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EUCLIDEAN PROPAGATORS IN
NONCOMMUTATIVE QUANTUM FIELD THEORY

Dorothea Bahns
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Abstract . It is shown that the 2-point and the 4-point function of bosonic fields on the noncom-
mutative Minkowski space are distributions which are boundary values of analytic functions.
Contrary to what one might expect, this connection to analytic functions does not provide a con-
nection to the popular Euclidean Feynman rules of noncommutative field theory, and thereby
explains why renormalization in the framework of those latter rules crudely differs from renor-
malization in the Minkowskian regime.

1. Introduction

A quantum field theoretic model is to a large part determined by the choice of

a partial differential operator. For physical reasons, this operator has to be hyper-

bolic, and one of its fundamental solutions, the so-called Feynman propagator, is

the building block in any calculation of physically relevant quantities. Nonetheless,

ever since proposed by Symanzik in 1966 [9] based on ideas of Schwinger, the so-

called Euclidean framework has played a very important role. In this framework,

the building block is the so-called Schwinger function, a fundamental solution of

an elliptic partial differential operator. The Euclidean formalism not only simplifies

calculations, but seems to be indispensable in constructive quantum field theory.

The remarkable theorem of Osterwalder and Schrader gives sufficient conditions

for the possibility to recover the original hyperbolic (physically meaningful) field

2000 Mathematics Subject Classification . 81T75,46F20.
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theory from a Euclidean framework, and therefore justifies the Euclidean frame-

work in ordinary quantum field theory. I will recall below how the Schwinger func-

tion of the Euclidean framework of scalar field theory is derived by analytic contin-

uation from the hyperbolic theory and how it relates to the Feynman propagator.

As one possibility to incorporate gravitational aspects into quantum field theory,

for some years now, much research has been done on quantum fields on noncom-

mutative spaces, the most popular of which is the noncommutative “Moyal space”

whose coordinates are subject to commutation relations of the Heisenberg type [4].

Already in that early paper, a possible setting for hyperbolic perturbative quantum

field theory was proposed, where the field algebra is endowed with a noncommuta-

tive product, the twisted (convolution) product. Notwithstanding, the vast majority

of publications on field theory on noncommutative spaces (“noncommutative field

theory”) has been and still is formulated within a Euclidean setting. This setting

was not derived from a hyperbolic noncommutative theory but from the Euclidean

framework of ordinary field theory by replacing all products with twisted ones. I

shall refer to this approach as the traditional noncommutative Euclidean frame-

work. Despite some attempts, it has not been possible to relate this traditional

noncommutative Euclidean setting to some hyperbolic noncommutative theory –

in fact, there is evidence that it might be impossible to do so, unless the time vari-

able commutes with all space variables.

After some years, it became clear that even the simplest quantum field theoretic

models, the massive scalar models, have very peculiar properties when formulated

within the traditional Euclidean noncommutative framework.(1) Most notably, the

so-called ultraviolet–infrared mixing problem noted in [7] severly limits the type of

models that can be defined at all [5, 6].

In contrast to these results, I have shown [1] that in a hyperbolic setting, the

ultraviolet-infrared mixing effect is not present at least in the most prominent ex-

ample graph that exibits ultraviolet–infrared mixing in the traditional Euclidean

realm. I shall present this result in a longer and more technical article shortly.

However, the calculations and the combinatorial aspects being quite complicated,

I have not yet been able to find a general proof of the conjecture that the ultraviolet-

infrared mixing problem may be absent in this hyperbolic noncommutative setting.

(1)In fact, as is common in the literature, I will only consider this simplest example of field theories

here. Already such massive scalar models have enough structure to enable us to study the principles of

noncommutative field theory, while massless theories and gauge theories are notoriously difficult.
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For this reason, I thought it desirable to find a Euclidean framework that was actu-

ally derived from a hyperbolic noncommutative setting. This being achieved, it is

to be hoped that a Schwinger functional can be found which should greatly sim-

plify the combinatorial aspects of perturbation theory, and that the full Euclidean

machinery might indeed make it possible to investigate renormalizability and the

possible absence of the ultraviolet-infrared mixing problem in general.

In this note, I will show that one can indeed derive a noncommutative Euclidean

framework from a hyperbolic theory on the Moyal space, and that this framework

is not the traditional one that is investigated in the literature. In contrast to this

traditional framework, the new Euclidean framework can moreover be related to a

setting involving Feynman propagators via an analytic continuation similar to the

one of ordinary quantum field theory. To start, I will recall in the next section how

the Schwinger function is derived in ordinary massive scalar quantum field theory

and how it is related to the Feynman propagator. In the third section, I will then

derive a Euclidean 4-point function from a noncommutative hyperbolic Wightman

function and comment on how to proceed for arbitrarily high order. I will show

that the Euclidean framework thus derived differs from the traditional noncommu-

tative approach. Moreover, the relation to Feynman propagators is clarified. In an

outlook I will briefly comment on further possible research that ensues from these

new results.

2. Euclidean methods in quantum field theory

The hyperbolic partial differential operator of massive scalar field theory is the

massive Klein–Gordon operator P := ∂2

∂x0
2 −∆x +m2 on R4 where ∆x denotes the

Laplace operator onR3, x ∈R3, and m > 0 is a real parameter, called the field’s mass.

As mentioned in the introduction, all the relevant quantities of a scalar field theo-

retic model can be calculated from a fundamental solution of this operator. Recall

here that a distribution E ∈ D ′(Rn) is a fundamental solution (or Green’s function)

of a partial linear differential operator P (∂) on Rn provided that in the sense of dis-

tributions, P (∂)E =−δ with δ denoting the δ-distribution.

Our starting point here, however, is the 2-point-function ∆+ ∈ S ′(R4), a tem-

pered distribution which is a solution (not a fundamental solution) of the Klein–

Gordon equation, P∆+ = 0 in the sense of distributions. For x = (x0,x) ∈ R4, x0 ∈ R,
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x ∈R3, it is given explicitly by

∆+(x) = 1

(2π)3

∫
d3k

2ωk
e−iωkx0+ikx, where ωk =

√
k2 +m2,

an expression which in fact makes sense as an oscillatory integral, see [8, Sec IX.10]

for details. Here and in what follows, boldface letters denote elements of R3 and an

expression such as kx is shorthand for the canonical scalar product of k and x.

It is well-known that ∆+ is the boundary value (in the sense of distributions) of

an analytic function. To see this, let us first fix some notation. Let a ∈ Rn with

|a| = 1, let θ ∈ (0,π/2), and let ay denote the canonical scalar product in Rn . The set

Γa,θ = {y ∈Rn | y a > |y |cosθ} ⊂Rn is called the cone about a with opening angle θ.

Let with Γ∗a,θ denote the dual cone, Γ∗a,θ = Γa, π2 −θ. For temperered distributions

whose support is contained in the closure of a cone, the following general assertion

holds:

Theorem 1 ([8], Thm IX.16). Let u be a tempered distribution with support in

the closure of a cone Γa,θ , a ∈ Rn , 0 < θ < π/2. Then its Fourier transform ũ is the

boundary value (in the sense of S ′) of a function f which is analytic in the tube

Rn − iΓ∗a,θ = {z ∈Cn |− im z ∈ Γ∗a,θ} ⊂Cn .

Observe that for ũ to be the boundary value of f in the sense of S ′ means that

for any η ∈ Γ∗a,θ we have for t ↘ 0 in R from above,∫
f (x − itη) g (x)dx → ũ(g ) ∀ g ∈S (R4).

The Fourier transform ∆̃+ of the 2-point function,

(2.1) ∆̃+(p0,p) = 1

2ωp
δ(p0 −ωp),

is a tempered distribution whose support (the positive mass shell) is contained in

the closure of the cone V = Γ(1,0),π/4 (the forward light cone). Applied to u := ∆̃+,

Theorem 1 thus guarantees that ũ =∆+ is the boundary value of a function f which

is analytic in R4 − iV (observe that V ∗ = V ). Explicitly, for x = (x0,x) ∈ R4 and η =
(x4,0) ∈V (hence x4 > 0), we have in this case

(2.2) f (x − iη) = 1

(2π)3

∫
d3k

2ωk
e+ikx−ωk(x4+ix0).
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We now define a function s via s(x, x4+ix0) := f (x−iη) for x and η as above. Making

use of the identity

(2.3)
1

2ωk
e−ωkx4 = 1

2π

∫ ∞

−∞
dk4

eik4x4

k2 +m2 for x4 > 0

where k = (k,k4) ∈R4, k2 = k2 +k2
4 , and setting x0 = 0 in (2.2), we then find that

(2.4) s(x) = 1

(2π)4

∫
d4k

eikx

k2 +m2

where x = (x, x4) ∈ R4, x4 > 0. One now considers a distribution S ∈ S ′(R4), the

so-called Schwinger function, whose formal integral kernel is given by the Fourier

transform of the smooth function on R4,

S̃(k) = 1

k2 +m2 .

By definition, when restricted to the upper half space x4 > 0, S(x, x4) is (pointwise)

equal to the function s given in (2.4). Observe also that S is the unique fundamen-

tal solution of the elliptic partial differential operator ∆−m2 with ∆ the Laplace

operator on R4.

As mentioned in the introduction, the building block in hyperbolic perturba-

tion theory is the Feynman propagator ∆F , a fundamental solution for the Klein–

Gordon operator P = ∂2

∂x0
2 −∆x +m2. Without going into details, let me mention

that, remarkably, the Fourier transform S̃ of the Schwinger function is the ana-

lytic continuation of the Fourier transform ∆̃F of the Feynman propagator (up to

a sign), where, formally, for w given by w(p, p4 − ip0) := ∆̃F (p0 + ip4,p) we have

S̃(p, p4) =−w(p, p4).

3. Analytic continuation in the noncommutative case

It would be beyond the scope of this note to explain the possible perturbative se-

tups for massive scalar fields on the noncommutative Moyal space with hyperbolic

signature (see [2] for a comparison). Only two features of such noncommutative

(hyperbolic) field theories matter here. The first is the fact that our starting point

still is the Klein–Gordon operator and the 2-point-function discussed in the previ-

ous section. The second important feature – and this feature is shared by the tradi-

tional noncommutative Euclidean formalism – is the fact that one has to consider

not only products but also twisted products of distributions.
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To fix notation, we note here that for two Schwartz functions f , g ∈ S (R4) this

twisted product (Moyal product) is

(3.1) f ∗ g (x) =
∫

d4k
∫

d4p f̃ (k) g̃ (p) e−i(p+k)x e−
i
2 pθk

for x ∈R4, where f̃ and g̃ denote the Fourier transforms of f and g , respectively, and

where θ is a nondegenerate antisymmetric 4×4-matrix. Observe that in a Euclidean

theory, a product such as kx stands for the canonical scalar product, whereas in

a hyperbolic setting, it denotes a Lorentz product, kx = k0x0 −kx. The oscillating

factor e−
i
2 pθk is also called the twisting.

3.1. Tensor product of 2-point functions. Since the 2-point function remains

unchanged in noncommutative field theory, we have to consider higher order cor-

relation functions in order to see a difference between field theory on Moyal space

and ordinary field theory. Again, it would be beyond the scope of this note to ex-

plain the whole setup. It will be sufficient to consider the particular example of the

so-called 4-point function of massive scalar field theory. In ordinary field theory,

this is a distribution given by 2-fold tensor products of 2-point functions,

∆(2)
+ (x, y) = 1

(2π)6

∫
d3k

2ωk

d3p

2ωp
e−i(ωkx0+ωp y0)+i(kx+py)

By standard arguments from microlocal analysis involving the wavefront set of dis-

tributions, it can be shown that even the pullback of this tensor product with re-

spect to the diagonal map, that is, the product in the sense of Hörmander, is a well-

defined distribution ∈ S ′(R4) (see for instance [8, Chap IX.10]). In order to avoid

issues regarding renormalization later, in this note, however, only tensor products

of distributions will be considered.

It is not difficult to see that ∆(2)
+ is again the boundary value of an analytic func-

tion:

Lemma 2. The tempered distribution ∆(2)
+ is the boundary value of a function f2

which is analytic in R4 ×R4 − iV ×V . Explicitly, for

z = (x0,x, y0,y) ∈R4 ×R4 and η= (x4,0, y4,0) ∈V ×V

(hence x4 and y4 > 0), we have

f2(z − iη) = 1

(2π)6

∫
d3k

2ωk

∫
d3p

2ωp
e−ωk(x4+ix0)−ωp(y4+iy0)+ikx+ipy
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and for the function s2 defined by s2(x, x4 + ix0,y, y4 + iy0) = f2(z − iη) with η and z

as above, we find for (x, y) = (x, x4,y, y4) ∈R4 ×R4, x4 and y4 > 0,

(3.2) s2(x, y) = 1

(2π)8

∫
d4k

∫
d4p

1

k2 +m2

1

p2 +m2 e+ikx+ipy ,

where p2 = p2 +p2
4, likewise for k2.

Proof . The first claim is a direct consequence of Theorem 1 applied with respect to

x and y separately, and the second claim follows again from the identity (2.3).

As in the previous section, one now defines a distribution S2 as the Fourier trans-

form (in R4 ×R4) of the smooth function

S̃(k) S̃(p) = 1

k2 +m2

1

p2 +m2

which, when restricted toR3×R>0×R3×R>0, is equal to s2. The reader who is famil-

iar with quantum field theory will of course recognize that when one considers the

pullback of ∆(2)
+ with respect to the diagonal map, formally, one finds x = y in (3.2)

and that in this case S2 becomes the Fourier transform (in R4) of the convolution

S̃ × S̃ (k) = ∫
d4p 1

(k−p)2+m2
1

p2+m2 .

It is well-known that the same procedure can be applied more generally. Each

contribution to the (hyperbolic) 2n-point function (or Wightman function) is an

n-fold tensor product of 2-point functions (n-point functions for odd n vanish).

In order to find the corresponding higher order Schwinger function, one considers

the analytic continuation according to Theorem 1 in each of the n variables and

proceeds in the same manner as explained for the 4-point function above.

3.2. Twisted product of 2-point functions. In [3], it was shown how 2n-point

functions are calculated in hyperbolic massive scalar field theory on the noncom-

mutative Moyal space (n-point functions for n odd still vanish). As it turns out, the

first deviation from ordinary field theory shows up in the 4-point function, where

one of the contributions is a twisted tensor product of two 2-point functions,

(3.3) ∆(?2)
+ (x, y) =

∫
d3k

2ωk

d3p

2ωp
e−i(ωkx0+ωp y0)+i(kx+px) e−ip̃θk̃

where k̃ = (ωk,k), and p̃ = (ωp,p), such that their Lorentz square is k · k = (m2 +
k2)−k2 = m2 and their first component is positive. In the terminology of physics,

this means that the “momenta” k and p in the oscillating factor are on-shell. This

will turn out to be very important later on. It is important to note that, while our
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starting point is the twisted product (3.1), the vectors in the twisting are on-shell

as a consequence of the support properties of ∆̃+(k0,k) = 1
ωk

δ(k0 −ωk). Note also

that the factor 2 in the oscillating factor compared to the ordinary twisting in (3.1)

is correct.

Once more, we now apply Theorem 1.

Lemma 3. The tempered distribution ∆(?2)
+ is the boundary value of a function

f θ2 which is analytic in R4 ×R4 − iV ×V . Explicitly, for z = (x0,x, y0,y) ∈ R4 ×R4 and

η= (x4,0, y4,0) ∈V ×V (hence x4 and y4 > 0), we have

f θ2 (z − iη) = 1

(2π)6

∫
d3k

2ωk

∫
d3p

2ωp
e−ωk(x4+ix0)−ωp(y4+iy0)+ikx+ipy e−ip̃θk̃

where k̃ = (ωk,k), p̃ = (ωp,p). For the function sθ2 defined by

sθ2 (x, x4 + ix0,y, y4 + iy0) = f θ2 (z − iη)

with η and z as above, we then find for (x, y) = (x, x4,y, y4) ∈R4 ×R4 with x4, y4 > 0,

(3.4) sθ2 (x, y) = 1

(2π)8

∫
d4k

∫
d4p

1

k2 +m2

1

p2 +m2 e+ikx e+ipy e−ip̃θk̃

where p2 = p2 +p2
4, likewise for k2, and with p̃ and k̃ as above.

Proof . Since the Fourier transform of∆(?2)
+ is still a tempered distribution with sup-

port contained in the closure of V ×V , the first claim follows from Theorem 1. The

second claim again follows from the identity (2.3) – which, as should be noted, does

not affect the twisting factor.

Observe that sθ2 and s2 from Lemma 2 differ only by the oscillating factor e−ip̃θk̃ .

As before, we now define a distribution Sθ2 as the Fourier transform (in R4 ×R4) of

the smooth function

(3.5) S̃θ2 (k, p) = 1

k2 +m2

1

p2 +m2 e−ip̃θk̃ .

Again, the reader who is familiar with the field will recognize that in the case of

coinciding points, instead of S̃θ2 (k, p) one considers the Fourier transform of the

twisted convolution ∫
d4p

1

(k −p)2 +m2

1

p2 +m2 e−ip̃ θ �k−p

where �k −p = (ωk−p,k −p).
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It is very important to note that all the momenta which appear in the oscillating

factors in all the above expressions are on-shell, being of the form p̃ = (ωp,p), like-

wise for k or p −k. The oscillating factor therefore distinguishes the components

of (p, p4) and is, in particular, independent of the fourth component p4. The rea-

son for this lies in the fact that the Fourier transform of the 2-point function forces

the momenta in the oscillating factor to be on-shell, and this is not changed by the

analytic continuation.

This turns out to be crucial in the following assertion:

Remark 4. Since the oscillating factor in (3.5) is independent of one of the com-

ponents of k and p ∈R4, it is obvious that S̃θ2 is the analytic continuation a product

of Feynman propagators with an on-shell twisting: For

wθ
2 (k,k4 − ik0,p, p4 − ip0) := ∆̃F (k0 + ik4,k) ∆̃F (p0 + ip4,p) e−ip̃θk̃

we find S̃θ2 (k,k4,p, p4) =−wθ(k,k4,p, p4).

All this remains true when one calculates the higher order Schwinger functions

from the 2n-point functions that were calculated in [3]. Again, performing the ana-

lytic continuation in the n variables separately, one finds on-shell twistings (though

they become more and more complicated), and the analytic continuation of the

corresponding Fourier transform of Feynman propagators can be performed as in

Remark 4 while leaving the twistings unchanged.

This is the essential difference to the traditional noncommutative Euclidean

framework employed in the literature. In this latter framework, starting point are

Schwinger functions, and of course, when twisted products appear, by (3.1) the os-

cillating factors depend on all four components of a momentum vector k = (k,k4).

For instance, instead of s̃θ2 as in (3.5), one finds the following expression

(3.6) ẽθ2 (k, p) = 1

k2 +m2

1

p2 +m2 e−ipθk

where k = (k,k4) and p = (p, p4) and θ is a nondegenerate 4× 4-matrix. So far, it

was not possible to relate this framework to a hyperbolic one, the main difficulty

being the dependence of the oscillating factor on k4. Naively copying the procedure

sketched on page 5 and in Remark 4 leads to exponentially increasing terms which

render the integrals ill-defined. So far, the only way out found seems to be to make

the oscillating factor independent of one of the components in an ad hoc way, by

requiring θ to be a matrix of rank 2 (“spacelike noncommutativity”).
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Remark 4 shows that such measures are unnecessary when the new noncom-

mutative Euclidean framework derived from the hyperbolic n-point functions is

employed.

4. Outlook

It will be shown elsewhere that at least in the most prominent example graphs,

the ultraviolet-infrared mixing problem is absent in this new Euclidean framework.

However, as can be easily seen already in the example Sθ2 discussed above, the

higher order Schwinger functions are not symmetric with respect to reflections in

the origin. This may jeopardize the possibility to set up a complete consistent per-

turbative framework using a Schwinger functional and further research must be

done in that direction.

Other than that, the results presented here open many interesting possibilities

for future research. For one thing, one should try to generalize the Osterwader

Schrader Theorem in this setting. Also, it would be most interesting to study

whether the ultraviolet-infrared mixing problem appears in this setting at all. And

last but not least, a thorough understanding of the new Euclidean setup should

enable us to learn more about hyperbolic noncommutative models – which in

themselves have proved to be quite difficult to treat. It is certainly to be hoped that

from a Euclidean perturbative setup to be developped from the ideas presented

here, general proofs of renormalizability of hyperbolic noncommutative field

theory will at last be possible.
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Abstract . In this note we explain how to obtain cluster algebras from triangulations of (punc-
tured) discs following the approach of [13]. Furthermore, we give a description of m-cluster
categories via diagonals (arcs) in (punctured) polygons and of m-cluster categories via powers of
translation quivers as given in joint work with R. Marsh ([1], [3]).

1. Introduction

This article is an expanded version of a talk presented at the Courant-

Colloquium “Göttingen trends in Mathematics” in October 2007. It is a survey

on two approaches to cluster algebras and (m-)cluster categories via geometric

constructions.

Cluster algebras where introduced in 2001 by Fomin and Zelevinsky, cf. [14].

They arose from the study of two related problems.

Problem 1 (Canonical basis). Understand the canonical basis (Lusztig), or crys-

tal basis (Kashiwara) of quantized enveloping algebras associated to a semisimple

complex Lie algebra. It is expected that the positive part of the quantized envelop-

ing algebra has a (quantum) cluster algebra structure, with the so-called cluster

monomials forming part of the dual canonical basis.

This picture motivated the definition of cluster variables.

2000 Mathematics Subject Classification . 16G20, 16G70, 18E30.
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Problem 2 (Total positivity). An invertible matrix with real entries is called to-

tally positive if all its minors are positive. This notion has been extended to all re-

ductive groups by Lusztig [28]. To check total positivity of an upper uni-triangular

matrix, only a certain collection of the non-zero minors needs to be checked (dis-

regarding the minors which are zero because of the uni-triangular from). The min-

imal sets of such all have the same cardinality. When one of them is removed, it can

often be replaced by a unique alternative minor. The two minors are connected

through a certain relation.

This exchange (mutation for minors) motivated the definition of cluster muta-

tion.

The subject of cluster algebra is a very young and dynamic one. In the past few

years, connections to various other fields arose. We briefly mention a few of them

here.

– Poisson geometry (integrable systems), Teichmüller spaces (local coordinate

systems), cf. Gekhtman-Shapiro-Vainshtein [22, 23] and

Fock-Goncharov [12];

– Y -systems in thermodynamic Bethe Ansatz (families of rational functions de-

fined by recurrences which were introduced by Zamolodchikov [35]), cf. [14];

– Stasheff polytopes, associahedra, Chapoton-Fomin-Zelevinsky [8];

– ad-nilpotent ideals of Borel subalgebras in Lie algebras, Panyushev [29];

– Preprojective algebra models, Geiss-Leclerc-Schröer, [20], [21];

– Representation theory, tilting theory, cf. [6].

In this article, we will first recall triangulations of surfaces with marked points

and associate certain integral valued matrices to them. Then we will give a brief

introduction to cluster algebras (Section 3). In Section 4 we show how to associate

cluster algebras to triangulations of (punctured) discs. Then we explain what clus-

ter categories and m-cluster categories are (Section 5) and give a combinatorial

model to describe m-cluster categories via arcs in a polygon in Section 6, cf. The-

orems 6.3, 6.4 as given in our joint work with R. Marsh ([1], [3]). In addition, we

obtain a descriptions of the m-cluster categories using the notion of the power of

a translation quiver (Theorem 6.5). At the end we describe connections to other

work, pose several questions and show new directions in this young and dynamic

field (Section 7).
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(a) Once-punctured triangle

(b) Annulus

FIGURE 1. Examples of triangulations

2. Triangulated surfaces

Now we recall the triangulation of surfaces following the approach of Fomin,

Shapiro and Thurston [13]. Let S be a connected oriented Riemann surface with

boundary. Fix a finite set M of marked points on S. Marked points in the interior of

S are called punctures.

We consider triangulations of S whose vertices are at the marked points in M

and whose edges are pairwise non-intersecting curves, so-called arcs connecting

marked points. The most important example for us is the case where S is a disc

with marked points on the boundary and with at most one puncture. We will later

restrict to that case but for the moment we explain the general picture.

It is convenient to exclude cases where there are no such triangulations (or only

one such). We always assume that M is non-empty and that each boundary com-

ponent has at least one marked point. And we disallow the cases (S, M) with one

boundary component, |M | = 1 with ≤ 1 puncture and |M | ∈ {2,3} with no puncture.

In case S is a (punctured) disc we will also call it a (punctured) polygon. E.g. if

(S, M) has three marked points on the boundary and a puncture, we will say that S

is a once-punctured triangle.

Note that the pair (S, M) is defined (up to homeomorphism) by the genus of S, by

the numbers of boundary components, of marked points on each boundary com-

ponent and of punctures. Two examples of such triangulations are given in Figure 1.
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Definition. A curve in S (up to isotopy relative M) is an arc γ in (S, M) if
(i) the endpoints of γ are marked points in M ;

(ii) γ does not intersect itself (but its endpoints might coincide);

(iii) relative interior of γ is disjoint from M and from the boundary of S;

(iv) γ does not cut out an unpunctured monogon or digon.

The set of all arcs in (S, M) is usually infinite as we can already see in the case of

the annulus of Figure 1(b). One can show that it is finite if and only if (S, M) is a disk

with at most one puncture, i.e. if (S, M) is the object of our interest.

Two arcs are said to be compatible if they do not intersect in the interior of S. An

ideal triangulation is a maximal collection T of pairwise compatible arcs. The arcs

of T cut S into the so-called ideal triangles. These triangles may be self-folded, e.g.

along the horizontal arc in the picture below:

An easy count shows that the once-punctured triangle has ten ideal triangula-

tions, the four of Figure 1, with the rotations of the last three (by 120◦ and 240◦).

In fact we can say more: the number of arcs in an ideal triangulation is an invari-

ant of (S, M), we call it the rank of (S, M). There is a formula for it, cf. [11]: if g is the

genus of S, b the number of boundary components, p the number of punctures, c

the number of marked points on the boundary, then the rank of (S, M) is

6g +3b +3p + c −6

The rank of the once punctured triangle of Figure 1(a) is thus three as expected.

For small rank, [13, Example 2.12] gives a list of all possible choices of (S, M). The

word “type” appearing in the list refers to the Dynkin type of to the corresponding

cluster algebra as will be explained later:
Rank 1 unpunctured square (type A1)

Rank 2 unpunctured pentagon (type A2)

once-punctured digon (type A1 ×A1)

annulus with one marked point on each boundary component

Rank 3 unpunctured hexagon (type A3)

once-punctured triangle (type A3 = D3)

annulus with one marked point on one boundary component,

two on the other once-punctured torus.
If T is an ideal triangulation of (S, M) and p an arc of T as in the picture below,

we can replace p by an arc p ′ through a so-called flip or Whitehead move:
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b

p’
a

p c

d

Here we allow that some of the sides {a,b,c,d} coincide. A consequence of a

result of Hatcher ([25]) is that for any two ideal triangulations T and T ′ there exists

a sequence of flips leading from T to T ′.
We next want to associate a matrix to an ideal triangulation of (S, M). This works

as follows. Let T be an ideal triangulation of (S, M), label the arcs of T by 1, 2, . . . ,n.

Then define B(T ) to be the following n ×n-square matrix

B(T ) =∑
∆

B∆

where the n ×n-matrices B∆ are defined for each triangle 4 of T by

b∆i j =


1 if ∆ has sides i and j where j is a clockwise neighbour of i;

−1 if ∆ has sides i and j where i is a clockwise neighbour of j;

0 otherwise.

The matrix B(T ) is skew-symmetric with entries 0,±1,±2.

Remark. In order to simplify the definition of b∆i j we have cheated a little bit.

Whenever the triangle ∆ is self-folded along an arc i , then in the right hand side of

the definition of the entry b∆i j , the arc i has to be replaced by its enclosing loop l (i ),

cf. Figure 2.

l(i)
i

FIGURE 2. Enclosing loop l (i ) of the arc i

Example 2.1. (1) We compute B(T ) for the triangulated punctured triangle.

1
2 3

D

D

D

1

2

3
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It is:

B D1︸︷︷︸
= 0

+B D2 +B D3 =

 0 1 −1

−1 0 1

1 −1 0

+

0 0 0

0 0 −1

0 1 0

=

 0 1 −1

−1 0 0

1 0 0


(2) Take an annulus with one marked point on each boundary and the triangu-

lation T as in the picture. Then B(T ) is

B D1 +B D2 =
(

0 1

−1 0

)
+

(
0 1

−1 0

)
=

(
0 2

−2 0

)

1

1

2D

D

2

3. Cluster algebras

In this section we present a very short introduction to cluster algebras, following

Fomin-Zelevinsky [14]. A cluster algebra A = A (x,B) is a subring of the ring F =
Q(u1, . . . ,um), associated to a seed (x,B) defined in the following way.

(i) A seed is a pair (x,B) consisting of a cluster x = (x1, . . . , xm) where x is a free

generating set of F over Q and B = (bx y )x y is a sign-symmetric m ×m matrix with

integer coefficients, i.e. bx y ∈Z for all 1 ≤ x, y ≤ m and if bx y > 0 then by x < 0.

(ii) A seed (x,B) can be mutated to another seed (x ′,B ′): mutation at z ∈ x is the

map µz : (x,B) 7→ (x ′,B ′): x ′ = x− z ∪z ′ where z ′ is defined via the exchange relation

zz ′ = ∏
x∈x

bxz>0

xbxz + ∏
x∈x

bxz<0

x−bxz

and B ′ is defined similarly via matrix mutation:

b′
x y =

{
−bx y if x = z or y = z

bx y + 1
2 (|bxz | ·bz y +bx · |bz y |) otherwise.

Note: µ is involutive, i.e. µz ′ (µz ((x,B))) = (x,B).

Two seeds (x,B) and (x ′,B ′) are said to be mutation-equivalent if one can be ob-

tained from the other through a sequence of mutations. The cluster variables are

defined to be the union of all clusters of a mutation-equivalence class (of a given

seed). These appear in overlapping sets. Finally, the corresponding cluster algebra
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A =A (x,B) is the subring of F generated by all the cluster variables. (Here we are

defining cluster algebras with trivial coefficients.) A cluster algebra is said to be of

finite type if there exists only a finite number of cluster variables.

One can show that up to isomorphism of cluster algebras A (x,B) does not de-

pend on the initial choice of a free generating set x.

Example 3.1. (Type A2). We start with the pair x = (x1, x2), B=
(

0 1

−1 0

)
. In a

first step we mutate x1. from x1x ′
1 = 1+ x2 we obtain x ′

1 = 1+x2
x1

. The next mutation

is at x2 (mutation at x ′
1 would lead us back to x1), we have x ′

2 = x1+1
x2

. And then

x ′′
1 = x1+x2+1

x1x2
; x ′′

2 = x1, x ′′′
1 = x2.

In particular, we obtain five cluster variables in this example.

Some of the main results on cluster algebras are summarized here:

– Laurent phenomenon: A (x,B) sits inside Z[x±
1 , . . . , x±

m], i.e. every element of

the cluster algebra is an integer Laurent polynomial in the variables of x (cf. [15]);

– Classification of finite type cluster algebras by roots systems, [16] (cluster al-

gebras of finite type can be classified by Dynkin diagrams);

– Realizations of algebras of regular functions on double Bruhat cells in terms of

cluster algebras ([4]).

Examples of cluster algebras are: Coordinate rings of SL2, SL3 ([17]); Plücker

coordinates on Gr2,n+3 ([32], [22]).

Cluster algebras and quivers. We will now explain how to associate a quiver to

a seed of a cluster algebra.

Recall that a quiver Γ= (Γ0,Γ1) is an oriented graph with vertices Γ0 and arrows

Γ1 between them. E.g.

1
α−→ 2

β−→ 3

with Γ0 = {1,2,3} and Γ1 = {α,β};

Any skew-symmetric m ×m-matrix B determines a quiver Γ(B) with m vertices.

One labels the columns of B by {1,2, . . . ,m} and sets Γ0 = {1,2, . . . ,m}. Then one

draws bx y arrows from x to y if bx y > 0 (for x, y ∈ Γ0).

Such a quiver has no loops and for any two vertices i 6= j of Γ(B), there are only

arrows in one direction between them.

So in particular, if the matrix B of a seed (x,B) is skew-symmetric, it determines

a quiver in this way.
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Example 3.2. The matrix B=
(

0 1

−1 0

)
from Example 3.1 above gives the quiver:

1 −→ 2

Clearly, this process is reversible: a quiver whose arrows only go in one direction

between any given pair i 6= j of vertices and without loops gives rise to a skew-

symmetric matrix which we will denote by B(Γ).

4. From triangulations to cluster algebras

From now on we assume that (S, M) is a disc with at most one puncture. We want

to show how a triangulation T of (S, M) determines a cluster algebra. Label the arcs

of T by 1,2, . . . ,n.

Then we define a cluster xT = (x1, . . . , xn) by sending i 7→ xi and choose as a ma-

trix the the skew-symmetric matrix associated B(T ) associated to T in Section 2.

This clearly produces a seed (xT ,B(T )). Thus to the triangulation T of the disc

(S, M) we have associated the seed (xT ,B(T )) and hence obtain a cluster algbra

A =A (xT ,B(T )).

Example 4.1. Consider an unpunctured pentagon as below. In the triangula-

tion, we label the arcs 1 and 2. They form a triangle D1 together with a boundary

arc and 2 is the clockwise neighbour of 1.

D
2

1

211

Then the seed we obtain is ((x1, x2),B(T )) with B(T ) =
(

0 1

−1 0

)
as in Example 3.1

above.

5. Cluster categories

Cluster categories are quotients of derived categories of module categories. They

were introduced by Buan-Marsh-Reineke-Reiten-Todorov ([6]).

Independently, Caldero-Chapoton-Schiffler have introduced the cluster cate-

gories (in type An) in 2005 ([7]) using a graphical description. Later, Schiffler ex-

tended this to type Dn in ([31]).
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The aim behind the definition of cluster categories was to model cluster algebras

using the representation theory of quivers. This was motivated by the observation

that the cluster variables of a cluster algebra of finite type are parametrized by the

almost positive roots of the corresponding root system.

Cluster categories have led to new developments in the theory of the (dual of

the) canonical bases, they provide insight into cluster algebras. They have also de-

veloped into a field of their own. E.g. they have led to the definition of cluster-tilting

theory.

Let us describe the construction of cluster categories, following [6].

We start with a quiver Q whose underlying graph is a simply-laced Dynkin di-

agram (i.e. of type ADE). Denote by Db(kQ) the bounded derived category of fi-

nite dimensional kQ-modules (we assume that the field k is algebraically closed).

Note that the shape of the quiver of Db(kQ) is Q ×Z with certain connecting ar-

rows. By quiver of Db(kQ) we mean the Auslander-Reiten quiver of Db(kQ), i.e.

the quiver whose vertices are the isomorphism classes of indecomposable modules

and whose arrows come from irreducible maps between them.

This quiver has two well-known graph automorphisms: τ (“Auslander-Reiten

translate”) which sends each vertex to its neighbour to the left. And [1] (the “shift”)

which sends a vertex in a copy of the module category of kQ to the corresponding

vertex in the next copy of the module category.

The cluster category, C , is now defined as the orbit category of Db(kQ) under a

canonical automorphism:

C :=C (Q) := Db(kQ)/τ−1 ◦ [1]

One can show that this is independent of the chosen orientation of Q. More gener-

ally, Keller ([27]) has introduced the m-cluster category, C m as follows:

C m :=C m(Q) := Db(kQ)/τ−1 ◦ [m]

Keller has shown in [27] that C m is triangulated and a Calabi-Yau category of di-

mension m+1. Furthermore, C m is Krull-Schmidt ([6]). The m-cluster category has

attracted a lot of interest over the last few years. In particular, it has been studied by

Keller-Reiten, Thomas, Wralsen, Zhu, B-Marsh, Assem-Brüstle-Schiffler-Todorov,

Amiot, Wralsen, etc.

Our goal for this note is to describe C m using diagonals of a polygon (type An)

and arcs in a punctured polygon (type Dn).
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6. From arcs via quivers to cluster categories

Let us first recall the notion of a stable translation quiver due to Riedtmann [30].

Definition. A stable translation quiver is a pair (Γ,τ) where Γ = (Γ0,Γ1) is a

quiver (locally finite, without loops) and τ : Γ0 → Γ0 is a bijective map such that

the number of arrows from x to y equals the number of arrows from τy to x for all

x, y ∈ Γ0. The map τ is called the translation of (Γ,τ).

Now we are ready to define a quiver Γ from a hexagon (see figure below) as fol-

lows:

6

1 2

3

15

13

5 4

Γ0: The vertices are the diagonals (i j ) of the hexagon (1 ≤ i < j −1 ≤ 7).

Γ1: The arrows are of the form (i j ) → (i , j +1), (i j ) → (i +1, j ) provided the target is

also a diagonal in the hexagon (i , j ∈Z6).

Set τ: (i j ) 7→ (i −1, j −1) to be anti-clockwise rotation about the center.

The quiver obtained this way from the hexagon is the following:

15

!!CCCC
_____ 26

!!CCCC
_____ 13

!!CCCC

14

=={{{{

!!CCCC
_____ 25

!!CCCC

=={{{{
_____ 36

=={{{{

!!CCCC
_____ 14

!!CCCC

13 _____

=={{{{
24 _____

=={{{{
35

=={{{{
_____ 46

=={{{{
_____ 15

It clearly is an example of a stable translation quiver.

Note that such a quiver can be defined for any polygon. Denote the quiver aris-

ing in that way by Γ(n,1) if n +2 is the number of vertices of the polygon. (The use

of n instead of n +2 in the notation of the quiver Γ(n,1) and the extra entry 1 are

used to make this compatible with the more general setting involving m-diagonals

described below). Caldero, Chapton and Schiffler have shown that the cluster cat-

egory can be obtained via diagonals in a polygon:

Theorem 6.1 ([7]). The quiver of the cluster category C =C (An−1) is isomorphic

to the quiver Γ(n,1) obtained from an (n +2)-gon.
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As before in the case of the bounded derived category, the quiver of C is an ab-

breviation for the Auslander-Reiten quiver of C . It has as vertices the indecompos-

able objects of C , and as arrows are the irreducible maps between them.

To be able to model m-cluster categories we now generalize the notion of diago-

nal and introduce the so-called m-diagonals. We start with a polygonΠwith nm+2

vertices (n,m ∈N), labeled by 1,2, . . . ,nm +2.

Definition. An m-diagonal is a diagonal (i j ) dividingΠ into an m j +2-gon and

an m(n − j )+2-gon (1 ≤ j ≤ n−1
2 ).

Example 6.2. To illustrate this, let Π be an octagon, n = 3, m = 2. In that case,

1 ≤ j ≤ 1, so any 2-diagonal has to divideΠ into a quadrilateral and a hexagon.
21

3

4

56

7

8

Observe that each maximal set of non-crossing 2-diagonals contains two elements.

They are {(16), (36)}, {(16), (25)}, {(16), (14)} and rotated version of these.

Recall that the number of arcs in a triangulation (see Section 2) is an invariant

of a disc (S, M), called the rank of (S, M). In the same way, the maximal number of

non-crossing m-diagonals is an invariant of the polygon. It is equal to n−1 (for the

nm +2-gonΠ).

Using m-diagonals we can now define a translation quiver Γ(n,m) = (Γ,τm):

Γ1: (i j ) → (i j ′) if (i j ), B j j ′ and (i j ′) span an m +2-gon (B j j ′ is the boundary j to

j ′, going clockwise).

Γ0: The vertices are the m-diagonals (i j ) inΠ (with 1 ≤ i < j −m).

Γ1: The arrows are of the form (i j ) → (i , j +m), (i j ) → (i +m, j ) provided the target

is still inside the polygon. In other words: (i j ), (i , j +m) and the boundary arc j to

j +m (resp. (i j ), (i +m, j ) and the boundary arc from i to i +m) form an m+2-gon

as in the picture:

j+m

(i,j+m)

(ij)i j

Furthermore, let τm be anti-clockwise rotation (about center) through the angle

m 2π
nm+2 .
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Remark. It is clear that Γ(n,m) is a stable translation quiver. In case m = 1, we

recover the usual diagonals.

The quiver Γ(3,2) for the octagon from the previous example is thus:

16

��66666
___ 38

��66666
___ 25

��66666
___ 47

��66666
___ 16

14 ___

DD�����
36

DD�����
___ 58

DD�����
___ 27

DD�����
___ 14

DD�����

Then one can show that the A-type m-cluster category can be obtained using

m-diagonals in a polygon:

Theorem 6.3 ([1]). The quiver of the m-cluster category C m = C m(An−1) is iso-

morphic to the quiver (Γ(m,n),τm) obtained from m-diagonals in an nm +2-gon.

The proof of our result uses Happel’s description of the Auslander-Reiten-quiver

of Db(kQ) where Q is of Dynkin type An−1 and combinatorial analysis of Γ(n,m).

For details we refer to [1, Section 5].

The description in type D . We have a similar description of the m-cluster cate-

gories of D-type. Instead of working with a polygon (or unpunctured disc) we now

have to use a punctured polygon. Let Π be a punctured nm −m +1-gon. Instead

of using the term diagonal, we now speak of arcs in Π. An arc going from i to j ,

homotopic equivalent to the boundary Bi j from i to j (going clockwise) is denoted

by (i j ). By (i i ) we denote an arc homotopic equivalent to the boundary Bi i with

endpoints in i . And (i 0) is an arc homotopic equivalent to the arc between i and

the puncture 0. We will say that an n-gon is degenerate if it has n sides and n − 1

vertices.

For details and examples we refer to [3, Section 3].

Definition. An m-arc ofΠ is an arc (i j ) such that

(i) (i j ) and Bi j (the boundary from i to j , going clockwise) form an km +2-gon

for some k,

(ii) (i j ) and B j i (the boundary from j to i , going clockwise) form an lm +2-gon

for some l .

Furthermore, (i i ) and (i 0) are called m-arcs if (i i ) and Bi i form a degenerate

km +2-gon for some k.
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Then we can define a translation quiver Γ= Γ¯(n,m) as follows:

Γ0: The vertices are the m-arcs ofΠ

Γ1: The arrows are the so-called m-moves between vertices:

We say that (i j ) → (i k) is an m-move if (i j ), B j k and (i k) span a (degenerate)

m +2-gon. In the figure below there are two examples of 2-moves.

5

��

2

6

7

1

3

4

�
�
�
�

τm : rotation anti-clockwise (about center), through an angle of m
nm−m+1 .

Clearly, the pair (Γ¯(n,m),τm) is also a stable translation quiver. We can now

formulate the statement.

Theorem 6.4 (Theorem 3.6 of [3]). The quiver of the m-cluster category

C m = C m(Dn) is isomorphic to the quiver (Γ¯(m,n),τm) obtained from m-arcs in

an nm −m +1-gon.

The m-th power of a translation quiver. We will now describe another way

to obtain m-cluster categories directly from the diagonals or arcs in a (punctured)

polygon. Let (Γ,τ) a translation quiver as before. Then we define the m-th power of

Γ, Γm , to be the quiver whose vertices are the vertices of Γ (i.e. Γm
0 = Γ0). The arrows

in Γm are paths of length m, going in an unique direction. (To be precise, we ask

that such a path is sectional, i.e. that in a path x0 → x1 →···→ xm−1 → xm of length

m we have τxi+1 6= xi−1 whenever τxi+1 is defined.) And the translation τm of Γm is

obtained by repeating the original translation m times.

Definition. The quiver (Γm ,τm) as defined above is called the m-th power of

(Γ,τ).

With this we are ready to formulate the result:

Theorem 6.5 ([1]). Γ(n,m) is a connected component of

(Γ(nm,1))m = (Γ(cluster category))m .

Remark. Observe that (Γm ,τm) is again a stable translation quiver. However,

even if (Γ,τ) is connected, the m-th power is not connected in general!
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Example 6.6. To illustrate this consider the quiver Γ(6,1) of an octagon.

17 ____

!!CCCC 28 ____

!!CCCC 13
!!CCCC

16 ____

!!CCCC

=={{{{
27 ____

!!CCCC

=={{{{
38 ____

!!CCCC

=={{{{
14

!!CCCC

15 ____

!!CCCC

=={{{{
26 ____

!!CCCC

=={{{{
37 ____

!!CCCC

=={{{{
48 ____

!!CCCC

=={{{{
15

!!CCCC

14 ____

!!CCCC

=={{{{
25 ____

!!CCCC

=={{{{
36 ____

!!CCCC

=={{{{
47 ____

!!CCCC

=={{{{
58 ____

!!CCCC

=={{{{
16

!!CCCC

13 ____

=={{{{
24 ____

=={{{{
35 ____

=={{{{
46 ____

=={{{{
57 ____

=={{{{
68 ____

=={{{{
17

Its second power has three components: one component is Γ(2,2). The two other

components are both quivers of quotients Db(A3)/[1] of Db(A3) by the shift. In

particular, we have thus given a geometric construction of a quotient of Db(A3)

which is not an m-cluster category!

The three components of the second power of Γ(6,1) are:

16

��66666
___ 38

��66666
___ 25

��66666
___ 47

��66666
___ 16

14 ___

DD�����
36

DD�����
___ 58

DD�����
___ 27

DD�����
___ 14

DD�����

17
��999

__ 13
��999

15
��999

BB���
__ 37

��999

BB���
__ 15

��999

13 __

BB���
35

BB���
__ 57

BB���
__ 17

28
��999

__ 24
��999

26
��999

BB���
__ 48

��999

BB���
__ 26

��999

24 __

BB���
46

BB���
__ 68

BB���
__ 24

Remark. We have a corresponding result for type D , see Theorem 5.1 of [3]. In

addition, in type D we give an explicit description of all connected components

appearing in the m-th power of Γ¯(nm −m +1,1)

7. Connections and future directions

To finish we want to provide a short outlook and describe some open problems

and possible future directions.

– In recent work with Robert Marsh ([2]) we provide a link between cluster alge-

bra combinatorics and perfect matchings (for vertices and edges of a triangulation).

This uses work of Conway-Coxeter ([9], [10]), and of Broline-Crowe-Isaacs ([5]) on

frieze patterns of positive integers.
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– Y -systems can be defined in general for pairs (G , H) of Dynkin types.

Zamolodchikovs periodicity conjecture for general Y -systems have been proved for

G = A1 and H = An by Frenkel-Szenes ([19]), by Gliozzi-Tateo ([24]) and for G = A1,

H any Dynkin type by Fomin-Zelevinsky ([18]) using cluster algebras theory. More

recently, the cases G = Ak , H = An have been solved ([33], [34], independently).

In this context, there are various open questions. First of all: can periodicity be

proved for G of arbitrary of Dynkin type using the theory of cluster algebras? This

is not even known for G = Ak . Second: what would be a good counterpart on the

side of Y -systems to the geometric model for m-cluster categories? And thirdly: In

current work with Marsh we have discovered classes of infinite periodic systems

(G = A1, H = A∞). Does this have a translation to the setting of Y -systems?

– The approach to model cluster algebras with discs (S, M) works for types A

and D ([13]) and for types B , C under certain modifications ([8]).

Open: what can be said about the exceptional types, in particular, is there a way to

model type E using a disc with marked points?

– Jorgensen ([26]) has obtained m-cluster categories as quotient categories of

cluster categories via deletion of rows (τ-orbits). They inherit a triangulated struc-

ture. This process can be viewed as a reverse to our construction using the m-th

power of a quiver. Question: how can we explain the triangulated structure of m-

cluster categories via the m-th power of a quiver?
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DISPERSIVE EQUATIONS AND HYPERBOLIC ORBITS

Hans Christianson
Department of Mathematics, Massachusetts Institute of Technology, 77 Mass. Ave.,
Cambridge, MA 02139, USA • E-mail : hans@math.mit.edu

Abstract . We consider several related problems in linear PDE on manifolds, both when the
underlying manifold is compact and when it is non-compact. Our general assumption is that the
classical flow has a single periodic hyperbolic (unstable) orbit. The standard techniques from
linear PDE relying on dispersive effects and non-trapping assumptions do not directly apply in
this situation, but the unstable nature of the periodic orbit allows us to prove slightly weaker
results.

1. Introduction and Applications in PDE

In this note we report on some recent results in the field of Partial Differential

Equations (PDE) on manifolds. The most fundamental problems in this area stem

from trying to understand the effects of classical geometry on the solutions to PDE.

We consider the effects of a single hyperbolic “trapped” ray on solutions to a num-

ber of problems on both compact and noncompact Riemannian manifolds.

1.1. Eigenfunction Concentration. Let (M , g ) be a smooth, compact, Rie-

mannian manifold with or without boundary, and let −∆g be the (non-negative)

Laplace-Beltrami operator acting on functions (with Dirichlet boundary conditions

if ∂M 6= ;). We consider the eigenvalue problem:{
(−∆g −λ2)u = 0∫

M |u|2d x = 1, and u|∂M = 0 if ∂M 6= ;(1.1)

2000 Mathematics Subject Classification . 58J99, 35B99.
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A very natural question to ask is “what do the solutions look like?” The idea is that

the underlying classical geometry (of Hamiltonian dynamics on the cotangent bun-

dle) affects solutions to PDE on the manifold. For eigenfunctions, the presence of

periodic geodesics may cause concentration or “scarring” phenomena. There are

3 cases we describe here: ergodic classical dynamics, elliptic periodic geodesics,

and hyperbolic periodic geodesics. The first two cases are well-studied in the liter-

ature (see references below), and the case of an isolated hyperbolic geodesic is the

subject of these notes.

The ergodic case was studied first by Zelditch [20] and Colin de Verdière [17],

and has been generalized to many different situations (Figure 1 is an example of

ergodic dynamics). The idea is that since ergodic flow is roughly “evenly-mixing”,

then eigenfunctions should somehow become evenly distributed as the eigenvalue

or energy increases. To be more precise, let U ⊂ M be an open set. Then it is known

that

∫
U
|u|2d x ' Area U

Area M
, λ→∞

along a density 1 subsequence of eigenvalues λ.

γ

FIGURE 1. The Bunimovich stadium is known to have ergodic billiard dynamics.

In the case of an elliptic (stable) periodic geodesic (see Figure 2), we expect

the stability of the classical dynamics to lead to well-concentrated eigenfunctions.

What we can prove is that there are well-localized quasimodes (approximate eigen-

functions). In fact, the techniques used to prove Theorem 2 below provide a new

proof of the following well-known Theorem.
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γ

FIGURE 2. A compact manifold without boundary and stable geodesic.

Theorem 1 (Theorem 6, [6]). Suppose that γ⊂ M is an elliptic periodic geodesic

(making only transversal reflections with ∂M if γ∩∂M =;). Let U ⊃ γ be any open

neighbourhood. Then there exist functions ϕ j ∈ L2(X ) and values λ j ∈ [0,∞) satisfy-

ing {
(−∆g −λ2

j )ϕ j =O(λ−∞
j )∫

M |ϕ j |2d x = 1, and ϕ j |∂M = 0 if ∂M 6= ;,

and ∫
M\U

|ϕ j |2d x =O(λ−∞
j )

as λ j →∞.

In the case of an unstable geodesic (see Figures 3 and 4), the situation changes. If

the classical flow is not also ergodic, there is no reason to expect eigenfunctions will

not concentrate on the orbit. However, the unstable nature of the geodesic suggests

if there is concentration, it will be very weak. We have the following Theorem.

Theorem 2 (Main Theorems [7, 6]). Suppose that γ ⊂ M is an unstable closed

geodesic, making only transversal reflections with ∂M if γ∩∂M 6= ;, and U ⊃ γ is

a sufficiently small neighbourhood. Then there exists a constant C > 0 such that if u

satisfies (1.1), ∫
M\U

|u|2d x > 1

C log |λ| , |λ|→∞.

Remark 1. The conclusion of Theorem 2 applies also to semi-hyperbolic

geodesics; that is, those which are unstable in a minimum of one direction in phase

space.
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γ

M

FIGURE 3. A compact manifold M without boundary and unstable closed

geodesic γ.

γ

FIGURE 4. A compact manifold M with boundary and unstable closed

geodesic γ.

The estimates in Theorem 2 are the same as those obtained in the case the classi-

cal flow is completely integrable. Thus we conclude the completely integrable case

is the “worst” in some sense.

Theorem 2 generalizes results of Colin de Verdière-Parisse [18] for a surface of

revolution, which is of course completely integrable. In [18] they show in addition

that this estimate is sharp in this case. Theorem 2 also generalizes work of Burq-

Zworski [2] for real hyperbolic geodesics.

1.2. Damped Wave Equation. The estimates used to prove Theorem 2 have

an immediate application to the study of solutions to the damped wave equation

on compact manifolds. Let a(x) ∈ C∞(M), a > 0, and consider the damped wave

equation {
(∂2

t −∆g +2a(x)∂t )u = 0

u(x,0) = 0, ut (x,0) = f (x)
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supp(a)

M

γ

FIGURE 5. A compact manifold without boundary, unstable geodesic γ,

and a controls M geometrically outside a neighbourhood of γ.

We define the energy E(t ) to be

E(t ) := ‖∂t u‖2
L2(M) +‖∇u‖2

L2(M).

Integrations by parts shows if a ≡ 0, then

E(t ) ≡ ‖ f ‖2
L2(M),

while if a > 0 somewhere,

E ′(t ) < 0.

We say a controls M geometrically if every geodesic meets the support of a

within some finite fixed time. We have the classical result of Rauch-Taylor [16]:

if a > δ> 0 everywhere or we have geometric control, then

E(t ) 6 Ce−t/C‖ f ‖2
L2(M).

If γ ⊂U is a hyperbolic periodic geodesic, we may only have geometric control

outside of U (see Figure 5).

Theorem 3 (Theorem 5 [7]). If a controls M geometrically outside U , then for

any ε> 0 there exists C > 0 such that

E(t ) 6 Ce−t/C‖ f ‖2
Hε(M).

Remark 2. This generalizes the work of Rauch-Taylor mentioned above in the

global control case, as well as Lebeau [10] for a surface of revolution with incom-

plete geometric control.
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γ

FIGURE 6. A piece of the catenoid.

γ

FIGURE 7. Rn with two convex

bodies removed.

1.3. Schrödinger Equation. Now assume (M , g ) is a non-compact, Riemannian

manifold with or without a compact boundary and M =Rn (or finitely many copies)

outside a compact set.

Let r ' dist g (x, x0) be a “radial” variable, and denote by e i t∆g u0 the solution to

the initial value Schödinger problem:{
(i∂t +∆g )u(x, t ) = 0

u(x,0) = u0,

for u0 in an appropriate Hilbert space. The operator e i t∆g is unitary from H s (M) →
H s (M) for any fixed t , but if we also integrate in time we gain some regularity. More

precisely, in Rn (or more general non-trapping, asymptotically Euclidean geome-

tries), one proves the following “local smoothing estimate”:∫ T

0

∥∥∥〈r 〉−1/2−ε e i t∆g u0

∥∥∥2

H 1/2
d t 6 C‖u0‖2

L2 .

Next suppose γ ⊂ M is a closed hyperbolic geodesic with only transversal re-

flections with ∂M , and M is non-trapping otherwise (see Figures 6 and 7 for some

examples).

Theorem 4 (Theorem 1 [5]). Suppose that M, g , r , and γ satisfy the assumptions

above. Then for any ε> 0 there exists C > 0 such that∫ T

0

∥∥∥〈r 〉−1/2−ε e i t∆g u0

∥∥∥2

H 1/2−ε d t 6 C‖u0‖2
L2 .

Remark 3. Local smoothing has been studied by many authors. In [8], Doi

shows one has the sharp H 1/2 smoothing effect if and only if M is asymptotically

Euclidean and non-trapping.

In [1], Burq proves Theorem 4 in the case of Rn with several convex bodies re-

moved with some assumptions.

There are many applications coming from local smoothing type estimates, in-

cluding Strichartz estimates and the study of nonlinear Schrödinger equations.
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Remark 4. Theorem 4 has recently been extended in [4] to the case of a thin

hyperbolic fractal trapped set using estimates of Nonnenmacher-Zworski in [15].

1.4. Wave Equation. We make the same assumptions here as in §1.3 with the

addition that we assume dim M = n > 3 is odd. We study solutions to the linear

wave equation:


(−D2

t −∆g )u(x, t ) = 0, (x, t ) ∈ M × [0,∞)

u(x,0) = u0 ∈ H 1(M),

D t u(x,0) = u1 ∈ L2(M).

(1.2)

For ψ ∈C∞
c (M), we define the local energy:

E(t ) =
∫

M

∣∣ψ∂t u
∣∣2 + ∣∣ψ∇u

∣∣2 d x.

Theorem 5 (Theorem 2 [5]). For each ψ ∈C∞
c (M), ε> 0, and each pair

u0 ∈ C∞
c (M)∩H 1(M), and

u1 ∈ C∞
c (M)∩L2(M),

there is a constant C > 0 such that

E(t ) 6 Ce−t 1/2/C
(
‖u0‖2

H 1+ε(M) +‖u1‖2
Hε(M)

)
.

Remark 5. We think of Theorem 5 as an analogue of the Sharp Huygen’s Princi-

ple.

This generalizes similar results of Morawetz [13], Morawetz-Phillips [9], Mora-

wetz-Ralston-Strauss [14], and Vodev [19], among many others.

There are immediate applications to the study of solutions to nonlinear wave

equations (see, for example, [12, 11]).

Remark 6. Theorem 5 has now been generalized. In [3], we prove a weak poly-

nomial rate of decay in the case of a thin fractal hyperbolic trapped set as studied

in [15].

1.5. A Common Theme. All of the results discussed employ some common

ideas. That is, each problem can be reduced via some trick to proving a high-energy

resolvent estimate. In order to prove the high-energy resolvent estimates we need,

we use a semiclassical rescaling, microlocal analysis near the periodic orbit, and

microlocal “gluing” techniques to paste this together with known non-trapping es-

timates.
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For the non-concentration result we make a semiclassical rescaling, λ = p
z/h,

and consider the equation

(−h2∆−1)u = E(h)u, E(h) =O(h).

We prove a cutoff estimate:

suppχ∼ γ =⇒ ‖χu‖6
√

log(1/h)

h
‖−h2∆χu‖,

and a commutator argument finishes the proof.

In order to prove energy decay for the damped wave equation, formally we cut

off in time, take the Fourier transform in t , and consider the equation

(−τ2 + i 2τa(x)−∆)û = f .

Rescaling τ=p
z/h yields:

h−2P (h) = h−2(−h2∆+ i 2
p

zha(x)− z),

and an application of the resolvent estimates gives Theorem 3.

For the local smoothing estimate, we again formally take the Fourier transform

in t :

P (τ)û = (−τ−∆)û = u0,

and similarly for the local energy decay estimate. We then apply the resolvent esti-

mates plus interpolation to prove Theorems 4 and 5.

1.6. Acknowledgements. This note is an expanded version of a talk given at

the Courant-Colloquium "Göttingen trends in Mathematics", 12-14 October, 2007

at the Mathematisches Institut, Georg-August-Universität, Göttingen. The author

gratefully acknowledges their hospitality and invitation to speak.

2. Main Results

2.1. General Problem. We assume M is a compact manifold, P (h) (second-

order), self-adjoint semiclassical pseudodifferential operator acting on half-dens-

ities. In the examples considered above, P (h) is the semiclassical Laplace-Beltrami

operator. That is, we can write the leading part of P (h) in local coordinates as

P (h) = 1

2

∑
i j

hDi ai j hD j +ai j hDi hD j + lower order
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We assume the principal symbol p of P (h) is real and independent of h. In our

example,

p(x,ξ) =∑
i j

ai jξiξ j .

We assume

p = 0 =⇒ d p 6= 0, and

|ξ|> C =⇒ |p|> 〈ξ〉2 /C ,

and

γ⊂ {p = 0} is a closed hyperbolic orbit for exp t Hp .

2.2. Main Result. Let a ∈C∞(T ∗X ), a > 0, a ≡ 0 near γ, a ≡ 1 away from γ, and

define a family of perturbations of P (h):

Q(z,h) := P (h)− z − i ha(x,hD), z ∈ [−δ,δ]+ i [−c0h,c0h],

with δ,c0 > 0 fixed and independent of h. Our main estimate is given in the follow-

ing Theorem.

Theorem 6 (Theorem 2 [7], Theorem 2 [6]). Let M, P (h), a, and Q(z,h) be as

above. Then there exist C > 0, δ> 0, and h0 > 0 such that

‖Q(z,h)−1‖L2(X )→L2(X ) 6 C
log1/h

h
, z ∈ [−δ/2,δ/2](2.1)

uniformly in 0 < h 6 h0.

Remark 7. The function a is added as an absorption term:

− ImQ > c1h away from γ,

so it suffices to prove (2.1) in a microlocal neighbourhood near γ. This will follow

from the following estimate:

‖Q(z,h)−1u‖L2 6 C h−N‖u‖L2 , z ∈ [−δ,δ]+ i [−c0h,c0h](2.2)

if u is concentrated(1) near γ, and a semiclassical adaptation of the “three-line the-

orem” from complex analysis.

The rest of this note will be to present the main ideas from the proof of (2.2).

(1)We say u is concentrated near γ if ∃χ ∈C∞
c (T∗X ), suppχ∼ γ, χ(x,hD)u = u +O(h∞).
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...

nearby orbit

p−1(0)

γ

N

FIGURE 8. Poincaré section N and Poincaré map

3. Sketch of the Proof of (2.2)

The first idea we use in the proof is to reduce the study of P (h) near γ to the

study of a related operator on a lower dimensional space. The main advantage in

this approach is that a neighbourhood of γ is not necessarily simply connected, so

one would at the very least have to study P (h) in a double-cover space - something

we would like to avoid, while the lower dimensional space will be simply connected.

3.1. Poincaré Map. Withγ⊂ {p = 0} we can define a Poincaré map and Poincaré

section for γ. The Poincaré section N ⊂ {p = 0} is a codimension 1 submanifold

which is transversal to the flow (that is, if dim M = n, we have dimT ∗M = 2n,

dim{p = 0} = 2n − 1, and dim N = 2n − 2). We can define the Poincaré or first re-

turn map S : N → S(N ) in the usual fashion (see Figure 8 for the basic picture in

n = 2). It is well-known that S is symplectic and has a fixed point where γ inter-

sects N . We implicitly identify N with a neighbourhood of (0,0) ∈ R2n−2, and write

S(0,0) = (0,0) for simplicity.

We will continue to sketch the proof and draw the figures in dimension 2 to fix

the ideas, although the proof extends to any dimension. The assumption that γ is

hyperbolic means dS(0,0) is hyperbolic. That is, after a linear symplectic change of

variables,

dS(0,0) =
(
µ 0

0 1/µ

)
, µ> 1

= exp

(
λ 0

0 −λ

)
, λ> 0.(3.1)
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.

FIGURE 9. The unstable/stable manifoldsΛ±

We remark that in this example we have, for simplicity, assumed µ > 1. The case

µ < −1 is also possible for a hyperbolic symplectic map, but presents nontrivial

technical issues (this, along with the case where some of the eigenvalues lie on the

unit circle, is handled in [6]).

With dS(0,0) satisfying (3.1), we conclude

S = exp Hq , q =λxξ+O((x,ξ)3).(3.2)

We need also the notion of unstable/stable manifold. For S symplectic satisfying

(3.1) there are two invariant (with respect to the action of S) Lagrangian submani-

foldsΛ± of R2n−2 on which S is expanding/contracting respectively (see Figure 9).

It remains to understand the quantization of S, control the error in (3.2), and

relate estimates on P (h) to estimates on the quantization of S.

3.2. Quantization of S . We quantize S as a microlocally defined h-Fourier In-

tegral Operator M : L2(Rn−1) → L2(Rn−1). The conjugation of a pseudodifferential

operator A = Op(a) by M is

M−1 AM = Op(S∗a)+O(h2).

Since S varies with energy level z, so does M , and we write M = M(z). The following

Theorem relates P (h)− z in a microlocal neighbourhood of γ ⊂ T ∗M to M(z) in a

microlocal neighbourhood of (0,0) ∈ T ∗Rn−1.

Theorem 7 (Theorem 3 [6]). With P (h) and M(z) as above, we have for u con-

centrated near γ:

‖(P (h)− z)u‖L2(M) > C−1h‖(I −M(z))Ru‖L2(Rn−1),
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where Ru is the restriction of u to the projection of the Poincaré section. Further,

h‖u‖L2(M) 6 C h‖Ru‖L2(Rn−1) +C‖(P (h)− z)u‖L2(M).

Thus to prove (2.2), we need to show

‖(I −M(z))Ru‖> hN‖Ru‖ microlocally.

Since this is just a sketch of the proof, now we cheat and write

M(z) = exp

(−i

h
Op(q − z)

)
,

where q is defined in (3.2). This is close enough to being true to present the ideas

of the rest of the proof. For G real-valued, to be determined, we write

e−G(x,hDx )/h MeG(x,hDx )/h = exp

(−i

h
e−G/hOp(q − z)eG/h

)
.

Now

e−G/hOp(q)eG/h = Op(q)− i hOp(HqG)+ error

where now error is hard to estimate but controllable.

The rough idea now is a positive commutator argument: q is real-valued, but

conjugating Q = Op(q) with B = Op(b) invertible gives

BQB−1 =Q − [Q,B ]B−1.

Q is self-adjoint, so exp(−i (Q − z)/h) is unitary. However if B is self-adjoint, the

commutator [Q,B ] is skew-adjoint, so exp(−i [Q,B ]/h) is not unitary. If we can ar-

range B in such a fashion that [Q,B ] has a definite sign, then exp(−i [Q,B ]/h) is

expanding or contracting and has spectrum away from 1. Hence we look at the

commutator [Q,B ].

Our next guiding principle is that since S is hyperbolic, q roughly satisfies

Hq (dist 2(·,Λ∓)) ∼±dist 2(·,Λ∓).

It is a nontrivial fact that there is a symplectic choice of coordinates so that (see

Figure 10)

dist 2(·,Λ∓) =
{

x2

ξ2.

In these coordinates we would have

Hq (x2 −ξ2) = x2 +ξ2,
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..

FIGURE 10. Λ± and the change of variables

which is the harmonic oscillator and hence is bounded below by h when quan-

tized. Of course this doesn’t quite work as we shall see. We also remark that it is

important that all our changes of variables are symplectic, since a local symplectic

transformation in phase space corresponds to a microlocally unitary h-FIO. Hence

symplectic transformations in phase space preserve the spectral properties of the

associated quantized operators.

After performing this change of variables, we show that in these coordinates, q

takes the special form

q(x,ξ) =λ(x,ξ)xξ.

That is, in any Taylor development of q near (0,0), each term has xξ in it. Then

Hq (dist 2(·,Λ−)−dist 2(·,Λ+)) ∼λ(x,ξ)(x2 +ξ2)+ error,

where now error can be controlled.

From the remarks above, we then want to take

G = dist 2(·,Λ−)−dist 2(·,Λ+) = x2 −ξ2,

so that HqG ∼ x2 +ξ2 is the harmonic oscillator. However, the growth of G means

we cannot take the exponential of Gw , so we try

G = h

2
log

(
h +x2

h +ξ2

)
.

The growth of this G is acceptable, however it is in a bad calculus - that is, we lose

h−1/2 with each derivative.
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The next idea is to use a special calculus with two parameters. That is, we rescale

with an additional new parameter h̃ > h:

X = h̃
1
2

h
1
2

x, Ξ= h̃
1
2

h
1
2

ξ,

and quantize with respect to h̃. If we prove estimates which are uniform in both h̃

and h, then we can freeze h̃ and conclude the estimates hold in h → 0. We define G

in these new coordinates:

G = log

(
1+X 2

1+Ξ2

)
.

With this rescaling and choice of G ,

HqG ∼ hλ

(
X 2

1+X 2 + Ξ2

1+Ξ2

)
,

which satisfies the same lower bound as the harmonic oscillator.

In the h̃ calculus,

Op(HqG) > hh̃

C
, h̃ > 0 fixed,

and hence

− Ime−Gw
Op(q)eGw > h

C
.

Thus

‖e−Gw
MeGw ‖6 e−1/C < 1

=⇒ ‖(I −e−Gw
MeGw

)‖> 1

C
.

Rescaling back to h calculus we lose something because the operators are only

h-tempered. However, this yields the desired estimate:

‖(I −M(z))Ru‖> hN‖Ru‖
microlocally. Applying Theorem 7 gives (2.2).
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Abstract . We give a survey about two new applications of the Hardy-Littlewood circle method
from analytic number theory to arithmetic problems. These problems are finding a polynomial
bound for the smallest integer solution of a quadratic Diophantine equation, and showing that
the intersection of a system of rational cubic forms in sufficiently many variables admits a ratio-
nal linear space of zeros of given dimension.

1. Introduction

One of the basic questions in number theory concerns the solubility of Diophan-

tine equations: Let P (X1, . . . , Xs ) ∈ Z[X1, . . . , Xs ] be a polynomial with integer coef-

ficients. Does the equation P (x) = 0 have a solution in Zs ? In this generality, this

problem is hopelessly difficult. Indeed, answering Hilbert’s tenth problem, Mati-

jasevič ([10]) showed that there is no algorithm deciding this question for general

P . For special classes of Diophantine equations, however, there are effective meth-

ods for deciding solvability or even finding a solution if there is one, and we will

discuss two approaches in this direction. The first approach stems from the so-

called Hasse (Local-Global) principle: Obviously, if P (x) = 0 is soluble in integers,

then also in reals and also all congruences P (x) ≡ 0 (mod m) have an integer solu-

tion, which is equivalent to P (x) = 0 having solutions in all local rings Zp of integral

p-adic numbers, for all rational primes p. If these obvious necessary conditions

2000 Mathematics Subject Classification . 11D25, 11D72, 11D88, 11E76.
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are also sufficient for P having an integer zero x ∈ Zs , then one says that P satis-

fies the Hasse principle. For example, Minkowski showed the Hasse principle to

hold true for quadratic forms. Since for a homogeneous form there is always the

trivial zero, one has to modify the Hasse principle accordingly, either by removing

the trivial zero or by rephrasing the conditions so that projective zeros are required.

The Hasse principle for quadratic forms then is the following well known result: If

Q(X1, . . . , Xs ) ∈ Z[X1, . . . , Xs ] is a quadratic form, then there is a zero x ∈ Zs \{0} of

Q(x) = 0 if and only if there is a zero x ∈ Rs \{0} and if there are zeros x ∈ Zs
p \{0} for

all p. Note that the real condition on Q just states that Q is not definite. Now for

many polynomials it is quite easy to check the real and the local conditions (for

example, by lifting solutions modulo p, where often only finitely many p have to

be considered), so the Hasse principle then in particular gives an effective method

for deciding if there is a solution or not. Unfortunately, the Hasse principle fails for

many polynomials. One of the first counterexamples is due to Selmer ([12]), who

has shown that the equation

3X 3+4Y 3+5Z 3 = 0

has non-trivial real zeros, non-trivial p-adic zeros, but no non-trivial integer zero.

In fact, this equation describes an algebraic curve of genus one, which is called an

elliptic curve. Whereas the Hasse principle holds for conics (see above), which are

algebraic curves of genus zero, it generally fails for higher genus curves, in partic-

ular for elliptic curves. We now describe a second approach to effectivity for Dio-

phantine equations, which does not necessarily rely on the Hasse principle. Let H

(the ‘height’) be the maximum of the moduli of the coefficients of the polynomial P .

Then for a class of polynomials P in s variables with height H an effective function

Λs (H) is called a search bound, if the following holds true: If there is any integer

solution x ∈ Zs of P (x) = 0, then there is one with

|x| ≤Λs (H),

where | · | denotes the maximum norm. Clearly a search bound gives an algorithm

not only for deciding if there is an integer solution, but also for finding one. Siegel

([13]) established that for quadratic (not necessarily homogeneous) P in any num-

ber of variables there exists a search bound Λs (H). Making his argument effective,

one finds that one may take

Λs (H) = exp((2H)C1(s)),
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where C1(s) is an effective constant. In the binary case s = 2, using Pell’s equation

one can show that this bound is essentially sharp and in particular cannot be re-

placed by a polynomial in H ([8]). For s ≥ 5 and non-singular quadratic part of

Q, later Kornhauser ([7]) obtained polynomial bounds. The remaining cases s = 3

and s = 4 and also a considerable improvement of Kornhauser’s bounds have been

established by the author in [3], Theorem 1:

Theorem 1. Suppose that the quadratic part of Q is non-singular. Then one can

take

Λs (H) =


C2H 2100 s = 3

C3H 84 s = 4

C4(s)H 5s+100 s ≥ 5

for effective constants C2, C3 and C4(s).

So from a qualitative point of view the question about the order of magnitude of

search bounds for quadratic Diophantine equations has been settled: For s = 2 one

needs an exponential bound, whereas for s ≥ 3 polynomial bounds are possible.

2. Idea of proof

Let us now give a short sketch of the proof of Theorem 1. For simplicity, let us

assume that there are no linear terms, so P is of the form

P (X1, . . . , Xs ) =Q(X1, . . . , Xs )−n,

where Q is a non-singular integral quadratic form and n is an integer. Only the case

of indefinite Q is interesting, since for definite Q it is easy to obtain good bounds

even for all real solutions of Q(x) = n.

Case I: s ≥ 5 or s = 4 and n 6= 0. In this case we can apply the Hardy-Littlewood

circle method from analytic number theory. This is an analytic method for counting

solutions of Diophantine equations in some expanding box. Let

r (N ) := #{x ∈ Zs : |x| ≤ N and P (x) = 0},

where N is a parameter. Now∫
0

1e(αm)dα=
{

1 m = 0

0 m 6= 0,
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where e(α) is the character e(α) = exp(2πiα). Hence, introducing the exponential

sum

f (α) = ∑
x∈Zs :|x|≤N

e(αP (x)),

by interchanging the order of integration and summation we find that

r (N ) =
∫

0
1 f (α)dα.

Now if α is ‘close’ to a rational point a
q with ‘small’ denominator q , then one has a

very good approximation to f (α) involving so-called Gauss sums, because forα= a
q

we just have to sort the x in residue classes modulo q , and for α close to such a
q by

partial summation still a good approximation by Gaussian sums holds true. Making

this observation precise is the essence of the circle method, of which we used a

recent modern version due to Heath-Brown ([6]). This way we get an asymptotic

formula

r (N ) =SJN s−2 +Oε(N s/2−δ+ε)

for any ε> 0 and δ= 1
2 for s = 4 and n 6= 0 (here a so-called Kloosterman refinement

comes in) and δ= 0 otherwise. Here S is the so-called singular series, a measure for

the density of p-adic solutions of the equation P (x) = 0, and J is the so-called sin-

gular integral, a measure for the density of real solutions of the equation P (x) = 0.

Since the asymptotic formula for r (N ) has a main term N s−2 exceeding the error

term N s/2−δ+ε, we obtain a quantitative form of the Local-Global principle: If

there are local (including real) solutions of P (x) = 0, then S > 0 and J > 0, so for

sufficiently large N we have r (N ) > 0. Note that the asymptotic main term N s−2 is

of the order of magnitude to be expected: We have order of magnitude N s vectors

under consideration, and the probability of being a zero of the quadratic equation

P (x) = 0 is N−2. Since we want to establish a search bound, we may assume that

there is an integer zero x of P (x) = 0, hence there exist also real and p-adic zeros.

One then can establish lower bounds for S and J which are explicit in the height

H , and one can also give such explicit upper bounds for the implied O-constant.

Since all the occurring terms are polynomial in H , one finds a polynomial bound

on N in terms of H such that r (N ) ≥ 1 as soon as N exceeds this bound. This is

exactly what we want, a polynomial search bound!

The circle method approach described above is also useful for another prob-

lem on search bounds for positive definite integral quadratic forms Q: Suppose
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that for an integer n the congruences

Q(x1, . . . , xs ) ≡ n (mod m)

are soluble for all positive integers m. Then according to the philosophy of the

Local-Global-principle, one should expect also an integer solution x ∈ Zs of the

equation Q(x) = n to exist. For small n this may fail, but for ‘sufficiently large’ n and

s ≥ 5 it is true. Making ‘sufficiently large’ explicit is known as ‘Tartakovski’s prob-

lem’. Improving earlier results, in a joint paper with T.D. Browning ([1], Theorem 4)

we could prove that for s ≥ 5 the lower bound

n Àε

(
|detQ| s−2

s−4 ||Q||s+ε
) 2

s−3

is sufficient, where ||Q|| is the height of Q. So in principle one has a method for

finding all positive integers n which are represented integrally by Q: For large n,

one has to check the congruence conditions, which is a finite problem, and for the

remaining finitely many small n one could check by computer.

Case II: s ∈ {3,4} and n = 0. In this case one deals with a homogeneous prob-

lem, for which lattice point methods from the geometry of numbers are available

([2]).

Case III: s = 3 and n 6= 0. This is the most difficult case, since the circle method

breaks down here. By using reduction theory for quadratic forms, one can reduce

the original problem of finding search bounds for quadratic Diophantine equations

to the following more general and seemingly more difficult problem on finding

search bounds for integral equivalence of integral ternary quadratic forms ([3],

Theorem 4):

Theorem 2. Let A and B be integral symmetric non-singular 3×3-matrices which

are integral equivalent, so there is an unimodular integral 3×3-matrix R with

(1) B = RT AR.

Then there is such R with

||R||¿ (||A||+ ||B ||)800.

Here the height || · || is defined as maximum norm in the naive way. So in

particular one has a means of deciding effectively if two integral ternary quadratic

forms are equivalent or not. Problems of this kind have recently also found interest

in cryptography ([5]).
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Let us now give a short sketch of the proof of Theorem 2. First, it is much eas-

ier to deal with this problem first over the rationals. So we get a ‘small’ rational

3×3-matrix S with

(2) B = ST AS.

‘Small’ in the following means bounded by a polynomial in the heights of A and B ,

which is sufficient for our purposes, and the height of a rational matrix is again de-

fined in the naive way as maximum norm for the nominators and the denominator,

after clearing fractions. Then comparing (1) and (2) one finds that for

U = RS−1

we have

U T AU = A,

so U is a rational automorph of A. Fortunately, there is a parameterization of all

rational automorphs of a ternary quadratic form going back to Hermite. So U must

be of the form U =Uz for a parameter z ∈ Z4, where Uz is of the form

Uz = 1

T (z)


T1(z) · · · T3(z)

...
...

T7(z) · · · T9(z)


for suitable integral non-singular quadratic forms T,T1, . . . ,T9 ∈ Z[X1, . . . , X4] de-

pending on A. The important thing now is that the Ti and T are quaternary quadra-

tic forms with small height. Moreover, the denominator of U must be small because

of U = RS−1 with integral R and small S. An easy application of Hilbert’s Nullstel-

lensatz shows that there cannot be too much cancellation in Uz, thus T (z) must also

be small. So we can use the circle method from Case I to find a small z′ ∈ Z4 with

T (z′) = T (z)

and

z′ ≡ z (mod (T (z) ·denominator S)).

Note that the additional congruence condition is a technicality making no serious

problems for the circle method. Now let

U ′ :=Uz′ .

Then clearly U ′ is small because z′ and the Ti and T are. Moreover,

U ′T AU ′ = A,
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because U ′ comes from the parameterization of all automorphs. Furthermore,

R ′ :=U ′S

is integral, because R = U S = UzS is and the congruence condition on z′ ensured

that all denominators get canceled, like for R. Finally,

R ′T AR ′ = ST U ′T AU ′S = ST AS = B ,

so R ′ has the desired transformation property, is integral and clearly small since U ′

and S are. This completes the proof of Theorem 2 and so also the proof of Theorem

1.

3. An application of the circle method to systems of cubic forms

We complete our exposition by describing another recent application of the cir-

cle method to a problem on higher degree forms. Let C1, . . . ,Cr ∈ Z[X1, . . . , Xs ] be

cubic forms. Since for odd degree forms in sufficiently many variables there are

always non-trivial real zeros, and since for systems of forms in sufficiently many

variables there are always non-trivial p-adic zeros, one should expect according

to the Local-Global-principle that any such system of r integral cubic forms has a

non-trivial rational zero, providing that s is sufficiently large in terms of r . The best

such bound currently known is due to Schmidt ([11]), using the circle method, who

showed that s ≥ (10r )5 is sufficient. It is a natural question to seek a generalization

of this result to finding not only a common non-trivial rational zero to a system of

rational cubic forms, but even a rational linear space of given dimension on which

all those forms vanish. In this direction we could prove the following result ([4],

Theorem 2):

Theorem 3. Let r,m ∈ N, and let C1, . . . ,Cr ∈ Z[X1, . . . , Xs ] be cubic forms where

s À r 4m6+ r 6m5. Then the system of equations C1 = . . . = Cr = 0 admits an m-

dimensional rational linear space of zeros.

For r 1/9 ¿ m ¿ r 5/4 this improves earlier results due to Lewis/Schulze-Pillot

([9]) and Wooley ([14]). As mentioned above, the proof uses the circle method. Let

us now give a short outline of the main arguments. We start by writing

y =


x1
...

xm

 .
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Now a simple Taylor-expansion argument shows that there are forms C̃1, . . . ,C̃R ∈
Z[X1, . . . , Xsm] with R of order of magnitude r m3 and the property that C̃i (y) =
0 (1 ≤ i ≤ R) if and only if C1, . . . ,Cr vanish on the rational linear space spanned

by x1, . . . ,xm . So we encoded the subspace property in a problem on finding ratio-

nal zeros to a new system of cubic forms, for which we apply the circle method. So

let

r (N ) := #{y ∈ Zsm : |y| ≤ N and C̃i (y) = 0 (1 ≤ i ≤ R)}.

Like in the quadratic case where we stipulated non-singularity, we need some ge-

ometric condition on the system of cubic forms in order to be able to bound the

corresponding exponential sums occurring in the circle method approach. It turns

out that we have to stipulate a pencil condition to the effect that no form of the ra-

tional pencil of C̃1, . . . ,C̃R vanishes on a rational linear space of too large dimension.

If this pencil condition is satisfied, then the circle method goes through, yielding

r (N ) =SJN sm−3R +o(N sm−3R ),

where the singular integral J is positive, because there are non-trivial real zeros

since the degree is odd. Also the singular series S is positive, since the number of

variables is large enough and thus there are non-trivial p-adic zeros. In fact, using

information on p-adic linear spaces on the original system C1, . . . ,Cr rather than on

p-adic points on C̃1, . . . ,C̃R , we can get a quite good lower bound for S. Note that

the main term N sm−3R is of the order of magnitude to be expected heuristically.

So there are many integer zeros y of the system C̃1 = . . . = C̃R = 0, and ‘almost all’

of them give rise to linearly independent x1, . . . ,xm since such linearly dependent

xi lie on a algebraic variety of small dimension and are much less than the points

counted by r (N ). So if the pencil condition is satisfied, we are done. If the pencil

condition is not satisfied, a form in the rational pencil of C̃1, . . . ,C̃R vanishes on a

rational linear space of large dimension. Then one can show that the same is true

for the original system of forms C1, . . . ,Cr . So without loss of generality C1 vanishes

on a rational linear space of high dimension. By parameterizing this space and

substituting in the remaining forms C2, . . . ,Cr , we may proceed by induction on the

number r of forms and again are done.
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Abstract . This note is an informal report on the joint paper [4] of the author with Jeffrey Gian-
siracusa, which grew out of the attempt to understand the topology of the moduli stack of stable
curves. The main result is the construction of a map from the moduli stack to a certain infinite
loop space, which is surjective on homology in a certain range. This shows the existence of many

torsion classes in the homology of Mg ,n . We give a geometric description of some of the new
torsion classes. Also, we give a new proof of an (old) theorem computing the second homology
of the moduli stack.

The moduli space Mg ,n of stable n-pointed curves of genus g is a compacti-

fication of the moduli space Mg ,n of smooth n-pointed curves. One adds a

boundary ∂Mg ,n which contains singular curves of a certain type, namely stable

ones. A singular curve C with n marked distinct smooth points p1, . . . , pn is called

stable if all singularities are ordinary double points and if there is only a finite

number of automorphisms of C which fix the pi . Strictly speaking, due to the

presence of automorphisms, one must study Mg ,n as a stack and not as a space.

There is a coarse moduli space M
coar se
g ,n , which is the topological space usually

referred to as the moduli space. There are two things to say about this coarse mod-

uli space. First of all, the rational homology H∗(M
coar se
g ,n ;Q) is isomorphic to the

rational homology of the stack Mg ,n (a concept explained below). Also, M
coar se
g ,n it
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is a projective variety of complex dimension 3g − 3+n and its singularities are of

a very mild type (quotients of domains in a complex vector space by a finite group

action).

It follows that M
coar se
g ,n is a rational homology manifold, in other words, Poincaré

duality with rational coefficients holds. However, if one wants to study topological

invariants finer than rational homology, one is forced to consider the stack Mg ,n .

For example, the integral homology of the coarse moduli space is not well-behaved

at all.

1. A few words on stacks

Let us say a few words about stacks and how they can be studied by methods of

algebraic topology. We will mainly consider stacks in the category of complex mani-

folds. As an excellent first introduction into the subject we recommend [8]; he only

treats differentiable stacks, but almost all ideas carry over without much change.

By definition, a stack is a very abstract object ("a lax sheaf of groupoids on the site

of complex manifolds"), so let us discuss a relatively simple example, which helps

to clarify the concept. We consider the stack Mg ,n , the moduli stack of smooth

n-pointed curves of genus g (alias Riemann surfaces). Let X be a complex mani-

fold. We have to say what the groupoid Mg ,n(X ) is. An object is a triple (E ,π, j ),

where E is a complex manifold, π : E → X is a proper, surjective holomorphic sub-

mersion all of whose fibers are connected Riemann surfaces of genus g . The last

piece of data is a holomorphic embedding j : X × {1, . . . ,n} → E such that π◦ j is the

projection onto X . If we forget about the complex structures, then Ehresmann’s fi-

bration theorem tells us that π is a differentiable fiber bundle with structure group

Diff(Fg , (p1, . . . , pn)). However, the complex structures on the fibers π−1(x) can vary

with x. Experience shows that this is the appropriate notion of a holomorphic fam-

ily of Riemann surfaces.

An isomorphism in the category Mg ,n(X ) is the obvious thing: a biholomorphic

map of the total spaces which commutes with the bundle maps and the embed-

dings.

For a holomorphic map f : Y →X , we obtain a functor f ∗ : Mg ,n(X ) →Mg ,n(Y ).

For two composable morphisms f1, f2, we do not quite have an equality ( f2 ◦ f1)∗ =
f ∗

2 ◦ f ∗
1 , but only up to "2-isomorphism". Finally, we can glue objects once we have



Johannes Ebert: On the topology of the moduli stack of stable curves 59

a covering of a complex manifold and objects with suitably coherent isomorphisms

on intersections.

It is a standard remark that the stack Mg ,n is not representable, i.e. that there

does not exists a manifold M such that for any X , the groupoid Mg ,n(X ) is equiv-

alent to the set of holomorphic maps X → M . However, in a certain precise sense,

Mg ,n is not too far from being representable. The statement is formal, but the proof

is not - it relies on Teichmüller theory (or geometric invariant theory, for those who

like schemes). Let Tg ,n be the Teichmüller space of n-pointed Riemann surfaces of

genus g ; it is a complex 3g −3+n-dimensional complex manifold which is home-

omorphic to C3g−3+n . Over Tg ,n , there is a universal family of Riemann surfaces,

which gives an object in Mg ,n(Tg ,n) which is, by abstract nonsense, a morphism

of stacks p : Tg ,n → Mg ,n . This is an "atlas". The meaning of this phrase is that,

whenever we have a complex manifold X and an object in Mg ,n(X ) (alias a map

f : X → Mg ,n), then we can find an open covering (Ui )i∈I of X , such that the re-

striction f |Ui admits a lift to Tg ,n . This is not hard to show (if and only if one knows

Teichmüller theory): Tg ,n is a classifying space for objects in Mg ,n with an addi-

tional piece of data: a homotopical trivialization of the underlying fiber bundle.

For a general family of Riemann surfaces, such trivializations locally exist (by Ehres-

mann’s theorem).

The atlasϕ : Tg ,n →Mg ,n has some additional properties which qualify the stack

Mg ,n as a complex-analytic Deligne-Mumford stack or as a complex orbifold (which

means the same).

To define the stack Mg ,n , we take not only holomorphic submersions as in the

definition of Mg ,n , but also suitably defined families of stable curves. This is also a

Deligne-Mumford stack, but the construction of the atlas is far more technical as in

the case of Mg ,n . The reader is advised to consult either [3] and [9] (for an algebraic

construction) or [14] for a differential-geometric perspective.

2. Homotopy theory of stacks

How do we extract homotopy theoretic information out of a stack? The fol-

lowing method makes sense in a more general situation, namely if we deal with

topological stacks. Such a topological stack is a lax sheaf of groupoids on the

site of topological spaces which admits an atlas (defined similarly as before). Let

Stackscpl be the category of complex-analytic stacks and Stackstop be the category

of topological stacks. Given the very definition of a stack, one expects a functor



60 Mathematisches Institut, Courant-ColloquiumTrends in Mathematics, 2008

Stackstop → Stackscpl , but that does not happen. Let X be a topological stack.

Of course, we can restrict the sheaf defining X to the subcategory of complex

manifolds, but there is no reason why there should exist a complex-analytic atlas!

Instead, there is a functor ϕ : Stackscpl → Stackstop which extends the "underlying

topological space functor" from complex manifolds to spaces. This is defined using

an atlas, but it is a canonical construction whose result does not depend on that

choice. However, given an analytic stack X, it may be very hard to describe the

sheaf ϕ(X) explicitly. There are also differentiable stacks and similar remarks apply

to this notion.

Given an atlas X0 →X of a topological stack, the pullback X1 := X0×X X0 is again

a space and there are suitable maps which define a topological groupoid X with

object space X0 and morphism space X1. If X = X //G is a quotient stack, then we

obtain the translation groupoid of the group action G y X .

The following definition seems to be folklore.

Definition 2.1. Let X be a topological stack and let X be the groupoid arising

from an atlas of X. Then the homotopy type Ho(X) of the stack X is the homotopy

type of BX.

This definition has the obvious disadvantage that it is not clear that Ho(X) is

independent of the choice of the atlas. But in fact, it is.

Theorem 2.2. The homotopy type Ho(X) does not depend on the choice of the

atlas. Moreover, it extends to a functor from the category of topological stacks to the

homotopy category of spaces.

The proof can be found in [4] and it is built on ideas from [12]. The second

sentence is a quite strong statement, because it asserts that two different atlases do

not merely give homotopy equivalent classifying spaces but also that all homotopy

equivalences arising from different choices are mutually compatible.

If X = X //G is a global quotient stack, then the homotopy type is the Borel-con-

struction:

Ho(X //G) = EG ×G X .
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A special case is the moduli space Mg ,n , because the it is equivalent to the quo-

tient of the Teichmüller space by the mapping class group(1) Γn
g . Because the Tg ,n

is contractible, we conclude that Ho(Mg ,n) = BΓn
g .

One can show that the homotopy type has the right (co)homology groups - there is

a natural definition of the cohomology of a stack in terms of homological algebra

and the result is that this homology is the same as the homology of the homotopy

type. However, this remark does not apply to any homotopy-invariant functor, for

example not to complex K -theory. Any good notion of complex K -theory should

satisfy K (X //G) = KG (X ) if G is a compact Lie group. But it is well-known that KG (X )

and K (EG ×G X ) are usually not isomorphic, see [2].

3. Pontrjagin-Thom maps

Let f : M m → N n be a proper smooth map of smooth manifolds, of codimension

d = n −m (which can be negative). The normal bundle is the stable vector bundle

ν( f ) := f ∗T N − T M of virtual dimension d on M . As a stable vector bundle, it

has a Thom spectrum Mν( f ). The Pontrjagin-Thom construction yields a stable

homotopy class

PT f :Σ∞N+ → Mν( f ).

These Pontrjagin-Thom maps can be used to define umkehr maps in cohomol-

ogy, once the normal bundle ν( f ) is oriented. One defines f as the composition

H∗(M) ∼= H∗(Σ∞M+) ∼= H∗+d (Mν( f )) → H∗+d (Σ∞N+) = H∗+d (N ).

If we want to define umkehr maps also in the context of stacks, we need to

construct Pontrjagin-Thom maps in the category of stacks. The problem is that

the Whitney embedding theorem does not hold for stacks. But one can find a way

around it and we can define the Pontrjagin-Thom map if f : X → Y is a repre-

sentable proper map between complex-analytic stacks and Y satisfies some mild

technical conditions (this condition is satisfied for all orbifolds).

(1)This notation is traditional in the theory of mapping class groups. The group usually denoted by Γg .n

is closely related, but different.
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4. Homotopy theory of smooth moduli spaces

The Pontrjagin-Thom construction played a crucial role in the modern homo-

topy theory of the moduli space Mg ,n which was developed by Tillmann, Madsen

and Weiss [10], [11]. They studied the universal surface bundle(2) π : Mg ,1 →Mg ,0.

The stable normal bundle ν(π) can be identified with the inverse of the vertical

tangent bundle Tvπ; the classifying map of Tvπ is a map Mg ,1 → BU (1). Thus the

Pontrjagin-Thom construction yields a map

α : Mg →Ω∞BU (1)−L .

The main theorem of [11] is thatα induces an isomorphism in integral homology

in degrees k 6 (g−2)/2. A crucial ingredient of the proof is Harer’s stability theorem

[7] which says that Hk (Mg ;Z) does not depend on g if k 6 (g − 2)/2. We will see

below (see 6.1) that the homology of Mg ,n does not satisfy any kind of stability.

Therefore we cannot expect a result as elegant as the Madsen-Weiss theorem for

Mg ,n .

5. The surjectivity theorem

There are several natural morphisms between the moduli stacks of stable curves.

Namely, there are maps

1. ξg ,n : Mg−1,n+2 →Mg ,n

2. θh,k : Mh,k+1 ×Mg−h,n−k+1 →Mg ,n ,

3. π : Mg ,n+1 →Mg ,n

4. σ∗ : Mg ,n →Mg ,n ;σ ∈Σn ,

given by: identifying two smooth points to a node (1 and 2), forgetting the last

point (3) or permuting the n marked points (4). These morphisms are repre-

sentable morphisms of complex-analytic stacks; ξ and θh,k are proper immersions

of codimension 1 and π can be interpreted as the universal family of stable curves

(it has codimension −1). We are particularly interested in the morphisms ξ and θh,k

and study their Pontrjagin-Thom maps. The normal bundles of these morphisms

are easy to describe.

There are certain natural complex line bundles on Mg ,n : if (C , p1, . . . , pn) is an

n-pointed stable curve, then pi is a smooth point and hence Tpi C is defined; this

(2)The case n > 0 can easily be reduced to n = 0 using Harer stability.
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gives line bundles Li →Mg ,n , i = 1, . . . ,n.

The normal bundle of ξ is Ln+1⊗Ln+2 and the normal bundle of θh,k is Lk+1⊗Ln−k+1

(exterior tensor product). The morphism ξ is Σ2-invariant and therefore induces

ξ̃ : Mg−1,n+2//Σ2 →Mg ,n .

Let now N (2) ⊂ U (2) be the normalizer of the standard maximal torus; there is

a homomorphism N (2) →U (1) which multiplies the nonzero matrix entries. This

induces a line bundle V → B N (2). The normal bundle of ξ̃ admits a bundle map

and thus we obtain

PTξ̃ : Ho(Mg ,n) →Ω∞Σ∞B N (2)V .

Similarly, the normal bundle of θh,0 admits a bundle map to the universal line

bundle L → BU (1) and we obtain

PTθh,0
: Ho(Mg ,n) →Ω∞Σ∞BU (1)L .

The main result of [4] is the following.

Theorem 5.1. The map PTξ̃ induces an epimorphism in homology with field co-

efficients in degrees k 6 (g −2)/4.

The map PTθh,0
induces an epimorphism in homology with field coefficients in de-

grees i 6 (g −2)/2(h +1).

The proof is based on the Harer-Ivanov stability theorem for the homology of

the mapping class groups, on the Barratt-Priddy-Quillen theorem relating symmet-

ric groups to infinite loop spaces and on the computation of the homology of the

infinite loop space of the suspension spectrum of a space X in terms of the homol-

ogy of X and the Dyer-Lashof algebra.

In section 6 below we will discuss the geometric meaning of some of the torsion

classes provided by this theorem.

There is an important family of subrings R∗(Mg ,n) ⊂ H∗(Mg ,n ;Q), the tautolog-

ical rings, which is the smallest system of subalgebras which contain the classes

c1(Li ) and which are closed under pullback and umkehr homomorphisms by the

natural maps. It is easy to see that the Pontrjagin-Thom maps above map rational

cohomology into the tautological ring. Therefore we can consider the cohomol-

ogy classes induced by the Pontrjagin-Thom maps as an integral refinement of the

tautological rings



64 Mathematisches Institut, Courant-ColloquiumTrends in Mathematics, 2008

6. The low-dimensional homology groups of Mg

In this section, we present a short proof of the following theorem, which was first

proven by Arbarello and Cornalba [1].

Theorem 6.1. If g > 4, then H2(Mg ;Z) is a free Abelian group of rank 2+ [g /2].

Arbarello and Cornalba showed this using methods from algebraic geometry.

Their argument showed also the apparently sharper result that any complex line

bundle on Mg has a unique holomorphic structure. But the classical fact that

π1(Mg ) = 0 and an easy Hodge-theoretic argument show that Theorem 6.1 implies

that as well.

The proof of 6.1 is based on the differential-topological notion of a Lefschetz fibra-

tion. In this framework, it is also easy to see that π1(Mg ) = 0, using Dehn’s theorem

that Dehn twists generate the mapping class group. Consider the stack Mg as a dif-

ferentiable stack. It quite difficult to describe this differentiable stack explicitly as

a sheaf because a family of stable curves is not a bundle and when we pull back a

family with an arbitrary smooth map, the resulting space becomes highly singular.

But "up to concordance", the differentiable stack Mg is not too hard to understand.

The notion of Lefschetz fibration is an old one in algebraic geometry, I learnt the

following formulation from [5].

Definition 6.2. A Lefschetz fibration is a tuple (p,S,U ,L, q), where p : E k+2 → B k

is a smooth map, S ⊂ E is the subset of critical points of p and it is a submanifold

of real codimension 4. One requires that p|S is an immersion with normal cross-

ings. The normal bundle U of S in E is endowed with a complex structure and an

embedding j : U → E as a tubular neighborhood; L → S is a complex line bundle,

endowed with an immersion i : L → B . q : U → L is a nondegenerate quadratic form

and p ◦ j = i ◦q . Finally, the fibers of p are oriented, connected stable surfaces.

For all x ∈ B , the nodes of the fiber p−1(x) are the points of S ∩ p−1(x). Any

component of S has a type i ∈ {0,1, . . . [g /2]} (g is the genus of the fibers). Namely,

a node can either be nonseparating (i = 0) or it can separate the surface into two

parts of genus h and g −h (if h 6 g −h, the type is h).

One can show that for any smooth manifold B , the set of concordance classes of

Lefschetz fibrations is in bijection with the set of homotopy classes [B ;Ho(Mg ].

Details will appear elsewhere.

A Lefschetz fibration over a 1-manifold is nothing else than an oriented surface

bundle; Lefschetz fibrations over oriented surfaces are also not hard to describe.
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If F is a surface of genus g and c ⊂ F a simple closed curve of type i (this is de-

fined analogously to the type of a node), then there exists a Lefschetz fibration

p : E → D2 such that S consists of a single point s, p(s) = 0 of type i and the

restriction E |S1 →S1 is an oriented surface bundle whose monodromy is the Dehn

twist around the curve c. If E → B is a Lefschetz fibration over a surface, then it

is determined by the isomorphism class of the surface bundle E |B\p(S) and by the

monodromies around the points of p(S).

Now we are ready for the proof of Theorem 6.1. We use the oriented bordism

group Ω2(Mg ) of Lefschetz fibrations, which is isomorphic to H2(Mg ;Z). We will

establish an exact sequence

(6.3) 0 // Ω2(Mg ) // Ω2(Mg )
δ // Z[g /2]+1 // 0.

The homomorphism δ is obtained by counting the singularities of a Lefschetz

fibration, according to their type and with a sign which stems from orientation is-

sues. This is invariant under oriented bordism.

To show that δ is surjective, we need to construct a Lefschetz fibration on an ori-

ented surface with a single singularity of prescribed type. Take a Lefschetz fibration

E → D2 with a singularity of type i . The surface bundle E |S1 is nullbordant in Mg ,

because H1(Mg ;Z) = 0 for g > 3; this is a classical theorem by Powell [13]. Now

take any nullbordism and glue in E . The result is a Lefschetz fibration with a single

singularity.

An old theorem of Harer [6] states that Ω2(Mg ;Z) ∼= Z if g > 4; an isomorphism is

given by the following procedure: Take a ∈ Ω2(Mg ), which can be represented by

an oriented closed surface M and a surface bundle E → M . The signature of the ori-

ented 4-manifold E is divisible by 4 and the assignment [E → M ] 7→ 1
4 si g n(E) is an

isomorphism. It follows immediately that the map Ω2(Mg ) →Ω2(Mg ) induced by

the inclusion is injective: if a surface bundle E → B is nullbordant when considered

as a Lefschetz fibration, the manifold E is nullbordant and hence has signature 0.

This show exactness of the sequence 6.3 on the left.

Exactness in the middle is shown by a simple surgery argument. If E → M is a Lef-

schetz fibration with δ(E → M) = 0, then the singular points of S of type i occur in

pairs with opposite sign. If s1, s2 is such a pair, then we can cut out small discs in

M around p(s1) and p(s2). The restriction of E to the boundary of any of the two
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discs is a surface bundle and both are isomorphic (but the base has opposite ori-

entations). Thus they are concordant as bundles over a cylinder. This cylinder can

be glued in in and we obtain a new Lefschetz fibration, with the number of singu-

larities reduced by 2. It represents the same bordism class as the original Lefschetz

fibration. This finishes the proof of Theorem 6.1.

Remark 6.4. The components of δ give cohomology classes δi ∈ H 2(Mg ;Z). They

are related to our Pontrjagin-Thom maps as follows. Set i = 0, the other cases are

similar. The Thom class of V is an element u ∈ H 2(B N (2)V ;Z); it is suspended to

u′ ∈ H 2(Ω∞Σ∞B N (2)V ;Z). The class PT∗
ξ̃

u′ is precisely δ0.

7. An interesting class in H 3(Mg ;F2)

Theorem 5.1 states that the map Mg ,n →Ω∞Σ∞B N (2)V induces a surjection in

homology with field coefficients. Equivalently, the map in cohomology with field

coefficients is injective. Here we describe one of the torsion classes in H 3(Mg ,n ;F2)

geometrically. It is not hard to see that H∗(B N (2);F2) ∼= bF2[x1, x2, w]/(w3 = 0),

where xi is the image of (mod 2 reduction of) the Chern class ci ∈ H (BU (2);F2) un-

der the map induced from the inclusion N (2) ⊂U (2). The class w ∈ H 1(B N (2);F2)

comes from B N (2) → Bπ0(N (2)) = BZ/2. Furthermore, the Euler class of the vector

bundle V is x1 +w2. The Thom isomorphism is an isomorphism th : H∗(B N (2)) ∼=
H∗+2(B N (2)V ). Therefore, H 3(B N (2)V ;F2) ∼= F2 and th(w) is a generator.

There is an (injective) homomorphism (of graded vector spaces, not of rings)

σ : H∗(B N (2)V ;F2) → H∗(Ω∞Σ∞B N (2)V ;F2), the cohomology suspension, and we

want to describe PT∗
x̃i
σ(th(w)) ∈ H 3(Mg ,n ;F2). By 5.1, this is nonzero (if g > 14. By

the universal coefficient theorem and by 6.1, H 3(Mg ,n ;F2) ∼= Hom(H3(Mg ,n ;Z);F2),

and the latter is isomorphic to Hom(Ω3(Mg ,n);F2).

Assume that B is a closed oriented 3-manifold and that p : E → B is a Lefschetz fi-

bration which represents an element inΩ3(Mg ,n). Let S ⊂ E be the singular locus, a

1-dimensional submanifold and let S0 ⊂ S be the open and closed subspace of sin-

gular points which are of type 0. Clearly, S0 is a disjoint union of a finite number of

circles C1, . . .Ck . On any circle Ci , there is a twofold covering qi : C̃i →Ci . Namely,

for any x ∈ Ci , there exists a neighborhood U ⊂ p−1(p(x)) such that U \ x has pre-

cisely two components. These components are the elements of the fiber q−1
i (x).

Recall that there are exactly two equivalence classes of twofold coverings on a circle.
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Let ai = 1 if qi is nontrivial and ai = 0 if it is trivial. Define

λ(E → B) :=
k∑

i=1
ai ∈ F2.

It is not hard to see that this is an additive bordism-invariant λ : Ω3(Mg ,n) → F2

and hence a cohomology class λ′ ∈ H 3(Mg ,n ;F2). More or less by unwinding the

definitions, one can show that

λ′ = PT∗
ξ̃
σ(th(w)).
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Abstract . In this survey, we describe three tropical enumerative problems and the correspond-
ing moduli spaces of tropical curves. They have the structure of weighted polyhedral complexes.
We observe similarities in the definitions of the weights, aiming at a better understanding of the
tropical structure of the moduli spaces.

1. Introduction

In tropical geometry, algebraic varieties are degenerated to certain piece-wise

linear objects called tropical varieties. This process loses a lot of information, but

many properties of the algebraic variety can be read off from the tropical variety,

and many theorems that hold on the algebraic side remarkably continue to hold on

the tropical side. Since tropical varieties are piece-wise linear, they are in princi-

ple easier to understand than algebraic varieties and combinatorial methods apply.

Thus there is hope that we can use tropical geometry to derive theorems in alge-

braic geometry.

One of the fields in which tropical geometry has had significant success recently

is enumerative geometry. Enumerative geometry deals with the counting of geo-

metric objects that are determined by certain incidence conditions. The conditions

have to be chosen in such a way that only finitely many objects satisfy them. We will

2000 Mathematics Subject Classification . 14N10, 14N35, 51M20.
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consider tropical analogues of the following three examples of enumerative num-

bers:

1. The numbers N (d , g ) of nodal degree d genus g plane curves through 3d+g −1

points in general position.

2. The numbers E(d , j ) of nodal degree d elliptic (that is, genus 1) plane curves

and with fixed j -invariant j through 3d −1 points in general position.

3. The Hurwitz numbers H g
d (η,ν) of genus g , degree d covers of P1, with specified

ramification profiles η and ν over 2 fixed points in P1 and at most simple ramifica-

tion over other points in P1.

Now we could instead count the corresponding tropical objects, defining num-

bers Ntrop(d , g ), Etrop(d , j ) and H g
d ,trop(η,ν), and hope to end up with the same

numbers. Each tropical object has to be counted with a certain tropical multiplic-

ity that should reflect how many objects in the algebraic count degenerate to this

tropical object. For the numbers N (d , g ), the Correspondence Theorem N (d , g ) =
Ntrop(d , g ) has been shown in the pioneering work of Grigory Mikhalkin ([12]). The

equality E(d , j ) = Etrop(d , j ) was proved in [10] and H g
d (η,ν) = H g

d ,trop(η,ν) in [3].

The study of tropical enumerative numbers like the above requires an argument

why the tropical count remains invariant under a deformation of the conditions, for

instance, an argument why the numbers Ntrop(d , g ) do not depend on the position

of the 3d +g −1 points (as long as they are in general position). The corresponding

independence statements in algebraic geometry are a consequence of the fact that

the enumerative numbers can be interpreted as intersection numbers of cycles on

suitable moduli spaces, and that intersection products are invariant under defor-

mation. In tropical geometry, we can construct analogues of the moduli spaces.

Also, tropical intersection theory has been studied recently ([13],[1]). However, at

this moment not all independence statements above can be deduced from general

principles of tropical intersection theory. In fact, we can only use tropical intersec-

tion theory to prove independence statements for numbers of rational curves, that

is, if the genus g is 0. For the numbers Ntrop(d , g ), the independence was shown in

[12] by relating the tropical numbers to classical ones for which the invariance is

known. An alternative combinatorial proof determines the different possibilities of

how a tropical curve can change when the points are deformed ([7]). For the num-

bers Etrop(d , j ) and H g
d ,trop(η,ν) the independence was shown in [10] and [3], re-

spectively, using moduli space techniques. However, tedious case-by-case analyses

and computations were necessary. The same techniques can also be used to prove
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the independence for the numbers Ntrop(d , g ), and we outline this proof shortly in

this survey since it cannot be found in the literature.

A main reason why we cannot prove the independence with tropical intersec-

tion theory is that the tropical moduli spaces we want to work with do not have

a tropical structure yet. We can define them only as abstract weighted polyhedral

complexes. The only case in which the tropical structure of the moduli space is well

understood is for rational curves ([14], [5]). Since the corresponding moduli spaces

in algebraic geometry are stacks rather than varieties, we expect that we need a rig-

orous definition of a tropical stack, which does not yet exist, before we can succeed

in equipping the tropical moduli spaces with more structure. For genus 0, the no-

tion of a tropical stack is avoided by introducing extra labelings that will remove

automorphisms, see Section 7. Once we understand the tropical structure of the

moduli spaces, we expect that tropical intersection theory should provide natural

proofs of the independence statements, leading thus to a more rigorous set-up for

tropical enumerative geometry.

The purpose of this survey is to describe the tropical moduli spaces used in the

three enumerative problems mentioned above, and to observe similarities in their

local structure. We hope a better understanding of tropical moduli spaces might

eventually lead to a definition of a tropical structure for them.

We define three tropical moduli spaces that parametrize a larger set of objects

than the ones we want to count. For the first enumerative problem (the numbers

Ntrop(d , g )) the space Mg ,n,trop(R2,∆) parametrizes genus g , degree d plane trop-

ical curves with 3d + g − 1 marked points. The space M̃1,n,trop(R2,∆) we use for

the second problem (the numbers Etrop(d , j )) parametrizes degree d elliptic plane

tropical curves with 3d −1 marked points. The space M ′
g ,0,trop(R1,∆) for the third

problem (the numbers H g
d ,trop(η,ν)) parametrizes degree d , genus g tropical maps

to P1. Then we define maps from these moduli spaces, for instance, the map that

evaluates the 3d +g −1 marked points for the first problem. The inverse image un-

der this map of a point configuration consists of those degree d genus g tropical

curves that pass through the point configuration. Inverse image points have to be

counted with the suitable tropical multiplicity. The map for the second enumer-

ative problem evaluates 3d −1 points and associates the tropical j -invariant. The

map for the third problem evaluates the position of the vertices of the tropical curve

that can be thought of as branch points.

We start in Section 2 with an example which should motivate our definition of

tropical curves. In Section 3, we define abstract tropical curves and parametrized
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tropical curves. The latter can be thought of as analogues of stable maps. We also

define spaces parametrizing tropical curves that can be thought of as analogues

of moduli spaces of stable maps. We equip those tropical moduli spaces with the

structure of a weighted polyhedral complex in Section 4. In Section 5, we define

maps from the tropical moduli spaces that are used to define the tropical enumer-

ative problems. We explain how our definition of Ntrop(d , g ) relates to Mikhalkin’s

original definition of Ntrop(d , g ) ([12]). In Section 6, we give a short overview of

the independence proofs that have to be shown for each of the three enumerative

problems. We give only short outlines of proofs. For more details, or for more for-

mal definitions, see [10], [6] or [11].

The author would like to thank Paul Johnson, Eric Katz, Thomas Markwig and

Johannes Rau for helpful comments.

2. A motivating example

There are several ways to define the degeneration process which produces a

tropical variety from an algebraic variety (see [12], [16], [4]). Here, we sketch just a

basic example that motivates our later combinatorial definition of tropical curves.

Let L be a projective line in P2
C

, and apply the map

Log: (C∗)2 →R2, (s, t ) 7→ (log |s|, log |t |)
to the restriction of L to (C∗)2. Let (x : y : z) be the coordinates of P2, and identify

C2 with the set {z 6= 0}. Then the map Log associates the point (log | x
z |, log | y

z |) ∈ R2

to a point (x : y : z) ∈ P2. The line L intersects the coordinate line {x = 0} in one

point. When we move along the line L towards the intersection with {x = 0}, the

first coordinate of the image point under Log tends to −∞. Also, when we move

towards the intersection with the coordinate line {y = 0}, the second coordinate of

the image tends to −∞. When we move towards the intersection with {z = 0}, both

coordinates become big and their difference tends to a constant. Furthermore, the

image Log(L) ⊂ R2 (called the amoeba of L) should be 2-dimensional, as the com-

plex line has two real dimensions. These observations suggest that the image looks

similar to the left of the following picture:
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(1
1
)

(−1
0

)
( 0−1

)

A tropical line can be thought of as a limit of this amoeba after shrinking it to some-

thing one-dimensional, as on the right in the picture above. (For more details on

the limit process, see [12] or [4].) The only information kept are the three infinite

rays and their directions. Note that the primitive integer vectors pointing in these

three directions sum up to 0. This is called the balancing condition and is impor-

tant in our combinatorial definition. Now let C ⊂P2 be a conic. It intersects {x = 0}

in two points, (0 : p0 : 1) and (0 : p1 : 1). We can move along C near the first point

and the first coordinate of the image will tend to −∞, whereas the second tends to

log |p0|. For the second point, the first coordinate will again tend to −∞, but the

second to log |p1|. Thus the amoeba of a conic has two “tentacles” in each of the

three directions (−1,0), (0,−1) and (1,1). We can not say precisely what happens

in the middle. When we shrink the amoeba to something 1-dimensional to get an

idea of how a tropical conic should look like, there are indeed several possibilities

of what can happen in the middle.

The picture shows three different types of a tropical conic.

In many places in the literature, an alternate degeneration process is given;

namely, take the image of the valuation map from an algebraic variety over the field

of Puiseux series K (or another field with a non-archimedean valuation). Since this

definition does not require taking a limit, it is more useful for computations ([2]).

We define plane tropical curves combinatorially (Definition 3.6). For plane curves,

it is true that any such combinatorial object (roughly, a graph satisfying the bal-

ancing condition) comes from an algebraic curve under the degeneration process

([17]).

Remark 2.1. We can also apply the degeneration to higher-dimensional vari-

eties. In the case of constant coefficients (that is, if the ideal defining the variety
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is an ideal of C[x] ⊂ K [x]) the image under the valuation map is a polyhedral fan

that satisfies (a higher-dimensional version of) the balancing condition ([18], Sec-

tion 2.5). The role of the primitive integer vector pointing in the direction of an

edge is played by the lattice in a top-dimensional cone of the fan. Combinatorially,

higher-dimensional tropical varieties are defined roughly as polyhedral complexes

obtained by gluing fans that satisfy the balancing condition ([20], [5]). Not every

such polyhedral complex comes from an algebraic variety under the degeneration

process.

3. Tropical Mg ,n(Pr ,d)

We want to define a tropical analogue of Mg ,n(Pr ,d); that is, we want to define

maps from abstract tropical curves to Rr such that the images look like the tropical

curves we have seen in Section 2 above (that is, like graphs satisfying the balancing

condition). The abstract tropical curves should be marked by n points. We have

seen above that the unbounded edges (or, ends) of a tropical curve can be thought

of as coming from the intersection with coordinate hyperplanes. In this sense, the

ends are special points of the tropical curve. Thus we define the tropical analogue

of marked points to be marked ends.

Let us first fix some notation we want to use for graphs. Let Γ be a graph. Un-

bounded edges (also called ends) are allowed. We denote the set of vertices by Γ0

and the set of edges Γ1. The subset of ends is called Γ1∞ and the subset of bounded

edges Γ1
0. We call a pair F = (V ,e) where e is an edge of Γ and V ∈ ∂e a flag of Γ

and think of it as a “directed edge”—an edge pointing away from its end vertex V .

The genus of a connected graph Γ is the first Betti number of Γ, h1(Γ,Z), that is, the

number of independent cycles.

Definition 3.1. An abstract tropical curve is a connected graph Γwhose vertices

have valence at least 3 and whose bounded edges e are equipped with a length

l (e) ∈R>0.

The genus of an abstract tropical curve is the genus of Γ.

An abstract n-marked tropical curve is a tuple (Γ, x1, . . . , xn) whereΓ is an abstract

tropical curve and x1, . . . , xn ∈ Γ1∞ are distinct ends of Γ.

The set of all n-marked tropical curves with exactly n ends and of genus g is

called Mg ,n,trop.

An abstract tropical curve with labeled vertices is an abstract tropical curve Γ

where each vertex is labeled with val(V )−2 numbers such that the disjoint union
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of all vertex labelings equals {1, . . . , s −2+2g }, where s is the number of ends and g

is the genus.

For i ∈ {1, . . . , s −2+2g } we denote by Vi the vertex which has the label i . Note

that for a curve with higher-valent vertices it is possible that Vi =V j for i 6= j in this

notation.

The combinatorial type α of an abstract tropical curve is the information left

when dropping the lengths of the bounded edges.

Remark 3.2. We need vertex labelings only for the third enumerative problem,

since tropical branch points of a map to tropical P1 are thought of as vertices of the

underlying abstract tropical curve. Therefore we have to define two types of moduli

spaces, one parametrizing curves with vertex labelings (but without marked ends)

and one with marked ends.

Example 3.3. The following picture shows a 2-marked rational abstract tropical

curve (without labeled vertices). Marked ends are drawn as dotted lines.

l = 2.5

l = 1

x1

x2

Remark 3.4. A connected graph of genus g has #Γ1
0 = #Γ1∞−3+3g−∑

V (valV −3)

bounded edges. In particular, a 3-valent graph has #Γ1
0 = #Γ1∞ − 3+ 3g bounded

edges. A 3-valent graph of genus g has #Γ0 = #Γ1∞−2+2g vertices. We need these

relations for dimension counts later on.

Remark 3.5. For rational curves, the space M0,n,trop is known to be the space of

trees, or a quotient of the tropical Grassmanian ([19], [14], [5]). It is in fact equal

to the tropicalization of M0,n (where M0,n is realized as a quotient of the Grassma-

nian) ([8], proposition 5.8). Therefore it is a fan satisfying the balancing condition

as mentioned in remark 2.1.

Definition 3.6. A (parametrized) tropical curve in Rr (with labeled vertices) is a

tuple (Γ,h) where Γ is an abstract tropical curve (with labeled vertices) and

h : Γ→Rr is a continuous map satisfying:

1. h maps each edge e of length l (e) affinely to a line segment with rational slope

in Rr , that is, if we identify the edge e with the interval [0, l (e)] (or [0,∞) for an end),
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h is of the form

h(t ) = a + t · v

for some a ∈R2 and v ∈Z2. The integral vector v occurring in this equation if V ∈ ∂e

is identified with 0 will be denoted v(V ,e) and called the direction of the flag (V ,e).

For an end e, we call its direction v(e) = v(V ,e) (where V is its only end vertex).

2. At every vertex V ∈ Γ0, the balancing condition is fullfilled:∑
e|V ∈∂e

v(V ,e) = 0.

Note that v(V ,e) =−v(V ′,e) if {V ,V ′} = ∂e.

Definition 3.7. An n-marked (parametrized) tropical curve in Rr is a tuple

(Γ,h, x1, . . . , xn)

where (Γ,h) is a tropical curve in Rr , and x1, . . . , xn ∈ Γ1∞ are distinct ends of Γ that

are mapped to a point in R2 by h (that is, v(xi ) = 0).

Definition 3.8.

1. The genus of a tropical curve in Rr is the genus of the underlying abstract trop-

ical curve.

2. The combinatorial type of a tropical curve in Rr is given by the data of the com-

binatorial type of the underlying abstract tropical curve Γ together with the direc-

tions of all its edges (bounded edges as well as ends).

3. The degree of a tropical curve in Rr is the multiset∆= {v(e); e ∈ Γ1∞\{x1, . . . , xn}}

of directions of its ends. If this degree consists of the vectors−e0,−e1, . . . ,−er , where

e0 :=−e1 −·· ·−er , and where each vector appears d times, we say that these curves

have degree d .

Example 3.9. The following picture shows a rational tropical curve of degree 1

in R2 with two marked points.

��

��
��
��
��

h(x1)

h

R2

h(x2)

x1

x2

l = 1

l = 2.5

Γ
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Remark 3.10. Note that the direction vector v(V ,e) of a flag (V ,e) (if it is

nonzero) can be uniquely written as a product of a positive integer (called the

weight of the edge e) and a primitive integer vector.

Remark 3.11. The map h of a tropical curve (Γ,h, x1, . . . , xn) does not need to be

injective on the edges. It is allowed that v(V ,e) = 0 for a flag (V ,e), that is, the edge e

is contracted to a point in R2. The remaining flags around the vertex V then satisfy

the balancing condition. If V is a 3-valent vertex, this means that the two other flags

(V ,e1) and (V ,e2) around V have to satisfy v(V ,e1) =−v(V ,e2), that is, they point in

opposite directions. Hence, the image h(Γ) looks locally around h(V ) like a straight

line.

This holds in particular for the marked ends x1, . . . , xn , as they are required to be

mapped to a point. Therefore, they can be seen as tropical analogues of the marked

points of stable maps.

Note that the contracted bounded edges also lead to “hidden moduli parame-

ters”: if we vary the length of a contracted bounded edge, then we arrive at a family

of different parametrized tropical curves whose images in R2 are all the same.

We are now ready to define the two types of moduli spaces mentioned in Re-

mark 3.2.

Definition 3.12. For all g , n > 0 and ∆, let Mg ,n,trop(R2,∆) be the set of all n-

marked tropical curves (Γ,h, x1, . . . , xn) in R2 of degree ∆ and genus g ′ 6 g .

For all g > 0 and∆, let M ′
g ,0,trop(R1,∆) be the set of all tropical curves with labeled

vertices (Γ,h) in R1 of degree ∆ and genus g ′ 6 g .

We denote by Mα
g ,n,trop(R2,∆) and M ′α

g ,0,trop(R1,∆), respectively, the subsets of

Mg ,n,trop(R2,∆) and M ′
g ,0,trop(R1,∆) of tropical curves of combinatorial type α.

We need to include curves of lower genus here, since they appear in the bound-

ary of types of genus g .

There are only finitely many combinatorial types in Mg ,n,trop(R2,∆) and in

M ′
g ,0,trop(R1,∆) ([6]).

Lemma 3.13. The subsets Mα
g ,n,trop(R2,∆) and M ′α

g ,0,trop(R1,∆) are unbounded

and open convex polyhedra in real vector spaces of dimension 2+#Γ1
0 and 1+#Γ1

0,

respectively. They have, respectively, two or one coordinates h(V ) for the position of

a root vertex V and coordinates l (e) for the lengths of all bounded edges e. They are
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cut out by the inequalities that all lengths have to be positive and by the equations

for the loops. If Γ is 3-valent, the expected dimensions are

2+#Γ1
0 −2g = #∆−1+ g for Mα

g ,n,trop(R2,∆),

and

1+#Γ1
0 − g = #∆−2+2g for M ′α

g ,0,trop(R1,∆).

Proof . Given a curve of type α we can recover the map h from the data of the po-

sition of one root vertex. This is true because the directions are fixed by α and the

lengths are fixed by the abstract curve. Thus Mα
g ,n,trop(R2,∆) and M ′α

g ,0,trop(R1,∆)

are parametrized by the position h(V1) and the lengths of all bounded edges. The

length coordinates have to satisfy the conditions that the g loops close up in the im-

age in R2 (resp. R). Each loop gives two (resp. one) conditions, but they do not have

to be linearly independent. The statement about the expected dimension follows

from Remark 3.4.

A different choice of the root vertex or of the order of the bounded edges leads

to a linear isomorphism on Mα
g ,n,trop(R2,∆) (resp. M ′α

g ,0,trop(R1,∆)) of determinant

±1. This is obvious for the order of the bounded edges. If we choose another root

vertex V ′, the difference h(V )−h(V ′) of the images of the two vertices is given by∑
(W,e) l (e)·v(W,e), where the sum is taken over a chain of flags leading from V to V ′.

This is obviously a linear combination of the lengths of the bounded edges. As these

length coordinates themselves remain unchanged it is clear that the determinant of

this change of coordinates is 1.

For any type α, the boundary of an open polyhedron Mα
g ,n,trop(R2,∆) or

M ′α
g ,0,trop(R1,∆) consists of curves where some length coordinates are shrunk to 0.

We can remove those edges and obtain a new tropical curve of a combinatorial

type α′, possibly of lower genus. The following picture shows how this can look

like locally. The edges which tend to have length zero when we move towards the

boundary are drawn in bold.

Thus we can glue the spaces Mα
g ,n,trop(R2,∆) or M ′α

g ,0,trop(R1,∆) along their bound-

aries.
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4. The moduli spaces as weighted polyhedral complexes

Definition 4.1. Let X1, . . . , XN be (possibly unbounded) open convex polyhedra

in real vector spaces. A polyhedral complex with cells X1, . . . , XN is a topological

space X together with continuous inclusion maps ik : Xk → X such that X is the

disjoint union of the sets ik (Xk ) and the coordinate change maps i−1
k ◦ il are affine

(where defined) for all k 6= l . We usually drop the inclusion maps ik in the notation

and say that the cells Xk are contained in X .

The dimension dim X of a polyhedral complex X is the maximum of the dimen-

sions of its cells. We say that X is of pure dimension dim X if every cell is contained

in the closure of a cell of dimension dim X . A point of X is said to be in general posi-

tion if it is contained in a cell of dimension dim X . For a point P in general position,

we denote the cell of dimension dim X in which it is contained by XP .

A weighted polyhedral complex is a polyhedral complex such that there is a

weight w(Xi ) ∈Q associated to each cell Xi of highest dimension.

We want to glue the polyhedra Mα
g ,n,trop(R2,∆) or M ′α

g ,0,trop(R1,∆) to a weighted

polyhedral complex. However, we want the polyhedral complex to be of the ex-

pected dimension, so in each case, we have to throw away certain strata. Later on

we define maps from the moduli space to some other space that we use to impose

conditions. We count tropical curves in the inverse image of a point. The strata

whose dimension is too high are not mapped injectively and therefore do not con-

tribute to the count. Thus we can drop them.

Also, we have to define weights for the top-dimensional strata. For this, we need

the following definitions:

Definition 4.2. We call a type α in Mg ,n,trop(R2,∆) or M ′
g ,0,trop(R1,∆) regular if

the underlying graph is 3-valent and of genus g , and the g loops impose indepen-

dent conditions.

Definition 4.3. Let α be a regular combinatorial type in Mg ,n,trop(R2,∆) (resp.

M ′
g ,0,trop(R1,∆)). Pick g independent cycles of Γ, that is, generators of H1(Γ,Z).

Each such generator is given as a chain of flags around the loop. Define a

2g ×2+#Γ1
0 = 2g ×n +#∆−1+3g

(resp. g ×1+#Γ1
0 = g ×#∆−2+3g ) matrix Aα with two (one) columns for the po-

sition of a root vertex h(V ) and a column for each length coordinate, and with two

(resp. one) rows for each cycle containing the equation of the loop in R2 (resp. R)
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(depending on the lengths of the bounded edges in the loop):∑
(W,e)

v(W,e) · l (e),

where the sum now goes over the chosen chain of flags around the loop. Then

Aα : Rn+#∆−1+3g →R2g (resp. Aα : R#∆−2+3g →Rg ) is a linear map.

Denote by Iα the index of the sublattice

Aα(Zn+#∆−1+3g ) ⊂Z2g (resp. Aα(Z#∆−2+3g ) ⊂Zg ).

Note that Mα
g ,n,trop(R2,∆) (resp. M ′α

g ,0,trop(R1,∆)) equals the intersection of R2 ×
(R>0)#Γ1

0 (resp.R×(R>0)#Γ1
0 ) with the kernel of this map. This is true because we force

the images of the cycles in R2 (resp. R) to close up by requiring that the equations

of the chains of flags are 0.

Note also that Iα does not depend on the chosen generators of H1(Γ,Z): If we

choose another set of generators, these new generators are given as linear combi-

nations with coefficients in Z of the old generators, so the rowspace of the matrix is

not changed.

Example 4.4. The picture shows a regular curve C in M1,3,trop(R2,∆) (where∆=
{(−2,−1), (0,2), (2,−1)}).

h

Γ

R2

V2

V1 V4

e3

e2
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e4
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0

)( 1
−1

)(1
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)(−2
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)V3

( 2
−1

)(−1
0

)

e5

e6

x1

x2

x3

Choose the chain of flags (V1,e1), . . . , (V4,e4) around the cycle. The directions of

those four flags are (1,1), (1,1), (1,−1) and (−1,0). Thus the map Aα : R8 → R2 is

given by the following matrix:
(

0 0 1 1 1 −1 0 0
0 0 1 1 −1 0 0 0

)

where the coordinates of R8 are h(V1), l (e1), . . . , l (e6).

4.1. The moduli space Mg ,n,trop(R2,∆) for the first enumerative problem, the
numbers Ntrop(d , g ) .
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Definition 4.5. Let C = (Γ,h, x1, . . . , xn) be a tropical curve. If C has no con-

tracted bounded edges (that is, no direction vector v(e) = 0 for e ∈ Γ1
0), and if for

all V such that there are two adjacent flags of the same direction v(V ,e1) = v(V ,e2)

the directions of the flags adjacent to V span R2, then C is called relevant. (In par-

ticular, every such vertex is at least 4-valent.)

We define Mg ,n,trop(R2,∆) to be the subset of Mg ,n,trop(R2,∆) of relevant tropical

curves which satisfy in addition the following property: if they are of genus g ′ < g ,

then they appear in the boundary of a relevant type of genus g .

The weight w1(α) of a top-dimensional cell Mα
g ,n,trop(R2,∆) is defined to be the

index Iα from Definition 4.3.

It follows from Proposition 4.1 in [11] that all types of top dimension in

Mg ,n,trop(R2,∆) are regular. Thus the weight is well-defined.

The following picture shows an element of M0,5,trop(R2,2):

4.2. The moduli space M̃1,n,trop(R2,∆) for the second enumerative problem,
the numbers Etrop(d , j ) . Let α be a combinatorial type in M1,n,trop(R2,∆). The

deficiency def(α) is defined to be

def(α) =


2 if g = 1 and the cycle is mapped to a point in R2,

1 if g = 1 and the cycle is mapped to a line in R2,

0 otherwise.

Since the loop imposes either two, one or no condition (depending on whether it

spans R2, is mapped to a line or to a point), we can determine the dimension of

Mα
1,n,trop(R2,∆) exactly to be #∆+n + g −1−∑

V (valV −3)+def(α) ([10]).

Definition 4.6. Remove from M1,n,trop(R2,∆) the cells of dimension bigger than

#∆+n and cells of rational curves which are not contained in the boundary of a cell

corresponding to a genus 1 curve. The remaining subset of M1,n,trop(R2,∆) is called

M̃1,n,trop(R2,∆). We associate the following weights to the strata of dimension #∆+
n:
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1. Assume def(α) = 0, and the curves of type α are of genus 1. Then we associate

the weight w2(α) = Iα · ( 1
2 )r , where r denotes the number of vertices V such that

Γ \ V has two connected components of the same combinatorial type (that is, for

which both the abstract graph and the directions coincide).

2. Assume def(α) = 1. By the dimension count there is a 4-valent vertex. Assume

first that the 4-valent vertex is adjacent to the cycle, that is, locally the curves look

like the following picture:
v

n ·u

m ·u

In the notations above, n ·u, m ·u and v denote the direction vectors of the corre-

sponding edges (n and m are chosen such that their greatest common divisor is 1).

If n 6= m, or if n = m = 1 and the cycle is formed by three edges due to the presence

of a marked point, we associate the weight w2(α) = |det(u, v)|. If n = m = 1 and no

point is on the flat cycle, then we associate w2(α) = 1
2 |det(u, v)|. (Due to the bal-

ancing condition this definition is not dependent of the choice of v .)

In case the 4-valent vertex is not adjacent to the cycle, we associate the weight 0.

3. Assume def(α) = 2. Assume first that the 5-valent vertex is adjacent to the cycle,

that is, locally the curves look like this:

u

v

where u and v denote the direction vectors of the corresponding edges. We asso-

ciate the weight w2(α) = 1
2 (|det(u, v)|−1). (Note that due to the balancing condition

this definition is independent of the choice of u and v .) In the case that there are

two 4-valent vertices or that the 5-valent vertex is not adjacent to the cycle, we as-

sociate the weight 0.

The factor of ( 1
2 )r was left out in the original definition of M̃1,n,trop(R2,∆) in [10].

The reason is that curves with vertices V such that Γ \ V has two connected com-

ponents of the same type count with multiplicity 0 later, since they are not mapped

injectively.
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Remark 4.7. Note that we include types in M̃1,n,trop(R2,∆) which are not rele-

vant and thus not included in Mg ,n,trop(R2,∆). The reason is that the map we want

to use for the first enumerative problem only evaluates at different points, whereas

the map for the second enumerative problem takes the cycle length of the tropi-

cal curve into account (see Definition 5.5). A cell corresponding to a non-relevant

type like the one with def(α) = 1 above is not mapped injectively with just evalu-

ations, because we can change the length coordinates in the cycle without chang-

ing the position of any marked point. It is mapped injectively in the second prob-

lem though, because a change of length coordinates in the cycle changes the cycle

length. Therefore we have to consider it in the second problem, but not in the first

one.

The following picture shows an element of M̃1,8,trop(R2,3):

4.3. The moduli space M ′
g ,0,trop(R1,∆) for the third enumerative problem, the

numbers H g
d ,trop(η,ν) . As mentioned in Remark 3.2, we need vertex labels here.

Definition 4.8. Let M ′
g ,0,trop(R1,∆) be the subset of M ′

g ,0,trop(R1,∆) containing

all combinatorial types α such that if M ′α
g ,0,trop(R1,∆) is of dimension #∆−2+2g or

bigger then α is regular and if M ′α
g ,0,trop(R1,∆) is of dimension less than #∆−2+2g

then it is contained in a cell corresponding to a regular type.

In particular, the top dimension of M ′
g ,0,trop(R1,∆) is #∆−2+2g . We define the

weight w3(α) of a top-dimensional cell as the product of three types of factors:

– the index Iα;

– 1
2 for every vertex V such that Γ\V has two connected components of the same

combinatorial type;

– 1
2 for every cycle which consists of two edges which have the same direction.

The following picture shows an element of M ′
1,0,trop(R1,2):
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V1

V2

V3

V4

It is easy to show now that the three moduli spaces are indeed weighted polyhe-

dral complexes.

Remark 4.9. Note that the weights in Definitions 4.5, 4.6 and 4.8 coincide. We

do not need factors of 1
2 in Definition 4.5 because a regular and relevant curve can-

not have a vertex V such that Γ \ V has two connected components of the same

combinatorial type or a cycle consisting of two edges which have the same weight.

Also, we do not need the special cases (2) and (3) of 4.6 in either of the two other

definitions. They are not relevant. In the third enumerative problem, they are not

of top dimension.

The factors of 1
2 can be thought of as taking care of automorphisms (see also

Section 7).

5. The tropical enumerative problems

Definition 5.1. A morphism between a weighted polyhedral complex X and a

polyhedral complex Y is a continuous map f : X → Y such that for each cell Xi ⊂ X

the image f (Xi ) is contained in only one cell of Y , and f |Xi is a linear map (of

polyhedra).

Assume f : X → Y is a morphism of weighted polyhedral complexes of the same

pure dimension, and P ∈ X is a point such that both P and f (P ) are in general

position (in X and Y , respectively). Then locally around P the map f is a linear

map between vector spaces of the same dimension. We denote by DP the absolute

value of the determinant of this linear map and define the multiplicity mult f (P ) =
DP · w(XP ) of f at P to be DP times the weight of the cell XP , w(XP ). Note that

the multiplicity depends only on the cell XP of X in which P lies. We call it the

multiplicity of f in this cell.

A point Q ∈ Y is said to be in f -general position if Q is in general position in Y

and all points of f −1(Q) are in general position in X . Note that the set of points in

f -general position in Y is the complement of a subset of Y of dimension at most

dimY −1; in particular it is a dense open subset. Now if Q ∈ Y is a point in f -general
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position we define the degree of f at Q to be

deg f (Q) := ∑
P∈ f −1(Q)

mult f (P ).

Note that this sum is indeed finite: first of all there are only finitely many cells in X .

Moreover, in each cell (of maximal dimension) of X where f is not injective (that is,

where there might be infinitely many inverse image points of Q) the determinant

of f is zero and hence so is the multiplicity for all points in this cell.

Moreover, since X and Y are of the same pure dimension, the cells of X on

which f is not injective are mapped to a locus of codimension at least 1 in Y . Thus

the set of points in f -general position away from this locus is also a dense open

subset of Y , and for all points in this locus we have that not only the sum above but

indeed the fiber of Q is finite.

Note that the definition of multiplicity mult f (P ) in general depends on the co-

ordinates we choose for the cells. However, we will use this definition only for mor-

phisms for which DP , the absolute value of the determinant, does not depend on

the chosen coordinates, if they are chosen in a natural way; in our case this means

we choose lattice bases of the spaces Mα
g ,n,trop(R2,∆) and M ′α

g ,0,trop(R1,∆). Choos-

ing a different lattice basis leads to a base change matrix of determinant ±1 which

does not change the multiplicity. Since DP depends only on the cell and for us cells

correspond to combinatorial types α, we will use the notation Dα.

As lattice bases are in general hard to compute, we use the following easier way

to determine mult f (C ) for a morphism starting from one of our moduli spaces:

Construction 5.2. Let f : M → Y be a morphism of weighted polyhedral com-

plexes of the same pure dimension, where M is Mg ,n,trop(R2,∆), M̃1,n,trop(R2,∆)

or M ′
g ,0,trop(R1,∆). For a regular type α the cell M = Mα

g ,n,trop(R2,∆) (resp. M =
M ′α

g ,0,trop(R1,∆)) is cut out of V = R2+#Γ1
0 (resp. V = R1+#Γ1

0 ) by the inequalities that

lengths are positive and by d = 2g (resp. d = g ) independent equations for the

loops. Pick a map f̃α : V → Y ×Rd such that f̃α|M = f |M × Aα, where Aα is the

map containing the equations for the loops as in 4.3.

Lemma 5.3. For a map f̃α (defined for a regular type α) from Construction 5.2

we have |det( f̃α)| = Iα ·Dα = mult f (C ), where C is a curve of type α. In particular

|det( f̃α)| does not depend on the choice of f̃α.

This is basically a straightforward lattice index computation, which can be found

in [15], Lemma 1.6. The index of a square integer matrix is just the absolute value of
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its determinant, and the index of a product of two maps f × g is equal to the index

of f |ker g times the index of g . Remember that f̃α = f |M × Aα and M (that is, the cell

of type α) is the kernel of the map Aα (intersected with the conditions that lengths

have to be positive) by Definition 4.3.

Example 5.4. For the maps we will use, we can choose a possible f̃α just by

choosing chains of flags to the marked points, respectively to the vertices. For

the curve C in Example 4.4, choose V1 to be the root vertex, and go from V1 to x1

via (V1,e1). Go to x2 from V1 via (V1,e1), (V2,e2) and (V3,e5) and to x3 via (V1,e1),

(V2,e2), (V3,e3) and (V4,e6). Thus f̃α is the 2+#Γ1
0 = 8 times 2n +2 = 8 matrix

1 0 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 1 1 0 0 0 0
0 1 1 1 0 0 2 0
1 0 1 1 1 0 0 2
0 1 1 1 −1 0 0 −1
0 0 1 1 1 −1 0 0
0 0 1 1 −1 0 0 0


where the coordinates of R8 are h(V1), l (e1), . . . , l (e6). Note that we could for exam-

ple also have gone to x3 via (V1,e4) in which case the fifth and sixth row would be

replaced by (
1 0 0 0 0 1 0 2
0 1 0 0 0 0 0 −1

)
This matrix differs from the other only by subtracting the seventh from the fifth and

the eighth from the sixth line—that is, we subtract the two equations for the loop

from one chain of flags to get to the other chain of flags. In particular choosing a

different chain of flags does not change the absolute value of the determinant. We

will see that the map f̃α we describe here equals ev |M × Aα when restricted to the

cell M = Mα
1,3,trop(R2,∆) (the map ev is defined in 5.5). Then by Lemma 5.3 we have

2 = |det( f̃α)| = multev(C ).

Definition 5.5. Let

evi : Mg ,n,trop(R2,∆) →R2, (Γ,h, x1, . . . , xn) 7→ h(xi )

denote the i -th evaluation map. By ev = ev1× . . .×evn we denote the combination

of all n evaluation maps.

The j -invariant of an elliptic curve tropicalizes to the cycle length ([9]). For a

tropical curve C = (Γ,h, x1, . . . , xn) of genus 1, we pick a generator of H1(Γ,Z) given

as a chain of flags. If we avoid passing any edge in two directions, it is unique up

to orientation. We define the cycle length to be the sum of the lengths of the edges

which are part of this cycle. This can also be expressed in terms of forgetful maps

([10]). We define a map j : M̃1,n,trop(R2,∆) →R>0 sending C to its cycle length. For

a rational tropical curve, we say j (C ) = 0. Define

π :=ev× j : M̃1,n,trop(R2,∆) →R2n ×R>0.
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We define the tropical branch map δ as

δ : M ′
g ,0,trop(R1,∆) →R#∆−2+2g : (Γ,h) 7→ (h(V1), . . . ,h(V#∆−2+2g )),

where Vi is the vertex in Γ0 with label i as defined in 3.1.

All those maps are morphisms of weighted polyhedral complexes. For example,

the position h(xi ) equals h(V )+∑
v(V ,e) · l (e) where the sum goes over a chain of

flags leading from V to xi . This expression is linear in the coordinates h(V ) and

l (e).

Now we define the tropical enumerative numbers.

Definition 5.6.

1. Let n = #∆+ g − 1. For a point configuration P ∈ R2n in ev-general position,

define Ntrop(∆, g ) = degev(P).

2. Let n = #∆−1. For a point configuration P ∈ R2n in π-general position, define

Etrop(∆, j ) = degπ(P).

3. For a point configuration P ∈R#∆−2+2g in δ-general position, define

H g
d ,trop(η,ν) = degδ(P).

The question as posed in the introduction is now why those numbers do not

depend on the point P , that is, why the degrees of the three maps are constant. We

give an outline of these proofs in Section 6.

Note that Ntrop(∆, g ) is defined differently in [12]: the tropical curves there are

counted with a multiplicity mult(C ) which is not defined via the evaluation map.

We show that mult(C ) for a relevant and regular curve C of type α coincides with

multev(C ) ([11]).

Definition 5.7. The multiplicity of a 3-valent vertex V is defined to be the abso-

lute value of the determinant det(v1, v2), where v1 and v2 are two directions of flags

adjacent to V . The balancing condition tells us that it makes no difference which

two of the three flags adjacent to V we choose. The multiplicity mult(C ) of a 3-

valent tropical curve is defined to be the product of the multiplicities of all vertices

([12]).

Example 5.8. The multiplicity of the curve C from Example 4.4 equals mult(C ) =
2. As we have seen in Example 5.4, multev(C ) = 2, too.
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A string in C is a subgraph of Γ homeomorphic either to R or to S1 (that is, a

“path” starting and ending with an unbounded edge, or a path around a loop) that

does not intersect the closures xi of the marked points.

Definition 5.9. For a tropical curve C of regular type α, pick a chain of flags

for each marked point xi leading from the root vertex V to xi . Define a matrix

ẽvα : R2+#Γ1
0 →R2n ×R2g with two rows for each marked point containing the chain

of flags and two rows for each loop containing the equation of the loop (as in Defi-

nition 4.3).

Remark 5.10. Note that ẽvα = ev×Aα on Mα
g ,n,trop(R2,∆), where Aα is defined

in 4.3 and Mα
g ,n,trop(R2,∆) is the kernel of Aα intersected with the conditions that

the lengths are positive. The map ẽvα depends on the choices, but |detẽvα| does

not since |detẽvα| = w(α) ·Dα = multev(C ) by Lemma 5.3. By abuse of notation, we

still speak of the map ẽvα, even though its definition depends on the choices we

made, and keep in mind that |det(ẽvα)| is uniquely determined.

Note that 5.4 gives an example of such a map ẽvα.

Lemma 5.11. Let C be a curve of degree∆ and relevant and regular typeα, which

is marked by #∆+ g −1 points. Then multev(C ) is equal to multC if C has no string.

Note that curves with a string are not mapped injectively by ev (see [6], Remark

3.6), therefore they do not contribute to the count degev(P). Also, if we choose a

configuration of points in general position, no curve with a string meets the points.

Proof . We show that |det(ẽvα)| equals multC , which is enough by Remark 5.10. The

proof is by induction on the sum of the number of bounded edges and the genus.

The induction beginning is shown in [6], Example 3.3.

In the induction step, let us now assume C has k bounded edges, is a curve of

genus g and degree ∆, and k + g > 2. Cut one of the bounded edges. That is, in the

graph Γ, choose a bounded edge e and replace it by two ends, each being adjacent

to one end vertex of e. Two things can happen:

1. The graph can decompose into two connected components.

2. The graph can stay connected, but a loop is broken. We denote the new con-

nected graph of genus g −1 by Γ1. In this case, the edge e should be chosen such

that it is adjacent to a marked point xi . (Such a choice is possible as C has no string.)
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We have to prove the statement for each of the two cases separately, as the argu-

ments differ. The first case is shown in [6], Proposition 3.8. In the second case, Γ1

has genus g −1, #∆+2 ends that are not marked points, and

#∆+ g −1 < (#∆+2)+ (g −1)−1

marked points, therefore it has a string. This can be seen by removing xi one by

one, thus producing several connected components. Since we do not have enough

marked points, we end up with less connected components than ends. We add

a marked point x adjacent to one of the new ends. There is only one possibility

to do this such that the new tropical curve has no string. The tropical curve C1

of type α1 defined in this way has genus g − 1 and as many bounded edges as C .

Therefore we can assume by induction that its multiplicity is equal to |detẽvα1 |. As

mult(C ) = mult(C1), it remains to show that |detẽvα| = |detẽvα1 |.

e

xi
x

V

Choose coordinates to compare the two matrices of ẽvα and ẽvα1 . Let V —the vertex
adjacent to the marked point xi —be the root vertex both for C and for C1. Choose
the same order of bounded edges, marked points and loops for the two curves. One
of the loops of C , say L, is broken after the cutting of e. This loop corresponds to the
last two lines of the matrix of ẽvα. For C1, the last two lines are given by the marked
point x. As chain of flags leading from V to x in C1, we choose just the same chain
of flags as for the loop L. The following table represents both matrices. The two
matrices only differ by the h(V )-entries in the last two rows. In the table, each row
represents two or more rows as before. Each matrix contains the first three rows,
ẽvα contains the fourth, and ẽvα1 the fifth. E2 denotes the two by two unit matrix.

h(V ) bounded edges

the marked point xi E2 0

other marked points E2 ∗
other loops 0 ∗
for ẽvα the loop L 0 equation for L

for ẽvα1 the new point x E2 equation for L

Note that both matrices are block matrices with a 2×2 block on the top left. There-

fore, both determinants are equal to the determinant of the lower right block. But
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this block coincides for both matrices, because it does not involve the two numbers

we changed from 0 to 1.

6. The independence proof

To prove that deg f (P) does not depend on P where f is one of our maps above,

note first that the degree is locally constant on the subset of points in f -general

position. This is true since at any curve that contributes to deg f (P) the map f

is a local isomorphism. The points in f -general position are the complement of

a polyhedral complex of codimension 1, that is, they form a finite number of top-

dimensional regions separated by “walls” that are polyhedra of codimension 1. To

show that deg f is constant it is therefore enough to consider a general point on

such a wall and show that deg f is locally constant at these points. Such a general

point on a wall is the image under f of a general tropical curve C of a combinatorial

typeα such that the cell corresponding toα is of codimension 1. We have to classify

all those types. For the first enumerative problem, this is done in [11] and for the

second in [10]. (For the third, the wall-crossing statement is actually not necessary

since all types contribute to the sum degδ, not depending on P .) The following

shows local pictures of codimension 1 types.

The pictures represent the abstract graph and the direction vectors at the same

time: the double edge in the second and third picture from the right represents

two edges of the graph Γ which are mapped to the same line segment of R2 since

they are of the same direction. The loop in the picture on the right represents a loop

of direction 0 (leading to a type of deficiency 2 which is of codimension 1 because

of its 6-valent vertex).

For the first enumerative problem, the numbers Ntrop(d , g ), we have to consider

the left two pictures and the case of a 3-valent curve of genus g −1. The other ones

are not relevant. For the second enumerative problem, the numbers Etrop(d , j ),

we have to consider all the pictures above. The third picture from the left leads to

several subcases depending on where the marked points are relative to the cycle.

Here, we want to present only the case corresponding to the leftmost picture.

This is in fact the most important case, since it has to be considered in all enu-

merative problems. Also, it is the only case that has to be considered for rational
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curves. An analogous independence proof for rational curves appeared in [6]. We

outline the proof only for the first enumerative problem, the numbers Ntrop(d , g ),

that is, we use the map ev: Mg ,n,trop(R2,∆) → (R2)n . For the other two maps, it is

completely analogous.

Lemma 6.1. Let P ∈R2n be a configuration of points such that there is a curve C

with one 4-valent vertex satisfying ev(C ) = P . Then the number of preimages near

C under ev of a point P ′ near P (counted with multiplicity) does not depend on the

choice of P ′.

Proof . Let α be the type of C . The cell Mα
g ,n,trop(R2,∆) is in the boundary of three

top-dimensional cells, namely the ones where the 4-valent vertex is resolved.

V

V

V

eV
e

e4

e2

e1
e3

e

α1α α2 α3

We study the three matrices A1, A2 and A3 of ẽvα1 , ẽvα2 and ẽvα3 . They differ

only in the column corresponding to the edge e. Denote the four edges adjacent to

the 4-valent vertex of C with e1, . . . ,e4, and their respective directions with v1, . . . , v4.

The root vertex is V as indicated in the picture. We assume that all choices of flags

for evaluation and loops are made consistently. Then the three matrices only differ

in the column which belongs to the new edge e. The following table represents all

three matrices: Each matrix Ai contains the first block of columns (corresponding

to the image h(V ) of the root vertex and the lengths li of the edges ei ) and the i -th

of the last three columns (corresponding to the length of the edge e).

h(V ) l1 l2 l3 l4 lα1 lα2 lα3

e1 E2 v1 0 0 0 0 0 0

e2 E2 0 v2 0 0 0 v2 + v3 v2 + v4

e3 E2 0 0 v3 0 v4 + v3 v2 + v3 0

e4 E2 0 0 0 v4 v4 + v3 0 v2 + v4

e1, e2 0 −v1 v2 0 0 0 v2 + v3 v2 + v4

e1, e3 0 −v1 0 v3 0 v3 + v4 v2 + v3 0

e1, e4 0 −v1 0 0 v4 v3 + v4 0 v2 + v4

e2, e3 0 0 −v2 v3 0 v3 + v4 0 −v2 − v4

e2, e4 0 0 −v2 0 v4 v3 + v4 −v2 − v3 0

e3, e4 0 0 0 −v3 v4 0 −v2 − v3 v2 + v4
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The columns corresponding to the other bounded edges are not shown; it is

enough to note here that they are the same for all three matrices. The size of the

matrices is 2n+2g times 2+#Γ1
0, and 2+#Γ1

0 = 2+#∆−3+3g = n = #∆+g −1+2g =
2n + 2g because of remark 3.4 and definition 5.6. The first four rows correspond

to the images of the marked points. The row labeled with ei stands for the evalu-

ations of marked points that can be reached from V via ei . The last six rows cor-

respond to the equations of the loops. The row labeled ei , e j stands for equations

of loops that involve the two edges ei and e j . We get four different types of rows

for the marked points depending on via which of the four edges ei a marked point

is reached from V . For the loops, we get six different types of rows depending on

which two of the four edges e1, . . . ,e4 are involved in a loop. Each row represents in

fact two or more rows of the matrix, two rows for the two coordinates of the image

of each marked point resp. two equations given by each loop. Loops that do not

involve any of the four edges are not added, they do not change the computations.

As det is linear in each column, det A1 +det A2 +det A3 is equal to the determinant

of the following matrix, where we added the three last columns:

h(V ) l1 l2 l3 l4

e1 E2 v1 0 0 0 0

e2 E2 0 v2 0 0 2v2 + v3 + v4

e3 E2 0 0 v3 0 2v3 + v2 + v4

e4 E2 0 0 0 v4 2v4 + v3 + v2

e1 and e2 0 −v1 v2 0 0 2v2 + v3 + v4

e1 and e3 0 −v1 0 v3 0 2v3 + v2 + v4

e1 and e4 0 −v1 0 0 v4 2v4 + v2 + v3

e2 and e3 0 0 −v2 v3 0 v3 − v2

e2 and e4 0 0 −v2 0 v4 v4 − v2

e3 and e4 0 0 0 −v3 v4 v4 − v3
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Now we subtract the four columns for l1, . . . , l4 from the last column.

h(V ) l1 l2 l3 l4

e1 E2 v1 0 0 0 −v1

e2 E2 0 v2 0 0 v2 + v3 + v4

e3 E2 0 0 v3 0 v3 + v2 + v4

e4 E2 0 0 0 v4 v4 + v3 + v2

e1 and e2 0 −v1 v2 0 0 v2 + v3 + v4 + v1

e1 and e3 0 −v1 0 v3 0 v3 + v2 + v4 + v1

e1 and e4 0 −v1 0 0 v4 v4 + v2 + v3 + v1

e2 and e3 0 0 −v2 v3 0 0

e2 and e4 0 0 −v2 0 v4 0

e3 and e4 0 0 0 −v3 v4 0

Due to the balancing condition v1 + v2 + v3 + v4 = 0. We add v1 times the h(V )-

columns to the last column and get a matrix with a zero column whose determinant

is 0. Therefore det A1 +det A2 +det A3 = 0.

Note that we assume here that the edges ei are in fact all bounded. If this is not

true, the argument needs to be changed slightly. If ei is unbounded, then there can

be no marked points that can be reached from V via ei . That is, we do not have the

corresponding rows.

For a given i ∈ {1,2,3} let us now determine whether the combinatorial type αi

occurs in the inverse image under ev of a fixed point P ′ near P . We may assume

without loss of generality that the multiplicity of αi is non-zero since other types

are irrelevant for the statement of the proposition. Then Ai is an invertible matrix.

There is therefore at most one inverse image point. The root vertex and length coor-

dinates for a curve in the inverse image under ev of typeαi are given as A−1
i ·(P ′,0),

since ẽvαi = ev×Aαi on Mαi
g ,n,trop(R2,∆) by Remark 5.10. In fact, this point exists in

Mαi
g ,n,trop(R2,∆) if and only if all coordinates of A−1

i ·(P ′,0) corresponding to lengths

of bounded edges are positive. By continuity this is obvious for all edges except the

newly added edge !e, because in the boundary curve C all these edges had positive

length. We conclude that there is a curve of type αi mapping to P ′ if and only

if the last coordinate (corresponding to the length of the newly added edge e) of

A−1
i · (P ′,0) is positive. By Cramer’s rule this last coordinate is det Ãi /det Ai , where

Ãi denotes the matrix Ai with the last column replaced by (P ′,0). But note that Ãi

does not depend on i since the last column was the only one where the matrices Ai

differ. Hence whether there is a curve of type αi or not depends only on the sign of

det Ai : either there are such inverse image points for exactly those i where det Ai is
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positive, or exactly for those i where det Ai is negative. But by the above the sum

of the absolute values of the determinants satisfying this condition is the same in

both cases.

Remark 6.2. Note that we have to distinguish a case if we prove an analogous

statement for other enumerative problems. If Γ\V has two connected components

of the same combinatorial type, say the two components containing e1 and e2, then

the type α1 gets an extra factor of 1
2 . The types α2 and α3 are identical, so the state-

ment is still true in this case. We do not have to consider this case for the numbers

Ntrop(d , g ) or Etrop(d , j ), because A1 would not be injective since we can change

length coordinates without changing the image.

7. Conclusion

We mentioned in the introduction that we believe that the moduli spaces we

consider here should be equipped with tropical structure, and that once this is

achieved the tedious case-by-case analysis (for each codimension 1 case) in the

independence proof from Section 6 can be replaced by an easy intersection the-

ory argument. This hope is in fact true in the case of rational curves: for rational

curves (that is, for the numbers Ntrop(d ,0) for example) the moduli space is known

to be a fan satisfying a balancing condition as in Remark 2.1 ([5]) and thus a tropi-

cal variety. The tropical structure is derived from the tropical structure of M0,n,trop

mentioned in Remark 3.5. A trick has been used to avoid the notion of a tropical

stack here: the unmarked (that is, non-contracted) ends are labeled to make them

distinguishable even if they have the same direction. Then there is a subgroup G of

the symmetric group that acts on the moduli space with labeled ends by relabeling

the non-contracted ends. The enumerative numbers we get have to be divided by

|G| to reflect the fact that we count each curve several times with different labels for

the non-contracted ends ([5]). For a general type, there are |G| ways to relabel the

ends. For a type with vertices V such that Γ \ V has two components of the same

type, there are only 1
2 · |G| ways to label the ends. This enlightens why we include

factors of 1
2 for the weights in such a case in Definitions 4.6 and 4.8.

It is also known that the evaluation map ev: M0,n,trop(R2,∆) → (R2)n is a mor-

phism of tropical varieties ([5]). Since the space and the map are equipped with

tropical structure we can use intersection theory arguments to deduce that degev is

constant for the case of rational curves ([5]).
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The proof that the moduli space of rational tropical curves is a tropical variety,
that is, balanced ([14], [5]), involves an argument which is very similar to the proof
of Lemma 6.1 above. We need to consider a codimension 1 cell (that is, a cell cor-
responding to a curve with one 4-valent vertex) and consider the neighboring top-
dimensional cells just as above. That means that for rational curves, the work to
show an independence statement as above is hidden in the proof that the mod-
uli space is a tropical variety. We hope that a similar statement can be shown for
higher genus curves, too. We hope that the description of moduli spaces of tropical
curves of higher genus as weighted polyhedral complexes used in this survey can
contribute to the understanding of their tropical structure.
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VOLUME AND L2-BETTI NUMBERS OF ASPHERICAL MANIFOLDS

Roman Sauer
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Abstract . We give a leisurely account of the relationship between volume and L2-Betti numbers
on closed, aspherical manifolds based on the results in [4] – albeit with a different point of view.
This paper grew out of a talk presented at the first colloquium of the Courant Center in Göttingen
in October 2007.

1. Review of L2-Betti numbers

The L2-Betti numbers of a closed Riemannian manifold, as introduced by M.

Atiyah, are analytical invariants of the long-time behavior of the heat kernel of the

Laplacians of forms on the universal cover. We give a very brief review of these

invariants; for extensive information the reader is referred to the standard refer-

ence [3].

Let X̃ → X be the universal cover of a compact Riemannian manifold, and let

F ⊂ X̃ be a π1(X )-fundamental domain. Then Atiyah defines the i -th L2-Betti

number in terms of the heat kernel on X̃ as

b(2)
i (X ) = lim

t→∞

∫
F

trC e−t∆i (x, x)d vol (x).

Subsequently, simplicial and homological definitions of L2-Betti numbers were de-

veloped by Dodziuk, Farber, and Lück. An important consequence of the equiva-

lence of these definitions is the homotopy invariance of L2-Betti numbers.

2000 Mathematics Subject Classification . 22D20,53C20,58J22.
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Lück’s definition is based on a dimension function dimA (M) for arbitrary mod-

ules M over a finite von Neumann algebra A with trace tr : A → C. For example,

one has dimA (A p) = tr(p). Lück proceeds then to define b(2)
i (X ) for an arbitrary

space X with Γ=π1(X ) as

(1.1) b(2)
i (X ) = dimL(Γ) Hi

(
L(Γ)⊗ZΓC∗(X̃ )

) ∈ [0,∞]

where L(Γ) is the group von Neumann algebra of Γ. Some of the most fundamental

properties of L2-Betti numbers are:

– π1(X ) finite ⇒ b(2)
i (X ) = bi (X̃ )/|π1(X )|

–
∑

i≥0(−1)i b(2)
i (X ) =χ(X ) =∑

i≥0(−1)i bi (X ).

– X̄ → X d-sheeted cover ⇒ b(2)
i (X̄ ) = d ·b(2)

i (X ).

– If X is aspherical and π1(X ) amenable then b(2)
i (X ) = 0.

– If X is a 2n-dimensional hyperbolic manifold then b(2)
i (X ) > 0 if and only if

i = n.

2. Theorems relating volume and L2-Betti numbers

Assumption 2.1. Throughout this section, let M be an n-dimensional, closed, as-

pherical manifold.

The inequality of Theorem 2.2 is stated by Mikhail Gromov [2]*Section 5.33 on

p. 297 along with an idea(1) which he attributes to Alain Connes. We provide the first

complete proof of that inequality [4]*Corollary to Theorem A. The rigorous imple-

mentation of Gromov’s idea uses tools and ideas from Damien Gaboriau’s theory

of L2-Betti numbers of measured equivalence relations and spaces with groupoid

actions of such.

Theorem 2.2. If (M , g ) has a lower Ricci curvature bound Ricci(M , g ) ≥−(n−1)g ,

then

b(2)
i (M) ≤ constn vol(M , g ) for every i ≥ 0.

The minimal volume of a smooth manifold N is defined as the infimum of vol-

umes of complete metrics on N whose sectional curvature is pinched between −1

and 1. We obtain the following

(1)We refer to this idea as randomization.
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Corollary 2.3 (Minimal volume estimate).

b(2)
i (M) ≤ constn minvol(M).

The following theorem [4]*Theorem B is a generalization of a well-known van-

ishing result of Jeff Cheeger and Mikhail Gromov. Its connection to volume be-

comes apparent through its corollary.

Theorem 2.4. If M is covered by open, amenable sets such that every point be-

longs to at most n sets, then

b(2)
i (M) = 0 for every i ≥ 0.

Here a subset U ⊂ M is called amenable if π1(U ) maps to an amenable subgroup

ofπ1(M). There is also a version of this theorem for arbitrary spaces [4]*Theorem C.

The following corollary is a non-trivial implication of the theorem above and work

of Mikhail Gromov [1]*Section 3.4 where he constructs amenable coverings in the

presence of small volume.

Corollary 2.5. There is a constant εn > 0 only depending on n such that

minvol(M) < εn ⇒ b(2)
i (M) = 0 for every i ≥ 0.

The results above are analogs of well-known theorems by Mikhael Gromov

where L2-Betti numbers are replaced by simplicial volume. Note however that

the assumption of asphericity is crucial here unlike in the case of the simplicial

volume.

3. Idea of proof of the main theorem

We describe some ideas involved in the proof of Theorems 2.2 and 2.4. In Sub-

section 3.1 we describe a general technique of bounding L2-Betti numbers by con-

structing suitable equivariant coverings on the universal cover. Since the assump-

tions of our theorems are too weak to garantuee the existence of such covers we

need substantially modify this technique; the new tool runs under the name ran-

domization, and it is explained in Subsection 3.2. A full proof based on randomiza-

tion is rather long and complicated; we explain instead an instructive toy example

in Subsection 3.4. A crucial property of L2-Betti numbers is described in Subsec-

tion 3.3. We conclude this sketch of proof in Subsection 3.5 with some remarks

about other ingredients.

Throughout the section, we refer to Assumption 2.1.
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3.1. How to bound L2-Betti numbers by equivariant coverings in general. Let

Γ = π1(M). Suppose we construct, under a certain geometrical assumption, a Γ-

equivariant open covering U of the universal cover M̃ . Let us say that U = {Ui }i∈I

is indexed by a free Γ-set set I , and we have γUi = Uγi . By a standard argument

(partition of unity) one obtains a Γ-equivariant map f from M̃ to the nerve of U .

The nerve is embedded in the full simplicial complex with index set I which we

denote by ∆(I ). Let

Ω= map
(
M̃ ,∆(I )

)
be the space of continuous maps with the natural Γ-action. We may view f as an

element inΩΓ, the subspace ofΩ consisting of Γ-equivariant maps. Next we argue

that both the i -th Betti number and the L2-Betti number are bounded from above

by the number of equivariant i -simplices hit by f (M̃).

Let Fi be a set of Γ-representatives of the i -skeleton ∆(I )(i ). For any g ∈Ω, let

Ci (g ) ∈ N be the number of i -simplices in Fi hit by f (M̃). We think of Ci as a

function

Ci :Ω→Z.

Since M̃ is contractible, M is a model of the classifying space BΓ, and the uni-

versal property of EΓ, the universal cover of BΓ, implies that there is an equivariant

homotopy retract

M̃ f
// ∆(I )

��
.

Using the fact that the i -th L2-Betti number is bounded by the number of equiv-

ariant i -simplices and the fact that the L2-Betti number is some sort of dimension

(with nice properties) of a certain homology module (see (1.1)), we easily obtain

that

b(2)
i (M) ≤Ci ( f ).

By going to Γ-quotients we also obtain the same estimate for the usual Betti num-

bers. By Poincare duality it is actually enough to control Cn( f ), and we have

(3.1) bi (M),b(2)
i (M) ≤ constn Cn( f )

for a constant constn only depending on n. This follows from [3]*Example 14.28 on

p. 498 since the fundamental class of M can be written as a sum of at most Cn( f )

singular simplices.

So to get a good bound on b(2)
i (M), we should find an equivariant cover U such

that for the resulting map f to the nerve the quantity Cn( f ) is rather small.
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3.2. Randomization. One directly sees the limitations of the above technique.

The trivial estimate Cn( f ) ≥ 1 for any map f ∈Ω prevents us from proving the van-

ishing of the L2-Betti numbers. In particular, we cannot hope to prove Theorems 2.2

and 2.4 using it.

Next we phrase an idea of Mikhail Gromov (attributed to Alain Connes) in prob-

abilistic terms that modifies the above technique.

By changing the point of view a bit, we regard a map f ∈ ΩΓ that we sought to

construct before as a Γ-invariant point measure on the Borel space Ω. Instead of

trying to find a point measure f with small Cn( f ), Gromov suggests to look for Γ-

invariant probability measures µ onΩ such that the expected value

E(Ω,µ)(Cn) =
∫
Ω

Cn( f )dµ( f ) is sufficiently small.

We refer to the problem of finding a suitable probability measure as the random-

ization problem. It turns out that in analogy to (3.1) one can actually show that

(3.2) b(2)
i (M) ≤ constn E(Ω,µ)(Cn) ∀i ≥ 0,

and that one can actually use the assumptions of Theorems 2.2 and 2.4 to construct

a Γ-invariant probability measure µ s.t. E(Ω,µ)(Cn) is smaller than constn vol(M)

in the case of Theorem 2.2 and arbitrarily small in the case of Theorem 2.4, thus

proving these theorems.

The construction of the latter will be explained in the toy case of M = S1 in Sub-

section 3.4. A brief justification why (3.2) should hold follows next.

3.3. L2-Betti numbers and actions on probability spaces. One would have to

explain Damien Gaboriau’s language of R-simplicial complexes to give a proof of

the estimate b(2)
i (M) ≤ E(Ω,µ)(Ci ). Instead, we want to at least point out that the

L2-Betti numbers of M can be computed by some sort of averaging over the prob-

ability space (Ω,µ). In Lück’s algebraic definition averaging is reflected by inter-

preting b(2)
i (M) as the dimension of a certain induction of the homology of M̃ with

respect to a bigger von Neumann algebra, the so-called group measure construc-

tion of (Ω,µ) and Γ.

The group measure space construction L∞(Ω,µ)oΓ is defined as a completion of

the algebraic crossed product L∞(X )oΓwith respect to the trace

tr
(∑

fγγ
)= ∫

Ω
f1(x)dµ(x),

which is a sort of expected value. The group measure space construction contains

the group von Neumann algebra L(Γ) and L∞(Ω,µ) as subalgebras. The crucial
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property is that

(3.3) b(2)
i (M) = dimL∞(Ω,µ)oΓHi

(
L∞(Ω,µ)oΓ⊗ZΓC∗(M̃)

)
For a proof of b(2)

i (M) ≤ constE(Ω,µ)(Ci ) one would have to interpret the right hand

side of (3.3) in Gaboriau’s sense as L2-Betti numbers of the R-simplicial complex

Ω×M̃ . For the better estimate (3.2) one needs a Poincare duality argument (see [5]).

3.4. The toy case M = S1 . We want to outline the proof of Theorem 2.4, as pre-

sented in [4], for the example M = S1. Of course, M itself is an amenable set, and we

already know that its L2-Betti numbers vanish. But we want to illustrate the con-

struction of aZ-invariant probability measureµε onΩ such that the expected value

E(Ω,µε)(Ci ) is smaller than a given ε> 0.

Let Γ = Z. For the index set I we take I = Γ× {1,2}. The measure µ on Ω =
map(M̃ ,∆(I )) will be obtained as the push-forward of the normalized Haar mea-

sure µS1 of S1 under a certain Γ-equivariant map

ϕε : S1 →Ω.

Let m ∈N be larger than 2ε−1. Let α ∈ [0,1] be irrational with 0 < 1/m −α< ε
2m .

Equip S1 = R/Z with the ergodic rotation given by addition of α. Next we define

an equivariant cover U = {Ai ×Ui }i∈I of S1 ×R such that Ai ⊂ S1 are Borel sets and

Ui ⊂ R are intervals of length m or 1. By definition, the map ϕε(z) : R→∆(I ) is the

nerve map associated to the cover {Ui ; i ∈ I , z ∈ Ai } for every z ∈ S1.

To describe U , consider the following picture(2) of S1 ×R, where we see the tile

[0,α]× [−2m +1,−m +1] on top. Set A(e,1) = [0,α] and U(e,1) = [−2m +1,−m +1].
R0−m

Next we consider the Γ-orbit {A(γ,1) ×U(γ,1)} of the desribed tile in the following

pictures.

(2)I am grateful to Clara Löh for programming the pictures in Metafont.
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R0−m

R0−m

R0−m

R0−m

R0−m

R0−m

We almost obtain a partition of the cylinder S1 ×R but because of mα < 1 the

translates do not quite close up after m steps. We have to introduce another tile

(black in the picture) [1−mα]×[−m,−m+1] whose Γ-orbit {A(γ,2)×U(γ,2)} together

with the orbit of the other tile partitions S1 ×R.
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R0−m

Finally we make the tiles just a little bit longer in the R-direction to obtain the

desired cover. We leave it to reader to verify that

E(Ω,(ϕε)∗µS1 )(C1) < 1−mα+α< ε.

3.5. Final remarks. In the actual proof of Theorems 2.2 and 2.4 one constructs

suitable equivariant covers on the product of a Γ-probability space with M̃ , and

then proceeds similarly as in Subsection 3.4 to obtain the desired probability mea-

sure onΩ. We want to mention the ingredients in the general case used to construct

such covers.

In the case of Theorem 2.2 one can construct covers on M̃ by balls of radius

0 < r < 1 with multiplicity < constn r−n coming from maximal packings of concen-

tric balls with smaller radii. This follows from the Bishop-Gromov inequality which

provides packing inequalities in the presence of a lower Ricci curvature bound. In

general, there is no way to obtain equivariant such covers. However, a suitable

randomization in the sense of Subsection 3.2 of the problem of the existence of

equivariant covers with small multiplicity can be solved, which leads to a proof of

Theorem 2.2.

In the case of Theorem 2.4 one applies the generalized Rokhlin lemma from

ergodic theory to construct covers similar to the one in the toy example over ev-

ery of the amenable subsets and combines them to a cover on the product of a

Γ-probablity space and M̃ .
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Abstract . We give an overview over current results on the global structure of affine Deligne-
Lusztig varieties associated to a hyperspecial maximal compact subgroup. In particular, we dis-
cuss a formula for their dimensions and the set of connected components of the closed affine
Deligne-Lusztig varieties.

1. Classical Deligne-Lusztig varieties

Deligne-Lusztig varieties were defined by Deligne and Lusztig in [1] as certain

subvarieties of the flag manifold of a reductive group. They use finite coverings of

these varieties to study representations of the reductive group over a finite field. Let

us briefly recall their definition.

Let k be a finite field with q = pr elements and let k be an algebraic closure.

We denote by σ : x 7→ xq the Frobenius of k over k. Let G be a split connected

reductive group over k and let A be a split maximal torus. Let B be a Borel subgroup

containing A. Let W be the Weyl group of G . By the Bruhat decomposition its

elements are in bijection with Bk \Gk /Bk .

For w ∈W , the associated Deligne-Lusztig variety is

Xw = {x ∈Gk /Bk | x−1σ(x) ∈ Bk wBk }.

2000 Mathematics Subject Classification . 20G25, 14G35, 14L05.
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It is a smooth algebraic variety and equidimensional of dimension l (w). The finite

group G(k) acts on Xw and hence also on its cohomology.

2. Affine Deligne-Lusztig varieties

For the definition of affine Deligne-Lusztig varieties one proceeds similarly, re-

placing the finite field k by a function field of characteristic p.

2.1. Definition and elementary properties. Let again k be a finite field with

q = pr elements and k an algebraic closure. Let F = k((t )) and let L = k((t )). Let OF

and OL be the valuation rings. We denote by σ : x 7→ xq the Frobenius of k over k

and also of L over F .

Let G be a split connected reductive group over OF and let A be a split max-

imal torus. Let B be a Borel subgroup containing A. Let K = G(OL). In general

one can also define affine Deligne-Lusztig varieties associated to other parahoric

subgroups K of G(L), another interesting case is the case of an Iwahori subgroup.

Here we restrict our attention to K a hyperspecial maximal compact subgroup. In-

stead of subvarieties of the flag manifold, we consider now subschemes of the affine

Grassmannian X = G(L)/K . It is an ind-scheme over Spec(k). The Bruhat decom-

position used to define classical Deligne-Lusztig varieties is replaced by the Cartan

decomposition. Let X∗(A) = Hom(Gm , A). An element µ ∈ X∗(A) is called dominant

if 〈α,µ〉 > 0 for all positive roots α of G . Then the Cartan decomposition takes the

form

G(L) = ⋃
µ∈X∗(A) dominant

K tµK .

Example 1. We illustrate the above notions for the special case G =GLn . For A

we choose the diagonal torus and for B the subgroup of upper triangular matrices.

Then X∗(A) ∼=Zn , a tuple µ= (µi ) corresponds to the morphism mapping x ∈ L× to

the diagonal matrix with entries xµi on the diagonal. The element µ is dominant

(with respect to our choice of B) if µi >µi+1 for all i < n. The n-tuple µ can be visu-

alized as the graph of the continous piecewise linear function [0,n] →Rmapping 0

to 0 and with slope µi on [i −1, i ]. It is called the polygon associated to µ.

For b ∈G(L) and a dominant coweight µ ∈ X∗(A) the affine Deligne-Lusztig vari-

ety X G
µ (b) = Xµ(b) is the locally closed reduced k-subscheme of X defined by

Xµ(b)(k) = {g ∈G(L)/K | g−1bσ(g ) ∈ K tµK }.
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1

1

FIGURE 1. The polygon associated to (2,1,0,−1)

For dominant elements µ,µ′ ∈ X∗(A) we say that µ′ ¹µ if µ−µ′ is a non-negative

linear combination of positive coroots. The closed affine Deligne-Lusztig variety is

the closed reduced subscheme of X defined by

X¹µ(b) = ⋃
µ′¹µ

Xµ′ (b).

Both Xµ(b) and X¹µ(b) are locally of finite type.

Example 1. (continued) Let G = GLn and µ,µ′ ∈ X∗(A) dominant. Then µ ¹ µ′ if

the polygon of µ lies below the polygon of µ′ and if they have the same endpoint.

In Figure 1, the set of µ ¹ (2,1,0,−1) consists of the three elements (2,0,0,0),

(1,1,1,−1), and (1,1,0,0).

Let

J = {g ∈G(L) | g ◦bσ= bσ◦ g }.

Then there is a canonical J-action on Xµ(b) for each µ. The group J is the group

of F -valued points of a reductive group over F which is an inner form of a Levi

subgroup of G (compare [5], [10] 1.12, [6]).

Example 2. Let us consider the case where b = tµ is central in G . It is one of very

few cases where one can explicitly compute the affine Deligne-Lusztig variety. We
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obtain

Xµ(b) = {g ∈ X | g−1σ(g ) ∈ K }

∼= {g | g−1σ(g ) = 1}

= G(F )/G(OF ).

Here we used that every element of K can be written as k−1σ(k) for some element

k ∈ K . For this b, the group J is equal to G(F ), thus J acts transitively on Xµ(b). Note

that for general b the orbits of J on Xµ(b) are still zero-dimensional, in particular

the action is not transitive.

By [x] we denote the σ-conjugacy class of an element x ∈G(L). Left multiplica-

tion by g ∈ G(L) induces an isomorphism between Xµ(b) and Xµ(g bσ(g )−1). Thus

the isomorphism class of the affine Deligne-Lusztig variety only depends on [b] and

not on the representative b itself. This also explains why the element b did not oc-

cur in the classical situation: Over a finite field, every element is σ-conjugate to the

identity.

The σ-conjugacy classes in G(L) are classified by Kottwitz in [5] and [6]. The

σ-conjugacy class of some b is determined by two invariants. The first is its New-

ton vector, a dominant element of X∗(A)Q. The second is an element κG (b) of

π1(G). Here π1(G) is the quotient of X∗(A) by the coroot lattice of G . Let U be the

unipotent radical of B . Then κG is the locally constant map X → π1(G) mapping

U t x K to the class of x ∈ X∗(A) in π1(G).

Example 1. (continued) For G = GLn , the Newton point ν = (νi ) ∈Qn+ of b has the

following elementary definition. We consider bσ as a semilinear map Ln → Ln .

There are mi ∈N and hi ∈N\ {0} for i = 1, . . . ,n and a basis (xi ) of Ln such that

(bσ)hi (xi ) = t mi xi .

We may assume that mi
hi

> mi+1
hi+1

for all i < n. Then ν is given by νi = mi
hi

. For G =
GLn we further have π1(G) ∼= Z and κG (g ) = vt (det g ) where vt denotes the usual

valuation on L = k((t )).

Remark 3. Using the same definition as above one can also define Xµ(b) as a set

of points for Qp instead of the function field F = k((t )). In this situation a scheme

structure on Xµ(b) is not known in general. However, if G = GLn or GSp2n and if

µ is minuscule, then Xµ(b) can be identified with the set of Fp -valued points of a

moduli space of p-divisible groups defined by Rapoport and Zink in [10].
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2.2. Results on the global structure. In [4] Kottwitz and Rapoport give a crite-

rion for Xµ(b) to be nonempty, compare also [2], Proposition 5.6.1. Then κG (b) =µ

and µ−ν is a positive linear combination of positive coroots with rational coeffi-

cients. From now on we only consider nonempty affine Deligne-Lusztig varieties.

The dimension of affine Deligne-Lusztig varieties is given by the following the-

orem. The formula has been conjectured by Rapoport in [11], Conjecture 5.10 in a

different form and has been reformulated by Kottwitz in [8].

Theorem 4. Let Xµ(b) 6= ;. Then

(1) dim Xµ = dim X¹µ = 〈ρ,µ−ν〉− 1

2
(rkF (G)− rkF (J )).

Here, ρ is the half-sum of the positive roots of G, and rkF denotes the rank of a maxi-

mal F -split torus of the corresponding group.

Example 1. (continued) For G = GLh , the nonemptyness of the affine Deligne-

Lusztig variety is equivalent to the condition that the polygon associated to µ lies

above the one associated to ν and that both have the same endpoint (h, vt (det(b))).

Then the right hand side of (1) is equal to the number of lattice points above ν and

on or below µ. Note that 〈ρ,µ−ν〉 is in this case equal to the area between the two

polygons.

Theorem 4 is proved by Görtz, Haines, Kottwitz, Reuman, and the author in the

two articles [2] and [13]. The proof consists of two main steps.

Step 1. The theorem holds for the case that b is superbasic, i. e. no σ-conjugate

of b is contained in a proper Levi subgroup of G .

Step 2. If the theorem holds for superbasic b, then it also holds in general.

The two parts of this subdivision correspond to the two articles cited above: Step 2

is carried through in [2], Step 1 in [13]. The proofs of the two steps use completely

different methods. For Step 1 one can show (see [2], 5.9) that superbasic b essen-

tially only occur if G = GLn . Then one uses explicit σ-linear algebra to prove the

theorem. The proof of Step 2 relates the dimension of affine Deligne-Lusztig va-

rieties to the dimensions of certain orbit intersections which are known thanks to

Mirkovic-Vilonen [9].

Rapoport also conjectures that the affine Deligne-Lusztig varieties are equidi-

mensional. This part of the conjecture is still an open question.
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For the closed affine Deligne-Lusztig varieties X¹µ(b), we also know the set of

connected components (see [12]). A first rough result is

Proposition 5. The group J acts transitively on the set of connected components

of X¹µ(b).

Again an important ingredient in the proof of this result is to consider the same

Steps 1 and 2 as in the proof of Theorem 4.

Using this one can explicitly compute π0(X¹µ(b)). To obtain a simpler formula,

we first show that it is enough to consider data (G ,µ,b) of a special form, using the

Hodge-Newton decomposition. The Hodge-Newton decomposition is first shown

in Katz’s paper [3] for isocrystals with aσa-linear endomorphism. Kottwitz (see [7])

generalizes this to a result about affine Deligne-Lusztig varieties associated to any

unramified reductive group (where Katz’s result corresponds to the case of GLn).

His proof yields the following result.

Theorem 6. Let P = M N ⊆ G be a standard parabolic subgroup with Pb ⊆ P. If

κM (b) =µ, then the morphism X M
µ (b) ,→ X G

µ (b) is an isomorphism.

Here Pb is the standard parabolic subgroup of G whose Levi component is the

centralizer of ν.

Example 1. (continued) We consider again the case G = GLn . Standard parabolic

subgroups P in GLn correspond to ordered partitions n = n1 + n2 + ·· · + nl of

n. The subgroup Pb corresponds to the partition associated to the first coor-

dinates of the breakpoints of ν. Thus the condition Pb ⊆ P is equivalent to

n1,n1 + n2, . . . ,n1 + ·· · + nl−1 corresponding to breakpoints of ν. The condition

κM (b) = µ means that each of these breakpoints of the Newton polygon ν also lies

on the Hodge polygon µ. Thus in this case the conditions in Theorem 6 are the

same as Katz’s conditions.

We call a pair (µ,b) indecomposable with respect to the Hodge-Newton decom-

position if for all standard parabolic subgroups P with Pb ⊆ P = M N ( G we have

κM (b) 6= µ. Given G , µ, and b, we may always pass to a Levi subgroup M of G in

which (µ,b) is indecomposable. For a description of the affine Deligne-Lusztig va-

rieties it is therefore sufficient to consider pairs (µ,b) which are indecomposable

with respect to the Hodge-Newton decomposition.
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Let Gad be the adjoint group of G . We denote the images of b and µ in Gad also by

b and µ. Then the sets of connected components of X G
¹µ(b) and X Gad

¹µ (b) can easily

be computed from one another. The closed affine Deligne-Lusztig variety X Gad
¹µ (b)

is the product of closed affine Deligne-Lusztig varieties corresponding to the simple

factors of Gad. Hence it is enough to describe the set of connected components in

the case that G is simple.

Theorem 7. Let G, µ, and b be as above and indecomposable with respect to the

Hodge-Newton decomposition. Assume that G is simple.

1. Either κM (b) 6= µ for all proper standard parabolic subgroups P of G with b ∈
M or [b] = [tµ] with tµ central.

2. In the first case, κG induces a bijection π0(X¹µ(b)) ∼=π1(G).

3. In the second case, Xµ(b) = X¹µ(b) ∼= J/(J ∩K ) ∼=G(F )/G(OF ) is discrete.

Note that (3) is the case considered in Example 2.

For the locally closed affine Deligne-Lusztig varieties Xµ(b) the set of connected

components seems to be more difficult to compute. There are examples where J

does not act transitively on π0(Xµ(b)), and also examples where it acts transitively,

but where an assertion analogous to Theorem 7 (2) still does not hold.
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Abstract . Unlike Lie algebras which one-to-one correspond to simply connected Lie groups,
Lie algebroids (integrable or not) one-to-one correspond to a sort of étale stacky groupoids
(W-groupoids). Following Sullivan’s spacial realization of a differential algebra, we construct
a canonical integrating Lie 2-groupoid for every Lie algebroid. Finally we discuss how to lift
Lie algebroid morphisms to W-groupoid morphisms (Lie II). Examples of Poisson manifolds
and symplectic stacky groupoids are provided. This paper contains essentially some ideas of
proofs and examples, for a complete treatment please refer to [29] which also proves some
connectedness result.

1. Introduction

Lie II theorem for Lie algebras studies how to lift morphisms of Lie algebras to

morphisms of Lie groups. A Lie algebroid is the infinitesimal data of a Lie groupoid,

as a Lie algebra for a Lie group. More precisely, for us, a Lie algebroid over a man-

ifold M is a vector bundle π : A → M with a real Lie bracket [ , ] on its space of sec-

tions H 0(M , A) and a bundle map ρ : A → T M such that the Leibniz rule

[X , f Y ](x) = f (x)[X ,Y ](x)+ (ρ(X ) f )(x)Y (x)

holds for all X ,Y ∈ H 0(M , A), f ∈ C∞(M) and x ∈ M . Hence when M is a point, a

Lie algebroid becomes a Lie algebra. Also a tangent bundle T M → M is certainly a

Lie algebroid with [ , ] the Lie bracket of vector fields. The next example is a Poisson

2000 Mathematics Subject Classification . 58H99.
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manifold P with A = T ∗P → P and [d f ,d g ] = d{ f , g } determined by the Poisson

bracket {, } (see the book [21] for a friendly introduction).

Thus Lie II theorem for Lie algebroids studies how to lift an infinitesimal mor-

phism on the level of Lie algebroids to a global morphism. Its version having Lie

groupoids as the global objects of Lie algebroids is well-known [13] [16]. How-

ever, unlike (finite dimensional) Lie algebras which always have their associated

Lie groups, Lie algebroids do not always have their associated Lie groupoids [2] [1].

The complete integrability criteria is given in a remarkable work of Crainic and Fer-

nandes [6]. But we claim the situation is not totally unsavable: if we are willing to

enter the world of stacks, we do have the full one-to-one correspondence (Lie III)

parallel to the classical one of Lie algebras [24],

Lie algebras
differentiation at identity // Lie groups

integration
oo

Lie algebroids
differentiation at identity // “étale stacky Lie

groupoids”integration
oo

Here an étale stacky Lie groupoid G ⇒ M (which we also call W-groupoid for its

existence is first conjectured by Weinstein [26] [4]) is a groupoid in the category of

differentiable stacks with G an étale stack and M a manifold (see [29] for the exact

definition), and we call the procedure of passing from an infinitesimal object to a

global object “integration”. This problem is already very interesting, as shown by

Cattaneo and Felder [5], in the case of Poisson manifolds: the object integrating

A = T ∗P is the phase space of Poisson sigma model and it is further a symplectic

W-groupoid [23].

Therefore my effort in this paper is to study the functoriality of this slightly wild

W-groupoid, for example how to integrate a morphism A → B of Lie algebroids to

a global morphism from a universal stacky groupoid of A to any stacky groupoid of

B (Lie II). The results of the paper are positive. In case A is integrable(1), there is a

unique source-simply connected Lie groupoid integrating A, which generalizes the

corresponding theory of Lie algebras. However, in the general case, there are two

“universal” étale stacky groupoids G (A) and H (A) associated with a Lie algebroid

A, (see Section 2.1 or [24]). As shown in [28],

(1)That is A is the infinitesimal data of a Lie groupoid.
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Theorem 1.1. G (A) and H (A) are source-connected and simply connected and

G (A) is furthermore source-2 connected, which means its source fibres have trivial

homotopy groups π62.

This tells us that G (A) is more universal than H (A) hence we should expect a

Lie II theorem using G (A). In fact A is integrable if and only if H (A) (not G (A))

is representable. Using stacky groupoids, one should expect one further degree of

connectedness. A simple example is the algebroid of the Poisson (even symplectic)

manifold S2, A = T ∗S2. In this case, A is integrable and H (A) = S2×S2, but G (A) =
S̃2 × S̃2/BZ. Here S̃2 is the BZ gerbe on S2 presented by the action groupoid S3 ×
R⇒ S3 with R acting via the projection R→ S1 and the usual Hopf S1 action on S3.

Analogously to simply-connected coverings, S̃2 is the π2-trivial covering of S2 (See

Example 4.1). Hence even with simple objects as S2 we could expect further more

interesting examples of G (A) to appear. Moreover the property of π2 = 0 might also

appeal to symplectic geometers.

For every Lie algebroid A, (notice that tangent bundles are Lie algebroids), we

associate A a simplicial set S(A) = [...S2(A)V S1(A) ⇒ S0(A)] with,

(1) Si (A) = homal g d (T∆i , A) := {Lie algebroid morphisms T∆i f→ A}.

Here ∆i is the i -dimensional standard simplex viewed as a smooth Riemannian

manifold with boundary, hence it is isomorphic to the i -dimensional closed ball.

Then the facial and degeneracy maps are induced by pullbacks of the tangent maps

of natural maps dk :∆i−1 →∆i and sk :∆i →∆i−1. With this language, we also un-

derstand [5] and [6] in a fresh way: S1(A) and S2(A) are the space of fields and

Hamiltonian symmetries respectively in Poisson sigma model [5] in the case of

Poisson manifolds; or the space of A-paths Pa A and of A-homotopies [6] respec-

tively in general (see Section 2).

The simplicial set S(A) is not entirely unknown to us: in the case of a Lie algebra

g, letΩ1(∆n ,g) be the space of g-valued 1-form on ∆n , then we have(2),

homal g d (T∆n ,g) ={α ∈Ω1(∆n ,g)|dα= 1

2
[α,α]}

={flat connections on the trivial G-bundle G ×∆n →∆n},

where G is a Lie group of g.

In fact for a differential algebra D , Sullivan [22] constructed a spatial realization

of D , which is defined as the space of differential graded maps homd .g .a.(D,Ω∗(∆n)),

(2)More precisely it is −α that is the connection.



118 Mathematisches Institut, Courant-ColloquiumTrends in Mathematics, 2008

and the simplicial set S(A) is a parallel construction on the geometric side.

Sullivan’s construction also appears in the work of Ševera [20] to integrate a

non-negatively graded super-manifold with a degree 1 vector field of square 0

(NQ-manifold), which was the original suggestion to our simplicial set S(A). In

fact a Lie algebroid can be viewed as a “degree 1” NQ-manifold, a “degree 2”

symplectic NQ-manifold is a Courant algebroid [12] [19] which is now widely used

in generalized complex geometry [9]. This construction also appears in the work of

Getzler [8] and Henriques [10] to integrate an L∞-algebra L, where the simplicial

set is homd .g .a.(C
∗(L),Ω∗(∆n)) with C∗(L) the Chevalley-Eilenberg cochains on L.

This simplicial set is further proved to be a Kan simplicial manifold for nilpotent

L∞-algebras in [8] and for all L∞-algebras in general in [10].

However it is not obvious that S(A) is a simplicial manifold let alone a Kan sim-

plicial manifold. Hence its 2-truncation being a Lie 2-groupoid is not immediate

but proved in,

Theorem 1.2. Given a Lie algebroid A, the 2-truncation of the simplicial set S(A),

S2(A)/S3(A)V S1(A) ⇒ S0(A),

is a Lie 2-groupoid that corresponds to the W-groupoid G (A) constructed in [24] un-

der the correspondence of Theorem 1.3 of [29].

In this theorem S>1(A)’s are infinite dimensional spaces. As a respond of a ques-

tion by Getzler and Roytenburg, it turns out that it is not necessary to take every-

thing in the infinite dimensional space and we treat in this manner elsewhere [28]:

the spirit is that this Lie 2-groupoid is Morita equivalent to a finite dimensional Lie

2-groupoid, arising in a fashion of local Lie groupoids of Pradines, E V P ⇒ M ,

where dimP = dim A and dimE = 2dim A−dim M (See Remark 2.11).

Finally, after recognizing the existence of this more universal W-groupoid G (A),

we have the expected

Theorem 1.3 (Lie II for Lie algebroids). Let ϕ be a morphism of Lie algebroids

A → B, G a W-groupoid whose algebroid is B. Then up to 2-morphisms, there exists a

unique morphismΦ of W-groupoids G (A) →G such thatΦ induces the Lie algebroid

morphism ϕ : A → B.

We prove this Theorem here for stacky groupoid and leave the treatment using

Kanification of simplicial manifolds in [28].
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2. Lie 2-groupoids associated to Lie algebroids

In this section we construct a Lie 2-groupoid from a Lie algebroid A and prove

this Lie 2-groupoid corresponds to the universal W-groupoid G (A) of A constructed

in [24].

2.1. Construction of the universal W-groupoids. We first recall [6] that an A-

path of a Lie algebroid A is a C 1 path a(t ) : ∆1 → A with base map γ(t ) : ∆1 → M

satisfying

(2) ρ(a(t )) = γ̇(t ),

where �̇ denotes the derivative of t . If it further satisfies boundary condition a(0) =
a(1) = ȧ(0) = ȧ(1) = 0, we call it an A0-path as in [24]. This notation is useful for

technical reasons. We call Pa A and P0 A the space of A-paths and A0-paths respec-

tively.

Remark 2.1. As shown in [6] and [25] respectively, they are infinite dimensional

smooth manifolds, more precisely they process a structure of Banach manifolds,

which we refer to [11] for the definition and properties. There are certain subtle

differences comparing to the usual finite dimensional manifolds and we state here

what we will use in this paper. A morphism f : X → Y between Banach manifolds

is called a submersion if at every point x ∈ X there exists a Banach chart (U ,ϕ) and

a Banach chart (V ,ψ) at f (x) such that ϕ gives an isomorphism of U to a product

U1 ×V of open sets in some Banach spaces, and such that the map

ψ f ϕ−1 : U1 ×V →V

is the projection to the second factor. If f : X → Z is a submersion, then for any

map Y → Z the fibre product X ×Z Y is a Banach manifold and the pull-back map

X ×Z Y → Y is again a submersion. We refer the reader to [11, Chapter II.2] for the

proofs.

Moreover when we have a foliation F on a Banach manifold X , we can also form

the monodromy groupoid of this foliation: The objects are points in the manifold,
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and arrows are paths within a leaf (up to homotopies) with fixed end points inside

the leaf. Then we have the following lemma:

Lemma 2.2. When a closed foliation F on a Banach manifold X has finite

constant codimension(3), the monodromy groupoid is a Banach groupoid over X ,

namely a groupoid where the space of arrows (not necessarily Hausdorff(4)) and the

space of objects are Banach manifolds, all the structure maps are smooth morphisms

between Banach manifolds, and the source and target are surjective submersions.

Proof . By Frobenius Theorem for Banach manifolds [11, Chapter VI], we have also

foliation charts {(hi ,Ui )}i∈I on X , namely charts with the property that, for each

(i , j ), the change of coordinates h j ◦h−1
i :Rk ×F →Rk ×F has the form

(h j ◦h−1
i )(x, y) = (ϕ(x),ψ(x, y)),

where k is the codimension of the foliation and F is a Banach chart of the leaves

of F . Then the rest follows similarly as the proof of the finite dimensional case as

in [18]. A typical Banach chart for the space of arrows is Rk ×F ×F . Under these

charts, the source and target maps are simply projections to Rk ×F , hence they are

submersions(5).

There is an equivalence relation in Pa A, called A-homotopy [6].

Definition 2.3. Let a(t , s) be a family of A-paths which is C 2 in s. Assume that

the base paths γ(t , s) := ρ ◦ a(t , s) have fixed end points. For a connection ∇ on A,

consider the equation

(3) ∂t b −∂s a = T∇(a,b), b(0, s) = 0.

Here T∇ is the torsion of the connection defined by

T∇(α,β) =∇ρ(β)α−∇ρ(α)β+ [α,β].

Two paths a0 = a(0, ·) and a1 = a(1, ·) are homotopic if the solution b(t , s) satisfies

b(1, s) = 0.

(3)Here we only need the foliation to form a subbundle in the sense of [11, Chapter II]. Finite codimen-

sionness guarantees this.
(4)To simplify our notation, all the manifolds in this paper are Hausdorff unless specially mentioned as

here.
(5)It is obvious that they are surjective.
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A-homotopies generate a closed foliation F of finite constant codimension on

Pa A. Now the idea is to consider the monodromy groupoid Mon(Pa A) ⇒ Pa A of

this foliation. One could think of Mon(Pa A) as the space of A-homotopies. The two

maps from Mon(Pa A) to Pa A assign to each A-homotopy the two paths at the ends.

There are also two maps Pa A ⇒ M which assign to each A-path its two end points

respectively. Very similar to this, P0 A has also a foliation F0 by A-homotopies

and the monodromy groupoid Mon(P0 A) according to this foliation. In fact F0

is the restriction of F |P0 A , that is if two A0-paths are A-homotopic in Pa A, then

they are A-homotopic in P0 A. Moreover Mon(Pa A) ⇒ Pa A is Morita equivalent to

Mon(P0 A) ⇒ P0 A.

Sometimes to avoid dealing with infinite dimensional issues, we consider a vari-

ant Γ⇒ P of this groupoid obtained as follows (see for example [24] for details):

take an open cover of Pa A, then P is the disjoint union of slices Pi over this cover

that are transversal to the foliation F . Then P is a smooth manifold, and the pull-

back groupoid by P → Pa A, which we denote as Γ⇒ P , is a finite dimensional Lie

groupoid. What’s even better is that it’s an étale groupoid (i.e. the source and tar-

get are étale). The two groupoids Mon(Pa A) ⇒ Pa A and Γ⇒ P are in fact Morita

equivalent. Also, there are still two maps P ⇒ M .

The next step is clear: we take the quotient as stacks [P0 A/Mon(P0 A)] and con-

struct a stacky groupoid G (A) := [P0 A/Mon(P0 A)] ⇒ M where the two maps are

endpoint maps. As in recent work [3], there is a 1-1 correspondence between Lie

groupoids up to Morita equivalence and differentiable stacks. The Lie groupoid

corresponds to a differentiable stack is called a groupoid presentation. Along these

lines, G (A) has its groupoid presentation Mon(P0 A) ⇒ P0 A or Morita equivalently

Γ ⇒ P . Hence it is an étale differentiable stack. From the technical viewpoint,

we take G (A) as an étale groupoid from now on, hence avoid infinite dimensional

analysis. Moreover, the two maps from P0 A to M descend to the quotient, giv-

ing two maps s,t : G (A) → M . There are other maps: we define a multiplication

m : G ×s,t G →G by concatenation ¯ of paths, namely,

(4) (a ¯b)(t ) =
{

2a(2t ) when t ∈ [0,1/2],

2b(2t −1) when t ∈ [1/2,1];

we define an inverse i : G →G , by reversing the orientation of a path; we define an

identity section e : M → G by considering constant paths. These maps are defined
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in detail in [24]. There, we prove that this makes G ⇒ M into a W-groupoid. A sim-

ilar procedure using the holonomy groupoid Hol (P0 A) ⇒ P0 A produces another

natural W-groupoid H (A).

What is less obvious is to go back to a Lie algebroid from a W-groupoid G ⇒ M .

For this, we first have the following technical lemma (proved in [29, Section 3]),

Lemma 2.4. For an immersion ē : M → G from a manifold M to an étale stack

G , there is an étale chart G0 of G such that ē lifts to an embedding e : M → G0. We

call such charts good charts and their corresponding groupoid presentations good

presentations.

Then given a W-groupoid G ⇒ M , there is a neighborhood U ⊂ G0 of M such

that all the stacky groupoid structure maps descend to U and make U ⇒ M a local

Lie groupoid [24, Section 5](6), which resembles a Lie groupoid but multiplication

and inverse are defined only locally. The structure of the local groupoid does not

depend on the choice of U . We call it the local Lie groupoid of G and denote it by

Gloc . The Lie algebroid of Gl oc is defined to be the Lie algebroid of W-groupoid G .

Remark 2.5. The étale chart P =ti Pi of G (A), made up by local transversals Pi

of the foliation F on Pa A, is usually not a good étale chart directly.

We recall the construction of the local groupoid Gl oc (A) of A in [6]. Take a small

open neighborhood O of M in the A-path space Pa A so that the foliation F re-

stricted to O which we denote by F |O has good transversal sections, namely leaves

in F |O intersect each transversal section only once. Then the quotient O/(F |O )

is a local Lie groupoid over M , which is exactly the local Lie groupoid of G (A) as

above (proven in [24, Section 5]).

The open set O/(F |O ) =: V can be also visualized by gluing Pi |O together via the

induced equivalence by F |O on Pi |O . Although P is not necessarily a good chart

in the sense of Lemma 2.4, we join V to P , that is P :=V t (ti Pi ). Then P becomes

good and the étale groupoid Γ := P ×G P ⇒ P via P → G is a good groupoid pre-

sentation. To avoid duplicated notation, from now on, Γ⇒ P is this good groupoid

presentation which contains V .

A W-groupoid morphism Φ : (G ⇒ M) → (H ⇒ N ), is made up by a map Φ1 :

G → H between stacks and Φ0 : M → N such that they preserve the W-groupoid

(6)Thanks to Lemma 2.4 we can construct the local groupoid at once and it is not necessary to divide M

into pieces as therein.
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structure maps up to 2-morphisms and these 2-morphisms satisfy again higher co-

herence conditions linking the 2-commutative diagrams of G and H (also see [29,

Section 7]). Given such a morphism Φ, one can choose a good étale presentation

G1 ⇒ G0 (resp. H1 ⇒ H0) of G (resp. H ) namely the one such that M (resp. N )

embeds in G0 (resp. H0). Under the correspondence of differentiable stacks and

Lie groupoids, morphisms of differentiable stacks are presented by H.S. (Hilsum-

Skandalis) bibundles [17] [15], which are manifolds that both groupoids acts from

left and right respectively with certain conditions (see for example [25, Section 3]).

We denote EΦ as the H.S. bibundle presenting the morphism Φ1 : G → H . The

restriction of EΦ|M presents the map M → G
Φ→ H which is M

Φ0→ N
ēH→ H (up

to a 2-morphism), therefore EΦ|M ∼= M ×Φ0,N ,eH H0 → M admits a global section.

Thus, extending this section on a local neighborhood U (M) ⊂ G0 of M , we arrive

at a section of EΦ|U (M) such that the composition Φl oc : U (M) → EΦ → H0 extends

the map Φ0 : M → N . We then choose U (M) close enough to M so that itself and

U (N ) :=Φloc (U (M)) have a local Lie groupoid structure as above. By construction

we have a 2-commutative diagram,

(5)

U (M) −−−−−→ G

Φl oc

y Φ1

y
U (N ) −−−−−→ H

Then Φl oc preserves the local groupoid structures exactly because Φ preserves the

W-groupoid structures. Hence Φloc is a local groupoid morphism and it induces

an algebroid morphism ϕ : A(G ) → A(H ), where A(.) is the functor of taking the

algebroid of a W-groupoid. If there are two morphisms Φ and Φ′ differed by a 2-

morphism in a compatible fashion with structure 2-morphisms of G and H , then

EΦ ∼= EΦ′ . Therefore U (N ) ∼=U ′(N ) through this isomorphism and

Φloc =
(
U (M)

Φ′
loc→ U ′(N ) ∼=U (N )

)
.

Therefore the two W-groupoid morphisms induce the same algebroid morphism.

2.2. The construction of the Lie 2-groupoid. One uniform way to describe a

(resp. Lie) n-groupoid is via its nerve: by requiring it to be a simplicial (resp. man-

ifolds) sets [14] whose homotopy groups are trivial above πn . We leave the readers

to the introduction of [29] and the references therein for a general description for

this and only recall briefly the definitions we need here.
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A simplicial set (resp. manifold) X is made up by sets (resp. manifolds) Xn and

structure maps

d n
i : Xn → Xn−1 (face maps) sn

i : Xn → Xn+1 (degeneracy maps), i ∈ {0,1,2, ...,n}

that satisfy suitable coherence conditions. The first two examples are a simplicial

m-simplex ∆[m] and a hornΛ[m, j ] with

(∆[m])n = { f : (0,1, ...,n) → (0,1, ...,m)| f (i )6 f ( j ),∀i 6 j },

(Λ[m, j ])n = { f ∈ (∆[m])n |{0, ..., j −1, j +1, ...,m} * { f (0), ..., f (n)}}.
(6)

A simplicial set X is Kan if any map from the horn Λ[m, j ] to X (m ≥ 1, j = 1, ..,m),

extends to a map of ∆[m]. In the language of groupoids, the Kan condition corre-

sponds to the possibility of composing various morphisms. In an n-groupoid, the

only well defined composition law is the one for n-morphisms. This motivates the

following definition.

Definition 2.6. A Lie n-groupoid X (n ∈N∪∞) is a simplicial manifold that sat-

isfies K an(m, j ) ∀m ≥ 1, 0 ≤ j ≤ m and K an!(m, j ) ∀m > n, 0 ≤ j ≤ m.

K an(m, j ): The restriction map hom(∆[m], X ) → hom(Λ[m, j ], X ) is a surjec-

tive submersion.

K an!(m, j ): The restriction map hom(∆[m], X ) → hom(Λ[m, j ], X ) is a diffeo-

morphism.

Remark 2.7. A Lie n-groupoid X is determined by its first (n +1)-layers

X0, X1, . . . , Xn and some structure maps. For example a Lie 1-groupoid is exactly

determined by a Lie groupoid structure on X1 ⇒ X0. In fact a Lie 1-groupoid is the

nerve of a Lie groupoid. A Lie 2-groupoid is exactly determined by X2V X2 ⇒ X0

with a sort of 3-multiplications and face and degeneracy maps satisfying certain

compatible condition. It is made precise in [29, Section 2]. Hence in this paper, we

often write only the first three layers of a Lie 2-groupoid.

Now to a Lie algebroid A over a manifold M , we associate the simplicial set S(A)

of equation (1) in the introduction. The first three layers of S(A) are actually familiar

to us:

– it is easy to check that S0 = M ;

– S1 is exactly the A-path space Pa A since a map T∆1 → A can be written as

a(t )d t with base map γ(t ) : ∆1 → M , it being a Lie algebroid map is equivalent to

ρ(a(t )) = d
d t γ(t ) since the Lie bracket of T∆1 is trivial and the anchor of it is identity;
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– bigons in S2 are exactly the A-homotopies in Pa A since a bigon

f : T (d 2
2 )−1(Ts1

0(T∆0)) → A

can be written as a(t , s)d t+b(t , s)d s over the base map γ(t , s) after a suitable choice

of parametrization(7) of the disk (d 2
2 )−1(s1(∆0)). Then we naturally have b(0, s) =

f (0, s)( ∂∂s ) = 0 and b(1, s) = f (1, s)( ∂∂s ) = 0. Moreover the morphism is a Lie algebroid

morphism if and only if a(t , s) and b(t , s) satisfy equation (3) which defines the A-

homotopy.

We take the “2-truncation” of this simplicial set, that is we take X (A) to be

Xi (A) = Si (A), i = 0,1, and X2(A) = S2(A)/S3(A),

where the quotient S2(A)/S3(A) is formed byα∼β if and only if they share the same

boundary in S1(A) and they bound an element in S3(A), i.e. they are homotopic in

the sense of [14].

Remark 2.8. We do not know whether S(A) is a simplicial manifold or further a

Kan simplicial manifold, namely a Lie ∞-groupoid as in Definition 2.6, though it

is so for a Lie algebra [10]. If we have known that S(A) is a Kan simplicial manifold

then we could simply take the Lie 2-groupoid as the 2-truncation of S(A), that is

...S3(A)/S4(A) → S2(A)/S3(A) → S1(A) → S0(A).

However, unlike that S1(A) being a Banach manifold involves solving an ODE, it

is not clear how to solve directly the corresponding PDE for S2(A) to be a Banach

manifold. This is one of the open questions left at the end of [10].

Also, although S(A) has clear geometric meaning, it involves infinite dimen-

sional manifold, and although G (A) is an étale SLie groupoid, the 2-truncation

X (A) will not be 2-étale in the sense of [29]. To achieve the étale version we need to

use a sub-simplicial set based on the good étale covering P of G (A) in Remark 2.5,

namely

(7) S
′
0(A) = M , S

′
1(A) = P, S

′
i (A) = Si (A)|P , for i > 2,

where Si (A)|P is the subset of i -simplices in Si (A) whose 1-skeletons are made up

by elements in P . See also Remark 2.11.

Therefore we have to use an alternative method, that is to use the 1-1 corre-

spondence of Lie 2-groupoids of SLie groupoids. Recalling from [29], given an SLie

(7)We need the one that γ(0, s) = x and γ(1, s) = y for all s ∈ [0,1].
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groupoid G ⇒ M with a groupoid presentation G of G , its associated Lie 2-groupoid

Y is constructed by

Y0 = M , Y1 =G0, Y2 = Em ,

where Em is the bibundle representing the multiplication m : G ×M G → G of the

SLie groupoid.

Then Theorem 1.2 is equivalent to the following:

Theorem 2.9. X (A) is a Lie 2-groupoid and it corresponds to G (A) with the cor-

respondence in [29].

Proof . : Take the Banach chart Pa A of G (A). The Lie 2-groupoid Y (A) correspond-

ing to G (A) has

Y0(A) = S0(A) = M , Y1(A) = S1(A) = Pa A, Y2(A) = Em = S2(A)/ ∼,(8)

where two A-homotopies a ∼ b if and only if there is a path of A-homotopies a(ε)

such that a(0) = a, a(1) = b, and paths a(ε) ∈ Pa A all have the same end points

in A for ε ∈ [0,1]. By Remark 2.1 and Lemma 2.2, Pa A is a (Hausdorff) Banach

manifold and Mon(Pa A) is a Banach manifold (not necessarily Hausdorff). The

source and target of Mon(Pa A) to Pa A are surjective submersions. All these hold

for groupoid Mon(P0 A) ⇒ P0 A too, therefore the multiplication bibundle E 0
m :=

(P0 A ×P0 A)×¯,P0 A,t Mon(P0 A) is a Banach manifold and the left moment map Jl :

E 0
m → P0 A ×M P0 A is a surjective submersion. The Morita equivalence between

Mon(Pa A) ⇒ Pa A and Mon(P0 A) ⇒ P0 A is provided by the map fτ : Pa A → P0 A of

parametrization

(9) a(t ) 7→ aτ(t ) := τ̇(t )a(τ(t )),

using a fixed a smooth cut-off function

(10) τ : [0,1] → [0,1], which satisfies τ′(0) = τ′(1) = 0,τ′(t )> 0.

Then Em = (Pa A×M Pa A)× fτ,P0 A×P0 A,Jl
E 0

m is a Banach manifold.

The face and degeneracy maps of Y (A) and X (A) are obviously the same. How-

ever what we mod out to form Y2(A) is not exactly the elements in S3(A) because

it is not obvious that a path of A-homotopies can be connected to make a Lie al-

gebroid morphism T∆3 → A. Hence to show Y2(A) = X2(A) thus to give X (A) a Lie

2-groupoid structure via the isomorphism to Y (A), we need Proposition 2.10. This

proposition is proven in [29].
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Proposition 2.10. If there is a smooth path of Lie algebroid morphisms ϕ(t ) :

T∆2 → A such that ϕ(t )|∂∆2 stays the same when t varies in [0,1], then there is a

Lie algebroid morphism ϕ : T∆3 → A such that ϕ|di∆
3 = ϕ(i ), for i = 0,1. Here di is

the i -th face map ∆3 →∆2.

Remark 2.11. The Lie 2-groupoid X (A) is not 2-étale, that is

X2(A) → hom(Λ[2, j ], X (A)) is not étale for j = 0,1,2. To obtain the étale version we

shall use the simplicial set in (7). Then the replacement of X (A) is

Z0(A) = M , Z1(A) = P, Z2(A) := X2(A)|P ,

where the restriction X2(A)|P is the subset of equivalence classes of the 2-simplices

in Si (A) whose 2-skeletons are made up by elements in P . Then Z2(A) ∼= Y2(A)|P ∼=
Em(Γ) which is the H.S. bibundle representing the multiplication m of G (A) for the

étale groupoid presentation Γ⇒ P of G (A). Since Γ⇒ P is étale, the left moment

map Em(Γ) → Γ×s,P,tΓ is étale. Since Z2(A) → hom(Λ[2, j ], Z (A)) are surjective sub-

mersions for all j , they are furthermore étale by dimensional counting. Hence Z (A)

is a 2-étale Lie 2-groupoid.

3. Lie II theorem

In this section we prove Theorem 1.3. We begin with

Lemma 3.1. If ϕ is a Lie algebroid morphism A → B, then it induces a W-

groupoid morphism Φ : G (A) → G (B) such that Φ gives back the Lie algebroid

morphism ϕ. The same is true for W-groupoid H (·).

Proof . We prove it for G (·) and the proof for H (·) is similar. A Lie algebroid mor-

phismϕ : A → B induces a morphismϕ. : S(A) → S(B). In particular,ϕ1 andϕ2 give

a morphism Pa A → PaB and a morphism on the level of A-homotopies respec-

tively. If we have two equivalent A-homotopies ξ0 ∼ ξ1 of A, in the sense of (8), then

their images ϕ2(ξ1) ∼ ϕ2(ξ2) are also equivalent. So ϕ2 induces a homomorphism

of groupoids (Mon(Pa A) ⇒ Pa A) → (Mon(PaB) ⇒ PaB), hence a morphism on the

level of stacks Φ : G (A) → G (B). This morphism gives a local groupoid morphism

Φloc : Gl oc (A) → Gloc (B) which maps equivalence classes of A-paths in A to those

in B via ϕ since the local groupoids can be understood as equivalence classes of

A-paths. Therefore the corresponding Lie algebroid map is exactly ϕ.

Proof of Thm. 1.3 . To build the map Φ, by Lemma 3.1, we only have to treat the

situation when ϕ= i d : A → A, that is, given a W-groupoid G whose algebroid is A,
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there is a W-groupoid morphismΨ : G (A) →G lifting the i d : A → A. Both G (A) and

G have an associated local groupoid whose Lie algebroid is A. They are isomorphic

in a small enough neighborhood of M and we might as well assume they are the

same and denote it by Gl oc .

The basic idea is as following: given an A-path a(t ), we cut it into n = 2k small

pieces,

al (t ) = 1

n
a(

t + i −1

n
), for t ∈ [0,1], and l = 1, . . . ,n.

The whole path a is a concatenation of these pieces, that is

(11) a(t ) = a1 ¯a2 ¯·· ·¯an := nal (nt − (l −1)), for t ∈ [
l −1

n
,

l

n
].

For a big enough n, we must have al ∈ O the neighborhood of M in Pa A to define

Gloc (see Remark 2.5). We denote gl as the equivalence class that al (t ) represents

in O/F |O . Then we defineΨ([a(t )]) := (. . . ((π(g1) ·π(g2)) ·π(g3)) · . . . ) ·π(gn), where

π is the projection G0 →G .

More precisely, we take the presentation Γ⇒ P of G (A) and a good presenta-

tion G of G . We take also G to be such a good presentation that the multiplication

bibundle EG
m has a global section for the moment map EG

m →G0×M G0, i.e. the mul-

tiplication is a strict map (otherwise we replace G by a finer cover). As we stated at

the beginning, we also assume that V ⊂ G0 (otherwise we can take a smaller open

set O as explained in Remark 2.5). We only have to build a groupoid morphism

(Γ⇒ P )
f−→G . For a(t ) ∈ P , we take a subdivision as above and define

f0(a(t )) := (. . . ((g1 · g2) · g3) · . . . ) · gn .

Since P = ti Pi , we might as well assume that the division of a(t ) has the same

number of pieces on each Pi , otherwise we replace P by a finer transversal. This

will not affect the local groupoid part V ⊂ P since f0 = i d on V . This makes f0

smooth on each piece Pi , hence a smooth morphism on the disjoint union P .

To define f1 : Γ→ G1, we take an A-homotopy a(t , s) between a(t ,0) ∈ Pi and

a(t ,1) ∈ P j . Suppose that a(t ,0) is divided into ni = 2ki pieces and a(t ,1) into

n j = 2k j pieces. Then the A-homotopy a(t , s) gives rise to many small triangles

ηq in the multiplication bimodule E loc
m ⊂Gl oc ×M Gloc of Gl oc , which is then in the
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multiplication bimodule EG
m of G .

(12)

a1(t ,0)

. . .

. . . ani (

a1(t ,1) an j (

ηq

Then the associativity of EG
m tells us how to compose these small triangles into a

big bigon η ∈G1 ⊂ EG
m and the pentagon condition of the associator tells us that the

result is independent of the order of composition. We define f̃1((a(t , s)) = η. We

make a fixed subdivision (12) locally, then f̃1 is smooth. If two A-homotopies are

linked by a path of A-homotopies, their subdivisions are also linked by a path of

subdivisions. Hence f̃1 descends to a map f1 : Γ→G1.

Uniqueness ofΦ follows from the next lemma.

Lemma 3.2. If we have two morphisms of W-groupoids Φ,Φ′ : G (A) → H cor-

responding to the same algebroid morphism ϕ : A → B, then they differ by a 2-

morphism.

Proof . Since Φ,Φ′ : G (A) → H correspond to the same algebroid morphism ϕ :

A → B , their corresponding morphisms of local groupoids are the same, i.e. Φloc =
Φ′

loc . By diagram (5) and the fact thatΦ andΦ′ preserve the multiplication, we have

the following 2-commutative diagram,

G (A)

Φ

��
Φ′

��

tnGloc (A)×np1oo

Φl oc=Φ′
loc

��
H tnG×n

loc

p2oo

where Gl oc (A) and Gl oc are the local groupoids of G (A) and H respectively, and p1 :

L := tnGloc (A)×n → G (A) is defined by p1(g1, ..., gn) = (...((π(g1) ·π(g2)) ·π(g3)...) ·
π(gn), where π : Gloc (A) → P →G (A) with P the good étale chart of G (A). We define

p2 similarly. Here�×n denotes a n-fold fibre-product over M .

ThereforeΦ′◦p1 ∼Φloc ◦p2 ∼Φ◦p1, where f ∼ g means that the two (1-)morph-

isms f and g differ by some 2-morphism. Since 2-morphism α :Φ→Φ′ is simply a

natural transformation, which is a set of compatible arrows α(x) :Φ(x) →Φ′(x) for
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every object x in the stack G (A). To show Φ ∼ Φ′, one only has to show that p1 is

essentially surjective, namely p1 projects to every object and every morphism up to

isomorphisms. An essential surjection between stacks is an epimorphism. Thus we

only have to show that for any object y over U in G (A), there is an open covering Ui

of U such that there exists xi over Ui in L (viewed as a category) and p1(xi ) ∼= y |Ui .

Take the good étale groupoid presentation Γ⇒ P of G (A). Then an object of G (A)

over U is a groupoid principal bundle of Γ⇒ P over U . Take an open covering Ui of

U so that y |Ui is trivial. Then y is decided by a map Ui → P and y |Ui =Ui ×P Γ via

this map.

On the other hand, the map p1 : L →G (A) is expressed as the composition of the

following maps on the level of groupoids

(13) L

����

// tnΓ
×n

����

Γ

����

tnEm×n

yyssssssssss

##FFFFFFFFF

L // tnP×n P

where Em×n is the bimodule presenting the map m ◦ (m × i d)◦ . . . (m × i d × . . . i d) :

G (A)×n → G (A). As recalled in Section 2.1, Em(Γ)V P ⇒ M is a Lie 2-groupoid,

so by K an(2,0) condition that it satisfies, the map Em(Γ) → P ×t,M ,t P is a surjec-

tive submersion. Composing this map with the projection pr2 : P ×t,M ,t P → P , we

have Jr : Em(Γ) → P is a surjective submersion (see [29, Section 4.2]). Hence the

right moment map of Em×n is also surjective submersion since the bibundle Em×n

is formed by composing bibundles with the form Em(Γ)×M Γ×k . For example

Em×2 = (Em(Γ)×M Γ×P×M P Em(Γ))/Γ×M Γ,

and the right moment map of Em×2 to P comes from a composed map of Jr and

pull-backs of Jr , namely Em(Γ)×M Γ×P×M P Em(Γ) → Em(Γ) → P , which is a surjec-

tive submersion. This implies the descending map Em×2 → P is also a surjective

submersion.

Denote E the composed H.S. bibundle in (13) and it is simply tnEm×n restricting

to L via the left moment map. Since L →tnP×n is an open embedding, E → P is

a submersion, and it is furthermore surjective because an A-path can always be

divided into small enough paths which lie in Gloc . Hence we have local sections

(P ⊃)V j → E of this map. Then we take a pull-back covering Ui j of Ui as in the
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following 2-commutative diagram

Ui j −−−−−→ V j −−−−−→ E −−−−−→ Ly y y y
Ui −−−−−→ P

i d−−−−−→ P −−−−−→ G (A)

Then we have the composed map Ui j →V j → E → L. Therefore y |Ui j
=Ui j ×G (A)P ∼=

Ui j ×L L×G (A) P =Ui j ×L E = p1(Ui j → L). Therefore p1 is an epimorphism.

4. Examples

Now we show an example of a stacky groupoid G (A). In fact, for any manifold

M with π2(M) nontrivial, G (T M) is not the traditional homotopy groupoid M̃ ×
M̃/π1(M) where M̃ is the simply connected cover of M . π2(M) will play a role too.

4.1. Z-gerbes are S1 bundles. Z-gerbes and S1-bundles over a manifold M are

both characterized by H 2(M ,Z) via Čech cohomology and the Chern class respec-

tively. Given an S1 bundle S over M , let {Ui } be a covering of M such that S trivializes

locally as Ui ×S1 with gluing function gi j : Ui j :=Ui ∩U j → S1. As we know the map

H 1(M ,S1)
δ̌◦log−−−→ H 2(M ,Z) gives us the Chern class c1(S) = [g ...] with g ... = δ̌(log g ..).

On the other hand, there is a stack G presented by groupoid tUi j ×Z⇒tUi with

the groupoid multiplication (xi j ,n)·(x j k ,m) = (xi k ,n+m+gi j k ) and the source and

target maps inherited from the groupoid tUi j ⇒tUi which presents M . Here xi j

denotes a point in Ui j . An A-gerbe corresponds to an A-groupoid central exten-

sion for an abelian group A [3]. It is clear that G is a Z-gerbe (or equivalently a

BZ-principal bundle [27]) over M from the following diagram of groupoid central

extension:

1 // Z×tUi //

����

tUi j ×Z //

����

tUi j //

����

1

tUi tUi tUi

The gerbe G is classified by the Čech class [g ...] ∈ H 2(M ,Z) which determines the

groupoid multiplication (see also [7, Appendix]). From this class it is easy to go

back to an S1-bundle. Hence this gives the 1-1 correspondence between Z-gerbes

and S1-bundles.
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Another equivalent way to obtain G from S is to realize G as a global quotient

[S/R] where R acts(8) (left) on S via the S1 action and the projection pr : R→ S1.

We simply verify it by a Morita bibundle tUi ×R between tUi j ×Z⇒tUi and the

action groupoid S ×R⇒ S. Our convention is t(x, t ) = x and s(x, t ) = t · x(=: x · t−1).

The moment maps are

Jl = pr1 : tUi ×R→tUi , Jr : tUi ×R i d×pr→ tUi ×S1 π→ S,

where pr1 is the projection to the first component and π : tUi ×S1 → S is the chart

projection since S is locally Ui ×S1. The left and right actions are respectively

(xi j ,n) · (x j , a) = (xi ,n +a), (xi , a) · (x = Jr (xi , a),λ) = (xi , a +λ),

which are free and transitive.

Example 4.1. Corresponding to the Hopf fibration S3 → S2, there is a Z gerbe

or BZ principal bundle denoted as S̃2. Apply the long exact sequence of homotopy

groups to the BZ-fibration S̃2 → S2. Since πn(BZ) = 0 except π1(BZ) = Z, we have

π1(S̃2) =π2(S̃2) = 0 and π>3(S̃2) =π>3(S2). Hence we can view S̃2 as a 2-connected

“covering” of S2.

4.2. Symplectic structure. Recall [24] that a symplectic form on an étale dif-

ferentiable stack X is a G-invariant symplectic form on G0, where G is an étale

presentation of X . Appearing on a non-étale presentation H of X , the symplec-

tic form could be an H-invariant pre-symplectic form ω on H0, but we must have

kerω= T O, where O is the orbit of H1 action on H0.

Example 4.2. S̃2 has a pull-back 2-form π̃∗ω with π̃ : S̃2 → S2 and ω the sym-

plectic area form on S2. As above, take the action groupoid S3 ×R⇒ S3 presenting

S̃2, where R acts on S3 via the projection R→ S1. Then this 2-form π̃∗ω appears on

S3 as π∗ω where π : S3 → S2. Indeed its kernel kerπ∗ω is only along the S1 orbit in

S3. Hence it is a symplectic form on S̃2. However, surprisingly, we will show that

the de-Rham class [π̃∗ω] = 0 ∈ H 2(S̃2,R).

(8)locally by λ · (xi , [a]) = (xi , [a +λ]).
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First of all we use groupoid de-Rham double complex C p,q =Ωq (S3 ×Rp ) to cal-

culate H•(S̃2,R).

(14)

d

x d

x d

x ...

C 0,2 δ−−−−−→ C 1,2 δ−−−−−→ C 2,2 δ−−−−−→ ...

d

x d

x d

x ...

q
xC 0,1 δ−−−−−→ C 1,1 δ−−−−−→ C 2,1 δ−−−−−→ ...

d

x d

x d

x ...

C 0,0 δ−−−−−→ C 1,0 δ−−−−−→ C 2,0 δ−−−−−→ ...

p−−−−−→
The two differentials are the de-Rham d = d p,q : C p,q → C p,q+1 and the groupoid

δp,q : C p,q →C p+1,q with δp,q =∑p
i=0(−1)i+pδ∗i and δi : S3 ×Rp → S3 ×Rp−1 by

δ0(x, t1, . . . , tp ) = (x · t1, t2, . . . , tp ),

δi (x, t1, . . . , tp ) = (x, t1, . . . , ti + ti+1, . . . , tp ) for 16 i 6 p −1,

δp (x, t1, . . . , tp ) = (x, t1, . . . , tp−1).

Then H•(S̃2,R) is the total cohomology of (C p,q ,d ,δ), i.e. the cohomology of the

complex (⊕p+q=nC p,q ,D = (−1)p d p,q +δp,q ).

We use a spectral sequence (E p,q ,dr : E p,q
r → E p+r,q−r+1

r ) to calculate the total

cohomology of this double complex. We let the 0-th page E p,q
0 = C p,q and d0 = d .

Then the first page E p,q
1 = H q (S3) which is 0 except for the 0th and the 3rd row being

R everywhere. Hence E 2,0
>2 =R and E 1,1

>2 = E 0,2
>2 = 0. Hence H 2(S̃2,R) =R.

In the double complex C p,q , [π̃∗ω] is represented by

(0,0,π∗ω) ∈C 0,2 ⊕C 1,1 ⊕C 2,0.

However, (0,0,π∗ω) is exact under the total differential D =±d +δ. In fact D(t ,θ) =
(0,0,π∗ω) where t is the coordinate on R and θ is the connection 1-form for the

Hopf fibration S3 → S2. This follows from the calculation d 0,1θ = π∗ω and δ0,1θ =
δ∗0θ−δ∗1θ. Let X be the Reeb vector field on S3. X is invariant under the S1-action

and θ(X ) = 1. Thus δθ(X ) = 0. Since span{X }⊕kerθ = T S3, we only have to care

about ∂
∂t ∈ TR ⊂ T (S3 ×R). Since Tδ1

∂
∂t = 0 and Tδ0

∂
∂t = X , we have δ0,1θ( ∂∂t ) = 1.

Hence δ0,1θ = d 1,0t . Finally, it is not hard to see that

(δ1,0t )(x, t1, t2) = t2 − (t1 + t2)+ t1 = 0.
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This implies that [π̃∗ω] = [(0,0,π∗ω)] = 0 ∈ H 2(S̃2,R) =R.

4.3. Symplectic W-groupoids. Recall [23] that a W-groupoid G ⇒ M is a sym-

plectic W-groupoid if there is a symplectic formω on G satisfying the following mul-

tiplicative condition:

(15) m∗ω= pr∗
1 ω+pr∗

2 ω,

on G ×s,M ,t G , where pri is the projection onto the i -th factor.

Example 4.3 (G (T ∗S2)). Take the symplectic manifold S2 with its area formω as

above. Then the tangent Lie algebroid T S2 is isomorphic to the Lie algebroid T ∗S2

of (S2,ω) viewed as a Poisson manifold. The isomorphism is given by the contrac-

tion with ω, ]ω : T S2 → T ∗S2. To obtain the symplectic W-groupoid of (S2,ω), we

can equally study G (T S2).

The set of Lie algebroid morphisms T N → T M is equal to the set of smooth maps

Mor (N , M). We take the Lie 2-groupoid,

X0 = M , X1 = Mor (∆1, M), X2 = Mor (∆2, M)/Mor (∆3, M).

Recall that the quotient is by ω1 ∼ ω2 if they have the same boundary and they

bound an element in Mor (∆3, M). So the stack G (T M) is presented by the groupoid

G1 ⇒ G0 with G1 = Mor (D2, M)/Mor (D3, M) the space of bigons (the quotient is

similarly given by β1 ∼ β2 if they have the same boundary and bound an element

in Mor (D3, M)), and G0 = Mor (I , M). Here Dk ’s are viewed as ∆k with many de-

generate faces. Then G0 is simply the space of A-paths PaT S and G1 is the space

of A-homotopies modding out of higher homotopies. Take two points L and R on

D2, the target and source are the morphisms restricted on the lower and upper arc

from L to R respectively (see picture (17)).

G is Morita equivalent to the action groupoid S3×S3×(R×R)/Z⇒ S3×S3 where

(R×R)/Z is a quotient group by the diagonalZ action (r1,r2)·n = (r1+n,r2+n), and

the action of this quotient group is given by the projection

(R×R)/Z→R/Z×R/Z= S1 ×S1

and the product of the S1 action on S3. Our convention of target and source maps

are t(p, q, [r1,r2]) = (p, q) and s(p, q, [r1,r2]) = (p · [−r1], q · [−r2]). The symplectic

structure is (π∗ω,−π∗ω) on S3 ×S3 with π : S3 → S2.

To show this, we give the associated complex line bundle L → S2 of the S1-

principal bundle S3 → S2 a Hermitian metric and a compatible connection. We

denote ξ//γ as the result of the parallel transportation of a vector ξ ∈ Lγ(0) along a
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path γ in S2 to Lγ(1). Since parallel transportation is isometric: Lγ(0) → Lγ(1), it pre-

serves the S1 bundle S3 ⊂ L and the angle ang (ξ1,ξ2) between ξ1 and ξ2. Here the

angle ang (·, ·) L ⊕L → S1 is point-wise the usual angular map (or argument map)

C→ S1. It satisfies

ang (ξ1,ξ2)+ang (ξ2,ξ3) = ang (ξ1,ξ3) and ang (ξ1,ξ2) =−ang (ξ2,ξ1).

Therefore for two paths γ1 and γ2 sharing the same end points, we can define the

angle ang (γ1,γ2) between them to be

(16) ang (γ1,γ2) := ang (ξ//γ1,ξ//γ2), for ξ ∈ Tγ1(0)S
2.

Since parallel transportation preserves the angle, this definition dose not depend

on the choice of ξ as the following calculation shows,

ang (ξ1//γ1,ξ1//γ2) = ang (ξ1//γ1,ξ2//γ1)+
ang (ξ2//γ1,ξ2//γ2)+ang (ξ2//γ2,ξ1//γ2)

= ang (ξ1,ξ2)+ang (ξ2//γ1,ξ2//γ2)+ang (ξ2,ξ1)

= ang (ξ2//γ1,ξ2//γ2).

In fact ang (γ1,γ2) = ∫
D ωar ea where ∂D =−γ1 +γ2 and ωar ea is the standard sym-

plectic (area) form on S2.

(17)

γ2

γ1

ξ

As shown in the above picture, because of π2(S2), G1 is not simply the paring

groupoid G0 ×S2×S2 G0—the set of paths with matched ends. To justify this, we use

ang : G0 ×S2×S2 G0 → S1 as in (16), then we have G1 = (G0 ×S2×S2 G0)×ang ,S1,pr R

where pr :R→ S1 is the projection. For example (17) corresponds to (γ1,γ2,r ) with

br c = 2. The pull-back groupoid of G1 ⇒G0 by the projection (a surjective submer-

sion) S3 ×π,S2,t G0 ×s,S2,π S3 →G0 with s(γ) = γ(0), t(γ) = γ(1), and π : S3 → S2, is

(S3 ×S2 G0 ×S2 S3 ×S3 ×S2 G0 ×S2 S3)×ang ,S1,pr R⇒ S3 ×S2 G0 ×S2 S3.
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Now the pull-back groupoid of S3 × S3 × (R×R)/Z⇒ S3 × S3 by the projection

S3 ×S2 G0 ×S2 S3 → S3 ×S3 defined by (ξ,γ,ξ′) 7→ (ξ′//γ,ξ//γ−1) is

(18)

(S3×S2 G0×S2 S3×S3×S2 G0×S2 S3)×(S3×S3)×(S3×S3)S3×S3×(R×R)/Z⇒ S3×S2 G0×S2 S3.

They are the isomorphic as Lie groupoids with the morphism from the second to

the first by

(ξ,γ,ξ′) 7→ (ξ,γ′,ξ′)

on the base of the groupoid, where γ′ is the path parallelly transported along the

direction of ξ⊗ξ//γ(t ) at(9) γ(t ) such that ang (γ,γ′) = ang (ξ,ξ′//γ), with the notice

that S3 ⊗S3 ⊂ T S2 is the sphere bundle. On the level of morphisms, we define

(19) (ξ1,γ1,ξ′1,ξ2,γ2,ξ′2, [(r1,r2)]) 7→ (ξ1,γ′1,ξ′1,ξ2,γ′2,ξ′2,r2 − r1).

We need to verify that this map does land on the correct manifold. By (18) we have

(ξ1//γ−1
1 ) · [−r2] = ξ2//γ−1

2 , thus

−[r2] = ang (ξ1//γ−1
1 ,ξ2//γ−1

2 )

= ang (ξ1//γ−1
1 ,ξ2//γ−1

1 )+ang (ξ2//γ−1
1 ,ξ2//γ−1

2 )

= ang (ξ1,ξ2)+ang (γ−1
1 ,γ−1

2 ),

hence ang (γ1,γ2) = [r2]+ang (ξ1,ξ2) and similarly ang (γ1,γ2) =−[r1]−ang (ξ′1,ξ′2).

Therefore

[r2 − r1] = 2ang (γ1,γ2)−ang (ξ1,ξ2)+ang (ξ′1,ξ′2).

Since

ang (ξ1,ξ′1//γ1)+ang (ξ′1//γ1,ξ′2//γ1)+
ang (ξ′2//γ1,ξ′2//γ2)+ang (ξ′2//γ2,ξ2) = ang (ξ1,ξ2),

we have

−ang (ξ1,ξ2)+ang (ξ′1,ξ′2) =−ang (ξ1,ξ′1//γ1)+ang (ξ2,ξ′2//γ2)−ang (γ1,γ2).

Hence

[r2 − r1] = ang (γ1,γ2)+ (−ang (ξ1,ξ′1//γ1)+ang (ξ2,ξ′2//γ2))

= ang (γ1,γ2)+ang (γ′1,γ1)+ang (γ2,γ′2)

= ang (γ′1,γ′2)

(9)that is γ̇′(t ) = γ̇(t )//ϕt (s) for some fixed s ∈R, where ϕt (s) is the trajectory of ξ⊗ξ//γ(t ). Since γ̇(0) =
γ̇(1) = 0, γ′ and γ have the same end points.
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Therefore (19) is well-defined. It is not hard to see that it is indeed a groupoid iso-

morphism.

Therefore G1 ⇒G0 and S3×S3×(R×R)/Z⇒ S3×S3 are Morita equivalent via this

third groupoid (18). Therefore G (T S2) is presented by S3 ×S3 × (R×R)/Z⇒ S3 ×S3.

The next is to keep track with the symplectic form. The symplectic form on G0

comes from the restriction of the symplectic form the whole path space PT S2 [5],

Ω((δγ1,δa1), (δγ2,δa2)) =
∫ 1

0
ω(δγ1(t ),δa2(t ))−ω(δγ2(t ),δa1(t ))d t ,

where (δγi (t ),δai (t )) ∈ T (T S2) ∼= T S2 ⊕T S2 after chosen a connection and

T (PT S2) = PT (T S2). Then the symplectic form on S3×S3 is induced by first pulling

Ω|G0 back to the Morita bibundle S3 ×S2 G0 ×S2 S3 then pushing it to S3 ×S3 since it

is G1 invariant. In fact the symplectic form ω1 on S3 ×S3 functions as

ω1((X1,Y1), (X2,Y2)) :=Ω((X1,δγ1,Y1), (X2,δγ2,Y2)),

where δγi (0) =π∗X1 and δγi (1) =π∗Y1. Comparing to the direct quotient G0/G1 =
S2×S2 whereΩ|G0 descends to (ω,−ω) on S2×S2, we can see thatω1 = (π∗ω,−π∗ω).

We also see that ω1 is pre-symplectic and kerω1 is exactly the characteristic folia-

tion of the groupoid S3×S3×(R×R)/Z⇒ S3×S3, that is the product of the S1 orbits

in S3. Hence it gives a symplectic structure on G (T S2).

As we seen before in Example 4.1, S3 ×R⇒ S3 presents the stack S̃2. What we

prove above is that the stacky groupoid G (T S2) is not the usual one: S2 × S2, but

S̃2× S̃2/BZ, to ensure that it has 2-connected source-fibre, which is a general result

stated in Theorem 1.1. This resembles the construction of groupoid integrating

T M when M is a non-simply connected manifold. The source simply connected

groupoid of T M is M̃ ×M̃/π1(M). Here for G (T S2), the construction is comparable

to this, but on a higher level—the aim is to kill π2 of the source fibre. Further, using

long exact sequence of homotopy groups, we have π2(S̃2 × S̃2/BZ) = π1(BZ) = Z

since π(S̃2 × S̃2) = 0.

The symplectic structure on G (T S2) = S̃2 × S̃2/BZ simply comes from the

(π̃∗ω,−π̃∗ω) as in Example 4.2 (notice that BZ is étale). Thus it is easy to see that it

is multiplicative as in (15) and it makes G (T S2) into a symplectic W-groupoid.
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