracy. The radius of
the osculating circle equals 1/k, where k is the curvature. Since the circle
approximates curve up to the second order, the curve passes from the exterior
of the circle to its interior (Fig. 3). This happens at all points not being vertices.
And only at the vertices, where the circle approximates the curve with third-
order accuracy, the curve locally lies on one side of the circle.

Another way to geometrically define a vertex is related to the so-called
caustics of curves. A caustic is the envelope of a family of normals to the curve
(Fig. 4). The cusps of a caustic correspond to the vertices of the curve. The
caustics of the ellipse have been known for a long time; even Apollonius and
Jacobi knew about them.

The four-vertex theorem, in spite of its simplicity, attracts attention even
now. It has tens of different proofs and numerous generalizations. One of the
generalizations is the affine six-vertex theorem proved by Mukhopadhyaya in
the same 1909 paper. The six-vertex theorem asserts that the affine curvature
has at least six critical points.
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Figure 4. A caustic

Figure 5. An affine caustic

The points of extremum of the affine curvature (affine vertices) have geomet-
ric descriptions similar to those given above for the points of extremum of the
usual (Euclidean) curvature. First, an affine vertex is a point of an extremely
tight contact between the curve and a conic. Secondly, the affine vertices can
be defined with the use of affine caustics. An affine caustic is the envelope of
a family of affine normals, and an affine normal is a tangent line to the curve
swept out by the midpoints of the chords parallel to a tangent (Fig. 5). The
affine vertices correspond to the cusps of an affine caustic.

All affine normals of the ellipse pass through its center. This is a degenerate
case, as well as the circle in Euclidean geometry. For the ellipse, the osculating
conic at any point is the ellipse itself, like a circle is its own osculating circle.

Recently, V. I. Arnold proved the four-vertex theorem by means of symplec-
tic topology.

4 The Ghys theorem and the zeros of the Schwarz derivative

In 1995, Etienne Ghys from Lyons discovered the following amazing fact.

Theorem 2. Let f be an arbitrary diffeomorphism of the projective line RP2.
Then the Schwarz derivative S(f) vanishes at least at four different points.

At first sight, the Ghys theorem has nothing in common with the four-vertex
theorem, except the number 4. But Ghys obtained his result as an analogue of
the four-vertex theorem.

Instead of a diffeomorphism f , he considered its graph, which is a smooth
closed curve on the two-dimensional torus T2 = RP1× RP1. This curve is
nowhere vertical and nowhere horizontal (Fig. 6). If f ∈ PSL(2, R), then the
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Figure 6. The graph of a diffeomorphism

graph is a hyperbola. It turns out that, in this situation, hyperbolas play
the role of osculating circles. To be more precise, for every point x, there
exists a unique projective transformation gx ∈ PSL(2, R) approximating the
diffeomorphism f up to a 2-jet. The Schwarz derivative corresponds to the de-
viation of the diffeomorphism at a given point from the corresponding projective
transformation. The zeros of the Schwarz derivative are the points at which
the projective transformation approximates f up to a 3-jet. Ghys used these
considerations to obtain the first proof of his theorem, which follows classical
Kneser’s proof of the four-vertex theorem based on osculating circles.

The proof of the Ghys theorem was published by S. Tabachnikov and myself.

5 The relation to the Lorentzian geometry

In reality, the Ghys theorem is not an analogue of the four-vertex theorem; it is
precisely the four-vertex theorem, but in Lorentzian geometry. Consider the flat
Lorentzian metric g = dx dy on the torus; the isotropic cone is formed by the
vertical and horizontal directions. Let us calculate the Lorentzian curvature of
the curve γ = (x, f(x)) (this curve is precisely the graph of the diffeomorphism
f). We parametrize it by a parameter t. We have .

γ = ( .
x, f ′ .x). Let us choose

the parameter t in such a way that ‖ .
γ‖ ≡ 1, i.e., .

x = 1√
f ′ . The Lorentzian

curvature is equal to the length of the vector of second derivative. Let us
evaluate it:

..
γ =

(
1√
f ′ ,

√
f ′
)·

=
1
2

(
− f ′′

(f ′)2
,−f ′′

f ′

)
.

Thus, the Lorentzian curvature equals

‖ .
γ‖ =

1
2

f ′′

(f ′)3/2
= k(γ).

This gives the quite unexpected expression

k′ =
1

2
√

f ′S(f). (1)
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Figure 7. A strictly convex curve in RP2

It turns out that the Schwarz derivative is related to the Lorentzian cur-
vature. The points of extremum of the curvature are the zeros of the Schwarz
derivative.

Remark 2. Expression (1) can be written in the more elegant form 2dk dt =
S(f) (as a quadratic differential). This expression is invariant. The question
arises: What are the Lorentzian metrics for which such a relation holds? It
can be proved that it holds precisely for the Lorentzian metrics of constant
curvature

g =
dx dy

(axy + bx + cy + d)2
.

6 The decisive intervention of projective geometry

All the results mentioned so far referred to different geometries, such as Eu-
clidean, affine, and Lorentzian. How are they related to projective geometry?
There is one general assertion which implies everything else.

Consider a closed smooth curve γ ⊂ RPn. In 1956, M. Barner introduced
the notion of strictly convex curves and proved a remarkable theorem. Let us
call a closed curve γ in the projective space strictly convex if, through any n−1
points of the curve γ, there passes a hyperplane that intersects γ only in these
points. An example of a strictly convex curve in RP2 is shown in Fig. 7.

The theorem of Barner is as follows.

Theorem 3. Any strictly convex curve in RPn has at least n + 1 flat points.

Recall that a flat point is a point at which the tangent hyperplane approxi-
mates the curve with an accuracy of order higher than usual, i.e., the vectors .

γ,
..
γ, . . . , γ(n) are linearly dependent. In the 2-dimensional case, the flat points
are inflection points.

Let us show that all theorems stated above reduce to the Barner theorem.
We start with the four-vertex theorem. Consider the Veronese mapping

v : R2 → RP3, which is defined by

(x, y) �→ (x2 + y2 : x : y : 1).

This mapping establishes a one-to-one correspondence between the circles in
the plane R2 and the hyperplanes in RP3. The vertices of a convex curve γ in
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the plane R2 correspond to the flat points of the curve v(γ) in RP3. Indeed,
consider an osculating circle for the curve γ. The equation of the circle is
precisely the equation of a hyperplane in RP3. The image of R2 in RP3 is
a two-dimensional surface. The image of the circle is the intersection of this
two-dimensional surface with a hyperplane. That the curve has a vertex at the
point under consideration means (at least in the generic case) that the curve
lies locally on one side of the osculating circle. In such a case, the image of the
curve lies locally on one side of the hyperplane, because the image of R2 locally
divides RP3 into two parts. This corresponds precisely to a flat point.

It is also easy to verify that the image of a convex curve under the Veronese
mapping is a strictly convex curve. Indeed, for a convex curve in the plane,
any straight line passing through its two points does not intersect this curve
at other points. The straight line is a special case of the circle; therefore, its
image also lies in some hyperplane. This hyperplane has the required property,
namely, it intersects v(γ) at precisely two points.

To prove the six-vertex theorem, we must consider the mapping R2 → RP5

defined by
(x, y) �→ (x2 : xy : y2 : x : y : 1).

This mapping establishes a one-to-one correspondence between conics and hy-
perplanes. An affine vertex is a point at which the osculating conic approx-
imates the curve better than usual. Such conics correspond to hyperplanes
which approximate the image of the curve better than usual. In turn, such
hyperplanes correspond to flat points.

To prove the Ghys theorem, we consider the Segre mapping RP1 × RP1 →
RP3, which is defined by(

(x : y), (y : z)
)
�→ (xz : xt : yz : yt).

It turns out that the zeros of the Schwarz derivative correspond to the flat
points of the image. This follows readily from the interpretation of the zeros of
the Schwarz derivative based on osculating hyperbolas.

A modern proof of the Barner theorem and its reduction to the four-vertex
theorem are given in a recent paper of S. Tabachnikov.

7 Discretization

O. Musin and V. Sedykh (1996) proved a discrete analogue of the four-vertex
theorem. Let P be a convex m-gon in the plane. Consider the circle pass-
ing through its three successive vertices vi, vi+1, and vi+2. The vertices vi−1

and vi+3 can lie either on different sides or on one side of this circle. If they lie
on one side, we say that this triple of consecutive vertices is extremal.
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Theorem 4. For any convex m-gon, where m � 4, there exist at least four
extremal triples.

Exercise. Formulate a discrete version of the theorem about six affine vertices.

Now, let us formulate the discrete version of the Ghys theorem. We replace
a diffeomorphism f by a pair of ordered sets of points in RP1; we denote them
by X = (x1, . . . , xm) and Y = (y1, . . . , ym). The graph of f is replaced by a
polygonal line. The Schwarz derivative becomes the difference of cross ratios

[xi, xi+1, xi+2, xi+3]− [yi, yi+1, yi+2, yi+3].

The discrete version of the Ghys theorem asserts that this difference changes
sign at least four times.

The Barner theorem can be discretized too. The definition of a strictly
convex m-gon remains the same. The discrete version of the Barner theorem
can be proved by induction on the number of polygon vertices.

Discretization is interesting because smooth theorems are weaker than their
discrete versions, as they are obtained from the latter by passing to the limit.
At the same time, the proofs of many discrete theorems are simpler; they can
be obtained by induction on the number vertices.

The four-vertex theorem has two discrete versions. The second discrete
version, which was suggested by Wegner, differs from the theorem of Musin
and Sedykh in that the circumscribed circles are replaced by inscribed ones.

Most amazing is that there exists a discrete version of the four-vertex theo-
rem which is almost a hundred years older than the theorem itself. This is the
celebrated 1813 lemma of Cauchy, who invented it for the purpose of proving
the Cauchy theorem on the rigidity of convex polyhedra.

Lemma (Cauchy). Let P and P ′ be convex m-gons, where m � 4. Suppose
that these polygons have equal respective sides. Then the difference between the
respective angles of these polygons changes sign at least four times.

Cauchy gave an incorrect proof of this lemma. It was corrected by
Hadamard.

Acknowledgments

The author sincerely thanks V. Prasolov for carefully taking notes and preparing
this lecture for publication.



S. V. Matveev

Haken’s method of normal surfaces and its
applications to classification problem for
3-dimensional manifolds – the life story of one
theorem
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In mathematics’ development, there are milestones, problems whose solutions
take us to new discoveries and understanding of the intrinsic nature of math-
ematical objects. In topology, one such problem is that of classification of
three-dimensional manifolds. In the course of investigation of this problem
were the following most important stages.

• 1960 Haken: in order to understand the structure of a three-dimensional
manifold, it is necessary to study two-dimensional surfaces F 2 ⊂ M3

inside it. This method proved to be highly productive. Over half of all
papers in three-dimensional topology which appeared since then are based
on this method. The classification theorem for sufficiently large manifolds
was obtained precisely with the help of this method.

• 1980 Gabai: it is necessary to study foliations, that gives information on
manifolds.

• 1980 Thurston: it is necessary to study geometries on manifolds, hyper-
bolic manifolds, elliptic manifolds, Sol-manifolds, and so on, there are 8
homogeneous geometries in total.

• 1990 Witten: it is necessary to consider state sums and use them to
construct invariants of three-dimensional manifolds.

• Recently, the interest in algorithmic topology has strengthened. There,
Haken’s method plays a key role.

What does Haken’s method consist in? It is hopeless to attempt to consider
all surfaces in a three-dimensional manifold – there are just too many of them.
Even if surfaces are considered up to isotopy, there are still too many. Hence
it is natural to single out a certain class N of surfaces in the manifold so that
it possess two properties:

(1) class N is informative (for instance, in the following sense: the class
contains all interesting surfaces in a given manifold);
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Figure 1. Admissible intersections

Figure 2. Prohibited intersections

(2) class N admits an explicit description.
The notation N refers to the notion of a “normal surface.” Let me explain

what a normal surface is. Further on it will always be assumed that our man-
ifold M3 is triangulated, i.e., decomposed into tetrahedra so that every two
tetrahedra either do not intersect or intersect along a common vertex, edge, or
face. Roughly speaking, a normal surface (with respect to a given triangula-
tion) is defined in such a way: it intersects all tetrahedra in the triangulation
nicely.

First I shall say how a normal surface is allowed to intersect tetrahedra and
then will list prohibited intersections (see Figs. 1 and 2).

A surface may intersect a tetrahedron along a triangle (or several parallel
copies of a triangle) or along a rectangle (Fig. 1). For every tetrahedron there
are 4 types of triangles (each type corresponds to one of the faces) and 3 types
of rectangles (each type corresponds to a pair of opposing edges).

Generally speaking, the intersection of the surface with a tetrahedron must
consist of discs, and the boundary of each disc must intersect each edge no more
than once. However, the surface itself might intersect the edge many times.

Now I can explain why the class of normal surfaces is informative, i.e.,
contains all interesting surfaces. First, we should find out which surfaces are
uninteresting. Uninteresting are those surfaces that lie in R3, because such
surfaces can be found in all three-dimensional manifolds.

All surfaces with “tubes” (Fig. 3) should be prohibited. A tube is charac-
terized by having a disc which intersects the surface along its boundary such
that the intersection curve does not bound a disc on the surface. Such discs are
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Figure 3. A surface with a tube

Figure 4. Removing
intersection with a face

Figure 5. Removing
intersection with an edge

Figure 6. Removing a
“tube”

called compressing. The name is due to the fact that a compressing disc can
be strongly compressed and thus the surface can be simplified (cut along the
disc). An incompressible surface in M3 is a surface which has no compressing
discs.

A manifold M3 is called irreducible if every embedded sphere S2 ⊂ M3

bounds a ball. Any three-dimensional manifold is a connected sum of irreducible
ones, with the exception of the manifold S2 × S1, which is irreducible but
is not a nontrivial connected sum. Thus, if we understand the structure of
irreducible three-dimensional manifolds, we will understand the structure of all
three-dimensional manifolds.

Theorem 1. Every closed incompressible surface in an irreducible manifold M3

is isotopic to a normal surface.

Proof. Consider an arbitrary closed incompressible surface and shift it in gen-
eral position with respect to tetrahedra of the triangulation. If there is a
prohibited situation (a tube intersecting a tetrahedron’s face in a circle), then
there is a compressing disc D. The surface is incompressible, therefore the
boundary ∂D of that disc bounds a disc D′ on the surface, see Fig. 4. Since the
manifold is irreducible, the sphere D ∪D′ bounds a ball, which can be dragged
in or out of the tetrahedron. After that, the prohibited intersection would be
destroyed.



Haken’s method of normal surfaces 341

If there is a prohibited situation shown in Fig. 5, then the intersection of
such a component of the surface with the tetrahedron is destroyed in an obvious
way, by means of an isotopy of the surface.

Further, if inside a tetrahedron is a tube that connects two triangular sec-
tions (Fig. 6) then that tube can be destroyed by the incompressibility of the
surface.

The remaining cases are treated in a similar fashion.

The first requirement is thus met: the class N is informative.
Now it is necessary to check whether the second requirement is met as well.

For that, we need to describe the class of all normal surfaces explicitly. Each
normal surface can be presented by an integer vector. This is done in the fol-
lowing way. Each tetrahedron contains 7 types of allowed intersections. Denote
all possible types of allowed intersections (with all tetrahedra) by E1, . . . , En;
here n = 7t, where t is the number of tetrahedra in the triangulation. Then
we can assign to the surface F an integer vector (x1, x2, . . . , xn), where xi is
the number of triangles or rectangles of type Ei in the surface’s intersection
with tetrahedra. It is easy to see that if all these numbers are known then the
surface can be easily reconstructed from them: the pieces of the surface can
only be put together in a unique way. However, not every collection of numbers
gives a surface. For instance, the collection (1, 0, . . . , 0) cannot correspond to a
(closed) surface.

Let us find out which vectors can be realized by surfaces. Consider a tetra-
hedron, choose a face of it, and single out one of the angles of that face. Draw
a segment joining the sides of this angle. The segment may belong to a trian-
gular section of type Ei or to a rectangular section of type Ej . The chosen face
belongs to just one more tetrahedron. In that tetrahedron, the segment in ques-
tion may belong to sections of type Ek or of type Em. As a result, we obtain an
equation xi +xj = xk +xm. In addition, if a surface is embedded then no tetra-
hedron can contain rectangular sections of two different types (such sections
always intersect); a solution of the system of equations thus obtained is called
admissible if it does not contain two, simultaneously nonzero xi corresponding
to distinct types of rectangular sections of the same tetrahedron.

Theorem 2. The set of all normal surfaces is in one-to-one correspondence
with the set of all admissible integer nonnegative solutions of the above system
of equations.

The proof of this theorem is really simple, and I will not dwell on it.
The number of equations in the system is 6t, therefore the system is under-

determined. It is likely to have many solutions. An important observation by
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Figure 7. The system of inequalities

Haken is that the solution set for this system has a finite basis of fundamental
solutions.

A solution x̄ is called fundamental (indecomposable) if an equality x̄ = ȳ+z̄,
where ȳ, z̄ are nonnegative integer solutions, implies that either ȳ = 0 or z̄ = 0.

Theorem 3 (Haken). The set of fundamental solutions is finite.

A similar theorem is well known in linear algebra, but there, all kinds of
coefficients are allowed, integer and noninteger, positive and negative. Here the
coefficients must be nonnegative integers.

The proof of Haken’s theorem is rather easy; instead of a general proof, I
will consider a simple example.

First of all, let me point out the following fact. We are looking for non-
negative solutions; in doing so, we include inequalities into our system. We
can assume that the system consists of homogeneous inequalities only. Indeed,
equation x = 0 is equivalent to the system of two inequalities x � 0 and x � 0.

Consider the system of inequalities −x + 4y � 0 and 2x − y � 0 (Fig. 7).
Add up the coordinates of fundamental solutions which belong to the lines:
(5, 3) = (4, 1) + (1, 2). It is clear that all fundamental solutions are contained
in the domain x � 5, y � 3. Indeed, if a solution is outside of that domain then
one of the two fundamental solutions, either (4, 1) or (1, 2), can be subtracted
from it. In general case the argument is similar.

Now I can tackle one of my goals, to describe the algorithm for recognition of
the unknot. The unknot is characterized by its property to bound an embedded
disc. This is a question about a surface. (Does there exist a surface of a given
type?) In this case the surface is nonclosed, though. However, everything I have
said relates to nonclosed surfaces as well, although the number of equations is
less: the segments in triangles on the boundary of the manifold produce no



Haken’s method of normal surfaces 343

equations. We only need to disregard triangles and rectangles that are adjacent
to the surface’s boundary.

For precision, the knot should be replaced by a solid torus, which is a tubular
neighborhood of the knot. A knot is trivial if and only if there is a disc spanning
some longitude of the solid torus.

It is easy to show that, if there is at least one disc spanning a longitude
then such a disc can be found among fundamental surfaces. As soon as this
is known, the recognition algorithm for the unknot is very simple, at least in
the theoretical sense. Let us remove a tubular neighborhood of the knot and
triangulate the manifold thus obtained. Write down the system of equations
(inequalities) and find fundamental solutions. Then, for each fundamental so-
lution we check whether it gives a disc whose boundary is a longitude. This is
easy to do by calculating the Euler characteristic of the surface and checking
whether its boundary is a circle intersecting the meridian just once.

Now I would like to tell about the classification of sufficiently large three-
dimensional manifolds. An irreducible manifold M3 is called sufficiently large if
it contains an incompressible surface other than S2, RP2, or D2. For instance,
every orientable irreducible manifold with a boundary is either sufficiently large
or homeomorphic to a handlebody of some genus. Closed manifolds with infinite
first homology groups are also sufficiently large.

Theorem 4 (Haken, Waldhausen, Johannson, Hemion). There is an al-
gorithm for recognition of sufficiently large three-dimensional manifolds. (For
every two sufficiently large manifolds the algorithm says if they are homeomor-
phic.)

It is easy to extract from this theorem the proof of existence of algorithmic
classification for sufficiently large three-dimensional manifolds. Namely, we
construct the algorithm for enumerating all three-manifolds first. For that, we
need to choose among three-dimensional simplicial complexes those that are
manifolds. The list thus obtained would contain duplicates. We can then get
rid of duplicates by applying the recognition algorithm.

The story of the classification theorem for sufficiently large manifolds went
as follows. It was firstly proven by Haken, after he’d constructed the theory
of normal surfaces, in 1962. However, shortly afterwards a serious gap was
found in his proof. For a long time, various mathematicians (Waldhausen,
Johannson, Jaco, Shalen, and others) were attempting to close it. Incidentally,
a great deal of work was done, in particular, this led to development of the
theory of characteristic submanifolds.

At last, a crucial obstacle was singled out: for a very particular class of
manifolds Haken’s method does not work. This obstacle consists of so-called
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Stallings manifolds. Later I will explain why Haken’s method does not work
for them.

The obstacle related to Stallings manifolds was overcome by Hemion in
1976. He managed to solve the recognition problem for Stallings manifolds by
an independent method, which had nothing to do with Haken’s theory.

After that, it was announced that classification theorem for sufficiently large
manifolds had been proved. A few expository papers on that subject appeared,
and Hemion’s book was published in 1991. The theorem is important, a lot of
papers refer to it.

All publications on this topic were structured according to the same pattern.
First, the Haken’s proof and the arising obstacle were described, then Hemion’s
way of overcoming that obstacle was exposed, and finally the conclusion was
made that the theorem had been proved. Nonetheless, no text claiming to
be comprehensive ever appeared. This gave rise to a natural question, why
are there no other obstacles? I decided to understand that and write down a
complete proof. It turned out that there indeed was another obstacle, which I
called Stallings quasi-manifolds and which could not be overcome by Hemion’s
method. There were no more obstacles. Doing away with the second obstacle
required very powerful methods of theory of surface homeomorphisms, which
were developed by Thurston much later than 1976, the time when the theorem’s
proof had been announced. Thurston’s work appeared in the eighties, and we
need the algorithmic version of his methods, the construction of so-called train
tracks suggested by Bestvina and Handel even later, in 1995.

Thus, until 1998 when my paper appeared in Russian Mathematical Surveys,
the theorem in fact remained unproven. Working out the complete proof took
20 years.

The classification theorem for sufficiently large manifolds immediately im-
plies the existence of algorithmic classification of knots. Or, rather, it follows
not from the theorem itself, but from its method of the proof: it is necessary to
repeat the proof of Haken’s theorem all the while watching how the meridian
of the tubular neighborhood of the knot behaves.

The classification theorem is proved by means of a construction called a
hierarchy, or a skeleton. Let us consider a sufficiently large manifold. It contains
an incompressible surface. Let us cut the manifold along that surface. We will
obtain one or two manifolds. They will be called chambers. Chambers have
boundaries, hence they are sufficiently large. Cut them along incompressible
surfaces, and so on. We stop when all remaining chambers are balls. It is also
necessary to make sure that the surfaces be in general position. For instance,
no four surfaces should intersect in the same point. Technically it is more
convenient to erect walls rather than cut the manifold. In the former case,



Haken’s method of normal surfaces 345

inside the manifold we obtain a two-dimensional polyhedron P 2, which I call a
skeleton. When making cuts, the result is called a hierarchy. However, in this
case it is hard to follow what is actually going on. Considering a skeleton (an
object) rather than a hierarchy (a process) substantially simplifies proving the
classification theorem.

The proof that we finally stop is based on the notion of the complexity of
a three-dimensional manifold. Cuttings always decrease the complexity (unless
it is zero).

Consider another manifold and construct a skeleton for it. The first impor-
tant observation is, if the skeletons are homeomorphic then the manifolds are
homeomorphic as well. Indeed, a homeomorphism between the boundaries of
two balls can be extended to a homeomorphism between the balls by means of
a cone construction.

The second observation is as follows. Suppose that we can impose on the
erection of admissible walls restrictions so strict that at every step it is possible
to erect only a finite amount of walls (up to a homeomorphism of the manifold
onto itself). Then only a finite collection of skeletons can be constructed for ev-
ery manifold, and the manifolds are homeomorphic if and only if the collections
of skeletons are pairwise homeomorphic. Indeed, if, on the one hand, some two
skeletons are homeomorphic then, as it has already been shown, the manifolds
themselves are homeomorphic. On the other hand, if two manifolds are home-
omorphic then their associated collections of skeletons are also homeomorphic,
because their construction is defined up to a homeomorphism.

The whole thing is reduced to ensuring the finite choice of the ways to
erect an admissible wall. Let us insert surfaces of minimal complexity. The
complexity of a surface F is the number c(F ) = −χ(F ) + N , where N is the
number of intersection points with singularities of the polyhedron obtained at
the previous step. The finiteness theorem for the number of surfaces of minimal
complexity is a version of the same theorem from the theory of normal surfaces
which takes into account surface’s complexity. The number of fundamental
surfaces with regard to the complexity remains finite as well.

Haken noticed the following fact. Suppose that at each step all fundamental
surfaces have positive complexity. Then surfaces of minimal complexity form
a part of fundamental surfaces, in particular, there are only finitely many sur-
faces of minimal complexity. This statement is obvious, since the complexity is
additive with respect to summation of surfaces. Therefore, should a surface F
be the sum of two surfaces F1 and F2 of positive complexity, then c(F ) > c(F2)
and c(F ) > c(F1). Hence any surface of minimal complexity is fundamental.

This is an easy case. Haken didn’t go any further. At this point a question
arises, what do we do in the case when there are fundamental surfaces of zero



346 S. V. Matveev

Figure 8

complexity? Haken thought that it would be easy to do away with this case,
but it turned out it wasn’t so.

What kind of surfaces have zero complexity? In other words, when do we
have equality −χ(F ) + N = 0? The Euler characteristic can be positive only
in cases of the sphere, the projective plane RP2 and the disc. But due to
incompressibility spheres cannot occur. For the same reason projective planes
cannot be present either, because the boundaries of their regular neighborhoods
are spheres. Discs can be disregarded by incompressibility: surfaces are inserted
so as to be incompressible.

Thus, a surface of zero complexity does not contain singular points and has
zero Euler characteristic. Surfaces with zero Euler characteristic are annulus,
Möbius band, torus, and Klein bottle. Tori and Klein bottles are no problem
for us, since any chamber contains only a finite number of such surfaces (up to
homeomorphisms of the chamber fixed on its boundary).

The case of annuli and Möbius bands is much more complicated, because
the number of such surfaces in a chamber can be infinite even up to homeomor-
phisms fixed on the boundary of the whole manifold.

For instance, by twisting several times one annulus along another (see
Fig. 8), it is possible to construct an infinite number of nonequivalent annuli,
since twists of a chamber along one annulus shift the boundary of the other.

The correct strategy consists in decomposing all annuli into two types: lon-
gitudinal and transverse ones (the cases of Möbius bands is treated in a similar
fashion, so we can omit it). Here I have the following situation in mind. The
whole annulus lies inside a chamber, and the boundary of the annulus belongs
to the chamber’s boundary. An annulus A is called longitudinal if any other
annulus A1 can be shifted so that for the new annulus A′

1 the following condi-
tion hold: the intersection A ∩A′

1 either is empty or consists of circles parallel
to the core circle of A (Fig. 9). Otherwise the annulus is called transverse.

A circle bounding a disc inside an annulus can be destroyed by incompress-
ibility. Therefore the intersection of any annulus with a transverse annulus can
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Figure 9.
Longitudinal annulus

Figure 10.
Transverse annulus

Figure 11.
Structure of

direct product

be transformed to the one shown in Fig. 10.
It turned out that longitudinal annuli are much nicer than transverse ones.

The presence of annuli was a problem for us, because twists along an annulus
could lead to chamber homeomorphisms which cannot be extended to homeo-
morphisms of the whole manifold. However, a twist along any other annulus
leaves a longitudinal annulus invariant, since the intersection of those annuli
consists of circles parallel to the core circle of the longitudinal annulus. Such
circles are invariant, therefore a longitudinal annulus is not affected by twists.
It implies that there are only a finite number of longitudinal annuli.

Now we can describe the final version of the method of inserting surfaces.
If there are no annuli, the previous method works. If there is at least one
longitudinal annulus, we insert it; there are only finitely many longitudinal
annuli. We stop when only balls and chambers without longitudinal annuli but
with transverse annuli are left. It turns out that such chambers are easy to
describe: they have the form F × I or F ×̃ I (a nontrivial bundle with a fiber
segment).

This is proven quite easily. Let us draw a transverse annulus as a cylinder.
It follows from it being transverse that there exists another annulus which
intersects it along two vertical segments (Fig. 11). Then in a neighborhood
of the union of these two annuli there exists a direct product structure. The
construction is extended, and each time the structure of a direct product, more
precisely, of a bundle with fiber a segment, is preserved (in the process of
extension some segment may flip over, i.e., we might obtain a skew product).

I will not pay attention to the balls. If there is a chamber F × I, there is
something glued to it, and so on. In the end we obtain a Stallings manifold. For
it, Haken’s algorithm doesn’t work, because after the first cut we get a manifold
F × I, which contains lots of different annuli. The annuli correspond to curves
on the surface, and the number of curves on a surface is infinite. Hence there
is no hope to make the procedure of choosing an annulus finite.

For manifolds containing Stallings manifolds the classification problem must
be solved separately. This was what Hemion did. After that, it was announced
that the classification problem for sufficiently large three-dimensional manifolds
had been solved. However, there are Stallings quasi-manifolds, which are glued
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Figure 12. Two involutions

from F ×̃ I in the following way. Let us take the manifold F × I and on each
its boundary component consider some orientation reversing involution (home-
omorphism of period 2) without fixed points. Perform the gluing along those
involutions (Fig. 12). The manifold thus obtained is a Stallings quasi-manifold.
For such manifolds Haken’s method does not work for the same reasons as
earlier, and the problem must be solved separately. A simple argument re-
duces the recognition problem for Stallings quasi-manifolds to the following
problem on surface homeomorphisms. Suppose there are two homeomorphisms
f, g : F → F of the surface onto itself. It is necessary to find out whether there
exists a number n such that fn = g (the equality is up to isotopy). Surface
homeomorphisms considered up to isotopy are described in terms of homomor-
phisms of fundamental groups. Therefore the problem is purely algebraic. It is
difficult only because the number n is not bounded. If there is an upper bound
for n, the problem immediately becomes easy.

A desired bound for n can be obtained with the help of Thurston’s theory
of so-called stretching factors. The theory is simplest in the case of a torus.
Torus homeomorphisms are given by matrices of order 2 with determinant 1.
Imaginary eigenvalues happen very rarely; this is not interesting. If the eigen-
values are real, they have the form λ and λ−1. Thus, in one direction we have
an expansion and in the other a contraction. In the torus case it had long been
known, and Thurston proved that this was how all surface homeomorphisms
work, not just those of a torus. For every surface homeomorphism h there is
a stretching factor λ(h) > 1. Then there is the following bound for n: it does
not exceed any N such that λ(f)N � λ(g). This completes the proof of the
theorem on algorithmic recognition of sufficiently large manifolds and that of
the theorem on their algorithmic classification.
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