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Chapter 1

Linear Algebra

The source of linear algebra is the solution of systems of linear algebraic equations.
Linear algebra is the foundation upon which almost all applied mathematics rests. This is
not to say that nonlinear equations are less important; rather, progress in the vastly more
complicated nonlinear realm is impossible without a firm grasp of the fundamentals of
linear systems. Furthermore, linear algebra underlies the numerical analysis of continuous
systems, both linear and nonlinear, which are typically modeled by differential equations.
Without a systematic development of the subject from the start, we will be ill equipped
to handle the resulting large systems of linear equations involving many (e.g., thousands
of) unknowns.

This first chapter is devoted to the systematic development of direct† algorithms for
solving systems of linear algegbraic equations in a finite number of variables. Our primary
focus will be the most important situation involving the same number of equations as
unknowns, although in Section 1.8 we extend our techniques to completely general linear
systems. While the former usually have a unique solution, more general systems more
typically have either no solutions, or infinitely many, and so tend to be of less direct physical
relevance. Nevertheless, the ability to confidently handle all types of linear systems is a
basic prerequisite for the subject.

The basic solution algorithm is known as Gaussian elimination, in honor of one of
the all-time mathematical greats — the nineteenth century German mathematician Carl
Friedrich Gauss. As the father of linear algebra, his name will occur repeatedly throughout
this text. Gaussian elimination is quite elementary, but remains one of the most important
techniques in applied (as well as theoretical) mathematics. Section 1.7 discusses some
practical issues and limitations in computer implementations of the Gaussian elimination
method for large systems arising in applications.

The systematic development of the subject relies on the fundamental concepts of
scalar, vector, and matrix, and we quickly review the basics of matrix arithmetic. Gaus-
sian elimination can be reinterpreted as matrix factorization, the (permuted) LU decom-
position, which provides additional insight into the solution algorithm. Matrix inverses
and determinants are discussed in Sections 1.5 and 1.9, respectively. However, both play a
relatively minor role in practical applied mathematics, and so will not assume their more
traditional central role in this applications-oriented text.

† Indirect algorithms, which are based on iteration, will be the subject of Chapter 10.
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1.1. Solution of Linear Systems.

Gaussian elimination is a simple, systematic approach to the solution of systems of
linear equations. It is the workhorse of linear algebra, and as such of absolutely funda-
mental importance in applied mathematics. In this section, we review the method in the
most important case in which there are the same number of equations as unknowns. The
general situation will be deferred until Section 1.8.

To illustrate, consider an elementary system of three linear equations

x+ 2y + z = 2,

2x+ 6y + z = 7,

x+ y + 4z = 3,

(1.1)

in three unknowns x, y, z. Linearity refers to the fact that the unknowns only appear to
the first power† in the equations. The basic solution method is to systematically employ
the following fundamental operation:

Linear System Operation #1 : Add a multiple of one equation to another equation.

Before continuing, you should convince yourself that this operation does not change
the solutions to the system. As a result, our goal is to judiciously apply the operation
and so be led to a much simpler linear system that is easy to solve, and, moreover has the
same solutions as the original. Any linear system that is derived from the original system
by successive application of such operations will be called an equivalent system. By the
preceding remark, equivalent linear systems have the same solutions.

The systematic feature is that we successively eliminate the variables in our equations
in order of appearance. We begin by eliminating the first variable, x, from the second
equation. To this end, we subtract twice the first equation from the second, leading to the
equivalent system

x+ 2y + z = 2,

2y − z = 3,

x+ y + 4z = 3.

(1.2)

Next, we eliminate x from the third equation by subtracting the first equation from it:

x+ 2y + z = 2,

2y − z = 3,

−y + 3z = 1.

(1.3)

The equivalent system (1.3) is already simpler than the original system (1.1). Notice that
the second and third equations do not involve x (by design) and so constitute a system
of two linear equations for two unknowns. Moreover, once we have solved this subsystem
for y and z, we can substitute the answer into the first equation, and we need only solve
a single linear equation for x.

† Also, there are no product terms like xy or xyz. The “official” definition of linearity will be
deferred until Chapter 7.
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We continue on in this fashion, the next phase being the elimination of the second
variable y from the third equation by adding 1

2 the second equation to it. The result is

x+ 2y + z = 2,

2y − z = 3,
5
2 z = 5

2 ,

(1.4)

which is the simple system we are after. It is in what is called triangular form, which means
that, while the first equation involves all three variables, the second equation only involves
the second and third variables, and the last equation only involves the last variable.

Any triangular system can be straightforwardly solved by the method of Back Substi-
tution. As the name suggests, we work backwards, solving the last equation first, which
requires z = 1. We substitute this result back into the next to last equation, which be-
comes 2y − 1 = 3, with solution y = 2. We finally substitute these two values for y and
z into the first equation, which becomes x + 5 = 2, and so the solution to the triangular
system (1.4) is

x = −3, y = 2, z = 1. (1.5)

Moreover, since we only used our basic operation to pass from (1.1) to the triangular
system (1.4), this is also the solution to the original system of linear equations. We note
that the system (1.1) has a unique — meaning one and only one — solution, namely (1.5).

And that, barring a few complications that can crop up from time to time, is all that
there is to the method of Gaussian elimination! It is very simple, but its importance cannot
be overemphasized. Before discussing the relevant issues, it will help to reformulate our
method in a more convenient matrix notation.

1.2. Matrices and Vectors.

A matrix is a rectangular array of numbers. Thus,

(
1 0 3
−2 4 1

)
,




π 0

e 1
2

− 1 .83
√
5 −

4
7


, ( .2 −1.6 .32 ),

(
0
0

)
,

(
1 3
−2 5

)
,

are all examples of matrices. We use the notation

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 (1.6)

for a general matrix of size m×n (read “m by n”), where m denotes the number of rows in
A and n denotes the number of columns. Thus, the preceding examples of matrices have
respective sizes 2 × 3, 4 × 2, 1 × 3, 2 × 1 and 2 × 2. A matrix is square if m = n, i.e., it
has the same number of rows as columns. A column vector is a m× 1 matrix, while a row
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vector is a 1×n matrix. As we shall see, column vectors are by far the more important of
the two, and the term “vector” without qualification will always mean “column vector”.
A 1× 1 matrix, which has but a single entry, is both a row and column vector.

The number that lies in the ith row and the jth column of A is called the (i, j) entry
of A, and is denoted by aij . The row index always appears first and the column index

second†. Two matrices are equal, A = B, if and only if they have the same size, and all

their entries are the same: aij = bij .

A general linear system of m equations in n unknowns will take the form

a11 x1 + a12 x2 + · · · + a1nxn = b1,

a21 x1 + a22 x2 + · · · + a2nxn = b2,

...
...

...

am1 x1 + am2 x2 + · · · + amnxn = bm.

(1.7)

As such, it has three basic constituents: the m×n coefficient matrix A, with entries aij as

in (1.6), the column vector x =




x1

x2
...

xn


 containing the unknowns, and the column vector

b =




b1

b2
...

bm


 containing right hand sides. For instance, in our previous example (1.1),

the coefficient matrix is A =



1 2 1
2 6 1
1 1 4


, the vector of unknowns is x =




x

y

z


, while

b =



2
7
3


 contains the right hand sides.

Remark : We will consistently use bold face lower case letters to denote vectors, and
ordinary capital letters to denote general matrices.

Matrix Arithmetic

There are three basic operations in matrix arithmetic: matrix addition, scalar multi-
plication, and matrix multiplication. First we define addition of matrices. You are only
allowed to add two matrices of the same size, and matrix addition is performed entry by

† In tensor analysis, [2], a sub- and super-script notation is adopted, with aij denoting the

(i, j) entry of the matrix A. This has certain advantages, but, to avoid possible confusion with
powers, we shall stick with the simpler subscript notation throughout this text.
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entry. Therefore, if A and B are m×n matrices, their sum C = A+B is the m×n matrix
whose entries are given by cij = aij + bij for i = 1, . . . ,m, j = 1, . . . , n. For example,

(
1 2
−1 0

)
+

(
3 −5
2 1

)
=

(
4 −3
1 1

)
.

When defined, matrix addition is commutative, A+B = B+A, and associative, A+(B+
C) = (A+B) + C, just like ordinary addition.

A scalar is a fancy name for an ordinary number — the term merely distinguishes it
from a vector or a matrix. For the time being, we will restrict our attention to real scalars
and matrices with real entries, but eventually complex scalars and complex matrices must
be dealt with. We will often identify a scalar c ∈ R with the 1 × 1 matrix (c) in which
it is the sole entry. Scalar multiplication takes a scalar c and an m × n matrix A and
computes the m×n matrix B = cA by multiplying each entry of A by c. Thus, bij = c aij
for i = 1, . . . ,m, j = 1, . . . , n. For example,

3

(
1 2
−1 0

)
=

(
3 6
−3 0

)
.

Basic properties of scalar multiplication are summarized at the end of this section.

Finally, we define matrix multiplication. First, the product between a row vector a
and a column vector x having the same number of entries is the scalar defined by the
following rule:

a x = ( a1 a2 . . . an )




x1

x2
...

xn


 = a1 x1 + a2 x2 + · · · + anxn =

n∑

k=1

ak xk. (1.8)

More generally, if A is an m× n matrix and B is an n× p matrix, so that the number of
columns in A equals the number of rows in B, then the matrix product C = AB is defined
as the m × p matrix whose (i, j) entry equals the vector product of the ith row of A and
the jth column of B. Therefore,

cij =
n∑

k=1

aik bkj . (1.9)

Note that our restriction on the sizes of A and B guarantees that the relevant row and
column vectors will have the same number of entries, and so their product is defined.

For example, the product of the coefficient matrix A and vector of unknowns x for
our original system (1.1) is given by

Ax =



1 2 1
2 6 1
1 1 4






x

y

z


 =




x+ 2y + z

2x+ 6y + z

x+ y + 4z


.
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The result is a column vector whose entries reproduce the left hand sides of the original
linear system! As a result, we can rewrite the system

Ax = b (1.10)

as an equality between two column vectors. This result is general; a linear system (1.7)
consisting of m equations in n unknowns can be written in the matrix form (1.10) where
A is the m× n coefficient matrix (1.6), x is the n× 1 column vectors of unknowns, and b
is the m× 1 column vector containing the right hand sides. This is the reason behind the
non-evident definition of matrix multiplication. Component-wise multiplication of matrix
entries turns out to be almost completely useless in applications.

Now, the bad news. Matrix multiplication is not commutative. For example, BA may
not be defined even when AB is. Even if both are defined, they may be different sized
matrices. For example the product of a row vector r, a 1× n matrix, and a column vector
c, an n×1 matrix, is a 1×1 matrix or scalar s = r c, whereas the reversed product C = c r

is an n× n matrix. For example,

( 1 2 )

(
3
0

)
= 3, whereas

(
3
0

)
( 1 2 ) =

(
3 6
0 0

)
.

In computing the latter product, don’t forget that we multiply the rows of the first matrix
by the columns of the second. Moreover, even if the matrix products AB and BA have
the same size, which requires both A and B to be square matrices, we may still have
AB 6= BA. For example,

(
1 2
3 4

)(
0 1
−1 2

)
=

(
−2 5
−4 11

)
6=

(
3 4
5 6

)
=

(
0 1
−1 2

)(
1 2
3 4

)
.

On the other hand, matrix multiplication is associative, so A(BC) = (AB)C whenever A

has size m× n, B has size n× p and C has size p× q; the result is a matrix of size m× q.
The proof of this fact is left to the reader. Consequently, the one significant difference
between matrix algebra and ordinary algebra is that you need to be careful not to change
the order of multiplicative factors without proper justification.

Since matrix multiplication multiplies rows times columns, one can compute the
columns in a matrix product C = AB by multiplying the matrix A by the individual
columns of B. The kth column of C is equal to the product of A with the kth column of
B. For example, the two columns of the matrix product

(
1 −1 2
2 0 −2

)

3 4
0 2
−1 1


 =

(
1 4
8 6

)

are obtained by multiplying the first matrix with the individual columns of the second:

(
1 −1 2
2 0 −2

)

3
0
−1


 =

(
1
8

)
,

(
1 −1 2
2 0 −2

)

4
2
1


 =

(
4
6

)
.
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In general, if we use bj to denote the jth column of B, then

AB = A
(
b1 b2 . . . bp

)
=
(
Ab1 Ab2 . . . Abp

)
. (1.11)

There are two important special matrices. The first is the zero matrix of size m× n,
denoted Om×n or just O if the size is clear from context. It forms the additive unit, so
A+O = A = O+A for any matrix A of the same size. The role of the multiplicative unit
is played by the square identity matrix

I = In =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...
...
...

. . .
...

0 0 0 . . . 1




of size n×n. The entries of I along the main diagonal (which runs from top left to bottom
right) are equal to 1; the off-diagonal entries are all 0. As the reader can check, if A is any
m× n matrix, then Im A = A = A In . We will sometimes write the last equation as just
IA = A = A I ; even though the identity matrices can have different sizes, only one size is
valid for each matrix product to be defined.

The identity matrix is a particular example of a diagonal matrix. In general, a matrix
is diagonal if all its off-diagonal entries are zero: aij = 0 for all i 6= j. We will sometimes
write D = diag (c1, . . . , cn) for the n × n diagonal matrix with diagonal entries dii = ci.

Thus, diag (1, 3, 0) refers to the diagonal matrix



1 0 0
0 3 0
0 0 0


, while the n × n identity

matrix can be written as In = diag (1, 1, . . . , 1).

Let us conclude this section by summarizing the basic properties of matrix arithmetic.
In the following table, A,B,C are matrices, c, d scalars, O is a zero matrix, and I is an
identity matrix. The matrices are assumed to have the correct sizes so that the indicated
operations are defined.

1.3. Gaussian Elimination — Regular Case.

With the basic matrix arithmetic operations in hand, let us now return to our primary
task. The goal is to develop a systematic method for solving linear systems of equations.
While we could continue to work directly with the equations, matrices provide a convenient
alternative that begins by merely shortening the amount of writing, but ultimately leads
to profound insight into the solution and its structure.

We begin by replacing the system (1.7) by its matrix constituents. It is convenient to
ignore the vector of unknowns, and form the augmented matrix

M =
(
A | b

)
=




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

∣∣∣∣∣∣∣∣

b1

b2
...

bn


 (1.12)

1/12/04 7 c© 2003 Peter J. Olver



Basic Matrix Arithmetic

Commutativity — Matrix Addition A+B = B +A

Associativity — Matrix Addition (A+B) + C = A+ (B + C)

Zero Matrix — Matrix Addition A+O = A = O+A

Associativity — Scalar Multiplication c(dA) = (cd)A

Additive Inverse A+ (−A) = O, −A = (−1)A

Unit — Scalar Multiplication 1 ·A = A

Zero — Scalar Multiplication 0 ·A = O

Distributivity — Matrix Addition c (A+B) = (cA) + (cB)

Distributivity — Scalar Addition (c+ d)A = (cA) + (dA)

Associativity — Matrix Multiplication (AB)C = A(BC)

Identity Matrix A I = A = IA

Zero Matrix — Matrix Multiplication AO = O = OA

which is an m × (n + 1) matrix obtained by tacking the right hand side vector onto the
original coefficient matrix. The extra vertical line is included just to remind us that the
last column of this matrix is special. For example, the augmented matrix for the system
(1.1), i.e.,

x+ 2y + z = 2,

2x+ 6y + z = 7,

x+ y + 4z = 3,

is M =



1 2 1
2 6 1
1 1 4

∣∣∣∣∣∣

2
7
3


 . (1.13)

Note that one can immediately recover the equations in the original linear system from
the augmented matrix. Since operations on equations also affect their right hand sides,
keeping track of everything is most easily done through the augmented matrix.

For the time being, we will concentrate our efforts on linear systems that have the
same number, n, of equations as unknowns. The associated coefficient matrix A is square,
of size n×n. The corresponding augmented matrixM =

(
A | b

)
then has size n×(n+1).

The matrix operation that assumes the role of Linear System Operation #1 is:

Elementary Row Operation #1 :
Add a scalar multiple of one row of the augmented matrix to another row.

For example, if we add −2 times the first row of the augmented matrix (1.13) to the
second row, the result is the row vector

−2 ( 1 2 1 2 ) + ( 2 6 1 7 ) = ( 0 2 −1 3 ).
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The result can be recognized as the second row of the modified augmented matrix



1 2 1
0 2 −1
1 1 4

∣∣∣∣∣∣

2
3
3


 (1.14)

that corresponds to the first equivalent system (1.2). When elementary row operation #1
is performed, it is critical that the result replace the row being added to — not the row
being multiplied by the scalar. Notice that the elimination of a variable in an equation —
in this case, the first variable in the second equation — amounts to making its entry in
the coefficient matrix equal to zero.

We shall call the (1, 1) entry of the coefficient matrix the first pivot . The precise
definition of pivot will become clear as we continue; the one key requirement is that a
pivot be nonzero. Eliminating the first variable x from the second and third equations
amounts to making all the matrix entries in the column below the pivot equal to zero. We
have already done this with the (2, 1) entry in (1.14). To make the (3, 1) entry equal to
zero, we subtract the first row from the last row. The resulting augmented matrix is



1 2 1
0 2 −1
0 −1 3

∣∣∣∣∣∣

2
3
1


 ,

which corresponds to the system (1.3). The second pivot is the (2, 2) entry of this matrix,
which is 2, and is the coefficient of the second variable in the second equation. Again, the
pivot must be nonzero. We use the elementary row operation of adding 1

2 of the second
row to the third row to make the entry below the second pivot equal to 0; the result is the
augmented matrix

N =



1 2 1
0 2 −1
0 0 5

2

∣∣∣∣∣∣

2
3
5
2


 .

that corresponds to the triangular system (1.4). We write the final augmented matrix as

N =
(
U | c

)
, where U =



1 2 1
0 2 −1
0 0 5

2


 , c =



2
3
5
2


 .

The corresponding linear system has vector form

U x = c. (1.15)

Its coefficient matrix U is upper triangular , which means that all its entries below the
main diagonal are zero: uij = 0 whenever i > j. The three nonzero entries on its diagonal,

1, 2, 5
2 , including the last one in the (3, 3) slot are the three pivots. Once the system has

been reduced to triangular form (1.15), we can easily solve it, as discussed earlier, by back
substitution.
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Gaussian Elimination — Regular Case

start

for j = 1 to n

if mjj = 0, stop; print “A is not regular”

else for i = j + 1 to n

set lij = mij/mjj

add − lij times row j of M to row i of M

next i

next j

end

The preceding algorithm for solving a linear system is known as regular Gaussian

elimination. A square matrix A will be called regular † if the algorithm successfully reduces
it to upper triangular form U with all non-zero pivots on the diagonal. In other words,
for regular matrices, we identify each successive nonzero entry in a diagonal position as
the current pivot. We then use the pivot row to make all the entries in the column below
the pivot equal to zero through elementary row operations of Type #1. A system whose
coefficient matrix is regular is solved by first reducing the augmented matrix to upper
triangular form and then solving the resulting triangular system by back substitution.

Let us state this algorithm in the form of a program, written in a general “pseudocode”
that can be easily translated into any specific language, e.g., C++, Fortran, Java,
Maple, Mathematica or Matlab. We use a single letter M = (mij) to denote the

current augmented matrix at each stage in the computation, and initialize M =
(
A | b

)
.

Note that the entries of M will change as the algorithm progresses. The final output of
the program, assuming A is regular, is the augmented matrix M =

(
U | c

)
, where U is

the upper triangular matrix U whose diagonal entries uii are the pivots and c is the vector
of right hand sides obtained after performing the elementary row operations.

Elementary Matrices

A key observation is that elementary row operations can, in fact, be realized by matrix
multiplication.

Definition 1.1. The elementary matrix E associated with an elementary row oper-
ation for matrices with m rows is the matrix obtained by applying the row operation to
the m×m identity matrix Im .

† Strangely, there is no commonly accepted term for these kinds of matrices. Our proposed
adjective “regular” will prove to be quite useful in the sequel.
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For example, applying the elementary row operation that adds −2 times the first row

to the second row to the 3×3 identity matrix I =



1 0 0
0 1 0
0 0 1


 results in the corresponding

elementary matrix E1 =



1 0 0
−2 1 0
0 0 1


. We claim that, if A is any 3–rowed matrix, then

multiplying E1 A has the same effect as the given elementary row operation. For example,

E1 A =



1 0 0
−2 1 0
0 0 1





1 2 1
2 6 1
1 1 4


 =



1 2 1
0 2 −1
1 1 4


 ,

which you may recognize as the first elementary row operation we used to solve the illus-
trative example. Indeed, if we set

E1 =



1 0 0
−2 1 0
0 0 1


 , E2 =



1 0 0
0 1 0
−1 0 1


 , E3 =



1 0 0
0 1 0
0 1

2 1


 , (1.16)

then multiplication by E1 will subtract twice the first row from the second row, multipli-
cation by E2 will subtract the first row from the third row, and multiplication by E3 will
add 1

2 the second row to the third row — precisely the row operations used to place our
original system in triangular form. Therefore, performing them in the correct order (and
using the associativity of matrix multiplication), we conclude that when

A =



1 2 1
2 6 1
1 1 4


 , then E3 E2 E1 A = U =



1 2 1
0 2 −1
0 0 5

2


 . (1.17)

The reader should check this by directly multiplying the indicated matrices.

In general, then, the elementary matrix E of size m × m will have all 1’s on the
diagonal, a nonzero entry c in position (i, j), for some i 6= j, and all other entries equal
to zero. If A is any m × n matrix, then the matrix product E A is equal to the matrix
obtained from A by the elementary row operation adding c times row j to row i. (Note
the reversal of order of i and j.)

The elementary row operation that undoes adding c times row j to row i is the inverse
row operation that subtracts c (or, equivalently, adds −c) times row j from row i. The
corresponding inverse elementary matrix again has 1’s along the diagonal and −c in the
(i, j) slot. Let us denote the inverses of the particular elementary matrices (1.16) by Li,
so that, according to our general rule,

L1 =



1 0 0
2 1 0
0 0 1


 , L2 =



1 0 0
0 1 0
1 0 1


 , L3 =



1 0 0
0 1 0
0 −

1
2 1


 . (1.18)

Note that the product
LiEi = I (1.19)
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is the 3× 3 identity matrix, reflecting the fact that these are inverse operations. (A more
thorough discussion of matrix inverses will be postponed until the following section.)

The product of the latter three elementary matrices is equal to

L = L1 L2 L3 =



1 0 0
2 1 0
1 −

1
2 1


 . (1.20)

The matrix L is called a special lower triangular matrix, where “lower triangular” means
that all the entries above the main diagonal are 0, while “special” indicates that all the
entries on the diagonal are equal to 1. Observe that the entries of L below the diagonal are
the same as the corresponding nonzero entries in the Li. This is a general fact, that holds
when the lower triangular elementary matrices are multiplied in the correct order. (For
instance, the product L3 L2 L1 is not so easily predicted.) More generally, the following
elementary consequence of the laws of matrix multiplication will be used extensively.

Lemma 1.2. If L and L̂ are lower triangular matrices of the same size, so is their

product LL̂. If they are both special lower triangular, so is their product. Similarly, if

U, Û are (special) upper triangular matrices, so is their product U Û .

The LU Factorization

We have almost arrived at our first important result. Consider the product of the
matrices L and U in (1.17), (1.20). Using equation (1.19), along with the basic property
of the identity matrix I and associativity of matrix multiplication, we conclude that

LU = (L1L2L3)(E3E2E1A) = L1L2(L3E3)E2E1A = L1L2 IE2E1A

= L1(L2E2)E1A = L1 IE1A = L1E1A = IA = A.

In other words, we have factorized the coefficient matrix A = LU into a product of a
special lower triangular matrix L and an upper triangular matrix U with the nonzero
pivots on its main diagonal. The same holds true for almost all square coefficient matrices.

Theorem 1.3. A matrix A is regular if and only if it can be factorized

A = LU, (1.21)

where L is a special lower triangular matrix, having all 1’s on the diagonal, and U is upper

triangular with nonzero diagonal entries, which are its pivots. The nonzero off-diagonal

entries lij for i > j appearing in L prescribe the elementary row operations that bring

A into upper triangular form; namely, one subtracts lij times row j from row i at the

appropriate step of the Gaussian elimination process.

Example 1.4. Let us compute the LU factorization of the matrixA =



2 1 1
4 5 2
2 −2 0


.

Applying the Gaussian elimination algorithm, we begin by subtracting twice the first row
from the second row, and then subtract the first row from the third. The result is the
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matrix



2 1 1
0 3 0
0 −3 −1


. The next step adds the second row to the third row, leading to

the upper triangular matrix U =



2 1 1
0 3 0
0 0 −1


, with its diagonal entries 2, 3,−1 indicat-

ing the pivots. The corresponding lower triangular matrix is L =



1 0 0
2 1 0
1 −1 1


, whose

entries below the diagonal are the negatives of the multiples we used during the elimination
procedure. Namely, the (2, 1) entry of L indicates that we added −2 times the first row
to the second row; the (3, 1) entry indicates that we added −1 times the first row to the
third; and, finally, the (3, 2) entry indicates that we added the second row to the third
row during the algorithm. The reader might wish to verify the factorization A = LU , or,
explicitly, 


2 1 1
4 5 2
2 −2 0


 =



1 0 0
2 1 0
1 −1 1





2 1 1
0 3 0
0 0 −1


 .

Forward and Back Substitution

Once we know the LU factorization of a regular matrix A, we are able to solve any
associated linear system Ax = b in two stages:

(1) First solve the lower triangular system

L c = b (1.22)

for the vector c by forward substitution. This is the same as back substitution, except one
solves the equations for the variables in the direct order — from first to last. Explicitly,

c1 = b1, ci = bi −

i∑

j=1

lij cj , for i = 2, 3, . . . , n, (1.23)

noting that the previously computed values of c1, . . . , ci−1 are used to determine ci.

(2) Second, solve the resulting upper triangular system

U x = c (1.24)

by back substitution. Explicitly, the values of the unknowns

xn =
cn
unn

, xi =
1

uii


ci −

n∑

j= i+1

uij xj


 , for i = n− 1, . . . , 2, 1, (1.25)

are successively computed, but now in reverse order.

Note that this algorithm does indeed solve the original system, since if

U x = c and L c = b, then Ax = LU x = L c = b.
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Once we have found the LU factorization of the coefficient matrix A, the Forward and
Back Substitution processes quickly produce the solution, and are easy to program on a
computer.

Example 1.5. With the LU decomposition



2 1 1
4 5 2
2 −2 0


 =



1 0 0
2 1 0
1 −1 1





2 1 1
0 3 0
0 0 −1




found in Example 1.4, we can readily solve any linear system with the given coefficient
matrix by Forward and Back Substitution. For instance, to find the solution to



2 1 1
4 5 2
2 −2 0






x

y

z


 =



1
2
2


 ,

we first solve the lower triangular system



1 0 0
2 1 0
1 −1 1






a

b

c


 =



1
2
2


 , or, explicitly,

a = 1,

2a+ b = 2,

a− b+ c = 2.

The first equation says a = 1; substituting into the second, we find b = 0; the final equation
gives c = 1. We then solve the upper triangular system



2 1 1
0 3 0
0 0 −1






x

y

z


 =




a

b

c


 =



1
0
1


 , which is

2x+ y + z = 1,

3y = 0,

−z = 1.

In turn, we find z = −1, then y = 0, and then x = 1, which is the unique solution to the
original system.

Of course, if we are not given the LU factorization in advance, we can just use direct
Gaussian elimination on the augmented matrix. Forward and Back Substitution is useful
if one has already computed the factorization by solving for a particular right hand side
b, but then later wants to know the solutions corresponding to alternative b’s.

1.4. Pivoting and Permutations.

The method of Gaussian elimination presented so far applies only to regular matrices.
But not every square matrix is regular; a simple class of examples are matrices whose
upper left entry is zero, and so cannot serve as the first pivot. More generally, the regular
elimination algorithm cannot proceed whenever a zero entry appears in the current pivot
spot on the diagonal. Zero can never serve as a pivot, since we cannot use it to eliminate
any nonzero entries in the column below it. What then to do? The answer requires
revisiting the source of our algorithm.
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Let us consider, as a specific example, the linear system

3y + z = 2,

2x+ 6y + z = 7,

x+ 4z = 3.

(1.26)

The augmented coefficient matrix is


0 3 1
2 6 1
1 0 4

∣∣∣∣∣∣

2
7
3


 .

In this case, the (1, 1) entry is 0, and is not a legitimate pivot. The problem, of course,
is that the first variable x does not appear in the first equation, and so we cannot use it
to eliminate x in the other two equations. But this “problem” is actually a bonus — we
already have an equation with only two variables in it, and so we only need to eliminate x

from one of the other two equations. To be systematic, we rewrite the system in a different
order,

2x+ 6y + z = 7,

3y + z = 2,

x+ 4z = 3,

by interchanging the first two equations. In other words, we employ

Linear System Operation #2 : Interchange two equations.

Clearly this operation does not change the solution, and so produces an equivalent
system. In our case, the resulting augmented coefficient matrix is



2 6 1
0 3 1
1 0 4

∣∣∣∣∣∣

7
2
3


 ,

and is obtained from the original by performing the second type of row operation:

Elementary Row Operation #2 : Interchange two rows of the matrix.

The new nonzero upper left entry, 2, can now serve as the first pivot, and we may
continue to apply elementary row operations of Type #1 to reduce our matrix to upper
triangular form. For this particular example, we eliminate the remaining nonzero entry in
the first column by subtracting 1

2 the first row from the last:



2 6 1
0 3 1
0 −3 7

2

∣∣∣∣∣∣

7
2
−

1
2


 .

The (2, 2) entry serves as the next pivot. To eliminate the nonzero entry below it, we add
the second to the third row: 


2 6 1
0 3 1
0 0 9

2

∣∣∣∣∣∣

7
2
3
2


 .
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Gaussian Elimination — Nonsingular Case

start

for j = 1 to n

if mkj = 0 for all k ≥ j, stop; print “A is singular”

if mjj = 0 but mkj 6= 0 for some k > j, switch rows k and j

for i = j + 1 to n

set lij = mij/mjj

add − lij times row j to row i of M

next i

next j

end

We have now placed the system in upper triangular form, with the three pivots, 2, 3, 9
2

along the diagonal. Back substitution produces the solution x = 5
3 , y = 5

9 , z = 1
3 .

The row interchange that is required when a zero shows up on the diagonal in pivot
position is known as pivoting . Later, in Section 1.7, we shall discuss practical reasons for
pivoting even when a diagonal entry is nonzero. The coefficient matrices for which the
Gaussian elimination algorithm with pivoting produces the solution are of fundamental
importance.

Definition 1.6. A square matrix is called nonsingular if it can be reduced to upper
triangular form with all non-zero elements on the diagonal by elementary row operations
of Types 1 and 2. Conversely, a square matrix that cannot be reduced to upper triangular
form because at some stage in the elimination procedure the diagonal entry and all the
entries below it are zero is called singular .

Every regular matrix is nonsingular, but, as we just saw, nonsingular matrices are
more general. Uniqueness of solutions is the key defining characteristic of nonsingularity.

Theorem 1.7. A linear system Ax = b has a unique solution for every choice of
right hand side b if and only if its coefficient matrix A is square and nonsingular.

We are able to prove the “if” part of this theorem, since nonsingularity implies re-
duction to an equivalent upper triangular form that has the same solutions as the original
system. The unique solution to the system is found by back substitution. The “only if”
part will be proved in Section 1.8.

The revised version of the Gaussian Elimination algorithm, valid for all nonsingular
coefficient matrices, is implemented by the accompanying program. The starting point is
the augmented matrix M =

(
A | b

)
representing the linear system Ax = b. After suc-

cessful termination of the program, the result is an augmented matrix in upper triangular
form M =

(
U | c

)
representing the equivalent linear system U x = c. One then uses Back

Substitution to determine the solution x to the linear system.
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Permutation Matrices

As with the first type of elementary row operation, row interchanges can be accom-
plished by multiplication by a second type of elementary matrix. Again, the elementary
matrix is found by applying the row operation in question to the identity matrix of the
appropriate size. For instance, interchanging rows 1 and 2 of the 3 × 3 identity matrix
produces the elementary interchange matrix

P =



0 1 0
1 0 0
0 0 1


 .

As the reader can check, the effect of multiplying a 3 rowed matrix A on the left by P ,
producing P A, is the same as interchanging the first two rows of A. For instance,



0 1 0
1 0 0
0 0 1





1 2 3
4 5 6
7 8 9


 =



4 5 6
1 2 3
7 8 9


 .

Multiple row interchanges are accomplished by combining such elementary interchange
matrices. Each such combination of row interchanges corresponds to a unique permutation
matrix.

Definition 1.8. A permutation matrix is a matrix obtained from the identity matrix
by any combination of row interchanges.

In particular, applying a row interchange to a permutation matrix produces another
permutation matrix. The following result is easily established.

Lemma 1.9. A matrix P is a permutation matrix if and only if each row of P

contains all 0 entries except for a single 1, and, in addition, each column of P also contains
all 0 entries except for a single 1.

In general, if a permutation matrix P has a 1 in position (i, j), then the effect of
multiplication by P is to move the jth row of A into the ith row of the product P A.

Example 1.10. There are six different 3× 3 permutation matrices, namely


1 0 0
0 1 0
0 0 1


 ,



0 1 0
1 0 0
0 0 1


 ,



0 0 1
0 1 0
1 0 0


 ,



1 0 0
0 0 1
0 1 0


 ,



0 1 0
0 0 1
1 0 0


 ,



0 0 1
1 0 0
0 1 0


 .

(1.27)
These have the following effects: if A is a matrix with row vectors r1, r2, r3, then multipli-
cation on the left by each of the six permutation matrices produces



r1
r2
r3


 ,



r2
r1
r3


 ,



r3
r2
r1


 ,



r1
r3
r2


 ,



r2
r3
r1


 ,



r3
r1
r2


 ,

respectively. Thus, the first permutation matrix, which is the identity, does nothing. The
second, third and fourth represent row interchanges. The last two are non-elementary
permutations; each can be realized as a pair of row interchanges.
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An elementary combinnatorial argument proves that there are a total of

n ! = n (n− 1) (n− 2) · · · 3 · 2 · 1 (1.28)

different permutation matrices of size n × n. Moreover, the product P = P1 P2 of any
two permutation matrices is also a permutation matrix. An important point is that multi-
plication of permutation matrices is noncommutative — the order in which one permutes
makes a difference. Switching the first and second rows, and then switching the second
and third rows does not have the same effect as first switching the second and third rows
and then switching the first and second rows!

The Permuted LU Factorization

As we now know, any nonsingular matrix A can be reduced to upper triangular form
by elementary row operations of types #1 and #2. The row interchanges merely reorder
the equations. If one performs all of the required row interchanges in advance, then
the elimination algorithm can proceed without requiring any further pivoting. Thus, the
matrix obtained by permuting the rows of A in the prescribed manner is regular. In other
words, if A is a nonsingular matrix, then there is a permutation matrix P such that the
product P A is regular, and hence admits an LU factorization. As a result, we deduce the
general permuted LU factorization

P A = LU, (1.29)

where P is a permutation matrix, L is special lower triangular, and U is upper triangular
with the pivots on the diagonal. For instance, in the preceding example, we permuted the
first and second rows, and hence equation (1.29) has the explicit form



0 1 0
1 0 0
0 0 1





0 2 1
2 6 1
1 1 4


 =



1 0 0
0 1 0
1
2 −1 1





2 6 1
0 2 1
0 0 9

2


 . (1.30)

As a result of these considerations, we have established the following generalization
of Theorem 1.3.

Theorem 1.11. Let A be an n × n matrix. Then the following conditions are

equivalent: (i) A is nonsingular.

(ii) A has n nonzero pivots.

(iii) A admits a permuted LU factorization: P A = LU,.

One should be aware of a couple of practical complications. First, to implement the
permutation P of the rows that makes A regular, one needs to be clairvoyant: it is not
always clear in advance when and where a required row interchange will crop up. Second,
any row interchange performed during the course of the Gaussian Elimination algorithm
will affect the lower triangular matrix L, and precomputed entries must be permuted
accordingly; an example appears in Exercise .

Once the permuted LU factorization is established, the solution to the original system
Ax = b is obtained by using the same Forward and Back Substitution algorithm presented
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above. Explicitly, we first multiply the system Ax = b by the permutation matrix, leading
to

P Ax = P b ≡ b̂, (1.31)

whose right hand side b̂ has been obtained by permuting the entries of b in the same
fashion as the rows of A. We then solve the two systems

L c = b̂, and U x = c, (1.32)

by, respectively, Forward and Back Substitution as before.

Example 1.12. Suppose we wish to solve


0 2 1
2 6 1
1 1 4






x

y

z


 =



1
−2
0


 .

In view of the P A = LU factorization established in (1.30), we need only solve the two aux-
iliary systems (1.32) by Forward and Back Substitution, respectively. The lower triangular
system is 


1 0 0
0 1 0
1
2 −1 1






a

b

c


 =



−2
1
0


 =



0 1 0
1 0 0
0 0 1





1
−2
0


 ,

with solution a = −2, b = 1, c = 2. The resulting upper triangular system is


2 6 1
0 2 1
0 0 9

2






x

y

z


 =



−2
1
2


 =




a

b

c


 .

The solution, which is also the solution to the original system, is obtained by back substi-
tution, with z = 4

9 , y =
5
18 , x = −

37
18 .

1.5. Matrix Inverses.

The inverse of a matrix is analogous to the reciprocal a−1 = 1/a of a scalar, which is
the 1×1 case. We already introduced the inverses of matrices corresponding to elementary
row operations. In this section, we will analyze inverses of general square matrices. We
begin with the formal definition.

Definition 1.13. Let A be a square matrix of size n × n. An n × n matrix X is
called the inverse of A if it satisfies

XA = I = AX, (1.33)

where I = I n is the n×n identity matrix. The inverse is commonly denoted by X = A−1.

Remark : Noncommutativity of matrix multiplication requires that we impose both
conditions in (1.33) in order to properly define an inverse to the matrix A. The first
condition X A = I says that X is a left inverse, while the second AX = I requires that
X also be a right inverse, in order that it fully qualify as a bona fide inverse of A.
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Example 1.14. Since



1 2 −1
−3 1 2
−2 2 1





3 4 −5
1 1 −1
4 6 −7


 =



1 0 0
0 1 0
0 0 1


 =



3 4 −5
1 1 −1
4 6 −7





1 2 −1
−3 1 2
−2 2 1


 ,

we conclude that when A =



1 2 −1
−3 1 2
−2 2 1


 then A−1 =



3 4 −5
1 1 −1
4 6 −7


. Note that the

entries of A−1 do not follow any easily discernable pattern in terms of the entries of A.

Not every square matrix has an inverse. Indeed, not every scalar has an inverse — the
one counterexample being a = 0. There is no general concept of inverse for rectangular
matrices.

Example 1.15. Let us compute the inverse X =

(
x y

z w

)
of a general 2× 2 matrix

A =

(
a b

c d

)
. The right inverse condition

AX =

(
a x+ b z a y + bw

c x+ d z c y + dw

)
=

(
1 0
0 1

)
= I

holds if and only if x, y, z, w satisfy the linear system

a x+ b z = 1,

c x+ d z = 0,

a y + bw = 0,

c y + dw = 0.

Solving by Gaussian elimination (or directly), we find

x =
d

ad− bc
, y = −

b

ad− bc
, z = −

c

ad− bc
, w =

a

ad− bc
,

provided the common denominator ad− bc6= 0 does not vanish. Therefore, the matrix

X =
1

ad− bc

(
d − b

− c a

)

forms a right inverse to A. However, a short computation shows that it also defines a left
inverse:

X A =

(
x a+ y c x b+ y d

z a+ w c z b+ w d

)
=

(
1 0
0 1

)
= I ,

and hence X = A−1 is the inverse to A.

The denominator appearing in the preceding formulae has a special name; it is called
the determinant of the 2× 2 matrix A, and denoted

det

(
a b

c d

)
= ad− bc. (1.34)
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Thus, the determinant of a 2 × 2 matrix is the product of the diagonal entries minus
the product of the off-diagonal entries. (Determinants of larger square matrices will be
discussed in Section 1.9.) Thus, the 2× 2 matrix A is invertible, with

A−1 =
1

ad− bc

(
d − b

− c a

)
, (1.35)

if and only if detA 6= 0. For example, ifA =

(
1 3
−2 −4

)
, then detA = 26= 0. We conclude

that A has an inverse, which, by (1.35), is A−1 =
1

2

(
−4 −3
2 1

)
=

(
− 2 −

3
2

1 1
2

)
.

The following key result will be established later in this chapter.

Theorem 1.16. A square matrix A has an inverse if and only if it is nonsingular.

Consequently, an n× n matrix will have an inverse if and only if it can be reduced to
upper triangular form with n nonzero pivots on the diagonal by a combination of elemen-
tary row operations. Indeed, “invertible” is often used as a synoinym for “nonsingular”.
All other matrices are singular and do not have an inverse as defined above. Before at-
tempting to prove this fundamental result, we need to first become familiar with some
elementary properties of matrix inverses.

Lemma 1.17. The inverse of a square matrix, if it exists, is unique.

Proof : If X and Y both satisfy (1.33), so XA = I = AX and Y A = I = AY , then,
by associativity, X = X I = X(AY ) = (XA)Y = IY = Y , and hence X = Y . Q.E.D.

Inverting a matrix twice gets us back to where we started.

Lemma 1.18. If A is invertible, then A−1 is also invertible and (A−1)−1 = A.

Proof : The matrix inverse equations A−1 A = I = AA−1, are sufficient to prove that
A is the inverse of A−1. Q.E.D.

Example 1.19. We already learned how to find the inverse of an elementary matrix
of type #1; we just negate the one nonzero off-diagonal entry. For example, if

E =



1 0 0
0 1 0
2 0 1


 , then E−1 =



1 0 0
0 1 0
−2 0 1


 .

This reflects the fact that the inverse of the elementary row operation that adds twice the
first row to the third row is the operation of subtracting twice the first row from the third
row.

Example 1.20. Let P =



0 1 0
1 0 0
0 0 1


 denote the elementary matrix that has the

effect of interchanging rows 1 and 2 of a matrix. Then P 2 = I , since doing the same
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operation twice in a row has no net effect. This implies that P−1 = P is its own inverse.
Indeed, the same result holds for all elementary permutation matrices that correspond to
row operations of type #2. However, it is not true for more general permutation matrices.

Lemma 1.21. If A and B are invertible matrices of the same size, then their product,

AB, is invertible, and

(AB)−1 = B−1A−1. (1.36)

Note particularly the reversal in order of the factors.

Proof : Let X = B−1A−1. Then, by associativity,

X (AB) = B−1A−1AB = B−1B = I , (AB)X = ABB−1A−1 = AA−1 = I .

Thus X is both a left and a right inverse for the product matrix AB and the result
follows. Q.E.D.

Example 1.22. One verifies, directly, that the inverse of A =

(
1 2
0 1

)
is A−1 =

(
1 −2
0 1

)
, while the inverse of B =

(
0 1
−1 0

)
is B−1 =

(
0 −1
1 0

)
. Therefore, the

inverse of thier product C = AB =

(
1 2
0 1

)(
0 1
−1 0

)
=

(
−2 1
−1 0

)
is given by C−1 =

B−1A−1 =

(
0 −1
1 0

)(
1 −2
0 1

)
=

(
0 −1
1 −2

)
.

We can straightforwardly generalize the preceding result. The inverse of a multiple
product of invertible matrices is the product of their inverses, in the reverse order :

(A1A2 · · ·Am−1Am)
−1 = A−1

m A−1
m−1 · · ·A

−1
2 A−1

1 . (1.37)

Warning : In general, (A + B)−1
6= A−1 + B−1. This equation is not even true for

scalars (1× 1 matrices)!

Gauss–Jordan Elimination

The basic algorithm used to compute the inverse of a square matrix is known as
Gauss–Jordan Elimination, in honor of Gauss and Wilhelm Jordan, a nineteenth century
German engineer. A key fact is that we only need to solve the right inverse equation

AX = I (1.38)

in order to compute X = A−1. The other equation in (1.33), namely XA = I , will then
follow as an automatic consequence. In other words, for square matrices, a right inverse is
automatically a left inverse, and conversely! A proof will appear below.

The reader may well ask, then, why use both left and right inverse conditions in the
original definition? There are several good reasons. First of all, a rectangular matrix
may satisfy one of the two conditions — having either a left inverse or a right inverse
— but can never satisfy both. Moreover, even when we restrict our attention to square
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matrices, starting with only one of the conditions makes the logical development of the
subject considerably more difficult, and not really worth the extra effort. Once we have
established the basic properties of the inverse of a square matrix, we can then safely discard
the superfluous left inverse condition. Finally, when we generalize the notion of an inverse
to a linear operator in Chapter 7, then, unlike square matrices, we cannot dispense with
either of the conditions.

Let us write out the individual columns of the right inverse equation (1.38). The ith

column of the n × n identity matrix I is the vector ei that has a single 1 in the ith slot
and 0’s elsewhere, so

e1 =




1
0
0
...
0
0




, e2 =




0
1
0
...
0
0




, . . . en =




0
0
0
...
0
1




. (1.39)

According to (1.11), the ith column of the matrix product AX is equal to Axi, where
xi denotes the ith column of X = (x1 x2 . . . xn ). Therefore, the single matrix equation
(1.38) is equivalent to n linear systems

Ax1 = e1, Ax2 = e2, . . . Axn = en, (1.40)

all having the same coefficient matrix. As such, to solve them we are led to form the
n augmented matrices M1 =

(
A | e1

)
, . . . ,Mn =

(
A | en

)
, and then perform our

Gaussian elimination algorithm on each one. But this would be a waste of effort. Since
the coefficient matrix is the same, we will end up performing identical row operations on
each augmented matrix. Consequently, it will be more efficient to combine them into one
large augmented matrix M =

(
A | e1 . . . en

)
=
(
A | I

)
, of size n × (2n), in which the

right hand sides e1, . . . , en of our systems are placed into n different columns, which we
then recognize as reassembling the columns of an n × n identity matrix. We may then
apply our elementary row operations to reduce, if possible, the large augmented matrix so
that its first n columns are in upper triangular form.

Example 1.23. For example, to find the inverse of the matrix A =



0 2 1
2 6 1
1 1 4


,

we form the large augmented matrix


0 2 1
2 6 1
1 1 4

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1


 .

Applying the same sequence of elementary row operations as in Section 1.4, we first inter-
change the rows 


2 6 1
0 2 1
1 1 4

∣∣∣∣∣∣

0 1 0
1 0 0
0 0 1


 ,
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and then eliminate the nonzero entries below the first pivot,



2 6 1
0 2 1
0 −2 7

2

∣∣∣∣∣∣

0 1 0
1 0 0
0 −

1
2 1


 .

Next we eliminate the entry below the second pivot:



2 6 1
0 2 1
0 0 9

2

∣∣∣∣∣∣

0 1 0
1 0 0
1 −

1
2 1


 .

At this stage, we have reduced our augmented matrix to the upper triangular form(
U | C

)
, which is equivalent to reducing the original n linear systems Axi = ei to n

upper triangular systems U xi = ci. We could therefore perform n back substitutions to
produce the solutions xi, which would form the individual columns of the inverse matrix
X = (x1 . . . xn).

In the standard Gauss–Jordan scheme, one instead continues to employ the usual
sequence of elementary row operations to fully reduce the augmented matrix to the form(
I | X

)
in which the left hand n×n matrix has become the identity, while the right hand

matrix is the desired solution X = A−1. Indeed,
(
I | X

)
represents the n trivial, but

equivalent, linear systems Ixi = xi with identity coefficient matrix.

Now, the identity matrix has 0’s below the diagonal, just like U . It also has 1’s along
the diagonal, whereas U has the pivots (which are all nonzero) along the diagonal. Thus,
the next phase in the procedure is to make all the diagonal entries of U equal to 1. To do
this, we need to introduce the last, and least, of our linear systems operations.

Linear System Operation #3 : Multiply an equation by a nonzero constant.

This operation does not change the solution, and so yields an equivalent linear system.
The corresponding elementary row operation is:

Elementary Row Operation #3 : Multiply a row of the matrix by a nonzero scalar.

Dividing the rows of the upper triangular augmented matrix
(
U | C

)
by the diagonal

pivots of U will produce a matrix of the form
(
V | K

)
where V is special upper triangular ,

meaning it has all 1’s along the diagonal. In the particular example, the result of these
three elementary row operations of Type #3 is



1 3 1

2

0 1 1
2

0 0 1

∣∣∣∣∣∣∣

0 1
2 0

1
2 0 0
2
9 −

1
9

2
9


 ,

where we multiplied the first and second rows by 1
2 and the third row by

2
9 .

We are now over half way towards our goal of an identity matrix on the left. We need
only make the entries above the diagonal equal to zero. This can be done by elementary
row operations of Type #1, but now we work backwards as in back substitution. First,
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eliminate the nonzero entries in the third column lying above the (3, 3) entry; this is done
by subtracting one half the third row from the second and also from the first:



1 3 0

0 1 0

0 0 1

∣∣∣∣∣∣∣

−
1
9

5
9 −

1
9

7
18

1
18 −

1
9

2
9 −

1
9

2
9


 .

Finally, subtract 1
3 the second from the first to eliminate the remaining nonzero off-diagonal

entry: 

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣∣

−
23
18

7
18

2
9

7
18

1
18 −

1
9

2
9 −

1
9

2
9


 .

The final right hand matrix is our desired inverse:

A−1 =



−

23
18

7
18

2
9

7
18

1
18 −

1
9

2
9 −

1
9

2
9


 ,

thereby completing the Gauss–Jordan procedure. The reader may wish to verify that the
final result does satisfy both inverse conditions AA−1 = I = A−1A.

We are now able to complete the proofs of the basic results on inverse matrices. First,
we need to determine the elementary matrix corresponding to an elementary row operation
of type #3. Again, this is obtained by performing the indicated elementary row operation
on the identity matrix. Thus, the elementary matrix that multiplies row i by the nonzero
scalar c 6= 0 is the diagonal matrix having c in the ith diagonal position, and 1’s elsewhere
along the diagonal. The inverse elementary matrix is the diagonal matrix with 1/c in the
ith diagonal position and 1’s elsewhere on the main diagonal; it corresponds to the inverse
operation that divides row i by c. For example, the elementary matrix that multiplies the
second row of a 3× n matrix by the scalar 5 is

E =



1 0 0
0 5 0
0 0 1


 , and has inverse E−1 =



1 0 0
0 1

5 0
0 0 1


 .

The Gauss–Jordan method tells us how to reduce any nonsingular square matrix A

to the identity matrix by a sequence of elementary row operations. Let E1, E2, . . . , EN be
the corresponding elementary matrices. Therefore,

EN EN−1 · · · E2 E1 A = I . (1.41)

We claim that the matrix product

X = EN EN−1 · · · E2 E1 (1.42)

is the inverse of A. Indeed, formula (1.41) says that XA = I , and so X is a left inverse.
Furthermore, each elementary matrix has an inverse, and so by (1.37), X itself is invertible,
with

X−1 = E−1
1 E−1

2 · · · E−1
N−1 E−1

N . (1.43)
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Therefore, multiplying the already established formula X A = I on the left by X−1, we
find A = X−1, and so, by Lemma 1.18, X = A−1 as claimed. This completes the proof of
Theorem 1.16. Finally, equating A = X−1 to (1.43), and using the fact that the inverse of
an elementary matrix is also an elementary matrix, we have established:

Proposition 1.24. Any nonsingular matrix A can be written as the product of

elementary matrices.

For example, the 2 × 2 matrix A =

(
0 −1
1 3

)
is converted into the identity matrix

by row operations corresponding to the matrices E1 =

(
0 1
1 0

)
, corresponding to a row

interchange, E2 =

(
1 0
0 −1

)
, scaling the second row by −1, and E3 =

(
1 −3
0 1

)
that

subtracts 3 times the second row from the first. Therefore,

A−1 = E3 E2 E1 =

(
1 −3
0 1

)(
1 0
0 −1

)(
0 1
1 0

)
=

(
3 1
−1 0

)
,

while

A = E−1
1 E−1

2 E−1
3 =

(
0 1
1 0

)(
1 0
0 −1

)(
1 3
0 1

)
=

(
0 −1
1 3

)
.

As an application, let us prove that the inverse of a nonsingular triangular matrix is
also triangular. Specifically:

Lemma 1.25. If L is a lower triangular matrix with all nonzero entries on the main

diagonal, then L is nonsingular and its inverse L−1 is also lower triangular. In particular,

if L is special lower triangular, so is L−1. A similar result holds for upper triangular

matrices.

Proof : It suffices to note that if L has all nonzero diagonal entries, one can reduce
L to the identity by elementary row operations of Types #1 and #3, whose associated
elementary matrices are all lower triangular. Lemma 1.2 implies that the product (1.42)
is then also lower triangular. If L is special, then all the pivots are equal to 1 and so no
elementary row operations of Type #3 are required, so the inverse is a product of special
lower triangular matrices, and hence is special lower triangular. Q.E.D.

Solving Linear Systems with the Inverse

An important motivation for the matrix inverse is that it enables one to effect an
immediate solution to a nonsingular linear system.

Theorem 1.26. If A is invertible, then the unique solution to the linear system

Ax = b is given by x = A−1 b.

Proof : We merely multiply the system by A−1, which yields x = A−1Ax = A−1b, as
claimed. Q.E.D.
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Thus, with the inverse in hand, a “more direct” way to solve our example (1.26) is to
multiply the right hand side by the inverse matrix:




x

y

z


 =



−

23
18

7
18

2
9

7
18

1
18 −

1
9

2
9 −

1
9

2
9






2

7

3


 =




5
6
5
6
1
3


 ,

reproducing our earlier solution.

However, while æsthetically appealing, the solution method based on the inverse ma-
trix is hopelessly inefficient as compared to forward and back substitution based on a
(permuted) LU factorization, and should not be used . A complete justification of this
dictum will be provided in Section 1.7. In contrast to what you might have learned in an
introductory linear algebra course, you should never use the matrix inverse for practical
computations! This is not to say that the inverse is completely without merit. Far from it!
The inverse continues to play a fundamental role in the theoretical side of linear algebra, as
well as providing important insight into the algorithms that are used in practice. But the
basic message of practical, applied linear algebra is that LU decomposition and Gaussian
Elimination are fundamental; inverses are only used for theoretical purposes, and are to
be avoided in all but the most elementary practical computations.

Remark : The reader may have learned a version of the Gauss–Jordan algorithm for
solving a single linear system that replaces the back substitution step by a further applica-
tion of all three types of elementary row operations in order to reduce the coefficient matrix
to the identity. In other words, to solve Ax = b, we start with the augmented matrix
M =

(
A | b

)
and use all three types of elementary row operations to produce (assuming

nonsingularity) the fully reduced form
(
I | x

)
, representing the trivial, equivalent system

I x = x, with the solution x to the original system in its final column. However, as we shall
see, back substitution is much more efficient, and is the method of choice in all practical
situations.

The LDV Factorization

The Gauss–Jordan construction leads to a slightly more detailed version of the LU

factorization, which is useful in certain situations. LetD denote the diagonal matrix having
the same diagonal entries as U ; in other words, D has the pivots on its diagonal and zeros
everywhere else. Let V be the special upper triangular matrix obtained from U by dividing
each row by its pivot, so that V has all 1’s on the diagonal. We already encountered V

during the course of the Gauss–Jordan method. It is easily seen that U = DV , which
implies the following result.

Theorem 1.27. A matrix A is regular if and only if it admits a factorization

A = LDV, (1.44)

where L is special lower triangular matrix, D is a diagonal matrix having the nonzero

pivots on the diagonal, and V is special upper triangular.

1/12/04 27 c© 2003 Peter J. Olver



For the matrix appearing in Example 1.5, we have U = DV , where

U =



2 1 1
0 3 0
0 0 −1


 , D =



2 0 0
0 3 0
0 0 −1


 , V =



1 1

2
1
2

0 1 0
0 0 1


 ,

producing the A = LDV factorization



2 1 1
4 5 2
2 −2 0


 =



1 0 0
2 1 0
1 −1 1





2 0 0
0 3 0
0 0 −1





1 1

2
1
2

0 1 0
0 0 1


 .

Proposition 1.28. If A = LU is regular, then the factors L and U are each uniquely

determined. The same holds for its A = LDV factorization.

Proof : Suppose LU = L̃ Ũ . Since the diagonal entries of all four matrices are non-
zero, Lemma 1.25 implies that they are invertible. Therefore,

L̃−1L = L̃−1LU U−1 = L̃−1L̃ Ũ U−1 = Ũ U−1. (1.45)

The left hand side of the matrix equation (1.45) is the product of two special lower trian-
gular matrices, and so, according to Lemma 1.2, is itself special lower triangular — with
1’s on the diagonal. The right hand side is the product of two upper triangular matrices,
and hence is itself upper triangular. Comparing the individual entries, the only way such a
special lower triangular matrix could equal an upper triangular matrix is if they both equal
the diagonal identity matrix. Therefore, L̃−1L = I = Ũ U−1, which implies that L̃ = L

and Ũ = U , and proves the result. The LDV version is an immediate consequence. Q.E.D.

As you may have guessed, the more general cases requiring one or more row inter-
changes lead to a permuted LDV factorization in the following form.

Theorem 1.29. A matrix A is nonsingular if and only if there is a permutation

matrix P such that

P A = LDV, (1.46)
where L,D, V are as before.

Uniqueness does not hold for the more general permuted factorizations (1.29), (1.46)
since there may be various permutation matrices that place a matrix A in regular form
P A; see Exercise for an explicit example. Moreover, unlike the regular case, the pivots,
i.e., the diagonal entries of U , are no longer uniquely defined, but depend on the particular
combination of row interchanges employed during the course of the computation.

1.6. Transposes and Symmetric Matrices.

Another basic operation on a matrix is to interchange its rows and columns. If A is
an m × n matrix, then its transpose, denoted AT , is the n ×m matrix whose (i, j) entry
equals the (j, i) entry of A; thus

B = AT means that bij = aji.
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For example, if

A =

(
1 2 3
4 5 6

)
, then AT =



1 4
2 5
3 6


 .

Note that the rows of A are the columns of AT and vice versa. In particular, the transpose
of a row vector is a column vector, while the transpose of a column vector is a row vector.

For example, if v =



1
2
3


, then vT = ( 1 2 3 ).

The transpose of a scalar, considered as a 1× 1 matrix, is itself: cT = c for c ∈ R.

Remark : Most vectors appearing in applied mathematics are column vectors. To
conserve vertical space in this text, we will often use the transpose notation, e.g., v =
( v1 v2 v3 )

T
, as a compact way of writing column vectors.

In the square case, transpose can be viewed as “reflecting” the matrix entries across
the main diagonal. For example,



1 2 −1
3 0 5
−2 −4 8



T

=



1 3 −2
2 0 −4
−1 5 8


 .

In particular, the transpose of a lower triangular matrix is upper triangular and vice-versa.

Performing the transpose twice gets you back to where you started:

(AT )T = A. (1.47)

Unlike the inverse, the transpose is compatible with matrix addition and scalar multipli-
cation:

(A+B)T = AT +BT , (cA)T = cAT . (1.48)

The transpose is also compatible with matrix multiplication, but with a twist. Like the
inverse, the transpose reverses the order of multiplication:

(AB)T = BTAT . (1.49)

The proof of (1.49) is a straightforward consequence of the basic laws of matrix multipli-
cation. An important special case is the product between a row vector vT and a column
vector w. In this case,

vTw = (vTw)T = wTv, (1.50)

because the product is a scalar and so equals its own transpose.

Lemma 1.30. The operations of transpose and inverse commute. In other words, if

A is invertible, so is AT , and its inverse is

A−T ≡ (AT )−1 = (A−1)T . (1.51)
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Proof : Let Y = (A−1)T . Then, according to (1.49),

Y AT = (A−1)TAT = (AA−1)T = I T = I .

The proof that AT Y = I is similar, and so we conclude that Y = (AT )−1. Q.E.D.

Factorization of Symmetric Matrices

The most important class of square matrices are those that are unchanged by the
transpose operation.

Definition 1.31. A square matrix is symmetric if it equals its own transpose: A =
AT .

Thus, A is symmetric if and only if its entries satisfy aji = aij for all i, j. In other
words, entries lying in “mirror image” positions relative to the main diagonal must be
equal. For example, the most general symmetric 3× 3 matrix has the form

A =




a b c

b d e

c e f


 .

Note that any diagonal matrix, including the identity, is symmetric. A lower or upper
triangular matrix is symmetric if and only if it is, in fact, a diagonal matrix.

The LDV factorization of a nonsingular matrix takes a particularly simple form if
the matrix also happens to be symmetric. This result will form the foundation of some
significant later developments.

Theorem 1.32. A symmetric matrix A is regular if and only if it can be factored as

A = LDLT , (1.52)

where L is a special lower triangular matrix and D is a diagonal matrix with nonzero

diagonal entries.

Proof : We already know, according to Theorem 1.27, that we can factorize

A = LDV. (1.53)

We take the transpose of both sides of this equation and use the fact that the tranpose of
a matrix product is the product of the transposes in the reverse order, whence

AT = (LDV )T = V TDTLT = V TDLT , (1.54)

where we used the fact that a diagonal matrix is automatically symmetric, DT = D. Note
that V T is special lower triangular, and LT is special upper triangular. Therefore (1.54)
gives the LDV factorization of AT .

In particular, if A = AT , then we can invoke the uniqueness of the LDV factorization,
cf. Proposition 1.28, to conclude that L = V T , and V = LT , (which are two versions of
the same equation). Replacing V by LT in (1.53) proves the factorization (1.52). Q.E.D.
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Example 1.33. Let us find the LDLT factorization of the particular symmetric

matrix A =



1 2 1
2 6 1
1 1 4


. This is done by performing the usual Gaussian elimination

algorithm. Subtracting twice the first row from the second and also the first row from the

third produces the matrix



1 2 1
0 2 −1
0 −1 3


. We then add one half of the second row of

the latter matrix to its third row, resulting in the upper triangular form

U =



1 2 1
0 2 −1
0 0 5

2


 =



1 0 0
0 2 0
0 0 5

2





1 2 1
0 1 −

1
2

0 0 1


 = DV,

which we further factorize by dividing each row of U by its pivot. On the other hand, the

special lower triangular matrix associated with the row operations is L =



1 0 0
2 1 0
1 −

1
2 1


,

which, as guaranteed by Theorem 1.32, is the transpose of V = LT . Therefore, the desired
A = LU = LDLT factorizations of this particular symmetric matrix are


1 2 1
2 6 1
1 1 4


=



1 0 0
2 1 0
1 −

1
2 1





1 2 1
0 2 −1
0 0 5

2


=



1 0 0
2 1 0
1 −

1
2 1





1 0 0
0 2 0
0 0 5

2





1 2 1
0 1 −

1
2

0 0 1


 .

Example 1.34. Let us look at a general 2× 2 symmetric matrix

A =

(
a b

b c

)
. (1.55)

Regularity requires that the first pivot be a 6= 0. A single row operation will place A in

upper triangular form U =


 a c

0
ac− b2

a


. The associated lower triangular matrix is

L =

(
1 0
b
a
1

)
. Thus, A = LU . Finally, D =

(
a 0

0
ac− b2

a

)
is just the diagonal part of

U , and we find U = DLT , so that the LDLT factorization is explicitly given by

(
a b

b c

)
=

(
1 0
b
a
1

) (
a 0

0
ac− b2

a

) (
1

b
a

0 1

)
. (1.56)

Remark : If A = LDLT , then A is necessarily symmetric. Indeed,

AT = (LD LT )T = (LT )TDTLT = LD LT = A.

However, not every symmetric matrix has an LDLT factorization. A simple example is

the irregular but invertible 2× 2 matrix

(
0 1
1 0

)
.
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1.7. Practical Linear Algebra.

For pedagogical reasons, the examples and exercise that have been used to illustrate
the algorithms are all based on rather small (2×2 or 3×3) matrices. In such cases, or even
for matrices of moderate size, the differences between the various approaches to solving
linear systems (Gauss, Gauss–Jordan, matrix inverse, etc.) are relatively unimportant,
particularly if one has a decent computer or even hand calculator to perform the tedious
parts. However, real-world applied mathematics deals with much larger linear systems,
and the design of efficient algorithms is critical. For example, numerical solutions of or-
dinary differential equations will typically lead to matrices with hundreds or thousands of
entries, while numerical solution of partial differential equations arising in fluid and solid
mechanics, weather prediction, image and video processing, chemical reactions, quantum
mechanics, molecular dynamics, and many other areas will often lead to matrices with
millions of entries. It is not hard for such systems to tax even the most sophisticated
supercomputer. Thus, it is essential that we look into the computational details of com-
peting algorithms in order to compare their efficiency, and thereby gain some experience
with the issues underlying the design of high performance numerical algorithms.

The most basic question is: how many arithmetic operations are required for each of
our algorithms? We shall keep track of additions and multiplications separately, since the
latter typically take slightly longer to perform in a computer processor. However, we shall
not distinguish between addition and subtraction, nor between multiplication and division,
as these typically rely on the same floating point algorithm. We shall also assume that
the matrices and vectors are generic, with few, if any, zero entries. Modifications of the
basic algorithms for sparse matrices, meaning those that have lots of zero entries, are an
important topic of research, since these include many of the large matrices that appear
in applications to differential equations. We refer the interested reader to more advanced
numerical linear algebra texts, e.g., [121, 119], for further developments.

First, for ordinary multiplication of an n× n matrix A and a vector b, each entry of
the product Ab requires n multiplications of the form aij bj and n − 1 additions to sum

the resulting products. Since there are n entries, this means a total of n2 multiplications
and n(n − 1) = n2

− n additions. Thus, for a matrix of size n = 100, one needs about
10, 000 distinct multiplications and a similar (but slightly fewer) number of additions. If
n = 1, 000, 000 = 106 then n2 = 1012, which is phenomenally large, and the total time
required to perform the computation becomes a significant issue†.

Let us look at the regular Gaussian Elimination algorithm, referring back to our
program. First, we count how many arithmetic operations are based on the jth pivot
mjj . For each of the n− j rows lying below it, we must perform one division to compute
the factor lij = mij/mjj used in the elementary row operation. The entries in the column
below the pivot will be made equal to zero automatically, and so we need only compute the
updated entries lying below and to the right of the pivot. There are (n−j)2 such entries in
the coefficient matrix and an additional n− j entries in the last column of the augmented
matrix. Let us concentrate on the former for the moment. For each of these, we replace

† See [31] for more sophisticated computational methods to speed up matrix multiplication.
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mik by mik− lij mjk, and so must perform one multiplication and one addition. Therefore,
for the jth pivot there are a total of (n − j)(n − j + 1) multiplications — including the
initial n− j divisions needed to produce the lij — and (n− j)2 additions needed to update
the coefficient matrix. Therefore, to reduce a regular n × n matrix to upper triangular
form requires a total‡ of

n∑

j=1

(n− j)(n− j + 1) =
n3
− n

3
multiplications, and (1.57)

n∑

j=1

(n− j)2 =
2n3

− 3n2 + n

6
additions. (1.58)

Thus, when n is large, both require approximately 1
3 n3 operations.

We should also be keeping track of the number of operations on the right hand side
of the system. No pivots appear there, and so there are

n∑

j=1

(n− j) =
n2
− n

2
(1.59)

multiplications and the same number of additions required to produce the right hand side
in the resulting triangular system U x = c. For large n, this number is considerably smaller
than the coefficient matrix totals (1.57), (1.58).

The next phase of the algorithm can be similarly analyzed. To find the value of

xj =
1

ujj


cj −

n∑

i=j+1

uji xi




once we have computed xj+1, . . . , xn, requires n− j+1 multiplications/divisions and n− j

additions. Therefore, the Back Substitution phase of the algorithm requires

n∑

j=1

(n− j + 1) =
n2 + n

2
multiplications, and

n∑

j=1

(n− j) =
n2
− n

2
additions. (1.60)

For n large, both of these are approximately equal to 1
2 n2. Comparing these results, we

conclude that the bulk of the computational effort goes into the reduction of the coefficient
matrix to upper triangular form.

Forward substitution, to solve Lc = b, has the same operations count, except that
since the diagonal entries of L are all equal to 1, no divisions are required, and so we use a
total of 1

2 (n
2
− n) multiplications and the same number of additions. Thus, once we have

computed the LU decomposition of the matrix A, the Forward and Back Substitution
process requires about n2 arithmetic operations of the two types, which is the same as the

‡ In Exercise the reader is asked to prove these summation formulae by induction.
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number of operations needed to perform the matrix multiplication A−1b. Thus, even if
we know the inverse of the coefficient matrix A, it is still just as efficient to use Forward
and Back Substitution to compute the solution!

As noted above, the computation of L and U requires about 1
3 n3 arithmetic operations

of each type. On the other hand, to complete the full-blown Gauss–Jordan elimination
scheme, we must perform all the elementary row operations on the large augmented matrix,
which has size n×2n. Therefore, during the reduction to upper triangular form, there are
an additional 1

2 n3 operations of each type required. Moreover, we then need to perform
an additional 1

3 n3 operations to reduce U to the identity matrix, and a corresponding 1
2 n3

operations on the right hand matrix, too. (All these are approximate totals, based on
the leading term in the actual count.) Therefore, Gauss–Jordan requires a grand total of
5
3 n3 operations to complete, just to find A−1; multiplying the right hand side to obtain
the solution x = A−1b involves another n2 operations. Thus, the Gauss–Jordan method
requires approximately five times as many arithmetic operations, and so would take five
times as long to complete, as compared to the more elementary Gaussian Elimination and
Back Substitution algorithm. These observations serve to justify our earlier contention
that matrix inversion is inefficient, and should never be used to solve linear systems in
practice.

Tridiagonal Matrices

Of course, in special cases, the arithmetic operation count might be considerably
reduced, particularly if A is a sparse matrix with many zero entries. A number of special-
ized techniques have been designed to handle such sparse linear systems. A particularly
important class are the tridiagonal matrices

A =




q1 r1

p1 q2 r2

p2 q3 r3

. . .
. . .

. . .

pn−2 qn−1 rn−1

pn−1 qn




(1.61)

with all entries zero except for those on the main diagonal, ai,i = qi, on the subdiagonal ,
meaning the n − 1 entries ai+1,i = pi immediately below the main diagonal, and the
superdiagonal , meaning the entries ai,i+1 = ri immediately above the main diagonal. (Zero
entries are left blank.) Such matrices arise in the numerical solution of ordinary differential
equations and the spline fitting of curves for interpolation and computer graphics. If
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A = LU is regular, it turns out that the factors are lower and upper bidiagonal matrices,

L =




1
l1 1

l2 1
. . .

. . .

ln−2 1
ln−1 1




, U =




d1 u1

d2 u2

d3 u3

. . .
. . .

dn−1 un−1

dn




.

(1.62)
Multiplying out LU , and equating the result to A leads to the equations

d1 = q1, u1 = r1, l1 d1 = p1,

l1 u1 + d2 = q2, u2 = r2, l2 d2 = p2,

...
...

...

lj−1 uj−1 + dj = qj , uj = rj , lj dj = pj ,

...
...

...

ln−2 un−2 + dn−1 = qn−1, un−1 = rn−1, ln−1 dn−1 = pn−1,

ln−1 un−1 + dn = qn.

(1.63)

These elementary algebraic equations can be successively solved for the entries of L and U

in the order d1, u1, l1, d2, u2, l2, d3, u3 . . . . The original matrix A is regular provided none
of the diagonal entries d1, d2, . . . are zero, which allows the recursive procedure to proceed.

Once the LU factors are in place, we can apply Forward and Back Substitution to solve
the tridiagonal linear system Ax = b. We first solve Lc = b by Forward Substitution,
which leads to the recursive equations

c1 = b1, c2 = b2 − l1 c1, . . . cn = bn − ln−1 cn−1. (1.64)

We then solve U x = c by Back Substitution, again recursively:

xn =
cn
dn

, xn−1 =
cn−1 − un−1 xn

dn−1

, . . . x1 =
c1 − u1 x2

d1

. (1.65)

As you can check, there are a total of 5n − 4 multiplications/divisions and 3n − 3 addi-
tions/subtractions required to solve a general tridiagonal system of n linear equations —
a striking improvement over the general case.

Example 1.35. Consider the n× n tridiagonal matrix

A =




4 1
1 4 1
1 4 1
1 4 1

. . .
. . .
. . .

1 4 1
1 4
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in which the diagonal entries are all qi = 4, while the entries immediately above and below
the main diagonal are all pi = ri = 1. According to (1.63), the tridiagonal factorization
(1.62) has u1 = u2 = . . . = un−1 = 1, while

d1 = 4, lj = 1/dj , dj+1 = 4− lj , j = 1, 2, . . . , n− 1.

The computed values are
j 1 2 3 4 5 6 7

dj 4 3.75 3.733333 3.732143 3.732057 3.732051 3.732051

lj .25 .266666 .267857 .267942 .267948 .267949 .267949

These converge rapidly to

dj −→ 2 +
√

3 = 3.732051 . . . , lj −→ 2−
√

3 = .2679492 . . . ,

which makes the factorization for large n almost trivial. The numbers 2 ±
√
3 are the

roots of the quadratic equation x2
− 4x+1 = 0; an explanation of this observation will be

revealed in Chapter 19.

Pivoting Strategies

Let us now consider the practical side of pivoting. As we know, in the irregular
situations when a zero shows up in a diagonal pivot position, a row interchange is required
to proceed with the elimination algorithm. But even when a nonzero element appear in
the current pivot position, there may be good numerical reasons for exchanging rows in
order to install a more desirable element in the pivot position. Here is a simple example:

.01x+ 1.6 y = 32.1, x+ .6 y = 22. (1.66)

The exact solution to the system is x = 10, y = 20. Suppose we are working with a
very primitive calculator that only retains 3 digits of accuracy. (Of course, this is not
a very realistic situation, but the example could be suitably modified to produce similar
difficulties no matter how many digits of accuracy our computer retains.) The augmented
matrix is (

.01 1.6
1 .6

∣∣∣∣
32.1
22

)
.

Choosing the (1, 1) entry as our pivot, and subtracting 100 times the first row from the
second produces the upper triangular form

(
.01 1.6
0 −159.4

∣∣∣∣
32.1
−3188

)
.

Since our calculator has only three–place accuracy, it will round the entries in the second
row, producing the augmented coefficient matrix

(
.01 1.6
0 −159.0

∣∣∣∣
32.1
−3190

)
.
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Gaussian Elimination With Partial Pivoting

start

for i = 1 to n

set σ(i) = i

next i

for j = 1 to n

if mσ(i),j = 0 for all i ≥ j, stop; print “A is singular”

choose i > j such that mσ(i),j is maximal

interchange σ(i)←→ σ(j)

for i = j + 1 to n

set lσ(i)j = mσ(i)j/mσ(j)j

for k = j + 1 to n+ 1

set mσ(i)k = mσ(i)k − lσ(i)jmσ(j)k

next k

next i

next j

end

The solution by back substitution gives y =
3190

159
= 20.0628 . . . ' 20.1, and then

x = 100 (32.1− 1.6 y) = 100 (32.1− 32.16) ' 100 (32.1− 32.2) = −10. The relatively small
error in y has produced a very large error in x — not even its sign is correct!

The problem is that the first pivot, .01, is much smaller than the other element, 1,
that appears in the column below it. Interchanging the two rows before performing the row
operation would resolve the difficulty — even with such an inaccurate calculator! After
the interchange, we have (

1 .6
.01 1.6

∣∣∣∣
22
32.1

)
,

which results in the rounded-off upper triangular form
(
1 .6
0 1.594

∣∣∣∣
22
31.88

)
'

(
1 .6
0 1.59

∣∣∣∣
22
31.9

)
.

The solution by back substitution now gives a respectable answer:

y = 31.9/1.59 = 20.0628 . . . ' 20.1, x = 22− .6 y = 22− 12.06 ' 22− 12.1 = 9.9.

The general strategy, known as Partial Pivoting , says that at each stage, we should
use the largest legitimate (i.e., lying on or below the diagonal) element as the pivot, even
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if the diagonal element is nonzero. In a computer implementation of pivoting, there is no
need to waste processor time physically exchanging the row entries in memory. Rather,
one introduces a separate array of pointers that serve to indicate which original row is
currently in which permuted position. More specifically, one initializes n row pointers
σ(1) = 1, . . . , σ(n) = n. Interchanging row i and row j of the coefficient or augmented
matrix is then accomplished by merely interchanging σ(i) and σ(j). Thus, to access a
matrix element that is currently in row i of the augmented matrix, one merely retrieves
the element that is in row σ(i) in the computer’s memory. An explicit implementation of
this strategy is provided below. A program for partial pivoting that includes row pointers
appears above.

Partial pivoting will solve most problems, although there can still be difficulties. For
instance, it will not handle the system

10x+ 1600 y = 3210, x+ .6 y = 22,

obtained by multiplying the first equation in (1.66) by 1000. The tip-off is that, while the
entries in the column containing the pivot are smaller, those in its row are much larger. The
solution to this difficulty is Full Pivoting, in which one also performs column interchanges
— preferably with a column pointer — to move the largest legitimate element into the
pivot position. In practice, a column interchange is just a reordering of the variables in
the system, which, as long as one keeps proper track of the order, also doesn’t change the
solutions.

Finally, there are some matrices that are hard to handle even with pivoting tricks.
Such ill-conditioned matrices are typically characterized by being “almost” singular†. A
famous example of an ill-conditioned matrix is the n× n Hilbert matrix

Hn =




1
1
2

1
3

1
4

. . .
1
n

1
2

1
3

1
4

1
5

. . .
1

n+ 1
1
3

1
4

1
5

1
6

. . .
1

n+ 2
1
4

1
5

1
6

1
7

. . .
1

n+ 3
...

...
...

...
. . .

...

1
n

1
n+ 1

1
n+ 2

1
n+ 3

. . .
1

2n− 1




. (1.67)

In Proposition 3.36 we will prove that Hn is nonsingular for all n. However, the solution of
a linear system whose coefficient matrix is a Hilbert matrix Hn, even for moderately sized
n, is a very challenging problem, even if one uses high precision computer arithmetic‡.

† This can be quantified by saying that their determinant is very small, but non-zero; see also
Sections 8.5 and 10.3.

‡ In computer algebra systems such asMaple orMathematica, one can use exact rational
arithmetic to perform the computations. Then the important issues are time and computational
efficiency.
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This is because the larger n is, the closer Hn is, in a sense, to being singular.

The reader is urged to try the following computer experiment. Fix a moderately large
value of n, say 20. Choose a column vector x with n entries chosen at random. Compute
b = Hn x directly. Then try to solve the system Hn x = b by Gaussian Elimination. If
it works for n = 20, try n = 50 or 100. This will give you a good indicator of the degree
of precision used by your computer program, and the accuracy of the numerical solution
algorithm.

1.8. General Linear Systems.

So far, we have only treated linear systems involving the same number of equations as
unknowns, and then only those with nonsingular coefficient matrices. These are precisely
the systems that always have a unique solution. We now turn to the problem of solving
a general linear system of m equations in n unknowns. The cases not covered as yet
are rectangular systems, with m 6= n, as well as square systems with singular coefficient
matrices. The basic idea underlying the Gaussian Elimination Algorithm for nonsingular
systems can be straightforwardly adapted to these cases, too. One systematically utilizes
the same elementary row operations so as to manipulate the coefficient matrix into a
particular reduced form generalizing the upper triangular form we aimed for in the earlier
square, nonsingular cases.

Definition 1.36. An m × n matrix is said to be in row echelon form if it has the
following “staircase” structure:

U =




©∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . . . . ∗ ∗ ∗ . . . ∗

0 0 . . . 0 ©∗ . . . ∗ ∗ . . . . . . ∗ ∗ ∗ . . . ∗

0 0 . . . 0 0 . . . 0 ©∗ . . . . . . ∗ ∗ ∗ . . . ∗

...
...
. . .

...
...
. . .

...
...

. . .
...
...
. . .

...

0 0 . . . 0 0 . . . 0 0 . . . . . . 0 ©∗ ∗ . . . ∗

0 0 . . . 0 0 . . . 0 0 . . . . . . 0 0 0 . . . 0
...

...
. . .

...
...
. . .

...
...

. . .
. . .

...
...
...
. . .

...
0 0 . . . 0 0 . . . 0 0 . . . . . . 0 0 0 . . . 0




The entries indicated by ©∗ are the pivots, and must be nonzero. The first r rows of U

each contain one pivot, but not all columns need to contain a pivot. The entries below the
“staircase”, indicated by the solid line, are all zero, while the non-pivot entries above the
staircase, indicated by stars, can be anything. The last m−r rows are identically zero, and
do not contain any pivots. Here is an explicit example of a matrix in row echelon form:




3 1 0 2 5 −1
0 −1 −2 1 8 0
0 0 0 0 2 −4
0 0 0 0 0 0




1/12/04 39 c© 2003 Peter J. Olver



The three pivots, which are the first three nonzero entries in the nonsero rows, are, re-
spectively, 3,−1, 2. There may, in exceptional situations, be one or more initial all zero
columns.

Proposition 1.37. Any matrix can be reduced to row echelon form by a sequence

of elementary row operations of Types #1 and #2.

In matrix language, Proposition 1.37 implies that if A is any m×n matrix, then there
exists an m ×m permutation matrix P and an m ×m special lower triangular matrix L

such that
P A = LU, (1.68)

where U is in row echelon form. The factorization is not unique.

A constructive proof of this result is based on the general Gaussian elimination algo-
rithm, which proceeds as follows. Starting at the top left of the matrix, one searches for
the first column which is not identically zero. Any of the nonzero entries in that column
may serve as the pivot. Partial pivoting indicates that it is probably best to choose the
largest one, although this is not essential for the algorithm to proceed. One places the
chosen pivot in the first row of the matrix via a row interchange, if necessary. The entries
below the pivot are made equal to zero by the appropriate elementary row operations of
Type #1. One then proceeds iteratively, performing the same reduction algorithm on the
submatrix consisting of all entries strictly to the right and below the pivot. The algorithm
terminates when either there is a pivot in the last row, or all of the rows lying below the
last pivot are identically zero, and so no more pivots can be found.

Example 1.38. Let us illustrate the general Gaussian Elimination algorithm with a
particular example. Consider the linear system

x+ 3y + 2z − u = a,

2x+ 6y + z + 4u+ 3v = b,

−x− 3y − 3z + 3u+ v = c,

3x+ 9y + 8z − 7u+ 2v = d,

(1.69)

of 4 equations in 5 unknowns, where a, b, c, d are specified numbers†. The coefficient matrix
is

A =




1 3 2 −1 0
2 6 1 4 3
−1 −3 −3 3 1
3 9 8 −7 2


. (1.70)

To solve the system, we introduce the augmented matrix



1 3 2 −1 0
2 6 1 4 3
−1 −3 −3 3 1
3 9 8 −7 2

∣∣∣∣∣∣∣

a

b

c

d




† It will be convenient to work with the right hand side in general form, although the reader
may prefer, at least initially, to assign specific values to a, b, c, d.
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obtained by appending the right hand side of the system. The upper left entry is nonzero,
and so can serve as the first pivot; we eliminate the entries below it by elementary row
operations, resulting in




1 3 2 −1 0
0 0 −3 6 3
0 0 −1 2 1
0 0 2 −4 2

∣∣∣∣∣∣∣

a

b− 2a
c+ a

d− 3a


 .

Now, the second column contains no suitable nonzero entry to serve as the second pivot.
(The top entry already lies in a row with a pivot in it, and so cannot be used.) Therefore,
we move on to the third column, choosing the (2, 3) entry, −3, as our second pivot. Again,
we eliminate the entries below it, leading to




1 3 2 −1 0
0 0 −3 6 3
0 0 0 0 0

0 0 0 0 4

∣∣∣∣∣∣∣∣

a

b− 2a
c− 1

3 b+ 5
3 a

d+ 2
3 b− 13

3 a


 .

The final pivot is in the last column, and we interchange the last two rows in order to
place the coefficient matrix in row echelon form:




1 3 2 −1 0
0 0 −3 6 3
0 0 0 0 4

0 0 0 0 0

∣∣∣∣∣∣∣∣

a

b− 2a
d+ 2

3 b− 13
3 a

c− 1
3 b+ 5

3 a


 . (1.71)

There are three pivots, −1,−3, 4, sitting in positions (1, 1), (2, 3) and (3, 5). Note the
staircase form, with the pivots on the steps and everything below the staircase being zero.
Recalling the row operations used to construct the solution (and keeping in mind that
the row interchange that appears at the end also affects the entries of L), we find the
factorization (1.68) has the explicit form




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







1 3 2 −1 0
2 6 1 4 3
−1 −3 −3 3 1
3 9 8 −7 2


 =




1 0 0 0
2 1 0 0
3 −

2
3 1 0

−1 1
3 0 1







1 3 2 −1 0
0 0 −3 6 3
0 0 0 0 4
0 0 0 0 0




We shall return to find the solution to our system after a brief theoretical interlude.

Warning : In the augmented matrix, pivots can never appear in the last column,
representing the right hand side of the system. Thus, even if c− 1

3 b+ 5
3 a 6= 0, that entry

does not qualify as a pivot.

We now introduce the most important numerical quantity associated with a matrix.

Definition 1.39. The rank of a matrix A is the number of pivots.
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For instance, the rank of the matrix (1.70) equals 3, since its reduced row echelon
form, i.e., the first five columns of (1.71), has three pivots. Since there is at most one pivot
per row and one pivot per column, the rank of an m×n matrix is bounded by both m and
n, and so 0 ≤ r ≤ min{m,n}. The only matrix of rank 0 is the zero matrix, which has no
pivots.

Proposition 1.40. A square matrix of size n × n is nonsingular if and only if its

rank is equal to n.

Indeed, the only way an n×n matrix can end up having n pivots is if its reduced row
echelon form is upper triangular with nonzero diagonal entries. But a matrix that reduces
to such triangular form is, by definition, nonsingular.

Interestingly, the rank of a matrix does not depend on which elementary row oper-
ations are performed along the way to row echelon form. Indeed, performing a different
sequence of row operations — say using partial pivoting versus no pivoting — can produce
a completely different row echelon form. The remarkable fact, though, is that all such row
echelon forms end up having exactly the same number of pivots, and this number is the
rank of the matrix. A formal proof of this fact will appear in Chapter 2.

Once the coefficient matrix has been reduced to row echelon form, the solution pro-
ceeds as follows. The first step is to see if there are any incompatibilities. Suppose one
of the rows in the row echelon form of the coefficient matrix is identically zero, but the
corresponding entry in the last column of the augmented matrix is nonzero. What linear
equation would this represent? Well, the coefficients of all the variables are zero, and so
the equation is of the form 0 = c, where c, the number on the right hand side of the
equation, is the entry in the last column. If c 6= 0, then the equation cannot be satisfied.
Consequently, the entire system has no solutions, and is an incompatible linear system.
On the other hand, if c = 0, then the equation is merely 0 = 0, and so is trivially satisfied.
For example, the last row in the echelon form (1.71) is all zero, and hence the last entry in
the final column must also vanish in order that the system be compatible. Therefore, the
linear system (1.69) will have a solution if and only if the right hand sides a, b, c, d satisfy
the linear constraint

5
3 a− 1

3 b+ c = 0. (1.72)

In general, if the system is incompatible, there is nothing else to do. Otherwise,
every zero row in the echelon form of the augmented matrix also has a zero entry in the
last column, and the system is compatible, so one or more solutions exist. To find the
solution(s), we work backwards, starting with the last row that contains a pivot. The
variables in the system naturally split into two classes.

Definition 1.41. In a linear system U x = c in row echelon form, the variables
corresponding to columns containing a pivot are called basic variables, while the variables
corresponding to the columns without a pivot are called free variables.

The solution to the system proceeds by a version of the Back Substitution procedure.
The nonzero equations are solved, in reverse order, for the basic variable corresponding to
its pivot. Each result is substituted into the preceding equations before they in turn are
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solved. The remaining free variables, if any, are allowed to take on any values whatsoever,
and the solution then specifies all the basic variables in terms of the free variables, which
serve to parametrize the general solution.

Example 1.42. Let us illustrate this construction with our particular example.
Assuming the compatibility condition (1.72), the reduced augmented matrix (1.71) is




1 3 2 −1 0
0 0 −3 6 3
0 0 0 0 4

0 0 0 0 0

∣∣∣∣∣∣∣∣

a

b− 2a
d+ 2

3 b− 13
3 a

0


 .

The pivots are found in columns 1, 3, 5, and so the corresponding variables, x, z, v, are
basic; the other variables, y, u, are free. We will solve the reduced system for the basic
variables in terms of the free variables.

As a specific example, the values a = 0, b = 3, c = 1, d = 1, satisfy the compatibil-
ity constraint (1.72). The resulting augmented echelon matrix (1.71) corresponds to the
system

x+ 3y + 2z − u = 0,

−3z + 6u+ 3v = 3,

4v = 3,

0 = 0.

We now solve the equations, in reverse order, for the basic variables, and then substitute
the resulting values in the preceding equations. The result is the general solution

v = 3
4 , z = −1 + 2u+ v = − 1

4 + 2u, x = −3y − 2z + u = 1
2 − 3y − 3u.

The free variables y, u are completely arbitrary; any value they assume will produce a
solution to the original system. For instance, if y = −2, u = 1 − π, then x = 3π + 7

2 ,
z = 7

4 − 2π, v = 3
4 . But keep in mind that this is merely one of an infinite number of

different solutions.

In general, if the m × n coefficient matrix of a system of m linear equations in n

unknowns has rank r, there are m − r all zero rows in the row echelon form, and these
m−r equations must have zero right hand side in order that the system be compatible and
have a solution. Moreover, there are a total of r basic variables and n − r free variables,
and so the general solution depends upon n− r parameters.

Summarizing the preceding discussion, we have learned that there are only three
possible outcomes for the solution to a general linear system.

Theorem 1.43. A system Ax = b of m linear equations in n unknowns has either

(i) exactly one solution, (ii) no solutions, or (iii) infinitely many solutions.

Case (ii) occurs if the system is incompatible, producing a zero row in the echelon
form that has a nonzero right hand side. Case (iii) occurs if the system is compatible and
there are one or more free variables. This happens when the system is compatible and the
rank of the coefficient matrix is strictly less than the number of columns: r < n. Case
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(i) occurs for nonsingular square coefficient matrices, and, more generally, for compatible
systems for which r = n, implying there are no free varaibles. Since r ≤ m, this case can
only arise if the coefficient matrix has at least as many rows as columns, i.e., the linear
system has at least as many equations as unknowns.

A linear system can never have a finite number — other than 0 or 1 — of solutions.
Thus, any linear system that has more than one solution automatically has infinitely many.
This result does not apply to nonlinear systems. As you know, a real quadratic equation
ax2 + bx+ c = 0 can have either 2, 1, or 0 real solutions.

Example 1.44. Consider the linear system

y + 4z = a, 3x− y + 2z = b, x+ y + 6z = c,

consisting of three equations in three unknowns. The augmented coefficient matrix is


0 1 4
3 −1 2
1 1 6

∣∣∣∣∣∣

a

b

c


 .

Interchanging the first two rows, and then eliminating the elements below the first pivot
leads to 


3 −1 2
0 1 4
0 4

3
16
3

∣∣∣∣∣∣

b

a

c− 1
3 b


 .

The second pivot is in the (2, 2) position, but after eliminating the entry below it, we find
the row echelon form to be



3 −1 2
0 1 4
0 0 0

∣∣∣∣∣∣

b

a

c− 1
3 b− 4

3 a


 .

Since we have a row of all zeros, the original coefficient matrix is singular, and its rank is
only 2.

The compatibility condition for the system follows from this last row in the reduced
echelon form, and so requires

4
3 a+ 1

3 b− c = 0.

If this is not satisfied, the system has no solutions; otherwise it has infinitely many. The
free variable is z, since there is no pivot in the third column. The general solution is

y = a− 4z, x = 1
3 b+ 1

3 y − 2
3 z = 1

3 a+ 1
3 b− 2z,

where z is arbitrary.

Geometrically, Theorem 1.43 is indicating something about the possible configurations
of linear subsets (lines, planes, etc.) of an n-dimensional space. For example, a single linear
equation ax+ by + cz = d defines a plane P in three-dimensional space. The solutions to
a system of three linear equations in three unknowns is the intersection P1 ∩ P2 ∩ P3 of
three planes. Generically, three planes intersect in a single common point; this is case (i)
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No Solution Unique Solution Infinite # Solutions

Figure 1.1. Intersecting Planes.

of the theorem, and occurs if and only if the coefficient matrix is nonsingular. The case of
infinitely many solutions occurs when the three planes intersect on a common line, or, even
more degenerately, when they all coincide. On the other hand, parallel planes, or planes
intersecting in parallel lines, have no common point of intersection, and this corresponds
to the third case of a system with no solutions. Again, no other possibilities occur; clearly
one cannot have three planes having exactly 2 points in their common intersection — it is
either 0, 1 or ∞. Some possible geometric configurations are illustrated in Figure 1.1.

Homogeneous Systems

A linear system with all 0’s on the right hand side is called a homogeneous system. In
matrix notation, a homogeneous system takes the form

Ax = 0. (1.73)

Homogeneous systems are always compatible, since x = 0 is a solution, known as the trivial
solution. If the homogeneous system has a nontrivial solution x 6= 0, then Theorem 1.43
assures that it must have infinitely many solutions. This will occur if and only if the
reduced system has one or more free variables. Thus, we find:

Theorem 1.45. A homogeneous linear system Ax = 0 of m equations in n un-

knowns has a nontrivial solution x6= 0 if and only if the rank of A is r < n. If m < n, the

system always has a nontrivial solution. If m = n, the system has a nontrivial solution if

and only if A is singular.

Example 1.46. Consider the homogeneous linear system

2x1 + x2 + 5x4 = 0, 4x1 + 2x2 − x3 + 8x4 = 0, −2x1 − x2 + 3x3 − 4x4 = 0,

with coefficient matrix

A =



2 1 0 5
4 2 −1 8
−2 −1 3 −4


.

Since the system is homogeneous and has fewer equations than unknowns, Theorem 1.45
assures us that it has infinitely many solutions, including the trivial solution x1 = x2 =
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x3 = x4 = 0. When solving a homogeneous system, the final column of the augmented
matrix consists of all zeros. As it will never be altered by row operations, it is a waste of
effort to carry it along during the process. We therefore perform the Gaussian Elimination
algorithm directly on the coefficient matrix A. Working with the (1, 1) entry as the first
pivot, we first obtain 


2 1 0 5
0 0 −1 −2
0 0 3 1


.

The (2, 3) entry is the second pivot, and we apply one final row operation to place the
matrix in row echelon form 


2 1 0 5
0 0 −1 −2
0 0 0 −5


.

This corresponds to the reduced homogeneous system

2x1 + x2 + 5x4 = 0, −x3 − 2x4 = 0, −5x4 = 0.

Since there are three pivots in the final row echelon form, the rank of the matrix A is
3. There is one free variable, namely x2. Using Back Substitution, we easily obtain the
general solution

x1 = −
1
2 t, x2 = t, x3 = x4 = 0,

which depends upon a single free parameter t = x2.

Example 1.47. Consider the homogeneous linear system

2x− y + 3z = 0, −4x+ 2y − 6z = 0, 2x− y + z = 0, 6x− 3y + 3z = 0,

with coefficient matrix A =




2 −1 3
−4 2 −6
2 −1 1
6 −3 3


. The system admits the trivial solution

x = y = z = 0, but in this case we need to complete the elimination algorithm before we
can state whether or not there are other solutions. After the first stage, the coefficient

matrix has the form




2 −1 3
0 0 0
0 0 −2
0 0 −6


. To continue, we need to interchange the second and

third rows to place a nonzero entry in the final pivot position; after that the reduction to

row echelon form is immediate:




2 −1 3
0 0 −2
0 0 0
0 0 −6


 7−→




2 −1 3
0 0 −2
0 0 0
0 0 0


. Thus, the system

reduces to the equations

2x− y + 3z = 0, −2z = 0, 0 = 0, 0 = 0,
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where the third and fourth equations are trivially compatible, as they must be in the
homogeneous case. The rank is equal to two, which is less than the number of columns,
and so, even though the system has more equations than unknowns, it has infinitely many
solutions. These can be written in terms of the free variable y, and so the general solution
is x = 1

2 y, z = 0, where y is arbitrary.

1.9. Determinants.

You may be surprised that, so far, we have left undeveloped a topic that often as-
sumes a central role in basic linear algebra: determinants. As with matrix inverses, while
determinants can be useful in low dimensions and for theoretical purposes, they are mostly
irrelevant when it comes to large scale applications and practical computations. Indeed,
the best way to compute a determinant is (surprise) Gaussian Elimination! However,
you should be familiar with the basics of determinants, and so for completeness, we shall
provide a very brief introduction.

The determinant of a square matrix A, written detA, is a number that immediately
tells whether the matrix is singular or not. (Rectangular matrices do not have deter-
minants.) We already encountered, (1.34), the determinant of a 2 × 2 matrix, which is
equal to the product of the diagonal entries minus the product of the off-diagonal entries:

det

(
a b

c d

)
= ad − bc. The determinant is nonzero if and only if the matrix has an

inverse. Our goal is to generalize this construction to general square matrices.

There are many different ways to define determinants. The difficulty is that the ac-
tual formula is very unwieldy — see (1.81) below — and not well motivated. We prefer an
axiomatic approach that explains how our elementary row operations affect the determi-
nant. In this manner, one can compute the determinant by Gaussian elimination, which
is, in fact, the fastest and most practical computational method in all but the simplest
situations. In effect, this remark obviates the need to ever compute a determinant.

Theorem 1.48. The determinant of a square matrix A is the uniquely defined scalar

quantity detA that satisfies the following axioms:

(1) Adding a multiple of one row to another does not change the determinant.

(2) Interchanging two rows changes the sign of the determinant.

(3) Multiplying a row by any scalar (including zero) multiplies the determinant by the
same scalar.

(4) Finally, the determinant function is fixed by setting

det I = 1. (1.74)

Checking that all four of these axioms hold in the 2 × 2 case (1.34) is left as an
elementary exercise for the reader. A particular consequence of axiom 3 is that when we
multiply a row of any matrix A by the zero scalar, the resulting matrix, which has a row
of all zeros, necessarily has zero determinant.

Lemma 1.49. Any matrix with one or more all zero rows has zero determinant.
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Since the determinantal axioms tell how determinants behave under all three of our
elementary row operations, we can use Gaussian elimination to compute a general deter-
minant, recovering detA from its permuted LU factorization.

Theorem 1.50. If A is a regular matrix, with A = LU factorization as in (1.21),
then

detA = detU =

n∏

i=1

uii (1.75)

equals the product of the pivots. More generally, if A is nonsingular, and requires k row

interchanges to arrive at its permuted LU factorization P A = LU , then

detA = detP detU = (−1)k
n∏

i=1

uii. (1.76)

Finally, A is singular if and only if detA = 0.

Proof : In the regular case, one only needs elementary row operations of type #1 to
reduce A to upper triangular form U , and axiom 1 says these do not change the determi-
nant. Therefore detA = detU . Proceeding with the full Gauss–Jordan scheme, the next
phase is to divide each row in U by its pivot, leading to the special upper triangular matrix
V with all 1’s on the diagonal. Axiom 3 implies

detA = detU =

(
n∏

i=1

uii

)
detV. (1.77)

Finally, we can reduce V to the identity by further row operations of Type #1, and so by
(1.74),

detV = det I = 1. (1.78)

Combining equations (1.77), (1.78) proves the theorem for the regular case. The non-
singular case follows without difficulty — each row interchange changes the sign of the
determinant, and so detA equals detU if there have been an even number of interchanges,
but equals −detU if there have been an odd number.

Finally, if A is singular, then we can reduce it to a matrix with at least one row of
zeros by elementary row operations of types #1 and #2. Lemma 1.49 implies that the
resulting matrix has zero determinant, and so detA = 0, also. Q.E.D.

Corollary 1.51. The determinant of a diagonal matrix is the product of the diagonal

entries. The same result holds for both lower triangular and upper triangular matrices.

Example 1.52. Let us compute the determinant of the 4× 4 matrix

A =




1 0 −1 2
2 1 −3 4
0 2 −2 3
1 1 −4 −2


.
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We perform our usual Gaussian Elimination algorithm, successively leading to the matrices

A 7−→




1 0 −1 2
0 1 −1 0
0 2 −2 3
0 1 −3 −4


 7−→




1 0 −1 2
0 1 −1 0
0 0 0 3
0 0 −2 −4


 7−→




1 0 −1 2
0 1 −1 0
0 0 −2 −4
0 0 0 3


,

where we used a single row interchange to obtain the final upper triangular form. Owing
to the row interchange, the determinant of the original matrix is −1 times the product of
the pivots:

detA = −1 · 1 · 1 · (−2) · 3 = 6.

In particular, this tells us that A is nonsingular. But, of course, this was already implied
by the elimination, since the matrix reduced to upper triangular form with 4 pivots.

Let us now present some of the basic properties of determinants.

Lemma 1.53. The determinant of the product of two square matrices of the same

size is the product of the determinants:

det(AB) = detA detB. (1.79)

Proof : The product formula holds if A is an elementary matrix; this is a conse-
quence of the determinantal axioms, combined with Corollary 1.51. By induction, if
A = E1 E2 · · ·EN is a product of elementary matrices, then (1.79) also holds. There-
fore, the result holds whenever A is nonsingular. On the other hand, if A is singular, then
according to Exercise , A = E1 E2 · · ·EN Z, where the Ei are elementary matrices, and
Z, the row echelon form, is a matrix with a row of zeros. But then Z B = W also has a
row of zeros, and so AB = E1 E2 · · ·ENW is also singular. Thus, both sides of (1.79) are
zero in this case. Q.E.D.

It is a remarkable fact that, even though matrix multiplication is not commutative, and
so AB 6= BA in general, it is nevertheless always true that both products have the same
determinant: det(AB) = det(BA). Indeed, both are equal to the product detA detB of
the individual determinants because ordinary (scalar) multiplication is commutative.

Lemma 1.54. Transposing a matrix does not change its determinant:

detAT = detA. (1.80)

Proof : By inspection, this formula holds if A is an elementary matrix. If A =
E1E2 · · ·EN is a product of elementary matrices, then using (1.49), (1.79) and induction

detAT = det(E1 E2 · · ·EN )
T = det(ET

NET
N−1 · · ·E

T
1 ) = detE

T
N detET

N−1 · · · detE
T
1

= detEN detEN−1 · · · detE1 = detE1 detE2 · · · detEN

= det(E1 E2 · · · EN ) = detA.

The middle equality follows from the commutativity of ordinary multiplication. This proves
the nonsingular case; the singular case follows from Lemma 1.30, which implies that AT is
singular if and only if A is. Q.E.D.
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Remark : Lemma 1.54 has the interesting consequence that one can equally well use
“elementary column operations” to compute determinants. We will not develop this ap-
proach in any detail here, since it does not help us to solve linear equations.

Finally, we state the general formula for a determinant; a proof can be found in [135].

Theorem 1.55. If A is an n× n matrix with entries aij , then

detA =
∑

π

± a1,π(1) a2,π(2) · · · an,π(n). (1.81)

The sum in (1.81) is over all possible permutations π of the columns of A. The
summands consist of all possible ways of choosing n entries of A with one entry in each
column and 1 entry in each row of A. The sign in front of the indicated term depends on
the permutation π; it is + if π is an even permutation, meaning that its matrix can be
reduced to the identity by an even number of row interchanges, and − is π is odd. For
example, the six terms in the well-known formula

det




a11 a12 a13

a21 a22 a23

a31 a32 a33


 =

a11 a22 a33 + a12 a23 a31 + a13 a21a32 −

− a11 a23 a32 − a12 a21 a33 − a13 a22 a31

(1.82)

for a 3× 3 determinant correspond to the six possible 3× 3 permutation matrices (1.27).

The proof that (1.81) obeys the basic determinantal axioms is straightforward, but,
will not be done here. The reader might wish to try the 3 × 3 case to be convinced that
it works. This explicit formula proves that the determinant function is well-defined, and
formally completes the proof of Theorem 1.48.

Unfortunately, the explicit determinant formula (1.81) contains n ! terms, and so,
as soon as n is even moderately large, is completely impractical for computation. The
most efficient way is still our mainstay — Gaussian Elimination coupled the fact that the
determinant is ± the product of the pivots!

Determinants have many fascinating and theoretically important properties. How-
ever, in our applications, these will not be required, and so we conclude this very brief
introduction to the subject.
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Chapter 2

Vector Spaces

Vector spaces and their ancillary structures provide the common language of linear
algebra, and, as such are an essential prerequisite for understanding contemporary ap-
plied mathematics. The key concepts of vector space, subspace, linear independence,
span, and basis will appear, not only in linear systems of equations and the geometry of
n-dimensional Euclidean space, but also in the analysis of linear ordinary differential equa-
tions, linear partial differential equations, linear boundary value problems, all of Fourier
analysis, numerical approximations like the finite element method, and many, many other
fields. Therefore, in order to develop the wide variety of analytical methods and appli-
cations covered in this text, we need to acquire a firm working knowledge of basic vector
space analysis.

One of the great triumphs of modern mathematics was the recognition that many
seemingly distinct constructions are, in fact, different manifestations of the same general
mathematical structure. The abstract notion of a vector space serves to unify spaces of
ordinary vectors, spaces of functions, such as polynomials, exponentials, trigonometric
functions, as well as spaces of matrices, linear operators, etc., all in a common conceptual
framework. Moreover, proofs that might look rather complicated in any particular con-
text often turn out to be relatively transparent when recast in the abstract vector space
framework. The price that one pays for the increased level of abstraction is that, while the
underlying mathematics is not all that difficult, the student typically takes a long time to
assimilate the material. In our opinion, the best way to approach the subject is to think in
terms of concrete examples. First, make sure you understand what the concept or theorem
says in the case of ordinary Euclidean space. Once this is grasped, the next important case
to consider is an elementary function space, e.g., the space of continuous scalar functions.
With these two examples firmly in hand, the leap to the general abstract version should
not be too painful. Patience is essential; ultimately the only way to truly understand an
abstract concept like a vector space is by working with it! And always keep in mind that
the effort expended here will be amply rewarded later on.

Following an introduction to vector spaces and subspaces, we introduce the notions of
span and linear independence of a collection of vector space elements. These are combined
into the all-important concept of a basis of a vector space, leading to a linear algebraic
characterization of its dimension. We will then study the four fundamental subspaces
associated with a matrix — range, kernel, corange and cokernel — and explain how they
help us understand the solution to linear algebraic systems. Of particular note is the
all-pervasive linear superposition principle that enables one to construct more general
solutions to linear systems by combining known solutions. Superposition is the hallmark
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of linearity, and will apply not only to linear algebraic equations, but also linear ordinary
differential equations, linear partial differential equations, linear boundary value problems,
and so on. Some interesting applications in graph theory, to be used in our later study of
electrical circuits, will form the final topic of this chapter.

2.1. Vector Spaces.

A vector space is the abstract formulation of the most basic underlying properties of
n-dimensional† Euclidean space Rn, which is defined as the set of all real (column) vectors
with n entries. The basic laws of vector addition and scalar multiplication in Rn serve
as the motivation for the general, abstract definition of a vector space. In the beginning,
we will refer to the elements of a vector space as “vectors”, even though, as we shall see,
they might also be functions or matrices or even more general objects. Unless dealing
with certain specific examples such as a space of functions, we will use bold face, lower
case Latin letters to denote the elements of our vector space. We begin with the general
definition.

Definition 2.1. A vector space is a set V equipped with two operations:

(i) Addition: adding any pair of vectors v,w ∈ V produces another vector v +w ∈ V ;

(ii) Scalar Multiplication: multiplying a vector v ∈ V by a scalar c ∈ R produces a vector
cv ∈ V .

which are required to satisfy the following axioms for all u,v,w ∈ V and all scalars c, d ∈ R:
(a) Commutativity of Addition: v +w = w + v.

(b) Associativity of Addition: u+ (v +w) = (u+ v) +w.

(c) Additive Identity : There is a zero element 0 ∈ V satisfying v + 0 = v = 0+ v.

(d) Additive Inverse: For each v ∈ V there is an element −v ∈ V such that
v + (−v) = 0 = (−v) + v.

(e) Distributivity : (c+ d)v = (cv) + (dv), and c(v +w) = (cv) + (cw).

(f ) Associativity of Scalar Multiplication: c(dv) = (cd)v.

(g) Unit for Scalar Multiplication: the scalar 1 ∈ R satisfies 1v = v.

Note: We will use bold face 0 to denote the zero element of our vector space, while
ordinary 0 denotes the real number zero. The following identities are elementary conse-
quences of the vector space axioms:

(h) 0v = 0. (i) (−1)v = −v. (j) c0 = 0. (k) If cv = 0, then either c = 0 or v = 0.

Let us, as an example, prove (h). Let z = 0v. Then, by the distributive property,

z+ z = 0v + 0v = (0 + 0)v = 0v = z.

Adding −z to both sides of this equation, and making use of axioms (b), (d), and then (c),
implies that z = 0, which completes the proof. Verification of the other three properties
is left as an exercise for the reader.

† The precise definition of dimension will appear later, in Theorem 2.28,
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Remark : For most of this chapter we will deal with real vector spaces, in which the
scalars are the real numbers R. Complex vector spaces, where complex scalars are allowed,
will be introduced in Section 3.6. Vector spaces over other fields are studied in abstract
algebra, [77].

Example 2.2. As noted above, the prototypical example of a real vector space is the
space Rn consisting of column vectors or n-tuples of real numbers v = ( v1, v2, . . . , vn )

T
.

Vector addition and scalar multiplication are defined in the usual manner:

v +w =




v1 + w1

v2 + w2
...

vn + wn


, cv =




cv1

cv2
...

cvn


, whenever v =




v1

v2
...

vn


, w =




w1

w2
...

wn


.

The zero vector is 0 = ( 0, . . . , 0 )
T
. The fact that vectors in Rn satisfy all of the vec-

tor space axioms is an immediate consequence of the laws of vector addition and scalar
multiplication. Details are left to the reader.

Example 2.3. LetMm×n denote the space of all real matrices of size m× n. Then
Mm×n forms a vector space under the laws of matrix addition and scalar multiplication.
The zero element is the zero matrix O. Again, the vector space axioms are immediate
consequences of the basic laws of matrix arithmetic. (For the purposes of this example, we
ignore additional matrix properties, like matrix multiplication.) The preceding example of
the vector space Rn =M1×n is a particular case when the matrices have only one column.

Example 2.4. Consider the space

P
(n) =

{
p(x) = anxn + an−1 xn−1 + · · · + a1 x+ a0

}
(2.1)

consisting of all polynomials of degree ≤ n. Addition of polynomials is defined in the usual
manner; for example,

(x2
− 3x) + (2x2

− 5x+ 4) = 3x2
− 8x+ 4.

Note that the sum p(x) + q(x) of two polynomials of degree ≤ n also has degree ≤ n.
(However, it is not true that the sum of two polynomials of degree = n also has degree n;
for example (x2+1)+(−x2+x) = x+1 has degree 1 even though the two summands have
degree 2. This means that the set of polynomials of degree = n is not a vector space.) The
zero element of P(n) is the zero polynomial. We can multiply polynomials by scalars — real
constants — in the usual fashion; for example if p(x) = x2

− 2x, then 3p(x) = 3x2
− 6x.

The proof that P(n) satisfies the vector space axioms is an easy consequence of the basic
laws of polynomial algebra.

Remark : We are ignoring the fact that one can also multiply polynomials; this is not
a vector space operation. Also, any scalar can be viewed as a constant polynomial, but one
should really regard these as two completely different objects — one is a number , while
the other is a constant function. To add to the confusion, one typically uses the same
notation for these two objects; for instance, 1 could either mean the real number 1 or the
constant function taking the value 1 everywhere. The reader needs to exercise due care
when interpreting each occurrence.
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For much of analysis, including differential equations, Fourier theory, numerical meth-
ods, and so on, the most important vector spaces consist of sets of functions with certain
specified properties. The simplest such example is the following.

Example 2.5. Let I ⊂ R be an interval. Consider the function space F = F(I)
that consists of all real-valued functions f(x) defined for all x ∈ I, which we also write
as f : I → R. The claim is that the function space F has the structure of a vector space.
Addition of functions in F is defined in the usual manner: (f + g)(x) = f(x) + g(x).
Multiplication by scalars c ∈ R is the same as multiplication by constants, (c f)(x) = c f(x).
The zero element is the constant function that is identically 0 for all x ∈ I. The proof
of the vector space axioms is straightforward, just as in the case of polynomials. As in
the preceding remark, we are ignoring all additional operations — multiplication, division,
inversion, composition, etc. — that can be done with functions; these are irrelevant as far
as the vector space structure of F goes.

Remark : An interval can be (a) closed , meaning that it includes its endpoints: I =
[a, b ], (b) open, which does not include either endpoint: I = (a, b), or (c) half open,
which includes one but not the other endpoint, so I = [a, b) or (a, b ]. An open endpoint is
allowed to be infinite; in particular, (−∞,∞) = R is another way of writing the real line.

Example 2.6. The preceding examples are all, in fact, special cases of an even
more general construction. A clue is to note that the last example of a function space
does not make any use of the fact that the domain of definition of our functions is a real
interval. Indeed, the construction produces a function space F(I) corresponding to any
subset I ⊂ R.

Even more generally, let S be any set. Let F = F(S) denote the space of all real-
valued functions f :S → R. Then we claim that V is a vector space under the operations
of function addition and scalar multiplication. More precisely, given functions f and g,
we define their sum to be the function h = f + g such that h(x) = f(x) + g(x) for all
x ∈ S. Similarly, given a function f and a real scalar c ∈ R, we define the scalar multiple
k = cf to be the function such that k(x) = c f(x) for all x ∈ S. The verification of the
vector space axioms proceeds straightforwardly, and the reader should be able to fill in the
necessary details.

In particular, if S ⊂ R is an interval, then F(S) coincides with the space of scalar
functions described in the preceding example. If S ⊂ Rn is a subset of Euclidean space,
then the elements of F(S) are functions f(x1, . . . , xn) depending upon the n variables
corresponding to the coordinates of points x = (x1, . . . , xn) ∈ S in the domain. In this
fashion, the set of real-valued functions defined on any domain in Rn is found to also form
a vector space.

Another useful example is to let S = {x1, . . . , xn} ⊂ R be a finite set of real numbers.
A real-valued function f :S → R is defined by its values f(x1), f(x2), . . . f(xn) at the
specified points. In applications, one can view such functions as indicating the sample
values of a scalar function f(x) ∈ F(R) taken at the sample points x1, . . . , xn. For example,
when measuring a physical quantity, e.g., temperature, velocity, pressure, etc., one typically
only measures a finite set of sample values. The intermediate, non-recorded values between
the sample points are then reconstructed through some form of interpolation — a topic
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that we shall visit in depth later on. Interestingly, the sample values f(xi) can be identified
with the entries fi of a vector

f = ( f1, f2, . . . , fn )
T
= ( f(x1), f(x2), . . . , f(xn) )

T
∈ Rn,

known as the sample vector . Every sampled function f : {x1, . . . , xn} → R corresponds to
a unique vector f ∈ Rn and vice versa. (However, different scalar functions f :R → R
can have the same sample values.) Addition of sample functions corresponds to addition
of their sample vectors, as does scalar multiplication. Thus, the vector space of sample

functions F(S) = F( {x1, . . . , xn} ) is the same as the vector space Rn! This connection
between sampled functions and vectors will be the key to the finite Fourier transform, of
fundamental importance in modern signal processing.

Example 2.7. The preceding construction admits yet a further generalization. We
continue to let S be an arbitrary set. Let V be a vector space. The claim is that the space
F(S, V ) consisting of all V –valued functions f :S → V is a vector space. In other words,
we replace the particular vector space R in the preceding example by a general vector
space, and the same conclusion holds. The operations of function addition and scalar
multiplication are defined in the evident manner: (f + g)(x) = f(x) + g(x) and (c f)(x) =
c f(x), where we are using the vector addition and scalar multiplication operations on V to
induce corresponding operations on V –valued functions. The proof that F(S, V ) satisfies
all of the vector space axioms proceeds as before.

The most important example is when S ⊂ Rn is a domain in Euclidean space and
V = Rm is itself a Euclidean space. In this case, the elements of F(S, Rm) consist of

vector-valued functions f :S → Rm, so that f(x) = ( f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) )
T

is a column vector consisting of m functions of n variables, all defined on a common
domain S. The general construction implies that addition and scalar multiplication of
vector-valued functions is done componentwise; for example

2

(
x2

ex − 4

)
−

(
cosx

x

)
=

(
2x2

− cosx
2ex − x− 8

)
.

2.2. Subspaces.

In the preceding section, we were introduced to the most basic vector spaces that play
a role in this text. Almost all of the important vector spaces arising in applications appear
as particular subsets of these key examples.

Definition 2.8. A subspace of a vector space V is a subset W ⊂ V which is a vector
space in its own right.

Since elements of W also belong to V , the operations of vector addition and scalar
multiplication for W are induced by those of V . In particular, W must contain the zero
element of V in order to satisfy axiom (c). The verification of the vector space axioms for
a subspace is particularly easy: we only need check that addition and scalar multiplication
keep us within the subspace.
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Proposition 2.9. A subset W ⊂ V of a vector space is a subspace if and only if

(a) for every v,w ∈W , the sum v +w ∈W , and

(b) for every v ∈W and every c ∈ R, the scalar product cv ∈ W .

Proof : The proof is essentially trivial. For example, to show commutativity, given
v,w ∈ W , we can regard them as elements of V , in which case v+w = w+ v because V

is a vector space. But the closure condition implies that the sum also belongs to W , and
so the commutativity axiom also holds for elements of W . The other axioms are equally
easy to validate. Q.E.D.

Remark : Condition (a) says that a subspace must be closed under addition, while
(a) says it must also be closed under scalar multiplication. It will sometimes be useful to
combine the two closure conditions. Thus, to prove W ⊂ V is a subspace it suffices to
check that cv + dw ∈ W for every v,w ∈ W and c, d ∈ R.

Example 2.10. Let us list some examples of subspaces of the three-dimensional
Euclidean space R3. In each case, we must verify the closure conditions; the first two are
immediate.

(a) The trivial subspace W = {0}.

(b) The entire space W = R3.

(c) The set of all vectors of the form (x, y, 0 )
T
, i.e., the (x, y)–coordinate plane. Note

that the sum (x, y, 0 )
T
+( x̂, ŷ, 0 )

T
= (x+ x̂, y + ŷ, 0 )

T
, and scalar multiple c (x, y, 0 )

T
=

( cx, cy, 0 )
T
, of vectors in the (x, y)–plane also lie in the plane, proving closure.

(d) The set of solutions (x, y, z )
T
to the homogeneous linear equation

3x+ 2y − z = 0.

Indeed, if x = (x, y, z )
T
is a solution, then so is any scalar multiple cx = ( cx, cy, cz )

T

since

3(cx) + 2(cy)− (cz) = c(3x+ 2y − z) = 0.

Moreover, if x̂ = (x̂, ŷ, ẑ) is a second solution, the sum x + x̂ = (x+ x̂, y + ŷ, z + ẑ )
T
is

also a solution since

3(x+ x̂) + 2(y + ŷ)− (z + ẑ) = (3x+ 2y − z) + (3 x̂+ 2 ŷ − ẑ) = 0.

Note that the solution space is a two-dimensional plane consisting of all vectors which are
perpendicular (orthogonal) to the vector ( 3, 2,−1 )

T
.

(e) The set of all vectors lying in the plane spanned by the vectors v1 = ( 2,−3, 0 )
T

and v2 = ( 1, 0, 3 )
T
. In other words, we consider all vectors of the form

v = av1 + bv2 = a



2
−3
0


+ b



1
0
3


 =



2a+ b

−3a
3b


,
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where a, b ∈ R are arbitrary scalars. If v = av1 + bv2 and w = âv1 + b̂v2 are any two
vectors of this form, so is

cv + dw = c(av1 + bv2) + d(âv1 + b̂v2) = (ac+ â d)v1 + (bc+ b̂ d)v2 = ãv1 + b̃v2,

where ã = ac+ â d, b̃ = bc+ b̂ d. This proves that the plane is a subspace of R3. The reader
might already have noticed that this subspace is the same plane that was considered in
item (d).

Example 2.11. The following subsets of R3 are not subspaces.

(a) The set P of all vectors of the form (x, y, 1 )
T
, i.e., the plane parallel to the

xy coordinate plane passing through ( 0, 0, 1 )
T
. Indeed, 0 6∈P , which is the most basic

requirement for a subspace. In fact, neither of the closure axioms hold for this subset.

(b) The positive octant O+ = {x > 0, y > 0, z > 0}. While the sum of two vectors in
O

+ belongs to O+, multiplying by negative scalars takes us outside the orthant, violating
closure under scalar multiplication.

(c) The unit sphere S2 = {x2+y2+z2 = 1 }. Again, 06∈S2. More generally, curved
surfaces, e.g., the paraboloid P = { z = x2 + y2

}, are not subspaces. Although 0 ∈ P ,

most scalar multiples of vectors in P do not belong to P . For example, ( 1, 1, 2 )
T
∈ P ,

but 2 ( 1, 1, 2 )
T
= ( 2, 2, 4 )

T
6∈P .

In fact, there are only four fundamentally different types of subspaces W ⊂ R3 of
three-dimensional Euclidean space:

(i) The entire space W = R3,

(ii) a plane passing through the origin,

(iii) a line passing through the origin,

(iv) the trivial subspace W = {0}.

To verify this observation, we argue as follows. If W = {0} contains only the zero vector,
then we are in case (iv). Otherwise, W ⊂ R3 contains a nonzero vector 0 6= v1 ∈ W .
But since W must contain all scalar multiples cv1 of this element, it includes the entire
line in the direction of v1. If W contains another vector v2 that does not lie in the line
through v1, then it must contain the entire plane {cv1+ dv2} spanned by v1,v2. Finally,
if there is a third vector v3 not contained in this plane, then we claim that W = R3. This
final fact will be an immediate consequence of general results in this chapter, although the
interested reader might try to prove it directly before proceeding.

Example 2.12. Let I ⊂ R be an interval, and let F(I) be the space of real-valued
functions f : I → R. Let us look at some of the most important examples of subspaces
of F(I). In each case, we need only verify the closure conditions to verify that the given
subset is indeed a subspace.

(a) The space P(n) of polynomials of degree ≤ n, which we already encountered.

(b) The space P(∞) =
⋃
n≥0 P

(n) consisting of all polynomials.

(c) The space C0(I) of all continuous functions. Closure of this subspace relies on
knowing that if f(x) and g(x) are continuous, then both f(x) + g(x) and cf(x) for any
c ∈ R are also continuous — two basic results from calculus.
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(d) More restrictively, one can consider the subspace Cn(I) consisting of all functions
f(x) that have n continuous derivatives f ′(x), f ′′(x), . . . , f (n)(x) on† I. Again, we need to
know that if f(x) and g(x) have n continuous derivatives, so do f(x) + g(x) and cf(x) for
any c ∈ R.

(e) The space C∞(I) =
⋂
n≥0 C

n(I) of infinitely differentiable or smooth functions
is also a subspace. (The fact that this intersection is a subspace follows directly from
Exercise .)

(f ) The space A(I) of analytic functions on the interval I. Recall that a function
f(x) is called analytic at a point a if it is smooth, and, moreover, its Taylor series

f(a) + f ′(a) (x− a) + 1
2 f ′′(a) (x− a)2 + · · · =

∞∑

n=0

f (n)(a)

n!
(x− a)n (2.2)

converges to f(x) for all x sufficiently close to a. (It does not have to converge on the entire
interval I.) Not every smooth function is analytic, and so A(I) ( C∞(I). An explicit
example is the function

f(x) =

{
e−1/x, x > 0,

0, x ≤ 0.
(2.3)

It can be shown that every derivative of this function at 0 exists and equals zero: f (n)(0) =
0, n = 0, 1, 2, . . ., and so the function is smooth. However, its Taylor series at a = 0 is
0+0x+0x2+ · · · ≡ 0, which converges to the zero function, not to f(x). Therefore f(x)
is not analytic at a = 0.

(g) The set of all mean zero functions. The mean or average of an integrable function
defined on a closed interval I = [a, b ] is the real number

f =
1

b− a

∫ b

a

f(x) dx. (2.4)

In particular, f has mean zero if and only if

∫ b

a

f(x) dx = 0. Note that f + g = f + g,

and so the sum of two mean zero functions also has mean zero. Similarly, cf = c f , and
any scalar multiple of a mean zero function also has mean zero.

(h) Let x0 ∈ I be a given point. Then the set of all functions f(x) that vanish
at the point, f(x0) = 0, is a subspace. Indeed, if f(x0) = 0 and g(x0) = 0, then clearly
(f+g)(x0) = 0 and c f(x0) = 0, proving closure. This example can evidently be generalized
to functions that vanish at several points, or even on an entire subset.

(i) The set of all solutions u = f(x) to the homogeneous linear differential equation

u′′ + 2u′ − 3u = 0.

Indeed, if u = f(x) and u = g(x) are solutions, so are u = f(x) + g(x) and u = c f(x) for
any c ∈ R. Note that we do not need to actually solve the equation to verify these claims!

† If I = [a, b ] is closed, we use the appropriate one-sided derivatives at its endpoints.
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They follow directly from linearity; for example

(f + g)′′ + 2(f + g)′ − 3(f + g) = (f ′′ + 2f ′ − 3f) + (g′′ + 2g′ − 3g) = 0.

Warning : In the last three examples, the value 0 is essential for the indicated set of
functions to be a subspace. The set of functions such that f(x0) = 1, say, is not a subspace.
The set of functions with a fixed nonzero mean, say f = 3, is also not a subspace. Nor is
the set of solutions to an inhomogeneous ordinary differential equation, say

u′′ + 2u′ − 3u = x− 3.

None of these subsets contain the zero function, nor do they satisfy the closure conditions.

2.3. Span and Linear Independence.

The definition of the span of a finite collection of elements of a vector space generalizes,
in a natural fashion, the geometric notion of two vectors spanning a plane in R3. As such,
it forms the first of two important, general methods for constructing subspaces of vector
spaces.

Definition 2.13. Let v1, . . . ,vk be a finite collection of elements of a vector space
V . A sum of the form

c1v1 + c2v2 + · · · + ckvk =
k∑

i=1

civi, (2.5)

where the coefficients c1, c2, . . . , ck are any scalars, is known as a linear combination of the
elements v1, . . . ,vk. Their span is the subset W = span {v1, . . . ,vk} ⊂ V consisting of all
possible linear combinations (2.5).

For example,

3v1 + v2 − 2v3, 8v1 −
1
3 v3, v2 = 0v1 + 1v2 + 0v3, and 0 = 0v1 + 0v2 + 0v3,

are four different linear combinations of the three vector space elements v1,v2,v3 ∈ V .

The key observation is that a span always forms a subspace.

Proposition 2.14. The span of a collection of vectors, W = span {v1, . . . ,vk},

forms a subspace of the underlying vector space.

Proof : We need to show that if

v = c1v1 + · · · + ckvk and v̂ = ĉ1v1 + · · · + ĉkvk

are any two linear combinations, then their sum

v + v̂ = (c1 + ĉ1)v1 + · · · + (ck + ĉk)vk,

is also a linear combination, as is any scalar multiple

av = (ac1)v1 + · · · + (ack)vk Q .E .D .
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Example 2.15. Examples of subspaces spanned by vectors in R3:

(i) If v1 6= 0 is any non-zero vector in R3, then its span is the line { cv1 | c ∈ R } in
the direction of v1. If v1 = 0, then its span just consists of the origin.

(ii) If v1 and v2 are any two vectors in R3, then their span is the set of all vectors
of the form c1v1 + c2v2. Typically, such a span forms a plane passing through the origin.
However, if v1 and v2 are parallel, then their span is just a line. The most degenerate case
is when v1 = v2 = 0, where the span is just a point — the origin.

(iii) If we are given three non-coplanar vectors v1,v2,v3, then their span is all of R3,
as we shall prove below. However, if they all lie in a plane, then their span is the plane —
unless they are all parallel, in which case their span is a line — or, when v1 = v2 = v3 = 0,
a single point.

Thus, any subspace of R3 can be realized as the span of some set of vectors. Note that
we can also consider the span of four or more vectors, but the range of possible subspaces
is limited, as we noted above, to either a point (the origin), a line, a plane, or the entire
three-dimensional space. A crucial question, that we will return to shortly, is to determine
when a given vector belongs to the span of a colection of vectors.

Remark : It is entirely possible for different sets of vectors to span the same subspace.
For instance, the pair of vectors e1 = ( 1, 0, 0 )

T
and e2 = ( 0, 1, 0 )

T
span the xy plane in

R3, as do the three coplanar vectors v1 = ( 1,−1, 0 )
T

,v2 = (−1, 2, 0 )
T

,v3 = ( 2, 1, 0 )
T
.

Example 2.16. Let V = F(R) denote the space of all scalar functions f(x).

(a) The span of the three monomials f1(x) = 1, f2(x) = x and f3(x) = x2 is the set
of all functions of the form

f(x) = c1 f1(x) + c2 f2(x) + c3 f3(x) = c1 + c2 x+ c3 x2,

where c1, c2, c3 are arbitrary scalars (constants). In other words, span {1, x, x2
} = P(2)

is the subspace of all quadratic (degree ≤ 2) polynomials. In a similar fashion, the space
P

(n) of polynomials of degree ≤ n is spanned by the monomials 1, x, x2, . . . , xn.

(b) The next example plays a key role in many applications. Let ω ∈ R be fixed.
Consider the two basic trigonometric functions f1(x) = cosωx, f2(x) = sinωx of frequency
ω, and hence period 2π/ω. Their span consists of all functions of the form

f(x) = c1 f1(x) + c2 f2(x) = c1 cosωx+ c2 sinωx. (2.6)

For example, the function cos(ωx + 2) lies in the span because, by the addition formula
for the cosine,

cos(ωx+ 2) = cos 2 cosωx− sin 2 sinωx

is a linear combination of cosωx and sinωx.

We can express a general function in their span in the alternative phase-amplitude
form

f(x) = c1 cosωx+ c2 sinωx = r cos(ωx− δ). (2.7)

Expanding the right hand side, we find

r cos(ωx− δ) = r cos δ cosωx+ r sin δ sinωx
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Figure 2.1. Graph of 3 cos(2x− 1).

and hence
c1 = r cos δ, c2 = r sin δ.

We can view the amplitude r ≥ 0 and the phase shift δ as the polar coordinates of point
c = (c1, c2) ∈ R2 prescribed by the coefficients. Thus, any combination of sinωx and
cosωx can be rewritten as a single cosine, with a phase lag. Figure 2.1 shows the particular
case 3 cos(2x− 1) which has amplitude r = 3, frequency ω = 2 and phase shift δ = 1. The
first peak appears at x = δ/ω = 1

2 .

(c) The space T (2) of quadratic trigonometric polynomials is spanned by the functions

1, cosx, sinx, cos2 x, cosx sinx, sin2 x.

Thus, the general quadratic trigonometric polynomial can be written as a linear combina-
tion

q(x) = c0 + c1 cosx+ c2 sinx+ c3 cos
2 x+ c4 cosx sinx+ c5 sin

2 x, (2.8)

where c0, . . . , c5 are arbitrary constants. A more useful spanning set for the same subspace
is the trigonometric functions

1, cosx, sinx, cos 2x, sin 2x. (2.9)

Indeed, by the double angle formulas, both

cos 2x = cos2 x− sin2 x, sin 2x = 2 sinx cosx,

have the form of a quadratic trigonometric polynomial (2.8), and hence both belong to
T

(2). On the other hand, we can write

cos2 x = 1
2 cos 2x+

1
2 , cosx sinx = 1

2 sin 2x, sin2 x = − 1
2 cos 2x+

1
2 ,

in terms of the functions (2.9). Therefore, the original linear combination (2.8) can be
written in the alternative form

q(x) =
(
c0 +

1
2 c3 +

1
2 c5

)
+ c1 cosx+ c2 sinx+

(
1
2 c3 −

1
2 c5

)
cos 2x+ 1

2 c4 sin 2x

= ĉ0 + ĉ1 cosx+ ĉ2 sinx+ ĉ3 cos 2x+ ĉ4 sin 2x, (2.10)
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and so the functions (2.9) do indeed span T (2). It is worth noting that we first character-
ized T (2) as the span of 6 functions, whereas the second characterization only required 5
functions. It turns out that 5 is the minimal number of functions needed to span T (2), but
the proof of this fact will be deferred until Chapter 3.

(d) The homogeneous linear ordinary differential equation

u′′ + 2u′ − 3u = 0. (2.11)

considered in part (i) of Example 2.12 has two independent solutions: f1(x) = ex and
f2(x) = e−3x. (Now may be a good time for you to review the basic techniques for solving
linear, constant coefficient ordinary differential equations.) The general solution to the
differential equation is a linear combination

u = c1 f1(x) + c2 f2(x) = c1 ex + c2 e−3x.

Thus, the vector space of solutions to (2.11) is described as the span of these two basic
solutions. The fact that there are no other solutions is not obvious, but relies on the
basic existence and uniqueness theorems for linear ordinary differential equations; see
Theorem 7.33 for further details.

Remark : One can also define the span of an infinite collection of elements of a vector
space. To avoid convergence issues, one should only consider finite linear combinations
(2.5). For example, the span of the monomials 1, x, x2, x3, . . . is the space P(∞) of all
polynomials. (Not the space of convergent Taylor series.) Similarly, the span of the
functions 1, cosx, sinx, cos 2x, sin 2x, cos 3x, sin 3x, . . . is the space of all trigonometric
polynomials, to be discussed in great detail in Chapter 12.

Linear Independence and Dependence

Most of the time, all of the vectors used to form a span are essential. For example, we
cannot use fewer than two vectors to span a plane in R3 since the span of a single vector
is at most a line. However, in the more degenerate cases, some of the spanning elements
are not needed. For instance, if the two vectors are parallel, then their span is a line, but
only one of the vectors is really needed to define the line. Similarly, the subspace spanned
by the polynomials

p1(x) = x− 2, p2(x) = x2
− 5x+ 4, p3(x) = 3x

2
− 4x, p4(x) = x2

− 1. (2.12)

is the vector space P(2) of quadratic polynomials. But only three of the polynomials are
really required to span P (2). (The reason will become clear soon, but you may wish to see
if you can demonstrate this on your own.) The elimination of such superfluous spanning
elements is encapsulated in the following basic definition.

Definition 2.17. The vectors v1, . . . ,vk ∈ V are called linearly dependent if there
exists a collection of scalars c1, . . . , ck, not all zero, such that

c1v1 + · · · + ckvk = 0. (2.13)

Vectors which are not linearly dependent are called linearly independent .
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The restriction that the ci’s not all simultaneously vanish is essential. Indeed, if
c1 = · · · = ck = 0, then the linear combination (2.13) is automatically zero. To check
linear independence, one needs to show that the only linear combination that produces
the zero vector (2.13) is this trivial one. In other words, c1 = · · · = ck = 0 is the one and
only solution to the vector equation (2.13).

Example 2.18. Some examples of linear independence and dependence:

(a) The vectors

v1 =



1
2
−1


, v2 =



0
3
1


, v3 =



−1
4
3


,

are linearly dependent. Indeed,

v1 − 2v2 + v3 = 0.

On the other hand, the first two vectors v1,v2 are linearly independent. To see this,
suppose that

c1v1 + c2v2 =




c1

2c1 + 3c2

−c1 + c2


 =



0
0
0


.

For this to happen, the coefficients c1, c2 must satisfy the homogeneous linear system

c1 = 0, 2c1 + 3c2 = 0, −c1 + c2 = 0,

which has only the trivial solution c1 = c2 = 0, proving linear independence.

(b) In general, any collection v1, . . . ,vk that includes the zero vector, say v1 = 0, is
automatically linearly dependent, since 1v1 + 0v2 + · · · + 0vk = 0 is a nontrivial linear
combination that adds up to 0.

(c) The polynomials (2.12) are linearly dependent; indeed,

p1(x) + p2(x)− p3(x) + 2p4(x) ≡ 0

is a nontrivial linear combination that vanishes identically. On the other hand, the first
three polynomials, p1(x), p2(x), p3(x), are linearly independent. Indeed, if the linear com-
bination

c1 p1(x) + c2 p2(x) + c3 p3(x) = (c2 + 3c3)x
2 + (c1 − 5c2 − 4c3)x− 2c1 + 4c2 ≡ 0

is the zero polynomial, then its coefficients must vanish, and hence c1, c2, c3 are required
to solve the homogeneous linear system

c2 + 3c3 = 0, c1 − 5c2 − 4c3 = 0, −2c1 + 4c2 = 0.

But this has only the trivial solution c1 = c2 = c3 = 0, and so linear independence follows.
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Remark : In the last example, we are using the basic fact that a polynomial is identi-
cally zero,

p(x) = a0 + a1 x+ a2 x2 + · · · + anxn ≡ 0 for all x,

if and only if its coefficients all vanish: a0 = a1 = · · · = an = 0. This is equivalent
to the “self-evident” fact that the basic monomial functions 1, x, x2, . . . , xn are linearly
independent; see Exercise .

Example 2.19. The set of quadratic trigonometric functions

1, cosx, sinx, cos2 x, cosx sinx, sin2 x,

that were used to define the vector space T (2) of quadratic trigonometric polynomials, are,
in fact, linearly dependent. This is a consequence of the basic trigonometric identity

cos2 x+ sin2 x ≡ 1

which can be rewritten as a nontrivial linear combination

1 + 0 cosx+ 0 sinx− cos2 x+ 0 cosx sinx− sin2 x ≡ 0

that sums to the zero function. On the other hand, the alternative spanning set

1, cosx, sinx, cos 2x, sin 2x,

is linearly independent, since the only identically zero linear combination

c0 + c1 cosx+ c2 sinx+ c3 cos 2x+ c4 sin 2x ≡ 0

is the trivial one c0 = . . . = c4 = 0. However, the latter fact is not as obvious, and requires
a bit of work to prove directly; see Exercise . An easier proof, based on orthogonality,
will appear in Chapter 5.

Let us now focus our attention on the linear independence or dependence of a set
of vectors v1, . . . ,vk ∈ Rn in Euclidean space. We begin by forming the n × k matrix
A = (v1 . . . vk ) whose columns are the given vectors. (The fact that we use column
vectors is essential here.) The key is a very basic formula

Ac = c1v1 + · · · + ckvk, where c =




c1

c2
...
ck


 , (2.14)

that expresses any linear combination in terms of matrix multiplication. For example,


1 3 0
−1 2 1
4 −1 −2






c1

c2

c3


 =




c1 + 3c2

−c1 + 2c2 + c3

4c1 − c2 − 2c3


 = c1



1
−1
4


+ c2



3
2
−1


+ c3



0
1
−2


 .

Formula (2.14) is an immediate consequence of the rules of matrix multiplication; see also
Exercise c. It allows us to reformulate the notions of linear independence and span in
terms of linear systems of equations. The main result is the following:
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Theorem 2.20. Let v1, . . . ,vk ∈ Rn and let A = (v1 . . . vk ) be the corresponding
n× k matrix.

(a) The vectors v1, . . . ,vk ∈ Rn are linearly dependent if and only if there is a non-zero

solution c6= 0 to the homogeneous linear system A c = 0.

(b) The vectors are linearly independent if and only if the only solution to the homoge-
neous system A c = 0 is the trivial one c = 0.

(c) A vector b lies in the span of v1, . . . ,vk if and only if the linear system A c = b is

compatible, i.e., it has at least one solution.

Proof : We prove the first statement, leaving the other two as exercises for the reader.
The condition that v1, . . . ,vk be linearly dependent is that there is a nonzero vector

c = ( c1, c2, . . . , ck )
T
6= 0

such that the linear combination

Ac = c1v1 + · · · + ckvk = 0.

Therefore, linear dependence requires the existence of a nontrivial solution to the homo-
geneous linear system Ac = 0. Q.E.D.

Example 2.21. Let us determine whether the vectors

v1 =



1
2
−1


 , v2 =



3
0
4


 , v3 =



1
−4
6


 , v4 =



4
2
3


 , (2.15)

are linearly independent or linearly dependent. We combine them as column vectors into
a single matrix

A =



1 3 1 4
2 0 −4 2
−1 4 6 3


.

According to Theorem 2.20, we need to figure out whether there are any nontrivial solutions
to the homogeneous equation A c = 0; this can be done by reducing A to row echelon form,
which is

U =



1 3 1 4
0 −6 −6 −6
0 0 0 0


. (2.16)

The general solution to the homogeneous system A c = 0 is

c = ( 2c3 − c4,−c3 − c4, c3, c4 )
T

,

where c3, c4 — the free variables — are arbitrary. Any nonzero choice of c3, c4 will produce
a nontrivial linear combination

(2c3 − c4)v1 + (−c3 − c4)v2 + c3v3 + c4v4 = 0

that adds up to the zero vector. Therefore, the vectors (2.15) are linearly dependent.
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In fact, Theorem 1.45 says that in this particular case we didn’t even need to do the
row reduction if we only needed to answer the question of linear dependence or linear
independence. Any coefficient matrix with more columns than rows automatically has a
nontrivial solution to the associated homogeneous system. This implies the following:

Lemma 2.22. Any collection of k > n vectors in Rn is linearly dependent.

Warning : The converse to this lemma is not true. For example, the two vectors
v1 = ( 1, 2, 3 )

T
and v2 = (−2,−4,−6 )

T
in R3 are linearly dependent since 2v1+v2 = 0.

For a collection of n or fewer vectors in Rn, one does need to perform the elimination to
calculate the rank of the corresponding matrix.

Lemma 2.22 is a particular case of the following general characterization of linearly
independent vectors.

Proposition 2.23. A set of k vectors in Rn is linearly independent if and only if

the corresponding n× k matrix A has rank k. In particular, this requires k ≤ n.

Or, to state the result another way, the vectors are linearly independent if and only if
the linear system A c = 0 has no free variables. The proposition is an immediate corollary
of Propositions 2.20 and 1.45.

Example 2.21. (continued) Let us now see which vectors b ∈ R3 lie in the span of
the vectors (2.15). This will be the case if and only if the linear system Ax = b has a
solution. Since the resulting row echelon form (2.16) has a row of all zeros, there will be a
compatibility condition on the entries of b, and therefore not every vector lies in the span.
To find the precise condition, we augment the coefficient matrix, and apply the same row
operations, leading to the reduced augmented matrix



1 3 1 4

0 −6 −6 −6

0 0 0 0

∣∣∣∣∣∣∣

b1

b2 − 2b1

b3 +
7
6 b2 −

4
3 b1


 .

Therefore, b = ( b1, b2, b3 )
T
lies in the span of these four vectors if and only if

−
4
3 b1 +

7
6 b2 + b3 = 0.

In other words, these four vectors only span a plane in R3.

The same method demonstrates that a collection of vectors will span all of Rn if
and only if the row echelon form of the associated matrix contains no all zero rows, or,
equivalently, the rank is equal to n, the number of rows in the matrix.

Proposition 2.24. A collection of k vectors will span Rn if and only if their n× k

matrix has rank n. In particular, this requires k ≥ n.

Warning : Not every collection of n or more vectors in Rn will span all of Rn. A
counterexample is provided by the vectors (2.15).
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2.4. Bases.

In order to span a vector space or subspace, we must use a sufficient number of distinct
elements. On the other hand, including too many elements in the spanning set will violate
linear independence, and cause redundancies. The optimal spanning sets are those that are
also linearly independent. By combining the properties of span and linear independence,
we arrive at the all-important concept of a “basis”.

Definition 2.25. A basis of a vector space V is a finite collection of elements
v1, . . . ,vn ∈ V which (a) span V , and (b) are linearly independent.

Bases are absolutely fundamental in all areas of linear algebra and linear analysis, in-
cluding matrix algebra, geometry of Euclidean space, solutions to linear differential equa-
tions, both ordinary and partial, linear boundary value problems, Fourier analysis, signal
and image processing, data compression, control systems, and so on.

Example 2.26. The standard basis of Rn consists of the n vectors

e1 =




1
0
0
...
0
0




, e2 =




0
1
0
...
0
0




, . . . en =




0
0
0
...
0
1




, (2.17)

so that ei is the vector with 1 in the ith slot and 0’s elsewhere. We already encountered
these vectors as the columns of the n× n identity matrix, as in (1.39). They clearly span
Rn since we can write any vector

x =




x1

x2
...

xn


 = x1 e1 + x2 e2 + · · · + xn en, (2.18)

as a linear combination, whose coefficients are the entries of x. Moreover, the only linear
combination that gives the zero vector x = 0 is the trivial one x1 = · · · = xn = 0, and so
e1, . . . , en are linearly independent.

Remark : In the three-dimensional case R3, a common physical notation for the stan-
dard basis is

i = e1 =



1
0
0


 , j = e2 =



0
1
0


 , k = e3 =



0
0
1


 . (2.19)

There are many other possible bases for R3. Indeed, any three non-coplanar vectors
can be used to form a basis. This is a consequence of the following general characterization
of bases in Rn.
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Theorem 2.27. Every basis of Rn contains exactly n vectors. A set of n vectors

v1, . . . ,vn ∈ Rn is a basis if and only if the n× n matrix A = (v1 . . . vn ) is nonsingular.

Proof : This is a direct consequence of Theorem 2.20. Linear independence requires
that the only solution to the homogeneous system Ax = 0 is the trivial one x = 0.
Secondly, a vector b ∈ Rn will lie in the span of v1, . . . ,vn if and only if the linear system
Ax = b has a solution. For v1, . . . ,vn to span Rn, this must hold for all possible right
hand sides b. Theorem 1.7 tells us that both results require that A be nonsingular, i.e.,
have maximal rank n. Q.E.D.

Thus, every basis of n-dimensional Euclidean space Rn contains the same number of
vectors, namely n. This is a general fact, and motivates a linear algebra characterization
of dimension.

Theorem 2.28. Suppose the vector space V has a basis v1, . . . ,vn. Then every other

basis of V has the same number of elements in it. This number is called the dimension of
V , and written dimV = n.

The proof of Theorem 2.28 rests on the following lemma.

Lemma 2.29. Suppose v1, . . . ,vn span a vector space V . Then every set of k > n

elements w1, . . . ,wk ∈ V is linearly dependent.

Proof : Let us write each element

wj =

n∑

i=1

aij vi, j = 1, . . . , k,

as a linear combination of the spanning set. Then

c1w1 + · · · + ckwk =
n∑

i=1

k∑

j=1

aij cjvi.

This linear combination will be zero whenever c = ( c1, c2, . . . , ck )
T
solves the homogeneous

linear system
k∑

j=1

aij cj = 0, i = 1, . . . , n,

consisting of n equations in k > n unknowns. Theorem 1.45 guarantees that every ho-
mogeneous system with more unknowns than equations always has a non-trivial solution
c6= 0, and this immediately implies that w1, . . . ,wk are linearly dependent. Q.E.D.

Proof of Theorem 2.28 : Suppose we have two bases containing a different number of
elements. By definition, the smaller basis spans the vector space. But then Lemma 2.29
tell us that the elements in the larger purported basis must be linearly dependent. This
contradicts our assumption that both sets are bases, and proves the theorem. Q.E.D.

As a direct consequence, we can now provide a precise meaning to the optimality
property of bases.
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Theorem 2.30. Suppose V is an n-dimensional vector space. Then

(a) Every set of more than n elements of V is linearly dependent.

(b) No set of less than n elements spans V .

(c) A set of n elements forms a basis if and only if it spans V .

(d) A set of n elements forms a basis if and only if it is linearly independent.

In other words, once we determine the dimension of a vector space, to check that a
given collection with the correct number of elements forms a basis, we only need check one
of the two defining properties: span or linear independence. Thus, n elements that span an
n-dimensional vector space are automatically linearly independent and hence form a basis;
vice versa, n linearly independent elements of n-dimensional vector space automatically
span the space and so form a basis.

Example 2.31. The standard basis of the space P (n) of polynomials of degree ≤ n

is given by the n + 1 monomials 1, x, x2, . . . , xn. (A formal proof of linear independence
appears in Exercise .) We conclude that the vector space P (n) has dimension n + 1.
Thus, any collection of n+ 2 or more polynomials of degree ≤ n is automatically linearly
dependent. Any other basis of P (n) must contain precisely n + 1 polynomials. But, not
every collection of n+1 polynomials in P (n) is a basis — they must be linearly independent.
See Exercise for details.

Remark : By definition, every vector space of dimension 1 ≤ n < ∞ has a basis. If a
vector space V has no basis, it is either the trivial vector space V = {0}, which by conven-
tion has dimension 0, or, by definition, its dimension is infinite. An infinite-dimensional
vector space necessarily contains an infinite collection of linearly independent vectors, and
hence no (finite) basis. Examples of infinite-dimensional vector spaces include most spaces
of functions, such as the spaces of continuous, differentiable, or mean zero functions, as
well as the space of all polynomials, and the space of solutions to a linear homogeneous
partial differential equation. On the other hand, the solution space for a homogeneous
linear ordinary differential equation turns out to be a finite-dimensional vector space. The
most important example of an infinite-dimensional vector space, “Hilbert space”, to be
introduced in Chapter 12,is essential to modern analysis and function theory, [122, 126],
as well as providing the theoretical setting for all of quantum mechanics, [100, 104].

Warning : There is a well-developed concept of a “complete basis” of such infinite-
dimensional function spaces, essential in Fourier analysis,[122, 126], but this requires ad-
ditional analytical constructions that are beyond our present abilities. Thus, in this book
the term “basis” always means a finite collection of vectors in a finite-dimensional vector
space.

Lemma 2.32. The elements v1, . . . ,vn form a basis of V if and only if every x ∈ V

can be written uniquely as a linear combination thereof :

x = c1v1 + · · · + cnvn =
n∑

i=1

civi (2.20)
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Proof : The condition that the basis span V implies every x ∈ V can be written as
some linear combination of the basis elements. Suppose we can write an element

x = c1v1 + · · · + cnvn = ĉ1v1 + · · · + ĉnvn

as two different combinations. Subtracting one from the other, we find

(c1 − ĉ1)v1 + · · · + (cn − ĉn)vn = 0.

Linear independence of the basis elements implies that the coefficients ci − ĉi = 0. We
conclude that ci = ĉi, and hence the linear combinations are the same. Q.E.D.

The coefficients (c1, . . . , cn) in (2.20) are called the coordinates of the vector x with
respect to the given basis. For the standard basis (2.17) of Rn, the coordinates of a vector

x = (x1, x2, . . . , xn )
T
are its entries — i.e., its usual Cartesian coordinates, cf. (2.18). In

many applications, an inspired change of basis will lead to a better adapted coordinate
system, thereby simplifying the computations.

Example 2.33. A Wavelet Basis. The vectors

v1 =




1
1
1
1


, v2 =




1
1
−1
−1


, v3 =




1
−1
0
0


, v4 =




0
0
1
−1


, (2.21)

form a basis of R4. This is verified by performing Gaussian elimination on the correspond-
ing 4× 4 matrix

A =




1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1


,

to check that it is nonsingular. This basis is a very simple example of a wavelet basis; the
general case will be discussed in Section 13.2. Wavelets arise in modern applications to
signal and digital image processing, [43, 128].

How do we find the coordinates of a vector x relative to the basis? We need to fix the
coefficients c1, c2, c3, c4 so that

x = c1v1 + c2v2 + c3v3 + c4v4.

We rewrite this equation in matrix form

x = A c where c = ( c1, c2, c3, c4 )
T

.

For example, solving the linear system for the vector x = ( 4,−2, 1, 5 )
T
by Gaussian

Elimination produces the unique solution c1 = 2, c2 = −1, c3 = 3, c4 = −2, which are its
coordinates in the wavelet basis:




4
−2
1
5


 = 2v1 − v2 + 3v3 − 2v4 = 2




1
1
1
1


−




1
1
−1
−1


+ 3




1
−1
0
0


− 2




0
0
1
−1


.
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In general, to find the coordinates of a vector x with respect to a new basis of Rn

requires the solution of a linear system of equations, namely

A c = x for c = A−1x. (2.22)

Here x = (x1, x2, . . . , xn )
T
are the Cartesian coordinates of x, with respect to the standard

basis e1, . . . , en, while c = ( c1, c2, . . . , cn )
T
denotes its coordinates with respect to the new

basis v1, . . . ,vn formed by the columns of the coefficient matrix A = (v1 v2 . . . vn ). In
practice, one solves for the coordinates by using Gaussian Elimination, not by matrix
inversion.

Why would one want to change bases? The answer is simplification and speed —many
computations and formulas become much easier, and hence faster, to perform in a basis that
is adapted to the problem at hand. In signal processing, the wavelet basis is particularly
appropriate for denoising, compression, and efficient storage of signals, including audio,
still images, videos, medical images, geophysical images, and so on. These processes would
be quite time-consuming, if not impossible in the case of video processing, to accomplish
in the standard basis. Many other examples will appear throughout the text.

2.5. The Fundamental Matrix Subspaces.

Let us now return to the general study of linear systems of equations, which we write
in our usual matrix form

Ax = b . (2.23)

Here A is an m × n matrix, where m is the number of equations and n the number of
unknowns, i.e., the entries of x ∈ Rn.

Kernel and Range

There are four important vector subspaces associated with any matrix, which play a
key role in the interpretation of our solution algorithm. The first two of these subspaces
are defined as follows.

Definition 2.34. The range of an m × n matrix A is the subspace rngA ⊂ Rm

spanned by the columns of A. The kernel or null space of A is the subspace kerA ⊂ Rn

consisting of all vectors which are annihilated by A, so

kerA = { z ∈ Rn
| A z = 0 } ⊂ Rn. (2.24)

An alternative name for the range is the column space of the matrix. By definition, a
vector b ∈ Rm belongs to rngA if and only if it can be written as a linear combination,

b = x1v1 + · · · + xnvn,

of the columns of A = (v1 v2 . . . vn ). By our basic matrix multiplication formula (2.14),
the right hand side of this equation equals the product Ax of the matrix A with the column
vector x = (x1, x2, . . . , xn )

T
, and hence b = Ax for some x ∈ Rn, so

rngA = {Ax | x ∈ Rn
} ⊂ Rm. (2.25)
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Therefore, a vector b lies in the range of A if and only if the linear system Ax = b has

a solution. Thus, the compatibility conditions for linear systems can be re-interpreted as
the conditions for a vector to lie in the range of the coefficient matrix.

A common alternative name for the kernel is the null space of the matrix A. The kernel
of A is the set of solutions to the homogeneous system A z = 0. The proof that kerA is a
subspace requires us to verify the usual closure conditions. Suppose that z,w ∈ kerA, so
that A z = 0 = Aw. Then, for any scalars c, d,

A(c z+ dw) = cA z+ dAw = 0,

which implies that c z + dw ∈ kerA, proving that kerA is a subspace. This fact can be
re-expressed as the following superposition principle for solutions to a homogeneous system
of linear equations.

Theorem 2.35. If z1, . . . , zk are solutions to a homogeneous linear system A z = 0,

then so is any linear combination c1 z1 + · · ·+ ck zk.

Warning : The set of solutions to an inhomogeneous linear system Ax = b with b6= 0

is not a subspace.

Example 2.36. Let us compute the kernel of the matrix A =



1 −2 0 3
2 −3 −1 −4
3 −5 −1 −1


.

Since we are solving the homogeneous system Ax = 0, we only need perform the elemen-

tary row operations on A itself. The resulting row echelon form U =



1 −2 0 3
0 1 −1 −10
0 0 0 0




corresponds to the equations x − 2y + 3w = 0, y − z − 10w = 0. The free variables are
z, w. The general solution to the homogeneous system is

x =




x

y

z

w


 =




2z + 17w
z + 10w

z

w


 = z




2
1
1
0


+ w




17
10
0
1


,

which, for arbitrary scalars z, w, describes the most general vector in kerA. Thus, the
kernel of this matrix is the two-dimensional subspace of R4 spanned by the linearly inde-
pendent vectors ( 2, 1, 1, 0 )

T
, ( 17, 10, 0, 1 )

T
.

Remark : This example is indicative of a general method for finding a basis for kerA
which will be developed in more detail in the following section.

Once we know the kernel of the coefficient matrix A, i.e., the space of solutions to the
homogeneous system A z = 0, we are in a position to completely characterize the solutions
to the inhomogeneous linear system (2.23).

Theorem 2.37. The linear system Ax = b has a solution x? if and only if b lies in

the range of A. If this occurs, then x is a solution to the linear system if and only if

x = x? + z, (2.26)

where z ∈ kerA is an arbitrary element of the kernel of A.
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Proof : We already demonstrated the first part of the theorem. If Ax = b = Ax? are
any two solutions, then their difference z = x− x? satisfies

A z = A(x− x?) = Ax−Ax? = b− b = 0,

and hence z belongs to the kernel of A. Therefore, x and x? are related by formula (2.26),
which proves the second part of the theorem. Q.E.D.

Therefore, to construct the most general solution to an inhomogeneous system, we
need only know one particular solution x?, along with the general solution z ∈ kerA to
the homogeneous equation. This construction should remind the reader of the method
of solution for inhomogeneous linear ordinary differential equations. Indeed, both linear
algebraic systems and linear ordinary differential equations are but two particular instances
of the general theory of linear systems, to be developed in Chapter 7. In particular, we can
characterize the case when the linear system has a unique solution in any of the following
equivalent ways.

Proposition 2.38. Let A be an m × n matrix. Then the following conditions are

equivalent:

(i) kerA = {0}.

(ii) rankA = n

(iii) There are no free variables in the linear system Ax = b.

(iv) The system Ax = b has a unique solution for each b ∈ rngA.

Specializing even further to square matrices, we can characterize invertibility by look-
ing either at its kernel or at its range.

Proposition 2.39. If A is a square matrix, then the following three conditions are

equivalent: (i) A is nonsingular; (ii) kerA = {0}; (iii) rngA = Rn.

Example 2.40. Consider the system Ax = b, where

A =



1 0 −1
0 1 −2
1 −2 3


 , x =




x1

x2

x3


 , b =




b1

b2

b3


 ,

where the right hand side of the system will be left arbitrary. Applying our usual Gaussian
Elimination procedure to the augmented matrix



1 0 −1
0 1 −2
1 −2 3

∣∣∣∣∣∣

b1

b2

b3


 leads to the row echelon form



1 0 −1
0 1 −2
0 0 0

∣∣∣∣∣∣

b1

b2

b3 + 2b2 − b1


 .

The system has a solution if and only if the resulting compatibility condition

−b1 + 2b2 + b3 = 0 (2.27)

holds. This equation serves to characterize the vectors b that belong to the range of the
matrix A, which is therefore a certain plane in R3 passing through the origin.
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To characterize the kernel of A, we take b = 0, and solve the homogeneous system
A z = 0. The row echelon form corresponds to the reduced system

z1 − z3 = 0, z2 − 2z3 = 0.

The free variable is z3, and the equations are solved to give

z1 = c, z2 = 2c, z3 = c,

where c is arbitrary. The general solution to the homogeneous system is z = ( c, 2c, c )
T
=

c ( 1, 2, 1 )
T
, and so the kernel is the line in the direction of the vector ( 1, 2, 1 )

T
.

If we take b = ( 3, 1, 1 )
T
— which satisfies (2.27) and hence lies in the range of A —

then the general solution to the inhomogeneous system Ax = b is

x1 = 3 + c, x2 = 1 + 2c, x3 = c,

where c is an arbitrary scalar. We can write the solution in the form (2.26), namely

x =



3 + c

1 + 2c
c


 =



3
1
0


+ c



1
2
1


 = x? + z,

where x? = ( 3, 1, 0 )
T
plays the role of the particular solution, and z = c ( 1, 2, 1 )

T
is the

general element of the kernel.

The Superposition Principle

The principle of superposition lies at the heart of linearity. For homogeneous systems,
superposition allows one to generate new solutions by combining known solutions. For
inhomogeneous systems, superposition combines the solutions corresponding to different
inhomogeneities or forcing functions. Superposition is the reason why linear systems are
so important for applications and why they are so much easier to solve. We shall explain
the superposition principle in the context of inhomogeneous linear algebraic systems. In
Chapter 7 we shall see that the general principle applies as stated to completely general
linear systems, including linear differential equations, linear boundary value problems,
linear integral equations, etc.

Suppose we have found particular solutions x?1 and x
?
2 to two inhomogeneous linear

systems
Ax = b1, Ax = b2,

that have the same coefficient matrix A. Consider the system

Ax = c1b1 + c2b2,

in which the right hand side is a linear combination or superposition of the previous two.
Then a particular solution to the combined system is given by the same linear combination
of the previous solutions:

x? = c1x
?
1 + c2x

?
2.
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The proof is easy; we use the rules of matrix arithmetic to compute

Ax? = A(c1x
?
1 + c2x

?
2) = c1 Ax?1 + c2 Ax?2 = c1b1 + c2b2.

In many applications, the inhomogeneities b1,b2 represent external forces, and the
solutions x?1,x

?
2 represent the response of the physical apparatus to the force. The linear

superposition principle says that if we know how the system responds to the individual
forces, we immediately know its response to any combination thereof. The precise details
of the system are irrelevant — all that is required is linearity.

Example 2.41. For example, the system
(
4 1
1 4

)(
x

y

)
=

(
f

g

)

models the mechanical response of a pair of masses connected by springs to an external
force. The solution x = (x, y )

T
represent the respective displacements of the masses,

while the components of the right hand side f = ( f, g )
T
represent the respective forces

applied to each mass. (See Chapter 6 for full details.) We can compute the response of the

system x?1 =
(

4
15 ,− 1

15

)T
to a unit force e1 = ( 1, 0 )

T
on the first mass, and the response

x?2 =
(
−

1
15 , 4

15

)T
to a unit force e2 = ( 0, 1 )

T
on the second mass. We then know the

response of the system to a general force, since we can write

f =

(
f

g

)
= f e1 + g e2 = f

(
1
0

)
+ g

(
0
1

)
,

and hence the solution is

x = f x?1 + g x?2 = f

(
4
15

−
1
15

)
+ g

(
−

1
15
4
15

)
=

(
4
15 f − 1

15 g

−
1
15 f + 4

15 g

)
.

The preceding construction is easily extended to several inhomogeneities, and the
result is a general Superposition Principle for inhomogeneous linear systems.

Theorem 2.42. Suppose that we know particular solutions x?1, . . . ,x
?
k to each of the

inhomogeneous linear systems

Ax = b1, Ax = b2, . . . Ax = bk, (2.28)

where b1, . . . ,bk ∈ rngA. Then, for any choice of scalars c1, . . . , ck, a particular solution

to the combined system

Ax = c1b1 + · · · + ckbk (2.29)

is the same superposition

x? = c1x
?
1 + · · · + ckx

?
k (2.30)

of individual solutions. The general solution to (2.29) is

u = x? + z = c1x
?
1 + · · · + ckx

?
k + z, (2.31)

where z is the general solution to the homogeneous equation A z = 0.
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In particular, if we know particular solutions x?1, . . . ,x
?
m to

Ax = ei, for each i = 1, . . . ,m, (2.32)

where e1, . . . , em are the standard basis vectors of Rm, cf. (2.17), then we can reconstruct
a particular solution x? to the general linear system Ax = b by first writing

b = b1 e1 + · · · + bm em

as a linear combination of the basis vectors, and then using superposition to form

x? = b1x
?
1 + · · · + bmx

?
m. (2.33)

However, for linear algebraic systems, the practical value of this insight is rather limited.
Indeed, in the case when A is square and nonsingular, the superposition method is just a
reformulation of the method of computing the inverse of the matrix. Indeed, the vectors
x?1, . . . ,x

?
n which satisfy (2.32) are just the columns of A−1, cf. (1.39), and the superpo-

sition formula (2.33) is, using (2.14), precisely the solution formula x? = A−1b that we
abandoned in practical computations, in favor of the more efficient Gaussian elimination
method. Nevertheless, the implications of this result turn out to be of great importance
in the study of linear boundary value problems.

Adjoint Systems, Cokernel, and Corange

A linear system ofm equations in n unknowns results in anm×n coefficient matrix A.
The transposed matrix AT will be of size n×m, and forms the coefficient of an associated
linear system consisting of n equations in m unknowns.

Definition 2.43. The adjoint† to a linear system Ax = b of m equations in n

unknowns is the linear system
ATy = f (2.34)

of n equations in m unknowns. Here y ∈ Rm and f ∈ Rn.

Example 2.44. Consider the linear system

x1 − 3x2 − 7x3 + 9x4 = b1,

x2 + 5x3 − 3x4 = b2,

x1 − 2x2 − 2x3 + 6x4 = b3,

(2.35)

of three equations in four unknowns. Its coefficient matrix is A =



1 −3 −7 9
0 1 5 −3
1 −2 −2 6




has transpose AT =




1 0 1
−3 1 −2
−7 5 −2
9 −3 6


. Thus, the adjoint system to (2.35) is the following

† Warning : Many texts misuse the term “adjoint” to describe the classical adjugate or cofactor
matrix. These are completely unrelated, and the latter will play no role in this book.
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system of four equations in three unknowns:

y1 + y3 = f1,

−3y1 + y2 − 2y3 = f2,

−7y1 + 5y2 − 2y3 = f3,

9y1 − 3y2 + 6y3 = f4.

(2.36)

On the surface, there appears to be little direct connection between the solutions to a
linear system and its adjoint. Nevertheless, as we shall soon see (and then in even greater
depth in Sections 5.6 and 8.5) there are remarkable, but subtle interrelations between the
two. These turn out to have significant consequences, not only for linear algebraic systems
but to even more profound extensions to differential equations.

To this end, we use the adjoint system to define the other two fundamental subspaces
associated with a coefficient matrix A.

Definition 2.45. The corange of an m× n matrix A is the range of its transpose,

corngA = rngAT =
{

ATy
∣∣ y ∈ Rm

}
⊂ Rn. (2.37)

The cokernel or left null space of A is the kernel of its transpose,

cokerA = kerAT =
{
w ∈ Rm

∣∣ ATw = 0
}
⊂ Rm, (2.38)

that is, the set of solutions to the homogeneous adjoint system.

The corange coincides with the subspace of Rn spanned by the rows of A, and is
sometimes referred to as the row space. As a consequence of Theorem 2.37, the adjoint
system ATy = f has a solution if and only if f ∈ rngAT = corngA.

Example 2.46. To solve the linear system (2.35) appearing above, we perform

Gaussian Elimination on its augmented matrix



1 −3 −7 9
0 1 5 −3
1 −2 −2 6

∣∣∣∣∣∣

b1

b2

b3


 that reduces

it to the row echelon form



1 −3 −7 9
0 1 5 −3
0 0 0 0

∣∣∣∣∣∣

b1

b2

b3 − b2 − b1


. Thus, the system has a

solution if and only if b ∈ rngA satisfies the compatibility condition −b1 − b2 + b3 = 0.
For such vectors, the general solution is

x =




b1 + 3b2 − 8x3

b2 − 5x3 + 3x4

x3

x4


 =




b1 + 3b2

b2

0
0


+ x3




−8
−5
1
0


+ x4




0
3
0
1


.

In the second expression, the first vector is a particular solution and the remaining terms
constitute the general element of the two-dimensional kernel of A.
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The solution to the adjoint system (2.36) is also obtained by Gaussian Elimination

starting with its augmented matrix




1 0 1
−3 1 −2
−7 5 −2
9 −3 6

∣∣∣∣∣∣∣

f1

f2

f3

f4


. The resulting row echelon

form is




1 0 1
0 1 1
0 0 0
0 0 0

∣∣∣∣∣∣∣

f1

f2

f3 − 5f2 − 8f1

f4 + 3f2


. Thus, there are two compatibility constraints

required for a solution to the adjoint system: −8f1 − 5f2 + f3 = 0, 3f2 + f4 = 0. These
are the conditions required for the right hand side to belong to the corange: f ∈ rngAT =
corngA. If satisfied, the adjoint system has the general solution depending on the single
free variable y3:

y =




f1 − y3

3f1 + f2 − y3

y3


 =




f1

3f1 + f2

0


+ y3



−1
−1
1


.

In the latter formula, the first term represents a particular solution, while the second is
the general element of kerAT = cokerA.

The Fundamental Theorem of Linear Algebra

The four fundamental subspaces associated with an m × n matrix A, then, are its
range, corange, kernel and cokernel. The range and cokernel are subspaces of Rm, while
the kernel and corange are subspaces of Rn. Moreover, these subspaces are not completely
arbitrary, but are, in fact, profoundly related through both their numerical and geometric
properties.

The Fundamental Theorem of Linear Algebra† states that their dimensions are entirely
prescribed by the rank (and size) of the matrix.

Theorem 2.47. Let A be an m× n matrix of rank r. Then

dim corngA = dim rngA = rankA = rankAT = r,

dimkerA = n− r, dim cokerA = m− r.
(2.39)

Remark : Thus, the rank of a matrix, i.e., the number of pivots, indicates the number
of linearly independent columns, which, remarkably, is always the same as the number of
linearly independent rows! A matrix and its transpose have the same rank, i.e., the same
number of pivots, even though their row echelon forms are quite different, and are rarely
transposes of each other. Theorem 2.47 also proves our earlier contention that the rank of
a matrix is an intrinsic quantity, and does not depend on which specific elementary row
operations are employed during the reduction process, nor on the final row echelon form.

† Not to be confused with the Fundamental Theorem of Algebra, that states that every poly-
nomial has a complex root; see Theorem 16.62.
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Proof : Since the dimension of a subspace is prescribed by the number of vectors in
any basis, we need to relate bases of the fundamental subspaces to the rank of the matrix.
Rather than present the general argument, we will show how to construct bases for each of
the subspaces in a particular instance, and thereby illustrate the method of proof. Consider
the matrix

A =



2 −1 1 2
−8 4 −6 −4
4 −2 3 2


.

The row echelon form of A is obtained in the usual manner: U =



2 −1 1 2
0 0 −2 4
0 0 0 0


.

There are two pivots, and thus the rank of A is r = 2.

Kernel : We need to find the solutions to the homogeneous system Ax = 0. In our
example, the pivots are in columns 1 and 3, and so the free variables are x2, x4. Using back
substitution on the reduced homogeneous system U x = 0, we find the general solution

x =




1
2 x2 − 2x4

x2

2x4

x4


 = x2




1
2

1

0

0


+ x4




−2

0

2

1


. (2.40)

Note that the second and fourth entries are the corresponding free variables x2, x4. There-
fore,

z1 =
(

1
2 1 0 0

)T
, z2 = (−2 0 2 1 )

T
,

are the basis vectors for kerA. By construction, they span the kernel, and linear inde-
pendence follows easily since the only way in which the linear combination (2.40) could
vanish, x = 0, is if both free variables vanish: x2 = x4 = 0. In general, there are n − r

free variables, each corresponding to one of the basis elements of the kernel, which thus
implies the dimension formula for kerA.

Corange: The corange is the subspace of Rn spanned by the rows of A. We claim
that applying an elementary row operation does not alter the corange. To see this for row
operations of the first type, suppose, for instance, that Â is obtained adding a times the
first row of A to the second row. If r1, r2, r3, . . . , rm are the rows of A, then the rows of Â

are r1, r̂2 = r2 + ar1, r3, . . . , rm. If

v = c1 r1 + c2 r2 + c3 r3 + · · · + cm rm

is any vector belonging to corngA, then

v = ĉ1 r1 + c2 r̂2 + c3 r3 + · · · + cm rm, where ĉ1 = c1 − ac2,

is also a linear combination of the rows of the new matrix, and hence lies in corng Â.
The converse is also valid — v ∈ corng Â implies v ∈ corngA — and we conclude that
elementary row operations of Type #1 do not change corngA. The proof for the other
two types of elementary row operations is even easier, and left to the reader.
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Since the row echelon form U is obtained from A by a sequence of elementary row
operations, we conclude that corngA = corngU . Moreover, because each nonzero row in
U contains a pivot, it is not hard to see that the nonzero rows of corngU are linearly
independent, and hence form a basis of both corngU and corngA. Since there is one row
per pivot, corngU = corngA has dimension r, the number of pivots. In our example, then,
a basis for corngA consists of the row vectors

s1 = ( 2 −1 1 2 ), s2 = ( 0 0 −2 4 ).

The reader may wish to verify their linear independence, as well as the fact that every row
of A lies in their span.

Range: There are two methods for computing a basis of the range or column space.
The first proves that it has dimension equal to the rank. This has the important, and
remarkable consequence that the space spanned by the rows of a matrix and the space
spanned by its columns always have the same dimension, even though they are, in general,
subspaces of different vector spaces.

Now the range of A and the range of U are, in general, different subspaces, so we
cannot directly use a basis for rngU as a basis for rngA. However, the linear dependencies
among the columns of A and U are the same. It is not hard to see that the columns of U

that contain the pivots form a basis for rngU . This implies that the same columns of A

form a basis for rngA. In particular, this implies that dim rngA = dim rngU = r.

In our example, the pivots lie in the first and third columns of U , and hence the first
and third columns of A, namely

v1 =



2
−8
4


, v3 =



1
−6
3


,

form a basis for rngA. This implies that every column of A can be written uniquely as a
linear combination of the first and third column, as you can validate directly.

In more detail, using our matrix multiplication formula (2.14), we see that a linear
combination of columns of A is trivial,

c1v1 + · · · + cnvn = Ac = 0,

if and only if c ∈ kerA. But we know kerA = kerU , and so the same linear combination
of columns of U , namely

U c = c1u1 + · · · + cnun = 0,

is also trivial. In particular, the linear independence of the pivot columns of U , labeled
uj1 , . . . ,ujr

, implies the linear independence of the same collection, vj1 , . . . ,vjr

, of columns
of A. Moreover, the fact that any other column of U can be written as a linear combination

uk = d1uj1 + · · · + drujr

of the pivot columns implies that the same holds for the corresponding column of A, so

vk = d1vj1 + · · · + drvjr

.
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We conclude that the pivot columns of A form a basis for its range or column space.

An alternative method to find a basis for the range is to note that rngA = corngAT .
Thus, we can employ our previous algorithm to compute corngAT . In our example, ap-
plying Gaussian elimination to

AT =




2 −8 4
−1 4 −2
1 −6 3
2 −4 2


 leads to the row echelon form Û =




2 −8 4
0 −2 1
0 0 0
0 0 0


. (2.41)

Observe that the row echelon form of AT is not the transpose of the row echelon form of
A! However, they do have the same number of pivots since both A and AT have the same
rank. Since the pivots of AT are in the first two columns of Û , we conclude that

y1 =



2
−8
4


, y2 =



0
−2
1


,

forms an alternative basis for rngA.

Cokernel : Finally, to determine a basis for the cokernel of the matrix, we apply the
preceding algorithm for finding a basis for kerAT = cokerA. Since the ranks of A and AT

coincide, there are now m− r free variables, which is the same as the dimension of kerAT .

In our particular example, using the reduced form (2.41), the only free variable is y3,
and the general solution to the homogeneous adjoint system ATy = 0 is

y =



0

1
2 y3

y3


 = y3



0
1
2

1


.

We conclude that cokerA is one-dimensional, with basis
(
0 1

2 1
)T
.

2.6. Graphs and Incidence Matrices.

We now present an application of linear systems to graph theory. A graph consists
of one or more points, called vertices, and lines or curves connecting them, called edges.
Edge edge connects exactly two vertices, which, for simplicity, are assumed to always be
distinct, so that no edge forms a loop that connects a vertex to itself. However, we do
permit two vertices to be connected by multiple edges. Some examples of graphs appear
in Figure 2.2; the vertices are the black dots. In a planar representation of the graph, the
edges may cross over each other at non-nodal points, but do not actually meet — think of
a circuit where the (insulated) wires lie on top of each other, but do not touch. Thus, the
first graph in Figure 2.2 has 5 vertices and 8 edges; the second has 4 vertices and 6 edges
— the two central edges do not meet; the final graph has 5 vertices and 10 edges.

Graphs arise in a multitude of applications. A particular case that will be considered in
depth is electrical networks, where the edges represent wires, and the vertices represent the
nodes where the wires are connected. Another example is the framework for a building —
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Figure 2.2. Three Different Graphs.

Figure 2.3. Three Versions of the Same Graph.

the edges represent the beams and the vertices the joints where the beams are connected.
In each case, the graph encodes the topology — meaning interconnectedness — of the
system, but not its geometry — lengths of edges, angles, etc.

Two graphs are considered to be the same if one can identify all their edges and
vertices, so that they have the same connectivity properties. A good way to visualize
this is to think of the graph as a collection of strings connected at the vertices. Moving
the vertices and strings around without cutting or rejoining them will have no effect on
the underlying graph. Consequently, there are many ways to draw a given graph; three
equivalent graphs appear in Figure 2.3.

Two vertices in a graph are adjacent if there is an edge connecting them. Two edges
are adjacent if they meet at a common vertex. For instance, in the graph in Figure 2.4, all
vertices are adjacent; edge 1 is adjacent to all edges except edge 5. A path is a sequence of
distinct, i.e., non-repeated, edges, with each edge adjacent to its successor. For example,
in Figure 2.4, one path starts at vertex #1, then goes in order along the edges labeled as
1, 4, 3, 2, thereby passing through vertices 1, 2, 4, 1, 3. Note that while an edge cannot be
repeated in a path, a vertex may be. A circuit is a path that ends up where it began. For
example, the circuit consisting of edges 1, 4, 5, 2 starts at vertex 1, then goes to vertices
2, 4, 3 in order, and finally returns to vertex 1. The starting vertex for a circuit is not
important. For example, edges 4, 5, 2, 1 also represent the same circuit we just described.
A graph is called connected if you can get from any vertex to any other vertex by a path,
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Figure 2.4. A Simple Graph.

Figure 2.5. Digraphs.

which is by far the most important case for applications. We note that every graph can
be decomposed into a disconnected collection of connected subgraphs.

In electrical circuits, one is interested in measuring currents and voltage drops along
the wires in the network represented by the graph. Both of these quantities have a direction,
and therefore we need to specify an orientation on each edge in order to quantify how the
current moves along the wire. The orientation will be fixed by specifying the vertex the
edge “starts” at, and the vertex it “ends” at. Once we assign a direction to an edge, a
current along that wire will be positive if it moves in the same direction, i.e., goes from
the starting vertex to the ending one, and negative if it moves in the opposite direction.
The direction of the edge does not dictate the direction of the current — it just fixes what
directions positive and negative values of current represent. A graph with directed edges
is known as a directed graph or digraph for short. The edge directions are represented by
arrows; examples of digraphs can be seen in Figure 2.5.

Consider a digraph D consisting of n vertices connected by m edges. The incidence
matrix associated with D is an m × n matrix A whose rows are indexed by the edges
and whose columns are indexed by the vertices. If edge k starts at vertex i and ends at
vertex j, then row k of the incidence matrix will have a +1 in its (k, i) entry and −1 in its
(k, j) entry; all other entries of the row are zero. Thus, our convention is that a +1 entry
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Figure 2.6. A Simple Digraph.

represents the vertex at which the edge starts and a −1 entry the vertex at which it ends.

A simple example is the digraph in Figure 2.6, which consists of five edges joined at
four different vertices. Its 5× 4 incidence matrix is

A =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 0 −1
0 0 1 −1


 . (2.42)

Thus the first row of A tells us that the first edge starts at vertex 1 and ends at vertex 2.
Similarly, row 2 says that the second edge goes from vertex 1 to vertex 3. Clearly one can
completely reconstruct any digraph from its incidence matrix.

Example 2.48. The matrix

A =




1 −1 0 0 0
−1 0 1 0 0
0 −1 1 0 0
0 1 0 −1 0
0 0 −1 1 0
0 0 0 −1 1




. (2.43)

qualifies as an incidence matrix because each row contains a single +1, a single −1, and
the other entries are 0. Let us construct the digraph corresponding to A. Since A has five
columns, there are five vertices in the digraph, which we label by the numbers 1, 2, 3, 4, 5.
Since it has seven rows, there are 7 edges. The first row has its +1 in column 1 and its
−1 in column 2 and so the first edge goes from vertex 1 to vertex 2. Similarly, the second
edge corresponds to the second row of A and so goes from vertex 3 to vertex 1. The third
row of A gives an edge from vertex 3 to vertex 2; and so on. In this manner we construct
the digraph drawn in Figure 2.7.

The incidence matrix has important geometric and quantitative consequences for the
graph it represents. In particular, its kernel and cokernel have topological significance. For
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Figure 2.7. Another Digraph.

example, the kernel of the incidence matrix (2.43) is spanned by the single vector

z = ( 1 1 1 1 1 )
T
,

and represents the fact that the sum of the entries in any given row of A is zero. This
observation holds in general for connected digraphs.

Proposition 2.49. If A is the incidence matrix for a connected digraph, then kerA
is one-dimensional, with basis z = ( 1 1 . . . 1 )

T
.

Proof : If edge k connects vertices i and j, then the kth equation in Az = 0 is zi = zj .
The same equality holds, by a simple induction, if the vertices i and j are connected
by a path. Therefore, if D is connected, all the entries of z are equal, and the result
follows. Q.E.D.

Corollary 2.50. If A is the incidence matrix for a connected digraph with n vertices,

then rankA = n− 1.

Proof : This is an immediate consequence of Theorem 2.47. Q.E.D.

Next, let us look at the cokernel of an incidence matrix. Consider the particular
example (2.42) corresponding to the digraph in Figure 2.6. We need to compute the kernel
of the transposed incidence matrix

AT =




1 1 1 0 0
−1 0 0 1 0
0 −1 0 0 1
0 0 −1 −1 −1


 . (2.44)

Solving the homogeneous system ATy = 0 by Gaussian elimination, we discover that
cokerA = kerAT is spanned by the two vectors

y1 = ( 1 0 −1 1 0 )
T
, y2 = ( 0 1 −1 0 1 )

T
.
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Each of these vectors represents a circuit in the digraph, the nonzero entries representing
the direction in which the edges are traversed. For example, y1 corresponds to the circuit
that starts out along edge #1, then traverses edge #4 and finishes by going along edge #3
in the reverse direction, which is indicated by the minus sign in its third entry. Similarly,
y2 represents the circuit consisting of edge #2, followed by edge #5, and then edge #3,
backwards. The fact that y1 and y2 are linearly independent vectors says that the two
circuits are “independent”.

The general element of cokerA is a linear combination c1y1+ c2y2. Certain values of
the constants lead to other types of circuits; for example −y1 represents the same circuit
as y1, but traversed in the opposite direction. Another example is

y1 − y2 = ( 1 −1 0 1 −1 )
T
,

which represents the square circuit going around the outside of the digraph, along edges
1, 4, 5, 2, the fourth and second being in the reverse direction. We can view this circuit as a
combination of the two triangular circuits; when we add them together the middle edge #3
is traversed once in each direction, which effectively “cancels” its contribution. (A similar
cancellation occurs in the theory of line integrals; see Section A.5.) Other combinations
represent “virtual” circuits; for instance, one can interpret 2y1−

1
2 y2 as two times around

the first triangular circuit plus one half of the other triangular circuit, in the opposite
direction— whatever that might mean.

Let us summarize the preceding discussion.

Theorem 2.51. Each circuit in a digraphD is represented by a vector in the cokernel

of its incidence matrix, whose entries are +1 if the edge is traversed in the correct direction,
−1 if in the opposite direction, and 0 if the edge is not in the circuit. The dimension of
the cokernel of A equals the number of independent circuits in D.

The preceding two theorems have an important and remarkable consequence. Suppose
D is a connected digraph with m edges and n vertices and A its m× n incidence matrix.
Corollary 2.50 implies that A has rank r = n − 1 = n − dimkerA. On the other hand,
Theorem 2.51 tells us that dim cokerA = l equals the number of independent circuits in
D. The Fundamental Theorem 2.47 says that r = m − l. Equating these two different
computations of the rank, we find r = n − 1 = m − l, or n + l = m + 1. This celebrated
result is known as Euler’s formula for graphs, first discovered by the extraordinarily prolific
eighteenth century Swiss mathematician Leonhard Euler†.

Theorem 2.52. If G is a connected graph, then

# vertices + # independent circuits = # edges + 1. (2.45)

Remark : If the graph is planar , meaning that it can be graphed in the plane without
any edges crossing over each other, then the number of independent circuits is equal to
the number of “holes” in the graph, i.e., the number of distinct polygonal regions bounded

† Pronounced “Oiler”
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Figure 2.8. A Cubical Digraph.

by the edges of the graph. For example, the pentagonal digraph in Figure 2.7 bounds
three triangles, and so has three independent circuits. For non-planar graphs, (2.45) gives
a possible definition of the number of independent circuits, but one that is not entirely
standard. A more detailed discussion relies on further developments in the topological
properties of graphs, cf. [33].

Example 2.53. Consider the graph corresponding to the edges of a cube, as illus-
trated in Figure 2.8, where the second figure represents the same graph squashed down
onto a plane. The graph has 8 vertices and 12 edges. Euler’s formula (3.76) tells us that
there are 5 independent circuits. These correspond to the interior square and four trape-
zoids in the planar version of the digraph, and hence to circuits around 5 of the 6 faces
of the cube. The “missing” face does indeed define a circuit, but it can be represented as
the sum of the other five circuits, and so is not independent. In Exercise , the reader is
asked to write out the incidence matrix for the cubical digraph and explicitly identify the
basis of its kernel with the circuits.

We do not have the space to further develop the remarkable connections between
graph theory and linear algebra. The interested reader is encouraged to consult a text
devoted to graph theory, e.g., [33].
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Chapter 3

Inner Products and Norms

The geometry of Euclidean space relies on the familiar properties of length and angle.
The abstract concept of a norm on a vector space formalizes the geometrical notion of the
length of a vector. In Euclidean geometry, the angle between two vectors is governed by
their dot product, which is itself formalized by the abstract concept of an inner product.
Inner products and norms lie at the heart of analysis, both linear and nonlinear, in both
finite-dimensional vector spaces and infinite-dimensional function spaces. It is impossible
to overemphasize their importance for both theoretical developments, practical applications
in all fields, and in the design of numerical solution algorithms.

Mathematical analysis is founded on a few key inequalities. The most basic is the
Cauchy–Schwarz inequality, which is valid in any inner product space. The more famil-
iar triangle inequality for the associated norm is derived as a simple consequence. Not
every norm arises from an inner product, and in the general situation, the triangle in-
equality becomes part of the definition. Both inequalities retain their validity in both
finite-dimensional and infinite-dimensional vector spaces. Indeed, their abstract formula-
tion helps focus on the key ideas in the proof, avoiding distracting complications resulting
from the explicit formulas.

In Euclidean space Rn, the characterization of general inner products will lead us
to the extremely important class of positive definite matrices. Positive definite matrices
play a key role in a variety of applications, including minimization problems, least squares,
mechanical systems, electrical circuits, and the differential equations describing dynamical
processes. Later, we will generalize the notion of positive definiteness to more general linear
operators, governing the ordinary and partial differential equations arising in continuum
mechanics and dynamics. Positive definite matrices most commonly appear in so-called
Gram matrix form, consisting of the inner products between selected elements of an inner
product space. In general, positive definite matrices can be completely characterized by
their pivots resulting from Gaussian elimination. The associated matrix factorization can
be reinterpreted as the method of completing the square for the associated quadratic form.

So far, we have confined our attention to real vector spaces. Complex numbers, vectors
and functions also play an important role in applications, and so, in the final section, we
formally introduce complex vector spaces. Most of the formulation proceeds in direct
analogy with the real version, but the notions of inner product and norm on complex
vector spaces requires some thought. Applications of complex vector spaces and their
inner products are of particular importance in Fourier analysis and signal processing, and
absolutely essential in modern quantum mechanics.
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Figure 3.1. The Euclidean Norm in R2 and R3.

3.1. Inner Products.

The most basic example of an inner product is the familiar dot product

〈v ;w 〉 = v ·w = v1 w1 + v2 w2 + · · · + vnwn =
n∑

i=1

viwi, (3.1)

between (column) vectors v = ( v1, v2, . . . , vn )
T

,w = (w1, w2, . . . , wn )
T
lying in the Eu-

clidean space Rn. An important observation is that the dot product (3.1) can be identified
with the matrix product

v ·w = vTw = ( v1 v2 . . . vn )




w1

w2
...

wn


 (3.2)

between a row vector vT and a column vector w.

The dot product is the cornerstone of Euclidean geometry. The key remark is that
the dot product of a vector with itself,

〈v ;v 〉 = v2
1 + v2

2 + · · · + v2
n,

is the sum of the squares of its entries, and hence equal to the square of its length. There-
fore, the Euclidean norm or length of a vector is found by taking the square root:

‖v ‖ =
√
v · v =

√
v2
1 + v2

2 + · · · + v2
n . (3.3)

This formula generalizes the classical Pythagorean Theorem to n-dimensional Euclidean
space; see Figure 3.1. Since each term in the sum is non-negative, the length of a vector is
also non-negative, ‖v ‖ ≥ 0. Furthermore, the only vector of length 0 is the zero vector.

The dot product and norm satisfy certain evident properties, and these serve as the
basis for the abstract definition of more general inner products on real vector spaces.
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Definition 3.1. An inner product on the real vector space V is a pairing that takes
two vectors v,w ∈ V and produces a real number 〈v ;w 〉 ∈ R. The inner product is
required to satisfy the following three axioms for all u,v,w ∈ V , and c, d ∈ R.
(i) Bilinearity :

〈 cu+ dv ;w 〉 = c 〈u ;w 〉+ d 〈v ;w 〉,

〈u ; cv + dw 〉 = c 〈u ;v 〉+ d 〈u ;w 〉.
(3.4)

(ii) Symmetry :
〈v ;w 〉 = 〈w ;v 〉. (3.5)

(iii) Positivity :
〈v ;v 〉 > 0 whenever v6= 0, while 〈0 ;0 〉 = 0. (3.6)

A vector space equipped with an inner product is called an inner product space. As
we shall see, a given vector space can admit many different inner products. Verification of
the inner product axioms for the Euclidean dot product is straightforward, and left to the
reader.

Given an inner product, the associated norm of a vector v ∈ V is defined as the
positive square root of the inner product of the vector with itself:

‖v ‖ =
√
〈v ;v 〉 . (3.7)

The positivity axiom implies that ‖v ‖ ≥ 0 is real and non-negative, and equals 0 if and
only if v = 0 is the zero vector.

Example 3.2. While certainly the most important inner product on Rn, the dot
product is by no means the only possibility. A simple example is provided by the weighted
inner product

〈v ;w 〉 = 2v1 w1 + 5v2 w2, v =

(
v1

v2

)
, w =

(
w1

w2

)
. (3.8)

between vectors in R2. The symmetry axiom (3.5) is immediate. Moreover,

〈 cu+ dv ;w 〉 = 2(cu1 + dv1)w1 + 5(cu2 + dv2)w2

= (2cu1 w1 + 5cu2 w2) + (2dv1 w1 + 5dv2 w2) = c 〈u ;w 〉+ d 〈v ;w 〉,

which verifies the first bilinearity condition; the second follows by a very similar computa-
tion. (Or, one can rely on symmetry; see Exercise .) Moreover,

〈v ;v 〉 = 2v2
1 + 5v

2
2 ≥ 0

is clearly strictly positive for any v 6= 0 and equal to zero when v = 0, which proves
positivity and hence establishes (3.8) as an legitimate inner product on R2. The associated
weighted norm is

‖v ‖ =
√
2v2

1 + 5v
2
2 .

A less evident example is provided by the expression

〈v ;w 〉 = v1 w1 − v1 w2 − v2 w1 + 4v2 w2. (3.9)
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Bilinearity is verified in the same manner as before, and symmetry is obvious. Positivity
is ensured by noticing that

〈v ;v 〉 = v2
1 − 2v1 v2 + 4v

2
2 = (v1 − v2)

2 + 3v2
2 > 0

is strictly positive for all nonzero v 6= 0. Therefore, (3.9) defines an alternative inner
product on R2. The associated norm

‖v ‖ =
√

v2
1 − 2v1 v2 + 4v

2
2

defines a different notion of distance and consequential “non-Pythagorean plane geometry”.

Example 3.3. Let c1, . . . , cn be a set of positive numbers. The corresponding
weighted inner product and weighted norm on Rn are defined by

〈v ;w 〉 =
n∑

i=1

ci viwi, ‖v ‖ =

√√√√
n∑

i=1

ci v
2
i . (3.10)

The numbers ci > 0 are the weights. The larger the weight ci, the more the ith coordinate
of v contributes to the norm. Weighted norms are particularly important in statistics and
data fitting, where one wants to emphasize certain quantities and de-emphasize others;
this is done by assigning suitable weights to the different components of the data vector
v. Section 4.3 on least squares approximation methods will contain further details.

Inner Products on Function Space

Inner products and norms on function spaces will play an absolutely essential role in
modern analysis, particularly Fourier analysis and the solution to boundary value problems
for both ordinary and partial differential equations. Let us introduce the most important
examples.

Example 3.4. Given a bounded closed interval [a, b ] ⊂ R, consider the vector space
C0 = C0[a, b ] consisting of all continuous functions f : [a, b ]→ R. The integral

〈 f ; g 〉 =

∫ b

a

f(x) g(x) dx (3.11)

defines an inner product on the vector space C0, as we shall prove below. The associated
norm is, according to the basic definition (3.7),

‖ f ‖ =

√∫ b

a

f(x)2 dx . (3.12)

This quantity is known as the L2 norm of the function f over the interval [a, b ]. The L2

norm plays the same role in infinite-dimensional function space that the Euclidean norm
or length of a vector plays in the finite-dimensional Euclidean vector space Rn.
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For example, if we take [a, b ] = [0, 1
2π ], then the L2 inner product between f(x) =

sinx and g(x) = cosx is equal to

〈 sinx ; cosx 〉 =

∫ π/2

0

sinx cosx dx =
1

2
sin2 x

∣∣∣∣
π/2

x=0

=
1

2
.

Similarly, the norm of the function sinx is

‖ sinx ‖ =

√∫ π/2

0

(sinx)2 dx =

√
π

4
.

One must always be careful when evaluating function norms. For example, the constant
function c(x) ≡ 1 has norm

‖ 1 ‖ =

√∫ π/2

0

12 dx =

√
π

2
,

not 1 as you might have expected. We also note that the value of the norm depends upon
which interval the integral is taken over. For instance, on the longer interval [0, π ],

‖ 1 ‖ =

√∫ π

0

12 dx =
√

π .

Thus, when dealing with the L2 inner product or norm, one must always be careful to
specify the function space, or, equivalently, the interval on which it is being evaluated.

Let us prove that formula (3.11) does, indeed, define an inner product. First, we need
to check that 〈 f ; g 〉 is well-defined. This follows because the product f(x)g(x) of two
continuous functions is also continuous, and hence its integral over a bounded interval is
defined and finite. The symmetry condition for the inner product is immediate:

〈 f ; g 〉 =

∫ b

a

f(x) g(x) dx = 〈 g ; f 〉,

because multiplication of functions is commutative. The first bilinearity axiom

〈 c f + d g ;h 〉 = c 〈 f ;h 〉+ d 〈 g ;h 〉,

amounts to the following elementary integral identity

∫ b

a

[
c f(x) + d g(x)

]
h(x) dx = c

∫ b

a

f(x)h(x) dx+ d

∫ b

a

g(x)h(x) dx,

valid for arbitrary continuous functions f, g, h and scalars (constants) c, d. The second
bilinearity axiom is proved similarly; alternatively, one can use symmetry to deduce it
from the first as in Exercise . Finally, positivity requires that

‖ f ‖2 = 〈 f ; f 〉 =

∫ b

a

f(x)2 dx ≥ 0.
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Figure 3.2. Angle Between Two Vectors.

This is clear because f(x)2 ≥ 0, and the integral of a nonnegative function is nonnegative.
Moreover, since the function f(x)2 is continuous and nonnegative, its integral will vanish,∫ b

a

f(x)2 dx = 0 if and only if f(x) ≡ 0 is the zero function, cf. Exercise . This completes

the demonstration.

Remark : The preceding construction applies to more general functions, but we have
restricted our attention to continuous functions to avoid certain technical complications.
The most general function space admitting this important inner product is known as
Hilbert space, which forms the foundation for modern analysis, [126], including the rigorous
theory of Fourier series, [51], and also lies at the heart of modern quantum mechanics,
[100, 104, 122]. One does need to be extremely careful when trying to extend the inner
product to more general functions. Indeed, there are nonzero, discontinuous functions with
zero L2 “norm”. An example is

f(x) =

{
1, x = 0,

0, otherwise,
which satisfies ‖ f ‖2 =

∫ 1

−1

f(x)2 dx = 0 (3.13)

because any function which is zero except at finitely many (or even countably many) points
has zero integral. We will discuss some of the details of the Hilbert space construction in
Chapters 12 and 13.

One can also define weighted inner products on the function space C0[a, b ]. The
weights along the interval are specified by a (continuous) positive scalar function w(x) > 0.
The corresponding weighted inner product and norm are

〈 f ; g 〉 =

∫ b

a

f(x) g(x)w(x) dx, ‖ f ‖ =

√∫ b

a

f(x)2 w(x) dx . (3.14)

The verification of the inner product axioms in this case is left as an exercise for the reader.

3.2. Inequalities.
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Returning to the general framework of inner products on vector spaces, we now prove
the most important inequality in applied mathematics. Its origins can be found in the
geometric interpretation of the dot product on Euclidean space in terms of the angle
between vectors.

The Cauchy–Schwarz Inequality

In two and three-dimensional Euclidean geometry, the dot product between two vec-
tors can be geometrically characterized by the equation

v ·w = ‖v ‖ ‖w ‖ cos θ, (3.15)

where θ measures the angle between the vectors v and w, as depicted in Figure 3.2. Since

| cos θ | ≤ 1,

the absolute value of the dot product is bounded by the product of the lengths of the
vectors:

|v ·w | ≤ ‖v ‖ ‖w ‖.

This fundamental inequality is named after two† of the founders of modern analysis, Au-
gustin Cauchy and Herman Schwarz. It holds, in fact, for any inner product.

Theorem 3.5. Every inner product satisfies the Cauchy–Schwarz inequality

| 〈v ;w 〉 | ≤ ‖v ‖ ‖w ‖, v,w ∈ V. (3.16)

Here, ‖v ‖ is the associated norm, while | · | denotes absolute value. Equality holds if and

only if v and w are parallel‡ vectors.

Proof : The case when w = 0 is trivial, since both sides of (3.16) are equal to 0. Thus,
we may suppose w 6= 0. Let t ∈ R be an arbitrary scalar. Using the three basic inner
product axioms, we have

0 ≤ ‖v + tw ‖2 = 〈v + tw ;v + tw 〉 = ‖v ‖2 + 2 t 〈v ;w 〉+ t2 ‖w ‖2, (3.17)

with equality holding if and only if v = − tw — which requires v and w to be parallel
vectors. We fix v and w, and consider the right hand side of (3.17) as a quadratic function,

p(t) = ‖w ‖2 t2 + 2 〈v ;w 〉 t+ ‖v ‖2,

of the scalar variable t. To get the maximum mileage out of the fact that p(t) ≥ 0, let us
look at where it assumes a minimum. This occurs when its derivative vanishes:

p′(t) = 2 ‖w ‖2 t+ 2 〈v ;w 〉 = 0, and thus at t = −
〈v ;w 〉

‖w ‖2
.

† Russians also give credit for its discovery to their compatriot Viktor Bunyakovskii, and,
indeed, many authors append his name to the inequality.

‡ Two vectors are parallel if and only if one is a scalar multiple of the other. The zero vector
is parallel to every other vector, by convention.
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Substituting this particular minimizing value into (3.17), we find

0 ≤ ‖v ‖2 − 2
〈v ;w 〉2

‖w ‖2
+
〈v ;w 〉2

‖w ‖2
= ‖v ‖2 −

〈v ;w 〉2

‖w ‖2
.

Rearranging this last inequality, we conclude that

〈v ;w 〉2

‖w ‖2
≤ ‖v ‖2, or 〈v ;w 〉2 ≤ ‖v ‖2 ‖w ‖2.

Taking the (positive) square root of both sides of the final inequality completes the theo-
rem’s proof. Q.E.D.

Given any inner product on a vector space, we can use the quotient

cos θ =
〈v ;w 〉

‖v ‖ ‖w ‖
(3.18)

to define the “angle” between the elements v,w ∈ V . The Cauchy–Schwarz inequality
tells us that the ratio lies between −1 and +1, and hence the angle θ is well-defined, and,
in fact, unique if we restrict it to lie in the range 0 ≤ θ ≤ π.

For example, using the standard dot product on R3, the angle between the vectors
v = ( 1 0 1 )

T
and w = ( 0 1 1 )

T
is given by

cos θ =
1

√
2 ·
√
2
=
1

2
,

and so θ = 1
3 π, i.e., 60◦. Similarly, the “angle” between the polynomials p(x) = x and

q(x) = x2 defined on the interval I = [0, 1] is given by

cos θ =
〈x ;x2

〉

‖x ‖ ‖x2 ‖
=

∫ 1

0

x3 dx

√∫ 1

0

x2 dx

√∫ 1

0

x4 dx

=

1
4√

1
3

√
1
5

=

√
15

16
,

so that θ = 0.25268 . . . radians.

Warning : One should not try to give this notion of angle between functions more
significance than the formal definition warrants — it does not correspond to any “angular”
properties of their graph. Also, the value depends on the choice of inner product and the
interval upon which it is being computed. For example, if we change to the inner product

on the interval [−1, 1], then 〈x ;x2
〉 =

∫ 1

−1

x3 dx = 0, and hence (3.18) becomes cos θ = 0,

so the “angle” between x and x2 is now θ = 1
2 π.

Even in Euclidean space Rn, the measurement of angle (and length) depends upon
the choice of an underlying inner product. Different inner products lead to different angle
measurements; only for the standard Euclidean dot product does angle correspond to our
everyday experience.
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Orthogonal Vectors

A particularly important geometrical configuration occurs when two vectors are per-
pendicular , which means that they meet at a right angle: θ = 1

2 π or 3
2 π, and so cos θ = 0.

The angle formula (3.18) implies that the vectors v,w are perpendicular if and only if
their dot product vanishes: v · w = 0. Perpendicularity also plays a key role in general
inner product spaces, but, for historical reasons, has been given a different name.

Definition 3.6. Two elements v,w ∈ V of an inner product space V are called
orthogonal if their inner product 〈v ;w 〉 = 0.

Orthogonality is a remarkably powerful tool in all applications of linear algebra, and
often serves to dramatically simplify many computations. We will devote Chapter 5 to its
detailed development.

Example 3.7. The vectors v = ( 1, 2 )
T
and w = ( 6,−3 )

T
are orthogonal with

respect to the Euclidean dot product in R2, since v ·w = 1 · 6 + 2 · (−3) = 0. We deduce
that they meet at a 90◦ angle. However, these vectors are not orthogonal with respect to
the weighted inner product (3.8):

〈v ;w 〉 =

〈(
1
2

)
;

(
6
−3

)〉
= 2 · 1 · 6 + 5 · 2 · (−3) = −186= 0.

Thus, orthogonality, like angles in general, depends upon which inner product is being
used.

Example 3.8. The polynomials p(x) = x and q(x) = x2
−

1
2 are orthogonal with

respect to the inner product 〈 p ; q 〉 =

∫ 1

0

p(x) q(x) dx on the interval [0, 1], since

〈
x ; x2

−
1
2

〉
=

∫ 1

0

x
(
x2
−

1
2

)
dx =

∫ 1

0

(
x3
−

1
2 x
)
dx = 0.

They fail to be orthogonal on most other intervals. For example, on the interval [0, 2],

〈
x ; x2

−
1
2

〉
=

∫ 2

0

x
(
x2
−

1
2

)
dx =

∫ 2

0

(
x3
−

1
2 x
)
dx = 3.

The Triangle Inequality

The familiar triangle inequality states that the length of one side of a triangle is at
most equal to the sum of the lengths of the other two sides. Referring to Figure 3.3, if the
first two side are represented by vectors v and w, then the third corresponds to their sum
v+w, and so ‖v +w ‖ ≤ ‖v ‖+ ‖w ‖. The triangle inequality is a direct consequence of
the Cauchy–Schwarz inequality, and hence holds for any inner product space.

Theorem 3.9. The norm associated with an inner product satisfies the triangle
inequality

‖v +w ‖ ≤ ‖v ‖+ ‖w ‖ (3.19)

for every v,w ∈ V . Equality holds if and only if v and w are parallel vectors.
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Figure 3.3. Triangle Inequality.

Proof : We compute

‖v +w ‖2 = 〈v +w ;v +w 〉 = ‖v ‖2 + 2 〈v ;w 〉+ ‖w ‖2

≤ ‖v ‖2 + 2 ‖v ‖ ‖w ‖+ ‖w ‖2 =
(
‖v ‖+ ‖w ‖

)2
,

where the inequality follows from Cauchy–Schwarz. Taking square roots of both sides and
using positivity completes the proof. Q.E.D.

Example 3.10. The vectors v =



1
2
−1


 and w =



2
0
3


 sum to v + w =



3
2
2


.

Their Euclidean norms are ‖v ‖ =
√
6 and ‖w ‖ =

√
13, while ‖v +w ‖ =

√
17. The

triangle inequality (3.19) in this case says
√
17 ≤

√
6 +

√
13, which is valid.

Example 3.11. Consider the functions f(x) = x − 1 and g(x) = x2 + 1. Using the
L2 norm on the interval [0, 1], we find

‖ f ‖ =

√∫ 1

0

(x− 1)2 dx =

√
1

3
, ‖ g ‖ =

√∫ 1

0

(x2 + 1)2 dx =

√
23

15
,

‖ f + g ‖ =

√∫ 1

0

(x2 + x)2 dx =

√
77

60
.

The triangle inequality requires
√

77
60 ≤

√
1
3 +

√
23
15 , which is correct.

The Cauchy–Schwarz and triangle inequalities look much more impressive when writ-
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ten out in full detail. For the Euclidean inner product (3.1), they are

∣∣∣∣∣

n∑

i=1

viwi

∣∣∣∣∣ ≤

√√√√
n∑

i=1

v2
i

√√√√
n∑

i=1

w2
i ,

√√√√
n∑

i=1

(vi + wi)
2
≤

√√√√
n∑

i=1

v2
i +

√√√√
n∑

i=1

w2
i .

(3.20)

Theorems 3.5 and 3.9 imply that these inequalities are valid for arbitrary real numbers
v1, . . . , vn, w1, . . . , wn. For the L

2 inner product (3.12) on function space, they produce
the following splendid integral inequalities:

∣∣∣∣∣

∫ b

a

f(x) g(x) dx

∣∣∣∣∣ ≤

√∫ b

a

f(x)2 dx

√∫ b

a

g(x)2 dx ,

√∫ b

a

[
f(x) + g(x)

]2
dx ≤

√∫ b

a

f(x)2 dx +

√∫ b

a

g(x)2 dx ,

(3.21)

which hold for arbitrary continuous (and even more general) functions. The first of these is
the original Cauchy–Schwarz inequality, whose proof appeared to be quite deep when it first
appeared. Only after the abstract notion of an inner product space was properly formalized
did its innate simplicity and generality become evident. One can also generalize either of
these sets of inequalities to weighted inner products, replacing the integration element dx

by a weighted version w(x) dx, provided w(x) > 0.

3.3. Norms.

Every inner product gives rise to a norm that can be used to measure the magnitude
or length of the elements of the underlying vector space. However, not every such norm
used in analysis and applications arises from an inner product. To define a general norm
on a vector space, we will extract those properties that do not directly rely on the inner
product structure.

Definition 3.12. A norm on the vector space V assigns a real number ‖v ‖ to each
vector v ∈ V , subject to the following axioms for all v,w ∈ V , and c ∈ R:

(i) Positivity : ‖v ‖ ≥ 0, with ‖v ‖ = 0 if and only if v = 0.

(ii) Homogeneity : ‖ cv ‖ = | c | ‖v ‖.

(iii) Triangle inequality : ‖v +w ‖ ≤ ‖v ‖+ ‖w ‖.

As we now know, every inner product gives rise to a norm. Indeed, positivity of the
norm is one of the inner product axioms. The homogeneity property follows since

‖ cv ‖ =
√
〈 cv ; cv 〉 =

√
c2 〈v ;v 〉 = | c |

√
〈v ;v 〉 = | c | ‖v ‖.

Finally, the triangle inequality for an inner product norm was established in Theorem 3.9.

Here are some important examples of norms that do not come from inner products.
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Example 3.13. Let V = Rn. The 1–norm of a vector v = (v1 v2 . . . vn )
T
is

defined as the sum of the absolute values of its entries:

‖v ‖1 = | v1 |+ · · · + | vn |. (3.22)

The max or ∞–norm is equal to the maximal entry (in absolute value):

‖v ‖∞ = sup { | v1 |, . . . , | vn | }. (3.23)

Verification of the positivity and homogeneity properties for these two norms is straight-
forward; the triangle inequality is a direct consequence of the elementary inequality

| a+ b | ≤ | a |+ | b |

for absolute values.

The Euclidean norm, 1–norm, and ∞–norm on Rn are just three representatives of
the general p–norm

‖v ‖p =
p

√√√√
n∑

i=1

| vi |
p . (3.24)

This quantity defines a norm for any 1 ≤ p < ∞. The ∞–norm is a limiting case of
the p–norm as p → ∞. Note that the Euclidean norm (3.3) is the 2–norm, and is often
designated as such; it is the only p–norm which comes from an inner product. The positivity
and homogeneity properties of the p–norm are straightforward. The triangle inequality,
however, is not trivial; in detail, it reads

p

√√√√
n∑

i=1

| vi + wi |
p
≤

p

√√√√
n∑

i=1

| vi |
p + p

√√√√
n∑

i=1

|wi |
p , (3.25)

and is known as Minkowski’s inequality . A proof can be found in [97].

Example 3.14. There are analogous norms on the space C0[a, b ] of continuous
functions on an interval [a, b ]. Basically, one replaces the previous sums by integrals.
Thus, the Lp–norm is defined as

‖ f ‖p =
p

√∫ b

a

| f(x) |
p
dx . (3.26)

In particular, the L1 norm is given by integrating the absolute value of the function:

‖ f ‖1 =

∫ b

a

| f(x) | dx. (3.27)

The L2 norm (3.12) appears as a special case, p = 2, and, again, is the only one arising from
an inner product. The proof of the general triangle or Minkowski inequality for p 6= 1, 2 is
again not trivial. The limiting L∞ norm is defined by the maximum

‖ f ‖∞ = max { | f(x) | : a ≤ x ≤ b } . (3.28)
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Example 3.15. Consider the polynomial p(x) = 3x2
−2 on the interval −1 ≤ x ≤ 1.

Its L2 norm is

‖ p ‖2 =

√∫ 1

−1

(3x2
− 2)2 dx =

√
18

5
= 1.8974 . . . .

Its L∞ norm is

‖ p ‖∞ = max
{
| 3x2

− 2 | : −1 ≤ x ≤ 1
}
= 2,

with the maximum occurring at x = 0. Finally, its L1 norm is

‖ p ‖1 =

∫ 1

−1

| 3x2
− 2 | dx

=

∫ −
√

2/3

−1

(3x2
− 2) dx+

∫ √2/3

−
√

2/3

(2− 3x2) dx+

∫ 1

√
2/3

(3x2
− 2) dx

=

(
4
3

√
2
3 − 1

)
+ 8

3

√
2
3 +

(
4
3

√
2
3 − 1

)
= 16

3

√
2
3 − 2 = 2.3546 . . . .

Every norm defines a distance between vector space elements, namely

d(v,w) = ‖v −w ‖. (3.29)

For the standard dot product norm, we recover the usual notion of distance between points
in Euclidean space. Other types of norms produce alternative (and sometimes quite useful)
notions of distance that, nevertheless, satisfy all the familiar distance axioms. Notice that
distance is symmetric, d(v,w) = d(w,v). Moreover, d(v,w) = 0 if and only if v = w.
The triangle inequality implies that

d(v,w) ≤ d(v, z) + d(z,w) (3.30)

for any triple of vectors v,w, z.

Unit Vectors

Let V be a fixed normed vector space. The elements u ∈ V with unit norm ‖u ‖ = 1
play a special role, and are known as unit vectors (or functions). The following easy lemma
shows how to construct a unit vector pointing in the same direction as any given nonzero
vector.

Lemma 3.16. If v6= 0 is any nonzero vector, then the vector u = v/‖v ‖ obtained

by dividing v by its norm is a unit vector parallel to v.

Proof : We compute, making use of the homogeneity property of the norm:

‖u ‖ =

∥∥∥∥
v

‖v ‖

∥∥∥∥ =
‖v ‖

‖v ‖
= 1. Q .E .D .
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Example 3.17. The vector v = ( 1,−2 )
T
has length ‖v ‖2 =

√
5 with respect to

the standard Euclidean norm. Therefore, the unit vector pointing in the same direction as
v is

u =
v

‖v ‖2
=
1
√
5

(
1
−2

)
=

(
1√
5

−
2√
5

)
.

On the other hand, for the 1 norm, ‖v ‖1 = 3, and so

ũ =
v

‖v ‖1
=
1

3

(
1
−2

)
=

(
1
3

−
2
3

)

is the unit vector parallel to v in the 1 norm. Finally, ‖v ‖∞ = 2, and hence the corre-
sponding unit vector for the ∞ norm is

û =
v

‖v ‖∞
=
1

2

(
1
−2

)
=

(
1
2

−1

)
.

Thus, the notion of unit vector will depend upon which norm is being used.

Example 3.18. Similarly, on the interval [0, 1], the quadratic polynomial p(x) =
x2
−

1
2 has L

2 norm

‖ p ‖2 =

√∫ 1

0

(
x2
−

1
2

)2
dx =

√∫ 1

0

(
x4
− x2 + 1

4

)
dx =

√
7

60
.

Therefore, u(x) =
p(x)

‖ p ‖
=

√
60√
7

x2
−

√
15√
7
is a “unit polynomial”, ‖u ‖2 = 1, which is

“parallel” to (or, more correctly, a scalar multiple of) the polynomial p. On the other
hand, for the L∞ norm,

‖ p ‖∞ = max
{ ∣∣x2

−
1
2

∣∣ ∣∣ 0 ≤ x ≤ 1
}
= 1

2 ,

and hence, in this case ũ(x) = 2p(x) = 2x2
− 1 is the corresponding unit function.

The unit sphere for the given norm is defined as the set of all unit vectors

S1 =
{
‖u ‖ = 1

}
⊂ V. (3.31)

Thus, the unit sphere for the Euclidean norm on Rn is the usual round sphere

S1 =
{
‖x ‖2 = x2

1 + x2
2 + · · · + x2

n = 1
}
.

For the ∞ norm, it is the unit cube

S1 = { x ∈ Rn
| x1 = ±1 or x2 = ±1 or . . . or xn = ±1 } .

For the 1 norm, it is the unit diamond or “octahedron”

S1 = { x ∈ Rn
| |x1 |+ |x2 |+ · · · + |xn | = 1 } .
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Figure 3.4. Unit Balls and Spheres for 1, 2 and ∞ Norms in R2.

See Figure 3.4 for the two-dimensional pictures.

In all cases, the closed unit ball B1 =
{
‖u ‖ ≤ 1

}
consists of all vectors of norm less

than or equal to 1, and has the unit sphere as its boundary. If V is a finite-dimensional
normed vector space, then the unit ball B1 forms a compact subset, meaning that it is
closed and bounded. This topological fact, which is not true in infinite-dimensional spaces,
underscores the fundamental distinction between finite-dimensional vector analysis and the
vastly more complicated infinite-dimensional realm.

Equivalence of Norms

While there are many different types of norms, in a finite-dimensional vector space
they are all more or less equivalent. Equivalence does not mean that they assume the same
value, but rather that they are, in a certain sense, always close to one another, and so for
most analytical purposes can be used interchangeably. As a consequence, we may be able
to simplify the analysis of a problem by choosing a suitably adapted norm.

Theorem 3.19. Let ‖ · ‖1 and ‖ · ‖2 be any two norms on Rn. Then there exist

positive constants c?, C? > 0 such that

c? ‖v ‖1 ≤ ‖v ‖2 ≤ C?
‖v ‖1 for every v ∈ Rn. (3.32)

Proof : We just sketch the basic idea, leaving the details to a more rigorous real anal-
ysis course, cf. [125, 126]. We begin by noting that a norm defines a continuous function
f(v) = ‖v ‖ on Rn. (Continuity is, in fact, a consequence of the triangle inequality.) Let
S1 =

{
‖u ‖1 = 1

}
denote the unit sphere of the first norm. Any continuous function de-

fined on a compact set achieves both a maximum and a minimum value. Thus, restricting
the second norm function to the unit sphere S1 of the first norm, we can set

c? = ‖u? ‖2 = min { ‖u ‖2 | u ∈ S1 } , C? = ‖U?
‖2 = max { ‖u ‖2 | u ∈ S1 } ,

(3.33)
for certain vectors u?,U?

∈ S1. Note that 0 < c? ≤ C? < ∞, with equality holding if and
only if the the norms are the same. The minimum and maximum (3.33) will serve as the
constants in the desired inequalities (3.32). Indeed, by definition,

c? ≤ ‖u ‖2 ≤ C? when ‖u ‖1 = 1, (3.34)
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Figure 3.5. Equivalence of Norms.

and so (3.32) is valid for all u ∈ S1. To prove the inequalities in general, assume v 6= 0.
(The case v = 0 is trivial.) Lemma 3.16 says that u = v/‖v ‖1 ∈ S1 is a unit vector
in the first norm: ‖u ‖1 = 1. Moreover, by the homogeneity property of the norm,
‖u ‖2 = ‖v ‖2/‖v ‖1. Substituting into (3.34) and clearing denominators completes the
proof of (3.32). Q.E.D.

Example 3.20. For example, consider the Euclidean norm ‖ · ‖2 and the max norm
‖ · ‖∞ on Rn. According to (3.33), the bounding constants are found by minimizing and
maximizing ‖u ‖∞ = max{ |u1 |, . . . , |un | } over all unit vectors ‖u ‖2 = 1 on the (round)
unit sphere. Its maximal value is obtained at the poles, whenU? = ± ek, with ‖ ek ‖∞ = 1.

Thus, C? = 1. The minimal value is obtained when u? =

(
1
√

n
, . . . ,

1
√

n

)
has all equal

components, whereby c? = ‖u ‖∞ = 1/
√

n . Therefore,

1
√

n
‖v ‖2 ≤ ‖v ‖∞ ≤ ‖v ‖2. (3.35)

One can interpret these inequalities as follows. Suppose v is a vector lying on the unit
sphere in the Euclidean norm, so ‖v ‖2 = 1. Then (3.35) tells us that its ∞ norm is
bounded from above and below by 1/

√
n ≤ ‖v ‖∞ ≤ 1. Therefore, the unit Euclidean

sphere sits inside the unit sphere in the ∞ norm, and outside the sphere of radius 1/
√

n.
Figure 3.5 illustrates the two-dimensional situation.

One significant consequence of the equivalence of norms is that, in Rn, convergence is
independent of the norm. The following are all equivalent to the standard ε–δ convergence
of a sequence u(1),u(2),u(3), . . . of vectors in Rn:

(a) the vectors converge: u(k)
−→ u?:

(b) the individual components all converge: u
(k)
i −→ u?i for i = 1, . . . , n.

(c) the difference in norms goes to zero: ‖u(k)
− u? ‖ −→ 0.

The last case, called convergence in norm, does not depend on which norm is chosen.
Indeed, the basic inequality (3.32) implies that if one norm goes to zero, so does any other
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norm. An important consequence is that all norms on Rn induce the same topology —
convergence of sequences, notions of open and closed sets, and so on. None of this is true in
infinite-dimensional function space! A rigorous development of the underlying topological
and analytical properties of compactness, continuity, and convergence is beyond the scope
of this course. The motivated student is encouraged to consult a text in real analysis, e.g.,
[125, 126], to find the relevant definitions, theorems and proofs.

Example 3.21. Consider the infinite-dimensional vector space C0[0, 1] consisting of
all continuous functions on the interval [0, 1]. The functions

fn(x) =

{
1− nx, 0 ≤ x ≤ 1

n
,

0, 1
n
≤ x ≤ 1,

have identical L∞ norms

‖ fn ‖∞ = sup { | fn(x) | | 0 ≤ x ≤ 1 } = 1.

On the other hand, their L2 norm

‖ fn ‖2 =

√ ∫ 1

0

fn(x)
2 dx =

√ ∫ 1/n

0

(1− nx)2 dx =
1
√
3n

goes to zero as n →∞. This example shows that there is no constant C? such that

‖ f ‖∞ ≤ C?
‖ f ‖2

for all f ∈ C0[0, 1]. The L∞ and L2 norms on C0[0, 1] are not equivalent — there exist
functions which have unit L2 norm but arbitrarily small L∞ norm. Similar inequivalence
properties apply to all of the other standard function space norms. As a result, the topology
on function space is intimately connected with the underlying choice of norm.

3.4. Positive Definite Matrices.

Let us now return to the study of inner products, and fix our attention on the finite-
dimensional situation. Our immediate goal is to determine the most general inner product
which can be placed on the finite-dimensional vector space Rn. The resulting analysis will
lead us to the extremely important class of positive definite matrices. Such matrices play
a fundamental role in a wide variety of applications, including minimization problems, me-
chanics, electrical circuits, and differential equations. Moreover, their infinite-dimensional
generalization to positive definite linear operators underlie all of the most important ex-
amples of boundary value problems for ordinary and partial differential equations.

Let 〈x ;y 〉 denote an inner product between vectors x = (x1 x2 . . . xn )
T
, y =

( y1 y2 . . . yn )
T
, in Rn. Let us write the vectors in terms of the standard basis vectors:

x = x1 e1 + · · · + xn en =
n∑

i=1

xi ei, y = y1 e1 + · · · + yn en =
n∑

j=1

yj ej . (3.36)
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Let us carefully analyze the three basic inner product axioms, in order. We use the
bilinearity of the inner product to expand

〈x ;y 〉 =

〈
n∑

i=1

xi ei ;
n∑

j=1

yj ej

〉
=

n∑

i,j=1

xi yj〈 ei ; ej 〉.

Therefore we can write

〈x ;y 〉 =
n∑

i,j=1

kij xi yj = xTK y, (3.37)

where K denotes the n× n matrix of inner products of the basis vectors, with entries

kij = 〈 ei ; ej 〉, i, j = 1, . . . , n. (3.38)

We conclude that any inner product must be expressed in the general bilinear form (3.37).

The two remaining inner product axioms will impose certain conditions on the inner
product matrix K. The symmetry of the inner product implies that

kij = 〈 ei ; ej 〉 = 〈 ej ; ei 〉 = kji, i, j = 1, . . . , n.

Consequently, the inner product matrix K is symmetric:

K = KT .

Conversely, symmetry of K ensures symmetry of the bilinear form:

〈x ;y 〉 = xTK y = (xTK y)T = yTKTx = yTK x = 〈y ;x 〉,

where the second equality follows from the fact that the quantity is a scalar, and hence
equals its transpose.

The final condition for an inner product is positivity. This requires that

‖x ‖2 = 〈x ;x 〉 = xTK x =
n∑

i,j=1

kij xi xj ≥ 0 for all x ∈ Rn, (3.39)

with equality if and only if x = 0. The precise meaning of this positivity condition on the
matrix K is not as immediately evident, and so will be encapsulated in the following very
important definition.

Definition 3.22. An n × n matrix K is called positive definite if it is symmetric,
KT = K, and satisfies the positivity condition

xTK x > 0 for all 06= x ∈ Rn. (3.40)

We will sometimes write K > 0 to mean that K is a symmetric, positive definite matrix.

Warning : The condition K > 0 does not mean that all the entries of K are positive.
There are many positive definite matrices which have some negative entries — see Ex-
ample 3.24 below. Conversely, many symmetric matrices with all positive entries are not
positive definite!
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Remark : Although some authors allow non-symmetric matrices to be designated as
positive definite, we will only say that a matrix is positive definite when it is symmetric.
But, to underscore our convention and so as not to confuse the casual reader, we will often
include the adjective “symmetric” when speaking of positive definite matrices.

Our preliminary analysis has resulted in the following characterization of inner prod-
ucts on a finite-dimensional vector space.

Theorem 3.23. Every inner product on Rn is given by

〈x ;y 〉 = xTK y, for x,y ∈ Rn, (3.41)

where K is a symmetric, positive definite matrix.

Given a symmetric† matrix K, the expression

q(x) = xTK x =

n∑

i,j=1

kij xi xj , (3.42)

is known as a quadratic form on Rn. The quadratic form is called positive definite if

q(x) > 0 for all 06= x ∈ Rn. (3.43)

Thus, a quadratic form is positive definite if and only if its coefficient matrix is.

Example 3.24. Even though the symmetric matrix K =

(
4 −2
−2 3

)
has two neg-

ative entries, it is, nevertheless, a positive definite matrix. Indeed, the corresponding
quadratic form

q(x) = xTK x = 4x2
1 − 4x1 x2 + 3x

2
2 =

(
2x1 − x2

)2
+ 2x2

2 ≥ 0

is a sum of two non-negative quantities. Moreover, q(x) = 0 if and only if both terms are
zero, which requires that 2x1 − x2 = 0 and x2 = 0, whereby x1 = 0 also. This proves
positivity for all nonzero x, and hence K > 0 is indeed a positive definite matrix. The
corresponding inner product on R2 is

〈x ;y 〉 = (x1 x2 )

(
4 −2
−2 3

)(
y1

y2

)
= 4x1 y1 − 2x1 y2 − 2x2 y1 + 3x2 y2.

On the other hand, despite the fact that the matrix K =

(
1 2
2 1

)
has all positive

entries, it is not a positive definite matrix. Indeed, writing out

q(x) = xTK x = x2
1 + 4x1 x2 + x2

2,

we find, for instance, that q(1,−1) = −2 < 0, violating positivity. These two simple
examples should be enough to convince the reader that the problem of determining whether
a given symmetric matrix is or is not positive definite is not completely elementary.

† Exercise shows that the coefficient matrix K in any quadratic form can be taken to be
symmetric without any loss of generality.
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With a little practice, it is not difficult to read off the coefficient matrix K from the
explicit formula for the quadratic form (3.42).

Example 3.25. Consider the quadratic form

q(x, y, z) = x2 + 4xy + 6y2
− 2xz + 9z2

depending upon three variables. The corresponding coefficient matrix is

K =



1 2 −1
2 6 0
−1 0 9


 whereby q(x, y, z) = (x y z )



1 2 −1
2 6 0
−1 0 9






x

y

z


.

Note that the squared terms in q contribute directly to the diagonal entries of K, while the
mixed terms are split in half to give the symmetric off-diagonal entries. The reader might
wish to try proving that this particular matrix is positive definite by proving positivity of
the quadratic form: q(x, y, z) > 0 for all nonzero (x, y, z )

T
∈ R3. Later, we will establish

a systematic test for positive definiteness.

Slightly more generally, a quadratic form and its associated symmetric coefficient
matrix are called positive semi-definite if

q(x) = xTK x ≥ 0 for all x ∈ Rn. (3.44)

A positive semi-definite matrix may have null directions, meaning non-zero vectors z such
that q(z) = zTK z = 0. Clearly any vector z ∈ kerK that lies in the matrix’s kernel
defines a null direction, but there may be others. In particular, a positive definite matrix
is not allowed to have null directions, so kerK = {0}. Proposition 2.39 implies that all
positive definite matrices are invertible.

Theorem 3.26. All positive definite matrices K are non-singular.

Example 3.27. The matrix K =

(
1 −1
−1 1

)
is positive semi-definite, but not

positive definite. Indeed, the associated quadratic form

q(x) = xTK x = x2
1 − 2x1 x2 + x2

2 = (x1 − x2)
2
≥ 0

is a perfect square, and so clearly non-negative. However, the elements of kerK, namely
the scalar multiples of the vector ( 1 1 )

T
, define null directions, since q(1, 1) = 0.

Example 3.28. A general symmetric 2× 2 matrix K =

(
a b

b c

)
is positive definite

if and only if the associated quadratic form satisfies

q(x) = ax2
1 + 2bx1 x2 + cx2

2 > 0 (3.45)

for all x6= 0. Analytic geometry tells us that this is the case if and only if

a > 0, a c− b2 > 0, (3.46)

i.e., the quadratic form has positive leading coefficient and positive determinant (or nega-
tive discriminant). A direct proof of this elementary fact will appear shortly.
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Remark : A quadratic form q(x) = xTK x and its associated symmetric matrix K

are called negative semi-definite if q(x) ≤ 0 for all x and negative definite if q(x) < 0
for all x 6= 0. A quadratic form is called indefinite if it is neither positive nor negative
semi-definite; equivalently, there exist one or more points x+ where q(x+) > 0 and one or
more points x− where q(x−) < 0.

Gram Matrices

Symmetric matrices whose entries are given by inner products of elements of an inner
product space play an important role. They are named after the nineteenth century Danish
mathematician Jorgen Gram (not the metric mass unit).

Definition 3.29. Let V be an inner product space, and let v1, . . . ,vn ∈ V . The
associated Gram matrix

K =




〈v1 ;v1 〉 〈v1 ;v2 〉 . . . 〈v1 ;vn 〉

〈v2 ;v1 〉 〈v2 ;v2 〉 . . . 〈v2 ;vn 〉
...

...
. . .

...

〈vn ;v1 〉 〈vn ;v2 〉 . . . 〈vn ;vn 〉




. (3.47)

is the n× n matrix whose entries are the inner products between the chosen vector space
elements.

Symmetry of the inner product implies symmetry of the Gram matrix:

kij = 〈vi ;vj 〉 = 〈vj ;vi 〉 = kji, and hence KT = K. (3.48)

In fact, the most direct method for producing positive definite and semi-definite matrices
is through the Gram matrix construction.

Theorem 3.30. All Gram matrices are positive semi-definite. A Gram matrix is

positive definite if and only if the elements v1, . . . ,vn ∈ V are linearly independent.

Proof : To prove positive (semi-)definiteness of K, we need to examine the associated
quadratic form

q(x) = xTK x =
n∑

i,j=1

kij xi xj .

Substituting the values (3.48) for the matrix entries, we find

q(x) =

n∑

i,j=1

〈vi ;vj 〉xi xj .

Bilinearity of the inner product on V implies that we can assemble this summation into a
single inner product

q(x) =

〈
n∑

i=1

xivi ;
n∑

j=1

xj vj

〉
= 〈v ;v 〉 = ‖v ‖2 ≥ 0,
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where
v = x1v1 + · · · + xnvn

lies in the subspace of V spanned by the given vectors. This immediately proves that K

is positive semi-definite.

Moreover, q(x) = ‖v ‖2 > 0 as long as v 6= 0. If v1, . . . ,vn are linearly independent,
then v = 0 if and only if x1 = · · · = xn = 0, and hence, in this case, q(x) and K are
positive definite. Q.E.D.

Example 3.31. Consider the vectors v1 =



1
2
−1


, v2 =



3
0
6


 in R3. For the

standard Euclidean dot product, the Gram matrix is

K =

(
v1 · v1 v1 · v2

v2 · v1 v2 · v2

)
=

(
6 −3
−3 45

)
.

Positive definiteness implies that the associated quadratic form

q(x1, x2) = 6x
2
1 − 6x1 x2 + 45x

2
2 > 0

is positive for all (x1, x2)6= 0. This can be checked directly using the criteria in (3.46).

On the other hand, if we use the weighted inner product 〈x ;y 〉 = 3x1 y1 + 2x2 y2 +
5x3 y3, then the corresponding Gram matrix is

K =

(
〈v1 ;v1 〉 〈v1 ;v2 〉

〈v2 ;v1 〉 〈v2 ;v2 〉

)
=

(
16 −21
−21 207

)
,

which, by construction, is also positive definite.

In the case of the Euclidean dot product, the construction of the Gram matrix K

can be directly implemented as follows. Given vectors v1, . . . ,vn ∈ Rm, let us form the
m×n matrix A = (v1 v2 . . . vn ) whose columns are the vectors in question. Owing to the
identification (3.2) between the dot product and multiplication of row and column vectors,
the (i, j) entry of K is given as the product

kij = vi · vj = vTi vj

of the ith row of the transpose AT with the jth column of A. In other words, the Gram
matrix

K = ATA (3.49)

is the matrix product of the transpose of A with A. For the preceding Example 3.31,

A =



1 3
2 0
−1 6


, and so K = ATA =

(
1 2 −1
3 0 6

)

1 3
2 0
−1 6


 =

(
6 −3
−3 45

)
.

Theorem 3.30 implies that the Gram matrix (3.49) is positive definite if and only if
the columns of A are linearly independent. This implies the following result.
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Proposition 3.32. Given an m× n matrix A, the following are equivalent:

(i) The n× n Gram matrix K = ATA is positive definite.

(ii) A has linearly independent columns.

(iii) rankA = n ≤ m.

(iv) kerA = {0}.

As noted above, Gram matrices can be based on more general inner products on
more general vector spaces. Let us consider an alternative inner product on the finite-
dimensional vector space Rm. As noted in Theorem 3.23, a general inner product on Rm

has the form
〈v ;w 〉 = vTCw for v,w ∈ Rm, (3.50)

where C > 0 is a symmetric, positive definite m ×m matrix. Therefore, given n vectors
v1, . . . ,vn ∈ Rm, the entries of the corresponding Gram matrix are the products

kij = 〈vi ;vj 〉 = vTi C vj .

If we assemble the column vectors as above into an m×n matrix A = (v1 v2 . . . vn ), then
the Gram inner products are given by multiplying the ith row of AT by the jth column
of the product matrix C A. Therefore, the Gram matrix based on the alternative inner
product (3.50) is given by

K = ATC A. (3.51)

Theorem 3.30 immediately implies that K is positive definite — provided A has rank n.

Theorem 3.33. Suppose A is an m× n matrix with linearly independent columns.

Suppose C > 0 is any positive definite m ×m matrix. Then the matrix K = ATC A is a

positive definite n× n matrix.

The Gram matrix K constructed in (3.51) arises in a wide range of applications,
including weighted least squares approximation theory, cf. Chapter 4, the study of equi-
librium of mechanical and electrical systems, cf. Chapter 6. Starting in Chapter 11, we
shall look at infinite-dimensional generalizations that apply to differential equations and
boundary value problems.

Example 3.34. In the majority of applications, C = diag (c1, . . . , cm) is a diagonal
positive definite matrix, which requires it to have strictly positive diagonal entries ci > 0.
This choice corresponds to a weighted inner product (3.10) on Rm. For example, if we set

C =



3 0 0
0 2 0
0 0 5


, then the weighted Gram matrix based on the vectors



1
2
−1


,



3
0
6




of Example 3.31 is

K = ATC A =

(
1 2 −1
3 0 6

)

3 0 0
0 2 0
0 0 5





1 3
2 0
−1 6


 =

(
16 −21
−21 207

)
,

reproducing the second part of Example 3.31.
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The Gram construction also carries over to inner products on function space. Here is
a particularly important example.

Example 3.35. Consider vector space C0[0, 1] consisting of continuous functions

on the interval 0 ≤ x ≤ 1, equipped with the L2 inner product 〈 f ; g 〉 =

∫ 1

0

f(x) g(x) dx.

Let us construct the Gram matrix corresponding to the elementary monomial functions
1, x, x2. We compute the required inner products

〈 1 ; 1 〉 = ‖ 1 ‖2 =

∫ 1

0

dx = 1, 〈 1 ;x 〉 =

∫ 1

0

x dx =
1

2
,

〈x ;x 〉 = ‖x ‖2 =

∫ 1

0

x2 dx =
1

3
, 〈 1 ;x2

〉 =

∫ 1

0

x2 dx =
1

3
,

〈x2 ;x2
〉 = ‖x2

‖
2 =

∫ 1

0

x4 dx =
1

5
, 〈x ;x2

〉 =

∫ 1

0

x3 dx =
1

4
.

Therefore, the Gram matrix is

K =



1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5


.

The monomial functions 1, x, x2 are linearly independent. Therefore, Theorem 3.30 implies
that this particular matrix is positive definite.

The alert reader may recognize this Gram matrix K = H3 as the 3× 3 Hilbert matrix
that we encountered in (1.67). More generally, the Gram matrix corresponding to the
monomials 1, x, x2, . . . , xn has entries

kij = 〈x
i ;xj 〉 =

∫ 1

0

xi+j dt =
1

i+ j + 1
, i, j = 0, . . . , n.

Therefore, the monomial Gram matrix K = Hn+1 is the (n+ 1)× (n+ 1) Hilbert matrix
(1.67). As a consequence of Theorems 3.26 and 3.33, we have proved the following non-
trivial result.

Proposition 3.36. The n× n Hilbert matrix Hn is positive definite. In particular,

Hn is a nonsingular matrix.

Example 3.37. Let us construct the Gram matrix corresponding to the functions

1, cosx, sinx with respect to the inner product 〈 f ; g 〉 =

∫ π

−π

f(x) g(x) dx on the interval

[−π, π ]. We compute the inner products

〈 1 ; 1 〉 = ‖ 1 ‖2 =

∫ π

−π

dx = 2π, 〈 1 ; cosx 〉 =

∫ π

−π

cosx dx = 0,

〈 cosx ; cosx 〉 = ‖ cosx ‖2 =

∫ π

−π

cos2 x dx = π, 〈 1 ; sinx 〉 =

∫ π

−π

sinx dx = 0,

〈 sinx ; sinx 〉 = ‖ sinx ‖2 =

∫ π

−π

sin2 x dx = π, 〈 cosx ; sinx 〉 =

∫ π

−π

cosx sinx dx = 0.
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Therefore, the Gram matrix is a simple diagonal matrix K =



2π 0 0
0 π 0
0 0 π


. Positive

definiteness of K is immediately evident.

3.5. Completing the Square.

Gram matrices furnish us with an abundant supply of positive definite matrices. How-
ever, we still do not know how to test whether a given symmetric matrix is positive definite.
As we shall soon see, the secret already appears in the particular computations in Examples
3.2 and 3.24.

The student may recall the importance of the method known as “completing the
square”, first in the derivation of the quadratic formula for the solution to

q(x) = a x2 + 2b x+ c = 0, (3.52)

and, later, in the integration of various types of rational functions. The key idea is to
combine the first two terms in (3.52) as a perfect square, and so rewrite the quadratic
function in the form

q(x) = a

(
x+

b

a

)2

+
ac− b2

a
= 0. (3.53)

As a consequence, (
x+

b

a

)2

=
b2
− ac

a2
.

The quadratic formula

x =
− b±

√

b2 − ac

a

follows by taking the square root of both sides and then solving for x. The intermediate
step (3.53), where we eliminate the linear term, is known as completing the square.

We can perform the same manipulation on the corresponding homogeneous quadratic
form

q(x1, x2) = ax2
1 + 2bx1 x2 + cx2

2. (3.54)

We write

q(x1, x2) = ax2
1 + 2bx1x2 + cx2

2 = a

(
x1 +

b

a
x2

)2

+
ac− b2

a
x2

2 = ay2
1 +

ac− b2

a
y2
2

(3.55)
as a sum of squares of the new variables

y1 = x1 +
b

a
x2, y2 = x2. (3.56)

Since y1 = y2 = 0 if and only if x1 = x2 = 0, the final expression is positive definite if and
only if both coefficients are positive:

a > 0,
ac− b2

a
> 0.
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This proves that conditions (3.46) are necessary and sufficient for the quadratic form (3.45)
to be positive definite.

How this simple idea can be generalized to the multi-variable case will become clear
if we write the quadratic form identity (3.55) in matrix form. The original quadratic form
(3.54) is

q(x) = xTK x, where K =

(
a b

b c

)
, x =

(
x1

x2

)
. (3.57)

The second quadratic form in (3.55) is

q̂ (y) = yTD y, where D =

(
a 0

0
ac− b2

a

)
, y =

(
y1

y2

)
. (3.58)

Anticipating the final result, the equation connecting x and y can be written in matrix
form as

y = LTx or

(
y1

y2

)
=

(
x1 +

b
a

x2

x2

)
, where LT =

(
1 0
b
a
1

)
.

Substituting into (3.58), we find

yTD y = (LTx)TD (LTx) = xTLD LTx = xTK x, where K = LD LT (3.59)

is precisely the LDLT factorization of K =

(
a b

b c

)
that appears in (1.56). We are

thus led to the important conclusion that completing the square is the same as the LDLT

factorization of a symmetric matrix , obtained through Gaussian elimination!

Recall the definition of a regular matrix as one that can be reduced to upper triangular
form without any row interchanges;Theorem 1.32 says that these are the matrices admitting
an LDLT factorization. The identity (3.59) is therefore valid for all regular n×n symmetric
matrices, and shows how to write the associated quadratic form as a sum of squares:

q̂ (y) = yTDy = d1 y2
1 + · · · + dn y2

n. (3.60)

The coefficients di are the pivots of K. In particular, according to Exercise , q̂ (y) > 0
is positive definite if and only if all the pivots are positive: di > 0. Let us now state the
main result that completely characterizes positive definite matrices.

Theorem 3.38. A symmetric matrix K is positive definite if and only if it is regular

and has all positive pivots. Consequently, K is positive definite if and only if it can be

factored K = LDLT , where L is special lower triangular, and D is diagonal with all

positive diagonal entries.

Example 3.39. Consider the symmetric matrix K =



1 2 −1
2 6 0
−1 0 9


. Gaussian

elimination produces the factors

L =



1 0 0
2 1 0
−1 1 1


 , D =



1 0 0
0 2 0
0 0 6


 , LT =



1 2 −1
0 1 1
0 0 1


 .
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in the factorization K = LDLT . Since the pivots — the diagonal entries 1, 2, 6 in D —
are all positive, Theorem 3.38 implies that K is positive definite, which means that the
associated quadratic form

q(x) = x2
1 + 4x1 x2 − 2x1 x3 + 6x

2
2 + 9x

2
3 > 0, for all x = (x1, x2, x3 )

T
6= 0.

Indeed, the LDLT factorization implies that q(x) can be explicitly written as a sum of
squares:

q(x) = y2
1 + 2y

2
2 + 6y

2
3 , where y1 = x1 + 2x2 − x3, y2 = x2 + x3, y3 = x3,

are the entries of y = LTx. Positivity of the coefficients of the y2
i (which are the pivots)

implies that q(x) is positive definite.

On the other hand, for the LDLT factorization

K =



1 2 3
2 6 2
3 2 8


 =



1 0 0
2 1 0
3 −2 1





1 0 0
0 2 0
0 0 −9





1 2 3
0 1 −2
0 0 1


 ,

the fact that D has a negative diagonal entry, −9, implies that K is not positive definite
— even though all its entries are positive. The associated quadratic form is

q(x) = x2
1 + 4x1 x2 + 6x1 x3 + 6x

2
2 + 4x2 x3 + 8x

2
3

is not positive definite since, for instance, q(−5, 2, 1) = −9 < 0.

The only remaining issue is to show that an irregular matrix cannot be positive defi-

nite. For example, the quadratic form corresponding to the irregular matrixK =

(
0 1
1 0

)
,

is q(x) = 2x1 x2, which is clearly not positive definite, e.g., q(1,−1) = −2. In general,
if the upper left entry k11 = 0, then it cannot serve as the first pivot, and so K is not
regular. But then q(e1) = eT1 K e1 = 0, and so K is not positive definite. (It may be
positive semi-definite, or, more likely, indefinite.)

Otherwise, if k11 6= 0, then we use Gaussian elimination to make all entries lying in
the first column below the pivot equal to zero. As remarked above, this is equivalent to
completing the square in the initial terms of the associated quadratic form

q(x) = k11 x2
1 + 2k12 x1 x2 + · · · + 2k1nx1 xn + k22 x2

2 + · · · + knnx2
n

= k11

(
x1 +

k12

k11

x2 + · · · +
k1n

k11

xn

)2

+ q̃(x2, . . . , xn)

= k11 (x1 + l21 x2 + · · · + ln1 xn)
2 + q̃(x2, . . . , xn),

(3.61)

where

l21 =
k21

k11

=
k12

k11

, . . . ln1 =
kn1

k11

=
k1n

k11

,

are precisely the multiples appearing in the first column of the lower triangular matrix L

obtained from Gaussian Elimination, while

q̃(x2, . . . , xn) =
n∑

i,j=2

k̃ij xi xj
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is a quadratic form involving one fewer variable. The entries of its symmetric coefficient
matrix K̃ are

k̃ij = k̃ji = kij − lj1 k1i, for i ≥ j.

Thus, the entries of K̃ that lie on or below the diagonal are exactly the same as the entries
appearing on or below the diagonal of K after the the first phase of the elimination process.
In particular, the second pivot of K is the entry k̃22 that appears in the corresponding slot

in K̃. If q̃ is not positive definite, then q cannot be positive definite. Indeed, suppose that
there exist x?2, . . . , x

?
n, not all zero, such that q̃(x?2, . . . , x

?
n) ≤ 0. Setting

x?1 = − l21 x?2 − · · · − ln1 x?n,

makes the initial square term in (3.61) equal to 0, so q(x?1, x
?
2, . . . , x

?
n) = q̃(x?2, . . . , x

?
n) ≤ 0.

In particular, if the second diagonal entry k̃22 = 0, then q̃ is not positive definite, and so
neither is q. Continuing this process, if any diagonal entry of the reduced matrix vanishes,
then the reduced quadratic form cannot be positive definite, and so neither can q. This
demonstrates that if K is irregular, then it cannot be positive definite, which completes
the proof of Theorem 3.38.

The Cholesky Factorization

The identity (3.59) shows us how to write any regular quadratic form q(x) as a sum
of squares. One can push this result slightly further in the positive definite case. Since
each pivot di > 0, we can write the diagonal form (3.60) as a sum of squares with unit
coefficients:

q̂ (y) = d1 y2
1 + · · · + dn y2

n =
(√

d1 y1

)2
+ · · · +

(√
dn yn

)2
= z2

1 + · · · + z2
n,

where zi =
√

di yi. In matrix form, we are writing

q̂ (y) = yTDy = zT z = ‖ z ‖2, where z = C y, with C = diag (
√

d1 , . . . ,
√

dn )

Since D = C2, the matrix C can be thought of as a “square root” of the diagonal matrix
D. Substituting back into (1.52), we deduce the Cholesky factorization

K = LDLT = LC CT LT =M MT , where M = LC (3.62)

of a positive definite matrix. Note that M is a lower triangular matrix with all positive
entries, namely the square roots of the pivots mii = ci =

√
di on its diagonal. Applying

the Cholesky factorization to the corresponding quadratic form produces

q(x) = xTK x = xTM MTx = zT z = ‖ z ‖2, where z =MTx. (3.63)

One can interpret this as a change of variables from x to z that converts an arbitrary inner
product norm, as defined by the square root of the positive definite quadratic form q(x),
into the standard Euclidean norm ‖ z ‖.
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Example 3.40. For the matrix K =



1 2 −1
2 6 0
−1 0 9


 considered in Example 3.39,

the Cholesky formula (3.62) gives K =M MT , where

M = LC =



1 0 0
2 1 0
−1 1 1





1 0 0
0
√
2 0

0 0
√
6


 =



1 0 0
2

√
2 0

−1
√
2
√
6


 .

The associated quadratic function can then be written as a sum of pure squares:

q(x) = x2
1 + 4x1 x2 − 2x1 x3 + 6x

2
2 + 9x

2
3 = z2

1 + z2
2 + z2

3 ,

where z =MTx, or, explicitly, z1 = x1 + 2x2 − x3, z2 =
√
2 x2 +

√
2 x3, z3 =

√
6 x3..

3.6. Complex Vector Spaces.

Although physical applications ultimately require real answers, complex numbers and
complex vector spaces assume an extremely useful, if not essential role in the intervening
analysis. Particularly in the description of periodic phenomena, complex numbers and
complex exponentials assume a central role, dramatically simplifying complicated trigono-
metric formulae. Complex variable methods are essential in fluid mechanics, electrical
engineering, Fourier analysis, potential theory, electromagnetism, and so on. In quantum
mechanics, complex numbers are ubiquitous. The basic physical quantities are complex
wave functions. Moreover, the Schrödinger equation, which is the basic equation governing
quantum systems, is a complex partial differential equation with complex-valued solutions.

In this section, we survey the basic facts about complex numbers and complex vector
spaces. Most of the constructions are entirely analogous to the real case, and will not be
dwelled on at length. The one exception is the complex version of an inner product, which
does introduce some novelties not found in its simpler real counterpart. Complex analysis
(integration and differentiation of complex functions) and its applications to fluid flows,
potential theory, waves and other areas of mathematics, physics and engineering, will be
the subject of Chapter 16.

Complex Numbers

Recall that a complex number is an expression of the form z = x + i y, where x, y

are real and† i =
√
−1. We call x = Re z the real part of z and y = Im z the imaginary

part . (Note: The imaginary part is the real number y, not i y.) A real number x is
merely a complex number with zero imaginary part: Im z = 0. Complex addition and
multiplication are based on simple adaptations of the rules of real arithmetic to include
the identity i 2 = −1, and so

(x+ i y) + (u+ i v) = (x+ u) + i (y + v),

(x+ i y) · (u+ i v) = (xu− y v) + i (xv + yu).
(3.64)

† Electrical engineers prefer to use j to indicate the imaginary unit.
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Complex numbers enjoy all the usual laws of real addition and multiplication, including
commutativity : zw = wz.

We can identity a complex number x+ i y with a vector (x, y )
T
∈ R2 in the real plane.

Complex addition (3.64) corresponds to vector addition, but complex multiplication does
not have a readily identifiable vector counterpart.

Another important operation on complex numbers is that of complex conjugation.

Definition 3.41. The complex conjugate of z = x + i y is z = x − i y, whereby
Re z = Re z, Im z = − Im z.

Geometrically, the operation of complex conjugation coincides with reflection of the
corresponding vector through the real axis, as illustrated in Figure 3.6. In particular z = z

if and only if z is real. Note that

Re z =
z + z

2
, Im z =

z − z

2 i
. (3.65)

Complex conjugation is compatible with complex arithmetic:

z + w = z + w, zw = z w.

In particular, the product of a complex number and its conjugate

z z = (x+ i y) (x− i y) = x2 + y2 (3.66)

is real and non-negative. Its square root is known as the modulus of the complex number
z = x+ i y, and written

| z | =
√

x2 + y2 . (3.67)

Note that | z | ≥ 0, with | z | = 0 if and only if z = 0. The modulus | z | generalizes the
absolute value of a real number, and coincides with the standard Euclidean norm in the
(x, y)–plane. This implies the validity of the triangle inequality

| z + w | ≤ | z |+ |w |. (3.68)

Equation (3.66) can be rewritten in terms of the modulus as

z z = | z |2. (3.69)

Rearranging the factors, we deduce the formula for the reciprocal of a nonzero complex
number:

1

z
=

z

| z |2
, z 6= 0, or, equivalently

1

x+ i y
=

x− i y

x2 + y2
. (3.70)

The general formula for complex division

w

z
=

w z

| z |2
or, equivalently

u+ i v

x+ i y
=
(xu+ y v) + i (xv − yu)

x2 + y2
, (3.71)
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Figure 3.6. Complex Numbers.

is an immediate consequence.

The modulus of a complex number,

r = | z | =
√

x2 + y2 ,

is one component of its polar coordinate representation

x = r cos θ, y = r sin θ or z = r(cos θ + i sin θ). (3.72)

The polar angle, which measures the angle that the line connecting z to the origin makes
with the horizontal axis, is known as the phase, and written

ph z = θ. (3.73)

The more common term is the argument , and written arg z = ph z. For various reasons,
and to avoid confusion with the argument of a function, we have chosen to use “phase”
throughout this text. As such, the phase is only defined up to an integer multiple of 2π.
We note that the modulus and phase of a product of complex numbers can be readily
computed:

| zw | = | z | |w |, ph (zw) = ph z + ph w. (3.74)

On the other hand, complex conjugation preserves the modulus, but negates the phase:

| z | = | z |, ph z = −ph z. (3.75)

One of the most important formulas in all of mathematics is Euler’s formula

e i θ = cos θ + i sin θ, (3.76)

relating the complex exponential with the real sine and cosine functions. This basic iden-
tity has a variety of mathematical justifications; see Exercise for one that is based on
comparing power series. Euler’s formula (3.76) can be used to compactly rewrite the polar
form (3.72) of a complex number as

z = r e i θ where r = | z |, θ = ph z. (3.77)
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Figure 3.7. Real and Imaginary Parts of ez.

The complex conjugate identity

e− i θ = cos(−θ) + i sin(−θ) = cos θ − i sin θ = e i θ ,

permits us to express the basic trigonometric functions in terms of complex exponentials:

cos θ =
e i θ + e− i θ

2
, sin θ =

e i θ
− e− i θ

2 i
. (3.78)

These formulae are very useful when working with trigonometric identities and integrals.

The exponential of a general complex number is easily derived from the basic Eu-
ler formula and the standard properties of the exponential function — which carry over
unaltered to the complex domain; thus,

ez = ex+ i y = ex e i y = ex cos y + i ex sin y. (3.79)

Graphs of the real and imaginary parts of the complex exponential appear in Figure 3.7.
Note that e2π i = 1, and hence the exponential function is periodic

ez+2π i = ez (3.80)

with imaginary period 2π i — a reflection of the periodicity of the trigonometric functions
in Euler’s formula.

Complex Vector Spaces and Inner Products

A complex vector space is defined in exactly the same manner as its real cousin,
cf. Definition 2.1, the only difference being that we replace real scalars R by complex scalars
C. The most basic example is the n-dimensional complex vector space Cn consisting of
all column vectors z = ( z1, z2, . . . , zn )

T
that have n complex entries: z1, . . . , zn ∈ C.

Verification of each of the vector space axioms is a straightforward exercise.

We can write any complex vector z = x+ iy ∈ Cn as a linear combination of two real
vectors x,y ∈ Rn. Its complex conjugate z = x − iy is obtained by taking the complex
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conjugates of its individual entries. Thus, for example, if

z =



1 + 2 i
−3
5 i


, then z =



1− 2 i
−3
−5 i


.

In particular, z ∈ Rn
⊂ Cn is a real vector if and only if z = z.

Most of the vector space concepts we developed in the real domain, including span,
linear independence, basis, and dimension, can be straightforwardly extended to the com-
plex regime. The one exception is the concept of an inner product, which requires a little
thought. In analysis, the most important applications of inner products and norms are
based on the associated inequalities: Cauchy–Schwarz and triangle. But there is no nat-
ural ordering of the complex numbers, and so one cannot make any sense of a complex
inequality like z < w. Inequalities only make sense in the real domain, and so the norm of
a complex vector should still be a positive, real number.

With this in mind, the näıve idea of simply summing the squares of the entries of a
complex vector will not define a norm on Cn, since the result will typically be complex.
Moreover, this would give some nonzero complex vectors, e.g., ( 1 i )

T
, a zero “norm”,

violating positivity†.

The correct definition is modeled on the definition of the modulus

| z | =
√

z z

of a complex scalar z ∈ C. If, in analogy with the real definition (3.7), the quantity inside
the square root is to represent the inner product of z with itself, then we should define the
dot product between two complex numbers to be

z · w = z w, so that z · z = z z = | z |2.

If z = x+ i y and w = u+ i v, then

z · w = z w = (x+ i y) (u− i v) = (xu+ y v) + i (yu− xv). (3.81)

Thus, the dot product of two complex numbers is, in general, complex. The real part of
z ·w is, in fact, the Euclidean dot product between the corresponding vectors in R2, while
the imaginary part is, interestingly, their scalar cross-product, cf. (cross2 ).

The vector version of this construction is named after the nineteenth century French
mathematician Charles Hermite, and called the Hermitian dot product on Cn. It has the
explicit formula

z ·w = zT w = z1 w1 + z2 w2 + · · · + znwn, for z =




z1

z2
...

zn


, w =




w1

w2
...

wn


. (3.82)

† On the other hand, in relativity, the Minkowski “norm” is also not always positive, and
indeed the vectors with zero norm play a critical role as they lie on the light cone emanating from
the origin, [106].
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Pay attention to the fact that we must apply complex conjugation to all the entries of the

second vector. For example, if z =

(
1 + i
3 + 2 i

)
, w =

(
1 + 2 i
i

)
, then

z ·w = (1 + i )(1− 2 i ) + (3 + 2 i )(− i ) = 5− 4 i .

On the other hand,

w · z = (1 + 2 i )(1− i ) + i (3− 2 i ) = 5 + 4 i .

Therefore, the Hermitian dot product is not symmetric. Reversing the order of the vectors
results in complex conjugation of the dot product:

w · z = z ·w.

But this extra complication does have the effect that the induced norm, namely

0 ≤ ‖ z ‖ =
√
z · z =

√

zT z =
√
| z1 |

2 + · · · + | zn |
2 , (3.83)

is strictly positive for all 06= z ∈ Cn. For example, if

z =



1 + 3 i
−2 i
−5


, then ‖ z ‖ =

√
| 1 + 3 i |2 + | −2 i |2 + | −5 |2 =

√

39 .

The Hermitian dot product is well behaved under complex vector addition:

(z+ ẑ) ·w = z ·w + ẑ ·w, z · (w + ŵ) = z ·w + z · ŵ.

However, while complex scalar multiples can be extracted from the first vector without
alteration, when they multiply the second vector, they emerge as complex conjugates:

(c z) ·w = c (z ·w), z · (cw) = c (z ·w), c ∈ C.

Thus, the Hermitian dot product is not bilinear in the strict sense, but satisfies something
that, for lack of a better name, is known as sesqui-linearity .

The general definition of an inner product on a complex vector space is modeled on
the preceding properties of the Hermitian dot product.

Definition 3.42. An inner product on the complex vector space V is a pairing that
takes two vectors v,w ∈ V and produces a complex number 〈v ;w 〉 ∈ C, subject to the
following requirements for all u,v,w ∈ V , and c, d ∈ C.
(i) Sesqui-linearity :

〈 cu+ dv ;w 〉 = c 〈u ;w 〉+ d 〈v ;w 〉,

〈u ; cv + dw 〉 = c 〈u ;v 〉+ d 〈u ;w 〉.
(3.84)

(ii) Conjugate Symmetry :
〈v ;w 〉 = 〈w ;v 〉. (3.85)

(iii) Positivity :

‖v ‖2 = 〈v ;v 〉 ≥ 0, and 〈v ;v 〉 = 0 if and only if v = 0. (3.86)
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Thus, when dealing with a complex inner product space, one must pay careful at-
tention to the complex conjugate that appears when the second argument in the inner
product is multiplied by a complex scalar, as well as the complex conjugate that appears
when switching the order of the two arguments.

Theorem 3.43. The Cauchy–Schwarz inequality,

| 〈v ;w 〉 | ≤ ‖v ‖ ‖w ‖, v,w ∈ V.

with | · | now denoting the complex modulus, and the triangle inequality

‖v +w ‖ ≤ ‖v ‖+ ‖w ‖

hold for any complex inner product space.

The proof of this result is practically the same as in the real case, and the details are
left to the reader.

Example 3.44. The vectors v = ( 1 + i , 2 i ,−3 )
T
, w = ( 2− i , 1, 2 + 2 i )

T
, satisfy

‖v ‖ =
√

2 + 4 + 9 =
√

15, ‖w ‖ =
√

5 + 1 + 8 =
√

14,

v ·w = (1 + i )(2 + i ) + 2 i + (−3)(2− 2 i ) = −5 + 11 i .

Thus, the Cauchy–Schwarz inequality reads

| 〈v ;w 〉 | = | −5 + 11 i | =
√

146 ≤
√

210 =
√

15
√

14 = ‖v ‖ ‖w ‖.

Similarly, the triangle inequality tells us that

‖v +w ‖ = ‖ ( 3, 1 + 2 i ,−1 + 2 i )
T
‖ =

√

9 + 5 + 5 =
√

19 ≤
√

15 +
√

14 = ‖v ‖+ ‖w ‖.

Example 3.45. Let C0 = C0[−π, π ] denote the complex vector space consisting
of all complex valued continuous functions f(x) = u(x) + i v(x) depending upon the real
variable −π ≤ x ≤ π. The Hermitian L2 inner product is defined as

〈 f ; g 〉 =

∫ π

−π

f(x) g(x) dx , (3.87)

with corresponding norm

‖ f ‖ =

√∫ π

−π

| f(x) |2 dx =

√∫ π

−π

[
u(x)2 + v(x)2

]
dx . (3.88)

The reader should check that (3.87) satisfies the basic Hermitian inner product axioms.

For example, if k, l are integers, then the inner product of the complex exponential
functions e i kx and e i lx is

〈 e i kx ; e i lx
〉 =

∫ π

−π

e i kxe− i lx dx =

∫ π

−π

e i (k−l)x dx =





2π, k = l,

e i (k−l)x

i (k − l)

∣∣∣∣∣

π

x=−π

= 0, k 6= l.

We conclude that when k 6= l, the complex exponentials e i kx and e i lx are orthogonal,
since their inner product is zero. This key example will be of fundamental significance in
the complex version of Fourier analysis.
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Chapter 4

Minimization and Least Squares Approximation

Because Nature strives to be efficient, many systems arising in applications are founded
on a minimization principle. For example, in a mechanical system, the stable equilibrium
positions minimize the potential energy. The basic geometrical problem of minimizing
distance also appears in many contexts. For example, in optics and relativity, light rays
follow the paths of minimal distance — the geodesics on the curved space-time. In data
analysis, the most fundamental method for fitting a function to a set of sampled data
points is to minimize the least squares error, which serves as a measurement of the overall
deviation between the sample data and the function. The least squares paradigm carries
over to a wide range of applied mathematical systems. In particular, it underlies the
theory of Fourier series, in itself of inestimable importance in mathematics, physics and
engineering. Solutions to many of the important boundary value problems arising in
mathematical physics and engineering are also characterized by an underlying minimization
principle. Moreover, the finite element numerical solution method relies on the associated
minimization principle. Optimization is ubiquitous in control theory, engineering design
and manufacturing, linear programming, econometrics, and most other fields of analysis.

This chapter introduces and solves the most basic minimization problem — that of a
quadratic function of several variables. The minimizer is found by solving an associated
linear system. The solution to the quadratic minimization problem leads directly to a
broad range of applications, including least squares fitting of data, interpolation, and
approximation of functions. Applications to equilibrium mechanics will form the focus of
Chapter 6. Applications to the numerical solution of differential equations in numerical
analysis will appear starting in Chapter 11. More general nonlinear minimization problems,
which, as usual, require a thorough analysis of the linear situation, will be deferred until
Section 19.3.

4.1. Minimization Problems.

Let us begin by introducing three important minimization problems — one physical,
one analytical, and one geometrical.

Equilibrium Mechanics

A fundamental principle of mechanics is that systems in equilibrium minimize poten-
tial energy. For example, a ball in a bowl will roll downhill until it reaches the bottom,
where it minimizes its potential energy due to gravity. Similarly, a pendulum will swing
back and forth unless it is at the bottom of its arc, where potential energy is minimized.
Actually, the pendulum has a second equilibrium position at the top of the arc, but this
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is an unstable equilibrium, meaning that any tiny movement will knock it off balance.
Therefore, a better way of stating the principle is that stable equilibria are where the me-
chanical system minimizes potential energy. For the ball rolling on a curved surface, the
local minima — the bottoms of valleys — are the stable equilibria, while the local maxima
— the tops of hills — are unstable. This basic idea is fundamental to the understanding
and analysis of the equilibrium configurations of a wide range of physical systems, includ-
ing masses and springs, structures, electrical circuits, and even continuum models of solid
mechanics and elasticity, fluid mechanics, electromagnetism, thermodynamics, statistical
mechanics, and so on.

Solution of Equations

Suppose we wish to solve a system of equations

f1(x) = 0, f2(x) = 0, . . . fm(x) = 0, (4.1)

where x = (x1, . . . , xn) ∈ Rn. This system can be converted into a minimization problem
in the following seemingly silly manner. Define

p(x) =
[
f1(x)

]2
+ · · · +

[
fm(x)

]2
= ‖ f(x) ‖2, (4.2)

where ‖ · ‖ denotes the Euclidean norm on Rm. Clearly, p(x) ≥ 0 for all x. Moreover,
p(x?) = 0 if and only if each summand is zero, and hence x? is a solution to (4.1).
Therefore, the minimum value of p(x) is zero, and the minimum is achieved if and only if
x = x? solves the system (4.1).

The most important case is when we have a linear system

Ax = b (4.3)

consisting of m equations in n unknowns. In this case, the solutions may be obtained by
minimizing the function

p(x) = ‖Ax− b ‖2. (4.4)

Of course, it is not clear that we have gained much, since we already know how to solve
Ax = b by Gaussian elimination. However, this rather simple artifice has profound
consequences.

Suppose that the system (4.3) does not have a solution, i.e., b does not lie in the
range of the matrix A. This situation is very typical when there are more equations than
unknowns: m > n. Such problems arise in data fitting, when the measured data points
are all supposed to lie on a straight line, say, but rarely do so exactly, due to experimental
error. Although we know there is no exact solution to the system, we might still try to
find the vector x? that comes as close to solving the system as possible. One way to
measure closeness is by looking at the magnitude of the residual vector r = Ax − b, i.e.,
the difference between the left and right hand sides of the system. The smaller ‖ r ‖ =
‖Ax− b ‖, the better the attempted solution. The vector x? that minimizes the function
(4.4) is known as the least squares solution to the linear system. We note that if the linear
system (4.3) happens to have a actual solution, with Ax? = b, then x? qualifies as the
least squares solution too, since in this case p(x?) = 0 achieves its absolute minimum.
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Thus, the least squares solutions naturally generalize traditional solutions. While not the
only possible method, least squares is is easiest to analyze and solve, and hence, typically,
the method of choice for fitting functions to experimental data and performing statistical
analysis.

The Closest Point

The following minimization problem arises in elementary geometry. Given a point
b ∈ Rm and a subset V ⊂ Rm, find the point v? ∈ V that is closest to b. In other words,
we seek to minimize the distance d(b,v) = ‖v − b ‖ over all possible v ∈ V .

The simplest situation occurs when V is a subspace of Rm. In this case, the closest
point problem can be reformulated as a least squares minimization problem. Let v1, . . . ,vn
be a basis for V . The general element v ∈ V is a linear combination of the basis vectors.
Applying our handy matrix multiplication formula (2.14), we can write the subspace ele-
ments in the form

v = x1v1 + · · · + xnvn = Ax,

where A = (v1 v2 . . . vn ) is the m×n matrix formed by the (column) basis vectors. Note
that we can identify V = rngA with the range of A, i.e., the subspace spanned by its
columns. Consequently, the closest point in V to b is found by minimizing

‖v − b ‖2 = ‖Ax− b ‖2

over all possible x ∈ Rn. This is exactly the same as the least squares function (4.4)!
Thus, if x? is the least squares solution to the system Ax = b, then v? = Ax? is the
closest point to b belonging to V = rngA. In this way, we have established a fundamental
connection between least squares solutions to linear systems and the geometrical problem
of minimizing distances to subspaces.

All three of the preceding minimization problems are solved by the same underlying
mathematical construction, which will be described in detail in Section 4.3.

Remark : We will concentrate on minimization problems. Maximizing a function f(x)
is the same as minimizing its negative − f(x), and so can be easily handled by the same
methods.

4.2. Minimization of Quadratic Functions.

The simplest algebraic equations are the linear systems; these must be thoroughly un-
derstood before venturing into the far more complicated nonlinear realm. For minimization
problems, the starting point is the minimization of a quadratic function. (Linear functions
do not have minima — think of the function f(x) = bx+ c whose graph is a straight line.)
In this section, we shall see how the problem of minimizing a general quadratic function
of n variables can be solved by linear algebra techniques.

Let us begin by reviewing the very simplest example — minimizing a scalar quadratic
function

p(x) = ax2 + 2bx+ c. (4.5)
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Figure 4.1. Parabolas.

If a > 0, then the graph of p is a parabola pointing upwards, and so there exists a unique
minimum value. If a < 0, the parabola points downwards, and there is no minimum
(although there is a maximum). If a = 0, the graph is a straight line, and there is neither
minimum nor maximum — except in the trivial case when b = 0 also, and the function
is constant, with every x qualifying as a minimum and a maximum. The three nontrivial
possibilities are sketched in Figure 4.1.

In the case a > 0, the minimum can be found by calculus. The critical points of a
function, which are candidates for minima (and maxima), are found by setting its derivative
to zero. In this case, differentiating, and solving

p′(x) = 2ax+ 2b = 0,

we conclude that the only possible minimum value occurs at

x? = −
b

a
, where p(x?) = c−

b2

a
. (4.6)

Of course, one must check that this critical point is indeed a minimum, and not a maximum
or inflection point. The second derivative test will show that p′′(x?) = 2a > 0, and so x?

is at least a local minimum.

A more instructive approach to this problem — and one that only requires elementary
algebra — is to “complete the square”. As was done in (3.53), we rewrite

p(x) = a

(
x+

b

a

)2

+
ac− b2

a
. (4.7)

If a > 0, then the first term is always ≥ 0, and moreover equals 0 only at x? = − b/a,
reproducing (4.6). The second term is constant, and so unaffected by the value of x. We
conclude that p(x) is minimized when the squared term in (4.7) vanishes. Thus, the simple
algebraic identity (4.7) immediately proves that the global minimum of p is at x? = − b/a,
and, moreover its minimal value p(x?) = (ac− b2)/a is the constant term.

Now that we have the scalar case firmly in hand, let us turn to the more difficult
problem of minimizing quadratic functions that depend on several variables. Thus, we
seek to minimize a (real) quadratic function

p(x) = p(x1, . . . , xn) =
n∑

i,j=1

kij xixj − 2
n∑

i=1

fixi + c, (4.8)
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depending on n variables x = (x1, x2, . . . , xn )
T
∈ Rn. The coefficients kij , fi and c are

all assumed to be real; moreover, according to Exercise , we can assume, without loss of
generality, that the coefficients of the quadratic terms are symmetric: kij = kji. Note that
p(x) is slightly more general than a quadratic form (3.42) in that it also contains linear
and constant terms. We shall rewrite the quadratic function (4.8) in a more convenient
matrix notation:

p(x) = xTK x− 2xT f + c, (4.9)

where K = (kij) is a symmetric n × n matrix, f is a constant vector, and c is a constant
scalar. We shall adapt our method of completing the square to find its minimizer.

We first note that in the simple scalar case (4.5), we needed to impose the condition
that the quadratic coefficient a is positive in order to obtain a (unique) minimum. The
corresponding condition for the multivariable case is that the quadratic coefficient matrix
K be positive definite. This key assumption enables us to prove a very general minimization
theorem.

Theorem 4.1. If K > 0 is a symmetric, positive definite matrix, then the quadratic
function (4.9) has a unique minimizer, which is the solution to the linear system

K x = f , namely x? = K−1f . (4.10)

The minimum value of p(x) is equal to any of the following expressions:

p(x?) = p(K−1f) = c− fTK−1f = c− fT x? = c− (x?)TK x?. (4.11)

Proof : Suppose x? = K−1f is the (unique — why?) solution to (4.10). Then, for any
x ∈ Rn, we can write

p(x) = xTK x− 2xT f + c = xTK x− 2xTK x? + c

= (x− x?)TK(x− x?) +
[
c− (x?)TK x?

]
,

(4.12)

where we used the symmetry of K = KT to identify xTK x? = (x?)TK x. The second term
in the final formula does not depend on x. Moreover, the first term has the form yTK y

where y = x− x?. Since we assumed that K is positive definite, yTK y ≥ 0 and vanishes
if and only if y = x − x? = 0, which achieves its minimum. Therefore, the minimum of
p(x) occurs at x = x?. The minimum value of p(x) is equal to the constant term. The
alternative expressions in (4.11) follow from simple substitutions. Q.E.D.

Example 4.2. Let us illustrate the result with a simple example. Consider the
problem of minimizing the quadratic function

p(x1, x2) = 4x
2
1 − 2x1 x2 + 3x

2
2 + 3x1 − 2x2 + 1

over all (real) x1, x2. We first write p in the matrix form (4.9), so

p(x1, x2) = (x1 x2 )

(
4 −1
−1 3

)(
x1

x2

)
− 2 (x1 x2 )

(
−

3
2

1

)
+ 1,
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whereby

K =

(
4 −1
−1 3

)
, f =

(
−

3
2

1

)
. (4.13)

(Pay attention to the overall factor of −2 preceding the linear terms.) According to the
theorem, to find the minimum, we must solve the linear system

(
4 −1
−1 3

)(
x1

x2

)
=

(
−

3
2

1

)
. (4.14)

Applying our Gaussian elimination algorithm, only one operation is required to place the
coefficient matrix in upper triangular form:

(
4 −1
−1 3

∣∣∣∣
−

3
2
1

)
7−→

(
4 −1
0 11

4

∣∣∣∣
−

3
2

5
8

)
.

Note that the coefficient matrix is regular (no row interchanges are required) and its two
pivots, namely 4, 11

4 , are both positive; this proves that K > 0 and hence p(x1, x2) really
does have a minimum, obtained by applying Back Substitution to the reduced system:

x? =

(
x?1
x?2

)
=

(
−

7
22
5
22

)
≈

(
−.318182

.227273

)
.

The quickest way to compute the minimal value

p(x?) = p
(
−

7
22 , 5

22

)
= 13

44 ≈ .295455

is to use the second formula in (4.11).

It is instructive to compare the algebraic solution method with the minimization
procedure you learned in multi-variable calculus. The critical points of p(x1, x2) are found
by setting both partial derivatives equal to zero:

∂p

∂x1

= 8x1 − 2x2 + 3 = 0,
∂p

∂x2

= −2x1 + 6x2 − 2 = 0.

If we divide by an overall factor of 2, these are precisely the same linear equations we
already constructed in (4.14). Thus, not surprisingly, the calculus approach leads to the
same critical point. To check whether a critical point is a local minimum, we need to test
the second derivative. In the case of a function of several variables, this requires analyzing
the Hessian matrix , which is the symmetric matrix of second order partial derivatives

H =




∂2p

∂x2
1

∂2p

∂x1∂x2

∂2p

∂x1∂x2

∂2p

∂x2
2


 =

(
8 −2
−2 6

)
= 2K,

which is exactly twice the quadratic coefficient matrix (4.13). If the Hessian matrix is
positive definite — which we already know in this case — then the critical point is indeed
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a (local) minimum. Thus, the calculus and algebraic approaches to this minimization
problem lead (not surprisingly) to identical results. However, the algebraic method is
more powerful, because it immedaitely produces the unique, global minimum, whereas,
without extra work (e.g., proving convexity of the function), calculus can only guarantee
that the critical point is a local minimum, [9]. The reader can find the full story on
minimization of nonlinear functions, which is, in fact based on the algebraic theory of
positive definite matrices, in Section 19.3.

The most efficient method for producing a minimum of a quadratic function p(x) on
Rn, then, is to first write out the symmetric coefficient matrix K and the vector f . Solving
the system K x = f will produce the minimizer x? provided K > 0 — which should be
checked during the course of the procedure by making sure no row interchanges are used
and all the pivots are positive. If these conditions are not met then (with one minor
exception — see below) one immediately concludes that there is no minimizer.

Example 4.3. Let us minimize the quadratic function

p(x, y, z) = x2 + 2xy + xz + 2y2 + y z + 2z2 + 6y − 7z + 5.

This has the matrix form (4.9) with

K =



1 1 1

2

1 2 1
2

1
2

1
2 2


 , f =



0

− 3
7
2


 , c = 5.

Gaussian elimination produces the LDLT factorization

K =



1 1 1

2

1 2 1
2

1
2

1
2 2


 =



1 0 0

1 1 0
1
2 0 1






1 0 0

0 1 0

0 0 3
4






1 1 1

2

0 1 0

0 0 1


 .

The pivots, i.e., the diagonal entries of D, are all positive, and hence K is positive definite.
Theorem 4.1 then guarantees that p(x, y, z) has a unique minimizer, which is found by
solving the linear system K x = f . The solution is then quickly obtained by forward and
back substitution:

x? = 2, y? = −3, z? = 2, with p(x?, y?, z?) = p(2,−3, 2) = −11.

Theorem 4.1 solves the general quadratic minimization problem when the quadratic
coefficient matrix is positive definite. If K is not positive definite, then the quadratic
function (4.9) does not have a minimum, apart from one exceptional situation.

Theorem 4.4. If K > 0 is positive definite, then the quadratic function p(x) =
xTK x−2xT f+c has a unique global minimizer x? satisfyingK x? = f . IfK ≥ 0 is positive
semi-definite, and f ∈ rngK, then every solution to K x? = f is a global minimum of p(x).
However, in the semi-definite case, the minimum is not unique since p(x? + z) = p(x?) for
any null vector z ∈ kerK. In all other cases, there is no global minimum, and p(x) can
assume arbitrarily large negative values.
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Proof : The first part is just a restatement of Theorem 4.1. The second part is proved
by a similar computation, and uses the fact that a positive semi-definite but not definite
matrix has a nontrivial kernel. If K is not positive semi-definite, then one can find a
vector y such that a = yTK y < 0. If we set x = ty, then p(x) = p(ty) = at2 + 2bt+ c,
with b = yT f . Since a < 0, by choosing | t | À 0 sufficiently large, one can arrange that
p(ty)¿ 0 is an arbitrarily large negative quantity. The one remaining case — when K is
positive semi-definite, but f 6∈rngK — is left until Exercise . Q.E.D.

4.3. Least Squares and the Closest Point.

We are now in a position to solve the basic geometric problem of finding the element
in a subspace that is closest to a given point in Euclidean space.

Problem: Let V be a subspace of Rm. Given b ∈ Rm, find v? ∈ V which minimizes
‖v − b ‖ over all possible v ∈ V .

The minimal distance ‖v? − b ‖ to the closest point is called the distance from the
point b to the subspace V . Of course, if b ∈ V lies in the subspace, then the answer is
easy: the closest point is v? = b itself. The distance from b to the subspace is zero. Thus,
the problem only becomes interesting when b6∈V .

Remark : Initially, you may assume that ‖ · ‖ denotes the usual Euclidean norm, and
so the distance corresponds to the usual Euclidean length. But it will be no more difficult
to solve the closest point problem for any norm that arises from an inner product: ‖v ‖ =√
〈v ;v 〉. In fact, requiring that V ⊂ Rm is not crucial either; the same method works

when V is a finite-dimensional subspace of any inner product space.

However, the methods do not apply to more general norms not coming from inner
products, e.g., the 1 norm or∞ norm. These are much harder to handle, and, in such cases,
the closest point problem is a nonlinear minimization problem whose solution requires the
more sophisticated methods of Section 19.3.

When solving the closest point problem, the goal is to minimize the distance

‖v − b ‖2 = ‖v ‖2 − 2 〈v ;b 〉+ ‖b ‖2, (4.15)

over all possible v belonging to the subspace V ⊂ Rm. Let us assume that we know a
basis v1, . . . ,vn of V , with n = dimV . Then the most general vector in V is a linear
combination

v = x1v1 + · · · + xnvn (4.16)

of the basis vectors. We substitute the formula (4.16) for v into the distance function
(4.15). As we shall see, the resulting expression is a quadratic function of the coefficients

x = (x1, x2, . . . , xn )
T
, and so the minimum is provided by Theorem 4.1.

First, the quadratic terms come from expanding

‖v ‖2 = 〈v ;v 〉 = 〈x1v1 + · · ·+ xnvn ;x1v1 + · · ·+ xnvn 〉 =

n∑

i,j=1

xixj 〈vi ;vj 〉.

(4.17)
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Therefore,

‖v ‖2 =
n∑

i,j=1

kij xixj = xTKx,

where K is the symmetric n× n Gram matrix whose (i, j) entry is the inner product

kij = 〈vi ;vj 〉, (4.18)

between the basis vectors of our subspace. Similarly,

〈v ;b 〉 = 〈x1v1 + · · · + xnvn ;b 〉 =
n∑

i=1

xi 〈vi ;b 〉,

and so

〈v ;b 〉 =
n∑

i=1

xi fi = xT f ,

where f ∈ Rn is the vector whose ith entry is the inner product

fi = 〈vi ;b 〉 (4.19)

between the point and the subspace basis elements. We conclude that the squared distance
function (4.15) reduces to the quadratic function

p(x) = xTKx− 2xT f + c =
n∑

i,j=1

kij xixj − 2
n∑

i=1

fixi + c, (4.20)

in which K and f are given in (4.18), (4.19), while c = ‖b ‖2.

Since we assumed that the basis vectors v1, . . . ,vn are linearly independent, Propo-
sition 3.32 assures us that the associated Gram matrix K = ATA is positive definite.
Therefore, we may directly apply our basic minimization Theorem 4.1 to solve the closest
point problem.

Theorem 4.5. Let v1, . . . ,vn form a basis for the subspace V ⊂ Rm. Given b ∈ Rm,

the closest point v? = x?1v1 + · · · + x?nvn ∈ V is prescribed by the solution x? = K−1f

to the linear system

K x = f , (4.21)

whereK and f are given in (4.18), (4.19). The distance between the point and the subspace
is

‖v? − b ‖ =
√
‖b ‖2 − fTx? . (4.22)

When using the standard Euclidean inner product and norm on Rn to measure dis-
tance, the entries of the Gram matrix K and the vector f are given by dot products:

kij = vi · vj = vTi vj , fi = vi · b = vTi b.
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As in (3.49), both sets of equations can be combined into a single matrix equation. If
A = (v1 v2 . . . vn ) denotes the m× n matrix formed by the basis vectors, then

K = ATA, f = ATb, c = ‖b ‖2. (4.23)

A direct derivation of these equations is instructive. Since, by formula (2.14),

v = x1v1 + · · · + xnvn = Ax,

we find

‖v − b ‖2 = ‖Ax− b ‖2 = (Ax− b)T (Ax− b) = (xTAT
− bT )(Ax− b)

= xTATAx− 2xTATb+ bTb = xTKx− 2xT f + c,

thereby justifying (4.23). (In the next to last equality, we equate the scalar quantities
bTAx = (bTAx)T = xTATb.)

If, instead of the Euclidean inner product, we adopt an alternative inner product
〈v ;w 〉 = vTCw prescribed by a positive definite matrix C > 0, then the same computa-
tions produce

K = ATC A, f = ATCb, c = ‖b ‖2. (4.24)

The weighted Gram matrix formula was previously derived in (3.51).

Example 4.6. Let V ⊂ R3 be the plane spanned by v1 =



1
2
−1


, v2 =



2
−3
−1


.

Our goal is to find the point v? ∈ V that is closest to b =



1
0
0


, where distance is

measured in the usual Euclidean norm. We combine the basis vectors to form the matrix

A =



1 2
2 −3
−1 −1


. According to (4.23), the positive definite Gram matrix and associated

vector are

K = ATA =

(
6 −3
−3 14

)
, f = ATb =

(
1
2

)
.

(Or, alternatively, these can be computed directly by taking inner products, as in (4.18), (4.19).)

We solve the linear system K x = f for x? = K−1 f =
(

4
15 , 1

5

)T
. Theorem 4.5 implies that

the closest point is

v? = x?1v1 + x?2v2 = Ax? =




2
3

−
1
15

−
7
15


 ≈




.6667
− .0667
− .4667


.

The distance from the point b to the plane is ‖v? − b ‖ = 1√
3
≈ .5774.
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Suppose, on the other hand, that distance is measured in the weighted norm ‖v ‖ =
v2
1 +

1
2 v2

2 +
1
3 v2

3 corresponding to the diagonal matrix C = diag (1, 1
2 , 1

3 ). In this case, we
form the weighted Gram matrix and vector (4.24):

K = ATC A =

(
1 2 −1
2 −3 −1

)

1 0 0
0 1

2 0
0 0 1

3





1 2
2 −3
−1 −1


 =

(
10
3 −

2
3

−
2
3

53
6

)
,

f = ATCb =

(
1 2 −1
2 −3 −1

)

1 0 0
0 1

2 0
0 0 1

3





1
0
0


 =

(
1
2

)
,

and so

x? = K−1f ≈

(
.3506
.2529

)
, v? = Ax? ≈




.8563
−.0575
−.6034


.

In this case, the distance between the point and the subspace is measured in the weighted
norm: ‖v? − b ‖ ≈ .3790.

Remark : The solution to the closest point problem given in Theorem 4.5 applies, as
stated, to the more general case when V ⊂ W is a finite-dimensional subspace of a general
inner product space W . The underlying inner product space W can even be infinite-
dimensional, which it is when dealing with least squares approximations in function space,
to be described at the end of this chapter, and in Fourier analysis.

Least Squares

As we first observed in Section 4.1, the solution to the closest point problem also
solves the basic least squares minimization problem! Let us officially define the notion of
a (classical) least squares solution to a linear system.

Definition 4.7. The least squares solution to a linear system of equations

Ax = b (4.25)

is the vector x? ∈ Rn that minimizes the Euclidean norm ‖Ax− b ‖.

Remark : Later, we will generalize the least squares method to more general weighted
norms coming from inner products. However, for the time being we restrict our attention
to the Euclidean version.

If the system (4.25) actually has a solution, then it is automatically the least squares
solution. Thus, the concept of least squares solution is new only when the system does not
have a solution, i.e., b does not lie in the range of A. We also want the least squares solution
to be unique. As with an ordinary solution, this happens if and only if kerA = {0}, or,
equivalently, the columns of A are linearly independent, or, equivalently, rankA = n.

As before, to make the connection with the closest point problem, we identify the
subspace V = rngA ⊂ Rm as the range or column space of the matrix A. If the columns
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of A are linearly independent, then they form a basis for the range V . Since every element
of the range can be written as v = Ax, minimizing ‖Ax− b ‖ is the same as minimizing
the distance ‖v − b ‖ between the point and the subspace. The least squares solution x?

to the minimization problem gives the closest point v? = Ax? in V = rngA. Therefore,
the least squares solution follows from Theorem 4.5. In the Euclidean case, we state the
result more explicitly by using (4.23) to write out the linear system (4.21) and the minimal
distance (4.22).

Theorem 4.8. Assume kerA = {0}. Set K = ATA and f = ATb. Then the least

squares solution to Ax = b is the unique solution to the normal equations

K x = f or (ATA)x = ATb, (4.26)

namely

x? = (ATA)−1ATb. (4.27)

The least squares error is

‖Ax? − b ‖2 = ‖b ‖2 − fTx? = ‖b ‖2 − bTA(ATA)−1AT b. (4.28)

Note that the normal equations (4.26) can be simply obtained by multiplying the
original system Ax = b on both sides by AT . In particular, if A is square and invertible,
then (ATA)−1 = A−1(AT )−1, and so (4.27) reduces to x = A−1b, while the two terms in
the error formula (4.28) cancel out, producing 0 error. In the rectangular case — when
this is not allowed — formula (4.27) gives a new formula for the solution to (4.25) when
b ∈ rngA.

Example 4.9. Consider the linear system

x1 + 2x2 = 1,

3x1 − x2 + x3 = 0,

−x1 + 2x2 + x3 = −1,

x1 − x2 − 2x3 = 2,

2x1 + x2 − x3 = 2,

consisting of 5 equations in 3 unknowns. The coefficient matrix and right hand side are

A =




1 2 0
3 −1 1
−1 2 1
1 −1 −2
2 1 −1


, b =




1
0
−1
2
2


.

A direct application of Gaussian elimination shows that b 6∈rngA, and so the system is
incompatible — it has no solution. Of course, to apply the least squares method, one is
not required to check this in advance. If the system has a solution, it is the least squares
solution too, and the least squares method will find it.
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To form the normal equations (4.26), we compute

K = ATA =



16 −2 −2
−2 11 2
−2 2 7


, f = ATb =



8
0
−7


 .

Solving the 3× 3 system K x = f by Gaussian elimination, we find

x = K−1f ≈ ( .4119, .2482,−.9532 )
T

,

to be the least squares solution to the system. The least squares error is

‖b−Ax? ‖ ≈ ‖ (−.0917, .0342, .131, .0701, .0252 )
T
‖ ≈ .1799,

which is reasonably small — indicating that the system is, roughly speaking, not too
incompatible.

Remark : If kerA 6= {0}, then the least squares solution to Ax = b is not unique,
cf. Exercise . When you askMatlab to solve such a linear system (when A is not square)
then it gives you the least squares solution that has the minimum Euclidean norm.

4.4. Data Fitting and Interpolation.

One of the most important applications of the least squares minimization process is
to the fitting of data points. Suppose we are running an experiment in which we measure
a certain time-dependent physical quantity. At time ti we make the measurement yi, and
thereby obtain a set of, say, m data points

(t1, y1), (t2, y2), . . . (tm, ym). (4.29)

Suppose our theory indicates that the data points are supposed to all lie on a single line

y = α+ β t, (4.30)

whose precise form — meaning its coefficients α, β — is to be determined. For example, a
police car is interested in clocking the speed of a vehicle using measurements of its relative
distance at several times. Assuming that the vehicle is traveling at constant speed, its
position at time t will have the linear form (4.30), with β, the velocity, and α, the initial
position, to be determined. Experimental error will almost inevitably make this impossible
to achieve exactly, and so the problem is to find the straight line (4.30) which “best fits”
the measured data.

The error between the measured value yi and the sample value predicted by the
function (4.30) at t = ti is

ei = yi − (α+ β ti), i = 1, . . . ,m.

We can write this system in matrix form as

e = y −Ax,
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Figure 4.2. Least Squares Approximation of Data by a Straight Line.

where

e =




e1

e2
...

em


, y =




y1

y2
...

ym


, while A =




1 t1
1 t2
...

...
1 tm


 , x =

(
α

β

)
. (4.31)

We call e the error vector and y the data vector . The coefficients α, β of our desired
function (4.30) are the unknowns, forming the entries of the column vector x.

If we could fit the data exactly, so yi = α + β ti for all i, then each ei = 0, and we
could solve Ax = y. In matrix language, the data points all lie on a straight line if and
only if y ∈ rngA. If the data points are not all collinear, then we seek the straight line
that minimizes the total squared error or Euclidean norm

Error = ‖ e ‖ =
√

e2
1 + · · · + e2

m .

Pictorially, referring to Figure 4.2, the errors are the vertical distances from the points to
the line, and we are seeking to minimize the square root of the sum of the squares of the
individual errors†, hence the term least squares. In vector language, we are looking for the
coefficient vector x = (α, β )

T
which minimizes the Euclidean norm of the error vector

‖ e ‖ = ‖Ax− y ‖. (4.32)

† This choice of minimization may strike the reader as a little odd. Why not just minimize
the sum of the absolute value of the errors, i.e., the 1 norm ‖ e ‖1 = | e1 | + · · · + | en | of the
error vector, or minimize the maximal error, i.e., the ∞ norm ‖ e ‖∞ = max{| e1 |, · · · , | en |}? Or,
even better, why minimize the vertical distance to the line? Maybe the perpendicular distance
from each data point to the line, as computed in Exercise , would be a better measure of
error. The answer is that, although all of these alternative minimization criteria are interesting
and potentially useful, they all lead to nonlinear minimization problems, and are much harder
to solve! The least squares minimization problem can be solved by linear algebra, whereas the
others lead to nonlinear minimization problems. Moreover, one needs to be properly understand
the linear solution before moving on to the more treacherous nonlinear situation, cf. Section 19.3.
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Thus, we are precisely in the situation of characterizing the least squares solution to the
system Ax = y that was covered in the preceding subsection.

Theorem 4.8 prescribes the solution to this least squares minimization problem. We
form the normal equations

(ATA)x = ATy, with solution x? = (ATA)−1ATy. (4.33)

Invertibility of the Gram matrix K = ATA relies on the assumption that the matrix A

have linearly independent columns. This requires that its columns be linearly independent,
and so not all the ti are equal, i.e., we must measure the data at at least two distinct times.
Note that this restriction does not preclude measuring some of the data at the same time,
e.g., by repeating the experiment. However, choosing all the ti’s to be the same is a silly
data fitting problem. (Why?)

For the particular matrices (4.31), we compute

ATA =

(
1 1 . . . 1
t1 t2 . . . tm

)



1 t1
1 t2
...

...
1 tm


 =

(
m

∑
ti∑

ti
∑
(ti)

2

)
= m

(
1 t

t t2

)
,

ATy =

(
1 1 . . . 1
t1 t2 . . . tm

)



y1

y2
...

ym


 =

( ∑
yi∑

ti yi

)
= m

(
y

t y

)
,

(4.34)

where the overbars, namely

t =
1

m

m∑

i=1

ti, y =
1

m

m∑

i=1

yi, t2 =
1

m

m∑

i=1

t2
i , t y =

1

m

m∑

i=1

ti yi, (4.35)

denote the average sample values of the indicated variables.

Warning : The average of a product is not equal to the product of the averages! In
particular,

t2 6= ( t )2, t y 6= t y.

Substituting (4.34) into the normal equations (4.33), and canceling the common factor
of m, we find that we have only to solve a pair of linear equations

α+ t β = y, t α+ t2 β = t y.

The solution is

α = y − t β, β =
t y − t y

t2 − ( t )2
=

∑
(ti − t ) yi∑
(ti − t )2

. (4.36)

Therefore, the best (in the least squares sense) straight line that fits the given data is

y = β (t− t ) + y,

where the line’s slope β is given in (4.36).
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Example 4.10. Suppose the data points are given by the table

ti 0 1 3 6

yi 2 3 7 12

Then

A =




1 0
1 1
1 3
1 6


 , AT =

(
1 1 1 1
0 1 3 6

)
, y =




2
3
7
12


.

Therefore

ATA =

(
4 10
10 46

)
, ATy =

(
24
96

)
.

The normal equations (4.33) reduce to

4α+ 10β = 24, 10α+ 46β = 96, so α = 12
7 , β = 12

7 .

Therefore, the best least squares fit to the data is the straight line

y = 12
7 +

12
7 t.

Alternatively, one can compute this formula directly from (4.36).

Example 4.11. Suppose we are given a sample of an unknown radioactive isotope.
At time ti we measure, using a Geiger counter, the amount mi of radioactive material in
the sample. The problem is to determine the initial amount of material and the isotope’s
half life. If the measurements were exact, we would have m(t) = m0e

β t, where m0 = m(0)

is the initial mass, and β < 0 the decay rate. The half life is given by t? =
log 2

β
; see

Example 8.1 for additional information.

As it stands this is not a linear least squares problem, but it can be converted to that
form by taking logarithms:

y(t) = logm(t) = logm0 + β t = α+ β t.

We can thus do a linear least squares fit on the logarithms yi = logmi of the radioactive
mass data at the measurement times ti to determine the best values for β and α = logm0.

Polynomial Approximation and Interpolation

The basic least squares philosophy has a variety of different extensions, all interesting
and all useful. First, we can replace the affine function (4.30) by a quadratic function

y = α+ β t+ γ t2, (4.37)

In this case, we are looking for the parabola that best fits the data. For example, Newton’s
theory of gravitation says that (in the absence of air resistance) a falling object obeys the
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Linear Quadratic Cubic

Figure 4.3. Interpolating Polynomials.

parabolic law (4.37), where α = h0 is the initial height, β = v0 is the initial velocity, and
γ = 1

2 gm is one half the weight of the object. Suppose we observe a falling body, and
measure its height yi at times ti. Then we can approximate its initial height, initial velocity
and weight by finding the parabola (4.37) that best fits the data. Again, we characterize
the least squares fit by minimizing the sum of the squares of errors ei = yi − y(ti).

The method can evidently be extended to a completely general polynomial function

y(t) = α0 + α1 t+ · · · + αn tn (4.38)

of degree n. The total least squares error between the data and the sample values of the
function is equal to

‖ e ‖2 =
m∑

i=1

[
yi − y(ti)

]2
= ‖y −Ax ‖2, (4.39)

where

A =




1 t1 t21 . . . tn1

1 t2 t22 . . . tn2
...

...
...

. . .
...

1 tm t2m . . . tnm




, x =




α0

α1

α2
...

αn




. (4.40)

In particular, if m = n+1, then A is square, and so, assuming A is invertible, we can
solve Ax = y exactly. In other words, there is no error, and the solution is an interpolating
polynomial , meaning that it fits the data exactly. A proof of the following result can be
found in Exercise .

Lemma 4.12. If t1, . . . , tn+1 are distinct, ti 6= tj , then the (n+1)× (n+1) interpo-
lation matrix (4.40) is nonsingular.

This result immediately implies the basic existence theorem for interpolating polyno-
mials.

Theorem 4.13. Let t1, . . . , tn+1 be distinct sample points. Then, for any prescribed

data y1, . . . , yn+1, there exists a unique degree n interpolating polynomial (4.38) with
sample values y(ti) = yi for all i = 1, . . . , n+ 1.

Thus, two points will determine a unique interpolating line, three points a unique
interpolating parabola, four points an interpolating cubic, and so on. Examples are illus-
trated in Figure 4.3.
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Example 4.14. The basic ideas of interpolation and least squares fitting of data
can be applied to approximate complicated mathematical functions by much simpler poly-
nomials. Such approximation schemes are used in all numerical computations — when
you ask your computer or calculator to compute et or cos t or any other function, it only
knows how to add, subtract, multiply and divide, and so must rely on an approximation
scheme based on polynomials† In the “dark ages” before computers, one would consult
precomputed tables of values of the function at particular data points. If one needed a
value at a nontabulated point, then some form of polynomial interpolation would typically
be used to accurately approximate the intermediate value.

For example, suppose we want to compute reasonably accurate values for the expo-
nential function et for values of t lying in the interval 0 ≤ t ≤ 1 by using a quadratic
polynomial

p(t) = α+ β t+ γ t2. (4.41)

If we choose 3 points, say t1 = 0, t2 = .5, t3 = 1, then there is a unique quadratic polynomial
(4.41) that interpolates et at the data points, i.e.,

p(ti) = eti for i = 1, 2, 3.

In this case, the coefficient matrix (4.40), namely

A =



1 0 0
1 .5 .25
1 1 1


,

is invertible. Therefore, we can exactly solve the interpolation equations Ax = y, where

y =




et1

et2

et3


 =




1

1.64872

2.71828




is the data vector. The solution

x =




α

β

γ


 =




1.

.876603

.841679




yields the interpolating polynomial

p(t) = 1 + .876603 t+ .841679 t2. (4.42)

It is the unique quadratic polynomial that agrees with et at the three specified data points.
See Figure 4.4 for a comparison of the graphs; the first graph shows et, the second p(t), and

† Actually, one could also allow interpolation and approximation by rational functions, a sub-
ject known as Padé approximation theory . See [12] for details.
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Figure 4.4. Quadratic Interpolating Polynomial for et.

the third lays the two graphs on top of each other. Even with such a simple interpolation
scheme, the two functions are quite close. The L∞ norm of the difference is

‖ et − p(t) ‖∞ = max
{
| et − p(t) |

∣∣ 0 ≤ t ≤ 1
}
≈ .01442,

with the maximum error occurring at t ≈ .796.

There is, in fact, an explicit formula for the interpolating polynomial that is named af-
ter the influential eighteenth century Italo–French mathematician Joseph–Louis Lagrange.
It relies on the basic superposition principle for solving inhomogeneous systems — Theo-
rem 2.42. Specifically, if we know the solutions x1, . . . ,xn+1 to the particular interpolation
systems

Axk = ek, k = 1, . . . , n+ 1, (4.43)

where e1, . . . , en+1 are the standard basis vectors of Rn+1, then the solution to

Ax = y = y1 e1 + · · · + yn+1 en+1

is given by the superposition formula

x = y1x1 + · · · + yn+1xn+1.

The particular interpolation equation (4.43) corresponds to interpolation data y = ek,
meaning that yk = 1, while yi = 0 at all points ti with i 6= k. If we can find the
n + 1 particular interpolating polynomials that realize this very special data, we can use
superposition to construct the general interpolating polynomial. It turns out that there is
a simple explicit formula for the basic interpolating polynomials.

Theorem 4.15. Given distinct values t1, . . . , tn+1, the kth Lagrange interpolating
polynomial is the degree n polynomial given by

Lk(t) =
(t− t1) · · · (t− tk−1)(t− tk+1) · · · (t− tn+1)

(tk − t1) · · · (tk − tk−1)(tk − tk+1) · · · (tk − tn+1)
, k = 1, . . . , n+ 1.

(4.44)
It is the unique polynomial of degree n that satisfies

Lk(ti) =

{
1, i = k,

0, i6= k,
i, k = 1, . . . , n+ 1. (4.45)
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Figure 4.5. Lagrange Interpolating Polynomials for the Points 0, .5, 1.

Proof : The uniqueness of the Lagrange interpolating polynomial is an immediate
consequence of Theorem 4.13. To show that (4.44) is the correct formula, we note that
when t = ti, i6= k, the factor (t− ti) in the numerator of Lk(t) vanishes, while when t = tk
the numerator and denominator are equal. Q.E.D.

Theorem 4.16. If t1, . . . , tn+1 are distinct, then the degree n polynomial that in-

terpolates the associated data y1, . . . , yn+1 is

p(t) = y1 L1(t) + · · · + yn+1 Ln+1(t). (4.46)

Proof : We merely compute

p(tk) = y1 L1(tk) + · · · + ykLk(t) + · · · + yn+1 Ln+1(tk) = yk,

where, according to (4.45), every summand except the kth is zero. Q.E.D.

Example 4.17. For example, the three quadratic Lagrange interpolating polynomi-
als for the values t1 = 0, t2 =

1
2 , t3 = 1 used to interpolate et in Example 4.14 are

L1(t) =
(t− 1

2 )(t− 1)

(0− 1
2 )(0− 1)

= 2 t2 − 3 t+ 1,

L2(t) =
(t− 0)(t− 1)

( 12 − 0)(
1
2 − 1)

= −4 t2 + 4 t,

L3(t) =
(t− 0)(t− 1

2 )

(1− 0)(1− 1
2 )
= 2 t2 − t.

(4.47)

Thus, one can rewrite the quadratic interpolant (4.42) to et as

y(t) = L1(t) + e1/2 L2(t) + eL3(t)

= (2 t2 − 3 t+ 1) + 1.64872(−4 t2 + 4 t) + 2.71828(2 t2 − t).

We stress that this is the same interpolating polynomial — we have merely rewritten it in
the more transparent Lagrange form.
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Figure 4.6. Degree 2, 4 and 10 Interpolating Polynomials for 1/(1 + t2).

One might expect that the higher the degree, the more accurate the interpolating
polynomial. This expectation turns out, unfortunately, not to be uniformly valid. While
low degree interpolating polynomials are usually reasonable approximants to functions,
high degree interpolants are more expensive to compute, and, moreover, can be rather
badly behaved, particularly near the ends of the interval. For example, Figure 4.6 displays
the degree 2, 4 and 10 interpolating polynomials for the function 1/(1+ t2) on the interval
−3 ≤ t ≤ 3 using equally spaced data points. Note the rather poor approximation of the
function near the endpoints of the interval. Higher degree interpolants fare even worse,
although the bad behavior becomes more and more concentrated near the ends of the
interval. As a consequence, high degree polynomial interpolation tends not to be used
in practical applications. Better alternatives rely on least squares approximants by low
degree polynomials, to be described next, and interpolation by piecewise cubic splines, a
topic that will be discussed in depth in Chapter 11.

If we have m > n + 1 data points, then, usually, there is no degree n polynomial
that fits all the data, and so one must switch over to a least squares approximation. The
first requirement is that the associated m × (n + 1) interpolation matrix (4.40) has rank
n + 1; this follows from Lemma 4.12 provided at least n + 1 of the values t1, . . . , tm are
distinct. Thus, given data at m ≥ n+1 different sample points t1, . . . , tm, we can uniquely
determine the best least squares polynomial of degree n that fits the data by solving the
normal equations (4.33).

Example 4.18. If we use more than three data points, but still require a quadratic
polynomial, then we cannot interpolate exactly, and must use a least squares approximant.
Let us return to the problem of approximating the exponential function et. For instance,
using five equally spaced sample points t1 = 0, t2 = .25, t3 = .5, t4 = .75, t5 = 1, the
coefficient matrix and sampled data vector (4.40) are

A =




1 0 0
1 .25 .0625
1 .5 .25
1 .75 .5625
1 1 1


, y =




1
1.28403
1.64872
2.11700
2.71828


.
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Figure 4.7. Quadratic Approximating Polynomial and Quartic Interpolating
Polynomial for et.

The solution to the normal equations (4.26), with

K = ATA =




5. 2.5 1.875
2.5 1.875 1.5625
1.875 1.5625 1.38281


, f = ATy =



8.76803
5.45140
4.40153


,

is

x = K−1f = ( 1.00514, .864277, .843538 )
T

.

This leads to the modified approximating quadratic polynomial

p2(t) = 1.00514 + .864277 t+ .843538 t2.

On the other hand, the quartic interpolating polynomial

p4(t) = .069416 t4 + .140276 t3 + .509787 t2 + .998803 t+ 1

is found directly from the data values as above. The quadratic polynomial has a maximal
error of ≈ .011 — slightly better than the quadratic interpolant — while the quartic has
a significantly smaller maximal error: ≈ .0000527. (In this case, high degree interpolants
are not ill behaved.) See Figure 4.7 for a comparison of the graphs, and Example 4.21
below for further discussion.

Approximation and Interpolation by General Functions

There is nothing special about polynomial functions in the preceding approximation
scheme. For example, suppose we were interested in finding the best 2π-periodic trigono-
metric approximation

y = α1 cos t+ α2 sin t
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to a given set of data. Again, the least squares error takes the same form ‖y −Ax ‖2 as
in (4.39), where

A =




cos t1 sin t1
cos t2 sin t2
...

...
cos tm sin tm


, x =

(
α1

α2

)
, y =




y1

y2
...

ym


.

The key is that the unspecified parameters — in this case α1, α2 — occur linearly in the
approximating function. Thus, the most general case is to approximate the data (4.29) by
a linear combination

y(t) = α1 h1(t) + α2 h2(t) + · · · + αnhn(t),

of prescribed, linearly independent functions h1(x), . . . , hn(x). The least squares error is,
as always, given by

Error =

√√√√
m∑

i=1

(
yi − y(ti)

)2
= ‖y −Ax ‖,

where the coefficient matrix and vector of unknown coefficients are

A =




h1(t1) h2(t1) . . . hn(t1)

h1(t2) h2(t2) . . . hn(t2)
...

...
. . .

...

h1(tm) h2(tm) . . . hn(tm)




, x =




α1

α2
...

αn


, y =




y1

y2
...

ym


. (4.48)

Thus, the columns of A are the sampled values of the functions. If A is square and
nonsingular, then we can find an interpolating function of the prescribed form by solving
the linear system

Ax = y. (4.49)

A particularly important case is provided by the 2n+ 1 trigonometric functions

1, cosx, sinx, cos 2x, sin 2x, . . . cosnx, sinnx.

Interpolation on 2n + 1 equally spaced data points on the interval [0, 2π ] leads to the
discrete Fourier transform, of profound significance in signal processing, data transmission,
and compression, [27]. Trigonometric interpolation and the discrete Fourier transform will
be the focus of Section 13.1.

If there are more than n data points, then we cannot, in general, interpolate exactly,
and must content ourselves with a least squares approximation. The least squares solution
to the interpolation equations (4.49) is found by solving the associated normal equations
K x = f , where the (i, j) entry of K = ATA is m times the average value of the product
of hi(t) and hj(t), namely

kij = m hi(t)hj(t) =
m∑

κ=1

hi(tκ)hj(tκ), (4.50)
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whereas the ith entry of f = ATy is m times the average

fi = m hi(t) y =
m∑

κ=1

hi(tκ) yκ. (4.51)

The one key question is whether the columns of A are linearly independent; this is more
subtle than the polynomial case covered by Lemma 4.12, and requires the sampled function
vectors to be linearly independent, which in general is different than requiring the functions
themselves to be linearly independent. See Exercise for a few details on the distinction
between these two notions of linear independence.

If the parameters do not occur linearly in the functional formula, then we cannot use a
linear analysis to find the least squares solution. For example, a direct linear least squares
approach does not suffice to find the frequency ω, the amplitude r, and the phase δ of a
general trigonometric approximation:

y = c1 cosωt+ c2 sinωt = r cos(ωt+ δ).

Approximating data by such a function constitutes a nonlinear minimization problem, and
must be solved by the more sophisticated techniques presented in Section 19.3.

Weighted Least Squares

Another generalization is to introduce weights in the measurement of the least squares
error. Suppose some of the data is known to be more reliable or more significant than
others. For example, measurements at an earlier time may be more accurate, or more
critical to the data fitting problem, than measurements at later time. In that situation,
we should penalize any errors at the earlier times and downplay errors in the later data.

In general, this requires the introduction of a positive weight ci > 0 associated to each
data point (ti, yi); the larger the weight, the more important the error. For a straight line
approximation y = α+ β t, the weighted least squares error is defined as

Error =

√√√√
m∑

i=1

ci e
2
i =

√√√√
m∑

i=1

ci
[
yi − (α+ β ti)

]2
.

Let us rewrite this formula in matrix form. Let C = diag (c1, . . . , cm) denote the diagonal
weight matrix . Note that C > 0 is positive definite, since all the weights are positive. The
least squares error

Error =
√

eTC e = ‖ e ‖

is then the norm of the error vector e with respect to the weighted inner product

〈v ;w 〉 = vTCw (4.52)

induced by the matrix C. Since e = y −Ax,

‖ e ‖2 = ‖Ax− y ‖2 = (Ax− y)TC (Ax− y)

= xTATC Ax− 2xTATC y + yTC y = xTK x− 2xT f + c,
(4.53)
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where

K = ATC A, f = ATC y, c = yTC y = ‖y ‖2.

Note that K is the Gram matrix derived in (3.51), whose entries

kij = 〈vi ;vj 〉 = vTi C vj

are the weighted inner products between the column vectors v1, . . . ,vn of A. Theorem 3.33
immediately implies that K is positive definite — provided A has linearly independent
columns or, equivalently, has rank n ≤ m.

Theorem 4.19. Suppose A is an m× n matrix with linearly independent columns.

Suppose C > 0 is any positive definite m×m matrix. Then, the quadratic function (4.53)
giving the weighted least squares error has a unique minimizer, which is the solution to

the weighted normal equations

ATC Ax = ATC y, so that x = (ATC A)−1 ATC y. (4.54)

In other words, the weighted least squares solution is obtained by multiplying both
sides of the original system Ax = y by the matrix ATC. The derivation of this result
allows C > 0 to be any positive definite matrix. In applications, the off-diagonal entries
of C can be used to weight cross-correlation terms in the data.

Example 4.20. In Example 4.10 we fit the data

ti 0 1 3 6

yi 2 3 7 12

ci 3 2 1
2

1
4

with an unweighted least squares line. Now we shall assign the weights for the error at
each sample point listed in the last row of the table, so that errors in the first two data
values carry more weight. To find the weighted least squares line y = α+ β t that best fits
the data, we compute

ATC A =

(
1 1 1 1
0 1 3 6

)



3 0 0 0
0 2 0 0
0 0 1

2 0
0 0 0 1

4







1 0
1 1
1 3
1 6


 =

(
23
4 5

5 31
2

)
,

ATC y =

(
1 1 1 1
0 1 3 6

)



3 0 0 0
0 2 0 0
0 0 1

2 0
0 0 0 1

4







2
3
7
12


 =

(
37
2
69
2

)
.

Thus, the weighted normal equations (4.54) reduce to

23
4 α+ 5β = 37

2 , 5α+ 31
2 β = 69

2 , so α = 1.7817, β = 1.6511.

Therefore, the least squares fit to the data under the given weights is y = 1.7817+1.6511 t.
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Least Squares Approximation in Function Spaces

So far, while we have used least squares minimization to interpolate and approximate
known, complicated functions by simpler polynomials, we have only worried about the
errors committed at a discrete, preassigned set of sample points. A more uniform approach
would be to take into account the errors committed at all points in the interval of interest.
This can be accomplished by replacing the discrete, finite-dimensional vector space norm
on sample vectors by a continuous, infinite-dimensional function space norm in order to
specify the least squares error that must be minimized over the entire interval.

More specifically, we let V = C0[a, b ] denote the space of continuous functions on the
bounded interval [a, b ] with L2 inner product

〈 f ; g 〉 =

∫ b

a

f(t) g(t) dt. (4.55)

Let P(n) denote the subspace consisting of all polynomials of degree ≤ n. For simplicity,
we employ the standard monomial basis 1, t, t2, . . . , tn. We will be approximating a general
function f(t) ∈ C0[a, b ] by a polynomial

p(t) = α1 + α2 t+ · · · + αn+1 tn ∈ P(n) (4.56)

of degree at most n. The error function e(t) = f(t)−p(t) measures the discrepancy between
the function and its approximating polynomial at each t. Instead of summing the squares
of the errors at a finite set of sample points, we go to a continuous limit that integrates
the squared errors of all points in the interval. Thus, the approximating polynomial will
be characterized as the one that minimizes the L2 least squares error

Error = ‖ e ‖ = ‖ p− f ‖ =

√ ∫ b

a

[ p(t)− f(t) ]2 dt . (4.57)

To solve the minimization problem, we begin by substituting (4.56) and expanding,
as in (4.17):

‖ p− f ‖2 =

∥∥∥∥∥

n+1∑

i=1

αi t
i−1

− f(t)

∥∥∥∥∥
2

=
n+1∑

i,j=1

αi αj 〈 t
i−1 ; tj 〉−2

n+1∑

i=1

αi 〈 t
i−1 ; f(t) 〉+‖ f(t) ‖2.

As a result, we are led to minimize the same kind of quadratic function

xTK x− 2xT f + c, (4.58)

where x =
(
α1, α2, . . . , αn+1

)T
is the vector containing the unknown coefficients in the

minimizing polynomial, while

kij = 〈 t
i−1 ; tj−1

〉 =

∫ b

a

ti+j−2 dt, fi = 〈 t
i−1 ; f 〉 =

∫ b

a

ti−1f(t) dt, (4.59)

are, as before, the Gram matrix K consisting of inner products between basis monomials
along with the vector f of inner products between the monomials and the right hand side.
The coefficients of the least squares minimizing polynomial are thus found by solving the
associated normal equations K x = f .

1/12/04 148 c© 2003 Peter J. Olver



0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

Figure 4.8. Quadratic Least Squares Approximation of et.

Example 4.21. Let us return to the problem of approximating the exponential
function f(t) = et on the interval 0 ≤ t ≤ 1. We consider the subspace P (2) consisting of
all quadratic polynomials

p(t) = α+ β t+ γ t2.

Using the monomial basis 1, t, t2, the normal equations are


1 1

2
1
3

1
2

1
3

1
4

1
3

1
4

1
5







α

β

γ


 =




e− 1

1

e− 2


.

The coefficient matrix is the Gram matrix K consisting of the inner products

〈 ti ; tj 〉 =

∫ 1

0

ti+j dt =
1

i+ j + 1

between basis monomials, while the right hand side is the vector of inner products

〈 et ; ti 〉 =

∫ 1

0

ti et dt.

The solution is computed to be

α = 39e− 105 ' 1.012991, β = −216e+ 588 ' .851125, γ = 210e− 570 ' .839184,

leading to the least squares quadratic approximant

p?(t) = 1.012991 + .851125 t+ .839184 t2, (4.60)

that is plotted in Figure 4.8 The least squares error is

‖ et − p?(t) ‖ ' .00527593.

The maximal error is measured by the L∞ norm of the difference,

‖ et − p?(t) ‖∞ = max
{
| et − p?(t) |

∣∣ 0 ≤ t ≤ 1
}
' .014981815,

with the maximum occurring at t = 1. Thus, the simple quadratic polynomial (4.60) will
give a reasonable approximation to the first two decimal places in et on the entire interval
[0, 1]. A more accurate approximation can be made by taking a higher degree polynomial,
or by decreasing the length of the interval.
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Remark : Although the least squares polynomial (4.60) minimizes the L2 norm of the
error, it does slightly worse with the L∞ norm than the previous sample-based minimizer
(4.42). The problem of finding the quadratic polynomial that minimizes the L∞ norm is
more difficult, and must be solved by nonlinear minimization methods.

Remark : As noted in Example 3.35, the Gram matrix for the simple monomial basis
is the n×n Hilbert matrix (1.67). The ill conditioned nature of the Hilbert matrix, and the
consequential difficulty in accurately solving the normal equations, complicates the practi-
cal numerical implementation of high degree least squares polynomial approximations. A
better approach, based on an alternative orthogonal polynomial basis, will be discussed in
in the ensuing Chapter.
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Chapter 5

Orthogonality

Orthogonality is the mathematical formalization of the geometrical property of per-
pendicularity — suitably adapted to general inner product spaces. In finite-dimensional
spaces, bases that consist of mutually orthogonal elements play an essential role in the the-
ory, in applications, and in practical numerical algorithms. Many computations become
dramatically simpler and less prone to numerical instabilities when performed in orthog-
onal systems. In infinite-dimensional function space, orthogonality unlocks the secrets of
Fourier analysis and its manifold applications, and underlies basic series solution methods
for partial differential equations. Indeed, many large scale modern applications, including
signal processing and computer vision, would be impractical, if not completely infeasible
were it not for the dramatic simplifying power of orthogonality. As we will later discover,
orthogonal systems naturally arise as eigenvector and eigenfunction bases for symmetric
matrices and self-adjoint boundary value problems for both ordinary and partial differen-
tial equations, and so play a major role in both finite-dimensional and infinite-dimensional
analysis and applications.

Orthogonality is motivated by geometry, and the methods have significant geometrical
consequences. Orthogonal matrices play an essential role in the geometry of Euclidean
space, computer graphics, animation, and three-dimensional image analysis, to be discussed
in Chapter 7. The orthogonal projection of a point onto a subspace is the closest point or
least squares minimizer. Moreover, when written in terms of an orthogonal basis for the
subspace, the normal equations underlying least squares analysis have an elegant explicit
solution formula. Yet another important fact is that the four fundamental subspaces of a
matrix form mutually orthogonal pairs. The orthogonality property leads directly to a new
characterization of the compatibility conditions for linear systems known as the Fredholm
alternative.

The duly famous Gram–Schmidt process will convert an arbitrary basis of an inner
product space into an orthogonal basis. As such, it forms one of the key algorithms of
linear analysis, in both finite-dimensional vector spaces and also function space where it
leads to the classical orthogonal polynomials and other systems of orthogonal functions. In
Euclidean space, the Gram–Schmidt process can be re-interpreted as a new kind of matrix
factorization, in which a nonsingular matrix A = QR is written as the product of an
orthogonal matrix Q and an upper triangular matrix R. The QR factorization underlies
one of the primary numerical algorithms for computing eigenvalues, to be presented in
Section 10.6.
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Figure 5.1. Orthogonal Bases in R2 and R3.

5.1. Orthogonal Bases.

Let V be a fixed real† inner product space. Recall that two elements v,w ∈ V are
called orthogonal if their inner product vanishes: 〈v ;w 〉 = 0. In the case of vectors in
Euclidean space, this means that they meet at a right angle, as sketched in Figure 5.1.

A particularly important configuration is when V admits a basis consisting of mutually
orthogonal elements.

Definition 5.1. A basis u1, . . . ,un of V is called orthogonal if 〈ui ;uj 〉 = 0 for
all i 6= j. The basis is called orthonormal if, in addition, each vector has unit length:
‖ui ‖ = 1, for all i = 1, . . . , n.

For the Euclidean space Rn equipped with the standard dot product, the simplest
example of an orthonormal basis is the standard basis

e1 =




1
0
0
...
0
0




, e2 =




0
1
0
...
0
0




, . . . en =




0
0
0
...
0
1




.

Orthogonality follows because ei · ej = 0, for i 6= j, while ‖ ei ‖ = 1 implies normality.

Since a basis cannot contain the zero vector, there is an easy way to convert an
orthogonal basis to an orthonormal basis. Namely, one replaces each basis vector by a unit
vector pointing in the same direction, as in Lemma 3.16.

† The methods can be adapted more or less straightforwardly to complex inner product spaces.
The main complication, as noted in Section 3.6, is that we need to be careful with the order of
vectors appearing in the non-symmetric complex inner products. In this chapter, we will write
all inner product formulas in the proper order so that they retain their validity in complex vector
spaces.
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Lemma 5.2. If v1, . . . ,vn is any orthogonal basis, then the normalized vectors

ui = vi/‖vi ‖ form an orthonormal basis.

Example 5.3. The vectors

v1 =



1
2
−1


, v2 =



0
1
2


, v3 =



5
−2
1


,

are easily seen to form a basis of R3. Moreover, they are mutually perpendicular, v1 ·v2 =
v1 · v3 = v2 · v3 = 0 , and so form an orthogonal basis with respect to the standard dot
product on R3. When we divide each orthogonal basis vector by its length, the result is
the orthonormal basis

u1=
1
√
6



1
2
−1


=




1√
6

2√
6

−
1√
6


, u2=

1
√
5



0
1
2


=




0
1√
5

2√
5


, u3=

1
√
30



5
−2
1


=




5√
30

−
2√
30

1√
30


,

satisfying u1 · u2 = u1 · u3 = u2 · u3 = 0 and ‖u1 ‖ = ‖u2 ‖ = ‖u3 ‖ = 1. The appearance
of square roots in the elements of an orthonormal basis is fairly typical.

A useful observation is that any orthogonal collection of nonzero vectors is automati-
cally linearly independent.

Proposition 5.4. If v1, . . . ,vk ∈ V are nonzero, mutually orthogonal, so 〈vi ;vj 〉 =
0 for all i 6= j, then they are linearly independent.

Proof : Suppose

c1v1 + · · · + ckvk = 0.

Let us take the inner product of the equation with any vi. Using linearity of the inner
product and orthogonality of the elements, we compute

0 = 〈 c1v1 + · · · + ckvk ;vi 〉 = c1 〈v1 ;vi 〉+ · · · + ck 〈vk ;vi 〉 = ci 〈vi ;vi 〉 = ci ‖vi ‖
2.

Therefore, provided vi 6= 0, we conclude that the coefficient ci = 0. Since this holds for
all i = 1, . . . , k, linear independence of v1, . . . ,vk follows. Q.E.D.

As a direct corollary, we infer that any orthogonal collection of nonzero vectors is
automatically a basis for its span.

Proposition 5.5. Suppose v1, . . . ,vn ∈ V are mutually orthogonal nonzero elements

of an inner product space V . Then v1, . . . ,vn form an orthogonal basis for their span

W = span {v1, . . . ,vn} ⊂ V , which is therefore a subspace of dimension n = dimW . In

particular, if dimV = n, then they form a orthogonal basis for V .

Orthogonality is also of great significance for function spaces.
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Example 5.6. Consider the vector space P (2) consisting of all quadratic polynomials
p(x) = α+ βx+ γ x2, equipped with the L2 inner product and norm

〈 p ; q 〉 =

∫ 1

0

p(x) q(x) dx, ‖ p ‖ =
√
〈 p ; p 〉 =

√∫ 1

0

p(x)2 dx .

The standard monomials 1, x, x2 do not form an orthogonal basis. Indeed,

〈 1 ;x 〉 = 1
2 , 〈 1 ;x2

〉 = 1
3 , 〈x ;x2

〉 = 1
4 .

One orthogonal basis of P (2) is provided by following polynomials:

p1(x) = 1, p2(x) = x− 1
2 , p3(x) = x2

− x+ 1
6 . (5.1)

Indeed, one easily verifies that 〈 p1 ; p2 〉 = 〈 p1 ; p3 〉 = 〈 p2 ; p3 〉 = 0, while

‖ p1 ‖ = 1, ‖ p2 ‖ =
1
√
12
=

1

2
√
3

, ‖ p3 ‖ =
1

√
180

=
1

6
√
5

. (5.2)

The corresponding orthonormal basis is found by dividing each orthogonal basis element
by its norm:

u1(x) = 1, u2(x) =
√

3 ( 2x− 1 ) , u3(x) =
√

5
(
6x2

− 6x+ 1
)
. (5.3)

In Section 5.4 below, we will learn how to construct such orthogonal systems of polynomials.

Computations in Orthogonal Bases

What are the advantages of orthogonal and orthonormal bases? Once one has a basis
of a vector space, a key issue is how to express other elements as linear combinations of
the basis elements — that is, to find their coordinates in the prescribed basis. In general,
this is not an easy problem, since it requires solving a system of linear equations, (2.22).
In high dimensional situations arising in applications, computing the solution may require
a considerable, if not infeasible amount of time and effort.

However, if the basis is orthogonal, or, even better, orthonormal, then the change
of basis computation requires almost no work. This is the crucial insight underlying the
efficacy of both discrete and continuous Fourier methods, large data least squares approx-
imations, signal and image processing, and a multitude of other crucial applications.

Theorem 5.7. Let u1, . . . ,un be an orthonormal basis for an inner product space

V . Then one can write any element v ∈ V as a linear combination

v = c1u1 + · · · + cnun, (5.4)

in which the coordinates

ci = 〈v ;ui 〉, i = 1, . . . , n, (5.5)

are explicitly given as inner products. Moreover, the norm

‖v ‖ =
√

c2
1 + · · · + c2

n =

√√√√
n∑

i=1

〈v ;ui 〉
2 (5.6)

is the square root of the sum of the squares of its coordinates.
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Proof : Let us compute the inner product of (5.4) with one of the basis vectors. Using
the orthonormality conditions

〈ui ;uj 〉 =

{
0 i6= j,

1 i = j,
(5.7)

and bilinearity of the inner product, we find

〈v ;ui 〉 =

〈
n∑

j=1

cj uj ; ui

〉
=

n∑

j=1

cj 〈uj ;ui 〉 = ci ‖ui ‖
2 = ci.

To prove formula (5.6), we similarly expand

‖v ‖2 = 〈v ;v 〉 =
n∑

i,j=1

ci cj 〈ui ;uj 〉 =
n∑

i=1

c2
i ,

again making use of the orthonormality of the basis elements. Q.E.D.

Example 5.8. Let us rewrite the vector v = ( 1, 1, 1 )
T
in terms of the orthonormal

basis

u1 =




1√
6

2√
6

−
1√
6


, u2 =




0
1√
5

2√
5


, u3 =




5√
30

−
2√
30

1√
30


,

constructed in Example 5.3. Computing the dot products

v · u1 =
2√
6

, v · u2 =
3√
5

, v · u3 =
4√
30

,

we conclude that

v = 2√
6
u1 +

3√
5
u2 +

4√
30
u3,

as the reader can validate. Needless to say, a direct computation based on solving the
associated linear system, as in Chapter 2, is more tedious.

While passage from an orthogonal basis to its orthonormal version is elementary — one
simply divides each basis element by its norm — we shall often find it more convenient to
work directly with the unnormalized version. The next result provides the corresponding
formula expressing a vector in terms of an orthogonal, but not necessarily orthonormal
basis. The proof proceeds exactly as in the orthonormal case, and details are left to the
reader.

Theorem 5.9. If v1, . . . ,vn form an orthogonal basis, then the corresponding coor-

dinates of a vector

v = a1v1 + · · · + anvn are given by ai =
〈v ;vi 〉

‖vi ‖
2

. (5.8)
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In this case, the norm can be computed via the formula

‖v ‖2 =
n∑

i=1

a2
i ‖vi ‖

2 =
n∑

i=1

(
〈v ;vi 〉

‖vi ‖

)2

. (5.9)

Equation (5.8), along with its orthonormal simplification (5.5), is one of the most
important and useful formulas we shall establish. Applications will appear repeatedly
throughout the remainder of the text.

Example 5.10. The wavelet basis

v1 =




1
1
1
1


, v2 =




1
1
−1
−1


, v3 =




1
−1
0
0


, v4 =




0
0
1
−1


, (5.10)

introduced in Example 2.33 is, in fact, an orthogonal basis of R4. The norms are

‖v1 ‖ = 2, ‖v2 ‖ = 2, ‖v3 ‖ =
√

2, ‖v4 ‖ =
√

2.

Therefore, using (5.8), we can readily express any vector as a linear combination of the
wavelet basis vectors. For example,

v =




4
−2
1
5


 = 2v1 − v2 + 3v3 − 2v4,

where the wavelet basis coordinates are computed directly by

〈v ;v1 〉

‖v1 ‖
2
=
8

4
= 2 ,

〈v ;v2 〉

‖v2 ‖
2
=
−4

4
= −1,

〈v ;v3 〉

‖v3 ‖
2
=
6

2
= 3

〈v ;v4 〉

‖v4 ‖
2
=
−4

2
= −2 .

This is clearly a lot quicker than solving the linear system, as we did in Example 2.33.
Finally, we note that

46 = ‖v ‖2 = 22 ‖v1 ‖
2+(−1)2 ‖v2 ‖

2+32 ‖v3 ‖
2+(−2)2 ‖v4 ‖

2 = 4 ·4+1 ·4+9 ·2+4 ·2,

in conformity with (5.9).

Example 5.11. The same formulae are equally valid for orthogonal bases in function
spaces. For example, to express a quadratic polynomial

p(x) = c1 p1(x) + c2 p2(x) + c3 p3(x) = c1 + c2

(
x− 1

2

)
+ c3

(
x2
− x+ 1

6

)

in terms of the orthogonal basis (5.1), we merely compute the inner product integrals

c1 =
〈 p ; p1 〉

‖ p1 ‖
2
=

∫ 1

0

p(x) dx, c2 =
〈 p ; p2 〉

‖ p2 ‖
2
= 12

∫ 1

0

p(x)
(
x− 1

2

)
dx,

c3 =
〈 p ; p2 〉

‖ p2 ‖
2
= 180

∫ 1

0

p(x)
(
x2
− x+ 1

6

)
dx.
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Thus, for example,

p(x) = x2 + x+ 1 = 11
6 + 2

(
x− 1

2

)
+
(
x2
− x+ 1

6

)
,

as is easily checked.

Example 5.12. Perhaps the most important example of an orthogonal basis is
provided by the basic trigonometric functions. Let T (n) denote the vector space consisting
of all trigonometric polynomials

T (x) =
∑

0≤j+k≤n

ajk (sinx)j (cosx)k (5.11)

of degree ≤ n. The constituent monomials (sinx)j (cosx)k obviously span T (n), but they
do not form a basis owing to identities stemming from the basic trigonometric formula
cos2 x+ sin2 x = 1; see Example 2.19 for additional details. Exercise introduced a more
convenient spanning set consisting of the 2n+ 1 functions

1, cosx, sinx, cos 2x, sin 2x, . . . cosnx, sinnx. (5.12)

Let us prove that these functions form an orthogonal basis of T (n) with respect to the L2

inner product and norm:

〈 f ; g 〉 =

∫ π

−π

f(x) g(x) dx, ‖ f ‖2 =

∫ π

−π

f(x)2 dx. (5.13)

The elementary integration formulae

∫ π

−π

cos kx cos l x dx =





0, k 6= l,

2π, k = l = 0,

π, k = l 6= 0,

∫ π

−π

sin kx sin l x dx =

{
0, k 6= l,

π, k = l 6= 0,
∫ π

−π

cos kx sin l x dx = 0, (5.14)

which are valid for all nonnegative integers k, l ≥ 0, imply the orthogonality relations

〈 cos kx ; cos l x 〉 = 〈 sin kx ; sin l x 〉 = 0, k 6= l, 〈 cos kx ; sin l x 〉 = 0,

‖ cos kx ‖ = ‖ sin kx ‖ =
√

π , k 6= 0, ‖ 1 ‖ =
√

2π .
(5.15)

Proposition 5.5 now assures us that the functions (5.12) form a basis for T (n). One
key consequence is that dim T (n) = 2n + 1 — a fact that is not so easy to establish
directly. Orthogonality of the trigonometric functions (5.12) means that we can compute
the coefficients a0, . . . , an, b1, . . . , bn of any trigonometric polynomial

p(x) = a0 +

n∑

k=1

(
ak cos k x+ bk sin k x

)
(5.16)

1/12/04 156 c© 2003 Peter J. Olver



by an explicit integration formula. Namely,

a0 =
〈 f ; 1 〉

‖ 1 ‖2
=
1

2π

∫ π

−π

f(x) dx, ak =
〈 f ; cos kx 〉

‖ cos kx ‖2
=
1

π

∫ π

−π

f(x) cos kx dx,

bk =
〈 f ; sin kx 〉

‖ sin kx ‖2
=
1

π

∫ π

−π

f(x) sin kx dx, k ≥ 1.

(5.17)

These formulae willplay an essential role in the theory and applications of Fourier series;
see Chapter 12.

5.2. The Gram–Schmidt Process.

Once one becomes convinced of the utility of orthogonal and orthonormal bases, the
natural question follows: How can we construct them? A practical algorithm was first
discovered by Laplace in the eighteenth century. Today the algorithm is known as the
Gram–Schmidt process, after its rediscovery by Jorgen Gram, who we already met in
Chapter 3, and Erhard Schmidt, a nineteenth century German mathematician. It forms
one of the premier algorithms of applied and computational linear algebra.

Let V denote a finite-dimensional inner product space. (To begin with, the reader can
assume V us a subspace of Rm with the standard Euclidean dot product, although the
algorithm will be formulated in complete generality.) We assume that we already know
some basis w1, . . . ,wn of V , where n = dimV . Our goal is to use this information to
construct an orthogonal basis v1, . . . ,vn.

We will construct the orthogonal basis elements one by one. Since initially we are not
worrying about normality, there are no conditions on the first orthogonal basis element v1

and so there is no harm in choosing

v1 = w1.

Note that v1 6= 0 since w1 appears in the original basis. The second basis vector must be
orthogonal to the first: 〈v2 ;v1 〉 = 0. Let us try to arrange this by subtracting a suitable
multiple of v1, and set

v2 = w2 − cv1,

where c is a scalar to be determined. The orthogonality condition

0 = 〈v2 ;v1 〉 = 〈w2 ;v1 〉 − c 〈v1 ;v1 〉 = 〈w2 ;v1 〉 − c ‖v1 ‖
2

requires that c =
〈w2 ;v1 〉

‖v1 ‖
2
, and therefore

v2 = w2 −
〈w2 ;v1 〉

‖v1 ‖
2

v1. (5.18)

Linear independence of v1 = w1 and w2 ensures that v2 6= 0. (Check!)

Next, we construct
v3 = w3 − c1v1 − c2v2
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by subtracting suitable multiples of the first two orthogonal basis elements from w3. We
want v3 to be orthogonal to both v1 and v2. Since we already arranged that 〈v1 ;v2 〉 = 0,
this requires

0 = 〈v3 ;v1 〉 = 〈w3 ;v1 〉 − c1 〈v1 ;v1 〉, 0 = 〈v3 ;v2 〉 = 〈w3 ;v2 〉 − c2 〈v2 ;v2 〉,

and hence

c1 =
〈w3 ;v1 〉

‖v1 ‖
2

, c2 =
〈w3 ;v2 〉

‖v2 ‖
2

.

Therefore, the next orthogonal basis vector is given by the formula

v3 = w3 −
〈w3 ;v1 〉

‖v1 ‖
2

v1 −
〈w3 ;v2 〉

‖v2 ‖
2

v2.

Continuing in the same manner, suppose we have already constructed the mutually
orthogonal vectors v1, . . . ,vk−1 as linear combinations of w1, . . . ,wk−1. The next or-
thogonal basis element vk will be obtained from wk by subtracting off a suitable linear
combination of the previous orthogonal basis elements:

vk = wk − c1v1 − · · · − ck−1vk−1.

Since v1, . . . ,vk−1 are already orthogonal, the orthogonality constraint

0 = 〈vk ;vj 〉 = 〈wk ;vj 〉 − cj 〈vj ;vj 〉

requires

cj =
〈wk ;vj 〉

‖vj ‖
2

for j = 1, . . . , k − 1. (5.19)

In this fashion, we establish the general Gram–Schmidt formula

vk = wk −

k−1∑

j=1

〈wk ;vj 〉

‖vj ‖
2

vj , k = 1, . . . , n. (5.20)

The Gram–Schmidt process (5.20) defines a recursive procedure for constructing the or-
thogonal basis vectors v1, . . . ,vn. If we are actually after an orthonormal basis u1, . . . ,un,
we merely normalize the resulting orthogonal basis vectors, setting uk = vk/‖vk ‖ for
k = 1, . . . , n.

Example 5.13. The vectors

w1 =



1
1
−1


 , w2 =



1
0
2


 , w3 =



2
−2
3


 , (5.21)
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are readily seen to form a basis† of R3. To construct an orthogonal basis (with respect
to the standard dot product) using the Gram–Schmidt procedure, we begin by setting

v1 = w1 =



1
1
−1


. The next basis vector is

v2 = w2 −
w2 · v1

‖v1 ‖
2
v1 =



1
0
2


− −1

3



1
1
−1


 =




4
3
1
3
5
3


.

The last orthogonal basis vector is

v3 = w3 −
w3 · v1

‖v1 ‖
2
v1 −

w3 · v2

‖v2 ‖
2
v2 =



2

−2

3


−

−3

3



1

1

−1


−

7
14
3




4
3
1
3
5
3


 =



1

−
3
2

−
1
2


.

The reader can easily validate the orthogonality of v1,v2,v3.

An orthonormal basis is obtained by dividing each vector by its length. Since

‖v1 ‖ =
√

3, ‖v2 ‖ =

√
14

3
, ‖v3 ‖ =

√
7

2
.

we produce the corresponding orthonormal basis vectors

u1 =




1√
3

1√
3

−
1√
3


, u2 =




4√
42

1√
42

5√
42


, u3 =




2√
14

−
3√
14

−
1√
14


. (5.22)

Example 5.14. Here is a typical sort of problem: Find an orthonormal basis (with
respect to the dot product) for the subspace V ⊂ R4 consisting of all vectors which are

orthogonal to the vector a = ( 1, 2,−1,−3 )
T
. Now, a vector x = (x1, x2, x3, x4 )

T
is

orthogonal to a if and only if

x · a = x1 + 2x2 − x3 − 3x4 = 0.

Solving this homogeneous linear system by the usual method, we find that the free variables
are x2, x3, x4, and so a (non-orthogonal) basis for the subspace is

w1 =




−2
1
0
0


, w2 =




1
0
1
0


, w3 =




3
0
0
1


.

† This will, in fact, be a consequence of the successful completion of the Gram–Schmidt al-
gorithm and does not need to be checked in advance. If the given vectors were not linearly
independent, then eventually one of the Gram–Schmidt vectors would vanish, and the process will
break down.
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To obtain an orthogonal basis, we apply the Gram–Schmidt process. First, v1 = w1 =


−2
1
0
0


. The next element is v2 = w2 −

w2 · v1

‖v1 ‖
2
v1 =




1
0
1
0


−

−2

5




−2
1
0
0


 =




1
5
2
5
1
0


. The

last element of our orthogonal basis is

v3 = w3 −
w3 · v1

‖v1 ‖
2
v1 −

w3 · v2

‖v2 ‖
2
v2 =




3

0

0

1


−

−6

5




−2

1

0

0


−

3
5
6
5




1
5
2
5

1

0


 =




1
2

1

−
1
2

1


.

An orthonormal basis can then be obtained by dividing each vi by its length:

u1 =




−
2√
5

1√
5

0

0




, u2 =




1√
30

2√
30

5√
30

0




, u3 =




1√
10

2√
10

−
1√
10

2√
10




. (5.23)

The Gram–Schmidt procedure has one final important consequence. By definition,
every finite-dimensional vector space admits a basis. Given an inner product, the Gram–
Schmidt process enables one to construct an orthogonal and even orthonormal basis of the
space. Therefore, we have, in fact, implemented a constructive proof of the existence of
orthogonal and orthonormal bases of finite-dimensional inner product spaces. Indeed, the
construction shows that there are many different orthogonal and hence orthonormal bases.

Theorem 5.15. A finite-dimensional inner product space has an orthonormal basis.

Modifications of the Gram–Schmidt Process

With the basic Gram–Schmidt algorithm now in hand, it is worth looking at a couple
of reformulations that have both practical and theoretical uses. The first is an alternative
approach that can be used to directly construct the orthonormal basis vectors u1, . . . ,un
from the basis w1, . . . ,wn.

We begin by replacing each orthogonal basis vector in the basic Gram–Schmidt for-
mula (5.20) by its normalized version uj = vj/‖vj ‖. As a result, we find that the original
basis vectors can be expressed in terms of the orthonormal basis via a “triangular” system

w1 = r11u1,

w2 = r12u1 + r22u2,

w3 = r13u1 + r23u2 + r33u3,

...
...

...
. . .

wn = r1nu1 + r2nu2 + · · · + rnnun.

(5.24)
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The coefficients rij can, in fact, be directly computed without using the intermediate
derivation. Indeed, taking the inner product of the jth equation with the orthonormal
basis vector uj , we find, in view of the orthonormality constraints (5.7),

〈wj ;ui 〉 = 〈 r1j u1 + · · · + rjj uj ;ui 〉 = r1j 〈u1 ;ui 〉+ · · · + rjj 〈un ;ui 〉 = rij ,

and hence
rij = 〈wj ;ui 〉. (5.25)

On the other hand, according to (5.6),

‖wj ‖
2 = ‖ r1j u1 + · · · + rjj uj ‖

2 = r2
1j + · · · + r2

j−1,j + r2
jj . (5.26)

The pair of equations (5.25), (5.26) can be rearranged to devise a recursive procedure to
compute the orthonormal basis. At stage j, we assume that we have already constructed
u1, . . . ,uj−1. We then compute

†

rij = 〈wj ;ui 〉, for each i = 1, . . . , j − 1. (5.27)

We obtain the next orthonormal basis vector uj by the formulae

rjj =
√
‖wj ‖

2 − r2
1j − · · · − r2

j−1,j , uj =
wj − r1j u1 − · · · − rj−1,j uj−1

rjj
. (5.28)

Running through the formulae (5.27), (5.28) for j = 1, . . . , n leads to the same orthonormal
basis u1, . . . ,un as the previous version of the Gram–Schmidt process.

Example 5.16. Let us apply the revised algorithm to the vectors

w1 =



1
1
−1


 , w2 =



1
0
2


 , w3 =



2
−2
3


 ,

of Example 5.13. To begin, we set

r11 = ‖w1 ‖ =
√

3 , u1 =
w1

r11

=




1√
3

1√
3

−
1√
3


.

The next step is to compute

r12 = 〈w2 ;u1 〉 = −
1
√
3

, r22 =
√
‖w2 ‖

2 − r2
12 =

√
14

3
, u2 =

w2 − r12u1

r22

=




4√
42

1√
42

5√
42


.

† When j = 1, there is nothing to do.
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The final step yields

r13 = 〈w3 ;u1 〉 = −
√

3 , r23 = 〈w3 ;u2 〉 =

√
21

2
,

r33 =
√
‖w3 ‖

2 − r2
13 − r2

23 =

√
7

2
, u3 =

w3 − r13u1 − r23u2

r33

=




2√
14

−
3√
14

−
1√
14


.

As advertised, the result is the same orthonormal basis vectors u1,u2,u3 found in Exam-
ple 5.13.

For hand computations, the orthogonal version (5.20) of the Gram–Schmidt process is
slightly easier — even if one does ultimately want an orthonormal basis — since it avoids
the square roots that are ubiquitous in the orthonormal version (5.27), (5.28). On the
other hand, for numerical implementation on a computer, the orthonormal version is a bit
faster, as it involves fewer arithmetic operations.

However, in practical, large scale computations, both versions of the Gram–Schmidt
process suffer from a serious flaw. They are subject to numerical instabilities, and so round-
off errors may seriously corrupt the computations, producing inaccurate, non-orthogonal
vectors. Fortunately, there is a simple rearrangement of the calculation that obviates
this difficulty and leads to a numerically robust algorithm that is used in practice. The
idea is to treat the vectors simultaneously rather than sequentially, making full use of
the orthonormal basis vectors as they arise. More specifically, the algorithm begins as
before — we take u1 = w1/‖w1 ‖. We then subtract off the appropriate multiples of u1

from all of the remaining basis vectors so as to arrange their orthogonality to u1. This is
accomplished by setting

w
(2)
k = wk − 〈wk ;u1 〉u1, for k = 2, . . . , n.

The second orthonormal basis vector u2 = w
(2)
2 /‖w

(2)
2 ‖ is then obtained by normalizing.

We next modify the remaining vectors w
(2)
3 , . . . ,w

(2)
n to produce vectors

w
(3)
k = w

(2)
k − 〈w

(2)
k ;u2 〉u2, k = 3, . . . , n,

that are orthogonal to both u1 and u2. Then u3 = w
(3)
3 /‖w

(3)
3 ‖ is taken as the next

orthonormal basis element, and so on. The full algorithm starts with the initial basis

vectors wj = w
(1)
k , k = 1, . . . , n, and then recursively computes

uj =
w

(j)
j

‖w
(j)
j ‖

, w
(j+1)
k = w

(j)
k − 〈w

(j)
k ;uj 〉uj ,

j = 1, . . . n,

k = j + 1, . . . , n.
(5.29)

(In the final phase, when j = n, the second formula is no longer relevant.) The result is a
numerically stable computation of the same orthonormal basis vectors u1, . . . ,un.
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Example 5.17. Let us apply the stable Gram–Schmidt process (5.29) to the basis
vectors

w
(1)
1 = w1 =



2
2
−1


, w

(1)
2 = w2 =



0
4
−1


, w

(1)
3 = w3 =



1
2
−3


.

The first orthonormal basis vector is u1 =
w

(1)
1

‖w
(1)
1 ‖

=




2
3
2
3

−
1
3


. Next, we compute

w
(2)
2 = w

(1)
2 − 〈w

(1)
2 ;u1 〉u1 =



−2
2
0


, w

(2)
3 = w

(1)
3 − 〈w

(1)
3 ;u1 〉u1 =



−1
0
−2


.

The second orthonormal basis vector is u2 =
w

(2)
2

‖w
(2)
2 ‖

=




−
1√
2

1√
2

0


. Finally,

w
(3)
3 = w

(2)
3 − 〈w

(2)
3 ;u2 〉u2 =



−

1
2

−
1
2

−2


, u3 =

w
(3)
3

‖w
(3)
3 ‖

=



−

√
2

6

−

√
2

6

−
2
√

2
3


.

The resulting vectors u1,u2,u3 form the desired orthonormal basis.

5.3. Orthogonal Matrices.

Matrices whose columns form an orthonormal basis of Rn relative to the standard
Euclidean dot product have a distinguished role. Such “orthogonal matrices” appear in
a wide range of applications in geometry, physics, quantum mechanics, partial differen-
tial equations, symmetry theory, and special functions. Rotational motions of bodies in
three-dimensional space are described by orthogonal matrices, and hence they lie at the
foundations of rigid body mechanics, including satellite and underwater vehicle motions,
as well as three-dimensional computer graphics and animation. Furthermore, orthogonal
matrices are an essential ingredient in one of the most important methods of numerical
linear algebra: the QR algorithm for computing eigenvalues of matrices, to be presented
in Section 10.6.

Definition 5.18. A square matrix Q is called an orthogonal matrix if it satisfies

QTQ = I . (5.30)

The orthogonality condition implies that one can easily invert an orthogonal matrix:

Q−1 = QT . (5.31)

In fact the two conditions are equivalent, and hence a matrix is orthogonal if and only if
its inverse is equal to its transpose. The second important characterization of orthogonal
matrices relates them directly to orthonormal bases.
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Proposition 5.19. A matrix Q is orthogonal if and only if its columns form an

orthonormal basis with respect to the Euclidean dot product on Rn.

Proof : Let u1, . . . ,un be the columns of Q. Then uT1 , . . . ,uTn are the rows of the
transposed matrix QT . The (i, j)th entry of the product QTQ = I is given as the product

of the ith row of QT times the jth column of Q. Thus, ui ·uj = uTi uj =

{
1, i = j,

0, i6= j,
which

are precisely the conditions (5.7) for u1, . . . ,un to form an orthonormal basis. Q.E.D.

Warning : Technically, we should be referring to an “orthonormal” matrix, not an
“orthogonal” matrix. But the terminology is so standard throughout mathematics that
we have no choice but to adopt it here. There is no commonly accepted term for a matrix
whose columns form an orthogonal but not orthonormal basis.

Example 5.20. A 2×2 matrix Q =

(
a b

c d

)
is orthogonal if and only if its columns

u1 =

(
a

c

)
,u2 =

(
b

d

)
, form an orthonormal basis of R2. Equivalently, the requirement

QTQ =

(
a c

b d

) (
a b

c d

)
=

(
a2 + c2 a c+ b d

a c+ b d b2 + d2

)
=

(
1 0
0 1

)
,

implies that its entries must satisfy the algebraic equations

a2 + c2 = 1, a c+ b d = 0, b2 + d2 = 1.

The first and last equations say the points ( a, c )
T
and ( b, d )

T
lie on the unit circle in R2,

and so

a = cos θ, c = sin θ, b = cosψ, d = sinψ,

for some choice of angles θ, ψ. The remaining orthogonality condition is

0 = ac+ bd = cos θ cosψ + sin θ sinψ = cos(θ − ψ).

This implies that θ and ψ differ by a right angle: ψ = θ ± 1
2 π. The ± sign leads to two

cases:

b = − sin θ, d = cos θ, or b = sin θ, d = − cos θ.

As a result, every 2× 2 orthogonal matrix has one of two possible forms

(
cos θ − sin θ

sin θ cos θ

)
or

(
cos θ sin θ

sin θ − cos θ

)
, where 0 ≤ θ < 2π. (5.32)

The corresponding orthonormal bases are illustrated in Figure 5.2. Note that the former
is a right-handed basis which can be obtained from the standard basis e1, e2 by a rotation
through angle θ, while the latter has the opposite, reflected orientation.
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θ

u1

u2

θ

u1

u2

Figure 5.2. Orthonormal Bases in R2.

Example 5.21. A 3 × 3 orthogonal matrix Q = (u1 u2 u3 ) is prescribed by 3
mutually perpendicular vectors of unit length in R3. For instance, the orthonormal basis

constructed in (5.22) corresponds to the orthogonal matrix Q =




1√
3

4√
42

2√
14

1√
3

1√
42

−
3√
14

−
1√
3

5√
42

−
1√
14


.

A complete list of 3× 3 orthogonal matrices can be found in Exercises and .

Lemma 5.22. An orthogonal matrix has determinant detQ = ±1.

Proof : Taking the determinant of (5.30) gives

1 = det I = det(QTQ) = detQT detQ = (detQ)2,

which immediately proves the lemma. Q.E.D.

An orthogonal matrix is called proper if it has determinant +1. Geometrically, the
columns of a proper orthogonal matrices form a right-handed basis of Rn, as defined in
Exercise . An improper orthogonal matrix, with determinant −1, corresponds to a left-
handed basis that lives in a mirror image world.

Proposition 5.23. The product of two orthogonal matrices is also orthogonal.

Proof : If QT
1 Q1 = I = QT

2 Q2, then (Q1 Q2)
T (Q1 Q2) = QT

2 QT
1 Q1 Q2 = QT

2 Q2 = I ,
and so Q1 Q2 is also orthogonal. Q.E.D.

This property says that the set of all orthogonal matrices forms a group†, known as
the orthogonal group. The orthogonal group lies at the foundation of everyday Euclidean
geometry.

† The precise mathematical definition of a group can be found in Exercise . Although they
will not play a significant role in this text, groups are the mathematical formalization of symme-
try and, as such, form one of the most fundamental concepts in advanced mathematics and its
applications, particularly quantum mechanics and modern theoretical physics. Indeed, according
to the mathematician Felix Klein, cf. [152], all geometry is based on group theory.

1/12/04 165 c© 2003 Peter J. Olver



The QR Factorization

The Gram–Schmidt procedure for orthonormalizing bases of Rn can be reinterpreted
as a matrix factorization. This is more subtle than the LU factorization that resulted
from Gaussian elimination, but is of comparable importance, and is used in a broad range
of applications in mathematics, physics, engineering and numerical analysis.

Let w1, . . . ,wn be a basis of Rn, and let u1, . . . ,un be the corresponding orthonormal
basis that results from any one of the three implementations of the Gram–Schmidt process.
We assemble both sets of column vectors to form nonsingular n× n matrices

A = (w1 w2 . . . wn ), Q = (u1 u2 . . . un ).

Since the ui form an orthonormal basis, Q is an orthogonal matrix. In view of the matrix
multiplication formula (2.14), the Gram–Schmidt equations (5.24) can be recast into an
equivalent matrix form:

A = QR, where R =




r11 r12 . . . r1n

0 r22 . . . r2n
...

...
. . .

...
0 0 . . . rnn


 (5.33)

is an upper triangular matrix, whose entries are the previously computed coefficients
(5.27), (5.28). Since the Gram–Schmidt process works on any basis, the only require-
ment on the matrix A is that its columns form a basis of Rn, and hence A can be any
nonsingular matrix. We have therefore established the celebrated QR factorization of
nonsingular matrices.

Theorem 5.24. Any nonsingular matrix A can be factorized, A = QR, into the

product of an orthogonal matrix Q and an upper triangular matrix R. The factorization

is unique if all the diagonal entries of R are assumed to be positive.

The proof of uniqueness is left to Exercise .

Example 5.25. The columns of the matrix A =



1 1 2
1 0 −2
−1 2 3


 are the same as

the basis vectors considered in Example 5.16. The orthonormal basis (5.22) constructed
using the Gram–Schmidt algorithm leads to the orthogonal and upper triangular matrices

Q =




1√
3

4√
42

2√
14

1√
3

1√
42

−
3√
14

−
1√
3

5√
42

−
1√
14


, R =




√
3 −

1√
3
−
√
3

0
√

14√
3

√
21√
2

0 0
√

7√
2


.

The reader may wish to verify that, indeed, A = QR.

While any of the three implementations of the Gram–Schmidt algorithm will produce
theQR factorization of a given matrix A = (w1 w2 . . . wn ), the stable version, as encoded
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QR Factorization of a Matrix A

start

for j = 1 to n

set rjj =
√

a2
1j + · · · + a2

nj

if rjj = 0, stop; print “A has linearly dependent columns”

else for i = 1 to n

set aij = aij/rjj

next i

for k = j + 1 to n

set rjk = a1j a1k + · · · + anj ank

for i = 1 to n

set aik = aik − aij rjk

next i

next k

next j

end

in equations (5.29), is the one to use in practical computations, as it is the least likely to
fail due to numerical artifacts arising from round-off errors. The accompanying pseudocode
program reformulates the algorithm purely in terms of the matrix entries aij of A. During
the course of the algorithm, the entries of the matrix A are successively overwritten; the
final result is the orthogonal matrix Q appearing in place of A. The entries rij of R must
be stored separately.

Example 5.26. Let us factorize the matrix

A =




2 1 0 0
1 2 1 0
0 1 2 1
0 0 1 2




using the numerically stable QR algorithm. As in the program, we work directly on the
matrix A, gradually changing it into orthogonal form. In the first loop, we set r11 =

√
5

to be the norm of the first column vector of A. We then normalize the first column

by dividing by r11; the resulting matrix is




2√
5
1 0 0

1√
5
2 1 0

0 1 2 1

0 0 1 2



. The next entries r12 =
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4√
5
, r13 =

1√
5
, r14 = 0, are obtained by taking the dot products of the first column

with the other three columns. For j = 1, 2, 3, we subtract r1j times the first column

from the jth column; the result




2√
5
−

3
5 −

2
5 0

1√
5

6
5

4
5 0

0 1 2 1

0 0 1 2



is a matrix whose first column is

normalized to have unit length, and whose second, third and fourth columns are orthogonal
to it. In the next loop, we normalize the second column by dividing by its norm r22 =

√
14√
5
, and so obtain the matrix




2√
5
−

3√
70

−
2
5 0

1√
5

6√
70

4
5 0

0 5√
70

2 1

0 0 1 2



. We then take dot products of

the second column with the remaining two columns to produce r23 =
16√
70
, r24 =

√
5√
14
.

Subtracting these multiples of the second column from the third and fourth columns, we

obtain




2√
5
−

3√
70

2
7

3
14

1√
5

6√
70

−
4
7 −

3
7

0 5√
70

6
7

9
14

0 0 1 2



, which now has its first two columns orthonormalized,

and orthogonal to the last two columns. We then normalize the third column by dividing

by r33 =
√

15√
7
, and so




2√
5
−

3√
70

2√
105

3
14

1√
5

6√
70

−
4√
105

−
3
7

0 5√
70

6√
105

9
14

0 0 7√
105

2



. Finally, we subtract r34 =

20√
105

times the third column from the fourth column. Dividing the resulting fourth column by

its norm r44 =
√

5√
6
results in the final formulas

Q =




2√
5
−

3√
70

2√
105

−
1√
30

1√
5

6√
70

−
4√
105

2√
30

0 5√
70

6√
105

−
3√
30

0 0 7√
105

4√
30




, R =




√
5 4√

5
1√
5

0

0
√

14√
5

16√
70

√
5√
14

0 0
√

15√
7

20√
105

0 0 0
√

5√
6




,

for the A = QR factorization.

The QR factorization can be used as an alternative to Gaussian elimination to solve
linear systems. Indeed, the system

Ax = b becomes QRx = b, and hence Rx = QT b, (5.34)

since Q−1 = QT is an orthogonal matrix. Since R is upper triangular, the latter system
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can be solved for x by back substitution. The resulting algorithm, while more expensive
to compute, does offer some numerical advantages over traditional Gaussian elimination
as it is less prone to inaccuracies resulting from ill-conditioned coefficient matrices.

Example 5.27. Let us apply the A = QR factorization



1 1 2
1 0 −2
−1 2 3


 =




1√
3

4√
42

2√
14

1√
3

1√
42

−
3√
14

−
1√
3

5√
42

−
1√
14







√
3 −

1√
3
−
√
3

0
√

14√
3

√
21√
2

0 0
√

7√
2


,

that we found in Example 5.25 to solve the linear system Ax = ( 0,−4, 5 )
T
. We first

compute

QTb =




1√
3

1√
3

−
1√
3

4√
42

1√
42

5√
42

2√
14

−
3√
14

−
1√
14






0

−4

5


 =




−3
√
3

√
21√
2√
7√
2


.

We then solve the upper triangular system

Rx =




√
3 −

1√
3
−
√
3

0
√

14√
3

√
21√
2

0 0
√

7√
2







x

y

z


 =




−3
√
3

√
21√
2√
7√
2




by back substitution, leading to the solution x = (−2, 0, 1 )
T
.

5.4. Orthogonal Polynomials.

Orthogonal and orthonormal bases play, if anything, an even more essential role in
the analysis on function spaces. Unlike the Euclidean space Rn, most obvious bases of
a (finite dimensional) function space are typically not orthogonal with respect to any
natural inner product. Thus, the computation of an orthonormal basis of functions is a
critical step towards simplifying the subsequent analysis. The Gram–Schmidt process can
be applied in the same manner, and leads to the classical orthogonal polynomials that
arise in approximation and interpolation theory. Other orthogonal systems of functions
play starring roles in Fourier analysis and its generalizations, in quantum mechanics, in
the solution of partial differential equations by separation of variables, and a host of other
applications.

In this section, we concentrate on orthogonal polynomials. Orthogonal systems of
trigonometric functions will appear in Chapters 12 and 13. Orthogonal systems of special
functions, including Bessel functions and spherical harmonics, are used in the solution to
linear partial differential equations in Chapters 17 and 18.

The Legendre Polynomials

We shall construct an orthonormal basis for the vector space P (n) consisting of all
polynomials of degree ≤ n. For definiteness the construction will be based on the particular
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L2 inner product

〈 p ; q 〉 =

∫ 1

−1

p(t) q(t) dt. (5.35)

The method will work for any other bounded interval, but choosing [−1, 1] will lead us to a
particularly important case. We shall apply the Gram–Schmidt orthogonalization process
to the elementary, but non-orthogonal monomial basis 1, t, t2, . . . tn. Because

〈 tk ; tl 〉 =

∫ 1

−1

tk+l dt =





2

k + l + 1
, k + l even,

0, k + l odd,
(5.36)

odd degree monomials are orthogonal to even degree monomials, but that is all. Let
q0(t), q1(t), . . . , qn(t) denote the orthogonal polynomials that result from applying the
Gram–Schmidt process to the non-orthogonal monomial basis 1, t, t2, . . . , tn. We begin
by setting

q0(t) = 1, ‖ q0 ‖
2 =

∫ 1

−1

q0(t)
2 dt = 2.

According to (5.18), the next orthogonal basis polynomial is

q1(t) = t −
〈 t ; q0 〉

‖ q0 ‖
2

q0(t) = t, ‖ q1 ‖
2 = 2

3 .

In general, the Gram–Schmidt formula (5.20) says we should define

qk(t) = tk −

k−1∑

j=0

〈 tk ; qj 〉

‖ qj ‖
2

qj(t) for k = 1, 2, . . . .

We can then recursively compute the next few polynomials

q2(t) = t2 − 1
3 , ‖ q2 ‖

2 = 8
45 ,

q3(t) = t3 − 3
5 t, ‖ q3 ‖

2 = 8
175 ,

q4(t) = t4 − 6
7 t2 + 3

35 , ‖ q4 ‖
2 = 128

11025 ,

(5.37)

and so on. The reader can verify that they satisfy the orthogonality conditions

〈 qi ; qj 〉 =

∫ 1

−1

qi(t) qj(t) dt = 0, i 6= j.

The resulting polynomials q0, q1, q2, . . . are known as the monic
† Legendre polynomials, in

honor of the 18th century French mathematician Adrien–Marie Legendre who used them
to study Newtonian gravitation. Since the first n of them, namely q0, . . . , qn−1 span the

† A polynomial is called monic if its leading coefficient is equal to 1.
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subspace P(n−1) of polynomials of degree ≤ n − 1, the next one, qn, is the unique monic
polynomial that is orthogonal to every polynomial of degree ≤ n− 1:

〈 tk ; qn 〉 = 0, k = 0, . . . , n− 1. (5.38)

Since the monic Legendre polynomials form a basis for the space of polynomials, one
can uniquely rewrite any polynomial of degree n as a linear combination:

p(t) = c0 q0(t) + c1 q1(t) + · · · + cn qn(t). (5.39)

In view of the general orthogonality formula (5.8), the coefficients are simply given by
inner products

ck =
〈 p ; qk 〉

‖ qk ‖
2
=

1

‖ qk ‖
2

∫ 1

−1

p(t) qk(t) dt, k = 0, . . . , n. (5.40)

For example,

t4 = q4(t) +
6
7 q2(t) +

1
5 q0(t) = (t

4
−

6
7 t2 + 3

35 ) +
6
7 (t

2
−

1
3 ) +

1
5 .

The coefficients can either be obtained directly, or via (5.40); for example,

c4 =
11025

128

∫ 1

−1

t4 q4(t) dt = 1, c3 =
175

8

∫ 1

−1

t4 q3(t) dt = 0.

The classical Legendre polynomials are certain scalar multiples, namely

Pk(t) =
(2k)!

2k (k!)2
qk(t), k = 0, 1, 2, . . . , (5.41)

of the orthogonal basis polynomials. The multiple is fixed by the requirement that

Pk(1) = 1, (5.42)

which is not so important here, but does play a role in other applications. The first few
classical Legendre polynomials are

P0(t) = 1, ‖P0 ‖
2 = 2,

P1(t) = t, ‖P1 ‖
2 = 2

3 ,

P2(t) =
3
2 t2 − 1

2 , ‖P2 ‖
2 = 2

5 ,

P3(t) =
5
2 t3 − 3

2 t, ‖P3 ‖
2 = 2

7 ,

P4(t) =
35
8 t4 − 15

4 t2 + 3
8 , ‖P4 ‖

2 = 2
9 ,

P5(t) =
63
8 t5 − 35

4 t3 + 15
8 t. ‖P5 ‖

2 = 2
11 ,

P6(t) =
231
16 t6 − 315

16 t4 + 105
16 t2 − 5

16 , ‖P6 ‖
2 = 2

13 ,

and are graphed in Figure 5.3. There is, in fact, an explicit formula for the Legendre poly-
nomials, due to the early nineteenth century Portuguese mathematician Olinde Rodrigues.
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Figure 5.3. The Legendre Polynomials P0(t), . . . , P5(t).

Theorem 5.28. The Rodrigues formula for the classical Legendre polynomials is

Pk(t) =
1

2k k!

dk

dtk
(t2 − 1)k, ‖Pk ‖ =

√
2

2k + 1
, k = 0, 1, 2, . . . . (5.43)

Thus, for example,

P4(t) =
1

16 · 4!

d4

dt4
(t2 − 1)4 =

1

384

d4

dt4
(t2 − 1)4 = 35

8 t4 − 15
4 t2 + 3

8 .

Proof : Let

Rj,k(t) =
dj

dtj
(t2 − 1)k, (5.44)

which is evidently a polynomial of degree 2k−j. In particular, the Rodrigues formula (5.43)
claims that Pk(t) is a multiple of Rk,k(t). Note that

d

dt
Rj,k(t) = Rj+1,k(t). (5.45)

Moreover,
Rj,k(1) = 0 = Rj,k(−1) whenever j < k, (5.46)

since, by the product rule, differentiating (t2 − 1)k a total of j < k times still leaves at
least one factor of t2 − 1 in each summand, which therefore vanishes at t = ±1.

Lemma 5.29. If j ≤ k, then the polynomial Rj,k(t) is orthogonal to all polynomials
of degree ≤ j − 1.
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Proof : In other words,

〈 ti ;Rj,k 〉 =

∫ 1

−1

ti Rj,k(t) dt = 0, for all 0 ≤ i < j ≤ k. (5.47)

Since j > 0, we use (5.45) to write Rj,k(t) = R ′
j−1,k(t). Integrating by parts,

〈 ti ;Rj,k 〉 =

∫ 1

−1

ti R ′
j−1,k(t) dt

= iti Rj−1,k(t)
∣∣∣
1

t=−1
− i

∫ 1

−1

ti−1 Rj−1,k(t) dt = − i 〈 ti−1 ;Rj−1,k 〉,

where the boundary terms vanish owing to (5.46). We then repeat the process, and even-
tually

〈 ti ;Rj,k 〉 = − i 〈 ti−1 ;Rj−1,k 〉

= i(i− 1) 〈 ti−2 ;Rj−2,k 〉 = · · · = (−1)i i(i− 1) · · · 3 · 2 〈 1 ;Rj−i,k 〉

= (−1)i i !

∫ 1

−1

Rj−i,k(t) dt = (−1)i i ! Rj−i−1,k(t)
∣∣∣
1

t=−1
= 0,

by (5.46), and since j > i. Q.E.D.

In particular, Rk,k(t) is a polynomial of degree k which is orthogonal to every polyno-
mial of degree ≤ k − 1. By our earlier remarks, this implies that it is a constant multiple,

Rk,k(t) = ckPk(t)

of the kth Legendre polynomial. To determine ck, we need only compare the leading terms:

Rk,k(t) =
dk

dtk
(t2−1)k =

dk

dtk
(t2k+ · · · ) =

(2k)!

(k!)2
tk+ · · · , while Pk(t) =

(2k)!

2k k!
t2k+ · · · .

We conclude that ck = 2
k k!, which proves (5.43). The proof of the formula for ‖Pk ‖ can

be found in Exercise . Q.E.D.

The Legendre polynomials play an important role in many aspects of applied mathe-
matics, including numerical analysis, least squares approximation of functions, and solution
of partial differential equations.

Other Systems of Orthogonal Polynomials

The standard Legendre polynomials form an orthogonal system with respect to the L2

inner product on the interval [−1, 1]. Dealing with any other interval, or, more generally,
a weighted inner product between functions on an interval, leads to a different, suitably
adapted collection of orthogonal polynomials. In all cases, applying the Gram–Schmidt
process to the standard monomials 1, t, t2, t3, . . . will produce the desired orthogonal sys-
tem.
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Example 5.30. In this example, we construct orthogonal polynomials for the weighted
inner product

〈 f ; g 〉 =

∫ ∞

0

f(t) g(t) e− t dt (5.48)

on the interval [0,∞). A straightforward integration by parts proves that

∫ ∞

0

tk e− t dt = k!, and hence 〈 ti ; tj 〉 = (i+ j)! ‖ ti ‖2 = (2 i)! (5.49)

We apply the Gram–Schmidt process to construct a system of orthogonal polynomials for
this inner product. The first few are

q0(t) = 1, ‖ q0 ‖
2 = 1,

q1(t) = t −
〈 t ; q0 〉

‖ q0 ‖
2

q0(t) = t− 1, ‖ q1 ‖
2 = 1,

q2(t) = t2 −
〈 t2 ; q0 〉

‖ q0 ‖
2

q0(t) −
〈 t2 ; q1 〉

‖ q1 ‖
2

q1(t) = t2 − 4 t+ 2, ‖ q2 ‖
2 = 4 ,

q3(t) = t3 − 9 t2 + 18 t− 6, ‖ q3 ‖
2 = 36 .

The resulting orthogonal polynomials are known as the (monic) Laguerre polynomials,
named after the nineteenth century French mathematician Edmond Laguerre.

In some cases, a change of variables may be used to relate systems of orthogonal poly-
nomials and thereby circumvent the Gram–Schmidt computation. Suppose, for instance,
that our goal is to construct an orthogonal system of polynomials for the L2 inner product

〈〈 f ; g 〉〉 =

∫ b

a

f(t) g(t) dt on the interval [a, b ]. The key remark is that we can map the

interval [−1, 1] to [a, b ] by a simple linear change of variables of the form s = α + β t.
Specifically,

s =
2 t− b− a

b− a
will change a ≤ t ≤ b to − 1 ≤ s ≤ 1. (5.50)

The map changes functions F (s), G(s), defined for −1 ≤ s ≤ 1, into the functions

f(t) = F

(
2 t− b− a

b− a

)
, g(t) = G

(
2 t− b− a

b− a

)
, (5.51)

defined for a ≤ t ≤ b. Moreover, interpreting (5.50) as a change of variables for the

integrals, we have ds =
2

b− a
dt, and so the inner products are related by

〈 f ; g 〉 =

∫ b

a

f(t) g(t) dt =

∫ b

a

F

(
2 t− b− a

b− a

)
G

(
2 t− b− a

b− a

)
dt

=

∫ 1

−1

F (s)G(s)
b− a

2
ds =

b− a

2
〈F ;G 〉,

(5.52)
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where the final L2 inner product is over the interval [−1, 1]. In particular, the change of
variables maintains orthogonality, while rescaling the norms:

〈 f ; g 〉 = 0 if and only if 〈F ;G 〉 = 0, ‖ f ‖ =

√
b− a

2
‖F ‖. (5.53)

Moreover, if F (s) is a polynomial of degree n in s, then f(t) is a polynomial of degree n in t

and vice versa. Applying these observations to the Legendre polynomials, we immediately
deduce the following.

Proposition 5.31. The transformed Legendre polynomials

P̃ k(t) = Pk

(
2 t− b− a

b− a

)
, k = 0, 1, 2, . . . , ‖ P̃ k ‖ =

√
b− a

2k + 1
, (5.54)

form an orthogonal system of polynomials with respect to the L2 inner product on the

interval [a, b ].

Example 5.32. As an example, consider the L2 inner product 〈〈 f ; g 〉〉 =

∫ 1

0

f(t) g(t) dt

on the interval [0, 1]. The map s = 2 t− 1 will change 0 ≤ t ≤ 1 to −1 ≤ s ≤ 1. According
to Proposition 5.31, this change of variables will convert the Legendre polynomials Pk(s)
into an orthogonal system of polynomials

P̃ k(t) = Pk(2 t− 1), with corresponding L2 norms ‖ P̃ k ‖ =

√
1

2k + 1
.

on the interval [0, 1]. The first few are

P̃ 0(t) = 1,

P̃ 1(t) = 2 t− 1,

P̃ 2(t) = 6 t
2
− 6 t+ 1,

P̃ 3(t) = 20 t
3
− 30 t2 + 12 t− 1,

P̃ 4(t) = 70 t
4
− 140 t3 + 90 t2 − 20 t+ 1,

P̃ 5(t) =
63
8 t5 − 35

4 t3 + 15
8 t.

(5.55)

One can, as an alternative, derive these formulae through a direct application of the Gram–
Schmidt process.

5.5. Orthogonal Projections and Least Squares.

In Chapter 4, we introduced, solved and learned the significance of the problem of
finding the point on a prescribed subspace that lies closest to a given point. In this
section, we shall discover an important geometrical interpretation of our solution: the
closest point is the orthogonal projection of the point onto the subspace. Furthermore,
if we adopt an orthogonal, or, even better, orthonormal basis for the subspace, then the
closest point can be constructed through a very elegant, explicit formula. In this manner,
orthogonality allows us to effectively bypass the normal equations and solution formulae
that were so laboriously computed in Chapter 4. The resulting orthogonal projection
formulae have important practical consequences for the solution of a wide range of least
squares minimization problems.
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Figure 5.4. The Orthogonal Projection of a Vector onto a Subspace.

Orthogonal Projection

We begin by characterizing the orthogonal projection of a vector onto a subspace.
Throughout this section, we will consider a prescribed finite-dimensional subspace W ⊂ V

of a real inner product space V . While the subspace is necessarily finite-dimensional, the
inner product space itself may be infinite-dimensional. Initially, though, you may wish to
concentrate on V = Rm with the ordinary Euclidean dot product, which is the easiest case
to visualize as it coincides with our geometric intuition, as in Figure 5.4.

A vector z ∈ V is said to be orthogonal to the subspace W if it is orthogonal to every
vector in W , so 〈 z ;w 〉 = 0 for all w ∈W . Given a basis w1, . . . ,wn for W , we note that
z is orthogonal to W if and only if it is orthogonal to every basis vector: 〈 z ;wi 〉 = 0 for
i = 1, . . . , n. Indeed, any other vector in W has the form w = c1w1 + · · · + cnwn and
hence, by linearity, 〈 z ;w 〉 = c1 〈 z ;w1 〉+ · · ·+ cn 〈 z ;wn 〉 = 0, as required.

Definition 5.33. The orthogonal projection of v onto the subspaceW is the element
w ∈ W that makes the difference z = v −w orthogonal to W .

As we shall see, the orthogonal projection is unique. The explicit construction is
greatly simplified by taking a orthonormal basis of the subspace, which, if necessary, can be
arranged by applying the Gram–Schmidt process to a known basis. (A direct construction
of the orthogonal projection in terms of a general basis appears in Exercise .)

Theorem 5.34. Let u1, . . . ,un be an orthonormal basis for the subspace W ⊂ V .

Then the orthogonal projection of a vector v ∈ V onto W is

w = c1u1 + · · · + cnun where ci = 〈v ;ui 〉, i = 1, . . . , n. (5.56)

Proof : First, since u1, . . . ,un form a basis of the subspace, the orthogonal projection
element w = c1u1 + · · ·+ cnun must be some linear combination thereof. Definition 5.33
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requires that the difference z = v−w be orthogonal toW . It suffices to check orthogonality
to the basis vectors of W . By our orthonormality assumption, for each 1 ≤ i ≤ n,

0 = 〈 z ;ui 〉 = 〈v ;ui 〉 − 〈w ;ui 〉 = 〈v ;ui 〉 − 〈 c1u1 + · · ·+ cnun ;ui 〉

= 〈v ;ui 〉 − c1 〈u1 ;ui 〉 − · · · − cn 〈un ;ui 〉 = 〈v ;ui 〉 − ci.

We deduce that the coefficients ci = 〈v ;ui 〉 of the orthogonal projection w are uniquely
prescribed by the orthogonality requirement. Q.E.D.

More generally, if we employ an orthogonal basis v1, . . . ,vn for the subspace W , then
the same argument demonstrates that the orthogonal projection of v onto W is given by

w = a1v1 + · · · + anvn, where ai =
〈v ;vi 〉

‖vi ‖
2

, i = 1, . . . , n. (5.57)

Of course, we could equally well replace the orthogonal basis by the orthonormal basis
obtained by dividing each vector by its length: ui = vi/‖vi ‖. The reader should be able
to prove that the two formulae (5.56), (5.57) for the orthogonal projection yield the same
vector w.

Example 5.35. Consider the plane W ⊂ R3 spanned by the orthogonal vectors

v1 =



1
−2
1


, v2 =



1
1
1


.

According to formula (5.57), the orthogonal projection of v = ( 1, 0, 0 )
T
onto W is

w =
〈v ;v1 〉

‖v1 ‖
2
v1 +

〈v ;v2 〉

‖v2 ‖
2
v2 =

1

6



1
−2
1


+ 1

3



1
1
1


 =




1
2
0
1
2


.

Alternatively, we can replace v1,v2 by the orthonormal basis

u1 =
v1

‖v1 ‖
=




1√
6

−
2√
6

1√
6


, u2 =

v2

‖v2 ‖
=




1√
3

1√
3

1√
3


.

Then, using the orthonormal version (5.56),

w = 〈v ;u1 〉 u1 + 〈v ;u2 〉 u2 =
1
√
6




1√
6

−
2√
6

1√
6


+

1
√
3




1√
3

1√
3

1√
3


 =




1
2

0
1
2


.

The answer is, of course, the same. As the reader may notice, while the theoretical formula
is simpler when written in an orthonormal basis, for hand computations the orthogonal ba-
sis version avoids dealing with square roots. (Of course, when performing the computation
on a computer, this is not a significant issue.)
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An intriguing observation is that the coefficients in the orthogonal projection formulae
(5.56) and (5.57) coincide with the formulae (5.5), (5.8) for writing a vector in terms of an
orthonormal or orthogonal basis. Indeed, if v were an element ofW , then it would coincide
with its orthogonal projection, w = v (why?). As a result, the orthogonal projection
formulae include the orthogonal basis formulae as a special case.

It is also worth noting that the same formulae occur in the Gram–Schmidt algorithm,
(5.19). This observation leads to a useful geometric interpretation for the Gram–Schmidt
construction. For each k = 1, . . . , n, let

Vk = span {w1, . . . ,wk} = span {v1, . . . ,vk} = span {u1, . . . ,uk} (5.58)

denote the k-dimensional subspace spanned by the first k basis elements. The basic Gram–
Schmidt formula (5.20) can be rewritten in the form vk = wk−yk, where yk is the orthog-
onal projection of wk onto the subspace Vk−1. The resulting vector vk is, by construction,
orthogonal to the subspace, and hence orthogonal to all of the previous basis elements,
which serves to rejustify the Gram–Schmidt construction.

Orthogonal Least Squares

Now we make an important connection: The orthogonal projection of a vector onto a
subspace is also the least squares vector — the closest point in the subspace!

Theorem 5.36. Let W ⊂ V be a finite-dimensional subspace of an inner product

space. Given a vector v ∈ V , the closest point or least squares minimizer w ∈ W is the

same as the orthogonal projection of v onto W .

Proof : Letw ∈W be the orthogonal projection of v onto the subspace, which requires
that the difference z = v−w be orthogonal to W . Suppose w̃ ∈ W is any other vector in
the subspace. Then,

‖v − w̃ ‖2 = ‖w + z− w̃ ‖2 = ‖w − w̃ ‖2 + 2 〈w − w̃ ; z 〉+ ‖ z ‖2 = ‖w − w̃ ‖2 + ‖ z ‖2.

The inner product term 〈w − w̃ ; z 〉 = 0 vanishes because z is orthogonal to every vector
in W , including w− w̃. Since z = v−w is uniquely prescribed by the vector v, the second
term ‖ z ‖2 does not change with the choice of the point w̃ ∈ W . Therefore, ‖v − w̃ ‖2

will be minimized if and only if ‖w − w̃ ‖2 is minimized. Since w̃ ∈ W is allowed to be
any element of the subspace W , the minimal value ‖w − w̃ ‖2 = 0 occurs when w̃ = w.
Thus, the closest point w̃ coincides with the orthogonal projection w. Q.E.D.

In particular, if we are supplied with an orthonormal or orthogonal basis of our sub-
space, then we can compute the closest least squares pointw ∈ W to v using our orthogonal
projection formulae (5.56) or (5.57). In this way, orthogonal bases have a very dramatic
simplifying effect on the least squares approximation formulae. They completely avoid the
construction of and solution to the much more complicated normal equations.

Example 5.37. Consider the least squares problem of finding the closest point w to
the vector v = ( 1, 2, 2, 1 )

T
in the three-dimensional subspace spanned by the orthogonal†

† We use the ordinary Euclidean norm on R4 throughout this example.
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vectors v1 = ( 1,−1, 2, 0 )
T

, v2 = ( 0, 2, 1,−2 )
T

, v3 = ( 1, 1, 0, 1 )
T

. Since the spanning
vectors are orthogonal (but not orthonormal), we can use the orthogonal projection for-
mula (5.57) to find the linear combination w = a1v1 + a2v2 + a3v3. Thus,

a1 =
〈v ;v1 〉

‖v1 ‖
2
=
3

6
=
1

2
, a2 =

〈v ;v2 〉

‖v2 ‖
2
=
4

9
, a3 =

〈v ;v3 〉

‖v3 ‖
2
=
4

3
,

and so w = 1
2 v1+

4
9 v2+

4
3 v3 =

(
11
6 , 31

18 , 13
9 , 4

9

)T
is the closest point to v in the subspace.

Even when we only know a non-orthogonal basis for the subspace, it may still be a
good strategy to first use Gram–Schmidt to replace it by an orthogonal or even orthonormal
basis, and then apply the orthogonal projection formulae (5.56), (5.57) to calculate the
least squares point. Not only does this simplify the final computation, it will often avoid
the ill-conditioning and numerical inaccuracies that sometimes afflict the direct solution to
the normal equations (4.26). The following example illustrates this alternative procedure.

Example 5.38. Let us return to the problem, solved in Example 4.6, of finding the
closest point on plane V spanned by w1 = ( 1, 2,−1 )

T
, w2 = ( 2,−3,−1 )

T
to the point

b = ( 1, 0, 0 )
T
. We proceed now by first using the Gram–Schmidt process to compute an

orthogonal basis

v1 = w1 =



1
2
−1


, v2 = w2 −

w2 · v1

‖v1 ‖
2
w1 =




5
2

−2

−
3
2


,

for our subspace. Therefore, applying the orthogonal projection formula (5.57), the closest
point is

v? =
b · v1

‖v1 ‖
2
v1 +

b · v2

‖v2 ‖
2
v2 =




2
3

−
1
15

−
7
15


,

reconfirming our earlier result. By this device, we have managed to circumvent the tedious
solving of linear equations.

Let us revisit the problem, described in Section 4.4, of approximating experimental
data by a least squares minimization procedure. The required calculations are significantly
simplified by the introduction of an orthogonal basis of the least squares subspace. Given
sample points t1, . . . , tm, let

tk =
(
tk1 , tk2 , . . . , tkm

)T
, k = 0, 1, 2, . . .

be the vectors obtained by sampling the monomial tk. More generally, sampling a polyno-
mial

y = p(t) = α0 + α1 t+ · · · + αn tn (5.59)

results in the self-same linear combination

p = ( p(t1), . . . , p(tn) )
T
= α0 t0 + α1 t1 + · · · + αn tn (5.60)
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of monomial sample vectors. We conclude that the sampled polynomial vectors form a
subspace W = span

{
t0, . . . , tn

}
⊂ Rm spanned by the monomial sample vectors.

Let y = ( y1, y2, . . . , ym )
T
denote data measured at the sample points. The polyno-

mial least squares approximation to the given data is, by definition, the polynomial y = p(t)
whose corresponding sample vector p ∈ W is the closest point or, equivalently, the orthog-
onal projection of the data vector y onto the subspace W . The sample vectors t0, . . . , tn
are not orthogonal, and so the direct approach requires solving the normal equations (4.33)
in order to find the desired polynomial least squares coefficients α0, . . . , αn.

An alternative method is to first use the Gram–Schmidt procedure to construct an
orthogonal basis for the subspace W , from which the least squares coefficients are found
by simply taking appropriate inner products. Let us adopt the rescaled version

〈v ;w 〉 =
1

m

m∑

i=1

viwi = v w (5.61)

of the standard dot product† on Rm. If v,w represent the sample vectors corresponding
to the functions v(t), w(t), then their inner product 〈v ;w 〉 is equal to the average value
of the product function v(t)w(t) on the m sample points. In particular, the inner product
between our “monomial” basis vectors corresponding to sampling tk and tl is

〈 tk ; tl 〉 =
1

m

m∑

i=1

tki tli =
1

m

m∑

i=1

tk+li = tk+l, (5.62)

which is the averaged sample value of the monomial tk+l.

To keep the formulae reasonably simple, let us further assume‡ that the sample points
are evenly spaced and symmetric about 0. The second requirement means that if ti is a
sample point, so is − ti. An example would be the seven sample points −3,−2,−1, 0, 1, 2, 3.
As a consequence of these two assumptions, the averaged sample values of the odd powers
of t vanish: t2i+1 = 0. Hence, by (5.62), the sample vectors tk and tl are orthogonal
whenever k + l is odd.

Applying the Gram–Schmidt algorithm to t0, t1, t2, . . . produces the orthogonal basis

vectors q0,q1,q2, . . . . Each qk = ( qk(t1), . . . , qk(tm) )
T
can be interpreted as the sample

vector for a certain interpolating polynomial qk(t) of degree k. The first few polynomials
qk(t), their corresponding orthogonal sample vectors, along with their squared norms,

† For weighted least squares, we would adopt an appropriately weighted inner product.

‡ The method works without these particular assumptions, but the formulas become more
unwieldy; see Exercise .
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Figure 5.5. Least Squares Data Approximations.

‖qk ‖
2 = qk(t)

2, follow:

q0(t) = 1, q0 = t0, ‖q0‖
2 = 1,

q1(t) = t, q1 = t1, ‖q1‖
2 = t2,

q2(t) = t2 − t2 , q2 = t2 − t2 t0, ‖q2‖
2 = t4 −

(
t2
)2

,

q3(t) = t3 −
t4

t2
t , q3 = t3 −

t4

t2
t1, ‖q3‖

2 = t6 −

(
t4
)2

t2
.

(5.63)

With these in hand, the least squares approximating polynomial of degree n to the
given data vector y is given by a linear combination

p(t) = a0 q0(t) + a1 q1(t) + a2 q2(t) + · · · + an qn(t). (5.64)

The required coefficients are obtained directly through the orthogonality formulae (5.57),
and so

ak =
〈qk ;y 〉

‖qk‖
2
=

qk y

q2
k

. (5.65)

An additional advantage of the orthogonal basis approach, beyond the fact that one
can write down explicit formulas for the coefficients, is that the same coefficients aj appear
in all the least squares formulae, and hence one can readily increase the degree, and,
presumably, the accuracy, of the approximating polynomial without having to recompute
any of the lower degree terms. For instance, if a quadratic approximant a0 + a1 q1(t) +
a2 q2(t) looks insufficiently close, one can add in the cubic term a3 q3(t) with a3 given
by (5.65) for k = 3, without having to recompute the quadratic coefficients a0, a1, a2.
This simplification is not valid when using the non-orthogonal basis elements, where the
lower order coefficients will change whenever the degree of the approximating polynomial
is increased.

.

Example 5.39. Consider the following tabulated sample values:

ti −3 −2 −1 0 1 2 3

yi −1.4 −1.3 −.6 .1 .9 1.8 2.9
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To compute polynomial least squares fits of degrees 1, 2 and 3, we begin by computing the
polynomials (5.63), which for the given sample points ti are

q0(t) = 1, q1(t) = t, q2(t) = t2 − 4, q3(t) = t3 − 7 t ,

‖q0‖
2 = 1, ‖q1‖

2 = 4, ‖q2‖
2 = 12, ‖q3‖

2 = 216
7 .

Thus, to four decimal places, the coefficients for the least squares approximation (5.64) are

a0 = 〈q0 ;y 〉 = 0.3429, a1 =
1
4 〈q1 ;y 〉 = 0.7357,

a2 =
1
12 〈q2 ;y 〉 = 0.0738, a3 =

7
216 〈q3 ;y 〉 = −0.0083.

To obtain the best linear approximation, we use

p1(t) = a0 q0(t) + a1 q1(t) = 0.3429 + 0.7357 t,

with a least squares error of 0.7081. Similarly, the quadratic and cubic least squares
approximations are

p2(t) = 0.3429 + 0.7357 t+ 0.0738 (t2 − 4),

p3(t) = 0.3429 + 0.7357 t+ 0.0738 (t2 − 4)− 0.0083 (t3 − 7 t),

with respective least squares errors 0.2093 and 0.1697 at the sample points. A plot of the
three approximations appears in Figure 5.5. The cubic term does not significantly increase
the accuracy of the approximation, and so this data probably comes from sampling a
quadratic function.

Orthogonal Polynomials and Least Squares

In a similar fashion, the orthogonality of Legendre polynomials and more general
orthogonal functions serves to simplify the construction of least squares approximants
in function space. As an example, let us reconsider the problem, from Chapter 4, of
approximating et by a polynomial of degree n. For the interval −1 ≤ t ≤ 1, we write the
best least squares approximant as a linear combination of Legendre polynomials,

p(t) = a0 P0(t) + a1 P1(t) + · · · + anPn(t) = a0 + a1 t+ a2

(
3
2 t2 − 1

2

)
+ · · · . (5.66)

Since the Legendre polynomials form an orthogonal basis, the least squares coefficients can
be immediately computed by the inner product formula (5.57), so

ak =
〈 et ;Pk 〉

‖Pk ‖
2
=
2k + 1

2

∫ 1

−1

et Pk(t) dt.

For example, the quadratic approximant is obtained from the first three terms in (5.66),
where

a0 =
1

2

∫ 1

−1

et dt =
1

2

(
e−

1

e

)
' 1.175201, a1 =

3

2

∫ 1

−1

tet dt =
3

e
' 1.103638,

a2 =
5

2

∫ 1

−1

(
3
2 t2 − 1

2

)
et dt =

5

2

(
e−

7

e

)
' .357814.
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Figure 5.6. Quadratic Least Squares Approximation to et.

Therefore

et ≈ 1.175201 + 1.103638 t+ .357814
(

3
2 t2 − 1

2

)
(5.67)

gives the quadratic least squares approximation to et on [−1, 1]. Graphs appear in
Figure 5.6; the first graph shows et, the second the quadratic approximant (5.67), and
the third lays the two graphs on top of each other.

As in the discrete case, there are two major advantages of the orthogonal Legendre
approach over the direct approach presented in Example 4.21. First, we do not need
to solve any linear systems of equations. Indeed, the coefficient matrix for polynomial
least squares approximation based on the monomial basis is some variant of the notori-
ously ill-conditioned Hilbert matrix, (1.67), and the computation of an accurate solution
is particularly tricky. Our precomputation of an orthogonal system of polynomials has
successfully circumvented the dangerous Hilbert matrix system.

The second advantage was already mentioned in the preceding subsection. Unlike the
direct approach, the coefficients ak do not change if we desire to go to higher accuracy by
increasing the degree of the approximating polynomial. For instance, in the first case, if the
quadratic approximation (5.67) is not accurate enough, we can add in a cubic correction
a3 P3(t) = a3

(
5
2 t3 − 3

2 t
)
, where we compute the required coefficient by

a3 =
7

2

∫ 1

−1

(
5
2 t3 − 3

2 t
)
et dt =

7

2

(
37e−

5

e

)
' .070456.

We do not need to recompute the coefficients a0, a1, a2. The successive Legendre polyno-
mial coefficients decrease fairly rapidly:

a0 ' 1.175201, a1 ' 1.103638, a2 ' .357814, a3 ' .070456,

a4 ' .009965, a5 ' .001100, a6 ' .000099,

leading to greater and greater accuracy in the least squares approximation. An explanation
will appear in Chapter 12.

If we switch to another norm, then we need to construct an associated set of or-
thogonal polynomials to apply the method. For instance, the polynomial least squares
approximation of degree n to a function f(t) with respect to the L2 norm on [0, 1] has

the form a0+ a1 P̃ 1(t) + a2 P̃ 2(t) + · · · + an P̃n(t), where P̃ 1(t) are the rescaled Legendre
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polynomials (5.55), and, by orthogonality,

ak =
〈 f ; P̃ k 〉

‖ P̃ k ‖
2
= (2k + 1)

∫ 1

0

f(t) P̃ k(t) dt.

For the particular function et, we find

a0 =

∫ 1

0

et dt = e− 1 ' 1.718282, a1 = 3

∫ 1

0

(2 t− 1)et dt = 3(3− e) ' .845155,

a2 = 5

∫ 1

0

(6 t2 − 6 t+ 1)et dt = 5(7e− 19) ' .139864.

Thus, the best quadratic least squares approximation is

p?2(t) = 1.718282 + .845155 (2 t− 1) + .139864 (6 t2 − 6 t+ 1)

= 1.012991 + .851125 t+ .839184 t2.

It is worth emphasizing that this is the same approximating polynomial as we computed
in (4.60). The use of an orthogonal system of polynomials merely streamlines the compu-
tation.

5.6. Orthogonal Subspaces.

We now extend the notion of orthogonality from individual elements to subspaces of
an inner product space V .

Definition 5.40. Two subspaces W,Z ⊂ V are called orthogonal if every vector in
W is orthogonal to every vector in Z.

In other words, W and Z are orthogonal subspaces if and only if 〈w ; z 〉 = 0 for every
w ∈ W, z ∈ Z. In practice, one only needs to check orthogonality of basis elements: If
w1, . . . ,wk is a basis for W and z1, . . . , zl a basis for Z, then W and Z are orthogonal if
and only if 〈wi ; zj 〉 = 0 for all i = 1, . . . , k and j = 1, . . . , l.

Example 5.41. The plane W ⊂ R3 defined by the equation 2x − y + 3z = 0 is
orthogonal, with respect to the dot product, to the line Z spanned by its normal vector
n = ( 2,−1, 3 )

T
. Indeed, every w = (x, y, z )

T
∈ W satisfies the orthogonality condition

w · n = 2x− y + 3z = 0, which is just the equation for the plane.

Example 5.42. Let W be the span of w1 = ( 1,−2, 0, 1 )
T

,w2 = ( 3, 1, 2, 1 )
T
, and

Z the span of z1 = ( 3, 2, 0, 1 )
T

, z2 = ( 1, 0,−1,−1 )
T
. Then all wi · zj = 0, and hence W

and Z are orthogonal subspaces of R4 under the Euclidean dot product.

Definition 5.43. The orthogonal complement to a subspace W ⊂ V , denoted W⊥,
is defined as the set of all vectors which are orthogonal to W , so

W⊥ = { v ∈ V | 〈v ;w 〉 = 0 for all w ∈ W } . (5.68)
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Figure 5.7. Orthogonal Complement to a Line.

One easily checks that the orthogonal complement W⊥ to a subspace W ⊂ V is also
a subspace. Moreover, W ∩W⊥ = {0}. (Why?) Note that the orthogonal complement to
a subspace will depend upon which inner product is being used. In the remainder of the
chapter, we will concentrate exclusively on the Euclidean inner product.

Example 5.44. Let W = { ( t, 2 t, 3 t )
T
| t ∈ R } be the line (one-dimensional sub-

space) in the direction of the vector w1 = ( 1, 2, 3 )
T
∈ R3. The orthogonal complement

W⊥ will be the plane passing through the origin having normal vector w1, as sketched in

Figure 5.7. In other words, z = (x, y, z )
T
∈ W⊥ if and only if

z ·w1 = x+ 2y + 3z = 0. (5.69)

ThusW⊥ is characterized as the solution space to the homogeneous linear equation (5.69),
or, equivalently, the kernel of the 1 × 3 matrix A = wT

1 = ( 1 2 3 ). We can write the
general solution to the equation in the form

z =



−2y − 3z

y

z


 = y



−2
1
0


+ z



−3
0
1


 = y z1 + z z2,

where y, z are the free variables. The indicated solution vectors z1 = (−2, 1, 0 )
T
, z2 =

(−3, 0, 1 )
T
, form a (non-orthogonal) basis for the orthogonal complement W⊥.

Proposition 5.45. Suppose thatW ⊂ V is a finite-dimensional subspace of an inner

product space. Then every vector v ∈ V can be uniquely decomposed into v = w + z

where w ∈W and z ∈W⊥.

Proof : We let w ∈ W be the orthogonal projection of v onto W . Then z = v − w

is, by definition, orthogonal to W and hence belongs to W⊥. Note that z can be viewed
as the orthogonal projection of v onto the complementary subspace W⊥. If we are given
two such decompositions, v = w + z = w̃ + z̃, then w − w̃ = z̃ − z. The left hand side
of this equation lies in W while the right hand side belongs to W⊥. But, as we already
noted, the only vector that belongs to both W and W⊥ is the zero vector. Thus, w = w̃

and z = z̃, which proves uniqueness. Q.E.D.
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As a direct consequence of Exercise , we conclude that a subspace and its orthogonal
complement have complementary dimensions:

Proposition 5.46. If dimW = m and dimV = n, then dimW⊥ = n−m.

Example 5.47. Return to the situation described in Example 5.44. Let us decom-
pose the vector v = ( 1, 0, 0 )

T
∈ R3 into a sum v = w+z of a vector w lying in the lineW

and a vector z belonging to its orthogonal plane W⊥, defined by (5.69). Each is obtained
by an orthogonal projection onto the subspace in question, but we only need to compute
one of the two directly since the second can be obtained by subtracting from v.

Orthogonal projection onto a one-dimensional subspace is easy since any basis is,
trivially, an orthogonal basis. Thus, the projection of v onto the line spanned by w1 =

( 1, 2, 3 )
T
is w = ‖w1 ‖

−2
〈v ;w1 〉w1 =

(
1
14 , 2

14 , 3
14

)T
. The component in W⊥ is then

obtained by subtraction: z = v −w =
(

13
14 ,− 2

14 ,− 3
14

)T
. Alternatively, one can obtain z

directly by orthogonal projection onto the plane W⊥. You need to be careful: the basis
derived in Example 5.44 is not orthogonal, and so you will need to set up and solve the
normal equations to find the closest point z. Or, you can first convert the basis into an
orthogonal basis by a single Gram–Schmidt step, and then use the orthogonal projection
formula (5.57). All three methods lead to the same vector z ∈ W⊥.

Example 5.48. Let W ⊂ R4 be the two-dimensional subspace spanned by the
orthogonal vectors w1 = ( 1, 1, 0, 1 )

T
and w2 = ( 1, 1, 1,−2 )

T
. Its orthogonal complement

W⊥ (with respect to the Euclidean dot product) is the set of all vectors v = (x, y, z, w )
T

that satisfy the linear system

v ·w1 = x+ y + w = 0, v ·w2 = x+ y + z − 2w = 0.

Applying the usual algorithm — the free variables are y and w — we find that the solution
space is spanned by z1 = (−1, 1, 0, 0 )

T
, z2 = (−1, 0, 3, 1 )

T
, which form a non-orthogonal

basis for W⊥.

The orthogonal basis y1 = z1 = (−1, 1, 0, 0 )
T
and y2 = z2 −

1
2 z1 =

(
−

1
2 ,− 1

2 , 3, 1
)T

for W⊥ is obtained by a single Gram–Schmidt step. To decompose the vector v =
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( 1, 0, 0, 0 )
T
= w+z, say, we compute the two orthogonal projections: w = 1

3 w1+
1
7 w2 =(

10
21 , 10

21 , 1
7 , 1

21

)T
∈ W , and z = − 1

2 y1−
1
21 y2 =

(
11
21 ,− 10

21 ,− 1
7 ,− 1

21

)T
∈ W⊥. Or you can

easily obtain z = v −w by subtraction.

Proposition 5.49. If W is a finite-dimensional subspace of an inner product space,

then (W⊥)⊥ =W .

This result is an immediate corollary of the orthogonal decomposition Proposition 5.45.
Warning : Propositions 5.45 and 5.49 are not necessarily true for infinite-dimensional vec-
tor spaces. In general, if dimW =∞, one can only assert thatW ⊆ (W⊥)⊥. For example,
it can be shown that, [125], on any bounded interval [a, b ] the orthogonal complement to
the subspace of all polynomials P (∞)

⊂ C0[a, b ] with respect to the L2 inner product is
trivial: (P(∞))⊥ = {0}. This means that the only continuous function which satisfies the
moment equations

〈xn ; f(x) 〉 =

∫ b

a

xnf(x) dx = 0, for all n = 0, 1, 2, . . .

is the zero function f(x) ≡ 0. But the orthogonal complement of {0} is the entire space,
and so ((P(∞))⊥)⊥ = C0[a, b ]6= P(∞).

The difference is that, in infinite-dimensional function space, a proper subspaceW (V

can be dense†, whereas in finite dimensions, every proper subspace is a “thin” subset that
only occupies an infinitesimal fraction of the entire vector space. This seeming paradox
underlies the success of numerical methods, such as the finite element method, in approx-
imating functions by elements of a subspace.

Orthogonality of the Fundamental Matrix Subspaces and the Fredholm Alternative

In Chapter 2, we introduced the four fundamental subspaces associated with an m×n

matrix A. According to the fundamental Theorem 2.47, the first two, the kernel or null
space and the corange or row space, are subspaces of Rn having complementary dimensions.
The second two, the cokernel or left null space and the range or column space, are subspaces
of Rm, also of complementary dimensions. In fact, more than this is true — the subspace
pairs are orthogonal complements with respect to the standard Euclidean dot product!

Theorem 5.50. Let A be an m × n matrix of rank r. Then its kernel and corange

are orthogonal complements as subspaces of Rn, of respective dimensions n − r and r,

while its cokernel and range are orthogonal complements in Rm, of respective dimensions

m− r and r:

kerA = (corngA)⊥ ⊂ Rn, cokerA = (rngA)⊥ ⊂ Rm. (5.70)

Figure 5.9 illustrates the geometric configuration of (5.70).

† In general, a subset W ⊂ V of a normed vector space is dense if, for every v ∈ V , there
are elements w ∈ W that are arbitrarily close, ‖ v − w ‖ < ε for every ε > 0. The Weierstrass
approximation theorem, [126], tells us that the polynomials form a dense subspace of the space of
continuous functions, and underlies the proof of the result mentioned in the preceding paragraph.
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Figure 5.9. The Fundamental Matrix Subspaces.

Proof : A vector x ∈ Rn lies in kerA if and only if Ax = 0. According to the rules
of matrix multiplication, the ith entry of Ax equals the product of the ith row rTi of A

and x. But this product vanishes, rTi x = ri · x = 0, if and only if x is orthogonal to ri.
Therefore, x ∈ kerA if and only if x is orthogonal to all the rows of A. Since the rows
span corngA = rngAT , this is equivalent to the statement that x lies in the orthogonal
complement (corngA)⊥, which proves the first statement. The proof for the range and
cokernel follows from the same argument applied to the transposed matrix AT . Q.E.D.

Combining Theorems 2.47 and 5.50, we deduce the following important character-
ization of compatible linear systems, known as the Fredholm alternative. The Swedish
mathematician Ivar Fredholm’s main interest was in solving linear integral equations, but
his compatibility criterion is also applicable to linear matrix systems, as well as linear
differential equations, linear variational problems, and many other linear systems.

Theorem 5.51. The linear system Ax = b has a solution if and only if b is orthog-

onal to the cokernel of A.

Indeed, the linear system has a solution if and only if the right hand side b ∈ rngA

belongs to the range of A, which, by (5.70), requires that b be orthogonal to the cokernel
cokerA. Therefore, the compatibility conditions for the linear system Ax = b can be
written in the form

y · b = 0 for every y satisfying ATy = 0. (5.71)

Or, to state in another way, the vector b is a linear combination of the columns of A if
and only if it is orthogonal to every vector y in the cokernel of A. In practice, one only
needs to check orthogonality of b with respect to a basis y1, . . . ,ym−r of the cokernel,
leading to a system of m− r compatibility constraints, where r = rankA denotes the rank
of the coefficient matrix. We note that m − r is also the number of all zero rows in the
row echelon form of A, and hence yields precisely the same number of constraints on the
right hand side b.

Example 5.52. In Example 2.40, we analyzed the linear system Ax = b with

coefficient matrix A =



1 0 −1
0 1 −2
1 −2 3


. Using direct Gaussian elimination, we were led to
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a single compatibility condition, namely −b1+2b2+b3 = 0, required for the system to have
a solution. We now understand the meaning behind this equation: it is telling us that the
right hand side b must be orthogonal to the cokernel of A. The cokernel is determined by
solving the homogeneous adjoint system AT y = 0, and is the line spanned by the vector
y1 = (−1, 2, 1)

T . Thus, the compatibility condition requires that b be orthogonal to y1,
in accordance with the Fredholm Theorem 5.51.

Example 5.53. Let us determine the compatibility conditions for the linear system

x1 − x2 + 3x3 = b1, −x1 + 2x2 − 4x3 = b2, 2x1 + 3x2 + x3 = b3, x1 + 2x3 = b4,

by computing the cokernel of its coefficient matrix A =




1 −1 3
−1 2 −4
2 3 1
1 0 2


. To this end,

we need to solve the homogeneous adjoint system ATy = 0, namely

y1 − y2 + 2y3 + y4 = 0, −y1 + 2y2 + 3y3 = 0, 3y1 − 4y2 + y3 + 2y4 = 0.

Using Gaussian elimination, we find the general solution

y = y3 (−7,−5, 1, 0 )
T
+ y4 (−2,−1, 0, 1 )

T

is a linear combination (whose coefficients are the free variables) of the two basis vectors
for cokerA. Thus, the compatibility conditions are obtained by taking their dot products
with the right hand side of the original system:

−7b1 − 5b2 + b3 = 0, −2b1 − b2 + b4 = 0.

The reader can check that these are indeed the same compatibility conditions that result
from a direct Gaussian elimination on the augmented matrix

(
A | b

)
.

We are now very close to a full understanding of the fascinating geometry that lurks
behind the simple algebraic operation of multiplying a vector x ∈ Rn by an m×n matrix,
resulting in a vector b = Ax ∈ Rm. Since the kernel and corange of A are orthogonal
complementary subspaces in the domain space Rn, Proposition 5.46 tells us that we can
uniquely decompose x = w + z where w ∈ corngA, while z ∈ kerA. Since A z = 0, we
have

b = Ax = A(w + z) = Aw.

Therefore, we can regard multiplication by A as a combination of two operations:

(i) The first is an orthogonal projection onto the subspace corngA taking x to w.

(ii) The second takes a vector in corngA ⊂ Rn to a vector in rngA ⊂ Rm, taking the
orthogonal projection w to the image vector b = Aw = Ax.

Moreover, if A has rank r then, according to Theorem 2.47, both rngA and corngA are r-
dimensional subspaces, albeit of different vector spaces. Each vector b ∈ rngA corresponds
to a unique vector w ∈ corngA. Indeed, if w, w̃ ∈ corngA satisfy b = Aw = A w̃, then
A(w − w̃) = 0 and hence w − w̃ ∈ kerA. But, since they are complementary subspaces,
the only vector that belongs to both the kernel and the corange is the zero vector, and
hence w = w̃. In this manner, we have proved the first part of the following result; the
second is left as Exercise .
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Proposition 5.54. Multiplication by an m× n matrix A of rank r defines a one-to-

one correspondence between the r-dimensional subspaces corngA ⊂ Rn and rngA ⊂ Rm.

Moreover, if v1, . . . ,vr forms a basis of corngA then their images Av1, . . . , Avr form a

basis for rngA.

In summary, the linear system Ax = b has a solution if and only if b ∈ rngA, or,
equivalently, is orthogonal to every vector y ∈ cokerA. If the compatibility conditions
hold, then the system has a unique solution w ∈ corngA that, by the definition of the
corange or row space, is a linear combination of the rows of A. The general solution to
the system is x = w+z where w is the particular solution belonging to the corange, while
z ∈ kerA is an arbitrary element of the kernel.

Theorem 5.55. A compatible linear system Ax = b with b ∈ rngA = (cokerA)⊥

has a unique solution w ∈ corngA with Aw = b. The general solution is x = w + z

where z ∈ kerA. The particular solution is distinguished by the fact that it has minimum
Euclidean norm ‖w ‖ among all possible solutions.

Indeed, since the corange and kernel are orthogonal subspaces, the norm of a general
solution x = w + z is

‖x ‖2 = ‖w + z ‖2 = ‖w ‖2 + 2w · z+ ‖ z ‖2 = ‖w ‖2 + ‖ z ‖2 ≥ ‖w ‖2,

with equality if and only if z = 0.

Example 5.56. Consider the linear system




1 −1 2 −2
0 1 −2 1
1 3 −5 2
5 −1 9 −6







x

y

z

w


 =




−1
1
4
6


.

Applying the standard Gaussian elimination algorithm, we discover that the coefficient
matrix has rank 3, and the kernel is spanned by the single vector z1 = ( 1,−1, 0, 1 )

T
. The

system itself is compatible; indeed, the right hand side is orthogonal to the basis cokernel
vector ( 2, 24,−7, 1 )

T
, and so satisfies the Fredholm alternative.

The general solution to the linear system is x = ( t, 3− t, 1, t )
T
where t = w is the

free variable. We decompose the solution x = w + z into a vector w in the corange and
an element z in the kernel. The easiest way to do this is to first compute its orthogonal
projection z = ‖ z1 ‖

−2x · z1 z1 = ( t− 1, 1− t, 0, t− 1 )
T
of the solution x onto the one-

dimensional kernel. We conclude that w = x − z = ( 1, 2, 1, 1 )
T
∈ corngA is the unique

solution belonging to the corange of the coefficient matrix, i.e., the only solution that can
be written as a linear combination of its row vectors, or, equivalently, the only solution
which is orthogonal to the kernel. The reader should check this by finding the coefficients
in the linear combination, or, equivalently, writing w = ATv for some v ∈ R4.

In this example, the analysis was simplified by the fact that the kernel was one-
dimensional, and hence the orthogonal projection was relatively easy to compute. In more
complicated situations, to determine the decomposition x = w + z one needs to solve the
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normal equations (4.26) in order to find the orthogonal projection or least squares point in
the subspace; alternatively, one can first determine an orthogonal basis for the subspace,
and then apply the orthogonal (or orthonormal) projection formula (5.57). Of course,
once one of the constituents w, z has been found, the other can be simply obtained by
subtraction from x.
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Chapter 6

Equilibrium

In this chapter, we turn to some interesting applications of linear algebra to the
analysis of mechanical structures and electrical circuits. We will discover that there are re-
markable analogies between electrical and mechanical systems. Both fit into a very general
mathematical framework which, when suitably formulated, will also apply in the continu-
ous realm, and ultimately governs the equilibria of systems arising throughout physics and
engineering. The one difference is that discrete structures and circuits are governed by
linear algebraic equations on finite-dimensional vector spaces, whereas continuous media
are modeled by differential equations and boundary value problems on infinite-dimensional
function spaces.

We begin by analyzing in detail a linear chain of masses interconnected by springs
and constrained to move only in the longitudinal direction. Our general mathematical
framework is already manifest in this rather simple mechanical structure. Next, we consider
simple electrical circuits consisting of resistors and current sources interconnected by a
network of wires. Finally, we treat small (so as to remain in a linear regime) displacements
of two and three-dimensional structures constructed out of elastic bars. In all cases, we
only consider the equilibrium configurations; dynamical processes for each of the physical
systems will be taken up in Chapter 9.

In the mechanical and electrical systems treated in the present chapter, the linear sys-
tem governing the equilibrium configuration has the same structure: the coefficient matrix
is of general positive (semi-)definite Gram form. The positive definite cases correspond
to stable structures and circuits, which can support any external forcing, and possess a
unique stable equilibrium solution that can be characterized by a minimization principle.
On the other hand, the positive semi-definite cases correspond to unstable structures and
circuits that cannot remain in equilibrium except for very special configurations of exter-
nal forces. In the case of mechanical structures, the instabilities are of two types: rigid
motions, under which the structure maintains its overall absence of any applied force.

6.1. Springs and Masses.

A mass–spring chain consists of n masses m1, m2, . . . mn arranged in a straight
line. Each mass is connected to its immediate neighbor(s) by a spring. Moreover, the
mass–spring chain may be connected at one or both ends by a spring to a solid support.
At first, for specificity, let us look at the case when both ends of the chain are attached,
as illustrated in Figure 6.1. To be definite, we assume that the masses are arranged in a
vertical line, and order them from top to bottom. On occasion, we may refer to the top
support as mass m0 and the bottom support as mass mn+1. For simplicity, we will only
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m 1

m 2

m 3

Figure 6.1. A Mass–Spring Chain with Fixed Ends.

allow the masses to move in the vertical direction — one-dimensional motion. (Section 6.3
deals with the more complicated cases of two- and three-dimensional motion.)

If we subject some or all of the masses to an external force, e.g., gravity, then the
system will move† to a new equilibrium position. The motion of the ith mass is measured
by its displacement ui from its original position, which, since we are only allowing vertical
motion, is a scalar. Referring to Figure 6.1, we use the convention that ui > 0 if the mass
has moved downwards, and ui < 0 if it has moved upwards. The problem is to determine
the new equilibrium configuration of the chain under the prescribed forcing, that is, to set
up and solve a system of equations for the displacements u1, . . . , un.

Let ej denote the elongation of the jth spring, which connects mass mj−1 to mass mj .
By “elongation”, we mean how far the spring has been stretched, so that ej > 0 if the spring
is longer than its reference length, while ej < 0 if the spring has been compressed. The
elongations can be determined directly from the displacements according to the geometric
formula

ej = uj − uj−1, j = 2, . . . , n, (6.1)

while

e1 = u1, en+1 = −un, (6.2)

since the top and bottom supports are fixed. We write the elongation equations (6.1), (6.2)
in matrix form

e = Au, (6.3)

† The differential equations governing its dynamical behavior will be the subject of Chap-
ter 9. Damping or frictional effects will cause the system to eventually settle down into a stable
equilibrium configuration.
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where e =




e1

e2
...

en+1


 is the elongation vector , u =




u1

u2
...

un


 is the displacement vector , and

the coefficient matrix

A =




1
−1 1

−1 1
−1 1

. . .
. . .

−1 1
−1




(6.4)

has size (n + 1) × n, with only the non-zero entries being indicated. The matrix A is
known as the reduced incidence matrix † for the mass–spring chain. It effectively encodes
the underlying geometry of the mass–spring chain, including the boundary conditions at
the top and the bottom.

The next step is to connect the elongation ej experienced by the jth spring to its inter-
nal force yj . This is the basic constitutive assumption, that relates geometry to kinematics.
In the present case, we shall assume that the springs are not stretched (or compressed)
particularly far, and so obey Hooke’s Law

yj = cj ej , (6.5)

named after the prolific seventeenth century English scientist and inventor Robert Hooke.
The constant cj > 0 measures the spring’s stiffness. Hooke’s Law says that force is
proportional to elongation — the more you stretch a spring, the more internal force it
experiences. A hard spring will have a large stiffness and so takes a large force to stretch,
whereas a soft spring will have a small, but still positive, stiffness. We write (6.5) in matrix
form

y = C e, (6.6)

where

y =




y1

y2
...

yn+1


, C =




c1

c2

. . .

cn+1




Note particularly that C > 0 is a diagonal, positive definite matrix.

Finally, the forces must balance if the system is to remain in equilibrium. Let fi
denote the external force on the ith mass mi. We also measure force in the downwards
direction, so fi > 0 means the force is pulling the ith mass downwards. (In particular,
gravity would induce a positive force on each mass.) The ith mass is immediately below

† The connection with the incidence matrix of a graph will become evident in Section 6.2.
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the ith spring and above the (i+ 1)st spring. If the ith spring is stretched, it will exert an
upwards force on mi, while if the (i + 1)

st spring is stretched, it will pull mi downwards.
Therefore, the balance of forces on mi requires that

fi = yi − yi+1. (6.7)

The matrix form of the force balance law is

f = ATy (6.8)

where f = (f1, . . . , fn)
T . The remarkable, and very general fact is that the force balance

coefficient matrix

AT =




1 −1
1 −1

1 −1
1 −1

. . .
. . .

1 −1




(6.9)

is the transpose of the reduced incidence matrix (6.4) for the chain. This connection
between geometry and force balance turns out to be very general, and is the reason un-
derlying the positivity of the final coefficient matrix in the resulting system of equilibrium
equations.

Summarizing, we have

e = Au, y = C e, f = AT y. (6.10)

These equations can be combined into a single linear system

Ku = f , where K = ATC A (6.11)

is called the stiffness matrix associated with the entire mass–spring chain. The stiffness
matrix K has the form of a Gram matrix (3.51) for the weighted inner product 〈v ;w 〉 =
vTC w induced by the diagonal matrix of spring stiffnesses. Theorem 3.33 tells us that
since A has linearly independent columns (which should be checked), and C > 0 is positive
definite, then the stiffness matrix K > 0 is automatically positive definite. In particular,
Theorem 3.38 guarantees that K is an invertible matrix, and hence the linear system (6.11)
has a unique solution u = K−1f . We can therefore conclude that the mass–spring chain
assumes a unique equilibrium position.

In fact, in the particular case considered here,

K =




c1 + c2 −c2

−c2 c2 + c3 −c3

−c3 c3 + c4 −c4

−c4 c4 + c5 −c5

. . .
. . .

. . .

−cn−1 cn−1 + cn −cn
−cn cn + cn+1




(6.12)

1/12/04 195 c© 2003 Peter J. Olver



has a very simple symmetric, tridiagonal form. As such, we can apply our tridiagonal
solution algorithm of Section 1.7 to rapidly solve the system.

Example 6.1. Let us consider the particular case of n = 3 masses connected by
identical springs with unit spring constant. Thus, c1 = c2 = c3 = c4 = 1 and C =
diag (1, 1, 1, 1) = I is the 4× 4 identity matrix. The 3× 3 stiffness matrix is then

K = ATA =



1 −1 0 0
0 1 −1 0
0 0 1 −1







1 0 0
−1 1 0
0 −1 1
0 0 −1


 =



2 −1 0
−1 2 −1
0 −1 2


 .

A straightforward Gaussian elimination produces the K = LDLT factorization



2 −1 0
−1 2 −1
0 −1 2


 =



1 0 0
−

1
2 1 0
0 −

2
3 1





2 0 0
0 3

2 0
0 0 4

3





1 −

1
2 0

0 1 −
2
3

0 0 1


 .

With this in hand, we can solve the basic equilibrium equations Ku = f by our basic
forward and back substitution algorithm.

Suppose, for example, we pull the middle mass downwards with a unit force, so f2 = 1

while f1 = f3 = 0. Then f = ( 0, 1, 0 )
T
, and the solution to the equilibrium equations

(6.11) is u =
(

1
2 , 1, 1

2

)T
, whose entries prescribe the mass displacements. Observe that

all three masses have moved down, with the middle mass moving twice as far as the other
two. The corresponding spring elongations and internal forces are obtained by matrix
multiplication

y = e = Au =
(

1
2 , 1

2 ,− 1
2 ,− 1

2

)T
.

Thus the top two springs are elongated, while the bottom two are compressed, all by an
equal amount.

Similarly, if all the masses are equal, m1 = m2 = m3 = m, then the solution under a

constant downwards gravitational force f = (mg,mg,mg )
T
of magnitude g is

u = K−1




mg

mg

mg


 =




3
2 mg

2mg
3
2 mg


,

and
y = e = Au =

(
3
2 mg, 1

2 mg, −
1
2 mg, −

3
2 mg

)T
.

Now, the middle mass has only moved 33% farther than the others, whereas the top and
bottom spring are experiencing three times as much elongation/compression as the middle
springs.

An important observation is that we cannot determine the internal forces y or elon-
gations e directly from the force balance law (6.8) because the transposed matrix AT is
not square, and so the system f = ATy does not have a unique solution. We must first
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determine the displacements u using the full equilibrium equations (6.11), and then use the
resulting displacements to reconstruct the elongations and internal forces. This situation
is referred to as statically indeterminate.

Remark : Even though we construct K = ATC A and then factor it as K = LDLT ,
there is no direct algorithm to get from A and C to L and D, which, typically, are matrices
of a different size.

The behavior of the system will depend upon both the forcing and the boundary
conditions. Suppose, by way of contrast, that we only fix the top of the chain to a support,
and leave the bottom mass hanging freely, as in Figure 6.2. The geometric relation between
the displacements and the elongations has the same form (6.3) as before, but the reduced
incidence matrix is slightly altered:

A =




1
−1 1

−1 1
−1 1

. . .
. . .

−1 1




. (6.13)

This matrix has size n×n and is obtained from the preceding example (6.4) by eliminating
the last row corresponding to the missing bottom spring. The constitutive equations are
still governed by Hooke’s law y = C e, as in (6.6), with C = diag (c1, . . . , cn) the n × n

diagonal matrix of spring stiffnesses. Finally, the force balance equations are also found
to have the same general form f = ATy as in (6.8), but with the transpose of the revised
incidence matrix (6.13). In conclusion, the equilibrium equations K x = f have an identical
form (6.11), based on the revised stiffness matrix

K = ATCA =




c1 + c2 −c2

−c2 c2 + c3 −c3

−c3 c3 + c4 −c4

−c4 c4 + c5 −c5

. . .
. . .

. . .

−cn−1 cn−1 + cn −cn
−cn cn




(6.14)

Note that only the bottom right entry is different from the fixed end version (6.12). In
contrast to the chain with two fixed ends, this system is called statically determinate

because the incidence matrix A is square and nonsingular. This means that it is possible
to solve the force balance law (6.8) directly for the internal forces y = A−1f without having
to solve the full equilibrium equations for the displacements.

Example 6.2. For a three mass chain with one free end and equal unit spring
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m1

m2

m3

Figure 6.2. A Mass–Spring Chain with One Free End.

constants c1 = c2 = c3 = 1, the stiffness matrix is

K = ATA =



1 −1 0
0 1 −1
0 0 1





1 0 0
−1 1 0
0 −1 1


 =



2 −1 0
−1 2 −1
0 −1 1


 .

Pulling the middle mass downwards with a unit force, whereby f = ( 0, 1, 0 )
T
, results in

the displacements

u = K−1f =



1
2
2


, so that y = e = Au =



1
1
0


.

In this configuration, the bottom two masses have moved equal amounts, and twice as far
as the top mass. Because we are only pulling on the middle mass, the lower-most spring
hangs free and experiences no elongation, whereas the top two springs are stretched by the
same amount.

Similarly, for a chain of equal masses subject to a constant downwards gravitational
force f = (mg,mg,mg )

T
, the equilibrium position is

u = K−1




mg

mg

mg


 =



3mg

5mg

6mg


, and y = e = Au =



3mg

2mg

mg


.

Note how much further the masses have moved now that the restraining influence of the
bottom support has been removed. The top spring is experiencing the most elongation,
and is thus the most likely to break, because it must support all three masses.

The Minimization Principle

According to Theorem 4.1, when the coefficient matrix of the linear system governing a
mass–spring chain is positive definite, the unique equilibrium solution can be characterized
by a minimization principle. The quadratic function to be minimized has a physical inter-
pretation: it is the potential energy of the system. Nature is parsimonious when it comes to
energy: physical systems seek out equilibrium configurations that minimize energy. This
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general minimization principle can often be advantageously used in the construction of
mathematical models, as well as in their solution, both analytical and numerical.

The energy function to be minimized can be determined directly from physical prin-
ciples. For a mass–spring chain, the potential energy of the ith mass equals the product
of the applied force times its displacement: −fi ui. The minus sign is the result of our
convention that a positive displacement ui > 0 means that the mass has moved down,
and hence decreased its potential energy. Thus, the total potential energy due to external
forcing on all the masses in the chain is

−

n∑

i=1

fi ui = −uT f .

Next, we calculate the internal energy of the system. The potential energy in a single
spring elongated by an amount e is obtained by integrating the internal force, y = ce,
leading to ∫ e

0

y de =

∫ e

0

c e de = 1
2 c e2.

Totalling the contributions from each spring, we find the internal spring energy to be

1

2

n∑

i=1

ci e
2
i =

1
2 eTC e = 1

2 uTATCAu = 1
2 uTKu,

where we used the incidence equation e = Au relating elongation and displacement. There-
fore, the total potential energy is

p(u) = 1
2 uTKu− uT f . (6.15)

Since K > 0, Theorem 4.1 implies that this quadratic function has a unique minimizer
that satisfies the equilibrium equation Ku = f .

Example 6.3. For a three mass chain with two fixed ends described in Example 6.1,
the potential energy function (6.15) has the explicit form

p(u) =
1

2
(u1 u2 u3 )



2 −1 0
−1 2 −1
0 −1 2






u1

u2

u3


− (u1 u2 u3 )




f1

f2

f3




= u2
1 − u1 u2 + u2

2 − u2 u3 + u2
3 − f1 u1 − f2 u2 − f3 u3,

where f = ( f1, f2, f3 )
T
is the external forcing. The minimizer of this particular quadratic

function gives the equilibrium displacements u = (u1, u2, u3 )
T
of the three masses.

6.2. Electrical Networks.

An electrical network consists of a collection of wires that are joined together at their
ends. The junctions where one or more wires are connected are called nodes. Abstractly,
we can view any such electrical network as a graph, the wires being the edges and the
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Figure 6.3. A Simple Electrical Network.

nodes the vertices. To begin with we assume that there are no electrical devices (batteries,
inductors, capacitors, etc.) in the network and so the the only impediment to current
flowing through the network is each wire’s resistance. (If desired, we may add resistors
to the network to increase the resistance along the wires.) As we shall see, resistance (or,
rather, its reciprocal) plays a very similar role to spring stiffness.

We shall introduce current sources into the network at one or more of the nodes, and
would like to determine how the induced current flows through the wires in the network.
The basic equilibrium equations for the currents are the consequence of three fundamental
laws of electricity.

Voltage is defined as the electromotive force that moves electrons through a wire. is
induced by a drop in the voltage potential along the wire. The voltage in a wire is induced
by the difference in the voltage potentials at the two ends, just as the gravitational force on
a mass is induced by a difference in gravitational potential. To quantify voltage, we need
to assign an orientation to the wire. Then a positive voltage means the electrons move in
the assigned direction, while under a negative voltage they move in reverse. The original
choice of orientation is arbitrary, but once assigned will pin down the sign conventions used
by voltages, currents, etc. To this end, we draw a digraph to represent the network, and
each edge or wire is assigned a direction that indicates its starting and ending vertices or
nodes. A simple example is illustrated in Figure 6.3, and contains five wires joined at four
different nodes. The arrows indicate the orientations of the wires, while the wavy lines are
the standard electrical symbols for resistance.

In an electrical network, each node will have a voltage potential, denoted ui. If wire
k starts at node i and ends at node j, under its assigned orientation, then its voltage vk
equals the potential difference at its ends:

vk = ui − uj . (6.16)

Note that vk > 0 if ui > uj , and so the electrons go from the starting node i to the ending
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node j, in accordance with our choice of orientation. In our particular illustrative example,

v1 = u1 − u2, v2 = u1 − u3, v3 = u1 − u4, v4 = u2 − u4, v5 = u3 − u4.

Let us rewrite this system in matrix form

v = Au, (6.17)

where, for our particular example,

A =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 0 −1
0 0 1 −1


 . (6.18)

The alert reader will recognize this matrix as the incidence matrix (2.42) for the digraph
defined by the circuit; see (2.42). This is true in general — the voltages along the wires

of an electrical network are related to the potentials at the nodes by a linear system of the

form (6.17), where A is the incidence matrix of the network digraph. The rows of the
incidence matrix are indexed by the wires; the columns are indexed by the nodes. Each
row of the matrix A has a single +1 in the column indexed by the starting node, and a
single −1 in the column of the ending node.

Kirchhoff’s Voltage Law states that the sum of the voltages around each closed loop in
the network is zero. For example, in the circuit under consideration, around the left-hand
triangle we have

v1 + v4 − v3 = (u1 − u2) + (u2 − u4)− (u1 − u4) = 0.

Note that v3 appears with a minus sign since we must traverse wire #3 in the opposite
direction to its assigned orientation when going around the loop in the counterclockwise
direction. The voltage law is a direct consequence of (6.17). Indeed, as discussed in
Section 2.6, the loops can be identified with vectors ` ∈ cokerA = kerAT in the cokernel
of the incidence matrix, and so

` · v = `Tv = `TAu = 0. (6.19)

Therefore, orthogonality of the voltage vector v to the loop vector ` is the mathematical
formulation of the zero-loop relation.

Given a prescribed set of voltages v along the wires, can one find corresponding voltage
potentials u at the nodes? To answer this question, we need to solve v = Au, which
requires v ∈ rngA. According to the Fredholm Alternative Theorem 5.51, the necessary
and sufficient condition for this to hold is that v be orthogonal to cokerA. Theorem 2.51
says that the cokernel of an incidence matrix is spanned by the loop vectors, and so v is
a possible set of voltages if and only if v is orthogonal to all the loop vectors ` ∈ cokerA,
i.e., the Voltage Law is necessary and sufficient for the given voltages to be physically
realizable in the network.

Kirchhoff’s Laws are related to the topology of the circuit — how the different wires
are connected together. Ohm’s Law is a constitutive relation, indicating what the wires
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are made of. The resistance along a wire, including any added resistors, prescribes the
relation between voltage and current or the rate of flow of electric charge. The law reads

vk = Rk yk, (6.20)

where vk is the voltage and yk (often denoted Ik in the engineering literature) denotes the
current along wire k. Thus, for a fixed voltage, the larger the resistance of the wire, the
smaller the current that flows through it. The direction of the current is also prescribed
by our choice of orientation of the wire, so that yk > 0 if the current is flowing from the
starting to the ending node. We combine the individual equations (6.20) into a matrix
form

v = Ry, (6.21)

where the resistance matrix R = diag (R1, . . . , Rn) > 0 is diagonal and positive definite.
We shall, in analogy with (6.6), replace (6.21) by the inverse relationship

y = C v, (6.22)

where C = R−1 is the conductance matrix , again diagonal, positive definite, whose entries
are the conductances ck = 1/Rk of the wires. For the particular circuit in Figure 6.3,

C =




c1

c2

c3

c4

c5


 =




1/R1

1/R2

1/R3

1/R4

1/R5


 . (6.23)

Finally, we stipulate that electric current is not allowed to accumulate at any node, i.e.,
every electron that arrives at a node must leave along one of the wires. Let yk, yl, . . . , ym
denote the currents along all the wires k, l, . . . ,m that meet at node i in the network, and
fi an external current source, if any, applied at node i. Kirchhoff’s Current Law requires
that the net current into the node, namely

± yk ± yl ± · · · ± ym + fi = 0, (6.24)

must be zero. Each ± sign is determined by the orientation of the wire, with − if node i

is a starting node or + if it is an ending node.

In our particular example, suppose that we send a 1 amp current source into the first
node. Then Kirchhoff’s Current Law requires

y1 + y2 + y3 = 1, −y1 + y4 = 0, −y2 + y5 = 0, −y3 − y4 − y5 = 0.

Since we have solved (6.24) for the currents, the signs in front of the yi have been reversed,
with + now indicating a starting node and − an ending node. The matrix form of this
system is

AT y = f , (6.25)
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where y = ( y1, y2, y3, y4, y5 )
T
are the currents along the five wires, and f = ( 1, 0, 0, 0 )

T

represents the current sources at the four nodes. The coefficient matrix

AT =




1 1 1 0 0
−1 0 0 1 0
0 −1 0 0 1
0 0 −1 −1 −1


 , (6.26)

is the transpose of the incidence matrix (6.18). As in the mass–spring chain, this is a
general fact, and is an immediate result of Kirchhoff’s two laws. The coefficient matrix for

the current law is the transpose of the incidence matrix for the voltage law.

Let us assemble the full system of equilibrium equations:

v = Au, y = C v, f = ATy. (6.27)

Remarkably, we arrive at a system of linear relations that has an identical form to the
mass–spring chain system (6.10). As before, they combine into a single linear system

Ku = f , where K = ATC A (6.28)

is the resistivity matrix associated with the given network. In our particular example,
combining (6.18), (6.23), (6.26) produces the resistivity matrix

K = ATC A =




c1 + c2 + c3 −c1 −c2 −c3

−c1 c1 + c4 0 −c4

−c2 0 c2 + c5 −c5

−c3 −c4 −c5 c3 + c4 + c5


 (6.29)

depending on the conductances of the five wires in the network.

Remark : There is a simple pattern to the resistivity matrix, evident in (6.29). The
diagonal entries kii equal the sum of the conductances of all the wires having node i at
one end. The non-zero off-diagonal entries kij , i 6= j, equal −ck, the conductance of the

wire† joining node i to node j, while kij = 0 if there is no wire joining the two nodes.

Consider the case when all the wires in our network have equal unit resistance, and
so ck = 1/Rk = 1 for k = 1, . . . , 5. Then the resistivity matrix is

K =




3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3


 . (6.30)

However, trying to solve the system (6.28) runs into an immediate difficulty: there is no

solution! The matrix (6.30) is not positive definite — it has zero determinant, and so is

not invertible. Moreover, the particular current source vector f = ( 1, 0, 0, 0 )
T
does not lie

in the range of K. Something is clearly amiss.

† This assumes that there is only one wire joining the two nodes.
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Before getting discouraged, let us sit back and use a little physical intuition. We are
trying to put a 1 amp current into the network at node 1. Where can the electrons go? The
answer is nowhere — they are trapped in the circuit and, as they accumulate, something
drastic will happen — sparks will fly! This is clearly an unstable situation, and so the fact
that the equilibrium equations do not have a solution is trying to tell us that the physical
system cannot remain in a steady state. The physics rescues the mathematics, or, vice
versa, the mathematics elucidates the underlying physical processes!

In order to achieve a steady state in an electrical network, we must remove as much
current as we put in. In other words, the sum of all the current sources must vanish:

f1 + f2 + · · · + fn = 0.

For example, if we feed a 1 amp current into node 1, then we must extract a total of 1
amp’s worth of current from the other nodes. If we extract a 1 amp current from node
4, the modified current source vector f = ( 1, 0, 0,−1 )

T
does indeed lie in the range of K

(check!) and the equilibrium system (6.28) has a solution. Fine . . .

But we are not out of the woods yet. As we know, if a linear system has a singular
square coefficient matrix, then either it has no solutions — the case we already rejected
— or it has infinitely many solutions — the case we are considering now. In the particular
network under consideration, the general solution to the linear system




3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3







u1

u2

u3

u4


 =




1
0
0
−1




is found by Gaussian elimination:

u =




1
2 + t

1
4 + t

1
4 + t

t


 =




1
2
1
4
1
4

0


 + t




1

1

1

1


, (6.31)

where t = u4 is the free variable. The nodal voltage potentials

u1 =
1
2 + t, u2 =

1
4 + t, u3 =

1
4 + t, u4 = t,

depend on a free parameter t.

The ambiguity arises because we have not specified a baseline value for the voltage
potentials. Indeed, voltage potential is a mathematical abstraction that cannot be mea-
sured directly; only relative potential differences have physical import. To eliminate the
ambiguity, one needs to assign a base potential level. (A similar ambiguity arises in the
specification of gravitational potential.) In terrestrial electricity, the Earth is assumed
to be at a zero voltage potential. Specifying a particular node to have zero potential is
physically equivalent to grounding that node. Grounding one of the nodes, e.g., setting
u4 = t = 0, will then uniquely specify all the other voltage potentials, resulting in a unique
solution u1 =

1
2 , u2 =

1
4 , u3 =

1
4 , u4 = 0, to the system.
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On the other hand, even without specification of a baseline potential level, the cor-
responding voltages and currents along the wires are uniquely specified. In our example,
computing y = v = Au gives

y1 = v1 =
1
4 , y2 = v2 =

1
4 , y3 = v3 =

1
2 , y4 = v4 =

1
4 , y5 = v5 =

1
4 ,

independent of the value of t in (6.31). Thus, the nonuniqueness of the voltage potential
solution u is not an essential difficulty. All physical quantities that we can measure —
currents and voltages — are uniquely specified by the solution to the equilibrium system.

Remark : Although they have no real physical meaning, we cannot dispense with the
nonmeasurable (and non-unique) voltage potentials u. Most circuits are statically inde-

terminate since their incidence matrix is rectangular and not invertible, and so the linear
system ATy = f cannot be solved directly for the currents in terms of the voltage sources
— it does not have a unique solution. Only by first solving the full equilibrium system
(6.28) for the potentials, and then using the relation y = CAu between the potentials and
the currents, can we determine the actual values of the currents in our network.

Let us analyze what is going on in the context of our general mathematical framework.
Proposition 3.32 says that the resistivity matrix K = ATCA is positive definite (and
hence nonsingular) provided A has linearly independent columns, or, equivalently, kerA =
{0}. But Proposition 2.49 says that the incidence matrix A of a directed graph never

has a trivial kernel. Therefore, the resistivity matrix K is only positive semi-definite,
and hence singular. If the network is connected, then kerA = kerK = cokerK is one-
dimensional, spanned by the vector z = ( 1, 1, 1, . . . , 1 )

T
. According to the Fredholm

Alternative Theorem 5.51, the fundamental network equation Ku = f has a solution if
and only if f is orthogonal to cokerK, and so the current source vector must satisfy

f · z = f1 + f2 + · · · + fn = 0, (6.32)

as we already observed. Therefore, the linear algebra reconfirms our physical intuition: a
connected network admits an equilibrium configuration, obtained by solving (6.28), if and
only if the nodal current sources add up to zero, i.e., there is no net influx of current into
the network.

Grounding one of the nodes is equivalent to nullifying the value of its voltage potential:
ui = 0. This variable is now fixed, and can be safely eliminated from our system. To
accomplish this, we let A? denote the m × (n − 1) matrix obtained by deleting the ith

column from A. For example, if we ground node number 4 in our sample network, then
we erase the fourth column of the incidence matrix (6.18), leading to the reduced incidence
matrix

A? =




1 −1 0
1 0 −1
1 0 0
0 1 0
0 0 1


 . (6.33)
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The key observation is that A? has trivial kernel, kerA? = {0}, and therefore the reduced
network resistivity matrix

K? = (A?)TC A? =




c1 + c2 + c3 −c1 −c2

−c1 c1 + c4 0
−c2 0 c2 + c5


 . (6.34)

is positive definite. Note that we can obtain K? directly from K by deleting both its
fourth row and fourth column. Let f ? = ( 1, 0, 0 )

T
denote the reduced current source

vector obtained by deleting the fourth entry from f . Then the reduced linear system is

K?u? = f?, where u? = (u1, u2, u3 )
T

, (6.35)

is the reduced voltage potential vector. Positive definiteness of K? implies that (6.35) has
a unique solution u?, from which we can reconstruct the voltages v = A?u? and currents
y = C v = CA?u? along the wires. In our example, if all the wires have unit resistance,
then the reduced system (6.35) is



3 −1 −1
−1 2 0
−1 0 2






u1

u2

u3


 =



1
0
0


,

and has unique solution u? =
(

1
2

1
4

1
4

)T
. The voltage potentials are

u1 =
1
2 , u2 =

1
4 , u3 =

1
4 , u4 = 0,

and correspond to the earlier solution (6.31) when t = 0. The corresponding voltages and
currents along the wires are the same as before.

So far, we have only considered the effect of current sources at the nodes. Suppose
now that the circuit contains one or more batteries. Each battery serves as a voltage source
along one of the wires, and we let bk denote the voltage of a battery connected to wire
k. The quantity bk comes with a sign, indicated by the battery’s positive and negative
terminals. Our convention is that bk > 0 if the current from the battery runs in the same
direction as our chosen orientation of the wire. The battery voltage modifies the voltage
balance equation (6.16):

vk = ui − uj + bk.

The corresponding matrix form (6.17) becomes

v = Au+ b, (6.36)

where b = ( b1, b2, . . . , bm )
T
is the battery vector whose entries are indexed by the wires.

(If there is no battery on wire k, the corresponding entry is bk = 0.) The remaining two
equations are as before, so y = C v are the currents in the wires, and, in the absence of
external current sources, Kirchhoff’s Current Law implies ATy = 0. Using the modified
formula (6.36) for the voltages, these combine into the following equilibrium system

K?u = ATC Au = −ATC b. (6.37)
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Figure 6.4. Cubical Electrical Network with a Battery.

Thus, interestingly, the voltage potentials satisfy the normal weighted least squares equa-
tions (4.54) corresponding to the system Au = −b, with weights given by the conductances
in the individual wires in the circuit. It is a remarkable fact that Nature solves a least
squares problem in order to make the weighted norm of the voltages v as small as possible.

Furthermore, the batteries have exactly the same effect on the voltage potentials as if
we imposed the current source vector

f = −ATC b. (6.38)

Namely, the effect of the battery of voltage bk on wire k is the exactly the same as intro-
ducing an additional current sources of −ck bk at the starting node and ck bk at the ending
node. Note that the induced current vector f ∈ rngK continues to satisfy the network
constraint (6.32). Vice versa, a given system of current sources f has the same effect as
any collection of batteries b that satisfies (6.38).

Unlike a current source, a circuit with a battery always admits a solution for the volt-
age potentials and currents. Although the currents are uniquely determined, the voltage
potentials are not. As before, to eliminate the ambiguity, we can ground one of the nodes
and use the reduced incidence matrix A? and reduced current source vector f? obtained
by eliminating the column/entry corresponding to the grounded node.

Example 6.4. Consider an electrical network running along the sides of a cube,
where each wire contains a 2 ohm resistor and there is a 9 volt battery source on one wire.
The problem is to determine how much current flows through the wire directly opposite the
battery. Orienting the wires and numbering them as indicated in Figure 6.4, the incidence
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matrix is

A =




1 −1 0 0 0 0 0 0
1 0 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 1 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 −1 0 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 −1 0 0
0 0 0 1 0 0 −1 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1




.

We connect the battery along wire #1 and measure the resulting current along wire #12.
To avoid the ambiguity in the voltage potentials, we ground the last node and erase the
final column from A to obtain the reduced incidence matrix A?. Since the resistance
matrix R has all 2’s along the diagonal, the conductance matrix is C = 1

2 I . Therefore the
network resistivity matrix is

K? = (A?)TCA? = 1
2 (A

?)TA? =
1

2




3 −1 −1 −1 0 0 0
−1 3 0 0 −1 −1 0
−1 0 3 0 −1 0 −1
−1 0 0 3 0 −1 −1
0 −1 −1 0 3 0 0
0 −1 0 −1 0 3 0
0 0 −1 −1 0 0 3




.

The current source corresponding to the battery b = ( 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
T
along

the first wire is
f? = − (A?)TC b = 1

2 (−9, 9, 0, 0, 0, 0, 0 )
T

.

Solving the resulting linear system by Gaussian elimination, the voltage potentials are

u? = (K?)−1f? =
(
−3, 9

4 ,− 9
8 ,− 9

8 , 3
8 , 3

8 ,− 3
4

)T
.

Thus, the induced currents along the sides of the cube are

y = C v = C (A?u? + b) =
(

15
8 ,− 15

16 ,− 15
16 , 15

16 , 15
16 ,− 3

4 ,− 3
16 ,− 3

4 ,− 3
16 , 3

16 , 3
16 ,− 3

8

)T
.

In particular, the current on the wire that is opposite the battery is y12 = −
3
8 , flowing in

the opposite direction to its orientation. The most current flows through the battery wire,
while wires 7, 9, 10 and 11 transmit the least current.

The Minimization Principle and the Electrical–Mechanical Analogy

As with a mass–spring chain, the current flows in such a resistive electrical network
can be characterized by a minimization principle. The power in a wire is defined as the
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product of its current y and voltage v,

P = y v = R y2 = c v2, (6.39)

where R is the resistance, c = 1/R the conductance, and we are using Ohm’s Law (6.20)
to relate voltage and current. Physically, the power tells us the rate at which electrical
energy is converted into heat or energy by the resistance along the wire.

Summing over all the wires in the network, the total power is the dot product

P =
m∑

k=1

yk vk = yTv = vTC v = (Au+ b)TC (Au+ b)

= uTATC Au+ 2uTATC b+ bTC b.

The resulting quadratic function can be written in the usual form†

1
2 P = p(u) = 1

2 uTKu− uT f + c, (6.40)

where K = ATC A is the network resistivity matrix, while f = −ATC b are the equivalent
current sources at the nodes (6.38) that correspond to the batteries. The last term c =
1
2 bTC b is one half the internal power in the battery, and does not depend upon the
currents/voltages in the wires. In deriving (6.40), we have ignored any additional external
current sources at the nodes. By an analogous argument, a current source will contribute
to the linear terms in the power in the same fashion, and so the linear terms uT f represent
the effect of both batteries and external current sources.

In general, the resistivity matrix K is only positive semi-definite, and so the quadratic
power function (6.40) does not, in general, have a minimizer. As argued above, to ensure
equilibrium, we need to ground one or more of the nodes. The resulting reduced form

p(u?) = 1
2 (u

?)TK?u? − (u?)T f?,

for the power now has a positive definite coefficient matrix K? > 0. The minimizer of
the power function is the solution u? to the reduced linear system (6.35). Therefore, the
network adjusts itself to minimize the power or total energy loss ! Just as with mechanical
systems, Nature solves a minimization problem in an effort to conserve energy.

We have discovered the remarkable correspondence between the equilibrium equations
for electrical networks (6.10), and those of mass–spring chains (6.27). This Electrical–
Mechanical Correspondence is summarized in the following table. In the following section,
we will see that the analogy extends to more general structures. In Chapter 15, we will
discover that it continues to apply in the continuous regime, and subsumes solid mechanics,
fluid mechanics, electrostatics, and many other physical systems in a common mathemat-
ical framework!

† For alternating currencts, there is no annoying factor of 2 in the formula for the power, and
the analogy is more direct.
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Structures Variables Networks

Displacements u Voltages

Elongations‡ v = Au Voltage drops

Spring stiffnesses C Conductivities

Internal Forces y = C v Currents

External forcing f = ATy Current sources

Stiffness matrix K = ATC A Resistivity matrix

Potential energy p(u) = 1
2u

TKu− uT f 1
2 × Power

Prestressed bars/springs v = Au+ b Batteries

6.3. Structures in Equilibrium.

A structure (sometimes known as a truss) is a mathematical idealization of a frame-
work for a building. Think of a skyscraper when just the I-beams are connected together
— before the walls, floors, ceilings, roof and ornamentation are added. An ideal structure
is constructed of elastic bars connected at joints. By a bar , we mean a straight, rigid
rod that can be (slightly) elongated, but not bent. (Beams, which are allowed to bend,
are more complicated, and we defer their treatment until Section 11.4.) When a bar is
stretched, it obeys Hooke’s law (at least in the linear regime we are currently modeling)
and so, for all practical purposes, behaves like a spring with a very large stiffness. As
a result, a structure can be regarded as a two- or three-dimensional generalization of a
mass–spring chain.

The joints will allow the bar to rotate in any direction. Of course, this is an idealiza-
tion; in a building, the rivets and bolts will prevent rotation to a significant degree. How-
ever, under moderate stress — for example, if the wind is blowing through our skyscraper,
the rivets and bolts can only be expected to keep the structure connected, and the rota-
tional motion will provide stresses on the bolts which must be taken into account when
designing the structure. Of course, under extreme stress, the structure will fall apart —
a disaster that its designers must avoid. The purpose of this section is to derive con-
ditions that will guarantee that a structure is rigidly stable under moderate forcing, or,
alternatively, understand the mechanisms that might lead to its collapse.

Bars

The first order of business is to understand how an individual bar reacts to motion. We
have already encountered the basic idea in our treatment of springs. The key complication
here is that the ends of the bar/spring are not restricted to a single direction of motion,
but can move in either two or three-dimensional space. We use d = 2 or 3 to denote
the dimension of the underlying space. (When d = 1, the truss reduces to a mass–spring
chain.)
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Figure 6.5. Tangent Line Approximation.

Consider an unstressed bar with one end at position a1 ∈ Rd and the other end at

position a2 ∈ Rd. In d = 2 dimensions, we write ai = ( ai, bi )
T
, while in d = 3-dimensional

space ai = ( ai, bi, ci )
T
. The length of the bar is L = ‖a1 − a2 ‖, where we use the standard

Euclidean norm to measure distance on Rd throughout this section.

Suppose we move the ends of the bar a little, sending ai to bi = ai + εui and
simultaneously aj to bj = aj + εuj . The unit vectors ui,uj ∈ Rd indicate the respective
direction of displacement of the two ends, and we think of ε > 0, the magnitude of the
displacement, as small. How much has this motion stretched the bar? The length of the
displaced bar is

L+ e = ‖bi − bj ‖ = ‖ (ai + εui)− (aj + εuj) ‖ = ‖ (ai − aj) + ε (ui − uj) ‖

=
√
‖ai − aj ‖

2 + 2 ε (ai − aj) · (ui − uj) + ε2 ‖ui − uj ‖
2 .

(6.41)

The difference between the new length and the original length, namely

e =
√
‖ai − aj ‖

2 + 2 ε (ai − aj) · (ui − uj) + ε2 ‖ui − uj ‖
2 − ‖ai − aj ‖, (6.42)

is, by definition, the bar’s elongation.

If the underlying dimension d is 2 or more, the elongation e is a nonlinear function
of the displacement vectors ui,uj . Thus, an exact, geometrical treatment of structures
in equilibrium requires dealing with nonlinear systems of equations. For example, the
design of robotic mechanisms, [111], requires dealing with the fully nonlinear equations.
However, in many practical situations, the displacements are fairly small, so ε ¿ 1. For
example, when a building moves, the lengths of bars are in meters, but the displacements
are, barring catastrophes, typically in centimeters if not millimeters. In such situations,
we can replace the geometrically exact elongation by a much simpler linear approximation.

The most basic linear approximation to a nonlinear function g(ε) near ε = 0 is given
by its tangent line or linear Taylor polynomial

g(ε) ≈ g(0) + g′(0) ε, (6.43)

as in Figure 6.5. In the case of small displacements of a bar, the elongation (6.42) is a
square root function of the particular form

g(ε) =
√

a2 + 2 ε b+ ε2 c2 − a,
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where
a = ‖ai − aj ‖, b = (ai − aj) · (ui − uj), c = ‖ui − uj ‖,

are independent of ε. Since g(0) = 0 and g′(0) =
b
a
, the linear approximation (6.43) has

the form √
a2 + 2 ε b+ ε2 c2 − a ≈ ε

b

a
for ε ¿ 1.

In this manner, we arrive at the linear approximation to the bar’s elongation

e ≈ ε
(ai − aj) · (ui − uj)

‖ai − aj ‖
= n · (εui − εuj), where n =

(ai − aj)

‖ai − aj ‖

is the unit vector, ‖n ‖ = 1, that points in the direction of the bar from node j to node i.

The overall small factor of ε was merely a device used to derive the linear approxima-
tion. It can now be safely discarded, so that the displacement of the ith node is now ui
instead of εui, and we assume ‖ui ‖ is small. If bar k connects node i to node j, then its
(approximate) elongation is equal to

ek = nk · (ui − uj) = nk · ui − nk · uj , where nk =
ai − aj

‖ai − aj ‖
. (6.44)

The elongation ek is the sum of two terms: the first, nk · ui, is the component of the
displacement vector for node i in the direction of the unit vector nk that points along the
bar towards node i, whereas the second, −nk · uj , is the component of the displacement
vector for node j in the direction of the unit vector −nk that points in the opposite
direction along the bar towards node j. Their sum gives the total elongation of the bar.

We assemble all the linear equations (6.44) relating nodal displacements to bar elon-
gations in matrix form

e = Au. (6.45)

Here e =




e1

e2
...

em


 ∈ Rm is the vector of elongations, while u =




u1

u2
...

un


 ∈ Rdn is the vector

of displacements. Each ui ∈ Rd is itself a column vector with d entries, and so u has a

total of dn entries. For example, in the planar case d = 2, we have ui =

(
xi
yi

)
since each

node’s displacement has both an x and y component, and so

u =




u1

u2
...

un


 =




x1

y1

x2

y2
...

xn
yn




∈ R2n.
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Figure 6.6. Three Bar Planar Structure.

In three dimensions, d = 3, we have ui = (xi, yi, zi )
T
, and so each node will contribute

three components to the displacement vector

u = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn )
T
∈ R3n.

The incidence matrix A connecting the displacements and elongations will be of size
m×dn. The kth row of A will have (at most) 2d nonzero entries. The entries in the d slots
corresponding to node i will be the components of the (transposed) unit bar vector nT

k

pointing towards node i, as given in (6.44), while the entries in the d slots corresponding to
node j will be the components of its negative −nTk , which is the unit bar vector pointing
towards node j. All other entries are 0. The constructions are best appreciated by working
through an explicit example.

Example 6.5. Consider the planar structure pictured in Figure 6.6. The four nodes
are at positions

a1 = (0, 0)
T , a2 = (1, 1)

T , a3 = (3, 1)
T , a4 = (4, 0)

T ,

so the two side bars are at 45◦ angles and the center bar is horizontal. Applying our
algorithm, the associated incidence matrix is

A =



−

1√
2
−

1√
2

0 0

0 0

∣∣∣∣∣∣∣

1√
2

1√
2

− 1 0

0 0

∣∣∣∣∣∣∣

0 0

1 0

−
1√
2

1√
2

∣∣∣∣∣∣∣

0 0

0 0
1√
2
−

1√
2


 . (6.46)

The three rows of A refer to the three bars in our structure. The columns come in pairs,
as indicated by the vertical lines in the matrix: the first two columns refer to the x and
y displacements of the first node; the third and fourth columns refer to the second node,
and so on. The first two entries of the first row of A indicate the unit vector

n1 =
a1 − a2

‖a1 − a2 ‖
=
(
−

1√
2
,− 1√

2

)T

that points along the first bar towards the first node, while the third and fourth entries
have the opposite signs, and form the unit vector

−n1 =
a2 − a1

‖a2 − a1 ‖
=
(

1√
2
, 1√

2

)T
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along the same bar that points in the opposite direction — towards the second node. The
remaining entries are zero because the first bar only connects the first two nodes. Similarly,
the unit vector along the second bar pointing towards node 2 is

n2 =
a2 − a3

‖a2 − a3 ‖
= (−1, 0 )

T
,

and this gives the third and fourth entries of the second row of A; the fifth and sixth entries
are their negatives, corresponding to the unit vector −n2 pointing towards node 3. The
last row is constructed from the unit vector in the direction of bar #3 in the same fashion.

Remark : Interestingly, the incidence matrix for a structure only depends on the di-
rections of the bars and not their lengths. This is analogous to the fact that the incidence
matrix for an electrical network only depends on the connectivity properties of the wires
and not on their overall lengths. Indeed, one can regard the incidence matrix for a structure
as a kind of d–dimensional generalization of the incidence matrix for a directed graph.

The next phase of our procedure is to introduce the constitutive relations for the bars
in our structure that determine their internal forces or stresses. As we remarked at the
beginning of the section, each bar is viewed as a very strong spring, subject to a linear
Hooke’s law equation

yk = ck ek (6.47)

that relates its elongation ek to its internal force yk. The bar stiffness ck > 0 is a positive
scalar, and so yk > 0 if the bar is in tension, while yk < 0 if the bar is compressed. In this
approximation, there is no bending and the bars will only experience external forcing at
the nodes. We write (6.47) in matrix form

y = C e,

where C = diag (c1, . . . , cm) > 0 is a diagonal, positive definite matrix.

Finally, we need to balance the forces at each node in order to achieve equilibrium.
If bar k terminates at node i, then it exerts a force − yk nk on the node, where nk is
the unit vector pointing towards the node in the direction of the bar, as in (6.44). The
minus sign comes from physics: if the bar is under tension, so yk > 0, then it is trying to
contract back to its unstressed state, and so will pull the node towards it — in the opposite
direction to nk — while a bar in compression will push the node away. In addition, we
may have an externally applied force vector, denoted by f i, on node i, which might be
some combination of gravity, weights, mechanical forces, and so on. (In this admittedly
simplified model, external forces only act on the nodes.) Force balance at equilibrium
requires that the sum of all the forces, external and internal, at each node cancel; thus,

f i +
∑

k

(− yknk) = 0, or
∑

k

yknk = f i,

where the sum is over all the bars that are attached to node i. The matrix form of the
force balance equations is (and this should no longer come as a surprise)

f = ATy, (6.48)
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Figure 6.7. A Triangular Structure.

where AT is the transpose of the incidence matrix, and f = ( f1, f2, . . . , fn )
T
∈ Rdn

is the vector containing all external force on the nodes. Putting everything together,
(6.45), (6.47), (6.48), i.e.,

e = Au, y = C e, f = ATy,

we once again are lead to our familiar linear system of equations

Ku = f , where K = ATC A. (6.49)

The stiffness matrix K is a positive (semi-)definite Gram matrix (3.51) associated with
the weighted inner product on the space of elongations prescribed by the diagonal matrix
C.

As we know, the stiffness matrix for our structure will be positive definite, K > 0, if
and only if the incidence matrix has trivial kernel: kerA = {0}. The preceding example,
and indeed all of these constructed so far, will not have this property, for the same reason
as in an electrical network — because we have not tied down (or “grounded”) our structure
anywhere. In essence, we are considering a structure floating in outer space, which is free
to move around without changing its shape. As we will see, each possible rigid motion
of the structure will correspond to an element of the kernel of its incidence matrix, and
thereby prevent positive definiteness of the structure matrix K.

Example 6.6. Consider a planar space station in the shape of a unit equilateral
triangle, as in Figure 6.7. Placing the nodes at positions

a1 =
(

1
2 ,

√
3

2

)T
, a2 = ( 1, 0 )

T
, a3 = ( 0, 0 )

T
,

we use the preceding algorithm to compute the incidence matrix

A =




1
2

√
3

2

−
1
2

√
3

2

0 0

∣∣∣∣∣∣∣

0 0
1
2 −

√
3

2

1 0

∣∣∣∣∣∣∣

−
1
2 −

√
3

2

0 0

− 1 0


 ,
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Figure 6.8. Rotating a Space Station.

whose rows are indexed by the bars, and whose columns are indexed in pairs by the three
nodes. The kernel of A is three-dimensional, with basis

z1 =




1

0

1

0

1

0




, z2 =




0

1

0

1

0

1




, z3 =




−

√
3

2
1
2

0

1

0

0




. (6.50)

These three displacement vectors correspond to three different planar rigid motions: the
first two correspond to translations, and the third to a rotation.

The translations are easy to discern. Translating the space station in a horizontal di-
rection means that we move all three nodes the same amount, and so the displacements are
u1 = u2 = u3 = a for some fixed vector a. In particular, a rigid unit horizontal translation

has a = e1 = ( 1, 0 )
T
, and corresponds to the first kernel basis vector. Similarly, a unit

vertical translation of all three nodes corresponds to a = e2 = ( 0, 1 )
T
, and corresponds to

the second kernel basis vector. Any other translation is a linear combination of these two.
Translations do not alter the lengths of any of the bars, and so do not induce any stress
in the structure.

The rotations are a little more subtle, owing to the linear approximation that we used
to compute the elongations. Referring to Figure 6.8, rotating the space station through a
small angle ε around the node a3 = ( 0, 0 )

T
will move the other two nodes to positions

b1 =

(
1
2 cos ε−

√
3

2 sin ε

1
2 sin ε+

√
3

2 cos ε

)
, b2 =

(
cos ε

sin ε

)
, b3 =

(
0

0

)
. (6.51)
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However, the corresponding displacements

u1 = b1 − a1 =

(
1
2 (cos ε− 1)−

√
3

2 sin ε

1
2 sin ε+

√
3

2 (cos ε− 1)

)
,

u2 = b2 − a2 =

(
cos ε− 1

sin ε

)
, u3 = b3 − a3 =

(
0

0

)
,

(6.52)

do not combine into a vector that belongs to kerA. The problem is that, under a rotation,
the nodes move along circles, while the kernel displacements u = ε z ∈ kerA correspond
to straight line motion! In order to maintain consistency, we must adopt a similar linear
approximation of the nonlinear circular motion of the nodes. Thus, we replace the nonlinear
displacements uj(ε) in (6.52) by their linear tangent approximations

† εu′j(0), and so

u1 ≈ ε

(
−

√
3

2
1
2

)
, u2 ≈ ε

(
0

1

)
, u3 =

(
0

0

)
.

The resulting displacements do combine to produce the displacement vector

u = ε
(
−

√
3

2
1
2 0 1 0 0

)T
= ε z3

that moves the space station in the direction of the third element of the kernel of the
incidence matrix! Thus, as claimed, z3 represents the linear approximation to a rigid
rotation around the first node.

Remarkably, the rotations around the other two nodes, although distinct nonlinear
motions, can be linearly approximated by particular combinations of the three kernel basis
elements z1, z2, z3, and so already appear in our description of kerA. For example, the
displacement vector

u = ε
(√

3
2 z1 +

1
2 z2 − z3

)
= ε

(
0 0

√
3

2 −
1
2

√
3

2
1
2

)T
(6.53)

represents the linear approximation to a rigid rotation around the first node. We conclude
that the three-dimensional kernel of the incidence matrix represents the sum total of all
possible rigid motions of the space station, or, more correctly, their linear approximations.

Which types of forces will maintain the space station in equilibrium? This will happen
if and only if we can solve the force balance equations

ATy = f (6.54)

for the internal forces y. The Fredholm Alternative Theorem 5.51 implies that the system
(6.54) has a solution if and only if f is orthogonal to cokerAT = kerA. Therefore, f =

† Note that uj(0) = 0.
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( f1 g1 f2 g2 f3 g3 )
T
must be orthogonal to the basis vectors (6.50), and so must satisfy

the three linear constraints

z1 · f = f1 + f2 + f3 = 0, z2 · f = g1 + g2 + g3 = 0, z3 · f =
√

3
2 f1 +

1
2 g1 + g3 = 0.

The first requires that there is no net horizontal force on the space station. The second
requires no net vertical force. The last constraint requires that the moment of the forces
around the first node vanishes. The vanishing of the force moments around each of the
other two nodes follows, since the associated kernel vectors can be expressed as linear
combinations of the three basis elements. The physical requirements are clear. If there is
a net horizontal or vertical force, the space station will rigidly translate in that direction;
if there is a non-zero force moment, the station will rigidly rotate. In any event, unless
the force balance equations are satisfied, the space station cannot remain in equilibrium.
A freely floating space station is in an unstable configuration and can easily be set into
motion.

Since there are three independent rigid motions, we need to impose three constraints
on the structure in order to stabilize it. “Grounding” one of the nodes, i.e., preventing it
from moving by attaching it to a fixed support, will serve to eliminate the two translational
instabilities. For example, setting u3 = 0 has the effect of fixing the third node of the space
station to a support. With this specification, we can eliminate the variables associated with
that node, and thereby delete the corresponding columns of the incidence matrix — leaving
the reduced incidence matrix

A? =




1
2

√
3

2 0 0

−
1
2

√
3

2
1
2 −

√
3

2

0 0 1 0


.

The kernel of A? is now only one-dimensional, spanned by the single vector

z?3 =
( √

3
2

1
2 0 1

)T
,

which corresponds to (the linear approximation of) the rotations around the fixed node. To
prevent the structure from rotating, we can also fix the second node, by further requiring
u2 = 0. This allows us to eliminate the third and fourth columns of the incidence matrix
and the resulting “doubly reduced” incidence matrix

A?? =




1
2

√
3

2

−
1
2

√
3

2

0 0


.

Now kerA?? = {0} is trivial, and hence the corresponding reduced stiffness matrix

K?? = (A??)TA?? =

(
1
2 −

1
2 0

√
3

2

√
3

2 0

)


1
2

√
3

2

−
1
2

√
3

2

0 0


 =

(
1
2 0

0 3
2

)
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Figure 6.9. Three Bar Structure with Fixed Supports.

is positive definite. The space station with two fixed nodes is a stable structure, which can
now support an arbitrary external forcing. (Forces on the fixed nodes now have no effect
since they are no longer allowed to move.)

In general, a planar structure without any fixed nodes will have at least a three-
dimensional kernel, corresponding to the rigid planar motions of translations and (linear
approximations to) rotations. To stabilize the structure, one must fix two (non-coincident)
nodes. A three-dimensional structure that is not tied to any fixed supports will admit 6
independent rigid motions in its kernel. Three of these correspond to rigid translations in
the three coordinate directions, while the other three correspond to linear approximations
to the rigid rotations around the three coordinate axes. To eliminate the rigid motion
instabilities of the structure, one needs to fix three non-collinear nodes; details can be
found in the exercises.

Even after attaching a sufficient number of nodes to fixed supports so as to eliminate
all possible rigid motions, there may still remain nonzero vectors in the kernel of the
reduced incidence matrix of the structure. These indicate additional instabilities in which
the shape of the structure can deform without any applied force. Such non-rigid motions
are known as mechanisms of the structure. Since a mechanism moves the nodes without
elongating any of the bars, it does not induce any internal forces. A structure that admits
a mechanism is unstable — even very tiny external forces may provoke a large motion.

Example 6.7. Consider the three bar structure of Example 6.5, but now with its
two ends attached to supports, as pictured in Figure 6.9. Since we are fixing nodes 1 and
4, setting u1 = u4 = 0, we should remove the first two and last column pairs from the
incidence matrix (6.46), leading to the reduced incidence matrix

A? =




1√
2

1√
2

− 1 0

0 0

∣∣∣∣∣∣∣

0 0

1 0

−
1√
2

1√
2


 .

The structure no longer admits any rigid motions. However, the kernel of A? is one-
dimensional, spanned by reduced displacement vector z? = ( 1 −1 1 1 )

T
, which cor-

responds to the unstable mechanism that displaces the second node in the direction
u2 = ( 1 −1 )

T
and the third node in the direction u3 = ( 1 1 )

T
. Geometrically, then,
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Figure 6.10. Reinforced Planar Structure.

z? represents the displacement where node 2 moves down and to the left at a 45◦ angle,
while node 3 moves simultaneously up and to the left at a 45◦ angle. This mechanism does
not alter the lengths of the three bars (at least in our linear approximation regime) and
so requires no net force to be set into motion.

As with the rigid motions of the space station, an external forcing vector f ? will
maintain equilibrium only when it lies in the corange of A?, and hence must be orthogonal
to all the mechanisms in kerA? = (corngA?)⊥. Thus, the nodal forces f 2 = ( f2, g2 )

T
and

f 3 = ( f3, g3 )
T
must satisfy the balance law

z? · f? = f2 − g2 + f3 + g3 = 0.

If this fails, the equilibrium equation has no solution, and the structure will move. For
example, a uniform horizontal force f2 = f3 = 1, g2 = g3 = 0, will induce the mechanism,
whereas a uniform vertical force, f2 = f3 = 0, g2 = g3 = 1, will maintain equilibrium. In
the latter case, the solution to the equilibrium equations

K?u? = f?, where K? = (A?)TA? =




3
2

1
2 −1 0

1
2

1
2 0 0

− 1 0 3
2 −

1
2

0 0 −
1
2

1
2


,

is indeterminate, since we can add in any element of kerK? = kerA?, so

u? = (−3 5 −2 0 )
T
+ t ( 1 −1 1 1 )

T
.

In other words, the equilibrium position is not unique, since the structure can still be
displaced in the direction of the unstable mechanism while maintaining the overall force
balance. On the other hand, the elongations and internal forces

y = e = A? u? = ( −
√

2 −1 −

√

2 )
T
,

are well-defined, indicating that, under our stabilizing uniform vertical force, all three bars
are compressed, with the two diagonal bars experiencing 41.4% more compression than
the horizontal bar.
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Remark : Just like the rigid rotations, the mechanisms described here are linear ap-
proximations to the actual nonlinear motions. In a physical structure, the vertices will
move along curves whose tangents at the initial configuration are the directions indicated
by the mechanism vector. In certain cases, a structure can admit a linear mechanism, but
one that cannot be physically realized due to the nonlinear constraints imposed by the
geometrical configurations of the bars. Nevertheless, such a structure is at best borderline
stable, and should not be used in any real-world applications that rely on stability of the
structure.

We can always stabilize a structure by first fixing nodes to eliminate rigid motions,
and then adding in extra bars to prevent mechanisms. In the preceding example, suppose
we attach an additional bar connecting nodes 2 and 4, leading to the reinforced structure
in Figure 6.10. The revised incidence matrix is

A =




−
1√
2
−

1√
2

0 0

0 0

0 0

∣∣∣∣∣∣∣∣∣∣

1√
2

1√
2

− 1 0

0 0

−
3√
10

1√
10

∣∣∣∣∣∣∣∣∣∣

0 0

1 0

−
1√
2

1√
2

0 0

∣∣∣∣∣∣∣∣∣∣

0 0

0 0
1√
2

−
1√
2

3√
10

−
1√
10




.

and is obtained from (6.46) by appending another row representing the added bar. When
nodes 1 and 4 are fixed, the reduced incidence matrix

A? =




1√
2

1√
2

0 0

− 1 0 1 0

0 0 −
1√
2

1√
2

−
3√
10

1√
10

0 0




has trivial kernel, kerA? = {0}, and hence the structure is stable. It admits no mech-
anisms, and can support any configuration of forces (within reason — very large forces
will take us outside the linear regime described by the model, and the structure may be
crushed!).

This particular case is statically determinate owing to the fact that the incidence
matrix is square and nonsingular, which implies that one can solve the force balance
equations (6.54) directly for the internal forces. For instance, a uniform downwards vertical
force f2 = f3 = 0, g2 = g3 = −1, e.g., gravity, will produce the internal forces

y1 = −
√

2, y2 = −1, y3 = −
√

2, y4 = 0

indicating that bars 1, 2 and 3 are experiencing compression, while, interestingly, the
reinforcing bar 4 remains unchanged in length and hence experiences no internal force.
Assuming the bars are all of the same material, and taking the elastic constant to be 1, so

1/12/04 221 c© 2003 Peter J. Olver



C = I , then the reduced stiffness matrix is

K? = (A?)TA? =




12
5

1
5 −1 0

1
5

3
5 0 0

− 1 0 3
2 −

1
2

0 0 −
1
2

1
2


.

The solution to the reduced equilibrium equations is

u? =
(
−

1
2 −

3
2 −

3
2 −

7
2

)T
, so u2 =

(
−

1
2 −

3
2

)T
, u3 =

(
−

3
2 −

7
2

)T
.

give the displacements of the two nodes under the applied force. Both are moving down
and to the left, with node 3 moving relatively farther owing to its lack of reinforcement.

Suppose we reinforce the structure yet further by adding in a bar connecting nodes 1
and 3. The resulting reduced incidence matrix

A? =




1√
2

1√
2

0 0

− 1 0 1 0

0 0 −
1√
2

1√
2

−
3√
10

1√
10

0 0

0 0 3√
10

1√
10




again has trivial kernel, kerA? = {0}, and hence the structure is stable. Indeed, adding
in extra bars to a stable structure cannot cause it to lose stability. (In matrix language,
appending additional rows to a matrix cannot increase the size of its kernel, cf. Exercise .)
Since the incidence matrix is rectangular, the structure is now statically indeterminate and
we cannot determine the internal forces without first solving the full equilibrium equations
(6.49) for the displacements. The stiffness matrix is

K? = (A?)TA? =




12
5

1
5 −1 0

1
5

3
5 0 0

− 1 0 12
5 −

1
5

0 0 −
1
5

3
5


.

For the same uniform vertical force, the displacement u? = (K?)−1f? is

u? =
(

1
10 −

17
10 −

1
10 −

17
10

)T
,

so that the free nodes now move symmetrically down and towards the center of the struc-
ture. The internal forces on the bars are

y1 = −
4
5

√

2, y2 = −
1
5 , y3 = −

4
5

√

2, y4 = −
√

2
5 , y5 = −

√
2
5 .

All five bars are now experiencing compression, the two outside bars being the most
stressed, the reinforcing bars slightly more than half that, while the center bar feels less
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Figure 6.11. A Swing Set.

than a fifth the stress that the outside bars experience. This simple computation should
already indicate to the practicing construction engineer which of the bars in our structure
are more likely to collapse under an applied external force. By comparison, the reader can
investigate what happens under a uniform horizontal force.

Summarizing our discussion, we have established the following fundamental result
characterizing the stability and equilibrium of structures.

Theorem 6.8. A structure is stable, and will maintain an equilibrium under ar-

bitrary external forcing, if and only if its reduced incidence matrix A? has linearly in-

dependent columns, or, equivalently, kerA? = {0}. More generally, an external force f ?

on a structure will maintain equilibrium if and only if f ? ∈ (kerA?)⊥, which means that
the external force is orthogonal to all rigid motions and all mechanisms admitted by the

structure.

Example 6.9. A swing set is to be constructed, consisting of two diagonal supports
at each end and a horizontal cross bar. Is this configuration stable, i.e., can a child swing
on it without it collapsing? The movable joints are at positions

a1 = ( 1, 1, 3 )
T

, a2 = ( 4, 1, 3 )
T

.

The four fixed supports are at positions

a3 = ( 0, 0, 0 )
T

, a4 = ( 0, 2, 0 )
T

, a5 = ( 5, 0, 0 )
T

, a6 = ( 5, 2, 0 )
T

.

The reduced incidence matrix for the structure is calculated in the usual manner:

A? =




1√
11

1√
11

3√
11

1√
11

−
1√
11

3√
11

− 1 0 0

0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0

0 0 0

1 0 0

−
1√
11

1√
11

3√
11

−
1√
11

−
1√
11

3√
11




.

For instance, the first three entries contained in the first row refer to the unit vector

n1 =
a1 − a3

‖a1 − a3 ‖
in the direction of the bar going from a3 to a1. Suppose the three bars
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have the same stiffness, and so (taking c1 = · · · = c5 = 1) the reduced stiffness matrix for
the structure is

K? = (A?)TA? =




13
11 0 6

11 −1 0 0

0 2
11 0 0 0 0

6
11 0 18

11 0 0 0

− 1 0 0 13
11 0 −

6
11

0 0 0 0 2
11 0

0 0 0 −
6
11 0 18

11




We find kerK? = kerA? is one-dimensional, with basis

z? = ( 3 0 −1 3 0 1 )
T
,

which indicates a mechanism that causes the swing set to collapse: the first node moves
up and to the right, while the second node moves down and to the right, the horizontal
motion being three times as large as the vertical. The structure can support forces f 1 =

( f1, g1, h1 )
T
, f 2 = ( f2, g2, h2 )

T
, if and only if the combined force vector f ? is orthogonal

to the mechanism vector z?, and so

3 (f1 + f2)− h1 + h2 = 0.

Thus, as long as the net horizontal force is in the y direction and the vertical forces on the
two joints are equal, the structure will maintain its shape. Otherwise, a reinforcing bar,
say from a1 to a6 (although this will interfere with the swinging!) or a pair of bars from
the nodes to two new ground supports, will be required to completely stabilize the swing.

For a uniform downwards unit vertical force, f = ( 0, 0,−1, 0, 0,−1 )
T
, a particular

solution to (6.11) is

u? =
(

13
6 0 −

4
3

11
6 0 0

)T

and the general solution u = u?+ t z? is obtained by adding in an arbitrary element of the
kernel. The resulting forces/elongations are uniquely determined,

y = e = A? u = A? u? =
(
−

√
11
6 −

√
11
6 −

1
3 −

√
11
6 −

√
11
6

)T
,

so that every bar is compressed, the middle one experiencing slightly more than half the
stress of the outer supports.

If we stabilize the structure by adding in two vertical supports at the nodes, then the
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new reduced incidence matrix

A? =




1√
11

1√
11

3√
11

0 0 0

1√
11

−
1√
11

3√
11

0 0 0

− 1 0 0 1 0 0

0 0 0 −
1√
11

1√
11

3√
11

0 0 0 −
1√
11

−
1√
11

3√
11

0 0 1 0 0 0

0 0 0 0 0 1




has trivial kernel, indicating stabilization of the structure. The reduced stiffness matrix

K? =




13
11 0 6

11 −1 0 0

0 2
11 0 0 0 0

6
11 0 29

11 0 0 0

− 1 0 0 13
11 0 −

6
11

0 0 0 0 2
11 0

0 0 0 −
6
11 0 29

11




is only slightly different than before, but this is enough to make it positive definite, K? > 0,
and so allow arbitrary external forcing without collapse. Under the uniform vertical force,
the internal forces are

y = e = A? u =
(
−

√
11

10 −

√
11

10 −
1
5 −

√
11

10 −

√
11

10 −
2
5 −

2
5

)T
.

Note the overall reductions in stress in the original bars; the two new vertical bars are now
experiencing the largest amount of stress.
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Chapter 7

Linear Functions and Linear Systems

We began this book by learning how to systematically solve systems of linear algebraic
equations. This “elementary” problem formed our launching pad for developing the funda-
mentals of linear algebra. In its initial form, matrices and vectors were the primary focus
of our study, but the theory was developed in a sufficiently general and abstract form that
it can be immediately applied to many other important situations — particularly infinite-
dimensional function spaces. Indeed, applied mathematics deals, not just with algebraic
equations, but also differential equations, difference equations, integral equations, integro-
differential equations, differential delay equations, control systems, and many, many other
types of systems — not all of which, unfortunately, can be adequately developed in this
introductory text. It is now time to assemble what we have learned about linear matrix
systems and place the results in a suitably general framework that will lead to insight into
the fundamental principles that govern completely general linear problems.

The most basic underlying object of linear systems theory is the vector space, and
we have already seen that the elements of vector spaces can be vectors, or functions, or
even vector-valued functions. The seminal ideas of span, linear independence, basis and
dimension are equally applicable and equally vital in more general contexts, particularly
function spaces. Just as vectors in Euclidean space are prototypes of general elements
of vector spaces, matrices are also prototypes of much more general objects, known as
linear functions. Linear functions are also known as linear maps or linear operators,
particularly when we deal with function spaces, and include linear differential operators,
linear integral operators, evaluation of a function or its derivative at a point, and many
other basic operations on functions. Generalized functions, such as the delta function to
be introduced in Chapter 11, are, in fact, properly formulated as linear operators on a
suitable space of functions. As such, linear maps form the simplest class of functions on
vector spaces. Nonlinear functions can often be closely approximated by linear functions,
generalizing the calculus approximation of a function by its tangent line. As a result, linear
functions must be thoroughly understood before any serious progress can be made in the
vastly more complicated nonlinear world.

In geometry, linear functions are interpreted as linear transformations of space (or
space-time), and, as such, lie at the foundations of motion of bodies, computer graph-
ics and games, and the mathematical formulation of symmetry. Most basic geometrical
transformations, including rotations, scalings, reflections, projections, shears and so on,
are governed by linear transformations. However, translations require a slight general-
ization, known as an affine function. Linear operators on infinite-dimensional function
spaces are the basic objects of quantum mechanics. Each quantum mechanical observable
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(mass, energy, momentum) is formulated as a linear operator on an infinite-dimensional
Hilbert space — the space of wave functions or states of the system. The dynamics of the
quantum mechanical system is governed by the linear Schrödinger equation, [100, 104].
It is remarkable that quantum mechanics is an entirely linear theory, whereas classical
and relativistic mechanics are inherently nonlinear! The holy grail of modern physics —
the unification of general relativity and quantum mechanics — is to resolve the apparent
incompatibility of the microscopic and macroscopic physical regimes.

A linear system is just an equation satisfied by a linear function. The most basic
linear system is a system of linear algebraic equations. Linear systems also include linear
differential equations, linear boundary value problems, linear partial differential equations,
and many, many others in a common conceptual framework. The fundamental idea of linear
superposition and the relation between the solutions to inhomogeneous and homogeneous
systems underlie the structure of the solution space of all linear systems. You have no doubt
encountered many of these ideas in your first course on ordinary differential equations;
they have also already appeared in our development of the theory underlying the solution
of linear algebraic systems. The second part of this book will be devoted to solution
techniques for particular classes of linear systems arising in applied mathematics.

7.1. Linear Functions.

We begin our study of linear functions with the basic definition. For simplicity, we shall
concentrate on real linear functions between real vector spaces. Extending the concepts
and constructions to complex linear functions on complex vector spaces is not difficult,
and will be dealt with later.

Definition 7.1. Let V and W be real vector spaces. A function L:V → W is called
linear if it obeys two basic rules:

L[v +w ] = L[v ] + L[w ], L[cv ] = cL[v ], (7.1)

We will call V the domain space and W the target space† for L.

In particular, setting c = 0 in the second condition implies that a linear function
always maps the zero element in V to the zero element in W , so

L[0 ] = 0. (7.2)

We can readily combine the two defining conditions into a single rule

L[cv + dw ] = cL[v ] + dL[w ], for all v,w ∈ V, c, d ∈ R, (7.3)

that characterizes linearity of a function L. An easy induction proves that a linear function
respects linear combinations, so

L[c1v1 + · · · + ckvk ] = c1 L[v1 ] + · · · + ckL[vk ] (7.4)

† The term “target” is used here to avoid later confusion with the range of L, which, in general,
is a subspace of the target vector space W .
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for any c1, . . . , ck ∈ R and v1, . . . ,vk ∈ V .

The interchangeable terms linear map, linear operator and, when V = W , linear
transformation are all commonly used as alternatives to “linear function”, depending on
the circumstances and taste of the author. The term “linear operator” is particularly
useful when the underlying vector space is a function space, so as to avoid confusing the
two different uses of the word “function”. As usual, we will sometimes refer to the elements
of a vector space as “vectors” even though they might be functions or matrices or something
else, depending upon the vector space being considered.

Example 7.2. The simplest linear function is the zero function L[v ] ≡ 0 which
maps every element v ∈ V to the zero vector in W . Note that, in view of (7.2), this is
the only constant linear function. A nonzero constant function is not , despite its evident
simplicity, linear. Another simple but important linear function is the identity function
I = I V :V → V which leaves every vector unchanged: I [v ] = v. Slightly more generally,
the operation of scalar multiplication Ma[v ] = av by a fixed scalar a ∈ R defines a linear
function from V to itself.

Example 7.3. Suppose V = R. We claim that every linear function L:R → R has
the form

y = L(x) = ax,

for some constant a. Indeed, writing x ∈ R as a scalar product x = x · 1, and using the
second property in (7.1), we find

L(x) = L(x · 1) = x · L(1) = ax, where a = L(1).

Therefore, the only scalar linear functions are those whose graph is a straight line passing
through the origin.

Warning : Even though the graph of the function

y = ax+ b, (7.5)

is a straight line, this is not a linear function — unless b = 0 so the line goes through
the origin. The correct name for a function of the form (7.5) is an affine function; see
Definition 7.20 below.

Example 7.4. Let V = Rn and W = Rm. Let A be an m × n matrix. Then the
function L[v ] = Av given by matrix multiplication is easily seen to be a linear function.
Indeed, the requirements (7.1) reduce to the basic distributivity and scalar multiplication
properties of matrix multiplication:

A(v +w) = Av +Aw, A(cv) = cAv, for all v,w ∈ Rn, c ∈ R.

In fact, every linear function between two Euclidean spaces has this form.

Theorem 7.5. Every linear function L:Rn
→ Rm is given by matrix multiplication,

L[v ] = Av, where A is an m× n matrix.
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L

Figure 7.1. Linear Function on Euclidean Space.

Warning : Pay attention to the order of m and n. While A has size m× n, the linear
function L goes from Rn to Rm.

Proof : The key idea is to look at what the linear function does to the basis vectors.
Let e1, . . . , en be the standard basis of R

n, and let ê1, . . . , êm be the standard basis of R
m.

(We temporarily place hats on the latter to avoid confusing the two.) Since L[ej ] ∈ Rm,
we can write it as a linear combination of the latter basis vectors:

L[ej ] = aj =




a1j

a2j

...
amj


 = a1j ê1 + a2j ê2 + · · · + amj êm, j = 1, . . . , n. (7.6)

Let us construct the m× n matrix

A = (a1 a2 . . . an ) =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 (7.7)

whose columns are the image vectors (7.6). Using (7.4), we then compute the effect of L

on a general vector v = ( v1, v2, . . . , vn )
T
∈ Rn:

L[v ]= L[v1 e1 + · · ·+ vn en ] = v1 L[e1 ] + · · ·+ vnL[en ] = v1a1 + · · ·+ vnan = Av.

The final equality follows from our basic formula (2.14) connecting matrix multiplication
and linear combinations. We conclude that the vector L[v ] coincides with the vector Av

obtained by multiplying v by the coefficient matrix A. Q.E.D.

The proof of Theorem 7.5 shows us how to construct the matrix representative of
a given linear function L:Rn

→ Rm. We merely assemble the image column vectors
a1 = L[e1 ], . . . ,an = L[en ] into an m× n matrix A.

Example 7.6. In the case of a function from Rn to itself, the two basic linearity
conditions (7.1) have a simple geometrical interpretation. Since vector addition is the
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Figure 7.2. Linearity of Rotations.

same as completing the parallelogram indicated in Figure 7.1, the first linearity condition
requires that L map parallelograms to parallelograms. The second linearity condition says
that if we stretch a vector by a factor c, then its image under L must also be stretched by
the same amount. Thus, one can often detect linearity by simply looking at the geometry
of the function.

As a specific example, consider the function Rθ:R
2
→ R2 that rotates the vectors in

the plane around the origin by a specified angle θ. This geometric transformation clearly
preserves parallelograms, as well as stretching — see Figure 7.2 — and hence defines a
linear function. In order to find its matrix representative, we need to find out where the
basis vectors e1, e2 are mapped. Referring to Figure 7.3, we have

Rθ[e1 ] = cos θ e1 + sin θ e2 =

(
cos θ
sin θ

)
, Rθ[e2 ] = − sin θ e1 + cos θ e2 =

(
− sin θ

cos θ

)
.

According to the general recipe (7.7), we assemble these two column vectors to obtain the
matrix form of the rotation transformation, and so

Rθ[v ] = Aθ v, where Aθ =

(
cos θ − sin θ

sin θ cos θ

)
. (7.8)

Therefore, rotating a vector v =

(
x

y

)
through angle θ gives the vector

v̂ = Rθ[v ] = Aθ v =

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
=

(
x cos θ − y sin θ

x sin θ + y cos θ

)

with coordinates

x̂ = x cos θ − y sin θ, ŷ = x sin θ + y cos θ.

These formulae can be proved directly, but, in fact, are a consequence of the underlying
linearity of rotations.
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θ

θ

e1

e2

Figure 7.3. Rotation in R2.

Linear Operators

So far, we have concentrated on linear functions on Euclidean space, and discovered
that they are all represented by matrices. For function spaces, there is a much wider
variety of linear operators available, and a complete classification is out of the question.
Let us look at some of the main representative examples that arise in applications.

Example 7.7. (i) Recall that C0[a, b ] denotes the vector space consisting of all
continuous functions on the interval [a, b ]. Evaluation of the function at a point, L[f ] =
f(x0), defines a linear operator L: C0[a, b ]→ R, because

L[cf + dg ] = c f(x0) + d g(x0) = cL[f ] + dL[g ]

for any functions f, g ∈ C0[a, b ] and scalars (constants) c, d.

(ii) Another real-valued linear function is the integration operator

I[f ] =

∫ b

a

f(x) dx. (7.9)

Linearity of I is an immediate consequence of the basic integration identity

∫ b

a

[
cf(x) + dg(x)

]
dx = c

∫ b

a

f(x) dx + d

∫ b

a

g(x) dx,

which is valid for arbitrary integrable — which includes continuous — functions f, g and
scalars c, d.

(iii) We have already seen that multiplication of functions by a fixed scalar f(x) 7→
c f(x) defines a linear mapMc: C

0[a, b ]→ C0[a, b ]; the particular case c = 1 reduces to the
identity transformation I = M1. More generally, if a(x) ∈ C0[a, b ] is a fixed continuous
function, then the operation Ma[f(x) ] = a(x) f(x) of multiplication by a also defines a
linear transformation Ma: C

0[a, b ]→ C0[a, b ].

(iv) Another important linear transformation is the indefinite integral

J [f ] =

∫ x

a

f(y) dy. (7.10)

According to the Fundamental Theorem of Calculus, the integral of a continuous function is
continuously differentiable; therefore, J : C0[a, b ]→ C1[a, b ] defines a linear operator from
the space of continuous functions to the space of continuously differentiable functions.
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(v) Vice versa, differentiation of functions is also a linear operation. To be precise,
since not every continuous function can be differentiated, we take the domain space to be
the vector space C1[a, b ] of continuously differentiable functions on the interval [a, b ]. The
derivative operator

D[f ] = f ′ (7.11)

defines a linear operator D: C1[a, b ] → C0[a, b ]. This follows from the elementary differ-
entiation formula

D[cf + dg ] = (cf + dg)′ = cf ′ + dg ′ = cD[f ] + dD[g ],

valid whenever c, d are constant.

The Space of Linear Functions

Given vector spaces V,W , we use L(V,W ) to denote the set of all† linear functions
L:V → W . We claim that L(V,W ) is itself a vector space. We add two linear functions
L,M ∈ L(V,W ) in the same way we add general functions: (L+M)[v ] = L[v ] +M [v ].
You should check that L+M satisfies the linear function axioms (7.1) provided L andM do.
Similarly, multiplication of a linear function by a scalar c ∈ R is defined so that (cL)[v ] =
cL[v ], again producing a linear function. The verification that L(V,W ) satisfies the basic
vector space axioms is left to the reader.

In particular, if V = Rn and W = Rm, then Theorem 7.5 implies that we can identify
L(Rn, Rm ) with the space Mm×n of all m × n matrices. Addition of linear functions
corresponds to matrix addition, while scalar multiplication coincides with the usual scalar
multiplication of matrices. Therefore, the space of all m × n matrices forms a vector
space — a fact we already knew. A basis for Mm×n is given by the mn matrices Eij ,
1 ≤ i ≤ m, 1 ≤ j ≤ n, which have a single 1 in the (i, j) position and zeros everywhere
else. Therefore, the dimension ofMm×n is mn. Note that Eij corresponds to the specific
linear transformation mapping ej ∈ Rn to êi ∈ Rm and every other ek ∈ Rn to zero.

Example 7.8. The space of linear transformations of the plane, L(R2, R2 ) is iden-

tified with the spaceM2×2 of 2× 2 matrices A =

(
a b

c d

)
. The standard basis ofM2×2

consists of the 4 = 2 · 2 matrices

E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
.

Indeed, we can uniquely write any other matrix

A =

(
a b

c d

)
= aE11 + bE12 + cE21 + dE22,

as a linear combination of these four basis matrices.

† In infinite-dimensional situations, one usually imposes additional restrictions, e.g., continuity
or boundedness of the linear operators. We can safely relegate these more subtle distinctions to a
more advanced treatment of the subject. See [122] for a full discussion of the rather sophisticated
analytical details, which do play an important role in serious quantum mechanical applications.
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A particularly important case is when the target space of the linear functions is R.

Definition 7.9. The dual space to a vector space V is defined as the vector space
V ∗ = L(V, R) consisting of all real-valued linear functions L:V → R.

If V = Rn, then every linear function L:Rn
→ R is given by multiplication by a 1×n

matrix, i.e., a row vector. Explicitly,

L[v ] = av = a1 v1 + · · · + an vn, where a = ( a1 a2 . . . an ), v =




v1

v2
...

vn


.

Therefore, we can identify the dual space (Rn)∗ with the space of row vectors with n

entries. In light of this observation, the distinction between row vectors and column
vectors is now seen to be much more sophisticated than mere semantics or notation. Row
vectors should be viewed as real-valued linear functions — the dual objects to column
vectors.

The standard dual basis ε1, . . . , εn of (R
n)∗ consists of the standard row basis vectors,

namely εj is the row vector with 1 in the jth slot and zeros elsewhere. The jth dual basis
element defines the linear function

Ej [v ] = εj v = vj ,

that picks off the jth coordinate of v — with respect to the original basis e1, . . . , en. Thus,
the dimension of V = Rn and its dual (Rn)∗ are both equal to n.

An inner product structure provides a mechanism for identifying a vector space and
its dual. However, it should be borne in mind that this identification will depend upon
the choice of inner product.

Theorem 7.10. Let V be a finite-dimensional real inner product space. Then every

linear function L:V → R is given by an inner product

L[v ] = 〈a ;v 〉 (7.12)

with a unique vector a ∈ V . The correspondence between L and a allows us to identify

V ∗ ' V .

Proof : Let u1, . . . ,un be an orthonormal basis of V . (If necessary, we can use the
Gram–Schmidt process to generate such a basis.) If we write v = x1u1+ · · ·+xnun, then,
by linearity,

L[v ] = x1L[u1 ] + · · · + xnL[un ] = a1 x1 + · · · + anxn,

where ai = L[ui ]. On the other hand, if we write a = a1u1 + · · · + anun, then, by
orthonormality of the basis,

〈a ;v 〉 =
n∑

i,j=1

aixj〈ui ;uj 〉 = a1 x1 + · · · + anxn.

Thus equation (7.12) holds, which completes the proof. Q.E.D.
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Remark : In the particular case when V = Rn is endowed with the standard dot
product, then Theorem 7.10 identifies a row vector representing a linear function with
the corresponding column vector obtained by transposition a 7→aT . Thus, the näıve
identification of a row and a column vector is, in fact, an indication of a much more subtle
phenomenon that relies on the identification of Rn with its dual based on the Euclidean
inner product. Alternative inner products will lead to alternative, more complicated,
identifications of row and column vectors; see Exercise for details.

Important : Theorem 7.10 is not true if V is infinite-dimensional. This fact will have
important repercussions for the analysis of the differential equations of continuum mechan-
ics, which will lead us immediately into the much deeper waters of generalized function
theory. Details will be deferred until Section 11.2.

Composition of Linear Functions

Besides adding and multiplying by scalars, one can also compose linear functions.

Lemma 7.11. Let V,W,Z be vector spaces. If L:V → W and M :W → Z are linear

functions, then the composite function M ◦L:V → Z, defined by (M ◦L)[v ] = M [L[v ] ]
is linear.

Proof : This is straightforward:

(M ◦L)[cv + dw ] =M [L[cv + dw ] ] =M [cL[v ] + dL[w ] ]

= cM [L[v ] ] + dM [L[w ] ] = c (M ◦L)[v ] + d (M ◦L)[w ],

where we used, successively, the linearity of L and then of M . Q.E.D.

For example, if L[v ] = Av maps Rn to Rm, and M [w ] = Bw maps Rm to Rl, so
that A is an m× n matrix and B is a l ×m matrix, then

(M ◦L)[v ] =M [L[v ] ] = B(Av) = (BA)v,

and hence the composition M ◦L:Rn
→ Rl corresponds to the l × n product matrix BA.

In other words, on Euclidean space, composition of linear functions is the same as matrix
multiplication!

As with matrix multiplication, composition of (linear) functions is not commutative.
In general the order of the constituents makes a difference.

Example 7.12. Composing two rotations gives another rotation: Rϕ
◦Rθ = Rϕ+θ.

In other words, if we first rotate by angle θ and then by angle ϕ, the net result is rotation
by angle ϕ+θ. On the matrix level of (7.8), this implies that Aϕ ·Aθ = Aϕ+θ, or, explicitly,

(
cosϕ − sinϕ

sinϕ cosϕ

) (
cos θ − sin θ

sin θ cos θ

)
=

(
cos(ϕ+ θ) − sin(ϕ+ θ)
sin(ϕ+ θ) cos(ϕ+ θ)

)
.

Multiplying out the left hand side, we deduce the well-known trigonometric addition for-
mulae

cos(ϕ+ θ) = cosϕ cos θ − sinϕ sin θ, sin(ϕ+ θ) = cosϕ sin θ + sinϕ cos θ.

In fact, this computation constitutes a bona fide proof of these two identities!
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Example 7.13. One can build up more sophisticated linear operators on function
space by adding and composing simpler ones. In particular, the linear higher order deriva-
tive operators are obtained by composing the derivative operator D, defined in (7.11), with
itself. For example,

D2[f ] = D ◦D[f ] = D[f ′ ] = f ′′

is the second derivative operator. One needs to exercise some care about the domain of
definition, since not every function is differentiable. In general,

Dk[f ] = f (k)(x) defines a linear operator Dk : Cn[a, b ] −→ Cn−k[a, b ]

for any n ≥ k.

If we compose Dk with the linear operation of multiplication by a fixed function
a(x) ∈ Cn−k[a, b ] we obtain the linear operator f(x) 7→aDk[f ] = a(x) f (k)(x). Finally, a
general linear ordinary differential operator of order n

L = an(x)D
n + an−1(x)D

n−1 + · · · + a1(x)D + a0(x) (7.13)

is obtained by summing such linear operators. If the coefficient functions a0(x), . . . , an(x)
are continuous, then

L[u ] = an(x)
dnu

dxn
+ an−1(x)

dn−1u

dxn−1
+ · · · + a1(x)

du

dx
+ a0(x)u (7.14)

defines a linear operator from Cn[a, b ] to C0[a, b ]. The most important case — but cer-
tainly not the only one arising in applications — is when the coefficients ai(x) = ci of L

are all constant.

Inverses

The inverse of a linear function is defined in direct analogy with the Definition 1.13
of the inverse of a (square) matrix.

Definition 7.14. Let L:V → W be a linear function. If M :W → V is a linear
function such that both composite functions

L ◦M = IW , M ◦L = I V , (7.15)

are equal to the identity function, then we call M the inverse of L and write M = L−1.

The two conditions (7.15) require

L[M [w ] ] = w for all w ∈ W, and M [L[v ] ] = v for all v ∈ V.

Of course, if M = L−1 is the inverse of L, then L = M−1 is the inverse of M since the
conditions are symmetric.

If V = Rn, W = Rm, so that L and M are given by matrix multiplication, by A and
B respectively, then the conditions (7.15) reduce to the usual conditions

AB = I , B A = I ,

for matrix inversion, cf. (1.33). Therefore B = A−1 is the inverse matrix. In particular,
for L to have an inverse, we need m = n and its coefficient matrix A to be square and
nonsingular.
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Figure 7.4. Rotation.

Example 7.15. The Fundamental Theorem of Calculus says, roughly, that differen-

tiation D[f ] = f ′ and (indefinite) integration J [f ] =

∫ x

a

f(y) dy are “inverse” operations.

More precisely, the derivative of the indefinite integral of f is equal to f , and hence

D[J [f(x) ] ] =
d

dx

∫ x

a

f(y) dy = f(x).

In other words, the composition
D ◦J = IC0[a,b ]

defines the identity operator on the function space C0[a, b ]. On the other hand, if we
integrate the derivative of a continuously differentiable function f ∈ C1[a, b ], we obtain

J [D[f(x) ] ] = J [f ′(x) ] =

∫ x

a

f ′(y) dy = f(x)− f(a).

Therefore
J [D[f(x) ] ] = f(x)− f(a), and so J ◦D 6= IC1[a,b ]

is not the identity operator. Therefore, differentiation, D, is a left inverse for integration,
J , but not a right inverse!

This perhaps surprising phenomenon could not be anticipated from the finite-dimensional
matrix theory. Indeed, if a matrix A has a left inverse B, then B is automatically a right
inverse too, and we write B = A−1 as the inverse of A. On an infinite-dimensional vector
space, a linear operator may possess one inverse without necessarily the other. However,
if both a left and a right inverse exist they must be equal; see Exercise .

If we restrict D to the subspace V = { f | f(a) = 0 } ⊂ C1[a, b ] consisting of all contin-
uously differentiable functions that vanish at the left hand endpoint, then J : C0[a, b ]→ V ,
and D:V → C0[a, b ] are, by the preceding argument, inverse linear operators: D ◦J =
IC0[a,b ], and J ◦D = I V . Note that V ( C1[a, b ]( C0[a, b ]. Thus, we discover the curious
and disconcerting infinite-dimensional phenomenon that J defines a one-to-one, invertible,
linear map from a vector space C0[a, b ] to a proper subspace V (C0[a, b ]. This paradoxical
situation cannot occur in finite dimensions. A linear map on a finite-dimensional vector
space can only be invertible when the domain and target spaces have the same dimension,
and hence its matrix is necessarily square!

7.2. Linear Transformations.
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Figure 7.5. Reflection through the y axis.

A linear function L:Rn
→ Rn that maps n-dimensional Euclidean space to itself de-

fines a linear transformation. As such, it can be assigned a geometrical interpretation that
leads to further insight into the nature and scope of linear functions. The transformation
L maps a point x ∈ Rn to its image point L[x ] = Ax, where A is its n × n matrix rep-
resentative. Many of the basic maps that appear in geometry, in computer graphics and
computer gaming, in deformations of elastic bodies, in symmetry and crystallography, and
in Einstein’s special relativity, are defined by linear transformations. The two-, three- and
four-dimensional (viewing time as a fourth dimension) cases are of particular importance.

Most of the important classes linear transformations already appear in the two-dim-
ensional case. Every linear function L:R2

→ R2 has the form

L

(
x

y

)
=

(
ax+ by

cx+ dy

)
, where A =

(
a b

c d

)
(7.16)

is an arbitrary 2× 2 matrix. We have already encountered the rotation matrices

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (7.17)

whose effect is to rotate every vector in R2 through an angle θ; in Figure 7.4 we illustrate
the effect on a couple of square regions in the plane. Planar rotation matrices coincide
with the 2× 2 proper orthogonal matrices, meaning matrices Q that satisfy

QTQ = I , detQ = +1. (7.18)

The improper orthogonal matrices, i.e., those with determinant −1, define reflections. For
example, the matrix

A =

(
−1 0
0 1

)
corresponds to the linear transformation L

(
x

y

)
=

(
−x

y

)
, (7.19)

which reflects the plane through the y axis; see Figure 7.5. It can be visualized by thinking
of the y axis as a mirror. Another simple example is the improper orthogonal matrix

R =

(
0 1
1 0

)
. The corresponding linear transformation L

(
x

y

)
=

(
y

x

)
(7.20)

is a reflection through the diagonal line y = x, as illustrated in Figure 7.6.
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Figure 7.6. Reflection through the Diagonal.

Figure 7.7. A Three–Dimensional Rotation.

A similar bipartite classification of orthogonal matrices carries over to three-dimensional
(and even higher dimensional) space. The proper orthogonal matrices correspond to rota-
tions and the improper to reflections, or, more generally, reflections combined with rota-

tions. For example, the proper orthogonal matrix



cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 corresponds to a

rotation through an angle θ around the z–axis, while



cosϕ 0 − sinϕ

0 1 0
sinϕ 0 cosϕ


 corresponds

to a rotation through an angle ϕ around the y–axis. In general, a proper orthogonal ma-
trix Q = (u1 u2 u3 ) with columns ui = Qei corresponds to the rotation in which the
standard basis vectors e1, e2, e3 are rotated to new positions given by the orthonormal
basis u1,u2,u3. It can be shown — see Exercise — that every 3× 3 orthogonal matrix
corresponds to a rotation around a line through the origin in R3 — the axis of the rotation,
as sketched in Figure 7.7.

Since the product of two (proper) orthogonal matrices is also (proper) orthogonal,
this implies that the composition of two rotations is also a rotation. Unlike the planar
case, the order in which the rotations are performed is important! Multiplication of n× n

orthogonal matrices is not commutative for n ≥ 3. For example, rotating first around the
z–axis and then rotating around the y–axis does not have the same effect as first rotating
around the y–axis and then rotating first around the z–axis. If you don’t believe this,
try it out with a solid object, e.g., this book, and rotate through 90◦, say, around each
axis; the final configuration of the book will depend upon the order in which you do the
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Figure 7.8. Stretch along the x–axis.

Figure 7.9. Shear in the x direction.

rotations. Then prove this mathematically by showing that the two rotation matrices do
not commute.

Other important linear transformations arise from elementary matrices. First, the
elementary matrices corresponding to the third type of row operations — multiplying a
row by a scalar — correspond to simple stretching transformations. For example, if

A =

(
2 0
0 1

)
, then the linear transformation L

(
x

y

)
=

(
2x
y

)

has the effect of stretching along the x axis by a factor of 2; see Figure 7.8. A matrix with
a negative diagonal entry corresponds to a reflection followed by a stretch. For example,
the elementary matrix (7.19) gives an example of a pure reflection, while the more general
elementary matrix (

−2 0
0 1

)
=

(
2 0
0 1

)(
−1 0
0 1

)

can be written as the product of a reflection through the y axis followed by a stretch along
the x axis. In this case, the order of these operations is immaterial.

For 2×2 matrices, there is only one type of row interchange matrix, namely the matrix
(7.20) that yields a reflection through the diagonal y = x. The elementary matrices of Type
#1 correspond to shearing transformations of the plane. For example, the matrix

(
1 2
0 1

)
represents the linear transformation L

(
x

y

)
=

(
x+ 2y

y

)
,

which has the effect of shearing the plane along the x–axis. The constant 2 will be called
the shear factor , which can be either positive or negative. Each point moves parallel to
the x axis by an amount proportional to its (signed) distance from the axis; see Figure 7.9.
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Similarly, the elementary matrix

(
1 0
−3 1

)
represents the linear transformation L

(
x

y

)
=

(
x

y − 3x

)
,

which represents a shear along the y axis. Shears map rectangles to parallelograms; dis-
tances are altered, but areas are unchanged.

All of the preceding linear maps are invertible, and so represented by nonsingular
matrices. Besides the zero map/matrix, which sends every point x ∈ R2 to the origin, the
simplest singular map is

(
1 0
0 0

)
corresponding to the linear transformation L

(
x

y

)
=

(
x

0

)
,

which is merely the orthogonal projection of the vector (x, y )
T
onto the x–axis. Other

rank one matrices represent various kinds of projections from the plane to a line through
the origin; see Exercise for details.

A similar classification of linear maps appears in higher dimensions. The linear trans-
formations constructed from elementary matrices can be built up from the following four
basic types: (i) A stretch in a single coordinate direction.

(ii) A reflection through a coordinate plane.

(iii) A reflection through a diagonal plane,

(iv) A shear along a coordinate axis.

Moreover, we already proved that every nonsingular matrix can be written as a product
of elementary matrices; see (1.41). This has the remarkable consequence that every linear
transformation can be constructed from a sequence of elementary stretches, reflections, and
shears. In addition, there is one further, non-invertible type of basic linear transformation:

(v) An orthogonal projection onto a lower dimensional subspace.

All possible linear transformations of Rn can be built up, albeit non-uniquely, as a combi-
nation of these five basic types.

Example 7.16. Consider the matrix A =



√

3
2 −

1
2

1
2

√
3

2


 corresponding to a plane

rotation through θ = 30◦, cf. (7.17). Rotations are not elementary linear transformations.
To express this particular rotation as a product of elementary matrices, we need to perform
a Gauss-Jordan row reduction to reduce it to the identity matrix. Let us indicate the basic
steps:

E1 =

(
1 0

−
1√
3
1

)
, E1 A =

( √
3

2 −
1
2

0 2√
3

)
,

E2 =

(
1 0

0
√

3
2

)
, E2 E1 A =

( √
3

2 −
1
2

0 1

)
,
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E3 =

(
2√
3
0

0 1

)
, E3 E2 E1 A =

(
1 −

1√
3

0 1

)
,

E4 =

(
1 1√

3

0 1

)
, E4 E3 E2 E1 A = I =

(
1 0
0 1

)
,

and hence


√

3
2 −

1
2

1
2

√
3

2


 = A = E−1

1 E−1
2 E−1

3 E−1
4 =

(
1 0
1√
3
1

)(
1 0

0 2√
3

)( √
3

2 0

0 1

)(
1 −

1√
3

0 1

)
.

Therefore, a 30◦ rotation can be effected by performing the following composition of ele-
mentary transformations in the prescribed order:

(1) First, a shear in the x–direction with shear factor − 1√
3
,

(2) Then a stretch in the direction of the x–axis by a factor of
√

3
2 ,

(3) Then a stretch (or, rather, a contraction) in the y-direction by the reciprocal
factor 2√

3
,

(4) Finally, a shear in the direction of the y–axis with shear factor 1√
3
.

The fact that the combination of these special transformations results in a pure rotation is
surprising and non-obvious. Similar decompositions can be systematically found for higher
dimensional linear transformations.

Change of Basis

Sometimes a linear transformation represents an elementary geometrical transforma-
tion, but this is not evident because the matrix happens to be written in the wrong
coordinates. The characterization of linear functions from Rn to Rm as multiplication by
m×n matrices in Theorem 7.5 relies on using the standard bases of the domain and target
spaces. In many cases, the standard basis is not particularly well adapted to the linear
transformation, and one can often gain more insight by adopting a more suitable basis.
Therefore, we need to understand how to write a given linear transformation in a new
basis.

The following general result says that, in any basis, a linear function on finite-
dimensional vector spaces can be realized by matrix multiplication of the coordinates.
But the particular matrix representative will depend upon the choice of basis.

Theorem 7.17. Let L:V → W be a linear function. Suppose V has basis v1, . . . ,vn
and W has basis w1, . . . ,wm. We can write

v = x1v1 + · · · + xnvn ∈ V, w = y1w1 + · · · + ymwm ∈W,

where x = (x1, x2, . . . , xn )
T
are the coordinates of v relative to the chosen basis on V

and y = ( y1, y2, . . . , ym )
T
are those of w relative to its basis. Then the linear function

w = L[v ] is given in these coordinates by multiplication, y = B x, by an m×n matrix B.
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Proof : We mimic the proof of Theorem 7.5, replacing the standard basis vectors by
more general basis vectors. In other words, we should apply L to the basis vectors of V

and express the result as a linear combination of the basis vectors in W . Specifically, we

write L[vj ] =
m∑

i=1

bijwi. The coefficients bij form the entries of the desired coefficient

matrix. Indeed, by linearity

L[v ] = L[x1v1 + · · · + xnvn ] = x1 L[v1 ] + · · · + xnL[vn ] =

m∑

i=1




n∑

j=1

bij xj


wi,

and so yi =

n∑

j=1

bij xj as claimed. Q.E.D.

Suppose that the linear transformation L:Rn
→ Rm is represented by a certain m×n

matrix A relative to the standard bases e1, . . . , en and ê1, . . . , êm of the domain and target
spaces. If we introduce new bases for Rn and Rm then the same linear transformation
may have a completely different matrix representation. Therefore, different matrices may
represent the same underlying linear transformation, with respect to different bases.

Example 7.18. Consider the linear transformation L

(
x

y

)
=

(
x− y

2x+ 4y

)
which

we write in the standard, Cartesian coordinates x, y on R2. The corresponding coefficient

matrix A =

(
1 −1
2 4

)
is the matrix representation of L — relative to the standard basis

e1, e2 of R2. This means that

L[e1 ] =

(
1
2

)
= e1 + 2 e2, L[e2 ] =

(
−1
4

)
= − e1 + 4 e2.

Let us see what happens if we replace the standard basis by the alternative basis

v1 =

(
1
−1

)
, v2 =

(
1
−2

)
.

What is the corresponding matrix formulation of the same linear transformation? Accord-
ing to the recipe of Theorem 7.17, we must compute

L[v1 ] =

(
2
−2

)
= 2v1, L[v2 ] =

(
3
−6

)
= 3v2.

The linear transformation acts by stretching in the direction v1 by a factor of 2 and
simultaneously stretching in the direction v2 by a factor of 3. Therefore, the matrix form

of L with respect to this new basis is the diagonal matrix D =

(
2 0
0 3

)
. In general,

L[av1 + bv2 ] = 2av1 + 3bv2,

whose effect is to multiply the new basis coordinates a = ( a, b )
T
by the diagonal matrix

D. Both A and D represent the same linear transformation — the former in the standard
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basis and the latter in the new basis. The simple geometry of this linear transformation
is thereby exposed through the inspired choice of an adapted basis. The secret behind the
choice of such well-adapted bases will be revealed in Chapter 8.

How does one effect a change of basis in general? According to formula (2.22), if

v1, . . . ,vn form a new basis of Rn, then the coordinates y = ( y1, y2, . . . , yn )
T
of a vector

x = y1v1 + y2v2 + · · · + ynvn

are found by solving the linear system

S y = x, where S = (v1 v2 . . . vn ) (7.21)

is the nonsingular n× n matrix whose columns are the basis vectors.

Consider first a linear transformation L:Rn
→ Rn from Rn to itself. When written

in terms of the standard basis, L[x ] = Ax has a certain n × n coefficient matrix A. To
change to the new basis v1, . . . ,vn, we use (7.21) to rewrite the standard x coordinates in
terms of the new y coordinates. We also need to write the target vector f = Ax in terms
of the new coordinates, which requires f = S g. Therefore, the new target coordinates are
expressed in terms of the new domain coordinates via

g = S−1f = S−1Ax = S−1AS y = B y.

Therefore, in the new basis, the matrix form of our linear transformation is

B = S−1AS. (7.22)

Two matrices A and B which are related by such an equation for some nonsingular matrix S

are called similar . Similar matrices represent the same linear transformation, but relative
to different bases of the underlying vector space Rn.

Returning to the preceding example, we assemble the new basis vectors to form the

change of basis matrix S =

(
1 1
−1 −2

)
, and verify that

S−1AS =

(
2 1
−1 −1

)(
1 −1
2 4

)(
1 1
−1 2

)
=

(
2 0
0 3

)
= D,

reconfirming our earlier computation.

More generally, a linear transformation L:Rn
→ Rm is represented by an m × n

matrix A with respect to the standard bases on both the domain and target spaces. What
happens if we introduce a new basis v1, . . . ,vn on the domain space Rn and a new basis
w1, . . . ,wm on the target space Rm? Arguing as above, we conclude that the matrix
representative of L with respect to these new bases is given by

B = T−1 AS, (7.23)

where S = (v1 v2 . . . vn ) is the domain basis matrix, while T = (w1 w2 . . . wm ) is the
range basis matrix.
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In particular, suppose that the linear transformation has rank

r = dim rngL = dim corngL.

Let us choose a basis v1, . . . ,vn of Rn such that v1, . . . ,vr form a basis of corngL while
vr+1, . . . ,vn form a basis for kerL = (corngL)⊥. According to Proposition 5.54, the
image vectors w1 = L[v1 ], . . . ,wr = L[vr ] form a basis for rngL, while L[vr+1 ] = · · · =

L[vn ] = 0. We further choose a basis wr+1, . . . ,wm for cokerL = (rngL)⊥, and note that
the combination w1, . . . ,wm forms a basis for Rm. The matrix form of L relative to these
two adapted bases is simply

B =




1 0 0 . . . 0 0 . . . 0
0 1 0 . . . 0 0 . . . 0
0 0 1 . . . 0 0 . . . 0
...
...
...
. . . 1 0 . . . 0

0 0 0 . . . 0 0 . . . 0
...
...
...
. . .

...
...
. . .

...
0 0 0 . . . 0 0 . . . 0




. (7.24)

In this matrix, the first r rows have a single 1 in the diagonal slot, indicating that the first
r basis vectors of the domain space are mapped to the first r basis vectors of the target
space while the last m− r rows are all zero, indicating that the last n− r basis vectors in
the domain are all mapped to 0. Thus, by a suitable choice of bases on both the domain
and target spaces, any linear transformation has an extremely simple canonical form.

Example 7.19. According to the illustrative example following Theorem 2.47, the
matrix

A =



2 −1 1 2
−8 4 −6 −4
4 −2 3 2




has rank 2. Based on the calculations, we choose the domain space basis

v1 =




2
−1
1
2


, v2 =




0
0
−2
4


, v3 =




1
2
1
0
0


, v4 =




−2
0
2
1


,

noting that v1,v2 are a basis for the row space corngA, while v3,v4 are a basis for kerA.
For our basis of the target space, we first compute w1 = Av1 and w2 = Av2, which form
a basis for rngA. We supplement these by the single basis vector w3 for cokerA, and so

w1 =



10
−34
17


, w2 =



6
−4
2


, w3 =



0
1
2
1


,

In terms of these two bases, the canonical matrix form of the linear function is

B = T−1AS =



1 0 0 0
0 1 0 0
0 0 0 0


,
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where the bases are assembled to form the matrices

S =




2 0 1
2 −2

−1 0 1 0
1 −2 0 2
2 4 0 1


, T =



10 6 0
−34 −4 1

2
17 2 1


.

7.3. Affine Transformations and Isometries.

Not every transformation of importance in geometrical applications arises as a linear
function. A simple example is a translation, where all the points in Rn are moved in the
same direction by a common distance. The function that accomplishes this is

T [x ] = x+ a, x ∈ Rn, (7.25)

where a ∈ Rn is a fixed vector that determines the direction and the distance that the
points are translated. Except in the trivial case a = 0, the translation T is not a linear
function because

T [x+ y ] = x+ y + a 6= T [x ] + T [y ] = x+ y + 2a.

Or, even more simply, one notes that T [0 ] = a6= 0.

Combining translations and linear functions leads us to an important class of geomet-
rical transformations.

Definition 7.20. A function F :Rn
→ Rm of the form

F [x ] = Ax+ b, (7.26)

where A is an m× n matrix and b ∈ Rn a fixed vector, is called an affine function.

For example, every affine function from R to itself has the form

f(x) = α x+ β. (7.27)

As mentioned earlier, even though the graph of f(x) is a straight line, f is not a linear
function — unless β = 0, and the line goes through the origin. Thus, to be technically
correct, we should refer to (7.27) as an affine scalar function.

Example 7.21. The affine function

F (x, y) =

(
0 −1
1 0

)(
x

y

)
+

(
1
−2

)
=

(
−y + 1
x− 2

)

has the effect of first rotating the plane R2 by 90◦ about the origin, and then translating
by the vector ( 1,−2 )

T
. The reader may enjoy proving that this combination has the same

effect as just rotating the plane through an angle of 90◦ centered at the point
(

3
4 ,− 1

2

)
.

See Exercise .
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The composition of two affine functions is again an affine function. Specifically, given
F [x ] = Ax+ a, G[y ] = B y + b, then

(G ◦F )[x ] = G[F [x ] ] = G[Ax+ a ]

= B (Ax+ a) + b = C x+ c,
where C = BA, c = B a+ b. (7.28)

Note that the coefficient matrix of the composition is the product of the coefficient matrices,
but the resulting vector of translation is not the sum the two translation vectors!

Isometry

A transformation that preserves distance is known as a rigid motion, or, more ab-
stractly, as an isometry . We already encountered the basic rigid motions in Chapter 6 —
they are the translations and the rotations.

Definition 7.22. A function F :V → V is called an isometry on a normed vector
space if it preserves the distance:

d(F [v ], F [w ]) = d(v,w) for all v,w ∈ V. (7.29)

Since the distance between points is just the norm of the vector between them,
d(v,w) = ‖v −w ‖, cf. (3.29), the isometry condition (7.29) can be restated as

∥∥F [v ]− F [w ]
∥∥ = ‖v −w ‖ for all v,w ∈ V. (7.30)

Clearly, any translation

T [v ] = v + a, where a ∈ V is a fixed vector

defines an isometry since T [v ]−T [w ] = v−w. A linear transformation L:V → V defines
an isometry if and only if

∥∥L[v ]
∥∥ = ‖v ‖ for all v ∈ V, (7.31)

because, by linearity, L[v ] − L[w ] = L[v −w ]. More generally, an affine transformation
F [v ] = L[v ] + a is an isometry if and only if its linear part L[v ] is.

For the standard Euclidean norm on V = Rn, the linear isometries consist of rota-
tions and reflections. Both are characterized by orthogonal matrices, the rotations having
determinant +1, while the reflections have determinant −1.

Proposition 7.23. A linear transformation L[x ] = Qv defines a Euclidean isometry

of Rn if and only if Q is an orthogonal matrix.

Proof : The linear isometry condition (7.31) requires that

∥∥Qx
∥∥2
= (Qx)TQx = xTQTQx = xTx = ‖x ‖2 for all x ∈ Rn. (7.32)

Clearly this holds if and only if QTQ = I , which is precisely the condition (5.30) that Q

be an orthogonal matrix. Q.E.D.
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Figure 7.10. A Screw.

Remark : It can be proved, [153], that the most general Euclidean isometry of Rn is an
affine transformation F [x ] = Qx+a where Q is an orthogonal matrix and a is a constant
vector. Therefore, every Euclidean isometry is a combination of translations, rotations and
reflections. The proper isometries correspond to the rotations, with detQ = 1, and can be
realized as physical motions; improper isometries, with detQ = −1, are then obtained by
reflection in a mirror.

The isometries of R2 and R3 are fundamental to the understanding of how objects
move in three-dimensional space. Basic computer graphics and animation require efficient
implementation of rigid isometries in three-dimensional space, coupled with appropriate
(nonlinear) perspective maps prescribing the projection of three-dimensional objects onto
a two-dimensional viewing screen.

There are three basic types of proper affine isometries. First are the translations
F [x ] = x+a in a fixed direction a. Second are the rotations. For example, F [x ] = Qx with
detQ = 1 represent rotations around the origin, while the more general case F [x ] = Q(x−
b) + b = Qx+ ( I −Q)b is a rotation around the point b. Finally, the screw motions are
affine maps of the form F [x ] = Qx+a where the orthogonal matrix Q represents a rotation
through an angle θ around a fixed axis a, which is also the direction of the translation term;

see Figure 7.10. For example, F




x

y

z


 =



cos θ − sin θ 0
sin θ cos θ 0
0 0 1






x

y

z


+



0
0
a


 represents

a vertical screw along the the z–axis through an angle θ by an distance a. As its name
implies, a screw represents the motion of a point on the head of a screw. It can be proved,
cf. Exercise , that every proper isometry of R3 is either a translation, a rotation, or a
screw.

7.4. Linear Systems.

The abstract notion of a linear system serves to unify, in a common conceptual frame-
work, linear systems of algebraic equations, linear ordinary differential equations, linear

1/12/04 246 c© 2003 Peter J. Olver



partial differential equations, linear boundary value problems, and a wide variety of other
linear problems in mathematics and its applications. The idea is simply to replace matrix
multiplication by a general linear function. Many of the structural results we learned in the
matrix context have, when suitably formulated, direct counterparts in these more general
situations, thereby shedding some light on the nature of their solutions.

Definition 7.24. A linear system is an equation of the form

L[u ] = f , (7.33)

in which L:V → W is a linear function between vector spaces, the right hand side f ∈ W

is an element of the target space, while the desired solution u ∈ V belongs to the domain
space. The system is homogeneous if f = 0; otherwise, it is called inhomogeneous.

Example 7.25. If V = Rn and W = Rm, then, according to Theorem 7.5, every
linear function L:Rn

→ Rm is given by matrix multiplication: L[u ] = Au. Therefore, in
this particular case, every linear system is a matrix system, namely Au = f .

Example 7.26. A linear ordinary differential equation takes the form L[u ] = f ,
where L is an nth order linear differential operator of the form (7.13), and the right hand
side is, say, a continuous function. Written out, the differential equation takes the familiar
form

L[u ] = an(x)
dnu

dxn
+ an−1(x)

dn−1u

dxn−1
+ · · · + a1(x)

du

dx
+ a0(x)u = f(x). (7.34)

You should already have some familiarity with solving the constant coefficient case. Ap-
pendix C describes a method for constructing series representations for the solutions to
more general, non-constant coefficient equations.

Example 7.27. Let K(x, y) be a function of two variables which is continuous for
all a ≤ x, y ≤ b. Then the integral

IK [u ] =

∫ b

a

K(x, y)u(y) dy

defines a linear operator IK : C
0[a, b ] → C0[a, b ], known as an integral transform. Impor-

tant examples include the Fourier and Laplace transforms, to be discussed in Chapter 13.
Finding the inverse transform requires solving a linear integral equation IK [u ] = f , which
has the explicit form ∫ b

a

K(x, y)u(y) dy = f(x).

Example 7.28. One can combine linear maps to form more complicated, “mixed”
types of linear systems. For example, consider a typical initial value problem

u′′ + u′ − 2u = x, u(0) = 1, u′(0) = −1, (7.35)

for a scalar unknown function u(x). The differential equation can be written as a linear
system

L[u ] = x, where L[u ] = (D2 +D − 2)[u ] = u′′ + u′ − 2u
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is a linear, constant coefficient differential operator. If we further define

M [u ] =




L[u ]
u(0)
u′(0)


 =




u′′(x) + u′(x)− 2u(x)
u(0)
u′(0)


,

then M defines a linear map whose domain is the space C2 of twice continuously dif-
ferentiable functions, and whose range is the vector space V consisting of all triples†

v =




f(x)
a

b


, where f ∈ C0 is a continuous function and a, b ∈ R are real constants. You

should convince yourself that V is indeed a vector space under the evident addition and
scalar multiplication operations. In this way, we can write the initial value problem (7.35)

in linear systems form as M [u ] = f , where f = (x, 1,−1 )
T
.

A similar construction applies to linear boundary value problems. For example, the
boundary value problem

u′′ + u = ex, u(0) = 1, u(1) = 2,

is in the form of a linear system

M [u ] = f , where M [u ] =




u′′(x) + u(x)
u(0)
u(1)


, f =




ex

1
2


.

Note thatM : C2
→ V defines a linear map having the preceding domain and target spaces.

The Superposition Principle

Before attempting to tackle general inhomogeneous linear systems, it will help to
look first at the homogeneous version. The most important fact is that homogeneous
linear systems admit a superposition principle, that allows one to construct new solutions
from known solutions. As we learned, the word “superposition” refers to taking linear
combinations of solutions.

Consider a general homogeneous linear system

L[z ] = 0 (7.36)

where L is a linear function. If we are given two solutions, say z1 and z2, meaning that

L[z1 ] = 0, L[z2 ] = 0,

then their sum z1 + z2 is automatically a solution, since, in view of the linearity of L,

L[z1 + z2 ] = L[z1 ] + L[z2 ] = 0+ 0 = 0.

† This is a particular case of the general Cartesian product construction between vector spaces,
with V = C0 × R2. See Exercise for details.
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Similarly, given a solution z and any scalar c, the scalar multiple c z is automatically a
solution, since

L[c z ] = cL[z ] = c0 = 0.

Combining these two elementary observations, we can now state the general superposition
principle. The proof is an immediate consequence of formula (7.4).

Theorem 7.29. If z1, . . . , zk are all solutions to the same homogeneous linear system

L[z ] = 0, and c1, . . . , ck are any scalars, then the linear combination c1 z1 + · · ·+ ck zk is

also a solution.

As with matrices, we call the solution space to the homogeneous linear system (7.36)
the kernel of the linear function L. Theorem 7.29 implies that the kernel always forms a
subspace.

Proposition 7.30. If L:V → W is a linear function, then its kernel

kerL = { z ∈ V | L[z ] = 0 } ⊂ V (7.37)

forms a subspace of the domain space V .

As we know, in the case of linear matrix systems, the kernel can be explicitly deter-
mined by the basic Gaussian elimination algorithm. For more general linear operators, one
must develop appropriate solution techniques for solving the homogeneous linear system.
Here is a simple example from the theory of linear, constant coefficient ordinary differential
equations.

Example 7.31. Consider the second order linear differential operator

L = D2
− 2D − 3, (7.38)

which maps the function u(x) to the function

L[u ] = (D2
− 2D − 3)[u ] = u′′ − 2u′ − 3u.

The associated homogeneous system takes the form of a homogeneous, linear, second order
ordinary differential equation

L[u ] = u′′ − 2u′ − 3u = 0. (7.39)

In accordance with the standard solution method, we plug the exponential ansatz †

u = eλx

† The German word ansatz (plural ansätze) refers to the method of finding a solution to a
complicated equation by guessing the solution’s form in advance. Typically, one is not clever
enough to guess the precise solution, and so the ansatz will have one or more free parameters
— in this case the constant exponent λ — that, with some luck, can be rigged up to fulfill the
requirements imposed by the equation. Thus, a reasonable English translation of “ansatz” is
“inspired guess”.
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into the equation. The result is

L[eλx ] = D2[eλx ]− 2D[eλx ]− 3eλx = (λ2
− 2λ− 3)eλx,

and therefore, eλx is a solution if and only if λ satisfies the characteristic equation

0 = λ2
− 2λ− 3 = (λ− 3)(λ+ 1).

The two roots are λ1 = 3, λ2 = −1, and hence

u1(x) = e3x, u2(x) = e−x, (7.40)

are two linearly independent solutions of (7.39). According to the general superposition
principle, every linear combination

u(x) = c1 u1(x) + c2 u2(x) = c1 e3x + c2 e−x

of these two basic solutions is also a solution, for any choice of constants c1, c2. In fact,
this two-parameter family constitutes the most general solution to the ordinary differential
equation (7.39). Thus, the kernel of the second order differential operator (7.38) is two-
dimensional, with basis given by the independent exponential solutions (7.40).

In general, the solution space to an nth order homogeneous linear ordinary differential
equation

L[u ] = an(x)
dnu

dxn
+ an−1(x)

dn−1u

dxn−1
+ · · · + a1(x)

du

dx
+ a0(x)u = 0 (7.41)

forms a subspace of the vector space Cn[a, b ] of n times continuously differentiable func-
tions, since it is just the kernel of a linear differential operator L: Cn[a, b ]→ C0[a, b ]. This
implies that linear combinations of solutions are also solutions. To determine the number
of solutions, or, more precisely, the dimension of the solution space, we need to impose
some mild restrictions on the differential operator.

Definition 7.32. The differential operator L is called nonsingular on an open inter-
val [a, b ] if all its coefficients an(x), . . . , a0(x) ∈ C

0[a, b ] are continuous functions and its
leading coefficient does not vanish: an(x)6= 0 for all a < x < b.

The basic existence and uniqueness result governing nonsingular homogeneous linear
ordinary differential equations can be formulated as a characterization of the dimension of
the solution space.

Theorem 7.33. The kernel of a nonsingular nth order ordinary differential operator

forms an n-dimensional subspace kerL ⊂ Cn[a, b ].

A proof of this result can be found in Section 20.1. The fact that the kernel has
dimension n means that it has a basis consisting of n linearly independent solutions
u1(x), . . . , un(x) ∈ C

n[a, b ] such that the general solution to the homogeneous differen-
tial equation (7.41) is given by a linear combination

u(x) = c1 u1(x) + · · · + cnun(x),
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where c1, . . . , cn are arbitrary constants. Therefore, once we find n linearly independent
solutions of an nth order homogeneous linear ordinary differential equation, we can imme-
diately write down its most general solution.

The condition that the leading coefficient an(x) does not vanish is essential. Points
where an(x) = 0 are known as singular points. They arise in many applications, but must
be treated separately and with care; see Appendix C. (Of course, if the coefficients are
constant then there is nothing to worry about — either the leading coefficient is nonzero,
an 6= 0, or the operator is, in fact, of lower order than advertised.)

Example 7.34. A second order Euler differential equation takes the form

E[u ] = ax2 u′′ + bxu′ + cu = 0, (7.42)

where 06= a, b, c are constants, and E = ax2 D2+ bxD+ c is a second order, non-constant
coefficient differential operator. Instead of the exponential solution ansatz used in the
constant coefficient case, Euler equations are solved by using a power ansatz

u(x) = xr

with unknown exponent r. Substituting into the differential equation, we find

E[xr ] = ar (r − 1)xr + brxr + cxr = [ar (r − 1) + br + c ]xr = 0,

and hence xr is a solution if and only if r satisfies the characteristic equation

ar (r − 1) + br + c = ar2 + (b− a)r + c = 0. (7.43)

If the characteristic equation has two distinct real roots, r1 6= r2, then there are two linearly
independent solutions u1(x) = xr1 and u2(x) = xr2 , and the general (real) solution to (7.42)
has the form

u(x) = c1 |x |
r1 + c2 |x |

r2 . (7.44)

(The absolute values are usually needed to ensure that the solutions remain real when x < 0
is negative.) The other cases — repeated roots and complex roots — will be discussed
below.

The Euler equation has a singular point at x = 0, where its leading coefficient vanishes.
Theorem 7.33 assures us that the differential equation has a two-dimensional solution space
on any interval not containing the singular point. However, predicting the number of
solutions which remain continuously differentiable at x = 0 is not as immediate, since it
depends on the values of the exponents r1 and r2. For instance, the case

x2 u′′ − 3xu′ + 3u = 0 has solution u = c1 x+ c2 x3,

which forms a two-dimensional subspace of C0(R). However,

x2 u′′ + xu′ − u = 0 has solution u = c1 x+
c2

x
,
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and only the multiples of the first solution x are continuous at x = 0. Therefore, the
solutions that are continuous everywhere form only a one-dimensional subspace of C0(R).
Finally,

x2 u′′ + 5xu′ + 3u = 0 has solution u =
c1

x
+

c2

x3
,

and there are no nontrivial solutions u 6≡0 that are continuous at x = 0.

Example 7.35. Considerr the Laplace equation

∆[u ] =
∂2u

∂x2
+

∂2u

∂y2
= 0 (7.45)

for a function u(x, y) defined on a domain Ω ⊂ R2. The Laplace equation is the most
important partial differential equation, and its applications range over almost all fields
of mathemtics, physics and engineering, including complex analysis, geometry, fluid me-
chanics, electromagnetism, elasticity, thermodynamics, and quantum mechanics. It is a
homogeneous linear partial differential equation corresponding to the partial differential
operator ∆ = ∂2

x + ∂2
y known as the Laplacian operator. Linearity can either be proved

directly, or by noting that ∆ is built up from the basic linear partial derivative operators
∂x, ∂y by the processes of composition and addition, as in Exercise .

Unlike the case of a linear ordinary differential equation, there are an infinite number
of linearly independent solutions to the Laplace equation. Examples include the trigono-
metric/exponential solutions

eωx cosωy, eωx sinωy, eωy cosωx, eωy sinωy,

where ω is any real constant. There are also infinitely many independent polynomial
solutions, the first few of which are

1, x, y, x2
− y2, xy, x3

− 3xy2, . . .

The reader might enjoy finding some more polynomial solutions and trying to spot the
pattern. (The answer will appear shortly.) As usual, we can build up more complicated
solutions by taking general linear combinations of these particular ones. In fact, it will be
shown that the most general solution to the Laplace equation can be written as a convergent
infinite series in the basic polynomial solutions. Later, in Chapters 15 and 16, we will learn
how to construct these and many other solutions to the planar Laplace equation.

Inhomogeneous Systems

Now we turn our attention to an inhomogeneous linear system

L[u ] = f . (7.46)

Unless f = 0, the solution space to (7.46) is not a subspace. (Why?) The key question
is existence — is there a solution to the system? In the homogeneous case, existence is
not an issue, since 0 is always a solution to L[z ] = 0. The key question for homogeneous
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systems is uniqueness — whether kerL = {0}, in which case 0 is the only solution, or
whether there are nontrivial solutions 06= z ∈ kerL.

In the matrix case, the compatibility of an inhomogeneous system Ax = b — which
was required for the existence of a solution — led to the general definition of the range of
a matrix, which we copy verbatim for linear functions.

Definition 7.36. The range of a linear function L:V → W is the subspace

rngL = { L[v ] | v ∈ V } ⊂ W.

The proof that rngL is a subspace is straightforward. If f = L[v ] and g = L[w ] are
any two elements of the range, so is any linear combination, since, by linearity

c f + dg = cL[v ] + dL[w ] = L[cv + dw ] ∈ rngL.

For example, if L[v ] = Av is given by multiplication by an m× n matrix, then its range
is the subspace rngL = rngA ⊂ Rm spanned by the columns of A — the column space

of the coefficient matrix. When L is a linear differential operator, or more general linear
operator, characterizing its range can be a much more challenging problem.

The fundamental theorem regarding solutions to inhomogeneous linear equations ex-
actly mimics our earlier result, Theorem 2.37, in the particular case of matrix systems.

Theorem 7.37. Let L:V → W be a linear function. Let f ∈ W . Then the inhomo-

geneous linear system

L[u ] = f (7.47)

has a solution if and only if f ∈ rngL. In this case, the general solution to the system has

the form

u = u? + z (7.48)

where u? is a particular solution, so L[u? ] = f , and z is a general element of kerL, i.e.,
the general solution to the corresponding homogeneous system

L[z ] = 0. (7.49)

Proof : We merely repeat the proof of Theorem 2.37. The existence condition f ∈ rngL

is an immediate consequence of the definition of the range. Suppose u? is a particular
solution to (7.47). If z is a solution to (7.49), then, by linearity,

L[u? + z ] = L[u? ] + L[z ] = f + 0 = f ,

and hence u? + z is also a solution to (7.47). To show that every solution has this form,
let u be a second solution, so that L[u ] = f . Then

L[u− u? ] = L[u ]− L[u? ] = f − f = 0.

Therefore u− u? = z ∈ kerL is a solution to (7.49). Q.E.D.
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Remark : In physical systems, the inhomogeneity f typically corresponds to an exter-
nal forcing function. The solution z to the homogeneous system represents the system’s
natural, unforced motion. Therefore, the decomposition formula (7.48) states that a linear
system responds to an external force as a combination of its own internal motion and a
specific motion u? induced by the forcing. Examples of this important principle appear
throughout the book.

Corollary 7.38. The inhomogeneous linear system (7.47) has a unique solution if
and only if f ∈ rngL and kerL = {0}.

Therefore, to prove that a linear system has a unique solution, we first need to prove
an existence result that there is at least one solution, which requires the right hand side f
to lie in the range of the operator L, and then a uniqueness result , that the only solution
to the homogeneous system L[z ] = 0 is the trivial zero solution z = 0. Consequently, if
an inhomogeneous system L[u ] = f has a unique solution, then any other inhomogeneous
system L[u ] = g that is defined by the same linear function also has a unique solution for
every g ∈ rngL.

Example 7.39. Consider the inhomogeneous linear second order differential equa-
tion

u′′ + u′ − 2u = x.

Note that this can be written in the linear system form

L[u ] = x, where L = D2 +D − 2

is a linear second order differential operator. The kernel of the differential operator L is
found by solving the associated homogeneous linear equation

L[z ] = z′′ + z′ − 2z = 0.

Applying the usual solution method, we find that the homogeneous differential equation
has a two-dimensional solution space, with basis functions

z1(x) = e−2x, z2(x) = ex.

Therefore, the general element of kerL is a linear combination

z(x) = c1 z1(x) + c2 z2(x) = c1 e−2x + c2 ex.

To find a particular solution to the inhomogeneous differential equation, we rely on
the method of undetermined coefficients†. We introduce the solution ansatz u = ax + b,
and compute

L[u ] = L[ax+ b ] = −2ax− 2b+ a = x.

† One could also employ the method of variation of parameters, although in general the unde-
termined coefficient method, when applicable, is the more straightforward of the two. Details of
the two methods can be found, for instance, in [24].
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Equating the two expressions, we conclude that a = − 1
2 , b = −

1
4 , and hence

u?(x) = − 1
2 x− 1

4

is a particular solution to the inhomogeneous differential equation. Theorem 7.37 then
says that the general solution is

u(x) = u?(x) + z(x) = − 1
2 x− 1

4 + c1 e−2x + c2 ex.

Example 7.40. By inspection, we see that

u(x, y) = − 1
2 sin(x+ y)

is a solution to the particular Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= sin(x+ y). (7.50)

Theorem 7.37 implies that every solution to this inhomogeneous version of the Laplace
equation takes the form

u(x, y) = − 1
2 sin(x+ y) + z(x, y),

where z(x, y) is an arbitrary solution to the homogeneous Laplace equation (7.45).

Example 7.41. The problem is to solve the linear boundary value problem

u′′ + u = x, u(0) = 0, u(π) = 0. (7.51)

The first step is to solve the differential equation. To this end, we find that cosx and sinx

form a basis for the solution space to the corresponding homogeneous differential equation
z′′+z = 0. The method of undetermined coefficients then produces the particular solution
u?(x) = x to the inhomogeneous differential equation, and so the general solution is

u(x) = x+ c1 cosx+ c2 sinx. (7.52)

The next step is to see whether any solutions also satisfy the boundary conditions. Plugging
formula (7.52) into the boundary conditions gives

u(0) = c1 = 0, u(π) = π − c1 = 0.

However, these two conditions are incompatible, and so there is no solution to the linear
system (7.51). The function f(x) = x does not lie in the range of the differential operator
L[u ] = u′′ + u when u is subjected to the boundary conditions.

On the other hand, if we change the inhomogeneity, the boundary value problem

u′′ + u = x− 1
2 π, u(0) = 0, u(π) = 0. (7.53)

does admit a solution, but the solution fails to be unique. Applying the preceding solution
method, we find that the function

u(x) = x− 1
2 π + 1

2 π cosx+ c sinx
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solves the system for any choice of constant c. Note that z(x) = sinx forms a basis for the
kernel or solution space of the homogeneous boundary value problem

z′′ + z = 0, z(0) = 0, z(π) = 0.

Incidentally, if we slightly modify the interval of definition, considering

u′′ + u = f(x), u(0) = 0, u
(

1
2 π
)
= 0, (7.54)

then the system is compatible for any inhomogeneity f(x), and the solution to the bound-
ary value problem is unique. For example, if f(x) = x, then the unique solution is

u(x) = x− 1
2 π sinx . (7.55)

This example highlights some major differences between boundary value problems
and initial value problems for ordinary differential equations. For nonsingular initial value
problems, there is a unique solution for any set of initial conditions. For boundary value
problems, the structure of the solution space — either a unique solution for all inhomo-
geneities, or no solution, or infinitely many solutions, depending on the right hand side
— has more of the flavor of a linear matrix system. An interesting question is how to
characterize the inhomogeneities f(x) that admit a solution, i.e., lie in the range of the
operator. We will return to this question in Chapter 11.

Superposition Principles for Inhomogeneous Systems

The superposition principle for inhomogeneous linear systems allows us to combine
different inhomogeneities — provided we do not change the underlying linear operator. The
result is a straightforward generalization of the matrix version described in Theorem 2.42.

Theorem 7.42. Let L:V → W be a prescribed linear function. Suppose that, for

each i = 1, . . . , k, we know a particular solution u?i to the inhomogeneous linear system
L[u ] = f i for some f i ∈ rngL. Given scalars c1, . . . , ck, a particular solution to the

combined inhomogeneous system

L[u ] = c1 f1 + · · · + ck fk (7.56)

is the same linear combination u? = c1u
?
1+ · · ·+ cku

?
k of particular solutions. The general

solution to the inhomogeneous system (7.56) is

u = u? + z = c1u
?
1 + · · · + cku

?
k + z,

where z ∈ kerL is the general solution to the associated homogeneous system L[z ] = 0.

The proof is an easy consequence of linearity, and left to the reader. In physical
terms, the superposition principle can be interpreted as follows. If we know the response
of a linear physical system to several different external forces, represented by f1, . . . , fk,
then the response of the system to a linear combination of these forces is just the identical
linear combination of the individual responses. The homogeneous solution z represents an
internal motion that the system acquires independent of any external forcing. Superposi-
tion requires linearity of the system, and so is always applicable in quantum mechanics,
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which is a linear theory. But, in classical and relativistic mechanics superposition only
applies in a linear approximation corresponding to small motions/displacements/etc. The
nonlinear regime is much more unpredictable, and combinations of external forces may
lead to unexpected results.

Example 7.43. We already know that a particular solution to the linear differential
equation

u′′ + u = x is u?1 = x.

The method of undetermined coefficients is used to solve the inhomogeneous equation

u′′ + u = cosx.

Since cosx and sinx are already solutions to the homogeneous equation, we must use
the solution ansatz u = ax cosx + bx sinx, which, when substituted into the differential
equation, produces the particular solution

u?2 = −
1
2 x sinx.

Therefore, by the superposition principle, the combination inhomogeneous system

u′′ + u = 3x− 2 cosx has a particular solution u? = 3u?1 − 2u
?
2 = 3x+ x sinx.

The general solution is obtained by appending the general solution to the homogeneous
equation: u = 3x+ x sinx+ c1 cosx+ c2 sinx.

Example 7.44. Consider the boundary value problem

u′′ + u = x, u(0) = 2, u
(

1
2 π
)
= −1, (7.57)

which is a modification of (7.54) with inhomogeneous boundary conditions. The super-
position principle applies here, and allows us to decouple the inhomogeneity due to the
forcing from the inhomogeneity due to the boundary conditions. We already solved the
boundary value problem with homogeneous boundary conditions; see (7.55). On the other
hand, the unforced boundary value problem

u′′ + u = 0, u(0) = 2, u
(

1
2 π
)
= −1, (7.58)

has unique solution
u(x) = 2 cosx− sinx. (7.59)

Therefore, the solution to the combined problem (7.57) is the sum of these two:

u(x) = x+ 2 cosx−
(
1 + 1

2 π
)
sinx .

The solution is unique because the corresponding homogeneous boundary value problem

z′′ + z = 0, z(0) = 0, z
(

1
2 π
)
= 0,

has only the trivial solution z(x) ≡ 0. Incidentally, the solution (7.59) can itself be
decomposed as a linear combination of the solutions cosx and sinx to a pair of yet more
elementary boundary value problems with just one inhomogeneous boundary condition;
namely, u(0) = 1, u

(
1
2 π
)
= 0, and, respectively, u(0) = 0, u

(
1
2 π
)
= 1.
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Complex Solutions to Real Systems

The easiest way to obtain solutions to a linear, homogeneous, constant coefficient
ordinary differential equation is through an exponential ansatz, which effectively reduces it
to the algebraic characteristic equation. Complex roots of the characteristic equation yield
complex exponential solutions. But, if the equation is real, then the real and imaginary
parts of the complex solutions are automatically real solutions. This solution technique is
a particular case of a general principle for producing real solutions to real linear systems
from, typically, simpler complex solutions. To work, the method requires some additional
structure on the vector spaces involved.

Definition 7.45. A complex vector space V is called conjugated if it admits an
operation of complex conjugation taking u ∈ V to u that is compatible with scalar multi-
plication. In other words, if u ∈ V and λ ∈ C, then we require λu = λ u.

The simplest example of a conjugated vector space is Cn. The complex conjugate of
a vector is obtained by conjugating all its entries. Thus we have

u = v + iw,

u = v − iw,
where v = Re u =

u+ u

2
, w = Im u =

u− u

2 i
, (7.60)

are the real and imaginary parts of u ∈ Cn. For example, if

u =



1− 2 i
3 i
5


 =



1
0
5


+ i



−2
3
0


, then u =



1 + 2 i
−3 i
5


 =



1
0
5


− i



−2
3
0


.

The same definition of real and imaginary part carries over to general conjugated vector
spaces. A subspace V ⊂ Cn is conjugated if and only if u ∈ V whenever u ∈ V . Another
prototypical example of a conjugated vector space is the space of complex-valued functions
f(x) = r(x) + i s(x) defined on the interval a ≤ x ≤ b. The complex conjugate function is
f(x) = r(x)− i s(x). Thus, the complex conjugate of

e(1+3 i )x = ex cos 3x+ i ex sin 3x is e(1+3 i )x = e(1−3 i )x = ex cos 3x− i ex sin 3x.

An element v ∈ V of a conjugated vector space is called real if v = v. One easily
checks that the real and imaginary parts of a general element, as defined by (7.60), are
both real elements.

Definition 7.46. A linear operator L:V → W between conjugated vector spaces is
called real if it commutes with complex conjugation:

L[u ] = L[u ]. (7.61)

For example, the linear function F :Cn
→ Cm given by matrix multiplication, F (u) =

Au, is real if and only if A is a real matrix. Similarly, a differential operator (7.13) is real
if its coefficients are real-valued functions.

1/12/04 258 c© 2003 Peter J. Olver



Theorem 7.47. If L[u ] = 0 is a real homogeneous linear system and u = v+ iw is
a complex solution, then its complex conjugate u = v − iw is also a solution. Moreover,
both the real and imaginary parts, v and w, of a complex solution are real solutions.

Proof : First note that, by reality,

L[u ] = L[u ] = 0 whenever L[u ] = 0,

and hence the complex conjugate u of any solution is also a solution. Therefore, by linear
superposition, v = Re u = 1

2 (u+u) and w = Im u = 1
2 i (u−u) are also solutions. Q.E.D.

Example 7.48. The real linear matrix system

(
2 −1 3 0
−2 1 1 2

)



x

y

z

w


 =

(
0
0

)

has a complex solution

u =




−1− 3 i
1

1 + 2 i
−2− 4 i


 =




−1
1
1
−2


+ i




−3
0
2
−4


.

Since the coefficient matrix is real, the real and imaginary parts,

v = (−1, 1, 1,−2 )
T

, w = (−3, 0, 2,−4 )
T

,

are both solutions of the system.

On the other hand, the complex linear system

(
2 −2 i i 0

1 + i 0 −2− i 1

)



x

y

z

w


 =

(
0
0

)

has the complex solution

u =




1− i
− i
2

2 + 2 i


 =




1
0
2
2


+ i




−1
−1
0
2


.

However, neither the real nor the imaginary part is a solution to the system.

Example 7.49. Consider the real ordinary differential equation

u′′ + 2u′ + 5u = 0.

To solve it, as in Example 7.31, we use the exponential ansatz u = eλx, leading to the
characteristic equation

λ2 + 2λ+ 5 = 0.
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There are two roots,

λ1 = −1 + 2 i , λ2 = −1− 2 i ,

leading, via Euler’s formula (3.76), to the complex solutions

u1(x) = e(−1+2 i )x = e−x cos 2x+ i e−x sin 2x,

u2(x) = e(−1−2 i )x = e−x cos 2x− i e−x sin 2x.

The complex conjugate of the first solution is the second, in accordance with Theorem 7.47.
Moreover, the real and imaginary parts of the two solutions

v(x) = e−x cos 2x, w(x) = e−x sin 2x,

are individual real solutions. The general solution is a linear combination

u(x) = c1 e−x cos 2x+ c2 e−x sin 2x,

of the two linearly independent real solutions.

Example 7.50. Consider the second order Euler differential equation

L[u ] = x2 u′′ + 7xu′ + 13u = 0.

The roots of the associated characteristic equation

r (r − 1) + 7r + 13 = r2 + 6r + 13 = 0

are complex: r = −3±2 i , and the resulting solutions xr = x−3±2 i are complex conjugate
powers. Using Euler’s formula (3.76), we write them in real and imaginary form, e.g.,

x−3+2 i = x−3 e2 i log x = x−3 cos(2 log x) + ix−3 sin(2 log x).

Again, by Theorem 7.47, the real and imaginary parts of the complex solution are by
themselves real solutions to the equation. Therefore, the general real solution is

u(x) = c1 x−3 cos(2 log x) + c2 x−3 sin(2 log x).

Example 7.51. The complex monomial

u(x, y) = (x+ i y)n

is a solution to the Laplace equation (7.45) because, by the chain rule,

∂2u

∂x2
= n(n− 1)(x+ i y)n−2,

∂2u

∂y2
= n(n− 1) i2 (x+ i y)n−2 = −n(n− 1)(x+ i y)n−2,

and hence uxx + uyy = 0. Since the Laplace operator is real, Theorem 7.47 implies that
the real and imaginary parts of this complex solution are real solutions. The resulting real
solutions are known as harmonic polynomials.
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To find the explicit formulae for the harmonic polynomials, we use the Binomial
Formula and the fact that i2 = −1, i3 = − i , i4 = 1, etc., to expand

(x+ i y)n = xn + nxn−1( i y) +

(
n

2

)
xn−2( i y)2 +

(
n

3

)
xn−3( i y)3 + · · ·

= xn + inxn−1 y −

(
n

2

)
xn−2 y2

− i

(
n

3

)
xn−3 y3 + · · · ,

in which we use the standard notation
(

n

k

)
=

n !

k ! (n− k) !
(7.62)

for the binomial coefficients. Separating the real and imaginary terms, we find

Re (x+ i y)n = xn −

(
n

2

)
xn−2 y2 +

(
n

4

)
xn−4 y4 + · · · ,

Im (x+ i y)n = nxn−1 y −

(
n

3

)
xn−3 y3 +

(
n

5

)
xn−5 y5 + · · · .

(7.63)

The first few of these harmonic polynomials were described in Example 7.35. In fact, it can
be proved that every polynomial solution to the Laplace equation is a linear combination
of the fundamental real harmonic polynomials; see Chapter 16 for full details.

7.5. Adjoints.

In Sections 2.5 and 5.6, we discovered the importance of the adjoint system ATy = f

in the analysis of systems of linear equations Ax = b. Two of the four fundamental matrix
subspaces are based on the transposed matrix. While the m× n matrix A defines a linear
function from Rn to Rm, its transpose, AT , has size n×m and hence characterizes a linear
function in the reverse direction, from Rm to Rn.

As with most fundamental concepts for linear matrix systems, the adjoint system and
transpose operation on the coefficient matrix are the prototypes of a much more general
construction that is valid for general linear functions. However, it is not as obvious how
to “transpose” a more general linear operator L[u ], e.g., a differential operator acting on
function space. In this section, we shall introduce the concept of the adjoint of a linear
function that generalizes the transpose operation on matrices. Unfortunately, most of the
interesting examples must be deferred until we develop additional analytical tools, starting
in Chapter 11.

The adjoint (and transpose) relies on an inner product structure on both the domain
and target spaces. For simplicity, we restrict our attention to real inner product spaces,
leaving the complex version to the interested reader. Thus, we begin with a linear function
L:V → W that maps an inner product space V to a second inner product space W . We
distinguish the inner products on V and W (which may be different even when V and W

are the same vector space) by using a single angle bracket

〈v ; ṽ 〉 to denote the inner product between v, ṽ ∈ V,
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and a double angle bracket

〈〈w ; w̃ 〉〉 to denote the inner product between w, w̃ ∈ W.

With the prescription of inner products on both the domain and target spaces, the abstract
definition of the adjoint of a linear function can be formulated.

Definition 7.52. Let V,W be inner product spaces, and let L:V → W be a linear
function. The adjoint of L is the function L∗:W → V that satisfies

〈〈L[v ] ;w 〉〉 = 〈v ;L∗[w ] 〉 for all v ∈ V, w ∈ W. (7.64)

Note that the adjoint function goes in the opposite direction to L, just like the trans-
posed matrix. Also, the left hand side of equation (7.64) indicates the inner product on
W , while the right hand side is the inner product on V — which is where the respective
vectors live. In infinite-dimensional situations, the adjoint may not exist. But if it does,
then it is uniquely determined by (7.64); see Exercise .

Remark : Technically, (7.64) only defines the “formal adjoint” of L. For the infinite-
dimensional function spaces arising in analysis, a true adjoint must satisfy certain addi-
tional requirements, [122]. However, we will suppress all such advanced analytical com-
plications in our introductory treatment of the subject.

Lemma 7.53. The adjoint of a linear function is a linear function.

Proof : Given v ∈ V , w, z ∈ W , and scalars c, d ∈ R, we find

〈v ;L∗[cw + dz ] 〉 = 〈〈L[v ] ; cw + dz 〉〉 = c 〈〈L[v ] ;w 〉〉+ d 〈〈L[v ] ; z 〉〉

= c 〈v ;L∗[w ] 〉+ d 〈v ;L∗[z ] 〉 = 〈v ; cL∗[w ] + dL∗[z ] 〉.

Since this holds for all v ∈ V , we must have

L∗[cw + dz ] = cL∗[w ] + dL∗[z ],

proving linearity. Q.E.D.

The proof of the next result is left as an exercise.

Lemma 7.54. The adjoint of the adjoint of L is just L = (L∗)∗.

Example 7.55. Let us first show how the defining equation (7.64) for the adjoint
leads directly to the transpose of a matrix. Let L:Rn

→ Rm be the linear function
L[v ] = Av defined by multiplication by the m × n matrix A. Then L∗:Rm

→ Rn is
linear, and so is represented by matrix multiplication, L∗[w ] = A∗w, by an n×m matrix
A∗. We impose the ordinary Euclidean dot products

〈v ; ṽ 〉 = vT ṽ, v, ṽ ∈ Rn, 〈〈w ; w̃ 〉〉 = wT w̃, w, w̃ ∈ Rm,
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as our inner products on both Rn and Rm. Evaluation of both sides of the adjoint equa-
tion (7.64) gives

〈〈L[v ] ;w 〉〉 = 〈〈Av ;w 〉〉 = (Av)Tw = vTAT w,

〈v ;L∗[w ] 〉 = 〈v ;A∗w 〉 = vTA∗w.
(7.65)

Since these must agree for all v,w, cf. Exercise , the matrix A∗ representing L∗ is equal to
the transposed matrix AT . Therefore, the adjoint of a matrix with respect to the Euclidean
inner product is its transpose: A∗ = AT .

Example 7.56. Let us now adopt different, weighted inner products on the domain
and target spaces for the linear map L:Rn

7→Rm given by L[v ] = Av. Suppose that

the inner product on the domain space Rn is given by 〈v ; ṽ 〉 = vTM ṽ, while

the inner product on the target space Rm is given by 〈〈w ; w̃ 〉〉 = wTC w̃,

where M > 0 and C > 0 are positive definite matrices of respective sizes m×m and n×n.
Then, in place of (7.65), we have

〈〈Av ;w 〉〉 = (Av)TCw = vTATCw, 〈v ;A∗w 〉 = vTM A∗w.

Equating these expressions, we deduce that ATC =M A∗. Therefore the weighted adjoint
of the matrix A is given by the more complicated formula

A∗ =M−1 ATC. (7.66)

In applications, M plays the role of the mass matrix, and explicitly appears in the dy-
namical systems to be solved in Chapter 9. In particular, suppose A is square, defining a
linear map L:Rn

→ Rn. If we adopt the same inner product 〈v ; ṽ 〉 = vTC ṽ on both the
domain and target spaces Rn, then the adjoint matrix A∗ = C−1 ATC is similar to the
transpose.

Everything that we learned about transposes can be reinterpreted in the more general
language of adjoints. The next result generalizes the fact, (1.49), that the transpose of the
product of two matrices is the product of the transposes, in the reverse order.

Lemma 7.57. If L:V → W and M :W → Z have respective adjoints L∗:W → V

andM∗:Z → W , then the composite linear functionM ◦L:V → Z has adjoint (M ◦L)∗ =
L∗ ◦M∗, which maps Z to V .

Proof : Let 〈v ; ṽ 〉, 〈〈w ; w̃ 〉〉, 〈〈〈 z ; z̃ 〉〉〉, denote, respectively, the inner products on
V,W,Z. For v ∈ V , z ∈ Z, we compute using the definition (7.64),

〈v ; (M ◦L)∗[z ] 〉 = 〈〈〈M ◦L[v ] ; z 〉〉〉 = 〈〈〈M [L[v ] ] ; z 〉〉〉

= 〈〈L[v ] ;M∗[z ] 〉〉 = 〈v ;L∗[M∗[z ] ] 〉 = 〈v ; (L∗ ◦M∗)[z ] 〉.

Since this holds for all v and z, the identification follows. Q.E.D.
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In this chapter, we have only looked at adjoints in the finite-dimensional situation,
when the linear functions are given by matrix multiplication. The equally important case
of adjoints of linear operators on function spaces, e.g., differential operators appearing in
boundary value problems, will be a principal focus of Section 11.3.

Self–Adjoint and Positive Definite Linear Functions

Throughout this section V will be a fixed inner product space. We can generalize the
notions of symmetric and positive definite matrices to linear operators on V in a natural
fashion. The analog of a symmetric matrix is a self-adjoint linear function.

Definition 7.58. A linear function K:V → V is called self-adjoint if K∗ = K. A
self-adjoint linear function is positive definite if

〈v ;K[v ] 〉 > 0 for all 06= v ∈ V. (7.67)

In particular, if K > 0 then kerK = {0}, and so the positive definite linear system
K[u ] = f with f ∈ rngK has a unique solution. The next result generalizes our basic
observation that the Gram matrices K = ATA, cf. (3.49), are symmetric and positive
(semi-)definite.

Theorem 7.59. Let L:V → W be a linear map between inner product spaces

with adjoint L∗:W → V . Then the composite map K = L∗ ◦L:V → V is self-adjoint.

Moreover, K is positive definite if and only if kerL = {0}.

Proof : First, by Lemmas 7.57 and 7.54,

K∗ = (L∗ ◦L)∗ = L∗ ◦ (L∗)∗ = L∗ ◦L = K,

proving self-adjointness. Furthermore, for v ∈ V , the inner product

〈v ;K[v ] 〉 = 〈v ;L∗[L[v ] ] 〉 = 〈L[v ] ;L[v ] 〉 = ‖L[v ] ‖2 > 0

is strictly positive provided L[v ]6= 0. Thus, if kerL = {0}, then the positivity condition
(7.67) holds, and conversely. Q.E.D.

Consider the case of a linear function L:Rn
→ Rm that is represented by the m × n

matrix A. For the Euclidean dot product on the two spaces, the adjoint L∗ is represented
by the transpose AT , and hence the map K = L∗ ◦L has matrix representation ATA.
Therefore, in this case Theorem 7.59 reduces to our earlier Proposition 3.32 governing the
positive definiteness of the Gram matrix product ATA. If we change the inner product on
the target space space to 〈〈w ; w̃ 〉〉 = wTC w̃, then L∗ is represented by ATC, and hence
K = L∗ ◦L has matrix form ATC A, which is the general symmetric, positive definite Gram
matrix constructed in (3.51) that played a key role in our development of the equations of
equilibrium in Chapter 6. Finally, if we also use the alternative inner product 〈v ; ṽ 〉 =
vTM ṽ on the domain space Rn, then, according to (7.66), the adjoint of L has matrix
form

A∗ =M−1 ATC, and therefore K = A∗A =M−1 ATC A (7.68)
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is a self-adjoint, positive definite matrix with respect to the weighted inner product on
Rn prescribed by the positive definite matrix M . In this case, the positive definite, self-
adjoint operator K is no longer represented by a symmetric matrix. So, we did not quite
tell the truth when we said we would only allow symmetric matrices to be positive definite
— we really meant only self-adjoint matrices. The general case will be important in our
discussion of the vibrations of mass/spring chains that have unequal masses. Extensions of
these constructions to differential operators underlies the analysis of the static and dynamic
differential equations of continuum mechanics, to be studied in Chapters 11–18.

Minimization

In Chapter 4, we learned that the solution to a matrix system Ku = f , with positive
definite coefficient matrix K > 0, can be characterized as the unique minimizer for the
quadratic function p(u) = 1

2 u
TKu − uT f . There is an analogous minimization principle

that characterizes the solutions to linear systems defined by positive definite linear op-
erators. This general result is of tremendous importance in analysis of boundary value
problems for differential equations and also underlies the finite element numerical solution
algorithms. Details will appear in the subsequent chapters.

Theorem 7.60. Let K:V → V be a positive definite operator on an inner product

space V . If f ∈ rngK, then the quadratic function

p(u) = 1
2 〈u ;K[u ] 〉 − 〈u ; f 〉 (7.69)

has a unique minimizer, which is the solution u = u? to the linear system K[u ] = f .

Proof : The proof mimics that of its matrix counterpart in Theorem 4.1. Since f =
K[u? ], we can write

p(u) = 1
2 〈u ;K[u ] 〉 − 〈u ;K[u

? ] 〉 = 1
2 〈u− u? ;K[u− u? ] 〉 − 1

2 〈u
? ;K[u? ] 〉. (7.70)

where we used linearity, along with the fact that K is self-adjoint to identify the terms
〈u ;K[u? ] 〉 = 〈u? ;K[u ] 〉. Since K > 0 is positive definite, the first term on the right
hand side of (7.70) is always ≥ 0; moreover it equals its minimal value 0 if and only if
u = u?. On the other hand, the second term does not depend upon u at all, and hence is
a constant. Therefore, to minimize p(u) we must make the first term as small as possible,
which is accomplished by setting u = u?. Q.E.D.

Remark : For linear functions given by matrix multiplication, positive definiteness
automatically implies invertibility, and so the linear system Ku = f has a solution for
every right hand side. This is no longer necessarily true when K is a positive definite
operator on an infinite-dimensional function space. Therefore, the existence of a solution
or minimizer is a significant issue. And, in fact, many modern analytical existence results
rely on such minimization principles.

Theorem 7.61. Suppose L:V → W is a linear map between inner product spaces

with kerL = {0} and adjoint map L∗:W → V . Let K = L∗ ◦L:V → V be the associated

positive definite operator. If f ∈ rngK, then the quadratic function

p(u) = 1
2 ‖L[u ] ‖2 − 〈u ; f 〉 (7.71)
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has a unique minimizer u?, which is the solution to the linear system K[u? ] = f .

Proof : It suffices to note that the quadratic term in (7.69) can be written in the
alternative form

〈u ;K[u ] 〉 = 〈u ;L∗[L[u ] ] 〉 = 〈L[u ] ;L[u ] 〉 = ‖L[u ] ‖2.

Thus, (7.71) reduces to the quadratic function of the form (7.69) with K = L∗ ◦L, and so
Theorem 7.61 is an immediate consequence of Theorem 7.60. Q.E.D.

Warning : In (7.71), the first term ‖L[u ] ‖2 is computed using the norm based on the
inner product on W , while the second term 〈u ; f 〉 employs the inner product on V .

Example 7.62. For a generalized positive definite matrix (7.68), the quadratic func-
tion (7.71) is computed with respect to the alternative inner product 〈v ; ṽ 〉 = vTM ṽ,
so

p(u) = 1
2 (Au)

TC Au− uTM f = 1
2 u

T (ATC A)u− uT (M f).

Theorem 7.61 tells us that the minimizer of the quadratic function is the solution to

ATC Au =M f , or Ku =M−1 ATC Au = f .

This also follows from our earlier finite-dimensional minimization Theorem 4.1.

This section is a preview of things to come, but the full implications will require us to
develop more analytical expertise. In Chapters 11, 15 and 18 , we will find that the most
important minimization principles for characterizing solutions to the linear boundary value
problems of physics and engineering all arise through this general, abstract construction.
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Chapter 8

Eigenvalues

So far, our applications have concentrated on statics: unchanging equilibrium config-
urations of physical systems — mass/spring chains, circuits, and structures — that are
modeled by linear systems of algebraic equations. It is now time to allow motion in our
universe. In general, a dynamical system refers to the (differential) equations governing
the temporal behavior of some physical system: mechanical, electrical, chemical, fluid, etc.
Our immediate goal is to understand the behavior of the simplest class of linear dynam-
ical systems — frirst order autonomous linear systems of ordinary differential equations.
As always, complete analysis of the linear situation is an essential prerequisite to making
progress in the more complicated nonlinear realm.

We begin with a very quick review of the scalar case, whose solutions are exponential
functions. Substituting a similar exponential solution ansatz† into the system leads us
immediately to the equations defining the eigenvalues and eigenvectors of the coefficient
matrix. Eigenvalues and eigenvectors are of absolutely fundamental importance in both
the mathematical theory and a very wide range of applications, including iterative systems
and numerical solution methods. Thus, to continue we need to gain a proper grounding in
their basic theory and computation.

The present chapter develops the most important properties of eigenvalues and eigen-
vectors; the applications to dynamical systems will appear in Chapter 9, while applications
to iterative systems and numerical methods is the topic of Chapter 10. Extensions of the
eigenvalue concept to differential operators acting on infinite-dimensional function space,
of essential importance for solving linear partial differential equations modelling continuous
dynamical systems, will be covered in later chapters.Each square matrix has a collection of
one or more complex scalars called eigenvalues and associated vectors, called eigenvectors.
Roughly speaking, the eigenvectors indicate directions of pure stretch and the eigenval-
ues the amount of stretching. Most matrices are complete, meaning that their (complex)
eigenvectors form a basis of the underlying vector space. When written in the eigenvector
basis, the matrix assumes a very simple diagonal form, and the analysis of its properties
becomes extremely simple. A particularly important class are the symmetric matrices,
whose eigenvectors form an orthogonal basis of Rn; in fact, this is by far the most common
way for orthogonal bases to appear. Incomplete matrices are trickier, and we relegate
them and their associated non-diagonal Jordan canonical form to the final section. The
numerical computation of eigenvalues and eigenvectors is a challenging issue, and must be

† See the footnote in Chapter 7 for an explanation of the term “ansatz” or inspired guess.
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be deferred until Section 10.6. Unless you are prepared to consult that section now, in
order to solve the computer-based problems in this chapter, you will need to make use of
a program that can accurately compute eigenvalues and eigenvectors of matrices.

A non-square matrix A does not have eigenvalues; however, we have already made
extensive use of the associated square Gram matrix K = ATA. The square roots of the
eigenvalues of K serve to define the singular values of A. Singular values and principal
component analysis are now used in an increasingly broad range of modern applications,
including statistical analysis, image processing, semantics, language and speech recogni-
tion, and learning theory. The singular values are used to define the condition number of
a matrix, that indicates the degree of difficulty of accurately solving the associated linear
system.

8.1. Simple Dynamical Systems.

The purpose of this section is to motivate the concepts of eigenvalue and eigenvector
of square matrices by attempting to solve the simplest class of dynamical systems — first
order linear systems of ordinary differential equations. We begin with a review of the
scalar case, introducing basic notions of stability in preparation for the general version,
to be treated in depth in Chapter 9. We use the exponential form of the scalar solution
as a template for a possible solution in the vector case, and this immediately leads us to
the fundamental eigenvalue/eigenvector equation. Readers who are uninterested in such
motivations are advised skip ahead to Section 8.2.

Scalar Ordinary Differential Equations

Eigenvalues first appear when attempting to solve linear systems of ordinary differ-
ential equations. In order to motivate the construction, we begin by reviewing the scalar
case. Consider the elementary ordinary differential equation

du

dt
= au. (8.1)

Here a ∈ R is a real constant, while the unknown u(t) is a scalar function. As you learned
in first year calculus, the general solution to (8.1) is an exponential function

u(t) = c eat. (8.2)

The integration constant c is uniquely determined by a single initial condition

u(t0) = b (8.3)

imposed at an initial time t0. Substituting t = t0 into the solution formula (8.2),

u(t0) = c eat0 = b, and so c = b e−at0 .

We conclude that
u(t) = b ea(t−t0). (8.4)

is the unique solution to the scalar initial value problem (8.1), (8.3).
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Figure 8.1. Solutions to
¦
u = a u.

Example 8.1. The radioactive decay of an isotope, say Uranium 238, is governed
by the differential equation

du

dt
= − γ u. (8.5)

Here u(t) denotes the amount of the isotope remaining at time t, and the coefficient
γ > 0 governs the decay rate. The solution is given by an exponentially decaying function
u(t) = c e−γ t, where c = u(0) is the initial amount of radioactive material.

The half-life t? is the time it takes for half of a sample to decay, that is when u(t?) =
1
2 u(0). To determine t?, we solve the algebraic equation

e−γ t
?

= 1
2 , so that t? =

log 2

γ
. (8.6)

At each integer multiple nt? of the half-life, exactly half of the isotope has decayed, i.e.,
u(nt?) = 2−n u(0).

Let us make some elementary, but pertinent observations about this simple linear
dynamical system. First of all, since the equation is homogeneous, the zero function
u(t) ≡ 0 (corresponding to c = 0) is a constant solution, known as an equilibrium solution

or fixed point , since it does not depend on t. If the coefficient a > 0 is positive, then the
solutions (8.2) are exponentially growing (in absolute value) as t → +∞. This implies that
the zero equilibrium solution is unstable. The initial condition u(t0) = 0 produces the zero
solution, but if we make a tiny error (either physical, numerical, or mathematical) in the
initial data, say u(t0) = ε, then the solution u(t) = ε ea(t−t0) will eventually get very far
away from equilibrium. More generally, any two solutions with very close, but not equal,
initial data, will eventually become arbitrarily far apart: |u1(t)− u2(t) | → ∞ as t → ∞.
One consequence is the inherent difficulty in accurately computing the long time behavior
of the solution, since small numerical errors will eventually have very large effects.

On the other hand, if a < 0, the solutions are exponentially decaying in time. In this
case, the zero solution is stable, since a small error in the initial data will have a negligible
effect on the solution. In fact, the zero solution is globally asymptotically stable. The
phrase “asymptotically stable” implies that solutions that start out near zero eventually
return; more specifically, if u(t0) = ε is small, then u(t) → 0 as t → ∞. The adjective
“globally” implies that this happens no matter how large the initial data is. In fact, for
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a linear system, the stability (or instability) of an equilibrium solution is always a global
phenomenon.

The borderline case is when a = 0. Then all the solutions to (8.1) are constant. In this
case, the zero solution is stable — indeed, globally stable — but not asymptotically stable.
The solution to the initial value problem u(t0) = ε is u(t) ≡ ε. Therefore, a solution that
starts out near equilibrium will remain near, but will not asymptotically return. The three
qualitatively different possibilities are illustrated in Figure 8.1.

First Order Dynamical Systems

The simplest class of dynamical systems consist of n first order ordinary differential
equations for n unknown functions

du1

dt
= f1(t, u1, . . . , un), . . .

dun
dt
= fn(t, u1, . . . , un),

which depend on a scalar variable t ∈ R, which we usually view as time. We will often
write the system in the equivalent vector form

du

dt
= f(t,u). (8.7)

The vector-valued solution u(t) = (u1(t), . . . , un(t))
T serves to parametrize a curve in Rn,

called a solution trajectory . A dynamical system is called autonomous if the time variable
t does not appear explicitly on the right hand side, and so has the system has the form

du

dt
= f(u). (8.8)

Dynamical systems of ordinary differential equations appear in an astonishing variety of
applications, and have been the focus of intense research activity since the early days of
calculus.

We shall concentrate most of our attention on the very simplest case: a homogeneous,
linear, autonomous dynamical system

du

dt
= Au, (8.9)

in which A is a constant n×n matrix. In full detail, the system consists of n linear ordinary
differential equations

du1

dt
= a11 u1 + a12 u2 + · · · + a1nun,

du2

dt
= a21 u1 + a22 u2 + · · · + a2nun,

...
...

dun
dt
= an1 u1 + an2 u2 + · · · + annun,

(8.10)

involving n unknown functions u1(t), u2(t), . . . , un(t). In the autonomous case, the coeffi-
cients aij are assumed to be (real) constants. We seek not only to develop basic solution
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techniques for such dynamical systems, but to also understand their behavior from both a
qualitative and quantitative standpoint.

Drawing our inspiration from the exponential solution formula (8.2) in the scalar case,
let us investigate whether the vector system has any solutions of a similar exponential form

u(t) = eλt v, (8.11)

in which λ is a constant scalar, so eλt is a scalar function of t, while v ∈ Rn is a constant
vector. In other words, the components ui(t) = vi e

λt of our desired solution are assumed
to be constant multiples of the same exponential function. Since v is assumed to be
constant, the derivative of u(t) is easily found:

du

dt
=

d

dt

(
eλt v

)
= λ eλt v.

On the other hand, since eλt is a scalar, it commutes with matrix multiplication, and so

Au = Aeλt v = eλtAv.

Therefore, u(t) will solve the system (8.9) if and only if

λ eλt v = eλtAv,

or, canceling the common scalar factor eλt,

λv = Av.

The result is a system of algebraic equations relating the vector v and the scalar λ. Analysis
of this system and its ramifications will be the topic of the remainder of this chapter.
After gaining a complete understanding, we will return to the solution of linear dynamical
systems in Chapter 9.

8.2. Eigenvalues and Eigenvectors.

We inaugurate our discussion of eigenvalues and eigenvectors with the fundamental
definition.

Definition 8.2. Let A be an n × n matrix. A scalar λ is called an eigenvalue of A

if there is a non-zero vector v6= 0, called an eigenvector , such that

Av = λv. (8.12)

Thus, the matrix A effectively stretches the eigenvector v by an amount specified by
the eigenvalue λ. In this manner, the eigenvectors specify the directions of pure stretch
for the linear transformation defined by the matrix A.

Remark : The odd-looking terms “eigenvalue” and “eigenvector” are hybrid German–
English words. In the original German, they are Eigenwert and Eigenvektor , which can
be fully translated as “proper value” and “proper vector”. For some reason, the half-
translated terms have acquired a certain charm, and are now standard. The alternative
English terms characteristic value and characteristic vector can be found in some (mostly
older) texts. Oddly, the term characteristic equation, to be defined below, is still used.
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The requirement that the eigenvector v be nonzero is important, since v = 0 is a
trivial solution to the eigenvalue equation (8.12) for any scalar λ. Moreover, as far as
solving linear ordinary differential equations goes, the zero vector v = 0 only gives the
trivial zero solution u(t) ≡ 0.

The eigenvalue equation (8.12) is a system of linear equations for the entries of the
eigenvector v — provided the eigenvalue λ is specified in advance — but is “mildly”
nonlinear as a combined system for λ and v. Gaussian elimination per se will not solve
the problem, and we are in need of a new idea. Let us begin by rewriting the equation in
the form

(A− λ I )v = 0, (8.13)

where I is the identity matrix of the correct size†. Now, for given λ, equation (8.13) is a
homogeneous linear system for v, and always has the trivial zero solution v = 0. But we
are specifically seeking a nonzero solution! According to Theorem 1.45, a homogeneous
linear system has a nonzero solution v 6= 0 if and only if its coefficient matrix, which in
this case is A − λ I , is singular. This observation is the key to resolving the eigenvector
equation.

Theorem 8.3. A scalar λ is an eigenvalue of the n × n matrix A if and only if

the matrix A − λ I is singular, i.e., of rank < n. The corresponding eigenvectors are the

nonzero solutions to the eigenvalue equation (A− λ I )v = 0.

We know a number of ways to characterize singular matrices, including the determi-
nantal criterion given in Theorem 1.50. Therefore, the following result is an immediate
corollary of Theorem 8.3.

Proposition 8.4. A scalar λ is an eigenvalue of the matrix A if and only if λ is a

solution to the characteristic equation

det(A− λ I ) = 0. (8.14)

In practice, when finding eigenvalues and eigenvectors by hand, one first solves the
characteristic equation (8.14). Then, for each eigenvalue λ one uses standard linear algebra
methods, i.e., Gaussian elimination, to solve the corresponding linear system (8.13) for the
eigenvector v.

Example 8.5. Consider the 2× 2 matrix

A =

(
3 1
1 3

)
.

We compute the determinant in the characteristic equation using (1.34):

det(A− λ I ) = det

(
3− λ 1
1 3− λ

)
= (3− λ)2 − 1 = λ2

− 6λ+ 8.

† Note that it is not legal to write (8.13) in the form (A − λ)v = 0 since we do not know how
to subtract a scalar λ from a matrix A. Worse, if you type A − λ in Matlab, it will subtract λ
from all the entries of A, which is not what we are after!
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The characteristic equation is a quadratic polynomial equation, and can be solved by
factorization:

λ2
− 6λ+ 8 = (λ− 4) (λ− 2) = 0.

We conclude that A has two eigenvalues: λ1 = 4 and λ2 = 2.

For each eigenvalue, the corresponding eigenvectors are found by solving the associated
homogeneous linear system (8.13). For the first eigenvalue, the corresponding eigenvector
equation is

(A− 4 I )v =

(
−1 1
1 −1

)(
x

y

)
=

(
0
0

)
, or

−x+ y = 0,

x− y = 0.

The general solution is

x = y = a, so v =

(
a

a

)
= a

(
1
1

)
,

where a is an arbitrary scalar. Only the nonzero solutions† count as eigenvectors, and so
the eigenvectors for the eigenvalue λ1 = 4 must have a 6= 0, i.e., they are all nonzero scalar

multiples of the basic eigenvector v1 = ( 1, 1 )
T
.

Remark : In general, if v is an eigenvector of A for the eigenvalue λ, then so is any
nonzero scalar multiple of v. In practice, we only distinguish linearly independent eigen-
vectors. Thus, in this example, we shall say “v1 = ( 1, 1 )

T
is the eigenvector corresponding

to the eigenvalue λ1 = 4”, when we really mean that the eigenvectors for λ1 = 4 consist of
all nonzero scalar multiples of v1.

Similarly, for the second eigenvalue λ2 = 2, the eigenvector equation is

(A− 2 I )v =

(
1 1
1 1

)(
x

y

)
=

(
0
0

)
.

The solution (−a, a )
T
= a (−1, 1 )

T
is the set of scalar multiples of the eigenvector

v2 = (−1, 1 )
T
. Therefore, the complete list of eigenvalues and eigenvectors (up to scalar

multiple) is

λ1 = 4, v1 =

(
1
1

)
, λ2 = 2, v2 =

(
−1
1

)
.

Example 8.6. Consider the 3× 3 matrix

A =



0 −1 −1
1 2 1
1 1 2


 .

† If, at this stage, you end up with a linear system with only the trivial zero solution, you’ve
done something wrong! Either you don’t have a correct eigenvalue — maybe you made a mistake
setting up and/or solving the characteristic equation — or you’ve made an error solving the
homogeneous eigenvector system.
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Using the formula (1.82) for a 3× 3 determinant, we compute the characteristic equation

0 = det(A− λ I ) = det



−λ −1 −1
1 2− λ 1
1 1 2− λ




= (−λ)(2− λ)2 + (−1) · 1 · 1 + (−1) · 1 · 1−

− 1 · (2− λ)(−1)− 1 · 1 · (−λ)− (2− λ) · 1 · (−1)

= −λ3 + 4λ2
− 5λ+ 2.

The resulting cubic polynomial can be factorized:

−λ3 + 4λ2
− 5λ+ 2 = − (λ− 1)2 (λ− 2) = 0.

Most 3× 3 matrices have three different eigenvalues, but this particular one has only two:
λ1 = 1, which is called a double eigenvalue since it is a double root of the characteristic
equation, along with a simple eigenvalue λ2 = 2.

The eigenvector equation (8.13) for the double eigenvalue λ1 = 1 is

(A− I )v =



−1 −1 −1
1 1 1
1 1 1






x

y

z


 =



0
0
0


 .

The general solution to this homogeneous linear system

v =



−a− b

a

b


 = a



−1
1
0


+ b



−1
0
1




depends upon two free variables, y = a, z = b. Any nonzero solution forms a valid
eigenvector for the eigenvalue λ1 = 1, and so the general eigenvector is any non-zero linear

combination of the two “basis eigenvectors” v1 = (−1, 1, 0 )
T
, v̂1 = (−1, 0, 1 )

T
.

On the other hand, the eigenvector equation for the simple eigenvalue λ2 = 2 is

(A− 2 I )v =



−2 −1 −1
1 0 1
1 1 0






x

y

z


 =



0
0
0


 .

The general solution

v =



−a

a

a


 = a



−1
1
1




consists of all scalar multiple of the eigenvector v2 = (−1, 1, 1 )
T
.
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In summary, the eigenvalues and (basis) eigenvectors for this matrix are

λ1 = 1, v1 =



−1
1
0


 , v̂1 =



−1
0
1


 ,

λ2 = 2, v2 =



−1
1
1


 .

(8.15)

In general, given an eigenvalue λ, the corresponding eigenspace Vλ ⊂ Rn is the sub-
space spanned by all its eigenvectors. Equivalently, the eigenspace is the kernel

Vλ = ker(A− λ I ). (8.16)

In particular, λ is an eigenvalue if and only if Vλ 6= {0} is a nontrivial subspace, and then
every nonzero element of Vλ is a corresponding eigenvector. The most economical way to
indicate each eigenspace is by writing out a basis, as in (8.15).

Example 8.7. The characteristic equation of the matrix A =



1 2 1
1 −1 1
2 0 1


 is

0 = det(A− λ I ) = −λ3 + λ2 + 5λ+ 3 = − (λ+ 1)2 (λ− 3).

Again, there is a double eigenvalue λ1 = −1 and a simple eigenvalue λ2 = 3. However, in
this case the matrix

A− λ1 I = A+ I =



2 2 1
1 0 1
2 0 2




has only a one-dimensional kernel, spanned by ( 2,−1,−2 )
T
. Thus, even though λ1 is a

double eigenvalue, it only admits a one-dimensional eigenspace. The list of eigenvalues
and eigenvectors is, in a sense, incomplete:

λ1 = −1, v1 =



2
−1
−2


 , λ2 = 3, v2 =



2
1
2


 .

Example 8.8. Finally, consider the matrix A =



1 2 0
0 1 −2
2 2 −1


. The characteristic

equation is

0 = det(A− λ I ) = −λ3 + λ2
− 3λ− 5 = − (λ+ 1) (λ2

− 2λ+ 5).

The linear factor yields the eigenvalue −1. The quadratic factor leads to two complex
roots, 1 + 2 i and 1− 2 i , which can be obtained via the quadratic formula. Hence A has
one real and two complex eigenvalues:

λ1 = −1, λ2 = 1 + 2 i , λ3 = 1− 2 i .
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Complex eigenvalues are as important as real eigenvalues, and we need to be able to handle
them too. To find the corresponding eigenvectors, which will also be complex, we need
to solve the usual eigenvalue equation (8.13), which is now a complex homogeneous linear
system. For example, the eigenvector(s) for λ2 = 1 + 2 i are found by solving

(A− (1 + 2 i ) I )v =



−2 i 2 0
0 −2 i −2
2 2 −2− 2 i






x

y

z


 =



0
0
0


 .

This linear system can be solved by Gaussian elimination (with complex pivots). A simpler
approach is to work directly: the first equation −2 ix+2y = 0 tells us that y = ix, while
the second equation −2 i y − 2z = 0 says z = − i y = x. If we trust our calculations
so far, we do not need to solve the final equation 2x + 2y + (−2 − 2 i )z = 0, since we
know that the coefficient matrix is singular and hence it must be a consequence of the first
two equations. (However, it does serve as a useful check on our work.) So, the general

solution v = (x, ix, x )
T
is an arbitrary constant multiple of the complex eigenvector

v2 = ( 1, i , 1 )
T
.

Summarizing, the matrix under consideration has three complex eigenvalues and three
corresponding eigenvectors, each unique up to (complex) scalar multiple:

λ1 = −1, λ2 = 1 + 2 i , λ3 = 1− 2 i ,

v1 =



−1
1
1


 , v2 =



1
i
1


 , v3 =



1
− i
1


 .

Note that the third complex eigenvalue is the complex conjugate of the second, and the
eigenvectors are similarly related. This is indicative of a general fact for real matrices:

Proposition 8.9. If A is a real matrix with a complex eigenvalue λ = µ + i ν and
corresponding complex eigenvector v = x+ iy, then the complex conjugate λ = µ− i ν is
also an eigenvalue with complex conjugate eigenvector v = x− iy.

Proof : First take complex conjugates of the eigenvalue equation (8.12)

A v = Av = λv = λ v.

Using the fact that a real matrix is unaffected by conjugation, so A = A, we conclude

Av = λ v, (8.17)

which is the eigenvalue equation for the eigenvalue λ and eigenvector v. Q.E.D.

As a consequence, when dealing with real matrices, one only needs to compute the
eigenvectors for one of each complex conjugate pair of eigenvalues. This observation ef-
fectively halves the amount of work in the unfortunate event that we are confronted with
complex eigenvalues.
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Remark : The reader may recall that we said one should never use determinants in
practical computations. So why have we reverted to using determinants to find eigenvalues?
The truthful answer is that the practical computation of eigenvalues and eigenvectors never
resorts to the characteristic equation! The method is fraught with numerical traps and
inefficiencies when (a) computing the determinant leading to the characteristic equation,
then (b) solving the resulting polynomial equation, which is itself a nontrivial numerical
problem, [30], and, finally, (c) solving each of the resulting linear eigenvector systems.

Indeed, if we only know an approximation λ̃ to the true eigenvalue λ, the approximate
eigenvector system (A − λ̃)v = 0 has a nonsingular coefficient matrix, and hence only
admits the trivial solution — which does not even qualify as an eigenvector! Nevertheless,
the characteristic equation does give us important theoretical insight into the structure
of the eigenvalues of a matrix, and can be used on small, e.g., 2 × 2 and 3 × 3, matrices,
when exact arithmetic is employed. Numerical algorithms for computing eigenvalues and
eigenvectors are based on completely different ideas, and will be discussed in Section 10.6.

Basic Properties of Eigenvalues

If A is an n× n matrix, then its characteristic polynomial is

pA(λ) = det(A− λ I ) = cn λn + cn−1 λn−1 + · · · + c1 λ+ c0. (8.18)

The fact that pA(λ) is a polynomial of degree n is a consequence of the general determi-
nantal formula (1.81). Indeed, every term is plus or minus a product of matrix entries
containing one from each row and one from each column. The term corresponding to the
identity permutation is obtained by multiplying the the diagonal entries together, which,
in this case, is

(a11−λ) (a22−λ) · · · (ann−λ) = (−1)nλn+(−1)n−1
(
a11 + a22 + · · · + ann

)
λn−1+ · · · ,

(8.19)
All of the other terms have at most n− 2 diagonal factors aii − λ, and so are polynomials
of degree ≤ n − 2 in λ. Thus, (8.19) is the only summand containing the monomials λn

and λn−1, and so their respective coefficients are

cn = (−1)
n, cn−1 = (−1)

n−1(a11 + a22 + · · · + ann) = (−1)
n−1 trA, (8.20)

where trA, the sum of its diagonal entries, is called the trace of the matrix A. The other
coefficients cn−2, . . . , c1 in (8.18) are more complicated combinations of the entries of A.
However, setting λ = 0 implies pA(0) = detA = c0, and hence the constant term equals the

determinant of the matrix. In particular, if A =

(
a b

c d

)
is a 2×2 matrix, its characteristic

polynomial has the form

pA(λ) = det(A− λ I ) = det

(
a− λ b

c d− λ

)

= λ2
− (a+ d)λ+ (ad− bc) = λ2

− (trA)λ+ (detA).

(8.21)

As a result of these considerations, the characteristic equation of an n × n matrix A

is a polynomial equation of degree n, namely pA(λ) = 0. According to the Fundamental
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Theorem of Algebra (see Corollary 16.63) every (complex) polynomial of degree n can be
completely factored:

pA(λ) = (−1)
n(λ− λ1)(λ− λ2) · · · (λ− λn). (8.22)

The complex numbers λ1, . . . , λn, some of which may be repeated, are the roots of the
characteristic equation pA(λ) = 0, and hence the eigenvalues of the matrix A. Therefore,
we immediately conclude:

Theorem 8.10. An n×n matrix A has at least one and at most n distinct complex

eigenvalues.

Most n×n matrices — meaning those for which the characteristic polynomial factors
into n distinct factors — have exactly n complex eigenvalues. More generally, an eigenvalue
λj is said to have multiplicity m if the factor (λ − λj) appears exactly m times in the
factorization (8.22) of the characteristic polynomial. An eigenvalue is simple if it has
multiplicity 1. In particular, A has n distinct eigenvalues if and only if all its eigenvalues are
simple. In all cases, when the eigenvalues are counted in accordance with their multiplicity,
every n× n matrix has a total of n possibly repeated eigenvalues.

An example of a matrix with just one eigenvalue, of multiplicity n, is the n×n identity
matrix I , whose only eigenvalue is λ = 1. In this case, every nonzero vector in Rn is an
eigenvector of the identity matrix, and so the eigenspace is all of Rn. At the other extreme,
the “bidiagonal” Jordan block matrix

Jλ =




λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ




, (8.23)

also has only one eigenvalue, λ, again of multiplicity n. But in this case, Jλ has only
one eigenvector (up to scalar multiple), which is the standard basis vector en, and so its
eigenspace is one-dimensional.

Remark : If λ is a complex eigenvalue of multiplicity k for the real matrix A, then its
complex conjugate λ also has multiplicity k. This is because complex conjugate roots of a
real polynomial necessarily appear with identical multiplicities.

Remark : If n ≤ 4, then one can, in fact, write down an explicit formula for the
solution to a polynomial equation of degree n, and hence explicit (but not particularly
helpful) formulae for the eigenvalues of general 2 × 2, 3 × 3 and 4 × 4 matrices. As soon
as n ≥ 5, there is no explicit formula (at least in terms of radicals), and so one must
usually resort to numerical approximations. This remarkable and deep algebraic result
was proved by the young Norwegian mathematician Nils Hendrik Abel in the early part of
the nineteenth century, [57].
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If we explicitly multiply out the factored product (8.22) and equate the result to the
characteristic polynomial (8.18), we find that its coefficients c0, c1, . . . cn−1 can be written
as certain polynomials of the roots, known as the elementary symmetric polynomials. The
first and last are of particular importance:

c0 = λ1 λ2 · · · λn, cn−1 = (−1)
n−1 (λ1 + λ2 + · · · + λn). (8.24)

Comparison with our previous formulae for the coefficients c0 and cn−1 leads us to the
following useful result.

Proposition 8.11. The sum of the eigenvalues of a matrix equals its trace:

λ1 + λ2 + · · · + λn = trA = a11 + a22 + · · · + ann. (8.25)

The product of the eigenvalues equals its determinant:

λ1 λ2 · · · λn = detA. (8.26)

Remark : For repeated eigenvalues, one must add or multiply them in the formulae
(8.25), (8.26) according to their multiplicity.

Example 8.12. The matrix A =



1 2 1
1 −1 1
2 0 1


 considered in Example 8.7 has trace

and determinant

trA = 1, detA = 3.

These fix, respectively, the coefficient of λ2 and the constant term in the characteristic
equation. This matrix has two distinct eigenvalues, −1, which is a double eigenvalue, and
3, which is simple. For this particular matrix, formulae (8.25), (8.26) become

1 = trA = (−1) + (−1) + 3, 3 = detA = (−1)(−1) 3.

8.3. Eigenvector Bases and Diagonalization.

Most of the vector space bases that play a distinguished role in applications consist
of eigenvectors of a particular matrix. In this section, we show that the eigenvectors for
any “complete” matrix automatically form a basis for Rn or, in the complex case, Cn. In
the following subsection, we use the eigenvector basis to rewrite the linear transformation
determined by the matrix in a simple diagonal form.

The first task is to show that eigenvectors corresponding to distinct eigenvalues are
automatically linearly independent.

Lemma 8.13. If λ1, . . . , λk are distinct eigenvalues of the same matrix A, then the

corresponding eigenvectors v1, . . . ,vk are linearly independent.
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Proof : We use induction on the number of eigenvalues. The case k = 1 is immediate
since an eigenvector cannot be zero. Assume that we know the result for k−1 eigenvalues.
Suppose we have a linear combination

c1v1 + · · · + ck−1vk−1 + ckvk = 0 (8.27)

which vanishes. Let us multiply this equation by the matrix A:

A
(
c1v1 + · · · + ck−1vk−1 + ckvk

)
= c1 Av1 + · · · + ck−1 Avk−1 + ckAvk

= c1 λ1v1 + · · · + ck−1 λk−1vk−1 + ck λkvk = 0.

On the other hand, if we just multiply the original equation by λk, we also have

c1 λkv1 + · · · + ck−1 λkvk−1 + ck λkvk = 0.

Subtracting this from the previous equation, the final terms cancel and we are left with
the equation

c1(λ1 − λk)v1 + · · · + ck−1(λk−1 − λk)vk−1 = 0.

This is a vanishing linear combination of the first k − 1 eigenvectors, and so, by our
induction hypothesis, can only happen if all the coefficients are zero:

c1(λ1 − λk) = 0, . . . ck−1(λk−1 − λk) = 0.

The eigenvalues were assumed to be distinct, so λj 6= λk when j 6= k; consequently,
c1 = · · · = ck−1 = 0. Substituting these values back into (8.27), we find ckvk = 0, and
so ck = 0 also, since the eigenvector vk 6= 0. Thus we have proved that (8.27) holds if
and only if c1 = · · · = ck = 0, which implies the linear independence of the eigenvectors
v1, . . . ,vk. This completes the induction step. Q.E.D.

The most important consequence of this result is stated in the corollary.

Theorem 8.14. If the n×n real matrix A has n distinct real eigenvalues λ1, . . . , λn,

then the corresponding real eigenvectors v1, . . . ,vn form a basis of Rn. If A (which may
now be either a real or a complex matrix) has n distinct complex eigenvalues, then its

eigenvectors form a basis of Cn.

If a matrix has multiple eigenvalues, then there may or may not be an eigenvector
basis of Rn (or Cn). The matrix in Example 8.6 has an eigenvector basis, whereas the
matrix in Example 8.7 does not. In general, it can be proved that the dimension of the
eigenspace is less than or equal to the multiplicity of the eigenvalue. In particular, a simple
eigenvalue has a one-dimensional eigenspace, and hence, up to scalar multiple, only one
associated eigenvector.

Definition 8.15. An eigenvalue λ of a matrix A is called complete if its eigenspace
Vλ = ker(A− λ I ) has the same dimension as its multiplicity. The matrix A is complete if
all its eigenvalues are.
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Remark : The multiplicity of an eigenvalue λi is sometimes referred to as its algebraic
multiplicity . The dimension of the eigenspace Vλ is called the geometric multiplicity , and
so completeness requires that the two multiplicities are equal. The word “complete” is not
completely standard; other common terms for such matrices are perfect , semi-simple and,
as discussed below, diagonalizable.

Note that a simple eigenvalue is automatically complete, and so only multiple eigen-
values can cause the incompleteness of a matrix.

Theorem 8.16. An n × n real or complex matrix A is complete if and only if its

eigenvectors span Cn. In particular, any n × n matrix that has n distinct eigenvalues is

complete.

A n × n matrix is incomplete if it does not have n linearly independent complex
eigenvectors. Most matrices, including those with all simple eigenvalues, are complete.
Incomplete matrices are more tricky to deal with, and we relegate most of the messy
details to Section 8.6.

Remark : We already noted that complex eigenvectors of a real matrix always appear
in conjugate pairs: v = x ± iy. It can be shown that the real and imaginary parts
of these vectors form a real basis for Rn. (See Exercise for the underlying principle.)

For instance, in Example 8.8, the complex eigenvectors are



1
0
1


 ± i



0
1
0


. The vectors



−1
1
1


,



1
0
1


,



0
1
0


, consisting of the real eigenvector and the real and imaginary parts

of the complex eigenvectors, form a basis for R3.

Diagonalization

Every n × n matrix A represents a linear transformation L:Rn
→ Rn, namely the

function L[u ] = Au given by matrix multiplication. As we learned in Section 7.2, the
matrix representing a linear transformation depends upon the choice basis of Rn. Some
bases give a particular simple matrix representation.

For example, the linear transformation L

(
x

y

)
=

(
x− y

2x+ 4y

)
studied in Example 7.18

is represented by the matrix A =

(
1 −1
2 4

)
— when expressed in terms of the standard

basis of R2. In terms of the alternative basis v1 =

(
1
−1

)
, v2 =

(
1
−2

)
, the linear

transformation is represented by the diagonal matrix

(
2 0
0 3

)
, which indicates its simple

stretching action on the new basis: Av1 = 2v1 and Av2 = 3v2. Now we can understand
the reason for this simplification. The new basis consists of the two eigenvectors of the
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matrix A. This observation is indicative of a general fact: representing a linear transfor-
mation in terms of an eigenvector basis has the effect of replacing its matrix representative
by a simple diagonal form. The effect is to diagonalize the original coefficient matrix.

According to (7.22), if v1, . . . ,vn form a basis of Rn, then the corresponding matrix
representative of the linear transformation L[v ] = Av is given by the similar matrix

B = S−1AS, where S = (v1 v2 . . . vn )
T
is the matrix whose columns are the basis

vectors. In the preceding example, S =

(
1 1
−1 −2

)
, and we find that S−1AS =

(
2 0
0 3

)

is a diagonal matrix.

Definition 8.17. A square matrix A is called diagonalizable if there exists a nonsin-
gular matrix S and a diagonal matrix Λ = diag (λ1, . . . , λn) such that

S−1AS = Λ. (8.28)

A diagonal matrix represents a linear transformation that simultaneously stretches†

in the direction of the basis vectors. Thus, every diagonalizable matrix represents a ele-
mentary combination of (complex) stretching transformations.

To understand the diagonalization equation (8.28), we rewrite it in the equivalent
form

AS = S Λ. (8.29)

Using the basic property (1.11) of matrix multiplication, one easily sees that the kth column
of this n× n matrix equation is given by

Avk = λkvk.

Therefore, the columns of S are necessarily eigenvectors, and the entries of the diagonal
matrix Λ are the corresponding eigenvalues! And, as a result, a diagonalizable matrix
A must have n linearly independent eigenvectors, i.e., an eigenvector basis, to form the
columns of the diagonalizing matrix S. Since the diagonal form Λ contains the eigenvalues
along its diagonal, it is uniquely determined up to a permutation of its entries.

Now, as we know, not every matrix has an eigenvector basis. Moreover, even when it
exists, the eigenvector basis may be complex, in which case S is a complex matrix, and the
entries of the diagonal matrix Λ are the complex eigenvalues. Thus, we should distinguish
between complete matrices that are diagonalizable over the complex numbers and the more
restrictive class of matrices which can be diagonalized by a real matrix S.

Theorem 8.18. A matrix is complex diagonalizable if and only if it is complete. A

matrix is real diagonalizable if and only if it is complete and has all real eigenvalues.

† A negative diagonal entry represents the combination of a reflection and stretch. Complex
entries correspond to a complex stretching transformation. See Section 7.2 for details.
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Example 8.19. The 3 × 3 matrix A =



0 −1 −1
1 2 1
1 1 2


 considered in Example 8.5

has eigenvector basis

v1 =



−1
1
0


 , v2 =



−1
0
1


 , v3 =



−1
1
1


 .

We assemble these to form the eigenvector matrix

S =



−1 −1 −1
1 0 1
0 1 1


 and so S−1 =



−1 0 −1
−1 −1 0
1 1 1


 .

The diagonalization equation (8.28) becomes

S−1AS =



−1 0 −1
−1 −1 0
1 1 1





0 −1 −1
1 2 1
1 1 2





−1 −1 −1
1 0 1
0 1 1


 =



1 0 0
0 1 0
0 0 2


 = Λ,

with the eigenvalues of A appearing on the diagonal of Λ, in the same order as the eigen-
vectors.

Remark : If a matrix is not complete, then it cannot be diagonalized. Incomplete
matrices represent generalized shearing transformations, and will be the subject of the

following subsection. A simple example is a matrix of the form

(
1 c

0 1

)
for c 6= 0, which

represents a shear in the direction of the x axis.

8.4. Eigenvalues of Symmetric Matrices.

Fortunately, the matrices that arise in most applications are complete and, in fact,
possess some additional structure that ameliorates the calculation of their eigenvalues and
eigenvectors. The most important class are the symmetric, including positive definite,
matrices. In fact, not only are the eigenvalues of a symmetric matrix necessarily real, the
eigenvectors always form an orthogonal basis of the underlying Euclidean space. In such
situations, we can tap into the dramatic power of orthogonal bases that we developed in
Chapter 5. In fact, this is by far the most common way for orthogonal bases to appear —
as the eigenvector bases of symmetric matrices.

Theorem 8.20. If A = AT be a real symmetric n× n matrix, Then

(a) All the eigenvalues of A are real.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthonormal basis of Rn consisting of n eigenvectors of A.

In particular, all symmetric matrices are complete.
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Remark : Orthogonality is with respect to the standard dot product on Rn. As we
noted in Section 7.5, the transpose or adjoint operation is intimately connected with the
dot product. A corresponding result holds for self-adjoint linear transformations on general
inner product spaces; see Exercise for details.

Example 8.21. The 2 × 2 matrix A =

(
3 1
1 3

)
considered in Example 8.5 is sym-

metric, and so has real eigenvalues λ1 = 4 and λ2 = 2. You can easily check that the

corresponding eigenvectors v1 = ( 1 1 )
T
and v2 = (−1 1 )

T
are orthogonal: v1 · v2 = 0,

and hence form on orthogonal basis of R2. An orthonormal basis is provided by the unit
eigenvectors

u1 =

(
1√
2

1√
2

)
, u2 =

(
−

1√
2

1√
2

)
, (8.30)

obtained by dividing each eigenvector by its length: uk = vk/‖vk ‖.

Proof of Theorem 8.20 : First recall that if A = AT is real, symmetric, then

(Av) ·w = v · (Aw) for all v,w ∈ Cn, (8.31)

where we use the Euclidean dot product for real vectors and, more generally, the Hermitian
dot product v ·w = vTw when they are complex. (See Exercise .)

To prove property (a), suppose λ is a complex eigenvalue with complex eigenvector
v ∈ Cn. Consider the Hermitian dot product of the complex vectors Av and v:

(Av) · v = (λv) · v = λ ‖v ‖2.

On the other hand, by (8.31),

(Av) · v = v · (Av) = v · (λv) = vT λv = λ ‖v ‖2.

Equating these two expressions, we deduce

λ ‖v ‖2 = λ ‖v ‖2.

Since v is an eigenvector, it is nonzero, v 6= 0, and so λ = λ. This proves that the
eigenvalue λ is real.

To prove (b), suppose

Av = λv, Aw = µw,

where λ 6= µ are distinct real eigenvalues. Then, again by (8.31),

λv ·w = (Av) ·w = v · (Aw) = v · (µw) = µv ·w,

and hence
(λ− µ)v ·w = 0.

Since λ 6= µ, this implies that v ·w = 0 and hence the eigenvectors v,w are orthogonal.
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Finally, the proof of (c) is easy if all the eigenvalues of A are distinct. Theorem 8.14
implies that the eigenvectors form a basis of Rn, and part (b) proves they are orthogonal.
(An alternative proof starts with orthogonality, and then applies Proposition 5.4 to prove
that the eigenvectors form a basis.) To obtain an orthonormal basis, we merely divide the
eigenvectors by their lengths: uk = vk/‖vk ‖, as in Lemma 5.2.

To prove (c) in general, we proceed by induction on the size n of the matrix A. The
case of a 1 × 1 matrix is trivial. (Why?) Let A have size n × n. We know that A has at
least one eigenvalue, λ1, which is necessarily real. Let v1 be the associated eigenvector.
Let

V ⊥ = {w ∈ Rn
| v1 ·w = 0 }

denote the orthogonal complement to the eigenspace Vλ1
— the set of all vectors orthogonal

to the first eigenvector. Proposition 5.46 implies that dimV ⊥ = n − 1, and so we may
identify V ⊥ ' Rn−1 by introducing an orthonormal basis. Moreover, AV ⊥ ⊂ V ⊥, and
the restriction of A to V ⊥ remains symmetric. Thus, we can use our induction hypothesis
to construct an orthonormal basis of V ⊥ consisting of eigenvectors u2, . . . ,un ∈ V ⊥.
Throwing in u1 = v1/‖v1 ‖ completes the orthonormal basis of Rn. and thus completes
the proof. Q.E.D.

Example 8.22. Consider the symmetric matrix A =



5 −4 2
−4 5 2
2 2 −1


. A straight-

forward computation produces its eigenvalues and eigenvectors:

λ1 = 9, λ2 = 3, λ3 = −3,

v1 =



1
−1
0


 , v2 =



1
1
1


 , v3 =



1
1
−2


 .

As the reader can check, the eigenvectors form an orthogonal basis of R3. The orthonormal
eigenvector basis promised by Theorem 8.20 is obtained by dividing each eigenvector by
its norm:

u1 =




1√
2

−
1√
2

0


 , u2 =




1√
3

1√
3

1√
3


 , u3 =




1√
6

1√
6

−
2√
6


 .

Finally, we can characterize positive definite matrices by their eigenvalues.

Theorem 8.23. A symmetric matrix K = KT is positive definite if and only if all

of its eigenvalues are strictly positive.

Proof : First, if K > 0, then, by definition, xTK x > 0 for all nonzero vectors x ∈ Rn.
In particular, if x = v is an eigenvector with (necessarily real) eigenvalue λ, then

0 < vTKv = vT (λv) = λ ‖v ‖2, (8.32)
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which immediately proves that λ > 0. Conversely, suppose K has all positive eigenvalues.
Let u1, . . . ,un be the orthonormal eigenvector basis of Rn guaranteed by Theorem 8.20,
with Kuj = λj uj . Then, writing

x = c1u1 + · · · + cnun, we have K x = c1 λ1u1 + · · · + cnλnun.

Therefore, using the orthonormality of the eigenvectors,

xTK x = (c1u1 + · · · + cnun) · (c1 λ1u1 + · · · + cnλnun) = λ1 c2
1 + · · · + λn c2

n ≥ 0,

Moreover, the result is strictly positive for x 6= 0 since not all the coefficients c1, . . . , cn
can be zero. This proves that that K is positive definite. Q.E.D.

Remark : The same proof shows that K is positive semi-definite if and only if all its
eigenvalues satisfy λ ≥ 0. A positive semi-definite matrix that is not positive definite
admits a zero eigenvalue and one or more null eigenvectors, i.e., solutions to Kv = 0.
Every nonzero element 06= v ∈ kerK of the kernel is a null eigenvector.

Example 8.24. Consider the symmetric matrixK =



8 0 1
0 8 1
1 1 7


. Its characteristic

equation is

det(K − λ I) = −λ3 + 23λ2
− 174λ+ 432 = −(λ− 9)(λ− 8)(λ− 6),

and so its eigenvalues are 9, 8 and 6. Since they are all positive, we conclude that K is a
positive definite matrix. The associated eigenvectors are

λ1 = 9, v1 =



1
1
1


 , λ2 = 8, v2 =



−1
1
0


 , λ3 = 6, v3 =



−1
−1
2


 .

Note that the eigenvectors form an orthogonal basis of R3, as guaranteed by Theorem 8.20.
We can construct an orthonormal eigenvector basis

u1 =




1√
3

1√
3

1√
3


 , u2 =




−
1√
2

1√
2

0


 , u3 =




−
1√
6

−
1√
6

2√
6


 ,

by dividing each eigenvector by its norm.

The Spectral Theorem

Since a real, symmetric matrix admits an eigenvector basis, it is diagonalizable. More-
over, since we can arrange that the eigenvectors form an orthonormal basis, the diagonal-
izing matrix takes a particularly simple form. Recall that an n × n matrix Q is called
orthogonal if and only if its columns form an orthonormal basis of Rn. Alternatively, one
characterizes orthogonal matrices by the condition Q−1 = QT , as per Definition 5.18.

Therefore, when we use the orthonormal eigenvector basis in the diaognalization for-
mula (8.28), the result is the important Spectral Theorem that governs the diagonalization
of symmetric matrices.
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Theorem 8.25. Let A be a real, symmetric matrix. Then there exists an orthogonal

matrix Q such that

A = QΛQ−1 = QΛQT , (8.33)

where Λ is a real diagonal matrix. The eigenvalues of A appear on the diagonal of Λ, while
the eigenvectors are the corresponding columns of Q.

Remark : The term “spectrum” refers to the eigenvalues of a matrix or, more generally,
a linear operator. The terminology is motivated by physics. The spectral energy lines of
atoms, molecules and nuclei are characterized as the eigenvalues of the governing quantum
mechanical linear operators, [100, 104].

Warning : The spectral factorization A = QΛQT and the Gaussian factorization A =
LDLT of a regular symmetric matrix, cf. (1.52), are completely different. In particular,
the eigenvalues are not the pivots: Λ6= D.

The spectral decomposition (8.33) provides us with an alternative means of diagonal-
izing the associated quadratic form q(x) = xTAx, i.e., of completing the square. We
write

q(x) = xTAx = xT QΛQT x = yTΛy =

n∑

i=1

λi y
2
i , (8.34)

where y = QTx = Q−1x are the coordinates of x with respect to the orthonormal eigen-
value basis of A, cf. (7.21). In particular, q(x) > 0 for all nonzero x — which means A is
positive definite — if and only if each eigenvalue λi > 0 is strictly positive, reconfirming
Theorem 8.23.

Example 8.26. For the 2 × 2 matrix A =

(
3 1
1 3

)
considered in Example 8.21,

the orthonormal eigenvectors (8.30) produce the diagonalizing orthogonal rotation matrix

Q =

(
1√
2
−

1√
2

1√
2

1√
2

)
. The reader can check the spectral factorization

(
3 1
1 3

)
= A = QΛQT =

(
1√
2
−

1√
2

1√
2

1√
2

) (
4 0

0 2

) (
1√
2

1√
2

−
1√
2

1√
2

)
.

According to (8.34), the associated quadratic form is diagonalized as

q(x) = 3x2
1 + 2x1 x2 + 3x

2
2 = 4y

2
1 + 2y

2
2 ,

where y = QTx, i.e., y1 =
x1 + x2
√
2

, y2 =
−x1 + x2
√
2

.

We note that you can choose Q to be a proper orthogonal matrix, so detQ = 1, since
an improper orthogonal matrix can be made proper by multiplying one of its columns by
−1, which does not affect its status as an eigenvector matrix. Since a proper orthogonal
matrixQ represents a rigid rotation of Rn, the diagonalization of a symmetric matrix can be
interpreted as a rotation of the coordinate system in which the orthogonal eigenvectors line
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A

Figure 8.2. Stretching a Circle into an Ellipse.

up along the coordinate axes. Therefore, a linear transformation L(x) = Ax represented
by a positive definite matrix A > 0 can be regarded as a combination of stretches along a
mutually orthogonal set of directions. In elasticity, the stress tensor of a deformed body
is represented by a positive definite matrix. Its eigenvalues are known as the principal
stretches and its eigenvectors the principal directions of stretch of the elastic deformation.

A good way to visualize this is to consider the effect of the linear transformation on
the unit (Euclidean) sphere

S1 = { ‖x ‖ = 1 }.

Stretching the sphere in orthogonal directions will map it into an ellipsoid E = L[S1 ] whose
axes are aligned with the directions of stretch. Explicitly, if the linear transformation is
giveny by y = Ax, then

E = L[S1 ] = {Ax | ‖x ‖ = 1 } =
{
y
∣∣ ‖A−1y ‖ = 1

}
. (8.35)

For example, the matrix A =

(
3 1
1 3

)
considered in the preceding example represents the

linear transformation
x̃ = 3x+ y, ỹ = x+ 3y.

Therefore, the unit circle x2 + y2 = 1 will be mapped to the ellipse

(
3 x̃− ỹ

8

)2

+

(
− x̃+ 3 ỹ

8

)2

= 5
32 x̃2

−
3
16 x̃ ỹ + 5

32 ỹ2 = 1,

whose principal axes line up with the eigenvectors u1 =

(
1√
2

1√
2

)
, u2 =

(
−

1√
2

1√
2

)
; see

Figure 8.2. The eigenvalues, 4, 2, prescribe the ellipse’s semi-axes.

Optimization Principles for Eigenvalues

As we learned in Chapter 4, the solution to a linear system with positive definite
coefficient matrix can be characterized by a minimization principle. Thus, it should come as
no surprise that eigenvalues of positive definite, and even more general symmetric matrices,
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can also be characterized by some sort of optimization procedure. A number of basic
numerical algorithms for computing eigenvalues, of both matrices and, later on, differential
operators are based on such optimization principles.

First consider the relatively simple case of a diagonal matrix Λ = diag (λ1, . . . , λn).
We assume that the diagonal entries, which are the same as the eigenvalues, appear in
decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn, (8.36)

so λ1 is the largest eigenvalue, while λn is the smallest. The effect of Λ on a vector y ∈ Rn

is to multiply its entries by the diagonal eigenvalues: Λy = (λ1 y1, λ2 y2, . . . , λn yn )
T
. In

other words, the linear transformation represented by the coefficient matrix Λ has the effect
of stretching† in the ith coordinate direction by the factor λi. In particular, the maximal
stretch occurs in the first direction, with factor λ1, while the minimal stretch occurs in the
last direction, with factor λn. The germ of the optimization principles for characterizing
the extreme eigenvalues is contained in this geometrical observation.

Let us turn our attention to the associated quadratic form

q(y) = yTΛy = λ1 y2
1 + λ2 y2

2 + · · · + λn y2
n. (8.37)

Note that q(t e1) = λ1 t2, and hence if λ1 > 0, then q(y) has no maximum; On the other
hand, if 0 ≥ λi for all i, then q(y) ≤ 0, and its maximal value is q(0) = 0. Thus, in either
case, a strict maximization of q(y) is not of much help.

Suppose, however, that we try to maximize q(y) when y is restricted to be a unit
vector (in the Euclidean norm):

‖y ‖2 = y2
1 + · · ·+ y2

n = 1.

In view of our ordering convention (8.36) and the positivity of each y2
i ,

q(y) = λ1 y2
1+λ2 y2

2+ · · · +λn y2
n ≤ λ1 y2

1+λ1 y2
2+ · · · +λ1 y2

n = λ1

(
y2
1 + · · · + y2

n

)
= λ1.

Moreover, q(e1) = λ1, and therefore the maximal value of q(y) over all unit vectors is the
largest eigenvalue of Λ:

λ1 = max { q(y) | ‖y ‖ = 1 } .

By the same reasoning, q(y) also has a minimal value

λn = min { q(y) | ‖y ‖ = 1 }

equal to the smallest eigenvalue. Thus, we can represent the two extreme eigenvalues by
optimization principles, albeit of a slightly different character than we treated in Chapter 4.

Now suppose A is any symmetric matrix. We use the spectral decomposition (8.33)
to diagonalize the associated quadratic form

q(x) = xTAx = xT QΛQT x = yTΛy, where y = QTx = Q−1x,

† If λi < 0, then the effect is to stretch and reflect.
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as in (8.34). According to the preceding discussion, the minimum of yTΛy over all unit
vectors ‖y ‖ = 1 is the smallest eigenvalue λ1 of Λ, which is the same as the smallest
eigenvalue of A. Moreover, since Q is an orthogonal matrix, Proposition 7.23 tell us that
it maps unit vectors to unit vectors:

1 = ‖y ‖ = ‖QT x ‖ = ‖x ‖.

Thus, minimizing q(x) over all unit vectors y = QTx is the same as minimizing over all
unit vectors x. Similar reasoning applies to the smallest eigenvalue λn. In this fashion, we
have established the basic optimization principles for the largest and smallest eigenvalues
of a symmetric matrix.

Theorem 8.27. If A is a symmetric matrix, then

λ1 = max
{
xTAx

∣∣ ‖x ‖ = 1
}

, λn = min
{
xTAx

∣∣ ‖x ‖ = 1
}

, (8.38)

are, respectively its largest and smallest eigenvalues.

The maximal value is achieved when we set x = ±u1 to be a unit eigenvector corre-
sponding to the largest eigenvalue; similarly, the minimal value is at x = ±un.

Remark : In multivariable calculus, the eigenvalue λ plays the role of a “Lagrange
multiplier” for the constrained optimization problem, cf. [9].

Example 8.28. The problem is to maximize the value of the quadratic form

q(x, y) = 3x2 + 2xy + 3y2

for all x, y lying on the unit circle x2 + y2 = 1. This maximization problem is precisely

of form (8.38). The coefficient matrix is A =

(
3 1
1 3

)
, whose eigenvalues are, according

to Example 8.5, λ1 = 4 and λ2 = 2. Theorem 8.27 implies that the maximal value for
the quadratic form on the unit circle is the largest eigenvalue, and hence equal to 4, while
its minimal value is the smallest eigenvalue, and hence equal to 2. Indeed, if we evaluate

q(x, y) on the unit eigenvectors, we obtain q
(
−

1√
2
, 1√

2

)
= 2, q

(
−

1√
2
, 1√

2

)
= 4, while

2 ≤ q(x, y) ≤ 4 for all x, y such that x2 + y2 = 1.

In practical applications, the restriction of the quadratic form to unit vectors may not
be particularly convenient. One can, however, easily rephrase the eigenvalue optimization
principles in a form that utilizes general vectors. If v 6= 0 is any nonzero vector, then
x = v/‖v ‖ is a unit vector. Substituting this expression for x in the quadratic form
q(x) = xTAx leads to the following optimization principles for the extreme eigenvalues of
a symmetric matrix:

λ1 = max

{
vTAv

‖v ‖2

∣∣∣∣ v6= 0

}
, λn = min

{
vTAv

‖v ‖2

∣∣∣∣ v6= 0

}
. (8.39)

Thus, we replace optimization of a quadratic polynomial over the unit sphere by opti-
mization of a rational function over all of Rn

\{0}. Referring back to Example 8.28, the
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maximum value of

r(x, y) =
3x2 + 2xy + 3y2

x2 + y2
for all

(
x

y

)
6=

(
0
0

)

is equal to 4, the same maximal eigenvalue of the corresponding coefficient matrix.

What about characterizing one of the intermediate eigenvalues? Then we need to
be a little more sophisticated in designing the optimization principle. To motivate the
construction, look first at the diagonal case. If we restrict the quadratic form (8.37) to

vectors ỹ = ( 0, y2, . . . , yn )
T
whose first component is zero, we obtain

q(ỹ) = q(0, y2, . . . , yn) = λ2 y2
2 + · · · + λn y2

n.

The maximum value of q(ỹ) over all such ỹ of norm 1 is, by the same reasoning, the second
largest eigenvalue λ2. Moreover, we can characterize such vectors geometrically by noting
that they are orthogonal to the first standard basis vector, ỹ · e1 = 0, which also happens
to be the eigenvector of Λ corresponding to the eigenvalue λ1. Similarly, if we want to find
the jth largest eigenvalue λj , we maximize q(y) over all unit vectors ŷ whose first j − 1
components vanish, y1 = · · · = yj−1 = 0, or, stated geometrically, over all ỹ such that
‖ ŷ ‖ = 1 and ŷ · e1 = · · · = ŷ · ej−1 = 0, i.e., over all vectors orthogonal to the first j − 1
eigenvectors of Λ.

A similar reasoning based on the Spectral Theorem 8.25 and the orthogonality of
eigenvectors of symmetric matrices, leads to the general result.

Theorem 8.29. Let A be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥

λn and corresponding orthogonal eigenvectors v1, . . . ,vn. Then the maximal value of

the quadratic form xTAx over all unit vectors which are orthogonal to the first j − 1
eigenvectors is the jth eigenvalue:

λj = max
{
xTAx

∣∣ ‖x ‖ = 1, x · v1 = · · · = x · vj−1 = 0
}

. (8.40)

Thus, at least in principle, one can compute the eigenvalues and eigenvectors recur-
sively. First, find the largest eigenvalue λ1 by the basic maximization principle (8.38) and
its associated eigenvector v1 by solving the eigenvector system (8.13). The next largest
eigenvalue λ2 is then characterized by the constrained minimization principle (8.40), and
so on. However, this is not a very practical algorithm for numerical computations.

8.5. Singular Values.

We have already indicated the centrality of the eigenvalues and eigenvectors of a square
matrix for both theory and applications. Much more evidence to this effect will appear in
the following chapters. Alas, rectangular matrices have no eigenvalues (why?), and so, at
first glance, do not appear to possess any quantities of comparable significance. However,
our earlier treatment of both least squares minimization problems as well as the equilibrium
equations for structures and circuits made essential use of the symmetric, positive semi-
definite square Gram matrix K = ATA — which can be naturally formed even when A is
non-square. We anticipate that the eigenvalues of K might play a comparably important
role. Since they are not easily related to the eigenvalues of A — which, in the truly
rectangular case, don’t even exist — we shall endow them with a new name.
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Definition 8.30. The singular values σ1, . . . , σn of an m×n matrix A are the square
roots, σi =

√
λi , of the eigenvalues of the Gram matrix K = ATA. The corresponding

eigenvectors of K are known as the singular vectors of A.

Since K is positive semi-definite, its eigenvalues are always non-negative, λi ≥ 0, and
hence the singular values of A are also all non-negative†, σi ≥ 0 — no matter whether
A itself has positive, negative, or even complex eigenvalues, or is rectangular and has no
eigenvalues at all. However, for symmetric matrices, there is a direct connection between
the two quantities:

Proposition 8.31. If A = AT is a symmetric matrix, its singular values are the ab-

solute values of its eigenvalues: σi = |λi |; its singular vectors coincide with the associated
eigenvectors.

Proof : When A is symmetric, K = ATA = A2. So, if Av = λv, then Kv = A2v =
λ2v. Thus, every eigenvector v of A is also an eigenvector of K with eigenvalue λ2.
Therefore, the eigenvector basis of A is an eigenvector basis for K, and hence forms a
complete system of singular vectors for A also. Q.E.D.

The standard convention is to label the singular values in decreasing order, so that
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Thus, σ1 will always denote the largest or dominant singular
value. If ATA has repeated eigenvalues, the singular values of A are repeated with the
same multiplicities.

Example 8.32. Let A =

(
3 5
4 0

)
. The associated Gram matrix is K = ATA =

(
25 15
15 25

)
, with eigenvalues λ1 = 40 and λ2 = 10. Thus, the singular values of A are

σ1 =
√
40 ≈ 6.3246 . . . and σ2 =

√
10 ≈ 3.1623 . . . . Note that these are not the same as

the eigenvalues of A, namely λ1 =
1
2 (3 +

√
89) ≈ 6.2170 . . . , λ2 =

1
2 (3−

√
89) ≈ −3.2170.

A rectangular matrix Σ will be called diagonal if its only nonzero entries are on the
main diagonal starting in the upper left hand corner, and so σij = 0 for i6= j. An example
is the matrix

Σ =



5 0 0 0
0 3 0 0
0 0 0 0




whose only nonzero entries are in the diagonal (1, 1) and (2, 2) positions. (Its last diagonal
entry happens to be 0.)

The generalization of the spectral factorization to non-symmetric matrices is known
as the singular value decomposition, commonly abbreviated as SVD. Unlike the spectral
decomposition, the singular value decomposition applies to arbitrary real rectangular ma-
trices.

† Warning : Some authors, [121], only designate the nonzero σi’s as singular values.
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Theorem 8.33. Any real m× n matrix A can be factorized

A = P ΣQT (8.41)

into the product of an m × m orthogonal matrix P , the m × n diagonal matrix Σ that
has the first l = min{m,n} singular values of A as its diagonal entries, and an n × n

orthogonal matrix QT .

Proof : Writing the factorization (8.41) as AQ = P Σ, and looking at the columns of
the resulting matrix equation, we find the systems

Aui = σivi, i = 1, . . . , n, (8.42)

relating the orthonormal columns of Q = (u1 u2 . . . un ) to the orthonormal columns of
P = (v1 v2 . . . vm ). The scalars σi in (8.42) are the diagonal entries of Σ or, ifm < i ≤ n,
equal to 0. The fact that P and Q are both orthogonal matrices means that their column
vectors form orthonormal bases for, respectively, Rm and Rn under the Euclidean dot
product. In this manner, the singular values indicate how far the linear transformation
represented by the matrix A stretches a distinguished set of orthonormal basis vectors.

To construct the required bases, we prescribe u1, . . . ,un to be the orthonormal eigen-
vector basis of the Gram matrix K = ATA; thus

ATAuj = Kuj = λj uj = σ2
j uj .

We claim that the image vectors wi = Aui are automatically orthogonal. Indeed, in view
of the orthonormality of the ui,

wi ·wj = wT
i wj = (Aui)

TAuj = uTi ATAuj = λj u
T
i uj = λj ui · uj =

{
0, i 6= j,

σ2
i , i = j.

.

(8.43)
Consequently, w1, . . . ,wn form an orthogonal system of vectors of respective norms

‖wi ‖ =
√
wi ·wi = σi.

Since u1, . . . ,un form a basis of Rn, their images w1 = Au1, . . . ,wn = Aun span
rngA. Suppose that A has r non-zero singular values, so σr+1 = · · · = σn = 0. Then
the corresponding image vectors w1, . . . ,wr are non-zero, mutually orthogonal vectors,
and hence form an orthogonal basis for rngA. Since the dimension of rngA is equal to
its rank, this implies that the number of non-zero singular values is r = rankA. The
corresponding unit vectors

vi =
wi

σi
=

Aui
σi

, i = 1, . . . , r, (8.44)

are an orthonormal basis for rngA. Let us further select an orthonormal basis vr+1, . . . ,vm
for its orthogonal complement cokerA = (rngA)⊥. The combined set of vectors v1, . . . ,vm
clearly forms an orthonormal basis of Rm, and satisfies (8.42). In this manner, the resulting
orthonormal bases u1, . . . ,un and v1, . . . ,vm form the respective columns of the orthogonal
matrices Q,P in the singular value decomposition (8.41). Q.E.D.
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Warning : If m < n, then only the first m singular values appear along the diagonal
of Σ. It follows from the proof that the remaining n−m singular values are all zero.

Example 8.34. For the matrix A =

(
3 5
4 0

)
considered in Example 8.32, the

orthonormal eigenvector basis of K = ATA =

(
25 15
15 25

)
is given by u1 =

(
1√
2

1√
2

)
and

u2 =

(
−

1√
2

1√
2

)
. Thus, Q =

(
1√
2
−

1√
2

1√
2

1√
2

)
. On the other hand, according to (8.44),

v1 =
Au1

σ1

=
1
√
40

(
4
√
2

2
√
2

)
=

(
2√
5

1√
5

)
, v2 =

Au2

σ2

=
1
√
10

( √
2

− 2
√
2

)
=

(
1√
5

−
2√
5

)
,

and thus P =

(
2√
5

1√
5

1√
5
−

2√
5

)
. You may wish to validate the resulting singular value

decomposition

A =

(
3 5
4 0

)
=

(
2√
5

1√
5

1√
5
−

2√
5

) (√
40 0

0
√
10

) (
1√
2

1√
2

−
1√
2

1√
2

)
= P ΣQT .

As their name suggests, the singular values can be used to detect singular matrices.
Indeed, the singular value decomposition tells us some interesting new geometrical infor-
mation about the action of the matrix, filling in further details in the discussion begun in
Section 2.5 and continued in Section 5.6. The next result follows directly from the proof
of Theorem 8.33.

Theorem 8.35. Let σ1, . . . , σr > 0 be the non-zero singular values of the m × n

matrix A. Let v1, . . . ,vm and u1, . . . ,un be the orthonormal bases of, respectively, R
m and

Rn provided by the columns of P and Q in its singular value decomposition A = P ΣQT .

Then (i) r = rankA,

(ii) u1, . . . ,ur form an orthonormal basis for corngA,

(iii) ur+1, . . . ,un form an orthonormal basis for kerA,

(iv) v1, . . . ,vr form an orthonormal basis for rngA,

(v) vr+1, . . . ,vm form an orthonormal basis for cokerA.

We already noted in Section 5.6 that the linear transformation L:Rn
→ Rm defined

by matrix multiplication by A can be interpreted as a projection from Rn to corngA

followed by an invertible map from corngA to rngA. The singular value decompostion
tells us that not only is the latter map invertible, it is simply a combination of stretches
in the r mutually orthogonal singular directions, whose magnitudes equal the nonzero
singular values. In this way, we have at last reached a complete understanding of the
subtle geometry underlying the simple operation of matrix multiplication.
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An alternative useful interpretation is to view the two orthogonal matrices in (8.41)
as defining rigid rotations or reflections. Therefore, in all cases, a linear transformation
from Rn to Rm is composed of three ingredients:

(i) A rotation/reflection of the domain space Rn prescribed by QT , followed by

(ii) a simple stretching map of the coordinate vectors e1, . . . , en of domain space, map-
ping ei to σi ei in the target space Rm, followed by

(iii) a rotation/reflection of the target space prescribed by P .

In fact, in most cases we can choose both P and Q to be proper orthogonal matrices
representing rotations; see Exercise .

Condition Number

The singular values not only provide a nice geometric interpretation of the action of
the matrix, they also play a key role in modern computational algorithms. The relative
magnitudes of the singular values can be used to distinguish well-behaved linear systems
from ill-conditioned systems which are much trickier to solve accurately. A square matrix
with a zero singular value is singular; a matrix with one or more very small singular values
is considered to be close to singular, and hence ill-conditioned in the sense that it is hard
to invert numerically. Such ill-conditioning is traditionally quantified as follows.

Definition 8.36. The condition number of an n× n matrix is the ratio between its
largest and smallest singular value: κ(A) = σ1/σn.

A matrix with a very large condition number is said to be ill-conditioned ; in practice,
this occurs when the condition number is larger than the reciprocal of the machine’s
precision, e.g., 106 for single precision arithmetic. As the name implies, it is much harder
to solve a linear system Ax = b when its coefficient matrix is ill-conditioned. In the
extreme case when A has one or more zero singular values, so σn = 0, its condition
number is infinite, and the linear system is singular, with either no solution or infinitely
many solutions.

The computation of the rank of a matrix is a significant numerical challenge. Mak-
ing tiny numerical errors in the entries can have a dramatic effect on the rank; for

example, the matrix A =



1 1 −1
2 2 −2
3 3 −3


 has rank r = 1, but a tiny change, say to

Ã =



1.00001 1 −1
2 2.00001 −2
3 3 −3.00001


, will produce a nonsingular matrix of rank 3. The

latter matrix, however, is very close to singular, and this is highlighted by their respective
singular values. For the first matrix, they are σ1 =

√
42 ≈ 6.48, σ2 = σ3 = 0, reconfirming

that A has rank 1, whereas for Ã we find σ1 ≈ 6.48075, σ2, σ3 ≈ .000001. The fact that the

second and third singular values are very small indicates that Ã is very close to a matrix
of rank 1 and should be viewed as a numerical perturbation of such a matrix. thus, in
practical terms, one assigns a threshhold for singular values, and treats any small sijngular
value below the threshold as zero.

1/12/04 295 c© 2003 Peter J. Olver



This idea underlies the method of Principal Component Analysis in modern statistics,
data analysis, imaging and many other fields, [87]. The largest singular values and associ-
ated singular vectors indicate the principal components of the matrix, while small singular
values indicate unimportant directions. In such applications, the columns of the matrix A

represent the data vectors, normalized to have mean 0, or, equivalently, so that the row
sums of A are all 0; see Exercise . The corresponding Gram matrix K = ATA can be
identified as the covariance matrix associated with the data. The principal components
indicate the directions of correlations and clustering to be found in the data. Classifica-
tion of patterns in images, sounds, sematics, and many other areas are being successfully
analyzed by this approach.

The Pseudoinverse

With the singular value decomposition in hand, we are able to introduce a general-
ization of the inverse of a matrix that applies to cases when the matrix in question is
singular or even rectangular. We begin with the diagonal case. Let Σ be an m × n diag-
onal matrix with r nonzero diagonal entries σ1, . . . , σr. We define the pseudoinverse of Σ
to be the n × m diagonal matrix Σ+ whose nonzero diagonal entries are the reciprocals
1/σ1, . . . , 1/σr. For example, if

Σ =



5 0 0 0
0 3 0 0
0 0 0 0


, then Σ+ =




1
5 0 0
0 1

3 0
0 0 0
0 0 0


.

In particular, if Σ is a nonsingular square diagonal matrix, then its pseudoinverse and
ordinary inverse are the same: Σ+ = Σ−1.

Definition 8.37. The pseudoinverse of an m × n matrix A with singular value
decomposition A = P ΣQT is the n×m matrix A+ = QΣ+ PT .

Note that the latter equation is the singular value decomposition of the pseudoinverse
A+, and hence its nonzero singular values are the reciprocals of the nonzero singular values
of A. If A is a non-singular square matrix, then its pseudoinverse agrees with its ordinary
inverse, since

A−1 = (P ΣQT )−1 = Q−T Σ−1 P−1 = QΣ+ PT = A+,

where we used the fact that the inverse of an orthogonal matrix is equal to its transpose.

If A is square and nonsingular, then, as we know, the solution to the linear system
Ax = b is given by x? = A−1b. For a general coefficient matrix, the vector x? = A+b

obtained by applying the pseudoinverse to the right hand side plays a distinguished role
— it is the least squares soution to the system! In this manner, the pseudoinverse provides
us with a direct route to least squares solutions to systems of linear equations.

Theorem 8.38. Consider the linear system Ax = b. Let x? = A+b, where A+ is

the pseudoinverse of A. If kerA = {0}, then x? is the least squares solution to the system.
If, more generally, kerA 6= {0}, then x? is the least squares solution of minimal Euclidean
norm among all vectors that minimize the least squares error ‖Ax− b ‖.
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Proof : To show that x? = A+b is the least squares solution to the system, we must
check that it satisfies the normal equations ATAx? = ATb. Using the definition of the
pseudoinverse and the singular value decomposition (8.41), we find

ATAx? = ATAA+b = (P ΣQT )T (P ΣQT )(QΣ+PT )b

= QΣTΣΣ+PTb = QΣTPTb = ATb,

where the next to last equality is left as Exercise for the reader. This proves that x?

solves the normal equations, and hence minimizes the least squares error†.

Thus, when rankA = n, the vector x? is the unique least squares aolution to the
system. More generally, if A has rank r < n, so, kerA 6= {0}, only the first r singular
values are nonzero, and therefore the last n− r rows of Σ+ are all zero. This implies that
the last n−r entries of the vector c = Σ+PTb are also all zero, so c = ( c1, . . . cr, 0, . . . , 0 )

T
.

We conclude that

x? = A+b = QΣ+ PTb = Qc = c1u1 + · · · + crur

is a linear combination of the first r singular vectors, and hence, by Theorem 8.35, x? ∈
corngA. The most general least squares solution has the form x = x?+z where z ∈ kerA,
and the fact that ‖x ‖? is minimized follows as in Theorem 5.55. Q.E.D.

When forming the pseudoinverse, we see see that very small singular values lead to very
large entries in Σ+, which will cause numerical difficulties when computing the least squares
solution x? = A+b to the linear system. A common and effective computational strategy
to avoid the effects of small singular values is to replace the corresponding diagonal entries
of the pseudoinverse Σ+ by 0. This has the effect of regularizing ill-conditioned matrices
that are very close to singular — rather than solve the system directly for x = A−1b, one
tends to use the suitably regularized pseudoinverse.

Finally, we note that practical numerical algorithms for computing singular values
and the singular value decomposition can be found in [121, 66]

8.6. Incomplete Matrices and the Jordan Canonical Form.

Unfortunately, not all matrices are complete. Matrices that do not have an eigenvector
basis are considerably less convenient to deal with. However, as they occasionally appear in
applications, it is worth learning how to handle them. We shall show how to supplement
the eigenvectors in order to obtain a basis in which the matrix assumes a simple, but
now non-diagonal form. The resulting construction is named after the nineteenth century
French mathematician Camille Jordan (and not Wilhelm Jordan of Gauss–Jordan fame).

Throughout this section, A will be an n × n matrix, with either real or complex
entries. We let λ1, . . . , λk denote the distinct eigenvalues of A. We recall that Theorem 8.10
guarantees that every matrix has at least one (complex) eigenvalue, so k ≥ 1. Moreover,
we are assuming that k < n, as otherwise A would be complete.

† In Chapter 4, this was proved under the assumption that kerA = {0}. You are asked to
establish the general case in Exercise .
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Definition 8.39. Let A be a square matrix. A Jordan chain of length j is a sequence
of non-zero vectors w1, . . . , wj ∈ Cm that satisfies

Aw1 = λw1, Awi = λwi +wi−1, i = 2, . . . , j, (8.45)

where λ is an eigenvalue of A.

Note that the initial vector w1 in a Jordan chain is a genuine eigenvector. The others,
w2, . . . ,wj , are generalized eigenvectors, in accordance with the following definition.

Definition 8.40. A nonzero vector w6= 0 that satisfies

(A− λ I )kw = 0 (8.46)

for some k > 0 and λ ∈ C is called a generalized eigenvector of the matrix A.

Note that every ordinary eigenvector is automatically a generalized eigenvector, since
we can just take k = 1 in (8.46), but the converse is not necessarily valid. We shall call the
minimal value of k for which (8.46) holds the index of the generalized eigenvector. Thus,
an ordinary eigenvector is a generalized eigenvector of index 1. Since A−λ I is nonsingular
whenever λ is not an eigenvalue of A, its kth power (A−λ I )k is also nonsingular. Therefore,
generalized eigenvectors can only exist when λ is an ordinary eigenvalue of A — there are
no additional “generalized eigenvalues”.

Lemma 8.41. The ith vector wi in a Jordan chain (8.45) is a generalized eigenvector
of index i.

Proof : By definition, (A − λ I )w1 = 0, and so w1 is an eigenvector. Next, we have
(A − λ I )w2 = w1, and so (A − λ I )2w2 = (A − λ I )w1 = 0. Thus, w2 a generalized
eigenvector of index 2. A simple induction proves that (A− λ I )iwi = 0. Q.E.D.

Example 8.42. Consider the 3 × 3 Jordan block A =



2 1 0
0 2 1
0 0 2


. The only

eigenvalue is λ = 2, and A− 2 I =



0 1 0
0 0 1
0 0 0


. We claim that the standard basis vectors

e1, e2 and e3 form a Jordan chain. Indeed, Ae1 = 2e1, and hence e1 ∈ ker(A − 2 I ) is
a genuine eigenvector. Furthermore, Ae2 = 2e2 + e1, and Ae3 = 2e3 + e2, as you can
easily check. Thus, e1, e2 and e3 satisfy the Jordan chain equations for the eigenvalue

λ = 2. Note that e2 lies in the kernel of (A− 2 I )
2 =



0 0 1
0 0 0
0 0 0


, and so is a generalized

eigenvector of index 2. Indeed, every vector of the form w = ae1 + be2 with b 6= 0 is a
generalized eigenvector of index 2. (When b = 0, a 6= 0, the vector w = ae1 is an ordinary
eigenvector of index 1.) Finally, (A− 2 I )3 = O, and so every vector v ∈ R3, including e3,
is a generalized eigenvector of index 3 (or less).
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Given a matrix A, a basis of Rn or Cn is called a Jordan basis if it consists of one
or more nonoverlapping Jordan chains. Thus, for the Jordan matrix in Example 8.42, the
standard basis e1, e2, e3 is, in fact, a Jordan basis. An eigenvector basis qualifies as a
Jordan basis, since each eigenvector belongs to a Jordan chain of length 1. Jordan bases
are the desired extension of eigenvector bases, valid for all square matrices.

Theorem 8.43. Every n×n matrix admits a Jordan basis of Cn. The first elements

of the Jordan chains form a maximal system of linearly independent eigenvectors. More-

over, the number of generalized eigenvectors in the Jordan basis that are in Jordan chains

associated with an eigenvalue λ is the same as the eigenvalue’s multiplicity.

Example 8.44. Consider the matrix A =




−1 0 1 0 0
−2 2 −4 1 1
−1 0 −3 0 0
−4 −1 3 1 0
4 0 2 −1 0


. With some

work, its characteristic equation is found to be

pA(λ) = det(A− λ I ) = λ5 + λ4
− 5λ3

− λ2 + 8λ− 4 = (λ− 1)3(λ+ 2)2 = 0,

and hence A has two eigenvalues: 1, which is a triple eigenvalue, and −2, which is double.
Solving the associated homogeneous system (A − λ I )v = 0, we discover that, up to

constant multiple, there are only two eigenvectors: v1 = ( 0, 0, 0,−1, 1 )
T
for λ1 = 1 and,

anticipating our final numbering, v4 = (−1, 1, 1,−2, 0 )
T
for λ2 = −2. Thus, A is far from

complete.

To construct a Jordan basis, we first note that since A has 2 linearly independent
eigenvectors, the Jordan basis will contain two Jordan chains; the one associated with the
triple eigenvalue λ1 = 1 has length 3, while λ2 = −2 admits a Jordan chain of length
2. To construct the former, we need to first solve the system (A − I )w = v1. Note
that the coefficient matrix is singular — it must be since 1 is an eigenvalue — and the
general solution is w = v2+tv1 where v2 = ( 0, 1, 0, 0,−1 )

T
, and t is the free variable. The

appearance of an arbitrary multiple of the eigenvector v1 in the solution is not unexpected;
indeed, the kernel of A− I is the eigenspace for λ1 = 1. We can choose any solution, e.g.,
v2 as the second element in the Jordan chain. To find the last element of the chain, we

solve (A − I )w = v2 to find w = v3 + tv1 where v3 = ( 0, 0, 0, 1, 0 )
T
can be used as the

Jordan chain element. Similarly, to construct the Jordan chain for the second eigenvalue,
we solve (A+2 I )w = v4 and find w = v5+ tv4 where v5 = (−1, 0, 0,−2, 1 )

T
. Thus, the

desired Jordan basis is

v1 =




0
0
0
−1
1


, v2 =




0
1
0
0
−1


, v3 =




0
0
0
1
0


, v4 =




−1
1
1
−2
0


, v5 =




−1
0
0
−2
1


,

with Av1 = v1, Av2 = v1 + v2, Av3 = v2 + v2, Av4 = −2v4, Av5 = v4 − 2v5.

To prove Theorem 8.43, we begin with a simple lemma.
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Lemma 8.45. If v1, . . . ,vn forms a Jordan basis for the matrix A, it also forms a

Jordan basis for B = A− c I , for any scalar c.

Proof : We note that the eigenvalues of B are of the form λ−c, where λ is an eigenvalue
of A. Moreover, given a Jordan chain w1, . . . ,wj of A, we have

Bw1 = (λ− c)w1, Bwi = (λ− c)wi +wi−1, i = 2, . . . , j,

so w1, . . . ,wj is also a Jordan chain for B corresponding to the eigenvalue λ− c. Q.E.D.

The proof of Theorem 8.43 will be done by induction on the size n of the matrix. The
case n = 1 is trivial, since any nonzero element of C is a Jordan basis for a 1 × 1 matrix
A = (a). To perform the induction step, we assume that the result is valid for all matrices
of size ≤ n− 1. Let A be an n×n matrix. According to Theorem 8.10, A has at least one
complex eigenvalue λ. Let B = A− λ I . Since λ is an eigenvalue of A, we know that 0 is
an eigenvalue of B. This means that kerB 6= {0}, and so r = rankB < n. Moreover, by
Lemma 8.45, any Jordan basis of B is also a Jordan basis for A, and so we can concentrate
all our attention on the singular matrix B from now on.

We note that W = rngB ⊂ Cn is an invariant subspace, i.e., Bw ∈ W whenever
w ∈ W , cf. Exercise . Moreover, since B is singular, dimW = r = rankB < n. Thus, by
fixing a basis of W , we can realize the restriction B:W → W as multiplication by an r× r

matrix. The fact that r < n allows us to invoke the induction hypothesis, and deduce the
existence of a Jordan basis w1, . . . ,wr ∈W ⊂ Cn for the action of B on the subspace W .
Our goal is to complete this collection to a full Jordan basis on Cn.

To this end, we append two additional kinds of vectors. Suppose that the Jordan
basis of W contains k null Jordan chains associated with the zero eigenvalue. Each null
Jordan chain consists of vectors w1, . . . ,wj ∈W satisfying

Bw1 = 0, Bw2 = w1, . . . Bwj = wj−1. (8.47)

The number of null Jordan chains is equal to the number of linearly independent null
eigenvectors of B in W = rngB, that is k = dim(kerB ∩ rngB). To each null Jordan
chain (8.47), we append a vector wj+1 ∈ Cn such that

Bwj+1 = wj ; (8.48)

the existence of wj+1 comes from our condition that wj ∈ rngB. Appending (8.48) to
(8.47), we deduce that w1, . . . ,wj+1 ∈ Cn forms a null Jordan chain, of length j + 1,
for B. Having extended all the null Jordan chains in W , the resulting collection contains
r+ k vectors in Cn arranged in nonoverlapping Jordan chains. To complete to a basis, we
include n−r−k additional linearly independent null vectors z1, . . . , zn−r−k ∈ kerB\rngB

that lie outside its range. Since B zj = 0, each zj forms a null Jordan chain of length 1.
We claim that the complete collection consisting of the non-null Jordan chains in W , the
k extended null chains, and the additional null vectors z1, . . . , zn−r−k, forms the desired
Jordan basis. By construction, it consists of nonoverlapping Jordan chains. The only
remaining technical issue is proving that the vectors are linear independent, which is left
as a challenge for the reader in Exercise .

Just as an eigenvector basis diagonalizes a complete matrix, a Jordan basis provides
a particularly simple form for an incomplete matrix, known as the Jordan canonical form.
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Definition 8.46. A n× n matrix of the form†

Jλ,n =




λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ




, (8.49)

in which λ is a real or complex number, is known as a Jordan block .

In particular, a 1 × 1 Jordan block is merely a scalar Jλ,1 = λ. Since every matrix
has at least one (complex) eigenvector the Jordan block matrices have the least possible
number of eigenvectors.

Lemma 8.47. The n × n Jordan block matrix Jλ,n has a single eigenvalue, λ, and

a single independent eigenvector, e1. The standard basis vectors e1, . . . , en form a Jordan

chain for Jλ,n.

Definition 8.48. A Jordan matrix is a square matrix of block diagonal form

J = diag (Jλ1,n1
, Jλ2,n2

, . . . , Jλk,nk

) =




Jλ1,n1

Jλ2,n2

. . .

Jλk,nk




, (8.50)

in which one or more Jordan blocks, not necessarily of the same size, lie along the diagonal,
while all off-diagonal blocks are zero.

Note that the only non-zero entries in a Jordan matrix are those on the diagonal,
which can have any complex value, and those on the superdiagonal, which are either 1 or
0. The positions of the superdiagonal 1’s uniquely prescribes the Jordan blocks.

For example, the 6× 6 matrices




1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1




,




−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 −1 1
0 0 0 0 0 −1




,




0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 2 1
0 0 0 0 0 2




,

are all Jordan matrices; the first is a diagonal matrix, consisting of 6 distinct 1× 1 Jordan
blocks; the second has a 4× 4 Jordan block followed by a 2× 2 block that happen to have
the same diagonal entries; the last has three 2× 2 Jordan blocks.

† All non-displayed entries are zero.
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As a simple corollary of Lemma 8.47 combined with the matrix’s block structure, as
in Exercise , we obtain a complete classification of the eigenvectors and eigenvalues of a
Jordan matrix.

Lemma 8.49. The Jordan matrix (8.50) has eigenvalues λ1, . . . , λk. The standard

basis vectors e1, . . . , en form a Jordan basis; the Jordan chains are labeled by the Jordan

blocks.

Thus, in the preceding examples of Jordan matrices, the first has three double eigenval-
ues, 1, 2, 3, and corresponding linearly independent eigenvectors e1, e6; e2, e5; e3, e4, each
of which belongs to a Jordan chain of length 1. The second matrix has only one eigenvalue,
−1, but two Jordan chains, namely e1, e2, e3, e4 and e5, e6. The last has eigenvalues 0, 1, 2
and three Jordan chains, namely e1, e2, and e3, e4, and e5, e6. In particular, the only
complete Jordan matrices are the diagonal matrices, all of whose Jordan blocks are of size
1× 1.

Theorem 8.50. Let A be an n×n real or complex matrix. Let S = (w1 w2 . . . wn )
be the matrix whose columns are a Jordan basis of A. Then S places A in Jordan canonical
form

S−1AS = J = diag (Jλ1,n1
, Jλ2,n2

, . . . , Jλk,nk

). (8.51)

The diagonal entries of the similar Jordan matrix J are the eigenvalues of A. In partic-

ular, A is complete (diagonalizable) if and only if every Jordan block is of size 1 × 1 or,
equivalently, all Jordan chains are of length 1. The Jordan canonical form of A is uniquely
determined up to a permutation of the diagonal Jordan blocks.

For instance, the matrix A =




−1 0 1 0 0
−2 2 −4 1 1
−1 0 −3 0 0
−4 −1 3 1 0
4 0 2 −1 0


 considered in Example 8.44

has the following Jordan basis matrix and Jordan canonical form

S =




0 0 0 −1 −1
0 1 0 1 0
0 0 0 1 0
−1 0 1 −2 −2
1 −1 0 0 1


, J = S−1AS =




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −2 1
0 0 0 0 −2


.
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Chapter 9

Linear Dynamical Systems

The term dynamical system refers to the (differential) equations governing the time-
varying behavior of some physical system. A system consisting of discrete units, e.g., the
vibrations of a mass–spring chain, a more general structure, or an electrical circuit, will be
modelled by a system of ordinary differential equations. In this chapter, we will analyze
the simplest class of dynamical systems: first and second order linear systems of ordinary
differential equations. Dynamics of continuous media — fluids, solids and gases — are
modelled by partial differential equations, and will form the focus of the later chapters.

In Chapter 8 we first motivated and then developed the required mathematical tools
— eigenvalues and eigenvectors — for the analysis of such linear systems. For a first
order linear system, the “eigensolutions” describe the basic modes of exponential growth,
decay, or periodic behavior. The stability of the equilibrium solution is almost entirely
determined by the eigenvalues of the coefficient matrix, which highlights their critical role
in real-world applications. Many of the basic phenomena already make an appearance in
the two-dimensional case, and we devote Section 9.3 to a complete description of the planar
linear systems. In the Section 9.4, we re-interpret the solution of a first order systems in
terms of the matrix exponential, which is a direct analog of the usual scalar exponential
function. Matrix exponentials are particularly effective for solving inhomogeneous or forced
linear systems, and have useful applications in geometry and computer graphics.

Mechanical or electrical systems are modeled by second order linear equations. In the
absence of damping or frictional effects, the eigensolutions constitute the system’s normal
or internal modes, each periodically vibrating with its associated fundamental frequency —
the square root of the eigenvalue. The general motion is obtained by linear superposition,
and is, in general, no longer periodic. To the eye, the resulting “quasi-periodic” motion
may seem quite erratic — even though mathematically it is merely the superposition of a
finite number of simple periodic motions. When subjected to periodic forcing, the system
usually remains in a quasi-periodic motion that superimposes a periodic response to the
forcing onto the internal vibrations. However, attempting to force the system at one of
its internal frequencies can lead to resonance, where the vibrations become larger and
larger, eventually resulting in catastrophic breakdown. Frictional effects will damp out the
quasiperiodic vibrations, and help mitigate the effects of resonance.

9.1. Basic Solution Methods.

Now we have accumulated enough experience in the theory and computation of eigen-
values and eigenvectors to be able to analyze dynamical systems governed by linear, ho-
mogeneous, constant coefficient ordinary differential equations. Our initial focus will be
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on systems
du

dt
= Au (9.1)

consisting of n first order linear ordinary differential equations in n unknowns u(t) =

(u1(t), . . . , un(t) )
T
∈ Rn. The coefficient matrix A, of size n × n, is assumed to be a

constant real matrix — although extensions to complex systems are not difficult. Nonau-
tonomous systems, in which A(t) depends on the time, are more difficult and we shall not
attempt to solve them in this book.

As we saw in Section 8.1, the vector-valued exponential function u(t) = eλt v is a
(non-zero) solution to (9.1) if and only if

Av = λv

and hence, assuming v6= 0, the scalar λ must an eigenvalue of A and v the corresponding
eigenvector. Linear superposition can be employed to combine the resulting exponential
eigensolutions to the system. In particular, if the coefficient matrix A is complete, then it
admits n linearly independent eigenvectors v1, . . . ,vn, which, along with their associated
eigenvalues λ1, . . . , λn will produce n distinct exponential solutions

u1(t) = eλ1t v1, . . . un(t) = eλnt vn. (9.2)

Since the system (9.1) is linear and homogeneous, for any constant scalars c1, . . . , cn, the
linear combination

u(t) = c1u1(t) + · · · + cnun(t) = c1 eλ1t v1 + · · · + cn eλnt vn, (9.3)

of the exponential eigensolutions is also a solution.

Are there any other solutions? The answer is no — in fact (9.3) represents the most
general solution to the system. This result is a consequence of the basic existence and
uniqueness theorem for linear systems of ordinary differential equations, which we discuss
next.

Example 9.1. Consider the linear system

du

dt
= 3u+ v,

dv

dt
= u+ 3v. (9.4)

We first write the system in matrix form

du

dt
= Au, with unknown u(t) =

(
u(t)
v(t)

)
and coefficient matrix A =

(
3 1
1 3

)
.

In Example 8.5, we found the the eigenvalues and eigenvectors of A to be

λ1 = 4, v1 =

(
1
1

)
, λ2 = 2, v2 =

(
−1
1

)
.

We use the eigenvalues and eigenvectors to construct the two particular exponential solu-
tions

u1(t) = e4 t

(
1
1

)
=

(
e4 t

e4t

)
, u2(t) = e2 t

(
−1
1

)
=

(
− e2 t

e2t

)
.
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According to the preceding remark, to be justified below, the general solution to (9.4) is
then given as a linear combination

u(t) =

(
u(t)
v(t)

)
= c1 e4 t

(
1
1

)
+ c2 e2 t

(
−1
1

)
=

(
c1 e4 t

− c2 e2 t

c1 e4t + c2 e2t

)
, (9.5)

where c1, c2 are arbitrary constants.

The Phase Plane

Many fundamental physical phenomena are modeled by second order ordinary differ-
ential equations. The simplest scalar version is a linear, homogeneous equation

d2u

dt2
+ α

du

dt
+ βu = 0, (9.6)

in which α, β are prescribed constants. In your first course on ordinary differential equa-
tions, you learned how to solve such equations; the basic method is reviewed in the following
example; see also Example 7.31.

Example 9.2. Consider the second order equation

d2u

dt2
+

du

dt
− 6u = 0. (9.7)

To solve the equation, we substitute an exponential formula or ansatz† u(t) = eλt into the
equation. The result is the characteristic equation for the unspecified exponent λ:

λ2 + λ− 6 = 0, with solutions λ1 = 2, λ2 = −3.

We conclude that e2 t and e−3 t form a basis for the two-dimensional solution space to (9.7),
and so the general solution can be written as a linear combination

u(t) = c1 e2 t + c2 e−3 t,

where c1, c2 are arbitrary constants. (See Theorem 7.33 for a justification.)

There is a standard trick to convert any second order scalar equation, e.g., (9.6), into
a first order system. One introduces the variables‡

u1 = u, u2 =
¦
u =

du

dt
. (9.8)

In view of (9.6), these variables satisfy

du1

dt
=

du

dt
= u2,

du2

dt
=

d2u

dt2
= −βu− α

du

dt
= −βu1 − αu2.

† See the footnote on p. 344 for an explanation of this term.

‡ We will often use dots as a shorthand notation for time derivatives.
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Figure 9.1. Phase Plane Trajectories for
¦
u1 = u2,

¦
u2 = 6u1 − u2.

In this manner, the second order equation is converted into the equivalent first order system

¦
u = Au, where u(t) =

(
u1(t)
u2(t)

)
, A =

(
0 1
−β −α

)
. (9.9)

The (u1, u2) = (u,
¦
u) plane is referred to as the phase plane. The solutions u(t) to (9.9)

parametrize curves in the phase plane — the solution trajectories or orbits. In particular,
the equilibrium solution u(t) ≡ 0 remains fixed at the origin, and so its trajectory is
a single point All other solutions describe genuine curves. The collection of all possible
solution trajectories is called the phase portrait of the system. An important fact is that,
for a (constant coefficient) first order system, the phase plane trajectories never cross.
This striking property, which is also valid for nonlinear systems, is a consequence of the
uniqueness properties of solutions, and will be discussed in detail in Section 20.2. Thus, the
phase portrait consists of a family of non-intersecting curves and equilibrium points that
fill out the entire phase plane. The direction of motion along the trajectory is indicated
by a small arrow. The one feature that is not so easily pictured in the phase portrait is
the speed at which the solution moves along the phase curves — this would require a more
complicated three-dimensional plot in which the third axis indicates time.

It is not hard to verify that every solution u(t) to the second order equation yields

a solution u(t) =
(
u(t),

¦
u(t)

)T
to the phase plane system (9.9). Vice versa, if u(t) =

(u1(t), u2(t) )
T
is any solution to the system (9.9), then its first component u(t) = u1(t)

defines a solution to the original scalar equation (9.6). We conclude that the scalar equation
and its phase plane version are completely equivalent; solving one will immediately lead
to a solution of the other.

Example 9.3. For the second order equation (9.7), the equivalent phase plane sys-
tem is

du

dt
=

(
0 1
6 −1

)
u, or, in full detail,

¦
u1 = u2,
¦
u2 = 6u1 − u2.

(9.10)

Our identification (9.8) of the phase plane variables tells us that the solution to the system
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(9.10) is given by

u1(t) = u(t) = c1 e2 t + c2 e−3 t,

u2(t) =
du

dt
= 2c1 e2 t

− 3c2 e−3 t,

and hence

u(t) =

(
c1 e2 t + c2 e−3 t

2c1 e2 t
− 3c2 e−3 t

)
= c1

(
e2 t

2e2 t

)
+ c2

(
e−3 t

−3e−3 t

)
.

A plot of the phase plane trajectories u(t) for various choices of the constants c1, c2 appears
in Figure 9.1. The horizontal axis represents the solution u1 = u(t) whereas the vertical
axis represents is derivative u2 =

¦
u(t). With some practice, one learns to understand the

temporal behavior of the solution from studying its phase plane trajectory. Many more
examples will appear in Section 9.3 below.

Existence and Uniqueness

Before proceeding further, it will help to briefly summarize the existence and unique-
ness properties for solutions to linear systems of ordinary differential equations. These are
direct consequences of the general existence and uniqueness theorem for nonlinear systems
of ordinary differential equations, to be discussed in Section 20.1. Even though we will
only study the constant coefficient case in detail in this text, the results are equally ap-
plicable to homogeneous linear systems with variable coefficients, and so, but only in this
subsection, we allow the coefficient matrix to depend continuously on t.

The key fact is that a system of n first order ordinary differential equations requires
n initial conditions — one for each variable — in order to specify its solution uniquely.
More specifically:

Theorem 9.4. Let A(t) be an n× n matrix of continuous functions on the interval

a < t < b. Given an initial time a < t0 < b and an initial vector b ∈ Rn, the initial value
problem

du

dt
= A(t)u, u(t0) = b, (9.11)

admits a unique solution u(t) which is defined for all a < t < b.

In particular, an initial value problem for a constant coefficient system (9.1) admits a
unique solution u(t) that is defined for all −∞ < t < ∞. Uniqueness of solutions implies
that, for such homogeneous systems, the solution with zero initial conditions u(t0) = 0 is
the trivial zero solution u(t) ≡ 0. Uniqueness has the important consequence that linear
independence needs only be checked at a single point.

Lemma 9.5. The solutions u1(t), . . . ,uk(t) to a first order homogeneous linear
system

¦
u = A(t)u are linearly independent functions if and only if their initial values

u1(t0), . . . ,uk(t0) are linearly independent vectors in Rn.
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Proof : If the solutions are linearly dependent, then

u(t) = c1u1(t) + · · · + ckuk(t) ≡ 0 (9.12)

for some constant scalars c1, . . . , ck not all zero. The equation holds, in particular, at
t = t0,

u(t0) = c1u1(t0) + · · · + ckuk(t0) = 0, (9.13)

proving linear dependence of the initial vectors. Conversely, if the initial values are linearly
dependent, then (9.13) hold for some c1, . . . , ck not all zero. Linear superposition implies
that the corresponding linear combination u(t) = c1u1(t) + · · · + ckuk(t) is a solution to
the system, with zero initial condition. By uniqueness, u(t) ≡ 0 for all t, and so (9.12)
holds, proving linear dependence of the solutions. Q.E.D.

Warning : This result is not true if the functions are not solutions to a first order

system! For example, u1(t) =

(
1
t

)
, u2(t) =

(
cos t
sin t

)
, are linearly independent vector-

valued functions, but, at time t = 0, the vectors u1(0) =

(
1
0

)
= u2(0) are linearly

dependent. Even worse, u1(t) =

(
1
t

)
, u2(t) =

(
t

t2

)
, define linearly dependent vectors

at every fixed value of t, but as vector-valued functions they are, nonetheless, linearly
independent. In view of Lemma 9.5, neither pair of functions can be solutions to a common
linear ordinary differential equation.

The next result tells us how many different solutions we need in order to construct
the general solution by linear superposition.

Theorem 9.6. Let u1(t), . . . ,un(t) be n linearly independent solutions to the ho-

mogeneous system of n first order linear ordinary differential equations
¦
u = A(t)u. then

the general solution is a linear combination u(t) = c1u1(t) + · · · + cnun(t) depending on
n arbitrary constants c1, . . . , cn.

Proof : If we have n linearly independent solutions, then Lemma 9.5 implies that, at
the initial time t0, the vectors u1(t0), . . . ,un(t0) are linearly independent, and hence form
a basis for Rn. This means that we can express any initial condition

u(t0) = b = c1u1(t0) + · · · + cnun(t0)

as a linear combination of the initial vectors. Superposition and uniqueness of solutions
implies that the corresponding solution to the initial value problem (9.11) is given by the
same linear combination

u(t) = b = c1u1(t) + · · · + cnun(t).

We conclude that every solution to the ordinary differential equation can be written in the
prescribed form. Q.E.D.
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Complete Systems

Now we have assembled the basic ingredients that will enable us to construct the
complete solution to most first order homogeneous, linear, constant coefficient systems of
ordinary differential equations. For a system of n equations, the goal is to find n linearly
independent solutions. Each eigenvalue and eigenvector leads to an exponential solution of
the form eλtv. The solutions will be linearly independent if and only if the eigenvectors are
— this will follow easily from Lemma 9.5. Thus, if the n×n matrix admits an eigenvector
basis, i.e., it is complete, then we have the requisite number of solutions, and hence have
solved the differential equation.

Theorem 9.7. If the n×n matrix A is complete, then the general (complex) solution
to the constant coefficient linear system

¦
u = Au is given by

u(t) = c1 eλ1t v1 + · · · + cn eλnt vn, (9.14)

where v1, . . . ,vn are the eigenvector basis, λ1, . . . , λn the corresponding eigenvalues, and

c1, . . . , cn arbitrary constants, uniquely specified by the initial conditions u(t0) = b.

Proof : Since the eigenvectors are linearly independent, the solutions define linearly
independent vectors uk(0) = vk at time t = 0. Thus, Lemma 9.5 implies that the functions
uk(t) are, indeed, linearly independent. Therefore, the result is an immediate consequence
of Theorem 9.6. Q.E.D.

Example 9.8. Let us solve the initial value problem

¦
u1 = −2u1 + u2, u1(0) = 3,
¦
u2 = 2u1 − 3u2 u2(0) = 0.

The coefficient matrix of the system is A =

(
−2 1
2 −3

)
. A straightforward computation

produces the following eigenvalues and eigenvectors of A:

λ1 = −4, v1 =

(
1
−2

)
, λ2 = −1, v2 =

(
1
1

)
.

The corresponding exponential solutions u1(t) = e−4 t

(
1
−2

)
,u2(t) = e− t

(
1
1

)
form a

basis for the two-dimensional solution space. The general solution is an arbitrary linear
combination

u(t) =

(
u1(t)
u2(t)

)
= c1 e−4 t

(
1
−2

)
+ c2 e− t

(
1
1

)
=

(
c1 e−4 t + c2 e− t

−2c1 e−4 t + c2 e− t

)
,

where c1, c2 are constant scalars. Once we have the general solution in hand, the final step
is to determine the values of c1, c2 so as to satisfy the initial conditions. Evaluating the
solution at t = 0, we find we need to solve the linear system

c1 + c2 = 3, −2c1 + c2 = 0,

1/12/04 307 c© 2003 Peter J. Olver



for c1 = 1, c2 = 2. Thus, the (unique) solution to the initial value problem is

u1(t) = e−4 t + 2 e− t, u2(t) = −2 e−4 t + 2 e− t. (9.15)

Note that both components of the solution decay exponentially fast to 0 as t →∞.

Example 9.9. Consider the linear system

¦
u1 = u1 + 2u2,

¦
u2 = u2 − 2u3,

¦
u3 = 2u1 + 2u2 − u3.

The coefficient matrix is

A =



1 2 0
0 1 −2
2 2 −1


 .

In Example 8.8 we computed the eigenvalues and eigenvectors:

λ1 = −1, λ2 = 1 + 2 i , λ3 = 1− 2 i ,

v1 =



−1
1
1


 , v2 =



1
i
1


 , v3 =



1
− i
1


 .

The first leads to a real solution, but the second and third lead to complex solutions to
our real system of equations, e.g., û2(t) = e(1+2 i ) t ( 1, i , 1 )

T
. While this is a perfectly

valid complex solution, it is not so convenient to work with if, as in most applications, we
require real-valued functions. Since the underlying linear system is real, the general reality
principle of Theorem 7.47 says that any complex solution can be broken up into its real
and imaginary parts, each of which is a real solution. Applying Euler’s formula (3.76) to
the complex exponential, we find

û2(t) = e(1+2i)t



1
i
1


 =

(
et cos 2 t+ i et sin 2 t

)


1
i
1


 =




et cos 2 t
−et sin 2 t
et cos 2 t


+ i




et sin 2 t
et cos 2 t
et sin 2 t


 ,

which yields two real vector-valued solutions to the system, as you can readily check. In
this manner, we have produced three linearly independent real solutions to our system:

u1(t) =



−e−t

e−t

e−t


 , u2(t) =




et cos 2 t
−et sin 2 t
et cos 2 t


 , u3(t) =




et sin 2 t
et cos 2 t
et sin 2 t


 .

Theorem 9.6 tells us that the general solution is a linear combination of the 3 independent
solutions:

u(t) = c1 u1(t) + c2 u2(t) + c3 u3(t) =



−c1 e−t + c2 et cos 2 t+ c3 et sin 2 t
c1 e−t − c2 et sin 2 t+ c3 et cos 2 t
c1 e−t + c2 et cos 2 t+ c3 et sin 2 t


 .

The constants c1, c2, c3 are uniquely prescribed by imposing initial conditions; for example,

the solution with u(0) = ( 2,−1,−2 )
T
requires c1 = −2, c2 = 0, c3 = 1, and so the
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solution’s components are u1(t) = 2 e−t + et sin 2 t, u2(t) = −2 e−t + et cos 2 t, u3(t) =
−2 e−t + et sin 2 t.

Incidentally, the third complex solution also produces two real solutions, but these
reproduce the ones we have already listed. In fact, since λ3 = λ2 is the complex conjugate
of the eigenvalue λ2, its eigenvector v3 = v2 is also the complex conjugate of the eigenvector
v2, and, finally, the solutions are also related by complex conjugation:

û3(t) = e(1−2i)t



1
− i
1


 =




et cos 2 t
−et sin 2 t
et cos 2 t


− i




et sin 2 t
et cos 2 t
et sin 2 t


 = û2(t) .

In general, when dealing with complex eigenvalues of real systems, you only need to look
at one eigenvalue from each complex conjugate pair to find a complete system of real
solutions.

The General Case

If the matrix A is not complete, then the formulae for the solutions are a little more
intricate, and involve polynomials as well as (complex) exponentials. When dealing with
an incomplete matrix, we do not have sufficient eigenvectors to construct all the solutions,
and so make use of its Jordan basis. Let us first describe the solutions associated with a
Jordan chain.

Lemma 9.10. Supposew1, . . . ,wk form a Jordan chain of length k for the eigenvalue

λ of the matrix A. Then there are k linearly independent solutions to the corresponding

first order system
¦
u = Au having the form

u1(t) = eλtw1, u2(t) = eλt(tw1 +w2), u3(t) = eλt
(

1
2 t2w1 + tw2 +w3

)
,

and, in general, uj(t) = eλt
j∑

i=1

tj−i

(j − i) !
wi, 1 ≤ j ≤ k. (9.16)

The proof is by direct substitution of the formulae into the differential equation,
using the defining relations (8.45) of the Jordan chain; details are left to the reader.
If λ is a complex eigenvalue, then the Jordan chain solutions (9.16) will involve complex
exponentials. As usual, they can be split into their real an imaginary parts which, provided
A is a real matrix, are independent real solutions.

Example 9.11. The coefficient matrix of the system

du

dt
=




−1 0 1 0 0
−2 2 −4 1 1
−1 0 −3 0 0
−4 −1 3 1 0
4 0 2 −1 0


u

is incomplete; it has only 2 linearly independent eigenvectors associated with the eigenval-
ues 1 and −2. Using the Jordan basis computed in Example 8.44, we produce the following
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5 linearly independent solutions:

u1(t) = et v1, u2(t) = et (tv1 + v2), u3(t) = et ( 12 t2v1 + tv2 + v3),

u4(t) = e−2 t v4, u5(t) = e−2 t (tv4 + v5),

or, explicitly,




0
0
0
−et

et


,




0
−et

0
− tet

(1 + t)et


,




0
− tet

0(
1− 1

2 t2
)
et(

t+ 1
2 t2

)
et




,




−e−2 t

e−2 t

e−2 t

−2e−2 t

0


,




−(1 + t)e−2 t

te−2 t

te−2 t

−2(1 + t)e−2 t

e−2 t


.

The first three are associated with the λ1 = 1 Jordan chain, the last two with the λ2 = −2
chain; the eigenvector solutions are the pure exponentials u1(t),u4(t). The general solution
is an arbitrary linear combination of these five basis solutions.

Theorem 9.12. Let A be an n × n matrix. Then the solutions (9.16) constructed
from the Jordan chains in a Jordan basis of A form a basis for the n-dimensional solution

space for the corresponding linear system
¦
u = Au.

While the full computational details can be quite messy, in practical situations one can
glean a significant amount of information about the solutions to the system without much
fuss. The following result outlines a general characterization of the solutions of homoge-
neous linear systems of ordinary differential equations. The result is direct consequence of
the general solution formulae in (9.16).

Theorem 9.13. Let A be a real, square matrix. The general real solution to any

constant coefficient homogeneous linear system
¦
u = Au is a linear combination of n linearly

independent solutions of the following types:

(a) If λ is a complete real eigenvalue of multiplicity m, then there exist m linearly inde-

pendent solutions of the form

uk(t) = eλt vk, k = 1, . . . ,m,

where v1, . . . ,vm are linearly independent eigenvectors.

(b) If µ ± i ν form a pair of complete complex conjugate eigenvalues of multiplicity m,

then there exist 2m linearly independent real solutions of the forms

uk(t) = eµt
[
cos(ν t)wk − sin(ν t) zk

]
,

ûk(t) = eµt
[
sin(ν t)wk + cos(ν t) zk

]
,

k = 1, . . . ,m,

where vk = wk ± i zk are the associated complex conjugate eigenvectors.

(c) If λ is an incomplete real eigenvalue of multiplicity m and r = dimVλ, then there exist

m linearly independent solutions of the form

uk(t) = eλt pk(t), k = 1, . . . ,m,

where pk(t) is a vector of polynomials of degree ≤ m− r.
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(d) If µ ± i ν form a pair of incomplete complex conjugate eigenvalues of multiplicity m

and r = dimVλ, then there exist 2m linearly independent real solutions

uk(t) = eµt
[
cos(ν t) pk(t)− sin(ν t) qk(t)

]
,

ûk(t) = eµt
[
sin(ν t) pk(t) + cos(ν t) qk(t)

]
,

k = 1, . . . ,m,

where pk(t),qk(t) are vectors of polynomials of degree ≤ m− r.

Corollary 9.14. Every real solution to a homogeneous linear system of ordinary

differential equations is a vector-valued function whose entries are linear combinations

of functions of the particular form tk eµt cos ν t and tk eµt sin ν t, i.e., sums of products

of exponentials, trigonometric functions and polynomials. The exponents µ are the real

parts of the eigenvalues of the coefficient matrix; the trigonometric frequencies ν are the

imaginary parts of the eigenvalues; nonconstant polynomials appear only if the matrix is

incomplete.

Example 9.15. The incomplete cases should remind the reader of the solution to a
single scalar ordinary differential equation in the case of a repeated root to the character-
istic equation. For example, to solve the second order equation

d2u

dt2
− 2

du

dt
+ u = 0,

we substitute the exponential ansatz u = eλt, leading to the characteristic equation

λ2
− 2λ+ 1 = 0.

There is only one double root, λ = 1, and hence, up to scalar multiple, only one exponential
solution u1(t) = et. In the scalar case, the second “missing” solution is obtained by just
multiplying by t, so that u2(t) = t et. The general solution is

u(t) = c1 u1(t) + c2 u2(t) = c1 et + c2 t et.

The equivalent phase plane system (9.9) is

du

dt
=

(
0 1
−1 2

)
u, where u(t) =

(
u(t)
¦
u(t)

)
.

Note that the coefficient matrix is incomplete — it has λ = 1 as a double eigenvalue, but
only one independent eigenvector, namely v = ( 1, 1 )

T
. The two linearly independent so-

lutions to the phase plane system can be constructed from the solutions u1(t) = et, u2(t) =
t et to the original equation, and so

u1(t) =

(
et

et

)
, u2(t) =

(
t et

t et + et

)
. (9.17)

Note the appearance of the polynomial factor t in the solution formula. The general
solution is obtained as a linear combination of these two basic solutions. Warning : In
(9.17), the second vector solution u2 is not obtained from the first by merely multiplying
by t. Incomplete systems are not that easy to handle!
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Figure 9.2. The Left Half Plane.

9.2. Stability of Linear Systems.

With the solution formulae in hand, we are now ready to study the qualitative features
of first order linear dynamical systems. Our primary focus will be on stability properties
of the equilibrium solution(s). The starting point is a simple calculus lemma, whose proof
is left to the reader.

Lemma 9.16. Let µ, ν be real and k ≥ 0 an integer. A function of the form

f(t) = tk eµt cos ν t or tk eµt sin ν t (9.18)

will decay to zero for large t, so lim
t→∞

f(t) = 0, if and only if µ < 0. The function remains

bounded, so | f(t) | ≤ C for all t ≥ 0, if and only if either µ < 0, or µ = 0 and k = 0.

In other words, exponential decay, where µ < 0, will always cancel out polynomial
growth, while trigonometric functions remain bounded. Now, in the solution to our ordi-
nary differential equation, the functions (9.18) come from the eigenvalues λ = µ+ i ν of the
coefficient matrix. The lemma implies that the asymptotic behavior of the solutions, and
hence their stability, depends on the sign of µ = Re λ. If µ < 0, then the solutions decay
to zero at an exponential rate as t →∞. If µ > 0, then the solutions become unbounded
as t →∞. In the borderline case µ = 0, the solutions remain bounded provided they don’t
involve any powers of t.

Asymptotic stability of the equilibrium zero solution requires that all other solutions
tend to 0 as t → ∞, and hence all the eigenvalues must satisfy µ = Re λ < 0. Or,
stated another way, all eigenvalues must lie in the left half plane — the subset of C to the
left of the imaginary axis, as in Figure 9.2. In this manner, we have demonstrated the
fundamental asymptotic stability criterion for linear systems.

Theorem 9.17. A first order linear, homogeneous, constant-coefficient system of

ordinary differential equations
¦
u = Au has asymptotically stable zero solution if and only

if all the eigenvalues of the coefficient matrix A lie in the left half plane: Re λ < 0. On
the other hand, if A has one or more eigenvalues with positive real part, Re λ > 0, then
the zero solution is unstable.
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Example 9.18. Consider the system

du

dt
= 2u− 6v + w,

dv

dt
= 3u− 3v − w,

dw

dt
= 3u− v − 3w.

The coefficient matrix A =



2 −6 1
3 −3 −1
3 −1 −3


 is found to have eigenvalues λ1 = −2, λ2 =

−1 + i
√
6 , λ3 = −1 − i

√
6 , with respective real parts −2,−1,−1. Therefore, according

to Theorem 9.17, the zero solution u ≡ v ≡ w ≡ 0 is asymptotically stable. Indeed, the
solutions involve linear combinations of the functions e−2 t, e− t cos

√
6 t, and e− t sin

√
6 t,

all of which decay to 0 at an exponential rate. The latter two have the slowest decay
rate, and so most solutions to the linear system go to 0 like a multiple of e− t, i.e., at an
exponential rate determined by the least negative real part.

A particularly important class of systems are the linear gradient flows

du

dt
= −Ku, (9.19)

in which K > 0 is a symmetric, positive definite matrix. According to Theorem 8.23,
all the eigenvalues of K are real and positive. Therefore, the eigenvalues of the negative
definite coefficient matrix −K of the gradient flow system (9.19) are real and negative.
Applying Theorem 9.17, we conclude that the zero solution to any gradient flow system
(9.19) with negative definite coefficient matrix −K is asymptotically stable.

Example 9.19. Using the methods of Chapter 3, the matrix K =

(
1 1
1 5

)
is found

to be positive definite. The associated gradient flow is

du

dt
= −u− v,

dv

dt
= −u− 5v. (9.20)

The eigenvalues and eigenvectors of −K =

(
−1 −1
−1 −5

)
are

λ1 = −3 +
√

5 , v1 =

(
1

2−
√
5

)
, λ2 = −3−

√

5 , v2 =

(
1

2 +
√
5

)
.

Therefore, the general solution to the system is

u(t) = c1 e(−3+
√

5 )t

(
1

2−
√
5

)
+ c2 e(−3−

√
5 )t

(
1

2 +
√
5

)
,

or, in components,

u(t) = c1 e(−3+
√

5 )t + c2 e(−3−
√

5 )t,

v(t) = c1 (2−
√

5) e(−3+
√

5 )t + c2 (2 +
√

5) e(−3−
√

5 )t.

The solutions clearly tend to zero as t →∞ at the exponential rate prescribed by the least
negative eigenvalue: −3 +

√
5 = −0.7639 . . . . This confirms the asymptotic stability of

the gradient flow.
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The reason for the term “gradient flow” is that the vector field −Ku appearing on the
right hand side of (9.19) is, in fact, the negative of the gradient of the quadratic function

q(u) = 1
2 u

TKu =
1

2

n∑

i,j=1

kij uiuj , (9.21)

namely Ku = ∇q(u). Thus, we can write (9.19) as

du

dt
= −∇q(u). (9.22)

For the particular system (9.20),

q(u, v) = 1
2 (u v )

(
1 1
1 5

)(
u

v

)
= 1

2 u2 + uv + 5
2 v2,

and so the gradient flow is given by

du

dt
= −

∂q

∂u
= −u− v,

dv

dt
= −

∂q

∂v
= −u− 5v.

Remark : The negative gradient −∇q of a function points in the direction of its steep-
est decrease, [9]. Thus, the solutions to the gradient flow system (9.22) will decrease q(u)
as rapidly as possible, ending up at the minimum u? = 0. For instance, if q(u, v) repre-
sents the height of a hill at position (u, v), then the solutions to (9.22) are the paths of
steepest descent followed by, say, water flowing down the hill. In physical applications, the
quadratic function (9.21) often represents the energy in the system, and the gradient flow
models the natural behavior of systems that seek to minimize their energy.

Example 9.20. Let us solve the first order system

du

dt
= −8u− w,

dv

dt
= −8v − w,

dw

dt
= −u− v − 7w,

subject to initial conditions

u(0) = 1, v(0) = −3, w(0) = 2.

The coefficient matrix for the system is



−8 0 −1
0 −8 −1
−1 −1 −7


 = −



8 0 1
0 8 1
1 1 7


 = −K,

which is minus the positive definite matrix analyzed in Example 8.24. Using the computed
eigenvalues and eigenvectors, we conclude that the general solution has the form

u(t) =




u(t)
v(t)
w(t)


 = c1 e−6 t



−1
−1
2


+ c2 e−8 t



−1
1
0


+ c3 e−9 t



1
1
1


 .
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The coefficients are prescribed by the initial conditions, which read

u(0) =



1
−3
2


 = c1



−1
−1
2


+ c2



−1
1
0


+ c3



1
1
1


 = c1v1 + c2v2 + c3v3.

Rather than solve this linear system directly, we make use of the fact that the matrix is
symmetric, and hence its eigenvectors v1,v2,v3 form an orthogonal basis. Thus, we can
apply the orthogonal basis formula (5.8) to compute the coefficients

c1 =
〈u(0) ;v1 〉

‖v1 ‖
2

=
6

6
= 1, c2 =

〈u(0) ;v2 〉

‖v2 ‖
2

=
−4

2
= −2, c3 =

〈u(0) ;v3 〉

‖v3 ‖
2

= 0.

We conclude that the solution to the initial value problem is

u(t) =



− e−6 t + 2e−8 t

− e−6 t
− 2e−8 t

2e−6 t


 .

In particular, the exponential decay rate is 6 — as indicated by the largest eigenvalue of
K — since e−6 t is the slowest decaying exponential in the solution.

Extension of the asymptotic stability criterion of Theorem 9.17 to stable equilibria is
not difficult.

Theorem 9.21. A first order linear, homogeneous, constant-coefficient system of

ordinary differential equations (9.1) has stable zero solution if and only if all the eigenvalues
satisfy Re λ ≤ 0, and, moreover, any eigenvalue lying on the imaginary axis, Re λ = 0, is
complete, meaning that it has as many independent eigenvectors as its multiplicity.

Proof : The proof is the same as above, using Corollary 9.14 and the decay properties
in Lemma 9.16. All the eigenvalues with negative real part lead to exponentially decaying
solutions — even if they are incomplete. If a purely imaginary eigenvalue is complete, then
the associated solutions only involve trigonometric functions, and hence remain bounded.
This suffices to maintain stability. On the other hand, solutions associated with incomplete
purely imaginary eigenvalues contain powers of t multiplying sines and cosines, and hence
cannot remain bounded as t→∞. Q.E.D.

Example 9.22. A Hamiltonian system in the plane takes the form

du

dt
=

∂H

∂v
,

dv

dt
= −

∂H

∂u
, (9.23)

where H(u, v) is known as the Hamiltonian function. If

H(u, v) = 1
2 a u2 + b u v + 1

2 c v2 (9.24)

is a quadratic form, then the Hamiltonian system is

¦
u = b u+ c v,

¦
v = −a u− b v, (9.25)
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homogeneous, linear with coefficient matrix A =

(
b c

−a −b

)
. The characteristic equation

is
det(A− λ I ) = λ2 + (ac− b2) = 0.

If H is positive or negative definite, then ac− b2 > 0, and so the roots of the characteristic
equation are purely imaginary: λ = ± i

√

ac− b2 . Since the eigenvalues are simple, the
stability criterion of Theorem 9.21 holds and we conclude that planar Hamiltonian systems
with definite Hamiltonian function are stable.

Remark : The basic equations of classical mechanics, such as motion of masses under
gravitational attraction, can be formulated as Hamiltonian systems. The Hamiltonian
function represents the energy. The Hamiltonian formulation is a crucial first step in the
physical process of quantizing the classical equations to determine the quantum mechanical
equations of motion, [100, 104].

9.3. Two-Dimensional Systems.

The two-dimensional case is particularly instructive, since many of the most important
phenomena are already made manifest there. Moreover, the solutions can be easily pictured
by their phase portraits. In this section, we will present a complete classification of the
possible qualitative behaviors of real, planar linear dynamical systems.

Setting u(t) = (u(t), v(t))T , such a system
¦
u = Au has the explicit form

du

dt
= au+ bv,

dv

dt
= cu+ dv, (9.26)

where A =

(
a b

c d

)
is the coefficient matrix. As in Section 9.1, we will refer to the (u, v)–

plane as the phase plane. In particular, phase plane equivalents (9.9) of second order scalar
equations form a special class.

According to (8.21), the characteristic equation for the given 2× 2 matrix is

det(A− λ I ) = λ2
− τ λ+ δ = 0, (9.27)

where
τ = trA = a+ d, δ = detA = ad− bc, (9.28)

are, respectively, the trace and the determinant of A. The nature of the eigenvalues, and
hence the solutions, is therefore almost entirely determined by these two quantities. The
sign of the discriminant

∆ = τ2
− 4 δ = (trA)2 − 4 detA = (a− d)2 − 4bc (9.29)

determines whether the roots or eigenvalues

λ =
τ ±

√

∆

2
(9.30)

are real or complex, and thereby plays a key role in the classification.
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Let us summarize the different possibilities as classified by their qualitative behavior.
Each situation will be illustrated by a representative phase portrait, which plots several
typical solution trajectories in the phase plane. The complete portrait gallery of planar
systems can be found in Figure 9.3 below.

Distinct Real Eigenvalues

The coefficient matrix A has two real, distinct eigenvalues λ1 < λ2 if and only if the
discriminant (9.29) of the quadratic equation (9.27) is positive: ∆ > 0. In this case, the
solutions take the exponential form

u(t) = c1 eλ1 t v1 + c2 eλ2 t v2, (9.31)

where v1,v2 are the eigenvectors and c1, c2 are arbitrary constants, to be determined by the
initial conditions. The asymptotic behavior of the solutions is governed by the size of the
eigenvalues. Let Vk = {cvk}, k = 1, 2, denote the “eigenlines”, i.e., the one-dimensional
eigenspaces associated with each eigenvalue λk.

There are five qualitatively different cases, depending upon the signs of the two eigen-
values. These are listed by their descriptive name, followed by the required conditions on
the discriminant, trace and determinant of the coefficient matrix.

Ia. Stable Node: ∆ > 0, trA < 0, detA > 0.

If λ1 < λ2 < 0 are both negative, then 0 is an asymptotically stable node. The
solutions all tend to 0 as t → ∞. Since the first exponential eλ1 t decreases much faster
than the second eλ2 t, the first term in the solution (9.31) will soon become negligible, and
hence u(t) ≈ c2 eλ2 t v2 when t is large. Therefore, all solutions with c2 6= 0 will arrive at
the origin along a curve that is tangent to the eigenline V2. The solutions with c2 = 0
come in to the origin directly along the eigenline V1, and at a faster rate. Conversely, as
t → −∞, all solutions become unbounded: ‖u(t) ‖ → ∞. In this case, the first exponential
grows faster than the second, and so the solutions u(t) ≈ c1 eλ1 t v1 for t ¿ 0. Thus, as
they escape to∞, the solution trajectories become more and more parallel to the eigenline
V1 — except for those with c1 = 0 that remain in the eigenline V2.

Ib. Saddle Point : ∆ > 0, detA < 0.

If λ1 < 0 < λ2, then 0 is an unstable saddle point . Solutions (9.31) with c2 = 0 start
out on the eigenline V1 and go in to 0 as t → ∞, while solutions with c1 = 0 start on V2

and go to 0 as t 7→−∞. All other solutions become unbounded at both large positive
and large negative times. As t → +∞, the solutions approach the unstable eigenline V2,
while as t→ −∞, they asymptote to the stable eigenline V1. The eigenline V1 is called the
stable manifold , indicating that solutions that start on it eventually go to the equilibrium
point 0, while V2 is the unstable manifold , meaning that solutions on it go to equilibrium
as t → −∞.

Ic. Unstable Node: ∆ > 0, trA > 0, detA > 0.

If the eigenvalues 0 < λ1 < λ2 are both positive, then 0 is an unstable node. The phase
portrait is the same as that of a stable node, but the solution trajectories are traversed in

1/12/04 317 c© 2003 Peter J. Olver



the opposite direction. Time reversal t → − t will convert an unstable node into a stable
node and vice versa; see Exercise . Thus, in the unstable case, the solutions all tend to
0 as t → −∞ and off to ∞ as t → ∞. Except for the solutions on the eigenlines, they
asymptote to V1 as t→ −∞, and become parallel to V2 as t →∞.

Id. Stable Line: ∆ > 0, trA < 0, detA = 0.

If λ1 < λ2 = 0, then every point on the eigenline V2 associated with the zero eigenvalue
is an equilibrium point. Every other solution moves along a straight line parallel to V1 and
tends to one of the equilibria on V2 as t →∞.

Ie. Unstable Line: ∆ > 0, trA > 0, detA = 0.

This is merely the time reversal of a stable line. If 0 = λ1 < λ2, then every point on
the eigenline V1 is an equilibrium. Every other solution moves off to ∞ along a straight
line parallel to V2 as t →∞, and tends to one of the equilibria on V1 as t → −∞.

Complex Conjugate Eigenvalues

The coefficient matrix A has two complex conjugate eigenvalues

λ = µ± i ν, where µ = 1
2 τ = 1

2 trA, ν =
√

−∆,

if and only if its discriminant is negative: ∆ < 0. In this case, the real solutions can be
written in the phase–amplitude form (2.7):

u(t) = r eµt [ cos(ν t− σ)w + sin(ν t− σ) z ] , (9.32)

where w ± i z are the complex eigenvectors. As noted above, the two vectors w, z are
always linearly independent. The amplitude r and phase shift σ are uniquely prescribed
by the initial conditions. There are three subcases, depending upon the sign of the real
part µ, or, equivalently, the sign of the trace of A.

IIa. Stable Focus: ∆ < 0, trA < 0.

If µ < 0, then 0 is an asymptotically stable focus. As t →∞, the solutions all spiral in
to 0 with “frequency” ν — meaning it takes time 2π/ν for the solution to go once around
the origin. As t→ −∞, the solutions spiral off to ∞ with the same frequency.

IIb. Center : ∆ < 0, trA = 0.

If µ = 0, then 0 is a center . The solutions all move periodically around elliptical orbits,
with common frequency ν and period 2π/ν. In particular, solutions that start out near 0
stay nearby, and hence a center is a stable, but not asymptotically stable, equilibrium.

IIc. Unstable Focus: ∆ < 0, trA > 0.

If µ > 0, then 0 is an unstable focus. The phase portrait is the time reversal, t 7→− t,
of a stable focus, with solutions spiraling off to ∞ as t → ∞ and in to the origin as
t → −∞, again with a common “frequency” ν.
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Incomplete Double Real Eigenvalue

The matrix will have a double real eigenvalue λ = 1
2 τ = 1

2 trA if and only if the
discriminant vanishes: ∆ = 0. The formula for the solutions depends on whether the
eigenvalue λ is complete or not. If λ is an incomplete eigenvalue, admitting only one
independent eigenvector v, then the solutions are no longer given by simple exponentials.
The general formula is

u(t) = (c1 + c2 t)eλt v + c2 eλtw, (9.33)

where (A− λ I )w = v, and so v,w form a Jordan chain for the coefficient matrix. We let
V = {cv} denote the eigenline associated with the genuine eigenvector v.

IIIa. Stable Improper Node: ∆ = 0, trA < 0, A 6= λ I .

If λ < 0 then 0 is an asymptotically stable improper node. Since t eλt is larger than
eλt for t > 1, the solutions u(t) ≈ c2 t eλt tend to 0 as t → ∞ along a curve that is
tangent to the eigenline V . Similarly, as t → −∞, the solutions go off to ∞, becoming
more and more parallel to the eigenline, but moving away in the opposite direction from
their approach.

IIIb. Linear Motion: ∆ = 0, trA = 0, A6= λ I .

If λ = 0, then, as in case Id , every point on the eigenline V is an equilibrium point.
Every other solution is a linear, or, more correctly, affine function of T , and so moves along
a straight line parallel to V , going off to ∞ in either direction. The origin is an unstable
equilibrium point.

IIIc. Unstable Improper Node: ∆ = 0, trA > 0, A6= λ I .

If λ > 0, then 0 is an unstable improper node. The phase portrait is the time reversal
of the stable improper node.

Complete Double Real Eigenvalue

In this case, every vector in R2 is an eigenvector, and so the real solutions take the
form u(t) = eλt v, where v is an arbitrary constant vector. In fact, this case occurs if and
only if A = λ I is a multiple of the identity matrix.

IVa. Stable Star : A = λ I , λ < 0.

If λ < 0 then 0 is an asymptotically stable star. The solution trajectories are the rays
emanating from the origin, and the solutions go to 0 at an exponential rate as t →∞.

IVb. Trivial : A = O.

If λ = 0 then the only possibility is A = O. Now every solution is constant and every
point is a (stable) equilibrium point. Nothing happens! This is the only case not pictured
in Figure 9.3.

IVc. Unstable Star : A = λ I , λ < 0.

If λ > 0 then 0 is unstable. The phase portrait is the time reversal of the stable star,
and so the solutions move along rays, and tend to 0 as t → −∞.
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Ia. Stable Node Ib. Saddle Point Ic. Unstable Node

IIa. Stable Focus IIb. Center IIc. Unstable Focus

IIIa. Stable Improper Node IIIb. Linear Motion IIIc. Unstable Improper Node

IVa. Stable Star IVc. Unstable Star Id. Stable Line Ie. Unstable Line

Figure 9.3. Phase Portraits.
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stable node unstable node

stable spiral unstable spiral

saddle point

center

stable line unstable line trace

determinant

Figure 9.4. Stability Regions for Two–Dimensional Linear Systems.

Figure 9.4 indicates where the different possibilities lie, as prescribed by the trace and
determinant of the coefficient matrix. The horizontal axis indicates the value of τ = trA,
while the vertical axis refers to δ = detA. Points on the parabola τ 2 = 4 δ represent the
cases with vanishing discriminant ∆ = 0, and correspond to either stars or improper nodes
— except for the origin which is either linear motion or trivial. All the asymptotically stable
cases lie in the shaded upper left quadrant where trA < 0 and detA > 0. The borderline
points on the coordinate axes are either stable centers, when trA = 0, detA > 0, or stable
lines, when trA < 0, detA = 0, or the origin, which may or may not be stable depending
upon whether A is the zero matrix or not. All other values for the trace and determinant
result in unstable equilibria.

Remark : Time reversal t → − t changes the sign of the coefficient matrix A → −A,
and hence the sign of its trace, τ → − τ , while the determinant δ = detA = det(−A) is
unchanged. Thus, the effect is to reflect the plot in Figure 9.4 through the vertical axis,
interchanging the stable nodes and spirals with their unstable counterparts, while leaving
saddle points in the same qualitative form.

In physical applications, the coefficient matrix A is usually not known exactly, and
so the physical system may, in fact, be a slight perturbation of the mathematical model.
Thus, it is important to know which systems are structurally stable, meaning the basic
qualitative features are preserved under sufficiently small changes in the coefficients.

Now, a small perturbation will alter the entries of the coefficient matrix slightly,
and hence move the trace and determinant by a comparably small amount. The net
effect is to slightly perturb its eigenvalues. Therefore, the question of structural stability
reduces to whether the eigenvalues have moved sufficiently far to send the system into a
different stability regime. Asymptotically stable systems remain stable under small enough
perturbations, since the property that the eigenvalues have negative real parts is preserved
under small perturbation. For a similar reason, unstable systems remain unstable under
small perturbations. On the other hand, a borderline stable system — either a center
or the trivial system — could become either asymptotically stable or unstable under an
adverse perturbation.

1/12/04 321 c© 2003 Peter J. Olver



Structural stability requires more, since the overall phase portrait should not signifi-
cantly change. A system in any of the open regions in the Stability Figure 9.4, e.g., a stable
spiral, unstable node, saddle point, etc., is structurally stable, whereas a system that lies
on the parabola τ 2 = 4 δ, or the horizontal axis, or positive vertical axis, e.g., an improper
node, a stable line, etc., is not, since a small perturbation could send it into either of
the adjoining regions. In other words, structural stability requires that the eigenvalues be
distinct and have non-zero real part: Re λ 6= 0. This final result also applies to systems in
higher dimensions, [80].

9.4. Matrix Exponentials.

So far, we have focussed all our attention on vector-valued solutions to linear systems
of ordinary differential equations

du

dt
= Au. (9.34)

An evident, and, in fact, useful generalization is to look for matrix solutions. Specifically,
we mean a matrix-valued function U(t) that satisfies the corresponding matrix differential
equation

dU

dt
= AU(t). (9.35)

As with vectors, the individual entries of U(t) are functions of t, and we differentiate entry-
wise. If A is an n× n matrix, compatibility of matrix multiplication requires that U(t) be
of size n× k for some k.

Since matrix multiplication acts column-wise, the individual columns of the matrix
solution must solve the original system, and hence U(t) = (u1(t) . . .uk(t) ) where each
column ui(t) is a solution to (9.34). Thus, a matrix solution is merely a convenient way
of collecting together several different vector solutions to the system.

Example 9.23. According to Example 9.8, the vector-valued functions

u1(t) =

(
e−4 t

−2e−4 t

)
, u2(t) =

(
e− t

e− t

)
,

are both solutions to the linear system

du

dt
=

(
−2 1
2 −3

)
u.

They can be combined to form the matrix solution

U(t) =

(
e−4 t e− t

−2e−4 t e− t

)
satisfying

dU

dt
=

(
−2 1
2 −3

)
U.

Indeed, by direct calculation

dU

dt
=

(
−4e−4 t

−e− t

8e−4 t
−e− t

)
=

(
−2 1
2 −3

)(
e−4 t e− t

−2e−4 t e− t

)
=

(
−2 1
2 −3

)
U.
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The existence and uniqueness theorems immediately apply to matrix solutions, and
show that there is a unique matrix solution to the system having initial conditions

U(t0) = B, (9.36)

where B is a given n× k matrix. The jth column uj(t) of the matrix solution satisfies the
initial value problem

duj

dt
= Auj , uj(0) = bj ,

where bj denotes the jth column of B.

The most important case — beyond vector-valued solutions — is when the matrix
solution is square, of size n × n and so consists of n distinct solutions to the system. In
the scalar case, when n = 1, the solution to the particular initial value problem

du

dt
= a u, u(0) = 1,

is the ordinary exponential function u(t) = eta. With the exponential in hand, the solution
to the more general initial value problem u(t0) = b can then be written as u(t) = b e(t−t0) a.

Let us introduce a similar initial value problem in the case of linear systems. Now,
when dealing with matrices, the role of the number 1 is played by the identity matrix I .
Therefore, working by analogy, we are led to define the matrix exponential solution to an
n-dimensional linear system.

Definition 9.24. Let A be a square matrix. The matrix exponential U(t) = etA is
the unique solution to the matrix initial value problem

dU

dt
= AU, U(0) = I . (9.37)

We can rewrite the defining properties (9.37) in the more suggestive form

d

dt
etA = AetA, e0A = I . (9.38)

Once we know the matrix exponential, we are in a position to solve the general initial value
problem. The solution formulae are in direct analogy with the scalar case.

Lemma 9.25. The solution to the initial value problem

dU

dt
= AU, U(t0) = B, is U(t) = e(t−t0)A B. (9.39)

Proof : Since B is a constant matrix,

dU

dt
=

d

dt
e(t−t0)A B = Ae(t−t0)A B = AU,

where we used the first defining property in (9.38) along with the chain rule. Thus, U(t)
is a matrix solution to the system. Moreover, by the second property in (9.38),

U(0) = e0A B = I B = B

has the correct initial conditions. Q.E.D.
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Remark : The computation used in the proof is a particular instance of the general
Leibniz rule

d

dt

[
M(t)N(t)

]
=

dM(t)

dt
N(t) +M(t)

dN(t)

dt
(9.40)

for the derivative of the product of matrix-valued functions M(t) and N(t) of compatible
sizes. The reader is asked to prove this formula in Exercise .

In particular, the solution to the vector initial value problem

du

dt
= Au, u(t0) = b,

can be written in terms of the matrix exponential:

u(t) = e(t−t0)A b. (9.41)

The solution formula (9.39) also gives us a means of computing the matrix exponential.
Suppose U(t) is any n × n matrix solution to the system. Then, by uniqueness, U(t) =
etA U(0), and hence, provided U(0) is a nonsingular matrix,

etA = U(t)U(0)−1. (9.42)

The condition that U(0) be nonsingular means that the columns of U(t) are linearly inde-
pendent solutions.

Thus, to construct the exponential of an n×n matrix A, you first need to find a basis
of n linearly independent solutions u1(t), . . . ,un(t) to the linear system

¦
u = Au using

the eigenvalues and eigenvectors, or, in the incomplete case, Jordan chains. The resulting
n×n matrix solution U(t) =

(
u1(t) . . . un(t)

)
is, by linear independence, nonsingular at

each time t, and hence the formula for etA follows from (9.42).

Example 9.26. For the matrix A =

(
−2 1
2 −3

)
in Example 9.23, we already con-

structed the nonsingular matrix solution U(t) =

(
e−4 t e− t

−2e−4 t e− t

)
Therefore, by (9.42),

the matrix exponential is

etA = U(t)U(0)−1

=

(
e−4 t e− t

−2e−4 t e− t

)(
1 1
−2 1

)−1

=

(
1
3 e−4 t + 2

3 e− t −
1
3 e−4 t + 1

3 e− t

−
2
3 e−4 t + 2

3 e− t 2
3 e−4 t + 1

3 e− t

)
.

In particular, we obtain eA by setting t = 1 in this formula:

exp

(
−2 1
2 −3

)
=

(
1
3 e−4 + 2

3 e−1
−

1
3 e−4 + 1

3 e−1

−
2
3 e−4 + 2

3 e−1 2
3 e−4 + 1

3 e−1

)
.

Note that the matrix exponential is not obtained by exponentiating the individual matrix
entries. Let us use the matrix exponential constructed in Example 9.26 to solve the initial
value problem

du

dt
=

(
−2 1
2 −3

)
u, u(0) = b =

(
3
0

)
.
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Employing formula (9.39),

u(t) = etA b =

(
1
3 e−4 t + 2

3 e− t −
1
3 e−4 t + 1

3 e− t

−
2
3 e−4 t + 2

3 e− t 2
3 e−4 t + 1

3 e− t

)(
3

0

)
=

(
e−4 t + 2 e− t

− 2 e−4 t + 2 e− t

)
,

reproducing our earlier solution (9.15).

Example 9.27. Suppose A =

(
−1 −2
2 −1

)
. The characteristic equation det(A −

λ I ) = λ2 + 2λ + 5 = 0 has roots λ = −1 ± 2 i , which are thus the complex conjugate

eigenvalues of A. The corresponding eigenvectors are v = (± i , 1 )
T
, leading to the complex

conjugate solutions

u1(t) =

(
i e(−1+2 i ) t

e(−1+2 i ) t

)
, u2(t) =

(
− i e(−1−2 i ) t

e(−1−2 i ) t

)
.

We assemble these to form the (complex) matrix solution

U(t) =

(
i e(−1+2 i ) t

− i e(−1−2 i ) t

e(−1+2 i ) t e(−1−2 i ) t

)
.

The corresponding matrix exponential is, therefore,

etA = U(t)U(0)−1 =

(
i e(−1+2 i ) t

− i e(−1−2 i ) t

e(−1+2 i ) t e(−1−2 i ) t

)(
i − i
1 1

)−1

=




e(−1+2 i ) t + e(−1−2 i ) t

2
−e(−1+2 i ) t + e(−1−2 i ) t

2 i
e(−1+2 i ) t

− e(−1−2 i ) t

2 i
e(−1+2 i ) t + e(−1−2 i ) t

2


 =

(
e− t cos 2 t −e− t sin 2 t

e− t sin 2 t e− t cos 2 t

)
.

Note that the final expression for the matrix exponential is real, as it must be since A is a
real matrix. (See Exercise .) Also note that we didn’t need to find the real solutions to
construct the matrix exponential — although this would have also worked and given the
same result. Indeed, the two columns of etA form a basis for the space of (real) solutions
to the linear system

¦
u = Au.

The matrix exponential turns out to enjoy all the properties you might expect from
its scalar counterpart. First, w Let us finish by listing some further important properties
of the matrix exponential, all of which are direct analogues of the usual scalar exponential
function. First, the multiplicative property survives:

e(t+s)A = etA esA, for any s, t ∈ R. (9.43)

Indeed, if we differentiate both sides of the equation with respect to t, we find that they
both define matrix solutions to the system

¦
u = Au. Moreover, at t = 0 they both have

the same initial conditions, and hence, again by uniqueness, they must be the same. In
particular, if we set s = − t, the left hand side of (9.43) reduces to the identity matrix,
and hence

e− tA =
(
etA

)−1
. (9.44)

In particular, this implies that, for any A and any t ∈ R, the exponential matrix etA is
nonsingular.
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Warning : On the other hand, in general, for matrices A,B of the same size,

et (A+B)
6= etA etB . (9.45)

Indeed, as we show in Exercise , the left and right hand sides of (9.45) are equal for all t
if and only if AB = BA are commuting matrices.

Finally, we note that the standard exponential series is also valid for the matrix
exponential:

etA =

∞∑

n=0

tn

n!
An = I + tA+

t2

2
A2 +

t3

6
A3 + · · · . (9.46)

The proof of convergence of the series will be deferred until we have had a chance to discuss
matrix norms in Chapter 10. Assuming convergence, the proof that it satisfies the defining
initial value problem (9.39) is straightforward:

d

dt

∞∑

n=0

tn

n!
An =

∞∑

n=1

tn−1

(n− 1)!
An =

∞∑

n=0

tn

n!
An+1 = A

∞∑

n=0

tn

n!
An,

while at t = 0 the sum collapses to the identity matrix.

Inhomogeneous Linear Systems

We now direct our attention to general inhomogeneous linear systems of ordinary
differential equations. For simplicity, we consider only first order† systems of the form

du

dt
= Au+ f(t), (9.47)

where A is a constant n × n matrix and f(t) is a vector of functions that represents
external forcing to the system. According to our general Theorem 7.37, the solution to the
inhomogeneous system will have the form

u(t) = u?(t) + z(t)

where u?(t) is a particular solution and z(t) is a general solution to the homogeneous system
(8.9). Physically, one interprets the solution as a combination of a particular response to
the external forcing coupled with the system’s own internal motion.

Since we already know how to find the solution z(t) to the homogeneous system,
the only task is to determine one particular solution to the inhomogeneous system. The
method used to construct the solution is known as variation of parameters, and will work
even when the matrix A depends on t. The student may have encountered the scalar
version of this method in a first course on ordinary differential equations, and the same
basic idea applies to systems.

† Higher order systems can, as remarked earlier, always be converted into first order systems
involving additional variables.
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Recall that, in the scalar case, to solve the inhomogeneous equation

du

dt
= a u+ f(t), we set u(t) = et a v(t).

Thus, by the product rule,

du

dt
= a et a v(t) + et a

dv

dt
= a u+ et a

dv

dt
,

and so v(t) solves the differential equation

dv

dt
= e− t a f(t).

The latter equation can be solved by direct integration.

A entirely analogous method works in the vector case. We replace the scalar expo-
nential by the exponential of the coefficient matrix, setting

u(t) = etA v(t).

Using the product rule for matrix multiplication and the fourth property in (9.38), we find

du

dt
= AetA v(t) + etA

dv

dt
= Au+ etA

dv

dt
.

We conclude that
dv

dt
= e− t A f(t).

The resulting differential equation can then be solved by direct integration:

v(t) = v(t0) +

∫ t

t0

e−sA f(s) ds, (9.48)

Substituting the formula for u(t), we have therefore established the following general for-
mula for the solution to an first order, inhomogeneous linear system with constant coeffi-
cient matrix.

Theorem 9.28. The solution to the initial value problem
du

dt
= Au+f(t), u(t0) = b,

is

u(t) = e(t−t0)A b+

∫ t

t0

e(t−s)A f(s) ds. (9.49)

Example 9.29. Our goal is to solve the initial value problem

¦
u1 = 2u1 − u2, u1(0) = 1,
¦
u2 = 4u1 − 3u2 + et u2(0) = 0.

(9.50)

The eigenvalues and eigenvectors of the coefficient matrix A =

(
2 −1
4 −3

)
are

λ1 = 1, v1 =

(
1
1

)
, λ2 = −2, v2 =

(
1
4

)
.
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We use these to form the nonsingular matrix solution U(t) =

(
et e−2 t

et 4e−2 t

)
, whence

etA = U(t)U(0)−1 =

(
4
3 et − 1

3 e−2 t
−

1
3 et + 1

3 e−2 t

4
3 et − 4

3 e−2 t
−

1
3 et + 4

3 e−2 t

)
.

We can compute the solution directly from formula (9.49):

∫ t

0

e(t−s)A f(s) ds =

∫ t

0

(
4
3 et−s − 1

3 e−2(t−s)
−

1
3 et−s + 1

3 e−2(t−s)

4
3 et−s − 4

3 e−2(t−s)
−

1
3 et−s + 4

3 e−2(t−s)

)(
0

es

)
ds

=




∫ t

0

−
1
3 et + 1

3 e−2t+3s ds

∫ t

0

−
1
3 et + 4

3 e−2t+3s) ds


 =

(
−

1
3 tet + 1

9 (e
t
− 1)

−
1
3 tet + 4

9 (e
t
− 1)

)
.

This is the particular solution for the homogeneous initial conditions u(0) = 0. To obtain
the solution that satisfies the given initial conditions, we compute the first term in (9.49)

etA b =

(
4
3 et − 1

3 e−2 t
−

1
3 et + 1

3 e−2 t

4
3 et − 4

3 e−2 t
−

1
3 et + 4

3 e−2 t

)(
1

0

)
=

(
4
3 et − 1

3 e−2 t

4
3 et − 4

3 e−2 t

)
,

which is the solution to the homogeneous system for the given nonzero initial conditions.
We sum these two to finally obtain the solution to our initial value problem:

u(t) =

(
4
3 et − 1

3 e−2 t
−

1
3 tet + 1

9 (e
t
− 1)

4
3 et − 4

3 e−2 t
−

1
3 tet + 4

9 (e
t
− 1)

)
.

Applications in Geometry

The connection between a matrix and its exponential plays an important role in
geometry, group theory and, eventually, [32, 117], the symmetry analysis of differential
equations.

Let A be an n× n matrix. For each t ∈ R, the corresponding matrix exponential etA

is itself an n× n matrix and thus defines a linear transformation on the vector space Rn:

Lt[x ] = etA x for x ∈ Rn.

The resulting family of linear transformations, parametrized by t ∈ R, obeys the following
properties

Lt
◦Ls = Lt+s, L0 = I , L− t = L−1

t , (9.51)

which are merely restatements of three of the basic matrix exponential properties listed
in (9.38), (9.44). In geometric terms, the transformations Lt = etA are said to form one-

parameter group, [117]. The matrix A is often referred to as the infinitesimal generator of
the one-parameter group. Indeed, by the series formula (9.38) for the matrix exponential,

Lt[x ] = etA x =
(
I + tA+ 1

2 t2 A2 + · · ·
)
x = x+ tAx+ · · · ,
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and so the linear approximation to the group transformations is to move straight in the
direction Ax. This line is the tangent line to the nonlinear group motion.

Most of the interesting linear transformations of importance in geometry, computer
graphics and animation arise in this fashion. Let us consider a few basic examples.

(a) When A =

(
0 −1
1 0

)
then etA =

(
cos t − sin t

sin t cos t

)
is a rotation matrix. Thus, the

infinitesimal generator of the one-parameter group of plane rotations is the simplest
skew-symmetric matrix.

(b) When A =

(
0 1
0 0

)
then etA =

(
1 t

0 1

)
represents a shearing transformation.

(c) When A =

(
1 0
0 1

)
then etA =

(
et 0
0 et

)
represents a scaling or stretching trans-

formation.

(d) When A =

(
1 0
0 −1

)
then etA =

(
et 0
0 e− t

)
represents a stretch in the x direction

and a contraction in the y direction.

Remark : Remember that in chaptereq, when we discussed the motions of planar and
space structures, we were unable to handle the true geometric motions of the ends of a
bar (rotations, mechanisms, etc.) in our linear systems framework, and ended up using
a linear approximation. What we were doing was, in fact, replacing the one-parameter
group transformations by their infinitesimal approximations.

More generally, rotations in three and higher dimensions are also generated by skew-
symmetric matrices.

Lemma 9.30. If AT = −A is a skew-symmetric matrix, then Q(t) = etA is a proper

orthogonal matrix.

Proof : According to equation (9.44) and Exercise ,

Q(t)−1 = e− tA = etA
T

=
(
etA

)
T = Q(t)T ,

which proves orthogonality. Properness follow from Lemma 9.31. Q.E.D.

Thus, the 1
2 n(n− 1) dimensional vector space of n× n skew symmetric matrices gen-

erates the group of rotations in n-dimensional Euclidean space. In the three-dimensional
case, every skew-symmetric 3 × 3 matrix has zero determinant: detA = 0, and hence
admits a null eigenvector v ∈ kerA. We claim that etA represents the group of rotations

around the eigenvector axis v. For instance, if A =



0 0 0
0 0 −1
0 1 0


, then v = e1 =



1
0
0




and etA =



1 0 0
0 cos t − sin t

0 sin t cos t


 represents the rotation around the e1 or x axis. The

set of all skew-symmetric matrices forms a three-dimensional vector space, with basis
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0 0 0
0 0 −1
0 1 0


,



0 0 −1
0 0 0
1 0 0


,



0 −1 0
1 0 0
0 0 0


, corresponding to rotations around the x,

y and z axes. Any other skew-symmetric matrix can be written as a linear combination
of these three, indicating that the full group of rotations is built up from these three basic
types. This quantifies our earlier observations about the umber of independent infinitesi-
mal rigid motions in 2 and three-dimensional space.

Another important result gives a simple formula for the determinant of a matrix
exponential in terms of the trace of the generating matrix.

Lemma 9.31. For any square matrix, det etA = et trA > 0.

Proof : According to Exercise , if A has eigenvalues λ1, . . . , λn, then etA has eigen-
values† etλ1 , . . . , etλn are the corresponding eigenvalues of A. Moreover, using (8.26) the
determinant of det etA is the produuct of its eigenvalues, so

det etA = etλ1 etλ2 · · · etλn = et (λ1+λ2+ ··· +λn) = et trA,

where, by (8.25), we identify the sum of its eigenvalues as the trace of A. Q.E.D.

In particular, if trA = 0, its exponential has unit determinant, det et A = 1, and
so represents a family of area- or volume-preserving linear transformations. In the two-
dimensional examples listed above, the rotations, shears and combined contraction/stretch
are all area preserving, while the pure stretches expand areas by a uniform factor e2 t. Thus,
if we start with a unit square, under a rotation is remains a unit square. Under a shear
it becomes a parallelogram with unit area. Under a stretch it becomes a sqaure with
side lengths et and hence total area e2 t, while under the combined contraction/stretch it
becomes a unit rectangle. Similar remarks hold for a unit circular disk; in the last case it
is transformed into an ellipse of area 1.

Noncommutativity of linear transformations is refelcted in noncommutativity of their
infinitesimal generators. Recall, (commutator ), that the commutator of two n×nmatrices
A,B is

[A,B ] = AB −BA.

Thus, A and B commute if and only if [A,B ] = O. We use the exponential series (9.46)
to evaluate the commutator of the matrix exponentials etA and etB :

[
etA, etB

]
= etA etB − etB etA

=
(
I + tA+ · · ·

)(
I + tB + · · ·

)
−
(
I + tB + · · ·

)(
I + tA+ · · ·

)

= t (AB −B A) + · · · = t [A,B ] + · · · .

Therefore, for small values of t, the commutator between the two one-parameter groups
is governed by the commutator of their generators. In particular, if the groups commute,
then [A,B ] = O; the converse is also true, as follows easily from the previous computation.

† In Exercise you prove that repeated eigenvalues have the same multiplicities.
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Proposition 9.32. The matrix exponentials etA and etB commute if and only if

AB = BA.

For instance, the non-commutativity of three-dimensional rotations follows from the
non-commutativity of their infinitesimal skew-symmetric generators. For instance, X =

0 0 0
0 0 −1
0 1 0


 generates (righthanded) rotations around the x axis, while Y =



0 0 1
0 0 0
−1 0 0




generates (righthanded) rotations around the y axis. Their commutator

[
X,Y

]
=



0 0 0
0 0 −1
0 1 0





0 0 1
0 0 0
−1 0 0


−



0 0 1
0 0 0
−1 0 0





0 0 0
0 0 −1
0 1 0


 =



0 −1 0
1 0 0
0 0 0




= Z

is the generator of rotations around the z axis. Hence, in a linear approximation, the
difference between x and y rotations is, interestingly, a z rotation.

9.5. Dynamics of Structures.

Chapter 6 was concerned with the equilibrium configurations of mass-spring chains
and, more generally, structures made out of elastic bars. We are now able to analyze the
dynamical motions of such structures. Consider first a linear mass/spring chain consisting
of n masses m1, . . . ,mn connected together and, possibly, to the top and bottom supports
by springs. Let ui(t) denote the displacement

† from equilibrium of the ith mass, and ej(t)
the elongation of the jth spring. Since we are now interested in dynamics, both of these
are allowed to depend on time, t.

The motion of each mass is governed by Newton’s Second Law,

Force = Mass×Acceleration. (9.52)

The acceleration of the ith mass is the second derivative
¦¦
ui = d2ui/dt2 of its displace-

ment. The right hand sides of Newton’s Law are thus mi

¦¦
ui, which we collect together in

vector form M
¦¦
u by multiplying the second derivative of the displacement vector u(t) =

(u1(t), . . . , un(t) )
T
by the diagonal, positive definite mass matrixM = diag (m1, . . . ,mn).

Incidentally, the masses of the springs are assumed to be negligible in this approximation.

If, to begin with, we assume no external forcing of the mass/spring system and no
frictional effects, then the only force exerted on each mass is due to the elongations of its
two connecting springs, which is measured by the components of the internal force vector

f = −Ku = −ATC Au. (9.53)

HereK = ATC A the stiffness matrix for the chain, which is constructed from the (reduced)
incidence matrix A and the diagonal matrix of spring constants C, as in (6.11).

† As in Section 6.1, the masses are only allowed to move in the direction of the chain, that is,
we restrict our attention to one-dimensional motion.
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Substituting the internal force formula (9.53) into Newton’s Law (9.52) leads imme-
diately to the fundamental dynamical equations

M
d2u

dt2
= −Ku (9.54)

governing the free, frictionless motions of the system. The goal is to understand the
solutions of this system of second order ordinary differential equations, and then, rather
straightforwardly, generalize the methods to cover structures in two and three dimensions
as well as electrical circuits containing inductors, resistors and capacitors, all of which are
governed by the same basic second order system (9.54) based on the appropriate stiffness
or resistivity matrix K.

Example 9.33. The simplest case is that of a single mass connected to a fixed
support by a spring. The dynamical system (9.54) reduces to a scalar equation

m
d2u

dt2
+ k u = 0. (9.55)

Here m > 0 is the mass, while k > 0 is the spring’s stiffness. The general solution to this
elementary homogeneous, second order linear ordinary differential equation is

u(t) = c1 cosω t+ c2 sinω t = r cos(ω t− δ), where ω =

√
k

m
(9.56)

is the natural frequency of vibration. We have used the phase-amplitude equation (2.7)
to rewrite the solution as a single cosine with an amplitude r =

√
c2
1 + c2

2 , and phase lag
δ = tan−1 c2/c1. The motion is periodic, with period P = 2π/ω. The frequency formula

ω =
√

k/m tells us that stiffer the spring or the lighter the mass, the faster the vibrations.
Take note of the square root; it tells us that, for instance, quadrupling the mass only slows
down the vibrations by a factor of two.

The constants c1, c2 — or their phase-amplitude counterparts r, δ — are determined
by the initial conditions. Physically, we need to specify both an initial position and an
initial velocity in order to uniquely prescribe the subsequent motion of the system:

u(t0) = a,
¦
u(t0) = b. (9.57)

The resulting solution is most conveniently written in the form

u(t) = a cosω (t− t0) +
b

ω
sinω (t− t0) = r cos

[
ω (t− t0)− δ

]
(9.58)

which has amplitude and phase given by

r =

√
a2 +

β2

ω2
, δ = tan−1 b

a ω
. (9.59)

A typical solution is plotted in Figure 9.5.
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Figure 9.5. Vibration of a Mass.

Let us turn to a more general mass-spring chain or structure. Just as exponentials
form the basic building blocks for the solution of systems of first order ordinary differential
equations, trigonometric functions form the basic building blocks for solutions to undamped
mechanical (and electrical) vibrations governed by second order systems. For simplicity,
let us first assume that the masses are all the same and equal to 1 (in some appropriate
units), so that (9.54) reduces to

d2u

dt2
= −Ku. (9.60)

Mimicking our success in the first order case, let us try substituting the trigonometric
ansatz

u(t) = cos(ω t) v, (9.61)

with v 6= 0 denoting a constant vector, into the system (9.60). Differentiating (9.61)
directly, we find

du

dt
= −ω sin(ω t) v,

d2u

dt2
= −ω2 cos(ω t) v.

Therefore, our ansatz (9.61) will solve (9.60) if and only if

K v = ω2 v,

which means that v is an eigenvector of K with eigenvalue

λ = ω2. (9.62)

Now, there is nothing special about the cosine function — the same computation also
applies to the sine function, and tells us that u(t) = sin(ω t) v is also a solution whenever
v is an eigenvector with eigenvalue λ = ω2. Summarizing:

Lemma 9.34. If v is an eigenvector of the matrix K with eigenvalue λ = ω2, then

the trigonometric vector functions u(t) = cos(ω t) v and u(t) = sin(ω t) v are solutions to
the second order system

¦¦
u = −Ku.

Remark : Alternatively, one can utilize the complex exponential solutions e iωt v and
e− iωt v, which are related to the trigonometric solutions via Euler’s formula (3.76). This
is common practice in electrical circuit analysis — although electrical engineers tend to
use j instead of i to denote the square root of −1.
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Figure 9.6. Quasi–Periodic and Periodic Functions.

Stable Structures

Let us next analyze the motion of a stable structure, of the type introduced in Sec-
tion 6.3. According to Theorem 6.8, stability requires that the reduced stiffness matrix
be positive definite: K > 0 . Theorem 8.25 says that all the eigenvalues of K are strictly
positive, λi > 0, which is good, since it implies that the eigenvalue/frequency relation
(9.62) yields real frequencies ωi =

√
λi . Moreover, all positive definite matrices are com-

plete, and so, even when there are fewer than n different eigenvalues, there always exist a
complete system of n linearly independent real eigenvectors that form an orthogonal basis
for Rn.

Since (9.60) is a second order system of homogeneous linear equations in n unknowns,
we require 2n linearly independent solutions. Lemma 9.34 produces 2 independent solu-
tions for each positive eigenvalue (counted with multiplicity), and hence, assuming positive
definiteness, there are indeed 2n linearly independent solutions,

ui(t) = cos(ωi t )vi = cos
(√

λi t
)
vi,

ũi(t) = sin(ωi t )vi = sin
(√

λi t
)
vi,

, i = 1, . . . , n, (9.63)

governed by the n mutually orthogonal (or even orthonormal) eigenvectors v1, . . . ,vn of
K. The general solution to (9.60) is an arbitrary linear combination,

u(t) =
n∑

i=1

[
ci cosωi t+ di sinωi t

]
vi =

n∑

i=1

ri cos(ωi t− δi) vi, (9.64)

of these 2n basic solutions. The 2n coefficients ci, di — or their phase–amplitude counter-
parts ri > 0, and 0 ≤ δi < 2π — are uniquely determined by the initial conditions. As in
(9.57), we need to specify both the initial positions and initial velocities of all the masses;
this requires a total of 2n initial conditions

u(t0) = a,
¦
u(t0) = b. (9.65)

The individual solutions (9.63) are known as the normal modes of vibration of our
system, and the ωi =

√
λi the normal frequencies, which are the square roots of the

eigenvalues of the stiffness matrix . Each is a periodic, vector-valued function of period
Pi = 2π/ωi. Linear combinations of such periodic functions are, in general, called quasi-

periodic. Unless the ratios ωi/ωj between the frequencies are all rational numbers, such a
quasi-periodic function will never precisely repeat itself, and so can appear to be chaotic,
even though it is built up from a few very simple periodic constituents. The reader will
find it very instructive to graph some simple quasiperiodic functions, say

f(t) = c1 cos t+ c2 cos
√

5 t
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Figure 9.7. Motion of a Double Mass/Spring Chain with Fixed Supports.

for various values of c1, c2. Comparison with a case where the frequencies are all rational,
say

f(t) = c1 cos t+ c2 cos
7
3 t

is also instructive. The former is truly quasiperiodic, while the the latter is, in fact, periodic
with period 6π. Most structures and circuits exhibit quasi-periodic vibrational motions.
Let us analyze a couple of simple examples.

Example 9.35. Consider a chain consisting of two equal unit masses connected in
a row to supports by three springs, as in Figure 9.7. If the spring constants are c1, c2, c3

(from top to bottom), then the stiffness matrix is

K =

(
1 −1 0
0 1 −1

)


c1 0 0
0 c2 0
0 0 c3





1 0
−1 1
0 −1


 =

(
c1 + c2 −c2

−c2 c2 + c3

)

The eigenvalues and eigenvectors of K will prescribe the normal modes of vibration and
natural frequencies of our two–mass chain.

. Let us look in detail at the case of identical springs, and choose our units so that

c1 = c2 = c3 = 1. Then K =

(
2 −1
−1 2

)
has eigenvalues and eigenvectors

λ1 = 1, v1 =

(
1
1

)
, λ2 = 3, v2 =

(
−1
1

)
.

The general solution to the system is then

u(t) = r1 cos(t− δ1)

(
1
1

)
+ r2 cos(

√

3 t− δ2)

(
−1
1

)
.

The first summand is the normal mode vibrating at the relatively slow frequency ω1 = 1,
with the two masses moving in tandem. The second summand is the normal mode that
vibrates faster, with frequency ω2 =

√
3, in which the two masses move in opposing

directions. The general motion is a linear combination of these two normal modes. Since
the frequency ratio ω2/ω1 =

√
2 is irrational, the motion is quasi-periodic. The system
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Figure 9.8. Motion of a Double Mass/Spring Chain with One Free End.

never quite returns to its initial configuration — unless it happens to be vibrating in only
one of the normal modes. A graph of some typical displacements of the masses is plotted
in Figure 9.7.

If we eliminate the bottom spring, so the masses are just hanging from the top support

as in Figure 9.8, then the reduced incidence matrix A =

(
1 −1
0 1

)
loses its last row.

Assuming that the springs have unit stiffnesses c1 = c2 = 1, the corresponding stiffness
matrix is

K = ATA =

(
1 −1
0 1

)(
1 0
−1 1

)
=

(
2 −1
−1 1

)
.

The eigenvalues and eigenvectors are

λ1 =
3−

√
5

2
, v1 =

(
1

1+
√

5
2

)
, λ2 =

3 +
√
5

2
, v2 =

(
1

1−
√

5
2

)
.

The general solution to the system is then

u(t) = r1 cos

(√
3−
√

5
2 t− δ1

)(
1

1+
√

5
2

)
+ r2 cos

(√
3+
√

5
2 t− δ2

)(
1

1−
√

5
2

)
.

The slower normal mode, with frequency ω1 =

√
3−
√

5
2 , has the masses moving in tandem,

with the bottom mass moving proportionally
1 +

√
5

2
farther. The faster normal mode,

with frequency ω2 =

√
3+
√

5
2 , has the masses moving in opposite directions, with the top

mass experiencing the larger displacement. Moreover, both modes vibrate slower than
when there is a bottom support. A typical solution is plotted in Figure 9.8.

Example 9.36. Consider a three mass/spring chain, with unit springs and masses,

and both ends attached to fixed supports. The stiffness matrix K =



2 −1 0
−1 2 −1
0 −1 2
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has eigenvalues and eigenvectors

λ1 = 2−
√

2 , λ2 = 2, λ3 = 2 +
√

2 ,

v1 =



1
√
2
1


, v2 =



1
0
−1


, v3 =




1
−
√
2
1


.

The three normal modes, from slowest to fastest, have frequencies

(a) ω1 =
√
2−

√
2 : all three masses move in tandem, with the middle one moving

√
2 times as far.

(b) ω2 =
√
2 : the two outer masses move in opposing directions, while the

middle mass does not move.

(c) ω3 =
√
2 +

√
2 : the two outer masses move in tandem, while the inner mass

moves
√
2 times as far in the opposite direction.

The general motion is a quasi-periodic combination of these three normal modes. As such,
to the naked eye it can look very complicated. Our mathematical analysis unmasks the
innate simplicity, where the complex dynamics are, in fact, entirely governed by just three
fundamental modes of vibration.

Unstable Structures

So far, we have just dealt with the stable case, when the reduced incidence matrix
has trivial kernel, kerA = {0}, and so the stiffness matrix K = ATCA is positive definite.
Unstable configurations, which can admit rigid motions and/or mechanisms, will provide
additional complications. The simplest version is a single mass that is not attached to
any spring. The mass experiences no restraining force, and has motion governed by the
elementary second order ordinary differential equation

m
d2u

dt2
= 0. (9.66)

The general solution

u(t) = c t+ d (9.67)

has the mass either sitting still at a specified position or moving in a straight line with
constant velocity c 6= 0.

More generally, suppose that the stiffness matrix K = ATC A for our structure is only
positive semi-definite. Each vector 06= v ∈ kerA = kerK represents a mode of instability
of the system. SinceKv = 0, we can interpret v as a null eigenvector ofK, with eigenvalue
λ = 0. Lemma 9.34 gives us two solutions to the dynamical equations (9.60) with associated
“frequency” ω =

√

λ = 0. The first, u(t) = cos(ω t) v = v is a constant solution, i.e., an
equilibrium configuration of the system. Thus, an unstable system does not have a unique
equilibrium configuration, since every null eigenvector v ∈ kerK gives a constant solution.
On the other hand, the second solution, u(t) = sin(ω t)v = 0, is trivial, and of no help for
constructing the general solution. But, to obtain the general solution to the system, we
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Figure 9.9. A Triatomic Molecule.

still need a second independent solution coming from the null eigenvalue. In analogy with
the scalar case (9.67), let us try the solution ansatz u(t) = tv, which works, since

du

dt
= v, 0 =

d2u

dt2
= Ku = tKv.

Therefore, to each element of the kernel of the stiffness matrix — i.e., each rigid motion
and mechanism — there is a two-dimensional family of solutions

u(t) = (c t+ d)v. (9.68)

When c = 0, it reduces to a constant equilibrium solution; when c 6= 0, the solution is
moving with constant velocity in the null direction v representing an unstable mode in
the system. The general solution will be a linear superposition of the vibrational modes
corresponding to the positive eigenvalues and these unstable linear motions corresponding
to the zero eigenvalues.

Remark : If the null direction v represents a rigid translation, then the entire structure
will move in that direction. If v represents an infinitesimal rotation, then, owing to our
linear approximation to the true nonlinear bar motions, the individual masses will move
in straight lines, which are the tangent approximations to the circular motion that occurs
in the true physical, nonlinear regime. We refer to the earlier discussion in Chapter 6 for
details. Finally, if we excite a mechanism, then the masses will again follow straight lines,
moving in different directions, whereas in the full nonlinear physical regime the masses
may move along much more complicated curved trajectories.

Example 9.37. Consider a system of three unit masses connected in a line by
two unit springs, but not attached to any fixed supports, as illustrated in Figure 9.9. This
structure could be viewed as a simplified model of a triatomic molecule that is only allowed

to move the vertical direction. The incidence matrix is A =

(
−1 1 0
0 −1 1

)
and, since we

are dealing with unit springs, the stiffness matrix is

K = ATA =



−1 0
−1 1
0 1



(
−1 1 0
0 −1 1

)
=



1 −1 0
−1 2 −1
0 −1 1


 .
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The eigenvalues and eigenvectors of K are easily found:

λ1 = 0, λ2 = 1, λ3 = 3 ,

v1 =



1
1
1


, v2 =



1
0
−1


, v3 =



1
−2
1


.

Each positive eigenvalue provides two trigonometric solutions, while the zero eigenvalue
leads to solutions that depend linearly on t. This yields the required six basis solutions:

u1(t) =



1
1
1


, u3(t) =



cos t
0

− cos t


, u5(t) =




cos
√
3 t

− 2 cos
√
3 t

cos
√
3 t


,

u2(t) =




t

t

t


, u4(t) =



sin t

0
− sin t


, u6(t) =




cos
√
3 t

− 2 cos
√
3 t

cos
√
3 t


.

The first solution u1(t) is a constant, equilibrium mode, where the masses rest at a fixed
common distance from their reference positions. The second u2(t) is the unstable mode,
corresponding to a uniform vertical translational motion of the masses without any stretch
of the interconnecting springs. The final four solutions represent vibrational modes. In the
first pair u3(t),u4(t), the two outer masses move in opposing directions, while the middle
mass remains fixed, while the final pair u5(t),u6(t) has the two outer masses moving in
tandem, while the inner mass moves twice as far in the opposing direction. The general
solution is a linear combination of the six normal modes,

u(t) = c1u1(t) + · · · + c6u6(t), (9.69)

and corresponds to the molecule moving along its axis at a fixed speed while the individual
masses perform a quasi-periodic vibration.

Let us see if we can predict the motion of the molecule from its initial conditions

u(0) = a,
¦
u(0) = α,

where a = ( a, b, c )
T
is the initial displacements of the three atoms, while α = (α, β, γ )

T
is

their initial velocities. Substituting the solution formula (9.69) leads to the linear systems

c1 v1 + c3 v2 + c5 v3 = a, c2 v1 + c4 v2 +
√

3 c6 v3 = α,

for the coefficients c1, . . . , c6. Since the eigenvectors of the symmetric matrix K are mu-
tually orthogonal, we can use our orthogonality formula to immediately compute the co-
efficients:

c1 =
a · v1

‖v1 ‖
2
=

a+ b+ c

3
, c3 =

a · v2

‖v2 ‖
2
=

a− c

2
, c5 =

a · v3

‖v3 ‖
2
=

a− 2b+ c

6
,

c2 =
α · v1

‖v1 ‖
2
=

α+ β + γ

3
, c4 =

α · v2

‖v2 ‖
2
=

α− γ

2
, c6 =

α · v3
√
3 ‖v3 ‖

2
=

α− 2β + γ

6
√
3

.
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In particular, the unstable translational mode is excited if and only if its coefficient c2 6= 0
is non-zero, and this occurs if and only if there is a nonzero net initial velocity of the
molecule: α + β + γ 6= 0. In this case the vibrating molecule will move off to ∞ at
a uniform velocity c = c2 =

1
3 (α+ β + γ) equal to the average of the individual initial

velocities. On the other hand, if α+β+γ = 0, then the unstable mode will not be excited
and the molecule will vibrate quasiperiodically, with frequencies 1 and

√
3, while sitting

at a fixed location.

The observations established in this example hold, in fact, in complete generality. Let
us state the result, leaving the details of the proof as an exercise for the reader.

Theorem 9.38. The solution to unstable second order linear system with positive

semi-definite coefficient matrix K = ATC A is a combination of a quasi-periodic vibration

and a uniform motion at a fixed velocity in the direction of a null eigenvector v ∈ kerA.
In particular, the system does not experience any unstable motion, and so will just vibrate

around a fixed position, if and only if the initial velocity
¦
u(t0) ∈ (kerK)

⊥ = rngK is

orthogonal to the subspace kerA = kerK of all unstable directions.

As usual, the unstable modes correspond to either translations or rotations, or to
mechanisms of the structure. To prevent a structure from exhibiting an unstable motion,
one has to ensure that the initial velocity is orthogonal to all of the unstable directions.
The result is in direct analogy with Theorem 6.8 that requires a force to be orthogonal to
all such unstable modes in order to maintain equilibrium in the structure.

Systems with Different Masses

When a structure has differing masses at the nodes, the Newtonian equations of motion
take the more general form

M
¦¦
u = −Ku, or, equivalently,

¦¦
u = −M−1Ku = −P u. (9.70)

The mass matrix M > 0 is positive definite (and, usually, diagonal, although the general
theory does not require this latter restriction), while the stiffness matrix K = ATC A

is either positive definite or, in the unstable situation when kerA 6= {0}, positive semi-
definite. The coefficient matrix

P =M−1K =M−1ATC A (9.71)

is not in general symmetric, and so we cannot directly apply the preceding constructions.
However, P does have the more general self-adjoint form (7.68) based on the weighted
inner products

〈u ; ũ 〉 = uTM ũ, 〈〈v ; ṽ 〉〉 = vTC ṽ, (9.72)

on, respectively, the domain and target spaces for A.

If kerA = {0}, then P > 0 is positive definite in the generalized sense of Defini-
tion 7.58. In this case, substituting our standard trigonometric solution ansatz u(t) =
cos(ω t) v into the system results in a generalized matrix eigenvalue problem

K v = λM v, or, equivalently, P v = λv, with λ = ω2. (9.73)
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Figure 9.10. Damped Vibrations.

The matrix M plays the role of the identity matrix I in the standard eigenvalue equation
(8.13). The proofs for the standard eigenvalue problem are easily modified to handle this
situation, and demonstrate that all the eigenvalues are real and non-negative. Moreover
the eigenvectors are orthogonal, but now with respect to the weighted inner product 〈u ; ũ 〉
governed by the mass matrix M . Details are relegated to the exercises.

Friction and Damping

So far, we have not allowed frictional forces to affect the motion of our dynamical
equations. In many physical systems, friction exerts a force on a mass in motion which is
proportional to its velocity. In the simplest case of a single mass attached to a spring, one
amends the balance of forces in the undamped Newton equation (9.55) to obtain

m
d2u

dt2
+ β

du

dt
+ k u = 0. (9.74)

As before, m > 0 is the mass, and k > 0 the spring stiffness, while β > 0 measures
the effect of a velocity-dependent frictional force — the larger β the greater the frictional
damping of the motion.

The solution of this more general second order homogeneous linear ordinary differential
equation is found by substituting the usual exponential ansatz u(t) = eλt into the equation,
leading to the quadratic characteristic equation

mλ2 + β λ+ k = 0. (9.75)

There are three possible cases, illustrated in Figure 9.10:

Underdamped : If 0 < β2 < 4mk, then (9.75) has two complex-conjugate roots

λ = −
β

2m
± i

√
4mk − β2

2m
= −µ± i ν . (9.76)

The general solution to the differential equation is

u(t) = e−µt
(

c1 cos ν t+ c2 sin ν t
)
= r e−µt cos(ν t− δ), (9.77)
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which represents a damped periodic motion. The time-dependent amplitude of vibration
a(t) = r e−µt decays to zero at an exponential rate as t → ∞. The formula for the rate
of decay, µ = β/(2m), tells us that more friction or less mass will cause the system to
return to equilibrium faster. (Of course, mathematically, it never quite gets there, but in
a real physical system after a sufficiently long time the difference is not noticeable.) On
the other hand, the frequency of vibration,

ν =

√
4mk − β2

2m
=

√
k

m
−

β2

4m2
, (9.78)

remains fixed throughout the motion. The frictionally modified vibrational frequency ν

is strictly smaller than the undamped frequency ω =
√

k/m , and hence friction has the
effect of slowing down vibrations while progressively diminishing their amplitudes. As the
friction approaches a critical threshold, β ↗ 2

√

mk , the vibrational frequency goes to
zero, ν → 0, and so the period of vibration P = 2π/ν goes to ∞.

Overdamped : If β2 > 4mk, then the characteristic equation (9.75) has two negative
real roots

λ1 = −
β +

√
β2 − 4mk

2m
, λ2 = −

β −
√

β2 − 4mk

2m
,

with λ1 < λ2 < 0. The solution

u(t) = c1 eλ1 t + c2 eλ2 t (9.79)

is a linear combination of two decaying exponentials. An overdamped system models the
motion of a mass in a vat of molasses. Its “vibration” is so slow that it can pass at most
once through its equilibrium position u = 0, and then only when its initial velocity is quite
large. In the long term, since λ1 < λ2, the first exponential e

λ1 t will decay to zero faster,
and hence the overall decay rate of the solution is (unless c2 = 0) governed by the less
negative eigenvalue λ2.

Critically Damped : The borderline case occurs when β2 = 4mk, which means that
the characteristic equation (9.75) has only a single negative real root:

λ1 = −
β

2m
.

In this case, our ansatz only supplies one exponential solution eλ1 t = e−β t/2m. The
second linearly independent solution is obtained by multiplication by t, leading to the
general solution

u(t) = (c1 t+ c2)e
−β t/2m. (9.80)

Even though the formula looks quite different, its qualitative behavior is very similar to
the overdamped case. The factor of t plays an unimportant role, since the asymptotics
of this solution are almost entirely governed by the decaying exponential function. This
represents the nonvibrating solution that has the slowest possible decay rate — reducing
the frictional coefficient any further will permit a damped periodic vibration to appear.

In all three cases, provided the frictional coefficient is positive, β > 0, the zero solution
is globally asymptotically stable. Physically, since there is no external forcing, all solutions
eventually return to equilibrium as the friction gradually overwhelms any initial motion.
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Remark : You may, if you prefer, convert the second order equation (9.74) into a first
order system by adopting the phase plane variables u and v =

¦
u. The coefficient matrix

of the equivalent phase plane system
¦
u = Au is A =

(
0 1

− c/m − b/m

)
. In terms of our

classification of two-dimensional systems, the undamped case corresponds to a center, the
underdamped case to a stable focus, the critically damped case to a stable improper node,
and the overdamped case to a stable node. The reader should verify that the relevant
conditions are met in each case and correlate the phase portraits with the time plots in
Figure 9.10.

This concludes our discussion of the scalar case. Similar considerations apply to
mass/spring chains, and two and three-dimensional structures. The frictionally damped
system has the general form

M
d2u

dt2
+B

du

dt
+Ku = 0, (9.81)

where the mass matrix M > 0 and the matrix of frictional coefficients B > 0 are both
diagonal, positive definite, while the stiffness matrix K = ATC A ≥ 0 is a positive semi-
definite Gram matrix constructed from the reduced incidence matrix A. The mathematical
details in this case are sufficiently complicated that we shall leave their analysis as an
advanced project for the motivated student.

9.6. Forcing and Resonance.

So far, we have allowed our structure to vibrate on its own. It is now time to start
applying external forces — to see what happens when we shake it. In this section, we will
investigate the effects of periodic forcing on both undamped and damped systems. More
general types of forcing can be handled by the variation of parameters method, cf. [24].

The simplest case is that of a single mass connected to a spring without any frictional
damping. We append an external forcing function f(t) to the homogeneous (unforced)
equation (9.55), leading to the inhomogeneous ordinary differential equation

m
d2u

dt2
+ k u = f(t), (9.82)

in which m > 0 is the mass and k > 0 the spring stiffness. We are particularly interested
in the case of periodic forcing

f(t) = α cos η t (9.83)

of frequency η > 0 and amplitude α. To find a particular solution to (9.82), (9.83), we use
the method of undetermined coefficients† which tells us to guess a solution ansatz of the
form

u?(t) = a cos η t+ b sin η t, (9.84)

† One can also use variation of parameters, although the intervening calculations are slightly
more complicated.
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Figure 9.11. Beats in a Periodically Forced Vibration.

where a, b are constant. Substituting this ansatz into the differential equation, we find

m
d2u?
dt2

+ ku? = a(k −mη2) cos η t+ b(k −mη2) sin η t = α cos η t.

We can solve for
a =

α

k −mη2
=

α

m(ω2 − η2)
, b = 0,

provided the denominator is nonzero:

k −mη2 = m(ω2
− η2)6= 0. (9.85)

Here

ω =

√
k

m
(9.86)

refers to the natural, unforced vibrational frequency of the system, while η is the forcing
frequency. Therefore, provided the forcing frequency is not equal to the system’s natural
frequency, η 6= ω, there exists a particular solution

u?(t) = a cos η t =
α

m(ω2 − η2)
cos η t (9.87)

that vibrates at the same frequency as the forcing function.

The general solution to the inhomogeneous system (9.82) is found, as usual, by adding
in an arbitrary solution to the homogeneous equation, (9.56), yielding

u(t) = r cos(ω t− δ) + a cos η t, where a =
α

m(ω2 − η2)
, (9.88)

and where r and δ are determined by the initial conditions. The solution is therefore a
quasiperiodic combination of two periodic motions — the first, vibrating with frequency ω,
represents the internal or natural vibrations of the system, while the second, with frequency
η, represents the response of the system to the periodic forcing. Due to the factor ω2

− η2

in the denominator of (9.88), the closer the forcing frequency is to the natural frequency,
the larger the overall amplitude of the response, and the more likely the spring breaks.
displays the graph of

Suppose we start the mass initially at equilibrium, so the initial conditions are

u(0) = 0,
¦
u(0) = 0. (9.89)

Substituting the solution formula (9.88) and solving for r, δ, we find that

r = −a, δ = 0.
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Thus, the solution to the initial value problem can be written in the form

u(t) = a
(
cos η t− cosω t

)
= 2a sin

(
ω − η

2
t

)
sin

(
ω + η

2
t

)
, (9.90)

using a standard trigonometric identity, cf. Exercise . The factor sin 1
2 (ω + η)t represents

a periodic motion whose frequency is the average of the natural and the forcing frequen-
cies. If the forcing frequency η is close to the natural frequency ω, then the initial factor
2a sin 1

2 (ω − η)t can be viewed as a periodically varying amplitude, whose vibrational fre-
quency 1

2 (ω − η) is much slower. This factor is responsible for the phenomenon of beats,
heard, for example, when two tuning forks of close but not exactly equal pitch vibrate near
each other. The resulting sound periodically waxes and wanes in intensity. Figure 9.11
displays the graph of the particular function

cos 14 t− cos 15.6 t = 2 sin .8 t sin 14.8 t.

The slowly varying amplitude 2 sin .8 t is clearly visible as the envelope of the relatively
rapid vibrations of frequency 14.8.

If we force the system at exactly the natural frequency η = ω, then the trigonometric
ansatz (9.84) does not work. This is because both terms are now solutions to the homo-
geneous equation, and so cannot be combined to form a solution to the inhomogeneous
version. In this situation, there is a simple modification to the ansatz, namely multiplica-
tion by t, that does the trick. Substituting

u?(t) = a t cosω t+ b t sinω t (9.91)

into the differential equation (9.82), we find

m
d2u?
dt2

+ k u? = − 2 amω sinω t+ 2 bmω cosω t = α cosω t,

and so
a = 0, b =

α

2mω
.

Combining the resulting particular solution with the solution to the homogeneous equation
leads to the general solution

u(t) = r cos(ω t− δ) +
α

2mω
t sinω t. (9.92)

Both terms vibrate with frequency ω, but the second has a linearly growing amplitude
that gets larger and larger as t → ∞; see Figure 9.12. The mass will oscillate more and
more wildly until the spring eventually breaks. In this situation, the system is said to be in
resonance, and the increasingly wild oscillations are provoked by forcing it at the resonant
frequency ω.

If we are very close to resonance, the oscillations induced by the particular solution
(9.90) will have extremely large, although not unbounded, amplitude a. The lesson is,
never force a system at or close to its natural frequency (or frequencies) of vibration. The
classic example is the 1940 Tacoma Narrows Bridge disaster, when the vibration in the
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bridge caused by a strong wind was close enough to the bridge’s natural frequency to cause
it to oscillate wildly and collapse! A movie taken at the time is particularly impressive.
A second example is the old practice of British (and subsequently, U.S.) infantry who,
learning from experience, do not march in unison across a bridge so as not to set off a
resonant frequency and cause it to collapse.

If we include frictional effects, then we can partially mollify the wild behavior near
the resonant frequency. The frictionally damped vibrations of a mass on a spring, when
subject to periodic forcing, can be described by the inhomogeneous version

m
d2u

dt2
+ β

du

dt
+ k u = α cos η t (9.93)

of equation (9.74). Let us assume that the friction is sufficiently small as to keep us in the
underdamped regime β2 < 4mk. Since neither summand solves the homogeneous system,
we can use the trigonometric solution ansatz (9.84) to construct the particular solution

u?(t) = a cos(η t− ε) where a =
α√

m2(ω2 − η2)2 + β2 η2
(9.94)

represents the amplitude of the response to the periodic forcing, with ω =
√

k/m contin-
uing to denote the undamped resonant frequency (9.86), while

ε = tan−1 β ω

m(ω2 − η2)
(9.95)

represents a phase lag in the response of the system that is due to the friction.

The general solution is

u(t) = r e−µt cos(ν t− δ) + a cos(η t− ε), (9.96)

where r, δ are determined by the initial conditions, while λ = µ + i ν are the roots of
the characteristic equation, cf. (9.76). The first term — the solution to the homogeneous
equation — is called the transient since it decays exponentially fast to zero. Thus, at
large times, the internal motion of the system that might have been excited by the initial
conditions dies out, and only the particular solution (9.94) incited by the forcing persists.
The amplitude of the persistent response (9.94) is at a maximum at the resonant frequency
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η = ω, where it takes the value amax = α/(β ω). Thus, the smaller the frictional coefficient
β (or the slower the resonant frequency ω) the more likely the breakdown of the system
due to an overly large response.

Friction also induces a phase shift ε in the response of the system to the external
forcing. Speeding up the forcing frequency η increases the overall phase shift, which has
the value of 1

2 π at the resonant frequency η = ω, so the system lags a quarter period
behind the forcing, and reaches a maximum ε = π as η → ∞. Thus, the response of the
system to a high frequency forcing is almost exactly out of phase — the mass is moving
downwards when the force is pulling it upwards, and vice versa!

Electrical Circuits

The Electrical–Mechanical Correspondence will continue to operate in the dynamical
universe. As we learned in Chapter 6, the equations governing the equilibria of simple
electrical circuits and the mechanical systems such as mass/spring chains and structures
are modeled by the same basic mathematical structure. In a similar manner, circuits
with time-varying currents can also be modeled by linear dynamical systems of ordinary
differential equations.

In this section, we analyze the simplest situation of an RLC circuit consisting of a
resistor R, an inductor L and a capacitor C connected together in a loop as illustrated
in Figure 9.13. Let u(t) denote the current in the circuit at time t. As the current passes
through each circuit element, it induces a corresponding voltage, which we denote by vR, vL
and vC . The voltages are prescribed by the basic laws of electrical circuit design.

(a) First, as we know from Section 6.2, the resistance R ≥ 0 in the circuit is the propor-
tionality factor between voltage and current, so vR = R u.

(b) The voltage passing through an inductor is proportional to the rate of change in the
current. Thus, vL = L

¦
u, where L > 0 is the inductance, and the dot indicates

time derivative.

(c) On the other hand, the current passing through a capacitor is proportional to the rate
of change in the voltage, and so u = C

¦
vC , where C > 0 denotes the capacitance.

We integrate this relation to produce the capacitor voltage vC =

∫
u(t)

C
dt.
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The combination of all the induced voltages must equal the externally applied voltage
from, say, a battery. The precise rules governing these voltages are:

The voltage balance law tells us that the total of these individual voltages must equal
any externally applied voltage coming from, say, a battery or generator. Therefore,

vR + vL + vC = vB ,

where vB = f(t) denotes the applied voltage due to a time-varying source. Substituting
the preceding formulae, we deduce that the current u(t) in our circuit satisfies following
linear integro-differential equation

L
du

dt
+R u+

∫
u

C
dt = f(t). (9.97)

We can convert this into a differential equation by differentiating both sides with respect
to t. Assuming, for simplicity, that L,R and C are constant, the result is the linear second
order ordinary differential equation

L
d2u

dt2
+R

du

dt
+
1

C
u = f ′(t). (9.98)

In particular, the homogeneous version, with f ′(t) ≡ 0, governs the current in an RLC

circuit with a constant applied voltage source.

Comparing (9.98) with the equation (9.74) for a mechanically vibrating mass, we
see that the analogy between electrical circuits and mechanical structures developed in
Chapter 6 continues to hold in the dynamical regime. The current corresponds to the
displacement. The inductance plays the role of mass, the resistance corresponds to friction,
while the reciprocal 1/C of capacitance is analogous to the spring stiffness. Thus, all
of our analytical conclusions regarding stability of equilibria, qualitative behavior and
formulae for solutions, etc., that we established in the mechanical context can, suitably
re-interpreted, be immediately applied to electrical circuit theory.

In particular, an RLC circuit is underdamped if R2 < 4L/C, and the current u(t)
oscillates with frequency

ν =

√
1

C L
−

R2

4L2
, (9.99)

while slowly dying off to zero. In the overdamped and critically damped cases R2
≥ 4L/C,

where the resistance of the circuit is large, the current merely decays to zero exponentially
fast and there is no longer any oscillatory behavior in the circuit. Attaching an alternating
current source f(t) = f0 + a sin η t to the circuit will induce resonance in the case of no
resistance if the forcing frequency is equal to the circuits natural internal frequency. Details
are relegated to the exercises.

Forcing and Resonance in Systems

Let us very briefly discuss the effect of periodic forcing on a more complicated system.
For undamped mass/spring chains, structures and more complicated resistanceless LC

circuits, we are led to consider a periodically forced second order system

M
¦¦
u+Ku = cos(ω t) a, (9.100)
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where a is a constant vector representing both a magnitude and a “direction” of the
forcing. Here M > 0 is the diagonal mass matrix (or inductance matrix in a circuit),
while K = ATC A the (semi-)definite stiffness (or conductance) matrix for the system. We
are ignoring friction (resistance) for simplicity. More general periodic and quasiperiodic
forcing terms can be built up, via the general inhomogeneous superposition principle of
Theorem 7.42, as a linear combination of such simple solutions.

To find a particular solution to the system, let us try the trigonometric ansatz

u?(t) = cos(ω t)w (9.101)

where w is a constant vector. Substituting into (9.100) leads to a linear algebraic system

(K − λM)w = a, where λ = ω2. (9.102)

If equation (9.102) has a solution, then our ansatz (9.101) is valid, and we have produced
a particular vibration of the system that has the same frequency as the forcing vibration.
The general solution, then, will be a quasi-periodic combination of this particular solution
coupled with the vibrations at the system’s natural, unforced frequencies. In particular,
if λ = ω2 is not a generalized eigenvalue† of the matrix pair K,M , as in (9.73), then the
coefficient matrix K −λM is nonsingular, and so (9.102) can be solved for any right hand
side a.

The more interesting case is when K − λM is singular, its kernel being equal to the
generalized eigenspace Vλ. In this case, (9.102) will have a solution w if and only if a
lies in the range of K − λM . According to the Fredholm Alternative Theorem 5.51, the
range is the orthogonal complement of the cokernel, which, since the coefficient matrix is
symmetric, is the same as the kernel. Therefore, (9.102) will have a solution if and only
if a is orthogonal to Vλ, i.e., a · v = 0 for every eigenvector v for the eigenvalue λ. Thus,
one can force a system at a natural frequency without inciting resonance provided the
“direction” of forcing, as governed by the vector a, is orthogonal to the natural directions
of motion of the system, as governed by the eigenvectors for that particular frequency.

If this orthogonality constraint is not satisfied, then the periodic solution ansatz
(9.101) does not apply, and we are in a truly resonant situation. Inspired by the scalar
solution, let us try the resonant ansatz

u?(t) = t sin(ωt)y + cos(ωt)w. (9.103)

Since
d2u?

dt2
= −ω2 t sin(ωt)y + cos(ω t) (2ω y − ω2w),

the function (9.103) will be a solution to the differential equation (9.100) provided

(K − λM)y = 0, (K − λM)w = a− 2ωy. (9.104)

The first equation requires that y ∈ Vλ be a generalized eigenvector of the matrix pair
K,M . The Fredholm alternative Theorem 5.51 implies that, since the coefficient matrix

† When M = I the system reduces to the standard eigenvalue equation for K.
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K − λM is symmetric, the second equation will be solvable for w if and only if a− 2ωy
is orthogonal to the eigenspace Vλ = coker(K − λM) = ker(K − λM). Thus, 2ωy must
be the orthogonal projection of a onto Vλ. With this choice of y and w, formula (9.103)
produces a resonant solution to the system.

Summarizing, we have shown that, generically, forcing a system at a resonant fre-
quency induces resonance.

Theorem 9.39. An undamped vibrational system will be periodically forced into

resonance if and only if the forcing f = cos(ω t)a is at a natural frequency of the system
and the direction of forcing a is not orthogonal to the natural direction(s) of motion of the
system for that frequency.

Example 9.40. Consider the peridoically forced system

d2u

dt2
+

(
3 −2
−2 3

)
u =

(
cos t
0

)
.

The eigenvalues of the coefficient matrix are λ1 = 5, λ2 = 1, with corresponding orthogonal

eigenvectors v1 =

(
−1
1

)
,v2 =

(
1
1

)
. The resonant frequencies are ω1 =

√
λ1 =

√
5, ω2 =

√
λ2 = 1, and hence we are forcing at a resonant frequency. To obtain the resonant solution

(9.103), we first note that a = ( 1, 0 )
T
has orthogonal projection p =

(
1
2 , 1

2

)T
onto the

eigenline spanned by v2, and hence y = p/(2ω) =
(

1
4 , 1

4

)T
. We can then solve

(K − I )w =

(
2 −2
−2 2

)
w = a− p =

(
1
2

−
1
2

)
for w =

(
1
4

0

)
.

(We can safely ignore the arbitrary multiple of the eigenvector that can be added to w as
we only need find one particular solution; these will reappear anyway once we assemble
the general solution to the system.) Therefore, the particular resonant solution is

u?(t) = t sin ty + cos tw =

(
1
4 t sin t+ 1

4 cos t
1
4 t sin t

)
.

The general solution to the system is

u(t) =

(
1
4 t sin t+ 1

4 cos t
1
4 t sin t

)
+ r1 cos

(√
5 t− δ1

) (−1
1

)
+ r2 cos(t− δ2)

(
1
1

)
,

where the amplitudes r1, r2 and phase shifts δ1, δ2, are fixed by the initial conditions.

Eventually the resonant term 1
4 t sin t ( 1, 1 )

T
dominates the solution, inducing progressively

larger and larger oscillations.

1/12/04 350 c© 2003 Peter J. Olver



Chapter 8

Eigenvalues and Dynamics

So far, we have concentrated on statics: unchanging equilibrium configurations of
mass/spring chains, circuits, and structures. It is now time to introduce motion into our
universe. In general, a dynamical system refers to the (differential) equations governing the
temporal behavior of some physical system. In a discrete system, the dynamical behavior
of, say, a mass–spring chain, a simple electrical circuit, or the vibrations of a structure, is
governed by a system of ordinary differential equations. Dynamics of continuous media —
fluids, solids and gases — are governed by partial differential equations, and will form the
focus of the later chapters.

The goal of this chapter is to understand the behavior of the simplest class of dy-
namical systems — constant coefficient linear systems of ordinary differential equations.
We begin with a very quick review of the scalar case, whose solutions are exponential
functions. Applying a similar exponential ansatz to the vector version leads us naturally
to the absolutely fundamental notions of eigenvalue and eigenvector for a square matrix.

The next five sections are devoted to the basic properties of eigenvalues and eigenvec-
tors. Most square matrices are complete, meaning that their (complex) eigenvectors form
a basis of the underlying vector space. Complete matrices are diagonalizable, meaning
that they are similar to a diagonal matrix when written in the eigenvector basis; the net
result is that computations become significantly simpler when performed in the eigenvector
basis. The most important class are the symmetric matrices, whose eigenvectors form an
orthogonal basis of Rn; in fact, this is by far the most common way for orthogonal bases
to appear. In Section 8.4 we discuss incomplete matrices, which do not have eigenvector
bases. The general Jordan canonical form, named after the nineteenth century French
mathematician Camille Jordan (and not the Jordan of Gauss–Jordan fame), replaces the
diagonal form in the incomplete cases. In Section 8.6 we discuss the singular values, which
can be viewed as a generalization of eigenvalues to more general rectangular matrices. The
singular value decomposition, abbreviated as SVD, of a matrix governs its condition num-
ber and hence the degree of difficulty of solving associated linear systems. Singular values
have been appearing in an increasingly wide range of significant applications, ranging over
image processing, data clustering, object recognition, semantics and language processing,
and learning theory.

For a first order system of differential equations, the “eigenstates” describe the basic
modes of exponential growth, decay, or periodic behavior. The stability of the equilibrium
solution is almost entirely determined by the eigenvalues of the associated matrix, which
explains their ubiquitous role in physical phenomena. Most of the important phenomena
already appear in the two-dimensional systems, and we devote Section 8.9 to a complete
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description of the possible behaviors.

In a mechanical system without damping or frictional effects, the eigenstates are the
“normal modes” of the system, each periodically vibrating with its associated fundamental
frequency. Linearity then allows us to describe the general motion as a linear superposition
of the individual pure periodic normal modes of vibration. Such a linear combination
will, in general, no longer be periodic, and so the motion can appear to be quite erratic.
Nevertheless, it is merely the superposition of very simple periodic motions — called
“quasi-periodic”, and, unlike a chaotic, nonlinear system, is eminently predictable. When
the system is forced, the result is a superposition of the free quasi-periodic motion and a
particular reaction of the system to the forcing. In particular, periodic forcing will typically
lead to quasiperiodic motion, unless we try to force the system at one of the fundamental
frequencies; this will lead to the phenomenon of resonance, where the vibrations become
larger and larger and the system breaks apart.

Many of the observations in this chapter are fundamental to general dynamical sys-
tems, and, as we shall see, apply equally well to the continuous case, where the physical
system is governed by a linear partial differential equation. For example, the orthogonal
bases of functions appearing in Fourier analysis and solution of partial differential equa-
tions arise as the eigenvectors, or, rather, eigenfunctions of “symmetric” boundary value
problems for linear differential operators. However, before making this leap in abstraction,
we need to properly understand the finite-dimensional matrix version first. Finally, even
when the physics forces us to consider nonlinear systems, the tools from the linear regime
will be essential for navigating these far more treacherous waters.

8.1. First Order Linear Systems of Ordinary Differential Equations.

The simplest dynamical system consists of n linear ordinary differential equations

du1

dt
= a11 u1 + a12 u2 + · · · + a1nun,

du2

dt
= a21 u1 + a22 u2 + · · · + a2nun,

...
...

dun
dt
= an1 u1 + an2 u2 + · · · + annun,

(8.1)

involving n unknown functions u1(t), u2(t), . . . , un(t) depending on a scalar variable t ∈ R,
which we usually view as time. In the constant coefficient case, which is the only one to
be treated in depth, the coefficients aij are assumed to be (real) constants. Such systems
can be written in the compact matrix form

du

dt
= Au, (8.2)

where A is a constant n×nmatrix, and u(t) = (u1(t), . . . , un(t) )
T
a vector-valued function.

We seek not only to develop basic solution techniques for such dynamical systems, but to
also understand their behavior from both a qualitative and quantitative standpoint.
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The Scalar Case

We begin by analyzing the elementary scalar ordinary differential equation

du

dt
= au. (8.3)

in detail. Here a ∈ R is a real constant, while the unknown u(t) is a scalar function.

As you learned in calculus†, the general solution to (8.3) is an exponential function

u(t) = c eat. (8.4)

The integration constant c is uniquely determined by a single initial condition

u(t0) = u0 (8.5)

imposed at an initial time t0. Substituting t = t0 into the solution formula (8.4), we find

u(t0) = c eat0 = u0, and so c = u0 e−at0 .

We conclude that there is a unique solution to the scalar initial value problem (8.3), (8.5),
namely

u(t) = u0 ea(t−t0). (8.6)

Example 8.1. The radioactive decay of an isotope, say Uranium 238, is governed
by the differential equation

du

dt
= − γ u. (8.7)

Here u(t) denotes the amount of the isotope remaining at time t, and the coefficient
γ > 0 governs the decay rate. The solution is given by an exponentially decaying function
u(t) = c e−γ t, where c = u(0) is the initial amount of radioactive material.

The half-life t? is the time it takes for half of a sample to decay, that is when u(t?) =
1
2 u(0). To determine t?, we solve the algebraic equation

e−γ t
?

= 1
2 , so that t? =

log 2

γ
. (8.8)

At each integer multiple nt? of the half-life, exactly half of the isotope has decayed, i.e.,
u(nt?) = 2−n u(0).

Let us make some elementary, but pertinent observations about this simple linear
dynamical system. First of all, since the equation is homogeneous, the zero function
u(t) ≡ 0 (corresponding to c = 0) is a constant solution, known as an equilibrium solution

or fixed point , since it does not depend on t. If the coefficient a > 0 is positive, then the
solutions (8.4) are exponentially growing (in absolute value) as t → +∞. This implies that
the zero equilibrium solution is unstable. The initial condition u(t0) = 0 produces the zero
solution, but if we make a tiny error (either physical, numerical, or mathematical) in the

† See also Section 19.1.
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Figure 8.1. Solutions to
¦
u = a u.

initial data, say u(t0) = ε, then the solution u(t) = ε ea(t−t0) will eventually get very far
away from equilibrium. More generally, any two solutions with very close, but not equal,
initial data, will eventually become arbitrarily far apart: |u1(t)− u2(t) | → ∞ as t → ∞.
One consequence is the inherent difficulty in accurately computing the long time behavior
of the solution, since small numerical errors will eventually have very large effects.

On the other hand, if a < 0, the solutions are exponentially decaying in time. In this
case, the zero solution is stable, since a small error in the initial data will have a negligible
effect on the solution. In fact, the zero solution is globally asymptotically stable. The
phrase “asymptotically stable” implies that solutions that start out near zero eventually
return; more specifically, if u(t0) = ε is small, then u(t) → 0 as t → ∞. The adjective
“globally” implies that this happens no matter how large the initial data is. In fact, for
a linear system, the stability (or instability) of an equilibrium solution is always a global
phenomenon.

The borderline case is when a = 0. Then all the solutions to (8.3) are constant. In this
case, the zero solution is stable — indeed, globally stable — but not asymptotically stable.
The solution to the initial value problem u(t0) = ε is u(t) ≡ ε. Therefore, a solution that
starts out near equilibrium will remain near, but will not asymptotically return. The three
qualitatively different possibilities are illustrated in Figure 8.1.

Analogous stability results hold for linear systems (8.2) in several unknowns, but
to properly formulate them, we must acquire some familiarity with the basic solution
techniques.

The Phase Plane

Many fundamental physical phenomena are modeled by second order ordinary differ-
ential equations. The simplest scalar version is a linear, homogeneous equation

d2u

dt2
+ α

du

dt
+ βu = 0, (8.9)

in which α, β are prescribed constants. In your first course on ordinary differential equa-
tions, you learned how to solve such equations; the basic method is reviewed in Exam-
ple 7.31 and in the following example.
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Example 8.2. Consider the second order equation

d2u

dt2
+

du

dt
− 6u = 0. (8.10)

To solve the equation, we substitute an exponential formula or ansatz† u(t) = eλt into the
equation. The result is the characteristic equation for the unspecified exponent λ:

λ2 + λ− 6 = 0, with solutions λ1 = 2, λ2 = −3.

In view of Theorem 7.33, we conclude that e2 t and e−3 t form a basis for the two-
dimensional solution space to (8.10). The general solution can be written as a linear
combination

u(t) = c1 e2 t + c2 e−3 t,

where c1, c2 are arbitrary constants.

There is a standard trick to convert any second order scalar equation, e.g., (8.9) into
a first order system. One introduces the variables‡

u1 = u, u2 =
¦
u =

du

dt
. (8.11)

In view of (8.9), these variables satisfy

du1

dt
=

du

dt
= u2,

du2

dt
=

d2u

dt2
= −βu− α

du

dt
= −βu1 − αu2.

In this manner, the second order equation is converted into the equivalent first order system

¦
u = Au, where u(t) =

(
u1(t)
u2(t)

)
, A =

(
0 1
−β −α

)
. (8.12)

The (u1, u2) = (u,
¦
u) plane is referred to as the phase plane. The solutions u(t)

to (8.12) parametrize curves in the phase plane — the solution trajectories or orbits.
In particular, the equilibrium solution u(t) ≡ 0 remains fixed at the origin, and so its
trajectory is a single point All other solutions describe genuine curves. The collection of
all possible solution trajectories is called the phase portrait of the system. An important
fact is that, for a (constant coefficient) first order system, the phase plane trajectories never
cross. This striking property, which is also valid for nonlinear systems, is a consequence
of the uniqueness properties of solutions, and will be discussed in detail in Section 19.2.
Thus, the phase portrait consists of a family of non-intersecting curves and equilibrium
points that fill out the entire phase plane. The direction of motion along the trajectory
is indicated by a small arrow. The one feature that is not so easily pictured in the phase
portrait is the speed at which the solution moves along the phase curves — this would
require a more complicated three-dimensional plot in which the third axis indicates time.

† See the footnote on p. 344 for an explanation of this term.

‡ We will often use dots as a shorthand notation for time derivatives.
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Figure 8.2. Phase Plane Trajectories for
¦
u1 = u2,

¦
u2 = 6u1 − u2.

It is not hard to verify that every solution u(t) to the second order equation yields

a solution u(t) =
(
u(t),

¦
u(t)

)T
to the phase plane system (8.12). Vice versa, if u(t) =

(u1(t), u2(t) )
T
is any solution to the system (8.12), then its first component u(t) = u1(t)

defines a solution to the original scalar equation (8.9). We conclude that the scalar equation
and its phase plane version are completely equivalent; solving one will immediately lead
to a solution of the other.

Example 8.3. For the second order equation (8.10), the equivalent phase plane
system is

du

dt
=

(
0 1
6 −1

)
u, or, in full detail,

¦
u1 = u2,
¦
u2 = 6u1 − u2.

(8.13)

Our identification (8.11) of the phase plane variables tells us that the solution to the system
(8.13) is given by

u1(t) = u(t) = c1 e2 t + c2 e−3 t,

u2(t) =
du

dt
= 2c1 e2 t

− 3c2 e−3 t,

and hence

u(t) =

(
c1 e2 t + c2 e−3 t

2c1 e2 t
− 3c2 e−3 t

)
= c1

(
e2 t

2e2 t

)
+ c2

(
e−3 t

−3e−3 t

)
.

A plot of the phase plane trajectories u(t) for various choices of the constants c1, c2 appears
in Figure 8.2. The horizontal axis represents the solution u1 = u(t) whereas the vertical
axis represents is derivative u2 =

¦
u(t). With some practice, one learns to understand the

temporal behavior of the solution from studying its phase plane trajectory. Many more
examples will appear in Section 8.9 below.

8.2. Eigenvalues and Eigenvectors.

Let us now focus on our primary mission — solving a first order linear system of
ordinary differential equations

du

dt
= Au, (8.14)
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with constant coefficient matrix A. Drawing our inspiration from the solution (8.4) in the
scalar case, let us investigate whether the vector system has any solutions of a similar
exponential form

u(t) = eλt v, (8.15)

in which λ is a constant scalar, so eλt is a scalar function of t, while v ∈ Rn is a constant
vector. In other words, the components ui(t) = vi e

λt of our desired solution are assumed
to be constant multiples of the same exponential function. Since v is assumed to be
constant, the derivative of u(t) is easily found:

du

dt
=

d

dt

(
eλt v

)
= λ eλt v.

On the other hand, since eλt is a scalar, it commutes with matrix multiplication, and so

Au = Aeλt v = eλtAv.

Therefore, u(t) will solve the system (8.14) if and only if

λ eλt v = eλtAv,

or, canceling the common scalar factor eλt,

λv = Av.

The result is a system of algebraic equations relating the vector v and the scalar λ.

The preceding analysis motivates the following absolutely fundamental definition.

Definition 8.4. Let A be an n × n matrix. A scalar λ is called an eigenvalue of A

if there is a non-zero vector v6= 0, called an eigenvector , such that

Av = λv. (8.16)

Remark : The odd-looking terms “eigenvalue” and “eigenvector” are hybrid German–
English words. In the original German, they are Eigenwert and Eigenvektor , which can
be fully translated as “proper value” and “proper vector”. For some reason, the half-
translated terms have acquired a certain charm, and are now standard. The alternative
English terms characteristic value and characteristic vector can be found in some (mostly
older) texts. Oddly, the term characteristic equation, to be defined below, is still used.

The requirement that the eigenvector v be nonzero is important, since v = 0 is a
trivial solution to the eigenvalue equation (8.16) for any scalar λ. Moreover, as far as
solving linear ordinary differential equations goes, the zero vector v = 0 only gives the
trivial zero solution u(t) ≡ 0.

The eigenvalue equation (8.16) is a system of linear equations for the entries of the
eigenvector v — provided the eigenvalue λ is specified in advance — but is “mildly”
nonlinear as a combined system for λ and v. Gaussian elimination per se will not solve
the problem, and we are in need of a new idea. Let us begin by rewriting the equation in
the form

(A− λ I )v = 0, (8.17)
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where I is the identity matrix of the correct size†. Now, for given λ, equation (8.17) is a
homogeneous linear system for v, and always has the trivial zero solution v = 0. But we
are specifically seeking a nonzero solution! According to Theorem 1.45, a homogeneous
linear system has a nonzero solution v 6= 0 if and only if its coefficient matrix, which in
this case is A − λ I , is singular. This observation is the key to resolving the eigenvector
equation.

Theorem 8.5. A scalar λ is an eigenvalue of the n × n matrix A if and only if

the matrix A − λ I is singular, i.e., of rank < n. The corresponding eigenvectors are the

nonzero solutions to the eigenvalue equation (A− λ I )v = 0.

We know a number of ways to characterize singular matrices, including the determi-
nantal criterion given in Theorem 1.50. Therefore, the following result is an immediate
corollary of Theorem 8.5.

Proposition 8.6. A scalar λ is an eigenvalue of the matrix A if and only if λ is a

solution to the characteristic equation

det(A− λ I ) = 0. (8.18)

In practice, when finding eigenvalues and eigenvectors by hand, one first solves the
characteristic equation (8.18). Then, for each eigenvalue λ one uses standard linear algebra
methods, i.e., Gaussian elimination, to solve the corresponding linear system (8.17) for the
eigenvector v.

Example 8.7. Consider the 2× 2 matrix

A =

(
3 1
1 3

)
.

We compute the determinant in the characteristic equation using (1.34):

det(A− λ I ) = det

(
3− λ 1
1 3− λ

)
= (3− λ)2 − 1 = λ2

− 6λ+ 8.

The characteristic equation is a quadratic polynomial equation, and can be solved by
factorization:

λ2
− 6λ+ 8 = (λ− 4) (λ− 2) = 0.

We conclude that A has two eigenvalues: λ1 = 4 and λ2 = 2.

For each eigenvalue, the corresponding eigenvectors are found by solving the associated
homogeneous linear system (8.17). For the first eigenvalue, the corresponding eigenvector
equation is

(A− 4 I )v =

(
−1 1
1 −1

)(
x

y

)
=

(
0
0

)
, or

−x+ y = 0,

x− y = 0.

† Note that it is not legal to write (8.17) in the form (A − λ)v = 0 since we do not know how
to subtract a scalar λ from a matrix A. Worse, if you type A − λ in Matlab, it will subtract λ
from all the entries of A, which is not what we are after!
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The general solution is

x = y = a, so v =

(
a

a

)
= a

(
1
1

)
,

where a is an arbitrary scalar. Only the nonzero solutions† count as eigenvectors, and so
the eigenvectors for the eigenvalue λ1 = 4 must have a 6= 0, i.e., they are all nonzero scalar

multiples of the basic eigenvector v1 = ( 1, 1 )
T
.

Remark : In general, if v is an eigenvector of A for the eigenvalue λ, then so is any
nonzero scalar multiple of v. In practice, we only distinguish linearly independent eigen-
vectors. Thus, in this example, we shall say “v1 = ( 1, 1 )

T
is the eigenvector corresponding

to the eigenvalue λ1 = 4”, when we really mean that the eigenvectors for λ1 = 4 consist of
all nonzero scalar multiples of v1.

Similarly, for the second eigenvalue λ2 = 2, the eigenvector equation is

(A− 2 I )v =

(
1 1
1 1

)(
x

y

)
=

(
0
0

)
.

The solution (−a, a )
T
= a (−1, 1 )

T
is the set of scalar multiples of the eigenvector

v2 = (−1, 1 )
T
. Therefore, the complete list of eigenvalues and eigenvectors (up to scalar

multiple) is

λ1 = 4, v1 =

(
1
1

)
, λ2 = 2, v2 =

(
−1
1

)
.

Example 8.8. Consider the 3× 3 matrix

A =



0 −1 −1
1 2 1
1 1 2


 .

Using the formula (1.82) for a 3× 3 determinant, we compute the characteristic equation

0 = det(A− λ I ) = det



−λ −1 −1
1 2− λ 1
1 1 2− λ




= (−λ)(2− λ)2 + (−1) · 1 · 1 + (−1) · 1 · 1−

− 1 · (2− λ)(−1)− 1 · 1 · (−λ)− (2− λ) · 1 · (−1)

= −λ3 + 4λ2
− 5λ+ 2.

† If, at this stage, you end up with a linear system with only the trivial zero solution, you’ve
done something wrong! Either you don’t have an correct eigenvalue — maybe you made a mistake
setting up and/or solving the characteristic equation — or you’ve made an error solving the
homogeneous eigenvector system.
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The resulting cubic polynomial can be factorized:

−λ3 + 4λ2
− 5λ+ 2 = − (λ− 1)2 (λ− 2) = 0.

Most 3× 3 matrices have three different eigenvalues, but this particular one has only two:
λ1 = 1, which is called a double eigenvalue since it is a double root of the characteristic
equation, along with a simple eigenvalue λ2 = 2.

The eigenvector equation (8.17) for the double eigenvalue λ1 = 1 is

(A− I )v =



−1 −1 −1
1 1 1
1 1 1






x

y

z


 =



0
0
0


 .

The general solution to this homogeneous linear system

v =



−a− b

a

b


 = a



−1
1
0


+ b



−1
0
1




depends upon two free variables, y = a, z = b. Any nonzero solution forms a valid
eigenvector for the eigenvalue λ1 = 1, and so the general eigenvector is any non-zero linear

combination of the two “basis eigenvectors” v1 = (−1, 1, 0 )
T
, v̂1 = (−1, 0, 1 )

T
.

On the other hand, the eigenvector equation for the simple eigenvalue λ2 = 2 is

(A− 2 I )v =



−2 −1 −1
1 0 1
1 1 0






x

y

z


 =



0
0
0


 .

The general solution

v =



−a

a

a


 = a



−1
1
1




consists of all scalar multiple of the eigenvector v2 = (−1, 1, 1 )
T
.

In summary, the eigenvalues and (basis) eigenvectors for this matrix are

λ1 = 1, v1 =



−1
1
0


 , v̂1 =



−1
0
1


 ,

λ2 = 2, v2 =



−1
1
1


 .

(8.19)

In general, given an eigenvalue λ, the corresponding eigenspace Vλ ⊂ Rn is the sub-
space spanned by all its eigenvectors. Equivalently, the eigenspace is the kernel

Vλ = ker(A− λ I ). (8.20)

In particular, λ is an eigenvalue if and only if Vλ 6= {0} is a nontrivial subspace, and then
every nonzero element of Vλ is a corresponding eigenvector. The most economical way to
indicate each eigenspace is by writing out a basis, as in (8.19).
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Example 8.9. The characteristic equation of the matrix A =



1 2 1
1 −1 1
2 0 1


 is

0 = det(A− λ I ) = −λ3 + λ2 + 5λ+ 3 = − (λ+ 1)2 (λ− 3).

Again, there is a double eigenvalue λ1 = −1 and a simple eigenvalue λ2 = 3. However, in
this case the matrix

A− λ1 I = A+ I =



2 2 1
1 0 1
2 0 2




has only a one-dimensional kernel, spanned by ( 2,−1,−2 )
T
. Thus, even though λ1 is a

double eigenvalue, it only admits a one-dimensional eigenspace. The list of eigenvalues
and eigenvectors is, in a sense, incomplete:

λ1 = −1, v1 =



2
−1
−2


 , λ2 = 3, v2 =



2
1
2


 .

Example 8.10. Finally, consider the matrix A =



1 2 0
0 1 −2
2 2 −1


. The characteristic

equation is

0 = det(A− λ I ) = −λ3 + λ2
− 3λ− 5 = − (λ+ 1) (λ2

− 2λ+ 5).

The linear factor yields the eigenvalue −1. The quadratic factor leads to two complex
roots, 1 + 2 i and 1− 2 i , which can be obtained via the quadratic formula. Hence A has
one real and two complex eigenvalues:

λ1 = −1, λ2 = 1 + 2 i , λ3 = 1− 2 i .

Complex eigenvalues are as important as real eigenvalues, and we need to be able to handle
them too. To find the corresponding eigenvectors, which will also be complex, we need
to solve the usual eigenvalue equation (8.17), which is now a complex homogeneous linear
system. For example, the eigenvector(s) for λ2 = 1 + 2 i are found by solving

(A− (1 + 2 i ) I )v =



−2 i 2 0
0 −2 i −2
2 2 −2− 2 i






x

y

z


 =



0
0
0


 .

This linear system can be solved by Gaussian elimination (with complex pivots). A simpler
approach is to work directly: the first equation −2 ix+2y = 0 tells us that y = ix, while
the second equation −2 i y − 2z = 0 says z = − i y = x. If we trust our calculations
so far, we do not need to solve the final equation 2x + 2y + (−2 − 2 i )z = 0, since we
know that the coefficient matrix is singular and hence it must be a consequence of the first
two equations. (However, it does serve as a useful check on our work.) So, the general
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solution v = (x, ix, x )
T
is an arbitrary constant multiple of the complex eigenvector

v2 = ( 1, i , 1 )
T
.

Summarizing, the matrix under consideration has three complex eigenvalues and three
corresponding eigenvectors, each unique up to (complex) scalar multiple:

λ1 = −1, λ2 = 1 + 2 i , λ3 = 1− 2 i ,

v1 =



−1
1
1


 , v2 =



1
i
1


 , v3 =



1
− i
1


 .

Note that the third complex eigenvalue is the complex conjugate of the second, and the
eigenvectors are similarly related. This is indicative of a general fact for real matrices:

Proposition 8.11. If A is a real matrix with a complex eigenvalue λ = µ+ i ν and
corresponding complex eigenvector v = x+ iy, then the complex conjugate λ = µ− i ν is
also an eigenvalue with complex conjugate eigenvector v = x− iy.

Proof : First take complex conjugates of the eigenvalue equation (8.16)

A v = Av = λv = λ v.

Using the fact that a real matrix is unaffected by conjugation, soA = A, we conclude

Av = λ v, (8.21)

which is the eigenvalue equation for the eigenvalue λ and eigenvector v. Q.E.D.

As a consequence, when dealing with real matrices, one only needs to compute the
eigenvectors for one of each complex conjugate pair of eigenvalues. This observation ef-
fectively halves the amount of work in the unfortunate event that we are confronted with
complex eigenvalues.

Remark : The reader may recall that we said one should never use determinants in
practical computations. So why have we reverted to using determinants to find eigenval-
ues? The truthful answer is that the practical computation of eigenvalues and eigenvectors
never resorts to the characteristic equation! There are just too many numerical pitfalls
and inefficiencies in (a) computing the determinant, then (b) solving the resulting poly-
nomial equation, and finally (c) solving each of the resulting linear eigenvector systems.
Nevertheless, the characteristic equation does give us important theoretical insight into
the structure of the eigenvalues of a matrix, and can be used on small, e.g., 2×2 and 3×3,
matrices. Numerical algorithms for computing eigenvalues and eigenvectors are based on
completely different ideas, and will be discussed in Section 9.6.

Basic Properties of Eigenvalues

If A is an n× n matrix, then its characteristic polynomial is

pA(λ) = det(A− λ I ) = cn λn + cn−1 λn−1 + · · · + c1 λ+ c0. (8.22)
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The fact that pA(λ) is a polynomial of degree n is a consequence of the general determi-
nantal formula (1.81). Indeed, every term is plus or minus a product of matrix entries
containing one from each row and one from each column. The term corresponding to the
identity permutation is obtained by multiplying the the diagonal entries together, which,
in this case, is

(a11−λ) (a22−λ) · · · (ann−λ) = (−1)nλn+(−1)n−1
(
a11 + a22 + · · · + ann

)
λn−1+ · · · ,

(8.23)
All of the other terms have at most n− 2 diagonal factors aii − λ, and so are polynomials
of degree ≤ n − 2 in λ. Thus, (8.23) is the only summand containing the monomials λn

and λn−1, and so their respective coefficients are

cn = (−1)
n, cn−1 = (−1)

n−1(a11 + a22 + · · · + ann) = (−1)
n−1 trA, (8.24)

where trA, the sum of its diagonal entries, is called the trace of the matrix A. The other
coefficients cn−2, . . . , c1 in (8.22) are more complicated combinations of the entries of A.
However, setting λ = 0 implies pA(0) = detA = c0, and hence the constant term equals the

determinant of the matrix. In particular, if A =

(
a b

c d

)
is a 2×2 matrix, its characteristic

polynomial has the form

pA(λ) = det(A− λ I ) = det

(
a− λ b

c d− λ

)

= λ2
− (a+ d)λ+ (ad− bc) = λ2

− (trA)λ+ (detA).

(8.25)

As a result of these considerations, the characteristic equation of an n × n matrix A

is a polynomial equation of degree n, namely pA(λ) = 0. According to the Fundamental
Theorem of Algebra (see Corollary 15.63) every (complex) polynomial of degree n can be
completely factored:

pA(λ) = (−1)
n(λ− λ1)(λ− λ2) · · · (λ− λn). (8.26)

The complex numbers λ1, . . . , λn, some of which may be repeated, are the roots of the
characteristic equation pA(λ) = 0, and hence the eigenvalues of the matrix A. Therefore,
we immediately conclude:

Theorem 8.12. An n×n matrix A has at least one and at most n distinct complex

eigenvalues.

Most n×n matrices — meaning those for which the characteristic polynomial factors
into n distinct factors — have exactly n complex eigenvalues. More generally, an eigenvalue
λj is said to have multiplicity m if the factor (λ − λj) appears exactly m times in the
factorization (8.26) of the characteristic polynomial. An eigenvalue is simple if it has
multiplicity 1. In particular, A has n distinct eigenvalues if and only if all its eigenvalues are
simple. In all cases, when the eigenvalues are counted in accordance with their multiplicity,
every n× n matrix has a total of n possibly repeated eigenvalues.

An example of a matrix with just one eigenvalue, of multiplicity n, is the n×n identity
matrix I , whose only eigenvalue is λ = 1. In this case, every nonzero vector in Rn is an
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eigenvector of the identity matrix, and so the eigenspace is all of Rn. At the other extreme,
the “bidiagonal” Jordan block matrix

Jλ =




λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ




, (8.27)

also has only one eigenvalue, λ, again of multiplicity n. But in this case, Jλ has only
one eigenvector (up to scalar multiple), which is the standard basis vector en, and so its
eigenspace is one-dimensional.

Remark : If λ is a complex eigenvalue of multiplicity k for the real matrix A, then its
complex conjugate λ also has multiplicity k. This is because complex conjugate roots of a
real polynomial necessarily appear with identical multiplicities.

Remark : If n ≤ 4, then one can, in fact, write down an explicit formula for the
solution to a polynomial equation of degree n, and hence explicit (but not particularly
helpful) formulae for the eigenvalues of general 2 × 2, 3 × 3 and 4 × 4 matrices. As soon
as n ≥ 5, there is no explicit formula (at least in terms of radicals), and so one must
usually resort to numerical approximations. This remarkable and deep algebraic result
was proved by the young Norwegian mathematician Nils Hendrik Abel in the early part of
the nineteenth century, [53].

If we explicitly multiply out the factored product (8.26) and equate the result to the
characteristic polynomial (8.22), we find that its coefficients c0, c1, . . . cn−1 can be written
as certain polynomials of the roots, known as the elementary symmetric polynomials. The
first and last are of particular importance:

c0 = λ1 λ2 · · · λn, cn−1 = (−1)
n−1 (λ1 + λ2 + · · · + λn). (8.28)

Comparison with our previous formulae for the coefficients c0 and cn−1 leads us to the
following useful result.

Proposition 8.13. The sum of the eigenvalues of a matrix equals its trace:

λ1 + λ2 + · · · + λn = trA = a11 + a22 + · · · + ann. (8.29)

The product of the eigenvalues equals its determinant:

λ1 λ2 · · · λn = detA. (8.30)

Remark : For repeated eigenvalues, one must add or multiply them in the formulae
(8.29), (8.30) according to their multiplicity.
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Example 8.14. The matrix A =



1 2 1
1 −1 1
2 0 1


 considered in Example 8.9 has trace

and determinant

trA = 1, detA = 3.

These fix, respectively, the coefficient of λ2 and the constant term in the characteristic
equation. This matrix has two distinct eigenvalues, −1, which is a double eigenvalue, and
3, which is simple. For this particular matrix, formulae (8.29), (8.30) become

1 = trA = (−1) + (−1) + 3, 3 = detA = (−1)(−1) 3.

8.3. Eigenvector Bases and Diagonalization.

Most of the vector space bases that play a distinguished role in applications consist
of eigenvectors of a particular matrix. In this section, we show that the eigenvectors for
any “complete” matrix automatically form a basis for Rn or, in the complex case, Cn. In
the following subsection, we use the eigenvector basis to rewrite the linear transformation
determined by the matrix in a simple diagonal form.

The first task is to show that eigenvectors corresponding to distinct eigenvalues are
automatically linearly independent.

Lemma 8.15. If λ1, . . . , λk are distinct eigenvalues of the same matrix A, then the

corresponding eigenvectors v1, . . . ,vk are linearly independent.

Proof : We use induction on the number of eigenvalues. The case k = 1 is immediate
since an eigenvector cannot be zero. Assume that we know the result for k−1 eigenvalues.
Suppose we have a linear combination

c1v1 + · · · + ck−1vk−1 + ckvk = 0 (8.31)

which vanishes. Let us multiply this equation by the matrix A:

A
(
c1v1 + · · · + ck−1vk−1 + ckvk

)
= c1 Av1 + · · · + ck−1 Avk−1 + ckAvk

= c1 λ1v1 + · · · + ck−1 λk−1vk−1 + ck λkvk = 0.

On the other hand, if we just multiply the original equation by λk, we also have

c1 λkv1 + · · · + ck−1 λkvk−1 + ck λkvk = 0.

Subtracting this from the previous equation, the final terms cancel and we are left with
the equation

c1(λ1 − λk)v1 + · · · + ck−1(λk−1 − λk)vk−1 = 0.

This is a vanishing linear combination of the first k − 1 eigenvectors, and so, by our
induction hypothesis, can only happen if all the coefficients are zero:

c1(λ1 − λk) = 0, . . . ck−1(λk−1 − λk) = 0.
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The eigenvalues were assumed to be distinct, so λj 6= λk when j 6= k; consequently,
c1 = · · · = ck−1 = 0. Substituting these values back into (8.31), we find ckvk = 0, and
so ck = 0 also, since the eigenvector vk 6= 0. Thus we have proved that (8.31) holds if
and only if c1 = · · · = ck = 0, which implies the linear independence of the eigenvectors
v1, . . . ,vk. This completes the induction step. Q.E.D.

The most important consequence of this result is stated in the corollary.

Theorem 8.16. If the n×n real matrix A has n distinct real eigenvalues λ1, . . . , λn,

then the corresponding real eigenvectors v1, . . . ,vn form a basis of Rn. If A (which may
now be either a real or a complex matrix) has n distinct complex eigenvalues, then its

eigenvectors form a basis of Cn.

If a matrix has multiple eigenvalues, then there may or may not be an eigenvector
basis of Rn (or Cn). The matrix in Example 8.8 has an eigenvector basis, whereas the
matrix in Example 8.9 does not. In general, it can be proved that the dimension of the
eigenspace is less than or equal to the multiplicity of the eigenvalue. In particular, a simple
eigenvalue has a one-dimensional eigenspace, and hence, up to scalar multiple, only one
associated eigenvector.

Definition 8.17. An eigenvalue λ of a matrix A is called complete if its eigenspace
Vλ = ker(A− λ I ) has the same dimension as its multiplicity. The matrix A is complete if
all its eigenvalues are.

Remark : The multiplicity of an eigenvalue λi is sometimes referred to as its algebraic
multiplicity . The dimension of the eigenspace Vλ is called the geometric multiplicity , and
so completeness requires that the two multiplicities are equal.

Note that a simple eigenvalue is automatically complete, and so only multiple eigen-
values can cause the incompleteness of a matrix.

Theorem 8.18. An n × n real or complex matrix A is complete if and only if its

eigenvectors span Cn. In particular, any n × n matrix that has n distinct eigenvalues is

complete.

A n × n matrix is incomplete if it does not have n linearly independent complex
eigenvectors. Most matrices, including those with all simple eigenvalues, are complete.
Incomplete matrices are more tricky to deal with, and we relegate most of the messy
details to Section 8.4.

Remark : We already noted that complex eigenvectors of a real matrix always appear
in conjugate pairs: v = x ± iy. It can be shown that the real and imaginary parts of
these vectors form a real basis for Rn. (See Exercise for the underlying principle.) For

instance, in Example 8.10, the complex eigenvectors are



1
0
1


 ± i



0
1
0


. The vectors

9/5/03 282 c© 2003 Peter J. Olver





−1
1
1


,



1
0
1


,



0
1
0


, consisting of the real eigenvector and the real and imaginary

parts of the complex eigenvectors, form a basis for R3.

Diagonalization

Every n × n matrix A represents a linear transformation L:Rn
→ Rn, namely the

function L[u ] = Au given by matrix multiplication. As we learned in Section 7.2, the
matrix representing a linear transformation depends upon the choice basis of Rn. Some
bases give a particular simple matrix representation.

For example, the linear transformation L

(
x

y

)
=

(
x− y

2x− 4y

)
studied in Example 7.18

is represented by the matrix A =

(
1 −1
2 4

)
— when expressed in terms of the standard

basis of R2. In terms of the alternative basis v1 =

(
1
−1

)
, v2 =

(
1
−2

)
, the linear

transformation is represented by the diagonal matrix

(
2 0
0 3

)
. This follows from the

action of the linear transformation on the new basis: Av1 = 2v1 and Av2 = 3v2. Now
we can understand the reason for this simplification. The new basis consists of the two

eigenvectors of the matrix A. This observation is indicative of a general fact: representing
a linear transformation in terms of an eigenvector basis has the effect of replacing its
matrix representative by a simple diagonal form. The effect is to diagonalize the original
coefficient matrix.

According to (7.22), if v1, . . . ,vn form a basis of Rn, then the corresponding matrix
representative of the linear transformation L[v ] = Av is given by the similar matrix

B = S−1AS, where S = (v1 v2 . . . vn )
T
is the matrix whose columns are the basis

vectors. In the preceding example, S =

(
1 1
−1 −2

)
, and we find that S−1AS =

(
2 0
0 3

)

is a diagonal matrix.

Definition 8.19. A square matrix A is called diagonalizable if there exists a nonsin-
gular matrix S and a diagonal matrix Λ = diag (λ1, . . . , λn) such that

S−1AS = Λ. (8.32)

A diagonal matrix represents a linear transformation that simultaneously stretches†

in the direction of the basis vectors. Thus, every diagonalizable matrix represents a ele-
mentary combination of (complex) stretching transformations.

To understand the diagonalization equation (8.32), we rewrite it in the equivalent
form

AS = S Λ. (8.33)

† A negative diagonal entry represents the combination of a reflection and stretch. Complex
entries correspond to a complex stretching transformation. See Section 7.2 for details.
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Using the basic property (1.11) of matrix multiplication, one easily sees that the kth column
of this n× n matrix equation is given by

Avk = λkvk.

Therefore, the columns of S are necessarily eigenvectors, and the entries of the diagonal
matrix Λ are the corresponding eigenvalues! And, as a result, a diagonalizable matrix
A must have n linearly independent eigenvectors, i.e., an eigenvector basis, to form the
columns of the diagonalizing matrix S. Since the diagonal form Λ contains the eigenvalues
along its diagonal, it is uniquely determined up to a permutation of its entries.

Now, as we know, not every matrix has an eigenvector basis. Moreover, even when
it exists, the eigenvector basis may be complex, in which case S is a complex matrix,
and the entries of the diagonal matrix Λ are the complex eigenvalues. Thus, we should
distinguish between matrices that are diagonalizable over the complex numbers and the
more restrictive class of matrices which can be diagonalized by a real matrix S.

We have now proved the following important result.

Theorem 8.20. A matrix is complex diagonalizable if and only if it is complete. A

matrix is real diagonalizable if and only if it is complete and has all real eigenvalues.

Remark : Many authors use the term “diagonalizable” for what we have called com-
plete matrices.

Example 8.21. The 3 × 3 matrix A =



0 −1 −1
1 2 1
1 1 2


 considered in Example 8.7

has eigenvector basis

v1 =



−1
1
0


 , v2 =



−1
0
1


 , v3 =



−1
1
1


 .

We assemble these to form the eigenvector matrix

S =



−1 −1 −1
1 0 1
0 1 1


 and so S−1 =



−1 0 −1
−1 −1 0
1 1 1


 .

The diagonalization equation (8.32) becomes

S−1AS =



−1 0 −1
−1 −1 0
1 1 1





0 −1 −1
1 2 1
1 1 2





−1 −1 −1
1 0 1
0 1 1


 =



1 0 0
0 1 0
0 0 2


 = Λ,

with the eigenvalues of A appearing on the diagonal of Λ, in the same order as the eigen-
vectors.
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Remark : If a matrix is not complete, then it cannot be diagonalized. Incomplete
matrices represent generalized shearing transformations, and will be the subject of the

following subsection. A simple example is a matrix of the form

(
1 c

0 1

)
for c 6= 0, which

represents a shear in the direction of the x axis.

8.4. Incomplete Matrices and the Jordan Canonical Form.

Unfortunately, not all matrices are complete. Matrices without any eigenvector basis
are considerably less convenient to deal with. However, as they occasionally appear in
applications, it is worth learning how to handle them. The key is to supplement the
eigenvectors in order to obtain a basis in which the matrix assumes a simple, but now
non-diagonal form.

Throughout this section, A will be an n × n matrix, with either real or complex
entries. We let λ1, . . . , λk denote the distinct eigenvalues of A. We recall that Theorem 8.12
guarantees that every matrix has at least one (complex) eigenvalue, so k ≥ 1.

Definition 8.22. A Jordan chain of length j is a sequence of non-zero vectors
w1, . . . , wj ∈ Cm that satisfies

Aw1 = λw1, Awi = λwi +wi−1, i = 2, . . . , j, (8.34)

where λ is an eigenvalue of A.

Note that the initial vector w1 in a Jordan chain is a genuine eigenvector. The others,
w2, . . . ,wj , are generalized eigenvectors, in accordance with the following definition.

Definition 8.23. A nonzero vector w6= 0 that satisfies

(A− λ I )kw = 0 (8.35)

for some k > 0 and λ ∈ C is called a generalized eigenvector of the matrix A.

Note that every ordinary eigenvector is automatically a generalized eigenvector, since
we can just take k = 1 in (8.35), but the converse is not necessarily valid. We shall call the
minimal value of k for which (8.35) holds the index of the generalized eigenvector. Thus,
an ordinary eigenvector is a generalized eigenvector of index 1. Since A−λ I is nonsingular
whenever λ is not an eigenvalue of A, its kth power (A−λ I )k is also nonsingular. Therefore,
generalized eigenvectors can only exist when λ is an ordinary eigenvalue of A — there are
no “generalized eigenvalues”.

Lemma 8.24. The ith vector wi in a Jordan chain (8.34) is a generalized eigenvector
of index i.

Proof : By definition, (A − λ I )w1 = 0, and so w1 is an eigenvector. Next, we have
(A − λ I )w2 = w1, and so (A − λ I )2w2 = (A − λ I )w1 = 0. Thus, w2 a generalized
eigenvector of index 2. A simple induction proves that (A− λ I )iwi = 0. Q.E.D.
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Example 8.25. Consider the 3 × 3 Jordan block A =



2 1 0
0 2 1
0 0 2


. The only

eigenvalue is λ = 2, and A− 2 I =



0 1 0
0 0 1
0 0 0


. We claim that the standard basis vectors

e1, e2 and e3 form a Jordan chain. Indeed, Ae1 = 2e1, and hence e1 ∈ ker(A − 2 I ) is
a genuine eigenvector. Furthermore, Ae2 = 2e2 + e1, and Ae3 = 2e3 + e2, as you can
easily check. Thus, e1, e2 and e3 satisfy the Jordan chain equations for the eigenvalue

λ = 2. Note that e2 lies in the kernel of (A− 2 I )
2 =



0 0 1
0 0 0
0 0 0


, and so is a generalized

eigenvector of index 2. Indeed, every vector of the form w = ae1 + be2 with b 6= 0 is a
generalized eigenvector of index 2. (When b = 0, a 6= 0, the vector w = ae1 is an ordinary
eigenvector of index 1.) Finally, (A− 2 I )3 = O, and so every vector v ∈ R3, including e3,
is a generalized eigenvector of index 3 (or less).

Given a matrix A, a basis of Rn or Cn is called a Jordan basis if it consists of one
or more nonoverlapping Jordan chains. Thus, for the Jordan matrix in Example 8.25, the
standard basis e1, e2, e3 is, in fact, a Jordan basis. An eigenvector basis qualifies as a
Jordan basis, since each eigenvector belongs to a Jordan chain of length 1. Jordan bases
are the generalization of eigenvector bases for incomplete matrices that we are after.

Theorem 8.26. Every n × n matrix admits a Jordan basis of Cn. The first ele-

ments of the Jordan chains form a maximal system of linearly independent eigenvectors.

Moreover, the number of generalized eigenvectors in the Jordan basis associated with an

eigenvalue λ is the same as its multiplicity.

Example 8.27. Consider the matrix A =




−1 0 1 0 0
−2 2 −4 1 1
−1 0 −3 0 0
−4 −1 3 1 0
4 0 2 −1 0


. With some

work, its characteristic equation is found to be

pA(λ) = det(A− λ I ) = λ5 + λ4
− 5λ3

− λ2 + 8λ− 4 = (λ− 1)3(λ+ 2)2 = 0,

and hence A has two eigenvalues: 1, which is a triple eigenvalue, and −2, which is double.
Solving the associated homogeneous system (A − λ I )v = 0, we discover that, up to

constant multiple, there are only two eigenvectors: v1 = ( 0, 0, 0,−1, 1 )
T
for λ1 = 1 and,

anticipating our final numbering, v4 = (−1, 1, 1,−2, 0 )
T
for λ2 = −2. Thus, A is far from

complete.

To construct a Jordan basis, we first note that since A has 2 linearly independent
eigenvectors, the Jordan basis will contain two Jordan chains; the one associated with the
triple eigenvalue λ1 = 1 has length 3, while λ2 = −2 admits a length 2 Jordan chain. To
construct the former, we need to first solve the system (A − I )w = v1. Note that the
coefficient matrix is singular — it must be since 1 is an eigenvalue — and the general
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solution is w = v2 + tv1 where v2 = ( 0, 1, 0, 0,−1 )
T
, and t is the free variable. The

appearance of an arbitrary multiple of the eigenvector v1 in the solution is not unexpected;
indeed, the kernel of A− I is the eigenspace for λ1 = 1. We can choose any solution, e.g.,
v2 as the second element in the Jordan chain. To find the last element of the chain, we

solve (A − I )w = v2 to find w = v3 + tv1 where v3 = ( 0, 0, 0, 1, 0 )
T
can be used as the

Jordan chain element. Similarly, to construct the Jordan chain for the second eigenvalue,
we solve (A+2 I )w = v4 and find w = v5+ tv4 where v5 = (−1, 0, 0,−2, 1 )

T
. Thus, the

desired Jordan basis is

v1 =




0
0
0
−1
1


, v2 =




0
1
0
0
−1


, v3 =




0
0
0
1
0


, v4 =




−1
1
1
−2
0


, v5 =




−1
0
0
−2
1


,

with Av1 = v1, Av2 = v1 + v2, Av3 = v2 + v2, Av4 = −2v4, Av5 = v4 − 2v5.

To prove Theorem 8.26, we begin with a simple lemma.

Lemma 8.28. If v1, . . . ,vn forms a Jordan basis for the matrix A, it also forms a

Jordan basis for B = A− c I , for any scalar c.

Proof : We note that the eigenvalues of B are of the form λ−c, where λ is an eigenvalue
of A. Moreover, given a Jordan chain w1, . . . ,wj of A, we have

Bw1 = (λ− c)w1, Bwi = (λ− c)wi +wi−1, i = 2, . . . , j,

so w1, . . . ,wj is also a Jordan chain for B corresponding to the eigenvalue λ− c. Q.E.D.

The proof of Theorem 8.26 will be done by induction on the size n of the matrix. The
case n = 1 is trivial, since any basis of C is a Jordan basis for a 1 × 1 matrix A = (a).
To perform the induction step, we assume that the result is valid for all matrices of size
≤ n − 1. Let A be an n × n matrix. According to Theorem 8.12, A has at least one
complex eigenvalue λ. Let B = A− λ I . Since λ is an eigenvalue of A, we know that 0 is
an eigenvalue of B. This means that kerB 6= {0}, and so r = rankB < n. Moreover, by
Lemma 8.28, any Jordan basis of B is also a Jordan basis for A, and so we can concentrate
all our attention on the singular matrix B from now on.

According to Exercise , W = rngB ⊂ Cn is an invariant subspace, i.e., Bw ∈ W

whenever w ∈ W . Moreover, since B is singular, its range has dimension dimW = r =
rankB < n, cf. Theorem 2.47. Thus, by fixing a basis of W , we can realize the restriction
B:W → W as multiplication by an r×r matrix. The fact that r < n allows us to invoke the
induction hypothesis, and deduce the existence of a Jordan basis w1, . . . ,wr ∈ W ⊂ Cn

for B restricted to W . Our goal is to complete this collection of vectors to a full Jordan
basis for B on Cn.

To this end, we append two additional kinds of vectors. Suppose that the Jordan
basis of W contains k null Jordan chains associated with the zero eigenvalue. Each null
Jordan chain consists of vectors w1, . . . ,wj ∈W satisfying

Bw1 = 0, Bw2 = w1, . . . Bwj = wj−1. (8.36)
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The number of null Jordan chains is equal to the number of linearly independent null
eigenvectors of B in W = rngB, that is k = dim(kerB ∩ rngB). To each null Jordan
chain w1, . . . ,wj ∈ W , we append a vector wj+1 ∈ Cn such that

Bwj+1 = wj ; (8.37)

the existence of wj+1 comes from our condition that wj ∈ rngB. Appending (8.37) to
(8.36), we deduce that w1, . . . ,wj+1 ∈ Cn forms a null Jordan chain, of length j+1, for B.
The resulting collection contains r + k vectors in Cn arranged in nonoverlapping Jordan
chains. To complete to a basis, we include n − r − k additional linearly independent
null vectors z1, . . . , zn−r−k ∈ kerB \ rngB that lie outside its range. Since B zj = 0,
each zj forms a null Jordan chain of length 1. We claim that the complete collection
consisting of the non-null Jordan chains, the k extended null chains, and the additional
null vectors z1, . . . , zn−r−k forms the desired Jordan basis. By construction, it consists
of nonoverlapping Jordan chains. The only remaining technical issue is proving that the
vectors are linear independent, which is left as a challenge for the reader in Exercise .

Just as an eigenvector basis diagonalizes a complete matrix, a Jordan basis provides
a particularly simple form for an incomplete matrix, known as the Jordan canonical form.

Definition 8.29. A n× n matrix of the form†

Jλ,n =




λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ




, (8.38)

in which λ is a real or complex number, is known as a Jordan block .

In particular, a 1 × 1 Jordan block is merely a scalar Jλ,1 = λ. Since every matrix
has at least one (complex) eigenvector the Jordan block matrices have the least possible
number of eigenvectors.

Lemma 8.30. The n × n Jordan block matrix Jλ,n has a single eigenvalue, λ, and

a single independent eigenvector, e1. The standard basis vectors e1, . . . , en form a Jordan

chain for Jλ,n.

Definition 8.31. A Jordan matrix is a square matrix of block diagonal form

J = diag (Jλ1,n1
, Jλ2,n2

, . . . , Jλk,nk

) =




Jλ1,n1

Jλ2,n2

. . .

Jλk,nk




, (8.39)

† All non-displayed entries are zero.
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in which one or more Jordan blocks, not necessarily of the same size, lie along the diagonal,
while all off-diagonal blocks are zero.

Note that the only non-zero entries in a Jordan matrix are those on the diagonal,
which can have any complex value, and those on the superdiagonal, which are either 1 or
0. The positions of the superdiagonal 1’s uniquely prescribes the Jordan blocks.

For example, the 6× 6 matrices




1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1




,




−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 −1 1
0 0 0 0 0 −1




,




0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 2 1
0 0 0 0 0 2




,

are all Jordan matrices; the first is a diagonal matrix, consisting of 6 distinct 1× 1 Jordan
blocks; the second has a 4× 4 Jordan block followed by a 2× 2 block that happen to have
the same diagonal entries; the last has three 2× 2 Jordan blocks.

As a simple corollary of Lemma 8.30 combined with the block structure, as outlined
in Exercise , we obtain a complete classification of the eigenvectors and eigenvalues of a
Jordan matrix.

Lemma 8.32. The Jordan matrix (8.39) has eigenvalues λ1, . . . , λk. The standard

basis vectors e1, . . . , en form a Jordan basis; the Jordan chains are labeled by the Jordan

blocks.

Thus, in the preceding examples of Jordan matrices, the first has three double eigenval-
ues, 1, 2, 3, and corresponding linearly independent eigenvectors e1, e6; e2, e5; e3, e4, each
of which belongs to a Jordan chain of length 1. The second matrix has only one eigenvalue,
−1, but two Jordan chains, namely e1, e2, e3, e4 and e5, e6. The last has eigenvalues 0, 1, 2
and three Jordan chains, namely e1, e2, and e3, e4, and e5, e6. In particular, the only
complete Jordan matrices are the diagonal matrices, all of whose Jordan blocks are of size
1× 1.

Theorem 8.33. LetA be an n×n real or complex matrix. Let S = (w1 w2 . . . wn )
T

be the matrix whose columns are a Jordan basis of A. Then S places A in Jordan canonical
form

S−1AS = J = diag (Jλ1,n1
, Jλ2,n2

, . . . , Jλk,nk

). (8.40)

The diagonal entries of the resulting Jordan matrix J are the eigenvalues of A. The Jordan

canonical form of A is uniquely determined up to a permutation of the diagonal Jordan

blocks. In particular, A is complete (diagonalizable) if and only if every Jordan block is
of size 1× 1 or, equivalently, all Jordan chains are of length 1.

For instance, the matrix A =




−1 0 1 0 0
−2 2 −4 1 1
−1 0 −3 0 0
−4 −1 3 1 0
4 0 2 −1 0


 considered in Example 8.27
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has the following Jordan basis matrix and Jordan canonical form

S =




0 0 0 −1 −1
0 1 0 1 0
0 0 0 1 0
−1 0 1 −2 −2
1 −1 0 0 1


, J = S−1AS =




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 −2 1
0 0 0 0 −2


.

8.5. Eigenvalues of Symmetric Matrices.

Fortunately, the matrices that arise in most applications possess some additional struc-
ture that ameliorates the calculation of their eigenvalues and eigenvectors. The most
prevalent are the real diagonalizable matrices, i.e., complete matrices that have only real
eigenvalues and hence a real eigenvector basis. The most important class of matrices with
this property are the symmetric, including the positive definite, matrices. In fact, not only
are the eigenvalues of a symmetric matrix necessarily real, the eigenvectors always form an
orthogonal basis. In such situations, we can tap into the dramatic simplification and power
of orthogonal bases as developed in Chapter 5. In fact, this is by far the most common
way for orthogonal bases to appear — as the eigenvector bases of a symmetric matrices.

Theorem 8.34. If A = AT be a real symmetric n× n matrix, Then

(a) All the eigenvalues of A are real.

(b) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

(c) There is an orthonormal basis of Rn consisting of n eigenvectors of A.

In particular, all symmetric matrices are complete.

Remark : Orthogonality is with respect to the standard dot product on Rn. As we
noted in Section 7.5, the transpose operation is intimately connected with the dot product.
Introducing a more general inner product on Rn leads to the concept of a self-adjoint linear
transformation, and an analogous result holds in this more general context; see Exercise
.

Example 8.35. The 2 × 2 matrix A =

(
3 1
1 3

)
considered in Example 8.7 is sym-

metric, and so has real eigenvalues λ1 = 4 and λ2 = 2. You can easily check that the

corresponding eigenvectors v1 = ( 1 1 )
T
, v2 = (−1 1 )

T
are orthogonal: v1 · v2 = 0,

and hence form on orthogonal basis of R2. An orthonormal basis is provided by the unit
eigenvectors

u1 =

(
1√
2

1√
2

)
, u2 =

(
−

1√
2

1√
2

)
, (8.41)

obtained by dividing each eigenvector by its length: uk = vk/‖vk ‖.

Proof of Theorem 8.34 : First note that if A = AT is real, symmetric, then

(Av) ·w = v · (Aw) for all v,w ∈ Cn, (8.42)
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where we use the Euclidean dot product for real vectors and, more generally, the Hermitian
dot product v ·w = vTw when they are complex. (See Exercise .)

To prove property (a), suppose λ is a complex eigenvalue with complex eigenvector
v ∈ Cn. Consider the Hermitian dot product of the complex vectors Av and v:

(Av) · v = (λv) · v = λ ‖v ‖2.

On the other hand, by (8.42), since AT = A is a real matrix, (8.21) implies

(Av) · v = v · (Av) = v · (λv) = vT λv = λ ‖v ‖2.

Equating these two expressions, we deduce

λ ‖v ‖2 = λ ‖v ‖2.

Since v is an eigenvector, it is nonzero, v 6= 0, and so λ = λ. This proves that the
eigenvalue λ is real.

To prove (b), suppose

Av = λv, Aw = µw,

where λ 6= µ are distinct real eigenvalues. Then, again by (8.42),

λv ·w = (Av) ·w = v · (Aw) = v · (µw) = µv ·w,

and hence

(λ− µ)v ·w = 0.

Since λ 6= µ, this implies that v ·w = 0 and hence the eigenvectors v,w are orthogonal.

Finally, the proof of (c) is easy if all the eigenvalues of A are distinct. Theorem 8.16
implies that the eigenvectors form a basis of Rn, and part (b) proves they are orthogonal.
(An alternative proof starts with orthogonality, and then applies Proposition 5.4 to prove
that the eigenvectors form a basis.) To obtain an orthonormal basis, we merely divide the
eigenvectors by their lengths: uk = vk/‖vk ‖, as in Lemma 5.2. A general proof can be
found in [125]. Q.E.D.

Example 8.36. Consider the symmetric matrix A =



5 −4 2
−4 5 2
2 2 −1


. A straight-

forward computation produces its eigenvalues and eigenvectors:

λ1 = 9, λ2 = 3, λ3 = −3,

v1 =



1
−1
0


 , v2 =



1
1
1


 , v3 =



1
1
−2


 .

As the reader can check, the eigenvectors form an orthogonal basis of R3. The orthonormal
eigenvector basis promised by Theorem 8.34 is obtained by dividing each eigenvector by
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its norm:

u1 =




1√
2

−
1√
2

0


 , u2 =




1√
3

1√
3

1√
3


 , u3 =




1√
6

1√
6

−
2√
6


 .

Finally, we can characterize positive definite matrices by their eigenvalues.

Theorem 8.37. A symmetric matrix K = KT is positive definite if and only if all

of its eigenvalues are strictly positive.

Proof : First, if K > 0, then, by definition, xTK x > 0 for all nonzero vectors x ∈ Rn.
In particular, if x = v is an eigenvector with (necessarily real) eigenvalue λ, then

0 < vTKv = vT (λv) = λ ‖v ‖2, (8.43)

which immediately proves that λ > 0. Conversely, suppose K has all positive eigenvalues.
Let u1, . . . ,un be the orthonormal eigenvector basis of Rn guaranteed by Theorem 8.34,
with Kuj = λj uj . Then, writing

x = c1u1 + · · · + cnun, we have K x = c1 λ1u1 + · · · + cnλnun.

Therefore, using the orthonormality of the eigenvectors,

xTK x = (c1u1 + · · · + cnun) · (c1 λ1u1 + · · · + cnλnun) = λ1 c2
1 + · · · + λn c2

n ≥ 0,

Moreover, the result is strictly positive for x 6= 0 since not all the coefficients c1, . . . , cn
can be zero. This proves that that K is positive definite. Q.E.D.

Remark : The same proof shows that K is positive semi-definite if and only if all its
eigenvalues satisfy λ ≥ 0. A positive semi-definite matrix that is not positive definite
admits a zero eigenvalue and one or more null eigenvectors, i.e., solutions to Kv = 0.
Every nonzero element 06= v ∈ kerK of the kernel is a null eigenvector.

In elasticity, the stress tensor is represented by a positive definite matrix. Its eigen-
values are known as the principal stretches and its eigenvectors the principal directions of
stretch for the body.

Example 8.38. Consider the symmetric matrixK =



8 0 1
0 8 1
1 1 7


. Its characteristic

equation is

det(K − λ I) = −λ3 + 23λ2
− 174λ+ 432 = −(λ− 9)(λ− 8)(λ− 6),

and so its eigenvalues are 9, 8 and 6. Since they are all positive, we conclude that K is a
positive definite matrix. The associated eigenvectors are

λ1 = 9, v1 =



1
1
1


 , λ2 = 8, v2 =



−1
1
0


 , λ3 = 6, v3 =



−1
−1
2


 .
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Note that the eigenvectors form an orthogonal basis of R3, as guaranteed by Theorem 8.34.
We can construct an orthonormal eigenvector basis

u1 =




1√
3

1√
3

1√
3


 , u2 =




−
1√
2

1√
2

0


 , u3 =




−
1√
6

−
1√
6

2√
6


 ,

by dividing each eigenvector by its norm.

The Spectral Theorem

Since a real, symmetric matrix admits an eigenvector basis, it is diagonalizable. More-
over, since we can arrange that the eigenvectors form an orthonormal basis, the diagonal-
izing matrix takes a particularly simple form. Recall that an n × n matrix Q is called
orthogonal if and only if its columns form an orthonormal basis of Rn. Alternatively, one
characterizes orthogonal matrices by the condition Q−1 = QT , as per Definition 5.18.

The Spectral Theorem governs the diagonalization of real, symmetric matrices.

Theorem 8.39. Let A be a real, symmetric matrix. Then there exists an orthogonal

matrix Q such that

A = QΛQ−1 = QΛQT , (8.44)

where Λ is a real diagonal matrix. The eigenvalues of A appear on the diagonal of Λ, while
the eigenvectors are the corresponding columns of Q.

Proof : The proof is an immediate consequence of the diagonalization Theorem 8.20
coupled with Theorem 8.34. One merely replaces the general eigenvector matrix S by the
orthogonal matrix Q whose columns consist of our orthonormal eigenvector basis. Q.E.D.

Remark : The term “spectrum” refers to the eigenvalues of a matrix or, more generally,
a linear operator. The terminology comes from physics. The spectral energy lines of
atoms, molecules and nuclei are characterized as the eigenvalues of the governing quantum
mechanical linear operators!

Warning : The spectral diagonalization A = QΛQT and the Gaussian diagonaliza-
tion A = LDLT of a regular symmetric matrix, cf. (1.52), are completely different. In
particular, the eigenvalues are not the pivots: Λ6= D.

The spectral factorization (8.44) provides us with an alternative means of diagonalizing
the associated quadratic form q(x) = xTAx, i.e., of completing the square. We write

q(x) = xTAx = xT QΛQT x = yTΛy =
n∑

i=1

λi y
2
i , (8.45)

where y = QTx = Q−1x are the coordinates of x with respect to the orthonormal eigen-
value basis of A, cf. (7.21). In particular, q(x) > 0 for all nonzero x = 0 — which means
A is positive definite — if and only if each eigenvalue λi > 0 is strictly positive. This
provides an alternative proof of Theorem 8.37.
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A

Figure 8.3. Stretching a Circle into an Ellipse.

Example 8.40. For the 2 × 2 matrix A =

(
3 1
1 3

)
considered in Example 8.35,

the orthonormal eigenvectors (8.41) produce the diagonalizing orthogonal rotation matrix

Q =

(
1√
2
−

1√
2

1√
2

1√
2

)
. The reader can check the spectral factorization

(
3 1
1 3

)
= A = QΛQT =

(
1√
2
−

1√
2

1√
2

1√
2

) (
4 0

0 2

) (
1√
2

1√
2

−
1√
2

1√
2

)
.

According to (8.45), the associated quadratic form is diagonalized as

q(x) = 3x2
1 + 2x1 x2 + 3x

2
2 = 4y

2
1 + 2y

2
2 ,

where y = QTx, i.e., y1 =
x1 + x2
√
2

, y2 =
−x1 + x2
√
2

.

We note that you can choose Q to be a proper orthogonal matrix, so detQ = 1, since
an improper orthogonal matrix can be made proper by multiplying one of its columns by
−1, which does not affect its status as an eigenvector matrix. Since a proper orthogonal
matrixQ represents a rigid rotation of Rn, the diagonalization of a symmetric matrix can be
interpreted as a rotation of the coordinate system in which the orthogonal eigenvectors line
up along the coordinate axes. Therefore, a linear transformation L(x) = Ax represented
by a positive definite matrix A > 0 can be regarded as a combination of stretches along
a mutually orthogonal set of directions. In elasticity, the stress tensor is represented by
a positive definite matrix. Its eigenvalues are known as the principal stretches and its
eigenvectors the principal directions of stretch.

. A good way to visualize this is to consider the effect of the linear transformation
on the unit (Euclidean) sphere S1 = { ‖x ‖ = 1 }. Stretching the sphere in orthogonal
directions will map it into an ellipsoid E whose axes are aligned with the directions of

stretch. For example, the matrix A =

(
3 1
1 3

)
considered in the preceding example
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represents the linear transformation

x̃ = 3x+ y, ỹ = x+ 3y.

Solving for x, y, we find that the unit circle x2 + y2 = 1 will be mapped to the ellipse
(
3 x̃− ỹ

8

)2

+

(
− x̃+ 3 ỹ

8

)2

= 5
32 x̃2

−
3
16 x̃ ỹ + 5

32 ỹ2 = 1,

whose principal axes lie in the directions of the eigenvectors u1 =

(
1√
2

1√
2

)
, u2 =

(
−

1√
2

1√
2

)
.

Their lengths, 4, 2, are the ellipse’s semi-axes, which are equal to the corresponding eigen-
values. The effect of this linear transformation is illustrated in Figure 8.3.

Optimization Principles for Eigenvalues

As we learned in Chapter 4, the solution to a linear system with positive definite
coefficient matrix can be characterized by a minimization principle. Thus, it should come as
no surprise that eigenvalues of positive definite, and even more general symmetric matrices,
can also be characterized by some sort of optimization procedure. A number of basic
numerical algorithms for computing eigenvalues, of both matrices and, later on, differential
operators are based on such optimization principles.

First consider the case of a diagonal matrix Λ = diag (λ1, . . . , λn). We assume that
the diagonal entries, which are the same as the eigenvalues, appear in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn, (8.46)

so λ1 is the largest eigenvalue, while λn is the smallest. The effect of Λ on a vector y ∈ Rn

is to multiply its entries by the diagonal eigenvalues: Λy = (λ1 y1, λ2 y2, . . . , λn yn )
T
. In

other words, the linear transformation represented by the coefficient matrix Λ has the effect
of stretching† in the ith coordinate direction by the factor λi. In particular, the maximal
stretch occurs in the first direction, with factor λ1, while the minimal stretch occurs in the
last direction, with factor λn. The germ of the optimization principles for characterizing
the extreme eigenvalues is contained in this geometrical observation.

Let us turn our attention to the associated quadratic form

q(y) = yTΛy = λ1 y2
1 + λ2 y2

2 + · · · + λn y2
n. (8.47)

In the positive definite case, when all the λi ≥ 0, the minimal value of q(y) is 0, obtained
when y = 0; if λn < 0, then the minimal value is −∞, since q(cen) = λn c2. Thus, in
either case, a strict minimization of q(y) is not of much help.

Suppose, however, that we try to minimize q(y) when y is restricted to be a unit
vector (in the Euclidean norm): ‖y ‖ = 1. First note that q(ei) = λi, where ei denotes
the ith standard basis vector. Moreover, in view of (8.46) and the positivity of each y2

i ,

q(y) = λ1 y2
1+λ2 y2

2+ · · · +λn y2
n ≤ λ1 y2

1+λ1 y2
2+ · · · +λ1 y2

n = λ1

(
y2
1 + · · · + y2

n

)
= λ1,

† If λi < 0, then the effect is to stretch and reflect.
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whenever ‖y ‖2 = y2
1 + · · ·+ y2

n = 1. Since q(e1) = λ1, the maximal value of q(y) over all
unit vectors is the largest eigenvalue of Λ:

λ1 = max { q(y) | ‖y ‖ = 1 } .

By the same reasoning, q(y) also has a minimal value

λn = min { q(y) | ‖y ‖ = 1 }

equal to the smallest eigenvalue. Thus, we can represent the two extreme eigenvalues by
optimization principles, albeit of a slightly different character than we treated in Chapter 4.

Now suppose A is any symmetric matrix. We use the Spectral Theorem 8.39 to write

A = QΛQT ,

where Λ = diag (λ1, . . . , λn) is a diagonal matrix containing the eigenvalues of A along its
diagonal, written in increasing order, while Q is an orthogonal matrix whose columns are
the orthonormal eigenvector basis. We use the spectral factorization to diagonalize the
associated quadratic form

q(x) = xTAx = xT QΛQT x = yTΛy, where y = QTx = Q−1x,

as in (8.45). According to the preceding discussion, the minimum of yTΛy over all unit
vectors ‖y ‖ = 1 is the smallest eigenvalue λ1 of Λ, which is the same as the smallest
eigenvalue of A. Moreover, since Q is an orthogonal matrix, Proposition 7.23 tell us that
it maps unit vectors to unit vectors:

1 = ‖y ‖ = ‖QT x ‖ = ‖x ‖.

Thus, minimizing q(x) over all unit vectors y = QTx is the same as minimizing over all
unit vectors x. Similar reasoning applies to the largest eigenvalue. In this fashion, we have
established the basic optimization principles for the largest and smallest eigenvalues of a
symmetric matrix.

Theorem 8.41. If A is a symmetric matrix, then

λ1 = max
{
xTAx

∣∣ ‖x ‖ = 1
}

, λn = min
{
xTAx

∣∣ ‖x ‖ = 1
}

, (8.48)

are, respectively its largest and smallest eigenvalues.

The maximal value is achieved when we set x = ±u1 equal to either unit eigenvector
corresponding to the largest eigenvalue; similarly, the minimal value is at x = ±un.

Remark : You may have learned about Lagrange multipliers for constrained minimiza-
tion problems. In the present situation, the Lagrange multiplier is equal to the eigenvalue.

Example 8.42. The problem is to maximize the value of the quadratic form

q(x, y) = 3x2 + 2xy + 3y2
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for all x, y lying on the unit circle x2 + y2 = 1. This maximization problem is precisely

of form (8.48). The coefficient matrix is A =

(
3 1
1 3

)
, whose eigenvalues are, according

to Example 8.7, λ1 = 4 and λ2 = 2. Theorem 8.41 implies that the maximal value for
the quadratic form on the unit circle is the largest eigenvalue, and hence equal to 4, while
its minimal value is the smallest eigenvalue, and hence equal to 2. Indeed, if we evaluate

q(x, y) on the unit eigenvectors, we obtain q
(
−

1√
2
, 1√

2

)
= 2, q

(
−

1√
2
, 1√

2

)
= 4, while

2 ≤ q(x, y) ≤ 4 for all x, y such that x2 + y2 = 1.

Restricting the quadratic form to unit vectors may not be particularly convenient.
One can, however, easily rephrase the optimization principles to apply to more general
vectors. If v 6= 0 is any nonzero vector, then x = v/‖v ‖ is a unit vector. Substituting
this expression for x in the quadratic form leads to the following optimization principles
for the extreme eigenvalues of a symmetric matrix:

λ1 = max

{
vTAv

‖v ‖2

∣∣∣∣ v6= 0

}
, λn = min

{
vTAv

‖v ‖2

∣∣∣∣ v6= 0

}
. (8.49)

Thus, we replace optimization of a quadratic polynomial over the unit sphere by opti-
mization of a rational function over all of Rn

\ {0}. For example, the maximum value
of

r(x, y) =
3x2 + 2xy + 3y2

x2 + y2
for all

(
x

y

)
6=

(
0
0

)

is equal to 4, the same maximal eigenvalue of the corresponding coefficient matrix.

What about if we are interested in the intermediate eigenvalues? Then we need to be
a little more sophisticated in designing the minimization or maximization principle. To
motivate the construction, look first at the diagonal case. If we restrict the quadratic form
(8.47) to vectors ỹ = ( 0, y2, . . . , yn )

T
whose first component is zero, we obtain

q(ỹ) = q(0, y2, . . . , yn) = λ2 y2
2 + · · · + λn y2

n.

The maximum value of q(ỹ) over all such ỹ of norm 1 is, by the same reasoning, the second
largest eigenvalue λ2. Moreover, we can characterize such vectors geometrically by noting
that they are orthogonal to the first standard basis vector, ỹ · e1 = 0, which also happens
to be the eigenvector of Λ corresponding to the eigenvalue λ1. Similarly, if we want to find
the jth largest eigenvalue λj , we maximize q(y) over all unit vectors ŷ whose first j − 1
components vanish, y1 = · · · = yj−1 = 0, or, stated geometrically, over all ỹ such that
‖ ŷ ‖ = 1 and ŷ · e1 = · · · = ŷ · ej−1 = 0, i.e., over all vectors orthogonal to the first j − 1
eigenvectors of Λ.

A similar reasoning based on the Spectral Theorem 8.39 and the orthogonality of
eigenvectors of symmetric matrices, leads to the general result.

Theorem 8.43. Let A > 0 be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥

· · · ≥ λn and corresponding orthogonal eigenvectors v1, . . . ,vn. Then the maximal value

of the quadratic form xTAx over all unit vectors which are orthogonal to the first j − 1

9/5/03 297 c© 2003 Peter J. Olver



eigenvectors is the jth eigenvalue:

λj = max
{
xTAx

∣∣ ‖x ‖ = 1, x · v1 = · · · = x · vj−1 = 0
}

. (8.50)

8.6. Singular Values.

We have already indicated the absolutely fundamental importance of the eigenvalues
of a square matrix in a wide range of applications. Alas, rectangular matrices have no
eigenvalues, and so, at first glance, they do not appear to possess any quantities of com-
parable significance. However, our analysis of least squares minimization problems as well
as the equilibrium equations for strucutres and circuits relied on the symmetric, positive
semi-definite square Gram matrix K = ATA, which can be constructed from any matrix
A. It turns out that the eigenvalues of K play a comparable role. Since they are not easily
related to the eigenvalues of A — which, in the truly rectangular case, don’t even exist —
we shall endow them with a new name.

Definition 8.44. The singular values σ1, . . . , σn of an m × n matrix A are the
positive square roots, σi =

√
λi > 0, of the nonzero eigenvalues of the Gram matrix

K = ATA. The corresponding eigenvectors of K are known as the singular vectors of A.

Since K is positive semi-definite, its eigenvalues are always non-negative, λi ≥ 0, and
hence the singular values of A are also all positive, σi > 0 — no matter whether A itself has
positive, negative, or even complex eigenvalues, or is rectangular and has no eigenvalues
at all. However, for symmetric matrices, there is a direct connection between the two:

Proposition 8.45. If A = AT is a symmetric matrix, its singular values are the

absolute values of its nonzero eigenvalues: σi = |λi |, and its singular vectors coincide with
the corresponding eigenvectors.

Proof : In this case K = ATA = A2. If Av = λv, then Kv = A2v = λ2v. Thus,
every eigenvector v of A is also an eigenvector of K with eigenvalue λ2. To demonstrate
that K has no other eigenvalues, we use the spectral factorization A = QΛQT , with
Λ the diagonal eigenvalue matrix and Q the orthogonal matrix whose columns form the
orthonormal eigenvector basis of A. Then, by orthogonality, K = A2 = (QΛQT )2 =
QΛ2 QT is the spectral factorization of K. Thus, the eigenvalues of K are the diagonal
entries of Λ2, i.e., the squares of the eigenvalues of A, while its eigenvectors are the same
columns of Q. Q.E.D.

The standard convention is to number the singular values in decreasing order, so that
σ1 ≥ σ2 ≥ · · · ≥ σr > 0. Thus, σ1 will always denote the largest or dominant singular
value. If ATA has repeated eigenvalues, then the singular values of A are repeated with
the same multiplicities.

Example 8.46. Let A =

(
3 5
4 0

)
. The associated Gram matrix is K = ATA =

(
25 15
15 25

)
, with eigenvalues λ1 = 40 and λ2 = 10. Thus, the singular values of A are

σ1 =
√
40 ≈ 6.3246 . . . and σ2 =

√
10 ≈ 3.1623 . . . . Note that these are not the same as

the eigenvalues of A, namely λ1 =
1
2 (3 +

√
89) ≈ 6.2170 . . . , λ2 =

1
2 (3 +

√
89) ≈ −3.2170.
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A rectangular matrix M will be called diagonal if its only nonzero entries are on the
main diagonal starting in the upper left hand corner, and so mij = 0 for i 6= j. An example
is the matrix

M =



5 0 0 0
0 3 0 0
0 0 0 0




whose only nonzero entries are in the diagonal (1, 1) and (2, 2) positions. (The last diagonal
entry happens to be zero.)

The generalization of the spectral factorization to non-symmetric matrices is known
as the singular value decomposition, commonly abbreviated as SVD. The decomposition
applies to arbitrary real rectangular matrices.

Theorem 8.47. Any real m× n matrix A can be factorized

A = P ΣQT (8.51)

into the product of an m×m orthogonal matrix P , the m×n diagonal matrix Σ that has
the singular values of A as its nonzero diagonal entries, followed by an n × n orthogonal

matrix QT .

Proof : Writing the factorization (8.51) as AQ = P Σ, and looking at the columns of
the resulting matrix equation, we find

Aui = σivi, i = 1, . . . , n, (8.52)

where u1, . . . ,un are the columns of Q = (u1 u2 . . . un ), v1, . . . ,vm the columns of
P = (v1 v2 . . . vm ). The scalars σi are the diagonal entries of Σ or, if m < i ≤ n, equal
to zero. The fact that P and Q are both orthogonal matrices means that their column
vectors form orthonormal bases for, respectively, Rm and Rn under the Euclidean dot
product. In this manner, the singular values of the linear transformation represented by
the matrix A indicate how far it stretches a distinguished set of orthonormal basis vectors.

To construct the required bases, we let u1, . . . ,un be the orthonormal eigenvector
basis of the Gram matrix K = ATA, and so

ATAui = Kui = λiui = σ2
i ui.

We claim that the image vectors wi = Aui are automatically orthogonal. Indeed,

wi ·wj = wT
i wj = (Aui)

TAuj = uTi ATAuj = λj u
T
i uj = λj ui · uj . (8.53)

Thus, by orthogonality of the eigenvector basis, wi ·wj = 0 for i 6= j, while setting i = j

in (8.53) gives

‖wi ‖
2 = λiu

T
i ui = λi = σ2

i , and so ‖wi ‖ = σi.

Since u1, . . . ,un form a basis of Rn, their images w1 = Au1, . . . ,wn = Aun span
rngA. Suppose that A has r non-zero singular values, so σi > 0 for i ≤ r. Then the
corresponding image vectors w1, . . . ,wr are non-zero, mutually orthogonal vectors, and
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hence form an orthogonal basis for rngA. Since the dimension of rngA is equal to its
rank, this implies that the number of singular values is r = rankA. The corresponding
unit vectors

vi =
wi

σi
=

Aui
σi

, i = 1, . . . , r, (8.54)

are an orthonormal basis for rngA. Let us choose an orthonormal basis vr+1, . . . ,vm for

its orthogonal complement cokerA = (rngA)⊥. The combined set of vectors v1, . . . ,vm
clearly forms an orthonormal basis of Rm. The orthonormal bases u1, . . . ,un and v1, . . . ,vm
have been designed to satisfy (8.52), and hence form the respective columns of the orthog-
onal matrices in the singular value decomposition (8.51). Q.E.D.

Example 8.48. For the matrix A =

(
3 5
4 0

)
considered in Example 8.46, the

orthonormal eigenvector basis of K = ATA =

(
25 15
15 25

)
is given by u1 =

(
1√
2

1√
2

)
and

u2 =

(
−

1√
2

1√
2

)
. Thus, Q =

(
1√
2
−

1√
2

1√
2

1√
2

)
. On the other hand, according to (8.54),

v1 =
Au1

σ1

=
1
√
40

(
4
√
2

2
√
2

)
=

(
2√
5

1√
5

)
, v2 =

Au2

σ2

=
1
√
10

( √
2

− 2
√
2

)
=

(
1√
5

−
2√
5

)
.

Therefore, P =

(
2√
5

1√
5

1√
5
−

2√
5

)
. You may wish to validate the resulting singular value

decomposition

A =

(
3 5
4 0

)
=

(
2√
5

1√
5

1√
5
−

2√
5

) (√
40 0

0
√
10

) (
1√
2

1√
2

−
1√
2

1√
2

)
= P ΣQT .

As their name suggests, the singular values can be used to detect singular matrices.
Indeed, the singular value decomposition tells us some important new geometrical infor-
mation about the action of the matrix, filling in further details in the discussion begun
in Section 2.5 and continued in Section 5.6. The result follows directly from the proof of
Theorem 8.47.

Theorem 8.49. Let σ1, . . . , σr be the singular values of the m × n matrix A. Let

v1, . . . ,vm and u1, . . . ,un the orthonormal bases of, respectively, Rm and Rn provided by

the columns of P and Q in its singular value decomposition A = P ΣQT . Then

(i) r = rankA,

(ii) u1, . . . ,ur form an orthonormal basis for corngA,

(iii) ur+1, . . . ,un form an orthonormal basis for kerA,

(iv) v1, . . . ,vr form an orthonormal basis for rngA,

(v) vr+1, . . . ,vm form an orthonormal basis for cokerA.
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We already noted in Section 5.6 that the linear transformation L:Rn
→ Rm defined by

matrix multiplication by A can be interpreted as a projection from Rn to corngA followed
by an invertible map from corngA to rngA. The singular value decompostion tells us that
not only is the latter map invertible, it is simply a combination of r stretches in mutually
orthogonal directions, whose magnitudes equal the nonzero singular values. In this way,
we have at last reached a complete understanding of the subtle geometry underlying the
simple operation of matrix multiplication.

An alternative useful interpretation is to view the two orthogonal matrices in (8.51)
as defining rigid rotations or reflections. Therefore, in all cases, a linear transformation
from Rn to Rm is composed of three constituents:

(i) A rotation/reflection of the domain space Rn, followed by

(ii) a simple stretching map of the coordinate vectors e1, . . . , en of domain space, map-
ping ei to σi ei in the target space Rm, followed by

(iii) a rotation/reflection of the target space.

In most cases,we can choose both orthogonal matrices to represent proper rotations; see
Exercise .

The singular values not only provide a nice geometric interpretation of the action of
the matrix, they also play a key role in modern computational algorithms. The relative
magnitudes of the singular values can be used to distinguish well-behaved linear systems
from ill-conditioned systems which are much trickier to solve accurately. A sqaure matrix
with a zero singular value is singular; a matrix with one or more very small singular values
is considered to be close to singular, and hence ill-conditioned in the sense that it is hard
to invert numerically. Such ill-conditioning is traditionally quantified as follows.

Definition 8.50. The condition number of an n× n matrix is the ratio between the
largest and smallest singular value: κ(A) = σ1/σn.

A matrix with a very large condition number is said to be ill-conditioned ; in practice,
this occurs when the condition number is larger than the reciprocal of the machine’s
precision, e.g., 106 for single precision aritmetic. As the name implies, it is much harder to
solve a linear system Ax = b when its coefficient matrix is ill-conditioned. In the extreme
case when A has one or more zero singular values, its condition number is infinite, and the
linear system is singular, with either no solution or infinitely many solutions.

With the singular value decomposition in hand, we are able to introduce a general-
ization of the inverse of a matrix that applies even in cases when the matrix in question
is singular or rectangular. We begin with the diagonal case. Let Σ be an m × n diago-
nal matrix with r nonzero diagonal entries σ1, . . . , σr. We define the pseudoinverse of Σ
to be the n × m diagonal matrix Σ+ whose nonzero diagonal entries are the reciprocals
1/σ1, . . . , 1/σr. For example, if

Σ =



5 0 0 0
0 3 0 0
0 0 0 0


, then Σ+ =




1
5 0 0
0 1

3 0
0 0 0
0 0 0


.
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In particular, if Σ is a nonsingular diagonal matrix (and necessarily square) then its pseu-
doinverse Σ+ = Σ−1 is the same as its ordinary inverse.

Definition 8.51. The pseudoinverse of an m × n matrix A with singular value
decomposition A = P ΣQT is the n×m matrix A+ = QΣ+ PT .

If A is a non-singular square matrix, then its pseudoinverse agrees with its ordinary
inverse, since

A−1 = (P ΣQT )−1 = Q−1Σ−1 P−T = QΣ+ PT = A+,

where we used the fact that the inverse of an orthogonal matrix is equal to its transpose.
The pseudoinverse provides us with a direct route to the least squares solution to a system
of linear equations.

Theorem 8.52. Consider the linear system Ax = b. Let y = A+b, where A+ is

the pseudoinverse of A. If kerA = {0}, then y is the least squares solution to the system.
If, more generally, kerA 6= {0}, then y is the vector of minimal Euclidean norm among all
vectors that minimize the least squares error ‖Ax− b ‖.

Proof : To show that y = A+b is the least squares solution to the system, we must
check that it satisfies the normal equations ATAy = ATb. Using the definition of the
pseudoinverse and the singular value decomposition (8.51), we find

ATAy = (P ΣQT )T (P ΣQT )(QΣ+ PT )b = QΣTΣΣ+PTb = QΣTPTb = ATb,

where the next to last equality is left as Exercise for the reader. This proves that y
solves the normal equations, and hence minimizes the least squares error†. Moreover,
since the last n− r rows of Σ+ are zero, the last n− r entries of the vector c = Σ+PTb =
( c1, . . . cr, 0, . . . , 0 )

T
. Therefore,

y = A+b = QΣ+ PTb = Qc = c1u1 + · · · + crur

is a linear combination of the r singular vectors, and hence y ∈ corngA is the least squares
solution that is orthogonal to the kernel of A. The general least squares solution has
the form x = y + z where z ∈ kerA, and the fact that ‖y ‖ is minimized follows as in
Theorem 5.55. Q.E.D.

We immediately see that very small singular values lead to very large entries in Σ+,
which will cause numerical problems when computing the solution x = A−1b to the linear
system. A common and effective computational strategy to avoid the effects of small
singular values is to replace the corresponding diagonal entries of Σ−1 by 0, and thereby
convert the system Ax = b into a least squares linear system.

† In Chapter 4, this was proved under the assumption that kerA = {0}. The general case is
left as Exercise for the reader.
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8.7. Linear Dynamical Systems.

Now we have accumulated enough experience in the theory and computation of eigen-
values to be able to analyze dynamical systems governed by linear, homogeneous, constant
coefficient ordinary differential equations. Our primary focus will be on systems

du

dt
= Au (8.55)

consisting of n first order linear ordinary differential equations in n unknowns u(t) =

(u1(t), . . . , un(t) )
T
∈ Rn. The coefficient matrix A, of size n × n, is assumed to be a

constant real matrix — although extensions to complex systems are not difficult.

As we saw at the beginning of Section 8.2, the vector-valued exponential function
u(t) = eλt v is a (non-zero) solution if and only if λ is an eigenvalue of A and v is
the corresponding eigenvector. If the coefficient matrix A is complete, then it admits n

linearly independent eigenvectors v1, . . . ,vn, which, along with their associated eigenvalues
λ1, . . . , λn will produce n distinct exponential solutions

u1(t) = eλ1t v1, . . . un(t) = eλnt vn. (8.56)

Linear superposition, based on the general principle in Theorem 7.29 (although this is
easy to prove directly), implies that, for any choice of constants c1, . . . , cn, the linear
combination

u(t) = c1u1(t) + · · · + cnun(t) = c1 eλ1t v1 + · · · + cn eλnt vn (8.57)

is also a solution to the linear system.

Are there any other solutions? The answer is no — in fact (8.57) represents the most
general solution to the system. This result is a consequence of the basic existence and
uniqueness theorem for linear systems of ordinary differential equations, which we discuss
next.

Example 8.53. Consider the linear system

du

dt
= 3u+ v,

dv

dt
= u+ 3v. (8.58)

We first write the system in matrix form

du

dt
= Au, with unknown u(t) =

(
u(t)
v(t)

)
and coefficient matrix A =

(
3 1
1 3

)
.

According to Example 8.7, the eigenvalues and eigenvectors of A are

λ1 = 4, v1 =

(
1
1

)
, λ2 = 2, v2 =

(
−1
1

)
.

We use the eigenvalues and eigenvectors to construct the two particular exponential solu-
tions

u1(t) = e4 t

(
1
1

)
=

(
e4 t

e4t

)
, u2(t) = e2 t

(
−1
1

)
=

(
− e2 t

e2t

)
.
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According to the preceding remark, to be justified below, the general solution to (8.58) is
then given as a linear combination

u(t) =

(
u(t)
v(t)

)
= c1 e4 t

(
1
1

)
+ c2 e2 t

(
−1
1

)
=

(
c1 e4 t

− c2 e2 t

c1 e4t + c2 e2t

)
,

where c1, c2 are arbitrary constants.

Existence and Uniqueness

Before proceeding further, it will help to briefly summarize the existence and unique-
ness properties for solutions to linear systems of ordinary differential equations. These are
direct consequences of the general existence and uniqueness theorem for nonlinear systems
of ordinary differential equations, to be discussed in Section 19.1. Even though we will only
study the constant coefficient case in detail in this text, the results are equally applicable
to homogeneous linear systems with variable coefficients. So, in this subsection we allow
the coefficient matrix to depend continuously on t.

The key fact is that a system of n first order ordinary differential equations requires
n initial conditions — one for each variable — in order to specify its solution uniquely.
More specifically:

Theorem 8.54. Let A(t) be an n×n matrix of continuous functions on the interval

a < t < b. Given an initial time a < t0 < b and an initial vector b ∈ Rn, the initial value
problem

du

dt
= A(t)u, u(t0) = b, (8.59)

admits a unique solution u(t) which is defined for all a < t < b.

In particular, an initial value problem for a constant coefficient system (8.55) admits
a unique solution u(t) that is defined for all −∞ < t < ∞. Uniqueness of solutions implies
that, for such homogeneous systems, the solution with zero initial conditions u(t0) = 0 is
the trivial zero solution u(t) ≡ 0. Uniqueness has the important consequence that linear
independence needs only be checked at a single point.

Lemma 8.55. The solutions u1(t), . . . ,uk(t) to a first order homogeneous linear
system

¦
u = A(t)u are linearly independent functions if and only if their initial values

u1(t0), . . . ,uk(t0) are linearly independent vectors in Rn.

Proof : If the solutions are linearly dependent, then

u(t) = c1u1(t) + · · · + ckuk(t) ≡ 0 (8.60)

for some constant scalars c1, . . . , ck not all zero. The equation holds, in particular, at
t = t0,

u(t0) = c1u1(t0) + · · · + ckuk(t0) = 0, (8.61)

proving linear dependence of the initial vectors. Conversely, if the initial values are linearly
dependent, then (8.61) hold for some c1, . . . , ck not all zero. Linear superposition implies
that the corresponding linear combination u(t) = c1u1(t) + · · · + ckuk(t) is a solution to
the system, with zero initial condition. By uniqueness, u(t) ≡ 0 for all t, and so (8.60)
holds, proving linear dependence of the solutions. Q.E.D.
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Warning : This result is not true if the functions are not solutions to a first order

system! For example, u1(t) =

(
1
t

)
, u2(t) =

(
cos t
sin t

)
, are linearly independent vector-

valued functions, but, at time t = 0, u1(0) =

(
1
0

)
= u2(0) are linearly dependent vectors.

Even worse, u1(t) =

(
1
t

)
, u2(t) =

(
t

t2

)
, define linearly dependent vectors at every fixed

value of t, but as vector-valued functions they are, nonetheless, linearly independent. In
view of Lemma 8.55, neither pair of functions can be solutions to a common linear ordinary
differential equation.

The next result tells us how many different solutions we need in order to construct
the general solution by linear superposition.

Theorem 8.56. Let u1(t), . . . ,un(t) be n linearly independent solutions to the ho-

mogeneous system of n first order linear ordinary differential equations
¦
u = A(t)u. then

the general solution is a linear combination u(t) = c1u1(t) + · · · + cnun(t) depending on
n arbitrary constants c1, . . . , cn.

Proof : If we have n linearly independent solutions, then Lemma 8.55 implies that, at
the initial time t0, the vectors u1(t0), . . . ,un(t0) are linearly independent, and hence form
a basis for Rn. This means that we can express any initial condition

u(t0) = b = c1u1(t0) + · · · + cnun(t0)

as a linear combination of the initial vectors. Superposition and uniqueness of solutions
implies that the corresponding solution to the initial value problem (8.59) is given by the
same linear combination

u(t) = b = c1u1(t) + · · · + cnun(t).

We conclude that every solution to the ordinary differential equation can be written in the
prescribed form. Q.E.D.

Complete Systems

Now we have assembled the basic ingredients that will enable us to construct the
complete solution to most first order homogeneous, linear, constant coefficient systems of
ordinary differential equations. For a system of n equations, the goal is to find n linearly
independent solutions. Each eigenvalue and eigenvector leads to an exponential solution of
the form eλtv. The solutions will be linearly independent if and only if the eigenvectors are
— this will follow easily from Lemma 8.55. Thus, if the n×n matrix admits an eigenvector
basis, i.e., it is complete, then we have the requisite number of solutions, and hence have
solved the differential equation.

Theorem 8.57. If the n × n matrix A is complete, then the general (complex)
solution to the constant coefficient linear system

¦
u = Au is given by

u(t) = c1 eλ1t v1 + · · · + cn eλnt vn, (8.62)
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where v1, . . . ,vn are the linearly independent eigenvectors, λ1, . . . , λn the corresponding

eigenvalues, and c1, . . . , cn arbitrary constants, which are uniquely specified by the initial

conditions u(t0) = b.

Proof : Since the eigenvectors are linearly independent, the solutions define linearly
independent vectors uk(0) = vk time t = 0. Thus, Lemma 8.55 implies that the functions
uk(t) are, indeed, linearly independent. Thus, the result is an immediate consequence of
Theorem 8.56. Q.E.D.

Example 8.58. Let us solve the initial value problem

¦
u1 = −2u1 + u2, u1(0) = 3,
¦
u2 = 2u1 − 3u2 u2(0) = 0.

The coefficient matrix of the system is A =

(
−2 1
2 −3

)
. A straightforward computation

produces the following eigenvalues and eigenvectors of A:

λ1 = −4, v1 =

(
1
−2

)
, λ2 = −1, v2 =

(
1
1

)
.

The corresponding exponential soltions u1(t) = e−4 t

(
1
−2

)
,u2(t) = e− t

(
1
1

)
form a

basis for the two-dimensional solution space. The general solution is an arbitrary linear
combination

u(t) =

(
u1(t)
u2(t)

)
= c1 e−4 t

(
1
−2

)
+ c2 e− t

(
1
1

)
=

(
c1 e−4 t + c2 e− t

−2c1 e−4 t + c2 e− t

)
,

where c1, c2 are constant scalars. Once we have the general solution in hand, the final step
is to determine the values of c1, c2 so as to satisfy the initial conditions. Evaluating the
solution at t = 0, we find we need to solve the linear system

c1 + c2 = 3, −2c1 + c2 = 0,

for c1 = 1, c2 = 2. Thus, the (unique) solution to the initial value problem is

u1(t) = e−4 t + 2 e− t, u2(t) = −2 e−4 t + 2 e− t.

Note that both components of the solution decay exponentially fast to 0 as t →∞.

Example 8.59. Consider the linear system

¦
u1 = u1 + 2u2,

¦
u2 = u2 − 2u3,

¦
u3 = 2u1 + 2u2 − u3.

The coefficient matrix is

A =



1 2 0
0 1 −2
2 2 −1


 .
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In Example 8.10 we computed the eigenvalues and eigenvectors:

λ1 = −1, λ2 = 1 + 2 i , λ3 = 1− 2 i ,

v1 =



−1
1
1


 , v2 =



1
i
1


 , v3 =



1
− i
1


 .

The first leads to a real solution, but the second and third lead to complex solutions to
our real system of equations, e.g., û2(t) = e(1+2 i ) t ( 1, i , 1 )

T
. While this is a perfectly

valid complex solution, it is not so convenient to work with if, as in most applications, we
require real-valued functions. Since the underlying linear system is real, the general reality
principle of Theorem 7.47 says that any complex solution can be broken up into its real
and imaginary parts, each of which is a real solution. Applying Euler’s formula (3.76) to
the complex exponential, we find

û2(t) = e(1+2i)t



1
i
1


 =

(
et cos 2 t+ i et sin 2 t

)


1
i
1


 =




et cos 2 t
−et sin 2 t
et cos 2 t


+ i




et sin 2 t
et cos 2 t
et sin 2 t


 ,

which yields two real vector-valued solutions to the system, as you can readily check. In
this manner, we have produced three linearly independent real solutions to our system:

u1(t) =



−e−t

e−t

e−t


 , u2(t) =




et cos 2 t
−et sin 2 t
et cos 2 t


 , u3(t) =




et sin 2 t
et cos 2 t
et sin 2 t


 .

Theorem 8.56 tells us that the general solution is a linear combination of the 3 independent
solutions:

u(t) = c1 u1(t) + c2 u2(t) + c3 u3(t) =



−c1 e−t + c2 et cos 2 t+ c3 et sin 2 t
c1 e−t − c2 et sin 2 t+ c3 et cos 2 t
c1 e−t + c2 et cos 2 t+ c3 et sin 2 t


 .

The constants c1, c2, c3 are uniquely prescribed by imposing initial conditions; for example,

the solution with u(0) = ( 2,−1,−2 )
T
requires c1 = −2, c2 = 0, c3 = 1, and so the

solution’s components are u1(t) = 2 e−t + et sin 2 t, u2(t) = −2 e−t + et cos 2 t, u3(t) =
−2 e−t + et sin 2 t.

Incidentally, the third complex solution also produces two real solutions, but these
reproduce the ones we have already listed. In fact, since λ3 = λ2 is the complex conjugate
of the eigenvalue λ2, its eigenvector v3 = v2 is also the complex conjugate of the eigenvector
v2, and, finally, the solutions are also related by complex conjugation:

û3(t) = e(1−2i)t



1
− i
1


 =




et cos 2 t
−et sin 2 t
et cos 2 t


− i




et sin 2 t
et cos 2 t
et sin 2 t


 = û2(t) .

In general, when dealing with complex eigenvalues of real systems, you only need to look
at one eigenvalue from each complex conjugate pair to find a complete system of real
solutions.
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The General Case

If the matrix A is not complete, then the formulae for the solutions are a little more
intricate, and involve polynomials as well as (complex) exponentials. When dealing with
an incomplete matrix, we do not have sufficient eigenvectors to construct all the solutions,
and so make use of its Jordan basis. Let us first describe the solutions associated with a
Jordan chain.

Lemma 8.60. Supposew1, . . . ,wk form a Jordan chain of length k for the eigenvalue

λ of the matrix A. Then there are k linearly independent solutions to the corresponding

first order system
¦
u = Au having the form

u1(t) = eλtw1, u2(t) = eλt(tw1 +w2), u3(t) = eλt
(

1
2 t2w1 + tw2 +w3

)
,

and, in general, uj(t) = eλt
j∑

i=1

tj−i

(j − i) !
wi, 1 ≤ j ≤ k. (8.63)

The proof is by direct substitution of the formulae into the differential equation,
using the defining relations (8.34) of the Jordan chain; details are left to the reader.
If λ is a complex eigenvalue, then the Jordan chain solutions (8.63) will involve complex
exponentials. As usual, they can be split into their real an imaginary parts which, provided
A is a real matrix, are independent real solutions.

Example 8.61. The coefficient matrix of the system

du

dt
=




−1 0 1 0 0
−2 2 −4 1 1
−1 0 −3 0 0
−4 −1 3 1 0
4 0 2 −1 0


u

is incomplete; it has only 2 linearly independent eigenvectors associated with the eigenval-
ues 1 and −2. Using the Jordan basis computed in Example 8.27, we produce the following
5 linearly independent solutions:

u1(t) = et v1, u2(t) = et (tv1 + v2), u3(t) = et ( 12 t2v1 + tv2 + v3),

u4(t) = e−2 t v4, u5(t) = e−2 t (tv4 + v5),

or, explicitly,




0
0
0
−et

et


,




0
−et

0
− tet

(1 + t)et


,




0
− tet

0(
1− 1

2 t2
)
et(

t+ 1
2 t2

)
et




,




−e−2 t

e−2 t

e−2 t

−2e−2 t

0


,




−(1 + t)e−2 t

te−2 t

te−2 t

−2(1 + t)e−2 t

e−2 t


.

The first three are associated with the λ1 = 1 Jordan chain, the last two with the λ2 = −2
chain; the eigenvector solutions are the pure exponentials u1(t),u4(t). The general solution
is an arbitrary linear combination of these five basis solutions.
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Theorem 8.62. Let A be an n × n matrix. Then the solutions (8.63) constructed
from the Jordan chains in a Jordan basis of A form a basis for the n-dimensional solution

space for the corresponding linear system
¦
u = Au.

While the full computational details can be quite messy, in practical situations one can
glean a significant amount of information about the solutions to the system without much
fuss. The following result outlines a general characterization of the solutions of homoge-
neous linear systems of ordinary differential equations. The result is direct consequence of
the general solution formulae in (8.63).

Theorem 8.63. Let A be a real, square matrix. The general real solution to any

constant coefficient homogeneous linear system
¦
u = Au is a linear combination of n linearly

independent solutions of the following types:

(a) If λ is a complete real eigenvalue of multiplicity m, then there exist m linearly inde-

pendent solutions of the form

uk(t) = eλt vk, k = 1, . . . ,m,

where v1, . . . ,vm are linearly independent eigenvectors.

(b) If µ ± i ν form a pair of complete complex conjugate eigenvalues of multiplicity m,

then there exist 2m linearly independent real solutions of the forms

uk(t) = eµt
[
cos ν twk − sin ν t zk

]
,

ûk(t) = eµt
[
sin ν twk + cos ν t zk

]
,

k = 1, . . . ,m,

where vk = wk ± i zk are the associated complex conjugate eigenvectors.

(c) If λ is an incomplete real eigenvalue of multiplicity m and r = dimVλ, then there exist

m linearly independent solutions of the form

uk(t) = eλt pk(t), k = 1, . . . ,m,

where pk(t) is a vector of polynomials of degree ≤ m− r.

(d) If µ ± i ν form a pair of incomplete complex conjugate eigenvalues of multiplicity m

and r = dimVλ, then there exist 2m linearly independent real solutions

uk(t) = eµt
[
cos ν t pk(t)− sin ν t qk(t)

]
,

ûk(t) = eµt
[
sin ν t pk(t) + cos ν t qk(t)

]
,

k = 1, . . . ,m,

where pk(t),qk(t) are vectors of polynomials of degree ≤ m− r.

Corollary 8.64. Every real solution to a homogeneous linear system of ordinary

differential equations is a vector-valued function whose entries are linear combinations

of functions of the particular form tk eµt cos ν t and tk eµt sin ν t, i.e., sums of products

of exponentials, trigonometric functions and polynomials. The exponents µ are the real

parts of the eigenvalues of the coefficient matrix; the trigonometric frequencies ν are the

imaginary parts of the eigenvalues; nonconstant polynomials appear only if the matrix is

incomplete.
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Example 8.65. The incomplete cases should remind the reader of the solution to a
single scalar ordinary differential equation in the case of a repeated root to the character-
istic equation. For example, to solve the second order equation

d2u

dt2
− 2

du

dt
+ u = 0,

we substitute the exponential ansatz u = eλt, leading to the characteristic equation

λ2
− 2λ+ 1 = 0.

There is only one double root, λ = 1, and hence, up to scalar multiple, only one exponential
solution u1(t) = et. In the scalar case, the second “missing” solution is obtained by just
multiplying by t, so that u2(t) = t et. The general solution is

u(t) = c1 u1(t) + c2 u2(t) = c1 et + c2 t et.

The equivalent phase plane system (8.12) is

du

dt
=

(
0 1
−1 2

)
u, where u(t) =

(
u(t)
¦
u(t)

)
.

Note that the coefficient matrix is incomplete — it has λ = 1 as a double eigenvalue, but
only one independent eigenvector, namely v = ( 1, 1 )

T
. The two linearly independent so-

lutions to the phase plane system can be constructed from the solutions u1(t) = et, u2(t) =
t et to the original equation, and so

u1(t) =

(
et

et

)
, u2(t) =

(
t et

t et + et

)
. (8.64)

Note the appearance of the polynomial factor t in the solution formula. The general
solution is obtained as a linear combination of these two basic solutions. Warning : In
(8.64), the second vector solution u2 is not obtained from the first by merely multiplying
by t. Incomplete systems are not that easy to handle!

8.8. Stability of Linear Systems.

With the solution formulae in hand, we are now ready to study the qualitative features
of first order linear dynamical systems. Our primary focus will be on stability properties
of the equilibrium solution(s). The starting point is a simple calculus lemma, whose proof
is left to the reader.

Lemma 8.66. Let µ, ν be real and k ≥ 0 an integer. A function of the form

f(t) = tk eµt cos ν t or tk eµt sin ν t (8.65)

will decay to zero for large t, so lim
t→∞

f(t) = 0, if and only if µ < 0. The function remains

bounded, so | f(t) | ≤ C for all t ≥ 0, if and only if either µ < 0, or µ = 0 and k = 0.
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Figure 8.4. The Left Half Plane.

In other words, exponential decay, where µ < 0, will always cancel out polynomial
growth, while trigonometric functions remain bounded. Now, in the solution to our ordi-
nary differential equation, the functions (8.65) come from the eigenvalues λ = µ+ i ν of the
coefficient matrix. The lemma implies that the asymptotic behavior of the solutions, and
hence their stability, depends on the sign of µ = Re λ. If µ < 0, then the solutions decay
to zero at an exponential rate as t →∞. If µ > 0, then the solutions become unbounded
as t →∞. In the borderline case µ = 0, the solutions remain bounded provided they don’t
involve any powers of t.

Asymptotic stability of the equilibrium zero solution requires that all other solutions
tend to 0 as t → ∞, and hence all the eigenvalues must satisfy µ = Re λ < 0. Or,
stated another way, all eigenvalues must lie in the left half plane — the subset of C to the
left of the imaginary axis, as in Figure 8.4. In this manner, we have demonstrated the
fundamental asymptotic stability criterion for linear systems.

Theorem 8.67. A first order linear, homogeneous, constant-coefficient system of

ordinary differential equations
¦
u = Au has asymptotically stable zero solution if and only

if all the eigenvalues of the coefficient matrix A lie in the left half plane: Re λ < 0. On
the other hand, if A has one or more eigenvalues with positive real part, Re λ > 0, then
the zero solution is unstable.

Example 8.68. Consider the system

du

dt
= 2u− 6v + w,

dv

dt
= 3u− 3v − w,

dw

dt
= 3u− v − 3w.

The coefficient matrix A =



2 −6 1
3 −3 −1
3 −1 −3


 is found to have eigenvalues λ1 = −2, λ2 =

−1 + i
√
6 , λ3 = −1 − i

√
6 , with respective real parts −2,−1,−1. Therefore, according

to Theorem 8.67, the zero solution u ≡ v ≡ w ≡ 0 is asymptotically stable. Indeed, the
solutions involve linear combinations of the functions e−2 t, e− t cos

√
6 t, and e− t sin

√
6 t,

all of which decay to 0 at an exponential rate. The latter two have the slowest decay
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rate, and so most solutions to the linear system go to 0 like a multiple of e− t, i.e., at an
exponential rate determined by the least negative real part.

A particularly important class of systems are the linear gradient flows

du

dt
= −Ku, (8.66)

in which K > 0 is a symmetric, positive definite matrix. According to Theorem 8.37,
all the eigenvalues of K are real and positive. Therefore, the eigenvalues of the negative
definite coefficient matrix −K of the gradient flow system (8.66) are real and negative.
Applying Theorem 8.67, we conclude that the zero solution to any gradient flow system
(8.66) with negative definite coefficient matrix −K is asymptotically stable.

Example 8.69. Using the methods of Chapter 3, the matrix K =

(
1 1
1 5

)
is found

to be positive definite. The associated gradient flow is

du

dt
= −u− v,

dv

dt
= −u− 5v. (8.67)

The eigenvalues and eigenvectors of −K =

(
−1 −1
−1 −5

)
are

λ1 = −3 +
√

5 , v1 =

(
1

2−
√
5

)
, λ2 = −3−

√

5 , v2 =

(
1

2 +
√
5

)
.

Therefore, the general solution to the system is

u(t) = c1 e(−3+
√

5 )t

(
1

2−
√
5

)
+ c2 e(−3−

√
5 )t

(
1

2 +
√
5

)
,

or, in components,

u(t) = c1 e(−3+
√

5 )t + c2 e(−3−
√

5 )t,

v(t) = c1 (2−
√

5) e(−3+
√

5 )t + c2 (2 +
√

5) e(−3−
√

5 )t.

The solutions clearly tend to zero as t →∞ at the exponential rate prescribed by the least
negative eigenvalue: −3 +

√
5 = −0.7639 . . . . This confirms the asymptotic stability of

the gradient flow.

The reason for the term “gradient flow” is that the vector field −Ku appearing on the
right hand side of (8.66) is, in fact, the negative of the gradient of the quadratic function

q(u) = 1
2 u

TKu =
1

2

n∑

i,j=1

kij uiuj , (8.68)

namely Ku = ∇q(u). Thus, we can write (8.66) as

du

dt
= −∇q(u). (8.69)
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For the particular system (8.67),

q(u, v) =
1

2
(u v )

T

(
1 1
1 5

)(
u

v

)
= 1

2 u2 + uv + 5
2 v2,

and so the gradient flow is given by

du

dt
= −

∂q

∂u
= −u− v,

dv

dt
= −

∂q

∂v
= −u− 5v.

In applications, the quadratic function (8.68) often represents the energy in the system.
Its negative gradient −∇q points in the direction of steepest decrease of q. A good analogy
is water flowing down the side of the hill. If q(u, v) denotes the height of the hill at
position (u, v) then∇q = (∂q/∂u, ∂q/∂v) points directly uphill while −∇q points downhill.
The water will flow in the direction of steepest decrease, and so satisfy the gradient flow
equations (8.69). Since q(u) is positive definite, the zero solution is the minimum of q,
and so, by asymptotic stability, solutions to the gradient flow equations will end up at the
bottom of the graph of q. The general features of nonlinear gradient flows will be more
fully explored in Chapter 19.

Example 8.70. Let us solve the first order system

du

dt
= −8u− w,

dv

dt
= −8v − w,

dw

dt
= −u− v − 7w,

subject to initial conditions

u(0) = 1, v(0) = −3, w(0) = 2.

The coefficient matrix for the system is


−8 0 −1
0 −8 −1
−1 −1 −7


 = −



8 0 1
0 8 1
1 1 7


 = −K,

which is minus the positive definite matrix analyzed in Example 8.38. Using the computed
eigenvalues and eigenvectors, we conclude that the general solution has the form

u(t) =




u(t)
v(t)
w(t)


 = c1 e−6 t



−1
−1
2


+ c2 e−8 t



−1
1
0


+ c3 e−9 t



1
1
1


 .

The coefficients are prescribed by the initial conditions, which read

u(0) =



1
−3
2


 = c1



−1
−1
2


+ c2



−1
1
0


+ c3



1
1
1


 = c1v1 + c2v2 + c3v3.

Rather than solve this linear system directly, we make use of the fact that the matrix is
symmetric, and hence its eigenvectors v1,v2,v3 form an orthogonal basis. Thus, we can
apply the orthogonal basis formula (5.8) to compute the coefficients

c1 =
〈u(0) ;v1 〉

‖v1 ‖
2

=
6

6
= 1, c2 =

〈u(0) ;v2 〉

‖v2 ‖
2

=
−4

2
= −2, c3 =

〈u(0) ;v3 〉

‖v3 ‖
2

= 0.
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We conclude that the solution to the initial value problem is

u(t) =



− e−6 t + 2e−8 t

− e−6 t
− 2e−8 t

2e−6 t


 .

In particular, the exponential decay rate is 6 — as indicated by the largest eigenvalue of
K — since e−6 t is the slowest decaying exponential in the solution.

Extension of the asymptotic stability criterion of Theorem 8.67 to stable equilibria is
not difficult.

Theorem 8.71. A first order linear, homogeneous, constant-coefficient system of or-

dinary differential equations (8.55) has stable zero solution if and only if all the eigenvalues
satisfy Re λ ≤ 0, and, moreover, any eigenvalue lying on the imaginary axis, Re λ = 0, is
complete, meaning that it has as many independent eigenvectors as its multiplicity.

Proof : The proof is the same as above, using Corollary 8.64 and the decay properties
in Lemma 8.66. All the eigenvalues with negative real part lead to exponentially decaying
solutions — even if they are incomplete. If a purely imaginary eigenvalue is complete, then
the associated solutions only involve trigonometric functions, and hence remain bounded.
This suffices to maintain stability. On the other hand, solutions associated with incomplete
purely imaginary eigenvalues contain powers of t multiplying sines and cosines, and hence
cannot remain bounded as t→∞. Q.E.D.

Example 8.72. A Hamiltonian system in the plane takes the form

du

dt
=

∂H

∂v
,

dv

dt
= −

∂H

∂u
, (8.70)

where H(u, v) is known as the Hamiltonian function. If

H(u, v) = 1
2 a u2 + b u v + 1

2 c v2 (8.71)

is a quadratic form, then the Hamiltonian system is

¦
u = b u+ c v,

¦
v = −a u− b v, (8.72)

homogeneous, linear with coefficient matrix A =

(
b c

−a −b

)
. The characteristic equation

is

det(A− λ I ) = λ2 + (ac− b2) = 0.

If H is positive or negative definite, then ac− b2 > 0, and so the roots of the characteristic
equation are purely imaginary: λ = ± i

√

ac− b2 . Since the eigenvalues are simple, the
stability criterion of Theorem 8.71 holds and we conclude that planar Hamiltonian systems
with definite Hamiltonian function are stable.
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8.9. Two-Dimensional Systems.

The two-dimensional case is particularly instructive, since many of the most important
phenomena are already made manifest there. Moreover, the solutions can be easily pictured
by their phase portraits. In this section, we will present a complete classification of the
possible qualitative behaviors of real, planar linear dynamical systems.

Setting u(t) = (u(t), v(t))T , such a system
¦
u = Au has the explicit form

du

dt
= au+ bv,

dv

dt
= cu+ dv, (8.73)

where A =

(
a b

c d

)
is the coefficient matrix. As in Section 8.1, we will refer to the (u, v)–

plane as the phase plane. In particular, phase plane equivalents (8.12) of second order
scalar equations form a special class.

According to (8.25), the characteristic equation for the given 2× 2 matrix is

det(A− λ I ) = λ2
− τ λ+ δ = 0, (8.74)

where

τ = trA = a+ d, δ = detA = ad− bc, (8.75)

are, respectively, the trace and the determinant of A. The nature of the eigenvalues, and
hence the solutions, is therefore almost entirely determined by these two quantities. The
sign of the discriminant

∆ = τ2
− 4 δ = (trA)2 − 4 detA = (a− d)2 − 4bc (8.76)

determines whether the roots or eigenvalues

λ =
τ ±

√

∆

2
(8.77)

are real or complex, and thereby plays a key role in the classification.

Let us summarize the different possibilities as classified by their qualitative behavior.
Each situation will be illustrated by a representative phase portrait, which plots a repre-
sentative sample of the solution trajectories in the phase plane. The complete taxonomy
appears in Figure 8.5 below.

Distinct Real Eigenvalues

The coefficient matrix A has two real, distinct eigenvalues λ1 < λ2 if and only if the
discriminant (8.76) of the quadratic equation (8.74) is positive: ∆ > 0. In this case, the
solutions take the exponential form

u(t) = c1 eλ1 t v1 + c2 eλ2 t v2, (8.78)

where v1,v2 are the eigenvectors and c1, c2 are arbitrary constants, to be determined by the
initial conditions. The asymptotic behavior of the solutions is governed by the size of the
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eigenvalues. Let Vk = {cvk}, k = 1, 2, denote the “eigenlines”, i.e., the one-dimensional
eigenspaces associated with each eigenvalue λk.

There are five qualitatively different cases, depending upon the signs of the two eigen-
values. These are listed by their descriptive name, followed by the required conditions on
the discriminant, trace and determinant of the coefficient matrix.

Ia. Stable Node: ∆ > 0, trA < 0, detA > 0.

If λ1 < λ2 < 0 are both negative, then 0 is an asymptotically stable node. The
solutions all tend to 0 as t → ∞. Since the first exponential eλ1 t decreases much faster
than the second eλ2 t, the first term in the solution (8.78) will soon become negligible, and
hence u(t) ≈ c2 eλ2 t v2 when t is large. Therefore, all solutions with c2 6= 0 will arrive at
the origin along a curve that is tangent to the eigenline V2. The solutions with c2 = 0
come in to the origin directly along the eigenline V1, and at a faster rate. Conversely, as
t → −∞, all solutions become unbounded: ‖u(t) ‖ → ∞. In this case, the first exponential
grows faster than the second, and so the solutions u(t) ≈ c1 eλ1 t v1 for t ¿ 0. Thus, as
they escape to∞, the solution trajectories become more and more parallel to the eigenline
V1 — except for those with c1 = 0 that remain in the eigenline V2.

Ib. Saddle Point : ∆ > 0, detA < 0.

If λ1 < 0 < λ2, then 0 is an unstable saddle point . Solutions (8.78) with c2 = 0 start
out on the eigenline V1 and go in to 0 as t → ∞, while solutions with c1 = 0 start on V2

and go to 0 as t 7→−∞. All other solutions become unbounded at both large positive
and large negative times. As t → +∞, the solutions approach the unstable eigenline V2,
while as t→ −∞, they asymptote to the stable eigenline V1. The eigenline V1 is called the
stable manifold , indicating that solutions that start on it eventually go to the equilibrium
point 0, while V2 is the unstable manifold , meaning that solutions on it go to equilibrium
as t → −∞.

Ic. Unstable Node: ∆ > 0, trA > 0, detA > 0.

If the eigenvalues 0 < λ1 < λ2 are both positive, then 0 is an unstable node. The phase
portrait is the same as that of a stable node, but the solution trajectories are traversed in
the opposite direction. Time reversal t → − t will convert an unstable node into a stable
node and vice versa; see Exercise . Thus, in the unstable case, the solutions all tend to
0 as t → −∞ and off to ∞ as t → ∞. Except for the solutions on the eigenlines, they
asymptote to V1 as t→ −∞, and become parallel to V2 as t →∞.

Id. Stable Line: ∆ > 0, trA < 0, detA = 0.

If λ1 < λ2 = 0, then every point on the eigenline V2 associated with the zero eigenvalue
is an equilibrium point. Every other solution moves along a straight line parallel to V1 and
tends to one of the equilibria on V2 as t →∞.

Ie. Unstable Line: ∆ > 0, trA > 0, detA = 0.

This is merely the time reversal of a stable line. If 0 = λ1 < λ2, then every point on
the eigenline V1 is an equilibrium. Every other solution moves off to ∞ along a straight
line parallel to V2 as t →∞, and tends to one of the equilibria on V1 as t → −∞.

9/5/03 316 c© 2003 Peter J. Olver



Complex Conjugate Eigenvalues

The coefficient matrix A has two complex conjugate eigenvalues

λ = µ± i ν, where µ = 1
2 τ = 1

2 trA, ν =
√

−∆,

if and only if its discriminant is negative: ∆ < 0. In this case, the real solutions can be
written in the phase–amplitude form (2.7):

u(t) = r eµt [ cos(ν t− σ)w + sin(ν t− σ) z ] , (8.79)

where v± = w± i z are the complex eigenvectors. As noted above, the two vectors w, z are
always linearly independent. The amplitude r and phase shift σ are uniquely prescribed
by the initial conditions. There are three subcases, depending upon the sign of the real
part µ, or, equivalently, the sign of the trace of A.

IIa. Stable Focus: ∆ < 0, trA < 0.

If µ < 0, then 0 is an asymptotically stable focus. As t →∞, the solutions all spiral in
to 0 with “frequency” ν — meaning it takes time 2π/ν for the solution to go once around
the origin. As t→ −∞, the solutions spiral off to ∞ with the same frequency.

IIb. Center : ∆ < 0, trA = 0.

If µ = 0, then 0 is a center . The solutions all move periodically around elliptical orbits,
with common frequency ν and period 2π/ν. In particular, solutions that start out near 0
stay nearby, and hence a center is a stable, but not asymptotically stable, equilibrium.

IIc. Unstable Focus: ∆ < 0, trA > 0.

If µ > 0, then 0 is an unstable focus. The phase portrait is the time reversal, t 7→− t,
of a stable focus, with solutions spiraling off to ∞ as t → ∞ and in to the origin as
t → −∞, again with a common “frequency” ν.

Incomplete Double Real Eigenvalue

The matrix will have a double real eigenvalue λ = 1
2 τ = 1

2 trA if and only if the
discriminant vanishes: ∆ = 0. The formula for the solutions depends on whether the
eigenvalue λ is complete or not. If λ is an incomplete eigenvalue, admitting only one
independent eigenvector v, then the solutions are no longer given by simple exponentials.
The general formula is

u(t) = (c1 + c2 t)eλt v + c2 eλtw, (8.80)

where (A− λ I )w = v, and so v,w form a Jordan chain for the coefficient matrix. We let
V = {cv} denote the eigenline associated with the genuine eigenvector v.

IIIa. Stable Improper Node: ∆ = 0, trA < 0, A 6= λ I .

If λ < 0 then 0 is an asymptotically stable improper node. Since t eλt is larger than
eλt for t > 1, the solutions u(t) ≈ c2 t eλt tend to 0 as t → ∞ along a curve that is
tangent to the eigenline V . Similarly, as t → −∞, the solutions go off to ∞, becoming
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more and more parallel to the eigenline, but moving away in the opposite direction from
their approach.

IIIb. Linear Motion: ∆ = 0, trA = 0, A6= λ I .

If λ = 0, then, as in case Id , every point on the eigenline V is an equilibrium point.
Every other solution is a linear, or, more correctly, affine function of T , and so moves along
a straight line parallel to V , going off to ∞ in either direction. The origin is an unstable
equilibrium point.

IIIc. Unstable Improper Node: ∆ = 0, trA > 0, A6= λ I .

If λ > 0, then 0 is an unstable improper node. The phase portrait is the time reversal
of the stable improper node.

Complete Double Real Eigenvalue

In this case, every vector in R2 is an eigenvector, and so the real solutions take the
form u(t) = eλt v, where v is an arbitrary constant vector. In fact, this case occurs if and
only if A = λ I is a multiple of the identity matrix.

IVa. Stable Star : A = λ I , λ < 0.

If λ < 0 then 0 is an asymptotically stable star. The solution trajectories are the rays
emanating from the origin, and the solutions go to 0 at an exponential rate as t →∞.

IVb. Trivial : A = O.

If λ = 0 then the only possibility is A = O. Now every solution is constant and every
point is a (stable) equilibrium point. Nothing happens! This is the only case not pictured
in Figure 8.5.

IVc. Unstable Star : A = λ I , λ < 0.

If λ > 0 then 0 is unstable. The phase portrait is the time reversal of the stable star,
and so the solutions move along rays, and tend to 0 as t → −∞.

Figure 8.6 indicates where the different possibilities lie, as prescribed by the trace and
determinant of the coefficient matrix. The horizontal axis indicates the value of τ = trA,
while the vertical axis refers to δ = detA. Points on the parabola τ 2 = 4 δ represent the
cases with vanishing discriminant ∆ = 0, and correspond to either stars or improper nodes
— except for the origin which is either linear motion or trivial. All the asymptotically stable
cases lie in the shaded upper left quadrant where trA < 0 and detA > 0. The borderline
points on the coordinate axes are either stable centers, when trA = 0, detA > 0, or stable
lines, when trA < 0, detA = 0, or the origin, which may or may not be stable depending
upon whether A is the zero matrix or not. All other values for the trace and determinant
result in unstable equilibria.

Remark : Time reversal t → − t changes the sign of the coefficient matrix A → −A,
and hence the sign of its trace, τ → − τ , while the determinant δ = detA = det(−A) is
unchanged. Thus, the effect is to reflect the plot in Figure 8.6 through the vertical axis,
interchanging the stable nodes and spirals with their unstable counterparts, while leaving
saddle points in the same qualitative form.
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Ia. Stable Node Ib. Saddle Point Ic. Unstable Node

IIa. Stable Focus IIb. Center IIc. Unstable Focus

IIIa. Stable Improper Node IIIb. Linear Motion IIIc. Unstable Improper Node

IVa. Stable Star IVc. Unstable Star Id. Stable Line Ie. Unstable Line

Figure 8.5. Phase Portraits.
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Figure 8.6. Stability Regions for Two–Dimensional Linear Systems.

In physical applications, the coefficient matrix A is usually not known exactly, and
so the physical system may, in fact, be a slight perturbation of the mathematical model.
Thus, it is important to know which systems are structurally stable, meaning the basic
qualitative features are preserved under sufficiently small changes in the coefficients.

Now, a small perturbation will alter the entries of the coefficient matrix slightly,
and hence move the trace and determinant by a comparably small amount. The net
effect is to slightly perturb its eigenvalues. Therefore, the question of structural stability
reduces to whether the eigenvalues have moved sufficiently far to send the system into a
different stability regime. Asymptotically stable systems remain stable under small enough
perturbations, since the property that the eigenvalues have negative real parts is preserved
under small perturbation. For a similar reason, unstable systems remain unstable under
small perturbations. On the other hand, a borderline stable system — either a center
or the trivial system — could become either asymptotically stable or unstable under an
adverse perturbation.

Structural stability requires more, since the overall phase portrait should not signifi-
cantly change. A system in any of the open regions in the Stability Figure 8.6, e.g., a stable
spiral, unstable node, saddle point, etc., is structurally stable, whereas a system that lies
on the parabola τ 2 = 4 δ, or the horizontal axis, or positive vertical axis, e.g., an improper
node, a stable line, etc., is not, since a small perturbation could send it into either of
the adjoining regions. In other words, structural stability requires that the eigenvalues be
distinct and have non-zero real part: Re λ 6= 0. This final result also applies to systems in
higher dimensions, [73].
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8.10. Dynamics of Structures.

Chapter 6 was concerned with the equilibrium configurations of mass-spring chains
and, more generally, structures made out of elastic bars. We are now able to analyze the
dynamical motions of such structures. Consider first a linear mass/spring chain consisting
of n masses m1, . . . ,mn connected together and, possibly, to the top and bottom supports
by springs. Let ui(t) denote the displacement

† from equilibrium of the ith mass, and ej(t)
the elongation of the jth spring. Since we are now interested in dynamics, both of these
are allowed to depend on time, t.

The motion of each mass is governed by Newton’s Second Law,

Force = Mass×Acceleration. (8.81)

The acceleration of the ith mass is the second derivative
¦¦
ui = d2ui/dt2 of its displace-

ment. The right hand sides of Newton’s Law are thus mi

¦¦
ui, which we collect together in

vector form M
¦¦
u by multiplying the second derivative of the displacement vector u(t) =

(u1(t), . . . , un(t) )
T
by the diagonal, positive definite mass matrixM = diag (m1, . . . ,mn).

Incidentally, the masses of the springs are assumed to be negligible in this approximation.

If, to begin with, we assume no external forcing of the mass/spring system and no
frictional effects, then the only force exerted on each mass is due to the elongations of its
two connecting springs, which is measured by the components of the internal force vector

f = −Ku = −ATC Au. (8.82)

HereK = ATC A the stiffness matrix for the chain, which is constructed from the (reduced)
incidence matrix A and the diagonal matrix of spring constants C, as in (6.11).

Substituting the internal force formula (8.82) into Newton’s Law (8.81) leads imme-
diately to the fundamental dynamical equations

M
d2u

dt2
= −Ku (8.83)

governing the free, frictionless motions of the system. The goal is to understand the
solutions of this system of second order ordinary differential equations, and then, rather
straightforwardly, generalize the methods to cover structures in two and three dimensions
as well as electrical circuits containing inductors, resistors and capacitors, all of which are
governed by the same basic second order system (8.83) based on the appropriate stiffness
or resistivity matrix K.

Example 8.73. The simplest case is that of a single mass connected to a fixed
support by a spring. The dynamical system (8.83) reduces to a scalar equation

m
d2u

dt2
+ k u = 0. (8.84)

† As in Section 6.1, the masses are only allowed to move in the direction of the chain, that is,
we restrict our attention to one-dimensional motion.
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Figure 8.7. Vibration of a Mass.

Here m > 0 is the mass, while k > 0 is the spring’s stiffness. The general solution to this
elementary homogeneous, second order linear ordinary differential equation is

u(t) = c1 cosω t+ c2 sinω t = r cos(ω t− δ), where ω =

√
k

m
(8.85)

is the natural frequency of vibration. We have used the phase-amplitude equation (2.7)
to rewrite the solution as a single cosine with an amplitude r =

√
c2
1 + c2

2 , and phase lag
δ = tan−1 c2/c1. The motion is periodic, with period P = 2π/ω. The frequency formula

ω =
√

k/m tells us that stiffer the spring or the lighter the mass, the faster the vibrations.
Take note of the square root; it tells us that, for instance, quadrupling the mass only slows
down the vibrations by a factor of two.

The constants c1, c2 — or their phase-amplitude counterparts r, δ — are determined
by the initial conditions. Physically, we need to specify both an initial position and an
initial velocity in order to uniquely prescribe the subsequent motion of the system:

u(t0) = a,
¦
u(t0) = b. (8.86)

The resulting solution is most conveniently written in the form

u(t) = a cosω (t− t0) +
b

ω
sinω (t− t0) = r cos

[
ω (t− t0)− δ

]
(8.87)

which has amplitude and phase given by

r =

√
a2 +

β2

ω2
, δ = tan−1 b

a ω
. (8.88)

A typical solution is plotted in Figure 8.7.

Let us turn to a more general mass-spring chain or structure. Just as exponentials
form the basic building blocks for the solution of systems of first order ordinary differential
equations, trigonometric functions form the basic building blocks for solutions to undamped
mechanical (and electrical) vibrations governed by second order systems. For simplicity,
let us first assume that the masses are all the same and equal to 1 (in some appropriate
units), so that (8.83) reduces to

d2u

dt2
= −Ku. (8.89)
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Mimicking our success in the first order case, let us try substituting the trigonometric
ansatz

u(t) = cos(ω t) v, (8.90)

with v 6= 0 denoting a constant vector, into the system (8.89). Differentiating (8.90)
directly, we find

du

dt
= −ω sin(ω t) v,

d2u

dt2
= −ω2 cos(ω t) v.

Therefore, our ansatz (8.90) will solve (8.89) if and only if

K v = ω2 v,

which means that v is an eigenvector of K with eigenvalue

λ = ω2. (8.91)

Now, there is nothing special about the cosine function — the same computation also
applies to the sine function, and tells us that u(t) = sin(ω t) v is also a solution whenever
v is an eigenvector with eigenvalue λ = ω2. Summarizing:

Lemma 8.74. If v is an eigenvector of the matrix K with eigenvalue λ = ω2, then

the trigonometric vector functions u(t) = cos(ω t) v and u(t) = sin(ω t) v are solutions to
the second order system

¦¦
u = −Ku.

Remark : Alternatively, one can utilize the complex exponential solutions e iωt v and
e− iωt v, which are related to the trigonometric solutions via Euler’s formula (3.76). This
is common practice in electrical circuit analysis — although electrical engineers tend to
use j instead of i to denote the square root of −1.

Stable Structures

Let us next analyze the motion of a stable structure, of the type introduced in Sec-
tion 6.3. According to Theorem 6.8, stability requires that the reduced stiffness matrix
be positive definite: K > 0 . Theorem 8.39 says that all the eigenvalues of K are strictly
positive, λi > 0, which is good, since it implies that the eigenvalue/frequency relation
(8.91) yields real frequencies ωi =

√
λi . Moreover, all positive definite matrices are com-

plete, and so, even when there are fewer than n different eigenvalues, there always exist a
complete system of n linearly independent real eigenvectors that form an orthogonal basis
for Rn.

Since (8.89) is a second order system of homogeneous linear equations in n unknowns,
we require 2n linearly independent solutions. Lemma 8.74 produces 2 independent solu-
tions for each positive eigenvalue (counted with multiplicity), and hence, assuming positive
definiteness, there are indeed 2n linearly independent solutions,

ui(t) = cos(ωi t )vi = cos
(√

λi t
)
vi,

ũi(t) = sin(ωi t )vi = sin
(√

λi t
)
vi,

, i = 1, . . . , n, (8.92)
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Figure 8.8. Quasi–Periodic and Periodic Functions.

governed by the n mutually orthogonal (or even orthonormal) eigenvectors v1, . . . ,vn of
K. The general solution to (8.89) is an arbitrary linear combination,

u(t) =

n∑

i=1

[
ci cosωi t+ di sinωi t

]
vi =

n∑

i=1

ri cos(ωi t− δi) vi, (8.93)

of these 2n basic solutions. The 2n coefficients ci, di — or their phase–amplitude counter-
parts ri > 0, and 0 ≤ δi < 2π — are uniquely determined by the initial conditions. As in
(8.86), we need to specify both the initial positions and initial velocities of all the masses;
this requires a total of 2n initial conditions

u(t0) = a,
¦
u(t0) = b. (8.94)

The individual solutions (8.92) are known as the normal modes of vibration of our
system, and the ωi =

√
λi the normal frequencies, which are the square roots of the

eigenvalues of the stiffness matrix . Each is a periodic, vector-valued function of period
Pi = 2π/ωi. Linear combinations of such periodic functions are, in general, called quasi-

periodic. Unless the ratios ωi/ωj between the frequencies are all rational numbers, such a
quasi-periodic function will never precisely repeat itself, and so can appear to be chaotic,
even though it is built up from a few very simple periodic constituents. The reader will
find it very instructive to graph some simple quasiperiodic functions, say

f(t) = c1 cos t+ c2 cos
√

5 t

for various values of c1, c2. Comparison with a case where the frequencies are all rational,
say

f(t) = c1 cos t+ c2 cos
7
3 t

is also instructive. The former is truly quasiperiodic, while the the latter is, in fact, periodic
with period 6π. Most structures and circuits exhibit quasi-periodic vibrational motions.
Let us analyze a couple of simple examples.

Example 8.75. Consider a chain consisting of two equal unit masses connected in
a row to supports by three springs, as in Figure 8.9. If the spring constants are c1, c2, c3

(from top to bottom), then the stiffness matrix is

K =

(
1 −1 0
0 1 −1

)


c1 0 0
0 c2 0
0 0 c3





1 0
−1 1
0 −1


 =

(
c1 + c2 −c2

−c2 c2 + c3

)

9/5/03 324 c© 2003 Peter J. Olver



m1

m2

Figure 8.9. Motion of a Double Mass/Spring Chain with Fixed Supports.

The eigenvalues and eigenvectors of K will prescribe the normal modes of vibration and
natural frequencies of our two–mass chain.

. Let us look in detail at the case of identical springs, and choose our units so that

c1 = c2 = c3 = 1. Then K =

(
2 −1
−1 2

)
has eigenvalues and eigenvectors

λ1 = 1, v1 =

(
1
1

)
, λ2 = 3, v2 =

(
−1
1

)
.

The general solution to the system is then

u(t) = r1 cos(t− δ1)

(
1
1

)
+ r2 cos(

√

3 t− δ2)

(
−1
1

)
.

The first summand is the normal mode vibrating at the relatively slow frequency ω1 = 1,
with the two masses moving in tandem. The second summand is the normal mode that
vibrates faster, with frequency ω2 =

√
3, in which the two masses move in opposing

directions. The general motion is a linear combination of these two normal modes. Since
the frequency ratio ω2/ω1 =

√
2 is irrational, the motion is quasi-periodic. The system

never quite returns to its initial configuration — unless it happens to be vibrating in only
one of the normal modes. Figure 8.9. A typical graph of the displacements of the masses
is plotted in

If we eliminate the bottom spring, so the masses are just hanging from the top support

as in Figure 8.10, then the reduced incidence matrix A =

(
1 −1
0 1

)
loses its last row.

Assuming that the springs have unit stiffnesses c1 = c2 = 1, the corresponding stiffness
matrix is

K = ATA =

(
1 −1
0 1

)(
1 0
−1 1

)
=

(
2 −1
−1 1

)
.

The eigenvalues and eigenvectors are

λ1 =
3−

√
5

2
, v1 =

(
1

1+
√

5
2

)
, λ2 =

3 +
√
5

2
, v2 =

(
1

1−
√

5
2

)
.
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Figure 8.10. Motion of a Double Mass/Spring Chain with One Free End.

The general solution to the system is then

u(t) = r1 cos

(√
3−
√

5
2 t− δ1

)(
1

1+
√

5
2

)
+ r2 cos

(√
3+
√

5
2 t− δ2

)(
1

1−
√

5
2

)
.

The slower normal mode, with frequency ω1 =

√
3−
√

5
2 , has the masses moving in tandem,

with the bottom mass moving proportionally
1 +

√
5

2
farther. The faster normal mode,

with frequency ω2 =

√
3+
√

5
2 , has the masses moving in opposite directions, with the top

mass experiencing the larger displacement. Moreover, both modes vibrate slower than
when there is a bottom support. A typical solution is plotted in Figure 8.10.

Example 8.76. Consider a three mass/spring chain, with unit springs and masses,

and both ends attached to fixed supports. The stiffness matrix K =



2 −1 0
−1 2 −1
0 −1 2




has eigenvalues and eigenvectors

λ1 = 2−
√

2 , λ2 = 2, λ3 = 2 +
√

2 ,

v1 =



1
√
2
1


, v2 =



1
0
−1


, v3 =




1
−
√
2
1


.

The three normal modes, from slowest to fastest, have frequencies

(a) ω1 =
√
2−

√
2 : all three masses move in tandem, with the middle one moving

√
2 times as far.

(b) ω2 =
√
2 : the two outer masses move in opposing directions, while the

middle mass does not move.

(c) ω3 =
√
2 +

√
2 : the two outer masses move in tandem, while the inner mass

moves
√
2 times as far in the opposite direction.
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The general motion is a quasi-periodic combination of these three normal modes. As such,
to the naked eye it can look very complicated. Our mathematical analysis unmasks the
innate simplicity, where the complex dynamics are, in fact, entirely governed by just three
fundamental modes of vibration.

Unstable Structures

So far, we have just dealt with the stable case, when the reduced incidence matrix
has trivial kernel, kerA = {0}, and so the stiffness matrix K = ATCA is positive definite.
Unstable configurations, which can admit rigid motions and/or mechanisms, will provide
additional complications. The simplest version is a single mass that is not attached to
any spring. The mass experiences no restraining force, and has motion governed by the
elementary second order ordinary differential equation

m
d2u

dt2
= 0. (8.95)

The general solution

u(t) = c t+ d (8.96)

has the mass either sitting still at a specified position or moving in a straight line with
constant velocity c 6= 0.

More generally, suppose that the stiffness matrix K = ATC A for our structure is only
positive semi-definite. Each vector 06= v ∈ kerA = kerK represents a mode of instability
of the system. SinceKv = 0, we can interpret v as a null eigenvector ofK, with eigenvalue
λ = 0. Lemma 8.74 gives us two solutions to the dynamical equations (8.89) with associated
“frequency” ω =

√

λ = 0. The first, u(t) = cos(ω t) v = v is a constant solution, i.e., an
equilibrium configuration of the system. Thus, an unstable system does not have a unique
equilibrium configuration, since every null eigenvector v ∈ kerK gives a constant solution.
On the other hand, the second solution, u(t) = sin(ω t)v = 0, is trivial, and of no help for
constructing the general solution. But, to obtain the general solution to the system, we
still need a second independent solution coming from the null eigenvalue. In analogy with
the scalar case (8.96), let us try the solution ansatz u(t) = tv, which works, since

du

dt
= v, 0 =

d2u

dt2
= Ku = tKv.

Therefore, to each element of the kernel of the stiffness matrix — i.e., each rigid motion
and mechanism — there is a two-dimensional family of solutions

u(t) = (c t+ d)v. (8.97)

When c = 0, it reduces to a constant equilibrium solution; when c 6= 0, the solution is
moving with constant velocity in the null direction v representing an unstable mode in
the system. The general solution will be a linear superposition of the vibrational modes
corresponding to the positive eigenvalues and these unstable linear motions corresponding
to the zero eigenvalues.
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Figure 8.11. A Triatomic Molecule.

Remark : If the null direction v represents a rigid translation, then the entire structure
will move in that direction. If v represents an infinitesimal rotation, then, owing to our
linear approximation to the true nonlinear bar motions, the individual masses will move
in straight lines, which are the tangent approximations to the circular motion that occurs
in the true physical, nonlinear regime. We refer to the earlier discussion in Chapter 6 for
details. Finally, if we excite a mechanism, then the masses will again follow straight lines,
moving in different directions, whereas in the full nonlinear physical regime the masses
may move along much more complicated curved trajectories.

Example 8.77. Consider a system of three unit masses connected in a line by two
unit springs, but not attached to any fixed supports, as illustrated in Figure 8.11. This
structure could be viewed as a simplified model of a triatomic molecule that is only allowed

to move the vertical direction. The incidence matrix is A =

(
−1 1 0
0 −1 1

)
and, since we

are dealing with unit springs, the stiffness matrix is

K = ATA =



−1 0
−1 1
0 1



(
−1 1 0
0 −1 1

)
=



1 −1 0
−1 2 −1
0 −1 1


 .

The eigenvalues and eigenvectors of K are easily found:

λ1 = 0, λ2 = 1, λ3 = 3 ,

v1 =



1
1
1


, v2 =



1
0
−1


, v3 =



1
−2
1


.

Each positive eigenvalue provides two trigonometric solutions, while the zero eigenvalue
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leads to solutions that depend linearly on t. This yields the required six basis solutions:

u1(t) =



1
1
1


, u3(t) =



cos t
0

− cos t


, u5(t) =




cos
√
3 t

− 2 cos
√
3 t

cos
√
3 t


,

u2(t) =




t

t

t


, u4(t) =



sin t

0
− sin t


, u6(t) =




cos
√
3 t

− 2 cos
√
3 t

cos
√
3 t


.

The first solution u1(t) is a constant, equilibrium mode, where the masses rest at a fixed
common distance from their reference positions. The second u2(t) is the unstable mode,
corresponding to a uniform vertical translational motion of the masses without any stretch
of the interconnecting springs. The final four solutions represent vibrational modes. In the
first pair u3(t),u4(t), the two outer masses move in opposing directions, while the middle
mass remains fixed, while the final pair u5(t),u6(t) has the two outer masses moving in
tandem, while the inner mass moves twice as far in the opposing direction. The general
solution is a linear combination of the six normal modes,

u(t) = c1u1(t) + · · · + c6u6(t), (8.98)

and corresponds to the molecule moving alon its axis at a fixed speed while the individual
masses perform a quasi-periodic vibration.

Let us see if we can predict the motion of the molecule from its initial conditions

u(0) = a,
¦
u(0) = α,

where a = ( a, b, c )
T
is the initial displacements of the three atoms, while α = (α, β, γ )

T
is

their initial velocities. Substituting the solution formula (8.98) leads to the linear systems

c1 v1 + c3 v2 + c5 v3 = a, c2 v1 + c4 v2 +
√

3 c6 v3 = α,

for the coefficients c1, . . . , c6. Since the eigenvectors of the symmetric matrix K are mu-
tually orthogonal, we can use our orthogonality formula to immediately compute the co-
efficients:

c1 =
a · v1

‖v1 ‖
2
=

a+ b+ c

3
, c3 =

a · v2

‖v2 ‖
2
=

a− c

2
, c5 =

a · v3

‖v3 ‖
2
=

a− 2b+ c

6
,

c2 =
α · v1

‖v1 ‖
2
=

α+ β + γ

3
, c4 =

α · v2

‖v2 ‖
2
=

α− γ

2
, c6 =

α · v3
√
3 ‖v3 ‖

2
=

α− 2β + γ

6
√
3

.

In particular, the unstable translational mode is excited if and only if its coefficient c2 6= 0
is non-zero, and this occurs if and only if there is a nonzero net initial velocity of the
molecule: α + β + γ 6= 0. In this case the vibrating molecule will move off to ∞ at
a uniform velocity c = c2 =

1
3 (α+ β + γ) equal to the average of the individual initial

velocities. On the other hand, if α+β+γ = 0, then the unstable mode will not be excited
and the molecule will vibrate quasiperiodically, with frequencies 1 and

√
3, while sitting

at a fixed location.
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The observations established in this example hold, in fact, in complete generality. Let
us state the result, leaving the details of the proof as an exercise for the reader.

Theorem 8.78. The solution to unstable second order linear system with positive

semi-definite coefficient matrix K = ATC A is a combination of a quasi-periodic vibration

and a uniform motion at a fixed velocity in the direction of a null eigenvector v ∈ kerA.
In particular, the system does not experience any unstable motion, and so will just vibrate

around a fixed position, if and only if the initial velocity
¦
u(t0) ∈ (kerK)

⊥ = rngK is

orthogonal to the subspace kerA = kerK of all unstable directions.

As usual, the unstable modes correspond to either translations or rotations, or to
mechanisms of the structure. To prevent a structure from exhibiting an unstable motion,
one has to ensure that the initial velocity is orthogonal to all of the unstable directions.
The result is in direct analogy with Theorem 6.8 that requires a force to be orthogonal to
all such unstable modes in order to maintain equilibrium in the structure.

Systems with Different Masses

When a structure has differing masses at the nodes, the Newtonian equations of motion
take the more general form

M
¦¦
u = −Ku, or, equivalently,

¦¦
u = −M−1Ku = −P u. (8.99)

The mass matrix M > 0 is positive definite (and, usually, diagonal, although the general
theory does not require this latter restriction), while the stiffness matrix K = ATC A

is either positive definite or, in the unstable situation when kerA 6= {0}, positive semi-
definite. The coefficient matrix

P =M−1K =M−1ATC A (8.100)

is not in general symmetric, and so we cannot directly apply the preceding constructions.
However, P does have the more general self-adjoint form (7.68) based on the weighted
inner products

〈u ; ũ 〉 = uTM ũ, 〈〈v ; ṽ 〉〉 = vTC ṽ, (8.101)

on, respectively, the domain and target spaces for A.

If kerA = {0}, then P > 0 is positive definite in the generalized sense of Defini-
tion 7.58. In this case, substituting our standard trigonometric solution ansatz u(t) =
cos(ω t) v into the system results in a generalized matrix eigenvalue problem

K v = λM v, or, equivalently, P v = λv, with λ = ω2. (8.102)

The matrix M plays the role of the identity matrix I in the standard eigenvalue equation
(8.17). The proofs for the standard eigenvalue problem are easily modified to handle this
situation, and demonstrate that all the eigenvalues are real and non-negative. Moreover
the eigenvectors are orthogonal, but now with respect to the weighted inner product 〈u ; ũ 〉
governed by the mass matrix M . Details are relegated to the exercises.
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Figure 8.12. Damped Vibrations.

Friction and Damping

So far, we have not allowed frictional forces to affect the motion of our dynamical
equations. In many physical systems, friction exerts a force on a mass in motion which is
proportional to its velocity. In the simplest case of a single mass attached to a spring, one
amends the balance of forces in the undamped Newton equation (8.84) to obtain

m
d2u

dt2
+ β

du

dt
+ k u = 0. (8.103)

As before, m > 0 is the mass, and k > 0 the spring system, while β > 0 measures the effect
of a velocity-dependent frictional force — the larger β the greater the frictional damping
of the motion.

The solution of this more general second order homogeneous linear ordinary differential
equation is found by substituting the usual exponential ansatz u(t) = eλt into the equation,
leading to the quadratic characteristic equation

mλ2 + β λ+ k = 0. (8.104)

There are three possible cases, illustrated in Figure 8.12:

Underdamped : If 0 < β2 < 4mk, then (8.104) has two complex-conjugate roots

λ = −
β

2m
± i

√
4mk − β2

2m
= −µ± i ν . (8.105)

The general solution to the differential equation is

u(t) = e−µt
(

c1 cos ν t+ c2 sin ν t
)
= r e−µt cos(ν t− δ), (8.106)

which represents a damped periodic motion. The time-dependent amplitude of vibration
a(t) = r e−µt decays to zero at an exponential rate as t → ∞. The formula for the rate
of decay, µ = β/(2m), tells us that more friction or less mass will cause the system to
return to equilibrium faster. (Of course, mathematically, it never quite gets there, but in
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a real physical system after a sufficiently long time the difference is not noticeable.) On
the other hand, the frequency of vibration,

ν =

√
4mk − β2

2m
=

√
k

m
−

β2

4m2
, (8.107)

remains fixed throughout the motion. The frictionally modified vibrational frequency ν

is strictly smaller than the undamped frequency ω =
√

k/m , and hence friction has the
effect of slowing down vibrations while progressively diminishing their amplitudes. As the
friction approaches a critical threshold, β ↗ 2

√

mk , the vibrational frequency goes to
zero, ν → 0, and so the period of vibration P = 2π/ν goes to ∞.

Overdamped : If β2 > 4mk, then the characteristic equation (8.104) has two negative
real roots

λ1 = −
β +

√
β2 − 4mk

2m
, λ2 = −

β −
√

β2 − 4mk

2m
,

with λ1 < λ2 < 0. The solution

u(t) = c1 eλ1 t + c2 eλ2 t (8.108)

is a linear combination of two decaying exponentials. An overdamped system models the
motion of a mass in a vat of molasses. Its “vibration” is so slow that it can pass at most
once through its equilibrium position u = 0, and then only when its initial velocity is quite
large. In the long term, since λ1 < λ2, the first exponential e

λ1 t will decay to zero faster,
and hence the overall decay rate of the solution is (unless c2 = 0) governed by the less
negative eigenvalue λ2.

Critically Damped : The borderline case occurs when β2 = 4mk, which means that
the characteristic equation (8.104) has only a single negative real root:

λ1 = −
β

2m
.

In this case, our ansatz only supplies one exponential solution eλ1 t = e−β t/2m. The
second linearly independent solution is obtained by multiplication by t, leading to the
general solution

u(t) = (c1 t+ c2)e
−β t/2m. (8.109)

Even though the formula looks quite different, its qualitative behavior is very similar to
the overdamped case. The factor of t plays an unimportant role, since the asymptotics
of this solution are almost entirely governed by the decaying exponential function. This
represents the nonvibrating solution that has the slowest possible decay rate — reducing
the frictional coefficient any further will permit a damped periodic vibration to appear.

In all three cases, provided the frictional coefficient is positive, β > 0, the zero solution
is globally asymptotically stable. Physically, since there is no external forcing, all solutions
eventually return to equilibrium as the friction gradually overwhelms any initial motion.
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Remark : You may, if you prefer, convert the second order equation (8.103) into a first
order system by adopting the phase plane variables u and v =

¦
u. The coefficient matrix

of the equivalent phase plane system
¦
u = Au is A =

(
0 1

− c/m − b/m

)
. In terms of our

classification of two-dimensional systems, the undamped case corresponds to a center, the
underdamped case to a stable focus, the critically damped case to a stable improper node,
and the overdamped case to a stable node. The reader should verify that the relevant
conditions are met in each case and correlate the phase portraits with the time plots in
Figure 8.12.

This concludes our discussion of the scalar case. Similar considerations apply to
mass/spring chains, and two and three-dimensional structures. The frictionally damped
system has the general form

M
d2u

dt2
+B

du

dt
+Ku = 0, (8.110)

where the mass matrix M > 0 and the matrix of frictional coefficients B > 0 are both
diagonal, positive definite, while the stiffness matrix K = ATC A ≥ 0 is a positive semi-
definite Gram matrix constructed from the reduced incidence matrix A. The mathematical
details in this case are sufficiently complicated that we shall leave their analysis as an
advanced project for the motivated student.

8.11. Forcing and Resonance.

So far, we have allowed our structure to vibrate on its own. It is now time to start
applying external forces — to see what happens when we shake it. In this section, we will
investigate the effects of periodic forcing on both undamped and damped systems. More
general types of forcing can be handled by the variation of parameters method, cf. [23].

The simplest case is that of a single mass connected to a spring without any frictional
damping. We append an external forcing function f(t) to the homogeneous (unforced)
equation (8.84), leading to the inhomogeneous ordinary differential equation

m
d2u

dt2
+ k u = f(t), (8.111)

in which m > 0 is the mass and k > 0 the spring stiffness. We are particularly interested
in the case of periodic forcing

f(t) = α cos η t (8.112)

of frequency η > 0 and amplitude α. To find a particular solution to (8.111), (8.112), we
use the method of undetermined coefficients† which tells us to guess a solution ansatz of
the form

u?(t) = a cos η t+ b sin η t, (8.113)

† One can also use variation of parameters, although the intervening calculations are slightly
more complicated.
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Figure 8.13. Beats in a Periodically Forced Vibration.

where a, b are constant. Substituting this ansatz into the differential equation, we find

m
d2u?
dt2

+ ku? = a(k −mη2) cos η t+ b(k −mη2) sin η t = α cos η t.

We can solve for
a =

α

k −mη2
=

α

m(ω2 − η2)
, b = 0,

provided the denominator is nonzero:

k −mη2 = m(ω2
− η2)6= 0. (8.114)

Here

ω =

√
k

m
(8.115)

refers to the natural, unforced vibrational frequency of the system, while η is the forcing
frequency. Therefore, provided the forcing frequency is not equal to the system’s natural
frequency, η 6= ω, there exists a particular solution

u?(t) = a cos η t =
α

m(ω2 − η2)
cos η t (8.116)

that vibrates at the same frequency as the forcing function.

The general solution to the inhomogeneous system (8.111) is found, as usual, by adding
in an arbitrary solution to the homogeneous equation, (8.85), yielding

u(t) = r cos(ω t− δ) + a cos η t, where a =
α

m(ω2 − η2)
, (8.117)

and where r and δ are determined by the initial conditions. The solution is therefore a
quasiperiodic combination of two periodic motions — the first, vibrating with frequency ω,
represents the internal or natural vibrations of the system, while the second, with frequency
η, represents the response of the system to the periodic forcing. Due to the factor ω2

− η2

in the denominator of (8.117), the closer the forcing frequency is to the natural frequency,
the larger the overall amplitude of the response, and the more likely the spring breaks.
displays the graph of

Suppose we start the mass initially at equilibrium, so the initial conditions are

u(0) = 0,
¦
u(0) = 0. (8.118)

Substituting the solution formula (8.117) and solving for r, δ, we find that

r = −a, δ = 0.
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Thus, the solution to the initial value problem can be written in the form

u(t) = a
(
cos η t− cosω t

)
= 2a sin

(
ω − η

2 t

)
sin

(
ω + η

2 t

)
, (8.119)

using a standard trigonometric identity, cf. Exercise . The factor sin 1
2 (ω + η)t represents

a periodic motion whose frequency is the average of the natural and the forcing frequen-
cies. If the forcing frequency η is close to the natural frequency ω, then the initial factor
2a sin 1

2 (ω − η)t can be viewed as a periodically varying amplitude, whose vibrational fre-
quency 1

2 (ω − η) is much slower. This factor is responsible for the phenomenon of beats,
heard, for example, when two tuning forks of close but not exactly equal pitch vibrate near
each other. The resulting sound periodically waxes and wanes in intensity. Figure 8.13
displays the graph of the particular function

cos 14 t− cos 15.6 t = 2 sin .8 t sin 14.8 t.

The slowly varying amplitude 2 sin .8 t is clearly visible as the envelope of the relatively
rapid vibrations of frequency 14.8.

If we force the system at exactly the natural frequency η = ω, then the trigonomet-
ric ansatz (8.113) does not work. This is because both terms are now solutions to the
homogeneous equation, and so cannot be combined to form a solution to the inhomo-
geneous version. In this situation, there is a simple modification to the ansatz, namely
multiplication by t, that does the trick. Substituting

u?(t) = a t cosω t+ b t sinω t (8.120)

into the differential equation (8.111), we find

m
d2u?
dt2

+ k u? = − 2 amω sinω t+ 2 bmω cosω t = α cosω t,

and so
a = 0, b =

α

2mω
.

Combining the resulting particular solution with the solution to the homogeneous equation
leads to the general solution

u(t) = r cos(ω t− δ) +
α

2mω
t sinω t. (8.121)

Both terms vibrate with frequency ω, but the second has a linearly growing amplitude
that gets larger and larger as t → ∞; see Figure 8.14. The mass will oscillate more and
more wildly until the spring eventually breaks. In this situation, the system is said to be in
resonance, and the increasingly wild oscillations are provoked by forcing it at the resonant
frequency ω.

If we are very close to resonance, the oscillations induced by the particular solution
(8.119) will have extremely large, although not unbounded, amplitude a. The lesson is,
never force a system at or close to its natural frequency (or frequencies) of vibration. The
classic example is the 1940 Tacoma Narrows Bridge disaster, when the vibration in the
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Figure 8.14. Resonance.

bridge caused by a strong wind was close enough to the bridge’s natural frequency to cause
it to oscillate wildly and collapse! A movie taken at the time is particularly impressive.
A second example is the old practice of British (and subsequently, U.S.) infantry who,
learning from experience, do not march in unison across a bridge so as not to set off a
resonant frequency and cause it to collapse.

If we include frictional effects, then we can partially mollify the wild behavior near
the resonant frequency. The frictionally damped vibrations of a mass on a spring, when
subject to periodic forcing, can be described by the inhomogeneous version

m
d2u

dt2
+ β

du

dt
+ k u = α cos η t (8.122)

of equation (8.103). Let us assume that the friction is sufficiently small as to keep us in the
underdamped regime β2 < 4mk. Since neither summand solves the homogeneous system,
we can use the trigonometric solution ansatz (8.113) to construct the particular solution

u?(t) = a cos(η t− ε) where a =
α√

m2(ω2 − η2)2 + β2 η2
(8.123)

represents the amplitude of the response to the periodic forcing, with ω =
√

k/m contin-
uing to denote the undamped resonant frequency (8.115), while

ε = tan−1 β ω

m(ω2 − η2)
(8.124)

represents a phase lag in the response of the system that is due to the friction.

The general solution is

u(t) = r e−µt cos(ν t− δ) + a cos(η t− ε), (8.125)

where r, δ are determined by the initial conditions, while λ = µ + i ν are the roots of the
characteristic equation, cf. (8.105). The first term — the solution to the homogeneous
equation — is called the transient since it decays exponentially fast to zero. Thus, at
large times, the internal motion of the system that might have been excited by the initial
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Figure 8.15. The Basic RLC Circuit.

conditions dies out, and only the particular solution (8.123) incited by the forcing persists.
The amplitude of the persistent response (8.123) is at a maximum at the resonant frequency
η = ω, where it takes the value amax = α/(β ω). Thus, the smaller the frictional coefficient
β (or the slower the resonant frequency ω) the more likely the breakdown of the system
due to an overly large response.

Friction also induces a phase shift ε in the response of the system to the external
forcing. Speeding up the forcing frequency η increases the overall phase shift, which has
the value of 1

2 π at the resonant frequency η = ω, so the system lags a quarter period
behind the forcing, and reaches a maximum ε = π as η → ∞. Thus, the response of the
system to a high frequency forcing is almost exactly out of phase — the mass is moving
downwards when the force is pulling it upwards, and vice versa!

Electrical Circuits

The Electrical–Mechanical Correspondence will continue to operate in the dynamical
universe. As we learned in Chapter 6, the equations governing the equilibria of simple
electrical circuits and the mechanical systems such as mass/spring chains and structures
are modeled by the same basic mathematical structure. In a similar manner, circuits
with time-varying currents can also be modeled by linear dynamical systems of ordinary
differential equations.

In this section, we analyze the simplest situation of an RLC circuit consisting of a
resistor R, an inductor L and a capacitor C connected together in a loop as illustrated
in Figure 8.15. Let u(t) denote the current in the circuit at time t. As the current passes
through each circuit element, it induces a corresponding voltage, which we denote by vR, vL
and vC . The voltages are prescribed by the basic laws of electrical circuit design.

(a) First, as we know from Section 6.2, the resistance R ≥ 0 in the circuit is the propor-
tionality factor between voltage and current, so vR = R u.

(b) The voltage passing through an inductor is proportional to the rate of change in the
current. Thus, vL = L

¦
u, where L > 0 is the inductance, and the dot indicates

time derivative.
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(c) On the other hand, the current passing through a capacitor is proportional to the rate
of change in the voltage, and so u = C

¦
vC , where C > 0 denotes the capacitance.

We integrate this relation to produce the capacitor voltage vC =

∫
u(t)

C
dt.

The combination of all the induced voltages must equal the externally applied voltage
from, say, a battery. The precise rules governing these voltages are:

The voltage balance law tells us that the total of these individual voltages must equal
any externally applied voltage coming from, say, a battery or generator. Therefore,

vR + vL + vC = vB ,

where vB = f(t) denotes the applied voltage due to a time-varying source. Substituting
the preceding formulae, we deduce that the current u(t) in our circuit satisfies following
linear integro-differential equation

L
du

dt
+R u+

∫
u

C
dt = f(t). (8.126)

We can convert this into a differential equation by differentiating both sides with respect
to t. Assuming, for simplicity, that L,R and C are constant, the result is the linear second
order ordinary differential equation

L
d2u

dt2
+R

du

dt
+
1

C
u = f ′(t). (8.127)

In particular, the homogeneous version, with f ′(t) ≡ 0, governs the current in an RLC

circuit with a constant applied voltage source.

Comparing (8.127) with the equation (8.103) for a mechanically vibrating mass, we
see that the analogy bewtween electrical circuits and mechanical structures developed
in Chapter 6 continues to hold in the dynamical regime. The current corresponds to
the displacement. The inductance plays the role of mass, the resistance corresponds to
friction, while the reciprocal 1/C of capacitance is analogous to the spring stiffness. Thus,
all of our analytical conclusions regarding stability of equilibria, qualitative behavior and
formulae for solutions, etc., that we established in the mechanical context can, suitably
re-interpreted, be immediately applied to electrical circuit theory.

In particular, an RLC circuit is underdamped if R2 < 4L/C, and the current u(t)
oscillates with frequency

ν =

√
1

C L
−

R2

4L2
, (8.128)

while slowly dying off to zero. In the overdamped and critically damped cases R2
≥ 4L/C,

where the resistance of the circuit is large, the current merely decays to zero exponentially
fast and there is no longer any oscillatory behavior in the circuit. Attaching an alternating
current source f(t) = f0 + a sin η t to the circuit will induce resonance in the case of no
resistance if the forcing frequency is equal to the circuits natural internal frequency. Details
are relegated to the exercises.
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Forcing and Resonance in Systems

Let us very briefly discuss the effect of periodic forcing on a more complicated system.
For undamped mass/spring chains, structures and more complicated resistanceless LC

circuits, we are led to consider a periodically forced second order system

M
¦¦
u+Ku = cos(ω t) a, (8.129)

where a is a constant vector representing both a magnitude and a “direction” of the
forcing. Here M > 0 is the diagonal mass matrix (or inductance matrix in a circuit),
while K = ATC A the (semi-)definite stiffness (or conductance) matrix for the system. We
are ignoring friction (resistance) for simplicity. More general periodic and quasiperiodic
forcing terms can be built up, via the general inhomogeneous superposition principle of
Theorem 7.42, as a linear combination of such simple solutions.

To find a particular solution to the system, let us try the trigonometric ansatz

u?(t) = cos(ω t)w (8.130)

where w is a constant vector. Substituting into (8.129) leads to a linear algebraic system

(K − λM)w = a, where λ = ω2. (8.131)

If equation (8.131) has a solution, then our ansatz (8.130) is valid, and we have produced
a particular vibration of the system that has the same frequency as the forcing vibration.
The general solution, then, will be a quasi-periodic combination of this particular solution
coupled with the vibrations at the system’s natural, unforced frequencies. In particular, if
λ = ω2 is not a generalized eigenvalue† of the matrix pair K,M , as in (8.102), then the
coefficient matrix K −λM is nonsingular, and so (8.131) can be solved for any right hand
side a.

The more interesting case is when K − λM is singular, its kernel being equal to the
generalized eigenspace Vλ. In this case, (8.131) will have a solution w if and only if a
lies in the range of K − λM . According to the Fredholm Alternative Theorem 5.51, the
range is the orthogonal complement of the cokernel, which, since the coefficient matrix is
symmetric, is the same as the kernel. Therefore, (8.131) will have a solution if and only
if a is orthogonal to Vλ, i.e., a · v = 0 for every eigenvector v for the eigenvalue λ. Thus,
one can force a system at a natural frequency without inciting resonance provided the
“direction” of forcing, as governed by the vector a, is orthogonal to the natural directions
of motion of the system, as governed by the eigenvectors for that particular frequency.

If this orthogonality constraint is not satisfied, then the periodic solution ansatz
(8.130) does not apply, and we are in a truly resonant situation. Inspired by the scalar
solution, let us try the resonant ansatz

u?(t) = t sin(ωt)y + cos(ωt)w. (8.132)

† When M = I the system reduces to the standard eigenvalue equation for K.
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We compute
d2u?

dt2
= −ω2 t sin(ωt)y + cos(ω t) (2ω y − ω2w).

Therefore (8.132) will be a solution to the differential equation (8.129) provided

(K − λM)y = 0, (K − λM)w = a− 2ω y.

The first equation requires that y ∈ Vλ be a generalized eigenvector of the matrix pair
K,M . The second will be solvable for w if and only if a − 2ω y is orthogonal to the
eigenspace Vλ, which requires 2ω y to be the orthogonal projection of a onto Vλ. With
this choice of y and w, the basic resonant solution ansatz produces a resonant solution to
the system. Summarizing, we find that a generic forcing at a resonant frequency induces
resonance in the system.

Theorem 8.79. An undamped vibrational system will be periodically forced into

resonance if and only if the forcing f = cos(ω t)a is at a natural frequency of the system
and the direction of forcing a is not orthogonal to the natural direction(s) of motion of the
system for that frequency.

9/5/03 340 c© 2003 Peter J. Olver



Chapter 10

Iteration of Linear Systems

Iteration, or repeated application of a function, appears in a surprisingly wide range
of applications. Discrete dynamical systems, in which the continuous time variable has
been “quantized” in individual units (seconds, days, years, etc.) are modeled by iterative
systems. Most numerical solution methods, for both linear and nonlinear systems, are
based on an iterative procedure. Starting with an initial guess, the successive iterates lead
to closer and closer approximations to the true solution. For linear systems of equations,
iterative solution methods can be used as an attractive alternative to Gaussian elimination,
and are particularly effective for solving the very large, sparse systems arising in the nu-
merical solution to both ordinary and partial differential equations. In probability theory,
population dynamics and other applications, iterative models known as Markov processes
govern basic probabilistic processes. All practical methods for computing eigenvalues and
eigenvectors are based on a form of iteration.

In this chapter, we concentrate on the iteration of linear systems. As always, proper
understanding of the linear situation is an essential prerequisite for tackling the more
challenging nonlinear systems, which will be deferred until Chapter 19.Linear iteration
coincides with multiplication by successive powers of a matrix. The convergence of the
iterates depends on the magnitude of the eigenvalues of the coefficient matrix. The largest
eigenvalue (in modulus) is known as the “spectral radius” of the matrix, and convergence
requires a spectral radius smaller than one. While accurate computation of the eigenvalues
is not an easy task, the simple but effective Gerschgorin Circle Theorem yields useful
estimates, that can, in favorable situations, readily ensure convergence. Matrix norms are
another practical alternative, since iterative methods with coefficient matrices of norm less
than one are guaranteed to converge.

We will then turn our attention to the three most important iterative schemes used to
accurately approximate the solutions to linear systems of algebraic equations. The classical
Jacobi method is the simplest, while an evident modification leads to the popular Gauss–
Seidel method. Completely general conditions ensuring convergence of these schemes to
the solution of the original system are hard to formulate, although convergence is assured
for the important class of diagonally dominant matrices that arise in many applications.
A simple modification of the Gauss–Seidel scheme known as Successive Over-Relaxation
(SOR) can dramatically speed up the convergence rate, and is the method of choice in
many modern applications.

In the final section we discuss the computation of eigenvalues and eigenvectors of
matrices. Needless to say, we completely avoid trying to solve (or even write down) the
characteristic polynomial equation. The simple power method and its variants, all based
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on linear iteration, provide an effective means of approximating selected eigenvalues. For
constructing a complete system of eigenvalues and eigenvectors, the remarkable QR algo-
rithm, which is based of the Gram–Schmidt orthogonalization procedure, is the method of
choice, and we shall close with a new proof of its convergence.

10.1. Linear Iterative Systems.

We begin with the basic definition of an iterative system of linear equations.

Definition 10.1. A linear iterative system takes the form

u(k+1) = T u(k), u(0) = a. (10.1)

The coefficient matrix T has size n × n. We will consider both real and complex
systems, and so the iterates u(k) are vectors either in Rn (which assumes that the coefficient
matrix T is also real) or in Cn. A linear iterative system can be viewed as a discretized
version of a first order system of linear ordinary differential equations, as in (8.9), in which
the state of system, as represented by the vector u(k), changes at discrete time intervals,
labeled by the index k. For k = 1, 2, 3, . . . , the solution u(k) is uniquely determined by the
initial conditions u(0) = a.

Scalar Systems

As usual, one begins with an analysis of the scalar version. Consider the iterative
equation

u(k+1) = λu(k), u(0) = a. (10.2)

The general solution to (10.2) is easily found:

u(1) = λu(0) = λa, u(2) = λu(1) = λ2 a, u(3) = λu(2) = λ3 a,

and, in general,
u(k) = λk a. (10.3)

If the initial condition is a = 0, then the solution u(k)
≡ 0 is constant. Therefore, 0 is a

fixed point or equilibrium solution for the iterative system.

Example 10.2. Banks add interest to a savings account at discrete time intervals.
For example, if the bank offers 5% interest compounded yearly, this means that the account
balance will increase by 5% each year. Thus, assuming no deposits or withdrawals, the
balance u(k) after k years will satisfy the iterative equation (10.2) with λ = 1 + r where
r is the interest rate, and the 1 indicates that the money in the account remains there.
For example, if your initial deposit is u(0) = a = $1, 000, after 1 year your account has
u(1) = $1, 050, after 10 years u(10) = $1, 628.89, after 50 years u(50) = $11, 467.40, and
after 200 years u(200) = $17, 292, 580.82.

When the compounding is done monthly, the interest rate is still quoted on a yearly
basis, and so you receive 1

12 of the interest compounded each month. If û
(k) denotes the bal-

ance after k months, then, after n years, the account balance is û(12n) =
(
1 + 1

12 r
)

12n a.
Thus, when the interest rate of 5% is compounded monthly, your account balance is
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Figure 10.1. One Dimensional Real Linear Iterative Systems..

û(12) = $1, 051.16 after 1 year, û(120) = $1, 647.01 after 10 years, û(600) = $12, 119.38
after 50 years, and û(2400) = $21, 573, 572.66 dollars after 200 years. So, if you wait suf-
ficiently long, compounding has a dramatic effect. Daily compounding replaces 12 by
365.25, the number of days in a year.

Let us analyze the solutions of iterative equations when λ ∈ R is a real constant. Apart
from the equilibrium solution, the iterates exhibit five qualitatively different behaviors,
depending on the size of the coefficient λ.

(a) If λ = 0, the solution immediately becomes zero, and stays there, so u(k) = 0 for all
k ≥ 1.

(b) If 0 < λ < 1, then the solution is of one sign, and tends monotonically to zero, so
u(k)

→ 0 as k →∞.

(c) If −1 < λ < 0, then the solution tends to zero, u(k)
→ 0 as k → ∞. Successive

iterates have alternating signs.

(d) If λ = 1, the solution is constant, u(k) = a, for all k ≥ 0.

(e) If λ = −1, the solution switches back and forth between two values; u(k) = (−1)k a.

(f ) If 1 < λ < ∞, then the iterates u(k) become unbounded. If a > 0, they go
monotonically to +∞; if a < 0, to −∞.

(g) If −∞ < λ < −1, then the iterates u(k) also become unbounded. Successive iterates
have alternating signs.

In Figure 10.1 we exhibit representative scatter plots for the nontrivial cases (b – g). The
horizontal axis is the index k and the vertical axis the solution value u.

To describe the different scenarios, we adopt a terminology that already appeared in
the continuous realm. In the first three cases, the fixed point u = 0 is said to be globally
asymptotically stable since all solutions tend to 0 as k → ∞. In cases (d) and (e), the
zero solution is stable, since solutions with nearby initial data, | a | ¿ 1, remain nearby.
In the final two cases, the zero solution is unstable; any nonzero initial data a 6= 0 — no
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matter how small — will give rise to a solution that eventually goes arbitrarily far away
from equilibrium.

Let us next consider the case of a complex scalar iterative system. The coefficient λ

and the initial data a in (10.2) are allowed to be complex numbers. The solution is the
same, (10.3), but now we need to know what happens when we raise a complex number λ

to a high power. The secret is to write λ = r e i θ in polar form (3.77), where r = |λ | is its
modulus and θ = ph λ its angle or phase. Then λk = rk e i kθ. Since | e i kθ

| = 1, we have
|λk | = |λ |k, and so the solutions (10.3) have modulus |u(k)

| = |λk a | = |λ |k | a |. As a
result, u(k) will remain bounded if and only if |λ | ≤ 1, and will tend to zero as k →∞ if
and only if |λ | < 1.

We have thus established the basic stability criteria for scalar, linear systems.

Theorem 10.3. The zero solution to a (real or complex) scalar iterative system
u(k+1) = λu(k) is

(a) asymptotically stable if and only if |λ | < 1,

(b) stable if and only if |λ | ≤ 1,

(c) unstable if and only if |λ | > 1.

Powers of Matrices

The solution to the general linear matrix iterative system

u(k+1) = T u(k), u(0) = a, (10.4)

is also, at least at first glance, immediate. Clearly,

u(1) = T u(0) = T a, u(2) = T u(1) = T 2a, u(3) = T u(2) = T 3a,

and, in general,

u(k) = T ka. (10.5)

Thus, the iterates are simply determined by multiplying the initial vector a by the succes-
sive powers of the coefficient matrix T .

However, unlike real or complex scalars, the general formulae and qualitative behavior
of the powers of a square matrix are not nearly so immediately apparent. (Before con-
tinuing, the reader is urged to experiment with simple 2 × 2 matrices, and try to detect
patterns.) To resolve this dilemma, recall that we managed to solve linear systems of
differential equations by suitably adapting the known exponential solution from the scalar
version. In the discrete case, we no longer have exponentials, but rather powers, in our
scalar solution formula (10.3). This motivates us to try the power ansatz

u(k) = λkv, (10.6)

where λ is a scalar and v is a fixed vector, as a possible solution. We find

u(k+1) = λk+1v, while T u(k) = T (λk v) = λk T v.
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These two expressions will be equal if and only if

T v = λv.

Therefore, (10.6) is a nontrivial solution to (10.4) if and only if λ is an eigenvalue of T

and v an associated eigenvector .

Thus, to each eigenvector and eigenvalue of the coefficient matrix, we can construct a
solution to the iterative system. We can then use linear superposition, as in Theorem 7.29,
to combine the basic power solutions to form more general solutions. In particular, if
the coefficient matrix is complete, then this method will, as in the case of linear ordinary
differential equations, produce the general solution.

Theorem 10.4. If the coefficient matrix T is complete, then the general solution to

the linear iterative system u(k+1) = T u(k) is given by

u(k) = c1 λk1 v1 + c2 λk2 v2 + · · · + cnλknvn, (10.7)

where v1, . . . ,vn are the linearly independent eigenvectors and λ1, . . . , λn the correspond-

ing eigenvalues of T . The coefficients c1, . . . , cn are arbitrary scalars, and are uniquely

prescribed by the initial conditions u(0) = a.

Proof : Since we already know that (10.7) is a solution to the system for arbitrary
c1, . . . , cn, it suffices to show that we can match any prescribed initial conditions. We need
to solve the linear system

u(0) = c1v1 + · · · + cnvn = a. (10.8)

Completeness of T implies that its eigenvectors form a basis of Cn, and hence (10.8) always
admits a solution. In matrix form, we can rewrite (10.8) as

S c = a, so that c = S−1a,

where S = (v1 v2 . . . vn ) is the (nonsingular) matrix whose columns are the eigenvec-
tors. Q.E.D.

Remark : Incomplete cases rely on the Jordan canonical form of Section 8.6; see Ex-
ercise for details.

Example 10.5. Consider the iterative system

x(k+1) = 3
10 x(k) + 1

10 y(k), y(k+1) = 1
10 x(k) + 3

10 y(k), (10.9)

with initial conditions

x(0) = a, y(0) = b. (10.10)

The system can be rewritten in our matrix form (10.4) with

T =

(
.3 .1
.1 .3

)
, u(k) =

(
x(k)

y(k)

)
, a =

(
a

b

)
.
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Solving the characteristic equation

det(T − λ I ) = λ2
− .6λ− .08 = 0

produces the eigenvalues λ1 = .4, λ2 = .2. We then solve the associated linear systems
(T − λj I )vj = 0 for the corresponding eigenvectors:

λ1 = .4 , v1 =

(
1
1

)
, λ2 = .2 , v2 =

(
−1
1

)
.

Therefore, the basic power solutions are

u
(k)
1 = ( .4)k

(
1
1

)
, u

(k)
2 = ( .2)k

(
−1
1

)
.

Theorem 10.4 tells us that the general solution is given as a linear combination,

u(k) = c1u
(k)
1 + c2u

(k)
2 = c1 ( .4)

k

(
1
1

)
+ c2 ( .2)

k

(
−1
1

)
=

(
c1 ( .4)

k
− c2 ( .2)

k

c1 ( .4)
k + c2 ( .2)

k

)
,

where c1, c2 are arbitrary scalars, whose values are determined by the initial conditions:

u(0) =

(
c1 − c2

c1 + c2

)
=

(
a

b

)
, and hence c1 =

a+ b

2
, c2 =

b− a

2
.

Therefore, the explicit formula for the solution to (10.9), (10.10) is

x(k) = (.4)k
a+ b

2
− (.2)k

b− a

2
, y(k) = (.4)k

a+ b

2
+ (.2)k

b− a

2
.

In particular, as k →∞, the iterates u(k)
→ 0 converge to zero at a rate governed by the

larger eigenvalue λ1 = .4. Thus, (10.9) defines a stable iterative system.

Example 10.6. The Fibonacci numbers are defined by the second order iterative
scheme

u(k+2) = u(k+1) + u(k), (10.11)

with initial conditions

u(0) = a, u(1) = b. (10.12)

The classical Fibonacci integers follow from a = 0, b = 1. Thus, to obtain the next
Fibonacci number, we add the previous two; the first few Fibonacci integers are

u(0) = 0, u(1) = 1, u(2) = 1, u(3) = 2, u(4) = 3, u(5) = 5, u(6) = 8, u(7) = 13, . . . .

The Fibonacci integers occur in a surprising range of natural objects, including leaves,
flowers, and fruit, [11]. They were originally introduced by the Renaissance mathematician
Fibonacci (Leonardo of Pisa) as a crude model of the growth of a population of rabbits.
In Fibonacci’s model, the kth Fibonacci number u(k) measures the total number of pairs
of rabbits at year k. We start the process with a single juvenile pair† at year 0. Once a

† We ignore important details like the sex of the offspring.
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year, each pair of rabbits produces a new pair of offspring, but it takes a year for a rabbit
pair to mature enough to produce offspring of their own.

Just as every higher order ordinary differential equation can be replaced by an equiv-
alent first order system, so every higher order iterative system can be replaced by a first
order iterative system. In this particular case, we define the vector

u(k) =

(
u(k)

u(k+1)

)
∈ R2,

and note that (10.11) is equivalent to the matrix system

(
u(k+1)

u(k+2)

)
=

(
0 1
1 1

)(
u(k)

u(k+1)

)
, or u(k+1) = T u(k), where T =

(
0 1
1 1

)
.

To find an explicit formula for the Fibonacci numbers, we need to determine the eigenvalues
and eigenvectors of the coefficient matrix T . A straightforward computation produces

λ1 =
1 +

√
5

2
= 1.618034 . . . , λ2 =

1−
√
5

2
= − .618034 . . . ,

v1 =

(
−1+

√
5

2

1

)
, v2 =

(
−1−

√
5

2

1

)
.

Therefore, according to (10.7), the general solution to the Fibonacci system is

u(k) =

(
u(k+1)

u(k)

)
= c1

(
1 +

√
5

2

)k(
−1+

√
5

2

1

)
+ c2

(
1−

√
5

2

)k(
−1−

√
5

2

1

)
. (10.13)

The initial data

u(0) = c1

(
−1+

√
5

2

1

)
+ c2

(
−1−

√
5

2

1

)
=

(
a

b

)

uniquely specifies the coefficients

c1 =
2a+ (1 +

√
5)b

2
√
5

, c2 = −
2a+ (1−

√
5)b

2
√
5

.

The first entry of the solution vector (10.13) produces the formula

u(k) =
(−1 +

√
5)a+ 2b

2
√
5

(
1 +

√
5

2

)k

+
(1 +

√
5)a− 2b

2
√
5

(
1−

√
5

2

)k

(10.14)

for the kth Fibonacci number. For the particular initial conditions a = 0, b = 1, for-
mula (10.14) reduces to the classical Binet formula

u(k) =
1
√
5



(
1 +

√
5

2

)k

−

(
1−

√
5

2

)k

 (10.15)
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for the kth Fibonacci integer. It is a remarkable fact that, for every value of k, all the
√
5’s

cancel out, and the Binet formula does indeed produce the Fibonacci integers tabulated
above. Another useful observation is that since

0 < |λ2 | =

√
5− 1

2
< 1 < λ1 =

1 +
√
5

2
,

the terms involving λk1 go to∞ (and so the zero solution to this iterative system is unstable)
while the terms involving λk2 go to zero. Therefore, even for k moderately large, the first
term in (10.14) is an excellent approximation (and one that gets more and more accurate
with increasing k) to the kth Fibonacci number.

The dominant eigenvalue λ1 =
1
2

(
1 +

√
5
)
= 1.618034 . . . ≡ φ is known as the golden

ratio and plays an important role in spiral growth in nature, as well as in art, architecture
and design, [11]. It describes the overall growth rate of the Fibonacci integers, and, in
fact, any sequence of Fibonacci numbers with initial conditions b 6= 1

2

(
1−

√
5
)
a.

Example 10.7. Let T =



−3 1 6
1 −1 −2
−1 −1 0


 be the coefficient matrix for a three-

dimensional iterative system u(k+1) = T u(k). The eigenvalues and corresponding eigen-
vectors are

λ1 = −2, λ2 = −1 + i , λ3 = −1− i ,

v1 =



4
−2
1


 , v2 =



2− i
−1
1


 , v3 =



2 + i
−1
1


 .

Therefore, according to (10.7), the general complex solution to the iterative system is

u(k) = b1 (−2)
k



4
−2
1


+ b2 (−1 + i )

k



2− i
−1
1


+ b3 (−1− i )

k



2 + i
−1
1


 ,

where b1, b2, b3 are arbitrary complex scalars.

If we are only interested in real solutions, we can, as in the case of systems of differential
equations, break up any complex solution into its real and imaginary parts, each of which
constitutes a real solution. (This is another manifestation of the general Reality Theo-
rem 7.47, but is not hard to prove directly.) We begin by writing λ2 = −1+ i =

√
2 e3π i /4,

and hence

(−1 + i )k = 2k/2 e3kπ i /4 = 2k/2
(
cos 3

4 kπ + i sin 3
4 kπ

)
.

Therefore, the complex solution

(−1 + i )k



2− i
−1
1


 = 2k/2



2 cos 3

4 kπ + sin 3
4 kπ

− cos 3
4 kπ

cos 3
4 kπ


+ i 2k/2



2 sin 3

4 kπ − cos 3
4 kπ

− sin 3
4 kπ

sin 3
4 kπ
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is a complex combination of two independent real solutions. The complex conjugate eigen-
value λ3 = −1 − i leads, as before, to the complex conjugate solution — and the same
two real solutions. The general real solution u(k) to the system can be written as a linear
combination of the three independent real solutions:

c1 (−2)
k



4
−2
1


+ c2 2

k/2



2 cos 3

4 kπ + sin 3
4 kπ

− cos 3
4 kπ

cos 3
4 kπ


+ c3 2

k/2



2 sin 3

4 kπ − cos 3
4 kπ

− sin 3
4 kπ

sin 3
4 kπ


,

(10.16)
where c1, c2, c3 are arbitrary real scalars, uniquely prescribed by the initial conditions.

10.2. Stability.

With the solution formula (10.7) in hand, we are now in a position to understand
the qualitative behavior of solutions to (complete) linear iterative systems. The most
important case for applications is when all the iterates converge to 0.

Definition 10.8. The equilibrium solution u? = 0 to a linear iterative system (10.1)
is called asymptotically stable if and only if all solutions u(k)

→ 0 as k →∞.

Stability of the solutions to an iterative system relies on the following property of the
coefficient matrix.

Definition 10.9. A matrix T is called convergent if its powers T k
→ O converge to

the zero matrix as k →∞.

We note that convergence of a sequence of matrices or vectors is equivalent to con-
vergence of their individual entries. The equivalence of the convergence condition and
stability of the iterative system follows immediately from the solution formula (10.5).

Proposition 10.10. The linear iterative system u(k+1) = T u(k) has asymptotically

stable zero solution if and only if T is a convergent matrix.

Indeed, since u(k) = T k a and the initial condition a is arbitrary, the only way that
all solutions tend to zero as k →∞ is if the coefficient matrices T k

→ O.

For the analysis of convergence, we shall adopt a norm ‖ · ‖ on our underlying vector
space, Rn or Cn. The reader may be inclined to choose the Euclidean (or Hermitian)
norm, but, in practice, the L∞ norm

‖u ‖∞ = max
{
|u1 |, . . . , |un |

}
(10.17)

prescribed by the vector’s maximal entry (in modulus) is usually much easier to work with.
Convergence of the iterates is equivalent to convergence of their norms:

u(k)
→ 0 if and only if ‖u(k)

‖ → 0 as k →∞.

(See also Section 12.5 for additional details on convergence in finite-dimensional vector
spaces.)

The fundamental stability criterion relies on the magnitude of the eigenvalues of the
coefficient matrix.

1/12/04 357 c© 2003 Peter J. Olver



Theorem 10.11. A linear iterative system (10.1) has asymptotically stable zero
solution if and only if all its (complex) eigenvalues have modulus strictly less than one:
|λj | < 1.

Proof : Let us prove this result assuming that the coefficient matrix T is complete.
(The proof in the incomplete case relies on the Jordan canonical form, and is outlined in
the exercises.) If λj is an eigenvalue such that |λj | < 1, then the corresponding basis

solution u
(k)
j = λkj vj tends to zero as k →∞; indeed,

‖u
(k)
j ‖ = ‖λkj vj ‖ = |λj |

k
‖vj ‖ −→ 0 since |λj | < 1.

Therefore, if all eigenvalues are less than 1 in modulus, all terms in the solution formula
(10.7) tend to zero, which proves asymptotic stability: u(k)

→ 0. Q.E.D.

Consequently, the necessary and sufficient condition for asymptotic stability of a linear
iterative system is that all the eigenvalues of the coefficient matrix lie strictly inside the
unit circle in the complex plane†: |λj | < 1. Let us formalize this key result.

Definition 10.12. The spectral radius of a matrix T is defined as the maximal
modulus of all of its real and complex eigenvalues: ρ(T ) = max { |λ1 |, . . . , |λk | }.

We can restate the Stability Theorem 10.11 as follows.

Theorem 10.13. The matrix T is convergent if and only if its spectral radius is

strictly less than one: ρ(T ) < 1.

If T is complete, then we can apply the triangle inequality to (10.7) to estimate

‖u(k)
‖ = ‖ c1 λk1 v1 + · · · + cnλknvn ‖

≤ |λ1 |
k
‖ c1v1 ‖+ · · · + |λn |

k
‖ cnvn ‖

≤ ρ(T )k
(
| c1 | ‖v1 ‖+ · · · + | cn | ‖vn ‖

)
= C ρ(T )k,

(10.18)

for some constant C > 0 that depends only upon the initial conditions. In particular, if
ρ(T ) < 1, then

‖u(k)
‖ ≤ C ρ(T )k −→ 0 as k →∞, (10.19)

in accordance with Theorem 10.13. Thus, the spectral radius prescribes the rate of con-
vergence of the solutions to equilibrium. The smaller the spectral radius, the faster the
solutions converge to 0.

If T has only one largest (simple) eigenvalue, so |λ1 | > |λj | for all j > 1, then the

first term in the solution formula (10.7) will eventually dominate all the others: ‖λk1 v1 ‖ À

‖λkj vj ‖ for j > 1 and k À 0 large. Therefore, provided c1 6= 0, the solution (10.7) has
the asymptotic formula

u(k)
≈ c1 λk1 v1, (10.20)

† Note that this is not the same as the stability criterion for ordinary differential equations,
which requires the eigenvalues of the coefficient matrix to lie in the left half plane.
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and so most solutions end up parallel to the dominant eigenvector v1. In particular,
if |λ1 | = ρ(T ) < 1, such a solution approaches 0 along the direction of the dominant
eigenvector v1 at a rate governed by the modulus of the dominant eigenvalue.

The exceptional solutions, with c1 = 0, tend to 0 at a faster rate, along one of
the other eigendirections. However, in practical computations, one rarely observes the
exceptional solutions. Indeed, even if one begins with initial conditions for which there
is no dominant eigenvector component, round off error will almost inevitably introduce a
small component in the direction of v1, which will, if you wait long enough, eventually
dominate the computation.

Remark : The inequality (10.18) only applies to complete matrices. In the general
case, one can prove that the solution satisfies the slightly weaker inequality

‖u(k)
‖ ≤ C σk for all k ≥ 0, where σ > ρ(T ) (10.21)

is any number larger than the spectral radius, while C > 0 is a positive constant (that
may depend on how close σ is to ρ).

Example 10.14. According to Example 10.7, the matrix

T =



−3 1 6
1 −1 −2
−1 −1 0


 has eigenvalues

λ1 = −2,

λ2 = −1 + i ,

λ3 = −1− i .

Since |λ1 | = 2 > |λ2 | = |λ3 | =
√
2 , the spectral radius is ρ(T ) = |λ1 | = 2. We conclude

that T is not a convergent matrix. As the reader can check, either directly, or from the
solution formula (10.16), the vectors u(k) = T ku(0) obtained by repeatedly multiplying any
nonzero initial vector u(0) by T rapidly go off to∞, at a rate roughly equal to ρ(T )k = 2k.

On the other hand, the matrix

T̃ = − 1
3 T =




1 −
1
3 −2

−
1
3

1
3

2
3

1
3

1
3 0


 with eigenvalues

λ1 =
2
3 ,

λ2 =
1
3 (1− i ),

λ3 =
1
3 (1 + i ),

has spectral radius ρ(T̃ ) = 2
3 , and hence is a convergent matrix. According to (10.20), if we

write the initial data u(0) = c1v1+c2v2+c3v3 as a linear combination of the eigenvectors,

then, provided c1 6= 0, the iterates have the asymptotic form u(k)
≈ c1

(
−

2
3

)k
v1, where

v1 = ( 4,−2, 1 )
T
is the eigenvector corresponding to the dominant eigenvalue λ1 = −

2
3 .

Thus, for most initial vectors, the iterates end up decreasing in length by a factor of almost
exactly 2

3 and become eventually parallel to the dominant eigenvector. This is borne out

by a sample computation; starting with u(0) = ( 1, 1, 1 )
T
, the first ten iterates are



−0.0936
0.0462
−0.0231


,



−0.0627
0.0312
−0.0158


,



−0.0416
0.0208
−0.0105


,



−0.0275
0.0138
−0.0069


,



−0.0182
0.0091
−0.0046


,
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−0.0121
0.0061
−0.0030


,



−0.0081
0.0040
−0.0020


,



−0.0054
0.0027
−0.0013


,



−0.0036
0.0018
−0.0009


,



−0.0024
0.0012
−0.0006


,

Fixed Points

The zero vector 0 is always a fixed point for a linear iterative system u(k+1) = T u(k).
Are there any others? The answer is immediate: u? is a fixed point if and only if u? = T u?,
and hence any nonzero u? must be an eigenvector of T with eigenvalue 1. Thus, the system
has a nonzero fixed point if and only if the coefficient matrix T has 1 as an eigenvalue.
Since any scalar multiple of the eigenvector u? is also an eigenvector, in such cases the
system admits infinitely many fixed points.

The stability of such fixed points, at least if the coefficient matrix is complete, is
governed by the same solution formula (10.7). If the eigenvalue λ1 = 1 is simple, and all
other eigenvalues are less than one in modulus, so |λ2 |, . . . , |λn | < 1, then the solution
takes the asymptotic form

u(k) = c1v1 + c2 λk2 v2 + · · · + cnλk1 vn −→ c1v1, as k −→∞, (10.22)

converging to one of the fixed points, i.e., a multiple of the eigenvector v1. The actual
multiple c1 is determined by the initial conditions, as in (10.8). The rate of convergence
is governed by the modulus |λ2 | of the subdominant eigenvalue.

The general convergence result governing the stability of fixed points for general co-
efficient matrices follows.

Theorem 10.15. Suppose that T has a simple (or, more generally, complete) eigen-
value λ1 = 1, and, moreover, all other eigenvalues satisfy |λj | < 1, for j ≥ 2. Then all

solutions to the linear iterative system u(k+1) = T u(k) converge to a vector v ∈ V1 in the

eigenspace for the eigenvalue λ1 = 1.

Remark : If λ = 1 is an incomplete eigenvalue, then the solutions do not, in general,
converge.

Example 10.16. For the matrix T =




3
2 −

1
2 −3

−
1
2

1
2 1

1
2

1
2 0


, the eigenvalues and cor-

responding eigenvectors are

λ1 = 1, λ2 =
1 + i

2
, λ3 =

1− i

2
,

v1 =



4
−2
1


 , v2 =



2− i
−1
1


 , v3 =



2 + i
−1
1


 .

Since λ1 = 1, any multiple of the eigenvector v1 is a fixed point. The fixed points are
stable since the remaining eigenvalues have modulus |λ2 | = |λ3 | =

1
2

√
2 ≈ 0.7071 < 1.

Thus, the iterates u(k) = T ka→ c1v1 will eventually converge, at a rate of about .7, to a
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multiple of the first eigenvector. For example, starting with u(0) = ( 1, 1, 1 )
T
, leads to the

iterates†

u(5) =



−9.5
4.75
−2.75


, u(10) =



−7.9062
3.9062
−1.9062


, u(15) =



−7.9766
4.0
−2.0


,

u(20) =



−8.0088
4.0029
−2.0029


, u(25) =



−7.9985
3.9993
−1.9993


, u(30) =



−8.0001
4.0001
−2.0001


,

which are slowly converging to the particular eigenvector (−8, 4,−2 )
T
= −2v1. This can

be predicted in advance by decomposing the initial condition into a linear combination of
eigenvectors:

u(0) =



1
1
1


 = −2



4
−2
1


 +

3 + 3 i

2



2− i
−1
1


 +

3− 3 i

2



2 + i
−1
1


,

whence

u(k) =



−8
4
−2


 +

3 + 3 i

2

(
1 + i

2

)k


2− i
−1
1


 +

3− 3 i

2

(
1− i

2

)k


2 + i
−1
1


,

and so u(k)
→ (−8, 4,−2 )

T
as k →∞,

10.3. Matrix Norms.

The convergence of a linear iterative system is governed by the spectral radius of
the coefficient matrix, and hence knowledge of its eigenvalues is essential. Unfortunately,
a priori information on the eigenvalues is not so easy to come by. Indeed, computing
accurate approximations to the eigenvalues of a general matrix is a difficult computational
problem, and completely satisfactory general numerical algorithms are not known. Indeed,
the simplest way to determine the spectral radius is, in fact, to explicitly iterate the matrix
and observe how fast the resulting vectors grow or decay. But this defeats its purpose!

An alternative, more practical approach to convergence is based on the concept of
a matrix norm. Matrix norms are a natural class of norms on the vector space of n ×

n matrices. They often provide comparable convergence information for linear iterative
systems, and are simpler to compute.

We work exclusively with real n × n matrices in this section, although the results
straightforwardly extend to complex n × n matrices. Let us fix a norm ‖ · ‖ on Rn. The
norm may or may not come from an inner product — this is irrelevant as far as the
construction goes. Roughly speaking, the matrix norm tells us how far the matrix stretches
vectors relative to the given norm.

† Since the convergence is slow, we only display every fifth one.
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Theorem 10.17. If ‖ · ‖ is any norm on Rn, then the quantity

‖A ‖ = max { ‖Au ‖ | ‖u ‖ = 1 } (10.23)

defines a norm on the vector spaceMn×n of all n× n matrices, called the natural matrix
norm associated with the given norm ‖ · ‖ on Rn.

Proof : First note that ‖A ‖ < ∞ since the maximum is taken on a closed and bounded
subset, namely the unit sphere S1 = {‖u ‖ = 1} of the given norm. To show that (10.23)
defines a norm, we need to verify the three basic axioms of Definition 3.12. Non-negativity,
‖A ‖ ≥ 0, is immediate. Suppose ‖A ‖ = 0. This means that, for every unit vector,
‖Au ‖ = 0, and hence Au = 0 whenever ‖u ‖ = 1. If 0 6= v ∈ Rn is any nonzero vector,
then u = v/r, where r = ‖v ‖, is a unit vector, and so

Av = A(r u) = r Au = 0. (10.24)

Therefore, Av = 0 for every v ∈ Rn, which implies A = O is the zero matrix. This serves
to prove the positivity property. As for homogeneity, if c ∈ R is any scalar,

‖ cA ‖ = max { ‖ cAu ‖ } = max { | c | ‖Au ‖ } = | c | ‖A ‖.

Finally, to prove the triangle inequality, we use the fact that the maximum of the sum
of quantities is bounded by the sum of their individual maxima. Therefore, since the norm
on Rn satisfies the triangle inequality,

‖A+B ‖ = max { ‖Au+B u ‖ } ≤ max { ‖Au ‖+ ‖B u ‖ }

≤ max { ‖Au ‖ }+max { ‖B u ‖ } = ‖A ‖+ ‖B ‖.

This completes the proof that the matrix norm satisfies the three basic axioms. Q.E.D.

The property that distinguishes a matrix norm over a generic norm on the space of
matrices is the fact that it obeys a very useful product inequality .

Theorem 10.18. A natural matrix norm satisfies

‖Av ‖ ≤ ‖A ‖ ‖v ‖, for all A ∈Mn×n, v ∈ Rn. (10.25)

Furthermore,

‖AB ‖ ≤ ‖A ‖ ‖B ‖, for all A,B ∈Mn×n. (10.26)

Proof : Note first that, by definition ‖Au ‖ ≤ ‖A ‖ for all unit vectors ‖u ‖ = 1.
Then, letting v = r u where u is a unit vector and r = ‖v ‖, we have

‖Av ‖ = ‖A(r u) ‖ = r ‖Au ‖ ≤ r ‖A ‖ = ‖v ‖ ‖A ‖,

proving the first inequality. To prove the second, we apply the first to compute

‖AB ‖ = max { ‖AB u ‖ } = max { ‖A (B u) ‖ }

≤ max { ‖A ‖ ‖B u ‖ } = ‖A ‖ max { ‖B u ‖ } = ‖A ‖ ‖B ‖.

This completes the proof. Q.E.D.

1/12/04 362 c© 2003 Peter J. Olver



Remark : A norm on the vector space of n × n matrices is called a matrix norm if it
also satisfies the multiplicative inequality (10.26). Most, but not all, matrix norms used
in applications come from norms on the underlying vector space.

The multiplicative inequality (10.26) implies, in particular, that ‖A2
‖ ≤ ‖A ‖2; equal-

ity is not necessarily true. More generally,

Lemma 10.19. If A is a square matrix, then ‖Ak
‖ ≤ ‖A ‖k. In particular, if

‖A ‖ < 1, then ‖Ak
‖ → 0 as k →∞, and hence A is a convergent matrix: Ak

→ O.

The converse is not quite true; a convergent matrix does not necessarily have matrix
norm less than 1, or even ≤ 1 — see Example 10.24 below for an explicit example. An
alternative proof of Lemma 10.19 can be based on the following useful estimate.

Theorem 10.20. The spectral radius of a matrix is bounded by its matrix norm:

ρ(A) ≤ ‖A ‖. (10.27)

Proof : If λ is a real eigenvalue, and u a corresponding unit eigenvector, so that
Au = λu with ‖u ‖ = 1, then

‖Au ‖ = ‖λu ‖ = |λ | ‖u ‖ = |λ |. (10.28)

Since ‖A ‖ is the maximum of ‖Au ‖ over all possible unit vectors, this implies that

|λ | ≤ ‖A ‖. (10.29)

If all the eigenvalues of A are real, then the spectral radius is the maximum of their absolute
values, and so it too is bounded by ‖A ‖, proving (10.27).

If A has complex eigenvalues, then we need to work a little harder. Let λ = r e i θ be
a complex eigenvalue with complex eigenvector z = x+ iy. Define

m = min
{
‖Re e iϕ z ‖ = ‖ (cosϕ)x− (sinϕ)y ‖

∣∣ 0 ≤ ϕ ≤ 2π
}

. (10.30)

Since the indicated subset is a closed curve that does not go through the origin†, m > 0.
Let ϕ0 denote the value of the angle that produces the minimum, so

m = ‖ (cosϕ0)x− (sinϕ0)y ‖ = ‖Re
(
e iϕ0 z

)
‖.

Define the real unit vector

u =
Re
(
e iϕ0 z

)

m
=
(cosϕ0)x− (sinϕ0)y

m
, so that ‖u ‖ = 1.

Then

Au =
1

m
Re
(
e iϕ0 A z

)
=
1

m
Re
(
r e iϕ0 e i θ) z

)
=

r

m
Re
(
e i (ϕ0+θ) z

)
.

Therefore, using the fact that m is the minimal value in (10.30),

‖A ‖ ≥ ‖Au ‖ =
r

m
‖Re

(
e i (ϕ0+θ) z

)
‖ ≥ r = |λ |, (10.31)

and so (10.29) also holds for complex eigenvalues. Q.E.D.

† This relies on the fact that x,y are linearly independent, which was shown in Exercise .
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Explicit Formulae

Let us now determine the explicit formulae for the matrix norms corresponding to
our most important vector norms, introduced in Example 3.13. Let us begin with the ∞
matrix norm.

Definition 10.21. The ith absolute row sum of a matrix A is the sum of the absolute
values (moduli) of the entries in the ith row:

si = | ai1 |+ · · · + | ain | =
n∑

j=1

| aij |. (10.32)

Proposition 10.22. The ∞ matrix norm of a matrix A is equal to the maximal

absolute row sum:

‖A ‖∞ = max{s1, . . . , sn} = max





n∑

j=1

| aij |

∣∣∣∣∣∣
1 ≤ i ≤ n



 . (10.33)

Proof : Let s = max{s1, . . . , sn} denote the right hand side of (10.33). Given any
v ∈ Rn, we compute

‖Av ‖∞ = max





∣∣∣∣∣∣

n∑

j=1

aijvj

∣∣∣∣∣∣



 ≤ max





n∑

j=1

| aijvj |





≤ max





n∑

j=1

| aij |



 max

{
| vj |

}
= s ‖v ‖∞.

In particular, by specializing to ‖v ‖∞ = 1, we deduce that ‖A ‖∞ ≤ s.

On the other hand, suppose the maximal absolute row sum occurs at row i, so

si =
n∑

j=1

| aij | = s. (10.34)

Let u be defined so that uj = +1 if aij > 0, while uj = −1 if aij < 0. Then ‖u ‖∞ = 1.
Moreover, the ith entry of Au is equal to the ith row sum (10.34). This implies that

‖A ‖∞ ≥ ‖Au ‖∞ ≥ s. Q .E .D .

Corollary 10.23. If A has maximal absolute row sum strictly less than 1, then
‖A ‖∞ < 1 and hence A is a convergent matrix.

This is an immediate consequence of Lemma 10.19.
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Example 10.24. Consider the symmetric matrix A =

(
1
2 −

1
3

−
1
3

1
4

)
. Its two abso-

lute row sums are
∣∣ 1

2

∣∣+
∣∣− 1

3

∣∣ = 5
6 ,
∣∣− 1

3

∣∣+
∣∣ 1

4

∣∣ = 7
12 and so

‖A ‖∞ = max
{

5
6 , 7

12

}
= 5

6 ≈ .83333 . . . .

Since the norm is less than 1, A is a convergent matrix. Indeed, its eigenvalues are

λ1 =
9 +

√
73

24
≈ .7310 . . . , λ2 =

9−
√
73

24
≈ .0190 . . . ,

and hence the spectral radius is

ρ(A) =
9 +

√
73

24
≈ .7310 . . . ,

which is slightly smaller than its ∞ norm.

The row sum test for convergence is not always conclusive. For example, the matrix

A =

(
1
2 −

3
5

3
5

1
4

)
has matrix norm ‖A ‖∞ =

11
10 > 1.

On the other hand, its eigenvalues are (15±
√
601 )/40, and hence its spectral radius is

ρ(A) =
15 +

√
601

40
≈ .98788 . . . ,

which implies that A is (just barely) convergent, even though its maximal row sum is larger
than 1.

The Euclidean matrix norm relies on the singular value decomposition of Theo-
rem 8.33.

Proposition 10.25. The matrix norm corresponding to the Euclidean norm is its

maximal singular value

‖A ‖2 = max{σ1, . . . , σn}. (10.35)

Proof : We use the singular value decomposition (8.41) to write

A = Q1ΣQT
2

where Q1 and Q2 are orthogonal matrices, while Σ = diag (σ1, . . . , σn) is the diagonal
matrix containing the singular values of A. Using the Euclidean norm-preserving property
(7.32) of orthogonal matrices, we have

‖Au ‖2 = ‖Q1ΣQT
2 u ‖2 = ‖ΣQT

2 u ‖2.

Now, if u is a unit vector, ‖u ‖2 = 1, then so is ũ = QT
2 u. Therefore,

‖A ‖2 = max { ‖Au ‖2 | ‖u ‖2 = 1 }

= max
{
‖ΣQT

2 u ‖2
∣∣ ‖u ‖2 = 1

}
= max { ‖Σ ũ ‖2 | ‖ ũ ‖2 = 1 } .
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If we order the singular values σ1 ≥ σ2 ≥ · · · ≥ σn, then

‖Σ ũ ‖2 =
√

σ2
1 ũ2

1 + · · · + σ2
n ũ2

n ≤ σ1

√
ũ2

1 + · · · + ũ2
n = σ1 since ‖ ũ ‖2 = 1.

On the other hand, if we set ũ = e1 to be the first standard basis vector, then ‖Σe1 ‖2 =
‖σ1 e1 ‖2 = σ1. When put together, these imply that ‖A ‖2 = σ1, which proves the
result. Q.E.D.

Corollary 10.26. If A is symmetric, its Euclidean matrix norm is equal to its

spectral radius.

Proof : This follows directly from the fact, proved in Proposition 8.31, that the singular
values of a symmetric matrix are just the absolute values of its eigenvalues. Q.E.D.

Example 10.27. Consider the matrix A =



0 −

1
3

1
3

1
4 0 1

2
2
5

1
5 0


. The Gram matrix

ATA =



0.2225 0.0800 0.1250
0.0800 0.1511 −0.1111
0.1250 −0.1111 0.3611


,

has eigenvalues λ1 = 0.4472, λ2 = 0.2665, λ3 = 0.0210, and hence the singular values of A

are the square roots: σ1 = 0.6687, σ2 = 0.5163, σ3 = 0.1448. The Euclidean matrix norm
of A is the largest singular value, and so ‖A ‖2 = 0.6687, proving that A is a convergent
matrix. Note that, as always, the matrix norm overestimates the spectral radius ρ(A) = .5.

Unfortunately, as we discovered in Example 10.24, matrix norms are not a foolproof
test of convergence There exist convergent matrices such that ρ(A) < 1 and yet have
matrix norm ‖A ‖ ≥ 1. In such cases, we will not be able to predict the convergence of
the iterative system based on the matrix, although we would expect the convergence to
be quite slow. Although such pathology might show up in one particular matrix norm, it
turns out that one can always find some matrix norm which is less than 1. A proof of this
result can be found in [119].

Theorem 10.28. Let A have spectral radius ρ(A). If ε > 0 is any positive number,
then there exists a matrix norm ‖ · ‖ such that

ρ(A) ≤ ‖A ‖ < ρ(A) + ε. (10.36)

Corollary 10.29. If A is a convergent matrix, then there exists a matrix norm such

that ‖A ‖ < 1.

Proof : By definition, A is convergent if and only if ρ(A) < 1. Choose ε > 0 such that
ρ(A) + ε < 1. Any norm that satisfies (10.36) has the desired property. Q.E.D.
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Remark : Based on the accumulated evidence, one might be tempted to speculate that
the spectral radius itself defines a matrix norm. Unfortunately, this is not the case. For

example, the nonzero matrix A =

(
0 1
0 0

)
has zero spectral radius, ρ(A) = 0, violating a

basic norm axiom.

The Gerschgorin Circle Theorem

In general, precisely computing the eigenvalues, and hence the spectral radius of a ma-
trix is not easy, and, in most cases, must be done through a numerical eigenvalue routine.
In many applications, though, one does not need their exact numerical values, but only
their approximate locations. The Gerschgorin Circle Theorem serves to restrict the eigen-
values to a certain well-defined region in the complex plane. In favorable situations, this
information, which is relatively easy to obtain, is sufficient to demonstrate the convergence
of the matrix.

Definition 10.30. Let A be an n × n matrix, either real or complex. For each
1 ≤ i ≤ n, define the Gerschgorin disk

Di = { | z − aii | ≤ ri | z ∈ C } , where ri =

n∑

i=1
i6=j

| aij |. (10.37)

The Gerschgorin domain D =
n⋃

i=1

⊂ C is the union of the Gerschgorin disks.

Thus, the ith Gerschgorin disk Di is centered at the ith diagonal entry aii, and has
radius ri equal to the sum of the absolute values of the off-diagonal entries that are in the
ith row of A.

Theorem 10.31. All real and complex eigenvalues of the matrix A lie in its Ger-

schgorin domain D.

Example 10.32. The matrix A =



2 −1 0
1 4 −1
−1 −1 −3


 has Gerschgorin disks

D1 = { | z − 2 | ≤ 1 } , D2 = { | z − 4 | ≤ 2 } , D3 = { | z + 3 | ≤ 2 } ,

which are plotted in Figure 10.2. The eigenvalues of A are

λ1 = 3, λ2 = 3.1623 . . . , λ3 = −3.1623 . . . .

Observe that λ1 belongs to both D1 and D2, while λ2 lies in D2, and λ3 in D3. We thus
confirm that all three eigenvalues are in the Gerschgorin domain D = D1 ∪D2 ∪D3.

Proof of Theorem 10.31 : Let v be an eigenvector of A with eigenvalue λ. Let
u = v/‖v ‖∞ be the corresponding unit eigenvector with respect to the ∞ norm, so

‖u ‖∞ = max
{
|u1 |, . . . , |un |

}
= 1.
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Figure 10.2. Gerschgorin Disks and Eigenvalues.

Let ui be an entry of u that achieves the maximum: |ui | = 1. Writing out the eigenvalue
equation Au = λu in components, we find

n∑

j=1

aij uj = λui, which we rewrite as
n∑

j=1
j6=i

aij uj = (λ− aii)ui.

Therefore, since all |ui | ≤ 1,

|λ− aii | |ui | ≤

∣∣∣∣∣∣

∑

j6=i

aij uj

∣∣∣∣∣∣
≤

∑

j6=i

| aij | |uj | ≤
∑

j6=i

| aij | = ri.

Since we chose ui so that |ui | = 1, we conclude that λ satisfies

|λ− aii | ≤ ri,

and hence λ ∈ Di ⊂ D belongs to the ith Gerschgorin disk. Q.E.D.

The Gerschgorin Theorem 10.31 can be used to give a direct proof of Corollary 10.23.
If A is any matrix, then the modulus of all points z ∈ Di contained in its ith Gerschgorin
disk is bounded by the ith absolute row sum,

| z | ≤ | z − aii |+ | aii | ≤ ri + | aii | = si,

where the final equality follows by comparison of (10.37) and (10.32). Thus, every point
z ∈ D in the Gerschgorin set has modulus

| z | ≤ max{s1, . . . , sn} = ‖A ‖∞,

bounded by the maximal row sum. Since all eigenvalues λj of A are contained in D, they
too satisfy

|λj | ≤ ‖A ‖∞, and hence ρ(A) ≤ ‖A ‖∞. (10.38)

By hypothesis, 1 > ‖A ‖∞ ≥ ρ(A), and hence A is a convergent matrix.
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As a second application, we give a simple direct test that guarantees invertibility
of a matrix without requiring Gaussian elimination or computing determinants. Recall
that a matrix is nonsingular if and only if it does not have a zero eigenvalue. Thus, if
its Gerschgorin domain does not contain 0 6∈D, then the matrix cannot have 0 as an
eigenvalue, and hence is necessarily invertible. This condition requires that the matrix
have large diagonal entries, as quantified by the following definition.

Definition 10.33. A square matrix A is called strictly diagonally dominant if

| aii | >

n∑

i=1
i6=j

| aij |, for all i = 1, . . . , n. (10.39)

In other words, for A to be diagonally dominant, its diagonal entry must be larger, in
absolute value, than the sum of all the other entries in its row. For example, the matrix

A =



3 1 −1
1 −4 2
−2 −1 5


 is strictly diagonally dominant since

| 3 | > | 1 |+ | −1 |, | −4 | > | 1 |+ | 2 |, | 5 | > | −2 |+ | −1 |.

Diagonally dominant matrices arise in many applications, particularly in finite difference
and finite element methods for numerically solving boundary value problems. As we shall
see, they are the most common class of matrices to which iterative solution methods can
be successfully applied.

Proposition 10.34. A strictly diagonally dominant matrix is nonsingular.

Proof : The diagonal dominance inequalities (10.39) imply that the radius of the ith

Gerschgorin disk is strictly less than the modulus of its center: ri < | aii |. Thus, the disk
cannot contain 0; indeed, if z ∈ Di, then, by the triangle inequality

ri > | z − aii | ≥ | aii | − | z | > ri − | z |, and hence | z | > 0.

Thus, 0 6∈D does not lie in the Gerschgorin domain and hence cannot be an eigen-
value. Q.E.D.

Warning : The converse is obviously not true. There are plenty of nonsingular matrices
that are not diagonally dominant.

10.4. Markov Processes.

A discrete process in which the probability of a system being in a particular state dur-
ing a given time period depends only its state in the immediately preceding time period is
known as aMarkov chain, in honor of the pioneering studies of the Russian mathematician
Andrei Markov. Markov chains are the beginning of the theory of stochastic processes.
They are described by linear iterative systems whose coefficient matrices have a special
form, and hence can be analyzed by our eigenvalue methods.
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To take a very simple example, suppose you are interested in predicting whether the
weather in your city on a particular day will be either sunny or cloudy. Consulting weather
records over the past decade, you determine that

(i) If today is sunny, there is a 70% chance that tomorrow will also be sunny,

(ii) But, if today is cloudy, the chances are 80% that tomorrow is also cloudy.

Question: given that today is sunny, what is the probability that next Saturday’s weather
will also be sunny?

To mathematically formulate this process, we let s(k) denote the probability that day
k is sunny and c(k) the probability that it is cloudy. If we assume that these are the only
possibilities, then the individual probabilities must sum to 1, so

s(k) + c(k) = 1.

According to our data, the probability that the next day is sunny or cloudy is expressed
by the equations

s(k+1) = .7 s(k) + .2 c(k), c(k+1) = .3 s(k) + .8 c(k). (10.40)

Indeed, day k + 1 could be sunny either if day k was, with a 70% chance, or, if day k was
cloudy, there is still a 20% chance of day k+ 1 being sunny. We rewrite (10.40) in a more
convenient matrix form:

u(k+1) = T u(k), where T =

(
.7 .2
.3 .8

)
, u(k) =

(
s(k)

c(k)

)
. (10.41)

In a Markov process, the vector of probabilities u(k) is known as the kth state vector and the
matrix T is known as the transition matrix , whose entries fix the transition probabilities
between the states.

By assumption, our initial state vector is u(0) = ( 1, 0 )
T
, since we know for certain

that today is sunny. Rounding off to three decimal places, the subsequent state vectors
are

u(1) =

(
.7
.3

)
, u(2) =

(
0.55
0.45

)
, u(3) =

(
0.475
0.525

)
, u(4) =

(
0.438
0.563

)
,

u(5) =

(
0.419
0.581

)
, u(6) =

(
0.410
0.591

)
, u(7) =

(
0.405
0.595

)
, u(8) =

(
0.402
0.598

)
.

The iterates converge fairly rapidly to ( .4, .6 )
T
, which is a fixed point for the iterative

system (10.41). Thus, in the long run, 40% of the days will be sunny and 60% will be
cloudy. Let us explain why this happens.

Definition 10.35. A vector u = (u1, u2, . . . , un )
T
∈ Rn is called a probability vector

if all its individual entries lie between 0 and 1, so 0 ≤ ui ≤ 1, and, moreover, the sum of
its entries is unity: u1 + · · ·+ un = 1.
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Figure 10.3. Probability Vectors in R3.

For example, the possible probability vectors u ∈ R3 fill the equilateral triangle plotted
in Figure 10.3. We interpret the entry ui of a probability vector as the probability the
system is in state number i. The fact that the entries add up to 1 means that they represent
a complete list of probabilities for the possible states of the system.

Remark : Any nonzero vector 06= v = ( v1, v2, . . . , vn )
T
with all non-negative entries:

vi ≥ 0 for i = 1, . . . , n, can be converted into a parallel probability vector by dividing by
the sum of its entries:

u =
v

v1 + · · ·+ vn
. (10.42)

For example, if v = ( 3, 2, 0, 1 )
T
, then u =

(
1
2 , 1

3 , 0, 1
6

)T
is the corresponding probability

vector.

In general, a Markov chain is represented by a first order linear iterative system

u(k+1) = T u(k). (10.43)

The transition matrix

T =
(
tij ), 0 ≤ tij ≤ 1, t1j + · · ·+ tnj = 1, (10.44)

contains all the transitional probabilities. The entry tij represents the probability that the
system will switch from state j to state i. (Note the reversal of indices.) Since this covers
all possible transitions, the column sums of the transition matrix are all equal to 1, and
hence each column of T is a probability vector. An easy Exercise shows that if u(k) is a
probability vector, so is u(k+1) = T u(k). Thus, the solution u(k) = T k u(0) to the Markov
process represents a sequence or “chain” of probability vectors.

It can be proved, [94] that every transition matrix T is complete, and hence admits
an eigenvector basis v1, . . . ,vn with associated eigenvalues λ1, . . . , λn (some of which may
be repeated). Therefore, by Theorem 10.4, the solution to the Markov process (10.43) is

u(k) = T k u(0) = c1 λk1 v1 + · · · + cnλknvn, (10.45)
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where λ1, . . . , λn are the eigenvalues and v1, . . . ,vn the corresponding eigenvectors.

Let us now investigate the convergence of the Markov chain. This will not happen in
general, but requires some additional mild restrictions on the transition matrix.

Definition 10.36. A transition matrix (10.44) is regular if some power T k contains
no zero entries. In particular, if T itself has no transition probabilities equal to 0, then it
is regular.

Warning : The term “regular transition matrix” is not the same as our earlier term
“regular matrix”, which was used to describe matrices with an LU factorization.

The asymptotic behavior of a regular Markov chain is governed by the following key
result.

Theorem 10.37. If T is a regular transition matrix, then it admits a unique proba-
bility eigenvector u? with eigenvalue λ1 = 1. Moreover, any Markov chain with coefficient
matrix T will converge to the distinguished probability vector: u(k)

→ u? as k →∞.

The proof of this result appears at the end of this section.

Example 10.38. For the weather transition matrix (10.41), the eigenvalues and
eigenvectors are

λ1 = 1, v1 =

(
2
3

1

)
, λ2 = .5, v2 =

(
−1

1

)
.

The first eigenvector is then converted into a probability vector via (10.42):

u? = u1 =
1

1 + 2
3

(
2
3

1

)
=

(
2
5
3
5

)
.

This distinguished probability eigenvector represents the final asymptotic state of the sys-
tem after many iterations, no matter what the initial state. Thus, our earlier observation
that about 40% of the days will be sunny and 60% will be cloudy holds no matter what

the initial weather is.

Example 10.39. A taxi company in Minnesota serves the cities of Minneapolis
and St. Paul, as well as the nearby suburbs. Records indicate that, on average, 10% of
the customers taking a taxi in Minneapolis go to St. Paul and 30% go to the suburbs.
Customers boarding in St. Paul have a 30% chance of going to Minneapolis and 30%
chance of going to the suburbs, while suburban customers choose Minneapolis 40% of
the time and St. Paul 30% of the time. The owner of the taxi company is interested in
knowing where the taxis will end up, on average. We write this as a Markov process. The

entries of the state vector u(k) = (u
(k)
1 , u

(k)
2 , u

(k)
3 )T tell what proportion of the taxi fleet is,

respectively, in Minneapolis, St. Paul and the suburbs. Using the data, we construct the
relevant transition matrix

T =




.6 .3 .4

.1 .4 .3

.3 .3 .3


.
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Figure 10.4. Gerschgorin Disks for a Transition Matrix.

Note that T regular since it has no zero entries. The probability eigenvector

u? = ( 0.471429 . . . 0.228571 . . . 0.3 )
T

corresponding to the unit eigenvalue λ1 = 1 is found by first solving the linear system
(T − I )v = 0 and then converting the solution† v into a valid probability vector by use
of formula (10.42). According to Theorem 10.37, no matter how the taxis are initially
distributed, ultimately about 47% of the taxis will be in Minneapolis, 23% in St. Paul,
and 30% in the suburbs. This can be confirmed by running numerical experiments on the
system.

Remark : The convergence rate of the Markov chain to its steady state is governed
by the size of the subdominant or second largest eigenvalue λ2. The smaller |λ2 | is to 0,
the faster the process converges. In the taxi example, λ2 = .3 (and λ3 = 0) and so the
convergence to steady state is fairly rapid.

Proof of Theorem 10.37 : We begin the proof by replacing T by its transposeM = T T ,
keeping in mind that every eigenvalue of T is also an eigenvalue of M , cf. Exercise . The
conditions (10.44) tell us that the matrix M has entries 0 ≤ mij = tji ≤ 1, and, moreover,

the (absolute) row sums si =
n∑

i=1

mij = 1 of M , being the same as the corresponding

column sums of T , are all equal to 1. SinceM k = (T k)T , regularity of T implies that some
power Mk has all positive entries.

† Theorem 10.37 guarantees an eigenvector v with all non-negative entries.
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According to Exercise , if z = ( 1, . . . , 1 )
T
is the column vector all of whose entries

are equal to 1, then the entries of M z are the row sums of M . Therefore, M z = z, which
implies that z is an eigenvector ofM with eigenvalue λ1 = 1. As a consequence, T also has
1 as an eigenvalue — although it is associated with a different eigenvector, not necessarily
a multiple of z.

Let us next prove that λ1 = 1 is a simple eigenvalue. Since T is complete, this is
equivalent to the statement that the only vectors satisfying M v = v are those with all
equal entries v1 = · · · = vn = a, and hence v = az is a scalar multiple of the particular
eigenvector z. Let us first prove this assuming all of the entries of M are positive, and so
0 < mij = tji < 1 for all i, j. Suppose v is an eigenvector with not all equal entries. Let
vk be the minimal entry of v, so vk ≤ vi for all i 6= k and at least one inequality is strict,
say vk < vj . Then the kth entry of the eigenvector equation v =M v is

vk =
n∑

j=1

mkj vj <

n∑

j=1

mkj vk = vk,

where the strict inequality follows from the positivity of the entries of M , and the final
equality follows from the fact that M has unit row sums. Thus, we are led to a contra-
diction, and the claim follows. If M has one or more 0 entries, but M k has all positive
entries, then we apply the previous argument to the equationM kv = v which follows from
M v = v.

Finally, let us prove that all the other eigenvalues of M are less than 1 in modulus.
For this we appeal to the Gerschgorin Circle Theorem 10.31. The Gerschgorin disk Di is
centered at mii and has radius ri = si −mii = 1 −mii. Thus the disk lies strictly inside
the open unit disk | z | < 1 except for a single boundary point at z = 1; see Figure 10.4.
The Circle Theorem 10.31 implies that all eigenvalues except the unit eigenvalue λ1 = 1
must lie strictly inside the unit disk, and so |λj | < 1 for j ≥ 2.

Therefore, the matrixM , and, hence, also T satisfy the hypotheses of Theorem 10.15.
We conclude that the iterates u(k) = T ku(0)

→ u? converge to a multiple of the unit
eigenvector of T . If the initial condition u(0) is a probability vector, then so is every
subsequent state vector u(k), and so their limit u? must also be a probability vector. This
completes the proof of the theorem. Q.E.D.

10.5. Iterative Solution of Linear Systems.

In this section, we introduce several basic iterative methods that are used to approx-
imate the solution of certain classes of linear systems

Au = b, (10.46)

consisting of n equations in n unknowns. The resulting algorithms will provide an attrac-
tive alternative to Gaussian elimination, particularly when dealing with the large, sparse
systems that arise in the numerical solution to differential equations. One major advan-
tage of an iterative technique is that it produces progressively more and more accurate
approximations to the solution, and hence, by prolonging the iterations, one can, in prin-
ciple, compute the solution to any desired order of accuracy — although, in practice, the
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round-off errors due to the finite precision of the computer will eventually be an issue.
Moreover, even performing just a few iterations may produce a reasonable approximation
to the true solution — in stark contrast to Gaussian elimination, where one must continue
the algorithm through to the bitter end before any useful information can be extracted.
A partially completed Gaussian elimination is of scant use! On the other hand, specific
iterative schemes are not universally applicable to all linear systems, and their design relies
upon the detailed structure of the coefficient matrix.

We shall be attempting to solving (10.46) by an iterative system of the form

u(k+1) = T u(k) + c, u(0) = u0, (10.47)

where T is a fixed n × n matrix and c a fixed vector. This is a slight generalization of
the linear iterative system (10.1), in that the right hand side is now an affine function of
u(k). If the solutions to the affine iterative system converge, u(k)

→ u? as k → ∞, then
u? solves the fixed-point equation

u? = T u? + c. (10.48)

Indeed, both u(k) and u(k+1) in (10.47) converge to the same u?, and so the system
converges to the limiting fixed point equation (10.48). Thus we need to design our system
so that

(a) The solution to the fixed-point system (10.48) coincides with the solution to the
original system (10.46), and

(b) The iterates defined by (10.47) converge to the solution u?.

Before exploring these issues in depth, let us look at a simple example.

Example 10.40. Consider the linear system

3x+ y − z = 3, x− 4y + 2z = −1, −2x− y + 5z = 2, (10.49)

which we rewrite in matrix form Au = b, with

A =



3 1 −1
1 −4 2
−2 −1 5


 , u =




x

y

z


, b =



3
−1
2


.

One easy way to rewrite the system in fixed-point form (10.48) is to set

T = I −A =



−2 −1 1
−1 5 −2
2 1 −4


 , c = b =



3
−1
2


. (10.50)

Clearly, Au = b if and only if T u + b = ( I − A)u + b = u, and hence the fixed
point coincides with the solution to the original system. The resulting iterative system
u(k+1) = T u(k) + c has the explicit form

x(k+1) = −2x(k)
− y(k) + z(k) + 3,

y(k+1) = −x(k) + 5y(k)
− 2z(k)

− 1,

z(k+1) = 2x(k) + y(k)
− 4z(k) + 2.
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Another possibility is to solve the first equation in (10.49) for x, the second for y and
the third for z, so that

x = − 1
3 y + 1

3 z + 1, y = 1
4 x+ 1

2 z + 1
4 , z = 2

5 x+ 1
5 y + 2

5 .

The solution to this fixed point system also coincide with that of the original linear system.
The corresponding iteration takes the form

x(k+1) = − 1
3 y(k) + 1

3 z(k) + 1,

y(k+1) = 1
4 x(k) + 1

2 z(k) + 1
4 ,

z(k+1) = 2
5 x(k) + 1

5 y(k) + 2
5 .

(10.51)

In matrix notation, this becomes

u(k+1) = T̂ u(k) + ĉ, where T̂ =



0 −

1
3

1
3

1
4 0 1

2
2
5

1
5 0


, ĉ =



1
1
4
2
5


. (10.52)

Do the resulting iterative schemes (10.47) converge to the solution x = y = z = 1?
The results, starting with initial guess u(0) = (0, 0, 0), appear in the following table.

k u(k+1) = T u(k) + b u(k+1) = T̂ u(k) + ĉ

0 0 0 0 0 0 0

1 3 −1 2 1 0.25 0.4

2 0 −13 −1 1.05 0.7 0.85

3 15 −64 −7 1.05 0.9375 0.96

4 30 −322 −4 1.0075 0.9925 1.0075

5 261 −1633 −244 1.005 1.00562 1.0015

6 870 −7939 −133 0.9986 1.002 1.0031

7 6069 −40300 −5665 1.0004 1.0012 0.9999

8 22500 −196240 −5500 0.9995 1.0000 1.0004

9 145743 −992701 −129238 1.0001 1.0001 0.9998

10 571980 −4850773 −184261 0.9999 0.9999 1.0001

11 3522555 −24457324 −2969767 1.0000 1.0000 1.0000

For the first scheme, the answer is no — the iterations become successively wilder and
wilder. Indeed, this occurs no matter how close the initial guess is to the actual solution
— unless it happens to be exactly equal: u(0) = u?. (And even then, numerical errors
could creep in and send the iterations off to ∞.) In the second case, the convergence is
quite good, and it does not take too long, even starting from a bad initial guess, to obtain
an accurate approximation to the solution.
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Of course, in such a simple example, it would be silly to use iteration, when Gaussian
elimination can be done by hand and produces the solution almost immediately. However,
we use the small examples for illustrative purposes, reserving the full-fledged application
of the iterative schemes to the large linear systems arising in applications.

The convergence of solutions to (10.47) to the fixed point u? is based on the behavior
of the error vectors

e(k) = u(k)
− u?, (10.53)

which measure how close the iterates are to the actual solution. Let us find out how the
successive error vectors are related. We compute

e(k+1) = u(k+1)
− u? = (T u(k) + a)− (T u? + a) = T (u(k)

− u?) = T e(k).

Therefore, the error vectors satisfy a linear iterative system

e(k+1) = T e(k), (10.54)

with the same coefficient matrix T . Therefore, the errors are given by the explicit formula
e(k) = T k e(0). Now, the solutions to (10.47) converge to the fixed point, u(k)

→ u?, if
and only if the error vectors e(k)

→ 0 as k → ∞. Consequently, our convergence results
for linear iterative systems, as summarized in Proposition 10.10, imply the following basic
result.

Proposition 10.41. The iterative system (10.47) will converge to the solution to
the fixed point equation (10.48) if and only if T is a convergent matrix: ρ(T ) < 1.

For example, in the two iterative schemes presented in Example 10.40, the spectral
radii of the coefficient matrices are found to be

ρ(T ) = 4.9675 . . . , ρ( T̂ ) = 0.5.

Therefore, T is not a convergent matrix, which explains the behavior of its iterates, whereas
T̂ is convergent, and one expects the error to roughly decrease by a factor of 1

2 with each
new iterate.

The spectral radius ρ(T ) of the coefficient matrix will govern the speed of convergence.
Therefore, the main goal is to construct an iterative scheme whose coefficient matrix has
as small a spectral radius as possible. At the very least, the spectral radius must be less
than 1.

The Jacobi Method

The first general iterative scheme for solving linear systems is based on the same
simple idea used in our illustrative Example 10.40. Namely, we solve the ith equation in
the system Au = b, which is

n∑

j=1

aij uj = bi,
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for the ith variable. To do this, we need to assume that all the diagonal entries of A are
nonzero: aii 6= 0. The result is

ui = −
1

aii

n∑

i6=j=1

aij uj +
bi
aii
=

n∑

j=1

tij uj + ci, (10.55)

where

tij =




−

aij

aii
, i 6= j,

0, i = j,

and ci =
bi
aii

. (10.56)

Equation (10.55) can be rewritten in fixed point form u = T u+ c, and forms the basis of
the Jacobi method

u(k+1) = T u(k) + c, u(0) = u0, (10.57)

named after the influential nineteenth century German analyst Carl Jacobi. The explicit
form of the Jacobi iterative scheme is

u
(k+1)
i = −

1

aii

n∑

i6=j=1

aij u
(k)
j +

bi
aii

. (10.58)

Let us rederive the Jacobi method in a direct matrix form. We begin by decomposing
the coefficient matrix

A = L+D + U, (10.59)

into the sum of a strictly lower triangular matrix L, a diagonal matrix D, and a strictly
upper triangular matrix U , each of which is uniquely specified. For example, in the case
of the coefficient matrix

A =



3 1 −1
1 −4 2
−2 −1 5


 , (10.60)

the decomposition (10.59) yields

L =



0 0 0
1 0 0
−2 −1 0


 , D =



3 0 0
0 −4 0
0 0 5


 , U =



0 1 −1
0 0 2
0 0 0


 .

Warning : The L,D,U in the elementary additive decomposition (10.59) have nothing
to do with the L,D,U in factorizations arising from Gaussian elimination. The latter play
no role in the iterative solution methods considered here.

We then rewrite the system

Au = (L+D + U)u = b in the alternative form D u = − (L+ U)u+ b.

The Jacobi fixed point equation amounts to solving for

u = T u+ c, where T = −D−1(L+ U), c = D−1b. (10.61)
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For the example (10.60), we recover the Jacobi iteration matrix by

T = −D−1(L+ U) =



0 −

1
3

1
3

1
4 0 1

2
2
5

1
5 0


.

Deciding whether or not the Jacobi method converges for a specific matrix is not an
easy task. However, it can be shown that Jacobi iteration will always converge for matrices
that have large diagonal terms: the diagonally dominant matrices of Definition 10.33.

Theorem 10.42. If A is strictly diagonally dominant, then the associated Jacobi

iteration scheme converges.

Proof : We shall prove that ‖T ‖∞ < 1, and so Corollary 10.23 implies that T is a
convergent matrix. The row sums of the Jacobi matrix T = −D−1(L+ U) are, according
to (10.56),

si =
n∑

j=1

| tij | =
1

| aii |

n∑

i6=j=1

| aij | < 1 (10.62)

because A is strictly diagonally dominant. Thus, ‖T ‖∞ = max{s1, . . . , sn} < 1, and the
result follows. Q.E.D.

Example 10.43. Consider the linear system

4x+ y + w = 1,

x+ 4y + z + v = 2,

y + 4z + w = −1,

x+ z + 4w + v = 2,

y + w + 4v = 1.

The Jacobi method solves the respective equations for x, y, z, w, v, leading to the iterative
scheme

x(k+1) = − 1
4 y(k)

−
1
4 w(k) + 1,

y(k+1) = − 1
4 x(k)

−
1
4 z(k)

−
1
4 v(k) + 2,

z(k+1) = − 1
4 y(k)

−
1
4 w(k)

− 1,

w(k+1) = − 1
4 x(k)

−
1
4 z(k)

−
1
4 v(k) + 2,

v(k+1) = − 1
4 y(k)

−
1
4 w(k) + 1.

The coefficient matrix of the original system

A =




4 1 0 1 0
1 4 1 0 1
0 1 4 1 0
1 0 1 4 1
0 1 0 1 4


,
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is diagonally dominant, and so we are guaranteed that the Jacobi iterations will eventually
converge to the solution. Indeed, the Jacobi scheme takes the iterative form (10.61), with

T =




0 −
1
4 0 −

1
4 0

−
1
4 0 −

1
4 0 −

1
4

0 −
1
4 0 −

1
4 0

−
1
4 0 −

1
4 0 −

1
4

0 −
1
4 0 −

1
4 0




, c =




1
4
1
2

−
1
4

1
2
1
4




.

Note that ‖T ‖∞ =
3
4 < 1, and hence the convergence rate of the iterates to the solution

is at least .75, which slightly overestimates the true convergence rate, as determined by
the spectral radius ρ(T ) = .6124. To obtain four decimal place accuracy in the solution,
we anticipate† about log(.5 × 10−4)/ log .6124 ≈ 20 iterations. Indeed, starting with the
initial guess x(0) = y(0) = z(0) = w(0) = v(0) = 0, the Jacobi iterates converge to the exact
solution x = − .1, y = .7, z = − .6, w = .7, v = − .1, to four decimal places in exactly 20
iterations.

The Gauss–Seidel Method

The Gauss–Seidel method relies on a slightly more sophisticated implementation of
the Jacobi process. To understand how it works, it will help to write out the Jacobi
iteration scheme (10.57) in full detail:

u
(k+1)
1 = t12 u

(k)
2 + t13 u

(k)
3 + · · · + t1,n−1 u

(k)
n−1 + t1nu(k)

n + c1,

u
(k+1)
2 = t21 u

(k)
1 + t23 u

(k)
3 + · · · + t2,n−1 u

(k)
n−1 + t2nu(k)

n + c2,

u
(k+1)
3 = t31 u

(k)
1 + t32 u

(k)
2 + · · · + t3,n−1 u

(k)
n−1 + t3nu(k)

n + c3,

...
...

...
. . .

. . .
...

u(k+1)
n = tn1 u

(k)
1 + tn2 u

(k)
2 + tn3 u

(k)
3 + · · · + tn,n−1 u

(k)
n−1 + cn,

(10.63)

where we are explicitly noting the fact that the diagonal entries of T vanish. Observe
that we are using the entries of u(k) to compute all of the updated values of u(k+1).
Presumably, if the iterates u(k) are converging to the solution u?, then their individual

entries are also converging, and so each u
(k+1)
j should be a better approximation to u?j than

u
(k)
j is. Therefore, if we begin the kth Jacobi iteration by computing u

(k+1)
1 using the first

equation, then we are tempted to use this new value instead of the previous, less accurate

value u
(k)
1 in each of the subsequent equations. In particular, we employ the modified

equation

u
(k+1)
2 = t21 u

(k+1)
1 + t23 u

(k)
3 + · · · + t1nu(k)

n + c2

† If we were to use the matrix norm instead of the spectral radius, we would overestimate the
proposed number of iterates to be log(.5× 10−4)/ log .75 ≈ 34.
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to update the second component of our iterate. This more accurate value should then be

used to update u
(k+1)
3 , and so on.

The upshot of these considerations is the Gauss–Seidel iteration scheme

u
(k+1)
i = ti1 u

(k+1)
1 + · · · + ti,i−1 u

(k+1)
i−1 + ti,i+1 u

(k)
i+1 + · · · + tinu(k)

n + ci, (10.64)

named after Gauss (as usual!) and the German astronomer/mathematician Philipp von
Seidel. At the kth stage of the iteration, we use (10.64) to compute the updated entries

u
(k+1)
1 , u

(k+1)
2 , . . . , u(k+1)

n in their numerical order. Once an entry has been updated, the
new value is immediately used in all subsequent computations.

Example 10.44. For the linear system

3x+ y − z = 3, x− 4y + 2z = −1, −2x− y + 5z = 2,

the Jacobi iteration method was given in (10.51). To obtain the corresponding Gauss–
Seidel scheme we use updated values of x, y and z as they become available. Explicitly,

x(k+1) = − 1
3 y(k) + 1

3 z(k) + 1,

y(k+1) = 1
4 x(k+1) + 1

2 z(k) + 1
4 ,

z(k+1) = 2
5 x(k+1) + 1

5 y(k+1) + 2
5 .

(10.65)

The resulting iterates starting with u(0) = 0 are

u(1) =



1.0000
0.5000
0.9000


, u(2) =



1.1333
0.9833
1.0500


, u(3) =



1.0222
1.0306
1.0150


, u(4) =



0.9948
1.0062
0.9992


,

u(5) =



0.9977
0.9990
0.9989


, u(6) =



1.0000
0.9994
0.9999


, u(7) =



1.0001
1.0000
1.0001


, u(8) =



1.0000
1.0000
1.0000


.

The iterations have converged to the solution, to 4 decimal places, after only 8 iterations
— as opposed to the 11 iterations required by the Jacobi method. In this example, the
Gauss–Seidel method is converging roughly 50% faster.

The Gauss–Seidel iteration scheme is particularly suited to implementation on a serial

computer, since one can immediately replace each component u
(k)
i by its updated value

u
(k+1)
i , thereby also saving on storage in the computer’s memory. In contrast, the Jacobi
scheme requires us to retain all the old values u(k) until all of the new values in u(k+1)

have been computed. Moreover, Gauss–Seidel typically (although not always) converges
faster than Jacobi, making it the iterative algorithm of choice for serial processors. On the
other hand, with the advent of parallel processing machines, variants of the Jacobi scheme
have been making a comeback. Whereas Gauss–Seidel necessitates performing only one
entry update at a time, the Jacobi method can be more easily parallelized.

What is Gauss–Seidel really up to? Let us rewrite the basic iterative equation (10.64)
by multiplying by aii and moving the terms involving u

(k+1) to the left hand side. In view
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of the formula (10.56) for the entries of T , the resulting equation is

ai1 u
(k+1)
1 + · · · + ai,i−1 u

(k+1)
i−1 + aiiu

(k+1)
i = − ai,i+1 u

(k)
i+1 − · · · − ainu(k)

n + bi.

In matrix form, taking (10.59) into account, this reads

(L+D)u(k+1) = −U u(k) + b, (10.66)

and so can be viewed as a linear system of equations for u(k+1) with lower triangular
coefficient matrix L+D. Note that the fixed point of (10.66), namely (L+D)u = −U u+b,
coincides with the solution to the original system Au = (L+D + U)u = b. The Gauss–
Seidel procedure is merely implementing Forward Substitution to solve the lower triangular
system (10.66) for the next iterate:

u(k+1) = − (L+D)−1U u(k) + (L+D)−1 b.

The latter is in our more usual iterative form

u(k+1) = T̃ u(k) + c̃, where T̃ = −(L+D)−1U, c̃ = (L+D)−1 b.

Consequently, the convergence of the Gauss–Seidel iterates is governed by the spectral
radius of its coefficient matrix T̃ .

For example, in the case of the coefficient matrix in Example 10.44, we have

A =



3 1 −1
1 −4 2
−2 −1 5


 , L+D =



3 0 0
1 −4 0
−2 −1 5


 , U =



0 1 −1
0 0 2
0 0 0


 .

Therefore, the Gauss–Seidel coefficient matrix is

T̃ = −(L+D)−1U =



0 −0.3333 0.3333

0 −0.0833 0.5833

0 −0.1500 0.2500


.

The matrix T̃ has eigenvalues 0 and 0.0833 ± 0.2444 i , and hence its spectral radius is
ρ( T̃ ) ≈ 0.2582. This is roughly the square of the Jacobi spectral radius of .5, and tell
us that the Gauss-Seidel iterations will converge about twice as fast to the solution, in
accordance with our earlier observation. Indeed, although examples exist where the Jacobi
method converges faster, in many practical situation, the Gauss–Seidel scheme tends to
converge roughly twice as fast.

General conditions guaranteeing the convergence of the Gauss–Seidel method are hard
to establish. But, like the Jacobi method, diagonally dominant matrices are still handled
well.

Theorem 10.45. If A is strictly diagonally dominant, then the Gauss–Seidel itera-

tion scheme converges.
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Proof : Let e(k) = u(k)
− u? denote the kth Gauss–Seidel error vector. As in (10.54),

the error vectors satisfy the homogeneous iteration e(k+1) = T̃ e(k). We write out this
equation in components:

e
(k+1)
i = ti1 e

(k+1)
1 + · · · ti,i−1 e

(k+1)
i−1 + ti,i+1 e

(k)
i+1 + · · · + tin e(k)

n . (10.67)

Let

m(k) = ‖ e(k)
‖∞ = max

{
| e

(k)
1 |, . . . , | e(k)

n |
}

(10.68)

denote the ∞ norm of the error vector. We claim that diagonal dominance of A implies
that

m(k+1)
≤ sm(k), where s = ‖T ‖∞ < 1 (10.69)

denotes the ∞ matrix norm of the Jacobi matrix, which, by (10.62), is less than 1. We
infer that m(k)

≤ sk m(0)
→ 0 as k →∞. Thus, e(k)

→ 0, demonstrating the theorem.

To prove (10.69), we use induction on i = 1, . . . , n. Our induction hypothesis is

| e
(k+1)
j | ≤ sm(k)

≤ m(k) for j = 1, . . . , i− 1.

Moreover, by (10.68),

| e
(k)
j | ≤ m(k) for all j = 1, . . . , n.

We use these two inequalities to estimate | e
(k+1)
i | from (10.67):

| e
(k+1)
i | ≤ | ti1 | | e

(k+1)
1 |+ · · · + | ti,i−1 | | e

(k+1)
i−1 |+ | ti,i+1 | | e

(k)
i+1 |+ · · · + | tin | | e

(k)
n |

≤
(
| ti1 |+ · · · + | tin |

)
m(k) = sim

(k)
≤ sm(k),

which completes the induction step. As a result, the maximum

m(k+1) = max
{
| e

(k+1)
1 |, . . . , | e(k+1)

n |
}
≤ sm(k)

also satisfies the same bound, and hence (10.69) follows. Q.E.D.

Example 10.46. For the linear system considered in Example 10.43, the Gauss–
Seidel iterations take the form

x(k+1) = − 1
4 y(k)

−
1
4 w(k) + 1,

y(k+1) = − 1
4 x(k+1)

−
1
4 z(k)

−
1
4 v(k) + 2,

z(k+1) = − 1
4 y(k+1)

−
1
4 w(k)

− 1,

w(k+1) = − 1
4 x(k+1)

−
1
4 z(k+1)

−
1
4 v(k) + 2,

v(k+1) = − 1
4 y(k+1)

−
1
4 w(k+1) + 1.

Starting with x(0) = y(0) = z(0) = w(0) = v(0) = 0, the Gauss–Seidel iterates converge
to the solution x = − .1, y = .7, z = − .6, w = .7, v = − .1, to four decimal places in 11
iterations, again roughly twice as fast as the Jacobi scheme.
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Indeed, the convergence rate is governed by the corresponding Gauss-Seidel matrix T̃ ,
which is




4 0 0 0 0
1 4 0 0 0
0 1 4 0 0
1 0 1 4 0
0 1 0 1 4




−1


0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0



=




0 −0.2500 0 −0.2500 0
0 0.0625 −0.2500 0.0625 −0.2500
0 −0.0156 0.0625 −0.2656 0.0625
0 0.0664 −0.0156 0.1289 −0.2656
0 −0.0322 0.0664 −0.0479 0.1289




.

Its spectral radius is ρ( T̃ ) = .3936, which is, as in the previous example, approximately
the square of the spectral radius of the Jacobi coefficient matrix. This explains its doubly
fast rate of convergence.

Successive Over–Relaxation (SOR)

As we know, the smaller the spectral radius (or matrix norm) of the coefficient matrix,
the faster the convergence of the iterative method. The goal of researchers in numerical
linear algebra is to design new methods for accelerating the convergence. In his 1950 thesis,
the American mathematician David Young discovered a simple modification of the Jacobi
and Gauss–Seidel methods that can, in many common applications, lead to a dramatic
speed up in the rate of convergence. The method, known as successive over-relaxation,
and often abbreviated as SOR, has become the iterative method of choice in many modern
applications. In this subsection, we give a brief overview of the SOR iterative scheme.

In practice, designing the optimal iterative algorithm to solve a given linear system
is as hard a solving the system itself. Therefore, one relies on a few tried and true tech-
niques for building a good iterative scheme that works in a range of examples. Every
decomposition

A =M −N (10.70)

of the coefficient matrix of the system Au = b into the difference of two matrices leads to
an equivalent system of the form

M u = N u+ b. (10.71)

Provided we take M to be invertible, we can rewrite the system in the fixed point form

u =M−1N u+M−1b = T u+ c, where T =M−1N, c =M−1b.

Now, we are free to choose any suchM , which then specifiesN = A−M uniquely. However,
for the resulting iterative scheme u(k+1) = T u(k)+ c to be practical we must arrange that

(a) T =M−1N is a convergent matrix, and

(b) M can be easily inverted.

The second requirement ensures that the iterative equations

M u(k+1) = N u(k) + b (10.72)

can be solved for u(k+1) with minimal computational effort. Typically, this requires that
M be either a diagonal matrix, in which case the inversion is immediate, or upper or lower
triangular, in which case one employs back or forward substitution to solve for u(k+1).
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With this in mind, we now introduce the SOR method. It relies on a slight general-
ization of the Gauss–Seidel decomposition (10.66) of the matrix into lower plus diagonal
and upper triangular parts. The starting point is to write

A = L+D + U =
[
L+ α D

]
−
[
(α− 1)D − U

]
, (10.73)

where 06= α is an adjustable scalar parameter. We decompose the system Au = b as

(L+ α D)u =
[
(α− 1)D − U

]
u+ b. (10.74)

It turns out to be slightly more convenient to divide (10.74) through by α, and write the
resulting iterative system in the form

(ωL+D)u(k+1) =
[
(1− ω)D − ω U

]
u(k) + ω b, (10.75)

where ω = 1/α is called the relaxation parameter . Assuming, as usual, that all diagonal
entries of A are nonzero, the matrix ωL+D is an invertible lower triangular matrix, and
so we can use forward substitution to solve the iterative system (10.75) to recover u(k+1).
The explicit formula for its ith entry is

u
(k+1)
i = ω ti1 u

(k+1)
1 + · · · + ω ti,i−1 u

(k+1)
i−1 + (1− ω)u

(k)
i +

+ ω ti,i+1 u
(k)
i+1 + · · · + ω tinu(k)

n + ω ci,
(10.76)

where tij and ci denote the original Jacobi values (10.56). As in the Gauss–Seidel approach,

we update the entries u
(k+1)
i in numerical order i = 1, . . . , n. Thus, to obtain the SOR

scheme (10.76), we merely multiply the right hand side of the Gauss–Seidel scheme (10.64)

by the adjustable relaxation parameter ω and append the diagonal term (1 − ω)u
(k)
i . In

particular, if we set ω = 1, then the SOR method reduces to the Gauss–Seidel method.
Choosing ω < 1 leads to an under-relaxed method, while ω > 1, known as over-relaxation,
is the choice that works in most practical instances.

To analyze the convergence rate of the SOR scheme (10.75), we rewrite it in the fixed
point form

u(k+1) = Tω u
(k) + cω, (10.77)

where

Tω = (ωL+D)−1
[
(1− ω)D − ω U

]
, cω = (ωL+D)−1 ω b. (10.78)

The rate of convergence of the SOR method is governed by the spectral radius of its
coefficient matrix Tω. The goal is to choose the relaxation parameter ω so as to make the
spectral radius of Tω as small as possible. As we will see, a clever choice of ω will result
in a dramatic speed up in the convergence of the iterative method. Before stating some
general facts (albeit without proof) let us analyze a simple example.

Example 10.47. Consider the matrix A =

(
2 −1
−1 2

)
, which we write as L+D+U ,

where

L =

(
0 0
−1 0

)
, D =

(
2 0
0 2

)
, U =

(
0 −1
0 0

)
.
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Jacobi iteration uses the coefficient matrix T = −D−1(L + U) =

(
0 1

2
1
2 0

)
. The Jacobi

spectral radius is ρ(T ) = .5, and hence it takes, on average, roughly 3.3 ≈ −1/ log10 .5
iterations to produce each new decimal place of accuracy in the solution.

The SOR scheme (10.75) takes the explicit form

(
2 0
−ω 2

)
u(k+1) =

(
2(1− ω) ω

0 2(1− ω)

)
u(k) + ω b,

where Gauss–Seidel is the particular case ω = 1. The SOR coefficient matrix is

Tω =

(
2 0
−ω 2

)−1(
2(1− ω) ω

0 2(1− ω)

)
=

(
1− ω 1

2 ω
1
2 ω(1− ω) 1

4 (2− ω)2

)
.

To compute the eigenvalues of Tω, we form its characteristic equation

0 = det(Tω − λ I ) = λ2
−
(
2− 2ω + 1

4 ω2
)
λ+ (1− ω)2

= (λ+ ω − 1)2 − 1
4 λω2.

(10.79)

Our goal is to choose ω so that

(a) Both eigenvalues are less than 1 in modulus, so |λ1 |, |λ2 | < 1. This is the minimal
requirement for convergence of the method.

(b) The largest eigenvalue (in modulus) is as small as possible. This will give the smallest
spectral radius for Tω and hence the fastest convergence rate.

By (8.26), the product of the two eigenvalues is the determinant,

λ1 λ2 = detTω = (1− ω)2.

If ω ≤ 0 or ω ≥ 2, then detA ≥ 1, and hence least one of the eigenvalues would have
modulus larger than 1. Thus, in order to ensure convergence, we must require 0 < ω < 2.
For Gauss–Seidel, at ω = 1, the eigenvalues are λ1 = 0, λ2 =

1
4 , and the spectral radius is

ρ(T1) = .25. This is exactly the square of the Jacobi spectral radius, and hence the Gauss–
Seidel iterates converge twice as fast — it only takes, on average, about 1.65 Gauss–Seidel
iterations to produce a new decimal place of accuracy. It can be shown (Exercise ) that
as ω increases above 1, the two eigenvalues move together, the larger one decreasing in
size. They are equal when

ω = ω? = 8− 4
√

3 ≈ 1.07.

At that point, λ1 = λ2 = .07 = ρ(Tω), which is the convergence rate of the optimal
†

SOR scheme. Each iteration produces slightly more than one new decimal place in the
solution, which represents a significant improvement over the Gauss–Seidel convergence
rate of .25. It takes about twice as many Gauss–Seidel iterations (and four times as many
Jacobi iterations) to produce the same accuracy as this optimal SOR method.

† In Exercise , the reader is asked to complete the proof of optimality.

1/12/04 386 c© 2003 Peter J. Olver



Of course, in such a simple 2×2 example, it is not so surprising that we can construct
the optimal relaxation parameter by hand. In his 1950 thesis, cf. [154], Young found the
optimal value of the relaxation parameter for a broad class of matrices that includes most of
those arising in the finite difference and finite element numerical solutions to ordinary and
partial differential equations. For the matrices in Young’s class, the Jacobi eigenvalues
occur in signed pairs. If ±µ are a pair of eigenvalues for the Jacobi method, then the
corresponding eigenvalues of the SOR iteration matrix satisfy the quadratic equation

(λ+ ω − 1)2 = λω2 µ2. (10.80)

If ω = 1, so we have standard Gauss–Seidel, then λ2 = λµ2, and so the corresponding
Gauss–Seidel eigenvalues are λ = 0, λ = µ2. The Gauss–Seidel spectral radius is therefore
the square of the Jacobi spectral radius, and so (at least for matrices in the Young class) its
iterates converge twice as fast. The quadratic equation (10.80) has the same properties as
in the 2× 2 version (10.79) (which corresponds to the case µ = 1

2 ), and hence the optimal
value of ω will be the one at which the two roots are equal,

λ1 = λ2 = ω − 1, which occurs when ω =
2− 2

√
1− µ2

µ2
=

2

1 +
√
1− µ2

.

Therefore, if ρJ = max |µ | denotes the spectral radius of the Jacobi method, then the
Gauss–Seidel has spectral radius ρGS = ρ2

J , while the SOR method with optimal relaxation
parameter

ω? =
2

1 +
√
1− ρ2

J

, has spectral radius ρ? = ω? − 1. (10.81)

For example, if ρJ = .99, which is quite slow convergence (but common for iterative
solutions of partial differential equations), then ρGS = 0.9801, which is twice as fast, but
still quite slow, while SOR with ω? = 1.7527 has ρ? = 0.7527, which is dramatically faster.
Indeed, since ρ? ≈ (ρGS)

14
≈ (ρJ)

28, it takes about 14 Gauss–Seidel (and 28 Jacobi)
iterations to produce the same accuracy as one SOR step. The fact that such a simple
idea can have such a dramatic effect on the convergence rate is amazing.

Conjugate Gradients

So far, we have established two broad classes of algorithms for solving linear systems.
The first, the direct methods, based on some version of Gaussian elimination or matrix
factorization, eventually† obtain the solution, but must be carried through to completion
before any useful information is obtained. The alternative, iterative methods discussed in
the present chapter, lead to closer and closer approximations of the solution, but never
reach the actual value exactly. One might ask whether there are algorithms that combine
the best of both: semi-direct methods that give closer and closer approximations to the
solution, but are guaranteed to eventually terminate with the exact solution in hand.

† This assumes that we are dealing with a fully accurate implementation, i.e., without round-off
or other numerical error. For this discussion, numerical instability will be left aside as a separate,
albeit ultimately important, issue.
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For instance, one might ask for an algorithm that successively computes each entry of
the solution vector u?. This seems unlikely, but if we recall that the entries of the solution
are merely its coordinates with respect to the standard basis e1, . . . , en, then one might
try instead to compute the coordinates t1, . . . , tn of u? = t1v1 + · · · + tnvn with respect
to some basis that is specially adapted to the linear system. Ideally, v1, . . . ,vn should
be an orthogonal basis — but orthogonality with respect to the standard Euclidean dot
product is not typically relevant. A better idea is to arrange that the basis be orthogonal
with respect to an inner product that is adapted to the system under consideration. In
particular, if the linear system to be solved takes the form

Ku = f , (10.82)

in which the coefficient matrix is positive definite, as occurs in many applications, then
orthogonality with respect to the induced inner product

〈〈v ;w 〉〉 = vTKw = v ·Kw (10.83)

is very natural. Vectors that are orthogonal with respect to the inner product induced by
the coefficient matrix K are known as conjugate vectors, which explain half the name of
the conjugate gradient algorithm, first introduced by Hestenes and Stiefel, [78].

The term “gradient” stems from the minimization principle. According to Theo-
rem 4.1, the solution u? to the positive definite linear system (10.82) is the unique mini-
mizer of the quadratic function†

p(u) = 1
2 u

TKu− uT f . (10.84)

Thus, one way to solve the system is to minimize p(u). Suppose we find ourselves at a
point u which is not the minimizer. In which direction should we travel to find u?? The
key result from multivariable calculus is that the gradient vector ∇p(u) of a (nonlinear)
function points in the direction of its steepest increase at the point, while its negative
−∇p(u) points in the direction of steepest decrease. Our discussion of gradient flow
systems (9.19) used the same idea; full details appear in Section 19.3. For the particular
quadratic function (10.84), its negative gradient is easily found:

−∇p(u) = f −Ku = r,

where r is known as the residual vector for the point u. Note that r = 0 if and only if
u = u? is the solution, and so the size of r measures, in a certain sense, how accurately
u comes to solving the system. Moreover, the residual vector indicates the direction of
steepest decrease in the quadratic function, and is thus a good choice of direction to head
off in search of the true minimizer.

The initial result is the gradient descent algorithm, in which each successive approxi-
mation uk to the solution is obtained by going a certain distance in the residual direction:

uk+1 = uk + tk rk, where rk = f −Kuk. (10.85)

† Here, we include an irrelevant factor of 1
2 for later convenience.
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The scalar factor tk can be specified by the requirement that p(uk+1) is as small as possible;
in Exercise you are asked to find this value. A second option is to make the residual vector
at uk+1 as small as possible. The initial guess u0 for the solution can be chosen as desired,
with u0 = 0 the default choice. Gradient descent is a reasonable algorithm, and will lead
to the solution in favorable situations. It is also used to minimize more general nonlinear
functions. However, in many circumstances, the iterative method based on gradient descent
can take an exceedingly long time to converge to an accurate approximation to the solution,
and so is often not a competitive algorithm.

However, if we supplement the gradient descent idea by the use of conjugate vectors,
we are led to a very powerful semi-direct solution algorithm. We shall construct the solution
u? by successive approximation, with the kth iterate having the form

uk = t1v1 + · · · + tkvk, so that uk+1 = uk + tk+1vk+1,

where, as advertised, the conjugate vectors v1, . . . ,vn form a K–orthogonal basis. The se-
cret is not to try to specify the conjugate basis vectors in advance, but rather to successively
construct them during the course of the algorithm. We begin, merely for convenience, with
an initial guess u0 = 0 for the solution. The residual vector r0 = f−Ku0 = f indicates the
direction of steepest decrease of p(u) at u0, and we update our original guess by moving
in this direction, taking v1 = r0 = f as our first conjugate direction. The next iterate is
u1 = u0+ t1v1 = t1v1, and we choose the parameter t1 so that the corresponding residual
vector

r1 = f −Ku1 = r0 − t1 Kv1 (10.86)

is as close to 0 (in the Euclidean norm) as possible. This occurs when r1 is orthogonal to
r0 (why?), and so we require

0 = r0 · r1 = ‖ r0 ‖
2
− t1 r0 ·Kv1 = ‖ r0 ‖

2
− t1 〈〈 r0 ;v1 〉〉 = ‖ r0 ‖

2
− t1 〈〈v1 ;v1 〉〉. (10.87)

Therefore we set

t1 =
‖ r0 ‖

2

〈〈v1 ;v1 〉〉
and so u1 = u0 +

‖ r0 ‖
2

〈〈v1 ;v1 〉〉
v1 (10.88)

is the new approximation to the solution.

Note: We will consistently use ‖v ‖ to denote the standard Euclidean norm, and
〈〈v ;w 〉〉 the adapted inner product (10.83), which has its own norm

√
〈〈v ;v 〉〉 .

The gradient descent algorithm would tell us to update u1 by moving in the residual
direction r1. But in the conjugate gradient algorithm, we choose a direction v2 which is
conjugate, meaning K–orthogonal to the first direction v1 = r0. Thus, we slightly modify
the residual direction by setting v2 = r1 + s1v1, where the scalar factor s1 is determined
by the orthogonality requirement

0 = 〈〈v2 ;v1 〉〉 = 〈〈v2 ; r1 + s1v1 〉〉 = 〈〈 r1 ;v1 〉〉+ s1 〈〈v1 ;v1 〉〉, so s1 = −
〈〈 r1 ;v1 〉〉

〈〈v1 ;v1 〉〉
.
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Now, using (10.87) twice,

〈〈 r1 ;v1 〉〉 = r1 ·Kv1 =
1

t1
r1 · (r0 − r1) = −

1

t1
‖ r1 ‖

2,

〈〈v1 ;v1 〉〉 = v1 ·Kv1 =
1

t1
‖ r0 ‖

2,

and therefore the second conjugate direction is

v2 = r1 + s1v1, where s1 =
‖ r1 ‖

2

‖ r0 ‖
2

.

We then update

u2 = u1 + t2v2 = t1v1 + t2v2

so as to make the corresponding residual vector

r2 = f −Ku2 = r1 − t2 Kv2

as small as possible, which is accomplished by requiring it to be orthogonal to r1. Thus,
using the K–orthogonality of v1 and v2,

0 = r1 · r2 = ‖ r1 ‖
2
− t2 r1 ·Kv2 = ‖ r1 ‖

2
− t2 〈〈v2 ;v2 〉〉, and so t2 =

‖ r1 ‖
2

〈〈v2 ;v2 〉〉
.

Continuing in this manner, at the kth stage, we have already constructed the conjugate
vectors v1, . . . ,vk, and the solution approximation uk as a suitable linear combination of
them. The next conjugate direction is given by

vk+1 = rk + skvk, where sk =
‖ rk ‖

2

‖ rk−1 ‖
2

(10.89)

is a result of the K–orthogonality requirement 〈〈vi ;vk 〉〉 = 0 for i < k. The updated
solution approximation

uk+1 = uk + tk+1vk+1 where tk+1 =
‖ rk ‖

2

〈〈vk+1 ;vk+1 〉〉
, (10.90)

is then fixed so as to make the corresponding residual rk+1 = f−Kuk+1 = rk−tk+1 Kvk+1

as small as possible, which requires that it be orthogonal to rk. Starting with an initial
guess u0, the iterative equations (10.89), (10.90) implement the complete conjugate gra-
dient algorithm. Note that the only matrix operation required is a multiplication Kvk
in the computation of tk; all the other operations are fast Euclidean dot products. Un-
like Gaussian elimination, the method produces a sequence of successive approximations
u1,u2, . . . to the solution u?, and so the method can be stopped when a desired solution
accuracy is reached. On the other hand, unlike purely iterative methods, the algorithm
does eventually terminate at the exact solution, because, as remarked at the outset, there
are at most n conjugate directions, forming an K orthogonal basis of Rn. Therefore,

1/12/04 390 c© 2003 Peter J. Olver



Conjugate Gradient Method for Solving Ku = f

start

choose u0, e.g. u0 = 0

for k = 1 to m

set rk−1 = f −Kuk−1

if k = 1 set v1 = r0

else set vk = rk−1 +
‖ rk−1 ‖

2

‖ rk−2 ‖
2
vk−1

set uk = uk−1 +
‖ rk−1 ‖

2

vk ·Kvk
vk

next k

end

un = t1v1 + · · · + tnvn = u? must be the solution since its residual rn = f − Kun is
orthogonal to all the vi, and hence equal to 0.

A pseudocode program is attached; at each stage uk represents the updated approx-
imation to the solution. The initial guess u0 can be chosen by the user, with u0 = 0 the
default. The iteration number m ≤ n can be chosen by the user in advance; alternatively,
one can impose a stopping criterion based on the size of the residual vector, ‖ rk−1 ‖, or,
alternatively, the distance between successive iterates, ‖uk − uk−1 ‖. If the process is car-
ried on to the bitter end, i.e., for m = n, then, in the absence of round-off errors, the result
is the exact solution to the system.

Example 10.48. Consider the linear system Ku = f with

K =



3 −1 0
−1 2 1
0 1 1


 , f =



1
2
−1


 .

The exact solution is u? = ( 2, 5,−6 )
T
. In order to implement the method of conjugate

gradients, we start with the initial guess u0 = ( 0, 0, 0 )
T
. The corresponding residual

vector is merely r0 = f −Ku0 = ( 1, 2,−1 )
T
. The first conjugate direction is v1 = r0 =

f = ( 1, 2,−1 )
T
, and we use (10.88) to obtain the updated approximation to the solution

u1 = u0 +
‖ r0 ‖

2

〈〈v1 ;v1 〉〉
v1 =

6

4



1
2
−1


 =




3
2

3

−
3
2


,

noting that 〈〈v1 ;v1 〉〉 = v1 ·Kv1 = 4. In the next stage of the algorithm, we compute the
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corresponding residual r1 = f −Ku1 =
(
−

1
2 ,−1,− 5

2

)T
. The conjugate direction is

v2 = r1 +
‖ r1 ‖

2

‖ r0 ‖
2
v1 =



−

1
2

−1

−
5
2


+

15
2

6



1

2

−1


 =




3
4
3
2

−
15
4


.

We note that, as designed, it satisfies the conjugacy condition 〈〈v1 ;v2 〉〉 = v1 ·Kv2 = 0.
Each entry of the new approximation

u2 = u1 +
‖ r1 ‖

2

〈〈v2 ;v2 〉〉
v2 =




3
2

3

−
3
2


+

15
2
27
4




3
4
3
2

−
15
4


 =




7
3
14
3

−
17
3


 =



2.333 . . .

4.666 . . .

−5.666 . . .




is within a 1
3 of the exact solution u?.

Since we are dealing with a 3 × 3 system, we will recover the exact solution by one

more iteration of the algorithm. The new residual is r2 = f −Ku2 =
(
−

4
3 , 2

3 , 0
)T
. The

last conjugate direction is

v3 = r2 +
‖ r2 ‖

2

‖ r1 ‖
2
v2 =



−

4
3

2
3

0


+

20
9
15
2




3
4
3
2

−
15
4


 =



−

10
9

10
9

−
10
9


,

which, as you can check, is conjugate to both v1 and v2. The solution is obtained from

u3 = u2 +
‖ r2 ‖

2

〈〈v3 ;v3 〉〉
v3 =




7
3
14
3

−
17
3


+

20
9

200
27



−

10
9

10
9

−
10
9


 =



2

5

−6


.

Of course, in larger examples, one would not carry through the algorithm to the bitter end
— indeed reverting to ordinary Gaussian elimination is probably a better strategy in that
case — since a decent approximation to the solution is typically obtained with only a few
iterations. The result is a substantial saving in computational time and effort to produce
a reasonable approximation to the solution.

10.6. Numerical Computation of Eigenvalues.

The importance of the eigenvalues of a square matrix for both continuous and dis-
crete dynamical systems has been amply demonstrated in this chapter and its predecessor.
However, finding the eigenvalues and associated eigenvectors is not an easy task. The
classical method of constructing the characteristic equation of the matrix through the de-
terminantal formula, then solving the resulting polynomial equation for the eigenvalues,
and finally producing the eigenvectors by solving the associated homogeneous linear sys-
tem, is hopelessly inefficient, fraught with difficulty and numerical dangers. We are in
need of a completely new approach if we have any hopes of designing efficient, numerical
approximation schemes for computing eigenvalues and eigenvectors.
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In this section, we present a few of the most basic numerical schemes for accurately
computing eigenvalues and eigenvectors of matrices. The most direct are based on the
connections between the eigenvalues and the high powers of a matrix. A more sophisticated
technique is based on the QR factorization that we learned in Section 5.3, and will be
presented at the end of the section.

The Power Method

We have already noted the role played by the eigenvalues and eigenvectors in the
solution to linear iterative systems. Now we are going to turn the tables, and use the
iterative system as a mechanism for approximating the eigenvalues, or, more correctly,
selected eigenvalues of the coefficient matrix. The resulting computational procedure is
known as the power method .

We assume, for simplicity, that A is a complete† n× n matrix. Let v1, . . . ,vn denote
the eigenvector basis, and λ1, . . . , λn the corresponding eigenvalues. As we have learned,
the solution to the linear iterative system

v(k+1) = Av(k), v(0) = v, (10.91)

is obtained by multiplying the initial vector v by the successive powers of the coefficient
matrix: v(k) = Akv. If we write the initial vector in terms of the eigenvector basis

v = c1v1 + · · · + cnvn, (10.92)

then the solution takes the explicit form given in Theorem 10.4, namely

v(k) = Akv = c1 λk1 v1 + · · · + cnλknvn. (10.93)

Suppose further that A has a single dominant real eigenvalue, λ1, that is larger than
any other in magnitude, so

|λ1 | > |λj | for all j > 1. (10.94)

The largest eigenvalue will completely dominate the iteration (10.93). Indeed, since

|λ1 |
k
À |λj |

k for all j > 1 and all k À 0,

the first term in the iterative formula (10.93) will eventually be much larger than all the
rest, and so, provided c1 6= 0,

v(k)
≈ c1 λk1 v1 for k À 0.

Therefore, under the assumption (10.94), the solution to the iterative system (10.91) will,
almost always, end up being a multiple of the first eigenvector of the coefficient matrix.

† This is not a very severe restriction. Most matrices are complete. Moreover, perturbations
caused by numerical inaccuracies will almost always make an incomplete matrix complete.
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k v(k) λ

0 1 0 0

1 −1 −1 −3 −1.

2 −7 11 −27 7.

3 −25 17 −69 3.5714

4 −79 95 −255 3.1600

5 −241 209 −693 3.0506

6 −727 791 −2247 3.0166

7 −2185 2057 −6429 3.0055

8 −6559 6815 −19935 3.0018

9 −19681 19169 −58533 3.0006

10 −59047 60071 −178167 3.0002

11 −177145 175097 −529389 3.0001

12 −531439 535535 −1598415 3.0000

Furthermore, the entries of v(k) are given by v
(k)
i = λk1 vi. Hence, for any nonzero eigen-

vector component vi 6= 0, we can recover the eigenvalue λ1 itself by taking a ratio between
the ith components of successive iterates:

λ1 ≈
v
(k+1)
i

v
(k)
i

, provided v
(k)
i 6= 0. (10.95)

Example 10.49. Consider the matrix A =



−1 2 2
−1 −4 −2
−3 9 7


. As the reader can

check, its eigenvalues and eigenvectors are

λ1 = 3, v1 =



1
−1
3


 , λ2 = −2, v2 =



0
1
−1


 , λ3 = 1, v3 =



−1
1
−2


 .

Repeatedly multiplying the particular initial vector v = ( 1, 0, 0 )
T
by A results in the

vectors v(k) = Akv listed in the accompanying table. The last column indicates the ratio

v
(k)
1 and v

(k−1)
1 between the first components of successive iterates. (One could equally well

use the second or third components.) These ratios are converging to the third and largest
eigenvalue λ3 = 3, while v

(k) is converging to a very large multiple of the corresponding
eigenvector v3.

The success of the power method requires that A have a unique dominant eigenvalue of
maximal modulus, which, by definition, equals its spectral radius: |λ1 | = ρ(A). The rate
of convergence of the method is governed by the ratio |λ2/λ1 | between the subdominant
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and dominant eigenvalues. Thus, the further the dominant eigenvalue lies away from the
rest, the faster the power method converges.

Since complex eigenvalues of real matrices come in complex conjugate pairs, of the
same modulus, matrices whose dominant eigenvalue is complex are not covered by the
method. Indeed, one could hardly expect to compute a complex eigenvalue as a ratio of
real vectors! However, a slightly more sophisticated version of the method can handle the
cases when there is a single complex-conjugate pair of dominant eigenvalues; see Exercise
. We also assumed that the initial vector v(0) includes a nonzero multiple of the dominant
eigenvector, i.e., c1 6= 0. As we do not know the eigenvectors, it is not so easy to guarantee
this in advance, although one must be quite unlucky to make such a poor choice of initial
vector. (Of course, the stupid choice v(0) = 0 is not counted.) Moreover, even if c1 happens
to be 0 initially, numerical round-off error will typically come to one’s rescue, since it will
almost inevitably introduce a tiny component of the eigenvector v1 into some iterate, and
this component will eventually dominate the computation. The trick is to wait long enough
for it to show up!

Since the iterates of A are, typically, getting either very large — when ρ(A) > 1 —
or very small — when ρ(A) < 1 — the iterated vectors will be increasingly subject to
round-off error, if not numerical over– or under–flow. One way to avoid this problem is to
work with unit vectors u(k) = ‖v(k)

‖
−1 v(k), whose entries cannot get too large, and so

are less likely to cause numerical errors in the computations. Here ‖ · ‖ is any convenient
norm — the 1 and ∞ norms being slightly easier to compute than the Euclidean norm.
The unit vectors u(k) can be computed directly by the iterative scheme

u(0) =
v(0)

‖v(0) ‖
, and u(k+1) =

Au(k)

‖Au(k) ‖
. (10.96)

If the largest eigenvalue λ1 > 0 is positive, then u(k)
→ u1 will converge to one of the two

unit eigenvectors (the other is −u1) corresponding to the eigenvalue λ1. If λ1 < 0, then
the iterates will switch back and forth between the two eigenvectors u(k)

≈ (−1)ku1. In
either case, the eigenvalue λ1 is obtained as a limiting ratio between nonzero entries of
u(k) and Au(k). If some other behavior is observed, it means that one of our assumptions
is not valid; either A has more than one dominant eigenvalue of maximum modulus, or it
is not complete.

Example 10.50. For the matrix considered in Example 10.49, if we multiply the
initial vector u(k) = ( 1, 0, 0 )

T
by A, the resulting unit vectors u(k) = Au(k−1)/‖Au(k−1)

‖

for the Euclidean norm are given in the table. The last column, being the ratio between
the first components of u(k) and Au(k), converges to the dominant eigenvalue λ1 = 3.

Variants of the power method for computing the other eigenvalues of the matrix are
explored in the exercises.

The QR Algorithm

As stated, the power method only produces the largest eigenvalue of a matrix A. The
inverse power method of Exercise can be used to find the smallest eigenvalue. Additional
eigenvalues can be found by using the shifted inverse power method of Exercise , or the
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k u(k) λ

1 −0.3015 −0.3015 −0.9045 −1.0000

2 −0.2335 0.3669 −0.9005 7.0000

3 −0.3319 0.2257 −0.9159 3.5714

4 −0.2788 0.3353 −0.8999 3.1600

5 −0.3159 0.2740 −0.9084 3.0506

6 −0.2919 0.3176 −0.9022 3.0166

7 −0.3080 0.2899 −0.9061 3.0055

8 −0.2973 0.3089 −0.9035 3.0018

9 −0.3044 0.2965 −0.9052 3.0006

10 −0.2996 0.3048 −0.9041 3.0002

11 −0.3028 0.2993 −0.9048 3.0001

12 −0.3007 0.3030 −0.9043 3.0000

deflation method of Exercise . However, if we need to know all the eigenvalues, these
methods are too time-consuming and impractical.

The most important scheme for simultaneously approximating all the eigenvalues of
a matrix A is the remarkable QR algorithm, first proposed in 1961, by Francis, [61], and
Kublanovskaya, [99]. The underlying idea is simple but surprising. The first step is to
factor the matrix

A = A0 = Q0 R0

into a product of an orthogonal matrix Q0 and a positive upper triangular matrix (i.e.,
with all positive entries along the diagonal) R0 using the Gram–Schmidt orthogonalization
procedure of Theorem 5.24. Next, multiply the two factors together in the wrong order !
The result is the new matrix

A1 = R0 Q0.

We then repeat these two steps. Thus, we next factor

A1 = Q1 R1

using the Gram–Schmidt process, and then multiply the factors in the reverse order to
produce A2 = R2 Q2. The general algorithm is

A = Q0 R0, Ak+1 = RkQk = Qk+1 Rk+1, k = 0, 1, 2, . . . , (10.97)

where Qk, Rk come from the previous step, and the subsequent orthogonal matrix Qk+1

and positive upper triangular matrix Rk+1 are computed using the numerically stable form
of the Gram–Schmidt algorithm.

The astonishing fact is that, for many matrices A, the iterates Ak −→ V converge to
a upper triangular matrix V whose diagonal entries are the eigenvalues of A. Thus, after
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a sufficient number of iterations, say k, the matrix Ak will have very small entries below
the diagonal, and one can read off a complete system of (approximate) eigenvalues along
its diagonal. For each eigenvalue, the computation of the corresponding eigenvector can
be done by solving the appropriate homogeneous linear system, or by applying the shifted
inverse power method of Exercise .

Example 10.51. Consider the matrix A =

(
2 1
2 3

)
. The initial Gram–Schmidt

factorization A = Q0 R0 yields

Q0 =

(
.7071 .7071

−.7071 .7071

)
, R0 =

(
2.8284 2.8284
0 1.4142

)
.

These are multiplied in the reverse order to give A1 = R0 Q0 =

(
4 0
1 1

)
. We refactor

A1 = Q1 R1 via Gram–Schmidt, and then reverse multiply to produce

Q1 =

(
.9701 −.2425
.2425 .9701

)
, R1 =

(
4.1231 .2425
0 .9701

)
,

A2 = R1 Q1 =

(
4.0588 −.7647
.2353 .9412

)
.

The next iteration yields

Q2 =

(
.9983 −.0579
.0579 .9983

)
, R2 =

(
4.0656 −.7090
0 .9839

)
,

A3 = R2 Q2 =

(
4.0178 −.9431
.0569 .9822

)
.

Continuing in this manner, after 9 iterations we find, to four decimal places

Q9 =

(
1 0
0 1

)
, R9 =

(
4 −1
0 1

)
, A10 = R9 Q9 =

(
4 −1
0 1

)
.

The eigenvalues of A, namely 4 and 1, appear along the diagonal of A10. Additional
iterations produce very little further change, although they can be used for increasing the
accuracy of the computed eigenvalues.

If the original matrix A happens to be symmetric and positive definite, then the
limiting matrix Ak → V = Λ is, in fact, the diagonal matrix containing the eigenvalues of
A. Moreover, if, in this case, we recursively define

Sk = Sk−1 Qk = Q0 Q1 · · · Qk−1 Qk, (10.98)

then Sk → S have, as their limit, the orthogonal matrix appearing in the Spectral Theo-
rem 8.25, whose columns are the orthonormal eigenvector basis of A.
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Example 10.52. Consider the symmetric matrix A =



2 1 0
1 3 −1
0 −1 6


. The initial

A = Q0 R0 factorization produces

S0 = Q0 =




.8944 −.4082 −.1826

.4472 .8165 .3651
0 −.4082 .9129


 , R0 =



2.2361 2.2361 − .4472
0 2.4495 −3.2660
0 0 5.1121


 ,

and so

A1 = R0 Q0 =




3 1.0954 0
1.0954 3.3333 −2.0870
0 −2.0870 4.6667


 .

We refactor A1 = Q1 R1 and reverse multiply to produce

Q1 =




.9393 −.2734 −.2071

.3430 .7488 .5672
0 −.6038 .7972


 , R1 =



3.1937 2.1723 − .7158
0 3.4565 −4.3804
0 0 2.5364


 ,

A2 =



3.7451 1.1856 0
1.1856 5.2330 −1.5314
0 −1.5314 2.0219


 , S1 =




.7001 −.4400 −.5623

.7001 .2686 .6615
−.1400 −.8569 .4962


 ,

where S1 = S0 Q1 = Q0 Q1. Continuing in this manner, after 10 iterations we find

Q10 =



1.0000 − .0067 0
.0067 1.0000 0.0001
0 −.0001 1.0000


 , R10 =



6.3229 .0647 0
0 3.3582 −.0006
0 0 1.3187


 ,

A11 =



6.3232 0.0224 0
.0224 3.3581 −.0002
0 −.0002 1.3187


 , S10 =




.0753 −.5667 −.8205

.3128 −.7679 .5591
−.9468 −.2987 .1194


 .

After 20 iterations, the process has completely settled down, and

Q20 =



1 0 0
0 1 0
0 0 1


 , R20 =



6.3234 .0001 0
0 3.3579 0
0 0 1.3187


 ,

A21 =



6.3234 0 0
0 3.3579 0
0 0 1.3187


 , S20 =




.0710 −.5672 −.8205

.3069 −.7702 .5590
−.9491 −.2915 .1194


 .

The eigenvalues of A appear along the diagonal of A21, while the columns of S20 are the
corresponding orthonormal eigenvector basis, both correct to 4 decimal places.

We will devote the remainder of this section to a justification of theQR algorithm. The
secret is that the method is, in fact, intimately connected with the more primitive power
method. To keep the exposition under control, let us make the simplifying assumption
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that the matrix A > 0 is symmetric and positive definite with distinct positive eigenvalues
that we label in decreasing order:

λ1 > λ2 > · · · > λn. (10.99)

The corresponding eigenvectors u1, . . . ,un can be chosen to form an orthonormal basis
of Rn. While not the most general case to which the QR algorithm applies, the positive
definite matrices are a the most important subclass, and the ones for which the basic
algorithm applies as stated.

If one were to implement a version of the power method to capture all the eigenvectors

and eigenvalues of A, one might think of iterating a complete basis u
(0)
1 , . . . ,u(0)

n of Rn

instead of just one individual vector. The problem is that, for almost all vectors, the matrix

power iterates u
(k)
j = Akuj all tend to a multiple of the eigenvector u1 corresponding to

the dominant eigenvalue. Normalizing the vectors at each step of the algorithm, as in
(10.96), is not any better, since then they merely converge to one of the two dominant unit
eigenvectors ±u1. However, if, inspired by the form of the basis, we orthonormalize the
vectors at each step, then we effectively keep them separate and so prevent them from all
accumulating at the dominant unit eigenvector, and so, with some luck, they may decide
to converge to the other eigenvectors. This inspired hope is the heart of the QR algorithm!
After all, orthonormalizing a basis is equivalent to the QR matrix factorization.

Thus, we start with any orthonormal basis, which, for simplicity, we take to be the

standard basis vectors of Rn, and so u
(0)
j = ej , j = 1, . . . , n. At the kth stage of the al-

gorithm, we set u
(k)
1 , . . . ,u(k)

n to be the orthonormal vectors that result from applying the

Gram–Schmidt algorithm to the power vectors v
(k)
j = Ak ej . In matrix language, the vec-

tors v
(k)
1 , . . . ,v(k)

n are merely the columns of Ak, and the orthonormal basis u
(k)
1 , . . . ,u(k)

n

are the columns of the orthogonal matrix Sk in the QR decomposition of the kth power of
A, which we denote by

Ak = Sk Pk, (10.100)

where Pk is positive upper triangular. Note that, in view of (10.97)

A = Q0 R0, A2 = Q0 R0 Q0 R0 = Q0 Q1 R1 R0,

A3 = Q0 R0 Q0 R0 Q0 R0 = Q0 Q1 R1 Q1 R1 R0 = Q0 Q1 Q2 R2 R1 R0,

and, in general,

Ak =
(
Q0 Q1 · · · Qk−1 Qk

) (
RkRk−1 · · · R1 R0

)
. (10.101)

The product of orthogonal matrices is also orthogonal, and the product of positive upper
triangular matrices is also positive upper triangular. Comparing (10.100), (10.101), we
conclude that

Sk = Q0 Q1 · · · Qk−1 Qk == Sk−1 Qk, Pk = RkRk−1 · · · R1 R0 = RkPk−1,

(10.102)
since the QR factorization is unique once one requires that all the diagonal entries of R

be positive.
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Let S = (u1 u2 . . . un ) denote the orthogonal eigenvector matrix. The Spectral
Theorem 8.25 tells us that

A = S ΛST , where Λ = diag (λ1, . . . , λn)

is the diagonal eigenvalue matrix. Substituting the spectral factorization into (10.100), we
find

Ak = S Λk ST = Sk Pk.

We now make one additional assumption on the eigenvectors by requiring that ST be a
regular matrix, and so, by Gaussian elimination, admits a factorization ST = LU into
a product of special lower and upper triangular matrices. This holds generically, and is
the analog of the condition that our original vector in the basic power method includes
a nonzero component of the dominant eigenvector. (The reader can trace through the
argument in the general case that ST requires a permuted LU factorization.) Under this
assumption,

Ak = S Λk LU = Sk Pk, and hence SΛk L = Sk Pk U−1.

Multiplying on the right by Λ−k we obtain

SΛk LΛ−k = Sk Tk, where Tk = Pk U−1 Λ−k (10.103)

is also a positive upper triangular matrix.

Now consider what happens as k →∞. Since L is lower triangular, the entries of the
matrix Λk LΛ−k below the diagonal are lij (λj/λi)

k
−→ 0, since i > j, and, by (10.99),

0 < λj/λi < 1. Its diagonal entries are all equal to 1, and therefore, in the limit,

Λk LΛ−k −→ I ,

with convergence rate governed by the ratio λ2/λ1 between the subdominant and the
dominant eigenvalues. As a consequence, in the limit as k → ∞, the left hand side of
(10.103) tends to the orthogonal eigenvector matrix S:

Sk Tk −→ S. (10.104)

We now make use of the following result, whose proof will be given after we finish the
justification of the QR algorithm.

Lemma 10.53. The products of orthogonal and positive upper triangular matrices

have an orthogonal limit, as in (10.104), if and only if the individual matrices have limits

Sk −→ S, Tk −→ I . (10.105)

Therefore, as claimed, the orthogonal matrices Sk do converge to the orthogonal
eigenvector matrix. Moreover, by (10.102), (10.103),

Rk = PkP−1
k−1 =

(
TkΛ

kU−1
) (

Tk−1Λ
k−1 U−1

)−1
= TkΛT−1

k−1.

Since both Tk and Tk−1 converge to the identity matrix, in the limit Rk → Λ converges
to the diagonal eigenvalue matrix, as claimed. The eigenvalues appear in decreasing or-
der along the diagonal — this follows from our regularity assumption on the transposed
eigenvector matrix ST .
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Theorem 10.54. If A is symmetric, satisfies (10.99), and ST is a regular matrix,

then the matrices Sk → S and Rk → Λ in the QR algorithm converge to, respectively

the eigenvector matrix and the diagonal eigenvalue matrix. The rate of convergence is

governed by the ratio between the subdominant and dominant eigenvalues.

The last remaining detail is a proof of Lemma 10.53. We write S = (u1 u2 . . . un ),

Sk = (u
(k)
1 , . . . ,u(k)

n ) in columnar form, and let t
(k)
ij denote the matrix entries of the

positive upper triangular matrix Tk. The last column of the limiting equation (10.104)

reads t(k)nn u
(k)
n → un. Since both u

(k)
n and un are unit vectors, and t(k)nn > 0, the norm of

the limit implies t(k)nn → 1 and hence the last column u(k)
n → un. The next to last column

of (10.104) reads

t
(k)
n−1,n−1 u

(k)
n−1 + t

(k)
n−1,n u

(k)
n −→ un−1.

Taking the inner product with u(k)
n → un and using orthonormality, we deduce t

(k)
n−1,n → 0,

and so t
(k)
n−1,n−1 u

(k)
n−1 → un−1, which, by the previous reasoning, implies t

(k)
n−1,n−1 → 1 and

u
(k)
n−1 → un−1. The proof is completed through a reverse induction on the columns, and
the remaining details are left to the reader.

Tridiagonalization

In practical implementations, the direct QR algorithm is not very efficient, and takes
too long to provide reasonable approximations to the eigenvalues of large matrices. For-
tunately, the algorithm can be made efficient by a simple preprocessing step. The key
observation is that the QR algorithm preserves the class of symmetric tridiagonal matri-
ces, cf. Exercise , and, moreover, like Gaussian elimination, is much faster when applied
to this class of matrices. Alston Householder devised a simple method that converts any
symmetric matrix into tridiagonal form while preserving all the eigenvalues. Thus, by first
applying the Householder tridiagonalization algorithm, and then applying the QR method
to the resulting tridiagonal matrix, the result is an efficient and practical algorithm for
computing eigenvalues of symmetric matrices.

Consider the Householder or elementary reflection matrix

H = I − 2uuT (10.106)

in which u is a unit vector (in the Euclidean norm). The matrix H represents a reflection
of vectors through the plane perpendicular to u, as illustrated in Figure 10.5. According
to Exercise , H is a symmetric orthogonal matrix, and so

HT = H, H2 = I , H−1 = H.

The proof is straightforward: symmetry is immediate, while

H HT = H2 = ( I − 2uuT ) ( I − 2uuT ) = I − 4uuT + 4u (uTu)uT = I

since, by assumption, uTu = ‖u ‖2 = 1. By suitably prescribing the unit vector u, we can
construct an elementary reflection matrix that interchanges any two vectors of the same
length.
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Figure 10.5. Elementary Reflection Matrix.

Lemma 10.55. Let x,y ∈ Rn with ‖x ‖ = ‖y ‖. Set u =
x− y

‖x− y ‖
and let H =

I −2uuT be the corresponding elementary reflection matrix. Then H x = y and H y = x.

Proof : Keeping in mind that x and y have the same Euclidean norm, we compute

H x = ( I − 2uuT )x = x − 2
(x− y)(x− y)Tx

‖x− y ‖2

= x − 2
(x− y)

(
‖x ‖2 − y · x

)

2 ‖x ‖2 − 2x · y
= x− (x− y) = y.

The proof of the second equation is similar. Q.E.D.

Given a symmetric n× n matrix A, our goal is to devise a similar tridiagonal matrix
by applying Householder reflections. We begin by setting

x1 =




0
a21

a31
...

an1




, y1 =




0
±r1

0
...
0




, where r1 = ‖x1 ‖ = ‖y1 ‖,

so that x1 consists of all off-diagonal entries of the first column of A. Let

H1 = I − 2u1 u
T
1 , where u1 =

x1 − y1

‖x1 − y1 ‖

be the corresponding elementary reflection matrix that maps x1 to y1. Either ± sign in the
formula for y1 works in the algorithm; the practical choice is to set it to be the opposite
of the sign of the entry a21, which minimizes the possible effects of round–off error when
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computing the unit vector u1. A direct computation, based on Lemma 10.55 and the fact
that the first entry of u1 is zero, proves that

A2 = H1 AH1 =




a11 r1 0 . . . 0
r1 ã22 ã23 . . . ã2n

0 ã32 ã33 . . . ã3n
...

...
...

. . .
...

0 ãn2 ãn . . . ãnn




(10.107)

for some ãij . Thus, by a single Householder transformation, we can arrange that the first
row and column of A are of tridiagonal form. At the next stage, we work on the second
row and column of the new matrix A2. We set

x2 =




0
0

ã32

ã42

. . .

ãn2




, y1 =




0
0
±r2

0
. . .

0




, where r2 = ‖x2 ‖ = ‖y2 ‖,

and the sign is chosen to be the same as that of ã32. We set H2 = I − 2u2 u
T
2 , leading to

A3 = H2 A2 H2 =




a11 r1 0 0 . . . 0
r1 ã22 r2 0 . . . 0
0 r2 â33 â34 . . . â3n

0 0 â43 â44 . . . â4n
...

...
...

...
. . .

...
0 0 ân3 ân4 . . . ânn




,

whose first two rows and columns are in tridiagonal form. The remaining steps in the
algorithm should now be clear; once they are reached, the final two columns need not
be modified since the resulting matrix will be in tridiagonal form. Let us illustrate the
method by an example.

Example 10.56. To tridiagonalize matrix A =




4 1 −1 2
1 4 1 −1
−1 1 4 1
2 −1 1 4


, we begin

with its first column. We set x1 =




0
1
−1
2


, and so y1 =




0
√
6
0
0


 ≈




0
2.4495
0
0


. Therefore,
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the unit vector is u1 =
x1 − y1

‖x1 − y1 ‖
=




0
.8391

−.2433
.4865


, with corresponding Householder matrix

H1 = I − 2u1 u
T
1 =




1 0 0 0
0 −.4082 .4082 −.8165
0 .4082 .8816 .2367
0 −.8165 .2367 .5266




and so

A2 = H1 AH1 =




4.0000 −2.4495 0 0
−2.4495 2.3333 −.3865 −.8599
0 −.3865 4.9440 −.1246
0 −.8599 −.1246 4.7227




In the next phase, x2 =




0
0

−.3865
−.8599


, y2 =




0
0

−.9428
0


, so u2 =




0
0

−.8396
−.5431


, and

H2 = I − 2u2 u
T
2 =




1 0 0 0
0 1 0 0
0 0 −.4100 −.9121
0 0 −.9121 .4100


.

The resulting matrix

T = A3 = H2 A2 H2 =




4.0000 −2.4495 0 0
−2.4495 2.3333 .9428 0
0 .9428 4.6667 0
0 0 0 5.0000




is now in tridiagonal form.

Now, the key point is that, because the Householder matrices are their own inverses,
the resulting matrices

A = A1, A2 = H1 AH−1
1 , A3 = H2 A2 H−1

2 = (H1 H2)A (H1 H2)
−1, . . .

are all similar and hence have the same eigenvalues. Thus the final result is a tridiagonal
matrix T = An that has the same eigenvalues as the original symmetric matrix A.

We may then apply the QR algorithm to the final tridiagonal matrix T to approximate
its eigenvalues, and hence the eigenvalues of A. According to Exercise , in the resulting
Gram–Schmidt procedure, the iterates Ak are all tridiagonal. Moreover, the number of
arithmetic operations is relatively small; in Exercise you are asked to quantify this.
For instance, in the preceding example, after we apply 20 iterations of the QR algorithm
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directly to T , the upper triangular factor has become

R20 =




6.0000 −0.0065 0 0
0 4.5616 0 0
0 0 5.0000 0
0 0 0 .4384


,

The eigenvalues of T and hence also A are along the diagonal, and are correct to 4 decimal
places.

Finally, if A is not symmetric, then the Householder transformations proceed as before,
but the result is no longer tridiagonal, but rather an upper Hessenberg matrix , which means
that all its entries below the subdiagonal are zero. Thus, a 5× 5 upper Hessenberg matrix
looks like 



? ? ? ? ?

? ? ? ? ?

0 ? ? ? ?

0 0 ? ? ?

0 0 0 ? ?




where the starred entries can be anything. The QR algorithm maintains the upper Hes-
senberg form, and, while not nearly as efficient as the tridiagonal case, still produces a
significant savings in computational effort required to find the eigenvalues.
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Chapter 11

Boundary Value Problems in One Dimension

In this chapter, we begin our analysis of continuous mechanical systems. The equilib-
rium equations of one-dimensional continuum mechanics — bars, beams, strings and the
like — are formulated as boundary value problems for ordinary differential equations. The
basic framework introduced for discrete mechanical systems in Chapter 6 will carry over,
in essence, to the infinite-dimensional setting appropriate to such problems. The underly-
ing Euclidean vector space Rn becomes a function space. Vectors change into functions,
while matrices turn into linear differential operators. We shall characterize the underlying
linear boundary value problems as self-adjoint and positive (semi-)definite with respect
to a suitable inner product on the function space. Stable configurations lead to positive
definite boundary value problems whose equilibrium solutions can then be characterized
by a general minimization principle based on a quadratic functional representing the total
energy in the system. As always, Nature continues seeking to minimize energy.

Many of the basic linear algebra techniques that we developed in the preceding chap-
ters can be systematically translated into this new context. Finite-dimensional linear
algebra not only provides us with important insights into the underlying mathematical
structure of the problems and their solution spaces, but also motivates basic analytical,
and, ultimately, numerical solution schemes. In the infinite-dimensional function space
framework underlying these boundary value problems, the general superposition princi-
ple becomes reformulated in terms of the response of the system to a unit impulse force
concentrated at a single point. However, constructing a function that represents a concen-
trated impulse turns out to be a highly non-trivial mathematical issue; ordinary functions
do not suffice, and we are forced to develop a new theory and calculus of so-called gener-
alized functions or distributions, of inestimable importance to further developments in the
subject and its applications. The most essential generalized function is the delta function
representing a concentrated impulse. The response of the system to a unit impulse force is
known as the Green’s function of the boundary value problem, in honor of the self-taught
English mathematician (and miller) George Green. With the Green’s function in hand,
the general solution to the inhomogeneous system can be reconstructed by superimposing
the effects of suitably scaled impulse responses on the entire domain. Understanding this
construction will become increasingly important as we progress on to partial differential
equations, where direct analytical solution techniques are far harder to come by.

In simple situations, we are able to produce explicit formulae for the solution. One
should never underestimate the value of such formulae for providing insight into the under-
lying physical processes, understanding the behavior of more general systems, as well as
checking the accuracy of numerical integrators. However, more complicated systems can-
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u(x)

Figure 11.1. Bar with One Fixed Support.

not be solved in closed form, and one must rely on suitable numerical algorithms, which
is the focus of the final section of this chapter. Numerical solutions to positive definite
boundary value problems will be based on the finite element method, which relies on the
characterization of solutions through a minimization principle. The differential equations
are converted into a system of linear algebraic equations by minimizing the restriction of
the energy functional to a suitably chosen finite-dimensional subspace of the full function
space. The implementation of this seminal idea converts the differential equation into a
finite-dimensional linear system, which can then be solved by one of the direct or iterative
methods that we already learned. An alternative formulation of the finite element solution,
that can be applied even in situations where there is no minimum principle available, is
based on the idea of a weak solution to the boundary value problem, where one relaxes
the classical differentiability requirements.

11.1. Elastic Bars.

A bar is a mathematical idealization of a one-dimensional linearly elastic continuum
that can be stretched or contracted in the longitudinal direction, but is not allowed to bend
in a transverse direction. (Materials that can bend are called beams, and will be analyzed
in Section 11.4.) We will view the bar as the continuum limit of a one-dimensional chain
of masses and springs — a system that we already analyzed in Section 6.1. Intuitively,
the continuous bar consists of an infinite number of masses connected by infinitely short
springs. The individual masses can be thought of as the atoms in the bar, although one
should not try to read too much into the physics of this interpretation.

We shall derive the basic equilibrium equations for the bar from first principles. Recall
the three basic steps we already used to establish the corresponding equilibrium equations
for discrete mechanical systems (mass–spring chains and structures):

(i) First, use geometry to relate the displacement of the masses to the elongation in
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the connecting springs.

(ii) Second, use the constitutive assumptions such as Hooke’s Law to relate the strain
to the stress or internal force in the system.

(iii) Finally, impose a force balance between external and internal forces.

The remarkable fact, which will, when suitably formulated, carry over to the continuum,
is that the force balance law is directly related to the geometrical displacement law by a
transpose or adjoint operation.

Consider a bar of length ` hanging from a fixed support, with the bottom end left
free, as illustrated in Figure 11.1. We use 0 ≤ x ≤ ` to refer to the reference or unstressed
configuration of the bar, so x measures the distance along the bar from the fixed end x = 0
to the free end x = `. Note that we are adopting the convention that the positive x axis
points down. Let u(x) denote the displacement of the bar from its reference configuration.
This means that the “atom” that started at position x has moved to position x + u(x).
With our convention, u(x) > 0 means that the atom has moved down, while if u(x) < 0
the atom has moved up. In particular,

u(0) = 0 (11.1)

because we are assuming that the top end is fixed and cannot move.

The strain in the bar measures the relative amount of stretching or elongation. Two
nearby atoms, at respective positions x and x+∆x, are moved to positions x+ u(x) and
x+∆x+ u(x+∆x). The original, unstressed length of this small section of bar was ∆x,
while in the new configuration the same section has length

[
x+∆x+ u(x+∆x)

]
−
[
x+ u(x)

]
= ∆x+

[
u(x+∆x)− u(x)

]
.

Therefore, this segment of the bar has been elongated by an amount u(x + ∆x) − u(x).
The dimensionless strain measures the relative elongation, and so is obtained by dividing
by the reference length: [u(x+∆x)− u(x) ]/∆x. We now take the continuum limit by
letting the two atoms become infinitesimally close. Mathematically, we set y = x + ∆x

and let the interatomic spacing ∆x → 0. The result is the strain function

v(x) = lim
∆x→0

u(x+∆x)− u(x)

∆x
=

du

dx
(11.2)

that measures the local stretch in the bar at position x.

We may approximate the bar by a chain of n masses connected by n springs, and
letting the bottom mass hang free. The mass/spring chain will have total length `, and so
the individual springs have reference length

∆x =
`

n
.

The bar can be viewed as the continuum limit of such a mass/spring chain, where the
number of masses n → ∞ and the spring lengths ∆x → 0. The kth mass starts out at
position

xk = k∆x =
k `

n
,
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and, under forcing, experiences a displacement uk. The strain or relative elongation of the
kth spring is

vk =
ek
∆x

=
uk+1 − uk

∆x
. (11.3)

In particular, since the fixed end cannot move, the first value u0 = 0 is omitted from the
subsequent equations.

Remark : We will find it helpful to label the springs from k = 0 to k = n−1 here. This
will facilitate comparisons with the bar, which, by convention, starts at position x0 = 0.

The relation (11.3) between displacement and strain takes the familiar matrix form

v = Au, v =
(
v0, v1, . . . , vn−1

)T
, u = (u1, u2, . . . , un )

T
,

where

A =
1

∆x




1
−1 1

−1 1
−1 1

. . .
. . .

−1 1



≈

d

dx
(11.4)

is the scaled incidence matrix of the mass/spring chain. The derivative operator d/dx that
relates displacement to strain in the bar equation (11.2) can be viewed as the continuum
limit, as the number of masses n → ∞ and the spring lengths ∆x → 0, of the scaled
incidence matrix (11.4). Vice versa, the incidence matrix can be viewed as a discrete,
numerical approximation to the derivative operator. Indeed, if we regard the discrete
displacements and strains as approximations to the sample values of their continuous
counterparts, so

uk ≈ u(xk), εk ≈ ε(xk),

then (11.3) takes the form

v(xk) =
u(xk+1)− u(xk)

∆x
=

u(xk +∆x)− u(xk)

∆x
≈

du

dx
(xk).

justifying the identification (11.4). The passage back and forth between the discrete and the
continuous forms the foundation of continuum mechanics — solids, fluids, gases. Discrete
models both motivate and provide numerical approximations to continuum systems, which
in turn simplify and provide insight into the discrete domain.

The next part of the framework is to use the constitutive relations of the bar to relate
the strain to the stress, or internal force experienced by the bar. To keep matters simple,
we shall only consider bars that are modeled by a linear relation between stress and strain.
For physical bars, this is a pretty good assumption as long as the bar is not stretched
beyond its elastic limits. Let w(x) denote the stress on the part of the bar that was at
reference position x. Hooke’s Law implies that

w(x) = c(x) v(x), (11.5)
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where c(x) measures the stiffness of the bar at position x. For a homogeneous bar, made
out of a uniform material, c(x) ≡ c is a constant function. The constitutive function c(x)
is the continuum limit of the diagonal matrix

C =




c0

c1

. . .

cn−1




of individual spring constants ck appearing in the discrete constitutive law

wk = ck vk, or w = C v, (11.6)

Indeed, writing (11.6) as w(xk) = c(xk) v(xk) makes the identification immediate.

Finally, we need to impose a force balance at each point of the bar. Suppose f(x)
is an external force at position x on the bar, where f(x) > 0 means the force is acting
downwards. Physical examples include mechanical, gravitational, or electrostatic forces
acting solely in the vertical direction. In equilibrium†, the bar will deform so as to balance
the external force with its own internal force resulting from stretching. Now, the internal
force per unit length on the section of the bar lying between nearby positions x and x+∆x

is the difference in stress at the two ends, [w(x+∆x)− w(x) ]/∆x. The force balance law
requires that, in the limit,

0 = f(x) + lim
∆x→0

w(x+∆x)− w(x)

∆x
= f(x) +

dw

dx
,

or

f = −
dw

dx
. (11.7)

The force balance law is the continuum limit of the mass–spring chain version,

fk =
wk−1 − wk

∆x
, wn = 0, (11.8)

where the final condition implies the correct formula for the force on the free-hanging
bottom mass. (Remember that the springs are numbered from 0 to n− 1.) This indicates
that we should also impose an analogous boundary condition

w(`) = 0 (11.9)

at the bottom end of the bar xn = ` which is hanging freely and so is unable to support
any stress. The matrix form of the discrete system (11.8) is

f = ATw,

† The dynamical processes leading to equilibrium will be discussed in Chapter 14.
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where the transposed scaled incidence matrix

AT =
1

∆x




1 −1
1 −1

1 −1
1 −1

. . .
. . .



≈ −

d

dx
, (11.10)

should approximate the differential operator − d/dx that appears in the continuum force
balance law (11.7). Thus, we should somehow interpret the differential operator − d/dx as
the “transpose” or “adjoint” of the differential operator d/dx. This important point will
be developed properly in Section 11.3. But before trying to go any further in the theory,
let us analyze the mathematical equations governing some simple configurations.

But first, let us summarize our progress so far. The three basic equilibrium equa-
tions (11.2), (11.5), (11.7) are

v(x) =
du

dx
, w(x) = c(x) v(x), f(x) = −

dw

dx
. (11.11)

Substituting the first equation into the second, and then the resulting formula into the last
equation, leads to the equilibrium equation

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `. (11.12)

Thus, the displacement u(x) of the bar is obtained as the solution to a second order
ordinary differential equation. As such, it will depend on two arbitrary constants, which
will be uniquely determined by the boundary conditions† (11.1), (11.9) at the two ends:

u(0) = 0, w(`) = c(`)u′(`) = 0. (11.13)

Usually c(`) > 0, in which case it can be omitted from the second boundary condition,
which simply becomes u′(`) = 0. the resulting boundary value problem is viewed as the
continuum limit of the linear system

Ku = ATC Au = f (11.14)

governing a mass-spring chain with one free end. The individual constituents of the stiffness
matrix become

A −→
d

dx
, C −→ c(x), AT

−→ −
d

dx
, u −→ u(x), f −→ f(x),

and so, in the same continuum limit, the matrix system (11.14) turns into the second order
boundary value problem (11.12), (11.13). And, as we will see, further features of the finite-
dimensional problem also have, when suitably interpreted, direct continuum counterparts.

† We will sometimes use primes, as in u′ = du/dx, to denote derivatives with respect to x.
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Figure 11.2. Displacement and Stress of Bar with One Fixed End.

Example 11.1. Consider the simplest case of a uniform bar of unit length ` = 1
subjected to a uniform force, e.g., gravity. The equilibrium equation (11.12) is

− c
d2u

dx2
= f, (11.15)

where we are assuming that the force f is constant. This elementary second order ordinary
differential equation can be immediately integrated,

u(x) = − 1
2 α x2 + ax+ b, where α =

f

c
(11.16)

is the ratio of the force to the stiffness of the bar. The values of the integration constants
a and b are fixed by the boundary conditions (11.13), so

u(0) = b = 0, u′(1) = −α+ a = 0.

Therefore, there is a unique solution to the boundary value problem, yielding the displace-
ment

u(x) = α x− 1
2 α x2, (11.17)

which is graphed in Figure 11.2. Note that the displacement reaches its maximum, α, at
the free end of the bar, the point which moves downwards the farthest. The stronger the
force, or the weaker the bar, the farther the overall displacement. Also note the parabolic
shape of the displacement graph, with zero derivative, indicating no strain, at the free end.

Remark : This example illustrates the simplest way to solve boundary value problems.
It is modeled on the usual method for solving initial value problems. First, solve the
differential equation by standard methods (if possible). For a second order equation, the
general solution will involve two arbitrary constants. The values of the constants are found
by substituting the general solution into the two boundary conditions. Unlike initial value
problems, the existence and/or uniqueness of the solution to a general boundary value
problem is not always guaranteed, and so one may encounter situations where one cannot
complete the solution; see, for instance, Example 7.41. A more sophisticated approach,
based on the Green’s function, will be discussed in the following section.
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As in the discrete situation, this particular mechanical configuration is statically deter-
minate, meaning that we can solve directly for the stress w(x) in terms of the external force
f(x) without having to compute the displacement u(x) first. In this particular example,
we need to solve the first order boundary value problem

−
dw

dx
= f, w(1) = 0,

arising from the force balance law (11.7), which yields

w(x) = f (1− x), and v(x) =
w(x)

c
= α (1− x).

Note that the boundary condition determines the integration constant uniquely. We can
then find the displacement u(x) by solving another boundary value problem

du

dx
= v(x) = α (1− x), u(0) = 0,

resulting from (11.2), which again leads to (11.17). As before, the appearance of one
boundary condition implies that we can find a unique solution to the differential equation.

Remark : We motivated the boundary value problem for the bar by taking the con-
tinuum limit of the mass–spring chain. Let us see to what extent this limiting procedure
can be justified. To compare the solutions, we keep the reference length of the chain fixed
at ` = 1 and its total mass fixed at m. So, if we have n identical masses, each spring has
length ∆x = 1/n. The kth mass will start out at reference position xk = k/n and has mass
mk = m/n. Using static determinacy, we can solve the system (11.8), which reads

wk = wk+1 +
f

n
, wn = 0,

directly for the stresses:

wk = f

(
1−

k

n

)
= f (1− xk) .

Thus, in this particular case, the continuous bar and the discrete chain have equal stresses
at the sample points: w(xk) = wk. The strains also are in agreement:

vk =
1

c
wk = α

(
1−

k

n

)
= α (1− xk) = v(xk) ,

where α = f/c as above. We then obtain the displacements by solving

uk+1 = uk +
vk
n
= uk +

α

n

(
1−

k

n

)
.

Since u0 = 0, the solution is

uk =
α

n

k∑

i=1

1−
α

n2

k∑

i=1

k = α

(
k

n
−

k(k + 1)

2n2

)
= α (xk − x2

k)−
α xk
2n

= u(xk)−
α xk
2n

.

(11.18)
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Figure 11.3. Displacements of a Bar with Two Fixed Ends.

Now the sampled displacement u(xk) is not exactly equal to uk, but their difference tends
to zero as the number of masses n → ∞. In this way, we have completely justified our
approximation scheme.

Example 11.2. Consider the same uniform, unit length bar as in the previous
example, again subject to a uniform constant force, but now with two fixed ends. We
impose the inhomogeneous boundary conditions

u(0) = 0, u(1) = d, (11.19)

where the top end is fixed, while the bottom end is displaced an amount d. (Note that
d > 0 means the bar is stretched, while d < 0 means it is compressed.) The general
solution to the equilibrium equation (11.15) is, as before, given by (11.16). The values of
the arbitrary constants a, b are again determined by plugging into the boundary conditions
(11.19), so

u(0) = b = 0, u(1) = − 1
2 α+ d = 0.

Again, there is a unique solution to the boundary value problem,

u(x) = 1
2 α (x− x2) + d x. (11.20)

The displacement is a superposition of two functions; the first constituent is due to the
external force f , while the second is a uniform stretch due to the boundary condition.
(As in Example 7.44, linearity of the boundary value problem allows us to combine the
responses to different inhomogeneities.) In Figure 11.3, the dotted curves represent the
two simple responses, and the solid graph is their sum, the actual displacement.
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Unlike a bar with a free end, this configuration is statically indeterminate. There is
no boundary condition on the force balance equation

−
dw

dx
= f,

and so the integration constant a in the stress w(x) = a−f x cannot be determined without
first figuring out the displacement (11.20):

w(x) = c
du

dx
= f

(
1
2 − x

)
+ d.

Remark : The particular boundary value problems that govern the mechanical equi-
libria of a simple bar arise in many other physical systems. For example, the equation for
the thermal equilibrium of a bar under an external heat source is modeled by the same
boundary value problem (11.12); in this case, u(x) represents the temperature of the bar,
c(x) represents the diffusivity or thermal conductivity of the material at position x, while
f(x) represents an external heat source. A fixed boundary condition u(`) = a corresponds
to an end that is held at a fixed temperature a, while a free boundary condition u′(`) = 0
represents an insulated end that does not allow heat energy to enter or leave the bar.
Details of the physical derivation can be found in Section 14.1.

Example 11.3. Finally, consider the case when both ends of the bar are left free.
The boundary value problem

−u′′ = f(x), u′(0) = 0, u′(`) = 0, (11.21)

represents the continuum limit of a mass–spring chain with two free ends, and represents
to a bar floating in outer space, subject to a nonconstant external force. Based on our
finite-dimensional experience, we expect the solution to manifest an underlying instability
of the physical problem. Solving the differential equation, we find

u(x) = a x+ b−

∫ x

0

(∫ y

0

f(z) dz

)
dy,

where the constants a, b are to be determined by the boundary conditions. Since

u′(x) = a−

∫ x

0

f(z) dz,

the first boundary condition u′(0) = 0 requires a = 0. The second boundary condition
requires

u′(`) =

∫ `

0

f(x) dx = 0, (11.22)

which is not automatically valid! The integral represents the total force per unit length
exerted on the bar. As in the case of a mass-spring chain with two free ends, if there is a
non-zero net force, the bar cannot remain in equilibrium, but will move off in space and
the equilibrium boundary value problem (11.21) has no solution. On the other hand, if the
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forcing satisfies the constraint (11.22), then the resulting solution of the boundary value
problem has the form

u(x) = b−

∫ x

0

(∫ y

0

f(z) dz

)
dy, (11.23)

where the constant b is arbitrary. Thus, when it exists, the solution to the boundary value
problem is not unique. The constant b solves the corresponding homogeneous problem,
and represents a rigid translation of the entire bar by a distance b.

Physically, the free boundary value problem corresponds to an unstable structure with
an instability. If both ends of the bar are left free, then there is a translational instability,
where the bar moves rigidly in the longitudinal direction. Only those forces with mean zero
will not excite this instability. Furthermore, when it does exist, the equilibrium solution
is not unique since there is nothing to tie the bar down to any particular spatial position.

This should remind you of our earlier study of linear matrix systems. Indeed, according
to Theorem 7.37, the solution to a linear inhomogeneous system is not unique if and only
if the corresponding homogeneous system, with trivial forcing, f(x) ≡ 0, has a non-trivial
solution. In the current situation, any constant function u(x) ≡ b satisfies the homogeneous
boundary value problem. We identify the solutions to the homogeneous boundary value
problem with the kernel of the linear operatorK defining the boundary value problem. The
boundary value problem has a unique solution if and only if kerK = {0} is trivial, whereas
in the present situation kerK is a one-dimensional subspace consisting of all constant
displacements u(x) ≡ b.

The constraint (11.22) on the forcing function is, in fact, a manifestation of the Fred-
holm alternative (5.71), that requires it to be orthogonal to all of the functions in the
cokernel ofK. In Section 11.3, we will show that, like its finite-dimensional matrix counter-
part, the differential operator K is self-adjoint, and hence its kernel and cokernel coincide:
cokerK = kerK, with basis provided by the constant function 1. Thus, orthogonality of
the forcing function to the kernel of K will be ensured by the vanishing of the L2 inner
product,

〈 f ; 1 〉 =

∫ `

0

f(x) dx = 0,

which is precisely the condition (11.22) required for a solution to exist.

11.2. Generalized Functions and the Green’s Function.

The general superposition principle for inhomogeneous linear systems, as summarized
in Theorem 7.42, inspires a important, alternative approach to the solution of boundary
value problems. This method relies on the solution to a particular set of inhomogeneities,
namely concentrated unit impulses. The resulting family of fundamental solutions are
collectively known as the Green’s function for the system. The Green’s function has the
important property that the solution induced by all other inhomogeneities can be built up
as a continuous superposition of these fundamental solutions.

To motivate the construction, let us return briefly to the case of a mass–spring chain.
Given the equilibrium equations

Ku = f , (11.24)
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let us decompose the external forcing f = ( f1, f2, . . . , fn )
T
∈ Rn into a linear combination

f = f1 e1 + f2 e2 + · · · + fn en (11.25)

of the standard basis vectors of Rn. Each ei represents a unit force which is applied solely
to the ith mass in the chain. Suppose we know how to solve each of the individual systems

Kui = ei, i = 1, . . . , n. (11.26)

The solution ui represents the response of the chain to a single unit force concentrated
on the ith mass. Formula (11.25) shows how to decompose any other force vector as a
superposition of impulse forces, with fi representing the strength of the impulse applied to
the ith mass. The general superposition principle for linear systems says that we can then
write the solution to the inhomogeneous system (11.24) as the same linear combination,

u = f1 u1 + · · · + fn un (11.27)

of the individual responses.

Remark : The alert reader will recognize that we are, in fact, reconstructing the solu-
tion to the linear system (11.24) by inverting the matrix K. Thus, this observation does
not lead to an efficient solution technique for discrete systems. In contrast, in the case of
continuous boundary value problems, this idea leads to one of the most important solution
paradigms, in both practical and theoretical developments.

The Delta Function

Our aim is to extend this basic superposition principle to the boundary value problem
for an elastic bar. Therefore, the key question is how to characterize a force or impulse
that is concentrated on a single atom† of the bar. A unit impulse at position x = y will be
described by something called the delta function, and denoted by δy(x). Since the impulse
is supposed to be concentrated solely at x = y, we should have

δy(x) = 0 for x 6= y. (11.28)

Moreover, since it is a unit impulse, we want the total amount of force exerted on the
bar to be equal to one. The total force is the sum of the individual forces, which, in the
continuum limit, is represented by an integral of the force function f(x) over the length of
the bar. Thus, to represent a unit impulse, we must also require that the delta function
satisfy ∫ `

0

δy(x) dx = 1, provided 0 < y < `. (11.29)

Alas, there is no function that enjoys both of the required properties! At least, not one
that behaves like a function in the usual mathematical sense. Indeed, according to the
basic facts of Riemann (or even Lebesgue) integration, two functions which are the same

† Here, as before, “atom” is used in a figurative sense.
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everywhere except at one single point have exactly the same integral, [125]. Thus, since
δy is zero except at one point, its integral should be 0, not 1. The mathematical conclusion
is that the two requirements, (11.28), (11.29) are incompatible for ordinary functions!

This unfortunate fact stopped mathematicians dead in their tracks. It took the imagi-
nation of a British engineer, Oliver Heaviside, who was not deterred by the lack of rigorous
justification, to start utilizing delta functions in practical applications — with remarkable
effect. Despite his success, Heaviside was ridiculed by the pure mathematicians of his day,
and eventually succumbed to mental illness. But, some thirty years later, the great theo-
retical physicist Paul Dirac resurrected the delta function for quantum mechanical applica-
tions, and this finally made theoreticians sit up and take notice. (Indeed, the term “Dirac
delta function” is quite common.) In 1944, the French mathematician Laurent Schwartz
finally established a rigorous theory of distributions that incorporated such useful, but
rather unusual generalized functions, [130]. It is beyond the scope of this introductory
text to develop a fully rigorous theory of distributions. Rather, in the spirit of Heaviside,
we shall concentrate on learning, through practice with applications and computations,
how to domesticate these wild mathematical beasts.

There are two distinct ways to introduce the delta function. Both are important and
worth knowing.

Method #1. Limits: The first approach is to regard the delta function δy(x) as a

limit, as n →∞, of a sequence of ordinary smooth functions† gn(x). These functions will
represent more and more concentrated unit forces, which, in the limit, converge to the
desired unit impulse concentrated at a single point, x = y. Thus, we require

lim
n→∞

gn(x) = 0, x6= y, (11.30)

while the total amount of force remains fixed at
∫ `

0

gn(x) dx = 1. (11.31)

On a formal level, the limit “function”

δy(x) = lim
n→∞

gn(x)

should satisfy the key properties (11.28), (11.29).

A simple explicit example of such a sequence is provided by the rational functions

gn(x) =
n

π
(
1 + n2x2

) (11.32)

that are graphed in Figure 11.4. These functions satisfy

lim
n→∞

gn(x) =

{
0, x 6= 0,

∞, x = 0,
(11.33)

† We suppress the dependence of the functions gn on the point y where the limiting delta
function is concentrated.
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Figure 11.4. Delta Function as Limit.

while‡ ∫ ∞

−∞

gn(x) dx =
1

π
tan−1 nx

∣∣∣∣
∞

x=−∞

= 1. (11.34)

Therefore, formally, we identify the limiting function

lim
n→∞

gn(x) = δ(x) = δ0(x),

with the unit impulse delta function concentrated at x = 0. As n gets larger and larger,
each function gn(x) is a closer and closer approximation to the delta function, and forms
a more and more concentrated spike, while maintaining a unit total area under its graph.
The limiting delta function “looks like” an infinitely tall spike of zero width, entirely
concentrated at the origin.

Remark : This construction of the delta function highlights the perils of interchanging
limits and integrals without proper justification. In Riemann’s or Lebesgue’s integration
theories, the limit of the functions gn would be indistinguishable from the zero function
and so the limit of their integrals (11.34) would not equal the integral of their limit:

1 = lim
n→∞

∫ ∞

−∞

gn(x) dx 6=

∫ ∞

−∞

lim
n→∞

gn(x) dx = 0.

The delta function is, in a sense, a means of sidestepping this analytic inconvenience.
The full ramifications and theoretical constructions underlying such limits and generalized
functions must, however, be deferred to a rigorous course in real analysis, [125].

‡ It is slightly simpler here to consider the entire real line — corresponding to a bar of infinite
length. See Exercise for modifications on a finite interval.
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Remark : There are many other possible choices for the limiting functions gn(x). See
Exercise for another important example.

Once we have found the delta function δ(x) = δ0(x) concentrated at the origin, we
can obtain the delta function concentrated at any other position y by a simple translation:

δy(x) = δ(x− y). (11.35)

Thus, δy(x) can be realized as the limit of the translated functions

ĝn(x) = gn(x− y) =
n

π
(
1 + n2(x− y)2

) . (11.36)

Method #2. Duality : The second approach is a bit more abstract, but much closer
to the proper rigorous formulation. Here, we view a generalized function like the delta
function as a real-valued linear operator L: C0[0, ` ]→ R on a suitable function space — in
this case the vector space of continuous functions on the interval [0, ` ]. As in the general
(7.3), linearity requires that L[cf + dg ] = cL[f ] + dL[g ] for all functions f, g and all
scalars (constants) c, d ∈ R.

The key observation is that if u(x) is any continuous function, then

∫ `

0

δy(x)u(x) dx = u(y), for 0 < y < `. (11.37)

Indeed, since δy(x) = 0 for x 6= y, the integrand only depends on the value of u(x) at the
point x = y, and so

∫ `

0

δy(x)u(x) dx =

∫ `

0

δy(x)u(y) dx = u(y)

∫ `

0

δy(x) dx = u(y).

Equation (11.37) serves to define a linear operator† Ly: C
0[0, ` ]→ R that maps a contin-

uous function u ∈ C0[0, ` ] to its value

Ly[u ] = u(y) ∈ R

at the point x = y. In the dual approach to generalized functions, the delta function is, in
fact, defined as this particular linear operator. The function u(x) is sometimes referred to
as a test function since it serves to test the actual form of the linear operator L.

Remark : If the impulse point y lies outside the integration domain, then

∫ `

0

δy(x)u(x) dx = 0, y < 0 or y > `, (11.38)

because the integrand is identically zero on the entire interval. For technical reasons, we
will not attempt to define the integral (11.38) if the impulse point y = 0 or y = ` lies on
the boundary of the interval of integration.

† Linearity was demonstrated in Example 7.7.
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The interpretation of the linear operator Ly as a kind of function δy(x) is based on the
identification between vectors and real-valued linear functions. According to Theorem 7.10,
every linear function L:V → R on a finite-dimensional inner product space is given by an
inner product L[u ] = 〈a ;u 〉 with a fixed element a ∈ V . Similarly, on the infinite-
dimensional function space C0[0, ` ], the L2 inner product

Lg[u ] = 〈 g ;u 〉 =

∫ `

0

g(x)u(x) dx (11.39)

with a fixed function g ∈ C0[0, ` ] defines a real-valued linear function Lg: C
0[0, ` ] → R.

However, unlike the finite-dimensional situation, not every real-valued linear function on
function space has this form! In particular, there is no continuous (ore even integrable)
function δy(x) such that the inner product identity

〈 δy ;u 〉 =

∫ `

0

δy(x)u(x) dx = u(y) (11.40)

holds for every continuous function u(x). This fact highlights yet another of the profound
differences between finite- and infinite-dimensional vector spaces!

The dual interpretation of generalized functions acts as if this were true. Generalized
functions are real-valued linear operators on function space, which, formally, are identified

as functions via the inner product . One can, with a little care, manipulate generalized
functions as if they were actual functions, but always keeping in mind that a rigorous
justification of such computations must ultimately rely on their formal characterization as
linear operators.

The two approaches — limits and duality — are completely compatible. Indeed, with
a little extra work, one can justify the dual formula (11.37) as the limit

u(y) = lim
n→∞

∫ `

0

gn(x)u(x) dx =

∫ `

0

δy(x)u(x) dx (11.41)

of the inner products of the function u with the approximating concentrated impulse
functions gn(x). In this manner, the linear operator L[u ] = u(y) represented by the delta
function is the limit, Ly = lim

n→∞
Ln, of the approximating linear operators

Ln[u ] =

∫ `

0

gn(x)u(x) dx.

Thus, the choice of interpretation of the generalized delta function is, in some ways, a
matter of taste. For the student, the limit interpretation of the delta function is perhaps
the easier to digest at first, although the dual, linear operator interpretation has stronger
connections with the rigorous theory and, even in applications, offers some significant
advantages.

Although on the surface, the delta function might look a little bizarre, its utility in
modern applied mathematics and mathematical physics more than justifies including it in
your analytical toolbox. Even if you are not yet comfortable with either definition, you are
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Figure 11.5. The Step Function.

advised to press on to gain a good working relationship with the delta function through
its basic properties. You usually won’t go far wrong by treating it as if it were a genuine
function. After you gain experience in working with it as a practical tool, you can, if
desired, return to contemplate just exactly what kind of object the delta function really
is.

Calculus of Generalized Functions

Since we are going to use the delta function to solve differential equations, we need to
find out how it behaves under the basic operations of calculus — differentiation and inte-
gration. The integral of the delta function is known as a step function. More specifically,
the basic formulae (11.37), (11.38) imply that

∫ x

a

δy(t) dt = σy(x) = σ(x− y) =

{
0, x < y,

1, x > y.
provided a < y. (11.42)

Figure 11.5 shows the graph of σ(x) = σ0(x). Unlike the delta function, the step function
σy(x) is an ordinary function. It is continuous — indeed constant — except at x = y. The
value of the step function at the discontinuity x = y is left unspecified, although a popular
choice, motivated by Fourier theory, is to set σy(y) =

1
2 , the average of its left and right

hand limits.

We observe that the integration formula (11.42) is compatible with our characteriza-
tion of the delta function as the limit of highly concentrated forces. If we integrate the
approximating functions (11.32), we obtain

fn(x) =

∫ x

−∞

gn(t) dt =
1

π
tan−1 nx+

1

2
.

Since

lim
y→∞

tan−1 y = 1
2 π, while lim

y→−∞
tan−1 y = − 1

2 π,
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Figure 11.6. Step Function as Limit.

these functions converge to the step function:

lim
n→∞

fn(x) = σ(x) =





1, x > 0,
1
2 , x = 0,

−1, x < 0.

(11.43)

A graphical illustration of this limiting procedure is sketched in Figure 11.6.

Motivated by the Fundamental Theorem of Calculus, we shall use (11.42) to identify
the derivative of the step function with the delta function

dσ

dx
= δ . (11.44)

This fact is highly significant. In basic calculus, one is not allowed to differentiate a
discontinuous function. Here, we discover that the derivative is defined, not as an ordinary
function, but rather as a generalized delta function.

This observation is a particular instance of a general result. We use

f(y−) = lim
x→ y−

f(x), f(y+) = lim
x→ y+

f(x), (11.45)

to denote, respectively, the left and right sided limits of a function at a point y. The
function f(x) is continuous at the point y if and only if its one-sided limits exist and are
equal to its value: f(y) = f(y−) = f(y+). If the one-sided limits are the same, but not
equal to its value f(y), then the function is said to have a removable discontinuity , since
by redefining f(y) = f(y−) = f(y+) makes it continuous at the point in question. An
example is the function f(x) that is equal to 0 for all x 6= 0, but has† f(0) = 1. Removing
the discontinuity by setting f(0) = 0 makes f(x) ≡ 0 equal to the continuous constant 0
function. Removable discontinuities play no role in our theory or applications, and will
always be removed if they appear.

† This function is not a version of the delta function — its integral is 0, not 1. Also, removable
discontinuities only occur in ordinary functions; 0 is not a removable discontinuity for the delta
function.
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Figure 11.7. The Derivative of a Discontinuous Function.

Finally, if both the left and right limits exist, but are not equal, then f is said to have
a jump discontinuity at the point y. The magnitude of the jump is the difference

β = f(y+)− f(y−) = lim
x→ y+

f(x)− lim
x→ y−

f(x), (11.46)

between the right and left limits. Note the value of the function at the point, f(y), which
may not even be defined, does not play a role in the specification of the jump. The
magnitude of the jump is positive if the function jumps up, when moving from left to
right, and negative for a downwards jump. For example, the step function σ(x) has a unit,
i.e., magnitude 1, jump discontinuity at the origin:

σ(0+)− σ(0−) = 1− 0 = 1,

and is continuous everywhere else.

In general, the derivative of a function with jump discontinuities is a generalized
function that includes delta functions concentrated at each discontinuity. More explicitly,
suppose that f(x) is differentiable, in the usual calculus sense, everywhere except at the
point y where it has a jump discontinuity of magnitude β. We can re-express the function
in the convenient form

f(x) = g(x) + β σ(x− y), (11.47)

where g(x) is continuous everywhere, and differentiable except possibly at the jump. Dif-
ferentiating (11.47), we find

f ′(x) = g′(x) + β δ(x− y), (11.48)

has a delta spike of magnitude β at the discontinuity. Thus, the derivatives of f and g

coincide everywhere except at the discontinuity.

Example 11.4. Consider the function

f(x) =

{
−x, x < 1,
1
5 x2, x > 1,

(11.49)

which we graph in Figure 11.7. We note that f has a single jump discontinuity of magnitude
6
5 at x = 1. This means that

f(x) = g(x) + 6
5 σ(x− 1), where g(x) =

{
−x, x < 1,
1
5 x2

−
6
5 , x > 1,
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Figure 11.8. The Derivative of a Discontinuous Function.

is continuous everywhere, since its right and left hand limits at the original discontinuity
are equal: g(1+) = g(1−) = −1. Therefore,

f ′(x) = g′(x) + 6
5 δ(x− 1), where g′(x) =

{
−1, x < 0,
2
5 x, x > 1.

In Figure 11.7, the delta spike in the derivative of f is symbolized by a vertical line —
although this pictorial device fails to indicate its magnitude of 6

5 . Note that g′(x) can be
found by directly differentiating the formula (11.49) for f(x). This implies that, once we
determine the magnitude and location of the jump discontinuities of f(x), we can compute
its derivative directly without introducing to the auxiliary continuous function g(x).

Example 11.5. As a second example, consider the function

f(x) =





−x, x < 0,

x2
− 1, 0 < x < 1,

2e−x, x > 1,

which is plotted in Figure 11.8. This function has jump discontinuities of magnitude −1
at x = 0, and of magnitude 2/e at x = 1. Therefore, in light of the preceding remark,

f ′(x) = − δ(x) +
2

e
δ(x− 1) +





−1, x < 0,

2x, 0 < x < 1,

−2e−x, x > 1,

where the final terms are obtained by directly differentiating f(x).

The integral of the discontinuous step function (11.42) is the continuous ramp function,
∫ x

a

σy(z) dz = ρy(x) = ρ(x− y) =

{
0, a < x < y,

x− y, x > y > a,
(11.50)

which is graphed in Figure 11.9. Note that ρ(x − y) has a corner at x = y, and so is not

differentiable there; indeed, its derivative
dρ

dx
= σ has a jump discontinuity, and its second
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Figure 11.9. First and Second Order Ramp Functions.

derivative
d2ρ

dx2
= δ is no longer an ordinary function. We can continue to integrate; the

nth integral of the delta function is the nth order ramp function

ρn(x− y) =




(x− y)n

n!
, x > y,

0, x < y.

(11.51)

Example 11.6. The derivative of the absolute value function

a(x) = |x | =

{
x, x > 0,

−x, x < 0,

is the sign function

s(x) = a′(x) =

{
+1, x > 0,

−1, x < 0.
(11.52)

Note that there is no delta function in a′(x) because a(x) is continuous everywhere. Since
s(x) has a jump of magnitude 2 at the origin and is otherwise constant, its derivative
s′(x) = a′′(x) = 2δ(x) is twice the delta function.

Conversely, we can also differentiate the delta function. Its first derivative

δ ′y(x) = δ ′(x− y)

can be interpreted in two ways. First, we may view δ ′(x) as the limit

dδ

dx
= lim

n→∞

dgn
dx

= lim
n→∞

−2n3 x

π(1 + n2 x2)2
(11.53)

of the derivatives of the approximating functions (11.32). The graphs of these rational
functions take the form of more and more concentrated spiked “doublets”, as illustrated in
Figure 11.10. To determine the effect of the derivative on a test function u(x), we compute
the limiting integral

〈 δ ′ ;u 〉 =

∫ ∞

−∞

δ ′(x)u(x) dx = lim
n→∞

∫ ∞

−∞

g′n(x)u(x) dx

= − lim
n→∞

∫ ∞

−∞

gn(x)u
′(x) dx = −

∫ ∞

−∞

δ(x)u′(x) dx = −u′(0).

(11.54)
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Figure 11.10. Derivative of Delta Function as Limit of Doublets.

In the middle step, we used an integration by parts; the boundary terms at ±∞ vanish
provided u(x) is continuously differentiable and bounded as |x | → ∞. Pay attention to
the minus sign in the final answer.

In the dual interpretation, the generalized function δ ′y(x) corresponds to the linear
operator

L′y[u ] = −u′(y) = 〈 δ ′y ;u 〉 =

∫ `

0

δ ′y(x)u(x) dx, where 0 < y < `, (11.55)

that maps a continuously differentiable function u(x) to minus its derivative at the point
y. We note that (11.55) is compatible with a formal integration by parts

∫ `

0

δ ′(x− y)u(x) dx = δ(x− y)u(x)

∣∣∣∣
`

x=0

−

∫ `

0

δ(x− y)u′(x) dx = −u′(y).

The boundary terms at x = 0 and x = ` automatically vanish since δ(x− y) = 0 for x 6= y.

Warning : The functions g̃n(x) = gn(x) + g′n(x) satisfy lim
n→∞

g̃n(x) = 0 for all x 6= y,

while

∫ ∞

−∞

g̃n(x) dx = 1. However, lim
n→∞

g̃n = lim
n→∞

gn + lim
n→∞

g′n = δ + δ ′. Thus,

our original conditions (11.30), (11.31) are not in fact sufficient to characterize whether a
sequence of functions has the delta function as a limit. To be absolutely sure, one must,
in fact, verify the more comprehensive limiting definition (11.41).

The Green’s Function

To further cement our new-found friendship, we now discuss how the delta function is
used to solve inhomogeneous boundary value problems. Consider a bar of length ` subject
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to a unit impulse force δy(x) = δ(x− y) concentrated at position 0 < y < ` along the bar.
The underlying differential equation (11.12) takes the form

−
d

dx

(
c(x)

du

dx

)
= δ(x− y), 0 < x < `. (11.56)

Coupled with the appropriate boundary conditions, this represents the continuum analog
of the discrete unit impulse equilibrium system (11.26). The solution to the boundary value
problem associated with (11.56) is known as the Green’s function, and will be denoted by
Gy(x) = G(x, y).

Example 11.7. Let us look at the simple case of a homogeneous bar with uniform
stiffness c(x) ≡ 1, of unit length ` = 1, and fixed at both ends. The boundary value
problem for the Green’s function G(x, y) takes the form

−u′′ = δ(x− y), u(0) = 0 = u(1), (11.57)

where 0 < y < 1 indicates the point at which we apply the impulse force. The solution to
the differential equation is obtained directly by two integrations. First, by (11.42),

u′(x) = −σ(x− y) + a,

where a is a constant of integration. A second integration leads to

u(x) = − ρ(x− y) + a x+ b, (11.58)

where ρ is the ramp function (11.50). The integration constants a, b are fixed by the
boundary conditions; since 0 < y < 1, we have

u(0) = b = 0, u(1) = −(1− y) + a+ b = 0, and so a = 1− y.

Therefore, the Green’s function for the problem is

G(x, y) = − ρ(x− y) + (1− y)x =

{
x(1− y), x ≤ y,

y(1− x), x ≥ y,
(11.59)

See Figure 11.11 for a graph of G(x, y). Note that, for each fixed y, it is a continuous and
piecewise affine function of x — meaning that its graph consists of connected straight line
segments, with a corner where the unit impulse force is being applied.

We observe the following fundamental properties that serve to uniquely characterize
the Green’s function (11.59). First, since the delta forcing vanishes except at the point
x = y, the Green’s function satisfies the homogeneous differential equation†

∂2G

∂x2
(x, y) = 0 for all x 6= y. (11.60)

† Since G(x, y) is a function of two variables, we switch to partial derivative notation to indicate
its derivatives.
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Figure 11.11. Green’s function for a Bar with Fixed Ends.

Secondly, by construction, it must satisfy the boundary conditions,

G(0, y) = 0 = G(1, y).

Thirdly, G is continuous, but has a 90◦ corner at x = y, which implies that its derivative
∂G/∂x has a jump discontinuity of magnitude −1 there. The second derivative ∂2G/∂x2

has a delta function discontinuity at x = y, and thereby solves the original boundary value
problem (11.57). Finally, we observe that the Green’s function is symmetric in x and y:

G(x, y) = G(y, x). (11.61)

This symmetry property is a consequence of the underlying symmetry or “self-adjointness”
of the boundary value problem; this aspect will be discussed in more depth in the following
section. Symmetry has the interesting physical consequence that the response of the bar
at position x due to an impulse force concentrated at position y is exactly the same as
the response of the bar at position y due to an impulse being applied at position x. This
turns out to be a rather general, although perhaps unanticipated phenomenon. analogous
results for the discrete cases of mass-spring chains, circuits, and structures can be found
in Exercises , and .

Once we have determined the Green’s function for the system, we can solve the general
forced boundary value problem

−u′′ = f(x), u(0) = 0 = u(1), (11.62)

by linear superposition — in direct analogy with the superposition solution (11.27) of the
discrete problem. In the continuum case, we need to express the forcing function f(x) as
a linear combination of impulses that are concentrated at each point along the bar. Since
there is a continuum of possible positions y at which the impulse forces may be applied,
we need to replace the finite sum by an integral, writing the external force as

f(x) =

∫ 1

0

f(y) δ(x− y) dy. (11.63)

1/12/04 428 c© 2003 Peter J. Olver



We will interpret (11.63) as the continuous superposition of an infinite collection of impulses
f(y) δ(x− y), of respective magnitudes f(y) and concentrated at position y.

The general linear superposition principle states that linear combinations of inhomo-
geneities produce linear combinations of solutions. Again, we adapt this principle to the
continuum by replacing the sums by integrals. (Indeed, the original definition of the Rie-
mann integral is as a limit of Riemann sums, [9].) Thus, we write the differential equation
(11.62) as

−u′′ =

∫ 1

0

f(y) δ(x− y) dy,

and write the solution as the same continuous superposition

u(x) =

∫ 1

0

f(y)G(x, y) dy (11.64)

of the Green’s function solutions to the individual unit impulse problems.

For the particular boundary value problem (11.62), plugging (11.59) into (11.64), and
breaking the integral up into two parts, for y < x and y > x, we arrive at an explicit
formula

u(x) =

∫ x

0

(1− x)y f(y) dy +

∫ 1

x

x(1− y)f(y) dy (11.65)

for its solution. For example, under a constant unit force f(x) ≡ 1, the solution (11.65) is

u(x) =

∫ x

0

(1− x)y dy +

∫ 1

x

x(1− y) dy = 1
2 (1− x)x2 + 1

2 x(1− x)2 = 1
2 x− 1

2 x2,

in agreement with (11.20) when α = 1 and d = 0. Although this relatively simple problem
was perhaps easier to solve directly, the use of the Green’s function has the advantage of
providing a unified framework that fits all of the special solution techniques for inhomo-
geneous boundary value problems, and really comes into its own in higher dimensional
situations.

Let us, finally, convince ourselves that the superposition formula (11.65) does indeed
give the correct answer. First,

du

dx
= (1− x)xf(x) +

∫ x

0

[−y f(y) ] dy − x(1− x)f(x) +

∫ 1

x

(1− y)f(y) dy

= −

∫ 1

0

y f(y) dy +

∫ 1

x

f(y) dy.

Differentiating again, we conclude that

d2u

dx2
= −f(x),

as desired. As with all limiting processes, one must always be careful interchanging the
order of differentiation and integration. In all the examples considered here, the integrand
will always be sufficiently nice to allow this to be done.
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Figure 11.12. Green’s Function for Bar with One Fixed and One Free End.

Remark : In computing the derivatives of u, we made use of the calculus formula

d

dx

∫ β(x)

α(x)

F (x, y) dy = F (x, β(x))
dβ

dx
− F (x, α(x))

dα

dx
+

∫ β(x)

α(x)

∂F

∂x
(x, y) dy (11.66)

for the derivative of an integral with variable limits, which is a straightforward consequence
of the Fundamental Theorem of Calculus and the Chain Rule, [9].

Example 11.8. Consider next a uniform bar of length ` = 1 with one fixed and one
free end. To determine the Green’s function, we must solve the boundary value problem

−cu′′ = δ(x− y), u(0) = 0, u′(1) = 0, (11.67)

where c is the elastic constant of the bar. Integrating twice, we find the general solution
to the differential equation can be written in terms of the ramp function

u(x) = −
1

c
ρ(x− y) + ax+ b.

The integration constants a, b are fixed by the boundary conditions

u(0) = b = 0, u′(1) = −
1

c
+ a = 0.

Therefore, the Green’s function for this problem is

G(x, y) =

{
x/c, x ≤ y,

y/c, x ≥ y,
(11.68)

and is graphed in Figure 11.12.

As in the previous example, the Green’s function is piecewise affine, and so solves the
homogeneous differential equation −u′′ = 0, except at the impulse point x = y, where it
has a corner. Its first derivative ∂G/∂x has a jump discontinuity of magnitude −1/c, as
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required for its second derivative ∂2G/∂x2 to produce the correct delta function singularity.
Moreover, it satisfies both boundary conditions. Note that G(x, y) is constant for x > y

since the unit impulse at x = y will only stretch the section of the bar that lies above
it, while the section below the impulse hangs freely. And, as in the preceding example,
the Green’s function is a symmetric function: G(x, y) = G(y, x), which admits a similar
physical interpretation.

Once we have the Green’s function in hand, the solution to the general forced boundary
value problem

−cu′′ = f(x), u(0) = 0, u′(1) = 0, (11.69)

can be expressed using a superposition formula (11.64), namely

u(x) =

∫ 1

0

G(x, y)f(y) dy =
1

c

∫ x

0

xf(y) dy +
1

c

∫ 1

x

y f(y) dy. (11.70)

The reader may wish to verify this directly, as we did in the previous example.

Let us conclude this section by summarizing the fundamental properties that charac-
terize the Green’s function of a boundary value problem.

Basic Properties of the Green’s Function

(a) Solves the homogeneous differential equation:

−
∂

∂x

(
c(x)

∂

∂x
G(x, y)

)
= 0, for all x 6= y. (11.71)

(b) Satisfies the boundary conditions.

(c) Has a jump discontinuity of magnitude −1/c(y) in its derivative ∂G/∂x at x = y.

(d) Is a symmetric function of its arguments: G(y, x) = G(x, y).

(e) Admits a superposition principle for general forcing functions:

u(x) =

∫ `

0

G(x, y) f(y) dy. (11.72)

Although derived and stated for the simple case of a one-dimensional boundary value
problem governing the equilibrium solution of a bar, these properties, suitably adapted,
hold in a very broad range of boundary value problems, including those of higher order
and in more dimensions.

Remark : The Green’s function represents the continuum limit of the inverse G = K−1

of the stiffness matrix of a discrete mass-spring chain, (11.14). The entriesGij of the inverse
matrix are approximations to the sampled values G(xi, xj) of the Green’s function of the
limiting bar. Symmetry, G(xi, xj) = G(xj , xi), of the Green’s function corresponds to
symmetry, Gij = Gji, of the inverse of the symmetric stiffness matrix. In Exercise , you
are asked to study this limiting procedure in detail.
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11.3. Adjoints and Minimum Principles.

Let us now discuss how the boundary value problems for continuous elastic bars fit into
our general equilibrium framework of positive (semi-)definite linear systems. In Chapter 6,
we learned that the stable equilibrium configurations of discrete mechanical and electrical
systems can be characterized as energy minimizers. This fundamental physical principle
has a direct counterpart in the continuum systems that we have begun to consider, and
our goal is to understand how to adapt the finite-dimensional constructions to infinite-
dimensional function space. In particular, the resulting minimization principles not only
lead to an important theoretical characterization of the equilibrium solution, but, through
the finite element method, underlies the most important class of numerical approximation
algorithms for such boundary value problems.

Adjoints of Differential Operators

In discrete mechanical systems, the crucial observation was that the matrix appearing
in the force balance law is the transpose of the incidence matrix relating displacements and
elongations or strains. In the continuum limit, the discrete incidence matrix has turned
into a differential operator, and so a crucial difficulty is how to take its “transpose”. The
abstract answer to this quandary can be found in Section 7.5. The transpose of a matrix
is a particular instance of the general notion of the adjoint of a linear function, which
relies on the specification of inner products on its domain and target spaces. In the case of
the matrix transpose, the adjoint is prescribed with respect to the standard dot product
on Euclidean space. Thus, the correct interpretation of the “transpose” of a differential
operator is as the adjoint linear operator with respect to suitable inner products on function
space.

For bars and similar continuous one-dimensional media, the role of the incidence
matrix is played by the derivative v = D[u ] = du/dx, which defines a linear operator
D:U → V from the vector space of possible displacements u(x), denoted by U , to the
vector space of possible strains v(x), denoted by V . In order to compute its adjoint, we
need to impose inner products on both the displacement space U and the strain space V .
The simplest situation is to adopt the same standard L2 inner product

〈u ; ũ 〉 =

∫ b

a

u(x) ũ(x) dx, 〈〈 v ; ṽ 〉〉 =

∫ b

a

v(x) ṽ(x) dx, (11.73)

on both vector spaces. These are the continuum analogs of the Euclidean dot product,
and, as we shall see, will be appropriate when dealing with homogeneous bars. According
to the defining equation (7.64), the adjoint D∗ of the derivative operator must satisfy the
inner product identity

〈〈D[u ] ; v 〉〉 = 〈u ;D∗[v ] 〉 for all u ∈ U, v ∈ V. (11.74)

First, we compute the left hand side:

〈〈D[u ] ; v 〉〉 =

〈〈
du

dx
; v

〉〉
=

∫ b

a

du

dx
v dx. (11.75)
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On the other hand, the right hand side should equal

〈u ;D∗[v ] 〉 =

∫ b

a

uD∗[v ] dx. (11.76)

Now, in the latter integral, we see u multiplying the result of applying the linear operator
D∗ to v. To identify this integrand with that in the previous integral (11.75), we need to
somehow remove the derivative from u. The secret is integration by parts! It allows us to
rewrite the first integral in the form

∫ b

a

du

dx
v dx =

[
u(b) v(b)− u(a) v(a)

]
−

∫ b

a

u
dv

dx
dx. (11.77)

If we ignore the boundary terms u(b) v(b) − u(a) v(a) for a moment, then the remaining
integral is equal to an inner product

−

∫ b

a

u
dv

dx
dx =

∫ b

a

u

(
−

dv

dx

)
dx =

〈
u ; −

dv

dx

〉
= 〈u ;−D[v ] 〉. (11.78)

Equating (11.76), (11.78), we deduce that

〈〈D[u ] ; v 〉〉 =

〈〈
du

dx
; v

〉〉
=

〈
u ; −

dv

dx

〉
= 〈u ;−D[v ] 〉.

Thus, to satisfy, (11.76), we must have

〈u ;D∗[v ] 〉 = 〈u ;−D[v ] 〉 for all u ∈ U, v ∈ V,

and so

D∗ =

(
d

dx

)∗
= −

d

dx
= −D. (11.79)

The final equation confirms our earlier identification (11.4) of the derivative operator as
the continuum limit of the incidence matrix A and its negative as the limit (11.10) of the
transposed (or adjoint) incidence matrix AT = A∗.

However, the preceding argument is only valid if the boundary terms in (11.77) vanish:

u(b) v(b)− u(a) v(a) = 0, (11.80)

which necessitates imposing suitable boundary conditions on the functions u and v. For
example, in the case of a bar with both ends fixed, the boundary conditions

u(a) = 0, u(b) = 0, (11.81)

will ensure that (11.80) holds, and therefore validate (11.79). The homogeneous boundary
conditions serve to define the vector space

U =
{

u(x) ∈ C1[a, b ]
∣∣ u(a) = u(b) = 0

}

of allowable displacements, consisting of all continuously differentiable functions that van-
ish on the boundary.
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The fixed boundary conditions (11.81) are not the only possible ones that ensure the
vanishing of the boundary terms (11.80). An evident alternative is to require that the
strain v vanish at both endpoints, v(a) = v(b) = 0. This is the case of an unsupported
bar with two free ends, where the displacement at the ends is unspecified, but the strain
vanishes owing to a lack of support. In this case, the strain space

V =
{

v(x) ∈ C1[a, b ]
∣∣ v(a) = v(b) = 0

}

consists of all functions that vanish on the boundary. Since the derivative D:U → V

must map a displacement u(x) to an allowable strain v(x), the vector space of allowable
displacements takes the form

U =
{

u(x) ∈ C1[a, b ]
∣∣ u′(a) = u′(b) = 0

}
,

indicating free boundary conditions at both ends, as in Example 11.3. Again, restricting
D:U → V to these particular vector spaces ensures that the boundary terms (11.80)
vanish, and so (11.79) holds in this situation too.

Let us list the most important combinations of boundary conditions that will imply
the vanishing of the boundary terms (11.80) and ensure that the desired adjoint equation
D∗ = −D is valid. In all cases, the boundary conditions impose restrictions on the
displacement space U and, in cases (b–d), the strain space V too.

Self-Adjoint Boundary Conditions for a Bar

a) Both ends fixed: u(a) = u(b) = 0.

b) One free and one fixed end: u(a) = 0, u′(b) = 0 or u′(a) = 0, u(b) = 0.

c) Both ends free: u′(a) = u′(b) = 0.

d) Periodic boundary conditions: u(a) = u(b), u′(a) = u′(b).

A fixed boundary condition u(a) = 0 is commonly referred to as a Dirichlet bound-
ary condition, in honor the nineteenth century French analyst Lejeune Dirichlet. A free
boundary condition u′(a) = 0 is known as a Neumann boundary condition, in honor of
his German contemporary Carl Gottfried Neumann. The Dirichlet boundary value prob-
lem has both ends fixed, while the Neumann boundary value problem has both ends free.
The intermediate case (b) is known as a mixed boundary value problem. The periodic
boundary conditions represent a bar that has its ends joined together for form a circular†

elastic ring. It represents the continuum limit of the periodic mass–spring chain discussed
in Exercise , and requires u(x) to be a periodic function with period b− a.

In the case of a homogeneous bar with stiffness c(x) ≡ 1, the connections between
strain, displacement and external force take the form

v = D[u ] = u′, f = D∗[v ] = −v′,

† we are assuming that the circle is sufficiently large that we can ignore any curvature effects.
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provided we impose a suitable pair of boundary conditions. The equilibrium equations are
then written in the self-adjoint form

K[u ] = f, where K = D∗ ◦D = −D2. (11.82)

Note that
K∗ = (D∗ ◦D)∗ = D∗ ◦ (D∗)∗ = D∗ ◦D = K, (11.83)

which proves self-adjointness of the differential operator; in complete detail,

〈K[u ] ; ũ 〉 =

∫ `

0

[
−u′′(x) ũ(x)

]
dx =

∫ `

0

[
−u(x) ũ ′′(x)

]
dx = 〈u ;K[ ũ ] 〉 (11.84)

for all displacements u, ũ ∈ U . A direct verification of this formula relies on two integration
by parts, employing the Dirichlet boundary conditions to cancel out the ensuing boundary
terms.

To deal with inhomogeneous materials in the same framework, we must modify the
inner products on the underlying function spaces. To this aim, we retain the ordinary L2

inner product

〈u ; ũ 〉 =

∫ b

a

u(x) ũ(x) dx, u, ũ ∈ U, (11.85)

on the vector space of possible displacements, but adopt a weighted inner product

〈〈 v ; ṽ 〉〉 =

∫ b

a

v(x) ṽ(x) c(x) dx, v, ṽ ∈ V, (11.86)

on the space of strain functions. The weight function c(x) > 0 turns out to be the stiffness
function for the bar, and so its positivity corroborates the underlying physical hypotheses.

Let us compute the adjoint of the derivative operator D:U → V with respect to these
two inner products (11.85), (11.86). Now we need to compare

〈〈D[u ] ; v 〉〉 =

∫ b

a

du

dx
v(x) c(x) dx, with 〈u ;D∗[v ] 〉 =

∫ b

a

u(x)D∗[v ] dx.

Integrating the first expression by parts, we find

∫ b

a

du

dx
cv dx =

[
u(b)c(b)v(b)− u(a)c(a)v(a)

]
−

∫ b

a

u
d(cv)

dx
dx =

∫ b

a

u

(
−

d(cv)

dx

)
dx,

(11.87)
provided we choose our boundary conditions so that the boundary terms vanish:

u(b)c(b)v(b)− u(a)c(a)v(a) = 0,

which holds from any of the listed boundary conditions: Dirichlet, Neumann or mixed,
as well as the periodic case provided c(a) = c(b). Therefore, in such cases, the weighted
adjoint D∗ of the derivative operator is

(
d

dx

)∗
v = −

d(cv)

dx
= −c

dv

dx
− c′ v. (11.88)
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The self-adjoint combination K = D∗ ◦D is now given by

K[u ] = −
d

dx

(
c(x)

du

dx

)
, (11.89)

which agrees with the differential operator (11.12) for a nonuniform bar. In this way, we
have formulated a non-uniform bar in the same abstract self-adjoint form.

Positivity and Minimum Principles

In Chapter 6, we learned that the stiffness matrix of a discrete mechanical system is,
in all cases, of positive semi-definite Gram matrix form K = ATC A. The existence and
uniqueness of solutions, and stability of the system under arbitrary external forcing depends
upon whether or not its stiffness matrix is positive definite, K > 0. Furthermore, the stable
equilibrium configurations can be characterized as minimizers of the quadratic energy
function. These fundamental principles all have direct counterparts in the continuum
problems now under consideration, as we now discuss.

The first step is to understand how a differential operator or associated boundary
value problem can be positive definite. According to the abstract Definition 7.58, a linear
operator K:U → U on an inner product space U is positive definite provided it is (a)
self-adjoint, so K∗ = K, and (b) satisfies the positivity criterion

〈K[u ] ;u 〉 > 0, for all 06= u ∈ U. (11.90)

Self-adjointness of the product operator K = D∗ ◦D was proved in (11.83). Furthermore,
K is positive definite if and only if D has trivial kernel: kerD = {0}. Indeed, by the
definition of the adjoint,

〈K[u ] ;u 〉 = 〈D∗[D[u ] ] ;u 〉 = 〈〈D[u ] ;D[u ] 〉〉 = ‖D[u ] ‖2 ≥ 0, (11.91)

so K is automatically positive semi-definite. Furthermore,

〈K[u ] ;u 〉 = ‖D[u ] ‖2 = 0 if and only if D[u ] = 0,

and thus the condition kerD = {0} is necessary and sufficient for the positivity criterion
(11.90) to hold.

Now, in the absence of constraints, the kernel of the derivative operator D is not triv-
ial, but contains all constant functions. However, we are viewing D as a linear operator
on the vector space U of allowable displacements, and so the elements of kerD must also
be allowable, meaning that they must satisfy the boundary conditions. Thus, positivity
reduces, in the present situation, to the question of whether or not there are any nontriv-
ial constant functions that satisfy the prescribed homogeneous† boundary conditions and
hence belonging to kerD ⊂ U .

Clearly, the only constant function that satisfies a homogeneous Dirichlet boundary
conditions is the zero function. Therefore, when restricted to the Dirichlet displacement

† The inhomogeneous boundary value problem will be discussed later.
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space U = {u(0) = u(`) = 0}, the derivative operator has trivial kernel, kerD = {0}.
As a result, the composition K = D∗ ◦D defines a positive definite linear operator on U .
A similar argument applies to the the mixed boundary value problems. Again, the only
constant function that satisfies the homogeneous boundary conditions is the zero function,
which suffices to prove positive definiteness. Indeed, as we saw, both the Dirichlet and
mixed boundary value problems are stable, and admit a unique equilibrium solution under
arbitrary external forcing.

On the other hand, any constant function satisfies the homogeneous Neumann bound-
ary conditions, and so kerD ⊂ U is the one-dimensional subspace of constant functions.
Therefore, the free boundary value problem is only positive semi-definite. A similar ar-
gument applies to the periodic problem. Indeed, in such unstable configurations, the
boundary value problem has either no solution or infinitely many equilibrium solutions,
depending on the nature of the external forcing. Thus, the distinction between stable
and unstable systems based on the definiteness of the underlying differential operator is in
complete agreement with the finite-dimensional story of Chapter 6.

In the positive definite, stable cases, we can characterize the solution to the (homo-
geneous) boundary value problem K[u ] = f as the unique minimizer of the quadratic
functional

P[u ] = 1
2 ‖D[u ] ‖2 − 〈u ; f 〉 =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx. (11.92)

Note that the norm in (11.92) refers to the strain space V , and so is associated with the
weighted inner product (11.86); indeed, the first term

1
2 ‖D[u ] ‖2 = 1

2 ‖ v ‖2 =

∫ `

0

1
2 c(x) v(x)2 dx =

∫ `

0

1
2 v(x)w(x) dx = 1

2 〈 v ;w 〉

is one half the (unweighted) inner product between stress and strain, and hence represents
the internal energy of our bar. The second term represents the potential energy due to the
external forcing, and so, as usual, our minimization principle (11.92) represents the total
energy for the mechanical configuration.

Example 11.9. Consider the homogeneous Dirichlet boundary value problem

−u′′ = f, u(0) = 0, u(`) = 0. (11.93)

for a uniform bar with two fixed ends. This is a stable case, and so the underlying
differential operator K = D∗ ◦D = −D2, when subject to the boundary conditions, is
positive definite. Explicitly, positive definiteness requires

〈K[u ] ;u 〉 =

∫ `

0

[−u′′(x)u(x) ] dx =

∫ `

0

u′(x)
2
dx > 0 (11.94)

for all nonzero u(x) 6≡0 satisfying the boundary conditions. Note how we employed an
integration by parts, using the boundary conditions to eliminate the boundary terms, to
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expose the positivity of the integral. The corresponding minimum principle can be written
out as

P[u ] = 1
2‖u′ ‖2 − 〈u ; f 〉 =

∫ `

0

[
1
2 u′(x)2 − f(x)u(x)

]
dx. (11.95)

In other words, the solution u?(x) to (11.93) is the function for which P[u? ] achieves the
minimal value over all possible functions u(x) satisfying the boundary conditions.

While the general, abstract proof of the validity of the minimization principle can be
found following Theorem 7.60, a direct verification in this special case may be instructive.
As in our derivation of the adjoint operator, it relies on an integration by parts. Since
u′′? = −f , we find

P[u ] =

∫ `

0

[
1
2 (u

′)2 + u′′? u
]
dx = u′?(b)u(b)− u′?(a)u(a) +

∫ `

0

[
1
2 (u

′)2 − u′?u′
]
dx

=

∫ `

0

1
2 (u

′
− u′?)

2 dx+

∫ `

0

1
2 (u

′
?)

2 dx.

(11.96)

The first integral is always ≥ 0, and is actually equal to 0 if and only if u′ = u′?. Since u and
u? are both assumed to satisfy the boundary conditions, P[u ] will assume its minimum
value when u = u?.

Inhomogeneous Boundary Conditions

So far, we have restricted our attention to homogeneous boundary value problems.
Inhomogeneous boundary conditions a little trickier, since the spaces of allowable dis-
placements and allowable strains are no longer vector spaces, and so the abstract theory,
as developed in Chapter 7, will not directly apply.

One way to circumvent this difficulty is to appeal to linear superposition in order
to modify the displacement function so as to incorporate the boundary conditions and
thereby revert to the homogeneous situation. Consider, for example, the inhomogeneous
Dirichlet boundary value problem

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), u(0) = α, u(`) = β. (11.97)

Choose a function h(x) that satisfies the boundary conditions:

h(0) = α, h(`) = β.

Note that we are not requiring h to satisfy the differential equation, and so one, but by no
means the only, possible choice is the affine function

h(x) = α+
β − α

`
x. (11.98)

Since u and h have the same boundary values, their difference

ũ(x) = u(x)− h(x) (11.99)
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satisfies the homogeneous Dirichlet boundary conditions

ũ(0) = ũ(`) = 0. (11.100)

Moreover, by linearity, ũ satisfies the modified equation

K[ ũ ] = K[u− h ] = K[u ]−K[h ] = f −K[h ] ≡ f̃ ,

or, explicitly,

−
d

dx

(
c(x)

d ũ

dx

)
= f̃(x), where f̃ = f +

d

dx

(
c(x)

dh

dx

)
. (11.101)

For the particular choice (11.98),

f̃(x) = f(x) +
β − α

`
c′(x).

Thus, we have managed to convert the inhomogeneous problem into a homogeneous bound-
ary value problem given in (11.100), (11.101). Once we have solved the latter, the solution
to the original inhomogeneous problem is then reconstructed from the formula

u(x) = ũ(x) + h(x). (11.102)

We know that the homogeneous Dirichlet boundary value problem is positive definite,
and so we can characterize its solution by a minimum principle, namely as the minimizer
of the quadratic energy functional

P[ ũ ] = 1
2‖ ũ ′ ‖2 − 〈 ũ ; f̃ 〉 =

∫ `

0

[
1
2 c(x) ũ ′(x)2 − f̃(x) ũ(x)

]
dx. (11.103)

Let us rewrite the minimization principle in terms of the original displacement function
u(x). We replace ũ and f̃ by their formulae (11.99), (11.101); the result is

P[ ũ ] = 1
2‖u′ − h′ ‖2 − 〈u− h ; f −K[h ] 〉

=
(

1
2‖u′ ‖2 − 〈u ; f 〉

)
−
(
〈〈u′ ;h′ 〉〉 − 〈u ;K[h ] 〉

)
+
(

1
2‖h′ ‖2 + 〈h ; f −K[h ] 〉

)

= P[u ]−
(
〈〈u′ ;h′ 〉〉 − 〈u ;K[h ] 〉

)
+ C0.

(11.104)
In the middle formula, the first pair of terms reproduces the quadratic energy functional
(11.92) for the actual displacement u(x). The last two terms depend only on the initial
choice of h(x), and not on u(x); thus, for the purposes of this argument, they can be
regarded as a fixed constant, denoted by C0. The middle two terms can be explicitly
evaluated as follows:

〈〈u′ ;h′ 〉〉 − 〈u ;K[h ] 〉 =

∫ `

0

[
c(x)h′(x)u′(x) +

(
c(x)h′(x)

)′
u(x)

]
dx (11.105)

=

∫ `

0

d

dx

[
c(x)h′(x)u(x)

]
dx = c(`)h′(`)u(`)− c(0)h′(0)u(0).
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Figure 11.13. Bending of a Beam.

In particular, if u(x) satisfies the inhomogeneous Dirichlet boundary conditions u(0) = α,
u(`) = β, then these terms

〈〈u′ ;h′ 〉〉 − 〈u ;K[h ] 〉 = c(`)h′(`)β − c(0)h′(0)α ≡ C1

also depend only on the interpolating function h and not on u. Therefore,

P[ ũ ] = P[u ]− C1 + C0

differ by a constant. Consequently, if the function ũ minimizes P[ ũ ], then u = ũ + h

necessarily minimizes P[u ]. In this manner, we have characterized the solution to the
inhomogeneous Dirichlet boundary value problem by the same minimization principle.

Theorem 11.10. The solution u?(x) to the Dirichlet boundary value problem

−
d

dx

(
c(x)

du

dx

)
= f(x), u(0) = α, u(`) = β,

is the unique C2 functions that satisfies the indicated boundary conditions and minimizes

the energy functional P[u ] =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx.

Warning : When treating the inhomogeneous mixed boundary value problem, we can-
not ignore the extra terms (11.105) since they will depend upon the choice of function
u(x). The details are worked out in Exercise .

11.4. Beams and Splines.

Unlike a bar, which can only stretch in the longitudinal direction, an elastic beam
is allowed to bend in a transverse direction. To keep the geometry simple, we consider
the case in which the bending of the beam is restricted to the (x, y) plane, as sketched in
Figure 11.13. Let 0 ≤ x ≤ ` represent the reference position along the beam of length `.
In the present, simplified model, we ignore stretching, and assume that the atoms in the
beam can only move in the transverse direction. We let y = u(x) represent the transverse
displacement of the atom at position x.
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The strain in a beam measures how much it is bent. Mathematically, bending is equal
to the curvature† of the graph of the displacement function u(x), and is computed by the
usual calculus formula

κ =
u′′

(1 + u′2)3/2
. (11.106)

Thus, for beams, the strain is a nonlinear function of displacement. Since we are still only
willing to deal with linear systems, we shall suppress the nonlinearity by assuming that
the beam is not bent too far; more specifically, we assume that the derivative u′(x)¿ 1 is
small and so the tangent line is nearly horizontal. Under this assumption, the curvature
function (11.106) is replaced by its linear approximation

κ ≈ v = L[u ] =
d2u

dx2
.

From now on, we will identify v = u′′ as the strain in a bending beam. The second
derivative operator L = D2 that maps displacement to strain thereby assumes the role of
the incidence matrix for the (linearized) beam and describes its underlying geometry.

The next step is to formulate a constitutive relation that relates stress to strain.
Physically, the stress w(x) represents the bending moment of the beam, defined as the
product of internal force and angular deflection. Our small bending assumption allows us
to assume a linear Hooke’s law, and so the beam stress function has the form

w(x) = c(x) v(x) = c(x)
d2u

dx2
, (11.107)

where the proportionality factor c(x) > 0 measures the stiffness of the beam at the point
x. A uniform beam has constant stiffness, c(x) ≡ c.

Finally, the differential equation governing the equilibrium configuration of the beam
will follow from a balance of the internal and external forces. To compute the internal
force, we appeal to our general equilibrium framework, which leads us to apply the adjoint
of the incidence operator L = D2 to the stress. Let us compute the adjoint. We use the
ordinary L2 inner product on the space of displacements u(x), and adopt a weighted inner
product, based on the stiffness function c(x), between strain functions:

〈u ; ũ 〉 =

∫ b

a

u(x) ũ(x) dx, 〈〈 v ; ṽ 〉〉 =

∫ b

a

v(x) ṽ(x) c(x) dx. (11.108)

To compute the adjoint L∗ = (D2)∗, we need to compare

〈〈L[u ] ; v 〉〉 =

∫ `

0

L[u ] v c dx with 〈u ;L∗[v ] 〉 =

∫ `

0

uL∗[v ] dx.

† By definition, [9], the curvature of a curve at a point is equal to the reciprocal, κ = 1/r of
the radius of the osculating circle; see Exercise for details.
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Figure 11.14. Boundary Conditions for a Beam.

As always, the adjoint computation relies on (in this case a double) integration by parts:

〈〈L[u ] ; v 〉〉 =

∫ `

0

d2u

dx2
c v dx =

[
du

dx
c v

] ∣∣∣∣
`

x=0

−

∫ `

0

du

dx

d(c v)

dx
dx

=

[
du

dx
c v − u

d(c v)

dx

] ∣∣∣∣
`

x=0

+

∫ `

0

u
d2(c v)

dx2
dx

.

Therefore, L∗[v ] = D2(c v) provided the boundary terms vanish:

[
du

dx
c v − u

d(c v)

dx

] ∣∣∣∣
`

x=0

=

[
du

dx
w − u

dw

dx

] ∣∣∣∣
`

x=0

(11.109)

=
[
u′(`)w(`)− u(`)w′(`)

]
−
[
u′(0)w(0)− u(0)w′(0)

]
= 0.

Thus, the appropriate force balance equations are

L∗[v ] = f, or, explicitly,
d2w

dx2
=

d2(c v)

dx2
= f(x). (11.110)

A justification of (11.110) based on physical principles can be found in [143]. Combin-
ing (11.107), (11.110), we conclude that the equilibrium configurations of the beam are
solutions to the differential equation

d2

dx2

(
c(x)

d2u

dx2

)
= f(x). (11.111)

Since we are dealing with a fourth order ordinary differential equation (11.111), we need
to impose a total of four boundary conditions — two at each end — so as to make the
boundary terms in our integration by parts computation vanish, (11.109). There are a
variety of ways in which this can be arranged, and the most important possibilities are
illustrated in Figure 11.14:
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Self-Adjoint Boundary Conditions for a Beam

a) Simply supported end: u(0) = w(0) = 0.

b) Fixed (clamped) end: u(0) = u′(0) = 0.

c) Free end: w(0) = w′(0) = 0.

d) Sliding end: u′(0) = w′(0) = 0.

Here w(x) = c(x) v(x) = c(x)u′′(x) is the stress resulting from the displacement u(x).

A second pair of boundary conditions must be imposed at the other end x = `. One
can mix or match these conditions in any combination — for example, a pair of simply
supported ends, or one free end and one fixed end, and so on. Inhomogeneous boundary
conditions are also allowed, and used to model applied displacements or forces at each
end of the beam. Yet another option is to consider a periodic beam, modeling a bendable
circular ring, in which one imposes periodic boundary conditions

u(0) = u(`), u′(0) = u′(`), w(0) = w(`), w′(0) = w′(`).

Let us concentrate our efforts on the case of a uniform beam, with c(x) ≡ 1, of unit
length ` = 1. In the absence of external forcing, the differential equation (11.111) reduces
to the homogeneous fourth order ordinary differential equation

d4u

dx4
= 0. (11.112)

The general solution

u = a x3 + b x2 + c x+ d (11.113)

is a linear combination of the four basis solutions 1, x, x2, x3, and is easily found by direct
integration. Let us use this to completely solve a couple of representative boundary value
problems.

First, suppose we fix both ends of the beam, imposing the boundary conditions

u(0) = 0, u′(0) = β, u(1) = 0, u′(1) = 0, (11.114)

so that the left hand end is tilted by a (small) angle tan−1 β. We substitute the solution
formula (11.113) into the boundary conditions (11.114) and solve for

a = β, b = −2β, c = β, d = 0.

The resulting cubic polynomial solution

u(x) = β (x3
− 2x2 + x) = β x(1− x)2 (11.115)

is known as a Hermite cubic spline†, and graphed in Figure 11.15.

† We first met Charles Hermite in Section 3.6, and the term “spline” will be explained shortly.

1/12/04 443 c© 2003 Peter J. Olver



0.2 0.4 0.6 0.8 1

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 11.15. Hermite Cubic Spline.

As a second example, suppose that we raise the left hand end of the beam without
tilting, which corresponds to the boundary conditions

u(0) = α, u′(0) = 0, u(1) = 0, u′(1) = 0. (11.116)

Substituting the general formula (11.113) and solving for the coefficients a, b, c, d, we find
that the solution is

u(x) = α (1− x)2 (2x+ 1). (11.117)

If we simultaneously raise and tilt the left hand end, with u(0) = α, u′(0) = β, then we
can use superposition to write the solution as the sum of (11.115) and (11.117).

To analyze a forced beam, we can adapt the Green’s function method. Let us treat
the case when the beam has tow fixed ends, and so subject to the homogeneous boundary
conditions

u(0) = 0, u′(0) = 0, u(1) = 0, u′(1) = 0. (11.118)

To construct the Green’s function, we must solve the forced boundary value problem

d4u

dx4
= δ(x− y) (11.119)

corresponding to a concentrated unit impulse applied at position y along the beam. Inte-
grating (11.119) four times, using (11.51) with n = 4, we produce the general solution

u(x) = a x3 + b x2 + c x+ d+

{
1
6 (x− y)3, x > y,

0 x < y,

to the differential equation (11.119). The boundary conditions require

u(0) = d = 0, u(1) = a+ b+ 1
6 (1− y)3 = 0,

u′(0) = c = 0, u′(1) = 3a+ 2b+ 1
2 (1− y)2 = 0,
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Figure 11.16. Green’s Function for a Beam with Two Fixed Ends.

and hence

a = 1
3 (1− y)3 − 1

2 (1− y)2, b = − 1
2 (1− y)3 + 1

2 (1− y)2.

Therefore, the Green’s function is

G(x, y) =

{
1
6 x2 (1− y)2 (3y − x− 2xy), x < y,

1
6 y2 (1− x)2 (3x− y − 2xy), x > y.

(11.120)

As in the second order case of bars, the Green’s function is symmetric in x and y, so
G(x, y) = G(y, x), which stems from the fact that we are dealing with a self-adjoint sys-
tem. Physically, symmetry implies that the deflection of the beam at position x due to a
concentrated impulse force applied at position y is the same as the deflection at y due to
an impulse force of the same magnitude applied at x. Moreover, as a function of x, the
Green’s function G(x, y) satisfies the homogeneous differential equation for all x 6= y. Its
first and second derivatives ∂G/∂x, ∂2G/∂x2 are continuous; the third derivative ∂3G/∂x3

has a unit jump discontinuity at x = y, which then produces the delta function impulse
in its fourth derivative. The Green’s function (11.120) is graphed in Figure 11.16, and ap-
pears to be quite smooth. Evidently, the human eye cannot easily discern discontinuities
in third order derivatives!

The solution to the general forced boundary value problem

d4u

dx4
= f(x), u(0) = u′(0) = u(1) = u′(1) = 0, (11.121)

is then obtained by invoking the usual superposition principle. We view the forcing function
as a linear superposition

f(x) =

∫ `

0

f(y) δ(x− y) dx
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Figure 11.17. Deflection of a Uniform Beam under Gravity.

of impulse delta forces. The response is the self-same linear superposition of Green’s
function responses:

u(x) =

∫ 1

0

G(x, y)f(y) dy (11.122)

=
1

6

∫ x

0

y2 (1− x)2 (3x− y − 2xy) dy +
1

6

∫ 1

x

x2 (1− y)2 (3y − x− 2xy)f(y) dy.

For example, under a constant unit downwards force f(x) ≡ 1, e.g., gravity, the deflection
of the beam is given by

u(x) = 1
24 x4

−
1
12 x3 + 1

24 x2 = 1
24 x2 (1− x)2,

and graphed† in Figure 11.17. Although we could, of course, obtain u by integrating
the original differential equation (11.121) directly, writing the solution formula as a single
integral is more useful, particularly for numerical computations.

Since the beam operator has the standard self-adjoint form K = L∗ ◦L, it will be
positive definite when subject to the appropriate boundary conditions. As before, the key
condition is that kerL = kerD2 = {0} on the space of functions satisfying the boundary
conditions. Since the second derivative D2 annihilates all affine functions u = α+ β x, the
boundary value problem will be positive definite if and only if no non-zero affine function
satisfies all four homogeneous boundary conditions. For example, having one fixed end will
suffice, while two free ends, or a simply supported plus a free end will not. In the former
case, every affine function satisfies the boundary conditions, while in the latter u(x) = β x

satisfies the four boundary conditions u(0) = u′(0) = 0, w(`) = w′(`) = 0.

In the positive definite cases, the solution to the beam boundary value problem can

† We have reversed the vertical axis in keeping with our convention that positive deflections
go down.
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be characterized as the unique minimizer of the quadratic energy functional‡

P[u ] = 1
2 ‖L[u ] ‖2 − 〈u ; f 〉 =

∫ b

a

[
1
2 c(x)u′′(x)2 − f(x)u(x)

]
dx. (11.123)

Minimizing P among all functions with homogeneous boundary conditions will lead to the
solution to the beam equation (11.111). Inhomogeneous boundary conditions require a
little extra work, keeping careful track of the integration by parts required.

Splines

In pre–CAD draftsmanship, a spline was a long, thin, flexible strip of wood that was
used to draw a smooth curve connecting prescribed points. The points were marked by
small pegs, and the spline rested on the pegs. The mathematical theory of splines was
first developed in the 1940’s by I.J. Schoenberg as an attractive alternative to polynomial
interpolation and approximation. It has since become standard in numerical analysis,
computer graphics and design, and a broad range of other key applications.

We suppose that the spline coincides with the graph of a function y = u(x). The pegs
are fixed at the prescribed data points (xj , yj) for j = 0, . . . , n, and this requires u(x) to
satisfy the interpolation conditions

u(xj) = yj , j = 0, . . . , n. (11.124)

The mesh points x0 < x1 < x2 < · · · < xn are distinct, and labeled in increasing order.
On the intervals between each successive pair of mesh points, the spline is modeled as an
elastic beam, and so satisfies the homogeneous beam equation (11.112). Therefore,

u(x) = aj + bj (x− xj) + cj (x− xj)
2 + dj (x− xj)

3,
xj ≤ x ≤ xj+1,

j = 0, . . . , n− 1,
(11.125)

is a piecewise cubic function — meaning that between successive mesh points it is a cubic
polynomial, but not necessarily the same cubic on each subinterval. The fact that we write
the formula (11.125) in terms of x− xj is merely for computational convenience.

Our problem is to determine the coefficients

aj , bj , cj , dj , j = 0, . . . , n− 1.

Since there are n subintervals between mesh points, there are a total of 4n coefficients, and
so we require 4n equations to prescribe them uniquely. First, we need the spline to satisfy
the interpolation conditions (11.124). Since the spline is given by a different formula on
each side of the mesh point, this results in a total of 2n conditions:

u(x+
j ) = aj = yj ,

u(x−j+1) = aj + bj hj + cj h2
j + dj h3

j = yj+1,
j = 0, . . . , n− 1, (11.126)

‡ Keep in mind that the norm on the strain functions v = L[u ] = u′′ is based on the weighted
inner product 〈〈 v ; ṽ 〉〉 in (11.108).
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where we abbreviate the length of the jth subinterval by

hj = xj+1 − xj .

The next step is to require that the spline be as smooth as possible. The interpolation con-
ditions (11.126) guarantee that u(x) is continuous. The condition u(x) ∈ C1 is continuously
differentiable requires that u′(x) be continuous at the interior mesh points x1, . . . , xn−1,
which imposes the n− 1 additional conditions

bj + 2cj hj + 3dj h2
j = u′(x−j+1) = u′(x+

j+1) = bj+1, j = 0, . . . , n− 2. (11.127)

To make u ∈ C2, we impose n− 1 further conditions

2cj + 6dj hj = u′′(x−j+1) = u′′(x+
j+1) = 2cj+1, j = 0, . . . , n− 2, (11.128)

to ensure that u′′ is continuous at the mesh points. We have now imposed a total of
4n − 2 conditions, namely (11.126), (11.127), and (11.128), on the 4n coefficients. The
two missing constraints will be imposed as boundary conditions at the two endpoints of
the interval, namely x0 and xn. There are three common types:

(i) Natural boundary conditions: u′′(x0) = u′′(xn) = 0 so that

c0 = 0, cn−1 + 3dn−1 hn−1 = 0. (11.129)

Physically, this corresponds to a simply supported spline that rests freely on the first and
last pegs.

(ii) Clamped boundary conditions: u′(x0) = α, u′(xn) = β, where α, β are fixed by
the user. This requires

b0 = α, bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1 = β. (11.130)

Physically, this corresponds to clamping the spline so as to have prescribed slopes at the
ends.

(iii) Periodic boundary conditions: u′(x0) = u′(xn), u′′(x0) = u′′(xn), so that

b0 = bn−1 + 2cn−1 hn−1 + 3dn−1 h2
n−1, c0 = cn−1 + 3dn−1 hn−1. (11.131)

If we also require that the end interpolation values agree,

u(x0) = y0 = yn = u(xn), (11.132)

then the resulting spline will be a periodic C2 function with period p = xn − x0, so
u(x+ p) = u(x) for all x. A particularly important application of this case is to computer
aided sketching of smooth closed curves.

Theorem 11.11. Given data points (xj , yj) with a = x0 < x1 < · · · < xn = b,

there exists a unique piecewise cubic spline function u(x) ∈ C2[a, b ] such that u(xj) = yj
and u satisfies one of the three possible pairs of boundary conditions (11.129), (11.130),
or (11.131).
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Proof : We first discuss the natural case. The clamped case is left as an exercise for
the reader, while the slightly harder periodic case will be done at the end of the section.
First, (11.126) says that

aj = yj , j = 0, . . . , n− 1. (11.133)

Second, (11.128), (11.129) imply that

dj =
cj+1 − cj

3hj
. (11.134)

This equation holds for j = n− 1 provided we make the convention that

cn = 0.

Substituting (11.134) into (11.127),

bj+1 = bj + (cj + cj+1)hj . (11.135)

We now substitute (11.133), (11.134) into (11.126), and then solve the resulting equation
for

bj =
yj+1 − yj

hj
−
(2cj + cj+1)hj

3
. (11.136)

Substituting this result back into (11.135), and simplifying, we find

hj cj + 2(hj + hj+1)cj+1 + hj+1 cj+2 = 3

[
yj+2 − yj+1

hj+1

−
yj+1 − yj

hj

]
≡ zj+1, (11.137)

where we use zj+1 to denote the right hand side of these equations.

For the natural boundary conditions, we have

c0 = 0, cn = 0,

and so, setting c =
(
c1, c2, . . . , cn−1

)T
, z =

(
z1, z2, . . . , zn−1

)T
, (11.137) constitutes a

tridiagonal linear system
A c = z, (11.138)

for the unknown coefficients c1, . . . , cn−1, with coefficient matrix

A =




2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−2 2(hn−2 + hn−1)




.

(11.139)
Once we solve (11.139), we then use (11.133), (11.136), (11.134) to reconstruct the other
coefficients aj , bj , dj .
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Figure 11.18. A Cubic Spline.

The key observation is that the coefficient matrix A is strictly diagonally dominant ,
as in Definition 10.33, because all the hj > 0, and so

2(hj−1 + hj) > hj−1 + hj .

Proposition 10.34 implies that A is nonsingular, and hence the tridiagonal linear system
has a unique solution c. This suffices to prove the theorem in the case of natural boundary
conditions. Q.E.D.

To actually solve the system and compute the resulting spline function, we can apply
our tridiagonal solution algorithm (1.63). Let us consider the most important case, when
the mesh points are equally spaced in the interval [a, b ], so that

xj = a+ j h, where h = hj =
b− a

n
, j = 0, . . . , n− 1.

In this case, the coefficient matrix A = hB is equal to h times the tridiagonal matrix

B =




4 1
1 4 1
1 4 1
1 4 1
1 4 1
. . .
. . .
. . .




that first appeared in Example 1.35. Its LU factorization takes on a particularly simple
form, which makes the implementation of the forward and back substitution algorithms
particularly easy.

In summary, the construction of the natural spline proceeds as follows: First, deter-
mine the coefficients c0, . . . , cn by solving the tridiagonal linear system (11.138) to con-
struct c1, . . . , cn−1 and the boundary conditions to determine c0 = cn = 0. Then use equa-
tions (11.133), (11.136), (11.134) to find the other coefficients a0, . . . , an−1, b0, . . . , bn−1,
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Figure 11.19. Three Sample Spline Letters.

d0, . . . , dn−1. The resulting piecewise cubic spline (11.125) will be the unique natural spline
interpolant to the data u(xj) = yj for j = 0, . . . , n.

Figure 11.18 shows a particular example — a natural spline passing through the data
points (0, 0), (1, 2), (2,−1), (3, 1), (4, 0). As with the Green’s function for the beam, the
human eye is unable to discern the discontinuities in its third derivatives, and so the graph
appears completely smooth even though it is, in fact, only C2.

In the periodic case, we set

an = a0, an+1 = a1, etc.

and similarly for the other coefficients. The basic systems (11.133), (11.136), (11.134) and
(11.137) are the same. Now the coefficient matrix for the linear system

A c = z, with c =
(
c0, c1, . . . , cn−1

)T
, z =

(
z0, z1, . . . , zn−1

)T

is no longer tridiagonal, but of “circulant tridiagonal” type:

A =




2(hn−1 + h0) h0 hn−1

h0 2(h0 + h1) h1

h1 2(h1 + h2) h2

. . .
. . .

. . .

hn−3 2(hn−3 + hn−2) hn−2

hn−1 hn−2 2(hn−2 + hn−1)




.

(11.140)
Again A is strictly diagonally dominant, and so there is a unique solution, proving The-
orem 11.11 in the periodic case. The LU factorization of such “tridiagonal circulant”
matrices was discussed in Exercise .

One immediate application of splines is curve fitting in computer aided design (CAD)
and computer graphics. The basic problem is to draw a smooth curve x = u(t) =

(u(t), v(t) )
T
that passes through a set of prescribed data points xk = (xk, yk )

T
in the

plane. We have the freedom to choose the parameter values t = tk when the curve passes
through the kth point; the simplest and most common choice is to set tk = k. We then
construct the functions x = u(t) and y = v(t) as cubic splines interpolating the x and y

coordinates of the data points, so u(k) = xk, v(k) = yk. The result is a parametrized
curve that interpolates the data points. If the curve is closed, then we require that both
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splines be periodic; for curves with ends, either natural or clamped boundary conditions
are used. In addition to implementations in most computer graphics packages, this idea
also underlies modern font design for laser printing and typography (including the fonts
used in this book). The great advantage of spline fonts over their bitmapped counterparts
is that they can be readily scaled to arbitrary sizes and arbitrary resolutions. Some sample
letter shapes parametrized by periodic splines passing through the indicated data points
are plotted in Figure 11.19. Better results can be easily obtained by increasing the num-
ber of prescribed data points used to fix the interpolating splines. Various extensions of
the basic method to curves, and also to surfaces in three-dimensional computer graphics,
design and animation, can be found in [52, 129].

11.5. Sturm–Liouville Boundary Value Problems.

The boundary value problems that govern the equilibrium configurations of bars are
particular cases of a very general class of second order boundary value problems that was
first systematically investigated by the nineteenth century French mathematicians Jacques
Sturm and Joseph Liouville. Sturm–Liouville boundary value problems appear in a very
wide range of applications, particularly in the analysis of partial differential equations by
the method of separation of variables. A partial list of applications includes

(a) Heat conduction in non-uniform bars,

(b) Vibrations of non-uniform bars and strings,

(c) Quantum mechanics — the one-dimensional Schrödinger equation.

(d) Scattering theory — Hill’s equation.

(e) Oscillations of circular membranes (vibrations of drums) — Bessel’s equation.

(f ) Oscillations of a sphere — Legendre’s equation,

(g) Heat flow in cylindrical and spherical bodies.

Details can be found in [24, 146]. In this section, we will show how the class of Sturm–
Liouville problems fits into our general equilibrium framework and analyze some elementary
examples. However, the most interesting cases will be deferred until needed in our analysis
of partial differential equations in Chapters 17 and 18.

The general Sturm–Liouville boundary value problem is based on a second order ordi-
nary differential equation of the form

−
d

dx

(
p(x)

du

dx

)
+ q(x)u = f(x), (11.141)

coupled with Dirichlet, Neumann, mixed or periodic boundary conditions. To be specific,
let us concentrate on the case of homogeneous Dirichlet boundary conditions

u(a) = 0, u(b) = 0. (11.142)

To avoid singular points of the differential equation (although we will later discover
that most cases of interest in physics have one or more singular points) we assume that
p(x) > 0 for all a ≤ x ≤ b. To ensure positive definiteness of the Sturm–Liouville differen-
tial operator, we also assume q(x) ≥ 0. These assumptions suffice to guarantee existence
and uniqueness of the solution to the Sturm–Liouville problem. A proof of the following
theorem can be found in [24].
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Figure 11.20. Green’s Function for the Constant Coefficient Sturm–Liouville
Problem.

Theorem 11.12. Let p(x) > 0 and q(x) ≥ 0 for a ≤ x ≤ b. Then the Sturm–

Liouville boundary value problem (11.141), (11.142) admits a unique solution.

Most Sturm–Liouville problems cannot be solved in terms of elementary functions. In-
deed, most of the important special functions appearing in mathematical physics, including
Bessel functions, Legendre functions, hypergeometric functions, and so on, first arise as
solutions to particular Sturm–Liouville equations. But the simplest, constant coefficient
case can be solved by standard methods.

Example 11.13. Consider the constant coefficient Sturm–Liouville boundary value
problem

−u′′ + ω2 u = f(x), u(0) = u(1) = 0. (11.143)

The functions p(x) ≡ 1 and q(x) ≡ ω2 > 0 are both constant. We will solve this problem
by constructing the Green’s function. Thus, we first consider the effect of a delta function
inhomogeneity

−u′′ + ω2 u = δ(x− y), u(0) = u(1) = 0. (11.144)

Rather than try to integrate this differential equation directly, let us appeal to the defining
properties of the Green’s function. The general solution to the homogeneous equation is a
linear combination of the two basic exponentials eωx and e−ωx, or better, the hyperbolic
functions

coshωx =
eωx + e−ωx

2
, sinhωx =

eωx − e−ωx

2
. (11.145)

The solutions satisfying the first boundary condition are multiples of sinhωx, while the
solutions satisfying the second boundary condition are multiples of sinhω (1−x). Therefore,
the solution to (11.144) has the form

G(x, y) =

{
a sinhωx, x < y,

b sinhω (1− x), x > y.
(11.146)
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Continuity of G(x, y) at x = y requires

a sinhωy = b sinhω (1− y). (11.147)

At x = y, the derivative ∂G/∂x must have a jump discontinuity of magnitude −1 in order
that the second derivative term in (11.144) match the delta function. Since

∂G

∂x
(x, y) =

{
ωa coshωx, x < y,

−ωb coshω (1− x), x > y,

the jump condition requires

ωa coshωy − 1 = −ωb coshω (1− y). (11.148)

If we multiply (11.147) by ω coshω (1− y) and (11.148) by sinhω (1− y) and then add the
results together, we find

sinhω (1− y) = aω
[
sinhωy coshω (1− y) + coshωy sinhω (1− y)

]
= aω sinhω,

where we used the addition formula for the hyperbolic sine:

sinh(α+ β) = sinhα coshβ + coshα sinhβ, (11.149)

cf. Exercise . Therefore,

a =
sinhω (1− y)

ω sinhω
, b =

sinhωy

ω sinhω
,

and the Green’s function for our boundary value problem is

G(x, y) =





sinhω (1− y) sinhωx

ω sinhω
, x < y,

sinhω (1− x) sinhωy

ω sinhω
, x > y.

A graph appears in Figure 11.20; note that the corner, indicating a discontinuity in the
first derivative, appears at the point x = y where the impulse force is applied.

The general solution to the inhomogeneous boundary value problem (11.143) is given
by the basic superposition formula (11.64), which becomes

u(x) =

∫ 1

0

G(x, y)f(y) dx

=

∫ x

0

sinhω (1− y) sinhωx

ω sinhω
f(y) dy +

∫ 1

x

sinhω (1− x) sinhωy

ω sinhω
f(y) dy.

For example, under a constant unit force f(x) ≡ 1, the solution is

u(x) =

∫ x

0

ω sinhω

sinhω (1− x) sinhωy
dy +

∫ 1

x

sinhω (1− y) sinhωx

ω sinhω
dy

=
sinhω (1− x)

(
coshωx− 1

)

ω2 sinhω
+
sinhωx

(
coshω (1− x)− 1

)

ω2 sinhω

=
1

ω2
−
sinhωx+ sinhω (1− x)

ω2 sinhω
.

(11.150)
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For comparative purposes, the reader may wish to rederive this particular solution by a
direct calculation, without appealing to the Green’s function.

Finally, to place a Sturm–Liouville boundary value problem in our self-adjoint frame-
work, we proceed as follows. (See Exercise for motivation.) Consider the linear operator

L[u ] =

(
u′

u

)

that maps u(x) to the vector-valued function whose components are the function and its
first derivative. In view of the boundary conditions (11.142), the domain of L will be the
vector space

U = { u(x) | u(a) = u(b) = 0 } ⊂ C2[a, b ]

consisting of all twice continuously differentiable functions that vanish at the endpoints.
The target space of L consists of continuously differentiable vector-valued functions v(x) =

( v1(x), v2(x) )
T
; we denote this vector space as V = C1([a, b ], R2).

We need to compute the adjoint of L:U → V . To recover the Sturm–Liouville problem,
we use the standard L2 inner product (11.85) on U , but adopt a weighted inner product

〈〈v ;w 〉〉 =

∫ b

a

[
p(x)v1(x)w1(x) + q(x)v2(x)w2(x)

]
dx, v =

(
v1

v2

)
, w =

(
w1

w2

)
,

(11.151)
on V . The positivity assumptions on the weight functions p, q ensure that this is a bona
fide inner product. According to the defining equation (7.64), the adjoint L∗:V → U is
required to satisfy

〈〈L[u ] ;v 〉〉 = 〈u ;L∗[v ] 〉.

As usual, the adjoint computation relies an integration by parts. In this case, we only need
to manipulate the first summand:

〈〈L[u ] ;v 〉〉 =

∫ b

a

[
p u′ v1 + quv2

]
dx

=
[
p(b)u(b)v1(b)− p(a)u(a)v1(a)

]
+

∫ b

a

u [−(pv1)
′ + q v2 ] dx.

The Dirichlet conditions (11.142) ensure that the boundary terms vanish, and therefore,

〈〈L[u ] ;v 〉〉 =

∫ b

a

u [−(pv1)
′ + q v2 ] dx = 〈u ;L∗[v ] 〉.

We conclude that the adjoint operator is given by

L∗[v ] = −
d(pv1)

dx
+ q v2.

The canonical self-adjoint combination

K[u ] = L∗ ◦L[u ] = L∗
(

u′

u

)
= −

d

dx

(
p

du

dx

)
+ qu. (11.152)

1/12/04 455 c© 2003 Peter J. Olver



reproduces the Sturm–Liouville differential operator. Moreover, since kerL = {0} is triv-
ial, the boundary value problem is positive definite. As a direct consequence of the general
abstract minimization principle established in Theorem 7.61, we deduce that the solu-
tion to the Sturm–Liouville boundary value problem (11.141) can be characterized as the
minimizer of the quadratic functional

P[u ] = 1
2‖L[u ] ‖2 − 〈u ; f 〉 =

∫ b

a

[
1
2 p(x)u′(x)2 + 1

2 q(x)u(x)2 − f(x)u(x)
]
dx (11.153)

among all C2 functions satisfying the prescribed boundary conditions. For example, the
solution to the constant coefficient Sturm–Liouville problem (11.143) can be characterized
as minimizing the quadratic functional

P[u ] =

∫ 1

0

[
1
2 u′(x)2 + 1

2 ω2 u(x)2 − f(x)u(x)
]
dx

among all C2 functions satisfying u(0) = u(1) = 0.

11.6. Finite Elements.

The characterization of the solution to a positive definite boundary value problem via
a minimization principle inspires a very powerful and widely applicable numerical solution
algorithm, known as the finite element method . In this section, we give a brief introduction
to the finite element method in the context of one-dimensional boundary value problems
involving ordinary differential equations. Extensions to boundary value problems in higher
dimensions governed by partial differential equations will appear in Section 15.5.

The underlying idea is strikingly simple. We are trying to find the solution to a bound-
ary value problem by minimizing a quadratic functional P[u ] on an infinite-dimensional
vector space U . The solution u?(x) ∈ U to this minimization problem requires the solution
to a differential equation with boundary conditions. However, as we learned in Chapter 4,
if we were to minimize the functional on a finite-dimensional subspace W ⊂ U , then this
becomes a problem in linear algebra, and, moreover, one that we have already solved! Of
course, restricting the functional P[u ] to the subspace W will not, barring luck, lead to
the exact minimizer. Nevertheless, if we choose W to be sufficiently “large” subspace,
the resulting minimizer w?∈W may very well provide a reasonable approximation to the
true minimizer u? ∈ U . The analysis of the finite element method, cf. [139, 157], pro-
vides a rigorous justification of this process, under appropriate hypotheses. Here, we shall
concentrate on trying to understand how to apply the method in practice.

To be a bit more explicit, we consider the basic abstract minimization principle

P[u ] = 1
2 ‖L[u ] ‖

2
− 〈 f ;u 〉, (11.154)

for the boundary value problem

K[u ] = f, where K = L∗ ◦L.

As we have learned, the norm in (11.154) is typically based on some form of weighted inner
product 〈〈 · ; · 〉〉 on the space of strains v = L[u ] ∈ V , while the inner product term 〈 f ;u 〉
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is typically (although not necessarily) unweighted on the space of displacements u ∈ U .
The linear operator takes the self-adjoint form K = L∗ ◦L, and must be positive definite
— which requires kerL = {0}. Without the positivity assumption, the boundary value
problem has either no solutions, or infinitely many; in either event, the basic finite element
method will not apply.

Rather than try to minimize P[u ] on the entire function space U , we now seek to
minimize it on a suitably chosen finite-dimensional subspace W ⊂ U , the elements of
which are required to satisfy the boundary conditions. We begin by choosing a basis†

ϕ1, . . . , ϕn of our finite-dimensional subspace W . The general element of W is a linear
combination

w(x) = c1 ϕ1(x) + · · · + cnϕn(x) (11.155)

of the basis functions. Our goal, then, is to determine the coefficients c1, . . . , cn such that
w(x) minimizes P[w ] among all such functions. Substituting (11.155) into (11.154) and
expanding we find

P[w ] =
1

2

n∑

i,j=1

mij ci cj −

n∑

i=1

bi ci =
1
2 cTM c− cTb, (11.156)

where

(a) c = ( c1, c2, . . . , cn )
T
is the vector of unknown coefficients in (11.155),

(b) M = (mij) is the symmetric n× n matrix with entries

mij = 〈〈L[ϕi ] ;L[ϕj ] 〉〉, i, j = 1, . . . , n, (11.157)

(c) b = ( b1, b2, . . . , bn )
T
is the vector with entries

bi = 〈 f ;ϕi 〉, i = 1, . . . , n. (11.158)

Note that once we specify the basis functions ϕi, the coefficients mij and bi are all
known quantities. Therefore, we have reduced our original problem to a finite-dimensional
problem of minimizing a quadratic function (11.156) over all possible vectors c ∈ Rn. The
coefficient matrix M is, in fact, positive definite, since, by the preceding computation,

cTM c =

n∑

i,j=1

mij ci cj = ‖L[c1 ϕ1(x) + · · · + cnϕn ] ‖
2 = ‖L[w ] ‖

2
> 0 (11.159)

as long as L[w ] 6= 0. Moreover, our positivity assumption implies that L[w ] = 0 if and
only if w ≡ 0, and hence (11.159) is positive for all c6= 0. We can now invoke the original
finite-dimensional minimization Theorem 4.1 to conclude that the unique minimizer to
(11.156) is obtained by solving the associated linear system

M c = b, (11.160)

† In this case, an orthonormal basis is not of any particular help.
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Figure 11.21. A Continuous Piecewise Affine Function.

which can be done by some form of Gaussian elimination, or, alternatively, by an iterative
linear system solver, e.g., Gauss–Seidel or SOR.

This constitutes the basic framework for the finite element method. The main issue,
then, is how to effectively choose the finite-dimensional subspace W . We already know a
few potential candidates. One is the space P (n) of polynomials of degree ≤ n. Another is
the space T (n) of trigonometric polynomials of degree ≤ n, to be the focus of Chapter 12.
However, neither of these is particularly suitable in the present situation for a variety
of reasons. One criterion is that the functions in W must satisfy the relevant boundary
conditions. More importantly, in order to obtain sufficient accuracy, the resulting linear
system (11.160) will typically be rather large, and so the coefficient matrix (11.157) should
be as sparse as possible, i.e., have lots of zero entries. Otherwise, computing the solution
will be too time consuming to be of much practical value. Such considerations will prove
to be of critical importance when applying the method to solve boundary value problems
for partial differential equations in several variables.

The really innovative contribution of the finite element method is to first (para-
doxically) enlarge the space of allowable functions upon which to minimize P[u ]. The
governing differential equation requires its solutions to have a certain degree of smooth-
ness, whereas the associated minimization principles typically requires only half as many
derivatives. Thus, for second order boundary value problems, including bars, (11.92), and
general Sturm–Liouville problems, (11.153), the quadratic functional only involves first
order derivatives. It can be rigorously shown that the functional has the same minimiz-
ing solution, even if one allows functions that do not have enough derivatives to satisfy
the differential equation. Thus, one can try minimizing over subspaces containing fairly
“rough” functions. Again, the justification of this method requires some deeper analysis,
but this lies beyond the scope of this introductory treatment.

For second order boundary value problems, a popular and effective choice of the finite-
dimensional subspace is to use continuous, piecewise affine functions. Recall that a function
is affine, f(x) = ax+ b, if and only if its graph is a straight line. The function is piecewise
affine if its graph consists of a finite number of straight line segments; a typical example is
plotted in Figure 11.21. Continuity requires that the individual line segments be connected
together at their ends.

Given a boundary value problem on a bounded interval [a, b ], let us choose a set of
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mesh points

a = x0 < x1 < x2 < · · · < xn = b.

The formulas simplify if one uses equally spaced mesh points, but this is not necessary
for the method to apply. Let W denote the vector space consisting of all continuous,
piecewise affine functions with corners at the nodes that satisfy the boundary conditions.
To be specific, let us treat the case of homogeneous Dirichlet (fixed) boundary conditions

w(a) = w(b) = 0. (11.161)

Thus, on each subinterval

w(x) = cj + bj(x− xj), for xj ≤ x ≤ xj+1, j = 0, . . . , n− 1.

Continuity of w(x) requires

cj = w(x+
j ) = w(x−j ) = cj−1 + bj−1 hj−1, j = 1, . . . , n− 1, (11.162)

where hj−1 = xj−xj−1 denotes the length of the jth subinterval. The boundary conditions
(11.161) require

w(a) = c0 = 0, w(b) = cn−1 + hn−1 bn−1 = 0. (11.163)

The function w(x) involves a total of 2n different coefficients c0, . . . , cn−1, b0, . . . , bn−1.
The continuity conditions (11.162) and the second boundary condition (11.163) uniquely
determine the bj . The first boundary condition specifies c0, while the remaining n − 1
coefficients c1 = w(x1), . . . , cn−1 = w(xn−1) can be selected in an arbitrary manner. We
conclude that the vector spaceW has dimension n−1, the number of interior mesh points.

Remark : Every function w(x) in our subspace has piecewise constant first derivative
w′(x). However, the jump discontinuities in w′(x) imply that the second derivative w′′(x)
has a delta function impulse at each mesh point, and is therefore far from being a solution to
the differential equation. Nevertheless, the finite element minimizer w?(x) will, in practice,
provide a reasonable approximation to the actual solution u?(x).

The most convenient basis for the space W consists of the “hat functions” which are
continuous, piecewise affine functions that interpolate the same basis data as the Lagrange
polynomials (4.44) and the cardinal splines of Exercise , namely

ϕj(xk) =

{
1, j = k,

0, j 6= k,
for j = 1, . . . , n− 1, k = 0, . . . , n.

The graph of a typical hat function appears in Figure 11.22. The explicit formula is easily
established:

ϕj(x) =





x− xj−1

xj − xj−1

, xj−1 ≤ x ≤ xj ,

xj+1 − x

xj+1 − xj
, xj ≤ x ≤ xj+1,

0, x ≤ xj−1 or x ≥ xj+1,

j = 1, . . . , n− 1. (11.164)
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Figure 11.22. A Hat Function.

An advantage of using these basis elements is that the resulting coefficient matrix (11.157)
turns out to be tridiagonal. Therefore, the tridiagonal Gaussian elimination algorithm in
(1.63), will rapidly produce the solution to the linear system (11.160). Since the accuracy of
the finite element solution increases with the number of mesh points, this solution scheme
allows us to easily compute very accurate numerical approximations to the solution to the
boundary value problem.

Example 11.14. Consider the equilibrium equations (11.12) for a non-uniform bar
subject to homogeneous Dirichlet boundary conditions. In order to formulate a finite
element approximation scheme, we begin with the minimization principle (11.92) based on
the quadratic functional

P[u ] = 1
2 ‖u′ ‖2 − 〈 f ;u 〉 =

∫ `

0

[
1
2 c(x)u′(x)2 − f(x)u(x)

]
dx. (11.165)

We divide the interval [0, ` ] into n equal subintervals, each of length h = `/n. The resulting
uniform mesh consists of

xj = j h =
j `

n
, j = 0, . . . , n. (11.166)

The corresponding finite element basis hat functions are explicitly given by

ϕj(x) =





(x− xj−1)/h, xj−1 ≤ x ≤ xj ,

(xj+1 − x)/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n− 1. (11.167)

The associated linear system (11.160) has coefficient matrix entries

mij = 〈〈ϕ
′
i ;ϕ

′
j 〉〉 =

∫ `

0

ϕ′i(x)ϕ
′
j(x)c(x) dx, i, j = 1, . . . , n− 1.

Since the function ϕi(x) vanishes except on the interval xi−1 < x < xi+1, while ϕj(x)
vanishes outside xj−1 < x < xj+1, the integral will vanish unless i = j or i = j ± 1.
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Moreover,

ϕ′j(x) =





1/h, xj−1 ≤ x ≤ xj ,

−1/h, xj ≤ x ≤ xj+1,

0, otherwise,

j = 1, . . . , n− 1.

Therefore, the coefficient matrix has the tridiagonal form

M =
1

h2




s0 + s1 −s1

−s1 s1 + s2 −s2

−s2 s2 + s3 −s3

. . .
. . .

. . .

−sn−3 sn−3 + sn−2 −sn−2

−sn−2 sn−2 + sn−1




, (11.168)

where

sj =

∫ xj+1

xj

c(x) dx, (11.169)

is the total stiffness on the jth subinterval. The corresponding right hand side has entries

bj = 〈 f ;ϕj 〉 =

∫ `

0

f(x)ϕj(x) dx

=
1

h

[∫ xj

xj−1

(x− xj−1)f(x) dx+

∫ xj+1

xj

(xj+1 − x)f(x) dx

]
,

(11.170)

In practice, we do not have to explicitly evaluate the integrals (11.169), (11.170), but
may replace them by a suitably close numerical approximation. When h ¿ 1 is small,
then the integrals are taken over small intervals, and we can use the trapezoid rule† to
approximate them:

sj ≈
h

2

[
c(xj) + c(xj+1)

]
, bj ≈ h f(xj). (11.171)

For example, in the homogeneous case c(x) ≡ 1, the coefficient matrix (11.168) reduces
to the very special form

M =
1

h




2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2




. (11.172)

† One might be tempted use more accurate numerical integration procedures, but the im-
provement in accuracy of the final answer is not very significant, particularly if the step size h is
small.
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Figure 11.23. Finite Element Solution to (11.174).

The jth entry of the resulting finite element system M c = b is, upon dividing by h, given
by

−
cj+1 − 2cj + cj−1

h2
= −

u(xj+1)− 2u(xj) + u(xj−1)

h2
= −f(xj). (11.173)

Remark : The left hand side of (11.173) is, interestingly, the standard finite difference
approximation to minus the second derivative −u′′(xj) of the displacement at the mesh
point xj . (Details concerning finite differences can be found in Section 14.6Therefore,
for this particular differential equation, the finite element and finite difference numerical
solution methods happen to coincide.

Example 11.15. Consider the boundary value problem

−
d

dx
(x+ 1)

du

dx
= 1, u(0) = 0, u(1) = 0. (11.174)

The explicit solution is easily found by direct integration:

u(x) = −x+
log(x+ 1)

log 2
. (11.175)

It minimizes the associated quadratic functional

P[u ] =

∫ `

0

[
1
2 (x+ 1)u

′(x)2 − u(x)
]
dx (11.176)

over all possible functions u ∈ C1 subject to the given boundary conditions. The finite ele-
ment system (11.160) has coefficient matrix given by (11.168) and right hand side (11.170),
where

sj =

∫ xj+1

xj

(1 + x) dx = h (1 + xj) +
1
2 h2 = h+ h2

(
j +

1

2

)
, bj =

∫ xj+1

xj

1 dx = h.
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Figure 11.24. Finite Element Solution to (11.177).

The resulting solution is plotted in Figure 11.23. The first three graphs contain, respec-
tively, 5, 10, 20 points in the mesh, so that h = .2, .1, .05, while the last plots the exact
solution (11.175). Thus, even for rather coarse meshes, the finite element approximation
is quite respectable.

Example 11.16. Consider the Sturm–Liouville boundary value problem

−u′′ + (x+ 1)u = xex, u(0) = 0, u(1) = 0. (11.177)

The solution minimizes the quadratic functional (11.153), which in this particular case is

P[u ] =

∫ 1

0

[
1
2 u′(x)2 + 1

2 (x+ 1)u(x)
2
− exu(x)

]
dx, (11.178)

over all functions u(x) that satisfy the boundary conditions. We lay out a uniform mesh
of step size h = 1/n and the corresponding basis hat functions as in (11.167). Using the
trapezoid method to approximate the integrals, the matrix entries are

mij =

∫ 1

0

[
ϕ′i(x)ϕ

′
j(x) + (x+ 1)ϕi(x)ϕj(x)

]
dx ≈





2
h
+ 2

3h(xi + 1), i = j,

−
1
h
+ 1

6 h (xi + 1), | i− j | = 1,

0, otherwise,

while

bi = 〈xex ;ϕi 〉 =

∫ 1

0

xexϕi(x) dx ≈ xi e
xi h.

The resulting solution is plotted in Figure 11.24. As in the previous figure, the first three
graphs contain, respectively, 5, 10, 20 points in the mesh, while the last plots the exact
solution.

So far, we have only handled homogeneous boundary conditions. An inhomogeneous
boundary value problem does not immediately fit into our framework since the set of
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functions satisfying the boundary conditions does not form a subspace. As discussed
at the end of Section 11.3, one way to get around this problem is to replace u(x) by
ũ(x) = u(x)−h(x), where h(x) is any function that satisfies the boundary conditions. For
example, for the inhomogeneous Dirichlet conditions

u(a) = α, u(b) = β,

one can use an affine function

h(x) =
(β − α)x+ αb− β a

b− a
.

Linearity implies that the difference ũ(x) = u(x)−h(x) will satisfy the modified differential
equation

K[ ũ ] = f̃ , where f̃ = f −K[h ],

with homogeneous boundary conditions. The modified homogeneous boundary value prob-
lem can then be solved by the standard finite element method. Another possible choice
for the modifier function h(x) is a combination of elements at the endpoints:

h(x) = αϕ0(x) + βϕn(x),

where ϕ0, ϕn are again piecewise affine, and equal to 1 at the end nodes x0 = a, xn = b,
respectively, and zero at all other nodes. Details are left to the reader.

Finally, one can use other functions beyond the piecewise affine hat functions (11.164)
to span finite element subspace. Another popular choice — essential for higher order
boundary value problems such as beams — is to use splines. Thus, once we have chosen
our mesh points, we can let ϕj(x) be the basis cubic B–splines, as explained in Exercises
, . The one complication is at the endpoints of the interval, where one needs to modify

ϕ1(x) and ϕn−1(x) to satisfy the boundary conditions. Since ϕj(x) = 0 for x ≤ xj−2 or
x ≥ xj+2, the coefficient matrix (11.157) is pentadiagonal, which means mij = 0 whenever
| i− j | > 2. Pentadiagonal matrices are not quite as nice as their tridiagonal cousins, but
they are still quite sparse. Positive definiteness of M implies that an iterative solution
technique can be effectively applied to approximate the solution to the linear system, and
thereby produce the finite element spline approximation to the boundary value problem.

Weak Solutions

There is an alternative way of introducing the finite element solution method, which
also applies when there is no convenient minimization principle available, based on an
important analytical extension of the usual notion of what constitutes a solution to a
differential equation. One reformulates the differential equation as an integral equation.
The resulting “weak solutions”, which include non-classical solutions with singularities and
discontinuities, are particularly appropriate in the study of discontinuous and nonsmooth
physical phenomena, such as shock waves, cracks and dislocations in elastic media, sin-
gularities in liquid crystals, and so on; see [147] and Section 22.1 for details. The weak
solution approach has the advantage that it applies even to equations that do not pos-
sess an associated minimization principle. However, the convergence of the induced finite
element scheme is harder to justify, and, indeed, not always valid.
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The starting point is a trivial observation: the only element of an inner product space
which is orthogonal to every other element is zero. More precisely:

Lemma 11.17. If V is an inner product space, then 〈w ;v 〉 = 0 for all v ∈ V if and

only if w = 0.

Proof : Choose v = w. The orthogonality condition implies 0 = 〈w ;w 〉 = ‖w ‖2,
and so w = 0. Q.E.D.

Note that the result is equally valid in both finite- and infinite-dimensional vector
spaces. Suppose we are trying to solve a linear† system

K[u ] = f , (11.179)

where K:U → V is a linear operator between inner product spaces. Using the lemma, this
can be reformulated as requiring

〈〈K[u ] ;v 〉〉 = 〈〈 f ;v 〉〉 for all v ∈ V.

According to the definition (7.64), one can replace K by its adjoint K∗:W → V , and
require

〈u ;K∗[v ] 〉 = 〈〈 f ;v 〉〉 for all v ∈ V. (11.180)

The latter is called the weak formulation of our original equation. The general philosophy
is that one can check whether u is a weak solution to the system by evaluating it on various
test elements v using the weak form (11.180) of the system.

In the finite-dimensional situation, when K is merely multiplication by some matrix,
the weak formulation is an unnecessary complication, and not of use. However, in the
infinite-dimensional situation, whenK is a differential operator, then the original boundary
value problem K[u ] = f requires that u be sufficiently differentiable, whereas the weak
version

〈u ;K∗[ϕ ] 〉 = 〈〈 f ;ϕ 〉〉 for all ϕ

requires only that the test function ϕ(x) be smooth. As a result, weak solutions are not
restricted to be smooth functions possessing the required number of derivatives.

Example 11.18. Consider the homogeneous Dirichlet boundary value problem

K[u ] = −
d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < `, u(0) = u(`) = 0,

for a nonuniform bar. Its weak version is obtained by integration by parts. We initially
restrict to test functions which vanish at the boundary ϕ(0) = ϕ(`) = 0. This requirement
will eliminate any boundary terms in the integration by parts computation

〈K[u ] ;ϕ 〉 =

∫ `

0

[
−

d

dx

(
c(x)

du

dx

)
ϕ(x)

]
dx = −

∫ `

0

c(x)
du

dx

dϕ

dx
dx

=

∫ `

0

f(x)ϕ(x) dx = 〈 f ;ϕ 〉.

(11.181)

† The method also straightforwardly extends to nonlinear systems.
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This “semi-weak” formulation is known in mechanics as the principle of virtual work , [134].
For example, the Green’s function of the boundary value problem does not qualify as a
classical solution since it is not twice continuously differentiable, but can be formulated as
a weak solution satisfying the virtual work equation with right hand side defined by the
delta forcing function.

A second integration by parts produces the weak form (11.180) of the differential
equation:

〈u ;K[ϕ ] 〉 = −

∫ `

0

u(x)
d

dx

(
c(x)

dϕ

dx

)
dx =

∫ `

0

f(x)ϕ(x) dx = 〈 f ;ϕ 〉. (11.182)

Now, even discontinuous functions u(x) are allowed as weak solutions. The goal is to
find u(x) such that this condition holds for all smooth test functions ϕ(x). For exam-
ple, any function u(x) which satisfies the differential equation (11.12) except at points of
discontinuity qualifies as a weak solution.

In a finite element or Galerkin approximation to the weak solution, one restricts atten-
tion to a finite-dimensional subspace W spanned by functions ϕ1, . . . , ϕn−1, and requires
that the approximate solution

w(x) = c1 ϕ1(x) + · · · + cn−1 ϕn−1(x) (11.183)

satisfy the orthogonality condition (11.180) only for elements ϕ ∈ W of the subspace. As
usual, this only needs to be checked on the basis elements. Substituting (11.183) into the
semi-weak form of the system, (11.181), produces a linear system of equations of the form

〈w ;K[ϕi ] 〉 =

n∑

i=1

mij cj = bi = 〈 f ;ϕi 〉, i = 1, . . . , n. (11.184)

The reader will recognize this as exactly the same finite element linear system (11.160)
derived through the minimization approach. Therefore, for a self-adjoint boundary value
problem, the weak formulation and the minimization principle, when restricted to the
finite-dimensional subspace W , lead to exactly the same equations for the finite element
approximation to the solution.

In non-self-adjoint scenarios, the weak formulation is still applicable even though there
is no underlying minimization principle. On the other hand, there is no guarantee that
either the original boundary value problem or its finite element approximation have a
solution. Indeed, it is entirely possible that the boundary value problem has a solution,
but the finite element matrix system does not. Even more worrying are cases in which
the finite element system has a solution, but there is, in fact, no actual solution to the
boundary value problem! In such cases, one is usually tipped off by the non-convergence
of the approximations as the mesh size goes to zero. Nevertheless, in many situations, the
weak solution approach leads to a perfectly acceptable numerical approximation to the
true solution to the system. Further analytical details and applications of weak solutions
can be found in [63, 147].
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Chapter 12

Fourier Series

Just before 1800, the French mathematician/physicist/engineer Jean Baptiste Joseph
Fourier made an astonishing discovery. As a result of his investigations into the partial
differential equations modeling heat propagation in bodies, Fourier was led to claim that
“every” function could be represented by an infinite series of elementary trigonometric
functions — sines and cosines. Consider the sound produced by a musical instrument,
e.g., piano, violin, trumpet, oboe, or drum. Decomposing the signal into a Fourier series
reveals the fundamental frequencies (tones, overtones, etc.) that are combined to produce
its distinctive tones. The Fourier decomposition lies at the heart of modern electronic
music; a synthesizer combines pure sine and cosine tones to reproduce the diverse sounds
of instruments, both natural and artificial, according to Fourier’s general prescription.

Fourier’s claim was so remarkable and unexpected that most of the leading mathe-
maticians of the time did not believe him. Nevertheless, it was not long before scientists
came to appreciate its power and far-ranging applicability, opening up vast new realms
of physics, engineering, and, later, many other fields, to mathematical analysis. Indeed,
Fourier’s discovery easily ranks in the “top ten” mathematical advances of all time, a list
that would include Newton’s invention of the calculus and Riemann’s establishment of
differential geometry that, 70 years later, formed the foundation of Einstein’s theory of
relativity. Fourier analysis is an essential component of much of modern applied (and pure)
mathematics. It forms an exceptionally powerful analytical tool for solving and analyzing
a broad range of partial differential equations. Applications in pure mathematics, physics
and engineering are almost too numerous to catalogue — typing in “Fourier” in the sub-
ject index of a modern science library will dramatically demonstrate just how ubiquitous
these methods are. For instance, modern signal processing, including audio, speech, im-
ages, videos, seismic data, radio transmissions, and so on, is based on Fourier analysis and
its variants. Many modern technological advances, including television, music CD’s and
DVD’s, video movies, computer graphics, image processing, and fingerprint analysis and
storage, are, in one way or another, founded upon the many ramifications of Fourier’s dis-
covery. In your career as a mathematician, scientist or engineer, you will find that Fourier
theory, like calculus and linear algebra, is one of the most basic and essential tools in your
mathematical arsenal. Mastery of the subject will be unavoidable.

In addition, a remarkably large fraction of modern pure mathematics is the result
of subsequent attempts to place Fourier’s discoveries on a firm mathematical foundation.
Thus, all of the student’s “favorite” analytical tools, including the modern definition of
a function, the ε–δ definition of limit and continuity, convergence properties in function
space, including uniform convergence, weak convergence, etc., the modern theory of inte-
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gration and measure, generalized functions such as the delta function, and many others,
all owe a profound debt to the prolonged struggle to establish the theory of Fourier series
and integrals on a rigorous foundation. Even more remarkably, modern set theory, and,
as a result, mathematical logic and foundations, can be traced directly back to Cantor’s
attempts to understand the sets upon which Fourier series converge!

Fourier’s ideas are a very natural outgrowth of the same basic constructions that
we have already developed in the finite-dimensional linear algebra context for analyzihng
discrete dynamical processes. The Fourier representation of a function is a continuous
counterpart of the eigenvalue and eigenvector expansions used to solve linear dynamical
systems of ordinary differential equations. The fundamental partial differential equations
governing heat propagation and vibrations in continuous media are the function space
versions of these discrete systems. Replacing the eigenvectors are eigenfunctions. The
trigonometric functions in the Fourier series are the eigenfunctions for a certain simple
self-adjoint linear boundary value problem of the type considered in the preceding chapter,
and hence play the same role as the eigenvectors do in the solution to discrete systems of
ordinary differential equations. The key difference, which greatly magnifies the theoretical
complications, is that we must deal with infinite series rather than finite sums. Moreover,
self-adjointness The Fourier coefficient formulae are the direct analogues of standard or-
thogonality formulae among the eigenvectors of symmetric matrices. Thus, the Fourier
series is the simplest , but far from the only, function space analog of the spectral theory
of symmetric matrices. Their role in the solution to the partial differential equations of
heat diffusion and vibration are obtained by arguing by analogy with the solution methods
for the systems of ordinary differential equations modeling vibrations and gradient flows
of discrete mechanical systems. the Fourier trigonometric functions are the very simplest
example of an orthogonal system of eigenfunctions of a self-adjoint boundary value prob-
lem. The orthogonality conditions lead directly to the mysterious formulae for the Fourier
coefficients and hence effectively implement a solution to the partial differential equations.

The key to the efficacy of Fourier series rests on the orthogonality properties of the
trigonometric functions, which is a direct consequence of their status as eigenfunctions of
the most basic self-adjoint boundary value problem. In this manner, Fourier series can also
be viewed as a function space version of the finite-dimensional spectral theory of symmetric
matrices and orthogonal eigenvector bases. The main complication is that we must now
deal with infinite series rather than finite sums, and so convergence issues that do not
appear in the finite-dimensional situation become of paramount importance. The Fourier
trigonometric series is the simplest representative of a broad class of infinite eigenfunction
series based on self-adjoint boundary value problems. Other important examples arising in
physical applications, including Bessel and Legendre functions, will appear in Chapters 17
and 18.

Once we have established the proper theoretical background, the Fourier series will
no longer be a special, isolated phenomenon, but rather appears in its natural context as
the simplest of a large class of eigenfunction expansions for solving a wide range of linear
problems. Modern and classical extensions of the Fourier method, including Bessel and
Legendre functions, Fourier integrals, wavelets, discrete Fourier series, and many others,
all rely on the same foundations of complete, orthogonal systems of functions in an infinite-
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dimensional vector space. Many of the most important cases will appear in the ensuing
chapters.

12.1. Dynamical Equations of Continuous Media.

The purpose of this motivational section is to understand why Fourier series naturally
appear when we move from discrete systems of ordinary differential equations to the partial
differential equations that govern the dynamics of continuous mechanical systems. As we
will return to these issues in full detail in Chapter 14, readers wishing to dive straight into
Fourier methods might want to skip ahead to the next section.

In continuum mechanics, we replace a system of discrete masses and springs by a
continuum, e.g., a one-dimensional bar or string, a two-dimensional plate or a three-
dimensional solid body. Of course, real physical bodies are composed of atoms, and so
could, at least in principle, be modeled by discrete mechanical systems. However, the
number of atoms is so large that any direct attempt to analyze the resulting system of
ordinary differential equations would be completely impractical. Thus, regarding bodies as
ideal continuous media not only leads to very accurate physical models, but is absolutely
crucial for significant progress towards their mathematical and computational analysis.
Paradoxically, the numerical solution of such partial differential equations returns us to the
discrete realm, but now to a computationally tractable system. While one might envision
going directly from the discrete atomic system to the discrete numerical approximation,
this is not such a simple matter. The analytical power and insight offered by calculus in
the continuous regime makes this intermediate construction an essential component for the
effective modeling of physical phenomena.

The two principal classes that will be treated are the first order systems (9.22) gov-
erning gradient flows, and the second order Newtonian vibration systems (9.54). The
former will naturally lead to diffusion equations, including the heat equation that models
the propagation of heat in a homogeneous body. The latter will lead to general vibration
equations such as the wave equation, modeling the vibrational motions of bars, strings,
and, in higher dimensions, plates and solid bodies.

As we saw in Chapter 6, the equilibrium configurations of discrete mechanical systems,
such as a system of masses and springs, are found by solving a linear algebraic system
Ku = f with positive (semi-)definite coefficient matrix for the displacement vector u.
In Chapter 11, we learned that the same abstract formalism applies to the equilibrium
equations of one-dimensional media — bars, beams, etc. The solution is now a function
u(x) representing, say, displacement of the bar, while the positive (semi-)definite matrix is
replaced by a certin positive (semi-)definite boundary value problem K[u ] = f involving a
linear ordinary differential equation along with a suitable collection of boundary conditions.

The dynamics of discrete systems are governed by initial value problems for linear
systems of ordinary differential equations. Thus, we expect that the dynamics of continua
will be modeled by partial differential equations involving both space and time variables,
along with suitable boundary conditions in space and initial conditions in time. Let us
first consider the unforced gradient flow system

du

dt
= −Ku, u(t0) = u0, (12.1)
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associated with the positive (semi-)definite coefficient matrix. Gradient flows are designed
to decrease the quadratic energy function q(u) = 1

2 u
TKu as rapidly as possible. By

analogy, the corresponding continuous gradient flow will take the form†

∂u

∂t
= −K[u ], u(t0, x) = f(x), (12.2)

in which the differential operator K incorporates the same equilibrium spatial boundary
conditions. Such partial differential equations model diffusion processes in which a quad-
ratic energy functional is decreasing as rapidly as possible. A good physical example is
the flow of heat in a body; the heat disperses throughout the body so as to decrease the
thermal energy as quickly as it can, tending (in the absence of external heat sources)
to thermal equilibrium. Other physical processes modeled by (12.2) include diffusion of
chemicals (solvents, pollutants, etc.), and of populations (animals, bacteria, people, etc.)
in a medium.

The simplest and most instructive example is the case of a uniform periodic (or cir-
cular) bar of length 2π. As we saw in Chapter 11, the equilibrium equation takes the
form

K[u ] = −u′′ = f, u(−π) = u(π), u′(−π) = u′(π), (12.3)

associated with the positive semi-definite differential operator

K = D∗ ◦D = (−D)D = −D2 (12.4)

acting on the space of 2π periodic functions. The corresponding gradient flow (12.2) is the
partial differential equation

∂u

∂t
=

∂2u

∂x2
, u(t,−π) = u(t, π),

∂u

∂x
(t,−π) =

∂u

∂x
(t, π), (12.5)

known as the heat equation since it models (among other diffusion processes) thermo-
dynamics in one-dimensional media. The function u(t, x) represents the temperature at
position x and time t. Heat naturally flows from hot to cold, and so the fact that it can be
described by a gradient flow should not be surprising; a physical derivation of (12.5) will
appear in Chapter 14. Solving the periodic heat equation was the seminal problem that
led Fourier to develop the profound theory that now bears his name.

Now, to solve a finite-dimensional gradient flow (12.1), we imposed a exponential
ansatz (or inspired guess) for a solution u(t) = e−λtv. Substituting the formula reduced
the differential equation to the eigenvalue equation Kv = λv. Each eigenvalue and eigen-
vector yields a basic solution to the dynamical system, and the general solution is obtained
by superposition of these fundamental modes. This same idea carries over directly to the
continuous realm! To find solutions to the partial differential equation (12.2), we intro-
ducing the exponential formula

u(t, x) = e−λt v(x), (12.6)

† Since u(t, x) now depends upon time as well as position, we switch from ordinary to partial
derivative notation.
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in which we replace the eigenvector v by a function v(x) that satsifies the relevant boundary
conditions. We compute

∂u

∂t
=

∂

∂t

[
e−λt v(x)

]
= −λ e−λt v(x), while −K[u ] = −K

[
e−λt v(x)

]
= −e−λt K[v ],

since the exponential factor is a function of t, while the differential operatorK only involves
differentiation with respect to x. Substituting these two expressions into the dynamical
equations (12.2) and cancelling the common exponential factor, we conclude that v(x)
must solve a boundary value problem of the form

K[v ] = λ v. (12.7)

We interpret λ as the eigenvalue and v(x) as the corresponding eigenfunction for the
operator K subject to the relevant boundary conditions. As in the finite-dimensional case,
positive definiteness will imply that all eigenvalues are strictly positive definite, λ > 0; in
the unstable, positive semi-definite situation, null eigenvalues λ = 0 may also appear. Each
eigenvalue and eigenfunction pair will produce a solution (12.6) to the partial differential
equation, and the general solution can be built up through linear superposition.

For example, substitution of the exponential ansatz (12.6) into the periodic heat equa-
tion (12.5) leads to the eigenvalue problem

v′′ + λv = 0, v(−π) = v(π), v′(−π) = v′(π). (12.8)

This constitutes a 2π periodic boundary value problem for the eigenfunction v(x). Positive
semi-definiteness of the underlying differential operator (12.4) implies that its eigenvalues
must be real and non-negative: λ ≥ 0. Indeed, as the reader can verify, if λ < 0 or λ is
complex, then the only periodic solution to (12.8) is the trivial solution v(x) ≡ 0. When
λ = 0, the periodic solutions to (12.8) are the constant functions, and so any nonzero
constant function v(x) ≡ c is an eigenfunction for the λ = 0 eigenvalue. For the positive
eigenvalues, if we write λ = ω2 with ω > 0, then the general solution to the differential
equation (12.8) is a linear combination

v(x) = a cosωx+ b sinωx.

A nonzero function of this form will satisfy the 2π periodic boundary conditions if and
only if ω = k is an integer. Therefore, the eigenvalues

λ = k2, 0 ≤ k ∈ N,

are the squares of positive integers. Each positive eigenvalue λ = k2 > 0 admits two
linearly independent eigenfunctions, namely sin kx and cos kx, while the zero eigenvalue
λ = 0 has only one independent eigenfunction, the constant function 1. We conclude that
the standard trigonometric functions

1, cosx, sinx, cos 2x, sin 2x, cos 3x, . . . (12.9)

form a complete system of independent eigenfunctions for the periodic boundary value
problem (12.8).
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Each eigenfunction gives rise to a particular solution to the periodic heat equation
(12.5). We have therefore constructed an infinite collection of independent solutions:

uk(x) = e−k
2 t cos kx, ũk(x) = e−k

2 t sin kx, k = 0, 1, 2, 3, . . . .

According to our linear superposition principle, any finite linear combination

u(t, x) = a0 +
n∑

k=1

[
ak e−k

2 t cos kx+ bk e−k
2 t sin kx

]
(12.10)

of these particular solutions is also a solution. However, finite linear combinations will
not suffice to describe the general solution to the problem, and we must replace the finite
sum (12.10) by an infinite series. This immediately raises deep and interesting analytical
questions. When does such an infinite series converge? Can we represent a given function
f(x) as such an infinite series, and if so, how? For the trigonometric eigenfunctions, these
are the fundamental questions of Fourier analysis. After we have firmly established the
basics of Fourier theory, we shall then return to these questions for both the heat and wave
equations in Chapter 14.

A similar analysis applies to a second order system of the Newtonian form

∂2u

∂t2
= −K[u ]. (12.11)

Such differential equations are used to describe the free vibrations of continuous mechanical
systems, such as bars, strings, and, in higher dimensions, membranes, solid bodies, fluids,
etc. For example, the vibration system (12.11) corresponding to the differential operator
(12.4) is the wave equation

∂2u

∂t2
=

∂2u

∂x2
. (12.12)

The wave equation models stretching vibrations of a bar, sound vibrations in a column of
air, e.g., inside a wind instrument, transverse vibrations of a string, e.g., a violin string,
surfaces waves on a fluid, electromagnetic waves, and a wide variety of other vibrational
and wave phenomena.

As always, we need to impose suitable boundary conditions in order to proceed. Con-
sider, for example, the wave equation with homogeneous Dirichlet boundary conditions

∂2u

∂t2
=

∂2u

∂x2
, u(t, 0) = 0, u(t, `) = 0, (12.13)

that models, for instance, the vibrations of a uniform violin string whose ends are tied
down. Adapting our discrete trigonometric ansatz, we are naturally led to look for a
separable solution of the form

u(t, x) = cos(ωt) v(x) (12.14)

in which ω represents the vibrational frequency. Substituting into the wave equation
and the associated boundary conditions, we deduce that v(x) must be a solution to the
eigenvalue problem

d2v

dx2
+ ω2 v = 0, v(0) = 0 = v(`), (12.15)
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in which ω2 = λ plays the role of the eigenvalue. For ω2 > 0 — which results from positive
definiteness of the underlying system — the general solution to the differential equation is
a trigonometric function

v(x) = a cosωx+ b sinωx.

The boundary condition at x = 0 requires a = 0, and so

v(x) = b sinωx.

The second boundary condition requires

v(`) = b sinω` = 0.

Assuming b 6= 0, as otherwise the solution is trivial, ω` must be an integer multiple of π.
Thus, the natural frequencies of vibration are

ωk =
kπ

`
, k = 1, 2, 3, . . . .

The corresponding eigenfunctions are

vk(x) = sin
k π x

`
, k = 1, 2, 3, . . . . (12.16)

Thus, we find the following natural modes of vibration of the wave equation:

uk(t, x) = cos
kπ t

`
sin

kπx

`
, ũk(t, x) = sin

kπ t

`
sin

kπx

`
.

Each solution represents a spatially periodic standing wave form. We expect to write the
general solution to the boundary value problem as an infinite series

u(t, x) =
∞∑

k=1

(
bk cos

kπ t

`
sin

kπx

`
+ dk sin

kπ t

`
sin

kπx

`

)
(12.17)

in the natural modes. Interestingly, in this case at each fixed t, there are no cosine terms,
and so we have a more specialized type of Fourier series. The same convergence issues for
such Fourier sine series arise. It turns out that the general theory of Fourier series will
also cover Fourier sine series.

We have now completed our brief introduction to the dynamical equations of continu-
ous media and the Fourier series method of solution. The student should now be sufficiently
motivated, and it is time to delve into the theory of basic Fourier series. We will not try to
deal with more general eigenfunction expansions until Chapter 17, but instead concentrate
on the simplest and most important special case, when the eigenfunctions are trigonomet-
ric functions, and the series is a classical Fourier series. In Chapter 14 we will return to
the applications to the one-dimensional heat and wave equations.
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12.2. Fourier Series.

While the need to solve physically interesting partial differential equations served
as our (and Fourier’s) initial motivation, the remarkable range of applications qualifies
Fourier’s discovery as one of the most important in all of mathematics. We therefore take
some time to properly develop the basic theory of Fourier series and, in the following
chapter, a number of important extensions. Then, properly equipped, we will be in a
position to return to the source — solving partial differential equations.

We commence the discussion with the fundamental definition.

Definition 12.1. A Fourier series is an infinite trigonometric series

f(x) ∼
a0

2
+

∞∑

k=1

[ ak cos kx+ bk sin kx ] . (12.18)

The extra factor of 1
2 is traditionally included in the first term for later convenience.

Of course, without additional assumptions on the coefficients ak, bk, the Fourier series
(12.18) may not converge. This is the reason that we use the ∼ symbol instead of an equals
sign. The key questions are

(i) First, when does such an infinite trigonometric series converge?

(ii) Second, what kinds of functions f(x) can be represented by a convergent Fourier
series?

(iii) Third, if we have such an f , how do we determine its Fourier coefficients ak, bk?

(iv) And lastly, since we are trying to solve differential equations, can we safely differentiate
a Fourier series?

The first order of business is to determine the formulae for the Fourier coefficients
ak, bk. The key is orthogonality. We already observed, in Example 5.12, that the trigono-
metric functions (12.9) form an orthogonal system of functions with respect to the (rescaled)
L2 inner product

〈 f ; g 〉 =
1

π

∫ π

−π

f(x) g(x) dx (12.19)

on the interval† [−π, π ]. The explicit orthogonality relations are

〈 cos kx ; cos l x 〉 = 〈 sin kx ; sin l x 〉 = 0, for k 6= l,

〈 cos kx ; sin l x 〉 = 0, for all k, l,

‖ 1 ‖ =
√

2 , ‖ cos kx ‖ = ‖ sin kx ‖ = 1, for k 6= 0,

(12.20)

whenever k and l are non-negative integers.

† We have chosen the interval [−π, π ] for convenience. A common alternative choice is the
interval [0, 2π ]. In fact, since the trigonometric functions are 2π periodic, any interval of length
2π will serve equally well. Adapting Fourier series to intervals of other lengths will be discussed
in Section 12.4.
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Remark : If we were to replace the constant function 1 by 1√
2
, then the resulting

functions would form an orthonormal system. However, this extra
√
2 factor turns out to

be utterly annoying, and is best omitted from the outset.

If we ignore convergence issues for the moment and treat the Fourier series represen-
tation (12.18) as an equality, then the orthogonality relations (12.20) serve to immediately
determine the Fourier coefficients. Taking the inner product of both sides with, respec-
tively, cos kx and sin kx, we find

ak = 〈 f ; cos kx 〉 =
1

π

∫ π

−π

f(x) cos kx dx, k = 0, 1, 2, 3, . . . ,

bk = 〈 f ; sin kx 〉 =
1

π

∫ π

−π

f(x) sin kx dx, k = 1, 2, 3, . . . .

(12.21)

These fundamental formulae prescribe the Fourier coefficients of the function f . The fact
that we can also use them as written for a0 is the reason for including the

1
2 in the constant

term of the Fourier series (12.18).

Example 12.2. Consider the function f(x) = x. We may compute its Fourier
coefficients directly, using integration by parts to evaluate the integrals:

a0 =
1

π

∫ π

−π

x dx = 0, ak =
1

π

∫ π

−π

x cos kx dx =
1

π

[
x sin kx

k
+
cos kx

k2

] ∣∣∣∣
π

x=−π

= 0,

bk =
1

π

∫ π

−π

x sin kx dx =
1

π

[
−

x cos kx

k
+
sin kx

k2

] ∣∣∣∣
π

x=−π

=
2

k
(−1)k+1 . (12.22)

Therefore, the Fourier cosine coefficients of the function x all vanish, ak = 0, and its
Fourier series is

x ∼ 2

(
sinx −

sin 2x

2
+
sin 3x

3
−
sin 4x

4
+ · · ·

)
. (12.23)

The convergence of this series is not an elementary matter. Standard tests, including the
ratio and root tests, that almost always work for power series, fail to apply. Even if we
know that the series converges (which it does, for all x) it is certainly not obvious what
function it converges to. Indeed, it cannot converge to the function f(x) = x for all values
of x. If we substitute x = π, then every term in the series is zero, and so the Fourier series
converges to 0 — which is not the same as f(π) = π.

The nth partial sum of a Fourier series is the trigonometric polynomial†

sn(x) =
a0

2
+

n∑

k=1

[ ak cos kx+ bk sin kx ] . (12.24)

† The reason for the term “trigonometric polynomial” was discussed at length in Exam-
ple 2.16(c).
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Thus, the Fourier series converges at a point x if and only if the partial sums have a limit

lim
n→∞

sn(x) = f̃(x), (12.25)

which may or may not equal the value of the original function f(x). Thus, a key require-
ment is to formulate easily verifiable conditions on the function f(x) that guarantee that
the Fourier series converges, and, even more importantly, the limiting sum reproduces the
original function: f̃(x) = f(x). This will all be done in detail below.

Remark : The passage from trigonometric polynomials to Fourier series is analogous
to the passage from polynomials to power series. A power series

f(x) ∼ c0 + c1 x+ · · · + cn xn + · · · =

∞∑

k=0

ck xk

can be viewed as an infinite linear combination of the basic monomials 1, x, x2, x3, . . . .

According to Taylor’s formula, (C.8), the coefficients ck =
f (k)(0)

k!
are given in terms of

the derivatives of the function at the origin. The partial sums

sn(x) = c0 + c1 x+ · · · + cn xn =
n∑

k=0

ck xk

of a power series are ordinary polynomials, and similar convergence issues arise.

Although superficially similar, in actuality the two theories are profoundly different.
A power series either converges everywhere, or on an interval centered at 0, or nowhere
except at 0. (See Section 16.2 for details.) On the other hand, a Fourier series can
converge on quite bizarre sets. In fact, the detailed analysis of the convergence properties of
Fourier series led Georg Cantor to formulate modern set theory, and, thus, played a seminal
role in the establishment of the foundations of mathematics. Secondly, when a power
series converges, it converges to an analytic function, which is infinitely differentiable, and
whose derivatives are represented by the power series obtained by termwise differentiation.
Fourier series may converge, not only to a periodic continuous function, but also to a wide
variety of discontinuous functions and, even, when suitably interpreted, to generalized
functions like the delta function! Therefore, the termwise differentiation of a Fourier series
is a nontrivial issue. Indeed, while the theory of power series was well established in the
early days of the calculus, there remain, to this day, unresolved foundational issues in
Fourier theory.

Once one comprehends how different the two subjects are, one begins to understand
why Fourier’s astonishing claims were intially widely disbelieved. Before the advent of
Fourier, mathematicians only viewed analytic functions as genuine. The fact that Fourier
series can converge to nonanalytic, even discontinuous functions was extremely disconcert-
ing, and led to a complete re-evaluation of function theory, culminating in the modern
definition of function that you now learn in first year calculus. Only through the combined
efforts of many of the leading mathematicians of the nineteenth century was a rigorous
theory of Fourier series firmly established.
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Figure 12.1. Periodic extension of x.

Periodic Extensions

The trigonometric constituents (12.9) of a Fourier series are all periodic functions of

period 2π. Therefore, if the series converges, the resulting function f̃(x) must also be
periodic of period 2π:

f̃(x+ 2π) = f̃(x) for all x ∈ R.

A Fourier series can only converge to a 2π periodic function. Therefore, we should not
expect the Fourier series (12.23) to converge to f(x) = x everywhere, since it is not a
periodic function. Rather, it converges to its periodic extension, as we now define.

Lemma 12.3. If f(x) is any function defined for −π < x ≤ π, then there is a unique

2π periodic function f̃ , known as the 2π periodic extension of f , that satisfies f̃(x) = f(x)
for all −π < x ≤ π.

Proof : Pictorially, the graph of the periodic extension of a function f(x) is obtained
by repeatedly copying that part of the graph of f between −π and π to all other adjacent
intervals of length 2π; see, for instance, Figure 12.1. More formally, given x ∈ R, there is
a unique integer m so that −π < x− 2mπ ≤ π. Periodicity of f̃ leads us to define

f̃(x) = f̃(x− 2mπ) = f(x− 2mπ).

In particular, if −π < x ≤ π, then m = 0 and hence f̃(x) = f(x). The proof that the

resulting function f̃ is 2π periodic is left as Exercise . Q.E.D.

Remark : The construction of the periodic extension of Lemma 12.3 uses the value
f(π) at the right endpoint and requires f̃(−π) = f̃(π) = f(π). One could, alternatively,

require f̃(π) = f̃(−π) = f(−π), which, if f(−π) 6= f(π), leads to a slightly different 2π
periodic extension of the function, differing when x is an odd multiple of π. There is no a
priori reason to prefer one over the other. In fact, for Fourier theory, as we shall discover,
one should use neither, but rather an “average” of the two. Thus, the preferred Fourier
periodic extension f̃(x) will satisfy

f̃(π) = f̃(−π) = 1
2

[
f(π) + f(−π)

]
, (12.26)

which then fixes its values at the odd multiples of π.
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Example 12.4. The 2π periodic extension f̃(x) of f(x) = x is the “sawtooth”
function graphed in Figure 12.1. It agrees with x between −π and π. If we adopt the
Fourier extension (12.26), then, for any odd integer k, we set f̃(kπ) = 0, the average of
the values of f(x) = x at the endpoints ±π. Thus, explicitly,

f̃(x) =

{
x− 2mπ, (2m− 1)π < x < (2m+ 1)π,

0, x = (2m− 1)π,
where m is an arbitrary integer.

With this convention, it can be proved that the Fourier series (12.23) for f(x) = x converges

everywhere to the 2π periodic extension f̃(x). In particular,

2
∞∑

k=1

(−1)k+1 sin kx

k
=

{
x, −π < x < π,

0, x = ±π.
(12.27)

Even this very simple example has remarkable and nontrivial consequences. For in-
stance, if we substitute x = 1

2 π in (12.23) and divide by 2, we obtain Gregory’s series

π

4
= 1 −

1

3
+
1

5
−
1

7
+
1

9
− · · · . (12.28)

While this striking formula predates Fourier theory — it was first discovered by Leibniz
— a direct proof is not easy.

Remark : While fascinating from a numerological viewpoint, Gregory’s series is of
scant practical use for actually computing π since its rate of convergence is painfully
slow. The reader may wish to try adding up terms to see how far out one needs to go to
accurately compute even the first two decimal digits of π. Round-off errors will eventually
interfere with any attempt to compute the complete summation to any reasonable degree
of accuracy.

Piecewise Continuous Functions

As we shall see, all continuously differentiable, 2π periodic functions can be repre-
sented as convergent Fourier series. More generally, we can allow the function to have
some simple discontinuities. Although not the most general class of functions that pos-
sess convergent Fourier series, such “piecewise continuous” functions will suffice for all the
applications we consider in this text.

Definition 12.5. A function f(x) is said to be piecewise continuous on an interval
[a, b ] if it is defined and continuous except possibly at a finite number of points a ≤ x1 <

x2 < . . . < xn ≤ b. At each point of discontinuity, the left and right hand limits†

f(x−k ) = lim
x→ x

−

k

f(x), f(x+
k ) = lim

x→ x
+

k

f(x),

exist. Note that we do not require that f(x) be defined at xk. Even if f(xk) is defined, it
does not necessarily equal either the left or the right hand limit.

† At the endpoints a, b we only require one of the limits, namely f(a+) and f(b−), to exist.
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Figure 12.2. Piecewise Continuous Function.

A function f(x) defined for all x ∈ R is piecewise continuous provided it is piece-

wise continuous on every bounded interval. In particular, a 2π periodic function f̃(x) is
piecewise continuous if and only if it is piecewise continuous on the interval [−π, π ].

A representative graph of a piecewise continuous function appears in Figure 12.2. The
points xk are known as jump discontinuities of f(x) and the difference

βk = f(x+
k )− f(x−k ) = lim

x→ x
+

k

f(x)− lim
x→ x

−

k

f(x) (12.29)

between the left and right hand limits is the magnitude of the jump, cf. (11.46). If βk = 0,
and so the right and left hand limits agree, then the discontinuity is removable since
redefining f(xk) = f(x+

k ) = f(x−k ) makes f continuous at xk. We will assume, without
significant loss of generality, that our functions have no removable discontinuities.

The simplest example of a piecewise continuous function is the step function

σ(x) =

{
1, x > 0,

0, x < 0.
(12.30)

It has a single jump discontinuity at x = 0 of magnitude 1, and is continuous — indeed,
constant — everywhere else. If we translate and scale the step function, we obtain a
function

h(x) = β σ(x− y) =

{
β, x > y,

0, x < y,
(12.31)

with a single jump discontinuity of magnitude β at the point x = y.

If f(x) is any piecewise continuous function, then its Fourier coefficients are well-
defined — the integrals (12.21) exist and are finite. Continuity, however, is not enough to
ensure convergence of the resulting Fourier series.

Definition 12.6. A function f(x) is called piecewise C1 on an interval [a, b ] if it is
defined, continuous and continuously differentiable except possibly at a finite number of
points a ≤ x1 < x2 < . . . < xn ≤ b. At each exceptional point, the left and right hand
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Figure 12.3. Piecewise C1 Function.

limits† exist:
f(x−k ) = lim

x→x
−

k

f(x), f(x+
k ) = lim

x→x
+

k

f(x),

f ′(x−k ) = lim
x→x

−

k

f ′(x), f ′(x+
k ) = lim

x→x
+

k

f ′(x).

See Figure 12.3 for a representative graph. For a piecewise continuous C1 function,
an exceptional point xk is either

(a) a jump discontinuity of f , but where the left and right hand derivatives exist, or

(b) a corner , meaning a point where f is continuous, so f(x−k ) = f(x+
k ), but has different

left and right hand derivatives: f ′(x−k )6= f ′(x+
k ).

Thus, at each point, including jump discontinuities, the graph of f(x) has well-defined
right and left tangent lines. For example, the function f(x) = |x | is piecewise C1 since it
is continuous everywhere and has a corner at x = 0, with f ′(0+) = +1, f ′(0−) = −1.

There is an analogous definition of a piecewise Cn function. One requires that the
function has n continuous derivatives, except at a finite number of points. Moreover, at
every point, the function has well-defined right and left hand limits of all its derivatives
up to order n.

The Convergence Theorem

The fundamental convergence theorem for Fourier series can now be stated.

Theorem 12.7. If f̃(x) is any 2π periodic, piecewise C1 function, then its Fourier

series converges for all x to

f̃(x) if f̃ is continuous at x,
1
2

[
f̃(x+) + f̃(x−)

]
if x is a jump discontinuity.

† As before, at the endpoints we only require the appropriate one-sided limits, namely f(a+),

f ′(a+) and f(b−), f ′(b−), to exist.
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Figure 12.4. Periodic Step Function.

Thus, at discontinuities, the Fourier series “splits the difference” and converges to the
average of the right and left hand limits. If we redefine

f̃(x) = 1
2

[
f̃(x+) + f̃(x−)

]
(12.32)

to have such a value at its jump discontinuities — an equation that automatically holds at
all points of continuity — then Theorem 12.7 would say that the Fourier series converges
to f̃(x) everywhere. We will discuss the ideas underlyilng the proof of the Convergence
Theorem 12.7 at the end of Section 12.5.

Example 12.8. Let σ(x) denote the step function (12.30). Its Fourier coefficients
are easily computed:

a0 =
1

π

∫ π

−π

σ(x) dx =
1

π

∫ π

0

dx = 1,

ak =
1

π

∫ π

−π

σ(x) cos kx dx =
1

π

∫ π

0

cos kx dx = 0,

bk =
1

π

∫ π

−π

σ(x) sin kx dx =
1

π

∫ π

0

sin kx dx =





2

kπ
, k = 2 l + 1 odd,

0, k = 2 l even.

Therefore, the Fourier series for the step function is

σ(x) ∼
1

2
+
2

π

(
sinx +

sin 3x

3
+
sin 5x

5
+
sin 7x

7
+ · · ·

)
. (12.33)

According to Theorem 12.7, the Fourier series will converge to the 2π periodic extension
of the step function, as plotted in Figure 12.4:

σ̃(x) =





0, (2m+ 1)π < x < 2mπ,

1, 2mπ < x < (2m+ 1)π,
1
2 , x = mπ,

where m denotes an arbitrary integer.

In accordance with Theorem 12.7, σ̃(x) takes the midpoint value 1
2 at the jump disconti-

nuities 0,±π,±2π, . . . .
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Figure 12.5. Gibbs Phenomenon.

It is instructive to investigate the convergence of this particular Fourier series in
some detail. Figure 12.5 displays a graph of the first few partial sums, taking, respectively,
n = 3, 5, and 10 terms. The reader will notice that away from the discontinuities, the series
does appear to be converging, albeit slowly. However, near the jumps there is a consistent
overshoot of about 9%. The region where the overshoot occurs becomes narrower and
narrower as the number of terms increases, but the magnitude of the overshoot persists no
matter how many terms are summed up. This was first noted by the American physicist
Josiah Gibbs, and is now known as the Gibbs phenomenon in his honor. The Gibbs
overshoot is a manifestation of the subtle non-uniform convergence of the Fourier series.

Even and Odd Functions

We already noted that the Fourier cosine coefficients of the function f(x) = x are all
0. This was not an accident, but rather a consequence of the fact that x is an odd function.
Recall first the basic definition:

Definition 12.9. A function is called even if f(−x) = f(x). A function is odd if
f(−x) = −f(x).

For example, the functions 1, cos kx and x2 are all even, whereas sin kx and x are
odd. We require two elementary lemmas, whose proofs are left to the reader.

Lemma 12.10. The sum, f(x)+ g(x), of two even functions is even; the sum of two
odd functions is odd. The product f(x) g(x) of two even functions, or of two odd functions,
is an even function. The product of an even and an odd function is odd.

Remark : Every function can be represented as the sum of an even and an odd function;
see Exercise .

Lemma 12.11. If f(x) is odd and integrable on the symmetric interval [−a, a ], then∫ a

−a

f(x) dx = 0. If f(x) is even and integrable, then

∫ a

−a

f(x) dx = 2

∫ a

0

f(x) dx.

The next result is an immediate consequence of applying Lemmas 12.10 and 12.11 to
the Fourier integrals (12.21).
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Proposition 12.12. If f(x) is even, then its Fourier sine coefficients all vanish,
bk = 0, and so f can be represented by a Fourier cosine series

f(x) ∼
a0

2
+

∞∑

k=1

ak cos kx , (12.34)

where

ak =
2

π

∫ π

0

f(x) cos kx dx, k = 0, 1, 2, 3, . . . . (12.35)

If f(x) is odd, then its Fourier cosine coefficients vanish, ak = 0, and so f can be represented

by a Fourier sine series

f(x) ∼

∞∑

k=1

bk sin kx , (12.36)

where

bk =
2

π

∫ π

0

f(x) sin kx dx, k = 1, 2, 3, . . . . (12.37)

Conversely, a convergent Fourier cosine (respectively, sine) series always represents an even
(respectively, odd) function.

Example 12.13. The absolute value f(x) = |x | is an even function, and hence has
a Fourier cosine series. The coefficients are

a0 =
2

π

∫ π

0

x dx = π, (12.38)

ak =
2

π

∫ π

0

x cos kx dx =
2

π

[
x sin kx

k
+
cos kx

k2

]π

x=0

=





0, 06= k even,

−
4

k2 π
, k odd.

Therefore

|x | ∼
π

2
−
4

π

(
cosx +

cos 3x

9
+
cos 5x

25
+
cos 7x

49
+ · · ·

)
. (12.39)

According to Theorem 12.7, this Fourier cosine series converges to the 2π periodic extension
of |x |, which is graphed in Figure 12.6.

In particular, if we substitute x = 0, we obtain another interesting series

π2

8
= 1 +

1

9
+
1

25
+
1

49
+ · · · =

∞∑

n=0

1

(2n+ 1)2
. (12.40)

It converges faster than Gregory’s series (12.28), and, while not optimal, can be used
to compute reasonable approximations to π. One can further manipulate this result to
compute the sum of the series

S =
∞∑

n=1

1

n2
= 1 +

1

4
+
1

9
+
1

16
+
1

25
+
1

36
+
1

49
+ · · · .
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Figure 12.6. Periodic extension of |x |.

We note that

S

4
=

∞∑

n=1

1

4n2
=

∞∑

n=1

1

(2n)2
=
1

4
+
1

16
+
1

36
+
1

64
+ · · · .

Therefore, by (12.40),

3

4
S = S −

S

4
= 1 +

1

9
+
1

25
+
1

49
+ · · · =

π2

8
,

from which we conclude that

S =
∞∑

n=1

1

n2
= 1 +

1

4
+
1

9
+
1

16
+
1

25
+ · · · =

π2

6
. (12.41)

Remark : If f̃(x) is either even or odd and 2π periodic, then it is uniquely determined
by its values on the interval [0, π ]. This is proved by a straightforward adaptation of the
proof of Lemma 12.3; see Exercise .

Complex Fourier Series

An alternative, and often more convenient, approach to Fourier series is to use complex
exponentials instead of sines and cosines. Indeed, Euler’s formula

e i kx = cos kx+ i sin kx, e− i kx = cos kx− i sin kx, (12.42)

shows how to write the trigonometric functions

cos kx =
e i kx + e− i kx

2
, sin kx =

e i kx
− e− i kx

2 i
, (12.43)

in terms of complex exponentials. Orthonormality with respect to the rescaled L2 Hermi-
tian inner product

〈 f ; g 〉 =
1

2π

∫ π

−π

f(x) g(x) dx , (12.44)
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was proved by direct computation in Example 3.45:

〈 e i kx ; e i lx
〉 =

1

2π

∫ π

−π

e i (k−l)x dx =

{
1, k = l,

0, k 6= l,

‖ e i kx
‖
2 =

1

2π

∫ π

−π

| e i kx
|
2 dx = 1.

(12.45)

The complex Fourier series for a (piecewise continuous) real or complex function f is

f(x) ∼

∞∑

k=−∞

ck e i kx = · · · +c−2 e−2 i x+c−1 e− i x+c0+c1 e i x+c2 e2 i x+ · · · . (12.46)

The orthonormality formulae (12.44) imply that the complex Fourier coefficients are ob-
tained by taking the inner products

ck = 〈 f ; e
i kx

〉 =
1

2π

∫ π

−π

f(x) e− i kx dx (12.47)

with the associated complex exponential. Pay attention to the minus sign in the integrated
exponential — the result of taking the complex conjugate of the second argument in the
inner product (12.44). It should be emphasizedthat the real (12.18) and complex (12.46)
Fourier formulae are just two different ways of writing the same series! Indeed, if we apply
Euler’s formula (12.42) to (12.47) and compare with the real Fourier formulae (12.21), we
find that the real and complex Fourier coefficients are related by

ak = ck + c−k,

bk = i (ck − c−k),

ck =
1
2 (ak − i bk),

c−k =
1
2 (ak + i bk),

k = 0, 1, 2, . . . . (12.48)

Remark : We already see one advantage of the complex version. The constant function
1 = e0 i x no longer plays an anomalous role — the annoying factor of 1

2 in the real Fourier
series (12.18) has mysteriously disappeared!

Example 12.14. For the step function σ(x) considered in Example 12.8, the complex
Fourier coefficients are

ck =
1

2π

∫ π

−π

σ(x) e− i kx dx =
1

2π

∫ π

0

e− i kx dx =





1
2 , k = 0,

0, 06= k even,

1

i k π
, k odd.

Therefore, the step function has the complex Fourier series

σ(x) ∼
1

2
−
i

π

∞∑

l=−∞

e(2 l+1) i x

2 l + 1
.

You should convince yourself that this is exactly the same series as the real Fourier series
(12.33). We are merely rewriting it using complex exponentials instead of real sines and
cosines.
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Example 12.15. Let us find the Fourier series for the exponential function eax. It
is much easier to evaluate the integral for the complex Fourier coefficients, and so

ck = 〈 e
ax ; e i kx

〉 =
1

2π

∫ π

−π

e(a− i k)x dx =
e(a− i k)x

2π (a− i k)

∣∣∣∣
π

x=−π

=
e(a− i k)π

− e−(a− i k)π

2π (a− i k)
= (−1)k

eaπ − e−aπ

2π (a− i k)
=
(−1)k(a+ i k) sinh aπ

π (a2 + k2)
.

Therefore, the desired Fourier series is

eax ∼
sinh aπ

π

∞∑

k=−∞

(−1)k(a+ i k)

a2 + k2
e i kx. (12.49)

As an exercise, the reader should try writing this as a real Fourier series, either by breaking
up the complex series into its real and imaginary parts, or by direct evaluation of the real
coefficients via their integral formulae (12.21).

The Delta Function

Fourier series can even be used to represent more general objects than mere functions.
The most important example is the delta function δ(x). Using its characterizing properties
(11.37), the real Fourier coefficients are computed as

ak =
1

π

∫ π

−π

δ(x) cos kx dx =
1

π
cos k0 =

1

π
,

bk =
1

π

∫ π

−π

δ(x) sin kx dx =
1

π
sin k0 = 0.

(12.50)

Therefore,

δ(x) ∼
1

2π
+
1

π

(
cosx+ cos 2x+ cos 3x+ · · ·

)
. (12.51)

Since δ(x) is an even function, it should come as no surprise that it has a cosine series.

To understand in what sense this series converges to the delta function, it will help to
rewrite it in complex form

δ(x) ∼
1

2π

∞∑

k=−∞

e i kx =
1

2π

(
· · · + e−2 i x + e− i x + 1 + e i x + e2 i x + · · ·

)
. (12.52)

where the complex Fourier coefficients are computed† as

ck =
1

2π

∫ π

−π

δ(x) e− i kx dx =
1

2π
.

† Or, we could use (12.48).
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Figure 12.7. Partial Fourier Sums Approximating the Delta Function.

The nth partial sum sn(x) =
1

2π

n∑

k=−n

e i kx can, in fact be explicitly computed. It has the

form of an elementary geometric series

m∑

k=0

a rk = a+ a r + a r2 + · · · + a rm = a

(
rm+1

− 1

r − 1

)
, (12.53)

in which the initial term is a = e− inx, the ratio is r = e i x, while m = 2n indicates the
number of terms. We conclude that

sn(x) =
1

2π

n∑

k=−n

e i kx =
1

2π
e− inx

(
e i (2n+1)x

− 1

e i x − 1

)
=
1

2π

e i (n+1)x
− e− inx

e i x − 1

=
1

2π

e
i
(
n+

1
2

)
x
− e

− i
(
n+

1
2

)
x

e i x/2 − e− i x/2
=
1

2π

sin
(
n+ 1

2

)
x

sin 1
2 x

.

(12.54)

To go from the first to the secojnd line, we multiplied numerator and denominator by
e− i x/2, after which we used the formula (3.78) for the sine function in terms of complex
exponentials. Incidentally, (12.54) is the same as the intriguing trigonometric summation
formula

sn(x) =
1

2π
+
1

π

(
cosx+ cos 2x+ cos 3x+ · · · + cosnx

)
=
1

2π

sin
(
n+ 1

2

)
x

sin 1
2 x

. (12.55)

Graphs of the partial sums sn(x) for several values of n are displayed in Figure 12.7.
Note that the spike, at x = 0, progressively becomes taller and thinner, converging to an
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infinitely tall, infinitely thin delta spike. Indeed, by l’Hôpital’s Rule,

lim
x→0

1

2π

sin
(
n+ 1

2

)
x

sin 1
2 x

= lim
x→0

1

2π

(
n+ 1

2

)
cos
(
n+ 1

2

)
x

1
2 cos

1
2 x

=
n+ 1

2

π
−→ ∞ as n →∞.

(An elementary proof of this fact is to note that, at x = 0, every term in the original sum
(12.52) is equal to 1.) Furthermore, the integrals remain fixed

1

2π

∫ π

−π

sn(x) dx =
1

2π

∫ π

−π

sin
(
n+ 1

2

)
x

sin 1
2 x

dx =
1

2π

∫ π

−π

n∑

k=−n

e i kx dx = 1, (12.56)

as required for convergence to the delta function. However, away from the spike, the partial
sums do not go to zero. Rather, they oscillates more and more rapidly, maintaining an
overall amplitude of csc 1

2 x = 1/ sin 1
2 x. As n gets large, the amplitude function appears

as an envelope of the increasingly rapid oscillations. Roughly speaking, the fact that
sn(x)→ δ(x) as n →∞ means that the “infinitely fast” oscillations somehow cancel each
other out, and the net effect is zero away from the spike at x = 0. Thus, the convergence
of the Fourier sums to δ(x) is much more subtle than in the original limiting definition
(11.32). The technical term is “weak convergence”, and plays an very important role in
advanced mathematical analysis, [126].

Remark : Although we stated that the Fourier series (12.51), (12.52) represent the
delta function, this is not entirely correct. Remember that a Fourier series converges to
the 2π periodic extension of original the function. Therefore, (12.52) actually represents
the periodic extension of the delta function

δ̃(x) = · · · +δ(x+4π)+δ(x+2π)+δ(x)+δ(x−2π)+δ(x−4π)+δ(x−6π)+ · · · , (12.57)

consisting of a periodic array of delta spikes concentrated at all integer multiples of 2π.

12.3. Differentiation and Integration.

If a series of functions converges — at least in a sufficiently regular manner — then
one expects to be able to integrate and differentiate it term by term; the resulting series
should converge to the integral and derivative of the original sum. For power series, the
implementation of this idea is straightforward, and used extensively in the construction of
series solutions of differential equations, series for integrals of non-elementary functions,
and so on. Appendix C develops some of the details.

As we now appreciate, the convergence of Fourier series is a much more delicate matter,
and so one must take considerably more care in the application of term-wise differentia-
tion and integration. Nevertheless, in favorable situations, both operations lead to valid
results, and provide a powerful means of constructing Fourier series of more complicated
functions. It is a remarkable, profound fact that Fourier analysis is completely compatible
with the calculus of generalized functions that we developed in Chapter 11. In particular,
differentiating the Fourier series for a suitably nice function with a jump discontinuity
leads to the Fourier series for the differentiated function, with a delta function of the ap-
propriate magnitude appearing at the discontinuity. This fact reassures us that the rather
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mysterious construction of delta functions and their generalizations is indeed the right way
to extend calculus to functions which do not possess derivatives in the ordinary sense.

Integration of Fourier Series

Integration is a smoothing operation — the integrated function is always nicer than
the original. Therefore, we should anticipate being able to integrate Fourier series without
difficulty. However, there is one complication: the integral of a periodic function is not
necessarily periodic. The simplest example is the constant function 1, which is certainly
periodic, but its integral, namely x, is not. On the other hand, integrals of all the other
periodic sine and cosine functions appearing in the Fourier series are periodic. Thus, only
the constant term might cause us difficulty when we try to integrate a Fourier series (12.18).
According to (2.4), the constant term

a0

2
=
1

2π

∫ π

−π

f(x) dx (12.58)

is the mean or average of the function f(x) on the interval [−π, π ]. A function has no
constant term in its Fourier series if and only if it has zero mean. It is easily shown,
cf. Exercise , that the mean zero functions are precisely the ones that remain periodic
upon integration.

Lemma 12.16. If f(x) is 2π periodic, then its integral g(x) =

∫ x

0

f(y) dy is 2π

periodic if and only if f has mean zero on the interval [−π, π ].

In particular, Lemma 12.11 implies that all odd functions automatically have mean
zero.

Theorem 12.17. If f is piecewise continuous, 2π periodic, and has mean zero, then
its Fourier series can be integrated term by term, to produce the Fourier series

g(x) =

∫ x

0

f(y) dy ∼ m +
∞∑

k=1

[
−

bk
k
cos kx+

ak
k
sin kx

]
, (12.59)

for its integral. The constant term

m =
1

2π

∫ π

−π

g(x) dx

is the mean of the integrated function.

In many situations, the integration formula (12.59) provides a very convenient alter-
native to the direct derivation of the Fourier coefficients.

Example 12.18. The function f(x) = x is odd, and so has mean zero,

∫ π

−π

x dx = 0.

Let us integrate its Fourier series

x ∼ 2

∞∑

k=1

(−1)k−1

k
sin kx (12.60)
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that we found in Example 12.2. The result is the Fourier series

1

2
x2

∼
π2

6
− 2

∞∑

k=1

(−1)k−1

k2
cos kx

∼
π2

6
− 2

(
cosx −

cos 2x

4
+
cos 3x

9
−
cos 4x

16
+ · · ·

)
,

(12.61)

whose the constant term is the mean of the left hand side:

1

2π

∫ π

−π

x2

2
dx =

π2

6
.

If we were to integrate each trigonometric summand in a Fourier series (12.18) from
0 to x, we would obtain

∫ x

0

cos ky dy =
sin kx

k
, while

∫ x

0

sin ky dy =
1

k
−
cos kx

k
.

The 1/k terms arising from the sine integrals do not appear explicitly in (12.59), and so
must be hidden in the constant term m. We deduce that the mean value of the integrated
function can be computed using the Fourier sine coefficients of f via the formula

1

2π

∫ π

−π

g(x) dx = m =
∞∑

k=1

bk
k

. (12.62)

For example, the result of integrating both sides of the Fourier series (12.60) from 0 to x

is
x2

2
∼ 2

∞∑

k=1

(−1)k−1

k2
(1− cos kx).

The constant terms sum up to yield the mean value of the integrated function:

2

(
1−

1

4
+
1

9
−
1

16
+ . . .

)
= 2

∞∑

k=1

(−1)k−1

k2
=
1

2π

∫ π

−π

x2

2
dx =

π2

6
, (12.63)

which reproduces the formula in Exercise .

If f(x) does not have mean zero, its Fourier series has a nonzero constant term,

f(x) ∼
a0

2
+

∞∑

k=1

[ ak cos kx+ bk sin kx ] .

In this case, the result of integration will be

g(x) =

∫ x

0

f(y) dy ∼
a0

2
x+m+

∞∑

k=1

[
−

bk
k
cos kx+

ak
k
sin kx

]
, (12.64)
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where m is given in (12.62). The right hand side is not, strictly speaking, a Fourier series.
There are two ways to interpret this formula within the Fourier framework. Either we can
write (12.64) as the Fourier series for the difference

g(x)−
a0

2
x ∼ m+

∞∑

k=1

[
−

bk
k
cos kx+

ak
k
sin kx

]
, (12.65)

which is a 2π periodic function, cf. Exercise . Alternatively, one can replace x by its
Fourier series (12.23), and the result will be the Fourier series for the 2π periodic extension

of the integral g(x) =

∫ x

0

f(y) dy.

Differentiation of Fourier Series

Differentiation has the opposite effect to integration. Differentiation makes a function
worse. Therefore, to justify taking the derivative of a Fourier series, we need to know that
the differentiated function remains reasonably nice. Since we need the derivative f ′(x) to
be piecewise C1 for the convergence Theorem 12.7 to be applicable, we have to require
that f(x) itself be continuous and piecewise C2.

Theorem 12.19. If f is 2π periodic, continuous, and piecewise C2, then its Fourier

series can be differentiated term by term, to produce the Fourier series for the derivative

h(x) = f ′(x) ∼

∞∑

k=1

[ k bk cos kx− k ak sin kx ] . (12.66)

Example 12.20. If we differentiate the Fourier series (12.39) for f(x) = |x |, we
obtain

f ′(x) ∼
4

π

(
sinx +

sin 3x

3
+
sin 5x

5
+
sin 7x

7
+ · · ·

)
. (12.67)

The derivative (11.52) of the absolute value function is the sign function

d |x |

dx
= signx =

{
+1, x > 0

−1, x < 0.

Note that signx = σ(x)−σ(−x) is the difference of two step functions. Indeed, subtracting
the step function Fourier series (12.33) at x from the same series at −x reproduces (12.67).

Example 12.21. If we differentiate the Fourier series

x ∼ 2
∞∑

k=1

(−1)k−1

k
sin kx = 2

(
sinx −

sin 2x

2
+
sin 3x

3
−
sin 4x

4
+ · · ·

)
.

for x, we obtain an apparent contradiction:

1 ∼ 2

∞∑

k=1

(−1)k+1 cos kx = 2− 2 cosx+ 2 cos 2x− 2 cos 3x+ · · · . (12.68)
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But the Fourier series for 1 just consists of a single constant term! (Why?)

The resolution of this difficulty is not hard. The Fourier series (12.23) does not

converge to x, but rather to its periodic extension f̃(x), which has a jump discontinuity
of magnitude 2π at odd multiples of π. Thus, Theorem 12.19 is not directly applicable.
Nevertheless, we can assign a consistent interpretation to the differentiated series. As
discussed in Section 11.2, the derivative f̃ ′(x) of the periodic extension is not equal to
the constant function 1, but, rather, has an additional delta function concentrated at each
jump discontinuity:

f̃ ′(x) = 1− 2π
∞∑

j=−∞

δ
(
x− (2j + 1)π

)
= 1− 2π δ̃(x− π),

where δ̃ denotes the 2π periodic extension of the delta function, cf. (12.57). The dif-
ferentiated Fourier series (12.68) does, in fact, converge to this modified distributional
derivative!

12.4. Change of Scale.

So far, we have only dealt with Fourier series on the standard interval of length 2π.
(We chose [−π, π ], but the statements and formulas are easily adapted to any other interval
of the same length, e.g., [0, 2π ].) Since physical objects like bars and strings do not all
come in this particular length, we need to understand how to adapt the formulas to more
general intervals. The basic idea is to rescale the variable so as to stretch or contract the
standard interval, and was already used, in Section 5.4, to adapt the orthogonal Legendre
polynomials to other intervals.

Any symmetric interval [−` , ` ] of length 2 ` can be rescaled to the standard interval
[−π, π ] by using the linear change of variables

x =
`

π
y, so that − π ≤ y ≤ π whenever − ` ≤ x ≤ `. (12.69)

Given a function f(x) defined on [−` , ` ], the rescaled function F (y) = f

(
`

π
y

)
lives on

[−π, π ]. Let

F (y) ∼
a0

2
+

∞∑

k=1

[
ak cos ky + bk sin ky

]
,

be the standard Fourier series for F (y), so that

ak =
1

π

∫ π

−π

F (y) cos ky dy, bk =
1

π

∫ π

−π

F (y) sin ky dy. (12.70)

Then, reverting to the unscaled variable x, we deduce that

f(x) ∼
a0

2
+

∞∑

k=1

[
ak cos

kπx

`
+ bk sin

kπx

`

]
. (12.71)
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The Fourier coefficients can be computed directly. Indeed, replacing the integration vari-
able by y = πx/`, and noting that dy = (π/`) dx, we deduce the modified formulae

ak =
1

`

∫ `

−`

f(x) cos
kπx

`
dx, bk =

1

`

∫ `

−`

f(x) sin
kπx

`
dx, (12.72)

for the Fourier coefficients of f(x) on the interval [−` , ` ].

All of the convergence results, integration and differentiation formulae, etc., that
are valid for the interval [−π, π ] carry over, essentially unchanged, to Fourier series on
nonstandard intervals. In particular, adapting our basic convergence Theorem 12.7, we
conclude that if f(x) is piecewise C1, then its rescaled Fourier series (12.71) converges to

its 2 ` periodic extension f̃(x) with the proviso that f̃(x) takes on the midpoint values at
all jump discontinuities.

Example 12.22. Let us compute the Fourier series for the function f(x) = x on the
interval −1 ≤ x ≤ 1. Since f is odd, only the sine coefficients will be nonzero. We have

bk =

∫ 1

−1

x sin kπx dx =

[
−

x cos kπx

kπ
+
sin kπx

(kπ)2

]1

x=−1

=
2(−1)k+1

k π
.

The resulting Fourier series is

x ∼
2

π

(
sinπx −

sin 2πx

2
+
sin 3πx

3
− · · ·

)

The series converges to the 2 periodic extension of the function x, namely

f̃(x) =

{
x− 2m, 2m− 1 < x < 2m+ 1,

0, x = m,
where m is an arbitrary integer.

We can similarly reformulate complex Fourier series on the nonstandard interval
[−` , ` ]. Scaling the variables in (12.46) in (12.69), we find

f(x) ∼

∞∑

k=−∞

ck e i kπx/`, where ck =
1

2 `

∫ `

−`

f(x) e− i kπx/` dx. (12.73)

Again, this is merely an alternative way of writing the real Fourier series (12.71).

For a more general interval [a, b ] there are two options. Either one can take a function

f(x) defined for a ≤ x ≤ b and periodically extend it to a function f̃(x) that has period b−a.
One can then use the Fourier series (12.71) for the symmetric interval [ 12 (a− b), 1

2 (b− a) ]
of width 2 ` = b − a. An alternative approach is to translate the interval by an amount
1
2 (a + b) to make it symmetric; this is done by the change of variables x̂ = x − 1

2 (a + b).
The two methods are essentially equivalent, and details are left to the reader.

12.5. Convergence of the Fourier Series.

In this final section, we establish the basic convergence results for Fourier series. As a
by product, we obtain additional information about the nature of Fourier series that plays
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an important role in applications, particularly the interplay between the smoothness of the
function and the decay of its Fourier coefficients, a result that is exploited in signal and
image denoising and in the analytial properties of solutions to partial differential equations.
Be forwarned: this material will be the most theoretical that we cover in this text, and the
more applied reader may consider omitting it from a first reading. However, while we may
have already gained sufficient experience to conduct basic Fourier analysis, a complete
understanding of its range and the limitations does requires some familiarity with the
underlying theoretical developments. Moreover, the required techniques and proofs serve
as an excellent introduction to some of the most important tools of modern mathematical
analysis. Rest assured that the effort expended to assimilate this material will be more
than amply rewarded in your subsequent career.

Unlike power series, which converge to analytic functions on the interval of conver-
gence, and diverge elsewhere (the only tricky point being whether or not the series con-
verges at the endpoints), the convergence of a Fourier series is a much more subtle matter,
and still not understood in complete generality. A large part of the difficulty stems from
the intricacies of convergence in infinite-dimensional function spaces. Let us therefore
begin with a brief discussion of the most basic issues.

Convergence in Vector Spaces

In a finite-dimensional vector space, e.g., Rm, convergence of sequences, and hence
series, is straightforward: there is essentially only one way for a sequence of vectors
v(0),v(1),v(2), . . . ∈ Rm to converge, which is guaranteed by any of the following equivalent
criteria:

(a) The vectors converge: v(n)
−→ v? ∈ Rm as n →∞.

(b) All components of v(n) = (v
(n)
1 , . . . , v(n)

m ) converge, so v
(n)
i −→ v?i , for i = 1, . . . ,m.

(c) The difference in norms goes to zero: ‖v(n)
− v? ‖ −→ 0 as n →∞.

The last requirement, known as convergence in norm, does not, in fact, depend on which
norm is chosen. Indeed, Theorem 3.19 implies that, on a finite-dimensional vector space,
all norms are essentially equivalent, and if one norm goes to zero, so does any other norm.

The corresponding convergence criteria are certainly not the same on infinite-dim-
ensional vector spaces. There are, in fact, a bewildering variety of diverse convergence
mechanisms in function space, including pointwise convergence, uniform convergence, con-
vergence in norm, weak convergence, and so on. All play a significant role in advanced
mathematical analysis. For our applications, we shall be content to study just the most
basic aspects of convergence of the Fourier series. Much more detail is available in more
advanced texts, e.g., [51, 159].

The most basic convergence mechanism for a sequence of functions vn(x) is called
pointwise convergence, where we require

lim
n→∞

vn(x) = v?(x) for all x. (12.74)

In other words, the functions’ values at each individual point converge in the usual sense.
Pointwise convergence is the function space version of the convergence of the components of
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Figure 12.8. Uniform and Non-Uniform Convergence of Functions.

a vector. Indeed, pointwise convergence immediately implies component-wise convergence
of the sample vectors v(n) = ( vn(x1), . . . , vn(xm) )

T
∈ Rm for any choice of sample points.

On the other hand, convergence in norm of the function sequence requires

lim
n→∞

‖ vn − v? ‖ = 0,

where ‖ · ‖ is a prescribed norm on the function space. As mentioned earlier, not all norms
on an infinite-dimensional function space are equivalent: a function might be small in one
norm, but large in another. As a result, convergence in norm will depend upon the choice
of norm. Moreover, convergence in norm does not necessarily imply pointwise convergence
or vice versa. A variety of examples can be found in the exercises.

Uniform Convergence

Proving uniform convergence of a Fourier series is reasonably straightforward, and
so we will begin there. You no doubt first saw the concept of a uniformly convergent
sequence of functions in your calculus course, although chances are it didn’t leave much
of an impression. In Fourier analysis, uniform convergence begins to play an increasingly
important role, and is worth studying in earnest. For the record, let us restate the basic
definition.

Definition 12.23. A sequence of functions vn(x) is said to converge uniformly to a
function v?(x) on a subset I ⊂ R if, for every ε > 0, there exists an integer N = N(ε) such
that

| vn(x)− v?(x) | < ε for all x ∈ I and all n ≥ N . (12.75)

The key point — and the reason for the term “uniform convergence” — is that the
integer N depends only upon ε and not on the point x ∈ I. Roughly speaking, the
sequence converges unifomly if and only if for any small ε, the graphs of the functions
eventually lie inside a band of width 2ε centered around the graph of the limiting func-
tion; see Figure 12.8. Functions may converge pointwise, but non-uniformly. The Gibbs
phenomenon is the prototypical example of a nonuniformly convergent sequence. For a
fixen ε > 0, the integer n required for (12.75) to hold depends on the point — the closer x

is to the discontinuity, the larger n must be chosen. Thus, for a given ε, there is no uni-
formly valid N that fulfills the requirement (12.75) for all points x. A detailed discussion
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of these issues, including the proofs of the basic theorems, can be found in any basic real
analysis text, e.g., [9, 126].

A key consequence of uniform convergence is that it preserves continuity.

Theorem 12.24. If vn(x) → v?(x) converges uniformly, and each vn(x) is continu-
ous, then v?(x) is also a continuous function.

Intuitively, as sketched in Figure 12.8, a sufficiently small band around the limiting
function would not connect up at a discontinuity, and this prevents the graph of any
continuous function, such as vn(x), from remaining entirely within the band.

Warning : A sequence of continuous functions can converge non-uniformly to a contin-

uous function. An example is the sequence vn(x) =
2nx

1 + n2x2
, which converges pointwise

to v?(x) ≡ 0 (why?) but not uniformly since max | vn(x) | = vn
(

1
n

)
= 1.

The convergence (pointwise, uniform, in norm, etc.) of a series

∞∑

k=1

uk(x) is governed

by the convergence of its sequence of partial sums

vn(x) =
n∑

k=1

uk(x). (12.76)

The most useful test for uniform convergence of series of functions is known as the Weier-

strass M–test , due to the highly influential nineteenth century German mathematician
Karl Weierstrass, the “father of modern analysis”.

Theorem 12.25. Suppose the functions uk(x) are bounded by

|uk(x) | ≤ mk for all x ∈ I, (12.77)

where the mk ≥ 0 are fixed positive constants. If the series

∞∑

k=1

mk < ∞ (12.78)

converges, then the series
∞∑

k=1

uk(x) = f(x) (12.79)

converges uniformly to a function f(x) for all x ∈ I. In particular, if the summands uk(x)
in Theorem 12.25 are continuous, so is the sum f(x).

With some care, we are allowed to manipulate uniformly convergent series just like
finite sums. Thus, if (12.79) is a uniformly convergent series, so is the term-wise product

∞∑

k=1

g(x)uk(x) = g(x)f(x) (12.80)
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with any bounded function: | g(x) | ≤ C for x ∈ I. We can also integrate a uniformly
convergent series term by term, and the integrated series

∫ x

a

(
∞∑

k=1

uk(y)

)
dy =

∞∑

k=1

∫ x

a

uk(y) dy =

∫ x

a

f(y) dy (12.81)

is uniformly convergent. Differentiation is also allowed — but only when the differentiated
series converges uniformly.

Proposition 12.26. If

∞∑

k=1

u′k(x) = g(x) is a uniformly convergent series, then

∞∑

k=1

uk(x) = f(x) is also uniformly convergent, and, moreover, f ′(x) = g(x).

We are particularly interested in applying these results to Fourier series, which, for
convenience, we take in complex form

f(x) ∼
∞∑

k=−∞

ck e i kx. (12.82)

Since x is real, ∣∣ e i kx
∣∣ ≤ 1,

and hence the individual summands are bounded by

∣∣ ck e i kx
∣∣ ≤ | ck | for all x.

Applying the Weierstrass M–test, we immediately deduce the basic result on uniform
convergence of Fourier series.

Theorem 12.27. If the Fourier coefficients ck satisfy

∞∑

k=−∞

| ck | < ∞, (12.83)

then the Fourier series (12.82) converges uniformly to a continuous function f̃(x) whose
Fourier coefficients are the same ck.

Proof : Uniform convergence and continuity of the limiting function follows from The-
orem 12.25. To show that the ck actually are the Fourier coefficients of the sum, we
multiply the Fourier series by e− i kx and integrate term by term from −π to π. As noted
in (12.80), (12.81), both operations are valid owing to the uniform convergence of the
series. Q.E.D.

The one thing that the theorem does not guarantee is that the original function f(x)

used to compute the Fourier coefficients ck is the same as the function f̃(x) obtained by
summing the resulting Fourier series! Indeed, this may very well not be the case. As we
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know, the function that the series converges to is necessarily 2π periodic. Thus, at the
very least, f̃(x) will be the 2π periodic extension of f(x). But even this may not suffice.

Two functions f(x) and f̂(x) that have the same values except for a finite set of points
x1, . . . , xm have the same Fourier coefficients. (Why?) More generally, two functions which
agree everywhere outside a set of “measure zero” will have the same Fourier coefficients.
In this way, a convergent Fourier series singles out a distinguished representative from a
collection of essentially equivalent 2π periodic functions.

Remark : The term “measure” refers to a rigorous generalization of the notion of the
length of an interval to more general subsets S ⊂ R. In particular, S has measure zero

if it can be covered by a collection of intervals of arbitrarily small total length. For
example, any collection of finitely many points, or even countably many points, e.g., the
rational numbers, has measure zero. The proper development of the notion of measure,
and the consequential Lebesgue theory of integration, is properly studied in a course in
real analysis, [125], and will only be touched upon here.

Fourier series cannot converge uniformly when discontinuities are present. However, it
can be proved, [28, 51, 159], that even when the function fails to be everywhere continuous,
its Fourier series is uniformly converges on any closed subset of continuity.

Theorem 12.28. Let f(x) be 2π periodic and piecewise C1. If f is continuous for

a < x < b, then its Fourier series converges uniformly to f(x) on any closed subinterval
a+ δ ≤ x ≤ b− δ, with δ > 0.

For example, the Fourier series (12.33) for the step function does converge uniformly
if we stay away from the discontinuities; for instance, by restriction to a subinterval of
the form [δ, π − δ ] or [−π + δ,−δ ] for any 0 < δ < 1

2 π. This reconfirms our observation
that the nonuniform Gibbs behavior becomes progressively more and more localized at the
discontinuities.

Smoothness and Decay

The uniform convergence criterion (12.83) requires, at the very least, that the Fourier
coefficients decay to zero: ck → 0 as k → ±∞. In fact, the Fourier coefficients cannot
tend to zero too slowly. For example, the individual summands of the infinite series

∞∑

k=−∞

1

| k |α
(12.84)

go to 0 as k →∞ for all α > 0, but the series converges if and only if α > 1. (This follows
from the standard integral test for series, [9, 126].) Thus, if we can bound the Fourier
coefficients by

| ck | ≤
M

| k |α
for all | k | À 0, (12.85)

for some power α > 1 and some positive constant M > 0, then the Weierstrass M test will
guarantee that the Fourier series converges uniformly to a continuous function.
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An important consequence of the differentiation formulae (12.66) for Fourier series is
the fact that the faster the Fourier coefficients of a function tend to zero as k → ∞, the
smoother the function is. Thus, one can detect the degree of smoothness of a function by
looking at how rapidly its Fourier coefficients decay to zero. More rigorously, we have:

Theorem 12.29. If the Fourier coefficients satisfy

∞∑

k=−∞

kn | ck | < ∞, (12.86)

then the Fourier series (12.46) converges to a 2π periodic function which is n times con-

tinuously differentiable: f(x) ∈ Cn. Moreover, for any m ≤ n, the m times differentiated

Fourier series converges uniformly to the corresponding derivative f (m)(x).

Proof : This is an immediate consequence of Proposition 12.26. Application of the
Weierstrass M test to the differentiated Fourier series and use of (12.86) completes the
proof. Q.E.D.

Corollary 12.30. If the Fourier coefficients satisfy (12.85) for some α > n+1, then
the function f(x) is n times continuously differentiable.

Thus, the faster the Fourier coefficients go to zero at large frequency k, the smoother
the function is. If the Fourier coefficients go to zero faster than any power of k, e.g.,
exponentially fast, then the function is infinitely differentiable. Analyticity is a little more
delicate, and we refer the reader to [51, 159] for details.

An important consequence of the differentiation formulae is the fact that, the smoother
the function is, the faster its Fourier coefficients ak, bk decay to zero as k → ∞. For a
Fourier series (12.18) to converge to a piecewise continuous function, we must, at the very
least, have ak → 0 and bk → 0 as k →∞; see Lemma 12.35 below. If we assume that† f(x)
is 2π periodic, continuous and piecewise C2, then Theorem 12.19 implies that the Fourier
series for f ′(x) converges, and so its Fourier coefficients, namely k bk and −k ak, must
tend to zero as k → ∞. In general, if f is 2π periodic, has n − 1 continuous derivatives
and nth derivative at least piecewise continuous C1, then the Fourier coefficients of f (n)(x)
must tend to zero, which, by a simple induction, implies that

kn ak, kn bk −→ 0 as k −→∞.

In particular, this requires that the Fourier coefficients of f satisfy

| ak | <
C

kn
, | bk | <

C

kn
, (12.87)

for some constant C > 0. If f is infinitely differentiable, or, even more restrictively,
analytic, then its Fourier coefficients go to zero faster than any power of k. For instance,
if | ak |, | bk | < C e−k, then the Fourier sum is a C∞ function. Thus, one can detect the
degree of smoothness of a function by looking at how rapidly its Fourier coefficients decay
to zero. See Theorem 12.29 below for a more precise result.

† If the function is not periodic, one must impose the assumptions on its periodic extension
for the remarks to be valid.
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Example 12.31. The 2π periodic extension of the function |x | is continuous with
piecewise continuous first derivative. Its Fourier coefficients (12.38) satisfy the estimate
(12.87) for n = 2, which is in accord with the previous remarks. On the other hand, the
Fourier coefficients (12.22) of the step function σ(x) only tend to zero as 1/k, reflecting the
fact that its periodic extension is only piecewise continuous. Finally, the Fourier coefficients
(12.50) for the delta function do not tend to zero at all, indicative of the fact that it is not
an ordinary function, and its Fourier series does not converge in the standard sense.

Hilbert Space

In order to make further progress, we must take a little detour. The proper setting
for the rigorous theory of Fourier series turns out to be the most important function space
in modern physics and modern analysis, known as Hilbert space. The precise definition of
this infinite-dimensional inner product space is rather technical, but a rough version goes
as follows:

Definition 12.32. A complex-valued function f(x) is called square-integrable on the
interval [−π, π ] if it satisfies

‖ f ‖2 =
1

2π

∫ π

−π

| f(x) |2 dx < ∞. (12.88)

The Hilbert space L2 = L2[−π, π ] is the vector space consisting of all complex-valued
square-integrable functions on [−π, π ].

Note that (12.88) is the L2 norm based on the Hermitian inner product

〈 f ; g 〉 =
1

2π

∫ π

−π

f(x) g(x) dx. (12.89)

The triangle inequality (3.19), namely

‖ c f + d g ‖ ≤ | c | ‖ f ‖+ | d | ‖ g ‖,

implies that the Hilbert space is a complex vector space, i.e., if f, g ∈ L2, so is any linear
combination cf + dg. The Cauchy–Schwarz inequality (3.16), namely

| 〈 f ; g 〉 | ≤ ‖ f ‖ ‖ g ‖,

implies that the inner product of two square-integrable functions is well-defined and finite.
In particular, the Fourier coefficients of a function f(x) are defined as inner products

ck = 〈 f ; e
i kx

〉 =
1

2π

∫ π

−π

f(x) e− i kx dx

of f with the complex exponentials, and hence are well-defined for any f ∈ L2.

There are some interesting analytical subtleties that arise when one tries to prescribe
precisely which functions are to be admitted to Hilbert space. Every piecewise continuous
function belongs to L2. But some functions with singularities are also members. For
example, the power function |x |−α belongs to L2 for any α < 1

2 , but not if α ≥ 1
2 .
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Analysis requires limiting procedures, and the Hilbert space must be “complete” in the
sense that appropriately convergent† sequences of functions have a limit. The complete-
ness requirement relies on the development of the more sophisticated Lebesgue theory of
integration, which was formalized in the early part of the twentieth century by the French
mathematician Henri Lebesgue — and just in time for quantum mechanics! Any function
which is square-integrable in the Lebesgue sense is admitted into L2. This includes such

non-piecewise continuous functions as sin
1

x
and x−1/3, as well as the strange function

r(x) =

{
1 if x is a rational number,

0 if x is irrational.
(12.90)

One soon discovers that general square-integrable functions can be quite bizarre.

A second complication is that (12.88) does not, strictly speaking, define a norm once
we allow discontinuous functions. For example, the piecewise continuous function

f0(x) =

{
1, x = 0,

0, x 6= 0,
(12.91)

has norm zero, ‖ f0 ‖ = 0, even though it is not zero everywhere. Indeed, any function
which is zero except on a set of measure zero also has norm zero, including the function
(12.90). Therefore, in order to make (12.88) into a legitimate norm on Hilbert space, we
must agree to identify any two functions which have the same values except on a set of
measure zero. For instance, the zero function 0 and the preceding examples f0(x) and
r(x) are all viewed as definining the same element of Hilbert space. Thus, although we
treat them as if they were ordinary functions, each element of Hilbert space is not, in
fact, a function, but, rather, an equivalence class of functions all differing on a set of
measure zero. All this might strike the reader as becoming much too abstract and arcane.
In fact, the casual reader will not lose much by assuming that the “functions” in L2 are
always piecewise continuous and square-integrable. Nevertheless, the full analytical power
of Hilbert space theory is only unleashed by allowing much more general kinds of functions
into the fold.

After its invention by David Hilbert around the turn of the twentieth century, physi-
cists in the 1920’s suddenly realized that Hilbert space was the correct setting to establish
the modern theory of quantum mechanics. A quantum mechanical wave function is a el-
ement† ϕ ∈ L2 that has unit norm: ‖ϕ ‖ = 1. Thus, the set of wave functions is merely
the unit sphere in Hilbert space. In quantum mechanics, a wave function is endowed with
a probabilistic interpretation. The modulus |ϕ(x) | of the wave function at a position
x quantifies the probability of finding the corresponding particle (photon, electron, etc.)

† The precise technical requirement is that every Cauchy sequence of functions vk(x) ∈ L2

converges to a function v?(x) ∈ L2; see Exercise for details.

† Here we are considering the physical space to be represented by the one-dimensional inter-
val [−π, π ]. The more physically relevant case of three-dimensional space is treated similarly,

replacing the single integral by a triple integral over all of R
3.
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there. More correctly, the probability that the particle resides in a prescribed interval [a, b ]

is equal to

√
1

2π

∫ b

a

|ϕ(x) |2 dx . In particular, the wave function has unit norm

‖ϕ ‖ =

√
1

2π

∫ π

−π

|ϕ(x) |2 dx = 1

because the particle must certainly, i.e., with probability 1, be somewhere!

Convergence in Norm

We are now in a position to discuss convergence in norm of the Fourier series. We
begin with the basic definition, which makes sense for any normed vector space.

Definition 12.33. Let V be an normed vector space. A sequence v(n)
∈ V is said

to converge in norm to v? ∈ V if ‖v(n)
− v? ‖ → 0 as n →∞.

Remark : Convergence in norm is very different from pointwise convergence. For in-
stance, it is possible, cf. Exercise , to construct a sequence of functions that converges in
norm to 0, but does not converge pointwise anywhere!

We are particularly interested in the convergence in norm of the Fourier series of a
square integrable function f(x) ∈ L2. Let

sn(x) =

n∑

k=−n

ck e i kx (12.92)

be the nth partial sum of its Fourier series (12.46). The partial sum (12.92) is an element
of the subspace T (n)

⊂ L2 consisting of all trigonometric polynomials of degree at most n,
cf. Example 2.12. It is, in fact, a distinguished element of this subspace — namely, it is the
closest function in T (n) to f ∈ L2, where the distance between functions is measured by
the L2 norm of their difference: ‖ f − g ‖. Thus, in the language of Chapter 4, the Fourier
partial sum sn(x) is the best trigonometric polynomial approximation to the given function
f(x) in the least squares sense. This important characterization of the Fourier partial sums
is, in fact, an immediate consequence of the orthonormality of the trigonometric basis.

Theorem 12.34. The nth order Fourier partial sum sn(x) is the closest approxima-
tion to f(x) in the space of trigonometric polynomials T (n), meaning that it minimizes the

L2 norm of the difference

‖ f − pn ‖
2 =

1

2π

∫ π

−π

| f(x)− pn(x) |
2 dx (12.93)

among all possible degree n trigonometric polynomials

pn(x) =

n∑

k=−n

dk e i kx
∈ T

(n). (12.94)

Proof : The proof is, in fact, a function space version of the proof of the finite-
dimensional Theorems 5.34 and 5.36. Note first that, owing to the orthonormality (12.45)
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of the basis exponentials, we can compute the norm of a trigonometric polynomial (12.94)
by summing the squared moduli of its Fourier coefficients:

‖ pn ‖
2 = 〈 pn ; pn 〉 =

n∑

k,l=−n

dk dl 〈 e
i kx ; e i lx

〉 =

n∑

k=−n

| dk |
2;

see also (5.6). Hence, we can compute

‖ f − pn ‖
2 = ‖ f ‖2 − 2 〈 f ; pn 〉+ ‖ pn ‖

2 = ‖ f ‖2 − 2

n∑

k=−n

dk 〈 f ; e
i kx

〉+ ‖ pn ‖
2

= ‖ f ‖2 − 2
n∑

k=−n

ck dk +
n∑

k=−n

| dk |
2 = ‖ f ‖2 −

n∑

k=−n

| ck |
2 +

n∑

k=−n

| dk − ck |
2

The last equality results from adding and subtracting the norm

‖ sn ‖
2 =

n∑

k=−n

| ck |
2

of the Fourier partial sum. Therefore,

‖ f − pn ‖
2 = ‖ f ‖2 − ‖ sn ‖

2 +
n∑

k=−n

| dk − ck |
2.

The first and second terms in the right hand expression are uniquely determined by f(x)
and hence cannot be altered by the choice of trigonometric polynomial pn(x), which only
affects the final summation. Since it is a sum of nonnegative quantities, the sum is, in
fact, minimized by setting all the summands to zero, i.e., setting dk = ck. We conclude
that ‖ f − pn ‖ is minimized if and only if dk = ck are the Fourier coefficients, and hence
pn(x) = sn(x) is the Fourier partial sum. Q.E.D.

Setting pn = sn in the preceding formula, so dk = ck, we conclude that

‖ f − sn ‖
2 = ‖ f ‖2 − ‖ sn ‖

2 = ‖ f ‖2 −

n∑

k=−n

| ck |
2. (12.95)

Now, the left hand side of this equality is always non-negative

‖ f − sn ‖
2
≥ 0.

Applying this inequality to the right hand side, we conclude that the Fourier coefficients
of the function f must satisfy the basic inequality

n∑

k=−n

| ck |
2
≤ ‖ f ‖2.
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Since we are summing a sequence of non-negative numbers whose partial sums are uni-
formly bounded, the limiting summation as n →∞ will exist and also be bounded by the
right hand side. We have thus proved Bessel’s inequality

∞∑

k=−∞

| ck |
2
≤ ‖ f ‖2. (12.96)

As noted earlier, if a series is to converge, the individual summands must go to zero:
| ck |

2
→ 0. We therefore deduce an immediate corollary — an easy form of the Riemann–

Lebesgue Lemma.

Lemma 12.35. If f ∈ L2 is square integrable, then its Fourier coefficients satisfy

ck =
1

2π

∫ π

−π

f(x) e− i kx dx −→ 0, as | k | → ∞.

This is equivalent to the convergence of the real Fourier coefficients

ak =
1

π

∫ π

−π

f(x) cos kx dx

bk =
1

π

∫ π

−π

f(x) sin kx dx




−→ 0, as k →∞.

Remark : As before, the convergence of the sum (12.96) requires that the coefficients
ck cannot tend to zero too slowly. For instance, if ck satisfies the power bound

| ck | ≤ M | k |−α, then
∞∑

k=−∞

| ck |
2 < ∞ provided α > 1

2 .

Uniform convergence required α > 1, cf. (12.85), and hence convergence in norm imposes a
less restrictive assumption on the decay of the Fourier coefficients. Indeed, a Fourier series
may very well converge in norm to a discontinuous function, which is not possible under
uniform convergence. In fact, there are some bizarre continuous functions whose Fourier
series do not converge uniformly, failing to converge at all at some points. A deep result
says that the Fourier series of a continuous function converges except possibly on a set
of measure zero, [159]. Again, the subtle details of the convergence of Fourier series are
rather delicate, and lack of space and analytical tools prevents us from delving any further
into these issues.

Completeness

As we know, specification of a basis allows one to describe all elements of a finite-
dimensional vector. The number of basis elements equals the dimension of the vector
space. For an infinite-dimensional vector space, there are, by definition, infinitely many
linearly independent elements, and no finite collection can serve as a basis. The question
then arises to what extent an infinite collection of linearly independent elements can be
considered as a basis for the space. Mere counting will no longer suffice, since omitting
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one, or two, or any finite number, or even certain infinite subcollections, from a supposed
basis will still leave infinitely many linearly independent elements of the vector space; but,
clearly, the reduced collection should, in some sense, no longer serve to define a basis. The
curse of infinity strikes again! For example, while the complete trigonometric collection
1, cosx, sinx, cos 2x, sin 2x, . . . can represent any 2π periodic L2 function as a Fourier
series, the subcollection cosx, sinx, cos 2x, sin 2x, . . . will only represent functions with
mean zero, while the functions sinx, sin 2x, . . . only represent odd functions. All three
collections have infinitely many elements, but only the first can be properly called a basis.
In general, just because we have found a infinite collection of independent elements in
an infinite-dimensional vector space, how do we know that we have enough, and are not
missing one or two or 10,000 or even infinitely many additional elements?

The concept of “completeness” serves to properly formalize the notion of a “basis”
of an infinite-dimensional vector space. We shall discuss completeness in a general, ab-
stract setting, but the key example is, of course, the Hilbert space L2 and the system of
trigonometric or complex exponential functions forming a Fourier series. Other impor-
tant examples arising in later applications include Bessel functions, Legendre polynomials,
spherical harmonics, and general systems of eigenfunctions of self-adjoint boundary value
problems.

For simplicity, we only define completeness in the case of orthonormal systems. Similar
arguments will clearly apply to orthogonal systems, but the additional normality condition
helps to simplify the formulae. Let V be an infinite-dimensional inner product space.
Suppose that u1, u2, u3, . . . ∈ V form an orthonormal collection of elements of V , so

〈ui ;uj 〉 =

{
1 i = j,

0, i 6= j.
(12.97)

A straightforward argument proves that the ui are linearly independent; see Proposi-
tion 5.4. Given a general element f ∈ V , we form its generalized Fourier series

f ∼

∞∑

k=1

ck uk, where ck = 〈 f ;uk 〉. (12.98)

The Fourier coefficients ck are given by our usual orthonormal basis formula (5.5), which
is obtained by formally taking the inner product of the series with uk.

Definition 12.36. An orthonormal system of elements u1, u2, u3, . . . ∈ V is called
complete if the generalized Fourier series (12.98) of any f ∈ V converges in norm to f . In
other words,

‖ f − sn ‖ −→ 0, where sn =
n∑

k=1

ck uk (12.99)

is the nth partial sum of the generalized Fourier series (12.98).

Thus, completeness requires that every element can be arbitrarily closely approxi-
mated (in norm) by a suitable linear combination of the basis elements. A complete or-
thonormal system should be viewed as the infinite-dimensional version of an orthonormal
basis of a finite-dimensional vector space.
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The key result for Fourier series is that the complex exponentials, or, equivalently the
trigonometric functions, form a complete system.

Theorem 12.37. The complex exponentials e i kx, k = 0,±1,±2, . . ., form a com-
plete orthonormal system in L2[−π, π ]. In other words, if sn(x) denotes the nth partial

sum (12.99) of the Fourier series of the square-integrable function f(x) ∈ L2[−π, π ], then

lim
n→∞

‖ f − sn ‖ = 0. (12.100)

An indication of the proof of completeness will appear below.

Remark : Theorem 12.37 is, in fact, a particular case of a theorem that governs or-
thogonal eigenfunction expansions arising from quite general positive definite boundary
value problems.

In order to understand this result, let us first describe some equivalent characteriza-
tions of completeness. The Plancherel formula is the infinite-dimensional counterpart of
our formula (5.6) for the norm of a vector in terms of its coordinates with respect to an
orthonormal basis.

Theorem 12.38. The orthonormal system of elements u1, u2, u3, . . . ∈ V is complete

if and only if the Plancherel formula

‖ f ‖2 =

∞∑

k=−∞

| ck |
2 where ck = 〈 f ;uk 〉, (12.101)

holds for every f ∈ V .

Proof : We begin by computing† the Hermitian norm

‖ f − sn ‖
2 = ‖ f ‖2 − 〈 f ; sn 〉 − 〈 sn ; f 〉+ ‖ sn ‖

2 = ‖ f ‖2 − 2 Re 〈 f ; sn 〉+ ‖ sn ‖
2.

Substituting the formula sn =
n∑

k=1

ck uk for the partial sums, we find, by orthonormality,

‖ sn ‖
2 =

n∑

k=1

| ck |
2, while 〈 f ; sn 〉 =

n∑

k=1

ck 〈 f ;uk 〉 =
n∑

k=1

| ck |
2.

Therefore,

0 ≤ ‖ f − sn ‖
2 = ‖ f ‖2 −

n∑

k=1

| ck |
2. (12.102)

† We are in essence repeating the proofs of Theorem 12.34 and the subsequent trigonometric
Bessel inequality (12.96) in a more abstract setting.
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The fact that the left hand side of (12.103) is non-negative for all n implies the general
Bessel inequality

‖ f ‖2 ≥

∞∑

k=1

| ck |
2, (12.103)

which is valid for any orthonormal system of elements in an inner product space. As we
noted above, Bessel’s inequality implies that the generalized Fourier coefficients ck → 0
must tend to zero reasonably rapidly in order that the sum of their squares converges.

Plancherel’s formula (12.101), thus, states that, if the system of functions is complete,
the Bessel inequality is, in fact, an equality! Indeed, letting n →∞ in (12.102), we have

0 = lim
n→∞

‖ f − sn ‖
2 = ‖ f ‖2 −

∞∑

k=1

| ck |
2.

Therefore, the completeness condition (12.100) holds if and only if the right hand side
vanishes, which is the Plancherel identity (12.101). Q.E.D.

Corollary 12.39. Let ck = 〈 f ;ϕk 〉, dk = 〈 g ;ϕk 〉 are the Fourier coefficients of f, g,

respectively, with respect to a complete orthonormal system. Then they satisfy Parseval’s
identity

〈 f ; g 〉 =
∞∑

k=−∞

ck dk . (12.104)

Proof : According to Exercise ,

〈 f ; g 〉 = 1
4

(
‖ f + g ‖2 − ‖ f − g ‖2 + i ‖ f + i g ‖2 − i ‖ f − i g ‖2

)
.

We apply the Plancherel formula (12.101) to each term on the right hand side, so

〈 f ; g 〉 =
1

4

∞∑

k=−∞

(
| ck + dk |

2
− | ck − dk |

2 + i | ck + i dk |
2
− i | ck − i dk |

2
)
=

∞∑

k=−∞

ck dk.

Q.E.D.

In particular, in the case of the complex exponential basis of L2[−π, π ], the Plancherel
and Parseval formulae tell us that

1

2π

∫ π

−π

| f(x) |2 dx =

∞∑

k=−∞

| ck |
2,

1

2π

∫ π

−π

f(x) g(x) dx =

∞∑

k=−∞

ck dk , (12.105)

in which ck, dk are, respectively, the ordinary Fourier coefficients of the complex-valued
functions f(x) and g(x). Note that the Plancherel formula is a special case of the Parseval
identity obtained by setting f = g. In Exercise , the reader is asked to rewrite the two
formulas in terms of the real Fourier coefficients.

Completeness also tells us that a function is uniquely determined by its Fourier coef-
ficients.
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Proposition 12.40. If the orthonormal system u1, u2, . . . ∈ V is complete, then

the only element f ∈ V with all zero Fourier coefficients, 0 = c1 = c2 = · · · , is the zero
element: f = 0. More generally, two elements f, g ∈ V have the same Fourier coefficients

if and only if they are the same: f = g.

Proof : The proof is an immediate consequence of the Plancherel formula. Indeed, if
ck = 0, then (12.101) implies that ‖ f ‖ = 0. The second statement follows by applying
the first to the function f − g. Q.E.D.

Another way of stating this result is that the only function which is orthogonal to every
element of a complete orthonormal system is the zero function†. Interpreting in another
way, a complete orthonormal system is maximal in the sense that no further orthonormal
elements can be appended to it.

Let us now discuss the completeness of the Fourier trigonometric/complex exponential
functions. We shall prove the completeness criterion only for continuous functions, leaving
the harder general proof to the references, [51, 159]. According to Theorem 12.27, if f(x)
is continuous, 2π periodic, and piecewise C1, its Fourier series converges uniformly to f(x),
so

f(x) =
∞∑

k=−∞

ck e i kx for all − π ≤ x ≤ π.

The same holds for its complex conjugate f(x). Therefore,

| f(x) |2 = f(x) f(x) = f(x)

∞∑

k=−∞

ck e− i kx =

∞∑

k=−∞

ck f(x) e− i kx,

which also converges uniformly by (12.80). Equation (12.81) permits us to integrating
both sides from −π to π, yielding

‖ f ‖2 =
1

2π

∫ π

−π

| f(x) |2 dx =
∞∑

k=−∞

1

2π

∫ π

−π

ck f(x) e− i kx dx =
∞∑

k=−∞

ck ck =
∞∑

k=−∞

| ck |
2.

Therefore, Plancherel’s identity (12.101) holds for any continuous function. With some
additional technical work, this result is used to establish the validity of Plancherel’s formula
for all f ∈ L2, the key step being to suitably approximate f by continuous functions. With
this in hand, completeness follows from Theorem 12.38. Q.E.D.

Pointwise Convergence

Let us finally turn to the proof of the Pointwise Convergence Theorem 12.7. The goal
is to prove that, under the appropriate hypotheses, the limit of the partial Fourier sums is

lim
n→∞

sn(x) =
1
2

[
f(x+) + f(x−)

]
. (12.106)

† Or, to be more technically accurate, any function which is zero outside a set of measure zero.
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We begin by substituting the formulae (12.47) for the complex Fourier coefficients into the
formula (12.92) for the nth partial sum:

sn(x) =

n∑

k=−n

ck e i kx =

n∑

k=−n

(
1

2π

∫ π

−π

f(y) e− i ky dy

)
e i kx

=
1

2π

∫ π

−π

f(y)
n∑

k=−n

e i k(x−y) dy.

We can then use the geometric summation formula (12.54) to evaluate the result:

sn(x) =
1

2π

∫ π

−π

f(y)
sin
(
n+ 1

2

)
(x− y)

sin 1
2 (x− y)

dy

=
1

2π

∫ x+π

x−π

f(x+ y)
sin
(
n+ 1

2

)
y

sin 1
2y

dy =
1

2π

∫ π

−π

f(x+ y)
sin
(
n+ 1

2

)
y

sin 1
2y

dy.

The next to last equality comes from changing variable in the integral from y to x + y.
The final equality comes from the fact that the integrand is 2π periodic, and so its integral
over any interval of length 2π has the same value; see Exercise .

Thus, to prove (12.106), it suffices to show that

lim
n→∞

1

π

∫ π

0

f(x+ y)
sin
(
n+ 1

2

)
y

sin 1
2y

dy = f(x+),

lim
n→∞

1

π

∫ 0

−π

f(x+ y)
sin
(
n+ 1

2

)
y

sin 1
2y

dy = f(x−).

(12.107)

The proofs of the two formulae are identical, and so we concentrate on the first. Equa-
tion (12.56) implies that

1

π

∫ π

0

sin
(
n+ 1

2

)
y

sin 1
2y

dy =
1

π

∫ π

0

n∑

k=−n

e i ky dy = 1.

Multiplying the right hand side of the first equation in (12.107) by the integral allows us
to rewrite it in the form

lim
n→∞

1

π

∫ π

0

f(x+ y)− f(x+)

sin 1
2y

sin
(
n+ 1

2

)
y dy = 0. (12.108)

We claim that, for each fixed value of x, the function

g(y) =
f(x+ y)− f(x+)

sin 1
2y

is piecewise continuous for all 0 ≤ y ≤ π. Owing to our hypothesis on f(x), the only
problematic point is when y = 0, but then

lim
y→ 0+

g(y) = lim
y→ 0+

f(x+ y)− f(x+)

y

y

sin 1
2y
= 2 f ′(x+)
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is twice the right hand derivative of f at x. The factor of 2 comes from the elementary
calculus limit†

lim
y→ 0+

y

sin 1
2 y

= 2 lim
y→ 0+

1
2 y

sin 1
2 y

= 2 lim
z→ 0+

z

sin z
= 2.

Thus, formula (12.108) will follow if we can show that

lim
n→∞

1

π

∫ π

0

g(y) sin
(
n+ 1

2

)
y dy = 0 (12.109)

for any piecewise continuous function g. Were it not for the extra 1
2 , this would immediately

follow from Lemma 12.35. More honestly, we use the addition formula for sin
(
n+ 1

2

)
y to

write

1

π

∫ π

0

g(y) sin
(
n+ 1

2

)
y dy =

1

π

∫ π

0

[
g(y) sin 1

2 y
]
cosny dy+

1

π

∫ π

0

[
g(y) cos 1

2 y
]
sinny dy

The first integral is the Fourier cosine coefficient ãn for the piecewise continuous function

g(y) sin 1
2 y, while the second integral is the Fourier sine coefficient b̃n for the piecewise

continuous function g(y) cos 1
2 y. Lemma 12.35 implies that both of these converge to zero

as n →∞, and hence (12.109) holds. This completes the proof. Q.E.D.

Remark : An alternative approach to the last part of the proof is to use the general
Riemann–Lebesgue Lemma.

Lemma 12.41. Suppose g(x) is piecewise continuous on [a, b ]. Then

lim
ω→∞

∫ b

a

g(x) e iωx dx = 0.

Intuitively, the lemma says that, as the frequency ω gets larger and larger, the in-
creasingly rapid oscillations in sinωx tend to cancel each other out. A formal proof of the
lemma from first principles can be found in [51, 159].

† One might argue that this follows from l’Hôpital’s rule, but in point of fact this is a fake
application: one already needs to evaluate the limit when proving the formula for the derivative
of the sine function!
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Chapter 13

Fourier Analysis

Fourier series are merely the entry point into the wonderful world of Fourier analysis
and its wide-ranging extensions and generalizations. An entire industry is devoted to
developing the theory and enlarging the scope of applications of Fourier–inspired methods.
New species of Fourier systems continue to be discovered and applied in a broad range of
physical, mathematical, engineering, chemical, biological, financial and other systems.

Digital media, such as CD’s, DVD’s, MP3’s, and so on, rely on discrete data, not
continuous functions. This inspires the development of a purely discrete version of Fourier
series methods, in which one replaces periodic functions representing analog signals by their
discrete sample vectors. The resulting discrete Fourier sum can, in fact, be handled by
finite-dimensional vector space methods, and so technically belongs in the previous linear
algebra portion of this text. However, the insight provided by the classical continuous
Fourier theory proves to be essential in understanding and analyzing its discrete digital
cousin. An important application of discrete Fourier sums is in signal and image processing.
One typically samples a signal at equally spaced time intervals, and then processes the
resulting discrete (digital) data. Basic methods of data compression and noise removal
are based on the corresponding discrete Fourier coefficients, acting on the observation
that noise lies in the high frequency Fourier modes, while most important features are
concentrated at low frequencies. In Section 13.1, we develop the basic Fourier theory in
this discrete setting, culminating with the Fast Fourier Transform, which forms a fast
numerical algorithm for passing between a signal and its discrete Fourier coefficients, and
is an essential tool in modern signal processing.

One of the inherent limitations of classical Fourier methods, both continuous and
discrete, is that they are not well adapted to localized data owing to the nonlocal character
of the constituent trigonometric functions. For instance, localized compression algorithms
in the physical domain become unmanageable in the Fourier frequency version of the signal.
(The physics version of this mathematical fact is known as the Heisenberg Uncertainty
Principle.) In the second section, we introduce wavelets, a very recent extension of the
Fourier theory that more naturally incorporates the roles of various scales and localization
into the analysis. The modern theory of wavelets is playing an increasingly dominant
role in many modern applications. For instance, the new JPEG digital image compression
format is based on wavelets, as are the current FBI fingerprint files used in law enforcement
in the United States.

Analysis of non-periodic functions defined on the entire real line requires replacing the
Fourier series by a limiting Fourier integral, leading to the justly famous Fourier transform.
Fourier transforms play an essential role in ordinary and partial differential equations,
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quantum mechanics, data analysis, and many other areas. In Section 13.3, we introduce
the most important features of the Fourier transform in a form suitable for applications,
leaving more subtle analytical details to a more advanced treatment of the subject. The
real version of the Fourier transform is known as the Laplace transform. Both the Fourier
and Laplace transforms change differentiation into multiplication, thereby converting linear
differential equations into algebraic equations. The Fourier transform is used for solving
boundary value problems on the real line, while initial value problems are most effectively
handled by the Laplace transform. Again, our emphasis is on practical features of the
method.

13.1. Discrete Fourier Analysis and the Fast Fourier Transform.

In practical computations, one does not deal with continuous functions, but rather
with discrete numerical data. For example, even when measuring a continuous signal, one
can only perform a finite, discrete set of measurements — leading to a sample of the full
signal data. In digital media (CD’s, DVD’s, etc.), or experimental data that is stored on
a computer, this is all we have — a signal sampled at discrete time intervals. (And then
“quantized” because we cannot store its sample values to infinite precision on a digital
computer — but that is part of yet another story.) Therefore, although the Fourier series
are of unquestionable theoretical importance, the complications involved in the passage to
an infinite-dimensional function space could, from the computer’s point of view, be entirely
avoided by restricting from the outset to finite-dimensional vector spaces of sampled data.
Nevertheless, the insight gained from the classical continuous version of Fourier series in
crucial to the proper formulation and analysis of its discrete counterpart.

In general, then, instead of a function f(x) defined on an interval a ≤ x ≤ b, the
computer can only store its measured values at a finite number of sample points a ≤ x0 <

x1 < · · · < xn ≤ b. In the simplest and, by far, the most common case, the sample points
are equally spaced, and so

xj = a+ j h, j = 0, . . . , n, where h =
b− a

n

indicates the sample rate. In signal processing applications, x represents time instead of
space, and the xj represent the times that we sample the signal f(x). Sample rates can
be very high, e.g., every 10–20 milliseconds in current speech recognition systems.

Fourier series apply to periodic functions; discrete Fourier sums apply to sampled
periodic signals. (Of course, real life signals are rarely periodic, so, for analytical purposes,
the methods rely on an artificial periodic extension of the original signal.) For simplicity,
we adopt the standard period of 2π, although one can readily change the results to other
intervals by rescaling, as in Section 12.4. Here, though, it will be more convenient to take
the basic interval of definition to be [0, 2π ] instead of [−π, π ]. Consider the n equally
spaced sample points

x0 = 0, x1 =
2π

n
, x2 =

4π

n
, . . . xj =

2j π

n
, . . . xn−1 =

2(n− 1)π

n
. (13.1)
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Figure 13.1. Sampling e− i x and e7 i x on n = 8 sample points.

Periodicity requires that f(0) = f(2π), and so the final sample point xn = 2π is superfluous
and will be omitted. Sampling a (complex-valued) signal or function f(x) at the sample
points produces the sample vector

f =
(
f0, f1, . . . , fn−1

)T
=
(
f(x0), f(x1), . . . , f(xn−1)

)T
,

where

fj = f(xj) = f

(
2j π

n

)
. (13.2)

Sampling cannot distinguish between functions that have the same values at all of the
sample points — from the sampler’s point of view they are identical. For example, the
periodic function

f(x) = e inx = cosnx+ i sinnx

has sampled values

fj = f

(
2j π

n

)
= exp

(
in
2j π

n

)
= e2j π i = 1 for all j = 0, . . . , n− 1,

and hence is indistinguishable from the constant function c(x) ≡ 1 — both lead to the

same sample vector ( 1, 1, . . . , 1 )
T
. This has the important implication that sampling at n

equally spaced sample points cannot detect periodic signals of frequency n. More generally,
the two complex exponential signals

e i (k+n)x
∼ e i kx (13.3)

are also indistinguishable when sampled. This has the important consequence that we
need only use the first n periodic complex exponential functions

f0(x) = 1, f1(x) = e i x, f2(x) = e2 i x, . . . fn−1(x) = e(n−1) i x, (13.4)

in order to represent an arbitrary 2π periodic sampled signal. In particular, exponentials
e− i kx of “negative” frequency can all be converted into positive versions, namely e i (n−k)x,
by the same sampling argument (13.3). For example,

e− i x = cosx− i sinx and e(n−1) i x = cos(n− 1)x+ i sin(n− 1)x
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have identical values on the sample points (13.1). However, off of the sample points,
they are quite different; the former is of low frequency, while the latter represents a high
frequency oscillation. In Figure 13.1, we compare e− i x and e7 i x when there are n = 8
sample points, indicated by the large dots on the graphs. The top row compares the real
parts, cosx and cos 7x, while the bottom row compares the imaginary parts, sinx and
− sin 7x. Note that both functions have the same pattern of sample values, even though
their overall behavior is strikingly different; this effect is commonly referred to as aliasing †.
If you view a moving particle under a stroboscopic light that flashes eight times, you would
be unable to determine which of the two graphs the particle was following. Aliasing is the
cause of a well-known artifact in movies: sometimes spoked wheels appear to be rotating
backwards because, owing to the discretizing imposed by the frames of the film, our brain
psychologically views a point on the wheel to be following a low freuency backwards motion
whereas in reality it is making a high frequency forward motion that has exactly the same
sample poistions on each frame of the movie.

Remark : Aliasing also has important implications for the design of music CD’s. We
must sample at a sufficiently high rate that all audible frequencies can be adequately
represented. In fact, human appreciation of music also relies on inaudible high frequency
tones, and so a much higher sample rate is actually used in commercial CD design. The
chosen sample rate remains controversial; hi fi aficionados complain that it was not set
high enough to fully reproduce the musical quality of an analog LP record!

The complex Fourier series (12.46) decomposes a function f(x) into a sum of complex
exponentials. In the discrete version, we do the same thing with our sampled function.
Since we cannot distinguish sampled exponentials of frequency higher than n, we only need
consider a finite sum

f(x) ∼ p(x) = c0 + c1 e i x + c2 e2 i x + · · · + cn−1 e(n−1) i x =
n−1∑

k=0

ck e i kx (13.5)

using the first n exponentials (13.4). Equation (13.5), which has the effect of decomposing
the signal f(x) into a linear combination of purely periodic signals, is known as the discrete
Fourier sum (or sometimes, even though it has only finitely many terms, series) of the
function f(x). Thus, the ∼ in (13.5) will mean that the function f(x) and the sum p(x)
agree on the sample points,

f(xj) = p(xj), j = 0, . . . , n− 1, (13.6)

and hence p(x) is an interpolating trigonometric polynomial of degree ≤ n − 1 for the
sample data fj = f(xj).

Remark : If f(x) is real, then p(x) is also real on the data points, but may very well
be complex-valued on intermediate points. Thus, in practice, the real part of p(x) is used
as the interpolating trigonometric polynomial.

† In computer graphics, the term “aliasing” is used in a much broader sense that covers a
variety of artifacts introduced by discretization — particularly, the jagged appearance of lines
and smooth curves on a digital monitor.
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Since we are working in the finite-dimensional vector space Cn throughout, we may
reformulate the discrete Fourier series in vectorial form. Sampling the basic exponentials
(13.4) produces the complex vectors

ωk =
(
e i kx0 , e i kx1 , e i kx2 , . . . , e i kxn

)T

=
(
1, e2kπ i /n, e4kπ i /n, . . . , e2(n−1)kπ i /n

)T
,

k = 0, . . . , n− 1. (13.7)

Thus, the interpolation conditions (13.6) can be recast in the equivalent vector form

f = c0 ω0 + c1 ω1 + · · · + cn−1 ωn−1. (13.8)

In other words, to compute the discrete Fourier coefficients c0, . . . , cn−1 of f , all we need
to do is rewrite its sample vector f as a linear combination of the sampled exponential
vectors ω0, . . . , ωn−1.

Now, as with continuous Fourier series, the crucial property is the orthogonality of the
basis elements. Were it not for orthogonality and its simplifying consequences, the pro-
ceeding ideas would have remained mere mathematical curiosities, rather than an essential
tool for applications.

Proposition 13.1. The sampled exponential vectors ω0, . . . , ωn−1 form an orthonor-

mal basis of Cn with respect to the inner product

〈 f ;g 〉 =
1

n

n−1∑

j=0

fj gj =
1

n

n−1∑

j=0

f(xj) g(xj) , f ,g ∈ Cn. (13.9)

The inner product (13.9) is a rescaled version of the standard Hermitian dot product
(3.82) between complex vectors. We can interpret the inner product between the sample
vectors f ,g as the average of the sampled values of the product signal f(x) g(x).

Remark : As usual, orthogonality is no accident. Just as the complex exponentials
are eigenfunctions for a self-adjoint boundary value problem, so their discrete sampled
counterparts are eigenvectors for a self-adjoint matrix eigenvalue problem; see Exercise
for details. Here, to keep the discussion on track, we shall outline a direct proof.

Proof : The crux of the matter relies on properties of the remarkable complex numbers

ζn = e2π i /n = cos
2π

n
+ i sin

2π

n
, (13.10)

where n = 1, 2, 3, . . . . Particular cases include

ζ2 = −1, ζ3 = −

√
3

2
+
1

2
i , ζ4 = i , and ζ8 =

√
2

2
+

√
2

2
i . (13.11)

The nth power of ζ = ζn is

ζn =
(
e2π i /n

)
n = e2π i = 1,
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Figure 13.2. The Fifth Roots of Unity.

and hence it is one of the complex nth roots of unity: ζ = ζn =
n

√
1. There are, in fact, n

different complex nth roots of 1, including 1 itself; these roots are the different powers of
ζ, namely

ζk = e2 k π i /n = cos
2 k π

n
+ i sin

2 k π

n
, k = 0, . . . , n− 1. (13.12)

For this reason, ζn is known as the primitive nth root of unity . Geometrically, the nth

roots of 1 form the vertices of a regular unit n–gon in the complex plane; see Figure 13.2.
The primitive root ζ is the first vertex we encounter as we go counterclockwise around the
n–gon starting at 1. The other roots appear in their natural order ζ2, ζ3, . . . , ζn−1, and
finishing back at ζn = 1. The complex conjugate of ζ is the “last” nth root

e−2π i /n = ζ =
1

ζ
= ζn−1 = e2(n−1)π i /n (13.13)

The complex numbers (13.12) are a complete set of roots of the polynomial zn − 1,
which can therefore be factored:

zn − 1 = (z − 1)(z − ζ)(z − ζ2) · · · (z − ζn−1).

On the other hand, elementary algebra provides us with the real factorization

zn − 1 = (z − 1)(1 + z + z2 + · · · + zn−1).

Comparing the two factorizations, we conclude that

1 + z + z2 + · · · + zn−1 = (z − ζ)(z − ζ2) · · · (z − ζn−1).

Substituting z = ζk into both sides of this identity, we deduce a useful formula

1 + ζk + ζ2k + · · · + ζ(n−1)k =

{
n, k = 0,

0, 0 < k < n.
(13.14)

Since ζn+k = ζk, the preceding formula can be applied to general integers k — the sum is
equal to n if n evenly divides k and is 0 otherwise.

1/12/04 514 c© 2003 Peter J. Olver



Now, let us apply what we’ve learned to prove Proposition 13.1. First, in view of
(13.12), the sampled exponential vectors (13.7) can all be written in terms of the nth roots
of unity:

ωk =
(
1, ζk, ζ2k, ζ3k, . . . , ζ(n−1)k

)T
, k = 0, . . . , n− 1. (13.15)

Therefore, applying (13.13), (13.14), we conclude

〈ωk ;ωl 〉 =
1

n

n−1∑

j=0

ζjk ζjl =
1

n

n−1∑

j=0

ζj(k−l) =

{
1, k = l,

0, k 6= l,
0 ≤ k, l < n,

which proves orthonormality. Q.E.D.

Since the sampled exponential vectors are orthonormal, we can immediately compute
the Fourier coefficients in the discrete Fourier sum (13.5) by taking inner products:

ck = 〈 f ;ωk 〉 =
1

n

n−1∑

j=0

fj e i kxj =
1

n

n−1∑

j=0

fj e− i kxj =
1

n

n−1∑

j=0

ζ−jk fj . (13.16)

In other words, the discrete Fourier coefficient ck is obtained by averaging the sampled
values of the product function f(x) e− i kx. The passage from the signal to its Fourier
coefficients and back is known as the discrete Fourier transform. The inverse procedure of
reconstructing a signal from its discrete Fourier coefficients via the sum (13.5) (or (13.8))
is known as the inverse discrete Fourier transform. The discrete Fourier transform and
its inverse define mutually inverse linear transformations on the space Cn, whose matrix
representations can be found in Exercise .

Example 13.2. If n = 4, then ζ = ζ4 = i . In this case, the sampled exponential
vectors (13.15) are

ω0 =




1
1
1
1


, ω1 =




1
i
−1
− i


, ω2 =




1
−1
1
−1


, ω3 =




1
− i
−1
i


.

They form an orthonormal basis of C4 with respect to the averaged inner product

〈v ;w 〉 =
v0 w0 + v1 w1 + v2 w2 + v3 w3

4
, where v =




v0

v1

v2

v3


, w =




w0

w1

w2

w3


.

Given the sampled function values

f0 = f(0), f1 = f
(

1
2π
)
, f2 = f(π), f3 = f

(
3
2π
)
,

we construct the discrete Fourier representation

f = c0 ω0 + c1 ω1 + c2 ω2 + c3 ω3, (13.17)
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Figure 13.3. The Discrete Fourier Transform of x2
− 2πx.

where

c0 = 〈 f ;ω0 〉 =
1
4 (f0 + f1 + f2 + f3), c1 = 〈 f ;ω1 〉 =

1
4 (f0 − i f1 − f2 + i f3),

c2 = 〈 f ;ω2 〉 =
1
4 (f0 − f1 + f2 − f3), c3 = 〈 f ;ω3 〉 =

1
4 (f0 + i f1 − f2 − i f3).

We interpret this decomposition as the sampled version of the interpolation

f(x) ∼ p(x) = c0 + c1 e i x + c2 e2 i x + c3 e3 i x

of the function f(x) by a trigonometric polynomial, which means that the two functions
agree on the sample points.

For instance if
f(x) = 2πx− x2,

then
f0 = 0., f1 = 7.4022, f2 = 9.8696, f3 = 7.4022,

and hence

c0 = 6.1685, c1 = −2.4674, c2 = −1.2337, c3 = −2.4674.

Therefore, the interpolating trigonometric polynomial is given by the real part of

p(x) = 6.1685− 2.4674 e i x
− 1.2337 e2 i x

− 2.4674 e3 i x, (13.18)

namely,
Re p(x) = 6.1685− 2.4674 cosx− 1.2337 cos 2x− 2.4674 cos 3x.

In Figure 13.3 we compare the function, with the interpolation points indicated, and
discrete Fourier representations for both n = 4 and n = 16 points. The resulting graphs
point out a significant difficulty with the discrete Fourier transform as developed so far.
While the trigonometric polynomials do indeed correctly interpolate the sampled function
values, their highly oscillatory behavior makes them completely unsuitable for interpolating
away from the sample points.
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Figure 13.4. The Discrete Fourier Transform of x2
− 2πx.

However, this difficulty can be fixed by being a little more clever. The problem is
that we have not been paying sufficient attention to the frequencies represented in our
Fourier sum (13.5). Indeed, the graphs in Figure 13.3 might remind the reader of our
earlier observation, Figure 13.1, that low and high frequency exponentials can have the
same sample data, but differ wildly in between the sample points. While the first half
of the summands in (13.5) represent relatively low frequencies, the second half do not,
and can be replaced by equivalent lower frequency, and hence less oscillatory exponentials.
Namely, if 0 < k ≤ 1

2 n, then e− i kx and e i (n−k)x have the same sample values, but the
former is of lower frequency than the latter. Thus, for interpolatory purposes, we should
replace the second half of the summands in the Fourier sum (13.5) by their low frequency
counterparts. If n = 2m+ 1 is an odd number, then we use

p̂(x) = c−m e− imx+ · · · +c−1 e− i x+c0+c1 e i x+ · · · +cm e imx =
m∑

k=−m

ck e i kx (13.19)

as the low frequency interpolating polynomial. If n = 2m is even — which is the most
common case occurring in applications — then

p̂(x) = c−m e− imx+ · · · +c−1 e− i x+c0+c1 e i x+ · · · +cm−1 e i (m−1)x =
m−1∑

k=−m

ck e i kx

(13.20)
will be our choice. (It is a matter of personal taste whether to use e− imx or e imx for the
terms of frequency m.) In both cases, the coefficients of the negative exponentials are the
same as their high frequency counterparts:

c−k = cn−k = 〈 f ;ωn−k 〉 = 〈 f ;ω−k 〉.

Returning to the previous example, for interpolating purposes, we should replace
(13.18) by the low frequency alternative

p̂(x) = −1.2337 e−2 i x
− 2.4674 e− i x + 6.1685− 2.4674 e i x, (13.21)
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Figure 13.5. The Discrete Fourier Transform of x.

with real part

Re p̂(x) = 6.1685− 4.9348 cosx− 1.2337 cos 2x.

A comparison of the n = 4 and 16 low frequency trigonometric interpolants appears in
Figure 13.4. Thus, by utilizing only the lowest frequency exponentials, we successfully
construct a reasonable trigonometric interpolant to the given function.

Remark : It can be shown, [27], that if the function f(x) is continuous, 2π–periodic,
and piecewise C1, then the low frequency trigonometric interpolating polynomials, (13.19),
(13.20), converge uniformly to f(x) as the number of sample points n → ∞. On the
other hand, if the periodic extension of f(x) is discontinuous, then one observes a discrete
version of the Gibbs phenomenon at the points of discontinuity. An illustration appears
in Figure 13.5, which shows the trigonometric interpolants to f(x) = x based on 4, 8 and
16 sample points.

Compression and Noise Removal

In a typical experimental signal, noise has a tendency to primarily affect the high
frequency modes, while the significant features tend to accumulate at low frequencies.
Think of the hiss and static you hear on the radio or a low quality audio tape. Thus, a
very simple, but effective, method for cleaning a noisy signal is to decompose it into its
Fourier modes, as in (13.5), and then discard the high frequency constituents. The main
issue is the specification of the cut-off between low and high frequency, that is, between
signal and noise. This choice will depend upon the properties of the measured signal, and
is left to the discretion of the signal processor.

To correctly implement such a denoising procedure, it is better to use the less oscil-
latory forms (13.19), (13.20) of the trigonometric interpolant, in which the low frequency
summands appear when | k | is small. Therefore, to eliminate high frequency components,
we replace the full summation by

q(x) =

l∑

k=− l

ck e i kx (13.22)

where the number l < 1
2 (n+1) specifies the cut-off point between low and high frequencies.

In other words, rather than keep all the n constituents, the 2 l+1¿ n low frequency Fourier
modes will often suffice to encapsulate a denoised version of the original signal.
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Figure 13.6. Denoising a Signal.

Remark : For the original form (13.5) of the discrete Fourier transform, the denoising
algorithm will retain the 2 l + 1 summands with 0 ≤ k ≤ l and n − l ≤ k ≤ n − 1. The
latter correspond to low frequency modes with negative exponentials e i kx

∼ e i (k−n)x.

In Figure 13.6 we display an original signal followed by the same signal corrupted
by adding in random noise. We use n = 28 = 512 sample points in the computation.
To remove the noise, we retain only the 2 l + 1 = 11 lowest frequencies. In other words,
instead of all n = 512 Fourier coefficients c−256, . . . , c−1, c0, c1, . . . , c255, we only compute

the 11 lowest order ones c−5, . . . , c5. Summing up just those 11 exponentials,
5∑

k=−5

ck e i kx,

produces the cleaned signal. The final graph combines the original signal and the denoised
version on the same graph. In this case, the maximal deviation between the original and
the cleaned version is less than .15 over the entire interval [0, 2π ].

The same idea works in data compression. Efficient storage and transmission of audio
recordings, digital images and, particularly, video often requires a compression algorithm
that does not significantly alter the signal. According to Theorem 12.29, the Fourier
coefficients of smooth functions tend rapidly to zero — the smoother the function, the faster
the decay rate. A similar result holds in the discrete case. Thus, we expect all the important
features of the signal to be contained in the low frequency constituents, and so discarding
all of the small, high frequency terms will, in favorable situations, not lead to any noticeable
degradation of the signal or image. Thus, to compress a signal (and, simultaneously, remove
high frequency noise), we retain only its low frequency discrete Fourier coefficients (13.16).
The signal is reconstructed by summing the associated truncated discrete Fourier series.

In Figure 13.7 ,the same signal is compressed by retaining, respectively, 2 l + 1 = 21
and 2 l + 1 = 7 Fourier coefficients only instead of all n = 512 that would be required for
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Figure 13.7. Compressing a Signal.

complete accuracy. For the case of moderate compression, the maximal deviation between
the original and the compressed version is less than 1.5 × 10−4 over the entire interval,
while the highly compressed version is still everywhere within .05 of the original signal. Of
course, the lack of any fine scale features in this particular signal means that a very high
compression can be achieved — the more complicated or detailed the original signal is, the
more Fourier modes need to be retained for accurate reproduction.

The Fast Fourier Transform

While we may appreciate a theoretical algorithm for its intrinsic elegance, in the real
world, the bottom line is always efficiency of implementation: the less total computation,
the faster the processing, and hence the more extensive the range of applications. Orthog-
onality is the first and most important feature of any linear algebra algorithm; were it not
for the dramatic simplification afforded by the orthogonal basis formulae, Fourier analysis
would not have evolved into today’s essential tool. Still even these formulae have their
limits when it comes to dealing with truly large scale problems such as three-dimensional
medical imaging or video processing. In the early 1960’s, James Cooley and John Tukey,
[36], discovered† a much more efficient approach to the discrete Fourier transform, exploit-
ing the rather special structure of the sampled exponential vectors. The resulting algorithm
is known as the Fast Fourier Transform, often abbreviated FFT, and its discovery launched
the modern revolution in digital signal and data processing.

In general, computing all the discrete Fourier coefficients (13.16) of an n times sampled
signal requires a total of n2 complex multiplications and n2

− n complex additions. Note
also that each complex addition

z + w = (x+ i y) + (u+ i v) = (x+ u) + i (y + v)

requires two real additions, while each complex multiplication

zw = (x+ i y)(u+ i v) = (xu− y v) + i (xv + yu)

requires 4 real multiplications and 2 real additions, or, by using the alternative formula

xv + yu = (x+ y)(u+ v)− xu− y v

† In fact, the key ideas can be found in Gauss’ computations, but his insight was not appreciated
until modern computers arrived on the scene.
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for the imaginary part, 3 real multiplications and 5 real additions. Similarly, given the
Fourier coefficients c0, . . . , cn−1, reconstruction of the sampled signal via (13.5) requires
n2
−n complex multiplications and n2

−n complex additions. Both computations become
quite labor intensive for large n. Extending these ideas to multi-dimensional data only
exacerbates the problem.

The key observation is that if the number of sample points n = 2m is even, then the
square of the primitive nth root of unity ζn =

n

√
1 = 2m

√
1 is equal to the primitive mth

root ζm =
m

√
1, so

ζm = ζ2
n.

We use this fact to split the summation (13.16) for the order n discrete Fourier coefficients
into two parts, involving the even and the odd powers of ζkn:

ck =
1

n

[
f0 + f1 ζ−kn + f2 ζ−2k

n + · · · + fn−1 ζ−(n−1)k
n

]

=
1

n

[
f0 + f2 ζ−2k

n + f4 ζ−4k
n + · · · + f2m−2 ζ−(2m−2)k

n

]
+

+ ζ−kn

1

n

[
f1 + f3 ζ−2k

n + f5 ζ−4k
n + · · · + f2m−1 ζ−(2m−2)k

n

]

=
1

2m

[
f0 + f2 ζ−km + f4 ζ−2k

m + · · · + f2m−2 ζ−(m−1)k
m

]
+

+ ζ−kn

1

2m

[
f1 + f3 ζ−km + f5 ζ−2k

m + · · · + f2m−1 ζ−(m−1)k
m

]
.

(13.23)

The two expressions in brackets are the order m Fourier coefficients corresponding to the
sampled functions

fe =
(
f0, f2, f4, . . . , f2m−2

)T
=
(
f(x0), f(x2), f(x4), . . . , f(x2m−2)

)T
,

fo =
(
f1, f3, f5, . . . , f2m−1

)T
=
(
f(x1), f(x3), f(x5), . . . , f(x2m−1)

)T
.

(13.24)

Note that fe is obtained by sampling f(x) on the even sample points x2j while f
o is

obtained by sampling the same function f(x), but now at the odd sample points x2j+1. In
other words, we are splitting the original sampled signal into two “half-sampled” signals
obtained by sampling on every other sample point. The even and odd Fourier coefficients
are given as

cek ≡
1

m

[
f0 + f2 ζ−km + f4 ζ−2k

m + · · · + f2m−2 ζ−(m−1)k
m

]
,

cok =
1

m

[
f1 + f3 ζ−km + f5 ζ−2k

m + · · · + f2m−1 ζ−(m−1)k
m

]
,

k = 0, . . . ,m− 1.

(13.25)
Both the even and odd signals only have m distinct Fourier coefficients, and we use the
identification

cek = cek−m, cok = cok−m,

in formulating (13.23) when k ≥ m. Therefore, the order n = 2m discrete Fourier co-
efficients (13.23) can be constructed from a pair of order m discrete Fourier coefficients
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via
ck =

1
2

(
cek + ζ−kn cok

)
, k = 0, . . . ,m− 1. (13.26)

Now if m = 2 l is also even, then one can play the same game on the order m Fourier
coefficients (13.25), reconstructing each of them from a pair of order l discrete Fourier
coefficients — which are obtained by sampling the signal on every fourth sample point.
If n = 2r is a power of 2, then this game can be played all the way back to the start,
beginning with the trivial order 1 discrete Fourier series which just samples the function
at a single point. The result is the desired algorithm. After some rearrangement of the
basic steps, we arrive the Fast Fourier Transform, which we now present in its final form.

We begin with a sampled signal on n = 2r sample points. To efficiently program the
algorithm, it helps to write out each index 0 ≤ j < 2r in binary (as opposed to decimal)
representation

j = jr−1 jr−2 . . . j2 j1 j0, where jν = 0 or 1, (13.27)

where the notation is shorthand for its r digit binary expansion

j = j0 + 2j1 + 2
2 j2 + · · · 2r−1 jr−1.

We define the bit reversal map

ρ(jr−1 jr−2 . . . j2 j1 j0) = j0 j1 . . . jr−2 jr−1. (13.28)

For instance, if r = 5, and j = 13, with 5 digit binary expansion 01101, then ρ(j) = 22 has
the reversed binary expansion 10110. Note particularly that the bit reversal map depends
upon the original choice of r = log2 n.

Secondly, for each 0 ≤ k ≤ r − 1, define the maps

αk(j) = jr−1 . . . jk+1 0 jk−1 . . . j0,

βk(j) = jr−1 . . . jk+1 1 jk−1 . . . j0 = αk(j) + 2
k,

for j = jr−1 jr−2 . . . j1 j0.

(13.29)
In other words, αk(j) makes the kth binary digit of j equal to 0, while βk(j) makes
it 1. In the preceding example, α2(13) = 9, with binary representation 01001, while
β2(13) = 13 with binary form 01101. The bit operations (13.28), (13.29) are especially
easy to implement on modern binary computers.

Given a sampled signal f0, . . . , fn−1, its discrete Fourier coefficients c0, . . . , cn−1 are
computed using the following iterative algorithm:

c
(0)
j = fρ(j), c

(k+1)
j = 1

2

(
c
(k)
αk(j) + ζ

−j

2k+1 c
(k)
βk(j)

)
,

j = 0, . . . , n− 1,

k = 0, . . . , r − 1.
(13.30)

Here ζ2k+1 is the primitive 2k+1 root of unity. The final output of the iterative procedure,
namely

cj = c
(r)
j , j = 0, . . . , n− 1, (13.31)

are the discrete Fourier coefficients of our signal. The preprocessing step of the algorithm,

where we define c
(0)
j , produces a more convenient rearrangement of the sample values. The
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subsequent steps successively combine the Fourier coefficients of appropriate even and odd
sampled subsignals together, as in (13.23). The following example should help make the
overall process clearer.

Example 13.3. Consider the case r = 3, and so our signal has n = 23 = 8 sampled
values f0, f1, . . . , f7. We begin the process by rearranging the sample values

c
(0)
0 = f0, c

(0)
1 = f4, c

(0)
2 = f2, c

(0)
3 = f6, c

(0)
4 = f1, c

(0)
5 = f5, c

(0)
6 = f3, c

(0)
7 = f7,

in the order specified by the bit reversal map ρ. For instance ρ(3) = 6, or, in binary
notation, ρ(011) = 110.

The first stage of the iteration is based on ζ2 = −1. Equation (13.30) gives

c
(1)
0 = 1

2 (c
(0)
0 + c

(0)
1 ), c

(1)
1 = 1

2 (c
(0)
0 − c

(0)
1 ), c

(1)
2 = 1

2 (c
(0)
2 + c

(0)
3 ), c

(1)
3 = 1

2 (c
(0)
2 − c

(0)
3 ),

c
(1)
4 = 1

2 (c
(0)
4 + c

(0)
5 ), c

(1)
5 = 1

2 (c
(0)
4 − c

(0)
5 ), c

(1)
6 = 1

2 (c
(0)
6 + c

(0)
7 ), c

(1)
7 = 1

2 (c
(0)
6 − c

(0)
7 ),

where we combine successive pairs of the rearranged sample values. The second stage of
the iteration is based on k = 1 with ζ4 = i . We find

c
(2)
0 = 1

2 (c
(1)
0 + c

(1)
2 ), c

(2)
1 = 1

2 (c
(1)
1 − i c

(1)
3 ), c

(2)
2 = 1

2 (c
(1)
0 − c

(1)
2 ), c

(2)
3 = 1

2 (c
(1)
1 + i c

(1)
3 ),

c
(2)
4 = 1

2 (c
(1)
4 + c

(1)
6 ), c

(2)
5 = 1

2 (c
(1)
5 − i c

(1)
7 ), c

(2)
6 = 1

2 (c
(1)
4 − c

(1)
6 ), c

(2)
7 = 1

2 (c
(1)
5 + i c

(1)
7 ).

Note that the indices of the combined pairs of coefficient differ by 2. In the last step, based

on ζ8 =
√

2
2 (1 + i ), we combine coefficients whose indices differ by 4; the final output

c0 =
1
2 (c

(3)
0 + c

(3)
4 ), c4 =

1
2 (c

(3)
0 − c

(3)
4 ),

c1 =
1
2

(
c
(3)
1 +

√
2

2 (1− i ) c
(3)
5

)
, c5 =

1
2

(
c
(3)
1 −

√
2

2 (1− i ) c
(3)
5

)
,

c2 =
1
2

(
c
(3)
2 − i c

(3)
6

)
, c6 =

1
2

(
c
(3)
2 + i c

(3)
6

)
,

c3 =
1
2

(
c
(3)
3 −

√
2

2 (1 + i ) c
(3)
7

)
, c7 =

1
2

(
c
(3)
3 +

√
2

2 (1 + i ) c
(3)
7

)
,

is the complete set of discrete Fourier coefficients.

Let us count the number of arithmetic operations required in the Fast Fourier Trans-
form algorithm. At each stage in the computation, we must perform n = 2r complex
additions/subtractions and the same number of complex multiplications. (Actually, the
number of multiplications is slightly smaller since multiplication by ±1 and ± i are ex-
tremely simple. However, this does not significantly alter the final operation count.) There
are r = log2 n different stages, and so we require a total of r n = n log2 n complex addi-
tions/subtractions and the same number of multiplications. Now, when n is large, n log2 n

is significantly smaller than n2, which is the number of operations required for the direct
algorithm. For instance, if n = 210 = 1, 024, then n log2 n = 10, 240, while n2 = 1, 048, 576.
As a result, large scale computations that would be intractable using the direct approach
are brought into the realm of feasibility. This is the reason why all modern implementations
of the discrete Fourier transform are based on the FFT.

The reconstruction of the signal from the discrete Fourier coefficients c0, . . . , cn−1, as
in (13.5), is speeded up in exactly the same manner. The only differences are that we
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replace ζ−1
n = ζn by ζn, and drop the factors of

1
2 since there is no need to divide by n in

the final result (13.5). Therefore, we apply the iterative procedure

f
(0)
j = cρ(j), f

(k+1)
j = f

(k)
αk(j) + ζ

j

2k+1 f
(k)
βk(j),

j = 0, . . . , n− 1,

k = 0, . . . , r − 1,
(13.32)

and finishing with

f(xj) = fj = f
(r)
j , j = 0, . . . , n− 1. (13.33)

Example 13.4. The reconstruction formulae in the case of n = 8 = 23 Fourier coef-
ficients c0, . . . , c7, which were computed in Example 13.3, can be implemented as follows.
First, we rearrange the Fourier coefficients in bit reversed order:

f
(0)
0 = c0, f

(0)
1 = c4, f

(0)
2 = c2, f

(0)
3 = c6, f

(0)
4 = c1, f

(0)
5 = c5, f

(0)
6 = c3, f

(0)
7 = c7,

Then we begin combining them in successive pairs:

f
(1)
0 = f

(0)
0 + f

(0)
1 , f

(1)
1 = f

(0)
0 − f

(0)
1 , f

(1)
2 = f

(0)
2 + f

(0)
3 , f

(1)
3 = f

(0)
2 − f

(0)
3 ,

f
(1)
4 = f

(0)
4 + f

(0)
5 , f

(1)
5 = f

(0)
4 − f

(0)
5 , f

(1)
6 = f

(0)
6 + f

(0)
7 , f

(1)
7 = f

(0)
6 − f

(0)
7 ,

Next,

f
(2)
0 = f

(1)
0 + f

(1)
2 , f

(2)
1 = f

(1)
1 + i f

(1)
3 , f

(2)
2 = f

(1)
0 − f

(1)
2 , f

(2)
3 = f

(1)
1 − i f

(1)
3 ,

f
(2)
4 = f

(1)
4 + f

(1)
6 , f

(2)
5 = f

(1)
5 + i f

(1)
7 , f

(2)
6 = f

(1)
4 − f

(1)
6 , f

(2)
7 = f

(1)
5 − i f

(1)
7 .

Finally, the sampled signal values are

f(x0) = f0 = f
(3)
0 + f

(3)
4 , f(x4) = f4 = f

(3)
0 − f

(3)
4 ,

f(x1) = f1 = f
(3)
1 +

√
2

2 (1 + i ) f
(3)
5 , f(x5) = f5 = f

(3)
1 −

√
2

2 (1 + i ) f
(3)
5 ,

f(x2) = f2 = f
(3)
2 + i f

(3)
6 , f(x6) = f6 = f

(3)
2 − i f

(3)
6 ,

f(x3) = f3 = f
(3)
3 −

√
2

2 (1− i ) f
(3)
7 , f(x7) = f7 = f

(3)
3 +

√
2

2 (1− i ) f
(3)
7 .

13.2. Wavelets.

Trigonometric Fourier series, both continuous and discrete, are amazingly powerful,
but they do suffer from one significant defect. The basis functions e i kx = cos kx+ i sin kx

are spread out over all of the interval [−π, π ] and so are not well-adapted to localized
signals — meaning data that are concentrated in a relatively small region. Indeed, the
most concentrated data of all — a single delta function — has every Fourier component of
equal magnitude in its Fourier series (12.52) and the fact that the delta function is highly
localized is completely lost in its series formulation.

Ideally, one would like to construct a system of functions that is orthogonal, and so
has all the advantages of the Fourier trigonometric functions, but, in addition, preserves
the localized structure of signals. This dream was the inspiration for the development of
the modern theory of wavelets. Just as the trigonometric functions can be discretized,
each system of wavelet functions has a discrete counterpart obtained by sampling. The
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Figure 13.8. The First Four Haar Wavelets.

resulting discrete wavelet transform can be rapidly computed, which makes them ideally
suited to processing complicated signals and multi-dimensional image data.

The Haar Wavelets

Let us begin with the simplest example of a wavelet basis, discovered by the Hungarian
mathematician Alfréd Haar in 1910, [70]. We consider the space of functions (signals)
defined the interval [0, 1], equipped with the standard L2 inner product

〈 f ; g 〉 =

∫ 1

0

f(x) g(x) dx. (13.34)

This choice is merely for convenience, being slightly better suited to our construction than
[−π, π ] or [0, 2π ]. Moreover, the usual scaling arguments can be used to adapt the wavelet
formulas to any other interval. The first four Haar wavelets are graphed in Figure 13.8.
The first, which is the constant function

ϕ1(x) = ϕ(x) ≡ 1, 0 ≤ x ≤ 1,

is known as the scaling function, for reasons which shall appear shortly. The second Haar
function

ϕ2(x) = w(x) =

{
1, 0 < x < 1

2 ,

−1, 1
2 < x < 1,
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is known as the mother wavelet . The value of w(x) at the points of discontinuity is not
very important, but for specificity we can set it to take the value w(x) = 0 at x = 0, 1

2 and
1. The third and fourth Haar functions are compressed versions of the mother wavelet:

ϕ3(x) =





1, 0 < x < 1
4 ,

−1, 1
4 < x < 1

2 ,

0 1
2 < x < 1,

ϕ4(x) =





0 0 < x < 1
2 ,

1, 1
2 < x < 3

4 ,

−1, 3
4 < x < 1,

the “daughter wavelets”. We extend the definition of the mother wavelet to all of R by
setting it equal to zero outside the basic interval, so

w(x) =





1, 0 < x < 1
2 ,

−1, 1
2 < x < 1,

0, otherwise.

(13.35)

With this convention,

ϕ3(x) = w(2x), ϕ4(x) = w(2x− 1).

The scaling transformation x 7→2x serves to compress the wavelet function, while the
translation 2x 7→2x − 1 moves the compressed version to the right by a unit distance.
Furthermore, we can represent the mother wavelet itself by compressing and translating
the scaling function, which we extend off the basic interval by setting

ϕ(x) =

{
1, 0 < x < 1,

0, otherwise.
(13.36)

The function ϕ(x) = σ(x) − σ(x − 1) is merely a difference of two step functions, known
as a box function due to the shape of its graph. The mother wavelet

w(x) = ϕ(2x)− ϕ(2x− 1) = σ(x)− 2σ
(
x− 1

2

)
+ σ(x− 1) (13.37)

is, in turn, a difference of two compressed versions of the box function. It is these two
operations of scaling and compression — coupled with the all-important orthogonality —
that underlies the power of wavelets. Indeed, one can easily check by direct integration
that the four Haar wavelet functions are orthogonal with respect to the L2 inner product
(13.34).

The Haar wavelets have an evident discretization. If we decompose the interval [0, 1]
into the four subintervals

(
0 , 1

4

)
,

(
1
4 , 1

2

)
,

(
1
2 , 3

4

)
,

(
3
4 , 1

)
, (13.38)

on which the four wavelet functions are constant, then we can represent each of them
by a vector in R4 whose entries are the values of each wavelet function sampled on each
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subinterval†. In this manner, we obtain the wavelet sample vectors

v1 =




1
1
1
1


, v2 =




1
1
−1
−1


, v3 =




1
−1
0
0


, v4 =




0
0
1
−1


, (13.39)

that formed the orthogonal wavelet basis of R4 introduced in Example 2.33. Orthogonality
of the vectors (13.39) with respect to the standard Euclidean dot product is equivalent to
the orthogonality of the Haar wavelet functions with respect to the inner product (13.34).
If

f(x) ∼ f = (f1, f2, f3, f4) and g(x) ∼ g = (g1, g2, g3, g4)

are piecewise constant real functions that achieve the indicated values on the four subin-
tervals (13.38), then their L2 inner product

〈 f ; g 〉 =

∫ 1

0

f(x) g(x) dx = 1
4

(
f1 g1 + f2 g2 + f3 g3 + f4 g4

)
= 1

4 f · g,

is equal to the averaged dot product of their sample values — the same inner product
(13.9) that was used in the discrete Fourier transform.

Since the vectors (13.39) form an orthogonal basis of R4, we can uniquely decompose
any such piecewise constant function as a linear combination of wavelets

f(x) = c1 ϕ1(x) + c2 ϕ2(x) + c3 ϕ3(x) + c4 ϕ4(x),

or, in terms of the sample vectors,

f = c1v1 + c2v2 + c3v3 + c4v4.

The required coefficients

ck =
〈 f ;ϕk 〉

‖ϕk ‖
2
=

f · vk
‖vk ‖

2

are computed using our usual orthogonality formula (5.8). Explicitly,

c1 =
1
4 (f1 + f2 + f3 + f4),

c2 =
1
4 (f1 + f2 − f3 − f4),

c3 =
1
2 (f1 − f2),

c4 =
1
2 (f3 − f4).

Before proceeding to the more general case, let us introduce an important analytical
definition that quantifies precisely how localized a function is.

Definition 13.5. The support of a function f(x), written supp f , is the closure of
the set where f(x)6= 0.

† Because the discontinuities of the Haar wavelets occur at the endpoints of the intervals, it is
better to sample at the midpoints, 1

8 , 3
8 , 5

8 , 7
8 .
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Thus, a point will belong to the support of f(x), provided f is not zero there, or at
least is not zero at nearby points. More precisely:

Lemma 13.6. If f(a) 6= 0, then a ∈ supp f . More generally, a point a ∈ supp f if

and only if there exist a convergent sequence xn → a such that f(xn) 6= 0. Conversely,
a 6∈supp f if and only if f(x) ≡ 0 on a small interval a− δ < x < a+ δ for some δ > 0.

Intuitively, the smaller the support of a function, the more localized it is. For example,
the support of the fundamental Haar wavelet (13.35) is suppw = [0, 1] — the points, 0, 1

2 , 1
are included, even though w = 0 there, because they are limits of points where w 6= 0.
The two daughter wavelets have smaller support

suppϕ3 =
[
0 , 1

2

]
, suppϕ4 =

[
1
2 , 1

]
,

and so are twice as locallized. An extreme case is the delta function, whose support is a
single point. In contrast, the support of the Fourier trigonometric basis functions is the
entire interval [−π, π ], since they are zero only at isolated points.

The effect of our translation and scaling processes on the support of a function is easy
to discern.

Lemma 13.7. If supp f = [a, b ], and

g(x) = f(rx− δ), then supp g =

[
a+ δ

r
,
b+ δ

r

]
.

Therefore, scaling x by a factor r compresses the support of the function by a factor
1/r, while translating x translates the support of the function.

The key requirement of a wavelet basis is that it contains functions with arbitrarily
small support. To this end, the full Haar wavelet basis is obtained from the mother wavelet
by iterating the scaling and translation processes. We begin with the scaling function

ϕ(x). (13.40)

For any nonnegative integer j ≥ 0, we first compress the mother wavelet so that its support
fits into an interval of length 2−j :

wj,0(x) = w(2j x), so that suppwj,0 = [0, 2
−j ].

We then translate wj,0 so as to fill up the entire interval [0, 1] by 2
j subintervals, each of

length 2−j , by defining

wj,k(x) = wj,0(x− k) = w(2j x− k), where k = 0, 1, . . . 2j − 1.

Lemma 13.7 implies that suppwj,k = [ 2
−j k, 2−j (k + 1) ], and so the combined supports

of all the daughter wavelets wj,k for each fixed j is the entire interval:

2j−1⋃

k=0

suppwj,k = [0, 1].
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The case j = 0 just consists of the mother wavelet

w0,0(x) = w(x).

When j = 1 we pick up the next two functions already introduced as ϕ3 and ϕ4, namely

w1,0(x) = w(2x), w1,1(x) = w(2x− 1).

For j = 2, we append four additional wavelets to our basis:

w2,0(x) = w(4x), w2,1(x) = w(4x− 1), w2,2(x) = w(4x− 2), w2,3(x) = w(4x− 3).

The 8 Haar wavelets ϕ,w0,0, w1,0, w1,1, w2,0, w2,1, w2,2, w2,3 are constant on the 8 subinter-

vals of length 1
8 , taking the successive sample values given by the columns of the matrix

W8 =




1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1




.

As the reader can verify, the columns of W8 are mutually orthogonal vectors. (Unfortu-
nately, the usual terminological constraints, cf. Definition 5.18, prevent us from calling W8

an orthogonal matrix because its columns are not orthonormal!)

At stage n there are 2n+1 different wavelet functions: w0(x) = ϕ(x) and wj,k(x) for

0 ≤ j ≤ n and 0 ≤ k < 2j . They are all constant on each subinterval of length 2−n−1.

Theorem 13.8. The wavelet functions ϕ(x), wj,k(x) are orthogonal with respect to
the inner product (13.34).

Proof : First, note that each wavelet wj,k(x) is equal to +1 on an interval of length

2−j−1 and equal to −1 on an adjacent interval of the same length. Therefore,

〈wj,k ;ϕ 〉 =

∫ 1

0

wj,k(x) dx = 0, (13.41)

since the +1 and −1 contributions cancel each other. If two different wavelets wj,k and
wl,m with, say j ≤ l, have supports which are either disjoint, or just overlap at a single
point, then their product wj,k(x)wl,m(x) ≡ 0, and so their inner product is clearly zero:

〈wj,k ;wl,m 〉 =

∫ 1

0

wj,k(x)wl,m(x) dx = 0.

Otherwise, except in the case when the two wavelets are identical, the support of wl,m is
entirely contained in an interval where wj,k is constant and so wj,k(x)wl,m(x) = ±wl,m(x).
Therefore, by (13.41),

〈wj,k ;wl,m 〉 =

∫ 1

0

wj,k(x)wl,m(x) dx = ±

∫ 1

0

wl,m(x) dx = 0.
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Finally, we compute

‖ϕ ‖2 =

∫ 1

0

dx = 1, ‖wj,k ‖
2 =

∫ 1

0

wj,k(x)
2 dx = 2−j . (13.42)

The second equality follows from the fact that |wj,k(x) | = 1 on an interval of length 2
−j

and is 0 elsewhere. Q.E.D.

In direct analogy with the Fourier series, the wavelet series of a signal f(x) is given
by

f(x) ∼ c0 ϕ(x) +
∞∑

j=0

2j−1∑

k=0

cj,k wj,k(x). (13.43)

Orthogonality implies that the wavelet coefficients c0, cj,k can be immediately computed
using the standard inner product formula coupled with (13.42):

c0 =
〈 f ;ϕ 〉

‖ϕ ‖2
=

∫ 1

0

f(x) dx,

cj,k =
〈 f ;wj,k 〉

‖wj,k ‖
2
= 2j

∫ 2−jk+2−j−1

2−jk

f(x) dx − 2j
∫ 2−j(k+1)

2−jk+2−j−1

f(x) dx.

(13.44)

The convergence properties of the wavelet series (13.43) are similar to those of Fourier
series, and will not be developed in any detail here; see [43].

Example 13.9. Haar wavelet example

Remark : There appear to be many more wavelets than trigonometric functions. But
this is just another illusion in the magic show of infinite dimensional space. The point is
that they both form a countably infinite set of functions, and so could, if necessary but
less conveniently, be numbered in order 0, 1, 2, . . . . On the other hand, accurate represen-
tation of reasonable functions does require many more Haar wavelets than trigonometric
functions. This motivates the search for a more sophisticated choice of wavelet basis.

Modern Wavelets

The main defect of the Haar wavelets is that they do not provide a very efficient means
of representing even very simple functions — it takes quite a large number of wavelets
to reproduce signals with any degree of accuracy. The reason for this is that the Haar
wavelets are piecewise constant, and so even a simple affine function y = α x+ β requires
many sample values, and hence a relatively extensive collection of Haar wavelets, to be
everywhere accurately reproduced. In particular, compression and denoising algorithms
based on Haar wavelets are either insufficiently accurate or rather inefficient, and hence a
minor practical import.

For a long time it was thought that the requirements of localization, orthogonality and
accurate reproduction of simple functions were incompatible. The breakthrough came in
1988, when, in her thesis, the Dutch mathematician Ingrid Daubechies produced the first
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Figure 13.9. The Hat Function.

examples of wavelet bases that realized all three basic criteria. In the intervening years,
wavelets has developed into a sophisticated and burgeoning industry. Significant applica-
tions include the compression of the FBI fingerprint data base, and the new JPEG2000
image format, which, unlike earlier JPEG standards which were based on Fourier methods,
will incorporate wavelet technology in its image compression and reconstruction algorithms.
In this section, we give a brief outline of the basic ideas underlying Daubechies’ remarkable
construction.

The recipe for any wavelet system involves two basic ingredients — a scaling function
and a mother wavelet. The latter can be constructed from the scaling function by a
prescription similar to that in (13.37), and therefore we first concentrate on the properties
of the scaling function. The key requirement is that a scaling function must solve a dilation
equation of the form

ϕ(x) =

p∑

k=0

ck ϕ(2x− k) = c0 ϕ(2x) + c1 ϕ(2x− 1) + · · · + cp ϕ(2x− p) (13.45)

for some collection of constants c0, . . . , cp. The dilation equation relates the function to a
finite linear combination of its compressed translates. The coefficients c0, . . . , cp are not
arbitrary, since the properties of orthogonality and localization will impose certain rather
stringent constraints.

Example 13.10. The Haar or box scaling function (13.36) satisfies the dilation
equation (13.45) with c0 = c1 = 1, namely

ϕ(x) = ϕ(2x) + ϕ(2x− 1). (13.46)

We recommend that the reader explicitly verify this identity before continuing. Another
example is provided by the “hat function”

ϕ(x) =





x, 0 ≤ x ≤ 1,

2− x, 1 ≤ x ≤ 2,

0, otherwise,

(13.47)

graphed in Figure 13.9, whose variants played a starring role in the finite element method,
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cf. (11.164). The hat function satisfies

ϕ(x) = 1
2 ϕ(2x) + ϕ(2x− 1) + 1

2 ϕ(2x− 2), (13.48)

which is (13.45) with c0 =
1
2 , c1 = 1, c2 =

1
2 . Again, the reader should be able to validate

this identity.

The dilation equation (13.45) is a type of “functional equation”, and, as such, is not so
easy to solve. Indeed, the theory of functional equations remains much less well developed
than differential equations or even integral equations. Even to prove that solutions exist is
a nontrivial analytical problem. Since we already know two explicit examples, let us defer
the discussion of solution techniques until we understand how the dilation equation can be
used to construct a wavelet basis.

Given a solution to the dilation equation, we define the mother wavelet to be

w(x) =

p∑

k=0

(−1)kcp−k ϕ(2x− k)

= cp ϕ(2x)− cp−1 ϕ(2x− 1) + cp−2 ϕ(2x− 2) + · · · ± c0 ϕ(2x− p),

(13.49)

which generalizes the Haar wavelet relation (13.37). The daughter wavelets are then all
found, as in the Haar basis, by iteratively compressing and translating the mother wavelet:

wj,k(x) = w(2j x− k). (13.50)

In the general framework, we do not necessarily restrict our attention to the interval [0, 1]
and so j ≥ 0 and k can, potentially, be arbitrary integers.

Let us investigate what sort of conditions should be imposed on the coefficients
c0, . . . , cp in the dilation equation in order that we obtain a viable wavelet basis by this
construction. First, localization of the wavelets requires that the scaling function has
bounded support, and so ϕ(x) ≡ 0 when x lies outside some bounded interval [a, b ]. If we
integrate both sides of (13.45), we find

∫ b

a

ϕ(x) dx =

∫ ∞

−∞

ϕ(x) dx =

p∑

k=0

ck

∫ ∞

−∞

ϕ(2x− k) dx. (13.51)

Now using the change of variables y = 2x− k in the latter integrals, we find

∫ ∞

−∞

ϕ(2x− k) dx =
1

2

∫ ∞

−∞

ϕ(y) dy =
1

2

∫ b

a

ϕ(x) dx, (13.52)

where we revert to x as our (dummy) integration variable. We substitute this result back

into (13.51). Assuming that†
∫ b

a

ϕ(x) dx 6= 0, , we discover that the dilation coefficients

must satisfy
c0 + · · · + cp = 2. (13.53)

† This constraint holds in all standard examples.

1/12/04 532 c© 2003 Peter J. Olver



Example 13.11. Once we impose the constraint (13.53), the very simplest version
of the dilation equation is

ϕ(x) = 2ϕ(2x) (13.54)

where c0 = 2 is the only (nonzero) coefficient. Up to constant multiple, the only “solution”
of the functional equation (13.54) with bounded support is the delta function δ(x); see
Exercise for a justification. Other solutions, such as ϕ(x) = 1/x, are not localized, and
thus not useful for constructing a wavelet basis.

The second condition we require is orthogonality of the wavelets. For simplicity, we
only consider the standard L2 inner product†

〈 f ; g 〉 =

∫ ∞

−∞

f(x) g(x) dx.

It turns out that the orthogonality of the complete wavelet system is guaranteed once we
know that the scaling function ϕ(x) is orthogonal to all its integer translates:

〈ϕ(x) ;ϕ(x−m) 〉 = 0 for m 6= 0. (13.55)

We first note the formula

〈ϕ(2x− k) ;ϕ(2x− l) 〉 =

∫ ∞

−∞

ϕ(2x− k)ϕ(2x− l) dx (13.56)

=
1

2

∫ ∞

−∞

ϕ(x)ϕ(x+ k − l) dx =
1

2
〈ϕ(x) ;ϕ(x+ k − l) 〉

follows from using the previous change of variables 2x− k 7→x in the integral. Therefore,
since ϕ satisfies the dilation equation (13.45),

〈ϕ(x) ;ϕ(x−m) 〉 =

〈
p∑

j=0

cj ϕ(2x− j) ;

p∑

k=0

ck ϕ(2x− 2m− k)

〉
(13.57)

=

p∑

j,k=0

cj ck 〈ϕ(2x− j) ;ϕ(2x− 2m− k) 〉 =
1

2

p∑

j,k=0

cj ck 〈ϕ(x) ;ϕ(x+ j − 2m− k) 〉.

If we require orthogonality (13.55) of all the translates of ϕ, then the left hand side of this
identity will be 0 unless m = 0, while only the summands with j = 2m+k will be nonzero
on the right. Therefore, orthogonality requires that

∑

0≤ k ≤ p−2m

c2m+k ck =

{
2, m = 0,

0, m 6= 0.
(13.58)

Equations (13.53), (13.58) are the basic requirements for the construction of an orthogonal
wavelet basis.

† In all instances, the functions have bounded support, and so the inner product integral can
be reduced to an integral over a finite interval where both f and g are nonzero.
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For example, if we have two nonzero coefficients c0, c1, then (13.53), (13.58) require

c0 + c1 = 2, c2
0 + c2

1 = 2,

and so c0 = c1 = 1 is the only solution, leading to the Haar dilation equation (13.46). If
we have three coefficients c0, c1, c2, then (13.53), (13.58) require

c0 + c1 + c2 = 2, c2
0 + c2

1 + c2
2 = 2, c0 c2 = 0.

Thus either c2 = 0, c0 = c1 = 1, and we are back to the Haar case, or c0 = 0, c1 = c2 = 1,
and the resulting dilation equation is a simple reformulation of the Haar case; see Exercise
. In particular, the hat function (13.47) does not give rise to orthogonal wavelets.

The remarkable fact, discovered by Daubechies, is that there is a nontrivial solution
for four (and, indeed, any even number) of coefficients c0, c1, c2, c3. The basic equations
(13.53), (13.58) require

c0 + c1 + c2 + c3 = 2, c2
0 + c2

1 + c2
2 + c2

3 = 2, c0 c2 + c1 c3 = 0. (13.59)

The particular values

c0 =
1 +

√
3

4
, c1 =

3 +
√
3

4
, c2 =

3−
√
3

4
, c3 =

1−
√
3

4
, (13.60)

solve (13.59). These coefficients correspond to the Daubechies dilation equation

ϕ(x) =
1 +

√
3

4
ϕ(2x) +

3 +
√
3

4
ϕ(2x− 1) +

3−
√
3

4
ϕ(2x− 2) +

1−
√
3

4
ϕ(2x− 3).

(13.61)
Any solution to this particular dilation equation whose support is contained in a bounded
interval will give rise to a scaling function and an associated system of orthogonal wavelets.

Before explaining how to solve the Daubechies dilation equation, let us complete the
proof of orthogonality of the wavelets. It is easy to see that, by translation invariance,
since ϕ(x) and ϕ(x −m) are orthogonal for any m 6= 0, so are ϕ(x − k) and ϕ(x − l) for
any k 6= l. Next we prove orthogonality of ϕ(x−m) and w(x):

〈w(x) ;ϕ(x−m) 〉 =

〈
p∑

j=0

(−1)j+1 cj ϕ(2x− 1 + j) ;

p∑

k=0

ck ϕ(2x− 2m− k)

〉

=

p∑

j,k=0

(−1)j+1 cj ck 〈ϕ(2x− 1 + j) ;ϕ(2x− 2m− k) 〉

=
1

2

p∑

j,k=0

(−1)j+1 cj ck 〈ϕ(x) ;ϕ(x− 1 + j − 2m− k) 〉,

using (13.56). By orthogonality (13.55) of the translates of ϕ, the only summands that are
nonzero are when j = 2m+ k + 1; the resulting coefficient of ‖ϕ(x) ‖2 is

∑

k

(−1)j+1 c1−2m−k ck = 0,
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Figure 13.10. Approximating the Daubechies Wavelet.

where the sum is over all 0 ≤ k ≤ p such that 0 ≤ 1 − 2m − k ≤ p. Each term in the
sum appears twice, with opposite signs, and hence the result is always zero — no matter
what the coefficients c0, . . . , cp are! The proof that the translates w(x−m) of the mother

wavelet, along with all the daughter wavelets w(2j x − k), are orthogonal is done by a
similar argument, and the details are left as an exercise for the reader.

Solving the Dilation Equation

Let us now discuss how to solve the dilation equation (13.45). The key is to observe
that it has the form of a fixed point equation, but not in ordinary Euclidean space, but
now in infinite-dimensional function space: ϕ = F [ϕ ]. With luck, the solution or fixed
point is stable, and so starting with a nearby initial guess ϕ0(x), the successive iterates
ϕn+1 = F [ϕn ] will converge to the fixed function. In detail, the iterative version of the
dilation equation reads

ϕn+1(x) =

p∑

k=0

ck ϕn(2x− k), n = 0, 1, 2, . . . . (13.62)

Before attempting to prove convergence of this iterative procedure to the Daubechies scal-
ing function, let us experimentally investigate what happens.

A good choice is to take our initial guess to be the the Haar scaling function or box
function

ϕ0(x) =

{
1, 0 < t ≤ 1.

0, otherwise.

In Figure 13.10 we graph the next 5 iterates ϕ1(x), . . . , ϕ5(x). There clearly appears
to be convergence to some function ϕ(x), although the final result does look a littlee
bizarre. Bolstered by this experimental evidence, we can then try to prove convergence of
the iterative scheme. This turns out to be true; the rigorous proof relies on the Fourier
transform, [43], but is a little too advanced for this text and will be omitted.

Theorem 13.12. The functions converge ϕn(x) defined by converge uniformly to a
continuous function ϕ(x), called the Daubechies scaling function.
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Assuming convergence, the resulting scaling function and consequentila wavelets, in
fact, for an orthonormal system of functions.

Proposition 13.13. The integer translates ϕ(x − k), for k = 0,±1,±2, . . . , of

the Daubechies scaling function, and all wavelets wj,k(x) = w(2j x − k), j ≥ 0, form an

orthogonal system of continuous functions in L2; Moreover, ‖ϕ ‖2 = 1, while ‖wj,k ‖
2 =

2−j .

Proof : As noted earlier, the orthogonality of the entire wavelet system will follow
once we know the orthogonality (13.55) of the scaling function and its integer translates.
We use induction to prove that this holds for all the iterates ϕn(x), and so, in view of
uniform convergence, it also holds for the limiting scaling function. We already know that
the orthogonality property holds for the Haar scaling function ϕ0(x). To demonstrate
the induction step, we repeat the computation in (13.57), but now the left hand side is
〈ϕn+1(x) ;ϕn+1(x−m) 〉, while all other terms involve the previous iterate ϕn. In view
of the the algebraic connstraints (13.58) on the wavelet coefficients and the induction
hypothesis, we deduce that 〈ϕn+1(x) ;ϕn+1(x−m) 〉 = 0 whenever m 6= 0, while when
m = 0, ‖ϕn+1 ‖

2 = ‖ϕn ‖
2. Since ‖ϕ0 ‖ = 1, we furuther conclude that all the iterates,

and hence the limiting scaling function, all have unit L2 norm. The proof of formula for
the norms of the mother and daughter wavelets is left as an exercise for the reader. Q.E.D.

There is no explicit formula for the Daubechies scaling function. In practical compu-
tations, the limiting procedure is not so convenient, and an alternative means of computing
its values is employed. The starting point is to determine what it is at integer values. First,
we have† ϕ0(m) = 0 for all integers m except ϕ0(1) = 1. Now, according to the iterative
equation (13.62), when p = 3, the value of ϕn+1 at an integer m is a linear combination of
the values of ϕn at the integers 2m, 2m−1, 2m−2 and 2m−3. A simple induction should
convince you that ϕn(m) = 0 at all integers m except for m = 1 and m = 2; moreover, for
the Daubechies coefficients (13.60)

ϕn+1(1) =
3 +

√
3

4
ϕn(1) +

1 +
√
3

4
ϕn(2), ϕn+1(2) =

1−
√
3

4
ϕn(1) +

3−
√
3

4
ϕn(2),

since all other terms are 0. Thus, the vectors v(n) = (ϕn(1), ϕn(2) )
T
satisfy a linear

iterative system

v(n+1) = Av(n) where A =

(
3+
√

3
4

1+
√

3
4

1−
√

3
4

3−
√

3
4

)
. (13.63)

Now, according to Chapter 10, the solution to such an iterative system can be found by
looking at the eigenvalues and eigenvector of the coefficient matrix, which are

λ1 = 1, v1 =

(
1+
√

3
4

1−
√

3
4

)
, λ2 =

1
2 , v2 =

(
−1
1

)
.

† To matintain consistency, we use the left hand limiting values at the points of discontinuity.
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Writing the initial condition as a linear combination of the eigenvectors

v(0) =

(
1
0

)
= 2v1 −

1−
√
3

2
v2 =

(
1+
√

3
2

1−
√

3
2

)
+

(
1−
√

3
2

−1+
√

3
2

)
;

Since Av1 = v1, Av2 =
1
2 v2, the solution is

v(n) = Anv(0) = 2v1 −
1

2n
1−

√
3

2
v2.

The limiting vector

v? = lim
n→∞

v(n) = 2v1 =

(
1+
√

3
2

1−
√

3
2

)

gives the desired integer values of the scaling function:

ϕ(1) =
1−

√
3

2
= 1.366025 . . . , ϕ(2) =

−1 +
√
3

2
= − .366025 . . . ,

ϕ(m) = 0, m 6= 1, 2.

(13.64)

Now that we know the values of ϕ(x) when x = m is an integer, the Daubechies
dilation equation

ϕ(x) =
1 +

√
3

4
ϕ(2x) +

3 +
√
3

4
ϕ(2x− 1) +

3−
√
3

4
ϕ(2x− 2) +

1−
√
3

4
ϕ(2x− 3)

(13.65)
then prescribes its values at all half integers because when x = 1

2 m then 2x−k = m−k is
an integer. Once we know its values at the half integers, we can use equation (13.45) again
to give its values at quarter integers. Continuing onwards, we determine the values of ϕ(x)
at all dyadic points, meaning rational numbers of the form x = k/2j , i.e., those with a
finite binary expansion. One can then use an interpolation scheme to approximate the
values of ϕ(x) at non-dyadic points. Or, since all computers are ultimately based on the
binary number system, only dyadic points actually exist in a computer’s memory, and so
there is no need to determine the value of ϕ at non-dyadic points. Indeed, any real number
can be approximated arbitrarily closely by a dyadic number — just truncate its binary
expansion sufficiently far beyond the decimal (or, rather “binary”) point, which means
that we can approximate ϕ(x) at all points of continuity by computing its values at nearby
dyadic points. This scheme was used to produce the graphs of the Daubechies scaling
function in Figure 13.11. It is continuous, but non-differentiable function — and has a
very jagged, fractal-like appearance when viewed closely. The Daubechies scaling function
is, in fact, a close cousin of the famous example of a continuous, nowhere differentiable
function originally due to Weierstrass, cf. [102, 125], whose construction also relies on a
similar scaling argument.

With the values of the Daubechies scaling function on a sufficiently dense set of dyadic
points in hand, the consequential values of the mother wavelet are given by (13.49), which,
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Figure 13.11. The Daubechies Scaling Function and Mother Wavelet.

in this instance, has the form

w(x) =
1−

√
3

4
ϕ(2x)−

3−
√
3

4
ϕ(2x− 1) +

3 +
√
3

4
ϕ(2x− 2)−

1 +
√
3

4
ϕ(2x− 3).

(13.66)
Note that suppϕ = suppw = [0, 3]. The daughter wavelets are then found by the usual
compression and translation formula (13.50).

The Daubechies wavelet expansion of a function whose support is contained in† [0, 3]
is then given by

f(x) ∼ c0 ϕ(x) +

∞∑

j=0

2j−1∑

k=0

cj,k wj,k(x). (13.67)

The wavelet coefficients c0, cj,k are computed by the usual orthonormality formula

c0 = 〈 f ;ϕ 〉 =

∫ 3

0

f(x)ϕ(x) dx,

cj,k = 〈 f ;wj,k 〉 = 2
j

∫ 2−j (k+3)

2−j k

f(x)wj,k(x) dx =

∫ 3

0

f
(
2−j (x+ k)

)
w(x) dx.

(13.68)

In practice, one uses a basic numerical integration routine, e.g., the trapezoid rule, [9],
with dyadic nodes to speedily evaluate the integrals (13.68). Proof of completeness of
the resulting wavelet basis functions can be found in [43]. Compression and denoising
algorithms based on retaining only low frequency modes proceed as before, and are left for
the reader to implement.

Example 13.14. Daubechies wavelet example

13.3. The Fourier Transform.

Fourier series and their generalizations were originally designed to solve boundary
value problems on bounded intervals. The extension of Fourier methods to boundary value

† For functions with larger support, one should include additional terms in the expansion
corresponding to further translates of the wavelets so as to cover the entire support of the function.
Alternatively, one can translate and rescale x to fit the function’s support inside [0, 3].
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problems on the entire real line −∞ < x < ∞ leads naturally to the Fourier transform.
The Fourier transform is a powerful tool for the analysis of general functions, and plays an
essential role in a broad range of applications, including both ordinary and partial differ-
ential equations, quantum mechanics, signal processing, control theory, and many others
areas of both pure and applied mathematics. To mathematicians, the Fourier transform is
more fundamental than the Laplace transform, which, as discussed in the following section,
is a particular real form.

We begin by motivating the Fourier transform as a limiting case of Fourier series.
Although the rigorous details can be quite intricate, the underlying idea is fairly simple.
One begins with Fourier series for a fixed function f(x) on progressively larger intervals,
and then takes the limit as the intervals’ length becomes infinite. The result is a “Fourier
series” for f(x) on the entire real line. The limiting process converts the Fourier sums
into integrals, and the resulting representation of a function is renamed the Fourier trans-
form. Since we are dealing with an infinite interval, there are no longer any periodicity
requirements on the function f(x), which is defined for all −∞ < x < ∞. Moreover, the
frequencies represented in the Fourier transform are no longer dictated by the length of
the interval, and so we are effectively decomposing a quite general, non-periodic function,
into a “continuous linear combination” or, rather, integral, of trigonometric functions of
arbitrary frequency.

Let us present the details of this construction in a more concrete form. The computa-
tions will be significantly simpler if we work with the complex version of the Fourier series
from the outset. The starting point is the rescaled Fourier series (12.73) on a symmetric
interval [−` , ` ] of length 2 `, which we rewrite in the following adapted form

f(x) ∼

∞∑

ν=−∞

f̂(kν)

2 `
e2π i kνx. (13.69)

The sum is over the discrete collection of frequencies

2πkν =
π ν

`
, ν = 0,±1,±2, . . . , (13.70)

corresponding to all trigonometric functions of period 2 `. For reasons that will soon
become apparent, the Fourier coefficients of f are now denoted as

cν = 〈 f ; e
2π i kν x 〉 =

1

2 `

∫ `

−`

f(x) e−2π i kν x dx =
f̂(kν)

2 `
,

so that

f̂(kν) =

∫ `

−`

f(x) e−2π i kν x dx. (13.71)

This reformulation of the basic Fourier series formula allows us to immediately pass to the
limit ` →∞.

For an interval of length `, the frequencies (13.70) required to represent a function are
equally spaced, with

∆k = kν+1 − kν =
1

2 `
.
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As ` → ∞, the interfrequency spacing ∆k → 0, and so the required frequencies become
more and more densely packed in the space of all possible frequencies −∞ < k < ∞. In
the limit, we anticipate all possible frequencies to be represented. The resulting infinite
integral

f̂(k) =

∫ ∞

−∞

f(x) e−2π i kx dx (13.72)

is known as the Fourier transform, and will be well-defined for a wide range of functions.

In order to reconstruct the function from its Fourier transform, we use a similar lim-
iting procedure on the Fourier series (13.69), which we rewrite in the even more suggestive
form

f(x) ∼

∞∑

ν=−∞

f̂(kν) e
2π i kν x ∆k. (13.73)

The right hand side takes the form of a Riemann sum, [9, 126], over the entire frequency
space −∞ < k < ∞, for the function

g(k) = f̂(k) e i kx.

Under reasonable hypotheses, the Riemann sums converge, in the limit ∆k → 0, to the
integral

f(x) ∼

∫ ∞

−∞

f̂(k) e2π i kx dk. (13.74)

In this manner, the Fourier series (13.73) becomes a Fourier integral that reconstructs
the function f(x) as a (continuous) superposition of complex exponentials e2π i kx over all
possible frequencies 2πk. The coefficient or weight of each such exponential is given by
the Fourier transform f̂(k).

Remark : There are several different versions of the Fourier transform in the literature,
and so the reader needs to pay very careful attention as to which convention is being used
when consulting any particular reference. We have chosen to adopt a modern convention
that is gaining popularity, [90]. Including an extra 2π factor in the frequency variable k

has the desirable effect of eliminating many later occurrences of 2π that tend to plague the
classical forms of the Fourier transform. The other common versions, and their advantages
and disadvantages, are discussed in the exercises at the end of the section.

Recapitulating, by letting the length of the interval go to ∞, the discrete Fourier
series has become a continuous Fourier integral, while the Fourier coefficients, which were
defined only at a discrete collection of possible frequencies, have become an entire function
f̂(k) defined on all of frequency space k ∈ R, known as the Fourier transform of the
function f(x). The reconstruction of f(x) from its Fourier transform via (13.74) can be
rigorously justified under suitable hypotheses. For example, if f(x) is piecewise C1 on
−∞ < x < ∞ and decays reasonably fast as |x | → ∞, then the inverse Fourier integral
will converge to f(x) at all points of continuity, and to the midpoint 1

2 (f(x
−) + f(x+)) at
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Figure 13.12. Fourier Transform of Rectangular Pulse.

jump discontinuities — just like a Fourier series. The decay conditions are assured if, for
instance, f satisfies

| f(x) | ≤
M

|x |1/2+δ
, for all sufficiently large |x | À 0, (13.75)

for some M > 0, δ > 0. The decay conditions are the only remnant of the original period-
icity requirement for the Fourier series. A more precise, general result will be formulated
in Theorem 13.27 below.

Example 13.15. The Fourier transform of a rectangular pulse or box function

f(x) = σ(x+ a)− σ(x− a) =

{
1, − a < x < a,

0, |x | > a.
(13.76)

of width 2a is easily computed:

f̂(k) =

∫ a

−a

e−2π i kx dx =
e2π i ka

− e−2π i ka

i k
=
2 sin 2πk a

k
. (13.77)

On the other hand, the reconstruction of the pulse via the inverse transform (13.74) tells
us that

2

∫ ∞

−∞

e2π i kx sin 2πk a

k
dk = f(x) =





1, − a < x < a,
1
2 , x = ± a,

0, |x | > a.

(13.78)

Note the convergence to the middle of the jump discontinuities at x = ±a. Splitting this
complex integral into its real and imaginary parts, we deduce a pair of interesting real
integral identities

∫ ∞

−∞

cos 2πkx sin 2πk a

k
dk =





1
2 , − a < x < a,

1
4 , x = ± a,

0, |x | > a,

∫ ∞

−∞

sin 2πkx sin 2πk a

k
dk = 0.

(13.79)
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Just as many Fourier series yield nontrivial summation formulae, the reconstruction
of a function from its Fourier transform often leads to nontrivial integral identities. One
cannot compute the integral (13.78) by the Fundamental Theorem of Calculus, since is no
elementary function† whose derivative equals the integrand. Moreover, it is not even clear
that the integral converges; indeed, the amplitude of the integrand decays like 1/| k |, but
the latter function does not have a convergent integral, and so the usual comparison test
for infinite integrals, [9, 38, 136], fails to apply. Thus the convergence of the integral is
marginal at best: the trigonometric oscillations somehow overcome the slow rate of decay
of 1/k and thereby induce the (conditional) convergence of the integral! In Figure 13.12
we display the box function, its Fourier transform, along with a reconstruction obtained
by numerically integrating (13.79). Since we are dealing with an infinite integral, we must
break off the numerical integrator by restriction to a finite interval. The first graph is
obtained by integrating from −25 < k < 25 while the second is from −50 < k < 50. The
non-uniform convergence of the integral leads to the appearance of a Gibbs phenomenon
at the two discontinuities, just as with the Fourier series.

It is also worth pointing out that both the Fourier transform (13.72) and its inverse
(13.74) define linear maps on function space. This means that if f(x) has Fourier transform

f̂(k), while g(x) has Fourier transform ĝ(k), then the Fourier transform of the linear

combination cf(x) + dg(x) is c f̂(k) + d ĝ(k), for any complex constants c, d.

Example 13.16. Consider an exponentially decaying pulse†

fr(x) =

{
e−ax, x > 0,

0, x < 0,
(13.80)

where a > 0. We compute

f̂(k) =

∫ ∞

0

e−ax e−2π i kx dx = −
e−(a+2π i k)x

a+ 2π i k

∣∣∣∣
∞

x=0

=
1

a+ 2π i k
.

As in the preceding example, the inverse Fourier transform for this function produces a
nontrivial complex integral identity:

∫ ∞

−∞

e2π i kx

a+ 2π i k
dk =





e−ax, x > 0,
1
2 , x = 0,

0, x < 0.

(13.81)

Similarly, a pulse that decays to the left

fl(x) =

{
eax, x < 0,

0, x > 0,
(13.82)

† One can use Euler’s formula (3.76) to reduce the integrand to one of the form eαk/k, but it

can be proved that there is no formula for
∫
(eαk/k) dk in terms of elementary functions.

† Note that we can’t Fourier transform the entire exponential function e−ax because it does
not go to zero at both ±∞, which is required for the integral (13.72) to converge.
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where a > 0 is still positive, has Fourier transform

f̂ l(k) =
1

a− 2π i k
. (13.83)

This also follows from the general fact that the Fourier transform of f(−x) is f̂(−k); see
Exercise . The bidirectional decaying pulse

fe(x) = e−a | x | (13.84)

is merely the sum of left and right pulses: fe = fr + fl. Thus, by linearity,

f̂e(k) = f̂r(k) + f̂ l(k) =
1

a+ 2π i k
+

1

a− 2π i k
=

2a

4π2 k2 + a2
, (13.85)

which is real and even because fe is an even function; see Exercise . The inverse Fourier
transform (13.74) yields another nontrivial integral identity:

e−a | x | =

∫ ∞

−∞

2a e2π i kx

4π2 k2 + a2
dk =

∫ ∞

−∞

2a cos 2πkx

4π2 k2 + a2
dk. (13.86)

The imaginary part of the integral vanishes because the integrand is odd. On the other
hand, the odd exponentially decaying pulse,

fo(x) =

{
e−ax, x > 0,

− eax, x < 0,
(13.87)

is the difference of the right and left pulses, fo = fr − fl, and has purely imaginary and
odd Fourier transform

f̂o(k) = f̂r(k)− f̂ l(k) =
1

a+ 2π i k
−

1

a− 2π i k
= − i

4π k

4π2 k2 + a2
. (13.88)

The inverse transform is

(sgnx)e−a | x | = − 4π i

∫ ∞

−∞

k e2π i kx

4π2 k2 + a2
dk = 4π

∫ ∞

−∞

k sin 2πkx

4π2 k2 + a2
dk. (13.89)

As a final example, consider the rational function

f(x) =
1

x2 + c2
, where c > 0. (13.90)

Its Fourier transform requires integrating

f̂(k) =

∫ ∞

−∞

e−2π i kx

x2 + c2
dx. (13.91)

The indefinite integral does not appear in integration tables, and, in fact, cannot be done
in terms of elementary functions. However, we have just evaluated this particular integral!
Look at (13.86). Changing x to −k and k to x yields

e−a | k | =

∫ ∞

−∞

2a e− 2π i kx

4π2 x2 + a2
dx =

a

2π2

∫ ∞

−∞

e− 2π i kx

x2 + (a/2π)2
dx.
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Identifying c = a/2π leads to the formula for (13.91), and we conclude that the Fourier
transform of (13.90) is

f̂(k) =
π

c
e−2πc | k |. (13.92)

This last example is indicative of an important general fact. The reader has no doubt
already noted the remarkable similarity between the Fourier transform (13.72) and its
inverse (13.74). Indeed, the only difference is that the former has a minus sign in the
exponential. Let us state a formal result.

Theorem 13.17. If the Fourier transform of the function f(x) is f̂(k), then the

Fourier transform of f̂(x) is f(−k).

The symmetry property allows us to reduce the tabulation of Fourier transforms by
half. For instance, referring back to Example 13.15, we deduce that the Fourier transform

of the function f(x) =
2 sin 2πax

x
is

f̂(k) = σ(−k + a)− σ(−k − a) = σ(k + a)− σ(k − a) =





1, −a < k < a,
1
2 , k = ±a,

0, | k | > a.

Replacing 2πa by λ and dividing by 2, we deduce that

f(x) =
sinλx

x
has Fourier transform f̂(k) =

1

2

[
σ

(
k +

λ

2π

)
− σ

(
k −

λ

2π

)]
,

(13.93)
a useful result that we cannot obtain by direct evaluation of the integral.

All of the Examples 13.16 required a > 0 for the Fourier integrals to converge. The
functions that emerge in the limit as a goes to 0 are of fundamental importance. Let
us start with the odd exponential pulse (13.87). In the limit a → 0, the function fo(x)
converges to the sign function

f(x) = sgnx = σ(x)− σ(−x) =

{
+1, x > 0,

−1, x < 0.
(13.94)

Taking the limit of the Fourier transform (13.88) leads to

f̂(k) = − i
4π k

4π2 k2
= −

i

π k
. (13.95)

The nonintegrable singularity of f̂(k) at k = 0 is indicative of the fact that the sign func-
tion does not decay as |x | → ∞. In this case, neither the Fourier transform integral nor its
inverse are well-defined as standard (Riemann, or even Lesbesgue, [126]) integrals. Never-
theless, it is possible to rigorously justify these results within the framework of generalized
functions.

More interesting are the even pulse functions fe(x), which, in the limit a → 0, become
the constant function

f(x) ≡ 1. (13.96)
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The limit of the Fourier transform (13.85) is

lim
a→ 0

2a

4π2 k2 + a2
=

{
0, k 6= 0,

∞, k = 0.
(13.97)

This limiting behavior should remind the reader of our construction (11.32) of the delta
function as the limit of the functions

δ(x) = lim
n→∞

n

π (1 + n2 x2)
= lim

a→ 0

a

π (a2 + x2)
, where n =

1

a
.

Comparing with (13.97), we conclude that the Fourier transform of the constant function
(13.96) is a multiple of the delta function in the frequency variable:

f̂(k) = 2π δ(2πk) = δ(k), (13.98)

where we used Exercise to simplify the final formula. Thus, the Fourier transform of
a constant function f(x) ≡ c is the same constant multiple, f̂(k) = c δ(k), of the delta
function in frequency space!

We remark that the direct transform integral

δ(k) =

∫ ∞

−∞

e−2π i kx dx =

∫ ∞

−∞

(
cos 2πkx+ i sin 2πkx

)
dx

is, strictly speaking, not defined because the infinite integral of the oscillatory sine and
cosine functions doesn’t converge! However, this identity can be validly interpreted within
the framework of generalized functions. On the other hand, the inverse transform for-
mula (13.74) yields ∫ ∞

−∞

δ(k) e2π i kx dk = e2π i k0 = 1,

which is in accordance with the basic definition of the delta function. As in the previous
case, the delta function singularity at k = 0 reflects the lack of decay of the constant
function.

Conversely, the delta function δ(x) has unit Fourier transform

δ̂(k) =

∫ ∞

−∞

δ(x) e−2π i kx dx = e−2π i k0 = 1 . (13.99)

To determine the Fourier transform of a delta spike δy(x) = δ(x − y) concentrated at
position x = y, we compute

δ̂y(k) =

∫ ∞

−∞

δ(x− y) e−2π i kx dx = e−2π i ky. (13.100)

The result is a pure exponential in frequency space. Applying the inverse Fourier transform
(13.74) leads, formally, to the remarkable identity

δy(x) = δ(x− y) =
1

2π

∫ ∞

−∞

e−2π i k(x−y) dk = 〈 e2π i ky ; e2π i kx
〉 . (13.101)
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Since the delta function vanishes for x 6= y, this identity implies that the complex exponen-
tial functions are mutually orthogonal. However, the latter statement must be taken with
a grain of salt, since the integral does not converge in the normal (Riemann or Lebesgue)
sense. But it is possible to make sense of this identity within the language of generalized
functions. Indeed, multiplying both sides by f(x), and then integrating with respect to x,
we find

f(y) =

∫ ∞

−∞

∫ ∞

−∞

f(x) e−2π i k(x−y) dx dk. (13.102)

This is a perfectly valid formula, being a restatement (or, rather, combination) of the
basic formulae (13.72), (13.74) connecting the direct and inverse Fourier transforms of the
function f(x).

Conversely, the Symmetry Theorem 13.17 tells us that the Fourier transform of a pure
exponential e2π i lx will be a shifted delta spike δ(k − l), concentrated in frequency space.
Both results are particular cases of the general Shift Theorem, whose proof is left as an
exercise for the reader.

Proposition 13.18. If f(x) has Fourier transform f̂(k), then the Fourier transform

of the shifted function f(x − y) is e−2π i ky f̂(k). Similarly, the transform of the product

function e2π i lxf(x) is the shifted transform f̂(k − l).

Derivatives and Integrals

One of the most remarkable and important properties of the Fourier transform is that
it converts calculus into algebra! More specifically, the two basic operations in calculus —
differentiation and integration of functions — are realized as algebraic operations on their
Fourier transforms. (On the other hand, algebraic operations become more complicated
in the transform domain.)

Let us begin with derivatives. If we differentiate† the basic inverse Fourier transform
formula

f(x) ∼

∫ ∞

−∞

f̂(k) e2π i kx dk.

with respect to x, we obtain

f ′(x) ∼

∫ ∞

−∞

2π i k f̂(k) e2π i kx dk. (13.103)

The resulting integral is itself in the form of a Fourier transform, which immediately implies
the following basic result, which is analogous to our earlier rule, (12.66), for differentiating
a Fourier series.

† We are assuming the integrand is sufficiently nice so that we can move the derivative past
the integral sign; see [51, 159] for a fully rigorous derivation.
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Proposition 13.19. The Fourier transform of the derivative f ′(x) of a function is
obtained by multiplication of its Fourier transform by 2π i k:

f̂ ′(k) = 2π i k f̂(k). (13.104)

Example 13.20. The derivative of the even exponential pulse fe(x) = e−a | x | is
amultiple of the odd exponential pulse fo(x) = sgnx e−a | x |:

f ′e(x) = −asgnx e−a | x | = − afo(x).

According to Proposition 13.19, their Fourier transforms are related by multiplication by
2π i k, so

f̂o(k) = − i
4π k

4π2 k2 + a2
= −

2π i k

a
f̂e(k),

as previously noted in (13.85), (13.88). On the other hand, since the odd exponential pulse
has a jump discontinuity of magnitude 2 at x = 0, its derivative contains a delta function,
and is equal to

f ′o(x) = − a e−a | x | + 2 δ(x) = − afe(x) + 2 δ(x).

This is reflected in the relation between their Fourier transforms. If we multiply (13.88)
by 2π i k we obtain

2π i k f̂o(k) =
8π2 k2

4π2 k2 + a2
= 2−

2a2

4π2 k2 + a2
= 2 δ̂(k)− a f̂e(k).

Higher order derivatives are handled by iterating formula (13.104), and so:

Corollary 13.21. The Fourier transform of f (n)(x) is (2π i k)n f̂(k).

This result has an important consequence: the smoothness of f(x) is manifested in

the rate of decay of its Fourier transform f̂(k). Because, if the nth derivative f (n)(x) is a

reasonable function, then its Fourier transform f̂ (n)(k) = (2π i k)n f̂(k) must go to zero as

| k | → ∞, which in turn requires very rapid decay of f̂(k) itself at large | k |. As a general
rule of thumb, local features of f , such as smoothness, are manifested by global features
of f̂(k), such as decay for large k. The reverse is also true: global features of f correspond

to local features of f̂ . This local-global duality, which we also encountered in the series
version, is one of the major themes of Fourier theory.

Integration of functions is the inverse operation to differentiation, and so should cor-
respond to division by 2π i k in frequency space. As with Fourier series, this is not quite
correct. There is an extra constant involved, and this contributes an extra delta function
in frequency space.

Proposition 13.22. If g(x) =

∫ x

−∞

f(y) dy, then

ĝ(k) =
f̂(k)

2π i k
+

c

2
δ(k), where c =

∫ ∞

−∞

f(x) dx. (13.105)
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Table of Fourier Transforms

f(x) f̂(k)

1 δ(k)

sgnx −
i

πk

σ(x)
1

2
δ(k)−

i

2πk

σ(x+ a)− σ(x− a)
sin 2πka

πk

e−ax σ(x)
1

2π i k + a

e−a | x |
2a

4π2 k2 + a2

e−ax
2

√
π

a
e−π

2 k2/a

tan−1 x − i
e−2π | k |

2k
+

π

2
δ(k)

f(cx+ d)
e2π i k d/c

| c |
f̂

(
k

c

)

f(x) f̂(−k)

f̂(x) f(−k)

f ′(x) 2π i k f̂(k)

f (n)(x) (2π i k)n f̂(k)

xn f(x)

(
i

2π

d

dk

)n
f̂(k)

Note: The parameter a > 0 is always positive, while c 6= 0.
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Proof : First notice that

lim
x→−∞

g(x) = 0, lim
x→+∞

g(x) = c =

∫ ∞

−∞

f(x) dx.

Therefore, the function

h(x) = g(x)− c σ(x)

obtained by subtracting a step function from the integral, decays to 0 at both ±∞. More-
over, according to the accompanying Table of Fourier Transforms,

ĥ(k) = ĝ(k)−
c

2
δ(k) +

i c

2πk
. (13.106)

On the other hand,

h′(x) = f(x)− c δ(x).

Since h(x) → 0 as |x | → ∞, we can apply our rule (13.104) for differentiation, and
conclude that

2π i k ĥ(k) = f̂(k)− c. (13.107)

Combining (13.106) and (13.107) proves (13.105). Q.E.D.

Example 13.23. The Fourier transform of the inverse tangent function

f(x) = tan−1 x =

∫ x

0

dy

1 + y2
=

∫ x

−∞

dy

1 + y2
−

π

2

can be computed via Proposition 13.22 and (13.92): f̂(k) = − i
e−2π | k |

2k
+

π

2
δ(k), where

we use the fact that

∫ ∞

−∞

tan−1 x dx = π.

Since the Fourier transform uniquely associates a function f̂(k) on frequency space
with each (reasonable) function f(x) on physical space, one can characterize functions by
their transforms. Practical applications rely on tables (or, even better, computer algebra
systems) that recognize a wide variety of transforms for basic functions of importance in ap-
plications. The accompanying table lists some of the most important examples of functions
and their Fourier transforms. Note that, according to the symmetry Theorem 13.17, each
tabular entry can be used to deduce two different Fourier transforms. A more extensive
list can be found in [114].

Applications to Differential Equations

The fact that the Fourier transform changes differentiation in the physical domain into
multiplication in the frequency domain is one of its most attractive features. A particularly
important consequence is that the Fourier transform effectively converts differential equa-
tions into algebraic equations, and thereby opens the door to their solution by elementary
algebra! One begins by applying the Fourier transform to both sides of the differential
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equation under consideration. Solving the resulting algebraic equation will produce a for-
mula for the Fourier transform of the desired solution, which can then be immediately
reconstructed via the inverse Fourier transform.

The Fourier transform is particularly well adapted to boundary value problems on the
entire real line. In place of the boundary conditions used on finite intervals, we look for
solutions that decay to zero sufficiently rapidly as |x | → ∞ — in order that their Fourier
transform be well-defined. In quantum mechanics, these are known as the bound states

of the system, and correspond to subatomic particles that are trapped or localized in a
region of space by some sort of force field. For example, the bound electrons in an atom
are localized by the electrostatic attraction of the nucleus.

As a specific example, consider the boundary value problem

−
d2u

dx2
+ ω2 u = h(x), −∞ < x <∞, (13.108)

where ω > 0 is a positive constant. In lieu of boundary conditions, we require that the
solution u(x) → 0 as |x | → ∞. We will solve this problem by applying the Fourier
transform to both sides of the differential equation. In view of Corollary 13.21, the result
is a linear algebraic equation

4π2 k2 û(k) + ω2 û(k) = ĥ(k),

relating the Fourier transforms of u and h. Unlike the differential equation, the transformed
equation can be immediately solved:

û(k) =
ĥ(k)

4π2 k2 + ω2 .
(13.109)

Therefore, we can reconstruct the solution by applying the inverse Fourier transform for-
mula (13.74). We conclude that the solution to the boundary value problem is given by
the following integral formula

u(x) =

∫ ∞

−∞

ĥ(k) e2π i kx

4π2 k2 + ω2
dk (13.110)

involving the Fourier transform of the forcing function. For example, if the forcing function
is an even exponential pulse,

h(x) = e−| x | with ĥ(k) =
2

4π2 k2 + 1
,

then our formula (13.110) gives the solution in the form of an integral:

u(x) =

∫ ∞

−∞

2 e2π i kx

(4π2 k2 + ω2)(4π2 k2 + 1)
dk =

∫ ∞

−∞

cos 2πkx

(4π2 k2 + ω2)(4π2 k2 + 1)
dk .

The imaginary part of the complex integral vanishes because the integrand is an odd
function. The remaining integral can be evaluated using a partial fraction decomposition

û(k) =
2

(4π2 k2 + ω2)(4π2 k2 + 1)
=

2

ω2 − 1

(
1

4π2 k2 + 1
−

1

4π2 k2 + ω2

)
,

1/12/04 550 c© 2003 Peter J. Olver



provided ω 6= 1. Thus, referring to our Table of Fourier transforms, we conclude that the
solution to this boundary value problem is

u(x) =
e−| x | −

1

ω
e−ω | x |

ω2 − 1
. (13.111)

The reader may wish to verify that this function is indeed a solution, meaning that it is
twice continuously differentiable (which is not so immediately apparent from the formula),
decays to 0 as |x | → ∞, and satisfies the differential equation everywhere.

Remark : The method of partial fractions that you learned in first year calculus is
an effective tool for constructing the Fourier transforms and inverse Fourier transforms of
general rational functions.

A particularly important case is when the forcing function h(x) = δy(x) = δ(x − y)
represents a unit impulse concentrated at x = y. The resulting square-integrable solution
is the Green’s function G(x, y) for the boundary value problem. According to (13.109), its
Fourier transform with respect to x is

Ĝ(k, y) =
e−2π i ky

4π2 k2 + ω2
,

which is the product of an exponential factor e−2π i ky times the Fourier transform of the
even exponential pulse e−ω | x |. We apply Proposition 13.18, and conclude that the Green’s
function for this boundary value problem is an exponential pulse centered at y, namely

G(x, y) =
1

2ω
e−ω | x−y | .

As with other self-adjoint boundary value problems, the Green’s function is symmetric
under interchange of x and y. As a function of x, it satisfies the homogeneous differential
equation −u′′ + ω2 u = 0, except at the point x = y when its derivative has a jump
discontinuity of unit magnitude. It also decays as |x | → ∞, as required by the boundary
conditions. The general superposition principle for the Green’s function tells us that the
solution to the general forced boundary value problem (13.108) can be represented in the
integral form

u(x) =

∫ ∞

−∞

G(x, y)h(y) dy =
1

2ω

∫ ∞

−∞

e−ω| x−y | h(y) dy. (13.112)

The reader may enjoy recovering the particular exponential solution (13.111) from this
integral formula.

Convolution

The Green’s function formula (13.112) that we derived at the end of the preceding
subsection is indicative of a general property of Fourier transforms. The right hand side
is a particular case of the general convolution product between functions.
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Definition 13.24. Let f(x) and g(x) be scalar functions. Their convolution is the
scalar function h = f ∗ g defined by the formula

h(x) = f(x) ∗ g(x) =

∫ ∞

−∞

f(x− y) g(y) dy. (13.113)

We record the basic properties of the convolution product, leaving their verification
to the reader. All of these assume that the implied convolution integrals converge.

(a) f ∗ g = g ∗ f ,

(b)
f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h),

(af + bg) ∗ h = a(f ∗ h) + b(g ∗ h),
a, b ∈ C,

(c) f ∗ (g ∗ h) = (f ∗ g) ∗ h,

(d) f ∗ 0 = 0,

(e) f ∗ δ = f .

Warning : The constant function 1 is not a unit for the convolution product; indeed,

f ∗ 1 =

∫ ∞

−∞

f(y) dy

is a constant function, not the original function f(x). In fact, according to the last property,
the delta function plays the role of the “convolution unit”:

f(x) ∗ δ(x) =

∫ ∞

−∞

f(x− y) δ(y) dy = f(x)

by the fundamental property (11.37) of the delta function. Proofs of the other convolution
identities are left to the exercises.

In particular, the solution formula (13.112) is equal to the convulution of an even

exponential pulse g(x) =
1

2ω
e−ω| x | with the forcing function:

u(x) = g(x) ∗ h(x) =

∫ ∞

−∞

g(x− y)h(y) dy = g ∗ h(x)

On the other hand, its Fourier transform (13.109) is the ordinary multiplicative product

û(k) = ĝ(k) ĥ(k)

of the Fourier transforms of g and h. This is a special case of a general fact: convolu-
tion in the physical domain corresponds to multiplication in the frequency domain, and
converserly. More explicitly:

Theorem 13.25. The Fourier transform of the convolution u = f ∗g of two functions

is the product of their Fourier transforms: û = f̂ · ĝ. Vice versa, the Fourier transform of

their product h = f · g is the convolution of their Fourier transforms ĥ = f̂ ∗ ĝ.
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Figure 13.13. The Fourier transform of
sinx

x2
.

Proof : From the definition of the Fourier transform,

û(k) =

∫ ∞

−∞

∫ ∞

−∞

f(x− y) g(y) e−2π i kx dx dy.

Applying the change of variables z = x− y in the inner integral produces

û(k) =

∫ ∞

−∞

∫ ∞

−∞

f(z) g(y) e−2π i k(y+z) dz dy

=

(∫ ∞

−∞

f(z) e−2π i kz dz

)(∫ ∞

−∞

g(y) e−2π i ky dy

)
= f̂(k) ĝ(k).

The second statement follows directly from the Symmetry Theorem 13.17. Q.E.D.

Example 13.26. We already know that the Fourier transform of f(x) =
sinx

x
is the

box function

f̂(k) = π

[
σ

(
k +

1

2π

)
− σ

(
k −

1

2π

)]
=

{
π, | k | < 1

2 π,

0, otherwise,

cf. (13.93). We also know that the Fourier transform of g(x) =
1

x
is ĝ(k) = −π i sgn k.

Therefore, the Fourier transform of their product h(x) = f(x) g(x) =
sinx

x2
can be obtained

by convolution:

ĥ(k) = f̂ ∗ ĝ(k)

=

∫ ∞

−∞

f̂(l) ĝ(k − l) dl = − i

∫ 1/2π

−1/2π

sgn(k − l) dl =





π i , k < −
1
2 π,

− 2π2 i k, −
1
2 π < k < 1

2 π,

−π i , k > 1
2 π.

A graph of ĥ(k) appears in Figure 13.13.
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Fourier Transform on Hilbert Space

While we do not have the space to embark on a fully rigorous treatment of the theory
underlying the Fourier transform, it is worth outlining a few of the most basic ideas and
results. We have already noted that the Fourier transform, when defined, is a linear map,
taking functions f(x) on physical space to functions f̂(k) on frequency space. A critical
question is precisely which function space should the theory be applied to. Not every
function admits a Fourier transform — the integral in (13.72) must converge.

It turns out the proper setting for the rigorous theory is the Hilbert space of complex-
valued square-integrable functions, the same infinite-dimensional vector space that lies at
the foundation of modern quantum mechanics. We adapt Definition 12.32 to the entire
real line, and so define the Hilbert space L2 = L2(−∞,∞) to be the infinite-dimensional
vector space consisting of all complex-valued functions f(x) which are defined for all x ∈ R
and have finite L2 norm

‖ f ‖2 =

∫ ∞

−∞

| f(x) |2 dx < ∞. (13.114)

The inner product on L2 is defined in the usual manner,

〈 f ; g 〉 =

∫ ∞

−∞

f(x) g(x) dx,

with the Cauchy–Schwarz inequality (3.16) ensuring that the integral is finite whenever
f, g ∈ L2. The decay criterion (13.75) is sufficient to ensure that a piecewise continuous
function belongs to the Hilbert space L2. However, as discussed in Section 12.5, Hilbert
space contains many more functions, and the precise definitions and identification of func-
tions is quite subtle. In quantum mechanics, the Hilbert space functions ϕ ∈ L2 that have
unit norm, ‖ϕ ‖ = 1, are known as wave functions. The modulus |ϕ(x) | of the wave
function at a position x indicates the probability of finding the physical system there.

Let us state the fundamental theorem governing the convergence of the Fourier trans-
form on Hilbert space. A rigorous proof can be found in [141].

Theorem 13.27. If f(x) ∈ L2 is square-integrable, then its Fourier transform f̂(k) ∈
L2 is well-defined and square-integrable function of the frequency variable k. If f(x) is
continuously differentiable at a point x, then its inverse Fourier integral (13.74) equals the
value f(x). More generally, if the right and left hand limits f(x−), f ′(x−), and f(x+),
f ′(x+) exist, then the Fourier integral converges to the average value 1

2

[
f(x−) + f(x+)

]
.

Thus, the Fourier transform f̂ = F [f ] defines a linear transformation from L2 func-
tions of x to L2 functions of k. In fact, the Fourier transform preserves inner products, and
hence defines an isometry or norm-preserving transformation on Hilbert space. This im-
portant result is known as Parseval’s formula, whose Fourier series counterpart appeared
in (12.104).

Theorem 13.28. If f̂(k) = F [f(x) ] and ĝ(k) = F [g(x) ], then 〈 f ; g 〉 = 〈 f̂ ; ĝ 〉, i.e.,
∫ ∞

−∞

f(x) g(x) dx =

∫ ∞

−∞

f̂(k) ĝ(k) dk. (13.115)
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Proof : Let us sketch a formal proof that serves to motivate why this result is valid.
We use the definition (13.72) of the Fourier transform in the formula

∫ ∞

−∞

f̂(k) ĝ(k) dk =

∫ ∞

−∞

(∫ ∞

−∞

f(x) e−2π i kx dx

)(∫ ∞

−∞

g(y) e2π i ky dy

)
dk

=

∫ ∞

−∞

∫ ∞

−∞

f(x) g(y)

(∫ ∞

−∞

e−2π i k(x−y) dk

)
dx dy.

Now according to (13.101), the inner k integral can be replaced by a delta function δ(x−y),
and hence

∫ ∞

−∞

f̂(k) ĝ(k) dk =

∫ ∞

−∞

∫ ∞

−∞

f(x) g(y) δ(x− y) dx dy =

∫ ∞

−∞

f(x) g(x) dx.

This completes the “proof”. Q.E.D.

Choosing f = g in (13.115) results in the Plancherel formula ‖ f ‖ = ‖ f̂ ‖, or, explic-
itly, ∫ ∞

−∞

| f(x |2 dx =

∫ ∞

−∞

| f̂(k) |2 dk. (13.116)

The Heisenberg Uncertainty Principle

In its popularized form, the Heisenberg Uncertainty Principle is a familiar philosoph-
ical concept from quantum mechanics. The principle, first formulated by the twentieth
century German physicist Werner Heisenberg, one of the founders of modern quantum
mechanics, states that certain pairs of physical quantities cannot be simultaneously de-
termined to complete accuracy by an experimental measurement. For instance, the more
precisely one determines the position of a particle, the less accuracy there will be in the
measurement of its momentum, and conversely. Similarly, the smaller the error in the en-
ergy, the larger the error in the time. Experimental verification of the uncertainty principle
can be found even in fairly simple situations. Consider a light beam passing through a
small hole. The position of the photons is constrained by the hole; the effect of their mo-
menta is in the pattern of light diffused on a screen placed beyond the hole. The smaller the
hole, the more constrained the position, and the wider the image on the screen, meaning
the less certainty there is in the momentum.

This is not the place to discuss the philosophical and experimental consequences of
Heisenberg’s principle. What we will show is that the Uncertainty Principle is, in fact, a
rigorous theorem concerning the Fourier transform! While we do not have the space to
discuss why the physical underpinnings of quantum mechanics reduce to this statement, we
can state and prove the mathematical version of the basic uncertainty principle. In quan-
tum theory, each of the paired quantities, e.g., position and momentum, are interrelated
by the Fourier transform.

In quantum mechanics, measurable quantities are interpreted as linear operators
A: L2

→ L2 on the underlying Hilbert space. In particular, position, usually denoted
by Q, is identified with the operation of multiplication by x, so Q[ϕ ] = xϕ(x), whereas
momentum, denoted by P for historical reasons, is identified as the differentiation operator
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P = d/dx, so that P [ϕ ] = ϕ′(x). If we apply the Fourier transform to our wave function,
then, as we saw, the differentiation or momentum operator becomes a multiplication op-
erator P̂ [ ϕ̂ ] = 2π i k ϕ̂(k). On the other hand, the momentum operator transforms into

differentiation Q̂[ ϕ̂ ] = − i ϕ̂ ′(k) in the frequency domain. This duality between position
and momentum, or multiplication and differentiation, via the Fourier transform lies at the
heart of the Uncertainty Principle.

Let A be a linear operator on Hilbert space representing a physical quantity. If
the quantum system is in a state represented by a particular wave function ϕ, then the
localization of the quantity A is measured by the norm ‖A[ϕ ] ‖. The smaller this norm,
the more accurate the measurement. For instance, ‖Q[ϕ ] ‖ = ‖xϕ(x) ‖ measures the
localization of the position of the particle represented by ϕ; the smaller ‖Q[ϕ ] ‖, the more
concentrated the probability of finding the particle near† x = 0 and hence the smaller the
error in the measurement of its position. Similarly, by Plancherel’s formula (13.116),

‖P [ϕ ] ‖ = ‖ϕ′(x) ‖ = ‖ 2π i k ϕ̂(k) ‖,

measures the localization in the momentum of the particle, which is small if and only if
the Fourier transform is concentrated near k = 0, and hence the smaller the error in its
measured momentum. With this interpretation, the Uncertainty Principle states that one
cannot simultaneously make these two quantities arbitrarily small.

Theorem 13.29. If ϕ(x) is a wave function, so ‖ϕ ‖ = 1, then

‖Q[ϕ ] ‖ ‖P [ϕ ] ‖ ≥ 1
2 . (13.117)

Proof : The proof rests on the Cauchy–Schwarz inequality
∣∣∣ 〈xϕ(x) ;ϕ′(x) 〉

∣∣∣ ≤ ‖xϕ(x) ‖ ‖ϕ′(x) ‖ = ‖Q[ϕ ] ‖ ‖P [ϕ ] ‖. (13.118)

On the other hand, writing out the inner product term

〈xϕ(x) ;ϕ′(x) 〉 =

∫ ∞

−∞

xϕ(x)ϕ′(x) dx.

Let us integrate by parts, using the fact that

ϕ(x)ϕ′(x) =
d

dx

[
1
2 ϕ(x)2

]
.

Since ϕ(x)→ 0 as |x | → ∞, the boundary terms vanish, and hence

〈xϕ(x) ;ϕ′(x) 〉 =

∫ ∞

−∞

xϕ(x)ϕ′(x) dx = −

∫ ∞

−∞

1
2 ϕ(x)2 dx = − 1

2 ,

since ‖ϕ ‖ = 1. Substituting back into (13.118) completes the proof. Q.E.D.

The inequality (13.117) quantifies the statement that the more accurately we measure
the momentum Q, the less accurately we are able to measure the position P , and vice
versa. For more details and physical consequences, you should consult an introductory
text on mathematical quantum mechanics, e.g., [100, 104].

† For another position, one replaces x by x − a.
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13.4. The Laplace Transform.

In engineering applications, the Fourier transform is often overshadowed by a close
relative — the Laplace transform. The Laplace transform plays an essential role in control
theory, linear systems analysis, electronics, and many other fields of practical engineering
and science. However, the Laplace transform is most properly interpreted as a particu-
lar real form of the more fundamental Fourier transform. When the Fourier transform
is evaluated along the imaginary axis, the complex exponential factor turns into a real
exponential, and the resulting Laplace transform maps real-valued functions to real-valued
functions. The Laplace transform is one-sided; it only looks forward in time, while the
Fourier transform looks in both directions in space. Since it is so closely allied to the
Fourier transform, the Laplace transform enjoys many of its featured properties, including
linearity. Moreover, derivatives are transformed into algebraic operations, which underlies
its applications to solving differential equations. The key difference is that the Fourier
transform is designed for boundary value problems on the real line, whereas the Laplace
transform is more suitable for initial value problems.

Since we will be applying the Laplace transform to initial value problems, we switch
our notation from x to t to emphasize this fact. Suppose f(t) is a (reasonable) function
with f(t) = 0 for all t < 0. Then the Fourier transform of f is

f̂(k) =

∫ ∞

0

f(t) e−2π i kt dt,

since, by our assumption, the negative t values makes no contribution to the integral. The
Laplace transform L is obtained by replacing 2π i k by a real† variable s, leading to

F (s) = L[f(t) ] ≡

∫ ∞

0

f(t) e−st dt. (13.119)

In particular, if f(t) is real, then its Laplace transform F (s) is also a real function. By
allowing complex values of the Fourier frequency variable k, we identify the Laplace trans-
form with the evaluation of the Fourier transform on the imaginary axis:

F (s) = f̂

(
−
i s

2π

)
. (13.120)

Using real exponentials has the advantage that the transform takes real functions to real
functions. Moreover, since the integral kernel e−st is exponentially decaying for s > 0, we
are no longer required to restrict our attention to functions that decay to zero as t →∞.

Example 13.30. Consider an exponential function f(t) = eαt, where the exponent
α is allowed to be complex. Its Laplace transform is

F (s) =

∫ ∞

0

e(α−s) t dt =
1

s− α
. (13.121)

† One can also define the Laplace transform at complex values of s, but this will not be required
in the applications discussed here.
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Note that the integrand is exponentially decaying, and hence the integral converges, if and
only if Re (α− s) < 0. Therefore, the Laplace transform (13.121) is, strictly speaking, only
defined when s > Re α is sufficiently large. In particular, for an oscillatory exponential,

L[e iωt ] =
1

s− i ω
=

s+ i ω

s2 + ω2
provided s > 0.

Taking real and imaginary parts of this identity, we discover the formulae for the Laplace
transforms of the basic trigonometric functions:

L[ cosωt ] =
s

s2 + ω2
, L[ sinωt ] =

ω

s2 + ω2
. (13.122)

Two further important cases are

L[1 ] =

∫ ∞

0

e−st dt =
1

s
, L[ t ] =

∫ ∞

0

t e−st dt =
1

s

∫ ∞

0

e−st dt =
1

s2
. (13.123)

The middle step in the second computation is an integration by parts, making sure that
the boundary terms vanish.

Remark : In every case, we really mean the Laplace transform of the function whose
values are given for t > 0 and is equal to 0 for all negative t. Therefore, the function 1 in
reality signifies the step function

σ(t) =

{
1, t > 0,

0, t < 0,
(13.124)

and so the first formula in (13.123) should really be written

L[σ(t) ] =
1

s
. (13.125)

However, in the traditional approach to the Laplace transform, one only considers the
functions on the positive t axis, and so the step function and the constant function are, from
this viewpoint, indistinguishable. However, once one moves beyond a purely mechanistic
viewpoint, any deeper understanding of the properties of the Laplace transform relies on
keeping this distinction firmly in mind.

Let us now pin down the precise class of functions to which the Laplace transform can
be applied.

Definition 13.31. A function f(t) is said to have exponential growth of order a if it
satisfies the inequality

| f(t) | < M eat, for all t > t0. (13.126)

Here M > 0 is a positive constant and t0 > 0.
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Table of Laplace Transforms

f(t) F (s)

1
1

s

t
1

s2

tn
n!

sn+1

δ(t− c) e−sc

σ(t− c)
e−sc

s

eαt
1

s− α

cosωt
s

s2 + ω2

sinωt
ω

s2 + ω2

ect f(t) F (s− c)

f(t)

t

∫ ∞

s

F (r) dr

f(t− c) e−sc F (s)

f ′(t) sF (s)− f(0)

f (n)(t) sn F (s)− sn−1 f(0)−

− sn−2 f ′(0)− · · · − f (n−1)(0)

f(t) ∗ g(t) F (s)G(s)

Note that the exponential growth condition only depends upon the function’s behavior
for large values of t. If a < 0, then f is, in fact, exponentially decaying as x → ∞. Since
eat < ebt for a < b and all t > 0, if f(t) has exponential growth of order a, it automat-
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ically has exponential growth of any higher order b > a. All polynomial, trigonometric,
and exponential functions (with linear argument) have exponential growth. The simplest

example of a function that does not admit an exponential growth bound is f(t) = et
2

,
which grow faster than any simple exponential eat.

The following result guarantees the existence of the Laplace transform, at least for
sufficiently large values of the transform variable s, for a rather broad class of functions
that includes almost all of the functions that arise in applications.

Theorem 13.32. If f(t) is piecewise continuous and has exponential growth of order
a, then its Laplace transform F (s) = L[f(t) ] is defined for all s > a.

Proof : The exponential growth inequality (13.126) implies that we can bound the
integrand in (13.119) by ∣∣ f(t) e−st

∣∣ < M e(a−s) t.

Therefore, as soon as s > a, the integrand is exponentially decaying as t → ∞, and this
suffices to prove that the Laplace transform integral converges. Q.E.D.

Theorem 13.32 is an existential result, and, in practice, we may not be able to explicitly
evaluate the Laplace transform integral. Nevertheless, the Laplace transforms of most
common functions are not hard to find, and extensive lists of known Laplace transforms
have been tabulated, [115]. Nowadays, the best source of transform formulas are computer
algebra packages, including Mathematica and Maple.

A key fact of Fourier analysis is that the Fourier transform uniquely specifies the
function, except possibly at jump discontinuities where the limiting value must be half way
in between. The following result, which follows from the Fourier transform Theorem 13.27,
says that the Laplace transform also uniquely determines the function.

Lemma 13.33. If f and g are piecewise continuous functions that are of exponential

growth, and L[f(t) ] = L[g(t) ] for all s sufficiently large, then f(t) = g(t) at all points of
continuity t > 0.

In fact, there is an explicit formula for the inverse Laplace transform, which follows
from its identification (13.120) as the Fourier transform along the imaginary axis. Under
suitable hypotheses, given the Laplace transform F (s), the original function can be found
by a complex integral formula†

f(t) =
1

2π i

∫ i∞

− i∞

F (s) est ds, t > 0. (13.127)

In practice, one hardly ever uses this complicated formula to compute the inverse Laplace
transform. Rather, one simply relies on tables of known Laplace transforms, coupled with
a few basic rules to be covered in the following subsection.

† See Section 16.5 for details on complex integration. The stated formula doesn’t apply to all
functions of exponential growth. A more universally valid inverse Laplace transform formula is
obtained by shifting the complex contour to run from b − i∞ to b+ i∞ for some b > a, the order
of exponential growth of f .
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The Laplace Transform Calculus

Just like its Fourier cousin, the Laplace transform converts calculus into algebra. In
particular, in the transform domain, differentiation turns into multiplication, but with one
additional term that depends upon the value of the function at t = 0.

Theorem 13.34. Let f(t) have exponential growth of order a. If L[f(t) ] = F (s)
then, for s > a,

L[f ′(t) ] = sF (s)− f(0). (13.128)

Proof : The proof relies on an integration by parts:

∫ ∞

0

f ′(t) e−st dt = f(t) e−st
∣∣∣∣
∞

t=0

+ s

∫ ∞

0

f(t) e−st dt

= lim
t→∞

f(t) e−st − f(0) + sF (s).

The exponential growth inequality (13.126) implies that first term vanishes when s >

a. Q.E.D.

Example 13.35. According to Example 13.30, L[ sinωt ] =
ω

s2 + ω2
. The derivative

is
d

dt
sinωt = ω cosωt, and therefore L[ω cosωt ] =

ωs

s2 + ω2
, since sinωt vanishes at t = 0.

The reuslt agrees with (13.122). On the other hand,
d

dt
cosωt = −ω sinωt, and so

L[−ω sinωt ] = sL[ cosωt ]− 1 =
s2

s2 + ω2
− 1 = −

ω2

s2 + ω2
,

again in agreement with the known formula.

Remark : In the language of Fourier transforms, the final term in (13.128) is, in fact,
due to a discontinuity in the function at t = 0. Keep in mind that the Laplace transform
only applies to functions with f(t) = 0 for all t < 0. If f(0) 6= 0, then f(t) has a
jump discontinuity of magnitude f(0) at t = 0. Therefore, according to the calculus of
generalized functions, its derivative f ′(t) should include a delta function term, namely
f(0) δ(0), which would account for an additional constant term in its transform. Thus,
in the example, the derivative of the (continuous) function that equals sinωt for t > 0
is the function that equals ω cosωt for t > 0, while the derivative of the latter has an
extra delta function resulting from its discontinuity at t = 0. In the usual working version
of the Laplace transform calculus, one suppresses the delta function when computing the
derivative f ′(t). However, its effect must reappear on the other side of the differentiation
formula (13.128), and this exactly accounts for the extra term −f(0).

Laplace transforms of higher order derivatives are computed by iterating the basic
formula (13.128). For example,

L[f ′′(t) ] = s L[f ′(t) ]− f ′(0) = s2 F (s)− s f(0)− f ′(0). (13.129)
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In general,

L
[
f (n)

]
= snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − f (n−1)(0). (13.130)

Conversely, integration corresponds to dividing the Laplace transform by s, so

L

[ ∫ t

0

f(τ) dτ

]
=

F (s)

s
. (13.131)

Unlike the Fourier transform, there are no additional terms in the integration formula as
long as we start the integral at t = 0. In particular,

L[ t2 ] =
1

s
L[2 t ] =

2

s3
, and, more generally, L[ tn ] =

n!

sn+1
. (13.132)

There is also a shift formula, analogous to Proposition 13.18 for Fourier transforms,
but with one important caveat. Since all functions must vanish for t < 0, we are only
allowed to shift the functions to the right, as otherwise they would assume nonzero values
on the negative t axis. The Laplace transform of the function f(t− c), which is shifted to
the right by an amount c > 0, is

L[f(t− c) ] =

∫ ∞

0

f(t− c) e−st dt =

∫ ∞

−c

f(t) e−s(t+c) dt (13.133)

=

∫ 0

−c

f(t) e−s(t+c) dt+

∫ ∞

0

f(t) e−s(t+c) dt = e−sc
∫ ∞

0

f(t) e−st dt = e−sc F (s).

In this computation, we first employed a change of variables, replacing t − c by t; then,
the fact that f(t) ≡ 0 for t < 0 was used to eliminate the integral from −c to 0.

Example 13.36. Consider the square wave pulse

f(t) =

{
1, b < t < c,

0, otherwise,

where 0 < b < c. To compute its Laplace transform, we write it as the difference

f(t) = σ(t− b)− σ(t− c)

of shifted versions of the step function (13.124). Combining the shift formula (13.133) and
the formula (13.125) for the Laplace transform of the step function, we find

L[f(t) ] = L[σ(t− b) ]− L[σ(t− c) ] =
e−sb − e−sc

s
. (13.134)

Applications to Initial Value Problems

A key application of the Laplace transform is to aid in the solution of initial value
problems for linear, constant coefficient ordinary differential equations. As a prototypical
example, consider the second order initial value problem

a
¦¦
u+ b

¦
u+ cu = f(t), u(0) = α,

¦
u(0) = β, (13.135)
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in which a, b, c are constant. We apply the Laplace transform to both sides of the differential
equation. In view of the differentiation formulae (13.128), (13.129), we obtain

a
[
s2
L[u(t) ]− s u(0)−

¦
u(0)

]
+ b
[
sL[u(t) ]− u(0)

]
+ cL[u(t) ] = L[f(t) ].

Setting L[u(t) ] = U(s) and L[f(t) ] = F (s), the preceding equation takes the form

(as2 + bs+ c)U(s) = F (s) + (as+ b)α+ aβ. (13.136)

Thus, by applying the Laplace transform, we have effectively reduced the differential equa-
tion to an elementary algebraic equation. The solution u(t) to the initial value problem is
found by taking the inverse Laplace transform of the solution

U(s) =
F (s) + (as+ b)α+ aβ

as2 + bs+ c
. (13.137)

As remarked above, in practice the inverse transform u(t) is found by manipulating the
answer (13.137) into a sum of terms all of which appear in a table of transforms.

Example 13.37. Consider the initial value problem

¦¦
u+ u = 10 e−3 t, u(0) = 1,

¦
u(0) = 2.

Taking the Laplace transform of the differential equation as above, we find

(s2 + 1)U(s)− s− 2 =
10

s+ 3
, and so U(s) =

s+ 2

s2 + 1
+

10

(s+ 3)(s2 + 1)
.

The second summand does not directly correspond to any of the entries in our table of
Laplace transforms. However, we can use the method of partial fractions to write it as a
sum

U(s) =
s+ 2

s2 + 1
+

1

s+ 3
+
3− s

s2 + 1
=

1

s+ 3
+

5

s2 + 1

of terms appearing in the table. Linearity of the Laplace transform tells us that the solution
to our initial value problem is

u(t) = e−3 t + 5 sin t.

Of course, the last example is a problem that you can easily solve directly. The stan-
dard method learned in your first course on differential equations is just as effective in
finding the final solution, and does not require all the extra Laplace transform machin-
ery! The Laplace transform method is, however, particularly effective for dealing with
complications that arise in cases of discontinuous forcing functions.

Example 13.38. Consider a mass vibrating on a spring with fixed stiffness c = 4.
Assume that the mass starts at rest, is then subjected to a unit force over time interval
1
2 π < t < 2π, after which it left to vibrate on its own. The initial value problem is

¦¦
u+ 4u = f(t) =

{
1, 1

2 π < t < 2π,

0, otherwise,
u(0) =

¦
u(0) = 0.
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Taking the Laplace transform, and using (13.134), we find

(s2 + 4)U(s) =
e−πs/2 − e−2πs

s
, and so U(s) =

e−πs/2 − e−2πs

s(s2 + 4)
.

Therefore, by the shift formula (13.133)

u(t) = h
(
t− 1

2 π
)
− h(t− 2π),

where h(t) is the function with Laplace transform

L[h(t) ] = H(s) =
1

s(s2 + 4)
=
1

4

(
1

s
−

s

s2 + 4

)
,

which is conveniently rewritten using partial fractions. According to our table of Laplace
transforms,

h(t) = 1
4 −

1
4 cos 2t.

Therefore, our desired solution is

u(t) =





0, 0 ≤ t ≤ 1
2 π,

1
4 +

1
4 cos 2t,

1
2 π ≤ t ≤ 2π,

1
2 cos 2t, 2π ≤ t.

Note that u(t) is only C1 at the points of discontinuity of the forcing function.

Remark : A direct solution of this problem would proceed as follows. One solves
the differential equation on each interval of continuity of the forcing function, leading to
a solution on that interval depending upon two integration constants. The integration
constants are then adjusted so that the solution satisfies the initial conditions and is
continuous and has continuous first derivative at each point of discontinuity of the forcing
function. The details are straightforward, but messy. The Laplace transform method
successfully bypasses the intervening manipulations required in the direct method.

Convolution

We already noted that the Fourier transform of the convolution product of two func-
tions is realized as the ordinary product of their individual transforms. A similar result
holds for the Laplace transform, as we now demonstrate.

Let f(t), g(t) be given functions. A key point is that, since we are implicitly assuming
that the functions vanish at all negative values of t, their convolution product (13.113)
reduces to a finite integral

h(t) = f(t) ∗ g(t) =

∫ t

0

f(t− τ) g(τ) dτ. (13.138)

In particular h(t) = 0 for all t < 0 also. Further, it is not hard to show that the convolution
of two functions of exponential growth also has exponential growth.

The proof of the convolution theorem for the Laplace transform proceeds along the
same lines as its Fourier transform version Theorem 13.25, and is left as an exercise for
the reader.
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Theorem 13.39. If L[f(t) ] = F (s) and L[g(t) ] = G(s), then the convolution
h(t) = f(t) ∗ g(t) has Laplace transform given by the product H(s) = F (s)G(s).

The Convolution Theorem 13.39 has useful applications to differential equations. Con-
sider the initial value problem

¦¦
u+ ω2 u = f(t), u(0) =

¦
u(0) = 0,

Applying the Laplace transform to the differential equation and using the initial conditions,

(s2 + ω2)U(s) = F (s), and hence U(s) =
F (s)

s2 + ω2
.

The right hand side is the product of the Laplace transform of the forcing function f(t)

and that of the trigonometric function
sinωt

ω
; therefore, Theorem 13.39 implies that

u(t) = f(t) ∗
sinωt

ω
=

∫ t

0

sinω(t− τ)

ω
f(τ) dτ. (13.139)

The integral kernel

k(t) =

{ sinωt

ω
, t > 0,

0, t < 0,

is known as the fundamental solution for the initial value problem. The function k(t− τ)
gives the response of the system to a unit impulse force that is applied instantanteously
at the time t = τ . Note particularly that (unlike boundary value problems) the impulse
only affect the solutions at later times t > τ . The fundamental solution plays a role
similar to that of a Green’s function in a boundary value problem. A general external
force can be viewed as a superpostion of individual impulses over time, and the integral
formula (13.139) expresses the response of the system as the same superposition of the
fundamental solution responses.

This concludes our brief introduction to the Laplace transform and a few of its many
applications to physical problems. More details can be found in almost all applied texts on
mechanics, electronical circuits, signal processing, control theory, and many other areas.
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Chapter 14

Vibration and Diffusion

in One–Dimensional Media

In this chapter, we study the solutions, both analytical and numerical, to the two most
important equations of one-dimensional continuum dynamics. The heat equation models
the diffusion of thermal energy in a body; here, we analyze the case of a one-dimensional
bar. The wave equation describes vibrations and waves in continuous media, including
sound waves, water waves, elastic waves, electromagnetic waves, and so on. Again, we
restrict our attention here to the case of waves in a one-dimensional medium, e.g., a string,
or a bar, or a column of air. The two- and three-dimensional versions of these fundamental
equations will be analyzed in the later Chapters 17 and 18.

As we saw in Section 12.1, the basic solution technique is inspired by our eigenvalue-
based methods for solving linear systems of ordinary differential equations. Substituting
the appropriate exponential or trigonometric ansatz will effectively reduce the partial dif-
ferential equation to a one-dimensional boundary value problem. The linear superposition
principle implies that general solution can then be expressed as a infinite series in the
resulting eigenfunction solutions. In both cases considered here, the eigenfunctions of the
one-dimensional boundary value problem are trigonometric, and so the solution to the
partial differential equation takes the form of a time-dependent Fourier series. Although
we cannot, in general, analytically sum the Fourier series to produce a simpler formula
for the solution, there are a number of useful observations that can be gleaned from this
representation.

In the case of the heat equation, the solutions decay exponentially fast to thermal equi-
librium, at a rate governed by the smallest positive eigenvalue of the associated boundary
value problem. The higher order Fourier modes damp out very rapidly, which makes the
heat equation a means of automatically smoothing and denoising functions representing
signals and images. In the case of the wave equation, each Fourier mode vibrates with a
natural frequency, and, in a stable situation, the full solution is a linear combination of
these fundamental vibrational modes. For one-dimensional media, the natural frequencies
are integral multiples of a single lowest frequency, and hence the solution is periodic, which,
in particular, explains the tonal qualities of string and wind instruments. There is an al-
ternative solution technique for the one-dimensional wave equation, due to d’Alembert,
which leads to an explicit formula for the solution that points out the role of character-
istics for signal propagation and the behavior of solutions. Both the explicit and series
solution methods are useful, and shed complementary lights on the physical phenomena of
vibration.
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The repose of the system to a concentrated unit impulse leads to the fundamental so-
lution, which can then be used to construct integral representations of the solution to the
inhomogeneous system subject to external forcing. We will also show how to exploit the
symmetry properties of the differential equation in order to construct new solutions from
known solutions. While less powerful than separation of variables ofr linear partial differ-
ential equations, the symmetry method is, in fact, the one technique that can be directly
applied to nonlinear problems, where it often assumes a central role in the construction of
explicit solutions.

Finally, we present and analyze several basic numerical solution methods for both the
heat and the wave equation. We begin with a general discussion of finite difference formu-
lae that are used to numerically approximate derivatives of. Many important numerical
solution algorithms for differential equations are obtained by replacing the derivatives by
the appropriate numerical differentiation formulae. However, the resulting finite difference
scheme is not necessarily guaranteed to accurately approximate the actual analytic solu-
tion to the differential equation; further analysis is required to elicit bona fide, convergent
numerical algorithms. In the cases considered here, the finite difference schemes replace
the partial differential equation by an iterative linear matrix system. The basic results
from Chapter 10 are then brought to bear on understanding convergence and stability of
the different numerical solution algorithms.

14.1. The Diffusion and Heat Equations.

Let us begin with a physical derivation of the heat equation from first principles of
thermodynamics. The reader solely interested in the mathematical developments can skip
ahead to the following subsection. However, physical insight can often play an critical role
in understanding the underlying mathematics, and is neglected at one’s peril.

We consider a bar — meaning a thin, heat-conducting body of length `. “Thin” means
that we can regard the bar as a one-dimensional continuum with no significant transverse
temperature variation. We use 0 ≤ x ≤ ` to denote the position along the bar. Our goal
is to find the temperature u(t, x) of the bar at position x and time t. The dynamical
equations governing the temperature are based on three fundamental physical laws.

The first law is that, in the absence of external sources, thermal energy can only enter
the bar through its ends. In physical terms, we are assuming that the bar is fully insulated
along its length. Let ε(t, x) to denote the thermal energy in the bar at position x and time
t. Consider a small section of the bar lying between x and x+∆x. The total amount of heat

energy contained in this section is obtained by integrating (summing):

∫ x+∆x

x

ε(t, y) dy.

Further, let w(t, x) denote the heat flux , i.e., the rate of flow of thermal energy along the
bar. We use the convention that w(t, x) > 0 means that the energy is moving to the right,
while w(t, x) < 0 if it moves to the left. The first law implies that the rate of change in
the thermal energy in any section of the bar is equal to the total heat flux, namely the
amount of the heat passing through its ends. Therefore, in view of our sign convention on
the flux,

∂

∂t

∫ x+∆x

x

ε(t, y) dy = −w(t, x+∆x) + w(t, x),
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the latter two terms denoting the respective flux of heat into the section of the bar at its
right and left ends. Assuming sufficient regularity of the integrand, we are permitted to
bring the derivative inside the integral. Thus, dividing both sides of the resulting equation
by ∆x,

1

∆x

∫ x+∆x

x

∂ε

∂t
(t, y) dy = −

w(t, x+∆x)− w(t, x)

∆x
.

In the limit as the length ∆x → 0, the right hand side of this equation converges to minus
the x derivative of w(t, x), while, by the Fundamental Theorem of Calculus, the left hand
side converges to the integrand ∂ε/∂t at the point x; the net result is the fundamental
differential equation

∂ε

∂t
= −

∂w

∂x
(14.1)

relating thermal energy ε and heat flux w. A partial differential equation of this partic-
ular form is known as a conservation law , and, in this instance, formulates the law of
conservation of thermal energy. See Exercise for details.

The second physical law is a constitutive assumption, based on experimental evidence.
In most physical materials, thermal energy is found to be proportional to temperature,

ε(t, x) = σ(x)u(t, x). (14.2)

The factor
σ(x) = ρ(x)χ(x) > 0

is the product of the density ρ of the material and its specific heat χ, which is the amount
of heat energy required to raise the temperature of a unit mass of the material by one unit.
Note that we are assuming the bar is not changing in time, and so physical quantities such
as density and specific heat depend only on position x. We also assume, perhaps with less
physical justification, that the material properties do not depend upon the temperature;
otherwise, we would be led to a much more difficult nonlinear diffusion equation.

The third physical law relates the heat flux to the temperature. Physical experiments
in a wide variety of materials indicate that the heat energy moves from hot to cold at a
rate that is in direct proportion to the rate of change — meaning the derivative — of the
temperature. The resulting linear constitutive relation

w(t, x) = −κ(x)
∂u

∂x
(14.3)

is known as Fourier’s Law of Cooling . The proportionality factor κ(x) > 0 is called the
thermal conductivity of the bar at position x. A good heat conductor, e.g., silver, will
have high conductivity, while a poor conductor, e.g., glass, will have low conductivity.

The minus sign tells us that heat energy moves from hot to cold; if
∂u

∂x
(t, x) > 0 the

temperature is increasing from left to right, and so the heat energy moves back to the left,
with consequent flux w(t, x) < 0.

Combining the three laws (14.1), (14.2) and (14.3) produces the basic partial differ-
ential equation

∂

∂t

[
σ(x)u

]
=

∂

∂x

(
κ(x)

∂u

∂x

)
, 0 < x < `, (14.4)
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governing the diffusion of heat in a non-uniform bar. The resulting linear diffusion equation
is used to model a variety of diffusive processes, including heat flow, chemical diffusion,
population dispersion, and the spread of infectious diseases. If, in addition, we allow
external heat sources h(t, x), then the linear diffusion equation acquires an inhomogeneous
term:

∂

∂t

[
σ(x)u

]
=

∂

∂x

(
κ(x)

∂u

∂x

)
+ h(t, x), 0 < x < `. (14.5)

In order to uniquely prescribe the solution u(t, x) to the diffusion equation, we need
to specify the initial temperature distribution

u(t0, x) = f(x), 0 ≤ x ≤ `, (14.6)

along the bar at an initial time t0. In addition, we mujst impose suitable boundary
conditions at the two ends of the bar. As with the equilibrium equations discussed in
Chapter 11, there are three common physical types. The first is a Dirichlet boundary

condition, where an end of the bar is held at prescribed temperature. Thus, the boundary
condition

u(t, 0) = α(t) (14.7)

fixes the temperature at the left hand end of the bar. Alternatively, the Neumann boundary
condition

∂u

∂x
(t, 0) = ξ(t) (14.8)

prescribes the heat flux w(t, 0) = −κ(0)
∂u

∂x
(t, 0) at the left hand end. In particular, the

homogeneous Neumann condition with ξ(t) ≡ 0 corresponds to an insulated end, where
no heat can flow in or out. Each end of the bar should have one or the other of these
boundary conditions. For example, a bar with both ends having prescribed temperatures
is governed by the pair of Dirichlet boundary conditions

u(t, 0) = α(t), u(t, `) = β(t), (14.9)

whereas a bar with two insulated ends requires two homogeneous Neumann boundary
conditions

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, `) = 0. (14.10)

The mixed case, with one end fixed and the other insulated, is similarly formulated. Finally,
the periodic boundary conditions

u(t, 0) = u(t, `),
∂u

∂x
(t, 0) =

∂u

∂x
(t, `), (14.11)

correspond to a circular ring of length `. As before, we are assuming the heat is only
allowed to flow around the ring — insulation prevents any radiation of heat from one side
of the ring to the other.

The Heat Equation

In this book, we will retain the term “heat equation” to refer to the homogeneous
case, in which the bar is made of a uniform material, and so its density ρ, conductivity κ,
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and specific heat χ are all positive constants. Under these assumptions, the homogeneous
diffusion equation (14.4) reduces to the heat equation

∂u

∂t
= γ

∂2u

∂x2
(14.12)

for the temperature u(t, x) in the bar. The constant

γ =
κ

σ
=

κ

ρχ
(14.13)

is called the thermal diffusivity of the bar, and incorporates all of its relevant physical prop-
erties. The solution u(t, x) will be uniquely prescribed once we specify initial conditions
(14.6) and a suitable pair of boundary conditions at the ends of the bar.

As we learned in Section 12.1, the elementary, separable solutions to the heat equation
are based on the exponential ansatz

u(t, x) = e−λt v(x), (14.14)

where v(x) is a time-independent function. Substituting the solution formula (14.14) into
(14.12) and canceling the common exponential factors, we find that v(x) must solve the
ordinary differential equation

−γ v′′ = λ v.

In other words, v is an eigenfunction with eigenvalue λ, for the second derivative operator
K = −γ D2. Once we determine the eigenvalues and eigenfunctions, we will be able to
reconstruct the solution u(t, x) as a linear combination, or, rather, infinite series in the
corresponding separable eigenfunction solutions.

Let us consider the simplest case of a uniform bar held at zero temperature at each
end. For simplicity, we take the initial time to be t0 = 0, and so the initial and boundary
conditions are

u(t, 0) = 0, u(t, `) = 0, t ≥ 0,

u(0, x) = f(x), 0 < x < `.
(14.15)

According to the general prescription, we need to solve the eigenvalue problem

γ
d2v

dx2
+ λ v = 0, v(0) = 0, v(`) = 0. (14.16)

As noted in Exercise , positive definiteness of the underlying differential operator K =
−γ D2 when subject to Dirichlet boundary conditions implies that we need only look for
positive eigenvalues: λ > 0. In Exercises , , the skeptical reader is asked to check
explicitly that if λ ≤ 0 or λ is complex, then the boundary value problem (14.16) admits
only the trivial solution v(x) ≡ 0.

Setting λ = γ ω2 with ω > 0, the general solution to the differential equation is a
trigonometric function

v(x) = a cosωx+ b sinωx,
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where a, b are arbitrary constants whose values are specified by the boundary conditions.
The boundary condition at x = 0 requires a = 0. The second boundary condition requires

v(`) = b sinω` = 0.

Therefore, ω` must be an integer multiple of π, and so

ω =
π

`
,

2π

`
,

3π

`
, . . . .

We conclude that the eigenvalues and eigenfunctions of the boundary value problem (14.16)
are

λn = γ
(nπ

`

)2

, vn(x) = sin
nπx

`
, n = 1, 2, 3, . . . . (14.17)

The corresponding separable solutions (14.14) to the heat equation with the given boundary
conditions are

un(t, x) = exp

(
−

γ n2 π2 t

`2

)
sin

nπx

`
, n = 1, 2, 3, . . . . (14.18)

Each represents a trigonometrically oscillating temperature profile that maintains its form
while decaying at an exponential rate to zero. The first of these,

u1(t, x) = exp

(
−

γ π2 t

`2

)
sin

πx

`
,

experiences the slowest decay. The higher “frequency” modes un(t, x), n ≥ 2, all go to
zero at a faster rate, with those having a highly oscillatory temperature profile, where
n À 0, effectively disappearing almost instantaneously. Thus, small scale temperature
fluctuations tend to rapidly cancel each other out through diffusion of heat energy.

Linear superposition is used to assemble the general series solution

u(t, x) =
∞∑

n=1

bn un(t, x) =
∞∑

n=1

bn exp

(
−

γ n2 π2 t

`2

)
sin

nπx

`
(14.19)

as a combination of the separable solutions. Assuming that the series converges, the initial
temperature profile is

u(0, x) =
∞∑

n=1

bn sin
nπx

`
= f(x). (14.20)

This has the form of a Fourier sine series (12.36) on the interval [0, ` ] for the initial
temperature profile f(x). By orthogonality of the eigenfunctions — which is a direct
consequence of the self-adjointness of the underlying boundary value problem (14.16) —
the coefficients are determined by the inner product formulae (12.37), and so

bn =
2

`

∫ `

0

f(x) sin
nπx

`
dx, n = 1, 2, 3, . . . . (14.21)

The resulting solution (14.19) describes the Fourier sine series for the temperature u(t, x)
of the bar at each later time t ≥ 0. It can be rigorously proved that, for quite general initial
conditions, the Fourier series does indeed converge to a solution to the initial-boundary
value problem, [146].

1/12/04 568 c© 2003 Peter J. Olver



0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

0.2 0.4 0.6 0.8 1

-0.2

-0.1

0.1

0.2

Figure 14.1. A Solution to the Heat Equation.

Example 14.1. Consider the initial temperature profile

u(0, x) = f(x) =





−x, 0 ≤ x ≤ 1
5 ,

x− 2
5 , 1

5 ≤ x ≤ 7
10 ,

1− x, 7
10 ≤ x ≤ 1,

(14.22)

on a bar of length 1, plotted in the first graph in Figure 14.1. Using (14.21), the first few
Fourier coefficients of f(x) are computed as

b1 = .0448 . . . , b2 = − .096 . . . , b3 = − .0145 . . . , b4 = 0,

b5 = − .0081 . . . , b6 = .0066 . . . , b7 = .0052 . . . , b8 = 0,
. . . .

Setting γ = 1, the resulting Fourier series solution to the heat equation is

u(t, x) =
∞∑

n=1

bn un(t, x) =
∞∑

n=1

bn e−n2 π2 t sinnπx

= .0448 e−π
2 t sinπx− .096 e−4π2 t sin 2πx− .0145 e−9π2 t sin 3πx− · · · .

In Figure 14.1, the solution is plotted at the successive times t = ., .02, .04, . . . , .1. Observe
that the corners in the initial data are immediately smoothed out. As time progresses,
the solution decays at an exponential rate of π2

≈ 9.87 to a uniform, zero temperature,
which is the equilibrium temperature distribution for the homogeneous Dirichlet boundary
conditions. As the solution decays to thermal equilibrium, it also assumes the progressively
more symmetric shape of a single sine arc, of exponentially decreasing amplitude, which
is merely the profile of the first term in its Fourier series.

Smoothing and Long Time Behavior

The fact that we can write the solution to an initial-boundary value problem in the
form of an infinite series is progress of a sort. However, because it cannot be summed in
closed form, this “solution” is considerably less satisfying than having a direct, explicit
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formula. Nevertheless, there are important qualititative and quantitative features of the
solution that can be easily gleaned from such series expansions.

If the initial data f(x) is piecewise continuous, then its Fourier coefficients are uni-
formly bounded; indeed, for any n ≥ 1,

| bn | ≤
2

`

∫ `

0

∣∣∣ f(x) sin nπx

`

∣∣∣ dx ≤
2

`

∫ `

0

| f(x) | dx ≡ M. (14.23)

This property holds even for quite irregular data; for instance, the Fourier coefficients
(12.50) of the delta function are also uniformly bounded. Under these conditions, each
term in the series solution (14.19) is bounded by an exponentially decaying function

∣∣∣∣ bn exp

(
−

γ n2 π2

`2
t

)
sin

nπx

`

∣∣∣∣ ≤ M exp

(
−

γ n2 π2

`2
t

)
.

This means that, as soon as t > 0, most of the high frequency terms, n À 0, will be
extremely small. Only the first few terms will be at all noticeable, and so the solution
essentially degenerates into a finite sum over the first few Fourier modes. As time in-
creases, more and more of the Fourier modes will become negligible, and the sum further
degenerates into progressively fewer significant terms. Eventually, as t → ∞, all of the
Fourier modes will decay to zero. Therefore, the solution will converge exponentially fast
to a zero temperature profile: u(t, x) → 0 as t → ∞, representing the bar in its final
uniform thermal equilibrium. The fact that its equilibrium temperature is zero is a direct
consequence of the fact that we are holding both ends of the bar fixed at zero temperature
— any initial heat in the bar will eventually be dissipated away through its two ends. The
last term to disappear is the one with the slowest decay, namely

u(t, x) ≈ b1 exp

(
−

γ π2

`2
t

)
sin

πx

`
, where b1 =

1

π

∫ π

0

f(x) sinx dx. (14.24)

Generically, b1 6= 0, and the solution approaches thermal equilibrium exponentially fast
with rate equal to the smallest eigenvalue, λ1 = γ π2/`2, which is proportional to the
thermal diffusivity divided by the square of the length of the bar. The longer the bar,
or the smaller the diffusivity, the longer it takes for the effect of holding the ends at zero
temperature to propagate along the entire bar. Also, again provided b1 6= 0, the asymptotic
shape of the temperature profile is a small sine arc, just as we observed in Example 14.1.
In exceptional situations, namely when b1 = 0, the solution decays even faster, at a rate
equal to the eigenvalue λk = γ k2 π2/`2 corresponding to the first nonzero term, bk 6= 0, in
the series; its asymptotic shape now oscillates k times over the interval.

The heat equation’s smoothing effect on irregular initial data by fast damping of the
high frequency modes underlies its effectiveness for smoothing out and denoising signals.
We take the initial data u(0, x) = f(x) to be a noisy signal, and then evolve the heat
equation forward to a prescribed time t? > 0. The resulting function g(x) = u(t?, x) will
be a smoothed version of the original signal f(x) in which most of the high frequency
noise has been eliminated. Of course, if we run the heat flow for too long, all of the
low frequency features will be also be smoothed out and the result will be a uniform,
constant signal. Thus, the choice of stopping time t? is crucial to the success of this
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Figure 14.2. Denoising a Signal Using the Heat Equation.

method. Figure 14.2 shows the effect running the heat equation, with γ = 1, to times
t = 0., .00001, .00005, .0001, .001, .01 on the same signal from Figure 13.6. Observe how
quickly the noise is removed. By the final time, the overall smoothing effect of the heat
flow has caused significant degradation (blurring) of the original signal. The heat equation
approach to denoising has the advantage that no Fourier coefficients need be explicitly
computed, nor does one need to reconstruct the smoothed signal from its remaining Fourier
coefficients. The final section discusses some numerical methods that can be used to solve
the heat equation directly.

Another, closely related observation is that, for any fixed time t > 0 after the initial
moment, the coefficients in the Fourier series (14.19) decay exponentially fast as n → ∞.
According to the discussion at the end of Section 12.3, this implies that the solution u(t, x)
is a very smooth, infinitely differentiable function of x at each positive time t, no matter

how unsmooth the initial temperature profile. We have discovered the basic smoothing
property of heat flow.

Theorem 14.2. If u(t, x) is a solution to the heat equation with piecewise continuous
initial data f(x) = u(0, x), or, more generally, initial data satisfying (14.23), then, for any
t > 0, the solution u(t, x) is an infinitely differentiable function of x.

After even a very short amount of time, the heat equation smoothes out most, and,
eventually, all of the fluctuations in the initial temperature profile. As a consequence, it
becomes impossible to reconstruct the initial temperature u(0, x) = f(x) by measuring the
temperature distribution h(x) = u(t, x) at a later time t > 0. Diffusion is irreversible —we
cannot run the heat equation backwards in time! Indeed, if the initial data u(0, x) = f(x)
is not smooth, there is no function u(t, x) for t < 0 that could possibly yield such an
initial distribution because all corners and singularities are smoothed out by the diffusion
process as t goes forward! Or, to put it another way, the Fourier coefficients (14.21) of any
purported solution will be exponentially growing when t < 0, and so high frequency noise
will completely overwhelm the solution. For this reason, the backwards heat equation is
said to be ill-posed .
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On the other hand, the unsmoothing effect of the backwards heat equation does have
potential benefits. For example, in image processing, diffusion will gradually blur an image.
Image enhancement is the reverse process, and so can be done by running the heat flow
backwards in some well-prescribed manner. For instance, one can restrict to the first few
Fourier modes, and then the corresponding backwards evolution is well-defined. Similar
problems occur in the reconstruction of subterranean profiles from seismic data, a problem
of great concern in the oil and gas industry. In forensics, determining the time of death
based on the current temperature of a corpse also requires running the equations governing
the dissipation of body heat backwards in time. For these and other applications, a key
issue in contemporary research is how to cleverly circumventing the ill-posedness of the
backwards heat flow.

Remark : The irreversibility of the heat equation points out a crucial distinction be-
tween partial differential equations and ordinary differential equations. Ordinary differ-
ential equations are always reversible — unlike the heat equation, existence, uniqueness
and continuous dependence properties of solutions are all equally valid in reverese time
(although the detailed qualitative and quantitative properties of solutions can very well
depend upon whether time is running forwards or backwards). The irreversibility of par-
tial differential equations modeling the diffusive processes in our universe may well be why
Time’s Arrow points only to the future.

The Heated Ring

Let us next consider the periodic boundary value problem modeling heat flow in an
insulated circular ring. Let us fix the length of the ring to be ` = 2π, with −π < x < π

representing “angular” coordinate around the ring. For simplicity, we also choose units in
which the thermal diffusivity is γ = 1. Thus, we seek to solve the heat equation

∂u

∂t
=

∂2u

∂x2
, −π < x < π, t > 0, (14.25)

subject to periodic boundary conditions

u(t,−π) = u(t, π),
∂u

∂x
(t,−π) =

∂u

∂x
(t, π), t ≥ 0. (14.26)

The initial temperature distribution is

u(0, x) = f(x), −π < x < π. (14.27)

The resulting temperature u(t, x) will be a periodic function in x of period 2π.

Substituting the separable solution ansatz u(t, x) = e−λtv(x) into the heat equation
and the boundary conditions leads to the periodic eigenvalue problem

d2v

dx2
+ λ v = 0, v(−π) = v(π), v(−π) = v(π). (14.28)

As we know, in this case the eigenvalues are λn = n2 where n = 0, 1, 2, . . . is a non-negative
integer, and the corresponding eigenfunction solutions are the trigonometric functions

vn(x) = cosnx, ṽn(x) = sinnx, n = 0, 1, 2, . . . .
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Note that λ0 = 0 is a simple eigenvalue, with constant eigenfunction cos 0x = 1 — the
sine solution sin 0x ≡ 0 is trivial — while the positive eigenvalues are, in fact, double, each
possessing two linearly independent eigenfunctions. The corresponding separable solutions
to the heated ring equation are

un(t, x) = e−n
2 t cosnx, ũn(t, x) = e−n

2 t sinnx, n = 0, 1, 2, 3, . . . .

The resulting infinite series solution is

u(t, x) = 1
2 a0 +

∞∑

n=1

(
an e−n

2 t cosnx+ bn e−n
2 t sinnx

)
. (14.29)

The initial conditions require

u(0, x) = 1
2 a0 +

∞∑

n=1

(
an cosnx+ bn sinnx

)
= f(x), (14.30)

which is precisely the Fourier series of the initial temperature profile f(x). Consequently,

an =
1

π

∫ π

−π

f(x) cosnx dx, bn =
1

π

∫ π

−π

f(x) sinnx dx, (14.31)

are the usual Fourier coefficients of f(x).

As in the Dirichlet problem, after the initial instant, the high frequency terms in
the series (14.29) become extremely small, since e−n

2 t
¿ 1 for n À 0. Therefore, as

soon as t > 0, the solution essentially degenerates into a finite sum over the first few
Fourier modes. Moreover, as t →∞, all of the Fourier modes will decay to zero with the
exception of the constant one, with null eigenvalue λ0 = 0. Therefore, the solution will
converge exponentially fast to a constant temperature profile:

u(t, x) −→
1

2
a0 =

1

2π

∫ π

−π

f(x) dx,

which equals the average of the initial temperature profile. Physically, we observe that the
heat energy is redistributed so that the ring achieves a uniform constant temperature and
is in thermal equilibrium. Indeed, the total heat energy

E =

∫ π

−π

u(t, x) dx = constant (14.32)

is conserved, meaning constant, for all time; the proof of this fact is left as an Exercise .

Prior to equilibrium, only the lowest frequency Fourier modes will still be noticeable,
and so the solution will asymptotically look like

u(t, x) ≈ 1
2 a0 + e− t(a1 cosx+ b1 sinx) = 1

2 a0 + r1 e− t cos(x+ δ1), (14.33)

where

a1 = r1 cos δ1 =
1

2π

∫ π

−π

f(x) cosx dx, b1 = r1 sin δ1 =
1

2π

∫ π

−π

f(x) sinx dx.
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Thus, for most initial data, the solution approaches thermal equilibrium exponentially
fast, at a unit rate. The exceptions are when r1 =

√
a2
1 + b2

1 = 0, for which the rate of
convergence is even faster, namely at a rate e−kt where k is the smallest integer such that
rk =

√
a2
k + b2

k 6= 0.

Inhomogeneous Boundary Conditions

So far, we have concentrated our attention on homogeneous boundary conditions.
There is a simple trick that will convert a boundary value problem with inhomogeneous
but constant Dirichlet boundary conditions,

u(t, 0) = α, u(t, `) = β, t ≥ 0, (14.34)

into a homogeneous Dirichlet problem. We begin by solving for the equilibrium tempera-
ture profile, which is the affine function

u?(x) = α+
β − α

`
x. (14.35)

The difference

ũ(t, x) = u(t, x)− u?(x) = u(t, x)− α−
β − α

`
x (14.36)

measures the deviation of the solution from equilibrium. It clearly satisfies the homoge-
neous boundary conditions at both ends:

ũ(t, 0) = 0 = ũ(t, `).

Moreover, by linearity, since both u(t, x) and u?(x) are solutions to the heat equation, so
is ũ(t, x). The initial data must be similarly adapted:

ũ(0, x) = f̃(x) = f(x)− u?(x) = f(x)− α−
β − α

`
x.

Solving the resulting homogeneous initial value problem, we write ũ(t, x) in Fourier series
form (14.19), where the Fourier coefficients are computed from the modified initial data

f̃(x). The solution to the inhomogeneous boundary value problem thus has the series form

u(t, x) = α+
β − α

`
x +

∞∑

n=1

b̃n exp

(
−

γ n2 π2

`2
t

)
sin

nπx

`
, (14.37)

where

b̃n =
2

`

∫ `

0

f̃(x) sin
nπx

`
dx, n = 1, 2, 3, . . . . (14.38)

Since, for any reasonable initial data, ũ(t, 0) → 0 will decay to zero at an exponential
rate as t → ∞, the actual temperature profile (14.37) will asymptotically decay to the
equilibrium profile,

u(t, x) −→ u?(x) = α +
β − α

`
x

at the same exponentially fast rate.
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This method does not apply when the boundary conditions are time-dependent:
u(t, 0) = α(t), u(t, `) = β(t). Attempting to mimic the preceding technique, we discover
that the deviation

ũ(t, x) = u(t, x)− u?(t, x), where u?(t, x) = α(t) +
β(t)− α(t)

`
x, (14.39)

does satisfy the homogeneous boundary conditions, but solves an inhomogeneous version
of the heat equation:

∂ũ

∂t
=

∂2ũ

∂x2
− h(t, x), where h(t, x) =

∂h?
∂t
(t, x). (14.40)

Solution techniques in this case will be discussed below.

14.2. Symmetry and Similarity.

So far we have relied almost exclusively on the method of separation of variables to
construct explicit solutions to partial differential equations. Beyond this, the most useful
solution technique relies on exploiting inherent symmetry properties of the differential
equation. Unlike separation of variables†, symmetry methods can be also successfully
applied to produce solutions to a broad range of nonlinear partial differential equations;
some simple examples can be found in Chapter 22. While we do not have the space or
required mathematical tools to develop the full apparatus of symmetry techniques, we can
introduce the important concept of a similarity solution, applied in the particular context
of the heat equation.

In general, by a symmetry of an equation, we mean a transformation, either lineqr as
in Section 7.2, affine, as in Section 7.3, or even nonlinear, that takes solutions to solutions.
Thus, if we know a symmetry, and one solution, then we can construct a second solution
by applying the symmetry. And, possibly, a third solution by applying the symmetry yet
again. And so on. If we know lots of symmetries, then we can produce lots and lots of
solutions by this simple device.

Remark : General symmetry techniques are founded on the theory of Lie groups,
named after the influential nineteenth century Norwegian mathematician Sophus Lie (pro-
nounced “Lee”). Lie’s theory provides an algorithm for completely determining all the
symmetries of a given differential equation, but this is beyond the scope of this introduc-
tory text. However, direct inspection and/or physical intuition will often detect the most
important symmetries without appealing to such a sophisticated theory. Modern appli-
cations of Lie’s symmetry methods to partial differential equations arising in physics and
engineering can be traced back to the influential book of G. Birkhoff, [18], on hydrody-
namics. A complete and comprehensive treatment of symmetry methods can be found in
the first author’s book [117], and, at a more introductory level, in the recent books by
Cantwell, [32], with particular emphasis on the equations of fluid mechanics, and Hydon,
[84].

† This is not quite fair: separation of variables can be applied to a few very special partial
differential equations such as Hamilton–Jacobi equations, [105].
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The heat equation serves as an excellent testing ground for the general symmetry
methodology, as it admits a rich variety of symmetry transformations that take solutions
to solutions. The simplest are the translations. Moving the space and time coordinates by
a fixed amount,

t 7−→ t− a, x 7−→ x− b, (14.41)

where a, b are constants, changes the function u(t, x) into the translated function

U(t, x) = u(t− a, x− b). (14.42)

A simple application of the chain rule proves that the partial derivatives of U with respect
to t and x agree with the corresponding partial derivatives of u, so

∂U

∂t
=

∂u

∂t
,

∂U

∂x
=

∂u

∂x
,

∂2U

∂x2
=

∂2u

∂x2
,

and so on. In particular, the function U(t, x) is a solution to the heat equation Ut = γ Uxx

whenever u(t, x) also solves ut = γ uxx. Physically, the translational symmetry formalizes
the property that the heat equation models a homogeneous medium, and hence the solution
does not depend on the choice of reference point, i.e., the origin of our coordinate system.

As a consequence, each solution to the heat equation will produce an infinite family
of translated solutions. For example, starting with the separable solution

u(t, x) = e−γ t sinx,

we immediately produce the additional solutions

u(t, x) = e−γ (t−a) sinπ (x− b),

valid for any choice of constants a, b.

Warning : Typically, the symmetries of a differential equation do not respect initial
or boundary conditions. For instance, if u(t, x) is defined for t > 0 and in the domain
0 ≤ x ≤ `, then its translated version U(t, x) is defined for t > a and in the translated
domain b ≤ x ≤ `+ b, and so will solve an appropriately translated initial-boundary value
problem.

A second, even more important class of symmetries are the scaling invariances. We
already know that if u(t, x) is a solution, so is any scalar multiple c u(t, x); this is a simple
consequence of linearity of the heat equation. We can also add an arbitrary constant to
the temperature, noting that

U(t, x) = cu(t, x) + k (14.43)

is a solution for any choice of constants c, k. Physically, the transformation (14.43) amounts
to a change in the scale for measuring temperature. For instance, if u is measured degrees
Celsius, and we set c = 9

5 and k = 32, then U = 9
5 u + 32 will be measured in degrees

Fahrenheit. Thus, reassuringly, the physical processes described by the heat equation do
not depend upon our choice of thermometer.
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More interestingly, suppose we rescale the space and time variables:

t 7−→ α t, x 7−→ β x, (14.44)

where α, β > 0 are positive constants. The effect of such a scaling transformation is to
change the function u(t, x) into a rescaled function

U(t, x) = u(α t, β x). (14.45)

The derivatives of U are related to those of u according to the following formulae, which
are direct consequences of the multi-variable chain rule:

∂U

∂t
= α

∂u

∂t
,

∂U

∂x
= β

∂u

∂x
,

∂2U

∂x2
= β2 ∂2u

∂x2
.

Therefore, if u satisfies the heat equation ut = γ uxx, then U satisfies the rescaled heat
equation

Ut = α ut = α γ uxx =
α γ

β2
Uxx,

which we rewrite as
Ut = ΓUxx, where Γ =

γ α

β2
. (14.46)

Thus, the net effect of scaling space and time is merely to rescale the diffusion coefficient
in the heat equation.

Remark : Physically, the scaling symmetry (14.44) corresponds to a change in the
physical units used to measure time and distance. For instance, to change from seconds to
minutes, set α = 60, and from meters to yards, set β = 1.0936. The net effect (14.46) on
the diffusion coefficient is a reflection of its physical units, namely distance2/time.

In particular, if we choose

α =
1

γ
, β = 1,

then the rescaled diffusion coefficient becomes Γ = 1. This observation has the following
important consequence. If U(t, x) solves the heat equation for a unit diffusivity, Γ = 1,
then

u(t, x) = U(γ t, x) (14.47)

solves the heat equation for the diffusivity γ. Thus, the only effect of the diffusion coefficient
γ is to speed up or slow down time! A body with diffusivity γ = 2 will cool down twice
as fast as a body (of the same shape subject to the same boundary conditions and initial
conditions) with diffusivity γ = 1. Note that this particular rescaling has not altered the
space coordinates, and so U(t, x) is defined on the same domain as u(t, x).

On the other hand, if we set α = β2, then the rescaled diffusion coefficient is exactly
the same as the original: Γ = γ. Thus, the transformation

t 7−→ β2 t, x 7−→ β x, (14.48)
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does not alter the equation, and hence defines a scaling symmetry , also known as a simi-
larity transformation, for the heat equation. Combining (14.48) with the linear rescaling
u 7→c u, we make the elementary, but important observation that if u(t, x) is any solution
to the heat equation, then so is the function

U(t, x) = c u(β2 t, β x), (14.49)

for the same diffusion coefficient γ.

Warning : As in the case of translations, rescaling space by a factor β 6= 1 will alter
the domain of definition of the solution. If u(t, x) is defined for 0 ≤ x ≤ `, then U(t, x) is
defined for 0 ≤ x ≤ `/β.

In particular, suppose that we have solved the heat equation for the temperature u(t, x)
on a bar of length 1, subject to certain initial and boundary conditions. We are then given
a bar composed of the same material of length 2. Since the diffusivity coefficient has not
changed, and we can directly construct the new solution U(t, x) by rescaling. Setting β = 1

2
will serve to double the length. If we also rescale time by a factor α = β2 = 1

4 , then the
rescaled function U(t, x) = u

(
1
4 t, 1

2 x
)
will be a solution of the heat equation on the longer

bar with the same diffusivity constant. The net effect is that the rescaled solution will be
evolving four times as slowly as the original solution u(t, x, y). Thus, it effectively takes a
bar that is double the size four times as long to cool down.

14.3. The Fundamental Solution.

One disadvantage of the Fourier series solution to the heat equation is that it is not
nearly as explicit as one might desire for either practical applications, numerical compu-
tations, or even further theoretical investigations and developments. An alternative, and
quite useful approach is based on the idea of the fundamental solution, which derives its
inspiration from the Green’s function method for solving boundary value problems. For
the heat equation, the fundamental solution measures the effect of an initial concentrated
heat source.

Let us initially restrict our attention to homogeneous boundary conditions. The idea is
to first analyze the case when the initial data u(0, x) = δy(x) = δ(x−y) is a delta function,
which we can interpret as a highly concentrated unit heat source, e.g., a soldering iron,
that is instantaneously applied at the position y along the bar. The heat will diffuse away
from its initial concentration, and the resulting fundamental solution is denoted by

u(t, x) = F (t, x; y), with F (0, x; y) = δ(x− y). (14.50)

For each fixed y, the fundamental solution, as a function of t > 0 and x, must satisfy the
differential equation as well as the specified homogeneous boundary conditions.

Once we have found the fundamental solution, we can then use linear superposition
to reconstruct the general solution to the initial-boundary value problem. Namely, we first
write the initial data

u(0, x) = f(x) =

∫ `

0

δ(x− y) f(y) dy (14.51)
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as a linear superposition of delta functions, as in (11.37). Linearity implies that the solution
is then the same superposition of the responses to those concentrated delta profiles:

u(t, x) =

∫ `

0

F (t, x; y) f(y) dy. (14.52)

Assuming that we can differentiate under the integral sign, the fact that F (t, x; y) satisfies
the differential equation and the homogeneous boundary conditions for each fixed y imme-
diately implies that the integral (14.52) is also a solution, and, moreover, has the correct
initial and (homogeneous) boundary conditions.

Unfortunately, most boundary value problems do not have fundamental solutions that
can be written down in closed form. An important exception is the case of an infinitely
long homogeneous bar, which requires solving the heat equation

∂u

∂t
=

∂2u

∂x2
, for −∞ < x <∞, t > 0. (14.53)

For simplicity, we have chosen units in which the thermal diffusivity is γ = 1. The solution
u(t, x) is defined for all x ∈ R, and has initial conditions

u(0, x) = f(x) for −∞ < x <∞.

In order to specify the solution uniquely, we require that the temperature be square-
integrable at all times, so that

∫ ∞

−∞

|u(t, x) |2 dx < ∞ for all t ≥ 0. (14.54)

Thus, roughly speaking, the temperature should be small at large distances, which are the
relevant boundary conditions for this situation.

On an infinite interval, the Fourier series solution to the heat equation becomes a
Fourier integral. We write the initial temperature distribution as a superposition

f(x) =

∫ ∞

−∞

f̂(k) e2π i kx dk,

of complex exponentials e2π i kx, where f̂(k) is the Fourier transform (13.72) of f(x). The
corresponding separable solutions to the heat equation are

uk(t, x) = e−4π2 k2 t e2π i kx = e−4π2 k2 t
(
cos 2π i kx+ i sin 2π i kx

)
, (14.55)

where the frequency variable k is allowed to assume any real value. We invoke linear
superposition to combine these complex solutions into a Fourier integral

u(t, x) =

∫ ∞

−∞

e−4π2 k2 t e2π i kx f̂(k) dk (14.56)

to form the solution to the initial value problem for the heat equation.
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Figure 14.3. The Fundamental Solution to the Heat Equation.

In particular, to recover the fundamental solution, we take the initial temperature
profile to be a delta function δy(x) = δ(x − y) concentrated at x = y. According to
(13.100), its Fourier transform is

δ̂y(k) = e−2π i ky.

Plugging this into (14.56), and then referring to our table of Fourier transforms, we find
the following explicit formula for the fundamental solution

F (t, x; y) =

∫ ∞

−∞

e−4π2 k2 t e2π i k (x−y) dk =
1

2
√

π t
e−(x−y)2/(4 t). (14.57)

As you can verify, for each fixed y, the function F (t, x; y) is indeed a solution to the heat
equation for all t > 0. In addition,

lim
t→ 0+

F (t, x; y) =

{
0, x 6= y,

∞, x = y.

Furthermore, its integral

E =

∫ ∞

−∞

F (t, x; y) dx = 1, (14.58)

which represents the total heat energy is constant — in accordance with the law of con-
servation of energy, cf. Exercise . We conclude that, at the initial instant t = 0, the
fundamental solution satisfies the original limiting definition (11.30), (11.31) of the delta
function, and so F (0, x; y) = δy(x) has the desired initial temperature profile. As graphed
in Figure 14.3 at times t = .05, .1, 1., 10., F (t, x; y) starts out as a delta spike at x = y

and then immediately smoothes out into a tall and narrow bell-shaped curve, centered at
x = y. As time increases, the solution shrinks and widens, decaying everywhere to zero.
Its maximal amplitude is proportional to t−1/2, while its overall width is proportional to
t1/2. The total heat energy (14.58), which is the area under the graph, remains fixed while
gradually spreading out over the entire real line.
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Remark : In probability, these exponentially bell-shaped curves are known as normal
or Gaussian distributions. The width of the bell curve corresponds to the standard devi-

ation. For this reason, the fundamental solution to the heat equation sometimes referred
to as a “Gaussian filter”.

Remark : One of the non-physical artifacts of the heat equation is that the heat energy
propagates with infinite speed. Indeed, the effect of any initial concentration of heat
energy will immediately be felt along the entire length of an infinite bar, because, at
any t > 0, the fundamental solution is nonzero for all x. (The graphs in Figure 14.3
are a little misleading because they fail to show the extremely small, but still positive
exponentially decreasing tails in the solution.) This effect, while more or less negligible at
large distances, is nevertheless in clear violation of physical intuition — not to mention
relativity that postulates that signals cannot propagate faster than the speed of light.
Despite this non-physical property, the heat equation remains an extremely accurate model
for heat propagation and similar diffusive phenomena.

With the fundamental solution in hand, we can then adapt the linear superposition
formula (14.52) to reconstruct the general solution

u(t, x) =
1

2
√

π t

∫ ∞

−∞

e−(x−y)2/(4 t) f(y) dy (14.59)

to our initial value problem (14.53). In other words, the solutions are obtained by convo-
lution, cf. (13.113),

u(t, x) = g(t, x) ∗ f(x), where g(t, x) = F (t, x; 0) = e−x
2/(4 t),

of the initial data with a one-parameter family of progressively wider and shorter Gaussian
filters. since it coincides with the heat equation solution, Gaussian filter convolution has
the same smoothing effect on the initial signal f(x). Indeed, the convolution integral
(14.59) serves to replace each initial value f(x) by a weighted average of nearby values, the
weight being determined by the Gaussian distribution. The weighted averaging operation
has the effect of smoothing out high frequency variations in the signal, and, consequently,
the Gaussian convolution formula (14.59) provides an effective method of signal and image
denoising. In fact, for practical reasons, the graphs displayed earlier in Figure 14.2 were
computed by using a standard numerical integration routine to evaluate the convolution
(14.59), rather than a numerical solution scheme for the heat equation.

Example 14.3. An infinite bar is initially heated to unit temperature along a finite
interval. This corresponds to an initial temperature profile

u(0, x) = f(x) = σ(x− a)− σ(x− b) =

{
1, a < x < b,

0, otherwise.

The corresponding solution to the heat equation is obtained by the integral formula (14.59),
producing

u(t, x) =
1

2
√

π t

∫ b

a

e−(x−y)2/(4 t) dy =
1

2

[
erf

(
x− a

2
√

t

)
− erf

(
x− b

2
√

t

)]
, (14.60)
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Figure 14.5. Error Function Solution to the Heat Equation.

where

erf x =
2
√

π

∫ x

0

e−z
2

dz (14.61)

is known as the error function due to its applications in probability and statistics, [Feller].
A graph appears in Figure 14.4. The error function integral cannot be written in terms
of elementary functions. Nevertheless, its importance in various applications means that
its properties have been well studied, and its values tabulated, [48]. In particular, it has
asymptotic values

lim
x→∞

erf x = 1, lim
x→−∞

erf x = −1. (14.62)

A graph of the solution (14.60) when a = −5, b = 5, at successive times t =
0., .1, 1, 5, 30, 300, is displayed in Figure 14.5. Note the initial smoothing or blurring of
the sharp interface, followed by a gradual decay to thermal equilibrium.

The Inhomogeneous Heat Equation

The fundamental solution can be also used to solve the inhomogeneous heat equation

ut = uxx + h(t, x), (14.63)

1/12/04 582 c© 2003 Peter J. Olver



that models a bar under an external heat source h(t, x), that might depend upon both
position and time. We begin by solving the particular case

ut = uxx + δ(t− s) δ(x− y), (14.64)

whose inhomogeneity represents a heat source of unit magnitude that is concentrated at a
position 0 < y < ` and applied instantaneously at a single time t = s > 0. Physically, we
apply a soldering iron or laser beam to a single spot on the bar for a brief moment. Let
us also impose homogeneous initial conditions

u(0, x) = 0 (14.65)

as well as homogeneous boundary conditions of one of our standard types. The resulting
solution

u(t, x) = G(t, x; s, y) (14.66)

will be referred to as the general fundamental solution to the heat equation. Since a heat
source which is applied at time s will only affect the solution at later times t ≥ s, we
expect that

G(t, x; s, y) = 0 for all t < s. (14.67)

Indeed, since u(t, x) solves the unforced heat equation at all times t < s subject to homo-
geneous boundary conditions and has zero initial temperature, this follows immediately
from the uniqueness of solutions to the initial-boundary value problem.

Once we know the general fundamental solution (14.66), we are able to solve the
problem for a general external heat source (14.63) by appealing to linearity. We first write
the forcing as a superposition

h(t, x) =

∫ ∞

0

∫ `

0

h(s, y) δ(t− s) δ(x− y) dy ds (14.68)

of concentrated instantaneous heat sources. Linearity allows us to conclude that the solu-
tion is given by the self-same superposition formula

u(t, x) =

∫ t

0

∫ `

0

h(s, y)G(t, x; s, y) dy ds. (14.69)

The fact that we only need to integrate over times 0 ≤ s ≤ t follows from (14.67).

Remark : If we have a nonzero initial condition, u(0, x) = f(x), then we appeal to
linear superposition to write the solution

u(t, x) =

∫ `

0

F (t, x; y) f(y) dy +

∫ t

0

∫ `

0

h(s, y)G(t, x; s, y) dy ds (14.70)

as a combination of (a) the solution with no external heat source, but inhomogeneous
initial conditions, plus (b) the solution with homogeneous initial conditions but nonzero
heat source.
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Let us solve the forced heat equation in the case of a infinite bar, so −∞ < x < ∞.
We begin by computing the general fundamental solution to (14.64), (14.65). As before,
we take the Fourier transform of both sides of the partial differential equation with respect
to x. In view of (13.100), (13.104), we find

∂û

∂t
+ 4π2 k2 û = e−2π i k y δ(t− s), (14.71)

which is an inhomogeneous first order ordinary differential equation for the Fourier trans-
form û(t, k) of u(t, x). Assuming s > 0, by (14.67), the initial condition is

û(0, k) = 0. (14.72)

We solve the initial value problem by the usual method, [24]. Multiplying (14.71) by the

integrating factor e4π2 k2 t yields

∂

∂t

(
e4π2 k2 t û

)
= e4π2 k2 t−2π i ky δ(t− s).

Integrating both sides from 0 to t and using the initial condition (14.72), we

û(t, k) = e4π2 k2(s−t)−2π i ky σ(t− s),

where σ(t) is the usual step function (11.42). Finally, we apply the inverse Fourier trans-
form formula (13.74) and then (14.57), we deduce that

G(t, x; s, y) = u(t, x) = σ(t− s)

∫ ∞

−∞

e4π2 k2(s−t)+2π i k (x−y) dk

=
σ(t− s)

2
√

π(t− s)
exp

[
−
(x− y)2

4(t− s)

]
= σ(t− s)F (t− s, x; y) .

Thus, the general fundamental solution is obtained by translating the fundamental solution
F (t, x; y) for the initial value problem to a starting time of t = s instead of t = 0. Thus, an
initial condition has the same aftereffect on the temperature as an instantaneous applied
heat source of the same magnitude. Finally, the superposition principle (14.69) produces
the solution

u(t, x) =

∫ t

0

∫ ∞

−∞

h(s, y)

2
√

π(t− s)
exp

[
−
(x− y)2

4(t− s)

]
dy ds. (14.73)

to the heat equation with source term on an infinite bar.

Example 14.4.

The Root Cellar Problem

As a final example, we discuss a problem that involves analysis of the heat equation
on a semi-infinite interval. The question is: how deep should you dig a root cellar? In the
prerefrigeration era, a root cellar was used to keep food cool in the summer, but not freeze
in the winter. We assume that the temperature in the earth only depends on the depth
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and the time of yea. Let u(t, x) denote the deviation in the temperature in the earth at
depth x > 0 and time t from its annual mean. We shall assume that the temperature at
the earth’s surface, x = 0, fluctuates in a periodic manner; specifically, we set

u(t, 0) = a cosω t, (14.74)

where the oscillatory frequency

ω =
2π

365.25 days
= 2.0× 10−7sec−1 (14.75)

refers to yearly temperature variations. In this model, we shall ignore daily temperature
fluctuations as their effect is not significant below a thin surface layer. At large depth the
temperature is assumed to be unvarying:

u(t, x) −→ 0 as x −→ ∞, (14.76)

where 0 refers to the mean temperature.

Thus, we must solve the heat equation on a semi-infinite bar 0 < x < ∞, with time-
dependent boundary conditions (14.74), (14.76) at the ends. The analysis will be simplified
a little if we replace the cosine by a complex exponential, and so look for a complex solution
with boundary conditions

u(t, 0) = a e iω t, lim
x→∞

u(t, x) = 0. (14.77)

Let us try a separable solution of the form

u(t, x) = v(x) e i ω t. (14.78)

Substituting this expression into the heat equation ut = γ uxx leads to

iω v(x) e iω t = γ v′′(x) e iω t.

Canceling the common exponential factors, we conclude that v(x) should solve the bound-
ary value problem

γ v′′(x) = i ω v, v(0) = a, lim
x→∞

v(x) = 0.

The solutions to the ordinary differential equation are

v1(x) = e
√

i ω/γ x = e
√
ω/2γ (1+ i )x and v2(x) = e−

√
iω/γ x = e−

√
ω/2γ (1+ i ) x .

The first solution is exponentially growing as x → ∞, and so not appropriate to our
problem. The solution to the boundary value problem must therefore be a multiple,

v(x) = a e−
√
ω/2γ (1+ i ) x

of the exponentially decaying solution. Substituting back into (14.78), we find the (com-
plex) solution to the root cellar problem to be

u(t, x) = a e−x
√
ω/2γ e

iω
(
t−
√
ω/2γ

)
x
. (14.79)
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The corresponding real solution is obtained by taking the real part,

u(t, x) = a e−x
√
ω/2γ cos

(
ω t−

√
ω

2γ
x

)
. (14.80)

The first term in (14.80) is exponentially decaying as a function of the depth. Thus, the
further down one goes, the less noticeable the effect of the surface temperature fluctuations.
The second term is periodic with the same annual frequency ω. The interesting feature is
the phase lag in the response. The temperature at a given depth x is out of phase with
respect to the surface temperature fluctuations, with the phase lag

δ =

√
ω

2γ
x

depending linearly on depth. In particular, a cellar built at a depth where δ is an odd
multiple of π will be completely out of phase, being hottest in the winter, and coldest in
the summer. Thus, the (shallowest) ideal depth at which to build a root cellar would take
δ = π, corresponding to a depth of

x = π

√
2γ

ω
.

For typical soils in the earth, γ ≈ 10−6 meters2 sec−1, [X], and hence, by (14.75),
x ≈ 9.9 meters. However, at this depth, the relative amplitude of the oscillations is

e−x
√
ω/2γ = e−π = .04

and hence there is only a 4% temperature fluctuation. In Minnesota, the temperature
varies, roughly, from −40◦C to +40◦C, and hence our 10 meter deep root cellar would
experience only a 3.2◦C annual temperature deviation from the winter, when it is the
warmest, to the summer, where it is the coldest. Building the cellar twice as deep would
lead to a temperature fluctuation of .2%, now in phase with the surface variations, which
means that the cellar is, for all practical purposes, at constant temperature year round.

14.4. The Wave Equation.

The second important class of dynamical partial differential equations are those mod-
eling vibrations of continuous media. As we saw in Chapter 9, Newton’s Law implies that
the free vibrations of a discrete mechanical system are governed by a second order system
of ordinary differential equations of the form

M
d2u

dt2
= −Ku,

in which M is the positive definite, diagonal mass matrix, while K = A∗A = ATCA is the
positive definite (or semi-definite in the case of an unstable system) stiffness matrix.

The corresponding dynamical equations describing the small vibrations of continuous
media take an entirely analogous form

ρ
∂2u

∂t2
= −K[u ]. (14.81)
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In this framework, ρ describes the density of the medium, while K = L∗ ◦L is the same
self-adjoint differential operator, with appropriate boundary conditions, that appears in
the equilibrium equations. For one-dimensional media, such as a vibrating bar or string,
we are lead to a partial differential equation in the particular form

ρ(x)
∂2u

∂t2
=

∂

∂x

(
κ(x)

∂u

∂x

)
, 0 < x < `, (14.82)

where ρ(x) is the density of the bar or string at position x, while κ(x) > 0 denotes its
stiffness or tension. The second order partial differential equation (14.82) models the
dynamics of vibrations and waves in a broad range of continuous media, including elastic
vibrations of a bar, sound vibrations in a column of air, e.g., inside a wind instrument, and
also transverse vibrations of a string, e.g., a violin string. (However, bending vibrations of
a beam lead to a fourth order partial differential equation; see Exercise .) It also be used
to model small amplitude water waves, electromagnetic waves, including light, radio and
microwaves, and many others. A detailed derivation of the model from first principles in
the case of a vibrating string can be found in [146].

In addition, we must impose suitable boundary conditions. The usual suspects —
Dirichlet, Neumann, mixed, and periodic boundary conditions — continue to play a central
role, and have immediate physical interpretations. Tying down an end of string imposes
a Dirichlet condition u(t, 0) = α. A free end is prescribed by a homogeneous Neumann
boundary condition ux(t, 0) = 0. Periodic boundary conditions, as in (14.11), correspond
to the vibrations of a circular ring. As with all second order Newtonian systems of ordinary
differential equations, the solution to the full boundary value problem for the second order
partial differential equation will be uniquely specified by its initial displacement and initial
velocity:

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x). (14.83)

The simplest situation occurs when the medium is homogeneous, and so both its
density and stiffness are constant. Then the general vibration equation (14.82) reduces to
the one-dimensional wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
. (14.84)

The constant

c =

√
κ

ρ
> 0 (14.85)

is known as the wave speed , for reasons that will soon become apparent.

The method for solving such second order systems is motivated by our solution in the
discrete case discussed in Section 9.5. To keep matters simple, we shall concentrate on
the homogeneous wave equation (14.84), although the method is easily extended to the
general system (14.82). Since we anticipate solutions that are time periodic, we will try a
separable solution of the special form

u(t, x) = cos(ωt) v(x). (14.86)
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with trigonometric time dependence. Differentiating (14.86), we find

∂2u

∂t2
= −ω2 cos(ωt) v(x),

∂2u

∂x2
= cos(ωt) v′′(x).

Substituting these formulae into the wave equation (14.84) and canceling the common
cosine factors, we deduce that v(x) must satisfy the ordinary differential equation

c2 d2v

dx2
+ ω2 v = 0, (14.87)

in which λ = ω2 represents an eigenvalue for the second order differential operator K =
−c2 D2. Ignoring the boundary conditions for the moment, if ω > 0, the solutions are the

trigonometric functions cos
ωx

c
, sin

ωx

c
, and so we have constructed the explicit solutions

cosωt cos
ωx

c
, cosωt sin

ωx

c
,

to the wave equation. Now, in the original ansatz (14.86), the cosine could just as well be a
sine, and the same computation will apply. Therefore, we deduce two additional solutions

sinωt cos
ωx

c
, sinωt sin

ωx

c
.

Each of these four solutions represents a spatially periodic standing wave form of period
2πc/ω, that is vibrating with frequency ω. Note particularly that the smaller scale waves
vibrate faster.

On the other hand, if ω = 0, then (14.87) has the solution v = α x+ β, leading to the
solutions

u(t, x) = 1, and u(t, x) = x. (14.88)

The first is a constant, nonvibrating solution, while the second is also constant in time,
but will typically not satisfy the boundary conditions and so can be discarded. As we
learned in Chapter 9, the existence of a zero eigenvalue corresponds to an unstable mode
in the physical system, in which the displacement grows linearly in time. In the present
situation, these correspond to the two additional solutions

u(t, x) = t, and u(t, x) = x t, (14.89)

both of which satisfy the wave equation. Again, the second solution will typically not
satisfy the homogeneous boundary conditions, and can usually be safely ignored. These
null eigenfunction modes will only arise in unstable configurations.

The boundary conditions will serve to specify the particular eigenvalues and natural
frequencies of vibration. Consider first the case of a string of length ` with two fixed ends,
and thus subject to homogeneous Dirichlet boundary conditions

u(t, 0) = 0 = u(t, `).
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This constitutes a positive definite boundary value problem, and so there is no unstable
mode. Indeed, the eigenfunctions of the boundary value problem (14.87) with Dirichlet
boundary conditions v(0) = 0 = v(`) were found in (14.17):

vn(x) = sin
nπx

`
with ωn =

nπc

`
, n = 1, 2, 3, . . . .

Therefore, we can write the general solution as a Fourier sine series

u(t, x) =

∞∑

n=1

(
bn cos

nπc t

`
sin

nπx

`
+ dn sin

nπc t

`
sin

nπx

`

)
. (14.90)

The solution is thus a linear combination of the natural Fourier modes vibrating with
frequencies

ωn =
nπc

`
=

nπ

`

√
κ

ρ
, n = 1, 2, 3, . . . . (14.91)

Note that the longer the length ` of the string, or the higher its density ρ, the slower
the vibrations, whereas increasing its stiffness or tension κ speeds them up — in exact
accordance with physical intuition.

The Fourier coefficients bn and dn in (14.90) will be uniquely determined by the
initial conditions (14.83). Differentiating the series term by term, we discover that we
must represent the initial displacement and velocity as Fourier sine series

u(0, x) =

∞∑

n=1

bn sin
nπx

`
= f(x),

∂u

∂t
(0, x) =

∞∑

n=1

dn
nπc

`
sin

nπx

`
= g(x).

Therefore,

bn =
2
`

∫ `

0

f(x) sin
nπx

`
dx, n = 1, 2, 3, . . . .

are the Fourier sine coefficients (12.72) of the initial displacement f(x), while

dn =
2

nπc

∫ `

0

g(x) sin
nπx

`
dx, n = 1, 2, 3, . . . .

are the Fourier sine coefficients of the initial velocity g(x), rescaled by the wave speed.

Example 14.5. A string of unit length is held taut in the center and then released.
Our goal is to describe the ensuing vibrations. Let us assume the physical units are chosen
so that c2 = 1, and so we are asked to solve the initial-boundary value problem

utt = uxx, u(0, x) = f(x), ut(0, x) = 0, u(t, 0) = u(t, 1) = 0. (14.92)

To be specific, we assume that the center of the string has been displaced by half a unit,
and so the initial displacement is

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1.
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Figure 14.6. Plucked String Solution of the Wave Equation.

The vibrational frequencies are the integral multiples ωn = nπ, and so the natural modes
of vibration are

cosnπ t sinnπx and sinnπ t sinnπx for n = 1, 2, . . . .

Consequently, the general solution to the boundary value problem is

u(t, x) =

∞∑

n=1

(
bn cosnπ t sinnπx+ dn sinnπ t sinnπx

)
,

where

bn = 2

∫ 1

0

f(x) sinnπx dx =




4

∫ 1/2

0

x sinnπx dx =
4 (−1)k

(2k + 1)2 π2
, n = 2k + 1,

0, n = 2k,

are the Fourier sine coefficients of the initial displacement, while dn = 0 are the Fourier
sine coefficients of the initial velocity. Therefore, the solution takes the form of a single
Fourier sine series

u(t, x) = 4
∞∑

k=0

(−1)k
cos(2k + 1)π t sin(2k + 1)πx

(2k + 1)2 π2
, (14.93)

whose graph is depicted in Figure 14.6 at times t = 0, .2, .4, .6, .8, 1.. At this point in time,
the original displacement is reproduced exactly, but upside down. The subsequent dynam-
ics proceeds as before, but in mirror image form. The original displacement reappears at
time t = 2, after which time the motion is periodically repeated. Interestingly, at times
tk = .5, 1.5, 2.5, . . ., the displacement is identically zero: u(tk, x) ≡ 0, although the velocity
ut(tk, x) is nonzero. When summed to a sufficinetly high order, the solution appears to be
piecewise affine, i.e., its graph is a collection of straight lines. This fact, which is in stark
contrast to the smoothing effect of the heat equation, will be verified in Exercise , where
you are asked to construct an exact analytical formula for this solution.
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While the series form (14.90) of the solution is not entirely satisfying, we can still use it
to deduce important qualitative properties. First of all, since each term is periodic in t with
period 2 `/c, the entire solution is time periodic with that period: u(t+ 2`/c, x) = u(t, x).
In fact, after half the period, at time t = `/c, the solution reduces to

u

(
`

c
, x

)
=

∞∑

n=1

(−1)n bn sin
nπx

`
= −

∞∑

n=1

bn sin
nπ (`− x)

`
= −u(0, `−x) = −f(`−x).

In general,

u

(
t+

`

c
, x

)
= − u(t, `− x), u

(
t+

2 `

c
, x

)
= u(t, x). (14.94)

Therefore, the initial wave form is reproduced, first as an upside down mirror image of
itself at time t = `/c, and then identical to its original form at time t = 2 `/c. This
has the important consequence that vibrations of (homogeneous) one-dimensional media
are purely periodic phenomena! There is no quasi-periodicity because the fundamental
frequencies are all integer multiples of each other.

Remark : The preceding analysis has important musical consequences. To the human
ear, sonic vibrations that are integral multiples of a single frequency are harmonic, whereas
those that admit quasi-periodic vibrations, with irrationally related frequencies, sound
percussive. This is why most tonal instruments rely on vibrations in one dimension, be it
a violin string, a column of air in a wind instrument (flute, clarinet, trumpet or saxophone),
a xylophone bar or a triangle. On the other hand, most percussion instruments rely on the
vibrations of two-dimensional media, e.g., drums and cymbals, or three-dimensional solid
bodies, e.g., blocks, which, as we shall see in Chapters 17 and 18, admit frequencies with
irrational ratios.

A bar with both ends left free, and so subject to the Neumann boundary conditions

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, `), (14.95)

will have a slightly different behavior, owing to the instability of the underlying equilibrium
equations. The eigenfunctions of (14.87) with Neumann boundary conditions v ′(0) = 0 =
v′(`) are now

vn(x) = cos
nπx

`
with ωn =

nπc

`
, n = 0, 1, 2, 3, . . . .

The resulting solution takes the form of a Fourier cosine series

u(t, x) = a0 + c0 t+

∞∑

n=1

(
an cos

nπc t

`
cos

nπx

`
+ cn sin

nπc t

`
cos

nπx

`

)
. (14.96)

In accordance with (14.88), the first two terms come from the null eigenfunction v0(x) = 1
with ω0 = 0. The bar vibrates with the same fundamental frequencies (14.91) as in the
fixed end case, but there is now an additional unstable mode c0 t that is no longer periodic,
but grows linearly in time.
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Substituting (14.96) into the initial conditions (14.83), we find the Fourier coefficients
are prescribed, as before, by the initial displacement and velocity,

an =
2
`

∫ `

0

f(x) cos
nπx

`
dx, cn =

2

nπc

∫ `

0

g(x) cos
nπx

`
dx, n = 1, 2, 3, . . . .

The order zero coefficients†,

a0 =
1

`

∫ `

0

f(x) dx, c0 =
1

`

∫ `

0

g(x) dx,

are equal to the average initial displacement and average initial velocity of the bar. In
particular, when c0 = 0 there is no net initial velocity, and the unstable mode is not
excited. In this case, the solution is time-periodic, oscillating around the position given
by the average initial displacement. On the other hand, if c0 6= 0, then the unstable mode
will be excited. Since there is nothing to restrain its motion, the bar will move off with
constant average speed c0, all the while vibrating at the same fundamental frequencies.

Similar considerations apply to the periodic boundary value problem for the wave
equation on a circular ring. The details are left as Exercise for the reader.

Forcing and Resonance

In Section 9.6, we learned that periodically forcing an undamped mechanical struc-
ture (or a resistanceless electrical circuit) at a frequency that is distinct from its natural
vibrational frequencies leads, in general, to a quasi-periodic response. The solution is a
sum of the unforced vibrations superimposed with an additional vibrational mode at the
forcing frequency. However, if forced at (or very near) one of the natural frequencies, the
system may go into a catastrophic resonance.

The exact same quasiperiodic and resonant responses are also observed in the corre-
sponding continuum partial differential equations governing periodic vibrations. To keep
the analysis as simple as possible, we restrict our attention to the forced wave equation for
a homogeneous bar

∂2u

∂t2
= c2 ∂2u

∂x2
+ F (t, x). (14.97)

The external forcing function F (t, x) may depend upon both time t and position x. We
will be particularly interested in a periodically varying external force of the form

F (t, x) = cos(ω t) h(x), (14.98)

where the function h(x) is fixed.

As always — see Theorem 7.37 — the solution to an inhomogeneous linear system
can be written as a combination,

u(t, x) = u?(t, x) + z(t, x) (14.99)

† Note that, unlike the usual Fourier series, we have not included the 1
2 factor in the constant

terms in (14.96).
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of a particular solution u?(t, x) along with the general solution z(t, x) to the homogeneous
equation, namely

∂2z

∂t2
= c2 ∂2z

∂x2
. (14.100)

The boundary and initial conditions will serve to uniquely prescribe the solution u(t, x),
but there is some flexibility in its two constituents u?, z. For instance, we may ask that
the particular solution u? satisfy the homogeneous boundary conditions along with zero
(homogeneous) initial conditions, and thus represents the pure response of the system to
the forcing. The homogeneous solution z(t, x) will then reflect the effect of the initial and
boundary conditions unadulterated by the external forcing. The final solution is then a
sum of the two individual responses.

In the case of periodic forcing (14.98), we look for a particular solution

u?(t, x) = cos(ω t) v?(x) (14.101)

that vibrates at the forcing frequency. Substituting the ansatz (14.101) into the equa-
tion (14.97), and canceling the common cosine factors, we discover that v?(x) must satisfy
the boundary value problem prescribed by

−c2 v′′? − ω2 v? = h(x), (14.102)

supplemented by therelevant homogeneous boundary conditions — Dirichlet, Neumann,
mixed, or periodic.

At this juncture, there are two possibilities. If the unforced, homogeneous boundary
value problem has only the trivial solution v ≡ 0, then there is a solution to the forced
boundary value problem for any form of the forcing function h(x). On the other hand,
the homogeneous boundary value problem has a nontrivial solution v(x) if and only if
ω2 = λ is an eigenvalue, and so ω is a natural frequency of vibration to the homogeneous
problem; the solution v(x) is the corresponding eigenfunction appearing in the solution
series (14.90). In this case, the boundary value problem (14.102) has a solution if and only
if the forcing function h(x) is orthogonal to the eigenfunction(s):

〈h ; v 〉 = 0. (14.103)

This result is a manifestation of the Fredholm alternative, Theorem 5.51, and the self-
adjointness of the boundary value problem; see Example 11.3 and Exercise for details.
If we force in a resonant manner — meaning that (14.103) is not satisfied — then the
solution will have the form of a resonantly growing vibration

u?(t, x) = t sinω t v?(x)

that will, if unchecked, eventually lead to a catastrophic breakdown of the system, e.g.,
the bar breaks or the string snaps.

Remark : In a real-world situation, the large resonant or near resonant vibrations will
either cause a catastrophic breakdown, e.g., the string snaps, or send the system into a
different, nonlinear regime that helps mitigate the resonant effects, but is no longer modeled
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by the simple linear wave equation. There are, indeed, familiar physical systems where
resonance is desirable! In a microwave oven, the microwaves are tuned to the resonant
frequencies of water molecules, and thus excite them into large vibrations, thereby heating
up your dinner. Blowing into a clarinet or other wind instrument excites the resonant
frequencies in the column of air contained within it, and this produces the musical sound
vibrations that we hear.

Example 14.6. As a specific example, consider the forced vibrations of a uniform
bar that is fixed at both ends:

utt = c2 uxx + cos(ω t) h(x),

u(t, 0) = 0 = u(t, 1), u(0, x) = f(x), ux(0, x) = g(x).
(14.104)

(We take the length ` = 1 to simplify the formulas.) The particular solution will have the
nonresonant form (14.101) provided we can find a solution v?(x) to the boundary value
problem

c2 v′′? + ω2 v? = −h(x), v?(0) = 0 = v?(1). (14.105)

The resonant frequencies and corresponding eigenfunctions in this particular case are

ωn = ncπ, vn(x) = sinnπx, n = 1, 2, 3, . . . .

The boundary value problem (14.105) will have a solution, and hence the forcing is not
resonant, provided either ω 6= ωn is not an eigenvalue, or, ω = ωn is an eigenvalue, but

0 = 〈h ; vn 〉 =

∫ 1

0

h(x) sinnπx dx (14.106)

is orthogonal to the associated eigenfunction. The remaining (generic) case, where the
forcing profile is not orthogonal to the eigenfunction, induces a resonance whose amplitude
grows linearly in time.

For example, under periodic forcing of frequency ω with trigonometric profile h(x) ≡
sin kπx, the particular solution to (14.105) is

v?(x) =
sin kπx

ω2 − k2 π2 c2
, so that u?(t, x) =

cosω t sin kπx

ω2 − k2 π2 c2
, (14.107)

which is a valid solution as long as ω 6= ωk = k π c. Note that we may allow the forcing
frequency ω = ωn to coincide with any other resonant forcing frequency, n 6= k, because
the sine profiles are mutually orthogonal and so the nonresonance condition (14.106) is
satisfied. On the other hand, if ω = ωk = k π c, then the particular solution

u?(t, x) =
t sin k π ct sin kπx

2k π c
, (14.108)

is resonant, and grows linearly in time, in precise analogy with the ordinary differential
equation case discussed in Section 9.6.
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To obtain the actual solution to the initial-boundary value problem, we write u = u?+z

where z(t, x) must satisfy

ztt − c2zxx = 0, z(t, 0) = 0 = z(t, 1),

along with the modified initial conditions

z(0, x) = f(x) −
sin kπx

ω2 − k2 π2 c2
,

∂u

∂x
(0, x) = g(x),

stemming from the fact that the particular solution (14.107) has non-trivial initial data.
(In the resonant case (14.108), there is no extra term in the initial data.) As before, the
solution z(t, x) to the homogeneous equation can be written as a Fourier sine series (14.90).
The final formulae are left to the reader to complete.

14.5. d’Alembert’s Solution.

In the case of the one-dimensional wave equation, there is an alternative explicit
solution formula due to the eighteenth century French mathematician Jean d’Alembert.
His solution avoids the complicated Fourier series formulae, and thereby provides additional
insight into the behavior of the solutions. Unfortunately, unlike the series method, that
has very broad applicability, d’Alembert’s approach only succeeds in this one very special
situation: the homogeneous wave equation in a single space variable.

The method begins by writing the wave equation (14.84) in the suggestive form

¤u = (∂2
t − c2 ∂2

x)u = utt − c2 uxx = 0. (14.109)

Here ¤ = ∂2
t − c2 ∂2

x is a common mathematical notation for the linear wave differential

operator , while ∂t, ∂x are convenient shorthands for the partial derivative operators with
respect to t and x. In analogy with the elementary polynomial factorization

t2 − c2 x2 = (t− cx)(t+ cx),

we can factor the second order wave operator into a product of two first order partial
differential operators:

¤ = ∂2
t − c2 ∂2

x = (∂t − c ∂x) (∂t + c ∂x). (14.110)

If the second factor annihilates the function u(t, x), meaning

(∂t + c ∂x)u = ut + c ux = 0, (14.111)

then u is automatically a solution to the wave equation:

¤u = (∂t − c ∂x) (∂t + c ∂x)u = (∂t − c ∂x) 0 = 0.

In other words, every solution to the simpler first order partial differential equation (14.111)
is a solution to the wave equation (14.84). (The converse is, of course, not true.)

It is relatively easy to solve linear† first order partial differential equations.

† See Chapter 22 for more details, including the extension of the method of characteristics to
first order nonlinear partial differential equations.
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Figure 14.7. Traveling Wave.

Proposition 14.7. Every solution u(t, x) to the partial differential equation

∂u

∂t
+ c

∂u

∂x
= 0 (14.112)

has the form

u(t, x) = p(x− c t), (14.113)

where p(ξ) is an arbitrary function of the single characteristic variable ξ = x− c t.

Proof : We adopt a linear change of variables to rewrite the solution

u(t, x) = p(t, x− c t) = p(t, ξ)

in terms of the characteristic variable ξ and the time t. Applying the chain rule, we express
the derivatives of u in terms of the derivatives of p as follows:

∂u

∂t
=

∂p

∂t
− c

∂p

∂ξ
,

∂u

∂x
=

∂p

∂ξ
,

and hence
∂u

∂t
+ c

∂u

∂x
=

∂p

∂t
− c

∂p

∂ξ
+ c

∂p

∂ξ
=

∂p

∂t
.

Therefore, u is a solution to (14.112) if and only if p(t, ξ) is a solution to the very simple
partial differential equation

∂p

∂t
= 0.

This clearly† implies that p = p(ξ) does not depend on the variable t, and hence

u = p(ξ) = p(x− c t)

is of the desired form. Q.E.D.

Therefore, any function of the characteristic variable, e.g., ξ2 + 1 or cos ξ or eξ, will
produce a corresponding solution, (x− c t)2 + 1 or cos(x− c t) or ex−c t, to the first order
partial differential equation (14.112), and hence a solution to the wave equation (14.84).
The functions of the form (14.113) are known as traveling waves. At t = 0 the wave
has the initial profile u(0, x) = p(x). As t progresses, the wave moves to the right with
constant speed c > 0, unchanged in form; see Figure 14.7. For this reason, (14.112) is

† More rigorously, one must also assume that, at each time t, the domain of definition of p(ξ)
is a connected interval. A similar technical restriction should be imposed upon the solutions in
the statement of Proposition 14.7.
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sometimes referred to as the one-way or unidirectional wave equation. We conclude that
every traveling wave solution to the unidirectional wave equation (14.112) is a solution to
the wave equation (14.84).

Now, since c is constant, the factorization (14.110) can be written equally well in the
reverse order:

¤ = ∂2
t − c2 ∂2

x = (∂t + c ∂x) (∂t − c ∂x). (14.114)

The same argument tells us that any solution to the alternative first order partial differ-
ential equation

∂u

∂t
− c

∂u

∂x
= 0, (14.115)

also provides a solution to the wave equation. This is also a one-way wave equation, having
the opposite wave speed −c. Applying Proposition 14.7, now with c replaced by −c, we
conclude that the general solution to (14.115) has the form

u(t, x) = q(x+ c t) (14.116)

where q(η) is an arbitrary differentiable function of the second characteristic variable η =
x+ c t. The solutions (14.116) represent traveling waves moving to the left with constant
speed c > 0 and unchanged in form.

Thus, we have uncovered two different classes of solutions to the full wave equation
(14.84). One class consists of traveling waves moving to the right with speed c, while the
other class consists of traveling waves moving to the left with the same speed c. Thus, the
wave equation is bidirectional and has both left and right traveling wave solutions. (Of
course, such solutions do not necessarily respect the boundary conditions, which, when
present, will affect their ultimate behavior.)

Linearity of the wave equation implies that the sum of solutions is again a solution.
In this way, we can produce solutions which are superpositions of left and right traveling
waves. The remarkable fact, due to d’Alembert, is that every solution to the wave equation
can be so represented.

Theorem 14.8. The general solution to the wave equation (14.84) is a combination

u(t, x) = p(ξ) + q(η) = p(x− c t) + q(x+ c t) (14.117)

of right and left traveling waves, depending on their respective characteristic variables

ξ = x− c t, η = x+ c t. (14.118)

Proof : The key is to use a linear changes of variables to rewrite the wave equation
entirely in terms of the characteristic variables ξ, η defined by (14.118). We set

u(t, x) = w(x− c t, x+ c t) = w(ξ, η), or w(ξ, η) = u

(
ξ + η

2
,
η − ξ

2 c

)
.

Then, invoking to the chain rule to compute partial derivatives,

∂u

∂t
= c

(
∂w

∂ξ
−

∂w

∂η

)
,

∂u

∂x
=

∂w

∂ξ
+

∂w

∂η
.
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and hence

∂2u

∂t2
= c2

(
∂2w

∂ξ2
− 2

∂2w

∂ξ ∂η
+

∂2w

∂η2

)
,

∂2u

∂x2
=

∂2w

∂ξ2
+ 2

∂2w

∂ξ ∂η
+

∂2w

∂η2
.

Therefore

¤u =
∂2u

∂t2
− c2 ∂2u

∂x2
= −4c2 ∂2w

∂ξ ∂η
.

We conclude that u(t, x) solves the wave equation ¤u = 0 if and only if w(ξ, η) solves the
second order partial differential equation

∂2w

∂ξ ∂η
= 0, which we write in the form

∂

∂ξ

(
∂w

∂η

)
= 0.

As before, this partial differential equation can be integrated once with respect to ξ,
resulting in

∂w

∂η
= r(η),

where r is an arbitrary function of the characteristic vvaraible η. Integrating both sides of
the latter partial differential equation with respect to η, we find

w(ξ, η) = p(ξ) + q(η), where q′(η) = r(η),

while p(ξ) represents the integration “constant”. Replacing the characteristic variables by
their formulae in terms of t and x completes the proof. Q.E.D.

Remark : As above, we have been a little cavalier with our specification of the domain
of definition of the functions and the differentiability assumptions required. Sorting out
the precise technical details is left to the dedicated reader.

Remark : The general solution to a second order ordinary differential equation depends
on two arbitrary constants. Here we observe that the general solution to a second order
partial differential equation depends on two arbitrary functions — in this case p(ξ) and
q(η).

Let us now see how this new form of solution to the wave equation can be used to
effectively solve initial value problems. The simplest case is that of a bar or string of
infinite length, in which case we have a pure initial value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), for −∞ < x <∞.

(14.119)
Substituting the solution formula (14.117) into the initial conditions, we find

u(0, x) = p(x) + q(x) = f(x),
∂u

∂t
(0, x) = −c p′(x) + c q′(x) = g(x).

To solve this pair of linear equations for p and q, we differentiate the first equation:

p′(x) + q′(x) = f ′(x).
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Subtracting the second equation divided by c, we find

2 p′(x) = f ′(x)−
1

c
g(x).

Therefore,

p(x) =
1

2
f(x)−

1

2 c

∫ x

0

g(z) dz + a,

where a is an integration constant. The first equation then yields

q(x) = f(x)− p(x) =
1

2
f(x) +

1

2 c

∫ x

0

g(z) dz − a.

Substituting these two expressions back into (14.117), we find

u(t, x)= p(ξ) + q(η) =
f(ξ) + f(η)

2
+
1

2 c

[
−

∫ ξ

0

+

∫ η

0

]
g(z) dz

=
f(ξ) + f(η)

2
+
1

2 c

∫ η

ξ

g(z) dz,

where ξ, η are the characteristic variables (14.118). In this fashion, we have derived
d’Alembert’s solution to the wave equation on the entire line −∞ < x <∞.

Theorem 14.9. The solution to the initial value problem

∂2u

∂t2
= c2 ∂2u

∂x2
, u(0, x) = f(x),

∂u

∂t
(0, x) = g(x), −∞ < x <∞. (14.120)

is given by

u(t, x) =
f(x− c t) + f(x+ c t)

2
+
1

2 c

∫ x+c t

x−c t

g(z) dz. (14.121)

Let us investigate the implications of d’Alembert’s formula (14.121). First, suppose
there is no initial velocity, so g(x) ≡ 0, and the motion is purely the result of the initial
displacement u(0, x) = f(x). In this case, the solution (14.121) reduces to

u(t, x) = 1
2 f(x− c t) + 1

2 f(x+ c t).

The basic effect is that the initial displacement f(x) splits into two waves, one traveling
to the right and one traveling to the left, each with exactly the same shape as the initial
displacement f(x), but only half as tall. For example, if the initial displacement is a
localized pulse centered at the origin, say

u(0, x) = e−x
2

,
∂u

∂t
(0, x) = 0,

then the solution

u(t, x) = 1
2 e−(x−c t)2 + 1

2 e−(x+c t)2
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Figure 14.8. Interaction of Waves.

consists of two half size copies of the initial pulse running away from the origin in opposite
directions with equal speed c. If we take two separated pulses, say

u(0, x) = e−x
2

+ 2 e−(x−1)2 ,
∂u

∂x
(0, x) = 0,

centered at x = 0 and x = 1, then the solution

u(t, x) = 1
2 e−(x−c t)2 + e−(x−1−c t)2 + 1

2 e−(x+c t)2 + e−(x−1+c t)2

will consist of four pulses, two moving to the right and two to the left, all with the same
speed, as pictured in Figure 14.8.

Remark : If the initial displacement has compact support, and so f(x) = 0 if x < a

or x > b for some a < b, then after a short time the right and left-moving waves will
completely disengage and the observer will see two exact half size replicas running away,
with speed c, in opposite directions. If the displacement is not localized, then the left and
right traveling waves will never fully disengage, and one might be hard pressed (just as
in our earlier discussion of quasi-periodic phenomena) in recognizing that a complicated
solution pattern is, in reality, just the superposition of two very simple traveling waves.

An important observation is that when a right-moving pulse collides with a left-moving
pulse, they emerge from the collision unchanged — a consequence of the linearity of the
wave equation. The first picture shows the initial displacement. In the second and third
pictures, the two localized bumps have each split into two copies moving in opposite
directions. In the fourth and fifth, the larger right moving bump is in the process of
interacting with the smaller left moving bump. Finally, in the last picture the interaction
is complete, and the two left moving bumps and two right moving bumps travel in tandem
with no further collisions.

The lines in the (t, x)–plane where the characteristic variables are constant,

ξ = x− c t = a, η = x+ c t = b, (14.122)
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Figure 14.9. Characteristic Lines for the Wave Equation.

have slope ±c, and are known as the characteristics of the wave equation. The two
characteristics emanating from a point on the x axis, where the initial data is prescribed,
are illustrated in Figure 14.9. The reader should note that, in this figure, the t axis is
horizontal, while the x axis is vertical.

In general, signals propagate along characteristics. More specifically, if we start out
with an initial displacement concentrated very close to a point x = a, then the solution will
be concentrated along the two characteristic lines through the point x = a, t = 0, namely
x− c t = a and x+ c t = a. In the limit, a unit impulse or delta function displacement at
x = a, corresponding to the initial condition

u(0, x) = δ(x− a),
∂u

∂t
(0, x) = 0, (14.123)

will result in a solution

u(t, x) = 1
2 δ(x− c t− a) + 1

2 δ(x+ c t− a) (14.124)

consisting of two half-strength delta spikes traveling away from the starting position along
the two characteristic lines.

Let us return to the general initial value problem (14.120). Suppose now that there is
no initial displacement, u(0, x) = f(x) ≡ 0, but rather a concentrated initial velocity, say
a delta function

∂u

∂t
(0, x) = δa(x) = δ(x− a).

Physically, this would correspond to striking the string with a concentrated blow at the
point x = a. The d’Alembert solution (14.121) is

u(t, x) =
1

2c

∫ x+c t

x−c t

δa(z) dz =





1

2 c
, x− c t < a < x+ c t,

0, otherwise,

(14.125)
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Figure 14.10. Concentrated Initial Velocity for Wave Equation.

and consists of a constant displacement, of magnitude 1/(2c), between the two character-
istic lines x− c t = a = x+ c t emanating from the point x = a, t = 0 — the shaded region
of Figure 14.9. The solution, which is plotted in Figure 14.10, has two jump discontinuities
between the undisturbed state and the displaced state, each propagating along its char-
acteristic line with speed c, but in opposite directions. Note that, unlike a concentrated
initial displacement, where the signal remains concentrated and each point along the bar is
temporarily displaced, eventually returning to its undisturbed state, a concentrated initial
velocity has a lasting effect, and the bar remains permanently deformed by an amount
1/(2 c) .

Solutions on Bounded Intervals

So far, we have been looking at the solutions to the initial value problem for the wave
equation on an infinite interval. The d’Alembert formula can still be used on bounded
intervals, but in a suitably modified format so as to respect the boundary conditions.
The easiest to deal with is the periodic case. If the boundary conditions are periodic on
0 ≤ x ≤ `, then the solution u(t, x) must also be periodic as a functiuon of x. one extends
to the initial displacement and velocity, f(x) and g(x), to also be periodic of period `. If the
initial velocity has mean zero, then the resulting d’Alembert solution (14.121) will remain
periodic. Otherwise, the solution will not be periodic in time, owing to the excitation of
the unstable mode. Exercise contains the necessary details.

If we have fixed (Dirichlet) boundary conditions, say

u(t, 0) = 0, u(t, `) = 0, (14.126)

then, motivated by the fact that the solution can be written as a Fourier sine series (14.90),
one takes the initial displacement f(x) and velocity g(x) and extends them to be odd,
periodic functions of period 2 `:

f(−x) = −f(x), f(x+ 2 `) = f(x), g(−x) = −g(x), g(x+ 2 `) = g(x).

This will ensure that the d’Alembert solution also remains odd, periodic, and hence the
boundary conditions (14.126) remain valid for all t. Keep in mind that, while the solution
u(t, x) is defined for all x, the only physically relevant values occur on the interval 0 ≤ x ≤ `.
Nevertheless, the effects of displacements in the unphysical regime will eventually be “felt”
as the propagating waves pass through the physical interval.

For example, consider an initial displacement which is concentrated near x = a for
some 0 < a < `. Its odd, periodic extension consists of two sets of replicas: those of the
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Figure 14.11. Solution to Wave Equation with Fixed Ends.

-4 -2 2 4
-1

-0.5

0.5
1

Figure 14.12. Odd Periodic Extension of a Concentrated Pulse.

same form occurring at positions a± 2 `, a± 4 `, . . . , and mirror image versions, resulting
from the oddness of the function, at intermediate positions −a,−a±2 `,−a±4 `, . . . ; see
Figure 14.12. The resulting solution begins by each of the pulses, positive and negative,
splitting into two half-size replicas that propagate with speed c in opposite directions.
As the individual pulses meet, they interact as they pass through each other, eventually
emerging unchanged. The process repeats periodically, with infinite rows of pulses moving
to the right continually interacting with infinite rows moving to the left.

However, only the part of this solution that lies on 0 ≤ x ≤ ` is actually realized
on the physical bar. The net effect is as if we were viewing the solution passing by a
stationary window, of length `, that blocks out all other regions of the real axis. What the
viewer effectively sees assumes a somewhat different interpretation. Namely, the original
pulse at position 0 < a < ` splits up into two half size replicas that move off in opposite
directions. As each half-size pulse reaches an end of the bar, it meets a mirror image
pulse that has been propagating in the opposite direction from the non-physical regime.
The effect is that the pulse appears to be reflected at the end of the interval, and changes
into an upside down mirror image of itself moving in the opposite direction. The original
positive pulse has moved off the end of the bar just as its mirror image has moved into
the physical regime. A good physical illustration is a wave propagating down a jump rope
that is held fixed at its end; the reflected wave is upside down. A similar reflection occurs
as the other half-size pulse hits the other end of the physical interval, after which the
solution consists of two upside down half-size pulses moving back towards each other. At
time t = `/c they recombine at the point ` − a to instantaneously form a full-sized, but
upside-down mirror image of the original disturbance, in accordance with (14.94). This
in turn splits apart into two upside down bumps that, when they collide with the ends,
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reflect and become right side up. At time t = 2 `/c they recombine to exactly reproduce
the original displacement. The process then repeats, and the solution is periodic in time
with period 2 `/c. In Figure 14.11, the first picture gives the initial displacement, which
splits into left and right moving, half-size clones. In the third picture, the left moving
bump is in the process of emerging from its collision with the end. In the fourth picture,
it has emerged from its collision with the end, and is now upside down, reflected, and
moving to the right. Meanwhile, the right moving pulse is starting to collide with the
right hand end. In the fifth picture, both pulses have completed their collisions and are
now moving back towards each other, where, in the last picture, they recombine into an
upside-down version of the original pulse. The process then repeats itself in mirror image,
finally recombining to the original pulse after the same length of time.

The Neumann (free) boundary value problem

∂u

∂x
(t, 0) = 0,

∂u

∂x
(t, `) = 0, (14.127)

is handled similarly. Here, inspired by the Fourier cosine series form of the solution, one
extends the initial conditions to be even, 2 ` periodic functions

f(−x) = f(x), f(x+ 2 `) = f(x), g(−x) = g(x), g(x+ 2 `) = g(x).

If the initial velocity has mean zero,

c0 =
1

`

∫ `

0

g(x) dx = 0, (14.128)

then the solution remains periodic of period 2 `/c. In this case, when a bump hits one of
the ends, the reflected bumps remains upright, but a mirror image of the original traveling
in the opposite direction. A familiar physical illustration is a water wave that reflects off
a solid wall. After an elapsed time of t = `/c, the individual reflected bumps recombine to
form a positive mirror image of the original displacement, i.e., u(t + `/c, x) = u(t, ` − x).
After a further time lapse of t = 2 `/c, the original displacement reappears, and the solution
is time periodic with period 2 `/c, i.e., u(t+2 `/c, x) = u(t, x). On the other hand, if there
is a net initial velocity, so c0 6= 0, then, as noted above, the solution is no longer periodic,
but is a linear combination of periodic vibrations with the steadily increasing unstable
mode c0 t.

In summary, we have now learned two different versions of the solution to the one-
dimensional wave equation. The first, based on Fourier analysis, emphasizes the vibrational
or wave character of the solutions. The second, based on the d’Alembert formula, empha-
sizes the “particle” aspects of the solutions, where individual wave packets collide with each
other, or reflect at the boundary, but maintain their overall form. Some solutions look like
vibrating waves, while others are much more like interacting particles. The Fourier series
shows how every particle-like solution can be decomposed into its constituent vibrational
modes, while the d’Alembert formula shows how vibrating waves can be viewed as moving
particles.

The coexistence of particle and wave features is reminiscent of the long running histor-
ical debate over the nature of light, with Newton and his disciples advocating its particle
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basis in the form of photons, while until the beginning of the twentieth century most
physicists advocated the wave and vibrational viewpoint. Einstein’s explanation of the
photoelectric effect served to resurrect the particle interpretation of light. Only with the
establishment of quantum mechanics was the debate resolved — light, and, indeed, all
subatomic particles are both, manifesting both particle and wave features depending upon
the experiment and the physical situation. But the evidence for a wave-particle duality
already existed in the classical wave equation!

14.6. Numerical Methods.

As we know, most differential equations are too complicated to solved analytically,
and so one is usually forced to resort to numerical solution methods. Even in cases, like the
heat and wave equations, where explicit solution formulas (either closed form or infinite
series) exist, the numerical methods still can be profitably applied to solve particular initial-
boundary value problems. Moreover, verification that the numerical algorithm produces a
reasonable approximation to the true solution is much easier if one has an alternative solu-
tion formula in hand. The lessons learned in the design of numerical algorithms for solved
problems prove to be of immense value when one is confronted with more complicated
problems for which solution formulas no longer exist.

In this final section we present some of the most basic numerical solution techniques
for the heat and wave equations. We just consider the simplest cases, leaving variations
and extensions to a more thorough treatment as found in basic numerical analysis texts,
[30].

Numerical solution methods for differential equations can be partitioned into two prin-
cipal classes. (In this oversimplified presentation, we are leaving out more specialized meth-
ods of less general applicability.) The first category, already introduced in Section 11.6,
are the finite element methods. Finite elements are designed for the differential equations
describing equilibrium configurations, since they rely on minimizing a functional. The al-
ternative approach is to directly approximate the derivatives appearing in the differential
equation, through use of numerical differentiation formulae. In general, to approximate
the derivative of a function, one constructs a suitable combination of sampled function
values at nearby points. The underlying formalism used to construct these approximation
formulae is know as the calculus of finite differences, and has a long history, dating back
to Newton, that includes many prominent mathematicians in its development and applica-
tion. The resulting finite difference methods have extremely broad applicability, and can,
with proper care, be designed to solve most differential equations arising in mathematics,
physics, engineering, biology, finance, and elsewhere.

Finite Differences

In this section, we give a brief introduction to the most basic finite difference approx-
imations for derivatives of a function of one variable. In this presentation, we concentrate
on the simplest version of the calculus of finite differences, based on equally spaced sam-
ple points. In the exercises, the reader is asked to generalize the difference formulae to
non-equally spaced points.
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Figure 14.13. Finite Difference Approximations.

The simplest finite difference approximation is the ordinary difference quotient

u(x+ h)− u(x)

h
≈ u′(x), (14.129)

used to approximate the first derivative of the function u(x). Throughout our discussion,
the step size h, which may be either positive or negative, is assumed to be small: |h | ¿ 1.
The difference quotient can be interpreted as a linear combination of the sampled function
values at the two nearby points x and x+ h. Geometrically, the difference quotient equals
the slope of the secant line through the two points (x, u(x)) and (x+ h, u(x + h)) on the
graph of the function. For small h, this should be a reasonably good approximation to the
slope of the tangent line, as illustrated in the first picture in Figure 14.13. Indeed, if u is
differentiable at x, then u′(x) is, by definition, the limit, as h → 0 of the finite difference
quotients.

How close an approximation is (14.129)? To answer this question, we use the first
order Taylor expansion

u(x+ h) = u(x) + u′(x)h+ 1
2 u′′(ξ)h2, (14.130)

where we assume that u(x) is at least twice continuously differentiable. Here ξ represents a
point lying between x and x+h, which follows from the Cauchy form of the remainder term
(C.2) in the Taylor expansion; see Appendix C for full details. Therefore, the difference
quotient is given by the formula

u(x+ h)− u(x)

h
= u′(x) + 1

2 u′′(ξ)h.

The error is the difference between the finite difference formula and the derivative being
approximated, namely

u(x+ h)− u(x)

h
− u′(x) = 1

2 u′′(ξ)h. (14.131)

We say that the finite difference approximation (14.131) is first order because the error
is proportional to h. Indeed, the error can be bounded by 1

2 M h, where |u′′ | < M is an
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overall bound on the second derivative of the function near the point x. If the precise
formula for the error is not so important, we will write

u′(x) =
u(x+ h)− u(x)

h
+O(h). (14.132)

The “big Oh” notation O(h) refers to a term proportional to h, or, more correctly, a term
that is bounded by a constant multiple of h as h → 0.

Example 14.10. Let u(x) = sinx. Let us compute u′(1) = cos 1 = 0.5403023 . . .

by using the finite difference quotient (14.129), and so

cos 1 ≈
sin(1 + h)− sin 1

h
.

The result for different values of h is listed in the following table.
h 1 .1 .01 .001 .0001

approximation 0.067826 0.497364 0.536086 0.539881 0.540260

error −0.472476 −0.042939 −0.004216 −0.000421 −0.000042

We observe that reducing the step size by a factor of 1
10 reduces the size of the error by

approximately the same factor. Thus, to obtain 10 decimal digits of accuracy, we anticipate
needing a step size of about h = 10−11. The fact that the error is more of less proportional
to the step size tells us that we are using a first order numerical approximation.

To approximate higher order derivatives, we need to evaluate the function at more
than two points. In general, an approximation to the nth order derivative u(n)(x) requires
at least n+1 distinct sample points. For example, let us try to approximate u′′(x) by using
the particular sample points x, x+h and x−h. Which combination of the function values
u(x− h), u(x), u(x+ h) can be used to approximate the derivative u′′(x)? The answer to
such a question can be found by consideration of the relevant Taylor expansions

u(x+ h) = u(x) + u′(x)h+ u′′(x)
h2

2
+ u′′′(x)

h3

6
+ O(h4),

u(x− h) = u(x)− u′(x)h+ u′′(x)
h2

2
− u′′′(x)

h3

6
+ O(h4),

(14.133)

where the error terms are proportional to h4. Adding the two formulae together gives

u(x+ h) + u(x− h) = 2u(x) + u′′(x)h2 +O(h4).

Rearranging terms, we conclude that

u′′(x) =
u(x+ h)− 2u(x) + u(x− h)

h2
+O(h2), (14.134)

The result is is the simplest finite difference approximation to the second derivative of a
function. The error is of order h2, and depends upon the magnitude of the fourth order
derivative of u near x; see Exercise .
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Example 14.11. Let u(x) = ex
2

, with u′′(x) = (4x2 + 2)ex
2

. Let us approximate
u′′(1) = 6e = 16.30969097 . . . by using the finite difference quotient (14.134):

6e ≈
e(1+h)2

− 2e+ e(1−h)2

h2
.

The results are listed in the following table.
h 1 .1 .01 .001 .0001

approximation 50.16158638 16.48289823 16.31141265 16.30970819 16.30969115

error 33.85189541 0.17320726 0.00172168 0.00001722 0.00000018

Each reduction in step size by a factor of 1
10 reduces the size of the error by a factor of

1
100 and a gain of two new decimal digits of accuracy, which is a reflection of the fact
that the finite difference formula (14.134) is of second order, with error proportional to h2.
However, this prediction is not entirely borne out in practice. If we take h = .00001 then
the formula produces the approximation 16.3097002570, with an error of 0.0000092863
— which is less accurate that the approximation with h = .0001. The problem is that
round-off errors have now begun to affect the computation, and underscores a significant
difficulty with numerical differentiation formulae. Such finite difference formulae involve
dividing very small quantities, and this can lead to high numerical errors due to round-
off. As a result, while they typically produce reasonably good approximations to the
derivatives for moderately small step sizes, to achieve high accuracy, one must employ
high precision arithmetic. A similar comment applied to the previous Example 14.10, and
our expectations about the error for a very small step size were not, in fact justified as the
reader may have discovered.

We can improve the order of accuracy of finite difference approximations to derivatives
by employing more sample points to form an appropriate linear combination of the function
values. For instance, if the first order approximation (14.132) to the first derivative based
on the two points x and x + h is not sufficiently accurate, one can try combining the
function values at three points x, x+h and x−h. To find the appropriate combination of
u(x − h), u(x), u(x + h), we return to the Taylor expansions (14.133). To solve for u′(x),
we subtract† the two formulae, and so

u(x+ h)− u(x− h) = 2u′(x)h+ u′′′(x)
h3

3
+ O(h4).

Rearranging the terms, we are led to the well-known centered difference formula

u′(x) =
u(x+ h)− u(x− h)

2h
+O(h2), (14.135)

which is a second order approximation to the first derivative. Geometrically, the cen-
tered difference quotient represents the slope of the secant line through the two points
(x − h, u(x − h)) and (x + h, u(x + h)) on the graph of u centered symmetrically about

† The terms O(h4) do not cancel, since they represent potentially different multiples of h4.
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the point x. Figure 14.13 illustrates the geometry behind the two approximations; the
advantages in accuracy in the centered difference version are graphically evident. Higher
order approximations can be found by evaluating u at additional points, including, say,
x+ 2h, x− 2h, and so on.

Example 14.12. Return to the function u(x) = sinx considered in Example 14.10.
The centered difference approximation to its derivative u′(1) = cos 1 = 0.5403023 . . . is

cos 1 ≈
sin(1 + h)− sin(1− h)

2h
.

The results are tabulated as follows:
h .1 .01 .001 .0001

approximation 0.53940225217 0.54029330087 0.54030221582 0.54030230497

error −0.00090005370 −0.00000900499 −0.00000009005 −0.00000000090

As advertised, the results are much more accurate than the one-sided finite difference
approximation used in Example 14.10 at the same step size. As in Example 14.11, we see
that each reduction in the step size by a factor of 1

10 adds two more decimal places of
accuracy, which is a consequence of the second order accuracy in the centered difference
approximation.

Many more finite difference formulae can be constructed by similar manipulations of
Taylor expansions, but these will suffice for our purposes. Let us now apply these basic
formulas to construct numerical solution algorithms for the heat and wave equations.

Numerical Solution Methods for the Heat Equation

Consider the heat equation

∂u

∂t
= γ

∂2u

∂x2
, 0 < x < `, t ≥ 0, (14.136)

on a bar of length `, where γ > 0 represents the thermal diffusivity, which is assumed to
be constant. To be specific, we impose Dirichlet boundary conditions

u(t, 0) = α(t), u(t, `) = β(t), t ≥ 0. (14.137)

at the ends of the bar, along with the initial conditions

u(0, x) = f(x), 0 ≤ x ≤ `. (14.138)

In order to effect a numerical approximation to the solution to this initial-boundary value
problem, we begin by introducing a rectangular mesh consisting of points (ti, xj) with
0 = x0 < x1 < · · · < xn = ` and 0 = t0 < t1 < t2 < · · · . For simplicity, we maintain a
fixed, regular mesh spacing, with

h = xj+1 − xj =
`

n
, k = ti+1 − ti,
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representing, respectively, the spatial mesh size and the time step size. It is important
that the two step sizes are not necessarily the same. Note that

ti = i k, xj = j h.

We shall use the notation
ui,j ≈ u(ti, xj) (14.139)

to denote our numerical approximation to the value of the solution at a given mesh point.

As a first try at designing a numerical method, we shall use the simplest finite differ-
ence approximations to the derivatives. The second order space derivative is approximated
by (14.134), and hence

∂2u

∂x2
(ti, xj) ≈

u(ti, xj+1)− 2u(ti, xj) + u(ti, xj−1)

h2
+O(h2)

≈
ui,j+1 − 2ui,j + ui,j−1

h2
+O(h2),

(14.140)

where the error in the approximation is proportional to h2. Similarly, the one-sided finite
difference approximation (14.132) is used for the time derivative, and so

∂u

∂t
(ti, xj) ≈

u(ti+1, xj)− u(ti, xj)

k
+O(k) ≈

ui+1,j − ui,j

k
+O(k), (14.141)

where the error is proportion to k. In practice, it is important to ensure that the approxi-
mations have similar orders of accuracy, which tells us to choose

k ≈ h2.

Assuming the step size h < 1, this requirement has the important consequence that the
time steps must be much smaller than the space mesh size.

Remark : At this stage, the reader might be tempted to replace (14.141) by the sec-
ond order central difference approximation (14.135). However, this produces significant
complications in the implementation of the method, and is not suitable for a practical
numerical algorithm for the heat equation. We shall subsequently see how to construct a
practical numerical method that is second order in the time step k.

Substituting equations (14.140), (14.141) into the partial differential equation (14.142),
and rearranging terms, we find

ui+1,j = ui,j + µ
(
ui,j+1 − 2ui,j + ui,j−1

)
,

i = 0, 1, 2, . . . ,

j = 1, . . . , n− 1,
(14.142)

where

µ =
γ k

h2
. (14.143)

The numerical scheme takes the form of an iterative linear system for the solution values
ui,j ≈ u(ti, xj) at each time step ti.
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The initial condition (14.138) means that we should initialize our numerical data by
sampling the initial temperature at the mesh points:

u0,j = fj = f(xj), j = 1, . . . , n− 1. (14.144)

Similarly, the boundary conditions (14.137) require that

ui,0 = αi = α(ti), ui,n = βi = β(ti), i = 0, 1, 2, . . . . (14.145)

In addition, we assume consistency of the initial and boundary conditions at the corners
of the domain:

f0 = f(0) = u(0, 0) = α(0) = α0, fn = f(`) = u(0, `) = β(0) = β0.

The three equations (14.142), (14.144), (14.145) completely prescribe the numerical approx-
imation scheme for solving the initial-boundary value problem (14.136), (14.137), (14.138)
for the heat equation.

Let us rewrite this discrete dynamical system in a more transparent matrix form.
First, let

u(i) =
(
ui,1, ui,2, . . . , ui,n−1

)T
≈
(
u(ti, x1), u(ti, x2), . . . , u(ti, xn−1)

)T
(14.146)

be the vector whose entries are the numerical approximations to the solution values at the
interior nodes — omitting the boundary nodes x0 = 0, xn = `, where the values of u are
fixed by the boundary conditions (14.137). Then (14.142) takes the matrix form

u(i+1) = Au(i) + b(i), (14.147)

where

A =




1− 2µ µ

µ 1− 2µ µ

µ 1− 2µ µ

µ
. . .

. . .
. . .

. . . µ

µ 1− 2µ




, b(i) =




µαi
0
0
...
0

µβi




. (14.148)

The coefficient matrix A is symmetric and tridiagonal. The contributions (14.145) of the
boundary nodes are found in the vector b(i). This numerical method is known as an
“explicit scheme” since each iterate is computed explicitly without relying on solving an
auxiliary equation — unlike the “implicit schemes” discussed below. The method is not
guaranteed to work, and indeed does not unless the mesh sizes are chosen appropriately.

Example 14.13. Let us fix the diffusivity γ = 1 and the bar length ` = 1. For
illustrative purposes, we fix the spatial step size to be h = .1. In Figure 14.14 we compare
two (slightly different time step sizes on the same initial data as used in (14.22). The first
sequence takes k = h2 = .01 and plots the solution at times t = 0., .02, .04. The solution
is already starting to show signs of instability, and indeed soon becomes completely wild.
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Figure 14.14. Numerical Solutions for the Heat Equation Based on the Explicit
Scheme.

The second sequence takes k = .005 and plots the solution at times t = 0., .025, .05. (Note
that we are using different vertical scales for the two sequences of plots.) Even though we
are employing a rather coarse mesh, the numerical solution is not too far away from the
true solution to the initial value problem, which can be found in Figure 14.1.

In order to understand the underlying issues, let us concentrate on homogeneous
boundary conditions

u(t, 0) = 0 = u(t, `)

whereby αi = βi = 0 for all i and so (14.147) reduces to a homogeneous, linear iterative
system

u(i+1) = Au(i). (14.149)

The solution will converge to zero, u(i)
→ 0, as it is supposed to (why?), if and only if

A is a convergent matrix. But convergence will depend on the step sizes. For instance, if
γ = 1, choosing a spatial step size of h = .1 and a time step size of k = h2 = .01 gives a
non-convergent matrix, and an invalid numerical scheme, while a much smaller step size,
e.g., k = .0005, gives a convergent matrix and a valid numerical scheme.

As we learned in Chapter 10, the convergence property of a matrix is fixed by its
spectral radius, i.e., the largest eigenvalue in magnitude; see Theorem 10.13. There is, in
fact, an explicit formula for the eigenvalues of the particular tridiagonal matrix (14.148).

Lemma 14.14. The eigenvalues of the (n− 1)× (n− 1) matrix A in (14.148) are

λk = 1− 4µ sin2 π k

2n
, k = 1, . . . , n− 1.

A proof of this fact, including an explicit formula for the associated eigenfunctions, is
outlined in Exercise . The matrix is convergent if and only if all its eigenvalues are less
than 1 in absolute value. Here, convergence requires

∣∣∣∣ 1− 4µ sin2 π k

2n

∣∣∣∣ < 1, for all k = 1, . . . , n− 1.
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Since 0 ≤ sin2 x ≤ 1, the convergence inequality will be valid as long as

|µ | < 1
2 .

In this way, we have deduced the basic stability criterion for the linear iterative system
(14.149). Referring to the formula (14.143), we find the condition

γ k

h2
<
1

2
, or k <

h2

2γ
, (14.150)

required for the coefficient matrix to be convergent.

As a result, this numerical method is called conditionally stable, which means that
not all choices of space and time steps lead to a convergence scheme. The convergence
criterion (14.150) places a rather severe restriction on the time step size. For instance, if
we have h = .01, and γ = 1, then we can only use a time step size of k < .00005, which
is minuscule. It would take a huge number of time steps to compute the value of the
solution at even a moderate times, e.g., t = 1. Moreover, owing to the limited accuracy
of computers, the propagation of round-off errors might then become a significant issue in
reducing the overall accuracy of the final solution values.

An unconditionally stable method — one that does not restrict the time step — can
be constructed by using the backwards difference formula

∂u

∂t
(ti, xj) ≈

u(ti, xj)− u(ti−1, xj)

k
+O(hk) (14.151)

to the temporal derivatives instead. Substituting (14.151) and the same approximation
(14.140) for uxx into the heat equation, and then replacing i by i+1, leads to the iterative
system

ui+1,j − µ
(
ui+1,j+1 − 2ui,j + ui+1,j−1

)
= ui,j ,

i = 0, 1, 2, . . . ,

j = 1, . . . , n− 1,
(14.152)

where the parameter µ = γ k/h2 is as above. The initial and boundary conditions also
have the same form (14.144), (14.145). The system has the matrix form

Âu(i+1) = u(i) + b(i+1), (14.153)

where Â is obtained from the matrix A in (14.148) by replacing µ by −µ. This defines
an implicit method since we have to solve a tridiagonal linear system at each step in order
to compute the next iterate u(i+1). However, as we learned in Section 1.7, a tridiagonal
linear system can be solved quite rapidly, and so this does not become a significant issue
in the practical implementation.

Let us look at the convergence of the implicit scheme. For homogeneous Dirichlet
boundary conditions, the system takes the form

u(i+1) = Â−1 u(i),
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and the convergence is now governed by the eigenvalues of Â−1. Lemma 14.14 tells us that
the eigenvalues of Â are

λk = 1 + 4µ sin
2 πk

2n
, k = 1, . . . , n− 1.

As a result, its inverse Â−1 has eigenvalues

1

λk
=

1

1 + 4µ sin2 πk

2n

, k = 1, . . . , n− 1.

Since µ > 0, the latter are always less than 1 in absolute value, and so Â is a convergent
matrix for any µ > 0. Therefore, the implicit scheme (14.153) is convergent for any choice
of step sizes h, k.

Compute previous example

An even better numerical scheme is obtained by averaging the explicit and implicit
schemes (14.142), (14.152). The result is known as the Crank–Nicholson scheme, and takes
the form

ui+1,j − ui,j =
µ

2

(
ui+1,j+1 − 2ui+1,j + ui+1,j−1 + ui,j+1 − 2ui,j + ui,j−1

)
. (14.154)

We can write the system in matrix form

B u(i+1) = C u(i) + 1
2

(
b(i) + b(i+1)

)
,

where

B =




1 + µ −
1
2 µ

−
1
2 µ 1 + µ −

1
2 µ

−
1
2 µ

. . .
. . .

. . .
. . .




, C =




1− µ 1
2 µ

1
2 µ 1− µ 1

2 µ

1
2 µ

. . .
. . .

. . .
. . .




. (14.155)

The convergence is governed by the generalized eigenvalues of the matrix pair B,C, or,
equivalently, the eigenvalues of the product B−1 C. According to Exercise , these are

λk =
1− 2µ sin2 πk

2n

1 + 2µ sin2 πk

2n

, k = 1, . . . , n− 1. (14.156)

If µ > 0, are these eigenvalues are less than 1 in absolute value, so that the Crank–Nicholson
scheme is also unconditionally stable. A detailed analysis based on the Taylor expansions
will show that the errors are of the order of k2 and h2, and so it is reasonable to choose
the time step to have the same order of magnitude as the space step, k ≈ h. This gives
the Crank–Nicholson scheme a considerable advantage over the other two schemes.

Example 14.15.
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Numerical Solution Methods for the Wave Equation

Let us now look at numerical solution techniques for the wave equation. Although this
is in a sense unnecessary, owing to the explicit d’Alembert formula (14.121) for the solution,
the experience we gain in designing a suitable method will serve us well in more complicated
situations, when there is no explicit formula, including one-dimensional inhomogeneous
media, and higher dimensional problems.

Consider the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2
, 0 < x < `, t ≥ 0, (14.157)

on a homogeneous bar of length ell with constant wave speed c > 0. To be specific, we
impose Dirichlet boundary conditions

u(t, 0) = α(t), u(t, `) = β(t), t ≥ 0. (14.158)

and initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ `. (14.159)

We adopt the same uniformly spaced mesh

ti = i k, xj = j h,

where h = `/n, as in the heat equation.

In order to discretize the wave equation, we replace the second order derivatives by
their standard finite difference approximations (14.134), namely

∂2u

∂t2
(ti, xj) ≈

u(ti+1, xj)− 2u(ti, xj) + u(ti−1, xj)

k2
+ O(h2),

∂2u

∂x2
(ti, xj) ≈

u(ti, xj+1)− 2u(ti, xj) + u(ti, xj−1)

h2
+ O(k2),

(14.160)

Since the errors are of orders of k2 and h2, we expect to be able to choose the space and
time step sizes of comparable magnitude:

k ≈ h.

Substituting the finite difference formulae (14.160) into the partial differential equation
(14.157), and rearranging terms, we are led to the iterative system

ui+1,j = ui,j+σ2 ui,j+1+2 (1−σ2)ui,j+σ2 ui,j−1−ui−1,j ,
i = 1, 2, . . . ,

j = 1, . . . , n− 1,
(14.161)

for the numerical approximations ui,j ≈ u(ti, xj), with parameter

σ =
c k

h
> 0. (14.162)
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The boundary conditions (14.158) require that

ui,0 = αi = α(ti), ui,n = βi = β(ti), i = 0, 1, 2, . . . . (14.163)

This allows us to rewrite the system in matrix form

u(i+1) = Bu(i)
− u(i−1) + b(i), (14.164)

where

B =




2 (1− σ2) σ2

σ2 2 (1− σ2) σ2

σ2 . . .
. . .

. . .
. . . σ2

σ2 2 (1− σ2)




, u(j) =




u1,j

u2,j

...
un−2,j

un−1,j




, b(j) =




σ2 αj
0
...
0

σ2 βj




.

(14.165)
The entries ui,j of u

(i) are, as in (14.146), the numerical approximations to the solution
values u(ti, xj) at the interior nodes. Note that the system (14.164) is a second order

iterative scheme, since computing the (i + 1)st iterate u(i+1) requires the value of the
preceding two iterates u(i) and u(i−1).

The one difficulty is getting the method started. We know u(0) since u0,j = fj = f(xj)

is determined by the initial position. However, we also need to find u(1) with entries
u1,j ≈ u(k, xj) at time t1 = k in order to get off the ground, but the initial velocity
ut(0, x) = g(x) prescribes the derivatives ut(0, xj) = g(xj) = gj at time t0 = 0 instead.
One way to approach this would be to use the finite difference approximation

gj =
∂u

∂t
(0, xj) ≈

u(k, xj)− u(0, xj)

k
≈

u1,j − gj

k
(14.166)

to compute the required values
u1,j = fj + k gj .

However, the approximation (14.166) is only accurate to order k, whereas the rest of the
scheme has error proportional to k2. Therefore, we would introduce a significantly larger
error at the initial step, and the resulting solution would not have the desired order of
accuracy.

In order to compute an initial approximation to u(1) with error on the order of k2, we
need to analyze the local error in more details. Note that, by Taylor’s theorem,

u(k, xj)− u(0, xj)

k
≈

∂u

∂t
(0, xj) +

k

2

∂2u

∂t2
(0, xj) =

∂u

∂t
(0, xj) +

c2 k

2

∂2u

∂x2
(0, xj) ,

where the error is now of order k2, and we have used the fact that u is a solution to the
wave equation. Therefore, we find

u(k, xj) ≈ u(0, xj) + k
∂u

∂t
(0, xj) +

c2 k2

2

∂2u

∂x2
(0, xj)

= f(xj) + k g(xj) +
c2 k2

2
f ′′(xj) ≈ fj + k gj +

c2 k2

2h2
(fj+1 − 2fj + fj−1) ,
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Figure 14.15. The Courant Condition.

where we can use the finite difference approximation (14.134) for the second derivative of
f(x) if no explicit formula is known. Therefore, we can initiate the scheme by setting

u1,j =
1
2 σ2 fj+1 + (1− σ2)fj +

1
2 σ2 fj−1 + k gj , (14.167)

maintain order k2 (and h2) accuracy.

Example 14.16. Consider the particular initial value problem

The stability analysis of the numerical scheme proceeds as follows. We first need to
recast the second order iterative system (14.164) into a first order system. As in Exercise

, this is accomplished by introducing the vector z(i) =

(
u(i)

u(i−1)

)
∈ R2n−2. Then

z(i+1) = C z(i) + c(i), where C =

(
B − I
I O

)
. (14.168)

Therefore, the stability of the method will be determined by the eigenvalues of the coeffi-
cient matrix C. The eigenvector equation C z = λ z, can be written out in components

Bu− v = λu, u = λv, where z =

(
u

v

)
.

Substituting the second equation into the first, we find

(λB − λ2
− 1)v = 0, or Bv =

(
λ+

1

λ

)
v.

The latter equation means that λ + λ−1 is an eigenvalue of B and v the corresponding
eigenvector. There is a straightforward connection between b and the matrix B, (14.148),
with parameter µ = σ2 appearing the the numerical scheme for the heat equation. Using
Lemma 14.14 and Exercise , the eigenvalues of B are given by

λ+
1

λ
= 1 + 2σ2 sin2 π k

n
, k = 1, . . . , n− 1.
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Fixing k for the moment, we rewrite the eigenvalue equation in the form

λ2
− 2ak λ+ 1 = 0, where ak = σ2 sin2 π k

n
.

Each pair of solutions to this quadratic equation,

λ±k = ak ±

√
a2
k − 1 , (14.169)

gives two eigenvalues of the matrix C. If ak > 1, then one of the two eigenvalues will be
larger than one in magnitude, and hence the linear iterative system will have an exponen-
tially growing mode, and hence ‖u(i)

‖ → ∞ as i → ∞ for almost all choices of initial
data. This is clearly incompatible with the wave equation solution that we are trying to
approximate, which is periodic and hence remains bounded.

On the other hand, if | ak | < 1, then the eigenvalues (14.169) are complex numbers
of modulus 1, indicated stability (but not convergence) of the matrix C. Therefore, we
should require that all ]a1, . . . , an−1 are less than 1 in magnitude, which is guaranteed
provided

σ =
c k

h
< 1, or k <

h

c
. (14.170)

This places a restriction on the relative sizes of the time and space steps, and hence the
numerical scheme is conditionally stable.

The stability criterion (14.170) is known as the Courant condition, and can be as-
signed a simple geometric interpretation. Recall that the wave speed c is the slope of the
characteristic lines for the wave equation. The Courant condition requires that the mesh
slope, which is defined to be the ratio of the space step size to the time step size, namely
h/k, must be strictly greater than the characteristic slope c. This implies that a signal
starting at a mesh point (ti, xj) will reach positions xj±k/c at the next time ti+1 = ti+k,
which are still between the mesh points xj−1 and xj+1. Thus, characteristic lines that
start at a mesh point are not allowed to reach beyond the neighboring mesh points at the
next time step.

For instance, in Figure 14.15, the wave speed is c = 1.25. The first figure has equal
mesh spacing k = h, and does not satisfy the Courant condition (14.170), whereas the
second figure has k = 1

2 h, which does. Note how the characteristic lines starting at a
given mesh point have progressed beyond the neighboring mesh points after one time step
in the first case, but not in the second.
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Chapter 15

The Laplace Equation

The fundamental partial differential equations that govern the equilibrium mechanics
of multi-dimensional media are the Laplace equation and its inhomogeneous counterpart,
the Poisson equation. The Laplace equation is arguably the most important differential
equation in all of applied mathematics. It arises in an astonishing variety of mathematical
and physical systems, ranging through fluid mechanics, electromagnetism, potential the-
ory, solid mechanics, heat conduction, geometry, probability, number theory, and on and
on. The solutions to the Laplace equation are known as “harmonic functions”, and the
discovery of their many remarkable properties forms one of the most significant chapters
in the history of mathematics.

In this chapter, we concentrate on the Laplace and Poisson equations in a two-dim-
ensional (planar) domain. Their status as equilibrium equations implies that the solutions
are determined by their values on the boundary of the domain. As in the one-dimensional
equilibrium boundary value problems, the principal cases are Dirichlet or fixed, Neumann
or free, and mixed boundary conditions arise. In the introductory section, we shall briefly
survey the basic boundary value problems associated with the Laplace and Poisson equa-
tions. We also take the opportunity to summarize the crucially important tripartite clas-
sification of planar second order partial differential equations: elliptic, such as the Laplace
equation; parabolic, such as the heat equation; and hyperbolic, such as the wave equation.
Each species has quite distinct properties, both analytical and numerical, and each forms
an essentially distinct discipline. Thus, by the conclusion of this chapter, you will have
encountered all three of the most important genres of partial differential equations.

The most important general purpose method for constructing explicit solutions of
linear partial differential equations is the method of separation of variables. The method
will be applied to the Laplace and Poisson equations in the two most important coordinate
systems — rectangular and polar. Linearity implies that we may combine the separable
solutions, and the resulting infinite series expressions will play a similar role as for the
heat and wave equations. In the polar coordinate case, we can, in fact, sum the infinite
series in closed form, leading to the explicit Poisson integral formula for the solution. More
sophisticated techniques, relying on complex analysis, but (unfortunately) only applicable
to the two-dimensional case, will be deferred until Chapter 16.

Green’s formula allows us to properly formulate the Laplace and Poisson equations in
self-adjoint, positive definite form, and thereby characterize the solutions via a minimiza-
tion principle, first proposed by the nineteenth century mathematician Lejeune Dirichlet,
who also played a crucial role in putting Fourier analysis on a rigorous foundation. Mini-
mization forms the basis of the most important numerical solution technique — the finite
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element method that we first encountered in Chapter 11. In the final section, we discuss
numerical solution techniques based on finite element analysis for the Laplace and Poisson
equations and their elliptic cousins, including the Helmholtz equation and more general
positive definite boundary value problems.

15.1. The Laplace Equation in the Plane.

The two-dimensional Laplace equation is the second order linear partial differential
equation

∂2u

∂x2
+

∂2u

∂y2
= 0. (15.1)

Along with the heat and wave equations, it completes the trinity of truly fundamental
partial differential equations. A real-valued solution u(x, y) to the Laplace equation is
known as a harmonic function. The space of harmonic functions can thus be identified as
the kernel of the second order linear partial differential operator

∆ =
∂2

∂x2
+

∂2

∂y2
, (15.2)

known as the Laplace operator , or Laplacian for short. The inhomogeneous or forced
version, namely

−∆[u ] = −
∂2u

∂x2
−

∂2u

∂y2
= f(x, y) (15.3)

is known as Poisson’s equation. It forms the two-dimensional analogue of the basic equi-
librium equation (11.12) for a bar, with the overall minus sign playing an analogous role.

The Laplace and Poisson equations arise as the basic equilibrium equations in a re-
markable variety of physical systems. For example, we may interpret u(x, y) as the dis-
placement of a membrane, e.g., a drum skin. The inhomogeneity f(x, y) in the Poisson
equation represents an external forcing of the membrane. Another example is in the ther-
mal equilibrium of planar bodies; here u(x, y) represents the temperature and f(x, y) an
external heat source. In fluid mechanics and electrostatics, u(x, y) represents the potential
function whose gradient ∇u generates the corresponding flow; see below for details. The
dynamical counterparts to the Laplace equation are multi-dimensional versions of the heat
and wave equations, to be analyzed in Chapter 17.

Since both the Laplace and Poisson equations describe equilibria, they arise in most
physical situations in the context of boundary value problems. We seek a solution u(x, y) to
the partial differential equation defined on a fixed bounded, open domain† (x, y) ∈ Ω ⊂ R2.
The solution will be required to satisfy suitable conditions on the boundary of the domain,
denoted ∂Ω, which will consist of one or more simple, closed curves, as illustrated in

† See Appendix A for the precise definitions of the terms “domain”, “bounded”, “boundary”,
etc.
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Figure 15.1. Planar Domain.

Figure 15.2. Dirichlet Boundary Conditions.

Figure 15.1. As in the one-dimensional case, there are several important types of boundary
conditions.

The first are the fixed or Dirichlet boundary conditions, which specify the value of the
function u on the boundary:

u(x, y) = h(x, y) for (x, y) ∈ ∂Ω. (15.4)

Under reasonable conditions on the type of domain, the Dirichlet conditions (15.4) serve to
uniquely specify the solution u(x, y) to the Laplace or Poisson equation. Physically, in the
case of a free or forced membrane, the Dirichlet boundary conditions correspond to gluing
the edge of the membrane to a wire at height h(x, y) over each boundary point (x, y) ∈ ∂Ω,
as illustrated in Figure 15.2. Uniqueness means that the shape of the boundary wire will
uniquely specify the vertical displacement of the membrane in equilibrium. Similarly,
in the modeling of thermal equilibrium, a Dirichlet boundary condition represents the
imposition of a prescribed temperature distribution, represented by the function h, along
the boundary of the plate.
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The second type of boundary conditions are the Neumann boundary conditions

∂u

∂n
= ∇u · n = k(x, y) on ∂Ω, (15.5)

in which the normal derivative of the solution u on the boundary is prescribed. For
example, in thermal equilibrium, a Neumann boundary condition specifies the heat flux into
the domain through its boundary. The most important are the “no-flux” or homogeneous
Neumann boundary conditions, where k(x, y) ≡ 0. In thermomechanics, this corresponds
to an insulated boundary. In the case of a membrane, it corresponds to the edge of the
drum being left free. In fluid mechanics, where u represents the fluid potential, the no-
flux conditions imply that the normal component of the velocity vector vanishes, and so
corresponds to a solid boundary that does not allow the fluid to flow across it.

Finally, one can mix the boundary conditions, imposing Dirichlet conditions on part
of the boundary, and Neumann on the complementary part. The general mixed boundary

value problem has the form

−∆u = f in Ω, u = h on D,
∂u

∂n
= k on N, (15.6)

with the boundary ∂Ω = D ∪ N being the disjoint union of a “Dirichlet part”, denoted
by D, and a “Neumann part” N . For example, in heat conduction, if we want to find the
equilibrium temperature distribution over a planar body, the Dirichlet part of the boundary
is where we fix the temperature, while the Neumann part is insulated, or, more generally,
has prescribed heat flux. Similarly, for displacement of a membrane, the Dirichlet part is
where the edge of the drum is attached to a support, while the homogeneous Neumann
part is where it is left hanging free.

Classification of Linear Partial Differential Equations in the Plane

We have, at last, encountered all three of the fundamental linear, second order, partial
differential equations for functions of two variables. The homogeneous versions of the
trinity are

a) The wave equation: utt − c2 uxx = 0, “hyperbolic”,

b) The heat equation: ut − γ uxx = 0, “parabolic”,

c) Laplace’s equation: uxx + uyy = 0, “elliptic”.

The last column is the equations’ “type”, according to a general taxonomy of partial
differential equations. An explanation of the choice of terminology will appear later.

The wave, heat and Laplace equations are the prototypical representatives of the three
most important genres of partial differential equations. The student should understand
that there are fundamental differences. Equations governing vibrations, such as the wave
equation, are typically hyperbolic. Equations governing diffusion, such as the heat equa-
tion, are parabolic. Hyperbolic and parabolic equations are dynamical processes, and one
of the variables is identified with the time. On the other hand, equations of equilibrium,
including the Laplace and Poisson equations, are typically elliptic, and only involve spatial
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variables. Elliptic partial differential equations are associated with boundary value prob-
lems, whereas parabolic and hyperbolic equations lead to initial-boundary value problems,
with, respectively, one or two required initial conditions. Furthermore, numerical solution
techniques and requirements are of a fundamentally different character in all three cases.

While the initial tripartite classification is most evident in partial differential equations
in two variables, the terminology and underlying properties of these three fundamental
genres carries over to equations in higher dimensions. Most of the important partial
differential equations arising in applications appear in one of these three general classes,
and it is fair to say that the field of partial differential equations breaks into three major,
disjoint subfields. Or, rather four subfields, the last being all the equations, including
higher order equations, that do not fit into this neat categorization, which is, of course,
yet further subdivided into a variety of subspecies.

The classification of linear, second order partial differential equations for a scalar-
valued function u(x, y) of two variables† proceeds in the following manner. The most
general such equation has the form

L[u ] = Auxx +Buxy + C uyy +Dux + E uy + F u = f, (15.7)

where the coefficients A,B,C,D,E, F are all allowed to be functions of (x, y), as is the
inhomogeneity or forcing function f = f(x, y). The equation is homogeneous if and only
if f ≡ 0. We assume that at least one of the leading coefficients A,B,C is nonzero, as
otherwise the equation is of first order.

The key quantity that determines the type of such a partial differential equation is its
discriminant

∆(x, y) = B2
− 4AC. (15.8)

This should (and for good reason) remind the reader of the discriminant of the quadratic
equation

Q(ξ, η) = Aξ2 +B ξ η + C η2 +D ξ + E η + F = 0. (15.9)

The set of solutions (ξ, η) to such an equation describes a curve; namely, a conic section.
In the nondegenerate cases, the discriminant ∆ = B2

− 4AC determines its geometrical
type; it is an ellipse when ∆ > 0, a parabola when ∆ = 0, or a hyperbola when ∆ < 0.
This tripartite classification provides the underlying motivation for the terminology used
to classify second order partial differential equations.

Definition 15.1. A linear, second order partial differential equation (15.7) at a point
(x, y) is called

a) elliptic

b) parabolic

c) hyperbolic

if

∆(x, y) < 0,

∆(x, y) = 0,

∆(x, y) > 0.

† For dynamical equations, we will identify y as the time variable t.
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In particular, the wave equation uxx − uyy = 0 has discriminant ∆ = −4, and is
hyperbolic. The heat equation uxx − uy = 0 has discriminant ∆ = 0, and is parabolic.
Finally, the Poisson equation uxx + uyy = − f has discriminant ∆ = 4, and is elliptic.

Example 15.2. Since the coefficients in the partial differential equation are allowed
to vary over the domain, the type of an equation can vary from point to point. Equations
that change type are much less common, as well as being much harder to handle. One
example arising in the theory of supersonic aerodynamics is the Tricomi equation

yuxx − uyy = 0. (15.10)

Comparing with (15.7), we find that A = y, C = −1 and B = D = E = F = f = 0. The
discriminant in this particular case is ∆ = 4y, and hence the equation is hyperbolic when
y > 0, elliptic when y < 0, and parabolic on the transition line y = 0. The hyperbolic
region corresponds to subsonic fluid flow, while the supersonic regions are of elliptic type.
The transitional parabolic boundary represents the shock line between the sub- and super-
sonic regions.

Characteristics

Certain curves play a distinguished role in the analysis of second order, linear partial
differential equations. A smooth curve x(t) is called a characteristic curve for the second

order partial differential equation (15.7) if its tangent vector
¦
x =

( ¦
x

¦
y
)T
6= 0 satisfies the

quadratic characteristic equation

A(x, y)
¦
y2
−B(x, y)

¦
x

¦
y + C(x, y)

¦
x2 = 0. (15.11)

Pay careful attention to the form of the characteristic equation; in particular, the first and
zeroth order terms in the original partial differential equation play no role.

For example, consider the wave equation†

uyy − c2 uxx = 0.

In this case, A = −c2, B = 0, C = 1, and so (15.11) takes the form

¦
x2
− c2 ¦

y2 = 0, and so
¦
x = ± c

¦
y.

The solutions to the resulting ordinary differential equation are

x(t) = ± c y(t) + k, (15.12)

where k is an integration constant. Therefore, the wave equation has two characteristic
curves passing through each point (a, b), namely the straight lines (15.12) of slope ± 1/c.
Thus, the general definition of characteristic curve is in accordance with our earlier defi-
nition (14.122) of the characteristic lines for the wave equation. (In our earlier discussion,

† Here we are using y as the “time” variable, rather than t, which is now playing the role of
the curve parameter.
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the geometrical roles of the x and y = t variables were reversed, which is why we now find
the reciprocal characteristic value of the slope.)

On the other hand, the Laplace equation

uxx + uyy = 0

has no (real) characteristic curves since the characteristic equation (15.11) reduces to
¦
x2 +

¦
y2 = 0. Finally, for the heat equation

uxx − uy = 0,

the characteristic equation is simply
¦
y2 = 0, and so there is only one characteristic curve

through each point (a, b), namely the horizontal line y = b. In this manner, one distin-
guishes elliptic, parabolic, and hyperbolic partial differential equations by the number of
(real) characteristic curves passing through a point — namely, zero, one and two, respec-
tively. Further discussion of characteristics for nonlinear partial differential equations can
be found in Section 22.1.

Some general remarks on the role of characteristic curves follow, albeit without proof.
As with the wave equation, signals and localized waves in a partial differential equation
tend to propagate along the characteristic curves. This fact lies at the foundation of
geometric optics. Light rays move along characteristic curves, and are thereby subject
to the optical phenomena of refraction and focusing. Similarly, since the characteristic
curves for the heat equation are the horizontal lines parallel to the x axis, the signals
propagate instantaneously, in accordance with our observation that the effect on an initial
concentrated heat source is immediately felt all along the bar. Finally, elliptic equations
have no characteristics, and as a consequence, do not admit propagating signals; the effect
of a localized disturbance, say on a membrane, is immediately felt everywhere.

15.2. Separation of Variables.

One of the earliest — and still most widely used — techniques for constructing explicit
analytical solutions to partial differential equations is the method of separation of variables.
We have, in fact, already applied the separation of variables method to construct particular
solutions to the heat and wave equations. In each case, we looked for a solution in the
form of a product u(t, x) = h(t) v(x). In the general separation of variables method, one
does not know either factor in advance. If the method succeeds (which is not guaranteed),
both will be determined as solutions to associated ordinary differential equations.

For the Laplace equation, the solution depends on x and y, and so the separation of
variables ansatz becomes

u(x, y) = v(x)w(y). (15.13)

Let us substitute this expression into the Laplace equation. First of all,

∂2u

∂x2
= v′′(x)w(y),

∂2u

∂y2
= v(x)w′′(y),
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where the primes indicate ordinary derivatives, and so

∆u =
∂2u

∂x2
+

∂2u

∂y2
= v′′(x)w(y) + v(x)w′′(y) = 0.

The method of separation of variables will succeed if we are able to manipulate the resulting
equation so as to place all of the terms involving x on one side of the equation and all the
terms involving y on the other. Here, we first write

v′′(x)w(y) = − v(x)w′′(y).

Dividing both sides by v(x)w(y) (which we assume is not identically zero as otherwise the
solution would be trivial) yields

v′′(x)

v(x)
= −

w′′(y)

w(y)
≡ λ, (15.14)

and effectively separates the x and y variables on each side of the equation. Now, how
could a function of x alone be equal to a function of y alone? A moment’s reflection should
convince the reader that this can happen if and only if the two functions are constant†. We
use λ, known as the separation constant , to designate this common value. Then (15.14)
reduces to a pair of ordinary differential equations

v′′ − λ v = 0, w′′ + λw = 0,

for the individual factors v(x) and w(y). We already know how to solve both of these
ordinary differential equations by elementary techniques. There are three different cases,
depending on the sign of the separation constant λ. Each case leads to four different
solutions, and we collect the entire family of separable solutions together in the following
table.

Separable Solutions to Laplace’s Equation

λ v(x) w(y) u(x, y) = v(x)w(y)

λ = −ω2 < 0 cosωx, sinωx e−ωy, eωy,
eωy cosωx,

e−ωy cosωx,

eωy sinωx,

e−ωy sinωx

λ = 0 1, x 1, y 1, x, y, xy

λ = ω2 > 0 e−ωx, eωx cosωy, sinωy
eωx cosωy,

e−ωx cosωy,

eωx sinωy,

e−ωx sinωy

† Technical detail: one should assume that the underlying domain is connected for this to be
true; however, in practical analysis, this technicality is irrelevant.
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Since Laplace’s equation is linear, we can utilize superposition to combine these types
of solutions together, either as finite linear combinations, or, provided we pay proper
attention to convergence issues, as infinite series.

For boundary value problems, the applicability of such separable solutions imposes
fairly severe restrictions on the geometry of the domain. The ansatz (15.13) effectively
requires that the domain be rectangular. Thus, we are led to consider the boundary value
problem for Laplace’s equation

∆u = 0 on a rectangle R = {0 < x < a, 0 < y < b}. (15.15)

To illustrate the method, consider the following Dirichlet boundary conditions

u(x, 0) = f(x), u(x, b) = 0, u(0, y) = 0, u(a, y) = 0. (15.16)

We are only allowing a nonzero boundary condition on one of the four sides of the rectangle,
in order to simplify the analysis. The Dirichlet boundary value problem can then be solved
by adding together the solutions to the four boundary value problems which only have
nonzero boundary conditions on one side of the rectangle; see Exercise .

Of the variety of solutions available through separation of variables, the only ones
that will play a role are those that respect the boundary conditions. Putting the nonzero
boundary condition aside for the moment, we ask that u(x, y) = v(x)w(y) be zero on the
top, right and left sides of the rectangle. This requires

v(0) = v(a) = 0, w(b) = 0.

Referring to the above table, the first condition v(0) = 0 requires

v(x) =





sinωx, λ = ω2 > 0,

x, λ = 0,

sinhωx, λ = −ω2 < 0,

where sinh z = 1
2 (e

z
− e−z) is the usual hyperbolic sine function. The second and third

cases cannot satisfy the second boundary condition v(a) = 0, and so we discard them. The
first case leads to the condition

v(a) = sinω a = 0, and hence ω a = π, 2π, 3π, . . . .

Therefore, the separation constant has the form

λ = ω2 =
n2 π2

a2
, (15.17)

with the corresponding solutions

v(x) = sin
nπx

a
, n = 1, 2, 3, . . . . (15.18)

Remark : We have just recomputed the known eigenvalues and eigenfunctions of the
familiar boundary value problem

v′′ + λ v = 0, v(0) = v(a) = 0.
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The third boundary condition w(b) = T0 requires that, up to constant multiple,

w(y) = sinh ω (b− y) = sinh
nπ (b− y)

a
. (15.19)

Therefore, each of the separable solutions

un(x, y) = sin
nπx

a
sinh

nπ (b− y)

a
, n = 1, 2, 3, . . . , (15.20)

satisfies the three homogeneous boundary conditions. It remains to analyze the boundary
condition along the bottom edge of the rectangle. We try a linear superposition of the
separable solutions in the form of an infinite series

u(x, y) =

∞∑

n=1

cnun(x, y) =

∞∑

n=1

cn sin
nπx

a
sinh

nπ (b− y)

a
,

where the coefficients c1, c2, . . . are to be determined by the remaining inhomogeneous
boundary condition. At the bottom edge y = 0 we find

u(x, 0) =

∞∑

n=1

cn sinh
nπb

a
sin

nπx

a
= f(x), (15.21)

which takes the form of a Fourier sine series for the function f(x). According to (12.72),
for the interval 0 < x < a, the coefficients bn of the Fourier sine series

f(x) =

∞∑

n=1

bn sin
nπx

a
are given by bn =

2

a

∫ a

0

f(x) sin
nπx

a
dx. (15.22)

Comparing (15.21), (15.22), we see that

cn sinh
nπb

a
= bn or cn =

bn

sinh
nπb

a

.

Therefore, the solution to the boundary value problem takes the form of an infinite series

u(x, y) =
∞∑

n=1

bn sin
nπx

a

sinh
nπ (b− y)

a

sinh
nπb

a

, (15.23)

where bn are the Fourier sine coefficients (15.22) of f(x). It can be shown, cf. Exercise ,

that if f is integrable,

∫ a

0

| f(x) | dx <∞, then the series solution converges on the entire

rectangle R. Moreover, if y > 0, the go to zero exponentially fast, and so the solution can
be well approximated by partial summation. The exponentially fast decay of the Fourier
coefficients implies that u(x, y) is an infinitely differentiable function of x at each y > 0.
In fact, as we shall see, the solutions to the Laplace equation are always analytic functions
inside the domain — even when the boundary conditions are quite unsmooth.
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Figure 15.3. Square Membrane on a Wire.

Example 15.3. A membrane is stretched over a wire in the shape of a unit square
with one side bent in half, as graphed in Figure 15.3. The precise boundary conditions are

u(x, y) =





x, 0 ≤ x ≤ 1
2 , y = 0,

1− x, 1
2 ≤ x ≤ 1, y = 0,

0, 0 ≤ x ≤ 1, y = 1,

0, x = 0, 0 ≤ y ≤ 1,

0, x = 1, 0 ≤ y ≤ 1.

The Fourier sine series of the inhomogeneous boundary function is readily computed:

f(x) =

{
x, 0 ≤ x ≤ 1

2 ,

1− x, 1
2 ≤ x ≤ 1,

=
4

π2

(
sinπx−

sin 3πx

9
+
sin 5πx

25
− · · ·

)
=
4

π2

∞∑

m=0

(−1)m
sin(2m+ 1)πx

(2m+ 1)2
.

Therefore, the solution to the boundary value problem is given by the Fourier series

u(x, y) =
4

π2

∞∑

m=0

(−1)m
sin(2m+ 1)πx sinh(2m+ 1)π(1− y)

(2m+ 1)2 sinh(2m+ 1)π
.

For y > 0, the series converges rapidly owing to the exponential decay of its terms, and so
can be well approximated by its first few summands. In Figure 15.3 we graph the sum of
the first 10 terms in the series, which is a reasonably good approximation except when we
are very close to the raised corner of the wire, which is the point of maximal displacement
of the membrane. This is indicative of a very general and important fact: a harmonic
function achieves its maximum and minimum values only on the boundary of its domain;
see Corollary 15.8 for details.

Polar Coordinates

The method of separation of variables can be used in certain other very special ge-
ometries. One particularly important case is a circular disk. Let us take the disk to have
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radius 1, centered at the origin. Consider the Dirichlet boundary value problem

∆u = 0, x2 + y2 < 1, and u = h, x2 + y2 = 1, (15.24)

so that the function u(x, y) satisfies the Laplace equation on the unit disk and has Dirichlet
boundary conditions on the unit circle. For example, u(x, y) might represent the displace-
ment of a circular drum that is attached to a wire of height

h(x, y) = h(cos θ, sin θ) ≡ h(θ), 0 ≤ θ ≤ 2π, (15.25)

above each point (x, y) = (cos θ, sin θ) on the unit circle.

The rectangular separable solutions are not particularly helpful in this situation. The
fact that we are dealing with a circular geometry inspires us to adopt polar coordinates

x = r cos θ, y = r sin θ, or r =
√

x2 + y2 , θ = tan−1 y

x
,

and write the solution as a function of r, θ. We also need to relate derivatives with respect
to x and y to those with respect to r and θ. Performing a standard chain rule computation,
we find

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
,

so

∂

∂x
= cos θ

∂

∂r
−
sin θ

r

∂

∂θ
,

∂

∂y
= sin θ

∂

∂r
+
cos θ

r

∂

∂θ
.

(15.26)

These formulae allow us to rewrite the Laplace equation in polar coordinates; after some
calculation in which many of the terms cancel, we find

∂2u

∂x2
+

∂2u

∂y2
= ∆u =

∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2

∂2u

∂θ2
= 0. (15.27)

The boundary conditions are on the unit circle r = 1, and so, by (15.25), take the form

u(1, θ) = h(θ).

Note especially that u(r, θ) and the boundary value h(θ) are 2π periodic functions in the
angular coordinate:

u(r, θ + 2π) = u(r, θ), h(θ + 2π) = h(θ). (15.28)

Polar separation of variables is based on the product ansatz

u(r, θ) = v(r)w(θ). (15.29)

Substituting (15.29) into the polar form (15.27) of Laplace’s equation, we find

v′′(r)w(θ) +
1

r
v′(r)w(θ) +

1

r2
v(r)w′′(θ) = 0.
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We now separate variables by moving all the terms involving r onto one side of the equation
and all the terms involving θ onto the other. This is accomplished by first rewriting the
equation in the form

(
v′′(r) +

1

r
v′(r)

)
w(θ) = −

1

r2
v(r)w′′(θ),

and then dividing by the product v(r)w(θ), whence

r2 v′′(r) + r v′(r)

v(r)
= −

w′′(θ)

w(θ)
= λ.

As in the rectangular case, a function of r can equal a function of θ if and only if both
are equal to a common separation constant λ. Therefore, the partial differential equation
reduces to a pair of ordinary differential equations

r2 v′′ + r v′ − λ r = 0, w′′ + λw = 0, (15.30)

for the components of the separable solution (15.29). These take the form of eigenfunction
equations in which the separation constant λ plays the role of the eigenvalue.

We have already solved the eigenvalue problem for w(θ). According to (15.28), w(θ+
2π) = w(θ) must be a 2π periodic eigenfunction. Therefore, the eigenvalues (separation
constants) are λ = n2, with associated eigenfunctions

1, sinnθ, cosnθ, n = 0, 1, 2, . . . . (15.31)

Using the value λ = n2, the remaining ordinary differential equation

r2 v′′ + r v′ − n2 r = 0. (15.32)

has the form of a second order Euler equation for v(r). As discussed in Example 7.34, the
solutions are obtained by substituting the power ansatz v(r) = rk into the equation. The
resulting “characteristic equation” requires

k2
− n2 = 0, and hence k = ±n.

Therefore, if n 6= 0, we find two linearly independent solutions,

v1(r) = rn, v2(r) = r−n, n = 1, 2, . . . . (15.33)

If n = 0, we have an additional logarithmic solution

v1(r) = 1, v2(r) = log r, n = 0, (15.34)

as in Exercise . Combining (15.31) and (15.33), (15.34), we recover the following separable
polar coordinate solutions to the Laplace equation

1, rn cosnθ, rn sinnθ,

log r, r−n cosnθ, r−n sinnθ,
n = 1, 2, 3, . . . . (15.35)

Now, the solutions in the top row of (15.35) are continuous (in fact analytic) at the
origin, whereas the solutions in the bottom row have singularities as r → 0. The latter
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Figure 15.4. Membrane Attached to Helical Wire.

are not relevant since we require the solution u(x, y) to remain bounded and smooth —
even at the center of the disk. Thus, we should only use the former in concocting a series
solution

u(r, θ) =
a0

2
+

∞∑

n=1

(
an rn cosnθ + bn rn sinnθ

)
. (15.36)

At the boundary r = 1, we must have

u(1, θ) =
a0

2
+

∞∑

n=1

(
an cosnθ + bn sinnθ

)
= h(θ).

Therefore,

an =
1

π

∫ π

−π

h(θ) cosnθ dθ, bn =
1

π

∫ π

−π

h(θ) sinnθ dθ, (15.37)

are precisely the Fourier coefficients (12.21) of the boundary value function h(θ).

Remark : Introducing the complex variable z = r e i θ = x+ i y allows us to write

zn = rn e inθ = rn cosnθ + i rn sinnθ. (15.38)

Therefore, the separable solutions for n ≥ 1 are nothing but the harmonic polynomial
solutions derived in Example 7.51, namely

rn cosnθ = Re zn, rn sinnθ = Im zn. (15.39)

Exploitation of the remarkable connections between the solutions to the Laplace equation
and complex functions will form the focus of Chapter 16.
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ψ

( x,y)

Figure 15.5. Geometrical Construction of the Solution.

Example 15.4. Consider the boundary value problem on the unit disk with

u(1, θ) = θ for − π < θ < π. (15.40)

The boundary data can be interpreted as attaching a circular membrane to a wire in the
shape of a single turn of a spiral helix bent over the unit circle. The wire has a jump
discontinuity at (−1, 0). The Fourier series for h(θ) = θ was computed in Example 12.2,
namely

h(θ) = θ ∼ 2

(
sin θ −

sin 2θ

2
+
sin 3θ

3
−
sin 4θ

4
+ · · ·

)
.

Therefore, the solution to the Laplace equation with these boundary conditions is

u(r, θ) = 2

(
r sin θ −

r2 sin 2θ

2
+

r3 sin 3θ

3
−

r4 sin 4θ

4
+ · · ·

)
. (15.41)

In fact, this series can be explicitly summed. Using (15.38), we find

u(x, y) = 2 Im

(
z −

z2

2
+

z3

3
−

z4

4
+ · · ·

)
= 2 Im log(1 + z)

is twice the imaginary part of the Taylor series for log(1 + z). If we write 1 + z = ρ e iψ =
exp(log ρ+ iψ), then the solution (15.41) is given in the explicit form

u(x, y) = 2ψ = 2 tan−1 y

1 + x
, (15.42)

and is plotted in Figure 15.4. The quantity ψ is the angle that the line passing through
the two points (x, y) and (−1, 0) makes with the x-axis, as in Figure 15.5. You should
try to convince yourself that, on the unit circle, 2ψ = θ has the correct boundary values!
Moreover, even though the boundary values are discontinuous, the solution is an analytic
function inside the disk.

Unlike the rectangular series solution, the general Fourier series solution (15.36) for
a disk can, in fact, be summed in closed form! If we substitute the Fourier formulae
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(15.37) into (15.36) — remembering to change the integration variable to, say, φ to avoid
a notational conflict — we find

u(r, θ) =
1

π

∫ π

−π

h(φ)

(
1

2
+

∞∑

n=1

rn
[
cosnθ cosnφ+ sinnθ sinnφ

]
)

dφ

=
1

π

∫ π

−π

h(φ)

(
1

2
+

∞∑

n=1

rn cosn(θ − φ)

)
dφ.

(15.43)

We next show how to sum the series in brackets. Using (15.38), we can write it as the real
part of a geometric series:

1

2
+

∞∑

n=1

rn cosnθ = Re

(
1

2
+

∞∑

n=1

zn

)
= Re

(
1

2
+

z

1− z

)
= Re

(
1 + z

2(1− z)

)

= Re

(
(1 + z)(1− z)

2 | 1− z |2

)
=
Re (1 + z − z − | z |2)

2 | 1− z |2
=
1− | z |2

2 | 1− z |2
=

1− r2

2(1 + r2 − 2r cos θ)
.

Substituting this formula back into (15.43), we have deduced the important Poisson In-

tegral Formula for the solution to the boundary value problem, named after the French
mathematician Siméon–Denis Poisson.

Theorem 15.5. The solution u(r, θ) to the Laplace equation in the unit disk with
Dirichlet boundary conditions u(1, θ) = h(θ) is

u(r, θ) =
1

2π

∫ π

−π

h(φ)
1− r2

1 + r2 − 2 r cos(θ − φ)
dφ. (15.44)

Example 15.6. A particularly important case is when the boundary value

h(θ) = δ(θ − φ)

is a delta function concentrated at the point (cosφ, sinφ) on the unit circle. The solution
to the resulting boundary value problem is the Poisson integral kernel

u(r, θ) =
1− r2

2π
[
1 + r2 − 2r cos(θ − φ)

] = 1− | z |2

2π | 1− z e− iφ |2
. (15.45)

The reader may enjoy verifying that this function does indeed, solve the Laplace equation
and has the correct boundary values in the limit as r → 1. Physically, if u(r, θ) represents
the equilibrium temperature of the disk, then the delta function boundary values corre-
spond to a unit concentrated heat source being applied at a single point on the boundary.
The solution is sketched in Figure 15.6. The general Poisson integral formula (15.44) re-
sults from our general superposition principle, based on the fact that general boundary
data can be written as a superposition,

h(θ) =

∫ π

−π

h(φ) δ(φ− θ) dφ,

of delta functions.
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Figure 15.6. The Poisson Kernel.

If we set r = 0 in the Poisson formula (15.44), then we obtain

u(0, θ) =
1

2π

∫ π

−π

h(φ) dφ. (15.46)

The left hand side is the value of u at the origin; the right hand side is the average of its
boundary values around the unit circle. This is a particular case of an important general
fact.

Theorem 15.7. The value of a harmonic function u at a point (x0, y0) is equal to
the average of its values on any circle centered at the point:

u(x0, y0) =
1

2πr

∮

C

u ds =
1

2π

∫ 2π

0

u(x0 + r cos θ, y0 + r sin θ) dθ. (15.47)

The result requires that u be harmonic on the entire closed disk bounded by this circle.

Proof : We use a scaling and translation to map the disk of radius r centered at (x0, y0)
to the unit disk centered at the origin. Specifically, we set

U(x, y) = u(x0 + rx, y0 + ry). (15.48)

An easy chain rule computation proves that U(x, y) is harmonic on the unit disk, with
boundary values

h(θ) = U(cos θ, sin θ) = u(x0 + r cos θ, y0 + r sin θ).

Therefore, by (15.46) ,

U(0, 0) =
1

2π

∫ π

−π

h(θ) dθ =
1

2π

∫ π

−π

U(cos θ, sin θ) dθ.

Replacing U by its formula (15.48) produces the desired result. Q.E.D.
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An important consequence of the integral formula (15.47) is the Maximum Principle

for harmonic functions.

Corollary 15.8. If u(x, y) is a nonconstant harmonic function defined on a domain
Ω, then u does not have a local maximum or local minimum at any interior point of Ω.

Proof : The average of a real function lies strictly between its maximum and minimum
values (except in the trivial case when the function is constant). Theorem 15.7 therefore
implies that u(x, y) lies strictly between its maximal and minimal values on any small
circle centered at (x, y). But if u(x, y) had a local maximum (minimum), then it would
be larger (smaller) than its values at all nearby points, and, in particular, its values on a
small circle around the point. This contradiction proves the theorem. Q.E.D.

As a consequence, harmonic functions achieve their maxima and minima only at
boundary points of a domain. Any interior critical point, where ∇u = 0, must be a
saddle point. Physically, if we interpret u(x, y) as the vertical displacement of an unforced
membrane, then Corollary 15.8 says that the membrane cannot have any internal bumps
— its highest and lowest points are necessarily on the boundary of the domain. This
reconfirms our physical intuition: the restoring force exerted by the stretched membrane
will serve to flatten any bump, and hence a membrane with a local maximum or minimum
cannot be in equilibrium. A similar interpretation holds for heat conduction. A body
in thermal equilibrium can achieve its maximum and minimum temperature only on the
boundary of the domain. Again, physically, heat energy would flow away from any internal
maximum, or towards any local minimum, and so if the body contained a local maximum
or minimum on its interior, it could not be in thermal equilibrium.

This concludes our discussion of the method of separation of variables and series
solutions to the planar Laplace equation. The method of separation of variables does
apply in a few other special coordinate systems. See Exercise for one example, and
[105, 108, 110] for a complete account, including connections with underlying symmetries
of the equation.

15.3. The Green’s Function.

Now we turn to the Poisson equation (15.3), which is the inhomogeneous form of the
Laplace equation. In Section 11.2, we learned how to solve one-dimensional boundary
value problems by use of the Green’s function. This important technique can be adapted
to solve inhomogeneous boundary value problems for elliptic partial differential equations
in higher dimensions, including Poisson’s equation. As in the one-dimensional situation,
the Green’s function is the solution to the homogeneous boundary value problem in which
the inhomogeneity is a concentrated unit impulse — a delta function. The solution to the
general forced boundary value problem is then obtained via linear superposition, that is,
as a convolution integral with the Green’s function.

The first order of business is to establish the proper form for the delta function or
unit impulse in our two-dimensional situation. We denote the delta function concentrated
at position ξ = (ξ, η) ∈ R2 by

δξ(x) = δ(ξ,η)(x, y) = δ(x− ξ). (15.49)
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Figure 15.7. Gaussian Distributions Converging to the Delta Function.

The delta function can be viewed as the limit, as n →∞, of a sequence of more and more
highly concentrated unit sources fn(x, y), which are required to satisfy

lim
n→∞

fn(x, y) = 0, for (x, y)6= (0, 0), while

∫ ∫

Ω

fn(x, y) dx dy = 1.

A good example of a suitable sequence are the radial Gaussian distributions

fn(x, y) =
e−(x2+y2)/n

nπ
, (15.50)

which relies on the fact that
∫ ∫

R2

e−(x2+y2)/n dx dy = nπ,

established in Exercise . Note in Figure 15.7 how the Gaussian profiles become more and
more concentrated at the origin, while maintaining a unit volume underneath their graphs.

Alternatively, one can assign the delta function a dual interpretation as a linear func-
tional on the vector space of continuous scalar-valued functions. We formally prescribe the
delta function by the integral formula

〈 δ(ξ,η) ; f 〉 =

∫ ∫

Ω

δ(ξ,η)(x, y)f(x, y) dx dy =

{
f(ξ, η), (ξ, η) ∈ Ω,

0, (ξ, η)6∈Ω,
(15.51)

for any continuous function f(x, y) and any domain Ω ⊂ R2. As in the one-dimensional
situation, we will avoid defining the integral when the delta function is concentrated at a
boundary point (ξ, η) ∈ ∂Ω of the domain of integration.

Since double integrals can be evaluated as repeated one-dimensional integrals, (A.48),
we can conveniently view

δ(ξ,η)(x, y) = δξ(x) δη(y) = δ(x− ξ) δ(y − η) (15.52)

as the product of a pair of one-dimensional delta functions. Indeed, if the domain

Ω = R =
{

a < x < b, c < y < d
}

is a rectangle, then
∫ ∫

R

δ(ξ,η)(x, y)f(x, y) dx dy =

∫ b

a

∫ b

a

δ(x− ξ) δ(y − η) f(x, y) dy dx

=

∫ b

a

δ(x− ξ) f(x, η) dx = f(ξ, η),
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provided a < ξ < b and c < η < d, i.e., (ξ, η) ∈ R; otherwise, for (ξ, η)6∈R, the integral is
0, in accordance with (15.51).

To find the Green’s function, we must solve the equilibrium equation subject to a
concentrated unit delta force at a prescribed point ξ = (ξ, η) ∈ Ω in the domain. In the
case of Poisson’s equation, this takes the form

−∆u = δξ, or −
∂2u

∂x2
−

∂u

∂y
= δ(x− ξ) δ(y − η), (x, y) ∈ Ω, (15.53)

along with homogeneous boundary conditions, either Dirichlet or mixed. (The nonunique-
ness of solutions to the pure Neumann boundary value problem precludes the existence
of a Green’s function.) The resulting solution to the particular Poisson boundary value
problem is denoted

G(x; ξ) = G(x, y; ξ, η), (15.54)

and called the Green’s function associated with the given boundary value problem. For
each fixed value of ξ = (ξ, η), the function (15.54) measures the effect, at position x = (x, y)
of a concentrated force applied at position ξ = (ξ, η).

Once we know the Green’s function, the solution to the general Poisson boundary
value problem

−∆u = f in Ω, u = 0 on ∂Ω (15.55)

is reconstructed by using a superposition principle. We regard the forcing function

f(x, y) =

∫ ∫

Ω

δ(x− ξ) δ(y − η)f(ξ, η) dξ dη

as a linear combination of delta impulses, whose strength at each point equals the value
of f . Linearity implies that the solution to the boundary value problem is the same
combination of Green’s function responses to each of the constituent impulses. The net
result is the fundamental superposition formula

u(x, y) =

∫ ∫

Ω

G(x, y; ξ, η) f(ξ, η) dξ dη (15.56)

for the solution to the general inhomogeneous boundary value problem.

As in the one-dimensional situation, self-adjointness of the boundary value problem
will imply that the Green’s function is symmetric under interchange of its arguments:

G(ξ, η;x, y) = G(x, y; ξ, η). (15.57)

(The proof of this fact is not hard, but will not be given in detail here.) Symmetry has the
following interesting physical interpretation: Let (x, y), (ξ, η) ∈ Ω be any pair of points in
the domain. If we apply a unit impulse at the first point, and measure the effect at the
second, the result is exactly the same as if we apply the impulse at the second point, and
measure the effect at the first! The reader may wish to reflect on whether this is physically
plausible: if we push a membrane, of arbitrary shape, with unit force concentrated at ξ

and measure the deflection at position x the result is the same as if we apply our force at
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position x and measure the deflection at ξ. (The deflections at other points in the domain
will typically bear very little connection with each other.) Similarly, in electrostatics, the
solution u(x, y) is interpreted as the electrostatic potential for a system in equilibrium. A
delta function corresponds to a point charge, e.g., an electron. The symmetry property
says that the electrostatic potential at x due to a point charge placed at position ξ is the
same as the potential at ξ due to a point charge at x.

Unfortunately, most Green’s functions, with a few exceptions, cannot be written down
in closed form. However, their fundamental properties can be based on the following
construction. As usual, the general solution to an inhomogeneous linear equation is a sum

u(x, y) = u?(x, y) + z(x, y) (15.58)

of a particular solution u? and the general solution z to the associated homogeneous equa-
tion, namely

−∆z = 0.

Thus, z(x, y) is an arbitrary harmonic function. We shall assume that the particular
solution u?(x, y) is due to the effect of the unit impulse, irrespective of any imposed
boundary conditions. Once we have determined u?, we shall use the freedom inherent
in the harmonic constituent z(x, y) to ensure that the sum (15.58) satisfies the required
boundary conditions.

In order to find a particular solution u?, we may appeal to physical intuition. First,
since the delta function is concentrated at the point ξ, the solution u? must solve the
homogeneous Laplace equation ∆u? = 0 except at the point x = ξ, where we expect
it to have some sort of discontinuity. Second, since the Poisson equation is modeling
a homogeneous, uniform medium (membrane, plate, etc.), in the absence of boundary
conditions, the effect of a unit impulse should only depend upon on the distance away
from the source of the impulse. Therefore, we expect that the desired particular solution
u? = u?(r) will depend only on the radial variable

r = ‖x− ξ ‖ =
√
(x− ξ)2 + (y − η)2 .

According to (15.34), the only radially symmetric solutions to the Laplace equation
are

u(r) = a+ b log r, (15.59)

where a and b are constants. The constant term a is smooth and harmonic everywhere,
and so cannot contribute to a delta function singularity. Therefore, our only chance to
produce a particular solution with such a singularity at the point ξ is if we take a multiple
of the logarithmic potential:

u? = b log r.

By construction, this function solves the Laplace equation for r 6= 0, i.e., for x 6= ξ, and
has a singularity at r = 0. But we need to see whether, for some choice of b, it satisfies
the Poisson equation

−∆(b log r) = −b∆log r = δ(x− ξ) (15.60)
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for some choice of the constant b? There are two possible approaches to resolving this
problem, corresponding to the two interpretations of the delta function. One way would
be to approximate the delta function on the right hand side of (15.60) by a limit of highly
concentrated unit sources, e.g., the Gaussian distributions gn(x, y) as given in (15.50). We
then solve the Poisson equation −∆un = gn, and prove that, in the limit, lim

n→∞
un(x, y) =

b log r for a suitable b. The details are worked out in Exercise .

Alternatively, we interpret both sides of (15.60) as defining linear functionals on the
space of smooth scalar functions f(x, y) by taking the L2 inner product

〈−b∆log r ; f 〉 = 〈 δξ ; f 〉 = f(ξ, η),

where we use the defining property (15.51) of the delta function to evaluate the right hand
side. As for the left hand side, since

∆ log r = 0 for all r > 0,

we only need integrate

〈∆log r ; f 〉 =

∫ ∫

Dε

(∆ log r)f(x, y) dx dy = f(ξ, η)

∫ ∫

Dε

∆log r dx dy,

over a small disk Dε =
{
0 ≤ r < ε

}
=
{
‖x− ξ ‖ < ε

}
centered at the singularity x = ξ.

Applying the divergence form (A.57) of Green’s Theorem to evaluate the latter integral,
we find ∫ ∫

Dε

∆log r dx dy =

∫ ∫

Dε

∇ · ∇ log r dx dy

=

∮

Cε

∂ log r

∂n
ds =

∮

Cε

1

r
ds =

∫ π

−π

dθ = 2π,

for all ε > 0. Substituting this result back into (15.60), we find

〈∆log r ; f 〉 = 2π f(ξ, η), and hence ∆ log r = 2πδξ. (15.61)

Therefore, the value b = −1/(2π) leads to our desired formula (15.60), and proves that
the logarithmic potential function

u?(x, y) = −
1

2π
log r = −

1

2π
log ‖x− ξ ‖ = −

1

4π
log
[
(x− ξ)2 + (y − η)2

]
(15.62)

is a particular solution to the Poisson equation (15.53) with a unit impulse force.

The logarithmic potential function (15.62) represents the gravitational force field in
empty space due to a unit point mass at position ξ, or, equivalently, the electrostatic
potential due to a point charge. It should be emphasized that this is in a two-dimensional
universe; the three-dimensional versions in our physical universe is proportional to 1/r —
even when restricted to a two-dimensional plane. See Section 18.1 for further details.

The gravitational or electrostatic potential due to a mass, e.g., a plate, in the shape
of a domain Ω ⊂ R2 is given by superimposing delta function sources at each point, whose
strength is the density of the material. The result is the potential

u(x, y) = −
1

4π

∫ ∫

Ω

ρ(ξ, η) log
[
(x− ξ)2 + (y − η)2

]
dξ dη, (15.63)
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in which ρ(ξ, η) is the density of the body at position (ξ, η). For example, the gravitational
force due to a disk of radius 1, so D = {x2 + y2

≤ 1}, and unit density is

u(x, y) = −
1

4π

∫ ∫

D

log
[
(x− ξ)2 + (y − η)2

]
dξ dη,

which evaluates to

Returning to our boundary value problem, the general solution to (15.53) is, therefore,

u(x, y) = −
1

2π
log ‖x− ξ ‖+ z(x, y), (15.64)

where z(x, y) is an arbitrary harmonic function. To construct the Green’s function for a
given domain Ω ⊂ R2 with prescribed homogeneous boundary conditions on ∂Ω, we need
to choose the harmonic function z(x, y) so that u(x, y), as given in (15.64), satisfies the
boundary conditions. Let us state this result in the case of Dirichlet boundary conditions.

Theorem 15.9. The Green’s function for the Dirichlet boundary value problem for

the Poisson equation −∆u = f on Ω, and u = 0 on ∂Ω has the form

G(x, y; ξ, η) = −
1

4π
log
[
(x− ξ)2 + (y − η)2

]
+ z(x, y) (15.65)

where

z(x, y) =
1

4π
log
[
(x− ξ)2 + (y − η)2

]
, (x, y) ∈ ∂Ω,

is the harmonic function that has the same boundary values as the logarithmic potential

function.

The Method of Images

The preceding analysis uncovers the basic form of the Green’s function, but we are still
left with the determination of the harmonic component required to match the logarithmic
potential boundary values. There are three principal techniques used to determine explicit
formulas. The first is an adaptation of the method of separation of variables, and leads to
infinite series expressions, similar to those of the fundamental solution for the heat equation
derived in Chapter 14. We will not dwell on this technique here, although a couple of the
exercises ask the reader to fill in the details. The second method is called the “method
of images” and will be described in this section. The most powerful method is based on
the theory of conformal mappings, and will be presented in Section 16.3 in the subsequent
chapter. While the first two methods only apply to a fairly limited class of domains,
they do adapt straightforwardly to higher dimensional problems, as well as certain other
types of elliptic partial differential equations, whereas the method of conformal mapping
is, unfortunately, only applicable to two-dimensional problems involving the Laplace and
Poisson equations.

We already know that the singular part of the Green’s function for the two-dimensional
Poisson equation is provided by a logarithmic potential. The problem, then, is to construct
the harmonic part, called z(x, y) in (15.65), so that the sum has the correct homogeneous
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Figure 15.8. Method of Images for the Unit Disk.

boundary values, or, equivalently, that z(x, y) has the same boundary values as the loga-
rithmic potential.

In certain cases, z(x, y) can be thought of as the potential induced by one or more
electric charges (or, equivalently, gravitational point masses) that are located outside the
domain Ω, arranged in such a manner that their electrostatic potential coincides with the
logarithmic potential on the boundary of the domain. The goal, then, is to place the image
charges in the proper positions.

We only consider the simplest case of a single image, located at a position η 6∈Ω.
We slightly generalize the logarithmic potential (15.62) by allowing an arbitrary scalar
multiple and also an extra constant:

z(x, y) = a, log ‖x− η ‖+ b.

This function is harmonic inside Ω since the logarithmic potential is harmonic everywhere
except at the singularity η, which is assumed to lies outside the domain. For the Dirichlet
boundary value problem, then, for each point ξ ∈ Ω we require an image point η 6∈Ω and
constants a, b ∈ R, such that

log ‖x− ξ ‖ = a log ‖x− η ‖+ b for all x ∈ ∂Ω. (15.66)

To simplify the formulas, we have omitted the 1/(2π) factor, which can easily be reinstated
at the end of the analysis.

In order to make further progress, we make some simplifying assumptions. First, we
assume that a = 1, and so (15.66) can be rewritten as

‖x− ξ ‖ = λ ‖x− η ‖,

where λ = log b. We now use a geometrical construction based upon similar triangles. We
choose η = a ξ to be a point lying on the ray through ξ, chosen so that the triangle with
vertices 0,x,η is similar to the triangle with vertices 0, ξ,x, noting that they have the
same angle at the common vertex 0, as illustrated in Figure 15.8. Similarity requires that
the triangles’ sides be in a common ratio, and so

‖ ξ ‖

‖x ‖
=
‖x ‖

‖η ‖
=
‖x− ξ ‖

‖x− η ‖
= λ. (15.67)
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Figure 15.9. Green’s Function for the Unit Disk.

Thus, if we choose

‖ ξ ‖ =
1

‖η ‖
, then ‖x ‖2 = ‖ ξ ‖ ‖η ‖ = 1,

and hence x lies on the boundary of the unit disk. Given ξ inside the disk, its image point
η will be at the reciprocal radius, with

η =
ξ

‖ ξ ‖2
. (15.68)

The map taking the point ξ to the point η defined by (15.68) is known as inversion with
respect to the unit circle. The final equation in (15.67) implies that

‖x− ξ ‖ = ‖ ξ ‖ ‖x− η ‖ =
‖ ξ − ‖ ξ ‖

2 x ‖

‖ ξ ‖
.

Consequently, the functions

1

2π
log

‖ ξ − ‖ ξ ‖
2 x ‖

‖ ξ ‖
=
1

2π
log ‖x− ξ ‖, (15.69)

has the same boundary values on the unit circle ‖x ‖ = 1. Consequently, their difference

G(x; ξ) = −
1

2π
log ‖x− ξ ‖+

1

2π
log

‖ ξ − ‖ ξ ‖
2 x ‖

‖ ξ ‖
=
1

2π
log

‖ ξ − ‖ ξ ‖
2 x ‖

‖ ξ ‖ ‖ ξ − x ‖

has the required properties of the Green’s function for the unit disk. In terms of polar
coordinates

x = (r cos θ, r sin θ), ξ = (ρ cosϕ, ρ sinϕ),

the Law of Cosines leads to the explicit formula

G(r, θ; ρ, ϕ) =
1

4π
log

(
1 + r2ρ2

− 2rρ cos(θ − ϕ)

r2 + ρ2 − 2rρ cos(θ − ϕ)

)
. (15.70)

In Figure 15.9 we sketch the Green’s function corresponding to a unit impulse being applied
at a point half way between the center and the edge of the disk.
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Applying the general superposition formula (15.56), we arrive at a general formula for
the solution to the Dirichlet boundary value problem for the Poisson equation in the unit
disk.

Theorem 15.10. The solution u(r, θ) to the homogeneous Dirichlet boundary value
problem

−∆u = f, r = ‖x ‖ < 1, u = 0, r = 1

is, in polar coordinates,

u(r, θ) =
1

4π

∫ 2π

0

∫ 1

0

f(ρ, ϕ) log

(
1 + r2ρ2

− 2rρ cos(θ − ϕ)

r2 + ρ2 − 2rρ cos(θ − ϕ)

)
ρ dρ dϕ.

The Green’s function can also be used to solve the inhomogeneous boundary value
problem.

Theorem 15.11. Let G(x; ξ) denote the Green’s function for the homogeneous
Dirichlet boundary value problem for the Poisson equation on a domain Ω ⊂ R2. Then

the solution to the inhomogeneous Dirichlet problem

−∆u = f, x ∈ Ω, u = h, x ∈ ∂Ω, (15.71)

is given by

u(x) = v(x) + ψ(x) =

∫ ∫

Ω

G(x; ξ) f(ξ) dξ dη −

∮

∂Ω

∂G(x; ξ)

∂n
h(ξ) ds. (15.72)

Proof : Let ψ(x) be any function such that

ψ = h, for x ∈ ∂Ω.

Set v = u− ψ, so that v satisfies the homogeneous boundary value problem

−∆v = f +∆ψ, x ∈ Ω, v = 0, x ∈ ∂Ω.

We can therefore express

v(x) =

∫ ∫

Ω

G(x; ξ)
[
f(ξ) + ∆ψ(ξ)

]
dξ dη.

The second integral can be simplified using the integration by parts formula (Greenudeltauv ):
∫ ∫

Ω

G(x; ξ)∆ψ(ξ) dξ dη =

∫ ∫

Ω

∆G(x; ξ) ψ(ξ) dξ dη +

+

∮

∂Ω

(
G(x; ξ)

∂ψ(ξ)

∂n
−

∂G(x; ξ)

∂n
ψ(ξ)

)
ds.

Since the Green’s function solves −∆G = δξ, the first term reproduces −ψ(x). Moreover,
G = 0 and ψ = h on ∂Ω, and so this reduces to (15.72). Q.E.D.

For example, applying (15.72) to the Green’s function (15.70) for the unit disk recovers
the Poisson integral formula (15.44).
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15.4. Adjoints and Minimum Principles.

We shall now explain how the Laplace and Poisson equations fit into our universal
self-adjoint equilibrium framework. The one-dimensional version of the Poisson equation,

−
d2u

dx2
= f,

is the equilibrium equation for a uniform elastic bar. In Section 11.3, we wrote the under-
lying boundary value problems in self-adjoint form D∗ ◦D[u ] = f based on the derivative
operator Du = u′ and its adjoint D∗ = −D with respect to the standard L2 inner product.

For the two-dimensional Poisson equation

−∆[u ] = −
∂2u

∂x2
−

∂2u

∂y2
= f(x, y)

the role of the one-dimensional derivative D will be played by the gradient operator

∇u = gradu =

(
ux
uy

)
.

The gradient ∇ maps a scalar-valued function u(x, y) to the vector-valued function con-
sisting of its two first order partial derivatives. Thus, its domain is the vector space
U = C1(Ω, R) consisting of all continuously differentiable functions u(x, y) defined for
(x, y) ∈ Ω. The target space V = C0(Ω, R2) consists of all continuous vector-valued

functions v(x, y) = ( v1(x, y), v2(x, y) )
T
, known as vector fields. (By way of analogy,

scalar-valued functions are sometimes referred to as scalar fields.) The gradient defines a
linear map

∇ :U −→ V

from scalar fields to vector fields. Indeed, if u1, u2 ∈ U are any two scalar functions and
c1, c2 ∈ R any constants, then

∇(c1 u1 + c2 u2) = c1∇u1 + c2∇u2,

which is the requirement for linearity of Definition 7.1.

In accordance with the general Definition 7.52, the adjoint of the gradient must go in
the reverse direction,

∇
∗:V −→ U,

mapping vector fields v(x, y) to scalar functions z(x, y) = ∇∗v. The defining equation for
the adjoint

〈〈∇u ;v 〉〉 = 〈u ;∇∗v 〉 (15.73)

requires inner products on the two vector spaces. The simplest inner product between
real-valued scalar functions u(x, y), v(x, y) defined on a domain Ω ⊂ R2 is given by the
double integral

〈u ; v 〉 =

∫ ∫

Ω

u(x, y) v(x, y) dx dy. (15.74)
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As in the one-dimensional case (3.11), this is often referred to as the L2 inner product

between scalar fields, with associated norm

‖u ‖2 = 〈u ;u 〉 =

∫ ∫

Ω

u(x, y)2 dx dy.

More generally, the L2 inner product between vector-valued functions (vector fields) defined
on Ω is obtained by integrating their usual dot product:

〈〈v ;w 〉〉 =

∫ ∫

Ω

v(x, y) ·w(x, y) dx dy =

∫ ∫

Ω

[
v1(x, y)w1(x, y) + v2(x, y)w2(x, y)

]
dx dy.

(15.75)
These form the two most basic inner products on the spaces of scalar and vector fields,
and are the ones required to place the Laplace and Poisson equations in self-adjoint form.

The adjoint identity (15.73) is supposed to hold for all appropriate scalar fields u and
vector fields v. For the L2 inner products (15.74), (15.75), the two sides of the identity
read

〈〈∇u ;v 〉〉 =

∫ ∫

Ω

∇u · v dx dy =

∫ ∫

Ω

v1

∂u

∂x
+ v2

∂u

∂y
dx dy,

〈u ;∇∗v 〉 =

∫ ∫

Ω

u∇∗v dx dy.

Thus, to equate these two double integrals, we need to remove the derivatives from the
scalar field u. As in the one-dimensional computation (11.74), the secret is integration by
parts.

As the student may recall, integration by parts is an immediate consequence of the
Fundamental Theorem of Calculus when applied to Leibniz’s rule for the derivative of the
product of two functions. Now, according to Appendix A, Green’s Theorem A.25 plays the
role of the fundamental theorem in two-dimensional calculus. We will find the divergence
form ∫ ∫

Ω

∇ · v dx dy =

∮

∂Ω

v · n ds. (15.76)

the more convenient for the present purposes. In analogy with the one-dimensional argu-
ment, we now replace the vector field v by the product uv of a scalar field u and a vector
field v. An elementary computation proves that

∇ · (uv) = u∇ · v +∇u · v. (15.77)

As a result, we deduce what is usually known as Green’s formula
∫ ∫

Ω

[
u∇ · v +∇u · v

]
dx dy =

∮

∂Ω

u (v · n) ds, (15.78)

which is valid for arbitrary bounded domains Ω, and arbitrary scalar and vector fields
defined thereon. Rearranging the terms in this integral identity produces the required
integration by parts formula for double integrals:

∫ ∫

Ω

∇u · v dx dy =

∮

∂Ω

u (v · n) ds−

∫ ∫

Ω

u∇ · v dx dy. (15.79)
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The first term on the right hand side of this identity is a boundary term, just like the first
terms on the right hand side of the one-dimensional integration by parts formula (11.77).
Moreover, the derivative operation has moved from a gradient on the scalar field to a
divergence on the vector field in the double integral on the right — even the minus sign is
there!

Now, The left hand side in the integration by parts formula (15.79) is the same as the
left hand side of (15.73). If the boundary integral vanishes,

∮

∂Ω

uv · n ds = 0, (15.80)

then the right hand side of formula (15.79) also reduces to an L2 inner product

−

∫ ∫

Ω

u∇ · v dx dy =

∫ ∫

Ω

u (−∇ · v) dx dy = 〈u ;−∇ · v 〉

between the scalar field u and minus the divergence of the vector field v. Therefore, subject
to the boundary constraint (15.80), the integration by parts formula reduces to the inner
product identity

〈〈∇u ;v 〉〉 = 〈u ; −∇ · v 〉. (15.81)

Comparing (15.73), (15.81), we conclude that ∇∗v = −∇ · v, and hence the adjoint of
the gradient operator is minus the divergence, ∇∗ = −∇· . In this manner, we are able to
write the two-dimensional Poisson equation in the standard self-adjoint form

−∆u = ∇∗ ◦∇u = −∇ · (∇u) = f (15.82)

subject to an appropriate system of boundary conditions that justify (15.81).

The vanishing of the boundary integral (15.80) will be ensured by the imposition of
suitable homogeneous boundary conditions on the scalar field u and/or the vector field
v. Clearly the line integral will vanish if either u = 0 or v · n = 0 at each point on the
boundary. These lead immediately to the three principle types of boundary conditions.
The first are the fixed or Dirichlet boundary conditions, which require

u = 0 on ∂Ω. (15.83)

Alternatively, we can require

v · n = 0 on ∂Ω, (15.84)

which requires that v be tangent to ∂Ω at each point, and so there is no net flux across
the (solid) boundary. If we identify v = ∇u, then the no flux boundary condition (15.84)
translates into the Neumann boundary conditions

∂u

∂n
= ∇u · n = 0 on ∂Ω. (15.85)

One can evidently also mix the boundary conditions, imposing Dirichlet conditions on part
of the boundary, and Neumann on the complementary part:

u = 0 on D,
∂u

∂n
= 0 on N, where ∂Ω = D ∪N (15.86)
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is the disjoint union of the Dirichlet and Neumann parts.

To model inhomogeneous membranes, heat flow through inhomogeneous media, and
similar physical equilibria, we replace the L2 inner product between vector fields by the
weighted version

〈〈v ;w 〉〉 =

∫ ∫

Ω

[
p(x, y) v1(x, y)w1(x, y) + q(x, y) v2(x, y)w2(x, y)

]
dx dy, (15.87)

in which p(x, y), q(x, y) > 0 are strictly positive functions on the domain (x, y) ∈ Ω.
Retaining the usual L2 inner product (15.74) between scalar fields, let us compute the
weighted adjoint of the gradient operator. Using the same basic defining formula (15.73),
we compute

〈〈∇u ;v 〉〉 =

∫ ∫

Ω

pv1

∂u

∂x
+ q v2

∂u

∂y
dx dy.

We then apply the same integration by parts formula (15.79) to remove the derivatives
from the scalar field u, leading to
∫ ∫

Ω

pv1

∂u

∂x
+ q v2

∂u

∂y
dx dy

=

∮

∂Ω

[
−uqv2 dx+ upv1 dy

]
−

∫ ∫

Ω

u

[
∂(pv1)

∂x
+

∂(q v2)

∂y

]
dx dy.

(15.88)

Equating this to the right hand side 〈u ;∇∗v 〉, we deduce that, provided the boundary
integral vanishes, the weighted adjoint of the gradient operator with respect to (15.87) is
given by

∇
∗v = −

∂(pv1)

∂x
−

∂(q v2)

∂y
= − p

∂v1

∂x
− q

∂v2

∂y
− v1

∂p

∂x
− v2

∂q

∂y
. (15.89)

The boundary integral in (15.88) vanishes provided either u = 0 or v = 0 on ∂Ω. Therefore,
the same homogeneous boundary conditions — Dirichlet, Neumann or mixed — are still
applicable.

The corresponding self-adjoint boundary value problem takes the form

∇
∗ ◦∇u = −

∂

∂x

(
p(x, y)

∂u

∂x

)
−

∂

∂x

(
q(x, y)

∂u

∂x

)
= f(x, y), (x, y) ∈ Ω, (15.90)

along with either homogeneous or inhomogeneous boundary conditions of either Dirich-
let, Neumann or mixed type. The weight functions p, q are prescribed by the physical
inhomogeneities in the body.

Remark : In electrostatics, the gradient equation v = ∇u relates the voltage drop to
the electrostatic potential u, and is the continuous analog of the circuit formula (6.17)
relating potentials to voltages. The continuous version of Kirchhoff’s Voltage Law (6.19)
that the net voltage drop around any loop is zero is the fact that any gradient vector has
zero curl, ∇∧ v = 0, i.e., the flow is irrotational. Ohm’s law (6.22) has the form y = C v

where the vector field y represents the current, while C = diag (p(x, y), q(x, y)) represents
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th conductance of the medium; in the case of Laplace’s equation, we a re assuming a
uniform unit conductance. Finally, the equation f = ∇ · y = ∇∗v relating current and
external current sources forms the continuous analog of Kirchhoff’s Current Law (6.25) —
the transpose of the discrete incidence matrix translates into the adjoint of the gradient
operator is the divergence. Thus, our discrete electro-mechanical analogy carries over,
in the continuous realm, to a tripartite electro-mechanical-fluid analogy, with all three
physical systems leading to the same very general mathematical structure.

Positive Definiteness and the Dirichlet Principle

In conclusion, as a result of the integration by parts calculation, we have successfully
formulated the Poisson and Laplace equations (as well as their weighted counterparts) in
self-adjoint form

−∆u = ∇∗ ◦∇u = f,

including either Dirichlet, Neumann, or mixed boundary conditions. A key benefit of the
formulation of a system in self-adjoint form is, in the positive definite cases, the charac-
terization of the solutions by a minimization principle.

According to Theorem 7.59, the self-adjoint operator ∇∗ ◦∇ is positive definite if and
only if the kernel of the underlying gradient operator — restricted to the appropriate space
of scalar fields — is trivial: ker∇ = {0}. The determination of the kernel of the gradient
operator relies on the following elementary fact, which is the multi-variable version of the
result that the only function with zero derivative is a constant.

Lemma 15.12. If u(x, y) is a C1 function defined on a connected domain, then

∇u ≡ 0 if and only if u ≡ c is a constant.

This result is a simple consequence of Theorem A.20; see Exercise . Therefore, the
only functions which could show up in ker∇, and thus prevent positive definiteness, are
the constants. The boundary conditions will tell us whether or not this occurs. The
only constant function that satisfies either homogeneous Dirichlet or homogeneous mixed
boundary conditions is the zero function, and thus, just as in the one-dimensional case,
the boundary value problem for the Poisson equation with Dirichlet or mixed boundary
conditions is positive definite. On the other hand, any constant function satisfies the
homogeneous Neumann boundary conditions, and hence such boundary value problems
are only positive semi-definite.

In the positive definite definite cases, when ker∇ = {0}— as dictated by the boundary
conditions — the equilibrium solution can be characterized by our basic minimization
principle based on the general formula (7.71). For the Poisson equation, the resulting
quadratic functional is the justly famous Dirichlet principle.

Theorem 15.13. The solution u(x, y) to the Poisson equation (15.3) subject to
either homogeneous Dirichlet or mixed boundary conditions is characterized as the unique

function that minimizes the Dirichlet integral

1
2 ‖∇u ‖2 − 〈u ; f 〉 =

∫ ∫

Ω

(
1
2 u2

x +
1
2 u2

y − f u
)
dx dy (15.91)

among all C1 functions that satisfy the prescribed boundary conditions.
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In physical applications the Dirichlet integral (15.91) represents the energy in the
system. Hence, just as in discrete and one-dimensional mechanics, Nature chooses the
equilibrium configuration so as to minimize the energy. The application of this minimum
principle for numerical approximation to the solutions based on the finite element approach
will form the subject of Section 15.5.

Remark : Theorem 15.13 only says that if a minimum is achieved, then it must satisfy
the boundary value problem. It does not actually guarantee the existence of a minimizer,
and hence a solution to the boundary value problem. Dirichlet originally thought this to
be self-evident, but it was later realized that the proof of existence is a rather difficult
analytical theorem. It took about 50 years from Dirichlet’s statement of his principle until
Hilbert supplied the first rigorous existence proof. In applications, it is certainly comforting
to know that there is a solution to the boundary value problem. In this introductory
treatment, we adopt a more pragmatic approach, concentrating on the computation of the
solution — reassured, if necessary, by the theoreticians’ efforts in establishing the existence
of the solution.

The Dirichlet minimization principle (15.91) was derived under the assumption that
the boundary conditions are homogeneous — either pure Dirichlet or mixed. As it turns
out, the principle also applies to inhomogeneous Dirichlet boundary conditions as stated.
However, if we have inhomogeneous Neumann conditions on part of the boundary, then
we must include an additional boundary term in the minimizing functional. The general
result can be stated as follows:

Theorem 15.14. The solution u(x, y) to the boundary value problem

−∆u = f in Ω, u = h on D,
∂u

∂n
= k on N,

with ∂Ω = D ∪N , and D 6= ∅, is characterized as the unique function that minimizes the
modified Dirichlet integral

∫ ∫

Ω

(
1
2‖∇u ‖2 − f u

)
dx dy +

∫

N

u k ds (15.92)

among all C1 functions that satisfy the prescribed boundary conditions.

The inhomogeneous Dirichlet problem has N = ∅ and D = ∂Ω, in which case the
boundary integral does not appear. An outline of the proof of this result appears in the
exercises.

While the Dirichlet and mixed boundary value problems are positive definite, any
constant function satisfies the homogeneous Neumann boundary conditions, and so in this
case ker∇ consists of all constant functions. Therefore, just as in the one-dimensional bar,
the Neumann boundary value problem is only positive semi-definite, and so we cannot
construct a minimization principle. Indeed, when the system is only positive semi-definite,
the solution is not unique: if u(x, y) is a solution, so is u(x, y) + c for any constant c.

As we know, positive definiteness is directly related to the stability of the physical
system. The Dirichlet and mixed boundary value problems are stable, and can support
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any imposed force. On the other hand, the pure Neumann boundary value problem is
unstable, owing to the existence of a nontrivial kernel — the constant functions. Physically,
the unstable mode represents a rigid translation of the entire membrane in the vertical
direction. Indeed, the Neumann problem leaves the entire boundary of the membrane
unattached to any support, and so the unforced membrane is free to move up or down
without affecting its equilibrium status.

Furthermore, non-uniqueness and non-existence of solutions go hand in hand. As we
learned in Section 11.3, the existence of a solution to a Neumann boundary value problem
relies on the Fredholm alternative, suitably adapted to this multi-dimensional situation. A
necessary condition for the existence of a solution is that the forcing function be orthogonal
to the elements of the kernel of the underlying self-adjoint linear operator, which, in the
present situation requires that f be orthogonal to the subspace consisting of all constant
functions. In practical terms, we only need to check orthogonality with respect to a basis
for the subspace, which in this situation consists of the constant function 1. The fact that,
under such conditions, a solution actually exists is harder, and we refer to [39] for details
of the existence part of the following result.

Theorem 15.15. The Neumann boundary value problem

−∆u = f, in Ω
∂u

∂n
= 0, on ∂Ω, (15.93)

has a solution u(x, y) if and only if

〈 1 ; f 〉 =

∫ ∫

Ω

f(x, y) dx dy = 0. (15.94)

Moreover, the solution is not unique since any function of the form u(x, y)+c, where c ∈ R
is an arbitrary constant, is also a solution.

Forcing functions f(x, y) which do not satisfy the orthogonality constraint (15.94) will
excite the translational instability, and no equilibrium configuration is possible. For exam-
ple, if we force a free membrane, (15.94) requires that the net force in the vertical direction
be zero; otherwise, the membrane will start moving and cannot be in an equilibrium.

15.5. Finite Elements.

As the reader has no doubt already guessed, explicit solutions to boundary value
problems for the Laplace and Poisson equations are few and far between. In most cases,
exact solution formulae are not available, or are so complicated as to be of scant utility.
To proceed further, one is forced to design suitable numerical approximation schemes that
can accurately evaluate the desired solution and thereby aid in the study of its behavior.

The most powerful class of numerical algorithms for solving general elliptic boundary
value problems are the finite element methods. We have already learned, in Section 11.6,
the key underlying idea. One begins with a minimization principle, prescribed by a quadra-
tic functional defined on a suitable vector space of functions U that serves to incorporate
the (homogeneous) boundary conditions. The desired solution is characterized as the
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Figure 15.10. Triangulation of a Planar Domain and Piecewise Affine Function.

unique minimizer u? ∈ U . One then restricts the functional to a suitably chosen finite-
dimensional subspace W ⊂ U , and seeks a minimizer w? ∈ W . Finite-dimensionality of
W has the effect of reducing the infinite-dimensional minimization problem to a finite-
dimensional problem, which can then be solved by numerical linear algebra. The resulting
minimizer w? will — provided the subspace W has been cleverly chosen — provide a good
approximation to the true minimizer u? on the entire domain. Here we concentrate on the
practical design of the finite element procedure, and refer the reader to a more advanced
text, e.g., [FE], for the analytical details and proofs of convergence. Most of the multi-
dimensional complications are not in the underlying theory, but rather in the realms of
data management and organizational details.

In this section, we first concentrate on applying these ideas to the two-dimensional
Poisson equation. For specificity, we first treat the homogeneous Dirichlet boundary value
problem

−∆u = f in Ω u = 0 on ∂Ω. (15.95)

According to Theorem 15.13, the solution u = u? is characterized as the unique mini-
mizing function for the Dirichlet functional (15.91) among all smooth functions u(x, y)
that satisfy the prescribed boundary conditions. In the finite element approximation, we
restrict the Dirichlet functional to a suitably chosen finite-dimensional subspace. As in
the one-dimensional situation, the most convenient finite-dimensional subspaces consist of
functions that may lack the requisite degree of smoothness that qualifies them as possible
solutions to the partial differential equation. Nevertheless, they do provide good approx-
imations to the actual solution. An important practical consideration is to use functions
with small support, cf. Definition 13.5. The resulting finite element matrix will then be
sparse and the solution to the linear system can be relatively rapidly calculate, usually by
application of an iterative numerical scheme such as the Gauss–Seidel or SOR methods
discussed in Chapter 10.

Finite Elements and Triangulation
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For one-dimensional boundary value problems, the finite element construction rests on
the introduction of a mesh a = x0 < x1 < · · · < xn = b on the interval of definition. The
mesh nodes xk break the interval into a collection of small subintervals. In two-dimensional
problems, a mesh consists of a finite number of points xk = (xk, yk), k = 1, . . . ,m, known
as nodes, usually lying inside the domain Ω ⊂ R2. As such, there is considerable freedom
in the choice of mesh nodes, and completely uniform spacing is often not possible. We
regard the nodes as forming the vertices of a triangulation of the domain Ω, consisting of
a finite number of small triangles, which we denote by T1, . . . , TN . The nodes are split
into two categories — interior nodes and boundary nodes, the latter lying on or close to
the boundary of the domain. A curved boundary is approximated by the polygon through
the boundary nodes formed by the sides of the triangles lying on the edge of the domain;
see Figure 15.10 for a typical example. Thus, in computer implementations of the finite
element method, the first ingredient is a routine that will automatically triangulate a
specified domain in some reasonable manner; see below for details on what “reasonable”
entails.

As in our one-dimensional finite element construction, the functions w(x, y) in the
finite-dimensional subspace W will be continuous and piecewise affine. “Piecewise affine”
means that, on each triangle, the graph of w is flat, and so has the formula†

w(x, y) = αν + βν x+ γν y, for (x, y) ∈ Tν . (15.96)

Continuity of w requires that its values on a common edge between two triangles must
agree, and this will impose certain compatibility conditions on the coefficients αµ, βµ, γµ

and αν , βν , γν associated with adjacent pairs of triangles Tµ, Tν . The graph of z = w(x, y)
forms a connected polyhedral surface whose triangular faces lie above the triangles in the
domain; see Figure 15.10 for an illustration.

The next step is to choose a basis of the subspace of piecewise affine functions for the
given triangulation. As in the one-dimensional version, the most convenient basis consists
of pyramid functions ϕk(x, y) which have the value 1 at a single node xk, and zero at all
the other nodes; thus

ϕk(xi, yi) =

{
1, i = k,

0, i 6= k.
(15.97)

Note that ϕk will be nonzero only on those triangles which have the node xk as one of
their vertices, and hence the graph of ϕk looks like a pyramid of unit height sitting on a
flat plane, as illustrated in Figure 15.11.

The pyramid functions ϕk(x, y) corresponding to the interior nodes xk satisfy the
homogeneous Dirichlet boundary conditions on the boundary of the domain — or, more
correctly, on the polygonal boundary of the triangulated domain, which is supposed to
be a good approximation to the curved boundary of the original domain Ω. Thus, the
finite-dimensional finite element subspace W will be spanned by the interior node pyramid

† Here and subsequently, the index ν is a superscript, not a power!
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Figure 15.11. Finite Element Pyramid Function.

functions. A general element w ∈W is a linear combination thereof, so

w(x, y) =

n∑

k=1

ck ϕk(x, y), (15.98)

where the sum ranges over the n interior nodes of the triangulation. Owing to the original
specification (15.97) of the pyramid functions, the coefficients

ck = w(xk, yk) ≈ u(xk, yk), k = 1, . . . , n, (15.99)

are the same as the values of the finite element approximation w(x, y) at the interior
nodes. This immediately implies linear independence of the pyramid functions, since the
only linear combination that vanishes at all nodes is the trivial one c1 = · · · = cn = 0. Thus,
the interior node pyramid functions ϕk1, . . . ϕn form a basis for finite element subspaceW ,
which therefore has dimension equal to n, the number of interior nodes.

The explicit formulae for the finite element basis functions are not difficult to deter-
mine. On one of the triangles Tν that has xk as a vertex, ϕk(x, y) will be the unique affine
function (15.96) that takes the value 1 at the vertex xk and 0 at the other two vertices
xl,xm. Thus, we need a formula for an affine function or element

ωνk(x, y) = ανk + βνk x+ γνk y, (x, y) ∈ Tν , (15.100)

that takes the prescribed values

ωνk(xi, yi) = ωνk(xj , yj) = 0, ωνk(xk, yk) = 1,

at three specified points. These three conditions lead to the linear system

ωνk(xi, yi) = ανk + βνk xi + γνk yi = 0,

ωνk(xj , yj) = ανk + βνk xj + γνk yj = 0,

ωνk(xk, yk) = ανk + βνk xk + γνk yk = 1.

(15.101)

The solution† produces the explicit formulae

ανk =
xi yj − xj yi

∆ν

, βνk =
yi − yj

∆ν

, γνk =
xj − xi

∆ν

, (15.102)

† Cramer’s Rule (Cramer3 ) comes in handy here
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Figure 15.12. Vertex Polygons.

for the coefficients. The denominator

∆ν = det



1 xi yi
1 xj yj
1 xk yk


 = ±2 area Tν (15.103)

is, up to sign, twice the area of the triangle Tν ; see Exercise .

Example 15.16. Consider an isoceles right triangle T with vertices

x1 = (0, 0), x2 = (1, 0), x3 = (0, 1).

Using equations (15.102), (15.103) (or solving the linear systems (15.101) directly), we
immediately produce the three affine elements

ω1(x, y) = 1− x− y, ω2(x, y) = x, ω3(x, y) = y. (15.104)

They are defined so that ωk equals 1 at the vertex xk and is zero at the other two vertices.

The finite element pyramid function is then obtained by piecing together the individual
affine elements:

ϕk(x, y) =

{
ωνk(x, y), if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise.
(15.105)

Continuity of ϕk(x, y) is ensured by the fact that the constituent affine elements have the
same values at common vertices. The support of the finite element basis function (15.105)
is the polygon

suppϕk = Pk =
⋃

ν

Tν (15.106)

consisting of all the triangles Tν that have the node xk as a vertex. Thus, ϕk(x, y) = 0
whenever (x, y) 6∈Pk. We will call Pk the kth vertex polygon. The node xk lies on the
interior of its vertex polygon Pk, while the vertices of Pk are all the adjacent vertices that
are connected to xk by an edge of the triangulation. In Figure 15.12 the shaded regions
are two of the vertex polygons for the triangulation in Figure 15.10.

Example 15.17. The simplest, and most common triangulations are based on
regular meshes. Suppose that the nodes lie on a square grid, and so are of the form
xi,j = (ih + a, j h + b) where h > 0 is the inter-node spacing, and (a, b) is an overall
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Figure 15.13. Square Mesh Triangulations.

offset. If we choose the triangles to all have the same orientation, as in the first picture in
Figure 15.13, then the vertex polygons all have the same shape, consisting of 6 triangles
of total area 3h2 — the shaded region. On the other hand, if we choose an alternating,
perhaps more æsthetically pleasing triangulation as in the second picture, then there are
two types of vertex polygons. The first, consisting of four triangles, has area 2h2, while
the second, containing 8 triangles, has twice the area, 4h2. In practice, there are good
reasons to prefer the former triangulation; see below.

In general, in order to ensure convergence of the finite element solution to the true
minimizer, one should choose a triangulation with the following properties:

(a) The triangles are not too long and skinny. In other words, the sides should have
comparable lengths. In particular, obtuse triangles should be avoided.

(b) The areas of nearby triangles Tν should not vary too much.

(c) The areas of nearby vertex polygons Pk should also not vary too much.

For adaptive or variable meshes, one might very well have wide variations in area over the
entire grid, with small triangles in regions of rapid change in the solution, and large ones in
less interesting regions. But, overall, the sizes of the triangles and vertex polygons should
not dramatically vary as one moves across the domain.

The Finite Element Equations

We now seek to approximate the solution to the homogeneous Dirichlet boundary
value problem by restricting the Dirichlet functional to the finite element subspace W .
Substituting the formula (15.98) for a general element of W into the quadratic Dirichlet
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functional (15.91) and expanding, we find

P[w ] = P

[
n∑

i=1

ci ϕi

]
=

∫ ∫

Ω



(

n∑

i=1

ci∇ϕi

)2

− f

(
n∑

i=1

ci ϕi

)
 dx dy

=
1

2

n∑

i,j=1

kij ci cj −

n∑

i=1

bi ci =
1
2 c

TKc− bT c.

Here K = (kij) is a symmetric n × n matrix, while b = ( b1, b2, . . . , bn )
T
is a vector with

respective entries

kij = 〈∇ϕi ;∇ϕj 〉 =

∫ ∫

Ω

∇ϕi · ∇ϕj dx dy,

bi = 〈 f ;ϕi 〉 =

∫ ∫

Ω

f ϕi dx dy.

(15.107)

Thus, to determine the finite element approximation, we need to minimize the quadratic
function

P (c) = 1
2 c

TKc− bT c (15.108)

over all possible choices of coefficients c = ( c1, c2, . . . , cn )
T
∈ Rn, i.e., over all possible

function values at the interior nodes.

Restricting to the finite element subspace has reduced us to a standard finite-dimen-
sional quadratic minimization problem. First, the coefficient matrix K > 0 is positive
definite due to the positive definiteness of the original functional; the proof in Section 11.6
is easily adapted to the present situation. Theorem 4.1 tells us that the minimizer is
obtained by solving the associated linear system

Kc = b. (15.109)

The solution to (15.109) is effected by either Gaussian elimination or an iterative technique.

To find explicit formulae for the matrix coefficients kij in (15.107), we begin by noting
that the gradient of the affine element (15.100) is equal to

∇ωνk(x, y) = aνk =

(
βνk
γνk

)
=
1

∆ν

(
yi − yj
xj − xi

)
, (x, y) ∈ Tν , (15.110)

which is a constant vector within the triangle Tν ; outside it, ∇ων
k = 0 is zero. Therefore,

∇ϕk(x, y) =

{
∇ωνk = aνk, if (x, y) ∈ Tν which has xk as a vertex,

0, otherwise.
(15.111)

Actually, (15.111) is not quite right since if (x, y) lies on the boundary of a triangle Tν ,
then the gradient does not exist. However, this technicality will not cause any difficulty
in evaluating the ensuing integral. Thus, ∇ϕk reduces to a piecewise constant function on
the triangulation.
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We will approximate integrals over the domain Ω by integrals over the triangles,
which assumes that the polygonal boundary of the triangulation is a reasonably close
approximation to the true boundary ∂Ω. In particular,

kij ≈
∑

ν

∫ ∫

Tν

∇ϕi · ∇ϕj dx dy ≡
∑

ν

kνij . (15.112)

Now, according to (15.111), one or the other gradient in the integrand will vanish on the
entire triangle Tν unless both xi and xj are vertices. Therefore, the only terms contributing
to the sum are those triangles Tν that have both xi and xj as vertices. If i6= j there are only
two such triangles, while if i = j every triangle in the ith vertex polygon Pi contributes.
The individual summands are easily evaluated, since the gradients are constant on the
triangles, and so

kνij =

∫ ∫

Tν

aνi · a
ν
j dx dy = aνi · a

ν
j area Tν .

Let Tν have vertices xi,xj ,xk. Then, by (15.110), (15.111) and (15.103),

kνij =
(yj − yk)(yk − yi) + (xk − xj)(xi − xk)

(∆ν)
2

area Tν = −
(xi − xk) · (xj − xk)

4 area Tν
, i 6= j,

kνii =
(yj − yk)

2 + (xk − xj)
2

(∆ν)
2

area Tν =
‖xj − xk ‖

2

4 area Tν
, where area Tν =

1
2 |∆ν |. (15.113)

In this manner, each triangle Tν is associated with a collection of 6 different coefficients,
kνij = kνji, known as the elemental stiffnesses of Tν . The indices i, j range over the three
different vertices of the triangle Tν . In practice, one assembles the elemental stiffnesses
into a symmetric 3× 3 matrix Sν , known as the elemental stiffness matrix of the triangle,
whose rows and columns are labeled by its vertices xi,xj ,xk.

Interestingly, the elemental stiffnesses depend only on the angles of the triangle and
not on its size. Thus, similar triangles have the same elemental stiffness matrix — provided
their vertices are labeled in the same order. Indeed, if we denote the angle in Tν at the
vertex xk by θνk , then, according to Exercise ,

kνii =
1
2

(
cot θνk + cot θ

ν
j

)
, while kνij = kνji = −

1
2 cot θ

ν
k , i6= j, (15.114)

depend only upon the cotangents of the angles, and hence the elemental stiffness matrix
has the form

Sν =
1

2



cot θνj + cot θ

ν
k − cot θνk − cot θνj

− cot θνk cot θνi + cot θ
ν
k − cot θνi

− cot θνj − cot θνi cot θνi + cot θ
ν
j


. (15.115)

One can use either formula for the elemental stiffness matrix. Equation (15.113) is more
convenient when one is given the coordinates of its vertices, while (15.115) should be used
if one knows its angles.
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Figure 15.14. Triangles.

Example 15.18. The right triangle with vertices (0, 0), (1, 0), (0, 1) has elemental
stiffness matrix

S =




1 −
1
2 −

1
2

−
1
2

1
2 0

−
1
2 0 1

2


. (15.116)

The same holds for any other isoceles right triangle, as long as we chose the first vertex
to be at the right angle and the other two at the 45◦ angles. A different ordering of the
vertices will serve to permute the rows and columns of S. Similarly, an equilateral triangle
has all 60◦ angles, and so its elemental stiffness matrix is

S =




1√
3

−
1

2
√

3
−

1
2
√

3

−
1

2
√

3
1√
3

−
1

2
√

3

−
1

2
√

3
−

1
2
√

3
1√
3


 ≈



0.577350 −0.288675 −0.288675

− 0.288675 0.577350 −0.288675

− 0.288675 −0.288675 0.577350


. (15.117)

Assembling the Elements

Each elemental stiffness matrix will contribute, through the summation (15.112), to
the finite element coefficient matrix K. We begin by constructing a larger matrix K∗,
which we call the full finite element matrix , of size m ×m where m is the total number
of nodes in our triangulation, including both interior and boundary nodes. The rows and
columns of K∗ are labeled by the nodes xi. On the other hand, the three rows and columns
of an individual elemental stiffness matrix Sν are labeled by the vertices of its triangle Tν .
We let Kν = (k

ν
ij) denote the corresponding m×m matrix containing the 9 entries of Sν

which are placed in the rows and columns corresponding to the vertices of the triangle Tν ;
all other entries of Kν are 0. For example, if T3 has vertices x2,x3,x6, then the entries
of its elemental stiffness matrix S3 will appear in rows and columns with labels 2, 3, 6 of
the full matrix K3. The resulting m ×m matrices are all summed together over all the
triangles,

K∗ =

N∑

ν=1

Kν , (15.118)

to produce the full finite element matrix. As in (15.112), each entry kij =
∑

kνij of K∗

will be a sum of elemental stiffnesses corresponding to all the triangles that have xi and
xj as vertices.
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Figure 15.15. The Oval Plate.
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Figure 15.16. A Coarse Triangulation of the Oval Plate.

The full finite element matrix K∗ is too large for our linear system (15.109) since its
rows and columns include all the nodes, whereas the finite element matrix K appearing
in (15.109) only refers to the n interior nodes. The reduced n × n finite element matrix

K is simply obtained from K∗ by deleting all rows and columns indexed by boundary
nodes, retaining only the elements kij when both xi and xj are interior nodes. (This may
remind the reader of our construction of the reduced incidence matrix for a structure in
Chapter 6.) For the homogeneous boundary value problem, this is all we require. However,
as we shall see, inhomogeneous boundary conditions are most easily handled by retaining
(part of) the full matrix K∗.

The easiest way to understand the construction is through a particular example.

Example 15.19. A metal plate has the shape of an oval running track, consisting
of a rectangle, with side lengths 1m by 2m, and two semicircular disks glued onto the
shorter ends, as sketched in Figure 15.15. The plate is subject to a heat source while its
edges are held at a fixed temperature. The problem is to find the equilibrium temperature
distribution within the plate. Mathematically, we must solve the Poisson equation −∆u =
f with prescribed Dirichlet boundary conditions, for the equilibrium temperature u(x, y).
Let us describe how to set up the finite element approximation to such a boundary value
problem.

We begin with a very coarse triangulation of the plate, which will not give particularly
accurate results, but does serve to illustrate how to go about assembling the finite element
matrix. We divide the rectangular part of the plate into 8 right triangles, while each
semicircular end will be approximated by three equilateral triangles. The triangles are
numbered from 1 to 14 as indicated in Figure 15.16. There are 13 nodes in all, numbered
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as in the second figure. Only nodes 1, 2, 3 are interior, while the boundary nodes are labeled
4 through 13, going counterclockwise around the boundary starting at the top. Therefore,
the full finite element matrix K∗ will have size 13 × 13, its rows and columns labeled by
all the nodes. The reduced matrix K appearing in the finite element equations (15.109)
consists of the upper left 3× 3 submatrix of K∗.

Each triangle Tν will contribute the summand Kν to the matrix K∗, modifying the
nine entries kij indexed by the vertices of Tν . The values are extracted from the nine
entries of the elemental stiffness matrix for that triangle. For example, the first triangle
T1 is equilateral, and so has elemental stiffness matrix (15.117). Its vertices are labeled 1,
5, and 6, and therefore we place the entries of (15.117) in the rows and columns numbered
1, 5, 6 to form the summand

K1 =




0.577350 0. 0. 0. −0.288675 −0.288675 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

−0.288675 0. 0. 0. 0.577350 −0.2886750. 0. 0. . . .

−0.288675 0. 0. 0. −0.288675 0.577350 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .
...

...
...

...
...

...
...

...
. . .




,

where all the undisplayed entries in the full 13 × 13 matrix are 0. The next triangle T2

has the same equilateral elemental stiffness matrix (15.117), but now its vertices are 1, 6, 7,
and so it will contribute

K2 =




0.577350 0. 0. 0. 0. −0.288675 −0.288675 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

−0.288675 0. 0. 0. 0. 0.577350 −0.2886750. 0. . . .

−0.288675 0. 0. 0. 0. −0.288675 0.5773500. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .
...

...
...

...
...

...
...

...
. . .




.

Similarly for K3, with vertices 1, 7, 8. On the other hand, triangle T4 is an isoceles right
triangle, and so has elemental stiffness matrix (15.116). Its vertices are labeled 1, 4, and
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5, with vertex 5 at the right angle. Therefore, its contribution is

K4 =




0.5 0. 0. 0. −0.5 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0.5 −0.5 0. 0. 0. . . .

−0.5 0. 0. −0.5 1.0 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .

0. 0. 0. 0. 0. 0. 0. 0. . . .
...

...
...

...
...

...
...

...
. . .




.

Note particularly how we need to permute the rows and columns of (15.116) in order to have
the vertices in the correct order. Continuing in this manner, we assemble 14 contributions
K1, . . . ,K14, each with (at most) 9 nonzero entries. The full finite element matrix is the
sum

K∗ = K1 + · · · +K14,

and equals

K
∗ =




3.732 −1. 0 0 −0.7887 −0.5774 −0.5774
−1. 4. −1. −1. 0 0 0
0 −1. 3.732 0 0 0 0
0 −1. 0 2. −0.5 0 0

−0.7887 0 0 −0.5 1.577 −0.2887 0
−0.5774 0 0 0 −0.2887 1.155 −0.2887
−0.5774 0 0 0 0 −0.2887 1.155
−0.7887 0 0 0 0 0 −0.2887
0 −1. 0 0 0 0 0
0 0 −0.7887 0 0 0 0
0 0 −0.5774 0 0 0 0
0 0 −0.5774 0 0 0 0
0 0 −0.7887 −0.5 0 0 0

(15.119)

−0.7887 0 0 0 0 0
0 −1. 0 0 0 0
0 0 −0.7887 −0.5774 −0.5774 −0.7887
0 0 0 0 0 −0.5
0 0 0 0 0 0
0 0 0 0 0 0

−0.2887 0 0 0 0 0
1.577 −0.5 0 0 0 0
−0.5 2. −0.5 0 0 0
0 −0.5 1.577 −0.2887 0 0
0 0 −0.2887 1.155 −0.2887 0
0 0 0 −0.2887 1.155 −0.2887
0 0 0 0 −0.2887 1.577




.

Since only nodes 1, 2, 3 are interior nodes, the reduced finite element matrix only uses the
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Figure 15.17. A Square Mesh for the Oval Plate.

upper left 3× 3 block of K∗, so

K =



3.732 −1. 0
−1. 4. −1.0
0 −1. 3.732


. (15.120)

With some practice, one can learn how to directly construct K, bypassing K∗ entirely.

For a finer triangulation, the construction is similar, but the matrices become much
larger. The procedure can, of course, be automated. Fortunately, if we choose a very
regular triangulation, then we do not need to be nearly as meticulous in assembling the
stiffness matrices, since many of the entries are the same. The simplest case is when we use
a uniform square mesh, and so triangulate the domain into isoceles right triangles. This
is accomplished by laying out a relatively dense square grid over the domain Ω ⊂ R2. The
interior nodes are the grid points that fall inside the oval domain, while the boundary nodes
are all those grid points lying adjacent to one or more of the interior nodes. The interior
nodes will be near but not necessarily on the boundary ∂Ω. Figure 15.17 shows the nodes
in a square grid with intermesh spacing h = .2. While a bit crude in its approximation
of the boundary of the domain, this procedure does have the advantage of making the
construction of the associated finite element matrix relatively painless.

For such a mesh, all the triangles are isoceles right triangles, with elemental stiffness
matrix (15.116). Summing the corresponding matrices Kν over all the triangles, as in
(15.118), the rows and columns of K∗ corresponding to the interior nodes are seen to all
have the same form. Namely, if i labels an interior node, then the corresponding diagonal
entry is kii = 4, while the off-diagonal entries kij = kji, i 6= j, are equal to either −1
when node i is adjacent to node j on the grid, and is equal to 0 in all other cases. Node
j is allowed to be a boundary node. (Interestingly, the result does not depend on how
one orients the pair of triangles making up each square of the grid, as in Figure 15.13; the
orientation only plays a role in the computation of the right hand side of the finite element
equation.) The same computation applies even to our coarse triangulation. The interior
node 2 belongs to all right isoceles triangles, and the corresponding entries in (15.119) are
k22 = 4, and k2j = −1 for the four adjacent nodes j = 1, 3, 4, 9.

Remark : Interestingly, the coefficient matrix arising from the finite element method
on a square (or even rectangular) grid is the same as the coefficient matrix arising from
a finite difference solution to the Laplace equation; see Exercise . The finite element
approach has the advantage of applying to much more general triangulations.
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Figure 15.18. Finite Element Tetrahedron.

In general, while the finite element matrix K for a two-dimensional boundary value
problem is not as nice as the tridiagonal matrices we obtained in our one-dimensional
problems, it is still very sparse and, on regular grids, highly structured. This makes
solution of the resulting linear system particularly amenable to an iterative matrix solver
such as Gauss–Seidel, Jacobi, or, best of all, successive over-relaxation (SOR).

The Coefficient Vector and the Boundary Conditions

So far, we have been concentrating on assembling the finite element coefficient matrix
K. We also need to compute the forcing vector b = ( b1, b2, . . . , bn )

T
appearing on the right

hand side of the fundamental linear equation (15.109). According to (15.107), the entries
bi are found by integrating the product of the forcing function and the finite element basis
function. As before, we will approximate the integral over the domain Ω by an integral
over the triangles, and so

bi =

∫ ∫

Ω

f ϕi dx dy ≈

∑

ν

∫ ∫

Tν

f ωνi dx dy ≡
∑

ν

bνi . (15.121)

Typically, the exact computation of the various triangular integrals is not convenient,
and so we resort to a numerical approximation. Since we are assuming that the individual
triangles are small, we can adopt a very crude numerical integration scheme. If the function
f(x, y) does not vary much over the triangle Tν — which will certainly be the case if Tν is
sufficiently small — we may approximate f(x, y) ≈ cνi for (x, y) ∈ Tν by a constant. The
integral (15.121) is then approximated by

bνi =

∫ ∫

Tν

f ωνi dx dy ≈ cνi

∫ ∫

Tν

ωνi (x, y) dx dy = 1
3 cνi area Tν =

1
6 cνi |∆ν |. (15.122)

The formula for the integral of the affine element ων
i (x, y) follows from solid geometry.

Indeed, it equals the volume of the solid under its graph, which is a tetrahedron of height
1 and base Tν ; see Figure 15.18.

How to choose the constant cνi ? In practice, the simplest choice is to let cνi = f(xi, yi)
be the value of the function at the ith vertex. With this choice, the sum in (15.121) becomes

bi ≈
∑

ν

1
3 f(xi, yi) area Tν =

1
3 f(xi, yi) area Pi, (15.123)
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Figure 15.19. Finite Element Solutions to Poisson’s Equation for an Oval Plate.

where Pi =
⋃

Tν is the vertex polygon (15.106) corresponding to the node xi. In particular,
for the square mesh with the uniform choice of triangles, as in Example 15.17,

area Pi = 3h2 for all i, and so bi ≈ f(xi, yi) h
2 (15.124)

is well approximated by just h2 times the value of the forcing function at the node. In this
case, the finite element equations (15.109) are identical with the finite difference equations
based on the square grid; see Exercise . This is the underlying reason to choose the
uniform triangulation for the square mesh; the alternating version would give unequal
values for the bi over adjacent nodes, and this would introduce additional errors into the
final approximation.

Example 15.20. For the coarsely triangulated oval plate, the reduced stiffness ma-
trix is (15.120). The Poisson equation −∆u = 4 models a constant external heat source
of magnitude 4◦ over the entire plate. If we keep the edges of the plate fixed at 0◦, then
we need to solve the finite element equation Kc = b, where K is the coefficient matrix
(15.120), while

b = 4
3

(
2 + 3

√
3

4 , 2, 2 + 3
√

3
4

)T
= ( 4.39872, 2.66667, 4.39872 )

T
.

The entries of b are, by (15.123), equal to 4 = f(xi, yi) times one third the area of the
corresponding vertex polygon, which for node 2 is the square consisting of 4 right triangles,
each of area 1

2 , whereas for nodes 1 and 3 it consists of 4 right triangles of area
1
2 plus

three equilateral triangles, each of area
√

3
4 ; see Figure 15.16.

The solution to the final linear system is easily found:

c = ( 1.56724, 1.45028, 1.56724 )
T

.

Its entries are the values of the finite element approximation at the three interior nodes.
The finite element solution is plotted in the first illustration in Figure 15.19. A more
accurate solution, based on a square grid triangulation of size h = .1 is plotted in the
second figure.
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Inhomogeneous Boundary Conditions

So far, we have restricted our attention to problems with homogeneous Dirichlet
boundary conditions. According to Theorem 15.14, the solution to the inhomogeneous
Dirichlet problem

−∆u = f in Ω, u = h on ∂Ω,

is also obtained by minimizing the Dirichlet functional (15.91). However, now the min-
imization takes place over the affine subspace consisting of all functions that satisfy the
inhomogeneous boundary conditions. It is not difficult to fit this problem into the finite
element scheme.

The elements corresponding to the interior nodes of our triangulation remain as before,
but now we need to include additional elements to ensure that our approximation satisfies
the boundary conditions. Note that if xk is a boundary node, then the corresponding
boundary element ϕk(x, y) satisfies the interpolation condition (15.97), and so has the
same piecewise affine form (15.105). The corresponding finite element approximation

w(x, y) =
m∑

i=1

ci ϕi(x, y), (15.125)

has the same form as before, (15.98), but now the sum is over all nodes, both interior
and boundary. As before, the coefficients ci = w(xi, yi) ≈ u(xi, yi) are the values of the
finite element approximation at the nodes. Therefore, in order to satisfy the boundary
conditions, we require

cj = h(xj , yj) whenever xj = (xj , yj) is a boundary node. (15.126)

Remark : If the boundary node xj does not lie precisely on the boundary ∂Ω, we need
to approximate the value h(xj , yj) appropriately, e.g., by using the value of h(x, y) at the
nearest boundary point (x, y) ∈ ∂Ω.

The derivation of the finite element equations proceeds as before, but now there are
additional terms arising from the nonzero boundary values. Leaving the intervening details
to the reader, the final outcome can be written as follows. Let K∗ denote the full m×m

finite element matrix constructed as above. The reduced coefficient matrix K is obtained
by retaining the rows and columns corresponding to only interior nodes, and so will have
size n × n , where n is the number of interior nodes. The boundary coefficient matrix K̃

is the n× (m− n) matrix consisting of the entries of the interior rows that do not appear
in K, i.e., those lying in the columns indexed by the boundary nodes. For instance, in the
the coarse triangulation of the oval plate, the full finite element matrix is given in (15.119),
and the upper 3× 3 subblock is the reduced matrix (15.120). The remaining entries of the
first three rows form the boundary coefficient matrix

K̃ =

0 −0.7887 −0.5774 −0.5774 −0.7887 0 0 0 0 0

−1. 0 0 0 0 −1. 0 0 0 0
0 0 0 0 0 0 −0.7887 −0.5774 −0.5774 −0.7887


.

(15.127)
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Figure 15.20. Solution to the Dirichlet Problem for the Oval Plate.

We similarly split the coefficients ci of the finite element function (15.125) into two groups.
We let c ∈ Rn denote the as yet unknown coefficients ci corresponding to the values of the
approximation at the interior nodes xi, while h ∈ Rm−n will be the vector of boundary
values (15.126). The solution to the finite element approximation (15.125) is obtained by
solving the associated linear system

Kc+ K̃ h = b, or Kc = f = b− K̃ h. (15.128)

The full justification of this system is left as an exercise for the reader.

Example 15.21. For the oval plate discussed in Example 15.19, suppose the right
hand semicircular edge is held at 10◦, the left hand semicircular edge at −10◦, while the
two straight edges have a linearly varying temperature distribution ranging from −10◦ at
the left to 10◦ at the right, as illustrated in Figure 15.20. Thus, for the coarse triangulation
we have the boundary nodes values

h = (h4, . . . , h13 )
T
= ( 0,−1,−1,−1,−1, 0, 1, 1, 1, 1, 0 )

T
.

Using the previously computed formulae (15.120), (15.127) for the interior coefficient ma-

trix K and boundary coefficient matrix K̃, we approximate the solution to the Laplace
equation by solving (15.128). Since there is no external forcing function, f(x, y) ≡ 0, the

right hand side is b = 0, and so we must solveKc = f = − K̃ h = ( 2.18564, 3.6, 7.64974 )
T
.

The finite element function corresponding to the solution c = ( 1.06795, 1.8, 2.53205 )
T
is

plotted in the first illustration in Figure 15.20. Even on such a coarse mesh, the approxima-
tion is not too bad, as evidenced by the second illustration, which plots the finite element
solution for a square mesh with spacing h = .2 between nodes.

Second Order Elliptic Boundary Value Problems

While the Laplace and Poisson equations are by far the most important elliptic partial
differential equations, they only model homogeneous media, e.g., membranes made out of
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a uniform material, or heated plates with uniform (constant) heat capacity. Inhomoge-
neous media lead to more general self-adjoint differential operators, leading to variable
coefficient second order elliptic boundary value problems. Even more generally, elastic
shells, meaning bendable plates, lead to fourth order two-dimensional elliptic boundary
value problems similar to the one-dimensional beam equation (11.111). And, these are in
turn only linear approximations to the fully nonlinear elliptic boundary value problems
occurring in elasticity theory, [69]. The latter are beyond the scope of this text, although
some of the required mathematical tools appear in Chapter 21.

The most important class of linear, self-adjoint, second order, elliptic partial differen-
tial equations in two space variables take the form

−
∂

∂x

(
p(x, y)

∂u

∂x

)
−

∂

∂x

(
q(x, y)

∂u

∂x

)
+ r(x, y)u = f(x, y), (x, y) ∈ Ω, (15.129)

where p(x, y), q(x, y) > 0 are strictly positive functions, while r(x, y) ≥ 0 is non-negative.
For simplicity, we also impose homogeneous Dirichlet boundary conditions u = 0 on ∂Ω.
Note that the positivity conditions ensure that the partial differential equation is elliptic
in accordance with the classification of Definition 15.1.

The reader may notice that (15.129) is a two-dimensional version of the Sturm–
Liouville ordinary differential equation (11.141). The self-adjoint formulation (11.152)
of a Sturm–Liouville boundary value problem serves to inspire the self-adjoint form

L∗ ◦L[u ] = f, by setting L[u ] =




ux
uy
u


, (15.130)

of the boundary value problem for (15.129). Note that the linear operator L:U → V maps
the vector space U consisting of all smooth functions u(x, y) satisfying the homogeneous
Dirichlet boundary conditions to the vector space V consisting of all vector-valued functions
v = ( v1(x, y), v2(x, y), v3(x, y) )

T
. We adopt the usual L2 inner product (15.74) on U , but

introduce a weighted inner product†

〈〈v ; ṽ 〉〉 =

∫ ∫

Ω

(
p v1 ṽ1 + q v2 ṽ2 + r v3 ṽ3

)
dx dy

on the vector space V . A straightforward computation based on Green’s formula (15.78)
produces the “weighted adjoint”

L∗[v ] = −
∂

∂x

[
p(x, y) v1(x, y)

]
−

∂

∂x

[
q(x, y) v2(x, y)

]
+ r(x, y) v3(x, y) (15.131)

of the operator L. Therefore, the formula for the self-adjoint product

L∗ ◦L[u ] = L∗




ux
uy
u


 = − ∂

∂x

(
p(x, y)

∂u

∂x

)
−

∂

∂x

(
q(x, y)

∂u

∂y

)
+ r(x, y)u(x, y)

† Technically, we should require that r(x, y) 6≡0 not vanish on any open subdomain in order
that this define a nondegenerate inner product.
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proves the identification of (15.130) and (15.129). Positive definiteness follows from the
observation that kerL = {0}. The minimization principle associated with the operator L

is, as usual,

P[u ] = 1
2 ‖L[u ] ‖2 − 〈 f ;u 〉 =

∫ ∫

Ω

[
1
2 p u2

x +
1
2 q u2

y +
1
2 r u2

− f u
]
dx dy. (15.132)

As always, the solution to our boundary value problem is the unique minimizing function
for P[u ] among all functions u ∈ U satisfying the homogeneous boundary conditions.

Remark : Interestingly, in contrast to the Poisson equation, if r > 0 the boundary
value problem for (15.129) is positive definite with minimization principle (15.132) even
in the case of pure Neumann boundary conditions. This is because the operator L always
has trivial kernel.

The finite element approximation is constructed as in the Poisson version — by re-
stricting the minimization principle to the finite-dimensional subspace spanned by the
finite element basis functions (11.158). This requires the solution of a linear system of the
same form (15.128), in which

kij = 〈L[ϕi ] ;L[ϕj ] 〉 =

∫ ∫

Ω

[
p

∂ϕi
∂x

∂ϕj

∂x
+ q

∂ϕi
∂y

∂ϕj

∂y
+ r ϕi ϕj

]
dx dy,

bi = 〈 f ;ϕi 〉 =

∫ ∫

Ω

f ϕi dx dy. (15.133)

As before, the double integrals are approximated by a sum of integrals over the triangles
Tν . The only triangles that contribute to the final result for kij are the ones that have both
xi and xj as vertices. When the triangles are small, the integrals can be approximated
by fairly crude numerical integration formulae. This completes our brief outline of the
method; full details are left to the reader.

Example 15.22. The Helmholtz equation is

∆u+ λu = 0, (15.134)

along with suitable boundary conditions. As we shall learn in Chapter 17, the Helmholtz
equation governs the eigenvalues of the Laplacian, and as such forms the fundamental
modes of vibration of a wide variety of mechanical system, including the vibration of
plates, scattering of acoustic and electromagnetic waves, and many others.

If λ < 0, then the Helmholtz equation fits into the positive definite framework (15.129),
with p = q = 1 and r = −λ. To solve the problem by finite elements, we restrict the
minimization principle

P[u ] =

∫ ∫

Ω

(
1
2 ‖∇u ‖2 − 1

2 λu2
− f u

)
dx dy. (15.135)
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to the finite-dimensional finite element subspace determined by a triangulation of the
underlying domain. The resulting coefficient matrix has the form

kij =

∫ ∫

Ω

(
∇ϕi · ∇ϕj −

1
2 λϕiϕj

)
dx dy

≈

∑

ν

∫ ∫

Tν

(
∇ωνi · ∇ωνj − λωνi ωνj

)
dx dy ≡

∑

ν

kνij .

(15.136)

The explicit formulae for the kνij are left as an exercise for the reader. The forcing vector
b has exactly the same form (15.107) as in the Poisson example.

Unfortunately, the most interesting cases are when λ > 0 and the boundary value
problem is not positive definite; nevertheless, the finite element approach can still give
quite respectable answers, even though it lacks a simple theoretical justification.
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Chapter 16

Complex Analysis

The term “complex analysis” refers to the calculus of complex-valued functions f(z)
depending on a complex variable z. On the surface, it may seem that this subject should
merely be a simple reworking of standard real variable theory that you learned in first year
calculus. However, this näıve first impression could not be further from the truth! Com-
plex analysis is the culmination of a deep and far-ranging study of the fundamental notions
of complex differentiation and complex integration, and has an elegance and beauty not
found in the more familiar real arena. For instance, complex functions are always ana-
lytic, meaning that they can be represented as convergent power series. As an immediate
consequence, a complex function automatically has an infinite number of derivatives, and
difficulties with degree of smoothness, strange discontinuities, delta functions, and other
forms of pathological behavior of real functions never arise in the complex realm.

There is a remarkable, profound connection between harmonic functions (solutions of
the Laplace equation) of two variables and complex-valued functions. Namely, the real
and imaginary parts of a complex analytic function are automatically harmonic. In this
manner, complex functions provide a rich lode of new solutions to the two-dimensional
Laplace equation to help solve boundary value problems. One of the most useful practical
consequences arises from the elementary observation that the composition of two complex
functions is also a complex function. We interpret this operation as a complex changes
of variables, also known as a conformal mapping since it preserves angles. Conformal
mappings can be effectively used for constructing solutions to the Laplace equation on
complicated planar domains, and play a particularly important role in the solution of
physical problems. and so on.

Complex integration also enjoys many remarkable properties not found in its real
sibling. Integrals of complex functions are similar to the line integrals of planar multi-
variable calculus. The remarkable theorem due to Cauchy implies that complex integrals
are generally path-independent — provided one pays proper attention to the complex
singularities of the integrand. In particular, an integral of a complex function around a
closed curve can be directly evaluated through the “calculus of residues”, which effectively
bypasses the Fundamental Theorem of Calculus. Surprisingly, the method of residues can
even be applied to evaluate certain types of definite real integrals.

In this chapter, we shall introduce the basic techniques and theorems in complex
analysis, paying particular attention to those aspects which are required to solve boundary
value problems associated with the planar Laplace and Poisson equations. Complex anal-
ysis is an essential tool in a surprisingly broad range of applications, including fluid flow,
elasticity, thermostatics, electrostatics, and, in mathematics, geometry, and even number
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theory. Indeed, the most famous unsolved problem in all of mathematics, the Riemann hy-
pothesis, is a conjecture about a specific complex function that has profound consequences
for the distribution of prime numbers†.

16.1. Complex Variables.

In this section we shall develop the basics of complex analysis — the calculus of
complex functions f(z). Here z = x + i y is a single complex variable and f : Ω → C is
a complex-valued function defined on a domain z ∈ Ω ⊂ C in the complex plane. Before
diving into this material, the reader should first review the basic material on complex
numbers in Section 3.6.

Any complex function can be written as a complex combination

f(z) = f(x+ i y) = u(x, y) + i v(x, y), (16.1)

of two real functions u, v of two real variables x, y, called, respectively, its real and imagi-
nary parts, and written

u(x, y) = Re f(z), and v(x, y) = Im f(z). (16.2)

For example, the monomial function f(z) = z3 is written as

z3 = (x+ i y)3 = (x3
− 3xy2) + i (3x2y − y3),

and so

Re z3 = x3
− 3xy2, Im z3 = 3x2y − y3.

As we know, we can identify C with the real, two-dimensional plane R2, so that the
complex number z = x + i y ∈ C is identified with the real vector (x, y )

T
∈ R2. Based

on the identification C ' R2, we shall adopt the usual terminology from planar vector
calculus, e.g., domain, curve, etc., without alteration; see Appendix A for details. In this
manner, we may regard a complex function as particular type of real vector field that maps

(
x

y

)
∈ Ω ⊂ R2 to the vector v(x, y) =

(
u(x, y)
v(x, y)

)
∈ R2. (16.3)

Not every real vector field qualifies as a complex function; the components u(x, y), v(x, y)
must satisfy certain fairly stringent requirements; see Theorem 16.3 below.

Many of the well-known functions appearing in real-variable calculus — polynomials,
rational functions, exponentials, trigonometric functions, logarithms, and many others —
have natural complex extensions. For example, complex polynomials

p(z) = an zn + an−1 zn−1 + · · ·+ a1 z + a0 (16.4)

are complex linear combinations (meaning that the coefficients ak are allowed to be complex
numbers) of the basic monomial functions zk = (x+ i y)k. Similarly, we have already made

† Not to mention that a solution will net you a cool $1,000,000.00. For details on how to claim
your prize, check out the web site http://www.claymath.org.
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sporadic use of complex exponentials such as ez = ex+ i y for solving differential equations.
Other examples will appear shortly.

There are several ways to motivate† the link between harmonic functions u(x, y),
meaning solutions of the two-dimensional Laplace equation

∆u =
∂2u

∂x2
+

∂2u

∂y2
,= 0 (16.5)

and complex functions. One natural starting point is to return to the d’Alembert solution
(14.121) of the one-dimensional wave equation, which was based on the factorization

¤ = ∂2
t − c2 ∂2

x = (∂t − c ∂x) (∂t + c ∂x)

of the linear wave operator (14.109). The two-dimensional Laplace operator ∆ = ∂2
x + ∂2

y

has essentially the same form, except for a “minor” change in sign†. We cannot produce a
real factorization of the Laplace operator, but there is a complex factorization,

∆ = ∂2
x + ∂2

y = (∂x − i ∂y) (∂x + i ∂y),

into a product of two complex first order differential operators. The wave speed has now
become complex: c = i . Mimicking the solution formula (14.117) for the wave equation,
we expect that the solutions to the Laplace equation (16.5) should be expressed in the
form

u(x, y) = f(x+ i y) + g(x− i y), (16.6)

i.e., a linear combination of functions of the complex variable z = x+ i y and its complex
conjugate z = x − i y. The functions f and g satisfy the first order complex partial
differential equations

∂f

∂x
= − i

∂f

∂y
,

∂g

∂x
= i

∂g

∂y
, (16.7)

and hence (16.6) does indeed define a complex-valued solution to the Laplace equation.

In most applications, we are searching for a real solution to the Laplace equation, and
so our d’Alembert-type formula (16.6) is not entirely satisfactory. As we know, a complex
number z = x + i y is real if and only if it equals its own conjugate, z = z. Thus, the
solution (16.6) will be real if and only if

f(x+ i y) + g(x− i y) = u(x, y) = u(x, y) = f(x+ i y) + g(x− i y).

Now, the complex conjugation operation switches x+ i y and x− i y, and so we expect the
first term f(x+ i y) to be a function of x− i y, while the second term g(x− i y) will be a

† A reader uninterested in the motivation can skip ahead to Proposition 16.1 at this point.

† However, the change in sign has dramatic consequences for the analytical properties of so-
lutions to the two equations. According to Section 15.1, there is a vast difference between the
elliptic Laplace equation and the hyperbolic wave equation.
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function of x+ i y. Therefore‡, to equate the two sides of this equation, we should require

g(x− i y) = f(x+ i y),

and so

u(x, y) = f(x+ i y) + f(x+ i y) = 2 Re f(x+ i y).

Dropping the inessential factor of 2, we conclude that a real solution to the two-dimensional
Laplace equation can be written as the real part of a complex function. A direct proof of
the following key result will appear below.

Proposition 16.1. If f(z) is a complex function, then its real part

u(x, y) = Re f(x+ i y) (16.8)

is a harmonic function.

The imaginary part of a complex function is also harmonic. This is because

Im f(z) = Re (− i f(z))

is the real part of the complex function

− i f(z) = − i [u(x, y) + i v(x, y) ] = v(x, y)− iu(x, y).

Therefore, if f(z) is any complex function, we can write it as a complex combination

f(z) = f(x+ i y) = u(x, y) + i v(x, y),

of two real harmonic functions u(x, y) = Re f(z) and v(x, y) = Im f(z).

Before delving into the many remarkable properties of complex functions, we look at
some of the most basic examples. In each case, the reader can check directly that the
harmonic functions given as the real and imaginary parts of the complex function are
indeed solutions to the Laplace equation.

Examples of Complex Functions

(a) Harmonic Polynomials: The simplest examples of complex functions are polynomi-
als. Any polynomial is a complex linear combinations, as in (16.4), of the basic complex
monomials

zn = (x+ i y)n = un(x, y) + i vn(x, y). (16.9)

The real and imaginary parts of a complex polynomial are known as harmonic polynomials,
and we list the first few below. The general formula for the basic harmonic polynomials
un(x, y) and vn(x, y) is easily found by applying the binomial theorem, as in Exercise .

‡ We are ignoring the fact that f and g are not quite uniquely determined since one can add
and subtract a constant from them. This does not affect the argument in any significant way.
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Figure 16.1. Real and Imaginary Parts of z2 and z3.

Harmonic Polynomials

n zn un(x, y) vn(x, y)

0 1 1 0

1 x+ i y x y

2 (x2
− y2) + 2 ixy x2

− y2 2xy

3 (x3
− 3xy2) + i (3x2y − y3) x3

− 3xy2 3x2y − y3

4 (x4
− 6x2y2 + y4) + i (4x3y − 4xy3) x4

− 6x2y2 + y4 4x3y − 4xy3

...
...

...
...

We have, in fact, already encountered these polynomial solutions to the Laplace equa-
tion. If we write

z = r e i θ, (16.10)

where

r = | z | =
√

x2 + y2, θ = ph z = tan−1 y

x
,

are the usual polar coordinates (modulus and phase) of z = x + i y, then Euler’s for-
mula (3.76) yields

zn = rn e inθ = rn cosnθ + i rn sinnθ,

and so

un = rn cosnθ, vn = rn sinnθ.
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Figure 16.2. Real and Imaginary Parts of f(z) =
1

z
.

Therefore, the harmonic polynomials are just the polar coordinate solutions (15.35) to
the Laplace equation we obtained previously by the method of separation of variables. In
Figure 16.1 we plot† the real and imaginary parts of the monomials z2 and z3.

(b) Rational Functions: Ratios

f(z) =
p(z)

q(z)
(16.11)

of complex polynomials provide a large variety of harmonic functions. The simplest case
is

1

z
=

z

z z
=

z

| z |2
=

x

x2 + y2
− i

y

x2 + y2
. (16.12)

Its real and imaginary parts are graphed in Figure 16.2. Note that these functions have
an interesting singularity at the origin x = y = 0, and are harmonic everywhere else.

A slightly more complicated example is the useful function

f(z) =
z − 1

z + 1
. (16.13)

To write out (16.13) in real form, we multiply both numerator and denominator by the
complex conjugate of the denominator, leading to

f(z) =
z − 1

z + 1
=
(z − 1)(z + 1)

(z + 1)(z + 1)
=
| z |2 − 1 + z − z

| z + 1 |2
=

x2 + y2
− 1

(x+ 1)2 + y2
+ i

2y

(x+ 1)2 + y2
.

(16.14)
This manipulation can always be used to find the real and imaginary parts of general
rational functions.

† Graphing a complex function f :C → C is problematic. The identification (16.3) of f with a

real vector-valued function f :R2 → R2 implies that one requires four real dimensions to display
the complete graph.
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If we assume that the rational function (16.11) is written in lowest terms, so p and q

have no common factors, then f(z) will have a singularity, known as a pole, wherever the
denominator vanishes: q(z0) = 0. The order

† of the root z0 of q(z) tells us the order of
the pole of f(z). For example, the rational function

f(z) =
z + 2

z5 + z3
=

z + 2

(z + i )(z − i )z3

has three poles: a simple (of order 1) pole at z = + i , another simple pole at z = − i and
a triple (order 3) pole at z = 0.

(c) Complex Exponentials: Euler’s formula

ez = ex cos y + i ex sin y (16.15)

for the complex exponential, cf. (3.76), yields two important harmonic functions: ex cos y
and ex sin y, which are graphed in Figure 3.7. More generally, writing out ecz for a complex
constant c = a+ i b produces the general complex exponential function

ecz = eax−by cos(bx+ ay) + i eax−by sin(bx+ ay). (16.16)

Its real and imaginary parts are harmonic for arbitrary a, b ∈ R. We already encountered
some of these solutions to the Laplace equation when we used the separation of variables
method in Cartesian coordinates; see the table in Section 15.2.

(d) Complex Trigonometric Functions: The complex trigonometric functions are de-
fined in terms of the complex exponential by adapting our earlier formulae (3.78):

cos z =
e i z + e− i z

2
= cosx cosh y − i sinx sinh y,

sin z =
e i z

− e− i z

2 i
= sinx cosh y + i cosx sinh y.

(16.17)

The resulting harmonic functions are products of trigonometric and hyperbolic functions.
They can all be written as linear combinations of the harmonic functions (16.16) derived
from the complex exponential. Note that when z = x is real, so y = 0, these functions
reduce to the usual real trigonometric functions cosx and sinx.

(e) Complex Logarithm: In a similar fashion, the complex (natural) logarithm log z is
a complex extension of the usual real natural (i.e., base e) logarithm. In terms of polar
coordinates (16.10), the complex logarithm has the form

log z = log(r e i θ) = log r + log e i θ = log r + i θ, (16.18)

Thus, the logarithm of a complex number has real part

Re log z = log r = 1
2 log(x

2 + y2),

† Recall that the order of a root z0 of a polynomial q(z) is the number times z − z0 occurs as
a factor of q(z).
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Figure 16.3. Real and Imaginary parts of log z = log r + i θ.

which is a well-defined harmonic function on all of R2 except at the origin x = y = 0, where
it has a logarithmic singularity. It is, in fact, the logarithmic potential corresponding to a
delta function forcing concentrated at the origin that played a key role in the construction
of the Green’s function for the Poisson equation in Section 15.3.

The imaginary part

Im log z = θ = ph z = tan−1 y

x

of the complex logarithm is the phase or polar angle of z. The phase is also not defined
at the origin x = y = 0. Moreover, it is a multiply-valued harmonic function elsewhere,
since it is only specified up to integer multiples of 2π. Thus, a given nonzero complex
number z 6= 0 has an infinite number of possible values for its phase, and hence an infinite
number of possible complex logarithms log z, each differing by an integer multiple of 2π i ,
reflecting the fact that e2π i = 1. In particular, if z = x > 0 is real and positive, then
log z = log x agrees with the real logarithm, provided we choose the angle ph z = 0.
Alternative choices for the phase include a multiple of 2π i , and so ordinary real, positive
numbers x > 0 also have complex logarithms! On the other hand, if z = x < 0 is real
and negative, then log z = log |x |+ (2k + 1)π i is complex no matter which value of ph z

is chosen. (This explains why we didn’t attempt to define the logarithm of a negative
number in first year calculus!) In general, as we circle around the origin in a counter-
clockwise direction, Im log z = ph z = θ increases by 2π, and so its graph can be likened
to an infinitely tall parking ramp with infinitely many levels, spiraling upwards as one
goes around the origin, as sketched in Figure 16.3. For the complex logarithm, the origin
is a type of singularity known as a logarithmic branch point , indicating that there are an
infinite number of possible “branches” meaning values that can be assigned to log z at any
nonzero point.

Although the complex logarithm log z not a single-valued complex function on all of
C \ {0}, it can be continuously and unambiguously defined when restricted to any simply
connected domain Ω ⊂ C\{0} that does not include the origin. Essentially, the specification
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Figure 16.4. Square Roots of a Complex Number.

of logarithm amounts to an unambiguous choice of level of our parking ramp sitting over
the domain Ω. For instance, if we restrict our attention to points in the domain

Ω∗ = C \
{

x = Re z ≤ 0, y = Im z = 0
}
=
{
−π < ph z < π

}

obtained by “cutting” the complex plane along the negative real axis, then we can uniquely
specify an angle by requiring that it lie between −π and π. This in turn produces a unique,
continuous specification of log z for all z ∈ Ω∗. However, other choices are possible, and,
indeed, may be required for a given application.

(f ) Roots and Fractional Powers: A similar branching phenomenon occurs with the
fractional powers and roots of complex numbers. The simplest case is the square root
function

√
z. Every nonzero complex number z 6= 0 has two different possible square

roots:
√

z and −
√

z. As illustrated in Figure 16.4, the two square roots lie on opposite
sides of the origin, and are obtained by multiplying by −1. Writing z = r e i θ in polar
coordinates, we see that

√
z =

√

r e i θ =
√

r e i θ/2 =
√

r

(
cos

θ

2
+ i sin

θ

2

)
, (16.19)

i.e., we take the square root of the modulus and halve the phase:

∣∣√z
∣∣ =

√
| z | =

√
r , ph

√
z = 1

2 ph z = 1
2 θ.

since θ is only defined up to an integer multiple of 2π, the angle 1
2 θ is only defined up to an

integer multiple of π. The odd and even multiples yield different values for (16.19), which
accounts for the two possible values of the square root. For example, since ph 4 i = 1

2 π or
5
2 π, we find

√

4 i = 2
√

i = ± 2 eπ i /4 = ± 2

(
cos

π i

4
+ i sin

π i

4

)
= ±

(√
2 + i

√

2
)
.
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Figure 16.5. Real and Imaginary Parts of
√

z .

If we start at some z 6= 0 and circle once around the origin, we increase ph z by 2π,
but ph

√
z only increases by π. Thus, at the end of our circumambulation, we arrive at the

other square root −
√

z. Circling the origin again increases phz by a further 2π, and hence
brings us back to the original square root

√
z. Therefore, the graph of the multiply-valued

square root function will look like a weirdly interconnected parking ramp with only two
levels, as in† Figure 16.5.

Similar remarks apply to the nth root

n

√
z = n

√
r e i θ/n = n

√
r

(
cos

θ

n
+ i sin

θ

n

)
, (16.20)

which, except for z = 0, has n possible values, depending upon which multiple of 2π is
used in the assignment of ph z = θ. The n different nth roots are obtained by multiplying
any one of them by the different nth roots of unity, ζkn = e2 k π i /n for k = 0, . . . , n − 1, as
defined in (13.12). In this case, the origin z = 0 is called a branch point of order n since
there are n different branches for the function n

√
z. Circling around the origin leads to

successive branches, returning after circling n times, to the original branch of n

√
z.

The preceding list of examples is far from exhausting the range and variety of complex
functions. Lack of space will preclude us from studying the remarkable properties of
complex versions of the gamma function, Airy functions, Bessel functions, and Legendre
functions that appear in Appendix C, as well as elliptic functions, the Riemann zeta
function, modular functions, and many, many other important and fascinating functions
arising in complex analysis and its manifold applications; see [141, 149].

† These graphs are best appreciated in a fully functional three-dimensional graphics viewer.
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16.2. Complex Differentiation.

Complex function theory is founded upon the notion of the complex derivative. Com-
plex differentiation is defined in a direct analogy with the usual calculus limit definition of
the derivative of a real function. Yet, despite a superficial similarity, the resulting theory of
complex differentiation is profoundly different, and has an elegance and depth not shared
by its real progenitor.

Definition 16.2. A complex function f(z) is differentiable at a point z ∈ C if and
only if the limiting difference quotient exists:

f ′(z) = lim
w→ z

f(w)− f(z)

w − z
. (16.21)

The key feature of this definition is that the limiting value f ′(z) of the difference
quotient must be independent of how the point w converges to z. On the real line, there
are only two basic directions to approach a limiting point — either from the left or from
the right. These lead to the concepts of left and right handed derivatives and their equality
is required for the existence of the usual derivative of a real function. In the complex plane,
there are an infinite variety of directions† in which one can approach the point z, and the
definition requires that all of these “directional derivatives” must agree. This is the reason
for the more severe restrictions on complex derivatives, and, in consequence, the source of
their remarkable properties.

Let us see what happens when we approach z along the two simplest directions —
horizontal and vertical. If we set

w = z + h = (x+ h) + i y, where h is real,

then w → z along a horizontal line as h → 0, as in Figure 16.6. If we write out

f(z) = u(x, y) + i v(x, y)

in terms of its real and imaginary parts, then we must have

f ′(z) = lim
h→ 0

f(z + h)− f(z)

h
= lim

h→ 0

f(x+ h+ i y)− f(x+ i y)

h

= lim
h→ 0

[
u(x+ h, y)− u(x, y)

h
+ i

v(x+ h, y)− v(x, y)

h

]
=

∂u

∂x
+ i

∂v

∂x
=

∂f

∂x
,

which follows from the usual definition of the (real) partial derivative. On the other hand,
if we set

w = z + i k = x+ i (y + k), where k is real,

† Not to mention other approaches along parabolas, spirals, etc., although, as it turns out,
these more exotic routes do not lead to any further restrictions on the function.
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z + i k

Figure 16.6. Complex Derivative Directions.

then w → z along a vertical line as k → 0. Therefore, we must also have

f ′(z) = lim
k→ 0

f(z + i k)− f(z)

i k
= lim

k→ 0
− i

f(x+ i (y + k))− f(x+ i y)

k

= lim
h→ 0

[
v(x, y + k)− v(x, y)

k
− i

u(x, y + k)− u(x, y)

k

]
=

∂v

∂y
− i

∂u

∂y
= − i

∂f

∂y
.

When we equate the real and imaginary parts of these two distinct formulae for the complex
derivative f ′(z), we discover that the real and imaginary components of f(z) must satisfy a
certain homogeneous linear system of partial differential equations, named after Augustin–
Louis Cauchy and Bernhard Riemann, two of the principal founders of modern complex
analysis.

Theorem 16.3. A function f(z) has a complex derivative f ′(z) if and only if its
real and imaginary parts are continuously differentiable and satisfy the Cauchy–Riemann
equations

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
. (16.22)

In this case, the complex derivative of f(z) is equal to any of the following expressions:

f ′(z) =
∂f

∂x
=

∂u

∂x
+ i

∂v

∂x
= − i

∂f

∂y
=

∂v

∂y
− i

∂u

∂y
. (16.23)

The proof of the converse — that any function whose real and imaginary components
satisfy the Cauchy–Riemann equations is differentiable — will be omitted, but can be
found in any basic text on complex analysis, e.g., [4, 127].
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Remark : It is worth pointing out that equation (16.23) tells us that f satisfies ∂f/∂x =
− i ∂f/∂y, which, reassuringly, agrees with the first equation in (16.7).

Example 16.4. Consider the elementary function

z3 = (x3
− 3xy2) + i (3x2y − y3).

Its real part u = x3
−3xy2 and imaginary part v = 3x2y−y3 satisfy the Cauchy–Riemann

equations (16.22), namely

∂u

∂x
= 3x2

− 3y2 =
∂v

∂y
,

∂u

∂y
= −6xy = −

∂v

∂x
.

This proves that f(z) = z3 is complex differentiable. Not surprisingly, its derivative turns
out to be

f ′(z) = 3z2 = (3x2
− 3y2) + i (6xy) =

∂u

∂x
+ i

∂v

∂x
=

∂v

∂y
− i

∂u

∂y
.

Fortunately, the complex derivative obeys all of the usual rules that you learned in
real-variable calculus. For example,

d

dz
zn = n zn−1,

d

dz
ecz = c ecz,

d

dz
log z =

1

z
, (16.24)

and so on. The power n can even be non-integral or, in view of the identity zn = en log z,
complex, while c is any complex constant. The exponential formulae (16.17) for the com-
plex trigonometric functions implies that they also satisfy the standard rules

d

dz
cos z = − sin z,

d

dz
sin z = cos z. (16.25)

The formulae for differentiating sums, products, ratios, inverses, and compositions of com-
plex functions are all the same as their real counterparts. Thus, thankfully, you don’t need
to learn any new rules for performing complex differentiation!

There are many examples of quite reasonable functions which do not have a complex
derivative. The simplest is the complex conjugate function

f(z) = z = x− i y.

Its real and imaginary parts do not satisfy the Cauchy–Riemann equations, and hence z

does not have a complex derivative. More generally, any function f(x, y) = h(z, z) that
explicitly depends on the complex conjugate variable z is not complex-differentiable.

Power Series and Analyticity

The most remarkable feature of complex analysis, which completely distinguishes it
from real function theory, is that the existence of one complex derivative automatically
implies the existence of infinitely many! All complex functions f(z) are infinitely differ-
entiable and, in fact, analytic where defined. The reason for this surprising and profound
fact will, however, not become evident until we learn the basics of complex integration in
Section 16.5. In this section, we shall take analyticity as a given, and investigate some of
its principal consequences.
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Definition 16.5. A complex function f(z) is called analytic at a point z0 if it has a
power series expansion

f(z) = a0 + a1(z − z0) + a2(z − z0)
2 + a3(z − z0)

3 + · · · =
∞∑

n=0

an (z − z0)
n , (16.26)

which converges for all z sufficiently close to z0.

Typically, the standard ratio or root tests for convergence of (real) series that you
learned in ordinary calculus, [9, 136], can be applied to determine where a given (complex)
power series converges. We note that if f(z) and g(z) are analytic at a point z0, so is their
sum f(z) + g(z), product f(z) g(z) and, provided g(z0)6= 0, ratio f(z)/g(z).

Example 16.6. All of the real power series from elementary calculus carry over to
the complex versions of the standard functions. For example,

ez = 1 + z +
1

2
z2 +

1

6
z3 + · · · =

∞∑

n=0

zn

n!
(16.27)

is the Taylor series for the exponential function based at z0 = 0. A simple application
of the ratio test proves that the series converges for all z. On the other hand, the power
series

1

z2 + 1
= 1− z2 + z4

− z6 + · · · =

∞∑

k=0

(−1)k z2k , (16.28)

converges inside the unit disk, where | z | < 1, and diverges outside, where | z | > 1. Again,
convergence is established through the ratio test. The ratio test is inconclusive when
| z | = 1, and we shall leave the much harder question of precisely where on the unit disk
this complex series converges to a more advanced text, e.g., [4].

In general, there are three possible options for the domain of convergence of a complex
power series (16.26):

(a) The series converges for all z.

(b) The series converges inside a disk | z − z0 | < ρ of radius ρ > 0 centered at z0 and
diverges for all | z − z0 | > ρ outside the disk. The series may converge at some
(but not all) of the points on the boundary of the disk where | z − z0 | = ρ.

(c) The series only converges, trivially, at z = z0.

The number ρ is known as the radius of convergence of the series. In case (a), we say
ρ =∞, while in case (c), ρ = 0, and the series does not represent an analytic function. An
example when ρ = 0 is the power series

∑
n! zn. In the intermediate case, determining

precisely where on the boundary of the convergence disk the power series converges is quite
delicate, and will not be pursued here. The proof of this result can be found in Exercise
. See [4, 76] for further details.

Remarkably, the radius of convergence for the power series of a known analytic function
f(z) can be determined by inspection, without recourse to any fancy convergence tests!
Namely, ρ is equal to the distance from z0 to the nearest singularity of f(z), meaning a
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point where the function fails to be analytic. This explains why the Taylor series of ez

converges everywhere, while that of (z2 + 1)−1 only converges inside the unit disk. Indeed
ez is analytic for all z and has no singularities; therefore the radius of convergence of its
power series — centered at any point z0 — is equal to ρ = ∞. On the other hand, the
function

f(z) =
1

z2 + 1
=

1

(z + i )(z − i )

has singularities (poles) at z = ± i , and so the series (16.28) has radius of convergence
ρ = 1, which is the distance from z0 = 0 to the singularities. Therefore, the extension of
the theory of power series to the complex plane serves to explain the apparent mystery of
why, as a real function, (1 + x2)−1 is well-defined and analytic for all real x, but its power
series only converges on the interval (−1, 1). It is the complex singularities that prevent
its convergence when |x | > 1! If we expand (z2 + 1)−1 in a power series at some other
point, say z0 = 1+2 i , then we need to determine which singularity is closest. We compute
| i − z0 | = | −1− i | =

√
2, while | − i − z0 | = | −1− 3 i | =

√
10, and so ρ =

√
2 is the

smaller of these two numbers. Thus we can determine the radius of convergence without
any explicit formula for its (rather complicated) Taylor expansion at z0 = 1 + 2 i .

There are, in fact, only three possible types of singularities of a complex function f(z):

(i) Pole. A singular point z = z0 is called a pole of order n > 0 if and only if the function

h(z) = (z − z0)
n f(z) (16.29)

is analytic and nonzero, h(z0) 6= 0, at z = z0. The simplest example of such a
function is f(z) = a (z − z0)

−n for a 6= 0 a complex constant.

(ii) Branch point . We have already encountered the two basic types: algebraic branch

points, such as the function n

√
z at z0 = 0, and logarithmic branch points such as

log z at z0 = 0. The degree of the branch point is n in the first case and ∞ in the
second.

(iii) Essential singularity . By definition, a singularity is essential if it is not a pole or a
branch point. The simplest example is the essential singularity at z0 = 0 of the
function e1/z. Details are left as an Exercise .

Example 16.7. For example, the function

f(z) =
ez

z3 − z2 − 5z − 3

has a simple (order 1) pole at z = 3 and a double (order 2) pole at z = −1. Indeed,
factorizing the denominator z3

− z2
− 5z − 3 = (z + 1)2(z − 3), we see that the functions

h1(z) = (z − 3) f(z) =
ez

(z + 1)2
, h2(z) = (z + 1)

2 f(z) =
ez

z − 3
,

are analytic and non-zero at, respectively, z = 3 and z = −1.

A complex function can have a variety of singularities. For example, the function

f(z) =
3
√

z + 2 e−1/z

z2 + 1
(16.30)
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Figure 16.7. Radius of Convergence.

has simple poles at z = ± i , a branch point of degree 3 at z = −2 and an essential
singularity at z = 0.

As in the real case, and unlike Fourier series, convergent power series can always be
repeatedly term-wise differentiated. Therefore, given the convergent series (16.26), we have
the corresponding series

f ′(z) = a1 + 2a2(z − z0) + 3a3(z − z0)
2 + 4a4(z − z0)

3 + · · · =
∞∑

n=0

(n+ 1)an+1(z − z0)
n,

f ′′(z) = 2a2 + 6a3(z − z0) + 12a4(z − z0)
2 + 20a5(z − z0)

3 + · · ·

=
∞∑

n=0

(n+ 1)(n+ 2)an+2(z − z0)
n, (16.31)

and so on, for its derivatives. The proof that the differentiated series have the same
radius of convergence can be found in [4, 127]. As a consequence, we deduce the following
important result.

Theorem 16.8. Any analytic function is infinitely differentiable.

In particular, when we substitute z = z0 into the successively differentiated series, we
discover that

a0 = f(z0), a1 = f ′(z0), a2 =
1
2 f ′′(z0),

and, in general,

an =
f (n)(z)

n!
. (16.32)

Therefore, a convergent power series (16.26) is, inevitably, the usual Taylor series

f(z) =
∞∑

n=0

f (n)(z0)

n!
(z − z0)

n , (16.33)

for the function f(z) at the point z0.

Let us conclude this section by summarizing the fundamental theorem that character-
izes complex functions. A complete, rigorous proof relies on complex integration theory,
which is the topic of Section 16.5.
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Theorem 16.9. Let Ω ⊂ C be an open set. The following properties are equivalent:

(a) The function f(z) has a continuous complex derivative f ′(z) for all z ∈ Ω.

(b) The real and imaginary parts of f(z) have continuous partial derivatives and satisfy
the Cauchy–Riemann equations (16.22) in Ω.

(c) The function f(z) is analytic for all z ∈ Ω, and so is infinitely differentiable and has a
convergent power series expansion at each point z0 ∈ Ω. The radius of convergence
ρ is at least as large as the distance from z0 to the boundary ∂Ω; see Figure 16.7.

Any function that satisfies the conditions of Theorem 16.9 will be referred to as a
complex function. Sometimes one of the equivalent adjectives “analytic” or “holomorphic”,
is added for emphasis. From now on, all complex functions are assumed to be analytic
everywhere on their domain of definition, except, possibly, at certain isolated singularities.

16.3. Harmonic Functions.

We began this section by motivating the analysis of complex functions through appli-
cations to the solution of the two-dimensional Laplace equation. Let us now formalize the
precise relationship between the two subjects.

Theorem 16.10. If f(z) = u(x, y)+ i v(x, y) is any complex analytic function, then
its real and imaginary parts, u(x, y), v(x, y), are both harmonic functions.

Proof : Differentiating† the Cauchy–Riemann equations (16.22), and invoking the
equality of mixed partial derivatives, we find that

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)
=

∂2v

∂x ∂y
=

∂

∂y

(
∂v

∂x

)
=

∂

∂y

(
−

∂u

∂y

)
= −

∂2u

∂y2
.

Therefore, u is a solution to the Laplace equation uxx + uyy = 0. The proof for v is
similar. Q.E.D.

Thus, every complex function f = u+ i v gives rise to two harmonic functions. It is, of
course, of interest to know whether we can invert this procedure. Given a harmonic function
u(x, y), does there exist a harmonic function v(x, y) such that f = u + i v is a complex
analytic function? If so, the harmonic function v(x, y) is known as a harmonic conjugate
to u. The harmonic conjugate is found by solving the Cauchy–Riemann equations

∂v

∂x
= −

∂u

∂y
,

∂v

∂y
=

∂u

∂x
, (16.34)

which, for a prescribed function u(x, y), constitutes an inhomogeneous linear system of
partial differential equations for v(x, y). As such, it is usually not hard to solve, as the
following example illustrates.

† Theorem 16.9 allows us to differentiate u and v as often as desired.
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Example 16.11. As the reader can verify, the harmonic polynomial

u(x, y) = x3
− 3x2y − 3xy2 + y3

satisfies the Laplace equation everywhere. To find a harmonic conjugate, we solve the
Cauchy–Riemann equations (16.34). First of all,

∂v

∂x
= −

∂u

∂y
= 3x2 + 6xy − 3y2,

and hence, by direct integration with respect to x,

v(x, y) = x3 + 3x2y − 3xy2 + h(y),

where h(y) — the “constant of integration” — is a function of y alone. To determine h we
substitute our formula into the second Cauchy–Riemann equation:

3x2
− 6xy + h′(y) =

∂v

∂y
=

∂u

∂x
= 3x2

− 6xy − 3y2.

Therefore, h′(y) = −3y2, and so h(y) = −y3 + c, where c is a real constant. We conclude
that every harmonic conjugate to u(x, y) has the form

v(x, y) = x3 + 3x2y − 3xy2
− y3 + c.

Note that the corresponding complex function

u(x, y) + i v(x, y) = (x3
− 3x2y − 3xy2 + y3) + i (x3 + 3x2y − 3xy2

− y3 + c)

= (1− i )z3 + c

is a particular complex cubic polynomial.

Remark : On a connected domain, all harmonic conjugates to a given function u(x, y)
only differ by a constant: ṽ(x, y) = v(x, y) + c; see Exercise .

Although most harmonic functions have harmonic conjugates, unfortunately this is
not always the case. Interestingly, the existence or non-existence of a harmonic conjugate
can depend on the underlying geometry of the domain of definition of the function. If
the domain is simply-connected, and so contains no holes, then one can always find a
harmonic conjugate. In fact, this is an immediate consequence of our characterization of
potential functions in Appendix A. Otherwise, if the domain of definition Ω of our harmonic
function u(x, y) is not simply-connected, then there may not exist a single-valued harmonic
conjugate v(x, y) to serve as the imaginary part of a complex function f(z).

Example 16.12. The simplest example where the latter possibility occurs is the
logarithmic potential

u(x, y) = log r = 1
2 log(x

2 + y2).

This function is harmonic on the non-simply-connected domain Ω = C \ {0}, but it is
not the real part of any single-valued complex function. Indeed, according to (16.18), the
logarithmic potential is the real part of the multiply-valued complex logarithm log z, and
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so its harmonic conjugate† is ph z = θ, which cannot be consistently and continuously
defined on all of Ω. On the other hand, it is possible to choose a continuous, single-valued
branch of the angle θ = ph z if z is restricted to a simply connected subdomain Ω̃, and so
log r does have a genuine harmonic conjugate on Ω̃.

The harmonic function
u(x, y) =

x

x2 + y2

is also defined on the same non-simply-connected domain Ω = C \ {0} with a singularity
at x = y = 0. In this case, there is a single valued harmonic conjugate, namely

v(x, y) = −
y

x2 + y2
,

which is defined on all of Ω. Indeed, according to (16.12), these functions define the real
and imaginary parts of the complex function u+ i v = 1/z. Alternatively, one can directly
check that they satisfy the Cauchy–Riemann equations (16.22).

Remark : On the “punctured” plane Ω = C \ {0}, the logarithmic potential is, in a
sense, the only counterexample that prevents a harmonic conjugate from being constructed.
It can be shown, [XC], that if u(x, y) is a harmonic function defined on a punctured
disk ΩR =

{
0 < | z | < R

}
, where 0 < R ≤ ∞, then there exists a constant c such

that ũ(x, y) = u(x, y) − c log r is also harmonic and possess a single-valued harmonic

conjugate ṽ(x, y). As a result, the function f̃ = ũ + i ṽ is analytic on all of ΩR, and
so our original function u(x, y) is the real part of the multiply-valued analytic function

f(z) = f̃(z) + c log z. We shall use this fact in our later analysis of airfoils.

Theorem 16.13. Every harmonic function u(x, y) defined on a simply-connected
domain Ω is the real part of a complex valued function f(z) = u(x, y) + i v(x, y) which is
defined for all z = x+ i y ∈ Ω.

Proof : We first rewrite the Cauchy–Riemann equations (16.34) in vectorial form as
an equation for the gradient of v:

∇v = ∇u⊥, where ∇u⊥ =

(
−uy
ux

)
(16.35)

is the vector field that is everywhere orthogonal to the gradient of u and of the same
length†:

∇u⊥ · ∇u = 0, ‖∇u⊥ ‖ = ‖∇u ‖.

Thus, we have established the important observation that the gradient of a harmonic
function and that of its harmonic conjugate are mutually orthogonal vector fields:

∇v · ∇u ≡ 0. (16.36)

† We can, by a previous remark, add in any constant to the harmonic conjugate, but this does
not affect the subsequent argument.

† Since we are working in R2, these properties along with the right hand rule serve to uniquely

characterize ∇u⊥.
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Now, according to Theorem A.8, provided we work on a simply-connected domain,
the gradient equation

∇v = f =

(
f1

f2

)

has a solution if and only if the vector field f satisfies the curl-free constraint

∇∧ f =
∂f2

∂x
−

∂f1

∂y
≡ 0.

IN our specific case, the curl of the perpendicular vector field ∇u⊥ coincides with the
divergence of ∇u itself, which, in turn, coincides with the Laplacian:

∇∧∇u⊥ = ∇ · ∇u = ∆u = 0, i.e.,
∂

∂x

(
∂u

∂x

)
−

∂

∂y

(
−

∂u

∂y

)
=

∂2u

∂x2
+

∂2u

∂y2
= 0.

The result is zero because we are assuming that u is harmonic. Equation (22.26) permits us
to reconstruct the harmonic conjugate v(x, y) from its gradient ∇v through line integration

v(x, y) =

∫

C

∇v · dx =

∫

C

∇u⊥ · dx =

∫

C

∇u · n ds, (16.37)

where C is any curve connecting a fixed point (x0, y0) to (x, y). Therefore, the har-
monic conjugate to a given potential function u can be obtained by evaluating its (path-
independent) flux integral (16.37). Q.E.D.

Remark : As a consequence of (16.23) and the Cauchy–Riemann equations (16.34),

f ′(z) =
∂u

∂x
− i

∂u

∂y
=

∂v

∂y
+ i

∂v

∂x
. (16.38)

Thus, the components of the gradients ∇u and ∇v appear as the real and imaginary parts
of the complex derivative f ′(z).

The orthogonality (16.35) of the gradient of a function and of its harmonic conju-
gate has the following important geometric consequence. Recall, Theorem A.14, that the
gradient ∇u of a function points in the normal direction to its level curves {u(x, y) = c}.
Since ∇v is orthogonal to ∇u, this must mean that ∇v is tangent to the level curves of u.
Vice versa, ∇v is normal to its level curves, and so ∇u is tangent to the level curves of its
harmonic conjugate v. Since their tangent directions ∇u and ∇v are orthogonal, the level
curves of the real and imaginary parts of a complex function form a mutually orthogonal
system of plane curves — but with one key exception. If we are at a critical point , where
∇u = 0, then ∇v = ∇u⊥ = 0, and the vectors do not define tangent directions. Therefore,
the orthogonality of the level curves does not necessarily hold at critical points. It is worth
pointing out that, in view of (16.38), the critical points of u are the same as those of v

and also the same as the critical points of the corresponding complex function f(z), i.e.,
where its complex derivative vanishes: f ′(z) = 0.
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Figure 16.8. Level Curves of the Real and Imaginary Parts of z2 and z3.

In Figure 16.8, we illustrate the preceding discussion by plotting the level curves of
the real and imaginary parts of the monomials z2 and z3. Note that, except at the origin,
where the derivative vanishes, the level curves intersect everywhere at right angles.

Applications to Fluid Mechanics

Consider a planar† steady state fluid flow, with velocity vector field

v(x) =

(
u(x, y)
v(x, y)

)
at the point x = (x, y) ∈ Ω.

Here Ω ⊂ R2 is the domain occupied by the fluid, while the vector v(x) represents the
instantaneous velocity of the fluid at the point x. In many physical situations, the flow of
liquids (and, although less often, gases) is both incompressible and irrotational, which for
short, are known as ideal fluid flows. Recall that the flow is incompressible if and only if
it has vanishing divergence:

∇ · v =
∂u

∂x
+

∂v

∂y
= 0. (16.39)

On the other hand, the flow is irrotational if and only if it has vanishing curl:

∇∧ v =
∂v

∂x
−

∂u

∂y
= 0. (16.40)

The two constraints (16.39), (16.40) are almost identical to the Cauchy–Riemann equations
(16.22)! The only difference is the sign in front of the derivatives of v, but this can be
easily remedied by replacing v by its negative − v. As a result, we deduce the connection
between ideal planar fluid flows and complex functions.

† See the remarks in Appendix A on the interpretation of a planar fluid flow as the cross-section
of a fully three-dimensional fluid motion that does not depend upon the vertical coordinate.
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Theorem 16.14. The vector field v = (u(x, y), v(x, y) )
T
is the velocity vector of

an ideal fluid flow if and only if

f(z) = u(x, y)− i v(x, y) (16.41)

is a complex analytic function of z = x+ i y.

Therefore, the components u(x, y) and − v(x, y) of the velocity vector field for an
ideal fluid are harmonic conjugates. The complex function (16.41) is known as the complex
velocity of the fluid flow. When using this result, do not forget the minus sign that appears
in front of the imaginary part of f(z).

As in Example A.7, the fluid particles will follow the curves† z(t) = x(t) + i y(t)
obtained by integrating the differential equations

dx

dt
= u(x, y),

dy

dt
= v(x, y), (16.42)

which, in view of (16.41), we can rewrite in complex form

dz

dt
= f(z) . (16.43)

Each fluid particle’s motion z(t) is uniquely prescribed by its initial position z(0) = z0 =
x0 + i y0 at time t = 0. The curves parametrized by z(t) are the paths followed by the
particles, i.e., the streamlines of the flow. In particular, if the complex velocity vanishes,
f(z0) = 0, then the solution z(t) ≡ z0 to (16.43) is constant, and hence z0 is a stagnation
point of the flow.

Example 16.15. The simplest example is when the velocity is constant, correspond-
ing to a uniform steady flow. Consider first the case

f(z) = 1,

which corresponds to the horizontal velocity vector field v = ( 1, 0 )
T
. The actual fluid flow

is found by integrating the system

¦
z = 1, or

¦
x = 1,

¦
y = 0.

Thus, the solution z(t) = t+z0 represents a uniform horizontal fluid motion whose stream-
lines are straight lines parallel to the real axis; see Figure 16.9.

Consider next a more general constant velocity

f(z) = c = a+ i b.

The fluid particles will solve the ordinary differential equation

¦
z = c = a− i b, so that z(t) = c t+ z0.

† See below for more details on complex curves.
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f(z) = 1 f(z) = 4 + 3 i f(z) = z

Figure 16.9. Complex Fluid Flows.

The streamlines remain parallel straight lines, but now at an angle θ = ph c = −ph c with
the horizontal. The fluid particles move along the streamlines at constant speed | c | = | c |.

The next simplest complex velocity function is

f(z) = z = x+ i y. (16.44)

The corresponding fluid flow is found by integrating the system

¦
z = z, or, in real form,

¦
x = x,

¦
y = − y.

The origin x = y = 0 is a stagnation point. The trajectories of the nonstationary solutions

z(t) = x0 et + i y0 e−t (16.45)

are the hyperbolas xy = c and the positive and negative semi-axes, as illustrated in
Figure 16.9.

On the other hand, if we choose

f(z) = − i z = y − ix,

then the flow is the solution to

¦
z = i z, or, in real form,

¦
x = y,

¦
y = x.

The solutions

z(t) = (x0 cosh t+ y0 sinh t) + i (x0 sinh t+ y0 cosh t),

move along the hyperbolas (and rays) x2
−y2 = c2. Thus, this flow is obtained by rotating

the preceding example by 45◦.

Example 16.16. A solid object in a fluid flow is characterized by the no-flux con-
dition that the fluid velocity v is everywhere tangent to the boundary, and hence no fluid
flows into or out of the object. As a result, the boundary will consist of streamlines and
stagnation points of the idealized fluid flow. For example, the boundary of the upper right
quadrant Q = {x > 0, y > 0} ⊂ C consists of the positive x and y axes (along with the
origin). Since these are streamlines of the flow with complex velocity (16.44), its restriction
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Figure 16.10. Flow Inside a Corner.

to Q represents the flow past a 90◦ interior corner, which appears in Figure 16.10. The
fluid particles move along hyperbolas as they flow past the corner.

Remark : We could also restrict this flow to the domain Ω = C\{x < 0, y < 0} consist-
ing of three quadrants, and corresponding to a 90◦ exterior corner. However, the restricted
flow is not as relevant in this case since it does not have a physically realizable asymp-
totic behavior at large distances. See Exercise for the “correct” physical flow around an
exterior corner.

Now, suppose that the complex velocity f(z) admits a complex anti-derivative, i.e., a
complex analytic function

χ(z) = ϕ(x, y) + iψ(x, y) that satisfies
dχ

dz
= f(z). (16.46)

Using the formula (16.23) for the complex derivative, we see that

dχ

dz
=

∂ϕ

∂x
− i

∂ϕ

∂y
= u− i v, so

∂ϕ

∂x
= u,

∂ϕ

∂y
= v.

Thus, ∇ϕ = v, and hence the real part ϕ(x, y) of the complex function χ(z) defines a
velocity potential for the fluid flow. For this reason, the anti-derivative (16.46) is known
as the complex potential function for the given fluid velocity field.

Since the complex potential is analytic, its real part, the potential function, is har-
monic and therefore satisfies the Laplace equation ∆ϕ = 0. Conversely, any harmonic
function can be viewed as the potential function for some fluid flow. The real fluid velocity
is its gradient v = ∇ϕ. The harmonic conjugate ψ(x, y) to the velocity potential also plays
an important role, and, in fluid mechanics, is known as the stream function for the fluid
flow. It also satisfies the Laplace equation ∆ψ = 0, and the potential and stream function
are related by the Cauchy–Riemann equations (16.22).

The level curves of the velocity potential, ϕ(x, y) = c, are known as equipotential
curves for the flow. The velocity vector v = ∇ϕ points in the normal direction to the
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equipotentials. On the other hand, as we noted above, v = ∇ϕ is tangent to the level
curves ψ(x, y) = d of its harmonic conjugate stream function. But v is the velocity field,
and so tangent to the streamlines followed by the fluid particles. Thus, these two systems
of curves must coincide, and we infer that the level curves of the stream function are the

streamlines of the flow , whence the name “stream function”! Summarizing, for an ideal
fluid flow, the equipotentials {ϕ = c} and streamlines {ψ = d} form mutually orthogonal
systems of plane curves. The fluid velocity v = ∇ϕ is tangent to the stream lines and
normal to the equipotentials, whereas the gradient of the stream function ∇ψ is tangent
to the equipotentials and normal to the streamlines.

The discussion in the preceding paragraph implicitly relied on the fact that the velocity
is nonzero, v = ∇ϕ 6= 0, which means we are not at a stagnation point , where the fluid
is not moving. While streamlines and equipotentials might begin or end at a stagnation
point, there is no guarantee, and, indeed, in general it is not the case that they meet at
mutually orthogonal directions there.

Example 16.17. The simplest example of a complex potential function is

χ(z) = z = x+ i y.

Thus, the velocity potential is ϕ(x, y) = x, while its harmonic conjugate stream function
is ψ(x, y) = y. The complex derivative of the potential is the complex velocity,

f(z) =
dχ

dz
= 1,

which corresponds to the uniform horizontal fluid motion considered first in Example 16.15.
Note that the horizontal stream lines coincide with the level sets y = k of the stream
function, whereas the equipotentials ϕ = x = c are the orthogonal system of vertical lines.

Next, consider the complex potential function

χ(z) = 1
2 z2 = 1

2 (x
2
− y2) + ixy.

The complex velocity function

f(z) = χ′(z) = z = x+ i y

leads to the hyperbolic flow (16.45). The hyperbolic streamlines xy = d are the level
curves of the stream function ψ(x, y) = xy. The equipotential lines 1

2 (x
2
− y2) = c form a

system of orthogonal hyperbolas. A picture of the equipotentials and stream lines in this
particular case can be found in the first plot in Figure 16.8.

Example 16.18. Flow Around a Disk . Consider the complex potential function

χ(z) = z +
1

z
=

(
x+

x

x2 + y2

)
+ i

(
y −

y

x2 + y2

)
. (16.47)

The corresponding complex fluid velocity is

f(z) =
dχ

dz
= 1−

1

z2
= 1−

x2
− y2

(x2 + y2)2
+ i

2xy

(x2 + y2)2
. (16.48)
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Figure 16.11. Equipotentials and Streamlines for z +
1

z
.

The equipotential curves and streamlines are plotted in Figure 16.11. The points z = ± 1
are stagnation points of the flow, while z = 0 is a singularity. In particular, fluid particles
that move along the positive x axis approach the leading stagnation point z = 1, but take
an infinite amount of time to reach it. Note that at large distances, the streamlines

ψ(x, y) = y −
y

x2 + y2
= d

are asymptotically horizontal, and hence, far away from the origin, the flow is indistin-
guishable from uniform horizontal motion with complex velocity f(z) ≡ 1. The level curve
for the particular value d = 0 consists of the unit circle | z | = 1 and the real axis y = 0.
In particular, the unit circle | z | = 1 consists of two stream lines and the two stagnation
points. Therefore, the flow velocity vector field v = ∇ϕ is everywhere tangent to the unit
circle, and hence satisfies the no flux condition on the boundary of the unit disk. Thus,
we can interpret (16.48), when restricted to the domain Ω =

{
| z | > 1

}
, as the complex

velocity of a uniformly moving fluid around the outside of a solid circular disk of radius
1. In three dimensions, this would correspond to the steady flow of a fluid around a solid
cylinder.

In this section, we have focussed on the fluid mechanical roles of a harmonic function
and its conjugate. An analogous interpretation applies when ϕ(x, y) represents an elec-
tromagnetic potential function; the level curves of its harmonic conjugate ψ(x, y) are the
paths followed by charged particles under the electromotive force field v = ∇ϕ. Similarly,
if ϕ(x, y) represents the equilibrium temperature distribution in a planar domain, its level
lines represent the isotherms or curves of constant temperature, while the level lines of its
harmonic conjugate are the curves of heat flow, whose mutual orthogonality was already
noted in Appendix A. Finally, if ϕ(x, y) represents the height of a deformed membrane,
then its level curves are the contour lines of elevation. The level curves of its harmonic
conjugate are the curves of steepest descent along the membrane, i.e., the routes followed
by, say, water flowing down the membrane.

16.4. Conformal Mapping.

As we now know, complex functions provide an almost inexhaustible source of har-
monic functions, i.e., solutions to the Laplace equation. Thus, to solve a boundary value
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Ω

f

D

Figure 16.12. Mapping to the Unit Disk.

problem for Laplace’s equation we merely need to find the right complex function whose
real part matches the prescribed boundary conditions. Unfortunately, even for relatively
simple domains, this is still not a particularly easy task. The one case where we do have
an explicit solution is that of a circular disk, where the Poisson integral formula (15.44)
provides a complete solution to the Dirichlet boundary value problem. (See Exercise
for the Neumann and mixed boundary value problems.) However, determining the corre-
sponding integral formula or Green’s function for a more complicated domain remains a
daunting task, even with the relatively powerful tools of complex analysis at our disposal.

There is, however, a wonderful idea that will go very far towards this general goal.
Given that we know how to solve a boundary value problem on one particular domain, the
unit disk

D =
{

ζ = ξ + i η
∣∣ ξ2 + η2 < 1

}
,

perhaps we can make an inspired change of variables that will convert the unsolved bound-
ary value problem on Ω into one that we know how to solve on D. In other words, we seek
a pair of functions

ξ = p(x, y), η = q(x, y), (16.49)

that maps each point (x, y) ∈ Ω to a point (ξ, η) ∈ D in the unit disk, as illustrated in
Figure 16.12. The desired mapping must satisfy fairly stringent requirements.

(a) First of all, it should be one-to-one, and so each point (x, y) ∈ Ω maps to a unique
point in (ξ, η) = (p(x, y), q(x, y)) ∈ D. Under these conditions, each function U(ξ, η)
defined on the unit disk will correspond to a unique function

u(x, y) = U
(
p(x, y), q(x, y)

)
(16.50)

defined on the domain Ω, whose value at the point (x, y) to equal the value of U at the
image point (ξ, η) = (p(x, y), q(x, y)).

(b) Secondly, both the map (16.49) and its inverse

x = P (ξ, η), y = Q(ξ, η), (16.51)

should be sufficiently smooth so as to allow us to take derivatives of the functions u(x, y)
and U(ξ, η). The Inverse Function Theorem, cf. [9], requires that the Jacobian determinant

∂(ξ, η)

∂(x, y)
= det




∂ξ

∂x

∂ξ

∂y
∂η

∂x

∂η

∂y


6= 0 (16.52)
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be everywhere non-zero in the domain Ω. Incidentally, the Jacobian condition is enough
to ensure that the map is locally (but not necessarily globally) one-to-one.

(c) Moreover, the map (16.49) should extend continuously to the boundary ∂Ω, map-
ping it to the boundary of the unit disk ∂D = C =

{
ξ2 + η2 = 1

}
, which is the unit circle.

This will ensure that a boundary value problem for u(x, y) on Ω is mapped to a boundary
value problem for U(ξ, η) on D.

(d) Finally, we must ensure that if U(ξ, η) satisfies the Laplace equation

∆U = Uξξ + Uηη = 0 on D,

then u(x, y) as given by (16.50) will satisfy the Laplace equation

∆u = uxx + uyy = 0 on Ω.

Otherwise, the proposed mapping will be of scant help for solving the boundary value
problem under consideration. The latter requirement is, without extra insight, quite hard
to ensure.

Example 16.19. The scaling change of variables

ξ = a x, η = b y (16.53)

changes the elliptical domain Ω =
{

a2 x2 + b2 y2 < 1
}
to the unit diskD = {ξ2 + η2 < 1}.

However, it is not of much help for solving the Laplace equation on the elliptical domain.
Indeed, when we relate a function U(ξ, η) on D to

u(x, y) = U(a x, b y)

on Ω, the partial derivatives are related by

∂2u

∂x2
= a2 ∂2U

∂ξ2
,

∂2u

∂y2
= b2 ∂2U

∂η2
.

If U is harmonic, so ∆U = Uξξ + Uηη = 0, then u(x, y) satisfies the partial differential
equation

1

a2

∂2u

∂x2
+
1

b2

∂2u

∂y2
= 0. (16.54)

Unless a = b — in which case the domain Ω is a circle and we are performing a simple
scaling transformation — the function u(x, y) is not a solution to the Laplace equation
on Ω. Be that as it may, this change of variables does provide a means of solving the
Dirichlet boundary value problem for the elliptic partial differential equation (16.54) on
the elliptical domain Ω.

Analytic Maps

The crucial insight that makes the change of variables idea so effective is that com-
plex analytic functions not only provide harmonic functions as candidate solutions to the
Laplace equation, they also provide a large class of mappings that accomplish the desired
goals. The method rests on the simple fact that the composition of two complex analytic
functions is also complex analytic.
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Lemma 16.20. If w = F (ζ) is an analytic function of the complex variable ζ =
ξ + i η and ζ = g(z) is an analytic function of the complex variable z = x+ i y, then the
composition† w = f(z) ≡ F ◦g(z) = F (g(z)) is an analytic function of z.

Proof : The proof that the composition of two differentiable functions is differentiable
is identical to the real variable version, [9, 136], and need not be reproduced here. The
derivative of the composition is explicitly given by the usual chain rule:

d

dz
F ◦g(z) = F ′(g(z)) g′(z), or, in Leibnizian notation,

dw

dz
=

dw

dζ

dζ

dz
. Q .E .D .

We interpret a complex function

ζ = g(z) or ξ + i η = p(x, y) + i q(x, y) (16.55)

as a mapping , as in (16.49), that takes a point z = x+ i y ∈ Ω belonging to a prescribed
domain Ω ⊂ C to a point ζ = ξ + i η ∈ D belonging to the image domain D = g(Ω) ⊂ C.
Based on our earlier comments, we will make three important assumptions:

(a) The analytic mapping is one-to-one. In other words, we assume that each point
ζ ∈ D comes from a unique point z ∈ Ω, and so the inverse function z = g−1(ζ) is a
well-defined map from D back to Ω.

(b) The inverse mapping g−1(ζ) is analytic on all of D. Recall that the derivative of
the inverse function is given by

d

dζ
g−1(ζ) =

1

g′(z)
at ζ = g(z). (16.56)

This formula, which is equally valid for complex functions, implies that the derivative of
g(z) must be nonzero everywhere in order that g−1(ζ) be differentiable. This condition

g′(z)6= 0 at every point z ∈ Ω, (16.57)

will play a crucial role in the development of the method.

(c) The mapping extends continuously to the boundary δΩ and maps it to the boundary
∂D of the image domain.

Before trying to apply these techniques to solve boundary value problems for the
Laplace equation, we consider some of the most important examples of analytic maps.

Example 16.21. The simplest nontrivial analytic maps are the translations

ζ = z + c = (x+ a) + i (y + b), (16.58)

which translates the entire complex plane in the direction given by c = a+ i b. These are
the complex counterparts of the affine translations (7.25) of a vector space. The effect is
to map a disk | z + c | < 1 of radius 1 and center at −c to the unit disk | ζ | < 1.

† Of course, to properly define the composition, we need to ensure that the range of the function
ζ = g(z) is contained in the domain of the function w = f(ζ).
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There are two types of linear analytic transformations. First, we have the scaling map

ζ = ρ z = ρ x+ i ρ y, (16.59)

where ρ 6= 0 is a fixed nonzero real number. These map the disk | z | < 1/| ρ | to the unit
disk | ζ | < 1. Second are the rotations

ζ = e iϕ z = (x cosϕ− y sinϕ) + i (x sinϕ+ y cosϕ) (16.60)

around the origin by a fixed (real) angle ϕ. These map the unit disk to itself.

Any non-constant affine transformation

ζ = α z + β, α 6= 0, (16.61)

defines an invertible analytic map on all of C, whose inverse map z =
ζ − β

α
is also affine.

Writing α = ρ e iϕ in polar coordinates, we see that the affine map (16.61) can be built up
from a translation, a scaling and a rotation. As such, it takes the disk |α z + β | < 1 of
radius 1/|α | = 1/| ρ | and center −β/α to the unit disk | ζ | < 1. As such, none of these
maps take us to a radically new class of boundary value problems.

Example 16.22. A more interesting complex function is

ζ = g(z) =
1

z
, or ξ =

x

x2 + y2
, η = −

y

x2 + y2
, (16.62)

which is known as an inversion† of the complex plane. It defines a one-to-one analytic
map everywhere except at the origin z = 0; indeed g(z) is its own inverse: g−1(ζ) = 1/ζ.
Note that g′(z) = −1/z2 is never zero, and so the derivative condition (16.57) is satisfied
everywhere. Thus, any domain Ω ⊂ C \ {0} will be mapped in a one-to-one manner onto
an image domain D = g(Ω) ⊂ C \ {0}.

Note that | ζ | = 1/| z |, while ph ζ = −ph z. Thus, if Ω =
{
| z | > ρ

}
denotes the

exterior of the circle of radius ρ, then the image points ζ = 1/z satisfy | ζ | = 1/| z |, and
hence the image domain is the punctured disk D =

{
0 < | ζ | < 1/ρ

}
. In particular, the

inversion maps the outside of the unit disk to its inside, but with the origin removed, and
vice versa. The reader may enjoy seeing what the inversion does to other domains, e.g.,
the unit square.

Example 16.23. The complex exponential

ζ = g(z) = ez , or ξ = ex cos y, η = ex sin y, (16.63)

satisfies the condition g′(z) = ez 6= 0 everywhere. Nevertheless, it is not one-to-one because
ez+2π i = ez, and so all points differing by an integer multiple of 2π i are mapped to the
same point.

Under the exponential map (16.63), the horizontal line Im z = b is mapped to the
curve ζ = ex+ i b = ex(cos b+ i sin b), which, as x varies from −∞ to∞, traces out the ray

† This is slightly different than the real inversion (15.68); see Exercise .
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Figure 16.13. The mapping ζ = ez.

emanating from the origin that makes an angle ph ζ = b with the real axis. Therefore, the
exponential map will map a horizontal strip Sa,b =

{
a < Im z < b

}
to a wedge-shaped

domain Ωa,b =
{

a < ph ζ < b
}
, and is one-to-one provided | b− a | < 2π. In particular,

the horizontal strip S−π/2,π/2 =
{
−

1
2 π < Im z < 1

2 π
}
of width π centered around the

real axis is mapped, in a one-to-one manner, to the right half plane

R = Ω−π/2,π/2 =
{
−

1
2 π < ph ζ < 1

2 π
}
=
{
Im ζ > 0

}
,

while the horizontal strip S−π,π =
{
−π < Im z < π

}
of width 2π is mapped onto the

domain

Ω∗ = Ω−π,π =
{
−π < ph ζ < π

}
= C \ { Im z = 0, Re z ≤ 0}

obtained by cutting the complex plane along the negative real axis.

On the other hand, vertical lines Re z = a are mapped to circles | ζ | = ea. Thus,
a vertical strip a < Re z < b is mapped to an annulus ea < | ζ | < eb, albeit many-to-
one, since the strip is effectively wrapped around and around the annulus. The rectangle
R =

{
a < x < b,−π < y < π

}
of height 2π is mapped in a one-to-one fashion on an

annulus that has been cut along the negative real axis. See Figure 16.13 for an illustration.

Example 16.24. The squaring map

ζ = g(z) = z2, or ξ = x2
− y2, η = 2xy, (16.64)

is analytic on all of C, but is not one-to-one. Its inverse is the square root function
z =

√
ζ , which, as discussed in Section 16.1, is double-valued. Furthermore, the derivative

g′(z) = 2z vanishes at z = 0, violating the invertibility condition (16.57). However, once
we restrict to a simply connected subdomain Ω that does not contain 0, the function
g(z) = z2 does define a one-to-one mapping, whose inverse z = g−1(ζ) =

√
ζ is a well-

defined, analytic and single-valued branch of the square root function.

The effect of the squaring map on a point z is to square its modulus, | ζ | = | z |2, while
doubling its angle, ph ζ = ph z2 = 2 ph z. Thus, for example, the upper right quadrant

Q =
{

x > 0, y > 0
}
=
{
0 < ph z < 1

2 π
}

is mapped by (16.64) onto the upper half plane

U = g(Q) =
{

η = Im ζ > 0
}
=
{
0 < ph ζ < π

}
.
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Figure 16.14. The Effect of ζ = z2 on Various Domains.

The inverse function maps a point ζ ∈ D back to its unique square root z =
√

ζ that lies
in the quadrant Q. Similarly, a quarter disk

Qρ =
{
0 < | z | < ρ, 0 < ph z < 1

2 π
}

of radius ρ is mapped to a half disk

Uρ2 = g(Ω) =
{
0 < | ζ | < ρ2, Im ζ > 0

}

of radius ρ2. On the other hand, the unit square Ω =
{
0 < x < 1, 0 < y < 1

}
is mapped

to a curvilinear triangular domain, as indicated in Figure 16.14; the edges of the square
on the real and imaginary axes map to the two halves of the straight base of the triangle,
while the other two edges become its curved sides.

Example 16.25. A particularly important example is the analytic map

ζ =
z − 1

z + 1
=

x2 + y2
− 1 + 2 i y

(x+ 1)2 + y2
, (16.65)

where we used (16.14) to derive the formulae for its real and imaginary parts. The map is
one-to-one with analytic inverse

z =
1 + ζ

1− ζ
=
1− ξ2

− η2 + 2 i η

(1− ξ)2 + η2
, (16.66)

provided z 6= −1 and ζ 6= 1. This particular analytic map has the important property
of mapping the right half plane R =

{
x = Re z > 0

}
to the unit disk D =

{
| ζ |2 < 1

}
.

Indeed, by (16.66)

| ζ |2 = ξ2 + η2 < 1 if and only if x =
1− ξ2

− η2

(1− ξ)2 + η2
> 0.

Note that the denominator does not vanish on the interior of the disk.

The complex functions (16.61), (16.62), (16.65) are particular examples of one of the
most important class of analytic maps. A general linear fractional transformation has the
form

ζ =
α z + β

γ z + δ
, (16.67)

where α, β, γ, δ are arbitrary complex constants, subject to the restriction

α δ − β γ 6= 0,

since otherwise (16.67) reduces to a trivial constant (and non-invertible) map.
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Example 16.26. The linear fractional transformation

ζ =
z − α

α z − 1
where |α | < 1, (16.68)

maps the unit disk to itself, moving the origin z = 0 to the point ζ = α. To prove this, we
note that

| z − α |2 = (z − α)(z − α) = | z |2 − α z − α z + |α |2,

|α z − 1 |2 = (α z − 1)(α z − 1) = |α |2 | z |2 − α z − α z + 1.

Subtracting these two formulae, and using the assumptions that | z | < 1, |α | < 1, we find

| z − α |2 − |α z − 1 |2 =
(
1− |α |2

) (
| z |2 − 1

)
< 0, so | z − α | < |α z − 1 |.

The latter inequality implies that

| ζ | =
| z − α |

|α z − 1 |
< 1 provided | z | < 1, |α | < 1,

and hence ζ lies within the unit disk.

The rotations (16.60) also map the unit disk to itself, preserving the origin. It can be
proved, [4], that the only invertible analytic mappings that take the unit disk to itself are
obtained by composing such a linear fractional transformation with a rotation.

Proposition 16.27. If ζ = g(z) is a one-to-one analytic map that takes the unit
disk to itself, then

g(z) = e iϕ z − α

α z − 1
(16.69)

for some |α | < 1 and 0 ≤ ϕ < 2π.

Additional specific properties of linear fractional transformations are outlined in the
exercises. The most important is that they map circles to circles, where, to be completely
accurate, one should view a straight line as a “circle of infinite radius”. Details can be
found in Exercise .

Conformality

A remarkable geometrical characterization of complex analytic functions is the fact
that, at non-critical points, they preserve angles. The mathematical term for this property
is conformal mapping . Conformality makes sense for any inner product space, although in
practice one usually deals with Euclidean space equipped with the standard dot product.

Definition 16.28. A function g:Rn
→ Rn is called conformal if it preserves angles.

What does it mean to “preserve angles”? For the Euclidean norm, the angle between
two vectors is defined by their dot product, as in (3.18). However, most analytic maps are
nonlinear, and so will not map vectors to vectors since they will typically map straight
lines to curves. However, if we interpret “angle” to mean the angle between two curves,
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Figure 16.15. A Conformal Map.

as illustrated in Figure 16.15, then we can make sense of the conformality requirement.
Consequently, in order to realize complex functions as conformal maps, we first need to
understand what they do to curves.

In general, a curve C ∈ C in the complex plane is parametrized by a complex-valued
function

z(t) = x(t) + i y(t), a < t < b, (16.70)

that depends on a real parameter t. Note that there is no essential difference between
a complex plane curve (16.70) and a real plane curve (A.1) — we have merely switched

from vector notation x(t) = (x(t), y(t) )
T
to complex notation z(t) = x(t) + i y(t). All

the vectorial curve terminology (closed, simple, piecewise smooth, etc.) we learned in
Appendix A is used without any modification here. In particular, the tangent vector to
the curve can be identified as the complex number

¦
z(t) =

¦
x(t) + i

¦
y(t). Smoothness of the

curve is guaranteed by the requirement that
¦
z(t)6= 0.

Example 16.29.

(a) The curve

z(t) = e i t = cos t+ i sin t, for 0 ≤ t ≤ 2π,

parametrizes the unit circle | z | = 1 in the complex plane, which is a simple closed curve.
Its complex tangent is

¦
z(t) = i e i t = i z(t), which is obtained by rotating z through 90◦.

(b) The complex curve

z(t) = cosh t+ i sinh t =
1 + i

2
et +

1− i

2
e− t, −∞ < t <∞,

parametrizes the right hand branch of the hyperbola

Re z2 = x2
− y2 = 1.

The complex tangent vector is
¦
z(t) = sinh t+ i cosh t = i z(t).

In order to better understand the geometry, it will help to rewrite the tangent
¦
z in

polar coordinates. We interpret the curve as the motion of a particle in the complex plane,
so that z(t) is the position of the particle at time t, and the tangent

¦
z(t) its instantaneous

velocity. The modulus of the tangent, |
¦
z | =

√
¦
x2 +

¦
y2, indicates the particle’s speed,

1/12/04 704 c© 2003 Peter J. Olver



Figure 16.16. Complex Curve and Tangent.

while its phase ph
¦
z = tan−1(

¦
y/

¦
x) measures the direction of motion, or, more precisely,

the angle that the curve makes with the horizontal; see Figure 16.16.

The angle between two curves is defined as the angle between their tangents at the
point of intersection. If the curve C1 makes an angle θ1 = ph

¦
z1(t1) while the curve C2 has

angle θ2 = ph
¦
z2(t2) at the common point z = z1(t1) = z2(t2), then the angle θ between

the two curves at z is the difference

θ = θ2 − θ1 = ph
¦
z2 − ph

¦
z1 = ph

¦
z2
¦
z1

. (16.71)

Now, suppose we are given an analytic map ζ = g(z). A curve C parametrized by
z(t) will be mapped to a curve Γ = g(C) parametrized by the composition ζ(t) = g(z(t)).
The tangent to the image curve is related to that of the original curve by the chain rule:

dζ

dt
=

dg

dz

dz

dt
, or

¦

ζ(t) = g′(z(t))
¦
z(t). (16.72)

Therefore, the effect of the analytic map on the tangent vector
¦
z at the point z ∈ C is to

multiply it by the complex number g′(z). If the analytic map satisfies our key assumption

g′(z)6= 0, then
¦

ζ 6= 0, and so the image curve will remain smooth.

According to equation (16.72),

|

¦

ζ | = | g′(z)
¦
z | = | g′(z) | |

¦
z |. (16.73)

Thus, the speed of motion along the new curve ζ(t) is multiplied by a factor ρ = | g ′(z) | > 0.
The magnification factor ρ depends only upon the point z and not how the curve passes
through it. All curves passing through the point z are speeded up (or slowed down if ρ < 1)
by the same factor! Similarly, the angle that the new curve makes with the horizontal is
given by

ph
¦

ζ = ph
(
g′(z)

¦
z
)
= ph g′(z) + ph

¦
z, (16.74)
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Figure 16.17. Conformality of z2.

where we use the fact that the phase of the product of two complex numbers is the sum
of their individual phases, (3.74). Therefore, the tangent angle of the curve is increased
by an amount φ = ph g′(z). Geometrically, this means that the tangent to the curve has
been rotated through an angle φ. Again, the increase in tangent angle only depends on the
point z, and all curves passing through z are rotated by the same amount φ. As a result,
the angle between any two curves is preserved. More precisely, if C1 is at angle θ1 and C2

at angle θ2 at a point of intersection, then their images Γ1 = g(C1) and Γ2 = g(C2) are
at angles ψ1 = θ1 + φ and ψ2 = θ2 + φ. The angle between the two image curves is the
difference

ψ2 − ψ1 = (θ2 + φ)− (θ1 + φ) = θ2 − θ1,

which is the same as the angle between the original curves. This proves the conformality
or angle-preservation property of analytic maps.

Theorem 16.30. If ζ = g(z) is an analytic function and g′(z)6= 0, then g defines a

conformal map.

Remark : The converse is also valid every planar conformal map comes from a complex
analytic function with nonvanishing derivative. A proof is outlined in Exercise .

The conformality of a analytic functions is all the more surprising when one reconsiders
elementary examples. In Example 16.24, we discovered that the function w = z2 maps
a quarter plane to a half plane, and therefore doubles the angle at the origin! Thus
g(z) = z2 is most definitely not conformal at z = 0. The explanation is, of course, that it
has zero derivative at z = 0, and Theorem 16.30 only guarantees conformality when the
derivative is nonzero. Amazingly, the map preserves angles everywhere else! Somehow,
the angle at the origin is doubled, while the angles at all nearby points are preserved.
Figure 16.17 illustrates this remarkable and counter-intuitive feat. The left hand figure
shows the coordinate grid, while on the right are the images of the horizontal and vertical
lines under the map z2. Note that, except at the origin, the image curves continue to meet
at 90◦ angles, in accordance with conformality.
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Figure 16.18. The Joukowski Map.

Example 16.31. A particularly interesting conformal transformation is given by the
function

ζ =
1

2

(
z +

1

z

)
. (16.75)

The Joukowski map arises in the study of flows around airplane wings, since it maps
circles to a variety of airfoil shapes whose aerodynamic properties can be analyzed exactly,
and is named after the pioneering Russian aero- and hydro-dynamics researcher Nikolai
Zhukovskii (Joukowski). Since

dζ

dz
=
1

2

(
1−

1

z2

)
= 0 if and only if z = ±1,

the Joukowski map is conformal except at the critical points z = ±1, as well as the
singularity z = 0, where it is not defined.

If z = e i θ lies on the unit circle, then

ζ = 1
2

(
e i θ + e− i θ

)
= cos θ,

lies on the real axis, with −1 ≤ ζ ≤ 1. Thus, the Joukowski map squashes the unit circle
down to the real line segment [−1, 1]. The points outside the unit circle fill the rest of the
ζ plane, as do the (nonzero) points inside the unit circle. Indeed, if we solve (16.75) for

z = ζ ±
√

ζ2 − 1 , (16.76)

we see that every ζ except ±1 comes from two different points z; for ζ not on the line
segment [−1, 1] the points inside and outside the unit circle, whereas if −1 < ζ < 1, the
points lie directly above and below it on the circle. Therefore, (16.75) defines a one-to-one
conformal map from the exterior of the unit circle

{
| z | > 1

}
onto the exterior of the unit

line segment C \ [−1, 1].
Under the Joukowski map, the concentric circles | z | = r for r 6= 1 are mapped to

ellipses with foci at ±1 in the ζ plane, as illustrated in Figure 16.18. The effect on circles
not centered at the origin is quite interesting. The image curves take on a wide variety
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Figure 16.19. Composition of Conformal Maps.

of shapes; several examples are plotted in Figure airfoil . If the circle passes through the
singular point z = 1, then its image is no longer smooth, but has a cusp at ζ = 1. Some of
the image curves have the shape of the cross-section through an airplane wing or airfoil .
Later we will see how to apply the Joukowski map to construct the physical fluid flow
around such an airfoil, which proved to be a critical step in early airplane design.

Composition and The Riemann Mapping Theorem

One of the strengths of the method of conformal mapping is that one can build up
lots of complicated examples by simply composing elementary mappings. According to
Lemma 16.20, if w = h(z) and ζ = k(w) are analytic functions, their composition ζ =
g(z) = k ◦h(z) = k(h(z)) is also analytic. If both h and k are one-to-one, so is the
composition g = k ◦h. Moreover, the composition of two conformal maps is also conformal.
Indeed, by the chain rule,

g′(z) = k′(h(z))h′(z)6= 0 provided k′(h(z))6= 0 and h′(z)6= 0,

and so if h and k satisfy the conformality condition (16.57), so does g = k ◦h.

Example 16.32. As we learned in Example 16.23, the exponential function

w = ez

maps the horizontal strip S = {− 1
2 π < Im z < 1

2 π} conformally onto the right half plane
R = {Re w > 0}. On the other hand, Example 16.25 tells us that the linear fractional
transformation

ζ =
w − 1

w + 1

maps the right half plane R conformally to the unit diskD = {| ζ | < 1}, as in Figure 16.19.
Therefore, the composition

ζ =
ez − 1

ez + 1
(16.77)

is a one-to-one conformal map from the horizontal strip S to the unit disk D.

Recall that our motivating goal is to use analytic/conformal maps to transform a
boundary value problem for the Laplace equation on a complicated domain Ω to a boundary
value problem on the unit disk. Since we already know how to solve the latter, the method
effectively constructs a solution to the original problem. Of course, the key question the
student should be asking at this point is: Can you construct a conformal map ζ = g(z)
from a given domain Ω to the unit disk D = g(Ω)?

The theoretical answer to this question is the celebrated Riemann Mapping Theorem.
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Theorem 16.33. If Ω ( C is any simply connected open subset, not equal to the
entire complex plane, then there exists a one-to-one analytic function ζ = g(z) that maps
Ω to the unit disk D = {| ζ | < 1}.

Thus, any simply connected open set, including all domains, can be conformally
mapped the unit disk — the one exception is the entire complex plane. (See Exercise
for a reason for this exception.) Note that the domain Ω does not have to be bounded

for this result to hold. For example, the conformal map (16.65) takes the unbounded right
half plane R = {Re z > 0} to the unit disk. The proof of this important theorem is not
easy and relies some more advanced results in complex analysis, [4].

The Riemann Mapping Theorem guarantees the existence of a conformal map from any
simply connected domain to the unit disk, but it is an existential result, and gives no clue as
to how to actually construct the desired mapping. And, in general, this is not an easy task.
In practice, one assembles a repertoire of useful conformal maps that apply to particular
domains of interest. One extensive catalog can be found in [Cmap]. More complicated
maps can then be built up by composition of the basic examples. Ultimately, though, the
determination of a suitable conformal map is often more an art than a systematic science.

Let us consider a few additional examples beyond those already encountered:

Example 16.34. Suppose we are asked to conformally map the upper half plane
U =

{
Im z > 0

}
to the unit disk D =

{
| ζ | < 1

}
. We already know that the linear

fractional transformation

ζ = g(z) =
z − 1

z + 1

maps the right half plane R =
{
Re z > 0

}
toD = g(R). On the other hand, multiplication

by i = e iπ/2, with z = h(w) = iw, rotates the complex plane by 90◦ and so maps the
right half plane R to the upper half plane U = h(R). Its inverse h−1(z) = − i z will
therefore map U to R = h−1(U). Therefore, to map the upper half plane to the unit disk,
we compose these two maps, leading to the conformal map

ζ = g ◦h−1(z) =
− i z − 1

− i z + 1
=
i z + 1

i z − 1
(16.78)

from U to D.

As a second example, we already know that the squaring map w = z2 maps the upper
right quadrant Q =

{
0 < ph z < 1

2 π
}
to the upper half plane U . Composing this with

our previously constructed map (16.78) leads to the conformal map

ζ =
i z2 + 1

i z2 − 1
(16.79)

that maps the quadrant Q to the unit disk D.

Example 16.35. The goal of this example is to construct an conformal map that
takes a half disk

D+ =
{
| z | < 1, y = Im z > 0

}
(16.80)
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to the full unit disk D. The answer is not ζ = z2 because the image omits the positive
real axis, and so is a disk with a slit cut out of it. The first observation is that the
map z = (w − 1)/(w + 1) that we analyzed in Example 16.25 takes the right half plane
R =

{
Re w > 0

}
to the unit disk. Moreover, it maps the upper right quadrant Q ={

0 < ph w < 1
2 π
}
to the half disk (16.80). Its inverse,

w =
z + 1

z − 1

will therefore map the half disk to the upper right quadrant.

On the other hand, we just constructed a conformal map (16.79) that takes the upper
right quadrant Q to the unit disk. Therefore, if compose the two maps (replacing z by w

in (16.79)), we obtain the desired conformal map

ζ =
iw2 + 1

iw2 − 1
=

i

(
z + 1

z − 1

)2

+ 1

i

(
z + 1

z − 1

)2

− 1

=
( i + 1)(z2 + 1) + 2( i − 1)z

( i − 1)(z2 + 1) + 2( i + 1)z
.

The formula can be further simplified by multiplying numerator and denominator by i +1,
and so

ζ = − i
z2 + 2 i z + 1

z2 − 2 i z + 1
. (16.81)

The leading factor − i is unimportant and can be omitted, since it merely rotates the disk
by −90◦.

Finally, we remark that the conformal map guaranteed by the Riemann Mapping
Theorem is not unique. Since the linear fractional transformations (16.68) map the unit
disk to itself, we can compose them with any Riemann mapping to produce additional
maps from a simply-connected domain to the unit disk. For example, composing (16.68)
with (16.77) produces a family of mappings

ζ =
1 + ez − α(1− ez)

α (1 + ez)− 1 + ez
, (16.82)

which, for any |α | < 1, maps the strip S =
{
−

1
2 π < Im z < 1

2 π
}
onto the unit disk.

Annular Domains

The Riemann Mapping Theorem does not apply directly to non-simply connected
domains. For purely topological reasons, a hole cannot be made to disappear under a
one-to-one continuous mapping — much less a conformal map!

The simplest non-simply connected domains is an annulus consisting of the points
between two concentric circles

Ar,R =
{

r < | ζ | < R
}
, (16.83)
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Figure 16.20. An Annulus.

which, for simplicity, is centered at the origin; see Figure 16.20. It can be proved, [Cmap],
that any other domain with a single hole can be mapped to an annulus. The annular radii
r,R are not uniquely specified; indeed the linear map ζ = α z maps the annulus (16.83) to
a rescaled annulus Aρr,ρR whose inner and outer radii have both been scaled by the factor

ρ = |α |. The ratio† r/R of the inner to outer radius of the annulus is uniquely specified;
annuli with different ratios cannot be mapped to each other by a conformal map. Thus,
unlike simply connected domains, there are many “standard” multiply connected domains.

Example 16.36. Consider the domain

Ω =
{
| z | < 1 and | z − c | > c

}

contained between two nonconcentric circles. To keep the computations simple, we take
the outer circle to have radius 1 (which can always be arranged by scaling, anyway) while
the inner circle has center at the point z = c on the real axis and radius c, which means
that it passes through the origin. We must restrict c < 1

2 in order that the inner circle not
overlap with the outer circle. Our goal is to conformally map this non-concentric annular
domain to a concentric annulus of the form

Ar,1 =
{

r < | ζ | < 1
}

by a conformal map ζ = g(z).

Now, according, to Example 16.26, a linear fractional transformation of the form

ζ = g(z) =
z − α

α z − 1
with |α | < 1 (16.84)

maps the unit disk to itself. Moreover, as remarked earlier, and demonstrated in Exercise
, linear fractional transformations always map circles to circles. Therefore, we seek a

† If r = 0 or R =∞, then r/R = 0 by convention.
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Figure 16.21. Conformal Map for Non-concentric Annulus.

particular value of α that maps the inner circle | z − c | = c to a circle of the form | ζ | = r

centered at the origin. We choose α real and try to map the points 0 and 2c on the inner
circle to the points r and −r on the circle | ζ | = r. This requires

g(0) = α = r, g(2c) =
2c− α

2cα− 1
= −r. (16.85)

Substituting the first into the second leads to the quadratic equation

cα2
− α+ c = 0.

There are two real solutions:

α =
1−

√

1− 4c2

2c
and α =

1 +
√

1− 4c2

2c
. (16.86)

Since 0 < c < 1
2 , the second solution has α > 1, and hence is inadmissible. Therefore, the

first solution gives the required conformal map

ζ =
z − 1 +

√

1− 4c2

(1−
√

1− 4c2 ) z − 2c
.

Note in particular that the radius r = α of the inner circle in Ar,1 is not the same as the
radius c of the inner circle in Ω.

For example, taking c = 2
5 , we find α = 1

2 , and hence the linear fractional trans-

formation ζ =
2z − 1

z − 2
maps the annular domain Ω =

{
| z | < 1 and

∣∣ z − 2
5

∣∣ > 2
5

}
to

the concentric annulus A = A.5,1 =
{

1
2 < | ζ | < 1

}
. In Figure 16.21, we plot the non-

concentric circles in Ω that map to concentric circles in the annulus A. In Exercise the
reader is asked to adapt this construction to a general non-concentric annular domain.

Applications to Harmonic Functions and Laplace’s Equation

Let us now apply what we have learned about analytic/conformal maps to the study
of harmonic functions and boundary value problems for the Laplace equation. Suppose
ζ = g(z) defines a one-to-one conformal map from the domain z ∈ Ω onto the domain
ζ ∈ D. In many applications, the target domain D is the unit disk | ζ | < 1, but this is
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not necessary for the time being. According to Lemma 16.20, composing the conformal
map g takes analytic functions F (ζ) defined on D to analytic functions f(z) = F (g(z))
on Ω, and hence defines a change of variables between their harmonic real and imaginary
parts. In fact, this property does not even require the harmonic function to be the real
part of an analytic function, i.e., we are not required to assume the existence of a harmonic
conjugate.

Proposition 16.37. If U(ξ, η) is a harmonic function of ξ, η, and

ξ + i η = p(x, y) + i q(x, y) (16.87)

is any analytic mapping, then the composition

u(x, y) = U(p(x, y), q(x, y)) (16.88)

is a harmonic function of x, y.

Proof : This is a straightforward application of the chain rule:

∂u

∂x
=

∂U

∂ξ

∂ξ

∂x
+

∂U

∂η

∂η

∂x
,

∂u

∂y
=

∂U

∂ξ

∂ξ

∂y
+

∂U

∂η

∂η

∂y
,

∂2u

∂x2
=

∂2U

∂ξ2

(
∂ξ

∂x

)2

+ 2
∂2U

∂ξ ∂η

∂ξ

∂x

∂η

∂x
+

∂2U

∂η2

(
∂η

∂x

)2

+
∂U

∂ξ

∂2ξ

∂x2
+

∂U

∂η

∂2η

∂x2
,

∂2u

∂y2
=

∂2U

∂ξ2

(
∂ξ

∂y

)2

+ 2
∂2U

∂ξ ∂η

∂ξ

∂y

∂η

∂y
+

∂2U

∂η2

(
∂η

∂y

)2

+
∂U

∂ξ

∂2ξ

∂y2
+

∂U

∂η

∂2η

∂y2
.

Using the Cauchy–Riemann equations

∂ξ

∂x
= −

∂η

∂y
,

∂ξ

∂y
=

∂η

∂x
,

for the analytic function ζ = ξ + i η, we find, after some algebra,

∂2u

∂x2
+

∂2u

∂y2
=

[(
∂ξ

∂x

)2

+

(
∂η

∂x

)2
] [

∂2U

∂ξ2
+

∂2U

∂η2

]
.

Therefore,

∆u = | g′(z) |2 ∆U where | g′(z) |2 =

(
∂ξ

∂x

)2

+

(
∂η

∂x

)2

.

We conclude that whenever U(ξ, η) is any harmonic function, and so a solution to the
Laplace equation ∆U = 0 (in the ξ, η variables), then u(x, y) is a solution to the Laplace
equation ∆u = 0 in the x, y variables, and is thus also harmonic. Q.E.D.

This observation has profound consequences for boundary value problems arising in
physical applications. Suppose we wish to solve the Dirichlet problem

∆u = 0 in Ω, u = h on ∂Ω,
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on a simply connected domain Ω ( C. (The Riemann Mapping Theorem 16.33 tells us
to exclude the case Ω = C. Indeed, this case is devoid of boundary conditions, and
so the problem does not admit a unique solution.) If we can find a complex function
ζ = g(z) = p(x, y)+ i q(x, y) that defines a one-to-one conformal mapping from the domain
Ω to the unit disk D, then we can use the change of variables formula (16.88) to map the
harmonic function u(x, y) on Ω to a harmonic function U(ξ, η) on D. Moreover, the
boundary values of U = H on the unit circle ∂D correspond to those of u = h on ∂Ω by
the same change of variables formula:

h(x, y) = H(p(x, y), q(x, y)), for (x, y) ∈ ∂Ω. (16.89)

We conclude that U(ξ, η) solves the Dirichlet problem

∆U = 0 in D, U = H on ∂D.

But we already know how to solve the Dirichlet problem on the unit disk! Namely, the
Poisson integral formula (15.44) gives U(ξ, η). The corresponding solution to our original
boundary value problem is given by the composition formula u(x, y) = U

(
p(x, y), q(x, y)

)
.

Thus, the solution to the Dirichlet problem on a unit disk can be used to solve the Dirichlet
problem on a more complicated planar domain — provided we know the conformal map
whose existence is guaranteed by the Riemann Mapping Theorem 16.33.

Example 16.38. According to Example 16.25, the analytic function

ξ + i η = ζ =
z − 1

z + 1
=

x2 + y2
− 1

(x+ 1)2 + y2
+ i

2y

(x+ 1)2 + y2
(16.90)

maps the right half plane R =
{

x = Re z > 0
}
to the unit disk D =

{
| ζ | < 1

}
. Propo-

sition 16.37 implies that if U(ξ, η) is a harmonic function in the unit disk, then

u(x, y) = U

(
x2 + y2

− 1

(x+ 1)2 + y2
,

2y

(x+ 1)2 + y2

)
(16.91)

is a harmonic function on the right half plane.

To solve the Dirichlet boundary value problem

∆u = 0, x > 0, u(0, y) = h(y), (16.92)

on the right half plane, we adopt the change of variables (16.90) and use the Poisson
integral formula to construct the solution to the transformed Dirichlet problem

∆U = 0, ξ2 + η2 < 1, U(cosϕ, sinϕ) = H(ϕ), (16.93)

on the unit disk. The boundary conditions are found as follows. Using the explicit form

x+ i y = z =
1 + ζ

1− ζ
=
(1 + ζ)(1− ζ)

| 1− ζ |2
=
1 + ζ − ζ − | ζ |2

| 1− ζ |2
=
1− ξ2

− η2 + 2 i η

(ξ − 1)2 + η2
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for the inverse map, we see that the boundary point the boundary point ζ = ξ+ i η = e iϕ

on the unit circle ∂D will correspond to the boundary point

i y =
2 η

(ξ − 1)2 + η2
=

2 i sinϕ

(cosϕ− 1)2 + sin2 ϕ
=

i

1− cotϕ
= i cot

ϕ

2
(16.94)

on the imaginary axis ∂R =
{
Re z = 0

}
. Thus, the boundary data h(y) on ∂R corresponds

to the boundary data
H(ϕ) = h

(
cot 1

2 ϕ
)

on the unit circle. The Poisson integral formula (15.44) can then be applied to solve the
problem (16.93), from which we reconstruct the solution (16.91) to the boundary value
problem (16.91) on the half plane.

For example, to solve the problem with the step function

u(0, y) = h(y) ≡

{
1, y > 0,

0, y < 0,

as boundary data, the corresponding boundary data on the unit disk is a (periodic) step
function

H(ϕ) =

{
1, 0 < ϕ < π,

0, π < ϕ < 2π,

with values +1 on the upper semicircle, −1 on the lower semicircle, and jump disconti-
nuities at ζ = ±1. According to the Poisson formula (15.44), the solution to the latter
boundary value problem is given by

U(ξ, η) =
1

2π

∫ π

0

1− ρ2

1 + ρ2 − 2ρ cos(ϕ− φ)
dφ

=
1

π

[
tan−1

(
1 + ρ

1− ρ
cot

ϕ

2

)
+ tan−1

(
1 + ρ

1− ρ
tan

ϕ

2

)] where
ξ = ρ cosϕ,

η = ρ sinϕ.

Finally, we use (16.91) to construct the solution on the upper half plane. We shall spare
the reader the messy details of the final formula. The result is depicted in Figure zpm1h .

Remark : The solution to the preceding Dirichlet boundary value problem is not, in
fact, unique, owing to the unboundedness of the domain. The solution that we pick out by
using the conformal map to the unit disk is the one that remains bounded at∞. There are
other solutions, but they are unbounded as | z | → ∞ and would correspond to solutions
on the unit disk that have some form of delta function singularity in their boundary data
at the point −1; see Exercise .

Example 16.39. A non-coaxial cable. The goal of this example is to determine
the electrostatic potential inside a non-coaxial cylindrical cable with prescribed constant
potential values on the two bounding cylinders; see Figure c2 . Assume for definiteness
that the larger cylinder has radius 1, and centered at the origin, while the smaller cylinder
has radius 2

5 , and is centered at z = 2
5 . The resulting electrostatic potential will be

independent of the longitudinal coordinate, and so can be viewed as a planar potential in
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the annular domain contained between two circles representing the cross-sections of our
cylinders. The desired potential must satisfy the Dirichlet boundary value problem

∆u = 0, | z | < 1 and
∣∣ z − 2

5

∣∣ > 2
5 ,

u = a, | z | = 1, u = b,
∣∣ z − 2

5

∣∣ = 2
5 .

According to Example 16.36, the linear fractional transformation ζ =
2z − 1

z − 2
will map

this non-concentric annular domain to the annulus A.5,1 =
{

1
2 < | ζ | < 1

}
, which is the

cross-section of a coaxial cable. The corresponding transformed potential U(ξ, η) has the
given Dirichlet boundary conditions U = a on | ζ | = 1

2 and U = b on | ζ | = 1. Clearly the
coaxial potential U must be a radially symmetric solution to the Laplace equation, and
hence, according to (15.59), of the form

U(ξ, η) = α log | ζ |+ β,

for constants α, β. A short computation shows that the particular potential function

U(ξ, η) =
b− a

log 2
log | ζ |+ b =

b− a

2 log 2
log(ξ2 + η2) + b

satisfies the prescribed boundary conditions. Therefore, the desired non-coaxial electro-
static potential

u(x, y) =
b− a

log 2
log

∣∣∣∣
2z − 1

z − 2

∣∣∣∣+ b =
b− a

2 log 2
log

(
(2x− 1)2 + y2

(x− 2)2 + y2

)
+ b. (16.95)

is given by composition with the given linear fractional transformation. The particular
case a = 0, b = 1 is plotted in Figure coax .

Remark : The same harmonic function solves the problem of determining the equi-
librium temperature in an annular plate whose inner boundary is kept at a temperature
u = a while the outer boundary is kept at temperature u = b. One could also interpret this
solution as the equilibrium temperature of a three-dimensional domain contained between
two non-coaxial cylinders held at fixed temperatures. The latter temperature will only
depend upon the transverse x, y coordinates and not upon the longitudinal coordinate.

Remark : A conformal map will also preserve Neumann boundary conditions, speci-
fying the normal derivative ∂u/∂n = h on the boundary. Indeed, since a conformal map
preserves angles, it maps the normal to ∂Ω to the normal to ∂D at the image point.
Therefore, the transformed harmonic function U(ξ, η) will satisfy the Neumann conditions
∂U/∂n = H, where H is related to h via the same equation (16.89).

Applications to Fluid Flow

Conformal mappings are particularly useful in the analysis of planar ideal fluid flow.
Recall that if χ(z) = ϕ(x, y)+ iψ(x, y) is an analytic function that represents the complex
potential function for a steady state fluid flow, then we can interpret its real part ϕ(x, y) as
the velocity potential, while the imaginary part ψ(x, y) is the harmonic conjugate stream
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function. The level curves of ϕ are the equipotential lines, and these are orthogonal to the
level curves of ψ, which are the streamlines followed by the individual fluid particles —
except at stagnation points where χ′(z) = 0.

Applying a conformal map ζ = g(z) leads to a transformed complex potential Θ(ζ) =
Φ(ξ, η) + iΨ(ξ, η), where Φ(ξ, η) is the potential function and Ψ(ξ, η) the stream function
on the new domain. A key fact is that the conformal map will take isopotential lines of ϕ

to isopotential lines of Φ and streamlines of ψ to streamlines of Ψ. Conformality implies
that the orthogonality relations among isopotentials and streamlines away from stagnation
points is maintained.

Let us concentrate on the case of flow past a solid object. In three dimensions, the
object is assumed to have a uniform shape in the axial direction, and so we can restrict
our attention to a planar fluid flow around a closed, bounded planar subset D ⊂ R2

'

C representing the cross-section of our cylindrical object. The (complex) velocity and
potential are defined on the complementary domain Ω = C \D occupied by the fluid. The
ideal flow assumptions of incompressibility and irrotationality are reasonably accurate if
the flow is laminar, i.e., far away from turbulent. Then the velocity potential ϕ(x, y) will
satisfy the Laplace equation ∆ϕ = 0 in the exterior domain Ω. For a solid object, we
should impose the homogeneous Neumann boundary conditions

∂ϕ

∂n
= 0 on the boundary ∂Ω = ∂D, (16.96)

indicating that there no fluid flux into the object. We note that, according to Exercise ,
a conformal map will automatically preserve the Neumann boundary conditions.

In addition, since the flow is taking place on an unbounded domain, we need to
specify the fluid motion at large distances. We shall assume our object is placed in a
uniform horizontal flow, as in Figure hflow . Thus, at large distance, the flow will not be
affected by the object, and so the velocity should approximate the uniform velocity field
v = ( 1, 0 )

T
, where, for simplicity, we choose our physical units so that the asymptotic

speed of the fluid is equal to 1. Equivalently, the velocity potential should satisfy

ϕ(x, y) ≈ x, when x2 + y2
À 0.

Remark : An alternative physical interpretation is that the fluid is at rest, while the
object moves through the fluid at unit speed 1 in a horizontal direction. For example, think
of an airplane flying through the air at constant speed. If we adopt a moving coordinate
system by sitting inside the plane, then the effect is as if the object is sitting still while
the air is moving towards us at unit speed.

Example 16.40. The simplest example is a flat plate moving through the fluid
in a horizontal direction. The plate’s cross-section is a horizontal line segment, and, for
simplicity, we take it to be the segment D = [−1, 1] lying on the real axis. If the plate is
very thin, it will have absolutely no effect on the horizontal flow of the fluid, and, indeed,
the velocity potential is given by

ϕ(x, y) = x, x+ i y ∈ Ω = C \ [−1, 1].
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Note that ∇ϕ = ( 1, 0 )
T
, and hence this flow satisfies the Neumann boundary conditions

(16.96) on the horizontal segment D = ∂Ω. The corresponding complex potential is χ(z) =
z, with complex velocity f(z) = χ′(z) = 1.

Example 16.41. Recall that the Joukowski conformal map defined by the analytic
function

ζ = g(z) =
1

2

(
z +

1

z

)
(16.97)

squashes the unit circle | z | = 1 down to the real line segment [−1, 1] in the ζ plane.
Therefore, it will map the fluid flow outside the unit disk (the cross-section of a circular
cylinder) to the fluid flow past the line segment, which, according to the previous example,
has complex potential Θ(ζ) = ζ. As a result, the complex potential for the flow past a
disk is the same as the Joukowski function

χ(z) = Θ ◦g(z) = g(z) =
1

2

(
z +

1

z

)
. (16.98)

Except for a factor of 1
2 , this agrees with the flow potential we derived in Example 16.18.

The difference is that, at large distances, the current potential

χ(z) ≈ 1
2 z for | z | À 1.

corresponds to uniform horizontal flow whose velocity
(

1
2 , 0

)T
is half as fast. The discrep-

ancy between the two flows can easily be rectified by multiplying (16.98) by 2, whose only
effect is to speed up the flow.

Example 16.42. Let us next consider the case of a tilted plate in a uniformly
horizontal fluid flow. Thus, the cross-section is the line segment

z(t) = t e i θ, −1 ≤ t ≤ 1,

obtained by rotating the horizontal line segment [−1, 1] through an angle θ, as in Fig-
ure tilt . The goal is to construct a fluid flow past the tilted segment that is asymptotically
horizontal at large distance.

The critical observation is that, while the effect of rotating a plate in a fluid flow is
not so evident, we can easily rotate the disk in the flow — since it is circularly symmetric,
rotations don’t affect it. Thus, the rotation w = e− i θ z maps the Joukowski potential
(16.98) to the complex potential

Υ(w) = χ(e i θw) =
1

2

(
e i θw +

e− i θ

w

)
.

The streamlines of the induced flow are no longer asymptotically horizontal, but rather at
an angle −θ. If we now apply the original Joukowski map (16.97) to the rotated flow, the
circle is again squashed down to the horizontal line segment, but the flow lines continue
to be at angle −θ at large distances. Thus, if we then rotate the resulting flow through
an angle θ, the net effect will be to tilt the segment to the desired angle θ while rotating
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the streamlines to be asymptotically horizontal. Putting the pieces together, we have the
final complex potential in the form

χ(z) = e i θ
(

z cos θ − i sin θ
√

z2 − e−2 i θ
)

. (16.99)

Sample streamlines for the flow at several attack angles are plotted in Figure tilt .

Example 16.43. As we discovered in Example 16.31, applying the Joukowski map
to off-center disks will, in favorable configurations, produce airfoil-shaped objects. The
fluid motion around such airfoils can thus be obtained by applying the Joukowski map to
the flow past such an off-center circle.

First, an affine map w = α z + β will have the effect of moving the original unit
disk | z | ≤ 1 to the disk |w − β | ≤ |α | with center β and radius |α |. In particular, the
boundary circle will continue to pass through the point w = 1 provided |α | = | 1− β |.
Moreover, as noted in Example 16.21, the angular component of α has the effect of a
rotation, and so the streamlines around the new disk will, asymptotically, be at an angle
ϕ = ph α with the horizontal. We then apply the Joukowski transformation

ζ =
1

2

(
w +

1

w

)
=
1

2

(
α z + β +

1

α z + β

)
(16.100)

to map the disk to the airfoil shape. The resulting complex potential for the flow past the
airfoil is obtained by substituting the inverse map

z =
w − β

α
=

ζ − β +
√

ζ2 − 1

α
,

into the original potential (16.98), whereby

Θ(ζ) =
1

2

(
ζ − β +

√
ζ2 − 1

α
+

α(ζ − β −
√

ζ2 − 1 )

β2 + 1− 2β ζ

)
.

Since the streamlines have been rotated through an angle ϕ = ph α, we then rotate the
final result back by multiplying by e iϕ in order to see the effect of the airfoil tiled at an
angle −ϕ in a horizontal flow. Sample streamlines are graphed in Figure airfoilnolift .

We can interpret all these examples as planar cross-sections of three-dimensional fluid
flows past an airplane wing oriented in the longitudinal z direction. The wing is assumed to
have a uniform cross-section shape, and the flow not dependent upon the axial z coordinate.
For wings that are sufficiently long and reasonable (laminar) flows, this model will be valid
away from the wing tips. More complicated airfoils with varying cross-section and faster
flows require a fully three-dimensional fluid model. For such problems, complex analysis
is no longer applicable, and, for the most part, one must rely on numerical integration
techniques. Only in recent years have computers become sufficiently powerful to compute
realistic three-dimensional fluid motions — and then only in reasonable “mild” scenarios†.

† The definition of mild relies on the magnitude of the Reynolds number, [15].
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The two-dimensional versions that have been analyzed here still provide important clues
to the behavior of a three-dimensional flow, as well as useful approximations and starting
points for the three-dimensional airplane wing design problem.

Unfortunately, there is a major flaw with the airfoils that we have just designed.
Potential flows do not produce any lift, and hence the theory indicates that the airplane
will not fly. In order to understand how lift enters into the picture, we need to study
complex integration, and so we will return to this example later. In Example 16.57,
we shall construct an alternative flow past an airfoil that continues to have the correct
asymptotic behavior at large distances, while inducing a nonzero lift. The latter holds the
secret to flight.

Poisson’s Equation and the Green’s Function

Although designed for solving the homogeneous Laplace equation, the method of con-
formal mapping can also be used to solve its inhomogeneous counterpart — the Poisson
equation. As we learned in Chapter 15, to solve an inhomogeneous boundary value prob-
lem −∆u = f on a domain Ω it suffices to solve the particular versions −∆u = δζ whose
right hand side is a unit impulse concentrated at a point ζ = ξ + i η ∈ Ω. The resulting
solution u(x, y) = Gζ(x, y) = G(x, y; ξ, η) is the Green’s function for the given boundary
value problem. The solution to the boundary value problem associated with a more general
external forcing f(x, y) is then given by a superposition principle

u(x, y) =

∫ ∫

Ω

G(x, y; ξ, η) f(ξ, η) dξ dη. (16.101)

For the planar Poisson equation, the starting point is the logarithmic potential func-
tion

u(x, y) =
1

2π
log | z | = Re

1

2π
log z, (16.102)

which is the solution to the Dirichlet problem

−∆u = δ0(x, y), (x, y) ∈ D, u = 0 on ∂D,

on the unit disk D for an impulse concentrated at the origin; see Section 15.3 for details.
How do we obtain the corresponding solution when the unit impulse is concentrated at
another point ζ = ξ + i η ∈ D instead of the origin? According to Example 16.26, the
linear fractional transformation

w = g(z) =
z − ζ

ζ z − 1
, where | ζ | < 1, (16.103)

maps the unit disk to itself, moving the point z = ζ to the origin w = g(ζ) = 0. The

logarithmic potential U =
1

2π
log |w | will thus be mapped to the Green’s function

G(x, y; ξ, η) =
1

2π
log

∣∣∣∣
z − ζ

ζ z − 1

∣∣∣∣ (16.104)
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at the point ζ = ξ + i η. Indeed, by the properties of conformal mapping, since U is
harmonic except at the singularity w = 0, the function (16.104) will also be harmonic
except at the image point z = ζ. The fact that the mapping does not affect the delta
function singularity is not hard to check; see Exercise . Moreover, since the conformal
map does not alter the boundary | z | = 1, the function (16.104) continues to satisfy the
homogeneous Dirichlet boundary conditions.

Formula (16.104) reproduces the Poisson formula (15.70) for the Green’s function
that we derived previously using the method of images. This identification can be verified
by substituting z = r e i θ, ζ = ρ e iϕ, or, more simply, by noting that the numerator in
the logarithmic fraction gives the potential due to a unit impulse at z = ζ, while the
denominator represents the image potential at z = 1/ ζ required to cancel out the effect of
the interior potential on the boundary of the unit disk.

Now that we know the Green’s function on the unit disk, we can use the methods of
conformal mapping to produce the Green’s function for any other simply connected domain
Ω ( C. Let w = g(z) denote the conformal map that takes the domain z ∈ Ω to the unit
disk w ∈ D, guaranteed by the Riemann Mapping Theorem 16.33. The Green’s function
associated with homogeneous Dirichlet boundary conditions on Ω is explicitly given by

G(z; ζ) =
1

2π
log

∣∣∣∣∣
g(z)− g(ζ)

g(ζ) g(z)− 1

∣∣∣∣∣ . (16.105)

Example 16.44. For example, according to Example 16.25, the analytic function

w =
z − 1

z + 1

maps the right half plane x = Re z > 0 to the unit disk | ζ | < 1. Therefore, by (16.105),
the Green’s function for the right half plane has the form

G(z; ζ) =
1

2π
log

∣∣∣∣∣∣∣∣∣

z − 1

z + 1
−

ζ − 1

ζ + 1

z − 1

z + 1

ζ − 1

ζ + 1
− 1

∣∣∣∣∣∣∣∣∣
=
1

2π
log

∣∣∣∣
(ζ + 1)(z − ζ)

(z + 1)(z − ζ)

∣∣∣∣ . (16.106)

One can then write the solution to the Poisson equation in a superposition as in (16.101).

16.5. Complex Integration.

All of the magic and power of calculus ultimately rests on the amazing fact that differ-
entiation and integration are mutually inverse operations. And, just as complex functions
have many remarkable differentiability properties not enjoyed by their real siblings, so
complex integration theory has a extra beauty and structure beyond its more mundane
real counterpart. In the remaining two sections of this chapter, we shall develop the basics
of complex integration theory and discuss some of its important applications.

First, let us motivate the definition of a complex integral. As you know, the integral

of a real function,

∫ b

a

f(t) dt, is usually taken along a real interval [a, b ] ⊂ R. In complex
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function theory, integrals are taken along curves in the complex plane, and are thus inti-
mately related to the line integrals appearing in real vector calculus. The identification of
a complex number z = x+ i y with a planar vector x = (x, y )

T
will immediately connect

the two concepts.

Consider a curve C in the complex plane, parametrized, as in (16.70), by z(t) =
x(t)+ i y(t) for a ≤ t ≤ b. We define the complex integral of a complex function f(z) along
the curve C to be ∫

C

f(z) dz =

∫ b

a

f(z(t))
dz

dt
dt. (16.107)

We shall always assume that the integrand f(z) is a well-defined complex function at each
point on the curve. The result of complex integration of a function along a curve is a
complex number. Let us write out the integrand

f(z) = u(x, y) + i v(x, y)

in terms of its real and imaginary parts. Also, note that

dz =
dz

dt
dt =

(
dx

dt
+ i

dy

dt

)
dt = dx+ i dy.

In this manner, we discover that the complex integral (16.107) splits up into two real line
integrals

∫

C

f(z) dz =

∫

C

(u+ i v)(dx+ i dy) =

∫

C

(u dx− v dy) + i

∫

C

(v dx+ u dy). (16.108)

Example 16.45. Let us compute complex integrals

∫

C

zn dz, (16.109)

of the monomial function f(z) = zn, where n is an integer, along several different curves.
We begin with the case when the integration curve C is the straight line segment along the
real axis connecting the points −1 to 1, which we parametrize by z(t) = t for −1 ≤ t ≤ 1.
The defining formula (16.107) implies that the complex integral (16.109) reduces to a real
integral:

∫

C

zn dz =

∫ 1

−1

tn dt =





0, n = 2k ≥ 0 is even ,

2

n+ 1
, n = 2k + 1 > 0 is odd.

If n ≤ −1 is negative, then the singularity of the integrand at at the origin prevents the
integral from converging, and so the complex integral is not defined.

Let us evaluate the same complex integral, but now along a parabolic arc P parame-
trized by

z(t) = t+ i (t2 − 1), −1 ≤ t ≤ 1.
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1-1

Figure 16.22. Curves for Complex Integration.

Note that, as graphed in Figure 16.22, the parabola connects the same two points. We
again refer back to the basic definition (16.107) to evaluate the integral, so

∫

P

zn dz =

∫ 1

−1

[
t+ i (t2 − 1)

]n
(1 + 2 i t) dt.

We could, at this point, expand the resulting complex polynomial integrand, and then
integrate term by term. A more elegant approach is to recognize that the integrand is an
exact derivative; namely, by the chain rule

d

dt

[
t+ i (t2 − 1)

]n+1

n+ 1
=
[
t+ i (t2 − 1)

]n
(1 + 2 i t),

as long as n 6= −1. Therefore, we can use the Fundamental Theorem of Calculus (which
works equally well for real integrals of complex-valued functions), to evaluate

∫

P

zn dz =

[
t+ i (t2 − 1)

]n+1

n+ 1

∣∣∣∣∣

1

t=−1

=





0, n = 2k even,
2

n+ 1
, −16= n = 2k + 1 odd.

Thus, when n ≥ 0 is a positive integer, we obtain the same result as before. Interestingly,
in this case the complex integral is well-defined even when n is a negative integer because,
unlike the real line segment, the parabolic path does not go through the singularity of zn

at z = 0. The case n = −1 needs to be done slightly differently. The integration of 1/z
along the parabolic path is left as an exercise for the reader — one that requires some
care. We recommend trying the exercise now, and then verifying your answer once we
have become a little more familiar with basic complex integration techniques.

Finally, let us try integrating around a semi-circular arc, again with the same endpoints
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−1 and 1. If we parametrize the semi-circle S+ by z(t) = e i t, 0 ≤ t ≤ π, we find

∫

S+

zn dz =

∫ π

0

zn
dz

dt
dt =

∫ π

0

e int i e i t dt =

∫ π

0

i e i (n+1)t dt

=
e i (n+1)t

n+ 1

∣∣∣∣
π

t=0

=
1− e i (n+1)π

n+ 1
=





0, n = 2k even,

−
2

n+ 1
, −16= n = 2k + 1 odd.

This value is the negative of the previous cases — but this can be explained by the fact
that the circular arc is oriented to go from 1 to −1 whereas the line segment and parabola
both go from −1 to 1. Just as with line integrals, the direction of the curve determines the
sign of the complex integral; if we reverse direction, replacing t by − t, we end up with the
same value as the preceding two complex integrals. Moreover — again provided n 6= −1
— it does not matter whether we use the upper semicircle or lower semicircle to go from
−1 to 1 — the result is exactly the same. However, this remark does not apply to the case
n = −1. Integrating along the upper semicircle S+ from 1 to −1 yields

∫

S+

dz

z
=

∫ π

0

i dt = π i , (16.110)

whereas integrating along the lower semicircle S− from 1 to −1 yields the negative

∫

S−

dz

z
=

∫ −π

0

i dt = −π i . (16.111)

Hence, when integrating the function 1/z, it makes a difference which direction we go
around the origin.

Integrating zn for any integer n 6= −1 around an entire circle gives zero — irrespective
of the radius. This can be seen as follows. We parametrize a circle of radius r by z(t) = re i t

for 0 ≤ t ≤ 2π. Then, by the same computation,

∮

C

zn dz =

∫ 2π

0

(rne int)(r i e i t) dt =

∫ 2π

0

i rn+1e i (n+1)t dt =
rn+1

n+ 1
e i (n+1)t

∣∣∣∣
2π

t=0

= 0,

(16.112)
provided n 6= −1. Here, as in Appendix A, the circle on the integral sign serves to remind
us that we are integrating around a closed curve. The case n = −1 remains special.
Integrating once around the circle in the counter-clockwise direction yields a nonzero result

∮

C

dz

z
=

∫ 2π

0

i dt = 2π i . (16.113)

Let us note that a complex integral does not depend on the particular parametrization
of the curve C. It does, however, depend upon the orientation of the curve: if we traverse
the curve in the reverse direction, then the complex integral changes its sign. Moreover,
if we chop up the curve into two non-overlapping pieces, C = C1 ∪ C2 with a common
orientation, then, just as with a line integral (A.39), line integrals can be decomposed into
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a sum over the pieces:
∫

−C

f(z) dz = −

∫

C

f(z) dz, f(z) =

∫

C1

f(z) dz +

∫

C2

f(z) dz, C = C1 ∪ C2.

(16.114)
For instance, the integral (16.113) of 1/z around the circle is the difference of the individual
semicircular integrals (16.110), (16.111); the lower semicircular integral acquires a negative
sign to switch its orientation to agree with that of the entire circle.

Note: In complex integration theory, a simple closed curve is often referred to as a
contour , and so complex integration is sometimes referred to as contour integration. Unless
explicitly stated, we always go around contours in the counter-clockwise direction.

Further experiments of this type lead us to suspect that complex integrals are usually
path-independent, and hence evaluate to zero around closed contours. One must be careful,
though, as the integral (16.113) makes clear. Path independence, in fact, follows from the
complex version of the Fundamental Theorem of Calculus.

Theorem 16.46. Let f(z) = F ′(z) be the derivative of a single-valued complex
function on a domain Ω ⊂ C. Let C ⊂ Ω be any curve with initial point α and final point

β. Then ∫

C

f(z) dz =

∫

C

F ′(z) dz = F (β)− F (α). (16.115)

Proof : This follows immediately from the definition (16.107) and the chain rule:

∫

C

F ′(z) dz =

∫ b

a

F ′(z(t))
dz

dt
dt =

∫ b

a

d

dt
F (z(t)) dt = F (z(b))− F (z(a)) = F (β)− F (α),

where α = z(a) and β = z(b) are the endpoints of the curve. Q.E.D.

For example, when n 6= −1, the function f(z) = zn is the derivative of the single-

valued function F (z) =
1

n+ 1
zn+1. Hence

∫

C

zn dz =
βn+1

n+ 1
−

αn+1

n+ 1

whenever C is a curve connecting α to β. When n < 0, the curve is not allowed to pass
through the origin z = 0, which is a singularity for zn. Our earlier computations are special
cases of this result.

In contrast, the function f(z) = 1/z is the derivative of

log z = log | z |+ i ph z,

but the complex logarithm is no longer single-valued on all of C\{0}, and so Theorem 16.46
cannot be applied directly. However, if our curve is contained within a simply connected
subdomain that does not include the origin, 06∈Ω ⊂ C, then we can use any single-valued
branch of the logarithm to evaluate the integral

∫

C

dz

z
= log β − logα,
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where α, β are the endpoints of the curve. Since the common multiples of 2π i cancel, the
answer does not depend upon which particular branch of the logarithm is chosen, but we
do need to be consistent in our choice. For example, on the upper semicircle S+ of radius
1 going from 1 to −1, ∫

S+

dz

z
= log(−1)− log 1 = π i ,

where we use the branch of log z = log | z |+ i ph z with 0 ≤ ph z ≤ π. On the other hand,
if we integrate on the lower semi-circle S− going from 1 to −1, we need to adopt a different
branch, say that with −π ≤ ph z ≤ 0. With this choice, the integral becomes

∫

S−

dz

z
= log(−1)− log 1 = −π i ,

thus reproducing (16.110), (16.111). Pay particular attention to the different values of
log(−1) in the two cases!

The most important consequence of Theorem 16.46 is that, as long as the integrand
f(z) has a single-valued anti-derivative, its complex integral is independent of the path
connecting two points — the value only depends on the endpoints of the curve and not
how one gets from point α to point β.

Theorem 16.47. If f(z) = F ′(z) for z ∈ Ω and C ⊂ Ω is any closed curve, then
∮

C

f(z) dz = 0. (16.116)

Conversely, if (16.116) holds for all closed curves C ⊂ Ω contained in the domain of
definition of f(z), then f admits a single-valued complex anti-derivative with F ′(z) = f(z).

Proof : We have already demonstrated the first statement. As for the second, we
define

F (z) =

∫ z

z0

f(z) dz,

where z0 ∈ Ω is any fixed point, and we choose any convenient curve C ⊂ Ω connecting†

z0 to z. (16.116) assures us that the value does not depend on the chosen path. The proof
that this formula does define an anti-derivative of f is left as an exercise, which can be
solved in the same fashion as the case of a real line integral, cf. (22.26). Q.E.D.

The preceding considerations suggest the following fundamental theorem, due in its
general form to Cauchy. Before stating it, we introduce the convention that a complex
function f(z) will be called analytic on a domain Ω ⊂ C provided it is analytic at every
point inside Ω and, in addition, is continuous up to and including its boundary ∂Ω. When
Ω is bounded, its boundary ∂Ω consists of one or more simple closed curves. In general,
we orient ∂Ω so that the domain is always on our left hand side. This means that the
outermost boundary curve is traversed in the counter-clockwise direction, but any interior
holes are take on a clockwise orientation. Our convention is depicted in Figure bdy .

† This assumes Ω is a connected domain; otherwise, apply the result to its individual connected
components.
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Theorem 16.48. If f(z) is analytic on a bounded domain Ω ⊂ C, then
∮

∂Ω

f(z) dz = 0. (16.117)

Proof : If we apply Green’s Theorem A.25 to the two real line integrals in (16.108),
we find ∮

∂Ω

u dx− v dy =

∫ ∫

Ω

(
−

∂v

∂x
−

∂u

∂y

)
= 0,

∮

∂Ω

v dx+ u dy =

∫ ∫

Ω

(
∂u

∂x
−

∂v

∂y

)
= 0,

both of which vanish by virtue of the Cauchy–Riemann equations (16.22). Q.E.D.

If the domain of definition of our complex function f(z) is simply connected, then, by
definition, the interior of any closed curve C ⊂ Ω is contained in Ω, and hence Cauchy’s
Theorem 16.48 implies the path independence of the complex integral within Ω.

Corollary 16.49. If f(z) is analytic on a simply connected domain Ω ⊂ C, then its

complex integral

∫

C

f(z) dz for C ⊂ Ω is independent of path. In particular,

∮

C

f(z) dz = 0 (16.118)

for any closed curve C ⊂ Ω.

Remark : This result also admits a converse: a continuous function f(z) that satisfies
(16.118) for all closed curves is necessarily analytic. See [4] for a proof.

We will also require a slight generalization of this result.

Lemma 16.50. If f(z) is analytic in a domain that contains two simple closed curves
S and C, and the entire region lying between them, then, assuming they are oriented in

the same direction, ∮

C

f(z) dz =

∮

S

f(z) dz. (16.119)

Proof : If C and S do not cross each other, we let Ω denote the domain contained be-
tween them, so that ∂Ω = C ∪ S; see Figure oints . According to Cauchy’s Theorem 16.48,∮

∂Ω

f(z) = 0. Now, our orientation convention for ∂Ω means that the outer curve, say

C, is traversed in the counter-clockwise direction, while the inner curve S has the oppo-
site, clockwise orientation. Therefore, if we assign both curves the same counter-clockwise
orientation,

0 =

∮

∂Ω

f(z) =

∮

C

f(z) dz −

∮

S

f(z) dz,

proving (16.119).
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If the two curves cross, we can construct a nearby curve K ⊂ Ω that neither crosses,
as in Figure c2 . By the preceding paragraph, each integral is equal to to that over the
third curve, ∮

C

f(z) dz =

∮

K

f(z) dz =

∮

S

f(z) dz,

and formula (16.119) remains valid. Q.E.D.

Example 16.51. Consider the function f(z) = zn where n is an integer†. In
(16.112), we already computed

∮

C

zn dz =

{
0, n 6= −1,

2π i , n = −1,
(16.120)

when C is a circle centered at z = 0. When n ≥ 0, Theorem 16.46 implies that the integral
of zn is 0 over any closed curve in the plane. The same applies in the cases n ≤ −2
provided the curve does not pass through the singular point z = 0. In particular, the
integral is zero around closed curves encircling the origin, even though zn for n ≤ −2 has
a singularity inside the curve and so Cauchy’s Theorem 16.48 does not apply as stated.

The case n = −1 has particular significance. Here, Lemma 16.50 implies that the
integral is the same as the integral around a circle — provided the curve C also goes once
around the origin in a counter-clockwise direction. Thus (16.113) holds for any closed
curve that goes counter-clockwise once around the origin. More generally, if the curve goes
several times around the origin‡, then

∮

C

dz

z
= 2kπ i (16.121)

is an integer multiple of 2π i . The integer k is called the winding number of the curve C,
and measures the total number of times C goes around the origin. For instance, if C winds
three times around 0 in a counter-clockwise fashion, then k = 3, while k = −5 indicates
that the curve winds 5 times around 0 in a clockwise direction, as in Figure wind . In
particular, a winding number k = 0 indicates that C is not wrapped around the origin.
For example, if C is viewed as a loop of string wrapped around a pole (the pole of 1/z at
0) then a winding number k = 0 would indicate that the string can be disentangled from
the pole without cutting; nonzero winding numbers would indicate that the string is truly
entangled§.

† When n is fractional or irrational, the integrals are not well-defined owing to the branch
point singularity at the origin.

‡ Such a curve is definitely not simple and must necessarily cross over itself.

§ Actually, there are more subtle three-dimensional considerations that come into play, and
even strings with zero winding number cannot be removed from the pole without cutting if they
are linked in some nontrivial manner, cf. [92].
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Lemma 16.52. If C is any simple closed curve, and a is any point not lying on C,

then ∮

C

dz

z − a
=

{
2π i , a inside C

0 a outside C.
(16.122)

If a ∈ C, then the integral does not converge.

Proof : Note that the integrand f(z) = 1/(z − a) is analytic everywhere except at
z = a, where it has a simple pole. If a is outside C, then Cauchy’s Theorem 16.48 applies,
and the integral is zero. On the other hand, if a is inside C, then Lemma 16.50 implies that
the integral is equal to the integral around a circle centered at z = a. The latter integral
can be computed directly by using the parametrization z(t) = a+ r e i t for 0 ≤ t ≤ 2π, as
in (16.113). Q.E.D.

Example 16.53. Let D ⊂ C be a closed and connected domain. Let a, b ∈ D be
two points in D. Then

∮

C

(
1

z − a
−

1

z − b

)
dz =

∮

C

dz

z − a
−

∮

C

dz

z − b
= 0

for any closed curve C ⊂ Ω = C \ D lying outside the domain D. This is because, by
connectivity of D, either C contains both points in its interior, in which case both integrals
equal 2π i , or C contains neither point, in which case both integrals are 0. Theorem 16.47
implies that the integrand admits a single-valued anti-derivative on the domain Ω. On the
other hand, each individual term is the derivative of a multiply-valued complex logarithm.
The conclusion is that, even though the individual logarithms are multiply-valued, their
difference

F (z) = log(z − a)− log(z − b)

is a consistent, single-valued complex function on all of Ω = C \ D. There are, in fact,
an infinite number of possible values, differing by integer multiples of 2π i . However,
assigning a value at one point in Ω leads to a consistent and continuous definition on the
entire domain Ω. Again, this requires that D is connected; the conclusion is not true, say,
for the twice-punctured plane C \ {a, b}.

We are sometimes interested in estimating the size of a complex integral. The basic
inequality bounds it in terms of an arc length integral.

Proposition 16.54. The modulus of the integral of the complex function f along a

curve C is bounded by the integral of its modulus with respect to arc length:
∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ ≤
∫

C

| f(z) | ds. (16.123)

Proof : We begin with a simple lemma about real integrals of complex functions.

Lemma 16.55. If f(t) is a complex-valued function depending on the real variable
a ≤ t ≤ b, then ∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ ≤
∫ b

a

| f(t) | dt. (16.124)
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Proof : If

∫ b

a

f(t) dt = 0, the inequality is trivial. Otherwise, let θ = ph

∫ b

a

f(t) dt.

Then, using Exercise ,
∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣ = Re
[

e− i θ

∫ b

a

f(t) dt

]
=

∫ b

a

Re
[
e− i θ f(t)

]
dt ≤

∫ b

a

| f(t) | dt,

which proves the lemma. Q.E.D.

To prove the proposition, we write out the complex integral, and use (16.124) as
follows:

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ =
∣∣∣∣∣

∫ b

a

f(z(t))
dz

dt
dt

∣∣∣∣∣ ≤
∫ b

a

| f(z(t)) |

∣∣∣∣
dz

dt

∣∣∣∣ dt =

∫

C

| f(z) | ds,

since | dz | = |
¦
z | dt =

√ ¦
x2 +

¦
y2 dt = ds is the arc length integral element (A.30). Q.E.D.

Corollary 16.56. If C has length L = L(C), and f(z) is an analytic function such
that | f(z) | ≤ M for all points z ∈ C, then

∣∣∣∣
∫

C

f(z) dz

∣∣∣∣ ≤ M L. (16.125)

Lift and Circulation

In fluid mechanical applications, the complex integral can be assigned an important
physical interpretation. As above, we consider the steady state flow of an incompressible,
irrotational fluid. Let f(z) = u(x, y)− i v(x, y) denote the complex velocity corresponding

to the real velocity vector v = (u(x, y), v(x, y) )
T
at the point (x, y).

As we noted in (16.108), the integral of the complex velocity f(z) along a curve C

can be written as a pair of real line integrals. In the present situation,
∫

C

f(z) dz =

∫

C

(u− i v)(dx+ i dy) =

∫

C

(u dx+ v dy)− i

∫

C

(v dx− u dy). (16.126)

According to (A.37), (A.42), the real part is the circulation integral

∫

C

v · dx =

∫

C

u dx+ v dy, (16.127)

while the imaginary part is minus the flux integral
∫

C

v · n ds =

∫

C

v ∧ dx =

∫

C

v dx− u dy, (16.128)

for the associated steady state fluid flow!

If the complex velocity admits a single-valued complex potential

χ(z) = ϕ(z)− iψ(z), where χ′(z) = f(z)
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— which is always the case if its domain of definition is simply connected — then the
complex integral is independent of path, and one can use the Fundamental Theorem 16.46
to evaluate it: ∫

C

f(z) dz = χ(β)− χ(α) (16.129)

for any curve C connecting α to β. Path independence of the complex integral immediately
reconfirms the path independence of the flux and circulation integrals for irrotational,
incompressible fluid dynamics. The real part of formula (16.129) evaluates the circulation
integral ∫

C

v · dx =

∫

C

∇ϕ · dx = ϕ(β)− ϕ(α), (16.130)

as the difference in the values of the (real) potential at the endpoints α, β of the curve C.
On the other hand, the imaginary part of formula (16.129) computes the flux integral

∫

C

v ∧ dx =

∫

C

∇ψ · dx = ψ(β)− ψ(α), (16.131)

as the difference in the values of the stream function at the endpoints of the curve. Thus,
the stream function acts as a “flux potential” for the flow, with the flux being independent
of path. In particular, if C is a closed contour,

∮

C

v · dx = 0 =

∮

C

v ∧ dx, (16.132)

and so there is no net circulation or flux along any closed curve in this situation.

In aerodynamics, lift is the result of the circulation of the fluid (air) around the body,
[15, 135]. More precisely, let D ⊂ C be a closed, bounded subset representing the cross-
section of a cylindrical body, e.g., an airplane wing. The velocity vector field v of a steady
state flow around the exterior of the body is defined on the domain Ω = C \D. According
to Blasius’ Theorem, the body will experience a net lift if and only if it has nonvanishing

circulation integral

∮

C

v · dx 6= 0, where C is any simple closed contour encircling the

body. However, if the complex velocity admits a single-valued complex potential in Ω,
then (16.132) tells us that the circulation is automatically zero, and so the body cannot
experience any lift!

Example 16.57. Consider first the flow around a disk, as discussed in Examples
16.18 and 16.41. The Joukowski potential χ(z) = z + z−1 is a single-valued analytic
function everywhere except the origin z = 0. Therefore, the circulation integral (16.130)
around any contour encircling the disk will vanish, and hence the disk experiences no net
lift. This is more or less evident from the Figure 16.11 graphing the streamlines of the
flow; they are symmetric above and below the disk, and hence there cannot be any net
force in the vertical direction.

Any conformal map will preserve the single-valuedness of the complex potentials, and
hence will preserve the property of having zero circulation. In particular, all the flows past
airfoils constructed in Example 16.43 also admit single-valued potentials, and so also have
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zero circulation integral. Such an airplane will not fly, because its wings experience no lift!
Of course, physical airplanes fly, and so there must be some physical assumption we are
neglecting in our treatment of flow past a body. Abandoning incompressibility or irrota-
tionality would take us outside the magical land of complex variable theory, and into the
wilder regions of fully nonlinear partial differential equations of fluid mechanics. Moreover,
although air is slightly compressible, water is, for all practical purposes, incompressible,
and hydrofoils do experience lift when traveling through water.

The only way to introduce lift into the picture is through a (single-valued) complex
velocity with a non-zero circulation integral, and this requires that its complex potential be
multiply-valued. The one function that we know that has such a property is the complex
logarithm

λ(z) = log(a z + b), whose derivative λ′(z) =
1

a z + b

is single-valued away from the singularity at z = − b/a. Thus, we are naturally led to
introduce the family of complex potentials†

χk(z) =
1

2

(
z +

1

z

)
− i k log z. (16.133)

According to Exercise , the coefficient k must be real in order to maintain the no flux
boundary conditions on the unit circle. By (16.126), the circulation is equal to the real
part of the integral of the complex velocity

fk(z) =
dχk
dz

=
1

2
−
1

2z2
−
i k

z
. (16.134)

By Cauchy’s Theorem 16.48 coupled with formula (16.122), if C is a curve going once
around the disk in a counter-clockwise direction, then

∮

C

fk(z) dz =

∮

C

(
1

2
−
1

2z2
−
i k

z

)
dz = 2πk.

Therefore, when Re k 6= 0, the circulation integral is non-zero, and the cylinder experiences
a net lift. In Figure liftc , the streamlines for the flow corresponding to a few representative
values of k are plotted. Note the asymmetry of the streamlines that accounts for the lift
experienced by the disk.

When we compose the modified lift potentials (16.133) with the Joukowski transfor-
mation (16.100), we obtain a complex potential

Θk(ζ) = χk(z) when ζ =
1

2

(
w +

1

w

)
=
1

2

(
a z + β +

1

a z + β

)

† We center the logarithmic singularity at the origin in order to maintain the no flux boundary
conditions on the unit circle. Moreover, Example 16.53 tells us that more than one logarithm in
the potential is redundant, since the difference of any two logarithms is effectively a single-valued
function, and hence contributes nothing to the circulation integral.
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for flow around the corresponding airfoil — the image of the unit disk. The conformal
mapping does not affect the value of the complex integrals, and hence, for any k 6= 0, there
is a nonzero circulation around the airfoil under the modified fluid flow. This circulation
is the cause of a net lift on the airfoil, and at last our airplane will fly!

However, there is now a slight embarrassment of riches, since we have now designed
flows around the airfoil with an arbitrary value 2πk for the circulation integral, and hence
having an arbitrary amount of lift! Which of these possible flows most closely realizes
the true physical version with the correct amount of lift? In his 1902 thesis, the German
mathematician Martin Kutta hypothesized that Nature chooses the constant k so as to
keep the velocity of the flow at the trailing edge of the airfoil, namely ζ = 1, to be finite.
With some additional analysis, it turns out that this condition serves to uniquely specify
k, and yields a reasonably good physical approximation to the actual lift of such an airfoil
in flight, provided the tilt or attack angle of the airfoil in the flow is not too large. Further
details, can be found in several references, including [Fluid, 93, 135].

16.6. Cauchy’s Integral Formulae and the Calculus of Residues.

Cauchy’s Integral Theorem 16.48 is a remarkably powerful result. It and its conse-
quences underlie most important applications of complex integration. The fact that we
can move the contours of complex integrals around freely — as long as we do not cross over
singularities of the integrand — grants us great flexibility in their evaluation. Moreover,
it leads to a method for evaluating a function and its derivatives through certain contour
integrals.

As a consequence of Cauchy’s Theorem, the value of a general complex integral around
a closed contour depends only upon the nature of the singularities of the integrand that
happen to lie inside the contour. This observation inspires us to develop a direct method,
known as the “calculus of residues”, for evaluating such integrals. The residue method
effectively bypasses the Fundamental Theorem of Calculus — no antiderivatives are re-
quired! Remarkably, the method of residues can even be applied to evaluate certain types
of real, definite integrals, as the final examples in this section shall demonstrate.

Cauchy’s Integral Formula

The first important consequence of Cauchy’s Theorem is the justly famous Cauchy
integral formulae. It gives a formula for the value of an analytic function at a point as a
certain contour integral around a closed curve encircling the point. It is worth emphasizing
that Cauchy’s formula is not a form of the Fundamental Theorem of Calculus, since we
are reconstructing the function by integration — not its antiderivative! Cauchy’s formula
is a cornerstone of complex analysis. It has no real counterpart, once again underscoring
the profound difference between the complex and real realms.

Theorem 16.58. Let Ω ⊂ C be a bounded domain with boundary ∂Ω, and let
a ∈ Ω. If f(z) is analytic on Ω, then

f(a) =
1

2π i

∮

∂Ω

f(z)

z − a
dz. (16.135)
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Remark : As always, we traverse the boundary curve ∂Ω so that the domain Ω lies on
our left. In most applications, Ω is simply connected, and so ∂Ω = C is a simple closed
curve oriented in the counter-clockwise direction.

Proof : We first prove that the difference quotient

g(z) =
f(z)− f(a)

z − a

is an analytic function on all of Ω. The only problematic point is at z = a where the
denominator vanishes. First, by the definition of complex derivative,

g(a) = lim
z→ a

f(z)− f(a)

z − a
= f ′(a)

exists and therefore g(z) is well-defined and, in fact, continuous at z = a. Secondly, we
can compute its derivative at z = a directly from the definition:

g′(a) = lim
z→ a

g(z)− g(a)

z − a
= lim

z→ a

f(z)− f(a)− f ′(a) (z − a)

(z − a)2
= 1

2 f ′′(a),

where we use Taylor’s Theorem C.1 (or l’Hôpital’s rule) to evaluate the final limit. Since
g is differentiable at z = a, it is an analytic function on all of Ω. Thus, we may appeal to
Cauchy’s Theorem 16.48, and conclude that

0 =

∮

∂Ω

g(z) dz =

∮

∂Ω

f(z)− f(a)

z − a
dz =

∮

∂Ω

f(z) dz

z − a
− f(a)

∮

∂Ω

dz

z − a

=

∮

∂Ω

f(z) dz

z − a
− 2π i f(a).

The second integral was evaluated using (16.122). Rearranging terms completes the proof
of the Cauchy formula. Q.E.D.

Remark : The proof shows that if a 6∈Ω, then the Cauchy integral vanishes:

1

2π i

∮

∂Ω

f(z)

z − a
dz = 0.

Finally, if a ∈ ∂Ω, then the integral does not converge.

Let us see how we can apply this result to evaluate seemingly intractable complex
integrals.

Example 16.59. Suppose that you are asked to evaluate the complex integral
∮

C

ez dz

z2 − 2z − 3

where C is a circle of radius 2 centered at the origin. A direct evaluation is not possible,
since the integrand does not have an elementary antiderivative. However, we note that

ez

z2 − 2z − 3
=

ez

(z + 1)(z − 3)
=

f(z)

z + 1
where f(z) =

ez

z − 3
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is analytic in the disk | z | ≤ 2 since its only singularity, at z = 3, lies outside the contour
C. Therefore, by Cauchy’s formula (16.135), we immediately obtain the integral

∮

C

ez dz

z2 − 2z − 3
=

∮

C

f(z) dz

z + 1
= 2π i f(−1) = −

π i

2 e
.

Path independence implies that the integral has the same value on any other simple closed
contour, provided it is oriented in the usual counter-clockwise direction, encircles the point
z = 1 but not the point z = 3.

If the contour encloses both singularities, then we cannot apply Cauchy’s formula
directly. However, as we will see, Theorem 16.58 can be adapted in a direct manner to
such situations. This more general result will lead us directly to the calculus of residues,
to be discussed shortly.

Derivatives by Integration

The fact that we can recover values of complex functions by integration is surprising.
Even more amazing is the fact that we can compute derivatives of complex functions by
integration. Let us differentiate both sides of Cauchy’s formula (16.135) with respect to
a. The integrand in the Cauchy formula is sufficiently nice so as to allow us to bring the
derivative inside the integral sign. Moreover, the derivative of the Cauchy integrand with
respect to a is easily found:

∂

∂a

(
f(z)

z − a

)
=

f(z)

(z − a)2
.

In this manner, we deduce an integral formulae for the derivative of an analytic function:

f ′(a) =
1

2π i

∮

C

f(z)

(z − a)2
dz, (16.136)

where, as before, C is any closed curve that goes once around the point z = a in a counter-
clockwise direction. Further differentiation yields the general integral formulae

f (n)(a) =
n!

2π i

∮

C

f(z)

(z − a)n
dz (16.137)

that expresses the nth order derivative of a complex function in terms of a contour integral.

These remarkable formulae, which again have no counterpart in real function theory,
can be used to prove our earlier claim that an analytic function is infinitely differentiable,
and thereby complete the proof of Theorem 16.9.

Example 16.60. Let us compute the integral
∮

C

ez dz

z3 − z2 − 5z − 3
=

∮

C

ez dz

(z + 1)2(z − 3)
,

around the circle of radius 2 centered at the origin. We use (16.136) with

f(z) =
ez

z − 3
, f ′(z) =

(z − 4) ez

(z − 3)2
.
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Since f(z) is analytic inside C, we conclude that

∮

C

ez dz

z3 − z2 − 5z − 3
=

∮

C

f(z) dz

(z + 1)2
= 2π i f ′(−1) = −

5π i

8 e
.

One application is the following remarkable result due to Liouville, whom we already
met in Section 11.5. It says that the only bounded complex functions are the constants!

Theorem 16.61. If f(z) is defined and analytic and | f(z) | ≤ M for all z ∈ C, then
f(z) is constant.

Proof : According to Cauchy’s formula (16.135), for any point a ∈ C,

f ′(a) =
1

2π i

∮

CR

f(z) dz

(z − a)2
,

where we take CR = {| z − a | = R} to be a circle of radius R centered at z = a. We then
estimate the complex integral using (16.123), whence

| f ′(a) | =
1

2π

∣∣∣∣
∮

CR

f(z) dz

(z − a)2

∣∣∣∣ ≤
1

2π

∮

CR

| f(z) |

| z − a |2
ds ≤

1

2π

∮

CR

M

R2
ds =

M

R
,

since the length of CR is 2πR. Since f(z) is analytic everywhere, we can let R → ∞

and conclude that f ′(a) = 0. But this occurs for all possible points a, and f ′(z) ≡ 0 is
everywhere zero, which suffices to prove constancy of f(z). Q.E.D.

One immediate application is a complex analysis proof of the Fundamental Theorem
of Algebra. Gauss first proved this theorem in 1799, and then gave several further proofs;
see [57] for an extensive discussion. Although this is, in essence, a purely algebraic result,
the proof given here relies in an essential way on complex analysis and complex integration.

Theorem 16.62. Every nonconstant (complex or real) polynomial f(z) has a root
z0 ∈ C.

Proof : Suppose

f(z) = an zn + an−1 zn−1 + · · · + a1 z + a0 6= 0

for all z ∈ C. Then we claim that its reciprocal

g(z) =
1

f(z)
=

1

an zn + an−1 zn−1 + · · · + a1 z + a0

satisfies the hypotheses of Liouville’s Theorem 16.61, and hence must be constant, in
contradiction to our hypothesis. Therefore, f(z) cannot be zero for all z, and this proves
the result.

To prove the claim, first by our hypothesis that f(z) 6= 0, we immediately conclude
that g(z) is analytic for all z ∈ C. Moreover, | f(z) | → ∞ as | z | → ∞; indeed, writing

| f(z) | = | z |n
∣∣∣ an +

an−1

z
+ · · · +

a1

zn−1
+

a0

zn

∣∣∣ ,
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the first term clearly foes to∞ as | z | → ∞, while the second term is bounded for | z | À 0.
Therefore,

| g(z) | =
1

| f(z) |
−→ 0 as | z | → ∞,

and this is enough (see Exercise ) to prove that | g(z) | ≤ M is bounded for z ∈ C. Q.E.D.

Corollary 16.63. Every complex polynomial of degree n can be factored,

f(z) = an (z − z1) (z − z2) · · · (z − zn)

where a1, . . . , an are the roots of f(z).

Proof : The Fundamental Theorem 16.62 guarantees that there is at least one point
z1 ∈ C where f(z1) = 0. Therefore, we can write

f(z) = (z − z1) g(z)

where g(z) is a polynomial of degree n− 1. The proof is completed via a straightforward
induction on the degree of the polynomial. Q.E.D.

The Calculus of Residues

Cauchy’s Theorem and Integral Formulae provide amazingly versatile tools for evalu-
ating complicated complex integrals. Since one only needs to understand the singularities
of the integrand within the domain of integration, no indefinite integration is needed to
evaluate the integral! With a little more work, we are led to a general method for evalu-
ating contour integrals, known as the Calculus of Residues for reasons that will soon be
clear. Again, these results and methods have no counterpart in real integration theory.
However, the calculus of residues can, even more remarkably, be used to evaluate a large
variety of interesting definite real integrals for which no explicit indefinite integral exists.

The key idea is encapsulated in the following definition.

Definition 16.64. Let f(z) be an analytic function for all z near, but not equal to
a. The residue of f(z) at the point z = a is defined by the complex integral

Res
z=a

f(z) =
1

2π i

∮

C

f(z) dz. (16.138)

The contour integral in (16.138) is taken once in a counter-clockwise direction around
any simple, closed curve C that contains a in its interior, as illustrated in Figure residue .
For example, C could be a small circle centered at a. We require that f(z) be analytic
everywhere inside C except at the point z = a. Lemma 16.50 implies that the value of the
residue does not depend on which curve is chosen. The residue is a complex number, and
tells us certain information about the singularity of f(z) at z = a.

The simplest example is the monomial function f(z) = czn, where c is a complex
constant and n is an integer. According to (16.112)

Res
z=0

czn =
1

2π i

∮

C

czn dz =

{
0, n 6= −1,

c, n = −1.
(16.139)
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Thus, only the exponent n = −1 gives a nonzero residue. The residue singles out the
function 1/z, which, not coincidentally, is the only one with a logarithmic, and multiply-
valued, antiderivative.

Cauchy’s Theorem 16.48, when applied to the integral in (16.138), implies that if f(z)
is analytic at z = a, then it has zero residue at a. Therefore, all the monomials, including
1/z, have zero residue at any nonzero point:

Res
z=a

czn = 0 for a 6= 0. (16.140)

Since integration is a linear operation, the residue is a linear operator, mapping com-
plex functions to complex numbers; thus,

Res
z=a

[
f(z) + g(z)

]
= Res

z=a
f(z) + Res

z=a
g(z), Res

z=a

[
cf(z)

]
= c Res

z=a
f(z), (16.141)

for any complex constant c. Therefore, by linearity, the residue of any finite linear combi-
nation

f(z) =
c−m

zm
+

c−m+1

zm−1
+ · · · +

c−1

z
+ c0 + c1 z + · · · + cn zn =

n∑

k=−m

ck zk

of such monomials is equal to
Res
z=0

f(z) = c−1.

Thus, the residue effectively picks out the coefficient of the term 1/z in such an expansion.
As we shall shortly see, the same holds true for infinite series of a similar form.

The easiest nontrivial residues to compute are at poles of a function. According to
(16.29), the function f(z) has a simple pole at z = a if

h(z) = (z − a) f(z) (16.142)

is analytic at z = a and h(a)6= 0.

Lemma 16.65. If f(z) =
h(z)

z − a
has a simple pole at z = a, then Res

z=a
f(z) = h(a).

Proof : We substitute the formula for f(z) into the definition (16.138), and so

Res
z=a

f(z) =
1

2π i

∮

C

f(z) dz =
1

2π i

∮

C

h(z) dz

z − a
= h(a),

by Cauchy’s formula (16.135). Q.E.D.

Example 16.66. Consider the function

f(z) =
ez

z2 − 2z − 3
=

ez

(z + 1)(z − 3)
.

From the factorization of the denominator, we see that f(z) has simple pole singularities
at z = −1 and z = 3. The residues are given, respectively, by

Res
z=−1

ez

z2 − 2z − 3
=

ez

z − 3

∣∣∣∣
z=−1

= −
1

4 e
, Res

z=3

ez

z2 − 2z − 3
=

ez

z + 1

∣∣∣∣
z=3

=
e3

4
.

Since f(z) is analytic everywhere else, the residue at any other point is automatically 0.
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Recall that a function g(z) is said to have simple zero at z = a provided

g(z) = (z − a) k(z)

where k(z) is analytic at z = a and k(a) = g′(a)6= 0. In this case, the reciprocal function

f(z) =
1

g(z)
=

1

(z − a) k(z)

has a simple pole at z = a. The residue of the reciprocal is, by Lemma 16.65,

Res
z=a

f(z) = Res
z=a

1

(z − a) k(z)
=

1

k(a)
=

1

g′(a)
. (16.143)

More generally, if f(z) is analytic at the point a, then the ratio f(z)/g(z) has residue

Res
z=a

f(z)

g(z)
=

f(a)

g′(a)
(16.144)

at a simple zero z = a of g(z).

Example 16.67. As an illustration, let us compute the residue of sec z = 1/ cos z at
the point z = 1

2 π. Note that cos z has a simple zero at z = 1
2 π since its derivative, − sin z,

is nonzero there. Thus, according to (16.143),

Res
z=π/2

sec z = Res
z=π/2

1

cos z
=

−1

sin 1
2 π
= −1.

The direct computation of the residue using a complex integral (16.138) is slightly
harder, but instructive. For example, we may integrate sec z around a circle of radius 1
centered at 1

2 π, which we parametrize by z(t) = 1
2 π + e i t. According to the definition,

Res
z=a

sec z =
1

2π i

∮

C

dz

cos z
=
1

2π

∫ π

−π

−2e i t dt

e i t + e− i t
dt = −

1

π

∫ π

−π

dt

1 + e−2 i t
.

We multiply the numerator and denominator in the latter integrand by 1 + e2 i t, and use
Euler’s formula (3.76) to obtain

Res
z=a

sec z = −
1

π

∫ π

−π

[
1 + i

sin 2 t

1 + cos 2 t

]
dt = −1 .

Note that the imaginary part of this integral vanishes because it is the integral of an odd
function over a symmetric interval, cf. Lemma 12.11.

The Residue Theorem

Residues are the ingredients in a general method for computing contour integrals of
analytic functions. The Residue Theorem says that the value of the integral of a complex
function around a closed curve depends only on its residues at the enclosed singularities.
Since the residues can be computed directly from the function, the resulting formula pro-
vides an effective mechanism for painless evaluation of complex integrals, without having
to construct any sort of anti-derivative or indefinite integral. Indeed, the residue method
can be employed even when the integrand does not have an anti-derivative that can be
expressed in terms of elementary functions.
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Theorem 16.68. Let C be a simple, closed curve, oriented in the counter-clockwise

direction. Suppose f(z) is analytic everywhere inside C except for a finite number of

singularities, a1, . . . , an. Then

1

2π i

∮

C

f(z) dz = Res
z=a1

f(z) + · · · + Res
z=an

f(z). (16.145)

Proof : We draw a small circle Ci around each singularity ai. We assume the circles
all lie inside the contour C and do not cross each other, so that ai is the only singularity
contained within Ci; see Figure resC . Definition 16.64 implies that

Res
z=ai

f(z) =
1

2π i

∮

Ci

f(z) dz, (16.146)

where the line integral is taken in the counter-clockwise direction around Ci.

Consider the domain Ω consisting of all points z which lie inside the given curve C, but
outside all the small circles C1, . . . , Cn; this is the shaded region in Figure resC . By our
construction, the function f(z) is analytic on Ω, and hence by Cauchy’s Theorem 16.48,
the integral of f around the boundary ∂Ω is zero. The boundary ∂Ω must be oriented
consistently, so that the domain is always lying on one’s left hand side. This means that
the outside contour C should be traversed in a counter-clockwise direction, whereas the
inside circles Ci are in a clockwise direction. Therefore, the integral around the boundary
of the domain Ω can be broken up into a difference

0 =
1

2π i

∮

∂Ω

f(z) dz =
1

2π i

∮

C

f(z) −

n∑

i=1

1

2π i
dz

∮

Ci

f(z) dz

=
1

2π i

∮

C

f(z) −

n∑

i=1

Res
z=ai

f(z) dz.

The minus sign converts the circle integrals to the counterclockwise orientation used in
the definition (16.146) of the residues. Rearranging the final identity leads to the residue
formula (16.145). Q.E.D.

Example 16.69. Let us use residues to evaluate the contour integral
∮

C

ez

z2 − 2z − 3
dz

where C denotes a circle of radius r centered at the origin. According to Example 16.66,
the integrand has two singularities at −1 and 3, with respective residues −1/(4 e) and
e3/4. If the radius of the circle is r > 3, then it goes around both singularities, and hence
by the residue formula (16.145)

∮

C

ez dz

z2 − 2z − 3
= 2π i

(
−
1

4e
+

e3

4

)
=
(e4
− 1)π i

2e
.

If the circle has radius 1 < r < 3, then it only encircles the singularity at −1, and hence
∮

C

ez

z2 − 2z − 3
dz = −

π i

2e
.
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If 0 < r < 1, the function has no singularities inside the circle and hence, by Cauchy’s
Theorem 16.48, the integral is 0. Finally, when r = 1 or r = 3, the contour passes through
a singularity, and the integral does not converge.

Evaluation of Real Integrals

One important and unexpected application of the Residue Theorem 16.68 is to aid in
the evaluation of certain definite real integrals. The interesting fact is that it even applies to
cases in which one is unable to evaluate the corresponding indefinite integral in closed form,
owing to the non-existence of an elementary anti-derivative. Nevertheless, converting the
definite real integral into (part of a) complex contour integral leads to a direct evaluation
via the calculus of residues that sidesteps the difficulties in finding the antiderivative. This
device is indicative of a useful procedure for analyzing standard (meaning analytic) real
functions by passing to their complex counterparts, which can then be tackled by the more
powerful tools of complex analysis.

There are two principal types of real integral for which this technique can be applied,
although numerous variations appear in more extensive treatments of the subject. First,
a real trigonometric integral of the form

I =

∫ 2π

0

F (cos θ, sin θ) dθ (16.147)

can often be evaluated by converting it into a complex integral around the unit circle
C =

{
| z | = 1

}
. If we set

z = e i θ so
1

z
= e− i θ,

then

cos θ =
e i θ + e− i θ

2
=
1

2

(
z +

1

z

)
, sin θ =

e i θ
− e− i θ

2 i
=
1

2 i

(
z −

1

z

)
.

(16.148)
Moreover,

dz = de i θ = i e i θ dθ = i z dθ, and so dθ =
dz

i z
. (16.149)

Therefore, the integral (16.147) can be written in the complex form

I =

∮

C

F

(
1

2

(
z +

1

z

)
,
1

2 i

(
z −

1

z

))
dz

i z
. (16.150)

If we know that the resulting complex integrand is well-defined and single-valued, except,
possibly, for a finite number of singularities inside the unit circle, then the residue for-
mula (16.145) tells us that the integral can be directly evaluated by adding together its
residues and multiplying by 2π i .
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Example 16.70. We compute the simple example

∫ 2π

0

dθ

2 + cos θ
. We begin by using

the substitution (16.150), whence

∫ 2π

0

dθ

2 + cos θ
=

∮

C

dz

i z
[
2 + 1

2

(
z + 1

z

) ] = − i
∮

C

2 dz

z2 + 4z + 1
.

The complex integrand has singularities where its denominator vanishes:

z2 + 4z + 1 = 0, so that z = −2±
√

3 .

Only one of these singularities, namely −2 +
√
3 lies inside the unit circle. Therefore,

applying (16.144), we find

− i

∮

C

2 dz

z2 + 4z + 1
= 2π Res

z=−2+
√

3

2

z2 + 4z + 1
=

4π

2z + 4

∣∣∣∣
z=−2+

√
3

=
4π
√
3

.

As the student may recall from first year calculus, this particular integral can, in fact,
be done directly via a trigonometric substitution. However, the computations are not
particularly pleasant, and, with practice, the residue method is much simpler. Moreover,
it straightforwardly applies to situations where no elementary antiderivative exists.

Example 16.71.

A second type of real integral that can often be evaluated by complex residues are
integrals over the entire real line, from −∞ to ∞. Here the technique is a little more
subtle, and we sneak up on the integral by using larger and larger closed contours that
coincide with more and more of the real axis. The basic idea is contained in the following
example.

Example 16.72. The problem is to evaluate the real integral

I =

∫ ∞

0

cosx dx

1 + x2
. (16.151)

The corresponding indefinite integral cannot be evaluated in elementary terms, and so we
are forced to rely on the calculus of residues. We begin by noting that the integrand is
even, and hence the integral I = 1

2 J is one half the integral

J =

∫ ∞

−∞

cosx dx

1 + x2

over the entire real line. Moreover, for x real, we can write

cosx

1 + x2
= Re

e i x

1 + x2
, and hence J = Re

∫ ∞

−∞

e i x dx

1 + x2
. (16.152)

Let CR be the closed contour consisting of a large semicircle of radius R À 0, which
we denote by SR, connected at the ends by the real interval −R ≤ x ≤ R, which is plotted
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R-R

SR

Figure 16.23. Semicircular Contour.

in Figure 16.23. The corresponding contour integral

∮

CR

e i z dz

1 + z2
=

∫ R

−R

e i x dx

1 + x2
+

∫

SR

e i z dz

1 + z2
(16.153)

breaks up into two pieces: the first over the real interval, and the second over the semicircle.
As the radius R → ∞, the semicircular contour CR includes more and more of the real
axis, and so the first integral gets closer and closer to our desired integral (16.152). If
we can prove that the second, semicircular integral goes to zero, then we will be able to
evaluate the integral over the real axis by contour integration, and hence by the method of
residues. The fact that the semicircular integral is small is reasonable, since the integrand
(1 + z2)−1e i z gets smaller and smaller as | z | → ∞ provided Re z ≥ 0. A rigorous
verification of this fact will appear at the end of the example.

According to the Residue Theorem 16.68, the integral (16.153) is equal to the sum
of all the residues over the singularities of f(z) lying inside the contour CR. Now ez is
analytic everywhere, and so the singularities occur where the denominator vanishes, i.e.,
z2 = −1, and so are at z = ± i . Since the semicircle lies in the upper half plane Im z > 0,
only the first singularity z = + i lies inside — provided the radius R > 1. To compute the
residue, we use (16.143) to evaluate

Res
z= i

e i z

1 + z2
=

e i z

2z

∣∣∣∣
z= i

=
e−1

2 i
=

1

2 i e
.

Therefore, by (16.145),
1

2π i

∮

CR

e i z dz

1 + z2
=

1

2 i e
=

π

e
,

whenever R > 1. Thus, assuming the semicircular part of the integral does indeed become
vanishingly small as R →∞, we conclude that

∫ ∞

−∞

e i x dx

1 + x2
= lim

R→∞

∮

CR

e i z dz

1 + z2
= 2π i

1

2 i e
=

π

e
.

The integral is real because its imaginary part,
∫ ∞

−∞

sinx dx

1 + x2
= 0,
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is the integral of an odd function which is automatically zero. Consequently,

I =

∫ ∞

0

cosx dx

1 + x2
=
1

2
Re

∫ ∞

−∞

e i x dx

1 + x2
=

π

2e
,

which is the desired result.

Finally, let us estimate the size of the semicircular integral. The integrand is bounded
by ∣∣∣∣

e i z

1 + z2

∣∣∣∣ ≤
1

1 + | z |2
=

1

1 +R2
whenever | z | = R, Im z ≥ 0,

where we are using the fact that
∣∣ e i z

∣∣ = e−y ≤ 1 whenever z = x+ i y with y ≥ 0.

According to Corollary 16.56, the size of the integral of a complex function is bounded by
its maximum modulus along the curve times the length of the curve. Thus, in our case,

∣∣∣∣
∫

SR

e i z dz

1 + z2

∣∣∣∣ ≤
1

1 +R2
L(SR) =

πR

1 +R2
≤

π

R
.

Thus, the semicircular integral becomes vanishingly small as the radius of our semicircle
goes to infinity, R →∞. This completes the justification of the method.

Example 16.73. Here the problem is to evaluate the integral
∫ ∞

−∞

dx

1 + x4
. (16.154)

The indefinite integral can, in fact, be done by partial fractions, but, as anyone who has
tried this can tell you, this is not a particularly pleasant task. So, let us try using residues.
Let CR denote the same semicircular contour as in the previous example. The integrand
has pole singularities where the denominator vanishes, i.e., z4 = −1, and so at the four
fourth roots of −1. These are

eπ i /4 =
1 + i
√
2

, , e3π i /4 =
−1 + i
√
2

, , e5π i /4 =
1− i
√
2

, , e7π i /4 =
−1− i
√
2

.

Only the first two roots lie inside the semicircular contour CR, provided R > 1. Their
residues can be computed using (16.143):

Res
z=eπ i /4

1

1 + z4
=

1

4z3

∣∣∣∣
z=eπ i /4

=
e−3π i /4

4
=
−1− i

4
√
2

,

Res
z=e3π i /4

1

1 + z4
=

1

4z3

∣∣∣∣
z=e3π i /4

=
e−9π i /4

4
=
1− i

4
√
2

.

Therefore, by the residue formula (16.145),

∮

CR

dz

1 + z4
= 2π i

(
−1− i

4
√
2
+
1− i

4
√
2

)
=

π
√
2

. (16.155)
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On the other hand, we can break up the complex integral into an integral along the
real axis and an integral around the semicircle:

∮

CR

dz

1 + z4
=

∫ R

−R

dx

1 + x4
+

∫

SR

dz

1 + z4
.

The first integral goes to the desired real integral as the radius R → ∞. On the other
hand, on a large semicircle | z | = R, the integrand 1/(1 + z4) is small:

∣∣∣∣
1

1 + z4

∣∣∣∣ ≤
1

1 + | z |4
=

1

1 +R4
whenever | z | = R.

Thus, using Corollary 16.56, the integral around the semicircle can be bounded by
∣∣∣∣
∫

SR

dz

1 + z4

∣∣∣∣ ≤
1

1 +R4
· π R ≤

π

R3
−→ 0 as R −→ ∞.

Thus, as R →∞, the complex integral (16.155) goes to the desired real integral (16.154),
and so ∫ ∞

−∞

dx

1 + x4
=

π
√
2

.

Note that the result is real and positive, as it must be.
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Chapter 17

Dynamics of Planar Media

In this chapter, we continue our ascent of the dimensional ladder for linear systems.
In Chapter 6, we began our journey by analyzing the equilibrium configurations of discrete
systems — mass–spring chains, circuits and structures — which are governed by certain
linear algebraic systems. Next, in Chapter 9, we introduced a continuous time variable
to model the dynamical behavior of such discrete systems by associated systems of linear
ordinary differential equations. Chapter 11 began our treatment of continuous media
with the boundary value problems that describe the equilibrium configurations of one-
dimensional bars, strings and beams. Dynamical motions of one-dimensional media formed
the focus of Chapter 14, leading to two fundamental partial differential equations: the
heat equation describing thermal diffusion, and the wave equation modeling vibrations. In
Chapters 15 and 16, we focussed our attention on the boundary value problems describing
equilibrium of planar bodies — plates and membranes — with primary emphasis on the
all-important Laplace equation. We now turn to the analysis of the dynamical behavior of
planar bodies, as governed by the two-dimensional† versions of the heat and wave equations.
The heat equation describes diffusion of, say, heat energy or population in a homogeneous
two-dimensional domain. The wave equation models small vibrations of two-dimensional
membranes, e.g., drums.

Although the increase in dimension does exact a toll on our analytical prowess, we
have, in fact, already mastered many of the key techniques. When applied to partial dif-
ferential equation in higher dimensions, the separation of variables method often results
in ordinary differential equations of a non-elementary type. Solutions are expressed in
terms of certain remarkable and important non-elementary functions, including the Bessel
functions in the present chapter, and the Legendre functions, spherical harmonics, and
spherical Bessel functions appearing in three-dimensional problems. These so-called spe-

cial functions do not appear in elementary calculus, but do play a starring role in more
advanced applications in physics, engineering and mathematics. Most interesting special
functions arise as solutions to certain second order, self-adjoint boundary value problems
of Sturm–Liouville type. As such, they obey basic orthogonality relations, and thus can be
used in place of the trigonometric sines and cosines that form the foundations of elemen-
tary Fourier analysis. Thus, the series solutions of higher dimensional partial differential
equations lead naturally to the study of special function series. In Appendix C, we col-
lect together the required results about the most important classes of special functions,

† We use the term “dimension” to refer to the number of independent space variables in the
system. Time is accorded a special status, and serves to distinguish dynamics from equilibrium.
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including a short presentation of the series approach for solving non-elementary ordinary
differential equations.

We will also derive a multi-dimensional version of the fundamental solution, corre-
sponding to an initial concentrated delta function force. This allows one to use a general
superposition principle to solve the initial value problem. Disappointingly, conformal map-
pings are not particularly helpful in the dynamical universe.

Numerical methods for solving boundary value and initial value problems are, of
course, essential in all but the simplest situations. The two basic methods — finite element
and finite difference — have already appeared, and the only new aspect is the (substantial)
complication of working in higher dimensions. Thus, in the interests of brevity, we defer
the discussion of the numerical aspects of multi-dimensional partial differential equations
to more advanced texts, e.g., [nPDE], and student projects outlined in the exercises.
However, the student should be assured that, without knowledge of the qualitative features
based on direct analysis and particular solutions, the design, implementation, and testing
of numerical solution techniques would be severely hampered. Explicit solutions continue
to play an important practical role, both as a guide for constructing numerical algorithms,
as well as a convenient test of their accuracy.

17.1. Diffusion in Planar Media.

The heating of a homogeneous flat plate is modeled by the two-dimensional heat
equation

ut = γ∆u = γ
(
uxx + uyy

)
, (17.1)

where ∆ = ∂2
x + ∂2

y is the two-dimensional Laplacian operator. The solution u(t,x) =
u(t, x, y) to (17.1) measures the temperature at time t at each point x = (x, y) ∈ Ω in the
domain Ω ⊂ R2 occupied by the plate. We are assuming that there are no external heat
sources on the interior of our plate, which can be arranged by covering its top and bottom
with insulation. In particular, an equilibrium solution u = u(x, y) does not depend on time
t, so ut = 0, and hence must satisfy the Laplace equation ∆u = 0, which is in accordance
with Chapter 15.

As in the one-dimensional version, the diffusivity coefficient γ > 0, which measures
the relative speed of diffusion of heat energy throughout the medium, must be positive.
Negative diffusivity results an ill-posed initial value problem, which experiences the same
difficulties as its we saw in the one-dimensional backwards heat equation. The physical
justification of the heat equation model will be discussed in detail shortly.

To uniquely specify the temperature u(t, x, y), we must impose both initial and bound-
ary conditions. As with the equilibrium Laplace equation, the most important are

(a) Dirichlet boundary conditions

u = h on ∂Ω, (17.2)

where the temperature is fixed on the boundary of the plate.

(b) Neumann boundary conditions that prescribe the heat flux or normal derivative

∂u

∂n
= k on ∂Ω, (17.3)
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with k = 0 corresponding to an insulated boundary.

(c) Mixed boundary conditions, where we impose Dirichlet conditions on part of the
boundary D ( ∂Ω and Neumann conditions on the remainder N = ∂Ω \ D. For
instance, the homogeneous mixed boundary conditions

u = 0 on D,
∂u

∂n
= 0 on N, (17.4)

correspond to insulating part of the boundary and freezing the remainder.

In all cases, the boundary data may depend upon time as well as the specific boundary
point. We further specify the initial temperature of the plate

u(0, x, y) = f(x, y), (x, y) ∈ Ω, (17.5)

at an initial time, which for simplicity, we take as t0 = 0. If the domain Ω is bounded
with a boundary that is not too wild (e.g., piecewise smooth), a general theorem, [39],
guarantees the existence of a unique solution u(t, x, y) to any of these self-adjoint initial-
boundary value problems for all subsequent times t ≥ 0. Our practical goal is to both
compute and understand the behavior of this solution in specific situations.

Derivation of the Diffusion Equation

The physical derivation of the two-dimensional (and three-dimensional) heat equation
relies upon the same two basic thermodynamical laws that were used, in Section 14.1, to
derive its one-dimensional version. The first principle is that heat energy tries to flow from
hot to cold in as fast a way as possible. According to Theorem 19.39, the negative gradient
−∇u points in the direction of the steepest decrease in the temperature u at a point, and
so, in an isotropic medium, heat energy will flow in that direction. Therefore, the heat flux
vector w, which measures the magnitude and direction of the flow of heat energy, should
be proportional to the temperature gradient:

w(t, x, y) = −κ(x, y)∇u. (17.6)

The scalar quantity κ(x, y) > 0 measures the thermal conductivity of the material† at
position (x, y) ∈ Ω. Equation (17.6) is the multi-dimensional counterpart of Fourier’s Law
of Cooling , cf. (14.3).

The second principle is that, in the absence of external heat sources, heat can only
enter a region D ⊂ Ω through its boundary ∂D. (Recall that the plate is insulated above
and below.) Let ε(t, x, y) denote the heat energy at each time and point in the domain, so

that

∫ ∫

D

ε(t, x, y) dx dy is the heat energy contained within the region D at time t. The

rate of change of heat energy is equal to the heat flux into the region through its boundary,

† We are assuming the material properties of the plate are not changing in time, and, more-
over, are not temperature dependent. Changing the latter assumption would lead to a nonlinear
diffusion equation.
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which is the negative of the flux line integral (A.42), namely

∮

∂D

w · n ds, where, as usual,

n denotes the outward unit normal to the boundary ∂D. Therefore,

∂

∂t

∫ ∫

D

ε(t, x, y) dx dy = −

∮

∂D

w · n ds = −

∫ ∫

D

∇ ·w dx dy,

where we apply the divergence form (A.57) of Green’s Theorem to convert the flux into
a double integral. We bring the time derivative inside the integral and collect the terms,
whence ∫ ∫

D

(
∂ε

∂t
+∇ ·w

)
dx dy = 0. (17.7)

Keep in mind that this integral formula must hold for any subdomain D ⊂ Ω. Now, the
only way in which an integral of a continuous function can vanish for all subdomains is if
the integrand is identically zero, cf. Exercise . The net result is the basic “conservation
law”

∂ε

∂t
+∇ ·w = 0 (17.8)

relating heat energy ε and heat flux w.

As in equation (14.2), the heat energy ε(t, x, y) at each time and point in the domain
is proportional to the temperature,

ε(t, x, y) = σ(x, y)u(t, x, y), where σ(x, y) = ρ(x, y)χ(x, y) (17.9)

is the product of the density and the heat capacity of the material. Combining this with
the Fourier Law (17.6) and the energy balance equation (17.9) leads to the general two-
dimensional diffusion equation

σ
∂u

∂t
= ∇ ·

(
κ∇u

)
. (17.10)

In full detail, this second order partial differential equation takes the form

σ(x, y)
∂u

∂t
=

∂

∂x

(
κ(x, y)

∂u

∂x

)
+

∂

∂y

(
κ(x, y)

∂u

∂y

)
. (17.11)

In particular, if the body is homogeneous, then both σ and κ are constant, and so general
diffusion equation (17.10) reduces to the heat equation (17.1) with thermal diffusivity

γ =
κ

σ
=

κ

ρχ
. (17.12)

The heat and diffusion equations are examples of parabolic partial differential equations, the
terminology being an adaptation of that in Definition 15.1 to partial differential equations
in more than two variables.

Self-Adjoint Formulation

The general diffusion equation (17.10) is in the self-adjoint form

ut = −K[u ] = −∇∗ ◦∇u. (17.13)
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The gradient operator ∇ maps scalar fields u to vector fields v = ∇u. Its adjoint ∇∗,
which goes in the reverse direction, is taken with respect to the weighted inner products

〈u ; ũ 〉 =

∫ ∫

Ω

u(x, y) ũ(x, y)σ(x, y) dx dy, 〈〈v ; ṽ 〉〉 =

∫ ∫

Ω

v(x, y) · ṽ(x, y) κ(x, y) dx dy,

(17.14)
between, respectively, scalar and vector fields. A straightforward integration by parts
argument similar to that in Section 15.4 tells us that

∇
∗v = −

1

σ
∇ · (κv) = −

1

σ

(
∂(κ v1)

∂x
+

∂(κ v2)

∂y

)
. (17.15)

Therefore, the right hand side of (17.13) is equal to

−K[u ] = −∇∗ ◦∇u =
1

σ
∇ · (κ∇u),

which recovers the preceding formula (17.10). As always, we need to impose suitable ho-
mogeneous boundary conditions — Dirichlet, Neumann or mixed — to ensure the validity
of the integration by parts argument used to establish the adjoint formula (17.15).

In particular, to obtain the heat equation, we take σ and κ to be constant, and so
(17.14) reduce, up to a constant factor, to the usual L2 inner products between scalar
and vector fields. In this case, the adjoint of the gradient is, up to a scale factor, minus
the divergence: ∇∗ = − γ∇·, where γ = κ/σ, and the general diffusion equation (17.13)
reduces to the two-dimensional heat equation (17.1).

As we learned in Chapters 9 and 14, a diffusion equation (17.13) has the form of a
gradient flow, decreasing the heat energy

E[u ] = ‖∇u ‖2 =

∫ ∫

Ω

‖∇u(x, y) ‖2 σ(x, y) dx dy (17.16)

as rapidly as possible. Thus, we expect its solutions to decay rapidly to thermal equilib-
rium, u → u?, defined as a minimum of the energy functional.

The asymptotic equilibrium configuration will be a teim-independent solution to the
heat equation, and hence satisfy the second order partial differential equation ∇·

(
κ∇u

)
=

0, or, in full detail,

∂

∂x

(
κ(x, y)

∂u?
∂x

)
+

∂

∂y

(
κ(x, y)

∂u?
∂y

)
= 0, (17.17)

subject to the prescribed boundary conditions. Note that (17.17) is a special case of
the general elliptic partial differential equation (15.129) considered at the end opf Chap-
ter 15. In particular, in the homogeneous case when the diffusivity κ is constant, the
equation (17.17) reduces to Laplace’s equation ∆u? = 0, which governs the thermal equi-
librium solutions for the heat equation. If the boundary conditions are homogeneous
Dirchlet or mixed, then positive definiteness tells us that there is a unique equilibrium
solution, namely u?(x, y) = 0, whereas in the Neumann or fully insulated case, the equi-
librium will be a constant temperature distribution, the constant being the average of the
initial heat energy; see Exercise for details.
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Remark : The heat and diffusion equations are also used to model diffusion of popula-
tions, e.g., bacteria in a petri dish or wolves in the Canadian Rockies, [biol]. The solution
u(t, x, y) represents the number of individuals near position (x, y) at time t. The diffusion
is caused by random motions of the individuals. Such diffusion processes also appear in
mixing of chemical reagents in solutions, with reactions introducing additional nonlinear
terms that result in the broad class of reaction–diffusion equations, [chem].

17.2. Solution Techniques for Diffusion Equations.

We now discuss basic analytical (as opposed to numerical) solution techniques for the
two-dimensional heat and diffusion equations of the form

ut = −K[u ]. (17.18)

To start with, we shall restrict our attention to homogeneous boundary conditions. As
in the one-dimensional situation of Chapter 14, the method of separation of variables is
crucial. The separable solutions to any diffusion equation (17.13) are of exponential form

u(t, x, y) = e−λt v(x, y). (17.19)

Since the linear operator K = ∇
∗ ◦∇ only involves differentiation with respect to the

spatial variables x, y, we find

∂u

∂t
= −λ e−λt v(x, y), while K[u ] = e−λt K[v ].

Substituting back into the diffusion equation (17.18) and canceling the exponentials, we
conclude that v(x, y) must be an eigenfunction for the boundary value problem

K[v ] = λ v. (17.20)

The eigenfunction v is also required to satisfy the relevant homogeneous boundary condi-
tions. In the case of the heat equation (17.1), K[u ] = −γ∆u, and hence the eigenvalue
equation (17.20) takes the form

γ∆v + λ v = 0, or, in detail, γ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ λ v = 0. (17.21)

This generalization of the Laplace equation is known as the Helmholtz equation, and was
briefly discussed in Example 15.22.

The fact that K is a positive semi-definite linear operator implies that its eigenvalues
are all real and non-negative. We order them in increasing size:

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · , with λn −→∞ as n −→∞. (17.22)

An eigenvalue is repeated according to the number (which is necessarily finite) of linearly
independent eigenfunctions it admits. The problem has a zero eigenvalue, λ1 = 0 if and
only if the operator K is not positive definite, i.e., only in the case of pure Neumann
boundary conditions. We refer the interested reader to [39; Chapter V] for the advanced
theoretical details.
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Each eigenvalue and eigenfunction pair will produce a separable solution

uk(t, x, y) = e−λk t vk(x, y)

to the diffusion equation (17.18). The solutions corresponding to positive eigenvalues
are exponentially decaying in time, while a zero eigenvalue, which only occurs in the
positive semi-definite case, produces a constant solution. The general solution to the
homogeneous boundary value problem can then be built up as a linear combination of
these basic solutions, in the form of an eigenfunction series

u(t, x, y) =
∞∑

k=1

ck uk(t, x, y) =
∞∑

k=1

ck e−λk t vk(x, y), (17.23)

which is a form of generalized Fourier series. The eigenfunction coefficients ck are pre-
scribed by the initial conditions, which require

∞∑

k=1

ck vk(x, y) = f(x, y). (17.24)

Thus, to solve the initial value problem, we need to expand the initial data as a series in
the eigenfunctions for the Helmholtz boundary value problem.

To compute the coefficients ck in the eigenfunction expansion (17.24), we appeal, as
in the case of ordinary Fourier series, to orthogonality. Self-adjointness of the differential
operator K[u ] implies that the corresponding eigenfunction solutions v1(x, y), v2(x, y), . . .
to (17.20) are automatically orthogonal with respect to the underlying inner product†

〈 vj ; vk 〉 = 0, j 6= k.

The general argument establishing this result can be found in Theorem 8.20; see also
Exercise . As a consequence, taking the inner product of both sides of (17.24) with the
eigenfunction vk leads to the equation

ck ‖ vk ‖
2 = 〈 f ; vk 〉 and hence ck =

〈 f ; vk 〉

‖ vk ‖
2

.

In this manner we recover our standard orthogonality formula (5.8) for expressing elements
of a vector space in terms of an orthogonal basis. For a general diffusion equation, the
orthogonality formula has the explicit form

ck =

∫ ∫

Ω

f(x, y) vk(x, y)σ(x, y) dx dy

∫ ∫

Ω

vk(x, y)2 σ(x, y) dx dy

, (17.25)

† If an eigenvalue is repeated, one needs to make sure that one chooses an orthogonal basis for
its eigenspace.
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where the weighting function σ(x, y) was defined in (17.9). In the case of the heat equation,
σ is constant and so can be canceled from both numerator and denominator, leaving the
simpler formula

ck =

∫ ∫

Ω

f(x, y) vk(x, y) dx dy

∫ ∫

Ω

vk(x, y)2 dx dy

. (17.26)

Under fairly general hypotheses, it can be shown that the eigenfunctions form a com-
plete system, which means that the Fourier series (17.24) will converge (at least in norm)
to the function f(x, y), provided it is not too bizarre. See [39; p. 369] for a proof of the
following general theorem.

Theorem 17.1. Let Ω be a bounded domain with piecewise smooth boundary. If
f(x, y) is an L2 function on Ω, then its generalized Fourier series (17.24) with coefficients
defined by (17.25) converges in norm to f . Moreover, if f ∈ C2 is twice continuously

differentiable, then its generalized Fourier series converges uniformly to f(x, y) for all
(x, y) ∈ Ω.

Qualitative Properties

Before tackling simple examples where we find ourselves in a position to construct
explicit formulae for the eigenfunctions and eigenvalues, let us see what the series solution
(17.23) can tell us about general diffusion processes. Based on our experience with the case
of a one-dimensional bar, the final conclusions will not be especially surprising. Indeed,
they also apply, word for word, to diffusion processes in three-dimensional solid bodies. A
reader who prefers to see explicit solution formulae may wish to skip ahead to the following
section, returning here after digesting the solution formulae.

Keep in mind that we are still dealing with the solution to the homogeneous boundary
value problem. The first observation is that all terms in the series solution (17.23), with
the possible exception of a null eigenfunction term that appears in the semi-definite case,
are tending to zero exponentially fast. Since most eigenvalues are large, all the higher
order terms in the series become almost instantaneously negligible, and hence the solution
can be accurately approximated by a finite sum over the first few eigenfunction modes.
As time goes on, more and more of the modes can be neglected, and the solution decays
to thermal equilibrium at an exponentially fast rate. The rate of convergence to thermal
equilibrium is, for most initial data, governed by the smallest positive eigenvalue λ1 > 0
for the Helmholtz boundary value problem on the domain.

In the positive definite cases of homogeneous Dirichlet or mixed boundary conditions,
thermal equilibrium is u(t, x, y)→ 0. Thus, in these cases, the equilibrium temperature is
equal to the boundary temperature — even if this temperature is only fixed on a part of
the boundary. The heat dissipates away through the non-insulated part of the boundary.
In the semi-definite Neumann case, corresponding to a completely insulated plate, the
final thermal equilibrium temperature is constant — a multiple of the null eigenfunction
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solution u0(t, x, y) = 1 . In this case, the general solution has the form

u(t, x, y) = c0 +
∞∑

k=1

ck e−λkt vk(x, y), (17.27)

where the sum is over the positive eigenmodes, λk > 0. Since all the summands are
exponentially decaying, the equilibrium temperature u? = c0 is the same as the constant
term in the eigenfunction expansion. We evaluate this term using the orthogonality formula
(17.25), and so, as t →∞,

u(t, x, y) −→ c0 =
〈 f ; 1 〉

‖ 1 ‖2
=

∫ ∫

Ω

f(x, y)σ(x, y) dx dy

∫ ∫

Ω

σ(x, y) dx dy

,

which is a weighted average of the initial temperature over the domain. In particular, in
the case of the heat equation, the weighting function σ is constant, and so the equilibrium
temperature

u(t, x, y) −→ c0 =
1

area Ω

∫ ∫

Ω

f(x, y) dx dy (17.28)

equals the average or mean initial temperature distribution. In this case, the heat cannot
escape through the boundary, and redistributes itself in a uniform manner over the domain.

As with its one-dimensional form, the planar heat equation has a smoothing effect on
the initial temperature distribution f(x, y). Assume that the eigenfunction coefficients are
uniformly bounded, so | ck | ≤ M for some constant M . This will certainly be the case if
f(x, y) is piecewise continuous, but even holds for quite rough initial data, including delta
functions. Then, at any time t > 0 after the initial instant, the coefficients ck e−λkt in the
eigenfunction series solution (17.23) are exponentially small as k →∞, which is enough to
ensure smoothness† of the solution u(t, x, y) for each t > 0. Therefore, a diffusion equation
immediately smoothes out jumps, corners and other discontinuities in the initial data. As
time progresses, the local variations in the solution become less and less, eventually (or,
more accurately, asymptotically) reaching a constant equilibrium state.

For this reason, diffusion processes can be effectively applied to clean and denoise
planar images. In this application, the initial data f(x, y) represents the grey-scale value
of the image at position (x, y), so that 0 ≤ f(x, y) ≤ 1 with 0 representing black, and 1
representing white. As time progresses, the solution u(t, x, y) represents a more and more
smoothed version of the image. Although this has the effect of removing unwanted noise
from the image, there is also a gradual blurring of the actual features. Thus, the “time” or
“multiscale” parameter t needs to be chosen to optimally balance between the two effects
— the larger t is the more noise is removed, but the more noticeable the blurring. A
representative illustration appears in Figure im2 . To further suppress undesirable blur-
ring effects, recent image processing filters are based on anisotropic (and thus nonlinear)
diffusion equations. See Sapiro, [128], for a survey of recent progress in this active field.

† For a general diffusion equation, this requires that the functions σ(x, y) and κ(x, y) be smooth.
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Since the forwards heat equation blurs the features in an image, running it backwards
in time should effectively sharpen the image. However, the one-dimensional argument
presented in Section 14.1 tells us that any direct attempt to run the heat flow backwards
immediately leads to difficulties, and the backwards diffusion equation is ill posed. Various
strategies have been proposed to circumvent this mathematical barrier, and thereby design
effective image enhancement algorithms.

Inhomogeneous Boundary Conditions and Forcing

Finally, let us briefly mention how to incorporate inhomogeneous boundary conditions
and external heat sources into the problem. Consider, as a specific example, the forced
heat equation

ut = γ∆u+ F (x, y), (x, y) ∈ Ω, (17.29)

where F (x, y) represents an unvarying external heat source, subject to inhomogeneous
Dirichlet boundary conditions

u = h for (x, y) ∈ ∂Ω. (17.30)

When the external forcing is fixed for all t, we expect the solution to eventually settle
down to an equilibrium configuration: u(t, x, y)→ ustar(x, y) as t →∞.

To determine the time-independent equilibrium temperature u = u?(x, y), we set
ut = 0 in the differential equation (17.29). We immediately see that equilibrium for this
problem is characterized by the solution to the Poisson equation

− γ∆u? = F, (x, y) ∈ Ω, (17.31)

subject to the same inhomogeneous Dirichlet boundary conditions (17.30). Positive defi-
niteness of the Dirichlet boundary value problem implies that there is a unique equilibrium
solution is , and can be characterized as the sole minimizer of the Dirichlet principle; for
details see Section 15.4.

Once we have determined the equilibrium solution — usually through a numerical
approximation — we set

ũ(t, x, y) = u(t, x, y)− u?(x, y),

so that ũ measures the deviation of the solution u from its eventual equilibrium. By
linearity ũ(t, x, y) satisfies the unforced heat equation subject to homogeneous boundary
conditions:

ũt = γ∆ũ, (x, y) ∈ Ω, u = 0, (x, y) ∈ ∂Ω.

Therefore, ũ can be expanded in an eigenfunction series (17.23), and hence will decay to
zero, ũ(t, x, y) → 0, at a exponentially fast rate governed by the smallest eigenvalue λ1

of the corresponding homogeneous Helmholtz boundary value problem. Consequently, the
solution to the forced, inhomogeneous problem

u(t, x, y) = ũ(t, x, y) + u?(x, y) −→ u?(x, y)

will approach thermal equilibrium, namely u?(x, y), at the same exponential rate as the
homogeneous boundary value problem.
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17.3. Explicit Solutions for the Heat Equation.

As noted earlier, explicit solution formulae are few and far between. In this section,
we discuss two specific cases where the Helmholtz eigenfunctions can be found in closed
form. The calculations rely on a separation of variables, which is applicable only to a
rather limited restricted class of domains, which include the rectangles and disks that we
discuss in detail here.

Heating of a Rectangle

A homogeneous rectangular plate

R =
{
0 < x < a, 0 < y < b

}

is heated to a prescribed initial temperature u(0, x, y) = f(x, y) and then insulated. The
sides of the plate are held at zero temperature. Our task is to determine how fast the plate
returns to thermal equilibrium.

The temperature u(t, x, y) evolves according to the heat equation

ut = γ(uxx + uyy),

subject to homogeneous Dirichlet conditions

u(0, y) = u(a, y) = 0 = u(x, 0) = u(x, b), 0 < x < a, 0 < y < b, (17.32)

along the boundary of the rectangle. As in (17.19), the basic solutions to the heat equa-
tion are obtained from an exponential ansatz u(t, x, y) = e−λt v(x, y). Substituting this
expressing into the heat equation, we find that the function v(x, y) solves the Helmholtz
eigenvalue problem

γ(vxx + vyy) + λ v = 0, (x, y) ∈ R, (17.33)

subject to the same homogeneous Dirichlet boundary conditions

v(x, y) = 0, (x, y) ∈ ∂R. (17.34)

To solve the rectangular Helmholtz eigenvalue problem, we shall, as in (15.13), intro-
duce a further separation of variables, writing

v(x, y) = p(x) q(y)

as the product of functions depending upon the individual Cartesian coordinates. Substi-
tuting this ansatz into the Helmholtz equation (17.33), we find

γ p′′(x) q(y) + γ p(x) q′′(y) + λ p(x) q(y) = 0.

To effect the variable separation, we collect all terms involving x on one side and all terms
involving y on the other side of the equation. This is accomplished by dividing by v = pq

and rearranging the terms; the result is

γ
p′′

p
= − γ

q′′

q
− λ ≡ −µ.
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The left hand side of this equation only depends on x, whereas the right hand side only
depends on y. As argued in Section 15.2, the only way this can occur is if the two sides equal
a common separation constant , denoted by −µ. (The minus sign is for later convenience.)
In this manner, we reduce our partial differential equation to a pair of one-dimensional
eigenvalue problems

γ p′′ + µ p = 0, γ q′′ + (λ− µ) q = 0,

each of which is subject to homogeneous Dirichlet boundary conditions

p(0) = p(a) = 0, q(0) = q(b) = 0.

To obtain a nontrivial solution to the Helmholtz equation, we seek nonzero solutions to
these two supplementary eigenvalue problems. The fact that we are dealing with a rect-
angular domain is critical to the success of this approach.

We have already solved these particular two boundary value problems many times;
see, for instance, equation (14.17). The eigenfunctions are, respectively,

pm(x) = sin
mπx

a
, m = 1, 2, 3, . . . , qn(y) = sin

nπy

b
, n = 1, 2, 3, . . . ,

with

µ =
m2 π2 γ

a2
, λ− µ =

n2 π2 γ

b2
, so that λ =

m2 π2 γ

a2
+

n2 π2 γ

b2
.

Therefore, the separable eigenfunction solutions to the Helmholtz boundary value problem
(17.32), (17.33) have the doubly trigonometric form

vm,n(x, y) = sin
mπx

a
sin

nπy

b
, (17.35)

with corresponding eigenvalues

λm,n =
m2 π2 γ

a2
+

n2 π2 γ

b2
=

(
m2

a2
+

n2

b2

)
π2 γ . (17.36)

Each of these corresponds to an exponentially decaying, separable solution

um,n(t, x, y) = e−λm,n t vm,n(x, y) = exp

[
−

(
m2

a2
+

n2

b2

)
π2 γ t

]
sin

mπx

a
sin

nπy

b
(17.37)

to the original heat equation.

Using the fact that the univariate sine functions form a complete system, it is not hard
to prove, [146], that the separable eigenfunction solutions (17.37) are complete, which
means that there are no non-separable eigenfunctions. As a consequence, the general
solution to the initial-boundary value problem can be expressed as a linear combination

u(t, x, y) =
∞∑

m,n=1

cm,n um,n(t, x, y) =
∞∑

m,n=1

cm,n e−λm,n t vm,n(x, y) (17.38)

1/12/04 757 c© 2003 Peter J. Olver



of our eigenfunction modes. The coefficients cm,n are prescribed by the initial conditions,
which take the form of a double Fourier sine series

f(x, y) = u(0, x, y) =

∞∑

m,n=1

cm,nvm,n(x, y) =

∞∑

m,n=1

cm,n sin
mπx

a
sin

nπy

b
.

Self-adjointness of the Laplacian coupled with the boundary conditions implies that
the eigenfunctions vm,n(x, y) are orthogonal with respect to the L2 inner product on the
rectangle, so

〈 vk,l ; vm,n 〉 =

∫ b

0

∫ a

0

vk,l(x, y) vm,n(x, y) dx dy = 0 unless k = m and l = n.

(The skeptical reader can verify the orthogonality relations directly from the formulae for
the eigenfunctions.) Thus, we can use our usual orthogonality formula (17.26) to compute
the coefficients

cm,n =
〈 f ; vm,n 〉

‖ vm,n ‖
2
=
1

ab

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy

b
dx dy, (17.39)

where the formula for the norms of the eigenfunctions

‖ vm,n ‖
2 =

∫ b

0

∫ a

0

vm,n(x, y)2 dx dy = ab. (17.40)

follows from a direct evaluation of the double integral. (Unfortunately, while the orthogo-
nality is automatic, the computation of the norm must inevitably be done “by hand”.)

The rectangle approaches thermal equilibrium at the rate equal to the smallest eigen-
value,

λ1,1 =

(
1

a2
+
1

b2

)
π2 γ, (17.41)

which depends upon the reciprocals of the squared lengths of the sides of the rectangle and
the diffusion coefficient. The larger the rectangle, or the smaller the diffusion coefficient,
the smaller λ1,1, and hence slower the return to thermal equilibrium. The higher modes,
with m and n large, decay to zero almost instantaneously, and so the solution immediately
behaves like a finite sum over a few low order modes. Assuming that c1,1 6= 0, the slowest
decaying mode in the Fourier series (17.38) is

c1,1 u1,1(t, x, y) = c1,1 exp

[
−

(
1

a2
+
1

b2

)
π2 γ t

]
sin

πx

a
sin

πy

b
. (17.42)

Thus, in the long run, the temperature is of one sign, either positive or negative depending
upon the sign of c1,1, throughout the rectangle. As in the one-dimensional case, this obser-
vation is, in fact, indicative of the general phenomenon that the eigenfunction associated
with the smallest positive eigenvalue of the Laplacian is of one sign throughout the domain.

A typical solution is plotted in Figure heatrect
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Heating of a Disk

Let us perform a similar analysis on the heating of a circular disk. For simplicity, we
take the diffusion coefficient γ = 1. We also assume that the disk D = {x2 + y2

≤ 1 } has
radius 1. We shall solve the heat equation onD subject to homogeneous Dirichlet boundary
values of zero temperature at the circular edge ∂D = C. Thus, the full initial-boundary
value problem is

ut = ∆u, x2 + y2 < 1, t > 0,

u(t, x, y) = 0, x2 + y2 = 1,

u(0, x, y) = f(x, y), x2 + y2
≤ 1.

(17.43)

A simple rescaling of space and time can be used to recover the solution for an arbitrary
diffusion coefficient and a disk of arbitrary radius from this particular case; see Exercise .

Since we are working in a circular domain, we instinctively pass to polar coordinates
(r, θ). In view of the polar coordinate formula (15.27) for the Laplace operator, the heat
equation and boundary conditions take the form

∂u

∂t
=

∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2

∂2u

∂θ2
, 0 ≤ r < 1, t > 0,

u(t, 1, θ) = 0, u(0, r, θ) = f(r, θ), r ≤ 1,

(17.44)

where the solution u(t, r, θ) is defined for all 0 ≤ r ≤ 1 and t ≥ 0. Moreover,

u(t, r, θ + 2π) = u(t, r, θ)

must be a 2π periodic function of the angular variable to ensure that it represents a
single-valued function on the entire disk.

To obtain the separable solutions

u(t, r, θ) = e−λt v(r, θ),

we need to solve the polar coordinate form of the Helmholtz equation

∂2v

∂r2
+
1

r

∂v

∂r
+
1

r2

∂2v

∂θ2
+ λ v = 0,

0 ≤ r < 1,

0 ≤ θ ≤ 2π,
(17.45)

subject to the boundary conditions

v(1, θ) = 0, v(r, θ + 2π) = v(r, θ). (17.46)

We apply a further separation of variables to the polar Helmholtz equation by writing

v(r, θ) = p(r) q(θ). (17.47)

Substituting into (17.45), and then collecting together all terms involving r and all terms
involving θ, we are led to the pair of ordinary differential equations

q′′ + µ q = 0, r2 p′′ + r p′ + (λ r2
− µ) p = 0,
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where λ is the Helmholtz eigenvalue, and µ the separation constant. The periodicity
condition (17.46) requires that q(θ) be 2π periodic, and hence

q(θ) = cosmθ or sinmθ, where µ = m2, (17.48)

span the eigenspace. Note that when m = 0, there is only one independent periodic
solution, namely q(θ) ≡ 1; the second solution, q(θ) = θ, does not satisfy the periodicity
constraint.

Using the preceding formula for the separation constant, µ = m2, the second differ-
ential equation for p(r) assumes the form

r2 d2p

dr2
+ r

dp

dr
+ (λ r2

−m2) p = 0, 0 ≤ r ≤ 1. (17.49)

Ordinarily, one requires two boundary conditions to specify a solution to such a second
order boundary value problem. But our Dirichlet condition, namely p(1) = 0, only specifies
its value at one of the endpoints: r = 1. The other endpoint, r = 0, is a singular

point for the ordinary differential equation, because the coefficient, r2, of the highest
order derivative, p′′, vanishes there. This should remind you of our solution to the Euler
differential equation (15.32) when we solved the Laplace equation on the disk. As there,
we only need that the solution be bounded at r = 0, and hence are led to require

| p(0) | < ∞, p(1) = 0. (17.50)

These singular boundary conditions turn out to be sufficient to distinguish the relevant
eigenfunction solutions to (17.49).

Although (17.49) arises in a variety of applications, this may be the first time that
you have encountered this particular ordinary differential equation. It is not an elementary
equation, and its solutions cannot be written in terms of elementary functions. Neverthe-
less, owing to its significance in a wide range of physical applications, its solutions have
been extensively studied and are, in a sense, well-known. After some preliminary manip-
ulations, we shall summarize the relevant properties of the solutions, leaving details and
proofs to Appendix C.

To simplify the analysis, we make a preliminary rescaling of the independent variable,
replacing by r by

z =
√

λ r.

Note that, by the chain rule,

dp

dr
=
√

λ
dp

dz
,

d2p

dr2
= λ

d2p

dz2
,

and hence

r
dp

dr
= z

dp

dz
, r2 d2p

dr2
= z2 d2p

dz2
.

The net effect is to eliminate the eigenvalue parameter λ (or, rather, hide it in the change
of variables), so that (17.49) assumes the slightly simpler form

z2 d2p

dz2
+ z

dp

dz
+ (z2

−m2) p = 0. (17.51)
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Figure 17.1. Bessel Functions.

The ordinary differential equation (17.51) is known as Bessel’s equation, named after the
early 19th century astronomer Wilhelm Bessel, who used the solutions to solve a prob-
lem arising in the study of planetary orbits. The solutions to Bessel’s equation are an
indispensable tool in applied mathematics, physics and engineering.

The Bessel equation cannot (except in special instances) be solved in terms of elemen-
tary functions. The one thing we know for sure is that, as with any second order ordinary
differential equation, there are two linearly independent solutions. However, it turns out
that, up to constant multiple, only one solution remains bounded as z → 0. This solu-
tion is known as the Bessel function of order m, and is denoted by Jm(z). Applying the
general systematic method for finding power series solutions to linear ordinary differential
equations presented in Appendix C, it can be shown that the Bessel function of order m

has the Taylor expansion

Jm(z) =

∞∑

k=0

(−1)k zm+2k

2m+2k k ! (m+ k) !
(17.52)

=
zm

2m m !

[
1−

z2

4 (m+ 1)
+

z4

32 (m+ 1)(m+ 2)
−

z6

384 (m+ 1)(m+ 2)(m+ 3)
+ · · ·

]

at the origin z = 0. Verification that this series solves the Bessel equation of order m is a
straightforward exercise. Moreover, a simple application of the ratio test for power series
tells us that the series converges for all (complex) values of z. Indeed, the convergence is
quite rapid when z is of moderate size, and so summing the series is a reasonably effec-
tive method for computing the Bessel function Jm(z) — although in serious applications
one adopts more sophisticated numerical techniques based on asymptotic expansions and
integral formulae, [3, 116]. Figure 17.1 displays graphs of the first three Bessel functions
for z > 0. Most software packages, both symbolic and numerical, contain routines for
accurately evaluating and graphing Bessel functions.

Reverting back to our original radial coordinate r = z/
√

λ, we conclude that every
solution to the radial equation (17.49) which is bounded at r = 0 is a constant multiple

p(r) = Jm
(√

λ r
)

(17.53)

of the rescaled Bessel function of order m. So far, we have only dealt with the boundary
condition at the singular point r = 0. The Dirichlet condition at the other end requires

p(1) = Jm
(√

λ
)
= 0.
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Therefore, in order that λ be a legitimate eigenvalue,
√

λ must be a root of the mth order
Bessel function Jm.

Remark : We already know, owing to the positive definiteness of the Dirichlet bound-
ary value problem, that the eigenvalues λ > 0 must be positive, so there is no problem
taking the square root. Indeed, it can be proved that the Bessel functions do not have any
negative roots!

The graphs of Jm(z) strongly indicate, and, indeed, it can be rigorously proved, that
each Bessel function oscillates between positive and negative values as z increases above
0, with slowly decreasing amplitude. As a consequence, there exists an infinite sequence
of Bessel roots, which we number in the order in which they appear:

Jm(ζm,n) = 0, where 0 < ζm,1 < ζm,2 < ζm,3 < · · · with ζm,n −→∞.

(17.54)
It is worth noting that the Bessel functions are not periodic, and their roots are not evenly
spaced.

Owing to their physical importance in a wide range of problems, the Bessel roots have
been extensively tabulated in the literature, cf. [3, 48]. A table of all Bessel roots that are
< 12 in magnitude follows. The rows of the table are indexed by n, the root number, and
the columns by m, the order of the Bessel function.

Table of Bessel Roots ζm,n

0 1 2 3 4 5 6 7

1 2.4048 3.8317 5.1356 6.3802 7.5883 8.7715 9.9361 11.0860

2 5.5201 7.0156 8.4172 9.761 11.0650
...

...
...

3 8.6537 10.1730 11.6200
...

...

4 11.7920
...

...

...
...

Remark : According to (17.52),

Jm(0) = 0 for m > 0, while J0(0) = 1.

However, we do not count 0 as a bona fide Bessel root, since it does not lead to a valid
eigenfunction for the Helmholtz boundary value problem.

Summarizing our progress, the eigenvalues

λm,n = ζ2
m,n, n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (17.55)
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Figure 17.2. Fundamental Modes for a Disk.

of the Bessel boundary value problem (17.49), (17.50) are the squares of the roots of the
Bessel function of order m. The corresponding eigenfunctions are

wm,n(r) = Jm(ζm,n r) , n = 1, 2, 3, . . . , m = 0, 1, 2, . . . , (17.56)

defined for 0 ≤ r ≤ 1. Combining (17.56) with the formula (17.48) for the angular compo-
nents, we conclude that the separable solutions (17.47) to the polar Helmholtz boundary
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value problem (17.45) are

v0,n(r, θ) = J0(ζ0,n r),

vm,n(r, θ) = Jm(ζm,n r) cosmθ,

v̂m,n(r, θ) = Jm(ζm,n r) sinmθ,

where
n = 1, 2, 3, . . . ,

m = 1, 2, . . . .

These solutions define the natural modes of vibration for a disk, and Figure 17.2 plots the
first few of them. The eigenvalues λ0,n are simple, and contribute radially symmetric eigen-
functions, whereas the eigenvalues λm,n for m > 0 are double, and produce two linearly
independent separable eigenfunctions, with trigonometric dependence on the angular vari-
able. As in the rectangular case, it is possible to prove that the separable eigenfunctions
are complete — there are no other eigenfunctions — and, moreover, every (reasonable)
function defined on the unit disk can be written as a generalized Fourier series in the
Bessel eigenfunctions.

We have now produced the basic solutions

u0,n(t, r) = e− ζ2
0,n

t J0(ζ0,n r),

um,n(t, r, θ) = e− ζ2
m,n

t Jm(ζm,n r) cosmθ,

ûm,n(t, r, θ) = e− ζ2
m,n

t Jm(ζm,n r) sinmθ,

n = 1, 2, 3, . . . ,

m = 1, 2, . . . .
(17.57)

to the Dirichlet boundary value problem for the heat equation on the unit disk. The
general solution is a linear superposition, in the form of an infinite series

u(t, r, θ) =
∞∑

n=1

a0,n u0,n(t, r) +
∞∑

m,n=1

[
am,n um,n(t, r, θ) + bm,n ûm,n(t, r, θ)

]
.

As usual, the coefficients am,n, bm,n are determined by the initial condition, so

u(0, r, θ) =

∞∑

n=1

a0,n v0,n(r) +

∞∑

m,n=1

[
am,n vm,n(r, θ) + bm,n v̂m,n(r, θ)

]
= f(r, θ).

Thus, we must expand the initial data into a Fourier–Bessel series, which involves Bessel
functions along with the original Fourier trigonometric functions.

According to Section 17.2, the eigenfunctions are orthogonal† with respect to the
standard L2 inner product

〈u ; v 〉 =

∫ ∫

D

u(x, y) v(x, y) dx dy =

∫ 1

0

∫ 2π

0

f(r, θ) u(r, θ) v(r, θ) r dθ dr

on the unit disk. (Note the extra factor of r coming from the polar coordinate form (A.51)
of the area element dx dy = r dr dθ.) The norms of the Fourier–Bessel functions are given
by the interesting formula

‖ vm,n ‖ = ‖ v̂m,n ‖ =
√

π
∣∣ J ′m(ζm,n)

∣∣ (17.58)

† Technically, this follows from general principles except for the two eigenfunctions correspond-
ing to the double eigenvalues, whose orthogonality must be verified by hand.
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that involves the value of the derivative of the Bessel function at the appropriate Bessel
root. A proof of this formula will be given in Appendix C; see Exercises , . A table of
their numerical values follows; as above, the rows are indexed by n and the columns by m.

Norms of the Fourier–Bessel functions ‖ vm,n ‖ = ‖ v̂m,n ‖

0 1 2 3 4 5 6 7

1 0.9202 0.7139 0.6020 0.5287 0.4757 0.4350 0.4026 0.3759

2 0.6031 0.5319 0.4810 0.4421 0.4110 0.3854 0.3638 0.3453

3 0.4811 0.4426 0.4120 0.3869 0.3658 0.3477 0.3319 0.3180

4 0.4120 0.3870 0.3661 0.3482 0.3326 0.3189 0.3067 0.2958

Orthogonality of the eigenfunctions implies that

am,n =
〈 f ; vm,n 〉

‖ vm,n ‖
2
=

1

π J ′m(ζm,n)
2

∫ 1

0

∫ 2π

0

f(r, θ) Jm(ζm,n r) r cosmθ dθ dr,

bm,n =
〈 f ; v̂m,n 〉

‖ v̂m,n ‖
2
=

1

π J ′m(ζm,n)
2

∫ 1

0

∫ 2π

0

f(r, θ) Jm(ζm,n r) r sinmθ dθ dr.

(17.59)

In accordance with the general theory, each individual solution (17.57) to the heat equation
decays exponentially fast, at a rate prescribed by the square of the corresponding Bessel
root λm,n = ζ2

m,n. In particular, the dominant mode, meaning the one that persists the
longest, is

u0,1(t, r, θ) = e− ζ2
0,1

t J0(ζ0,1 r). (17.60)

Its decay rate ζ2
0,1 ≈ 5.783 is the square of the first root of the Bessel function J0(z). This

is the rate at which a disk whose boundary is held at zero temperature approaches ther-
mal equilibrium. The dominant eigenfunction v0,1(r, θ) = J0(ζ0,1 r) > 0 is strictly positive
within the entire disk and radially symmetric. Consequently, for most initial conditions
(specifically those for which c0,1 6= 0), the disk’s temperature distribution eventually be-
comes entirely of one sign and radially symmetric, exponentially decaying to zero at the
rate of slightly less than 6. See Figure 17.3 for a plot of a typical solution, displayed as
successive times t = 0, .04, .08, .12, .16, .2. Note how, in accordance with the theory, the
solution almost immediately acquires a radial symmetry, followed by a fairly rapid decay
to thermal equilibrium.

17.4. The Fundamental Solution.

As we learned in Section 14.1, the fundamental solution to the heat equation measures
the temperature distribution resulting from a concentrated initial heat source, e.g., a hot
soldering iron applied instantaneously at one point of the plate. The physical problem is
modeled mathematically by imposing a delta function as the initial condition for the heat
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Figure 17.3. Heat Diffusion in a Disk.

equation, along with homogeneous boundary conditions of the appropriate type. Once we
know the fundamental solution, we will be in a position to recover the solution for arbitrary
initial data by a linear superposition principle.

As in the one-dimensional case, we shall concentrate on the most tractable case, when
the domain is the entire plane: Ω = R2. Our first goal will be to solve the initial value
problem

ut = γ∆u, u(0, x, y) = δ(x− ξ, y − η) = δ(x− ξ) δ(y − η), (17.61)

for all t > 0 and all (x, y) ∈ R2. The initial data is a delta function representing a concen-
trated unit heat source placed at position (ξ, η). The resulting solution u = F (t, x, y; ξ, η)
is the fundamental solution for the heat equation on all of R2.

The easiest route to the desired solution is the following simple lemma that uses so-
lutions of the one-dimensional heat equation to construct solutions of the two-dimensional
version.

Lemma 17.2. If v(t, x) and w(t, x) are any two solutions to the one-dimensional
heat equation ut = γ uxx, then the product

u(t, x, y) = v(t, x)w(t, y) (17.62)

is a solution to the two-dimensional heat equation ut = γ (uxx + uyy).

Proof : Our assumptions imply that that vt = γ vxx, while wt = γ wyy when we write
w(t, y) as a function of t and y. Therefore, when we differentiate (17.62),

∂u

∂t
=

∂v

∂t
w + v

∂w

∂t
= γ

∂2v

∂x2
w + γ v

∂2w

∂y2
= γ

(
∂2u

∂x2
+

∂2u

∂y2

)
,

and hence u(t, x, y) solves the heat equation. Q.E.D.

1/12/04 766 c© 2003 Peter J. Olver



Thus, for example, if

v(t, x) = e−γω
2 t cosωx, w(t, y) = e−γ ν

2 t cos ν y,

are separable solutions of the one-dimensional heat equation, then

u(t, x, y) = e−γ (ω2+ν2) t cosωx cos ν y

is one of the separable solutions in rectangular coordinates.

A more interesting case is to let

v(t, x) =
1

2
√

πγ t
e−(x−ξ)2/4γ t, w(t, y) =

1

2
√

πγ t
e−(y−η)2/4γ t, (17.63)

both be the fundamental solutions (14.57) to the one-dimensional heat equation at points
x = ξ and y = η, respectively. Multiplying these two solutions together produces the
fundamental solution for the two-dimensional problem.

Proposition 17.3. The fundamental solution to the heat equation ut = γ∆u corre-

sponding to a unit delta function placed at position (ξ, η) ∈ R2 at the initial time t0 = 0
is

F (t, x− ξ, y − η) =
1

4πγ t
e− [ (x−ξ)2+(y−η)2 ]/4γ t. (17.64)

Proof : since we already know that (17.63) are solutions to the one-dimensional heat
equation, Lemma 17.2 guarantees that u(t, x, y) = v(t, x)w(t, y) as given by (17.64) solves
the planar equation for t > 0. Moreover, at the initial time

u(o, x, y) = v(0, x)w(0, y) = δ(x− ξ) δ(y − η)

is a product of delta functions, and hence the result follows. We note that the total heat
∫ ∫

u(t, x, y) dx dy =

(∫
v(t, x) dx

)(∫
w(t, y) dy

)
= 1, t ≥ 0,

remains constant, while

lim
t→0+

u(t, x, y)

{
∞, (x, y) = (ξ, η),

0, otherwise.

has the standard delta function limit. Q.E.D.

As illustrated in Figure 17.4 at times t = .01, .02, .05, .1, the initially concentrated
heat spreads out in a radially symmetric manner. The total amount of heat

∫ ∫
u(t, x, y) dx dy = 1, t ≥ 0,

remains constant, but at each individual point (x, y), after a slight initial rise, the temper-
ature decays back to zero at a rate proportional to 1/t.

Both the planar fundamental solution and its one-dimensional have a bell-shaped
Gaussian exponential profile. The one difference is the initial factor. In a one-dimensional
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Figure 17.4. Fundamental Solution to the Planar Heat Equation.

medium, the fundamental solution decays in proportion to 1/
√

t, whereas in two dimensions
the decay is more rapid, being proportional to 1/t. The physical explanation is that the
energy is able to spread out in two independent directions, and hence diffuse away from its
initial source faster. As we shall see, the decay in three-dimensional space is more rapid
still, being proportional to t−3/2 for similar reasons; see (18.97).

The principal purpose of the fundamental solution is to solve the general initial value
problem. We express the initial temperature distribution as a superposition of delta func-
tion sources,

u(0, x, y) = f(x, y) =

∫ ∫
f(ξ, η) δ(x− ξ, y − η) dξ dη,

where, at the point (ξ, η) ∈ R2, the source has magnitude f(ξ, η). Linearity implies that the
solution is then given by the same superposition of the associated fundamental solutions.
Let us state this result as a theorem.

Theorem 17.4. The solution to the initial value problem

ut = γ∆u, u(t, x, y) = f(x, y), (x, y) ∈ R2,

is given by the linear superposition formula

u(t, x, y) =
1

4πγ t

∫ ∫
f(ξ, η) e− [ (x−ξ)2+(y−η)2 ]/4γ t dξ dη (17.65)

We can interpret the solution formula (17.65) as a two-dimensional convolution

u(t, x, y) = F (t, x, y) ∗ f(x, y) (17.66)

of the initial data with a one-parameter family of progressively wider and shorter Gaussian
filters; compare (13.113). As in the one-dimensional version, convolution with such an
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integral kernel can be interpreted as a form of weighted averaging of the function, which
has the effect of smoothing out and blurring the initial signal f(x, y).

Example 17.5. If our initial temperature distribution is constant on a circular
region, say

u(0, x, y) =

{
1 x2 + y2 < 1,

0, otherwise,

Then the solution can be evaluated using (17.65), as follows:

u(t, x, y) =
1

4π t

∫ ∫

D

e−[ (x−ξ)2+(y−η)2 ]/4 t dξ dη,

where the integral is over the unit disk D = {ξ2 + η2
≤ 1}. Let us evaluate the integral

by going to polar coordinates:

u(t, x, y) =
1

4π t

∫ 2π

0

∫ 1

0

e−[ (x−ρ cos θ)2+(y−ρ sin θ)2 ]/4 t ρ dρ dθ.

Unfortunately, the final integral cannot be done in closed form in terms of elementary
functions; see Exercise for an expression in terms of complex Bessel functions. On the
other hand, numerical evaluation of the integral is straightforward. A plot of the resulting
radially symmetric solution appears in Figure h2disk .

For more general configurations, where analytical solutions are no longer available,
numerical solutions can be implemented based on a two-dimensional variant of the Crank–
Nicholson scheme (14.154), relying on either finite differences or finite elements to discretize
the space coordinates. We will not dwell on the details, but refer the interested reader to
[30, 121, nPDE].

17.5. The Planar Wave Equation.

The second important class of dynamical equations are those governing vibrational
motions. The simplest planar system of this type is the two-dimensional wave equation

∂2u

∂t2
= c2∆u = c2

(
∂2u

∂x2
+

∂2u

∂y2

)
, (17.67)

which models the free (unforced) vibrations of a uniform two-dimensional membrane (a
drum, say). Here u(t, x, y) represents the displacement of the membrane at time t and posi-
tion (x, y) ∈ Ω, where Ω ⊂ R2 is the domain representing the shape of the membrane. The
constant c2 > 0 encapsulates the physical properties of our membrane (density, tension,
stiffness, thickness, etc.), with c being called, as in the one-dimensional version, thewave
speed , since it turns out to be the speed at which localized signals propagate through
the membrane. In this model, we are only allowing small, transverse (meaning vertical)
displacements of the membrane. Large elastic vibrations lead to the nonlinear partial
differential equations of elastodynamics, [69]. The bending vibrations of a flexible plate,
which can be viewed as the two-dimensional version of a beam, are governed by a more
complicated fourth order partial differential equation; see Exercise .
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The solution u(t, x, y) to the wave equation will be uniquely specified once we impose
suitable boundary conditions and initial conditions. The Dirichlet conditions

u = h on ∂Ω, (17.68)

correspond to gluing our membrane to a fixed boundary or rim. On the other hand, the
homogeneous Neumann conditions

∂u

∂n
= 0 on ∂Ω, (17.69)

represent a free boundary where the membrane is not attached to any support. Mixed
boundary conditions attach part of the boundary and leave the remaining portion free to
vibrate:

u = h on D,
∂u

∂n
= 0 on N, (17.70)

where ∂Ω = D ∪ N with D and N non-overlapping. Since the wave equation is second
order in time, we also need to impose two initial conditions:

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = g(x, y), (x, y) ∈ Ω. (17.71)

The first one prescribes the initial displacement of the membrane, while the second pre-
scribes its initial velocity.

The wave equation is the simplest example of a general second order system of New-
tonian form

∂2u

∂t2
= −K[u ] = −∇∗ ◦∇u. (17.72)

As in (17.15), using general weighted inner products

〈u ; ũ 〉 =

∫ ∫

Ω

u(x, y) ũ(x, y) ρ(x, y) dx dy, 〈〈v ; ṽ 〉〉 =

∫ ∫

Ω

v(x, y) · ṽ(x, y)κ(x, y) dx dy,

(17.73)
the adjoint to the gradient is a rescaled version of the divergence operator

∇
∗v = −

1

ρ
∇ · (κv).

Therefore, the general Newtonian system (17.72) takes the form

utt = −K[u ] =
1

ρ
∇ · (κv),

or, in full detail,

ρ(x, y)
∂2u

∂t2
=

∂

∂x

(
κ(x, y)

∂u

∂x

)
+

∂

∂y

(
κ(x, y)

∂u

∂y

)
. (17.74)

This equation models the small transverse vibrations of a nonuniform membrane, in which
ρ(x, y) > 0 represents the density of the membrane at the point (x, y) ∈ Ω, while κ(x, y) > 0
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represents its stiffness, in direct analogy with the one-dimensional version (14.82). In
particular, if the material is homogeneous, then both ρ and κ are constant, and (17.74)
reduces to the two-dimensional wave equation (17.67) with wave speed

c =

√
κ

ρ
. (17.75)

As in bars and strings, either increasing the stiffness, or decreasing the density, will cause
the wave speed c to increase, and hence waves (signals) will propagate faster through the
membrane.

Separation of Variables

Unfortunately, there is no explicit analytical technique comparable to the d’Alembert
formula (14.121) for solving multi-dimensional wave equations. As a result, we are forced
to fall back on our universal solution tool — separation of variables. Initially, the technique
applies equally well to general vibration equations (17.72), and so we shall work in this
context for the time being. The reader can, if desired, immediately specialize to the
wave equation (17.67) itself, as explicit formulae will only be found in this case. We
assume throughout that the boundary conditions — Dirichlet, Neumann, or mixed —
are homogeneous; see Exercise for a outline of how to handle inhomogeneous boundary
conditions.

As in the one-dimensional analysis from Section 14.4, the separable solutions to the
vibration equation (17.72) are found by using a trigonometric ansatz

u(t, x, y) = cosωt v(x, y). (17.76)

By linearity of K, which does not involve any t differentiation,

utt = −ω2 cosωt v(x, y), K[u ] = cosωt K[v ].

Substituting into (17.72), and canceling out the cosine terms, we find that v(x, y) must
satisfy the by now familiar eigenvalue problem

K[v ] = ω2 v = λ v, (17.77)

in which v is the eigenfunction whose eigenvalue λ = ω2 is equal to the square of the
vibrational frequency ω. The eigenfunction v(x, y) is always required to satisfy the relevant
boundary conditions. Specializing to the wave equation (17.67), the eigenvalue problem
(17.77) reduces to the same Helmholtz equation

c2∆v + λ v = c2 (vxx + vyy) + λ v = 0 (17.78)

that we analyzed earlier in this chapter.

As we learned, in the stable, positive definite cases — meaning either Dirichlet or
mixed boundary conditions — the operator K admits an infinite sequence of positive
eigenvalues

0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · with λk −→∞ as k −→∞.
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Each eigenvalue and eigenfunction pair will produce two vibrating solutions

uk(t, x, y) = cosωk t vk(x, y) , ũk(t, x, y) = sinωk t vk(x, y) , (17.79)

of frequency ωk =
√

λk. Note that the higher order modes vibrate faster, with progressively
higher frequencies: ωk →∞ as k →∞.

The general solution to the initial value problem can be built up as a quasi-periodic
linear combination

u(t, x, y) =
∞∑

k=1

ak uk(t, x, y) + bk ũk(t, x, y) =
∞∑

k=1

(
ak cosωk t+ bk sinωk t

)
vk(x, y)

(17.80)
of the fundamental vibrational modes, in the form of an eigenfunction series. The eigen-
function coefficients ak, bk are prescribed by the initial conditions. Thus, evaluating the
solution series (17.80) and its time derivative† at the initial time t = 0, we find

∞∑

k=1

ak vk(x, y) = f(x, y),
∞∑

k=1

ωk bk vk(x, y) = g(x, y). (17.81)

We then appeal to the orthogonality of the eigenfunctions to compute the coefficients

ak =
〈 f ; vk 〉

‖ vk ‖
2
=

∫ ∫

Ω

f vk ρ dx dy

∫ ∫

Ω

v2
k ρ dx dy

, bk =
1

ωk

〈 g ; vk 〉

‖ vk ‖
2
=

∫ ∫

Ω

g vk ρ dx dy

ωk

∫ ∫

Ω

v2
k ρ dx dy

, (17.82)

via our usual formulae, (17.25). In the case of the wave equation, the density ρ is constant,
and hence can be canceled from the numerator and denominator of the orthogonality
formulae (17.81). As long as the initial data is reasonably well-behaved, Theorem 17.1 will
justify the convergence of the resulting series solution.

The unstable, semi-definite case of pure Neumann boundary conditions, models a
physical membrane that has not been attached anywhere along its boundary, and so is
free to move off in a vertical direction. Here, the constant solution v0(x, y) ≡ 1 is a
null eigenfunction, corresponding to the zero eigenvalue λ0 = 0. In general, each null
eigenfunction provides two solutions to the vibration equation (17.72), which in the present
situation are the two elementary solutions

u0(t, x, y) = 1, ũ0(t, x, y) = t.

The first solution represents a membrane that has been displaced by a fixed amount in the
vertical direction, while the second represents a membrane that is uniformly moving in the
vertical direction with speed 1. (Think of the membrane moving in outer space unaffected

† We are assuming that the series converges sufficiently rapidly in order to be allowed to
differentiate term by term.
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by any external gravitational force.) The general solution to the vibration equation then
has the series form

u(t, x, y) = a0 + b0 t+
∞∑

k=1

(
ak cosωk t+ bk sinωk t

)
vk(x, y). (17.83)

The coefficients ak, bk for k > 0 are given by the same orthogonality formulae (17.82). The
only unstable, nonperiodic mode is the linearly growing term component b0 t in (17.83).
Its coefficient

b0 =
〈 g ; 1 〉

‖ 1 ‖2
=

∫ ∫

Ω

g ρ dx dy

∫ ∫

Ω

ρ dx dy

,

is a weighted average of the initial velocity g(x, y) = ut(0, x, y) over the domain. In the
case of the wave equation, the density ρ is constant, and hence

b0 =
1

area Ω

∫ ∫

Ω

g(x, y) dx dy

equals the average initial velocity. If the (weighted) average initial velocity b0 6= 0 is
nonzero, then the membrane will move off at an average vertical speed b0 — while con-
tinuing to vibrate in any of the vibrational modes that have been excited by the initial
displacement and/or initial velocity. Again, this is merely a two-dimensional translation
of our observations of a free, vibrating bar — which in turn was the continuum version of
an unsupported structure.

Remark : an interesting question is whether two differently shaped drums can have
identical vibrational frequencies. Or, to state the problem in another way, can one recon-
struct the shape of a drum by listening to its vibrations? The answer turns out to be “no”,
but for quite subtle reasons. See [drum] for a discussion.

17.6. Analytical Solutions of the Wave Equation.

So far, we have looked at some of the general, qualitative features of the two-dimen-
sional vibration and wave equations. Actual analytical solutions are, of course, harder to
come by, and can only be found in very special geometrical configurations. In this section,
we discuss the two most important special cases — rectangular and circular membranes.

Remark : Most realistic vibration problems need to be solved numerically, by adap-
tations of the integration schemes outlined in Section 14.6. The spatial discretization is
implemented using either finite differences, or a version of finite elements. We refer the
reader to [nPDE] for details.

Vibration of a Rectangular Drum

Let us first consider the vibrations of a membrane in the shape of a rectangle

R =
{
0 < x < a, 0 < y < b

}
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with side lengths a and b, whose sides are fixed to the (x, y)–plane. Thus, we seek to solve
the wave equation

utt = c2∆u = c2(uxx + uyy), 0 < x < a, 0 < y < b, (17.84)

subject to the initial and boundary conditions

u(t, 0, y) = v(t, a, y) = 0 = v(t, x, 0) = v(t, x, b),

u(0, x, y) = f(x, y), ut(0, x, y) = g(x, y),

0 < x < a,

0 < y < b.
(17.85)

As we saw in Section 17.3

c2(vxx + vyy) + λ v = 0, (x, y) ∈ R, (17.86)

on a rectangle, subject to the homogeneous Dirichlet boundary conditions

v(0, y) = v(a, y) = 0 = v(x, 0) = v(x, b), 0 < x < a, 0 < y < b, (17.87)

are

vm,n(x, y) = sin
mπx

a
sin

nπy

b
, where λm,n = π2 c2

(
m2

a2
+

n2

b2

)
, (17.88)

with m,n = 1, 2, . . . . The fundamental frequencies of vibration are the square roots of the
eigenvalues, so

ωm,n =
√

λm,n = π c

√
m2

a2
+

n2

b2
. (17.89)

The frequencies will depend upon the underlying geometry — meaning the side lengths
— of the rectangle, as well as the wave speed, which is turn is a function of the density
and stiffness of the membrane, (17.75). The higher the wave speed c, or the smaller the
rectangle, the faster the vibrations. In layman’s terms (17.90) quantifies the observation
that smaller, stiffer drums of less dense material vibrate faster.

According to (17.79), the normal modes of vibration of our rectangle are

um,n(t, x, y) = cos ωm,n t sin
mπx

a
sin

nπy

b
,

ũm,n(t, x, y) = sin ωm,n t sin
mπx

a
sin

nπy

b
.

(17.90)

The general solution can be written as a double Fourier series

u(t, x, y) =
∞∑

m,n=1

[
am,n um,n(t, x, y) + bm,n ũm,n(t, x, y)

]
.

in the normal modes. The coefficients am,n, bm,n are fixed by the initial displacement
u(0, x, y) = f(x, y) and the initial velocity ut(0, x, y) = g(x, y) as in (17.81). The orthogo-
nality relations among the eigenfunctions imply

am,n =
〈 vm,n ; f 〉

‖ vm,n ‖
2
=
1

a b

∫ b

0

∫ a

0

f(x, y) sin
mπx

a
sin

nπy

b
dx dy.

bm,n =
〈 vm,n ; g 〉

ωm,n ‖ vm,n ‖
2
=

1

π c
√

m2 b2 + n2 a2

∫ b

0

∫ a

0

g(x, y) sin
mπx

a
sin

nπy

b
dx dy.
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Figure 17.5. Vibrations of a Square.

Since the fundamental frequencies are not rational multiples of each other, the general
solution is a genuinely quasi-periodic superposition of the various normal modes.

In Figure 17.5 we plot the solution for the initial concentrated displacement

u(0, x, y) = f(x, y) = e−100[(x−.5)2+(y−.5)2 ]

starting at the center of a unit square, so a = b = 1. The plots are at successive times
0, .02, .04, . . . , 1.6. Note that, unlike a one-dimensional string where a concentrated dis-
placement remains concentrated at all subsequent times and periodically repeats, the ini-
tial displacement spreads out in a radially symmetric manner and propagates to the edges
of the rectangle, where it reflects and then interacts with itself. However, owing to the
quasiperiodicity of the solution, the displacement of the drum never exactly repeats itself,
and the initial concentrated signal never quite reforms in the center.

Vibration of a Circular Drum

Let us next analyze the vibrations of a circular membrane with fixed Dirichlet bound-
ary conditions. As always, we build up the solution as a quasi-periodic linear combination
of the normal modes, which, by (17.79), are fixed by the eigenfunctions for the associated
Helmholtz boundary value problem.

As we saw in Section 17.3, the eigenfunctions of the Helmholtz equation on a disk
of radius 1, say, subject to homogeneous Dirichlet boundary conditions, are products of
trigonometric and Bessel functions:

vm,n(r, θ) = cosmθ Jm(ζm,n r),

ṽm,n(r, θ) = sinmθ Jm(ζm,n r),

m = 0, 1, 2, . . . ,

n = 1, 2, 3, . . . .
(17.91)
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Here r, θ are the usual polar coordinates, while ζm,n denotes the nth root of the mth order

Bessel function Jm(z), cf. (17.54). The corresponding eigenvalue is its square, λm,n = ζ2
m,n,

and hence the natural frequencies of vibration are the product of the Bessel roots times
the wave speed:

ωm,n = c
√

λm,n = c ζm,n. (17.92)

A table of their values (for the case c = 1) can be found in the preceding section. The
Bessel roots do not follow any easily discernible order or pattern, and are certainly not
rational multiples of each other. Thus, the vibrations of a circular drum are also truly
quasi-periodic.

The frequencies ω0,n = c ζ0,n correspond to simple eigenvalues, with a single radially
symmetric eigenfunction J0(ζ0,n r), while the “angular modes” ωm,n withm > 0 are double,
each possessing two linearly independent eigenfunctions (17.91). According to the general
formula (17.79), each eigenfunction leads to two independent normal modes of vibration,
having the explicit form

um,n(t, r, θ) =
{ cos
sin

}
c ζm,n t

{ cos
sin

}
mθ Jm(ζm,n r). (17.93)

One can use either the cosine or the sine in each slot, and so the formula gives a total of
four distinct normal modes associated with each Bessel function — unless m = 0, in which
case the solutions are radially symmetric, and there are only two normal modes for each
eigenvalue. The general solution is written as a series in these normal modes in the form
of a Fourier–Bessel series

um,n(t, r, θ) =
∑

m,n

[ (
am,n cos c ζm,n t+ bm,n sin c ζm,n t

)
cosmθ

+
(
cm,n cos c ζm,n t+ dm,n sin c ζm,n t

)
sinmθ

]
Jm(ζm,n r).

(17.94)
The coefficients am,n, bm,n, cm,n, dm,n are determined, as usual, by the initial displacement
and velocity of the membrane. In Figure vdisk , the vibrations due to an initially con-
centrated displacement are displayed. Again, the motion is only quasi-periodic and never
quite returns to the original configuration.

Remark : As we learned in Section 14.4, the natural frequencies of vibration a one-
dimensional medium, e.g., a violin string or a column of air in a flute, are integer multiples
of each other. As a consequence, the vibrations are periodic. Musically, this means that
the overtones are integer multiples of the fundamental tones, and, as a result the music
sounds harmonic to our ear. On the other hand, the natural frequencies of circular and
rectangular drums are irrationally related, and the vibrations are only quasi-periodic. As a
result, we hear a percussive sound! Thus, for some reason, our musical appreciation is psy-
chologically attuned to the differences between rationally related/periodic and irrationally
related/quasi-periodic vibrations.

Scaling and Symmetry

Both translation and scaling symmetries can be effectively employed in the analysis
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of the wave equation. Let us consider the simultaneous rescaling

t 7−→ α t, x 7−→ β x, y 7−→ β y, (17.95)

of time and space, whose effect is to change the function u(t, x, y) into a rescaled function

U(t, x, y) = u(α t, β x, β y). (17.96)

The chain rule relates their derivatives:

∂2U

∂t2
= α2 ∂2u

∂t2
,

∂2U

∂x2
= β2 ∂2u

∂x2
,

∂2U

∂y2
= β2 ∂2u

∂y2
.

Therefore, if u satisfies the wave equation

utt = c2∆u,

then U satisfies the rescaled wave equation

Utt =
α2 c2

β2
∆U = c̃2∆U, where the rescaled wave speed is c̃ =

α c

β
. (17.97)

In particular, rescaling time by setting α = 1/c results in a unit wave speed c̃ = 1. In other
words, for a given homogeneous medium, we can choose our time unit of measurement to
arrange that the wave speed is equal to 1.

If we set α = β, scaling space and time in the same proportion, then the wave speed
does not change, c̃ = c, and so

t 7−→ β t, x 7−→ β x, y 7−→ β y, (17.98)

defines a symmetry transformation for the wave equation. If u(t, x, y) is any solution to
the wave equation, then so is its rescaled version

U(t, x, y) = u(β t, β x, β y) (17.99)

for any choice of (nonzero) scale parameter β. In other words, if u(t, x, y) is defined on a
domain Ω, then the rescaled solution U(t, x, y) will be defined on the rescaled domain

Ω̃ =
1

β
Ω =

{
(x, y)

∣∣∣∣
(

x

β
,
y

β

)
∈ Ω

}
. (17.100)

For example, if β = 1
2 , then the effect is to double the size of the domain. The fundamental

modes for the rescaled domain have the form

Un(t, x, y) = un(β t, β x, β y) = cos ωn β t vn(β x, β y),

Ũn(t, x, y) = ũn(β t, β x, β y) = sin ωn β t vn(β x, β y),

and hence the fundamental vibrational frequencies ω̃n = β ωn are scaled by the same
overall factor. Thus, when β < 1, the rescaled membrane is larger and its vibrations are
slowed down by the same factor. For instance, a drum that is twice as large will vibrate
twice as slowly, and hence have an octave lower overall tone. Musically, this means that all
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drums of a similar shape have the same pattern of overtones, differing only in their overall
pitch, which is a function of their size, tautness and density.

For example, choosing β = 1/R will rescale the unit disk into a disk of radius R. The
fundamental frequencies of the rescaled disk are

ω̃m,n = β ωm,n =
c

R
ζm,n, (17.101)

where c is the wave speed and ζm,n are the Bessel roots, defined in (17.54). Consequently,
the ratios ωm,n/ωm′,n′ between vibrational frequencies are the same, independent of the
size of the disk R and the wave speed c. We define the relative vibrational frequencies

ρm,n =
ωm,n

ω0,1

=
ζm,n

ζ0,1

, where ω0,1 =
c ζ0,1

R
≈ 2.4

c

R
(17.102)

is the dominant, lowest frequency. The relative frequencies ρm,n are independent of the
size, stiffness or composition of the drum membrane. In the following table, we display all
relative vibrational frequencies (17.102) that are < 6. As usual the columns are indexed
by m and the rows by n. Once the lowest frequency ω0,1 has been determined — either
theoretically, numerically or experimentally — all the higher overtones ωm,n = ρm,n ω0,1

are obtained by multiplication by these fixed relative frequencies of vibration.

Relative Vibrational Frequencies of a Circular Disk

0 1 2 3 4 5 6 7 8 9 . . .

1 1.000 1.593 2.136 2.653 3.155 3.647 4.132 4.610 5.084 5.553 . . .

2 2.295 2.917 3.500 4.059 4.601 5.131 5.651
...

...
...

3 3.598 4.230 4.832 5.412 5.977
...

...

4 4.903 5.540
...

...
...

...
...

...

17.7. Nodal Curves.

When a membrane vibrates, the individual points move up and down in a quasi-
periodic manner. As such, correlations between the motions at different points are not
immediately evident. However, if the system is set to vibrate in a pure eigenmode, say

un(t, x, y) = cos(ωn t) vn(x, y),

then all points on the membrane move up and down at a common frequency ωn =
√

λn ,
which is the square root of the eigenvalue corresponding to the eigenfunction vn(x, y). The
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exceptions are the points where the eigenfunction vanishes:

vn(x, y) = 0. (17.103)

Such points will not move at all. The set of all points (x, y) ∈ Ω that satisfy (17.103)
is known as the nth nodal set of the domain Ω. If we scatter small particles (e.g., sand
or powder) over the membrane while it is performing a pure vibration, we can actually
see the nodal set because the particles will, though random movement over the oscillating
regions of the membrane, tend to accumulate along the stationary nodal curves.

It can be shown that, in general, the nodal set consists of a system of intersecting
curves, known as the nodal curves of the membrane. The nodal curves partition the mem-
brane into nodal regions, and intersect at critical points, ∇vn = 0, of the eigenfunction.
Points lying in a common nodal region all vibrate in tandem, so that all the nodal region
is either up or down, except, momentarily, when the entire membrane has zero displace-
ment. The latter situation occurs at regular time intervals, namely whenever cos ωn t = 0.
Adjacent nodal regions, lying on the opposite sides of a nodal curve, always vibrate in
opposite directions — when one side is up, the other is down, and then, as the membrane
becomes momentarily flat, they simultaneously switch direction.

Example 17.6. Circular Drums. Since the eigenfunctions (17.91) for a disk are
products of trigonometric functions in the angular variable and Bessel functions of the
radius, the nodal curves for the normal modes of vibrations of a circular membrane are rays
emanating from and circles centered at the origin. Thus, the nodal regions of vibration
are annular sectors. Pictures of the nodal curves for the first nine fundamental modes
indexed by their relative frequencies are plotted in Figure 17.6. Figure 17.2 shows a sample
displacement of the membrane in each of the first twelve modes. The dominant (lowest
frequency) mode is the only one that has no nodal curves; it has the form of a radially
symmetric bump where the entire membrane flexes up and down. Every other mode has
at least one nodal curve. For instance, the next lowest modes have frequency ω1,1, and are
linear combinations α u1,1+β ũ1,1 of the two eigenfunctions. Each combination has a single
diameter as a nodal curve, whose orientation depends upon the coefficients α, β. The two
halves of the drum vibrate up and down in opposing directions — when the top half is up,
the bottom half is down and vice versa. The next set of modes have two perpendicular
diameters as nodal curves, and the four quadrants of the drum vibrate up and down in
tandem, with adjacent quadrants having opposing displacements. Next is a single mode,
with a circular nodal curve whose (relative) radius ζ0,2/ζ0,1 ≈ 0.6276 is the ratio of the
first two roots of the order zero Bessel function; see Exercise for a justification. In this
case, the inner disk and outer annulus vibrate in opposing directions.

Example 17.7. Rectangular Drums. For a general rectangular drum, the nodal
curves are relatively uninteresting. Since the normal modes (17.90) are separable products
of trigonometric functions in the coordinate variables x, y, the nodal curves are regularly
equi-spaced straight lines parallel to the sides of the rectangle. The internodal regions
are small rectangles, all of the same size and shape, with adjacent rectangles vibrating in
opposite directions.
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1.000 1.593 2.136

2.295 2.653 2.917

3.155 3.500 3.598

Figure 17.6. Nodal Curves and Relative Frequencies
of Vibration of a Circular Membrane.

A more interesting collection of nodal curves occurs when the rectangle admits mul-
tiple eigenvalues — so-called “accidental degeneracies”. If two of the eigenvalues (17.88)
are equal, λm,n = λk,l, which occurs when

m2

a2
+

n2

b2
=

k2

a2
+

l2

b2
(17.104)

where (m,n) 6= (k, l) are two distinct pairs of positive integers, then both eigenmodes
vibrate with a common frequency

ω = ωm,n = ωk,l.

As a consequence, any linear combination of the eigenmodes

cosω t

(
α sin

mπx

a
sin

nπy

b
+ β sin

kπx

a
sin

l π y

b

)
, α, β ∈ R,
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Figure 17.7. Some Nodal Curves for a Square Membrane.

will also qualify as a normal mode of vibration. The corresponding nodal curves

α sin
mπx

a
sin

nπy

b
+ β sin

kπx

a
sin

l π y

b
= 0 (17.105)

have a more intriguing geometry. Their configurations can change dramatically as the
relative magnitudes of α, β vary.

For example, if R =
{
0 < x < 1, 0 < y < 1

}
is a unit square, then an accidental

degeneracy, satisfying (17.104), occurs whenever

m2 + n2 = k2 + l2. (17.106)

Thus, two distinct ordered pairs of positive integers (m,n) and (k, l) must have the same
norm. The simplest possibility occurs whenever m 6= n, in which case we merely reverse
the order, setting k = n, l = m. In Figure 17.7 we illustrate the nodal curves

sin 4πx sinπ y + β sinπ x sin 4πy = 0, β = .2, .5, 1,

corresponding to the three different linear combinations of the eigenfunctions with m =
l = 4, n = k = 1. The associated vibrational frequency is ω4,1 = π c

√
17 .

Remark : Classifying the rectangles that admit such accidental degeneracies takes us
into the realm of number theory, [NumTh]. The basic issue is to classify numbers can be
written as a sum of two squared integers in more than one way, as in (17.106). Or, stated
another way, find all integer points that lie on a common circle.
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Chapter 18

Partial Differential Equations in Space

At last we have ascended the dimensional ladder to its ultimate rung (at least for those
of us living in a three-dimensional universe): partial differential equations in physical
space. Fortunately, almost everything of importance has already appeared in the one-
and two-dimensional situations, and appending a third dimension is, for the most part,
simply a matter of appropriately adapting the same basic constructions. Thus, separation
of variables, Green’s functions and fundamental solutions continue to be the weapons of
choice. Unfortunately, despite the best efforts of mathematicians, the most powerful of
our planar tools, conformal mapping, does not carry over to higher dimensions. The crux
of the problem is the relative lack of conformal maps.

As before, the three primary examples are the three-dimensional Laplace equation,
modeling equilibrium configurations of solid bodies, the three-dimensional heat equation,
which models basic spatial diffusion processes, and the three-dimensional wave equation,
governing small vibrations of solid bodies. Of course, the dimensional ladder continues to
stretch onwards to general four-, five-, and even n-dimensional counterparts of these basic
linear systems. However, almost all important analytical and numerical techniques already
appear by the time we reach three-dimensional space, and such extensions are of interest
primarily to pure mathematicians and, possibly, modern theoretical physicists.

The basic underlying solution techniques — separation of variables and Green’s func-
tions or fundamental solutions — have already appeared. In three-dimensional problems,
separation of variables can be used in rectangular, cylindrical and spherical coordinates.
The first two do not produce anything fundamentally new, and are therefore left to the ex-
ercises. The most important case is in spherical coordinates, and here we find new special
functions known as spherical harmonics and spherical Bessel functions. These functions
play important roles in a number of physical systems, including the quantum theory of
atomic structure that underlies the spectroscopic and reactive properties of atoms, and
hence the periodic table and, in a sense, all of modern chemistry.

The fundamental solution for the three-dimensional heat equation can be easily guessed
from its one- and two-dimensional versions. The three-dimensional wave equation, surpris-
ingly, has an explicit solution formula of d’Alembert form, albeit quite a bit more com-
plicated. Indeed, attempts to derive such a formula for the two-dimensional version were
unsuccessful, and only through a method of descent starting with the three-dimensional
solution are we able to arrive at the solution to the two-dimensional wave equation. This
also points out a critical difference between waves in two- and three-dimensional media.
Huygens’ principle states that three-dimensional waves due to a localized initial distur-
bance remain localized as they propagate in space; this is not true in two dimensions,
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and a concentrated planar disturbance leads to a residual disturbance that never entirely
disappears!

18.1. The Laplace and Poisson Equations.

We begin, as always, with systems in equilibrium. The most fundamental system is
the three-dimensional Laplace equation

∆u = uxx + uyy + uzz = 0, (18.1)

in which x = (x, y, z )
T
represent Cartesian coordinates in R3. The solutions to the

Laplace equation continue to be known as harmonic functions. The Laplace equation
models unforced equilibria; Poisson’s equation is the inhomogeneous version

−∆u = f(x, y, z), (18.2)

where the inhomogeneity f represents some form of external forcing.

The basic boundary value problem for the Laplace or the Poisson equation seeks a
solution inside a bounded domain Ω ⊂ R3 subject to either Dirichlet boundary conditions,
prescribing the function values

u = h on ∂Ω, (18.3)

or Neumann boundary conditions prescribing its normal derivative

∂u

∂n
= k on ∂Ω, (18.4)

or mixed boundary conditions in which one imposes Dirichlet conditions on part of the
boundary and Neumann conditions on the remainder. Keep in mind that the boundary of
the domain Ω consists of one or more surfaces, which will be oriented using unit normal n
pointing outwards, away from the domain.

The boundary value problems for the three-dimensional Laplace and Poisson equations
govern a wide variety of equilibrium situations in physics. Among the areas of application,
we mention:

(a) Ideal fluid flow : Here u represents the velocity potential for an incompressible, irro-
tational steady state fluid flow in a container, with velocity vector field v = ∇u.
Homogeneous Neumann boundary conditions correspond to a solid boundary which
fluid cannot penetrate.

(b) Heat conduction: Here u represents the temperature in a solid body. Dirichlet con-
ditions correspond to fixing the temperature on the bounding surface(s), whereas
homogeneous Neumann conditions correspond to an insulated boundary, i.e., one
which does not allow any heat flux. The inhomogeneity f represents an internal
heat source.

(c) Elasticity : In certain restricted situations, u represents an equilibrium deformation of
a solid body, e.g., a radial deformation of a ball. Fully three-dimensional elasticity
is governed by a system of partial differential equations; see Example 21.8.
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(d) Electrostatics: Here u represents the electromagnetic potential in a conducting medium.

(e) Gravitation: The Newtonian gravitational potential in flat empty space is also pre-
scribed by the Laplace equation. General relativity is a vastly more complicated
system, leading to systems of nonlinear partial differential equations.

Self–Adjoint Formulation and Minimum Principles

The Laplace and Poisson equations naturally fit into our self-adjoint equilibrium
framework. The construction is a straightforward adaptation of the planar version of
Section 15.4. We introduce the L2 inner products

〈u ; ũ 〉 =

∫ ∫ ∫

Ω

u(x, y, z) ũ(x, y, z) dx dy dz,

〈v ; ṽ 〉 =

∫ ∫ ∫

Ω

v(x, y, z) · ṽ(x, y, z) dx dy dz,

(18.5)

between scalar fields u, ũ, and between vector fields v, ṽ defined on a domain Ω ⊂ R3. We
assume that the functions in question are sufficiently nice that these inner products are
well-defined; if Ω is unbounded, this requires that they decay to zero reasonably rapidly at
large distances. When subject to homogeneous boundary conditions of the proper form,
the adjoint of the gradient operator with respect to the L2 inner products is minus the
divergence:

∇
∗ = −∇ · . (18.6)

As we have learned, the computation of the adjoint relies on an integration by parts for-
mula. In the plane, Green’s Formula (A.55) provided the basic tool. For partial differential
equations in three-dimensional space, we rely on the Divergence Theorem B.36. The first
step is to establish the three-dimensional analog of Green’s Formula (15.78). To this end,
we apply the divergence equation (B.82) to the product uv of a scalar field u and a vector
field v, leading to the identity
∫ ∫ ∫

Ω

(
u∇ · v +∇u · v

)
dx dy dz =

∫ ∫ ∫

Ω

∇ · (uv) dx dy dz =

∫ ∫

∂Ω

u (v · n) dS. (18.7)

Rearranging the terms in this formula produces an integration by parts formula for volume
integrals:

∫ ∫ ∫

Ω

(∇u · v) dx dy dz =

∫ ∫

∂Ω

u (v · n) dS −

∫ ∫ ∫

Ω

u (∇ · v) dx dy dz. (18.8)

Note that the gradient operator on the scalar field u has moved to become a divergence
operator on the vector field v. The boundary integral will vanish provided either

(a) u vanishes on Ω — these are homogeneous Dirichlet boundary conditions, or

(b) v·n = 0 on ∂Ω— which leads to homogeneous Neumann boundary conditions ∇u = 0

on ∂Ω, since the gradient operator must map u to a vector field v = ∇u whose
normal component v · n == ∂u/∂n equals the normal derivative of u, or

(c) ∂Ω = D ∪ N decomposes into two non-overlapping parts, and we impose Dirichlet
conditions u = 0 on D and Neumann conditions v = 0 on the remaining part N ,
leading to the usual mixed boundary conditions.
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Thus, subject to the homogeneous boundary conditions, the integration by parts for-
mula (18.8) takes the form

〈∇u ;v 〉 = 〈u ;−∇ · v 〉, (18.9)

which proves (18.6). Consequently, the Laplace equation takes our well-known self-adjoint
form

−∆u = −∇ · ∇u = ∇∗ ◦∇u, (18.10)

Using more general weighted inner products leads to a more general elliptic boundary value
problem; see Exercise .

As before, (18.10) implies that the Laplacian is positive semi-definite, and positive
definite provided ker∇ = {0}. Since, on a connected domain, only constant functions
are annihilated by the gradient operator, the Dirichlet and mixed boundary conditions
lead to positive definite boundary value problems, while the Neumann boundary value
problem is only semi-definite. As a result, the solution to the boundary value problem can
be characterized by the three-dimensional version of the Dirichlet minimization principle
(15.91).

Theorem 18.1. The solution u(x, y, z) to the Poisson equation (18.2) subject to
Dirichlet boundary conditions (18.3) is characterized as the unique function that minimizes
the Dirichlet integral

1
2 ‖∇u ‖2 − 〈u ; f 〉 =

∫ ∫ ∫

Ω

[
1
2 (u

2
x + u2

y + u2
z)− f u

]
dx dy dz (18.11)

among all C1 functions that satisfy the prescribed boundary conditions.

The same argument as in Section 15.4 shows that the same minimization principle
applies to solution to the inhomogeneous Dirichlet boundary value problem. For mixed
boundary conditions, one must append an additional boundary integral, and the solution
minimize the modified Dirichlet integral

∫ ∫ ∫

Ω

[
1
2 (u

2
x + u2

y + u2
z)− f u

]
dx dy dz +

∫ ∫

N

uk dS, (18.12)

where N ⊂ ∂Ω is the Neumann part of the boundary. Details are relegated to the ex-
ercises. The minimization principle forms the foundation of the three-dimensional finite
element method for constructing numerical solutions to the boundary value problem; see
[121, num3] for details.

18.2. Separation of Variables.

Even in higher dimensions, separation of variables remains the workhorse of explicit
solution methods for linear partial differential equations. As always, the technique is neces-
sarily restricted to rather specific geometrical configurations. In three-dimensional space,
the simplest are problems formulated on rectangular, cylindrical or spherical domains.
See [105, 108, 110] for details on the more exotic types of separable coordinate systems,
including ellipsoidal, toroidal, parabolic spheroidal, and so on.
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The simplest domain to which the separation of variables method applies is a rect-
angular box, R =

{
0 < x < a, 0 < y < b, 0 < z < c

}
A complete separation of variables

ansatz u(x, y, z) = v(x)w(y) q(z) lead to a computation that is almost identical to the
two-dimensional version. The details of the resulting Fourier series solution are left to the
reader; see Exercise .

In the case when the domain is a cylinder, one passes to cylindrical coordinates to
effect the separation. The solution can be written in terms of trigonometric functions and
Bessel functions, with the details being outlined in Exercise . The most interesting case
is that of a solid sphere, and this case will be developed in some detail.

Laplace’s Equation in a Ball

Suppose we are given a solid spherical ball (e.g., the earth), with a specified tempera-
ture distribution on its boundary. The problem is to determine the equilibrium temperature
within the ball. To simplify matters, we shall choose units in which the radius of the ball
is equal to 1. Therefore, we must solve the Dirichlet boundary value problem

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0, x2 + y2 + z2 < 1,

u(x, y, z) = h(x, y, z), x2 + y2 + z2 = 1.

(18.13)

Problems in spherical geometries usually simplify when re-expressed in terms of spherical
coordinates r, ϕ, θ, as defined by

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ.

In these coordinates, the Laplace equation takes the form

∆u =
∂2u

∂r2
+
2

r

∂u

∂r
+
1

r2

∂2u

∂ϕ2
+
cosϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
= 0. (18.14)

The derivation of this important formula is the final result of a fairly nasty chain rule
computation, and is left to the reader to verify. (Set aside lots of paper and keep an eraser
handy!)

To solve the spherical coordinate form of the Laplace equation, we begin by separating
off the radial part of the solution, using the separation of variables ansatz

u(r, ϕ, θ) = w(r)χ(ϕ, θ). (18.15)

Substituting into (18.14), dividing the resulting equation through by the product w χ and
placing all the terms involving r on one side of the equation yields

r2

w

d2w

dr2
+
2r

w

dw

dr
= −

∆S [χ ]

χ
= µ, (18.16)

where

∆S [χ ] =
∂2χ

∂ϕ2
+ cotϕ

∂χ

∂ϕ
+

1

sin2 ϕ

∂2χ

∂θ2
. (18.17)
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The second order differential operator ∆S , which contains only the angular components of
the Laplacian operator, is of particular significance. It is known as the spherical Laplacian,
and governs the equilibrium and dynamics of thin spherical shells, as discussed below.

Returning to the radially separated form (18.16) of the Laplace equation, our usual
separation argument works. The left hand side depends only on r, while the right hand side
depends only on ϕ, θ. This can only occur if both sides are equal to a common separation
constant, denoted by µ in the equation. As a consequence, the radial component w(r)
satisfies the ordinary differential equation

r2 w′′ + 2rw′ − µw = 0, (18.18)

which is of Euler type (3.76). We will put this equation aside to solve later. The angular
components in (18.16) assume the form

∆S [χ ] + µχ = 0, or, explicitly,
∂2χ

∂ϕ2
+
cosϕ

sinϕ

∂χ

∂ϕ
+

1

sin2 ϕ

∂2χ

∂θ2
+ µχ = 0. (18.19)

This second order partial differential equation constitutes the eigenvalue equation for the
spherical Laplacian, and is known as the spherical Helmholtz equation.

To solve the spherical Helmholtz equation, we adopt a further separation of angular
variables,

χ(ϕ, θ) = p(ϕ) q(θ), (18.20)

which we substitute into (18.19). Dividing the result by the product p q, and then rear-
ranging terms, we are led to a second separated system

sin2 ϕ

p

d2p

dϕ2
+
cosϕ sinϕ

p

dp

dϕ
+ µ sin2 ϕ = −

1

q

d2q

dθ2
= ν.

The left hand side depends only on ϕ while the right hand side depends only on θ, so
the two sides must equal a common separation constant, denoted by ν. The spherical
Helmholtz equation then splits into a pair of ordinary differential equations

sin2 ϕ
d2p

dϕ2
+ cosϕ sinϕ

dp

dϕ
+ (µ sin2 ϕ− ν) p = 0,

d2q

dθ2
+ ν q = 0. (18.21)

The equation for q(θ) is easy to solve. Since the meridial angle θ varies from 0 to 2π, the
function q(θ) must be a 2π periodic function. Thus, we are reduced to solving the usual
periodic boundary value problem for q(θ); see, for instance, (15.30). The eigenvalue or
separation constant takes on the values ν = m2, where m = 0, 1, 2, . . . is an integer, and

q(θ) = cosmθ or sinmθ, m = 0, 1, 2, . . . , (18.22)

are the required eigenfunctions. Each positive ν = m2 > 0 admits two linearly independent
eigenfunctions, while the ν = 0 only admits the constant eigenfunction q(θ) ≡ 1.

With this information, we next solve the equation for the azimuthal component p(ϕ).
This is not an elementary differential equation, and finding the solutions requires some
work. The reasoning behind the following steps may not be immediately apparent to the
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reader, since it is the result of a long, detailed study of this important differential equation
by mathematicians.

First, let us eliminate the trigonometric functions. To this end, we use the change of
variables

t = cosϕ, p(ϕ) = P (cosϕ) = P (t). (18.23)

According to the chain rule,

dp

dϕ
= − sinϕ

dP

dt
= −

√
1− t2

dP

dt
,

d2p

dϕ2
= sin2 ϕ

d2P

dt2
− cosϕ

dP

dt
= (1− t2)

d2P

dt2
− t

dP

dt
.

Substituting these expressions into the first equation in (18.21) and using the fact that
ν = m2, we conclude that P (t) must satisfy the differential equation

(1− t2)2
d2P

dt2
− 2 t (1− t2)

dP

dt
+
[
µ (1− t2)−m2

]
P = 0. (18.24)

Unfortunately, this differential equation is still not easy to solve, but at least its coefficients
are polynomials. Equation (18.24) is known as the Legendre differential equation of order
m, and its solutions are known as Legendre functions, since they were first used by Legendre
to analyze the gravitational attraction of ellipsoidal bodies.

While the general solution to the Legendre equation requires a new type of special
function, the solutions we are actually interested in can all be written in terms of elementary
algebraic functions. First of all, since t = cosϕ, the solution only needs to be defined on
the interval −1 ≤ t ≤ 1. The endpoints of this interval, t = ±1, correspond to the north
pole, ϕ = 0 and the south pole, ϕ = π, of the sphere. Both endpoints are singular points
for the Legendre equation since the coefficient (1 − t2)2 of the leading order derivative
vanishes when t = ±1. Since ultimately we need the separable solution (18.15) to be a
well-defined function of x, y, z (even at points where the spherical coordinates degenerate,
i.e., on the z axis), we need p(ϕ) to be well-defined at ϕ = 0, π, and this requires P (t)
to be bounded at the singular points t = ±1. As we learned in our study of the Bessel
equation, merely requiring the solution of an ordinary differential equation to be bounded
at a singular point can serve as a legitimate boundary condition and serve to distinguish
the relevant solutions. Requiring the solution to be bounded at both endpoints is even
more restrictive:

|P (−1) | < ∞, |P (+1) | < ∞. (18.25)

It turns out that this occurs only for very special values of the separation constant µ.

We will justify the following statements in Appendix C. Consider first the case m = 0.
In this case, it turns out that the eigenfunctions, i.e., solutions to the Legendre boundary
value problem (18.24), (18.25), are the Legendre polynomials

Pn(t) =
1

2n n!

dn

dtn
(t2 − 1)n (18.26)
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that we already encountered in Chapter 5. Equation (5.41) contains explicit formulas for
the first few Legendre polynomials. Indeed, we now finally comprehend the reason for
the orthogonality of the Legendre polynomials. They are the common eigenfunctions of a
self-adjoint boundary value problem! Their orthogonality is a consequence of the general
theorem on eigenvectors or eigenfunctions of self-adjoint linear operators, and is discussed
in detail in Exercise .

For general m > 0, the eigenfunctions of the Legendre boundary value problem
(18.24), (18.25) are not always polynomials. They are known as the associated Legen-

dre functions, and can be constructed using the explicit formula

Pm
n (t) = (1− t2)m/2 dm

dtm
Pn(t) =

(1− t2)m/2

2n n!

dn+m

dtn+m
(t2 − 1)n, n = m,m+ 1, . . . .

(18.27)
Here is a list of the first few associated Legendre functions:

P 0
0 (t) = 1, P 0

1 (t) = t,

P 1
1 (t) = −

√
1− t2, P 0

2 (t) =
3
2 t2 − 1

2 ,

P 1
2 (t) = −3 t

√
1− t2, P 2

2 (t) = −3 (t
2
− 1),

P 0
3 (t) =

5
2 t3 − 3

2 t, P 1
3 (t) = −

3
2

√
1− t2 (5 t2 − 1),

P 2
3 (t) = −15 (t

3
− t), P 3

3 (t) = −15 (1− t2)
3/2

,

P 0
4 (t) =

35
8 t4 − 15

4 t2 + 3
8 , P 1

4 (t) = −
5
2

√
1− t2 (7 t3 − 3 t),

P 2
4 (t) = −

15
2 (7 t4 − 8 t2 + 1), P 3

4 (t) = −105 t (1− t2)
3/2

,

P 4
4 (t) = 105 (t

4
− 2 t2 + 1).

(18.28)

When m = 2k ≥ n is even, Pm
n (t) is a polynomial function, while when m = 2k + 1 ≤ n

is odd, it has an extra factor of
√

1− t2 multiplying a polynomial. Keep in mind that
the square root is real and positive since we are restricting our attention to the interval
−1 ≤ t ≤ 1. If m > n then the formula (18.27) yields zero.

Graphs of the Legendre polynomials Pn(t) = P 0
n(t) can be found in Figure 5.3. In addi-

tion, Figure 18.1 displays the graphs of the associated Legendre functions P 1
2 (t), . . . , P

4
4 (t).

(The graph of P 1
1 (t) is omitted since it is merely a semi-circle.) Pay particular attention

to the fact that the graphs have quite different vertical scales.

Theorem 18.2. Let m ≥ 0 be a non-negative integer. Then the eigenfunctions for
the mth order Legendre boundary value problem prescribed by (18.24), (18.25) are the
associated Legendre functions Pm

n (t) for n = 0, 1, 2, . . . . The corresponding eigenvalues
are µn = n(n+ 1).

Returning to the original azimuthal variable ϕ, we discover that the boundary value
problem

sin2 ϕ
d2p

dϕ2
+ cosϕ sinϕ

dp

dϕ
+ µ sin2 ϕ · p−m2 p = 0, | p(0) |, | p(π) | < ∞, (18.29)
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Figure 18.1. Associated Legendre Functions.

has eigenvalues and eigenfunctions

µn = n(n+ 1), pmn (ϕ) = Pm
n (cosϕ), for n = m,m+ 1, . . . , (18.30)

given in terms the associated Legendre functions. The nth eigenvalue µn admits a total of
n+ 1 linearly independent eigenfunctions, namely p0

n(ϕ), . . . , p
n
n(ϕ). The functions pmn (ϕ)

are, in fact, trigonometric polynomials of degree n. Here are the first few, written in
Fourier form:

p0
0(ϕ) = 1, p0

1(ϕ) = cosϕ,

p1
1(ϕ) = − sinϕ, p0

2(ϕ) =
1
4 +

3
4 cos 2ϕ,

p1
2(ϕ) = −

3
2 sin 2ϕ, p2

2(ϕ) =
3
2 −

3
2 cos 2ϕ,

p0
3(ϕ) =

3
8 cosϕ+

5
8 cos 3ϕ, p1

3(ϕ) = −
3
8 sinϕ− 15

8 sin 3ϕ,

p2
3(ϕ) =

15
4 cosϕ−

15
4 cos 3ϕ, p3

3(ϕ) = −
45
4 sinϕ+ 15

4 sin 3ϕ,

p0
4(ϕ) =

9
64 +

5
16 cos 2ϕ+

35
64 cos 4ϕ, p1

4(ϕ) = −
5
8 sin 2ϕ−

35
16 sin 4ϕ,

p2
4(ϕ) =

45
16 +

15
4 cos 2ϕ−

105
16 cos 4ϕ, p3

4(ϕ) = −
105
4 sin 2ϕ+

105
8 sin 4ϕ,

p4
4(ϕ) =

315
8 −

105
2 cos 2ϕ+

105
8 cos 4ϕ.

(18.31)

It is also instructive to plot the eigenfunctions in terms of the angle ϕ and compare with
those in Figure 18.1; see Figure Lphi .
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At this stage, we have determined both angular components of our separable solutions
(18.20). Multiplying the two parts together results in the spherical angle functions

Y m
n (ϕ, θ) = cosmθ Pm

n (cosϕ),

Ỹ m
n (ϕ, θ) = sinmθ Pm

n (cosϕ),

n = 0, 1, 2, . . . ,

m = 0, 1, . . . , n,
(18.32)

which are known as spherical harmonics. The spherical harmonics Y m
n , Ỹ m

n satisfy the
spherical Helmholtz equation

∆S Y m
n + n(n+ 1)Y m

n = 0 = ∆S Ỹ m
n + n(n+ 1) Ỹ m

n . (18.33)

In other words, the spherical harmonics are the eigenfunctions for the spherical Laplacian
operator, (18.17), with associated eigenvalues µn = n(n + 1) for n = 0, 1, 2, . . . . The
nth eigenvalue µn admits a (2n + 1)–dimensional eigenspace, spanned by the spherical
harmonics

Y 0
n (ϕ, θ), Y 1

n (ϕ, θ), . . . , Y n
n (ϕ, θ), Ỹ 1

n (ϕ, θ), . . . , Ỹ n
n (ϕ, θ).

The omitted function Ỹ 0
n (ϕ, θ) ≡ 0 is trivial, and so does not contribute.

Self-adjointness of the spherical Laplacian operator implies that the spherical harmon-
ics are orthogonal with respect to the inner product

〈 f ; g 〉 =

∫ ∫

S1

f g dS =

∫ π

0

∫ 2π

0

f(ϕ, θ) g(ϕ, θ) sinϕ dθ dϕ, (18.34)

where the surface area integral is over the sphere S1 = {‖x ‖ = 1} of radius 1, cf. (B.40).
More correctly, self-adjointness only guarantees orthogonality for the harmonics corre-
sponding to different eigenvalues. However, by our construction, the orthogonality for-
mula (18.34) does, in fact, hold in general. The spherical harmonic norms can be explicitly
computed:

‖Y 0
n ‖

2 =
4π

2n+ 1
, ‖Y m

n ‖
2 = ‖ Ỹ m

n ‖
2 =

2π(n+m)!

(2n+ 1)(n−m)!
. (18.35)

Just as with the Fourier trigonometric functions, the case m = 0, where the spherical
harmonic Y 0

n (ϕ) does not depend upon θ, is special. A proof of this formula appears in
Exercise .

With some further work, it can be proved that the harmonic polynomials form a com-
plete orthogonal system of functions on the unit sphere. This means that any reasonable,
e.g., piecewise C1, function h:S1 → R can be expanded into a convergent spherical Fourier
series

h(ϕ, θ) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
Y 0
n (ϕ) +

n∑

m=1

[
cm,nY m

n (ϕ, θ) + c̃m,nỸ m
n (ϕ, θ)

])
(18.36)

in the spherical harmonics. Applying the orthogonality relations (18.34), the spherical
Fourier coefficients are given by the inner products

c0,n =
2 〈 f ;Y 0

n 〉

‖Y 0
n ‖

2
, cm,n =

〈 f ;Y m
n 〉

‖Y m
n ‖2

, c̃m,n =
〈 f ; Ỹ m

n 〉

‖ Ỹ m
n ‖2

,
n ≥ 0,

1 ≤ m ≤ n,
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or, explicitly, using the formulae (18.35) for the norms,

cm,n =
(2n+ 1)(n−m)!

2π (n+m)!

∫ 2π

0

∫ π

0

h(ϕ, θ) cosn θ Pn(cosϕ) sinϕ dϕdθ,

c̃m,n =
(2n+ 1)(n−m)!

2π (n+m)!

∫ 2π

0

∫ π

0

h(ϕ, θ) sinn θ Pn(cosϕ) sinϕ dϕ dθ.

(18.37)

The factor sinϕ comes from the spherical surface area formula (B.40). As with an ordinary
Fourier series, the extra 1

2 was introduced in the c0,n terms in the series (18.37) so that
the formulae (18.37) are valid for all m,n. In particular, the constant term the spherical
harmonic series

c0,0

2
=
1

4π

∫ ∫

S1

h dS =
1

4π

∫ 2π

0

∫ π

0

h(ϕ, θ) sinϕdϕ dθ (18.38)

is the mean of the function f over the unit sphere.

To complete our solution to the Laplace equation on the solid ball, we still need to
analyze the ordinary differential equation (18.18) for the radial component w(r). Using
the fact that the original separation constant is µ = n(n+1) for some non-negative integer
n ≥ 0, the radial equation (18.18) takes the form

r2 w′′ + 2rw′ − n(n+ 1)w = 0. (18.39)

As noted earlier, this is a second order linear equation of Euler type (3.76), and can be
solved by using the power ansatz w(r) = rα. Substituting into the equation, we find the
exponent must satisfy the quadratic equation

α2 + α− n(n+ 1) = 0, and hence α = n or α = −(n+ 1).

Therefore, the two linearly independent solutions are

w1(r) = rn and w2(r) = r−n−1. (18.40)

Since we are only interested in solutions that remain bounded at r = 0 — the center of
the ball — we should just retain the first solution w(r) = rn in our analysis.

At this stage, we have solved all three ordinary differential equations for the sepa-
rable solutions. We combine the results (18.22), (18.32), (18.40) together to produce the
spherically separable solutions (18.15) to the Laplace equation

Hm
n (r, ϕ, θ) = rn Y m

n (ϕ, θ) = rn cosmθ Pm
n (cosϕ),

H̃m
n (r, ϕ, θ) = rn Ỹ m

n (ϕ, θ) = rn sinmθ Pm
n (cosϕ),

n = 0, 1, 2, . . . ,

m = 0, 1, . . . , n,
(18.41)

known as harmonic polynomials. As the name suggests, they are, in fact, polynomial
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functions of the rectangular coordinates x, y, z. The first few harmonic polynomials are

H0
0 = 1, H0

1 = z, H0
2 = z2

−
1
2 x2

−
1
2 y2 H0

3 = z3
−

3
2 x2z − 3

2 y2z

H1
1 = x, H1

2 = 3xz, H1
3 = 6xz2

−
3
2 x3

−
3
2 xy2

H̃1
1 = y, H̃1

2 = 3y z, H̃1
3 = 6y z2

−
3
2 x2y − 3

2 y3

H2
2 = 3x

2
− 3y2, H2

3 = 15x
2z − 15y2z

H̃2
2 = 6xy, H̃2

3 = 30xyz

H3
3 = 15x

3
− 45xy2

H̃3
3 = 45x

2y − 15y3.

(18.42)

Note that Hm
n and H̃m

n are homogeneous polynomials of degree n. Indeed, the harmonic
polynomials

H0
n, H1

n, . . . , Hn
n , H̃1

n, . . . H̃n
n

form a basis for the subspace of all homogeneous polynomials of degree n that solve the
three-dimensional Laplace equation, which therefore has dimension 2n+ 1. (The unlisted

H̃0
n ≡ 0 is trivial, and so is not part of the basis.) Plotting these functions in a visually
instructive manner is challenging. Since they depend upon three variables, we are in sore
need of a four-dimensional viewing system to properly display and appreciate their graphs.

As we shall see, the harmonic polynomials form a complete system, and therefore the
general solution to the Laplace equation on the sphere can be written as a series therein:

u(r, ϕ, θ) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
H0
n(r, ϕ) +

n∑

m=1

[
cm,nHm

n (r, ϕ, θ) + c̃m,nH̃m
n (r, ϕ, θ)

])

=
c0,0

2
+

∞∑

n=1

(
c0,n

2
Y 0
n (ϕ) +

n∑

m=1

[
cm,n rnY m

n (ϕ, θ) + c̃m,n rn Ỹ m
n (ϕ, θ)

])
.

(18.43)
To complete our solution to the boundary value problem, we substitute the harmonic
polynomial series solution into the Dirichlet boundary conditions on the unit sphere r = 1,
yielding

u(1, ϕ, θ) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
Y 0
n (ϕ) +

n∑

m=1

[
cm,nY m

n (ϕ, θ) + c̃m,nỸ m
n (ϕ, θ)

])
= h(ϕ, θ).

(18.44)
In view of the preceding remarks, the coefficients cm,n, c̃m,n in this harmonic polynomial
series are given by the orthogonality formulae (18.37). If they are bounded — which occurs
for all L2 functions h and also certain generalized functions, including the delta function
— then it is not hard to prove that the series converges everywhere, and, in fact, uniformly
on any smaller ball ‖x ‖ = r ≤ r0 < 1.

Interestingly, if we revert to rectangular coordinates, then the spherical Fourier series
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(18.43) takes the form

u(x, y, z) =
c0,0

2
+

∞∑

n=1

(
c0,n

2
H0
n(x, y, z) +

n∑

m=1

[
cm,nHm

n (x, y, z) + c̃m,nH̃m
n (x, y, z)

])
.

(18.45)
The summand at order n is, in fact, a homogeneous polynomial of degree n. Therefore, the
Fourier series expands the function into a power series which is, in fact, the Taylor series
expansion for the harmonic function u at the origin! Any convergent Taylor expansion
converges to an analytic function. Therefore, just like their two-dimensional siblings,
harmonic functions are, in fact, analytic. According to the preceding paragraph, the
radius of convergence of the spherical harmonic Fourier/Taylor series is at least one, and
so u(x, y, z) is analytic inside the entire ball — no matter how wild its boundary values
are.

The constant term in such a Taylor series can be identified with the value of the
function at the origin. On the other hand, the orthogonality formula (18.38) tells us that

u(0, 0, 0) =
c0,0

2
=
1

4π

∫ ∫

S1

u dS. (18.46)

Therefore, we have established the three-dimensional version of the planar Theorem 15.7:
the value of the harmonic function at the center of the sphere is equal to the average of
its values u = h on the sphere’s surface.

Theorem 18.3. If u(x) is a harmonic function for all x ∈ Ω ⊆ R3, then u is analytic

in Ω. Moreover, its value at a point x0 ∈ Ω,

u(x0) =
1

4πa2

∫ ∫

Sa(x0)

u dS, (18.47)

is equal to the average of its values on any sphere Sa(x0) = {‖x− x0 ‖ = a} centered at the

point — provided u is harmonic on the entire enclosed ball Ba(x0) = {‖x− x0 ‖ ≤ a} ⊂ Ω.

Proof : It is easily checked that, under the hypothesis of the theorem,

U(x) = u(ax+ x0)

is harmonic on the unit ball ‖x ‖ ≤ 1, and hence solves the boundary value problem (18.13)
with boundary values h(x) = U(x) = u(ax + x0) on ‖x ‖ = 1 coming from the values of
u on the sphere Sa(x0). By the preceding remarks, U(x) is analytic for ‖x ‖ < 1, and so
u(x) = U((x− x0)/a) is analytic inside Ba(x0), and, in particular at x0. Since x0 was
arbitrary, this proves analyticity of u everywhere in EΩ. Moreover, according to (18.46),

u(x0) = U(0) =
1

4π

∫ ∫

S1

U dS =
1

4πa2

∫ ∫

Sa(x0)

u dS,

which proves the result. Q.E.D.

Arguing as in Corollary 15.8, we establish a corresponding maximum principle for
harmonic functions of 3 variables.
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Corollary 18.4. A harmonic function cannot have a local maximum or minimum

at any interior point of its domain of definition.

For instance, this result implies that a body in thermal equilibrium can achieve its
maximum and minimum temperature only on the boundary of the domain. In physical
language, heat energy must flow away from any internal maximum and towards any internal
minimum. Thus, a local maximum or minimum of temperature would preclude the body
being in thermal equilibrium.

Example 18.5. In this example, we shall determine the electrostatic potential inside
a hollow sphere when the upper and lower hemispheres are held at different constant poten-
tials. This device is called a spherical capacitor and is realized experimentally by separating
the two charged hemispheres by a thin insulating ring at the equator. A straightforward
scaling argument allows us to choose our units so that the sphere has radius 1, while
the potential is set equal to 1 on the upper hemisphere and 0 or grounded on the lower
hemisphere. Therefore, we need to solve the Laplace equation ∆u = 0 inside a solid ball
‖x ‖ < 1, with Dirichlet boundary conditions

u(x, y, z) =

{
1, z > 0,

0, z < 0,
on ‖x ‖ = 1. (18.48)

The solution will be prescribed by a harmonic polynomials series (18.45) whose co-
efficients are determined by the boundary values (18.48). Before making on the required
computation, let us first note that since the boundary data does not depend upon the
meridial angle θ, the solution u = u(r, ϕ) will also be independent of θ. Therefore, we
need only consider the θ-independent spherical harmonics, which are those with m = 0,
and hence

u(r, ϕ) =
1

2

∞∑

n=0

cnH0
n(x, y, z) =

1

2

∞∑

n=0

cn rnPn(cosϕ),

where we abbreviate c0,n = cn. The boundary conditions require

u(1, ϕ) =
1

2

∞∑

n=0

cn Pn(cosϕ) = f(ϕ) =

{
1, 0 ≤ ϕ < 1

2 π,

0, 1
2 π < ϕ ≤ π.

The coefficients are given by (18.37), which, in the case m = 0, reduces to

cn =
2n+ 1

2π

∫ ∫

S

f Y 0
n dS = (2n+ 1)

∫ π/2

0

Pn(cosϕ) sinϕ dϕ = (2n+ 1)

∫ 1

0

Pn(t) dt.

(18.49)
The first few are

c0 = 1, c1 =
3
2 , c2 = 0, c3 = −

7
8 , c4 = 0, . . .

Therefore, the solution has the explicit Taylor expansion

u = 1
2 +

3
4 r cosϕ− 21

64 r3 cosϕ− 35
64 r3 cos 3ϕ+ · · ·

= 1
2 +

3
4 z − 7

8 z3
−

21
16 (x

2 + y2) z + · · · .
(18.50)
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Note in particular that the value u(0, 0, 0) = 1
2 at the center of the sphere is the average

of its boundary values, in accordance with Corollary 18.4.

Remark : The same function solves the problem of thermal equilibrium in a solid
sphere with the upper hemisphere held at temperature 1◦ and the lower hemisphere at 0◦.

Example 18.6. A closely related problem is to determine the electrostatic potential
outside a spherical capacitor. As in the preceding example, we take our capacitor of radius
1, with electrostatic charge +1 on the upper hemisphere and 0 on the lower hemisphere.
Here, we need to solve the Laplace equation

∆u = 0, ‖x ‖ > 1,

in the unbounded domain outside a solid unit ball, subject to Dirichlet boundary conditions

u =

{
0, z > 0,

1, z < 0,
on the unit sphere ‖x ‖ = 1.

We expect the potential to be small at large distances r = ‖x ‖ À 1 away from the
capacitor. Therefore, the non-constant harmonic polynomial solutions will not help us
solve this problem, since they tend to ∞ as ‖x ‖ → ∞.

However, by returning to our original separation of variables argument, we can con-
struct a different class of solutions with the desired decay properties. When we solved
the radial equation (18.39), we discarded the solution w2(r) = r−n−1 because it had a
singularity at the origin. In the present situation, the behavior of the function at r = 0 is
irrelevant; our current requirement is that the solution decays as r →∞, and this is now
valid. Therefore, we can use the functions

Km
n (x, y, z) = r−2n−1 Hm

n (x, y, z) = r−n−1 Y m
n (ϕ, θ) = r−n−1 cosmθ Pm

n (cosϕ),

K̃m
n (x, y, z) = r−2n−1 H̃m

n (x, y, z) = r−n−1 Ỹ m
n (ϕ, θ) = r−n−1 sinmθ Pm

n (cosϕ),
(18.51)

for solving such exterior problems. In the present case, we only need the functions that
are independent of θ, which means m = 0. We write the resulting solution as a series

u(r, ϕ) =
1

2

∞∑

n=0

cn K0
n(x, y, z) =

1

2

∞∑

n=1

cn r−n−1 Pn(cosϕ).

The boundary conditions

u(1, ϕ) =
1

2

∞∑

n=1

cn Pn(cosϕ) = f(ϕ) =

{
1, 0 ≤ ϕ < 1

2 π,

0, 1
2 π < ϕ ≤ π,

are identical with the previous example. Therefore, the coefficients are given by (18.49),
leading to the series expansion

u =
1

2r
+
3 cosϕ

4 r2
−
21 cosϕ+ 35 cos 3ϕ

64 r3
+ · · · =

1

2r
+
3 z

4 r3
−
14z3

− 21(x2 + y2)z

16 r5
+ · · · ,

(18.52)
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where r =
√

x2 + y2 + z2 . Interestingly, at large distances, the higher order terms become
negligible, and the potential looks like that associated with a point charge of magnitude 1

2
— the average of the potential over the sphere — that is concentrated at the origin. This
is indicative of a general fact; see Exercise .

18.3. The Green’s Function.

We now turn to the inhomogeneous form of Laplace’s equation — the Poisson equation

−∆u = f for all x ∈ Ω. (18.53)

In applications, f(x) = f(x, y, z) represents some form of external forcing inside the solid
domain. To uniquely specify the solution, we need to impose appropriate boundary condi-
tions — Dirichlet, Neumann, or mixed. We shall mostly concentrate on the homogeneous
boundary variational problem.

As we learned in Chapters 11 and 15, the solution to the Poisson equation for a
general inhomogeneity f(x) can be found by a superposition formula based on the Green’s
function, which is defined to be the particular solution corresponding to a delta function
inhomogeneity that is concentrated at a single point in the domain. Thus, for each ξ =
(ξ, η, ζ) ∈ Ω, the Green’s function G(x; ξ) = G(x, y, z; ξ, η, ζ) is the unique solution to the
Poisson equation

−∆u = δ(x− ξ) = δ(x− ξ) δ(y − η) δ(z − ζ) for all x ∈ Ω, (18.54)

subject to the chosen homogeneous boundary conditions. The solution to the general
Poisson equation (18.53) is then obtained by superposition: We write the forcing function

f(x, y, z) =

∫ ∫ ∫

Ω

f(ξ, η, ζ) δ(x− ξ) δ(y − η) δ(z − ζ) dξ dη dζ

as a linear superposition of delta functions. By linearity, the solution

u(x, y, z) =

∫ ∫ ∫

Ω

f(ξ, η, ζ)G(x, y, z; ξ, η, ζ) dξ dη dζ (18.55)

is then given as the same superposition of the Green’s function solutions.

The Green’s Function on the Entire Space

Except in a few specific instances, the explicit formula for the Green’s function is
difficult to find. Nevertheless, certain general, useful features can be established. The
starting point is to investigate the Poisson equation (18.54) when the domain Ω = R3 is
all of three-dimensional space. Since the Laplacian is invariant under translations we can,
without loss of generality, place our delta impulse at the origin, and solve the particular
case

−∆u = δ(x) , x ∈ R3.

Since δ(x) = 0 for all x 6= 0, the desired solution will, in fact, be a solution to the
homogeneous Laplace equation

∆u = 0, x6= 0,
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save, possibly, for a single singularity concentrated at the origin. We impose boundary
constraints by seeking a solution that goes to zero, u → 0, at large distances ‖x ‖ → ∞.

The Laplace equation models the equilibria of a homogeneous, isotropic medium,
and so is also invariant under rotations. This indicates that, in any radially symmetric
configuration, the solution u = u(r) should only depend upon the distance from the origin,
r = ‖x ‖, and not the angular direction. Referring to the spherical coordinate form (18.14)
of the Laplacian operator, if u only depends upon r, its derivatives with respect to the
angular coordinates ϕ, θ are zero, and so u(r) solves the ordinary differential equation

d2u

dr2
+
2

r

du

dr
= 0. (18.56)

This equation is, in effect, a first order linear ordinary differential equation for v = du/dr

and hence is easy to solve. The solutions are of the form

du

dr
= v(r) = b log r, and hence u(r) = a+

b

r
,

where a, b are arbitrary constants. The constant solution u(r) = a does not die away at
large distances, nor does it have a singularity at the origin. Therefore, if our intuition is
valid, the desired solution should be of the form

u =
b

r
=

b

‖x ‖
=

b√
x2 + y2 + z2

. (18.57)

Indeed, this function is harmonic — solves Laplace’s equation — everywhere away from
the origin, and has a singularity at x = 0.

Remark : This solution is, up to constant multiple, the three-dimensional Newtonian
gravitational potential due to a point mass at the origin. Its gradient

f(x) = ∇

(
b

‖x ‖

)
= −

bx

‖x ‖3
.

defines the gravitational force vector at the point x. When b > 0, the force vector f(x)
points in the direction of the mass concentrated at the origin. Its magnitude

‖ f ‖ =
b

‖x ‖2
=

b

r2

is proportional to one over the squared distance, and so satisfies the well-known inverse
square law of three-dimensional Newtonian gravity.

The inverse square law also models the electrostatic forces between charged bodies.
Thus, (18.57) can be interpreted as the electrostatic potential on a charged mass at position
x due to a electric charge that is concentrated at the origin. The constant b is positive
when the charges are of opposite signs, leading to an attractive force, and negative in the
repulsive case of like charges.
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Returning to our problem, our remaining task is to fix the multiple b such that the
Laplacian of our candidate solution (18.57) has a delta function singularity at the origin;
equivalently, we must find c such that

−∆ r−1 = c δ(x). (18.58)

We already know that this equation holds away from the origin, since δ(x) = 0 when
x6= 0. To investigate near the singularity, we integrate both sides of (18.58) over a small
solid ball Bε = {r = ‖x ‖ = ε} of radius ε:

−

∫ ∫ ∫

Bε

∆ r−1 dx dy dz =

∫ ∫ ∫

Bε

c δ(x) dx dy dz = c, (18.59)

where we used the definition of the delta function to evaluate the right hand side. On the
other hand, since ∆ r−1 = ∇·∇ r−1, we can use the divergence theorem (B.82) to evaluate
the left hand integral, whence

∫ ∫ ∫

Bε

∆ r−1 dx dy dz =

∫ ∫ ∫

Bε

∇ · ∇ r−1 dx dy dz =

∫ ∫

Sε

∂

∂n

(
1

r

)
dS,

where the surface integral is over the bounding sphere Sε = ∂Bε = {‖x ‖ = ε}. The
normal n to the sphere points in the radial direction, and hence the normal derivative
coincides with differentiation with respect to r. Therefore,

∂

∂n

(
1

r

)
=

∂

∂r

(
1

r

)
= −

1

r2
.

The surface integral can now be explicitly evaluated:

∫ ∫

Sε

∂

∂n

(
1

r

)
dS = −

∫ ∫

Sε

1

r2
dS = −

∫ ∫

Sε

1

ε2
dS = − 4π,

since Sε has surface area 4πε2. Substituting this result back into (18.59), we conclude
that

c = 4π, and hence − ∆ r−1 = 4π δ(x). (18.60)

This is our desired formula! Therefore, the Green’s function for a delta function impulse
at the origin is

G(x, y, z) =
1

4π r
=

1

4π ‖x ‖
=

1

4π
√

x2 + y2 + z2
. (18.61)

If the singularity is concentrated at the point ξ = (ξ, η, ζ) instead of the origin, then
we merely translate the preceding solution. This leads immediately to the Green’s function

G(x; ξ) = G(x− ξ) =
1

4π ‖x− ξ ‖
=

1

4π
√
(x− ξ)2 + (y − η)2 + (z − ζ)2

(18.62)

on all of space. As a consequence of the superposition formula (18.55), we have proved
the following integral formula for the solutions to the Poisson equation on all of three-
dimensional space.
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Theorem 18.7. A particular solution to the Poisson equation

−∆u = f for x ∈ R3 (18.63)

is given by

u?(x, y, z) =
1

4π

∫ ∫ ∫

R3

f(ξ, η, ζ) dξ dη dζ√
(x− ξ)2 + (y − η)2 + (z − ζ)2

. (18.64)

The general solution to the Poisson equation is

u(x, y, z) = u?(x, y, z) + w(x, y, z),

where w(x, y, z) is an arbitrary harmonic function.

Example 18.8. In this example, we compute the gravitational (or electrostatic)
potential in three-dimensional space due to a uniform solid ball, e.g., a spherical planet
such as the earth. By rescaling, it suffices to consider the case when the forcing function

f(x) =

{
1, ‖x ‖ < 1,

0, ‖x ‖ > 1,

is equal to 1 inside a solid ball of radius 1 and zero outside. The particular solution to the
resulting Poisson equation (18.63) is given by the integral

u?(x) =
1

4π

∫ ∫ ∫

‖ ξ ‖<1

1

‖x− ξ ‖
dξ dη dζ. (18.65)

Clearly, since the forcing function is radially symmetric, the solution u = u(r) is also
radially symmetric. To evaluate the integral, then, we can take x = (0, 0, z) to lie on the
z axis, so that r = ‖x ‖ = | z |. We use cylindrical coordinates ξ = (ρ cos θ, ρ sin θ, ζ), so
that

‖x− ξ ‖ =
√

ρ2 + (z − ζ)2 .

See Figure Psph . The integral in (18.65) can then be explicitly computed:

1

4π

∫ 1

−1

∫ √1−ζ2

0

∫ 2π

0

ρ dθ dρ dζ√
ρ2 + (z − ζ)2

=

=
1

2

∫ 1

−1

(√
1 + z2 − 2z ζ − | z − ζ |

)
dζ =





1

3 | z |
, | z | ≥ 1,

−
z2

6
+
1

2
, | z | ≤ 1.

Therefore, by radial symmetry, the solution is

u(x) =





1

3r
, r = ‖x ‖ ≥ 1,

−
r2

6
+
1

2
, r = ‖x ‖ ≤ 1,

(18.66)
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plotted, as a function of r = ‖x ‖ in Figure solidball . Note that, outside the solid ball, the
solution is a Newtonian potential corresponding to a point mass of magnitude 4

3 π, which
is the same as the total mass of the planet. This is a well-known result in gravitation and
electrostatics — the exterior potential due to a spherically symmetric mass (or electric
charge) is the same as if all its mass were concentrated at its center. Thus, in outer space
if you can’t see a spherically symmetric planet, you can only determine its mass, not its
size, by measuring the gravitational force. Interestingly, at the center of the ball, the
potential is equal to 1

2 , not zero, which is its asymptotic value at large distances.

Bounded Domains and the Method of Images

Suppose we now wish to solve the inhomogeneous Poisson equation (18.53) on a
bounded domain Ω ⊂ R3. The spatial Green’s function (18.62) is a particular solution
to the underlying inhomogeneous equation

−∆u = δ(x− ξ), x ∈ Ω, (18.67)

but it does not have the proper boundary values on ∂Ω. However, as we know by the
principles of linearity, the general solution to any inhomogeneous linear equation has the
form

u(x) =
1

4π ‖x− ξ ‖
− v(x), (18.68)

where the first summand is a particular solution, which we now know, while v(x) is an ar-
bitrary solution to the homogeneous equation ∆v = 0, i.e., an arbitrary harmonic function.
The minus sign is for later convenience. The solution (18.68) satisfies the homogeneous
boundary conditions provided the boundary values of v(x) match those of the Green’s
function. Let us state the result in the case of the Dirichlet boundary value problem.

Theorem 18.9. The Green’s function for the homogeneous Dirichlet boundary value

problem for the Poisson equation

−∆u = f, x ∈ Ω, u = 0, x ∈ ∂Ω,

in a domain Ω ⊂ R3 has the form

G(x; ξ) =
1

4π ‖x− ξ ‖
− v(x; ξ) (18.69)

where v(x; ξ) is the harmonic function of x that satisfies

v(x; ξ) =
1

4π ‖x− ξ ‖
for all x ∈ ∂Ω.

In this manner, we have reduced the determination of the Green’s function to the
solution to a particular set of Laplace boundary value problems, parametrized by the
point ξ ∈ Ω. In certain cases, the method of images will produce an explicit formula for
the Green’s function. As in the planar version presented in Section 15.3, the idea is to
match the boundary values of the Green’s function due to a delta impulse at a point inside
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x

ξ
η

Figure 18.2. Method of Images for the Unit Sphere.

the domain with one or more Green’s functions corresponding to impulses at points outside
the domain — the “image points”.

The case of a solid ball of radius 1 with Dirichlet boundary conditions is the easiest
to handle. Indeed, the same geometrical construction that we used for a disk in the plane,
and illustrated in Figure 18.2 applies to a solid ball in three-dimensional space. Although
this is the same as Figure 15.8, we are now interpreting the picture as a three-dimensional
diagram, and so the circle represents the unit sphere. We choose the image point given by
inversion:

η =
ξ

‖ ξ ‖2
, so that ‖ ξ ‖ =

1

‖η ‖
.

Applying the same similar triangles argument as in the planar case, we deduce that

‖ ξ ‖

‖x ‖
=
‖x ‖

‖η ‖
=
‖x− ξ ‖

‖x− η ‖
, and therefore ‖x ‖ = 1.

As a result, the function

v(x, ξ) =
1

4π

‖η ‖

‖x− η ‖
=
1

4π

‖ ξ ‖

‖ ξ − ‖ ξ ‖2 x ‖

has the same boundary values on the unit sphere as the free space Green’s function:

1

4π

‖η ‖

‖x− η ‖
=

1

4π‖x− ξ ‖
whenever ‖x ‖ = 1.

We conclude that the difference (18.69) between the two

G(x; ξ) =
1

4π

(
1

‖x− ξ ‖
−

‖ ξ ‖

‖ ξ − ‖ ξ ‖2 x ‖

)
(18.70)

has the required properties of the Green’s function: it satisfies the Laplace equation inside
the unit ball except at the singularity at x = ξ, while G(x; ξ) = 0 has homogeneous
Dirichlet conditions on the boundary ‖x ‖ = 1.

With the Green’s function in hand, we can apply the general superposition for-
mula (18.55) to arrive at a general formula for the solution to the Dirichlet boundary
value problem for the Poisson equation in the unit ball.
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Theorem 18.10. The solution u(x) to the homogeneous Dirichlet boundary value
problem

−∆u = f, ‖x ‖ < 1, u = 0, ‖x ‖ = 1

is given by the integral

u(x) =
1

4π

∫ ∫ ∫

‖ ξ ‖≤1

(
1

‖x− ξ ‖
−

‖ ξ ‖

‖ ξ − ‖ ξ ‖2 x ‖

)
f(ξ) dξ dη dζ. (18.71)

Example 18.11. In this example, we compute the electrostatic potential inside a
sphere due to a small solid ball at its center. The outside sphere ‖x ‖ = 1 is assumed to
be grounded, and so the potential satisfies the homogeneous Dirichlet boundary conditions
there. The forcing function due to the interior charged sphere is take in the form

f(x) =

{
1, ‖x ‖ < ρ,

0, ρ < ‖x ‖ < 1.

Using radial symmetry, the solution u = u(r) is also radially symmetric.

The Green’s function can also be used to solve the inhomogeneous boundary value
problem

−∆u = 0, x ∈ Ω, u = h, x ∈ ∂Ω. (18.72)

The same argument as we applied in the two-dimensional situation works here, and the
solution is

u(x) = −

∫ ∫

∂Ω

∂G(x; ξ)

∂n
h(ξ) dS. (18.73)

In the case when Ω is a solid ball, this integral formula effectively sums the spherical
harmonic series (18.43).

18.4. The Heat Equation in Three-Dimensional Media.

Thermal diffusion in a homogeneous solid body Ω ⊂ R3 is governed by the three-
dimensional variant of the heat equation

∂u

∂t
= γ∆u = γ

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
, (x, y, z) ∈ Ω, (18.74)

The coefficient γ > 0 measures the thermal diffusivity of the body. Positivity of the diffu-
sivity is required in order that the heat equation be well-posed; see Section 14.1 for details.
The physical derivation of the heat equation is exactly the same as the two-dimensional
version (17.1), and does not need to be repeated in detail. Briefly, the temperature gradient
is proportional to the heat flux vector, w = −κ∇u, while its divergence is proportional to
the rate of change of temperature, σut = −∇ ·w. Combining these two physical laws and
assuming homogeneity, whereby κ and σ are constant, produces (18.74) with γ = κ/σ.
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As always, we need to impose suitable boundary conditions. These are either the
Dirichlet conditions u = h that specify the boundary temperature, or homogeneous Neu-
mann conditions ∂u/∂n = 0 corresponding to an insulated boundary, or a mixture of the
two. Given the initial temperature of the body

u(t0, x, y, z) = f(x, y, z) (18.75)

at the initial time t0, there is a unique solution u(t, x, y, z) to the initial-boundary value
problem for all subsequent times t ≥ t0; see [40] for a proof.

To keep matters reasonably simple, we initially restrict our attention to the homoge-
neous boundary conditions. The general separation of variables method works as before.
One begins by imposing an exponential ansatz u(t,x) = e−λt v(x). Substituting into
the differential equation and canceling the exponentials, we deduce that v satisfies the
Helmholtz eigenvalue problem

γ∆v + λ v = 0,

subject to the relevant boundary conditions. For Dirichlet and mixed boundary conditions,
the Laplacian is a positive definite operator, and hence the eigenvalues are all strictly
positive,

0 < λ1 ≤ λ2 ≤ · · · , with λn −→∞,

as n →∞. Linear superposition implies that the solution can be written as a generalized
Fourier series

u(t,x) =
∞∑

n=1

cn e−λn t vn(x) (18.76)

in the corresponding eigenfunctions vn(x). The coefficients cn are uniquely prescribed by
the initial condition (18.75); for t0 = 0, the initial condition takes the form

u(0,x) =

∞∑

n=1

cn vn(x) = f(x). (18.77)

Self-adjointness of the boundary value problem implies that the eigenfunctions are mutually
orthogonal, and hence we can invoke the usual orthogonality formulae

cn =
〈 f ; vn 〉

‖ vn ‖
2
=

∫ ∫ ∫

Ω

f(x) vn(x) dx dy dz

∫ ∫ ∫

Ω

vn(x)
2
dx dy dz

(18.78)

in order to compute the Fourier coefficients. Since the higher modes — the terms for n À 0
— go to zero extremely rapidly, the solution can be well approximated by the first few
terms in its Fourier expansion. As a consequence, the heat equation rapidly smoothes out
discontinuities and noise in the initial data, and so can be used to denoise three-dimensional
and video images — although better nonlinear techniques are now available, [128]. The
solution u(t,x) decays exponentially fast to thermal equilibrium u(t,x) → 0, the same
temperature as imposed on (part of) the boundary, at a rate equal to the smallest positive
eigenvalue λ1 > 0.
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Unfortunately, the explicit formulae for the eigenfunctions and eigenvalues are known
only for a few particular domains, [108]. Most explicit solution techniques for the Helmholtz
boundary value problem rely on a further separation of variables. In a rectangular box,
one separates into a product of functions depending upon the individual Cartesian coor-
dinates, and the eigenfunctions are written as products of trigonometric and hyperbolic
functions. See Exercise for details. In a cylindrical domain, the separation is effected
in cylindrical coordinates, and leads to separable solutions in terms of trigonometric and
Bessel functions, as outlined in Exercise . The most interesting and enlightening case is
a spherical domain, and we treat this particular problem in complete detail.

Heating of a Ball

Let us solve the problem of heat propagation in a solid spherical body, e.g., the earth†.
For simplicity, we take the diffusivity γ = 1, and consider the heat equation on a solid
spherical domain B1 = {‖x ‖ < 1} of radius 1 subject to homogeneous Dirichlet boundary
conditions. Once we know how to solve this particular case, an easy scaling argument
outlined in Exercise will allow us to find the solution for a ball of arbitrary radius and
with a general diffusion coefficient.

As usual, when dealing with a spherical geometry, we adopt spherical coordinates
r, ϕ, θ, (B.64), in terms of which the heat equation takes the form

∂u

∂t
=

∂2u

∂r2
+
2

r

∂u

∂r
+
1

r2

∂2u

∂ϕ2
+
cosϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
, (18.79)

where we have used our handy formula (18.14) for the Laplacian in spherical coordinates.
The diffusive separation of variables ansatz u(t, r, ϕ, θ) = e−λt v(r, ϕ, θ) requires us to
analyze the Helmholtz equation

∂2u

∂r2
+
2

r

∂u

∂r
+
1

r2

∂2u

∂ϕ2
+
cosϕ

r2 sinϕ

∂u

∂ϕ
+

1

r2 sin2 ϕ

∂2u

∂θ2
+ λu = 0 (18.80)

on the unit ball Ω = {r < 1} with homogeneous Dirichlet boundary conditions. To solve
the spherical coordinate form of the Helmholtz equation, we invoke a further separation of
variables. To this end, we separate off the radial coordinate first by setting

v(r, ϕ, θ) = w(r)χ(ϕ, θ).

The function χmust be 2π periodic in θ and well-defined at the poles ϕ = 0, π. Substituting
this ansatz in (18.80), and separating all the r-dependent terms from the terms depending
upon the angular variables ϕ, θ leads to a pair of differential equations; the first is an
ordinary differential equation

r2 w′′ + 2 w′ + (λ r2
− µ)w = 0, (18.81)

† In this perhaps overly simplified model, we are assuming that the earth is composed of a
completely homogeneous and isotropic solid material.
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for the radial component w(r), while the second is a familiar partial differential equation

∆S χ+ µχ =
1

sinϕ

∂

∂ϕ

(
sinϕ

∂χ

∂ϕ

)
+

1

sin2 ϕ

∂2χ

∂θ2
+ µχ = 0, (18.82)

for its angular counterpart χ(ϕ, θ). The operator ∆S is the spherical Laplacian (18.17)
analyzed in Section 18.2. As we learned, its eigenvalues have the form µn = n(n + 1) for
n = 0, 1, 2, 3, . . .. Each eigenvalue admits 2n + 1 linearly independent eigenfunctions —
the spherical harmonics Y m

n , Ỹ m
n defined in (18.32).

The radial ordinary differential equation (18.81) can be solved by letting

p(r) =
√

r w(r).

We manually compute the derivatives

w =
1
√

r
p,

dw

dr
=
1
√

r

dp

dr
−

1

2r3/2
p,

d2w

dr2
=
1
√

r

d2p

dr2
−

1

2r3/2

dp

dr
+

3

4r5/2
p.

Substituting into (18.81) with µ = µn = n(n+ 1), and multiplying the resulting equation
by
√

r, we discover that p(r) must solve the differential equation

r2 d2p

dr2
+ r

dp

dr
+
[
λ r2

−
(
n+ 1

2

)2 ]
p = 0. (18.83)

The latter equation is identical to the rescaled Bessel equation (17.49) in which the order
m = n + 1

2 is a half integer, i.e., m = 1
2 , 3

2 , 5
2 , . . . . Therefore, the solution to (18.83) that

remains bounded at r = 0 is (up to scalar multiple) the rescaled Bessel function

p(r) = Jn+1/2

(√
λ r
)
.

The corresponding solution

w(r) = r−1/2 Jn+1/2

(√
λ r
)

(18.84)

to (18.81) is important enough to warrant a special name.

Definition 18.12. The spherical Bessel function of order n ≥ 0 is defined by the
formula

Sn(x) =

√
π

2x
Jn+1/2(x) (18.85)

involving the Bessel function of half integer order. The multiplicative factor
√

π
2 is included

in the definition so as to avoid annoying factors of
√

π and
√
2 in all subsequent formulae.

Surprisingly, unlike the Bessel functions of integer order, the spherical Bessel functions
are elementary functions! According to formula (C.55), the spherical Bessel function of
order 0 is

S0(x) =
sinx

x
. (18.86)
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The higher order spherical Bessel functions can be obtained by use of a general recurrence
relation

Sn+1(x) = −
dSn
dx

+
n

x
Sn(x), (18.87)

which is a consequence of Proposition C.13. The next few are, therefore,

S1(x) = −
dS0

dx
= −

cosx

x
+
sinx

x2
,

S2(x) = −
dS1

dx
+

S1

x
= −

sinx

x
−
3 cosx

x2
+
3 sinx

x3
,

S3(x) = −
dS2

dx
+
2S1

x

cosx

x
−
6 sinx

x2
−
15 cosx

x3
+
15 sinx

x4
.

(18.88)

Our radial solution (18.84) is, apart from an inessential constant multiple that we ignore,
a rescaled spherical Bessel function of order n:

wn(r) = Sn
(√

λ r
)
.

So far, we have not taken into account the homogeneous Dirichlet boundary condition
at r = 1. This requires

wn(1) = 0, and hence Sn
(√

λ
)
= 0.

Therefore,
√

λ must be a root of the nth order spherical Bessel function. We use the
notation

0 < σ1,n < σ2,n < σ3,n < · · ·

to denote the successive roots of the nth order spherical Bessel function, so that

Sn(σk,n) = 0 for k = 1, 2, 3, . . . .

In particular the roots of the zeroth order function S0(x) = sinx/x are just the integer
multiples of π, so

σk,0 = kπ for k = 1, 2, . . . .

A table of all spherical Bessel roots that are < 13 follows. The rows of the table are
indexed by n, the order, while the columns are indexed by k, the root number.

Re-assembling the individual pieces, we have now demonstrated that the separable
eigenfunctions of the Helmholtz equation on a solid ball of radius 1, when subject to
homogeneous Dirichlet boundary conditions, are products of spherical Bessel functions
and spherical harmonics,

vk,m,n(r, ϕ, θ) = Sn(σk,n r) Y m
n (ϕ, θ), ṽk,m,n(r, ϕ, θ) = Sn(σk,n r) Ỹ m

n (ϕ, θ). (18.89)

The corresponding eigenvalues

λk,n = σ2
k,n, n = 0, 1, 2, . . . , k = 1, 2, 3, . . . , (18.90)
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Table of Spherical Bessel Roots σk,n

0 1 2 3 . . .

1 3.1416 6.2832 9.4248 12.5664 . . .

2 4.4934 7.7253 10.9041
...

3 5.7635 9.0950 12.3229
...

4 8.1826 11.7049
...

5 9.3558 12.9665
...

6 10.5128
...

7 11.6570
...

8 12.7908
...

...
...

are given by the squared spherical Bessel roots. Since there are 2n+1 independent spherical
harmonics of order n, each eigenvalue λk,n admits 2n+ 1 linearly independent eigenfunc-
tions, namely vk,0,n, . . . , vk,n,n, ṽk,1,n, . . . , vk,n,n. (We omit the trivial case ṽk,0,n ≡ 0.) In
particular, the radially symmetric solutions are the eigenfunctions for m = n = 0, namely

vk(r) = vk,0,0(r) = S0(σk,0 r) =
sin kπ r

kπ r
, k = 1, 2, . . . . (18.91)

It can be shown that the separable solutions (18.89) form a complete system of eigenfunc-
tions, [39].

We have thus completely determined the basic separable solutions to the heat equation
on a solid unit ball subject to homogeneous Dirichlet boundary conditions. They are
products of exponential functions of time, spherical Bessel functions of the radius and the
spherical harmonics:

uk,m,n(t, r, ϕ, θ) = e−σ
2

k,n
t Sn(σk,n r) Y m

n (ϕ, θ),

ũk,m,n(t, r, ϕ, θ) = e−σ
2

k,n
t Sn(σk,n r) Ỹ m

n (ϕ, θ).
(18.92)

The general solution can be written as an infinite “Fourier–Bessel–spherical harmonic”
series in these fundamental modes

u(t, r, θ, ϕ) = (18.93)

=
∞∑

n=0

∞∑

k=1

e−σ
2

k,n
t Sn(σk,n r)

(
c0,n

2
Y 0
n (ϕ, θ) +

n∑

m=1

[
cm,nY m

n (ϕ, θ) + c̃m,nỸ m
n (ϕ, θ)

])
.

The series coefficients are uniquely prescribed by the initial data, based on the usual
orthogonality relations among the eigenfunctions. Detailed formulae are relegated to the
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exercises. In particular, the slowest decaying mode is the spherically symmetric function

uk,0,0(t, r) =
e−π

2 t sinπr

r
(18.94)

corresponding to the smallest eigenvalue λ1,0 = π2. Therefore, the overall decay rate to

thermal equilibrium of a unit sphere is at a rate equal to π2
≈ 9.8696, or, to a very rough

approximation, 10.

The Fundamental Solution to the Heat Equation

For the heat equation (as well as more general diffusion equations), the fundamental
solution measures the response of the body to a concentrated unit heat source. Thus, given
a point ξ = (ξ, η, ζ) ∈ Ω in the domain occupied by the body, the fundamental solution

u(t,x) = F (t,x; ξ) = F (t, x, y, z; ξ, η, ζ)

solves the initial-boundary value problem

ut = ∆u, u(0,x) = δ(x− ξ), for x ∈ Ω, t > 0, (18.95)

subject to the homogeneous boundary conditions of the required form — which can be
either Dirichlet, Neumann or mixed.

In general, there is no explicit formula for the fundamental solution, although in
certain domains one can construct a (generalized) Fourier series in the associated eigen-
functions. The one case amenable to a complete analysis is when the heat is distributed
over all of three-dimensional space, so Ω = R3. To this end, we recall that Lemma 17.2
showed how to construct solutions of the two-dimensional heat equation as products of
one-dimensional solutions. In a similar manner, if v(t, x), w(t, x) and q(t, x) are any three
solutions to ut = γ uxx, then the product

u(t, x, y) = v(t, x)w(t, y) q(t, z) (18.96)

is a solution to the three-dimensional heat equation ut = γ (uxx + uyy + uzz). In particular,
choosing

v(t, x) =
1

2
√

πγ t
e−(x−ξ)2/4γ t, w(t, y) =

1

2
√

πγ t
e−(y−η)2/4γ t,

q(t, z) =
1

2
√

πγ t
e−(z−ζ)2/4γ t,

to all be one-dimensional fundamental solutions, we are immediately led to the three-
dimensional fundamental solution in the form of a three-dimensional Gaussian kernel.

Theorem 18.13. The fundamental solution

F (t,x; ξ) = F (t,x− ξ) =
e−‖x−ξ ‖2/4γ t

8 (πγ t)3/2
(18.97)

solves the three-dimensional heat equation ut = γ∆u on R3 with an initial temperature

equal to a delta function concentrated at the point x = ξ.
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Thus, the initially concentrated heat energy immediately begins to spread out in a
radially symmetric manner, with a minuscule, but nonzero effect felt at arbitrarily large
distances away from the initial concentration. At each individual point x ∈ R3, after an
initial warm-up, the temperature decays back to zero at a rate proportional to t−3/2 —
even more rapidly than in two dimensions because, intuitively, there are more directions
for the heat energy to disperse.

To solve the general initial value problem with the initial temperature u(0, x, y, z) =
f(x, y, z) distributed over all of space, we first write

f(x, y, z) =

∫ ∫ ∫
f(ξ) δ(x− ξ) dξ dη dζ

as a linear superposition of delta functions. By linearity, the solution to the initial value
problem is given by the corresponding superposition

u(t,x) =
1

8 (πγ t)3/2

∫ ∫ ∫
f(ξ) e−‖x−ξ ‖2/4γ t dξ dη dζ. (18.98)

of the fundamental solutions. Since the fundamental solution has exponential decay as
‖x ‖ → ∞, the superposition formula is valid even for initial temperature distributions
which are moderately increasing at large distances. We remark that the integral (18.98)
has the form of a three-dimensional convolution

u(t,x) = F (t,x) ∗ f(x) =

∫ ∫ ∫
f(ξ)F (t,x− ξ) dξ dη dζ (18.99)

of the initial data with a one-parameter family of increasingly spread out Gaussian filters.
Thus, convolution with a Gaussian kernel has the same smoothing effect on functions.

Example 18.14.

More general situations must be solved by numerical integration and approximation.

18.5. The Wave Equation in Three-Dimensional Media.

Certain classes of vibrations of a uniform solid body are governed by the three-
dimensional wave equation

utt = c2∆u = c2(uxx + uyy + uzz). (18.100)

The solution u(t,x) = u(t, x, y, z) represents a scalar-valued displacement of the body
at time t and position x = (x, y, z) ∈ Ω ⊂ R3. For example, u(t,x) might represent the
radial displacement of the body. One imposes suitable boundary conditions, e.g., Dirichlet,
Neumann or mixed, on ∂Ω, along with a pair of initial conditions

u(0,x) = f(x),
∂u

∂t
(0,x) = g(x), x ∈ Ω, (18.101)

that specify the initial displacement and initial velocity of the body. As long as the
initial and boundary data are reasonably nice, there exists a unique solution to the initial-
boundary value problem for all −∞ < t <∞. Thus, in contrast to the heat equation, one
can follow solutions to the wave equation backwards in time; see also Exercise .
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Remark : Since the solution u(t,x) to the wave equation is scalar-valued, it cannot
measure the full range of possible three-dimensional motions of a solid body. The more
complicated dynamical systems governing the elastic motions of solids are discussed in
Exercise .

Remark : The wave equation also governs the propagation of electromagnetic waves,
such as light, radio, X-rays, etc., in a homogeneous medium, including (in the absence of
gravitational effects) empty space. Each individual component of the electric and magnetic
vector fields E,B satisfy the wave equation, in which c denotes the velocity of light; see
Exercise for details.

We initially concentrate on the homogeneous boundary value problem. The funda-
mental vibrational modes are found by imposing our usual trigonometric ansatz

u(t, x, y, z) = cosω t v(x, y, z).

Substituting into the wave equation (18.100), we discover (yet again) that v(x, y, z) must
be an eigenfunction solving the associated Helmholtz eigenvalue problem

∆v + λ v = 0, where λ =
ω2

c2
, (18.102)

along with the relevant boundary conditions. In the positive definite cases, i.e., Dirichlet
and mixed boundary conditions, the eigenvalues λk = ω2

k/c
2 > 0 are all positive. Each

eigenfunction vk(x, y, z) yields two vibrational solutions

uk(t, x, y, z) = cosωk t vk(x, y, z), ũk(t, x, y, z) = sinωk t vk(x, y, z),

of frequency ωk = c
√

λk equal to the square root of the corresponding eigenvalue. The
general solution is a quasi-periodic linear combination

u(t, x, y, z) =
∞∑

k=1

(
ak cosωk t+ bk sinωk t

)
vk(x, y, z) (18.103)

of these fundamental vibrational modes. The coefficients ak, bk are uniquely prescribed by
the initial conditions (18.101). Thus,

u(0, x, y, z) =
∞∑

k=1

ak vk(x, y, z) = f(x, y, z),

∂u

∂t
(0, x, y, z) =

∞∑

k=1

ωk bk vk(x, y, z) = g(x, y, z).

The explicit formulas follow immediately from the mutual orthogonality of the eigenfunc-
tions:

ak =
〈 f ; vk 〉

‖ vk ‖
2
=

∫ ∫ ∫

Ω

f vk dx dy dz

∫ ∫ ∫

Ω

v2
k dx dy dz

, bk =
1

ωk

〈 g ; vk 〉

‖ vk ‖
2
=

∫ ∫ ∫

Ω

g vk dx dy dz

ωk

∫ ∫ ∫

Ω

v2
k dx dy dz

.

(18.104)
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In the positive semi-definite Neumann boundary value problem, there is an additional
zero eigenvalue λ0 = 0 corresponding to the constant null eigenfunction v0(x, y, z) ≡ 1.
This results in two additional terms in the eigenfunction expansion — a constant term

a0 =
1

volΩ

∫ ∫ ∫

Ω

f(x, y, z) dx dy dz

that equals the average initial displacement, and an unstable mode b0 t that grows linearly
in time, whose speed

b0 =
1

volΩ

∫ ∫ ∫

Ω

g(x, y, z) dx dy dz

is the average of the initial velocity over the entire body. The unstable mode will be excited
if and only if there is a non-zero net initial velocity, b0 6= 0.

Most of the basic solution techniques we learned in the two-dimensional case apply
here, and we will not dwell on the details. The case of a rectangular box is a particularly
straightforward application of the method of separation of variables, and is outlined in the
exercises. A similar analysis, now in cylindrical coordinates, can be applied to the case of
a vibrating cylinder. The most interesting case is that of a solid spherical ball, which is
the subject of the next subsection.

Vibrations of a Ball

Let us focus on the radial vibrations of a solid ball, as modeled by the three-dimensional
wave equation (18.100). The solution u(t,x) represents the radial displacement of the par-
ticle that is situated at position x when the ball is at rest.

For simplicity, we look at the Dirichlet boundary value problem on a ball of radius
1. The normal modes of vibration are governed by the Helmholtz equation (18.102) on
B1 = {‖x ‖ < 1} subject to homogeneous Dirichlet boundary conditions. According to
(18.89), the eigenfunctions are

vk,m,n(r, ϕ, θ) = Sn(σk,n r) Y m
n (ϕ, θ),

ṽk,m,n(r, ϕ, θ) = Sn(σk,n r) Ỹ m
n (ϕ, θ),

k = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . ,

n = 0, . . . ,m.

(18.105)

Here Sn denotes the nth order spherical Bessel function (18.85), σk,n is its kth root, while

Y m
n , Ỹ m

n are the spherical harmonics (18.32). Each eigenvalue

λk,n = σ2
k,n, n = 0, 1, 2, . . . , k = 1, 2, 3, . . . ,

corresponds to 2n+ 1 independent eigenfunctions, namely

vk,0,n(r, ϕ, θ), vk,1,n(r, ϕ, θ), . . . vk,n,n(r, ϕ, θ), ṽk,1,n(r, ϕ, θ), . . . ṽk,n,n(r, ϕ, θ),

where we discard the trivial case ṽk,0,n(r, ϕ, θ) ≡ 0. As a consequence, the fundamental
vibrational frequencies of a solid ball

ωk,n = c
√

λk,n = c σk,n, n = 0, 1, 2, . . . , k = 1, 2, 3, . . . , (18.106)
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are equal to the spherical Bessel roots σk,n multiplied by the wave speed. There are a
total of 2(2n+ 1) independent vibrational modes associated with each distinct frequency
(18.106), namely

uk,m,n(t, r, ϕ, θ) = cos(c σk,n t) Sn(σk,n r) Y m
n (ϕ, θ),

ûk,m,n(t, r, ϕ, θ) = sin(c σk,n t) Sn(σk,n r) Y m
n (ϕ, θ),

ũk,m,n(t, r, ϕ, θ) = cos(c σk,n t) Sn(σk,n r) Ỹ m
n (ϕ, θ),

̂̃uk,m,n(t, r, ϕ, θ) = sin(c σk,n t) Sn(σk,n r) Ỹ m
n (ϕ, θ).

k = 1, 2, 3, . . . ,

m = 0, 1, 2, . . . ,

n = 0, . . . ,m.

(18.107)

In particular, the radially symmetric modes of vibration have, according to (18.86), the
elementary form

uk,0,0(r, ϕ, θ) = cos c kπ t S0(kπr) = cos c kπ t
sin kπr

r
,

ûk,0,0(r, ϕ, θ) = sin c kπ t S0(kπr) = sin c kπ t
sin kπr

r
,

k = 1, 2, 3, . . . . (18.108)

Their vibrational frequencies, ωk,0 = c kπ, are integral multiples of the lowest frequency
ω0,1 = π. Therefore, interestingly, if you only excite the radially symmetric modes, the
ball would vibrate periodically motion.

More generally, adopting the same scaling argument as in (17.101), we conclude that
the fundamental frequencies for a solid ball of radius R and wave speed c are given by
ωk,n = c σk,n/R. The relative vibrational frequencies

ωk,n

ω1,0

=
σk,n

σ1,0

=
σk,n

π
(18.109)

are independent of the size of the ball R or the wave speed c. In the accompanying table,
we display all relative vibrational frequencies that are less than 4 in magnitude. The rows
are indexed by n, the order of the spherical harmonic, while the columns are indexed by
k, the root number.

The purely radial modes of vibration (18.108) have individual frequencies

ωk,0 =
kπ c

R
, so

ωk,n

ω1,0

= k,

and appear in the first row of the table. The lowest frequency is ω1,0 = π c/R, corre-
sponding to a vibration with period 2π/ω1,0 = 2R/c. In particular, for the earth, the
radius R ≈ 6, 000 km and the wave speed in rock is, on average, c ≈ 5 km/sec, so that the
fundamental mode of vibration has period 2R/c ≈ 2400 seconds, or 40 minutes. Vibra-
tions of the earth are also known as seismic waves and, of course, earthquakes are their
most severe manifestation. Therefore understanding the modes of vibration is an issue of
critical importance in geophysics and civil engineering, including the design of structures,
buildings and bridges and the avoidance of resonant frequencies.

Of course, we have suppressed almost all interesting terrestrial geology in this very
crude approximation, which has been based on the assumption that the earth is a uniform
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Relative Spherical Bessel Roots σk,n/σ1,0

0 1 2 3 . . .

1 1.0000 2.0000 3.0000 4.0000 . . .

2 1.4303 2.4590 3.4709
...

3 1.8346 2.8950 3.9225
...

4 2.2243 3.3159
...

5 2.6046 3.7258
...

6 2.9780
...

7 3.3463
...

8 3.7105
...

...
...

body, vibrating only in its radial direction. A more realistic modeling of the vibrations
of the earth requires an understanding of the basic partial differential equations of linear
and nonlinear elasticity, [69]. Nonuniformities in the earth lead to scattering of the re-
sulting vibrational waves. These in turn are used to understand the geological structures
underneath the ground. For instance, setting off and then measuring small scale seismic
vibrations is the primary means of determining its underlying structure, with oil and min-
eral exploration being a particularly important application. We refer the interested reader
to [6] for a comprehensive introduction to mathematical seismology.

Remark : The number of spherical harmonics governs the energy levels or orbital shells
occupied by electrons in an atom. In chemistry, the electron levels are indexed by order n

of the spherical harmonic, and traditionally labeled by a letter in the sequence p, s, d, f, . . ..
Thus, the order n = 0 spherical harmonics correspond to the p shells; the 3 harmonics of
order n = 1 are the s shells, and so on. Since electrons are allowed to have one of two
possible spins, the Pauli exclusion principle tells us that each energy shell can be occupied
by at most two electrons. Thus, the number of electrons that can reside in the nth energy
level of an atom is 2(2n+1), the same as the number of linearly independent solutions to
the wave equation associated with a given energy level. The configuration of energy shells
and electrons in atoms are responsible for the periodic table. Thus, hydrogen has a single
electron in the p shell. Helium has two electrons in the p shell. Lithium has 3 electrons,
with two of them filling the first p shell and the third in the second p shell. Neon has 10
electrons filling the two p and first three s shells. And so on. The chemical properties
of the elements are, to a very large extent, determined by the placement of the electrons
within the different shells. See [Chem] for further details.

Example 18.15. The radial vibrations of a hollow spherical shell (e.g., an elastic
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balloon) are governed by the differential equation

utt = c2 ∆S [u ] = c2

(
∂2u

∂ϕ2
+ cotϕ

∂u

∂ϕ
+

1

sin2 ϕ

∂2u

∂θ2

)
, (18.110)

where ∆S denotes the spherical Laplacian (18.17). The radial displacement u(t, ϕ, θ) of a
point on the sphere only depends on time t and the angular coordinates ϕ, θ. The solution
u(t, ϕ, θ) is required to be 2π periodic in the meridial angle θ and bounded at the poles
ϕ = 0, π.

According to (18.32), the nth eigenvalue λn = n(n+1) of the spherical Laplacian leads
to 2n+ 1 linearly independent spherical harmonic eigenfunctions

Y 0
n (ϕ, θ), Y 1

n (ϕ, θ), . . . , Y n
n (ϕ, θ), Ỹ 1

n (ϕ, θ), . . . , Ỹ n
n (ϕ, θ).

As a consequence, the fundamental frequencies of vibration for a spherical shell are

ωn = c
√

λn = c
√

n(n+ 1) , n = 0, 1, 2, . . . . (18.111)

The vibrational solutions are quasi-periodic combinations of the fundamental modes

cos
√

n(n+ 1) t Y m
n (ϕ, θ), sin

√
n(n+ 1) t Y m

n (ϕ, θ),

cos
√

n(n+ 1) t Ỹ m
n (ϕ, θ), sin

√
n(n+ 1) t Ỹ m

n (ϕ, θ),
(18.112)

involving the spherical harmonics. The smallest positive eigenvalue is λ1 = 2, yielding a
lowest tone of frequency ω1 = c

√
2. The higher order frequencies are irrational multiples

of the lowest order one, ω1 = c, and hence a spherical bell sounds percussive to our ears.

The spherical Laplacian operator is only positive semi-definite, since the lowest mode
has eigenvalue λ0 = 0, which corresponds to the constant null eigenfunction v0(ϕ, θ) =
Y 0

0 (ϕ, θ) ≡ 1. Therefore, the wave equation admits an unstable mode b0,0 t, corresponding
to a uniform radial inflation. The coefficient

b0,0 =
3

4π

∫ ∫

S1

∂u

∂t
(0, ϕ, θ) dS

represents the sphere’s average initial velocity. The existence of such an unstable mode is
an artifact of the simplified linear model we are using, that fails to account for nonlinearly
elastic effects that serve to constrain the inflation of a spherical balloon.

18.6. Spherical Waves and Huygens’ Principle.

The fundamental solution to the wave equation measures the effect of applying an
instantaneous concentrated unit impulse at a single point. Two physical examples to keep
in mind are the light waves propagating from a sudden concentrated blast, e.g., a stellar
supernova or a lightning bolt, and the sound waves from an explosion or thunderclap,
propagating in air at a much slower speed.

In a uniform isotropic medium, e.g., empty space, the initial blast leads to a spherically
expanding wave, moving away at the speed of light or sound in all directions. Using
translation invariance, we can assume that the source is at the origin, and so the solution
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u(t,x) should only depend on the distance r = ‖x ‖ from the source. We change over
to spherical coordinates and look for a solution u = u(t, r) to the three-dimensional wave
equation with no angular dependence. Substituting the formula (18.14) for the spherical
Laplacian and setting the angular derivatives to 0, we are led to the partial differential
equation

∂2u

∂t2
= c2

(
∂2u

∂r2
+
2

r

∂u

∂r

)
(18.113)

that governs the propagation of spherically symmetric waves. It turns out, surprisingly,
that we can solve this partial differential equation. The secret is to multiply both sides of
the equation by r. The resulting equation can be written in the form

∂2(

∂r2
u)t = r

∂2u

∂t2
= c2

(
r

∂2u

∂r2
+ 2

∂u

∂r

)
= c2 ∂2

∂r2
(r u),

and so (18.113) reduces to

∂2w

∂t2
= c2 ∂2w

∂r2
, where w(t, r) = r u(t, r). (18.114)

Therefore the function w(t, r) is a solution to the one-dimensional wave equation!

According to Theorem 14.8, the general solution to (18.114) has the d’Alembert form

w(t, r) = p(r − c t) + q(r + c t),

where p(ξ) and q(η) are arbitrary functions of a single characteristic variable. Reverting
back to u = w/r, we conclude that the spherically symmetric solutions to the three-
dimensional wave equation are all of the form

u(t, r) =
p(r − c t)

r
+

q(r + c t)

r
. (18.115)

The first term

u(t, r) =
p(r − c t)

r
(18.116)

in the solution (18.115) represents a wave moving at speed c in the direction of increasing
r — away from the origin. It describes the effect of a variable light source concentrated
at the origin. Think, for instance, of a pulsating quasar in interstellar space. To highlight
this interpretation, let us look at the basic case when p(s) = δ(s− a) be a delta function
at s = a; more general such solutions can then be assembled by linear superposition. The
solution

u(t, r) =
δ(r − c t− a)

r
=

δ
(
r − c(t− t0)

)

r
, where t0 = −

a

c
. (18.117)

will represent a concentrated spherical wave. At the instant t = t0, the light is entirely
concentrated at the origin r = 0. The light impulse then moves away from the origin at
speed c in all directions. At each later time t > t0, the initially concentrated light source
is now spread out over the surface of a sphere of radius r = c (t − t0). The intensity of
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the signal at each point on the sphere, however, has decreased by a factor 1/r, and so, the
farther from the source, the weaker the signal. An observer sitting at a fixed point away
from the source will only see an instantaneous flash of light as the spherical wave passes
by. A similar phenomenon holds for sound waves — the sound of the explosion will only
last momentarily. Thunder and lightning are the most familiar examples of this everyday
phenomenon. On the other hand, for t < t0, the impulse is concentrated at a negative
radius r = c (t − t0) < 0. To interpret this, note that, for a given value of the spherical
angles ϕθ, the point

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ,

for r < 0 lies on the antipodal point of the sphere of radius | r |, so that replacing r by
−r has the same effect as changing x to −x. Thus, the solution (18.117) represents a
concentrated spherically symmetric light wave arriving from the edges of the universe at
speed c, that strengthens in intensity as it collapses into the origin at t = t0. After collapse,
it immediately reappears in expanding form.

The second solution in the d’Alembert formula (18.115) has, in fact, exactly the same
physical form. Indeed, if we set

r̂ = −r, p(ξ) = − q(−ξ), then
q(r + c t)

r
=

p(r̂ − c t)

r̂
.

Therefore, to represent the general radially symmetric solution to the three-dimensional
wave equation, we only need use one of these constituents, and thus only need to consider
solutions of the form (18.117) from now on.

In order to utilize such spherical wave solutions, we need to understand the nature of
their originating singularity. For simplicity, we set a = 0 in (18.117) and concentrate on
the particular solution

u(t, r) =
δ(r − c t)

r
, (18.118)

which has a singularity at the origin r = 0 when t = 0. We need to pin down precisely
which sort of distribution this solution represents. Invoking the limiting definition of a
distribution is tricky, and it will be easier to use the dual definition as a linear functional.
Thus, at a fixed time t ≥ 0, we must evaluate the inner product

〈u ; f 〉 =

∫ ∫ ∫
u(t, x, y, z) f(x, y, z) dx dy dz

of the solution with a smooth test function f(x) = f(x, y, z). We convert to spherical
coordinates using the change of variables formula (B.66), whereby

〈u ; f 〉 =

∫ ∞

0

∫ 2π

0

∫ π

0

δ(r − c t)

r
f(r, ϕ, θ) r2 sinϕ dϕ dθ dr

= c t

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕ dθ.

(18.119)
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Therefore, 〈u ; f 〉 = 4πc t M0
ct [ f ], where

M0
ct [ f ] =

1

4πc2 t2

∫ ∫

Sct

f dS =
1

4π

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕ dθ (18.120)

is the mean or average value of the function f on the sphere Sct = ‖x ‖ = c t of radius
r = c t centered at the origin 0. In particular, in the limit as t → 0, the mean over the
sphere of radius r = 0 is equal to the value of the function at the origin:

M0
0 [ f ] = f(0), (18.121)

and so, at t = 0, the formula implies that 〈u ; f 〉 = 0 for all functions f . Consequently,
u(0, r) ≡ 0 represents a trivial zero initial displacement.

How, then, can the solution be nonzero? Clearly, this must be the result of a nonzero
initial velocity. Thus, we differentiate (18.119) with respect to t, whereby

〈
∂u

∂t
; f

〉
=

∂

∂t
〈u ; f 〉

= c

∫ 2π

0

∫ π

0

f(c t, ϕ, θ) sinϕ dϕdθ + c2 t

∫ 2π

0

∫ π

0

∂f

∂r
(c t, ϕ, θ) sinϕ dϕ dθ

= 4πcM0
ct [ f ] + 4πc2 tM0

ct

[
∂f

∂r

]
. (18.122)

The result is a linear combination of the mean of f and of its radial derivative fr over the
sphere of radius ct. In particular, at t = 0, using (18.121),

〈ut ; f 〉
∣∣
t=0
= 4πcM0

0 [ f ] = 4πc f(0),

We conclude that, at t = 0, the initial velocity

ut(0, r) = 4πc δ(x)

is a multiple of a delta function at the origin! Dividing through by 4πc, we conclude that
the spherical expanding wave

u(t, r) =
δ(r − c t)

4πc r
(18.123)

is the solution to the initial value problem

u(0,x) ≡ 0,
∂u

∂t
(0,x) = δ(x),

corresponding to an initial unit velocity impulse concentrated at the origin. This solution
can be viewed as the three-dimensional version of striking a piano string with a hammer.

More generally, if our unit impulse is concentrated at the point ξ, we invoke the
translational symmetry of the wave equation to conclude that the function

G(t,x; ξ) =
δ
(
‖x− ξ ‖ − c t

)

4πc ‖x− ξ ‖
, t ≥ 0, (18.124)
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is the solution to the wave equation that satisfies the initial conditions

G(0,x; ξ) = 0,
∂G

∂t
(0,x; ξ) = δ(x− ξ). (18.125)

By linearity, any superposition of these spherical waves will also be a solution to the wave
equation. Thus, for the initial conditions

u(0, x, y, z) = 0,
∂u

∂t
(0, x, y, z) = g(x, y, z), (18.126)

representing a zero initial displacement, we write the initial velocity

g(x) =

∫ ∫ ∫
g(ξ) δ(x− ξ) dx dy dz

as a superposition of delta functions, and immediately conclude that the relevant solution
is the identical superposition of spherical waves

u(t,x) =
1

4πc

∫ ∫ ∫
g(ξ)

δ
(
‖x− ξ ‖ − c t

)

‖x− ξ ‖
dξ dη dζ =

1

4πc2 t

∫ ∫

‖ ξ−x ‖=c t

g(ξ) dS.

(18.127)
Therefore the value of the solution at a point x and time t ≥ 0 is equal to

u(t,x) = t Mx
ct [ g ] , (18.128)

namely t times the mean of the initial velocity function g over a sphere of radius r = c t

centered at the point x.

Example 18.16. Let us set the wave speed c = 1 for simplicity. Suppose that the
initial velocity

g(x) =

{
1, ‖x ‖ < 1,

0, ‖x ‖ > 1

is 1 within the unit ball B1 centered at the origin, and 0 outside the ball. According to
the formula (18.127) for the solution at a point x and time t ≥ 0, we need to compute
the average value of g over a sphere Sx

t of radius t centered at x. Since g = 0 outside the
unit sphere, its average will be equal to the surface area of that part of the sphere that is
contained inside the unit ball, i.e., Sx

t ∩B1, divided by the total surface area of S
x
t , namely

4π t2. The two spheres will intersect if either

(a) r > 1 and r − 1 < t < r + 1, or (b) r < 1 and 1− r < t < 1 + r.

If t > 1+ r or t < r− 1 and r > 1, then the sphere of radius t lies entirely outside the unit
ball, and so the mean is 0; if t < 1− r and r < 1, then the sphere lies entirely within the
unit ball and the mean is 1. Otherwise, referring to Figure bs , and using Exercise , we
see that the area of the spherical cap Sx

t ∩B1 is, by the Law of Cosines,

2π t2(1− cosα) = 2π t2
(
1−

1− r2
− t2

2 r t

)
=

π t

2 r
[1− (t− r)2 ] ,
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Figure 18.3. Time Plot of the Solution to Wave Equation at Three Fixed Positions.

where r = ‖x ‖ and ϕ = α denotes the azimuthal angle describing the circle of intersection
between the two spheres. Therefore,

Mx
ct [ g ] =





1, 0 ≤ t ≤ 1− r,

1− (t− r)2

4 r t
, | r − 1 | ≤ t ≤ 1 + r,

0, 0 ≤ t ≤ r − 1 or t ≥ 1 + r.

(18.129)

The solution (18.128) is obtained by multiplying by t, and hence for t ≥ 0,

u(t,x) =





t, 0 ≤ t ≤ 1− ‖x ‖,

1−
(
t− ‖x ‖

)2

4 ‖x ‖
, | 1− ‖x ‖ | ≤ t ≤ 1 + ‖x ‖,

0, 0 ≤ t ≤ ‖x ‖ − 1 or t ≥ 1 + ‖x ‖.

(18.130)

As illustrated in Figure 18.3, an observer sitting inside the sphere at a distance r < 1 away
from the origin will experience a linearly increasing light intensity followed by a parabolic
decrease to 0 intensity, where it remains from then on. If the observer is closer to the
edge than the center, the parabolic portion will continue to increase for a while before
eventually tapering off. On the other hand, an observer sitting outside the sphere will
experience, after an initially dark period, a parabolic increase to a maximal intensity and
then symmetrical decrease, returning to dark after a total time laps of 2. We also show a
plot of u at a function of r = ‖x ‖ for various times in Figure wbr . Note that the light
stays brightest in a sphere of gradually decreasing radius. At time t = 1 there remains
a cusp, after which the solution is bright inside the domain lying between two concentric
spheres of respective radii t− 1 and t+ 1.

The solution described by formula (18.127) only handles initial velocities. How do
we construct a solution corresponding to a nonzero initial displacement? Surprisingly, the
answer is differentiation. The key observation is that if u(t,x) is any (sufficiently smooth)
solution to the wave equation, so is its time derivative

v(t,x) =
∂u

∂t
(t,x).

This follows at once from differentiating both sides of the wave equation with respect to t

and using the equality of mixed partial derivatives. Physically, this implies that the velocity
of a wave obeys the same evolutionary principle as the wave itself, which is a manifestation

1/12/04 820 c© 2003 Peter J. Olver



of the linearity and time-independence (autonomy) of the equation. Suppose u has initial
conditions

u(0,x) = f(x), ut(0,x) = g(x).

What are the initial conditions for its derivative v = ut? Clearly, its initial displacement
v(0,x) = ut(0,x) = g(x) equals the initial velocity of u. As for its initial velocity, we have

∂v

∂t
=

∂2u

∂t2
= c2∆u

because we are assuming that u solves the wave equation. Thus, at the initial time

∂v

∂t
(0,x) = c2∆u(0,x) = c2∆f(x)

equals c2 times the Laplacian of the initial displacement†. In particular, if u satisfies the
initial conditions

u(0,x) = 0, ut(0,x) = g(x), (18.131)

then v = ut satisfies the initial conditions

v(0,x) = g(x), vt(0,x) = 0. (18.132)

Thus, paradoxically, to solve the initial displacement problem we differentiate the initial
velocity solution (18.127) with respect to t, and hence

v(t,x) =
∂u

∂t
(t,x) =

∂

∂t

(
tMx

ct [ g ]
)
= Mx

ct [ g ] + c tMx
ct

[
∂g

∂n

]
, (18.133)

using our computation in (18.122). Therefore, v(t,x) is a linear combination of the mean
of the function g and the mean of its normal or radial derivative ∂g/∂n, taken over a sphere
of radius c t centered at the point x. In particular, to obtain the solution corresponding to
a concentrated initial displacement,

F (0,x; ξ) = δ(x− ξ),
∂F

∂t
(0,x; ξ) = 0, (18.134)

we differentiate the solution (18.124), so

F (t,x; ξ) =
∂G

∂t
(t,x; ξ) = −

δ ′
(
‖x− ξ ‖ − c t

)

4π ‖ ξ − x ‖
, (18.135)

which represents a spherically expanding doublet, cf. Figure 11.10. Thus, interestingly, a
concentrated initial displacement spawns a spherical doublet or derived delta wave, whereas
a concentrated initial velocity spawns a singlet delta wave.

† A similar device is used to initiate the numerical solution method for the wave equation; see
Section 14.6.
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Figure 18.4. Time Plot of Solutions to Wave Equation at Three Fixed Position.

Example 18.17. Let c = 1 for simplicity. Consider the initial displacement

u(0,x) = f(x) =

{
1, ‖x ‖ < 1,

0, ‖x ‖ > 1

along with zero initial velocity, corresponding to an instantaneously illuminated solid glass
ball. To obtain the solution, we try differentiating (18.130) with respect to t, leading to

u(t,x) =





1, 0 ≤ t < 1− ‖x ‖,

‖x ‖ − t

2 ‖x ‖
, | 1− ‖x ‖ | ≤ t ≤ 1 + ‖x ‖,

0, 0 ≤ t < ‖x ‖ − 1 or t > 1 + ‖x ‖.

(18.136)

As illustrated in Figure 18.4, an observer sitting inside the ball at radius r < 1 will begin
by experiencing a constant intensity, followed by a sudden jump, then linear decrease,
and finally a jump back to quiescent, while an observer sitting outside, with r > 1, will
experience, after an initially dark period, a sudden jump in the light intensity, followed by
a linear decrease to darkness. The size of the jump depends upon the distance from the
ball.

By linearity, we can combine the two solutions (18.128), (18.133) together, and have
thus established a d’Alembert-type solution formula for the wave equation in three-dimensional
space.

Theorem 18.18. The solution to the initial value problem

utt = c2∆u, u(0,x) = f(x),
∂u

∂t
(0,x) = g(x), x ∈ R3, (18.137)

for the wave equation in three-dimensional space is given by

u(t,x) = Mx
ct [ f ] + c tMx

ct

[
∂f

∂n

]
+ t Mx

ct [ g ] , (18.138)

where Mx
ct [ f ] denotes the average value of the function f over a sphere of radius c t

centered at position x.

Observe that the value of the solution (18.138) at a point x and time t only depends
upon the values of the initial displacements and velocities at a distance c t away. Physically,
this means that the light that we see at a given time t arrived from points at a distance
exactly d = c t away at time t = 0. In particular, a sharp, localized initial signal — whether
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initial displacement or initial velocity — that is concentrated near a point produces a sharp,
localized response concentrated on a sphere surrounding the point at all subsequent times.
In our three-dimensional universe, we only witness the light from an explosion for a brief
moment, after which if there is no subsequent light source, the view returns to darkness.
Similarly, a sharp sound remains sharply concentrated, with diminishing magnitude, as it
propagates through space. This phenomenon was first highlighted the seventeenth century
Dutch scientist Christiaan Huygens and is known as Huygens’ Principle in his honor.
Remarkably, as we will show next, Huygens’ Principle does not hold in a two dimensional
universe! In the plane, concentrated impulses will be spread out as time progresses.

The Method of Descent

So far, we have explicitly determined the response of the wave equation to an initial
displacement and initial velocity in one- and three-dimensional space. The two-dimensional
case

utt = c2∆u = c2(uxx + uyy). (18.139)

is, counter-intuitively, more complicated! For instance, looking for a radially symmetric
solution u(t, r) leads to the partial differential equation

∂2u

∂t2
= c2

(
∂2u

∂r2
+
1

r

∂u

∂r

)
(18.140)

which, unlike its three-dimensional cousin (18.113), cannot be so easily integrated.

However, our solution to the three-dimensional problem can be easily adapted to
construct a solution using the so-called method of descent . Any solution u(t, x, y) to
the two-dimensional wave equation (18.139) can be viewed as a solution to the three-
dimensional wave equation (18.100) that does not depend upon the vertical z coordinate,
whence ∂u/∂z = 0. Clearly, if the initial data does not depend on z, then the resulting
solution u(t, x, y) will also be independent of z.

Consider first the solution formula (18.127) corresponding to initial conditions

u(0, x, y) = 0,
∂u

∂t
(0, x, y) = g(x, y). (18.141)

of zero initial displacement, but nonzero initial velocity. We rewrite the formula in the
form of a surface integral over the sphere Sct =

{
‖ ξ ‖ = c t

}
centered at the origin:

u(t,x) =
1

4πc2 t

∫ ∫

Sct

g(ξ) dS =
1

4πc2 t

∫ ∫

‖ ξ ‖=c t

g(x+ ξ) dS. (18.142)

Imposing the condition that g(x, y) does not depend upon the z coordinate, we see that
the integrals over the upper and lower hemispheres

S+
ct =

{
‖ ξ ‖ = c t, ζ ≥ 0

}
, S−ct =

{
‖ ξ ‖ = c t, ζ ≤ 0

}
,

are identical. As in (B.45), to evaluate the upper hemispherical integral, we param-
etrize the upper hemisphere as the graph ζ =

√
(ct)2 − ξ2 − η2 over the disk Dct =
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{
ξ2 + η2

≤ c2 t2
}
, and so

u(t, x, y) =
1

2πc2 t

∫ ∫

S
+

ct

g(x+ ξ) dS =
1

2πc

∫ ∫

Dct

g(x+ ξ, y + η)√
(ct)2 − ξ2 − η2

dξ dη, (18.143)

which solves the initial value problem (18.141). In particular, if we take the initial velocity
g(x, y) = δ(x− ξ) δ(y − η) to be a concentrated impulse, then the resulting solution is

G(t, x, y; ξ, η) =





0, (x− ξ)2 + (y − η) > c t,

1

2πc
√

c2 t2 − (x− ξ)2 − (y − η)2
, (x− ξ)2 + (y − η) < c t.

(18.144)
Thus, given a concentrated impulse in the velocity at time t = 0, an observer sitting at
position x will first experience a concentrated light wave at time t = ‖x− ξ ‖/c. However,
in contrast to the three-dimensional solution, the observer will continue to experience a non-
zero signal after the initial disturbance has passed, with decreasing magnitude proportional
to 1/(c t); see the first graph in Figure nhp2 . Thus, although the initial condition is
concentrated, in contrast to the three-dimensional case, the resulting solution is not. In
a two-dimensional universe, Huygens’ principle is not valid. A two-dimensional creature
would experience not only a initial effect of any sound or light wave but also an “afterglow”
with slowly diminishing magnitude. It would be like living in a permanent echo chamber,
and so understanding and acting upon sensory phenomena would more challenging in a
two-dimensional universe. In general, Huygens’ principle is only valid in odd-dimensional
spaces; see also [17] for recent advances in the classification of partial differential equations
that admit a Huygens’ principle.

Similarly, the solution to the initial displacement conditions

u(0, x, y) = f(x, y),
∂u

∂t
(0, x, y) = 0, (18.145)

can be obtained by differentiation with respect to t. Thus,

u(t, x, y) =
∂

∂t

(
1

2πc

∫ ∫

Dct

f(x+ ξ, y + η)√
(ct)2 − ξ2 − η2

dξ dη

)
(18.146)

is the desired solution. The general solution is a linear combination of the two types of
solutions (18.143), (18.146). Note that the solution at a point x at time t depends upon
the initial displacement and velocity on the entire disk of radius r t centered at the point,
and not just on the points a distance c t away.

Remark : Since the solutions to the two-dimensional wave equation can be interpreted
as three-dimensional solutions with no z dependence, a concentrated delta impulse in the
two-dimensional wave equation would correspond to a concentrated line impulse in three
dimensions. If light starts propagating from the line at t = 0, after the initial signal reaches
us, we will continue to receive light from points that are progressively farther away along
the line, which accounts for the two-dimensional afterglow.
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Chapter 19

Nonlinear Systems

Nonlinearity is ubiquitous in physical phenomena. Fluid mechanics, elasticity, rela-
tivity, chemical reactions, combustion, ecology, biomechanics, and many, many others are
all governed by inherently nonlinear equations. (The one notable exception is quantum
mechanics, which is a fundamentally linear theory. More recent attempts at grand unifica-
tion of all fundamental physical theories, such as string theory and conformal field theory,
do venture into the nonlinear realm.) For this reason, an increasingly large fraction of
modern mathematical research is devoted to the analysis of nonlinear systems. The ad-
vent of powerful computers has finally placed nonlinearity within our grasp, and thereby
fomented a revolution in our understanding and development of nonlinear mathematics.
Indeed, many of the most important modern analytical techniques drew their inspiration
from early computer forays into the uncharted nonlinear wilderness.

Why, then, have we spent the overwhelming majority of this text developing purely
linear mathematics? The facile answer, of course, is that nonlinear systems are vastly more
difficult to analyze. In the nonlinear regime, many basic questions remain unanswered;
existence and uniqueness of solutions are not guaranteed; explicit formulae are difficult
to come by; linear superposition is no longer available; numerical approximations are not
always sufficiently accurate; etc., etc. But, a more intelligent answer is that, without a
proper understanding of linear phenomena and linear mathematics, one has no foundation
upon which to erect a nonlinear analysis. Therefore, in an introductory text on applied
mathematics, we are forced to develop in detail the proper linear foundations to aid us
when we confront the nonlinear beast.

Moreover, many important physical systems are “weakly nonlinear”, in the sense that,
while nonlinear effects do play an essential role, the linear terms dominate the system, and
so, to a first approximation, the system is close to linear. As a result, the underlying non-
linear phenomena can be understood by suitably perturbing their linear approximations.
Historically, while certain nonlinear problems date back to Newton (for example the n

body problem arising in celestial mechanics and planetary motion), significant progress in
understanding weak nonlinearities only began after computers became sufficiently power-
ful tools. The truly nonlinear regime is, even today, only sporadically modeled and even
less well understood. Despite dramatic advances in both hardware and mathematical algo-
rithms, many nonlinear systems, for instance Einsteinian gravitation, still remain beyond
the capabilities of today’s computers and algorithms.

Space limitations imply that we can only provide a brief overview of some of the key
ideas and phenomena that arise when venturing into the nonlinear realm. This chapter is
devoted to the study of nonlinear functions and equations. In the remaining chapters, we
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shall ascend the nonlinear “dimensional ladder”, passing from equilibrium to dynamics and
from discrete to continuous, mimicking our linear ascent that guided the logical progression
in the preceding chapters of the text.

We begin with an analysis of the iteration of nonlinear functions. Building on our
experience with iteration of linear systems, we will discover that functional iteration, when
it converges, provides a powerful mechanism for solving equations and optimization. When
it fails to converge, even very simple nonlinear iterations can lead to remarkably complex,
chaotic behavior. The second section is devoted to basic solution techniques for nonlinear
systems, and includes the bisection method, iterative methods, and the powerful Newton
method. The third section is devoted to optimization, i.e., the minimization of nonlinear
functions on finite-dimensional spaces. As we know, the equilibrium configurations of
discrete mechanical systems are minimizers of the potential energy in the system. The
locations where the gradient of the function vanishes are the critical points, and include the
local minima and maxima as well as non-optimizing saddle points. Nondegenerate critical
points are classified by a second derivative test based on Hessian matrix. These results from
multivariable calculus will be developed in a form that readily generalizes to minimization
problems on infinite-dimensional function space, to be presented in Chapter 21. Numerical
optimization procedures rely on iterative procedures, and we present those connected with
a gradient descent approach.

19.1. Iteration of Functions.

Iteration, or repeated application of a function, plays an essential role in the modern
theories of dynamical systems. Iteration can be regarded as a discrete dynamical system,
in which the continuous time variable has been “quantized”. Even iterating a very sim-
ple quadratic function leads to an amazing variety of phenomena, including convergence,
period doubling, and chaos. Discrete dynamical systems arise not just in mathematics,
but also underlie the theory of growth and decay of biological populations, predator-prey
models, spread of communicable diseases such as Aids, and host of other natural phenom-
ena. Moreover, many numerical solution methods — for systems of algebraic equations,
ordinary differential equations, partial differential equations and so on — rely in essence
on an iterative method, and so the basic results on function iteration play a key role in
the analysis of convergence and efficiency of such numerical techniques.

In general, an iterative system of the form

u(k+1) = g(u(k)), (19.1)

is also known as a discrete dynamical system. A solution is a discrete collection of points
u(k) in which the index k = 0, 1, 2, 3, . . . takes on non-negative integer values. One might
also consider negative integral values k = −1,−2, . . . of the index, but we will not. The
superscripts on u(k) refer to the iteration number, and do not denote derivatives. The
index k may be viewed as the discrete “time” for the system, indicating the number of
days, years, seconds, etc.

The function† g:Rn
→ Rn is usually assumed to be continuous. Later on we shall also

† Complex iteration is based on a complex-valued function g:Cn → Cn.
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require that g be reasonably smooth, meaning that it has at least one or two continuous
partial derivatives everywhere. Chapter 10 dealt with the case when g(u) = Au is a linear
function, necessarily given by multiplication by an n × n matrix A. In this chapter, we
allow nonlinear functions into the picture.

Once we specify an initial condition, say

u(0) = c, (19.2)

for the initial iterate, then the solution is easy to compute mechanically:

u(1) = g(u(0)) = g(c), u(2) = g(u(1)) = g(g(c)), u(3) = g(u(2)) = g(g(g(c))), . . .

and so on. Therefore, unlike continuous dynamical systems, existence and uniqueness
of solutions is immediate. As long as each successive iterate u(k) lies in the domain of
definition of g one merely repeats the process to produce the solution,

u(k) = g ◦g ◦ · · · ◦g(c), k = 0, 1, 2, . . . , (19.3)

which is obtained by composing the function g with itself a total of k times. In other
words, the solution to a discrete dynamical system corresponds to repeatedly pushing the
g key on your calculator. For example, repeatedly hitting the sin key corresponds to a
solution to the system u(k+1) = sinu(k). For simplicity, we shall tacitly assume that the
function g is defined on all of Rn. Otherwise, we must always be careful that the successive
iterates u(k) never leave the domain of definition of g, which would cause the iteration to
break down.

While the solution to a discrete dynamical system is essentially trivial, understanding
its behavior is definitely not. Sometimes the solution converges to a particular value —
the key requirement for numerical solution methods. Sometimes it goes off to ∞, or,
more precisely, ‖u(k)

‖ → ∞. Sometimes the solution repeats itself after a while. And
sometimes it behaves in a random, chaotic manner — all depending on the function g and,
at times, the initial condition c. Although any of these cases may appear and play a role
in applications, we shall mostly concentrate upon understanding the case of convergence
of the iterates.

Definition 19.1. A fixed point or equilibrium solution for a discrete dynamical
system (19.1) is a vector u? ∈ Rn such that

g(u?) = u?. (19.4)

We easily see that every fixed point provides a constant solution, namely u(k)
≡ u?,

to the discrete dynamical system. Moreover, solutions that converge always converge to a
fixed point.

Proposition 19.2. If a solution to a discrete dynamical system converges,

lim
k→∞

u(k) = u?,

then the limit u? is a fixed point of the system.
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Proof : This is a simple consequence of the continuity of g. We have

u? = lim
k→∞

u(k+1) = lim
k→∞

g(u(k)) = g

(
lim
k→∞

u(k)

)
= g(u?),

the last two equalities following from the continuity of g. Q.E.D.

Of course, not every solution to a discrete dynamical system will necessarily converge,
but Proposition 19.2 says that if it does, then it must converge to a fixed point. Thus, the
goal is to understand when a solution converges, and, if so, to which fixed point — if there
is more than one. (In the linear case, only the actual convergence is a significant issues
since most linear systems admit exactly one fixed point, namely u? = 0.) Fixed points are
roughly divided into three classes: asymptotically stable, with the property that all nearby
solutions converge to it, stable, with the property that all nearby solutions stay nearby, and
unstable, almost all of whose nearby solutions diverge away from the fixed point. Thus,
from a practical standpoint, convergence of the iterates of a discrete dynamical system
requires asymptotic stability of the fixed point.

Scalar Functions

As always, the first step is to thoroughly understand the scalar case, and so we begin
with a discrete dynamical system

u(k+1) = g(u(k)), u(0) = c, (19.5)

in which g:R → R is a continuous, scalar-valued function. As noted above, we will assume,
for simplicity, that g is defined everywhere, and so the iterates u(0), u(1), u(2), . . . are all
well-defined.

The linear case g(u) = a u was treated in Section 10.1, following (10.2). The simplest
“nonlinear” case is that of an affine function

g(u) = a u+ b, (19.6)

leading to an affine discrete dynamical system

u(k+1) = a u(k) + b. (19.7)

The only fixed point is the solution to

u? = g(u?) = a u? + b, namely, u? =
b

1− a
. (19.8)

The formula for u? requires that a 6= 1, and, indeed, the case a = 1 has no fixed point, as
the reader can easily confirm; see Exercise . Since we already know the value of u?, we
can easily analyze the difference

e(k) = u(k)
− u?, (19.9)

between the iterate u(k) and the fixed point. The smaller e(k) is, the closer u(k) is to the
desired fixed point. In many applications, the iterate u(k) is viewed as an approximation
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to the fixed point u?, and so e(k) is interpreted as the error in the kth iterate. Subtracting
the fixed point equation (19.8) from the iteration equation (19.7), we find

u(k+1)
− u? = a (u(k)

− u?).

Therefore the errors e(k) satisfy a linear iteration

e(k+1) = a e(k), and hence e(k) = ak e(0). (19.10)

Therefore, as we already demonstrated in Section 10.1, the solutions to this scalar linear
iteration converge,

e(k)
−→ 0 and hence u(k)

−→ u?, if and only if | a | < 1.

This is the criterion for asymptotic stability of the fixed point, or, equivalently, convergence
of the affine iterative system (19.7). The magnitude of | a | < 1 determines the rate of
convergence, and the closer it is to 0, the faster the iterates approach to the fixed point.

Example 19.3. Suppose g(u) = 1
4 u+ 2, and so we consider the iterative scheme

u(k+1) = 1
4 u(k) + 2.

Starting with the initial condition u(0) = 0, the ensuing values are
k 1 2 3 4 5 6 7 8

u(k) 2.0 2.5 2.625 2.6562 2.6641 2.6660 2.6665 2.6666

Thus, after 8 iterations, the iterates have converged to the fixed point u? = 8
3 to 4 decimal

places. The rate of convergence is 1
4 , and indeed

|u(k)
− u? | =

(
1
4

)k
(u(0)

− u?) = 8
3

(
1
4

)k
−→ 0 as k −→ ∞.

Let us now turn to the fully nonlinear case. In general, near a given point, any
(smooth) nonlinear function can be approximated by its tangent line, which is an affine
function; see Figure tl1 . Therefore, if we are close to a fixed point u?, then we might
expect the behavior of the nonlinear system will behave very much like iteration of its
affine approximation. And, indeed, this intuition turns out to be essentially correct. This
result forms our first concrete example of linearization, in which the analysis of a nonlinear
system is based on its linear (or, more correctly, affine) approximation.

The explicit formula for the tangent line to g(u) near the fixed point u = u? is

g(u) ≈ g(u?) + g′(u?)(u− u?) = a u+ b, (19.11)

where
a = g′(u?), b = g(u?)− g′(u?)u? =

(
1− g′(u?)

)
u?.

Note that u? = b/(1 − a) remains a fixed point for the affine approximation. According
to the preceding discussion, the convergence of the iterates for the affine approximation
is governed by the size of the coefficient a = g′(u?). This observation inspires the key
stability criterion for fixed points of scalar iterative systems.
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Theorem 19.4. Suppose g(u) is a continuously differentiable scalar function. Sup-
pose u? = g(u?) is a fixed point. If | g′(u?) | < 1, then u? is a stable fixed point, and hence

any sequence of iterates u(k) which starts out sufficiently close to u? will converge to u?.

On the other hand, if | g′(u?) | > 1, then u? is an unstable fixed point, and the only iterates

which converge to it are those that land exactly on it, i.e., u(k) = u? for some k ≥ 0.

Proof : The goal is to prove that the errors e(k) = u(k)
− u? between the kth iterate

and the true fixed point tend to 0 as k → ∞. To this end, we try to estimate e(k+1) in
terms of e(k). According to (19.5) and the Mean Value Theorem C.3 from calculus,

e(k+1) = u(k+1)
− u? = g(u(k))− g(u?) = g′(v) (u(k)

− u?) = g′(v) e(k), (19.12)

for some v lying between u(k) and u?. By continuity, if | g′(u?) | < 1 at the fixed point,
then we can choose 0 < ρ < 1 such that

| g′(v) | ≤ ρ < 1 whenever | v − u? | < δ (19.13)

holds in a (perhaps small) interval surrounding the fixed point. If | e(k)
| = |u(k)

− u? | < δ,
then the point v in (19.12) satisfies (19.13). Therefore,

|u(k+1)
− u? | ≤ ρ |u(k)

− u? |, and hence | e(k+1)
| ≤ ρ | e(k)

|. (19.14)

In particular, since ρ < 1, if |u(k)
− u? | < δ, then |u(k+1)

− u? | < δ, and hence the sub-
sequent iterate u(k+1) also lies in the interval where (19.13) holds. Iterating, we conclude
that the errors satisfy

e(k)
≤ ρk e(0), and hence e(k) = |u(k)

− u? | −→ 0 as k →∞, (19.15)

which completes the proof of the theorem in the stable case. The proof in unstable case is
left as Exercise for the reader. Q.E.D.

Remark : The borderline cases g′(u?) = ±1 are not covered by the theorem. For a
linear system, these cases are stable, but not asymptotically stable. For nonlinear systems,
such borderline situations require more detailed knowledge of the nonlinear terms in order
to resolve the status — stable or unstable — of the fixed point. Despite their importance
in certain applications, we will not try to analyze such borderline cases any further here.
From now on, we will only deal with asymptotically stable fixed points, and, for brevity,
usually omit the adjective “asymptotically”.

Example 19.5. Given constants ε,m, the trigonometric equation

u = m+ ε sinu (19.16)

is known as Kepler’s equation. It arises in the study of planetary motion, with | ε | < 1
representing the eccentricity of an elliptical planetary orbit and m its mean anomaly ; see
Figure Kepler . The desired solution u is the eccentric anomaly , and governs the motion
of the planet around the ellipse. Details can be found in [76; p. 119].

The solutions to Kepler’s equation are the fixed points of the discrete dynamical
system based on the function g(u) = m+ ε sinu. Note that

| g′(u) | = | ε cosu | = | ε | < 1, (19.17)
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which automatically implies that the as yet unknown fixed point is stable. Indeed, Exercise
implies that condition (19.17) is enough to prove the existence of a unique stable fixed

point. In the particular case m = ε = 1
2 , the result of iterating u(k+1) = 1

2 +
1
2 sinu(k)

starting with u(0) = 0 is
k 1 2 3 4 5 6 7 8 9

u(k) 0.5 0.7397 0.8370 0.8713 0.8826 0.8862 0.8873 0.8877 0.8878

After 13 iterations, we have converged sufficiently close to the solution (fixed point) u? =
0.887862 to have computed its value to 7 decimal places.

Remark : Inspection of the proof of Theorem 19.4 reveals that we never really used
the differentiability of g, except to verify the inequality

| g(u)− g(v) | ≤ ρ |u− v | for some fixed ρ. (19.18)

A function that satisfies (19.18) for all u nearby a given point v is called Lipschitz contin-
uous, in honor of the 19th century German mathematician Rudolf Lipschitz. The Mean
Value Theorem C.3 implies that any continuously differentiable function g ∈ C1 is auto-
matically Lipschitz continuous, but there are nondifferentiable examples. The simplest is
the absolute value function g(u) = |u |, which is Lipschitz continuous, since

| g(u)− g(v) | =
∣∣∣ |u | − | v |

∣∣∣ ≤ |u− v | for any u, v ∈ R,

but is not differentiable at u = 0. On the other hand, as its name indicates, Lipschitz
continuity does imply continuity. Thus, stability of the fixed point follows from the weaker
hypothesis that g(u) is Lipschitz continuous at u? with Lipschitz constant ρ < 1.

Example 19.6. The simplest truly nonlinear example is a quadratic polynomial.
The most important case is the so-called logistic map

g(u) = λu(1− u), (19.19)

where λ 6= 0 is a fixed non-zero parameter. (The case λ = 0 is completely trivial. Why?)
In fact, an elementary change of variables can make any quadratic iterative system into
one involving a logistic map; see Exercise .

The fixed points of the logistic map are the solutions to the quadratic equation

u = λu(1− u), or λu2
− λu+ 1 = 0.

Using the quadratic formula, we conclude that g(u) has two fixed points:

u?1 = 0, u?2 = 1−
1

λ
.

Let us apply Theorem 19.4 to determine their stability. The derivative is

g′(u) = λ− 2λu, and so g′(u?1) = λ, g′(u?2) = 2− λ.

Therefore, if |λ | < 1, the first fixed point is stable, while if 1 < λ < 3, the second fixed
point is stable. For λ < −1 or λ > 3 neither fixed point is stable, and we expect the
iterates to not converge at all.
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Numerical experiments with this example show that it is the source of an amazingly
diverse range of behavior, depending upon the value of the parameter λ. In the following
table , we display the results of iteration starting with initial point u(0) = 1. As expected
from Theorem 19.4, the iterates converge to one of the fixed points in the range −1 < λ < 3,
except when λ = 1. For λ a little bit larger than λ1 = 3, the iterates do not converge to a
fixed point; an example appears in the table . But it does not take long for them to settle
down and switch back and forth between two particular values. This behavior indicates
that there is a (stable) period 2 orbit for the discrete dynamical system, in accordance
with the following definition.

Definition 19.7. A period k orbit of a discrete dynamical system is a solution that
satisfies u(n+k) = u(n) for all n = 0, 1, 2, . . . . The (minimal) period is the smallest positive
value of k for which this condition holds.

Thus, a fixed point
u(0) = u(1) = u(2) = · · ·

is a period 1 orbit. A period 2 orbit satisfies

u(0) = u(2) = u(4) = · · · and u(1) = u(3) = u(5) = · · · ,

but u(0)
6= u(1), as otherwise the minimal period would be 1. Similarly, a period 3 orbit

has

u(0) = u(3) = u(6) = · · · , u(1) = u(4) = u(7) = · · · , u(2) = u(5) = u(8) = · · · ,

with u(0), u(1), u(2) distinct. Stability implies that nearby iterates converge to this periodic
solution.

For the logistic map, the period 2 orbit persists until λ = λ2 ≈ 3.4495, after which
the iterates alternate between four values — a period 4 orbit. This again changes at
λ = λ3 ≈ 3.5441, after which the iterates end up alternating between eight values. In fact,
there is an increasing sequence of values

3 = λ1 < λ2 < λ3 < λ4 < · · · ,

where, for any λn < λ ≤ λn+1, the iterates eventually follow a period 2
n orbit. Thus, as

λ passes through each value λn the period of the orbit doubles from 2
n to 2 · 2n = 2n+1,

and the discrete dynamical system experiences a bifurcation. The bifurcation values λn lie
closer and closer together, piling up on an eventual limit λ? = lim

n→∞
λn ≈ 3.5699, at which

point the period has become infinitely large. The entire phenomena is known as a period
doubling cascade. Interestingly, the ratios of the distances between successive bifurcation
points approaches a well-defined limit,

λn+2 − λn+1

λn+1 − λn
−→ 4.6692 . . . , (19.20)

known as Feigenbaum’s constant . In the 1970’s, the American physicist Mitchell Feigen-
baum, [53], discovered that this period doubling cascade appears in a broad range of
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discrete dynamical systems. Even more remarkably, in all cases, the corresponding ratios
of distances between bifurcation points has the same limiting value. This was subsequently
proved by Oscar Lanford in 1982, [101].

After λ passes the limiting value λ?, “all hell breaks loose”. The iterates become
completely chaotic†, moving at random over the interval [0, 1]. But this is not the end of
the story. Embedded within this chaotic regime are certain small ranges of λ where the
system settles down to a stable orbit, whose period is not necessarily a power of 2. In
fact, there exist values of λ for which the iterates settle down to a stable orbit of period m

for any positive integer m. For instance, as λ increases past λ3 ? ≈ 3.83, a period 3 orbit
appears for a while; then it experiences a succession of period doubling cascade of period
6, 12, 24, . . . orbits, each persisting on a shorter and shorter interval of parameter values,
until chaos breaks out yet again. There is a well-prescribed order in which the periodic
cases appear, and each period m is followed by a very closely spaced sequence of period
doubling bifurcations, of periods 2nm for n = 1, 2, 3, . . . , after which the iterates revert to
completely chaotic behavior until the next periodic case emerges. The ratios of distances
between bifurcation points have the same Feigenbaum limit (19.20). Finally, these periodic
and chaotic windows all pile up on the ultimate parameter value λ?? = 4. And then, when
λ > 4, all the iterates go off to ∞, and the system ceases to be interesting.

The reader is encouraged to write a simple computer program and perform some
numerical experiments. In particular, Figure log shows the asymptotic behavior of the
iterates for values of the parameter in the interesting range 2 < λ < 4. The horizontal axis
is λ, and the marked points show the ultimate fate of the iteration for the given value of
λ. For instance, the single curve lying above low values of λ represents a fixed point; this
bifurcates into a pair of curves representing a stable period 2 orbit, which then bifurcates
into 4 curves representing a period 4 orbit, and so on. Chaotic behavior is indicated by
a somewhat random pattern of points lying above the value of λ. To plot this figure, we
ran the iteration u(n) for 0 ≤ n ≤ 100, and then discarded the first 50 points, plotting the
next 50 iterates u(51), . . . , u(100). Investigation of the fine detailed structure of the logistic
map requires yet more iterations with increased accuracy. In addition one should discard
more of the initial iterates so as to give the system enough time to settle down to a stable
periodic orbit or continue in a chaotic manner.

Remark : So far, we have only looked at real scalar iterative systems. Complex discrete
dynamical systems display yet more remarkable and fascinating behavior. The complex
version of the logistic iteration equation leads to the justly famous Mandelbrot set, [102],
with its stunning, psychedelic fractal structure, [120].

The rich range of phenomena in evidence even in such extremely simple nonlinear
iterative systems is astounding. While intimations of this first appeared in the late nine-
teenth century research of the influential French mathematician Henri Poincaré, serious
investigations were delayed until the advent of the computer era, which precipitated an
explosion of research activity in the area of dynamical systems. Similar period doubling

† The term “chaotic” does have a precise mathematical definition, but the reader can take it
more figuratively for the purposes of this elementary introduction.
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cascades and chaos can be found in a broad range of nonlinear systems, [7], and are often
encountered in physical applications, [107]. A modern explanation of fluid turbulence is
that it is a (very complicated) form of chaos.

Quadratic Convergence

Let us now return to the more mundane case when the iterates converge to a stable
fixed point of the discrete dynamical system. In applications, we are interested in com-
puting a precise† numerical value for the fixed point, and hence the speed of convergence
of the iterates is of crucial importance.

According to Theorem 19.4, the convergence rate of an iterative system is essentially
governed by the magnitude of the derivative | g′(u?) | at the fixed point. The basic inequal-
ity (19.14) for the errors e(k) = u(k)

− u?, namely

| e(k+1)
| ≤ ρ | e(k)

|,

is known as a linear convergence estimate. It means that the error decreases by a factor
of at least ρ at each step. If the kth iterate u(k) approximates the fixed point u? correctly
to m decimal places, so | e(k)

| < .5× 10−m, then the (k + 1)st iterate satisfies

| e(k+1)
| < .5× 10−m ρ = .5× 10−m+log

10
ρ.

More generally, for any j > 0,

| e(k+j)
| < .5× 10−m ρj = .5× 10−m+j log

10
ρ,

which means that the (k + j)th iterate u(k+j) has at least‡

m− j log10 ρ = m+ j log10 ρ−1

correct decimal places. For instance, if ρ = .1 then each new iterate produces one new
decimal place of accuracy (at least), while if ρ = .9 then it typically takes 22 ≈ −1/ log10 .9
iterates to produce just one additional accurate digit!

As a consequence, there is a huge advantage — particularly in the application of
iterative methods to the numerical solution of equations — to arranging that | g ′(u?) | be
as small as possible. The fastest convergence rate of all will occur when g ′(u?) = 0. Now
the constant ρ in (19.14) can be taken to be arbitrarily small, although the smaller ρ is, the
smaller the interval | v − u? | < δ on which (19.14) applies, and so the closer one must be
to the fixed point. Be that as it may, once the iterates start converging, they will get closer
and closer to the fixed point, and so the rate of convergence will speed up accordingly. In
fact, for such functions, the rate of convergence is not just slightly, but dramatically faster
than linear.

† The degree of precision is to be specified by the user and the application.

‡ Note that since ρ < 1, the logarithm log10 ρ−1 = − log10 ρ > 0 is positive.
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Theorem 19.8. Let g(u) ∈ C2. Suppose u? = g(u?) is a fixed point such that
g′(u?) = 0. Then, for all iterates u(k) sufficiently close to u?, the errors e(k) = u(k)

− u?

satisfy the quadratic convergence estimate

| e(k+1)
| ≤ σ | e(k)

|
2 (19.21)

for some constant σ > 0.

Proof : Just as in the proof of the linear convergence estimate (19.14), the proof relies
on approximating the function by a simpler function near the fixed point. For linear
convergence, an affine approximation sufficed, but in this case we require a higher order,
quadratic approximation. Instead of the mean value formula (19.12), we now use the first
order Taylor expansion (C.6) of g near u?:

g(u) = g(u?) + g′(u?) (u− u?) + 1
2 g′′(w) (u− u?)2, (19.22)

where the error term depends on an (unknown) point w that lies between u and u?. At a
fixed point, the constant term is g(u?) = u?. Furthermore, under our hypothesis g′(u?) = 0,
and so the Taylor expansion (19.22) reduces to

g(u)− u? = 1
2 g′′(w) (u− u?)2.

Therefore,
| g(u)− u? | ≤ σ |u− u? |2, (19.23)

where σ is chosen so that
1
2 | g

′′(w) | ≤ σ (19.24)

for all w sufficiently close to u?. Therefore, the magnitude of σ is governed by the size of
the second derivative of the iterative function g(u) near the fixed point. We apply (19.23)
to estimate the error

| e(k+1)
| = |u(k+1)

− u? | = | g(u(k))− g(u?) | ≤ σ |u(k)
− u? |2 = σ | e(k)

|
2,

which establishes the quadratic convergence estimate (19.21). Q.E.D.

Let us see how the quadratic estimate (19.21) speeds up the convergence rate. Fol-
lowing our earlier argument, suppose u(k) is correct to m decimal places, so

| e(k)
| < .5× 10−m.

Then (19.21) implies that

| e(k+1)
| < .5× (10−m)2 σ = .5× 10−2m+log

10
σ,

and so u(k+1) has 2m − log10 σ accurate decimal places. If σ ≈ g′′(u?) is of moderate
size, we essentially double the number of accurate decimal places in just a single iterate! A
second iteration will double the number of accurate digits yet again. Thus, the convergence
of a quadratic iteration scheme is extremely rapid, and, barring round-off errors, one can
produce any desired number of digits of accuracy in a very short time. For example, if we
start with an initial guess that is accurate in the first decimal digit, then a linear iteration
with ρ = .1 will require 49 iterations to obtain 50 decimal place accuracy, whereas a
quadratic iteration (with σ = 1) will only require 6 iterations to obtain 26 = 64 decimal
places of accuracy!
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Example 19.9. Consider the function

g(u) =
4u3 + 2u− 1

3u2 + 1
.

There is a unique fixed point u? = g(u?) which is the solution to the cubic equation

u3 + u− 1 = 0.

Note that

g′(u) =
6u4 + 6u2

− 6u

(3u2 + 1)2
=
6u (u3 + u− 1)

(3u2 + 1)2
,

and hence g′(u?) vanishes at the fixed point. Theorem 19.8 implies that the iterations
should exhibit quadratic convergence to the root. Indeed, we find, starting with u(0) = 0,
the following values. Not the dramatically faster convergence, especially when contrasted
with the linearly convergent scheme based on

For a general discrete dynamical system, the appearance of a quadratically convergent
fixed point is a matter of luck. The construction of general purpose quadratically conver-
gent iterative methods for solving equations will be the focus of the following Section 19.2.

Vector–Valued Iteration

Extending the preceding analysis to vector-valued iterative systems is not especially
difficult. We will build on our experience with linear iterative systems, and so the reader
should review the basic concepts and results from Chapter 10 before proceeding to the
nonlinear cases presented here.

We begin by fixing a norm ‖ · ‖ on Rn. Since we will also be computing the associated
matrix norm ‖A ‖, as defined in Theorem 10.17, it may be computationally more conve-
nient to adopt either the 1 or the ∞ norms rather than the standard Euclidean norm. As
far as the theory goes, however, the precise choice of norm is unimportant.

We begin by defining the vector-valued counterpart of the basic linear convergence
condition (19.18).

Definition 19.10. A function g:Rn
→ Rn is Lipschitz continuous at a point a ∈ Rn

if there exists a constant ρ ≥ 0, known as the Lipschitz constant , such that

‖g(u)− g(a) ‖ ≤ ρ ‖u− a ‖ (19.25)

for all u sufficiently close to a, i.e., ‖u− a ‖ < δ for some fixed δ > 0.

Example 19.11. Consider the function g(u) =

(
|u− v |

max
{
|u |, | v |

}
)
, defined for

u = (u, v )
T
∈ R2. Although g is not differentiable, it does satisfy the Lipschitz estimate

(19.25) for the 1 norm ‖u ‖1 = |u |+ | v |. Indeed,

‖g(u)− g(a) ‖ ≤
∣∣∣ |u− v | − | a− b |

∣∣∣ +
∣∣∣ max

{
|u |, | v |

}
−max

{
| a |, | b |

} ∣∣∣
≤ 2

(
|u− a |+ | v − b |

)
= 2 ‖u− a ‖1.

Thus, (19.25) holds with uniform Lipschitz constant ρ = 2.
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Remark : The notion of “Lipschitz continuity” appears to depend on the underlying
choice of matrix norm. However, the fact that all norms on a finite-dimensional vector
space are essentially equivalent — see Theorem 3.19 — implies that this concept is, in fact,
independent of the choice of norm. However, one should keep in mind that the value of
the Lipschitz constant ρ is norm-dependent.

The Lipschitz inequality (19.25) provides an immediate proof of the basic convergence
theorem for iteration of a discrete dynamical system (19.1). Recall that a fixed point is
called asymptotically stable if u(k)

→ u? for every initial condition u(0) = c sufficiently
close to u?.

Theorem 19.12. If u? = g(u?) is a fixed point for the discrete dynamical system
(19.1) and g is Lipschitz continuous at u? with Lipschitz constant ρ < 1, then u? is an
asymptotically stable fixed point.

Proof : The proof is a copy of the last part of the proof of Theorem 19.4. We write

‖u(k+1)
− u? ‖ = ‖g(u(k))− g(u?) ‖ ≤ ρ ‖u(k)

− u? ‖,

using the assumed Lipschitz estimate (19.25). Iterating this basic inequality immediately
demonstrates that

‖u(k)
− u? ‖ ≤ ρk ‖u(0)

− u? ‖ for k = 0, 1, 2, 3, . . . .

Since ρ < 1, the right hand side tends to 0 as k →∞, and hence u(k)
→ u?. Q.E.D.

For more complicated functions, the direct verification of the Lipschitz inequality
(19.25) is not particularly easy. However, as in the scalar case, any continuously differen-
tiable function is automatically Lipschitz continuous.

Theorem 19.13. If g(u) ∈ C1 has continuous first order partial derivatives for all

u sufficiently close to u?, then g is Lipschitz continuous at u?.

Proof : According to the first order Taylor expansion (C.10) of a vector-valued function
at a point u? takes the form

g(u) = g(u?) + g ′(u?) (u− u?) +R(u− u?). (19.26)

Here

g ′(u) =




∂g1

∂u1

∂g1

∂u2

. . .
∂g1

∂un

∂g2

∂u1

∂g2

∂u2

. . .
∂g2

∂un

...
...

. . .
...

∂gn
∂u1

∂gn
∂u2

. . .
∂gn
∂un




, (19.27)
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is the n× n Jacobian matrix of the vector-valued function g whose entries are the partial
derivatives of its individual components. The remainder term in (19.26) satisfies†

‖R(v) ‖ ≤ σ ‖v ‖2 whenever ‖v ‖ ≤ ε,

for some positive constant σ > 0. If the corresponding matrix norm of the Jacobian matrix
at u? satisfies

‖g ′(u?) ‖ = ρ?,

then, by the triangle inequality and the definition (10.23) of matrix norm,

‖g(u)− g(u?) ‖ = ‖g ′(u?) (u− u?) +R(u− u?) ‖ ≤ ‖g ′(u?) (u− u?) ‖+ ‖R(u− u?) ‖

≤ ‖g ′(u?) ‖ ‖u− u? ‖+ σ ‖u− u? ‖2 ≤ (ρ? + ε σ) ‖u− u? ‖, (19.28)

whenever ‖u− u? ‖ ≤ ε. This proves that g is Lipschitz continuous at u? with Lipschitz
constant ρ = ρ? + ε σ. Note that, by choosing ε small enough, we can ensure that the
Lipschitz constant ρ is arbitrarily close to the matrix norm ρ?. Q.E.D.

For a continuously differentiable function, then, asymptotic stability is a consequence
of the size, or, more correctly, the spectral radius of the Jacobian matrix at the fixed point.

Theorem 19.14. Suppose g(u) ∈ C2. If u? = g(u?) is a fixed point such that
g ′(u?) is a convergent matrix, then u? is asymptotically stable. The rate of convergence
of the iterative scheme u(k+1) = g(u(k)) to u? is governed by the spectral radius of g ′(u?).

Proof : If g ′(u?) is convergent, and hence has spectral radius strictly less than 1, then
Corollary 10.29 assures us that there exists a matrix norm such that

‖g ′(u?) ‖ = ρ? < 1. (19.29)

Defining σ as in the proof of Theorem 19.13, we then choose ε > 0 so that

ρ = ρ? + ε σ < 1.

Then (19.28) implies that

‖g(u)− g(u?) ‖ ≤ ρ ‖u− u? ‖, provided ‖u− u? ‖ < ε.

As before, this suffices to proves convergence of the iterates to u?. Q.E.D.

Example 19.15.

Theorem 19.14 tells us that initial values u(0) that are sufficiently near a stable fixed
point u? are guaranteed to converge to it. In the linear case, closeness of the initial data
to the fixed point was not, in fact, an issue; all stable fixed points are, in fact, globally
stable. For nonlinear iteration, it is of critical importance, and one does not typically
expect iteration starting with far away initial data to converge to the desired fixed point.

† We can use any convenient norm on Rn.
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An interesting (and difficult) problem is to determine the so-called basin of attraction of
a stable fixed point, defined as the set of all initial data that ends up converging to it. As
in the elementary logistic map (19.19), initial values that lie outside a basin of attraction
can lead to divergent iterates, periodic orbits, or even exhibit chaotic behavior. The full
range of possible phenomena is a subject of contemporary research in dynamical systems
theory and in numerical analysis, [7].

The smaller the spectral radius or matrix norm of the Jacobian matrix at the fixed
point, the faster the iterates converge to it. As in the scalar case, quadratic convergence will
occur when the Jacobian matrix g ′(u?) = O is the zero matrix†, i.e., all first order partial
derivatives of the components of g vanish at the fixed point. The quadratic convergence
estimate

‖u(k+1)
− u? ‖ ≤ σ ‖u(k)

− u? ‖2 (19.30)

is a consequence of the second order Taylor expansion at the fixed point. Details of the
proof are left as an exercise.

Example 19.16.

In general, the existence of a fixed point of an iterative system is not automatic. One
way is to observe the iterates starting with suitably selected initial data; if they converge,
then Proposition 19.2 assures us that their limit is a fixed point. There is one important
class of maps for which we have a theoretical justification, not only of the existence, but
also the uniqueness of a fixed point.

Definition 19.17. Amap g: Ω→ Ω is called a contraction mapping if it has Lipschitz
constant ρ < 1 at all points in Ω.

Therefore, applying a contraction mapping reduces the distance between points. As
a result, a contraction mapping shrinks the size of its domain; see Figure contract . As
a result, as the iterations proceed, the domain gets smaller and smaller and the iterates
become trapped. If the original domain is closed and bounded, then it is forced to shrink
down to a single point, which is the unique fixed point of the iterative system.

The simplest example of a contraction mapping is the scaling map g(u) = ρu with
0 < ρ < 1. Starting with the unit ball B1 =

{
‖u ‖ ≤ 1

}
, at the kth iteration the points

have been mapped into a contracted sphere of radius ρk. As k → ∞ these contracted
domains become smaller and smaller, converging in the limit to the unique fixed point
u? = 0. A precise statement of the Contraction Mapping Theorem follows; see [map] for
the proof.

Theorem 19.18. If g: Ω→ Ω is a contraction mapping defined on a closed bounded
domain Ω ⊂ Rn then g admits a unique fixed point u? ∈ Ω. Moreover, starting with any
initial point u(0)

∈ Ω, the iterates necessarily converge to the fixed point u(k)
→ u?.

More sophisticated, powerful fixed point theorems require advanced knowledge of
algebraic topology and will not be developed in this text. See [fixed] for details.

† Having zero spectral radius is not sufficient for quadratic convergence; see Exercise .
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19.2. Solution of Equations and Systems.

The solution of nonlinear equations and systems of equations is, of course, a problem of
utmost importance in mathematics and its manifold applications. In the general situation,
we are given a collection of m functions depending upon n variables, and we are interested
in finding all solutions u = (u1, u2, . . . , un )

T
to the system

f1(u1, . . . , un) = 0, . . . fm(u1, . . . , un) = 0. (19.31)

In practice, as in the linear case, we are primarily interested in the case when the number
of equations is equal to the number of unknowns, m = n, as one can only expect both
existence and uniqueness of solutions in such situations. This point will be discussed in
further detail below.

There is no universal direct solution method for nonlinear equations and systems
comparable to Gaussian elimination. As a result, numerical solution techniques rely almost
exclusively on iterative algorithms. In this section, we shall present the principal methods
for numerically approximating the solution(s) to a system. We shall only discuss general
purpose algorithms. Specialized methods for particular classes of equations, e.g., methods
designed for solving polynomial equations, can be found in numerical analysis texts, e.g.,
[30, 121]. Of course, the most important specialized methods — those designed for solving
linear systems — will continue to play a critical role, even in the nonlinear regime.

The Bisection Method

We begin, as always, with the scalar case. Thus, we are given a real-valued function
f :R → R, and seek its roots, i.e., the real† solution(s) to the scalar equation

f(u) = 0. (19.32)

Here are some prototypical examples:

(a) Find the roots of the quintic polynomial equation

u5 + u+ 1 = 0. (19.33)

Graphing the left hand side of the equation, as in Figure 19.1, convinces us that there is
just one real root, lying somewhere between −1 and −.5. While there are explicit algebraic
formulas for the roots of quadratic, cubic, and quartic polynomials, a famous theorem‡ due
to the Norwegian mathematician Nils Henrik Abel in the early 1800’s states that there is
no such formula for generic fifth order polynomial equations.

(b) As noted in Example 19.5, the trigonometric Kepler equation

u− ε sinu = m

† Complex roots to complex equations will be discussed later.

‡ A modern proof of this fact relies on Galois theory, [62].
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Figure 19.1. Graph of u5 + u+ 1.

arises in the study of planetary motion. Here ε,m are fixed constants, and we seek a
corresponding solution u. We have already looked at one iterative solution method for this
equation.

(c) Chemistry

The most primitive method for solving scalar equations, and the only one that is

guaranteed to work in all cases, is the bisection algorithm. While it has an iterative flavor,
it cannot be properly classed as a method governed by functional iteration as defined in
the preceding section, and so must be studied directly in its own right.

The starting point is the Intermediate Value Theorem, which we state in simplified
form, without proof. See Figure 19.2 for an illustration, and [9] for a proof.

Theorem 19.19. Let f(u) be a continuous scalar function. Suppose we can find
two points a < b where the values of f(a) and f(b) take opposite signs, so either f(a) < 0
and f(b) > 0, or f(a) > 0 and f(b) < 0. Then there exists at least one point a < u? < b

where f(u?) = 0.

The hypothesis can be compactly written as f(a) f(b) < 0. Note that if f(a) = 0 or
f(b) = 0, then finding a root is trivial. If f(a) and f(b) have the same sign, then there
may or may not be a root in between. Figure 19.3 plots the functions u2 + 1, u2 and
u2
− 1, on the interval −2 ≤ u ≤ 2. The first has two simple roots; the second has a single

double root, while the third has no root. Also, continuity of the function on the entire
interval [a, b ] is an essential hypothesis. For example, the function f(u) = 1/u satisfies
f(−1) = −1 and f(1) = 1, but there is no root to the equation 1/u = 0.

Note carefully that the Theorem 19.19 does not say there is a unique root between a

and b. There may be many roots, or even, in pathological examples, infinitely many. All
the theorem guarantees is that there is at least one root.
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Figure 19.3. Roots of Functions.

Once we are assured that a root exists, bisection amounts to a “divide and conquer”
strategy. Starting with the endpoints, the goal is to locate a root a < u? < b between
them. Lacking any additional evidence, a good strategy would be to try the midpoint
c = 1

2 (a+ b) as a first guess for the root. If, by some miracle, f(c) = 0, then we are done,
since we have found a solution! Otherwise (and typically) we look at the sign of f(c).
There are two possibilities. If f(a) and f(c) are of opposite signs, then the Intermediate
Value Theorem tells us that there is a root u? lying between a < u? < c. Otherwise, f(c)
and f(b) must have opposite signs, and so there is a root c < u? < b. In either event, we
apply the same method to the interval in which we are assured a root lies, and repeat the
procedure. Each iteration halves the length of the interval, and chooses the half in which
a root must be. (There may, of course, be a root in the other half, but we cannot be sure
of this, and so discard it from further consideration.) The root we home in on lies trapped
in intervals of smaller and smaller width, and so convergence of the method is guaranteed.
Figure bisect illustrates the steps in a particular example.
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k u(k) v(k) w(k) = 1
2 (u

(k) + v(k)) f(w(k))

0 1 2 1.5 .75

1 1 1.5 1.25 −.1875

2 1.25 1.5 1.375 .2656

3 1.25 1.375 1.3125 .0352

4 1.25 1.3125 1.2813 −.0771

5 1.2813 1.3125 1.2969 −.0212

6 1.2969 1.3125 1.3047 .0069

7 1.2969 1.3047 1.3008 −.0072

8 1.3008 1.3047 1.3027 −.0002

9 1.3027 1.3047 1.3037 .0034

10 1.3027 1.3037 1.3032 .0016

11 1.3027 1.3032 1.3030 .0007

12 1.3027 1.3030 1.3029 .0003

13 1.3027 1.3029 1.3028 .0001

14 1.3027 1.3028 1.3028 −.0000

Example 19.20. The roots of the quadratic equation

f(u) = u2 + u− 3 = 0

are given by the quadratic formula

u?1 =
−1 +

√
13

2
≈ 1.302775 . . . , u?2 =

−1−
√
13

2
≈ −2.302775 . . . .

Let us see how one might approximate them by applying the Bisection Algorithm. We start
the procedure by choosing the points a = u(0) = 1, b = v(0) = 2, noting that f(1) = −1
and f(2) = 3 have opposite signs and hence we are guaranteed that there is at least one
root between 1 and 2. In the first step we look at the midpoint of the interval [1, 2],
which is 1.5, and evaluate f(1.5) = .75. Since f(1) = −1 and f(1.5) = .75 have opposite
signs, we know that there is a root lying between 1 and 1.5. Thus, we use u(1) = 1 and
v(1) = 1.5 as the endpoints of the next interval, and continue. The next midpoint is at
1.25, where f(1.25) = −.1875 has the opposite sign to f(1.5) = .75, and so a root lies
between u(2) = 1.25 and v(2) = 1.5. The process is then iterated as long as desired — or,
more practically, as long as your computer’s precision does not become an issue.

The accompanying table displays the result of the algorithm, rounded off to four
decimal digits. Thus, after 14 iterations the Bisection Algorithm has computed the positive
root u?1 correctly to 4 decimal places. A similar bisection starting with the interval from
u(1) = −3 to v(1) = −2 will produce the negative root.
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The formal implementation of the algorithm is governed by the following program.
The endpoints of the kth interval are denoted by u(k) and v(k). The midpoint is w(k) =
1
2

(
u(k) + v(k)

)
, and the main decision is whether w(k) should be the right or left hand

endpoint of the new interval. The integer n, governing the number of iterations, will be
prescribed in accordance with how close we wish to approximate the solution u?.

The algorithm produces two sequences of approximations such that u(k) < u? < v(k)

lies between them. Both converge monotonically to the root, one from below and the other
from above:

a = u(0)
≤ u(1)

≤ u(2)
≤ · · · ≤ u(k)

−→ u? ←− v(k)
≤ · · · ≤ v(2)

≤ v(1)
≤ v(0) = b.

In other words, the solution u? is trapped inside a sequence of intervals [u(k), v(k) ] of
progressively shorter and shorter length. Since we cut the interval in half at each step of
the algorithm, the length of the interval [u(k), v(k) ] is exactly half that of [u(k−1), v(k−1) ],
and so

v(k)
− u(k) = 1

2 (v
(k−1)

− u(k−1)).

Iterating this formula, we conclude that

v(n)
− u(n) =

(
1
2

)n
(v(0)

− u(0)) =
(

1
2

)n
(b− a) .

The final approximation

w(n) = 1
2 (u

(n) + v(n))

lies in middle of its interval, and hence must be within a distance

|w(n)
− u? | ≤ 1

2 (v
(n)
− u(n)) =

(
1
2

)n+1
(b− a)

of the root. Consequently, if we want to approximate the root within a prescribed tolerance
ε, we should choose the number of iterations n so that

(
1
2

)n+1
(b− a) < ε, or n > log2

b− a

ε
− 1 . (19.34)
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The Bisection Method

start

if f(a) f(b) < 0 set u(0) = a, v(0) = b

for k = 0 to n− 1

set w(k) = 1
2 (u

(k) + v(k))

if f(w(k)) = 0, stop; print u? = w(k)

if f(w(k)) f(u(k)) < 0, set u(k+1) = w(k), v(k+1) = v(k)

else set u(k+1) = u(k), v(k+1) = w(k)

next k

print u? = w(n) = 1
2 (u

(n) + v(n))

end

Theorem 19.21. If f(u) is a continuous function, with f(a) f(b) < 0, then the
bisection algorithm starting with u(0) = a, v(0) = b will converge to a solution to f(u) = 0
lying between a and b. After n steps, the midpoint w(n) = 1

2 (u
(n) + v(n)) will be within a

tolerance of ε = 2−n−1(b− a) of the solution.

For example, in the case of the quadratic equation in Example 19.20, after 14 itera-
tions, we have approximated the positive root to within

ε =
(

1
2

)15
(2− 1) ≈ 3.052× 10−5,

reconfirming our observation that we have accurately computed the first four decimal
places of the root. If we need 10 decimal places, we set our tolerance to ε = 10−11, and so,
according to (19.34), must perform n = 36 > 35.54 ≈ log2 10

11
− 1 successive bisections.

Example 19.22. As noted at the beginning of this section, the quintic equation

f(u) = u5 + u+ 1 = 0

has one real root, whose value can be readily computed by bisection. We start the algorithm
with the initial points u(0) = −1, v(0) = − .5, noting that f(−1) = −1 < 0 while f(0) =
1 > 0 are of opposite signs. In order to compute the root to 6 decimal places, we set
ε = 10−7 in (19.34), and so need to perform n = 23 > 22.25 ≈ log2 10

7
− 1 bisections.

Indeed, the algorithm produces the approximation u? ≈ −0.754878 to the root, and the
displayed digits are guaranteed to be accurate.

Fixed Point Methods

The Bisection method converges in all cases — provided it can be properly started
by locating two points where the function takes opposite signs. This may be tricky if
the function has two very closely spaced roots and is, say, negative only for a very small
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interval between them, and may be impossible for multiple roots, e.g., the root u? = 0
of the quadratic function f(u) = u2. When applicable, its convergence rate is completely
predictable, but not especially fast. Worse, it has no immediately apparent extension to
systems of equations, since there is no counterpart to the Intermediate Value Theorem for
vector-valued functions.

Most other methods for solving equations rely on some form of fixed point iteration.
Thus, we seek to replace the system of equations (19.32) with a fixed point system

u = g(u). (19.35)

The key requirements are

(a) The solution u? to (19.32) is also a fixed point for equation (19.35), and

(b) u? is, in fact a stable fixed point, so the Jacobian matrix g ′(u?) is a convergent
matrix, or, slightly more restrictively, ‖g ′(u?) ‖ < 1 for a given matrix norm.

If both requirements are satisfied, then, provided we choose the initial iterate u(0) = c

sufficiently close to u?, the iterates u(k) will converge to the desired solution u? as k →∞.
Thus, the key to the practical use of functional iteration for solving equations is the proper
design of an iterative system, coupled with a reasonably good initial guess for the solution.

Example 19.23. To solve the cubic equation

f(u) = u3
− u− 1 = 0 (19.36)

we note that f(1) = −1 while f(2) = 5, and so there is a root between 1 and 2. Indeed,
the bisection algorithm gives the approximate value u? ≈ 1.3247 after 17 iterations.

Let us try to find the same root by fixed point iteration. As a first, näıve, guess, we
rewrite the cubic equation in fixed point form

u = 1− u3 = g̃(u).

Starting with the initial guess u(0) = 1.5, the successive iterates are given by

u(k+1) = g̃(u(k)) = 1− (u(k))3, k = 0, 1, 2, . . . .

However, their values

u(0) = 1.5, u(1) = −2.375, u(2) = 14.3965,

u(3) = −2, 983, u(4) = 2.654× 1010, u(5) = −1.869× 1031, . . .

rapidly become unbounded and fail to converge. This could have been predicted by the
convergence criterion in Theorem 19.4. Indeed, g̃ ′(u) = −3u2 and so | g̃ ′(u) | > 3 for all
1 ≤ u, including the root u?. This means that u? is an unstable fixed point, and we cannot
expect the iterates to converge to it.

On the other hand, we can rewrite the equation (19.36) in the alternative iterative
form

u = 3
√

1 + u = g(u).

In this case

0 ≤ g′(u) =
1

3(1 + u)2/3
≤
1

3
for u > 0.
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Thus, the stability condition (19.13) is satisfied, and we anticipate convergence at a rate
of at least 1

3 . (The bisection method converges more slowly, at rate
1
2 .) Indeed, the first

few iterates u(k+1) =
3
√

1 + u(k) are

1.5, 1.3571, 1.33086, 1.32588, 1.32494, 1.32476, 1.32473,

and we have converged to the root, correct to four decimal places, in only 6 iterations.

Newton’s Method

As we learned in Section 19.1, the speed of convergence of an iterative method based
on a scalar function g(u) is governed by the magnitude of its derivative, | g ′(u?) |, at the
fixed point. Thus, to design an iterative method to solve an equation f(u) = 0, we need

(a) a function g(u) whose fixed points u? coincide with the solutions,

(b) whose derivative at the fixed point is as small as possible.

In particular, if we can arrange that g′(u?) = 0, then, instead of a relatively slow lin-
ear convergence rate, the numerical solution method will satisfy the dramatically faster
quadratic convergence estimate of Theorem 19.8, with all its consequent advantages.

Now, the first condition requires that g(u) = u whenever f(u) = 0. A little thought
will convince you that the iterative function should take the form

g(u) = u− λ(u) f(u), (19.37)

where λ(u) is a reasonably nice function. If f(u?) = 0, then clearly u? = g(u?), and so u?

is a fixed point. The converse holds provided λ(u)6= 0 is never zero.

For a quadratically convergent method, the second requirement is that the derivative
of g(u) be zero at the fixed point solutions. We compute

g′(u) = 1− λ′(u) f(u)− λ(u) f ′(u).

Thus, g′(u?) = 0 at a solution to f(u?) = 0 if and only if

0 = 1− λ′(u?) f(u?)− λ(u?) f ′(u?) = 1− λ(u?) f ′(u?).

Consequently, we should require that

λ(u?) =
1

f ′(u?)
(19.38)

to ensure a quadratically convergent iterative scheme. This assumes that f ′(u?)6= 0, which
means that u? is a simple root of f . We leave aside multiple roots, which require a different
argument and method, to be outlined in Exercise .

Of course, there are many functions λ(u) that satisfy (19.38), since we only need to
specify its value at a single point. The problem is that we do not know u? — after all this
is what we are trying to compute — and so cannot compute the value of the derivative
of f there. However, we can circumvent this apparent difficulty by a simple device: we
impose equation (19.38) at all points,

λ(u) =
1

f ′(u)
, (19.39)
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which certainly guarantees that it hold at the solution u?. The result is the function

g(u) = u −
f(u)

f ′(u)
, (19.40)

that yields the iteration scheme known as Newton’s method . It dates back to Isaac Newton,
the founder of the calculus, and, to this day, remains the most important general purpose
algorithm for solving equations. Newton’s method starts with an initial guess u(0) to be
supplied by the user, and then successively computes

u(k+1) = u(k)
−

f(u(k))

f ′(u(k))
. (19.41)

Provided the initial guess is sufficiently close, the iterates u(k) are guaranteed to converge
to the (simple) root u? of f .

Theorem 19.24. Suppose f(u) ∈ C2 is twice continuously differentiable. Let u?

be a solution to the equation f(u) = 0 such that f ′(u?) 6= 0. Given an initial guess u(0)

sufficiently close to u?, the Newton iteration scheme (19.41) converges at a quadratic rate
to the solution u?.

Proof : By continuity, if f ′(u?) 6= 0, then f ′(u) 6= 0, and hence the Newton iterative
function (19.40) is well defined and continuously differentiable for all u sufficiently close to
u?. Since g′(u) = f(u) f ′′(u)/f ′(u)2, we have g′(u?) = 0, as promised by our construction.
Hence, the result is an immediate consequence of Theorem 19.8. Q.E.D.

Example 19.25. Consider the cubic equation

f(u) = u3
− u− 1 = 0,

that we already solved in Example 19.23. The function used in the Newton iteration is

g(u) = u−
f(u)

f ′(u)
= u−

u3
− u− 1

3u2 − 1
,

which is well-defined as long as u 6= ± 1√
3
. We will try to avoid these singular points. The

iterative procedure

u(k+1) = g(u(k)) = u(k)
−
(u(k))3 − u(k)

− 1

3(u(k))2 − 1

with initial guess u(0) = 1.5 produces the following values:

1.5, 1.34783, 1.32520, 1.32472,

which gives the root correctly to 5 decimal places after only three iterations. The quad-
ratic convergence of Newton’s method implies that, roughly, each new iterate doubles the
number of correct decimal places. Thus, if we need to compute the root accurately to 40
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Figure 19.4. The function f(u) = u3
−

3
2 u2 + 5

9 u− 1
27 .

decimal places†, it would only require 3 further iterations! this underscores the tremendous
advantage that the Newton algorithm offers over competing methods such as bisection or
näıve iteration.

Example 19.26. The cubic polynomial equation

f(u) = u3
−

3
2 u2 + 5

9 u− 1
27 = 0

has

f(0) = − 1
27 , f

(
1
3

)
= 1

54 , f
(

2
3

)
= − 1

27 , f(1) = 1
54 .

The Intermediate Value Theorem 19.19 guarantees that there are three roots on the interval
[0, 1]: one between 0 and 1

3 , the second between
1
3 and

2
3 , and the third between

2
3 and 1.

The graph in Figure 19.4 reconfirms this observation. Since we are dealing with a cubic
polynomial, there are no other roots.

It takes sixteen iterations of the bisection algorithm starting with the three subinter-
vals

[
0 , 1

3

]
,
[

1
3 , 2

3

]
and

[
2
3 , 1

]
to produce the roots to six decimal places:

u?1 ≈ .085119, u?2 ≈ .451805, u?3 ≈ .963076.

Incidentally, if we start with the interval [0, 1] and apply bisection, we converge (perhaps
surprisingly) to the largest root u?3 in 17 iterations.

Fixed point iteration based on the formulation

u = g(u) = −u3 + 3
2 u2 + 4

9 u+ 1
27

† This assumes we are working in a sufficiently high precision arithmetic so as to avoid round-off
errors.
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can be used to find the first and third roots, but not the second root. For instance, starting
with u(0) = 0 produces u?1 to 5 decimal places after 23 iterations, whereas starting with
u(0) = 1 produces u?3 to 5 decimal places after 14 iterations. The reason we cannot produce
u?2 is due to the magnitude of the derivative

g′(u) = −3u2 + 3u+ 4
9

at the roots, which is

g′(u?1) ≈ 0.678065, g′(u?2) ≈ 1.18748, g′(u?3) ≈ 0.551126.

Thus, u?1 and u?3 are stable fixed points, but u?2 is unstable. However, because g′(u?1) and
g′(u?3) are both bigger than .5, this iterative algorithm converges slower than ordinary
bisection!

Finally, Newton’s method is based upon iteration of the function

g(u) = u−
f(u)

f ′(u)
= u−

u3
−

3
2 u2 + 5

9 u− 1
27

3u2 − 3u+ 5
9

.

Starting with an initial guess of u(0) = 0, the method computes u?1 to 5 decimal places after
only 4 iterations; starting with u(0) = .5, it produces u?2 after 2 iterations; while starting
with u(0) = 1 produces u?3 after 3 iterations — a dramatic speed up over the other two
methods.

Newton’s method has a very pretty graphical interpretation, that helps us understand
what is going on and why it converges so fast. Given the equation f(u) = 0, suppose we
know an approximate value u = u(k) for a solution. Nearby u(k), we can approximate the
nonlinear function f(u) by its tangent line at the given point u(k), which has the equation

y = f(u(k)) + f ′(u(k))(u− u(k)). (19.42)

As long as the tangent line is not horizontal — which requires f ′(u(k)) 6= 0 — it crosses
the axis at the abscissa

u(k+1) = u(k)
−

f(u(k))

f ′(u(k))
,

which represents a new, and, presumably more accurate, approximation to the desired
root. The procedure is illustrated pictorially in Figure Newton . Note that the passage
from u(k) to u(k+1) is exactly the Newton iteration step (19.41). In this manner, Newton’s
method can be viewed as successive approximation of the function by its tangent line and
then using the root of the resulting affine function as the next approximation to the root
of the function.

Given sufficiently accurate initial guesses, Newton’s method will then rapidly produce
accurate values for the simple roots to the equation in question. In practice, barring special
structure in the problem, Newton’s method is the root-finding algorithm of choice. The
one caveat is that we need to come up with a reasonably close initial guess to the root we
are seeking. Otherwise, there is no guarantee that it will converge at all, although if the
Newton iterations do converge, we know that the limiting value is a root of our equation.
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The behavior of Newton’s method as we change parameters and vary the initial guess is
very similar to the logistic map, and includes period doubling bifurcations and chaotic
behavior. The reader is invited to experiment with simple examples, some of which are
provided in Exercise . For further details, see [120].

Example 19.27. For fixed values of the eccentricity ε, Kepler’s equation

u− ε sinu = m (19.43)

can be viewed as a implicit equation defining the eccentric anomaly u as a function of the
mean anomaly m. To solve the equation by Newton’s method, we introduce the iterative
function

g(u) = u −
u− ε sinu−m

1− ε cosu
.

Notice that when | ε | < 1, the denominator never vanishes and so the iteration remains
well-defined everywhere. Starting with an initial guess u(0), we are assured that the method
will quickly converge to the solution.

Fixing the eccentricity ε, we can employ a continuation method to determine how the
solution u? = h(m) depends upon the mean anomaly m. Namely, we start at m = m0 = 0
with the obvious solution u? = h(0) = 0. Then, to compute the solution at successive
closely spaced values 0 < m1 < m2 < m3 < · · · , we use the previously computed value as
an initial guess u(0) = h(mk) for the value of the solution at the next mesh point mk+1,
and run the Newton scheme until it converges to the value u? = h(mk+1). As long as mk+1

is reasonably close to mk, Newton’s method will converge to the solution quite quickly.

The continuation method will quickly produce the values of u at the sample points
mk. Intermediate values can either be determined by an interpolation scheme, e.g., a cubic
spline fit of the data, or by running the Newton scheme using the closest known value as
an initial condition. A plot for the value ε = .5 appears in Figure kepler .

Systems of Equations

Let us now turn our attention to systems of equations. We shall only consider the
case when there are the same number of equations as unknowns:

f1(u1, . . . , un) = 0, . . . fn(u1, . . . , un) = 0. (19.44)

We shall write the system (19.44) in vector form

f(u) = 0, (19.45)

where f :Rn
→ Rn is a vector-valued function of n variables. Also, we do not necessarily

require that f be defined on all of Rn, although this does simplify the exposition to a
certain degree.

We shall only consider solutions that are isolated, meaning separated from all the
others. More formally:

Definition 19.28. A solution u? to a system f(u) = 0 is called isolated if there
exists δ > 0 such that f(u)6= 0 for all u satisfying 0 < ‖u− u? ‖ < δ.
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Example 19.29. Consider the planar equation

x2 + y2 = (x2 + y2)2.

Rewriting the equation in polar coordinates as

r = r2 or r(r − 1) = 0,

we immediately see that the solutions consist of the origin x = y = 0 and all points on the
unit circle r2 = x2 + y2 = 1. Only the origin is an isolated solution.

Typically, the solutions to a system of n equations in n unknowns are isolated, al-
though this is not always the case. For example, if A is a singular n× n matrix, then the
solutions to Au = 0 consist of a nontrivial subspace of Rn and so are not isolated. Non-
linear systems with non-isolated solutions can similarly be viewed as having some form of
degeneracy. In general, the computation of non-isolated solutions, e.g., solving the implicit
equations for a curve or surface, is a much more difficult problem, and we will not attempt
to discuss these issues in this introductory presentation. However, our continuation ap-
proach to the Kepler equation in Example 19.27 gives a hint as to how one might proceed
in such situations.

In the case of a single scalar equation, the simple roots are the most amenable to
practical computation. In higher dimensions, the role of the derivative of the function is
played by the Jacobian matrix (19.27), and this motivates the following definition.

Definition 19.30. A solution u? to a system f(u) = 0 is called nonsingular if the
associated Jacobian matrix is nonsingular there: det f ′(u?)6= 0.

Note that the Jacobian matrix is square if and only if the system has the same number
of equations as unknowns, and so this is a requirement for a solution to be nonsingular.
Moreover, the Inverse Function Theorem, [9, 126], from multivariable calculus implies that
a nonsingular solution is necessarily isolated.

Theorem 19.31. If u? is a nonsingular solution to the system f(u) = 0, then u? is

an isolated solution.

As with simple roots of scalar equations, nonsingular solutions of systems are the most
amenable to practical computation. Non-isolated solutions, as well as isolated solutions
with singular Jacobian matrices, are much more difficult to compute, and very few useful
solution algorithms exist in such degenerate situations.

Now, let us turn to numerical solution techniques. The first remark is that, unlike
the scalar case, proving existence of a solution to a system of equations is often a difficult
problem. There is no counterpart to the Intermediate Value Theorem 19.19 for vector-
valued functions; it is easy to construct examples of vector-valued functions, whose entries
take on both positive and negative values, but for which there are no solutions to the
system (19.45); see Exercise for one simple example. For this reason, there is no decent
analog of the Bisection method for systems of equations.

On the other hand, Newton’s method can be straightforwardly adapted to compute
nonsingular solutions to systems of equations, and forms the most widely used method for
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this purpose. The derivation proceeds in very similar manner to the scalar case. First, we
replace the system (19.45) by a fixed point system

u = g(u) (19.46)

having the same solutions. By direct analogy with (19.37), any (reasonable) fixed point
method will take the form

g(u) = u− L(u) f(u), (19.47)

where L(u) is an n × n matrix-valued function. Clearly, if f(u) = 0 then g(u) = u;
conversely, if g(u) = u, then L(u) f(u) = 0. If we further require that the matrix L(u)
be nonsingular, i.e., detL(u) 6= 0, then every fixed point of the iterator (19.47) will be a
solution to the system (19.45) and vice versa.

According to Theorem 19.14, the speed of convergence (if any) of the iterative method

u(k+1) = g(u(k)) (19.48)

is governed by the spectral radius or matrix norm of the Jacobian matrix g ′(u?) at the
fixed point. In particular, if

g ′(u?) = O (19.49)

is the zero matrix, then the method is quadratically convergent. Computing the deriva-
tive using the matrix version of the Leibniz rule for the derivative of a matrix product,
cf. Exercise , we find

g ′(u?) = I − L(u?) f ′(u?), (19.50)

where I is the n×n identity matrix; see Exercise for details. (Fortunately, all the terms
that involve derivatives of the entries of L(u) go away since f(u?) = 0 by assumption.)
Therefore, the quadratic convergence criterion (19.49) holds if and only if

L(u?) f ′(u?) = I , and hence L(u?) = f ′(u?)
−1

(19.51)

should be the inverse of the Jacobian matrix of f at the solution, which, fortuitously, was
already assumed to be nonsingular.

As in the scalar case, we don’t know the solution u?, but we can arrange that condition
(19.51) holds by setting

L(u) = f ′(u)
−1

everywhere — or at least everywhere that f has a nonsingular Jacobian matrix. The
resulting fixed point system

u = g(u) = u− f ′(u)−1 f(u), (19.52)

leads to the quadratically convergent Newton iteration scheme

u(k+1) = u(k)
− f ′(u(k))−1 f(u(k)). (19.53)

All it requires is that we guess an initial value u(0) that is sufficiently close to the desired
solution u?. We are then guaranteed that the iterates u(k) converge quadratically fast to
u?.
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Theorem 19.32. Let u? be a nonsingular solution to the system f(u) = 0. Then,

provided u(0) is sufficiently close to u?, the Newton iteration scheme (19.53) converges at
a quadratic rate to the solution: u(k)

→ u?.

Example 19.33. Consider the pair of simultaneous cubic equations

f1(u, v) = u3
− 3uv2

− 1 = 0, f2(u, v) = 3u2 v − v3 = 0. (19.54)

It is not difficult to prove that there are three solutions:

u?1 =

(
1
0

)
, u?2 =

(
−.5

.866025 . . .

)
, u?3 =

(
−.5

−.866025 . . .

)
.

The Newton scheme relies on the Jacobian matrix

f ′(u) =

(
3u2

− 3v2
− 6uv

6uv 3u2
− 3v2

)
.

Since det f ′(u) = 9(u2 + v2) is non-zero except at the origin, all three solutions are non-
singular, and hence, for a sufficiently close initial value, Newton’s method will converge.
We compute the inverse Jacobian matrix explicitly:

f ′(u)−1 =
1

9(u2 + v2)

(
3u2

− 3v2 6uv

− 6uv 3u2
− 3v2

)
.

Hence, in this particular example, the Newton iterator (19.52) is

g(u) =

(
u

v

)
−

1

9(u2 + v2)

(
3u2

− 3v2 6uv

− 6uv 3u2
− 3v2

)(
u3
− 3uv2

− 1
3u2 v − v3

)
.

Implementing (19.53). Starting with we converge to

Remark : The alert reader may notice that in this example, we are in fact merely
computing the cube roots of unity, i.e., equations (19.54) are the real and imaginary parts
of the complex equation z3 = 1 when z = u+ i v. A complete map of the basins of attraction
converging to the three different roots has a remarkably complicated, fractal-like structure,
as illustrated in Figure Newt3 .

Example 19.34. A robot arm consists of two rigid rods that are joined end-to-end
to a fixed point in the plane, which we take as the origin 0. The arms are free to rotate, and
the problem is to configure them so that the robots hand ends up at the prescribed position
a = ( a, b )

T
. The first rod has length ` and makes an angle α with the horizontal, so its

end is at position v1 = ( ` cosα, ` sinα )
T
. The second rod has length m and makes an

angle β with the horizontal, and so is represented by the vector v2 = (m cosβ,m sinβ )
T
.

The hand at the end of the second arm is at position v1 + v2, and the problem is to find
values for the angles α, β so that v1 + v2 = a. To this end, we need to solve the system of
equations

` cosα+m cosβ = a, ` sinα+m sinβ = b. (19.55)

1/12/04 854 c© 2003 Peter J. Olver



k α(k) β(k) x(k) y(k) z(k) w(k)

0 0.0000 1.5708 2.0000 0.0000 2.0000 1.0000

1 0.0000 2.5708 2.0000 0.0000 1.1585 0.5403

2 0.3533 2.8642 1.8765 0.6920 0.9147 0.9658

3 0.2917 2.7084 1.9155 0.5751 1.0079 0.9948

4 0.2987 2.7176 1.9114 0.5886 1.0000 1.0000

5 0.2987 2.7176 1.9114 0.5886 1.0000 1.0000

To compute the solution, we shall apply Newton’s method. First, we compute the
Jacobian matrix of the system with respect to α, β, which is

f ′(α, β) =

(
− ` sinα −m sinβ

` cosα m cosβ

)
.

As a result, the Newton iteration equation (19.53) has the explicit form

(
α(k+1)

β(k+1)

)
=

(
α(k)

β(k)

)
−

−
1

`m sin(β(k) − α(k))

(
− ` cosα(k) m sinβ(k)

− ` cosα(k) m sinβ(k)

)(
` cosα(k) +m cosβ(k)

− a

` sinα(k) +m sinβ(k)
− b

)
.

when running the iteration, one must be careful to avoid points at which α(k)
− β(k) = 0

or π, i.e., where the robot arm has straightened out.

As an example, let us assume that the rods have lengths ` = 2, m = 1, and the
desired location of the hand is at a = ( 1, 1 )

T
. We start with an initial guess of α(0) = 0,

β(0) = 1
2 π, so the first rod lies along the x–axis and the second is perpendicular. The first

few Newton iterates are given in the accompanying table.The first column gives the iterate
number k. The second and third columns indicate the angles α(k), β(k) of the rods. The

fourth and fifth give the position
(
x(k), y(k)

)T
of the joint or elbow, while the final two

indicate the position
(
z(k), w(k)

)T
of the robot’s hand.

Thus, the robot has rapidly converged to one of the two possible configurations. Con-
vergence is dependent upon the initial configuration, and the iterates do not always settle
down. For instance, if ‖a ‖ > ` +m, there is no possible solution, since the arms are too
short for the hand to reach to desired location; thus, no choice of initial conditions will
lead to a convergent scheme and the robot arm flaps around in a chaotic manner.

Now that we have gained some experience with Newton’s method for systems of equa-
tions, some supplementary remarks are in order. As we learned back in Chapter 1, except
perhaps in very low-dimensional situations, one should not invert a matrix directly, but
rather use Gaussian elimination, or, in favorable situations, a linear iterative scheme, e.g.,
Jacobi, Gauss–Seidel or SOR, to solve a linear system. So it is better to write the Newton
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equation (19.53) in unsolved, implicit form

f ′(u(k))v(k+1) = − f(u(k)), u(k+1) = u(k) + v(k). (19.56)

Given the iterate u(k), we first compute the Jacobian matrix f ′(u(k)), and then use our
preferred linear systems solver to find v(k). Adding u(k) to the result immediately yields
the updated approximation u(k+1) to the solution.

Therefore, the main bottleneck in the implementation of the Newton scheme, par-
ticularly for large systems, is solving the linear system (19.56). The coefficient matrix
f ′(u(k)) must be recomputed at each step of the iteration, and hence knowing the solution
to the kth linear system does not help us solve the next one in the sequence. Having to
re-implement a complete Gaussian elimination at every step will tend to slow down the
algorithm, particularly in high dimensional situations involving many equations in many
unknowns.

One simple dodge for speeding up the computation is to note that, once we start
converging, u(k) will be very close to u(k−1) and so we will probably not go far wrong by
using f ′(u(k−1)) in place of the updated Jacobian matrix f ′(u(k)). Since we have already
solved the linear system with coefficient matrix f ′(u(k−1)), we know its LU factorization,
and hence can use forward and back substitution to quickly solve the modified system

f ′(u(k−1))v(k+1) = − f(u(k)), u(k+1) = u(k) + v(k). (19.57)

If u(k+1) is still close to u(k−1), we can continue to use f ′(u(k−1)) as the coefficient matrix
when proceeding on to the next iterate u(k+2). We continue until there has been a notable
change in the iterates, at which stage we can revert to solving the correct, unmodified
linear system (19.56) by Gaussian elimination. In this version of the algorithm, we update
the coefficient matrix every few iterations, particularly if the value of the approximations
has significantly changed. This device may dramatically reduce the total amount of com-
putation required to approximate the solution to a prescribed accuracy. The down side is
that this quasi-Newton scheme is only linearly convergent, and so does not home in on the
root as fast as the unmodified implementation. The user needs to balance the trade-off
between speed of convergence versus amount of time needed to solve the linear system at
each step in the process.

19.3. Optimization.

We have already remarked on the importance of quadratic minimization principles to
characterize the equilibrium solutions of a variety of linear systems. In nonlinear mathe-
matics, optimization loses none of its centrality, and the wealth of practical applications
has spawned an entire subdiscipline of applied mathematics. Physical systems naturally
seek to minimize the potential energy function, and so determination of the possible equi-
librium configurations requires solving a nonlinear minimization principle. Engineering
design is guided by a variety of optimization constraints, such as performance, safety, cost
and marketability. Non-quadratic minimization principles also arise in the fitting of data
by more general schemes beyond the simple linear least squares approximation method
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discussed in Section 4.3. Additional applications arise in economics and financial math-
ematics — one often wishes to minimize costs or maximize profits — in manufacturing,
in biological and ecological systems, in pattern recognition and signal processing, and in
statistics.

The Objective Function

Throughout this section, the function F (u) = F (u1, . . . , un) to be minimized — the
energy, cost, entropy, performance, etc. — will be called the objective function. As such,
it depends upon one or more variables u = (u1, u2, . . . , un )

T
that belong to a prescribed

subset Ω ⊂ Rn.

Definition 19.35. A point u? ∈ Ω is a global minimum of the objective function on
the domain Ω if

F (u?) ≤ F (u) for all u ∈ Ω. (19.58)

The minimum is called strict if

F (u?) < F (u) for u? 6= u ∈ Ω. (19.59)

The point is called a local minimum if the inequality holds just for points u nearby u?,
i.e., satisfying ‖u− u? ‖ < δ for some δ > 0. Thus, strict local minima are isolated .

The definition of a maximum — local or global — is the same, but with the reversed
inequality: F (u?) ≥ F (u) or, in the strict case, F (u?) > F (u). Alternatively, a maximum
of F (u) is the same as a minimum of the negative −F (u). Therefore, every result that
applies to minimization of a function can easily be translated into a result on maximization,
which allows us to concentrate exclusively on the minimization problem without any loss
of generality. We will use extremum† as a shorthand term for either a maximum or a
minimum.

Remark : As we already noted in Section 4.1, any system of equations can be readily
converted into a minimization principle. Thus, given a system (19.45), we consider the
function‡

F (u) = ‖ f(u) ‖2 = f1(u1, . . . , un)
2
+ · · · + fn(u1, . . . , un)

2
. (19.60)

By the basic properties of the norm, the minimum value is F (u) = 0, and this is achieved
if and only if f(u) = 0, i.e., at a solution to the system.

In contrast to the much more complicated existence question for systems of equations,
there is an general theorem that guarantees the existence of minima (and, hence, maxima)
for a very broad class of optimization problems.

Theorem 19.36. If F : Ω → R is continuous, and Ω ⊂ Rn is closed and bounded,

then F has at least one global minimum u? ∈ Ω.

† Curiously, the term “optimum” is not used.

‡ We use the standard Euclidean norm, but any other norm would work equally well here.
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See [125, 126] for a proof. Although Theorem 19.36 assures us of the existence of a
global minimum of any continuous function on a bounded domain, it does not guarantee
uniqueness, nor does it indicate how to go about finding it. Just as with the solution of
nonlinear systems of equations, it is quite rare that one can find exact formulae for the
minima of non-quadratic functions. Our goal, then, is to formulate practical algorithms
that can accurately compute the minima of general nonlinear functions. A näıalgorithm,
but one that is often successfully applied in practical problems, [121, opt], is to select a
reasonably dense set of sample points u(k) in the domain and compare the values of f(u(k)).
If the points are sufficiently densely distributed and the function is not too wild, this will
give a good approximation to the minimum. The algorithm can be speeded up by using
sophisticated methods of selecting the sample points.

As the student no doubt remembers, there are two different possible types of minima.
An interior minimum occurs at an interior point of the domain of definition of the function,
whereas a boundary minimum occurs on its boundary ∂Ω. Interior local minima are easier
to find, and, to keep the presentation simple, we shall focus our efforts on them.

Let us review the basic procedure for optimizing scalar functions that you learned in
calculus.

Example 19.37. Let us optimize the scalar function

f(u) = 8u3 + 5u2
− 6u

on the domain −1 ≤ u ≤ 1. As you learned in first year calculus, the first step to finding
the minimum is to look at the critical points where the derivative vanishes:

f ′(u) = 24u2 + 10u− 6 = 0, and hence u = 1
3 , − 3

4 .

To ascertain the local nature of the two critical points, we apply the second derivative test.
Since f ′′(u) = 48u+ 10, we have

f ′′
(

1
3

)
= 26 > 0, whereas f ′′

(
−

3
4

)
= −26 < 0,

and we conclude that 1
3 is a local minimum, while

3
4 is a local maximum.

To find the global minimum and maximum on the interval [−1, 1], we must also take
into account the boundary points ±1. Comparing the function values at the four points,

f(−1) = 3, f
(

1
3

)
= − 31

27 ≈ −1.148, f
(
−

3
4

)
= 63

16 = 3.9375, f(1) = 7,

we see that 1
3 is the global minimum, whereas 1 is the global maximum. This is borne out

by the graph of the function in Figure 19.5.

The Gradient

As the student learns in multi-variable calculus, the (interior) extrema — minima
and maxima — of a smooth function F (u) = F (u1, . . . , un) are necessarily critical points,
meaning places where the gradient of F vanishes. The gradient of a function is, of course,
the vector whose entries are its first order partial derivatives:

∇F (u) =

(
∂F

∂u1

, . . . ,
∂F

∂un

)T
. (19.61)
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Figure 19.5. The function 8u3 + 5u2
− 6u.

Let us, in preparation for more general minimization problems over infinite-dimensional
function spaces, reformulate the definition of the gradient in a more intrinsic manner.
An important but subtle point is that the gradient operator, in fact, relies upon the
introduction of an inner product on the underlying vector space. The “standard version”
(19.61) is based upon on the Euclidean inner product on Rn. Altering the inner product
will change the formula for the gradient!

Definition 19.38. Let V be an inner product space. Given a function F : Ω → R
defined on an open domain Ω ⊂ V , its gradient at a point u ∈ Ω is the vector ∇F (u) ∈ V

that satisfies

〈∇F (u) ;v 〉 =
d

dt
F (u+ tv)

∣∣∣∣
t=0

for all v ∈ V. (19.62)

The left hand side of (19.62) is known as the directional derivative of F with respect to
v ∈ V , typically denoted by ∂F/∂v.

In the Euclidean case, when F (u) = F (u1, . . . , un) is a function of n variables, defined
for u ∈ Rn, we can use the chain rule to compute

d

dt
F (u+ tv) =

d

dt
F (u1 + t v1, . . . , un + t vn)

= v1

∂F

∂u1

(u+ tv) + · · · + vn
∂F

∂un
(u+ tv).

(19.63)

Setting t = 0, the right hand side of (19.62) reduces to

d

dt
F (u+ tv)

∣∣∣∣
t=0

= v1

∂F

∂u1

(u) + · · · + vn
∂F

∂un
(u) = v · ∇F (u) = ∇F (u) · v.

Therefore, the directional derivative equals the Euclidean dot product between the usual
gradient of the function (19.61) and the direction vector v.

A function F (u) is continuously differentiable if and only if its gradient ∇F (u) is a
continuously varying function of u. This is equivalent to the requirement that the first
order partial derivatives ∂F/∂ui are all continuous. As usual, we use C

1(Ω) to denote the
vector space of all continuously differentiable scalar-valued functions defined on a domain
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Ω ⊂ Rn. From now on, all objective functions are assumed to be continuously differentiable
on their domain of definition.

Remark : In this chapter, we will only deal with the standard Euclidean dot product
and hence the usual gradient (19.61). However, all results can be readily translated into
more general situations, e.g., weighted inner products. Details are outlined in Exercise .

More generally, if u(t) represents a parametrized curve contained within the domain
of definition of F (u), then the instantaneous rate of change in the scalar quantity F as we
move along the curve is given by

d

dt
F (u(t)) =

〈
∇F (u) ;

du

dt

〉
, (19.64)

which is the directional derivative of F with respect to the velocity or tangent vector
v =

¦
u to the curve. For instance, our rate of ascent or descent as we travel through

the mountains is given by the dot product of our velocity vector with the gradient of the
elevation function. This leads us to one important interpretation of the gradient vector.

Theorem 19.39. The gradient ∇F of a scalar function F (u) points in the direc-
tion of its steepest increase. The negative gradient, −∇F , which points in the opposite

direction, indicates the direction of steepest decrease.

For example, if F (u, v) represents the elevation of a mountain range at position (u, v)
on a map, then ∇F tells us the direction that is steepest uphill, while −∇F points directly
downhill — the direction water will flow. Similarly, if F (u, v, w) represents the temperature
of a solid body, then ∇F tells us the direction in which it is getting the hottest. Heat
energy (like water) will flow in the opposite, coldest direction, namely that of the negative
gradient vector −∇F .

You need to be careful in how you interpret Theorem 19.39. Clearly, the faster you
move along a curve, the faster the function F (u) will vary, and one needs to take this into
account when comparing the rates of change along different curves. The easiest way to
normalize is to assume that the tangent vector a =

¦
u has norm 1, so ‖a ‖ = 1 and we

are passing through the point u with unit speed. Once this is done, Theorem 19.39 is an
immediate consequence of the Cauchy–Schwarz inequality (3.16). Indeed,

∣∣∣∣
∂F

∂a

∣∣∣∣ = |a · ∇F | ≤ ‖a ‖ ‖∇F ‖ = ‖∇F ‖, when ‖a ‖ = 1,

with equality if and only if a = c∇F points in the same direction as the gradient. There-
fore, the maximum rate of change is when a = ∇F/‖∇F ‖ is the unit vector in the direction
of the gradient, while the minimum is achieved when a = −∇F/‖∇F ‖ points in the op-
posite direction. As a result, Theorem 19.39 tells us how to move if we wish to minimize
a scalar function as rapidly as possible.

Theorem 19.40. A curve u(t) will realize the steepest decrease in the scalar field
F (u) if and only if it satisfies the gradient flow equation

¦
u = −∇F (u). (19.65)
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Critical Points

Let us now prove that the gradient vanishes at any local minimum of the function.
The most important thing about this proof is that it only relies on the intrinsic definition
of gradient, and therefore applies to any function on any inner product space. Moreover,
even though the gradient can change if we alter the underlying inner product, the condition
that it vanishes at a local extremum does not.

Definition 19.41. A point u? is called a critical point of the objective function F (u)
if

∇F (u?) = 0. (19.66)

Theorem 19.42. If u? ∈ Ω is a local (interior) minimum of F (u), then ∇F (u?) = 0,

and so u? is a critical point.

Proof : Let v ∈ Rn be any vector. Consider the function

g(t) = F (u? + tv) = F (u?1 + t v1, . . . , u
?
n + t vn), (19.67)

where t ∈ R is sufficiently small to ensure that u? + tv ∈ Ω remains inside the domain
of F . Thus, g measures the values of F along a straight line passing through u? in the
direction† prescribed by v. Since u? is a local minimum,

F (u?) ≤ F (u? + tv), and hence g(0) ≤ g(t)

for all t sufficiently close to zero. In other words, g(t), as a function of the single variable t,
has a local minimum at t = 0. By the basic calculus result on minima of functions of one
variable, the derivative of g(t) must vanish at t = 0. Therefore, by the definition (19.62)
of gradient,

0 = g′(0) =
d

dt
F (u? + tv)

∣∣∣∣
t=0

= 〈∇F (u?) ;v 〉.

We conclude that the gradient vector ∇F (u?) at the critical point must be orthogonal
to every vector v ∈ Rn. The only vector that is orthogonal to every vector in an inner
product space is the zero vector, and hence ∇F (u?) = 0. Q.E.D.

Remark : As we learned, the gradient vector ∇F points in the direction of the steepest
increase in the function, while its negative, −∇F (u), points in the direction of steepest
decrease. At a minimum of the function, all directions are increasing, and so there is no
direction of steepest decrease. The only way that the gradient can avoid this little dilemma
is for it to vanish, which provides an intuitive explanation of why minima (and maxima)
must be critical points.

† If v = 0, then the line degenerates to a point, but the ensuing argument remains (trivially)
valid.
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Figure 19.6. The Function u4
− 2u2 + v2.

Thus, provided the objective function is continuously differentiable, every interior
minimum, both local and global, is necessarily a critical point. The converse is not true;
critical points can be maxima; they can also be saddle points or of some degenerate form.
The basic analytical method‡ for determining the (interior) minima of a given function is
to first find all its critical points by solving the system of equations (19.66). Each critical
point then needs to be more closely examined — as it could be either a minimum, or a
maximum, or neither.

Example 19.43. Consider the function

F (u, v) = u4
− 2u2 + v2,

which is defined and continuously differentiable on all of R2. Since∇F =
(
4u3

− 4u, 2v
)T
,

its critical points are obtained by solving the system of equations

4u3
− 4u = 0, 2v = 0.

The solutions to the first equation are u = 0,±1, while the second equation requires v = 0.
Therefore, F has three critical points:

u?1 =

(
0
0

)
, u?2 =

(
1
0

)
, u?3 =

(
−1
0

)
. (19.68)

Inspecting the graph in Figure 19.6, we suspect that the first critical point u?1 is a saddle
point, whereas the other two are both global minima for the function, with the same value
F (u?2) = F (u?3) = −1. This will be confirmed once we learn how to rigorously distinguish
critical points.

‡ Numerical methods are discussed below.
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If F (u) is defined on a closed subdomain Ω ⊂ Rn, then its minima may also occur
at boundary points u ∈ ∂Ω, and there is no requirement that the gradient vanish at
such boundary minima. The analytical determination of boundary extrema relies on the
method of Lagrange multipliers, and we refer the interested reader to [9, 38]. If the domain
is unbounded, one must also worry about the asymptotic behavior of the function for large
u. In order to keep our presentation simple, we shall relegate these more involved issues
to a more advanced text.

The student should also pay attention to the distinction between local minima and
global minima. Both are critical points. In the absence of theoretical justification, the
only practical way to determine whether or not a minimum is global is to find all the
different local minima and see which one gives the smallest value. In many examples
arising in applications, when F (u) is often an energy function, one knows that the function
is bounded from below, and hence, from general principles, that a global minimum exists,
even when the domain is unbounded.

The Second Derivative Test

The status of critical point — minimum, maximum, or neither — can often be resolved
by analyzing the second derivative of the objective function at the critical point. Let us
first review the one variable second derivative test from first year calculus.

Proposition 19.44. Let g(t) ∈ C2 be a scalar function, and suppose t? a critical

point, so g′(t?) = 0. If t? is a local minimum, then g′′(t?) ≥ 0. Conversely, if g′′(t?) > 0,
then t? is a strict local minimum. Similarly, g′′(t?) ≤ 0 is required at a local maximum,
while g′′(t?) < 0 implies that t? is a strict local maximum.

The proof of this result relies on the quadratic Taylor approximation

g(t) ≈ g(t?) + 1
2 (t− t?)2 g′′(t?)

near the critical point, (C.7), where we use the fact that g′(t?) = 0 and so the linear terms
in the Taylor polynomial vanish. If g′′(t?) 6= 0, then the quadratic Taylor polynomial
has a minimum or maximum at t? according to the sign of the second derivative. In the
borderline case, when g′′(t?) = 0, the second derivative test is inconclusive, and the point
could be either maximum, minimum, saddle point, or degenerate. One must then look at
the higher order terms in the Taylor expansion to resolve the issue; see Exercise .

In multi-variate calculus, the “second derivative” is represented by the n× n Hessian

matrix

∇
2F (u) =




∂2F

∂u2
1

∂2F

∂u1 ∂u2

. . .
∂2F

∂u1 ∂un

∂2F

∂u2 ∂u1

∂2F

∂u2
2

. . .
∂2F

∂u2 ∂un

...
...

. . .
...

∂2F

∂un ∂u1

∂2F

∂un ∂u2

. . .
∂2F

∂u2
n




, (19.69)
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named after the early eighteenth German mathematician Ludwig Otto Hesse. The entries
of the Hessian are the second order partial derivatives of the objective function. If F (u) ∈
C2 has continuous second order partial derivatives, then its Hessian matrix is symmetric,
∇

2F (u) = ∇2F (u)T , which is a restatement of the fact that its mixed partial derivatives
are equal: ∂2F/∂ui ∂uj = ∂2F/∂uj ∂ui, cf. [9, 38]. For the applicability of the second
derivative test, this is an essential ingredient.

The second derivative test for a local minimum of scalar function relies on the positiv-
ity of its second derivative. For a function of several variables, the corresponding condition
is that the Hessian matrix be positive definite, as in Definition 3.22. More specifically:

Theorem 19.45. Let F (u) = F (u1, . . . , un) ∈ C
2(Ω) be a real-valued, twice con-

tinuously differentiable function defined on an open domain Ω ⊂ Rn. If u? ∈ Ω is a
(local, interior) minimum for F , then it is necessarily a critical point, so ∇F (u?) = 0.

Moreover, the Hessian matrix (19.69) must be positive semi-definite at the minimum, so
∇

2F (u?) ≥ 0. Conversely, if u? is a critical point with positive definite Hessian matrix
∇

2F (u?) > 0, then u? is a strict local minimum of F .

Proof : We return to the proof of Theorem 19.42. Given a local minimum u?, the
scalar function g(t) = F (u? + tv) in (19.67) has a local minimum at t = 0. As noted
above, basic calculus tells us that its derivatives at t = 0 must satisfy

g′(0) = 0, g′′(0) ≥ 0. (19.70)

The first condition leads to the critical point equation ∇F (u?) = 0. A straightforward
chain rule calculation produces the formula

g′′(0) =

n∑

i,j=1

∂2F

∂ui ∂uj
(u?) vi vj = vT ∇2F (u?)v.

As a result, the second condition in (19.70) requires that

vT ∇2F (u?)v ≥ 0.

Since this condition is required for every direction v ∈ Rn, the Hessian matrix∇2F (u?) ≥ 0
satisfies the criterion for positive semi-definiteness, proving the first part of the theorem.

Conversely, if the Hessian ∇2F (u?) > 0 is positive definite, then,

g′′(0) = vT ∇2F (u?)v > 0 for all v6= 0,

and so t = 0 is a strict local minimum for g(t). Since this occurs for every v ∈ V , this
implies† F (u?) < F (u) for all u near u? and so u? is a strict local minimum. Q.E.D.

† We are ignoring some technical details that need cleaning up for a completely rigorous proof,
which relies on the multivariable Taylor expansion of F (u). See Appendix C.
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A maximum requires a negative semi-definite Hessian matrix. If, moreover, the Hes-
sian at the critical point is negative definite, then the critical point is a strict local max-
imum. If the Hessian matrix is indefinite, then the critical point is a saddle point, and
neither minimum nor maximum. In the borderline case — when the Hessian is only positive
or negative semi-definite at the critical point, then the second derivative test is inconclu-
sive. Resolving the nature of the critical point requires more detailed knowledge of the
objective function, e.g., its higher order derivatives.

Example 19.46. As a first, elementary example, consider the quadratic function

F (u, v) = u2
− 2uv + 3v2.

To minimize F , we begin by computing its gradient ∇F =

(
2u− 2v
−2u+ 6v

)
. Solving the

pair of equations ∇F = 0, namely

2u− 2v = 0, −2u+ 6v = 0,

we see that the only critical point is the origin u = v = 0. To test whether the origin is a
maximum or minimum, we further compute the Hessian matrix

H = ∇2F (u, v) =

(
Fuu Fuv
Fuv Fvv

)
=

(
2 −2
−2 6

)
.

Using the methods of Section 3.5, we easily prove that the Hessian matrix is positive
definite. Therefore, by Theorem 19.45, u? = 0 is a strict local minimum of F .

Indeed, we recognize F (u, v) to be, in fact, a homogeneous positive definite quadratic
form, which can be written in the form

F (u, v) = uTK u, where K =

(
1 −1
−1 3

)
= 1

2 H, u =

(
u

v

)
.

Positive definiteness of the coefficient matrix K implies that F (u, v) > 0 for all u =

(u, v )
T
6= 0, and hence 0 is, in fact, a global minimum.

In general, any quadratic function Q(u) = Q(u1, . . . , un) can be written in the form

Q(u) = uTKu− 2bTu+ c =
m∑

i,j=1

kij uiuj − 2
n∑

i=1

biui + c, (19.71)

where K = KT is a symmetric n × n matrix, b ∈ Rn is a fixed vector, and c ∈ R is a
scalar. A straightforward computation produces the formula for its gradient and Hessian
matrix:

∇Q(u) = 2Ku− 2b, ∇
2Q(u) = 2K. (19.72)

As a result, the critical points of the quadratic function are the solutions to the linear
system Ku = b. If K is nonsingular, there is a unique critical point u?, which is a strict
local minimum if and only if K > 0 is positive definite. In fact, Theorem 4.1 tells us that,
in the positive definite case, u? is a strict global minimum for Q(u). Thus, the algebraic
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Figure 19.7. Critical Points.

approach of Chapter 4 provides additional, global information that cannot be gleaned
directly from the local, multivariable calculus Theorem 19.45. But algebra is only able to
handle quadratic minimization problems with ease. The analytical classification of minima
and maxima of more complicated objective functions necessarily relies the gradient and
Hessian criteria of Theorem 19.45.

Example 19.47. The function

F (u, v) = u2 + v2
− v3 has gradient ∇F (u, v) =

(
2u

2v − 3v2

)
.

There are two solutions to the critical point equation ∇F = 0: u?1 = ( 0, 0 )
T
and u?2 =(

0, 2
3

)T
. The Hessian matrix of the objective function is

∇
2F (u, v) =

(
2 0
0 2− 6v

)
.

At the first critical point, the Hessian ∇2F (0, 0) =

(
2 0
0 2

)
is positive definite. Therefore,

the origin is a strict local minimum. On the other hand, ∇2F
(
0, 2

3

)
=

(
2 0
0 −2

)
is

indefinite, and hence u?2 =
(
0, 2

3

)T
a saddle point. The function is graphed in Figure 19.7,

with the critical points indicated by the small solid balls. The origin is, in fact, only a
local minimum, since F (0, 0) = 0, whereas F (0, v) < 0 for all v > 1. Thus, there is no
global minimum or maximum on R2.

Next, consider the function

F (u, v) = u2 + v4, with gradient ∇F (u, v) =

(
2u
4v3

)
.

The only critical point is the origin u = v = 0. The origin is a strict global minimum
because F (u, v) > 0 = F (0, 0) for all (u, v)6= ( 0, 0 )

T
. However, its Hessian matrix

∇
2F (u, v) =

(
2 0
0 12v2

)
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is only positive semi-definite at the origin, ∇2F (0, 0) =

(
2 0
0 0

)
, and the second derivative

test is inconclusive.

On the other hand, the origin u = v = 0 is also the only critical point for the function

F (u, v) = u2 + v3 with ∇F (u, v) =

(
2u
3v2

)
.

The Hessian matrix is

∇
2F (u, v) =

(
2 0
0 6v

)
, and so ∇

2F (0, 0) =

(
2 0
0 0

)

is the same positive semi-definite matrix at the critical point. However, in this case (0, 0)
is not a local minimum; indeed

F (0, v) < 0 = F (0, 0) whenever v < 0,

and so there exist points arbitrarily close to the origin where F takes on smaller values.
As illustrated in Figure 19.7, the origin is, in fact, a degenerate saddle point.

Finally, the function

F (u, v) = u2
− 2uv + v2 has gradient ∇F (u, v) =

(
2u− 2v
−2u+ 2v

)
,

and so every point u = v is a critical point. The Hessian matrix

∇
2F (u, v) =

(
Fuu Fuv
Fuv Fvv

)
=

(
2 −2
−2 2

)

is positive semi-definite everywhere. Since F (u, u) = 0, while F (u, v) = (u− v)2 > 0 when
u 6= v, each of these critical points is a non-isolated local minimum, but not a strict local
minimum. Thus, comparing the three preceding examples, we see that a semi-definite
Hessian cannot completely distinguish critical points.

Finally, the reader should always remember that first and second derivative tests only
determine the local behavior of the function near the critical point. They cannot be used
to determine whether or not we are at a global minimum. This requires some additional
analysis, and, often, a fair amount of ingenuity.

Minimization of Scalar Functions

In practical optimization, one typically bypasses the preliminary characterization of
minima as critical points, and instead implements a direct iterative procedure that con-
structs a sequence of successively better approximations. As the computation progresses,
the approximations are adjusted so that the objective function is made smaller and smaller,
which, we hope, will ensure that we are converging to some form of minimum.

As always, to understand the issues involved, it is essential to consider the simplest
scalar situation. Thus, we are given the problem of minimizing a scalar function F (u) on
a bounded interval a ≤ u ≤ b. The minimum value can either be at an endpoint or an
interior minimum. Let us first state a result that plays a similar role to the Intermediate
Value Theorem 19.19 that formed the basis of the bisection method for finding roots.
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Lemma 19.48. Suppose that F (u) is defined and continuous for all a ≤ u ≤ b.

Suppose that we can find a point a < c < b such that F (c) < F (a) and F (c) < F (b). Then
F (u) has a minimum at some point a < u? < b.

The proof is an easy consequence of Theorem 19.36. Therefore, if we find three points
a < c < b satisfying the conditions of the lemma, we are assured of the existence of a local
minimum for the function between the two endpoints. Once this is done, we can design
an algorithm to home in on the minimum u?. We choose another point, say d between
a and c and evaluate F (d). If F (d) < F (c), then F (d) < F (a) also, and so the points
a < d < c satisfy the hypotheses of Lemma 19.48. Otherwise, if F (d) > F (c) then the
points d < c < b satisfy the hypotheses of the lemma. In either case, a local minimum
has been narrowed down to a smaller interval, either [a, c ] or [d, b ]. In the unlikely even
that F (d) = F (c), one can try another point instead — unless the objective function is
constant, one will eventually find a suitable value of d. Iterating the method will produce
a sequence of progressively smaller and smaller intervals in which the minimum is trapped,
and, just like the bisection method, the endpoints of the intervals get closer and closer to
u?.

The one question is how to choose the point d. We described the algorithm when
it was selected to lie between a and c, but one could equally well try a point between
c and b. To speed up the algorithm, it makes sense to place d in the larger of the two
subintervals [a, c ] and [c, b ]. One could try placing d in the midpoint of the interval, but
a more inspired choice is to place it at position The result is the Golden Section Method ,
and is outlined in the accompanying program. At each stage, the length of the interval
has been reduced by a factor of 1

2

(√
5− 1

)
≈ .61803. Thus, the convergence rate is linear,

and a bit slower than the bisection algorithm.

Another strategy is to use an interpolating polynomial through the three points on the
graph of F (u) and use the minimum value of that polynomial as the next approximation
to the minimum. According to Exercise , the minimizing value is at

d =
ms− n t

s− t
,

where

s =
F (c)− F (a)

c− a
, t =

F (b)− F (c)

b− c
, m =

a+ c

2
, n =

c+ b

2
.

As long as a < c < b satisfy the hypothesis of Lemma 19.48, we are assured that the
quadratic interpolant has a minimum (and not a maximum!), and that the minimum
remains between the endpoints of the interval. If the length of the interval is small, the
minimum value should be a good approximation to the minimizer u? of F (u) itself. Once
d is determined, the algorithm proceeds as before. In this case, convergence is not quite
guaranteed, or, in unfavorable situations, could be much slower than in the preceding
method. One can even try using the method when the function values do not satisfy the
hypothesis of Lemma 19.48, although now the new point d will not necessarily lie between
a and b. Worse, the quadratic interpolant may have a maximum at d, and one ends up
going in the wrong direction, which can even happen in the minimizing case due to the
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discrepancy between it and the objective function F (u). Thus, this case must be handled
with more caution, and convergence of the scheme is much more fraught with danger.

A final idea is to focus not on the objective function F (u) but rather its derivative
f(u) = F ′(u). The critical points of F are the roots of f(u) = 0, and so one can use one
of the solution methods, e.g., bisection or Newton’s method, to find the critical points. Of
course, one must then take care that the critical point u? is indeed a minimum, as it could
equally well be a maximum of the original objective function. (It will probably not be a
saddle point, as these do not correspond to simple roots of f(u).) But this can be checked
by looking at the sign of F ′′(u?) = f ′(u?) at the root; indeed, if we use Newton’s method
we will be computing the derivative at each stage of the algorithm, and can stop looking
if the derivative is of the wrong sign.

Gradient Descent

Now, let us turn our attention to multi-dimensional optimization problems. We are
seeking to minimize a (smooth) scalar objective function F (u) = F (u1, . . . , un). According
to Theorem 19.39, at any given point u in the domain of definition of F , the negative
gradient vector −∇F (u), if nonzero, points in the direction of the steepest decrease in
F . Thus, to minimize F , an evident strategy is to “walk downhill”, and, to be efficient,
walk downhill as fast as possible, namely in the direction −∇F (u). After walking in this
direction for a little while, we recompute the gradient, and this tells us the new direction
to head downhill. With luck, we will eventually end up at the bottom of the valley, i.e.,
at a (local) minimum value of the objective function.

This simple idea forms the basis of the gradient descent method for minimizing the
objective function F (u). In a numerical implementation, we start the iterative procedure
with an initial guess u(0), and let u(k) denote the kth approximation to the minimum
u?. To compute the next approximation, we move away from u(k) in the direction of the
negative gradient, and hence

u(k+1) = u(k)
− tk∇F (u(k)) (19.73)

for some positive scalar tk > 0 that indicates how far we move in the negative gradient
direction. We are free to adjust tk so as to optimize our descent path, and this is the key
to the success of the method.

If ∇F (u(k))6= 0, then, at least when tk > 0 is sufficiently small,

F (u(k+1)) < F (u(k)), (19.74)

and so u(k+1) is, presumably, a better approximation to the desired minimum. Clearly, we
cannot choose tk too large or we run the risk of overshooting the minimum and reversing
the inequality (19.74). Think of walking downhill in the Swiss Alps. If you walk too far
in a straight line, which is what happens as tk increases, then you might very well miss
the valley and end up higher than you began — not a good strategy for descending to the
bottom! On the other hand, if we choose tk too small, taking very tiny steps, then the
method will converge to the minimum much too slowly.
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How should we choose an optimal value for the factor tk? Keep in mind that the goal
is to minimize F (u). Thus, a good strategy would be to set tk equal to the value of t > 0
that minimizes the scalar objective function

g(t) = F
(
u(k)

− t∇F (u(k))
)

(19.75)

obtained by restricting F (u) to the ray emanating from u(k) that lies in the negative
gradient direction. Physically, this corresponds to setting off in a straight line in the
direction of steepest decrease in our altitude, and continuing on in this direction until we
cannot go down any further. Barring luck, we will not have reached the actual bottom of
the valley, but must then readjust our direction and continue on down the hill in a series
of straight line paths, each connecting u(k) to u(k+1).

In practice, one can rarely compute the minimizing value t? of g(t) exactly. Instead,
we use one of the scalar minimization algorithms presented in the previous subsection.
Note that we only need to look for a minimum among positive values of t > 0, since our
choice of the negative gradient direction assures us that, at least for t sufficiently small
and positive, g(t) < g(0).

Example 19.49.

Conjugate Gradients

The one complication with the basic gradient descent method is that it may take a
long time to reach the minimum. This is a danger if the scalar factors tk are small, and we
end up taking very tiny steps in each round of the iteration. This occurs if we are looking
for a minimum in a long narrow valley, as illustrated in Figure valley . The initial step
takes us into the valley, but then we spend a long time meandering back and forth along
the valley floor before we come close to the true minimum.

One method to avoid such difficulties, and speed up the convergence rate of the scheme,
is to use the method of conjugate directions, modeled on the quadratic minimization pro-
cedure discussed in in Section 16.2.
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Chapter 20

Nonlinear Ordinary Differential Equations

Most physical processes are modeled by differential equations. First order ordinary
differential equations, also known as dynamical systems, arise in a wide range of appli-
cations, including population dynamics, mechanical systems, planetary motion, ecology,
chemical diffusion, etc., etc. See [19, 72,ODES] for additional material and applications.

The goal of this chapter is to study and solve initial value problems for nonlinear
systems of ordinary differential equations. Of course, very few nonlinear systems can be
solved explicitly, and so one must typically rely on a suitable numerical scheme in order
to approximate the solution. However, numerical schemes do not always give accurate re-
sults. Without some basic theoretical understanding of the nature of solutions, equilibrium
points, and their stability, one would not be able to understand when numerical solutions
(even those provided by standard well-used packages) are to be trusted. Moreover, when
testing a numerical scheme, it helps to have already assembled a repertoire of nonlinear
problems in which one already knows one or more explicit analytic solutions. Further tests
and theoretical results can be based on first integrals (also known as conservation laws) or,
more generally, Lyapunov functions. Although we have only space to touch on these topics
briefly, but, we hope, this will whet the reader’s appetite for delving into this subject in
more depth. The references [19, 46, 72, 80, 85] can be profitably consulted.

Our overriding emphasis will be on those properties of solutions that have physical
relevance. Finding a solution to a differential equation is not be so important if that so-
lution never appears in the physical model represented by the system, or is only realized
in exceptional circumstances. Thus, equilibrium solutions, which correspond to configura-
tions in which the physical system does not move, only occur in everyday a physics if they
are stable. An unstable equilibrium will not appear in practice, since slight perturbations
in the system or its physical surroundings will immediately dislodge the system far away
from equilibrium.

Finally, we present a few of the most basic numerical solution techniques for ordinary
differential equations. We begin with the most basic Euler scheme, and work up to the
Runge–Kutta fourth order method, which is one of the most popular methods for everyday
applications.

20.1. First Order Systems of Ordinary Differential Equations.

In this section, we introduce the basic object of study — initial value problems for
first order systems of ordinary differential equations. We have already dealt with the linear
case in Chapter 9, and so our emphasis will be on nonlinear phenomena. Our emphasis
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will be on first order systems. Indeed, as we shall see, there is a simple reformulation that
converts higher order equations and systems into equivalent first order systems, and so we
do not lose any generality by restricting our attention to the first order situation.

Scalar Ordinary Differential Equations

As always, to study a new problem, it is essential to begin with the simplest case.
Consider the scalar, first order ordinary differential equation

du

dt
= F (t, u). (20.1)

In many applications, the independent variable t represents time, and the unknown func-
tion u(t) is some dynamical physical quantity. Under appropriate conditions on the right
hand side (to be formalized in the following section), the solution u(t) is uniquely specified
by its value at a single time,

u(t0) = u0. (20.2)

The combination (20.1), (20.2) is referred to as an initial value problem, and our goal is
to devise both analytical and numerical solution methods.

The simplest class is the autonomous differential equations, meaning that the right
hand side does not explicitly depend upon the time variable:

du

dt
= F (u). (20.3)

Autonomous scalar equations can be solved by a direct integration. We first divide both

sides by F (u), whereby
1

F (u)

du

dt
= 1, and then integrate with respect to t; the result is

∫
1

F (u)

du

dt
dt =

∫
dt = t+ k,

where k is a constant of integration. The left hand integral can be evaluated by the change
of variables that replaces t by u, with du = (du/dt) dt, and so

∫
1

F (u)

du

dt
dt =

∫
du

F (u)
= G(u),

where G(u) represents any convenient anti-derivative† of the function 1/F (u). Thus, the
solution can be written in implicit form

G(u) = t+ k. (20.4)

A more direct version of the method is to formally rewrite the differential equation (20.3)
in the “separated form”

du

F (u)
= dt, and then integrate both sides G(u) =

∫
du

F (u)
=

∫
dt = t+ k.

† Technically, a second constant of integration should appear here, but this can be absorbed
into the previous constant k, and so is unnecessary.
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Figure 20.1. Solutions to
¦
u = u2.

If we are able to solve the implicit equation (20.4), we may thereby obtain the explicit
solution

u(t) = H(t+ k) (20.5)

in terms of the inverse function H = G−1. Finally, to satisfy the initial condition (20.2),
we set t = t0 in the implicit solution formula (20.4), whereby G(u0) = t0 + k. Therefore,
the solution to our initial value problem is

G(u)−G(u0) = t− t0, or, in explicit form, u(t) = H
(
t− t0 +G(u0)

)
. (20.6)

Before completing the analysis of the solution method, let us consider an elementary ex-
ample.

Example 20.1. Consider the autonomous initial value problem

du

dt
= u2, u(t0) = u0.

To solve the differential equation, we rewrite it in the separated form

du

u2
= dt, and then integrate both sides: −

1

u
=

∫
du

u2
= t+ k.

Solving for u, we deduce the general solution formula

u = −
1

t+ k
.

To specify the integration constant k, we evaluate u at the initial time t0; this implies

u0 = −
1

t0 + k
, so that k = −

1

u0

− t0.
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Therefore, the solution to the initial value problem is

u =
u0

1− u0(t− t0)
. (20.7)

Figure 20.1 shows the graphs of some typical solutions.

Observe that as t approaches the critical value t? = t0 + 1/u0, the solution blows up:
u(t)→∞. The blow-up time depends upon the initial data — the larger u0 is, the sooner
the solution goes off to infinity. If the initial data is negative, the solution is well-defined
for all t > t0, but the solution has a singularity in the past. The only solution that exists
for all positive and negative time is the constant solution u(t) ≡ 0, corresponding to the
initial condition u0 = 0.

In general, the constant or equilibrium solutions to an autonomous ordinary differential
equation play a particularly important role. If u(t) ≡ u? is a constant solution, then
du/dt ≡ 0, and hence the differential equation (20.3) implies that F (u?) = 0. Therefore,
the equilibrium solutions coincide with the roots of the function F (u). In point of fact, the
derivation of our formula for the solution (20.4) assumed that we were not at an equilibrium
point where F (u) = 0. In the preceding example, our final solution formula (20.7) to the
implicit equation happened to include the equilibrium solution u(t) ≡ 0, but this was a
lucky accident, and one must typically take more care that such solutions do not elude us
when applying the integration method.

Example 20.2. Although a population of people, animals, or bacteria consists of
individuals, the aggregate behavior can often be effectively modeled by a continuous dy-
namical system. As first proposed by the English economist Thomas Malthus, the popula-
tion of a species grows, roughly, in proportion to its size. Thus, the number of individuals
N(t) in a species at time t satisfies a first order differential equation of the form

dN

dt
= ρN, (20.8)

where the proportionality factor ρ measures the rate of growth, namely the difference
between the birth rate and the death rate. Thus, if births exceed deaths, ρ > 0, and the
population increases, whereas if ρ < 0, more individuals are dying and the population
shrinks.

In the very simplest model, the growth rate ρ is assumed to be independent of the
population size, and we have the simple linear ordinary differential equation (8.1) that we
solved at the beginning of Chapter 8. The solutions satisfy the exponential or Malthusian
growth law N(t) = N0 eρt, where N0 = N(0) is the initial population size. Thus, if ρ > 0
the population grows without limit, while if ρ < 0 the population dies out , N(t) → 0,
at an exponentially fast rate. The Malthus population model gives a reasonably accurate
description of the behavior of an isolated population in an environment with unlimited
resources.

In a more realistic model, the growth rate will depend upon the size of the population
as well as external environmental factors. For example, in an environment with limited
resources, small populations will grow, whereas an excessively large population will have
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insufficient resources to survive, and so its growth rate will be negative. In other words, the
growth rate ρ(N) > 0 when N < N?, while ρ(N) < 0 when N > N?, where the carrying
capacity N? > 0 is a number that depends upon the resource availability. The simplest
class of functions that satifies these two inequalities are of the form ρ(N) = λ(N? − N),
where λ > 0 is a positive constant. Subsituting this expression for the growth rate into
(20.8) leads to the nonlinear population model

dN

dt
= λN (N? −N). (20.9)

In deriving this model, we assumed that the environment is not changing over time; a
dynamical environment would lead to a more complicated non-autonomous differential
equation.

Before analyzing the solutions to the nonlinear population model, let us make a change
of variables, and set u(t) = N(t)/N?, so that u represents the size of the population in
proportion to the carrying capacity N? of the environment. Then u(t) satisfies the so-called
logistic differential equation

du

dt
= λu(1− u), u(0) = u0, (20.10)

where we assign the initial time to be t0 = 0 for simplicity. This differential equation is
the continuous counterpart of the logistic map (19.19). However, unlike its discrete cousin,
the logistic differential equation is quite sedate, and its solutions easily understood. First,
there are two equilibrium solutions: u(t) ≡ 0 and u(t) ≡ 1, obtained by setting the right
hand side of the equation equal to zero. The first represents a nonexistent population with
no individuals and hence no reproduction. The second equilibrium solution corresponds
to a population N(t) ≡ N? that is at the ideal size for the environment, and so deaths
exactly balance births. In all other situations, the population size will vary over time.

To integrate the logistic differential equation, we proceed as above, first writing it in

the separated form
du

u(1− u)
= λ dt. Integrating both sides, and using partial fractions,

λt+ k =

∫
du

u(1− u)
=

∫ (
du

u
+

du

1− u

)
= log

∣∣∣∣
u

1− u

∣∣∣∣ ,

where k is a constant of integration. Therefore

u

1− u
= ceλt, where c = ±ek.

Solving for u, we deduce the solution

u(t) =
ceλt

1 + ceλt
. (20.11)

The constant of integration is fixed by the initial condition. Solving the algebraic equation

u0 = u(0) =
c

1 + c
yields c =

u0

1− u0

.

1/12/04 875 c© 2003 Peter J. Olver



2 4 6 8 10

-1

-0.5

0.5

1

1.5

2

Figure 20.2. Solutions to u′ = u(1− u).

Substituting the result back into the solution formula (20.11) and simplifying, we find

u(t) =
u0 eλt

1− u0 + u0 eλt
. (20.12)

The solutions are illustrated in Figure 20.2. Interestingly, the equilibrium solutions are
not covered by the integration method, but do appear in the final solution formula, corre-
sponding to initial data u0 = 0 and u0 = 1 respectively.

When using the logistic equation to model population dynamics, the initial data is
assumed to be positive, u0 > 0. As time t → ∞, the solution (20.12) tends to the
equilibrium value u(t)→ 1. For small initial values u0 ¿ 1 the solution initially grows at
an exponential rate λ, corresponding to a population with unlimited resources. However,
as the population increases, the gradual lack of resources tends to slow down the growth
rate, and eventually the population saturates at the equilibrium value. On the other hand,
if u0 > 1, the population is too large to be sustained by the resources, and so dies off until
it reaches the same saturation value. If u0 = 0, then the solution remains at equilibrium
u(t) ≡ 0. Finally, when u0 < 0, the solution only exists for a finite amount of time, with
u(t) → −∞ as t → t? = log(u0/(u0 − 1)). Of course, this final case does not correspond
to a physical situation since we cannot have a negative population!

The separation of variables method used to solve autonomous equations can be stra-
ightforwardly extended to a special class of non-autonomous equations. A separable ordi-
nary differential equation has the form

du

dt
= a(t)F (u), (20.13)

in which the right hand side is the product of a function of t only times a function of u.
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Figure 20.3. Solution to the Initial Value Problem
¦
u = (1− 2 t)u, u(0) = 1.

To solve the equation, we rewrite it in the separated form

du

F (u)
= a(t) dt.

Integrating both sides leads to the solution in implicit form

G(u) =

∫
du

F (u)
=

∫
a(t) dt = A(t) + k. (20.14)

The integration constant k is then fixed by the initial condition.

Example 20.3. Let us solve the initial value problem

du

dt
= (1− 2 t)u, u(0) = 1. (20.15)

We begin by writing the differential equation in separated form
du

u
= (1− 2 t) dt Integrat-

ing both sides leads to

log u =

∫
du

u
=

∫
(1− 2 t) dt = t− t2 + k.

We can readily solve for
u = c exp(t− t2),

where c = ±ek. This consitutes the general solution to the differential equation, and
happens to include the equilibrium solution u(t) ≡ 0. The initial condition requires that

c = 1, and hence u(t) = et−t
2

is the unique solution to the initial value problem. The
solution is graphed in Figure 20.3.
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First Order Systems

A first order system of ordinary differential equation has the general form

du1

dt
= F1(t, u1, . . . , un), · · ·

dun
dt
= Fn(t, u1, . . . , un). (20.16)

The unknowns u1(t), . . . , un(t) are scalar functions of the real variable t, which usually
represents time. We shall write the system more compactly in vector form

du

dt
= F(t,u), (20.17)

so that F: Ω→ Rn is a vector-valued function of n+1 variables defined on an open domain
Ω ⊂ Rn+1. By a solution to the differential equation, we mean a vector-valued function
u(t) that is defined and continuously differentiable on an interval a < t < b, and, moreover,
satisfies the differential equation on its interval of definition. The solution u(t) serves to
parametrize a curve C ⊂ Rn, called the solution trajectory or orbit .

In this chapter, we shall be concerned with initial value problems for first order systems
of ordinary differential equations. The general initial conditions are

u1(t0) = a1, u2(t0) = a2, · · · un(t0) = an, (20.18)

or, in vectorial form, u(t0) = a. Here t0 is a prescribed initial time, while the vector

a = ( a1, a2, . . . , an )
T
prescribes the initial position of the desired solution. In favorable

situations, the initial conditions serve to uniquely specify a solution to the differential
equations — at least for a short time. As in the scalar case, the general issues of existence
and uniquenss of solutions must be properly addressed.

A system of differential equations is called autonomous if the right hand side does not
explicitly depend upon the time t, and so has the form

du

dt
= F(u). (20.19)

One important class of autonomous first order systems are the steady state fluid flows in
two and three dimensions. In this case, F(u) represents the fluid velocity vector field at the
position u. A solution u(t) represents the trajectory of an individual fluid particle. The
differential equation tells us that the fluid velocity at each point of its trajectory matches
the prescribed vector field. Appendices A and B contain additional details.

An equilibrium solution to an autonomous system is defined to be a constant solution:
u(t) ≡ u? for all t. Since the solution is constant, its derivative must vanish, du/dt ≡

0. Hence, every equilibrium solution corresponds to a root or solution to the system of
algebraic equations

F(u?) = 0 (20.20)

prescribed by the vanishing of the right hand side of the system.
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Example 20.4. A predator-prey system is a simplified ecological model of two
species: the predators which feed on the prey. For example, the predators might be
lions in the Serengeti and the prey zebra. We let u(t) represent the number of prey, and
v(t) the number of predators at time t. Both species obey a population growth model of
the form (20.8), and so the dynamical equations have the general form

du

dt
= ρu,

dv

dt
= σv,

where the individual growth rates ρ, σ may depend upon the other species. The more
prey, i.e., the larger u is, the faster the predators reproduce, while a lack of prey will
cause them to die off. On the other hand, the more predators, the faster the prey are
consumed and the slower their net rate of growth. If we assume that the environment has
unlimited resources, then the simplest model that incorporates these assumptions is the
Lotka–Volterra system

du

dt
= αu− δuv,

dv

dt
= −β v + γ uv, (20.21)

corresponding to growth rates ρ = α − δ v, σ = −β + γ u. The parameters α, β, γ, δ > 0
are all positive, and their precise values will depend upon the species involved and how
they interact; they are determined by field data, along, perhaps, with educated guesses.
In particular, α represents the unrestrained growth rate of the prey in the absence of
predators, while −β represents the rate that the predators die off in the absence of food.
The nonlinear terms model the interaction of the two species. The initial conditions
u(t0) = u0, v(t0) = v0 represent the initial populations of the two species.

We will discuss the integration of the predator-prey system (20.21) in Section 20.3.
Here, let us content ourselves with determining the possible equilibria. Setting the right
hand sides of the system to zero, leads to the algebraic system

0 = αu− δuv = u(α− δ v), 0 = −β v + γ uv = v(−β + γ u).

There are two distinct equilibria, namely

u?1 = v?1 = 0, u?2 = β/γ, v?2 = α/δ.

The first is the uninteresting equilibrium where there are no animals — no predators and
no prey. The second is a nontrivial solution in which both populations maintain a steady
value, in which the birth rate of the prey is precisely sufficient to continuously feed the
predators. Is this a feasible solution? Or, to state the question more mathematically, is
this a stable equilibrium? We shall develop the tools to answer this question below.

Higher Order Systems

Many physical systems are modeled by nonlinear systems of differential equations
depending upon higher order derivatives of the unknowns. But there is an easy trick that
will reduce any higher order ordinary differential equation or system to an equivalent first
order system. “Equivalence” means that there is a one-to-one correspondence between
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solutions. This implies that in practice, it suffices to analyze first order systems. There
is no need to develop a separate theory for higher order ordinary differential equations.
Moreover, almost all numerical solution algorithms are designed for first order systems, and
so to numerically integrate a higher order system, one also must place it into equivalent
first order form.

We have already encountered the basic idea in our discussion of the phase plane
approach to second order scalar equations. Given a second order equation

d2u

dt2
= F

(
t, u,

du

dt

)
, (20.22)

we set v =
du

dt
. Since

dv

dt
=

d2u

dt2
, the functions u, v satisfy the first order system

du

dt
= v,

dv

dt
= F (t, u, v). (20.23)

Conversely, it is easy to check that if (u(t), v(t) )
T
is any solution to the system, then

its first component defines a solution to the scalar equation. The basic initial conditions
u(t0) = u0, v(t0) = v0 for the first order system translate into a pair of initial conditions
u(t0) = u0,

¦
u(t0) = v0 specifying the value of the solution and its first order derivative for

the second order equation.

Example 20.5. The forced van der Pol equation

d2u

dt2
+ α (u2

− 1)
du

dt
+ u = f(t) (20.24)

arises in the modeling of an electrical circuit with a triode whose resistance changes with
the current, [EE], certain chemical reactions, and wind-induced motions of structures. To
convert it into an equivalent first order system, we set v = du/dt, whence

du

dt
= v,

dv

dt
= f(t)− α (u2

− 1)v − u. (20.25)

Similarly, given a third order equation

d3u

dt3
= F

(
t, u,

du

dt
,
d2u

dt2

)
, we set v =

du

dt
, w =

dv

dt
=

d2u

dt2
.

The variables u, v, w satisfy the equivalent first order system

du

dt
= v,

dv

dt
= w,

dw

dt
= F (t, u, v, w).

The general method of construction should now be clear.

Example 20.6. The Newtonian equations for a mass m moving in a potential force
field are a second order system of the form md2u/dt2 = ∇F (u) in which u(t) represents
the position of the mass and F (u) = F (u, v, w) the potential function. In components,

m
d2u

dt2
=

∂F

∂u
, m

d2v

dt2
=

∂F

∂v
, m

d2w

dt2
=

∂F

∂w
. (20.26)
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For example, a planet moving in the sun’s gravitational field satisfies the system with the
gravitational potential

F (u) =
α

‖u ‖
=

α
√

u2 + v2 + w2
, ∇F (u) = −

αu

‖u ‖3
=

α

(u2 + v2 + w2)3/2




u

v

w


.

To convert the second order Newtonian equations into a first order system, we let v =
¦
u

be the velocity vector, with components p = du/dt, q = dv/dt, r = dw/dt, and so

du

dt
= p,

dv

dt
= q,

dw

dt
= r,

dp

dt
=
1

m

∂F

∂u
(u, v, w),

dq

dt
=
1

m

∂F

∂v
(u, v, w),

dr

dt
=
1

m

∂F

∂w
(u, v, w).

(20.27)

Example 20.7. There is a simple trick for changing any non-autonomous system
into an autonomous system involving one additional variable. Namely, one introduces an
extra coordinate u0 = t to represent the time, which satisfies the elementary differential
equation du0/dt = 1 with initial condition u0(t0) = t0. Thus, the original system (20.16)
can be written in an equivalent autonomous form

du0

dt
= 1,

du1

dt
= F1(u0, u1, . . . , un), · · ·

dun
dt
= Fn(u0, u1, . . . , un). (20.28)

For example, an autonomous form of the forced van der Pol system is

du0

dt
= 1,

du1

dt
= u2,

du2

dt
= f(u0)− α (u2

1 − 1)u2 − u1. (20.29)

20.2. Existence, Uniqueness, and Continuous Dependence.

There is no general analytical method that will solve all differential equations. Indeed,
even relatively simple first order, scalar, non-autonomous ordinary differential equations
cannot be solved in closed form. One example is the particular Riccati equation

du

dt
= u2 + t (20.30)

whose solution cannot be written in terms of elementary functions, although there is a
solution formula that relies on Airy functions, cf. Exercise . The Abel equation

du

dt
= u3 + t (20.31)

fares even worse, since its general solution cannot be written in terms of known special
functions. Understanding when a given differential equation can be solved in terms of
elementary functions or known special functions is an active area of contemporary re-
search. In this vein, we cannot resist mentioning that the most important class of exact
solution techniques for differential equations are those based on symmetry methods. An
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introduction can be found in the first author’s graduate level monograph [117]; see also
[32, 84].

Existence

Before worrying about how to solve a differential equation, either analytically, qualita-
tively, or numerically, it makes sense to resolve the basic issues of existence and uniqueness.
First, does a solution exist? If, not, it makes no sense trying to find one. Second, is the so-
lution uniquely determined by the initial conditions? Otherwise, the differential equation
does not have much relevance in physical applications since we cannot use it as a predictive
tool.

Unlike partial differential equations, which must be treated on a case-by-case basis,
there are completely satisfactory general results that answer the existence and uniqueness
questions for initial value problems for systems of ordinary differential equations. (How-
ever, boundary value problems are more delicate.) We will not take time to discuss the
proofs of these fundamental results, which can be found in most advanced textbooks on
ordinary differential equations, including [19, 72, 80, 85].

Let us begin by stating the fundamental existence theorem.

Theorem 20.8. Let F(t,u) be a continuous function†, then the initial value problem

du

dt
= F(t,u), u(t0) = a, (20.32)

has a solution u = f(t) defined for nearby times | t− t0 | < δ for some δ > 0.

The existence theorem guarantees that the solution exists — at least for times suf-
ficiently close to the initial instant t0. This may be the most that can be said, although
in many systems the maximal interval α < t < β of existence of the solution might be
much larger — possibly infinite −∞ < t <∞. The interval of existence typically depends
upon both the equation and the particular initial data. For instance, in the elementary
Example 20.1, the solutions to the initial value problem only exist up until time 1/u0, and
so the larger the initial data, the shorter the time of existence. It is worth noting that this
phenomenon did not appear in the linear regime, where, barring singularities that appear
in the equation itself, solutions to a linear ordinary differential equation are guaranteed to
exist for all time.

In practice, we will always extend solutions to their maximal interval of existence. If
there is a point beyond which the solution cannot be extended, then either the solution
‖u(t) ‖ → ∞ becomes unbounded in a finite time, or, if the right hand side F (t,u) is only
defined on a subset Ω ⊂ Rn+1, then the solution reaches the boundary ∂Ω in a finite time.
Thus, a solution to an ordinary differential equation cannot suddeenly vanish into thin air.
A proof of this fact can be found in the above-mentioned references.

† If F(t,u) is only defined on a domain Ω ⊂ Rn+1, then we must assume that the initial
conditions (t0,a) ∈ Ω belong to the domain of definition.
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Remark : The existence theorem can be readily adapted to apply to higher order
systems of ordinary differential equations through our trick for converting a higher order
system into a first order system by introducing additional variables. The appropriate initial
conditions are induced from those of the equivalent first order system, as in the second
order example (20.22) discussed above.

Uniqueness

As important as existence is the question of uniqueness. Does the initial value problem
have more than one solution? If so, then we cannot use the differential equation to predict
the behavior of the solution from its initial conditions, and so such a problem is probably
worthless for applications. While continuity of the function F(t,u) is enough to guarantee
that a solution exists, it is not quite enough to ensure uniqueness of the solution to the
initial value problem. The difficulty can be appreciated by looking at an elementary
example.

Example 20.9. Consider the nonlinear initial value problem

du

dt
=
5

3
u2/5, u(0) = 0. (20.33)

Since the right hand side F (u) = 5
3 u2/5 is a continuous function, Theorem 20.8 assures

us of the existence of a solution. This autonomous scalar equation can be easily solved by
separation of variables:

∫
3

5

du

u2/5
= u3/5 = t+ c, and so u = (t+ c)5/3.

Substituting into the initial condition implies that c = 0, and hence u(t) = t5/3 is a solution
to the initial value problem.

On the other hand, since the right hand side vanishes at u = 0, the constant function
u(t) ≡ 0 is an equilibrium solution to the differential equation. (Here is an example where
the separation of variables method fails to recover the equilibrium solution.) Moreover, the
equilibrium solution also has the initial value u(0) = 0. Therefore, we have constructed
two different solutions to the initial value problem (20.33). Uniqueness is not valid! Worse
yet, there are, in fact, an infinite number of solutions to the initial value problem. For any
a > 0, the function

u(t) =

{
0, 0 ≤ t ≤ a,

(t− a)5/3, t ≥ a,
(20.34)

is differentiable everywhere, even at t = a. Moreover, it satisfies both the differential
equation and the initial condition. Several of the solutions are plotted in Figure 20.4.

In conclusion, to ensure uniqueness of solutions, we need to impose a stronger restric-
tion than mere continuity on the differential equation. The proof of the following basic
uniqueness theorem can be found in the above references.
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Figure 20.4. Solutions to the Differential Equation
¦
u = 5

3 u2/5.

Theorem 20.10. If F(t,u) ∈ C1 is continuously differentiable, then there exists one

and only one solution† to the initial value problem (20.32).

Thus, the difficulty with the differential equation (20.33) is that the function F (u) =
5
3 u2/5, although continuous everywhere, is not differentiable at u = 0, and hence the
uniqueness theorem does not apply. On the other hand, F (u) is continuously differentiable
away from u = 0, and so any nonzero initial condition u(t0) = u0 6= 0 will produce a
unique solution — for as long as it remains away from the problematic value u = 0.

Remark : While having continuous partial derivatives is sufficient to guarantee unique-
ness, this condition can, in fact, be slightly weakened. It suffices to require that F(t,u) is
continuous as a function of t and satisfies the Lipschitz condition

‖F(t,v)− F(t,u) ‖ ≤ C(t) ‖v − u ‖ (20.35)

for all t,u,v and some positive C(t) > 0. See (19.18) above and the subsequent discussion
for more details on Lipschitz continuity.

Blanket Hypothesis: From now on, all differential equations must satisfy the unique-
ness criterion that their right hand side is continuously differentiable, or, at least, satisfies
the Lipschitz inequality (20.35).

One important consequence of the uniqueness theorem is that a solution u(t) to an
autonomous system of ordinary differential equations is either in equilibrium, not varying
in time, so

¦
u ≡ 0, or is moving at all times where defined, i.e.,

¦
u6= 0 everywhere. In other

† As always, we extend all solutions to their maximal interval of existence.
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words, it is mathematically impossible for a solution to reach an equilibrium position in a
finite amount of time — although it may well approach equilibrium in an asymptotic fash-
ion as t →∞. Physically, this result has the interesting and counterintuitive consequence
that a system never actually attains an equilibrium position! Even at very large times,
there is always some very slight residual motion. In practice, though, once the solution gets
sufficiently close to equilibrium, we are unable to detect the motion, and the physical sys-
tem has, for all practical purposes, reached its stationary equilibrium configuration. And,
of course, the inherent motion of the atoms and molecules not included in the simplified
model would hide the infinitesimal residual effects of the original solution.

Proposition 20.11. If u(t) is any solution to an autonomous ordinary differential
equation such that u(t?) = u? at some time t?, then u(t) ≡ u? is the equilibrium solution.

Proof : We regard u(t?) = u? as initial data for the given solution u(t) at the initial
time t?. Since F(u

?) = 0, the constant function u?(t) ≡ u? is a solution of the differential
equation that satisfies the same initial conditions. Therefore, by our blanket uniqueness
hypothesis, the solution in question has to agree with it. Q.E.D.

Without uniqueness, the result is false. For example, the function u(t) = (t − t?)
5/3

is a solution to the scalar ordinary differential equation (20.33) that reaches equilibrium,
u? = 0, in a finite time t = t?.

Although a solution cannot reach equilibrium in a finite time, it can certainly have
a well-defined limiting value. It can be proved that such a limit point is necessarily an
equilibrium solution. A proof of this result can be found in the above-mentioned references.

Theorem 20.12. If u(t) is any solution to an autonomous system
¦
u = F(u) such

that lim
t→∞

u(t) = u?, then u? is an equilibrium solution.

The same conclusion holds if we run time backwards: if lim
t→−∞

u(t) = u?, then u? is

also an equilibrium point. Of course, limiting equilibrium points are but one of a variety
of possible long term behaviors of solutions to ordinary differential equations. Solutions
can also become unbounded, can approach periodic orbits, known as limit cycles, or even
turn out to be completely chaotic, depending upon the nature of the system and the initial
conditions.

Continuous Dependence

In a physical applications, it is rare, if not infeasible, to be able to prescribe the initial
conditions exactly. Rather, experimental and physical errors will only allow us to say that
the initial conditions are approximately equal to those in our mathematical model. Thus,
we need to be sure that a small error in our initial measurements do not produce a large
effect in the solution. A similar argument can be made for any physical parameters, e.g.,
masses, charges, frictional coefficients, etc., that appear in the differential equation itself.
A slight change in the parameters should not have a dramatic effect on the solution.

Mathematically, what we are after is a criterion of continuous dependence of solutions
upon both initial data and parameters. Fortunately, the desired result holds without
any additional assumptions on the differential equation, other than requiring that the
parameters appear continuously. We state both results in a single theorem.

1/12/04 885 c© 2003 Peter J. Olver



Theorem 20.13. Consider an initial value problem problem

du

dt
= F(t,u,µ), u(t0) = a(µ), (20.36)

in which the differential equation and/or the initial conditions depend continuously upon

one or more parameters µ = (µ1, . . . , µk). Then the unique
† solution u(t,µ) depends

continuously upon the parameters.

Example 20.14. Let us look at a perturbed version of the initial value problem

du

dt
= α u2, u(0) = u0 + µ,

that we considered in Example 20.1. We regard µ as a small perturbation of our original
initial data u0, and α as a variable parameter in the equation. The solution is

u(t, µ) =
u0 + µ

1− α(u0 + µ) t
.

Note that, where defined, this is a continuous function of both parameters µ, α. Thus, a
small change in the initial data, or in the equation, produces a small change in the solution
— at least for times near the initial time.

Continuous dependence does not preclude nearby solutions from eventually becoming
far apart. Indeed, the blow-up time t? = 1/

[
α(u0 + µ)

]
for a solution depends upon both

the initial data and the parameter in the equation. Thus, as we approach blow up, solutions
that started out very close to each other will get arbitrarily far apart; see Figure 20.1 for
an illustration.

In light of this example, the continuous dependence of solutions upon parameters does
not prevent solutions to the ordinary differential equation from being chaotic and/or having
“sensitive dependence” on initial conditions. A very tiny change in the initial conditions
has a negligible short term effect upon the solution, but over longer time intervals the
differences between the two solutions can be dramatic. Further development of these ideas
can be found in [7, 44] and elsewhere.

20.3. Stability.

Once a solution to a system of ordinary differential equations has settled down, its
limiting value is an equilibrium solution. However, not all equilibria appear in this way.
The only steady state solutions that one directly observes in a physical system are the
stable equilibria. Unstable equilibria are unsustainable in any realistic situation, and will
disappear when subjected to even the tiniest perturbation, e.g., a breath of air, or outside
traffic jarring the experimental apparatus. Thus, finding the equilibrium solutions to a
system of ordinary differential equations is only half the battle; one must then understand
their stability properties in order to characterize those that can be realized in normal

† We continue to impose our blanket uniqueness hypothesis.
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physical circumstances. We shall exclusively work with autonomous systems
du

dt
= F(u)

in our presentation. We assume throughout that the right hand side F(u) is continuously
differentiable, so as to ensure the uniqueness of solutions to the initial value problem.

As we noted in Theorem 20.12, if a solution tends to a single point as t → ∞, then
that point must be an equilibrium solution. If every solution that starts out near a given
equilibrium solution tends to it, the equilibrium is called asymptotically stable. If the
solutions that start out nearby stay nearby, then the equilibrium is stable. More formally:

Definition 20.15. An equilibrium solution u? to an autonomous system of first
order ordinary differential equations is called

(i) stable if for every ε > 0 there exists a δ > 0 such that if ‖u0 − u? ‖ < δ, then the
solution u(t) with initial conditions u(0) = u0 satisfies ‖u(t)− u? ‖ < ε for all
t ≥ t0.

(ii) asymptotically stable if u? is stable and, in addition, there exists δ0 > 0 such that if
‖u0 − u? ‖ < δ0, then u(t)→ u? as t→∞.

Example 20.16. As we saw, the logistic differential equation (20.10) has two equi-
librium solutions, corresponding to the two solutions to the equation λu(1− u) = 0. The
first equilibrium solution u?1 = 0 is unstable, since all nearby solutions go away from it at
an exponentially fast rate. On the other hand, the other equilibrium solution u?2 = 1 is
asymptotically stable, since any solution with initial condition 0 < u0 tends to it at an
exponentially fast rate. The solution graphs in Figure 20.1 illustrate the behavior of the
solutions.

Example 20.17. Consider an autonomous (meaning constant coefficient) homoge-
neous linear planar system

du

dt
= au+ bv,

dv

dt
= cu+ dv,

with coefficient matrix A =

(
a b

c d

)
. The origin u? = v? = 0 is an evident equilibrium,

solution, and, moreover, is the only equilibrium provided kerA = {0}. According to the
results in Section 9.3, the stability of the origin equilibrium depends upon the eigenvalues
of the coefficient matrix A. The origin is (globally) asymptotically stable if and only if
both eigenvalues are real and negative. The origin is stable, but not asymptotically stable
if and only if both eigenvalues are purely imaginary, or if 0 is a double eigenvalue and so
A = O. In all other cases, the origin is unstable. Below we will see how this simple linear
analysis has direct bearing on the stability problem for nonlinear planar systems.

In Chapter 9, we established general criteria, based on the eigenvalues of the coefficient
matrix, that guarantee the stability of equilibrium solutions to constant coefficient (i.e.,
autonomous) linear systems of ordinary differential equations. As we shall see, except
in borderline situations, the same stability criteria carry over to equilibrium solutions
of nonlinear ordinary differential equations. In analogy with the discrete case discussed
in Section 19.1, we approximate the nonlinear system near an equilibrium point by its
linearization.
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Figure 20.5.

Stability of Scalar Differential Equations

The stability analysis for scalar ordinary differential equations

du

dt
= F (u) (20.37)

is particularly easy. We continue to impose our blanket hypothesis, ensuring uniqueness,
that F is continuously differentiable, or, at the very least, is a Lipschitz function of u.

The first observation is that all non-equilibrium solutions u(t) are strictly monotone
functions, meaning they are either always increasing or always decreasing. Indeed, when
F (u) > 0, then, according to the equation, the derivative

¦
u > 0, and hence u(t) is increasing

at such a point. Vice versa, solutions are decreasing at any point where F (u) < 0. By
continuity, any non-monotone solution would have to pass through an equilibrium value
where F (u?) = 0, which would be in violation of Proposition 20.11. This proves the claim.

As a consequence of monotonicity, there are only three possible behaviors for a non-
equilibrium solution: u(t) either

(a) becomes unbounded at some finite time: u(t)→∞ or −∞ as t→ t?, or

(b) exists for all t ≥ t0, but become unbounded as t →∞, or

(c) exists for all t ≥ t0 and has a limiting value, u(t) → u? as t → ∞, which, by
Theorem 20.12 must be an equilibrium point.

Let us look more carefully at the last eventuality. Let u? be an equilibrium, so
F (u?) = 0. Suppose that F (u) > 0 for all u lying slightly below u?. Any solution that
starts out below, but sufficiently close to u? must be increasing. Moreover, u(t) < u? for
all t since the solution cannot pass through the equilibrium point. Therefore, u(t) must be
a solution of type (c). It must have limiting value u?, since by assumption, this is the only
equilibrium solution it can increase to. Therefore, in this situation, the equilibrium point
u? is asymptotically stable from below ; solutions that start out slightly below return to it
in the limit. On the other hand, if F (u) < 0 for all u slightly below u?, then any solution
that start out in this regime will be monotonically decreasing, and so move away from the
equilibrium point, which is thus unstable from below .
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Figure 20.6. Stability of
¦
u = u− u3.

By the same reasoning, if F (u) < 0 for u slightly above u?, then such solutions will
be monotonically decreasing, bounded from below by u?, and hence have no choice but to
tend to u? in the limit. Under this condition, the equilibrium point is asymptotically stable
from above. The reverse inequality F (u) > 0 corresponds to solutions that increase away
from u?, which is then unstable from above. Combining the two stable cases produces the
basic condition for asymptotic stability of scalar ordinary differential equations.

Theorem 20.18. A equilibrium point u? of an autonomous scalar differential equa-

tion is asymptotically stable if and only if F (u) > 0 for u? − δ < u < u? and F (u) < 0 for
u? < u < u? + δ, for some δ > 0.

In other words, if F (u) switches sign from positive to negative as one goes through the
equilibrium point from left to right, then the equilibrium is stable. If the inequalities are
reversed, and F (u) goes from negative to positive, then the equilibrium point is unstable
An equilibrium point where F (u) is of one sign on both sides, e.g., the point u? = 0 for
F (u) = u2, is stable from one side, and unstable from the other; see Exercise for details.

Example 20.19. Consider the differential equation

du

dt
= u− u3. (20.38)

Solving the algebraic equation F (u) = u − u3 = 0, we find that the equation has three
equilibria: u?1 = −1, u?2 = 0, u?3 = +1, The graph of the function F (u) = u − u3

switches from positive to negative at the first equilibrium point, which proves its stability.
Similarly, the graph goes back from positive to negative at u?2 = 0, proving the instability
of the second equilibrium. Finally, the third equilibrium is stable because F (u) changes
from negative to positive there.

With this information coupled with monotonicity, we can completely characterize the
behavior of all solutions to the system. Any solution with negative initial condition u0 < 0
will end up, asymptotically, at the first equilibrium, u(t) → −1 as t → ∞. Indeed, if
u0 < −1, then u(t) is monotonically increasing to −1, while if −1 < u0 < 0, the solution
is decreasing towards −1. On the other hand, if u0 > 0 the solution ends up at the last
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equilibrium, u(t) → +1; those with 0 < u0 < 1 are monotonically increasing, while those
with 1 < u0 are decreasing. The only solution that does not end up at either −1 or
+1 as t → ∞ is the unstable equilibrium solution u(t) ≡ 0. The solutions are plotted
in Figure 20.6; note the curves converge to the stable solutions ±1 and diverge from the
unstable solution 0 as t →∞.

Thus, the sign of the function F (u) nearby an equilibrium determines its stability.
In most instances, this can be checked by looking at the derivative of the function at the
equilibrium. If F ′(u?) < 0, then we are in the stable situation, whereas if F ′(u?) > 0, then
we are unstable on both sides.

Theorem 20.20. Let u? be a equilibrium point for a scalar ordinary differential

equation
¦
u = F (u). If F ′(u?) < 0, then u? is asymptotically stable. If F ′(u?) > 0, then u?

is unstable.

Thus, in the preceding example, F ′(u) = 1 − 3u2, and we compute its value at the
equilibria: F ′(−1) = −2 < 0, F ′(0) = 1 > 0, F ′(1) = −2 < 0. The signs reconfirm our
conclusion that ±1 are stable equilibria, while 0 is unstable.

Theorem 20.20 is not quite as powerful as the direct test in Theorem 20.18, but
does have the advantage of being a bit easier to use, and, more significantly, generalizing
to systems of ordinary differential equations. In the borderline case when F ′(u?) = 0,
the derivative test is inconclusive, and requires further analysis to resolve the stability of
the equilibrium in question. For example, the equations du/dt = u3 and du/dt = −u3

both satisfy F ′(0) = 0 at the equilibrium point u? = 0. But, using the criterion of
Theorem 20.18, we conclude that the former has an unstable equilibrium, while the latter
is stable.

Linearization and Stability

In higher dimensional situations, we can no longer rely on monotonicity properties
of solutions, and a more sophisticated approach to the stability of equilibrium solutions
is required. The key idea is already contained in the second characterization of stable
equilibria in Theorem 20.20. The derivative F ′(u) determines the slope of its tangent
line, which is the linear approximation to the function F (u) at the equilibrium point. In
Chapter 9, we established the basic stability criteria for the linearized differential equation.
In most situations, linear stability or instability carries over to the corresponding nonlinear
system.

Let us revisit the scalar case
¦
u = F (u) from this point of view. Linearization of a

scalar function at a point means to replace it by its tangent line approximation

F (u) ≈ F (u?) + F ′(u?)(u− u?) (20.39)

If u? is an equilibrium point, then F (u?) = 0 and the first term disappears. Therefore, we
expect that, near the equilibrium point, the solutions to the nonlinear ordinary differential
equation (20.37) should be well approximated by its linearization

du

dt
= F ′(u?)(u− u?).

1/12/04 890 c© 2003 Peter J. Olver



Let us rewrite this equation in terms of the deviation v(t) = u(t)−u? of the solution from
equilibrium. Since u? is fixed, dv/dt = du/dt, and so the linearized equation takes the
elementary form

dv

dt
= a v, where a = F ′(u?) (20.40)

is the value of the derivative at the equilibrium point. Note that the original equilibrium
point u = u? corresponds to the zero equilibrium point v = v? = 0 of the linearized equa-
tion. We already know that the linear differential equation (20.40) has an asymptotically
stable equilibrium at v? = 0 if and only if a = F ′(u?) < 0, while for a = F ′(u?) > 0
the origin is unstable. In this manner, the linearized stability criteria reproduce those we
found in Theorem 20.20.

The same linearization technique can be applied to analyze the stability of an equi-

librium solution u? to a first order autonomous system
du

dt
= F(u). We approximate the

function F(u) at an equilibrium point where F(u?) = 0 by its first order Taylor expansion

F(u) ≈ F(u?) + F′(u?)(u− u?) = F′(u?)(u− u?), (20.41)

where F′(u?) denotes its n × n Jacobian matrix (19.27) at the equilibrium point. Thus,
for nearby solutions, we expect that the deviation from equilibrium v(t) = u(t)− u? will
be governed by the linearization

dv

dt
= Av, where A = F′(u?). (20.42)

According to Theorem 9.17, the linearized system (20.42) has an asymptotically stable
zero solution if and only if all the eigenvalues of the coefficient matrix A = F ′(u?) have
negative real part. On the other hand, if one or more of the eigenvalues has positive real
part, then the zero solution is unstable. It can be proved, [72, 80], that these conditions
are also sufficient for asymptotic stability and instability in the nonlinear case.

Theorem 20.21. Let u? be an equilibrium point for the first order ordinary differ-

ential equation
¦
u = F(u). If all of the eigenvalues of the Jacobian matrix F ′(u?) have

negative real part, Re λj < 0, then u? is asymptotically stable. If, on the other hand,
F′(u?) has one or more eigenvalues with positive real part, then u? is an unstable equilib-
rium.

The borderline case occurs when one or more of the eigenvalues is either 0 or purely
imaginary, i.e., Re λj = 0, while all other eigenvalues have negative real part. In these
cases, the linearization test is inconclusive, and we need more detailed information (which
may not be easy to come by) on how the nonlinear terms might affect any borderline
eigenvalues lying on the imaginary axis. Their effect may be to nudge the eigenvalue into
the left half plane, stabilizing the solutions, or into the right half plane, destabilizing them.

Example 20.22. The second order ordinary differential equation

m
d2θ

dt2
+ µ

dθ

dt
+ κ sin θ = 0 (20.43)
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θ

Figure 20.7. The Pendulum.

describes the damped oscillations of a rigid pendulum that rotates on a pivot under a
gravitational force. The unknown function θ(t) measures the angle of the pendulum from
the vertical, as illustrated in Figure 20.7. The constant m > 0 is the mass of the pendulum
bob, µ > 0 the coefficient of friction, assumed here to be strictly positive, and κ > 0 the
restoring gravitational force.

In order to study the equilibrium solutions and their stability, we begin by converting

this equation into a first order system by setting u(t) = θ(t), v(t) =
dθ

dt
, and so

du

dt
= v,

dv

dt
= −α sinu− β v, where α =

κ

m
, β =

µ

m
, (20.44)

are both positive constants. The equilibria occur where the right hand sides of the first
order system (20.44) simultaneously vanish:

v = 0, −α sinu− β v = 0, and hence u = 0, ±π, ±2π, . . . .

Thus, the system has infinitely many equilibrium points u?k = (kπ, 0) for k = 0,±1,±2, . . ..

The equilibrium point u?0 = (0, 0) corresponds to θ = 0,
¦

θ = 0, which means that the
pendulum is at rest at the bottom of its arc. Our physical intuition leads us to expect
this to describe a stable configuration, as the frictional effects will eventually damp out
small motions of the pendulum. The next equilibrium u?1 = (π, 0) corresponds to θ = π,
¦

θ = 0, which means that the pendulum stays motionless at the top of its arc. Theoretically,
this is a possible equilibrium configuration, but highly unlikely to be observed in practice
and thus should be unstable. Now, since u = θ is an angular variable, equilibria whose u

values differ by an integer multiple of 2π define the same physical configuration, and hence
should have identical stability properties. Therefore, the remaining equilibria u?k physically
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Figure 20.8. The Underdamped Pendulum.

correspond to one or the other of these two possible equilibrium positions; when k = 2j is
even, the pendulum is at the bottom, while when k = 2j + 1 is odd, the pendulum is at
the top.

Let us now confirm our intuition using the linearization stability criterion of Theo-
rem 20.21. The right hand side of the system, namely

F(u, v) =

(
v

−α sinu− β v

)
, has Jacobian matrix F′(u, v) =

(
0 1

−α cosu −β

)
.

At the bottom equilibrium u?0 = (0, 0), the Jacobian matrix

F′(0, 0) =

(
0 1
−α −β

)
has eigenvalues λ =

−β ±

√
β2 − 4α

2
.

Under our assumption that α, β > 0, the eigenvalues both have negative real part, and
hence the origin is a stable equilibrium. If β2 < 4α — the underdamped case — the
eigenvalues are complex, and hence, in the terminology of Section 9.3, the origin is a
stable focus. In the phase plane, the solutions spiral in to the focus, which corresponds
to a pendulum with damped oscillations of decreasing magnitude. On the other hand, if
β2 > 4α, then the system is overdamped . Both eigenvalues are negative, and the origin is
a stable node. In this case, the solutions decay exponentially fast. Physically, this would
be like a pendulum moving in a vat of molasses. In both cases, the phase portrait of the
nonlinear motion near the equilibrium position closely matches the linearized problem.
The same analysis holds at all even multiples of π — which really represent the same
bottom equilibrium point.

On the other hand, at the top equilibrium u?1 = (π, 0), the Jacobian matrix

F′(0, 0) =

(
0 1
α −β

)
has eigenvalues λ =

−β ±

√
β2 + 4α

2
.

In this case, one of the eigenvalues is real and positive while the other is negative. The
linearized system has an unstable saddle point, and hence the nonlinear system is also
unstable at this equilibrium point. Any tiny perturbation of an upright pendulum will
dislodge it, sending it into an oscillatory motion which eventually ends up at the stable
bottom equilibrium.

The complete phase portrait of an underdamped pendulum appears in Figure 20.8.
Note that, as advertised, almost all solutions end up spiraling into the stable equilibria.
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Solutions with a large initial velocity will spin several times around the center, but even-
tually the cumulative effects of frictional forces win out and the pendulum ends up in a
damped oscillatory mode. The unstable equilibria have the same basic saddle shape as
their linear counterparts. Each gives rise to two special solutions in which the pendulum
spins around a few times, and, in the t → ∞ limit, ends up upright at the unstable equi-
librium position. However, this solution is practically impossible to achieve in a physical
environment as any tiny perturbation — e.g., a breath of air — will cause the pendulum
to sightly deviate and then end up decaying into the usual damped oscillatory motion at
the bottom.

A deeper analysis shows that equilibria whose eigenvalues do not lie on the imaginary
axis, so Re λj 6= 0 for all j, are structurally stable. This means that not only are the stabil-
ity properties dictated by the linearized approximations, but, nearby the equilibrium point,
solutions to the nonlinear system are slight perturbations of those of the corresponding
linearized system. For instance, stable foci of the linearized system correspond to stable
foci of the nonlinear counterpart, while unstable saddle points remain saddle points, al-
though the saddle rays are slightly curved as they depart from the equilibrium. In other
words, the structural stability of linear systems, as discussed at the end of Section 9.3
also carries over to the nonlinear regime near an equilibrium. This result is known as the
Center Manifold Theorem, and a complete statement and proof can be found, for instance,
in [72, 80].

Example 20.23. Consider the unforced van der Pol system

du

dt
= v,

dv

dt
= −(u2

− 1)v − u.

that we derived in Example 20.5. The only equilibrium point is at the origin u = v = 0.
Computing the Jacobian matrix of the right hand side,

F′(u, v) =

(
0 1

2uv − 1 1

)
, hence F′(0, 0) =

(
0 1
−1 1

)
.

The eigenvalues of F′(0, 0) are 1
2 (1± i

√
3 ), and correspond to an unstable focus of the lin-

earized system near the equilibrium point. Therefore, the origin is an unstable equilibrium
for nonlinear van der Pol system. Solutions starting out near 0 spiral away.

On the other hand, it can be shown that solutions that are sufficiently far away spiral
in toweards the center. So what happens to the solutions? As illustrated in the phase plane
portrait Figure 20.9, all of the solutions spiral towards a stable periodic orbit, known as a
limit cycle for the system. Any initial data will eventually end up following the periodic
orbit as it circles around the origin. Proof of the existence of a limit cycle relies on the
more sophisticated Poincaré–Bendixson Theory for planar autonomous systems, which can
be found in [72].

Example 20.24. The nonlinear system

du

dt
= u(v − 1),

dv

dt
= 4− u2

− v2,
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Figure 20.9. Phase Portrait of the van der Pol System.

Figure 20.10. Phase Portrait for
¦
u = u(v − 1),

¦
v = 4− u2

− v2..

has four equilibria: (0,±2) and (±
√
3 , 1). The Jacobian matrix for the system is

F′(u, v) =

(
v − 1 u

−2u −2v

)
.

A table of the eigenvalues at the equilibrium points and their stability follows: A complete
phase portrait can be found in Figure 20.10
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Equilibrium Point Jacobian matrix Eigenvalues Stability

(0, 2)

(
1 0
0 −4

)
1, −4

unstable
saddle

(0,−2)

(
−3 0
0 6

)
−3, 6

unstable
saddle

(
√
3 , 1)

(
0 −

√
3

2
√
3 −2

)
−1± i

√
5

stable
focus

(−
√
3 , 1)

(
0 −

√
3

2
√
3 −2

)
−1± i

√
5

stable
focus

Conservative Systems

When modeling a physical system that includes some form of damping — due to fric-
tion, viscosity, or dissipation — the linearization test for stability of equilibria will usually
suffice. However, when dealing with conservative systems, when there is no damping and
so energy is preserved, the test is usually inconclusive, and one must rely on alternative
stability criteria. In many instances, one can exploit the conservation of energy for this
purpose. We return to our general philosophy that minimizers of an energy function should
be stable (but not necessarily asymptotically stable) equilibria.

To say that the energy that is conserved means that it is constant on solutions. Such
a quantity is known as a first integral or conservation law for the system of ordinary
differential equations. Additional examples include conservation of mass and conservation
of linear and angular momentum. Let us state the general definition.

Definition 20.25. A first integral of an autonomous system
¦
u = F(u) is a real-

valued function I(u) which is constant on solutions.

The constant value of the first integral will depend upon the solution, and is fixed by
its value at the initial time t0. In other words, a first integral must satisfy

I(u(t)) = I(u(t0)) (20.45)

whenever u(t) is a solution to the differential equation. Or, to rephrase this condition in
another, equivalent manner, every solution to the dynamical system is constrained to move
along a single level set {I(u) = c} of the first integral I. Any constant function, I(u) ≡ c,
is trivially a first integral, but it carries no information whatsoever about the solutions,
and so is uninteresting. We will call any autonomous system that possesses a nontrivial
first integral I(u) a conservative system.

How do we find first integrals? In applications, one often appeals to physical principles
such as conservation of energy, momentum, or mass. Mathematically, the most convenient
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way to check whether a function is constant is to verify that its derivative is identically
zero. Thus, differentiating (20.45) with respect to t and making use of the chain rule leads
to the basic condition

0 =
d

dt
I(u(t)) = ∇I(u(t)) ·

du

dt
= ∇I(u(t)) · F(u(t)). (20.46)

The final expression is the directional derivative of I(u) with respect to the vector field
v = F(u) that specifies the differential equation, cf. (19.62). Writing out (20.46) in detail,
we find that a first integral I(u1, . . . , un) must satisfy a first order linear partial differential
equation

F1(u1, . . . , un)
∂I

∂u1

+ · · · + Fn(u1, . . . , un)
∂I

∂un
= 0. (20.47)

As such, it looks harder to solve† than the original ordinary differential equation! Usu-
ally, one is forced to rely on either physical intuition, intelligent guesswork, or, as a last
resort, luck to find first integrals. A deeper fact, due to the pioneering twentieth century
mathematician Emmy Noether, cf. [113, 117], is that first integrals and conservation laws
are the result of underlying symmetry properties of the differential equation. Like many
nonlinear methods, it research.

Let us specialize to the case of a planar autonomous system

du

dt
= F (u, v),

dv

dt
= G(u, v). (20.48)

According to (20.47), a first integral I(u, v) of this system must satisfy the linear partial
differential equation

F (u, v)
∂I

∂u
+ G(u, v)

∂I

∂v
= 0. (20.49)

This nonlinear first order partial differential equation can be solved as follows‡. Consider
the auxiliary first order scalar ordinary differential equation§

dv

du
=

G(u, v)

F (u, v)
(20.50)

for v = h(u). Note that (20.50) can be formally obtained by dividing the second equation
in the original system (20.48) by the first, and then canceling the time differentials dt.
Suppose we can write the general solution to the scalar equation (20.50) in the implicit
form

I(u, v) = c, (20.51)

† In fact, the general solution method of such partial differential equations, [117], relies on
the integration of ordinary differential equations. But then we are back to where we started!

‡ See Section 22.1 for an alternative perspective on such partial differential equations.

§ We assume that F (u, v) 6≡0. Otherwise, I(u) = u is itself a first integral, and the system
reduces to a scalar equation for v; see Exercise .
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where c is a constant of integration. We claim that the function I(u, v) is a first integral
of the original system (20.48). Indeed, differentiating (20.51) with respect to u and using
the chain rule, we find

0 =
d

du
I(u, v) =

∂I

∂u
+

dv

du

∂I

∂v
=

∂I

∂u
+

G(u, v)

F (u, v)

∂I

∂v
.

Clearing the denominator, we conclude that I(u, v) solves the partial differential equation
(20.49), which justifies our claim.

Example 20.26. As an elementary example, consider the linear equation

du

dt
= −v,

dv

dt
= u. (20.52)

To construct a first integral, we construct auxiliary equation (20.50), which is

dv

du
= −

u

v
.

This first order ordinary differential equation can be solved by separating variables:

v dv = −u du, and hence 1
2 u2 + 1

2 v2 = c,

where c is the constant of integration. Therefore, by the preceding result,

I(u, v) = 1
2 u2 + 1

2 v2

is a first integral. The level sets of I(u, v) are the concentric circles centered at the origin,
and we recover the fact that the solutions of (20.52) go around the circles. The origin is a
stable equilibrium — a center.

This simple example hints at the importance of first integrals in stability theory. The
following key result confirms our general philosophy that energy minimizers, or, more
generally, minimizers of first integrals, are necessarily stable equilibria.

Theorem 20.27. Let I(u) be a first integral for the autonomous system
¦
u = F(u).

If u? is a strict local minimum of I, then u? is a stable equilibrium point for the system.

Proof : We first prove that u? is an equilibrium. Indeed, the solution u(t) with initial
condition u(t0) = u? must maintain the value of I(u(t)) = I(u?). But, by definition of
a strict local minimum, there are no points near u? that have the same value of I, and
hence, by continuity, the solution cannot leave the point u?.

To prove stability, we set

M(r) = max { I(u) | ‖u− u? ‖ ≤ r } , m(r) = min { I(u) | ‖u− u? ‖ = r } .

Thus M(r) is the maximum value of the integral over a ball† of radius r centered at the
minimum, while m(r) is the minimum over its boundary sphere of radius r. Since I is

† We write as if the norm is the Euclidean norm, but any other norm will work equally well
for this proof.
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continuous, so are m and M . Since u? is a local minimum, M(r) ≥ m(r) > I(u?) for any
0 < r < ε sufficiently small.

For each such ε > 0, we can choose a δ > 0 such that M(δ) < m(ε). Then, if
u(t0) = u0 satisfies ‖u0 − u? ‖ ≤ δ, then I(u0) ≤ M(δ). But I(u(t)) is fixed, and so the
resulting solution u(t) cannot cross the sphere of radius ε, since all points v on the sphere
have a strictly larger value of I(v) ≥ m(ε) > M(δ) ≥ I(u0). Therefore, ‖u(t)− u? ‖ < ε,
and hence we have fulfilled the stability criteria of Definition 20.15. Q.E.D.

Remark : If we reverse the inequalities, then the proof of Theorem 20.27 will also
apply to strict local maximum of the first integral I, and so they are also stable equilibria.
Or, to phrase it another way, maxima of I(u) are minima of its negative −I(u), which is
also a first integral. Saddle points, however, are rarely stable. While at first sight, this
may appear to contradict our intuition, the fact is that energy functions typically do not
have maxima. Indeed, the energy is the sum of kinetic and potential contributions. While
potential energy can admit maxima, e.g., the pendulum at the top of its arc, these are
only saddle points for the full energy function, since the kinetic energy term can always
be increased by moving a bit faster.

Example 20.28. Consider the specific predator-prey system

du

dt
= 2u− uv,

dv

dt
= −9v + 3uv,

modeling populations of, say, lions and zebra, which is a special case of (20.21). According
to Example 20.4, there are two possible equilibria:

u?1 = v?1 = 0, u?2 = 3, v?2 = 2.

Let us try to determine their stability by the linearization criterion. The Jacobian matrix

for the system is F′(u, v) =

(
2− v −u

3v 3u− 9

)
. At the first, trivial equilibrium,

F′(0, 0) =

(
2 0
0 −9

)
, with eigenvalues 2 and − 9.

Since there is one positive and one negative eigenvalue, the origin is an unstable saddle
point. On the other hand, at the nonzero equilibrium, the Jacobian matrix

F′(3, 2) =

(
0 −3
6 0

)
, has purely imaginary eigenvalues ± 3

√

2 i .

Since they are purely imaginary, the linearized system has a stable center. But as we are
in a borderline situation, Theorem 20.21 cannot be applied, and the linearization stability
test is inconclusive.

It turns out that the predator-prey model has a first integral, and so represents a
conservative system. In view of (20.50), we need to solve the auxiliary equation.

dv

du
=
−9v + 3uv

2u− uv
=
−9/u+ 3

2/v − 1
.
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Figure 20.11. Phase Portrait and Graph of the Predator-Prey System.

Fortunately, this is a separable first order ordinary differential equation. Integrating,

2 log v − v =

∫ (
2

v
− 1

)
dv =

∫ (
−
9

u
+ 3

)
du = −9 log u+ 3u+ c,

where c is the constant of integration. Writing the solution in the form (20.51), we conclude
that

I(u, v) = 9 log u− 3u+ 2 log v − v = c,

is a first integral of the system. The solutions to the system must stay on the level sets of
I. Note that

∇I(u, v) =

(
9/u− 3
2/v − 1

)
, and hence ∇I(3, 2) = 0,

which shows that the second equilibrium is a critical point. (The zero equilibrium is a sin-

gularity of I.) Moreover, the Hessian matrix at the critical point ∇2I(3, 2) =

(
−3 0
0 −1

)

is negative definite, and hence u?2 = ( 3, 2 )
T
is a strict local maximum of the integral

I(u, v). Thus, Theorem 20.27 (rephrased for maxima) proves that the equilibrium point is
a stable center.

The first integral serves to completely characterize the qualitative behavior of the sys-
tem. In the physically relevant region, i.e., the upper right quadrant Q = {u > 0, v > 0}
where both populations are positive, all of the level sets of the first integral are closed
curves encircling the equilibrium point u?2 = ( 3, 2 )

T
. The solutions move along these

closed curves, and hence form a family of periodic solutions, illustrated in Figure 20.11.
Thus, in such an idealized ecological model, for any initial conditions starting with some
zebra and lions, i.e., u(t0), v(t0) > 0, the populations will maintain a balance over the long
term, but each varies periodically between maximum and minimum values. Observe also
that the maximum and minimum values of the two populations are not achieved simul-
taneously. Starting with a small number of predators, the number of prey will initially
increase. The predators then have more food, and so also increase in numbers. At a certain
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critical point, the predators are sufficiently numerous as to kill prey faster than they can
reproduce. At this point, the prey population has reached its maximum, and begins to
decline. But it takes a while for the predator population to feel the effect, and so it contin-
ues to increase. However, eventually the increasingly rapid decline in the number of prey
begins to affect the predators, which subsequent achieve their maximum number. After
this, both populations are in decline. Eventually, enough predators have died off so as to
relieve the pressure on the prey, whose population bottoms out, and then slowly begins
to rebound. Later, the number of predators also reaches a minimum, at which point the
entire growth and decay cycle starts over again. Such periodic phenomena are observed,
roughly, in many natural ecological systems.

The period of the population cycle depends upon how far away from the stable equi-
librium it lies. Near equilibrium, the solutions are close to those of the linearized system
which, in view of the eigenvalues, are periodic, with frequency 3

√
2, and period

√
2 π/3.

However, solutions that are far away from equilibrium have much longer periods, and so
greater imbalances between lions and zebras leads to longer periods, and more radically
varying numbers of the two populations. Understanding the mechanisms behind these
population cycles is becoming increasingly important in the proper management of natu-
ral resources, [biol].

Example 20.29. In our next example, we look at the undamped oscillations of a
pendulum. When we set the friction coefficient µ = 0, the nonlinear second order ordinary
differential equation (20.43) reduces to

m
d2θ

dt2
+ κ sin θ = 0. (20.53)

As before, we convert this into a first order system

du

dt
= v,

dv

dt
= −α sinu, where u(t) = θ(t), v(t) =

dθ

dt
, α =

κ

m
. (20.54)

The equilibria, u?k = (nπ, 0) for n = 0,±1,±2, . . . , are the same as in the damped case,
i.e., the pendulum is either at the top (n even) or the bottom (n odd) of the circle.

Let us try the linearized stability test. In this case, the Jacobian matrix of (20.54) is

F′(u, v) =

(
0 1

−α cosu 0

)
. At the top equilibria u?2k+1 = ( (2k + 1)π, 0 )

T
,

F′
(
(2k + 1)π, 0

)
=

(
0 1
α 0

)
has real eigenvalues ±

√
α ,

and hence these equilibria are unstable saddle points, just as in the damped version. On
the other hand, at the bottom equilibria u?2k = ( 2kπ, 0 )

T
, the Jacobian matrix

F′(2kπ, 0) =

(
0 1
−α 0

)
, has purely imaginary eigenvalues ± i

√
α .

Without the benefit of damping, the linearized stability test is inconclusive, and the sta-
bility of the bottom equilibria remains in doubt.
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Figure 20.12. The Undamped Pendulum.

Since we are dealing with a conservative system, the total energy of the pendulum,
namely

E(u, v) = 1
2 mv2 + κ(1− cosu) =

m

2

(
dθ

dt

)2

+ κ(1− cos θ) (20.55)

should provide us with a first integral. Note that E is a sum of two terms, which represent,
respectively, the kinetic energy due to the motion, and the potential energy† due to the
height of the pendulum bob. To verify that E(u, v) is indeed a first integral, we compute

dE

dt
= mv

dv

dt
+ κ sinu

du

dt
= −mvα sinu+ κv sinu = 0, since α =

κ

m
.

Therefore, E is indeed constant on solutions, reconfirming the physical basis of the model.

The phase plane solutions to the pendulum equation move along the level sets of
the energy function E(u, v), which are plotted in Figure 20.12. Its critical points are the
equilibria; these are where

∇E(u) =

(
κ sinu

mv

)
= 0, and hence u = u?n =

(
nπ

0

)

for some integer n. To characterize the critical points, we appeal to the second derivative

test, and so evaluate the Hessian ∇2E(u, v) =

(
κ cosu 0
0 m

)
. At the bottom equilibria

u?2k, the Hessian ∇
2E(2kπ, 0) =

(
κ 0
0 m

)
is positive definite, since κ and m are positive

constants. Therefore, the bottom equilibria are strict local minima of the energy, and so
Theorem 20.27 guarantees their stability. The upper equilibrium points u?2k+1 are saddle

points for the energy function since their Hessian ∇2E
(
(2k + 1)π, 0

)
=

(
−κ 0
0 m

)
is

indefinite. Indeed, the phase portrait of the nonlinear pendulum nearby the unstable
equilibria looks like a perturbed version of a linear saddle point.

† In a physical system, the potential energy is only defined up to an additive constant. Here
we have fixed the zero energy level to be at the bottom of the pendulum’s arc.
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Each stable equilibrium is surrounded by a family of closed elliptically-shaped level
curves, and hence forms a center. Each closed level curve corresponds to a periodic solu-
tion of the system, in which the pendulum moves back and forth. Near the equilibrium,
the period is close to that of the linearized system, namely 2π/

√
α as predicted by the

eigenvalues. This fact underlies the use of pendulum-based clocks in time keeping, first
recognized by Galileo. Grandfather clocks keep accurate time because the amplitude of the
oscillations of their pendula are small. However, as we move further away from the equi-
librium point, the solutions with very large amplitude oscillations, in which the pendulum
becomes nearly vertical, have much longer periods.

The limiting case of the periodic solutions is of particular interest. The pair of curves
connecting two distinct unstable equilibria are known as the homoclinic orbits, and play
an essential role in the more advanced analysis of the pendulum under perturbations.
Physically, a homoclinic orbit corresponds to a pendulum that starts out just shy of vertical,
goes through exactly one full rotation, and eventually (as t →∞) ends up vertical again.

Finally, the level sets lying above and below the “cat’s-eyes” formed by the periodic
orbits are known as the running orbits. Since u = θ is a 2π periodic angular variable, the

running orbits (u(t), v(t) )
T
= (θ(t),

¦

θ(t))T , in fact, also correspond to periodic physical
motions, in which the pendulum rotates around and around its pivot point. Since energy
is conserved, the rotations persist forever. The larger the total energy E(u, v), the farther
away from the u–axis the level set, and the faster the pendulum spins.

In summary, the nature of a solution to the pendulum equation is almost entirely
characterized by its energy:

E = 0, stable equilibria,

0 < E < 2κ, periodic oscillating orbits,

E = 2κ, unstable equilibria and homoclinic orbits,

E > 2κ, running orbits.

Example 20.30. The equations governing the rotation of a rigid body around a
fixed point are known as the Euler equations of rigid body mechanics, [65], in honor of the
prolific eighteenth century Swiss mathematician Leonhard Euler. According to Exercise
, the eigenvectors of the positive definite inertia tensor of the body prescribe the three
mutually orthogonal principal axes of rotation. The corresponding eigenvalues 0 < I1, I2, I3

are the principal moments of inertia of the body. Let u1(t), u2(t), u3(t) denote the angular
momenta of the body around its three principal axes. In the absence of external forces,
the dynamical system governing a rotating body takes the symmetric form

du1

dt
=

I2 − I3

I2 I3

u2 u3,
du2

dt
=

I3 − I1

I1 I3

u1 u3,
du3

dt
=

I1 − I2

I1 I2

u1 u2. (20.56)

This system models, for example, the dynamics of a satellite spinning in its orbit around
the earth. The solution will prescribe the rotations of the satellite around its center of
mass, but not the overall motion of the center of mass as the satellite orbits the earth.

Let us assume that the body has three different moments of inertia, which we place
in increasing order 0 < I1 < I2 < I3. The equilibria of the system are where the right
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hand sides simultaneously vanish, which require that either u2 = u3 = 0 or u1 = u3 = 0 or
u1 = u2 = 0. In other words, every point on the three coordinate axes is an equilibrium
configuration! Since the variables represent angular momenta, the equilibria correspond
to the body spinning around one of its principal axes at a fixed angular velocity. Let
us analyze the stability of these equilibrium configurations. The linearization test fails
completely — as it must do whenever dealing with a non-isolated equilibrium point. But
the Euler equations turn out to have two independent first integrals:

E(u) =
1

2

(
u2

1

I1

+
u2

2

I2

+
u2

3

I3

)
, A(u) =

1

2

(
u2

1 + u2
2 + u2

3

)
. (20.57)

The first is the total kinetic energy, while the second is the total angular momentum. The
proof that dE/dt = 0 = dA/dt for any solution is left to the reader.

Since both E and A are constant, the solutions to the system are constrained to move
along a common level set C = {E = e,A = a}. Thus, the solution curves are given by
intersecting the sphere S =

{
A = a

}
of radius

√
2a with the ellipsoid where L =

{
E = e

}
.

In Figure rigid , we have graphed the intersection curves C = S∩L of a fixed sphere with a
family of ellipsoids corresponding to different values of the kinetic energy. The six equilibria
on the sphere are at its intersections with the coordinate axes. Those on the x and z axes
are surrounded by closed periodic orbits, and hence are stable equilibria; indeed, they
are, respectively, local minima and maxima of the energy when restricted to the sphere.
On the other hand, the two equilibria on the y axis have the form of unstable saddle
points. We conclude that a body that spins around its principal axes corresponding to
the smallest or the largest moments of inertia is stable, whereas one that spins around the
axis corresponding to the intermediate moment of inertia is unstable. This mathematical
deduction can be demonstrated physically by flipping a solid rectangular object, e.g., this
book, up into the air. It is easy to arrange it to spin around its long axis or its short axis
in a stable manner, but it will balk at attempts to make it rotate around its middle axis!

Lyapunov’s Method

Systems that incorporate damping and/or frictional effects do not typically have first
integrals. From a physical standpoint, the damping will cause the total energy of the
system to be a decreasing function of time. Eventually, the systems returns to an equi-
librium position, and the extra energy has been dissipated away. However, this physical
law has implications for the behavior of solutions. In particular, it can also be used to
prove stability, even in cases when the linearization stability test is inconclusive. The nine-
teenth century Russian mathematician Alexander Lyapunov was the first to pinpoint the
importance of such functions.

Definition 20.31. A function L(u) is known as a Lyapunov function for the first
order system

¦
u = F(u) if it satisfies

d

dt
L(u(t)) ≤ 0 for all solutions u(t). (20.58)
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It is worth pointing out that one can verify the Lyapunov inequality (20.58) without
actually having to solve the system. Namely, by the same chain rule computation as we

used to establish the first integral criterion (20.46), we find
d

dt
L(u) = ∇L(u) · F(u), and

hence L(u) is a Lyapunov function if and only if

∇L(u) · F(u) ≤ 0 for all u.

However, unlike first integrals which can, at least in principle, be systematically constructed
by solving a first order partial differential equation, finding Lyapunov functions is more of
an art form, usually relying on physical intuition or inspired guesswork.

The Lyapunov inequality (20.58) implies that a Lyapunov function must be decreasing,

L(u(t)) ≤ L(u(t0)) for all t > t0,

when evaluated on any solution to the system. The proof of Theorem 20.27 can be readily
adapted to prove stability of a system with a Lyapunov function. Details can be found in
[72, 80].

Theorem 20.32. If L(u) is a Lyapunov function for the autonomous system of

ordinary differential equations
¦
u = F(u) and u? is a strict local minimum of L, then u? is

a stable equilibrium point for the system. If the Lyapunov inequality (20.58) is strict for
all nearby solutions (except, of course, the equilibrium itself), then the minimum u? is, in

fact, asymptotically stable.

In a damped mechanical system, the energy is decreasing, and so plays the role of a
Lyapunov function. Unlike first integrals, maxima of Lyapunov functions are not stable.

Example 20.33. Return to the planar system

du

dt
= v,

dv

dt
= −α sinu− β v,

describing the damped oscillations of a pendulum, as in (20.44). Physically, we expect
that the damping will cause a continual decrease in the total energy in the system, which,
by (20.55) is

E = 1
2 mv2 + κ(1− cosu).

We compute its time derivative, when u(t), v(t) is a solution to the damped system. Re-
calling that α = κ/m, β = µ/m, we find

dE

dt
= mv

dv

dt
+ κ sinu

du

dt
= mv (−α sinu− β v) + κv sinu = −µ v2

≤ 0,

since we are assuming that the frictional coefficient µ > 0. Therefore, the energy satisfies
the Lyapunov stability criterion, and hence Theorem 20.32 re-establishes the stability of
the energy minima u = 2kπ, v = 0, where the damped pendulum is at the bottom of the
arc.
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20.4. Numerical Solution Methods.

Since we are not able to solve the vast majority of differential equations in explicit,
analytic form, the design of suitable numerical algorithms for accurately approximating the
solutions is an essential component of the applied mathematician’s toolbox. The ubiquity
of differential equations in all areas of applications has inspired the tremendous research
effort devoted to the development of numerical solution methods, some dating back to the
beginnings of the calculus. Nowadays, many excellent computer packages are available for
numerically solving ordinary differential equations. All give reliable and accurate results for
a broad range of systems, at least for solutions over moderately long time periods. However,
all of these packages and the underlying methods have their limitations, and it is essential
that one be able to to recognize when the methods are working as advertised, and when
they are giving spurious results! Here is where the theory, particularly the classification of
equilibria and their stability properties, as well as first integrals and Lyapunov functions,
can play an essential role. Explicit solutions, when known, can also be used as test cases
for tracking the reliability and accuracy of a chosen numerical scheme.

In this section, we concentrate on numerical methods for initial value problems. We
shall develop and analyze a few of the most basic single step schemes, culminating in
the very popular fourth order Runge–Kutta method. This should only serve as a very
basic introduction to the subject, and many other useful methods can be found in more
specialized texts, [node]. Some equations are more difficult to accurately approximate
than others, and a variety of more specialized methods are employed when confronted
with a recalcitrant system.

Euler’s Method

The key issues already appear when confronting the simplest first order ordinary
differential equation

du

dt
= F (t, u), u(t0) = u0. (20.59)

To keep matters simple, we will concentrate on the scalar case; however, the methods are
all phrased in a manner that allows them to be readily adapted to first order systems
— just replace the scalar functions u(t) and F (t, u) by vectors u and F(t,u) throughout.
(The time t, of course, remains a scalar.) Higher order ordinary differential equations are
usually handled by first converting them into an equivalent first order system, as discussed
in Section 20.1, and then applying the numerical methods thereunto. (An exception is the
finite element methods for boundary value problems, introduced in Section 11.6, which
works directly on the higher order equation.)

We begin with the very simplest method for solving the initial value problem (20.59).
The method is named after Euler — although Newton and contemporaries were well aware
of such a simple technique. Euler’s method is rarely used because much more efficient and
accurate techniques can be implemented with minimal additional work. Nevertheless, the
method lies at the core of the entire subject, and must be thoroughly understood before
progressing on to the more sophisticated algorithms that are used in real-life computations.
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Starting at the initial point t0, we introduce mesh points

t0 < t1 < t2 < t3 < · · · ,

continuing on until we reach a desired final time tn = t?. The mesh points tk should be
fairly closely spaced. In our presentation, we will always adopt a uniform step size, and so

h = tk+1 − tk > 0, (20.60)

does not depend on k and is assumed to be relatively small. This assumption serves to
simplify the analysis, and does not significantly affect the underlying ideas. For a uniform
step size, the kth mesh point is at tk = t0 + k h. More sophisticated adaptive methods,
in which the step size is adjusted in order to maintain accuracy of the numerical solution,
can be found in more specialized texts, e.g., [node].

A numerical algorithm will recursively compute approximations uk ≈ u(tk) to the
sampled values of the solution u(t) at the chosen mesh points. Our goal is to make the
error Ek = uk − u(tk) in the approximation at each time tk as small as possible. If
required, the values of the solution u(t) between mesh points may be computed by a
subsequent interpolation procedure, e.g., based upon cubic splines.

Euler’s method begins with the standard first order Taylor approximation to the
solution. Thus, we approximate u(t) near the mesh point tk by its tangent line

u(t) ≈ u(tk) + (t− tk)
du

dt
(tk) = u(tk) + (t− tk)F (tk, u(tk)),

where we replace the derivative du/dt of the solution by the right hand side of the governing
differential equation (20.59). In particular, the approximate value of the solution at the
subsequent mesh point is

u(tk+1) ≈ u(tk) + (tk+1 − tk)F (tk, u(tk)). (20.61)

This simple idea forms the basis of Euler’s method.

Since in practice we only know the approximation uk to the value of u(tk) at the
current mesh point, we are forced to replace u(tk) by its approximation uk. We thereby
convert (20.61) into the iterative scheme

uk+1 = uk + (tk+1 − tk)F (tk, uk). (20.62)

In particular, when using a uniform step size (20.60), Euler’s method takes the simple form

uk+1 = uk + hF (tk, uk). (20.63)

As sketched in Figure 20.13, the method starts off approximating the solution reasonably
well, but gradually loses accuracy as the errors accumulate.

Euler’s method is the simplest example of a one-step numerical scheme for integrating
an ordinary differential equation. The term “one-step” refers to the fact that the value
for the succeeding approximation, uk+1 ≈ u(tk+1), depends only upon the current value,
uk ≈ u(tk), which is one mesh point or step in back. To understand how Euler’s method
works in practice, we begin by looking at a problem we know how to solve. As usual, the
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Figure 20.13. Euler’s Method.

best way to test a numerical solution method is to begin by trying it on a problem with a
known solution, since then we can determine exactly how large the resulting approximation
error is.

Example 20.34. The simplest “nontrivial” ordinary differential equation is

du

dt
= u, u(0) = 1.

The solution to the initial value problem is, of course, the exponential function u(t) = et.
Since F (t, u) = u, Euler’s method (20.63) with a fixed step size h > 0 takes the form

uk+1 = uk + huk = (1 + h)uk.

This linear iterative equation is easy to solve:

uk = (1 + h)ku0 = (1 + h)k,

which is our proposed approximation to the solution u(tk) = etk at the mesh point tk = kh.
Therefore, by adopting the Euler scheme to solve the differential equation, we are effectively
approximating the exponential function

etk = ekh ≈ (1 + h)k

by a power. When we replace the mesh time tk = kh by t, we recover, in the limit, a
well-known calculus formula:

et = lim
h→ 0

(1 + h)t/h = lim
k→∞

(
1 +

t

k

)k
.

The student familiar with the theory of compound interest, [int], will recognize this par-
ticular approximation. As the time interval of compounding, h, gets smaller and smaller,
the amount in the savings account approaches an exponential. Pay attention to the fact
that the smaller the step size, the more steps, and hence the more work required to reach
a given time. Thus, for time t = 1 we need k = 10 steps of size h = .1, but k = 1000 steps
of size h = .001.
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How good is the resulting approximation? The error

E(tk) = Ek = uk − etk

measures the difference between the true solution and its numerical approximation at time
t = tk = kh. Let us tabulate the error at the particular times t = 1, 2 and 3 for various
values of the step size h. The actual solution values are

e1 = e = 2.718281828 . . . , e2 = 7.389056096 . . . , e3 = 20.085536912 . . . .

In this case, the approximate solution always underestimates the true solution.

h E(1) E(2) E(3)

.1 − .125 − .662 −2.636

.01 − .0134 − .0730 − .297

.001 − .00135 − .00738 − .0301

.0001 − .000136 − .000739 − .00301

.00001 − .0000136 − .0000739 − .000301

Some key observations:

(i) The further t is away from the initial point t0 = 0, the larger the magnitude of the
error for a given step size.

(ii) On the other hand, the smaller the step size, the smaller the error. The trade-off is
that more computational effort† is required to produce the numerical approxima-
tion.

(iii) The error is more or less in proportion to the step size. Decreasing the step size by a
factor of 1

10 decreases the error by a similar amount, but simultaneously increases
the amount of computation by a factor of 10.

The final observation is indicative of the fact that the Euler method is of first order , which
means that the error depends linearly‡ on the step size h. More specifically, at a fixed
time t, the error is bounded by

|E(t) | = |uk − u(t) | ≤ C(t)h, when t = tk = k h, (20.64)

for some positive C(t) > 0 that depends upon the time and the particular solution, but
not on the step size.

† In this case, there happens to be an explicit formula for the numerical solution which can be
used to bypass the iterations. However, in almost any other situation, one cannot compute the
approximation uk without having first determined the intermediate values u0, . . . , uk−1.

‡ See the discussion of the order of iterative methods in Section 19.1 for motivation.
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h = .1 h = .01

Figure 20.14. Euler’s Method for
¦
u =

(
1− 4

3 t
)
u.

Example 20.35. The solution to the initial value problem

du

dt
=
(
1− 4

3 t
)
u, u(0) = 1. (20.65)

was found in Example 20.3 by the method of separation of variables: u(t) = exp
(
t− 2

3 t2
)
.

Euler’s method leads to the iterative numerical scheme

uk+1 = uk + h
(
1− 4

3 tk
)
uk, u0 = 1,

to approximate the solution. The following table lists the errors E(tk) = uk−u(tk) between
the values computed by the Euler scheme and the actual solution values

u(1) = 1.395612425 . . . , u(2) = 0.513417119 . . . , u(3) = 0.049787068 . . . ,

for several different step sizes.

h E(1) E(2) E(3)

0.1000 0.07461761 0.03357536 −0.00845267

0.0100 0.00749258 0.00324416 −0.00075619

0.0010 0.00074947 0.00032338 −0.00007477

0.0001 0.00007495 0.00003233 −0.00000747

As in the previous example, each decrease in step size by a factor of 10 leads to one
additional decimal digit of accuracy in the computed solution. In Figure 20.14 we compare
the graphs of the actual and numerical solutions for step sizes h = .1 and .01.

Taylor Methods

In general, the order of a numerical solution method governs both the accuracy of
its approximations and the speed at which they converge to the true solution. Although
the Euler method is simple and easy to implement, it is only a first order method, and
therefore of rather limited utility for efficiently computing accurate approximations to the
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solution to an initial value problem. Thus, there is a great need to devise simple numerical
methods that have a much higher order of accuracy.

Our derivation of the Euler method was based on a first order Taylor approximation to
the solution. An evident way to design a higher order method is to employ a higher order
Taylor approximation. The Taylor series expansion for the solution u(t) at the succeeding
mesh point tk+1 = tk + h has the form

u(tk+1) = u(tk + h) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) + · · · . (20.66)

As we just saw, we can evaluate the first derivative term
du

dt
= F (t, u) through use of the

underlying differential equation. The second derivative term can be found by differentiating
with respect to t. Invoking the chain rule,

d2u

dt2
=

d

dt

du

dt
=

d

dt
F (t, u(t)) =

∂F

∂t
(t, u) +

∂F

∂u
(t, u)

du

dt

=
∂F

∂t
(t, u) +

∂F

∂u
(t, u) F (t, u) ≡ F (2)(t, u).

(20.67)

This operation is sometimes known as the total derivative, indicating that that we must
treat the second variable u as a function of t. Substituting the resulting formula into
(20.66) and truncating at order h2 leads to the second order Taylor method

uk+1 = uk + hF (tk, uk) +
h2

2
F (2)(tk, uk)

= uk + hF (tk, uk) +
h2

2

(
∂F

∂t
(tk, uk) +

∂F

∂u
(tk, uk) F (tk, uk)

)
,

(20.68)

in which, as before, we replace the solution value u(tk) by its computed approximation
uk. The resulting method is of second order, meaning that the error function satisfies the
quadratic error estimate

|E(t) | = |uk − u(t) | ≤ C(t)h2 when t = tk = k h. (20.69)

Example 20.36. Let us explicitly formulate the second order Taylor method for the
initial value problem (20.65). Here

du

dt
= F (t, u) =

(
1− 4

3 t
)
u,

d2u

dt2
=

d

dt
F (t, u) = − 4

3 u+
(
1− 4

3 t
) du

dt
= − 4

3 u+
(
1− 4

3 t
)2

u,

and so (20.68) becomes

uk+1 = uk + h
(
1− 4

3 tk
)
uk +

h2

2

[
−

4
3 uk +

(
1− 4

3 tk
)2

uk
]
, u0 = 1.

The following table lists the errors between the values computed by the second order Taylor
scheme and the actual solution values, as given in Example 20.35.
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h E(1) E(2) E(3)

0.100 0.00276995 −0.00133328 0.00027753

0.010 0.00002680 −0.00001216 0.00000252

0.001 0.00000027 −0.00000012 0.00000002

In accordance with the quadratic error estimate (20.69), a decrease in the step size by a
factor of 1

10 leads in an increase in accuracy of the solution by a factor
1

100 , i.e., an increase
in 2 significant decimal places in the numerical approximation of the solution.

Higher order Taylor methods are obtained by including further terms in the expansion
(20.66). For example, to derive a third order Taylor method, we include the third order
term where we evaluate the third derivative by differentiating (20.67), and so

d3u

dt3
=

d

dt

d2u

dt2
=

d

dt
F (2)(t, u) =

∂F (2)

∂t
+

∂F (2)

∂u

du

dt
=

∂F (2)

∂t
+ F

∂F (2)

∂u

=
∂2F

∂t2
+ 2F

∂2F

∂t ∂u
+ F 2 ∂2F

∂u2
+

∂F

∂t

∂F

∂u
+ F

(
∂F

∂u

)2

≡ F (3)(t, u).

(20.70)

The resulting third order Taylor method is

uk+1 = uk + hF (tk, uk) +
h2

2
F (2)(tk, uk) +

h3

6
F (3)(tk, uk), (20.71)

where the last two summand are given by (20.67), (20.70), respectively. The higher order
expressions are even worse, and a good symbolic manipulation system is almost essential.
(Although, in the past, mathematicians were able to perform these sorts of computations
by hand!)

Whereas higher order Taylor methods are easy to motivate, they are rarely used in
practice. There are two principal difficulties:

(a) Owing to their dependence upon the partial derivatives of F (t, u), they require the
right hand side of the differential equation to be rather smooth.

(b) Even worse, the explicit formulae become exceedingly complicated, even for relatively
simple functions F (t, u). Efficient evaluation of the multiplicity of terms in the
Taylor approximation becomes a significant concern.

As a result, mathematicians soone abandoned the Taylor series approach, and began to
look elsewhere for high order, efficient integration methods.

Error Analysis

Before continuing our investigations, we need to engage in a more serious discussion
of the error in a numerical scheme. A general one-step numerical method can be written
in the form

uk+1 = G(h, tk, uk), (20.72)
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where G is a prescribed function of the current value uk, the point tk itself, and the step
size h = tk+1 − tk, which, for illustrative purposes, we assume to be fixed. We leave the
discussion of multi-step methods, in which G could also depend upon the earlier values
uk−1, uk−2, . . . , to more advanced texts, e.g., [node].

In any numerical integration scheme there are, in general, three sources of error.

(i) The first is the local error committed in the current step of the algorithm. Even if we
had managed to compute a completely accurate value of the solution uk = u(tk)
at time tk, the numerical approximation scheme (20.72) is not exact, and will
therefore introduce an error into the next computed value uk+1 ≈ u(tk+1).

(ii) The second source of error is due to the error that is already present in the current
approximation uk ≈ u(tk). The local errors tend to accumulate as we continue
to integrate the differential equation, and the net result is the global error in the
scheme. The global error is what we actually observe in practice.

(iii) Finally, if the initial condition u0 ≈ u(t0) is not computed accurately, this initial
error will also make a contribution. For example, if u(t0) = π, then we introduce
some initial error by using a decimal approximation, say π ≈ 3.14159.

The third error source is relatively unimportant, and will be ignored in our discussion,
i.e., we will assume u0 = u(t0) is exact. Then the global error will be an accumulation of
successive local errors, and so we must first understand the local error in detail.

To measure the local error in going from tk to tk+1, we compare the exact solution
value u(tk+1) with its numerical approximation (20.72) under the assumption that the
current computed value is correct: uk = u(tk). Of course, in practice this is never the case,
and so the local error is an artificial quantity. Be that as it may, in most circumstances
the local error is (a) easy to estimate, and, (b) provides a very good guide to the global
accuracy of the numerical scheme. To estimate the local error, we assume that the step
size h is small and approximate the solution u(t) by its Taylor expansion

u(tk+1) = u(tk) + h
du

dt
(tk) +

h2

2

d2u

dt2
(tk) +

h3

6

d3u

dt3
(tk) + · · ·

= uk + hF (tk, uk) +
h2

2
F (2)(tk, uk) +

h3

6
F (3)(tk, uk) + · · · ,

(20.73)

where we have used (20.67), (20.70), etc., to evaluate the derivative terms, and then our
assumption to replace u(tk) by uk. On the other hand, a direct Taylor expansion, in h, of
the numerical scheme produces

uk+1 = G(h, tk, uk) = G(0, tk, uk) + h
∂G

∂h
(0, tk, uk) +

h2

2

∂2G

∂h2
(0, tk, uk) + · · · . (20.74)

The local error is obtained by comparing these two Taylor expansions.

Definition 20.37. A numerical integration method is of order n if the Taylor ex-
pansions (20.73), (20.74) of the exact and numerical solutions agree up to order hn.

For example, the Euler method

uk+1 = G(h, tk, uk) = uk + hF (tk, uk),
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is already in the form of a Taylor expansion — there are no terms involving h2 and higher
powers. Comparing with the exact expansion (20.73), we see that the constant and order
h terms are the same, but the order h2 terms differ. Thus, according to the definition, the
Euler method is a first order method. Similarly, the Taylor method (20.68) is a second
order method, because it was explicitly designed to match the constant, h and h2 terms
in the Taylor expansion of the solution (20.73). For a general Taylor method of order n,
one chooses G(h, tk, uk) to be exactly the order n Taylor polynomial.

Under fairly general hypotheses, it can be proved that if the method has order n as
measured by the local error, then the global error is bounded by a multiple of hn. In other
words, if the initial condition u0 = u(t0) is accurate, then the computed value uk differs
from the solution at time tk by an amount

|uk − u(tk) | ≤ M hn (20.75)

where the constant M > 0 may depend on the time tk and the solution u(t). The error
bound justifies our numerical observations. For a method of order n, decreasing the step
size by a factor of 1

10 will decrease the error in the solution by a factor of at least 10
−n, and

so, roughly, we expect to pick up an additional n digits of accuracy in the solution value
— at least up until the point that round-off errors begin to play a role in the computation.
This rule of thumb needs to be taken with a small grain of salt; nevertheless, it is amply
borne out in our test examples. Readers interested in a complete error analysis of numerical
integration schemes should consult a more specialized text, e.g., [node].

The bottom line is the higher its order, the more accurate the numerical scheme, and
hence the larger the step size that can be used to produce the solution to a desired accuracy.
If the total amount of computation has also decreased, then the high order method is to
be preferred over a simpler, lower order method. Our goal now is to find another route
to the design of higher order methods that avoids the complications inherent in a direct
Taylor expansion. More specifically, we seek suitably compact combinations of function
values that reproduce the Taylor expansion of the solution (20.73) to high order.

An Equivalent Integral Equation

The secret to the design of effective higher order numerical algorithms is to replace
the differential equation by an equivalent integral equation. By way of motivation, recall
that, in general, differentiation is a badly behaved process; a reasonable function can have
an unreasonable derivative. On the other hand, integration ameliorates; even quite nasty
functions have relatively well-behaved integrals. For the same reason, accurate numerical
integration is relatively easy, whereas numerical differentiation should be avoided if possi-
ble. While we have not dealt directly with integral equations in this text, the subject has
been extensively developed, [39], and has many important applications.

Conversion of the initial value problem (20.59) to an integral equation is straightfor-
ward. We integrate both sides of the differential equation from the initial point t0 to a
variable time t. The Fundamental Theorem of Calculus is used to explicitly evaluate the
left hand integral:

u(t)− u(t0) =

∫ t

t0

¦
u(s) ds =

∫ t

t0

F (s, u(s)) ds.
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Rearranging terms, we arrive at the key result.

Theorem 20.38. There is a one-to-one correspondence between solutions to the

initial value problem
du

dt
= F (t, u), u(t0) = u0,

and solutions to the integral equation

u(t) = u(t0) +

∫ t

t0

F (s, u(s)) ds. (20.76)

Proof : We already showed that the solution u(t) to the initial value problem satisfies
the integral equation (20.76). Conversely, suppose that u(t) solves the integral equation.
The Fundamental Theorem of Calculus tells us that the right hand side of (20.76) has

derivative
du

dt
= F (t, u(t)) equal to the integrand. Moreover, at t = t0, the integral has

the same upper and lower limits, and so vanishes, which implies that u(t) = u(t0) = u0

has the correct initial conditions. Q.E.D.

Remark : Unlike the differential equation, the integral equation (20.76) requires no
additional initial condition — it is automatically built into the equation. The proofs of the
fundamental existence and uniqueness Theorems 20.8 and 20.10 for ordinary differential
equations are, in fact, based on the integral reformulation of the initial value problem; see
[72, 80] for details.

The integral equation reformulation is equally valid for systems of first order ordinary
differential equations. As noted above, the functions u(t) and F(t,u(t)) become vector
valued. Integrating a vector-valued function is accomplished by integrating its individual
components. Details are left to the reader.

Implicit and Predictor–Corrector Methods

From this point onwards, we shall abandon the original initial value problem, and turn
our attention to trying to numerically solve the equivalent integral equation (20.76). Let
us rewrite the equation, starting at the mesh point tk instead of t0, and integrating until
time t = tk+1. The result is the basic integral formula

u(tk+1) = u(tk) +

∫ tk+1

tk

F (s, u(s)) ds (20.77)

that (implicitly) computes the value of the solution at the subsequent mesh point. Com-
paring this formula with the Euler method

uk+1 = uk + hF (tk, uk), where h = tk+1 − tk,

and assuming for the moment that uk = u(tk) is exact, we discover that we are merely
approximating the integral by

∫ tk+1

tk

F (s, u(s)) ds ≈ hF (tk, u(tk)). (20.78)
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Left Hand Rule Trapezoid Rule Midpoint Rule

Figure 20.15. Numerical Integration Methods.

Formula (20.78) is the left-endpoint rule for numerical integration, that approximates the
area under the curve g(t) = F (t, u(t)) between tk ≤ t ≤ tk+1 by the area of a rectangle
whose height g(tk) = F (tk, u(tk)) ≈ F (tk, uk) is prescribed by the left-hand endpoint of
the graph. As indicated in Figure 20.15, this is a reasonable, but not especially accurate
method of numerical integration.

In first year calculus, you no doubt encountered much better methods of approximating
the integral of a function. One of these is the trapezoid rule, which approximates the
integral of the function g(t) by the area of a trapezoid obtained by connecting the two
points (tk, g(tk)) and (tk+1, g(tk+1)) on the graph of g by a straight line, as in Figure 20.15.
Let us therefore try replacing (20.78) by the more accurate trapezoidal approximation

∫ tk+1

tk

F (s, u(s)) ds ≈
1
2 h
[
F (tk, u(tk)) + F (tk+1, u(tk+1))

]
. (20.79)

Substituting this approximation into the integral formula (20.77), and replacing the solu-
tion values u(tk), u(tk+1) by their numerical approximations, leads to the (hopefully) more
accurate numerical scheme

uk+1 = uk +
1
2 h
[
F (tk, uk) + F (tk+1, uk+1)

]
, (20.80)

known as the Trapezoid method . The trapezoid method is an implicit scheme, since the
updated value uk+1 appears on both sides of the equation, and hence is only defined
implicitly.

Example 20.39. Consider the differential equation
¦
u =

(
1− 4

3 t
)
u studied in Ex-

amples 20.35 and 20.36. The trapezoid rule with a fixed step size h takes the form

uk+1 = uk +
1
2 h
[ (
1− 4

3 tk
)
uk +

(
1− 4

3 tk+1

)
uk+1

]
.

In this case, we can explicit solve for the updated solution value, leading to the recursive
formula

uk+1 =
1 + 1

2 h
(
1− 4

3 tk
)

1− 1
2 h
(
1− 4

3 tk+1

) uk =
1 + 1

2 h− 2
3 htk

1− 1
2 h+ 2

3 h (tk + h)
uk. (20.81)

Implementing this scheme for three different step sizes gives the following errors between
the computed solution and true solution at times t = 1, 2, 3.
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h E(1) E(2) E(3)

0.100 −0.00133315 0.00060372 −0.00012486

0.010 −0.00001335 0.00000602 −0.00000124

0.001 −0.00000013 0.00000006 −0.00000001

The numerical data is in full accord with the fact that method is of second order. For each
reduction in step size by 1

10 , the accuracy in the solution increases by, roughly, a factor of
1

100 ; that is, the numerical solution acquires two additional accurate decimal digits.

The main problem with the trapezoid scheme (and any other implicit scheme) is
immediately apparent. The updated approximate value for the solution uk+1 appears on
both sides of the equation (20.80). Only for very simple functions F (t, u) can one expect to
solve (20.80) explicitly for uk+1 in terms of the known quantities tk, uk and tk+1 = tk + h.
The alternative is to employ a numerical equation solver such as the bisection algorithm
or Newton’s method to compute uk+1. In the case of Newton’s method, one would use the
current approximation uk as a first guess for the new approximation uk+1 — similar to
the continuation method discussed in Example 19.27. The resulting scheme takes a little
bit of work to program, but can be effective in certain situations.

An alternative, less complicated strategy is based on the following far-reaching idea.
We already know a half-way decent approximation to the solution value uk+1 — namely
that provided by the more primitive Euler scheme

ũk+1 = uk + hF (tk, uk). (20.82)

Let’s use this estimated value in place of uk+1 on the right hand side of the implicit
equation (20.80). The result

uk+1 = uk +
1
2 h
[
F (tk, uk) + F (tk + h, ũk+1)

]

= uk +
1
2 h
[
F (tk, uk) + F

(
tk + h, uk + hF (tk, uk)

) ]
.

(20.83)

is known as the improved Euler method . It is a completely explicit method since there is
no need to solve any equation for the updated value uk+1.

Example 20.40. For our favorite equation
¦
u =

(
1− 4

3 t
)
u, the improved Euler

method begins with the Euler approximation ũk+1 = uk+h
(
1− 4

3 tk
)
uk, and then replaces

it by the improved value

uk+1 = uk +
1
2 h
[ (
1− 4

3 tk
)
uk +

(
1− 4

3 tk+1

)
ũk+1

]

= uk +
1
2 h
[ (
1− 4

3 tk
)
uk +

(
1− 4

3 (tk + h)
)(

uk + h
(
1− 4

3 tk
)
uk
) ]

=
[ (
1− 2

3 h2
) [
1 + h

(
1− 4

3 tk
) ]
+ 1

2 h2
(
1− 4

3 tk
)2 ]

uk.

Implementing this scheme leads to the following errors in the numerical solution at the
indicated times. The improved Euler method performs comparably to the fully implicit
scheme (20.81), and significantly better than the original Euler method.
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h E(1) E(2) E(3)

0.100 −0.00070230 0.00097842 0.00147748

0.010 −0.00000459 0.00001068 0.00001264

0.001 −0.00000004 0.00000011 0.00000012

The improved Euler method is the simplest of a large family of so-called predictor–

corrector algorithms. In general, one begins a relatively crude method — in this case the
Euler method — to predict a first approximation ũk+1 to the desired solution value uk+1.
One then employs a more sophisticated, typically implicit, method to correct the original
prediction, by replacing the required update uk+1 on the right hand side of the implicit
scheme by the less accurate prediction ũk+1. The resulting explicit, corrected value uk+1

will, provided the method has been designed with due care, be an improved approximation
to the true solution.

The numerical evidence in Example 20.40 indicates that the improved Euler scheme is
a second order method. To verify this experimental prediction, we expand the right hand
side of (20.83) in a Taylor series in h, and then compare, term by term, with the solution
expansion (20.73). First,

F
(
tk + h, uk + hF (tk, uk)

)
= F + h

(
Ft + F Fu

)
+ 1

2 h2
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · ,

where all the terms on the right hand side are evaluated at tk, uk. Substituting into (20.83),
we find

uk+1 = uk + hF + 1
2 h2

(
Ft + F Fu

)
+ 1

4 h2
(
Ftt + 2F Ftu + F 2 Fuu

)
+ · · · . (20.84)

The Taylor expansions (20.73), (20.84) agree in their order 1, h and h2 terms, but differ at
order h3. This confirms that the improved Euler method is of second order.

We can design a range of numerical solution schemes by implementing alternative
numerical approximations to the basic integral equation (20.77). For example, the midpoint
rule approximates the integral of the function g(t) by the area of the rectangle whose height
is the value of the function at the midpoint:

∫ tk+1

tk

g(s) ds ≈ h g
(
tk +

1
2 h
)
, where h = tk+1 − tk. (20.85)

See Figure 20.15 for an illustration. The midpoint rule is known to have the same order of
accuracy as the trapezoid method. Substituting into (20.77) leads to the approximation

uk+1 = uk +

∫ tk+1

tk

F (s, u(s)) ds ≈ uk + hF
(
tk +

1
2 h, u

(
tk +

1
2 h
) )

.

Of course, we don’t know the value of the solution u
(
tk +

1
2 h
)
at the midpoint, but

can predict it through a straightforward adaptation of the basic Euler approximation:
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u
(
tk +

1
2 h
)
≈ uk +

1
2 hF (tk, uk). The result is the midpoint method

uk+1 = uk + hF
(
tk +

1
2 h, uk +

1
2 hF (tk, uk)

)
. (20.86)

A comparison of the terms in the Taylor expansions of (20.73), (20.86) reveals that the
midpoint method is also of second order.

Runge–Kutta Methods

The improved Euler and midpoint methods are the most elementary incarnations of
a general class of numerical schemes for ordinary differential equations that were first
systematically studied by the German mathematicians Carle Runge and Martin Kutta in
the late nineteenth century. The Runge–Kutta methods are by far the most popular and
powerful general-purpose numerical methods for integrating ordinary differential equations.
While not appropriate in all possible situations, Runge–Kutta schemes are surprisingly
adaptable and perform quite efficiently and accurately in a wide variety of systems, and,
barring complications, tend to be the method of choice in most basic applications. They
and their variants comprise the engine that powers most computer software for solving
general initial value problems for systems of ordinary differential equations.

A general Runge–Kutta method takes the form

uk+1 = uk + h

m∑

i=1

ci F (ti,k, ui,k), (20.87)

where m, the number of summands, is referred to as the number of terms in the method.
Each ti,klying in the kth mesh interval, and so tk ≤ ti,k ≤ tk+1. The second argument ui,k
should be viewed as an approximation to the solution at the point ti,k, so ui,k ≈ u(ti,k),
and is computed by a simpler Runge–Kutta method of the same general format. Such
methods are very flexible. One is free to choose the coefficients ci, the times ti,k, as well as
the intermediate approximations ui,k. As always, the order of the method is is indicated
by the power of h to which the Taylor expansions of the numerical method (20.87) and
the actual solution (20.73) agree. Clearly, the more terms we include in the Runge–Kutta
formula (20.87), the more free parameters available to match terms in the solution’s Taylor
series, and so the higher the potential order of the method. Thus, the goal is to arrange
said parameters so that the method has a high order of accuracy, while, simultaneously,
avoiding unduly complicated, and hence computationally costly, formulae.

Both the improved Euler and midpoint methods are particular cases of a class of two
term Runge–Kutta methods of the form

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

) ]
, (20.88)

based on the current mesh point tk,1 = tk and one intermediate point tk,2 = tk + λh, so
0 ≤ λ ≤ 1. We use the basic Euler method to approximate the solution value uk,2 = uk +

λhF (tk, uk) at the intermediate value tk,2. The improved Euler method uses a = b = 1
2 ,

and λ = 1, while the midpoint method corresponds to a = 0, b = 1 and λ = 1
2 . The

1/12/04 919 c© 2003 Peter J. Olver



possible values of a, b and λ are to be determined by matching the Taylor expansion

uk+1 = uk + h
[
aF (tk, uk) + b F

(
tk + λh, uk + λhF (tk, uk)

) ]

= uk + h (a+ b)F (tk, uk) + h2 b λ

[
∂F

∂t
(tk, uk) + F (tk, uk)

∂F

∂u
(tk, uk)

]
+ · · · .

(in powers of h) of the right hand side of (20.88) with the Taylor expansion (20.73) of the
solution u(tk+1) = u(tk + h) to as high an order as possible. The constant terms, uk, are
the same. For the order h and order h2 terms to agree, we must have, respectively,

a+ b = 1, b λ = 1
2 .

Therefore, setting a = 1 − µ, b = µ, and λ = 1/(2µ), where µ is arbitrary†, leads to the
family of two term, second order Runge–Kutta methods of the form

uk+1 = uk + h

[
(1− µ)F (tk, uk) + µF

(
tk +

h

2µ
, uk +

h

2µ
F (tk, uk)

)]
. (20.89)

The case µ = 1
2 corresponds to the improved Euler method (20.83), while µ = 1 gives the

midpoint method (20.86). Unfortunately, none of these methods are able to match all of
the third order terms in the Taylor expansion for the solution, and so we are left with a
one-parameter family of two step Runge–Kutta methods, all of second order, that include
the improved Euler and midpoint rules as particular instances. The cases when 1

2 ≤ µ ≤ 1
all perform more or less comparably, and there is no special reason to prefer one over the
other.

Thus, to construct a third order Runge–Kutta method, we need to take at least m ≥ 3
terms in (20.87). A rather complicated symbolic computation will produce a range of valid
schemes; the results can be found in [nODE]. Finding relatively simple, but high order
Runge–Kutta methods is a rather tedious process, and we leave a complete discussion of the
available options to a more advanced treatment. In practical applications, a particularly
simple fourth order, four term method has become the most popular. The method, often
abbreviated as RK4, takes the form

uk+1 = uk +
h

6

[
F (tk, uk) + 2F (t2,k, u2,k) + 2F (t3,k, u3,k) + F (t4,k, u4,k)

]
, (20.90)

where the times and function values are successively computed according to the following
procedure:

t2,k = tk +
1
2 h, u2,k = uk +

1
2 hF (tk, uk),

t3,k = tk +
1
2 h, u3,k = uk +

1
2 hF (t2,k, u2,k),

t4,k = tk + h, u4,k = uk + hF (t3,k, u3,k).

(20.91)

The four term RK4 scheme (20.90), (20.91) is, in fact, a fourth order method. This is
confirmed by demonstrating that the Taylor series expansion of the right hand side of

† Although we should restrict µ ≥ 1
2 in order that 0 ≤ λ ≤ 1.
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(20.90) in powers of h matches all of the terms in the true Taylor series (20.73) up to and
including those of order h4, and hence the local truncation error is of order h5. This is
not a computation for the faint-hearted — bring lots of paper and erasers, or, better yet,
a good computer algebra package! The RK4 scheme but one instance of a large family
of possible fourth order, four term Runge–Kutta methods, but is by far the most popular
owing to its relative simplicity.

Example 20.41. For our favorite equation
¦
u =

(
1− 4

3 t
)
u, the RK4 method leads

to the following errors at the indicated times.

h E(1) E(2) E(3)

0.100 −1.944× 10−7 1.086× 10−6 4.592× 10−6

0.010 −1.508× 10−11 1.093× 10−10 3.851× 10−10

0.001 −1.332× 10−15
−4.741× 10−14 1.932× 10−14

The results are phenomenally good — much better than any of the other methods. Each
decrease in the step size by a factor of 1

10 leads to 4 more decimal digits of accuracy, in
accordance with it being a fourth order method.

Actually, it is not entirely fair to compare the accuracy of the methods at the same step
size. Each iteration of the RK4 method requires four evaluations of the function F (t, u),
and hence takes the same computational effort as four Euler iterations, or, equivalently,
two improved Euler iterations. Thus, the more revealing comparison would be between
RK4 at step size h, Euler at step size 1

4 h, and improved Euler at step size 1
2 h, as these

involve roughly the same amount of computational effort. The resulting errors E(1) at
time t = 1 are listed in the following table:

h Euler Improved Euler Midpoint Runge–Kutta 4

.1 1.872× 10−2
−1.424× 10−4 2.687× 10−4

−1.944× 10−7

.01 1.874× 10−3
−1.112× 10−6 2.788× 10−6

−1.508× 10−11

.001 1.87× 10−4
−1.080× 10−8 2.799× 10−8

−1.332× 10−15

The Runge–Kutta method clearly outperforms its rivals. At a step size of .1, it is almost
as accurate as the improved Euler and midpoint methods with step size .0005, and hence
200 times the amount of computation, while the Euler method would require a step size of
approximately .24×10−6, and would be 4, 000, 000 times as slow as Runge–Kutta! With a
step size of .001, RK4 computes a solution value that is near the limits imposed by machine
accuracy using single precision arithmetic. The high performance level and accuracy of
RK4 immediately explains its popularity for a broad range of applications.
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Example 20.42. As noted above, by replacing the function values uk by vectors
uk, one can immediately apply the RK4 method to integrate initial value problems for
first order systems of ordinary differential equations. Consider, by way of example, the
Lotka–Volterra system

du

dt
= 2u− uv,

dv

dt
= −9v + 3uv, (20.92)

analyzed in Example 20.28. To find a numerical solution, we write u = (u, v )
T
for the

solution vector, and F(u) = ( 2u− uv,−9v + 3uv )
T
. Thus, the Euler method for this

system for step size h uses u(k+1) = u(k)+hF(u(k)), or, explicitly, as a nonlinear iterative
system

u(k+1) = u(k) + h (2u(k)
− u(k) v(k)), v(k+1) = v(k) + h (−9v(k) + 3u(k) v(k)).

The improved Euler and Runge–Kutta schemes are implemented in a similar fashion.
Phase plane pictures of the three numerical algorithms starting with initial conditions
u(0) = , v(0) = appear in Figure 9.3. Recall that the solution is supposed to travel
periodically around a closed curve, given by the level set

I(u, v) = 9 log u− 3u+ 2 log v − v =

of the first integral. The Euler method spirals away from the periodic solution, while .
Since we do not have an analytic formula† for the solution, we cannot measure the precise
error in the methods. However, the first integral is supposed to remain constant on the
solution trajectories, and so one means of monitoring the accuracy of the solution is by
the variation in the numerical values of I(u(k), v(k)). These are graphed in

In practical implementations, it is important to know whether the numerical solution
is accurate or not. Since the accuracy of the computation is dependent upon the step
size h, one should adjust h so as to maintain a preassigned level of accuracy. The result
is an adaptive method, in which the step size is allowed to change during the course
of the algorithm, in response to some measurement of overall error in the computation.
Inaccurate solutions values would require a suitable reduction in step size. On the other
hand, if the solution is more accurate than the application requires, one could increase h

in order to reduce the total amount of computational effort.

How might one decide when a method is giving inaccurate results, since one presum-
ably does not know the true solution and so has nothing to directly test the numerical
approximation against? A useful idea is to integrate the differential equation using two
different methods, usually of different orders of accuracy, and comparing the results. If
the two solution values are reasonably close, then one is usually safe in assuming that
the methods are both giving accurate results, while in the event that they differ beyond
some preassigned tolerance, then one needs to re-evaluate the step size. Several methods

† However, compare Exercise .
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are used in practical situation, the most popular of which is known as the Runge–Kutta–
Fehlberg method, which combines a fourth and a fifth order Runge–Kutta scheme. Details
can be found in more advanced treatments of the subject, e.g., [nODE].

Stiff Differential Equations

While the Runge–Kutta fourth order method with a sufficiently small step size will
successively integrate a broad range of differential equations — at least over not unduly
long time intervals — it does occasionally experience unexpected difficulties. While we have
not developed sufficiently sophisticated analytical tools to conduct a thorough analysis, it
will be instructive to look at why a breakdown might occur in a simpler context.

Example 20.43. The simple linear initial value problem

du

dt
= −250u, u(0) = 1, (20.93)

is an instructive and sobering example. The explicit solution is easy; it is a very rapidly
decreasing exponential

u(t) = e−250 t with u(1) ≈ 2.69× 10−109.

The following table gives the result of approximating the solution u(1) at t = 1 using three
of our numerical integration schemes for several step sizes:

h Euler Improved Euler RK4

.1 6.34× 1013 3.99× 1024 2.81× 1041

.01 4.07× 1017 1.22× 1021 1.53× 10−19

.001 1.15× 10−125 6.17× 10−108 2.69× 10−109

The results are not misprints! When the step size is .1, the computed solution values
are perplexingly large, and appear to represent an exponentially growing solution — the
complete opposite of the rapidly decaying true solution. Reducing the step size beyond a
critical threshold suddenly transforms the numerical solution to an exponentially decaying
function. Only the fourth order RK4 method with step size h = .001 — and hence a total
of 1, 000 steps — does a reasonable job at approximating the correct value of the solution
at t = 1.

The reader may well ask what is going on? The solution couldn’t be simpler — why
is it so difficult to compute it? To illustrate the basic issue, let us analyze how the Euler
method handles such differential equations. Consider the initial value problem

du

dt
= λu, u(0) = 1, (20.94)

with an exponential solution
u(t) = eλ t.
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As in Example 20.34, the Euler method with step size h relies on the iterative scheme

uk+1 = (1 + λh)uk, u0 = 1,

with solution
uk = (1 + λh)k. (20.95)

If λ > 0, the exact solution, eλt, is exponentially growing. Since 1+λh > 1, the numerical
iterates are also growing, albeit at a somewhat slower rate. In this case, there is no inherent
surprise with the numerical approximation procedure — in the short run it gives fairly
accurate results, but eventually trails behind the exponentially growing solution. On the
other hand, if λ < 0, then the exact solution eλt is exponentially decaying and positive.
But now, if λh < −2, then 1 + λh < −1, and the iterates (20.95) grow exponentially
fast in magnitude, with alternating signs. In this case, the numerical solution is nowhere
close to the true solution, which explains the previously observed pathological behavior. If
−1 < 1 + λh < 0, the numerical solutions decay in magnitude, but continue to alternate
between positive definite and negative values. Thus, to correctly model the qualitative
features of the solution and obtain a numerically respectable approximation, we need to
choose the step size h so as to ensure that ) < 1 + λh, and hence h < −1/λ when λ < 0.
For the given value λ = −250, then, we need to choose h < 1

250 = .004.

Thus, the numerical methods for ordinary differential equations exhibit a form of con-
ditional stability, cf. Section 14.6. Paradoxically, the larger negative λ is — and hence the
faster the solution tends to a trivial zero equilibrium — the more difficult and expensive
the numerical integration. The ordinary differential equation (20.93) is the simplest ex-
ample of what is known as a stiff differential equation. In general, an equation or system
is stiff if it has one or more very rapidly decaying solutions. In the case of linear systems
¦
u = Au, stiffness occurs whenever the coefficient matrix A has an eigenvalue with a large
negative real part: Re λ ¿ 0. It only takes one such solution to render the equation
stiff, and ruin the numerical computation of even the well behaved solutions! Curiously,
the component of the actual solution corresponding to such large negative eigenvalues
is almost irrelevant, as it becomes almost instanteously tiny. However, the presence of
such an eigenvalue continues to render the numerical solution to the system very diffi-
cult, even to the point of exhausting any available computing resources. Stiff equations
require more sophisticated numerical procedures to integrate, and we refer the reader to
[numODE,HairerWanner2] for details.
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Chapter 21

The Calculus of Variations

We have already had ample encounters with Nature’s propensity to optimize. Min-
imization principles form one of the most powerful tools for formulating mathematical
models governing the equilibrium configurations of physical systems. Moreover, the de-
sign of numerical integration schemes such as the powerful finite element method are also
founded upon a minimization paradigm. This chapter is devoted to the mathematical
analysis of minimization principles on infinite-dimensional function spaces — a subject
known as the “calculus of variations”, for reasons that will be explained as soon as we
present the basic ideas. Solutions to minimization problems in the calculus of variations
lead to boundary value problems for ordinary and partial differential equations. Numerical
solutions are primarily based upon a nonlinear version of the finite element method. The
methods developed to handle such problems prove to be fundamental in many areas of
mathematics, physics, engineering, and other applications.

The history of the calculus of variations is tightly interwoven with the history of calcu-
lus, and has merited the attention of a remarkable range of mathematicians, beginning with
Newton, then developed as a field of mathematics in its own right by the Bernoulli family.
The first major developments appeared in the work of Euler, Lagrange and Laplace. In
the nineteenth century, Hamilton, Dirichlet and Hilbert are but a few of the outstanding
contributors. In modern times, the calculus of variations has continued to occupy center
stage in research, including major theoretical advances, along with wide-ranging applica-
tions in physics, engineering and all branches of mathematics. In this chapter, we will only
have time to scratch the surface of the vast area of classical and contemporary research.

Minimization problems amenable to the methods of the calculus of variations serve to
characterize the equilibrium configurations of almost all continuous physical systems, rang-
ing through elasticity, solid and fluid mechanics, electro-magnetism, gravitation, quantum
mechanics, and many, many others. Many geometrical systems, such as minimal surfaces,
can be conveniently formulated as optimization problems. Moreover, numerical approxima-
tions to the equilibrium solutions of such boundary value problems are based on a nonlinear
finite element approach that reduced the infinite-dimensional minimization problem to a
finite-dimensional problem, to which we can apply the optimization techniques learned in
Section 19.3.

We have already treated the simplest problems in the calculus of variations. As we
learned in Chapters 11 and 15, minimization of a quadratic functional requires solving an
associated boundary value problem for a linear differential equation. Just as the vanishing
of the gradient of a function of several variables singles out the critical points, among which
are the minima, both local and global, so a similar “functional gradient” will distinguish
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Figure 21.1. The Shortest Path is a Straight Line.

the candidate functions that might be minimizers of the functional. The finite-dimensional
gradient leads to a system of algebraic equations; the functional gradient leads to a bound-
ary value problem for a nonlinear ordinary or partial differential equation. Thus, the
passage from finite to infinite dimensional nonlinear systems mirrors the transition from
linear algebraic systems to boundary value problems.

21.1. Examples of Variational Problems.

The best way to introduce the subject is to introduce some concrete examples of both
mathematical and practical importance. These particular minimization problems played
a key role in the historical development of the calculus of variations. And they still serve
as an excellent motivation for learning its basic constructions.

Minimal Curves and Geodesics

The minimal curve problem is to find the shortest path connecting two points. In its
simplest manifestation, we are given two distinct points

a = (a, α) and b = (b, β) in the plane R2. (21.1)

Our goal is to find the curve of shortest length connecting them. “Obviously”, as you
learn in childhood, the shortest path between two points is a straight line; see Figure 21.1.
Mathematically, then, the minimizing curve we are after should be given as the graph of
the particular affine function†

y = c x+ d =
β − α

b− a
(x− a) + α (21.2)

passing through the two points. However, this commonly accepted “fact” that (21.2)
is the solution to the minimization problem is, upon closer inspection, perhaps not so
immediately obvious from a rigorous mathematical standpoint.

† We assume that a 6= b, i.e., the points a,b do not lie on a common vertical line.

1/12/04 926 c© 2003 Peter J. Olver



Let us see how we might properly formulate the minimal curve problem. Let us
assume that the minimal curve is given as the graph of a smooth function y = u(x). Then,
according to (A.27), the length of the curve is given by the standard arc length integral

J [u ] =

∫ b

a

√
1 + (u′)2 dx, (21.3)

where we abbreviate u′ = du/dx. The function is required to satisfy the boundary condi-
tions

u(a) = α, u(b) = β, (21.4)

in order that its graph pass through the two prescribed points (21.1). The minimal curve
problem requires us to find the function y = u(x) that minimizes the arc length functional
(21.3) among all reasonable functions satisfying the prescribed boundary conditions. The
student should pause to reflect on whether it is mathematically obvious that the affine
function (21.2) is the one that minimizes the arc length integral (21.3) subject to the given
boundary conditions. One of the motivating tasks of the calculus of variations, then, is to
rigorously prove that our childhood intuition is indeed correct.

Indeed, the word “reasonable” is important. For the arc length functional to be
defined, the function u(x) should be at least piecewise C1, i.e., continuous with a piecewise
continuous derivative. If we allow discontinuous functions, then the straight line (21.2)
does not, in most cases, give the minimizer; see Exercise . Moreover, continuous functions
which are not piecewise C1 may not have a well-defined length. The more seriously one
thinks about these issues, the less evident the solution becomes. But, rest assured that the
“obvious” solution (21.2) does indeed turn out to be the true minimizer. However, a fully
rigorous mathematical proof of this fact requires a proper development of the calculus of
variations machinery.

A closely related problem arises in optics. The general principle, first formulated by
the seventeenth century French mathematician Pierre de Fermat, is that when a light ray
moves through an optical medium, e.g., a vacuum, it travels along a path that will minimize
the travel time. As always, Nature seeks the most economical solution! Let c(x, y) denote
the speed of light at each point in the medium†. Speed is equal to the time derivative of
distance traveled, namely, the arc length (21.3) of the curve y = u(x) traced by the light
ray. Thus,

c(x, u(x)) =
ds

dt
=
√
1 + u′(x)2

dx

dt
.

Integrating from start to finish, we conclude that the total travel time of the light ray is
equal to

T [u ] =

∫ T

0

dt =

∫ b

a

dt

dx
dx =

∫ b

a

√
1 + u′(x)2

c(x, u(x))
dx. (21.5)

Fermat’s Principle states that, to get from one point to another, the light ray follows
the curve y = u(x) that minimizes this functional. If the medium is homogeneous, then

† For simplicity, we only consider the two-dimensional case here.
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Figure 21.2. Geodesics on a Cylinder.

c(x, y) ≡ c is constant, and T [u ] equals a multiple of the arc length functional, whose
minimizers are the “obvious” straight lines. In an inhomogeneous medium, the path taken
by the light ray is no longer evident, and we are in need of a systematic method for solving
the minimization problem. All of the known laws of optics and lens design, governing
focusing, refraction, etc., all follow as consequences of the minimization principle, [optics].

Another problem of a similar ilk is to construct the geodesics on a curved surface,
meaning the curves of minimal length. In other words, given two points a,b on a surface
S ⊂ R3, we seek the curve C ⊂ S that joins them and has the minimal possible length.
For example, if S is a circular cylinder, then the geodesic curves turn out to be straight
lines parallel to the center line, circles orthogonal to the center line, and spiral helices; see
Figure 21.2 for an illustration. Similarly, the geodesics on a sphere are arcs of great circles;
these include the circumpolar paths followed by airplanes around the globe. However, both
of these claims are in need of rigorous justification.

In order to mathematically formulate the geodesic problem, we suppose, for simplicity,
that our surface S ⊂ R3 is realized as the graph† of a function z = F (x, y). We seek the
geodesic curve C ⊂ S that joins the given points

a = (a, α, F (a, α)), and b = (b, β, F (b, β)), on the surface S.

Let us assume that C can be parametrized by the x coordinate, in the form

y = u(x), z = F (x, u(x)).

In particular, this requires a 6= b. The length of the curve is given by the usual arc length
integral (B.17), and so we must minimize the functional

J [u ] =

∫ b

a

√
1 +

(
dy

dx

)
2

+

(
dz

dx

)
2

dx

=

∫ b

a

√
1 +

(
du

dx

)
2

+

(
∂F

∂x
(x, u(x)) +

∂F

∂u
(x, u(x))

du

dx

)
2

dx,

† Cylinders are not graphs, but can be placed within this framework by passing to cylindrical
coordinates. Similarly, spherical surfaces are best treated in spherical coordinates.
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subject to the boundary conditions

u(a) = α, u(b) = β.

For example, the geodesics on the paraboloid

z = 1
2 x2 + 1

2 y2 (21.6)

can be found by minimizing the functional

J [u ] =

∫ b

a

√
1 + (u′)2 + (x+ uu′)2 dx (21.7)

subject to prescribed boundary conditions.

Minimal Surfaces

The minimal surface problem is a natural generalization of the minimal curve problem.
In its simplest manifestation, we are given a simple closed curve C ⊂ R3. The problem is
to find the surface S of least total area among all those whose boundary ∂S = C coincides
with the given curve. Therefore, we seek to minimize the surface area integral

area S =

∫ ∫

S

dS

over all possible surfaces S ⊂ R3 with the prescribed boundary curve ∂S = C. Such an
area–minimizing surface is known as a minimal surface for short.

Physically, if we take a wire in the shape of the curve C and dip it into soapy water,
then the surface tension forces in the resulting soap film will force it to minimize surface
area, and hence be a minimal surface†. For example, if the curve is a closed plane curve,
e.g., a circle, then the minimal surface will just be the planar region enclosed by the curve.
But, if the curve C twists into the third dimension, then the shape of the minimizer is by no
means evident. Soap films and bubbles have been the source of much fascination, physical,
æsthetical and mathematical, over the centuries. The least area problem is also known
as Plateau’s Problem, after the nineteenth century French physicist Joseph Plateau, who
conducted systematic experiments. A satisfactory solution to the simplest version of the
minimal surface problem was only achieved in the mid twentieth century, [109, 112]. Prob-
lems arising in engineering design, architecture, and biology, such as foams, membranes
and drug delivery methods, make this problem of continued contemporary importance and
an active area of research.

Let us mathematically formulate the search for a minimal surface as a problem in the
calculus of variations. For simplicity, we shall assume that the bounding curve C projects
down to a simple closed curve Γ = ∂Ω that bounds an open domain Ω ⊂ R2 in the (x, y)
plane, as in Figure minsurf . The space curve C ⊂ R3 is then given by z = g(x, y)

† More correctly, the soap film will realize a local but not necessarily global minimum for the
surface area functional.
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for (x, y) ∈ ∂Ω. For reasonable curves C, we expect that the minimal surface S will be
described as the graph of a function z = u(x, y) parametrized by (x, y) ∈ Ω. The surface
area of such a graph is given by the double integral

J [u ] =

∫ ∫

Ω

√

1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)2

dx dy; (21.8)

see (B.39). To find the minimal surface, then, we seek the function z = u(x, y) that mini-
mizes the surface area integral (21.8) when subject to the Dirichlet boundary conditions

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω (21.9)

that prescribe the boundary curve C. As we shall see, the solutions to this minimization
problem satisfy a certain nonlinear second order partial differential equation, given in
(21.50) below.

A simple version of the minimal surface problem, that still contains many interesting
features, is to find minimal surfaces of revolution. Recall that a surface of revolution is
obtained by revolving a plane curve about an axis, which, for definiteness, we take to be
the x axis. Thus, given two points a = (a, α),b = (b, β) ∈ R2, our goal is to find the curve
y = u(x) joining them such that the surface of revolution obtained by revolving the curve
around the x-axis has the least surface area. According to Exercise , the area of such a
surface of revolution is given by

J [u ] =

∫ b

a

2π |u |
√
1 + (u′)2 dx. (21.10)

We seek a minimizer of this integral among all functions u(x) that satisfy the boundary
conditions u(a) = α, u(b) = β.

u(a) = α, u(b) = β.

The minimal surface of revolution can be physically realized by stretching a soap film
between two wire circles, of radius α and β, placed a distance b − a apart. Symmetry
considerations will require the minimizing surface to be rotationally symmetric. Interest-
ingly, the revolutionary surface area functional (21.10) is exactly the same as the optical
functional (21.5) when the light speed at a point is inversely proportional to its distance
from the horizontal axis, namely c(x, y) = 1/2 π | y |.

21.2. The Simplest Variational Problem.

Even the preceding, rather limited collection of examples of variational problems
should already convince the reader of the practical utility of the calculus of variations.
Let us now discuss the most basic analytical techniques for solving such minimization
problems. We will exclusively deal with the classical approach, leaving more modern di-
rect methods — the function space equivalent of the gradient descent method — to a more
in–depth treatment of the subject, [cvar].

Let us concentrate on the simplest class of variational problems, in which the unknown
is a continuously differentiable scalar function, and the functional to be minimized depends

1/12/04 930 c© 2003 Peter J. Olver



upon at most its first derivative. The basic minimization problem, then, is to determine
the function y = u(x) ∈ C1[a, b ] that minimizes the objective functional

J [u ] =

∫ b

a

L(x, u, u′) dx (21.11)

subject to certain prescribed boundary conditions. The integrand L(x, u, p) is known as the
Lagrangian for the variational problem, in honor of Joseph–Louis Lagrange, who was one of
the founders of the subject. We usually assume that L(x, u, p) is a reasonably smooth func-
tion of all three of its (scalar) arguments x, u and p, which represents the derivative u′. For

example, the arc length functional (21.3) has Lagrangian function L(x, u, p) =
√
1 + p2,

whereas in the surface of revolution problem (21.10), we have L(x, u, p) = 2π |u |
√
1 + p2.

(In the latter case, the points where u = 0 are slightly problematic, since L is not contin-
uously differentiable there.)

In order to uniquely specify a minimizing function, we must impose suitable boundary
conditions. All of the usual suspects — Dirichlet (fixed), Neumann (free), as well as mixed
and periodic boundary conditions — that arose in Chapter 11 are also of interest here. In
the interests of brevity, we shall concentrate on the Dirichlet boundary conditions

u(a) = α, u(b) = β, (21.12)

as these are the most common in physical problems, although some of the exercises will
investigate other types.

The First Variation and the Euler–Lagrange Equation

According to Section 19.3, the (local) minimizers of a (sufficiently nice) function de-
fined on a finite-dimensional vector space are initially characterized as critical points,
where the gradient of the function vanishes. An analogous construction applies in the
infinite-dimensional context treated by the calculus of variations. Every minimizer u? of
a sufficiently nice functional J [u ] is a “critical function”, meaning that the functional
gradient ∇J [u? ] = 0 vanishes at that function. Indeed, the justification of this result
that was outlined in Section 19.3 continues to apply here; see, in particular, the proof
of Theorem 19.42. Of course, not every critical point turns out to be a minimum. In
nondegenerate situations, the classification of critical points into local minima, maxima,
or saddle points, relies on the second derivative test. The functional version of the second
derivative test — the second variation — is the topic of Section 21.3.

Thus, our first order of business is to learn how to compute the gradient of a func-
tional that is defined on an infinite-dimensional function space. Adapting the general
Definition 19.38 of the gradient of a function defined on an inner product space, the gra-
dient ∇J [u ] of the functional (21.11) should be defined by the same basic formula

〈∇J [u ] ; v 〉 =
d

dt
J [u+ t v ]

∣∣∣∣
t=0

. (21.13)

Here v(x) is a function — the “direction” in which the derivative is computed. Classically,
v is known as a “variation” in the function u, sometimes written v = δu, whence the term
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“calculus of variations”. The gradient operator on functionals is often referred to as the
variational derivative. The inner product used in (21.13) is taken (again for simplicity) to
be the standard L2 inner product

〈 f ; g 〉 =

∫ b

a

f(x) g(x) dx (21.14)

on function space.

Now, starting with (21.11), we have

J [u+ t v ] =

∫ b

a

L(x, u+ t v, u′ + t v′ ) dx. (21.15)

We need to compute the derivative of the integral with respect to t. Assuming smoothness
of the integrand allows us to bring the derivative inside the integral and so, by the chain
rule,

d

dt
J [u+ t v ] =

∫ b

a

d

dt
L(x, u+ t v, u′ + t v′ ) dx

=

∫ b

a

[
v

∂L

∂u
(x, u+ t v, u′ + t v′) + v′

∂L

∂p
(x, u+ t v, u′ + t v′)

]
dx.

Therefore, setting t = 0 to evaluate (21.13), we find

〈∇J [u ] ; v 〉 =

∫ b

a

[
v

∂L

∂u
(x, u, u′) + v′

∂L

∂p
(x, u, u′)

]
dx. (21.16)

The resulting integral often referred to as the first variation of the functional J [u ]. The
condition 〈∇J [u ] ; v 〉 = 0 for a minimizer is known as the weak form of the variational
principle.

To obtain the strong form, the right hand side of (21.16) needs to be written as an
inner product,

〈∇J [u ] ; v 〉 =

∫ b

a

∇J [u ] v dx =

∫ b

a

h v dx

between some function h(x) = ∇J [u ] and the variation v. The first term has this form,
but the derivative v′ appearing in the second term is problematic. However, as the reader
of Chapter 11 already knows, the secret behind removing derivatives in an integral formula
is integration by parts. If we set

∂L

∂p
(x, u(x), u′(x)) ≡ r(x),

we can re-express the offending term as

∫ b

a

r(x)v′(x) dx =
[
r(b)v(b)− r(a)v(a)

]
−

∫ b

a

r′(x)v(x) dx, (21.17)
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where — again by the chain rule —

r′(x) =
d

dx

(
∂L

∂p
(x, u, u′)

)
=

∂2L

∂x∂p
(x, u, u′) + u′

∂2L

∂u∂p
(x, u, u′) + u′′

∂2L

∂p2
(x, u, u′) .

(21.18)

So far we have not imposed any conditions on our variation v(x). We are comparing the
values of J [u ] only among the functions that satisfy the prescribed boundary conditions,
namely

u(a) = α, u(b) = β.

Therefore, we must make sure that the varied function û(x) = u(x)+ t v(x) remains within
this space of functions, and so it must satisfy the same boundary conditions û(a) = α,
û(b) = β. But u(x) already satisfies the boundary conditions, and so the variation v(x)
must satisfy the corresponding homogeneous boundary conditions

v(a) = 0, v(b) = 0. (21.19)

As a result, both boundary terms in our integration by parts formula (21.17) vanish, and
we can write (21.16) as

〈∇J [u ] ; v 〉 =

∫ b

a

∇J [u ] v dx =

∫ b

a

v

[
∂L

∂u
(x, u, u′)−

d

dx

(
∂L

∂p
(x, u, u′)

)]
dx.

We conclude that

∇J [u ] =
∂L

∂u
(x, u, u′)−

d

dx

(
∂L

∂p
(x, u, u′)

)
. (21.20)

This is our explicit formula for the functional gradient or variational derivative of the
functional (21.11) with Lagrangian L(x, u, p). Note that the gradient ∇J [u ] of a functional
is a function.

The critical functions u(x) — which include all local minimizers — are, by definition,
where the functional gradient vanishes: ∇J [u ] = 0. Thus, u(x) must satisfy

∂L

∂u
(x, u, u′)−

d

dx

∂L

∂p
(x, u, u′) = 0. (21.21)

In view of (21.18), we see that (21.21) is, in fact, a second order ordinary differential
equation,

E(x, u, u′, u′′) =
∂L

∂u
(x, u, u′)−

∂2L

∂x∂p
(x, u, u′)−u′

∂2L

∂u∂p
(x, u, u′)−u′′

∂2L

∂p2
(x, u, u′) = 0,

known as the Euler–Lagrange equation associated with the variational problem (21.11).
Any solution to the Euler–Lagrange equation that is subject to the assumed boundary
conditions forms a critical point for the functional, and hence is a potential candidate for
the desired minimizing function. And, in many cases, the Euler–Lagrange equation suffices
to characterize the desired minimizer without further ado.
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Theorem 21.1. Suppose the Lagrangian function is at least twice continuously dif-

ferentiable: L(x, u, p) ∈ C2. Then any C2 minimizer u(x) to the corresponding functional

J [u ] =

∫ b

a

L(x, u, u′) dx must satisfy the associated Euler–Lagrange equation (21.21).

Let us now investigate what the Euler–Lagrange equation tells us about the examples
of variational problems presented at the beginning of this section. One word of warning:
there do exist seemingly reasonable functionals whose minimizers are not, in fact, C2, and
hence do not solve the Euler–Lagrange equation; see [14] for examples. Fortunately, in
the problems we usually consider, such pathologies do not appear.

Curves of Shortest Length

Consider the problem of finding the curve of shortest length connecting two points
a = (a, α),b = (b, β) ∈ R2 in the plane. As we saw in Section 21.2, this requires minimizing
the arc length integral

J [u ] =

∫ b

a

√
1 + (u′)2 dx with Lagrangian L(x, u, p) =

√
1 + p2 .

Since
∂L

∂u
= 0,

∂L

∂p
=

p√
1 + p2

,

the Euler–Lagrange equation (21.21) in this case takes the form

0 = −
d

dx

u′√
1 + (u′)2

= −
u′′

(1 + (u′)2)3/2
.

Since the denominator does not vanish, the Euler–Lagrange equation reduces to the sim-
plest second order ordinary differential equation

u′′ = 0. (21.22)

All solutions to the Euler–Lagrange equation are affine functions, u = c x+d, whose graphs
are straight lines. Since our solution must also satisfy the boundary conditions α = u(a),
β = u(b), the only critical function, and hence the sole candidate to be a minimizer, is the
unique straight line

y =
β − α

b− a
(x− a) + α (21.23)

passing through the two points. Thus, the Euler–Lagrange equation helps to reconfirm
our intuition that straight lines minimize distance.

Be that as it may, the fact that a function satisfies the Euler–Lagrange equation
and the boundary conditions merely gives it the status of a candidate for minimizing
the variational problem. By the same token, a critical function is also a candidate for
maximizing the variational problem, too. The nature of the critical functions can only be
distinguished by a second derivative test, which requires further work. Of course, for the
present problem, we “know” that a straight line cannot maximize distance, and must be
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the minimizer. Nevertheless, the reader should have a little nagging doubt that we have
completely solved the minimum distance problem . . .

Minimal Surface of Revolution

Consider next the problem of finding the curve connecting two points having a surface
of revolution of minimal surface area. For simplicity, we assume that the curve is given
by the graph of a non-negative function y = u(x) ≥ 0. According to (21.10), the required
curve will minimize the functional

J [u ] =

∫ b

a

u
√
1 + (u′)2 dx, with Lagrangian L(x, u, p) = u

√
1 + p2 , (21.24)

where we have dropped an irrelevant factor of 2π and used our positivity assumption to
omit the absolute value on u in the integrand. Since

∂L

∂u
=
√
1 + p2 ,

∂L

∂p
=

u p√
1 + p2

,

the Euler–Lagrange equation (21.21) is

√
1 + (u′)2 −

d

dx

uu′√
1 + (u′)2

=
1 + (u′)2 − uu′′

(1 + (u′)2)3/2
= 0. (21.25)

Therefore, to find the critical functions, we need to solve a nonlinear second order ordinary
differential equation — and not one in a familiar form.

Fortunately, there is a little trick† we can use to find the solution. If we multiply by
u′, then we can rewrite the result as an exact derivative

u′
(
1 + (u′)2 − uu′′

(1 + (u′)2)3/2

)
=

d

dx

u√
1 + (u′)2

= 0.

We conclude that
u√

1 + (u′)2
= c, (21.26)

where c is a constant of integration. The left hand side of (21.26), being constant on the
entire solution, is a first integral for the differential equation, cf. Definition 20.25. The
resulting equation is an implicit form of an autonomous first order differential equation.
Solving for

du

dx
= u′ =

√

u2 − c2

c

leads to an autonomous first order ordinary differential equation, which we can immediately
solve: ∫

c du
√

u2 − c2
= x+ δ,

† Actually, as with many tricks, this is really an indication that something profound is going on.
Noether’s Theorem, a result of fundamental importance in modern physics that relates symmetries
and conservation laws, [64, 117], underlies the integration method. See also Exercise .
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where δ is a constant of integration. According to Exercise , the most useful form of the
integral is in terms of the inverse to the hyperbolic function cosh z = 1

2 (e
z + e−z), whereby

cosh−1 u

c
= x+ δ, and hence u = c cosh

(
x+ δ

c

)
. (21.27)

In this manner, we have produced the general solution to the Euler–Lagrange equation
(21.25). Any solution that also satisfies the boundary conditions provides a critical function
for the surface area functional (21.24), and hence is a candidate for the minimizer.

The curve prescribed by the graph of a hyperbolic cosine function (21.27) is known
as a catenary . It is not a parabola, even though to the untrained eye it looks similar.
Interestingly, the catenary is the same profile as a hanging chain. Owing to their minimizing
properties, catenaries are quite common in engineering design — for instance the cables
in a suspension bridge such as the Golden Gate Bridge are catenaries, as is the arch in
St. Louis.

So far, we have not taken into account the boundary conditions u(a) = α and u(b) = β.
It turns out that there are three distinct possibilities, depending upon the configuration
of the boundary points:

(a) There is precisely one value of the two integration constants c, δ that satisfies the two
boundary conditions. In this case, it can be proved that this catenary is the unique
curve that minimizes the area of its associated surface of revolution.

(b) There are two different possible values of c, δ that satisfy the boundary conditions. In
this case, one of these is the minimizer, and the other is a spurious solution — one
that corresponds to a saddle point for the functional.

(c) There are no values of c, δ that allow (21.27) to satisfy the two boundary conditions.
This occurs when the two boundary points a,b are relatively far apart. In this
configuration, the physical soap film spanning the two circular wires breaks apart
into two circular disks, and this defines the minimizer for the problem, i.e., there is
no surface of revolution that has a smaller surface area than the two disks. (In the
first two cases, this is not valid; the minimizing catenary has a smaller surface area
than the two disks.) However, the “function”† that minimizes this configuration
consists of two vertical lines from a and b to the x axis along with the portion of
the axis lying between them. We can approximate this function by a sequence of
genuine functions that give progressively smaller and smaller values to the surface
area functional (21.10), but the actual minimum is not attained among the class
of (smooth) functions.

Thus, even in such a reasonably simple example, a number of the subtle complica-
tions arising in the calculus of variations can already be seen. Lack of space precludes a
more detailed development of these ideas here, and we refer the interested reader to more
specialized books devoted to the calculus of variations, including [39, 64].

† Here “function” must be taken in a very broad sense, as this situation does not even corre-
spond to a generalized function!
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Figure 21.3. The Brachistrochrone Problem.

The Brachistochrone Problem

The most famous classical variational problem is the so-called brachistochrone problem.
The word “brachistochrone” means “minimal time” in Latin. An experimenter lets a bead
slide down a wire that connects two prescribed points. The goal is to shape the wire in such
a way that, starting from rest, the bead slides from one end to the other in minimal time.
Näıve guesses for the wire’s shape, including a straight line, a parabola, and a circular
arc, are wrong. One can do better through a careful analysis of the associated variational
problem. The brachistochrone problem was originally posed by Johann Bernoulli in 1696,
and served as an inspiration for much of the subsequent development of the subject.

We take the starting point of the bead at the origin: a = (0, 0). The wire will
bend downwards, and to avoid annoying minus signs in the subsequent formulae, we take
the vertical y axis to point downwards, so the wire has the shape given by the graph of
y = u(x) > 0. The end point b = (b, β) is assumed to lie below and to the right, and so
b > 0 and β > 0; the set-up is sketched in Figure 21.3. The first step is to find the formula
for the transit time of the bead sliding along the wire. Arguing as in our derivation of the
optics functional (21.5), if v denotes the speed of descent of the bead, then the total travel
time is

T [u ] =

∫ b

0

√
1 + (u′)2

v
dx. (21.28)

We shall use conservation of energy to determine a formula for the speed v as a function
of the position along the wire.

The kinetic energy of the bead is 1
2 mv2, where m is its mass and v ≥ 0 its speed of

descent. On the other hand, due to our sign convention, the potential energy of the bead
when it is at height y is −mgy, where m is its mass and g the gravitational force, and
we take the initial height y = 0 as the zero potential energy level. The bead is initially
at rest, with 0 kinetic energy and 0 potential energy. Assuming that frictional forces are
negligible, conservation of energy implies that

0 = 1
2 mv2

−mgy.

We can solve this equation to determine the bead’s speed as a function of its height:

v =
√
2g y . (21.29)
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Substituting this expression into (21.28), we conclude that the shape y = u(x) of the wire
is obtained by minimizing the functional

T [u ] =

∫ b

0

√
1 + (u′)2

2gu
dx. (21.30)

The associated Lagrangian is

L(x, u, p) =

√
1 + p2

u
,

where we omit an irrelevant factor of 2g (or adopt physical units in which g = 1
2 ). We

compute

∂L

∂u
= −

√
1 + p2

2u3/2
,

∂L

∂p
=

p√
u (1 + p2)

.

Therefore, the Euler–Lagrange equation for the brachistochrone functional (21.30) is

−

√
1 + (u′)2

2u3/2
−

d

dx

u′√
u (1 + (u′)2)

= −
2uu′′ + (u′)2 + 1

2
√

u (1 + (u′)2)
= 0,

and is equivalent to the nonlinear second order ordinary differential equation

2uu′′ + (u′)2 + 1 = 0.

Rather than try to solve this differential equation directly, we note that the Lagrangian
does not depend upon x, and therefore we can use the result of Exercise that states that
the Hamiltonian

H(x, u, p) = L− p
∂L

∂p
=

1√
u(1 + p2)

is a first integral, and hence

1√
u(1 + (u′)2)

= k, which we rewrite as u(1 + (u′)2) = c,

where c = 1/k2 is a constant. Solving for the derivative u′ results in the first order
autonomous ordinary differential equation

du

dx
=

√
c− u

u
.

This equation can be explicitly solved by separation of variables, and so, integrating from
the initial point x = u = 0, ∫

0

√
u

c− u
du = x.

The integration can be done by use of a trigonometric substitution, namely

u = 1
2 c (1− cos r), whereby x = c

∫

0

(1− cos r), r dr = 1
2 c(r − sin r). (21.31)
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Figure 21.4. A Cycloid.

The resulting pair of equations (21.31) serve to parametrize a curve (x(r), u(r)) known
as a cycloid . According to Exercise , a cycloid can be visualized as the curve that is
traced by a point sitting on the edge of a rolling wheel. Thus, all solutions to the Euler–
Lagrange equation are the cycloids, described in parametric form by (21.31). Any cycloid
which satisfies the boundary conditions supplies us with a critical function, and hence a
candidate for the solution to the brachistochrone minimization problem.

With a little more work, it can be proved that there is precisely one value of the
integration constant c that satisfies the two boundary conditions, and, moreover, that this
particular cycloid minimizes the brachistochrone functional. An example of a cycloid is
plotted in Figure 21.4. Interestingly, in certain configurations, namely if β < 2 b/π, the
cycloid that solves the brachistrochrone problem dips below the lower endpoint b.

21.3. The Second Variation.

The solutions to the Euler–Lagrange boundary value problem are the critical functions
for the variational principle, meaning that they cause the functional gradient to vanish.
In the finite-dimensional theory, being a critical point is only a necessary condition for
minimality. One must impose additional conditions, based on the second derivative of the
objective function at the critical point, in order to guarantee that it is a minimum and not
a maximum or saddle point. Similarly, in the calculus of variations, the solutions to the
Euler–Lagrange equation may also include (local) maxima, as well as other non-extremal
critical functions. To distinguish between the different possible solutions, we need to
formulate a second derivative test for the objective functional on an infinite-dimensional
function space. In the calculus of variations, the second derivative of a functional is
known as its second variation, the Euler–Lagrange expression being also known as the first
variation.

In the finite-dimensional version, the second derivative test was based on the posi-
tive definiteness of the Hessian matrix. The justification relied on a second order Taylor
expansion of the objective function at the critical point. Thus, in an analogous fashion,
we expand the objective functional J [u ] near the critical function. Consider the scalar
function g(t) = J [u+ t v ], where the function v(x) represents a variation. The second
order Taylor expansion of g(t) takes the form

g(t) = J [u+ t v ] = J [u ] + t K[u; v ] + 1
2 t2 Q[u; v ] + · · · .

The first order terms are linear in the variation v, and given by an inner product

g′(0) = K[u; v ] = 〈∇J [u ] ; v 〉

1/12/04 939 c© 2003 Peter J. Olver



between the variation and the functional gradient. In particular, if u = u? is a critical
function, then the first order terms vanish,

K[u?; v ] = 〈∇J [u? ] ; v 〉 = 0

for all allowable variations v, meaning those that satisfy the homogeneous boundary condi-
tions. Therefore, the nature of the critical function u? — minimum, maximum, or neither
— is, in most cases, determined by the second derivative terms

g′′(0) = Q[u?; v ].

As in the finite-dimensional Theorem 19.45, if u is a minimizer, then Q[u; v ] ≥ 0. Con-
versely, if Q[u; v ] > 0 for v 6≡0, i.e., the second derivative terms satisfy a condition of
positive definiteness, then u will be a strict local minimizer. This forms the crux of the
second derivative test.

Let us explicitly evaluate the second derivative terms for the simplest variational
problem (21.11). We need to expand the scalar function

g(t) = J [u+ t v ] =

∫ b

a

L(x, u+ t v, u′ + t v′) dx

in a Taylor series around t = 0. The linear terms in t were already found in (21.16), and
so we need to compute the quadratic terms:

Q[u; v ] = g′′(0) =

∫ b

a

[
Av2 + 2Bvv′ + C (v′)2

]
dx, (21.32)

where the coefficient functions

A(x) =
∂2L

∂u2
(x, u, u′) , B(x) =

∂2L

∂u∂p
(x, u, u′) , C(x) =

∂2L

∂p2
(x, u, u′) , (21.33)

are found by evaluating certain second order derivatives of the Lagrangian at the critical
function u(x). The quadratic functional (21.32) is known as the second variation of the
original functional J [u ], and plays the role of the Hessian matrix for functionals. In
contrast to the first variation, it is not possible to eliminate all of the derivatives on v

in the quadratic functional (21.32) through integration by parts. This causes significant
complications for the analysis.

To formulate conditions that the critical function be a minimizer for the functional,
we need to determine when such a quadratic functional is positive definite, meaning that
Q[u; v ] > 0 for all non-zero allowable variations v(x) 6≡0. Clearly, if the integrand is
positive definite at each point, so

A(x)v2 + 2B(x)v v′ + C(x)(v′)2 > 0 for all a ≤ x ≤ b, (v, v′)6= 0, (21.34)

then the second variation Q[u; v ] is also positive definite.
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Example 21.2. For the arc length minimization functional (21.3), the Lagrangian

is L(x, u, p) =
√
1 + p2. To analyze the second variation, we first compute

∂2L

∂u2
= 0,

∂2L

∂u∂p
= 0,

∂2L

∂p2
=

1

(1 + p2)3/2
.

For the critical straight line function u = u? given in (21.23), we evaluate at p = u′ =
(β − α)/(b− a), and so

A(x) =
∂2L

∂u2
= 0, B(x) =

∂2L

∂u∂p
= 0, C(x) =

∂2L

∂p2
= k ≡

(b− a)3
[
(b− a)2 + (β − α)2

]3/2 .

Therefore, the second variation functional (21.32) is

Q[u?; v ] =

∫ b

a

k (v′)2 dx,

where k > 0 is a positive constant. Thus, Q[u?; v ] = 0 vanishes if and only if v is a
constant function. But the variation v is required to satisfy the homogeneous boundary
conditions v(a) = v(b) = 0, and hence the functional is positive definite for all allowable
nonzero variations. Therefore, we can finally conclude that the straight line is, indeed, a
(local) minimizer for the arc length functional. We have at last justified our intuition that
the shortest distance between two points is a straight line!

In general, as the following example points out, the pointwise positivity condition
(21.34) is overly restrictive.

Example 21.3. Consider the quadratic functional

Q[v ] =

∫ 1

0

[
(v′)2 − v2

]
dx. (21.35)

The claim is that Q[v ] > 0 is positive definite for all nonzero v 6≡0 subject to homogeneous
Dirichlet boundary conditions v(0) = 0 = v(1). This result is not trivial! Indeed, the
boundary conditions play an essential role, since choosing v(x) ≡ c to be any constant
function will produce a negative value for the functional: Q[v ] = − c2.

To prove the claim, consider the quadratic functional

Q̃[v ] =

∫ 1

0

(v′ + v tanx)2 dx ≥ 0,

which is clearly positive semi-definite since the integrand is everywhere ≥ 0; moreover, the
integral vanishes if and only if v satisfies the first order linear ordinary differential equation

v′ + v tanx = 0, for all 0 ≤ x ≤ 1.

The only solution that also satisfies boundary condition v(0) = 0 is the trivial one v ≡ 0.

We conclude that Q̃[v ] = 0 if and only if v ≡ 0, and hence Q̃ > 0 is a positive definite
quadratic functional.
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Let us expand the latter functional,

Q̃[v ] =

∫ 1

0

[
(v′)2 + 2v v′ tanx+ v2 tan2 x

]
dx

=

∫ 1

0

[
(v′)2 − v2 (tanx)′ + v2 tan2 x

]
dx =

∫ 1

0

[
(v′)2 − v2

]
dx = Q[v ].

In the second equality, we integrated the middle term by parts, using (v2)′ = 2v v′, and

noting that the boundary terms vanish. Since Q̃[v ] is positive definite, so is Q[v ], justifying
the previous claim.

To see how subtle this result is, consider the almost identical quadratic functional

Q̂[v ] =

∫ 4

0

[
(v′)2 − v2

]
dx. (21.36)

The only difference is in the upper limit to the integral. A quick computation shows that
the function v(x) = x(4 − x) satisfies the homogeneous Dirichlet boundary conditions
v(0) = 0 = v(4), but

Q̂[v ] =

∫ 4

0

[
(4− 2x)2 − x2(4− x)2

]
dx = − 128

5 < 0.

Therefore, Q̂[v ] is not positive definite. Our preceding analysis does not apply be-
cause the function tanx becomes singular at x = 1

2π, and so the auxiliary integral∫ 4

0

(v′ + v tanx)2 dx does not converge.

The complete analysis of positive definiteness of quadratic functionals is quite subtle.
The strange appearance of tanx in this particular example turns out to be an important
clue! In the interests of brevity, let us just state without proof a fundamental theorem,
and refer the interested reader to [64] for full details.

Theorem 21.4. Let A(x), B(x), C(x) ∈ C0[a, b ] be continuous functions. The quad-
ratic functional

Q[v ] =

∫ b

a

[
Av2 + 2Bvv′ + C (v′)2

]
dx

is positive definite, so Q[v ] > 0 for all v 6≡0 satisfying the homogeneous Dirichlet boundary
conditions, provided

(a) C(x) > 0 for all a ≤ x ≤ b, and

(b) For any a < c ≤ b, the only solution to the associated linear Euler–Lagrange

boundary value problem

− (C w′)′ + (A−B′)w = 0, w(a) = 0 = w(c), (21.37)

is the trivial function w(x) ≡ 0.
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Remark : A value c for which (21.37) has a nontrivial solution is known as a conjugate
point to a. Thus, condition (b) can be restated that the variational problem has no
conjugate points in the interval [a, b ].

Example 21.5. The quadratic functional

Q[v ] =

∫ b

0

[
(v′)2 − v2

]
dx (21.38)

has Euler–Lagrange equation

−w′′ − w = 0.

The solutions w(x) = k sinx satisfy the boundary condition w(0) = 0. The first conjugate
point occurs at c = π where w(π) = 0. Therefore, Theorem 21.4 implies that the quadratic
functional (21.38) is positive definite provided the upper integration limit b < π. This
explains why the first quadratic functional (21.35) is positive definite, since there are no
conjugate points on the interval [0, 1], while the second (21.36) is not because the first
conjugate point π lies on the interval [0, 4].

In the case when the quadratic functional arises as the second variation of a functional
(21.11), then the coefficient functions A,B,C are given in terms of the Lagrangian L(x, u, p)
by formulae (21.33). In this case, the first condition in Theorem 21.4 requires

∂2L

∂p2
(x, u, u′) > 0 (21.39)

for the minimizer u(x). This is known as the Legendre condition. The second, conjugate
point condition requires that the so-called linear variational equation

−
d

dx

(
∂2L

∂p2
(x, u, u′)

dw

dx

)
+

(
∂2L

∂u2
(x, u, u′)−

d

dx

∂2L

∂u∂p
(x, u, u′)

)
w = 0 (21.40)

has no nontrivial solutions w(x)6≡0 that satisfy w(a) = 0 and w(c) = 0 for a < c ≤ b.

21.4. Multi-dimensional Variational Problems.

The calculus of variations encompasses a very broad range of mathematical appli-
cations. The methods of variational analysis can be applied to an enormous variety of
physical systems, in which the equilibrium configurations minimize a suitable functional
— typically, the potential energy of the system. The minimizing configurations are among
the critical points of the functional where its functional gradient vanishes. Following similar
computational procedures as in the simple one-dimensional version, we find that the critical
functions are characterized as solutions to a system of partial differential equations, called
the Euler–Lagrange equations associated with the variational principle. Each solution to
the boundary value problem specified by the Euler–Lagrange equations is, thus, a can-
didate minimizer for the variational problem. In many applications, the Euler–Lagrange
equations suffice to single out the desired physical solutions, and one does not continue on
to the considerably more difficult second variation.
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Implementation of the variational calculus for functionals in higher dimensions will be
illustrated by looking at a specific example — a first order variational problem involving
a single scalar function of two variables. Thus, we consider a functional in the form

J [u ] =

∫ ∫

Ω

L(x, y, u, ux, uy) dx dy, (21.41)

of a double integral over a prescribed domain Ω ⊂ R2. The Lagrangian L(x, y, u, p, q) is
assumed to be a sufficiently smooth function of its five arguments. Our goal is to find the
function(s) u = f(x, y) that minimize the given functional among all sufficiently smooth
functions that satisfy a set of prescribed boundary conditions on ∂Ω. The most important
are our usual Dirichlet, Neumann and mixed boundary conditions. For simplicity, we
concentrate on the Dirichlet boundary value problem

u(x, y) = g(x, y) for (x, y) ∈ ∂Ω. (21.42)

The First Variation

The basic necessary condition for an extremum (minimum or maximum) is obtained
in precisely the same manner as in the one-dimensional framework. Consider the function

g(t) ≡ J [u+ t v ] =

∫ ∫

Ω

L(x, y, u+ t v, ux + t vx, uy + t vy) dx dy

for t ∈ R. The variation v(x, y) is assumed to satisfy homogeneous Dirichlet boundary
conditions

v(x, y) = 0 for (x, y) ∈ ∂Ω, (21.43)

to ensure that u + t v satisfies the same boundary conditions (21.42) as u itself. Under
these conditions, if u is a minimizer, then the scalar function g(t) will have a minimum at
t = 0, and hence g′(0) = 0. When computing g′(t), we assume that the functions involved
are sufficiently smooth so as to allow us to bring the derivative d/dt inside the integral and
then apply the chain rule. At t = 0, the result is

g′(0) =
d

dt
J [u+ t v ]

∣∣∣∣
t=0

=

∫ ∫

Ω

(
v

∂L

∂u
+ vx

∂L

∂p
+ vy

∂L

∂q

)
dx dy, (21.44)

where the derivatives of L are evaluated at x, y, u, ux, uy. To identify the functional gra-
dient, we need to rewrite this integral in the form of an inner product

g′(0) = 〈∇J [u ] ; v 〉 =

∫ ∫

Ω

h(x, y) v(x, y) dx dy, where h = ∇J [u ].

As before, we need to remove the offending derivatives from v. In two dimensions, the
requisite integration by parts formula

∫ ∫

Ω

∂v

∂x
w1 +

∂v

∂y
w2 dx dy =

∮

∂Ω

v (−w2 dx+ w1 dy)−

∫ ∫

Ω

v

(
∂w1

∂x
+

∂w2

∂y

)
dx dy,

(21.45)
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in which w1, w2 are arbitrary smooth functions, appears in (15.79). Setting w1 = ∂L/∂p,w2 =
∂L/∂q, we find

∫ ∫

Ω

(
vx

∂L

∂p
+ vy

∂L

∂q

)
dx dy = −

∫ ∫

Ω

v

[
∂

∂x

(
∂L

∂p

)
+

∂

∂y

(
∂L

∂q

)]
dx dy,

where the boundary integral vanishes when v(x, y) satisfies the homogeneous Dirichlet
boundary conditions (21.43) that we impose on the allowable variations. Substituting this
result back into (21.44), we conclude that

g′(0) =

∫ ∫

Ω

v

[
∂L

∂u
−

∂

∂x

(
∂L

∂p

)
−

∂

∂y

(
∂L

∂q

)]
dx dy = 0. (21.46)

The quantity in brackets is the desired first variation or functional gradient:

∇J [u ] =
∂L

∂u
−

∂

∂x

(
∂L

∂p

)
−

∂

∂y

(
∂L

∂q

)
,

which must vanish at a critical function. We conclude that the minimizer u(x, y) must
satisfy the Euler–Lagrange equation

∂L

∂u
(x, y, u, ux, uy) −

∂

∂x

(
∂L

∂p
(x, y, u, ux, uy)

)
−

∂

∂y

(
∂L

∂q
(x, y, u, ux, uy)

)
= 0.

(21.47)
Once we explicitly evaluate the derivatives, the net result is a second order partial differ-
ential equation

Lu − Lxp − Lyq − uxLup − uyLuq − uxxLpp − 2uxyLpq − uyyLqq, (21.48)

where we use subscripts to indicate derivatives of both u and L, the latter being evaluated
at x, y, u, ux, uy. Solutions to the Euler–Lagrange equation are critical functions for the
variational problem, and hence include any local and global minimizers. Determination of
which solutions are geniune minima requires a further analysis of the positivity properties
of the second variation, which is beyond the scope of our introductory treatment. Indeed,
a complete analysis of the positive definiteness of the second variation of multi-dimensional
variational problems is very complicated, and still awaits a completely satisfactory resolu-
tion!

Example 21.6. As a first elementary example, consider the Dirichlet minimization
problem

J [u ] =

∫ ∫

Ω

1
2

(
u2
x + u2

y

)
dx dy (21.49)

that we first encountered in our analysis of the solutions to the Laplace equation (15.91).
In this case, the associated Lagrangian is

L = 1
2 (p

2 + q2), with
∂L

∂u
= 0,

∂L

∂p
= p = ux,

∂L

∂q
= q = uy.
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Therefore, the Euler–Lagrange equation (21.47) becomes

−
∂

∂x
(ux)−

∂

∂y
(uy) = −uxx − uyy = −∆u = 0,

which is the two-dimensional Laplace equation. Subject to the boundary conditions, the
solutions, i.e., the harmonic functions, are the critical functions for the Dirichlet varia-
tional principle. This reconfirms the Dirichlet characterization of harmonic functions as
minimizers of the variational principle, as stated in Theorem 15.13. However, the calculus
of variations approach, as developed so far, leads to a much weaker result since it only
singles out the harmonic functions as candidates for minimizing the Dirichlet integral; they
could just as easily be maximing functions or saddle points. In the quadratic case, the
direct algebraic approach is, when applicable, the more powerful, since it assures us that
the solutions to the Laplace equation really do minimize the integral among the space of
functions satisfying the appropriate boundary conditions. However, the direct method is
restricted to quadratic variational problems, whose Euler–Lagrange equations are linear
partial differential equations. In nonlinear cases, one really does need to utilize the full
power of the variational machinery.

Example 21.7. Let us derive the Euler–Lagrange equation for the minimal surface
problem. From (21.8), the surface area integral

J [u ] =

∫ ∫

Ω

√
1 + u2

x + u2
y dx dy has Lagrangian L =

√
1 + p2 + q2 .

Note that

∂L

∂u
= 0,

∂L

∂p
=

p√
1 + p2 + q2

,
∂L

∂q
=

q√
1 + p2 + q2

.

Therefore, replacing p → ux and q → uy and then evaluating the derivatives, the Euler–
Lagrange equation (21.47) becomes

−
∂

∂x

ux√
1 + u2

x + u2
y

−
∂

∂y

uy√
1 + u2

x + u2
y

=
− (1 + u2

y)uxx + 2uxuyuxy − (1 + u2
x)uyy

(1 + u2
x + u2

y)
3/2

= 0.

Thus, a surface described by the graph of a function u = f(x, y) is a candidate for mini-
mizing surface area provided it satisfies the minimal surface equation

(1 + u2
y)uxx − 2uxuy uxy + (1 + u2

x)uyy = 0. (21.50)

Thus, we are confronted with a complicated, nonlinear, second order partial differential
equation, which has been the focus of some of the most sophisticated and deep analysis
over the preceding two centuries, with significant progress on understanding its solution
only within the past 70 years. We have not developed the sophisticated analytical and
numerical techniques that are required to have anything of substance to say about its
solutions here, and will refer the interested reader to the advanced texts [109, 112].
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Example 21.8. The small deformations of an elastic body Ω ⊂ Rn are described by
the displacement field, u: Ω → Rn. Each material point x ∈ Ω in the undeformed body
will move to a new position x + u(x) in the deformed body Ω̃ = {x + u(x) |x ∈ Ω }.
The one-dimensional case governs bars, beams and rods, two-dimensional bodies include
thin plates and shells, while n = 3 for fully three-dimensional solid bodies. See [8, 69] for
details and physical derivations.

For small deformations, we can use a linear theory to approximate the much more
complicated equations of nonlinear elasticity. The simplest case is that of an isotropic,
homogeneous planar body Ω ⊂ R2, i.e., a thin plate. The equilibrium mechanics are
described by the deformation function u(x) = (u(x, y), v(x, y) )

T
. A detailed physical

analysis of the constitutive assumptions leads to the following minimization principle

J [u, v ] =

∫ ∫

Ω

[
1
2 µ ‖∇u ‖2 + 1

2 (λ+ µ)(∇ · u)2
]
dx dy

=

∫ ∫

Ω

[ (
1
2 λ+ µ

)
(u2

x + v2
y) +

1
2 µ(u2

y + v2
x) + (λ+ µ)ux vy

]
dx dy.

(21.51)

The parameters λ, µ are known as the Lamé moduli of the material, and govern its intrinsic
elastic properties. They are measured by performing suitable experiments on a sample of
the material. Physically, (21.51) represents the stored (or potential) energy in the body
under the prescribed displacement. Nature, as always, seeks the displacement that will
minimize the total energy.

To compute the Euler–Lagrange equations, we consider the functional variation g(t) =
J [u+ tf, v + tg ], in which the individual variations f, g are arbitrary functions subject
only to the given homogeneous boundary conditions. If u, v minimize J , then g(t) has a
minimum at t = 0, and so we are led to compute

g′(0) = 〈∇J ; f 〉 =

∫ ∫

Ω

(f∇uJ + g∇vJ) dx dy,

which we write as an inner product (using the standard L2 inner product between vector

fields) between the variation f and the functional gradient ∇J = (∇uJ,∇vJ )
T
. For the

particular functional (21.51), we find

g′(0) =

∫ ∫

Ω

[ (
λ+ 2µ

)
(ux fx + vy gy) + µ(uy fy + vx gx) + (λ+ µ)(ux gy + vy fx)

]
dx dy.

We use the integration by parts formula (21.45) to remove the derivatives from the vari-
ations f, g. Discarding the boundary integrals, which are used to prescribe the allowable
boundary conditions, we find

g′(0) = −

∫ ∫

Ω

( [
(λ+ 2µ)uxx + µuyy + (λ+ µ)vxy

]
f +

+
[
(λ+ µ)uxy + µvxx + (λ+ 2µ)vyy

]
g

)
dx dy.

The two terms in brackets give the two components of the functional gradient. Setting
them equal to zero, we derive the second order linear system of Euler–Lagrange equations

(λ+ 2µ)uxx + µuyy + (λ+ µ)vxy = 0, (λ+ µ)uxy + µvxx + (λ+ 2µ)vyy = 0,

(21.52)
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known as Navier’s equations, which can be compactly written as

µ∆u+ (µ+ λ)∇(∇ · u) = 0 (21.53)

for the displacement vector u = (u, v )
T
. The solutions to are the critical displacements

that, under appropraite boundary conditions, minimize the potential energy functional.

Since we are dealing with a quadratic functional, a more detailed algebraic analy-
sis will demonstrate that the solutions to Navier’s equations are the minimizers for the
variational principle (21.51). Although only valid in a limited range of physical and kine-
matical conditions, the solutions to the planar Navier’s equations and its three-dimensional
counterpart are successfully used to model a wide class of elastic materials.
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Chapter 22

Nonlinear Partial Differential Equations

The last topic to be touched on in this book is the vast and active contemporary
research area of nonlinear partial differential equations. Leaving aside quantum mechan-
ics, which remains a purely linear theory, most real-world physical systems, including gas
dynamics, fluid mechanics, elasticity, relativity, biology, thermodynamics, and so on, are
modeled by nonlinear partial differential equations. Attempts to survey even a tiny frac-
tion of such a all-encompassing range of phenomena, methods, results, and mathematical
developments, are necessarily doomed to failure. So we will concentrate on a handful of
prototypical, but very important examples, arising in the study of nonlinear waves and
heat conduction. Specific topics include shock waves, blow up, similarity solutions, and
solitons. We will only be able to consider nonlinear partial differential equations modeling
dynamical behavior in one (spce) dimension. The much more compliocated nonlinear sys-
tems that govern our three-dimensional dynamical universe remain on the cutting edge of
contemporary research activity.

Historically, i.e., before the advent of high powered computers, relatively little was
known about the extraordinary range of behavior exhibited by nonlinear partial differential
equations. Most of the most basic phenomena that now drive modern-day research, such
as solitons, chaos, stability, blow-up, singularities, asymptotics, etc., remained undetected,
or only dimly outlined. The last fifty years has witnessed a remarkable blossoming of our
understanding, due in large part to the advent of large scale computing and significant
advances in numerical methods for integating nonlinear systems. Numerical experimen-
tation suddenly exposed many unexpected phenomena, including chaos and solitons, to
the light of day. New analytical methods, new mathematical theories, and new compu-
tational algorithms have precipitated this revolution in our understanding and study of
nonlinear systems, an activity that continues to grow in intensity and breadth. Each leap
in computing power and theoretical advances has led to yet deeper understanding of non-
linear phenomena, but also points out how far we have yet to go. To make sense of this
bewildering variety of methods, equations, and results, it is essential build upon a firm
foundation of, first of all, linear systems theory, and secondly, nonlinear algebraic and
ordinary differential equations.

We arrange our presentation according to the order of the underlying differential
equation. First order nonlinear partial differential equations govern nonlinear waves and
vibrations. Such nonlinear wave motions arise in gas dynamics, water waves, elastodynam-
ics, chemical reactions, flood waves in rivers, chromatography, traffic flow, and a range of
biological and ecological systems. One of the most important nonlinear phenomena, with
no linear counterpart, is the break down of solutions in finite time, resulting in the forma-
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tion of discontinuous shock waves. A striking example is the supersonic boom produced
by an airplane that breaks the sound barrier. As in the linear wave equation, the signals
propagate along the characteristics, but in the nonlinear case the characteristics can cross
each other, indicating the onset of a shock wave.

Second order partial differential equations govern nonlinear diffusion processes, in-
cluding heat flow and population dynamics. The simplest and most important equation,
known as Burgers’ equation, can, surprisingly, be linearized by transforming it to the heat
equation. This accident provides an essential glimpse into the world of nonlinear diffusion
processes. As we discover, as the diffusion or viscosity tends to zero, the solutions to burg-
ers’ equation tend to the shock waves solutions to the first order dispersionless limiting
equation.

Third order partial differential equations arise in the study of dispersive wave motion,
including water waves, plasma waves and others. We first treat the linear dispersive
model, contrasting it with the hyperbolic models we encountered earlier in this book. The
distinction between group and wave velocity — seen when waves propagate over water
— is exposed. Finally, we introduce the remarkable Korteweg–deVries equation, which
serves as a model for nonlinear water waves. Despite being nonlinear, it supports stable
localized traveling wave solutions, known as solitons, that even maintain their shape under
collisions. The Korteweg–deVries equation is an example of an integrable system, since it
can be solved by an associated linear problem.

22.1. Nonlinear Waves and Shocks.

Before attempting to tackle any nonlinear partial differential equations, we should
carefully review the solution to the simplest linear first order partial differential equation
— the one-way or unidirectional wave equation

ut + cux = 0. (22.1)

First, assume that the wave velocity c is constant. According to Proposition 14.7, a solution
u(t, x) to this partial differential equation is constant along the characteristic lines of slope

dx

dt
= c, namely x− ct = constant (22.2)

As a consequence, the solutions are all of the form

u = p(x− ct)

where p(ξ) is an arbitrary function of the characteristic variable ξ = x−ct. To a stationary
observer, the solution is a wave of unchanging form moving at velocity c. The case c > 0
corresponds to a wave that translates to the right, as illustrated in Figure 22.1.

Slightly more complicated, but still linear, is the wave equation

ut + c(x)ux = 0, (22.3)

where the variable wave velocity c(x) depends upon the position of the wave. This equation
models unidirectional waves propagating through a non-uniform, but static medium. Gen-
eralizing the constant coefficient construction (22.2), we define the characteristic curves
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Figure 22.1. Traveling Wave of Constant Form.

for the wave equation (22.3) to be the solutions to the autonomous ordinary differential
equation

dx

dt
= c(x). (22.4)

Thus, unlike the constant velocity version, the characteristics are no longer straight lines.
Nevertheless, the preceding observation retains its validity.

Proposition 22.1. The solutions to the linear wave equation (22.3) are constant on
the characteristic curves.

Proof : Let x(t) be a characteristic curve, i.e., a solution to (22.4), parametrized by
the time t. The value of a solution u(t, x) of the wave equation at the point (t, x(t)) on the
given characteristic curve is h(t) = u(t, x(t)). Our goal is to prove that h(t) is a constant
function of t, and, as usual, this is done by proving that its derivative is identically zero.
To differentiate h(t), we invoke the chain rule:

dh

dt
=

d

dt
u(t, x(t)) =

∂u

∂t
(t, x(t)) +

dx

dt

∂u

∂x
(t, x(t)) =

∂u

∂t
(t, x(t)) + c(x(t))

∂u

∂x
(t, x(t)) = 0.

We replaced dx/dt by c(x) since we are assuming that x(t) is a characteristic curve, and
hence satisfies (22.4). The final combination of derivatives is zero whenever u solves the
wave equation (22.1). Therefore, h(t) = u(t, x(t)) is constant. Q.E.D.

Since the characteristic curve differential equation (22.4) is autonomous, it can be
immediately solved:

h(x) =

∫
dx

c(x)
= t+ δ, (22.5)

where δ is the constant of integration. Therefore, the characteristic curves are defined by
the formula x = g(t+ δ), where g = h−1 is the inverse function.

Any function which is constant along the curves defined by (22.5) must be a function
of the characteristic variable† ξ = h(x) − t. As a consequence, Proposition 22.1 implies
that we can write the solution to the wave equation in the form

u(t, x) = p(h(x)− t), (22.6)

† The present definition of characteristic variable has changed slightly from the constant ve-
locity case.
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where p(ξ) is an arbitrary function of the characteristic variable. It is easy to verify directly
that (22.6) that, provided h(x) is defined by (22.5), u(t, x) solves the partial differential
equation (22.3) for any choice of function p(ξ).

To find the solution that satsifies the given initial conditions

u(0, x) = f(x) (22.7)

we merely substitute the solution (22.6), leading to an implicit equation

p(h(x)) = f(x), and hence p(ξ) = f ◦h−1(ξ) = f [g(ξ)].

Graphically, the solution must be constant along each characteristic curve. Therefore,
to find the value of the solution u(t, x) at a given point, we look at the characteristic
curve passing through (t, x). If this curve intersects the x axis at the point (0, y), then
u(t, x) = u(0, y) = f(y). The construction is illustrated in Figure ccx .

Example 22.2. Consider the equation

∂u

∂t
+

1

x2 + 1

∂u

∂x
= 0. (22.8)

According to (22.4), the characteristic curves are the solutions to the first order ordinary
differential equation

dx

dt
=

1

x2 + 1
.

Integrating, we find ∫
(x2 + 1) dx = 1

3 x3 + x = t+ δ,

and the resulting characteristic curves are plotted in Figure wcxx .

The general solution to the equation takes the form

u = p
(

1
3 x3 + x− t

)
,

where p(ξ) is an arbitrary function of the characteristic variable ξ = 1
3 x3 + x − t. A

typical solution, corresponding to initial data u(t, 0) = is plotted in Figure wcxx . The
fact that the characteristic curves are not straight means that, although the wave remains
constant along each individual curve, a stationary observer will witness a dynamically
changing profile as the wave moves along. Waves speed up as they arrive at the origin,
and then slow down once they pass by. As a result, we observe the wave spreading out as
it approaches the origin, and then contracting as it moves off to the right.

Example 22.3. Consider the equation

ut − xux = 0. (22.9)

The characteristic curves are the solutions to

dx

dt
= −x, and so x et = c, (22.10)
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where c is the constant of integration. The solution takes the form

u = p(xet), (22.11)

where p(ξ) is an arbitrary function. Therefore, for initial data

u(0, x) = f(x) the solution is u = f(xet).

For example, the solution

u(t, x) =
1

(xet)2 + 1
=

e−2 t

x2 + e−2 t

corresponding to initial data u(t, 0) = f(x) = (x2 + 1)−1 is plotted in Figure wavecx .
Note that since the characteristic curves all converge on the t axis, the solution becomes
more and more concentrated at the origin.

A Nonlinear Wave Equation

One of the simplest possible nonlinear partial differential equations is the nonlinear
wave equation

ut + uux = 0. (22.12)

first systematically studied by Riemann†. Since it appears in so many applications, this
equation goes under a variety of names in the literature, including the Riemann, inviscid
Burgers’, dispersonless Korteweg–deVries, and so on.

The equation (22.12) has the form of a unidirectional wave equation ut + cux = 0 in
which the wave velocity c = u depends, not on the position x, but rather on the magnitude
of the wave. Larger waves move faster, and overtake smaller waves. Waves of depression,
where u < 0, move in the reverse direction.

Fortunately, the method of characteristics that was developed for linear wave equations
also works in the present nonlinear situation and leads to a complete solution to the
equation. Mimicking our previous construction, (22.4), let us define the characteristic
curves of the nonlinear wave equation (22.12) by the formula

dx

dt
= u(t, x). (22.13)

In this case, the characteristics depend upon the solution, and so it appears that we will be
not able to specify the characteristics until we know the solution u(t, x). Be that as it may,
the solution u(t, x) remains constant along its characteristic curves, and this observation
will allow us to pin both down.

† In addition to his contributions to complex analysis, partial differential equations and number
theory, Riemann also was the inventor of Riemannian geometry, which proved absolutely essential
for Einstein’s theory of general relativity some 70 years later!

1/12/04 953 c© 2003 Peter J. Olver



First, to prove this claim, assume that x = x(t) parametrizes a characteristic curve.
We need to show that h(t) = u(t, x(t)) is constant along the curve. As before, we differen-
tiate. Using the chain rule and (22.13), we deduce that

dh

dt
=

d

dt
u(t, x(t)) =

∂u

∂t
(t, x(t))+

dx

dt

∂u

∂x
(t, x(t)) =

∂u

∂t
(t, x(t))+u(t, x(t))

∂u

∂x
(t, x(t)) = 0.

The final expression vanishes because u is assumed to solve the wave equation (22.12) at
all values of (t, x). Since the derivative of h(t) = u(t, x(t)) is zero, this quantity must be a
constant, as stated.

Now, since the solution u(t, x(t)) is constant on the characteristic curve, the right
hand side of its defining equation (22.13) is a constant. Therefore, the derivative dx/dt is
constant, and the characteristic curve is a straight line! Consequently, each characteristic
curve

x = ut+ δ,

is a straight line of slope u, which we call the characteristic slope of the line. The value
of the solution on each characteristic line is its characteristic slope. The larger u is, the
steeper the characteristic line, and the faster the wave moves.

The characteristic variable ξ = x− tu depends upon the solution, which can now be
written in implicit form

u = f(x− tu), (22.14)

where f(ξ) is an arbitrary function of the characteristic variable. For example, if fξ) =
αξ + β is an affine function, then

u = α(x− tu) + β, and hence u(t, x) =
αx+ β

1 + α t
. (22.15)

If α > 0, this represents a straight line solution that gradually flattens out as t →∞. On
the other hand, if α < 0, the line rapidly steepens to vertical as t → t? = −1/α when the
solution blows up.

To construct a solution u(t, x) to the initial value problem

u(0, x) = f(x) (22.16)

we note that, at t = 0, the implicit solution formula formula (22.14) reduces to u(0, x) =
f(x), and hence the function f coincides with the initial data! However, because (22.14)
defines u(t, x) implicitly, it is not clear

(a) whether it can be solved to give a well-defined value for the solution u(t, x), and,

(b) if so, what are the solution’s qualitative features and dynamical behavior.

A more instructive and revealing strategy is based on the following geometrical con-
struction. Through each point (y, 0) on the x axis, draw the characteristic line x = t f(y)+y

whose slope f(y) equals the value of the initial data at that point. According to the preced-
ing argument, the solution will have the same value, u = f(y), on the entire characteristic
line x = t f(y) + y. For example, if f(y) = y, then u(t, x) = y whenever x = ty + y.
Eliminating y, we recover the previous solution u(t, x) = x/(t+ 1).
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Figure 22.2. Rarefaction Wave.

Now, the problem with this construction is immediately apparent from the illustrative
Figure Rsol . Any characteristic lines which are not parallel must cross each other. The
value of the solution is supposed to be equal to the slope of the characteristic line, and
so at the point of crossing, the solution is supposed to have two different values, one
corresponding to each line. Something is clearly amiss, and we need to understand the
construction and the resulting solution in more depth.

There are three basic scenarios. The first, trivial case is when all the characteristic
lines are parallel and so the difficulty does not arise. In this case, the characteristic lines
have the same slope, say c, which means that u = c has the same value on each one.
Therefore, u ≡ c is a trivial constant solution.

The next simplest case occurs when the initial data f(x) is everywhere increasing, so
f(x) ≤ f(y) whenever x ≤ y, which is assured if the derivative f ′(x) ≥ 0 is never negative.
In this case, as in Figure chli , the characteristic lines emanting from the x axis fan out
into the right half plane, and so never cross each other at any t ≥ 0. Each point (t, x) for
t ≥ 0 lies on a unique characteristic line, and the value of the solution at (t, x) is equal
to the slope of the line. Consequently, the solution is well-defined at all future times.
Physically, such a solultion represents a wave of rarefaction, which gradually spreads out
as time progresses. A typical example is plotted in Figure 22.2, corresponding to initial
data u(0, x) = tan−1 x+ π

2 .

The more interesting case is when f ′(x) < 0. Now the characteristic lines starting at
t = 0 cross at some future time. If a point (t, x) lies on two or more characteristic lines
of different slopes, the value of the solution u(t, x), which should equal the characteristic
slope, is no longer uniquely determined. Although one might be tempted to deal with such
multiply-valued solutions in a purely mathematical framework, from a physical standpoint
this is unacceptable. The solution u is supposed to represent a physical quantity, e.g.,
density, velocity, pressure, etc., and must therefore have a unique value at each point. The
mathematical model has broken down, and fails to agree with the physical process.

Before confronting this difficulty, let us first, theoreticallly, understand what happens
when we continue the solution as a multiply-valued function. To be specific, consider the
initial data

u(0, x) = π
2 − tan

−1 x, (22.17)

plotted in the first figure in Figure shu . In the companion picture we plot the characteristic
lines for this particular initial data. Initially, the characteristic lines do not cross, and
the solution is a well-defined single-valued functions. However, there is a critical time
t = t? > 0 when the first two lines cross each other at a particular point (t?, x?). After the
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Figure 22.3. Multiply Valued Solution.

critical time, the (t, x) plane contains a wedge-shaped region, each point of which lies on
the intersection of three different characteristic lines with different slopes; at such points,
the solution will achieve three different values. Outside the wedge, the points only belong
to a single characteristic line, and the solution remains single valued there. (The boundary
of the wedge is special, consisting of points where only two characteristic lines cross.)

To understand what is going on, look now at the sequence of pictures of the solution
at successive times in Figure 22.3. Since the initial data is positive, f(x) > 0, all the
characteristic slopes are positive. As a consequence, all the points on the solution curve
will move to the right, at a speed equal to their height. Since the initial data is decreasing,
points to the left will move faster than those to the right, and eventually overtake them.
Thus, as time progresses, the solution gradually steepens. At the critical time t? when the
first two characteristic lines cross, the tangent to the solution curve u(t?, x) has become
vertical at the point xstar, and so ux(t, x?) → ∞ as t → t?. After the critical time, the
solution graph u(t, x) for fixed t > t? remains a continuous curve in the (x, u) plane, but no
longer represents the graph of a single-valued function. The overlapping lobes correspond
to points (t, x) lying in the aforementioned wedge.

The critical time can be determined from the implicit solution formula (22.14). Indeed,
if we differentiate with respect to x, we find

∂u

∂x
=

∂

∂x
f(x− tu) = f ′(ξ)

(
1− t

∂u

∂x

)
, where ξ = x− tu

is the characteristic variable, which is constant along the characteristic lines. Solving,

∂u

∂x
=

f ′(ξ)

1 + t f ′(ξ)
.

Therefore, the slope

∂u

∂x
−→ ∞ as t −→ −

1

f ′(ξ)
.

In other words, if the initial data has negative slope at position x, so f ′(x) < 0, then the
solution along the characteristic line emanating from the point (x, 0) will break down at
the time −1/f ′(x). As a consequence, the first of these critical times is at

t? = min

{
−

1

f ′(x)

∣∣∣∣ f ′(x) < 0

}
. (22.18)
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For instance, for the particular initial configuration (22.17) represented by the pictures,

f(x) =
π

2
− tan−1 x, f ′(x) = −

1

1 + x2
,

and so the critical time is
t? = min(1 + x2) = 1.

As noted above, the triply-valued matheamtical solution is physically untenable. So
what happens after the critical time t?? One needs to choose which of the three possible
values should be used at each given point in the triply-valued wedge.

The mathematics is incapable of providing us with the answer, and we must reconsider
the physical system that we are modeling.

The mathematics by itself incapable of telling us how to continue with this solution
past the critical time at which the characteristics begin to cross. We therefore need to
return to the physics underlying the partial differential equation, and ask what sort of
phenomenon we are trying to model. The most instructive is to view the equation as a
simple model of compressible fluid flow in a single space variable, e.g., gas in a pipe. If we
push a piston down the end of a long pipe then the gas will move ahead of the piston and
compress. If we push the piston too fast, the gas will compress near the piston. However,
if the piston moves too rapidly the gas piles up on top of itself and a shock wave forms.

The physical assumption that underlies the specification of where the shock wave
appears is known as an entropy condition. The simplest version, which applies to many
physical systems, is an equal area rule. Draw the vertical shock line where the areas of the
two lobes in the multiply valued solution are equal, as in Figure ea .

Note that this implies irreversibility of the solutions to the nonlinear wave equation.
One cannot simply run time backwards and expect the shock to disappear. However, this
is a different issue than the irreversibility of the heat equation, which was due to its ill-
posedness in backwards time. One can run the nonlinear wave equation backwards, but
this would result, typically, in the formation of a different collection of shocks.

Example 22.4. An interesting case is when the initial data has the form of a step
function with a single jump discontinuity:

u(0, x) = f(x) = a+ b σ(x) =

{
a, x < 0,

b, x > 0
. (22.19)

If a > b > 0, then the initial data is in the form of a shock. If we use the mathematical
solution by continuing along the characteristic lines, the solution at time t is multiply-
valued in the region bt < x < at where it assumes both values a and b as illustrated
in Figure sws . If we use the equal area rule, we draw the shock line halfway along, at
x = 1

2 (a + b) t. Therefore, the shock moves with speed 1
2 (a + b) equal to one half the

magnitude of the jump (and the value of the step function at the jump according to the
Fourier convention). Behind the shock the solution has value a and in front the smaller
value b. A graph of the characteristic lines appears in Figure swsch .

By way of contrast, if 0 < a < b, then the characteristic lines diverge from the
shock point, and the mathematical solution is not well-defined in the wedge-shaped region
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at < x < bt. We must decide how to connect the two regions where the solution is defined.
Physical reasoning points to using an affine or striaght line to connect the two parts of the
solution. Indeed, a simple modification of the solution (22.15) yields the function

u(t, x) =
x

t
,

which not only solves the differential equation, but also has the required values u(t, at) = a,
and u(t, b t) = b at the edge of the wedge. Therefore, the desired solution is the rarefaction
wave

u(t, x) =





a, x ≤ at,

x/t, at ≤ x ≤ bt,

b, x ≥ bt

,

which is graphed in Figure swsr .

These two simple solutions epiomize the basic phenomenon modeled by our nonlinear
wave equation — rarefaction wave where the solution is spreading out, that correspond to
regions where f ′(x) > 0, and waves of compression, where f ′(x) < 0, where the solution
contracta and eventually lead to shocks. Anyone caught in a traffic jam recognized the
compresssion waves, where the traffic is bunched together and almost stationery, while
the interspersed rarefaction waves represent freely moving traffic. (An intelligent drive wil
recognize the rarefaction waves moving through the jam and use them to switch lanes!)
The observed, and frustrating trafffic jam phenomenon is a direct result of the nonlinear
wave model for traffic flow.

An entropy condition such as the equal area rule allows us to progress beyond the
formation of a simple shock. As other characteristic lines cross, additional shocks form.
The shocks themselves continue propagate, often at different velocities. When a fast-
moving shock catches up with a slow moving shock, one must decide how to merge the
shocks together to retain a physically consistent solution. At this point, the mathematical
details have become too complicated for us to pursue in any more detail, and we refer
the reader to [147] for a detailed discussion, along with applications to equations of gas
dynamics, flood waves in rivers, motion of glaciers, chomotography, traffic flow and many
other physical systems.

22.2. Nonlinear Diffusion.

First order partial differential equations, beginning with the simple scalar equation
(22.12), and progressing through the equations of gas dynamics on to the full-blown Euler
equations of fluid mechanics, model conservative wave motion. Such models fail to account
for frictional and viscous effects.

When a shock wave forms, there is a breakdown in the mathematical solution to the
equation. But the physical processes continue. This indicates that our assumptions gov-
erning the physical situation modeled by the partial differential equation are not complete,
and are neglecting certain significant physical effects. In the case of gas dynamics, the
nonlinear wave equation (22.12) does not build in any damping effects due to viscosity in
the fluid. Dissipative or frictional or viscous effects are, as we know, governed by second
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order differential operators. The simplest is the linear heat equation which models a broad
range of dissipative phenomena, but fails to take into account nonlinear physical effects.

As in the linear heat equation, dissipative effects such as friction and viscosity are
governed by second order elliptic differential operators, and hence intorduce second order
terms into the wave model. In this section, we study the very simplest model that includes
both nonlinar wave motion and dissipation, known as Burgers’ equation.

Burgers’ Equation

The simplest nonlinear diffusion equation is known as† Burgers’ equation, and takes
the form

ut + βuux = γ uxx. (22.20)

The term γ uxx represents linear diffusion, as in the heat equation. The diffusion coefficient
γ > 0 must be positive in order that the equation be well-posed. The second, nonlinear
term represents a simple advection. In the inviscid limit, as the diffusion goes to zero,
γ → 0, Burgers’ equation reduces to the nonlinear wave equation (22.12), which, as a
result, is often referred to as the inviscid Burgers’ equation in the literature. One can also
interpret the linear term as modeling viscosity, and so Burgers’ equation represents a very
simplified version of the equations of viscous fluid mechanics. The higher the viscosity γ,
the faster the diffusion.

We will only consider solutions u(t, x) which are globally defined for all −∞ < x < ∞

and for times t > t0 after an initial time which, for simplicity, we take as t0 = 0. As
with both the heat equation and the nonlinear wave equation (22.12), the solution will be
specified by its initial values

u(0, x) = f(x), −∞ < x < ∞. (22.21)

The initial data f(x) is assumed to be reasonably smooth, say C1, and bounded as |x | →
∞.

Small solutions of Burgers’ equation, |u(t, x) | ¿ 1, will tend to act like solutions to
the heat equation, since the nonlinear terms will be neglible. On the other hand, for large
solutions |u(t, x) | À 1, the nonlinear terms will dominant the equation, and we expect
the solution to behave like the nonlinear waves we analyzed in Section 22.1. Thus, the
question naturally arises: do the solutions of Burgers’ equation experience shocks, or does
the diffusion have a sufficient effect to smooth out any potential discontinuities. As we
will see, the latter scenario is correct. Assuming γ > 0, it can be proved, [147], that the
initial value problem (22.20), (22.21) for Burgers’ equation has a unique solution u(t, x)
that is smooth and exists for all positive time t > 0. The diffusion, no matter how small,
is sufficient to prevent the formation of any shocks or other discontinuities in the solution.

A typical simple solution is plotted in Figure Burgers . The initial data is the same
as in the shock wave solution for the inviscid version that we plotted in Figure swa . We

† Note that the apostrophe goes after the “s” since the equation is named after the applied
mathematician J. Burgers, [Burgers]. It was first studied in this context by Bateman, [16],
although it does appear in older pure mathematical texts.
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take the diffusion coefficient to be small: γ = .01, and the nonlinearity β = 1. As you
can see, the wave initially steepens just like its inviscid counterpart. However, at a certain
point, the diffusion prevents the wave from becoming vertical and then moving into the
shock regime. Instead, once the initial steepening is finished, the wave takes the form of a
very sharp, but nevertheless smooth, transition, looking like a slightly smoothed-out form
of the equal area shock wave solution that we found in Section 22.1.

Indeed, the profound fact is that, as the diffusion γ → 0 becomes very small, the
solutions to Burgers’ equation (22.20) converge, in the inviscid limit, to the shock wave so-
lution to (22.12) constructed by the equal area rule. This observation is in accordance with
our physical intuition, that all physical systems retain a very small dissipative component,
that serves to smooth out discontinuities that appear in the theoretical model that fails to
take the dissipation/viscosity/damping/etc. into account. It also has very important the-
oretical consequences. The way to characterize the discontinuous solutions to the inviscid
nonlinear wave equation is as the limit, as the viscosity goes to zero, of classical solutions
to the Burgers’ equation. This is known as viscosity solution method. If the viscous terms
are as in Burgers’ equation, the resulting viscosity solutions are consistent with the equal
area rule for drawing the shocks. More generally, this method allows one to continue the
solutions into the regimes where multiple shocks merge and interact.

The Hopf–Cole Transformation

While the Burgers’ equation is a fully nonlinear partial differential equation, there is
a remarkable nonlinear transformation that converts it into the linear heat equation. This
result first appears in an exercise in the nineteenth century differential equations textbook
by Forsyth, [59; vol. 6, p. 102]. Its modern rediscovery by Eberhard Hopf, [83], and Julian
Cole, [35], was a milestone in the study of nonlinear partial differential equations.

One simple-minded way to convert a linear equation into a more complicated nonlinear
equation is to make a nonlinear changes of variables. The resulting nonlinear equation is
said to be linearizable since it can be linearized by inverting the change of variables.
Recognizing when a nonlinear equation can, in fact, be linearized by a sujitable change of
variables is a challenging problem, and the subject of much contemporary research, [E].
In practice, “nonlinearizing” a linear equation by a randomly chosen changes of variables
rarely leads to a nonlinear equation of any interest. However, sometimes there is a luck
accident, and the linearizing change of variables can make a profound impact on our
understanding of the nonlinear version.

Our starting point is the linear heat equation

vt = γ vxx. (22.22)

Among all the possible nonlinear changes of dependent variable†, one of the simplest that
might spring to mind is an exponential function. Consider the nonlinear change of variables

v = eσϕ, (22.23)

† Nonlinear changes of the independent variables t, x alone will only lead to a linear partial
differential equation, albeit with nonconstant coefficients; see Exercise .
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where ϕ(t, x) is a new function. The change of variables is valid provided v(t, x) > 0 is a
positive solution to the heat equation. Fortunately, this is not hard to arrange: if the initial
data v(0, x) > 0 is strictly positive, then the solution is positive for all t > 0. Physically,
if the temperature in a fully insulated bar starts out everywhere above freezing, in the
absence of external heat sources, it can never dip below freezing at any later time.

To find the differential equation satisfied by the new function ϕ, we compute the
relations among their derivatives using the chain rule:

vt = σϕt e
σϕ, vx = σϕx eσϕ, vxx =

(
σϕxx + σ2 ϕ2

x

)
eσϕ.

We substitute the first and last formulae into the heat equation (22.22) and canceling
a common exponential factor. We conclude that ϕ(t, x) satisfies the nonlinear partial
differential equation

ϕt = γϕxx + γ σϕ2
x, (22.24)

known as the potential Burgers’ equation, for reasons that will soon become apparent.

The second step in the procedure is to differentiate the potential Burgers’ equation
with respect to x; the result is

ϕtx = γϕxxx + 2γ σϕxϕxx. (22.25)

If we now set
∂ϕ

∂x
= u, (22.26)

then the resulting partial differential equation is a form of Burgers’ equation (22.20):

ut = γ uxx + 2γ σuux.

Indeed, if we define β = −2γ σ, then the two equations coincide. Let us summarize the
resulting Hopf–Cole transformation.

Theorem 22.5. If v(t, x) > 0 is any positive solution to the linear heat equation
vt = γ vxx, then

u(t, x) =
∂

∂x

(
−

γ

2β
log v(t, x)

)
= −

γ

2β

vx
v

, (22.27)

solves Burgers’ equation ut + βuux = γ uxx.

Do all solutions to Burgers’ equation arise in this way? In order to decide, we run the
derivation of the transformation in reverse. The intermediate function ϕ(t, x) in (22.26)
can be interpreted as a potential function for the solution u(t, x), which can be physically
interpreted as a fluid velocity given as the one-dimensional gradient of its potential. The
potential is only determined up to a constant, or, more accurately, up to a function of
t, and so ϕ̃(t, x) = ϕ(t, x) + h(t) is an equally valid potential. Substituting the potential
relation (22.26) into Burgers’ equation (22.20) leads to (22.25)

ϕtx + βϕxϕxx = γϕxxx.
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Integrating both sides with respect to x produces

ϕt = γϕxx + γ σϕ2
x + h(t),

for some integration “constant” h(t). Replacing ϕ = ϕ̃+H(t) where H ′ = h, we find that
the alternative potential ϕ̃ does satsify the potential Burgers’ equation, and thus comes
from a positive solution to the heat equation by the exponential changes of variables. Thus,
the answer is yes: every solution to Burgers’ equation comes from a positive solution to
the heat equation via the Hopf–Cole transformation.

Example 22.6. For example, the separable solution

v(t, x) = α+ β e−ω
2 t cosωx

to the heat equation leads to the solution

u(t, x) =
γ

2β

βω e−ω
2 t sinωx

α+ β e−ω
2 t cosωx

to Burgers’ equation; a typical examplke is plotted in Figure Bcos . We must require
that α > |β | in order that v(t, x) > 0 be a positive solution to the heat equation for
t ≥ 0; otherwise the solution to Burgers’ equation would have singularities at the roots of
u. This particular solution primarily feels the effects of the diffusivity, and goes to zero
exponentially fast.

To solve the initial value problem (22.20), (22.21) we note that the initial conditions
transform, via (22.27), to

v(0, x) = h(x) = expϕ(0, x) = exp

∫ x

0

dyf(x), (22.28)

where 0 can be replaced by any convenient starting point for the integral, e.g., −∞.
According to the solution formula (14.59) (adapted to general diffusivity; see Exercise ),
the solution to the initial value problem (22.22), (22.28) for the heat equation can be
written as a convolution with the fundamental solution:

v(t, x) =
1

2
√

πγ t

∫ ∞

−∞

e−(x−y)2/(4γ t) h(y) dy.

Therefore, the solution to the Burgers’ initial value problem (22.20), (22.21) is

u(t, x) =

∫ ∞

−∞

x− y

t
e−G(t,x,y)/2γ dy

∫ ∞

−∞

e−G(t,x,y)/2γ dy

where G(t, x, y) =

∫ y

0

f(z) dz +
(x− y)2

2γ
.

(22.29)
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Example 22.7. to demonstrate the smoothing effect of the diffusion terms, let us
take the initial data

u(0, x) =

{
a, x < 0,

b, x > 0,
(22.30)

in the form of a step function. We assume that a > b, which would correspond to a shock
wave in the inviscid limit. (The reader is asked to analyze the case a < b which corresponds
to a rarefaction wave.) The solution takes the form

u(t, x) = b+
a− b

1 + w(t, x) exp
a− b

2γ
(x− ct)

where

c =
a+ b

2
, w(t, x) =

√
π

2
− erf

bt− x
√
4πγ t

√
π

2
− erf

x− at
√
4πγ t

where erf z denotes the error function (14.61). The solution is plotted in Figure Bshock .
Note that the sharp transition region for the schock has been smoothed out. The larger
the diffusion coefficient in relation to the initial solution heights a, b, the more significant
the smoothing effect.

Example 22.8. Consider the case when the initial data u(0, x) = a δ(x) is a concen-
trated delta function impulse at the origin. In the solution formula (22.29), starting the
integral for G(t, x, y) at 0 is problematic, but as noted earlier, any other starting point will
lead to a valid formula. Thus, we take

G(t, x, y) =

∫ y

−∞

a δ(z) dz +
(x− y)2

2γ
=





(x− y)2

2γ
, y < 0,

a+
(x− y)2

2γ
, y > 0.

Substituting this into (22.29), we can evaluate the upper integral in elementary terms,
while the lower integral involves the error function (14.61):

u(t, x) =

√
γ

c

(ea/2γ − 1) e−x
2/(4γ t)

1
2

√
π (ea/2γ + 1) + (ea/2γ − 1) erf(x/

√
4πγ t )

. (22.31)

A graph of this solution appears in Figure hump . As you can see, the delta function
diffuses out, but, unlike the heat equation, the wave does not remain symmetric owing to
the advection terms in the equation. The effect is to steepen in front as it propagates. We
note that (22.31) is in the form of a similarity solution

u(t, x) =

√
γ

c
F

(
x

√
4πγ t

)
,

which could perhaps have been predicted from the scaling invariance of the initial data.
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If a ¿ 1 is small, then the nonlinear terms in burgers’ equation are negligible, and
the solution is very close to the fundamental source solution to the heat equation. On the
other hand, for large a À 1, one would expect the advection terms to dominate, and the
onmly effect of diffusion being a smoothing at any abrupt discontinuity. Indeed, for large
a the leading edge of the solution is in the form of a shock wave. As a →∞, the solution
converges to the similarity solution

u(t, x) −→

{ x

t
, 0 ≤ x ≤

√

2at ,

0, otherwise.

of the inviscid wave equation (22.12).

22.3. Dispersion and Solitons.

Finally, we look at a remarkable third order evolution equation that originally arose
in the modeling of surface water waves, that serves to introduce yet further phenomena,
both linear and nonlinear. The third order derivative models dispersion, in which waves
of different frequencies move at different speeds. Coupled with the same nonlinearity as in
the inviscid and viscous Burgers’ (22.12), (22.20), the result is one of the most remarkable
equaitons in all of mathematics, with far-reaching implicaitons, njot only in fluid mechanics
and applications, but even in complex function theory, physics, etc., etc.

Linear Dispersion

The simplest linear partial differential equation of a type that we have not yet con-
sidered is the third order equation

ut = uxxx (22.32)

It is the third member of the hierarchy of simple evolution equations that starts with the
simple ordinary differential equation ut = u, then proceeds to the unidirectional wave
equation ut = ux, and then the heat equation ut = uxx. Each member of the hierarchy
has its own range of phenomenology. The third order case is a simple model for linear
dispersive waves.

We shall only look at the equation on the entire line, so x ∈ R, and so can ignore
additional complications caused by boundary conditions. The solution to the equation is
uniquely specified by initial data

u(0, x) = f(x), −∞ < x <∞.

See [X] for a proof.

Let us apply the Fourier transform to solve the equation. Using separation of variables
Substitute

u(t, x) = e iωt+ i kx

where ω is the frequency and k is called the wave number . We find ω = k3 2π is the
dispersion relation. Therefore, the solution is given by superposition as a Fourier integral

u(t, x) =

∫ ∞

−∞

e i k3 t+ i kxf̂(k) dk
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In particular, the solution with a concentrated initial disturbance

u(0, x) = δ(x) is u(t, x) = Ai
( x

t1/3

)

in terms of the Airy function. See Figure ee3 for a graph.

Fundamwental solution and superposition

Although energy is conserved, unlike the heat and diffusion equations, the dispersion
of waves means that the solution dies out.

group velocity and wave velocity.

The Korteweg–deVries Equation

The simplest wave equation that combines dispersion with nonlinearity is the cele-
brated Korteweg–deVries equation

ut + uxxx + uux = 0. (22.33)

The equation was first derived by the French applied mathematician Boussinesq, [22;
eq. (30), p. 77], [23; eqs. (283, 291)], in 1872 as a model for surface water waves. It was
rediscovered by the Dutch mathematicians Korteweg and de Vries, [96], over two decades
later. More recently, in the early 1960’s, Kruskal and Zabusky, [155], rederived it as
a continuum limit of a model of nonlinear mass-spring chains studied by Fermi, Pasta
and Ulam, [54]. Their numerical experiments on the eqation opened the door to the
undertanding of its many remarkable properties. It has a critical balance between nonlinear
effects and dispersion, leading to integrability.

The most important special solutions to the Korteweg–deVries equation are the trav-
eling waves. We assume that

u = v(ξ) = v(x− ct)

to be a wave of permanent form, translating to the right with speed c, thatis, a solution
to ut + c ux = 0. Note that

∂u

∂t
= −cv′(ξ),

∂u

∂x
= v′(ξ),

∂3u

∂x3
= v′′′(ξ).

Therefore, v(ξ) satsifies the third order nonlinear ordinary differential equation

v′′′ + v v′ − cv = 0. (22.34)

Moreover, we impose boundary conditions

lim
ξ→±∞

v(ξ) = lim
ξ→±∞

v′(ξ) = lim
ξ→±∞

v′′(ξ) = 0. (22.35)

This equation can be integrated. First, note that it can be written as a derivative:

d

dξ

[
v′′ + 1

2 v2
− cv

]
= 0, and hence v′′ + 1

2 v2
− cv = a,
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where a is a constant of integration. However, the boundary conditions as ±∞ imply that
a = 0. Multiplying the latter equation by v′ allows us to integrate a second time

d

dξ

[
1
2 (v

′)2 + 1
6 v3

−
1
2 cv2

]
= v′

[
v′′ + 1

2 v2
− cv

]
= 0.

Integrating both sides of the equation,

1
2 (v

′)2 + 1
6 v3

−
1
2 cv2 = b,

where b is a second constant of integration, which, again by the boundary conditions
(22.35), is also b = 0.

We also assume that the wave is localized, meaning that u and its derivatives tend to
0 as |x | → ∞. Therefore, v(ξ) satisfies the first order autonomous ordinary differential
equation

dv

dξ
= v

√
c− 1

3 v .

We integrate by the usual method:

∫
dv

v

√
c− 1

3 v

= ξ + δ.

The solution has the form

v(ξ) = 3c sech2
[

1
2

√
c ξ + δ

]
,

where

sech y =
1

cosh y
=

2

ey + e−y
,

is the hyperbolic secant function. Hence, the localized traveling wave solutions of the
Korteweg–deVries equation equation are of the form

u(t, x) = 3c sech2
[

1
2

√
c (x− ct) + δ

]
, (22.36)

where c > 0 and δ are arbitrary constants. The parameter c measures the velocity of the
wave. It also masures its amplitude, since the maximum value of u(t, x) is 3c since sech y

has a maximum value of 1 at y = 0. Therefore, the taller the wave, the faster it moves.
See Figure soliton for a graph.

The solution (22.36) is known as a solitary wave solution since it represents a localized
wave that travels unchanged in shape. Such waves were first observed by the British
engineer J. Scott Russell, [131], who tells the remarkable incident of chasing such a wave
generated by the sudden motion of a barge along an Edinburgh canal on horseback for
several miles. The mathematician Airy claimed that such waves could not exist, but he
based his analysis upon a linearized theory. Boussinesq’s establishment of the surface wve
model demonstrated that such localized disturbances can result from nonlinear effects in
the system.
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Remark : In the Korteweg–deVries equation model, one can find arbitrarily tall soliton
solutions. In physical water waves, if the wave is too tall it will break. Indeed, it can be
rigorously proved that the full water wave equations admit solitary wave solutions, but
there is a wave of greatest height, beyond which a wave will tend to break. The solitary
water waves are not geniune solitons, since there is a small, but measureable, effect when
two waves collide.

These nonlinear traveling wave solutions were discovered by Kruskal and Zabusky,
[155], to have remarkable properties. For this reason they have been given a special new
name — soliton. Ordinarily, combining two solutions to a nonlinear equation can be quite
unpredictable, and one might expect any number of scenarios to occur. If you start with
initial conditions representing a taller wave to the left of a shorter wave, the solution
of the Korteweg–deVries equation runs as follows. The taller wave moves faster, and so
catches up the shorter wave. They then have a very complicated nonlinear interaction, as
expected. But, remarkably, after a while they emerge from the interaction unscathed. the
smaller wave is now in back and the larger one in front. After this, they proceed along
their way, with the smaller one lagging behind the high speed tall wave. the only effect
of their encounter is a phase shift, meaning a change in the value of the phase parameter
δ in each wave. See Figure solitons . After the interaction, the position of the soliton if
it had traveled unhindered by the other is shown in a dotted line. Thus, they behave like
colliding paricles, which is the genesis of the word “soliton”.

A similar phenomenon holds for several such soliton solutions. After some time where
the various waves interact, they finally emerge with the largest soliton in front, and then
in order to the smallest one in back, all progressing at their own speed, and so gradually
drawing apart.

Moreover, starting with an arbitrary initial disturbance

u(0, x) = f(x)

it can be proved that after some time, the solution disintegrates into a finite number of
solitons of different heights, moving off to the right, plus a small dispersive tail moving
to the left that rapidly disappears. Propving this remarkable result is beyond the scope
of this book. It relies on the method of inverse scattering , that connects the Korteweg–
deVries equation with a linear eigenvalue problem of fundamental importance in one-
dimensional quantummechanics. The solitons correspond to the bound states of a quantum
potential. We refer the interested reader to the introductory text [50] and the more
advanced monograph [1] for details.

Chaos and integrability are the two great themes in modern nonlinear applied math-
ematics, and the student is well-advised to pursue both.

There is a remarkable transformation, known as the inverse scattering transform,
which is a form of nonlinear Fourier transform, that can be used to solve the Korteweg–
deVries equation. Its fascinating properties continue to be of great current research interest
to this day.

22.4. Conclusion and Bon Voyage.

These are your first wee steps in a vast new realm. We are unable to discuss nonlinear
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partial differential equations arising in fluid mechanics, in elasticity, in relativity, in differ-
ential geometry, n computer vision, in mathematical biology. We bid the reader adieu and
farewell.
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Appendix A

Vector Calculus in Two Dimensions

so far, we have concentrated on problems of one-dimensional media — bars, beams
and strings. In order to study the partial differential equations describing the equilibria
and dynamics of planar media, we need to review the basics of vector calculus in the two
dimensions. We begin with a discussion of plane curves and domains. Many physical
quantities, including force and velocity, are determined by vector fields, and we review the
basic concepts. The key differential operators in planar vector calculus are the gradient and
divergence operations, along with the Jacobian matrix for maps from R2 to itself. There
are three basic types of line integrals: integrals with respect to arc length, for computing
lengths of curves, masses of wires, center of mass, etc., ordinary line integrals of vector
fields for computing work and fluid circulation, and flux line integrals for computing flux
of fluids and forces. Next, we review the basics of double integrals of scalar functions
over plane domains. Line and double integrals are connected by the justly famous Green’s
theorem, which is the two-dimensional version of the fundamental theorem of calculus. The
integration by parts argument required to characterize the adjoint of a partial differential
operator rests on the closely allied Green’s formula.

Space limitations require us to go through this material fairly rapidly, and we assume
that you already gained sufficient familiarity with most of these concepts in a sophomore-
level multi-variable calculus course. More details, and full justifications of these results
can be found in many of the standard vector calculus texts, including [9].

A.1. Plane Curves.

We begin our review by collecting together the basic facts concerning geometry of
plane curves. A curve C ⊂ R2 is parametrized by a pair of continuous functions

x(t) =

(
x(t)
y(t)

)
∈ R2, (A.1)

where the scalar parameter t varies over an (open or closed) interval I ⊂ R. When it
exists, the tangent vector to the curve at the point x is described by the derivative,

dx

dt
=

¦
x =

( ¦
x
¦
y

)
. (A.2)

We shall often use Newton’s dot notation to abbreviate derivatives with respect to the
parameter t.

Physically, we can think of a curve as the trajectory described by a particle moving in
the plane. The parameter t is identified with the time, and so x(t) gives the position of the
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Cusped Curve Circle Figure Eight

Figure A.1. Planar Curves.

particle at time t. The tangent vector
¦
x(t) measures the velocity of the particle at time t;

its magnitude† ‖
¦
x ‖ =

√
¦
x2 +

¦
y2 is the speed, while its orientation (assuming the velocity

is nonzero) indicates the instantaneous direction of motion of the particle as it moves
along the curve. Thus, by the orientation of a curve, we mean the direction of motion or
parametrization, as indicated by the tangent vector. Reversing the orientation amounts
to moving backwards along the curve, with the individual tangent vectors pointing in the
opposite direction.

The curve parametrized by x(t) is called smooth provided its tangent vector is con-
tinuous and everywhere nonzero:

¦
x6= 0. This is because curves with vanishing derivative

may have corners or cusps; a simple example is the first curve plotted in Figure A.1, which
has parametrization

x(t) =

(
t2

t3

)
,

¦
x(t) =

(
2 t
3 t2

)
,

and has a cusp at the origin when t = 0 and
¦
x(0) = 0. Physically, a particle trajectory

remains smooth as long as the speed of the particle is never zero, which effectively prevents
the particle from instantaneously changing its direction of motion. A closed curve is smooth
if, in addition to satisfying

¦
x(t)6= 0 at all points a ≤ t ≤ b, the tangents at the endpoints

match up:
¦
x(a) =

¦
x(b). A curve is called piecewise smooth if its derivative is piecewise

continuous and nonzero everywhere. The corners in a piecewise smooth curve have well-
defined right and left tangents. For example, polygons, such as triangles and rectangles,
are piecewise smooth curves. In this book, all curves are assumed to be at least piecewise
smooth.

A curve is simple if it has no self-intersections: x(t)6= x(s) whenever t 6= s. Physically,
this means that the particle is never in the same position twice. A curve is closed if x(t)
is defined for a ≤ t ≤ b and its endpoints coincide: x(a) = x(b), so that the particle ends
up where it began. For example, the unit circle

x(t) = ( cos t, sin t )
T

for 0 ≤ t ≤ 2π,

† Throughout this chapter, we always use the standard Euclidean inner product and norm.
With some care, all of the concepts can be adapted to other choices of inner product. In differential
geometry and relativity, one even allows the inner product and norm to vary from point to point,
[49].
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is closed and simple†, while the curve

x(t) = ( cos t, sin 2 t )
T

for 0 ≤ t ≤ 2π,

is not simple since it describes a figure eight that intersects itself at the origin. Both curves
are illustrated in Figure A.1.

Assuming the tangent vector
¦
x(t) 6= 0, then the normal vector to the curve at the

point x(t) is the orthogonal or perpendicular vector

¦
x⊥ =

( ¦
y

−
¦
x

)
(A.3)

of the same length ‖
¦
x⊥ ‖ = ‖

¦
x ‖. Actually, there are two such normal vectors, the other

being the negative −
¦
x⊥. We will always make the “right-handed” choice (A.3) of normal,

meaning that as we traverse the curve, the normal always points to our right. If a simple
closed curve C is oriented so that it is traversed in a counterclockwise direction — the
standard mathematical orientation — then (A.3) describes the outwards-pointing normal.
If we reverse the orientation of the curve, then both the tangent vector and normal vector
change directions; thus (A.3) would give the inwards-pointing normal for a simple closed
curve traversed in the clockwise direction.

The same curve C can be parametrized in many different ways. In physical terms, a
particle can move along a prescribed trajectory at a variety of different speeds, and these
correspond to different ways of parametrizing the curve. Conversion from one parame-
trization x(t) to another x̃(τ) is effected by a change of parameter , which is a smooth,
invertible function t = g(τ); the reparametrized curve is then x̃(τ) = x(g(τ)). We require
that dt/dτ = g′(τ) > 0 everywhere. This ensures that each t corresponds to a unique
value of τ , and, moreover, the curve remains smooth and is traversed in the same overall
direction under the reparametrization. On the other hand, if g′(τ) < 0 everywhere, then
the orientation of the curve is reversed under the reparametrization. We shall use the
notation −C to indicate the curve having the same shape as C, but with the reversed
orientation.

Example A.1. The function x(t) = ( cos t, sin t )
T
for 0 < t < π parametrizes a

semi-circle of radius 1 centered at the origin. If we set† τ = − cot t then we obtain the less
evident parametrization

x̃(τ) =

(
1

√

1 + τ2
, −

τ
√

1 + τ2

)T
for −∞ < τ <∞

of the same semi-circle, in the same direction. In the familiar parametrization, the velocity
vector has unit length, ‖

¦
x ‖ ≡ 1, and so the particle moves around the semicircle in the

counterclockwise direction with unit speed. In the second parametrization, the particle

† For a closed curve to be simple, we require x(t) 6= x(s) whenever t 6= s except at the ends,
where x(a) = x(b) is required for the ends to close up.

† The minus sign is to ensure that dτ/dt > 0.
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Figure A.2. Topology of Planar Domains.

slows down near the endpoints, and, in fact, takes an infinite amount of time to traverse
the semicircle from right to left.

A.2. Planar Domains.

A plate or other two-dimensional body occupies a region in the plane, known as a
domain. The simplest example is an open circular disk

Dr(a) =
{
x ∈ R2

∣∣ ‖x− a ‖ < r
}

(A.4)

of radius r centered at a point a ∈ R2. In order to properly formulate the mathematical
tools needed to understand boundary value problems and dynamical equations for such
bodies, we first need to review basic terminology from point set topology of planar sets.
Many of the concepts carry over as stated to subsets of any higher dimensional Euclidean
space Rn.

Let Ω ⊂ R2 be any subset. A point a ∈ Ω is called an interior point if some small
disk centered at a is entirely contained within the set: Dε(a) ⊂ Ω for some ε > 0; see
Figure A.2. The set Ω is open if every point is an interior point. A set K is closed if and
only if its complement Ω = R2

\K = {x6∈K} is open.

Example A.2. If f(x, y) is any continuous real-valued function, then the subset
{f(x, y) > 0} where f is strictly positive is open, while the subset {f(x, y) ≥ 0} where f

is non-negative is closed. One can, of course, replace 0 by any other constant, and also
reverse the direction of the inequalities, without affecting the conclusions.

In particular, the set
Dr = {x

2 + y2 < r2
} (A.5)

consisting of all points of (Euclidean) norm strictly less than r, defines an open disk of
radius r centered at the origin. On the other hand,

Kr = {x
2 + y2

≤ r2
} (A.6)

is the closed disk of radius r, which includes the bounding circle

Cr = {x
2 + y2 = r2

}. (A.7)
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Figure A.3. Open Sets Defined by a Hyperbola.

A point x? is a limit point of a set Ω if there exists a sequence of points x(n)
∈ Ω

converging to it, so that† x(n)
→ x? as n → ∞. Every point x ∈ Ω is a limit point (just

take all x(n) = x) but the converse is not necessarily valid. For example, the points on the
circle (A.7) are all limit points for the open disk (A.5). The closure of a set Ω, written Ω,
is defined as the set of all limit points of Ω. In particular, a set K is closed if and only if
it contains all its limit points, and so K = K. The boundary ∂Ω of a subset Ω consists of
all limit points which are not interior points. If Ω is open, then its closure is the disjoint
union of the set and its boundary Ω = Ω ∪ ∂Ω. Thus, the closure of the open disk Dr is
the closed disk Dr = Dr ∪Cr; the circle Cr = ∂Dr = ∂Dr forms their common boundary.

An open subset that can be written as the union, Ω = Ω1 ∪ Ω2, of two disjoint,
nonempty, open subsets, so Ω1 ∩ Ω2 = ∅, is called disconnected . For example, the open
set

Ω = {x2
− y2 > 1} (A.8)

is disconnected, consisting of two disjoint “sectors” bounded by the two branches of the
hyperbola x2

− y2 = 1; see Figure A.3. On the other hand, the complementary open set

Ω̂ = {x2
− y2 < 1} (A.9)

is connected , and consists of all points between the two hyperbolas.

A subset is called bounded if it is contained inside a (possibly large) disk, i.e., Ω ⊂ Dr

for some r > 0, as in the second picture in Figure A.2. Thus, both the closed and the open
disks (A.5), (A.6) are bounded, whereas the two hyperbolic sectors (A.8), (A.9) are both
unbounded.

The class of subsets for which the boundary value problems for the partial differential
equations of equilibrium mechanics are properly prescribed can now be defined.

Definition A.3. A planar domain is a connected, open subset Ω ⊂ R2 whose bound-
ary ∂Ω consists of one or more piecewise smooth, simple curves, such that Ω lies entirely
on one side of each of its boundary curve(s).

† See Section 12.5 for more details on convergence.
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Figure A.4. Planar Domains.

The last condition is to avoid dealing with pathologies. For example, the subset Ω\C

obtained by cutting out a curve C from the interior of an open set Ω would not be an
allowable domain.

Example A.4. The open rectangle R = {a < x < b, c < y < d} is an open, con-
nected and bounded domain. Its boundary is a piecewise smooth curve, since there are
corners where the tangent does not change continuously.

The annulus

r2 < x2 + y2 < R2, for fixed 0 < r < R, (A.10)

is an open, connected, bounded domain whose boundary consists of two disjoint concentric
circles. The degenerate case of a punctured disk , when r = 0, is not a domain since its
boundary consists of a circle and a single point — the origin.

Another well-studied example is the wedge-shaped domain W = {α < θ < β } con-
sisting of all points whose angular coordinate θ = tan−1 y/x lies between two prescribed
values. If 0 < β − α < 2π, then the wedge is a domain whose boundary consists of two
connected rays. However, if β = α+ 2π, then the wedge is obtained by cutting the plane
along a single ray at angle α. The latter case does not comply with our definition of a
domain since the wedge now lies on both sides of its boundary ray.

Any connected domain is automatically pathwise connected meaning that any two
points can be connected by (i.e., are the endpoints of) a curve lying entirely within the
domain. If the domain is bounded, which is the most important case for boundary value
problems, then its boundary consists of one or more piecewise smooth, simple, closed
curves. A bounded domain Ω is called simply connected if it has just one such boundary
curve; this means that Ω is connected and has no holes, and so its boundary ∂Ω = C is
a simple closed curve that contains Ω in its interior. For instance, an open disk and a
rectangle are both simply connected, whereas an annulus is not.

The Jordan Curve Theorem states the intuitively obvious, but actually quite deep,
result that any simple closed curve divides the plane R2 into two disjoint, connected, open
domains — its interior , which is bounded and simply connected, and its exterior , which
is unbounded and not simply connected. This result is illustrated in the final figure in
Figure A.2; the interior of the indicated simple closed curve is shaded in gray while the
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Figure A.5. Vector Fields.

exterior is in white. Note that the each subdomain lies entirely on one side of the curve,
which forms their common boundary.

The following result is often used to characterize the simple connectivity of more
general planar subsets, including unbounded domains.

Lemma A.5. A planar domain Ω ⊂ R2 is simply connected if it is connected and,
moreover, if the interior of any simple closed curve C ⊂ Ω is also contained in Ω.

For example, an annulus (A.10) is not simply connected because the interior of a circle
going around the hole is not entirely contained within the annulus. On the other hand, the
unbounded domain (A.9) lying between two branches of a hyperbola is simply connected,
even though its boundary consists of two disjoint, unbounded curves.

A.3. Vector Fields.

A vector-valued function v(x, y) =

(
v1(x, y)
v2(x, y)

)
is known as a (planar) vector field .

A vector field assigns a vector v(x, y) to each point (x, y )
T
in its domain of definition,

and hence defines a (in general nonlinear) function v: Ω → R2. The vector field can be
conveniently depicted by drawing an arrow representing the vector v = v(x, y) starting at

its point of definition (x, y )
T
. See Figure A.5 for some representative sketches.

Example A.6. Vector fields arise very naturally in physics and engineering appli-
cations from physical forces: gravitational, electrostatic, centrifugal, etc. A force field

f(x, y) = ( f1(x, y), f2(x, y) )
T
describes the direction and magnitude of the force experi-

enced by a particle at position (x, y). In a planar universe, the gravitational force field
exerted by a point mass concentrated at the origin has, according to Newtonian gravita-
tional theory, magnitude proportional to† 1/r, where r = ‖x ‖ is the distance to the origin,
and is directed towards the origin. Thus, the vector field describing gravitational force has

† In three-dimensional Newtonian gravity, 1/r is replaced by 1/r2.
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the form

f = − γ
x

‖x ‖
=

(
− γ x√
x2 + y2

,
− γ y√
x2 + y2

)T

, (A.11)

where γ > 0 denotes the constant of proportionality, namely the product of the two masses
times the universal gravitational constant. The same force law applies to the attraction,
γ > 0, and repulsion, γ < 0, of electrically charged particles.

Newton’s Laws of planetary motion produce the second order system of differential
equations

m
d2x

dt2
= f .

The solutions x(t) describe the trajectories of planets subject to a central gravitational
force, e.g., the sun. They also govern the motion of electrically charged particles under a
central electric charge, e.g., classical (i.e., not quantum) electrons revolving around a cen-
tral nucleus. In three-dimensional Newtonian mechanics, planets move along conic sections
— ellipses in the case of planets, and parabolas and hyperbolas in the case of non-recurrent
objects like some comets. Interestingly (and not as well-known), the corresponding two-
dimensional theory is not as neatly described — the typical orbit of a planet around a
planar sun does not form a simple closed curve, [45]!

Example A.7. Another important example is the velocity vector field v of a steady-
state fluid flow. The vector v(x, y) measures the instantaneous velocity of the fluid particles
(molecules or atoms) as they pass through the point (x, y). “Steady-state” means that
the velocity at a point (x, y) does not vary in time — even though the individual fluid
particles are in motion. If a fluid particle moves along the curve x(t) = (x(t), y(t))T , then
its velocity at time t is the derivative v =

¦
x of its position with respect to t. Thus, for

a time-independent velocity vector field v(x, y) = ( v1(x, y), v2(x, y) )
T
, the fluid particles

will move in accordance with an autonomous, first order system of ordinary differential
equations

dx

dt
= v1(x, y),

dy

dt
= v2(x, y). (A.12)

According to the basic theory† of systems of ordinary differential equations , an individual
particle’s motion x(t) will be uniquely determined solely by its initial position x(0) = x0.
In fluid mechanics, the trajectories of particles are known as the streamlines of the flow.
The velocity vector v is everywhere tangent to the streamlines. When the flow is steady,
the streamlines do not change in time. Individual fluid particles experience the same
motion as they successively pass through a given point in the domain occupied by the
fluid.

As a specific example, consider the vector field

v(x, y) =

(
−ω y

ω x

)
, (A.13)

† See Section 20.2 for details.
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Figure A.6. Steady State Fluid Flows.

for fixed ω > 0, which is plotted in the first figure in Figure A.5. The corresponding fluid
trajectories are found by solving the associated first order system of ordinary differential
equations

¦
x = −ω y,

¦
y = ω x,

with initial conditions x(0) = x0, y(0) = y0. This is a linear system, and can be solved by
the eigenvalue and eigenvector techniques presented in Chapter 9. The resulting flow

x(t) = x0 cosωt− y0 sinωt, y(t) = x0 sinωt+ y0 cosωt,

corresponds to a fluid that is uniformly rotating around the origin. The streamlines are
concentric circles, and the fluid particles rotate around the circles in a counterclockwise
direction with angular velocity ω, as illustrated in Figure A.6. Note that the fluid velocity
v is everywhere tangent to the circles. The origin is a stagnation point, since the velocity
field v = 0 vanishes there, and the particle at the origin does not move.

As another example, the radial vector field

v(x, y) = αx =

(
αx

αy

)
(A.14)

corresponds to a fluid source, α > 0, or sink, α < 0, at the origin, and is plotted in the
second figure in Figure A.5. The solution to the first order system of ordinary differential
equations

¦
x = αx with initial conditions x(0) = x0 gives the radial flow x(t) = eαt x0. The

streamlines are the rays emanating from the origin, and the motion is outwards (source)
or inwards (sink) depending on the sign of α. As in the rotational flow, the origin is a
stagnation point.

Combining the radial and circular flow vector fields,

v(x, y) =

(
αx− ωy

ωx+ αy

)
(A.15)

leads to a swirling source or sink — think of the water draining out of your bathtub. Again,
the flow is found by integrating a linear system of ordinary differential equations

¦
x = αx− ω y,

¦
y = ω x+ αy.
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Solving as in Chapter 9, we find that the fluid particles follow the spiral streamlines

x(t) = eαt
(
x0 cosωt− y0 sinωt

)
, y(t) = eαt

(
x0 sinωt+ y0 cosωt

)
,

again illustrated in Figure A.6.

Remark : All of the phase portraits for linear systems of first order ordinary differential
equations in two variables presented in Section 9.3 can be reinterpreted as streamline plots
for steady state fluid flows. Additional, nonlinear examples, along with numerical solution
techniques, can be found in Chapter 20.

Remark : Of course, physical fluid motion occurs in three-dimensional space. However,
any planar flow can also be viewed as a particular type of three-dimensional fluid motion
that does not depend upon the vertical coordinate. The motion on every horizontal plane
is the same, and so the planar flow represents a cross-section of the full three-dimensional
motion. For example, slicing a steady flow past a vertical cylinder by a transverse horizontal
plane results in a planar flow around a circle; see Figure fcyl .

A.4. Gradient and Curl.

In the same vein, a scalar-valued function u(x, y) is often referred to as a scalar

field , since it assigns a scalar to each point (x, y )
T
in its domain of definition. Typical

physical examples of scalar fields include temperature, deflection of a membrane, height of
a topographic map, density of a plate, and so on.

The gradient operator ∇ maps a scalar field u(x, y) to the vector field

∇u = gradu =

(
∂u/∂x

∂u/∂y

)
(A.16)

consisting of its two first order partial derivatives. The scalar field u is often referred to
as a potential function for its gradient vector field ∇u. For example, the gradient of the
potential function u(x, y) = x2 + y2 is the radial vector field ∇u = ( 2x, 2y )

T
. Similarly,

the gradient of the logarithmic potential function

u(x, y) = − γ log r = − 1
2 γ log(x2 + y2)

is the gravitational force (A.11) exerted by a point mass concentrated at the origin. Addi-
tional physical examples include the velocity potential of certain fluid velocity vector fields
and the electromagnetic potential whose gradient describes the electromagnetic force field.

Not every vector field admits a potential because not every vector field lies in the
range of the gradient operator ∇. Indeed, if u(x, y) has continuous second order partial
derivatives, and (

v1

v2

)
= v = ∇u =

(
ux
uy

)
,

then, by the equality of mixed partials,

∂v1

∂y
=

∂

∂y

(
∂u

∂x

)
=

∂

∂x

(
∂u

∂y

)
=

∂v2

∂x
.
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The resulting equation
∂v1

∂y
=

∂v2

∂x
(A.17)

constitutes one of the necessary conditions that a vector field must satisfy in order to be
a gradient. Thus, for example, the rotational vector field (A.13) does not satisfy (A.17),
and hence is not a gradient. There is no potential function for such circulating flows.

The difference between the two terms in (A.17) is known as the curl of the planar
vector field v = (v1, v2), and denoted by

†

∇∧ v = curlv =
∂v2

∂x
−

∂v1

∂y
. (A.18)

Notice that the curl of a planar vector field is a scalar field. (In contrast, in three dimen-
sions, the curl of a vector field is a vector field — see (B.76).) Thus, a necessary condition
for a vector field to be a gradient is that its curl vanish identically: ∇∧ v ≡ 0.

Even if the vector field has zero curl, it still may not be a gradient. Interestingly, the
general criterion depends only upon the topology of the domain of definition, as clarified
in the following theorem.

Theorem A.8. Let v be a smooth vector field defined on a domain Ω ⊂ R2. If

v = ∇u for some scalar function u, then ∇ ∧ v ≡ 0. If Ω is simply connected, then the
converse holds: if ∇∧ v ≡ 0 then v = ∇u for some potential function u defined on Ω.

As we shall see, this result is a direct consequence of Green’s Theorem A.25.

Example A.9. The vector field

v =

(
−y

x2 + y2
,

x

x2 + y2

)T
(A.19)

satisfies ∇ ∧ v ≡ 0. However, there is no potential function defined for all (x, y) 6= (0, 0)
such that ∇u = v. As the reader can check, the angular coordinate

u = θ = tan−1 y

x
(A.20)

satisfies ∇θ = v, but θ is not well-defined on the entire domain since it experiences a jump
discontinuity of magnitude 2π as we go around the origin. Indeed, Ω = {x 6= 0} is not
simply connected, and so Theorem A.8 does not apply. On the other hand, if we restrict
v to any simply connected subdomain Ω̂ ⊂ Ω that does not encircle the origin, then the
angular coordinate (A.20) can be unambiguously and smoothly defined on Ω̂, and does
serve as a single-valued potential function for v; see Exercise

† In this text, we adopt the more modern wedge notation ∧ for what is often denoted by a
cross ×.
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In fluid mechanics, the curl of a vector field measures the local circulation in the
associated steady state fluid flow. If we place a small paddle wheel in the fluid, then its
rate of spinning will be in proportion to ∇ ∧ v. (An explanation of this fact will appear
below.) The fluid flow is called irrotational if its velocity vector field has zero curl, and
hence, assuming Ω is simply connected, is a gradient: v = ∇u. In this case, the paddle
wheel will not spin. The scalar function u(x, y) is known as the velocity potential for
the fluid motion. Similarly, a force field that is given by a gradient f = ∇ϕ is called a
conservative force field , and the function ϕ defines the force potential.

Suppose u(x) = u(x, y) is a scalar field. Given a parametrized curve x(t) = (x(t), y(t) )
T
,

the composition f(t) = u(x(t)) = u(x(t), y(t)) indicates the behavior as we move along
the curve. For example, if u(x, y) represents the elevation of a mountain range at position
(x, y), and x(t) represents our position at time t, then f(t) = u(x(t)) is our altitude at time
t. Similarly, if u(x, y) represents the temperature at (x, y), then f(t) = u(x(t)) measures
our temperature at time t.

The rate of change of the composite function is found through the chain rule

df

dt
=

d

dt
u(x(t), y(t)) =

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
= ∇u ·

¦
x, (A.21)

and hence equals the dot product between the gradient ∇u(x(t)) and the tangent vector
¦
x(t) to the curve at the point x(t). For instance, our rate of ascent or descent as we
travel through the mountains is given by the dot product of our velocity vector with the
gradient of the elevation function. The dot product between the gradient and a fixed vector
a = ( a, b )

T
is known as the directional derivative of the scalar field u(x, y) in the direction

a, and denoted by
∂u

∂a
= a · ∇u = aux + buy. (A.22)

Thus, the rate of change of u along a curve x(t) is given by its directional derivative
∂u/∂

¦
x = ∇u ·

¦
x, as in (A.21), in the tangent direction. This leads us to one important

interpretation of the gradient vector.

Proposition A.10. The gradient ∇u of a scalar field points in the direction of

steepest increase of u. The negative gradient, −∇u, which points in the opposite direction,

indicates the direction of steepest decrease of u.

For example, if u(x, y) represents the elevation of a mountain range at position (x, y)
on a map, then ∇u tells us the direction that is steepest uphill, while −∇u points directly
downhill — the direction water will flow. Similarly, if u(x, y) represents the temperature of
a two-dimensional body, then ∇u tells us the direction in which it gets hottest the fastest.
Heat energy (like water) will flow in the opposite direction, namely in the direction of the
vector −∇u. This basic fact underlies the derivation of the multi-dimensional heat and
diffusion equations.

You need to be careful in how you interpret Theorem 19.39. Clearly, the faster you
move along a curve, the faster the function u(x, y) will vary, and one needs to take this
into account when comparing the rates of change along different curves. The easiest way
to normalize is to assume that the tangent vector a =

¦
x has norm 1, so ‖a ‖ = 1 and we
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are going through x with unit speed. Once this is done, Theorem 19.39 is an immediate
consequence of the Cauchy–Schwarz inequality (3.16). Indeed,

∣∣∣∣
∂u

∂a

∣∣∣∣ = |a · ∇u | ≤ ‖a ‖ ‖∇u ‖ = ‖∇u ‖, when ‖a ‖ = 1,

with equality if and only if a = c∇u points in the same direction as the gradient. Therefore,
the maximum rate of change is when a = ∇u/‖∇u ‖ is the unit vector in the direction of
the gradient, while the minimum is achieved when a = −∇u/‖∇u ‖ points in the opposite
direction. As a result, Theorem 19.39 tells us how to move if we wish to minimize a scalar
function as rapidly as possible.

Theorem A.11. A curve x(t) will realize the steepest decrease in the scalar field
u(x) if and only if it satisfies the gradient flow equation

¦
x = −∇u, or

dx

dt
= −

∂u

∂x
(x, y),

dy

dt
= −

∂u

∂y
(x, y).

(A.23)

The only points at which the gradient does not tell us about the directions of in-
crease/decrease are the critical points, which are, by definition, points where the gradient
vanishes: ∇u = 0. These include local maxima or minima of the function, i.e., mountain
peaks or bottoms of valleys, as well as other types of critical points like saddle points that
represent mountain passes. In such cases, we must look at the second or higher order
derivatives to tell the directions of increase/decrease; see Section 19.3 for details.

Remark : Theorem A.11 forms the basis of gradient descent methods for numerically
approximating the maxima and minima of functions. One begins with a guess (x0, y0)
for the minimum and then follows the gradient flow in to the minimum by numerically
integrating the system of ordinary differential equations (A.23). This idea will be developed
in detail in Chapter 19.

Example A.12. Consider the function u(x, y) = x2 + 2y2. Its gradient vector field

is ∇u = ( 2x, 4y )
T
, and hence the gradient flow equations (A.23) take the form

¦
x = −2x,

¦
y = −4y.

The solution that starts out at initial position (x0, y0 )
T
is

x(t) = x0 e−2 t, y(t) = y0 e−4 t. (A.24)

Note that the origin is a stable fixed point for this linear dynamical system, and the
solutions x(t)→ 0 converge exponentially fast to the minimum of the function u(x, y). If
we start out not on either of the coordinate axes, so x0 6= 0 and y0 6= 0, then the trajectory
(A.24) is a semi-parabola of the form y = cx2, where c = y0/x

2
0; see the first picture in

Figure A.7 . These curves, along with the four coordinate semi-axes, are the paths to
follow to get to the minimum 0 the fastest.
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Figure A.7. Orthogonal System of Ellipses and Parabolas.

Level Sets

Let u(x, y) be a scalar field. The curves defined by the implicit equation

u(x, y) = c (A.25)

holding the function u(x, y) constant are known as its level sets. For instance, if u(x, y)
represents the elevation of a mountain range, then its level sets are the usual contour lines
on a topographic map. The Implicit Function Theorem tells us that, away from critical
points, the level sets of a planar function are simple, though not necessarily closed, curves.

Theorem A.13. If u(x, y) has continuous partial derivatives, and, at a point,

∇u(x0, y0) 6= 0, then the level set passing through the point (x0, y0 )
T
is a smooth curve

near the point in question.

Critical points, where ∇u = 0, are either isolated points, or points of intersection of
level sets. For example the level sets of the function u(x, y) = 3x2

− 2x3 + y2 are plotted

in Figure ls . The function has critical points at ( 0, 0 )
T
and ( 0, 1 )

T
. The former is a

local minimum, and forms an isolated level point, while the latter is a saddle point, and is
the point of intersection of the level curves {u = 1}.

If we parametrize an individual level set by x(t) = (x(t), y(t) )
T
, then (A.25) tells

us that the composite function u(x(t), y(t)) = c is constant along the curve and hence its
derivative

d

dt
u(x(t), y(t)) = ∇u ·

¦
x = 0

vanishes. We conclude that the tangent vector
¦
x to the level set is orthogonal to the

gradient direction ∇u at each point. In this manner, we have established the following
additional important interpretation of the gradient, which is illustrated in Figure A.8.

Theorem A.14. The gradient ∇u of a scalar field u is everywhere orthogonal to its

level sets {u = c}.
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Figure A.8. Level Sets and Gradient.

Comparing Theorems A.11 and A.14, we conclude that the curves of steepest descent
are always orthogonal (perpendicular) to the level sets of the function. Thus, if we want
to hike uphill the fastest, we should keep our direction of travel always perpendicular to
the contour lines. Similarly, if u(x, y) represents temperature in a planar body at position
(x, y) then the level sets are the curves of constant temperature, known as the isotherms.
Heat energy will flow in the negative gradient direction, and hence orthogonally to the
isotherms.

Example A.15. Consider again the function u(x, y) = x2+2y2 from Example A.12.
Its level sets u(x, y) = x2 + 2y2 = c form a system of concentric ellipses centered at the
origin, illustrated in the second picture in Figure A.7. Theorem A.14 implies that the
parabolic trajectories (A.24) followed by the solutions to the gradient flow equations form
an orthogonal system of curves to the ellipses. This is evident in the third picture in
Figure A.7, showing that the ellipses and parabolas intersect everywhere at right angles.

A.5. Integrals on Curves.

As you know, integrals of scalar functions,

∫ b

a

f(t) dt, are taken along real intervals

[a, b ] ⊂ R. In higher dimensional calculus, there are a variety of possible types of integrals.
The closest in spirit to one-dimensional integration are “line† integrals”, in which one
integrates along a curve. In planar calculus, line integrals come in three flavors. The most
basic are the integrals of scalar functions with respect to arc length. Such integrals are used
to compute lengths of curves, and masses of one-dimensional objects like strings and wires.
The second and third varieties are used to integrate a vector field along a curve. Integrating
the tangential component of the vector field is used, for instance, to compute work and
measure circulation along the curve. The last type integrates the normal component of the

† A more accurate term would be “curve integral”, but the terminology is standard and will
not be altered in this text.
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vector field along the curve, and represents flux (fluid, heat, electromagnetic, etc.) along
the curve.

Arc Length

The length of the plane curve x(t) over the parameter range a ≤ t ≤ b is computed
by integrating the (Euclidean) norm† of its tangent vector:

L(C) =

∫ b

a

∥∥∥∥
dx

dt

∥∥∥∥ dt =

∫ b

a

√
¦
x2 +

¦
y2 dt. (A.26)

The formula is justified by taking the limit of sums of lengths of small approximating line
segments, [9]. For example, if the curve is given as the graph of a function y = f(x) for
a ≤ x ≤ b, then its length is computed by the familiar calculus formula

L(C) =

∫ b

a

√
1 +

(
dy

dx

)
2

dx. (A.27)

It is important to verify that the length of a curve does not depend upon any particular
parametrization (or even direction of traversal) of the curve.

Example A.16. The length of a circle x(t) =

(
r cos t
r sin t

)
, 0 ≤ t ≤ 2π, of radius r is

given by

L(C) =

∫ 2π

0

∥∥∥∥
dx

dt

∥∥∥∥ dt =

∫ 2π

0

r dt = 2πr,

verifying the well-known formula for its circumference. On the other hand, the curve

x(t) =

(
a cos t
b sin t

)
, 0 ≤ t ≤ 2π, (A.28)

parametrizes an ellipse with semi-axes a, b. Its arc length is given by the integral

s =

∫ 2π

0

√
a2 sin2t+ b2 cos2 t dt.

Unfortunately, this integral cannot be expressed in terms of elementary functions. It is, in
fact, an elliptic integral , [48], so named for this very reason!

A curve is said to be parametrized by arc length, written x(s) = (x(s), y(s) )
T
, if one

traverses it with constant, unit speed, which means that
∥∥∥∥

dx

ds

∥∥∥∥ = 1 (A.29)

† Alternative norms lead to alternative notions of curve length, of importance in the study of
curved spaces in differential geometry. In Einstein’s theory of relativity, one allows the norm to
vary from point to point, and hence length will vary over space.
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t n

Figure A.9. The Moving Frame for an Ellipse.

at all points. In other words, the length of that part of the curve between arc length
parameter values s = s0 and s = s1 is exactly equal to s1 − s0. To convert from a more
general parameter t to arc length s = σ(t), we must compute

s = σ(t) =

∫ t

a

∥∥∥∥
dx

dt

∥∥∥∥ dt and so ds = ‖
¦
x ‖ dt =

√
¦
x2 +

¦
y2 dt. (A.30)

The unit tangent to the curve at each point is obtained by differentiating with respect
to the arc length parameter:

t =
dx

ds
=

¦
x

‖
¦
x ‖

=

(
¦
x√

¦
x2 +

¦
y2

,

¦
y√

¦
x2 +

¦
y2

)
, so that ‖ t ‖ = 1. (A.31)

(As always, we require
¦
x 6= 0.) The unit normal to the curve is orthogonal to the unit

tangent,

n = t⊥ =

(
dy

ds
,−

dx

ds

)
=

(
¦
y√

¦
x2 +

¦
y2

,
−

¦
x√

¦
x2 +

¦
y2

)
, so that

‖n ‖ = 1,

n · t = 0.
(A.32)

At each point on the curve, the vectors t,n form an orthonormal basis of R2 known as the
moving frame along the curve. For example, for the ellipse (A.28) with semi-axes a, b, the
unit tangent and normal are given by

t =
1

a2 + b2

(
−a sin t

b cos t

)
, n =

1

a2 + b2

(
b cos t
a sin t

)
,

and graphed in Figure A.9. Actually, a curve has two unit normals at each point — one
points to our right side and the other to our left side as we move along the curve. The
normal n in (A.32) is the right-handed normal, and is the traditional one to choose; the
opposite, left-handed normal is its negative −n. If we traverse a simple closed curve in
a counterclockwise direction, then the right-handed normal n is the unit outward normal,
pointing to the curve’s exterior.
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Arc Length Integrals

We now explain how to integrate scalar functions along curves. Suppose first that C

is a (piecewise) smooth curve that is parametrized by arc length, x(s) = (x(s), y(s)) for
0 ≤ s ≤ `, where ` is the total length of C. If u(x) = u(x, y) is any scalar field, we define
its arc length integral along the curve C to be

∫

C

u ds =

∫ `

0

u(x(s), y(s)) ds. (A.33)

For example, if ρ(x, y) represents the density at position (x, y) of a wire bent in the shape

of a curve C, then the arc length integral

∫

C

ρ(x, y) ds computes the total mass of the

wire. In particular, the length of the curve is (tautologously) given by

L(C) =

∫

C

ds =

∫ `

0

ds = `. (A.34)

If we use an alternative parametrization x(t), with a ≤ t ≤ b, then the arc length integral
is computed using the change of parameter formula (A.30), and so

∫

C

u ds =

∫ b

a

u(x(t))

∥∥∥∥
dx

dt

∥∥∥∥ dt =

∫ b

a

u(x(t), y(t))

√(
dx

dt

)
2

+

(
dy

dt

)
2

dt. (A.35)

Changing the orientation of the curve does not alter the value of this type of line integral.
Moreover, if we break up the curve into two nonoverlapping pieces, then the arc length
integral decomposes into a sum:

∫

C

u ds =

∫

−C

u ds,

∫

C

u ds =

∫

C1

u ds +

∫

C2

u ds, C = C1 ∪ C2. (A.36)

Example A.17. A circular wire radius 1 has density proportional to the distance of
the point from the x axis. The mass of the wire is computed by the arc length integral

∮

C

| y | ds =

∫ 2π

0

| sin t | dt = 4.

The arc length integral was evaluated using the parametrization x(t) = ( a cos t, a sin t )
T

for 0 ≤ t ≤ 2π, whereby ds = ‖
¦
x ‖ dt = dt.

Line Integrals of Vector Fields

There are two intrinsic ways of integrating a vector field along a curve. In the first
version, we integrate its tangential component v · t, where t = dx/ds is the unit tangent
vector, with respect to arc length.
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Definition A.18. The line integral of a vector field v along a parametrized curve
x(t) is given by

∫

C

v · dx =

∫

C

v1(x, y) dx+ v2(x, y) dy =

∫

C

v · t ds. (A.37)

To evaluate the line integral, we parametrize the curve by x(t) for a ≤ t ≤ b, and then

∫

C

v · dx =

∫ b

a

v(x(t))
dx

dt
dt =

∫ b

a

[
v1(x(t), y(t))

dx

dt
+ v2(x(t), y(t))

dy

dt

]
dt. (A.38)

This result follows from the formulae (A.30), (A.31) for the arc length and unit tangent
vector. In general, line integrals are independent of how the curve is parametrized — as
long as it is traversed in the same direction. Reversing the direction of parameterization,
i.e., changing the orientation of the curve, changes the sign of the line integral — because
it reverses the direction of the unit tangent. As before, line integrals can be decomposed
into sums over components:
∫

−C

v · dx = −

∫

C

v · dx,

∫

C

v · dx =

∫

C1

v · dx +

∫

C2

v · dx, C = C1 ∪ C2.

(A.39)
In the second formula, one must take care to orient the two parts C1, C2 in the same
direction as C.

Example A.19. Let C denote the circle of radius r centered at the origin. We will
compute the line integral of the rotational vector field (A.19), namely

∮

C

v · dx =

∮

C

y dx− x dy

x2 + y2
.

The circle on the integral sign serves to remind us that we are integrating around a closed
curve. We parameterize the circle by

x(t) = r cos t, y(t) = r sin t, 0 ≤ t ≤ 2π.

Applying the basic line integral formula (A.38), we find

∮

C

y dx− x dy

x2 + y2
=

∫ 2π

0

− r2 sin2 t− r2 cos2 t

r2
dt = −2π,

independent of the circle’s radius. Note that the parametrization goes around the circle
once in the counterclockwise direction. If we go around once in the clockwise direction,
e.g., by using the parametrization x(t) = (r sin t, r cos t), then the resulting line integral
equals +2π.

If v represents the velocity vector field of a steady state fluid, then the line integral
(A.37) represents the circulation of the fluid around the curve. Indeed, v ·t is proportional
to the force exerted by the fluid in the direction of the curve, and so the circulation integral
measures the average of the tangential fluid forces around the curve. Thus, for example,
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the rotational vector field (A.19) has a net circulation of −2π around any circle centered
at the origin. The minus sign tells us that the fluid is circulating in the clockwise direction
— opposite to the direction in which we went around the circle.

A fluid flow is irrotational if the circulation is zero for all closed curves. An irrotational
flow will not cause a paddle wheel to rotate — there will be just as much fluid pushing in
one direction as in the opposite, and the net tangential forces will cancel each other out.
The connection between circulation and the curl of the velocity vector field will be made
evident shortly.

If the vector field happens to be the gradient of a scalar field, then we can readily
evaluate its line integral.

Theorem A.20. If v = ∇u is a gradient vector field, then its line integral

∫

C

∇u · dx = u(b)− u(a) (A.40)

equals the difference in values between the potential function at the endpoints a = x(a)
and b = x(b) of the curve C.

Thus, the line integral of a gradient field is independent of path; its value does not
depend on how you get from point a to point b. In particular, if C is a closed curve, then

∮

C

∇u · dx = 0,

since the endpoints coincide: a = b. In fact, independence of path is both necessary and
sufficient for the vector field to be a gradient.

Theorem A.21. Let v be a vector field defined on a domain Ω. Then the following
are equivalent:

(a) The line integral

∫

C

v · dx is independent of path.

(b)

∮

C

v · dx = 0 for every closed curve C.

(c) v = ∇u is the gradient of some potential function defined on Ω.

In such cases, a potential function can be computed by integrating the vector field

u(x) =

∫ x

a

v · dx. (A.41)

Here a is any fixed point (which defines the zero potential level), and we evaluate the
line integral over any curve that connects a to x; path-independence says that it does not
matter which curve we use to get from a to x. The proof that ∇u = v is left as an exercise.

Example A.22. The line integral
∫

C

v · dx =

∫

C

(x2
− 3y) dx+ (2− 3x) dy
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of the vector field v =
(
x2
− 3y, 2− 3x

)T
is independent of path. Indeed, parametrizing

a curve C by (x(t), y(t)), a ≤ t ≤ b, leads to

∫

C

(x2
− 3y) dx+ (2− 3x) dy =

∫ b

a

[
(x2

− 3y)
dx

dt
+ (2− 3x)

dy

dt

]
dt

=

∫ b

a

d

dt

(
x3
− 3xy + 2y

)
dt =

(
x3
− 3xy + 2y

) ∣∣∣∣
b

t=a

.

The result only depends on the endpoints a = (x(a), y(a) )
T
, b = (x(b), y(b) )

T
, and not

on the detailed shape of the curve. Integrating from a = 0 to b = (x, y) produces the
potential function

u(x, y) = x3
− 3xy + 2y.

As guaranteed by (A.41), ∇u = v.

On the other hand, the line integral
∫

C

v · dx =

∫

C

(x3
− 2y) dx+ x2 dy

of the vector field v =
(
x3
− 2y, x2

)T
is not path-independent, and so v does not admit a

potential function. Indeed, integrating from (0, 0) to (1, 1) along the straight line segment
{ (t, t) | 0 ≤ t ≤ 1 }, produces

∫

C

(x3
− 2y) dx+ x2 dy =

∫ 1

0

(
t3 − 2 t+ t2

)
dt = − 5

12 .

On the other hand, integrating along the parabola { (t, t2) | 0 ≤ t ≤ 1 }, yields a different
value ∫

C

(x3
− 2y) dx+ x2 dy =

∫ 1

0

(
t3 − 2 t2 + 2 t3

)
dt = 1

12 .

If v represents a force field, then the line integral (A.37) represents the amount of
work required to move along the given curve. Work is defined as force, or, more correctly,
the tangential component of the force in the direction of motion, times distance. The
line integral effectively totals up the infinitesimal contributions, the sum total representing
the total amount of work expended in moving along the curve. Note that the work is
independent of the parametrization of the curve. In other words (and, perhaps, counter-
intuitively†), the amount of work expended doesn’t depend upon how fast you move along
the curve.

According to Theorem A.21, the work does not depend on the route you use to get
from one point to the other if and only if the force field admits a potential function:
v = ∇u. Then, by (A.40), the work is just the difference in potential at the two points. In

† The reason this doesn’t agree with our intuition about work is that we are not taking frictional
effects into account, and these are typically velocity-dependent.
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particular, for a gradient vector field there is no net work required to go around a closed
path.

Flux

The second type of line integral is found by integrating the normal component of the
vector field along the curve: ∫

C

v · n ds. (A.42)

Using the formula (A.32) for the unit normal, we find that the inner product can be
rewritten in the alternative form

v · n = v1

dy

ds
− v2

dx

ds
= v⊥ · t ,

where t = dx/ds is the unit tangent, while

v⊥ = (−v2, v1 )
T

(A.43)

is a vector field that is everywhere orthogonal to the velocity vector field v = ( v1, v2 )
T
.

Thus, the normal line integral (A.42) can be rewritten as a tangential line integral

∫

C

v · n ds =

∫

C

v1 dy − v2 dx =

∫

C

v ∧ dx =

∫

C

v⊥ · dx =

∫

C

v⊥ · t ds. (A.44)

If v represents the velocity vector field for a steady-state fluid flow, then the inner
product v · n with the unit normal measures the flux of the fluid flow across the curve at
the given point. The flux is positive if the fluid is moving in the normal direction n and
negative if it is moving in the opposite direction. If the vector field admits a potential,
v = ∇u, then the flux

v · n = ∇u · n =
∂u

∂n
(A.45)

equals its normal derivative, i.e., the directional derivative of the potential function u in

the normal direction to the curve. The line integral

∫

C

v · n ds sums up the individual

fluxes, and so represents the total flux across the curve, meaning the total volume of fluid
that passes across the curve per unit time — in the direction assigned by the unit normal
n. In particular, if C is a simple closed curve and n is the outward normal, then the flux
integral (A.42) measures the net outflow of fluid across C; if negative, it represents an
inflow. The total flux is zero if and only if the total amount of fluid contained within the
curve does not change. Thus, in the absence of sources or sinks, an incompressible fluid,
such as water, will have zero net flux around any closed curve since the total amount of
fluid within any given region cannot change.

Example A.23. For the radial vector field

v = x =

(
x

y

)
, we have v⊥ =

(
−y

x

)
.
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Figure A.10. Double Integration Domain.

As we saw in Example A.7, v represents the fluid flow due to a source at the origin. Thus,
the resulting fluid flux across a circle C of radius r is computed using the line integral

∮

C

v · n ds =

∮

C

x dy − y dx =

∫ 2π

0

r2 sin2 t+ r2 cos2 t dt = 2π r2.

Therefore, the source fluid flow has a net outflow of 2π r2 units across a circle of radius r.
This is not an incompressible flow!

A.6. Double Integrals.

We assume that the student is familiar with the foundations of multiple integration,
and merely review a few of the highlights in this section. Given a scalar function u(x, y)
defined on a domain Ω, its double integral

∫ ∫

Ω

u(x, y) dx dy =

∫ ∫

Ω

u(x) dx (A.46)

is equal to the volume of the solid lying underneath the graph of u over Ω. If u(x, y)
represents the density at position (x, y)T in a plate having the shape of the domain Ω,
then the double integral (A.46) measures the total mass of the plate. In particular,

area Ω =

∫ ∫

Ω

dx dy

is equal to the area of the domain Ω.

In the particular case when

Ω =
{

ϕ(x) < y < ψ(x), a < x < b
}

(A.47)

is given as the region lying between the graphs of two functions, as in Figure A.10, then
we can evaluate the double integral by repeated scalar integration,

∫ ∫

Ω

u(x, y) dx dy =

∫ b

a

(∫ ψ(x)

ϕ(x)

u(x, y) dy

)
dx, (A.48)
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in the two coordinate directions. Fubini’s Theorem states that one can equally well evaluate
the integral in the reverse order

∫ ∫

Ω

u(x, y) dx dy =

∫ d

c

(∫ β(y)

α(y)

u(x, y) dx

)
dy (A.49)

in the case
Ω =

{
α(y) < x < β(y), c < y < d

}
(A.50)

lies between the graphs of two functions of y.

Example A.24. Compute the volume of the solid lying under the positive part of
the paraboloid z = 1− x2

− y2. Note that z > 0 if and only if x2 + y2 < 1, and hence we
should evaluate the double integral

∫ ∫

Ω

(1− x2
− y2) dx dy

over the unit disk Ω =
{

x2 + y2 < 1
}
. We may represent the disk in the form (A.47), so

that
Ω =

{
−

√
1− x2 < y <

√
1− x2, −1 < x < 1

}
.

Therefore, we evaluate the volume by repeated integration

∫ ∫

Ω

[1− x2
− y2 ] dx dy =

∫ 1

−1

[∫ √
1−x2

−
√

1−x2

(1− x2
− y2) dy

]
dx

=

∫ 1

−1

[
(y − x2 y − 1

3 y3)
∣∣∣
√

1−x2

y=−
√

1−x2

]
dx =

∫ 1

−1

4
3 (1− x2)3/2 dx = 1

2 π.

The final integral is most easily effected via a trigonometric substitution.

Alternatively, and much easier, one can use polar coordinates to evaluate the integral.
The unit disk takes the form D = {0 ≤ r < 1, 0 ≤ θ < 2π}, and so

∫ ∫

D

(1− x2
− y2) dx dy =

∫ ∫

D

(1− r2) r dr dθ =

∫ 1

0

(∫ 2π

0

(r − r3) dθ

)
dr = 1

2 π.

We are using the standard formula

dx dy = r dr dθ (A.51)

for the area element in polar coordinates, [9].

The polar integration formula (A.51) is a consequence of the general change of variables
formula for double integrals. If

x = x(s, t), y = y(s, t),

is an invertible change of variables that maps ( s, t )
T
∈ D to (x, y )

T
∈ Ω, then

∫ ∫

Ω

u(x, y) dx dy =

∫ ∫

D

stU(s, t)

∣∣∣∣
∂(x, y)

∂(s, t)

∣∣∣∣ . (A.52)
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Here U(s, t) = u(x(s, t), y(s, t)) denotes the function when rewritten in the new variables,
while

∂(x, y)

∂(s, t)
= det

(
xs xt
ys yt

)
=

∂x

∂s

∂y

∂t
−

∂x

∂t

∂y

∂s
(A.53)

is the Jacobian determinant of the functions x, y with respect to the variables s, t, which
measures the local change in area under the map.

In the event that the domain of integration is more complicated than either (A.47) or
(A.50), then one performs “surgery” by chopping up the domain

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk

into smaller pieces. The pieces Ωi are not allowed to overlap, and so have at most their
boundary curves in common. The double integral

∫ ∫

Ω

u(x, y) dx dy =

∫ ∫

Ω1

u(x, y) dx dy + · · · +

∫ ∫

Ωk

u(x, y) dx dy (A.54)

can then be evaluated as a sum of the double integrals over the individual pieces.

A.7. Green’s Theorem.

For double integrals, the role of the Fundamental Theorem of Calculus is played by
Green’s Theorem. The Fundamental Theorem relates an integral over an interval I = [a, b ]
to an evaluation at the boundary ∂I = {a, b}, which consists of the two endpoints of the
interval. In a similar manner, Green’s Theorem relates certain double integrals over a
planar domain Ω to line integrals around its boundary curve(s) ∂Ω.

Theorem A.25. Let v(x) be a smooth vector field defined on a bounded domain
Ω ⊂ R2. Then the line integral of v around the boundary ∂Ω equals the double integral of
the curl of v over the domain. This result can be written in either of the equivalent forms

∫ ∫

Ω

∇∧ v dx =

∮

∂Ω

v · dx,

∫ ∫

Ω

(
∂v2

∂x
−

∂v1

∂y

)
dx dy =

∮

∂Ω

v1 dx+ v2 dy .

(A.55)

An outline of the proof appears in Exercise . Green’s Theorem was first formulated
in 1828 by the English mathematician and miller George Green, and, contemporaneously,
by the Russian mathematician Mikhail Ostrogradski.

Example A.26. Let us apply Green’s Theorem A.25 to the particular vector field
v = ( 0, x )

T
. Since ∇∧ v ≡ 1, we find

∮

∂Ω

x dy =

∫ ∫

Ω

dx dy = area Ω.

This means that we can compute the area of a planar domain by computing the indicated
line integral around its boundary! For example, to compute the area of a disk Dr of radius

r, we parametrize its bounding circle Cr by ( r cos t, r sin t )
T
for 0 ≤ t ≤ 2π, and compute

area Dr =

∮

Cr

x dy =

∫ 2π

0

r2 cos2 t dt = πr2.
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If we interpret v as the velocity vector field associated with a steady state fluid flow,
then the right hand side of formula (A.55) represents the circulation of the fluid around
the boundary of the domain Ω. Green’s Theorem implies that the double integral of the
curl of the velocity vector must equal this circulation line integral.

According to (mean2 ), if we divide the double integral in (A.55) by the area of the
domain,

1

area Ω

∫ ∫

Ω

∇∧ v dx = MΩ [∇∧ v ] ,

we obtain the mean of the curl ∇ ∧ v of the vector field over the domain. In particular,
if the domain Ω is very small, then ∇ ∧ v does not vary much, and so its value at any
point in the domain is more or less equal to the mean. On the other hand, the right hand
side of (A.55) represents the circulation around the boundary ∂Ω. Thus, we conclude that
the curl ∇ ∧ v of the velocity vector field represents an “infinitesimal circulation” at the
point it is evaluated. In particular, the fluid is irrotational, with no net circulation around
any curve, if and only if ∇∧ v ≡ 0 everywhere. Under the assumption that its domain of
definition is simply connected, Theorem A.21 tell us that this is equivalent to the existence
of a velocity potential u with ∇u = v.

We can also apply Green’s Theorem A.25 to flux line integrals of the form (A.42).
Using the identification (A.44) followed by (A.55), we find that

∮

∂Ω

v · n ds =

∮

∂Ω

v⊥ · dx =

∫ ∫

Ω

∇∧ v⊥ dx dy.

However, note that the curl of the orthogonal vector field (A.43), namely

∇∧ v⊥ =
∂v1

∂x
+

∂v2

∂y
= ∇ · v, (A.56)

coincides with the divergence of the original velocity field. Combining these together, we
have proved the divergence or flux form of Green’s Theorem:

∫ ∫

Ω

∇ · v dx dy =

∮

∂Ω

v · n ds. (A.57)

As before, Ω is a bounded domain, and n is the unit outward normal to its boundary ∂Ω.

In the fluid flow interpretation, the right hand side of (A.57) represents the net fluid
flux out of the region Ω. Thus, the double integral of the divergence of the flow vector
must equal this net change in area. Thus, in the absence of sources or sinks, the divergence
of the velocity vector field, ∇ ·v will represent the local change in area of the fluid at each
point. In particular, if the fluid is incompressible if and only if ∇ · v ≡ 0 everywhere.

An ideal fluid flow is both incompressible, ∇ · v = 0, and irrotational, ∇ ∧ v = 0.
Assuming its domain is simply connected, we introduce velocity potential u(x, y), so ∇u =
v. Therefore,

0 = ∇ · v = ∇ · ∇u = uxx + uyy. (A.58)

Therefore, the velocity potential for an incompressible, irrotational fluid flow is a harmonic
function, i.e., it satisfies the Laplace equation! Water waves are typically modeled in
this manner, and so many problems in fluid mechanics rely on the solution to Laplace’s
equation.
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Appendix B

Vector Calculus in Three Dimensions

Before continuing on to the analysis of partial differential equations in three space
dimensions, we should first review the fundamentals of three-dimensional vector calculus.
The student is expected to have already encountered most of these topics in an introduc-
tory multi-variable calculus course. We shall be dealing with calculus on curves, surfaces
and solid bodies in three-dimensional space. The three methods of integration — line,
surface and volume (triple) integrals — and the fundamental vector differential operators
— gradient, curl and divergence — are intimately related. The differential operators and
integrals underlie the multivariate versions of the fundamental theorem of calculus, known
as Stokes’ Theorem and the Divergence Theorem.

All of these topics will be reviewed in rapid succession, with most details being rel-
egated to the exercises. A more detailed development can be found in any reasonable
multi-variable calculus text, including [9, 38, 58].

B.1. Dot and Cross Product.

We begin by reviewing the basic algebraic operations between vectors in three-dim-
ensional space R3. We shall continue to use column vector notation

v =




v1

v2

v3


 = ( v1, v2, v3 )

T
∈ R3.

The standard basis vectors of R3 are

e1 = i =



1
0
0


, e2 = j =



0
1
0


, e3 = k =



0
0
1


. (B.1)

We prefer the former notation, as it easily generalizes to n-dimensional space. Any vector

v =




v1

v2

v3


 = v1 e1 + v2 e2 + v3 e3

is a linear combination of the basis vectors. The coefficients he v1, v2, v3 are the coordinates
of the vector with respect to the standard basis.
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Space comes equipped with an orientation — either right- or left-handed. One cannot
alter† the orientation by physical motion, although looking in a mirror — or, mathemat-
ically, performing a reflection — reverses the orientation. The standard basis vectors are
graphed with a right-hand orientation, as in Figure rhr . When you point with your right
hand, e1 lies in the direction of your index finger, e2 lies in the direction of your middle
finger, and e3 is in the direction of your thumb. In general, a set of three linearly inde-
pendent vectors v1,v2,v3 is said to have a right-handed orientation if they have the same
orientation as the standard basis. It is not difficult to prove that this is the case if and
only if the determinant of the 3×3 matrix whose columns are the given vectors is positive:
det (v1,v2,v3 ) > 0. Interchanging the order of the vectors may switch their orientation;
for example if v1,v2,v3 are right-handed, then v2,v1,v3 is left-handed.

We have already made extensive use of the Euclidean dot product

v ·w = v1 w1 + v2 w2 + v3 w3, where v =




v1

v2

v3


, w =




w1

w2

w3


, (B.2)

along with the Euclidean norm

‖v ‖ =
√
v · v =

√
v2
1 + v2

2 + v2
3 . (B.3)

As in Definition 3.1, the dot product is bilinear, symmetric: v ·w = w · v, and positive.
The Cauchy–Schwarz inequality

|v ·w | ≤ ‖v ‖ ‖w ‖. (B.4)

implies that the dot product can be used to measure the angle θ between the two vectors
v and w:

v ·w = ‖v ‖ ‖w ‖ cos θ. (B.5)

(See also (3.15).)

Remark : In this chapter, we will only use the Euclidean dot product and its associ-
ated norm. Adapting the constructions to more general norms and inner products is an
interesting exercise, but will not concern us here.

Also of great importance — but particular to three-dimensional space — is the cross
product between vectors. While the dot product produces a scalar, the three-dimensional
cross product produces a vector, defined by the formula

v ∧w =




v2 w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1


 where v =




v1

v2

v3


, w =




w1

w2

w3


, (B.6)

† This assumes that space is identified with the three-dimensional Euclidean space R3, or,
more generally, an oriented three-dimensional manifold, [dg].
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We have chosen to employ the more modern wedge notation rather the more traditional
cross symbol, v×w, for this quantity. The cross product formula is most easily memorized
as a formal 3× 3 determinant

v ∧w = det




v1 w1 e1

v2 w2 e2

v3 w3 e3


 = (v2w3 − v3w2) e1 + (v3w1 − v1w3) e2 + (v1w2 − v2w1) e3,

(B.7)
involving the standard basis vectors (B.1). We note that, like the dot product, the cross
product is a bilinear function, meaning that

(cu+ dv) ∧w = c (u ∧w) + d (v ∧w), u ∧ (cv + dw) = c (u ∧ v) + d (u ∧w),
(B.8)

for any vectors u,v,w ∈ R3 and any scalars c, d ∈ R. On the other hand, unlike the dot
product, the cross product is an anti-symmetric quantity

v ∧w = −w ∧ v, (B.9)

which changes its sign when the two vectors are interchanged. In particular, the cross
product of a vector with itself is automatically zero:

v ∧ v = 0.

Geometrically, the cross product vector u = v ∧w is orthogonal to the two vectors v
and w:

v · (v ∧w) = 0 = w · (v ∧w).

Thus, when v and w are linearly independent, their cross product u = v ∧w 6= 0 defines
a normal direction to the plane spanned by v and w. The direction of the cross product
is fixed by the requirement that v,w,u = v ∧w form a right-handed triple. The length
of the cross product vector is equal to the area of the parallelogram defined by the two
vectors, which is

‖v ∧w ‖ = ‖v ‖ ‖w ‖ | sin θ | (B.10)

where θ is than angle between the two vectors, as in Figure para . Consequently, the cross
product vector is zero, v ∧ w = 0, if and only if the two vectors are collinear (linearly
dependent) and hence only span a line.

The scalar triple product u · (v ∧w) between three vectors u,v,w is defined as the
dot product between the first vector with the cross product of the second and third vec-
tors. The parenthesis is often omitted because there is only one way to make sense of
u · v ∧ w. Combining (B.2), (B.7), shows that one can compute the triple product by the
determinantal formula

u · v ∧w = det




u1 v1 w1

u2 v2 w2

u3 v3 w3


 . (B.11)

By the properties of the determinant, permuting the order of the vectors merely changes
the sign of the triple product:

u · v ∧w = −v · u ∧w = +v ·w ∧ u = · · · .
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The triple product vanishes, u · v ∧ w = 0, if and only if the three vectors are linearly
dependent, i.e., coplanar or collinear. The triple product is positive, u · v ∧w > 0 if and
only if the three vectors form a right-handed basis. Its magnitude |u · v ∧w | measures
the volume of the parallelepiped spanned by the three vectors u,v,w, as in Figure ppp .

B.2. Curves.

A space curve C ⊂ R3 is parametrized by a vector-valued function

x(t) =




x(t)
y(t)
z(t)


 ∈ R3, a ≤ t ≤ b, (B.12)

that depends upon a single parameter t that varies over some interval. We shall always
assume that x(t) is continuously differentiable. The curve is smooth provided its tangent
vector is continuous and everywhere nonzero:

dx

dt
=

¦
x =




¦
x
¦
y
¦
z


6= 0. (B.13)

As in the planar situation, the smoothness condition (B.13) precludes the formulation of
corners, cusps or other singularities in the curve.

Physically, we can think of a curve as the trajectory described by a particle moving in
space. At each time t, the tangent vector

¦
x(t) represents the instantaneous velocity of the

particle. Thus, as long as the particle moves with nonzero speed, ‖
¦
x ‖ =

√
¦
x2 +

¦
y2 +

¦
z2 >

0, its trajectory is necessarily a smooth curve.

Example B.1. A charged particle in a constant magnetic field moves along the curve

x(t) =




ρ cos t
ρ sin t

c t


, (B.14)

where c > 0 and ρ > 0 are positive constants. The curve describes a circular helix of radius
ρ spiraling up the z axis. The parameter c determines the pitch of the helix, indicating how
tightly its coils are wound; the smaller c is, the closer the winding. See Figure helix for
an illustration. DNA is, remarkably, formed in the shape of a (bent and twisted) double
helix. The tangent to the helix at a point x(t) is the vector

¦
x(t) =



−ρ sin t

ρ cos t
c


.

Note that the speed of the particle,

‖
¦
x ‖ =

√
ρ2 sin2 t+ ρ2 cos2 t+ c2 =

√
ρ2 + c2 , (B.15)

remains constant, although the velocity vector
¦
x twists around.
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Figure B.1. Two Views of a Trefoil Knot.

Most of the terminology introduced in Chapter A for planar curves carries over to
space curves without significant alteration. In particular, a curve is simple if it never
crosses itself, and closed if its ends meet, x(a) = x(b). In the plane, simple closed curves
are all topologically equivalent, meaning one can be continuously deformed to the other.
In space, this is no longer true. Closed curves can be knotted, and thus have nontrivial
topology.

Example B.2. The curve

x(t) =



(2 + cos 3 t) cos 2 t
(2 + cos 3 t) sin 2 t

sin 3 t


 for 0 ≤ t ≤ 2π, (B.16)

describes a closed curve that is in the shape of a trefoil knot, as depicted in Figure B.1. The
trefoil is a genuine knot, meaning it cannot be deformed into an unknotted circle without
cutting and retying. (However, a rigorous proof of this fact is not easy.) The trefoil is the
simplest of the “toroidal knots”, investigated in more detail in Exercise .

The study and classification of knots is a subject of great historical importance. In-
deed, they were first considered from a mathematical viewpoint in the nineteenth cen-
tury, when the English applied mathematician William Thompson (later Lord Kelvin),
[Kelvin], proposed a theory of atoms based on knots! In recent years, knot theory has
witnessed a tremendous revival, owing to its great relevance to modern day mathematics
and physics. We refer the interested reader to the advanced text [92] for details.

B.3. Line Integrals.

In Section A.5, we encountered three different types of line integrals along plane
curves. Two of these — integrals with respect to arc length, (A.35), and circulation
integrals, (A.37) — are directly applicable to space curves. On the other hand, for three-
dimensional flows, the analog of the flux line integral (A.42) is a surface integral, and will
be discussed later in the chapter.

1/12/04 999 c© 2003 Peter J. Olver



Arc Length

The length of the space curve x(t) over the parameter range a ≤ t ≤ b is computed
by integrating the norm of its tangent vector:

L(C) =

∫ b

a

∥∥∥∥
dx

dt

∥∥∥∥ dt =

∫ b

a

√
¦
x2 +

¦
y2 +

¦
z2 dt . (B.17)

It is not hard to show that the length of the curve is independent of the parametrization
— as it should be.

Starting at the endpoint x(a), the arc length parameter s is given by

s =

∫ t

a

∥∥∥∥
dx

dt

∥∥∥∥ dt and so ds = ‖
¦
x ‖ dt =

√
¦
x2 +

¦
y2 +

¦
z2 dt. (B.18)

The arc length s measures the distance along the curve starting from the initial point x(a).
Thus, the length of the part of the curve between s = α and s = β is exactly β − α. It
is often convenient to reparametrize the curve by its arc length, x(s). This has the same
effect as moving along the curve at unit speed, since, by the chain rule,

dx

ds
=

dx

dt

dt

ds
=

¦
x

‖
¦
x ‖

, so that

∥∥∥∥
dx

ds

∥∥∥∥ = 1.

Therefore dx/ds is the unit tangent vector pointing in the direction of motion along the
curve.

Example B.3. The length of one turn of a helix (B.14) is, using (B.15),

L(C) =

∫ 2π

0

∥∥∥∥
dx

dt

∥∥∥∥ dt =

∫ 2π

0

√
ρ2 + c2 dt = 2π

√
ρ2 + c2 .

The arc length parameter, measured from the point x(0) = ( r, 0, 0 )
T
is merely a rescaling,

s =

∫ t

0

√
ρ2 + c2 dt =

√
ρ2 + c2 t,

of the original parameter t. When the helix is parametrized by arc length,

x(s) =

(
ρ cos

s√
ρ2 + c2

, ρ sin
s√

ρ2 + c2
,

c s√
ρ2 + c2

)T

,

we move along it with unit speed. It now takes time s = 2π
√

ρ2 + c2 to complete on turn
of the helix.

Example B.4. To compute the length of the trefoil knot (B.16), we begin by com-
puting the tangent vector

dx

dt
=



−2 (2 + cos 3 t) sin 2 t− 3 sin 3 t cos 2 t
2 (2 + cos 3 t) cos 2 t− 3 sin 3 t sin 2 t

3 cos 3 t


.
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After some algebra involving trigonometric identities, we find

‖
¦
x ‖ =

√

27 + 16 cos 3 t+ 2 cos 6 t ,

which is never 0. Unfortunately, the resulting arc length integral

∫ 2π

0

‖
¦
x ‖ dt =

∫ 2π

0

√

27 + 16 cos 3 t+ 2 cos 6 t dt

cannot be completed in elementary terms. Numerical integration can be used to find the
approximate value 31.8986 for the length of the knot.

The arc length integral of a scalar field u(x) = u(x, y, z) along a curve C is

∫

C

u ds =

∫ `

0

u(x(s)) ds =

∫ `

0

u(x(s), y(s), z(s)) ds, (B.19)

where ` is the total length of the curve. For example, if ρ(x, y, z) represents the density at

position x = (x, y, z) of a wire bent in the shape of the curve C, then

∫

C

ρ ds represents

the total mass of the wire. In particular, the integral

∫

C

ds =

∫ `

0

ds = `

recovers the length of the curve.

If it is not convenient to work directly with the arc length parametrization, we can still
compute the arc length integral in terms of the original parametrization x(t) for a ≤ t ≤ b.
Using the change of parameter formula (B.18), we find

∫

C

u ds =

∫ b

a

u(x(t)) ‖
¦
x ‖ dt =

∫ b

a

u(x(t), y(t), z(t))
√

¦
x2 +

¦
y2 +

¦
z2 dt. (B.20)

Example B.5. The density of a wire that is wound in the shape of a helix is
proportional to its height. Let us compute the mass of one full turn of the helical wire.
Thus, the density is given by ρ(x, y, z) = a z, where a is the constant of proportionality,
and we are assuming z ≥ 0. Substituting into (B.20), the total mass of the wire is

L(C) =

∫

C

a z ds =

∫ 2π

0

a c t
√

r2 + c2 dt = 2π2 a c
√

r2 + c2 .

Line Integrals of Vector Fields

As in the two-dimensional situation (A.37), the line integral of a vector field v along a
parametrized curve x(t) is obtained by integration of its tangential component with respect
to the arc length. The tangential component of v is given by

v · t, where t =
dx

ds
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is the unit tangent vector to the curve. Thus, the line integral of v is written as

∫

C

v · dx =

∫

C

v1(x, y, z) dx+ v2(x, y, z) dy + v3(x, y, z) dz =

∫

C

v · t ds. (B.21)

We can evaluate the line integral in terms of an arbitrary parametrization of the curve by
the general formula

∫

C

v · dx =

∫ b

a

v(x(t)) ·
dx

dt
dt (B.22)

=

∫ b

a

[
v1(x(t), y(t), z(t))

dx

dt
+ v2(x(t), y(t), z(t))

dy

dt
+ v3(x(t), y(t), z(t))

dz

dt

]
dt.

Line integrals in three dimensions enjoy all of the properties of their two-dimensional
siblings: Reversing the direction of parameterization along the curve changes the sign;
also, the integral can be decomposed into sums over components:

∫

−C

v · dx = −

∫

C

v · dx,

∫

C

v · dx =

∫

C1

v · dx +

∫

C2

v · dx, C = C1 ∪ C2.

(B.23)

If f(x) represents a force field, e.g., gravity, electromagnetic force, etc., then its line

integral

∫

C

f · dx represents the work done by moving along the curve. As in two dimen-

sions, work is independent of the parametrization of the curve, i.e., the particle’s speed of
traversal.

Example B.6. Our goal is to move a mass through the force field f = ( y,−x, 1 )
T

starting from the initial point ( 1, 0, 1 )
T
and moving vertically to the final point ( 1, 0, 2π )

T
.

Question: does it require more work to move in a straight line x(t) = ( 1, 0, t )
T
or along

the spiral helix x(t) = ( cos t, sin t, t )
T
, where, in both cases, 0 ≤ t ≤ 2π? The work line

integral has the form

∫

C

f · dx =

∫

C

y dx− x dy + dz =

∫ 2π

0

[
y

dx

dt
− x

dy

dt
+

dz

dt

]
dt.

Along the straight line, the amount of work is

∫

C

f · dx =

∫ 2π

0

dt = 2π.

As for the spiral helix,

∫

C

f · dx =

∫ 2π

0

[
− sin2 t− cos2 t+ 1

]
dt = 0.

Thus, although we travel a more roundabout route, it takes no work to move along the
helix!

1/12/04 1002 c© 2003 Peter J. Olver



The reason for the second result is that the force vector field f is everywhere orthogonal
to the tangent to the curve: f · t = 0, and so there is no tangential force exerted upon the
motion. In such cases, the work line integral

∫

C

f · dx =

∫

C

f · t ds = 0

automatically vanishes. In other words, it takes no work whatsoever to move in any
direction which is orthogonal to the given force vector.

B.4. Surfaces.

Curves are one-dimensional, and so can be traced out by a single parameter. Surfaces
are two-dimensional, and hence require two distinct parameters. Thus, a surface S ⊂ R3

is parametrized by a vector-valued function

x(p, q) = (x(p, q), y(p, q), z(p, q) )
T

(B.24)

that depends on two variables. As the parameters (p, q) ∈ Ω range over a prescribed
plane domain Ω ⊂ R2, the locus of points x(p, q) traces out the surface in space. See
Figure surf for an illustration. The parameters are often thought of as defining a system
of local coordinates on the curved surface.

We shall always assume that the surface is simple, meaning that it does not intersect
itself, so x(p, q) = x(p̃, q̃) if and only if p = p̃ and q = q̃. In practice, this condition can be
quite hard to check! The boundary

∂S = { x(p, q) | (p, q) ∈ ∂Ω } (B.25)

of a simple surface consists of one or more simple curves, as in Figure surf . If the
underlying parameter domain Ω is bounded and simply connected, then ∂Ω is a simple
closed plane curve, and so ∂S is also a simple closed curve.

Example B.7. The simplest instance of a surface is a graph of a function. The
parameters are the x, y coordinates, and the surface coincides with the portion of the
graph of the function z = u(x, y) that lies over a fixed domain (x, y) ∈ Ω ⊂ R2, as
illustrated in Figure gsurf . Thus, a graphical surface has the parametric form

x(p, q) = ( p, q, u(p, q) )
T

, (p, q) ∈ Ω.

Thus, the parametrization identifies x = p and y = q, while z = u(p, q) = u(x, y) represents
the height of the surface above the point (x, y) ∈ Ω.

For example, the upper hemisphere S+
r of radius r centered at the origin can be

parametrized as a graph

z =
√

r2 − x2 − y2, x2 + y2 < r2, (B.26)

sitting over the disk Dr = {x
2 + y2 < r2

} of radius r. The boundary of the hemisphere
is the image of the circle Cr = ∂Dr = {x

2 + y2 = r2
} of radius r, and is itself a circle of

radius r sitting in the x, y plane: ∂S+
r = {x

2 + y2 = r, z = 0}.
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Remark : One can interpret the Dirichlet problem (15.1), (15.4) for the two-dimen-
sional Laplace equation as the problem of finding a surface S that is the graph of a
harmonic function with a prescribed boundary ∂S = {z = h(x, y) for (x, y) ∈ ∂Ω}.

Example B.8. A sphere Sr of radius r can be explicitly parametrized by two angular
variables ϕ, θ in the form

x(ϕ, θ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ), 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π. (B.27)

The reader can easily check that ‖x ‖2 = r2, as it should be. As illustrated in Fig-
ure sangle , θ measures the meridial angle or longitude, while ϕ measures the azimuthal
angle or latitude. Thus, the upper hemisphere S+

r is obtained by restricting the azimuthal
parameter to the range 0 ≤ ϕ ≤ 1

2π. Each parameter value ϕ, θ corresponds to a unique
point on the sphere, except when ϕ = 0 or π. All points (θ, 0) are mapped to the north pole
( 0, 0, r ), while all points (θ, π) are mapped to the south pole ( 0, 0,−r ). Away from the
poles, the spherical angles provide bona fide coordinates on the sphere. Fortunately, the
polar singularities do not interfere with the overall smoothness of the sphere. Nevertheless,
one must always be careful at or near these two distinguished points.

The curves {ϕ = c} where the azimuthal angle takes a prescribed constant value are
the circular parallels of constant latitude — except for the north and south poles which
are merely points. The equator is at ϕ = 1

2 π, while the tropics of Cancer and Capricorn

are 23 1
2

◦
≈ 0.41 radians above and below the equator. The curves {θ = c} where the

meridial angle is constant are the semi-circular meridians of constant longitude stretching
from north to south pole. Note that θ = 0 and θ = 2π describe the same meridian. In
terrestrial navigation, latitude is the angle, in degrees, measured from the equator, while
longitude is the angle measured from the Greenwich meridian.

Example B.9. A torus is a surface of the form of an inner tube. One convenient
parametrization of a particular toroidal surface is

x(ψ, θ) = ( (2 + cosψ) cos θ, (2 + cosψ) sin θ, sinψ )
T

for 0 ≤ ψ, θ ≤ 2π. (B.28)

Note that the parametrization is 2π periodic in both ψ and θ. If we introduce cylindrical
coordinates

x = r cos θ, y = r sin θ, z,

then the torus is parametrized by

r = 2 + cosψ, z = sinψ.

Therefore, the relevant values of (r, z) all lie on the circle

(r − 2)2 + z2 = 1 (B.29)

of radius 1 centered at (2, 0). As the polar angle θ increases from 0 to 2π, the circle rotates
around the z axis, and thereby sweeps out the torus.
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Remark : The sphere and the torus are examples of closed surfaces. The requirements
for a surface to be closed are that it be simple and bounded, and, moreover, have no
boundary. In general, a subset S ⊂ R3 is bounded provided it does not stretch off infinitely
far away. More precisely, boundedness is equivalent to the existence of a fixed number
R > 0 which bounds the norm ‖x ‖ < R of all points x ∈ S.

Tangents to Surfaces

Consider a surface S parameterized by x(p, q) where (p, q) ∈ Ω. Each parametrized
curve (p(t), q(t)) in the parameter domain Ω will be mapped to a parametrized curve C ⊂ S

contained in the surface. The curve C is parametrized by the composite map

x(t) = x(p(t), q(t)) = (x(p(t), q(t)), y(p(t), q(t)), z(p(t), q(t)) )
T

.

The tangent vector
dx

dt
=

∂x

∂p

dp

dt
+

∂x

∂q

dq

dt
(B.30)

to such a curve will be tangent to the surface. The set of all possible tangent vectors to
curves passing through a given point in the surface traces out the tangent plane to the
surface at that point, as in Figure tp . Note that the tangent vector (B.30) is a linear
combination of the two basis tangent vectors

xp =
∂x

∂p
=

(
∂x

∂p
,
∂y

∂p
,
∂z

∂p

)T
, xq =

∂x

∂q
=

(
∂x

∂q
,
∂y

∂q
,
∂z

∂q

)T
, (B.31)

which therefore span the tangent plane to the surface at the point x(p, q) ∈ S. The first
basis vector is tangent to the curves where q = constant, while the second is tangent to
the curves where p = constant.

Example B.10. Consider the torus T parametrized as in (B.28). The basis tangent
vectors are

∂x

∂ψ
=



−(2 + cos θ) sinψ

(2 + cos θ) cosψ
0


 ,

∂x

∂θ
=



− sin θ cosψ
− sin θ sinψ

cos θ


 . (B.32)

They serve to span the tangent plane to the torus at the point x(θ, ψ). For example, at

the point x(0, 0) = ( 3, 0, 0 )
T
corresponding to the particular parameter values θ = ψ = 0,

the basis tangent vectors are

xψ(0, 0) = ( 0, 3, 0 )
T
= 3e2 , xθ(0, 0) = ( 0, 0, 1 )

T
= e3 ,

and so the tangent plane at this particular point is the (y, z)–plane spanned by the standard
basis vectors e2, e3.

The tangent to any curve contained within the torus at the given point will be a linear
combination of these two vectors. For instance, the toroidal knot (B.16) corresponds to
the straight line

ψ(t) = 2 t, 0 ≤ t ≤ 2π, θ(t) = 3 t,
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in the parameter space. Its tangent vector

dx

dt
=



− (4 + 2 cos 3 t) sin 2 t− 3 sin 3 t cos 2 t
(4 + 2 cos 3 t) cos 2 t− 3 sin 3 t sin 2 t

3 cos 3 t




lies in the tangent plane to the torus at each point. In particular, at t = 0, the knot passes
through the point x(0, 0) = ( 3, 0, 0 )

T
, and has tangent vector

dx

dt
=



0
6
3


 = 2xψ(0, 0) + 3xθ(0, 0) since

dψ

dt
= 2,

dθ

dt
= 3.

A point x(p, q) ∈ S on the surface is said to be nonsingular provided the basis tangent
vectors xp(p, q),xq(p, q) are linearly independent. Thus the point is nonsingular if and only

if the tangent vectors span a full two-dimensional subspace of R3 — the tangent plane to
the surface at the point. Nonsingularity ensures the smoothness of the surface at each
point, which is a consequence of the general Implicit Function Theorem, [126]. Singular
points, where the tangent vectors are linearly dependent, can take the form of corners,
cusps and folds in the surface. From now on, we shall always assume that our surface is
nonsingular meaning every point is a nonsingular point.

Linear independence of the tangent vectors is equivalent to the requirement that their
cross product is a nonzero vector:

N =
∂x

∂p
∧

∂x

∂q
=

(
∂(y, z)

∂(p, q)
,
∂(z, x)

∂(p, q)
,
∂(x, y)

∂(p, q)

)T
6= 0. (B.33)

In this formula, we have adopted the standard notation

∂(x, y)

∂(p, q)
= det

(
xp xq
yp yq

)
=

∂x

∂p

∂y

∂q
−

∂x

∂q

∂y

∂p
(B.34)

for the Jacobian determinant of the functions x, y with respect to the variables p, q, which
we already encountered in the change of variables formula (A.52) for double integrals.
The cross-product vector N in (B.33) is orthogonal to both tangent vectors, and hence
orthogonal to the entire tangent plane. Therefore, N defines a normal vector to the surface
at the given (nonsingular) point.

Example B.11. Consider a surface S parametrized as the graph of a function z =
u(x, y), and so, as in Example B.7

x(x, y) = (x, y, u(x, y) )
T

, (x, y) ∈ Ω.

The tangent vectors

∂x

∂x
=

(
1, 0,

∂u

∂x

)T
,

∂x

∂y
=

(
0, 1,

∂u

∂y

)T
,
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span the tangent plane sitting at the point (x, y, u(x, y) on S. The normal vector is

N =
∂x

∂x
∧

∂x

∂y
=

(
−

∂u

∂x
,−

∂u

∂y
, 1

)T
,

and points upwards, as in Figure graphN . Note that every point on the graph is nonsin-
gular.

The unit normal to the surface at the point is a unit vector orthogonal to the tangent
plane, and hence given by

n =
N

‖N ‖
=

xp ∧ xq

‖xp ∧ xq ‖
. (B.35)

In general, the direction of the normal vector N depends upon the order of the two param-
eters p, q. Computing the cross product in the reverse order, xq ∧ xp = −N, reverses the
sign of the normal vector, and hence switches its direction. Thus, there are two possible
unit normals to the surface at each point, namely n and −n. For a closed surface, one
normal points outwards and one points inwards.

When possible, a consistent (meaning continuously varying) choice of a unit normal
serves to define an orientation of the surface. All closed surfaces, and most other surfaces
can be oriented. The usual convention for closed surfaces is to choose the orientation
defined by the outward normal. The simplest example of a non-orientable surface is the
Möbius strip obtained by gluing together the ends of a twisted strip of paper; see Exercise
.

Example B.12. For the sphere of radius r parametrized by the spherical angles as
in (B.27), the tangent vectors are

∂x

∂ϕ
=




r cosϕ cos θ
r sinϕ cos θ
− r sinϕ


,

∂x

∂θ
=



− r sinϕ sin θ

r sinϕ cos θ
0


.

These vectors are tangent to, respectively, the meridians of constant longitude, and the
parallels of constant latitude. The normal vector is

N =
∂x

∂ϕ
∧

∂x

∂θ
=




r2 sin2 ϕ cos θ
r2 sin2 ϕ sin θ

r2 cosϕ sinϕ


 = r sinϕ x. (B.36)

Thus N is a non-zero multiple of the radial vector x, except at the north or south poles
when ϕ = 0 or π. This reconfirms our earlier observation that the poles are problematic
points for the spherical angle parametrization. The unit normal

n =
N

‖N ‖
=
x

r

determined by the spherical coordinates ϕ, θ is the outward pointing normal. Reversing
the order of the angles, θ, ϕ, would lead to the outwards normal −n = −x/r.
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Remark : As we already saw in the example of the hemisphere, a given surface can be
parametrized in many different ways. In general, to change parameters

p = g(p̃, q̃), q = h(p̃, q̃),

requires a smooth, invertible map between the two parameter domains Ω̃ → Ω. Many
interesting surfaces, particularly closed surfaces, cannot be parametrized in a single con-
sistent manner that satisfies the smoothness constraint (B.33) on the entire surface. In
such cases, one must assemble the surface out of pieces, each parametrized in the proper
manner. The key problem in cartography is to find convenient parametrizations of the
globe that do not significantly distort the geographical features of the planet.

A surface is piecewise smooth if it can be constructed by gluing together a finite
number of smooth parts, joined along piecewise smooth curves. For example, a cube is
a piecewise smooth surface, consisting of squares joined along straight line segments. We
shall rely on the reader’s intuition to formalize these ideas, leaving a rigorous development
to a more comprehensive treatment of surface geometry, e.g., [49].

B.5. Surface Integrals.

As with spatial line integrals, there are two important types of surface integral. The
first is the integration of a scalar field with respect to surface area. A typical application
is to compute the area of a curved surface or the mass and center of mass of a curved shell
of possibly variable density. The second type is the surface integral that computes the flux
associated with a vector field through an oriented surface. Applications appear in fluid
mechanics, electromagnetism, thermodynamics, gravitation, and many other fields.

Surface Area

According to (B.10), the length of the cross product of two vectors measures the area
of the parallelogram they span. This observation underlies the proof that the length of the
normal vector to a surface (B.35), namely

‖N ‖ = ‖xp ∧ xq ‖,

is a measure of the infinitesimal element of surface area, denoted

dS = ‖N ‖ dp dq = ‖xp ∧ xq ‖ dp dq. (B.37)

The total area of the surface is found by summing up these infinitesimal contributions,
and is therefore given by the double integral

area S =

∫ ∫

S

dS =

∫ ∫

Ω

‖xp ∧ xq ‖ dp dq

=

∫ ∫

Ω

√(
∂(y, z)

∂(p, q)

)2

+

(
∂(z, x)

∂(p, q)

)2

+

(
∂(x, y)

∂(p, q)

)2

dp dq.

(B.38)
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The surface’s area does not depend upon the parametrization used to compute the integral.
In particular, if the surface is parametrized by x, y as the graph z = u(x, y) of a function
over a domain (x, y) ∈ Ω, then the surface area integral reduces to the familiar form

area S =

∫ ∫

S

dS =

∫ ∫

Ω

√

1 +

(
∂u

∂x

)2

+

(
∂u

∂y

)
dx dy. (B.39)

A detailed justification of these formulae can be found in [9, 58].

Example B.13. The well-known formula for the surface area of a sphere is a simple
consequence of the integral formula (B.38). Using the parametrization by spherical angles
(B.27) and the formula (B.36) for the normal, we find

area Sr =

∫ ∫

Sr

dS =

∫ 2π

0

∫ π

0

r2 sinϕ dϕ dθ = 4π r2. (B.40)

Fortunately, the problematic poles do not cause any difficulty in the computation, since
they contribute nothing to the surface area integral.

Alternatively, we can compute the area of one hemisphere S+
r by realizing it as a

graph

z =
√

r2 − x2 − y2 for x2 + y2
≤ 1,

over the disk of radius r, and so, by (B.39),

area S+
r =

∫ ∫

Ω

√
1 +

x2

r2 − x2 − y2
+

y2

r2 − x2 − y2
dx dy

=

∫ ∫

Ω

r√
r2 − x2 − y2

dx dy =

∫ r

0

∫ 2π

0

r ρ√
r2 − ρ2

dθ dρ = 2π r2,

where we used polar coordinates x = ρ cos θ, y = ρ sin θ to evaluate the final integral. The
area of the entire sphere is twice the area of the hemisphere.

Example B.14. Similarly, to compute the surface area of the torus T parametrized
in (B.28), we use the tangent vectors in (B.32) to compute the normal to the torus:

N = xψ ∧ xθ =



(2 + cosψ) cosψ cos θ
(2 + cosψ) cosψ sin θ

(2 + cosψ) sinψ


 , with ‖xψ ∧ xθ ‖ = 2 + cosψ.

Therefore,

area T =

∫ 2π

0

∫ 2π

0

(2 + cosψ) dψ dθ = 8π2.

If S ⊂ R3 is a surface with finite area, the mean or average of a scalar function
f(x, y, z) over S is given by

MS [ f ] =
1

area S

∫ ∫

S

f dS. (B.41)
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For example, the mean of a function over a sphere Sr = {‖x ‖ = r} of radius r is explicitly
given by

MSr

[ f ] =
1

4πr2

∫ ∫

‖x ‖=r

f(x) dS =
1

4π

∫ 2π

0

∫ π

0

F (r, ϕ, θ) sinϕdϕ dθ, (B.42)

where F (r, ϕ, θ) is the spherical coordinate expression for the scalar function f . As usual,
the mean lies between the maximum and minimum values of the function on the surface:

min
S

f ≤ MS [ f ] ≤ max
S

f.

In particular, the center of mass C of a surface (assuming it has constant density) is

equal to the mean of the coordinate functions x = (x, y, z )
T
, so

C = (MS [x ] ,MS [ y ] ,MS [ z ] )
T
=

1

area S

(∫ ∫

S

x dS,

∫ ∫

S

y dS,

∫ ∫

S

z dS

)T
. (B.43)

Thus, the center of mass of a hemisphere is

More generally, the integral of a scalar field u(x, y, z) over the surface is given by
∫ ∫

S

u dS =

∫ ∫

Ω

u(x(p, q), y(p, q), z(p, q)) ‖xp ∧ xq ‖ dp dq. (B.44)

If S represents a thin curved shell, and u = ρ(x) the density of the material at position
x ∈ S, then the surface integral (B.44) represents the total mass of the shell. For example,
the integral of u(x, y, z) over a hemisphere S+

r of radius r can be evaluated by either of
the formulae

∫ ∫

S
+

r

u dS =

∫ 2π

0

∫ π/2

0

u(r cos θ sinϕ, r sin θ sinϕ, r cosϕ) r2 sinϕ dϕ dθ

=

∫ ∫

x2+y2≤r2

r√
r2 − x2 − y2

u(x, y,
√

r2 − x2 − y2 ) dx dy,

(B.45)

depending upon whether one prefers spherical or graphical coordinates.

Flux Integrals

Now assume that S is an oriented surface with chosen unit normal n. If v = (u, v, w )
T

is a vector field, then the surface integral

∫ ∫

S

v · n dS =

∫ ∫

Ω

(
v · xp ∧ xq

)
dp dq =

∫ ∫

Ω

det




u xp xq
v yp yq
w zp zq


 dp dq (B.46)

of the normal component of v over the entire surface measures its flux through the surface.
An alternative common notation for the flux integral is

∫ ∫

S

v · n dS =

∫ ∫

S

u dy dz + v dz dx+ w dxdy (B.47)

1/12/04 1010 c© 2003 Peter J. Olver



=

∫ ∫

Ω

(
u(x, y, z)

∂(y, z)

∂(p, q)
+ v(x, y, z)

∂(z, x)

∂(p, q)
+ w(x, y, z)

∂(x, y)

∂(p, q)

)
dx dy,

Note how the Jacobian determinant notation (B.34) seamlessly interacts with the integra-
tion. In particular, if the surface is the graph of a function z = h(x, y), then the surface
integral reduces to the particularly simple form

∫ ∫

S

v · n dS =

∫ ∫

Ω

(
u(x, y, z)

∂z

∂x
+ v(x, y, z)

∂z

∂y
+ w(x, y, z)

)
dp dq (B.48)

The flux surface integral relies upon the consistent choice of an orientation or unit
normal on the surface. Thus, flux only makes sense through an oriented surface — it
doesn’t make sense to speak of “flux through a Möbius band”. If we switch normals,
using, say, the inward instead of the outward normal, then the surface integral changes
sign — just like a line integral if we reverse the orientation of a curve. Similarly, if we
decompose a surface into the union of two or more parts, with only their boundaries in
common, then the surface integral similarly decomposes into a sum of surface integrals.
Thus,

∫ ∫

−S

v · n dS = −

∫ ∫

S

v · n dS,

∫ ∫

S

v · n dS =

∫ ∫

S1

v · n dS +

∫ ∫

S2

v · n dS, S = S1 ∪ S2.

(B.49)

In the first formula, −S denotes the surface S with the reverse orientation. In the second
formula, S1 and S2 are only allowed to intersect along their boundaries; moreover, they
must be oriented in the same manner as S, i.e., have the same unit normal direction.

Example B.15. Let S denote the triangular surface given by that portion of the
plane x + y + z = 1 that lies inside the positive orthant {x ≥ 0, y ≥ 0, z ≥ 0}, as in

Figure tri3 . The flux of the vector field v = ( y, xz, 0 )
T
through S equals the surface

integral ∫ ∫

S

y dy dz + xz dz dx,

where we orient S by choosing the upwards pointing normal. To compute, we note that
S can be identified as the graph of the function z = 1 − x − y lying over the triangle
T = {0 ≤ x ≤ 1, 0 ≤ y ≤ 1− x}. Therefore, by (B.47),

∫ ∫

S

y dy dz + x z dz dx =

∫ ∫

T

[
y

∂(y, 1− x− y)

∂(x, y)
+ x (1− x− y)

∂(1− x− y, x)

∂(x, y)

]
dx dy

=

∫ 1

0

∫ 1−x

0

(1− x) (y + x) dy dx =

∫ 1

0

(
1
2 +

1
2 x− 1

2 x2 + 1
2 x3

)
dx = 17

24 .

If v represents the velocity vector field for a steady state fluid flow, then its flux
integral (B.46) tells us the total volume of fluid passing through S per unit time. Indeed,
at each point on S, the volume fluid that flows across a small part the surface in unit time
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will fill a thin cylinder whose base is the surface area element dS and whose height v · n
is the normal component of the fluid velocity v, as pictured in Figure fluxs . Summing
(integrating) all these flux cylinder volumes over the surface results in the flux integral. The
choice of orientation or unit normal specifies the convention for measuring the direction of
positive flux through the surface. If S is a closed surface, and we choose n to be the unit
outward normal, then the flux integral (B.46) represents the net amount of fluid flowing
out of the solid region bounded by S per unit time.

Example B.16. The vector field v = ( 0, 0, 1 )
T
represents a fluid moving with con-

stant velocity in the vertical direction. Let us compute the fluid flux through a hemisphere

S+
r =

{
z =

√
r2 − x2 − y2

∣∣∣ x2 + y2
≤ 1

}
,

sitting over the disk Dr of radius r in the x, y plane. The flux integral over S+
r is computed

using (B.48), so
∫ ∫

S
+

r

v · n dS =

∫ ∫

S
+

r

dx ∧ dy =

∫ ∫

Dr

dx dy = πr2.

The resulting double integral is just the area of the disk. Indeed, in this case, the value of
the flux integral is the same for all surfaces z = h(x, y) sitting over the disk Dr.

This example provides a particular case of a surface-independent flux integral, which
are defined in analogy with the path-independent line integrals that we encountered earlier.
In general, a flux integral is called surface-independent if

∫ ∫

S1

v · n dS =

∫ ∫

S2

v · n dS (B.50)

whenever the surfaces S1 and S2 have a common boundary ∂S1 = ∂S2. In other words,
the value of the integral depends only upon the boundary of the surface. The veracity of
(B.50) requires that the surfaces be oriented in the “same manner”. For instance, if they
do not cross, then the combined surface S = S1 ∪ S2 is closed, and one uses the outward
pointing normal on one surface and the inward pointing normal on the other. In more
complex situations, one checks that the two surfaces induce the same orientation on their
common boundary. (We defer a discussion of the boundary orientation until later.) Finally,
applying (B.49) to the closed surface S = S1 ∪ S2 and using the prescribed orientations,
we deduce an alternative characterization of surface-independent vector fields.

Proposition B.17. A vector field leads to a surface-independent flux integral if and

only if ∫ ∫

S

v · n dS = 0 (B.51)

for every closed surface S contained in the domain of definition of v.

A fluid is incompressible when its volume is unaltered by the flow. Therefore, in the
absence of sources or sinks, there cannot be any net inflow or outflow across a simple closed
surface bounding a region occupied by the fluid. Thus, the flux integral over a closed surface
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must vanish:

∫ ∫

S

v · n dS = 0. Proposition B.17 implies that the fluid velocity vector

field defines a surface-independent flux integral. Thus, the flux of an incompressible fluid
flow through any surface depends only on the (oriented) boundary curve of the surface!

B.6. Volume Integrals.

Volume or triple integrals take place over domains Ω ⊂ R3 representing solid three-
dimensional bodies. A simple example of such a domain is a ball

Br(a) = { x | ‖x− a ‖ < r } (B.52)

of radius r > 0 centered at a point a ∈ R3. Other examples of domains include solid cubes,
solid cylinders, solid tetrahedra, solid tori (doughnuts and bagels), solid cones, etc.

In general, a subset Ω ⊂ R3 is open if, for every point x ∈ Ω, a small open ball
Bε(a) ⊂ Ω centered at a of radius ε = ε(a) > 0, which may depend upon a, is also
contained in Ω. In particular, the ball (B.52) is open. The boundary ∂Ω of an open subset
Ω consists of all limit points which are not in the subset. Thus, the boundary of the open
ball Br(a) is the sphere Sr(a) = {‖x− a ‖ = r} of radius r centered at the point a. An
open subset is called a domain if its boundary ∂Ω consists of one or more simple, piecewise
smooth surfaces. We are allowing corners and edges in the bounding surfaces, so that an
open cube will be a perfectly valid domain.

A subset Ω ⊂ R3 is bounded provided it fits inside a sphere of some (possibly large)
radius. For example, the solid ball Br = {‖x ‖ < R} is bounded, while its exterior Er =
{‖x ‖ > R} is an unbounded domain. The sphere SR = {‖x ‖ = R} is the common
boundary of the two domains: SR = ∂Br = ∂ER. Indeed, any simple closed surface
separates R3 into two domains that have a common boundary — its interior , which is
bounded, and its unbounded exterior .

The boundary of a bounded domain consists of one or more closed surfaces. For
instance, the solid annular domain

Ar,R =
{
0 < r < ‖x ‖ < R

}
(B.53)

consisting of all points lying between two concentric spheres of respective radii r and R

has boundary given by the two spheres: ∂Ar,R = Sr ∪ SR. On the other hand, setting
r = 0 in (B.53) leads to a punctured ball of radius R whose center point has been removed.
A punctured ball is not a domain, since the center point is part of the boundary, but is
not a bona fide surface.

If the domain Ω ⊂ R3 represents a solid body, and the scalar field ρ(x, y, z) represents
its density at a point (x, y, z) ∈ Ω, then the triple integral

∫ ∫ ∫

Ω

ρ(x, y, z) dx dy dz (B.54)

equals the total mass of the body. In particular, the volume of Ω is equal to

volΩ =

∫ ∫ ∫

Ω

dx dy dz. (B.55)
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Triple integrals can be directly evaluated when the domain has the particular form

Ω =
{

ξ(x, y) < z < η(x, y), ϕ(x) < y < ϕ(x), a < x < b
}

(B.56)

where the z coordinate lies between two graphical surfaces sitting over a common domain
in the (x, y)–plane that is itself of the form of (A.47) used to evaluate double integrals;
see Figure triple . In such cases we can evaluate the triple integral by iterated integration
first with respect to z, then with respect to y and, finally, with respect to x:

∫ ∫ ∫

Ω

u(x, y, z) dx dy dz =

∫ b

a

(∫ ψ(x)

ϕ(x)

(∫ η(x,y)

ξ(x,y)

u(x, y, z) dz

)
dy

)
dx. (B.57)

A similar result holds for other orderings of the coordinates.

Fubini’s Theorem, [126, 125], assures us that the result of iterated integration does
not depend upon the order in which the variables are integrated. Of course, the domain
must be of the requisite type in order to write the volume integral as repeated single
integrals. More general triple integrals can be evaluated by chopping the domain up into
disjoint pieces that have the proper form.

Example B.18. The volume of a solid ball BR of radius R can be computed as
follows. We express the domain of integration x2 + y2 + z2 < R2 in the form

−R < x < R, −

√
R2 − x2 < y <

√
R2 − x2 , −

√
R2 − x2 − y2 < z <

√
R2 − x2 − y2 .

Therefore, in accordance with (B.57),

∫ ∫ ∫

BR

dx dy dz =

∫ R

−R

(∫ √
R2−x2

−
√
R2−x2

(∫ √R2−x2−y2

−
√
R2−x2−y2

dz

)
dy

)
dx

=

∫ R

−R

(∫ √
R2−x2

−
√
R2−x2

2
√

R2 − x2 − y2 dy

)
dx

=

∫ R

−R

(
y
√

R2 − x2 − y2 + (R2
− x2) sin−1 y

√

R2 − x2

) ∣∣∣∣

√
R2−x2

y=−
√
R2−x2

dx

=

∫ R

−R

π(R2
− x2) dx = π

(
R2x−

x2

3

) ∣∣∣∣
R

x=−R

=
4

3
π R3,

recovering the standard formula, as it should.

Change of Variables

Sometimes, an inspired change of variables can be used to simplify a volume integral.
If

x = f(p, q, r), y = g(p, q, r), z = h(p, q, r), (B.58)

is an invertible change of variables — meaning that each point (x, y, z) corresponds to a
unique point (p, q, r) — then

∫ ∫ ∫

Ω

u(x, y, z) dx dy dz =

∫ ∫ ∫

D

U(p, q, r)

∣∣∣∣
∂(x, y, z)

∂(p, q, r)

∣∣∣∣ dp dq dr. (B.59)
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Here
U(p, q, r) = u(x(p, q, r), y(p, q, r), z(p, q, r))

is the expression for the integrand in the new coordinates, while D is the domain consisting
of all points (p, q, r) that map to points (x, y, z) ∈ Ω in the original domain. Invertibility
requires that each point in D corresponds to a unique point in Ω. The change in volume
is governed by the absolute value of the three-dimensional Jacobian determinant

∂(x, y, z)

∂(p, q, r)
= det




xp xq xr
yp yq yr
zp zq zr


 = xp · xq ∧ xr (B.60)

for the change of variables. The identification of the vector triple product (B.60) with
an (infinitesimal) volume element lies behind the justification of the change of variables
formula; see [9, 58] for a detailed proof.

By far, the two most important cases are cylindrical and spherical coordinates. Cylin-
drical coordinates correspond to replacing the x and y coordinates by their polar counter-
parts, while retaining the vertical z coordinate unchanged. Thus, the change of coordinates
has the form

x = r cos θ, y = r sin θ, z = z. (B.61)

The Jacobian determinant for cylindrical coordinates is

∂(x, y, z)

∂(r, θ, z)
= det




xr xθ xz
yr yθ yz
zr zθ zz


 = det



cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1


 = r. (B.62)

Therefore, the general change of variables formula (B.59) tells us the formula for a triple
integral in cylindrical coordinates:

∫ ∫ ∫
f(x, y, z) dx dy dz =

∫ ∫ ∫
f(r cos θ, r sin θ, z) r dr dθ dϕ. (B.63)

Example B.19. For example, consider an ice cream cone

Ch =
{

x2 + y2 < z2, 0 < z < h
}
=
{

r < z, 0 < z < h
}

of height h plotted in Figure cone . To compute its volume, we express the domain in
terms of the cylindrical coordinates, leading to

∫ ∫ ∫

Ch

dx dy dz =

∫ h

0

∫ 2π

0

∫ z

0

r dr dθ dz =

∫ h

0

π z2 dz = 1
3 π h3.

Spherical coordinates are denoted by r, ϕ, θ, where

x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cosϕ. (B.64)

Here r = ‖x ‖ =
√

x2 + y2 + z2 represents the radius, 0 ≤ ϕ ≤ π is the azimuthal angle or
latitude, while 0 ≤ θ < 2π is the meridial angle or longitude. The reader may recall that
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we already encountered these coordinates in our parametrization (B.27) of the sphere. It is
important to distinguish between the spherical r, θ and the cylindrical r, θ — even though
the same symbols are used, they represent different quantities.

A short computation proves that the spherical coordinate Jacobian determinant is

∂(x, y, z)

∂(r, ϕ, θ)
= det




xr xϕ xθ
yr yϕ yθ
zr zϕ zθ




= det



sinϕ cos θ r cosϕ cos θ −r sinϕ sin θ

sinϕ sin θ r cosϕ sin θ r sinϕ cos θ
cosϕ −r sinϕ 0


 = r2 sinϕ.

(B.65)

Therefore, a triple integral is evaluated in spherical coordinates according to the formula
∫ ∫ ∫

f(x, y, z) dx dy dz =

∫ ∫ ∫
F (r, ϕ, θ) r2 sinϕ dr dϕ dθ, (B.66)

where we rewrite the integrand

F (r, ϕ, θ) = f(r sinϕ cos θ, r sinϕ sin θ, r cosϕ) (B.67)

as a function of the spherical coordinates.

Example B.20. The integration required in Example B.18 to compute the volume
of a ball BR of radius R can be considerably simplified by switching over to spherical
coordinates. The ball is given by BR =

{
0 ≤ r < R, 0 ≤ ϕ ≤ π, 0 ≤ θ < 2π

}
. Thus, using

(B.66), we compute

∫ ∫ ∫

BR

dx dy dz =

∫ R

0

∫ π

0

∫ 2π

0

r2 sinϕ dθ dϕdr =

∫ R

0

4π r2 dr = 4
3 π R3. (B.68)

The reader may note that the next-to-last integrand represents the surface area of the
sphere of radius R. Thus, we are, in effect, computing the volume by summing up (i.e.,
integrating) the surface areas of concentric thin spherical shells.

Remark : Sometimes, we will be sloppy and use the same letter for a function in an
alternative coordinate system. Thus, we may use f(r, ϕ, θ) to represent the spherical
coordinate form (B.67) of a function f(x, y, z). Technically, this is not correct! However,
the clarity and intuition sometimes outweighs the pedantic use of a new letter each time we
change coordinates. Moreover, in geometry and modern physical theories, [dg], the symbol
“f” represents an intrinsic scalar field, and f(x, y, z) and f(r, ϕ, θ) merely its incarnations
in two different coordinate charts on R3. Hopefully, this will be clear from the context.

B.7. Gradient, Divergence, and Curl.

There are three important vector differential operators that play a ubiquitous role in
three-dimensional vector calculus, known as the gradient, divergence and curl. We have
already encountered their two-dimensional counterparts in Chapter A.
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The Gradient

We begin with the three-dimensional version of the gradient operator

∇u =




ux
uy
uz


. (B.69)

The gradient defines a linear operator that maps a scalar function u(x, y, z) to the vector
field whose components are its partial derivatives with respect to the Cartesian coordinates.

If x(t) = (x(t), y(t), z(t) )
T
is any parametrized curve, then the rate of change in the

function u as we move along the curve is given by the inner product

d

dt
u(x(t), y(t), z(t)) =

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
+

∂u

∂z

dz

dt
= ∇u ·

¦
x (B.70)

between the gradient and the tangent vector to the curve. Therefore, as we reasoned
earlier in the planar case, the gradient ∇u points in the direction of steepest increase in
the function u, while its negative −∇u points in the direction of steepest decrease. For
example, if u(x, y, z) represents the temperature at a point (x, y, z) in space, then ∇u

points in the direction in which temperature is getting the hottest, while −∇u points in
the direction it gets the coldest. Therefore, if one wants to cool down as rapidly as possible,
one should move in the direction of −∇u at each instant, which is the direction of the
flow of heat energy. Thus, the path x(t) to be followed for the fastest cool down will be a
solution to the gradient flow equations

¦
x = −∇u, (B.71)

or, explicitly,

dx

dt
= −

∂u

∂x
(x, y, z),

dy

dt
= −

∂u

∂y
(x, y, z),

dz

dt
= −

∂u

∂z
(x, y, z).

A solution x(t) to such a system of ordinary differential equations will experience continu-
ously decreasing temperature. In Chapter 19, we will learn how to use such gradient flows
to locate and numerically approximate the minima of functions.

The set of all points where a scalar field u(x, y, z) has a given value,

u(x, y, z) = c (B.72)

for some fixed constant c, is known as a level set of u. If u measures temperature, then
its level sets are the isothermal surfaces of equal temperature. If u is sufficiently smooth,
most of its level sets are smooth surfaces. In fact, if ∇u 6= 0 at a point, then one can prove
that all nearby level sets are smooth surfaces near the point in question. This important
fact is a consequence of the general Implicit Function Theorem, [126]. Thus, if ∇u 6= 0 at
all points on a level set, then the level set is a smooth surface, and, if bounded, a simple
closed surface. (On the other hand, finding an explicit parametrization of a level set may
be quite difficult!)
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Theorem B.21. If nonzero, the gradient vector ∇u 6= 0 defines the normal direction

to the level set {u = c} at each point.

Proof : Indeed, suppose x(t) is any curve contained in the level set, so that

u(x(t), y(t), z(t)) = c for all t.

Since c is constant, the derivative with respect to t is zero, and hence, by (B.70),

d

dt
u(x(t), y(t), z(t)) = ∇u ·

¦
x = 0,

which implies that the gradient vector ∇u is orthogonal to the tangent vector
¦
x to the

curve. Since this holds for all such curves contained within the level set, the gradient must
be orthogonal to the entire tangent plane at the point, and hence, if nonzero, defines a
normal direction to the level surface. Q.E.D.

Physically, Theorem B.21 tells us that the direction of steepest increase in temperature
is perpendicular to the isothermal surfaces at each point. Consequently, the solutions to
the gradient flow equations (B.71) form an orthogonal system of curves to the level set
surfaces of u, and one should follow these curves to minimize the temperature as rapidly
as possible. Similarly, in a steady state fluid flow, the fluid potential is represented by a
scalar field ϕ(x, y, z). Its gradient v = ∇ϕ determines the fluid velocity at each point. The
streamlines followed by the fluid particles are the solutions to the gradient flow equations
¦
x = v = ∇ϕ, while the level sets of ϕ are the equipotential surfaces. Thus, fluid particles
flow in a direction orthogonal to the equipotential surfaces.

Example B.22. The level sets of the radial function u = x2 + y2 + z2 are the
concentric spheres centered at the origin. Its gradient ∇u = ( 2x, 2y, 2z )

T
= 2x points in

the radial direction, orthogonal to each spherical level set. Note that ∇u = 0 only at the
origin, which is a level set, but not a smooth surface.

The radial vector also specifies the direction of fastest increase (decrease) in the func-
tion u. Indeed, the solution to the associated gradient flow system (B.71), namely

¦
x = − 2x is x(t) = x0 e−2 t,

where x0 = x(0) is the initial position. Therefore, to decrease the function u as rapidly as
possible, one should follow a radial ray into the origin.

Example B.23. An implicit equation for the torus (B.28) is obtained by replacing

r =
√

x2 + y2 in (B.29). In this manner, we are led to consider the level sets of the function

u(x, y, z) = x2 + y2 + z2
− 4
√

x2 + y2 = c, (B.73)

with the particular value c = −3 corresponding to (B.28). The gradient of the function is

∇u(x, y, z) =

(
2x−

4x√
x2 + y2

, 2y −
4y√

x2 + y2
, 2z

)T

, (B.74)

which is well-define except on the z axis, where x = y = 0. Note that ∇F 6= 0 unless z = 0
and x2 + y2 = 4. Therefore, the level sets of u are smooth, toroidal surfaces except for z

axis and the circle of radius 2 in the (x, y) plane.
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Divergence and Curl

The second important vector differential operator is the divergence,

divv = ∇ · v =
∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z
. (B.75)

The divergence maps a vector field v = ( v1, v2, v3 )
T
to a scalar field f = ∇ · v. For

example, the radial vector field v = (x, y, z )
T
has constant divergence ∇ · v = 3.

In fluid mechanics, the divergence measures the local, instantaneous change in the
volume of a fluid packet as it moves. Thus, a steady state fluid flow is incompressible, with
unchanging volume, if and only if its velocity vector field is divergence-free: ∇·v ≡ 0. The
connection between incompressibility and the earlier zero-flux condition will be addressed
in the Divergence Theorem B.36 below.

The composition of divergence and gradient

∇ · ∇u = ∆u = uxx + uyy + uzz

produces the Laplacian operator, just as in two dimensions. Indeed, as we shall see, except
for the missing minus sign and the all-important boundary conditions, this is effectively
the same as the self-adjoint form of the three-dimensional Laplacian:

∇
∗ ◦∇u = −∇ · ∇u = −∆u.

See (Lapsa3 ) below for details.

The third important vector differential operator is the curl , which, in three dimensions,
maps vector fields to vector fields. It is most easily memorized in the form of a (formal)
3× 3 determinant

curlv = ∇∧ v =




∂v3

∂y
−

∂v2

∂z

∂v1

∂z
−

∂v3

∂x

∂v2

∂x
−

∂v1

∂y



= det




∂x v1 e1

∂y v2 e2

∂z v3 e3


 , (B.76)

in analogy with the determinantal form (B.6) of the cross product. For instance, the radial

vector field v = (x, y, z )
T
has zero curl:

∇∧ v = det




∂x x e1

∂y y e2

∂z z e3


 = 0.

This is indicative of the lack or any rotational effect of the induced flow.

If v represents the velocity vector field of a steady state fluid flow, its curl ∇ ∧ v
measures the instantaneous rotation of the fluid flow at a point, and is known as the
vorticity of the flow. When non-zero, the direction of the vorticity vector represents the
axis of rotation, while its magnitude ‖∇ ∧ v ‖ measures the instantaneous angular velocity
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of the swirling flow. Physically, if we place a microscopic turbine in the fluid so that its
shaft points in the direction specified by a unit vector n, then its rate of spin will be
proportional to component of the vorticity vector ∇∧ v in the direction of its shaft. This
is equal to the dot product

n · (∇∧ v) = ‖∇ ∧ v ‖ cosϕ,

where ϕ is the angle between n and the curl vector. Therefore, the maximal rate of spin
will occur when ϕ = 0, and so the shaft of the turbine lines up with the direction of the
vorticity vector ∇ ∧ v. In this orientation, the angular velocity of the turbine will be
proportional to its magnitude ‖∇ ∧ v ‖. On the other hand, if the axis of the turbine is
orthogonal to the direction of the vorticity, then it will not rotate. If ∇∧v ≡ 0, then there
is no net motion of a turbine, not matter which orientation it is placed in the fluid flow.
Thus, a flow with zero curl is irrotational . The precise connection between this definition
and the earlier zero circulation condition will be explained shortly.

Example B.24. Consider a helical fluid flow with velocity vector

v = (−y, x, 1 )
T

.

Integrating the ordinary differential equations
¦
x = v, namely

¦
x = −y,

¦
y = x,

¦
z = 1,

with initial conditions x(0) = x0, y(0) = y0, z(0) = z0 gives the flow

x(t) = x0 cos t− y0 sin t, y(t) = x0 sin t+ y0 cos t, z(t) = z0 + t. (B.77)

Therefore, the fluid particles move along helices spiraling up the z axis, as illustrated in
Figure hel .

The divergence of the vector field v is

∇ · v =
∂

∂x
(−y) +

∂

∂y
x+

∂

∂z
1 = 0,

and hence the flow is incompressible. Indeed, any fluid packet will spiral up the z axis
unchanged in shape, and so its volume does not change.

The vorticity or curl of the velocity is

∇∧ v =




∂

∂y
1−

∂

∂z
x

∂

∂z
(−y)−

∂

∂x
1

∂

∂x
x−

∂

∂y
(−y)



=



0
0
2


,

which points along the z-axis. This reflects the fact that the flow is spiraling up the z-axis.
If a turbine is placed in the fluid at an angle ϕ with the z-axis, then its rate of rotation
will be proportional to 2 cosϕ.
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Example B.25. Any planar vector field v = ( v1(x, y), v2(x, y) )
T
can be identified

with a three-dimensional vector field

v = ( v1(x, y), v2(x, y), 0 )
T

that has no vertical component. If v represents a fluid velocity, then the fluid particles
remain on horizontal planes {z = c}, and the individual planar flows are identical. Its
three-dimensional curl

∇∧ v =

(
0, 0,

∂v2

∂x
−

∂v1

∂y

)T

is a purely vertical vector field, whose third component agrees with the scalar two-dimen-
sional curl (A.18) of v. This provides the direct identification between the two- and three-
dimensional versions of the curl operation. Indeed, our analysis of flows around airfoils
in Chapter 16 directly relied upon this identification between two- and three-dimensional
flows.

Interconnections and Connectedness

The three basic vector differential operators — gradient, curl and divergence — are
intimately inter-related. The proof of the key identities relies on the equality of mixed par-
tial derivatives, which in turn requires that the functions involved are sufficiently smooth.
We leave the explicit verification of the key result to the reader.

Proposition B.26. If u is a smooth scalar field, then ∇∧∇u ≡ 0. If v is a smooth

vector field, then ∇ · (∇∧ v) ≡ 0.

Therefore, the curl of any gradient vector field is automatically zero. As a consequence,
all gradient vector fields represent irrotational flows. Also, the divergence of any vector field
that is a curl is also automatically zero. Thus, all curl vector fields represent incompressible
flows. On the other hand, the divergence of a gradient vector field is the Laplacian of the
underlying potential, as we previously noted, and hence is zero if and only if the potential
is a harmonic function.

The converse statements are almost true. As in the two-dimensional case, the precise
statement of this result depends upon the topology of the underlying domain. In two
dimensions, we only had to worry about whether or not the domain contained any holes,
i.e., whether or not the domain was simply connected. Similar concerns arise in three
dimensions. Moreover, there are two possible classes of “holes” in a solid domain, and so
there are two different types of connectivity. For lack of a better terminology, we introduce
the following definition.

Definition B.27. A domain Ω ⊂ R3 is said to be

(a) 0–connected or pathwise connected if there is a curve C ⊂ Ω connecting any two points
x0,x1 ∈ Ω, so that

† ∂C = {x0,x1 }.

† We use the notation ∂C to denote the endpoints of a curve C.
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(b) 1–connected if every unknotted simple closed curve C ⊂ Ω is the boundary, C = ∂S

of an oriented surface S ⊂ Ω.

(c) 2–connected if every simple closed surface S ⊂ Ω is the boundary, S = ∂D of a
subdomain D ⊂ Ω.

Remark : The unknotted condition is to avoid considering “wild” curves that fail to
bound any oriented surface S ⊂ R3 whatsoever.

For example, R3 is both 0, 1 and 2–connected, as are all solid balls, cubes, tetrahedra,
solid cylinders, and so on. A disjoint union of balls is not 0–connected, although it does
remain both 1 and 2–connected. The domain Ω =

{
0 ≤ r <

√
x2 + y2 < R

}
lying between

two cylinders is not 1–connected since it has a “one-dimensional” hole drilled through it.
Indeed, if C ⊂ Ω is any closed curve that encircles the inner cylinder, then every bounding
surface S with ∂S = C must pass across the inner cylinder and hence will not lie entirely
within the domain. On the other hand, this cylindrical domain Ω is both 0 and 2–connected
— even an annular surface that encircles the inner cylinder will bound a solid annular
domain contained inside Ω. Similarly, the domain Ω = {0 ≤ r < ‖x ‖ < R} between two
concentric spheres is 0 and 1–connected, but not 2–connected owing to the spherical cavity
inside. Any closed curve C ⊂ Ω will bound a surface S ⊂ Ω; for instance, a circle going
around the equator of the inner sphere will still bound a hemispherical surface that does
not pass through the spherical cavity. On the other hand, a sphere that lies between the
inner and outer spheres will not bound a solid domain contained within the domain. A
full discussion of the topology underlying the various types of connectivity, the nature of
holes and cavities, and their connection with the existence of scalar and vector potentials,
must be deferred to a more advanced course in differential topology, [21, 68].

We can now state the basic theorem relating the connectivity of domains to the kernels
of the fundamental vector differential operators; see [21] for details.

Theorem B.28. Let Ω ⊂ R3 be a domain.

(a) If Ω is 0–connected, then a scalar field u(x, y, z) defined on all of Ω has vanishing
gradient, ∇u ≡ 0, if and only if u(x, y, z) = constant.

(b) If Ω is 1–connected, then a vector field v(x, y, z) defined on all of Ω has vanishing
curl, ∇∧ v ≡ 0, if and only if there is a scalar field ϕ, known as a scalar potential
for v, such that v = ∇ϕ.

(c) If Ω is 2–connected, then a vector field v(x, y, z) defined on all of Ω has vanishing
divergence, ∇ · v ≡ 0, if and only if there is a vector field w, known as a vector
potential for v, such that v = ∇∧w.

If v represents the velocity vector field of a steady-state fluid flow, then the curl-free
condition ∇∧ v ≡ 0 corresponds to an irrotational flow. Thus, on a 2–connected domain,
every irrotational flow field v has a scalar potential ϕ with ∇ϕ = v. The divergence-free
condition ∇ · v ≡ 0 corresponds to an incompressible flow. If the domain is 1–connected,
every incompressible flow field v has a vector potential w that satisfies ∇ ∧w = v. The
vector potential can be viewed as the three-dimensional analog of the stream function for
planar flows. If the fluid is both irrotational and incompressible, then its scalar potential
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satisfies
0 = ∇ · v = ∇ · ∇ϕ = ∆ϕ,

which is Laplace’s equation! Thus, just as in the two-dimensional case, the scalar potential
to an irrotational, incompressible fluid flow is a harmonic function. This fact is used in
modeling many problems arising in physical fluids, including water waves, [Lighthill].
Unfortunately, in three dimensions there is no counterpart of complex function theory
to represent the solutions of the Laplace equation, or to connect the vector and scalar
potentials.

Example B.29. The vector field

v = (− y, x, 1 )
T

that generates the helical flow (B.77) satisfies ∇ · v = 0, and so is divergence-free, recon-
firming our observation that the flow is incompressible. Since v is defined on all of R3,
Theorem B.28 assures us that there is a vector potential w that satisfies ∇∧w = v. One
candidate for the vector potential is

w =
(
y, 0, 1

2 x2 + 1
2 y2

)T
.

The helical flow is not irrotational, and so it does not admit a scalar potential.

Remark : The construction of a vector potential is not entirely straightforward, but we
will not dwell on this problem. Unlike a scalar potential which, when it exists, is uniquely
defined up to a constant, there is, in fact, quite a bit of ambiguity in a vector potential.
Adding in any gradient,

w̃ = w +∇ϕ

will give an equally valid vector potential. Indeed, using Proposition B.26, we have

∇∧ w̃ = ∇∧w +∇∧∇ϕ = ∇∧w.

Thus, any vector field of the form

w =

(
y +

∂ϕ

∂x
,

∂ϕ

∂y
,

x2

2
+

y2

2
+

∂ϕ

∂z

)T
,

where ϕ(x, y, z) is an arbitrary function, is also a valid vector potential for the helical

vector field v = (− y, x, 1 )
T
.

B.8. The Fundamental Integration Theorems.

In three-dimensional vector calculus there are 3 fundamental differential operators
— gradient, curl and divergence. There are also 3 types of integration — line, surface
and volume integrals. And, not coincidentally, there are 3 basic theorems that general-
ize the Fundamental Theorem of Calculus to line, surface and volume integrals in three-
dimensional space. In all three results, the integral of some differentiated quantity over a
curve, surface, or domain is related to an integral of the quantity over its boundary. The
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first theorem relates the line integral of a gradient over a curve to the values of the function
at the boundary or endpoints of the curve. Stokes’ Theorem relates the surface integral of
the curl of a vector field to the line integral of the vector field around the boundary curve
of the surface. Finally, the Divergence Theorem, also known as Gauss’ Theorem, relates
the volume integral of the divergence of a vector field to the surface integral of that vector
field over the boundary of the domain.

The Fundamental Theorem for Line Integrals

We begin with the Fundamental Theorem for line integrals. This is identical to the
planar version, as stated earlier in Theorems A.20 and A.21. We do not need to reproduce
its proof again here.

Theorem B.30. Let C ⊂ R3 be a curve that starts at the endpoint a and goes to

the endpoint b. Then the line integral of a gradient of a function along C is given by

∫

C

∇u · dx = u(b)− u(a). (B.78)

Since its value only depends upon the endpoints, the line integral of a gradient is
independent of path. In particular, if C is a closed curve, then a = b, and so the endpoint
contributions cancel out: ∮

C

∇u · dx = 0.

Conversely, if v is any vector field with the property that its integral around any closed
curve vanishes, ∮

C

v · dx = 0, (B.79)

then v = ∇ϕ admits a potential. Indeed, as long as the domain is 0–connected, one can
construct a potential ϕ(x) by integrating over any convenient curve C connecting a fixed
point a ∈ Ω to the point x

ϕ(x) =

∫ x

a

v · dx.

The proof that this is a well-defined potential is similar to the planar version discussed in
Chapter A.

Example B.31. Line integrals over cylindrical and spherical domains.

If v represents the velocity vector field of a three-dimensional steady state fluid flow,
then its line integral around a closed curve C, namely

∮

C

v · dx =

∮

C

v · t ds

is the integral of the tangential component of the velocity vector field. This represents the
circulation of the fluid around the curve C. In particular, if the circulation line integral is 0
for every closed curve, then the fluid flow will be irrotational because ∇∧v = ∇∧∇ϕ ≡ 0.
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Stokes’ Theorem

The second of the three fundamental integration theorems is known as Stokes’ The-
orem. This important result relates the circulation line integral of a vector field around
a closed curve with the integral of its curl over any bounding surface. Stokes’ Theorem
first appeared in an 1850 letter from Lord Kelvin (William Thompson) written to George
Stokes, who made it into on an undergraduate exam question for the Smith Prize at Cam-
bridge University in England.

Theorem B.32. Let S ⊂ R3 be an oriented, bounded surface whose boundary ∂S

consists of one or more piecewise smooth simple closed curves. Let v be a smooth vector

field defined on S. Then
∮

∂S

v · dx =

∫ ∫

S

(∇∧ v) · n dS. (B.80)

To make sense of Stokes’ formula (B.80), we need to assign a consistent orientation to
the surface — meaning a choice of unit normal n— and to its boundary curve — meaning
a direction to go around it. The proper choice is described by the following left hand

rule: If we walk along the boundary ∂S with the normal vector n on S pointing upwards,
then the surface should be on our left hand side; see Figure Stokes . For example, if
S ⊂ {z = 0} is a planar domain and we choose the upwards normal n = ( 0, 0, 1 )

T
, then

C should be oriented in the usual, counterclockwise direction. Indeed, in this case, Stokes’
Theorem B.32 reduces to Green’s Theorem A.25!

Stokes’ formula (B.80) can be rewritten using the alternative notations (B.21), (B.47),
for surface and line integrals in the form

∮

∂S

u dx+ v dy + w dz =

∫ ∫

S

(
∂w

∂y
−

∂v

∂z

)
dy dz +

(
∂u

∂z
−

∂w

∂x

)
dz dx+

(
∂v

∂x
−

∂u

∂y

)
dx dy.

(B.81)

Recall that a closed surface is one without boundary: ∂S = ∅. In this case, the left
hand side of Stokes’ formula (B.80) is zero, and we find that integrals of curls vanish on
closed surfaces.

Proposition B.33. If the vector field v = ∇ ∧w is a curl, then

∫ ∫

S

v · n dS = 0

for every closed surface S.

Thus, every curl vector field defines a surface-independent integral.

Example B.34. Let S = {x+ y + z = 1, x > 0, y > 0, z > 0} denote the triangu-
lar surface considered in Example B.15. Its boundary ∂S = Lx ∪ Ly ∪ Lz is a triangle
composed of three line segments

Lx = {x = 0, y + z = 1, y ≥ 0, z ≥ 0},

Ly = {y = 0, x+ z = 1, x ≥ 0, z ≥ 0},

Lz = {z = 0, x+ y = 1, x ≥ 0, y ≥ 0}.
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To compute the line integral
∮

∂S

v · dx =

∮

∂S

y2 dx+ xz2 dy

of the vector field v =
(
y2, xz2, 0

)T
, we could proceed directly, but this would require

evaluating three separate integrals over the three sides of the triangle. As an alternative, we
can use Stokes formula (B.80), and compute the integral of its curl ∇∧v = ( 2y, 2xz, 0 )

T

over the triangle, which is
∮

∂S

v · dx =

∫ ∫

S

(∇∧ v) · n dS =

∫ ∫

S

2y dy dz + 2xz dz dx =
17

12
,

where this particular surface integral was already computed in Example B.15.

We remark that Stokes’ Theorem B.32 is consistent with Theorem B.28. Suppose
that v is a curl-free vector field, so ∇ ∧ v = 0, which is defined on a 1–connected domain
Ω ⊂ R3. Since every simple (unknotted) closed curve C ⊂ Ω bounds a surface, C = ∂S,
with S ⊂ Ω also contained inside the domain, then, Stokes’ formula (B.80) implies

∮

C

v · dx =

∫ ∫

S

(∇∧ v) · n dS = 0.

Since this happens for every† C ⊂ Ω, then the path-independence condition (B.79) is
satisfied, and hence v = ∇ϕ admits a potential.

Example B.35. The Newtonian gravitational force field

v(x) =
x

‖x ‖3
=

(x, y, z )
T

(x2 + y2 + z2)3/2

is well defined on Ω = R3
\{0}, and is divergence-free: divv ≡ 0. Nevertheless, this vector

field does not admit a vector potential. Indeed, on the sphere Sa = {‖x ‖ = a} of radius
a, the unit normal vector at a point x ∈ Sa is n = x/‖x ‖. Therefore,

∫ ∫

Sa

v · n dS =

∫ ∫

Sa

x

‖x ‖3
·

x

‖x ‖
dS =

∫ ∫

Sa

1

‖x ‖2
dS =

1

a2

∫ ∫

Sa

dS = 4π,

since Sa has surface area 4πa2. Note that this result is independent of the radius of the
sphere. If v = ∇∧w, this would contradict Proposition B.33.

The problem is, of course, that the domain Ω is not 2–connected, and so Theorem B.28
does not apply. However, it would apply to the vector field v on any 2–connected sub-
domain, for example the domain Ω̃ = R3

\ {x = y = 0, z ≤ 0} obtained by omitting the
negative z-axis. Exercise asks you to construct a vector potential in this case.

We further note that v is curl free: ∇ ∧ v ≡ 0. Since the domain of definition Ω is
1–connected, Theorem B.28 tells us that v admits a scalar potential — the Newtonian
gravitational potential. Indeed, ∇

(
‖x ‖−1

)
= v, as the reader can check.

† It suffices to know this for unknotted curves to conclude it for arbitrary closed curves.
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The Divergence Theorem

The last of the three fundamental integral theorems is the Divergence Theorem, also
known as Gauss’ Theorem. This result relates a surface flux integral over a closed surface
to a volume integral over the domain it bounds.

Theorem B.36. Let Ω ⊂ R3 be a bounded domain whose boundary ∂Ω consists
of one or more piecewise smooth simple closed surfaces. Let n denote the unit outward
normal to the boundary of Ω. Let v be a smooth vector field defined on Ω and continuous
up to its boundary. Then

∫ ∫

∂Ω

v · n dS =

∫ ∫ ∫

Ω

∇ · v dx dy dz. (B.82)

In terms of the alternative notation (B.47) for surface integrals, the divergence for-
mula (B.82) can be rewritten in the form

∫ ∫

S

u dy dz + v dz dx+ w dxdy =

∫ ∫ ∫

Ω

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)
dx dy dz. (B.83)

Example B.37. Let us compute the surface integral

∫ ∫

S

xy dz dx+ z dx dy

of the vector field v = ( 0, xy, z )
T
over the sphere S = {‖x ‖ = 1} of radius 1. A direct

evaluation in either graphical or spherical coordinates is not so pleasant. But the divergence
formula (B.83) immediately gives

∫ ∫

S

xy dz dx+ z dx dy =

∫ ∫ ∫

Ω

(
∂(xy)

∂y
+

∂z

∂z

)
dx dy dz

=

∫ ∫ ∫

Ω

(x+ 1) dx dy dz =

∫ ∫ ∫

Ω

x dx dy dz +

∫ ∫ ∫

Ω

dx dy dz = 4
3 π,

where Ω = {‖x ‖ < 1} is the unit ball with boundary ∂Ω = S. The final two integrals are,
respectively, the x coordinate of the center of mass of the sphere multiplied by its volume,
which is clearly 0, plus the volume of the spherical ball.

Example B.38. Suppose v(t,x) is the velocity vector field of a time-dependent
fluid flow. Let ρ(t,x) represent the density of the fluid at time t and position x. Then the

surface flux integral

∫ ∫

S

(ρv) · n dS represents the mass flux of fluid through the surface

S ⊂ R3. In particular, if S = ∂Ω represents a closed surface bounding a domain Ω, then,
by the Divergence Theorem B.36,

∫ ∫

∂Ω

(ρv) · n dS =

∫ ∫ ∫

Ω

∇ · (ρv) dx dy dz
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represents the net mass flux out of the domain Ω at time t. On the other hand, this must
equal the rate of change of mass in the domain, namely

−
∂

∂t

∫ ∫ ∫

Ω

ρ dx dy dz = −

∫ ∫ ∫

Ω

∂ρ

∂t
dx dy dz,

the minus sign coming from the fact that we are measuring net mass loss due to outflow.
Equating these two, we discover that

∫ ∫ ∫

Ω

(
∂ρ

∂t
+∇ · (ρv)

)
dx dy dz = 0

for every domain occupied by the fluid. Since the domain is arbitrary, this can only happen
if the integrand vanishes, and hence

∂ρ

∂t
+∇ · (ρv) = 0. (B.84)

The latter is the basic continuity equation of fluid mechanics, which takes the form of a
conservation law.

For a steady state fluid flow, the left hand side of the divergence formula (B.82)
measures the fluid flux through the boundary of the domain ∂Ω, while the left hand side
integrates the divergence over the domain Ω. As a consequence, the divergence must
represent the net local change in fluid volume at a point under the flow. In particular, if
∇v = 0, then there is no net flux, and the fluid flow is incompressible.

The Divergence Theorem B.36 is also consistent with Theorem B.28. Let v is a
divergence-free vector field, ∇ · v = 0, defined on a 2–connected domain Ω ⊂ R3. Every
simple closed surface S ⊂ Ω bounds a subdomain, so S = ∂D, with D ⊂ Ω also contained
inside the domain of definition of v. Then, by the divergence formula (B.82),

∫ ∫

S

v · n dS =

∫ ∫ ∫

Ω

∇ · v dx dy dz = 0.

Therefore, by Theorem B.28, v = ∇∧w admits a vector potential.

Remark : The proof of all three of the fundamental integral theorems, can, in fact, be
reduced to the Fundamental Theorem of (one-variable) Calculus. They are, in fact, all
special cases of the general Stokes’ Theorem, which forms the foundation of the profound
theory of integration on manifolds, [2, 21, 58]. Stokes’ Theorem has deep and beautiful
connections with topology — and is of fundamental importance in modern mathematics
and physics. However, the full ramifications lie beyond the scope of this introductory text.
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Appendix C

Infinite Series

When applied to partial differential equation in higher dimensions, the separation
of variables method often results in ordinary differential equations of a non-elementary
type. Their solutions are expressed in terms of certain remarkable and important non-
elementary functions — the Bessel functions. These so-called special functions do not
appear in elementary calculus, but do play a starring role in more advanced applications in
physics, engineering and mathematics. Most interesting special functions arise as solutions
to certain second order, self-adjoint boundary value problems of Sturm–Liouville type.
As such, they obey basic orthogonality relations, and thus can be used in place of the
trigonometric sines and cosines that form the foundations of elementary Fourier analysis.
Thus, the series solutions of higher dimensional partial differential equations lead naturally
to the study of Fourier–Bessel series. In this appendix, we collect together the required
results about the most important classes of special functions, including a short presentation
of the series approach for solving non-elementary ordinary differential equations.

C.1. Power Series.

By definition, a power series

f(x) ∼ c0 + c1 x+ · · · + cn xn + · · · =
∞∑

k=0

ck xk

can be viewed as an infinite linear combination of the basic monomials 1, x, x2, x3, . . . .
According to Taylor’s formula, (C.8), the coefficients are given in terms of the derivatives
of the function at the origin,

ck =
f (k)(0)

k!
,

not by an inner product. The partial sums

sn(x) = c0 + c1 x+ · · · + cn xn =
n∑

k=0

ck xk

of a power series are ordinary polynomials, and the same convergence questions arise.

A power series either converges everywhere, or on an interval centered at 0, or nowhere
except at 0. (See Section 16.2 for details.) A Fourier series can converge on quite bizarre
sets. In fact, a detailed analysis of the convergence of Fourier series led Georg Cantor to
establish the foundations of modern set theory, and, thus, had a seminal impact on the
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very foundations of mathematics and logic. Secondly, when a power series converges, it
converges to an analytic function, which is infinitely differentiable, and whose derivatives
are also represented by power series, obtained by termwise differentiation.

Taylor’s Theorem

Taylor’s theorem with remainder.

Theorem C.1. The Taylor expansion of u(x+ h), where h is viewed as small, is

u(x+ h) = u(x) + u′(x)h+ u′′(x)
h2

2
+ · · · + u(n)(x)

hn

n!
+Rn(x, h), (C.1)

where the remainder term has various forms, of which the most relevant is Cauchy’s form

Rn(x, h) = u(n+1)(ξ)
hn+1

(n+ 1)!
, (C.2)

where ξ is a point lying between x and x+ h. Note that the error is of order hn+1. If we

are not interested in the precise form of the error term, we write

Rn(x, h) = O(hn+1),

to indicate its order, which is n+ 1, in the small parameter h.

For example, at

A Taylor series is

Example C.2. Expansions of powers (1 + x)r.

The coefficients are called binomial coefficients, and denoted

(
r

i

)
=

r (r − 1)(r − 2) · · · (r − i+ 1)

1 · 2 · 3 · · · · · i
. (C.3)

If r = n is a non-negative integer, then the Taylor expansion terminates, and reduces to
the well-known Binomial Theorem

(x+y)n = xn+nxn−1 y+
n(n− 1)

2
xn−2 y2+ · · · +nxyn−1+yn =

n∑

i=0

(
n

i

)
xn−i yi. (C.4)

We can also write

(
n

i

)
=

n(n− 1)(n− 2) · · · (n− i+ 1)

1 · 2 · 3 · · · · · i
=

n!

i! (n− i)!

Corollary: Mean Value Theorem
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Theorem C.3. Suppose f(u) is continuously differentiable. Then

f(x)− f(a) = f ′(ξ) (x− a) for some ξ between x and a. (C.5)

The first order Taylor expansion

u(x+ h) = u(x) + u′(x)h+O(h) = u(x) + u′(x)h+R1(x, h), (C.6)

See (Taylor2iter )

g(u) = g(u?) + g′(u?) (u− u?) + 1
2 g′′(w) (u− u?)2,

immediately produces the simplest finite difference approximation to the first derivative

u′(x) ≈
u(x+ h)− u(x)

h
.

Thus, computing the usual difference quotient at two nearby points, x and x+h, produces
a simple approximation to the derivative u′(x). Geometrically, we are approximating the
slope of the tangent line to the graph of u at x by the sloe of a secant line through
two nearby points on the graph. The error in the approximation, meaning the difference
between the two sides of (14.129), is

1

h
R1(x, h) =

1

2
u′′(ξ)h = O(h).

We say the finite difference approximation (14.132) is first order because the error is
proportional to h, and write

u′(x) =
u(x+ h)− u(x)

h
+O(h).

The second order Taylor expansion

u(x+ h) ≈ u(x) + u′(x)h+ 1
2 u′′(x)h2. (C.7)

The remainder is

Recall that a function f(x) is called analytic at a point a if it is smooth, and, moreover,
its Taylor series

f(a) + f ′(a) (x− a) + 1
2 f ′′(a) (x− a)2 + · · · =

∞∑

n=0

f (n)(a)

n!
(x− a)n (C.8)

converges to f(x) for all x sufficiently close to a. (It does not have to converge on the entire
interval I.) Not every smooth function is analytic, and so A(I) ( C∞(I). An explicit
example is the function

f(x) =

{
e−1/x, x > 0,

0, x ≤ 0.
(C.9)

It can be shown that every derivative of this function at 0 exists and equals zero: f (n)(0) =
0, n = 0, 1, 2, . . ., and so the function is smooth. However, its Taylor series at a = 0 is
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0+0x+0x2+ · · · ≡ 0, which converges to the zero function, not to f(x). Therefore f(x)
is not analytic at a = 0.

In the vector-valued case first order Taylor expansion of a vector-valued function at a
point u? takes the form

g(u) = g(u?) + g′(u?) (u− u?) +R(u− u?). (C.10)

C.2. Laurent Series.

As we know, any function f(z) which is analytic at a point z = a has a power series
expansion (16.26). If f(z) has a pole at the point a, then power series expansion of the
usual form at the point a. Nevertheless, there is a more general expansion, named after
the French mathematician Laurent, that converges to f(z) at all nearby points z (except,
of course, at the singularity itself z = a).

If f(z) has a pole of order n at z = a, then, by definition, the function

g(z) = (z − a)nf(z) = b0 + b1(z − a) + b2(z − a)2 + · · ·

is analytic at z = a, and hence can be expanded in an ordinary power series. Dividing
both sides of this equation by (z− a)n and relabeling the coefficients ck = bk+n for clarity,
we find

f(z) =
p(z)

(z − a)n
+ h(z) (C.11)

=
c−n

(z − a)n
+

c1−n

(z − a)n−1
+ · · · +

c−1

z − a
+ c0 + c1(z − a) + c2(z − a)2 + · · · .

Here
p(z) = c−n + c1−n(z − a) + · · · + c−1(z − a)n−1,

h(z) = c0 + c1(z − a) + c2(z − a)2 + · · · ,

are, respectively, a polynomial of degree ≤ n− 1 and an analytic function near z = a.

The series (C.11) is the Laurent series for f(z) at the pole z = a. The highest negative
power −n indicates the order n of the pole. In particular, f(z) is analytic at z = a if and
only if n = 0 and the Laurent series reduces to a standard Taylor series. Laurent series
only apply to poles. See [4] for generalizations that apply at branch points (Puiseux series)
and essential singularities (Weierstrass ).

Example C.4. The function f(z) =
1

1 + z2
has a simple pole at z = i . To expand

it in a Laurent series, we multiply by z − i and expand the resulting analytic function in
a geometric series:

z − i

1 + z2
=

1

z + i
=

−
i
2

1− i
2 (z − i )

= −
∞∑

n=1

i n+1

2n+1
(z− i )n = −

i

2
+
1

4
(z− i )+

i

8
(z− i )2+· · · .
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Therefore, the required Laurent series is

1

1 + z2
= −

∞∑

n=1

i n+1

2n+1
(z − i )n−1 = −

i

2(z − i )
+
1

4
+
i

8
(z − i ) + · · · . (C.12)

This converges for 0 < | z − i | < 2.

Remark : Laurent series have a radius of convergence ρ which, just like power series,
measures the distance from the pole to the nearest other singularity fo the function. The
series converges for all z satisfying 0 < | z − a | < ρ, and, possibly, some of the points on
the boundary | z − a | = ρ of the convergence disk.

Remark : One can manipulate Laurent series in a very similar fashion as power series.
Thus, addition, multiplication, division, and so on are defined in the evident fashion.

According to the basic residue identity (16.139), the only term in the series that has
a nontrivial residue is the one involving 1/(z− a). Therefore, we can immediately read off
the residue at a pole of a complex function from its Laurent series expansion.

Lemma C.5. The residue of f(z) at z = a is the coefficient of (z − a)−1 in its

Laurent series expansion (C.11):

Res
z=a

f(z) = c−1.

For example, by inspection of the Laurent series (C.12), we immediately find that

Res
z= i

1

1 + z2
= −

i

2
,

which is the coefficient of the initial term.

C.3. Special Functions.

Very few differential equations can be solved explictly in closed form. Even for linear
ordinary differential equations, once one tries to move beyond the simplest constant coeffi-
cient equations, there are not very many examples with explicit solutions. One important
example that has been solved are the Euler equations (3.76) But many other fairly sim-
ple second order equations, including the Bessel and Legendre equations that arose as a
result of our separation of variables solution to partial differential equations, do not have
elementary functions as solutions. These and other equations that appear in a number of
key applications lead to new types of “special functions” that occur over and over again
in applications.

Just as the student learned to become familiar with exponential and trigonometric
functions, thus, at a more advanced level, applications in physics, engineering and mathe-
matics require gaining some familiarity with the properties of these functions. The purpose
of this section is to introduce the student to some basic properties of the most important
special functions, including the gamma function, the Airy functions, the Legendre func-
tions and, finally the Bessel functions. Lack of space will prevent us from introducing
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additional important special functions, such as hypergeometric functions, confluent hyper-
geometric functions, parabolic cylinder functions, the zeta function, elliptic functions, and
many others. The interested reader can consult more advanced texts, such as [116, 149],
and the handbook [3], as well as the soon to appear update [48] and its web site, for the
latest information on this fascinating and very active field of mathematics and applica-
tions. We should remark that there is no precise definition of the term “special function”
— it merely designates a function that plays a distinguished role in a range of applications
and whose properties and evaluation are therefore of particular interest.

Most special functions arise most naturally as solutions to second order linear ordinary
differential equations with variable coefficients. One method of gaining anlytical insight
into their properties is to formulate them as power series. Therefore, we will learn how
to construct power series solutions to differential equations when closed form solutions are
not available. As we shall see, although computationally messy at times, the power series
method is straightforward to implement in practice. When we are at a regular point for the
differential equation, the solutions can be obtained as ordinary power series. At so-called
regular singular points, a more general type of series known as a Frobenius expansion is
required. More general singular points require more advanced techniques, and will not be
discussed here.

The Gamma Function

The first special function that we shall treat does not, in fact arise as the solution
to a differential equation. Rather, it forms a generalization of the factorial function from
integers to arbitrary real and complex numbers. As such, it will often appear in power
series solutions to differential equations when parameters take on non-integral values.

First recall that the factorial of a non-negative integer n is defined inductively by the
iterative formula

n ! = n · (n− 1) !, starting with 0! = 1. (C.13)

Thus, if n is a non-negative integer, the iteration based on the second formula terminates,
and yields the familiar expression

n ! = n(n− 1)(n− 2) · · · · 3 · 2 · 1. (C.14)

If n is not a non-negative integer, then the iteration will not terminate, and we cannot use
it to compute the factorial. Our goal is to introduce a function f(x), defined for all values
of x, that will play the role of such a factorial. The function should satisfy the functional
equation

f(x) = x f(x− 1) (C.15)

where defined. If, in addition, f(0) = 1, then we know f(n) = n ! whenever n is a non-
negative integer, and hence such a function will extend the definition of factorials to more
general real and complex numbers.

A moment’s thought should convince the student that there are many possible ways
to construct such a function. The most important method relies on an integral formula,
and leads to the definition of the gamma function, originally discovered by Euler.
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Definition C.6. The Gamma function is defined by

Γ(z) =

∫ ∞

0

e−t tz−1 dt. (C.16)

For real z, the gamma function integral will converge provided z > 0; otherwise the
singularity of tz−1 is too severe to permit convergence of the improper integral at t = 0.
The key property that turns the gamma function into a substitute for the factorial function
relies on an elementary integration by parts:

Γ(z + 1) =

∫ ∞

0

e−t tz dt = − e−t tz
∣∣∞
t=0

+ z

∫ ∞

0

e−t tz−1 dt.

The boundary terms vanish whenever z > 0, while the final integral is merely Γ(z). There-
fore, the gamma function satisfies the recurrence relation

Γ(z + 1) = z Γ(z) provided z > 0. (C.17)

If we set f(x) = Γ(x+1), then (C.17) is the same as (C.15)! Moreover, by direct integration

Γ(1) =

∫ ∞

0

e−t dt = 1.

Combining this with the recurrence relation (C.17), we deduce that

Γ(n+ 1) = n ! (C.18)

whenever n ≥ 0 is a non-negative integer. Therefore, we can identify x ! with the value
Γ(x+ 1) whenever x > −1 is any real number.

Remark : The student may legitimately ask why not replace tz−1 by tz in the definition
of Γ(z), which would avoid the n− 1 in (C.18). There is no simple answer; we are merely
following a well-established precedent set originally by Euler.

One important value of the gamma function is at z = 1
2 . Using the substitution

t = x2, with dt = 2x dx = 2 t1/2, we find

Γ
(

1
2

)
=

∫ ∞

0

e−t t−1/2 dt =

∫ ∞

0

2 e−x
2

dx =
√

π, (C.19)

where the final integral was evaluated earlier, (intex2 ). Thus, using the identification with
the factorial function, we identify this value with

(
−

1
2

)
! =

√
π. The recurrence relation

(C.17) will then fix the value of the gamma function at all half-integers 1
2 , 3

2 , 5
2 , . . . . For

example,

Γ
(

3
2

)
= 1

2 Γ
(

1
2

)
= 1

2

√
π, (C.20)

and hence 1
2 ! =

1
2

√
π. Further properties of the gamma function are outlined in the

exercises. A graph of the gamma function appear in Figure C.1. Note the appearance of
singularities at negative integer values of x = −1,−2, . . . .
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Figure C.1. The Gamma Function.

One of the most useful formulas involving the gamma function is Stirling’s Formula,

Γ(n+ 1) = n! ∼

√

2π n
nn

en
, n −→∞, (C.21)

which gives the asympotitic values of the factorial function for large n. A proof is outlined
in the exercises.

Series Solutions of Ordinary Differential Equations

When confronted with a novel differential equation, there are a few standard options
for making progress in solving and understanding the solutions. One of these is the “look-
up” method, that relies on published collections of differential equations and their solutions.
One of the most useful references that collects together many solved differential equations
is the classic German compendium written by Kamke, [89]. Two more recent English-
language handbooks are [156, 158].

Of course, numerical integration — see Chapter 20 for a presentation of basic methods
— is always an option for approximating the solution. Numerical methods do, however,
have their limitations, and are best accompanied by some understanding of the underlying
theory, coupled with qualitative or quantitative expectations of how the solutions should
behave. Furthermore, numerical methods provide less than adequate insight into the nature
of the special functions that appear as solutions of the particular differential equations
arising in separation of variables. A numerical approximation cannot, in itself, be used to
establish rigorous mathematical properties of the solutions of the differential equation.

A more classical means of constructing and approximating the solutions of differential
equations is based on their power series or Taylor series expansions. The Taylor expan-
sion of a solution at a point x0 is found by substituting a general power series into the
differential equation and equating coefficients of the various powers of (x − x0). Using
the initial conditions at x0, the resulting system of equations serves to uniquely determine
the coefficients and hence the derivatives of the solution at the initial point. The Taylor
expansion of a special function can be used to deduce many of the key properties of the
solution, as well as provide reasonable numerical approximations to its values within the
radius of convergence of the series. (Howver, serious numerical computations are often
performed through other methods, such as asymptotic expansions, [116].)
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In this section, we provide a brief introduction to the basic series solution techniques
for ordinary differential equations, concentrating on second order linear differential equa-
tions, since these form by far the most important class of examples arising in applications.
When x0 is a regular point, the method will construct a standard Taylor expansion for the
solution, while so-called regular singular points require a slightly more general series expan-
sion. Generalizations to higher order equations, nonlinear equations, and even (nonlinear)
systems are left to other more detailed texts, including [85].

Regular Points

We shall concentrate on solving a homogeneous linear differential equation of the form

p(x)
d2u

dx2
+ q(x)

du

dx
+ r(x)u = 0. (C.22)

Throughout this section, the coefficients p(x), q(x), r(x) are assumed to be analytic func-
tions where defined. This means that, at a point x0, they admit convergent power series
expansions

p(x) = p0 + p1 (x− x0) + p2 (x− x0)
2 + · · · ,

q(x) = q0 + q1 (x− x0) + q2 (x− x0)
2 + · · · ,

r(x) = r0 + r1 (x− x0) + r2 (x− x0)
2 + · · · .

(C.23)

We expect that the solutions to the differential equation will also be analytic functions.
This expectation is valid provided that the equation is regular at the point x0, in the
sense that it is of genuinely second order, meaning that the coefficient p(x) of the second
derivative does not vanish at x0.

Definition C.7. A point x = x0 is a regular point of a second order linear ordinary
differential equation (C.22) provided the leading coefficient does not vanish there:

p0 = p(x0)6= 0.

A point where p(x0) = 0 is known as a singular point .

Remark : The definition of a singular point assumes that the other coefficients do not
both vanish there, i.e., either q(x0) 6= 0 or r(x0) 6= 0. If all three functions happen to
vanish at x0, we would factor out a common factor (x − x0)

k, and hence, without loss of
generality, can assume at least one of the coefficients is nonzero at x0.

The basic existence theorem for differential equations at regular points follows. See
[85; ] for a proof.

Theorem C.8. If x0 is a regular point for the second order homogeneous linear

ordinary differential equation (C.22), then there exists a unique solution u(x) to the initial
value problem

u(x0) = a, u′(x0) = b, (C.24)

which is an analytic function for x sufficiently close to x0.
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Remark : It can be proved that the radius of convergence of any analytic solution u(x)
is equal to the distance from the regular point to the nearest singular point in the complex
plane.

Therefore, every solution to an analytic differential equation at a regular point is an
analytic function, and so can be expanded in an ordinary power series

u(x) = u0 + u1 (x− x0) + u2 (x− x0)
2 + · · · =

∞∑

n=0

un (x− x0)
n (C.25)

at the point. We remark that the power series is the same as the Taylor series for u(x),
and hence the coefficients

un =
u(n)(x0)

n !

are multiples of the derivatives of the function at the point x0. (Some authors prefer to
keep the n !’s in the power series; this is purely a matter of taste.) In particular, the first
two coefficients

u0 = u(x0) = a, u1 = u′(x0) = b. (C.26)

are prescribed by the initial conditions. Once the initial conditions have been specified,
the remaining coefficients must be uniquely prescribed since there is only one solution to
the initial value problem.

The basic method for constructing the power series solution to the initial value problem
is quite straightforward. One substitutes the known power series (C.23) for the coefficient
functions and the unknown power series (C.25) for the solution into the differential equation
(C.22). Multiplying out the formulae will result in a (complicated) power series that must
be equated to zero. At this point, one analyzes the individual coefficients. We rely on the
basic observation that

Two power series are equal if and only if their individual coefficients are equal,

generalizing the standard test for equality of polynomials. In particular, a power series
represents the zero function† if and only if all its coefficients are 0.

Thus, the power series solution method continues by equating, in order, the coefficients
of the resulting power series to zero, starting with the lowest order (constant) and working
upwards. The lowest order terms are multiples of (x − x0)

0 = 1, i.e., the constant terms
in the differential equation, lead to a linear recurrence relation

u2 = R2(u0, u1) = R2(a, b)

that prescribes the coefficient u2 in terms of the initial data. The coefficients of (x − x0)
lead to a linear recurrence relation

u3 = R3(u0, u1, u2) = R3(a, b, R2(a, b))

† Here it is essential that we work with analytic functions, since this result is not true for

C∞ functions! For example, the function e−1/x2

has identically zero power series at x0 = 0; see
(e2x ).
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that prescribes the coefficient u3 in terms of the initial data and the prviously computed
coefficient u2. And so on. At the nth stage of the procedure, the coefficients of (x− x0)

n

lead to the nth linear recurrence relation

un+2 = Rn(u0, u1, . . . , un+1), n = 0, 1, 2, . . . , (C.27)

that will prescribe the (n + 2)nd order coefficient in terms of the previous ones. Once
the coefficients u0 and u1 have been specified by the initial conditions, the remaining
coefficients u2, u3, u4, . . . are successively fixed by the recurrence relations (C.27). In this
fashion, we easily deduce the existence of a formal power series solution to the differential
equation at a regular point. The one remaining issue is whether the resulting power series
actually converges. This can be proved with a detailed analysis, [85], and will serve to
complete the proof of the general existence Theorem C.8.

At any regular point, the second order differential equation (C.22) admits two linearly
independent analytic solutions, which we denote by u(x) and ũ(x). The general solution
can be written as a linear combination of the two basis solutions:

u(x) = a u(x) + b ũ(x). (C.28)

A standard choice for the two basis solutions is to take the first to satisfy the initial
conditions

u(x0) = 1, u′(x0) = 0, (C.29)

and the second to satisfy
ũ(x0) = 0, ũ′(x0) = 1, (C.30)

although other choices may be used depending upon particular circumstances. With this
choice, the linear combination automatically satisfies the initial conditions (C.24).

Rather than continue in generality, the best way to learn the method is to investigate
simple examples.

The Airy Equation

A particularly easy case to analyze is the Airy equation

u′′ = xu. (C.31)

This second order ordinary differential equation arises in optics, dispersive waves, caustics
(focusing of light waves as with a magnifying glass) and diffraction. It was first derived
by the English mathematician Airy in 1839, [5]. In Exercise , we saw how it arises in a
separation of variables solution to the Tricomi equation arising in supersonic fluid motion.

The solutions to the Airy equation are known as Airy functions. While Airy functions
cannot be written in terms of the standard elementary functions, it is relatively straight-
forward to determine their power series expansion. Since the leading coefficient p(x) ≡ 1
is constant, and every point x0 is a regular point of the Airy equation. For simplicity, we
only treat the case x0 = 0, and therefore consider a Maclaurin series

u(x) = u0 + u1 x+ u2 x2 + u3 x3 + · · · =
∞∑

n=0

un xn
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for the solution Term-by-term differentiation yields the series expansions†

u′(x) = u1 + 2u2 x+ 3u3 x2 + 4u4 x3 + · · · =
∞∑

n=0

(n+ 1)un+1 xn,

u′′(x) = u2 + 6u3 x+ 12u4 x2 + 20u5 x3 + · · · =
∞∑

n=0

(n+ 1)(n+ 2)un+2 xn,

(C.32)

for its derivatives. On the other hand,

xu(x) = u0 x+ u1 x2 + u2 x3 + · · · =
∞∑

n=1

un−1 xn. (C.33)

Substituting (C.33) and the formula for u′′(x) back into the Airy equation (C.31), and
then equating the various powers of x leads to the following recurrence relations relating
the coefficients of our power series. The left column indicates the power of x, while the
right column tells us the recurrence relation:

1 u2 = 0,

x 6u3 = u0,

x2 12u4 = u1,

x3 20u5 = u2,

x4 30u6 = u3,

...
...

xn (n+ 1)(n+ 2)un+2 = un−1.

We solve the recurrence relations in order. The first equation determines u2. The second
prescribes u3 =

1
6 u0 in terms of u0. Next we find u4 =

1
12 u1 in terms of u1. Next,

u5 =
1
20u2 = 0. Then u6 =

1
30 u3 =

1
180 u0 is first given in terms of u3, but we already

know the latter in terms of u0. And so on. At the nth stage of the recursion, stage we
determine un+2 using our previsously generated formula for un−1.

The only coefficients that are not determined by this procedure are the first two, u0

and u1. These correspond to the value of the solution and its derivative at x0 = 0, as in
(C.24). Let us construct the two basis solutions. The first uses the initial conditions

u0 = u(0) = 1, u1 = u′(0) = 0.

The recurrence relations then show that the only nonvanishing coefficients cn are when
n = 3k is a multiple of 3; all others are zero. Moreover,

c3k =
c3k−3

3k(3k − 1)

† If we choose to work with the series in summation form, we need to re-index appropriately
in order to display the term of degree n.
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Figure C.2. The Airy Functions.

A straightforward induction proves that

c3k =
1

3k(3k − 1)(3k − 3)(3k − 4) · · · 6 · 5 · 3 · 2
.

The resulting solution is known as the Airy function of the first kind , and denoted by

Ai(x) = 1 + 1
6 x3 + 1

180 x6 + · · · =

∞∑

k=1

x3k

3k(3k − 1)(3k − 3)(3k − 4) · · · 6 · 5 · 3 · 2
. (C.34)

Note that the denominator is similar to a factorial, except every third term is omitted.
The “Ai” is read as a single symbol — not the product of A and i !

Similarly, starting with the initial conditions

u0 = u(0) = 0, u1 = u′(0) = 1,

we find that the only nonvanishing coefficients cn are when n = 3k+ 1 leaves a remainder
of 1 when divided by 3. The recurrence relation

c3k+1 =
c3k−2

(3k + 1)(3k)
yields c3k+1 =

1

(3k + 1)(3k)(3k − 2)(3k − 3) · · · 7 · 6 · 4 · 3
.

The resulting solution

Bi(x) = x+ 1
12 x4+ 1

504 x7+ · · · =
∞∑

k=1

x3k+1

(3k + 1)(3k)(3k − 2)(3k − 3) · · · 7 · 6 · 4 · 3
(C.35)

is known as the Airy function of the second kind . Again, the denominator skips every
third term in the product. Every solution to the Airy equation can be written as a linear
combination

u(x) = a Ai(x) + b Bi(x), where a = u(0), b = u′(0)

correspond to the initial conditions of u(x) at x = 0. The power series (C.34), (C.35),
converge quite rapidly for all values of x, and so the first few terms provide a reasonable
approximation to the two Airy functions for moderate values of x.

A graph of the two Airy functions appears in Figure C.2. Both functions oscillate
for negative values of x, with a slowly decreasing amplitude. An intuitive explanation is
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that when x < 0 the Airy equation (C.31) corresponds to a constant coefficient differential
equation of the form u′′ = −k2 u, which has oscillatory trigonometric solutions. On the
other hand, when x > 0, the Airy equation is more like a constant coefficient differential
equation of the form u′′ = +k2 u, whose basis solutions ek x and e− k x are, respectively,
exponentially growing and exponentially decaying. Indeed, as x → ∞, the first Airy
function Ai(x) decays very rapidly, whereas the second Bi(x) grows even more dramatically.
Actually, the growth/decay rates are faster than exponential. It can be shown that

Ai(x) ∼





e− 2x3/2/3

2
√

π x1/4
, x → +∞,

sin

(
2

3
(−x)3/2 +

π

4

)

√
π (−x)1/4

, x → −∞,

Bi(x) ∼





e2x3/2/3

2
√

π x1/4
, x → +∞,

cos

(
2

3
(−x)3/2 +

π

4

)

√
π (−x)1/4

, x → −∞.

Detailed investigations into the properties and numerical computation of the Airy functions
can be found in [3, 48, 116].

The Legendre Equation

A particularly important example is the Legendre equation

(1− t2)2
d2P

dt2
− 2 t (1− t2)

dP

dt
+
[
λ (1− t2)−m2

]
P = 0. (C.36)

The integer m govenrs the order of the Legendre equation, while λ plays the role of an
eigenvalue. As we learned in the preceding sections, this differential equation arises in the
solutions to a wide variety of partial differential equations in spherical coordinates. The
boundary conditions that serve to specify the eigenvalues are that the solution remain
bounded at the two singular points t = ±1, leading to the boundary conditions

|P (−1) | < ∞, |P (+1) | < ∞. (C.37)

The point t = 0 is a regular point of the Legendre equation. Indeed, the only singular
points are the boundary points t = ± 1. Therefore, we can determine the solutions to the
Legendre equation by the method of power series based at t0 = 0. However, the general
recurrence relations are rather complicated to solve in closed form, and we use some tricks
to get a handle on the solutions.

Consider first the case m = 0. The Legendre equation of order 0 is

(1− t2)
d2P

dt2
− 2 t

dP

dt
+ λP = 0. (C.38)
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As we noted above, the eigenfunctions are the Legendre polynomials

Pn(t) =
1

2n n !

dn

dtn
(t2 − 1)n.

They clearly satisfy the boundary conditions (C.37). To verify that they are indeed solu-
tions to the differential equation (C.38), we let

qn(t) = (t
2
− 1)n.

By the chain rule, the derivative of qn(t) is

q′n = 2nt(t2 − 1)n−1 and hence (t2 − 1)q′n = 2nt(t2 − 1)n = 2ntqn.

Differentiating the latter formula,

(t2 − 1)q′′n + 2 tq
′
n = 2nt : q′n + 2nqn, or (t2 − 1)q′′n = 2(n− 1)tq

′
n + 2nqn.

A simple induction proves that the kth order derivative q
(k)
n (t) = dkqn/dtk satisfies

(t2 − 1)q(k+2)
n = 2(n− k − 1) tq(k+1)

n + 2[n+ (n− 1) + · · ·+ (n− k) ]q(k)
n

= 2(n− k − 1) tq(k+1)
n + (k + 1)(2n− k)q(k)

n .
(C.39)

In particular, when k = n, this reduces to

(t2 − 1)q(n+2)
n = −2 tq(n+1)

n + n(n+ 1)q(n)
n = 0,

and so vn = q(n)
n satisfies

(1− t2)v′′n − 2 tv
′
n + n(n+ 1)vn = 0,

which is precisely the order 0 Legendre equation (C.38) with eigenvalue parameter λ =
n(n+1). The Legendre polynomial Pn is a constant multiple of vn, and hence it too satisfies
the order 0 Legendre equation and hence forms an eigenfunction for the Legendre boundary
value problem (C.36), (C.37). While it is not immediately apparent that the Legendre
polynomials form a complete system of eigenfunctions, this is the case. This is the result
of a general theory of eigenfunctions of Sturm–Liouville boundary value problems, [34], or,
more particlarly, the theory of orthogonal polynomials, [OP]. Indeed, the orthogonality
of the Legendre polynomials that was noted in Chapter 5 is, in fact, a consequence of the
fact that they are eigenfunctions for this self-adjoint boundary value problem.

More generally, if we substitute k = m+ n in (C.39), we have

(1− t2)w′′n − 2(m+ 1) tw
′
n + (m+ n+ 1)(n−m)wn = 0, where wn = q(m+n)

n .
(C.40)

This is not the order m Legendre equation, but can be converted into it by setting

wn = (1− t2)−m/2 zn.

Differentiating, we find

w′n = (1− t2)−m/2 z′n −mt (1− t2)−m/2−1 zn,

w′′n = (1− t2)−m/2 z′′n − 2mt (1− t2)−m/2−1 z′n + (m+m(m+ 1)t2) (1− t2)−m/2−2 zn.
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Therefore, after a little algebra, equation (C.40) takes the alternative form

(1− t2)−m/2+1 z′′n − 2 t (1− t2)−m/2 z′n + (n(n+ 1)(1− t2)−m2) (1− t2)−m/2−1 zn = 0,

which, when multiplied by (1−t2)m/2+1, is precisely the order m Legendre equation (C.36)
with eigenvalue parameter λ = n(n+ 1). We conclude that

zn(t) = (1− t2)m/2wn(t) = (1− t2)m/2 dn+m

dtn+m
(t2 − 1)n

is a solution to the order m Legendre equation. Moreover, zn(±1) = 0, and hence zn(t)
is an eigenfunction for the order m Legendre boundary value problem. Indeed, zn(t) is a
constant multiple of the associated Legendre function Pm

n (t), as defined in (18.27). With
some more work, it can be proved that the associated Legendre functions form a complete
system of eigenfunctions for the the order m Legendre boundary value problem.

Regular Singular Points

In certain situations, one is primarily interested in the behavior of solutions to a
differential equation near a singular point. In most cases, a power series expansion (C.25)
will not, in general, produce a solution at a singular point. As before, we write the
differential equation as

p(x)
d2u

dx2
+ q(x)

du

dx
+ r(x)u = 0, (C.41)

and assume that the functions p, q, r are analytic at x0, where now we assume that p(x0) =
0, but at least one of q(x0), r(x0) is non-zero. If the singular point is not too “wild”, one
can construct solutions using a relatively simple modification of the basic power series.

In order to formulate the key definition, we rewrite the differential equation in solved
form

d2u

dx2
= g(x)

du

dx
+ h(x)u

where

g(x) = −
q(x)

p(x)
, h(x) = −

r(x)

p(x)
.

If p(x0) = 0, then, typically, the functions g(x), h(x) will have singularities at x = x0, and
we need to ensure that these singularities are not too bad.

Definition C.9. A singular point is called a regular singular point if

g(x) =
k(x)

(x− x0)
, h(x) =

`(x)

(x− x0)
2

, (C.42)

where k(x) and `(x) are analytic at x = x0.

Thus, in the language of complex analysis, the point x0 is a regular singular point
provided g(x) has a pole of order at most 1, while h(x) has a pole of order at most 2 at
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x = x0. In terms of the original coefficients, the regularity conditions (C.42) require that
we can write the differential equation in the form

(x− x0)
2 s(x)

d2u

dx2
+ (x− x0) t(x)

du

dx
+ r(x)u = 0, (C.43)

where s(x), t(x) and r(x) are analytic at x = x0 and, moreover, s(x0)6= 0.

Fortunately, almost all ordinary differential equations arising in applications have only
regular singular points. The irregular singular points are much harder to deal with, and
must be relegated to an advanced treatment, e.g., [85, 79,XX].

The simplest example of an equation with a regular singular point is the Euler equation

a x2 u′′ + b x u′ + c u = 0, (C.44)

where a 6= 0, b, c are constants. The point x = 0 is a regular singular point; indeed, the
solved form of the Euler equation is

u′′ = −
b

a
x u′ −

c

a
u,

and hence satisfies (C.42). All other points x0 6= 0 are regular points for the Euler equation.

As discussed in Example 7.34, Euler equations are solved by substituting the power
ansatz u(x) = xr into the equation. As a result, the exponent r is determined by the
associated characteristic equation (7.43), namely

ar (r − 1) + br + c = 0.

If this quadratic equation has two distinct roots r1 6= r2, we obtain two linearly independent
(possibly complex) solutions u(x) = xr1 and ũ(x) = xr2 . The general solution u(x) =
c1 xr1 + c2 xr2 is a linear combination of these two basis solutions. Note that unless r1 and
r2 are non-negative integers, the solutions have a singularity — either a pole or branch
point — at the singular point x = 0. A repeated root, r1 = r2, requires an additional
logarithmic term, ũ(x) = xr1 log x, in the second solution, and the general solution has
the form u(x) = c1 xr1 + c2 xr1 log x.

The series solution method at more general regular singular points is modeled on the
simple example of the Euler equation. One now seeks a solution that has a series expansion
of the form

u(x) = (x−x0)
r

∞∑

n=0

un(x−x0)
n = u0(x−x0)

r+u1(x−x0)
r+1+u2(x−x0)

r+2+· · · . (C.45)

The full theory was established by the German mathematician Georg Frobenius in the late
1800’s, and the series are sometimes known as Frobenius expansions. The exponent r is
known as the index of the expansion.

Remark : If the inex r = −n is a negative integer, then (C.45) has the form of a
Laurent series expansion, as in (C.11). But r can be non-integral, or even complex, and
the resulting expansion is known in complex analysis as a Puiseux expansion, [complex].

1/12/04 1045 c© 2003 Peter J. Olver



We can assume, without any loss of generality, that the leading coefficient u0 6= 0.
Indeed, if uk 6= 0 is the first non-zero coefficient, then the series begins with uk(x−x0)

r+k,
and we replace r by r + k to write it in the preceding form. Moreover, since any scalar
multiple of a solution is a solution, we can divide by u0 and assume that u0 = 1 or any
other convenient non-zero value, as desired.

Warning : Unlike ordinary power series expansions, the coefficients u0 and u1 are not
prescribed by the initial conditions at the point x0. Indeed, as we learned in our study
of the Bessel and Legendre equations, one cannot typically impose specific initial values
for the solutions at a singular point. Often, mere boundedness will suffice to distinguish
a solution. Here, the solution is usually completely detremined by the index r and the
leading coefficient u0.

The Frobenius solution method proceeds by substituting the series (C.45) into the
differential equation (C.43). Since

u(x) = (x− x0)
r + u1(x− x0)

r+1 + · · · ,

(x− x0)u
′(x) = r (x− x0)

r + (r + 1)u1(x− x0)
r+1 + · · · ,

(x− x0)u
′′(x) = r (r − 1) (x− x0)

r + (r + 1) r u1(x− x0)
r+1 + · · · ,

the lowest order terms are multiples of (x − x0)
r. Equating this particular coefficient to

zero leads to a quadratic equation of the form

s0 r (r − 1) + t0 r + r0 = 0, (C.46)

where

s0 = s(x0) =
1
2 p′′(x0), t0 = t(x0) = q′(x0), r0 = r(x0),

are the leading coefficients in the power series expansions of the coefficients of the differ-
ential equation. The quadratic equation (C.46) is known as the indicial equation, since it
determines the possible indices r in the Frobenius expansion of a solution.

Therefore, just as in the Euler equation, it turns out that (typically) there are two
allowable indices, say r1 and r2, which are the roots of the quadratic indicial equation.
If the indices are distinct, then one expects to find two different Frobenius expansions.
Usually, this assumption is valid, but there is an important exception, which occurs when
the roots differ by an integer. The general result is summarized in the following list.

(i) If r2− r1 is not an integer, then there are two linearly independent solutions u(x) and
ũ(x), each having a convergent Frobenius expansions of the form (C.45).

(ii) If r1 = r2, then there is only one solution with a convergent Frobenius expansion.

(iii) Finally, if r2 = r1 + k, where k > 0 is a positive integer, then there is a solution with
a convergent Frobenius expansion corresponding to the smaller index r1. The
solution associated with the larger index r2 may or may not have a convergent
Frobenius expansion.

Thus, in every case the differential equation has at least one solution with a Frobenius
expansion. When the leading coefficient u0 = 1 is fixed, then the remaining coefficients
u1, u2, . . . are uniquely prescribed by the recurrence relations stemming from substitution
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of the expansion into the differential equation. If the second solution does not have a Frobe-
nius expansion, then it has an additional logarithmic term, as with the Euler equation, of
a well-prescribed form. Details appear in the exercises. Rather than try to develop the
theory in any more detail here, we suffice with consideration of some particular examples.

Example C.10. Consider the second order ordinary differential equation

u′′ +

(
1

x
+

x

2

)
u′ + u = 0 (C.47)

that we needed to solve for finding the fundamental solution to the heat equation; see
(rheatode ). We look for series solutions based at x = 0. Since the coefficient of u′ has
a simple pole, the point x = 0 is a regular singular point, and thus we can work with a
Frobenius expansion as in (C.49). Substituting into the differential equation, we find that
the coefficients of xr lead to the indicial equation

r2 = 0.

There is only one root, r = 0, and hence even though we are at a singular point, we are
dealing with an ordinary power series. The next term tells us that u1 = 0. Since r = 0,
the general recurrence relation is

(n+ 2)2un+2 +
1
2 (n+ 2)un = 0,

and hence
un+2 = −

un
2(n+ 2)

.

Therefore, the odd coefficients u2k+1 = 0 are all zero, while the even ones are

u2k = −
u2k−2

4k
=

u2k−4

4k(4k − 4)
= −

u2k−6

4k(4k − 4)(4k − 8)
= · · · =

(−1)k

4k k !
since u0 = 1.

The resulting power series takes a familiar form:

u(x) =

∞∑

k=1

u2kx
2k =

∞∑

k=1

1

k !

(
−

x2

4

)k
= e−x

2/4,

reconfirming (rheatodesol ).

The second solution will require a logarithmic term. However, it can be found directly
by a general reduction method. Once we know one solution to a second order ordinary
differential equation, the second solution can be found by substituting the ansatz

ũ(x) = u(x) v(x) = e−x
2/4 v(x)

into the equation. Thus,

ũ′′ +

(
1

x
+

x

2

)
ũ′ + ũ =

[
u′′ +

(
1

x
+

x

2

)
u′ + u

]
v + u v′′ + 2u′ v′ +

(
1

x
+

x

2

)
u v′

= e−x
2/4

(
v′′ +

1

x
v′
)

.
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Therefore, v′ satisfies a linear first order ordinary differential equation:

v′′ +
v′

x
= 0, and hence v′ = c

1

x
, v = c log x+ d.

The general solution to the original differential equation is

ũ(x) = u(x) v(x) = e−x
2/4 (c log x+ d).

Bessel’s Equation

Perhaps the most important “non-elementary” ordinary differential equation is

x2 u′′ + xu′ + (x2
−m2)u = 0, (C.48)

known as Bessel’s equation of order m. We assume here that the order m ≥ 0 is a non-
negative real number; see Exercise for the Bessel equation of imaginary order. As we
have seen, the Bessel equation arises from separation of variables in a remarkable number
of partial differential equations, including the Laplace, heat and wave equations on a disk,
a cylinder, and a spherical ball. Interestingly, the solutions to the Bessel equation were
first discovered by the German mathematician Bessel in a completely different context:
the study of celestial mechanics, i.e., the Newtonian theory of planets orbiting around a
central sun; see (19.16).

The Bessel equation cannot (except in a few particular instances) be solved in terms
of elementary functions, and so the use of power series is natural. The leading coefficient
p(x) = x2 is nonzero except when x = 0, and so all points except the origin are regular
points. Therefore, at all nonzero points x0 6= 0, the standard power series construction can
be used to produce the appropriate power series solutions of the Bessel equation. However,
the recurrence relations for the coefficients are not particularly easy to solve in clsoed form.
Moreover, applications tend to demand understanding the behavior of the solutions to the
Bessel equation at the singular point x0 = 0. Writing the Bessel equation in solved form

u′′ = −
1

x
u′ +

(
m2

x2
− 1

)
u,

we immediately see that x = 0 satisfies the conditions to qualify as a regular singular
point. Consequently, we are led to seek a solution in the form of a Frobenius expansion.
We first compute the expressions for the first two derivatives

u(x) = xr + u1x
r+1 + u2x

r+2 + · · ·

u′(x) = rxr−1 + (r + 1)u1x
r + (r + 2)u2x

r+1 + · · ·

u′′(x) = r(r − 1)xr−2 + (r + 1)ru1x
r−1 + (r + 2)(r + 1)u2x

r + · · · ,

(C.49)

of our purported solution. Substituting these expressions into (C.48), we find
[
r(r − 1)xr + (r + 1)ru1 xr+1 + (r + 2)(r + 1)u2 xr+2 + · · ·

]
+

+
[
rxr + (r + 1)u1 xr+1 + (r + 2)u2 xr+2 + · · ·

]
+

+
[
xr+2 + u1 xr+3 + u2 xr+4 + · · ·

]
−
[
m2 xr +m2 u1 xr+1 +m2 u2 xr+2 + · · ·

]
= 0,
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We equate the coefficients of the various powers of x to zero. The coefficient of the lowest
order power, xr, is the indicial equation

r(r − 1) + r −m2 = r2
−m2 = 0.

There are two solutions to the indicial equation, r = ±m, unless m = 0 in which case
there is only one possible index r = 0.

The higher powers of x lead to recurrence relations for the successive coefficients un.
If we replace m2 by r2, we find the following constraints:

xr+1 :
[
(r + 1)2 − r2

]
u1 = (2r + 1)u1 = 0, u1 = 0,

xr+2 :
[
(r + 2)2 − r2

]
u2 + 1 = (4r + 4)u2 + 1 = 0, u2 = −

1

4r + 4
,

xr+3 :
[
(r + 3)2 − r2

]
u3 + u1 = (6r + 9)u3 + u1 = 0, u3 = −

u1

6r + 9
= 0,

and, in general,

xr+n :
[
(r + n)2 − r2

]
un + un−2 = n(2r + n)un + un−2 = 0.

Thus, the basic recurrence relation is

un = −
1

n(2r + n)
un−2, n = 2, 3, 4, . . . . (C.50)

Starting with u0 = 1, u1 = 0, it is easy to deduce that all un = 0 for all odd n = 2k + 1,
while for even n = 2k,

u2k = −
u2k−2

4k(k + r)
=

u2k−4

16k(k − 1)(r + k)(r + k − 1)
= · · ·

=
(−1)k

22k k(k − 1) · · · 3 · 2 (r + k)(r + k − 1) · · · (r + 2)(r + 1)
.

Therefore, the series solution is

u(x) =
∞∑

k=0

u2k xm+2k =
∞∑

k=0

(−1)k xm+2k

22k k(k − 1) · · · 3 · 2 (r + k)(r + k − 1) · · · (r + 2)(r + 1)
.

(C.51)

So far, we not paid attention to the precise values of the indices r = ±m, or whether
our solution to the recurrence relations is valid. In order to continue the recurrence, we need
to ensure that the recurrence relation (C.50) is legitimate, meaning that the denominator is
never 0. Since n > 0, this will not be the case if and only if 2r+n = 0, which requires that
r = − 1

2 n be either a negative integer −1,−2,−3, . . . , or half-integer, − 1
2 ,− 3

2 ,− 5
2 , . . . .

These cases occur when the order m = −r = 1
2 n is either an integer or a half-integer.

Indeed, these cases are precisely the cases when the two indices, namely r1 = −m and
r2 = m, differ by an integer, r2 − r1 = n, and so we are in the tricky case (iii) of the
Frobenius method.

There is, in fact, a key distinction between the integral and the half integral cases.
Recall that the odd coefficients u2k+1 = 0 in the Frobenius series automatically vanish,
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and so we only have to worry about the recurrence relation (C.50) for even values of n.
Thus, for even n = 2k, the factor 2r + n = 2(r + k) = 0 vanishes only when r = −k is a
negative integer; the half integral values do not, in fact cause problems. Therefore, if the
order m ≥ 0 is not a non-negative integer, then the Bessel equation of order m admits two
linearly independent Frobenius solutions, given by the expansions (C.51) with exponents
r = +m and r = −m. If m is an integer, however, there is only one Frobeius solution,
namely the expansion (C.51) with r = +m given by the positive exponent. The second
independent solution has an additional logarithmic term in its formula; details appear in
Exercise .

By convention, the standard Bessel function of order m is obtained by multiplying
this solution by

1

2m m !
or, rather,

1

2m Γ(m+ 1)
, (C.52)

where the first factorial form can be used if m is a non-negative integer, while the more
general gamma function expression must be employed for non-integral values of m. The
result

Jm(x) =

∞∑

k=0

(−1)k xm+2k

22k+m k ! (m+ k) !
, (C.53)

where, for non-integral m we interpret the factorial (m + k) ! as the gamma function
Γ(m + k + 1). The series is well-defined for all† m except when m = −1,−2,−3, . . . is a
negative integer. We conclude that

Theorem C.11. If m ≥ 0 is not an integer, then the two linearly independent
solutions to the Bessel equation of order m are the Bessel functions Jm(x) and J−m(x).
If m = 0, 1, 2, 3, . . . is an integer, the the Bessel function Jm(x) is a solution to the Bessel
equation. The second solution, traditionally denoted Ym(x), can be found as a limiting
case

Ym(x) = lim
ν→m

Yν(x) = lim
ν→m

cos ν π Jν(x)− J−ν(x)

sin ν π
(C.54)

of a certain linear combination of Bessel functions of non-integral order ν.

The justification of the last statement of the theorem can be found in Exercise . We
note that for ν 6= m, the linear combination of Bessel functions in the limiting expression
is a solution to the Bessel equation of order ν which is indepedent from Jν(x). It can
be proved that this continues to hold in the limit. The series formula for Ym(x) is quite
complicated, [116, 145], and its derivation is left to a more advanced course.

Example C.12. Consider the particular case when m = 1
2 . There are two indices,

r = ±
1
2 , for the Bessel equation of order m = 1

2 , leading to two solutions J1/2(x) and

† Actually, if m is a negative integer, the first 2m + 1 terms in the series vanish because
Γ(−n) = ∞ at negative integer values. The series J−m(x) = Jm(x) then actually coincides with
its positive sibling.

1/12/04 1050 c© 2003 Peter J. Olver



J−1/2(x) obtained by the Frobenius method. For the first, with r = 1
2 , the recurrence

relation (C.50) takes the form

un = −
1

(n+ 1)n
un−2 .

Starting with u0 = 1 and u1 = 0, the general formula is easily found to be

un =





(−1)k

(n+ 1)!
, n = 2k even,

0 n = 2k + 1 odd.

Therefore, the resulting solution is

u(x) =
√

x

∞∑

k=0

(−1)k

(2k + 1)!
x2k =

1
√

x

∞∑

k=0

(−1)k

(2k + 1)!
x2k+1 =

sinx
√

x
.

According to (C.52), the Bessel function of order 1
2 is obtained by dividing this function

by
√

2 Γ
(

3
2

)
=

√
π

2
,

where we used (C.20) to evaluate the gamma function at 3
2 . Therefore,

J1/2(x) =

√
2

πx
sinx . (C.55)

Similarly, for the other index r = − 1
2 , the recurrence relation

un = −
1

n(n− 1)
un−2

leads to the formula

un =




(−1)k

n !
, n = 2k even,

0 n = 2k + 1 odd,

for the coefficients, corresponding to the solution

u(x) = x−1/2
∞∑

k=0

(−1)k

(2k) !
x2k =

cosx
√

x
.

Therefore, using (C.52), (C.19), the Bessel function of order − 1
2 is

J−1/2(x) =

√
2

Γ
(

1
2

) cosx√
x
=

√
2

πx
cosx . (C.56)

Remark : If we now substitute (C.55) into the defining formula (18.85) for the spherical
Bessel functions, we prove our earlier elementary formula (18.86) for the spherical Bessel
function of order 0.
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Finally, we demonstrate how Bessel functions of different orders are related by an
important recurrence relation.

Proposition C.13. The Bessel functions are interconnected by the following recur-

rence formulae:

dJm
dx

+
m

x
Jm = Jm−1,

dJm
dx

−
m

x
Jm = −Jm+1. (C.57)

Proof : Let us differentiate the power series

xm Jm(x) =

∞∑

k=0

(−1)k x2m+2k

22k+m k ! (m+ k) !
.

We find

d

dx
[xm Jm(x) ] =

∞∑

k=0

(−1)k 2 (m+ k)x2m+2k−1

22k+m k ! (m+ k) !

= xm
∞∑

k=0

(−1)k xm−1+2k

22k+m−1 k ! (m− 1 + k) !
= xm Jm−1(x).

Expansion of the left hand side of this formula leads to

xm
dJm
dx

+mxm−1 Jm(x) =
d

dx
[xm Jm(x) ] = xm Jm−1(x),

which proves the first recurrence formula (C.57). The second formula is proved by a similar
manipulation involving differentiation of x−m Jm(x). Q.E.D.

Example C.14. For instance, we can use (C.57) to find the corresponding recurrence
formulae for the spherical Bessel functions

Sn(x) =

√
π

2x
Jn+1/2(x).

Differentiating and using the second recurrence relation, we find

dSn
dx

=

√
π

2x

dJn+1/2

dx
−
1

2

√
π

2

1

x3/2
Jn+1/2(x)

= −

√
π

2x

(
Jn+3/2(x) +

n+ 1
2

x
Jn+1/2(x)

)
−
1

2

√
π

2

1

x3/2
Jn+1/2(x)

= −

√
π

2x
Jn+3/2(x) +

n

x

√
π

2x
Jn+1/2(x) = −Sn+1(x) +

n

x
Sn(x).

This completes the proof of the spherical Bessel recurrence formula (18.87).

With this, we conclude our brief introduction to the method of Frobenius and the
theory of Bessel functions. The reader interested in further delving into either the general
method, or the host of additional properties of Bessel functions is encouraged to consult
the texts [149, 116, 85, 145].
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[73] Hall, R.W., and Josić, K., Planetary motion and the duality of force laws, SIAM Review
42 (2000), 115–124.
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Appendix D

Canonical Forms and Matrix Exponentials

In this appendix, we survey the Jordan canonical form, that replaces diagonalization
for incomplete matrices, and the matrix exponential, which provides and alternative, useful
approach to the solution of systems of linear ordinary differential equations.

D.1. The Jordan Canonical Form.

As we have seen, particularly in Chapter 7, an intinsic mathematical quantity, e.g., a
linear function, a quadratic form, etc., can have quite different explicit forms when written
in different coordinate systems, or, equivalently, a choice of basis on the underlying vector
space. Mathematicians use the term canonical form to refer to a particularly simple
coordinate representative of the given object. For example, in Theorems and , we saw
that a quadratic form on Rn could always be diagonalized through a choice of coordinates,
and the diagonal version consitutes a canonical form for a quadratic form. Another example
is the very simple canonical form (a ) for a linear map L:Rn

→ Rm, in which we are allowed
to independently choose bases on both the domain space Rn and the target space Rm.

In applications to ordinary differential equations and discrete dynamical systems, a
key issue is the choice of a canonical form for a linear transformation L:Rn

→ Rn in
terms of a given basis on Rn. As we know, once a basis has been chosen, the linear
transformation assumes the form of an n×n matrix. for example suppose that A =

(
aij
)

is the n×n matrix representing L in terms of the standard basis e1, . . . , en of R
n, meaning

that L[ei ] =

n∑

j=1

aij ej . If we choose a different basis, v1, . . . ,vn, then the matrix form of

the linear transformation is

B = S−1AS, where S = (v1 v2 . . . vn )
T

(D.1)

is the matrix whose columns are the chosen basis vectors. Thus, the problem is to find a
basis, or, equivalently an nonsingular matrix S, such that the resulting matrix (D.1) is in
a simple canonical form.

In most cases, one can diagonalize the matrix A. More specifically, if A is complete
and so has a basis of eigenvectors, then choosing S to be the eigenvector basis matrix will
result in a diagonal matrix B; see Theorem 8.20. We regard a diagonal matrix as “simple”,
and so, when applicable, as provinding a canonical form for the linear transformation or
original matrix. Diagonalizability may require us to move to the complex domain, and
regard our matrix as a linear transformation on Cn. This avoids the question of finding
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a real canonical form for a real linear transformation on Rn, but this will be discussed
below.

Unfortunately, not all matrices are diagonalizable, and so we must find an alternative
canonical form for the incomplete cases. The Jordan canonical form, named after the
nineteenth century French mathematician Camille Jordan, provides one such simplification,
but it is, in fact, but one of a number of interesting and useful canonical forms for matrices
and linear transformations. A more complete exposition can be found in [Gantmacher].
The starting point is the simplest non-diagonalizable matrices.

Definition D.1. A n× n matrix of the form†

Jλ,n =




λ 1
λ 1

λ 1
. . .

. . .

λ 1
λ




, (D.2)

in which λ is a real or complex number is known as a Jordan block .

In particular, a 1 × 1 Jordan block is merely a scalar Jλ,1 = λ. Theorem 8.12 tells
us that every matrix has at least one eigenvector. Therefore, according to Exercise , the
Jordan block matrices have the least possible number of eigenvectors.

Lemma D.2. The Jordan block matrix (D.2) has a single eigenvalue, λ, and a single
independent eigenvector, en.

Definition D.3. A Jordan matrix is a square matrix of block diagonal form

J = diag (Jλ1,n1
, Jλ2,n2

, . . . , Jλk,nk

) =




Jλ1,n1
O O . . . O O

O Jλ2,n2
O . . . O O

...
...

...
. . .

...
...

O O O . . . Jλk−1,nk−1
O

O O O . . . O Jλk,nk




,

(D.3)
in which one or more Jordan blocks, not necessarily of the same size, lie along the diagonal,
while all off-diagonal blocks are zero matrices of the appropriate sizes.

† All non-dsiplaed entries are zero.
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For example, the 6× 6 matrices




1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1




,




−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 0 −1 1
0 0 0 0 0 −1




,




0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 2 1
0 0 0 0 0 2




,

are all Jordan matrices; the first is a diagonal matrix, consisting of 6 distinct 1× 1 Jordan
blocks; the second has a 4× 4 jordan block followed by a 2× 2 block that happen to have
the same diagonal entries; the last has three 2 × 2 Jordan blocks. As a simple corollary
of Lemma D.2 coupled with the block structure, we obtain a complete classification of the
eigenvectors and eigenvalues of a Jordan matrix.

Lemma D.4. A Jordan matrix of the form (D.3) has eigenvalues k1, . . . , kλ and

k linearly independent eigenvectors, namely the standard basis vectors ej1 , . . . , ejk

whose

indices jκ correspond to the index of the lower right entry of the κth Jordan block Jλκ,nκ

.

Thus, in the preceding examples of Jordan matrices, the first has eigenvalues 1, 2, 3
and linearly independent eigenvalues e1, . . . , e6; the second has only one eigenvalue, −1,
but two linearly independent eigenvectors, e4 and e6. The last has eigenvalues 0, 1, 2 and
eigenvectors e2, e4, e6. In each case, the index of the eigenvector corresponds to the last
entry of its associated Jordan block.

Definition D.5. A nonzero vector w 6= 0 that satisfies

(A− λ I )kw = 0 (D.4)

for some k > 0 and λ ∈ C is called a generalized eigenvector of the matrix A.

Note that every ordinary eigenvector is automatically a generalized eigenvector, since
we can just take k = 1, but the converse is not necessarily valid. We shall call the minimal
value of k for which (D.4) holds the index of the generalized eigenvector. Thus, an ordinary
eigenvector is a generalized eigenvector of index 0. Since A− λ I is nonsingular whenever
λ is not an eigenvalue of A, its kth power (A − λ I )k is also nonsingular. Therefore,
generalized eigenvectors can only exist when λ is an ordinary eigenvalue of A — there are
no “generalized eigenvalues”.

Example D.6. Consider the 3× 3 Jordan block A =



2 1 0
0 2 1
0 0 2


. The only eigen-

value is λ = 2, and A − 2 I =



0 1 0
0 0 1
0 0 0


 is a nilpotent matrix. First, ker(A − 2 I )

is spanned by e3, which, up to constant multiple, is the only eigenvector or generalized

eigenvector of index 1. Secondly, the kernel of (A− 2 I )2 =



0 0 1
0 0 0
0 0 0


 is spanned by e2
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and e3, and so any vector of the form w = be2 + ce3 satisfies the generalized eigenvector
condition (A − 2 I )2w = 0; those with b 6= 0 have index 2, while those iwth b = 0, c 6= 0
have index 1. As with eigenvectors, we shall refer to e2 as “the” generalized eigenvector
of index 2, which in reality means it and the ordinary eigenvector e3 span the space of
generalized eigenvectors of index ≤ 2. Finally, (A − 2 I )3 = O is the zero matrix, and so
every (nonzero) vector w = ae1 + be2 + ce3 is a generalized eigenvector; those with a 6= 0
have index 2. As before, we call e1 the index 2 generalized eigenvector.

Generalizing this example, it is easy to see that the n × n Jordan block (D.2) has a
basis of generalized eigenvectors, namely e1, . . . , en where ek is of index n − k + 1. More
generally, any Jordan matrix also has the standard basis vectors e1, . . . , en forming a basis
of generalized eigenvectors. The fundamental Jordan canonical form theorem states that,
over the complex numbers, this holds in general, and thereby forms the generlization of
the diagonalization Theorem 8.20.

Theorem D.7. Let A be an n × n real or complex matrix. Then there is a basis

w1, . . . ,wn of Cn consisting of generalized eigenvectors of A. Moreover, one can choose

the basis so that the corresponding matrix S = (w1 w2 . . . wn )
T
places the matrix in

Jordan canonical form

S−1AS = J = diag (Jλ1,n1
, Jλ2,n2

, . . . , Jλk,nk

). (D.5)

The diagonal entries of the resulting Jordan matrix J are the eigenvalues of A. The Jordan

canonical form of A is uniquely determined, up to a permutation of the diagonal Jordan

blocks.

The sizes of the Jordan blocks are prescribed by the generalized eigenspaces

Wλ,k = ker(A− λ I )k.

Note that for a fixed eigenvalue λ, the subspaces satisfy {0} ≡ Wλ,0 (Wλ,1 ⊆ Wλ,2 ⊆ · · · .
Note that the elements of Wλ,k \Wλ,k−1 are the generalized eigenvectors of index k. Let
mλ,k = dimWλ,k. It can be proved that

0 = mλ,0 < mλ,1 < · · · < mλ,j−1 < mλ,j = mλ,j+1 = mλ,j+2 = · · · ,

so that j is the maximal index for the generalized eigenvectors associated with λ. The
Jordan blocks with λ on the diagonal in the Jordan canonical form of A are as follows,
and there are exactly

bλ,k = 2mλ,k −mλ,k+1 −mλ,k−1 (D.6)

Jordan blocks of size k that have λ along the diagonal. For example, a 11 × 11 Jordan
matrix with just one eigenvalue λ and blocks of respective sizes 1, 3, 3, 4 would have

Wλ,1 = {0}, mλ,1 = 0,

Wλ,1 = span {e1, e2, e5, e8 } mλ,1,= 4,

Wλ,2 = span {e1, e2, e3, e5, e6, e8, e9 }, mλ,1 = 7,

Wλ,3 = span {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10 }, mλ,3 = 7,

Wλ,k = span {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11 }, mλ,k = 11, k ≥ 4,
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and so we reconfirm the number of Jordan blocks of each size:

bλ,1 = 2 · 4− 0− 7 = 1, bλ,3 = 2 · 10− 7− 11 = 2,

bλ,2 = 2 · 7− 4− 10 = 0, bλ,4 = 2 · 11− 10− 11 = 1.

We refer the reader to [X] for a proof of Theorem D.7.

Example D.8. Consider the matrix

D.2. Inhomogeneous Linear Systems.

We now direct our attention to general inhomogeneous linear systems of ordinary
differential equations. For simplicity, we consider only first order† systems of the form

du

dt
= Au+ f(t), (D.7)

where A is a constant n × n matrix and f(t) is a vector of functions that represents
external forcing to the system. According to our general Theorem 7.37, the solution to the
inhomogeneous system will have the form

u(t) = u?(t) + z(t)

where u?(t) is a particular solution and z(t) is a general solution to the homogeneous system
(8.2). Physically, one interprets the solution as a combination of a particular response to
the external forcing coupled with the system’s own internal motion.

Since we already know how to find the solution z(t) to the homogeneous system,
the only task is to determine one particular solution to the inhomogeneous system. The
method used to construct the solution is known as variation of parameters, and will work
even when the matrix A depends on t. The student may have encoutered the scalar version
of this method in a first course on ordinary differential equations, and the same basic idea
applies to systems. As we know, the general solution to the associated homogeneous system

du

dt
= Au (D.8)

has the form
u(t) = c1u1(t) + · · · + cnun(t), (D.9)

where u1(t), . . . ,un(t) are n linearly independent solutions and c1, . . . , cn are arbitrary
constants. In the method of variation of parameters, one replaces the constants by scalar
functions of t, and tries a the variable coefficient linear combination

u?(t) = h1(t)u1(t) + · · · + hn(t)un(t) (D.10)

for the particular solution. We then plug this ansatz into the system (D.7) and solve the
resulting equations for the coefficient functions hi(t).

† Higher order systems can, as remarked earlier, always be converted into first order systems
involving additional variables.
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Before doing this, it will help to rewrite the variation of parameters formula (D.10)
in a more convenient matrix form, based on our standard matrix formula (2.14) for linear
combinations. To this end, we introduce the n× n matrix

U(t) = (u1(t), . . . ,un(t)) (D.11)

whose columns are the independent solutions of the homogeneous system, along with the
column vector

h(t) = (h1(t), . . . , hn(t) )
T

representing the unknown coefficients. The variation of parameters formula (D.10) can
then be written in matrix form

u?(t) = U(t)h(t). (D.12)

The matrix (D.11) is known as a fundamental matrix solution to the homogeneous
system. Indeed, it satisfies a matrix form of the system (D.8)

dU

dt
= AU(t) (D.13)

where we differentiate U entry by entry. This follows directly from the rules of matrix
multiplication — specifically, formula (1.11). Moreover, since the solutions forming its
columns are linearly independent, U(t) is a nonsingular matrix for all t. Consequently, we
can write the general solution (D.9) to the homogeneous system in the matrix form

u(t) = U(t) c, where c = ( c1, c2, . . . , cn )
T

(D.14)

is a vector containing the arbitrary constants. To solve for initial conditions

u(t0) = b, (D.15)

we merely invert (or, better, use Gaussian elimination) to solve

U(t0) c = b, so that c = U(t0)
−1b.

Therefore, the solution to the homogeneous initial value problem (D.8), (D.15) is

u(t) = U(t)U(t0)
−1b. (D.16)

Example D.9. For the system

du

dt
= Au where A =

(
3 1
1 3

)
,

a fundamental matrix solution is obtained by assembling the two independent exponential
solutions into a 2× 2 matrix:

U(t) =

(
e4 t

−e2 t

e4 t e2 t

)
. (D.17)

Note that
dU

dt
=

(
4e4 t

−2e2 t

4e4 t 2e2 t

)
=

(
3 1
1 3

)(
e4 t

−e2 t

e4 t e2 t

)
= AU,
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verifying (D.13) in this case. To solve the initial value problem (19.1), which had initial

conditions u(0) = b = ( 1,−2 )
T
we can use the formula (D.16)

u(t)= U(t)U(0)−1b =

(
e4 t

−e2 t

e4 t e2 t

)(
1 −1
1 1

)−1(
1
−2

)

=

(
e4 t

−e2 t

e4 t e2 t

)(
1
2

1
2

−
1
2

1
2

)(
1

− 2

)
=

(
−

1
2 e4 t + 3

2 e2 t

−
1
2 e4 t

−
3
2 e2 t

)
,

which reproduces (19.5).

Now, let us return to the business at hand — the computation of a particular solution
to the inhomogeneous system using the variation of parameters ansatz — in matrix form
(D.12). We need to differentiate u?, and this relies on the matrix version of the Leibniz
rule for differentiating products.

Lemma D.10. If A(t) and B(t) are differentiable matrix-valued functions, and their
product C(t) = A(t)B(t) is defined, then C(t) is differentiable, and

dC

dt
=

d

dt
(AB) =

dA

dt
B +A

dB

dt
. (D.18)

The only difference with the scalar Leibniz rule is the noncommutativity of the matrix
version, which means that the factors in the two terms on the right hand side of (D.18)
must stay in the correct order. The proof of Lemma D.10 is a simple consequence of the
basic laws of matrix multiplication, and is left to the reader to fill in the details.

Thus, when we differentiate (D.12) we obtain

du

dt
=

dU

dt
h+ U

dh

dt
.

We now use the fact that U solves the matrix version of the system, and so

du

dt
= AU h+ U

dh

dt
= Au+ U

dh

dt
.

comparing with (D.7), we see that our solution ansatz (D.12) will be a solution to the
inhomogeneous system if and only if

U
dh

dt
= f(t) or

dh

dt
= U(t)−1f(t). (D.19)

Integrating equation (D.19), we have

h(t) =

∫ t

t0

U(s)−1 f(s) ds, (D.20)

where the integration is done entry by entry. Therefore, a particular solution to (D.7) is
obtained by substituting (D.20) into (D.12), yielding

u?(t) = U(t)

∫ t

t0

U(s)−1 f(s) ds =

∫ t

t0

U(t)U(s)−1 f(s) ds. (D.21)
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There are two alternative versions of the integrated matrix product:

u?(t) =

∫ t

t0

U(t− (s− t0))U(t0)
−1 f(s) ds =

∫ t−t0

0

U(t− s)U(t0)
−1 f(s) ds, (D.22)

which is a consequence of the formula

U(t)U(s)−1 = U(t− a)U(s− a)−1, (D.23)

which is valid for any t, s, a ∈ R. The proof relies on properties of the matrix exponential
to be discussed below; see Exercise .

We have therefore established the following general formula for the solution to an first
order, inhomogeneous linear system with constant coefficient matrix.

Theorem D.11. Let U(t) be a fundamental matrix solution to the homogeneous
system (D.8). Then the general solution to the inhomogeneous linear system (D.7) is
given by

u(t) = U(t) c+ u?(t) = U(t) c+

∫ t−t0

0

U(t− s)U(t0)
−1 f(s) ds, (D.24)

where c ∈ Rn is any constant vector, uniquely detemined by the initial conditions, and t0
is any convenient limit for the integration. The unique solution to the initial value problem

u(t0) = b is

u(t) = U(t)U(t0)
−1 b+

∫ t−t0

0

U(t− s)U(t0)
−1 f(s) ds. (D.25)

Example D.12. Consider the initial value problem

¦
u1 = 2u1 − u2, u1(0) = 1,
¦
u2 = 4u1 − 3u2 + et u2(0) = 0.

(D.26)

The eigenvalues and eigenvectors of the coefficient matrix A =

(
2 −1
4 −3

)
are

λ1 = 1, v1 =

(
1
1

)
, λ2 = −2, v2 =

(
1
4

)
.

We use these to form the fundamental matrix solution

U(t) =

(
et e−2t

et 4e−2t

)
.

We can compute the solution directly from (D.25). First, note that

U(t)U(0)−1 =

(
4
3et − 1

3e−2t
−

1
3et + 1

3e−2t

4
3et − 4

3e−2t
−

1
3et + 4

3e−2t

)
. (D.27)
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The integral in (D.25) is

∫ t

0

U(t− s)U(0)−1 f(s) ds =

∫ t

0

(
4
3et−s − 1

3e−2(t−s)
−

1
3et−s + 1

3e−2(t−s)

4
3et−s − 4

3e−2(t−s)
−

1
3et−s + 4

3e−2(t−s)

)(
0

es

)
ds

=




∫ t

0

−
1
3et + 1

3e−2t+3s ds

∫ t

0

−
1
3et + 4

3e−2t+3s) ds


 =

(
−

1
3 tet + 1

9 (e
t
− 1)

−
1
3 tet + 4

9 (e
t
− 1)

)
.

This is the particular solution for the homogeneous initial conditions u(0) = 0. To obtain
the solution that satisfies the given initial conditions, we compute the first term in (D.25)

U(t)U(0)−1 b =

(
4
3et − 1

3e−2t
−

1
3et + 1

3e−2t

4
3et − 4

3e−2t
−

1
3et + 4

3e−2t

)(
1

0

)
=

(
4
3et − 1

3e−2t

4
3et − 4

3e−2t

)
,

which is the solution to the homogeneous system for the given nonzero initial conditions.
We sum these two to finally obtain the solution to our initial value problem:

u(t) =

(
4
3et − 1

3e−2t
−

1
3 tet + 1

9 (e
t
− 1)

4
3et − 4

3e−2t
−

1
3 tet + 4

9 (e
t
− 1)

)
.

D.2.1. (a)
¦
u + au = sin t, u(0) = 1. (b) Decompose the solution into a transient that

eventually disappears, and a response to the forcing.

* D.2.2. In chemical processes, the reaction-rate equations model the rate at which the
reagants are produced. For the following system of reaction-rate equations, solve the

system for the rate of production of the reagants x1, x2, and x3:
dx1

dt
= 7x1 − x2 − 65.5,

dx2

dt
= 3x2 − 2x3 − 5.5,

dx3

dt
= 0.2x1 + 2x2 − x3 − 1.5. What is the equilibrium?
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