


The three main themes of this book— probability theory, differential geometry

and the theory of integrable systems — reflect the broad range of mathematical

interests of Henry McKean, to whom it is dedicated.

Written by experts in probability, geometry, integrable systems, turbulence

and percolation, the seventeen papers included here demonstrate a wide va-

riety of techniques which have been developed to solve various mathematical

problems in these areas. The topics are often combined in an unusual and

interesting fashion to give solutions outside of the standard methods. The

papers contain some exciting results and offer a guide to the contemporary

literature on these subjects.
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Preface

This volume is dedicated to Henry McKean, on the occasion of his seventy-

fifth birthday. His wide spectrum of interests within mathematics is reflected in

the variety of theory and applications in these papers, discussed in the Tribute

on page xv. Here we comment briefly on the papers that make up this volume,

grouping them by topic. (The papers appear in the book alphabetically by first

author.)

Since the early 1970s, the subject of completely integrable systems has grown

beyond all expectations. The discovery that the Kortweg – de Vries equation,

which governs shallow-water waves, has a complete system of integrals of mo-

tion has given rise to a search for other such evolution equations. Two of the

papers in this volume, one by Boutet de Monvel and Shepelsky and the other

by Loubet, deal with the completely integrable system discovered by Camassa

and Holm. This equation provides a model describing the shallow-water approx-

imation in inviscid hydrodynamics. The unknown function u.x; t/ refers to the

horizontal fluid velocity along the x-direction at time t . The first authors show

that the solution of the CH equation in the case of no breaking waves can be

expressed in parametric form in terms of the solution of an associated Riemann–

Hilbert problem. This analysis allows one to conclude that each solution within

this class develops asymptotically into a train of solitons.

Loubet provides a technical tour de force, in extending previous results of

McKean on the Camassa–Holm equation. More specifically, he gives an explicit

formula for the velocity profile in terms of its initial value, when the dynamics

are defined by a Hamiltonian which is the sum of the squares of the reciprocals

of a pair of eigenvalues of an associated acoustic equation. The proof depends on

the analysis of a simpler system, whose Hamiltonian is defined by the reciprocal

of a single eigenvalue of the acoustic equation. This tool can also solve more

complex dynamics, associated to several eigenvalues, which eventually leads

to a new proof of McKean’s formula for the Fredholm determinant. The paper

concludes with an asymptotic analysis (in both past and future directions), which

allows partial confirmation of statements about soliton genesis and interaction

which were raised in an earlier CPAM paper.

ix
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Meanwhile we have a contribution from Gibbons, Holm and Tronci of a

more geometric nature. This deals with the Vlaslov equation, which describes

the evolution of the single-particle probability density in the evolution of N

point particles. Specifically, they study the evolution of the p-th moments when

the dynamics is governed by a quadratic Hamiltonian. The resulting motion

takes place on the manifold of symplectomorphisms, which are smooth invert-

ible maps acting on the phase space. The singular solutions turn out to be closely

related to integrable systems governing shallow-water wave theory. In fact,

when these equations are “closed” at level p, one retrieves the peaked solitons

of the integrable Camassa–Holm equation for shallow-water waves!

Segur’s paper provides an excellent overview of the development of our

understanding of integrable partial differential equations, from the Boussinesq

equation (1871) to the Camassa–Holm equation (1993) and their relations to

shallow-water wave theory. In physical terms, an integrable system is equivalent

to the existence of action-angle variables, where the action variables are the

integrals of motion and the angle variables evolve according to simple ordinary

differential equations. Since each of these PDEs also describes waves in shallow

water, it is natural to ask the question: Does the extra mathematical structure of

complete integrability provide useful information about the behavior of actual

physical waves in shallow water? The body of the paper takes up this question in

detail with many illustrations of real cases, including the tsunami of December

26, 2004. A video link is provided, for further documentation.

Previato’s paper contains a lucid account of the use of theta functions to

characterize lines in abelian varieties. Strictly speaking, “line” is short for lin-

ear flow, since an abelian variety cannot properly contain a (projective) line.

More than twenty years ago Barsotti had proved that, on any abelian variety,

there exists a direction such that the derivatives of sufficiently high order of the

logarithim of the theta function generates the function field of the abelian variety.

The purpose of the present paper is to use the resulting differential equations to

characterize theta functions, a generalization of the KP equations, introduced by

Kadomtsev and Petviashvili in 1971, as well as to study spectra of commutative

rings of partial differential operators.

Arov and Dym summarize their recent work on inverse problems for matrix-

valued ordinary differential equations. This is related to the notion of reproduc-

ing kernel Hilbert spaces and the theory of J -inner matrix functions. A time-

independent Schrödinger equation is written as a system of first-order equations,

which permits application of the basic results.

Cruzeiro and Malliavin study a first-order Burgers equation in the context of

flows on the group of diffeomorphisms of the circle, an infinite-dimensional Rie-

mannian manifold. The L2 norm on the circle defines the Riemannian metric, so
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that the Burgers equation defines a geodesic flow by means of an ordinary differ-

ential equation which flows along the Burgers trajectories. The authors compute

the connection coefficients for both the Riemannian connection defined by the

parallel transport and the algebraic connection defined by the right-invariant

parallelism. These computations are then used to solve a number of problems

involving stochastic parallel transport, symmetries of the noise, and control of

ultraviolet divergence with the help of an associated Markov jump process.

The paper of Cambronero, Ramı́rez and Rider describes various links be-

tween the spectrum of random Schrödinger operators with particular emphasis

on Hill’s equation and random matrix theory. The unifying theme is the utility of

the Riccati map in converting problems about second-order differential opera-

tors and their matrix analogues into questions about one-dimensional diffusions.

The paper relies on functional integration to derive many interesting results on

the spectral properties of random operators. The paper provides an excellent

overview of results on Hill’s equation, including the exploitation of low-lying

eigenvalues. The penultimate section of the paper describes the recent and excit-

ing developments involving Tracy–Widom distributions and their far-reaching

generalizations to all positive values of the inverse temperature ˇ.

Birnir’s paper provides an excellent overview of his recent results on uni-

directional flows. This is a special chapter in the theory of turbulence, and

is not commonly presented. This type of modeling is important in the study of

fluvial sedimentation that gives rise to sedimentary rock in petroleum reservoirs.

The flow properties of the rock depend strongly on the topological structure of

the meandering river channels. The methods developed can also be applied

to problems of atmospheric turbulence. Contrary to popular belief, the turbu-

lent temperature variations in the atmosphere may be highly anisotropic, nearly

stratified. Thus, the scaling which was first developed in the case of a river or

channel may have a close analogue in the turbulent atmosphere.

Halfway between probability theory and classical physics is the subject of sta-

tistical mechanics. In the paper of Costeniuc, Ellis, Touchette and Turkington,

the Gaussian ensemble is introduced, to complement the micro-canonical and

macro-canonical ensembles which have been known since the time of Gibbs. It

is demonstrated that many minimization problems in statistical physics are most

effectively expressed in terms of the Gaussian ensemble.

Grinevich and Novikov present a lucid overview of their work on finding

formulas for the topological charge and other quantities associated with the sine-

Gordon equation, which describes immersions of negatively curved surfaces into

R3. Non-singular real periodic finite-gap solutions of the sine-Gordon equation

are characterized by a genus g hyperelliptic curve whose branch points are either

real positive or form complex conjugate pairs. The authors describe the admissi-
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ble branch points as zeros of a meromorphic differential of the third kind which,

in turn, is defined by a real polynomial P .�/ of degree g � 1. This leads to a

formula for the topological charge of these solutions, which was first given in a

1982 paper of Dubrovin and Novikov. The proof relates the topological charge

to a set of certain integer characteristics of the polynomial P .�/. The methods

developed here can be applied, with suitable modifications, to the KdV equation,

the defocusing nonlinear Schrödinger equation, and the Kadomtsev–Petvishvilii

equation.

The paper of Ercolani and McLaughlin investigates a system of equations

which originate in the physics of two-dimensional quantum gravity, the so-called

loop equations of random matrix theory. The analysis depends on an asymptotic

formula, of the large deviation type, for the partition function in the Unitary

Ensemble of random matrix theory. The loop equations are satisfied by the

coefficients in a Laurent expansion expressing certain Cauchy-like transforms

in terms of a quadratic expression in the derivatives. The final paragraph of

the paper suggests some open problems, such as the following: to use the loop

equations to find closed form expressions for the expansion coefficients of the

logarithm of the partition function when the dimension N !1; it is also an-

ticipated that the loop equations could be used to determine qualitative behavior

of these coefficients.

Manna and Moll offer a beautiful set of generalizations of the classical Lan-

den transform, which states that a certain elliptic integral of the first kind con-

taining two parameters, when expressed in trigonometric form, is invariant under

the transformation defined by replacing the parameters by their arithmetic (resp.

geometric) means. Later Gauss used this to prove that the limit of the iterates of

this transformation exist and converge to the reciprocal of this elliptic integral,

suitably modified. This limit is, by definition, the arithmetic-geometric mean of

the initial conditions. This idea is generalized in several directions, the first of

which is to a five-parameter set of rational integrals, where the numerator is of

order four and the denominator of order six. The requisite Landen transforma-

tion has a simple geometric interpretation in terms of doubling the angle of the

cotangent function in the trigonometric form of the integrand. The remainder

of the paper describes generalizations to higher-order rational integrands, where

the doubling of the cotangent function is replaced by a magnification of order

m � 2. It is proved that the limit of the Landen transforms exists and can be

represented as a suitable integral. All of the models studied in this paper can be

considered as discrete-time (partially) integrable dynamical systems where the

conserved quantity is the definite integral which is invariant under the change

of parameters. The simplest of these is the elliptic integral studied by Landen,

where the dynamics is defined by the arithmetic-geometric mean substitution.
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Varadhan has contributed a lucid overview of his recent joint work on ho-

mogenization. In general, this theory leads to approximations of solutions of a

differential equation with rapidly varying coefficients in terms of solutions of

a closely related equation with constant coefficients. A model problem is the

second-order parabolic equation in one space dimension, where the constant

coefficient is the harmonic mean of the given variable coefficient equation. This

analytical result can be expressed as a limit theorem in probability, specifically

an ergodic theorem for the variable coefficient, when composed with the diffu-

sion process defined by the parabolic equation; the normalized invariant measure

is expressed in terms of the harmonic mean. Having moved into the probabilistic

realm, one may just as well consider a second-order parabolic equation with

random coefficients, where the results are a small variation of those obtained

in the non-random case. With this intuitive background, it is natural to expect

similar results when one begins with a d-dimensional equation of Hamilton–

Jacobi type, defined by a convex function and with a small noise term. In joint

work with Kosygina and Rezhakanlou, it is proved that the noise disappears

and the HJ solution converges to the solution of a well-determined first-order

equation, where the homogenized convex function is determined by a convex

duality relation. The reader is invited to pursue the details, which are somewhat

parallel to the model case described above.

Camia and Newman’s paper relies on the stochastic Schramm–Loewner

equation (SLE), which provides a new and powerful tool to study scaling limits

of critical lattice models. These ideas have stimulated further progress in under-

standing the conformally invariant nature of the scaling limits of several such

models. The paper reviews some of the recent progress on the scaling limit of

two-dimensional critical percolation, in particular the convergence of the explo-

ration path to chordal SLE and the “full” scaling limit of cluster interface loops.

The results on the full scaling limit and its conformal invariance are presented

here for the first time. For site percolation on the triangular lattice, the results

are fully rigorous and the main ideas are explained.

Grünbaum’s paper proposes a new spectral theory for a class of discrete-

parameter Markov chains, beginning with the case of the birth-death process,

studied by Karlin/McGregor in the 1950s. More generally, for each Markov

chain there is a system of orthogonal polynomials which define the spectral

decomposition. Explicit computation of the relevant orthogonal polynomials is

available for other Markov chains, such as random walk on the N -th roots of

unity and the processes associated with the names of Ehrenfest and Tchebychev.

A principal emphasis here, due originally to M. G. Krein, is the formulation of

matrix-valued orthogonal polynomials. Several solved examples are presented,

while several natural open problems are suggested for the adventurous reader.
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Van Moerbeke provides a masterful account of the close connection between

nonintersecting Brownian motions and integrable systems, where the connection

is made in terms of the theory of orthogonal polynomials, using previous results

of Adler and Van Moerbeke. If N Brownian particles are started at p definite

points and required to terminate at q other points in unit time, the object is to

study the distribution as N !1, especially in the short time limit t # 0 and the

unit time limit t " 1. When the supports of these measures merge together, we

have a Markov cloud, defined as an infinite-dimensional diffusion process which

depends only on the nature of the various possible singularities of the equilib-

rium measure. The connection between non-intersecting Brownian motion and

orthogonal polynomials begins with a formula of Karlin and McGregor which

expresses the non-intersection probability at a fixed time as the N -dimensional

integral of the product of two determinants. Numerous special cases are pro-

vided to illustrate the general theory.
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The significance of McKean’s work

Henry McKean has championed a unique viewpoint in mathematics, with

good taste and constant care toward a balance between the abstract and the

concrete. His great influence has been felt through both his publications and his

teaching. His books, all of which have become influential, can be recognized

through their concise, elegant and efficient style.

His interests include probability theory, stochastic processes, Brownian mo-

tion, stochastic integrals, geometry and analysis of partial differential equations,

with emphasis on integrable systems and algebraic curves, theta functions, Hill’s

equation and nonlinear equations of the KdV type. He also was a pioneer in the

area of financial mathematics before it became a household word.

The importance of stochastic models in modern applied mathematics and

science cannot be overestimated. This is well documented by the large number

of diverse papers in this volume which are formulated in a stochastic context.

Henry McKean was one of the early workers in the theory of diffusion processes,

as documented in his classic work with K. Itô, Diffusion Processes and Their

Sample Paths (Springer, 1965). This was followed by his Stochastic Integrals

(Academic Press, 1969). This book led the way to understanding the close

connections between probability and partial differential equations, especially in

a geometric setting (Lie groups, Riemannian manifolds).

On January 6, 2007, McKean was awarded the Leroy P. Steele Prize for Life-

time Achievement, presented annually by the American Mathematical Society.

The prize citation honors McKean for his “rich and magnificent mathematical

career” and for his work in analysis, which has a strong orientation towards

probability theory. The prize citation states further that “McKean has had a

profound influence on his own and succeeding generations of mathematicians.

In addition to the important publications resulting from his collaboration with

Itô, McKean has written several books that are simultaneously erudite and gems

of mathematical exposition. As his long list of students attest, he has also had

enormous impact on the careers of people who have been fortunate enough to

study under his direction.”

McKean’s published work includes five books and more than 120 articles, in

such journals as the Annals of Mathematics, Acta Mathematica and Inventiones

Mathematicae, to name a few. To illustrate the richness of the mathematics he

has been involved with, we take a brief look at published reviews of his books,

and then discuss the main threads of his research articles by subject.
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1. Diffusion Processes and Their Sample Paths (with Kiyosi Itô). Grund-

lehren der mathematischen Wissenschaften 125, Springer, New York, 1965;

second (corrected) printing, 1974; reprinted in Classics in Mathematics, 1996.

We adapt the comments by T. Watanabe in Mathematical Reviews: Feller’s

work on linear diffusion was primarily of an analytic character. This spurred

some outstanding probabilists (including the authors) to re-establish Feller’s re-

sults by probabilistic methods, solving some conjectures of Feller and studying

profoundly the sample paths of one-dimensional diffusion. Their purpose is to

extend the theory of linear diffusion to the same level of understanding which

Paul Lévy established for Brownian motion. This is completely realized in this

book by combining special tools such as Brownian local time with the general

theory of Markov processes. This book is the culmination of a ten-year project

to obtain the general linear diffusion from standard Brownian motion by time

change and killing involving local times.

On the occasion of the book’s republishing in Springer’s Classics in Mathe-

matics series, the cover blurb could boast without the least exaggeration: “Since

its first publication . . . this book has had a profound and enduring influence

on research into the stochastic processes associated with diffusion phenomena.

Generations of mathematicians have appreciated the clarity of the descriptions

given of one or more dimensional diffusion processes and the mathematical

insight provided into Brownian motion.”

2. Stochastic Integrals. Academic Press, New York, 1969.

From comments by E. B. Dynkin in Mathematical Reviews: “This little book

is a brilliant introduction to an important interface between the theory of prob-

ability and that of differential equations. The same subject was treated in the

recent book of I. I. Gihman and A. V. Skorokhod. The author’s book is smaller,

contains more examples and applications and is therefore much better suited for

beginners. Chapter 1 is devoted to Brownian motion. Chapter 2 deals with

stochastic integrals and differentials. Chapter 3 deals with one-dimensional

stochastic integral equations. In Chapter 4, stochastic integral equations on

smooth manifolds are investigated. Winding properties of planar Brownian

motion (about one or two punctures) are deduced from the study of Brownian

motion on Riemann surfaces. The last three sections are devoted to constructing

Brownian motion on a Lie group, starting from Brownian motion on the Lie alge-

bra. by means of the so-called product integral and the Maljutov–Dynkin results

about Brownian motion with oblique reflection. In treating the applications of

stochastic integrals, the author frequently explains the main ideas by means of

typical examples, thus avoiding exhausting generalities. This remarkable book
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will be interesting and useful to physicists and engineers (especially in the field

of optimal control) and to experts in stochastic processes.”

3. Fourier Series and Integrals (with Harry Dym). Academic Press, New

York, 1972.

Elliot Lieb of Princeton University wrote: “In my opinion, the book of Dym

and McKean is unique. It is a book on analysis at an intermediate level with

a focus on Fourier series and integrals. The reason the book is unique is that

books on Fourier analysis tend to be quite abstract, or else they are applied

mathematics books which give very little consideration to theory. This book is

a solid mathematics book but written with great fluency and many examples. In

addition to the above considerations, there is also the fact that the literary style

of the authors is excellent, so that the book has a readability that is rarely found

in mathematics books, especially in modern texts.”

4. Stationary Gaussian Processes (with Harry Dym). Academic Press, New

York, 1976.

From comments by S. Kotani in Mathematical Reviews: “This is a mono-

graph on stationary Gaussian processes in one dimension. Given a mean zero

Gaussian process x.t/, t 2R, one may ask the following questions: (i) to predict

the future given the past �1 < t < 0; (ii) to predict the future given the finite

segment of the past �2T < t < 0; (iii) to predict x.t/ for jt j< T given x.t/ for

jt j>T ; (iv) the degree of dependence of the future on the past; (v) the degree of

mixing of the process x.t/. This book contains a clear and concise introduction

to the subject, often original presentations of known results in addition to several

new results. The solution to problem (i) goes back to Kolmogorov, while the

solution of (iii) is due to M. G. Krein in 1954. The authors re-work the solution

of Krein and from that point they completely solve problem (ii). They also make

important contributions to the understanding of problems (iv) and (v).”

5. Elliptic Curves: Function Theory, Geometry and Arithmetic (with Victor

Moll). Cambridge University Press, Cambridge, 1997.

From W. Kleinert’s review in Zentralblatt für Mathematik: “Altogether, this

highly non-standard textbook provides the reader with . . . a deep insight into

historically known mathematical interrelations and references to modern devel-

opments in the analysis, geometry and arithmetic of elliptic curves. The book

reflects the authors’ profound knowledge and deep devotion to the historical

development of the theory of elliptic curves. In these days it is certainly very

profitable for the mathematical community to have such a book among the in-

creasing number of others on the subject . . . this book is not only a perfect

primer for beginners in the field, but also an excellent source for researchers in

various areas of mathematics and physics.”
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Peter Sarnak agrees: “Very unusual in covering the important aspects of el-

liptic curves (analytic, geometric and arithmetic) and their applications — in a

single reasonably sized volume. This account of the subject, in the style of the

original discoverers is, in my opinion, the best way to present the material in an

introductory book.”

Works by subject

Given his wide spectrum of interest, it is difficult to summarize his contribu-

tions in a few paragraphs. We mention some of the principal themes:

Questions in the theory of probability and stochastic processes, beginning with

Brownian motion and leading to the completion of W. Feller’s program, to

found the theory of one-dimensional diffusion on a probabilistic basis rather

than the analytical foundation (Hille–Yosida theorem) that was standard before

the 1950s. One probabilistic approach is to use the natural scale and speed

measure to obtain the diffusion process directly from Brownian motion. This

approach is well documented in Itô–McKean. The other approach is to develop

Itô’s theory of stochastic differential equations (SDE) to obtain the diffusion as

the image of a Brownian motion process via a non-linear mapping which defines

the solution operator of the SDE. This approach, which works equally well in

higher dimensions, is well documented in his Stochastic Integrals.

Geometry and analysis of partial differential equations, especially integrable

systems and algebraic curves, theta functions and Hill’s equation. Hill’s equa-

tion is the one-dimensional Schrödinger equation

�y00C q.x/y D �y

where the potential function q.x/ is periodic. The spectrum of the operator

L D �d2=dx2 C q associated to such an equation is generally made up of

an infinite number of intervals. But it can happen that, in limiting cases, the

spectrum is formed of a finite number of n intervals and an infinite interval

� > �2n. For which potentials does this occur? Several authors have shown

that this phenomenon requires that the potential be a solution of some auxiliary

differential equations. Then Peter Lax showed in 1972/1974 the relation with

certain solutions of the KdV equation. McKean and van Moerbeke solved the

problem by establishing a close relation with the classic theory of hyperelliptic

functions. Then McKean and Trubowitz in 1976/1978 extended the results to the

case nD1, showing that the periodic spectrum of the Hill operator is infinite.

This work proved to be the starting point of a series of new developments asso-

ciated with the names of McKean and Trubowitz, Feldman, Knörrer, Krichever

and Merkl.
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Geometry of KdV equations. The Korteweg–de Vries equation

@q

@t
D 3q

@q

@x
�

1

2

@3q

@x3

describes the propagation of a wave q.x; t/ in a shallow canal. It has certain

common features with other non-linear partial differential equations: KdV has

the structure of the equations of Hamiltonian dynamics; in addition it has cer-

tain “solitary solutions” rather than wave train solutions; finally it has a rich

set of constants of motion related to the spectra of certain associated equations.

These equations appear as “isospectral deformations” of some natural operators.

This series of articles, devoted to the geometry of KdV, is based on tools from

algebraic geometry (in dimension1), especially hyperelliptic curves, their Ja-

cobians, theta functions and their connections with the spectral theory of Hill’s

equation.

Nonlinear equations. The nonlinear equations that interested McKean are the

classical commutation relations

@L

@t
D ŒL;K�;

where L is a differential operator of first order whose coefficients are 2 � 2

matrices of class C 1 and where K is an anti-symmetric operator of the same

type. The KdV equation

@q

@t
D 3q

@q

@x
�

1

2

@3q

@x3

is of this type where L is the Hill operator

LWD��C q;

KWD2D3� 3

2
.qDCDq/;

where D D @=@x and �DD2. In addition to these equations, McKean studied

the sine-Gordon equation

@2u

@t2
D

@2

@x2
� sin q

and the equations of Boussinesq and Camassa–Holm, written, respectively, as

@2q

@t2
D
@2

@x2

�

4

3
q2C

1

3

@2q

@x2

�

;

@u

@t
C 3u

@u

@x
D˛2

�

@3u

@x2@t
C 2

@u

@x

@2u

@x2
Cu

@4u

@x4

�

:
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Financial mathematics. In 1965, following a suggestion of the economist Paul

Samuelson, McKean wrote a short article on the problem of “American options”.

This was first published as an appendix to a treatise by Samuelson on financial

economics. It anticipated by eight years the famous Black–Scholes–Merton

formula. In this paper, McKean shows that the price of an American option

can be computed by solving a free boundary problem for a parabolic partial

differential equation. This work was the first application of nonlinear partial

differential equations in financial mathematics.

Some personal tributes

Paul Malliavin: In 1972 I was working in the theory of functions of several

complex variables, more specifically on the characterization of the set of zeros of

a function of the Nevanlinna class in a strictly pseudo-convex domain of C
n. In

the special case of the ball, by using semi-simple harmonic analysis, I computed

exactly the Green function and obtained the desired characterization. For the

general case I was completely stuck; I looked at the canonical heat equation

associated to an exhaustion function; a constructive tool to evaluate the Green

function near the boundary was urgently needed; then I started to study Itô’s

papers on SDEs; their constructive essence seemed to me quite appropriate for

this estimation problem.

Then McKean’s Stochastic Integrals appeared: I was fully rescued in my

efforts to grasp from scratch the theory of SDEs. McKean’s book is short,

with carefully written concrete estimates; it presents with sparkling clarity a

conceptual vision of the theory. In a note in the Proceedings of the National

Academy I found the needed estimate for the Green function; from there I started

to study the case of weakly pseudoconvex domains, where hypoelliptic operators

of Hörmander type appeared; from that time onward (for the last thirty years) I

became fully involved in probability theory. So Henry has had a key influence

on this turning point of my scientific interests.

From the middle seventies Henry has kindly followed the different steps of my

career, supporting me at every occasion. For instance, when I was in the process

of being fired from Université Paris VI in 1995, he did not hesitate to urgently

cross the Atlantic in order to sit on a special Committee, specially constituted

by the President of Université Paris VI, in order to judge if my current work

was then so obsolete that all the grants for my research associates had to be

immediately eliminated.

With gratitude I dedicate our paper to Henry; also with admiration, discover-

ing every day more and more the breadth and the depth of his scientific impact.
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Daniel Stroock: I have known Henry since 1964, the year he visited Rocke-

feller Institute and decided to leave MIT and New England for the city of New

York.

I do not know any details of Henry’s childhood, but I have a few impressions

which I believe bear some reasonable resemblance to the truth. Henry was the

youngest child of an old New England family and its only son. He grew up in the

North Shore town of Beverly, Massachusetts. where he developed a lasting love

for the land, its inhabitants and the way they pronounced the English language.

Except for the fact that he was taught to ski by his eldest sister, who was a superb

athlete, I gather that Henry was younger than his siblings so that, from an early

age, he learned to fend for himself. He was sent to St. Pauls for high school

where, so far as I know, his greatest distinction was getting himself kicked out

for smoking. Nonetheless, he was accepted to Dartmouth College where, under

the influence of Bruce Knight, he began to develop a taste for mathematics. His

interests in mathematics were further developed by a course which he took one

summer from Mark Kac, who remained a lasting influence on Henry.

In fact, it was Kac who invited Henry to visit and then, in 1966, move to

Rockefeller Institute. Since I finished my PhD the spring before Henry joined

the faculty, I do not know many details of life in the Rockefeller mathematics-

physics group during the late 1960s. However I do know one story from that

period which, even if it’s not totally true, nicely portrays Henry’s affection for

Kac, the founding father of the Rockefeller Mathematics Department. As such,

it was his job to make it grow. For various reasons, not the least of which was

his own frequent absence, Kac was having limited success in this enterprise;

at one faculty meeting Kac solicited suggestions from his younger colleagues.

Henry’s suggestion was that they double Kac’s salary in order to have him there

on a full-time basis.

Henry’s mathematical achievements may be familiar to anyone who is likely

to be reading this book, with one proviso: most mathematicians do not delve

into the variety of topics to which Henry has contributed. Aside from the con-

stant evidence of his formidable skills, the property shared by all of Henry’s

mathematics is a strong sense of taste. Whether it is his early collaboration with

Itô, his excursion into Gaussian prediction theory, or his interest in completely

integrable systems and spectral invariance, Henry has chosen problems because

they interest him and please his sense of aesthetics. As a result, his mathematics

possesses originality which is his own, and a beauty which the rest of us can

appreciate.
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Srinivasa Varadhan, former director of the Courant Insitute: Henry has been

my colleague for nearly thirty-five years. I have always been impressed by the

number of students Henry has produced. I checked the Genealogy project. It

lists him with nearly fifty students. It is even more impressive that he has nearly

three hundred descendants, which means he has taught his students how to teach.

Henry is known for meticulous attention to detail. When Dan Stroock and I

wrote our first paper on the martingale problem we gave the manuscript to Henry

for comments. The paper was typewritten, before the days of word processors

and xerox machines. Henry gave it back to us within days and the comments

filled out all the empty space between the lines on every page. The typist was

not amused.

Henry’s own work drifted in the seventies out of probability theory into in-

tegrable systems and then back again at some point into probability. Talking to

Henry about any aspect of mathematics is always fun. He has many interesting

but unsolvable problems and will happily share them with you. If I come across

a cute proof of some thing Henry is the first one I will think of telling.

Charles Newman, member and former Director of the Courant Institute:

Henry’s earliest papers (Ann. Math. 1955) concerned sample functions of sta-

ble processes, together with several papers on Brownian local time (J. Math.

Kyoto 1962, Adv. Math. 1975). These topics and the general subject of one-

dimensional diffusions were of course analyzed in great detail in Henry’s cele-

brated 1965 book with Itô. I mention these all because they play a major role in

my own much later work (jointly with Fontes and Isopi, Ann. Prob. 2002) on

scaling limits of random walks with random rates to singular diffusions (with

random speed measures).

There are a number of other connections between papers of Henry’s and my

own — typically with a multi-decade gap. For example, there are close con-

nections between Henry’s paper “Geometry of differential space” (Ann. Prob.

1973) and my 2003 paper with D’Aristotile and Diaconis, “Brownian motion

and the classical groups”.

The paper by Camia and myself in this volume is less directly related to

Henry’s work. However, the general subject of Schramm–Loewner evolutions,

in which our paper belongs, does combine many of the same themes that have

permeated Henry’s work: Brownian motions and related processes, complex

variable theory, and statistical mechanics.
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Bitangential direct and inverse problems for

systems of differential equations

DAMIR Z. AROV AND HARRY DYM

ABSTRACT. A number of results obtained by the authors on direct and inverse

problems for canonical systems of differential equations, and their implications

for certain classes of systems of Schrödinger equations and systems with po-

tential are surveyed. Connections with the theory of J -inner matrix valued

and reproducing kernel Hilbert spaces, which play a basic role in the original

developments, are discussed.

1. Introduction

In this paper we shall present a brief survey of a number of results on direct

and inverse problems for canonical integral and differential systems that have

been obtained by the authors over the past several years. We shall not attempt

to survey the literature, which is vast, or to compare the methods surveyed here

with other approaches. The references in [Arov and Dym 2004; 2005b; 2005c]

(the last of which is a survey article) may serve at least as a starting point for

those who wish to explore the literature.

The differential systems under consideration are of the form

y0.t; �/D i�y.t; �/H.t/J; 0 6 t < d ; (1.1)

where H.t/ is an m�m locally summable mvf (matrix valued function) that is

positive semidefinite a.e. on the interval Œ0; d/, J is an m�m signature matrix,

i.e., J D J � and J �J D Im, and y.t; �/ is a k �m mvf.

The matrizant or fundamental solution, Yt .�/DY .t; �/, of (1.1) is the unique

locally absolutely continuous m�m solution of (1.1) that meets the initial con-

dition Y0.�/D Im, i.e.,

Yt .�/D ImC i�

Z

t

0

Ys.�/H.s/ ds J for 0� t < d : (1.2)

1
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Standard estimates yield the following properties:

(1) Yt .�/ is an entire mvf that is of exponential type in the variable � for each

fixed t 2 Œ0; d/.

(2) The identity

J �Yt .�/J Yt .!/
�

�2� i.��!/
D

1

2�

Z

t

0

Ys.�/H.s/Ys.!/
�ds (1.3)

holds for each t 2 Œ0; d/ and for every pair of points �; ! 2 C.

(3) Yt .�/ is J -inner (in the variable �) in the open upper half plane CCD f� 2

C W �C� > 0g for each fixed t 2 Œ0; d/. This means that

J �Yt .!/J Yt .!/
� � 0 for ! 2 CC ;

with equality if ! 2 R.

(4) J �Yt .!/J Yt .!/
� D 0 for ! 2 C.

(5) The kernel

Kt

!.�/D
J �Yt .�/J Yt .!/

�

�2� i.��!/

is positive in the sense that

n
X

i;jD1

u�

i
Kt

!j
.!i/uj > 0

for every choice of the points !1; : : : ; !n, vectors u1; : : : ;un and every pos-

itive integer n.

(6) Y �1

t1
Yt2

is also an entire J -inner mvf for 0� t1 � t2 < d .

Every m�m signature matrix J ¤˙Im is unitarily equivalent to the matrix

jpq D

�

Ip 0

0 �Iq

�

; pC q Dm;

with

p D rank .ImCJ /� 1 and q D rank .Im�J /� 1 :

The main examples of signature matrices, apart from ˙jpq , are ˙jp , ˙Jp and

˙Jp, where

Jp D

�

0 �Ip

�Ip 0

�

; jp D

�

Ip 0

0 �Ip

�

; Jp D

�

0 �iIp

iIp 0

�

:
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In the last three examples q D p (so that 2p D m). The signature matrices Jp

and jp are connected by the signature matrix

VD
1
p

2

�

�Ip Ip

Ip Ip

�

; i.e., VJpVD jp and VjpVD Jp :

There is a natural link between each of the three principal signature matrices

and each of the following three classes of mvf’s that are holomorphic in CC,

the open upper half plane:

(1) The Schur class Sp�q of p� q mvf’s ".�/ that are holomorphic in CC and

satisfy the constraint Iq � ".�/
�".�/� 0, since

Iq � ".�/
�".�/� 0” Œ ".�/� Iq � jpq

�

".�/

Iq

�

� 0 : (1.4)

(2) The Carathéodory class Cp�p of p�p mvf’s �.�/ that are holomorphic in

CC and satisfy the constraint �.�/C �.�/� � 0, since

�.�/C �.�/� � 0” Œ �.�/� Ip �Jp

�

�.�/

Ip

�

� 0 : (1.5)

(3) The Nevanlinna class Rp�p of p � p mvf’s �.�/ that are holomorphic in

CC and satisfy the constraint .�.�/� �.�/�/= i � 0, since

.�.�/� �.�/�/= i � 0” Œ �.�/� Ip �Jp

�

�.�/

Ip

�

� 0 ; (1.6)

A general m�m mvf U.�/ is said to be J -inner with respect to the open upper

half plane CC if it is meromorphic in CC and if

(1) J �U.�/�JU.�/� 0 for every point � 2 hC

U
and

(2) J �U.�/�JU.�/D 0 a.e. on R,

in which hC

U
denotes the set of points in CC at which U is holomorphic. This

definition is meaningful because every mvf U.�/ that is meromorphic in CC and

satisfies the first constraint automatically has nontangential boundary values.

The second condition guarantees that det U.�/ 6� 0 in hC

U
and hence permits a

pseudo-continuation of U.�/ to the open lower half plane C� by the symmetry

principle

U.�/D J fU #.�/g�1J for � 2 C� ;

where f #.�/D f .�/�.

The symbol U.J /will denote the class of J -inner mvf’s considered on the set

hU of points of holomorphy of U.�/ in the full complex plane C and E\U.J /

will denote the class of entire J -inner mvf’s.

If U 2U.Im/, then U 2 Sm�m and U.�/ is said to be an m�m inner mvf.

The set of m�m inner mvf’s will be denoted Sm�m

in
and the set of outer m�m



4 DAMIR Z. AROV AND HARRY DYM

mvf’s in Sm�m will be denoted Sm�m

out
. (It is perhaps useful to recall that if

s 2Sm�m, then s 2Sm�m

out
if and only if det s 2S1�1

out
, and that if s 2S1�1, then

s 2 S1�1

out
” ln js.i/j D

1

�

Z

1

�1

ln js.�/j

1C�2
d� :/

If A 2U.Jp/, there exists a pair of p�p inner mvf’s b3.�/ and b4.�/ that are

uniquely characterized in terms of the blocks of B.�/DA.�/V and the set

N
p�p

out
D
ng

h
W g 2 S

p�p

out
and h 2 S1�1

out

o

by the constraints

b#
21

b3 2 N
p�p

out
and b4b22 2 N

p�p

out
;

up to a constant p � p unitary multiplier on the left of b3.�/ and a constant

p�p unitary multiplier on the right of b4.�/. Such a pair will be referred to as

an associated pair of the second kind for A.�/ and denoted

fb3; b4g 2 apII .A/ :

(There is also a set of associated pairs fb1; b2g of the first kind that is more

convenient to use in some other classes of problems that will not be discussed

here.) The pairs fbt

3
; bt

4
g 2 apII .At / that are associated with the matrizant

At .�/, 0� t < d , of a canonical system of the form (1.1) with J DJp are entire

p�p inner mvf’s that are monotonic in the sense that

.b
t1

3
/�1b

t2

3
and b

t2

4
.b

t1

4
/�1

are p �p entire inner mvf’s for 0 � t1 � t2 < d . Moreover, they are uniquely

specified by imposing the normalization conditions bt

3
.0/ D bt

4
.0/ D Ip for

0� t < d .

2. Reproducing kernel Hilbert spaces

If U 2U.J / and

�!.�/ D �2� i.��!/ ;

then the kernel

KU

! .� D
J �U.�/JU.!/�

�!.�/

is positive on hU �hU in the sense that
P

n

i;jD1
u�

i
KU

!j
.!i/uj � 0 for every set

of vectors u1; : : : ;un 2 C
m and points !1; : : : ; !n 2 hU ; see [Dym 1989], for

example. Therefore, by the matrix version of a theorem of Aronszajn [1950],

there is an associated RKHS (reproducing kernel Hilbert space) H.U / of m�1

mvf’s defined and holomorphic in hU with RK (reproducing kernel) KU

! .�/.

This means that for every choice of ! 2 hU , u 2 C
m and f 2H.U /,
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(1) K!u 2H.U / and

(2) hf;K!uiH.U / D u�f .!/ .

Thus, item (5) in the list of properties of the matrizant implies that there is a

RKHS H.Yt / of entire m�1 mvf’s with RK Kt

!.�/ for each t 2 Œ0; d/, i.e., for

each choice of ! 2 C, u 2 C
m and f 2H.Yt /,

(a) Kt

!u 2H.Yt / and

(b) hf;Kt

!uiH.Yt / D u�f .!/.

Moreover, property (6) of the matrizant Yt implies that if 0� t1 � t2 < d , then

H.Yt1
/�H.Yt2

/ as sets and

kf kH.Yt2
/ 6 kf kH.Yt1

/

for every f 2H.Ut1
/.

In this short review we shall restrict attention to canonical systems with sig-

nature matrices J DJp and shall denote the matrizant of such a system by At .�/

and the corresponding RK by K
At
! .�/. Thus,

KAt
! .�/D

Jp �At .�/JpAt .!/
�

�!.�/
:

Let

N �

2
D
p

2 Œ 0 Ip � ; Bt .�/DAt .�/V

and

Et .�/DN �

2
Bt .�/D ŒE�.t; �/ EC.t; �/ �

with p�p components E˙.t; �/. Then, since

N �

2
KAt
! .�/N2 D�

Et .�/jpEt .!/
�

�!.�/
;

the kernel

KEt
! .�/D�

Et .�/jpEt .!/
�

�!.�/
D

EC.t; �/EC.t; !/
��E�.t; �/E�.t; !/

�

�!.�/

is also positive and defines a RKHS of entire p � 1 entire mvf’s that we shall

denote B.Et /. These spaces will be called de Branges spaces, since they were

introduced and extensively studied by L. de Branges; see e.g., [de Branges

1968b; 1968a] and, for additional applications and expository material, [Dym

and McKean 1976; Dym 1970; Dym and Iacob 1984]. They can be characterized

in terms of the blocks E˙.t; �/ by the following criteria:

f 2B.Et /” .Et

C
/�1f 2H

p

2
and .Et

�
/�1f 2K

p

2
;
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where H
p

2
denotes the vector Hardy space of order 2 and K

p

2
denotes its or-

thogonal complement with respect to the standard inner product

hg; hist D

Z

1

�1

h.�/�g.�/ d� (2.1)

in L
p

2
.R/. Moreover, if f 2B.Et /, then

kf k2
B.Et /

D h.Et

C
/�1f; .Et

C
/�1f ist :

It turns out that with each matrizant At .�/, there is a unique associated pair

bt

3
.�/ and bt

4
.�/ of p�p entire inner mvf’s that meet the normalization condi-

tions bt

3
.0/D Ip and bt

4
.0/D Ip and corresponding sets of RKHS’s H.bt

3
/ and

H�.b
t

4
/ with RK’s

k
b

t
3
! .�/D

Ip � bt

3
.�/bt

3
.!/�

�!.�/
and `

b
t
4
! .�/D

bt

4
.�/bt

4
.!/�� Ip

�!.�/
;

respectively.

3. Linear fractional transformations

The linear fractional transformation TU based on the four block decomposi-

tion

U.�/D

�

u11.�/ u12.�/

u12.�/ u22.�/

�

;

of an m�m mvf U.�/ that is meromorphic in CC with diagonal blocks u11.�/

of size p�p and u22.�/ of size q � q is defined on the set

D.TU /D fp� q meromorphic mvf’s ".�/ in CC

such that detfu21.�/".�/Cu22.�/g 6� 0 in CCg

by the formula

TU Œ"�D .u11"Cu12/.u21"Cu22/
�1:

If U1;U2 2U.J / and if " 2 D.TU2
/ and TU2

Œ"� 2 D.TU1
/ then

TU1U2
Œ"�D TU1

ŒTU2
Œ"�� :

The notation

TU ŒE� D fTU Œ"� W " 2Eg for E � D.TU /

will be useful.

The principal facts are that

(1) U 2U.jpq/÷ Sp�q � DTU
and TU ŒS

p�q �� Sp�q .

(2) U 2U.Jp/÷ TU ŒC
p�p \DTU

�� Cp�p.
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Moreover, if

B.�/ D A.�/V ;

then

TAŒC
p�p \D.TA/�� TB ŒS

p�p \D.TB/�� Cp�p ;

where the first inclusion may be proper. The set

C.A/ D TB ŒS
p�p \D.TB/� :

is more useful than the set TAŒC
p�p \D.TA/�.

We remark that

Sp�p � D.TB/” b22.!/b22.!/
� > b21.!/b21.!/

� (3.1)

for some (and hence every) point ! 2 hC

A
; see Theorem 2.7 in [Arov and Dym

2003a].

4. Restrictions and consequences

In addition to fixing the signature matrix J D Jp in the canonical system

(1.1), we shall assume that H.At /�Lm

2
for every t 2 Œ0; d/, i.e., (in our current

terminology) At belongs to the class UrsR.Jp/ of right strongly regular J -inner

mvf’s. (In our earlier papers the set UrsR.Jp/ was designated UsR.Jp/.) One

of the important consequences of this assumption rests on the fact that

H.At /�Lm

2
” C.At /\ C̊p�p ¤? ; (4.1)

where

C̊p�p D fc 2 Cp�p W c 2H
p�p

1 and Rc.�/� ıcIp a.e. on Rg (4.2)

and ıc > 0. Other characterizations of the class UrsR.J / in terms of the Treil–

Volberg matrix version of the Muckenhoupt .A/2 condition presented in [Treil

and Volberg 1997] are furnished in [Arov and Dym 2001] and [Arov and Dym

2003b].

If At 2UrsR.Jp/ for every t 2 Œ0; d/, the following conclusions are in force:

(1) The unique normalized monotonic chain of p�p entire inner mvf’s

fbt

3
; bt

4
g 2 apII .At /

consists of continuous functions of t on the interval 0� t < d for each fixed

point � 2 C.

(2) The RKHS H.At1
/ is isometrically included in the RKHS H.At2

/ for 0 �

t1 � t2 < d .
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(3) The de Branges spaces B.Et / based on the de Branges matrix

Et .�/D
p

2 Œ 0 Ip �At .�/V ; for 0� t < d

are nested by isometric inclusion, i.e., B.Et1
/ is isometrically included in

B.Et2
/ for 0� t1 � t2 < d .

(4) B.Et /DH.bt

3
/˚H�.b

t

4
/ as Hilbert spaces with equivalent norms.

(5) The mapping N �

2
W f 2 H.At /� N �

2
f 2 B.Et / is unitary for every

t 2 Œ0; d/.

(6) If Sp�p �D.TBt0
/ for some t0 2 Œ0; d/, then:

(a) Sp�p � D.TBt
/ for every t 2 Œt0; d/.

(b) C.At2
/� C.At1

/ for t0 � t1 � t2 < d .

(c)
T

t0�t<d
C.At /¤?.

(d) fc.!/ W ! 2 CC and c 2
T

t0�t<d
C.At /g is a (Weyl–Titchmarsh)

matrix ball with left and right semiradii R`.!/ and Rr .!/ with

rank R`.!/D rankf lim
t"1

bt

3
.!/bt

3
.!/�g (4.3)

and

rank Rr .!/D rankf lim
t"1

bt

4
.!/�bt

4
.!/g : (4.4)

Moreover, these ranks are independent of the choice of the point ! 2 CC.

An mvf c.�/ that belongs to the set

Cimp.H /D
\

t0�t<d

C.At /

is called an input impedance (or Weyl function) of the system (1.1). If H 2

Lm�m

1
, then, without loss of generality, it may be assumed that d <1. In this

case, Ad .�/ is the monodromy matrix of the system (1.1), Cimp.H / D C.Ad /

and the semiradii R`.!/ and Rr .!/ are both positive definite.

5. Inverse problems for canonical systems

Inverse problems for the canonical system (1.1) aim to recover H.t/, given

some information about the solution of the system. In this direction it is conve-

nient to first consider inverse problems for the canonical integral system

y.t; �/D y.0; �/C i�

Z

t

0

y.s; �/ dM.s/Jp for 0� t < d ; (5.1)
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in which the mass function M.t/, 0� t <d is a continuous nondecreasing m�m

mvf on the interval Œ0; d/ with M.0/D 0. Then the matrizant At .�/D A.t; �/

of this system is a continuous solution of the equation

At .�/D ImC i�

Z

t

0

As.�/ dM.s/Jp for 0� t < d (5.2)

and consequently,

@At

@�
.�/
ˇ

ˇ

ˇ

�D0

D lim
�!0

At .�/� Im

�
D iM.t/Jp : (5.3)

Thus, M.t/, 0 � t < d , can be recovered from the matrizant At .�/, 0 � t < d .

The main tool is the following result, which, for a given triple b3 2 S
p�p

in
,

b4 2 S
p�p

in
and c 2 Cp�p, is formulated in terms of the sets

C.b3; b4I c/D fec 2 Cp�p W b�1

3
.ec � c/b�1

4
2 N

p�p

C
g

and

N
p�p

C
D
ng

h
W g 2 Sp�p and h 2 S1�1

out

o

:

The set C.b3; b4I c/ was identified as the set of solutions of a generalized Cara-

théodory interpolation problem that is formulated in terms of the three given

mvf’s b3, b4 and c in [Arov 1993] and connections with the class U.Jp/ were

studied there. These results were developed further in [Arov and Dym 1998]

in the case that b3.�/ and b4.�/ are also entire mvf’s. In that special case, the

interpolation problem is equivalent to a bitangential Krein extension problem in

a class of helical mvf’s. Krein understood the deep connections between such

extension problems and inverse problems for canonical systems. Theorem 5.2,

below, illustrates the Krein strategy of identifying the solution of an inverse

problem with an appropriately defined chain of extension problems; see [Arov

and Dym 2005b] for more details.

THEOREM 5.1. Let b3.�/, b4.�/ be a pair of entire p � p inner mvf’s and let

c 2 Cp�p. Then there exists at most one mvf A 2 E\U.Jp/ such that

(1) C.A/D C.b3; b4I c/.

(2) fb3; b4g 2 apII .A/.

(3) A.0/D Im.

Moreover, if

C.b3; b4I c/\ C̊p�p ¤? ;

there exists exactly one mvf A 2 E\U.Jp/ for which these three conditions are

met and it is automatically right strongly regular.
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Correspondingly, in our formulation of the inverse impedance problem (inverse

spectral problem) for the canonical integral system (5.1) we shall specify a con-

tinuous monotonic normalized chain of entire inner p � p entire inner mvf’s

fbt

3
.�/; bt

4
.�/g, in addition to an mvf c 2 Cp�p (or a spectral function �.�/).

Spectral functions and the inverse spectral problem are introduced in Section 9.

THEOREM 5.2. Let fbt

3
.�/; bt

4
.�/g; 0 � t < d , be a normalized monotonic

continuous chain of pairs of entire inner p � p mvf’s and let c 2 Cp�p. Then

there exists at most one Hamiltonian H.t/, 0 � t < d , such that the matrizant

At .�/ of the corresponding canonical system meets the following conditions for

every t 2 Œ0; d/:

(1) C.At /D C.bt

3
; bt

4
I c/.

(2) fbt

3
; bt

4
g 2 apII .At /.

(3) At .0/D Im.

There exists exactly one continuous nondecreasing mvf M.t/ on the interval

Œ0; d/ with M.0/ D 0 such that the matrizant At of the integral system (5.1)

meets these conditions if

C.bt

3
; bt

4
I c/\ C̊p�p ¤? for every t 2 Œ0; d/ : (5.4)

PROOF. See Theorem 7.9 in [Arov and Dym 2003a]. ˜

6. Description of the RKHS’s H.A/ and B.E/ for A 2UrsR.Jp/

THEOREM 6.1. If A 2 UrsR.Jp/, fb3.�/; b4.�/g 2 apII .A/ and c 2 C.A/\

H
p�p

1 , then

H.A/ D

��

�˘Cc�gC˘�ch

gC h

�

W g 2H.b3/ and h 2H�.b4/

�

;

where ˘C denotes the orthogonal projection of L
p

2
onto the Hardy space H

p

2
,

˘� D I �˘C denotes the orthogonal projection of L
p

2
onto K

p

2
DL

p

2
	H

p

2
,

H.b3/DH
p

2
	 b3H

p

2
and H�.b4/DK

p

2
	 b�

4
K

p

2
:

Moreover,

f D

�

�˘Cc�gC˘�ch

gC h

�

÷hf; f iH.A/ D h.cC c�/.gC h/;gC hist ;

where g 2 H.b3/, h 2 H�.b4/ and h � ; � ist denotes the standard inner product

(2.1) in L
p

2
.

PROOF. See Theorem 3.8 in [Arov and Dym 2005a]. ˜
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THEOREM 6.2. If A 2 UrsR.Jp/, fb3; b4g 2 apII .A/ and E.�/ D N �

2
B.�/,

then

hf; f iH.A/ D 2kŒ0 Ip �f k
2

B.E/

for every f 2H.A/ and

B.E/ D H.b3/˚H�.b4/ as Hilbert spaces with equivalent norms :

PROOF. See Theorem 3.8 in [Arov and Dym 2005a]. ˜

REMARK 6.3. If B.E/ D H.b3/˚H�.b4/ as linear spaces, the two norms in

these spaces are equivalent, i.e., there exist a pair of positive constants 1; 2

such that

1kf kst � kf kB.E/ � 2kf kst

for every f 2 B.E/. This follows from the closed graph theorem and the fact

that B.E/ and H.b3/˚H�.b4/ are both RKHS’s.

7. A basic conclusion

In order to apply Theorem 5.2, we need to know when condition (5.4) is in

force. In particular, the condition (5.4) is satisfied if c 2 C̊p�p. However, if the

given matrix c 2 Cp�p \W
p�p

C
. /, i.e., if c.�/ admits a representation of the

form

c.�/D cC

Z

1

0

ei�t hc.t/ dt with c 2 C
p�p and hc 2L

p�p

1
.Œ0;1// ;

(7.1)

then condition (5.4) will be in force if c C 
�

c
> 0, even if det R c.�/ D 0 at

some points � 2 R; see Theorem 5.2 in [Arov and Dym 2005a]. Moreover, if

either

lim
�"1

b
t0

3
.i�/D 0 or lim

�"1

b
t0

4
.i�/D 0

for some point t0 2 Œ0; d/, the condition  C  � > 0 is necessary for (5.4) to be

in force and hence for the existence of a canonical system (1.1) with a matrizant

At .�/, 0� t < d , that meets the conditions (1) (2) and (3) in Theorem 5.2; see

Theorem 5.4 in [Arov and Dym 2005a].

REMARK 7.1. The method of solution depends upon the interplay between the

RKHS’s that play a role in the parametrization formulas presented in Theorem

6.1 and their corresponding RK’s. This method also yields the formulas for

M.t/ and the corresponding matrizant At .�/ that are discussed in the next

section. It differs from the known methods of Gelfand–Levitan, Marchenko

and Krein, which are not directly applicable to the bitangential problems under

consideration.
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8. An algorithm for solving the inverse impedance problem

In this section we shall assume that an mvf c 2 Cp�p and a normalized

monotonic continuous chain of pairs fbt

3
.�/; bt

4
.�/g , 0 � t < d , of entire inner

p�p mvf’s that meet the condition (5.4) have been specified. Then there exists

an mvf

ct 2 C.bt

3
; bt

4
I c/\H

p�p

1 (8.1)

for every t 2 Œ0; d/ and hence, the operators

˚ t

11
D˘H.bt

3
/Mct

ˇ

ˇ

ˇ

H
p

2

; ˚ t

22
D˘�Mct

ˇ

ˇ

ˇ

H�.b
t
4
/
; ˚ t

12
D˘H.bt

3
/Mct

ˇ

ˇ

ˇ

H�.b
t
4
/
;

(8.2)

Y t

1
D˘H.bt

3
/

˚

Mct C .Mct /�
	
ˇ

ˇ

H.bt
3
/
D 2R

�

˚ t

11

ˇ

ˇ

H.bt
3
/

�

(8.3)

and

Y t

2
D˘H�.b

t
4
/

˚

Mct C .Mct /�
	
ˇ

ˇ

H�.b
t
4
/
D 2R

�

˘H�.b
t
4
/˚

t

22

�

(8.4)

are well defined. Moreover, they do not depend upon the specific choice of

the mvf ct in the set indicated in formula (8.1). In order to keep the no-

tation relatively simple, an operator T that acts in the space of p � 1 vvf’s

will be applied to p � p mvf’s with columns f1; : : : ; fp column by column:

T Œf1 � � � fp �D ŒTf1 � � �Tfp �.

We define three sets of p�p mvf’s byt

ij
.�/,but

ij
.�/ andbxt

ij
.�/ by the following

system of equations, in which �3.t/ and �4.t/ denote the exponential types of

bt

3
.�/ and bt

4
.�/, respectively,

et .�/D ei�t and .R0f /.�/D ff .�/�f .0/g=� W

byt

11
.�/D i

�

˚ t

11
.R0e�3.t/Ip/

�

.�/ ; byt

12
.�/D�i.R0bt

3
/.�/;

byt

21
.�/D i

�

.˚ t

22
/�.R0e��4.t/Ip/

�

.�/ ; byt

22
.�/D i.R0.b

t

4
/�1/.�/;

(8.5)

THEOREM 8.1. In the setting of this section, there exists exactly one mvf At 2

E\U.Jp/ for each t 2 Œ0; d/ such that:

(1) C.At /D C.bt

3
; bt

4
I c/.

(2) fbt

3
; bt

4
g 2 apII .At /.

(3) At .0/D Im.

The RK Kt

!.�/ of the RKHS H.At / evaluated at ! D 0 is given by the formula

Kt

0
.�/D

1

2�

�

bxt

11
.�/Cbxt

21
.�/ bxt

12
.�/Cbxt

22
.�/

but

11
.�/Cbut

21
.�/ but

12
.�/Cbut

22
.�/

�

; (8.6)

where:
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(1) Thebut

ij
.�/ are p�p mvf’s such that the columns ofbut

1j
.�/ belong to H.bt

3
/

and the columns of but

2j
.�/ belong to H�.b

t

4
/. The but

ij
.�/ may be defined as

the solutions of the systems of equations:

Y t

1
but

1j
C˚ t

12
but

2j
D byt

1j
.�/

.˚ t

12
/�but

1j
CY t

2
but

2j
D byt

2j
.�/ ; j D 1; 2 :

(8.7)

(2) The mvf’s bxt

ij
.�/ are defined by the formulas

bxt

1j
.�/ D�.˚ t

11
/�but

1j
;

bxt

2j
.�/ D ˚ t

22
but

2j
; j D 1; 2 :

(8.8)

PROOF. This theorem is Theorem 4.2 of [Arov and Dym 2005a]. ˜

REMARK 8.2. In the one-sided cases when either bt

4
.�/ D Ip or bt

3
.�/ D Ip ,

the formulas for recovering M.t/ are simpler:

If, for example, bt

4
.�/ D Ip , then �4.t/ D 0 and H�.b

t

4
/ D f0g and hence

equations (8.7) and (8.8) simplify to

Y t

1
but

1j
D byt

1j
.�/ and bxt

1j
D�.˚ t

11
/�but

1j
for j D 1; 2 ; (8.9)

and

but

2j
D 0 and bxt

2j
D 0 for j D 1; 2 :

THEOREM 8.3. Let fc.�/I bt

3
.�/; bt

4
.�/, 0 � t < dg be given where c 2 Cp�p,

fbt

3
.�/; bt

4
.�/g, 0� t < d , is a normalized monotonic continuous chain of pairs

of entire inner p�p mvf’s and let assumption (5.4) be in force. Then the unique

solution M.t/ of the inverse input impedance problem considered in Theorem

5.2 is given by the formula

M.t/D 2�Kt

0
.0/

D

Z �3.t/

0

�

xt

11
.a/ xt

12
.a/

ut

11
.a/ ut

12
.a/

�

daC

Z

0

��4.t/

�

xt

21
.a/ xt

22
.a/

ut

21
.a/ ut

22
.a/

�

da (8.10)

and the corresponding matrizant may be defined by the formula

At .�/D ImC 2� i�Kt

0
.�/Jp ; (8.11)

where Kt

0
.�/ is specified by formula (8.6) and xt

ij
.a/ and ut

ij
.a/ designate the

inverse Fourier transforms of bxt

ij
.�/ and but

ij
.�/, respectively.

PROOF. Formula (8.11) follows from the definition of the RK Kt

0
.�/DK

At

0
.�/

and the fact that At .0/ D Im. Formula (8.10) follows from (5.3), (8.6) and

(8.11). ˜
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9. Spectral functions

The term spectral function is defined in two different ways: The first defini-

tion is in terms of the generalized Fourier transform

.F2f /.�/ D Œ0 Ip �
1
p
�

Z

d

0

A.s; �/ dM.s/ f .s/ (9.1)

based on the matrizant of the canonical system (5.1) applied initially to the set

of f 2Lm

2
.dM sI Œ0; d// with compact support inside the interval Œ0; d/.

A nondecreasing p � p mvf �.�/ on R is said to be a spectral function for

the system (5.1) if the Parseval equality

Z

1

�1

.F2f /.�/
�d�.�/.F2f /.�/ D

Z

d

0

f .t/�dM.t/f .t/ (9.2)

holds for every f 2 Lm

2
.dM sI Œ0; d// with compact support. The notation

˙d

sf
.M / will be used to denote the set of spectral functions of a canonical

system of the form (5.1).

REMARK 9.1. The generalized Fourier transform introduced in formula (9.1) is

a special case of the transform

.FLf /.�/ D L�
1
p
�

Z

d

0

A.s; �/ dM.s/ f .s/ (9.3)

that is based on a fixed m�p matrix L that meets the conditions L�JpLD 0

and L�LD Ip. The mvf y.t; �/DL�At .�/ is the unique solution of the system

(5.1) that satisfies the initial condition y.0; �/DL�. Spectral functions may be

defined relative to the transform FL in just the same way that they were defined

for the transform F2. Direct and inverse spectral problems for these spectral

functions are easily reduced to the corresponding problems based on F2.; see

Sections 4 and 5 of [Arov and Dym 2004] and Section 16 of [Arov and Dym

2005c] for additional discussion.

The second definition of spectral function is based on the Riesz–Herglotz rep-

resentation

c.�/ D i˛� iˇ�C
1

� i

Z

1

�1

�

1

���
�

�

1C�2

�

d�.�/ ; � 2 CC ; (9.4)

which defines a correspondence between p � p mvf’s c 2 Cp�p and a set

f˛; ˇ; �g, in which �.�/ is a nondecreasing p�p mvf on R that is normalized

to be left continuous with �.0/D 0 and is subject to the constraint
Z

1

�1

d trace �.�/

1C�2
<1 ; (9.5)
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and ˛ and ˇ are constant p�p matrices such that ˛ D ˛� and ˇ � 0.

The mvf �.�/ in the representation (9.4) will be referred to as the spectral

function of c.�/. Correspondingly, if F� Cp�p, then

.F/sf D f� W � is the spectral function of some c 2 Fg :

If A 2 UrsR.Jp/ and c.�/ D TAŒIp �, then ˇ D 0 and �.�/ is absolutely con-

tinuous with � 0.�/ D Rc.�/ a.e. on R; see Lemma 2.2 and the discussion

following Lemma 2.3 in [Arov and Dym 2005a]. Moreover, if A 2 UrsR.Jp/

and Sp�p �D.TAV/, then for each � 2 .C.A//sf , there exists at least one p�p

Hermitian matrix ˛ such that

c.˛/.�/D i˛C
1

� i

Z

1

�1

�

1

���
�

�

1C�2

�

d�.�/ (9.6)

belongs to C.A/; see Theorem 2.14 in [Arov and Dym 2004].

We shall also make use of the following condition on the growth of the mvf

�t

1
.�/D bt

4
.�/bt

3
.�/:

k�a

1
.rei� C!/k �  < 1 on the indicated ray r � 0 in CC ; (9.7)

i.e., the inequality holds for some fixed choice of � 2 Œ0; ��, ! 2 CC, a 2 .0; d/

and all r � 0. It is readily checked that if this inequality is in force for some

point a 2 .0; d/, then it holds for all t 2 Œa; d/.

REMARK 9.2. The condition (9.7) will be in force if

e�a�
t0

1
.�/ 2 S

p�p

in

for some choice of a> 0 and t0 2 .0; d/.

These observations leads to the following conclusion:

LEMMA 9.3. If the matrizant At .�/ of the canonical differential system (1.1)

with J D Jp satisfies the condition

C.At /\ C̊p�p ¤? for every t 2 Œ0; d/ (9.8)

and if condition (9.7) is in force for some a 2 Œ0; d/ when fbt

3
; bt

4
g 2 apII .At /

for t 2 Œ0; d/ and if c 2 C.Aa/, then ˇ D 0 in the representation (9.4).

In view of the fact that

A 2UrsR.Jp/” C.A/\ C̊p�p ¤? ; (9.9)

the conditions (5.4) and (9.8) are equivalent if C.At / D C.bt

3
; bt

4
I c/ for every

0� t < d . In particular, these conditions are satisfied if Cd

imp.M /\ C̊p�p ¤?.

They are also satisfied if there exists an mvf c 2Cd

imp.M / of the form (7.1) with

 C  � > 0, by Theorem 5.2 in [Arov and Dym 2005a].
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Direct problems. Two direct problems for a given canonical system with mass

function M.t/ on the interval Œ0; d/ are to describe the set of input impedances

Cd

imp.M / and the set ˙d

sf
.M / of spectral functions of the system.

THEOREM 9.4. Let At .�/ denote the matrizant of a canonical integral system

(5.1) and suppose that the two conditions (5.4) and (9.7) are met. Then

(1) ˙d

sf
.M /D .Cd

imp.M //sf .

(2) To each � 2 ˙d

sf
.M / there exists exactly one mvf c.�/ 2 Cd

imp.M / with

spectral function �.�/. Moreover, this mvf c.�/ is equal to one of the mvf’s

c.˛/.�/ defined by formula (9.6) for some Hermitian matrix ˛.

(3) If d < 1 and trace M.t/ < ı < 1 for every t 2 Œ0; d/, equation (5.1)

and the matrizant At .�/ may be considered on the closed interval Œ0; d � and

Cd

imp.M /D C.Ad /.

PROOF. See Theorem 2.21 in [Arov and Dym 2004]. ˜

A spectral function � 2 ˙d

sf
.M / of the canonical integral system (5.1) with

J D Jp is said to be orthogonal if the isometric operator that extends the gen-

eralized Fourier transform F2 defined by formula (9.1) maps Lm

2
.dM I Œ0; d//

onto L
p

2
.d� I R/.

THEOREM 9.5. Let the canonical integral system (5.1) with mass function

M.t/ and matrizant At .�/ be considered on a finite closed interval Œ0; d � (so

that trace M.d/ < 1) and let A.�/ D Ad .�/, B.�/ D A.�/V and E.�/ Dp
2Œ0 Ip �B.�/. Suppose further that

(a) .C.A//sf D ˙d

sf
.M / and

(b) KE
!.!/ > 0 for at least one (and hence every) point ! 2 CC.

Then:

(1) Sp�p � D.TB/.

(2) The spectral function �.�/ of the mvf c.�/DTBŒ"� is an orthogonal spectral

function of the given canonical system if " is a constant p�p unitary matrix.

PROOF. The first assertion is equivalent to condition (b); see (3.1). The proof

of assertion (2) will be given elsewhere. ˜

10. The bitangential inverse spectral problem

In our formulation of the bitangential inverse spectral problem the given data

f� I bt

3
; bt

4
; 0 � t < dg is a p �p nondecreasing mvf �.�/ on R that meets the

constraint (9.5) and a normalized monotonic continuous chain fbt

3
; bt

4
g, 0� t <

d , of pairs of entire inner p � p mvf’s. An m �m mvf M.t/ on the interval
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Œ0; d/ is said to be a solution of the bitangential inverse spectral problem with

data f�.�/I bt

3
.�/; bt

4
.�/; 0 � t < dg if M.t/ is a continuous nondecreasing

m�m mvf on the interval Œ0; d/ with M.0/D 0 such that the matrizant At .�/

of the corresponding canonical integral system (5.1) meets the following three

conditions:

(i) �.�/ is a spectral function for this system, i.e., � 2˙d

sf
.M /.

(ii) fbt

3
; bt

4
g 2 apII .At / for every t 2 Œ0; d/.

(iii) At 2UrsR.Jp/ for every t 2 Œ0; d/.

The constraint (ii) defines the class of canonical integral systems in which we

look for a solution of the inverse problem for the given spectral function �.�/.

Subsequently, the condition (iii) guarantees that in this class there is at most one

solution.

The solution of this problem rests on the preceding analysis of the bitangential

inverse input impedance problem with data fc.˛/I bt

3
; bt

4
; 0 � t < dg, where

c.˛/.�/ is given by formula (9.6).

THEOREM 10.1. If the data f� I bt

3
; bt

4
; 0 � t < dg for a bitangential inverse

spectral problem meets the conditions (9.5) and (9.7) and the mvf c.�/D c.0/.�/

satisfies the constraint (5.4), the following conclusions hold:

(1) For each Hermitian matrix ˛ 2 C
p�p, there exists exactly one solution

M .˛/.t/ of the bitangential inverse input spectral problem such that c.˛/.�/

is an input impedance for the corresponding canonical integral system (5.1)

with J D Jp based on the mass function M .˛/.t/.

(2) The solutions M .˛/.t/ are related to M .0/.t/ by the formula

M .˛/.t/D

�

Ip i˛

0 Ip

�

M .0/.t/

�

Ip 0

�i˛ Ip

�

: (10.1)

The corresponding matrizants are related by the formula

A
.˛/
t
.�/D

�

Ip i˛

0 Ip

�

A
.0/
t
.�/

�

Ip �i˛

0 Ip

�

: (10.2)

(3) If M.t/ is a solution of the bitangential inverse spectral problem, then

M.t/DM .˛/.t/ for exactly one Hermitian matrix ˛ 2 C
p�p.

(4) The solution M .0/.t/ and matrizant A
.0/
t
.�/ may be obtained from the for-

mulas for the solution of the bitangential inverse input impedance problem

with data fc.0/I bt

3
; bt

4
; 0� t < dg that are given in Theorem 8.3.

PROOF. See Theorem 2.20 in [Arov and Dym 2004]. ˜
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The condition (5.4) is clearly satisfied if c.0/ 2 C̊p�p. However, this condition

is far from necessary. If, for example, c.0/ is of the form (7.1) with  C � > 0,

then, as noted earlier, condition (5.4) holds if C �>0, even if detfRc.�/gD0

on some set of points � 2 R.

EXAMPLE. If cı.�/ D Ip , i.e., if �.�/ D �, then the unique solution of the

inverse input impedance problem based given data fbt

3
; bt

4
I cıg is

M .0/.t/DV

�

m3.t/ 0

0 m4.t/

�

V ;

where

m3.t/D�i
@bt

3

@�
j�D0 and m4.t/D�i

@bt

4

@�
j�D0 : (10.3)

Moreover, in this case

A
.0/
t
.�/DV

�

bt

3
.�/ 0

0 .bt

4
/#.�/

�

V ; B
.0/
t
.�/D

1
p

2

�

�bt

3
.�/ .bt

4
/#.�/

bt

3
.�/ .bt

4
/#.�/

�

;

Et .�/D Œ bt

3
.�/ .bt

4
/#.�/ � and B.Et /DH.bt

3
/˚H�.b

t

4
/ as equivalent RKHS’s.

If kbs

4
.!/bs

3
.!/k< 1 for some ! 2 CC and s 2 .0; d/, then

C.A
.0/
t
/D fTVŒb

t

3
"bt

4
� W " 2 Sp�pg for t � s.

Although the choice cı.�/ D Ip in the preceding example is very special, the

exhibited one-to-one correspondence between monotonic normalized continu-

ous chains of p�p entire inner mvf’s fbt

3
.�/ ; bt

4
.�/g and pairs fm3.t/ ;m4.t/g

of continuous nondecreasing p � p mvf’s on the interval Œ0; d/ with m3.0/ D

m4.0/D 0 exhibited in (10.3) is completely general. Moreover, the mvf’s bt

3
.�/

and bt

4
.�/ are the unique continuous solutions of the integral equations

bt

3
.�/D IpC i�

Z

t

0

bs

3
.�/ dm3.s/ and bt

4
.�/D IpC i�

Z

t

0

bs

4
.�/ dm4.s/ ;

respectively, for 0� t < d .

11. Differential systems with potential

The results referred to above have implications for differential systems of the

form

u0.t; �/D i�u.t; �/NJ Cu.t; �/V.t/ ; 0� t < d ; (11.1)

with an m�m signature matrix J , a constant m�m matrix N such that

N � 0 (11.2)
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and an m�m matrix valued potential V.t/ such that

V 2Lm�m

1; loc
.Œ0; d// and V.t/J CJV.t/� D 0 a.e. on Œ0; d/ : (11.3)

It is readily checked that the matrizant Ut .�/DU.t; �/, 0� t <d , of this system

satisfies the identity
˚

Ut .�/JUt .!/
�
	

0

D i.��!/Ut .�/N Ut .!/
� for 0� t < d; (11.4)

and hence that

J �Ut .�/JUt .!/
�

�!.�/
D

1

2�

Z

t

0

Us.�/N Us.!/
�ds for 0� t < d: (11.5)

This in turn leads easily to the conclusion that

Ut 2U.J / for every t 2 Œ0; d/ : (11.6)

In particular, Ut .0/ is J -unitary and so invertible. Moreover, the mvf

Yt .�/ D Ut .�/Ut .0/
�1 for 0� t < d;

is the matrizant of the canonical differential system

y0.t; �/ D i�y.t; �/H.t/J; 0� t < d; (11.7)

with Hamiltonian

H.t/ D Ut .0/N Ut .0/
�; 0� t < d: (11.8)

THEOREM 11.1. If

NJ D JN ; (11.9)

then the matrizants Ut .�/ and Yt .�/ of the systems (11.1) and (11.7) are both

right strongly regular:

Ut 2UrsR.J / and Yt 2UrsR.J / for every t 2 Œ0; d/ ; (11.10)

and
\

0�t<d

C.Yt /D
\

0�t<d

C.Ut / :

PROOF. See Section 3 in [Arov and Dym 2005b]. ˜

In particular, the condition NJ D JN is met if N is a convex combination of

the orthogonal projections

PJ D
ImCJ

2
and QJ D

Im�J

2
;

or, even more generally, if N DN;ı , where

N;ı D PJ C ıQJ with  � 0 ; ı � 0 and � D  C ı > 0 : (11.11)
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In [Arov and Dym 2004; 2005c; 2005b], the direct and inverse impedance spec-

tral problems are considered under the assumption that

rank PJ D rank QJ D p ;

i.e., that J is unitarily equivalent to Jp . If  D ı, then the system (11.1) is called

a Dirac system: if  D 0 or ı D 0, it is called a Krein system. In the sequel we

shall take J D Jp in order to simplify the exposition.

The generalized Fourier transform for the system (11.1) with J D Jp is de-

fined by the formula

g4.�/ D Œ0 Ip �
1
p
�

Z

d

0

U.s; �/Ng.s/ ds (11.12)

for every g2Lm

2
.NdsI Œ0; d//with compact support in Œ0; d/. Correspondingly,

a nondecreasing p�p mvf �.�/ on R for which the Parseval equality

Z

1

1

g4.�/�d�.�/g4.�/D

Z

d

0

g.s/�Ng.s/ ds (11.13)

holds for every g 2 Lm

2
.NdsI Œ0; d// with compact support in Œ0; d/ is called a

spectral function for the system (11.1), and the symbol ˙d

sf
.V/ denotes the set

of spectral functions for this system. The generalized Fourier transform (9.1)

for the canonical system with H.t/D U.t/N U.t/� for 0 � t < d , is related to

the transform (11.12):

.F2f /.�/ D Œ0 Ip �
1
p
�

Z

d

0

U.s; �/U.s; 0/�1H.s/f .s/ ds (11.14)

D Œ0 Ip �
1
p
�

Z

d

0

U.s; �/N U.s; 0/�f .s/ ds (11.15)

for f 2Lm

2
.H.s/ dsI Œ0; d// with compact support in Œ0; d/.

The direct problem. The following results on the direct problem are estab-

lished in [Arov and Dym 2005b]:

THEOREM 11.2. Let At .�/DA.t; �/, 0� t < d , be the matrizant of the system

(11.1) with J D Jp and N DN;ı and assume that the potential V.t/ meets the

conditions in (11.3) and that V.t/D V.t/� a.e. on the interval Œ0; d/. Then:

(1) At 2UrsR.Jp/ for every t 2 Œ0; d/.

(2) fe tIp; eıt Ipg 2 apII .At / for every t 2 Œ0; d/.

(3) The de Branges spaces B.Et / based on Et .�/ D
p

2At .�/V are indepen-

dent of the potential V.t/ as linear topological spaces, i.e.,

B.Et / D

�Z  t

�ıt

ei�sh.s/ ds W h 2L
p

2
.Œ�ıt;  t �/

�
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as linear spaces and for each t 2 Œ0; d/, there exist a pair of positive constants

k1 D k1.t/ and k2 D k2.t/ such that

k1kf kst � kf kB.Et / � k2kf kst

for every f 2B.Et /.

(4) Sp�p � D.TAt V/ for every t 2 .0; d/.

(5) C.At /D TAt VŒS
p�p� for every t 2 .0; d/ and ˇ D 0 in the integral repre-

sentation (9.4) of every mvf c 2 C.At /, 0< t < d .

(6) The set of input impedances Cd

imp.V/D
T

0�t<d
C.At / is not empty.

(7) ˙d

sf
.V/D .Cd

imp.V//sf and the integral representation (9.4) defines a one-

to-one correspondence between these two sets.

(8) If d <1 and V 2L1.Œ0; d �/, then Cd

imp.V/D C.Ad /.

(9) If d D1, the set Cd

imp.V / contains exactly one mvf c.�/. (This is the Weyl

limit point case.) If also V 2 Lm�m

1
.Œ0;1//, then this mvf c.�/ admits a

representation of the form (7.1) with c D Ip .

PROOF. A proof is supplied in [Arov and Dym 2005b]. ˜

REMARK 11.3. In the preceding theorem, the sets C.At / depend only upon

the potential V.t/ and the positive number � D  C ı and not on the particular

choices  � 0 and ı � 0. This follows from the fact that the mvf eiı0�tUt .�/

is the matrizant of the system (11.1) with potential V.t/ that is independent of

ı0 and with N D . C ı0/PJ C .ı� ı0/QJ for every number ı0 in the interval

� � ı0 � ı. Consequently, the sets Cd

imp.V/ and ˙d

sf
.V/ depend only upon

the potential V.t/ and the number �. Thus, any system of the form (11.1) with

N DN;ı may be reduced to a Dirac system as well as to a Krein system.

The inverse input impedance problem. The data for the inverse input imped-

ance problem for differential systems of the form (11.1) on an interval Œ0; d/ is

an mvf c 2Cp�p and the right hand endpoint d , 0< d �1, of the interval and

the problem is to find a locally summable potential V.t/ of the prescribed form

on Œ0; d/ such that c 2 Cd

imp.V/, the class of input impedances of the system.

In the setting of Theorem 11.2, it is not necessary to specify a chain fbt

3
; bt

4
g,

0� t <d , to solve this inverse problem, because, as noted in (2) of that theorem,

it is automatically prescribed by the choice N DN;ı .

THEOREM 11.4. Let an mvf c 2 Cp�p, a number d , 0 < d <1 and an m�m

matrix N of the form (11.11) be given. Then:

(1) There exists at most one differential system of the form (11.1) with the given

N , J DJp , and potential V.t/DV.t/� a.e. on Œ0; d � that meets the condition

(11.3) such that c 2 Cd

imp.V/.
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(2) If c 2 Cp�p admits a representation of the form

c.�/D cC

Z

1

0

ei�t hc.t/ dt ; (11.16)

in which hc 2 L
p�p

1
.Œ0;1// and hc.t/ is continuous on the interval Œ0; �d �

and if Rc is positive definite and � > 0, there exists exactly one locally

summable potential V.t/, 0� t � d , such that

V.t/D V.t/� and V.t/JpCJpV.t/� D 0

a.e. on the interval Œ0; d � (11.17)

and c 2 Cd

imp.V/. Moreover, this potential V.t/ is continuous on the interval

Œ0; d � and is of the form

V.t/ D V

�

0 a.t/

a.t/� 0

�

V for 0� t � d : (11.18)

(3) If � D 1 and c.�/ is given by formula (11.16) with c D Ip , then a.t/ D

 t .t; 0/, where  t .a; b/ is the unique solution of the integral equation

 t .a; b/�

Z

t

0

hc.a�c/ t .c; b/ dcD hc.a�b/ for 0� a; b � t � d : (11.19)

If d D1, analogous conclusions hold on the open interval Œ0;1/, if c D Ip

in formula (11.16).

(The modifications needed for general c are discussed in Theorem 5.5 of [Arov

and Dym 2005a].)

PROOF. Assertion (1) follows from (1) and (2) of Theorem 11.2, Theorem 7.9

of [Arov and Dym 2003a] and the fact that the set Cd

imp.V/ for the system (11.1)

coincides with the set Cd

imp.H / for the corresponding cannonical differential

system (11.7) with Hamiltonian (11.8). Assertion (2) follows from Theorem

5.13 of [Arov and Dym 2005a], Remark 11.3 and the connection between the

systems (11.1) and (11.7). ˜

If c 2 H
p�p

1 \ Cd

imp.V/ and d D 1, then Cd

imp.V/ D fcg for every N of the

form (11.11) with  C ı > 0, i.e., the limit point case prevails for all such

� D  C ı. This follows from the formulas for the ranks of the left and right

semiradii of the Weyl balls that are given in formulas (4.3) and (4.4). In this

case, V 62Lm�m

1
.Œ0;1// if c does not admit a representation of the form (7.1).

Moreover, if  > 0, the values of the input impedance c.�/may be characterized

by the Weyl–Titchmarsh property:

Œ�� ���V Ut .�/V
� 2Lm�m

2
” �D c.�/�

for every point � 2 CC.
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The inverse spectral problem. The data for the inverse spectral problem is a

p�p nondecreasing mvf �.�/ on R that meets the condition (9.5). The special

form of N in (11.11) automatically insures that the matrizant will be strongly

regular and prescribes the associated pair of the matrizant in accordance with

(1) and (2) of Theorem 11.2. Moreover, for a fixed pair of nonnegative numbers

 � 0; ı � 0 with � D  C ı > 0, there is at most one mvf c 2 Cd

imp.V/ with the

spectral function in its Riesz–Herglotz representation (9.4) equal to the given

spectral function �.�/. This is established in Theorem 23.4 of [Arov and Dym

2005c] for the case  D ı. The case  ¤ ı may be reduced to the case  D ı

by invoking Remark 11.3. Thus, Theorem 11.4 yields exactly one solution for

the inverse spectral problem for a system of the form (11.1) with N D N;ı as

in (11.11).

12. Spectral problems for the Schrödinger equation

The matrizant (or fundamental matrix) Ut .�/ D U.t; �/, 0 � t < d , of the

Schrödinger equation

�u00.t; �/Cu.t; �/q.t/D �u.t; �/ ; 0� t < d ; (12.1)

with a p�p matrix valued potential q.t/ of the form

q.t/D v0.t/C v.t/2 for every t 2 Œ0; d/ ; (12.2)

where

v.t/D v.t/� is locally absolutely continuous on the interval Œ0; d/ ; (12.3)

enjoys the following properties:

(1) Ut 2U.�Jp/ for every t 2 Œ0; d/.

(2) lim supr"1

ln maxfkUt .�/k W jzj � rg

r1=2
D lim sup�#�1

ln kUt .�/k

j�j1=2
D t :

In particular, Ut 62 UrsR.�Jp/ and therefore, the results discussed in the pre-

ceding sections are not directly applicable. Nevertheless, it turns out that for

Schrödinger equations with potential of the given form, the mvf At .�/ that is

defined by the formulas

At .�/DL�Yt .�
2/L�1

� for 0� t <d ; where L� D

�

Ip 0

0 �Ip

�

(12.4)

and

Y .t; �/ D

�

Ip v.0/

0 �iIp

�

U.t; �/

�

Ip �iv.t/

0 iIp

�

for 0� t < d ; (12.5)
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is a solution of the Cauchy problem

A0

t
.�/ D i�At .�/JpCAt .�/V.t/ ; 0� t < d ;

and

A0.�/ D Im ;

with potential

V.t/D

�

v.t/ 0

0 �v.t/

�

; 0� t < d :

Thus, At .�/ is the matrizant of a differential system of the form (11.1), with

N D Im, J D Jp and a potential

V.t/D V.t/�

that meets the constraints (11.3). Therefore, by Theorem 11.2, At 2UrsR.Jp/

for every t 2 Œ0; d/ and hence, Theorem 11.4 is applicable to At .

Let  .t; �/ and '.t; �/ be the unique solutions of equation (12.1) that meet

the initial conditions

 .0; �/D Ip ;  0.0; �/D 0 ; '.0; �/D 0 and '0.0; �/D Ip ;

respectively, and let

U.t; �/ D

�

 .t; �/  0.t; �/

'.t; �/ '0.t; �/

�

(12.6)

be the matrizant (fundamental matrix) of equation (12.1).

A nondecreasing p � p mvf �.�/ on R is said to be a spectral function of

(12.1) with respect to the transform

g4.�/ D
1
p
�

Z

d

0

'.s; �/g.s/ ds (12.7)

(of vvf’s g 2L
p

2
.Œ0; d// with compact support in Œ0; d/), if the Parseval equality

Z

1

1

g4.�/�d�.�/g4.�/D

Z

d

0

g.s/�g.s/ ds (12.8)

holds for every g 2 L
p

2
.Œ0; d// with compact support in Œ0; d/. The symbol

˙d

sf
.q/ will be used to denote the set of all spectral functions of (12.1) with

respect to this transform.

Formulas (12.4) and (12.5) imply that

�iu21.s; �/D
a21.s;

p
�/

p
�

D�i'.s; �/
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for s 2 Œ0; d/. This connection permits one to reduce the spectral problem for

the Schrödinger equation (12.1) to a spectral problem for Dirac systems. This

strategy was initiated by M. G. Krein in [Kreı̆n 1955].

de Branges spaces. Let

EA

t
.�/D

p
2 Œ0 Ip �At .�/V

D Œa22.t; �/� a21.t; �/ a22.t; �/C a21.t; �/�

denote the de Branges matrix based on the matrizant At .�/ of equation that

was defined by formulas (12.4) and (12.5). Then the corresponding de Branges

space

B.EA

t
/D

�

1
p
�

Z

t

0

Œa21.s; �/ a22.s; �/�f .s/ ds W f 2Lm

2
.Œ0; t �/ for every t 2 Œ0; d/

�

with norm

hf 4; f 4i
B.EA

t /
D

Z

1

�1

f 4.�/��A

t
.�/f 4.�/ d� ;

where, upon writing f D colŒg h�, with components g; h 2L
p

2
.Œ0; t �/,

f 4.�/D
1
p
�

Z

t

0

Œa21.s; �/ a22.s; �/f .s/ ds

D
1
p
�

Z

t

0

a21.s; �/g.s/C a22.s; �/h.s/ ds

and

�A

t
.�/�1 D .a22.t; �/C a21.t; �//.a22.t; �/C a21.t; �//

�

D a22.t; �/a22.t; �/
�C a21.t; �/a21.t; �/

� ;

since At 2 U.Jp/. Moreover, formula (12.5) implies that a21.t; �/ is an odd

function of �, whereas a22.t; �/ is an even function of �. Thus,

B.EA

t
/DB.EA

t
/odd˚B.EA

t
/ev ;

where

B.EA

t
/odd D

�
Z

t

0

a21.s; �/g.s/ ds W g 2L
p

2
.Œ0; t �/

�

;

B.EA

t
/ev D

�Z

t

0

a22.s; �/g.s/ ds W g 2L
p

2
.Œ0; t �/

�

:

At the same time, Theorem 23.1 of [Arov and Dym 2005c] implies that
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B.EA

t
/D

�Z

t

�t

ei�sg.s/ ds W g 2L
p

2
.Œ�t; t �/

�

and hence that

B.EA

t
/odd D

�
Z

t

0

sin.s�/g.s/ ds W g 2L
p

2
.Œ0; t �/

�

;

B.EA

t
/ev D

�Z

t

0

cos.s�/g.s/ ds W g 2L
p

2
.Œ0; t �/

�

:

Thus, as

y21.s; �/D
a21.s;

p
�/

p
�

D�i'.s; �/ ;

we obtain the following conclusion:

THEOREM 12.1. If the potential q.t/D v0.t/C v2.t/ of the Schrödinger equa-

tion (12.1) is subject to the constraints (12.3), the de Branges space B.EA

t
/

equals
(

1
p
�

Z

t

0

sin
p
�s

p
�

g.s/ ds W g 2L
p

2
.Œ0; t �/ for every t 2 Œ0; d/

)

; (12.9)

as linear spaces and hence these spaces do not depend upon the potential.

In view of the indicated connection between Dirac systems and Schrödinger

equations, Theorems 23.2 and 23.4 of [Arov and Dym 2005c] may be applied

to yield existence and uniqueness theorems for the inverse input impedance

problem and the inverse spectral problem for the latter when the potential is

of the form (12.2), as well as recipes for the solution. A detailed analysis will

be presented elsewhere.

REMARK 12.2. The identification (12.9) for the scalar case pD 1 was obtained

in [Remling 2002] under less restrictive assumptions on the potential q.t/ of the

Schrödinger equation than are imposed here.
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Turbulence of a unidirectional flow
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Dedicated to Henry P. McKean, a mentor and a friend

ABSTRACT. We discuss recent advances in the theory of turbulent solutions

of the Navier–Stokes equations and the existence of their associated invariant

measures. The statistical theory given by the invariant measures is described

and associated with historically-known scaling laws. These are Hack’s law

in one dimension, the Batchelor–Kraichnan law in two dimensions and the

Kolmogorov’s scaling law in three dimensions. Applications to problems in

turbulence are discussed and applications to Reynolds Averaged Navier Stokes

(RANS) and Large Eddy Simulation (LES) models in computational turbu-

lence.

1. Introduction

Everyone is familiar with turbulence in one form or another. Airplane pas-

sengers encounter it in wintertime as the plane begins to shake and is jerked in

various directions. Thermal currents and gravity waves in the atmosphere create

turbulence encountered by low-flying aircraft. Turbulent drag also prevents the

design of more fuel-efficient cars and aircrafts. Turbulence plays a role in the

heat transfer in nuclear reactors, causes drag in oil pipelines and influence the

circulation in the oceans as well as the weather.

In daily life we encounter countless other examples of turbulence. Surfers use

it to propel them and their boards to greater velocities as the wave breaks and

becomes turbulent behind them and they glide at great speeds down the unbroken

face of the wave. This same wave turbulence shapes our beaches and carries

enormous amount of sand from the beach in a single storm, sometime to dump it

all into the nearest harbor. Turbulence is harnessed in combustion engines in cars

29
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and jet engines for effective combustion and reduced emission of pollutants. The

flow around automobiles and downtown buildings is controlled by turbulence

and so is the flow in a diseased artery. Atmospheric turbulence is important in

remote sensing, wireless communication and laser beam propagation through

the atmosphere; see [Sølna 2002; [2003]]. The applications of turbulence await

us in technology, biology and the environment. It is one of the major problems

holding back advances of our technology.

Turbulence has puzzled and intrigued people for centuries. Five centuries

ago a fluid engineer by the name of Leonardo da Vinci tackled it. He did not

have modern mathematics or physics at his disposal but he had a very powerful

investigative tool in his possession. He explored natural phenomena by drawing

them. Some of his most famous drawings are of turbulence.

Leonardo called the phenomenon that he was observing “la turbolenza” in

1507 and gave the following description of it:

Observe the motion of the surface of the water, which resembles that of

hair, which has two motions, of which one is caused by the weight of the

hair, the other by the directions of the curls; thus the water has eddying

motions, one part of which is due to the principal current, the other to the

random and reverse motion.

This insightful description pointed out the separation of the flow into the aver-

age flow and the fluctuations that plays an important role in modern turbulence

theory. But his drawings also led Leonardo to make other astute observations

that accompany his drawings, in mirror script, such as where the turbulence

of water is generated, where it maintains for long, and where it comes to rest.

These three observations are well-known features of turbulence and they are all

illustrated in Leonardo’s drawings.

One reason why turbulence has not been solved yet is that the mathematics

or the calculus of turbulence has not been developed until now. This situation

is analogous to the physical sciences before Newton and Leibnitz. Before the

physical sciences could bloom into modern technology the mathematics being

the language that they are expressed in had to be developed. This was accom-

plished by Newton and Leibnitz and developed much further by Euler. Three

centuries later we are at a similar threshold regarding turbulence. The mathe-

matics of turbulence is being born and the technology of turbulence is bound to

follow.

The mathematics of turbulence is rooted in stochastic partial differential equa-

tions. It is the mathematical theory that expresses the statistical theory of tur-

bulence as envisioned by the Russian mathematician Kolmogorov, one of the

fathers of modern probability theory, in 1940. The basic observation is that

turbulent flow is unstable and the white noise that is always present in any phys-
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ical system is magnified in turbulent flow. In distinction, in laminar flow the

white noise in the environment is suppressed. The new mathematical theory of

turbulence expresses how the noise is magnified and colored by the turbulent

fluid. This then leads to a computation or an approximation of the associated

invariant measure for the stochastic partial differential equation. The whole

statistical theory of Kolmogorov can be expressed mathematically with this in-

variant measure in hand.

The problems that mathematicians have with proving the existence of solu-

tions of the Navier–Stokes equations in three dimensions has lead to the mis-

taken impression that turbulence is only a three dimensional phenomenon. Noth-

ing is further from the truth. Turbulence thrives in one and two dimensions as

well as in three dimensions. We will illustrate this by describing one dimensional

turbulence in rivers.

Although we will coach it in terms of river flow in his paper, this type of

modeling and theory have many other applications. One such application is

to the modeling of fluvial sedimentation that gives rise to sedimentary rock in

petroleum reserves. The properties of the flow through the porous rock turn

out to depend strongly on the structure of the meandering river channels; see

[Holden et al. 1998]. Another application is to turbulent atmospheric flow. Con-

trary to popular belief, in the presence of turbulence, the temperature variations

in the atmosphere my be highly anisotropic or stratified. Thus the scaling of the

fluid model corresponding to a river or a channel may have a close analog in the

turbulent atmosphere; see [Sidi and Dalaudier 1990].

Two dimensionless numbers the Reynolds number and the Froude number

are used to characterize turbulent flow in rivers and streams. If we model the

river as an open channel with x parameterizing the downstream direction, y the

horizontal depth and U is the mean velocity in the downstream direction, then

the Reynolds number

RD
fturbulent

fviscous

D
Uy

�

is the ratio of the turbulent and viscous forces whereas the Froude number

F D
fturbulent

fgravitational

D
U

.gy/1=2

is the ratio of the turbulent and gravitational forces. � is the viscosity and g is the

gravitational acceleration. Other forces such as surface tension, the centrifugal

force and the Coriolis force are insignificant in streams and rivers.

The Reynolds number indicates whether the flow is laminar or turbulent with

the transition to turbulence starting at RD 500 and the flow usually being fully

turbulent at R D 2000. The Froude number measures whether gravity waves,

with speed c D .gy/1=2 in shallow water, caused by some disturbance in the
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flow, can overcome the flow velocity and travel upstream. Such flow are called

tranquil flows, c > U , in distinction to rapid or shooting flows, c < U , where

this cannot happen; they correspond to the Froude numbers

(i) F < 1, subcritical, c > U ,

(ii) F D 1, critical, c D U ,

(iii) F > 1, supercritical, c < U .

Now for streams and rivers the Reynolds number is typically large (105–106),

whereas the Froude numbers is small typically (10�1–10�2); see [Dingman

1984]. Thus the flows are highly turbulent and ought to be tranquil. But this is

not the whole story, as we will now explain.

In practice streams and rivers have varied boundaries which are topologically

equivalent to a half-pipe. These boundaries are rough and resist the flow and this

had lead to formulas involving channel resistance. The most popular of these

are Chézy’s law, where the average velocity V is

V D ucC r1=2s1=2
o
; uc D 0:552m=s

and Manning’s law, with

V D um

1

n
r2=3s1=2

o
; um D 1:0m=s

where so is the slope of the channel and r is the hydraulic radius. C is called

Chézy’s constant and measures inverse channel resistance. The number n is

Manning’s roughness coefficient; see [Dingman 1984]. We get new effective

Reynolds and Froude numbers with these new averaged velocities V ,

R� D
g

3u2
c
C 2

R; F� D

�

g

u2
c
C 2so

�1=2

F

from Chézy’s law.

It turns out that in real rivers the effective Froude number is approximately

one and the effective Reynolds number is also one, when R D 500 for typical

channel roughness C D 73:3. Thus the transition to turbulence typically occurs

in rivers when the effective turbulent forces are equal to the viscous forces.

The reason for the transition to turbulence is that at this value of R� the

amplification of the noise that grows into fully developed turbulence is no longer

damped by the viscosity of the flow. The damping by the effective viscosity is

overcome by the turbulent forces.

Now let us ignore the boundaries of the river. The point is that in a straight

segment of a reasonably deep and wide river the boundaries do not influence the

details of the river current in the center, except as a source of flow disturbances.

We will simply assume that these disturbances exist, in the flow at the center of
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the river and not be concerned with how they got there. For theoretical purposes

we will conduct a thought experiment where we start with an unstable uniform

flow and then put the disturbances in as small white noise. Then the mathe-

matical problem is to determine the statistical theory of the resulting turbulent

flow. The important point is that this is now a theory of the water velocity u.x/

as a function of the one-dimensional distance x down the river. Thus if u is

turbulent it describes one-dimensional turbulence in the downstream direction

of the river.

The flow of water in streams and rivers is a fascinating problem with many

application that has intrigued scientists and laymen for many centuries; see [Levi

1995]. Surprisingly it is still not completely understood even in one or two-

dimensional approximation of the full three-dimensional flow. Erosion by water

seems to determine the features of the surface of the earth, up to very large scales

where the influence of earthquakes and tectonics is felt, see [Smith et al. 1997a;

1997b; 2000; Birnir et al. 2001; 2007a; Welsh et al. 2006]. Thus water flow

and the subsequent erosion gives rise to the various scaling laws know for river

networks and river basins; see [Dodds and Rothman 1999; 2000a; 2000b; 2000c;

2000d].

One of the best known scaling laws of river basins is Hack’s law [1957]

that states that the area of the basin scales with the length of the main river to an

exponent that is called Hack’s exponent. Careful studies of Hack’s exponent (see

[Dodds and Rothman 2000d]) show that it actually has three ranges, depending

on the age and size of the basin, apart from very small and very large scales

where it is close to one. The first range corresponds to a spatial roughness

coefficient of one half for small channelizing (very young) landsurfaces. This

has been explained, see [Birnir et al. 2007a] and [Edwards and Wilkinson 1982],

as Brownian motion of water and sediment over the channelizing surface. The

second range with a roughness coefficient of 2

3
corresponds to the evolution of a

young surface forming a convex (geomorphically concave) surface, with young

rivers, that evolves by shock formation in the water flow. These shocks are called

bores (in front) and hydraulic jumps (in rear); see [Welsh et al. 2006]. Between

them sediment is deposited. Finally there is a third range with a roughness

coefficient 3

4
. This range that is the largest by far and is associated with what

is called the mature landscape, or simply the landscape because it persists for a

long time, is what this paper is about. This is the range that is associated with

turbulent flow in rivers and we will develop the statistical theory of turbulent

flow in rivers that leads to Hack’s exponent.

Starting with the three basic assumption on river networks: that the their

structure is self-similar, that the individual streams are self-affine and the drain-

age density is uniform (see [Dodds and Rothman 2000a]), river networks possess
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several scalings laws that are well documented; see [Rodriguez-Iturbe and Ri-

naldo 1997]. These are self-affinity of single channels, which we will call the

meandering law, Hack’s law, Horton’s laws [1945] and their refinement Toku-

naga’s law, the law for the scaling of the probability of exceedance for basin

areas and stream lengths and Langbein’s law. The first two laws are expressed

in terms of the meandering exponent m, or fractal dimension of a river, and the

Hack’s exponent h. Horton’s laws are expressed in terms of Horton’s ratio’s of

link numbers and link lengths in a Strahler ordered river network, Tokunaga’s

law is expressed in term of the Tokunaga’s ratios, the probability of exceedance

is expressed by decay exponents and Langbein’s law is given by the Langbein’s

exponents [Dodds and Rothman 2000a].

Dodds and Rothman [1999; 2000a; 2000b; 2000c; 2000d] showed that all

the ratios and exponents above are determined by m and h, the meandering and

Hack’s exponents; see [Hack 1957; Dodds and Rothman 1999]. The origin of

the meandering exponent m has recently been explained [Birnir et al. 2007b]

but in this paper we discuss how it and Hack’s exponent are determined by

the scaling exponent of turbulent one-dimensional flow. Specifically, m and h

are determined by the scaling exponent of the second structure function [Frisch

1995] in the statistical theory of the one-dimensional turbulent flow.

The breakthrough that initiated the theoretical advances discussed above was

the proof of existence of turbulent solutions of the full Navier–Stokes equation

driven by uniform flow, in dimensions one, two and three. These solutions

turned out to have a finite velocity and velocity gradient but they are not smooth

instead the velocity is Hölder continuous with a Hölder exponent depending

on the dimension; see [Birnir 2007a; 2007b]. These solutions scale with the

Kolmogorov scaling in three dimensions and the Batchelor–Kraichnan scaling

in two dimensions. In one dimensions they scale with the exponent 3

4
, that is

related to Hack’s law [1957] of river basins; see [Birnir et al. 2001; 2007a].

The existence of these turbulent solutions is then used to proof the existence

of an invariant measure in dimensions one, two and three; see [Birnir 2007a;

2007b]. The invariant measure characterizes the statistically stationary state of

turbulence and it can be used to compute the statistically stationary quantities.

These include all the deterministic properties of turbulence and everything that

can be computed and measured. In particular, the invariant measure determines

the probability density of the turbulent solutions and this can be used to develop

accurate subgrid modeling in computations of turbulence, bypassing the prob-

lem that three-dimensional turbulence cannot be fully resolved with currently

existing computer technology.
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2. The initial value problem

Consider the Navier–Stokes equation

wt Cw � rwD��w�rp (2-1)

w.x; 0/Dwo;

where � D �0=VL, V being a typical velocity, L the length of a segment of

the river and �0 the kinematic viscosity of water, with the incompressibility

condition

r �w D 0: (2-2)

Eliminating the pressure p using (2-2) gives the equation

wt Cw � rw D ��wCrf�
�1Œtrace.rw/2�g (2-3)

We want to consider turbulent flow in the center of a wide and deep river and

to do that we consider the flow to be in a box and impose periodic boundary

conditions on the box. Since we are mostly interested in what happens in the

direction along the river we take our x axis to be in that direction.

We will assume that the river flows fast and pick an initial condition of the

form

w.0/D Uoe1 (2-4)

where Uo is a large constant and e1 is a unit vector in the x direction. Clearly

this initial condition is not sufficient because the fast flow may be unstable and

the white noise ubiquitous in nature will grow into small velocity and pressure

oscillations; see for example [Betchov and Criminale 1967]. But we perform a

thought experiment where white noise is introduced into the fast flow at t D 0.

This experiment may be hard to perform in nature but it is easily done numeri-

cally. It means that we should look for a solution of the form

w.x; t/D Uoe1Cu.x; t/ (2-5)

where u.x; t/ is smaller that Uo but not necessarily small. However, in a small

initial interval Œ0; to� u is small and satisfies the equation (2-3) linearized about

the fast flow Uo

ut CUo@xuD�uC f (2-6)

u.x; 0/D0

driven by the noise

f D
X

k¤0

h
1=2

k
dˇk

t
ek

The ek D e2� ik�x are (three-dimensional) Fourier components and each comes

with its own independent Brownian motion ˇk

t
. None of the coefficients of the
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vectors h
1=2

k
D .h

1=2
1
; h

1=2
2
; h

1=2
3
/ vanish because the turbulent noise was seeded

by truly white noise (white both is space and in time). f is not white in space

because the coefficients h
1=2

k
must have some decay in k so that the noise term

in (2-6) makes sense. However to determine the decay of the h
1=2

k
s will now be

part of the problem. The form of the turbulent noise f expresses the fact that

in turbulent flow there is a continuous sources of small white noise that grows

and saturates into turbulent noise that drives the fluid flow. The decay of the

coefficients h
1=2

k
expresses the spatial coloring of this larger noise in turbulent

flow. We have set the kinematic viscosity � equal to one for computational

convenience, but it can easily be restored in the formulas.

This modeling of the noise is the key idea that make everything else work.

The physical reasoning is that the white noise ubiquitous in nature grows into the

noise f that is characteristic for turbulence and the differentiability properties

of the turbulent velocity u are the same as those of the turbulent noise.

The justification for considering the initial value problem (2-6) is that for a

short time interval Œ0; to� we can ignore the nonlinear terms

�u � ruCrf��1Œtrace.ru/2�g

in the equation (2-3). But this is only true for a short time to, after this time we

have to start with the solution of (2-6)

uo.x; t/D
X

k¤0

h
1=2

k

Z

t

0

e.�4�2
jkj

2
C2� iUok1/.t�s/dˇk

s
ek.x/ (2-7)

as the first iterate in the integral equation

u.x; t/D uo.x; t/C

Z

t

to

K.t � s/� Œ�u � ruCr��1.trace.ru/2/�ds (2-8)

where K is the (oscillatory heat) kernel in (2-7). In other words to get the

turbulent solution we must take the solution of the linear equation (2-6) and use

it as the first term in (2-8). It will also be the first guess in a Picard iteration.The

solution of (2-6) can be written in the form

uo.x; t/D
X

k¤0

h
1=2

k
Ak

t
ek.x/

where the

Ak

t
D

Z

t

0

e.�4�2
jkj

2
C2� iUok1/.t�s/dˇk

s
(2-9)

are independent Ornstein–Uhlenbeck processes with mean zero; see for example

[Da Prato and Zabczyk 1996].
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Now it is easy to see that the solution of the integral equation (2-8) u.x; t/

satisfies the driven Navier–Stokes equation

ut CUo@xuD�u�u � ruCr��1.trace.ru/2/

C
P

k¤0

h
1=2

k
dˇk

t
ek ; t > t0;

ut CUo@xuD�uC
X

k¤0

h
1=2

k
dˇk

t
ek ; u.x; 0/D 0; t � t0;

(2-10)

and the argument above is the justification for studying the initial value problem

(2-10). We will do so from here on. The solution u of (2-10) still satisfies the

periodic boundary conditions and the incompressibility condition

r �uD 0 (2-11)

The mean of the solution uo of the linear equation (2-6) is zero by the formula

(2-7) and this implies that the solution u of (2-10) also has mean zero

Nu.t/D

Z

T3

u.x; t/ dx D 0 (2-12)

Figure 1. The traveling wave solution of the heat equation for the flow

velocity Uo D 85. The perturbations are frozen in the flow. The x axis is

space, the y axis time and the z axis velocity u.

Stability. The uniform flow w D Uoe1 seem to be a stable solution of (2-6)

judging from the solution (2-7). Namely, all the Fourier coefficients are decay-

ing. However, this is deceiving, first the Brownian motion ˇk is going to make

the amplitude of the k-th Fourier coefficient large in due time with probability
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one. More importantly if Uo is large then (2-6) has traveling wave solutions that

are perturbations ”frozen in the flow”, and for Uo even larger these traveling

waves are unstable and start growing. For Uo large enough this happens after

a very short initial time interval and makes the flow immediately become fully

turbulent. The role of the white noise is then not to cause enough growth even-

tually for the nonlinearities to become important, but rather to immediately pick

up (large) perturbations that grow exponentially. These are the large fluctuations

that are observed in most turbulent flows. In Figure 1, we show the traveling

wave solution of the transported heat equation (2-6), with UoD 85. In Figure 2,

where the flow has increased to UoD94, the traveling wave has become unstable

and grows exponentially. Notice the difference in vertical scale between the

figures.

Thus the white noise grows into a traveling wave that grows exponentially.

This exponential growth is saturated by the nonlinearities and subsequently the

flow becomes turbulent. This is the mechanism of explosive growth of turbu-

lence of a uniform stream and describes what happens in our thought experiment

described in Section 2.

Figure 2. The traveling wave solution of the heat equation for the flow

velocity UoD 94. The perturbations are growing exponentially. The x axis

is space, the y axis time and the z axis velocity u.

3. One-dimensional turbulence

In a deep and wide river it is reasonable to think that the directions transverse

to the main flow, y the direction across the river, and z the horizontal direction,

play a secondary role in the generation of turbulence. As a first approximation
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to the flow in the center of a deep and wide, fast-flowing river we will now drop

these directions. Of course y and z play a role in the motion of the large eddies

in the river but their motion is relatively slow compared to the smaller scale

turbulence. Thus our initial value problem (2-10) becomes

ut CUoux

D uxx �uuxC @
�1

x
..ux/

2/�

Z

1

0

@�1

x
..ux/

2/ dxC
X

k¤0

h
1=2

k
dˇk

t
ek ; (3-1)

We still have periodic boundary condition on the unit interval but the incom-

pressibility condition can be dropped at the price of subtracting the term

b D

Z

1

0

@�1

x
..ux/

2/ dx

from the right hand side of the Navier–Stokes equation. This term keeps the

mean of u, NuD
R

1

0
udx D 0, equal to zero, see Equation (2-12). This equation

(3-1) now describes the turbulent flow in the center of relative straight section

of a fast river. The full three-dimensional flow will be treated in [Birnir 2007b].

The following theorem and corollaries are proved in [Birnir 2007a]. It states

the existence of turbulent solutions in one dimension. First we write the initial

value problem (3-1) as an integral equation

u.x; t/D uo.x; t/C

Z

t

to

K.t � s/�
�

�1

2
.u2/xC @

�1

x
.ux/

2� b
�

ds: (3-2)

Here K is the oscillatory heat kernel (2-7) in one dimension and

uo.x; t/D
X

k¤0

h
1=2

k
Ak

t
ek.x/

the Ak

t
s being the Ornstein–Uhlenbeck processes from Equation (2-9).

If q=p is a rational number let .q=p/C denote any real number greater than

q=p, and let E the expectation with a probability measure P on a set of events

˝.

THEOREM 3.1. If the solution of the linear equation (2-6) satisfies the condition

E.kuok
2

. 5
4

C

;2//D
X

k¤0

.1C .2�k/.5=2/
C

/hkE.jAk

t
j2/ (3-3)

�
1

2

X

k¤0

.1C .2� ik/.5=2/
C

/

.2�k/2
hk <1
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and U0 is sufficiently large, then the integral equation (3-2) has a unique solu-

tion in the space C
�

Œ0;1/IL2

. 5
4

C

;2/

�

of stochastic processes with

kuk2
L2

. 5
4

C

;2/

<1:

COROLLARY 3.1. The solution of the linearized equation (2-6) uniquely deter-

mines the solution of the integral equation (3-2).

COROLLARY 3.2 (ONSAGER’S CONJECTURE). The solutions of the integral

equation (3-2) are Hölder continuous with exponent 3

4
.

REMARK. Hypothesis (3-3) is the answer to the question posed in Section 2

about how fast the coefficients h
1=2

k
have to decay in Fourier space. They have

to decay sufficiently fast for the supremum in t of the expectation of the

H
5
4

C

DW . 5
4

C

;2/

Sobolev norm of the initial function uo, to be finite. In other words the sup in t

of the L2

. 5
4

C

;2/
norm has to be finite.

4. The existence and uniqueness of the invariant measure

We can define the invariant measure d� for a stochastic partial differential

equation (SPDE) by the limit

lim
t!1

E.�.u.t///D

Z

L2.Tn/

�.u/ d�.u/ (4-1)

where E denotes the expectation, u.t/ is the solution of the SPDE, parametrized

by time, and � is any bounded function on L2.Tn/. L2.Tn/ is the space of

square integrable functions on a torus T
n which means that we are imposing

periodic boundary conditions on an interval, rectangle or a box, respectively

nD 1; 2; 3 dimensions. However, the theory also carries over to other boundary

conditions. One first uses the law L of the solution u.t/

Pt .w; � /D L.u.w; t//.� /; � � E;

where w D uo is the initial condition for the SPDE and E is the � algebra

generated by the Borel subsets � of L2.Tn/, to define transition probabilities

Pt .w; � / on L2.Tn/. A stochastically continuous Markovian semigroup is

called a Feller semigroup [Da Prato and Zabczyk 1996], and for such Feller

semigroups

1

T

Z

T

0

Pt .w; � / dt
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defines a probability measure. This is how one forms probability measures on

L2.Tn/ by taking these time averages of the transition probabilities and then one

uses the Krylov–Bogoliubov Theorem [Da Prato and Zabczyk 1996] to show

that the sequence of the resulting probability measures, indexed by time T , is

tight. This is the first step, then the invariant measure exists and is the (weak)

limit

d�. � /D lim
T !1

1

T

Z

T

0

Pt .w; � / dt

Once the existence of the invariant measure has been established, one wishes to

prove that it is unique. To prove this one first has to prove that Pt is in fact a

strong Feller semigroup or that for all T > 0 there exists a constant C > 0, such

that for all ' 2 B.L2/, the space of bounded functions on L2, and t 2 Œ0;T �

jPt'.x/�Pt'.y/j � Ck'k1kx�yk; x;y 2L2:

Here k �k denotes the norm in L2. Then one must prove the irreducibility of the

Pt , namely that for any � �L2 and w 2 �

Pt .w; � /D Pt�� .w/ > 0;

where �� is the characteristic function of � . The strong Feller property and

irreducibility are usually defined for a fixed t but by the semigroup property, if

these hold at one t they also hold at any other t . Now if the transition semi-

group Pt associated with the equation (5-1) below is a strong Feller semigroup

and irreducible, then by Doob’s theorem on invariant measures [Da Prato and

Zabczyk 1996],

(i) The invariant measure � associated with Pt is unique.

(ii) � is strongly mixing and

lim
t!1

Pt .w; � /D �.� /;

for all w 2L2 and � 2 E where E.L2/ denotes the sigma field generated by

the Borel subsets of L2.

(iii) � is equivalent to all measures Pt .w; � /, for all w 2L2 and all t > 0.

5. The statistical theory

The invariant measure can be used to compute statistical quantities character-

izing the turbulent state. The mathematical model consists of the Navier–Stokes

equation where we have used the incompressibility condition to eliminate the

pressure,
@u

@t
Cu � ruD ��uCr��1Œtrace.ru/2�C f; (5-1)
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� is the kinematic viscosity and f represents turbulent noise as in Equation

(2-6). The velocity also satisfies the incompressibility condition

r �uD 0: (5-2)

In one dimension, modeling a fast turbulent flow in a relatively narrow river,

one can ignore the dimension transverse to the flow and the equation becomes,

ut Cuux D �uxxC @
�1

x
.ux/

2� bC f; (5-3)

as discussed above. The existence of turbulent solutions of this equation and

their associated invariant measures was established in [Birnir 2007a], following

the method of McKean [2002]. The existence of invariant measures for the one-

dimensional Navier–Stokes equation (dissipative Burger’s equation) with sto-

chastic forcing was established by Sinai [1996] (see also [Kuksin and Shirikyan

2001]) and McKean [2002]. The existence in the two-dimensional case was

established by Flandoli [1994]; see also [Flandoli and Maslowski 1995; Mat-

tingly 1999; Weinan et al. 2001; Bricmont et al. 2000; Hairer and Mattingly

2004; Hairer et al. 2004].

If one considers the second structure function

S2.y/DEŒju.xCy/�u.x/j2�

of the solution, one can show that it scales with the power 3

2
in the lag variable

y for the equation (5-3), in one dimension (see [Birnir et al. 2001; 2007a; Birnir

2007a], and 2

3
for equation (5-1), in three dimensions, the latter is Kolmogorov’s

theory. The Kolmogorov scaling of the second structure function is usually

written as

S2.y/D C "2=3y2=3:

where " is the dissipation rate. In two dimensions the scaling is more compli-

cated due to the existence of the inverse cascade (see [Kraichnan 1967]), and

two scaling regimes may exist [Kraichnan 1967; Batchelor 1969; Kolmogorov

1941]. It is still an open problem to examine the higher moments for different

scalings or multifractality [Frisch 1995; Lavallée et al. 1993], and the scalings

at very small scales below the Kolmogorov scale. The latter is the scale below

which dissipation and dissipative scaling is supposed to dominate. Finally, one

needs to examine the scaling in time, that we have suppressed in the above

formula, to see if one can characterize the transients to the stationary (fully

developed turbulence) state.

If � is a bounded function on L2.T1/, then the invariant measure d� for the

SPDEs (3-1) is given by the limit

lim
t!1

E.�.u.t///D

Z

L2.T1/

�.u/ d�.u/I (5-4)
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see (4-1). In [Birnir 2007a] we proved that this limit exists and is unique. We

get the following theorem, as explained in Section 4,

THEOREM 5.1. The integral equation (3-2) possesses a unique invariant mea-

sure.

COROLLARY 5.1. The invariant measure d� is ergodic and strongly mixing.

The corollary follows immediately from Doob’s theorem for invariant measures;

see for example [Da Prato and Zabczyk 1996].

The equations describing the erosion of a fluvial landsurface consist of a

system of PDEs, one (u) equation describing the fluid flow, the other equation

describing the sediment flow; see [Birnir et al. 2001]. Using these equations,

Hack’s law is proven in the following manner. In [Birnir et al. 2007a] the

equations describing the sediment flow are linearized about convex (concave in

the terminology of geomorphology) surface profiles describing mature surfaces.

Then the colored noise generated by the turbulent flow (during big rainstorms)

drives the linearized equations and the solutions obtain the same color (scaling),

see Theorem 5.3 in [Birnir et al. 2007a]. The resulting variogram (second struc-

ture function) of the surfaces scales with the roughness exponent � D 3

4
, see

Theorem 5.4 in the same reference. This determines the roughness coefficient

� of mature landsurfaces.

The final step is the following derivation of Hack’s law is copied from [Birnir

et al. 2001].

The origin of Hack’s law. The preceding results allow us to derive some of

the fundamental scaling results that are known to characterize fluvial landsur-

faces. In particular, the avalanche dimension computed in [Birnir et al. 2001]

and derived in [Birnir et al. 2007a], given the roughness coefficient �, allows us

to derive Hack’s Law relating the length of a river l to the area A of the basin

that it drains. This is the area of the river network that is given by the avalanche

dimensions

A� lD

and the avalanche dimensions is DD 1C�. This relation says that if the length

of the main river is l then the width of the basin in the direction, perpendicular

to the main river, is l�. Stable scalings for the surface emerge together with the

emergence of the separable solutions describing the mature surfaces; see [Birnir

et al. 2001]. We note that in this case �D 3

4
, hence we obtain

l �A
1

1C� �A0:57; (5-5)

a number that is in excellent agreement with observed values of the exponent of

Hack’s law of 0:58; see [Gray 1961].
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It still remains to explain how the roughness of the bottom and boundary of

a river channel gets spread to the whole surface of the river basin over time.

In [Birnir et al. 2007b] it is shown that the mechanism for this consists of the

meanderings of the river. As the rivers meanders over time it sculpts a roughness

of the surface with the roughness exponent 3

4
.

6. Invariant measures and turbulent mixing

Now how does the existence of the invariant measure help in determining

the turbulent mixing properties on a small scale? First, the invariant measure is

not only ergodic but in fact strongly mixing; see [Birnir 2007a]. Secondly, the

invariant measure allows one to compute the statistical properties, in particular

the mixing rates. This, of course sounds, a little too good to be true so what is

the problem?

The main problem one has to tackle first is that no explicit formula exist for

the invariant measure, such as the explicit formula one has for the Gaussian

invariant measure of Brownian motion. Indeed no such formula can exist, no

more than one can have an explicit formula for a general turbulent solution of the

Navier–Stokes equation. However, since the invariant measure is both ergodic

and weakly mixing, by Doob’s theorem (see [Da Prato and Zabczyk 1996],

for example) one can use the ergodic theorem and approximate the invariant

measure by taking the long-time time average. In practice this means that we

take the limit of the expectation of a computed solution or rather it substitute:

an ensemble average of many computed solutions and the time average of this

ensemble average, when time becomes large. Roughly speaking this means that

we can approximate the invariant measure to the same accuracy as the com-

puted solution. However, this means that we also have an approximation of the

probability density and this can be used to make a subgrid model for (LES)

computations.

It is desirable to go beyond the above approximation and develop approx-

imations of the invariant measure that are independent of the computational

accuracy. This requires one to find an approximations of the invariant measure

by a sequence of measures that can be computed explicitly and an estimate of

the error one makes by each approximation. There are some proposals for doing

this that need to be explored. One also needs to investigate the properties of the

invariant measure, what its continuity properties are with respect to other mea-

sures, etc. The discovery of these properties that now are completely unknown

will help in determining good and efficient approximations to the invariant mea-

sure and the probability density.

If methods are found to efficiently approximate the invariant measure then

there are no limits to the spatial and temporal scales that can be resolved except
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the theoretical one given by the Kolmogorov and dissipative scales. In other

words with good methods to approximate the invariant measures the turbulent

mixing problem can be solved and the mixing rates of the various components

due to the turbulence computed. Furthermore, at least theoretically this can be

done to any desired accuracy.

7. Approximations of the invariant measure

It is imperative for application to be able to approximate the invariant measure

up a high order. This permits the computation of statistical quantities to within

the desired accuracy in experiments or simulations. The first step in the ap-

proximation procedure is to use the same method that was used to construct the

solutions to construct approximations of the invariant measure. If we linearize

the Navier–Stokes equation (5-1) around a fast unidirectional flow Uoe1 where

e1 is a unit vector in the x direction and include noise then we get a heat equation

with a convective term that has the solution

uo.x; t/D
X

k¤0

h
1=2

k

Z

t

0

e.�4�2
jkj

2
C2� iUok1/.t�s/dˇk

s
ek.x/ (7-1)

as explained in Section 2. The ˇk

t
s are independent Brownian motions and the

eks are Fourier components. Then if we look for a solution of (5-1) of the form

U D Uoe1Cu then u satisfies the integral equation

u.x; t/D uo.x; t/C

Z

t

to

K.t � s/� Œ�u � ruCr��1.trace.ru/2/�ds (7-2)

where K is the (oscillatory heat) kernel in (2-7). The solution of the integral

equation is constructed by substituting uo as the first guess into the integral and

then iterating the result. This produces a sequence of (Picard) iterates that one

proves converges to the solution of the integral equation. No explicit formula

can exist for the limit in general but one can iterate the integral equation as often

as desired to produce an approximate solution. The formulas get more and more

complicated but it is possible that one quickly gets a good approximation to the

real solutions. This obviously depends on the rate of convergence. In any case

the mth iterate um of the integral equation with u0 D uo is an approximate

solution that can be compared to a numerical solution of the equation (5-1).

It is conceivable that these approximations can be implemented by a symbolic

or partially symbolic and partially numerical computation.

By the ergodic theorem the time average of the solution

1

T

Z

T

0

u.t/ dt
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converges to the invariant measure. In fact,

lim
T !1

1

T

Z

T

0

�.u.t// dt D

Z

L2.T1/

�.u/ d�.u/ (7-3)

where � 2 B.L2/ is any bounded function on L2. Thus we can find approxi-

mations �m to the invariant measure � by considering the sequence

1

Tm

Z

Tm

0

um.t/ dt �

Z

L2.T1/

ud�m.u/

u0 in these formulas is simply the solution of the linear equation (2-6) for uni-

form flows and the invariant measure �0 obtained in the limit is a weighted

Gaussian; see [Birnir et al. 2007a]. The higher Picard iterates will give more

complicated limits. Again, these approximations can probably be implemented

by a symbolic or partially symbolic and partially numerical computation.

The problem is that this way of approximating the invariant measure may

not be very inefficient. Thus it is important to seek more efficient ways of

implementing these approximations first theoretically and then numerically.

8. RANS and LES models

The objective of RANS (Reynolds Averaged Navier Stokes) computations is

to compute the spatial distribution of the mean velocity of the turbulent flow.

To do this the velocity and pressure are decomposed into the mean Nu and the

deviation from the mean uD U � Nu (or fluctuation)

U.x; t/D Nu.x; t/Cu.x; t/

The average denoted here by a bar is an ensemble average. Then, by definition,

the mean of u is equal to zero. Similarly, the pressure is decomposed as

P .x; t/D Np.x; t/Cp.x; t/

The divergence condition (5-2) gives that

r � NuD 0Dr �u

and averaging the Navier–Stokes equation (5-1) gives the equation for the mean

velocity

@ Nu

@t
C Nu � r NuCr �u˝uD �� Nu�r Np (8-1)

Thus the mean satisfies an equation similar to (2-1) except for an additional term

due the Reynolds stress

RD u˝u
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The additional term in (8-1) acts as an effective stress on the flow due to mo-

mentum transport cause by turbulent fluctuation. Until recently it has been im-

possible to determine this term from first principle and various approximations

have been used. The simplest formulation is to set the Reynolds stress tensor to

RD��T .x/r Nu

where �T .x/ is called the turbulent eddy viscosity. This makes the additional

term in the equation act as an additional (viscous) diffusion term. A better

approximation is to develop an evolution equation for R. This equation turns

out to depend on the u˝u˝u and so on. Thus an infinite sequence of evolution

equations for higher and higher moments is obtained and it must be closed at

some level. This is done by approximating some higher moment by a formula

depending only on lower moments. The closure problem is the problem of how

to implement this moment truncation. A good recent exposition of the RANS

models is contained in [Bernard and Wallace 2002].

The approximate invariant measure discussed above gives us a new insight

into RANS models. In particular the mean is nothing but the expectation

Nu.x; t/�

Z

L2

ud�m.u/

This obviously does not determine Nu since u is unknown but we can now work

with the various closure approximations and improve them knowing what the

spatial average actually means. This can be done and the result simulated. The

hope is to develop RANS models that are less dependent on the available data

and the parameter regions covered by that data.

In LES (see [Meneveau and Katz 2000]) the velocity is decomposed into

Fourier modes and then the expansion truncated at some intermediate scale that

are usually given by the grid resolution. Then one computes the large scales

explicitly and models the effects of the small scales, smaller than the cutoff, on

the large scales with a subgrid model. The cutoff is usually done with a smooth

Gaussian filter. LES thus assumes that the small scale turbulence structures are

not significantly dependent on the geometry of the flow and therefore can be

represented by a general model. This method is able to handle transition to

turbulence and the resulting turbulent regimes in the flow better than RANS that

usually needs to be told explicitly where the transition occurs. Now if we let

Nu and Nu denote resolved velocity and pressure then the Navier–Stokes equation

for the resolve quantities can be written as

@ Nu

@t
C Nu � r NuCr � . Nu˝ Nu/D �� Nu�r Np�r �� (8-2)
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where � represents the subgrid stress tensor (SGS)

� D u˝u� Nu˝ Nu

and the resolved scales are divergence free

r � NuD 0

� describes the effects of the subgrid scales on the resolved velocity.

The most common subgrid models use a relationship between SGS and e the

resolved strain tensor

e D 1

2
.ruC .ru/T/

where .ru/T denotes the transpose. The relationship between � and e is

� � 1

3
trace � ıij D�2�T e

Here ıij denotes Kronecker’s delta and the eddy viscosity is

�T D C "2

q

2e.e/T

The " is a characteristic length scale for the subgrid. As it stands this subgrid

model is purely dissipative and excessively so. If the constant in front of jej D
p

2e.e/T is allowed to vary with time (see [Germano et al. 1991]) a much

better result is obtained. Then the constant is computed dynamically during the

simulation and with this modification the so-called Smagorinsky subgrid model

does not produce excessive dissipation. However, it only work with situations

where the flow is homogeneous in at least one direction and thus does not permit

general geometries.

In general when modeling an experiment we want the subgrid model to re-

produce the Kolmogorov k�5=3 energy spectrum of homogeneous isotropic tur-

bulence, and the statistics of turbulent channel flow. The advantage that we

have with the approximate invariant measure is that we can base the cutoff on

the approximately correct probability density function instead of a Gaussian that

has nothing to do with the details of the small scale flow. This holds the promise

that we can reproduce the correct scaling in the subgrid model. Ultimately this

tests that the LES is producing the correct scaling down to the size of the com-

putational grid.

9. Validation of the numerical methods

Turbulent fluids are highly unstable phenomena that are sensitive to noise and

perturbation. Velocity trajectories depend sensitively on their initial conditions

and it is not clear that they can be given a deterministic interpretation. This

means that computations of such fluids are highly sensitive to truncation and
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even round-off errors. One must regards turbulent phenomena to be structurally

unstable and stochastic. Statistical quantities associated to the turbulent fluids

are deterministic and can be computed by taking appropriate statistical ensem-

bles. However, one must be careful that the numerical methods one uses can be

trusted to converge to the correct statistical quantity. It turns out that it is not

enough to check that the conventional quantities such as energy or momentum

and make sure that they converge. One must also consider the scalings of the

statistical quantities and check that they show the correct scalings over a suf-

ficiently large parameter range. In doing this one must choose the numerical

methods carefully.

In a series of papers the author and his collaborators, [Smith et al. 1997b;

Smith et al. 1997a; Birnir et al. 2001; Birnir et al. 2007a], showed that whereas

explicit methods generally fail to produce the correct scalings over a large pa-

rameter interval, implicit methods do. This reason for this is that in an implicit

method the time step is independent of the spatial discretization and does not go

to zero as the spatial discretization decreases. Explicit methods obtain stability

by inserting artificial viscosity into the problem and this artificial viscosity de-

stroys the small scale scalings. Before the scaling of the small scales is obtained

the time step goes to zero in the explicit method and the computation grinds to a

halt. This makes implicit methods the methods of choice. Although the implicit

methods also induce some viscosity, it is much smaller and does not interfere

with the small scale scaling to the same extent as for explicit methods. The

problem is that implicit methods are much slower than explicit and although this

is not a serious obstacle in one dimension it is in two dimensions and makes the

turbulence problem intractable in three dimensions. Thus it becomes impera-

tive to compute correct closure approximations for RANS and subgrid models

for LES in order to be able to solve these by implicit methods and produce

numerically the correct scalings. One way of implementing this is to use the

(approximate) invariant measure to develop tests on numerical methods to see

if they produce correct scalings down to the size of the numerical grid.
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ABSTRACT. We present a Riemann–Hilbert problem formalism for the initial

value problem for the Camassa–Holm equation ut � utxx C 2!ux C 3uux D

2uxuxx Cuuxxx on the line (CH), where ! is a positive parameter. We show

that, for all ! > 0, the solution of this initial value problem can be obtained

in a parametric form from the solution of some associated Riemann–Hilbert

problem; that for large time, it develops into a train of smooth solitons; and

that for small !, this soliton train is close to a train of peakons, which are

piecewise smooth solutions of the CH equation for ! D 0.

1. Introduction

The main purpose of this paper is to develop an inverse scattering approach,

based on an appropriate Riemann–Hilbert problem formulation, for the initial

value problem for the Camassa–Holm (CH) equation [Camassa and Holm 1993]

on the line, whose form is

ut�utxxC2!uxC3uuxD2uxuxxCuuxxx; �1<x<1; t>0; (1-1a)

u.x; 0/Du0.x/; (1-1b)

where! is a positive parameter. The CH equation is a model equation describing

the shallow-water approximation in inviscid hydrodynamics. In this equation

u D u.x; t/ is a real-valued function that refers to the horizontal fluid velocity

along the x direction (or equivalently, the height of the water’s free surface

above a flat bottom) as measured at time t . The constant ! is related to the
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critical shallow water wave speed
p

gh0, where g is the acceleration of gravity

and h0 is the undisturbed water depth; hence, the case ! > 0 is physically more

relevant than the case !D 0, though the latter has attracted more attention in the

mathematical studies due to interesting specific features such as the existence

of peaked (nonanalytic) solitons.

In terms of the “momentum” variable

m WD u�uxx; (1-2)

the CH equation (1-1a) reads

mt C 2!ux CumxC 2mux D 0: (1-3)

Assuming further that mC!� 0, equation (1-1a) can be equivalently expressed

as
�p

mC!
�

t
D�

�

u
p

mC!
�

x
: (1-4)

The function u0.x/ in (1-1b), as well as

m0.x/ WD u0.x/�u0xx.x/

is assumed to be sufficiently smooth and to decay fast as jxj !1. It is known

(see, e.g., [Constantin 2001]) that if m0.x/C! > 0 for all x then the solution

m.x; t/ to (1-3) exists for all t ; moreover, m.x; t/C! > 0 for all x 2 R and all

t > 0. This justifies the form (1-4) of the CH equation, which will be used in

our constructions below.

Our goal is to develop the inverse scattering approach to the CH equation,

in view of its further application for studying the long-time asymptotics. The

starting point of the approach is the Lax pair representation: the CH equation is

indeed the compatibility condition of two linear equations [Camassa and Holm

1993]

 xx D
1

4
 C�.mC!/ ; (1-5a)

 tD
�

1

2�
�u

�

 xC
1

2
ux : (1-5b)

Together with the fact that the x-equation of the Lax pair can be transformed to

the spectral problem for the one-dimensional Schrödinger equation, by means of

the Liouville transformation, this allows using the inverse scattering transform

method to study the initial value problem for the CH equation with ! > 0; see

[Constantin 2001; Lenells 2002; Constantin and Lenells 2003; Johnson 2003;

Constantin et al. 2006].

In the present paper, we propose a “scattering – inverse scattering” formalism,

in which the Lax pair is used in the form of a system of first order matrix-valued

linear equations. Then dedicated solutions of this system are defined and used

to construct a multiplicative Riemann–Hilbert (RH) problem in the complex
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plane of the spectral parameter. The main advantage of the representation of a

solution of the CH equation in terms of the solution of a RH problem is that it

allows applying the nonlinear steepest descent method by Deift and Zhou [1993]

in order to obtain rigorous results on the long-time asymptotic behavior of the

solution.

An alternative inverse scattering method based on an additive RH problem

formulation for the associated eigenfunctions is given in [Constantin et al. 2006].

In Section 2, we define appropriate eigenfunctions and spectral functions,

which are used in Section 3 in the reformulation of the scattering problem as a

Riemann–Hilbert problem of analytic conjugation in the complex plane of the

spectral parameter. We also introduce a scale in which the Riemann–Hilbert

problem becomes explicitly given. In Sections 4 and 5, we briefly discuss the

soliton solutions and the soliton asymptotics of the solution of a general initial

value problem. Finally, Section 6 deals with the small-! analysis, the main result

of which can be formulated as follows: for sufficiently small !, the solution of

the initial value problem for the Camassa–Holm equation is seen, for large time,

as a train of “almost” peakons, which are piecewise smooth weak solutions of the

Camassa–Holm equation with ! D 0, the parameters of which are determined

by the spectrum of the associated linear problem (1-5a) with ! D 0.

The results of this paper were announced in [Boutet de Monvel and Shepelsky

2006b]. For their application to long-time asymptotics, see [Boutet de Monvel

and Shepelsky 2007].

2. Eigenfunctions and spectral functions

2.1. Eigenfunctions. We present the general formalism scaling out the param-

eter ! in the CH equation and thus assuming that ! D 1 and mC 1 > 0 (in

Section 6 we will return to arbitrary positive ! when studying the small-! limit

of solutions).

Let u.x; t/ be a solution to (1-1a) with !D1 such that u.x; t/!0 as jxj!1

for all t . First, we rewrite the Lax pair in vector form. Let ˚init WD
� 
 x

�

; then

(1-5) is equivalent to

.˚init/x D

�

0 1

�.mC 1/C 1

4
0

�

˚init DW Uinit˚init; (2.1a)

.˚init/t D

�

1

2
ux

1

2�
�u

1

8�
C 1

2
C 1

4
u��u.mC 1/ �1

2
ux

�

˚init DW Vinit˚init: (2.1b)

Our aim is to introduce special solutions to this system that are well-controlled

as functions of the spectral parameter.

In order to control the behavior of solutions of this system for �!1, it is

convenient to transform it in such a way that



56 ANNE BOUTET DE MONVEL AND DMITRY SHEPELSKY

(i) the principal terms for � ! 1 in the Lax equations be diagonal and the

terms of order �0 be off-diagonal; and

(ii) all the lower order terms vanish as jxj !1.

Writing Uinit in the form

Uinit D

�

0 1

.�C 1

4
/.mC 1/ 0

�

�
m

4

�

0 0

1 0

�

suggests introducing the spectral parameter k and the transformation matrix G1

by

k2 D���
1

4
; G1.x; t I k/ WD

1

2

�

1 � 1

ik

1 1

ik

��

.mC 1/1=4 0

0 .mC 1/�1=4

�

:

Defining Q̊ WDG1˚init transforms (2-1) into

Q̊
xC ik

p
mC 1�3

Q̊ D U Q̊ ; (2-2a)

Q̊
t C ik

�

1

2�
�u
p

mC 1

�

�3
Q̊ D V Q̊ ; (2-2b)

where �3 D
�

1

0

0

�1

�

,

U.x; t I k/D
1

4

mx

mC 1

�

0 1

1 0

�

�
1

8ik

m
p

mC 1

�

�1 �1

1 1

�

(2-3)

and

V .x; t I k/D�
u

4

mx

mC 1

�

0 1

1 0

�

C
1

8ik

u.mC 2/
p

mC 1

�

�1 �1

1 1

�

C
ik

4�

�

p
mC 1

�

�1 1

�1 1

�

C
1

p
mC 1

�

�1 �1

1 1

��

C
ik

2�
�3: (2-4)

It is clear that U.x; t I k/! 0 as jxj!1. As for the t -equation (2-2b), the term
ik
2�
�3 has been introduced into the r.h.s. of (2-4) in order to provide V .x; t I k/!

0 as jxj !1.

Now the equations (2-2) suggest introducing a scalar function p.x; t I k/ in

such a way that

px D
p

mC 1; pt D
1

2�
�u
p

mC 1:

Indeed, due to (1-4), one can define such p (normalized by p.x; 0I k/ � x as

x!C1) as follows:

p.x; t I k/ WD x�

Z

1

x

�

p

m.�; t/C 1� 1
�

d�C
t

2�.k/

D x�

Z

1

x

�

p

m.�; t/C 1� 1
�

d� �
2

1C 4k2
t: (2-5)
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Figure 1. Paths of integration for ˚� and ˚C.

Finally, assuming Q̊ to be a 2� 2 matrix-valued function, let ˚.x; t I k/ WD
Q̊ eikp.x;tIk/�3 . Then (2-2) becomes

˚xC ikpx Œ�3; ˚�D U˚; ˚t C ikpt Œ�3; ˚�D V˚; (2-6)

where Œa; b� WD ab� ba.

The Lax pair in the form (2-6) is very convenient for defining dedicated solu-

tions via integral Volterra equations by specifying the initial point of integration

.x�; t�/ in the .x; t/-plane:

˚.x;t Ik/D I C

Z .x;t/

.x�;t�/

e�ik.p.x;tIk/�p.y;�Ik// O�3

�fU.y;� Ik/˚.y;� Ik/dyCV .y;� Ik/˚.y;� Ik/d�g; (2-7)

where I is the 2�2 identity matrix, e O�3A WD e�3Ae��3 for any 2�2 matrix A,

and the r.h.s. is independent of the integration path. Then the special structure

of U and V (recall that their main terms as k!1 are off-diagonal) provides

a well-controlled behavior of solutions of (2-7) for large k.

Choosing the initial points of integration to be .�1; t/ and .C1; t/ and the

paths of integration to be parallel to the x-axis (see Figure 1) leads to the integral

equations for ˚C and ˚�:

˚�.x; t I k/D I C

Z

x

�1

e�ik
R x

y

p

m.�;t/C1 d� O�3.U˚�/.y; t I k/ dy;

˚C.x; t I k/D I �

Z

1

x

eik
R y

x

p

m.�;t/C1 d� O�3.U˚C/.y; t I k/ dy:

(2-8)

It is due to the condition V ! 0 as jxj !1 as well as the compatibility of the

two equations in (2-6) that the solutions of (2-8) satisfy the t -equation in (2-6).

Since U and V are traceless, it follows that det˚˙ � 1.

The structure of the integral equations (2-8) provides the following analytic

properties of the eigenfunctions ˚˙ as functions of k. We denote �.1/ and

�.2/ the columns of a 2� 2 matrix �D . �.1/ �.2/ /. Then, for all .x; t/, the

following conditions are satisfied:
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(a) ˚ .1/
�

and ˚
.2/
C

are analytic in fk j Im k > 0g and continuous in fk j Im k � 0;

k ¤ 0g;

(b) ˚
.1/
C

and ˚ .2/
�

are analytic in fk j Im k < 0g and continuous in fk j Im k � 0;

k ¤ 0g;

(c) as k!1 in fk j Im k � 0g,
�

˚ .1/
�

˚
.2/
C

�

! I ;

(d) as k!1 in fk j Im k � 0g,
�

˚
.1/
C

˚ .2/
�

�

! I ;

(e) as k! 0, ˚˙ D
˛

˙
.x;t/

ik

�

�1

1

�1

1

�

CO.1/ with ˛˙ 2 R.

REMARK 1. The Lax pair in the form (2-6) (see also (3-9) below) and the

associated integral equations (2-7) turn out to be useful also in studying initial

boundary value problems for the CH equation, see [Boutet de Monvel and Shep-

elsky 2006a]. Indeed, the structure of the t -equation is as “good” as the structure

of the x-equation for controlling the properties of the appropriate eigenfunctions

in the k-plane even in the case where the integration paths in (2-7) are not

parallel to the x-axis; such paths (parallel to the t -axis) are needed in order to

relate the eigenfunctions to the boundary values (i.e., at x D 0) of a solution

of the nonlinear equation in question. These eigenfunctions can be viewed as

coming from the simultaneous spectral analysis (of the x- and t -equations) of

the Lax pair.

2.2. Spectral functions. For k 2 R, the eigenfunctions ˚� and ˚C, being the

solutions of the system of differential equations (2-6), are related by a matrix

independent of .x; t/; this allows introducing the scattering matrix s.k/ by

˚C.x; t I k/D ˚�.x; t I k/e
�ikp.x;tIk/ O�3s.k/; k 2 R; k ¤ 0: (2-9)

Since the matrix U satisfies the symmetry relations

U. � ; � ; Nk/D U. � ; � ;�k/D

�

0 1

1 0

�

U. � ; � ; k/

�

0 1

1 0

�

; (2-10)

the spectral matrix s.k/ can be written as

s.k/D

�

a.k/ b.k/

b.k/ a.k/

�

; k 2 R; (2-11)

where a.k/D a.�k/ and b.k/D b.�k/.

Writing the spectral functions a.k/ and b.k/ in terms of determinants, namely

a.k/D det
�

˚ .1/
�

˚
.2/
C

�

;

b.k/D e2ikp det
�

˚
.2/
C

˚ .2/
�

�

;

allows us to establish the following properties:
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(i) a.k/ and b.k/ are determined by ˚˙ for t D 0 and thus by m.x; 0/ (or,

equivalently, by u.x; 0/).

(ii) a.k/ is analytic in fk j Im k > 0g and continuous in fk j Im k � 0; k ¤ 0g;

moreover, a.k/! 1 as k!1.

(iii) b.k/ is continuous for k 2 R; k ¤ 0 and b.k/! 0 as jkj !1.

(iv) as k!0, a.k/D˛0=.ik/CO.1/ and b.k/D�˛0=.ik/CO.1/with ˛0 2R.

(v) ja.k/j2� jb.k/j2 D 1 for k 2 R; k ¤ 0.

(vi) Let fkj g
N

jD1
be the set of zeros of a.k/: a.kj /D 0. Then N <1 and the

zeros are simple with .da=dk/ .kj /2 i R; moreover, kj D i�j with 0<�j <
1

2

for all 1� j �N ; and the eigenvectors are related by

˚ .1/
�
.x; t I i�j /D �j e�2�j p.x;tIi�j /˚

.2/
C
.x; t I i�j / (2-12)

with �j 2 R.

The statements in the last item follow from the fact that �j D �2

j
� 1

4
, j D

1; 2; : : : ;N are the eigenvalues of the x-equation (1-5a) with mDm.x; 0/: they

are known (see, e.g., [Constantin 2001]) to be simple and to satisfy�1

4
<�j <0.

REMARK 2. It follows from the construction of the eigenfunctions ˚˙ that s.k/

is the scattering matrix for the one-dimensional Schrödinger equation �'yy C

Q.y/'D k2' associated to (1-5a) with mDm.x; 0/ via the Liouville transfor-

mation:

y D x�

Z

1

x

�

p

m.�; 0/C 1� 1
�

d�; q.y/Dm.x; 0/C 1;

'.y; k/D  .x; k/q.y/1=4; Q.y/D
qyy

4q
�

3.qy/
2

16q2
C

1� q

4q
:

3. Riemann–Hilbert problem

3.1. Scattering problem as a Riemann–Hilbert problem in the .x; t/ scale.

Regrouping the columns of the scattering relation (2-9) in accordance with their

analyticity properties allows rewriting (2-9) in the form of a conjugation of

piecewise meromorphic, matrix-valued functions. Let us define a 2� 2 matrix

function M.x; t I k/ by

M.x; t I k/D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�

˚ .1/
�
.x; t I k/

a.k/
˚
.2/
C
.x; t I k/

�

if Im k > 0,

�

˚
.1/
C
.x; t I k/

˚ .2/
�
.x; t I k/

a. Nk/

�

if Im k < 0.

(3-1)
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Then the limiting values M˙.x; t I �/ of M.x; t I k/ as k approaches the real axis

(k D �˙ i", " > 0 and "! 0) are related as follows:

M�.x; t I k/DMC.x; t I k/e
�ikp.x;tIk/�3J0.k/e

ikp.x;tIk/�3 ; k 2 R; (3-2)

where

J0.k/D

�

1 �r.k/

r.k/ 1� jr.k/j2

�

(3-3)

with r.k/D b.k/=a.k/.

By construction, M.x; t I k/ also satisfies the following properties:

(i) M ! I as k!1.

(ii) M D
˛C.x; t/

ik

�

�c

c

�1

1

�

C O.1/ as k ! 0 in Im k � 0, where c D 0 if

lim
k!0

ka.k/¤ 0.

(iii) Symmetry properties:

M. � ; � ; Nk/DM. � ; � ;�k/D

�

0 1

1 0

�

M. � ; � ; k/

�

0 1

1 0

�

:

(iv) M has poles at the zeros kj D i�j of a.k/ (in the upper half-plane Im k> 0)

and at kj D �i�j (in the lower half-plane Im k < 0), j D 1; 2; : : : ;N , with

the following residue conditions:

ReskDi�j
M .1/.x; t I k/D ij e�2�j p.x;tIi�j /M .2/.x; t I i�j /;

ReskD�i�j
M .2/.x; t I k/D�ij e�2�j p.x;tIi�j /M .1/.x; t I �i�j /

(3-4)

with j D�i
�j

.da=dk/.i�j /
2 R.

In the Riemann–Hilbert approach to nonlinear evolution equations, one tries to

interpret a jump relation (of type (3-2)) across a contour in the k-plane, together

with residue conditions (of type (3-4)) and certain normalization conditions,

as a Riemann–Hilbert problem, the data for which are the jump matrix and

the residue parameters (which can be obtained by solving the direct scattering

problem for an operator with coefficients determined by the initial data for the

nonlinear problem), and the solution of which gives the solution to the nonlinear

equation in question.

In the case of the Camassa–Holm equation, the jump relation (3-2) cannot

be used immediately for this purpose. In the construction of the jump matrix

e�ikpJ0.k/e
ikp the factor J0.k/ is indeed given in terms of the known initial

data but p.x; t I k/ is not: it involves m.x; t/ which is unknown (and, in fact, is

to be reconstructed) in the framework of the inverse problem.
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To remedy this, we introduce the new (time-dependent) scale (cf. the Liou-

ville transformation)

y.x; t/D x�

Z

1

x

�

p

m.�; t/C 1� 1
�

d�; (3-5)

in terms of which the jump matrix and the residue conditions become explicit.

The price to pay for this, however, is that the solution to the nonlinear problem

can be given only implicitly, or parametrically: it will be given in terms of

functions in the new scale, whereas the original scale will also be given in terms

of functions in the new scale.

In order to achieve this program, we use a particular feature of the Lax pair

for the Camassa–Holm equation, namely, the fact that the x-equation (1-5a) be-

comes trivial (independent of the “momentum” m) for �D0, which corresponds

to k D ˙ i
2

. In order to translate this into the properties of the eigenfunctions

involved in the construction of the analytic conjugation problem (3-2), it is con-

venient to transform the Lax pair equations in such a way that the main terms

become diagonal as �! 0.

3.2. Eigenfunctions near �D 0. Setting Q̊ 0 WD
1

2

�

1 � 1

ik

1 1

ik

�

˚init transforms

(2-1) into

Q̊ 0
x
C ik�3

Q̊ 0 D U0
Q̊ 0; Q̊ 0

t
C

ik

2�
�3
Q̊ 0 D V0

Q̊ 0; (3-6)

where

U0.x; t I k/D
�

2ik
m.x; t/

�

�1 �1

1 1

�

; (3-7)

and

V0.x; t I k/D
ux

2

�

0 1

1 0

�

C
u

4ik

�

0 �1

1 0

�

C
�u

2ik

�

2�3�m

�

�1 �1

1 1

��

: (3-8)

The eigenfunctions ˚0

˙
are defined similarly to ˚˙: setting

˚0 WD Q̊ 0 exp
n�

ikxC
ik

2�
t
�

�3

o

transforms (3-6) into

˚0

x
C ikŒ�3; ˚

0�D U0˚
0; ˚0

t
C

ik

2�
Œ�3; ˚

0�D V0˚
0: (3-9)
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Now the eigenfunctions ˚0

˙
are defined as solutions of the integral equations

˚0

˙
.x; t I k/D I C

Z

x

˙1

e�ik.x�y/ O�3.U0˚
0

˙
/.y; t I k/ dy (3-10)

(notice that the fact that V0! 0 as jxj!1 is again of importance here). Since

U0.x; t I˙
i
2
/� 0 in (3-10), we have that ˚0

˙
.x; t I˙ i

2
/� I .

Since ˚˙ and ˚0

˙
solve a system of differential equations which are trans-

formations of the same system (2-1), they are related by matrices C˙.k/ inde-

pendent of .x; t/:

˚˙.x; t I k/D F.x; t/˚0

˙
.x; t I k/e�ik.xC

t
2�
/�3C˙.k/e

ikp.x;tIk/�3 ; (3-11)

where

F D
1

2

�

qC q�1 q� q�1

q� q�1 qC q�1

�

; q.x; t/D .m.x; t/C 1/1=4 ;

and C˙.k/ are determined by the boundary conditions

˚˙.˙1; t I k/D ˚
0

˙
.˙1; t I k/D I I

this gives CC.k/D I and C�.k/D eik~�3 with ~ D
R

1

�1

�
p

m.�; t/C 1�1
�

d�

independent of t (conservation law).

In particular, evaluating (3-11) at k D˙ i
2

we have

˚
.2/
C

�

x; t I i
2

�

D F .2/.x; t/e�
1
2

R

1

x .
p

m.�;t/C1�1/ d� ;

˚ .1/
�

�

x; t I i
2

�

D F .1/.x; t/e�
1
2

R x

�1
.
p

m.�;t/C1�1/ d� :

Calculating a. i
2
/ using the determinant formula gives

a
�

i
2

�

D det.˚ .1/
�

˚
.2/
C
/
ˇ

ˇ

kD
i
2

D e�
1
2

R

1

�1
.
p

m.�;t/C1�1/ d� D e�~=2;

which finally yields

M
�

x; t I i
2

�

D F.x; t/

�

e
1
2

R

1

x .
p

m.�;t/C1�1/ d� 0

0 e�
1
2

R

1

x .
p

m.�;t/C1�1/ d�

�

:

(3-12)

Equation (3-12) allows relating the original scale x and the new scale y, see

(3-5), in terms of M evaluated at k D i
2

. Indeed, let

Q�1.x; t/ WDM11

�

x; t I i
2

�

CM21

�

x; t I i
2

�

;

Q�2.x; t/ WDM12

�

x; t I i
2

�

CM22

�

x; t I i
2

�

:

Then from (3-12) and (3-5) we have

Q�1.x; t/

Q�2.x; t/
D e

R

1

x .
p

m.�;t/C1�1/ d� D ex�y.x;t/ (3-13)
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and

Œ Q�1.x; t/ Q�2.x; t/�
2 Dm.x; t/C 1: (3-14)

3.3. Riemann–Hilbert problem in the .y; t/ scale. We observe that the jump

conditions (3-2) as well as the residue conditions (3-4) become explicit in the

variables y and t . This, together with the considerations above concerning the

relations involving the x and y scales, suggest introducing the vector Riemann–

Hilbert problem, parametrized by .y; t/, as follows (cf. (3-2), (3-4)):

RH-PROBLEM. Given r.k/ for k 2 R, f�j g
N

jD1
(0 < �j <

1

2
), and fj g

N

jD1

(j > 0), find a row function �.y; t I k/D .�1.y; t I k/ �2.y; t I k// such that:

(i) �. � ; � I k/ is analytic in fk j Im k > 0g and in fk j Im k < 0g.

(ii) The limits �˙. � ; � ; �/D lim"!C0 �. � ; � I �˙ i"/, � 2 R are related by

��.y; t I �/D �C.y; t I �/J.y; t I �/; � 2 R; (3-15)

where the jump matrix is

J.y; t I k/D e
�ik
�

y�
2

1C4k2
t

�

�3
J0.k/e

ik
�

y�
2

1C4k2
t

�

�3
(3-16)

with

J0.k/D

�

1 �r.k/

r.k/ 1� jr.k/j2

�

:

(iii) Normalization at infinity:

�.y; t I k/! .1 1/ as k!1: (3-17)

(iv) Residue conditions:

ReskDi�j
�1.y; t I k/D ij e

�2�j

�

y�
2

1�4�2
j

t

�

�2.y; t I i�j /;

ReskD�i�j
�2.y; t I k/D�ij e

�2�j

�

y�
2

1�4�2
j

t

�

�1.y; t I �i�j /:

(3-18)

REMARKS. The symmetry properties of the jump matrix imply that

�1. � ; � I Nk/D �1. � ; � I �k/D �2. � ; � I k/: (3-19)

Now we notice the following:

F The data for the Riemann–Hilbert problem (3-15)–(3-18) are determined in

terms of the scattering data r.k/, f�j g
N

jD1
, fjg

N

jD1
, which, in turn, are de-

termined by m.x; 0/, the initial value of the solution of the Camassa–Holm

equation, via the solutions ˚˙ of the direct scattering problem at t D 0, see

(2-8), (2-9), (2-12).
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F This RH problem has the same structure as that for the Korteweg–de Vries

equation (except for the k-dependence of the velocity in the phase factors, see

(3-16) and (3-18)), which implies that there exists a vanishing lemma [Beals

et al. 1988] guarantying that the RH problem has a unique solution �.y; t I k/

for all y 2 .�1;1/ and t > 0.

Let us evaluate this solution at k D i
2

. Then, the relations (3-13) and (3-14)

allow us to:

(a) Determine the function y D y.x; t/ as the inverse to the function

x.y; t/D yC ln
�1.y; t I

i
2
/

�2.y; t I
i
2
/
: (3-20)

(b) Determine the momentum m.x; t/ of the Camassa–Holm equation by

m.x; t/D
�

�1.y; t I
i
2
/�2.y; t I

i
2
/
�2
ˇ

ˇ

yDy.x;t/
�1: (3-21)

Now the solution u.x; t/ of the Camassa–Holm equation can be determined

from m.x; t/ by

u.x; t/D
1

2

�

Z

x

�1

ey�xm.y; t/ dyC

Z

1

x

ex�ym.y; t/ dy
�

: (3-22)

Alternatively, and more directly, u can be determined in terms of �1 and �2

using the equality
@x

@t
.y; t/D u.x; t/; (3-23)

which follows from the definition (3-5) of the function y D y.x; t/, in which m

satisfies (1-4). In view of (3-20) one has

u.x; t/D
� @

@t
ln
�1

�2

.y; t I i
2
/
�
ˇ

ˇ

ˇ

yDy.x;t/
: (3-24)

Equation (3-12) provides also alternative (nonlocal) ways for determining x D

x.y; t/. Indeed,

@x

@y
.y; t/D .m.x.y; t/; t/C 1/�

1
2 D

1

�1.y; t/�2.y; t/
D

ey�x

�2

2
.y; t/

D
ex�y

�2

1
.y; t/

;

and the integral formulae for x D x.y; t/ emerge.

The discussion above is summarized as follows:

PROPOSITION 1. The solution u.x; t/ of the initial value problem for the Cam-

assa–Holm equation (1-1) with ! D 1, where the initial data u0.x/ is rapidly

decreasing as jxj!1 and such that u0xx.x/�u0.x/C1> 0, can be expressed

parametrically, by (3-20), (3-24), in terms of the solution of the Riemann–

Hilbert problem (3-15)–(3-18). ˜
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4. Soliton solutions

Equations (3-20) and (3-24) give a parametric representation for the solution

of the initial value problem for the Camassa–Holm equation for general initial

data. They have the same structure as the parametric formulae representing

pure multisoliton solutions [Matsuno 2005] in terms of two determinants (at the

places of �1 and �2). Therefore, the multisoliton solutions [Matsuno 2005] are

“embedded” into our scheme for the solution of the initial value problem: they

correspond to reflectionless (r.k/� 0) initial data, for which the solution of the

RH problem is reduced to solving linear algebraic equations.

Notice also that the formulae by McKean [McKean 2003] for the solution

of the Camassa–Holm equation with ! D 0 in terms of the associated theta

functions have a similar structure.

Since the algebraic structure of the RH problem is exactly the same as in the

case of the KdV equation, its solution (for all k) can be obtained by solving the

same linear algebraic equations. Then, comparing to the KdV, the difference in

the construction of the solitons is threefold:

(i) the solution of the RH problem is to be evaluated at k D i
2

(rather than as

k!1 for the KdV);

(ii) the phases ykC 4tk3 for k D kj , j D 1; 2; : : : ;N in the case of the KdV

equation are to be replaced by yk� t 2k

1C4k2 for the Camassa–Holm equation;

(iii) the original scale x is to be related to the y-scale (again by using the solu-

tions of the RH problem evaluated at k D i
2

).

If N D 1, k1 D i�1 � i� then the solution of the corresponding RH problem

(3-15) normalized by (3-17) and having the trivial jump J.y; t I �/� I is a row-

valued rational function with poles at k D˙i� and thus has the form

. �1.y; t I k/ �2.y; t I k/ /D
�

k �B.y; t/

k � i�

kCB.y; t/

kC i�

�

: (4-1)

Here B can be calculated using the residue conditions (3-18); this gives B D

i�.1�g/=.1Cg/ with

g.y; t/D

(

expf�2�.y � 4�2t �y0/g for KdV,

exp
n

� 2�
�

y �
2

1�4�2
t �y0

�o

for CH,
(4-2)

where y0 is the phase shift determined by the norming constant  > 0 in the

residue relation: y0D
1

2�
ln


2�

. Then the 1-soliton solution for the KdV equation

is given in terms of �0

1
.y; t/, where �1.y; t I k/D 1C�0

1
.y; t/=kC o.1=k/ as

k!1, by

uKdV.y; t/D�2i
@

@x
�0

1
.y; t/D�8�

gKdV

.1CgKdV/2
.y; t/; (4-3)
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whereas the 1-soliton solution for the CH equation (in the y scale) is given in

terms of �j .y; t I
i
2
/, j D 1; 2 by (in a form comparable with that of (4-3))

uCH.y; t/D
@

@t
ln
�1

�2

.y; t I i
2
/D

32�2

.1� 4�2/2
gCH

.1CgCH/
2C 16�2

1�4�2 gCH

.y; t/:

(4-4)

The associated relation between the scales (3-20) becomes

x.y; t/D yC ln
1Cg

1C2�

1�2�

1Cg
1�2�

1C2�

: (4-5)

Introducing

v WD
2

1� 4�2
; � WD �2�.y � vt �y0/

allows rewriting (4-4) as

uCH.y; t/D
16�2

1� 4�2
�

1

1C 4�2C .1� 4�2/ cosh�
: (4-6)

Since 0< � < 1=2, it follows that the soliton velocity v is greater than 2. Simi-

larly, the velocities of the N solitons appearing asymptotically, as t!1, from

the N -soliton solution (associated with N residue conditions of type (3-18) at

the poles k D˙i�j , j D 1; 2; : : : ;N ) are all greater than 2.

5. Long-time asymptotics

The representation of the solution of a nonlinear equation in terms of the

solution of the associated Riemann–Hilbert problem has proved to be crucial in

studying its long-time behavior using the nonlinear steepest descent method by

Deift and Zhou [Deift and Zhou 1993]. The solution of the RH problem with

poles (3-18) can be represented as

�.y; t I k/D Q�.y; t I k/Mr .y; t I k/D.k/;

where

D D

0

B

B

B

@

N
Q

jD1

.k � i�j /
�1 0

0
N
Q

jD1

.kC i�j /
�1

1

C

C

C

A

;

Mr is the solution of the 2 � 2 regular (i.e., without residue conditions) RH

problem with the jump matrix QJ DDJD�1, and Q�.y; t I k/ is a row polynomial

in k with coefficients determined by the residue conditions.
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For the convenience of the reader, we present here a scheme for studying the

large-t behavior of solutions of Riemann–Hilbert problems with rapidly oscil-

lating jump data (cf. [Deift et al. 1993]).

PROPOSITION 2. In the soliton region, y > .2C ı/t with any ı > 0, we have

Mr .y; t I k/D I C o.1/; t !C1:

PROOF. In the spirit of the nonlinear steepest descent method, the RH problem

(3-15) is to be deformed in a way that its jump matrix would approach the

identity matrix. In the original setting, J in (3-16) is rapidly oscillating with t ,

with the exponential factors

J.y; t I k/D

�

1 �r.k/e�2it�

r.k/e2it� 1� jr.k/j2

�

;

where

�.y; t I k/D
y

t
k �

2k

1C 4k2
: (5-1)

The deformation of the original contour (real axis) is guided by the “signature

table” i.e., the decomposition of the k-plane into domains where Im � keeps its

sign. In the domain y=t > 2, the signature table is shown in Figure 2. Therefore,

in this case the whole real axis is the boundary of the domains where Im � > 0

(for Im k > 0) and Im � < 0 (for Im k < 0). This suggests using the factorization

of the jump matrix

J D

�

1 0

r.k/e2it� 1

��

1 �r.k/e�2it�

0 1

�

; k 2 R:

Figure 2. Signature table for Im �.y; t Ik/ when
y

t
> 2.
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Then appropriate rational approximations of r.k/ and r.k/ are used in order to

deform the contour into two lines Im kD˙" and to absorb the relevant triangular

factors (near the real axis) into the new function

OMr D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Mr if jIm kj> ";

Mr

�

1 0

r.k/e2it� 1

�

if 0< Im k < ",

Mr

�

1 r.k/e�2it�

0 1

�

if 0> Im k > �":

Now the Riemann–Hilbert problem for OMr becomes

OMr� D OMrC
OJ for jIm kj D ";

where

OJ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�

1 0

r.k/e2it� 1

�

if Im k D ",

�

1 �r.k/e�2it�

0 1

�

if Im k D�".

Since the jump matrix OJ approaches I , as t!1, exponentially fast, this implies
OMr ! I and thus Mr ! I for fk j jIm kj> "g. ˜

As a consequence of Proposition 2 and the fact that x�y D o.1/ as y!C1,

see (3-5), we have that

u.x; t/D usolit.x; t/C o.1/; t !1; (5-2)

where usolit.x; t/ is the pure N -soliton solution of the CH equation [Matsuno

2005], which corresponds to the Riemann–Hilbert problem with r.k/ � 0 and

with residue parameters f�j g
N

jD1
and fj g

N

jD1
. In turn, usolit.x; t/ develops, for

large t , into a superposition of 1-solitons of type (4-6).

REMARK 3. The nonlinear steepest descent method allows rigorous studying

the asymptotics in other domains of the .y; t/ plane; see [Boutet de Monvel and

Shepelsky 2007].

Now let us return to the CH equation in the form (1-1a) (see also (1-3) and (1-4)

depending on the parameter ! > 0. Observe that (1-4) and the x-equation of the

Lax pair (1-5a) take their forms corresponding to ! D 1 if we replace

m‘
m

!
; �‘ �!: (5-3)

Accordingly, the spectral parameter k is introduced by

k2 D��! �
1

4
;
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(2-5) becomes

p.x; t I k/D x�

Z

1

x

�

r

m.�; t/

!
C 1� 1

�

d� �
2!

1C 4k2
t; (5-4)

and the scale

y.x; t/D x�

Z

1

x

�

r

m.�; t/

!
C 1� 1

�

d� (5-5)

is !-dependent as well. The coefficient matrices in the Lax pair equations are

also to be modified in accordance with (5-3).

6. The limit !! 0

Now consider a family of initial value problems (1-1) parametrized by !,

where the initial function u0.x/ in (1-1b) is the same for all the differential

equations (1-1a). Then the spectral functions (2-11) as well as the parameters

of the discrete spectrum f�!
j
g, f!

j
g become !-dependent.

The results of the Section 5 show that for every fixed !, the observer will see a

train of solitons, parameters of which are determined by f�!
j
g
N!

jD1
and f!

j
g
N!

jD1
.

Then an interesting question is as follows:

QUESTION. What happens with the solution of the initial value problem as

!! 0? More precisely, what will we see in the long-time asymptotics?

It has been observed (see, e.g., [Matsuno 2005; Parker 2004]) that if the pa-

rameters of an !-soliton (i.e., a one-soliton solution of (1-1a)) are changing

appropriately with !, then this soliton approaches, as !! 0, a peakon, which

is a piecewise smooth (weak), stable (cf. [Beals et al. 1999; Constantin and

Strauss 2000]) solution of (1-1a) with ! D 0 having a peak at its maximum

point:

u0.x; t/D v0e�jx�v0
t�x

0
j; v0 > 0: (6-1)

We will show that the solutions of the initial value problem for the CH equa-

tions with varying ! but with the same initial data approach, as !! 0, a train

of peakons with parameters determined by the spectrum of (1-5a) for ! D 0.

It is known (see [Constantin 2001]) that

� for any ! > 0 fixed, the spectrum of (1-5a) consists of

(i) a continuous part � 2 .�1;� 1

4!
/ and

(ii) a finite set of simple eigenvalues f�!
j
g
N!

jD1
.

� For ! D 0, the spectrum is discrete and consists of
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F simple eigenvalues f�0

j
g1
jD1

which accumulate at �1 only: if they are

enumerated in decreasing order 0 > �0

1
> �0

2
> � � �, then �0

N
! �1 as

N !1.

Let 	!
˙
.x; �!

j
/, !� 0 be the eigenfunctions of (1-5a) associated with the eigen-

values �!
j

, and let O�!
j

be the corresponding norming constants: 	!
˙
.x; �!

j
/ are

normalized by the limit conditions

(a) 	!
˙
.x; �!

j
/! e

��!
j

x
as x!˙1 with �!

j
D
q

!�!
j
C 1

4
for ! > 0,

(b) 	0

˙
.x; �0

j
/� e�x=2 as x!˙1 for ! D 0.

Then 	!
�
.x; �!

j
/D O�!

j
	!

C
.x; �!

j
/. Passing from (1-5a) to the spectral problem

for the operators K�.mC!/Kf D 1

�
f with .Kg/.x/D

R

1

x
e.x�y/=2g.y/ dy

[Constantin and McKean 1999; McKean 2003] and considering ! as the pertur-

bation parameter, the following properties are not hard to obtain.

PROPOSITION 3. As!!0, we have that N!!1, �!
j
!�0

j
, and	!

˙
.x; �!

j
/!

	!
˙
.x; �0

j
/ in L2.�1;1/, j D 1; 2; : : : in the sense that as ! ! 0, new !-

eigenvalues are “escaping”, one by one, from the continuous spectrum whereas

the already existing !-eigenvalues and the associated !-eigenfunctions are ap-

proaching respectively the corresponding eigenvalues and eigenfunctions of

(1-5a) with ! D 0. ˜

PROPOSITION 4. Let u0.x/ be a smooth, rapidly decreasing, as jxj ! 1,

function such that m0.x/ WD u0xx.x/� u0.x/ > 0 for all x 2 R. Let f�!
j
g
N!

jD1
,

f!
j
g
N!

jD1
be the residue parameters associated with u0.x/ viewed as fixed initial

data in the initial value problems (1-1) parametrized by ! > 0.

Then, as !! 0, we have the following asymptotic behavior of these param-

eters:

�!
j
D 1

2
C!�0

j
C o.!/; (6-2)

!
j
D !� 0

j
C o.!/; (6-3)

where � 0

j
D

1
R

1

�1
m0.x/j	

0

C
.x; �0

j
/j2dx

:

PROOF. Taking into account the relation between �!
j

and �!
j

, (6-2) follows

immediately from Proposition 3.

Differentiating (1-5a) with respect to k (the derivative with respect to k is

denoted by dot) and combining the resulting equation with (1-5a), after some

manipulations similar to those for the Sturm-Liouville equation [Marchenko

1986] leading to the expression relating the derivative of the spectral function

a.k/ at the spectrum points with the norm of the corresponding eigenfunctions
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(the details for the CH equation are given in [Constantin 2001]) we arrive at the

following expression

1

!

Z

1

�1

.m0.x/C!/j	!
�
.x; �!

j
/j2dx D

O�!
j

2i�!
j

@

@k
Wf	!

C
; 	!

�
g
ˇ

ˇ

kDi�!
j

; (6-4)

where W is the Wronskian bilinear form Wff;gg WD f 0g�fg0. Comparing the

asymptotics of 	!
˙
.x; �/ with those of ˚˙.x; 0I k/ and taking into account that

x�y! 0 as x!C1 and x�y! exp
n

1

!

R

1

�1

�p
mC! �!

�

dx
o

DW E.!/

as x!�1 we have that

a!.k/DWf	!
C
; 	!

�
g �E; �!

j
D O�!

j
�E;

where �!
j

are the norming constants in (2-12). Therefore, (6-4) can be written

as

1

!

Z

1

�1

.m0.x/C!/j	!
�
.x; �!

j
/j2dx

D
1

E

�!
j

2i�!
j

1

E
.�2�!

j
/ Pa!.i�!

j
/D

i�!
j

E2
Pa!.i�!

j
/: (6-5)

Now recall that !
j

in the residue relations (3-18) are related to �!
j

by i!
j
D

�!
j
= Pa!.i�!

j
/. Hence, (6-5) gives for !

j
the expression

!
j
D
�i�!

j

Pa!.i�!
j
/
D !

�

O�!
j

�2

R

1

�1
.m0.x/C!/j	!

�
.x; �!

j
/j2dx

D
!

R

1

�1
.m0.x/C!/j	!

C
.x; �!

j
/j2dx

(6-6)

and, by Proposition 3, (6-3) follows. ˜

Now, as we have established the behavior of the soliton parameters as !!0, we

are able to study the limiting behavior of !-solitons in the original scale; since,

as t !C1, a multisoliton solution behaves as a superposition of one-soliton

solutions [Matsuno 2005], it is enough to see what happens with a one-soliton

solution.

An !-soliton (with parameters �! and !) is given parametrically by equa-

tions of type (4-5), (4-6) appropriately modified in order to take into account

the dependence on !:

u.y; t/D
16!.�!/2

1� 4.�!/2
�

1

1C 4.�!/2C .1� 4.�!/2/ cosh�.y; t/
; (6-7)
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where

�.y; t/D�2�!
�

y �
2!

1� 4.�!/2
t �

1

2�!
ln
!

2�!

�

; (6-8)

and

x.y; t/D yC ln
1Cg.y; t/

1C2�!

1�2�!

1Cg.y; t/
1�2�!

1C2�!

(6-9)

with g D e� .

Rewrite (6-9) as

x.y; t/D yC ln
1C 2�!

1� 2�!
C ln

1� 2�! C .1C 2�!/g

1C 2�! C .1� 2�!/g
(6-10)

and introduce the new (moving) variables

X D x� v! t �x!
0
; Y D y � v! t �y!

0
; (6-11)

where

v! D
2!

1� 4.�!/2
; x!

0
D

1

2�!
ln
!

2�!
C ln

1C 2�!

1� 2�!
; y!

0
D

1

2�!
ln
!

2�!
:

(6-12)

Then the one-soliton is given parametrically by

u.x; t/D U.Y .X //
ˇ

ˇ

X Dx�v! t�x
!
0

� U !.X /
ˇ

ˇ

X Dx�v!t�x
!
0

; (6-13)

where

U.Y /D
16!.�!/2

1� 4.�!/2
�

1

1C 4.�!/2C .1� 4.�!/2/ cosh.2�!Y /
(6-14)

and Y .X / is inverse to

X.Y /D Y C ln
1� 2�! C .1C 2�!/e�2�!

Y

1C 2�! C .1� 2�!/e�2�!Y
: (6-15)

Applying Proposition 4 to (6-12)–(6-15), we see that as !! 0,

(i) The soliton velocity v! approaches the finite limit associated with the cor-

responding eigenvalue of (1-5a) with ! D 0:

v!!�
1

2�0
:

(ii) The phase shift x!
0

also approaches a finite value:

x!
0
� ln!C ln� 0C ln

2

�2!�0
! ln

� 0

��0
:
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(iii) For all X > !˛ > 0 with ˛ 2 .0; 1/, Y .X /!C1. Moreover,

X.Y /� Y C ln
2� 2!�0eY

2eY
D ln

�

1�!�0eY

�

and thus

U.Y /��
1

2�0

1

1�!�0eY
��

1

2�0
e�X :

Since X.�Y / D �X.Y / in (6-15) and U.�Y / D U.Y / in (6-14), it finally

follows that

U.Y .X //��
1

2�0
e�jX j; jX j> !˛: (6-16)

The right-hand side of (6-16) is nothing but the peakon solution (6-1) of (1-5a)

with ! D 0 having the velocity (D amplitude) v0 D �1=.2�0/ associated with

the corresponding eigenvalue �0. Now taking into account the phase shift when

passing from a multisoliton solution to a superposition of one-solitons [Matsuno

2005], we arrive at the following proposition (see Figure 3).

PROPOSITION 5. Let u0.x/ be a smooth function, fast decreasing as jxj !1,

and such that m0.x/ WD u0xx.x/�u0.x/ > 0 for all x 2 R.

F Let f�0

j
g1
jD1

be the eigenvalues of the spectral problem (1-5a) with !D 0 and

mDm0.

F For ! > 0, let u!.x; t/ be the solution of the initial value problem for the

Camassa–Holm equation (1-1).

F Fix C > 0, ı > 0, and " > 0.

F Let f�0

j
g
N.C /
jD1

be those �0

j
satisfying 0> �0

1
> � � �> �0

N.C /
> � 1

2C
.

Figure 3. Long-time asymptotics of uD u!.x; t/ for small !.
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Then there exists Q! D Q!.C; ı; "/ such that for all 0 < ! < Q! the asymptotics of

u!.x; t/ in the domain x > C t is given by N.C / one-solitons of type (6-13)–

(6-15) with velocities and forms close to those of the corresponding peakons:

u!.x; t/D U !
j
.X /C o.1/ as t !1; jX j D O.1/ with X D x� v!

j
t �x!

0j
;

where

� o.1/ depends on !,

� jv!
j
� v0

j
j< " with v0

j
D�

1

2�0

j

,

� jx!
0j
�x0

0j
j< " with

x0

0j
D ln

�

� 0

j

��0

j

j�1
Y

lD1

�
�0

j

�0

l

� 1
�2

�

and

ˇ

ˇ

ˇ
U !

j
.X /� v0

j
e�jX j

ˇ

ˇ

ˇ
< " for jX j> ı.
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The Riccati map in random Schrödinger and

random matrix theory

SANTIAGO CAMBRONERO, JOSÉ RAMÍREZ, AND BRIAN RIDER

For H. P. McKean, who taught us this trick.

ABSTRACT. We discuss the relevance of the classical Riccati substitution to

the spectral edge statistics in some fundamental models of one-dimensional

random Schrödinger and random matrix theory.

1. Introduction

The Riccati map amounts to the observation that the Schrödinger eigenvalue

problem Q D � for QD�d2=dx2Cq.x/ is transformed into the first order

relation

q.x/D �Cp0.x/Cp2.x/ (1-1)

upon setting p.x/D 0.x/= .x/. That this simple fact has deep consequences

for the problem of characterizing the spectrum of Q with a random potential

q has been known for some time. It also turns out to be important for related

efforts in random matrix theory (RMT). We will describe some of the recent

progress on both fronts.

Random operators of type Q arise in the description of disordered systems.

Their use goes back to Schmidt [1957], Lax and Phillips [1958], and Frisch and

Lloyd [1960] in connection with disordered crystals, represented by potentials

in the form of trains of signed random masses, randomly placed on the line.

Consider instead the case of white noise potential, q.x/D b0.x/ with a standard

brownian motion x‘ b.x/, which may be viewed as a simplifying caricature

Rider was supported in part by NSF grant DMS-0505680.
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of the above. The problem Q D � then reads d 0.x/ D  .x/ db.x/C

� .x/ dx and is solvable for  2 C 3=2.

A first order statistic of interest is the integrated density of states N.�/ D

limL!1 L�1 � fthe number of eigenvalues � �g, in which we take Q on the

interval Œ0;L� with say Dirichlet boundary conditions. Build the sine-like solu-

tion  0.x; �/ of Q 0 D � 0 with  0.0/ D 0 and  0

0
.0/ D 1. The pair x ‘

. 0.x/;  
0

0
.x// is clearly Markovian, as is the ratio x‘p.x/ WD 0

0
.x/= 0.x/.

Further, the latter solves a version of (1-1) which can only be interpreted as to

say that p performs the diffusion with infinitesimal generator

GD .1=2/@2=@p2� .�Cp2/@=@p: (1-2)

This motion begins at p.0/DC1, which is an entrance barrier, hits the exit bar-

rier �1 at the first root m1 of  0.x; �/D 0, then reappears at C1 whereupon

everything starts afresh.

Now, to count the eigenvalues below a level � is to count the number of

roots of  0.x; �/ before x D L, and so the number of (independent) passages

from C1 to �1 of the p motion. If this number is n, then L approximates

sn Dm1C � � �Cmn, the sum of the first n passage times, so that, by the law of

large numbers

1

N.�/
D lim

n!1

sn=nDEŒm1�D
p

2�

Z

1

0

e�.p3=6C�p/ dp
p

p
;

as may be worked out from the speed and scale associated with (1-2). This com-

putation is due to Halperin [1965]; see also [Fukushima and Nakao 1976/77].

As for the fluctuations, McKean [1994] proved, via Riccati, that

lim
L!1

P
�

L

�
.��0.L//

1=2 exp
�

�8

3
.��0.L//

3=2
�

>x
�

D

�

1 for x < 0;

e�x for x � 0;
(1-3)

where�0.L/ pertains to the operator � d
2

dx2Cb0.x/ acting on Œ0;L�with Dirich-

let, Neumann, or periodic conditions. While a step forward, (1-3) is still ther-

modynamic in nature. More desirable is to use the Riccati trick to capture local

spectral statistics in a fixed volume, and this is where the main part of our story

begins.

Cambronero and McKean [1999] took the point of view that the Riccati map

(1-1) represents a change of measure from potential, or q-path, space to the space

of p-paths, resulting in an explicit functional integral formula for the probability

density of �0 under periodic conditions (Hill’s equation). The method extends

from white noise q, to any periodic diffusion potential of brownian motion type

plus restoring drift. Section 2 describes all this. Given such integral expressions,

the next natural task is to describe the shape of the ground state eigenvalue
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density. A summary of the results thus far makes up Section 3, with an emphasis

on the differences between the white noise case, and the roughly universal nature

of the shape for nice Gaussian potentials. Section 4 is devoted to the surprising

recent discovery that a 1-d random Schrödinger operator and thus, via Riccati,

the explosion probability of a certain diffusion figure into the celebrated Tracy–

Widom laws of RMT along with their generalizations. We finish up with a

collection of open questions.

Further background. As indicated, the Riccati substitution is a basic tool

in the study of 1-d random Schrödinger, as may be gleaned from the compre-

hensive book [Carmona and Lacroix 1990]. Indeed, (1-3) is only one instance

of a ground state limit theorem. For a large class of Markovian potentials it is

understood that the spectrum is Poissonian and that the large volume limit of the

edge eigenvalues follow standard i.i.d. extremal laws; see [Molčanov 1980/81]

or [Grenkova et al. 1983]. The second reference also shows that the limit can

be joint Gaussian (and so exhibit repulsion) when the Lyapunov exponent is

degenerate at the spectral edge. In all these results the normalization depends

on the smoothness of the potential, and this is one reason that (1-3) deserves to

be set apart. Additionally, our shape results for the ground state density (Section

3) should be compared with the large body of work on the Lifschitz tails dating

back to the 70’s. Ideas connected to that work can in fact be used to obtain

tail estimates on the distribution function in the case of continuous Gaussian

potentials in a finite volume, including even multiple dimensions (exactly such

bounds turn up in recent work on the parabolic Anderson model [Gärtner et al.

2000]). Finally, there is an extensive literature on the almost sure behavior of

�0 in the more physical d > 1 setting with Poisson-bump or Gibbsian type

potentials; see [Merkl 2003; Sznitman 1998] and the many references therein.

Our point here though is to focus on the ground state density and the approach

inspired by McKean.

2. The Riccati map as a change of measure

Let Q D � 00 C q D � be Hill’s equation with standard white noise

potential q.x/ on the circle 0 � x < 1 D S1. Bring in the sine and cosine-

like solutions  0.x; �/ and  1.x; �/ satisfying  1.0/D 0;  0

0
.0/D 1;  1.0/D

1;  0

1
.0/ D 0, and also the discriminant �.�/ D 1

2
Œ 0.1; �/C  

0

1
.1; �/�. The

latter is an entire function of order 1=2 and encodes the spectrum: � D ˙1

at the periodic/antiperiodic eigenvalues. In particular, if �0 D �0.q/ is the

ground state eigenvalue for Q, �.�/ decreases from the left to its value �D 1

at �D�0. Moreover, Q D� has a solution with multiplier m (a solution for

which  .xC1/Dm .x/), if and only if mD�.�/˙
p

�2.�/� 1. There is a
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positive solution of this type with 0<m<1 only when ���0, in which case

there are actually two such solutions with multipliers mC and m� D 1=mC;

these fall together (mC Dm� D 1) at the periodic ground state when �D�0.

The corresponding Riccati equation,

q.x/D �Cp0.x/Cp2; (2-1)

determines p as a diffusion on S1 solving the stochastic differential equation

dp.x/D db.x/� .�Cp2.x// dx;

provided that �0.q/ � �. In fact, if such a solution p exists and � is a smooth

periodic function with
R

1

0
�2.x/ dx D 1, then

Z

1

0

�

.�0.x//2C q.x/�2.x/
�

dx � �;

and therefore �0��. Conversely, if�0�� we have just explained that there is

a positive solution  .x/ of Q D � with multiplier:  .xC1/Dm .x/ and

m � 1. It follows that p D  0= solves (2-1) and satisfies the side condition
R

1

0
p.x/ dx D log m� 0.

This defines the Riccati map. In the p ! q direction, it is one-to-one on

H D
�R

1

0
p D 0

�

, and also on H C D
�R

1

0
p � 0

�

. The set H C is mapped onto

Œ�0.q/� ��, while the mean-zero condition in p-space H coincides with mD 1

and so the event Œ�0.q/D ��.

Distribution of the ground state eigenvalue. Cambronero and McKean [1999]

used the map above between Œ�0 � �� and
�R

1

0
p� 0

�

to express the white noise

measure of the former in terms of a circular brownian motion (CBM) integral

over the latter. The CBM is formed by the standard brownian motion loop

space with p.0/Dp.1/, which is then distributed according to P .p.0/2 da/D

.1=
p

2�/ da. The result is,

Q�Œ�0.q/� ��D

r

2

�

Z

H C

e�
1
2

R 1

0 .�Cp
2.x//2 dx sinh

�Z

1

0

p

�

dP�.p/; (2-2)

where Q� and P� henceforth denote the white noise and CBM measures. By a

more elaborate computation, considering the Riccati map on the product space of

the potential and logarithmic multiplier log m, [Cambronero and McKean 1999]

also establishes a formula for the probability density f .�/D d

d�
Q�Œ�0� ��. In

particular,

f .�/D
1
p

2�

Z

H

e�
1
2

R 1

0 .�Cp
2.x//2 dxA.p/ dP0.p/; (2-3)
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where A.p/D
R

1

0
e2

R x

0 p �
R

1

0
e�2

R x

0 p and P0 is the CBM conditioned so that
R

1

0
p D 0. Unlike CBM which has infinite total mass, P0 is a proper Gaussian

probability measure on paths.

REMARK. The distribution (2-2) may be differentiated to produce the density

in the form

f .�/D

r

2

�

Z

H C

�

�C

Z

1

0

p

�

e�
1
2

R 1

0 .�Cp
2.x//2 dx sinh

�
Z

1

0

p

�

dP�.p/;

equating an integral over the half-space H C to an integral over its boundary

H . One might suppose that the present is related to (2-3) by the appropriate

function-space divergence theorem, and this in fact is verified in [Cambronero

and McKean 1999].

Formally, the Riccati map relates the white noise measure to CBM via

dQ� D exp

�

�
1

2

Z

1

0

q2

�

d1q

.2�=0C/1=2
D exp

�

�
1

2

Z

1

0

.�Cp2/2
�

jJ j dP�;

where

dP� D exp

�

�
1

2

Z

1

0

ˇ

ˇp0
ˇ

ˇ

2

�

d1p

.2�0C/1=2

is the CBM in symbols, and the Jacobian J is to be determined. One may be

tempted to employ the Cameron–Martin formula and claim that

dQ� D exp

�

�
1

2

Z

1

0

.�Cp2/2
�

exp

�Z

1

0

p

�

dP�;

that is, jJ j D exp
�R

1

0
p
�

. But this does not apply here, the equation (2-1) being

understood with periodic, and not initial, conditions.

The next section contains a sketch of the proper Jacobian calculation and so

the verification of (2-2). This is followed by (the outline of) two proofs of the

density formula (2-3). Last, it is explained how both types of expressions may

be extended to a class of periodic diffusion potentials.

Jacobian of the Riccati map and distribution of �0. The needed Jacobian is

obtained by passing through the finite–dimensional distributions of Q� and P�.

These spaces are furnished with a discrete version of the transformation (2-1)

for which we can compute jJ j by hand. Afterward, limits may be performed to

pin down the “infinite dimensional” Jacobian.

The appropriate discrete version of Riccati’s transformation reads

qi D �C n2.ehpiC1 � 2C e�hpi /; i D 0; : : : ; n� 1; (2-4)
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carrying R
n to R

n, where hD 1

n
; and qnD q0 and pnDp0. Notice that, for hpi

small,

qi ' �C n.piC1�pi/C
1

2
.p2

iC1
Cp2

i
/

provides an approximation to (2-1). Also, one easily computes that

jJ j D
2

hn

ˇ

ˇ

ˇ

ˇ

sinh

� n�1
X

iD0

pih

�ˇ

ˇ

ˇ

ˇ

for the map (2-4). This expression vanishes only when
�
P

pih D 0
�

, and this

discrete form of Riccati is actually one-to-one on the region
�
P

pih> 0
�

onto

Œ�.n/ � ��, �.n/ being the ground state of the discrete version of Hill’s equation

with potential vector .q0; : : : ; qn�1/.

Next, bring in the discrete white noise

qi D n

Z
iC1

n

i
n

q D n.biC1� bi/;

with bi D b
�

i

n

�

and a standard brownian motion b. � /: (2-5)

Assuming that�0.q/>�, it holds that �.n/.q/>� for all large values of n. Also,

denoting by p0 � � �pn�1 the polygonal path determine by the points p0; : : : ;pn,

and similarly for q, it may be checked that:

LEMMA 2.1. For almost every white noise path q, with �0.q/ > �, p0 � � �pn�1

converges uniformly to the solution p.x/D  0.x; �/= .x; �/of (2-1).

As a consequence, if HN denotes the set of white noise paths q for which

�.n/.q/ > � for all n�N , and max jpi j �N for all n�N , then Q�.HN /!1,

as N!1. This allows one to further restrict the discrete transform to

DN DHN \fq W max
iD0;:::;n�1

jbiC1� bi j � 2
p

h log n for all n�N g;

where the convergence may be controlled. (By Levy’s modulus of continuity

Q�.DN / tends to 1, so this is enough.) Now, on DN and taking � D 0 for

convenience, one has

�
1

2

n�1
X

iD0

q2

i
hD�

1

2h

n�1
X

iD0

.piC1�pi/
2�

1

8

n�1
X

iD0

.p2

iC1
Cp2

i
/2hCRn;

with a remainder Rn! 0 boundedly. The discrete white noise measure

exp

�

�
1

2

X

q2

i
h

�

dq0 : : : dqn�1

.2�=h/n=2
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may then be written as

r

2

�
exp

�

�
1

8

n�1
X

iD0

.p2

iC1
Cp2

i
/2hCRn

�
ˇ

ˇ

ˇ

ˇ

sinh

n�1
X

iD0

pih

ˇ

ˇ

ˇ

ˇ

d�n;

where

d�n D
p

2� exp

�

�
1

2h

n�1
X

iD0

.piC1�pi/
2

�

dp0 : : : dpn�1

.2�h/n=2
:

Thus, for a bounded continuous function � of the path q vanishing off DN , it

holds that
Z

Œ�0�0�

�.q/ dQ�

D lim
n!1

Z

R
n

�n.q0; : : : ; qn�1/ exp

�

�
1

2

n�1
X

iD0

q2

i
h

�

dq0 : : : dqn�1

.2�=h/n=2

D lim
n!1

r

2

�

Z

R
n

O�n.p0; : : : ;pn�1/ d�n;

in which

d�n D exp

�

�
1

8

n�1
X

iD0

.p2

iC1
Cp2

i
/2hCRn

�

sinh

� n�1
X

iD0

pih

�

d�n;

�n denotes � evaluated on the discrete q-path, and O�n.p/ WD �n.q/. Then, by

dominated convergence we have the identity

Z

Œ�0�0�

�.q/ dQ� D

r

2

�

Z

H C

O�.p/ exp

�

�
1

2

Z

1

0

p4

�

sinh

�Z

1

0

p

�

dP�;

where O�.p/ is defined through the Riccati correspondence; it is sensible along

with �.q/. A standard argument will extend the picture to any bounded contin-

uous � and also to �¤ 0. To summarize:

THEOREM 2.2. If Q� is the restriction of the white noise measure to the region

Œ�0.q/� ��, and if P� is the restriction of circular brownian motion measure to

H C, then

dQ� D

r

2

�
exp

�

�
1

2

Z

1

0

.�Cp2/2
�

sinh

�Z

1

0

p

�

dP�:

The formula (2-2) for the distribution of �0.q/ follows immediately.
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REMARK. As an entertaining aside one learns that

lim
�!�1

Z

H C

exp

�

�
1

2

Z

1

0

.�Cp2/2
�

sinh

�
Z

1

0

p

�

dP� D

r

�

2
;

which is not at all obvious.

The measure induced by Q� on Œ�0 D �� and the density formula. Here is

a way to understand (2-3) not reported in [Cambronero and McKean 1999]. To

start, define Q� by
Z

Œ�0D��

�.q/ dQ� D lim
h!0

1

h

Z

�.q/�Œ���0��Ch� dQ�; (2-6)

for any bounded continuous �:

Next, being analytic, �.�/ is locally bounded in both � and jbj, and the same

is true of P�.�/D .d=d�/�.�/ and R�.�/. So, �.�/D 1C .�0��/ j P�.�0/jC

O.h2/ with ���� �C h. It follows that

mD�C
p

�2� 1D 1C

q

2 .�0��/ j P�.�0/jCO.h/;

and for q D �Cp0Cp2, we also conclude

Z

1

0

p D log mD

q

2 .�0��/ j P�.�0/jCO.h/:

Coupled with the classical fact that

�2 P�.�0/D

Z

1

0

 2.t/ dt

Z

1

0

dt

 2.t/
:

for  the periodic ground state, 2j P�.�0/j D A.p0/.1 C O.h// where p0 D

p�
R

1

0
p and

A.p0/D

Z

1

0

e�2
R x

0 p0dx

Z

1

0

e2
R x

0 p0dx:

Now introduce the identity
Z

H

�.p/B2.p/ dP0.p/

D lim
"#0

2

"2

Z

�.p/ sinh

�
Z

1

0

p

�

1
Œ0�

R 1

0 p�B.p�

R 1

0 p/"�
dP�.p/;

which is proved directly from the definition of P0 as the conditional P�; it holds

for bounded continuous � and a large class of B W H!R
C including B. � / D

p

A. � /. With that choice, the previous estimates can be used to effectively

replace
˚

0�
R

1

0
p �

�

A.p�
R

p/
�1=2

"
	

with f0��0 � "
2g. If that substitution
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is made, we understand at once that the measure Q� induced by Q� on Œ�0D��

satisfies

dQ� D
1
p

2�
exp

�

�
1

2

Z

1

0

.�Cp2/2
�

A.p/ dP0

under the Riccati transformation, and this is equivalent to (2-3).

Joint distribution of ( q, log m) and a second proof. Perhaps a more formulaic

route to the density formula is available by way of the joint transformation

.q; log m/$ .p; �/:

Given .p; �/with p in the CBM space, we set log mD
R

1

0
p and qD�Cp0Cp2:

Mapping back, given .q; log m/ with q in the white noise space, we take � �

�0.q/ so that �.�; q/D 1

2
.mC 1

m
/. This � is unique since P�.�; q/ < 0 for �<

�0.q/. One may then choose  to be the positive Hill’s solution with multiplier

m and set p D  0= . This .p; �/ pair is thus unique and will reproduce the

original .q; log m/, showing that the augmented Riccati map is one to one and

onto.

To compute the joint distribution of q and log m in terms of p and �, [Cam-

bronero and McKean 1999] again considers the approximating discrete (one-to-

one and onto) transformation

.p0; : : : ;pn�1; �/� .q0; : : : ; qn�1; log m/;

from R
nC1 to R

nC1, defined by

qi D �C n2.ehpiC1 � 2C e�hpi /; log mD

n�1
X

iD0

pih; (2-7)

where hD
1

n
and pn D p0. The corresponding Jacobian is now

hn jJnj D

n�1
X

iD0

h

m'2

i

iCn
X

kDiC1

'2

k
hCO.h/ for 'i D exp

� i
X

jD1

pj h

�

:

As before, the discrete white noise �d log m measure may then be reexpressed

as in

exp
�

�
1

2

X

q2

i
h
� dq0 : : : dqn�1

.2�=h/n=2
� d log m

D exp

�

�
1

2h

n�1
X

iD0

.piC1�pi/
2�

1

8

n�1
X

iD0

.p2

iC1
Cp2

i
/2h

�
�

2

n�1
X

iD0

.p2

i
Cp2

iC1
/h�

�2

2
CRn

�

hnjJnj

.2�h/n=2
dp0 : : : dpn�1 d�;
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where again Rn! 0 boundedly on certain sets of large measure. Thus, on any

such set, we have

lim
n!1

hnjJnj DA.p/D

Z

1

0

dx

m'2.x/

Z

xC1

x

'2.y/ dy;

for '.x/D exp.
R

x

0
p/, and it is only a bit more effort to arrive at the following.

THEOREM 2.3. For any bounded �, compactly supported with respect to a D

log m, we have

Z

�.Q; a/ dQ� daD

Z

�
�

�Cp0Cp2;
R

p
�

�.p; �/ dP� d�;

where

�.p; �/D
1
p

2�
exp

�

�
1

2

Z

1

0

.�Cp2/2�

Z

1

0

p

�

A.p/:

In brief , dQ� daD�.p; �/ dP� d�.

Now employ the relation between dQ� da and dP� d� as follows. First,

Q�Œ���0.q/� �C"�D
1

ı

Z ı

0

Z

Œ���0.q/��C"�

dQ� da

D
1

ı

Z

Œ0�

R

p�ı�

�.p; �/�
Œ���0.�Cp0

Cp2/��C"�
dP� d�:

The left-hand side is independent of ı, so for ı!0 we find

Q�Œ���0.q/� �C "�D

Z

H

�.p; �/�
Œ���0.�Cp0

Cp2/��C"�
dP0 d�:

Now
R

1

0
p D 0 implies �0.�Cp0Cp2/D �, and therefore

"�1Q�Œ���0.q/� �C "�D

Z

H

�

"�1

Z �C"

�

�.p; �/ d�

�

dP0:

As "! 0, the left-hand side converges to f .�/D .d=d�/Q�Œ�0 � ��, and the

integrand on the right-hand side converges to �.p; �/. Moreover, there is the

needed domination to prove that

f .�/D

Z

H

�.p; �/ dP0 D
1
p

2�

Z

H

e�
1
2

R

.�Cp
2/2A.p/ dP0;

as advertised.
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Ornstein–Uhlenbeck type potentials. The methods above extend from white

noise potentials to a whole class of q’s which perform a periodic diffusion. For

example, let OQ denote periodic Ornstein–Uhlenbeck (OU) measure (of mass m).

This is the rotation invariant Gaussian process on S1 arrived at by condition-

ing the OU paths so that q.0/ D q.1/ and then distributing that common point

according to the stationary measure for the full-line OU.

Similarly to white noise one gets:

THEOREM 2.4 [Cambronero and McKean 1999]. Under the transformation qD

�Cp0Cp2, the periodic OU measure OQ, restricted to Œ�0 � ��, is transformed

into the measure dP0 d˛ according to
Z

Œ�0���

�d OQ

DC

Z

H

Z

1

I.p0/

�.�Cp0Cp2/e�
1
2

m
2
R 1

0 .�Cp
0
Cp

2/2G.˛;p0/ d˛ dP0.p
0/; (2-8)

with C D .4=
p

2�/ sinh.m=2/, p D ˛C
R

t

0
p0, I.p0/D�

R

1

0

R

t

0
p0, and

G.˛;p0/D exp

�Z

1

0

.p03� 2p2p0Cp2/ dt

�

sinh

�Z

1

0

p

�

:

In particular, the distribution is read off upon setting � � 1 in (2-8), providing

the analogue of (2-2). Further, one can move on to other potentials of type

brownian motion plus drift,

dq.x/D db.x/�m.q/ dx;

where it is assumed that m is an odd function with m.q/ > 0 for q > 0 to avoid

explosion. The periodic versions of these processes are built in the same way as

for OU; the added condition
Z

1

�1

e
1
2.m

0.q/�m
2.q// dq <1 (2-9)

being required to ensure the periodic measure has finite total mass.

THEOREM 2.5 [Cambronero 1996]. Let Q� be a periodic diffusion with odd

drift m.q/ subject to m.q/ > 0 for q > 0 and (2-9). Then

Q�Œ�0 � ��

D 2C0

Z

H

Z

1

I.p0/

exp

�

�
1

2

Z

1

0

F.�Cp0.x/Cp2.x// dx

�

G.˛;p0/ d˛ dP0;

where F D �m0 C m2; and C �1

0
D
R

exp
�

�1

2

R

1

0
F.q/

�

dP� is a normalizing

constant.
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And, again by considering joint distributions of q and the multiplier, there is

also a formula for the density.

THEOREM 2.6 [Cambronero 1996]. The density of �0 under Q� is given by

f .�/D C0

Z

H

e�
1
2

R

F.�Cp
0
Cp

2/E.p0/ dP0.p
0/

where p D I.p0/C
R

t

0
p0 and E.p0/D exp

�R

1

0
.p03� 2p2p0Cp2/

�

A.p/.

After this parade of formulae, it is probably helpful to write out the linear (OU

or m.q/Dmq) case in full:

fOU .�/D
r

2

�
sinh

m

2

Z

H

e�
1
2

m
2
R 1

0 .�Cp
0
Cp

2/2e
R 1

0 .p
03

�2p
2
p

0
Cp

2/A.p/ dP0.p
0/: (2-10)

It is now p0 that is locally brownian. Starting with white noise, p is CBM under

the Riccati map. Starting with an additional derivative in potential space results

in an additional derivative in p-space. The added dependence in the field makes

integrals like (2-10) harder to analyze than their white noise counterparts. This

is the subject of the next section.

3. Ground state energy asymptotics

As an application of the above integral expressions we consider the shape of

the ground state energy density for various random potentials. We begin again

in the white noise case, for which detailed asymptotics are available:

THEOREM 3.1 [Cambronero et al. 2006]. Let fWN .�/ denote the density func-

tion for�0.q/, the minimal eigenvalue for Hill’s operator on the circle of perim-

eter one with white noise potential. Then

fWN .�/D

r

�

�
exp

�

�
1

2
�2�

1p
2
�1=2

�

.1C o.1//;

as �!C1 and,

fWN .�/D
4

3�
j�j exp

�

�
8

3
j�j3=2�

1

2
j�j1=2

�

.1C o.1//;

as �!�1.

The overall asymmetry has an intuitive explanation: level-repulsion holds down

the right tail, while a large negative deviation can be affected by a single excur-

sion of the potential. The 3=2-exponent in �!�1 direction is shared by the

allied tail in the Tracy–Widom laws of RMT, but more on this later.
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The above result stems from the second version of the density:

fWN .�/D
1
p

2�

Z

H

e�
1
2

R 1

0 .�Cp
2/2A.p/ dP0.p/;

where P0 is the CBM conditioned to be mean-zero. In either the �!C1 or

�!�1 direction, the leading order, or logarithmic scale, asymptotics of fWN

are governed by those of the infimum of

I�.p/ WD
1

2

Z

1

0

�

�Cp2.x/
�2

dxC
1

2

Z

1

0

�

p0.x/
�2

dx; (3-1)

over p 2 H . When �!C1 it is plain that it is most advantageous for the

path p to sit in a vicinity of the origin, which already accounts for the appraisal

fWN .�/�e��2=2. For a more complete picture,
R

1

0
.�Cp2/2 may be expanded,

and both A.p/ and e�1=2
R 1

0 p
4

are seen to be unimportant in comparison with

e��
R 1

0 p
2

. That is, E0Œe
��

R 1

0 p
2
�1=2

R 1

0 p
4

A.p/�'E0Œe
��

R 1

0 p
2

�, and the compu-

tation is finished with aid of the explicit formula

Z

H

e��
R 1

0 p
2

dP0.p/D

p

�=2

sinh
p

�=2
:

All this had already been noticed in [Cambronero and McKean 1999].

The behavior as �!�1 is far less transparent. Now there is the possibility

of cancellation in the first part of the variational formula
R

1

0
.j�j � p2/2, com-

pelling the path to live near˙
p
��. However, the mean-zero condition (p 2H )

dictates that p must its time between these two levels, while sharp transitions

from �
p
�� toC

p
�� or back are penalized by the energy

R

1

0
p02. The heavier

left tail is the outcome of this competition.

Getting started, the Euler–Lagrange equation for any � < 0 minimizer p� of

(3-1) may be computed,

p00

� D 2p3

� � 2p2

�; (3-2)

and solved explicitly in terms of the Jacobi elliptic function sin-amp,

p�.x/D k
p

j�j � sn.
p

j�jx; k/; (3-3)

with modulus satisfying k2 ' 1� 16e�

p

j�j=2 to fix the period at one.1 Sub-

stituting back yields I�.p�/ �
8

3
j�j3=2, and there follows the first-order large-

deviation type estimate

fWN .�/' exp
�

�
8

3
j�j3=2

�

for �!�1:

1Technical aside: the equation (3-2) reported in [Cambronero et al. 2006] includes an additive constant,

but this was later understood to vanish in [Ramı́rez and Rider 2006].
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Toward more exact asymptotics, there are various degeneracy problems that

need to be addressed. First is the obvious lack of uniqueness: any translation

pa

�
.x/D p�.xC a/ of (3-3) also minimizes I�. Second, and more obscure, is

an asymptotic degeneracy in the direction of the low lying eigenfunctions of the

Hessian of I�.

The translational issue is dealt with by conditioning: the minimizing path

is pinned at zero at some predetermined point. Then, by a change of measure

computation, we arrive at the following Rice-type formula. With fpa

�
g the one-

parameter family of minimizers, d. � ; fpa

�
g/ the sup-norm distance to that family,

and any " > 0, we have

E0

h

e�
1
2

R 1

0 .j�j�p
2/2A.p/; d.p; fpa

�g/� "
p

j�j
i

DE0

0

h

e�
1
2

R 1

0 .j�j�p
2/2A.p/R.p/; d.p; fpa

�g/� "
p

j�j
i

P0

�Z

1

0

��
1

p D 0

�

:

Here, ��
1

is the L2.S1/-normalized derivative of p� (the derivative generating

all translations), E0

0
is now the CBM conditioned so that both

R

1

0
p D 0 and

R

1

0
��

1
p D 0, and R.p/ is a Radon–Nikodym factor which we will not make

explicit. On the left-hand side, note that the integral is localized about the full

family of minimizers. On the right-hand side, it is easy to see that the intersec-

tion of a small tube about fpa

�
g and the plane

h

p W
R

1

0
p��

1
D 0

i

may be replaced

with a similarly small neighborhood about p0

�
Dp�. In this way the expectation

has in fact been localized about a fixed path.

Next, the obvious shift p!pCp� results in

fWN .�/'

e�I�.p�/E0

0

h

e�
1
2

R 1

0 .q�C2�/p2

S.p;p�/; kpk1 � "
p

j�j
i

P0

�Z

1

0

��
1

p D 0

�

;

where

S.p;p�/D e�2
R 1

0 p�p
3
�

1
2

R 1

0 p
4

A.pCp�/R.pCp�/;

q�.x/D 6j�jk2sn2.
p

j�jx; k/:

One expects the Gaussian measure tied to the quadratic form

Q� D�
d2

dx2
C q�.x/C 2� (3-4)

to dominate the higher order nonlinearities in S. � ;p�/ and focus the path at

pD 0. This deterministic Hill’s operator Q� is of course the Hessian of I�, and

it is no small piece of good fortune that it coincides with one of Lamé’s finite-

gap operators for which simple spectrum and corresponding eigenfunctions are
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explicitly computable [Ince 1940]. Information about the rest of the spectrum

is obtained from a beautiful formula of Hochstadt [1961] for the discriminant.

HOCHSTADT’S FORMULA. Let Q be finite-gap with 2gC1 simple eigenvalues.

Then �.�/D 2 cos .�/ with

 .�/D

p
�1

2

Z �

�0

.s��0

1
/ � � � .s��0

g
/

p

�.s��0/ � � � .s��2g/
ds; (3-5)

in which �0

1
< � � �<�0

g
are the points �2`�1 <�

0

`
<�2`, where�0.�/D 0. They

are determined from the simple spectrum through the requirement  .�2`/ �

 .�2`�1/D 0 for `D 1; 2; : : :g.

In the case of Q� for example we have g D 2.

Moving on, as alluded to just above we claim that, for �!�1 and all " > 0

sufficiently small:

E0

0

h

e2
R 1

0 p�p
3
�

1
2

R 1

0 p
4

A.pCp�/R.pCp�/e
�

1
2

R 1

0 .q�.x/C2�/p2

; kpk1� "
p

j�j
i

DA.p�/R.p�/Z.�/.1C o.1//; (3-6)

where

Z.�/DE0

0

�

e�
1
2

R 1

0 .q�.x/C2�/p2.x/dx
�

P0

�Z

1

0

��
1
.x/p.x/ dx D 0

�

:

This rests on the coercive properties of the measure e�
1
2

R 1

0 .q�C2�/p2

d CBM.p/

restricted to
R

1

0
pD 0 and

R

1

0
p��

1
D 0, which is to say, on the spectral gap of Q�

restricted to the same space. Here lies the second degeneracy in the problem.

This gap actually goes to zero as �!�1, making the estimate (3-6) rather

laborious and hard to imagine without having the Q� spectrum explicitly at

hand.

Taking the last appraisal for granted, it remains to find a closed expression

for Z.�/. This plays the role of the usual (though now infinite-dimensional)

Gaussian correction in any Laplace-type analysis, and the fact is

Z.�/' C.�0; : : : �4I c0; : : : ; c4/�
1

p

�2.2j�j/� 4
: (3-7)

The prefactor C. � / is a rational function of the (explicitly known) simple spec-

trum of Q� (eigenvalues �k and corresponding norming-constants ck , k D

0; : : : ; 4). Hochstadt’s formula now comes to the rescue, expressing the discrim-

inant � back in terms of the same �0; : : : ; �4. Putting together the asymptotics

of A.p�/, R.�/, and those for Z.�/ via the above expression will complete the

proof for the left tail.
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REMARK. It is enlightening to run the Riccati correspondence in reverse, the

concentration of p about p� resulting in an optimal potential of the form

q.xI�/D �Cp0

�.x/Cp2

�.x/'�2j�j sech2
�
p

j�j .x� 1=2/
�

:

That is, the white noise “path” must perform a single excursion of depth O.�/

in an O.j�j�1=2/ span to produce a large negative eigenvalue.

Nice gaussian potentials. Ay this point is natural to ask: To what extent is

the white noise result universal for some class of potentials? The general case

remains a question for the future; we describe here what is known for a class of

nice stationary Gaussian potentials q.

The periodic diffusion setting is not the appropriate theater to explore ques-

tions of universality; certainly the details of the force F in Theorem 2.6 will

play out in the shape of the density. Instead we consider the case that q is a

stationary Gaussian process of periodicity one, continuous (and so, nice) such

that

EŒq.x/�D 0; EŒq.x/q.y/�DK.x�y/; (3-8)

with K satisfying the technical condition NK D
R

1

0
K.x/ dx > 0. There is of

course a point in common with the previously discussed potentials, namely

periodic OU with mass m, in which case K.z/ D 1

2m

�

e
mz

em
�1
� e

�mz

e�m
�1

�

. Gen-

erally, however, the Cambronero–McKean formulas do not carry over to this

Gaussian potential framework. Because the Riccati map is nonlinear, it is not

always the case that q, under the . � ;K�1; � /Gaussian measure, and p, under the

. � ;DK�1D � / Gaussian measure, are absolutely continuous. Take for example

the situation when only a finite number of modes in the spectral expansion of q

are charged.

For these reasons we rely on a yet another formula for the density, the idea

behind which is to carry out the Riccati map on only part of the space. Denote

by P the measure of q and let OP be the measure induced on OqD q�
R

1

0
q. Then,

this new formula for the density, established in [Ramı́rez and Rider 2006], is

fK .�/D
1
p

2�

Z

H

exp
�

�
1

2 NK
.�C˚. Oq//2

�

d OP . Oq/: (3-9)

Here, ˚ is some implicitly defined nonlinear functional of the path, expressible

through the Riccati map. When available, the Cambronero–McKean formula is

certainly more powerful, being so explicit. On the other hand, (3-9) suffices to

uncover the asymptotic shape of the density.

THEOREM 3.2 [Ramı́rez and Rider 2006]. The probability density function fK

for�0.q/ corresponding to any Gaussian random potential as above is C 1 and
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satisfies

lim
�!C1

1

�2
log fK .�/D�

1

2 NK
; lim

�!�1

1

�2
log fK .�/D�

1

2K.0/
:

As in the white noise case, the computation for the right tail is relatively simple,

stemming from an optimal potential q ' � (or p' 0). Further, the estimate for

the left tail is connected with q-paths concentrating around q.x/'�K.x/=K.0/.

That is, the covariance structure provides just enough freedom for the path to

oscillate in accordance with K itself. Very loosely speaking, this falls in line

with the white noise result where, after rescaling, the minimizing potential ap-

proaches a Dirac delta, which is the right kernel K for that process.

Lastly, we should reiterate the connection between Theorem 3.2 and well

known Lifschitz tail results. For example, Pastur [1972] proved that, with QLD

�4 C q.x/ on the cube of side-length L in R
d and q stationary Gaussian

with covariance K satisfying a Hölder estimate: lim�!�1 ��2 log N.�/ D

�1=.2K.0// where N.�/ equals the L "1 density of states. Moreover, the

basic method employed will provide tail bounds on the distribution function of

the ground state eigenvalue for a large class of continuous q and L<1. From

here, our own result could very well be anticipated. On the other hand, we

know of no way to access the density function directly other than through the

Riccati-as-a-change-of-measure idea.

4. General Tracy–Widom laws

The study of detailed limit theorems at the spectral edge is far more highly

developed in RMT than in random Schrödinger. This is easiest to describe for the

Gaussian Unitary Ensemble (GUE). GUE is an n�n Hermitian matrix ensemble

M comprised of independent complex Gaussians: Mij DMji � NC.0; 1=4/,

while Mii � N.0; 1=2/. Equivalently, it is drawn from the distribution with

increment dP .M / D 1

Z
e�trM

2

dM ; dM denoting Lebesgue measure on the

space of n-dimensional Hermitian matrices and Z <1 a normalizing factor.

Regarding spectral properties, GUE is integrable in so far as the full joint

density of eigenvalues �1; �2; : : : ; �n is known:

PGUE.�1; �2; : : : ; �n/D
1

Zn

e�

Pn
kD1 �

2
k

Y

k<j

j�j ��k j
2 (4-1)

D
1

n!
det
�

Kn.�j ; �k/
�

1�j ;k�n
:

On the second line, Kn.�; �/ is the kernel for the projection onto the span of

the first n Hermite polynomials in L2.R; e��2

/; it follows from line one by

simple row operations in the square Vandermonde component of the density. In
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fact, all finite dimensional correlations are expressed in terms of determinants

of the same kernel. As a consequence there is the explicit formula at the spectral

edge,2

P .�max � �/D det
�

I �Kn1.�;1/

�

;

the right-hand side denoting the Fredholm determinant of the integral opera-

tor associated with Kn restricted to .�;1/. The classical Plancherel–Rotach

asymptotics for Hermite polynomials and a marvelous identity from [Tracy and

Widom 1994] now provide the distributional limit as n!1:

PGUE

� 1
p

2
n1=6.�max �

p
2n/� �

�

! exp

�

�

Z

1

�

.s��/u2.s/ ds

�

DW FGUE.�/: (4-2)

Here u.s/ is the solution of u00D suC2u3 (Painlevé II) subject to u.s/�Ai.s/

(the standard Airy function) as s!C1.

Associated with GUE are the Gaussian Orthogonal and Symplectic Ensem-

bles (GOE and GSE) of real symmetric or self-dual quaternion Gaussian matri-

ces. These are again integrable, with joint eigenvalue densities of a similar shape

to line one of (4-1), the power two on the absolute Vandermonde interaction term

being replaced by a 1 or 4. While not determinantal in the same way, there are

again closed expressions for the largest eigenvalue distribution, and, at the same

basic scalings, limit laws due to Tracy and Widom [1996]:

FG.O=S/E.�/D

(

exp
�

�1

2

R

1

� .s��/u2.s/ ds
�

exp
�

�1

2

R

1

� u.s/ ds
�

;

exp
�

�1

2

R

1

�0 .s��
0/u2.s/ ds

�

cosh.
R

1

�0 u.s/ ds/:
(4-3)

with �0 D 22=3� and u is the same solution of Painlevé II. For each of these

three special ensembles there are also Painlevé expressions for the limiting dis-

tribution of the scaled second and higher largest eigenvalues, see again [Tracy

and Widom 1994] and [Dieng 2005].

While striking in and of themselves, these results of Tracy–Widom have sur-

prising importance in physics, combinatorics, multivariate statistics, engineer-

ing, and applied probability. A few highlights include [Johansson 2000; Baik

et al. 1999; Johnstone 2001; Baryshnikov 2001]. From a probabilist’s perspec-

tive, the laws (4-2) and (4-3) should be regarded as important new points in the

space of distributions. In particular, one would like to understand FG.O=U=S/E

in the same way that we do the Normal or Poisson distribution, being able to

set down a few characterizing conditions. As it stands, the Tracy–Widom laws

2In RMT it is customary here to look at largest, rather than smallest, eigenvalues as is the case in random

Schrödinger.



THE RICCATI MAP IN RANDOM SCHRÖDINGER AND RANDOM MATRIX THEORY 95

seem to live in the realm of integrable systems: we know of many interesting

examples in which they arise, but that is about all.

One avenue to a deeper understanding of the Tracy–Widom laws would be

some explanation of how to interpolate between them. For any ˇ > 0, consider

the following measure on n real points

Pˇ.�1; �2; : : : ; �n/D
1

Zn;ˇ

e�ˇ
Pn

kD1 �
2
k

Y

k<j

j�j ��k j
ˇ: (4-4)

G(O/U/S)E occur for ˇD 1; 2; 4; on physical grounds ˇ plays the role of inverse

temperature in a 1-d “coulomb” gas. The limiting distribution of the largest Pˇ-

point would give us a general Tracy–Widom law. While there appears to be

no hope of integrating out a correlation for general beta, Dumitriu and Edelman

[2002] have discovered a matrix model for all ˇ>0. The fact is: with g1;g2; : : :

i.i.d. unit Gaussians and each �r an independent chi random variables of param-

eter r , the symmetric tridiagonal ensemble

Hˇ
n
D

1
p

2

2

6

6

6

6

6

4

p
2g1 �ˇ.n�1/

�ˇ.n�1/

p
2g2 �ˇ.n�2/

: : :
: : :

: : :

�ˇ2

p
2gn�1 �ˇ
�ˇ

p
2gn

3

7

7

7

7

7

5

(4-5)

has joint eigenvalue law with density (4-4).

The simplicity of (4-5) opens up the possibility of scaling the operator itself

rather than dealing with the eigenvalue law. Formally invoking the central limit

theorem in the form �.n�k/ˇ �
p

nˇ � .
p

ˇk=2n/ C .1=
p

2/N.0; 1/ in the

off-diagonal entries, one can readily understand the conjecture of Sutton and

Edelman [Edelman and Sutton 2007] that the rescaled matrices

� QHˇ
n
D�

p
2

p

ˇ
n1=6.Hˇ

n
�
p

2ˇnI/;

should go over into

Hˇ D�
d2

dx2
CxC

2
p

ˇ
b0.x/ (4-6)

in the n!1, or continuum, limit. As before, b0 indicates a white noise, and

the scaling in (4) corresponds to that for the spectral edge in the known ˇ D

1; 2; 4 cases. Thus, were it to hold, the above correspondence would entail that

the low-lying eigenvalues of Hˇ agree in distribution with the limiting largest

eigenvalues of H
ˇ
n . Recently, the second two authors and B. Virág [Ramı́rez

et al. 2006] have proved this conjecture.
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THEOREM 4.1. ([Ramı́rez et al. 2006]) Let �ˇ;1 � �ˇ;2 � � � � be the ordered

eigenvalues of the ˇ-ensemble H
ˇ
n , and�0.ˇ/��1.ˇ/�� � � the spectral points

of Hˇ in L2.RC/ with Dirichlet conditions at x D 0. Then, for any finite k, the

family
�
r

2

ˇ
n1=6.�ˇ;` �

p

2ˇn/

�

`D1;:::;k

converges in distribution as n!1 to f��0.ˇ/;��1.ˇ/; � � � ;��k�1.ˇ/g.

Part of this result is the fact that the Schrödinger operator Hˇ, referred to as

the Stochastic Airy operator for obvious reasons, has an almost surely finite

ground state eigenvalue �0, as well as well defined higher eigenvalues �1, and

so on. Though no longer on a finite volume, the compactifying linear restoring

force proves enough to tame the white noise at infinity. It is also remarked

that the proof of Theorem 4.1 is actually made almost surely — eigenvalue by

eigenvalue — after coupling the noise in the matrix model H
ˇ
n to the brownian

motion b.x/ in the limiting Hˇ .

Next recall that the densities fˇ of the ˇD 1; 2; 4 Tracy–Widom laws satisfy

fˇ.�/� e�
1

24
ˇj�j

3

for �!�1 and

fˇ.�/� e�
2
3
ˇ�3=2

for �!C1. Coupled with Theorem 4.1 this sheds new light on the results

just discussed for the shape of the ground state eigenvalue density of the simple

Hill operator �d2=dx2C b0.x/. Moving into the spectrum, white noise on S1

and white noise plus linear force on R
C certainly should give rise to different

phenomena. On the other hand, when pulling far away from the spectrum, it is

intuitive that these potentials would have roughly the same effect.

That said, the reader will anticipate what comes next. The Riccati map im-

mediately gives a second description of the limiting distribution of the largest ˇ-

ensemble eigenvalues in terms of the explosion question for the one dimensional

diffusion x‘ p.x/

dp.x/D
2
p

ˇ
db.x/C .x���p2.x// dx: (4-7)

To make things precise, return to the eigenvalue problem,

d 0.x/D
2
p

ˇ
 .x/ db.x/C .x��/ .x/ dx;

restricted to Œ0;L� subject to .L/D0 as well as .0/D0. Denote by�0.L/ the

minimal Dirichlet eigenvalue, and take  0.x; �/ the solution of the initial value

problem with  0.0/D 0 and  0

0
.0/D 1. As already mentioned, the event that
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�0.L/�� is the event that 0 does not vanish before x�L. This is the classical

“shooting method”. Now make the Riccati move: p.x; �/D 0

0
.x; �/= 0.x; �/

is the diffusion (4-7), and the event that  0.x; �/ has no root before x D L is

the event that the p motion, begun from p.0; �/D  0.0; �/= .0; �/DC1 at

x D 0, fails to explode down to �1 before x D L. (While it is not customary

to use the entrance/exit terminology for inhomogeneous motions, comparison

with the homogeneous case will explain why p.x; �/ may be started at C1

and leaves its domain only at �1.)

Granted Theorem 4.1, �0, the ground state eigenvalue of the full line prob-

lem, exists, and it is obvious that�0.L/ converges almost surely to that variable

as L!1. In other words,

P .�0 > �/D P . . � ; �/ never vanishes/D PC1

�

p. � ; �/ does not explode
�

:

A description of P .�k >�/ is similar for all k. The probability that the second

eigenvalue exceeds � is the PC1 probability that p explodes at most once to

�1, and so on. All this, with its implications for the limiting largest eigenvalues

in the ˇ-ensembles is summarized in the next statement.

THEOREM 4.2. ([Ramı́rez et al. 2006]) With x ‘ p.x/ D p.x; �/ the motion

(4-7), let P� denote the measure on paths induced by p begun at p.0/D � and

let m.�; ˇ/ denote the passage time of p to �1. Then,

lim
n!1

P

�
r

2

ˇ
n1=6.�ˇ;1�

p

2ˇn/� �

�

D PC1

�

m.��; ˇ/DC1
�

;

and also

lim
n!1

P

�r

2

ˇ
n1=6.�ˇ;k �

p

2ˇn/� �

�

D

k
X

`D1

Z

1

0

� � �

Z

1

0

PC1

�

m.��; ˇ/ 2 dx1

�

PC1

�

m.��Cx1; ˇ/ 2 dx2

�

� � �

� � �PC1

�

m.��Cx1C � � �Cx`�1; ˇ/DC1
�

;

for any fixed k.

Even at ˇ D 1; 2; and 4, Theorems 4.1 and 4.2 provide yet another vantage

point on the Tracy–Widom laws. Not only are these laws now tied to a much

simpler mechanical model (1-d Schrödinger), the Riccati map has introduced a

Markovian structure where none appeared to exist.

5. Questions for the future

Shape of Hill’s ground state density. This is still in its infancy. In particular,

the exact regularity of the potential at which one sees a transition between the
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white noise 3=2-heavy tail (Theorem 3.1) and the Gaussian tail (Theorem 3.2)

is an interesting question.

Non-i.i.d. matrix ensembles. Little is known about the limiting scaled distribu-

tion of �max for Hermitian matrix ensembles with entries exhibiting correlations

which do not vanish in the n " 1 limit. For the sake of discussion, consider

such a non-i.i.d. Gaussian matrix M . Given Theorem 4.1, it is believable that

M has some random differential operator as its continuum limit. Further, if the

correlations in M are strong enough, one might imagine that the white noise

type potential of Stochastic Airy is replaced by a smoother Gaussian potential,

and then Theorem 3.2 would become relevant.

Sample covariance ensembles. Of importance in statistics are ensembles of the

form X T CX where X is comprised of say independent identically distributed

real or complex Gaussians and C may be assumed diagonal. If C D Id , these

are the classical null-Wishart or Laguerre ensembles at ˇ D 1 (real) and ˇ D 2

(complex), and the corresponding Tracy–Widom laws turn up at the spectral

edge. In fact, Edelman and Dumitriu also have general ˇ>0 tridiagonal versions

of these null ensembles to which the results of Section 4 apply. On the other

hand, if C is not the identity the picture is rather murky. The possibility of phase

transition away from Tracy–Widom if C is sufficiently “spiked” is proved in

[Baik et al. 2005], while [El Karoui 2007] provides some conditions on C which

will result in Tracy–Widom for �max.X
T CX /. Both results however pertain

only to the ˇ D 2 case as the rely on the special structure of the eigenvalue

density at that value of the parameter. Perhaps the strategy outlined above —

scaling directly in the operator rather than in the spectral distribution — can be

successfully employed in this direction.

Painlevé expressions. One hopes that either the random Airy operator or the

associated diffusion will lead to explicit formulas in terms of Painlevé II for

the limiting largest eigenvalue distributions at all ˇ > 0. While we appear to

be far from realizing this goal, here perhaps is a hint. By the Cameron–Martin

formula: with Fˇ.�/ the distribution function of ��0.ˇ/,

Fˇ.�/

D lim
L!1

lim
a!1

Z

p.0/Da

e�
ˇ
8

RL

0 .�Cx�p
2.x//dp.x/e�

ˇ
8

RL

0 .�Cx�p
2.x//2dx

�
e�

ˇ
2

RL

0 .p
0.x//2dx

.2�0C/1=2
dp1:

The Itô factor
Z

L

0

..�Cx�p2.x// dp.x/
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only contributes boundary terms, leaving the integral to concentrate on mini-

mizers of the functional

p‘

Z

L

0

�

Œ�Cx�p2.x/�2C .p0.x//2
�

dx:

The associated Euler–Lagrange equation is Painlevé II.
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SLE6 and CLE6 from critical percolation
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ABSTRACT. We review some of the recent progress on the scaling limit of

two-dimensional critical percolation; in particular, the convergence of the ex-

ploration path to chordal SLE6 and the full scaling limit of cluster interface

loops. The results given here on the full scaling limit and its conformal invari-

ance extend those presented previously. For site percolation on the triangular

lattice, the results are fully rigorous. We explain some of the main ideas, skip-

ping most technical details.

1. Introduction

In the theory of critical phenomena it is usually assumed that a physical

system near a continuous phase transition is characterized by a single length

scale (the correlation length) in terms of which all other lengths should be mea-

sured. When combined with the experimental observation that the correlation

length diverges at the phase transition, this simple but strong assumption, known

as the scaling hypothesis, leads to the belief that at criticality the system has

no characteristic length, and is therefore invariant under scale transformations.

This suggests that all thermodynamic functions at criticality are homogeneous

functions, and predicts the appearance of power laws.

It also implies that if one rescales appropriately a critical lattice model, shrink-

ing the lattice spacing to zero, it should be possible to obtain a continuum model,

known as the scaling limit. The scaling limit is not restricted to a lattice and may

possess more symmetries than the original model. Indeed, the scaling limits
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of many critical lattice models are believed to be conformally invariant and

to correspond to Conformal Field Theories (CFTs). But until recently, such a

correspondence was at most heuristic, and was assumed as a starting point by

physicists working in CFT. The methods of CFT themselves proved hard to put

into a rigorous mathematical formulation.

The introduction by Oded Schramm [2000] of Stochastic/Schramm Loewner

Evolution (SLE) has provided a new powerful and mathematically rigorous tool

to study scaling limits of critical lattice models. Thanks to this, in recent years

tremendous progress has been made in understanding the conformally invariant

nature of the scaling limits of several such models.

While CFT focuses on correlation functions of local operators (e.g., spin vari-

ables in the Ising model), SLE describes the behavior of macroscopic random

curves present in these models, such as percolation cluster boundaries. In the

scaling limit, the distribution of such random curves can be uniquely identified

thanks to their conformal invariance and a certain “Markovian” property. There

is a one-parameter family of SLEs, indexed by a positive real number �, and they

appear to be essentially the only possible candidates for the scaling limits of in-

terfaces of two-dimensional critical systems that are believed to be conformally

invariant.

The main power of SLE stems from the fact that it allows to compute different

quantities; for example, percolation crossing probabilities and various percola-

tion critical exponents. Therefore, relating the scaling limit of a critical lattice

model to SLE allows for a rigorous determination of some aspects of the large

scale behavior of the lattice model.

In the context of the Ising, Potts and O.n/ models, an SLE curve is believed

to describe the scaling limit of a single interface, which can be obtained by im-

posing special boundary conditions. A single SLE curve is therefore not in itself

sufficient to immediately describe the scaling limit of the unconstrained model

without boundary conditions in the whole plane (or in domains with boundary

conditions that do not determine a single interface), and contains only limited

information concerning the connectivity properties of the model.

A more complete description can be obtained in terms of loops, corresponding

to the scaling limits of cluster boundaries. Such loops should also be random and

have a conformally invariant distribution. This approach led Wendelin Werner

[2005b; 2005a] (see also [Werner 2003]) to the definition of Conformal Loop

Ensembles (CLEs), which are, roughly speaking, random collections of fractal

loops with a certain conformal restriction/renewal property.

For percolation, a complete proof of the connection with SLE, first conjec-

tured in [Schramm 2000], has recently been given in [Camia and Newman 2007].

The proof relies heavily on the ground breaking result of Stas Smirnov [2001]
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about the existence and conformal invariance of the scaling limit of crossing

probabilities (see [Cardy 1992]). The last section of this paper explains the main

ideas of that proof, highlighting the role of conformal invariance, but without

dwelling on the heavy technical details.

As for the Ising, Potts and O.n/ models, the scaling limit of percolation in

the whole plane should be described by a measure on loops, where the loops

are closely related to SLE curves. Such a description in the case of percolation

was presented in [Camia and Newman 2004], where the authors of the present

paper constructed a probability measure on collections of fractal conformally

invariant loops in the plane (closely related to a CLE), arguing that it corresponds

to the full scaling limit of critical two-dimensional percolation. A proof of that

statement was subsequently provided in [Camia and Newman 2006].

Here, we will briefly explain how to go from a single SLE curve to the full

scaling limit, again skipping the technical details, for the case of a Jordan domain

with monochromatic boundary conditions (see Theorem 2). This extends the

results presented in [Camia and Newman 2006], where the scaling limit was

first taken in the unit disc and then an infinite volume limit was taken in order

to obtain the full scaling limit in the whole plane. Moving from the unit disc (or

any convex domain) to a general Jordan domain introduces extra complications

that are dealt with using a new argument, developed in [Camia and Newman

2007], that exploits the continuity of Cardy’s formula [1992] with respect to

changes in the shape of the domain (see the discussion in Section 5). Taking

scaling limits in general Jordan domains is a necessary step in order to consider

conformal restriction/renewal properties as in Theorem 4 below.

Using the full scaling limit, one can attempt to understand the geometry of

the near-critical scaling limit, where the percolation density tends to the criti-

cal one in an appropriate way as the lattice spacing tends to zero. A heuristic

analysis [Camia et al. 2006a; 2006b] based on a natural ansatz leads to a one-

parameter family of loop models (i.e., probability measures on random collec-

tions of loops), with the critical full scaling limit corresponding to a particular

choice of the parameter. Except for the latter case, these measures are not scale

invariant, but are mapped into one another by scale transformations. This frame-

work can be used to define a renormalization group flow (under the action of

dilations), and to describe the scaling limit of related models, such as invasion

and dynamical percolation and the minimal spanning tree. In particular, this

analysis helps explain why the scaling limit of the minimal spanning tree may

be scale invariant but not conformally invariant, as first observed numerically

by Wilson [2004].
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2. SLE and CLE

The Stochastic/Schramm Loewner Evolution with parameter � > 0 (SLE�)

was introduced by Schramm [2000] as a tool for studying the scaling limit of

two-dimensional discrete (defined on a lattice) probabilistic models whose scal-

ing limits are expected to be conformally invariant. In this section we define

the chordal version of SLE� ; for more on the subject, the interested reader can

consult Schramm’s paper as well as the fine reviews by Lawler [2004], Kager

and Nienhuis [2004], and Werner [2004], and Lawler’s book [2005].

Let H denote the upper half-plane. For a given continuous real function Ut

with U0 D 0, define, for each z 2 H, the function gt .z/ as the solution to the

ODE

@tgt .z/D
2

gt .z/�Ut

; (2-1)

with g0.z/ D z. This is well defined as long as gt .z/ � Ut ¤ 0, i.e., for all

t < T .z/, where

T .z/� supft � 0 W min
s2Œ0;t �

jgs.z/�Usj> 0g: (2-2)

Let Kt �fz 2H WT .z/� tg and let Ht be the unbounded component of HnKt ;

it can be shown that Kt is bounded and that gt is a conformal map from Ht

onto H. For each t , it is possible to write gt .z/ as

gt .z/D zC
2t

z
CO

�

1

z2

�

; (2-3)

when z!1. The family .Kt ; t � 0/ is called the Loewner chain associated to

the driving function .Ut ; t � 0/.

DEFINITION 2.1. Chordal SLE� is the Loewner chain .Kt ; t � 0/ that is ob-

tained when the driving function Ut D
p
�Bt is

p
� times a standard real-valued

Brownian motion .Bt ; t � 0/ with B0 D 0.

For all � � 0, chordal SLE� is almost surely generated by a continuous random

curve  in the sense that, for all t � 0, Ht �HnKt is the unbounded connected

component of H n  Œ0; t �;  is called the trace of chordal SLE� .

It is not hard to see, as argued by Schramm, that any continuous random

curve  in the upper half-plane starting at the origin and going to infinity must

be an SLE curve if it possesses the following conformal Markov property. For

any fixed T 2 R, conditioning on  Œ0;T �, the image under gT of  ŒT;1/ is

distributed like an independent copy of  , up to a time reparametrization. This

implies that the driving function Ut in the Loewner chain associated to the

curve  is continuous and has stationary and independent increments. If the

time parametrization implicit in Definition 2.1 and the discussion preceding it
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is chosen for  , then scale invariance also implies that the law of Ut is the same

as the law of ��1=2U�t when � > 0. These properties together imply that Ut

must be a constant multiple of standard Brownian motion.

Now let D �C (D¤C) be a simply connected domain whose boundary is a

continuous curve. By Riemann’s mapping theorem, there are (many) conformal

maps from the upper half-plane H onto D. In particular, given two distinct points

a; b 2 @D (or more accurately, two distinct prime ends), there exists a conformal

map f from H onto D such that f .0/D a and f .1/� limjzj!1 f .z/D b. In

fact, the choice of the points a and b on the boundary of D only characterizes

f .�/ up to a scaling factor � > 0, since f .��/ would also do.

Suppose that .Kt ; t � 0/ is a chordal SLE� in H as defined above; we define

chordal SLE� . QKt ; t � 0/ in D from a to b as the image of the Loewner chain

.Kt ; t � 0/ under f . It is possible to show, using scaling properties of SLE� ,

that the law of . QKt ; t �0/ is unchanged, up to a linear time-change, if we replace

f .�/ by f .��/. This makes it natural to consider . QKt ; t � 0/ as a process from

a to b in D, ignoring the role of f . The trace of chordal SLE in D from a to b

will be denoted by D;a;b .

We now move from the conformally invariant random curves of SLE to col-

lections of conformally invariant random loops and introduce the concept of

Conformal Loop Ensemble (CLE — see [Werner 2003; 2005b; 2005a; Sheffield

2006]). The key feature of a CLE is a sort of conformal restriction/renewal prop-

erty. Roughly speaking, a CLE in D is a random collection LD of loops such

that if all the loops intersecting a (closed) subset D0 of D or of its boundary are

removed, the loops in any one of the various remaining (disjoint) subdomains of

D form a random collection of loops distributed as an independent copy of LD

conformally mapped to that subdomain (see Theorem 4). We will not attempt to

be more precise here since somewhat different definitions (although, in the end,

substantially equivalent) have appeared in the literature, but the meaning of the

conformal restriction/renewal property should be clear from Theorem 4.

For formal definitions and more discussion on the properties of a CLE, see

the original literature on the subject [Werner 2005b; 2005a; Sheffield 2006],

where it is shown that there is a one-parameter family CLE� of conformal loop

ensembles with the above conformal restriction/renewal property and that for

� 2 .8=3; 8�, the CLE� loops locally look like SLE� curves.

There are numerous lattice models that can be described in terms of random

curves and whose scaling limits are assumed (and in a few cases proved) to

be conformally invariant. These include the Loop Erased Random Walk, the

Self-Avoiding Walk and the Harmonic Explorer, all of which can be defined as

polygonal paths along the edges of a lattice. The Ising, Potts and percolation

models instead are naturally defined in terms of clusters, and the interfaces be-
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tween different clusters form random loops. In the O.n/ model, configurations

of loops along the edges of the hexagonal lattice are weighted according to the

total number and length of the loops. All of these models are supposed to have

scaling limits described by SLE� or CLE� for some value of � between 2 and

8. For more information on these lattice models and their scaling limits, the

interested reader can consult [Cardy 2001; 2005; Kager and Nienhuis 2004;

Werner 2005b; Sheffield 2006].

In the rest of the paper we will restrict attention to percolation, where the

connection with SLE6 and CLE6 has been made rigorous [Smirnov 2001; Camia

and Newman 2006; 2007].

3. Conformal invariance of critical percolation

In this section we will consider critical site percolation on the triangular lat-

tice, for which conformal invariance in the scaling limit was rigorously proved

[Smirnov 2001]. A precise formulation of conformal invariance, attributed to

Michael Aizenman, is that the probability that a percolation cluster crosses be-

tween two disjoint segments of the boundary of some simply connected domain

should converge to a conformally invariant function of the domain and the two

segments of the boundary. This conjecture is connected with the extensive

numerical investigations reported in [Langlands et al. 1994]. A formula for

the purposed limit was then derived by John Cardy [1992] using (nonrigorous)

field theoretical methods. The interest of mathematicians was already evident

in [Langlands et al. 1994], but a proof of the conjecture [Smirnov 2001] (and of

Cardy’s formula) did not come until 2001.

We will denote by T the two-dimensional triangular lattice, whose sites are

identified with the elementary cells of a regular hexagonal lattice H embedded

in the plane as in Figure 1. We say that two hexagons are neighbors (or that

they are adjacent) if they have a common edge. A sequence .�0; : : : ; �n/ of

hexagons of H such that �i�1 and �i are neighbors for all i D 1; : : : ; n and

�i ¤ �j whenever i ¤ j will be called a T-path. If the first and last hexagons of

the path are neighbors, the path will be called a T-loop.

Let D be a bounded simply connected domain containing the origin whose

boundary @D is a continuous curve. Let � WD!D be the (unique) continuous

function that maps D onto D conformally and such that �.0/D 0 and �0.0/> 0.

Let z1; z2; z3; z4 be four points of @D in counterclockwise order — i.e., such

that zj D �.wj /; j D 1; 2; 3; 4, with w1; : : : ; w4 in counterclockwise order.

Also, let

�D
.w1�w2/.w3�w4/

.w1�w3/.w2�w4/
:
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Cardy’s formula [1992] for the probability˚D.z1; z2I z3; z4/ of a crossing inside

D from the counterclockwise arc z1z2 to the counterclockwise arc z3z4 is

˚D.z1; z2I z3; z4/D
� .2=3/

� .4=3/� .1=3/
�1=3

2F1.1=3; 2=3I 4=3I �/; (3-1)

where 2F1 is a hypergeometric function.

For a given mesh ı > 0, the probability of a blue crossing inside D from

the counterclockwise arc z1z2 to the counterclockwise arc z3z4 is the prob-

ability of the existence of a blue T-path .�0; : : : ; �n/ such that �0 intersects

the counterclockwise arc z1z2, �n intersects the counterclockwise arc z3z4, and

�1; : : : ; �n�1 are all contained in D. Smirnov [2001] proved that crossing prob-

abilities converge in the scaling limit to conformally invariant functions of the

domain and the four points on its boundary, and identified the limit with Cardy’s

formula (3-1).

The proof of Smirnov’s theorem is based on the identification of certain

generalized crossing probabilities that are almost discrete harmonic functions

and whose scaling limits converge to harmonic functions. The behavior on the

boundary of such functions is easy to determine and is sufficient to specify

them uniquely. The relevant crossing probabilities can be expressed in terms

of the boundary values of such harmonic functions, and as a consequence are

invariant under conformal transformations of the domain and the two segments

of its boundary.

The presence of a blue crossing in D from the counterclockwise boundary

arc z1z2 to the counterclockwise boundary arc z3z4 can be determined using a

clever algorithm that explores the percolation configuration inside D starting at,

say, z1 and assumes that the hexagons just outside z1z2 are all blue and those

just outside z4z1 are all yellow. The exploration proceeds following the interface

between the blue cluster adjacent to z1z2 and the yellow cluster adjacent to z4z1.

A blue crossing is present if the exploration process reaches z3z4 before z2z3.

This exploration process and the exploration path (see Figure 1) associated to it

were introduced in [Schramm 2000].

The exploration process can be carried out in H\H, where the hexagons in

the lowest row and to the left of a chosen hexagon have been colored yellow and

the remaining hexagons in the lowest row have been colored blue. This produces

an infinite exploration path, whose scaling limit was conjectured [Schramm

2000] by Schramm to converge to SLE6.

It is easy to see that the exploration process is Markovian in the sense that,

conditioned on the exploration up to a certain (stopping) time, the future of the

exploration evolves in the same way as the past except that it is now performed

in a different domain, where some of the explored hexagons have become part

of the boundary (see, e.g., Figure 1).
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Figure 1. Percolation exploration path in a portion of the hexagonal lattice

with blue/yellow boundary conditions on the first column, corresponding

to the boundary of the region where the exploration is carried out. The

colored hexagons that do not belong to the first column have been explored

during the exploration process. The heavy line between yellow (light) and

blue (dark) hexagons is the exploration path produced by the exploration

process.

This observation, together with the connection between the exploration pro-

cess and crossing probabilities, Smirnov’s theorem about the conformal invari-

ance of crossing probabilities in the scaling limit, and Schramm’s characteriza-

tion of SLE via the conformal Markov property discussed in Section 2, strongly

support the above conjecture.

As we now explain, the natural setting to define the exploration process is

that of lattice domains, i.e., sets Dı of hexagons of ıH that are connected in

the sense that any two hexagons in Dı can be joined by a .ıT/-path contained

in Dı . We say that a bounded lattice domain Dı is simply connected if both Dı

and ıT nDı are connected. A lattice-Jordan domain Dı is a bounded simply

connected lattice domain such that the set of hexagons adjacent to Dı is a .ıT/-

loop.

Given a lattice-Jordan domain Dı , the set of hexagons adjacent to Dı can

be partitioned into two (lattice-)connected sets. If those two sets of hexagons

are assigned different colors, for any coloring of the hexagons inside Dı , there

is an interface between two clusters of different colors starting and ending at

two boundary points, aı and bı , corresponding to the locations on the boundary

of Dı where the color changes. If one performs an exploration process in Dı

starting at aı, one ends at bı , producing an exploration path  ı that traces the

entire interface from aı to bı.

Given a planar domain D, we denote by @D its topological boundary. Let @D

be locally connected (i.e., a continuous curve), and assume that D contains the
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origin. Then one can parametrize @D by ' WS1! @D, where ' is the restriction

to the unit circle S1 of the continuous map � W D! D that is conformal in D

and satisfies �.0/D 0, �0.0/ > 0. With this notation, we say that Dı converges

to D as ı! 0 if

lim
ı!0

inf
h

sup
z2S1

j'.z/�'ı.h.z//j D 0; (3-2)

where the infimum is over monotonic functions h W S1 ! S1 (and the objects

with the superscript ı refer to Dı — for simplicity we are assuming that all

domains contain the origin). If moreover two points, aı; bı 2 @Dı, converge

respectively to a; b 2 @D as ı ! 0, we write .Dı; aı; bı/ ! .D; a; b/. In

the following theorem the topology on curves is that induced by the supremum

norm, but with monotonic reparametrizations of the curves allowed (see [Aizen-

man and Burchard 1999; Camia and Newman 2006; 2007]), i.e., the distance

between curves is

d.;  ı/D inf
h

sup
t2Œ0;1/

j .t/�  ı.h.t//j; (3-3)

where  .t/;  ı.t/; t 2 Œ0;1/, are parametrizations of D;a;b and  ı
D;a;b

respec-

tively, and the infimum is over monotonic functions h W Œ0;1/ ! Œ0;1/. A

proof of the theorem can be found in [Camia and Newman 2007] and a detailed

sketch is presented in Section 6 below.

THEOREM 1. Let .D; a; b/ be a Jordan domain with two distinct selected points

on its boundary @D. Then, for lattice-Jordan domains Dı from ıH with aı; bı 2

@Dı such that .Dı; aı; bı/! .D; a; b/ as ı ! 0, the percolation exploration

path  ı
D;a;b

in Dı from aı to bı converges in distribution to the trace D;a;b of

chordal SLE6 in D from a to b, as ı! 0.

4. The full scaling limit in a Jordan domain

In this section we define the Continuum Nonsimple Loop (CNL) process in

a Jordan domain D, a random collection of countably many nonsimple frac-

tal loops in D which corresponds to the full scaling limit of percolation in D

with monochromatic boundary conditions. This refers to the collection of all

cluster boundaries of percolation configurations in D with the hexagons at the

boundary of D all blue (obviously, one could as well choose yellow boundary

conditions). The algorithmic construction that we present below is analogous

to that of [Camia and Newman 2004; 2006] for the unit disc D, but here we

perform it in a general Jordan domain.

The CNL process on the full plane can be obtained by taking a sequence of

domains D tending to C. This was done in the two works just cited, and for that
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purpose, discs of radius R with R!1 suffice. This full plane CNL process is

the scaling limit of the collection of all cluster boundaries in the full lattice (with-

out boundary conditions). In order to consider conformal restriction/renewal

properties (as we do in Theorem 4 below), one needs to consider the CNL

process in fairly general bounded domains D. There are extra complications

in taking the scaling limit when D is nonconvex, as discussed in Section 5.

The basic ingredient in our algorithmic construction consists of a chordal

SLE6 path between two points on the boundary of a Jordan domain. As we will

explain soon, sometimes the two boundary points are naturally determined as a

product of the construction itself, and sometimes they are given as an input to the

construction. In the second case, there are various procedures which would yield

the “correct” distribution for the resulting CNL process; one possibility is as

follows. Given a domain D, choose a and b so that, of all points in @D, they have

maximal x-distance or maximal y-distance, whichever is greater. It is important

to stress that in the end, the CNL process will turn out to be independent of the

actual choice of boundary points, as is evident in Theorem 2. (One caveat is that

one should avoid malicious choices of the boundary points for which the entire

original domain would not be explored asymptotically.)

The first step of our construction is a chordal SLE6,  � D;a;b , between two

boundary points a; b 2 @D chosen according to the above rule (see Figure 2).

The set D n D;a;b Œ0;1/ is a countable union of its connected components,

which are open and simply connected. If z is a deterministic point in D, then

with probability one, z is not touched by  [Rohde and Schramm 2005] and so

belongs to a unique one of these, that we denote Da;b.z/. There are four kinds

of components which may be usefully thought of in terms of how a point z in the

interior of the component was first trapped at some time t1 by  Œ0; t1� perhaps

together with either the counterclockwise arc @a;bD of @D between a and b or

the counterclockwise arc @b;aD of @D between b and a: (1) those components

whose boundary contains a segment of @b;aD between two successive visits at

 .t0/ and  .t1/ to @b;aD (where here and below t0 < t1), (2) the analogous

components with @b;aD replaced by the other part of the boundary @a;bD, (3)

those components formed when  .t0/D .t1/with  winding about z in a coun-

terclockwise direction between t0 and t1, and finally (4) the analogous clockwise

components.

To conclude the first step, we consider all domains of type (1), corresponding

to excursions of the SLE6 path from the portion @b;aD of @D. For each such

domain D0, the points a0 and b0 on its boundary are chosen to be respectively

those points where the excursion ends and where it begins, that is, for Da;b.z/

we set a0D  ..t1.z// and b0D  .t0.z//. We then run a chordal SLE6 from a0 to

b0. The loop obtained by pasting together the excursion from b0 to a0 followed
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b

a

b

a

Figure 2. Schematic drawing of the construction of continuum nonsimple

loops inside a Jordan domain D. The construction starts with a chordal

SLE6 (full line) between two points, a and b, on @D. To obtain loops,

other chordal SLE6s (e.g., dashed line) are run (e.g., from a0 to b0) between

where an excursion from the counterclockwise arc @b;aD of @D of the first

SLE6 respectively ends and starts. The inside of one such loop is shaded.

by the new SLE6 path from a0 to b0 is one of our continuum loops (see Figure 2).

At the end of the first step, then, the procedure has generated countably many

loops that touch @b;aD; each of these loops touches @b;aD but may or may not

touch @a;bD.

The last part of the first step also produces new domains, corresponding to

the connected components of D0 n D0;a0;b0 Œ0;1/ for all domains D0 of type

(1). Each one of these components, together with all the domains of type (2),

(3) and (4) previously generated, is to be used in the next step of the construction,

playing the role of the original domain D. For each one of these domains, we

choose the new a and new b on the boundary as explained before, and then

continue with the construction. Note that the new a and new b are chosen

according to the rule explained at the beginning of this section also for domains

of type (2), even though they are generated by excursions like the domains of

type (1).

This iterative procedure produces at each step a countable set of loops. The

limiting object, corresponding to the collection of all such loops, is our basic
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process. (Technically speaking, we should include also trivial loops fixed at each

z 2D so that the collection of loops is closed in an appropriate sense [Aizenman

and Burchard 1999].)

As explained, the construction is carried out iteratively and can be performed

simultaneously on all the domains that are generated at each step. We wish

to emphasize, though, that the obvious monotonicity of the procedure, where

at each step new paths are added independently in different domains, and new

domains are formed from the existing ones, implies that any other choice of the

order in which the domains are used would give the same result (i.e., produce

the same limiting distribution), provided that every domain that is formed during

the construction is eventually used.

The main interest of the loop process defined above is in the following the-

orem, where the topology on collections of loops is that of [Aizenman and

Burchard 1999] (see also [Camia and Newman 2006]).

THEOREM 2. In the scaling limit, ı! 0, the collection of all cluster boundaries

of critical site percolation on the triangular lattice in a Jordan domain D with

monochromatic boundary conditions converges in distribution to the Continuum

Nonsimple Loop process in D.

A key property of the CNL process is conformal invariance.

THEOREM 3. Let D;D0 be Jordan domains and f W D ! D
0

a continuous

function that maps D conformally onto D0. Then the CNL process in D0 is

distributed like the image under f of the CNL process in D.

Moreover, as shown in the next theorem, the outermost loops of the CNL process

in a Jordan domain satisfy a conformal restriction/renewal property, as in the

definitions of the Conformal Loop Ensembles of Werner [2005b] and Sheffield

[2006].

THEOREM 4. Let D be a Jordan domain and LD be the collection of CN loops

in D that are not surrounded by any other loop. Consider an arc � of @D

and let LD;� be the set of loops of LD that touch � . Then, conditioned on

LD;� , for any connected component D0 of D n
S

fL WL 2 LD;� g, the loops in

D0 form a random collection of loops distributed as an independent copy of LD

conformally mapped to D0.

Yet another form of conformal invariance is illustrated by showing how to obtain

a (conformally invariant) SLE6 curve from the CNL process. Given a Jordan

domain D and two points a; b 2 @D, let � D ba be the counterclockwise closed

arc ba of @D. Define LD and LD;� as in Theorem 4. For each L2LD;� , going

from a to b clockwise, there are a first and a last point, x and y respectively,

where L intersects � . We call the counterclockwise arc xy.L/ of L between
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x and y a (counterclockwise) excursion from ba. We call such an xy.L/ a

maximal excursion if there is no other excursion from ba in (the closure of) the

domain created by xy.L/ and the counterclockwise arc yx of @D. The random

curve obtained by pasting together (in the order in which they are encountered

going from a to b clockwise) all such maximal excursions from ba is distributed

like a chordal SLE6 in D from a to b.

The procedure described above obviously requires some care, since there are

countably many such excursions and there is no such thing as the first excursion

encountered from a, or the next excursion. What this means is that in order to

properly define the curve, one needs to use a limiting procedure. Since it is quite

obvious how to do it but tedious to explain, we leave the details to the interested

reader; see [Camia and Newman 2006].

5. Convergence and conformal invariance of the full scaling limit

SKETCH OF THE PROOF OF THEOREM 2. It follows directly from [Aizenman

and Burchard 1999] that the family of distributions of the collections of cluster

boundaries in D with monochromatic boundary conditions is tight, as ı ! 0,

in the sense of the induced Hausdorff metric on closed sets of curves based

on the metric (3-3) for single curves (see [Aizenman and Burchard 1999] and

[Camia and Newman 2006]), and so there is convergence along subsequences

ık ! 0. What needs to be proved is that the limiting distribution is that of the

CNL process, independently of the subsequence ık .

The key to the proof is an algorithmic construction on the lattice which paral-

lels the continuum construction of Section 4 used to define the CNL process in

D. The construction takes place in a lattice-domain Dk � Dık that converges

to D in the sense of (3-2) as k!1 (ık! 0) and is essentially the same as the

continuum one but with exploration paths instead of the SLE6 curves.

This raises the question of how to define an exploration process and obtain an

exploration path in a lattice-domain with monochromatic boundary conditions.

The basic idea is that away from the boundary, the exploration process does not

know the boundary conditions. For two given points x and y on the boundary of

a lattice-domain with, say, blue boundary conditions, split the boundary into two

arcs, the counterclockwise arc xy and the counterclockwise arc yx. Then, one

can run an exploration process from x to y with the usual rule inside the domain

and on the counterclockwise arc xy, while pretending that the counterclockwise

arc yx is colored yellow (see Figure 3).

If we run such an exploration process in Dk and then look at the hexagons that

have not yet been explored, we will see several disjoint lattice subdomains, all

of which are lattice-Jordan. This amounts to removing the fattened exploration
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Figure 3. First step of the construction of the outer contour of a clus-

ter of yellow (light in the figure) hexagons consisting of an exploration

(heavy line) from x to y. The outer layer of hexagons does not belong

to the domain where the explorations are carried out, but represents its

monochromatic blue external boundary. x00 and y 00 are the ending and

starting points of an excursion that determines a new domain D0, and x0

and y 0 are the vertices where the edges that separate the yellow and blue

portions of the external boundary of D0 intersect @D0. The second step

will consist of an exploration process in D0 from x0 to y 0.

path consisting of the exploration path k � 
ık

Dk ;x;y
itself and the hexagons

immediately to its right and to its left.

The resulting lattice-Jordan subdomains are of four types, which may be use-

fully thought of in terms of their external boundaries: (1) those components

whose boundary contains both sites in the fattened exploration path and in @k

yx
,

the counterclockwise portion between y and x of the boundary of Dk , (2) the

analogous components with @k

yx
replaced by the other boundary portion @k

xy
,

(3) those components whose boundary only contains yellow hexagons from

the fattened exploration path and finally (4) the analogous components whose

boundary only contains blue hexagons from the fattened exploration path.

Notice that the components of type 1 are the only ones with mixed (partly

blue and partly yellow) boundary conditions, while all other components have
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Figure 4. Second step of the construction of the outer contour of a cluster

of yellow (light in the figure) hexagons consisting of an exploration from x0

to y 0 whose resulting path (heavy broken line) is pasted to a portion of the

previous exploration path with the help of the edges (indicated again by a

heavy broken line) between x0 and x00 and between y 0 and y 00 in such a way

as to obtain a loop around a yellow cluster (light in the figure) touching

the boundary portion @k

yx
.

monochromatic (blue or yellow) boundary conditions; type 1 components are

special because we have taken blue boundary conditions on Dk while the ex-

ploration path has yellow on its left and blue on its right. Because of the mixed

boundary conditions, each lattice subdomain of type 1 must contain an interface

between the two boundary points where the color changes. It is also clear that

to find such an interface one has to start an exploration process at one of the

two boundary points where the color changes (the two choices give the same

exploration path).

If we run such an exploration process inside a lattice subdomain D0

k
of type 1

and paste it to a portion of k as in Figure 4, we obtain a loop corresponding

to the interface surrounding a yellow cluster that touches @k

yx
. If we then again

remove the fattened exploration path, D0

k
is split into various components, but

this time those lattice subdomains all have monochromatic boundary conditions.
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If we do the same in each subdomain of type 1, we obtain a collection of

loops. Moreover, all the lattice subdomains of Dk of nonexplored hexagons

then have monochromatic boundary conditions. Thus we can iterate the whole

procedure inside each of those lattice subdomains, until we have found all the

interfaces contained in Dk .

The similarity between this construction and the continuum one of the CNL

process should be apparent. To continue the proof one needs first to show that

the exploration paths used in the lattice construction converge to chordal SLE6

curves. The first step is a simple application of Theorem 1 to the first exploration

path

k D 
ık

Dk ;xk ;yk
;

where Dk ;xk ;yk are chosen so that Dk converges to D and xk and yk converge

to the a and b of the continuum construction. However, in order to iterate this

step and apply Theorem 1 again, we need to also show that the subdomains of

the lattice construction converge to those of the continuum construction.

The convergence in distribution of k to  D D;a;b implies that we can

find versions of k and  on some probability space .˝;B;P/ such that k.!/

converges to  .!/ for all ! 2 ˝. Using the coupling, k and  , for ık small,

are close in the sense of (3-3). This is, however, not sufficient. If we want to

conclude convergence of the subdomains, we need that wherever  touches the

boundary of D, k touches the boundary of Dk nearby. Closeness in the sense

of (3-3) does not ensure this but only that k gets close to the boundary @Dk .

Note that, if k gets within distance R1 of some point z on @Dk without

touching @Dk within distance R2 of z, with R2 > R1 > ık , considering the

fattened version of k shows the existence of two .ıkT/-paths of one color, say

yellow, and one .ıkT/-path of the other color, blue, crossing the annulus of inner

radius R1 and outer radius R2 centered at z.

In [Camia and Newman 2006], where the construction of the CN loops is

carried out in the unit disc D, the problem is solved by using the fact that D is

convex and resorting to an upper bound (see, e.g., [Lawler et al. 2002]) on the

probability that three disjoint monochromatic T-paths cross a semiannulus in a

half-plane. More precisely, the probability that the upper half-plane H contains

three disjoint monochromatic .ıT/-paths crossing the annulus of inner radius

R1 and outer radius R2 centered at a point z of the real axis is bounded above

by a constant times .R1=R2/
1C" for some " > 0 (for all ı < R1 < R2). Since

"> 0, if we let ı;R1! 0 and cover any finite part of @H by O.R1/ such annuli,

the bound shows that such three-arm events with R1 ! 0 do not occur in the

scaling limit ı ! 0 near @H. For a domain D with a locally flat boundary or

for a convex domain, this implies that, as k!1 (ık! 0), the (lim sup of the)

probability that k gets within distance R1 of any z 2 @Dk without touching the
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boundary within distance R2 of z goes to zero as R1! 0 for all (fixed) R2> 0.

(In the case of a convex D this follows from the fact that the intersection of an

annulus centered at the origin of the real axis with an appropriate translation and

rotation of D is smaller than the intersection of the same annulus with H, thus

making the probability of three arms even smaller than in the case of the upper

half-plane.)

We cannot use that bound here, since D is not necessarily convex (and even

if it were, the D0 domains of Theorems 3 and 4 will not generally be convex).

Instead, we will use the continuity of Cardy’s formula with respect to small

changes in the shape of the domain. We postpone this issue until later and

proceed with the sketch of the proof assuming that k does not get close to the

boundary of the domain without touching it nearby (probably).

Then the boundaries of the lattice/continuum subdomains obtained after run-

ning the first (coupled) exploration path/SLE6 curve are close to each other in

the metric (3-3). I.e., we can match lattice and continuum subdomains, at least

for those whose diameter is larger than some "k which depends on ık . It is

important that, as k!1 (and ık ! 0), we can let "k ! 0.

If we run an exploration process inside a (large) lattice subdomain D0

k
con-

verging to a continuum subdomain D0, Theorem 1 allows us to conclude that

the exploration path  0

k
in D0

k
converges to the SLE6 curve  0 in D0 from a0

to b0, provided that the starting and ending points x0

k
and y0

k
of the exploration

process are chosen so that they converge to a0 and b0 respectively as k!1. We

can now work with coupled versions of  0

k
and  0 and repeat the above argument

with the new subdomains that they produce, obtaining again a match (with high

probability).

This allows us to keep the lattice and continuum constructions coupled, which

ensures in particular that the .ıkT/-loops obtained in the lattice construction

converge, as ık ! 0, to the loops obtained in the continuum construction.

For any fixed ık , it is clear that the lattice construction eventually finds all

the boundary loops. However, to conclude that the CNL process is indeed the

scaling limit of the collection of all interfaces, we need to show that, for any

" > 0, the number of steps of the discrete construction needed to find all the

loops of diameter at least " does not diverge as k!1 (otherwise some loops

would never be found in the scaling limit).

In [Camia and Newman 2006], this is resolved using percolation arguments

(that make use of the RSW theorem [Russo 1978; Seymour and Welsh 1978] and

FKG inequalities) to show that the size of the subdomains has a bounded away

from zero probability of decreasing significantly at each iteration. We point out

that the argument used in [Camia and Newman 2006], where the construction of

the CN loops in carried out in the unit disc, is independent of the actual shape of
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k.v

Figure 5. The figure shows a blue .ıkT/-path (heavy full line) crossing

the partial annulus Dk\fB.vk ;R/nB.vk ; r/g that fails to connect to @Dk

near vk because it is blocked by a yellow .ıkT/-path (heavy dashed line)

that twice crosses the annulus B.vk ;R/ nB.vk ; r/.

the domain so that it can be applied to the present situation. Since that argument

is long, we will not repeat it here.

Returning to the problem of close encounters of k with @Dk , we will try

to provide the intuition on which the proof of touching is based. Suppose, by

contradiction, that k enters the disc B.vk ; "k/ of radius "k centered at vk 2@Dk

without touching @Dk inside the disc B.vk ; r/ of radius r , and that "k! 0. As

k ! 1, Dk ! D and we can assume by compactness that vk converges to

some v 2 @D. Considering the fattened version of k shows the existence of

two .ıkT/-paths of one color, say yellow, and one .ıkT/-path of the other color,

blue, crossing the annulus B.vk ; r/ nB.vk ; "k/ (see Figure 5).

Assume for simplicity that v is far enough from a and b so that a; b …B.v;R/

for some R> r , and consequently xk ;yk …B.vk ;R/ for k large enough. Then,

in the domain Dk \ fB.vk ;R/ nB.vk ; r/g there is a blue crossing between a

certain portion Jk of the circle of radius R centered at vk and a certain portion

J 0

k
of the circle of radius r centered at vk . If we consider instead the domain

Dk \B.vk ;R/, there is no blue crossing between Jk and the portion of @Dk \

B.vk ; r/ containing vk (see Figure 5). If this discrepancy persists as k !1,

it must show up in the scaling limit of crossing probabilities for the domains

D\fB.v;R/nB.v; r/g and D\B.v;R/. On the other hand, since "k! 0, we

can take r very small, and so D\fB.v;R/nB.v; r/g is very close to D\B.v;R/

so that the crossing probabilities in the two domains between the corresponding

arcs, given in the continuum by Cardy’s formula, should be very close. This

follows from the continuity of Cardy’s formula with respect to the shape of the

domain and the positions of the boundary arcs (see, e.g., Lemma A.2 of [Camia

and Newman 2007]).
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Using this idea, one can show that the assumption that k comes close to

@Dk without touching it nearby produces a contradiction. Although the idea

outlined above is relatively simple, the arguments needed to obtain a contra-

diction are rather involved (see Lemmas 7.1, 7.2, 7.3 and 7.4 of [Camia and

Newman 2007]), so we will not present them here, except for a brief discussion

in the proof of Lemma 6.2 below. ˜

SKETCH OF THE PROOF OF THEOREM 3. In order to prove the claim, we will

define a lattice construction inside D0 coupled to the continuum construction

inside D, by means of the conformal map f from D to D0. Roughly speaking,

this new lattice construction for D0 is one in which the .x;y/ pairs at each step

are chosen to be close to the .f .a/; f .b// points in D0 mapped from D via f ,

where the pairs .a; b/ are those that appear at the corresponding steps of the

continuum construction inside D.

More precisely, let .1/ be the first SLE6 curve in D from a.1/ to b.1/. Be-

cause of the conformal invariance of SLE6, the image f ..1// of .1/ under

f is a curve distributed as the trace of chordal SLE6 in D0 from f .a.1// to

f .b.1//. Therefore, the exploration path  ı
.1/

inside D0 from x.1/ to y.1/, chosen

so that they converge to f .a.1// and f .b.1// respectively as ı! 0, converges

in distribution to f ..1//, as ı ! 0, which means that there exists a coupling

between  ı
.1/

and f ..1// such that the curves stay close for ı small.

We see that one can use the same strategy as in the sketch of the proof of

Theorem 1, and obtain a lattice construction whose exploration paths are coupled

to the SLE6 curves in D0 that are the images under f of the SLE6 curves in D.

Then, for this discrete construction, the scaling limits of the exploration paths

will be distributed as the images of the SLE6 curves in D.

To conclude the proof, we should show that the lattice construction inside D0

defined above finds all the boundaries in a number of steps that is bounded in

probability as ı ! 0. But this is essentially equivalent to the analogous claim

in the sketch of the proof of Theorem 1. Thus the scaling limit, as ı ! 0,

of this new lattice construction for D0 gives the CNL process in D0, which by

construction is distributed like the image under f of the CNL process in D. ˜

SKETCH OF THE PROOF OF THEOREM 4. Let a; b 2 @D be the endpoints of

� in clockwise order, i.e., � D ba is the counterclockwise arc of @D from

b to a. As explained at the end of Section 4, the random curve  obtained

by pasting together the maximal excursions xy.L/ from ba, for L 2 LD;� ,

is distributed like chordal SLE6 in D from a to b. Indeed, removing  from

D is equivalent (in distribution) to the first step of the algorithmic construction

presented in Section 4 to produce a realization of the CNL process, if we choose
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a and b with ba D � as starting and ending points of the first SLE6 curve of

the construction.

Note that  is in L
�

D;�
�
S

fL WL 2 LD;� g, and the remaining pieces of

L
�

D;�
are all in (the closures of) subdomains of D n  of type 1. If we condi-

tion on  and run the algorithmic construction described in Section 4 inside a

subdomain of D n  of type 2, 3 or 4, we get an independent CNL process or,

by Theorem 3, an independent copy of LD conformally mapped to that domain.

This already proves part of the claim.

Consider now a subdomain D0 of Dn of type 1 and let a0; b0 be the endpoints

of the excursion that generated D0. Part of @D0 is in @D and we choose a0; b0 so

that the counterclockwise arc � 0D b0a0� @D is that part of @D0. The excursion

that generated D0 is part of a loop L0 whose other “half” is in D0 and runs from

b0 to a0. We know from the construction of Section 4 that if we trace the “half”

of L0 contained in D0 from b0 to a0 we get a curve  0 distributed like chordal

SLE6 in D0 from b0 to a0. Note that  0 is contained in L
�

D;�
.

The subdomains of D0n 0 are of two types: (I) those whose boundary does not

contain a portion of @D and (II) those whose boundary does contain a portion,

� 00 D b00a00 � @D, of � . If we condition on  and  0 and run the algorithmic

construction described in Section 4 inside a subdomain of D0 n  0 of type I, we

get an independent CNL process or, by Theorem 3, an independent copy of LD

conformally mapped to that domain.

The remaining pieces of L
�

D;�
are all contained inside the (closures of)

domains of type II (for all the subdomains of D n  of type 1). Inside each

subdomain D00 of type II, the CN loops that touch � 00 are contained in L
�

D;�

and can be used to obtain a curve  00 distributed like chordal SLE6 in D00 from

a00 to b00 by pasting together maximal excursions as above (and at the end of

Section 4). It should now be clear how to complete the argument by iterating

the steps described above inside each subdomain D00. ˜

6. Convergence of exploration path to SLE6

SKETCH OF THE PROOF OF THEOREM 1. We begin discussing the proof of

Theorem 1 by noting, as in the proof of Theorem 2 discussed in Section 5, that

it follows from [Aizenman and Burchard 1999] that the family of distributions

of  ı
D;a;b

is tight (as ı ! 0, in the sense of the metric (3-3)) and so there is

convergence along subsequences ık!0. We write, in simplified notation, k!

Q along such a convergent subsequence. What needs to be proved is that the

distribution Q� of Q is that of  SLE6 , the trace of chordal SLE6 in D from a to b.

We next discuss how much information about Q� can be extracted from Cardy’s

formula for crossing probabilities. We note that there are versions of Smirnov’s
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d

c

a

cd

D

Figure 6. D is the upper half-plane H with the shaded portion removed,

b D1, C 0 is an unbounded subdomain, and D0 D D nC 0 is indicated in

the figure. The counterclockwise arc cd indicated in the figure belongs to

@D0.

result on convergence of crossing probabilities to Cardy’s formula that allow the

domains being crossed and the target boundary arcs to vary as ı!0. Theorem 3

of [Camia and Newman 2007] is such a version that suffices for our purposes.

Let Dt �Dn QKt denote the (unique) connected component of Dn Q Œ0; t � whose

closure contains b, where QKt , the filling of Q Œ0; t �, is a closed connected subset

of D. QKt is called a hull if it satisfies the condition

QKt \D D QKt : (6-1)

We will consider curves Q such that QKt is a hull for each t , although here we

only consider QKT at certain stopping times T .

Let C 0 � D be a closed subset of D such that a … C 0, b 2 C 0, and D0 D

D n C 0 is a bounded simply connected domain whose boundary contains the

counterclockwise arc cd that does not belong to @D (except for its endpoints c

and d – see Figure 6).

Let T 0 D infft W QKt \C 0 ¤?g be the first time that Q .t/ hits C 0 and assume

that the filling QKT 0 of Q Œ0;T 0� is a hull. We say that the hitting distribution of

Q .t/ at the stopping time T 0 is determined by Cardy’s formula (see (3-1)) if, for

any C 0 and any counterclockwise arc xy of cd , the probability that Q hits C 0 at

time T 0 on xy is given by

P. Q .T 0/ 2 xy/D ˚D0.a; cIx; d/�˚D0.a; cIy; d/: (6-2)

We want to relate the distribution of QKT 0 to the distribution of hitting lo-

cations for a family of C 00’s related to C 0. To explain, consider the set QA of

closed subsets QA of D0 that do not contain a and such that @ QAn@D0 is a simple

(continuous) curve contained in D0 except for its endpoints, one of which is on

@D0\D and the other is on @D (see Figure 7). Let A be the set of closed subsets

of D0 of the form QA1[ QA2, where QA1; QA2 2 QA and QA1\ QA2 D?.
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K

a

1A
~

2A
~

Figure 7. Example of a hull K and a set QA1[ QA2 (shaded regions) in A.

Here, D D H and D0 is the semidisc centered at a.

It is easy to see that if the hitting distribution of Q .T 0/ is determined by

Cardy’s formula, then the probabilities of events of the form f QKT 0\AD?g for

A 2A are also determined by Cardy’s formula in the following way. Let A 2A

be the union of QA1; QA2 2 QA, with @ QA1n@D
0 given by a curve from u1 2 @D

0\D

to v1 2 @D and @ QA2 n@D
0 given by a curve from u2 2 @D

0\D to v2 2 @D; then,

assuming that a, v1, u1, u2, v2 are ordered counterclockwise around @D0,

P. QKT 0 \AD?/D ˚D0
nA.a; v1Iu1; v2; /�˚D0

nA.a; v1Iu2; v2/: (6-3)

The probabilities of such events determine uniquely the distribution of the hull

(for more detail, see Section 5 of [Camia and Newman 2007]). Thus we have the

following useful lemma, since the hitting distribution for SLE6 is determined

by Cardy’s formula [Lawler et al. 2001].

LEMMA 6.1. If QKT 0 is a hull and the hitting distribution of Q at the stopping

time T 0 is determined by Cardy’s formula, then QKT 0 is distributed like the cor-

responding hull of  SLE6 .

We next define the sequence of hitting times for Q that will be used to compare

it to  SLE6 . They involve conformal maps of semiballs (i.e., half-disks) in the

upper half-plane. Let Qf0 be a conformal map from the upper half-plane H to

D such that Qf �1

0
.a/ D 0 and Qf �1

0
.b/ D1. (Since @D is a continuous curve,

the map Qf �1

0
has a continuous extension from D to D [ @D and, by a slight

abuse of notation, we do not distinguish between Qf �1

0
and its extension; the

same applies to Qf0.) These two conditions determine Qf0 only up to a scaling

factor. For " > 0 fixed, let C.u; "/D fz W ju�zj< "g\H denote the semiball of

radius " centered at u on the real line and let QT1 D QT1."/ denote the first time

Q .t/ hits D n QG1, where QG1 � Qf0.C.0; "//. Define recursively QTjC1 as the first

time Q Œ QTj ;1/ hits QD QTj
n QGjC1, where QD QTj

�D n QK QTj
, QGjC1 � Qf QTj

.C.0; "//,

and Qf QTj
is a conformal map from H to QD QTj

whose inverse maps Q . QTj / to 0 and

b to1. We also define Q�jC1� QTjC1� QTj , so that QTj D Q�1C: : :C Q�j . We choose
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Qf QTj
so that its inverse is the composition of the restriction of Qf0

�1

to QD QTj
with

Q' QTj
, where Q' QTj

is the unique conformal transformation from H n Qf0

�1

. QK QTj
/ to

H that maps 1 to 1 and Qf0

�1

. Q . QTj // to the origin of the real axis, and has

derivative at1 equal to 1.

Notice that QGjC1 is a bounded simply connected domain chosen so that the

conformal transformation which maps QD QTj
to H maps QGjC1 to the semiball

C.0; "/ centered at the origin on the real line. With these definitions, we con-

sider the (discrete-time) stochastic process QXj � . QK QTj
; Q . QTj // for j D 1; 2; : : : .

Analogous quantities can be defined for the trace of chordal SLE6. They are

indicated by the superscript SLE6; we choose f
SLE6

0
D Qf0, so that G

SLE6

1
D QG1.

Our aim is to prove that the variables QX1; QX2; : : : are (jointly) equidistributed

with the corresponding SLE6 hull and tip variables X
SLE6

1
;X

SLE6

2
; : : : . By

letting " ! 0, this will directly yield that Q is equidistributed with  SLE6 as

desired. Since k converges in distribution to Q , we can find coupled versions

of k and Q on some probability space .˝;B;P/ such that k converges to Q

for all ! 2˝; in the rest of the proof we work with these new versions which,

with a slight abuse of notation, we denote with the same names as the original

ones.

For each k, let Kk

t
denote the filling (or lattice hull) at time t of k , i.e., the

set of hexagons that at time t have been explored or have been disconnected

from b by the exploration path. Let now f k

0
be a conformal transformation that

maps H to Dk � Dık such that .f k

0
/�1.ak/ D 0 and .f k

0
/�1.bk/ D 1 and

let T k

1
D T k

1
."/ denote the first exit time of 

ık

k
.t/ from Gk

1
� f k

0
.C.0; "//

defined as the first time that k intersects the image under f k

0
of the semicircle

fz W jzj D "g \H. Define recursively T k

jC1
as the first exit time of 

ık

k
ŒT k

j
;1/

from Gk

jC1
�f k

T
k

j

.C.0; "//, where f k

T
k

j

is a conformal map from H to Dk nK
k

T
k

j

whose inverse maps k.T
k

j
/ to 0 and bk to 1. Each of the maps f k

T
k

j

, where

j � 1, is defined only up to a scaling factor. We also set �k

jC1
� T k

jC1
�T k

j
, so

T k

j
D �k

1
C : : :C �k

j
, and define the (discrete-time) stochastic process

X k

j
� .Kk

T
k

j

; 
ık

k
.T k

j
// for j D 1; 2; : : : .

We want to show recursively that, for any j , as k!1, fX k

1
; : : : ;X k

j
g con-

verge jointly in distribution to f QX1; : : : ; QXj g. By recursively applying the con-
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vergence of crossing probabilities to Cardy’s formula (i.e., Theorem 3 of [Camia

and Newman 2007]) and Lemma 6.1, we will then be able to conclude, as ex-

plained in more detail below, that f QX1; QX2; : : : g are jointly equidistributed with

the corresponding SLE6 hull variables (at the corresponding stopping times)

fX
SLE6

1
;X

SLE6

2
; : : : g.

The zeroth step consists in noticing that the convergence of .Dk ; ak ; bk/ to

.D; a; b/ as k ! 1 allows us to select a sequence of conformal maps f k

0

that converge to f
SLE6

0
D Qf0 uniformly in H as k ! 1, which implies that

the boundary @Gk

1
of Gk

1
D f k

0
.C.0; "// converges to the boundary @ QG1 of

QG1D Qf0.C.0; "// in the uniform metric on continuous curves (see Corollary A.2

of [Camia and Newman 2007]).

The next lemma is the technical heart of the proof. It basically allows us to

interchange the scaling limit ı! 0 and the process of filling (which generates

hulls) by declaring that the hull of the limiting curve is the limit of the (lattice)

hulls. The proof of the lemma involves extensive use of nontrivial results from

percolation theory. Although the lemma is stated here in the framework of the

first step of the proof where we are analyzing convergence of X k

1
to QX1, es-

sentially the same lemma can be applied sequentially to the convergence of X k

j

conditioned on fX k

1
; : : : ;X k

j�1
g.

LEMMA 6.2. .k ;K
k

T
k
1

/ converges in distribution to . Q ; QK QT1
/ as k!1. Fur-

thermore QK QT1
is almost surely a hull equidistributed with the hull K

SLE6

T1
of

SLE6 at the corresponding stopping time T1.

PROOF. Proving the first claim, that for the exploration path k in Gk

1
one can in-

terchange the limit k!1 (ık!0) with the process of filling, requires showing

two things about the exploration path: (1) the return of a (macroscopic) segment

of the path close to an earlier segment (and away from @Gk

1
) without nearby

(microscopic) touching does not occur (probably), and (2) the close approach

of a (macroscopic) segment of the path to @Gk

1
without nearby (microscopic)

touching either of @Gk

1
itself or else of another segment of the path that touches

@Gk

1
does not occur (probably). If Gk

1
(or more accurately, its limit QG1) were

replaced by a convex domain like the unit disk, these could be controlled by

known estimates on probabilities of six-arm events in the full plane for (1) and

of three-arm events in the half-plane for (2). But QG1 is not in general convex

and then the three-arm event argument for (2) appears to break down. The

replacement in [Camia and Newman 2007] is the use of several lemmas in Sec-

tion 7 there. Basically, these control (2) by a novel argument about “mushroom
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events” in QG1, which is based on continuity of Cardy’s formula with respect to

changes in @ QG1. Roughly speaking, mushroom events are ones where (in the

limit k !1) there is a macroscopic monochromatic path in QG1 just reaching

to @ QG1, but blocked from it by a macroscopic path in QG1 of the other color (see

Figure 5). It is shown in [Camia and Newman 2007] (see Lemma 7.4 there)

that mushroom events cannot occur with positive probability while on the other

hand they would occur if (2) were not the case. The second claim of Lemma 6.2

now follows from Smirnov’s result [2001] on convergence to Cardy’s formula

(see also Theorem 3 of [Camia and Newman 2007]) and Lemma 6.1. ˜

Using Lemma 6.2, the first step of our recursion argument is organized as fol-

lows, where all limits and equalities are in distribution:

(i) Kk

T
k
1

! QK QT1
DK

SLE6

T1
by Lemma 6.2.

(ii) By (i), Dk nKk

T
k
1

!D n QK QT1
DD nK

SLE6

T1
.

(iii) By (ii), f
SLE6

T1
D Qf QT1

, and we can select a sequence f k

T
k
1

! Qf QT1
D f

SLE6

T1
.

(iv) By (iii), Gk

2
! QG2 DG

SLE6

2
.

At this point, we are in the same situation as at the zeroth step, but with Gk

1
,

QG1 and G
SLE6

1
replaced by Gk

2
, QG2 and G

SLE6

2
, and we proceed by induction, as

follows.

The next step consists in proving that

�

.Kk

T
k
1

; 
ık

k
.T k

1
//; .Kk

T
k
2

; 
ık

k
.T k

2
//
�

converges in distribution to
�

. QK QT1
; Q . QT1//; . QK QT2

; Q . QT2//
�

. Since we have al-

ready proved the convergence of .Kk

T
k
1

; 
ık

k
.T k

1
// to . QK QT1

; Q . QT1//, all we need

to prove is the convergence of .Kk

T
k
2

nKk

T
k
1

; 
ık

k
.T k

2
// to . QK QT2

n QK QT1
; Q . QT2//.

To do this, notice that Kk

T
k
2

nKk

T
k
1

is distributed like the lattice hull of a per-

colation exploration path inside Dk nKk

T
k
1

. Besides, the convergence in distri-

bution of .Kk

T
k
1

; 
ık

k
.T k

1
// to . QK QT1

; Q . QT1// implies that we can find versions

of .
ık

k
;Kk

T
k
1

/ and . Q ; QK QT1
/ on some probability space .˝;B;P/ such that


ık

k
.!/ converges to Q .!/ and .Kk

T
k
1

; 
ık

k
.T k

1
// converges to . QK QT1

; Q . QT1//

for all ! 2 ˝. These two observations imply that, if we work with the cou-

pled versions of .
ık

k
;Kk

T
k
1

/ and . Q ; QK QT1
/, we are in the same situation as be-

fore, but with Dk and D replaced by Dk n Kk

T
k
1

and D n QK QT1
, and ak and

a replaced by 
ık

k
.T k

1
/ and Q . QT1/, respectively. Then, the conclusion that

.Kk

T
k
2

nKk

T
k
1

; 
ık

k
.T k

2
// converges in distribution to . QK QT2

n QK QT1
; Q . QT2// follows,
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as before, by arguments like those used for Lemma 6.2. We can now iterate the

above arguments j times, for any j > 1. If we keep track at each step of the

previous ones, this provides the joint convergence of all the curves and lattice

hulls involved at each step.

The proof of Theorem 1 is concluded by letting "! 0. We note that in

this paper we circumvent the use of a “spatial Markov property” that played

a role in [Camia and Newman 2007] in the "! 0 limit. The point is that that

property was proved as a consequence of the equidistribution of QX1; QX2; : : : with

X
SLE6

1
;X

SLE6

2
; : : : and here we apply the equidistribution directly. It should

be noted however that there needs to be some a priori information about Q to

insure that this equidistribution for each " > 0 implies equidistribution of Q

with  SLE6 . For example, one could create by hand a process O which behaved

like  SLE6 except that at random times it retraced back and forth part of its

previous path. Such a O would have its OXj variables equidistributed with those

of SLE6 but as a random curve (modulo monotonic reparametrizations) would

not be equidistributed with  SLE6 ; it would also not be describable by a Loewner

chain. Such possibilities can be ruled out by the same arguments as those used

in proving Lemma 6.2; see Lemma 6.4 of [Camia and Newman 2007]. ˜
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Global optimization, the Gaussian ensemble,

and universal ensemble equivalence

MARIUS COSTENIUC, RICHARD S. ELLIS, HUGO TOUCHETTE,

AND BRUCE TURKINGTON

With great affection this paper is dedicated to Henry McKean

on the occasion of his 75th birthday.

ABSTRACT. Given a constrained minimization problem, under what condi-

tions does there exist a related, unconstrained problem having the same mini-

mum points? This basic question in global optimization motivates this paper,

which answers it from the viewpoint of statistical mechanics. In this context,

it reduces to the fundamental question of the equivalence and nonequivalence

of ensembles, which is analyzed using the theory of large deviations and the

theory of convex functions.

In a 2000 paper appearing in the Journal of Statistical Physics, we gave nec-

essary and sufficient conditions for ensemble equivalence and nonequivalence

in terms of support and concavity properties of the microcanonical entropy.

In later research we significantly extended those results by introducing a class

of Gaussian ensembles, which are obtained from the canonical ensemble by

adding an exponential factor involving a quadratic function of the Hamiltonian.

The present paper is an overview of our work on this topic. Our most important

discovery is that even when the microcanonical and canonical ensembles are

not equivalent, one can often find a Gaussian ensemble that satisfies a strong

form of equivalence with the microcanonical ensemble known as universal

equivalence. When translated back into optimization theory, this implies that

an unconstrained minimization problem involving a Lagrange multiplier and a

quadratic penalty function has the same minimum points as the original con-

strained problem.

The results on ensemble equivalence discussed in this paper are illustrated

in the context of the Curie–Weiss–Potts lattice-spin model.

Keywords: Equivalence of ensembles, Gaussian ensemble, microcanonical entropy, large deviation principle,

Curie–Weiss–Potts model.
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1. Introduction

Oscar Lanford, at the beginning of his groundbreaking paper [Lanford 1973],

describes the underlying program of statistical mechanics:

The objective of statistical mechanics is to explain the macroscopic prop-

erties of matter on the basis of the behavior of the atoms and molecules of

which it is composed. One of the most striking facts about macroscopic

matter is that in spite of being fantastically complicated on the atomic

level — to specify the positions and velocities of all molecules in a glass of

water would mean specifying something of the order of 1025 parameters —

its macroscopic behavior is describable in terms of a very small number of

parameters; e.g., the temperature and density for a system containing only

one kind of molecule.

Lanford shows how the theory of large deviations enables this objective to be

realized. In statistical mechanics one determines the macroscopic behavior of

physical systems not from the deterministic laws of Newtonian mechanics, but

from a probability distribution that expresses both the behavior of the system

on the microscopic level and the intrinsic inability to describe precisely what is

happening on that level. Using the theory of large deviations, one shows that,

with probability converging to 1 exponentially fast as the number of particles

tends to 1, the macroscopic behavior is describable in terms of a very small

number of parameters

The success of this program depends on the correct choice of probability

distribution, also known as an ensemble. One starts with a prior measure on

configuration space, which, as an expression of the lack of information con-

cerning the behavior of the system on the atomic level, is often taken to be

the uniform measure. As Boltzmann recognized, the most natural choice of

ensemble is the microcanonical ensemble, obtained by conditioning the prior

measure on the set of configurations for which the Hamiltonian per particle

equals a constant energy u. Boltzmann also introduced a mathematically more

tractable probability distribution known as the canonical ensemble, in which

the conditioning that defines the microcanonical ensemble is replaced by an

exponential factor involving the Hamiltonian and the inverse temperature ˇ, a

parameter dual to the energy parameter u [Gibbs 1902].

Among other reasons, the canonical ensemble was introduced in the hope

that in the limit n!1 the two ensembles are equivalent; i.e., all macroscopic

properties of the model obtained via the microcanonical ensemble could be re-

alized as macroscopic properties obtained via the canonical ensemble. While

ensemble equivalence is valid for many standard and important models, ensem-

ble equivalence does not hold in general, as numerous studies cited later in this
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introduction show. There are many examples of statistical mechanical mod-

els for which nonequivalence of ensembles holds over a wide range of model

parameters and for which physically interesting microcanonical equilibria are

often omitted by the canonical ensemble.

The present paper is an overview of our work on this topic. One of the beau-

tiful aspects of the theory is that it elucidates a fundamental issue in global op-

timization, which in fact motivated our work on the Gaussian ensemble. Given

a constrained minimization problem, under what conditions does there exist a

related, unconstrained minimization problem having the same minimum points?

In order to explain the connection between ensemble equivalence and global

optimization and in order to outline the contributions of this paper, we introduce

some notation. Let X be a space, I a function mapping X into Œ0;1�, and QH a

function mapping X into R. For u 2 R we consider the following constrained

minimization problem:

minimize I.x/ over x 2 X subject to the contraint QH .x/D u: (1-1)

A partial answer to the question posed at the end of the preceding paragraph

can be found by introducing the following related, unconstrained minimization

problem for ˇ 2 R:

minimize I.x/Cˇ QH .x/ over x 2 X: (1-2)

The theory of Lagrange multipliers outlines suitable conditions under which the

solutions of the constrained problem (1-1) lie among the critical points of I C

ˇ QH . However, it does not give, as we will do in Theorems 3.1 and 3.3, necessary

and sufficient conditions for the solutions of (1-1) to coincide with the solutions

of the unconstrained minimization problem (1-2) and with the solutions of the

unconstrained minimization problem appearing in (1-5).

We denote by E
u and Eˇ the respective sets of solutions of the minimization

problems (1-1) and (1-2). These problems arise in a natural way in the context of

equilibrium statistical mechanics [Ellis et al. 2000], where u denotes the energy

and ˇ the inverse temperature. As we will outline in Section 2, the theory of

large deviations allows one to identify the solutions of these problems as the

respective sets of equilibrium macrostates for the microcanonical ensemble and

the canonical ensemble.

The paper [Ellis et al. 2000] analyzes equivalence of ensembles in terms of

relationships between E
u and Eˇ . In turn, these relationships are expressed in

terms of support and concavity properties of the microcanonical entropy

s.u/D� inffI.x/ W x 2 X; QH .x/D ug: (1-3)

The main results in [Ellis et al. 2000] are summarized in Theorem 3.1. Part

(a) of that theorem states that if s has a strictly supporting line at an energy
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value u, then full equivalence of ensembles holds in the sense that there exists

a ˇ such that E
u D Eˇ . In particular, if s is strictly concave on dom s, then s

has a strictly supporting line at all u 2 dom s except possibly boundary points

[Theorem 3.2(a)] and thus full equivalence of ensembles holds at all such u. In

this case we say that the microcanonical and canonical ensembles are universally

equivalent.

The most surprising result, given in part (c), is that if s does not have a

supporting line at u, then nonequivalence of ensembles holds in the strong sense

that E
u \ Eˇ D ? for all ˇ 2 R

� . That is, if s does not have a supporting line

at u — equivalently, if s is not concave at u — then microcanonical equilibrium

macrostates cannot be realized canonically. This is to be contrasted with part (d),

which states that for any x 2 Eˇ there exists u such that x 2 E
u; i.e., canonical

equilibrium macrostates can always be realized microcanonically. Thus of the

two ensembles, in general the microcanonical is the richer.

The paper [Costeniuc et al. 2005b] addresses the natural question suggested

by part (c) of Theorem 3.1. If the microcanonical ensemble is not equivalent

with the canonical ensemble on a subset of energy values u, then is it possi-

ble to replace the canonical ensemble with another ensemble that is universally

equivalent with the microcanonical ensemble? We answered this question by

introducing a penalty function  Œ QH .x/�u�2 into the unconstrained minimization

problem (1-2), obtaining the following:

minimize I.x/Cˇ QH .x/C  Œ QH .x/�u�2 over x 2 X: (1-4)

Since for each x 2 X

lim
!1

 Œ QH .x/�u�2 D

�

0 if QH .x/D u

1 if QH .x/ 6D u;

it is plausible that for all sufficiently large  minimum points of the penalized

problem (1-4) are also minimum points of the constrained problem (1-1). Since

ˇ can be adjusted, (1-4) is equivalent to the following:

minimize I.x/Cˇ QH .x/C  Œ QH .x/�2 over x 2 X: (1-5)

The theory of large deviations allows one to identify the solution of this prob-

lem as the set of equilibrium macrostates for the so-called Gaussian ensemble. It

is obtained from the canonical ensemble by adding an exponential factor involv-

ing h2

n
, where hn denotes the Hamiltonian energy per particle. The utility of

the Gaussian ensemble rests on the simplicity with which the quadratic function

u2 defining this ensemble enters the formulation of ensemble equivalence.

Essentially all the results in [Ellis et al. 2000] concerning ensemble equivalence,

including Theorem 3.1, generalize to the setting of the Gaussian ensemble by
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replacing the microcanonical entropy s.u/ by the generalized microcanonical

entropy

s .u/D s.u/� u2: (1-6)

The generalization of Theorem 3.1 is stated in Theorem 3.3, which gives all

possible relationships between the set E
u of equilibrium macrostates for the

microcanonical ensemble and the set Eˇ; of equilibrium macrostates for the

Gaussian ensemble. These relationships are expressed in terms of support and

concavity properties of s .

For the purpose of applications the most important consequence of Theorem

3.3 is given in part (a), which states that if s has a strictly supporting line at an

energy value u, then full equivalence of ensembles holds in the sense that there

exists a ˇ such that E
u D Eˇ; . In particular, if s is strictly concave on dom s,

then s has a strictly supporting line at all u 2 dom s except possibly boundary

points [Theorem 3.4(a)] and thus full equivalence of ensembles holds at all such

u. In this case we say that the microcanonical and Gaussian ensembles are

universally equivalent.

In the case in which s is C 2 and s00 is bounded above on the interior of dom s,

then the strict concavity of s is easy to show. In fact, the strict concavity is a

consequence of

s00

 .u/D s00.u/� 2 < 0 for all u 2 int(dom s/;

and this in turn is valid for all sufficiently large  [Theorem 4.2]. For such

 it follows, therefore, that the microcanonical and Gaussian ensembles are

universally equivalent.

Defined in (2.6), the Gaussian ensemble is mathematically much more tract-

able than the microcanonical ensemble, which is defined in terms of condition-

ing. The simpler form of the Gaussian ensemble is reflected in the simpler

form of the unconstrained minimization problem (1-5) defining the set Eˇ;

of Gaussian equilibrium macrostates. In (1-5) the constraint appearing in the

minimization problem (1-1) defining the set E
u of microcanonical equilibrium

macrostates is replaced by the linear and quadratic terms involving QH .x/. The

virtue of the Gaussian formulation should be clear. When the microcanonical

and Gaussian ensembles are universally equivalent, then from a numerical point

of view, it is better to use the Gaussian ensemble because in contrast to the

microcanonical one, the Gaussian ensemble does not involve an equality con-

straint, which is difficult to implement numerically. Furthermore, within the

context of the Gaussian ensemble, it is possible to use Monte Carlo techniques

without any constraint on the sampling [Challa and Hetherington 1988a; Challa

and Hetherington 1988b].
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By giving necessary and sufficient conditions for the equivalence of the three

ensembles in Theorems 3.1 and 3.3, we make contact with the duality theory

of global optimization and the method of augmented Lagrangians [Bertsekas

1982, ~ 2.2], [Minoux 1986, ~ 6.4]. In the context of global optimization the

primal function and the dual function play the same roles that the microcanon-

ical entropy (resp., generalized microcanonical entropy) and the canonical free

energy (resp., Gaussian free energy) play in statistical mechanics. Similarly,

the replacement of the Lagrangian by the augmented Lagrangian in global op-

timization is paralleled by our replacement of the canonical ensemble by the

Gaussian ensemble.

The Gaussian ensemble is a special case of the generalized canonical ensem-

ble, which is obtained from the canonical ensemble by adding an exponential

factor involving g.hn/, where g is a continuous function that is bounded below.

Our paper [Costeniuc et al. 2005b] gives all possible relationships between the

sets of equilibrium macrostates for the microcanonical and generalized canon-

ical ensembles in terms of support and concavity properties of an appropriate

entropy function. Our paper [Touchette et al. 2006] shows that the generalized

canonical ensemble can be used to transform metastable or unstable nonequi-

librium macrostates for the standard canonical ensemble into stable equilibrium

macrostates for the generalized canonical ensemble.

Equivalence and nonequivalence of ensembles is the subject of a large litera-

ture. An overview is given in the introduction of [Lewis et al. 1995]. A number

of theoretical papers on this topic, including [Deuschel et al. 1991; Ellis et al.

2000; Eyink and Spohn 1993; Georgii 1993; Lewis et al. 1994; Lewis et al.

1995; Roelly and Zessin 1993], investigate equivalence of ensembles using the

theory of large deviations. In [Lewis et al. 1994, ~ 7] and [Lewis et al. 1995,

~ 7.3] there is a discussion of nonequivalence of ensembles for the simplest

mean-field model in statistical mechanics; namely, the Curie–Weiss model of

a ferromagnet. However, despite the mathematical sophistication of these and

other studies, none of them except for our papers [Costeniuc et al. 2005b; El-

lis et al. 2000] explicitly addresses the general issue of the nonequivalence of

ensembles.

Nonequivalence of ensembles has been observed in a wide range of systems

that involve long-range interactions and that can be studied by the methods of

[Costeniuc et al. 2005b; Ellis et al. 2000]. In all of these cases the micro-

canonical formulation gives rise to a richer set of equilibrium macrostates. For

example, it has been shown computationally that the strongly reversing zonal-

jet structures on Jupiter as well as the Great Red Spot fall into the nonequiva-

lent range of an appropriate microcanonical ensemble [Turkington et al. 2001].

Other models for which ensemble nonequivalence has been observed include a
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number of long-range, mean-field spin models including the Hamiltonian mean-

field model [Dauxois et al. 2002], the mean-field X-Y model [Dauxois et al.

2000], and the mean-field Blume–Emery–Griffiths model [Barré et al. 2002;

2001; Ellis et al. 2004b]. For a mean-field version of the Potts model called

the Curie–Weiss–Potts model, equivalence and nonequivalence of ensembles is

analyzed in detail in [Costeniuc et al. 2005a; Costeniuc et al. 2006a]. Ensemble

nonequivalence has also been observed in models of turbulent vorticity dynamics

[DiBattista et al. 2001; Dibattista et al. 1998; Ellis et al. 2002a; Eyink and Spohn

1993; Kiessling and Lebowitz 1997; Robert and Sommeria 1991], models of

plasmas [Kiessling and Neukirch 2003; Smith and O’Neil 1990], gravitational

systems [Gross 1997; Hertel and Thirring 1971; Lynden-Bell and Wood 1968;

Thirring 1970], and models of the Lennard–Jones gas [Borges and Tsallis 2002;

Kiessling and Percus 1995]. A detailed discussion of ensemble nonequivalence

for models of coherent structures in two dimensional turbulence is given in [Ellis

et al. 2000, ~ 1.4].

Gaussian ensembles were introduced in [Hetherington 1987] and studied fur-

ther in [Challa and Hetherington 1988a; Challa and Hetherington 1988b; Het-

herington and Stump 1987; Johal et al. 2003; Stump and Hetherington 1987].

As these papers discuss, an important feature of Gaussian ensembles is that

they allow one to account for ensemble-dependent effects in finite systems. Al-

though not referred to by name, the Gaussian ensemble also plays a key role

in [Kiessling and Lebowitz 1997], where it is used to address equivalence-of-

ensemble questions for a point-vortex model of fluid turbulence.

Another seed out of which the research summarized in the present paper

germinated is the paper [Ellis et al. 2002a]. There we study the equivalence

of the microcanonical and canonical ensembles for statistical equilibrium mod-

els of coherent structures in two-dimensional and quasigeostrophic turbulence.

Numerical computations demonstrate that, as in other cases, nonequivalence of

ensembles occurs over a wide range of model parameters and that physically

interesting microcanonical equilibria are often omitted by the canonical ensem-

ble. In addition, in Section 5 of [Ellis et al. 2002a], we establish the nonlinear

stability of the steady mean flows corresponding to microcanonical equilibria via

a new Lyapunov argument. The associated stability theorem refines the well-

known Arnold stability theorems, which do not apply when the microcanonical

and canonical ensembles are not equivalent. The Lyapunov functional appearing

in this new stability theorem is defined in terms of a generalized thermodynamic

potential similar in form to I.x/Cˇ QH .x/C Œ QH .x/�2, the minimum points of

which define the set of equilibrium macrostates for the Gaussian ensemble [see

(2.14)].
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Our goal in this paper is to give an overview of our theoretical work on en-

semble equivalence presented in [Costeniuc et al. 2005b; Ellis et al. 2000]. The

paper [Costeniuc et al. 2006b] investigates the physical principles underlying

this theory. In Section 2 of the present paper, we first state the assumptions

on the statistical mechanical models to which the theory of the present paper

applies. We then define the three ensembles — microcanonical, canonical, and

Gaussian — and specify the three associated sets of equilibrium macrostates in

terms of large deviation principles. In Section 3 we state two sets of results on

ensemble equivalence. The first involves the equivalence of the microcanoni-

cal and canonical ensembles, necessary and sufficient conditions for which are

given in terms of support properties of the microcanonical entropy s defined in

(1-3). The second involves the equivalence of the microcanonical and Gauss-

ian ensembles, necessary and sufficient conditions for which are given in terms

of support properties of the generalized microcanonical entropy s defined in

(1-6). Section 4 addresses a basic foundational issue in statistical mechanics.

There we show that when the canonical ensemble is nonequivalent to the mi-

crocanonical ensemble on a subset of energy values u, it can often be replaced

by a Gaussian ensemble that is universally equivalent to the microcanonical

ensemble. In Section 5 the results on ensemble equivalence discussed in this

paper are illustrated in the context of the Curie–Weiss–Potts lattice-spin model,

a mean-field approximation to the nearest-neighbor Potts model. Several of the

results presented near the end of this section are new.

2. Definitions of models and ensembles

One of the objectives of this paper is to show that when the canonical en-

semble is nonequivalent to the microcanonical ensemble on a subset of energy

values u, it can often be replaced by a Gaussian ensemble that is equivalent to the

microcanonical ensemble for all u. Before introducing the various ensembles

as well as the methodology for proving this result, we first specify the class of

statistical mechanical models under consideration. The models are defined in

terms of the following quantities.

1. A sequence of probability spaces .˝n;Fn;Pn/ indexed by n 2 N, which

typically represents a sequence of finite dimensional systems. The ˝n are

the configuration spaces, ! 2˝n are the microstates, and the Pn are the prior

measures on the � fields Fn.

2. A sequence of positive scaling constant an!1 as n!1. In general an

equals the total number of degrees of freedom in the model. In many cases

an equals the number of particles.
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3. For each n 2N a measurable functions Hn mapping ˝n into R. For ! 2˝n

we define the energy per degree of freedom by

hn.!/D
1

an

Hn.!/:

Typically, Hn in item 3 equals the Hamiltonian, which is associated with energy

conservation in the model. The theory is easily generalized by replacing Hn by

a vector of appropriate functions representing additional dynamical invariants

associated with the model [Costeniuc et al. 2005b; Ellis et al. 2000].

A large deviation analysis of the general model is possible provided that

there exist a space of macrostates, macroscopic variables, and an interaction

representation function and provided that the macroscopic variables satisfy the

large deviation principle (LDP) on the space of macrostates. These concepts are

explained next.

4. Space of macrostates. This is a complete, separable metric space X, which

represents the set of all possible macrostates.

5. Macroscopic variables. These are a sequence of random variables Yn map-

ping ˝n into X. These functions associate a macrostate in X with each mi-

crostate ! 2˝n.

6. Interaction representation function. This is a bounded, continuous func-

tions QH mapping X into R such that as n!1

hn.!/D QH .Yn.!//C o.1/ uniformly for ! 2˝nI (2.1)

i.e.,

lim
n!1

sup
!2˝n

jhn.!/� QH .Yn.!//j D 0:

The function QH enable us to write hn, either exactly or asymptotically, as a

function of the macrostate via the macroscopic variables Yn.

7. LDP for the macroscopic variables. There exists a function I mapping

X into Œ0;1� and having compact level sets such that with respect to Pn the

sequence Yn satisfies the LDP on X with rate function I and scaling constants

an. In other words, for any closed subset F of X

lim sup
n!1

1

an

log PnfYn 2 Fg � � inf
x2F

I.x/;

and for any open subset G of X

lim inf
n!1

1

an

log PnfYn 2Gg � � inf
x2G

I.x/:

It is helpful to summarize the LDP by the formal notation PnfYn 2 dxg �

expŒ�anI.x/�. This notation expresses the fact that, to a first degree of
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approximation, PnfYn 2 dxg behaves like an exponential that decays to 0

whenever I.x/ > 0.

The assumptions on the statistical mechanical models just stated, as well as a

number of definitions to appear later, follow the presentation in [Costeniuc et al.

2005b], which is adapted for applications to lattice spin systems and related

models. These assumptions and definitions differ slightly from those in [Ellis

et al. 2000], where they are adapted for applications to statistical mechanical

models of coherent structures in turbulence. The major difference is that in the

asymptotic relationship (2.1) and in the definition (2.3) of the microcanonical

ensemble P
u;r
n , hn is replaced by Hn in [Ellis et al. 2000]. In addition, in the

definition (2.4) of the canonical ensemble Pn;ˇ, anhn is replaced by Hn in [Ellis

et al. 2000]. Similarly, in the definition (2.6) of the Gaussian ensemble Pn;ˇ; ,

anhn and anh2

n
are replaced by Hn and H 2

n
to yield the Gaussian ensemble

used to study models of coherent structures in turbulence. Finally, in the present

paper the LDP for Yn is derived with respect to Pn;ˇ and Pn;ˇ; while in models

of coherent structures in turbulence the LDP for Yn is derived with respect to

Pn;anˇ and Pn;anˇ;an , in which ˇ and  are both scaled by an. With only these

minor changes in notation, all the results stated here are applicable to models

of coherent structures in turbulence and in turn, all the results derived in [Ellis

et al. 2000] for models of coherent structures in turbulence are applicable here.

A wide variety of statistical mechanical models satisfy the assumptions listed

in items 1–7 or the modifications just discussed. Hence they can be studied by

the methods of [Costeniuc et al. 2005b; Ellis et al. 2000]. We next give six

examples. The first two are long-range spin systems, the third a class of short-

range spin systems, the fourth a model of two-dimensional turbulence, the fifth a

model of quasigeostrophic turbulence, and the sixth a model of dispersive wave

turbulence.

1. The mean-field Blume–Emery–Griffiths model [Blume et al. 1971] is one of

the simplest lattice-spin models known to exhibit both a continuous, second-

order phase transition and a discontinuous, first-order phase transition. The

space of macrostates for this model is the set of probability measures on

a certain finite set, the macroscopic variables are the empirical measures

associated with the spin configurations, and the associated LDP is Sanov’s

Theorem, for which the rate function is a relative entropy. Various features

of this model are studied in [Barré et al. 2002; Barré et al. 2001; Ellis et al.

2005; Ellis et al. 2004b].

2. The Curie–Weiss–Potts model is a mean-field approximation to the nearest-

neighbor Potts model [Wu 1982]. For the Curie–Weiss–Potts model, the

space of macrostates, the macroscopic variables, and the associated LDP

are similar to those in the mean-field Blume–Emery–Griffiths model. The
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Curie–Weiss–Potts model nicely illustrates the general results on ensemble

equivalence discussed in this paper and is discussed in Section 5.

3. Short-range spin systems such as the Ising model on Z
d and numerous gen-

eralizations can also be handled by the methods of this paper. The large

deviation techniques required to analyze these models are much more subtle

than in the case of the long-range, mean-field models considered in items 1

and 2. For the Ising model the space of macrostates is the space of translation-

invariant probability measures on Z
d , the macroscopic variables are the em-

pirical processes associated with the spin configurations, and the rate function

in the associated LDP is the mean relative entropy [Ellis 1985; Föllmer and

Orey 1988; Olla 1988].

4. The Miller–Robert model is a model of coherent structures in an ideal, two-

dimensional fluid that includes all the exact invariants of the vorticity trans-

port equation [Miller 1990; Robert 1991]. The space of macrostates is the

space of Young measures on the vorticity field. The large deviation analysis

of this model developed first in [Robert 1991] and more recently in [Boucher

et al. 2000] gives a rigorous derivation of maximum entropy principles gov-

erning the equilibrium behavior of the ideal fluid.

5. In geophysical applications, another version of the model in item 4 is pre-

ferred, in which the enstrophy integrals are treated canonically and the energy

and circulation are treated microcanonically [Ellis et al. 2002a]. In those

formulations, the space of macrostates is L2.�/ or L1.�/ depending on

the constraints on the vorticity field. The large deviation analysis is carried

out in [Ellis et al. 2002b]. The paper [Ellis et al. 2002a] shows how the non-

linear stability of the steady mean flows arising as equilibrium macrostates

can be established by utilizing the appropriate generalized thermodynamic

potentials.

6. A statistical equilibrium model of solitary wave structures in dispersive wave

turbulence governed by a nonlinear Schrödinger equation is studied in [Ellis

et al. 2004a]. The large deviation analysis given in [Ellis et al. 2004a] derives

rigorously the concentration phenomenon observed in long-time numerical

simulations and predicted by mean-field approximations [Jordan et al. 2000;

Lebowitz et al. 1989]. The space of macrostates is L2.�/, where � is a

bounded interval or more generally a bounded domain in R
d . The macro-

scopic variables are certain Gaussian processes.

We now return to the general theory, first introducing the function whose support

and concavity properties completely determine all aspects of ensemble equiva-

lence and nonequivalence. This function is the microcanonical entropy, defined

for u 2 R by

s.u/D� inffI.x/ W x 2 X; QH .x/D ug: (2.2)



142 M. COSTENIUC, R. S. ELLIS, H. TOUCHETTE, AND B. TURKINGTON

Since I maps X into Œ0;1�, s maps R
� into Œ�1; 0�. Moreover, since I is lower

semicontinuous and QH is continuous on X, s is upper semicontinuous on R
� .

We define dom s to be the set of u 2 R
� for which s.u/ > �1. In general,

dom s is nonempty since �s is a rate function [Ellis et al. 2000, Prop. 3.1(a)].

For each u 2 dom s, r > 0, n 2N, and set B 2 Fn the microcanonical ensemble

is defined to be the conditioned measure

P u;r
n
fBg D PnfB j hn 2 Œu� r;uC r �g: (2.3)

As shown in [Ellis et al. 2000, p. 1027], if u 2 dom s, then for all sufficiently

large n, Pnfhn 2 Œu� r;uC r �g > 0; thus the conditioned measures P
u;r
n are

well defined.

A mathematically more tractable probability measure is the canonical ensem-

ble. For each n 2 N, ˇ 2 R, and set B 2 Fn we define the partition function

Zn.ˇ/D

Z

˝n

expŒ�anˇhn� dPn;

which is well defined and finite, and the probability measure

Pn;ˇfBg D
1

Zn.ˇ/
�

Z

B

expŒ�anˇhn� dPn: (2.4)

The measures Pn;ˇ are Gibbs states that define the canonical ensemble for the

given model.

The Gaussian ensemble is a natural perturbation of the canonical ensemble.

For each n2N, ˇ 2R, and  2 Œ0;1/ we define the Gaussian partition function

Zn.ˇ;  /D

Z

˝n

expŒ�anˇhn� anh2

n
� dPn: (2.5)

This is well defined and finite because the hn are bounded. For B 2 Fn we also

define the probability measure

Pn;ˇ; fBg D
1

Zn.ˇ;  /
�

Z

B

expŒ�anˇhn� anh2

n
� dPn; (2.6)

which we call the Gaussian ensemble. One can generalize this by replacing

the quadratic function by a continuous function g that is bounded below. This

gives rise to the generalized canonical ensemble, which the theory developed in

[Costeniuc et al. 2005b] allows one to treat.

Using the theory of large deviations, one introduces the sets of equilibrium

macrostates for each ensemble. It is proved in [Ellis et al. 2000, Theorem 3.2]
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that with respect to the microcanonical ensemble P
u;r
n ; Yn satisfies the LDP on

X, in the double limit n!1 and r ! 0, with rate function

Iu.x/D

�

I.x/C s.u/ if QH .x/D u

1 otherwise :
(2.7)

Iu is nonnegative on X, and for u 2 dom s, Iu attains its infimum of 0 on the

set

E
uDfx 2 X W Iu.x/D 0g (2.8)

Dfx 2 X W I.x/ is minimized subject to QH .x/D ug:

This set is precisely the set of solutions of the constrained minimization problem

(1-1).

In order to state the LDPs for the other two ensembles, we bring in the canon-

ical free energy, defined for ˇ 2 R by

'.ˇ/D� lim
n!1

1

an

log Zn.ˇ/;

and the Gaussian free energy, defined for ˇ 2 R and  � 0 by

'.ˇ;  /D� lim
n!1

1

an

log Zn.ˇ;  /:

It is proved in [Ellis et al. 2000, Theorem 2.4] that the limit defining '.ˇ/ exists

and is given by

'.ˇ/D inf
y2X

fI.y/Cˇ QH .y/g (2.9)

and that with respect to Pn;ˇ, Yn satisfies the LDP on X with rate function

Iˇ.x/D I.x/Cˇ QH .x/�'.ˇ/: (2.10)

Iˇ is nonnegative on X and attains its infimum of 0 on the set

EˇDfx 2 X W Iˇ.x/D 0g (2.11)

Dfx 2 X W I.x/Chˇ; QH .x/i is minimizedg:

This set is precisely the set of solutions of the unconstrained minimization prob-

lem (1-2).

A straightforward extension of these results shows that the limit defining

'.ˇ;  / exists and is given by

'.ˇ;  /D inf
y2X

fI.y/Cˇ QH .y/C  Œ QH .y/�2g (2.12)

and that with respect to Pn;ˇ;g, Yn satisfies the LDP on X with rate function

Iˇ; .x/D I.x/Cˇ QH .x/C  Œ QH .x/�2�'.ˇ;  /: (2.13)
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Iˇ; is nonnegative on X and attains its infimum of 0 on the set

Eˇ;Dfx 2 X W Iˇ; .x/D 0g (2.14)

Dfx 2 X W I.x/Chˇ; QH .x/iC  Œ QH .x/�2 is minimizedg:

This set is precisely the set of solutions of the penalized minimization problem

(1-5).

For u 2 dom s, let x be any element of X satisfying Iu.x/ > 0. The formal

notation

P u;r
n
fYn 2 dxg � e�anI

u.x/

suggests that x has an exponentially small probability of being observed in the

limit n ! 1, r ! 0. Hence it makes sense to identify E
u with the set of

microcanonical equilibrium macrostates. In the same way we identify with Eˇ

the set of canonical equilibrium macrostates and with Eˇ; the set of generalized

canonical equilibrium macrostates. A rigorous justification is given in [Ellis

et al. 2000, Theorem 2.4(d)].

3. Equivalence and nonequivalence of the three ensembles

Having defined the sets of equilibrium macrostates E
u, Eˇ , and Eˇ; for the

microcanonical, canonical and Gaussian ensembles, we now show how these

sets are related to one another. In Theorem 3.1 we state the results proved

in [Ellis et al. 2000] concerning equivalence and nonequivalence of the mi-

crocanonical and canonical ensembles. Then in Theorem 3.3 we extend these

results to the Gaussian ensemble [Costeniuc et al. 2005b].

Parts (a)–(c) of Theorem 3.1 give necessary and sufficient conditions, in terms

of support properties of s, for equivalence and nonequivalence of E
u and Eˇ.

These assertions are proved in Theorems 4.4 and 4.8 in [Ellis et al. 2000]. Part

(a) states that s has a strictly supporting line at u if and only if full equivalence of

ensembles holds; i.e., if and only if there exists a ˇ such that E
uDEˇ. The most

surprising result, given in part (c), is that s has no supporting line at u if and

only if nonequivalence of ensembles holds in the strong sense that E
u\Eˇ D?

for all ˇ. Part (c) is to be contrasted with part (d), which states that for any

ˇ canonical equilibrium macrostates can always be realized microcanonically.

Part (d) is proved in Theorem 4.6 in [Ellis et al. 2000]. Thus one conclusion

of this theorem is that at the level of equilibrium macrostates, in general the

microcanonical ensemble is the richer of the two ensembles.

THEOREM 3.1. In parts (a), (b), and (c), u denotes any point in dom s.
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(a) Full equivalence. There exists ˇ such that E
u D Eˇ if and only if s has a

strictly supporting line at u with slope ˇ; i.e.,

s.v/ < s.u/Cˇ.v�u/ for all v 6D u :

(b) Partial equivalence. There exists ˇ such that E
u � Eˇ but E

u 6D Eˇ if

and only if s has a nonstrictly supporting line at u with slope ˇ; i.e.,

s.v/� s.u/Cˇ.v�u/ for all v with equality for some v 6D u:

(c) Nonequivalence. For all ˇ, E
u\EˇD? if and only if s has no supporting

line at u; i.e.,

for all ˇ there exists v such that s.v/ > s.u/Cˇ.v�u/:

(d) Canonical is always realized microcanonically. For any ˇ 2 R we have
QH .Eˇ/� dom s and

Eˇ D
[

u2 QH .Eˇ/

E
u:

We highlight several features of the theorem in order to illuminate their physical

content. In part (a) let us add the assumption that for a given u 2 dom s there

exists a unique ˇ such that E
u D Eˇ. If s is differentiable at u and s and

the double Legendre–Fenchel transform s�� are equal in a neighborhood of u,

then ˇ is given by the standard thermodynamic formula ˇ D s0.u/ [Costeniuc

et al. 2005b, Theorem A.4(b)]. The inverse relationship can be obtained from

part (d) of the theorem under the added assumption that Eˇ consists of a unique

macrostate or more generally that for all x2Eˇ the values QH .x/ are equal. Then

EˇDE
u.ˇ/, where u.ˇ/D QH .x/ for any x 2Eˇ; u.ˇ/ denotes the mean energy

realized at equilibrium in the canonical ensemble. The relationship u D u.ˇ/

inverts the relationship ˇ D s0.u/. Partial ensemble equivalence can be seen in

part (d) under the added assumption that for a given ˇ, Eˇ can be partitioned

into at least two sets Eˇ;i such that for all x 2Eˇ;i the values QH .x/ are equal but

QH .x/ 6D QH .y/ whenever x 2Eˇ;i and y 2Eˇ;j for i 6D j . Then EˇD
S

i
E

ui .ˇ/,

where ui.ˇ/D QH .x/, x 2Eˇ;i . Clearly, for each i , E
ui .ˇ/�Eˇ but E

ui .ˇ/ 6DEˇ.

Physically, this corresponds to a situation of coexisting phases that normally

takes place at a first-order phase transition [Touchette et al. 2004].

Before continuing with our analysis of ensemble equivalence, we make a

number of basic definitions. A function f on R is said to be concave on R if f

maps R into R [f�1g, f 6� �1, and for all u and v in R and all � 2 .0; 1/

f .�uC .1��/v/� �f .u/C .1��/f .v/:
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Let f 6� �1 be a function mapping R into R [ f�1g. We define dom f to

be the set of u for which f .u/ >�1. For ˇ and u in R the Legendre–Fenchel

transforms f � and f �� are defined by

f �.ˇ/D inf
u2R

fhˇ;ui �f .u/g and f ��.u/D inf
ˇ2R

fhˇ;ui �f �.ˇ/g:

The function f � is concave and upper semicontinuous on R and for all u we have

f ��.u/Df .u/ if and only if f is concave and upper semicontinuous on R [Ellis

1985, Theorem VI.5.3]. When f is not concave and upper semicontinuous, then

f �� is the smallest concave, upper semicontinuous function on R that satisfies

f ��.u/� f .u/ for all u [Costeniuc et al. 2005b, Prop. A.2]. In particular, if for

some u, f .u/ 6D f ��.u/, then f .u/ < f ��.u/.

Let f 6��1 be a function mapping R into R[f�1g, u a point in dom f , and

K a convex subset of dom f . We have the following four additional definitions:

f is concave at u if f .u/D f ��.u/; f is not concave at u if f .u/ < f ��.u/;

f is concave on K if f is concave at all u 2K; and f is strictly concave on K

if for all u 6D v in K and all � 2 .0; 1/

f .�uC .1��/v/ > �f .u/C .1��/f .v/:

We also introduce two sets that play a central role in the theory. Let f be a

concave function on R whose domain is an interval having nonempty interior.

For u 2R the superdifferential of f at u, denoted by @f .u/, is defined to be the

set of ˇ such that ˇ is the slope of a supporting line of f at u. Any such ˇ is

called a supergradient of f at u. Thus, if f is differentiable at u 2 int(dom f /,

then @f .u/ consists of the unique point ˇ D f 0.u/. If f is not differentiable at

u 2 int(dom f /, then dom @f consists of all ˇ satisfying the inequalities

.f 0/C.u/� ˇ � .f 0/�.u/;

where .f 0/�.u/ and .f 0/C.u/ denote the left-hand and right-hand derivatives

of f at u. The domain of @f , denoted by dom @f , is then defined to be the set

of u for which @f .u/ 6D?.

Complications arise because dom @f can be a proper subset of domf , as

simple examples clearly show. Let b be a boundary point of dom f for which

f .b/>�1. Then b is in dom @f if and only if the one-sided derivative of f at b

is finite. For example, if b is a left hand boundary point of domf and .f 0/C.b/

is finite, then @f .b/D Œ.f 0/C.b/;1/; any ˇ 2 @f .b/ is the slope of a supporting

line at b. The possible discrepancy between dom @f and dom f introduces

unavoidable technicalities in the statements of several results concerning the

existence of supporting lines.



GLOBAL OPTIMIZATION AND UNIVERSAL ENSEMBLE EQUIVALENCE 147

One of our goals is to find concavity and support conditions on the micro-

canonical entropy guaranteeing that the microcanonical and canonical ensem-

bles are fully equivalent at all points u2 dom s except possibly boundary points.

If this is the case, then we say that the ensembles are universally equivalent. Here

is a basic result in that direction. The universal equivalence stated in part (b)

follows from part (a) and from part (a) of Theorem 3.1. The rest of the theorem

depends on facts concerning concave functions [Costeniuc et al. 2005b, p. 1305].

THEOREM 3.2. Assume that dom s is an interval having nonempty interior and

that s is strictly concave on int(dom s/ and continuous on dom s. The following

conclusions hold.

(a) s has a strictly supporting line at all u 2 dom s except possibly boundary

points.

(b) The microcanonical and canonical ensembles are universally equivalent;

i.e., fully equivalent at all u 2 dom s except possibly boundary points.

(c) s is concave on R, and for each u in part (b) the corresponding ˇ in the

statement of full equivalence is any element of @s.u/.

(d) If s is differentiable at some u 2 dom s, then the corresponding ˇ in part

(b) is unique and is given by the standard thermodynamic formula ˇ D s0.u/.

The next theorem extends Theorem 3.1 by giving equivalence and nonequiva-

lence results involving E
u and Eˇ; , the sets of equilibrium macrostates with

respect to the microcanonical and Gaussian ensembles. The chief innovation

is that s.u/ in Theorem 3.1 is replaced here by the generalized microcanoni-

cal entropy s.u/� u2. As we point out after the statement of Theorem 3.3,

for the purpose of applications part (a) is its most important contribution. The

usefulness of Theorem 3.3 is matched by the simplicity with which it follows

from Theorem 3.1. Theorem 3.3 is a special case of Theorem 3.4 in [Costeniuc

et al. 2005b], obtained by specializing the generalized canonical ensemble and

the associated set of equilibrium macrostates to the Gaussian ensemble and the

set Eˇ; of Gaussian equilibrium macrostates.

THEOREM 3.3. Given  � 0, define s .u/D s.u/� u2. In parts (a), (b), and

(c), u denotes any point in dom s.

(a) Full equivalence. There exists ˇ such that E
u D Eˇ; if and only if s

has a strictly supporting line at u with slope ˇ.

(b) Partial equivalence. There exists ˇ such that E
u � Eˇ; but E

u 6D Eˇ; if

and only if s has a nonstrictly supporting line at u with slope ˇ.

(c) Nonequivalence. For all ˇ, E
u \ Eˇ; D ? if and only if s has no

supporting line at u.
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(d) Gaussian is always realized microcanonically. For any ˇ we have

QH .Eˇ; /� dom s; Eˇ; D
[

u2 QH .Eˇ; /

E
u:

PROOF. For  � 0 and B 2 Fn we define a new probability measure

Pn; fBg D
1

Z

˝n

expŒ�anh2

n
� dPn

�

Z

B

expŒ�anh2

n
� dPn:

With respect to Pn; , Yn satisfies the LDP on X with rate function

I .x/D I.x/C  Œ QH .x/�2� . /;

where  . / D infy2XfI.y/C  Œ QH .y/�2g. Replacing the prior measure Pn in

the canonical ensemble with Pn; gives the Gaussian ensemble Pn;ˇ; , which

has Eˇ; as the associated set of equilibrium macrostates. On the other hand,

replacing the prior measure Pn in the microcanonical ensemble with Pn; gives

P u;r
n; fBg D Pn; fB j hn 2 Œu� r;uC r �g;

By continuity, for ! satisfying hn.!/ 2 Œu� r;uC r �, Œhn.!/�
2 converges to u2

uniformly in ! and n as r! 0. It follows that with respect to P
u;r
n; , Yn satisfies

the LDP on X, in the double limit n!1 and r! 0, with the same rate function

Iu as in the LDP for Yn with respect to P
u;r
n . As a result, the set of equilibrium

macrostates corresponding to P
u;r
n; coincides with the set E

u of microcanonical

equilibrium macrostates.

It follows from parts (a)–(c) of Theorem 3.1 that all equivalence and non-

equivalence relationships between E
u and Eˇ; are expressed in terms of support

properties of the function Qs obtained from s by replacing the rate function I

by the new rate function I . The function Qs is given by

Qs .u/D� inffI .x/ W x 2 X; QH .x/D ug

D� inffI.x/C  QH .x/2 W x 2 X; QH .x/D ugC . /

Ds.u/� u2C . /:

Since Qs .u/ differs from s .u/D s.u/�u2 by the constant  . /, we conclude

that all equivalence and nonequivalence relationships between Eu and Eˇ; are

expressed in terms of the same support properties of s . This completes the

derivation of parts (a)–(c) of Theorem 3.3 from parts (a)–(c) of Theorem 3.1.

Similarly, part (d) of Theorem 3.3 follows from part (d) of Theorem 3.1. ˜
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The importance of part (a) of Theorem 3.3 in applications is emphasized by the

following theorem, which will be applied in the sequel. This theorem is the

analogue of Theorem 3.2 for the Gaussian ensemble, s in that theorem being

replaced by s . The functions s and s have the same domains. The universal

equivalence stated in part (b) of the next theorem follows from part (a) and from

part (a) of Theorem 3.3.

THEOREM 3.4. For  � 0, define s .u/D s.u/�u2. Assume that dom s is an

interval having nonempty interior and that s is strictly concave on int(dom s/

and continuous on dom s. The following conclusions hold.

(a) s has a strictly supporting line at all u2 dom s except possibly boundary

points.

(b) The microcanonical ensemble and the Gaussian ensemble defined in terms

of this  are universally equivalent; i.e., fully equivalent at all u 2 dom s except

possibly boundary points.

(c) s is concave on R, and for each u in part (b) the corresponding ˇ in the

statement of full equivalence is any element of @s .u/.

(d) If s is differentiable at some u 2 dom s, then the corresponding ˇ in part

(b) is unique and is given by the thermodynamic formula ˇ D s0

 .u/.

The most important repercussion of Theorem 3.4 is the ease with which one can

prove that the microcanonical and Gaussian ensembles are universally equiv-

alent in those cases in which the microcanonical and canonical ensembles are

not fully or partially equivalent. This rests mainly on part (b) of Theorem 3.4,

which states that universal equivalence of ensembles holds if there exists a  � 0

such that s is strictly concave on int(dom s/. The existence of such a  follows

from a natural set of hypotheses on s stated in Theorem 4.2 in the next section.

4. Universal equivalence via the Gaussian ensemble

This section addresses a basic foundational issue in statistical mechanics.

Under the assumption that the microcanonical entropy is C 2 and s00 is bounded

above, we show in Theorem 4.2 that when the canonical ensemble is nonequiv-

alent to the microcanonical ensemble on a subset of energy values u, it can

often be replaced by a Gaussian ensemble that is universally equivalent to the

microcanonical ensemble; i.e., fully equivalent at all u 2 dom s except possibly

boundary points. Theorem 4.3 is a weaker version that can often be applied

when s00 is not bounded above. In the last section of the paper, these results will

be illustrated in the context of the Curie–Weiss–Potts lattice-spin model.

In Theorem 4.2 the strategy is to find a quadratic function u2 such that

s .u/D s.u/�u2 is strictly concave on int(dom s/ and continuous on dom s.

Parts (a) and (b) of Theorem 3.4 then yields the universal equivalence. As
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the next proposition shows, an advantage of working with quadratic functions

is that support properties of s involving a supporting line are equivalent to

support properties of s involving a supporting parabola defined in terms of  .

This observation gives a geometrically intuitive way to find a quadratic function

guaranteeing universal ensemble equivalence.

In order to state the proposition, we need a definition. Let f be a function

mapping R into R[f�1g, u and ˇ points in R, and  � 0. We say that f has

a supporting parabola at u with parameters .ˇ;  / if

f .v/� f .u/Cˇ.v�u/C  .v�u/2 for all v: (4.1)

The parabola is said to be strictly supporting if the inequality is strict for all

v 6D u.

PROPOSITION 4.1. f has a (strictly) supporting parabola at u with parameters

.ˇ;  / if and only if f � . � /2 has a (strictly) supporting line at u with slope Q̌.

The quantities ˇ and Q̌ are related by Q̌ D ˇ� 2u.

PROOF. We use the identity .v�u/2 D v2� 2u.v�u/�u2. If f has a strictly

supporting parabola at u with parameters .ˇ;  /, then for all v 6D u

f .v/� v2 < f .u/� u2C Q̌.v�u/;

where Q̌ D ˇ � 2u. Thus f �  . � /2 has a strictly supporting line at u with

slope Q̌. The converse is proved similarly, as is the case in which the supporting

line or parabola is supporting but not strictly supporting. ˜

The first application of Theorem 3.4 is Theorem 4.2, which gives a criterion

guaranteeing the existence of a quadratic function u2 such that s .u/D s.u/�

u2 is strictly concave on dom s. The criterion — that s00 is bounded above

on the interior of dom s — is essentially optimal for the existence of a fixed

quadratic function u2 guaranteeing the strict concavity of s . The situation in

which s00 is not bounded above on the interior of dom s can often be handled by

Theorem 4.3, which is a local version of Theorem 4.2.

THEOREM 4.2. Assume that dom s is an interval having nonempty interior.

Assume also that s is continuous on dom s, s is twice continuously differentiable

on int(dom s/, and s00 is bounded above on int(dom s/. Then for all sufficiently

large  � 0, conclusions (a)–(c) hold. Specifically, if s is strictly concave on

dom s, then we choose any  � 0, and otherwise we choose

 > 0 D
1

2
� sup
u2int(dom s/

s00.u/: (4.2)

(a) s .u/D s.u/� u2 is strictly concave and continuous on dom s.
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(b) s has a strictly supporting line, and s has a strictly supporting parabola,

at all u 2 dom s except possibly boundary points. At a boundary point s has a

strictly supporting line, and s has a strictly supporting parabola, if and only if

the one-sided derivative of s is finite at that boundary point.

(c) The microcanonical ensemble and the Gaussian ensemble defined in terms

of this  are universally equivalent; i.e., fully equivalent at all u 2 dom s except

possibly boundary points. For all u 2 int(dom s/ the value of ˇ defining the

universally equivalent Gaussian ensemble is unique and equals ˇD s0.u/�2u.

PROOF. (a) If s is strictly concave on dom s, then s is also strictly concave

on this set for any  � 0. We now consider the case in which s is not strictly

concave on dom s. For any  � 0, s is continuous on dom s. If, in addition,

we choose  > 0 in accordance with (4.2), then for all u 2 int(dom s/

s00

 .u/D s00.u/� 2 < 0:

A straightforward extension of the proof of Theorem 4.4 in [Rockafellar 1970],

in which the inequalities in the first two displays are replaced by strict inequal-

ities, shows that �s is strictly convex on int(dom s/ and thus that s is strictly

concave on int(dom s/. If s is not strictly concave on dom s, then s must be

affine on an interval. Since this violates the strict concavity on int(dom s/, part

(a) is proved.

(b) The first assertion follows from part (a) of the present theorem, part (a)

of Theorem 3.4, and Proposition 4.1. Concerning the second assertion about

boundary points, the reader is referred to the discussion before Theorem 3.2.

(c) The universal equivalence of the two ensembles is a consequence of part

(a) of the present theorem and part (b) of Theorem 3.4. The full equivalence

of the ensembles at all u 2 int(dom s/ is equivalent to the existence of a strictly

supporting line at each u 2 int(dom s/ [Theorem 3.3(a)]. Since s .u/ is differ-

entiable at all u 2 int(dom s/, for each u the slope of the strictly supporting line

at u is unique and equals s0

 .u/ [Costeniuc et al. 2005b, Theorem A.1(b)]. ˜

Suppose that s is C 2 on the interior of dom s but the second-order partial deriva-

tives of s are not bounded above. This arises, for example, in the Curie–Weiss–

Potts model, in which dom s is a closed, bounded interval of R and s00.u/!1 as

u approaches the right hand endpoint of dom s [see ~ 5]. In such cases one cannot

expect that the conclusions of Theorems 4.2 will be satisfied; in particular, that

there exists  � 0 such that s .u/D s.u/�u2 has a strictly supporting line at

each point of the interior of dom s and thus that the ensembles are universally

equivalent.

In order to overcome this difficulty, we introduce Theorem 4.3, a local version

of Theorem 4.2. Theorem 4.3 handles the case in which s is C 2 on an open set

K but either K is not all of int(dom s/ or KD int(dom s/ and s00 is not bounded
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above on K. In neither of these situations are the hypotheses of Theorem 4.2

satisfied.

In Theorem 4.3 other hypotheses are given guaranteeing that for each u 2K

there exists  such that s has a strictly supporting line at u; in general,  de-

pends on u. However, with the same  , s might also have a strictly supporting

line at other values of u. In general, as one increases  , the set of u at which s
has a strictly supporting line cannot decrease. Because of part (a) of Theorem

3.3, this can be restated in terms of ensemble equivalence involving the set Eˇ;

of Gaussian equilibrium macrostates. Defining

F D fu 2K W there exists ˇ such that Eˇ; D E
ug;

we have F1
�F2

whenever 2>1 and because of Theorem 4.3,
S

>0
F D

K. This phenomenon is investigated in Section 5 for the Curie–Weiss–Potts

model.

In order to state Theorem 4.3, we define for u 2K and �� 0

D.u; s0.u/; �/D
˚

v 2 dom s W s.v/� s.u/C s0.u/.v�u/C�.v�u/2
	

:

Geometrically, this set contains all points for which the parabola with parameters

.s0.u/; �/ passing through .u; s.u// lies below the graph of s. Clearly, since

��0, we have D.u; s0.u/; �/�D.u; s0.u/; 0/; the set D.u; s0.u/; 0/ contains all

points for which the graph of the line with slope s0.u/ passing through .u; s.u//

lies below the graph of s. Thus, in the next theorem the hypothesis that for each

u 2 K the set D.u; s0.u/; �/ is bounded for some � � 0 is satisfied if dom s

is bounded or, more generally, if D.u; s0.u/; 0/ is bounded. The latter set is

bounded if, for example, �s is superlinear; i.e.,

lim
jvj!1

s.v/=jvj D �1:

The quantity 0.u/ appearing in the next theorem is defined in equation (5.7) in

[Costeniuc et al. 2005b].

THEOREM 4.3. Let K an open subset of dom s and assume that s is twice

continuously differentiable on K. Assume also that dom s is bounded or, more

generally, that for every u 2 int K there exists � � 0 such that D.u; s0.u/; �/

is bounded. Then for each u 2 K there exists 0.u/ � 0 with the following

properties.

(a) For each u 2K and any  > 0.u/, s has a strictly supporting parabola

at u with parameters .s0.u/;  /.

(b) For each u2K and any  >0.u/, s Ds� . � /2 has a strictly supporting

line at u with slope s0.u/� 2u.
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(c) For each u 2K and any  > 0.u/, the microcanonical ensemble and the

Gaussian ensemble defined in terms of this  are fully equivalent at u. The value

of ˇ defining the Gaussian ensemble is unique and is given by ˇD s0.u/�2u.

COMMENTS ON THE PROOF. (a) We first choose a parabola that is strictly

supporting in a neighborhood of u and then adjust  so that the parabola becomes

strictly supporting on all R. Proposition 4.1 guarantees that s �  . � /2 has a

strictly supporting line at u. Details are given in [Costeniuc et al. 2005b, pp.

1319–1321].

(b) This follows from part (a) of the present theorem and Proposition 4.1.

(c) For u 2K the full equivalence of the ensembles follows from part (b) of

the present theorem and part (a) of Theorem 3.3. The value of ˇ defining the

fully equivalent Gaussian ensemble is determined by a routine argument given

in [Costeniuc et al. 2005b, p. 1321]. ˜

Theorem 4.3 suggests an extended form of the notion of universal equivalence of

ensembles. In Theorem 4.2 we are able to achieve full equivalence of ensembles

for all u 2 dom s, except possibly boundary points, by choosing an appropriate

 that is valid for all u. This leads to the observation that the microcanonical

ensemble and the Gaussian ensemble defined in terms of this  are universally

equivalent. In Theorem 4.3 we can also achieve full equivalence of ensembles

for all u2K. However, in contrast to Theorem 4.2, the choice of  for which the

two ensembles are fully equivalent depends on u. We summarize the ensemble

equivalence property articulated in part (c) of Theorem 4.3 by saying that relative

to the set of quadratic functions, the microcanonical and Gaussian ensembles are

universally equivalent on the open set K of energy values.

We complete our discussion of the generalized canonical ensemble and its

equivalence with the microcanonical ensemble by noting that the smoothness

hypothesis on s in Theorem 4.3 is essentially satisfied whenever the micro-

canonical ensemble exhibits no phase transition at any u 2 K. In order to see

this, we recall that a point uc at which s is not differentiable represents a first-

order, microcanonical phase transition [Ellis et al. 2004b, Figure 3]. In addition,

a point uc at which s is differentiable but not twice differentiable represents a

second-order, microcanonical phase transition [Ellis et al. 2004b, Figure 4]. It

follows that s is smooth on any open set K not containing such phase-transition

points. Hence, if the other hypotheses in Theorem 4.3 are valid, then the mi-

crocanonical and Gaussian ensembles are universally equivalent on K relative

to the set of quadratic functions. In particular, if the microcanonical ensemble

exhibits no phase transitions, then s is smooth on all of int(dom s/. This implies

the universal equivalence of the two ensembles provided that the other conditions

are valid in Theorem 4.2.
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In the next section we apply the results in this paper to the Curie–Weiss–Potts

model.

5. Applications to the Curie–Weiss–Potts model

The Curie–Weiss–Potts model is a mean-field approximation to the nearest-

neighbor Potts model, which takes its place next to the Ising model as one of

the most versatile models in equilibrium statistical mechanics [Wu 1982]. Al-

though the Curie–Weiss–Potts model is considerably simpler to analyze, it is

an excellent model to illustrate the general theory presented in this paper, lying

at the boundary of the set of models for which a complete analysis involving

explicit formulas is available. As we will see, there exists an interval N such

that for any u2N the microcanonical ensemble is nonequivalent to the canonical

ensemble. The main result, stated in Theorem 5.2, is that for any u 2 N there

exists  � 0 such that the microcanonical ensemble and the Gaussian ensemble

defined in terms of this  are fully equivalent for all v � u. While not as strong

as universal equivalence, the ensemble equivalence proved in Theorem 5.2 is

considerably stronger than the local equivalence stated in Theorem 4.3.

Let q � 3 be a fixed integer and define � D f�1; �2; : : : ; �qg, where the

� i are any q distinct vectors in R
q . In the definition of the Curie–Weiss–Potts

model, the precise values of these vectors is immaterial. For each n 2 N the

model is defined by spin random variables !1; !2; : : : ; !n that take values in�.

The ensembles for the model are defined in terms of probability measures on the

configuration spaces�n, which consist of the microstates !D .!1; !2; : : : ; !n/.

We also introduce the n-fold product measure Pn on �n with identical one-

dimensional marginals

N�D
1

q

q
X

iD1

ı� i :

Thus for all ! 2�n, Pn.!/D
1

qn . For n 2 N and ! 2 �n the Hamiltonian for

the q-state Curie–Weiss–Potts model is defined by

Hn.!/D�
1

2n

n
X

j ;kD1

ı.!j ; !k/;

where ı.!j ; !k/ equals 1 if !j D !k and equals 0 otherwise. The energy per

particle is defined by hn.!/D
1

n
Hn.!/.

With this choice of hn and with an D n, the microcanonical, canonical, and

Gaussian ensembles for the model are the probability measures on �n defined

as in (2.3), (2.4), and (2.6). The key to our analysis of the Curie–Weiss–Potts
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model is to express hn in terms of the macroscopic variables

Ln DLn.!/D .Ln;1.!/;Ln;2.!/; : : : ;Ln;q.!//;

the i th component of which is defined by

Ln;i.!/D
1

n

n
X

jD1

ı.!j ; �
i/:

This quantity equals the relative frequency with which !j ; j 2f1; : : : ; ng; equals

� i . The empirical vectors Ln take values in the set of probability vectors

PD

�

� 2 R
q W � D .�1; �2; : : : ; �q/; each �i � 0;

q
X

iD1

�i D 1

�

:

Each probability vector in P represents a possible equilibrium macrostate for

the model.

There is a one-to-one correspondence between P and the set P.�/ of probabil-

ity measures on�, � 2P corresponding to the probability measure
Pq

iD1
�iı� i .

The element �2P corresponding to the one-dimensional marginal N� of the prior

measures Pn is the uniform vector having equal components 1

q
. For ! 2 �n

the element of P corresponding to the empirical vector Ln.!/ is the empirical

measure of the spin random variables !1; !2; : : : ; !n.

We denote by h � ; � i the inner product on R
q . Since

q
X

iD1

n
X

jD1

ı.!j ; �
i/ �

n
X

kD1

ı.!k ; �
i/D

n
X

j ;kD1

ı.!j ; !k/;

it follows that the energy per particle can be rewritten as

hn.!/D�
1

2n2

n
X

j ;kD1

ı.!j ; !k/D�
1

2
hLn.!/;Ln.!/i;

i.e.,

hn.!/D QH .Ln.!//; where QH .�/D�1

2
h�; �i for � 2 P:

QH is the energy representation function for the model.

In order to define the sets of equilibrium macrostates with respect to the three

ensembles, we appeal to Sanov’s Theorem. This states that with respect to the

product measures Pn, the empirical vectors Ln satisfy the LDP on P with rate

function given by the relative entropy R. � j �/ [Ellis 1985, Theorem VIII.2.1].

For � 2 P this is defined by

R.�j�/D

q
X

iD1

�i log.q�i/:
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With the choices I D R. � j �/, QH D �1

2
h � ; � i, and an D n, Ln satisfies the

LDP on P with respect to each of the three ensembles with the rate functions

given by (2.7), (2.10), and (2.13). In turn, the corresponding sets of equilibrium

macrostates are given by

E
u D

˚

� 2 P WR.�j�/ is minimized subject to QH .�/D u
	

;

Eˇ D
˚

� 2 P WR.�j�/Cˇ QH .�/ is minimized
	

;

Eˇ; D
˚

� 2 P WR.�j�/Cˇ QH .�/C  Œ QH .�/�2 is minimized
	

:

Each element � in E
u, Eˇ, and Eˇ; describes an equilibrium configuration of

the model with respect to the corresponding ensemble in the thermodynamic

limit. The i th component �i gives the asymptotic relative frequency of spins

taking the value � i .

As in (2.2), the microcanonical entropy is defined by

s.u/D� inffR.�j�/ W � 2P; QH .�/D ug:

Since R.�j�/ <1 for all � 2 P, dom s equals the range of QH .�/D �1

2
h�; �i

on P, which is the closed interval Œ�1

2
;� 1

2q
�. The set E

u of microcanonical

equilibrium macrostates is nonempty precisely for u 2 dom s. For q D 3, the

microcanonical entropy can be determined explicitly. For all q � 4 the micro-

canonical entropy can also be determined explicitly provided Conjecture 4.1 in

[Costeniuc et al. 2005a] is valid; this conjecture has been verified numerically

for all q 2 f4; 5; : : : ; 104g. The formulas for the microcanonical entropy are

given in Theorem 4.3 in [Costeniuc et al. 2005a].

We first consider the relationships between E
u and Eˇ , which according to

Theorem 3.1 are determined by support properties of s. These properties can

be seen in Figure 1. The quantity u0 appearing in this figure equals Œ�q2 C

3q�3�=Œ2q.q�1/� [Costeniuc et al. 2005a, Lem. 6.1]. Figure 1 is not the actual

graph of s but a schematic graph that accentuates the shape of the graph of s

together with the intervals of strict concavity and nonconcavity of this function.

These and other details of the graph of s are also crucial in analyzing the

relationships between E
u and Eˇ; . Denote dom s by Œu`;ur �, where u` D �

1

2

and ur D �
1

2q
. These details include the observation that there exists w0 2

.u0;ur / such that s is a concave-convex function with break point w0; i.e., the

restriction of s to .u`; w0/ is strictly concave and the restriction of s to .w0;ur /

is strictly convex. A difficulty in validating this observation is that for certain

values of q, including qD 3, the intervals of strict concavity and strict convexity

are shallow and therefore difficult to discern. Furthermore, what seem to be

strictly concave and strictly convex portions of this function on the scale of the

entire graph might reveal themselves to be much less regular on a finer scale.

Conjecture 5.1 gives a set of properties of s implying there exists w0 2 .u0;ur /
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such that s is a concave-convex function with break point w0. In particular, this

property of s guarantees that s has the support properties stated in the three items

appearing in the next paragraph. Conjecture 5.1 has been verified numerically

for all q 2 f4; 5; : : : ; 104g.

We define the sets

F D .u`;u0/[fur g; P D fu0g; and N D .u0;ur /:

Figure 1 and Theorem 3.1 then show that these sets are respectively the sets of

full equivalence, partial equivalence, and nonequivalence of the microcanonical

and canonical ensembles. The details are given in the next three items. In The-

orem 6.2 in [Costeniuc et al. 2005a] all these conclusions concerning ensemble

equivalence and nonequivalence are proved analytically without reference to the

form of s given in Figure 1.

1. s is strictly concave on the interval .u`;u0/ and has a strictly supporting

line at each u 2 .u`;u0/ and at ur . Hence for u 2 F D .u`;u0/ [ fur g

the ensembles are fully equivalent in the sense that there exists ˇ such that

E
u D Eˇ [Theorem 3.1(a)].

2. s is concave but not strictly concave at u0 and has a nonstrictly supporting

line at u0 that also touches the graph of s over the right hand endpoint ur .

Hence for u 2 P D fu0g the ensembles are partially equivalent in the sense

that there exists ˇ such that E
u � Eˇ but E

u 6D Eˇ [Theorem 3.1(b)].

s(u)

u
F P N F

u0u`
urw0

Figure 1. Schematic graph of s.u/, showing the set F D .u`;u0/[fur g of

full ensemble equivalence, the singleton set P Dfu0g of partial equivalence,

and the set N D .u0;ur / of nonequivalence, where u`D�
1

2
and ur D�

1

2q
.

For u2F[P D .u`;u0�[fur g, s.u/D s��.u/; for u2N , s.u/< s��.u/ and

the graph of s�� consists of the dotted line segment with slope ˇc . The

slope of s at u` is 1. The quantity w0 is discussed after Conjecture 5.1.
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3. s is not concave on N D .u0;ur / and has no supporting line at any u 2 N .

Hence for u 2N the ensembles are nonequivalent in the sense that for all ˇ,

E
u\Eˇ D? [Theorem 3.1(c)].

The explicit calculation of the elements of Eˇ and E
u given in [Costeniuc et al.

2005a] shows different continuity properties of these two sets. Eˇ undergoes a

discontinuous phase transition as ˇ increases through the critical inverse tem-

perature ˇc D
2.q�1/

q�2
log.q � 1/, the unique macrostate � for ˇ < ˇc bifurcat-

ing discontinuously into the q distinct macrostates for ˇ > ˇc . By contrast,

E
u undergoes a continuous phase transition as u decreases from the maximum

value ur D �
1

2q
, the unique macrostate � for uD ur bifurcating continuously

into the q distinct macrostates for u < ur . The different continuity properties

of these phase transitions shows already that the canonical and microcanonical

ensembles are nonequivalent.

For u in the interval N of ensemble nonequivalence, the graph of s�� is

affine; this is depicted by the dotted line segment in Figure 1. One can show

that the slope of the affine portion of the graph of s�� equals the critical inverse

temperature ˇc .

This completes the discussion of the equivalence and nonequivalence of the

microcanonical and canonical ensembles. The equivalence and nonequivalence

of the microcanonical and Gaussian ensembles depends on the relationships

between the sets E
u and Eˇ; of corresponding equilibrium macrostates, which

in turn are determined by support properties of the generalized microcanonical

entropy s .u/ D s.u/ � u2. As we just saw, for each u 2 N D .u0;ur /,

the microcanonical and canonical ensembles are nonequivalent. For u 2 N we

would like to recover equivalence by replacing the canonical ensemble by an

appropriate Gaussian ensemble.

Theorem 4.2 is not applicable. Although the first three of the hypotheses

are valid, unfortunately s00 is not bounded above on the interior of dom s. In-

deed, using the explicit formula for s given in Theorem 4.3 in [Costeniuc et al.

2005a], one verifies that limu!.ur /� s00.u/ D 1. However, we can appeal to

Theorem 4.3 in the present paper, which is applicable since s is twice continu-

ously differentiable on N . We conclude that for each u 2N and all sufficiently

large  there exists a corresponding Gaussian ensemble that is equivalent to the

microcanonical ensemble for that u.

By using other conjectured properties of the microcanonical entropy, we are

able to deduce the stronger result on the equivalence of the microcanonical and

Gaussian ensembles stated in Theorem 5.2. As before, we denote dom s by

Œu`;ur �, where u` D�
1

2
and ur D�

1

2q
, and write

s0.u`/D lim
u!.u`/C

s0.u/ and s0.ur /D lim
u!.ur /�

s0.u/
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with a similar notation for s00.u`/ and s00.ur /. Using the explicit but com-

plicated formula for s given in Theorem 4.2 in [Costeniuc et al. 2005a], the

following conjecture was verified numerically for all q 2 f4; 5; : : : ; 104g and all

u 2 .u`;ur / of the form uD u`C 0:02k, where k is a positive integer.

CONJECTURE 5.1. For all q� 3 the microcanonical entropy s has the following

two properties.

(a) s000.u/ > 0 for all u 2 .u`;ur /.

(b) s0.u`/D1; 0< s0.ur / <1; s00.u`/D�1; and s00.ur /D1.

The conjecture implies that s00 is an increasing bijection of .u`;ur / onto R.

Therefore, there exists a unique point w0 2 .u`;ur / such that s00.u/ < 0 for

all u 2 .u`; w0/, s00.w0/ D 0, and s00.u/ > 0 for all u 2 .w0;ur /. It follows

that the restriction of s to Œu`; w0� is strictly concave and the restriction of s to

Œw0;ur � is strictly convex. These properties, which can be seen in Figure 1, are

summarized by saying that s is a concave-convex function with break point w0.

The interval N D .u0;ur / exhibited in Figure 1 contains all energy values u

for which there exists no canonical ensemble that is equivalent with the micro-

canonical ensemble. Assuming the truth of Conjecture 5.1, we now show that

for each u 2N there exists  � 0 and an associated Gaussian ensemble that is

equivalent with the microcanonical ensemble for all v � u. In order to do this,

for  � 0 we bring in the generalized microcanonical entropy

s .u/D s.u/� u2

and note that the properties of s stated in Conjecture 5.1 are invariant under the

addition of the quadratic �u2. Hence, if Conjecture 5.1 is valid, then s satis-

fies the same properties as s. In particular, s must be a concave-convex func-

tion with some break point w , which is the unique point in .u`;ur / such that

s00

 .u/<0 for all u2 .u`; w /, s00

 .w /D0, and s00

 .u/>0 for all u2 .w ;ur /. A

straightforward argument, which we omit, and an appeal to Theorem 3.3 show

that there exists a unique point u 2 .u`; w / having the properties listed in

the next three items. These properties show that u plays the same role for

ensemble equivalence involving the Gaussian ensemble that the point u0 plays

for ensemble equivalence involving the canonical ensemble.

1. For  � 0, s is strictly concave on the interval .u`;u / and has a strictly

supporting line at each u2 .u`;u / and at ur . Hence for u2F D .u`;u /[

fur g the ensembles are fully equivalent in the sense that there exists ˇ such

that Eu D Eˇ; [Theorem 3.3(a)].

2. For  � 0, s is concave but not strictly concave at u and has a nonstrictly

supporting line at u that also touches the graph of s over the right hand

endpoint ur . Hence for u2P Dfu g the ensembles are partially equivalent
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in the sense that there exists ˇ such that E
u � Eˇ; but E

u 6D Eˇ; [Theorem

3.3(b)].

3. For  � 0, s is not concave on the interval N D .u ;ur / and has no sup-

porting line at any u2N . Hence for u2N the ensembles are nonequivalent

in the sense that for all ˇ, E
u\Eˇ; D? [Theorem 3.3(c)].

We now state our main result.

THEOREM 5.2. We assume that Conjecture 5.1 is valid. Then as a function

of  � 0, F D .u`;u / [ fur g is strictly increasing, and as  ! 1, F "

.u`;ur �. It follows that for any u 2 N D .u0;ur /, there exists  � 0 such that

the microcanonical ensemble and the Gaussian ensemble defined in terms of

this  are fully equivalent for all v 2 .u`;ur / satisfying v � u. The value of ˇ

defining the Gaussian ensemble is unique and is given by ˇ D s0.v/� 2v.

The proof of the theorem relies on the next lemma, part (a) of which uses Propo-

sition 4.1. When applied to s , this proposition states that s has a strictly

supporting line at a point if and only if s has a strictly supporting parabola at

that point. Proposition 4.1 illustrates why one can achieve full equivalence with

the Gaussian ensemble when full equivalence with the canonical ensemble fails.

Namely, even when s does not have a supporting line at a point, it might have

a supporting parabola at that point; in this case the supporting parabola can be

made strictly supporting by increasing  . The proofs of parts (b)–(d) of the next

lemma rely on Theorem 4.3 and on the properties of the sets F , P , and N
stated in the three items appearing just before Theorem 5.2.

LEMMA 5.3. We assume that Conjecture 5.1 is valid. Then:

(a) If for some  �0, s has a supporting line at a point u, then for any Q > ,

s Q has a strictly supporting line at u.

(b) For any 0�  < Q , F [P � F Q .

(c) u is a strictly increasing function of  � 0 and lim!1 u D ur .

(d) As a function of  � 0, F is strictly increasing.

PROOF. (a) Suppose that s has a supporting line at u with slope Ň. Then by

Proposition 4.1 s has a supporting parabola at u with parameters .ˇ;  /, where

ˇ D Ň C 2u. As the definition (4.1) makes clear, replacing  by any Q > 

makes the supporting parabola at u strictly supporting. Again by Proposition

4.1 s Q has a strictly supporting line at u.

(b) If u 2 F [ P , then s has a supporting line at u. Since 0 �  < Q ,

part (a) implies that s Q has a strictly supporting line at u. Hence u must be an

element of F Q .

(c) If 0�  < Q , then by part (a) of the present lemma u 2P �F Q . Since

F Q D .u`;u Q /[ fur g and since u < ur , it follows that u < u Q . Thus u is
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a strictly increasing function of  � 0. We now prove that lim!1 u D ur .

For any u 2 .u`;ur /, part (b) of Theorem 4.3 states that there exists u > 0

such that su
.u/ has a strictly supporting line at u. It follows that u 2 Fu

D

.u`;uu
/[ fur g and thus that u < uu

< ur . Since u is a strictly increasing

function of  , it follows that for all  > u, we have u > uu
> u. We have

shown that for any u 2 .u`;ur /, there exists u > 0 such that for all  > u, we

have u > u. This completes the proof that lim!1 u D ur .

(d) Since F D .u`;u /[fur g, this follows immediately from the first prop-

erty of u in part (c). The proof of the lemma is complete. ˜

We are now ready to prove Theorem 5.2. The properties of F stated there

follow immediately from Lemma 5.3. Indeed, since u is a strictly increasing

function of  �0, F is also strictly increasing. In addition, since lim!1 u D

ur it follows that as  !1, F " .u`;ur �. Since F is the set of full ensemble

equivalence, we conclude that for any u 2 N D .u0;ur /, there exists  > 0

such that the microcanonical ensemble and the Gaussian ensemble defined in

terms of this  are fully equivalent for all v 2 .u`;ur / satisfying v� u. The last

statement concerning ˇ is a consequence of part (c) of Theorem 4.3. The proof

of Theorem 5.2 is complete.
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ABSTRACT. We study a stochastic Burgers equation using the geometric point

of view initiated by Arnold for the incompressible Euler flow evolution. The

geometry is developed as a Cartan-type geometry, using a frame bundle ap-

proach (stochastic, in this case) with respect to the infinite-dimensional Lie

group where the evolution takes place. The existence of the stochastic Burgers

flow is a consequence of the control in the mean of the energy transfer from low

modes to high modes during the evolution, together with the use of a Girsanov

transformation.

Introduction

Many distinguished authors have made notable contributions to the stochastic

Burgers equation, of which a small sample appears in our very short bibliogra-

phy. It is not our purpose to review those contributions; it is perhaps appropriate

that we underline here that which seems to us the novelty of our approach.

We start from the viewpoint of geometrization of inertial evolution initiated

in [Arnold 1966] and systematically developed in [Ebin and Marsden 1970;

Brenier 2003; Constantin and Kolev 2002], based on infinite-dimensional Rie-

mannian geometry; the classical approach of [Ebin and Marsden 1970] is to use

Banach-modeled manifold theory; inherent difficulties appear in the construc-

tion of exponential charts and in the introduction of appropriate function spaces.

We circumvent these difficulties by using the viewpoint [Malliavin 2007] of Itô

charts, Itô atlas; in short Itô calculus makes it possible to compute any derivative

of a smooth function f on the path p of a diffusion from the unique knowledge

Cruzeiro developed her work in the framework of the research project POCI/MAT/55977/2004.
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of its restriction fjp . Then no more function spaces are a priori introduced: the

path of the diffusion constructs dynamically its canonical tangent space, built

from the evolution of the system.

How do we make explicit computations without local coordinates? We take

the viewpoint of [Arnold 1966; Cruzeiro and Malliavin 1996; Airault and Malli-

avin 2006; Cruzeiro et al. 2007], using the parallelism defined by the infinite-

dimensional Lie group structure.

In fluid dynamics the escape of the energy from low modes to higher modes

induces a lack of compactness which ruins the advantage of energy conservation

for inertial evolution. The key point of our approach is the control of this ultra-

violet divergence. We control the ultraviolet divergence in the case of the sto-

chastic Burgers equation with vanishing initial value. Then symmetries appear

which, as in [Airault and Malliavin 2006; Cruzeiro et al. 2007], make it possible

to compute exactly the expectation of the energy transfer by the exponentiation

of a numerical symmetric matrix.

Then we have solved our stochastic Burgers equation for vanishing initial

data: we reduce, as in [Cruzeiro et al. 2007], the nonvanishing initial data case

to this trivial case by a symmetry breaking expressed at the level of probability

space by a Girsanov functional.

We emphasize that the noise that we use is neither an external force nor a

damping. This important point is made explicit in the next section.

1. Random regularization of nonlinear evolution

In order to clarify our objectives, we shall proceed in this section at a con-

ceptual level, which has the disadvantage that we cannot produce at this level of

generality a single mathematical statement: the considered objects will not be

exactly defined; the reader will have to wait until Section 2 before getting into

mathematics.

Numerical integration of an evolution equation through a time discretization

scheme introduces at each step a numerical error; if the scheme is “well chosen”,

it will be unbiased: therefore the cumulative effect of numerical errors will

converge locally to a Brownian motion.

Let us axiomatize the previous empirical situation. Denote by S the infinites-

imal generator of an evolution equation, which is not assumed to be linear; the

operator S is operating on Cauchy data; then consider the Stratonovitch SDE

dt u
"
t
D S

�

u"
t
dt C "dx.t/

�

; u"
0

deterministic and independent of ", .1:1/a

where x is a suitable Brownian motion modeling the instantaneous discretiza-

tion error and where " > 0. We call the solution of .1:1/a the random regular-
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ization of the evolution equation

dtut D S.ut dt/; u0 given. .1:1/b

The disadvantage of .1:1/a versus .1:1/b is to replace an ODE by an SDE; this

disadvantage is balanced by the advantage that the introduction of a small noise

can smooth out resonances leading to the system explosion.

The terminology used, random regularization, is parallel to the classical ter-

minology elliptic regularization. This choice of terminology can be justified by

the fact that dealing with the Brownian motion x is equivalent to dealing with

some infinite-dimensional elliptic operator defined on the path space of x.�/.

2. The Burgers equation as a geodesic flow

Consider the group G of C 1 diffeomorphisms of the circle S1, denote by

G its Lie algebra of right invariant first order differential operators on G; we

identify G to vector fields on S1; define on G the pre-Hilbertian metric

kuk2 D
1

�

Z

2�

0

juj2.�/ d� I .2:1/

then G becomes an “infinite-dimensional Riemannian manifold”.

THEOREM [Arnold 1966; Constantin and Kolev 2003]. Let vt .�/ a be smooth

vector field defined on S1, depending smoothly on time t , which is assumed to

satisfy the Burgers equation

@v

@t
D v �

@v

@�
: .2:2/

Let gt be the time dependent diffeomorphism of S1 defined by the family of

ODEs

d

dt
gt .�/D vt .gt .�//I g0.�/D �: .2:3/

Then

t ‘ gt is a geodesic of the Riemannian manifold G: .2:4/

3. Structure constants of G

The vector fields

Ak D cos k�; Bk D sin k�; k > 0; A0 D
1
p

2
.3:1/
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constitute an orthonormal basis of G. In this basis, the Lie brackets are as fol-

lows:

ŒA0;Ak �D�.k=
p

2/Bk ;

ŒA0;Bk �D .k=
p

2/Ak ; k > 0;

ŒAs;Ak �D
1

2
..s� k/BkCsC .sC k/Bs�k/;

ŒBs;Bk �D
1

2
..k � s/BkCsC .sC k/Bs�k/;

ŒAs;Bk �D
1

2
..k � s/AkCsC .sC k/Ak�s/; s ¤ k;

ŒBk ;As �D
1

2
..s� k/AkCs � .sC k/As�k/; s ¤ k;

ŒAk ;Bk �D
p

2kA0:

PROOF.

ŒAs;Ak �D�kAs�BkCsAk�Bs D
1

2
.�k.BkCsCBk�s/Cs.BkCsCBs�k//

D 1

2
..s�k/BkCsC.sCk/Bs�k/;

ŒBs;Bk �D kBs�Ak�sBk�As D
1

2
.k.BkCsCBs�k/�s.BkCsCBk�s//

D 1

2
..k�s/BkCsC.sCk/Bs�k/;

ŒAs;Bk �D kAs�AkCsBk�Bs D
1

2
.k.AkCsCAk�s/Cs.�AkCsCAs�k//

D 1

2
..k�s/AkCsC.sCk/Ak�s/;

Analogously,

ŒBk ;As �D
1

2
..s�k/AkCs�.sCk/As�k/: ˜

4. The Christoffel tensor

We have on G two connections:

(i) the algebraic connection defined by the right invariant parallelism on G;

(ii) the Riemannian connection defined by the Levi-Civita parallel transport.

The difference of two connections defines a tensor field � �

�;�.

We have the key general lemma:

LEMMA [Arnold 1966; Cruzeiro and Malliavin 1996; Airault and Malliavin

2006]. Let G be a group with a right-invariant Hilbertian metric, and let fekg

be an orthonormal basis of its Lie algebra G. Then

� l

s;k D
1

2
.cl

s;k � cs

k;l C ck

l;s/; where Œes; ek �D
X

l

cl

s;kel : .4:1/
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We deduce immediately from the structural constants the identities

2�
Al

AsAk
D .ŒAs;Ak �jAl/� .ŒAk ;Al �jAs/C .ŒAl ;As �jAk/D 0;

2�
Bl

AsBk
D .ŒAs;Bk �jBl/� .ŒBk ;Bl �jAs/C .ŒBl ;As �jBk/D 0;

2�
Al

BsBk
D .ŒBs;Bk �jAl/� .ŒBk ;Al �jBs/C .ŒAl ;Bs �jBk/D 0;

2�
Bl

BsAk
D�2�

Ak

BsBl
D 0:

It remains to compute

�
Bl

AsAk
; �

Al

BsAk
; �

Bl

BsBk
; �

Al

AsBk
:

THEOREM.

� Assume 0< s < k. Then

�AsAk
D�

�

k � 1

2
s
�

Bk�s �
�

kC 1

2
s
�

BkCs;

�AsBk
D

�

k � 1

2
s
�

Ak�sC
�

kC 1

2
s
�

AkCs;

�BsAk
D�

�

k � 1

2
s
�

Ak�sC
�

kC 1

2
s
�

AkCs;

�BsBk
D�

�

k � 1

2
s
�

Bk�s C
�

kC 1

2
s
�

BkCs:

� Assume 0< k < s. Then

�AsAk
D

�

k � 1

2
s
�

Bs�k �
�

kC 1

2
s
�

BkCs;

�AsBk
D

�

k � 1

2
s
�

As�k C
�

kC 1

2
s
�

AkCs;

�BsAk
D�

�

k � 1

2
s
�

As�k C
�

kC 1

2
s
�

AkCs;

�BsBk
D

�

k � 1

2
s
�

Bs�k C
�

kC 1

2
s
�

BkCs;

In each case the two first lines define an antisymmetric operator � .As/ and the

two last lines define an operator � .Bs/.

� For k > 0,

�AkAk
D��BkBk

D�3

2
kB2k ;

�AkBk
D 3

2
kA2k C

p

2

2
kA0; �BkAk

D 3

2
kA2k �

p

2

2
kA0;

�A0Ak
D�
p

2kBk ; �AkA0
D�

p

2

2
kBk ;

�A0Bk
D

p

2

2
kAk C

p

2

2
kA0; �BkA0

D
p

2

2
kA0;

� Finally, �A0A0
D 0.

PROOF. Consider the case 0< s < k. We have 4�
Bl

AsAk
D I � II � III , with

I D 2.ŒAs;Ak �jBl/; II D 2.ŒAk ;Bl �jAs/; III D�2.ŒBl ;As �jAk/:
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The term I is equal to s� k when l D kC s and to �.sC k/ when l D k � s.

Other contributions to the component BkCs are sC 2k from II in the case

k < l and �.2s C k/ from III corresponding to the case s < l . Concerning

the component Bk�s we have to consider the contribution 2k�s from II when

l < k and the contribution from III in the case s < l , which is equal to 2s�k.

Summing up all the terms gives the result.

In more detail, introduce for s > 0 the new Kronecker symbol

"s

p
D ıs

p
; p > 0; "s

p
D�ıs

�p
; p < 0; "s

0
D 0:

Take s; k; l > 0; then 4�
Bl

AsAk
equals

.s�k/ıl

kCs
C.sCk/"l

s�k
C.k�l/ıs

kCl
�.lCk/ıs

jl�kj
C.s�l/ık

lCs
�.sCl/ık

js�l j
:

Consider first the case 0< s < k; then 4�
Bl

AsAk
equals

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıs

kCl
�.lCk/ıs

jl�kj
C.s�l/ık

lCs
�.sCl/ık

jl�sj
:

(1) Take the subcase 0< s < k < l . Then 4�
Bl

AsAk
equals

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıs

kCl
�.lCk/ıs

l�k
C.s�l/ık

lCs
�.sCl/ık

l�s
I

expressing the ı functions relatively to l , this expression becomes

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıl

s�k
�.lCk/ıl

kCs
C.s�l/ıl

k�s
�.sCl/ıl

kCs
;

so

4�
Bl

AsAk
D
�

.s� k/� .l C k/� .sC l/
�

ıl

kCs
D�2.kC l/ıl

kCs
:

(2) In the subcase 0< s < l < k, we obtain for 4�
Bl

AsAk
successively

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıs

kCl
�.lCk/ıs

k�l
C.s�l/ık

lCs
�.sCl/ık

l�s
D

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıl

s�k
�.lCk/ıl

k�s
C.s�l/ıl

k�s
�.sCl/ıl

kCs
D

�

� .sC k/� .l C k/C .s� l/
�

ıl

k�s
D�2

�

kC l
�

ıl

k�s
D�2

�

2k � s
�

ıl

k�s
:

(3) In the subcase 0< l < s < k, we obtain for 4�
Bl

AsAk

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıs

kCl
�.lCk/ıs

k�l
C.s�l/ık

lCs
�.sCl/ık

s�l
D

.s�k/ıl

kCs
�.sCk/ıl

k�s
C.k�l/ıl

s�k
�.lCk/ıl

k�s
C.s�l/ıl

k�s
�.sCl/ıl

s�k
D

�

� .sC k/� .l C k/C .s� l/
�

ıl

k�s
D�2.kC l/ıl

k�s
:

Finally, still for 0< s < k we have

�AsAk
D�

�

k � 1

2
s
�

Bk�s �
�

kC 1

2
s
�

BkCs:
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We now consider a rotation of angle '. Define

A
'

k
DAk cos k' �Bk sin k'; B'

q
DBq cos q'CAq sin q':

The metric on G is invariant under translation by '. Therefore the Christoffel

symbols commute with this translation:

�
�

k� 1

2
s
�

B
'

k�s
�
�

kC 1

2
s
�

B
'

kCs
D �

A
'
s A

'

k

D �AsAk
cos s' cos k'C�BsBk

sin s' sin k'

��AsBk
cos s' sin k'��BsAk

sin s' cos k':

On the other hand,

�
�

k � 1

2
s
�

B
'

k�s
�
�

kC 1

2
s
�

B
'

kCs

D�
�

k � 1

2
s
��

Bk�s cos.k � s/'CAk�s sin.k � s/'
�

�
�

kC 1

2
s
��

BkCs cos.kC s/'CAkCs sin.kC s/'
�

D�
�

k � 1

2
s
��

Bk�s.cos k' cos s'C sin k' sin s'/

CAk�s.sin k' cos s' � cos k' sin s'/
�

�
�

kC 1

2
s
��

BkCs.cos k' cos s' � sin k' sin s'/

CAkCs.sin k' cos s'C cos k' sin s'/
�

:

Identifying the coefficients of cos k' cos s', sin k' sin s', sin k' cos s', and

cos k' sin s', we get the formulae for the Christoffel symbols in the case 0 <

k < s.

For 0< k D s, we have, for example,

�
Bl

AkAk
D�.ŒAk ;Bl �jAk/D�

1

2
.kC l/ıl

2k
D�3

2
kıl

2k
:

The other expressions are proved in a similar way. ˜

5. Stochastic parallel transport; symmetries of the noise

Consider for each k�0 a R
2-valued Brownian motion �k.t/D .xk.t/;yk.t//;

all these Brownian motions are taken to be independent. Choose a weight �.k/�

0 and consider the G valued process

pt D
X

k>0

�.k/
�

xk.t/�Ak Cyk.t/�Bk

�

: .5:1/

Consider the Stratonovitch SDE

d t D�� .dpt / ı  t ;  0 D Identity: .5:2/

As the � are antisymmetric operators this equation takes formally its values in

the unitary group of G.
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The geometric meaning of .5:2/ is to describe in terms of the algebraic par-

allelism inherited from the group structure of G the Levi-Civita parallelism in-

herited from the Riemannian structure of G; for this reason we call .5:2/ the

equation of stochastic parallel transport.

Symmetries of the noise. The translation �' W � ‘ � C' is a diffeomorphism

Œ.�'/�.z/�.�/D z.� �'/

The collection .�'/�, ' 2 S1, constitutes a unitary representation of S1 on

G which decomposes into irreducible components along the direct sum of two-

dimensional subspaces

M

k>0

Ek ; Ek WD .Ak ;Bk/; E0 WDA0;

the action of .�'/� on Ek being the rotation

Dk.'/ WD
�

cos k' � sin k'

sin k' cos k'

�

; D0.'/ WD Identity:

Furthermore �' preserves the Lie algebra structure. The Christoffel symbols

are derived from the Hilbertian structure and from the bracket structure of G.

Therefore they commute with �' in the sense that

.�'/�Œ� .�/.�/�D � ..�'/��/Œ.�'/��/�; �; � 2 GI

or, denoting � .z/ the antihermitian endomorphism of G defined by the Christof-

fel symbols, we have

� ..�'/�.z//D .�'/� ı� .z/ ı .��'/�:

Denote by su.G/ the vector space of antisymmetric operators on the Hilbert

space G.

PROPOSITION. Let pt the G-valued process defined in .5:1/ and set .�'/�p DW

p
'
�

; then p
'
�

and p have the same law.

PROOF. The rotation Dk.�/ preserves in law the Brownian motion on Ek . ˜

COROLLARY. The processes .�'/ ı t ı .��'/ and  t have the same law.

PROOF. Denote by  
p

t
the solution of .3:3/ associated to the noise pt . Then

.�'/ ı  t ı .��'/D  
p

'

t
˜
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The Stratonovich SDE .5:2/ corresponds to the Itô SDE

d 
p

t
D
�

� .dp/CB dt
�

 t ;

BD
X

k�0

Œ�.k/�2

2
.� .Ak/�� .Ak/C� .Bk/�� .Bk//:

We get BD .�'/� ı B ı .��'/�, which implies that B diagonalizes in the basis
L

Ek . More precisely:

THEOREM. The operator

Œ� .As/�
2C Œ� .Bs/�

2

is diagonal and on the mode k it has eigenvalue

�s.k/D�.4k2C s2/; k > 2s:

PROOF. We have

Œ� .As/�
2.Ak/D�

�

k � 1

2
s
�

� .As/.Bk�s/�
�

kC 1

2
s
�

� .As/.BkCs/

D�
�

k � 1

2
s
��

.k � 3

2
s/Ak�2sC .k �

1

2
s/Ak

�

�
�

kC 1

2
s
��

.kC 1

2
s/Ak C .kC

3

2
s/AkC2s

�

;

Œ� .Bs/�
2.Ak/D�

�

k � 1

2
s
�

� .Bs/.Ak�s/C
�

kC 1

2
s
�

� .Bs/.AkCs/

D�
�

k � 1

2
s
��

� .k � 3

2
s/Ak�2sC .k �

1

2
sAk/

�

�
�

kC 1

2
s
��

.kC 1

2
s/Ak � .kC

3

2
s/AkC2s

�

:

Hence

Œ� .As/�
2.Ak/C Œ� .Bs/�

2.Ak/D�2.k � 1

2
s/2� 2.kC 1

2
s/2: ˜

We want to take, as in [Cruzeiro et al. 2007], a finite-mode driven Brownian

motion, which means that �.k/D 0 except for a finite number of values of k.

6. Control of ultraviolet divergence by the transfer energy matrix

THEOREM. Let e be a trigonometric polynomial, and define

�k.t/DE
�

Œ. t .e/ j Ak/�
2C Œ. t .e/ j Bk/�

2
�

:

Then �.t/ satisfies the ordinary differential equation

d�.t/

dt
DA.�.t//; .6:1/

where the matrix A has diagonal entries

A
l

l
D�4

X

k

�.k/2
�

2l2C 1

2
k2
�

� 9

8
l2�2.1

2
l/
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and nondiagonal entries

A
l

s
D 2

X

k

�.k/2
�

.l � 1

2
k/2ıjk�l j

s
C 2.l C 1

2
k/2ıkCl

s

�

C 9

8
l2�2.1

2
l/;

with s; l > 0. The sum of the coefficients in each column vanishes.

PROOF. We have, explicitly,

d 
Al

t
D�

X

m

.�
Al

AkBm
 

Bm

t
odxk.t/C�

Al

BkAm
 

Am

t
odyk.t//:

By Itô calculus,

d. 
Al

t
/2 D 2 

Al

t
d 

Al

t
C d 

Al

t
: d 

Al

t
;

d. 
Bl

t
/2 D 2 

Bl

t
d 

Al

t
C d 

Bl

t
: d 

Bl

t
:

Since we are interested in taking expectations we compute only the bounded

variation part of this semimartingale. Considering the terms 0<m� k,

d 
Al

t
D��

Al

AkBl�k
 

Bl�k

t
odxk.t/��

Al

BkAl�k
 

Al�k

t
odyk.t/

��
Al

AkBlCk
 

BlCk

t
odxk.t/��

Al

BkAlCk
 

AlCk

t
odyk.t/

D�.l � 1

2
k/ 

Bl�k

t
odxk.t/� .l �

1

2
k/ 

Al�k

t
odyk.t/

�.l C 1

2
k/ 

BlCk

t
odxk.t/C .l C

1

2
k/ 

AlCk

t
odyk.t/

�3

2

P

k

�.k/k 
Bk

t
odxk.t/�

3

2

P

k

�.k/k 
Ak

t
odyk.t/:

Computing the Itô contractions, we obtain, for example, in the case of the

first term,

�.l � 1

2
k/ 

Bl�k

t
odxk.t/D�.l �

1

2
k/ 

Bl�k

t
dxk.t/

�1

2

�

.l � 3

2
k/ 

Al�2k

t
� .l � 1

2
k/ 

Al

t
C .3

2
k � l/ 

A2k�l

t

�

dt:

We can check by explicit computation that all the nondiagonal contributions

coming from these Itô contractions cancel in their contribution to the expectation

of  
Al

t
d 

Al

t
C 

Bl

t
d 

Bl

t
. The diagonal ones, for the case 0< k <m, sum up

to give

�2
X

k

.2l2C 1

2
k2/ 

Al

t
dt:

The terms in 0< k <m give the same expression. The contribution from kDm

gives

�3

2
�
�

1

2
l
�

1

2
l 

A1=2l

t
dt:



STOCHASTIC EVOLUTION OF INVISCID BURGERS FLUID 177

Concerning the Bl component of  t , namely

d 
Bl

t
D�

X

m

�

�
Bl

AkAm
 

Am

t
odxk.t/C�

Bl

BkBm
 

Bm

t
odyk.t/

�

;

analogous computations give rise to the expressions

�2
X

k

.2l2C 1

2
k2/ 

Bl

t
dt

for l <m and m< l , and

�3

2
�
�

1

2
l
�

1

2
l 

B1=2l

t
dt

when k Dm.

The nondiagonal terms of the transfer energy matrix come from computing

the contractions d 
Al

t
: d 

Al

t
and d 

Bl

t
: d 

Bl

t
. We have, when 0< k � l ,

d 
Al

t
: d 

Al

t
D
P

k

�.k/2
�

�
Al

AkBl�k
 

Bl�k

t

�2
dtC

P

k

�.k/2
�

�
Al

BkAl�k
 

Al�k

t

�2
dt

C
P

k

�.k/2
�

�
Al

AkBlCk
 

BlCk

t

�2
dtC

P

k

�.k/2
�

�
Al

BkAlCk
 

AlCk

t

�2
dt

C �
�

1

2
l
�2
�

Al

A1=2lB1=2l

�

 
Bl =2
t

�2
C �

�

1

2
l
�2
�

Al

B1=2lA1=2l

�

 
Al =2
t

�2

D
P

k

�.k/2
�

l � 1

2
k
�2�

 
Bl�k

t

�2
C
P

k

�.k/2
�

l � 1

2
k
�2�

 
Al�k

t

�2

C
P

k

�.k/2
�

lC 1

2
k
�2�

 
BlCk

t

�2
C
P

k

�.k/2
�

lC 1

2
k
�2�

 
AlCk

t

�2

C 9

4
�
�

1

2
l
�2�1

2
l
�2�

 
Bl =2
t

�2
C 9

4
�
�

1

2
l
�2�1

2
l
�2�

 
Al =2
t

�2
:

Computing the corresponding terms for the indices 0 < l < k as well as the

contractions d 
Bl

t
: d 

Bl

t
gives the desired result. ˜

7. Ultraviolet divergence and dissipativity of the associated jump

process

The ordinary differential equation .6:1/ can be integrated quite explicitly by

the exponential exp.tA/; nevertheless the effective computation of this expo-

nential is not easy.

It was observed in [Airault and Malliavin 2006, Theorem (3.10)] that A can

be also considered as the infinitesimal generator of a Dirichlet form; therefore

its exponentiation is equivalent to construct the jump process associated to this

Dirichlet form. Recall how this jump process was constructed in that theorem.

In order to shorten our discussion we shall sketch our proof in the special

case where

�.1/D 1; �.k/D 0; k ¤ 1:
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Then the random walk X.n/ is a nearest neighbor random walk defined on

N, the set of positive integers, as follows:

If X.n/D k; k > 2 we have

ProbfX.nC 1/D kC 1g D pk WD
1

2

�

1C
k

4k2C 1

�

;

ProbfX.nC 1/D k � 1g D 1�pk :

The random walk is nonsymmetric, it has a drift ' 1

k
pushing it to escape at

infinity. This drift has a negligible effect in our discussion and we shall proceed

as if the random walk was symmetric.

The jump process is defined as

�.t/ WDX.'.t//

where the change of clock '.t/ is the integer-valued function defined by

X

n�'.t/

1

4ŒX.n/�2C 1
��n � t <

X

n�'.t/C1

1

4ŒX.n/�2C 1
��n;

where f�kg is a sequence of independent exponential times.

THEOREM. The jump process is conservative. That is, '.t/ <1 almost surely;

more precisely,

E.ŒX.'.t//�q/ <1 for all q > 0: .7:2/

PROOF. What follows is an improved methodology of proof compared to the

one used in [Cruzeiro et al. 2007]. The proof of (7.2) will occupy us till the end

of Section 7.

Let ˝1 be the probability space of the random walk; then ˝1 is a space gen-

erated by an infinite sequence of independent Bernoulli variables; let ˝2 be the

probability space generated by an infinite sequence of independent exponential

variables. Then the probability space of the jump process is˝1�˝2. We denote

by E!i the expectation relatively to ˝i , the other coordinate being fixed, and

we write Probi.A/ WDE!i .1A/.

We introduce a strictly increasing sequence of stopping times T1 < T2 <

� � � < Tk < � � � on the random walk by the following recursion: T1 is the first

time where the value starting from 1 it reaches 2; TkC1 is the first time after Tk

where X.TkC1/ leaves the interval
�

1

2
X.Tk/; 2X.Tk/

�

; we have

X.Tk/D 2�k ; �k 2 N:

Then �k is an unsymmetric random walk on the set of positive integers. We

construct on ˝1 a new random walk X �.n/ by taking

X �.TkC1/D 2X �.Tk/; then X.n/�X �.n/I inf
m>n

X �.m/� 1

2
X �.n/:
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Denote by '�.t/ the time change in the jump process associated to the random

walk X �.�/; we obtain a new jump process ��.t/, defined on the same proba-

bility space as �, and we have

�.t/� 2��.t/I

therefore it is sufficient to prove .7:2/ for ��. Introduce the functionals

˚.p/ WD
X

n�p

1

4jX �.n/j2C 1
; 	.p/ WD

X

n�p

�n

4ŒX �.n/�2C 1
�nI

then E!2.	.p//D ˚.p/.

We have

˚.TkC1/�˚.Tk/�
TkC1�Tk

22.�kC2/C 1
.7:3/

THEOREM. Probf˚.Tk/�˚.Ts/< tg�exp

�

�3.k � s/3=2

12
p

12t

�

; k�s>20.tC1/:

PROOF. Denote by S the exit time of the random walk from the interval Ik WD

.2�k�1; 2�kC1/ and for 0< � < 1 being fixed, define on Ik the function

v.p/DEp.�
S/I

then v takes the value 1 at the boundary of Ik ; by the Bellman programming

equation it satisfies

v.p/D 1

2
�
�

v.p� 1/C v.pC 1/
�

:

Define �f .n/ WD 1

2

�

f .nC 1/C f .n� 1/
�

�f .n/; then

�v D .��1� 1/v:

Define fa.n/ WD an; then 1

2

�

fa.nC 1/C fa.n � 1/
�

� fa.n/ D cfa.n/, c D
1

2
.aC a�1/� 1. We satisfy these two equations by imposing the condition

a2� 2��1aC 1D 0 .7:4/;

which has for roots �; ��1, � < 1. We deduce that

v.n/D ˛�nCˇ��n;

where ˛; ˇ are chosen such that the boundary conditions for v are satisfied; we

deduce that

E.�TkC1�Tk /D v.2�k / <
1

cosh.2�k�1 log �/

Writing this equality with �D 1� r�12�2�k we get

ProbfTkC1�Tk � r22�k g � .1� r�12�2�k /r2
2�k
�

1

cosh.2�k�1 log �/
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where � is obtained from .7:4/ and where � D 1� r�12�2�k , a relation which

leads to the asymptotic formula

�' 1�
p

2� r�1=22��k :

Further,

ProbfTkC1�Tk � r22�k g � 2e exp
�

�
1
p

2r

�

:

Finally we have, using .7:3/,

Prob.˚.TkC1/�˚.Tk//� r/� 2e exp

�

�
1

3
p

r

�

:

Denote by � the law of .˚.TkC1/�˚.Tk//. Then

E exp.�c.˚.TkC1/�˚.Tk//D

Z

1

0

exp.��y/�.dy/I

integration by parts yields for this expression the bound
Z

1

0

� exp.��c/ �.Œ0; c�/ dc � 2e�

Z

1

0

exp

�

��c �
1

3
p

c

�

dc

� 2e exp
�

�1

3
Œ��1=3

�

:

Since the ˚.TkC1/�˚.Tk/ are independent, we have

E.exp.��.˚.Tk/�˚.Ts///� exp
�

�1

4
.k � s/Œ��1=3

�

; � > 16;

and

Probf˚.Tk/�˚.Ts/ < tg � inf� exp
�

�t � 14.k � s/Œ��1=3
�

� exp

�

�
3.k � s/3=2

12
p

12t

�

; k � s > 20.t C 1/: ˜

LEMMA.

Prob2

�

	.TkC1/�	.Tk/

˚.TkC1/�˚.Tk/
�

1

2

�

�exp

�

�
TkC1�Tk

64

�

�exp

�

�
2k

128

�

: .7:5/

PROOF. Let � > 0 and let S WD 	.TkC1/�	.Tk/. Then

ProbfS � a g � exp.�a�/�E.exp.��S//

or

ProbfS � a g � inf
�>0

exp.a�/�E.exp.��S//:

We have

S D
X

Tk<n�TkC1

1

4ŒX �.n/�2C 1
��n
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By the independence of the �n we have

E!2.exp.��S//D exp

�

�
X

Tk<n�TkC1

log
�

1C
�

4ŒX �.n/�2C 1

�

�

:

Now we use the inequality

log.1Cu/� 3

4
u; u 2

�

0; 1

4

�

;

obtaining

E!2.exp.��S//� exp.�� 3

4
.˚.TkC1/�˚.Tk/// � 2 Œ0; �0�; �0 WD 22.k�1/:

Taking

aD 1

2
.˚.TkC1/�˚.Tk//; � D �0;

we get

ProbfS � a g � exp
�

�14�0.˚.TkC1/�˚.Tk//
�

;

that is to say,

1

4
�0
�

˚.TkC1/�˚.Tk/
�

> 22.k�2/2�2.kC1/.TkC1�Tk/;

which concludes the proof of the lemma. ˜

Now, starting from (7.5), Borel–Cantelli proves (7.2). ˜

8. Towards stochastic fluid motion on the configuration space

The configuration space in Arnold’s point of view is G, the diffeomorphism

group of the circle. The last section has given rise to a solution of a stochas-

tic Burgers equation on the moment space G; in this section we shall start to

integrate this solution from the moment space to the configuration space.

Covariance functionals. Baxendale and Harris [1986] have characterized clas-

sical stochastic flows in terms of their covariance. The construction we pro-

pose will depend upon the integration of a delayed SDE, in contrast to Baxen-

dale and Harris, who develop their study in the framework of classical infinite-

dimensional SDE. Nevertheless covariance estimates will be needed.

THEOREM. Assume that the noise energy � has a finite support. Let  x.t/ be

the stochastic parallel transport defined in .5:2/.

(a) The covariance is

Cx;t .�; �
0/D

P

k

�

Œ �

x
.t/.Ak/�.�/ Œ 

�

x
.t/.Ak/�.�

0/C Œ �

x
.t/.Bk/�.�/ Œ 

�

x
.t/.Bk/�.�

0/
�

�.k/:
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(b) Almost surely the map t ‘ Cx;t .�;�/ is a H q.S1 �S1/ continuous map.

(c) E.Cx;t .�; �
0//D NCt .� � �

0/.

(d) E

�

sup
�;� 0; t<T

Cx;t .�; �/CCx;t .�
0; � 0/� 2Cx;t .�; �

0/

.� � � 0/2

�

<1:

PROOF. Part (c) results from the corollary on page 174, and part (b) follows

from (7.2) and the continuity property of Brownian martingales. Let

p.�; � 0/ WD Cx;t .�; �/CCx;t .�
0; � 0/� 2Cx;t .�; �

0/;

then p.�; �/D 0. Since
�

.@p=@�/.�; � 0/
�

�D� 0
D 0, Taylor’s formula gives

p.�; � 0/D .� � � 0/2
Z

1

0

@2p

@�2
.� 0C t.� � � 0/; � 0/.1� t/ dt: ˜

The system of Itô flow equations is not closed. Denote by G
s the space of

vector fields with values in the Sobolev space of vector fields in H s . Then

t ‘ yt is an G
s-valued semimartingale. We have to solve a Stratonovitch SDE

dtgx;t .�/D .od yt /.gx;t .�//

(see [Cruzeiro et al. 2007]); there appears then the Itô contraction

Yt .gx;t .�/�Cx;t .�; �/ dt;

where

Yt D
@gx;t

@�
:

In order to write the Itô SDE driving the flow we must know the derivative

of the flow itself, an so on: we have an unclosed system of Itô SDE.

A usual procedure of existence for SDE relies on the Itô formalism. We could

try the following alternative approach: solutions of Stratonovitch SDE are limits

of solutions of corresponding ordinary differential equations. Then it may be

possible to implement this limiting procedure in the geometric context of the

stochastic development.
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A quick derivation of the loop equations for

random matrices

N. M. ERCOLANI AND K. D. T-R MCLAUGHLIN

ABSTRACT. The loop equations of random matrix theory are a hierarchy of

equations born of attempts to obtain explicit formulae for generating functions

of map enumeration problems. These equations, originating in the physics of

2-dimensional quantum gravity, have lacked mathematical justification. The

goal of this paper is to provide a complete and short proof, relying on a recently

established complete asymptotic expansion for the random matrix theory par-

tition function.

1. Background and preliminaries

The study of the unitary ensembles (UE) of random matrices [Mehta 1991],

begins with a family of probability measures on the space of N �N Hermitian

matrices. The measures are of the form

d�t D
1

zZN

exp f�N Tr ŒVt.M /�gdM;

where the function Vt is a scalar function, referred to as the potential of the

external field, or simply the “external field” for short. Typically it is taken to be

a polynomial, and written as follows:

Vt D V .�I t1; : : : ; t�/D
1

2
�2C

�
X

jD1

tj�
j

where the parameters ft1; : : : ; t�g are assumed to be such that the integral con-

verges. For example, one may suppose that � is even, and t� > 0. The partition

McLaughlin was supported in part by NSF grants DMS-0451495 and DMS-0200749, as well as a NATO
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function zZN , is the normalization factor which makes the UE measures be prob-

ability measures.

Expectations of conjugation invariant matrix random variables with respect

to these measures can be reduced, via the Weyl integration formula, to an in-

tegration against a symmetric density over the eigenvalues which has a form

proportional to (1-1), below:

exp

�

�N 2

�

1

N

N
X

jD1

V .�j I t1; : : : ; t�/�
1

N 2

X

j¤`

log j�j ��`j

��

dN�: (1-1)

These latter multiple integrals can be more compactly expressed in terms of

kernels constructed from polynomials fp`.�/g orthogonal with respect to the ex-

ponential weight e�N Vt.�/ [Mehta 1991]. For instance, the fundamental matrix

moments E

�

TrM j
�

, where E denotes expectation with respect to the measure

d�t , are expressed as

E.TrM j /DN

Z

1

�1

�j�
.1/
N
.�/ d�; (1-2)

where �
.1/
N
.�/ denotes the so-called one-point function

�
.1/
N
.x/D

d

dx
E

�

1

N
#
˚

j W �j 2 .�1;x/
	

�

D
1

N
KN .x;x/; (1-3)

with the kernel

KN .x;y/D e�.N=2/ .Vt.x/CVt.y//
N �1
X

`D0

p`.x/p`.y/:

The symbol E denotes expectation with respect to the normalization of the mea-

sure (1-1) which is given by dividing this family of measures by the correspond-

ing family of integrals:

ZN .t1; t2; : : : ; t�/D (1-4)
Z

� � �

Z

exp

�

�N 2

�

1

N

N
X

jD1

V .�j I t1; : : : ; t�/�
1

N 2

X

j¤`

log j�j ��`j

��

dN�:

We will sometimes refer to the following set of t D .t1; : : : ; t�/ for which (1-4)

converges. For any given T > 0 and  > 0, define

T.T;  /D

�

t 2 R
� W jtj � T; t� > 

��1
X

jD1

jtj j

�

:
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The leading order behavior of ZN .t1; t2; : : : ; t�/ is rather classical, and is

known for a very wide class of external fields V (see [Johansson 1998], for

example). We will require the following result.

THEOREM 1.1. There is T > 0 and  > 0 such that, for all t 2 T.T;  /, the

following statements hold:

(i) lim
N !1

1

N 2
logfZN .t1; t2; : : : ; t�/g D �I.t1; : : : ; t�/; (1-5)

where I.t1; : : : ; t�/ is the infimum of

Z

V .�/ d�.�/�

“

log j���j d�.�/ d�.�/ (1-6)

over all positive, normalized Borel measures �.

(ii) There is a unique measure �V that achieves this infimum. This measure is

absolutely continuous with respect to Lebesgue measure, and

d�V D  d�;

 .�/D
1

2�
�.˛;ˇ/.�/

p

.��˛/.ˇ��/ h.�/;

where h.�/ is a polynomial of degree � � 2, which is strictly positive on the

interval Œ˛; ˇ� (recall that the external field V is a polynomial of degree �).

The polynomial h is defined by

h.z/D
1

2� i

I

V 0.s/
p

.s�˛/
p

.s�ˇ/

ds

s� z

where the integral is taken on a circle containing .˛; ˇ/ and z in the interior,

oriented counterclockwise.

(iii) There exists a constant l , depending on V , such that the following varia-

tional equations are satisfied by �V :

Z

2 log j�� �j�1d�V .�/CV .�/� l for � 2 R n supp.�V /;

Z

2 log j�� �j�1d�V .�/CV .�/D l for � 2 supp.�V /:

(1-7)

(iv) The endpoints ˛ and ˇ are determined by the equations

Z ˇ

˛

V 0.s/
p

.s�˛/.ˇ� s/
ds D 0;

Z ˇ

˛

sV 0.s/
p

.s�˛/.ˇ� s/
ds D 2�:
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(v) The endpoints ˛.t / and ˇ.t / are actually analytic functions of t, which

possess smooth extensions to the closure of ft W t 2 T.T;  /g. They also

satisfy �˛.0/ D ˇ.0/ D 2. In addition, the coefficients of the polynomial

h.�/ are also analytic functions of t, with smooth extensions to the closure of

ft W t 2 T.T;  /g, with

h.�; t D 0/D 1:

REMARKS. (1) The variational problem appearing in 1.1(i) is a fundamental

component in the theory of random matrices, as well as integrable systems

and approximation theory. It is well known, (see, for example, [Saff and Totik

1997]), that under general assumptions on V , the infimum is achieved at a unique

measure �V , called the equilibrium measure. For external fields V that are

analytic in a neighborhood of the real axis, and with sufficient growth at1, the

equilibrium measure is supported on finitely many intervals, with density that is

analytic on the interior of each interval, behaving at worst like a square root at

each endpoint, (see [Deift et al. 1998] and [Deift et al. 1999]).

(2) The result in (1-5) is commonly known in the approximation theory litera-

ture. For a proof, see [Johansson 1998].

(3) It will prove useful to adapt the following alternative presentation for the

function  :

 .�/D
1

2� i
RC.�/h.�/; � 2 .˛; ˇ/; (1-8)

where the function R.�/ is defined via R.�/2 D .� � ˛/.� � ˇ/, with R.�/

analytic in Cn Œ˛; ˇ�, and normalized so that R.�/� � as �!1. The subscript

˙ in R˙.�/ denotes the boundary value obtained from the upper (lower) half-

plane.

The goal of this paper is to provide a rigorous justification for the loop equations,

which originated in the physics of two-dimensional quantum gravity (see, for

example, the survey [Di Francesco et al. 1995] and the references therein). More

precisely, this entails

� proving that the quantity
Z

1

�1

�
.1/
N
.x/

x� z
dx

possesses a complete asymptotic expansion in even powers of N (see Theo-

rem 2.3 and (3-11)), and

� establishing that the coefficients Pg.z/ in the asymptotic expansion (3-11)

satisfy the hierarchy of nonlocal equations (3-13), which are the loop equa-

tions.
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Once the coefficients Pg.z/ are known to exist as analytic functions of z and

the times t, they may be interpreted as generating functions for a collection of

graphical enumeration problems for labelled maps, counted according to vertex

valences and the genus of the underlying Riemann surface into which the maps

are embedded. (See [Bessis et al. 1980], and also [Ercolani and McLaughlin

2003].) Because of the combinatorial connection and its use in 2-dimensional

quantum gravity, obtaining explicit formulae has been a fundamental goal within

the physics community of quantum gravity. The loop equations arose as a means

to obtain explicit information (and possibly explicit formulae) for these coeffi-

cients, although without mathematical justification.

In Section 3 we will need to consider the Cauchy transform of the equilibrium

measure

F.z/D

Z

1

�1

 .�/

z��
d�; z 2 C=R:

It follows from differentiating the variational equations in Theorem 1.1(iii) that

F.z/ solves the scalar Riemann–Hilbert problem

FC.s/CF�.s/D V 0.s/; s 2 Œ˛; ˇ�;

FC.s/�F�.s/D 0; s 2 R=Œ˛; ˇ�;

where the subscript ˙ in F˙.�/ denotes the boundary value obtained from the

upper (lower) half-plane, and F.z/D 1=zC O.z�2/ as z!1. From this it is

straightforward to deduce that

2F.z/DV 0.z/�R.z/h.z/: (1-9)

2. Large-N expansions

The fundamental theorem for establishing complete large N expansions of

expectations of random variables related to eigenvalue statistics was developed

in [Ercolani and McLaughlin 2003]. A concise statement of this result is:

THEOREM 2.1 [Ercolani and McLaughlin 2003]. There exist T > 0 and  > 0

such that for all t 2 T.T;  /, the expansion

Z

1

�1

f .�/�
.1/
N
.�/ d�D f0CN �2f1CN �4f2C � � � ; (2-1)

holds, provided the function f .�/ is C 1 smooth and grows no faster than a

polynomial for � ! 1. The coefficients fj depend analytically on t for t 2

T.T;  /, and the asymptotic expansion may be differentiated term by term with

respect to t.
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The complete details for the derivation of this result are presented in [Ercolani

and McLaughlin 2003]; however, there are a few specifics presented there that

we repeat here for use in subsequent sections and for general background infor-

mation:

� The function �
.1/
N

has a full and uniform asymptotic expansion, which starts

off as follows:

�
.1/
N
.�/D  .�/CO.N �1=2/: (2-2)

� The specific form that this expansion takes depends very much on where one

is looking; for example, for � 2 .˛; ˇ/, the expansion takes the form:

�
.1/
N
.�/D  .�/C

1

4�N

�

1

��ˇ
�

1

��˛

�

cos

�

N

Z ˇ

�

 .s/ ds

�

C
1

N 2

�

H.�/CG.�/ sin

�

N

Z ˇ

�

 .s/ ds

��

C � � � (2-3)

in which H.�/ and G.�/ are locally analytic functions which are explicitly

computable in terms of the original external field V .�/.

In [Ercolani and McLaughlin 2003] the primary application of this theorem was

to establish that a complete large N asymptotic expansion of 1-1 exists:

THEOREM 2.2. There is T > 0 and  > 0 so that for t 2 T.T;  /, one has the

N !1 asymptotic expansion

log

�

ZN .t/

ZN .0/

�

DN 2e0.x; t/C e1.x; t/C
1

N 2
e2.x; t/C � � � : (2-4)

The meaning of this expansion is: if you keep terms up to order N �2h, the error

term is bounded by CN �2h�2, where the constant C is independent of t for all

t 2 T.T;  /. For each j , the function ej .t/ is an analytic function of the (com-

plex) vector .t/, in a neighborhood of .0/. Moreover, the asymptotic expansion

of derivatives of log .ZN / may be calculated via term-by-term differentiation of

the series above. ˜

REMARKS. (1) Bleher and Its [2005] recently carried out a similar asymptotic

expansion of the partition function for a 1-parameter family of external fields.

A very interesting aspect of their work is that they establish the nature of the

asymptotic expansion of the partition through a critical phase transition.

(2) A subsequent application in [Ercolani, McLaughlin and Pierce 2006] is to

develop a hierarchy of ordinary differential equations whose solutions determine

recursively the coefficients eg for potentials of the form V .�/D �2=2C t�2� .
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(3) The asymptotic results in [Ercolani and McLaughlin 2003] were also used

recently in [Gustavsson 2005] to establish that asymptotics of each individual

eigenvalue have Gaussian fluctuations, regardless of whether one is in the bulk

or near the edge of the spectrum (provided only that the eigenvalue number,

when counted from the edge, grows to1).

In the present paper we will make use of a mild extension of Theorem 2.1, in

which the function f is of the form w.�/=.� � z/, with z living outside the

interval Œ˛; ˇ�:

THEOREM 2.3. For each ı > 0, there exist T > 0 and  > 0 such that for all

t 2 T.T;  /, the expansion
Z

1

�1

�

w.�/

�� z

�

�
.1/
N
.�/ d�D w0.z/CN �2w1.z/CN �4w2.z/C � � � ; (2-5)

holds, provided z 2Cn Œ˛�ı; ˇCı� and the function w.�/ is analytic in a neigh-

borhood of R and grows no faster than a polynomial as �!1. The coefficients

wj depend analytically on z and t for t 2 T.T;  /, and possess convergent

Laurent expansions for z!1. Furthermore, the asymptotic expansion may be

differentiated term by term.

For z bounded away from the real axis, this follows from Theorem 2.1. The

mild extension to the case when z may be near the axis (but bounded away

from the support Œ˛; ˇ�) follows by exploiting analyticity to replace the integral

along the real axis near z by a semicircular contour so that � remains uniformly

bounded away from z. Once the contour is such that � is bounded away from z,

the uniform asymptotic expansion for �
.1/
N

may be used. Since z is away from

the support Œ˛; ˇ�, the newly introduced semicircular contour is also bounded

away from the support, and one may use arguments similar to those presented

in [Ercolani and McLaughlin 2003, Observation 4.2] (where they were used for

� real and outside the interval Œ˛; ˇ�) to show that �
.1/
N
.�/ is uniformly exponen-

tially small on the semicircular contour, and also that the residue term obtained

from deforming the contour is also uniformly exponentially small. We will leave

these details for the interested reader.

3. Derivation of the loop equations

Denote the Green’s function of a random matrix M by

G.z;M /D .z�M /�1

and its trace by

g.z/D Tr G.z/:

We evaluate @Gkl=@Mij in two different ways to get a useful relation.
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LEMMA 3.1. E .GkiGjl /DN E.GklV
0.M /ji/:

PROOF. We begin by assuming i � j . Note that when i < j , @=@Mij denotes

differentiation with respect to the complex variable Mij . Since G �.z�M /D 1,

we have @=@Mij G � .z�M /� 0; equivalently,

@G=@Mij � .z�M /�G �Eij D 0;

where Eij is the elementary matrix with a 1 in the .i; j / entry and all other

entries zero (note that @Mji=@Mij D 0 for i < j ). It follows that

@G=@Mij DG �Eij � GI

in particular,

@Gkl=@Mij D
�

GkiGjl

�

;

and so

E

�

@Gkl=@Mij

�

DE

�

GkiGjl

�

:

On the other hand, integrating by parts yields

E .@Gkl=@Mij /D
1

zZN

Z

H

@Gkl

@Mij

exp
�

�N TrŒVt.M /�
�

dM

D�
1

zZN

Z

H

Gkl

@

@Mij

exp
�

�N TrŒVt.M /�
�

dM

DN
1

zZN

Z

H

GklTr
�

rV .M / �Eij

�

exp
�

�N TrŒVt.M /�
�

dM

DN
1

zZN

Z

H

GklV
0.M /ji exp

�

�N TrŒVt.M /�
�

dM

DN E

�

GklV
0.M /ji

�

:

Combining the two representations above for E

�

@Gkl=@Mij

�

gives the result.

One proves the analogous relation when i > j in a similar fashion. ˜

PROPOSITION 3.2. E ..g.z//2/DN E .Tr .G �V 0.M ///: (3-1)

PROOF. This follows directly from the lemma by setting i D k and j D l ,

summing over k and l and dividing by 1=N 2, which yields

X

k;l

E .GkkGl l/DN
X

k;l

E

�

Gk;lV
0.M /lk

�

: ˜
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The relation (3-1) can be naturally regarded as a generating function for the

second order matrix cumulants of M when written in the equivalent form

E..g.z//2/�E ..g.z///2 DN E

�

Tr .G �V 0.M //
�

�E ..g.z///2: (3-1)

To proceed further we will need to introduce some more notation. First, we will

use the following general expression for the potential

V .z/D

1
X

jD0

tj zj

which is understood to have only finitely many nonzero tj ’s. We also have the

formal vertex operator

d

dV
D�

1
X

jD0

1

zjC1

d

dtj
: (3-2)

(A precise meaning for this formal relation will be given in the beginning of the

next section.) This can be used to give a compact formal representation of a

generating function for matrix moments in terms of the RM partition function

(1-1):

d

dV

1

N 2
log ZN D

1
X

jD0

1

zjC1
E

�

1

N
Tr M j

�

: (3-3)

Asymptotic expansions. To make formal relations such as (3-3) meaningful

we need to use some fundamental asymptotic facts. The trace of G.z/ has a

standard integral representation in terms of the RM one-point function (1-3)

g.z/DN

Z

1

�1

�
.1/
N
.�/

z��
d�: (3-4)

By boundedness and exponential decay of �
.1/
N
.�/;g.z/ has a valid asymptotic

expansion in large z as

Z

1

�1

�
.1/
N
.�/

z��
d��

1
X

jD0

1

zjC1
E

�

1

N
Tr M j

�

: (3-5)

Thus (3-3) can be precisely understood as saying that for each m and large z,

d

dV .m/

1

N 2
log ZN D

m�1
X

jD0

1

zjC1

Z

1

�1

�j�
.1/
N
.�/

z��
d�

D

Z

1

�1

�
.1/
N
.�/

z��
d�CO.z�.mC1//; (3-6)
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where

d

dV .m/
D�

m�1
X

jD0

1

zjC1

d

dtj
:

In a similar sense we have for each m and large z the asymptotic equation

E..g.z//2/�E..g.z///2

D

m
X

j ;kD0

1

zjCkC2

�

E.Tr M j �Tr M k/�E.Tr M j /E.Tr M k/
�

CO.z�.2mC3//

D
d

dV .m/

d

dV .m/

1

N 2
log ZN CO.z�.2mC3//

D
d

dV .m/

Z

1

�1

�
.1/
N
.�/

z��
d�CO.z�.2mC3//: (3-7)

In what follows, we will use d=dV instead of d=dV .m/ but with the above

asymptotic interpretation understood. In the rest of this section we need to estab-

lish that there are estimates controlling the errors in the asymptotic expansions

(3-6) and (3-7) that remain valid uniformly as N !1. To this end we first note

that for (3-6) the error has the form

1

zmC1

Z

1

�1

�m�
.1/
N
.�/

z��
d�

D
1

zmC1

�

f
.m/

0
.z/CN �2f

.m/
1

.z/CN �4f
.m/

2
.z/C � � �

�

for t 2T.T;  /. The right-hand side is an asymptotic expansion valid uniformly

(in T), which follows from the fundamental Theorem 2.1. Similarly for (3-7)

the error has the form

�

1
X

kDm

1

zkC1

d

dtk

1

zmC1

�

f
.m/

0
.z/CN �2f

.m/
1

.z/CN �4f
.m/

2
.z/C : : :

�

D

�
X

kDm

1

zkCmC2

�

g
.m/
0
.z/CN �2g

.m/
1
.z/CN �4g

.m/
2
.z/C � � �

�

;

in which the sum on the right is finite since V depends on only finitely many

distinct tk . We use here the fact stated in Theorem 2.1 that these asymptotic

expansions in N can be differentiated term by term, preserving uniformity.
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With the observations of this section we can express the relation (3-1) in terms

of integral representations involving the one-point function:

d

dV

Z

1

�1

�
.1/
N
.�/

z��
d�

DN 2

Z

1

�1

V 0.�/�
.1/
N
.�/

z��
d��N 2

�Z

1

�1

�
.1/
N
.�/

z��
d�

�2

; (3-8)

to be understood in the sense of an asymptotic expansion in large z whose co-

efficients moreover have asymptotic expansions in even powers of N which are

uniform in admissible t. We note that one consequence of this is that the two

terms on the right-hand side of (3-8) cancel at leading order so that the difference

has leading order O.1/ for large N .

Loop equations. To prepare for the transformation to a recursive loop equation

we parse the first integral on the right-hand side of (3-8) as

Z

1

�1

V 0.�/�
.1/
N
.�/

z��
d�D

Z ˇCı

˛�ı

V 0.�/�
.1/
N
.�/

z��
d�CO.e�cN /; (3-9)

where c > 0 depends on the choice of the positive constant ı. The justification

for the exponential error term is part of the proof of the fundamental asymptotic

relation presented in [Ercolani and McLaughlin 2003].

From (3-9), we may further transform this term:

Z

1

�1

V 0.�/�
.1/
N
.�/

z��
d�

D
1

2� i

Z ˇCı

˛�ı

�
I

C

V 0.x/

x ��
dx

�

�
.1/
N
.�/

z��
d�CO.e�cN /;

D
1

2� i

I

C

Z ˇCı

˛�ı

�

V 0.x/

x ��

�

�
.1/
N
.�/

z��
d� dxCO.e�cN /;

D
1

2� i

I

C

Z ˇCı

˛�ı

V 0.x/�
.1/
N
.�/
�

1

x��
�

1

z��

��

1

z�x

�

d� dxCO.e�cN /

D
1

2� i

I

C

Z ˇCı

˛�ı

V 0.x/�
.1/
N
.�/
�

1

x��

��

1

z�x

�

d� dxCO.e�cN /

D
1

2� i

I

C

V 0.x/

z�x

Z ˇCı

˛�ı

�
.1/
N
.�/

x��
d� dxCO.e�cN /;

where on the first line we have expressed V 0.�/ as a loop integral à la Cauchy’s

Theorem, where the contour C encircles the interval .˛�ı; ˇCı/, with z outside
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the contour of integration, and on the penultimate line one term has vanished by

Cauchy’s Theorem and analyticity.

Inserting the last expression above into (3-8), we have derived the final form

of the loop equation generating function:

1

2� i

I

C

V 0.x/

z�x

Z ˇCı

˛�ı

�
.1/
N
.�/

x��
d� dx

D�N �2
d

dV

Z ˇCı

˛�ı

�
.1/
N
.�/

z��
d��

�Z ˇCı

˛�ı

�
.1/
N
.�/

z��
d�

�2

CO.e�cN /: (3-10)

Using Theorem 2.3, the term in parentheses on the last line is easily seen to

possess an asymptotic expansion in large N , each of whose coefficients posses-

ses a Laurent expansion in large z:

Z ˇCı

˛�ı

�
.1/
N
.�/

z��
d��

1
X

gD0

N �2g Pg.z/: (3-11)

We note that the terms Pg.z/ are independent of the parameter ı. Combining

(3-6) and (2-4) we see that

Pg.z/D
d

dV
eg.t/D

d

dV .�C1/
eg.t/D�

�
X

jD0

1

zjC1

deg.t/

dtj
: (3-12)

Inserting (3-11) into the loop equation generating function (3-10) yields the

hierarchy of loop equations:

1

2� i

I

C

V 0.x/

z�x
Pg.x/ dx D�

d

dV
Pg�1.z/�

g
X

g0
D0

Pg0.z/Pg�g0.z/;

1

2� i

I

C

.V 0.x/� 2P0.x//

z�x
Pg.x/ dx D�

d

dV
Pg�1.z/�

g�1
X

g0
D1

Pg0.z/Pg�g0.z/;

1

2� i

I

C

 .x/

x� z
Pg.x/ dx D

d

dV
Pg�1.z/C

g�1
X

g0
D1

Pg0.z/Pg�g0.z/;

(3-13)

where the transition to the final recursion formula is mediated by the identity

(1-9):

2� i .x/D V 0.x/� 2

Z

1

�1

 .�/

x��
d�D V 0.x/� 2P0.x/ (3-14)

where  .x/ here is interpreted as the analytic extension of the density for the

equilibrium measure off of the slit Œ˛; ˇ� as given by (1-8).
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With this result in hand it is now possible to consider a recursive derivation

of the terms Pg starting with P0 as given by (3-14). These terms are related to

the map enumeration generating functions, eg.t/, through (3-12). In the physics

literature there are instances in which loop equations are used to formally derive

expressions for some of the eg. In particular, we refer the reader to [Ambjørn

et al. 1993].

A natural application of our derivation of (3-13) would be to the derivation

of closed form expressions for eg.t/ which extend our results in [Ercolani,

McLaughlin and Pierce 2006] for potentials V depending only on a single

nonzero time t2� . We may also be able to use these equations to say some-

thing about the general qualitative and asymptotic behavior of the eg. Finally,

the Pg.z; t/ contain information about the large N asymptotic behavior of the

matrix moments, such as (1-2), which could be used to explore whether or not

the general unitary ensembles are asymptotically free.
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ABSTRACT. The Vlasov equation for the collisionless evolution of the single-

particle probability distribution function (PDF) is a well-known example of

coadjoint motion. Remarkably, the property of coadjoint motion survives the

process of taking moments. That is, the evolution of the moments of the Vlasov

PDF is also a form of coadjoint motion. We find that geodesic coadjoint motion

of the Vlasov moments with respect to powers of the single-particle momen-

tum admits singular (weak) solutions concentrated on embedded subspaces of

physical space. The motion and interactions of these embedded subspaces are

governed by canonical Hamiltonian equations for their geodesic evolution.

1. Introduction

The Vlasov equation. The evolution of N identical particles in phase space

with coordinates .qi ;pi/ i D 1; 2; : : : ;N , may be described by an evolution

equation for their joint probability distribution function. Integrating over all

but one of the particle phase-space coordinates yields an evolution equation for

the single-particle probability distribution function (PDF). This is the Vlasov

equation.

The solutions of the Vlasov equation reflect its heritage in particle dynamics,

which may be reclaimed by writing its many-particle PDF as a product of delta

functions in phase space. Any number of these delta functions may be integrated

out until all that remains is the dynamics of a single particle in the collective field

of the others. In plasma physics, this collective field generates the total elec-

tromagnetic properties and the self-consistent equations obeyed by the single

199
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particle PDF are the Vlasov–Maxwell equations. In the electrostatic approxima-

tion, these become the Vlasov–Poisson equations, which govern the statistical

distributions of particle systems ranging from integrated circuits (MOSFETS,

metal-oxide semiconductor field-effect transistors), to charged-particle beams,

to the distribution of galaxies in the Universe.

A class of singular solutions of the VP equations called the “cold plasma” so-

lutions have a particularly beautiful experimental realization in the Malmberg–

Penning trap. In this experiment, the time average of the vertical motion closely

parallels the Euler fluid equations. In fact, the cold plasma singular Vlasov–

Poisson solution turns out to obey the equations of point-vortex dynamics in

an incompressible ideal flow. This coincidence allows the discrete arrays of

“vortex crystals” envisioned by J. J. Thomson for fluid vortices to be realized

experimentally as solutions of the Vlasov–Poisson equations. For a survey of

these experimental cold-plasma results see [Dubin and O’Neil 1990].

Vlasov moments. The Euler fluid equations arise by imposing a closure rela-

tion on the first three momentum moments, or p-moments of the Vlasov PDF

f .p; q; t/. The zeroth p-moment is the spatial density of particles. The first

p-moment is the mean momentum and its ratio with the zeroth p-moment is the

Eulerian fluid velocity. Introducing an expression for the fluid pressure in terms

of the density and velocity closes the system of p-moment equations, which

otherwise would possess a countably infinite number of dependent variables.

The operation of taking p-moments preserves the geometric nature of Vlasov’s

equation. It’s closure after the first p-moment results in Euler’s useful and beau-

tiful theory of ideal fluids. As its primary geometric characteristic, Euler’s fluid

theory represents fluid flow as Hamiltonian geodesic motion on the space of

smooth invertible maps acting on the flow domain and possessing smooth in-

verses. These smooth maps (called diffeomorphisms) act on the fluid reference

configuration so as to move the fluid particles around in their container. And

their smooth inverses recall the initial reference configuration (or label) for the

fluid particle currently occupying any given position in space. Thus, the motion

of all the fluid particles in a container is represented as a time-dependent curve

in the infinite-dimensional group of diffeomorphisms. Moreover, this curve

describing the sequential actions of the diffeomorphisms on the fluid domain

is a special optimal curve that distills the fluid motion into a single statement.

Namely, “A fluid moves to get out of its own way as efficiently as possible.”

Put more mathematically, fluid flow occurs along a curve in the diffeomorphism

group which is a geodesic with respect to the metric on its tangent space supplied

by its kinetic energy.

Given the beauty and utility of the solution behavior for Euler’s equation

for the first p-moment, one is intrigued to know more about the dynamics of
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the other moments of Vlasov’s equation. Of course, the dynamics of the p-

moments of the Vlasov–Poisson equation is one of the mainstream subjects of

plasma physics and space physics.

Summary. This paper formulates the problem of Vlasov p-moments governed

by quadratic Hamiltonians. This dynamics is a certain type of geodesic motion

on the symplectomorphisms, rather than the diffeomorphisms. The symplecto-

morphisms are smooth invertible maps acting on the phase space and possess-

ing smooth inverses. We shall consider the singular solutions of the geodesic

dynamics of the Vlasov p-moments. Remarkably, these equations turn out to

be related to integrable systems governing shallow water wave theory. In fact,

when the Vlasov p-moment equations for geodesic motion on the symplecto-

morphisms are closed at the level of the first p-moment, their singular solutions

are found to recover the peaked soliton of the integrable Camassa–Holm equa-

tion for shallow water waves [Camassa and Holm 1993].

Thus, geodesic symplectic dynamics of the Vlasov p-moments is found to

possess singular solutions whose closure at the fluid level recovers the peakon

solutions of shallow water theory. Being solitons, the peakons superpose and

undergo elastic collisions in fully nonlinear interactions. The singular solutions

for Vlasov p-moments presented here also superpose and interact nonlinearly

as coherent structures.

The plan of the paper follows:

Section 2 defines the Vlasov p-moment equations and formulates them as

Hamiltonian system using the Kupershmidt–Manin Lie–Poisson bracket. This

formulation identifies the p-moment equations as coadjoint motion under the

action of a Lie algebra g on its dual Lie algebra g�, in any number of spatial

dimensions.

Section 3 derives variational formulations of the p-moment dynamics in both

their Lagrangian and Hamiltonian forms.

Section 4 formulates the problem of geodesic motion on the symplectomor-

phisms in terms of the Vlasov p-moments and identifies the singular solutions of

this problem, whose support is concentrated on delta functions in position space.

In a special case, the truncation of geodesic symplectic motion to geodesic dif-

feomorphic motion for the first p-moment recovers the singular solutions of the

Camassa–Holm equation.

Section 5 discusses how the singular p-moment solutions for geodesic sym-

plectic motion are related to the cold plasma solutions. By symmetry under

exchange of canonical momentum p and position q, the Vlasov q-moments are

also found to admit singular (weak) solutions.
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2. Vlasov moment dynamics

The Vlasov equation may be expressed as

@f

@t
D
h

f;
ıh

ıf

i

D
@f

@p

@

@q

ıh

ıf
�
@f

@q

@

@p

ıh

ıf
DW � ad�

ıh=ıf f: (2-1)

Here the canonical Poisson bracket Œ � ; � � is defined for smooth functions on

phase space with coordinates .q;p/ and f .q;p; t/ is the evolving Vlasov single-

particle distribution function. The variational derivative ıh=ıf is the single

particle Hamiltonian.

A functional gŒf � of the Vlasov distribution f evolves according to

dg

dt
D

“

ıg

ıf

@f

@t
dq dp D

“

ıg

ıf

h

f;
ıh

ıf

i

dq dp

D�

“

f
hıg

ıf
;
ıh

ıf

i

dq dp DW �
DD

f;
hıg

ıf
;
ıh

ıf

iEE

DW fg; h g

In this calculation boundary terms are neglected upon integrating by parts and

the notation hh � ; � ii is introduced for the L2 pairing in phase space. The quantity

fg; h g defined in terms of this pairing is the Lie–Poisson Vlasov (LPV) bracket

[Morrison 1980]. This Hamiltonian evolution equation may also be expressed

as
dg

dt
D fg; h g D

DD

f; ad ıh=ıf
ıg

ıf

EE

D�
DD

ad�

ıh=ıf f;
ıg

ıf

EE

which defines the Lie-algebraic operations ad and ad� in this case in terms of

the L2 pairing on phase space hh � ; � ii: s��s‘R. Thus, the notation ad�

ıh=ıf f

in (2-1) expresses coadjoint action of ıh=ıf 2 s on f 2 s�, where s is the Lie

algebra of single particle Hamiltonian vector fields and s� is its dual under L2

pairing in phase space. This is the sense in which the Vlasov equation represents

coadjoint motion on the symplectomorphisms.

2.1. Dynamics of Vlasov q;p-moments. The phase space q;p-moments of

the Vlasov distribution function are defined by

g
Omm D

“

f .q;p/ q Ompm dq dp:

The q;p-moments g
Omm are often used in treating the collisionless dynamics of

plasmas and particle beams [Dragt et al. 1990]. This is usually done by con-

sidering low order truncations of the potentially infinite sum over phase space

moments,

g D

1
X

Om;mD0

a
Ommg

Om;m; hD

1
X

On;nD0

b
Onng

On;n;
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with constants a
Omm and b

Onn, with Om;m; On; nD0; 1; : : : . If h is the Hamiltonian,

the sum over q;p-moments g evolves under the Vlasov dynamics according to

the Poisson bracket relation

dg

dt
D fg; h g D

1
X

Om;m; On;nD0

a
Ommb

Onn. Omm� Onn/g
OmCOn�1;mCn�1:

This Poisson bracket may be identified with the smooth Hamiltonian vector

fields on p and q, by invoking the standard Lie-algebra antihomomorphism

XH D f � ;H g;

for any function H.p; q/, then noticing that the q;p-moments are linear func-

tionals of the canonical variables. The symplectic invariants associated with

Hamiltonian flows of the q;p-moments were discovered and classified in [Holm

et al. 1990].

2.2. Dynamics of Vlasov p-moments. The momentum moments, or “p-

moments,” of the Vlasov function are defined as

Am.q; t/D

Z

pm f .q;p; t/ dp; mD 0; 1; : : : :

That is, the p-moments are q-dependent integrals over p of the product of pow-

ers pm, m D 0; 1; : : : , times the Vlasov solution f .q;p; t/. We shall consider

functionals of these p-moments defined by

g D

1
X

mD0

“

˛m.q/pm f dq dp D

1
X

mD0

Z

˛m.q/Am.q/ dq DW

1
X

mD0

˝

Am; ˛m

˛

;

hD

1
X

nD0

“

ˇn.q/pn f dq dp D

1
X

nD0

Z

ˇn.q/An.q/ dq DW

1
X

nD0

˝

An; ˇn

˛

;

where h � ; � i is the L2 pairing on position space.

The functions ˛m and ˇn with m; n D 0; 1; : : : are assumed to be suitably

smooth and integrable against the Vlasov p-moments. To assure these prop-

erties, one may relate the p-moments to the previous sums of Vlasov q;p-

moments by choosing

˛m.q/D

1
X

OmD0

a
Ommq Om; ˇn.q/D

1
X

OnD0

b
Onnq On:

For these choices of ˛m.q/ and ˇn.q/, the sums of p-moments will recover

the full set of Vlasov .q;p/-moments. Thus, as long as the q;p-moments of

the distribution f .q;p/ continue to exist under the Vlasov evolution, one may

assume that the dual variables ˛m.q/ and ˇn.q/ are smooth functions whose
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Taylor series expands the p-moments in the q;p-moments. These functions are

dual to the p-moments Am.q/ with mD 0; 1; : : : under the L2 pairing h� ; �i in

the spatial variable q. In what follows we will assume homogeneous boundary

conditions. This means, for example, that we will ignore boundary terms arising

from integrations by parts.

2.3. Poisson bracket for Vlasov p-moments. The Poisson bracket among the

p-moments is obtained from the LPV bracket through explicit calculation:

fg; h g D �

1
X

m;nD0

“

f
�

˛m.q/pm; ˇn.q/pn
�

dq dp

D�

1
X

m;nD0

“

�

m˛mˇ
0

n
� nˇn˛

0

m

�

f pmCn�1 dq dp

D�

1
X

m;nD0

Z

AmCn�1.q/
�

m˛mˇ
0

n
� nˇn˛

0

m

�

dq

DW

1
X

m;nD0

˝

AmCn�1; adˇn
˛m

˛

D�

1
X

m;nD0

Z

�

nˇnA0

mCn�1
C .mC n/AmCn�1ˇ

0

n

�

˛m dq

DW �

1
X

m;nD0

˝

ad�

ˇn
AmCn�1; ˛m

˛

;

where we have integrated by parts and the symbols ad and ad� stand for the

adjoint and coadjoint actions. This is done by again invoking the Lie-algebra

antihomomorphism with the smooth Hamiltonian vector fields, since the smooth

functions ˛m.q/ and ˇn.q/ are assumed to possess convergent Taylor series.

Upon recalling the dual relations

˛m D
ıg

ıAm

and ˇn D
ıh

ıAn

the LPV bracket in terms of the p-moments may be expressed as

fg; h g.fAg/

D�

1
X

m;nD0

Z

ıg

ıAm

h

n
ıh

ıAn

@

@q
AmCn�1C .mC n/AmCn�1

@

@q

ıh

ıAn

i

dq

DW �

1
X

m;nD0

D

AmCn�1;
hh ıg

ıAm

;
ıh

ıAn

iiE

:
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This is the Kupershmidt–Manin Lie–Poisson (KMLP) bracket [Kupershmidt and

Manin 1978], which is defined for functions on the dual of the Lie algebra with

bracket

ŒŒ ˛m; ˇn ��Dm˛m@qˇn� nˇn@q˛m:

This Lie algebra bracket inherits the Jacobi identity from its definition in terms

of the canonical Hamiltonian vector fields. Thus, we have shown:

THEOREM 2.1 [Gibbons 1981]. The operation of taking p-moments of Vlasov

solutions is a Poisson map. It takes the LPV bracket describing the evolution

of f .q;p/ into the KMLP bracket, describing the evolution of the p-moments

An.x/.

REMARK 2.2. A result related to theorem 2.1 for the Benney hierarchy [Benney

1966] was also noted by Lebedev and Manin [Lebedev and Manin 1979].

The evolution of a particular p-moment Am.q; t/ is obtained from the KMLP

bracket by

@Am

@t
D fAm; h g D �

1
X

nD0

�

n
ıh

ıAn

@

@q
AmCn�1C .mC n/AmCn�1

@

@q

ıh

ıAn

�

:

The KMLP bracket among the p-moments is given by

fAm; An g D �n
@

@q
AmCn�1�mAmCn�1

@

@q
;

expressed as a differential operator acting to the right. This operation is skew-

symmetric under the L2 pairing and the general KMLP bracket can then be

written as (see [Gibbons 1981])

fg; h g . fAg/D

1
X

m;nD0

Z

ıg

ıAm

fAm; An g
ıh

ıAn

dq;

so that

@Am

@t
D

1
X

nD0

fAm; An g
ıh

ıAn

:

2.4. Multidimensional treatment. We now show that the KMLP bracket and

the equations of motion may be written in three dimensions in multi-index no-

tation. By writing p
2nC1 D p2n

p, and checking that

p2n D
X

iCjCkDn

n!

i !j !k!
p2i

1
p

2j

2
p2k

3
;
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it is easy to see that the multidimensional treatment can be performed in terms

of the quantities

p� DW p
�1

1
p
�2

2
p
�3

3
;

where � 2 N
3. Let A� be defined as

A� .q; t/DW

Z

p�f .q;p; t/ dp

and consider functionals of the form

g D
X

�

“

˛� .q/p�f .q;p; t/ dq dp DW
X

�2N3

hA� ; ˛� i ;
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X
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˝
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˛

:

With the notation

1j WD .0; :::; 1:::; 0/ (1 in j -th position);

so that
�

1j

�

i
D ıji . the ordinary LPV bracket leads to
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where the sum extends to all �; � 2 N
3.
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The LPV bracket in terms of the p-moments may then be written as

@A�

@t
D�

X

�2N3

X

j
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ad�

ıh=ıA�

�

j
A�C�C1j

where the Lie bracket is now expressed as

��

ıg

ıA�
;
ıh

ıA�

��

j

D �j˛�
@

@qj

ıh

ıA�
� �jˇ�

@

@qj

ıg

ıA�
:

Moreover the evolution of a particular p-moment A� is obtained by
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and the KMLP bracket among the multidimensional p-moments is given in by
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Inserting the previous operator in this multidimensional KMLP bracket yields

fg; hg .fAg/D
X

�;�

Z
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ıA�
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A� ;A�
	 ıh
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dq;

and the corresponding evolution equation becomes
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˚

A� ;A�
	 ıh

ıA�
:

Thus, in multi-index notation, the form of the Hamiltonian evolution under the

KMLP bracket is essentially unchanged in going to higher dimensions.

2.5. Applications of the KMLP bracket. The KMLP bracket was derived in

the context of Benney long waves, whose Hamiltonian is

H2 D
1

2
.A2CA2

0
/:

This leads to the moment equations

@An

@t
C
@AnC1

@q
C nAn�1

@A0

@q
D 0

derived by Benney [1966] as a description of long waves on a shallow perfect

fluid, with a free surface at yDh.q; t/. In his interpretation, the An were vertical
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moments of the horizontal component of the velocity p.q;y; t/:

An D

Z

h

yD0

p.q;y; t/n dy:

The corresponding system of evolution equations for p.q;y; t/ and h.q; t/ is

related by the hodograph transformation, yD
R

p

�1
f .q;p0; t/ dp0, to the Vlasov

equation
@f

@t
Cp

@f

@q
�
@A0

@q

@f

@p
D 0:

The most important fact about the Benney hierarchy is that it is completely

integrable. This fact emerges from the following observation. Upon defining a

function �.q;p; t/ by the principal value integral,

�.q;p; t/D pCP

Z

1

�1

f .q;p0; t/

p�p0
dp0;

it is straightforward to verify [Lebedev and Manin 1979] that

@�

@t
Cp

@�

@q
�
@A0

@q

@�

@p
D 0I

so that f and � are advected along the same characteristics.

In higher dimensions, particularly nD 3, we may take the direct sum of the

KMLP bracket, together with the Poisson bracket for an electromagnetic field

(in the Coulomb gauge) where the electric field E and magnetic vector potential

A are canonically conjugate; then the Hamiltonian

HM V D

“

�

1

2m
jp� eAj2

�

f .p; q/ dn
p dn

q

C

Z
�

1

2
jE j2C

1

4

n
X

iD1

n
X

jD1

.Ai;j �Aj ;i/
2

�

dn
q

yields the Maxwell–Vlasov (MV) equations for systems of interacting charged

particles. For a discussion of the MV equations from a geometric viewpoint in

the same spirit as the present approach, see [Cendra et al. 1998]. For discussions

of the Lie-algebraic approach to the control and steering of charged particle

beams, see [Dragt et al. 1990].

3. Variational principles and Hamilton–Poincaré formulation

In this section we show how the p-moment dynamics can be derived from

Hamilton’s principle both in the Hamilton–Poincaré and Euler–Poincaré forms.

These variational principles are defined , respectively, on the dual Lie algebra

g� containing the moments, and on the Lie algebra g itself. For further details
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about these dual variational formulations, see [Cendra et al. 2003] and [Holm

et al. 1998]. Summation over repeated indices is intended in this section.

3.1. Hamilton–Poincaré hierarchy. We begin with the Hamilton–Poincaré

principle for the p-moments written as

ı

Z

tj

ti

dt
�

hAn; ˇni �H .fAg/
�

D 0

(where ˇn 2 g). We shall prove that this leads to the same dynamics as found

in the context of the KMLP bracket. To this purpose, we must define the n-th

p-moment in terms of the Vlasov distribution function. We check that

0D ı

Z

tj

ti

dt
�

hAn; ˇni �H .fAg/
�

D

Z

tj

ti

dt

�

ı
˝̋

f;pnˇn

˛̨

�

��

ıf;
ıH

ıf

���

D

Z

tj

ti

dt

���

ıf;

�

pnˇn�
ıH

ıf

���

C
˝̋

f; ı
�

pnˇn

�˛̨

�

:

Now recall that any g D ıG=ıf belonging to the Lie algebra s of the sym-

plectomorphisms (which also contains the distribution function itself) may be

expressed as

g D
ıG

ıf
D pm

ıG

ıAm

D pm�m ;

by the chain rule. Consequently, one finds the pairing relationship

��

ıf;

�

pnˇn�
ıH

ıf

���

D

�

ıAn;

�

ˇn�
ıH

ıAn

��

:

Next, recall from the general theory that variations on a Lie group induce vari-

ations on its Lie algebra of the form

ıw D PuC Œg;u�

where u; w 2 s and u vanishes at the endpoints. Writing uD pm�m then yields

Z

tj

ti

dt
˝̋

f; ı
�

pnˇn

�˛̨

D

Z

tj

ti

dt
˝̋

f;
�

PuC
�

pnˇn;u
��˛̨

D�

Z

tj

ti

dt
�

h PAm; �mi �
˝

AnCm�1; ŒŒˇn; �m��
˛

�

D�

Z

tj

ti

dt
D

�

PAmC ad�

ˇn
AmCn�1

�

; �m

E

:
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Consequently, the Hamilton–Poincaré principle may be written entirely in terms

of the moments as

ıS D

Z

tj

ti

dt

��

ıAn;

�

ˇn�
ıH

ıAn

��

�
D

�

PAmC ad�

ˇn
AmCn�1

�

; �m

E

�

D 0:

This expression produces the inverse Legendre transform

ˇn D
ıH

ıAn

(holding for hyperregular Hamiltonians). It also yields the equations of motion

@Am

@t
D�ad�

ˇn
AmCn�1;

which are valid for arbitrary variations ıAm and variations ıˇm of the form

ıˇm D P�mC adˇn
�m�nC1;

where the variations �m satisfy vanishing endpoint conditions,

�mjtDti
D �mjtDtj

D 0:

Thus, the Hamilton–Poincaré variational principle recovers the hierarchy of the

evolution equations derived in the previous section using the KMLP bracket.

3.2. Euler–Poincaré hierarchy. The corresponding Lagrangian formulation of

the Hamilton’s principle now yields

ı

Z

tj

ti

L .fˇg/ dt D

Z

tj

ti

�

ıL

ıˇm

; ıˇm

�

dt

D

Z

tj

ti

�

ıL

ıˇm

;
�

P�mC adˇn
�m�nC1

�

�

dt

D�

Z

tj

ti

��

@

@t

ıL

ıˇm

; �m

�

C

�

ad�

ˇn

ıL

ıˇm

; �m�nC1

��

dt

D�

Z

tj

ti

��

@

@t

ıL

ıˇm

; �m

�

C

�

ad�

ˇn

ıL

ıˇmCn�1

; �m

��

dt

D�

Z

tj

ti

��

@

@t

ıL

ıˇm

C ad�

ˇn

ıL

ıˇmCn�1

�

; �m

�

dt;

upon using the expression previously found for the variations ıˇm and relabeling

indices appropriately. The Euler–Poincaré equations may then be written as

@

@t

ıL

ıˇm

C ad�

ˇn

ıL

ıˇmCn�1

D 0
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with the same constraints on the variations as in the previous paragraph. Apply-

ing the Legendre transformation

Am D
ıL

ı˛m

yields the Euler–Poincaré equations (for hyperregular Lagrangians). This again

leads to the same hierarchy of equations derived earlier using the KMLP bracket.

To summarize, the calculations in this section have proved this result:

THEOREM 3.1. With the above notation and hypotheses of hyperregularity the

following statements are equivalent:

(i) (The Euler–Poincaré variational principle.) The curves ˇn.t/ are critical

points of the action

ı

Z

tj

ti

L .fˇg/ dt D 0

for variations of the form

ıˇm D P�mC adˇn
�m�nC1;

in which �m vanishes at the endpoints

�mjtDti
D �mjtDtj

D 0

and the variations ıAn are arbitrary.

(ii) (The Lie–Poisson variational principle.) The curves .ˇn;An/ .t/ are criti-

cal points of the action

ı

Z

tj

ti

�

hAn; ˇni �H .fAg/
�

dt D 0

for variations of the form

ıˇm D P�mC adˇn
�m�nC1;

where �m satisfies endpoint conditions

�mjtDti
D �mjtDtj

D 0

and the variations ıAn are arbitrary.

(iii) The Euler–Poincaré equations hold:

@

@t

ıL

ıˇm

C ad�

ˇn

ıL

ıˇmCn�1

D 0:

(iv) The Lie–Poisson equations hold:

PAm D�ad�

ıH=ıAn
AmCn�1:
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For further details on the proof of this theorem we direct the reader to [Cendra

et al. 2003]. An analogous result is also valid in the multidimensional case with

slight modifications.

4. Quadratic Hamiltonians

4.1. Geodesic motion. We shall consider the problem of geodesic motion on

the space of p-moments. For this, we define the Hamiltonian as the norm on

the p-moment given by the following metric and inner product,

hD 1

2
kAk2D1

2

1
X

n;sD0

“

An.q/Gns.q; q
0/As.q

0/ dq dq0 (4-1)

The metric Gns.q; q
0/ is chosen to be positive definite, so it defines a norm for

fAg 2 g�. The corresponding geodesic equation with respect to this norm is

found as in the previous section to be

@Am

@t
DfAm; h gD�

1
X

nD0

�

nˇn

@

@q
AmCn�1C.mCn/AmCn�1

@

@q
ˇn

�

; (4-2)

with dual variables ˇn 2 g defined by

ˇn D
ıh

ıAn

D

1
X

sD0

Z

Gns.q; q
0/As.q

0/ dq0 D

1
X

sD0

Gns �As: (4-3)

Thus, evolution under (4-2) may be rewritten formally as (infinitesimal) coad-

joint motion on g�

@Am

@t
D fAm; h g DW �

1
X

nD0

ad�

ˇn
AmCn�1: (4-4)

The explicit identification of coAdjoint motion by the full group action on the

dual Lie algebra is left for a future study. This system comprises an infinite sys-

tem of nonlinear, nonlocal, coupled evolutionary equations for the p-moments.

In this system, evolution of the m-th moment is governed by the potentially

infinite sum of contributions of the velocities ˇn associated with n-th moment

sweeping the .mCn�1/-th moment by coadjoint action. Moreover, by equation

(4-3), each of the ˇn potentially depends nonlocally on all of the moments.

Equations (4-1) and (4-3) may be written in three dimensions in multi-index

notation, as follows: the Hamiltonian is given by

hD 1

2
kAk2 D 1

2

X

�;�

“

A� .q; t/G��
�

q; q
0
�

A�
�

q
0; t
�

dqdq
0
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so the dual variable is written as

ˇ� D
ıh

ıA�
D
X

�

“

G��
�

q; q
0
�

A�
�

q
0; t
�

dqdq
0 D

X

�

G�� �A� :

4.2. Singular geodesic solutions. Remarkably, in any number of spatial dimen-

sions, the geodesic equation (4-2) possesses exact solutions which are singular;

that is, they are supported on delta functions in q-space.

THEOREM 4.1 (SINGULAR SOLUTION ANSATZ FOR GEODESIC FLOWS OF

VLASOV p-MOMENTS). Equation (4-2) admits singular solutions of the form

A� .q; t/D

N
X

jD1

Z

P�
j
.q; t; aj / ı

�

q �Qj .t; aj /
�

daj ; (4-5)

in which the integrals over coordinates aj are performed over N embedded

subspaces of the q-space and the parameters .Qj ;Pj / satisfy canonical Hamil-

tonian equations in which the Hamiltonian is the norm h in (4-1) evaluated on

the singular solution Ansatz (4-5).

In one dimension, the coordinates aj are absent and the singular solutions in

(4-5) reduce to

As.q; t/D

N
X

jD1

P s

j
.q; t/ ı

�

q�Qj .t/
�

: (4-6)

In order to show this is a solution in one dimension, one checks that these sin-

gular solutions satisfy a system of partial differential equations in Hamiltonian

form, whose Hamiltonian couples all the moments

HN D
1

2

1
X

n;sD0

N
X

j ;kD1

P s

j
.Qj .t/; t/P

n

k
.Qk.t/; t/Gns.Qj .t/;Qk.t//:

One forms the pairing of the coadjoint equation

PAm D�
X

n;s

ad�

Gns�As
AmCn�1

with a sequence of smooth functions f'm .q/g, so that

h PAm; 'mi D
X

n;s

˝

AmCn�1; adGns�As
'm

˛
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One expands each term and denotes zPj .t/ WD Pj .Qj ; t/:

h PAm; 'mi D
X

j

Z

dq 'm .q/
@

@t

�

P m

j
.q; t/ı.q�Qj /

�

D
X

j

Z

dq'm.q/

�

ı.q�Qj /
@P m

j

@t
�P m

j
PQjı

0.q�Qj /

�

D
X

j

�

d zP m

j

dt
'm.Qj /C zP

m

j
PQj'

0

m
.Qj /

�

Similarly, expanding

˝

AmCn�1; adGns�As
'm

˛

D
X

j ;k

Z

dq zP s

k
P mCn�1

j
ı.q�Qj /

�

n'0

m
Gns.q;Qk/�m'm

@Gns.q;Qk/

@q

�

D
X

j ;k

zP s

k
zP mCn�1

j

�

n'0

m
.Qj /Gns.Qj ;Qk/�m'm.Qj /

@Gns.Qj ;Qk/

@Qj

�

leads to

zP m

j

dQj

dt
D
X

n;s

X

k

n zP s

k
zP mCn�1

j
Gns.Qj ;Qk/;

d zP m

j

dt
D�m

X

n;s

X

k

zP s

k
zP mCn�1

j

@Gns.Qj ;Qk/

@Qj

;

so we finally obtain equations for Qj and zPj in canonical form,

dQj

dt
D
@HN

@ zPj

;
d zPj

dt
D�

@HN

@Qj

:

Remark about higher dimensions. The singular solutions (4-5) with the in-

tegrals over coordinates aj exist in higher dimensions. The higher dimensional

singular solutions satisfy a system of canonical Hamiltonian integral-partial dif-

ferential equations, instead of ordinary differential equations.

5. Discussion

5.1. Remarks about EPSymp and connections with EPDiff. Importantly,

geodesic motion for the p-moments is equivalent to geodesic motion for the

Euler–Poincaré equations on the symplectomorphisms (EPSymp) given by the
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Hamiltonian

H Œf �D
1

2

“

f .q;p; t/G
�

q;p; q0;p0
�

f
�

q0;p0; t
�

dq dp dq0dp0 (5-1)

The equivalence with EPSymp emerges when the function G is written as

G
�

q; q0;p;p0
�

D
X

n;m

pnGnm

�

q; q0
�

p0 m:

Thus, whenever the metric G for EPSymp has a Taylor series, its solutions may

be expressed in terms of the geodesic motion for the p-moments.

Moreover the distribution function corresponding to the singular solutions for

the moments is a particular case of the cold-plasma approximation, given by

f .q;p; t/D
X

j

�j .q; t/ ı.p�Pj .q; t//;

where in our case a summation is introduced and � is written as a Lagrangian

particle-like density: �j .q; t/D ı.q�Qj .t//.

To check this is a solution for the geodesic motion of the generating function,

one repeats exactly the same procedure as for the moments, in order to find the

Hamiltonian equations

dQj

dt
D

@

@ zPj

ıH

ıf
.Qj ; zPj /;

d zPj

dt
D

@

@Qj

ıH

ıf
.Qj ; zPj /

where zPj D Pj ıQj denotes the composition of the two functions Pj and Qj .

This recovers single particle motion for density �j defined on a delta function.

As we shall show, these singular solutions of EPSymp are also solutions of

the Euler–Poincaré equations on the diffeomorphisms (EPDiff), provided one

truncates to consider only first order moments [Holm and Marsden 2005]. With

this truncation, the singular solutions in the case of single-particle dynamics

reduce in one dimension to the pulson solutions for EPDiff [Camassa and Holm

1993].

5.2. Exchanging variables in EPSymp. One can show that exchanging the

variables q$ p in the single particle PDF leads to another nontrivial singular

solution of EPSymp, which is different from those found previously. To see this,

let f be given by

f .q;p; t/D
X

j

ı.q�Qj .p; t// ı.p�Pj .t//:

At this stage nothing has changed with respect to the previous solution since the

generating function is symmetric with respect to q and p. However, inserting
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this expression in the definition of the m-th moment yields

Am.q; t/D
X

j

P m

j
ı.q�Qj .Pj ; t//;

which is quite different from the solutions found previously. One again obtains

a canonical Hamiltonian structure for Pj and Qj .

This second expression is an alternative parametrisation of the cold-plasma

reduction above and it may be useful in situations where the composition Qj ıPj

is more convenient than Pj ıQj .

5.3. Remarks about truncations. The problem presented by the coadjoint

motion equation (4-4) for geodesic evolution of p-moments under EPDiff needs

further simplification. One simplification would be to modify the (doubly) in-

finite set of equations in (4-4) by truncating the Poisson bracket to a finite set.

These moment dynamics may be truncated at any stage by modifying the Lie-

algebra in the KMLP bracket to vanish for weights mC n � 1 greater than a

chosen cut-off value.

5.4. Examples of simplifying truncations and specializations. For example,

if we truncate the sums to m; nD 0; 1; 2 only, then equation (4-4) produces the

coupled system of partial differential equations

@A0

@t
D�ad�

ˇ1
A0� ad�

ˇ2
A1;

@A1

@t
D�ad�

ˇ0
A0� ad�

ˇ1
A1� ad�

ˇ2
A2;

@A2

@t
D�ad�

ˇ0
A1� ad�

ˇ1
A2:

Expanding now the expression of the coadjoint operation

ad�

ˇh
AkCh�1 D .kC h/AkCh�1@qˇhC hˇh@qAkCh�1

and relabeling

ad�

ˇh
Ak D .kC 1/Ak@qˇhC hˇh@qAk

one calculates

@A0

@t
D�@q .A0ˇ1/� 2A1@qˇ2� 2ˇ2@qA1;

@A1

@t
D�A0@qˇ0� 2A1@qˇ1�ˇ1@qA1� 3A2@qˇ2� 2ˇ2@qA2;

@A2

@t
D�2A1@qˇ0� 3A2@qˇ1�ˇ1@qA2:



SINGULAR SOLUTIONS FOR GEODESIC FLOWS OF VLASOV MOMENTS 217

We specialize to the case that each velocity depends only on its corresponding

moment, so that ˇs DG �As , sD 0; 1; 2. If we further specialize by setting A0

and A2 initially to zero, then these three equations reduce to the single equation

@A1

@t
D�ˇ1 @qA1� 2A1 @qˇ1:

Finally, if we assume that G in the convolution ˇ1 D G � A1 is the Green’s

function for the operator relation

A1 D .1�˛
2@2

q
/ˇ1

for a constant lengthscale ˛, then the evolution equation for A1 reduces to the

integrable Camassa–Holm (CH) equation [1993] in the absence of linear disper-

sion. This is the one-dimensional EPDiff equation, which has singular (peakon)

solutions. Thus, after these various specializations of the EPDiff p-moment

equations, one finds the integrable CH peakon equation as a specialization of

the coadjoint moment dynamics of equation (4-4).

That such a strong restriction of the p-moment system leads to such an in-

teresting special case bodes well for future investigations of the EPSymp p-

moment equations. Further specializations and truncations of these equations

will be explored elsewhere. Before closing, we mention one or two other open

questions about the solution behavior of the p-moments of EPSymp.

6. Open questions for future work

Several open questions remain for future work. The first is whether the singu-

lar solutions found here will emerge spontaneously in EPSymp dynamics from

a smooth initial Vlasov PDF. This spontaneous emergence of the singular solu-

tions does occur for EPDiff. Namely, one sees the singular solutions of EPDiff

emerging from any confined initial distribution of the dual variable. (The dual

variable is fluid velocity in the case of EPDiff). In fact, integrability of EPDiff in

one dimension by the inverse scattering transform shows that only the singular

solutions (peakons) are allowed to emerge from any confined initial distribu-

tion in that case [Camassa and Holm 1993]. In higher dimensions, numerical

simulations of EPDiff show that again only the singular solutions emerge from

confined initial distributions. In contrast, the point vortex solutions of Euler’s

fluid equations (which are isomorphic to the cold plasma singular solutions of

the Vlasov Poisson equation) while comprising an invariant manifold of sin-

gular solutions, do not spontaneously emerge from smooth initial conditions in

Euler fluid dynamics. Nonetheless, something quite analogous to the singular

solutions is seen experimentally for cold plasma in a Malmberg–Penning trap

[Dubin and O’Neil 1990]. Therefore, one may ask which outcome will prevail
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for the singular solutions of EPSymp. Will they emerge from a confined smooth

initial distribution, or will they only exist as an invariant manifold for special

initial conditions? Of course, the interactions of these singular solutions for

various metrics and the properties of their collective dynamics is a question for

future work.

Geometric questions also remain to be addressed. In geometric fluid dy-

namics, Arnold and Khesin [1998] formulate the problem of symplectohydro-

dynamics, the symplectic counterpart of ordinary ideal hydrodynamics on the

special diffeomorphisms SDiff. In this regard, the work of Eliashberg and Ratiu

[1991] showed that dynamics on the symplectic group radically differs from

ordinary hydrodynamics, mainly because the diameter of Symp(M ) is infinite,

whenever M is a compact exact symplectic manifold with a boundary. Of

course, the presence of boundaries is important in fluid dynamics. However,

generalizing a result by Shnirelman [1985], Arnold and Khesin point out that the

diameter of SDiff(M ) is finite for any compact simply connected Riemannian

manifold M of dimension greater than two.

In the case under discussion here, the situation again differs from that en-

visioned by Eliashberg and Ratiu. The EPSymp Hamiltonian (5-1) determines

geodesic motion on Symp(T �
R

3), which may be regarded as the restriction

of the Diff(T �
R

3) group, so that the Liouville volume is preserved. The main

difference in our case is that M DT �
R

3 is not compact, so one of the conditions

for the Eliashberg–Ratiu result does not hold. Thus, one may ask, what are the

geometric properties of Symp acting on a symplectic manifold which is not com-

pact? What remarkable differences if any remain to be found between Symp and

SDiff in such a situation? Another intriguing possibility is that some relation of

the work here may be found with the work of Bloch et al. on integrable geodesic

flows on the symplectic group [Bloch et al. 2005]. A final question of interest is

whether the present work might be linked with the Lie algebra structure of the

BBGKY hierarchy [Marsden et al. 1984].

Yet another interesting case occurs when the particles undergoing Vlasov dy-

namics are confined in a certain region of position space. In this situation, again

the phase space is not compact, since the momentum may be unlimited. The

dynamics on a bounded spatial domain descends from that on the unbounded

cotangent bundle upon taking the p-moments of the Hamiltonian vector field.

Thus, in this topological sense p-moments and q-moments are not equivalent.

In the present work, this distinction has been ignored by assuming either homo-

geneous or periodic boundary conditions.
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Reality problems in the soliton theory
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Dedicated to Henry McKean

ABSTRACT. This is a survey article dedicated mostly to the theory of real reg-

ular finite-gap (algebro-geometrical) periodic and quasiperiodic sine-Gordon

solutions. Long period this theory remained unfinished and ineffective, and

by that reason practically had no applications. Even for such simple physical

quantity as topological charge no formulas existed expressing it through in-

verse spectral data. A few years ago the present authors solved this problem

and made this theory effective. This article contains description of the history

and recent achievements. It describes also the reality problems for several

other fundamental soliton systems.

1. Introduction

The most powerful method for constructing explicit periodic and quasiperi-

odic solutions of soliton equations is based on the finite-gap or algebro-geo-

metric approach, developed by Novikov [1974], Dubrovin et al. [1976b], Its

and Matveev [1975], Lax [1975], and McKean and van Moerbeke [1975] for

1C 1 systems, and extended by Krichever in 1976 for 2C 1 systems like KP.

Already in 1976 new ideas were formulated on how to extend this approach to

the 2C 1 systems associated with the spectral theory of the 2D Schrödinger

operator restricted to one energy level; see [Manakov 1976; Dubrovin et al.

1976a]. These ideas were developed in 1980s by several people in Moscow’s

Novikov Seminar, as discussed see below. The “spectral data” characterizing

the associated Lax-type operators consist of a Riemann surface (spectral curve)

Petr Grinevich was supported by the RFBR grant 05-01-01032-a and by the grant NSh-4182.2006.1 of the

Presidential Council on Grants (Russia).
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equipped with a selected set of points (divisor of poles, infinities). In the finite

gap case this Riemann surface has finite genus, and the number of selected point

is also finite. The algebro-geometric approach in particular allows one to write

down explicit solutions in terms of the Riemann � functions.

In modern literature very often the problem is assumed to be more or less

completely solved if such formulas are derived. However, in some cases this

belief is too naive and does not correspond to the needs of real life. It is of-

ten necessary to select physically or geometrically relevant classes of solutions

corresponding to the source problem: for instance solutions satisfying certain

reality conditions, or regular solutions, or bounded solutions. Is this easy or

hard?

To reach this goal, the following problems must be solved.

� Problem 1. How to select solutions that are real for real .x; t/.

� Problem 2. How to select real nonsingular solutions.

� Problem 3. How to select periodic solutions with a given period (or quasi-

periodic solutions with a given group of quasiperiods).

REMARK. We call a solution nonsingular if it is nonsingular on the whole

real Abel torus. It should remain nonsingular under action of all (real) higher

flows from the corresponding integrable hierarchy. The generic x-direction is

normally ergodic in the Abel torus, so this definition is equivalent to the standard

one. However, for some specific values of constants of motion theoretically we

may have solutions, which are regular in the standard sense, but blow-up under

the action of the higher symmetries.

For some models like the Korteweg–de Vries equation (KdV), the defocusing

noninear Schrödinger equation (NLS) and the Kadomtsev–Petviashvili 2 (KP2)

equation, the selection of real and nonsingular solution is straightforward. But

for many other models such as KP1, the focusing NLS, the sine-Gordon equa-

tion (SG), and the inverse scattering transformation for the Schrödinger operator

based at one energy, the problem of selecting real solutions is difficult.

The theory of � functions is complicated and ineffective. The complexity is

hidden behind the simple notations in these formulas.

Our goal is to discuss in more detail the sine-Gordon equation

ut t �uxxC sin u.x; t/D 0: (1-1)

In the light-cone coordinates

x D 2.�C �/; t D 2.� � �/; (1-2)

it has the form

u�� D 4 sin u; uD u.�; �/: (1-3)
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According to our definition, the solution u.x; t/ is x-periodic with period T if

expfiug is x-periodic with that period. For the function u we have

u.xCT; t/D u.x; t/C 2�n; n 2 Z:

We call the quantity n the topological charge corresponding to the period T .

We call the ratio n=T the density of topological charge.

The density of topological charge can be naturally extended to all real generic

regular finite-gap (quasiperiodic) solutions. It is the most basic conservation law.

PROBLEM. Calculate the topological charge of real finite-gap solutions in terms

of spectral data.

We recall that the inverse scattering (spectral) data for the KdV and sine-Gordon

systems consist of a Riemann surface (spectral curve) � of finite genus g and a

collection of points (divisor) D D 1C � � �C g. (For the NLS and some other

systems number of poles may be different from genus.)

In the case of KdV or the finite-gap periodic Schrödinger operator LD�@2

x
C

u.x/, this surface � is hyperelliptic. In the case of the sine-Gordon equation

the surface is also hyperelliptic, �2 D �
Q2g

iD1
.�� �i/, with branching points

.0; �1; : : : ; �2g;1/. However the classes of admissible Riemann surfaces and

divisors for KdV and sine-Gordon are dramatically different, as we shall see

below.

The �-functional formulas for sine-Gordon were obtained in [Kozel and Kotl-

yarov 1976; Its and Kotlyarov 1976]. The reality problem remained unsolved.

Indeed, the class of admissible Riemann surfaces was found in these works; see

[Its and Kotlyarov 1976]. The nonzero finite branching points .�1; : : : ; �2g/ can

be either real negative .�1; : : : ; �2k/ 2 R or complex conjugate with nonzero

imaginary part �2kC1 D N�2kC2, . . . , �2g�1 D N�2g. However, no ideas were

proposed where the poles are located on the Riemann surface.

In the early 1980s it was realized that this problem is nontrivial; see [McKean

1981; Dybrovin and Novikov 1982; 1982; Ercolani and Forest 1985; Ercolani

et al. 1984]. For this reason, periodic finite-gap sine-Gordon theory lacked ap-

plications for a long time.

An important idea for how to describe position of poles for the real non-

singular solutions was in fact suggested by Cherednik [1980]. He was the first

author who discovered (ineffectively) that for the given admissible real Riemann

surface there can be many different real Abel tori generating real nonsingular

quasiperiodic solutions. Their number is equal to 2k where 2k is the number

of negative real branching points. All real finite-gap solutions are nonsingular

for sine-Gordon for the generic Riemann surface. His work was written in the

abstract algebro-geometric form, and he never developed these ideas later.
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Extending Cherednik’s approach on the basis of “algebro-topological” ideas,

Dubrovin and Novikov [1982] presented an interesting idea for how to calcu-

late topological charge in terms of the “inverse spectral data”. However, as

pointed out in [Novikov 1984], there was a mistake in the argument; the proof

of the formula proposed in [Dybrovin and Novikov 1982] worked only for a

small neighborhood of some very special solutions. The problem remained

open till 2001. The complete solution, confirming the Dubrovin–Novikov for-

mula, was obtained in [Grinevich and Novikov 2001] as a development of the

algebro-topological approach suggested in [Dybrovin and Novikov 1982]; see

also [Grinevich and Novikov 2003a; 2003b]. In [Dubrovin and Natanzon 1982]

and [Ercolani and Forest 1985], these components were described as the real

subtori in the Jacobian variety J.� /. However this “�-functional description”,

which does not involve a specific basis of cycles, did not lead to a formula for

the topological charge. As we know now, a good formula for the topological

charge can only be written in a very specific basis. We believe that using this

basis of cycles one can deduce our formula from the �-functional expression. It

would be good to do that.

2. Physically relevant classes of solutions

for the different soliton systems

The Korteweg–de Vries (KdV) equation

ut Cuxxx � 6uux D 0; uD u.x; t/; (2-1)

was originally derived in the theory of water waves. As discovered in early

1960s (see the introduction to [Novikov et al. 1984]), it naturally appears as a

first nonvanishing correction for the dispersive nonlinear systems if dissipation

can be neglected. In these models only real nonsingular solution are physically

relevant.

Integration of the KdV equation is based on the “inverse scattering transform”

for the one-dimensional Schrödinger operator

LD�@2

x
Cu.x; t/: (2-2)

The selection of real KdV solutions is straightforward.

(1) The spectral curve � defined by�2DR2gC1.�/ should be real. This means

that R2gC1.�/ D �
2gC1 C

P2g

iD0
pi�

i has real coefficients pi 2 R; equiv-

alently, all roots are either real or form complex conjugate pairs. Therefore

we have a holomorphic involution � W .�; �/! . N�;� N�/ on � .
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(2) The divisor D should be real with respect to � : �DDD, or equivalently, the

unordered set of points 1; : : : ; g is invariant with respect to � . Of course,

� may interchange some of them.

Real nonsingular KdV solutions correspond to the following special spectral

data:

(1) All branching points of �k of � are real and distinct. Assume that �1 <

�2 < � � � < �2gC1. Then � has exactly g C 1 real ovals over the intervals

a0 D .�1; �1�, a1 D Œ�2; �3�, . . . , ag D Œ�2g; �2gC1�.

(2) Each finite oval ak , 1� k � g contains exactly one divisor point k 2 ak .

REMARK. A real curve of genus g may have at most gC 1 real oval. Curves

with gC 1 real ovals (the greatest possible number) are called M -curves.

Generic finite-gap solutions are quasiperiodic with g incommensurable periods.

How to select x-periodic solutions with prescribed period T ? Avoiding any use

of algebraic geometry and Riemann surfaces, a nice approach to the charac-

terization of the strictly x-periodic solution in terms of the so-called quasimo-

mentum map was developed by Marchenko and Ostrovskii [1975]. This map

was studied in the quantum solid state physics literature in 1959 (see [Kohn

1959]). It is well-defined in the upper half-plane outside of some vertical edges.

Its analytical properties were effectively used in [Marchenko and Ostrovskii

1975]. For example the approximation of x-periodic solution (potential) by the

finite-gap ones periodic with the same period, was proved. Another approach,

based on isoperiodic deformations of finite-gap potentials, was developed by

Grinevich and Schmidt in 1995 [Grinevich and Schmidt 1995]. In the KdV

case the isoperiodic deformations can be interpreted as the so-called Loewner

equations for the corresponding conformal map. We point out that there exists a

big literature, dedicated to the KdV solutions with real poles (rational solutions,

singular trigonometric and elliptic solutions) — see [Airault et al. 1977], where

these ideas were started. These solutions are very important from the mathemat-

ical point of view: for example, the dynamics of poles satisfies to the equations

of the rational and elliptic Moser–Calogero models respectively. However, they

are related neither to nonlinear wave problems nor to the spectral theory of the

corresponding Schrödinger operators. So we do not discuss this literature in the

present survey article.

The modified Korteweg-de Vries equation has the form:

vt C vxxx � 6v2vx D 0; v D v.x; t/: (2-3)

It is connected with KdV by the Miura transformation:

u.x; t/D vx.x; t/C v
2.x; t/: (2-4)
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The real nonsingular solutions are physically relevant.

The “complex” nonlinear Schrödinger equation (NLS) is a system of equa-

tions for the pair of independent complex functions q D q.x; t/, r D r.x; t/:

iqt C qxxC 2q2r D 0;

�i rt C rxxC 2r2q D 0:
(2-5)

This system has two natural real reductions: the defocusing NLS, with r.x;y/D

�q.x;y/, hence

iqt C qxx � 2jqj2q D 0; (2-6)

and the self-focusing NLS, with r.x;y/D q.x;y/, hence

iqt C qxxC 2jqj2q D 0: (2-7)

These equation describes nonlinear media with dispersion relations depending

on the square of the wave amplitude (see [Novikov et al. 1984]). Among the

todays applications of NLS is the theory of light propagation in the fiber optics.

The sign C or � is determined by the dispersion relation, and the qualitative

behavior critically depends on it. From the mathematical point of view, the

defocusing NLS system is much simpler because the linear Lax operator is self-

adjoint. The focusing NLS is much more complicated. In both cases physical

applications requires regular solutions.

The complex NLS spectral data are following: A hyperelliptic Riemann sur-

face � with 2gC2 finite branching points �1, . . . , �2gC2 and gC1 divisor points

DD 1C� � �CgC1. In contrast with the KdV case, there is no branching at1.

Solutions of the defocusing NLS correspond to the following spectral data:

(1) � is real, i.e. the polynomial R2gC2D
Q2gC2

kD1
.���k/ has real coefficients.

� is defined by �2DR.�/. The antiholomorphic involution on � is defined

by the map � W C2! C
2 where .�; �/! . N�;� N�/.

(2) The divisor D is real with respect to � : �D DD.

Selection of regular solutions is also very similar to the KdV case

(1) All branching points of � are real. Therefore � has gC 1 real ovals over

the intervals Œ�2k�1; �2k �, k D 1; : : : ;gC1; that is, � is an M -curve.

(2) There is exactly one divisor point at each real oval.

The selection of x-periodic solutions is completely analogous to the KdV case.

We describe the data generating real solutions of the self-focusing NLS equa-

tions for regular spectral curves. By Cherednik’s theorem [1980], these solutions

are automatically nonsingular. The solutions corresponding to singular spectral

curves can be obtained as proper degenerations. In contrast with the defocusing

case, singular curves may generate regular x-quasiperiodic solutions.
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(1) � is a real hyperelliptic surface of genus g with 2gC2 �1<�2< � � �<�2gC2

finite branching points. There are no branching points on the real line, so they

form complex conjugate pairs. The antiholomorphic involution � acts on the

�-plane as ��D N�. The points in � lying over the real line are invariant with

respect to � . Equivalently, � W .�; �/! . N�; N�/.

(2) There exists a meromorphic differential ˝ satisfying these conditions:

� ˝ D .1C o.1//d� at the infinite points of � .

� ˝ is regular outside infinity. Therefore it has exactly 2gC 2 zeroes.

� Let D D 1 C � � � C gC1. Then the divisor of zeroes of ˝ is D C �D.

Therefore, DC �D D 211C 212�K.

The sine-Gordon equation in the light-cone variables was derived in the end

of the nineteenth century. It describes immersions of the negative curvature

surfaces into R
3. Assume that an asymptotic coordinate system is chosen (a

coordinate system such that coordinate lines have zero normal curvature). The

angle between the coordinate lines satisfy (1-3). This means that only real reg-

ular solutions such that u.x; t/¤ 0 mod � are relevant.

The sine-Gordon equation describes also dynamics of the Josephson junc-

tions. In this model u.x; t/ is the phase difference between the contacts, there-

fore the real nonsingular solutions are relevant. However, according to the

leading experts in the Superconductivity Theory, the problem always requires

boundary problem, so we have to consider either the finite interval or the half-

line.

The elliptic sinh-Gordon equation

uxxCuyy C 4H sinh uD 0: (2-8)

describes the constant mean curvature surfaces with genus equal to one, outside

umbilic points (see the review in [Bobenko 1991]). The constant mean cur-

vature tori have no umbilic points, therefore real nonsingular solutions should

be selected. In contrast with soliton equations, all real smooth double-periodic

solutions are automatically finite-gap here [Hitchin 1988; Pinkall and Sterling

1989]. This is a consequence of the following observations by Hitchin [1988]:

all isospectral flows from the corresponding hierarchy are zero eigenfunctions

of the linearized problem. But the linearized system is the two-dimensional

(elliptic) Schrödinger operator, and it may have only finite-dimensional space

of double-periodic zero eigenfunctions. This means that the hierarchy contains

only finitely many linearly independent flows at this point. As a corollary the

spectral curve has finite genus. A further development of this idea was used by

Novikov and Veselov [1997], who showed that all periodic chains of Laplace

transformations consisting of the two-dimensional double-periodic Schrödinger
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operators with regular coefficients are algebro-geometric (2D analogs of finite-

gap operators).

The Boussinesq equation

ut D �x;

�t D�
1

3
uxxxC

4

3
uux

(2-9)

is used for describing the water waves. For physical applications it is necessary

to select real nonsingular solutions. We point out that the problem of selecting

such solutions in terms of the finite-gap data remains open.

The Kadomtsev–Petviashvili (KP) equation

.ut Cuxxx � 6uux/xC 3˛2uyy D 0; uD u.x;y; t/; ˛2 2 R: (2-10)

The auxiliary linear operator for KP has the form

LD ˛@y � @
2

x
Cu.x;y; t/: (2-11)

If ˛ is imaginary, we have the so-called KP1 equation, and L is the one-dimen-

sional nonstationary Schrödinger operator. If ˛ is real, L is the parabolic oper-

ator. In both cases the real nonsingular solutions are physically relevant only.

The necessary and sufficient conditions for the finite-gap spectral data selecting

the real nonsingular solutions were found by Dubrovin and Natanzon [1988].

Real nonsingular solutions of the KP-2 equation correspond to the following

geometry:

(1) � is a algebraic surface of genus g with a marked point and an antiholo-

morphic involution � such that the marked point is invariant under the action

of � . The marked point is the essential singularity of the wave function.

(2) � has exactly g C 1 fixed oval, i.e. � in an M -curve with respect to � .

Denote the oval containing the essential singularity by a0 and the other ovals

by an, nD 1; : : : ;g.

(3) Each oval an, n¤ 0 contains exactly one divisor point.

In the case of the Kadomtsev–Petviashvili 1 equation the reality constraints on

the spectral curve are exactly the same as in the KP 2 case, but the divisor D

has a completely different description: There exists a meromorphic differential

˝ with exactly one second-order pole located at the marked point such that the

divisor of zeroes of ˝ is exactly DC �D. Equivalently, DC �D D 21�K,

where1 denotes the marked point. Regular real solutions are generated by the

data with the following extra constraint:

The pair .�; �/ is of separating type, i.e. after removing all real ovals � splits

into 2 components.
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An important example of “solvable” inverse spectral transform is the one-

energy problem for the two-dimensional Schrödinger operator started in [Man-

akov 1976; Dubrovin et al. 1976a].

LD�@2

x
� @2

y
Cu.x;y/; (2-12)

It is well-known that the full set of scattering data for multidimensional Schröd-

inger operators n > 1 is overdetermined. A lot of people have studied this

problem; we won’t even quote this literature. However, the case n D 2 turned

out to be very specific. Manakov, Dubrovin, Krichever and Novikov [Manakov

1976; Dubrovin et al. 1976a] started a completely new approach for this specific

case, creating inverse scattering theory and the corresponding soliton theory

associated with one selected energy level. A lot of work has been done since;

see [Novikov and Veselov 1984; Veselov et al. 1985; Grinevich and Novikov

1988] and the review [Grinevich 2000] for additional references. In particular, in

the first work [Dubrovin et al. 1976a] they defined the natural analogs of finite-

gap potentials for the two-dimensional problem as the potentials, “finite-gap at

one energy”. Let u.x;y/ be double-periodic. Denote the dispersion relation by

"j .kx; ky/. The Fermi-curve at the energy level E0 is defined by:

"j .kx; ky/DE0: (2-13)

Denote the complex continuation of the Fermi curve by � . The potential u.x;y/

is called finite-gap at one energy if � has finite genus.

For generic spectral data the operators constructed in [Dubrovin et al. 1976a]

have generically a nonzero magnetic field, i.e. they have some extra first-order

terms:

LD�@2

x
� @2

y
CA1.x;y/@xCA2.x;y/@y Cu.x;y/; (2-14)

It might happen that H.x;y/¤ 0, where H.x;y/D @xA2.x;y/�@yA1.x;y/.

For physical applications it is important to select the case of “potential operators”

A1.x;y/D A2.x;y/D 0 with real potential u.x;y/. Sufficient conditions on

the spectral data leading to the potential operators were found by Novikov and

Veselov [1984]. For double periodic potentials the existence of such forms is

necessary; this follows from the direct spectral theory, developed by Krichever

[1992]. For the generic regular quasiperiodic potentials “finite-gap for one

energy level”, this problem remains open. Selection of real potentials here is

simple.

How to select the class of regular potentials in terms of algebro-geometrical

spectral data? There is no complete solution to this problem. It was shown in

[Novikov and Veselov 1984] that if the spectral curve is the so-called M -curve,

then the potential u.x;y/ is regular, and the operator L is strictly positive (the

selected energy level lies below the ground state). An alternative proof of the last
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statement was obtained by the authors in [Grinevich and Novikov 1988]. The

complete characterization of the data generating strictly positive operators (with

real regular potentials) was “more or less” clarified but some special features

remain unproved rigorously.

If the selected energy level is located above the ground state, the topology of

the spectral curve � become more complicated. Many classes of spectral data

generating real nonsingular solutions were found by Natanzon (see the review

in [Natanzon 1995]), but the classification is not complete till now.

3. The sine-Gordon equation

Connections between the sine-Gordon equation and the inverse scattering

method were first established by G. Lamb [1971]. The modern approach was

started by Ablowitz, Kaup, Newell and Segur [Ablowitz et al. 1973]. It is based

on the following zero-curvature representation:1

	x D
1

4
.U CV /	; 	t D

1

4
.U �V /	; (3-1)

where

U D U.�;x; t/D

"

i.ux Cut / 1

�� �i.ux Cut /

#

; (3-2)

V D V .�;x; t/D

"

0 �1

�
eiu

e�iu 0

#

: (3-3)

As we mentioned above, the finite-gap spectral data consist of

(1) a hyperelliptic Riemann surface � defined by �2 D �
Q2g

iD1
.�� �i/, with

2gC 2 branching points .0; �1; : : : �2g;1/; and

(2) the divisor (a collection of points) D D 1C � � �C g in � .

In our text we always assume that the spectral curve � is generic, that is, all

branching points are distinct.

The construction of complex sine-Gordon solutions is based on the following

standard Lemma:

LEMMA 1. For generic data � , D there exists a unique two-component vector-

function 	.;x; t/ (the Baker–Akhiezer functions) such that:

(1) For fixed .x; t/ the function 	.;x; t/ is meromorphic in the variable  2�

outside the points 0,1 and has at most 1-st order poles at the divisor points

k , k D 1; : : : ;g.

1The zero-curvature representation for the sine-Gordon equation presented here was, in fact, first written

by these authors in subsequent works.
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(2) 	.;x; t/ has essential singularities at the points 0, 1 with the following

asymptotic:

	.;x; t/D

�

1C o.1/

i
p
�CO.1/

�

e
i
p

�
4
.xCt/ as �!1; (3-4)

	.;x; t/D

�

�1.x; t/C o.1/

i
p
��2.x; t/CO.�/

�

e
�

i

4
p

�
.x�t/

as �! 0; (3-5)

with some �1.x; t/, �2.x; t/.

The sine-Gordon potential u.x; t/ is defined by

u.x; t/D i ln
�2.x; t/

�1.x; t/
: (3-6)

We denote by �k.x; t/ the projections of the zeroes of the first component of

	.;x; t/ to the �-plane. Then

eiu.x;t/ D
g
Q

jD0

.��j .x; t//

�

s

2g
Q

jD1

Ej : (3-7)

REMARK. To be more precise, formulas (3-1)–(3-7) define simultaneously a

pair of sine-Gordon solutions u1.x; t/, u2.x; t/, depending on the choice of the

branch 1=
p

.�/ near the point � D 0. They are connected by the following

relation u2.x; t/D u1.t;x/C� . In the real case it is possible to fix a canonical

branch by making the analytical continuation along the real line. This rule is

unstable in the following sense: if we add a pair of complex conjugate branching

points which are very close to the positive half-line (or, equivalently, open a

resonant point), it is a small transformation in terms of the spectral data, but it

exchanges u1 with u2.

The real sine-Gordon solutions (by Cherednik’s lemma they are automatically

regular [Čerednik 1980]) correspond to the following data:

(1) � is real, i.e. the branching points of � are either real, or form com-

plex conjugate pairs. Therefore we have an antiholomorphic involutions

� W .�; �/ ! . N�; N�/. Denote the number of real finite branching points by

2kC 1.

(2) All real branching points lie in the negative half-line �� 0. It is convenient

to use following enumeration for the branching points different from 0 and

1: 0> �1 > �2 > � � � > �2k , �2kC1 D N�2kC2, . . . , �2g�1 D N�2g .

(3) There exists a meromorphic differential˝ (Cherednik differential) with first

order poles at 0,1, holomorphic on � nf0;1g with the zeroes at the points

1; : : : ; g, �1; : : : ; �g (or, equivalently the divisor D satisfy the relation

DC �D D 0C1�K).
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As shown in [Čerednik 1980], the variety of all real potentials corresponding to

the given spectral curve � consists of 2k connected components. A characteriza-

tion of these components in terms of the Abel tori was obtained in [Dubrovin and

Natanzon 1982] but this technique did not led to the calculation of topological

charge through the inverse spectral data.

Our calculation of the topological charge for the finite-gap sine-Gordon so-

lutions is based on the following effective description of these components, for

details of which see [Grinevich and Novikov 2001; 2003a; 2003b]:

Any meromorphic differential with first-order pole at1 can be written as

˝ D c

�

1�
�Pg�1.�/

R.�/1=2

�

d�

2�
; (3-8)

where Pg�1.�/ is a polynomial of degree at most g�1. It is also natural to put

c D 1. In case of the Cherednik differentials the set of zeroes is invariant with

respect to � . Therefore all coefficients of the polynomial Pg�1.�/ are real.

Take an arbitrary real polynomial Pg�1.�/. Is it possible to construct a real

sine-Gordon solution corresponding to it? The necessary and sufficient con-

dition is this: the zeroes of ˝ can be divided into two groups, f1; : : : ; gg

and fgC1; : : : ; 2gg, such that �k D kCg, k D 1; : : : ;g. Equivalently, a

polynomial Pg�1.�/ generates real SG solutions if and only if all real root of

˝ have even multiplicity. In generic situation (all roots form distinct complex

conjugate pairs) each polynomial Pg�1.�/ generates 2g different solutions. To

choose one of them one has to say, which point to choose in each complex

conjugate pair belonging to D ( the second one belongs to �D ). In degenerate

cases (i.e. if there are real roots) the number of choices is smaller. Al these

solutions associated with a given Pg�1.�/ belong to the same real Abel torus.

DEFINITION. A polynomial Pg�1.�/ (and the corresponding differential ˝)

are called admissible if all real roots of ˝ have even multiplicity.

Admissible polynomials Pg�1.�/ can be characterized geometrically. We start

by taking the graph of the functions

f˙.�/D˙

p

R.�/

�
; (3-9)

and coloring in black the domains

� < 0; y2 <
R.�/

�2
and � > 0; y2 >

R.�/

�2
; (3-10)

as in Figure 1.

LEMMA 2. The polynomial Pg�1.�/ is admissible if and only if the graph of

Pg�1.�/ has no parts inside the black open domains.
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Figure 1.

If the graph does not touch these domains, we have no real divisor points. Real

divisor points correspond to the case when the graph touches one of these do-

mains but does not cross the boundary.

Each pair �2j�1; �2j is connected by a black island. The graph of admissible

Pg�1.�/ should go above or below this island, so Pg�1.�/¤0 on at all intervals

Œ�2j ; �2j�1�, j � k. We associate with an admissible polynomial Pg�1.�/ a

collection of numbers sj , j D 1; : : : ; k by the following rule: sj D 1 if the graph

of Pg�1.�/ is positive in the interval Œ�2j ; �2j�1�, and sj D�1 otherwise. We

call the set sj the topological type of the real solution. There are exactly 2k

possible topological types. Elementary analytic estimates (see [Grinevich and

Novikov 2003a]) show that all these components are nonempty. Each connected

component is a real Abel torus, on which the x-dynamics defines a straight line.

To calculate the density of the topological charge it is sufficient to know the

direction of this line and the charges along the basic cycles. This follows from

a simple analytic lemma:

LEMMA 3. Let u. EX /, X 2R
n be a smooth function in R

n such that exp.iu. EX //

is single-valued on the torus R
n=Z

n. Equivalently, we have exp.iu. EX C EN //D

exp.iu. EX // for any integer vector EN , and

u.X 1;X 2; : : : ;X k C 1; : : : ;X n/�u.X 1;X 2; : : : ;X k ; : : : ;X n/D 2�nk :

The numbers nk are called the topological charges along the basic cycles Ak ,

kD1; : : : ; n. Denote by u.x/ restriction of u. EX / to the strait line EX D EX0Cx �Ev,

Ev D .v1; v2; : : : ; vn/. Then the density of topological charge

Nn WD lim
T !1

u.xCT /�u.x/

2�T
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is well-defined; it does not depend on the point EX0, and

NnD

n
X

kD1

nkv
k : (3-11)

The calculation of the direction vector for the x-dynamics is standard; see [Er-

colani and Forest 1985], for example. Denote by !l the canonical basis of

holomorphic differentials on � :

!l D i

g�1
P

jD0

Dk

j
�j

p

R.�/
d�; Dk

j
2 R (3-12)

Then for the components of the x-direction vector we have

Uk D
1

2

�

Dk

g�1
CDk

0

�

s

2g
Q

jD1

Ej

�

: (3-13)

To obtain a simple expression for the basic charges it is critical to use a

proper basis of cycles in � . In [Grinevich and Novikov 2001; 2003a; 2003b]

the authors used the following basis, first suggested in [Dybrovin and Novikov

1982]:

a1

a4

3b 2b 1b

2a

a3

4b

6
λ 5

λ λ4 3
λ 2λ λ 1

0λ

7
λ

8
λ

], k=1,2,3, λ2k 2k−1kb =[ λ

Figure 2.
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Here the cycles aj , j D1; : : : ; k are ovals on the upper sheet of � , containing

inside the points �0D0, �1, �2, . . . , �2j�1. The cycle bj , 1�j �k, lies over the

interval Œ�2j ; �2j�1�. The cycles aj , j DkC1; : : : ;g, lie over paths connecting

the pairs �2j�1 and �2j . We assume that these cycles do not intersect each other,

and the cycles aj , j D kC1; : : : ;g, do not intersect the negative half-line. The

cuts are shown by the zigzag lines. The upper sheet contains the half-line �> 0,

� > 0.

Consider a basic cycle Aj on the real component of Jacoby torus, represented

by the closed curve. The image of this cycle in � under the inverse Abel map is

a closed oriented curve Cj , formed by the motion of the corresponding divisor

points (it may have several connected components). The motion of an individual

divisor point does not have to be periodic, after going along the cycle we may

obtain a permutation of the divisor points. The curve Cj is homological to the

cycle aj 2H1.�;Z/. It follows from (3-7) that the topological charge nj along

the cycle Ak equals to the winding number of the curve Cj with respect to the

point 0. Equivalently

nj D QCj ıR�; (3-14)

where ı denotes the intersection number, QCj denotes the projection of Cj to the

�-plane, R� is negative half-line with the standard orientation.

For each point of Aj the corresponding divisor 1; : : : ; g is admissible. From

the characterization of admissible divisors obtained above it is easy to show that

the curve Cj does not touch the closed segments on the real line Œ�1; �2m�, . . . ,

Œ�3; �2�, Œ�1; 0�. Therefore any time the curve Cj crosses the negative half-line,

it intersects one of the basic cycles bj , j D 1; : : : ; k.

This information does not yet suffice to calculate the basic charge, because the

orientation of the cycles bj coincides with the orientation of the negative half-

line at one sheet and they are opposite at the other one. For example, in Figure 3

we see two realizations of the cycle a1, representing different topological types.

a1 is drawn at the upper sheet and a0

1
is drawn at the lower one. We have

a1 ı b1 D a0

1
ı b1 D 1, but Qa1 ıR� D 1, Qa0

1
ıR� D �1, therefore n1 D 1 and

n1 D�1 for these cycles respectively.

Fortunately, the topological type contains information about the sheet where

the intersection takes place:

LEMMA 4. Assume that the cycles Cj intersects the negative half-line at the in-

terval .�2l ; �2l�1/. Then orientations of bl and R� coincide in the intersection

point if .�1/l�1sl > 0 and are opposite if .�1/l�1sl < 0.

Combining all these results we obtain the final formula, expressed in the next

theorem:
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a1a1

a’1

0λ
λ 1λ2

b
1

Figure 3.

THEOREM. The density of topological charge for a real sine-Gordon solution is

given by

NnD

k
X

jD1

.�1/j�1sj Uj ; (3-15)

where the vector Uj is defined by (3-13).
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ABSTRACT. The study of several naturally arising “nearest neighbour” ran-

dom walks benefits from the study of the associated orthogonal polynomials

and their orthogonality measure. I consider extensions of this approach to a

larger class of random walks. This raises a number of open problems.

1. Introduction

Consider a birth and death process, i.e., a discrete time Markov chain on the

nonnegative integers, with a one step transition probability matrix P. There is

then a time-honored way of writing down the n-step transition probability matrix

P
n in terms of the orthogonal polynomials associated to P and the spectral

measure. This goes back to Karlin and McGregor [1957] and, as they observe,

it is nothing but an application of the spectral theorem. One can find some

precursors of these powerful ideas, see for instance [Harris 1952; Ledermann

and Reuter 1954]. Inasmuch as this is such a deep and general result, it holds

in many setups, such as a nearest neighbours random walk on the N th-roots of

unity. In general this representation of P
n allows one to relate properties of the

Markov chain, such as recurrence or other limiting behaviour, to properties of

the orthogonality measure.
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In the few cases when one can get one’s hands on the orthogonality mea-

sure and the polynomials themselves this gives fairly explicit answers to various

questions.

The two main drawbacks to the applicability of this representation (to be

recalled below) are:

a) typically one cannot get either the polynomials or the measure explicitly.

b) the method is restricted to “nearest neighbour” transition probability chains

that give rise to tridiagonal matrices and thus to orthogonal polynomials.

The challenge that we pose in this paper is very simple: to try to extend the class

of Markov processes whose study can benefit from a similar association.

There is an important collection of papers that study in detail the cases where

the entries in P depends linearly, quadratically or even rationally on the index

n. We make no attempt to review these results, but we just mention that the

linear case involves (associated) Laguerre and Meixner polynomials, and the

other cases involve associated dual Hahn polynomials. For a very small sample

of important sources dealing with this connection see [Chihara 1978; van Doorn

2003; Ismail et al. 1990].

The plan for this paper is as follows. In Section 2, we review briefly the

approach of S. Karlin and J. McGregor. In Sections 3, 4, and 5, we consider

a few examples of physically important Markov chains that happen to feature

rather well known families of orthogonal polynomials. In Sections 6–10 we pro-

pose a way of extending this representation to the case of certain Markov chains

where the one-step transition probability matrix is not necessarily tridiagonal.

For concreteness we restrict ourselves to the case of pentadiagonal matrices or

more generally block tridiagonal matrices. This is illustrated with some exam-

ples. A number of open problems are mentioned along the way; a few more

are listed in Section 11. The material in Sections 2–5 is well known, while the

proposal developed in Sections 3–10 appears to be new.

After this paper was completed we noticed that [Karlin and McGregor 1959]

contains an explicit expression for the spectral matrix corresponding to the ex-

ample that we treat in Section 10. The same example, as well as the connection

with matrix valued orthogonal polynomials is discussed in [Dette et al. 2006].

See also [Grünbaum and de la Iglesia 2007] for a fruitful interaction with group

representation theory.

2. The Karlin–McGregor representation

If we have

Pi;j D PrfX.nC 1/D j jX.n/D ig
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for the 1-step transition probability of our Markov chain, and we put piDPi;iC1,

qiC1 D PiC1;i , and ri D Pi;i we get for the matrix P, in the case of a birth and

death process, the expression

PD

0

B

B

@

r0 p0 0 0

q1 r1 p1 0

0 q2 r2 p2

: : :
: : :

: : :

1

C

C

A

We will assume that pj > 0, qjC1 > 0 and rj � 0 for j � 0. We also assume

pj C rj C qj D 1 for j � 1 and by putting p0C r0 � 1 we allow for the state

j D 0 to be an absorbing state (with probability 1� p0 � r0). Some of these

conditions can be relaxed.

If we introduce the polynomials Qj .x/ through the conditions Q�1.0/D 0,

Q0.x/D 1 and, using the notation

Q.x/D

0

@

Q0.x/

Q1.x/
:::

1

A ;

we insist on the recursion relation

PQ.x/D xQ.x/;

we can prove the existence of a unique measure  .dx/ supported in Œ�1; 1� such

that

�j

Z

1

�1

Qi.x/Qj .x/ .dx/D ıij ;

and obtain the Karlin–McGregor representation formula

.Pn/ij D �j

Z

1

�1

xnQi.x/Qj .x/ .dx/:

Many general results can be obtained from this representation formula, some of

which will be given for certain examples in the next three sections.

Here we just remark that the existence of

lim
n!1

.Pn/ij

is equivalent to  .dx/ having no mass at x D �1. If this is the case this limit

is positive exactly when  .dx/ has some mass at x D 1.

If one notices that Qn.x/ is nothing but the determinant of the .nC1/�.nC1/

upper-left corner of the matrix xI �P, divided by the factor

p0p1; : : : ;pn�1;
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and one defines the polynomials qn.x/ by solving the same three-term recursion

relation satisfied by the polynomials Qn.x/, but with the indices shifted by one,

and the initial conditions q0.x/D 1, q1.x/D .x�r1/=p1, it becomes clear that

the .0; 0/ entry of the matrix

.xI �P/�1

should be given, except by the constant p0, by the limit of the ratio

qn�1.x/=Qn.x/:

On the other hand the same spectral theorem alluded to above establishes an

intimate relation between

lim
n!1

qn�1.x/=Qn.x/

and
Z

1

�1

d .�/

x��
:

We will see in some of the examples a probabilistic interpretation for the

expression above in terms of generating functions.

The same connection with orthogonal polynomials holds in the case of a

birth and death process with continuous time, and this has been extensively

described in the literature. The discrete time situation discussed above is enough

to illustrate the power of this method.

3. The Ehrenfest urn model

Consider the case of a Markov chain in the finite state space 0; 1; 2; : : : ; 2N ,

where the matrix P given by
0

B

B

B

B

B

B

B

B

B

B

@

0 1
1

2N
0 2N �1

2N

2

2N
0 2N �2

2N

: : : 0
: : :

: : :
: : :

: : :
: : : 0 1

2N

2N

2N
0

1

C

C

C

C

C

C

C

C

C

C

A

:

This situation arises in a model introduced by P. and T. Ehrenfest [1907], in an

effort to illustrate the issue that irreversibility and recurrence can coexist. The

background here is, of course, the famous H -theorem of L. Boltzmann.

For a more detailed discussion of the model see [Feller 1967; Kac 1947]. This

model has also been considered in dealing with a quantum mechanical version
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of a discrete harmonic oscillator by Schrödinger himself; see [Schrödinger and

Kohlrausch 1926].

In this case the corresponding orthogonal polynomials (on a finite set) can

be given explicitly. Consider the so called Krawtchouk polynomials, given by

means of the (truncated) Gauss series

2
QF1

�

a; b

c
I z

�

D

2N
X

0

.a/n.b/n

n!.c/n
zn

with

.a/n � a.aC 1/ : : : .aC n� 1/; .a/0 D 1:

The polynomials are given by

Ki.x/D 2
QF1

�

�i;�x

�2N
I 2

�

x D 0; 1; : : : ; 2N I i D 0; 1; : : : ; 2N

Observe that

K0.x/� 1;Ki.2N /D .�1/i :

The orthogonality measure is read off from

2N
X

xD0

Ki.x/Kj .x/

�

2N

x

�

22N
D
.�1/i i !

.�2N /i
ıij � �

�1

i
ıij 0� i; j � 2N:

These polynomials satisfy the second order difference equation

1

2
.2N � i/KiC1.x/�

1

2
2NKi.x/C

1

2
iKi�1.x/D�xKi.x/;

and this has the consequence that

0

B

B

B

B

B

B

B

B

B

B

@

0 1
1

2N
0 2N �1

2N

2

2N
0 2N �2

2N

: : : 0
: : :

: : :
: : :

: : :
: : : 0 1

2N

2N

2N
0

1

C

C

C

C

C

C

C

C

C

C

A

0

B

B

@

K0.x/

K1.x/
:::

K2N .x/

1

C

C

A

D
�

1�
x

N

�

0

B

B

@

K0.x/

K1.x/
:::

K2N .x/

1

C

C

A
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any time that x is one of 0; 1; : : : ; 2N . This means that the eigenvalues of the

matrix P above are given by the values of 1� .x=N / at these values of x, that

is,

1; 1�
1

N
; : : : ;�1;

and that the corresponding eigenvectors are the values of

ŒK0.x/;K1.x/; : : : ;K2N .x/�
T

at these values of x.

Since the matrix P above is the one step transition probability matrix for our

urn model we conclude that

.Pn/ij D �j

2N
X

xD0

�

1�
x

N

�n

Ki.x/Kj .x/

�

2N

x

�

22N
:

We can use these expressions to rederive some results given in [Kac 1947].

We have

.Pn/00 D

2N
X

xD0

�

1�
x

N

�n

�

2N

x

�

22N

and the “generating function” for these probabilities, defined by

U.z/�

1
X

nD0

zn.Pn/00

becomes

U.z/D

2N
X

xD0

N

N.1� z/Cxz

�

2N

x

�

22N
:

In particular U.1/ D 1 and then the familiar “renewal equation” (see [Feller

1967]) given by

U.z/D F.z/U.z/C 1;

where F.z/ is the generating function for the probabilities fn of returning from

state 0 to state 0 for the first time in n steps

F.z/D

1
X

nD0

znfn

gives

F.z/D 1�
1

U.z/

Therefore we have F.1/D 1, indicating that one returns to state 0 with proba-

bility one in finite time.
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These results allow us to compute the expected time to return to state 0. This

expected value is given by F 0.1/, and we have

F 0.z/D
U 0.z/

U 2.z/
:

Since

U 0.z/D

2N
X

xD0

N.N �x/

.N.1� z/Cxz/2

�

2N

x

�

22N

we get F 0.1/D 22N . The same method shows that any state i D 0; : : : ; 2N is

also recurrent and that the expected time to return to it is given by

22N

�

2N

i

� :

The moral of this story is clear: if i D 0 or 2N , or if i is close to these values,

meaning that we start from a state where most balls are in one urn, it will take on

average a huge amount of time to get back to this state. On the other hand if i D

N , that is, we are starting from a very balanced state, then we will (on average)

return to this state fairly soon. Thus we see how the issues of irreversibility and

recurrence are rather subtle.

In a very precise sense these polynomials are discrete analogs of those of

Hermite in the case of the real line. For interesting material regarding this section

the reader should consult [Askey 2005].

4. A Chebyshev-type example

The example below illustrates nicely how certain recurrence properties of the

process are related to the presence of point masses in the orthogonality measure.

This is seen by comparing the two integrals at the end of the section.

Consider the matrix

PD

0

B

B

@

0 1 0

q 0 p

0 q 0 p
: : :

: : :
: : :

1

C

C

A

with 0� p � 1 and q D 1�p. We look for polynomials Qj .x/ such that

Q�1.x/D 0; Q0.x/D 1
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and if Q.x/ denotes the vector

Q.x/�

0

B

B

@

Q0.x/

Q1.x/

Q2.x/
:::

1

C

C

A

we ask that we should have

PQ.x/D xQ.x/:

The matrix P can be conjugated into a symmetric one and in this fashion one

can find the explicit expression for these polynomials.

We have

Qj .x/D

�

q

p

�j=2 �

.2� 2p/Tj

�

x

2
p

pq

�

C .2p� 1/Uj

�

x

2
p

pq

��

where Tj and Uj are the Chebyshev polynomials of the first and second kind.

If p � 1=2 we have

�

p

1�p

�nZ
p

4pq

�

p

4pq

Qn.x/Qm.x/

p

4pq�x2

1�x2
dxD ınm

�

2.1�p/� if nD 0,

2p.1�p/� if n� 1,

while if p � 1=2 we get a new phenomenon, namely the presence of point

masses in the spectral measure

�

p

1�p

�n �Z
p

4pq

�

p

4pq

Qn.x/Qm.x/

p

4pq �x2

1�x2
dx

C.2� 4p/�ŒQn.1/Qm.1/CQn.�1/Qm.�1/�

�

D ınm

�

2.1�p/� if nD 0,

2p.1�p/� if n� 1.

From a probabilistic point of view these results are very natural.

5. The Hahn polynomials, Laplace and Bernoulli

As has been pointed out before, a limitation of this method is given by the sad

fact that given the matrix P very seldom can one write down the corresponding

polynomials and their orthogonality measure. In general there is no reason why

physically interesting Markov chains will give rise to situations where these

mathematical objects can be found explicitly.

The example below shows that one can get lucky: there is a very old model of

the exchange of heat between two bodies going back to Laplace and Bernoulli,
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see [Feller 1967, p. 378]. It turns out that in this case the corresponding orthog-

onal polynomials can be determined explicitly.

The Bernoulli–Laplace model for the exchange of heat between two bodies

consists of two urns, labeled 1 and 2. Initially there are W white balls in urn 1

and B black balls in urn 2. The transition mechanism is as follows: a ball is

picked from each urn and these two balls are switched. It is natural to expect

that eventually both urns will have a nice mixture of white and black balls.

The state of the system at any time is described byw, defined to be the number

of white balls in urn 1. It is clear that we have, for w D 0; 1; : : : ;W

Pw;wC1 D
W �w

W

W �w

B
; Pw;w�1 D

w

W

B �W Cw

B
;

Pw;w D
w

W

W �w

B
C

W �w

W

B �W Cw

B
:

Notice that

Pw;w�1CPw;wCPw;wC1 D 1:

Now introduce the dual Hahn polynomials by means of

Rn.�.x//D 3
QF2

�

�n;�x;x �W �B � 1

�W;�W

ˇ

ˇ

ˇ

ˇ

1

�

nD 0; : : : ;W I x D 0; : : : ;W:

These polynomials depend in general on one more parameter.

Notice that these are polynomials of degree n in

�.x/� x.x �W �B � 1/:

One has

Pw;w�1Rw�1CPw;wRwCPw;wC1RwC1 D

�

1�
x.BCW �xC 1/

BW

�

Rw:

This means that for each value of x D 0; : : : ;W the vector

0

B

B

@

R0.�.x//

R1.�.x//
:::

RW .�.x//

1

C

C

A

is an eigenvector of the matrix P with eigenvalue 1�
x.BCW �xC1/

BW
. The

relevant orthogonality relation is given by

�j

W
X

xD0

Ri.�.x//Rj .�.x//�.x/D ıij
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with

�.x/D
w!.�w/x.�w/x.2x�W �B � 1/

.�1/xC1x!.�B/x.x�W �B � 1/wC1

; �j D
.�w/j

j !

.�B/w�j

.w� j /!
:

The Karlin–McGregor representation gives

.Pn/ij D �j

W
X

xD0

Ri.�.x//Rj .�.x//e
n.x/�.x/

with e.x/D 1�
x.BCW �xC1/

BW
.

These results can be used, once again, to get some quantitative results on this

process.

Interestingly enough, these polynomials were considered in great detail by

S. Karlin and J. McGregor [1961] and used by these authors in the context of a

model in genetics describing fluctuations of gene frequency under the influence

of mutation and selection. The reader will find useful remarks in [Diaconis and

Shahshahani 1987].

6. The classical orthogonal polynomials and the bispectral problem

The examples discussed above illustrate the following point: quite often the

orthogonal polynomials that are associated with important Markov chains be-

long to the small class of polynomials usually referred to as classical. By this

one means that they satisfy not only three term recursion relations but that they

are also the common eigenfunctions of some fixed (usually second order) dif-

ferential operator. The search for polynomials of this kind goes back at least

to [Bochner 1929]. In fact this issue is even older; see [Routh 1884] and also

[Ismail 2005] for a more complete discussion.

In the context where both variables are continuous, this problem has been

raised in [Duistermaat and Grünbaum 1986]. For a view of some related subjects

see [Harnad and Kasman 1998]. The reader will find useful material in [Askey

and Wilson 1985; Andrews et al. 1999; Ismail 2005].

7. Matrix-valued orthogonal polynomials

Here we recall a notion due to M. G. Krein [1949; 1971]. Given a self ad-

joint positive definite matrix-valued smooth weight function W .x/ with finite

moments, we can consider the skew symmetric bilinear form defined for any

pair of matrix-valued polynomial functions P .x/ and Q.x/ by the numerical

matrix

.P;Q/D .P;Q/W D

Z

R

P .x/W .x/Q�.x/dx;
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where Q�.x/ denotes the conjugate transpose of Q.x/. By the usual construc-

tion this leads to the existence of a sequence of matrix-valued orthogonal poly-

nomials with nonsingular leading coefficient.

Given an orthogonal sequence fPn.x/gn�0 one gets by the usual argument a

three term recursion relation

xPn.x/DAnPn�1.x/CBnPn.x/CCnPnC1.x/; (7-1)

where An, Bn and Cn are matrices and the last one is nonsingular.

We now turn our attention to an important class of orthogonal polynomials

which we will call classical matrix-valued orthogonal polynomials. Very much

as in [Duran 1997; Grünbaum et al. 2003; Grünbaum et al. 2005] we say that the

weight function is classical if there exists a second order ordinary differential

operator D with matrix-valued polynomial coefficients Aj .x/ of degree less or

equal to j of the form

D DA2.x/
d2

dx2
CA1.x/

d

dx
CA0.x/; (7-2)

such that for an orthogonal sequence fPng,we have

DP �

n
D P �

n
�n; (7-3)

where�n is a real-valued matrix. This form of the eigenvalue equation (7-3) ap-

pears naturally in [Grünbaum et al. 2002] and differs only superficially with the

form used in [Duran 1997], where one uses right handed differential operators.

During the last few years much activity has centered around an effort to

produce families of matrix-valued orthogonal polynomials that would satisfy

differential equations as those above. One of the examples that resulted from

this search, see [Grünbaum 2003], will be particularly useful later on.

8. Pentadiagonal matrices and matrix-valued orthogonal

polynomials

Given a pentadiagonal scalar matrix it is often useful to think of it either in its

original unblocked form or as being made, let us say, of 2�2 blocks. These two

ways of seeing a matrix, and the fact that matrix operations like multiplication

can by performed “by blocks”, has proved very important in the development

of fast algorithms.

In the case of a birth and death process it is useful to think of a graph like

0 1 2 3
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Suppose that we are dealing with a more complicated Markov chain in the

same probability space, where the elementary transitions can go beyond “nearest

neighbours”. In such a case the graph may look as follows:

0 1 2 3

The matrix P going with the graph above is now pentadiagonal. By thinking

of it in the manner mentioned above we get a block tridiagonal matrix. As an

extra bonus, its off-diagonal blocks are triangular.

The graph

0
2 4 6

1
3 5 7

clearly corresponds to a general block tridiagonal matrix, with blocks of size

2� 2.

If Pi;j denotes the .i;j /-block of P we can generate a sequence of 2 � 2

matrix-valued polynomials Qi.t/ by imposing the three-term recursion of Sec-

tion 8. Using the notation of Section 2, we would have

PQ.x/D xQ.x/;

where the entries of the column vector Q.x/ are now 2� 2 matrices.

Proceeding as in the scalar case, this relation can be iterated to give

P
nQ.x/D xnQ.x/;

and if we assume the existence of a weight matrix W .x/ as in Section 7, with

the property

.Qj ;Qj /ıi;j D

Z

R

Qi.x/W .x/Q�

j
.x/dx;
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it is then clear that one can get an expression for the .i; j / entry of the block

matrix P
n that would look exactly as in the scalar case, namely

.Pn/ij .Qj ;Qj /D

Z

xnQi.x/W .x/Q�

j
.x/dx:

Just as in the scalar case, this expression becomes useful when we can get our

hands on the matrix-valued polynomials Qi.x/ and the orthogonality measure

W .x/. Notice that we have not discussed conditions on the matrix P to give rise

to such a measure. For this issue the reader can consult [Durán and Polo 2002;

Duran 1999] and the references in these papers.

The spectral theory of a scalar double-infinite tridiagonal matrix leads natu-

rally to a 2�2 semi-infinite matrix. This has been looked at in terms of random

walks in [Pruitt 1963]. In [Ismail et al. 1990] this work is elaborated further to

get a formula that could be massaged to look like the right-hand side of the one

above. See also the last section in [Karlin and McGregor 1959].

9. An explicit example

Consider the matrix-valued polynomials given by the three-term recursion

relation

An˚n�1.x/CBn˚n.x/CCn˚nC1.x/D t˚n.x/; n� 0;

with

˚�1.x/D 0; ˚0.t/D I;

and where the entries in An, Bn, Cn are given by

A11

n
WD

n.˛Cn/.ˇC2˛C2nC3/

.ˇC˛C2nC1/.ˇC˛C2nC2/.ˇC2˛C2nC1/
;

A12

n
WD

2n.ˇC1/

.ˇC2nC1/.ˇC˛C2nC2/.ˇC2˛C2nC1/
; A21

n
WD 0;

A22

n
WD

n.˛CnC1/.ˇC2nC3/

.ˇC2nC1/.ˇC˛C2nC2/.ˇC˛C2nC3/
;

C 11

n
WD

.ˇCnC2/.ˇC2nC1/.ˇC˛CnC2/

.ˇC2nC3/.ˇC˛C2nC2/.ˇC˛C2nC3/
;

C 21

n
WD

2.ˇC1/.ˇCnC2/

.ˇC2nC3/.ˇC˛C2nC3/.ˇC2˛C2nC5/
; C 12

n
WD 0;

C 22

n
WD

.ˇCnC2/.ˇC˛CnC3/.ˇC2˛C2nC3/

.ˇC˛C2nC3/.ˇC˛C2nC4/.ˇC2˛C2nC5/
;
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B11

n
WD 1C

n.ˇCnC1/.ˇC2n�1/

.ˇC2nC1/.ˇC˛C2nC1/
�
.nC1/.ˇCnC2/.ˇC2nC1/

.ˇC2nC3/.ˇC˛C2nC3/

�
2.ˇC1/2

.ˇC2nC1/.ˇC2nC3/.ˇC2˛C2nC3/
;

B12

n
WD

2.ˇC1/.˛CˇCnC2/

.ˇC2nC3/.ˇC˛C2nC2/.ˇC2˛C2nC3/
;

B21

n
WD

2.˛CnC1/.ˇC1/

.ˇC2nC1/.ˇC˛C2nC3/.ˇC2˛C2nC3/
;

B22

n
WD 1C

n.ˇCnC1/.ˇC2nC3/

.ˇC2nC1/.ˇC˛C2nC2/
�
.nC1/.ˇCnC2/.ˇC2nC5/

.ˇC2nC3/.ˇC˛C2nC4/

C
2.ˇC1/2

.ˇC2nC1/.ˇC2nC3/.ˇC2˛C2nC3/
:

Notice that the matrices An and Cn are upper and lower triangular respectively.

If the matrix 	0.x/ is given by

	0.x/D

 

1 1

1
.ˇC2˛C3/x

ˇC1
�

2.˛C1/

ˇC1

!

one can see that the polynomials ˚n.x/ satisfy the orthogonality relation

Z

1

0

˚i.x/W .x/˚�

j
.x/dx D 0 if i ¤ j ;

where

W .x/D 	0.x/

�

.1�x/ˇx˛C1 0

0 .1�x/ˇx˛

�

	�

0
.x/:

The polynomials ˚n.x/ are classical in the sense that they are eigenfunctions

of a fixed second order differential operator. More precisely, we have

F˚�

n
D ˚�

n
�n;

where�nD diag
�

�n2�.˛CˇC2/nC˛C1C 1

2
.ˇC1/; �n2�.˛CˇC3/n

�

and

FD x.1�x/
�

d

dx

�2

C

 .˛C1/.ˇC2˛C5/
ˇC2˛C3

�.˛CˇC3/x 2˛C2

2˛CˇC3
Cx

ˇC1

ˇC2˛C3

.˛C2/ˇC2˛2
C5˛C4

ˇC2˛C3
�.˛CˇC4/x

!

d

dx

C

�

˛C1C ˇC1

2
0

0 0

�

I:
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As mentioned earlier this is the reason why this example has surfaced re-

cently; see [Grünbaum 2003]. An explicit expression for the polynomials then-

selves is given in [Tirao 2003, Corollary 3].

Now we observe that the entries of the corresponding pentadigonal matrix are

all nonnegative, and that the sum of the entries on any given row are all equal to

1. This allows for an immediate probabilistic interpretation of the pentadiagonal

matrix as the one step transition probability matrix for a Markov chain whose

state space could be visualized in the graph

0
2 4 6

1
3 5 7

I find it remarkable that this example, which was produced for an entirely

different purpose, should have this extra property. Finding an appropriate com-

binatorial mechanism, maybe in terms of urns, that goes along with this example

remains an interesting challenge.

Two final observations dealing with these state spaces that can be analyzed

using matrix-valued orthogonal polynomials. If we were using matrix-valued

polynomials of size N we would have as state space a semiinfinite network

consisting of N (instead of two) parallel collection of nonnegative integers with

connections going from each of the N states on each vertical rung to every one

in the same rung and the two neighbouring ones. The examples in [Grünbaum

et al. 2002] give instances of this situation with a rather local connection pattern.

In the case of N D 2 one could be tempted to paraphrase a well known paper

and say that “it has not escaped our notice that” some of these models could be

used to study transport phenomena along a DNA segment.

10. Another example

Here we consider a different example of matrix-valued orthogonal polynomi-

als whose block tridiagonal matrix can be seen as a scalar pentadiagonal matrix

with nonnegative elements. In this case the sum of the elements in the rows of

this scalar matrix is not identically one, but this poses no problem in terms of a

Karlin–McGregor-type representation formula for the entries of the powers P
n.
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This example has the important property that the orthogonality weight matrix

W .x/, as well as the polynomials themselves are explicitly known. This is again

a classical situation; see [Castro and Grünbaum 2006].

Consider the block tridiagonal matrix

0

B

B

@

B0 I

A1 B1 I

0 A2 B2 I
: : :

: : :
: : :

1

C

C

A

with 2� 2 blocks given by B0 D
1

2
I , Bn D 0 if n� 1, and An D

1

4
I if n� 1.

In this case one can compute explicitly the matrix-valued polynomials Pn given

by

AnPn�1.x/CBnPn.x/CPnC1.x/D xPn.x/; P�1.x/D 0; P0.x/D I:

One gets

Pn.x/D
1

2n

�

Un.x/ �Un�1.x/

�Un�1.x/ Un.x/

�

where Un.x/ is the n-th Chebyshev polynomial of the second kind.

The orthogonality measure is read off from the identity

4i

�

Z

1

�1

Pi.x/
1

p
1�x2

�

1 x

x 1

�

Pj .x/dx D ıij I:

We get, for nD 0; 1; 2; : : :

4i

�

Z

1

�1

xnPi.x/
1

p
1�x2

�

1 x

x 1

�

Pj .x/dx D .Pn/ij ;

where, as above, .Pn/ij stands for the i; j block of the matrix P
n.

0 2 4 6

1 3 5 7

In this way one can compute the entries of the powers P
n, with P

n thought

of as a pentadiagonal matrix, namely
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PD

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1

2
1 0 0 0

1

2
0 0 1 0 0

: : :

1

4
0 0 0 1 0

: : :

0 1

4
0 0 0 1

: : :

0 1

4
0 0 0

: : :

0 1

4
0 0

: : :

: : :
: : :

: : :
: : :

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

This example goes along with the graph on the previous page.

11. A few more challenges

We have already pointed out a few challenges raised by our attempt to extend

the Karlin–McGregor representation beyond its original setup. Here we list a

few more open problems. The reader will undoubtedly come up with more.

Is there a natural version of the models introduced by Bernoulli–Laplace and

by P. and T. Ehrenfest whose solution features matrix-valued polynomials?

Is it possible to modify the simplest Chebyshev-type examples in [Duran

1999] to accommodate cases where some of the blocks in the tridiagonal matrix

give either absorption or reflection boundary conditions?

One could consider the emerging class of polynomials of several variables and

find here interesting instances where the state space is higher-dimensional. For a

systematic study of polynomials in several variables one should consult [Dunkl

and Xu 2001] as well as the monograph [Macdonald 2003], on Macdonald poly-

nomials of various kinds. A look at the pioneering work of Tom Koornwinder

(see [Koornwinder 1975], for instance) is always a very good idea.

� � � �

After this paper was finished I came up with two independent sources of

multivariable polynomials of the type alluded to in the previous paragraph. One

is the series of papers by Hoare and Rahman [1979; 1984; 1988; � 2007]. The

other deals with the papers [Milch 1968; Iliev and Xu 2007; Geronimo and Iliev

2006].

In queueing theory one finds the notion of quasi-birth-and-death processes;

see [Latouche and Ramaswami 1999; Neuts 1989]. Within those that are non-

homogeneous one could find examples where the general approach advocated

here might be useful.
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Integration of pair flows of

the Camassa–Holm hierarchy

ENRIQUE LOUBET

To Henry McKean with my admiration and respect on the occasion

of his seventy-fifth birthday

ABSTRACT. We present the integration of the “pair” flows associated to the

Camassa–Holm (CH) hierarchy i.e., an explicit exact formula for the update

of the initial velocity profile in terms of initial data when run by the flow

associated to a Hamiltonian which (up to a constant factor) is given by the

sum of the reciprocals of the squares of any two eigenvalues of the underlying

spectral problem. The method stems from the integration of “individual” flows

of the CH hierarchy described in [Loubet 2006; McKean 2003], and is seen

to be more general in scope in that it may be applied when considering more

complex flows (e.g., when the Hamiltonian involves an arbitrary number of

eigenvalues of the associated spectral problem) up to when envisaging the full

CH flow itself which is nothing but a superposition of commuting individual

actions. Indeed, by incorporating piece by piece into the Hamiltonian the

distinct eigenvalues describing the spectrum associated to the initial profile,

we may recover McKean’s Fredholm determinant formulas [McKean 2003]

expressing the evolution of initial data when acted upon by the full CH flow.

We also give account of the large-time (and limiting remote past and future)

asymptotics and obtain (partial) confirmation of the thesis about soliton genesis

and soliton interaction raised in [Loubet 2006].

Keywords: integrable systems, soliton traveling waves, spectral theory, Darboux transformations, asymptotic

analysis.
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1. Introduction

The equation of Camassa and Holm (CH) [1993; 1994] is an approximate

one-dimensional description of unidirectional propagation of long waves in shal-

low water. In dimensionless space-time variables it reads

@m

@t
C .mDCDm/.v/D 0 (1)

in which D D @=@x D . � /0, m D .1�D2/v and at any given time t in R, the

real valued function vD v.t; � / represents the fluid velocity (or equivalently the

height of the water’s free surface above flat bottom). It is an infinite dimensional

integrable bi-Hamiltonian system i.e., (1) is equivalent to

@m

@t
D J.m/

�

@HCH

@m

�

D fm;HCHgJ D fm;H
C

CHgK DK

�

@H C

CH

@m

�

with Hamiltonians

�HCH WD
1

2

Z

C1

�1

Œv2C .v0/2� and �H C

CH WD
1

2

Z

vŒv2C .v0/2�

linked, via their corresponding functional gradients, by the Lenard raising/lower-

ing rule [McKean 1993] as in J.m/.@HCH=@m/D K.@H C

CH=@m/. The pair

J.m/ WDmDCDm and K WDD.1�D2/

of skew operators (with respect to the H0-inner product) being employed to de-

fine (via the H0-inner product) a pair of compatible Poisson brackets so that, for

a suitable class of functionals defined on phase space, a Lie algebra is specified

(see [Loubet 2006] for more details.) Moreover, just like most integrable nonlin-

ear evolution equations, CH equation (1) is also equivalent to the compatibility

condition of an overdetermined linear system comprising the so called Lax pair;

an evolution problem

@f

@t
D

1

2

@v

@x
f �

�

vC
1

2�

�

@f

@x
(2)

and a spectral problem, the acoustic equation with “potential” or “mass” m,

.1=4�D2/f D �mf; (3)

where � and f denote, respectively, the eigenvalue and its associated eigenfunc-

tion. Here, compatibility means enforcing the matching of mixed derivatives

i.e., .f
�

/00D .f 00/
�

where @=@t D . � /
�

. It follows that (1) preserves the spectral

characteristics of (3) i.e., CH flow is isospectral.
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For real summable m the spectrum of (3) is purely discrete and simple i.e.,

spec.m/Df�j .m/2R, j D : : : ;�1; 0; 1; : : :g where �j is a real value for which

there exists a unique normalized solution fj of (3) in H1:

jfj j
2

1
WD

Z

�j mf 2

j
D

Z

Œf 02

j
C 1

4
f 2

j
�D 1:

Most significant is that, within the class of summable m, CH flow is nothing but a

superposition of commuting individual actions. Indeed, this opens the possibility

to analyze CH flow via the accumulated effects that each of its constituents

entail, the latter being presumed to be simpler to describe. And, indeed, the

flows based upon a Hamiltonian of the form H D 1=� where � is any eigenvalue

of (3) turned out to be manageable [Loubet 2006]. More specifically, our goal

was to elucidate as many qualitative properties of the full CH flow as possible

from a direct and detailed analysis of the changes that each of its constitutive

components produce when acting on generic initial data. We paid particular

attention to how much could be said about the emergence of solitons for the CH

flow by tracking down the effects of its individual actions. This investigation

was possible from a careful analysis of explicit exact formulas for the updates of

a generic initial profile run by any such elementary flow when expressed in terms

of its private “Lagrangian” scale. Denoting by XH the Hamiltonian vector field

associated to the Hamiltonian H , �t

XH
the corresponding flow map describing

the updates m WD .�t

XH
m0/ at time t of the elements m0 in phase space — here

the class of real valued summable functions — and �t

XH �
the flow that it induces

on functionals of m0, a “Lagrangian” scale is specified by

@Lt

H

@t
D�

�

�t

XH �

@H

@m0

�

ıLt

H
; L0

H
D id

in which @H=@m0 denotes the functional gradient. We have proved:

THEOREM 1. The Hamiltonian flow of the CH hierarchy arising from H D 1=�

(where � is an arbitrary eigenvalue of the acoustic equation f 00

0
D .1=4 �

�m0/f0 which is associated to the summable initial data m0 D v0�v
00

0
) is inte-

grated explicitly in terms of the latter with the help of its private “Lagrangian”

scale specified by

@Lt

H
=@t D�.�t

XH �
@H=@m0/ ıLt

H
; L0

H
D id

and three “theta” functions (each of which depends on t and a spatial variable

denoted by � if unspecified, e.g., # D #.t; � I�m0/ and so on), namely
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#�

#

#C

D 1C .et � 1/

Z

�

�1

8

ˆ

ˆ

<

ˆ

ˆ

:

.f 0

0
� 1

2
f0/

2

�m0f
2

0

.f 0

0
C 1

2
f0/

2 :

(4)

To wit,

.�t

XH
v0/ ıLt

H
D
#C

#�

�v0� v
0

0

2

�

C
#�

#C

�v0C v
0

0

2

�

C

q

# 0

�
# 0

C

�#�#C

.#C�#�/C
#

2�#�#C

.#C�#�/
0 ;

@.�t

XH
v0/ ıLt

H

@Lt

H

D�
#C

#�

�v0� v
0

0

2

�

C
#�

#C

�v0C v
0

0

2

�

C

q

# 0

�
# 0

C

�#�#C

.#C�#�/
0C

#

2�#�#C

.#CC#�/
0

C
# 0

�
# 0

C

�#�#C#
.#C�#�/

or, equivalently,

.�t

XH
m0/ ıLt

H
D

�

#�#C

#2

�2

m0 :

It is remarkable that all updated expressions arising in the study of individ-

ual flows are given in terms of the theta functions (4). In fact, McKean had

previously integrated the CH equation on the line by means of a triple of “theta-

like” Fredholm determinants [McKean 2003]. The nomenclature is prompted

from the fact that these determinants as well as their individual theta functions

counterparts (4) satisfy a number of properties which are reminiscent of those

met by Riemann’s theta function together with its translates. Notably, there is

only one theta-like (determinant) function, the others being produced from it by

infinitesimal addition [McKean 2001]. Moreover, these (determinants) functions

satisfy curious algebraic identities among themselves [McKean 2003]; the most

significant one being

#2 D #�#CC#
0

�
#C�#�#

0

C
:

In this paper, we will show that these underlying algebraic structures pre-

vail when considering composite flows of a particular but sufficiently general

class (see Theorem 2 below). Our aim is to offer a detailed account of the

integration of the aforementioned pair flows associated with the CH hierarchy

and discuss their large-time asymptotics. It will become clear to the reader that
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exactly the same method can be applied to integrate composite flows arising

from Hamiltonians involving an arbitrary number of eigenvalues up to the full

CH Hamiltonian which, when m is summable, satisfies

�HCH D
1

2

Z

mG�mD
1

4

X 1

�2
n

where G D e�j�j=2 is the Green’s function .1 �D2/G D ı, i.e., G �m D v;

the sum accounting for all spectrum. Henceforth, we will focus in leading the

reader along the hints and observations embodying the concatenation of lucky

occurrences that culminate in the final expressions that substantiate the follow-

ing main result.

THEOREM 2. The Hamiltonian flow of the CH hierarchy arising from H D

.1=�2

C
C 1=�2

�
/=4 (in which �˙ denote an arbitrary pair of eigenvalues of the

acoustic equation .f 0

˙
/00D .1=4��˙m0/f

0

˙
which is associated to the summa-

ble initial data m0 D v0� v
00

0
) is integrated explicitly in terms of the latter with

the help of its private “Lagrangian” scale, specified by

@Lt

H
=@t D�.�t

XH �
@H=@m0/ ıLt

H
; L0

H
D id

and three “theta” determinants (each of which depends on t and a spatial vari-

able denoted by � if unspecified, e.g., � D�.t; � I�m0/ and so on), namely

��

�

�C

WD det

2

6

6

6

6

6

4

IdCE.t; �/

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

Z

�

�1

��;0˝��;0

�˚0
Z

�

�1

�C;0˝�C;0

3

7

7

7

7

7

5

: (5)

where Id= the 2� 2 identity matrix,

�W D

�

�� 0

0 �C

�

; E.t; �/W D .et=.2�/� Id/;

��;0W D

�

.f 0

�
/0� 1

2
f 0

�

.f 0

C
/0� 1

2
f 0

C

�

; �C;0W D

�

.f 0

�
/0C 1

2
f 0

�

.f 0

C
/0C 1

2
f 0

C

�

;

and

˚0 WD

Z

�

�1

m0f0˝f0 D

�

'0

�
=�� '0

'0 '0

C
=�C

�

where f0 WD .f
0

�
; f 0

C
/| and

'0 WD

Z

�

�1

m0f
0

�
f 0

C
I '0

˙
WD

Z

�

�1

�˙m0.f
0

˙
/2 :
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To wit,

.�t

XH
v0/ ıLt

H
D
��

�C

�

v0C v
0

0

2
C 1

2
�

|

C;0
.M�/�1E�C;0

�

C
�C

��

�

v0� v
0

0

2
� 1

2
�

|

�;0
.M�/�1E��;0

�

@.�t

XH
v0/ ıLt

H

@Lt

H

D
��

�C

�

v0C v
0

0

2
C 1

2
�

|

C;0
.M�/�1E�C;0

�

�
�C

��

�

v0� v
0

0

2
� 1

2
�

|

�;0
.M�/�1E��;0

�

where M.t; � / WD IdCE.t; �/�˚0 (so that � D det M) or, equivalently,

.�t

XH
m0/ ıLt

H
D

�

���C

�2

�2

m0 :

The algebraic similitude of the formulas in Theorem 1 and Theorem 2 might, in

part, be at the core of why most interesting features pertaining to the full flow

are already reflected at the level of its components. Furthermore, we interpret

this fact as stronger evidence substantiating the nature, interplay, and relevance

of individual flows to the understanding of the underlying mechanisms that are

involved in soliton formation and soliton interactions.

Indeed, the explicit formulas of Theorem 1 were shown to be valuable while

conducting the large-time asymptotic analysis in that they afforded a mathe-

matical treatment to establish the eventual emergence (provided we waited long

enough) of a soliton escaping to infinity at a speed commensurable to the eigen-

value characterizing the individual flow at play. See [Loubet 2006].

THEOREM 3. Assume �> 0, and let the real summable initial data m0D v0�v
00

0

be such that m0 D o.1/ for x� 0 and disposed as in signf�m0.x/g D signfxg.

Then, provided that we wait long enough, we see that, to leading order, the

velocity profile (run by the individual flow arising from the Hamiltonian H D

1=�) shapes itself like the escaping soliton. In symbols:

Lt

H
.x/ 2 ŒLt

H
.R�.t; �//;L

t

H
.RC.t; �//� for all x;

ˇ

ˇ

ˇ

ˇ

Œ.�t

XH
v0/ ıLt

H
�.x/�

1

2�
e�jLt

H
.x/�Lt

H
.R0.t//j

ˇ

ˇ

ˇ

ˇ

D o.1/ as t " C1;

where
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Lt

H
.R�.t; �//C t D� log

�

1C �

�

�

C o.1/

Lt

H
.R0.t//C t D o.1/ as t " C1;

Lt

H
.RC.t; �//C t DC log

�

1C �

�

�

C o.1/

and R0, R˙ are, for sufficiently large times, defined respectively by

#.t;R0.t// WD 0; and #˙.t;R�.t; �// WD 1C �˙1

� being a nonnegative parameter.

Note that the signature disposition signf�m0.x/g D signfxg on initial data m0

guarantees breakdown (i.e., v0 # �1 for some 0 < t < C1; see [McKean

1998; McKean 2004]) or, what is the same thing, the vanishing of #.t; � / for a

sufficiently large time

t > T WD log
�

1C
�R

0

�1
��m0f

2

0

�

�1�

at a unique site R0.t/ < 0. Actually, the fact that the soliton of Theorem 3 (es-

caping to �1) has its peak (for t >T ) precisely at the root R0.t/ of #.t; � /D 0

is merely accidental. Indeed, even in the case where no breakdown occurs (i.e.,

where # no longer vanishes), one can adapt the analysis as in [Loubet 2006]

to conclude about the genesis a soliton moving at the right of the origin (see

concluding remarks in that reference). As the direction and speed of soliton

propagation are given, respectively, by the signature and magnitude of the un-

derlying eigenvalue, we see that similar large-time asymptotic behavior (as that

following the results of Theorem 3 describing events way ahead into the future)

would take place when going far back into the past.

What is more, the algebraic robustness of our formulas as t !˙1 offered

further quantitative confirmation of the qualitative description of soliton genesis

[Loubet � 2007a; � 2007b]. Indeed, as t ! ˙1, the soliton that emerged

escapes to infinity leaving behind a stationary profile limt!˙1Œ.�
t

XH
v0/ıLt

H
�.

We have corroborated these facts from the energetic and spectral standpoints

with the help of the exact limiting formulas describing the latter, and we have

shown that the energy of the residual profile is less than the energy of the initial

profile by an amount that corresponds exactly to the energy that is embodied (at

any time j t j<C1) by the escaping soliton. On the other hand, the isospectrality

of individual flows, spec Œ.�t

XH
m0/ıLt

H
�D spec m0, though true for any given

j t j<C1, ceases to hold in the limits t !˙1. Indeed, the maps

m0‘ lim
t!˙1

Œ.�t

XH
m0/ ıLt

H
�
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from initial to residual profiles have a Darboux-type character in that precisely

the eigenvalue � of (3) associated to m0 from which the underlying individual

flow was based upon is excised, i.e., it is no longer part of

spec
�

lim
t!˙1

Œ.�t

XH
m0/ ıLt

H
�
�

;

the discrete spectrum associated to the stationary profiles. In short, the discrete

train of solitons generated by a suitable superposition of finitely many individual

actions should be regarded as a caricature of the infinite soliton train describing

the large-time asymptotics of the full CH model. Indeed, under current evidence

[Loubet 2006], it is hard to disbelieve that the aforementioned pair flows (with

��<0<�C) will eventually give rise to symmetrically disposed pairs of solitons

escaping from the origin, each with a fixed speed (which must be) regulated by

their corresponding eigenvalue. We also elaborate on some of these themes

in the present paper. Nonetheless, a rigorous mathematical verification of this

intuitive picture may not be, a priori, as simple to establish as in the case of indi-

vidual flows. On the one hand, the formulas pertaining to the pair flows involve

theta-like determinants which in principle are harder to manipulate. More sig-

nificantly, the waiting times before solitons occur need now to be distinguished

quantitatively and not merely qualitatively (“long enough”) as before. Indeed,

the asymptotic analysis that is related to a Hamiltonian depending on a couple of

distinct spectral values would require a precise estimate of the patience one must

bear — which should depend somehow on the ratio of the intervening eigenval-

ues — before it is possible to detect a slower developing soliton trailing behind a

faster sibling. In any case, even if such an attempt is proved to be successful —

which in our opinion would constitute an instructive exercise — once we move

up to the next stage in complexity, say, when considering “quadruple” flows

and beyond, there is little hope that we would be able to discern the large-time

asymptotics directly from the corresponding theta-like determinants of matrices

of higher rank with components depending (rationally) on the eigenvalues. In

short, we believe that a new approach is required to reach a concise mathematical

understanding of soliton train formation associated to the CH equation. Be that

as it may, our formulas might spur useful potential numerical experiments that

might shed light into aspects of the genesis of solitons and their interactions

(prior to their escape at infinity) that may encourage new promising strategies.

Indeed, the algebraic similarity of the recipes that arise in each of the cases that

we have considered so far, with the Fredholm analogues which McKean [2003]

employed to give account of CH on the line, cannot simply be accidental.
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2. Preparations

2.1. Identification of the pair flow. Let H D .1=�2

C
C 1=�2

�
/=4 be the

Hamiltonian corresponding (up to the constant factor 1=4) to the reciprocal of

the squares of any pair of eigenvalues �˙ of the spectral problem (3 with real

summable m0), its associated H1 eigenfunctions f 0

˙
normalized as in

jf 0

˙
j2
1
D

Z

�˙m0.f
0

˙
/2 D

Z

Œ..f 0

˙
/0/2C 1

4
.f 0

˙
/2�D 1: (6)

(Here we have used the notation established on page 272.) A routine computa-

tion establishes that the H0-functional gradient of the reciprocal of any eigen-

value (spectral invariant) is given by the square of the associated (normalized)

eigenfunction, so that

@H

@m0

D
1

2��

.f 0

�
/2C

1

2�C

.f 0

C
/2 :

Hence, the Hamiltonian pair flow is regulated by

m
�

D .mDCDm/

�

1

2��

f 2

�
C

1

2�C

f 2

C

�

; m.0; � /Dm0 (7)

where f˙ WD .�
t

XH �
f 0

˙
/ denote the normalized time t updates of f 0

˙
.

2.2. Induced flow on eigenfunctions. For summable m0, the spectrum of (3)

is discrete and simple [Loubet 2006]. Hence, as eigenfunctions are well-defined

functionals of m0, their variation is to be inferred from that of the potential,

e.g., the evolution of the updates f˙ of the normalized eigenfunctions f 0

˙
is

dictated from that of m0 and the normalization constraint. More precisely, it

is prescribed by the solution of the inhomogeneous acoustic problem — which

arises after taking the Lie derivative of the original acoustic problem along the

vector field XH i.e., after differentiating with respect to t the (time t ) updated

acoustic problem associated to f˙ — which conforms to the preservation of nor-

malization. Let

A˙ WD Œ1=4�D2��˙m� :

Then, by (7), the motion XH Œm�.f˙/ of the updates f˙ satisfies

A˙.XH Œm�.f˙//D �˙f˙.XH Œm�/D �˙f˙J

�

1

2��

f 2

�
C

1

2�C

f 2

C

�

;
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where J�J.m/. Now, from the results in [Loubet 2006] pertaining to individual

flows, we know that

˝˙ WD
1

2
f˙�f˙

Z

�

�1

�˙mf 2

˙
D f˙.

1

2
�'˙/;

˘˙ WD �f�

Z

�

�1

�˙mf�fC D��˙f�'

satisfy A˙.˝˙/ D �˙f˙J.f 2

˙
/ and A˙.˘˙/ D �˙f˙J.f 2

�
/. Then, as A˙

and J are linear, we have

A˙

�

1

2�˙

˝˙C
1

2��

˘˙

�

D �˙f˙J

�

1

2��

f 2

�
C

1

2�C

f 2

C

�

:

In these expressions

'˙ WD .�
t

XH �
'0

˙
/ and ' WD .�t

XH �
'0/

denote the time t updates of, respectively,

'0

˙
WD

Z

�

�1

�˙m0.f
0

˙
/2 and '0 WD

Z

�

�1

m0f
0

�
f 0

C
; (8)

as the action of the (induced) flow commutes with integration,

.�t

XH �
�˙m0.f

0

˙
/2/D �˙.�

t

XH
m0/.�

t

XH �
f 0

˙
/2 � �˙mf 2

˙

and so on. Hence, we are tempted to declare that

f
�

˙
D XH Œm�.f˙/ WD

1

2�˙

˝˙C
1

2��

˘˙ D
f˙

2�˙

.1

2
�'˙/�

�˙f�

2��

' : (9)

To convince ourselves that this is the correct recipe, we need to check whether

or not, under such evolution, the norm is preserved. The verification is simple:

Let N˙.t/ WD
R

�˙mf 2

˙
. Then, according to the “tentative” prescription (9),

N
�

˙
D

Z
�

�˙f
2

˙
J

� f 2

�

2��

C
f 2

C

2�C

�

C 2�˙mf˙

� f˙

2�˙

.1

2
�'˙/�

�˙f�

2��

'
�

�

:

As J is skew-symmetric and f˙ vanish at infinity, the integral of f 2

˙
J.f 2

˙
/

vanishes. On the other hand, f 2

˙
J.f 2

�
/D

�

mf 2

�
f 2

C
C.�˙���/'

2
�

0

, and since

eigenfunctions associated to different eigenvalues are orthogonal (
R

mf�fCD0)

the last display reduces to

N
�

˙
D

1

2�˙

N˙.1�N˙/

from where it is plain that N˙.t/� 1 for every j t j<C1 since N˙.0/D 1. In

other words, the right-hand side of (9) dictates the evolution of f˙ that conforms

to normalization.
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2.3. Constants of motion and private Lagrangian scale. In addition to the

infinite number of independent functionals in involution which are preserved

by any flow of the CH hierarchy as follows from Magri’s observation [1978]

that compatibility of brackets is equivalent to saying that the class of raisable

functions is one and the same as the class of lowerable ones and the Lenard

scheme (starting from the lower/upper pair HCH and H C

CH) alluded to in the

introduction, the CH equation has another infinite collection of fundamental

invariants. They are defined as follows. Every nice functional H defined on

phase space gives rise to a flow �t

XH
i.e., a one-parameter group of diffeo-

morphisms of a domain of phase space into itself characterized by the solution

curves m WD .�t

XH
m0/ starting at m0 of the dynamical system — in an under-

lying “original” spatial scale x — associated to the (locally Lipschitz) Hamil-

tonian vector field: m
�

WD XH Œm� D J.@H=@m/. It also gives rise to a new

“Lagrangian” scale Lt

H
.x/ DW x.t;x/ characterized by x

�

D �.@H=@m/ ı x,

x.0;x/ D x. That is, at any given time t up to breakdown [McKean 1998;

2004], the map x.t; � /D Lt

H
is a diffeomorphism of the real line issuing from

the identity. The upshot being that, at any time t before (possible) breakdown

and for every x in R, Œ.�t

XH
m0/ ı Lt

H
�.x/ � Œ@Lt

H
.x/=@x�2 is a constant of

motion �m0.x/. The verification is straightforward (see Remark 4 below). In

particular, for the pair flow in question the associated Lagrangian scale obeys

x
�

D�

�

1

2��

f 2

�
C

1

2�C

f 2

C

�

ı x ; x.0; � /D id : (10)

REMARK 4. The fundamental invariant

Œ.Lt

H
/0�2.�t

XH
m0/ ıLt

H
Dm0 (11)

— or .x0/2m ı x D m0 for short — in combination with the explicit form of

the Green’s function G D e�j�j=2 through which v D G � m is connected to

m show that the integration of any flow of the CH hierarchy boils down to the

determination of the associated Lagrangian scale. Indeed, the formulas of The-

orem 2 are obtained essentially following the explicit characterization of Lt

H
.

The invariants (11) originate from intrinsic symmetries [Khesin and Misiołek

2003]. Indeed, CH (1) satisfies the least-action principle as it is a reexpression

of geodesic flow on the group of smooth orientation preserving compressible

diffeomorphisms on the line with respect to the right-invariant H1-metric as-

similated as the energy [Misiołek 1998]. On the other hand, Noether’s theorem

guarantees the existence of a first integral from each one-parameter subgroup

that leaves the energy functional unchanged. By right-invariance, the elements

of every orbit emanating from the identity constitute such a subgroup, and since

these are plenty (one such for each initial direction in the tangent space at the

identity alias the Lie algebra associated to the group); the corresponding infinite
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collection of associated invariants turns out to be embodied in a (one-parameter)

identity (11). In other words, the CH equation (1) is nothing but a reexpression

of the (time) invariance of the right-hand side of (11). More precisely, the Euler-

Lagrange equation describing the critical points of the right-invariant H1-energy

functional reads

Œ.Lt

HCH
/0�2 � .1/ ıLt

HCH
D .11/

�

H DHCH
D 0 :

in which Lt

HCH
is the “true” Lagrangian scale, that is,

.Lt

HCH
/
�

D v ıLt

HCH
and L0

HCH
D id:

McKean [2003] (see also [Loubet 2006]) made the crucial observation that the

first integral (11) remains in force for all other flows (i.e., flows originating from

any Hamiltonian H ) of the CH hierarchy provided that in each case a suitable

“Lagrangian” scale is employed.

NOTATION. From now on, m.t;x/ will be short for the more cumbersome

expression .�t

XH
m0/.x/ describing the evaluation at x of the time t update of the

solution curve starting at m0, of the dynamical system (in phase space) defined

by the Hamiltonian vector field XH , as explained in Section 2.3. Similarly, we

will denote by

f˙.t;x/ WD .�
t

XH �
f 0

˙
/.x/

the evaluations at x of the (normalized time t ) updates .�t

XH �
f 0

˙
/ of the nor-

malized eigenfunctions f 0

˙
associated, respectively, to the spectral parameters

�˙, and so on. Moreover, whenever not confusing, we will occasionally omit

the explicit dependence and write m and f˙ plain for brevity. In other words, all

expressions with an upper/lower index “0” refer to (and hence involve purely)

initial data whereas their counterparts where the label “0” is dropped account

implicitly for their (time t ) updates when acted upon by the (induced pair) flow.

We emphasize that all initial and updated expressions are functions of an un-

derlying independent spatial variable (denoted by � if left out), unspecified

unless explicitly stated otherwise. In addition, in an effort to avoid unnecessary

details which should be clear from the context, we omit writing explicitly the

dummy variables and the differentials intervening in the integrands of integral

expressions (for example,
R

�

�1
eym0 is short for

R

�

�1
eym0.y/dy and so on.)

Also, sometimes the same expressions will be used to denote both the functions

and their evaluations at x. For example, depending on the context, when we

write
R

x
we might mean the function

R

x.t;� /
, as in (13) below, or its evaluation

at x, namely,
R

x.t;x/
, as in (19a). Finally, identities employing subscript ˙ are

short for two such expressions, one with subscript C and one with � .



INTEGRATION OF PAIR FLOWS OF THE CAMASSA–HOLM HIERARCHY 273

3. The road to integration: lucky facts

3.1. Building up integrable expressions. As pointed out in Remark 4, the

integration of the pair flows succumbs to the computation of their associated

Lagrangian scale. This suggests that the key to integration is to play around with

“sensible” objects involving the latter. The idea is to look for expressions incor-

porating the Lagrangian scale and functions of interest, whose evolution (under

the pair flow) leads to integrable formulas from which to infer subsequently the

integration of the items we actually care about. As in the case pertaining to

individual flows [Loubet 2006] we start by analyzing whether

.�t

XH �
'0

˙
/ ıLt

H
WD

�

�t

XH �

Z

�

�1

�˙m0.f
0

˙
/2
�

ıLt

H

i.e., the composition of the time t update '˙ of '0

˙
with the diffeomorphism

on the line given by the Lagrangian scale at t (i.e., Lt

H
) can be expressed in an

alternative closed form. To this end, we compute the time derivative of '˙ıxD
R

x

�1
�˙mf 2

˙
and explore to what extent the resulting equation is integrable.

Direct computation using (7) and (9) yields

Œ'˙ ıx�
�

D �˙.mf
2

˙
/ ıx �x

�

C

Z

x

�1

�

�˙f
2

˙
J

� 1

��

f 2

�
C

1

�C

f 2

C

�

C 2�˙mf˙

� f˙

2�˙

.1

2
�'˙/�

�˙f�

2��

'
�

�

:

As f 2

˙
J.f 2

˙
/D

�

mf 4

˙

�

0

and f 2

˙
J.f 2

�
/D

�

mf 2

�
f 2

C
C .�˙���/'

2
�

0

it follows

by (10) after cancellations and appropriate identifications that

Œ'˙ ı x�
�

D

�

1

2�˙

'˙.1�'˙/�
�˙

2
'2

�

ıx : (12a)

In sharp contrast with the analogue equation arising in the study of individual

flows [Loubet 2006], equation (12a) is not an ODE, as the presence of the term

�˙'
2=2 shows; see (8). It accounts for the mutual interaction of the underlying

individual flows comprising the pair flow. Hence, as it stands, equation (12a)

can only be useful if we manage somehow to determine, a priori, ' ı x. Now,

analogous manipulations to the ones leading to (12a) show that

Œ' ıx�
�

D

��

1

2��

.1

2
�'�/C

1

2�C

.1

2
�'C/

�

'

�

ıx : (12b)

Neither of the coupled equations (12a) and (12b) pertaining to the evolution

under the pair flow of the Lagrangian-scaled valued updates of '0

˙
, respectively
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'0, are seen to be integrable when looked at individually, but if we combine

these expressions suitably in a (symmetric) matrix as in

˚0 WD

� 1

��

'0

�
'0

'0
1

�C

'0

C

�

D

Z

�

�1

m0f0˝f0; (12c)

where f0 WD .f
0

�
; f 0

C
/|, we learn that (12a) and (12b) translate into

Œ˚ ıx�
�

D
�

�1

2
˚2C 1

4
Œ��1˚ C˚��1�

�

ı x; (12d)

where ˚ WD .�t

XH �
˚0/ and � WD diag.��; �C/. This is the kind of luck that we

were after: all we have to do now is solve an ODE! The last term on the right-

hand side of (12d) suggests an ansatz of the form ˚ ıx WD et=.4�/S.t; � /et=.4�/.

By direct computation, the latter is seen to satisfy

Œ˚ ıx�
�

D
1

4
Œ��1˚ C˚��1� ıxC et=.4�/

�

S .t; � /e
t=.4�/ :

We would be done if we could find S.t;x/ such that S.0;x/ D ˚0.x/ and

et=.4�/S
�

.t; � /et=.4�/D�1

2
Œ˚ ıx�2. Now, the derivative of the inverse of a ma-

trix is quadratic, i.e., .O�1/
�

D�O�1O
�

O�1, so that if S.t;x/ WDP.x/O�1.t;x/

then et=.4�/S
�

.t; � /et=.4�/D�Œ˚ıx�e�t=.4�/O
�

O�1et=.4�/, and thus, it would

suffice to find O such that e�t=.4�/O
�

O�1et=.4�/ D 1

2
˚ ı x or, what is the

same thing, O
�

D 1

2
et=.2�/P D .�et=.2�/P/

�

. This implies that O.t;x/ D

�et=.2�/P.x/CD.x; �/ for some 2�2 matrix D. Finally, we observe that the

initial constraint, ˚0DP.�PCD/�1, can be met by setting D. �; �/ WD Id��P

and P WD ˚0. In short, the solution of (12d) is given by

˚ ıx D et=.4�/˚0ŒIdC .e
t=.2�/� Id/�˚0�

�1et=.4�/ : (13)

It will be helpful to introduce a shorthand and record the latter (or its evaluation

at x: see Notation on page 272) as

Œ˚ ıx�.x/D T.t/˚0.x/ŒM.t;x/�
�1T.t/;

where

M.t;x/ WD IdCE.t; �/�˚0.x/D IdCC.t; �/˚0.x/ (14a)

in which

C.t; �/ WD E.t; �/�; E.t; �/ WD .T2.t/� Id/; T.t/ WD et=.4�/ : (14b)

For reasons that will be clear in a moment, we also need to investigate whether

the evolution of other (Lagrangian-scaled valued updates of) integral expressions

involving the eigenfunctions f 0

˙
, which are associated to the pair of eigenvalues

�˙ that define the flow and the so called “improper” eigenfunctions e˙ � =2 of the

acoustic equation (�D 0 is not in the spectrum of (3 with summable m0)) admit
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alternative spellings. In other words, we play the same game as before with the

exception that this time we look at the evolution of the truncated integrals

F
#

0;˙
WD

Z

�

�1

�˙m0f
0

˙
ey=2 D�e � =2..f 0

˙
/0� 1

2
f 0

˙
/D�Œf 0

˙
; e � =2� ;

F
"

0;˙
WD

Z

C1

�

�˙m0f
0

˙
e�y=2 D e� � =2..f 0

˙
/0C 1

2
f 0

˙
/D Œf 0

˙
; e� � =2� ;

(15a)

where the bracket Œf;g� is short for the Wronskian f 0g�fg0. These expressions

can also be written in integrated form in terms of Wronskians. It develops after

some work that F
#

˙
WD .�t

XH �
F

#

0;˙
/ and F

"

˙
WD .�t

XH �
F

"

0;˙
/ satisfy

ŒF
#

˙
ı x�

�

D
� 1

2�˙

.1

2
�'˙/F

#

˙
�
�˙

2��

'F
#

�

�

ıx;

ŒF
"

˙
ı x�

�

D
� 1

2�˙

.1

2
�'˙/F

"

˙
�
�˙

2��

'F
"

�

�

ıx:

To compute the solutions of these coupled systems of equations (and hence

produce the desired tentative new spellings), we are led to pack the expressions

(15a) into the vectors

F
#

0
WD

 

F
#

0;�
=��

F
#

0;C
=�C

!

D���1

�

Œf 0

�
; e � =2�

Œf 0

C
; e � =2�

�

D�e � =2��1��;0;

F
"

0
WD

 

F
"

0;�
=��

F
"

0;C
=�C

!

D��1

�

Œf 0

�
; e� � =2�

Œf 0

C
; e� � =2�

�

D e� � =2��1�C;0;

(15b)

where �˙;0 WD ˙.
1

2
˙D/f0, i.e.,

��;0 WD

�

.f 0

�
/0� 1

2
f 0

�

.f 0

C
/0� 1

2
f 0

C

�

and �C;0 WD

�

.f 0

�
/0C 1

2
f 0

�

.f 0

C
/0C 1

2
f 0

C

�

; (15c)

so that�.1

2
˙D/��;0D�m0f0. Indeed, the evolution of their respective com-

ponents (as displayed lines above) is gathered nicely in the system of uncoupled

ODE’s

ŒF# ıx�
�

D f1
2
.1

2
��1�˚/F#g ıx;

ŒF" ıx�
�

D f1
2
.1

2
��1�˚/F"g ıx ;

˚ ı x being already known from (13). Since F# WD .�t

XH �
F

#

0
/ and F" WD

.�t

XH �
F

"

0
/ differ only in their initial values (F

#

0
and F

"

0
), we only need to deal

further with either of them, say F#. Direct computation shows that the educated
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guesses

F# ıx D et=.4�/Œ.M.t; � //|��1F
#

0
;

F" ıx D et=.4�/Œ.M.t; � //|��1F
"

0
;

(16)

with M as in (14a), provide the answer. Indeed, the time derivative of the right-

hand side of the second line yields

T
�

.M|/�1F
#

0
�T.M|/�1.M|/

�

.M|/�1F
#

0
:

As T
�

D 1

4
��1T and .M|/

�

D 2˚0�TT
�

D 1

2
˚0T2 — see (14a) and (14b) —

the latter reduces to
�

1

4
��1� 1

2
T.M|/�1˚0T

�

ŒF# ı x� :

The verification is completed by appealing to the identity

.M|/�1˚0 D ˚0M�1 (17)

and the preliminary integration result (13) so that

T.M|/�1˚0TD T˚0M�1T� ˚ ı x :

4. Determination of the Lagrangian scale

The trick to get an explicit formula for the Lagrangian scale x D x.t;x/ of

section 2.3 in terms of time t , the original spatial scale x, and initial data, is to

“peal off,” in an orderly fashion, the integrated expressions of section 3. More

precisely, we start by differentiating with respect to the underlying variable x

both sides of the identity (see (13), (12c), (8), and the notation clarifications on

page 272)
Z

x

�1

mf ˝f D Œ˚ ı x�.x/D et=.4�/˚0.x/ŒM.t;x/�
�1et=.4�/

where f WD .f�; fC/
| D .�t

XH �
f0/ is the update of f0 WD .f

0

�
; f 0

C
/|. Writing

M� IdCC˚0 for simplicity as in (14a), we get

.mf ˝f / ı x �x0 D et=.4�/
�

˚0M�1
�

0

et=.4�/ :

From (17) and the equality M| D IdC˚0C (C and ˚0 being symmetric) we

see that .˚0M�1/0 is equal to

.Id�˚0M�1C/˚ 0

0
M�1 D .Id� .M|/�1˚0C/˚ 0

0
M�1 D .M|/�1˚ 0

0
M�1 :

As ˚ 0

0
Dm0f0˝f0, the latter in combination with the fundamental invariant

(11), reduce (by associativity and linearity) the previous to last display to m0=x
0

times

.f ˝f / ıx D x0.et=.4�/.M|/�1
f0/˝ .e

t=.4�/.M|/�1
f0/:
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As m0 is not identically zero and since x0> 0 (at least for small times; see (10)),

we use linearity once more to recognize that

f ıx D
p

x0et=.4�/Œ.M.t; � //|��1
f0 : (18)

It is not surprising that the determination of the Lagrangian-scaled update of

f0 given by the left-hand side of (18) would follow once we have an explicit

formula for x. In fact (18) should be interpreted the other way around, namely,

as a step towards the determination of x: by equation (10), the trace identity

Tr
�

1

2
��1.f ˝f / ıx

�

D
� 1

2��

f 2

�
C

1

2�C

f 2

C

�

ıx ��x
�

;

in combination with the partial result (18) leads to

x
�

C� .t;x/x0 D 0;

in which � .t;x/ is short for the trace of

1

2
��1.et=.4�/Œ.M.t;x//|��1

f0.x//˝ .e
t=.4�/Œ.M.t;x//|��1

f0.x//:

This is a first order linear evolution equation from which, in principle, the La-

grangian scale can be computed, x.0;x/ D x being known. But to find an

explicit expression for the solution of this seemingly trivial equation (say, by

the method of characteristics) is not an easy matter. We actually take a different

route that bumps into yet another piece of grace. The “problem” with (18) is

that we do not have sufficient information about the shape of f ıx to infer that

of x. To fix this, we apply the previous method to identities that incorporate

the improper eigenfunctions e˙ � =2 (� D 0 is not in spec.m0/ of (3) for sum-

mable m0) whose shape is explicit and, more importantly, fixed for all times,

improper eigenfunctions being insensitive to the potential. As a matter of fact,

the computation of the scale x is not particularly sensitive to the actual shape of

improper eigenfunctions but rather, and this is the key, to the fact that they are

inverses of one another as we now show. Focus on the (evaluations at x) of the

Lagrangian-scaled updates of (15a) for which we have found explicit alternative

expressions (16), namely,

Z

x

�1

ey=2mfDŒF# ıx�.x/D et=.4�/Œ.M.t;x//|��1F
#

0
.x/; (19a)

Z

C1

x

e�y=2mfDŒF" ı x�.x/D et=.4�/Œ.M.t;x//|��1F
"

0
.x/: (19b)

Now, keeping in mind identity (11) i.e., .x/02m ı x Dm0 for short, definitions

(14a) and (12c), the fact that f0˝f0Df0f0

| (for column vectors f0) and the
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partial result (18), the x-derivative of both ends of (19a) yields (omitting here

and there the explicit x-dependence)

m0

x0
Œf ıx�ex=2 D

m0

x0
Œf ıx�

p
x0ex=2

�

1� e�x=2.Cf0/
|..M|/�1F

#

0
/
�

:

A similar expression follows from differentiating (19a) instead (the next display

embodies both of them). Hence, dropping the common factor m0Œf ı x�=x0,

which is assumed to be different from zero (as is the case at least for small times),

by linearity and appealing to the characterizations (15b) and (15c) involving the

initial data, we have

e˙x=2 D
p

x0e˙x=2
�

1C .Cf0/
|..�M|/�1��;0/

�

:

It is clear that the desired expressions for x0 and in fact x can be obtained

simply by multiplying, respectively, dividing the above identities. But before we

actually do that, we wish to find more palatable expressions for the intervening

factors. The coefficients on the right-hand side of the last display are of the form

1C a
|
b (for column vectors a and b), so we can invoke the identity

1C a
|
b� 1C a �bD det ŒIdC a˝b�

to express them in terms of determinants. To wit,

1C .Cf0/
|..�M|/�1��;0/D det ŒIdCE.˚0�Cf0˝��;0/�= det M; (20)

where in the last step we used the formula for the determinant of a product of

matrices and the fact that IdC a˝ .�M|/�1
b equals

IdC aŒ.�M|/�1
b�| D IdC a˝b.M�/�1 D ŒM�C a˝b���1M�1;

so that by (14a)

IdC .Cf0/˝ ..�M|/�1��;0/D�.IdCE.˚0�Cf0˝��;0//�
�1M�1 :

Moreover, recalling (12c) we have by linearity, the acoustic equation (3), and

definitions (15c) that ˚0� is equal to

Z

�

�1

f0˝.m0�f0/D

Z

�

�1

f0˝.1=4�D2/f0D�

Z

�

�1

f0˝.
1

2
˙D/��;0 :

Hence, upon integrating by parts, we see that

˚0�Cf0˝��;0 D

Z

�

�1

��;0˝��;0 :
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Now, substituting this expression into (20) and recalling the definitions of the

(evaluations at x of the) theta determinants (5) (bear in mind that all expressions

following (19a) are assumed to be implicitly evaluated at x), we learn that

e˙x=2 D
p

x0e˙x=2��

�
:

Finally, as advertised, looking at the ratio and the product of the latter identities

we get

ex D ex
��

�C

; respectively x0 D
�2

���C

: (21)

REMARK 5. Actually, these identities are equivalent. Indeed, x.t;˙1/D˙1

since�˙.t;�1/D1 and�˙.t;C1/Det.��1
�

C��1
C
/=2 by inspection of (5) and

the normalizations of f 0

˙
; see (6). Also, note that �˙ vanish nowhere, being

the determinants of matrices

M˙.t;x/ WD IdCE.t; �/

Z

x

�1

�˙;0˝�˙;0 (22)

(see (14b) and (15c)) with positive definite associated quadratic forms.

REMARK 6. Differentiating with respect to x the first expression in (21) and

using the substitution afforded by the second we get the curious quadratic iden-

tity

�2 D���CC�
0

�
�C����

0

C

relating the theta determinants; compare with [McKean 2003; Loubet 2006].

REMARK 7. The integration of the pair flow is now more or less completed.

Indeed, substituting the second identity of (21) into identity (11) yields

.�t

XH
m0/ ıLt

H
D

�

���C

�2

�2

m0 :

Hence, all that remains is to compute .�t

XH
v0/ıLt

H
D .G� .�t

XH
m0//ıLt

H
as

is done in Appendix B of [Loubet 2006]. Nonetheless, in the next section we

will present a more direct route to the formulas in Theorem 2.

REMARK 8. The logarithmic (time) derivative of the first identity in (21) shows

that x
�

D .log det.M�M�1

C
//

�

. Hence, upon invoking the identity .log det Q/
�

D

Tr.Q
�

Q�1/ valid for any differentiable square matrix Q, we obtain an alternative

description of the right-hand side of (10). To wit,

Tr.1

2
��1.f ˝f /ıx/D

�

1

2��

f 2

�
C

1

2�C

f 2

C

�

ıx D Tr.M
�

C
M�1

C
�M

�

�
M�1

�
/:

We invite the reader to check this, starting directly from (22) with the help of

(21) and the identity preceding (18). More significantly, upon substituting (21)
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into (18), we obtain an exact formula for the Lagrangian-valued time t update

of f0. To wit,

f ı x D
�

p
���C

et=.4�/Œ.M.t; � //|��1
f0; (23a)

or, componentwise,

f˙ ıx D
1

p
���C

et=.4�
˙
/
�

f 0

˙
C .et=.2��/� 1/Œf 0

˙
'0

�
���f

0

�
'0�
�

: (23b)

Similarly, one can compute the Lagrangian-valued (time t ) updates of eigen-

functions of (3) other than f˙ but that is not our purpose here.

5. Integration of the pair flow

In this section we finally show how to exploit the integrated expressions of

section 3 and section 4 — notably the characterization of the Lagrangian scale

(21) — to obtain the explicit formulas of Theorem 2. The trick is to stick to the

successful algorithm that was used systematically in the bulk of the previous

sections and apply it to

V
#

0
WD

Z

�

�1

eym0 D e � .v0� v
0

0
/; V

"

0
WD

Z

C1

�

e�ym0 D e� � .v0C v
0

0
/:

It develops (using (15a) and (16)) that

ŒV# ı x�
�

D�1

2
Œ.F#

�
=��/

2C .F
#

C
=�C/

2� ıx ��1

2
jF# ıxj2;

ŒV" ı x�
�

D 1

2
Œ.F"

�
=��/

2C .F
"

C
=�C/

2� ıx � 1

2
jF" ıxj2;

where V# WD .�t

XH �
V

#

0
/, and V" WD .�t

XH �
V

"

0
/. Closer inspection of the squares

of the Euclidean norms in the right-hand side of the equations above via the

preliminary integrations (i.e., alternative spellings) of F# ıx and F" ıx reveals

the last piece of the puzzle. Here is how. By identities (16), keeping in mind the

definitions (14a), and omitting writing explicitly the dependence on independent

variables, we have

jF# ıxj2 D .T.M|/�1F
#

0
/|.T.M|/�1F

#

0
/D .F

#

0
/|M�1T2.M|/�1F

#

0

jF" ıxj2 D .T.M|/�1F
"

0
/|.T.M|/�1F

"

0
/D .F

"

0
/|M�1T2.M|/�1F

"

0
:

Now, since 1

2
T2˚0 DM

�

by (14a), and because .M�1/
�

D�M�1M
�

M�1,

�1

2
M�1T2.M|/�1 D�M�1M

�

˚�1

0
.M|/�1 D .M�1/

�

M˚�1

0
.M|/�1 :

Moreover, by identity (17)

M˚�1

0
.M|/�1 DM.M|˚0/

�1 DM.˚0M/�1 D ˚�1

0
:



INTEGRATION OF PAIR FLOWS OF THE CAMASSA–HOLM HIERARCHY 281

Altogether, from the last two displays and the fact that the functions ˚0, F
#

0

and F
"

0
are independent of t , we learn that �1

2
jF# ıxj2 and 1

2
jF" ıxj2 can be

written as time derivatives i.e.,

ŒV# ı x�
�

D Œ.F
#

0
/|.˚0M/�1F

#

0
�
�

;

ŒV" ı x�
�

D Œ�.F
"

0
/|.˚0M/�1F

"

0
�
�

:

Integrating the latter with respect to the time variable from 0 to t yields

ex.v� v0/ ıx DV# ıx D e � .v0� v
0

0
/C .F

#

0
/|f.˚0M/�1�˚�1

0
gF

#

0
;

e�x.vC v0/ ıx DV" ıx D e� � .v0C v
0

0
/� .F

"

0
/|f.˚0M/�1�˚�1

0
gF

"

0
;

where, as before, the underlying spatial variable (denoted by � ) is left unspec-

ified. By associativity, definitions (14a) and linearity, it is immediate to see

that

.˚0M/�1�˚�1

0
DM�1.Id�M/˚�1

0
DM�1.�C˚0/˚

�1

0
D�M�1C :

Now we use in the last-but-one pair of identities the connection between the

scales (21) (with the understanding that in the latter the scale x is now to be left

unspecified i.e., exDe ���=�C). Together with linearity and the identifications

e� � =2F
#

0
D���1��;0 and e � =2F

"

0
D��1�C;0 of (15b), in combination with

the preceding identity and the equality C��1 D E, from (14b), this yields

.v� v0/ ıx D
�C

��

�

v0� v
0

0
��

|

�;0
.M�/�1E��;0

�

;

.vC v0/ ıx D
��

�C

�

v0C v
0

0
C�

|

C;0
.M�/�1E�C;0

�

:

Finally, taking half of the sum, respectively, of the difference of these identities

reproduce the punch line formulas of Theorem 2, and we are done.

6. Large-time asymptotics and limiting behavior

If �� < 0< �C, the Lagrangian-scaled updates of eigenfunctions associated

to the eigenvalues �˙ (cf. (23a) and (23b)) vanish as t!˙1. This prompts that

�˙ are excised from the spectrum associated with the residual profiles. Indeed,

et=.2��/ D o.1/ as t !˙1, and thus by (22) and (15c),

�˙ WD det M˙.t; � /D

(

et=.2�C/.�C1

˙
C o.1// as t " C1;

et=.2��/.��1

˙
C o.1// as t # �1;

where

�C1

˙

��1

˙

WD ˚˙�

(

Œa˙.'
0

�
� 1/C b˙'

0

C
�

Œa˙'
0

�
C b˙.'

0

C
� 1/�

(24)
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are the corresponding limiting/stationary theta counterparts, '0

˙
being defined

in (8), and

˚˙ WD �Cf
0

C
'0

C
..f 0

�
/0˙ 1

2
f 0

�
/C��f

0

�
'0

�
..f 0

C
/0˙ 1

2
f 0

C
/C.1C���C/'

0

�
'0

C
;

a˙ WD '
0

C
Cf 0

C
..f 0

C
/0˙ 1

2
f 0

C
/D

Z

�

�1

..f 0

C
/0˙ 1

2
f 0

C
/2 ;

b˙ WD '
0

�
Cf 0

�
..f 0

�
/0˙ 1

2
f 0

�
/ D

Z

�

�1

..f 0

�
/0˙ 1

2
f 0

�
/2 :

Hence, by (23b) we have

lim
t!˙1

Œ.�t

XH �
f 0

C
/ ıLt

H
�D 0; and lim

t!˙1

Œ.�t

XH �
f 0

�
/ ıLt

H
�D 0 :

On the other hand, using (14a) and (12c) we see that

� WD det M.t; � /D et=.2�
˙
/.�˙1C o.1// as t !˙1; (25)

where

�˙1 WD '0

˙
.1�'0

�
/C���C'

2

0
: (26)

In other words, either limits (in the remote past or future) give rise to stationary

Lagrangian scales (cf. (21))

.L˙1

H
/0 WD lim

t!˙1

�2

���C

D
.�˙1/2

�˙1

�
�˙1

C

;

or, what is the same,

eL˙1

H D e �
�˙1

�

�˙1

C

and residual potentials

lim
t!˙1

Œ.�t

XH
m0/ ıLt

H
�D .�˙1

XH
m0/ ıL˙1

H
D

�

�˙1

�
�˙1

C

.�˙1/2

�2

m0 :

NOTE. It is amusing to check directly from the definitions (24), (26), and (8)

that (dropping the upper indexes ˙1)

�2 D ���CC �
0

�
�C� ���

0

C
:

i.e., that the algebraic structure of the identity in Remark 6 relating the theta-

determinants remains valid (in the limits t!˙1) for either of their stationary

analogues.
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Either of the residual profiles can be computed from the corresponding residual

potentials via the Green’s function as in (cf. Remark 7),

lim
t!˙1

Œ.�t

XH
v0/ ıLt

H
�D .�˙1

XH
v0/ ıL˙1

H
D .G��˙1

XH
m0/ ıL˙1

H
;

but it is more efficient to infer them directly by taking (respectively) the limits

as t !˙1 of the formulas of Theorem 2. Indeed, for �� < 0< �C, we have1

lim
t!˙1

�˙

��

D
�˙1

˙

�˙1

�

where �˙1

˙
are given by (24) (see also (8)). On the other hand, we can check

that, in the notation of (14a), (12c) and (8),

	˙.�;�/ WD lim
t!˙1

Œ.M.t;�/�/�1E.t;�/�D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1

�C1

�

�'0

C
=�� '0

'0 .1�'0

�
/=�C

�

1

��1

�

.1�'0

C
/=�� '0

'0 �'0

�
=�C

�

where �˙1 are given by (26) (see also (8)). Altogether, it follows directly from

the formulas of Theorem 2 that

lim
t!˙1

Œ.�t

XH
v0/ ıLt

H
�D

�˙1

�

�˙1

C

�

v0C v
0

0

2
C 1

2
�

|

C;0
	˙�C;0

�

C
�˙1

C

�˙1

�

�

v0� v
0

0

2
� 1

2
�

|

�;0
	˙��;0

�

;

lim
t!˙1

�

@.�t

XH
v0/ ıLt

H

@Lt

H

�

D
�˙1

�

�˙1

C

�

v0C v
0

0

2
C 1

2
�

|

C;0
	˙�C;0

�

�
�˙1

C

�˙1

�

�

v0� v
0

0

2
� 1

2
�

|

�;0
	˙��;0

�

:

(27)

The reader is invited to check from these equations that the H1-energy associated

to either of the stationary profiles (27) falls short of the one associated to the

initial profile v0 by exactly an amount that is equal to the sum of the energies

that, at any given time j t j<C1, each of the solitons escaping (respectively) at

speeds 1=.2�˙/ embody. But there is more, one can verify, adapting the general

method of sections 3 and 4, that the limits (as t!˙1) of the Lagrangian-scaled

updates of the remaining eigenfunctions that we refer to at the end of Remark 8

do not vanish. In fact, one can check that the latter constitute a basis in H1. In

1In �˙1

˙
, the signature of the upper index ˙1 indicates which of the limits t ! ˙1 is meant, while

the lower indexes merely distinguish which of the theta functions, �� or �C, is being referred to; cf. Notation

on page 272.
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short, as in the large-time asymptotics pertaining to the individual flows where it

is shown that the eigenvalue defining the flow at play is excised [Loubet�2007a;

� 2007b], in the case of pair flows, we have evidence that the maps from initial

to residual profiles, as described in the introduction, are also of Darboux-type

with the difference that two eigenvalues (the ones involved in the Hamiltonian

defining the flow) are excised instead of just one.

7. Conclusion

Closer inspection to the bulk of sections 3 and 4 shows that the method therein

employed, can be adapted to produce analogous explicit exact formulas for the

updates of profiles when run by flows of the CH hierarchy associated to Hamil-

tonians of the form
P

jj j�N
1=.4�2

j
/ with arbitrary N in Z

C, all the way up —

with due technical precautions in order to guarantee convergence, etc. — to (the

limiting case where N " C1 corresponding to) the full CH flow [McKean

2003]. Moreover, the present analysis suggests that all these expressions will be

sufficiently robust to afford (at least) a quantitative description of soliton train

development. Nonetheless, it remains to explore in more detail how manage-

able all these expressions really are in helping reveal any more qualitative and

quantitative phenomena pertaining to soliton emergence and soliton interaction.
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Landen Survey

DANTE V. MANNA AND VICTOR H. MOLL

To Henry, who provides inspiration, taste and friendship

ABSTRACT. Landen transformations are maps on the coefficients of an inte-

gral that preserve its value. We present a brief survey of their appearance in

the literature.

1. In the beginning there was Gauss

In the year 1985, one of us had the luxury of attending a graduate course on

Elliptic Functions given by Henry McKean at the Courant Institute. Among the

many beautiful results he described in his unique style, there was a calculation

of Gauss: take two positive real numbers a and b, with a > b, and form a new

pair by replacing a with the arithmetic mean .aCb/=2 and b with the geometric

mean
p

ab. Then iterate:

anC1 D
anC bn

2
; bnC1 D

p

anbn (1-1)

starting with a0 D a and b0 D b. Gauss [1799] was interested in the initial

conditions aD 1 and b D
p

2. The iteration generates a sequence of algebraic

numbers which rapidly become impossible to describe explicitly; for instance,

a3 D
1

23

�

.1C
4
p

2/2C 2
p

2
8
p

2
p

1C
p

2
�

(1-2)

is a root of the polynomial

G.a/D 16777216a8 � 16777216a7C 5242880a6� 10747904a5

C 942080a4� 1896448a3C 4436a2� 59840aC 1:

Keywords: Integrals, arithmetic-geometric mean, elliptic integrals.
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The numerical behavior is surprising; a6 and b6 agree to 87 digits. It is simple

to check that

lim
n!1

an D lim
n!1

bn: (1-3)

See (6-1) for details. This common limit is called the arithmetic-geometric

mean and is denoted by AGM.a; b/. It is the explicit dependence on the initial

condition that is hard to discover.

Gauss computed some numerical values and observed that

a11 � b11 � 1:198140235; (1-4)

and then he recognized the reciprocal of this number as a numerical approxima-

tion to the elliptic integral

I D
2

�

Z

1

0

dt
p

1� t4

: (1-5)

It is unclear to the authors how Gauss recognized this number: he simply knew

it. (Stirling’s tables may have been a help; [Borwein and Bailey 2003] contains a

reproduction of the original notes and comments.) He was particularly interested

in the evaluation of this definite integral as it provides the length of a lemniscate.

In his diary Gauss remarked, ‘This will surely open up a whole new field of

analysis’ [Cox 1984; Borwein and Borwein 1987].

Gauss’ procedure to find an analytic expression for AGM.a; b/ began with

the elementary observation

AGM.a; b/D AGM

�

aC b

2
;
p

ab

�

(1-6)

and the homogeneity condition

AGM.�a; �b/D �AGM.a; b/ : (1-7)

He used (1-6) with a D .1C
p

k/2 and b D .1 �
p

k/2, with 0 < k < 1, to

produce

AGM.1C kC 2
p

k; 1C k � 2
p

k/D AGM.1C k; 1� k/: (1-8)

He then used the homogeneity of AGM to write

AGM.1CkC2
p

k; 1Ck�2
p

k/D AGM
�

.1Ck/.1Ck�/; .1Ck/.1�k�/
�

D .1Ck/AGM.1Ck�; 1�k�/;

with

k� D
2
p

k

1C k
: (1-9)
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This resulted in the functional equation

AGM.1C k; 1� k/D .1C k/AGM.1C k�; 1� k�/: (1-10)

In his analysis of (1-10), Gauss substituted the power series

1

AGM.1C k; 1� k/
D

1
X

nD0

ank2n (1-11)

into (1-10) and solved an infinite system of nonlinear equations to produce

an D 2�2n

�

2n

n

�2

: (1-12)

Then he recognized the series as that of an elliptic integral to obtain

1

AGM.1C k; 1� k/
D

2

�

Z �=2

0

dx
p

1� k2 sin2 x
: (1-13)

This is a remarkable tour de force.

The function

K.k/D

Z �=2

0

dx
p

1� k2 sin2 x
(1-14)

is the elliptic integral of the first kind. It can also be written in the algebraic

form

K.k/D

Z

1

0

dt
p

.1� t2/.1� k2t2/
: (1-15)

In this notation, (1-10) becomes

K.k�/D .1C k/K.k/: (1-16)

This is the Landen transformation for the complete elliptic integral. John

Landen [1775], the namesake of the transformation, studied related integrals:

for example,

� W D

Z

1

0

dx
p

x.1�x2/
: (1-17)

He derived identities such as

� D "C
p

"2�� ; where " W D

Z �=2

0

p

2� sin2 � d� ; (1-18)

proven mainly by suitable changes of variables in the integral for ". In [Watson

1933] the reader will find a historical account of Landen’s work, including the

above identities.
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The reader will find in [Borwein and Borwein 1987] and [McKean and Moll

1997] proofs in a variety of styles. In trigonometric form, the Landen transfor-

mation states that

G.a; b/D

Z �=2

0

d�
p

a2 cos2 � C b2 sin2 �
(1-19)

is invariant under the change of parameters

.a; b/‘

�

aCb

2
;
p

ab

�

:

D. J. Newman [1985] presents a very clever proof: the change of variables

x D b tan � yields

G.a; b/D
1

2

Z

1

�1

dx
p

.a2Cx2/.b2Cx2/
: (1-20)

Now let x‘xC
p

x2C ab to complete the proof. Many of the above identities

can now be searched for and proven on a computer [Borwein and Bailey 2003].

2. An interlude: the quartic integral

The evaluation of definite integrals of rational functions is one of the standard

topics in Integral Calculus. Motivated by the lack of success of symbolic lan-

guages, we began a systematic study of these integrals. A posteriori, one learns

that even rational functions are easier to deal with. Thus we start with one having

a power of a quartic in its denominator. The evaluation of the identity

Z

1

0

dx

.x4C 2ax2C 1/mC1
D

�

2mC3=2 .aC 1/mC1=2
Pm.a/; (2-1)

where

Pm.a/D

m
X

lD0

dl.m/a
l (2-2)

with

dl.m/D 2�2m

m
X

kDl

2k

�

2m� 2k

m� k

��

mC k

m

��

k

l

�

; (2-3)

was first established in [Boros and Moll 1999b].

A standard hypergeometric argument yields

Pm.a/D P .˛;ˇ/
m

.a/; (2-4)
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where

P .˛;ˇ/
m

.a/D

m
X

kD0

.�1/m�k

�

mCˇ

m� k

��

mC kC˛Cˇ

k

�

2�k.aC 1/k (2-5)

is the classical Jacobi polynomial; the parameters ˛ and ˇ are given by ˛DmC1

2

and ˇD �m� 1

2
. A general description of these functions and their properties

are given in [Abramowitz and Stegun 1972]. The twist here is that they depend

on m, which means most of the properties of Pm had to be proven from scratch.

For instance, Pm satisfies the recurrence

Pm.a/D
.2m� 3/.4m� 3/a

4m.m� 1/.a� 1/
Pm�2.a/�

.4m� 3/a.aC 1/

2m.m� 1/.a� 1/
P 0

m�2
.a/

C
4m.a2� 1/C 1� 2a2

2m.a� 1/
Pm.a/:

This cannot be obtained by replacing ˛DmC 1

2
and ˇD�m� 1

2
in the standard

recurrence for the Jacobi polynomials. The reader will find in [Amdeberhan and

Moll 2007] several different proofs of (2-1).

The polynomials Pm.a/ makes a surprising appearance in the expansion

q

aC
p

1C c D
p

aC 1

�

1�

1
X

kD1

.�1/k

k

Pk�1.a/ ck

2kC1 .aC 1/k

�

(2-6)

as described in [Boros and Moll 2001a]. The special case a D 1 appears in

[Bromwich 1926], page 191, exercise 21. Ramanujan had a more general ex-

pression, but only for the case c D a2:

.aC
p

1C a2/n D 1C naC

1
X

kD2

bk.n/a
k

k!
; (2-7)

where, for k � 2,

bk.n/D

�

n2.n2� 22/.n2� 42/ � � � .n2� .k � 2/2/ if k is even,

n.n2� 12/.n2� 32/ � � � .n2� .k � 2/2/ if k is odd.
(2-8)

This result appears in [Berndt and Bowman 2000] as Corollary 2 to Entry 14

and is machine-checkable, as are many of the identities in this section.

The coefficients dl.m/ in (2-3) have many interesting properties:

� They form a unimodal sequence: there exists an index 0�m� �m such that

dj .m/ increases up to j D m� and decreases from then on. See [Boros and

Moll 1999a] for a proof of the more general statement: If P .x/ is a polynomial
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with nondecreasing, nonnegative coefficients, then the coefficient sequence of

P .xC 1/ is unimodal.

� They form a log-concave sequence: define the operator

L.fakg/ W D fa
2

k
� ak�1akC1g

acting on sequences of positive real numbers. A sequence fakg is called log-

concave if its image under L is again a sequence of positive numbers; i.e. a2

k
�

ak�1akC1 � 0. Note that this condition is satisfied if and only if the sequence

fbk W D log.ak/g is concave, hence the name. We refer the reader to [Wilf

1990] for a detailed introduction. The log-concavity of dl .m/ was established

in [Kauers and Paule 2007] using computer algebra techniques: in particular,

cylindrical algebraic decompositions as developed in [Caviness and Johnson

1998] and [Collins 1975].

� They produce interesting polynomials: in [Boros et al. 2001] one finds the

representation

dl.m/D
Al;m

l ! m! 2mCl
; (2-9)

with

Al;m D ˛l.m/

m
Y

kD1

.4k � 1/�ˇl .m/

m
Y

kD1

.4kC 1/: (2-10)

Here ˛l and ˇl are polynomials in m of degrees l and l � 1, respectively. For

example, ˛1.m/D 2mC 1 and ˇ1.m/D 1, so that the coefficient of the linear

term of Pm.a/ is

d1.m/D
1

m! 2mC1

�

.2mC 1/

m
Y

kD1

.4k � 1/�

m
Y

kD1

.4kC 1/

�

: (2-11)

J. Little [2005] established the remarkable fact that the polynomials ˛l.m/ and

ˇl.m/ have all their roots on the vertical line Re mD � 1

2
.

When we showed this to Henry, he simply remarked: the only thing you have

to do now is to let l !1 and get the Riemann hypothesis. The proof in [Little

2005] consists in a study of the recurrence

ylC1.s/D 2syl.s/�
�

s2� .2l � 1/2
�

yl�1.s/; (2-12)

satisfied by ˛l..s�1/=2/ and ˇl ..s�1/=2/. There is no Number Theory in the

proof, so it is not likely to connect to the Riemann zeta function �.s/, but one

never knows.

The arithmetical properties of Al;m are beginning to be elucidated. We have

shown that their 2-adic valuation satisfies

�2.Al;m/D �2..mC 1� l/2l/C l; (2-13)



LANDEN SURVEY 293

where .a/k D a.aC 1/.aC 2/ � � � .aC k � 1/ is the Pochhammer symbol. This

expression allows for a combinatorial interpretation of the block structure of

these valuations. See [Amdeberhan et al. 2007] for details.

3. The incipient rational Landen transformation

The clean analytic expression in (2-1) is not expected to extend to rational

functions of higher order. In our analysis we distinguish according to the domain

of integration: the finite interval case, mapped by a bilinear transformation to

Œ0;1/, and the whole line. In this section we consider the definite integral,

U6.a; bI c; d; e/D

Z

1

0

cx4C dx2C e

x6C ax4C bx2C 1
dx; (3-1)

as the simplest case on Œ0;1/. The case of the real line is considered below. The

integrand is chosen to be even by necessity: none of the techniques in this section

work for the odd case. We normalize two of the coefficients in the denominator

in order to reduce the number of parameters. The standard approach for the

evaluation of (3-1) is to introduce the change of variables xD tan � . This leads

to an intractable trigonometric integral.

A different result is obtained if one first symmetrizes the denominator: we

say that a polynomial of degree d is reciprocal if Qd .1=x/D x�dQd .x/, that

is, the sequence of its coefficients is a palindrome. Observe that if Qd is any

polynomial of degree d , then

T2d .x/D xdQd .x/Qd .1=x/ (3-2)

is a reciprocal polynomial of degree 2d . For example, if

Q6.x/D x6C ax4C bx2C 1: (3-3)

then

T12.x/D x12C .aC b/x10C .aC bC ab/x8

C.2C a2C b2/x6C .aC bC ab/x4C .aC b/x2C 1:

The numerator and denominator in the integrand of (3-1) are now scaled by

x6Q6.1=x/ to produce a new integrand with reciprocal denominator:

U6 D

Z

1

0

S10.x/

T12.x/
dx; (3-4)

where we write

S10.x/D

5
X

jD0

sj x2j and T12.x/D

6
X

jD0

tj x2j : (3-5)
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The change of variables x D tan � now yields

U6 D

Z �=2

0

S10.tan �/ cos10.�/

T12.tan �/ cos12.�/
d�: (3-6)

Now let wD cos 2� and use sin2 � D 1

2
.1�w/ and cos2 � D 1

2
.1Cw/ to check

that the numerator and denominator of the new integrand,

S10.tan �/ cos10 � D

5
X

jD0

sj sin2j � cos10�2j � (3-7)

and

T12.tan �/ cos12 � D

6
X

jD0

tj sin2j � cos12�2j � D 2�6

6
X

jD0

tj .1�w/
j .1Cw/6�j ;

are both polynomials in w. The mirror symmetry of T12, reflected in tj D t6�j ,

shows that the new denominator is an even polynomial in w. The symmetry of

cosine about �=2 shows that the terms with odd power of w have a vanishing

integral. Thus, with  D 2� , and using the symmetry of the integrand to reduce

the integral from Œ0; �� to Œ0; �=2�, we obtain

U6 D

Z �=2

0

r4 cos4 C r2 cos2 C r0

q6 cos6 C q4 cos4 C q2 cos2  C q0

d : (3-8)

The parameters rj ; qj have explicit formulas in terms of the original parameters

of U6. This even rational function of cos can now be expressed in terms of

cos 2 to produce (letting �  2 )

U6 D

Z �

0

˛2 cos2 � C˛1 cos � C˛0

ˇ3 cos3 � Cˇ2 cos2 � Cˇ1 cos � Cˇ0

d�: (3-9)

The final change of variables y D tan �
2

yields a new rational form of the inte-

grand:

U6 D

Z

1

0

c1y4C d1y2C e1

y6C a1y4C b1y2C 1
dy: (3-10)

Keeping track of the parameters, we have established:

THEOREM 3.1. The integral

U6 D

Z

1

0

cx4C dx2C e

x6C ax4C bx2C 1
dx (3-11)

is invariant under the change of parameters

a1 
abC 5aC 5bC 9

.aC bC 2/4=3
; b1 

aC bC 6

.aC bC 2/2=3
;
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for the denominator parameters and

c1 
cCdCe

.aCbC2/2=3
; d1 

.bC3/cC2dC.aC3/e

aCbC2
; e1 

cCe

.aCbC2/1=3

for those of the numerator.

Theorem 3.1 is the precise analogue of the elliptic Landen transformation (1-1)

for the case of a rational integrand. We call (3-12) a rational Landen transfor-

mation. This construction was first presented in [Boros and Moll 2000].

3.1. Even rational Landen transformations. More generally, there is a similar

transformation of coefficients for any even rational integrand; details appear in

[Boros and Moll 2001b]. We call these even rational Landen Transformations.

The obstruction in the general case comes from (3-7); one does not get a poly-

nomial in w D cos 2� .

The method of proof for even rational integrals can be summarized as follows.

1) Start with an even rational integral:

U2p D

Z

1

0

even polynomial in x

even polynomial in x
dx: (3-12)

2) Symmetrize the denominator to produce

U2p D

Z

1

0

even polynomial in x

even reciprocal polynomial in x
dx: (3-13)

The degree of the denominator is doubled.

3) Let x D tan � . Then

U2p D

Z �=2

0

polynomial in cos 2�

even polynomial in cos 2�
d�: (3-14)

4) Symmetry produced the vanishing of the integrands with an odd power of

cos � in the numerator. We obtain

U2p D

Z �=2

0

even polynomial in cos 2�

even polynomial in cos 2�
d�: (3-15)

5) Let  D 2� to produce

U2p D

Z �

0

even polynomial in cos 

even polynomial in cos 
d : (3-16)

Using symmetry this becomes an integral over Œ0; �=2�.
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6) Let y D tan and use cos D 1=
p

1Cy2 to obtain

U2p D

Z

1

0

even polynomial in y

even polynomial in y
dy: (3-17)

The degree of the denominator is half of what it was in Step 5.

Keeping track of the degrees one checks that the degree of the new rational

function is the same as the original one, with new coefficients that appear as

functions of the old ones.

4. A geometric interpretation

We now present a geometric foundation of the general even rational Landen

transformation (3-12) using the theory of Riemann surfaces. The text [Springer

2002] provides an introduction to this theory, including definitions of objects we

will refer to here. The sequence of transformations in Section 3 can be achieved

in one step by relating tan 2� to tan � . For historical reasons (this is what we

did first) we present the details with cotangent instead of tangent.

Consider the even rational integral

I D

Z

1

0

R.x/ dx D
1

2

Z

1

�1

R.x/ dx: (4-1)

Introduce the new variable

y DR2.x/D
x2� 1

2x
; (4-2)

motivated by the identity cot 2� D R2.cot �/. The function R2 W R! R is a

two-to-one map. The sections of the inverse are

x D �˙.y/D y˙

q

y2C 1: (4-3)

Splitting the original integral as

I D

Z

0

�1

R.x/ dxC

Z

1

0

R.x/ dx (4-4)

and introducing x D �C.y/ in the first and x D ��.y/ in the second integral,

yields

I D

Z

1

�1

.RC.y/CR�.y// dy (4-5)

where
RC.y/DR.�C.y//CR.��.y//;

R�.y/D
y

p

y2C 1

�

R.�C.y//�R.��.y//
�

:
(4-6)
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A direct calculation shows that RC and R� are rational functions of degree at

most that of R.

The change of variables y D R2.x/ converts the meromorphic differential

' DR.x/ dx into

R.�C.y//
d�C

dy
CR.��.y//

d��

dy

D

�

.R.�C/CR.��//C
y.R.�C/�R.��//

p

y2C 1

�

dy

D .RC.y/CR�.y// dy:

The general situation is this: start with a finite ramified cover � W X ! Y

of Riemann surfaces and a meromorphic differential ' on X . Let U � Y

be a simply connected domain that contains no critical values of � , and let

�1; : : : ; �k W U ! X be the distinct sections of � . Define

��'
ˇ

ˇ

U
D

k
X

jD1

��

j
': (4-7)

In [Hubbard and Moll 2003] we show that this construction preserves analytic

1-forms, that is, if ' is an analytic 1-form in X then ��' is an analytic 1-form

in Y . Furthermore, for any rectifiable curve  on Y , we have
Z



��' D

Z

��1

': (4-8)

In the case of projective space, this leads to:

LEMMA 4.1. If � W P1 ! P
1 is analytic, and ' D R.z/ dz with R a rational

function, then ��' can be written as R1.z/ dz with R1 a rational function of

degree at most the degree of R.

This is the generalization of the fact that the integrals in (4-1) and (4-5) are the

same.

5. A further generalization

The procedure described in Section 3 can be extended with the rational map

Rm, defined by the identity

cot m� DRm.cot �/: (5-1)

Here m 2 N is arbitrary greater or equal than 2. We present some elementary

properties of the rational function Rm.

PROPOSITION 5.1. The rational function Rm satisfies:
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1) For m 2N define

Pm.x/W D

bm=2c
X

jD0

.�1/j
�

m

2j

�

xm�2j ;

Qm.x/W D

b.m�1/=2c
X

jD0

.�1/j
�

m

2j C 1

�

xm�.2jC1/:

Then Rm W D Pm=Qm.

2) The function Rm is conjugate to fm.x/ W D xm via M.x/ W D
xC i

x� i
; that

is, Rm DM �1 ıfm ıM .

3) The polynomials Pm and Qm have simple real zeros given by

pk W D cot
.2kC 1/�

2m
for 0� k �m� 1;

qk W D cot
k�

m
for 1� k �m� 1:

If we change the domain to the entire real line, we can, using the rational substi-

tutions Rm.x/‘ x, produce a rational Landen transformation for an arbitrary

integrable rational function R.x/DB.x/=A.x/ for each integer value of m. The

result is a new list of coefficients, from which one produces a second rational

function R.1/.x/D J.x/=H.x/ with

Z

1

�1

B.x/

A.x/
dx D

Z

1

�1

J.x/

H.x/
dx: (5-2)

Iteration of this procedure yields a sequence xn, that has a limit x1 with con-

vergence of order m, that is,

kxnC1�x1k � Ckxn�x1k
m: (5-3)

We describe this procedure here in the form of an algorithm; proofs appear in

[Manna and Moll 2007a].

Lemma 4.1 applied to the map �.x/DRm.x/, viewed as ramified cover of

P
1, guarantees the existence of a such new rational function R.1/. The question

of effective computation of the coefficients of J and H is discussed below. In

particular, we show that all these calculations can be done symbolically.

� Algorithm for deriving rational Landen transformations

Step 1. The initial data is a rational function R.x/ W DB.x/=A.x/. We assume

that A and B are polynomials with real coefficients and A has no real zeros and
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write

A.x/ W D

p
X

kD0

akxp�k and B.x/ W D

p�2
X

kD0

bkxp�2�k : (5-4)

Step 2. Choose a positive integer m� 2.

Step 3. Introduce the polynomial

H.x/ W D Resz.A.z/;Pm.z/�xQm.z// (5-5)

and write it as

H.x/ W D

p
X

lD0

elx
p�l : (5-6)

The polynomial H is thus defined as the determinant of the Sylvester matrix

which is formed of the polynomial coefficients. As such, the coefficients el of

H.x/ themselves are integer polynomials in the ai . Explicitly,

el D .�1/lam

0

p
Y

jD1

Qm.xj /� �
.p/

l
.Rm.x1/; Rm.x2/; : : : ;Rm.xp//; (5-7)

where fx1;x2; : : : ;xpg are the roots of A, each written according to multiplic-

ity. The functions �
.p/

l
are the elementary symmetric functions in p variables

defined by
p
Y

lD1

.y �yl /D

p
X

lD0

.�1/l�
.p/

l
.y1; : : : ;yp/y

p�l : (5-8)

It is possible to compute the coefficients el symbolically from the coefficients

of A, without the knowledge of the roots of A.

Also define

E.x/ W DH.Rm.x//�Qm.x/
p: (5-9)

Step 4. The polynomial A divides E and we denote the quotient by Z. The

coefficients of Z are integer polynomials in the ai .

Step 5. Define the polynomial C.x/ W D B.x/Z.x/.

Step 6. There exists a polynomial J.x/, whose coefficients have an explicit

formula in terms of the coefficients cj of C.x/, such that
Z

1

�1

B.x/

A.x/
dx D

Z

1

�1

J.x/

H.x/
dx: (5-10)

This new integrand is the rational function whose existence is guaranteed by

Lemma 4.1. The explicit computation of the coefficients of J can be found in

[Manna and Moll 2007a]. This is the rational Landen transformation of order m.
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EXAMPLE 5.1. Completing the algorithm with mD 3 and the rational function

R.x/D
1

ax2C bxC c
; (5-11)

produces the result stated below. Notice that the values of the iterates are ratios

of integer polynomials of degree 3, as was stated above. The details of this

example appear in [Manna and Moll 2007b].

THEOREM 5.2. The integral

I D

Z

1

�1

dx

ax2C bxC c
(5-12)

is invariant under the transformation

a‘
a

�

�

.aC3c/2�3b2
�

; b‘
b

�

�

3.a�c/2�b2
�

; c‘
c

�

�

.3aCc/2�3b2
�

;

(5-13)

where � W D .3aC c/.aC 3c/� b2. The condition b2 � 4ac < 0, imposed to

ensure convergence of the integral, is preserved by the iteration.

EXAMPLE 5.2. In this example we follow the steps described above in order to

produce a rational Landen transformation of order 2 for the integral

I D

Z

1

�1

b0x4C b1x3C b2x2C b3xC b4

a0x6C a1x5C a2x4C a3x3C a4x2C a5xC a6

dx: (5-14)

Recall that the algorithm starts with a rational function R.x/ and produces a

new function L2.R.x// satisfying

Z

1

�1

R.x/ dx D

Z

1

�1

L2.R.x// dx: (5-15)

Step 1. The initial data is R.x/D B.x/=A.x/ with

A.x/D a0x6C a1x5C a2x4C a3x3C a4x2C a5xC a6; (5-16)

and

B.x/D b0x4C b1x3C b2x2C b3xC b4: (5-17)

The parameter p is the degree of A, so p D 6.

Step 2. We choose m D 2 to produce a method of order 2. The algorithm

employs the polynomials P2.z/D z2� 1 and Q2.z/D 2z.
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Step 3. The polynomial

H.x/ W D Resz.A.z/; z
2� 1� 2xz/ (5-18)

is computed with the Mathematica command Resultant to obtain

H.x/D e0x6C e1x5C e2x4C e3x3C e4x2C e5xC e6; (5-19)

where

e0 D 64a0a6;

e1 D�32.a0a5� a1a6/; (5-20)

e2 D 16.a0a4� a1a5C 6a0a6C a2a6/;

e3 D�8.a0a3� a1a4C 5a0a5C a2a5� 5a1a6� a3a6/;

e4 D 4.a0a2�a1a3C4a0a4Ca2a4�4a1a5�a3a5C9a0a6C4a2a6Ca4a6/;

e5 D�2.a0a1� a1a2C 3a0a3C a2a3� 3a1a4� a3a4C 5a0a5

C 3a2a5C a4a5� 5a1a6� 3a3a6� a5a6/;

e6 D .a0� a1C a2� a3C a4� a5C a6/.a0C a1C a2C a3C a4C a5C a6/:

The polynomial H.x/ is the denominator of the integrand L2.R.x// in (5-15).

In Step 3 we also define

E.x/DH.R2.x//Q
6

2
.x/DH

�

x2� 1

2x

�

� .2x/6: (5-21)

The function E.x/ is a polynomial of degree 12, written as

E.x/D

12
X

kD0

˛kx12�k : (5-22)

Using the expressions for ej in (5-20) in (5-21) yields

˛0 D ˛12 D 64a0a6;

˛1 D�˛11 D � 64.a0a5� a1a6/;

˛2 D ˛10 D 64.a0a4� a1a5C a2a6/;

˛3 D �˛9 D � 64.a0a3� a1a4C a2a5� a3a6/;

˛4 D ˛8 D 64.a0a2� a1a3C a2a4� a3a5C a4a6/;

˛5 D �˛7 D � 64.a0a1� a1a2C a2a3� a3a4C a4a5� a5a6/;

˛6 D 64.a2

0
� a2

1
C a2

2
� a2

3
C a2

4
� a2

5
C a2

6
/:

(5-23)
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Step 4. The polynomial A.x/ always divides E.x/. The quotient is denoted by

Z.x/. The values of j̨ given in (5-23) produce

Z.x/D 64.a0� a1xC a2x2� a3x3C a4x4� a5x5C a6x6/: (5-24)

Step 5. Define the polynomial C.x/ W DB.x/Z.x/. In this case, C is of degree

10, written as

C.x/D

10
X

kD0

ckx10�k ; (5-25)

and the coefficients ck are given by

c0 D 64a6b0;

c1 D�64.a5b0� a6b1/;

c2 D 64.a4b0� a5b1C a6b2/;

c3 D�64.a3b0� a4b1C a5b2� a6b3/;

c4 D 64.a2b0� a3b1C a4b2� a5b3C a6b4/;

c5 D�64.a1b0� a2b1C a3b2� a4b3C a5b4/; (5-26)

c6 D 64.a0b0� a1b1C a2b2� a3b3C a4b4/;

c7 D 64.a0b1� a1b2C a2b3� a3b4/;

c8 D 64.a0b2� a1b3C a2b4/;

c9 D 64.a0b3� a1b4/;

c10 D 64a0b4:

Step 6 produces the numerator J.x/ of the new integrand L2.R.x// from the

coefficients cj given in (5-26). The function J.x/ is a polynomial of degree 4,

written as

J.x/D

4
X

kD0

jkx4�k : (5-27)

Using the values of (5-26) we obtain

j0 D 32.a6b0C a0b4/; (5-28)

j1 D�16.a5b0� a6b1C a0b3� a1b4/;

j2 D 8.a4b0C 3a6b0� a5b1C a0b2C a6b2� a1b3C 3a0b4C a2b4/;

j3 D�4.a3b0C 2a5b0C a0b1� a4b1� 2a6b1� a1b2C a5b2

C2a0b3C a3b3� a6b3� 2a1b4� a3b4/;

j4 D 2.a0b0C a2b0C a4b0C a6b0� a1b1� a3b1� a5b1

Ca0b2C a2b2C a4b2C a6b2� a1b3

�a3b3� a5b3C a0b4C a2b4C a4b4C a6b4/:
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The explicit formula used to compute the coefficients of J can be found in

[Manna and Moll 2007a].

The new rational function is

L2.R.x// W D
J.x/

H.x/
; (5-29)

with J.x/ given in (5-27) and H.x/ in (5-19). The transformation is

b0x4C b1x3C b2x2C b3xC b4

a0x6C a1x5C a2x4C a3x3C a4x2C a5xC a6

‘
j0x4C j1x3C j2x2C j3xC j4

e0x6C e1x5C e2x4C e3x3C e4x2C e5xC e6

:

The numerator coefficients are given in (5-20) and the denominator ones in

(5-28), explicitly as polynomials in the coefficients of the original rational func-

tion. The generation of these polynomials is a completely symbolic procedure.

The first two steps of this algorithm, applied to the definite integral
Z

1

�1

dx

x6Cx3C 1
D
�

9

�

2
p

3 cos.�=9/C
p

3 cos.2�=9/C 3 sin.2�=9/
�

;

(5-30)

produces the identities

Z

1

�1

dx

x6Cx3C1
D

Z

1

�1

2.16x4C12x2C2xC2/

64x6C96x4C36x2C3
dx

D

Z

1

�1

4.2816x4�1024x3C8400x2�884xC5970/

12288x6C59904x4C87216x2C39601
dx:

6. The issue of convergence

The convergence of the double sequence .an; bn/ appearing in the elliptic

Landen transformation (1-1) is easily established. Assume 0 < b0 � a0, then

the arithmetic-geometric inequality yields bn � bnC1 � anC1 � an. Also

0� anC1� bnC1 D
1

2

.an� bn/
2

.
p

anC
p

bn/2
: (6-1)

This shows an and bn have a common limit: M D AGM.a; b/, the arithmetic-

geometric of a and b. The convergence is quadratic:

janC1�M j � C jan�M j2; (6-2)

for some constant C > 0 independent of n. Details can be found in [Borwein

and Borwein 1987].
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The Landen transformations produce maps on the space of coefficients of the

integrand. In this section, we discuss the convergence of the rational Landen

transformations. This discussion is divided in two cases:

Case 1: the half-line. Let R.x/ be an even rational function, written as R.x/D

P .x/=Q.x/, with

P .x/D

p�1
X

kD0

bkx2.p�1�k/; Q.x/D

p
X

kD0

akx2.p�k/; (6-3)

and a0 D ap D 1. The parameter space is

PC

2p
D f.a1; : : : ; ap�1I b0; : : : ; bp�1/g � R

p�1 �R
p: (6-4)

We write

a W D .a1; : : : ; ap�1/; b W D .b0; : : : ; bp/: (6-5)

Define

�2p D

�

.a1; : : : ; ap�1/ 2 R
p�1 W

Z

1

0

R.x/ dx is finite

�

: (6-6)

Observe that the convergence of the integral depends only on the parameters in

the denominator.

The Landen transformations provide a map

˚2p WP
C

2p
!PC

2p
(6-7)

that preserves the integral. Introduce the notation

an D .a
.n/
1
; : : : ; a

.n/
p�1

/ and bn D .b
.n/
0
; : : : ; b.n/

p
/; (6-8)

where

.an;bn/D ˚2p.an�1;bn�1/ (6-9)

are the iterates of the map ˚2p .

The result that one expects is this:

THEOREM 6.1. The region �2p is invariant under the map ˚2p . Moreover

an!

 

�

p

1

�

;

�

p

2

�

; : : : ;

�

p

p� 1

�

!

; (6-10)

and there exists a number L, that depends on the initial conditions, such that

bn!

 

�

p� 1

0

�

L;

�

p� 1

1

�

L; : : : ;

�

p� 1

p� 1

�

L

!

: (6-11)

This is equivalent to saying that the sequence of rational functions formed by

the Landen transformations, converge to L=.x2C 1/.
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This was established in [Hubbard and Moll 2003] using the geometric language

of Landen transformations which, while unexpected, is satisfactory.

THEOREM 6.2. Let ' be a 1-form, holomorphic in a neighborhood of R � P
1.

Then

lim
n!1

.��/
n' D

1

�

�
Z

1

�1

'

�

dz

1C z2
; (6-12)

where the convergence is uniform on compact subsets of U , the neighborhood

in the definition of ��.

The proof is detailed for the map �.z/D
z2�1

2z
DR2.z/, but it extends without

difficulty to the generalization Rm.

Theorem 6.2 can be equivalently reformulated as:

THEOREM 6.3. The iterates of the Landen transformation starting at .a0;b0/2

PC

2p
converge (to the limit stated in Theorem 6.1 ) if and only if the integral

formed by the initial data is finite.

It would be desirable to establish this result by purely dynamical techniques.

This has been established only for the case p D 3. In that case the Landen

transformation for

U6 W D

Z

1

0

cx4C dx2C e

x6C ax4C bx2C 1
dx (6-13)

is

a1 
abC 5aC 5bC 9

.aC bC 2/4=3
; b1 

aC bC 6

.aC bC 2/2=3
; (6-14)

coupled with

c1 
cC d C e

.aCbC2/2=3
; d1 

.bC3/cC 2d C .aC3/e

aC bC 2
; e1 

cC e

.aCbC2/1=3
:

The region

�6 D f.a; b/ 2 R
2 W U6 <1g (6-15)

is described by the discriminant curve R, the zero set of the polynomial

R.a; b/D 4a3C 4b3� 18ab� a2b2C 27: (6-16)

This zero set, shown in Figure 1, has two connected components: the first one

RC contains .3; 3/ as a cusp and the second one R�, given by R�.a; b/D 0, is

disjoint from the first quadrant. The branch R� is the boundary of the set �6.

The identity

R.a1; b1/D
.a� b/2 R.a; b/

.aC bC 2/4
; (6-17)
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10

10

-10

-10

Figure 1. The zero locus of R.a; b/.

shows that @R is invariant under ˚6. By examining the effect of this map along

lines of slope �1, we obtain a direct parametrization of the flow on the discrim-

inant curve. Indeed, this curve is parametrized by

a.s/D
s3C 4

s2
and b.s/D

s3C 16

4s
: (6-18)

Then

'.s/D

�

4.s2C 4/2

s.sC 2/2

�1=3

(6-19)

gives the image of the Landen transformation ˚6; that is,

˚6.a.s/; b.s//D .a.'.s//; b.'.s//: (6-20)

The map ˚6 has three fixed points: .3; 3/; that is superattracting, a saddle

point P2 on the lower branch R� of the discriminant curve, and a third unstable

spiral below this lower branch. In [Chamberland and Moll 2006] we prove:

THEOREM 6.4. The lower branch of the discriminant curve is the curve �6.

This curve is also the global unstable manifold of the saddle point P2. There-

fore the iterations of ˚6 starting at .a; b/ converge if and only if the integral
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U6, formed with the parameters .a; b/, is finite. Moreover, .an; bn/ ! .3; 3/

quadratically and there exists a number L such that .cn; dn; en/! .1; 2; 1/L.

The next result provides an analogue of the AGM (1-13) for the rational case.

The main differences here are that our iterates converge to an algebraic number

and we achieve order-m convergence.

Case 2: The whole line. This works for any choice of positive integer m. Let

R.x/ be a rational function, written as R.x/DB.x/=A.x/. Assume that the co-

efficients of A and B are real, that A has no real zeros and that deg B�deg A�2.

These conditions are imposed to guarantee the existence of

I D

Z

1

�1

R.x/ dx: (6-21)

In particular A must be of even degree, and we write

A.x/D

p
X

kD0

akxp�k and B.x/D

p�2
X

kD0

bkxp�2�k : (6-22)

We can also require that deg.gcd.A;B//D 0.

The class of such rational functions will be denoted by Rp .

The algorithm presented in Section 5 provides a transformation on the pa-

rameters

PpW D fa0; a1; : : : ; apI b0; b1; : : : ; bp�2 g D R
pC1 �R

p�1 (6-23)

of R 2Rp that preserves the integral I . In fact, we produce a family of maps,

indexed by m 2 N,

Lm;p WRp!Rp;

such that
Z

1

�1

R.x/ dx D

Z

1

�1

Lm;p.R.x// dx: (6-24)

The maps Lm;p induce a rational Landen transformation

˚m;p WPp!Pp (6-25)

on the parameter space: we simply list the coefficients of Lm;p.R.x//.

The original integral is written in the form

ID
b0

a0

Z

1

�1

xp�2C b�1

0
b1xp�3C b�1

0
b2xp�4C � � �C b�1

0
bp�2

xpC a�1

0
a1xp�1C a�1

0
a2xp�2C � � �C a�1

0
ap

dx: (6-26)

The Landen transformation generates a sequence of coefficients,

Pp;nW D fa
.n/
0
; a
.n/
1
; : : : ; a.n/

p
I b
.n/
0
; b
.n/
1
; : : : ; b

.n/
p�2
g ; (6-27)
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with Pp;0 DPp as in (6-23). We expect that, as n!1,

xn W D

0

@

a
.n/
1

a
.n/
0

;
a
.n/
2

a
.n/
0

; : : : ;
a
.n/
p

a
.n/
0

;
b
.n/
1

b
.n/
0

;
b
.n/
2

b
.n/
0

; : : : ;
b
.n/
p�2

b
.n/
0

1

A (6-28)

converges to

x1 W D

�

0;

�

q

1

�

; 0;

�

q

2

�

; : : : ;

�

q

q

�

I 0;

�

q� 1

1

�

; 0;

�

q� 1

2

�

; : : : ;

�

q� 1

q� 1

��

;

(6-29)

where q D p=2. Moreover, we should have

kxnC1�x1k � Ckxn�x1k
m: (6-30)

The invariance of the integral then shows that

b
.n/
0

a
.n/
0

!
1

�
I: (6-31)

This produces an iterative method to evaluate the integral of a rational func-

tion. The method’s convergence is of order m.

The convergence of these iterations, and in particular the bound (6-30), can

be established by the argument presented in Section 4. Thus, the transformation

Lm;p leads to a sequence that has order-m convergence. We expect to develop

these ideas into an efficient numerical method for integration.

We choose to measure the convergence of a sequence of vectors to 0 in the

L2-norm,

kvk2 D
1

p

2p� 2

� 2p�2
X

kD1

kvkk
2

�1=2

; (6-32)

and also the L1-norm,

kvk1 DMax fkvkk W 1� k � 2p� 2 g : (6-33)

The rational functions appearing as integrands have rational coefficients, so, as

a measure of their complexity, we take the largest number of digits of these

coefficients. This appears in the column marked size.

The tables on the next page illustrate the iterates of rational Landen transfor-

mations of order 2; 3 and 4, applied to the example

I D

Z

1

�1

3xC 5

x4C 14x3C 74x2C 184xC 208
dx D �

7�

12
:

The first column gives the L2-norm of un � u1, the second its L1-norm, the

third presents the relative error in (6-31), and in the last column we give the size
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n L2-norm L1-norm Error Size

1 58:7171 69:1000 1:02060 5

2 7:444927 9:64324 1:04473 10

3 4:04691 5:36256 0:945481 18

4 1:81592 2:41858 1:15092 41

5 0:360422 0:411437 0:262511 82

6 0:0298892 0:0249128 0:0189903 164

7 0:000256824 0:000299728 0:0000362352 327

8 1:92454� 10�8 2:24568� 10�8 1:47053� 10�8 659

9 1:0823� 10�16 1:2609� 10�16 8:2207� 10�17 1318

Table 1. Method of order 2.

n L2-norm L1-norm Error Size

1 15:2207 20:2945 1:03511 8

2 1:97988 1:83067 0:859941 23

3 0:41100 0:338358 0:197044 69

4 0:00842346 0:00815475 0:00597363 208

5 5:05016� 10�8 5:75969� 10�8 1:64059� 10�9 626

6 1:09651� 10�23 1:02510� 10�23 3:86286� 10�24 1878

7 1:12238� 10�70 1:22843� 10�70 8:59237� 10�71 5634

Table 2. Method of order 3.

n L2-norm L1-norm Error Size

1 7:44927 9:64324 1:04473 10

2 1:81592 2:41858 1:15092 41

3 0:0298892 0:0249128 0:0189903 164

4 1:92454� 10�8 2:249128� 10�8 1:47053� 10�8 659

5 3:40769� 10�33 3:96407� 10�33 2:56817� 10�33 2637

Table 3. Method of order 4.

of the rational integrand. At each step, we verify that the new rational function

integrates to �7�=12.

As expected, for the method of order 2, we observe quadratic convergence

in the L2-norm and also in the L1-norm. The size of the coefficients of the

integrand is approximately doubled at each iteration.
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EXAMPLE 6.1. A method of order 3 for the evaluation of the quadratic integral

I D

Z

1

�1

dx

ax2C bxC c
; (6-34)

has been analyzed in [Manna and Moll 2007b]. We refer to Example 5.1 for the

explicit formulas of this Landen transformation, and define the iterates accord-

ingly. From there, we prove that the error term,

en W D
�

an�
1

2

p

4ac� b2; bn; cn�
1

2

p

4ac � b2
�

(6-35)

satisfies en! 0 as n!1, with cubic rate:

kenC1k � Ckenk
3: (6-36)

The proof of convergence is elementary. Therefore

.an; bn; cn/!
�

p

ac � b2=4; 0;
p

4ac � b2=4
�

; (6-37)

which, in conjunction with (6-34), implies that

I D
2

p
4ac� b2

Z

1

�1

dx

x2C 1
; (6-38)

exactly as one would have concluded by completing the square. Unlike com-

pleting the square, our method extends to a general rational integral over the

real line.

7. The appearance of the AGM in diverse contexts

The (elliptic) Landen transformation

a1 
1

2
.aC b/; b1 

p
ab (7-1)

leaving invariant the elliptic integral

G.a; b/D

Z �=2

0

d'
q

a2 cos2 'C b2 sin2 '

(7-2)

appears in many different forms. In this last section we present a partial list of

them.
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7.1. The elliptic Landen transformation. For the lattice LDZ˚!Z, introduce

the theta-functions

#3.x; !/ W D

1
X

nD�1

z2nqn
2

; #4.x; !/ W D

1
X

nD�1

.�1/nz2nqn
2

; (7-3)

where zD e� ix and qD e� i! . The condition Im!>0 is imposed to ensure con-

vergence of the series. These functions admit a variety of remarkable identities.

In particular, the null-values (those with x D 0) satisfy

#2

4
.0; 2!/D #3.0; !/#4.0; !/; #2

3
.0; 2!/D 1

2

�

#2

3
.0; !/C#2

4
.0; !/

�

;

and completely characterize values of the AGM, leading to the earlier result

[Borwein and Borwein 1987]. Grayson [1989] has used the doubling of the

period ! to derive the arithmetic-geometric mean from the cubic equations de-

scribing the corresponding elliptic curves. See Chapter 3 in [McKean and Moll

1997] for more information. P. Sole et al. [1995; 1998] have proved generaliza-

tions of these identities using lattice enumeration methods related to binary and

ternary codes.

7.2. A time-one map. We now present a deeper and more modern version of a

result known to Gauss: given a sequence of points fxng on a manifold X , decide

whether there is a differential equation

dx

dt
D V .x/; (7-4)

starting at x0 such that xn D x.n;x0/. Here x.t;x0/ is the unique solution to

(7-4) satisfying x.0;x0/D x0. Denote by

�ellip.a; b/D
�

1

2
.aC b/;

p
ab
�

(7-5)

the familiar elliptic Landen transformation. Now take a; b 2 R with a> b > 0.

Use the null-values of the theta functions to find unique values .�; �/ such that

aD �#2

3
.0; �/; b D �#2

4
.0; �/: (7-6)

Finally define

xellip.t/D .a.t/; b.t//D �
�

#2

3
.0; 2t�/; #2

4
.0; 2t�/

�

; (7-7)

with xellip.0/D .a; b/. The remarkable result is [Deift 1992]:

THEOREM 7.1 (DEIFT, LI, PREVIATO, TOMEI). The map t ! xellip.t/ is an

integrable Hamiltonian flow on X equipped with an appropriate symplectic

structure. The Hamiltonian is the complete elliptic integral G.a; b/ and the
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angle is (essentially the logarithm of ) the second period of the elliptic curve

associated with � . Moreover

xellip.k/D �
k

ellip.a; b/: (7-8)

Thus the arithmetic-geometric algorithm is the time-one map of a completely

integrable Hamiltonian flow.

Notice that this theorem shows that the result in question respects some addi-

tional structures whose invention postdates Gauss.

A natural question is whether the map (3-12) appears as a time-one map of

an interesting flow.

7.3. A quadruple sequence. Several variations of the elliptic Landen appear in

the literature. Borchardt [1876] considers the four-term quadratically convergent

iteration

anC1 D
anC bnC cnC dn

4
; bnC1 D

p
anbnC

p
cndn

2
;

cnC1 D

p
ancnC

p
bndn

2
; dnC1 D

p
andnC

p
bncn

2
;

(7-9)

starting with a0 D a; b0 D b; c0 D c and d0 D d . The common limit, denoted

by G.a; b; c; d/, is given by

1

G.a; b; c; d/
D

1

�2

Z ˛3

0

Z ˛2

˛1

.x�y/ dx dy
p

R.x/R.y/
; (7-10)

where R.x/D x.x�˛0/.x�˛1/.x�˛2/.x�˛3/ and the numbers j̨ are given

by explicit formulas in terms of the parameters a; b; c; d . Details are given in

[Mestre 1991].

The initial conditions .a; b; c; d/ 2 R
4 for which the iteration converges has

some interesting invariant subsets. When aD b and cDd , we recover the AGM

iteration (1-1). In the case that b D c D d , we have another invariant subset,

linking to an iterative mean described below.

7.4. Variations of AGM with hypergeometric limit. Let N 2N. The analysis

of

anC1 D
anC .N � 1/bn

N
and cnC1 D

an� bn

N
; (7-11)

with bn D .aN

n
� cN

n
/1=N , is presented in [Borwein and Borwein 1991]. All

the common ingredients appear there: a common limit, fast convergence, theta

functions and sophisticated iterations for the evaluation of � . The common
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limit is denoted by AGN .a; b/. The convergence is of order N and the limit is

identified for small N : we have, for 0< k < 1,

1

AG2.1; k/
D2F1.1=2; 1=2I 1I 1�k2/;

1

AG3.1; k/
D2F1.1=3; 2=3I 1I 1�k2/;

where

2F1.a; bI cI x/D

1
X

kD0

.a/k .b/k

.c/k k!
xk (7-12)

is the classical hypergeometric function. There are integral representations of

these as well which parallel (1-13); see [Borwein et al. 2004a], Section 6.1 for

details.

Other hypergeometric values appear from similar iterations. For example,

anC1 D
anC 3bn

4
and bnC1 D

p

bn.anC bn/=2; (7-13)

have a common limit, denoted by A4.a; b/. It is given by

1

A4.1; k/
D 2F2

1
.1=4; 3=4I 1I 1� k2/: (7-14)

To compute � quartically, start at a0D1; b0D .12
p

2�16/1=4. Now compute

an from two steps of AG2:

anC1 D
anC bn

2
; and bnC1 D

�

anb3

n
C bna3

n

2

�1=4

: (7-15)

Then

� D lim
n!1

3a4

nC1

�

1�

n
X

jD0

2jC1.a4

j
� a4

jC1
/

�

�1

(7-16)

with janC1 � �j � C jan � �j
4, for some constant C > 0. This is much better

than the partial sums of

� D 4

1
X

kD0

.�1/k

2kC 1
: (7-17)

The sequences .an/, .bn/ defined by the iteration

anC1 D
anC 2bn

3
; bnC1 D

�

bn.a
2

n
C anbnC b2

n
/

3

�1=3

; (7-18)

starting at a0 D 1, b0 D x are analyzed in [Borwein and Borwein 1990]. They

have a common limit F.x/ given by

1

F.x/
D 2F1

�

1=3; 2=3I 1I 1�x3
�

: (7-19)
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7.5. Iterations where the limit is harder to find. J. Borwein and P. Borwein

[1989] studied the iteration of

.a; b/!

�

aC 3b

4
;

p
abC b

2

�

; (7-20)

and showed the existence of a common limit B.a0; b0/. Define B.x/DB.1;x/.

The study of the iteration (7-20) is based on the functional equation

B.x/D
1C 3x

4
B

�

2.
p

xCx/

1C 3x

�

: (7-21)

and a parametrization of the iterates by theta functions [Borwein and Borwein

1989]. The complete analysis of (7-20) starts with the purely computational

observation that

B.x/�
�2

3
log�2.x=4/ as x! 0: (7-22)

H. H. Chan, K. Chua and P. Sole [Heng Huat Chan and Sole 2002] identified

the limiting function as

B.x/D

�

2F1

�

1

3
;

1

6
I 1I 27

x.1�x/2

.1C3x/3

��

�2

; (7-23)

valid for x 2
�

2

3
; 1
�

. A similar hypergeometric expression gives B.x/ for x 2
�

0; 2

3

�

.

7.6. Fast computation of elementary functions. The fast convergence of

the elliptic Landen recurrence (1-1) to the arithmetic-geometric mean provides

a method for numerical evaluation of the elliptic integral G.a; b/. The same

idea provides for the fast computation of elementary functions. For example, in

[Borwein and Borwein 1984] we find the estimate

ˇ

ˇlog x�
�

G.1; 10�n/�G.1; 10�nx/
�
ˇ

ˇ< n10�2.n�1/; (7-24)

for 0< x < 1 and n� 3.

7.7. A continued fraction. The continued fraction

R�.a; b/D
a

�C
b2

�C
4a2

�C
9b2

�C� � �

; (7-25)

has an interesting connection to the AGM. In their study of the convergence of

R�.a; b/, J. Borwein, R. Crandall and G. Fee [Borwein et al. 2004b] established
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the identity

R�

�

aC b

2
;
p

ab

�

D
1

2

�

R�.a; b/CR�.b; a/
�

: (7-26)

This identity originates with Ramanujan; the similarity with AGM is now direct.

The continued fraction converges for positive real parameters, but for a; b2C

the convergence question is quite delicate. For example, the even/odd parts of

R1.1; i/ converge to distinct limits. See [Borwein et al. 2004b; 2004c] for more

details.

7.8. Elliptic Landen with complex initial conditions. The iteration of (1-1)

with a0; b0 2 C requires a choice of square root at each step. Let a; b 2 C be

nonzero and assume a¤˙b. A square root c of ab is called the right choice if
ˇ

ˇ

ˇ

ˇ

aCb

2
� c

ˇ

ˇ

ˇ

ˇ

�

ˇ

ˇ

ˇ

ˇ

aCb

2
C c

ˇ

ˇ

ˇ

ˇ

: (7-27)

It turns out that in order to have a limit for (1-1) one has to make the right choice

for all but finitely many indices n� 1. This is described in detail in [Cox 1984].

7.9. Elliptic Landen with p-adic initial conditions. Let p be a prime and a; b

be nonzero p-adic numbers. To guarantee that the p-adic series

c D a

1
X

iD0

�

1

2

i

��

b

a
� 1

�i

(7-28)

converges, and thus defines a p-adic square root of ab, one must assume

b=a� 1 mod p˛; (7-29)

where ˛ D 3 for p D 2 and 1 otherwise. The corresponding sequence defined

by (1-1) converges for p ¤ 2 to a common limit: the p-adic AGM. In the case

pD 2 one must assume that the initial conditions satisfy b=a� 1 mod 16. In the

case b=a� 1 mod 8 but not 1 modulo 16, the corresponding sequence .an; bn/

does not converge, but the sequence of so-called absolute invariants

jn D
28.a4

n
� a2

n
b2

n
C b4

n
/3

a4
n
b4

n
.a2

n
� b2

n
/2

(7-30)

converges to a 2-adic integer. Information about these issues can be found in

[Henniart and Mestre 1989]. D. Kohel [2003] has proposed a generalization of

the AGM for elliptic curves over a field of characteristic p 2 f2; 3; 5; 7; 13g.

Mestre [2000] has developed an AGM theory for ordinary hyperelliptic curves

over a field of characteristic 2. This has been extended to nonhyperelliptic curves

of genus 3 curves by Lehavi and Ritzenhaler [2007]. An algorithm for counting
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points for ordinary elliptic curves over finite fields of characteristic p > 2 based

on the AGM is presented in [Carls 2004].

7.10. Higher genus AGM. An algorithm analogue to the AGM for abelian

integrals of genus 2 was discussed by Richelot [1836; 1837] and Humberdt

[1901]. Some details are discussed in [Bost and Mestre 1988]. The case of

abelian integrals of genus 3 can be found in [Lehavi and Ritzenhaler 2007].

Gauss was correct: his numerical calculation (1-4) has grown in many unex-

pected directions.

Acknowledgements

The second author acknowledges the partial support of NSF-DMS 0409968.

The authors thank Jon Borwein for many comments that led to an improvement

of the manuscript.

References

[Abramowitz and Stegun 1972] M. Abramowitz and I. Stegun, Handbook of mathe-

matical functions with formulas, graphs and mathematical tables, Dover, New York,

1972.

[Amdeberhan and Moll 2007] T. Amdeberhan and V. Moll, “A formula for a quartic

integral: a survey of old proofs and some new ones”, The Ramanujan Journal (2007).

[Amdeberhan et al. 2007] T. Amdeberhan, D. Manna, and V. Moll, “The 2-adic valua-

tion of a sequence arising from a rational integral”, Preprint (2007).

[Berndt and Bowman 2000] B. Berndt and D. Bowman, “Ramanujan’s short unpub-

lished manuscript on integrals and series related to Euler’s constant”, Canadian

Math. Soc. Conf. Proc. 27 (2000), 19–27.

[Borchardt 1876] C. W. Borchardt, “Uber das arithmetisch-geometrische Mittel aus

vier Elementen”, Berl. Monatsber. 53 (1876), 611–621.

[Boros and Moll 1999a] G. Boros and V. Moll, “A criterion for unimodality”, Elec.

Jour. Comb. 6 (1999), 1–6.

[Boros and Moll 1999b] G. Boros and V. Moll, “An integral hidden in Gradshteyn and

Ryzhik”, Jour. Comp. Applied Math. 106 (1999), 361–368.

[Boros and Moll 2000] G. Boros and V. Moll, “A rational Landen transformation. The

case of degree 6”, pp. 83–89 in Analysis, geometry, number theory: the mathematics

of Leon Ehrenpreis, edited by E. L. Grinberg et al., Contemporary Mathematics 251,

American Mathematical Society, 2000.

[Boros and Moll 2001a] G. Boros and V. Moll, “The double square root, Jacobi

polynomials and Ramanujan’s master theorem”, Jour. Comp. Applied Math. 130

(2001), 337–344.



LANDEN SURVEY 317

[Boros and Moll 2001b] G. Boros and V. Moll, “Landen transformation and the

integration of rational functions”, Math. Comp. 71 (2001), 649–668.

[Boros et al. 2001] G. Boros, V. Moll, and J. Shallit, “The 2-adic valuation of the

coefficients of a polynomial”, Scientia 7 (2001), 37–50.

[Borwein and Bailey 2003] J. M. Borwein and D. H. Bailey, Mathematics by experi-

ment: plausible reasoning in the 21st century, A K Peters, Natick, MA, 2003.

[Borwein and Borwein 1984] J. M. Borwein and P. B. Borwein, “The arithmetic-

geometric mean and fast computation of elementary functions”, SIAM Review 26

(1984), 351–366.

[Borwein and Borwein 1987] J. M. Borwein and P. B. Borwein, Pi and the AGM: A

study in analytic number theory and computational complexity, Wiley, New York,

1987.

[Borwein and Borwein 1989] J. M. Borwein and P. B. Borwein, “On the mean iteration

.a; b/ ..aC 3b/=4; .
p

abC b/=2/”, Math. Comp. 53 (1989), 311–326.

[Borwein and Borwein 1990] J. M. Borwein and P. B. Borwein, “A remarkable cubic

mean iteration”, pp. 27–31 in Computational methods and function theory, edited

by S. Ruscheweyh et al., Lectures Notes in Mathematics 1435, Springer, New York,

1990.

[Borwein and Borwein 1991] J. M. Borwein and P. B. Borwein, “A cubic counterpart

of Jacobi’s identity and the AGM”, Trans. Amer. Math. Soc. 323 (1991), 691–701.

[Borwein et al. 2004a] J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimen-

tation in mathematics: computational paths to discovery, A K Peters, Natick, MA,

2004.

[Borwein et al. 2004b] J. M. Borwein, R. Crandall, and G. Fee, “On the Ramanujan

AGM fraction, I: the real parameter case”, Experimental Math. 13 (2004), 275–285.

[Borwein et al. 2004c] J. M. Borwein, R. Crandall, and G. Fee, “On the Ramanujan

AGM fraction, II: the complex-parameter case”, Experimental Math. 13 (2004), 287–

295.

[Bost and Mestre 1988] J. B. Bost and J. F. Mestre, “Moyenne arithmetico-géometrique
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Lines on abelian varieties

EMMA PREVIATO

ABSTRACT. We study the function field of a principally polarized abelian va-

riety from the point of view of differential algebra. We implement in a concrete

case the following result of I. Barsotti, which he derived from what he called

the prostapheresis formula and showed to characterize theta functions: the log-

arithmic derivatives of the theta function along one line generate the function

field. We outline three interpretations of the differential algebra of theta func-

tions in the study of commutative rings of partial differential operators.

Henry McKean was one of the earliest contributors to the field of “integrable

PDEs”, whose origin for simplicity we shall place in the late 1960s. One way

in which Henry conveyed the stunning and powerful discovery of a linearizing

change of variables was by choosing Isaiah 40:3-4 as an epigram for [McKean

1979]: The voice of him that crieth in the wilderness, Prepare ye the way of the

Lord, make straight in the desert a highway for our God. Every valley shall be

exalted and every mountain and hill shall be made low: and the crooked shall

be made straight and the rough places plain. Thus, on this contribution to a

volume intended to celebrate Henry’s many fundamental achievements on the

occasion of his birthday, my title. I use the word line in the extended sense of

“linear flow”, of course, since no projective line can be contained in an abelian

variety — the actual line resides in the universal cover.

This article is concerned primarily with classical theta functions, with an ap-

pendix to report on a daring extension of the concept to infinite-dimensional tori,

also initiated by Henry. Thirty years (or forty, if you regard the earliest experi-

ments by E. Fermi, J. Pasta and S. Ulam, then M. D. Kruskal and N. J. Zabusky,

as more than an inspiration in the discovery of solitons; see [Previato 2008] for

references) after the ground was broken in this new field, in my view one of the

main remaining questions in the area of theta functions as related to PDEs, is

still that of straight lines, both on abelian varieties and on Grassmann manifolds

(the two objects of greatest interest to geometers in the nineteenth century!). On
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a Jacobian Pic0.X /, where X is a Riemann surface of genus g (which we also

call a “curve”, for brevity), there is a line which is better than any other. That

is, after choosing a point on the curve. Whatever point is chosen, the sequence

of hyperosculating vectors to the Abel image of the curve in the Jacobian at that

point can be taken as the flows of the KP hierarchy, according the Krichever’s

inverse spectral theory. As a side remark, also related to KP, on a curve not all

points are created equal. For a Weierstrass point, there are more independent

functions in the linear systems nP for small n than there are for generic curves,

which translates into early vanishing of (combinations of) KP flows, giving rise

to n-th KdV-reduction hierarchies of a sort; other special differential-algebraic

properties would obtain if .2g� 2/P is a canonical divisor KX [Matsutani and

Previato 2008]. However, on a general (principally polarized) abelian variety,

“there should be complete democracy”.1 My central question is: What line, or

lines, are important to the study of differential equations satisfied by the theta

function?

In this paper I put together a number of different proposed constructions and

ground them in a common project: use the differential equations for the theta

function along a generic line in an abelian variety, to characterize abelian va-

rieties, give in particular generalized KP equations, and interpret these PDEs

as geometric constraints that define the image of infinite-dimensional flag mani-

folds in PB, where B is a bosonic space. These topics are developed section-by-

section as follows: Firstly, Barsotti proved (in an essentially algebraic way) that

on any abelian variety2 there exists a direction such that the set of derivatives of

sufficiently high order of the logarithm of the theta function along that direction

generates the function field of the abelian variety. Moreover, he characterized

theta functions by a system of ordinary differential equations, polynomial in that

direction. These facts have been found hard to believe by sufficiently many ex-

perts to whom I quoted them, that it may be of some value (if only entertainment

value), to give a brutally “honest”, boring and painstaking proof in this paper,

for small dimension. This gives me the excuse for advertising a different line

of work on differential equations for theta functions (Section 1). Then, I pro-

pose to link this problem of lines and the other outstanding problem of algebro-

geometric PDEs, which was the theme of my talk at the workshop reported in

this volume: commuting partial differential operators (PDOs). There is a classi-

fication of (maximal-)commutative rings of ordinary differential operators, and

their isospectral deformations are in fact the KP flows. In more than one variable

1I quote this nice catchphrase without attribution, this being the reaction to the assertions of Section 1

evinced by an expert whom I hadn’t warned he would be “on record”.

2Assume for simplicity that it is irreducible; let me also beg forgiveness if in this introduction I do not

specify all possible degenerate cases which Barsotti must except in his statements, namely extensions of

abelian varieties by a number of multiplicative or additive 1-dimensional groups.
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very little is known, though several remarkable examples have appeared. The

two theories that I will mention here were proposed by Sato (and implemented

by Nakayashiki) and Parshin. Nakayashiki’s work produced commuting matrix

partial differential operators, but has the advantage of giving differential equa-

tions for theta functions. Since Barsotti’s equations characterize theta functions,

I believe that it would be profitable to identify Nakayashiki’s equations, which

were never worked out explicitly, among Barsotti’s (Section 2). Parshin’s con-

struction produces (in principle, though recent work by his students shows that

essential constraints must be introduced) deformations of scalar PDOs; in his

setting, it is possible to generalize the Krichever map. It is a generalization

of the Krichever map which constitutes the last link I would like to propose.

Parshin sends a surface and a line bundle on it to a flag manifold; Arbarello and

De Concini generalize the Krichever map and embed the general abelian variety

and a line bundle on it into a projective space where Sato’s Grassmannian is a

submanifold, the image of Jacobians. My proposal is to characterize the image

of the abelian varieties, in both Parshin’s and Arbarello–De Concini’s maps, by

Barsotti’s equations (Section 3). In conclusion, some concrete constructions are

touched upon (Section 4). In a much too short Appendix, I reference Henry

McKean’s contribution on infinite-genus Riemann surfaces.

1. Incomplete democracy

Lines in Jacobians. Jacobians are special among principally polarized abelian

varieties (ppav’s), in that they contain a curve that generates the torus as a sub-

group. For any choice of point on the curve, there is a specific line on the torus,

which one expects to have special properties: indeed, the hyperosculating tan-

gents to the embedding of the curve in the Jacobian given by that chosen point,

give a sequence of flows satisfying the KP hierarchy. The KP equations provide

an analytic proof that the tangent line (more precisely, its projection modulo the

period lattice) cannot be contained in the theta divisor (no geometric proof has

been given to date), while the order of vanishing of the theta function at the

point (first given in connection to the KP equation as a sum of codimensions of

a stratification of Sato’s Grassmannian) was recently interpreted geometrically

[Birkenhake and Vanhaecke 2003].

More geometrically yet, the Riemann approach links linear series on the curve

to differential equations on the Jacobian, and again these lines play a very special

role. I give two examples only. I choose these because both authors pose specific

open problems (concerning indeed the special role of Jacobians among ppav’s,

known as “Schottky problem”), through the theory of special linear series. The

subvarieties of such special linear series are acquiring increasing importance in
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providing exact solutions to Hamiltonian systems; see [Eilbeck et al. 2007] and

references therein.

EXAMPLE. In one among his many contributions to these problems, Gunning

[1986] produced in several, essentially different ways, differential equations

satisfied by level-two theta functions. These are mainly limits, after J. Fay,

of addition formulas, and this depends crucially on the tangent direction to

the curve (at any variable point), the line. Gunning’s focus is the study of the

“Wirtinger varieties”, roughly speaking, the images under the Kummer map of

the Wk (1 � k � g), which in turn are images in the Jacobian of the k-fold

symmetric products of the curve, via differential equations and thetanulls. For

example, he proves the following (his notation for level-2 theta functions is #2):

If S is the subspace of dimension dim S D
�

gC1

2

�

C1 spanned by the vectors

#2.0/ and @jk#2.0/ for all .j ; k/, then the projectivization of this subspace

contains the Kummer image of the surface W1�W1, so it has intersection with

the Kummer variety of dimension higher than expected, as soon as g � 4.

So little is known about these important subvarieties, that Welters [1986]

states the following as an open problem: Does there exist a relationship between

fa 2 Pic0 X j aCW r

d
�W r�k

d
g and W 0

k
�W 0

k
(0� k � r , 0� d � g�1)? He

had previously shown that

W 0

1
�W 0

1
D fa 2 Pic0 X j aCW 1

g�1
�W 0

g�1
g;

where the notation W r

d
is the classical one for linear series of degree d and

(projective) dimension at least r ; gr

d
denotes a linear series of degree d and

projective dimension r .

EXAMPLE. It is intriguing that Mumford, in his book devoted to applications of

theta functions to integrable systems, states as an open problem [1984, Chapter

IIIb, ~ 3]: If V is the vector space spanned by

�

#2.z/; #.z/ �
@2#

@zi@zj

�
@#

@zi

�
@#

@zj

�

and B is the set of “decomposition functions” #.z � a/ � #.z C a/, does the

intersection of V and B equal the set f#.z �
R

q

p
/ � #.zC

R

q

p
/g, where p; q are

any two points of the curve? As Mumford notes, this is equivalent to asking: If

a 2 Jac X is such that for all w 2W 1

g�1
, either wCa or w�a is in W 0

g�1
, does

a belong to W1 �W1? The latter is settled by Welters (loc. cit.), showing that

indeed, for g � 4 (for smaller genus the statement should be modified and still

holds when it makes sense),

X �X D\�2W
1

g�1

�

.W 0

g�1
/
��
C .W 0

g�1
/
��KX

�
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(as customary, subscript denotes inverse image under translation in the Picard

group and KX the canonical divisor), unless X is trigonal, for which it was

known:
\

�2W
1

g�1

.W 0

g�1
/
��
C .W 0

g�1
/
��KX

D .W 0

3
�g1

3
/[ .g1

3
�W 0

3
/:

On the enumerative side, Beauville [1982] shows that the sum of all the divisor

classes in W r

d
is a multiple of the canonical divisor, provided r and d satisfy

g D .r C 1/.gC r � d/. The proof uses nontrivial properties of the Chow ring

of the Jacobian, and it would be nice to find an interpretation in terms of theta

functions.

A line of attack to these problems is suggested in [Jorgenson 1992a; 1992b],

where theta functions defined on the Wk ’s are related to algebraic functions,

generalizing the way that the Weierstrass points are defined in terms of ranks of

matrices of holomorphic differentials. In a related way, techniques of expansion

of the sigma function (associated to theta) along the curve, yield differential

equations; see [Eilbeck et al. 2007].

Barsotti lines. However, on a general abelian variety, there should be “complete

democracy”, the catchphrase, in reaction to my report on Barsotti’s result, that

I am appropriating. Barsotti showed — in a way which is exquisitely algebraic

(and almost, though not quite, valid for any characteristic of the field of coef-

ficients), based on his theory of “hyperfields” for describing abelian varieties

(developed in the fifties and only partly translated by his school into standard

language), and independent of the periods — that one line suffices, to produce

the differential field of the abelian variety. Barsotti’s approach was aimed at

a characterization of functions which he called “theta type”, and this means

generalized theta, pertaining to a product of tori as well as group extensions by

a number of copies of the additive and multiplicative group of the field.

I will phrase this important result, along with a sketch of the proof, reintroduc-

ing the period lattice, though aware that Barsotti would disapprove of this naive

approach, and I will give an “honest” proof in the (trigonal) case of genus 3, the

last case when all (indecomposable) ppav’s are Jacobians, yet the first case in

which several experts reacted to Barsotti’s result with “complete disbelief” (not

in the sense of deeming Barsotti wrong, but rather, in intrigued astonishment

that the democracy of lines should allow for such a property).

Barsotti is concerned with abelian group varieties, our abelian varieties, which

he studies locally by rings of formal power series kfu1;u2; : : : ;un� D kfu�,

which we will take to be the convergent power series in n indeterminates, CŒŒu��,

as usual abbreviating by u the n-tuple of variables. The context below will ac-

commodate both cases, that u signify an n-tuple or a single variable. We follow
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Barsotti’s notation for derivatives: di D @=@ui , and in case r D .r1; : : : ; rn/

is a multi-index, dr D .r !/�1dr D .r1!/�1 � � � .rn!/�1d
r1

1
� � � d

rn
n ; also, jr j WD

P

n

iD1
ri , n-tuples of indices are ordered componentwise, and if different sets

of indeterminates appear, dur will denote derivatives with respect to the u-

variables. The symbol Q.�/ generally associates to an integral domain its field

of fractions. The notation is abbreviated: kfug WD Q.kfu�/.

THEOREM 1 [Barsotti 1983, Theorem 3.7]. A function #.u/ 2 kfug is such that

#.uC v/#.u� v/ 2 kfu�˝ kfv� .1/

if and only if it has the property

F.u; v; w/ WD
#.uC vCw/#.u/#.v/#.w/

#.uC v/#.uCw/#.vCw/
2 Q.kfu�˝ kfv�˝ kfw�/: .2/

Barsotti regarded this as the main result of [Barsotti 1983]. He had called (1)

the prostapheresis formula3 and (2) the condition for being “theta-type”. His

ultimate goal was to produce a theory of theta functions that could work over

any field, and in doing so, he analyzed the fundamental role of the addition

formulas; indeed, H. E. Rauch, in his review of [Barsotti 1970] (MR0302655

– Mathematical Reviews 46 #1799) exclaims, of the fact that (2) characterizes

classical theta functions for k DC, “This . . . result is, to this reviewer, new and

beautiful and crowns a conceptually and technically elegant paper”. In order to

appreciate the scope of (1) and (2), we have to put them to the use of computing

dimensions of vector spaces spanned by their derivatives. To me (I may be

missing something more profound, of course) the segue from properties of type

(1) or (2) into dimensions of spaces of derivatives is this: u (the n-tuple) gives

us local coordinates on the abelian variety; we understand analytic functions

by computing coefficients of their Taylor expansions (derivatives) and the finite

dimensionality corresponds to the fact that, while a priori the LHS belongs

to kfu; v� WD kfu�˝kfv�, which denotes the completion of the tensor product

kfu�˝ kfv�, only finitely many tensors suffice. The precise statement is this:

LEMMA [Barsotti 1983, 2.1]. A function '.u; v/ in kfu; v� belongs to

kfu�˝ kfv�

if and only if the vector space U spanned over k by the derivatives dvr'.u; 0/

has finite dimension. If such is the case, the vector space V spanned over k by

the derivatives dur'.0; v/ has the same dimension, and '.u; v/ 2 U ˝V .

3“We are indebted to the Arab mathematician Ibn Jounis for having proposed, in the XIth century a

method, called prostapheresis, to replace the multiplication of two sines by a sum of the same functions”,

according to Papers on History of Science, by Xavier Lefort, Les Instituts de Recherche sur l’Enseignement

des Mathématiques, Nantes.
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To understand the theta-type functions as analytic functions, we also need to

introduce certain numerical invariants.

DEFINITION. We denote by C# the smallest subfield of kfug containing k

and such that F.u; v; w/ 2 C#fv;wg. Note that C# is generated over k by the

dr log# for jr j � 2. This fact has already nontrivial content, in the classical

case; the function field of an abelian variety is generated by the second and

higher logarithmic derivatives of the Riemann theta function. The transcendence

degree transc# is transc(C#=k) and the dimension dim# is the dimension (in

the sense of algebraic varieties) of the smallest local subring of kfu� whose

quotient field contains a theta-type function associated to (namely, as usual,

differing from by a quadratic exponential) # . I am giving a slightly inaccurate

definition of dimension, for in his algebraic theory Barsotti had introduced more

sophisticated objects than subrings; but I will limit myself, for the purposes of

the results of this paper, to the case of “nondegenerate” thetas, which Barsotti

defines as satisfying dim# D n. The inequality transc# � dim# always holds

and Barsotti calls # a “theta function” when equality holds.

The next result is the root of all mystery. Here Barsotti demonstrates that in fact,

the function field of the abelian variety could be generated by the derivatives of

a theta function along fewer than m directions, m being the dimension of the

abelian variety.

THEOREM 2 [Barsotti 1983, 2.4]. For a nondegenerate theta-type

#.u/ 2 kfu1; � � � ;ung;

there exist a nondegenerate theta �.v/2kfv1; � � � ; vmg; m�n; and cij 2k; 1�

i�nI 1�j �m, such that the matrix Œcij � has rank n, and #.u/D�.x1; � � � ;xm/

where xi D
P

j
cij uj : The induced homomorphism of kfv� onto kfu� induces

an isomorphism between C� and C# . Conversely, given a compact abelian

variety A of dimension m, for any 0 < n < m there is a holomorphic theta-

type #.u1; � � �un/ such that C# is the function field of A, and is generated over

k by a finite number of dr log# with jr j � 2.

The example. Several experts have suggested (without producing details, as

far as I know) that the statement may be believable in the case of a hyperelliptic

Jacobian, but is already startling in the g D 3, nonhyperelliptic case, and this

is the example I report. This is current work which I happen to be involved in

for totally unrelated reasons; to summarize the motivation and goals in much

too brief a manner, it is work concerned with addition formulae for a function

associated to theta over a stratification of the theta divisor related to the abel

image of the symmetric powers of the curve. Repeating the preliminaries would

be quite lengthy and, more importantly, detract from the focus of this paper, so
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aside from indispensable notation I take the liberty of referring to [Eilbeck et al.

2007].

The key idea goes back to Klein and was developed by H. F. Baker over a

long period (see especially [Baker 1907], where he collected and systematized

this work). To generalize the theory of elliptic functions to higher-genus curves,

these authors started with curves of special (planar) type, for which they ex-

pressed algebraically as many of the abelian objects as possible, differentials of

first and second kind, Jacobi inversion formula, and ultimately, equations for the

Kummer variety (in terms of theta-nulls) and linear flows on the Jacobian. In the

process, they obtained or introduced important PDEs to characterize the abelian

functions in question, and anecdotally, even produced, in the late 1800s, exact

solutions to the KdV and KP hierarchy, without of course calling them by these

names. I just need to quote certain PDEs satisfied by these “generalized abelian

functions”, but I will mention the methods by which these can be obtained.

Firstly, the simplest function to work with, for reasons of local expansion at

the origin, is called “sigma”, it is associated to Riemann’s theta function, and

its normalized (almost-)period matrix satisfies generalized Legendre relations,

being the matrix of periods of suitable bases of differentials of first and second

kind. The definition of sigma is not explicit and considerable computer algebra

is involved, genus-by-genus. The g D 3 case I need here is explicitly reported

in [Eilbeck et al. 2007], but had been obtained earlier (by Ônishi, for instance).

In the suitable normalization, the “last” holomorphic differential !g always

gives rise to the KP flow, namely the abelian vector (0,. . . ,0,1) in the coordinates

.u1; � � � ;ug/D
R

Pg

iD1
.xi ;yi /

g1
!; ! D .!1; � � � ; !g/, simply because of the given

orders of zero of the basis of differentials at the point 1 of the curve, in the

affine .x;y/ plane, which is also chosen as the point of tangency of the KP flow

to the abel image of the curve (indeed, in [Eilbeck et al. 2007] the Boussinesq

equation is derived, as expected for the cyclic trigonal case). It is for this reason

that I choose this direction for the Barsotti variable u.

Now the role of Barsotti’s theta is played by �.u1;u2;u3/— associated to a

Riemann theta function with half-integer characteristics, and explicitly given in

[Eilbeck et al. 2007, (3.8)] — and the role of the Weierstrass }-function, by the

abelian functions }ij .u/ D �
@2

@ui@uj
log �.u/; we label the higher derivatives

the same way,

}ijk.u/D
@

@uk

}ij .u/; }ijk`.u/D
@

@u`
}ijk.u/;

(et cetera, but I only need the first four in my proof).

Barsotti’s statement now amounts to this: the function }33.0; 0;u3/ together

with all its derivatives in the u3 variable, generate the function field of the Ja-
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cobian. Here’s the boring proof! First, the work in [Eilbeck et al. 2007] (and a

series of papers that preceded it): It is straightforward to expand � in terms of

a local parameter on the curve, for example,

u1 D
1

5
u3

5C � � � ; u2 D
1

2
u3

2C � � �

and

x.u1;u2;u3/D
1

u3
3
C � � � ; y.u1;u2;u3/D

1

u3
4
C � � � :

where P ‘
R

P

1
! WD u.P /, so x.P / and y.P / are viewed as functions of

u.P /D .u1;u2;u3/; the image of the curve implicitly defines any of the three

coordinates as functions of one only. Next one expands � as a function of

.u1;u2;u3/, and with the aid of computer algebra, obtains PDEs for the abelian

functions. For example, the identity

}3333 D 6}2

33
� 3}22

implies the Boussinesq equation for the function }33, as expected. It is by using

these differential equations, worked out in [Eilbeck et al. 2007] up to four indices

(Appendix B), that I prove Barsotti’s result. As a shorcut, I record a basis of

the space 3� where � (this notation slightly differs from the one chosen in that

reference) is the divisor of the � function. If we can get this basis of abelian

functions, we are sure to generate the function field of the Jacobian, since by the

classical Lefschetz theorem the 3�-divisor map is an embedding. Lemma 8.1 in

[Eilbeck et al. 2007] provides the following basis of 27 elements:
˚

1, }11, }12,

}13, }22, }23, }33, Q1333, }111, }112, }113, }122, }123, }133, }222, }223,

}233, }333, @1Q1333, @2Q1333, @3Q1333, }Œ11�, }Œ12�, }Œ13�, }Œ22�, }Œ23�,

}Œ33�
	

, where

Qijk`.u/D }ijk`.u/� 2.}ij}k`C}ik}j`C}i`}jk/.u/

and }Œij � is the determinant of the complementary .i; j /-minor of Œ}ij �3�3. It

is easy, by substituting in the equations given in [Eilbeck et al. 2007], to see that

if we can obtain all the 2-index } functions, then we can write the necessary 3,

4, and 5-index functions in the given basis. By definition of the Barsotti line,

we have }33, which gives us }22 by the Boussinesq relation given above (we

are allowed to take derivatives with respect to u3). The one that seemed most

difficult to obtain was }23, and I argued as follows: Denote by F the differential

field in the variable u3 generated over C by }33; as we saw it contains }333 and

}22. Now Fij denotes the field generated over F by adding }ij . Eliminating

}13 from the two equations

}2

333
D }2

23
C 4}13� 4}33}22C 4}3

33
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and

Q2233 D 4}13C 3�3}23C 2�2;

we see that F23 is an extension of degree at most 2 of F ; then, either equation

says that }13 belongs to F23. Now, we would like to say that F23 is also at

most a cubic extension of F , and for that, use the equation

}223}233 D 2}3

23
C 2}22}23}33

C 2�1C 4}23}13C 2}23�2C 2�3}13C 2�3}
2

23
C�3}22}33:

However, we can’t quite control }233, so we also bring in the equations

}333}223 D 2}33}
2

23
C}33�3}23� 2}2

22
C 2

3
}1333C 2}2

33
}22

and

}2

233
D 4}33}

2

23
C 4}33�3}23C}

2

22
� 4

3
}1333C 4}33�2C 8}33}13:

The first says that }1333 is at most degree two (over F ) in }23; now using the

cubic (and substituting for }1333 in it), we see that }23 satisfies an equation of

degree 3 over F Œ}233�; but from the second equation, }233 is in an extension of

degree at most 2 of F23, so if F23 and F Œ}233� were disjoint, their join would

have degree 4 and }23 could not have degree 3 over F Œ}233�. This shows that

}233 is in F23, and now the cubic together with the quadratic equation yield

}23 2 F: The proof that all other }ij are also in F is now much easier, again

using several of the equations given in [Eilbeck et al. 2007]. If there is an easier

proof, it beats me, for now at least.

REMARK. In a letter of reply to my querie (February 6, 1987), which I would

translate, were it not for fear of misrepresenting as a conjecture what he only

intended to offer as a possibility for my pursuing, Barsotti wrote that it might

be that for generic .c1; � � � ; cm/, suitably high derivatives of log#.c1u; � � � ; cmu/

generate the function field of the abelian variety. In my view, this would not only

restore democracy, but give a beautiful technique for stratifying the moduli space

of abelian varieties according to the “special” parameters c1; � � � ; cm whose line

fails to generate, and which might correspond to tangent vectors to an abelian

variety of smaller dimension (I claim all blame for this additional thought, but

see Section 4 below). In the case of the “purely trigonal” curve above, we know

that “elliptic solitons” can occur [Eilbeck et al. 2001], so does my proof say that

even though � is an elliptic function in the u3 direction, still u3 is a Barsotti

direction? I don’t think so; my proof requires obtaining }23 from algebraic

equations with coefficients in F , for example, but those coefficients depend on

the �i’s and there is no reason why for special values of �i’s the equations

shouldn’t become trivial identities (while they patently can be solved for }23

when the �i’s are generic).
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I can state with certainty at least that at the time of his tragic demise in 1987

Barsotti was very keen on pursuing these ideas [Scorza Dragoni 1988].

2. Barsotti’s and Nakayashiki’s equations

Barsotti equations include KP. Barsotti [1983; 1985] then proceeded to char-

acterize abelian varieties. Again, I give a sketchy rendition of his results, which

glosses over the technical issues of decomposable or degenerate abelian vari-

eties. These are both important and subtle (for instance, the results have to be

modified if you take for # a polynomial!) but since this paper does not make

substantial use of those exceptional cases, my goal is to give a geometric under-

standing of the generic situation. Calling “holomorphic” a theta-type function

whose divisor div# is effective, Barsotti obtains:

THEOREM 3 [Barsotti 1983, 4.1]. A nonzero function #.u/ 2 CŒŒu1; : : : ;un�� is

holomorphic theta-type if and only if all differential polynomials

Hr;s.#.u//D
X

pCqDs

iCjDr

.�1/iCpdi.#/dp.#/dj .#/dq.#/

span a finite dimensional C-vector space. In this case, if fU0; : : : ;Uhg is a

basis, the field C.: : : ; #�3Ui ; : : :/ is the same as the field of the abelian variety

associated to # , Hr;s in turn are holomorphic theta-type and their divisors are

linearly equivalent to 3div# .

Finally, by Taylor-series expansion, Barsotti writes a set of universal PDEs that

characterize abelian varieties, and because of the “incomplete democracy” re-

sult, such PDEs can be produced for any positive number of variables less than

or equal to the dimension of the abelian variety, in particular, one!

THEOREM 4 [Barsotti 1983, 5.5; Barsotti 1985, 12.2]. For the universal differ-

ential polynomials with rational coefficients P2k.y2;y4; : : : ; y2k/ defined by

#.uC v/#.u� v/D 2#2.u/

1
X

rD0

P2r .#.u//v
2r

the same criterion as the above for Hr;s holds. In particular, for the case of one

variable (nD 1), the P0 D
1

2
; : : : ;P2k.y2;y4; : : : ;y2k/ are given by

P2r .#/D
X

j

2jj j�1.j !/�1#
j1

2
#

j2

4
: : : #

jr

2r
;

where the sum is over the multi-indices j � 0 such that j1C2j2C� � �Crjr D r .
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Barsotti [1985] wrote examples of a PDE version of his result, suggesting that

it would be interesting to determine explicitly these PDEs from the ones in one

variable and the vector field @=@u, and in [1989] he conjectures that the KP

equation in his notation become

12P400.: : : ; #i ; : : :/� 3P020.: : : ; #i ; : : :/� 2P101.: : : ; #i; : : :/D 0:

Nakayashiki’s generalized KP. A generalization of the KP equation as defor-

mation of commutative rings of PDOs was long sought-after, and Nakayashiki

[1991] did in fact produce such rings, in g variables for generic (thus, not Ja-

cobians if g � 4) abelian varieties A of dimension g (as well as more general

cases), as .g!� g!/ matrix operators. He constructed modules over such rings

that deform according to a generalized KP hierarchy, though he did not pursue

explicit equations for bases of such modules, which have the form

Nct .n/D
X

s2Zg=nZg

CŒŒt ��
#
�

s=n

0

�

.nzC c � .x0 � d �x1;x
0//

#n.z/

� exp

�

�

g
X

iD1

X

m�ıi1

tm;.i/
.�1/m

m!

�

um;.i/C di.1� ıi1/umC1;.1/

�

�

;

where we have set x1D t1;.1/, xi D t0;.i/ for 2� i � g, and d D .d2; : : : ; dg/ 2

C
g�1 is such that at the point of the theta divisor we are considering (the el-

ements of the module Nct are in the stalk of a sheaf, defined via a cocycle

by the vector c 2 C
g, the “initial condition” for the hierarchy) the g-tuple

.��1

1
; ��1

1
�i C di/iD2;:::;g/ gives local coordinates; moreover x0 denotes the

vector .x2; : : : ;xg/ if x D .x1; : : : ;xg/, while .i/ denotes the .g � 1/-tuple

.0; : : : ; 0; 1; 0; : : :/ with a 1 in the .i � 1/-st position, and .1/ D .0; : : : ; 0/;

finally, ui1;:::;ig
denotes @

i1
z1
: : : @

ig

zg
log#.z/.

The differential equations are obtained as follows. Firstly, we denote by P

the ring of microdifferential operators, defined by Sato [1989] via the choice of

a codirection dx1, which can be taken to correspond to an equation x1 D 0 for

the theta divisor

DD CŒŒt1; : : : ; tg ��Œ@1; : : : ; @g�� PD CŒŒt ��ŒŒ@�1

1
; @�1

1
@2 : : : ; @

�1

1
@g��Œ@1�

filtered by the order ˛1C � � �C˛g of @˛ D @
˛1

1
: : : @

˛g

g .

Now Nct can be embedded in P as a D-submodule, ' 2Nct ‘ �.'/DW' ,

in such a way that W@'=@xi
D .@W'=@xi/CW'@i D @iW' for 1� i �g and the

D-submodule of P; Jct .n/D � .Nct .nC 1//, satisfies P
.n/ D Jct .n/˚P.Jn;ct /

where Jn;ct is a suitable collection of indices from Z�N
g�1, and

P.J /D
n

X

a˛@
˛ j a˛ D 0 unless ˛ 2 J

o

:
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Lastly, a set of g! suitable D-generators W˛ of Jct , ˛ … Jn;ct for all n� 0; can

be chosen of the form @˛+[an operator whose terms have multiindices belonging

to Jj˛j;ct ] and these satisfy the evolution equations .@W˛=@tˇ/CW˛@
ˇ 2 Jct D

S

1

nD0
Jct .n/, for ˇ in the index set .mC 1; .i//, with .m; .i// defined above.

In [Mironov 2002], it is claimed that the functions in

Nct � exp

�

�

g
X

iD1

X

m�ıi1

tm;.i/
.�1/m

m!

�

um;.i/C di.1� ıi1/umC1;.1/

�

�

are independent of the time variables, but I think this is due to a small oversight,

since the first g time variables do enter the argument of # , as .x1;x
0/, whereas,

as correctly asserted in [Mironov 2002], the higher-time variables are stationary.

The commutative ring of PDOs does not undergo a deformation beyond the g-

dimensional variety A_, which indeed is Pic0 A.

Nakayashiki does not claim that his equations characterize abelian varieties.

Nevertheless, it should be possible to produce them from Barsotti’s equations,

which characterize theta functions, and it would be very interesting to see how

Nakayashiki’s formulas are given by constraints on Barsotti’s universal polyno-

mials (among these, what Barsotti calls “initial conditions” return the moduli of

the each specific abelian variety; see ~ 7 of [Barsotti 1983] for the example of

elliptic curves).

3. Sato’s Grassmannian, Parshin’s flag manifold,

Arbarello–De Concini’s projective space

Grassmannian for a chosen splitting. Nakayashiki’s theory was inspired by

Sato’s programme [1989], a specific splitting P D J˚ E0 into D-modules. In

one variable, there is a natural splitting and the corresponding J are exactly the

cyclic submodules; the deformations are linear flows on the universal Grassmann

manifold modeled on the vector space Pconst W@
˛$@˛=.Pt1C� � �CPtg/:What is

the correct model in several variables? To my knowledge there is no definitive

answer known; I provide two different models below, based on Parshin’s, re-

spectively, Arbarello–De Concini’s constructions, and the project of computing

Nakayashiki’s flows in both, which should be both doable (in dimension 2) and

enlightening.

Parshin’s Krichever flag manifold. Parshin [1999] proposed a different con-

struction, based on the theory of higher local fields, in which the commuting par-

tial differential operators are scalar. An n-dimensional local field K (with “last”

residue field C) is the field of iterated Laurent series KDC..x1// : : : ..xn//, with

the structure of a complete discrete valuation ring ODC..x1// : : : ..xn�1//ŒŒxn��

having an .n � 1/-dimensional local field for its residue field. Note that the
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order of the variables matters, in the sense that C..x1//..x2// does not contain

the same elements as C..x2//..x1//— for instance, the former contains elements

of unbounded positive degree in x1 — although they are isomorphic. These are

suited to give local coordinates on an n-dimensional manifold, since the inverse

of a polynomial in x1;x2, say, can be written as the inverse of the highest-

order monomial times something entire, so as a Laurent series it is bounded

in both variables. Whereas the symbols C..x1;x2// D
˚
P

jiCj j<N
cij xi

1
x

j

2

	

cannot be given a ring structure unless we want to define sums of infinitely

many complex numbers, because i C j D N involves infinitely many indices

unless we bound j (or i) from above. With this definition, Parshin constructs

a 2n-dimensional skew-field P, infinite-dimensional over its center, namely the

(formal) pseudodifferential operators

PD C..x1// : : : ..xn//..@
�1

1
// : : : ..@�1

n
//:

The order of the variables is also singled out in the definition of the grading:

If L D
P

i�m
ai@

i

n
with am ¤ 0, we say that the operator L has order m and

write ord L D m. If Pi D fL 2 P j ord L � ig, then � � �P�1 � P0 � � � � is a

decreasing filtration of P by subspaces and PDPC˚P�, where P�DP�1 and

PC consists of operators involving only nonnegative powers of @n. The highest

term (h.t.) of an operator L is defined by induction on n. If L D
P

i�m
ai@

i

n

and ord L D m, then h:t:.L/ D h:t:.am/ � @
m. If h:t:.L/ D f @

m1

1
: : : @

mn
n with

0¤ f 2C..x1// : : : ..xn//, then we let �.L/D .m1; : : : ;mn/. We consider also

the subring E D CŒŒx1; : : : ;xn��..@
�1

1
// : : : ..@�1

n
// of P, and E˙ DE \P˙.

In this setting, Parshin’s original proposal for a KP hierarchy — which is cur-

rently being modified by his former student Dr. A. Zheglov [Zheglov 2005] —

makes good on his striking conjugation result, based on [Krichever 1977; Sato

1989] (I omit some technical specifications, for which see [Parshin 1999]):

PROPOSITION. (i) An operator L2E is invertible in E if and only if the coeffi-

cient f in the highest-order term of L is invertible in the ring CŒŒx1; : : : ;xn��.

If f in L 2 P is an m-th power in C..x1// : : : ..xn// (resp., CŒŒx1; : : : ;xn�� for

L2E) then there exists, unique up to multiplication by m-th root of unity, an

operator M 2 P (resp. M 2 E) such that M m D L. Thus, P0 is a discrete

valuation ring in P with residue field C..x1// : : : ..xn//..@
�1

1
// : : : ..@�1

n�1
//.

(ii) Let L1 2 @1CE�; : : : ;Ln 2 @nCE�. Then ŒLi ;Lj �D 0 for all i; j if and

only if there exists an operator S 2 1CE� such that Li DS�1@iS , for all i .

(iii) For LD .L1; : : : ;Ln/ as in (ii), the flows

@L

@tM
D
�

Œ.L
m1

1
� � �Lmn

n
/C;L1� : : : Œ.L

m1

1
� � �Lmn

n
/C;Ln�

�

;

M D .m1; : : : ;mn/ 2 Z�0 � : : :�Z�0
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commute, and if S 2 1CP� satisfies

@S

@tM
D�.S@

m1

1
� � � @mn

n
S�1/�S;

then LD .S@1S�1; : : : ;S@nS�1/ evolves according to them.

REMARK. Barsotti’s field .kfug WD Q.kfu�/ is larger than Sato’s ring of pseu-

dodifferential operators. Parshin’s E is much larger than Sato’s ring

CŒŒx1; : : : ;xn��ŒŒ@
�1

1
; @�1

1
@2; : : : ; @

�1

1
@g��

when n > 1. Finally, Barsotti’s and Parshin’s rings are different, though both

adapted to a local description of a (say, if g D 2) surface. Parshin’s ring is

smaller and it is not symmetric in x;y, for instance, while Barsotti’s kfx;y� is.

Parshin [2001a; 2001b] generalizes the Krichever map, which associates to a

local parameter on a curve and other geometric data a point of an infinite-

dimensional Grassmannian (via the Baker–Akhiezer function), and to two local

parameters, roughly speaking the choice of a curve on a surface and a point

on that curve, and geometric data (a sheaf on the surface), associates a point

of an infinite-dimensional 2-step flag manifold. This would be an appropriate

setting for producing Nakayashiki’s .2�2) matrix operators, via a choice of one

basis element in a subspace and one in the quotient. This approach has not been

taken, but the operators are explicit enough for genus 2 that the plan is concrete.

At the same time, the brothers Aloysius and Gerard Helminck [1994a; 1994b;

1995; 2002] put a Fubini–Study metric on the infinite-dimensional projective

space of flags, computed the central extension of the restricted linear group that

acts on the manifold, and adapted the resulting (Kähler) manifold to flows of

completely integrable systems, which include well-known ones. This is a natural

setting for linearizing Nakayashiki’s and Parshin’s generalizations of the KP

hierarchy. Sato’s result, to the effect that Hirota’s bilinear equation is equivalent

to the Plücker relations which characterize the image of the Grassmannian in its

Plücker embedding, should then be extended to the image of the Parshin flags.

Arbarello–De Concini’s Plücker embedding. A different Grassmannian con-

struction for abelian varieties is devised by Arbarello and De Concini [Arbarello

and De Concini 1991]. They model a moduli space of abelian varieties on a

Grassmannian, making use of one local parameter only, reminiscent of Sato’s

codirection, though they do not assume that its dual is tangent to the theta divisor,

as Sato and Parshin do. They succeed, using classical theta-function theory, in

producing enough data to embed the moduli space QHg (very roughly, a univer-

sal family of abelian varieties of dimension g, QAg extended by a Heisenberg

action) in PB, where B is the usual Boson space CŒŒt1; : : : ; tk ; : : :��; they also
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give a theta-function formula for the � function. The significant advantage of

this construction is that they can compare this embedding with that of Jacobians

via the usual Krichever map and they prove that the diagram

QAg  QHg � PB

" " % "
QMg  QFg Œ GrH Œ PF

is commutative, where QMg is, again roughly speaking, a moduli space of genus-

g curves, and QFg is fibred over QMg by the Pic.g�1/’s of the curves, H DC..z//

is the space of formal Laurent series, F D � .GrH; det�1/�:

In their moduli spaces, Arbarello and De Concini use one complex variable z,

which suggests that Barsotti’s line may provide the embedding equations. This is

also the principle of the (formal) work we carried out in [Lee and Previato 2006].

Thanks to Parshin’s conjugation result, one “Sato operator” S suffices. One

then can write, by the usual boson-fermion correspondence, a Baker function,

as done by M. H. Lee and also in [Plaza-Martı́n 2000]; the function comprises

.z1; : : : ; zn/ but essentially records points of a Grassmannian where the variable

z1 plays a distinguished role (as in Parshin’s grading), and one can write a formal

inversion of the logarithm and a formal � function in the following way. (I omit

as usual technical provisos; see [Lee and Previato 2006] for those.)

In analogy to the Segal–Wilson construction for the one-variable case, we let

H D L2.T n/ be the Hilbert space consisting of all square-integrable functions

on the n-torus

T n D f.z1; : : : ; zn/ 2 C
n j jz1j D � � � D jznj D 1g;

which can be identified with the product of n copies of the unit circle S1 �C
n.

Then the Hilbert space H can be written in the form

H D hz˛j˛ 2 Z
niC:

The multi-index notation is defined as follows: z˛ D z
˛1

1
� � � z

˛n
n , j˛j D ˛1C� � �

C˛n if zD .z1; : : : ; zn/2C
n and ˛D .˛1; : : : ; ˛n/2Z

n. If ˇD .ˇ1; : : : ; ˇn/ is

another element of Z
n, we write ˛�ˇ when ˛i �ˇi for each i 2 f1; : : : ; ng. We

define a splitting H D HC˚H� adapted to Parshin’s filtration [1999; 2001b;

2001a] and the Krichever map. Then, as in the one-variable case, there is a

one-to-one correspondence between certain subspaces of H commensurable to

HC WD CŒŒz1; : : : ; zn�� and wave functions, given by  ‘W , where a spanning

set for W is given by all derivatives @
j1

1
: : : @

jn
n  , evaluated at z D 0, where

0 D .0; : : : ; 0/ 2 Z
n. We take this to be the Grassmannian Gr.H /. We denote

by pC WH !HC and p� WH !H� the natural projection maps. A subspace

W of H is said to be transversal to H� if the restriction pC jW WW !HC of
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pC to W is an isomorphism. For a holomorphic function g WDn! C defined

on the closed polydisk

Dn D f.z1; : : : ; zn/ 2 C
n j jz1j � 1; : : : ; jznj � 1g

with g.0/D 1, g.z/D g.z1; : : : ; zn/ can be written in the form

g.z/D exp

�

X

˛2Z
n
C

t˛z˛
�

with t˛ 2 C for all ˛ 2 Z
n

C
WD f˛ 2 Z

nj˛ � 0; ˛ ¤ 0g. We define the maps

�g; �g�1 WH !H by

.�gf /.z/D g.z/f .z/; .�
g�1f /.z/D g.z/�1f .z/

for all f 2 W and z 2 C
n. Since �

g�1.HC/ � HC, with respect to the de-

composition of H , the map �
g�1 can be represented by a block matrix of the

form

�
g�1 D

�

a b

0 c

�

;

whose entries are the maps a WHC!HC; b WH�!HC; c WH�!H�:

Given W 2 Gr.H /, we set

� W

C
D fg 2 �C j �g�1W is transversal to H�g:

Thus g belongs to � W

C
if and only if the map pCj�

g�1W W�g�1W !HC is an

isomorphism.

Let S be the complex vector space of formal Laurent series in z�1

1
; : : : ; z�1

n

consisting of series of the form

v D
X

˛��

f˛.t/z
˛

for some � 2Z
n with tD .t˛/˛2Z

n
C

. We consider the subspace S� of S consisting

of the series which can be written as

v D

k0
X

kD�1

fk.t I z1; : : : ; zn�1/z
k

n

for some k0 2 Z with k0 � �1, so that there is a decomposition of the form

SD SC˚ S�; where SC consists of the series of the form

`0
X

kD0

fk.t I z1; : : : ; zn�1/z
k

n
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for some nonzero integer `0. Given an element W of the Grassmannian Gr.H /,

the associated Baker function wW .g; z/ is the function defined for g 2� W

C
and

z 2 T n satisfying the conditions

wW .g; z/ 2W; �
g�1wW .g; z/D 1Cu

with u2S�. Since each element g2� W

C
can be written in the exponential form,

the Baker function wW .g; z/ may be regarded as a function for t D .t˛/˛2Z
n
C

and z 2 T n. Thus we may write wW .g; z/D wW .t; z/; t D .t˛/˛2Z
n
C

.

Let W 2 Gr.H / be transversal to H�, so that the map pCjW WW !HC is

an isomorphism, and let g be an element of � W

C
. We consider the sequence

HC

.pC jW /
�1

! W

�
g�1

! �
g�1W

pC

! HC

�g

! HC

of complex linear maps. Given g 2 � W

C
and an element W 2 Gr.H / transver-

sal to H�, the associated �-function �W .g/ D �W .t/ D �W ..t˛/˛2Z
n
C

/ is the

function

�W .g/D det
�

�g ıpC ı�g�1 ı .pC jW /
�1
�

given by the determinant of the composite of the linear maps above. Let � W

HC!H� be the linear map given by�Dp�ı.pCjW /
�1. Then the �-function

can be written in the form

�W .g/D det.1C a�1b�/;

where a and b are as above and 1 denotes the identity map on HC. We define

the rational numbers "˛ for ˛ 2 Z
n

C
by requiring

X

˛2Z
n
C

"˛x˛ D

1
X

kD1

.�1/k

k

�

X

ˇ2Z
n
C

xˇ
�k

;

where x D .x1; : : : ;xn/ is a multivariable.

THEOREM 5 [Lee and Previato 2006]. Let W 2 Gr.H / be transversal, and let

g WDn! C be an exponential. Then the associated �-function

�W .g/D �W ..t˛/˛2Z
n
C

/

satisfies

�
g�1wW .g; z/D

�W
�

.t˛C "˛z�˛/˛2Z
n
C

�

�W ..t˛/˛2Z
n
C

/
;

where wW .g; z/ is the Baker function.

The next step would be to write this formula in terms of theta functions after

Arbarello–De Concini.
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4. Reducible cases

A project which I believe less trivial than it seems, occurs in the case of

reducible abelian varieties. For example, the Schrödinger operator

@

@x2
C

@

@y2
�}.x/}.y/

has commutator which must be isomorphic to the ring C.@=@x2 � }.x// ˝

C.@=@y2�}.y//, whose associated “spectral” variety is E0�E0, where E0 is

the spectral variety of C.@=@x2�}.x//.

While this case can be regarded as trivial, by analogy, the elliptic (or rational)

curve case of the Hitchin system for vector bundles, in which the moduli of

vector bundles are simply a product of copies of the curve, is still the only

one in which the solutions can be given explicitly ([Nekrasov 1996] is just one

earliest reference). In the reducible-potential case, Parshin’s flows for L1;L2

and Nakayashiki’s equations can be written explicitly, but they have not yet been

compared; in this case there is a KP hierarchy.

The differential resultant for this case, in which the variety is known, can

serve as a toy model for a truly generalized theory. (The model used in [Kas-

man and Previato 2001], by analogy with the algebraic definition of resultant

of polynomial equations in several variables given by Macaulay [1916], falls

short because, due to the additional variables at infinity, it is often identically

zero.) It can also serve for testing the conjecture made in [Kasman and Previato

2001] that the resultant is independent of the operator variables, up to a factor

whose numerical nature (degrees in the variables, e.g., for the case of the Weyl

algebra), should be the same in general as in the reducible case. Moreover this

reducible case provides a nonexample for Barsotti’s theorem.4 Indeed, if an

abelian surface is isogenous to the product E1�E2 of two elliptic curves, as is

the case for the Jacobian of a genus-2 curve that covers an elliptic curve, then

we can take u to be the direction that projects to one of the tori; the derivatives

in the u direction will only produce the elliptic functions in one variable; an

explicit calculation is known classically and was reproduced by J. C. Eilbeck

(unpublished notes) to input the parametrization of all the genus-2 elliptic covers

whose Jacobian is isomorphic (without principal polarization) to the product of

two elliptic curves. I briefly provide some motivation and the formula (which

does not do sufficient justice to Eilbeck’s considerable work in implementing

two reduction algorithms, on Siegel matrices and Fourier expansions, given in

theory by H. H. Martens and J.-I. Igusa). The motivation was a recent result

4 “Quite often in mathematics, a “nonexample” is as helpful in understanding a concept as an example” —

J. A. Gallian, Contemporary abstract algebra, Chapter 4.
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of C. Earle [2006], who described all the 2 � 2 matrices in the Siegel upper-

half space that correspond to genus-2 curves whose Jacobian is isomorphic to

a product of elliptic curves. Note that the expected parameter count should be

one and not two (Jacobians that split up to isogeny) since Martens had shown

that in the isomorphic case the two elliptic curves must be isomorphic. I asked

Eilbeck whether we could do the effectivization of the KdV solutions for all

these matrices. The “Earle matrix”5

Z D �

�

na nb

nb d

�

with � in the upper-half plane, and a; b; d; n positive integers such that ad �

nb2 D 1, nonsymplectically equivalent to a diagonal:

.I; z/D .I; �V /

�

I 0

0 T

�

;

where V WD

�

n 0

0 1

�

; T WD �

�

a b

nb d

�

can be symplectically transformed into

2

6

4

�
1

�na
�

b

a

�
b

a
1C

�

a

3

7

5
:

Eilbeck implemented (by creating Maple routines) a special case, the 2-dimen-

sional abelian variety being (2:1)-isogenous to E1�E2, the two elliptic curves

Ei having invariants �i , and decomposed the theta function � (with character-

istics) of A thus: For the matrix

Q� D

2

4

1

2
�1

1

2

1

2
�

1

2.2C �2/

3

5 ;

we have

�
h

0
1
2

0

0

i

��

�1

2
v1

� v1�2v2

2.2C�2/

�

; Q�

�

D�
h

0
1
2

i �

�
v1

2
;
�1

2

�

�
h

0

0

i

�

v1� 2v2

2C �2
;�

2

2C �2

�

C�
h

0

0

i �

�
v1

2
;
�1

2

�

�

�

1
2

0

��

v1� 2v2

2C �2
;�

2

2C �2

�

:

5Not all matrices of this form are period matrices of genus-2 curves; Earle gives a criterion. Also, not all

the matrices of this form that are period matrices correspond to different curves, as they may come from the

same curve via a different choice of homology basis; in two further theorems Earle gives criteria to tell curves

apart.
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This shows that higher derivatives of � in the directions �i are elliptic functions

in �i , thus cannot generate the function field of A.

Appendix

I cannot help mentioning the theory of infinite-genus Riemann surfaces that

Henry McKean, originally in collaboration with Eugene Trubowitz, developed

for KdV spectral varieties attached to a periodic potential that is not “finite-

gap”. In a rigorous analytic way, this extends the theory of the Jacobian, and

the theta function.6 There is still scope for a theory of reduction, elliptic soli-

tons, and differential operators with elliptic coefficients; there are many more

“Variations on a Theme of Jacobi”, in other words, awaiting for Henry’s face-

altering contributions to the field: one more reason to say, Henry, many, many

happy returns!
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ABSTRACT. Integrable partial differential equations have been studied be-

cause of their remarkable mathematical structure ever since they were discov-

ered in the 1960s. Some of these equations were originally derived to describe

approximately the evolution of water waves as they propagate in shallow water.

This paper examines how well these integrable models describe actual waves

in shallow water.

1. Introduction

Zabusky and Kruskal [1965] introduced the concept of a soliton — a spatially

localized solution of a nonlinear partial differential equation with the property

that this solution always regains its initial shape and velocity after interacting

with another localized disturbance. They were led to the concept of a soliton

by their careful computational study of solutions of the Korteweg–de Vries (or

KdV) equation,

@tuCu@xuC @3

x
uD 0: (1)

(See [Zabusky 2005] for his summary of this history.) After that breakthrough,

they and their colleagues found that the KdV equation has many remarkable

properties, including the property discovered by Gardner, Greene, Kruskal and

Miura [Gardner et al. 1967]: the KdV equation can be solved exactly, as an

initial-value problem, starting with arbitrary initial data in a suitable space.

This discovery was revolutionary, and it drew the interest of many people. We

note especially the work of Zakharov and Faddeev [1971], who showed that

the KdV equation is a nontrivial example of an infinite-dimensional Hamilton-

ian system that is completely integrable. This means that under a canonical

345



346 HARVEY SEGUR

change of variables, the original problem can be written in terms of action-angle

variables, in which the action variables are constants of the motion, while the

angle variables evolve according to nearly trivial ordinary differential equations

(ODEs). Zakharov and Faddeev showed that GGKM’s method to solve the KdV

equation amounts to transforming from u.x; t/ into action-angle variables at the

initial time, integrating the ODEs forward in time, and then transforming back

to u.x; t/ at any later time. In this way the Korteweg-de Vries equation, (1),

became the prototype of a completely integrable partial differential equation,

the study of which makes up one facet of this conference.

Zabusky and Kruskal had derived (1) as an approximate model of longitudinal

vibrations of a one-dimensional crystal lattice. Later they learned that Korteweg

and de Vries [1895] had already derived the same equation as an approximate

model of the evolution of long waves of moderate amplitude, propagating in

one direction in shallow water of uniform depth. So the KdV equation, (1), is

of interest to at least two communities of scientists:

� mathematicians, who are primarily interested in its extraordinary mathemat-

ical structure; and

� coastal engineers and oceanographers, who use it to make engineering and

environmental decisions related to physical processes in shallow water.

The KdV equation is one of several equations that are known to be completely

integrable and that also describe approximately waves in shallow water. Other

well known examples include the KP equation, a two-dimensional generaliza-

tion of the KdV equation due to Kadomtsev and Petviashvili [1970]:

@x

�

@tuCu@xuC˛ � @3

x

�

C @2

y
uD 0I (2)

an equation first studied by Boussinesq [1871]:

@2

t
uD c2@2

x
uC @2

x
.u2/Cˇ � @4

x
uI (3)

and the Camassa–Holm equation [1993],

@tmC c@xuCu@xmC 2m@xuC  � @3

x
uD 0; (4)

where

mD u� ı2@2

x
u:

Here are four comments about these equations.

� Among all known integrable equations, this subset is particularly relevant for

this conference, because of the many important contributions of Henry McK-

ean and his coauthors to the development of the theory for (1), (3) and (4) with

periodic boundary conditions. See [Constantin and McKean 1999; McKean



INTEGRABLE MODELS OF WAVES IN SHALLOW WATER 347

1977; 1978; 1981a; 1981b; McKean and van Moerbeke 1975; McKean and

Trubowitz 1976; 1978].

� The coefficients in (1) are not important, because they can be scaled into

fu;x; tg. But in (2), (3), (4), both the physical meaning and the mathematical

structure of each equation changes, depending on the signs of f˛; ˇ;  g re-

spectively. Judgmental nicknames like “good Boussinesq” and “bad Boussi-

nesq” indicate the importance of these signs.

� Equation (1) is a special case of (2), after setting @yu � 0 and neglecting

a constant of integration. Equation (3) is also a special case of (2), after

setting @tu D �c2@xu, rescaling u! 2u, and then interpreting y in (2) as

the time-like variable.

� The KP equation is degenerate: for example, it does not have a unique solu-

tion. If u.x;y; 0/� 0 at t D 0, then both uD 0 and uD t solve (2) and satisfy

this initial condition. In this paper, we remove this degeneracy by requiring

that any solution of (2) also satisfy

Z

1

�1

u.x;y; t/ dx D 0: (5)

Every completely integrable equation possesses extraordinary mathematical

structure. Each of the equations listed above is completely integrable, and also

describes (approximately) waves in shallow water. This paper addresses the

question: Does this extra mathematical structure provide useful information

about the behavior of actual, physical waves in shallow water?

The outline of the rest of this paper is as follows. Section 2 reviews the deriva-

tion of (1)–(4) as approximate models for waves in shallow water. Sections 3,

4, 5 all discuss applications of these approximate models to practical problems

involving ocean waves. Section 3 discusses an application of (1) on the whole

line (or of (2) on the whole plane): the tsunami of December 26, 2004. Section 4

focusses on spatially periodic, travelling wave solutions of (2), and their relation

to periodic travelling waves in shallow water. Section 5 relates doubly periodic

waves to the phenomenon of rip currents. Finally Section 6 discusses more

complicated, quasiperiodic solutions of (2).

2. Derivation of integrable models from the problem of inviscid

water waves

The mathematical theory of water waves goes back at least to Stokes [1847],

who first wrote down the equations for the motion of an incompressible, invis-

cid fluid, subject to a constant (vertical) gravitational force, where the fluid is

bounded below by an impermeable bottom and above by a free surface. In the
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Figure 1. The integrable models of waves in shallow water in (1)–(4) all

depend on an ordering of the scales shown here. A fourth scale, the typical

length scale out of the page, is not shown.

discussion that follows, we assume that the bottom of the fluid is strictly hori-

zontal (at z D �h). In addition to gravity, we also include the effect of surface

tension, because including it provides the extra freedom needed to change the

signs of f˛; ˇ;  g in (2), (3) and (4).

Without viscosity, we may consider purely irrotational motions. Then the

fluid velocity can be written in terms of a velocity potential,

EuDr�;

and the velocity potential satisfies

r2� D 0 for �h< z < �.x;y; t/;

@z� D 0 on z D�h;

@t�C @x� � @x�C @y� � @y� D @z� on z D �.x;y; t/;

@t�C
1

2
jr�j2Cg� D T

@2

x
�.1C.@y�/

2/C@2

y
�.1C.@x�/

2/�2@x@y� �@x�@y�

.1C.@x�/2C.@y�/2/3=2

on z D �.x;y; t/; (6)

where g is the acceleration due to gravity, T represents surface tension, and

z D �.x;y; t/ is the instantaneous location of the free surface.

These equations, known for more than 150 years, are still too difficult to solve

in any general sense. Even well-posedness (for short times) was established only

recently; see [Wu 1999; Lannes 2005; Coutand and Shkoller 2005]. Progress

has been made by focusing on specific limits, in which the equations simplify.

The limit of interest here can be stated in terms of length scales, which must

be arranged in a certain order. Three of the four relevant lengths are shown

in Figure 1. The derivation of either KdV or KP from (6) is based on four

assumptions:

(a) long waves (or shallow water), h� �;

(b) small amplitude; a� h;

(c) the waves move primarily in one direction;
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(d) All these small effects are comparable in size; for KdV, this means

"D
a

h
DO

�

�

h

�

�2
�

: (7)

If (c) is exactly true, the derivation leads to the KdV equation, (1) If it is ap-

proximately true, the derivation can lead to the KP equation, (2).

As we discuss below, assumptions (a)–(d) are also implicit in (3) and (4).

One imposes these assumptions on both the velocity potential, �.x;y; z; t/, and

the location of the free surface, �.x;y; t/, in (6). (See [Ablowitz and Segur

1981, ~ 4.1] or [Johnson 1997, ~ 3.2] for details.) At leading order (" D 0 in

a formal expansion), the waves in question are infinitely long, infinitesimally

small, and the motion at the free surface is exactly one-dimensional. The result

is the one-dimensional wave equation:

@2

t
� D c2@2

x
�; with c2 D gh: (8)

Inserting D’Alembert’s solution of (8) back into the expansion for �.x;y; t I "/

yields

�.x;y; t I "/D "h
�

F .x� ct Iy; "t/CG .xC ct Iy; "t/
�

CO."2/; (9)

where F and G are determined from the initial data. At leading order, F and G

are required only to be bounded, and to be smooth enough for the terms in (6)

to make sense.

There are two ways to proceed to the next order. The simpler but more re-

stricted method, used by Johnson [1997], is to ignore one of the two waves in

(9). Then we may follow (for example) the F -wave by changing to a coordinate

system that moves with that wave, at speed
p

gh. To do so, set

� D

p
"

h

�

x� t
p

gh
�

: (10a)

At leading order, according to (9), F does not change in this coordinate sys-

tem, so we may proceed to the next order, O."2/. Now small effects that were

ignored at leading order — namely, that the wave amplitude is small but not

infinitesimal, that the wavelength is long but not infinitely long, and that slow

transverse variations are allowed — can be observed. These small effects can

build up over a long distance, to produce a significant cumulative change in F .

To capture this slow evolution of F , introduce a slow time scale,

� D "t

r

"g

h
; (10b)
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and find that F satisfies approximately the KdV equation,

2@�F C 3F@�F C
�

1

3
�

T

gh2

�

@3

�F D 0; (11)

if the surface waves are strictly one-dimensional (that is, if @yF � 0). Or, if

the surface patterns are weakly two-dimensional, we can obtain instead the KP

equation,

@�

�

2@�F C 3F@�F C
�

1

3
�

T

gh2

�

@3

�F

�

C @2

�F D 0: (12)

After rescaling the variables in (11) or (12) to absorb constants, (11) becomes

(1), and (12) becomes (2). The dimensionless parameter, T=gh2, which appears

in both (11) and (12), is the inverse of the Bond number — its value determines

the relative strength of gravity and surface tension. The magnitudes and signs of

all coefficients in (11) can be scaled out of the problem, but this is not possible

in (12) with any real-valued scaling. The sign of 1

3
�T=gh2 determines the sign

of ˛ in (2), of ˇ in (3) and of  in (4).

In words, (9) says that one wave (F ) propagates to the right, while another

wave (G) propagates to the left, both with speed
p

gh. Neither wave changes

shape as it propagates, during the short time when (9) is valid without correc-

tion. On a longer time-scale, the KdV equation (11) describes how F changes

slowly, due to weak nonlinearity .F@�F / and weak dispersion .@3

�
F /. Or, the

KP equation (12) shows how F changes because of these two weak effects and

also because of weak two-dimensionality .@2

�F /.

The KdV and KP equations have been derived in many physical contexts,

and they always have the same physical meaning: on a short time-scale, the

leading-order equation is the one-dimensional, linear wave equation; on a longer

time-scale, each of the two free waves that make up the solution of the 1-D

wave equation satisfies its own KdV (or KP) equation, so each of the two waves

changes slowly because of the cumulative effect of weak nonlinearity, weak

dispersion and (for KP) weak two-dimensionality.

The Boussinesq equation, (3), describes approximately the evolution of water

waves under the same assumptions as KdV. It is the basis for several numerical

codes to model wave propagation in shallow water; see, for instance, [Wei et al.

1995; Bona et al. 2002; 2004; Madsen et al. 2002]. Equation (3) appears to be

more general than (1) because (3) allows waves to propagate in two directions,

as (1) does not. But Bona et al. [2002] note that the usual derivation of (3)

from (6) includes an assumption that the waves are propagating primarily in

one direction, so (1) and (3) are formally equivalent.

Conceptually, the Camassa–Holm equation, (4), is based on the same set of

assumptions as (1) and (3). But Johnson [2002] shows that the usual derivations
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of (4) are logically inconsistent. He then gives a self-consistent derivation of (4)

from (6), but the price he pays is that the solution of (4) does not approximate

the shape of the free surface — an additional step is needed. The shape of the

free surface is an easy quantity to measure experimentally, so this extra cost is

not trivial.

The next three sections of this paper compare predictions of (1) and (2) with

experimental observations of waves in shallow water.

3. Application: the tsunami of 2004

A dramatic example of a long ocean wave of small amplitude was the tsunami

that occurred in the Indian Ocean on December 26, 2004. The tsunami caused

terrible destruction in many coastal regions around the Indian Ocean, killing

more than 200,000 people. Even so, we show next that until the tsunami neared

the shoreline, it was well approximated by the theory leading to (8) and (9). We

also show that the nonlinear integrable models, (1)–(4), were not relevant for

the 2004 tsunami.

The tsunami was generated by a strong, undersea earthquake off the coast

of Sumatra. Figure 2 shows a map of the northern Indian Ocean, and the

initial shape of the tsunami. (This figure is the first image in an informative

animation of the tsunami’s propagation, done by Kenji Satake of Japan. To

see his entire animation, go to http://staff.aist.go.jp/kenji.satake/animation.html.

A comparable simulation by S. Ward can be found at http://www.es.ucsc.edu/

˜ward.) The fault line of the earthquake, clearly evident in Figure 2, lies on or

near the boundary of two tectonic plates, one that carries India and one that holds

Burma (Myanmar). Most of the seismic activity in this region occurs because

the India plate is slowly sliding beneath the Burma plate.

The original earthquake (near Sumatra) triggered a series of other quakes,

which occurred along this fault line, all within about 10 minutes. The north-

south distance along this line of quakes was about 900 km. As Figure 2 shows,

the effect of the quakes was to raise the ocean floor to the west of this (curved)

line, and to lower it to the east of the line. The lateral extent of this change

in the sea floor was about 100 km, on each side of the fault line. The verti-

cal displacement was 1–2 meters or less. The change in level of the sea floor

occurred quickly enough that the water above it simply rose (or fell) with the

sea floor. These conditions provided the initial conditions for the tsunami. (The

estimates quoted here were given by S. Ward. None of the conclusions drawn

in this section changes qualitatively if any of these estimates is changed by a

factor of 2.)

The ocean depth in the Bay of Bengal (the part of the Indian Ocean west and

north of the fault line in Figure 2) is about 3 km. The region east of the fault



352 HARVEY SEGUR

line, called the Andaman Sea, is shallower: it average depth is about 1 km.

These estimates provide enough information to consider the theory summa-

rized in Section 2. In the Bay of Bengal, the requirements for KdV theory at

leading order are:

� small amplitude:
a

h
D

1

3000
D 3:3 � 10�4� 1I

� long waves:
�

h

�

�2

D
�

3

100

�2

D 9 � 10�4� 1I

� nearly 1-D surface patterns:

�

L
D

100

900
� 1I

� comparable scales:

"D
a

h
DO

�

�

h

�

�2
�

:

These estimates show that the theory for long waves of small amplitude should

work well for the tsunami that propagated westward, across the Bay of Ben-

gal. The reader can verify that this conclusion also holds for the eastward-

propagating tsunami, in the Andaman Sea. Therefore, the tsunami in the Bay of

Bengal propagated with a speed .
p

gh/ of about 620 km/hr, while the speed in

the Andaman Sea was about 360 km/hr.

(The analysis that follows also assumes constant ocean depth. This is the

weakest assumption in the analysis, but it is easily corrected; see [Segur 2007].)

We may take the initial shape of the wave to be that shown in Figure 2, with

no vertical motion initially. If we neglect variations along the fault line, then

according to (8), a wave with this shape and half of its amplitude propagated to

the west, and an identical wave propagated to the east. Neither wave changed

its shape as it propagated, so the wave propagating towards India and Sri Lanka

consisted of a wave of elevation followed by a wave of depression. The wave

propagating towards Thailand was the opposite: a wave of depression, followed

by a wave of elevation. These conclusions are consistent with reports from

survivors in those two regions.

This description applies on a short time-scale. The KdV (or KP) equation

applies on the next time-scale, approximately "�1 longer. Equivalently, the dis-

tance required for KdV dynamics to affect the wave forms is approximately "�1

longer than a typical length scale in the problem. Using h as a typical length,

this suggests that we need about 3000�3 km = 9000 km of propagation distance

to see KdV dynamics in the westward propagating wave. But the distance across
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Figure 2. Map of the northern Indian Ocean, showing the shape and

intensity of the initial tsunami, 10 minutes after the beginning of the first

earthquake. This image is the first frame from a simulation by K. Satake;

it shows an elevated water surface west of the island chain and a depressed

water surface east of that chain. (For the color coding see this article

online at http://www.msri.org/publications/books; Satake’s animation can

be found at http://staff.aist.go.jp/kenji.satake/animation.html.)

the Bay of Bengal is nowhere larger than about 1500 km, much too short for

KdV dynamics to have built up. The numbers for the eastward propagating wave

are different, but the conclusion is the same: the distance across the Andaman

Sea is too short to see significant KdV dynamics. Thus, the 2004 tsunami did

not propagate far enough for either the KdV or KP equation to apply.

This conclusion, that propagation distances for tsunamis are too short for

soliton dynamics to have an important effect, applies to many tsunamis, but

not all. Lakshmanan and Rajasekar [2003] point out that the 1960 Chilean

earthquake, the largest earthquake ever recorded (magnitude 9.6 on a Richter

scale), produced a tsunami that propagated across the Pacific Ocean. It reached

Hawaii after 15 hours, Japan after 22 hours, and it caused massive destruction

in both places. This tsunami propagated over a long enough distance that KdV

dynamics probably were relevant. For more information about this earthquake
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and its tsunami, see the reference just cited, [Scott 1999], or http://neic.usgs.gov/

neis/eq depot/world/1960 05 22 tsunami.html. More recently, a seismic event

off the Kuril Islands in 2006 sent a wave across the Pacific that damaged the

harbor in Crescent City, CA. KdV (or KP) dynamics probably were relevant for

this wave, which took more than 8 hours to cross the Pacific. For more informa-

tion about this tsunami, see http://www.usc.edu/dept/tsunamis/2005/tsunamis/

Kuril 2006/.

Back to the tsunami of 2004. The discussion presented here might leave

the reader wondering how a wave of such small amplitude, satisfying a linear

equation, could be responsible for so much damage and so much loss of life.

The answer is that the “long waves, small amplitude” model applies only away

from shore — near shore the wave changes its nature entirely. To see this change

in tsunami dynamics, imagine sitting in a boat in the middle of the Indian Ocean

when a tsunami like that in 2004 passes by. The tsunami is 1 m high, 100 km

long, and it travels at 620 km/hr. It would take about 10 minutes to pass the

boat, so in the course of 10 minutes, the boat would rise 1 meter and then fall

1 meter. Hence in the open ocean, it is difficult for a sensor at the free surface

even to detect a passing tsunami.

Near shore, everything changes. The local speed of propagation is still
p

gh,

but h decreases near shore, so the wave slows down. More precisely, the front

of the wave slows down — the back of the wave, still 100 km out at sea, is not

slowing down. The result is that the wave must compress horizontally, as the

back of the wave catches up with the front. But water is nearly incompressible,

so if the wave compresses horizontally, then it must grow vertically as it ap-

proaches shore. The result is that a very long wave that was barely noticeable in

the open ocean becomes shorter (horizontally), larger (vertically), and far more

destructive near shore.

See articles in Science, 308 (2005), 1125–1146 or in [Kundu 2007] for more

discussion of the 2004 tsunami.

4. Application: periodic ocean waves

Among ocean waves, tsunamis are anomalous. The vast majority of ocean

waves are approximately periodic, and they are generated by winds and storms

[Munk et al. 1962]. The water surface is two-dimensional, so the KP equation,

(2), is a natural place to seek solutions that might describe approximately peri-

odic waves in shallow water. Gravity dominates surface tension except for very

short waves, so we may set ˛ D 1 in (2).

The simplest periodic solution of (2) is a (one-dimensional) plane wave, of

the form

uD 12k2m2 cn2 fkxC lyCwt C�0ImgCu0; .13/
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where cnf� Img is a Jacobian elliptic function with elliptic modulus m. If we

impose (5), then the solution in (13) has four free parameters; for example

fk; l; �0;mg. If l D 0, then (13) solves the KdV equation; this solution was

first discovered by Korteweg and de Vries [1895], who named it a cnoidal wave.

Wiegel [1960] brought cnoidal waves to the attention of coastal engineers, who

now use them regularly for engineering calculations. (See Chapter 2 of the Shore

Protection Manual [SPM 1984] for this viewpoint.)

Figure 3 shows ocean waves photographed by Anna Segur near the beach in

Lima, Peru. These plane, periodic waves have broad, flat troughs and narrow,

sharp crests — typical of cnoidal waves with elliptic modulus near 1, and also

typical of plane, periodic waves in shallow water of nearly uniform depth. It is

unusual to see such a clean example of a cnoidal wave train, but that might be

because few beaches are as flat as the beach in Lima.

Cnoidal waves are appealing because of their simplicity, but they are degen-

erate in the sense that the water surface is two-dimensional, while cnoidal waves

vary only in the direction of propagation. One might wish for a wave pattern

that is nontrivially periodic in two spatial directions, and that travels as a wave

of permanent form in water of uniform depth.

Figure 4 shows a photograph of a wave pattern photographed by Terry Toedte-

meier off the coast of Oregon. This photo can be interpreted in two different

ways, each with some validity. The first interpretation is that Figure 4 shows two

plane solitary waves, interacting obliquely in shallow water of nearly uniform

depth. A basic rule of soliton theory is that the interaction of two solitons results

in a phase shift. A phase shift is evident in Figure 4: each wave crest is shifted

beyond the interaction region from where it would have been without the inter-

action. The KP equation admits a 2-soliton solution that looks very much like

the wave pattern in Figure 4. Equivalently, one can identify this wave pattern

with a 2-soliton solution of the Boussinesq equation, (3).

Figure 3. Periodic plane waves in shallow water, off the coast of Lima,

Peru. (Photographs courtesy of A. Segur)
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Figure 4. Oblique interaction of two shallow water waves, off the coast

of Oregon. (Photograph courtesy of T. Toedtemeier)

The other interpretation is that Figure 4 shows the oblique, nonlinear interac-

tion of two (plane) cnoidal wave trains. Each wave train exhibits the flat-trough,

sharp-crest pattern seen in Figure 3, but in Figure 4 successive wave crests in

the same train are so far apart that each crest acts nearly like a solitary wave.

Even so, if one looks carefully at Figure 4, one can see the next crest after the

prominent crest in each wave train. With this interpretation, Figure 4 shows a

wave pattern that propagates with permanent form, and is nontrivially periodic

in two horizontal directions. Each wave crest in one wavetrain undergoes a

phase shift every time it interacts with a wave crest from the other wavetrain.

The result is a two-dimensional, periodic wave pattern, in which the basic “tile”

of the pattern is a hexagon: two parallel sides of the hexagon are crests from

one wavetrain, two sides are crests from the other wavetrain, and the last two

sides are two, short interaction regions. (Only one interaction region is evident

in Figure 4.)

The KP equation admits an 8-parameter family of real-valued solutions like

this — each KP solution is a travelling wave of permanent form, nontrivially

periodic in two spatial directions; see [Segur and Finkel 1985] for details. In

terms of Riemann surface theory, every cnoidal wave solution of KdV or KP cor-

responds to a Riemann surface of genus 1; each of the KP solutions considered

here corresponds to a Riemann surface of genus 2. These two-dimensional, dou-

bly periodic wave patterns are the simplest periodic or quasiperiodic solutions

of the KP equation beyond cnoidal waves.

In a series of experiments, Joe Hammack and Norm Scheffner created waves

in shallow water with spatial periodicity in two directions, in order to test the KP

model of such waves [Hammack et al. 1989; 1995]. Figure 5 shows overhead

photographs of three of their propagating wave patterns. Each wave pattern in
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these photos is generated by a complicated set of paddles at one end of a long

wave tank. The photos are oriented so that the waves propagate downward in

each pair of photos. The pattern in the top photos is symmetrical, and it propa-

gates directly away from the paddles (so straight down in Figure 5). The other

two patterns are asymmetric; these patterns propagate with nearly permanent

form but not directly away from the paddles — there is also a uniform drift to the

left or right for each wave pattern. The corresponding KP solution predicts this

direction of propagation, along with the detailed shape of the two-dimensional,

doubly periodic wave pattern. Hammack et al. [1995] showed experimentally

that for each wave pattern they generated, the appropriate KP solution of genus

2 predicts the detailed shape of that pattern with remarkable accuracy. See their

paper for these comparisons.

In addition to these photographs, they also made videos of the experiments.

There was no convenient way to present those videos in 1989, but now they are

archived at the MSRI website. Go to http://phoebe.msri.org:8080/vicksburg/

vicksburg.mov to see the first video. The experiments were conducted in a

large (30 m x 56 m) wave tank at the US Army Corps of Engineers Waterways

Experiment Station, in Vicksburg, MS. A segmented wavemaker, consisting of

60 piston-type paddles that spanned the tank width, is shown in the first scene.

In this scene the paddles all move together, and they generate a train of plane,

periodic (i.e., cnoidal) waves that propagate to the other end of the tank, where

they are absorbed.

In the second scene, the camera looks down on the tank from above; the

paddles are visible along the end of the tank at the upper right. The paddles were

programmed to create approximately a KP solution of genus 2, with a specific

set of choices of the free parameters. Hence the wave pattern coming off the

paddles is periodic in two spatial directions. The experiment shows that the

entire two-dimensional pattern propagates as a wave of nearly permanent form.

As in Figures 4 and 5, the basic tile of the periodic pattern is a hexagon, but

the long, straight, dominant crests seen in the video are the interaction regions,

which are quite short in Figure 4. The relatively narrow, zigzag region that

connects adjacent cells contains the other four edges of the hexagonal tile. Wave

amplitudes in the zigzag region are smaller than those of the long, dominant

crests, and the KP solution shows that horizontal velocities are smaller in this

region as well.

The relative length of the long, straight, dominant crests within a hexagonal

tile is a parameter that one can chose by choosing properly the free parameters

of the KP solution. This freedom of choice is demonstrated in the third scene

in the video. In this experiment, all of the parameters of the KP solution are the
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Figure 5. Mosaics of two overhead photos, showing three surface patterns

of travelling waves of nearly permanent form, with periodicity in two spatial

directions, in shallow water of uniform depth. The basic tile of each pattern

is a hexagon; one hexagon is drawn in the middle photos. Each wave

pattern is generated by a set of paddles, above the top of each pair of

photos. The wave pattern propagates away from the paddles, so downward

in these photos. The waves are illuminated by a light that shines towards

the paddles, so a bright region identifies the front of a wave crest, a dark

region lies behind the crest, and a sharp transition from bright to dark

represents a steep wave crest. (Figure taken from [Hammack et al. 1995].)
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same as those in the previous experiment, except that the length of the dominant

crest is shorter.

Almost all real-valued genus 2 solutions of the KP equation define wave

patterns like this: travelling waves of permanent form that are periodic in two

spatial directions. The existence of these KP solutions does not guarantee that

such solutions are stable within the KP equation, or that the corresponding water

waves are stable. The video shows that these water waves look stable. See

Section 6 for more discussion of stability.

Wiegel [1960] pointed out the practical, engineering value of KdV (or KP)

solutions of genus 1, and the experiments shown here demonstrate the practical

value of KP solutions of genus 2 — both sets of KP solutions describe accurately

waves of nearly permanent form in shallow water of uniform depth. See Section

6 for a discussion of KP solutions of higher genus.

We end this discussion of spatially periodic waves of permanent form by

noting the work of Craig and Nicholls [2000; 2002]. Motivated in part by the

experimental results shown here, these authors proved directly that the equations

of inviscid water waves, (6), admit travelling wave solutions that are spatially

periodic in two horizontal directions, like those shown here. The parameter

range of their family of solutions is not identical with the parameter range of

KP solutions of genus 2, but the two overlap. (The KP equation approximates

water waves only in shallow water, but Craig and Nicholls find solutions in

water of any depth. In the other direction, they have not yet found asymmetric

solutions, like those shown in the middle and bottom photos of Figure 5.) One

value of an approximate model, like KP, is that it provides hypotheses about

what might be true in the unapproximated problem. The success of Craig and

Nicholls demonstrates how effective that strategy has been in this particular

problem.

5. Application: rip currents

The material in this section can be considered an application of an application.

The KP equation predicts the existence of spatially periodic wave patterns of

permanent form, approximately like those shown in Figure 5, in shallow water

of uniform depth. As these waves propagate into a region near shore where

the water depth decreases (to zero at the shoreline), the KP equation no longer

applies. But the waves themselves persist, and their behavior near shore can

have important practical consequences, as we discuss next.

A rip current is a narrow jet that forms in shallow water near shore under

certain circumstances. It carries water away from shore, through the “surf zone”

(the region of breaking waves), out to deeper water. A typical rip current flows

directly away from the shoreline, and it remains a strong, narrow jet through
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Figure 6. Rip currents on two beaches on the Pacific coast. Left: Rosarita

Beach in Baja California, Mexico. Starting at the lower left, the dark region

shows vegetation, the white strip above it is sandy beach, the shoreline

runs from upper left to lower right, the white water beyond that is the surf

zone, with deeper water at the upper right. Three separated rip currents

are shown. Right: Sand City, California. The land is to the lower left, the

Pacific Ocean is to the upper right, with a white surf zone in between.

Here the entire coastline is filled with an approximately periodic array of

rip currents.

the surf zone. Beyond the surf zone, the current “blossoms” into a wider flow

and loses its strength. Figure 6, left, shows three rip currents, while the right-

hand part shows an approximately periodic array of rip currents all along the

coastline. Rip currents can be dangerous because even a good swimmer cannot

overcome the high flow rate in a strong rip current. As a result, every year rip

currents carry swimmers out to deep water, where they drown.

What causes rip currents? They form in the presence of breaking waves, but

breaking waves alone do not guarantee their formation. Some rip currents are

stationary, while others migrate slowly along the beach. Some persist for a few

hours, while others last longer.

There is a standard explanation for how rip currents form, which can be found

at http://www.ripcurrents.noaa.gov/science.shtml and elsewhere. According to

this explanation, rip currents require a long sandbar, parallel to the beach and

just beyond the surf zone. Incoming waves break in the surf zone, and then a

return flow carries that water back out to sea. Where can the return flow go?

The easiest place for the return flow to carry water past the sandbar is where

the height of the sandbar has a local minimum. So the return flow goes through

this (initially small) pass. In doing so, its flow scours out more sand at the local

minimum, which makes the height even lower there. Then more water can go

through, and a feedback loop carves a larger hole in the sandbar. As it carves this

hole, the return flow strengthens until it forms into a narrow jet — a rip current.
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The rip current is located at the hole in the sandbar, and the width of the current

is the width of the hole.

This is a sensible explanation, and it is probably correct sometimes. But

the left half of Figure 6 shows three rip currents, with some spacing between

them. What determines their spacing? The right half shows a long array of rip

currents, with an approximately constant spacing between adjacent rips. What

determines their spacing? Not all rip currents appear in these approximately

periodic arrays, but they often do. And the standard explanation, summarized

above, provides no insight into why rips appear in these regular arrays, and no

way to predict the spacing between adjacent rips. Separately, this explanation

seems to imply that a rip current cannot migrate slowly along the beach, even

though some do.

An alternative mechanism to create rip currents was proposed by Hammack

et al. [1991]. It requires no sand bars. Recall the doubly periodic wave pat-

terns from their movie, which travel with nearly permanent form (see http://

phoebe.msri.org:8080/vicksburg/vicksburg.mov). What would happen to such

a spatially periodic wave pattern, as it traveled up a sloping beach? It is easy to

imagine that the large, dominant wave crests would break first, while the smaller

crests in the narrow zigzag region would break later, or not at all. After the waves

break, a return flow must carry that water back out to deep water. Where can

the return flow go? The return flow is likely to go where the incoming flow is

the weakest. Where is that?

[Once waves break, the KP equation no longer applies. The next two para-

graphs, therefore, define a conjecture, with little mathematical justification at

this time.] The derivation of either (1) of (2) from (6) shows that the horizontal

velocity of the water is proportional to the wave height, so the strongest hori-

zontal flow occurs where the waves are highest. For the wave patterns shown

in the video, therefore, the long, dominant wave crests are also regions of large

forward velocity, where a return flow would be resisted by a strong incoming

flow. In the narrow zigzag regions, wave heights are smaller, horizontal flows

are also smaller, and here the return flow would meet less resistance.

If the return flow travelled through the narrow zigzag region of the incoming

flow field, then the return flow would acquire a spatial structure determined by

the structure of the incoming waves. Specifically, suppose the incoming wave

pattern were one of the hexagonal patterns seen in the previous video. Then:

� The return flow would appear in narrow jets (i.e., rip currents) because in-

coming flow contains narrow zigzag regions, where the incoming velocities

are smaller.

� These narrow jets would be periodically arranged along the beach because

the incoming wave patterns are periodic in the direction along the beach.
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� The spacing between adjacent rips would be determined by the spacing be-

tween adjacent zigzag regions in the incoming waves.

� The width of the jets would be related to the width of the zigzag region in the

incoming wave pattern.

Hammack et al. [1991] tested this conjecture with another set of experiments,

after some modifications of their wave tank. For the experiments on rip currents,

the set of paddles was moved from the end of the tank to the side, so the waves

now propagate across the tank instead of along it. In addition, they installed a

sloping beach in the tank. The result was that the waves propagated across a

region of uniform depth, and then up a uniformly sloping beach. The beach was

made of concrete, so there were no sandbars.

The experiments can be viewed in another video, which is available at http://

phoebe.msri.org:8080/ripcurrent84/ripcurrent84.mov. As the video opens, one

sees dry beach along the bottom of the screen, with quiescent water higher up the

screen. A strip of dye (food coloring) has been poured along the water’s edge,

to mark where the return flow goes. As the camera scans the entire tank, one

sees the array of paddles on the far side of the tank. These paddles then create

a set of hexagonally shaped, periodic waves of nearly permanent form, which

propagate away from the paddles and towards the beach. As the hexagonal wave

patterns climb the beach, their crests begin to break. Then a few seconds later,

the dye begins to move from the shoreline, away from the beach, in a narrow

jet. The jet is clearly in the zigzag region of the incoming flow, because we see

the dye zigzagging out to deep water in the video. After the experiment has

run for a while, the dye shows the spatial pattern of the rip currents: a periodic

array of jets that remain narrow through the surf zone, and then spread out and

stop beyond the surf zone. Both the spacing between jets and the width of

an individual jet are determined by the spatial structure of the incoming wave

pattern. Sand bars are irrelevant for these rip currents.

(In addition to the array of narrow rip currents marked by dye at the end of the

experiment, one also sees a weaker, roughly circular glob of dye between each

pair of rip currents. This secondary flow of dye might be due to undertow, which

exists because the bottom boundary layer of the incoming waves is another place

where the incoming flow is weaker. But this is a separate conjecture, with little

experimental support at this time.)

6. Quasiperiodic solutions of the KP equation

Krichever [1977a] showed that the KP equation, (2), admits a large family of

quasiperiodic solutions of the form

u.x;y; t/D 12@2

x
ln �; .14/
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where � is a Riemann theta-function, associated with a (compact, connected)

Riemann surface of some finite genus. Such a formulation was already known

for KdV: (13) with u0 D 0 can be written in this form, with genus 1. The

Riemann surface is necessarily hyperelliptic (so only square-root branch points

are allowed) for KdV, but Krichever [1976; 1977b] proved that any Riemann

surface would do for KP.

As described in detail in [Dubrovin 1981; Belokolos et al. 1994], a Riemann

theta function with g phases is defined by a g-fold Fourier series; the coefficients

in this series are defined by a g�g Riemann matrix. If one starts with a Riemann

surface of genus g, then by a standard procedure one generates a g�g Riemann

matrix associated with that surface. Krichever showed that (14), with the theta

function obtained in this way, solves the KP equation. Then S. P. Novikov con-

jectured that the connection between the KP equation and Riemann surfaces is

even stronger, and that (14) solves KP only if its theta function is associated with

some Riemann surface. In other words, out of all possible theta functions, of any

finite genus, the KP equation can identify those associated with some compact

Riemann surface. The conjecture seems remarkable, but Shiota [1986] proved

it, after earlier work by Mulase [1984] and by Arbarello and de Concini [1984].

Thus the KP equation, (2), can be studied from at least three perspectives:

� as a completely integrable partial differential equation;

� as an approximate model of waves in shallow water; and

� because of its deep connection with the theory of Riemann surfaces.

An objective of this paper is to relate the extra mathematical structure of the

KP equation to the behavior of physical waves in shallow water, if possible.

The theory for the KP equation is much less developed than the corresponding

theory for the KdV equation, especially for the quasiperiodic KP solutions given

by (14). This final section summarizes our current knowledge of four aspects

of these solutions: (a) the qualitative nature of quasiperiodic KP solutions; (b)

effective methods to construct KP solutions of a given genus; (c) solving the

initial-value problem; and (d) stability of quasiperiodic KP solutions.

(a) the qualitative nature of quasiperiodic KP solutions. Here is a summary

of what is known about bounded, real-valued, KP and KdV solutions of various

genera. (See [Dubrovin 1981] for details.)

gD1: Any KP solution of genus 1 is a cnoidal wave — a plane wave that travels

with permanent form, given by (13). The cnoidal wave solutions of KdV are

special cases of this, with l D 0 in (13).

gD2: A KP solution of genus 2 has two phase variables:fkj xClj yCwj tC�j g

for j D 1; 2. There are two possibilities.
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� If k1l2 D k2l1, then all lines of constant phase are parallel, so the spa-

tial pattern of the wave is always one-dimensional. Any such solution of

KP can be transformed (“rotated”) into a solution of KdV, also of genus

2. These KdV solutions are necessarily time-dependent, in any Galilean

coordinate system.

� Otherwise k1l2 ¤ k2l1, and the solution is spatially periodic — the basic

tile of the pattern is a hexagon, as discussed in Section 4. The wave pat-

terns shown in Figure 5 approximate KP solutions of genus 2. Each such

solution travels as a wave of permanent form in an appropriately translating

coordinate system. Almost all KP solutions of genus 2 have k1l2 ¤ k2l1,

so they are travelling waves of permanent form.

g � 3: Almost all KP solutions of genus 3 or higher are time-dependent, in

every Galilean coordinate system. Hence these KP solutions can describe

physical processes that are time-dependent, including energy transfer among

modes. Because of this nontrivial time-dependence, snapshots at a particular

time, like those in Figure 5, are inadequate to view these solutions.

g � 3: For g � 3, the only KP solutions that are waves of permanent form

are those that also solve the Boussinesq equation, (3). For g D 3, the KP

equation admits a 12-parameter family of bounded, real-valued, quasiperiodic

solutions, each with three independent phases. The Boussinesq solutions with

g D 3 comprise an 11-parameter subfamily, so almost all KP solutions with

gD3 are intrinsically time-dependent. Even so, this 11-parameter sub-family

is much larger than the 8-parameter family of KP solutions of genus 2. Which

of these solutions are stable, and in what sense, are open questions.

g ! 1: The development of “finite-gap” solutions of the KdV equation by

Novikov [1974], Lax [1975], McKean and van Moerbeke [1975] and others

can be considered a nonlinear generalization of a finite Fourier series (which

contains only a finite number of terms). Each such finite-gap solution of

KdV is based on a hyperelliptic Riemann surface of finite genus. The genus

determines the number of open gaps in the spectrum of Hill’s equation; it

corresponds to the number of terms in a finite Fourier series. McKean and

Trubowitz [1976] made this correspondence legitimate, by developing a the-

ory of hyperelliptic curves with infinitely many branch points. In this context,

one can discuss convergence of a sequence of finite-gap solutions of KdV, as

the number of gaps (and the genus of the Riemann surface) increases without

bound.

g!1: When we switch from the KdV to the KP equation, we also switch from

hyperelliptic to general Riemann surfaces, and things become more compli-

cated. The recent book by Feldman et al. [2003] (see Bull. Amer. Math. Soc.

42 (2004), 79–87 for McKean’s review) explores Riemann surfaces of infinite
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genus, generalizing [McKean and Trubowitz 1976]. When KP solutions of

finite genus are understood well enough to consider questions of convergence,

one can hope that this recent work will provide a suitable framework in which

to address such questions.

g � 3: Back to finite genus. Time-dependent or not, KP solutions with g � 3

are typically not periodic in space, but only quasiperiodic.

The fact that KP solutions of higher genus are typically only quasiperiodic in

space or time is worth discussing. Physically, it is common to see water waves

that are approximately periodic, but truly periodic water waves seem to be rare.

In this sense, a mathematical model that naturally produces quasiperiodic solu-

tions is an advantage. In terms of scientific computations, people often use peri-

odic boundary conditions, not because the physical problem is periodic but for

computational simplicity. How to build numerical codes that compute efficiently

in a space of almost periodic functions seems to be an open problem. In terms

of mathematical theory, Dubrovin et al. [1976] developed a theory to construct

solutions of the KdV equation that need be only almost periodic. Their task was

simpler than for the corresponding problem for KP, because the KdV equation

only allows hyperelliptic Riemann surfaces, which are better understood than

general Riemann surfaces.

(b) effective methods to construct KP solutions of a given (finite) genus. The

method of inverse scattering, to solve the initial-value problem for a completely

integrable evolution equation, typically has three parts: map the initial data into

scattering data, evolve the scattering data forward in time, and then map back.

For solutions of the form (14), one can identify the “scattering data” with the

Riemann surface plus a divisor on that surface. Hence, one part of the method

of inverse scattering is to produce an explicit Riemann theta function from these

scattering data. This procedure is carried out for KP and several other integrable

problems in [Belokolos et al. 1994].

Earlier, Bobenko and Bordag [1989] started with different “scattering data”,

and demonstrated that their method is effective by producing KP solutions. In

principle their method can generate solutions of any genus, and they exhibit a

solution of genus 4, among others.

Any method that uses the underlying Riemann surface as scattering data faces

inherent difficulties related to our inadequate knowledge of Riemann surface

theory. A Riemann surface can be defined by an algebraic curve: a polynomial

relation of finite degree between two complex variables, P .w; z/D 0. But this

relation might have singularities, where @P .w; z/=@wD 0 and @P .w; z/=@zD 0

simultaneously. One does not obtain a Riemann surface until all such singular-

ities are resolved. Separately, a given Riemann surface can have more than one
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such representation, and it can be difficult to tell whether two such polynomial

relations represent the same surface.

Consequently it has been necessary to build computational machinery, to

make the abstract theory of Riemann surfaces concrete and effective. See [De-

coninck and van Hoeij 2001; Deconinck et al. 2004] for some of this machinery.

At this time, computing the ingredients in a Riemann theta function from a

representation of its algebraic curve is still not straightforward.

Dubrovin [1981] proposed another approach, which is effective for genus 1,

2 or 3, and only for them. He observed that for these low genera, any Riemann

matrix that is “irreducible” can be associated with some Riemann surface. Hence

one can skip the Riemann surface altogether, and work directly with the Rie-

mann matrix. The papers [Segur and Finkel 1985; Dubrovin et al. 1997] were

both based on this approach. These authors demonstrated the effectiveness of

their method not only with example solutions, but also with publicly available

computer codes that allow an interested reader to compute and to visualize real-

valued KP solutions of genus 1, 2 or 3. The limitation of their method is that it

fails for any genus larger than 3.

(c) solving the initial-value problem. Let us focus on two published methods

to solve the KP equation as an initial-value problem, starting with either periodic

or quasiperiodic initial data: by [Krichever 1989; Deconinck and Segur 1998].

Both methods rely on (14) to describe KP solutions of some finite genus.

Krichever requires that the initial data be periodic in x and in y, with fixed

periods in each direction (i.e., in a fixed rectangle). Any KP solution that evolves

from these initial data then retains that periodicity. He establishes the formal

existence of a sequence of KP solutions, each of finite genus and in the form

(14), which provide better and better approximations to the given initial data at

t D 0. An important accomplishment in this work is his approximation theorem,

which shows that these finite-genus solutions are dense in a suitable space of

KP solutions with the given periods in x and in y.

Our approach in [Deconinck and Segur 1998] differed from that of Krichever

in several respects. We considered initial data that are quasiperiodic in space,

rather than requiring strict periodicity in x and in y. Even at genus 2, requiring

that waves be periodic in x and in y is overly restrictive. Mathematically, the

family of real-valued KP solutions of genus 2 that are periodic in x and in y has

5 free parameters, while the full family of real-valued KP solutions of genus 2

has 8. Physically, all three patterns of water waves photographed in Figure 5

are spatially periodic, but only the top pattern is periodic in x and in y.

We paid for the extra flexibility of allowing initial data that are quasiperiodic

in space, by requiring that their initial data have the form (14), with some finite

number (g) of phases. Then we gave a constructive procedure to determine
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g (the number of phases and the genus of the Riemann surface), the Riemann

surface itself and the divisor on that surface. Unfortunately, we have no approx-

imation theorem, so we cannot prove that the KP solutions obtained in this way

are dense in any suitable space of KP solutions.

The opinion of this writer is that more work is needed to produce a con-

structive method to solve the initial-value problem for the KP equation with

quasiperiodic initial data.

(d) stability of quasiperiodic KP solutions. If one views the KP equation as

a mathematical model of a physical system, like waves in shallow water, then

the stability of its solutions is an essential piece of information about the model.

The video at http://phoebe.msri.org:8080/vicksburg/vicksburg.mov shows water

waves that are well approximated by KP solutions of genus 2, and that appear

to be stable as they propagate. But one cannot prove stability experimentally —

the video only shows that if there is an instability, then its growth rate must be

slow enough that it does not appear within the test section of the tank.

At this time, almost nothing is known about the stability of quasiperiodic

solutions of the KP equation. The problem is even more difficult than usual

because standard numerical methods to test for stability/instability are based

on codes with periodic boundary conditions, and these are not suitable for KP

solutions that are only quasiperiodic. The problem seems to be completely open

at this time.
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1. Introduction

This lecture in honor of Henry McKean forms a step in the direction of un-

derstanding the behavior of nonintersecting Brownian motions on R (Dyson’s

Brownian motions), when the number of particles tends to 1. It explains a

novel interface between diffusion theory, integrable systems and the theory of

orthogonal polynomials. These subjects have been at the center of Henry McK-

ean’s oeuvre. I am delighted to dedicate this paper to Henry, teacher and friend,

with admiration for his pioneering work in these fields.

Consider n Brownian particles leaving from points a1 < � � �< ap and forced

to end up at b1 < � � � < bq at time t D 1. It is clear that, when n ! 1, the

equilibrium measure for t � 0 has its support on p intervals and for t � 1 on

q intervals. It is also clear that, when t evolves, intervals must merge, must

disappear and be created, leading to various phase transitions, depending on

the respective fraction of particles leaving from the points ai and arriving at the

points bj . Therefore the region R in the space-time strip .x; t/ formed by the

support .� R/ of the equilibrium measure as a function of time 0 � t � 1 will

typically present singularities of different types.

Near the moments, where a phase transition takes place, one would expect

to find in the limit n%1 an infinite-dimensional diffusion, a Markov cloud,

having some universality properties. Universality here means that the infinite-

dimensional diffusion is to depend on the type of singularity only. These Markov

clouds are infinite-dimensional diffusions, which ‘in principle’ could be de-

scribed by an infinite-dimensional Laplacian with a drift term. We conjecture

that each of the Markov clouds obtained in this fashion is related to some in-

tegrable system, which enables one to derive a nonlinear (finite-dimensional)

PDE, satisfied by the joint probabilities. The purpose of this lecture is to show

the intimate relationship between these subjects: nonintersecting Brownian mo-

tions and integrable systems, via the theory of orthogonal polynomials. Special

cases have also shown an intimate connection between the integrable system

and the Riemann-Hilbert problem associated with the singularity. These ideas

will then be applied to a simple model, where we show that the transition

probabilities for the infinite-dimensional Brownian motions near a cusp satisfy

a nonlinear PDE. The interrelations between all such equations, “initial” and

“final” (t ! ˙1) conditions, are interesting and challenging open problems.

Universality in this context is a largely open field. For references, see later.
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2. Biorthogonal polynomials and the 2-component KP hierarchy

Consider the inner product for the weight �.x;y/ on R
2,

hf jgi WD

ZZ

R2

f .x/g.y/�.x;y/dxdy:

and an inner product for this weight, augmented with an extra-exponential factor,

depending on “time” parameters t WD .t1; t2; : : : / and s WD .s1; s2; : : : /,

hf jgit;s WD

ZZ

R2

f .x/g.y/�.x;y/e
P

1

1 .ti y
i
�si x

i /dxdy:

Construct monic biorthogonal polynomials p
.1/
m .y/ and p

.2/
n .x/ (also depending

on the parameters t and s) with regard to this deformed weight,

D

p.2/
n
.x/e�

P

1

1 si x
i
ˇ

ˇ

ˇ
p.1/

m
.y/e

P

1

1 ti y
i
E

D

ZZ

R2

p.2/
n
.x/p.1/

m
.y/�.x;y/e

P

1

1 .ti y
i
�si x

i / dx dy

D ınmhn;

and let �n be the determinant of the moment matrix

�n.t; s/ WD det
�D

xke�

P

1

1 si x
i
ˇ

ˇ

ˇ
y`e

P

1

1 ti y
i
E�

0�k;`�n�1

:

The following theorem and its corollary, due to Adler and van Moerbeke

[1997; 1999b] and inspired by Sato’s theory, establishes a link between the

functions �n and the biorthogonal polynomials:

THEOREM 2.1. Given these data, the determinant �n.t; s/ and the biorthogonal

polynomials are related by the following relations, where we have set Œ˛� WD

.˛; 1

2
˛2; 1

3
˛3; : : : / for ˛ 2 C:

zn
�n.t � Œz

�1�; s/

�n.t; s/
D p.1/

n
.z/;

zn
�n.t; sC Œz

�1�/

�n.t; s/
D p.2/

n
.z/;

z�n�1
�nC1.t C Œz

�1�; s/

�n.t; s/
D

ZZ

R2

p
.2/
n .x/

z�y
e
P

1

1 .ti y
i
�si x

i /�.x;y/ dx dy;

z�n�1
�nC1.t; s� Œz

�1�/

�n.t; s/
D

ZZ

R2

p
.1/
n .y/

z�x
e
P

1

1 .ti y
i
�si x

i /�.x;y/ dx dy; (2-1)
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with the �n.t; s/ satisfying bilinear equations, for all integers n;m � 0 and all

t; t 0; s; s0 2 C
1:

I

zD1

�n�1.t � Œz
�1�; s/�mC1.t

0C Œz�1�; s0/e
P

1

1 .ti �t
0

i
/zi

zn�m�2dz

D

I

zD1

�n.t; s� Œz
�1�/�m.t

0; s0C Œz�1�/e
P

1

1 .si �s
0

i
/zi

zm�ndz:

Two-component KP hierarchy. Define the Hirota symbol between functions

f D f .t1; t2; : : : / and g D g.t1; t2; : : : / by

p
�

@

@t1
;
@

@t2
; : : :

�

f ıg WD p
�

@

@y1

;
@

@y2

; : : :
�

f .t Cy/g.t �y/
ˇ

ˇ

ˇ

yD0

:

The elementary Schur polynomials S` are defined by e
P

1

1 ti z
i

WD
P

i�0
Si.t/z

i

for `� 0 and S`.t/D 0 for ` < 0; moreover, set for later use

S`.Q@t / WD S`

�

@

@t1
;

1

2

@

@t2
;

1

3

@

@t3
; : : :

�

:

Finally, recall that the Wronskian ff;ggx of f and g is given by

@f

@x
g.x/�

@g

@x
f .x/:

COROLLARY. From Theorem 2.1, one deduces the equations

Sj

�

@

@t1
;
1

2

@

@t2
; : : :

�

�nC1 ı �n�1 D��
2

n

@2

@s1@tjC1

log �n;

Sj

�

@

@s1

;
1

2

@

@s2

; : : :
�

�n�1 ı �nC1 D��
2

n

@2

@t1@sjC1

log �n;

(2-2)

and finally a single partial differential equation for �n in terms of Wronskians,

(

@2 log �n

@t1@s2

;
@2 log �n

@t1@s1

)

t1

C

(

@2 log �n

@s1@t2
;
@2 log �n

@t1@s1

)

s1

D 0: (2-3)

SKETCH OF PROOF OF THEOREM 2.1 AND ITS COROLLARY. The following

double integral can be expanded in two different ways with regard to the param-

eters a WD .a1; a2; : : : /:
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�n.t;s/�nC1.t
0;s0/

ZZ

R2

dx dy p
.2/
nC1

.t 0; s0Ix/p.1/
n
.t; sIy/e

P

1

1 .ti y
i
�s

0

i
x

i /�.x;y/

ˇ

ˇ

ˇ

ˇ t‘t�a

t
0
‘tCa

s
0
Ds

D

� 1
X

jD0

�2ajC1Sj

�

@

@t1
;
1

2

@

@t2
;
1

3

@

@t3
; : : :

�

�nC2 ı �nCO.a2/

�

D

� 1
X

jD0

2ajC1�
2

nC1

@2

@s1@tjC1

log �nC1CO.a2/

�

; (2-4)

using the fact that the space H WD spanfzi ; i 2 Zg can be equipped with two

(formal) inner products:

(i) hf;gi D

Z

R

f .z/g.z/ dz;

(ii) a residue pairing about z D 1 between f D
P

i�0
aiz

i 2 H
C and h D

P

j2Z
bj z�j�1 2H:

hf; hi1 D

I

zD1

f .z/h.z/
dz

2� i
D
X

i�0

aibi :

The two inner products are related by

hf;gi D

Z

R

f .z/g.z/ dz D

�

f;

Z

R

g.u/

z�u
du

�

1

:

Then the two expansions (2-4) are obtained, using the �-function representa-

tion (2-1) of the biorthogonal polynomials, transforming the double integral

(2-4) into a contour integral about1 and finally computing the residues. Upon

equating the two series in (2-4) for arbitrary aj , one finds the first identity (2-2).

Application of a similar shift s ‘ s � a, s0 ‘ sC a, t 0 D t yields the second

identity (2-2). Then combining the identities (2-2) for j D 0 and 1 leads to the

PDE (2-3). ˜

3. Orthogonal polynomials with regard to several weights and the

n-component KP hierarchy

Now considering two sets of weights,

 1; : : : ;  q and '1; : : : ; 'p;

and deform each weight with its own set of times:

 �s

k
.x/ WD  k.x/e

�

P

1

1 ski x
i

and 't

k
.y/ WD 'k.y/e

P

1

1 tki y
i

;
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the time parameters being

sk D .sk1; sk2; : : : / for 1� k � q and tk D .tk1; tk2; : : : / for 1� k � p:

Take a moment matrix consisting of p � q blocks of sizes mi � nj , formed

of moments with regard to all the different combinations of  i and 'j ’s; of

course for the full matrix to be a square matrix, the integers m1;m2; : : :� 0 and

n1; n2; : : : � 0 must satisfy
Pq

1
mi D

Pp

1
ni . Define the determinant �mn of

these moment matrices (the inner product is the same as in Section 2):

�m1;:::;mqIn1;:::;np
.s1; : : : ; sqI t1; : : : ; tp/ WD

det

0

B

B

B

B

B

@

�˝

xk 
�s1

1
.x/ jy`'

t1

1
.y/
˛�

0�k<m1
0�`<n1

: : :
�˝

xk 
�s1

1
.x/ jy`'

tp
p .y/

˛�

0�k<m1
0�`<np

:::
:::

�˝

xk 
�sq

q .x/ jy`'
t1

1
.y/
˛�

0�k<mq
0�`<n1

: : :
�˝

xk 
�sq

q .x/ jy`'
tp
p .y/

˛�

0�k<mq
0�`<np

1

C

C

C

C

C

A

:

(3-1)

Notice that Section 1 is a special case of this situation, where p D q D 1.

In this general setup, the analogue of Theorem 2.1 is the following statement,

due to [Adler et al. 2006]. (The precise signs ˙, which we omit here, can be

found in that reference. The symbol e˛ stands for 0; : : : ; 0; 1; 0; : : : /, with 1 at

the ˛-th place. The meaning of �mn.t` � Œz
�1�/ is that only the t` variable gets

shifted and no other, i.e., reference to the unshifted variables is omitted.)

I. The expressions

zn`
�mn.t` �

�

z�1
�

/

�mn

WDQ.``/
mn

.z/D zn` C � � � ;

zn˛�1
�m;nCe`�e˛

.t˛ �
�

z�1
�

/

�mn

DQ.`˛/
mn

.z/D c˛zn˛�1C � � � for ˛ ¤ `

are polynomials (involving
Pp

1
n˛ coefficients), satisfying

Pq

1
m˛ orthogonal-

ity conditions

�

xj �s

˛ .x/

ˇ

ˇ

ˇ

ˇ

p
X

iD1

Q.`i/
mn
.y/'

t

i
.y/

�

D 0 for

(

1� ˛ � q;

0� j �m˛ � 1:

II. Similarly, the expressions

˙ zm˛�1
�m�e˛ ;n�e`

.s˛C Œz
�1�/

�mn

D P .`˛/
nm

.z/ of degree <m˛
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are polynomials (involving
Pq

1
m˛ coefficients), satisfying

Pp

1
n˛ orthogonal-

ity conditions:

� q
X

iD1

P .`i/
nm

.x/ �s

i
.x/

ˇ

ˇ

ˇ

ˇ

yj't

˛.y/

�

D 0 for

�

1� ˛ � p; 0� j � n˛ � 1

except ˛ D `; j D n` � 1;

� q
X

iD1

P .`i/
nm

.x/ �s

i
.x/

ˇ

ˇ

ˇ

ˇ

yn`�1't

`
.y/

�

D 1:

III. The Cauchy transforms of the polynomials in II are

z�n`
�mn.t`C Œz

�1�/

�mn

WD

� q
X

iD1

P .`i/
nm

.x/ �s

i
.x/

ˇ

ˇ

ˇ

ˇ

't

`
.y/

z�y

�

;

˙z�n`�1
�m;nCe`�e˛

.t`C Œz
�1�/

�mn

D

� q
X

iD1

P .˛i/
nm

.x/ �s

i
.x/

ˇ

ˇ

ˇ

ˇ

't

`
.y/

z�y

�

:

IV. The Cauchy transforms of the polynomials in I are

˙z�m˛�1
�mCe˛;nCe`

.s˛ � Œz
�1�/

�mn

D

�

 �s

˛ .x/

z�x

ˇ

ˇ

ˇ

ˇ

p
X

iD1

Q.`i/
mn
.y/'

t

i
.y/

�

:

The orthogonality conditions for these polynomials lead to the following state-

ment:

PROPOSITION 3.1. The determinants �mn defined in (3-1) satisfy the .pCq/-KP

hierarchy; that is,

p
X

ˇD1

I

1

�m;n�eˇ
.tˇ�Œz

�1�/�m0;n0
Ceˇ

.t 0

ˇCŒz
�1�/e

P

1

1 .tˇi �t
0

ˇi
/zi

znˇ�n
0

ˇ
�2dzD

˙

q
X

˛D1

I

1

�mCe˛;n.s˛�Œz
�1�/�m0

�e˛;n0.s0

˛CŒz
�1�/e

P

1

1 .s˛i �s
0

˛i
/zi

zm
0

˛�m˛�2dz;

where
P

m0

˛ D
P

n0

˛C 1 and
P

m˛ D
P

n˛C 1.

These polynomials happen to be the so-called multiple orthogonal polynomials

of mixed type, introduced in [Daems and Kuijlaars 2007] in the context of nonin-

tersecting Brownian motions; they generalize multiple orthogonal polynomials,

introduced in [Aptekarev 1998; Aptekarev et al. 2003; Adler and van Moerbeke

1999a]. This will now be used in the next section.
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4. Nonintersecting Brownian motions

If the transition density for standard Brownian motion x.t/ in R, leaving from

x and arriving at y, is given by

p.t;x;y/D
1
p
� t

e�.x�y/2=t ;

then the probability that N nonintersecting Brownian motions x1.t/; : : : ;xN .t/

in R, leaving at ˛ WD .˛1; : : : ; ˛N / and arriving at ˇ WD .ˇ1; : : : ; ˇN /, belong

to E at time t , is given by the Karlin–McGregor formula [1959]:

Z

EN

det
�

p.t; ˛i ;xj /
�

1�i;j�N
det

�

p.1� t;xi ; ǰ /
�

1�i;j�N

N
Y

iD1

dxi :

Considering the particular case where several points coincide, i.e., where

˛ WD aD .

m1
‚ …„ ƒ

a1; a1; : : : ; a1;

m2
‚ …„ ƒ

a2; a2; : : : ; a2; : : : ;

mq
‚ …„ ƒ

aq; aq; : : : ; aq/ 2 R
N

ˇ WD b D .

n1
‚ …„ ƒ

b1; b1; : : : ; b1;

n2
‚ …„ ƒ

b2; b2; : : : ; b2; : : : ;

np
‚ …„ ƒ

bp; bp; : : : ; bp/ 2 R
N ;

(4-1)

one verifies that the probability below can be expressed as a determinant of a

moment matrix of the form (3-1) with p� q blocks,

P

�

all xi.t/ 2E

ˇ

ˇ

ˇ

ˇ

.x1.0/; : : : ;xN .0//D ˛

.x1.1/; : : : ;xN .1//D ˇ

�

.0< t < 1/

D lim
.˛1;:::;˛N /!a

.ˇ1;:::;ˇN /!b

1

ZN

Z

EN

detŒp.t; ˛i ;xj /�1�i;j�N det
�

p.1� t;xi ; ǰ /
�

1�i;j�N

N
Y

iD1

dxi

D
N !

Z0

N

det

 

�Z

QE

dy e�
y2

2 yiCj e.Qa˛C Qbˇ/y

�

0�i<m˛

0�j<nˇ

!

1�˛�q

1�ˇ�p

; (4-2)

where

QE DE

s

2

t.1� t/
; Qai D

r

2.1�t/

t
ai ; Qbi D

r

2t

1�t
bi :

PROOF. It is based on the matrix identity

det .Aik/1�i;k�n det .Bik/1�i;k�n D
X

�2Sn

det
�

Ai;�.j/ Bj ;�.j/

�

1�i;j�n
: ˜
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Upon adding extra-time parameters

tˇ D .tˇ;1; tˇ;2; : : : / and s˛ D .s˛;1; s˛;2; : : : /

to

det

 

�Z

QE

dy e�
y2

2 yiCj e.Qa˛C Qbˇ/y

�

0�i<m˛

0�j<nˇ

!

1�˛�q

1�ˇ�p

;

it follows automatically from Section 3 that the expression

�m1;:::;mqIn1;:::;np
.t1; : : : ; tpI s1; : : : ; sq/

D det

 

�Z

QE

dy e�
y2

2 yiCj e.Qa˛C Qbˇ/yC

P

1

1 .tˇ;k�s˛;k/y
k

�

0�i<m˛

0�j<nˇ

!

1�˛�q

1�ˇ�p

satisfies the pCq-KP hierarchy, where p denotes the number of starting points

and q the number of end points of the Brownian motions; see (4-1). Noninter-

secting Brownian motions have been studied in [Karlin and McGregor 1959;

Dyson 1962; Grabiner 1999; Johansson 2001; Bleher and Kuijlaars 2004b;

2004a; Daems and Kuijlaars 2007; Tracy and Widom 2004; 2006; Adler and

van Moerbeke 2005; 2006].

In the next section, I work out the example where the Brownian motions all

depart from 0 and end up at the points �a and a.

5. Nonintersecting Brownian motions leaving from the origin and

forced to end up at two points

Consider n D n1 C n2 nonintersecting Brownian motions on R, all leaving

from the origin, with n1 paths forced to go to �a and n2 paths forced to go to

a, at time t D 1. The probability that all the particles belong to the set E at

time 0 < t < 1 can be expressed as a Gaussian Hermitian random matrix “with

external potential”, specified by the diagonal matrix

A WD

0

B

B

B

B

B

B

B

B

@

˛
: : : O

˛

�˛

O
: : :

�˛

1

C

C

C

C

C

C

C

C

A

l n1

l n2

with ˛ D a

r

2t

1� t
;

but also as a determinant of a moment matrix, a consequence of Section 4. This
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gives (with nD n1C n2),

P
˙a

0

0

@all xi.t/ 2E

ˇ

ˇ

ˇ

ˇ

ˇ

all xj .0/D 0,

n1 left paths end up at �a at time t D 1,

n2 right paths end up at Ca at time t D 1

1

A

D Pn

�

a

r

2t

1�t
IE

r

2

t.1�t/

�

; (5-1)

with Pn being an integral over the space Hn.E
0/ of Hermitian matrices with

spectrum belonging to the set E0 � R:

Pn.˛IE
0/ WD

1

Zn

Z

Hn.E0/

dM e� Tr. 1
2

M
2
�AM /

D
1

Zn

det

0

B

B

B

B

B

B

@

�Z

E0

ziCj�1e�z
2=2C˛zdz

�

1�i�n1;
1�j�n1Cn2

�
Z

E0

ziCj�1e�z
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THEOREM 5.1 [Adler and van Moerbeke 2007]. The log of the probability

Pn.˛IE/ satisfies a fourth-order PDE in ˛ and in the boundary points b1; : : : ;

b2r of the set E, with quartic nonlinearity:

det
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P
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i
@=@bi and
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�
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@
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�˛B�1
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log Pn�.B0�2˛B�1�2/B�1 log Pn:

SKETCH OF PROOF. In view of the results in Section 3, we add extra parameters

t1; t2; : : : , s1; s2; : : : and ˇ to the integrals in the moment matrix above (5-2). In

terms of the Vandermonde determinants �k.x/ D
Q

1�i<j�k
.xi � xj / for the
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variables x1; : : : ;xn1
and �n.x;y/ for all variables x1; : : : ;xn1

;y1; : : : ;yn2
,

we obtain from the results in Section 4 that (again with nDn1Cn2) the function

�n1n2
.t;s;uI˛;ˇIE/ WD det
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(5-4)

satisfies the 3-component KP equation, since pCqD2C1D3, since this matrix

corresponds to pD2; qD1. The function �n1n2
.t; s;uI˛; ˇIE/ also satisfies

Virasoro constraints, to be explained below.

(i) The three-component KP bilinear equations of Proposition 3.1 imply,

using a standard residue computation on the bilinear equation (equations of the

type (2-2) for j D 0 and j D 1, except that the three-component KP bilinear

equations give rise to �-functions depending on two integer indices)

@2 log �n1;n2

@t1@s1

D�
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�n1�1;n2

�2
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(5-5)

and
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.@2=@t1@s1/ log �n1;n2

(5-6)
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D
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.@2=@t1@s1/ log �n1;n2

: (5-7)

(ii) The Virasoro equations are as follows: The integral �n1n2
.t;s;uI˛;ˇIE/,

as defined in (5-4), satisfies

Bm�n1;n2
D V

n1;n2
m

�n1;n2
for m� �1; (5-8)

where Bm and Vm are differential operators:
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2r
X

1
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i

@
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; for E D

2r
[

1
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384 PIERRE VAN MOERBEKE

and (with the convention that ti is omitted whenever it appears for iD0;�1; : : : )
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:

These Virasoro equations are obtained by setting

xi‘ xi C "x
mC1

i
;

yi‘ yi C "y
mC1

i

in the integral (5-4) and observing that this substitution does not change the

value of the integral, provided the boundary is changed infinitesimally as well.

The Virasoro constraints (5-8) above for mD�1 and mD 0 lead to the fol-

lowing equations for f D log �n1n2
.t; s;uI˛; ˇIE/ along the locus L of points

where t D s D uD 0, ˇ D 0:
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From the differential equations (5-6)–(5-7) and from the two first two Virasoro

equations (5-9) it follows that, along the locus L, and for the indices n1˙1; n2,
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From these two equations, the logarithmic expression on the right can be elim-

inated, by acting on the first equation with the operator 1
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Using the remaining Virasoro relations (5-9), one obtains along L the equalities
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With this notation, equation 5-10 becomes
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yielding automatically a second equation, using the involution ˛‘�˛, ˇ‘�ˇ,

n1$ n2 (which leaves (5-4) unchanged):
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The last two displays yield a linear system of equations in
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Subtracting the second equation from B�1 of the first equation yields the dif-

ferential equation
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which can be rewritten as
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establishing (5-3) for log Pn. ˜
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6. The Pearcey process

As in section 5, consider n D 2k nonintersecting Brownian motions on R

(Dyson’s Brownian motions), all starting at the origin, such that the k left paths

end up at �a and the k right paths end up at Ca at time t D 1.

Also as observed in section 5, the transition probability can be expressed

in terms of the Gaussian Hermitian random matrix probability Pn.˛IE/ with

external source, for which the PDE (5-3) was deduced.

Let now the number n D 2k of particles go to infinity, and let the points a

and �a, properly rescaled, go to ˙1. This forces the left k particles to �1 at

t D 1 and the right k particles toC1 at t D 1. Since the particles all leave from

the origin at t D 0, it is natural to believe that for small times the equilibrium

measure (mean density of particles) is supported by one interval, and for times

close to 1, the equilibrium measure is supported by two intervals. With a precise

scaling, t D 1=2 is critical in the sense that for t < 1=2, the equilibrium measure

for the particles is supported by one, and for t > 1=2, it is supported by two

intervals. The Pearcey process P.t/ is now defined [Tracy and Widom 2006] as

the motion of an infinite number of nonintersecting Brownian paths, just around

time t D 1=2 near x D 0, with the precise scaling (upon introducing the scaling

parameter z):
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z4
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1

z2
; xi‘ xiz; t ‘

1

2
C tz2; for z! 0: (6-1)

The Pearcey process has also arisen in the context of various growth models

[Okounkov and Reshitikhin 2005]. Even though the pathwise interpretation of

P.t/ is unclear and deserves investigation, it is natural to define the following

probability for t 2 R, in terms of the probability (5-1),
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:

The results of Brézin and Hikami [1996; 1997; 1998b; 1998a] for the Pearcey

kernel and Tracy and Widom [2006] for the extended kernels show that this limit

exists and equals a Fredholm determinant:

P.P.t/\E D?/D det
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I �Kt�E

�

;

where Kt .x;y/ is the Pearcey kernel, defined as follows:
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Z
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p.xC z/q.yC z/ dz; (6-2)
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where (note that ! D ei�=4)
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satisfy the differential equations
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The contour X is given by the ingoing rays from˙1ei�=4 to 0 and the outgoing

rays from 0 to ˙1e�i�=4, i.e., X stands for the contour

- .
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% &
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operator with regard to the boundary points of E,
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THEOREM 6.1 [Adler and van Moerbeke 2007].

Q.t Ix1; : : : ;x2r / WD log P

�
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D log det .I �Kt�E/ (6-4)

satisfies a fourth-order, third-degree PDE, which can be written as a single

Wronskian:
(
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(6-5)

REMARK. A similar PDE can be written for the transition probability involving

several times; see [Adler and van Moerbeke 2006]. Such equations can be used

to compute the asymptotic behavior of the Pearcey process for t !�1.

SKETCH OF PROOF. Consider the function Qz.sIx1; : : : ;x2r /, defined in terms

of the probabilities P
˙a

0
, defined in (5-1) and Pn, defined in (5-2), as follows:

Qz.sIx1; : : : ;x2r / WD log P
˙a

0
.t I b1; : : : ; b2r /
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ˇ
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from which it follows, by inversion, that
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This expression satisfies the PDE (5-3), with ˛ and b1; : : : ; b2r replaced by u

and v1; : : : ; v2r . Therefore all the partials of log P with regard to these variables

u and v1; : : : ; vr , as appears in the PDE (5-3), can be expressed, by virtue of

(6-6), by partials of Qz with regard to s and x1; : : : ;x2r .

For this, we need to compute the expressions F˙; QB�1F˙; QB2
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QB�1G˙ appearing in (5-3) (where we use tildes in contrast to the operators
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Using these expressions, one easily deduces for small z,

0D
�

FC QB�1G�CF� QB�1GC
��

FC QB�1F��F� QB�1FC
�

�
�

FCG�CF�GC
��

FC QB2

�1
F��F� QB2

�1
FC

�

D�
"

2z17

�

n

B
2

�1

@Qz

@s
;
1

2

@3Qz

@s3
C .B0� 2/B2

�1
Qz

o

B�1

C
1

16
B�1

@Qz

@s

n

B
3

�1
Qz;B

2

�1

@Qz

@s

o

B�1

�

CO
�

1

z15

�

D�
"

2z17

�

the same expression for Q.sIx1; : : : ;x2r /
�

CO
�

1

z16

�

;

using (6-8) in the last equality. Taking the limit when z! 0 yields equation 6-5

of Theorem 6.1. ˜

7. The Airy process

Consider n nonintersecting Brownian motions on R, all leaving from the ori-

gin and forced to return to the origin. According to formula (4-2), this proba-

bility,

˘ WD P
0

0

�

all xi.t/ 2E
ˇ

ˇ all xj .0/D xj .1/D 0
�

;

can be expressed in terms of the determinant of a moment matrix and further

as an integral over Hermitian matrices, both with rescaled space, for 0 � t � 1.

To do this we let Hn.E/ denote the space of n � n Hermitian matrices with
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spectrum in the set E � R, and one checks that

˘ D
1

Zn

det

�Z

E.
p

2=
p

t.1�t//

dy yiCj e�y
2=2

�

0�i;j�n�1

D
1

Z0

n

Z

Hn.E.1=
p

t.1�t///

e� Tr M
2

dM:

The Airy process A.�/ describes the nonintersecting Brownian motions above

for large n, but viewed from the (right-hand) edge
p

2nt.1� t/ of the set of

particles, with time and space properly rescaled, so that the new time scale �

equals 0 when t D 1=2. Random matrix theory suggests the following time and

space rescaling (edge rescaling):

t D
1

1C e�2�=n1=3
; E D

p
2nC

.�1;x/p
2n1=6

2 cosh
�

n1=3

:

Taking the limit when n ! 1, one finds that the rescaled motion becomes

time-independent (stationary),

P .A.�/� x/

WD lim
n!1

P
0

0

�

all xi

�

1

1Ce�2�=n1=3

�

2

p
2nC

.�1;x/
p

2n1=6

2 cosh.�=n1=3/

ˇ

ˇ

ˇ

ˇ

all xj .0/Dxj .1/D0

�

D lim
n!1

1

Zn

Z

Hn

�p

2nC..�1;x/=
p

2n1=6/
�

e� Tr M
2

dM

D lim
n!1

Prob

�

.all eigenvalues of M / �
p

2nC
x

p
2n1=6

�

D exp

�

�

Z

1

x

.˛�x/g2.˛/d˛

�

DW F2.x/D Tracy–Widom distribution;

with g.˛/ the unique solution of

8

ˆ

<

ˆ

:

g00 D ˛gC 2g3

g.˛/Š�
e�.2=3/ ˛3=2

2
p
�˛1=4

for ˛%1:
.Painlevé II/: (7-1)

This is to say the outmost particle in the nonintersecting Brownian motions

fluctuates according to the Tracy–Widom distribution [1994] for n!1.

Since the Airy process is stationary, the joint distribution for two times t1< t2
in Œ0; 1� is of interest; here one checks that
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P
0

0

�

all xi.t1/ 2E1; all xi.t2/ 2E2

ˇ

ˇ all xj .0/D xj .1/D 0
�

D Pn

 
s

t1.1� t2/

t2.1� t1/
IE1

s

2t2

.t2� t1/t1
;E2

s

2.1� t1/

.1� t2/.t2� t1/

!

; (7-2)

where

Pn.cIE
0

1
;E0

2
/ WD

1

Zn

ZZ

H.E0

1
/�H.E0

2
/

dM1 dM2 e�
1
2

Tr.M 2
1

CM
2
2

�2cM1M2/

D c0

N

ZZ

EN

�N .x/�N .y/

N
Y

kD1

e�
1
2
.x2

k
Cy

2
k

�2cxkyk/dxk dyk :

According to [Adler and van Moerbeke 1999b], given

E DE1 �E2 WD
r
S

iD1

Œa2i�1; a2i � �
s
S

iD1

Œb2i�1; b2i �� R
2; (7-3)

log Pn.cIE1;E2/ satisfies a nonlinear third-order partial differential equation

(in terms of the Wronskian ff;ggX D g.Xf /�f .Xg/, with regard to the first

order differential operator X ):

n

B2A1 log Pn; B1A1 log PnC
nc

c2� 1

o

A1

�
n

A2B1 log Pn; A1B1 log PnC
nc

c2� 1

o

B1

D 0: (7-4)

in terms of the differential operators, depending on the coupling term c and the

boundary of E,

A1 D
1

c2�1

� r
X

1

@

@aj

C c

s
X

1

@

@bj

�

;

A2 D

r
X

jD1

a
j

@

@aj

� c
@

@c
;

B1 D
1

1�c2

�

c

r
X

1

@

@aj

C

s
X

1

@

@bj

�

;

B2 D

s
X

jD1

b
j

@

@bj

� c
@

@c
: (7-5)

Using the same rescaled space and time variables, as before, introduce new

times �1 < �2 and points x; y 2 R, defined as

ti D
1

1C e�2�i=n1=3
; E1 D

p
2nC

.�1;x/p
2n1=6

2 cosh
�1

n1=3

; E2 D

p
2nC

.�1;y/p
2n1=6

2 cosh
�2

n1=3

:
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One verifies, in view of (7-2), that

E1

s

2t2

.t2� t1/t1
D

p
2

�

p
2nC

.�1;x/p
2n1=6

�

p

1� e�2.�2��1/=n1=3
;

E2

s

2.1� t1/

.1� t2/.t2� t1/
D

p
2

�

p
2nC

.�1;y/p
2n1=6

�

p

1� e�2.�2��1/=n1=3
;

c D

s

t1.1� t2/

t2.1� t1/
D e�.�2��1/=n

1=3

:

Defining

Q.�2� �1Ix;y/ WD

log Pn

 

e�.�2��1/=n
1=3

I

�

2
p

nC
x

n1=6

�

p

1� e�2.�2��1/=n1=3
;

�

2
p

nC
y

n1=6

�

p

1� e�2.�2��1/=n1=3

!

;

one checks, setting z D n�1=6 and using the inverse map, that

log Pn.cI a; b/DQ
�

�z�2 log cI az�1

p

1� c2� 2z�4; bz�1

p

1� c2� 2z�4
�

:

But log Pn.cIE1;E2/ satisfies the PDE (7-4), which induces a PDE for Q; then

letting z!1, the leading term in this series must be D 0. One finds thus the

following PDE for the Airy joint probability, namely

H.t Ix;y/ WD log P .A.�1/� yCx;A.�2/� y �x/ ;

takes on the following simple form in x;y and t2, with tD�2��1, also involving

a Wronskian (see [Adler and van Moerbeke 2005])

2t
@3H

@t@x@y
D

�

t2

2

@

@x
�x

@

@y

��

@2H

@x2
�
@2H

@y2

�

C

�

@2H

@x@y
;
@2H

@y2

�

y

; (7-6)

with initial condition

lim
t&0

H .t Ix;y/D log F2 .min.yCx;y �x// :

The edge sup A.t/ of the cloud is non-Markovian, as is the largest particle in

the finite nonintersecting Brownian problem. As t D �2 � �1 !1, the edges

sup A.�1/ and sup A.�2/ become independent. This poses the question: How
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much does the process remember from the remote past? The following asymp-

totics for the covariance of the edge of the cloud, for large tD �2��1, is deduced

from the PDE:

E.sup A.�2/ sup A.�1//�E.sup A.�2//E.sup A.�1//

D
1

t2
C

2

t4

ZZ

R2

˚.u; v/ du dvC � � � ;

where

˚.u; v/ WD F2.u/F2.v/

�

1

4

�Z

1

u

g2d˛

�2 �Z 1

v

g2d˛

�2

Cg2.u/

�

1

4
g2.v/�

1

2

�Z

1

v

g2d˛

�2�

C

Z

1

v

d˛
�

2.v�˛/g2Cg02�g4
�

Z

1

u

g2d˛

�

:

(Here g D g.˛/ is the function (7-1) and F2.u/ is the Tracy–Widom distribu-

tion.)

The Airy process was introduced by Spohn and Prähofer [2002] in the context

of polynuclear growth models. It has been further investigated by Johansson

[2001; 2003; 2005], by Tracy and Widom [2004] and by Adler and van Moer-

beke [2005]; see also [Widom 2004].

References

[Adler and van Moerbeke 1997] M. Adler and P. van Moerbeke, “String-orthogonal

polynomials, string equations, and 2-Toda symmetries”, Comm. Pure Appl. Math.

50:3 (1997), 241–290. Available at arxiv.org/abs/hep-th/9706182.

[Adler and van Moerbeke 1999a] M. Adler and P. van Moerbeke, “Generalized orthog-

onal polynomials, discrete KP and Riemann-Hilbert problems”, Comm. Math. Phys.

207:3 (1999), 589–620. Available at arxiv.org/abs/nlin.SI/0009002.

[Adler and van Moerbeke 1999b] M. Adler and P. van Moerbeke, “The spectrum of

coupled random matrices”, Ann. of Math. .2/ 149:3 (1999), 921–976.

[Adler and van Moerbeke 2005] M. Adler and P. van Moerbeke, “PDEs for the joint

distributions of the Dyson, Airy and sine processes”, Ann. Probab. 33:4 (2005),

1326–1361. Available at arxiv.org/abs/math.PR/0302329.

[Adler and van Moerbeke 2006] M. Adler and P. van Moerbeke, “Joint probability for

the Pearcey process”, preprint, 2006. Available at arxiv.org/abs/math.PR/0612393.

[Adler and van Moerbeke 2007] M. Adler and P. van Moerbeke, “PDEs for the

Gaussian ensemble with external source and the Pearcey distribution”, Comm. Pure

Appl. Math. 60:9 (2007), 1261–1292. Changed page range following MathSciNet;

please check.



BROWNIAN MOTIONS, INTEGRABLE SYSTEMS AND ORTHOGONAL POLYNOMIALS 395

[Adler et al. 2006] M. Adler, P. van Moerbeke, and P. Vanhaecke, “Moment matrices

and multi-component KP, with applications to random matrix theory”, preprint,

2006. Available at arxiv.org/abs/math-ph/0612064.

[Aptekarev 1998] A. I. Aptekarev, “Multiple orthogonal polynomials”, J. Comput.

Appl. Math. 99:1-2 (1998), 423–447.

[Aptekarev et al. 2003] A. I. Aptekarev, A. Branquinho, and W. Van Assche, “Multiple

orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc. 355:10

(2003), 3887–3914.

[Bleher and Kuijlaars 2004a] P. Bleher and A. B. J. Kuijlaars, “Large n limit of

Gaussian random matrices with external source. I”, Comm. Math. Phys. 252:1-3

(2004), 43–76.

[Bleher and Kuijlaars 2004b] P. M. Bleher and A. B. J. Kuijlaars, “Random matrices

with external source and multiple orthogonal polynomials”, Int. Math. Res. Not. no.

3 (2004), 109–129. Available at arxiv.org/abs/math-ph/0307055.
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Homogenization of random

Hamilton–Jacobi–Bellman Equations

S. R. SRINIVASA VARADHAN

ABSTRACT. We consider nonlinear parabolic equations of Hamilton–Jacobi–

Bellman type. The Lagrangian is assumed to be convex, but with a spatial

dependence which is stationary and random. Rescaling in space and time

produces a similar equation with a rapidly varying spatial dependence and a

small viscosity term. Motivated by corresponding results for the linear elliptic

equation with small viscosity, we seek to find the limiting behavior of the solu-

tion of the Cauchy (final value) problem in terms of a homogenized problem,

described by a convex function of the gradient of the solution. The main idea

is to use the principle of dynamic programming to write a variational formula

for the solution in terms of solutions of linear problems. We then show that

asymptotically it is enough to restrict the optimization to a subclass, one for

which the asymptotic behavior can be fully analyzed. The paper outlines these

steps and refers to the recently published work of Kosygina, Rezakhanlou and

the author for full details.

Homogenization is a theory about approximating solutions of a differential

equation with rapidly varying coefficients by a solution of a constant coefficient

differential equation of a similar nature. The simplest example of its kind is the

solution u" of the equation

u"
t

D 1

2
a
�

x

"

�

u"
xx

I u".0;x/D f .x/

on Œ0;1��R. The function a. � / is assumed to be uniformly positive, continuous

and periodic of period 1. The limit u of u" exists and solves the equation

ut D
Na

2
uxxI u.0;x/D f .x/

where Na is the harmonic mean

Na D

�Z

1

0

dx

a.x/

�

�1

:

397
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Although this is a result about solutions of PDE’s it can be viewed as a limit

theorem in probability. If we consider the Markov process x.t/ with generator

1

2
a.x/D2

x

starting from 0 at time 0, as t ! 1 the limiting distribution of y.t/ D x.t/
p

t
is

Gaussian with mean 0 and variance Na. The actual variance of y.t/ is

E

�

1

t

Z

t

0

a.x.s// ds

�

:

The result on the convergence of u" to u is seen to follow from an ergodic

theorem of the type

lim
t!1

1

t

Z

t

0

a.x.s// ds D Na:

From the theory of Markov processes one can see an ergodic theorem of this

type with

Na D

Z

a.x/�.x/ dx;

where �.x/ is the normalized invariant measure on Œ0; 1� with end points iden-

tified. This is seen to be

�.x/D

�Z

1

0

dx

a.x/

�

�1
1

a.x/
;

so that

Na D

Z

1

0

a.x/�.x/ dx D

�Z

1

0

dx

a.x/

�

�1

:

We can consider the situation where a.x/ D a.x; !/ is a random process, sta-

tionary with respect to translations in x. We can formally consider a probability

space .˝;˙;P /, and an ergodic action �x of R on ˝. We also have a function

a.!/ satisfying 0< c � a.!/� C <1. The stationary process a.x; !/ is given

by a.x; !/D a.�x!/. Now the solution u" of

u"
t
.t;x; !/D 1

2
a.x; !/u"

xx
.t;x; !/I u".0;x; !/D f .x/

can be shown to converge again, in probability, to the nonrandom solution u of

ut .t;x/D
Na

2
uxx.t;x/I u".0;x/D f .x/

with

Na D

�Z

1

a.!/
dP

�

�1

:
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This is also an ergodic theorem for

1

t

Z

t

0

a.!.s// ds;

but the actual Markov process !.t/ for which the ergodic theorem is proved is

one that takes values in ˝ with generator

L D 1

2
a.!/D2;

where D is the generator of the translation group �x on ˝. The invariant mea-

sure is seen to be

dQ D
Na

a.!/
dP;

where

Na D

�Z

1

a.x/
dP

�

�1

:

We will try to adapt this type of approach to some nonlinear problems of

Hamilton-Jacobi–Bellman type. One part of the work that we outline here was

done jointly with Elena Kosygina and Fraydoun Rezakhanlou and has appeared

in print [Kosygina et al. 2006], while another part, carried out with Kosygina,

has been submitted for publication.

The problems we wish to consider are of the form

u"
t
C
"

2
�u" C H

�

x

"
;ru"; !

�

D 0I u.T;x/D f .x/

for Œ0;T � � R
d . Here f is a continuous function with at most linear growth.

.˝;˙;P / is a probability space on which R
d acts ergodically as measure pre-

serving transformations �x . H.0;p; !/ is a function on R
d � ˝ which is a

convex function of p for every ! and H.x;p; !/ D H.0;p; �x!/. It satis-

fies some bounds and some additional regularity. The problem is to prove that

u" ! u as "! 0, where u is a solution of

ut C H .ru/D 0I u.T;x/D f .x/

for some convex function H .p/ of p and determine it.

The analysis consists of several steps. We might as well assume T D 1 and

concentrate on u".0; 0; !/. First we note that, by rescaling, the problem can be

reduced to the behavior of

lim
t!1

1

t
ut .0; 0; !/;

where u is the solution in Œ0; t �� R
d , of

us C 1

2
�u C H.x;ru; !/I u.t;x/D tf

�

x

t

�

:
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The second step is to use the principle of dynamic programming to write a

variational formula for ut .s;x; !/. Denote by L.�x!; q/ the convex dual

L.x; q; !/D sup
p

�

hp; qi � H.x;p; !/
�

Let b.s;x/ be a function b W Œ0; t �� R
d ! R

d . Let B denote the space all such

bounded functions. For each b 2 B, we consider the linear equation

vb

s
C 1

2
�vb C hb.s;x/;rvbi � L.�x!; b.s;x//D 0; v.t;x/D tf

�

x

t

�

I

then the solution u.s;x/ is sup
b
vb.s;x/. If we denote by Qb the Markov pro-

cess with generator

L
b

s
D 1

2
�C hb.s;x/;ri

starting from .0; 0/, then

vb.0; 0; !/D EQ
b

�

tf .
x.t/

t
/�

Z

t

0

L.x.s/; b.s;x.s//; !/ ds

�

and

u D sup
b2B

vb

The third step is to consider a subclass of B of the form b.t;x/ D c.�x!/

with c W ˝ ! R
d chosen from a reasonable class C. The solution vb with this

choice of b.t;x/ D b.x/ D c.�x!/ will be denoted by vc . We will show that

for our choice of C, the limit

lim
t!1

1

t
vc.0; 0; !/D g.c/

will exist for every c 2 C. It then follows that

lim inf
t!1

1

t
ut .0; 0/� sup

c2C

g.c/:

Given c there is a Markov process Qc;! on ˝ starting from ! with generator

Ac D 1

2
�C hc.!/;ri:

Here r is the infinitesimal generator of the R
d action f�xg and �D r �r. This

process can be constructed by solving

dx.t/D c.�x.t/!/ dt Cˇ.t/I x.0/D 0

Then one lifts it to ˝ by defining !.t/D �x.t/!. Such a process with generator

Ac could have an invariant density Pc and it could (although it is unlikely) be

mutually absolutely continuous with respect to P , having density ˚c . ˚c will

be a weak solution of
1

2
�˚c D r � c. � / ˚c :
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We can then expect

g.c/D f

�Z

c.!/ dPc

�

�

Z

L
�

!; c.!/
�

dPc :

In general the existence of such a ˚ for a given c is nearly impossible to prove.

On the other hand for a given ˚ finding a c is easy. For instance,

c D
r˚

2˚

will do. More generally one can have

c D
r˚

2˚
C c0;

so long as r � c0˚ D 0. So pairs .c; ˚/ such that

1

2
�˚c D r � c. � / ˚c

exist. Our class C will be those for which ˚ exists. It is not hard to show, using

the ergodicity of f�xg action, that ˚ is unique for a given c when it exists and

the Markov process with generator Ac is ergodic with dPc D˚cdP as invariant

measure. We will denote by C the class of pairs .c; ˚/ satisfying the above

relation. So we have a lower bound

lim inf
t!1

1

t
uc.0; 0/� sup

m2R
d

Œf .m/� I.m/�

where

I.m/D inf
c;˚W.c;˚/2C0
R

c˚ dPDm

Z

L.c.!/; !/˚ dP

Now we turn to proving upper bounds. Fix � 2 R
d . If we had a “nice” test

function W .x; !/ such that for almost all !

jW .x; !/� h�;xij � o.jxj/

and
1

2
�W C H.x;rW; !/ � �

Then, by convex duality with QW D W .x; !/��.s � t/, we have

QWs C 1

2
� QW C hb.s;x/;r QW i � L.b.s;x/; !/� 0:

If H .�/ is defined as

H .�/D inff� W W existsg
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then under some control on the growth of L, it is not hard to deduce that with

f .x/D h�;xi,

lim sup
t!1

1

t
ut .0; 0; !/� H .�/

If we can prove that

H .�/D sup
m
Œh�;mi � I.m/�;

we are done. We would match the upper and lower bounds. We reduce this to a

minmax equals maxmin theorem.

sup
m
Œh�;mi � I.m/�D sup

.c;˚/2C

Z

�

hc.!/; �i � L.c.!/; !/
�

˚ dP

D sup
.c;˚/

inf
W

Z

�

hc.!/; �i C AcW � L.c.!/; !/
�

˚ dP

D inf
W

sup
.c;˚/

Z

�

hc.!/; �i C AcW � L.c.!/; !/
�

˚ dP

D inf
W

sup
˚

Z

�

1

2
�W C H.� C rW; !/

�

˚ dP

D inf
W

sup
!

Z

�

1

2
�W C H.� C rW; !/

�

˚ dP

D H .�/:

While W may not exist, rW will exist. We can integrate on R
d , then ergodic

theorem will yield an estimate of the form W .x/D o.jxj/ and

h�;xi C W .x/

will work as a test function. There are some technical details on the issues of

growth and regularity. The details have appeared in [Kosygina et al. 2006] along

with additional references. Similar results on the homogenization of random

Hamilton–Jacobi–Bellman equations have been obtained by Lions and Sougani-

dis [2005], using different methods.

Now we examine the time dependent case. If we replace R
d action by R

dC1

action with .t;x/ denoting time and space, then the stationary processes H and

L are space time processes. The lower bound works more or less in the same

manner. In addition to r we now have Dt the derivative in the time direction.

The !.t/ process is the space-time process. Its construction for a given c is

slightly different. We start with b.t;x/D c.�t;x!/ and construct a diffusion on

R
d corresponding to the time dependent generator

A
c

s
D 1

2
�C hb.s;x/;ri
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and then lift it by !.s/D �s;x.s/!. The invariant densities are solutions of

�Dt˚ C 1

2
�˚ D r � c˚:

The lower bound works the same way. But for obtaining the upper bound, a test

function W has to be constructed that satisfies

Wt C 1

2
�W C H.t;x;rW; !/ � H .�/

In the time independent case there was a lower bound on the growth of the

convex function H that provided estimates on rW . Here one has to work

much harder in order to control in some manner Wt . The details will appear in

[Kosygina and Varadhan 2008].
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