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Preface

This second volume of a comprehensive tour through mathematical core
subjects for computer scientists completes the first volume in two re-
gards:

Part III first adds topology, differential, and integral calculus to the top-
ics of sets, graphs, algebra, formal logic, machines, and linear geometry,
of volume 1. With this spectrum of fundamentals in mathematical edu-
cation, young professionals should be able to successfully attack more
involved subjects, which may be relevant to the computational sciences.

In a second regard, the end of part III and part IV add a selection of more
advanced topics. In view of the overwhelming variety of mathematical
approaches in the computational sciences, any selection, even the most
empirical, requires a methodological justification. Our primary criterion
has been the search for harmonization and optimization of thematic di-
versity and logical coherence. This is why we have, for instance, bundled
such seemingly distant subjects as recursive constructions, ordinary dif-
ferential equations, and fractals under the unifying perspective of con-
traction theory.

For the same reason, the entry point to part IV is category theory. The
reader will recognize that a huge number of classical results presented
in volume 1 are perfect illustrations of the categorical point of view,
which will definitely dominate the language of mathematics and theo-
retical computer science of the decades to come. Categories are advan-
tageous or even mandatory for a thorough understanding of higher sub-
jects, such as splines, fractals, neural networks, and λ-calculus. Even for
the specialist, our presentation may here and there offer a fresh view on
classical subjects. For example, the systematic usage of categorical limits
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in neural networks has enabled an original formal restatement of Hebbian
learning, perceptron convergence, and the back-propagation algorithm.

However, a secondary, but no less relevant selection criterion has been
applied. It concerns the delimitation from subjects which may be very
important for certain computational sciences, but which seem to be nei-
ther mathematically nor conceptually of germinal power. In this spirit, we
have also refrained from writing a proper course in theoretical computer
science or in statistics. Such an enterprise would anyway have exceeded
by far the volume of such a work and should be the subject of a specific
education in computer science or applied mathematics. Nonetheless, the
reader will find some interfaces to these topics not only in volume 1, but
also in volume 2, e.g., in the chapters on probability theory, in spline the-
ory, and in the final chapter on λ-calculus, which also relates to partial
recursive functions and to λ-calculus as a programming language.

We should not conclude this preface without recalling the insight that
there is no valid science without a thorough mathematical culture. One
of the most intriguing illustrations of this universal, but often surprising
presence of mathematics is the theory of Lie derivatives and Lie brack-
ets, which the beginner might reject as “abstract nonsense”: It turns out
(using the main theorem of ordinary differential equations) that the Lie
bracket of two vector fields is directly responsible for the control of com-
plex robot motion, or, still more down to earth: to everyday’s sideward
parking problem. We wish that the reader may always keep in mind these
universal tools of thought while guiding the universal machine, which is
the computer, to intelligent and successful applications.

Zurich, Guerino Mazzola
August 2004 Gérard Milmeister

Jody Weissmann
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CHAPTER 27

Limits and Topology

27.1 Introduction

This chapter opens a line of mathematical thought and methods which is
quite different from purely set-theoretical, algebraic and formally logical
approaches: topology and calculus. Generally speaking this perspective
is about the “logic of space”, which in fact explains the Greek etymol-
ogy of the word “topology”, which is “logos of topos”, i.e., the theory
of space. The “logos” is this: We learned that a classical type of logical
algebras, the Boolean algebras, are exemplified by the power sets 2a of
given sets a, together with the logical operations induced by union, in-
tersection and complementation of subsets of a (see volume 1, chapter
3). The logic which is addressed by topology is a more refined one, and it
appears in the context of convergent sequences of real numbers, which
we have already studied in volume 1, section 9.3, to construct important
operations such as the n-th root of a positive real number. In this con-
text, not every subset of R is equally interesting. One rather focuses on
subsets C ⊂ R which are “closed” with respect to convergent sequences,
i.e., if we are given a convergent sequence (ci)i having all its members
ci ∈ C, then l = limi→∞ ci must also be an element of C. This is a useful
property, since mathematical objects are often constructed through limit
processes, and one wants to be sure that the limit is contained in the
same set that the convergent series was initially defined in.

Actually, for many purposes, one is better off with sets complementary
to closed sets, and these are called open sets. Intuitively, an open set
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O in R is a set such that with each of its points x, a small interval of
points to the left and to the right of x is still contained in O. So one may
move a little around x without leaving the open set. Again, thinking about
convergent sequences, if such a sequence is outside an open set, then its
limit l cannot be in O since otherwise the sequence would eventually
approach the limit l and then would stay in the small interval around l
within O.

In the sequel, we shall not develop the general theory of topological
spaces, which is of little use in our elementary context. We shall only
deal with topologies on real vector spaces, and then mostly only of finite
dimension. However, the axiomatic description of open and closed sets
will be presented in order to give at least a hint of the general power of
this conceptualization. There is also a more profound reason for letting
the reader know the axioms of topology: It turns out that the open sets
of a given real vector space V form a subset of the Boolean algebra 2V

which in its own right (with its own implication operator) is a Heyting
algebra! Thus, topology is really a kind of spatial logic, however not a
plain Boolean logic, but one which is related to intuitionistic logic. The
point is that the double negation (logically speaking) of an open set is not
just the complement of the complement, but may be an open set larger
than the original. In other words, if it comes to convergent sequences
and their limits, the logic involved here is not the classical Boolean logic.
This is the deeper reason why calculus is sometimes more involved than
discrete mathematics and requires very diligent reasoning with regard to
the objects it produces.

27.2 Topologies on Real Vector Spaces

Throughout this section we work with the n-dimensional real vector
space Rn. The scalar product (?, ?) in Rn gives rise to the norm ‖x‖ =√
(x,x) =

√∑
i x2

i of a vector x = (x1, x2, . . . xn) ∈ Rn. Recall that for
n = 1 the norm of x is just the absolute value of x. Actually, the theory
developed here is applicable to any finite-dimensional real vector space
which is equipped with a norm, and to some extent even for any infinite-
dimensional real vector space with norm, but we shall only on very rare
occasions encounter this generalized situation. In the following, we shall
use the distance function or metric d defined through the given norm via
d(x,y) = ‖x − y‖, as defined in volume 1, section 24.3. Our first defini-
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tion introduces the elementary type of sets used in the topology of real
vector spaces:

Definition 175 Given a positive real number ε, and a point x ∈ Rn, the
ε-cube around x is the set

Kε(x) = {y | |yi − xi| < ε, for all i = 1,2, . . . n},

whereas the ε-ball around x is the set

Bε(x) = {y | d(x,y) < ε}.

Example 98 To give a geometric intuition of the preceding concepts, con-
sider the concrete situation for real vector spaces of dimensions 1, 2 and
3.

On the real line R the ε-ball and the ε-cube around x reduce to the same
concept, namely the open interval of length 2ε with midpoint x, i.e.,

]
x−

ε,x + ε[.

Fig. 27.1. The ε-ball (a) and ε-cube (b) around x in R2. The boundaries
are not part of these sets.

On the Euclidean plane R2, the ε-ball around x is a disk with center x and
radius ε. The boundary1, a circle with center x and radius ε, is not part

1 The precise definition of “boundary” is not needed now and will be given in
definition 199.
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of the disk. The ε-cube is a square with center x with distances from the
center to the sides equal to ε. Again, the sides are not part of the square
(figure 27.1).

The situation in the Euclidean space R3 explains the terminology used. In
fact, the ε-ball around x is the sphere with center x and radius ε and the
ε-cube is the cube with center x, where the distances from the center to
the sides are equal to ε, see figure 27.2.

Fig. 27.2. The ε-ball (a) and ε-cube (b) around x in R3. The boundaries
are not part of these sets.

The fact that both concepts, considered topologically, are in a sense
equivalent, is embodied by the following lemma.

Lemma 230 For a subset O ⊂ Rn, the following properties are equivalent:

(i) For every x ∈ O, there is a real number ε > 0 such that Kε(x) ⊂ O.

(ii) For every x ∈ O, there is a real number ε > 0 such that Bε(x) ⊂ O.

Proof Up to translation, it is sufficient to show that for every ε > 0, there is
a positive real number δ such that Bδ(0) ⊂ Kε(0), and conversely, there is a
positive real number δ′ such that Kδ′(0) ⊂ Bε(0). For the first claim, take δ = ε.
Then z = (z1, . . . zn) ∈ Bδ(0) means

∑
i z2

i < ε2, so for every i, |zi| < ε, i.e.,
z ∈ Kε(0). For the second claim, take δ′ = ε√

n . Then z = (z1, . . . zn) ∈ Kδ′(0)

means |zi| < ε√
n , i.e.,

∑
i z2

i < n · ε
2

n , whence ‖z‖ < ε, i.e., z ∈ Bε(0). �
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Definition 176 A subset O ⊂ Rn is called open (in Rn), iff it has the equiv-
alent properties from definition 230. A subset C ⊂ Rn is called closed (in
Rn), iff its complement Rn − C is open.

Example 99 Figure 27.3 shows an open set O in R2 and illustrates alter-
native (ii) of lemma 230. Taking an arbitrary point x1 in the open set,
there is an open ball around x1 (shown in dark gray) that is entirely con-
tained in the open set. Two magnifications exhibit points x2, x3 and x4

increasingly close to the boundary, but always an open ball can be found
that lies within O, since the boundary of O is not part of O itself.

Fig. 27.3. An open set in R2.

In contrast, figure 27.4 shows the same set, but now it includes its bound-
ary. Again an open ball around x1 lies within the set, but choosing a point
x2 on the boundary, no ε-ball can be found that is entirely contained in
the set, however small ε may be. Thus this set cannot be open. In fact, it
is closed, as its complement is open.

Note that there are sets that are both open and closed. In Rn the entire
set Rn and the empty set ∅ are both open and closed. There are also sets
that are neither open nor closed, for example, in R, the interval

[
a,b

[
that includes a, but not b, is neither open nor closed.

Exercise 133 Show that every ball Bε(x) and every cube Kε(x) is open.

Exercise 134 Use the triangle inequality for distance functions (volume 1,
proposition 213) to show that the intersection of any two balls Bεx(x),
Bεy (y) and any two cubes Kεx(x), Kεy (y) is open.
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Fig. 27.4. A closed set in R2.

Sorite 231 We are considering subsets of Rn. Then:

(i) The empty set ∅ and the total space Rn are open.

(ii) The intersection U ∩ V of any two open sets U and V is open.

(iii) The union
⋃
ιUι of any (finite or infinite) family (Uι)ι of open sets is

open.

Exercise 135 Use exercises 133 and 134 to give a proof of the properties
of sorite 231.

Remark 30 More generally, a topology on a set X is a set T of subsets of
X satisfying as axioms the properties of sorite 231.

Example 100 Here is a seemingly exotic, but crucial relation to logical
algebras: The set Open(Rn) of open sets in Rn becomes a Heyting algebra
by the following definitions: The maximum and minimum are Rn and ∅,
respectively, the meet U ∧ V is the intersection U ∩ V , the join U ∨ V is
the union U ∪V , and the implication U ⇒ V is the union

⋃
O∩U⊂V O. (Give

a proof of the Heyting properties thus defined.)

Classical two-valued logic: For any non-empty set A, consider the topology
consisting of the open sets ⊥ = ∅ and � = A. With ∨ and ∧ as above,
define ¬U = (U ⇒ ⊥). Then ¬� = ⋃

O∩�⊂⊥O = ⊥ and ¬⊥ = ⋃
O∩⊥⊂�O =

�. These definitions satisfy the properties of a Boolean algebra.

A three-valued logic: We choose a set A, with the topology consisting of
the open sets ⊥ = ∅, � = A and a third set X, with X ≠ ∅ and X ≠ A.
Again ¬U = (U ⇒ ⊥), and we have: ¬� = ⊥, ¬⊥ = � and ¬X = ⊥. This
last equation shows that this logic is not a Boolean algebra, since it is not
the case that x = ¬¬x for all x.
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A fuzzy logic: Let A = [
0,1

[
with the topology of all intervals Ix =

[
0, x

[ ⊂
A. We have Ix ∨ Iy = Imax(x,y) and Ix ∧ Iy = Imin(x,y), as well as ⊥ = ∅
and � = A. The implication is Ix ⇒ Iy = �, if x ≤ y , and Ix ⇒ Iy = Iy , if
x > y . This logic is not Boolean either.

The next definition establishes the connection to convergent sequences.

Definition 177 A sequence (ci)i of elements in Rn is called convergent if
there is a vector c ∈ Rn such that for every ε > 0, there is an index N
with ci ∈ Bε(c) for i > N. Equivalently, we may require that for every
ε > 0, there is an index M with ci ∈ Kε(c) for i > M . If (ci)i converges to
c, one writes limi→∞ ci = c. A sequence which does not converge is called
divergent.

A sequence (ci)i of elements in Rn is called a Cauchy sequence, if for every
ε > 0, there is an index N with ci ∈ Bε(cj) for i, j > N. Equivalently, we
may require that for every ε > 0, there is an index M with ci ∈ Kε(cj) for
i, j > M .

Fig. 27.5. The sequence (ci)i converges to c. A given ε-ball around c
contains all ci for i > 3. In the magnification, another, smaller, ε-ball
contains all ci for i > 7.

Observe that this definition coincides with the already known concept
of convergent and Cauchy sequences in the case n = 1. For example,
because the ε-cube around x corresponds to the interval

]
x − ε,x + ε[ in

R, the expression ci ∈ Kε(cj) corresponds to ci ∈
]
cj − ε, cj + ε

[
, which

in turn is equivalent to |ci − cj| < ε.

Exercise 136 Give a proof of the claimed equivalences in definition 177.

Convergence of a sequence in Rn is equivalent to the convergence of each
of its component sequences:
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Proposition 232 For a sequence (ci)i of elements in Rn, and j = 1,2, . . . n,
we denote by (ci,j)i the j-th projection of (ci)i, whose i-th member ci,j is
the j-th coordinate of the vector ci. Then (ci)i is convergent (Cauchy), iff
all its projections (ci,j)i for j = 1,2, . . . n are so. Therefore, a sequence
is convergent, iff it is Cauchy, and then the limit limi→∞ ci is uniquely de-
termined. It is in fact the vector whose coordinates are the limits of the
coordinate sequences, i.e., (limi→∞ ci)j = limi→∞ ci,j .

Proof We make use of the characterization in definition 177 of convergent or
Cauchy sequences by means of cubes Kε(x). In this setting, y ∈ Kε(x) is equiva-
lent to yj ∈ Kε(xj) for all projections yj , xj of the vectors y = (y1, . . . yn), x =
(x1, . . . xn) for j = 1, . . . n. The claims follow immediately from this fact. �

Convergent sequences provide an important characterization of closed
sets:

Proposition 233 For a subset C ⊂ Rn, the following two properties are
equivalent:

(i) The set C is closed.

(ii) Every Cauchy sequence (ci)i with members ci ∈ C has its limit
limi→∞ ci in C.

Proof Suppose that C is closed and assume that the limit c = limi→∞ ci is in
the open complement D = Rn − C . Then there is an open ε-ball Bε(c) ⊂ D. But
there is an index N such that i ≥ N implies ci ∈ Bε(c), a contradiction to the
hypothesis that all ci are in C . Suppose that C is not closed. Then D is not open.
So there is an element c ∈ D such that for every i ∈ N, there is an element
ci ∈ B 1

i+1
(c)∩ C . But then the sequence (ci)i converges to c. �

Not every sequence is convergent, but if its members are bounded, we
may extract a convergent “subsequence” from it. Boundedness is defined
as follows:

Definition 178 A bounded sequence is a sequence (ci)i such that there is
a real number R such that for all i, ci ∈ BR(0).

Intuitively for a bounded sequence, one can find a ball, such that the
entire sequence lies within this ball, i.e., members of the sequence do not
“grow indefinitely”. Here is an important class of bounded sequences:

Lemma 234 A Cauchy sequence is bounded.

Proof This is immediate. �
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Of course, the converse is false, as can be seen in the trivial example
(ci = (−1)i)i, whose members all lie in the open interval between −2 and
2. But we may extract parts of bounded sequences which are Cauchy:

Definition 179 For a sequence (ci)i, a subsequence (di)i of (ci)i is a se-
quence (di)i defined by an ordered injection s : N→ N, i.e., n <m implies
s(n) < s(m), by means of di = cs(i).

Exercise 137 Show that a subsequence (ei)i of a subsequence (di)i of a
sequence (ci)i is a subsequence of (ci)i.

Proposition 235 (Bolzano-Weierstrass) Every bounded sequence (ci)i has
a convergent subsequence.

Proof For the proof of this theorem, we need auxiliary closed sets, namely closed
cubes. A closed cube is a set of the form K = ∏

i=1,2,...n
[
ai, bi

]
for a sequence

ai < bi of pairs of real numbers. Such a cube K is the union of 2n closed sub-
cubes Kj , with j = 1,2, . . .2n, where each cube is defined by either the lower
interval

[
ai, (ai+bi)/2

]
or the upper interval

[
(ai+bi)/2, bi

]
in the i-th coordi-

nate. Clearly, the successive subdivision cubes Kj1,j2,...jk are contained in cubes
Kε(x) for any positive ε as k tends to infinity. Now, since (ci)i is bounded, it
is contained in a closed cube K. We define our convergent subsequence: Begin
by taking d0 = c0. Then one of the subdivision cubes Kj1 contains the ci for an
infinity of indices. Take d1 = ci1 with the first index i1 > 0 such that ci1 ∈ Kj1 .
Then at least one of its subdivision cubes Kj1,j2 contains the ci for an infinity
of indexes larger than i1. Take the first index i2 such that ci2 ∈ Kj1,j2 and set
d2 = ci2 . Proceeding with this procedure, we thereby define a subsequence (di)i
of (ci)i which is contained in progressively smaller subdivision cubes. This is a
Cauchy sequence, and the proposition is proved. �

Example 101 Figure 27.6 shows a bounded sequence, where the upper
and lower bounds are indicated by dashed lines. A convergent subse-
quence is emphasized through heavy dots.

A sequence contained in a closed set C doesn’t necessarily contain any
converging subsequence, an example being the sequence (ci = i)i of nat-
ural numbers, contained in the closed set R. But if the closed set C is
bounded, i.e., if there is a radius R such that x ∈ BR(0) for all x ∈ C,
then a fortiori, any sequence in C is bounded. But then, by the Bolzano-
Weierstrass theorem, it has a convergent subsequence and its limit must
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Fig. 27.6. A convergent subsequence (heavy dots) of a bounded se-
quence.

be an element of C by proposition 233. So every sequence in C has a con-
vergent subsequence which converges within C! This type of closed sets
is extremely important in the entire calculus and deserves its own name.

Proposition 236 For a subset C ⊂ Rn, the following properties are equiv-
alent:

(i) The set C is closed and bounded.

(ii) Every sequence (ci)i in C has a subsequence which converges to a
point in C.

(iii) If (Ui)i is a (finite or infinite) family of open sets such that C ⊂ ⋃
iUi

(a so-called open covering of C), then there is a finite subfamily
Ui1 , . . . Uik which also covers C, i.e., C ⊂ ⋃

j Uij (a subcovering of
(Ui)i).

Proof (i) implies (ii): Let C be closed and bounded. A sequence (ci)i in C has a
convergent subsequence by proposition 235. Since C is closed, the limit of the
subsequence is in C by proposition 233.

(ii) implies (i): If C is not bounded, then, evidently, there is a sequence (ci)i which
tends to infinity, so no subsequence can converge. If C is not closed, again by
proposition 233, it contains a Cauchy sequence (ci)i which has its limit outside
C . But then every subsequence of this sequence converges to the same point
outside C .

Let us now prove the equivalence of the first and third properties.

(iii) implies (i): If C is not bounded, then the open covering (Ui = Ki+1(0))i of Rn

has no finite subcovering containing C . If C is bounded, but not closed, then let
x = (x1, . . . xn) �∈ C be a point such that K 1

2j
(x) ∩ C ≠ ∅ for all j ∈ N. Take

the following open covering of C . Start with the open set U0 = Rn −∏i
[
xi −

1, xi + 1
]
, complement of the closed cube

∏
i
[
xi − 1, xi + 1

]
. Then take the open
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set, Uj = K2(x) −
∏
i
[
xi − 1

2j
, xi + 1

2j

]
for j = 1,2, . . . . This family of open sets

covers Rn − {x}, hence also C , but, because of the choice of x, none of its finite
subcoverings contains all of C

(i) implies (iii): The converse is more delicate. Suppose that C is closed and
bounded. The strategy is this: We first construct a denumerable subcovering
(Uij )j∈N of C . Suppose that no finite subfamily covers C . Then for all finite sub-
families Ui0 , Ui1 , . . . Uim , there is an element cm ∈ C −

⋃m
j=0Uij . Since C is closed

and bounded, we may even suppose that (cm)m converges to c ∈ C . But then
there is an open set Uim0

which contains c, since (Uij )j∈N covers C . This means,
by construction of (cm)m, that the members of this convergent sequence stay
outside some open cube Kε(c) for m → ∞, a contradiction. We now construct a
denumerable subcovering of C . Clearly, if Uk is a member of our covering and
if x ∈ Uk, then there is an open cube K = ∏

i
]
ξi, ηi

[
which is contained in Uk,

contains x, and such that its interval points ξi, ηi are all rational numbers. So
Uk is covered by a family of open cubes with rational boundary numbers. The
denumerable family (Kr )r∈N of all these cubes, when summed up for all Uk of
the given covering, also cover C , and each Kr is contained in an open set Uk(r).
Therefore the open subcovering (Uk(r))r is denumerable, what was claimed, and
we are done. �

Definition 180 A set C ⊂ Rn is called compact, iff it has the equivalent
properties described in proposition 236.

Exercise 138 Show that a compact set in R has a minimum and a maxi-
mum.

Proposition 237 The Cartesian product X × Y ⊂ Rm+n of two compact
sets X ⊂ Rm and Y ⊂ Rn is compact.

Proof First, it is clear that the Cartesian product of two bounded sets is bounded.
Next, we show that the complement of X × Y is open. We have Rm+n − X × Y =
((Rm − X) × Rn) ∪ (Rm × (Rn − Y)). We show that (Rm − X) × Rn is open, the
other set X × (Rn − Y) being then open for the same reason after exchanging
left and right factors. Now, let (x,y) ∈ (Rm − X) × Rn. Then there is a cube
Kε(x) ⊂ Rm −X in Rm. Since no conditions are imposed on y , we have (x,y) ∈
Kε(x,y) ⊂ (Rm −X)×Rn, so (Rm −X)×Rn is open. �

Definition 181 For a real number ε > 0 and x ∈ Rn, the closed ball
Bε(x) is defined by Bε(x) = {y | d(x,y) ≤ ε}. A closed cube in Rn is
a set

[
a1, b1

] × [
a2, b2

] × . . . [an, bn] for pairs ai ≤ bi, i = 1,2, . . . n. In
particular, we have a closed cube Kε(x) =

[
x1 − ε,x1 + ε

]× [
x2 − ε,x2 +

ε
]× . . . [xn − ε,xn + ε].
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Exercise 139 Show that in Rn a closed cube
[
a1, b1

] × . . . [an, bn] for
pairs ai ≤ bi, i = 1, . . . n, as well as a closed ball Bε(x) are compact.

Example 102 The upper half-plane H+ = {(x,y) ∈ R2 | y ≥ 0} is a
closed set in R2, since its complement H− = {(x,y) ∈ R2 | y < 0} is
an open set. However H+ is not compact, since it is not bounded (prop-
erty (i)). Alternatively, we find a sequence (ci)i = ((0, i))i that has no
convergent subsequence in H+ (property (ii)).

The subset of integers Z in R is closed. In fact its complement in R is ZC =⋃∞
i=−∞

]
i, i+1

[
, which is an open set, since it is the union of open intervals.

Z is not bounded, hence not compact. Also, U = ⋃∞
i=−∞

]
i−ε, i+ε[, where

ε < 1, is an open covering of Z, but U contains no finite subcovering of Z,
thus property (iii) is violated.

In contrast, every closed disk Br (x0) = {x | d(x0, x) ≤ r}, and every
finite union of such closed disks, is compact.

27.3 Continuity

So far, we have only dealt with topological considerations on all of Rn.
In most practical cases, we do not have all of Rn at hand. For example, a
function may be defined only on a closed interval of R, or even only on
an interval of type ]0,1], such as f(x) = 1/x. When applying topological
considerations to such functions, we would like to deal strictly with what
happens within their domains. Also, when composing two functions, the
specific codomains and domains should coincide, as it is required for
the composition of set functions. So we are forced to set up a minimal
conceptual environment to apply topology to set functions.2

2 This small extra effort will pay off: We obtain a “category” of topological
spaces, i.e., topologically reasonable maps, the possibility to compose such
maps and to compare topologically specified sets by means of such maps.
Compare the category of matrixes, the category of sets and set maps, the
category of modules and linear homomorphisms, the category of digraphs,
the category of acceptors,. . . Later in chapter 36, we shall give a systematic ac-
count of such a conceptualization. For the moment, you just have to recognize
that the present topological considerations are completely integrated within a
big program of building categories of mathematical objects in order to obtain
a global control of mathematical structures.
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Definition 182 Given a subset X ⊂ Rn, a subset U ⊂ X is called open
(closed) in X, iff there is an open (closed) set O ⊂ Rn such that U = X ∩
O. The set of open sets in X is also called the relative topology of X. In
particular, we write BXε (x) = Bε(x) ∩ X and KXε (x) = Kε(x) ∩ X for the
restrictions of the open balls and cubes, respectively, and call these open
sets in X the open ball, or open cube, in X, respectively.

Exercise 140 Show that for a given subset X of Rn, the properties of
sorite 231 are true for the open sets in X, where X plays the role of the
“total space”. Moreover, show that the closed sets in X are precisely the
complements in X of the open sets in X.

Lemma 238 If X ⊂ Rm and Y ⊂ Rn are two subsets of Euclidean spaces,
and if f : X → Y is a set map, then the following properties are equivalent.

(i) The inverse image f−1(U) of any open set U in Y is open in X.

(ii) For any point x ∈ X and for any positive real number ε, there is
a positive real number δ (generally depending on x and on ε) such
that f(BXδ (x)) ⊂ BYε (f (x)).

(iii) For any point x ∈ X and for any positive real number ε, there is
a positive real number δ (generally depending on x and on ε) such
that f(KXδ (x)) ⊂ KYε (f (x)).

(iv) The inverse image f−1(U) of any closed set U in Y is closed in X.

(v) For any point x ∈ X and for any convergent sequence (ci)i with
limi→∞ ci = x, the image sequence (f (ci))i converges to f(x).

Proof (i) implies (ii): Since f−1(BYε (f (x))) is open and contains x, there is an
open ball BXδ (x) ⊂ f−1(BYε (f (x))). Therefore f(BXδ (x)) ⊂ BYε (f (x)).
(ii) implies (i): Since every open set U is the union of open balls, its inverse image
is the union of inverse images of open balls. But by (ii), the inverse image of an
open ball is a union of open balls, and, therefore, open, whence (i).

The same argument yields the equivalence of (i) and (iii).

The equivalence of (i) and (iv) results from the set-theoretic fact that comple-
ments and inverse images commute.

(ii) implies (v): Let ε > 0. Then there is δ > 0 such that f(BXδ (x)) ⊂ BYε (f (x)). So
by the convergence of (ci)i, there is a natural number N such that i ≥ N implies
ci ∈ BXδ (x). Hence i ≥ N implies f(ci) ∈ BYε (f (x)), therefore (f (ci))i converges
to f(x).

(v) implies (ii): Suppose (ii) is false for an x ∈ X. Then there is ε0 > 0 such that
for every i ∈ N, there is ci ∈ B 1

i+1
(x) with f(ci) �∈ Bε0(f (x)). But the sequence
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(ci)i evidently converges to x, while the images f(ci) stay outside the open ball
Bε0(f (x)), which contradicts (v). �

Definition 183 If X ⊂ Rm and Y ⊂ Rn are two subsets of Euclidean
spaces, a set map f : X → Y with the equivalent properties of lemma 238
is called continuous. A continuous bijection f such that its inverse f −1 is
also continuous, is called a homeomorphism. The set of continuous maps
f : X → Y is denoted by Top(X, Y). In particular, if Y = R, one writes
C0(X) = Top(X,R). If in lemma 238, the conditions (ii) to (iv) are valid for
a specific point x only, f is called continuous in x. This means that f is
continuous, iff it is continuous in every x of its domain.

Example 103 To illustrate property (i) of lemma 238, it is best to show
a case where the property fails. In figure 27.7, the function f is non-
continuous, as is clear by the jump at the argument x. The value at x,
f(x), is indicated by the heavy dot. Now, the inverse image f−1(U) of
the open interval U , is not open, but a half-open interval, i.e., open at the
left and closed at the right with x as the endpoint.

Fig. 27.7. The function f being non-continuous, the inverse image of the
open set U is not open, in fact it is a half-open interval.

Sorite 239 Let X ⊂ Rm, Y ⊂ Rn, V ⊂ Rs ,W ⊂ Rt, Z ⊂ Rl be subsets of
Euclidean spaces.

(i) The identity IdX is always a homeomorphism.
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(ii) If f : X → Y and g : Y → Z are continuous, then their composition
g ◦ f is also continuous.

(iii) If f : X → Y , g : Y → Z and h : Z → W are continuous, then
(h ◦ g) ◦ f = h ◦ (g ◦ f) = h ◦ g ◦ f .

(iv) If f : X → Y and u : U → V are continuous, then so is the Cartesian
product map f ×u : X ×U → Y × V .

(v) The projections prX : X×Y → X and prY : X×Y → Y are continuous.

(vi) If a : U → X and b : U → Y are continuous maps, then so is the
universal map (a, b) : U → X × Y associated with a and b (see
volume 1, proposition 57).

Proof (i) is evident.

(ii) follows from the fact that for an open set U ⊂ Z , we have (g ◦ f)−1(U) =
g−1(f−1(U)), and since V = f−1(U) is an open set so is g−1(V).

(iii) Associativity is clear, since it is true for any set maps.

(iv) It suffices to show that the inverse image of an open cube KX×Yε (x,y)
under f × u is open. But we have KX×Yε (x,y) = KXε (x) × KYε (y), therefore
(f ×u)−1(KX×Yε (x,y)) = f−1(KXε (x))×u−1(KYε (y)), and this is open.

For (v), observe that the cube KX×Yε (x,y) is mapped by prX into the cube KXε (x),
since cube elements are characterized coordinatewise. Similarly for the second
projection.

As to (vi), if at a point v ∈ U , we have a(Kδ(v)) ⊂ Kε(a(v)) and b(Kδ(v)) ⊂
Kε(b(v)), then (a, b)(Kδ(v)) ⊂ KXε (a(v))×KYε (b(v)) = KX×Yε ((a, b)(v)). �

These seemingly innocent general properties of continuous maps have a
large number of very important consequences concerning the continuity
of functions which are known from the theory of polynomials and from
linear geometry. The crucial fact is this:

Lemma 240 The maps of addition, + : R × R → R, and multiplication,
· : R×R→ R, are continuous. The inversion ?−1 : R∗ → R∗ is continuous.

Proof By the basic properties of the real number arithmetic, we have, for the
addition, +(Kε/2(x,y)) ⊂ Kε(x +y).
For the product x ·y , we have |(x+ν)·(y+µ)−x ·y| ≤ |x||µ|+|y||ν|+|µ||ν|.
If xy ≠ 0, take δ = min{ε/3|x|, ε/3|y|,√ε/3}. If x = 0 and y ≠ 0, then take
δ = min{ε/2|y|,√ε/2}. If x ≠ 0 and y = 0, then take δ = min{ε/2|x|,√ε/2}. If
x = y = 0, take δ = √ε. We then obtain (Kδ(x,y)) ⊂ Kε(x ·y).
The third statement is left as an exercise for the reader. �
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Proposition 241 A polynomial function P : Rn → R defined by a polyno-
mial P ∈ R[X1, . . . Xn] of n variables X1, . . . Xn is continuous.

Proof If P = a ∈ R is a constant, the polynomial function P : Rn → R is constant,
and this is evidently continuous. In general, if fi : Rn → R, for i = 1, . . . k, are
continuous, then, by proposition 240, their sum

∑
i fi : Rn → R : x �

∑
i fi(x)

and their product
∏
i fi : Rn → R : x �

∏
i fi(x) are continuous since we have∑

i fi =
∑◦(f1, . . . fk) and

∏
i fi =

∏◦(f1, . . . fk), where (f1, . . . fk) : Rn → Rk is
the universal map of Cartesian products, and where

∑
and

∏
are the continuous

k-fold sum and product maps. But the polynomial function P is the sum of its
monomials, so it is continuous if the monomials are so. Further, each monomial
aXn1 . . . Xnt in P is a product of the constant a and the projection functions Xj ,
which are all continuous by sorite 239, hence P is continuous. �

Exercise 141 Give a proof of proposition 241 for the polynomial P =
2X2

1 −X2 ·X3 + 1.5 using sorite 239 and lemma 240.

Lemma 242 The maps of addition and multiplication, + : C × C → C and
· : C×C→ C are continuous for the complex numbers, where we interpret
C as the real vector space R2 to define its topology. Conjugation ? : C → C
of complex numbers is a homeomorphism.

Proof This follows immediately since these operations, when rewritten in real
coordinates, are polynomial functions. So proposition 241 applies. �

Using the above general facts from sorite 239, we deduce the following
theorem about continuity of matrix operations. This requires that ma-
trixes M ∈ Mm,n(R) are viewed as vectors in some Euclidean space. We
do this in the usual way by the well-known identification ofMm,n(R) with
Rmn, the Euclidean structure on Mm,n(R) being induced from the Eu-
clidean structure on Rmn. For example, the norm of a matrix M = (Mi,j)
is ‖M‖ =

√∑
i,jM2

i,j .

Proposition 243 The following maps are all continuous:

(i) Addition + : Mm,n(R)×Mm,n(R)→Mm,n(R) : (M,N)� M +N,

(ii) Multiplication · : Ml,m(R)×Mm,n(R)→Ml,n(R) : (M,N)� M ·N,

(iii) Scalar product (?, ?) : Rn ×Rn → R,

(iv) Scalar multiplication R×Mm,n(R)→Mm,n(R) : (t,M)� t ·M ,

(v) Determinant function det : Mn,n(R)→ R,

(vi) Matrix transposition τ : Mm,n(R)→Mn,m(R),

(vii) Matrix adjunction Ad : Mn,n(R)→Mn,n(R).
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Proof All the claims of this proposition are immediate from the polynomial
character of the involved functions and their combinations, following sorite 239
and proposition 241. We leave the details to the reader as a useful exercise. �

A central fact about continuous maps is

Proposition 244 The image f(X) ⊂ Rm of a compact set X ⊂ Rn under a
continuous map f : X → Rm is compact.

Proof Let (Ui)i be an open covering of f(X). Then the inverse image of f(X) =⋃
iUi is X = ⋃i f−1(Ui), an open covering of X. So there is a finite subcovering⋃J
j=1 f−1(Uij ) of X. Therefore f(X) = f(

⋃J
j=1 f−1(Uij )) =

⋃J
j=1 f(f−1(Uij )) ⊂⋃J

j=1Uij ⊂ f(X), so we obtain the finite subcovering
⋃J
j=1 Uij of f(X). �

In particular, by exercise 138, if we are given a continuous function f :
X → R on a compact set X, there are two arguments x,y ∈ X such that
f(x) ≤ f(z) ≤ f(y) for all z ∈ X, i.e., the minimum and maximum
of f(X) are obtained as function values. But we do not know whether
all intermediate values are obtained. This property is guaranteed by the
famous intermediate value theorem (Zwischenwertsatz) first proved by
the German mathematician Bernhard Bolzano in 1817.

Proposition 245 (Bolzano) If K = [
a1, b1

]×[a2, b2
]×. . . [an, bn] for pairs

ai ≤ bi, i = 1,2, . . . n is a closed cube in Rn, and if f : K → R is contin-
uous, then Im(f ) is a closed interval

[
a,b

]
, i.e., for each value c between

the minimum a = f(x) and maximum b = f(y) of Im(f ), there is an
argument z ∈ K such that c = f(z).
Proof By proposition 244, f(K) is compact, i.e., closed and bounded by proposi-
tion 236. Therefore b = sup(f (K)) is finite. But taking a sequence (ci)i in f(K)
which converges to b, closedness of f(K) implies that b ∈ f(K). A similar argu-
ment works with a = inf(f (K)), the infimum3 of f(K). Therefore there is a max-
imal and a minimal value for f(K). Now, let r = f(u) < s = f(v) for u,v ∈ K
be any two values in f(K). We claim that any value c ∈ [r , s] is taken by an argu-
ment z ∈ K, i.e., c = f(z). Consider the map γ :

[
0,1

] → K : ξ � ξ ·u+(1−ξ)·v .
This is evidently a continuous map, since it is even affine. The composition
g = f · γ :

[
0,1

] → R is continuous and we have g(0) = r < g(1) = s. So
we have reduced the problem to a one-dimensional cube

[
0,1

]
. Suppose that

there is x ∈ T = [
r , s

] − g([0,1]). Take the supremum y of T . Since s �∈ T ,

3 The infimum of a non-empty set A ⊂ R, which is bounded from below, i.e.,
there is l < x, for all x ∈ A, is the number inf(A) = − sup(−A), where −A =
{−x | x ∈ A}.
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the supremum is an element of the interval
[
r , s

]
, and smaller than s. Take a

sequence (ci)i, ci ∈]y, s] which converges to y . By construction of y , there is a
sequence (di)i in

[
0,1

]
with f(di) = ci, for all i. But

[
0,1

]
is compact, so there

is even a convergent subsequence (ei)i of (di)i, converging to e ∈ [0,1], say. But
then, by continuity, f(e) = f(limi→∞ ei) = limi→∞ f(ei) = y , a contradiction. �

Fig. 27.8. Intermediate value theorem.

Recall that we used this result to prove proposition 219 in chapter 25.3
of volume 1.

Corollary 246 For a polynomial P ∈ R[X] of odd degree, there is an ar-
gument x ∈ R such that P(x) = 0.

Proof Since P is continuous, it suffices to find arguments a,b ∈ R such that
P(a) < 0 and P(b) > 0. Let P(x) = a2n+1x2n+1 + a2nx2n + . . . a0. We may evi-
dently suppose a2n+1 = 1, since the general case follows immediately from this
special case. For x ≠ 0, we write P(x) = x2n+1(1 + a2n

x + . . . a0
x2n+1 ). Consider

positive natural numbers x = i as arguments of P . If i→∞, then the summands
a2n
i . . . a0

i2n+1 converge to 0. Therefore the factor 1 + a2n
i + . . . a0

i2n+1 converges to
1. This implies that the product P(i) = i2n+1(1 + a2n

i + . . . a0
i2n+1 ) tends to ∞ as

i→∞. For integers i < 0, if i→ −∞, then P(i) = i2n+1(1+ a2n
i + . . . a0

i2n+1 ) tends to
i2n+1 < 0, so we have positive and negative values and then, by proposition 245,
there is an x such that P(x) = 0. �

This last result was used in chapter 25.1 of volume 1.
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27.4 Series

This section introduces a more systematic study of sequences, and in par-
ticular sequences deduced from partial sums of given sequences. These
series play a central role in the construction of basic continuous func-
tions, but also, as we shall see later in this book under the title of Taylor
series, in the reconstruction of quite general functions in terms of con-
vergent sequences of polynomial functions.

To begin with, consider the real vector space Sequ(R, n) = (Rn)N of se-
quences (ci)i with values in Rn. Recall that the sum and scalar multi-
plication are defined coordinatewise, i.e., (ci)i + (di)i = (ci + di)i, and
λ(ci)i = (λci)i for λ ∈ R. Denote by C(R, n) the subset of Cauchy or,
equivalently, convergent sequences in Sequ(R, n).

Lemma 247 The set C(R, n) is a vector subspace of Sequ(R, n). The map
limi→∞ : C(R, n) → Rn : (ci)i � limi→∞ ci is linear and its kernel is the
sub-vector space O(R, n) of zero sequences.

Exercise 142 Give a proof of lemma 247. Check in particular that the
statement of linearity of the map limi→∞ is equivalent to the fact that
limits of sums of sequences are the sums of their limits, whereas the
product of a constant λ with the members of a convergent sequence con-
verges to the scaling of the sequence limit by λ.

Definition 184 Consider the following two linear endomorphisms Σ and
∆ of Sequ(R, n):

Σ : Sequ(R, n)→ Sequ(R, n) : (ci)i � Σ(ci)i,

the i-th member of Σ(ci)i being Σ(ci) = Σij=0cj . The image sequence Σ(ci)i
is called the (associated) series of (ci)i. And

∆ : Sequ(R, n)→ Sequ(R, n) : (ci)i � ∆(ci)i,

the i-th member of ∆(ci)i being ∆(ci) = ci−ci−1 for positive i and ∆(c0) =
c0. The image ∆(ci)i is called the (associated) difference of (ci)i.

Lemma 248 The endomorphisms Σ and ∆ are automorphisms and in-
verses of each other, i.e.,

∆ ◦ Σ = Σ ◦∆ = IdSequ(R,n).
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Proof This is immediate by a straightforward calculation, which we leave to the
reader. �

This means that the inverse image ∆−1C(R, n) is the vector space of se-
quences having convergent series. If a series Σ(ci)i converges, we write
Σ∞i=0ci for its limit. By the identification of Cauchy and convergent se-
quences, we have:

Proposition 249 If a series Σ(ci)i converges, then (ci)i is a zero sequence,
i.e,

∆(C(R, n)) ⊂ O(R, n).
Proof This follows from the Cauchy condition |Σ(ci+1) − Σ(ci)| < ε for subse-
quent partial sums of sufficiently high index i of the series. �

Example 104 Given a real number q, the sequence (qi)i gives rise to the
geometric series Σ(qi)i with general member

Σ(qi) = 1+ q + q2 + . . . qi.

For q ≠ 1, one has the formula 1+ q + q2 + . . . qi = 1−qi+1

1−q . Since we have

Σ(qi) = 1
1−q − qi+1

1−q , convergence is a linear map, and the second summand
converges to zero for |q| < 1, we have the very important formula

Σ∞i=0q
i = 1

1− q
for |q| < 1. Try to understand this result geometrically for the intuitive
special value q = 1

2 .

But there are zero sequences without converging associated series:

Example 105 The harmonic series Σ
(

1
i+1

)
i
, with partial sums Σ

(
1
i+1

)
=

1+ 1
2+. . . 1

i+1 , is divergent. Nonetheless, the very similar alternating series

Σ
(
(−1)i
i+1

)
i

is convergent. This is a special case of the following Leibniz
criterion.

Proposition 250 If (ci)i ∈ Sequ(R,1) is a zero sequence which is mono-
tonously decreasing, i.e., ci ≥ ci+1 for all i, then the alternating series
Σ((−1)ici)i converges.
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Proof We are given a series with c0 ≥ c1 ≥ . . . which converges to 0. Let us show
by induction on N that the partial sums SN =

∑N
i=0(−1)ici satisfy 0 ≤ SN ≤ c0.

This is true for N = 0,1,2 by immediate check. In general, if N is even, we have
SN = SN−2 − cN−1 + cN , whence SN ≤ SN−2 ≤ c0, but also SN = SN−1 + cN ≥
SN−1 ≥ 0. If N is odd, then SN = SN−2 + cN−1 − cN , whence SN ≥ SN−2 ≥ 0,
but also SN = SN−1 − cN ≤ SN−1 ≤ c0. Now, Cauchy’s criterion for convergence
requires |SN−SM | < ε for N,M sufficiently large. But SN−SM is just a partial sum
of such an alternating series starting from m = min(M,N). If this minimum is
sufficiently large, by the above, the difference is limited by cm, which converges
to 0, so we are done. �

A partially converse criterion is the famous criterion of absolute conver-
gence.

Definition 185 A series Σ(ci)i ∈ Sequ(R, n) is said to be absolutely con-
vergent if the series Σ(‖ci‖)i ∈ Sequ(R,1) converges.

Proposition 251 An absolutely convergent series Σ(ci)i ∈ Sequ(R, n) is
convergent.

Proof Let Σ(ci)i be absolutely convergent. Then for two indexes N ≤ M , the tri-
angle inequality in Rn yields ‖Σ(cM)− Σ(cN)‖ = ‖

∑M
i=N+1 ci‖ ≤

∑M
i=N+1 ‖ci‖, and

the latter is smaller than any positive ε for M,N sufficiently large by the abso-
lute convergence hypothesis. Therefore the Cauchy criterion yields convergence
of the series. �

The next criterion gives us a large variety of absolutely convergent series
at hand:

Proposition 252 If a series Σ(ci)i ∈ Sequ(R, n) is based on a sequence
(ci)i with non-zero members such that there is a real number 0 < q < 1
with this property: There is a natural N such that ‖ci+1‖

‖ci‖ ≤ q for all i > N,
then Σ(ci)i is absolutely convergent.

Proof Since the initial portion of a sequence is irrelevant for its convergence, we
may suppose that ‖ci+1‖

‖ci‖ ≤ q for all i ≥ 0. Then we have ‖ci‖ ≤ qi‖c0‖, all i ∈ N.

Therefore Σ(‖ci‖) ≤ ‖c0‖ · (1 + q + q2 + . . . qi) which is a convergent geometric
series. �

For the next result, we again interpret complex numbers as vectors in R2

and accordingly consider sequences with members in C as series in the
Euclidean space R2.
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Corollary 253 Given a complex number z ∈ C, the power series (involv-
ing powers of z) Σ

(
zk
k!

)
k

is absolutely convergent. We therefore define the
complex-valued function

exp(z) =
∞∑
k=0

zk

k!

which is called the exponential function.

Proof The absolute convergence follows immediately from the ratio

zk+1

(k+1)!
zk
(k)!

= z
k+ 1

,

which tends to 0 for k→∞, and the proposition 252 applies. �

27.4.1 Fundamental Properties of the Exponential Function

In this subsection, we want to deal with some technical aspects which
are of general interest, but which are also crucial for the establishment
of fundamental properties of the exponential function. In particular, we
want to calculate the value exp(w+z), and since this involves the powers
(w + z)k as functions of w and z, we need to calculate polynomials (X +
Y)k ∈ Z[X, Y] first. To this end, we need a formula for the coefficients
of such polynomials. These coefficients will also play an important role
in the calculus of probability, to name but one example. They are in fact
omnipresent in mathematics as soon as it comes to the calculation of any
combinatorial quantities.

Definition 186 Let 0 ≤ k ≤ n be natural numbers. Then one sets(
n
k

)
= n!
k!(n− k)! =

n(n− 1)(n− 2) . . . (n− k+ 1)
k!

(with the special value 0! = 1) and calls this rational number the binomial
coefficient n over k.

Here is the basic result which allows the inductive calculation of binomial
coefficients:

Lemma 254 For natural numbers 0 ≤ k < n, we have(
n
k

)
+
(
n

k+ 1

)
=
(
n+ 1
k+ 1

)
.
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In particular, by induction on n, and observing that
(
n
0

)
= 1, it follows that

binomial coefficients are integers.

Proof We have(
n
k

)
+
(
n

k+ 1

)
= n · (n− 1) · . . . (n− k+ 1) · (k+ 1)

k!(k+ 1)
+

n · (n− 1) · . . . (n− k+ 1) · (n− k)
k!(k+ 1)

= n · (n− 1) · . . . (n− k+ 1)
(k+ 1)!

((k+ 1)+ (n− k))

=
(
n+ 1
k+ 1

)
.

�

The Pascal triangle (figure 27.9) is a graphical representation of the above
result: We represent the binomial coefficients for a given n on a row and
develop the coefficients from n = 0 on downwards. Observe the vertical
symmetry axis in the triangle, which stems from the obvious fact that(
n
k

)
=
(
n
n−k

)
.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

. . .

Fig. 27.9. The Pascal triangle.

This yields the coefficients of (X + Y)n as follows:

Proposition 255 If n ∈ N, then the polynomial (X + Y)n ∈ Z[X, Y] has
this representation in terms of monomials:

(X + Y)n =
n∑
k=0

(
n
k

)
Xn−k · Y k = Xn +nXn−1 · Y + . . . nX · Yn−1 + Yn.



26 Limits and Topology

Proof One proves the proposition by induction on n using the recursive formula
from lemma 254. This is just an exercise in reindexing sums, we therefore omit
it and refer to [14]. �

This allows us to regard the expression exp(w + z) as a series of the
following products:

exp(w + z) =
∞∑
n=0

n∑
k=0

1
n!

(
n
k

)
wn−kzk =

∞∑
n=0

n∑
k=0

1
(n− k)!w

n−k 1
k!
zk.

So we are confronted with the problem of whether a product of series is
the series of the products of their summands. This is precisely what the
following proposition guarantees:

Proposition 256 Identifying C(C,1)with the vector space C(R,2) over the
Euclidean space R2, if Σ(ci)i and Σ(di)i are absolutely convergent series
in C(C,1), then we have the Cauchy product formula⎛⎝ ∞∑

i=0

ci

⎞⎠ ·
⎛⎝ ∞∑
i=0

di

⎞⎠ = ∞∑
i=0

i∑
k=0

ci−kdk.

This is a special case of a formula guaranteeing that a series is absolutely
convergent, iff it is “unconditionally” convergent, which means that it
converges to the same limit for any permutation of the summation. We
cannot delve into those details and refer to [14].

Proposition 256 implies the following result.

Proposition 257 The map

exp : C→ C∗

is a surjective continuous group homomorphism from the additive group
of complex numbers to the multiplicative group of non-zero complex num-
bers, i.e., exp(0) = 1 and exp(w + z) = exp(w) · exp(z) for all w,z,∈ C.
There is a number π = 3.1415926 . . . such that

Ker(exp) = i2πZ.

In particular, C/i2πZ ∼→ C∗. The inverse image of the unit circle subgroup
U ⊂ C∗ is the additive group i ·R, in particular,

U ∼→ i ·R/i2πZ ∼→ R/Z.
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This combines to the group isomorphism R×U ∼→ C∗ : (r ,u)� exp(r)·u,
which is called the polar coordinate representation of (non-zero) com-
plex numbers. The uniquely determined angle −π < θ ≤ π , such that
u = exp(i · θ) ∈ U in the polar coordinate representation z = exp(r) · u
is denoted by arg(z). The Euler formula exp(i · θ) = cos(θ) + i sin(θ)
established in proposition 210 in volume 1 (we used the symbol A(θ) for
exp(i·θ) there), implies the representation of the sine and cosine functions,
which are both continuous, in terms of power series:

cos(θ) = 1− θ
2

2!
+ θ

4

4!
− θ

6

6!
+ · · · (−1)n

θ2n

(2n)!
+ · · ·

sin(θ) = θ − θ
3

3!
+ θ

5

5!
− θ

7

7!
· · · (−1)n

θ2n+1

(2n+ 1)!
+ · · ·

The Euler formula implies this alternative definition of the sine and cosine
functions:

cos(θ) = 1
2
(exp(i · θ)+ exp(−i · θ)),

sin(θ) = 1
2i
(exp(i · θ)− exp(−i · θ)).

The restriction exp |R : R → R+ is continuous and ordered4 isomorphism
of the additive group of R onto the multiplicative group R+ of positive
real numbers. Its inverse log : R+ → R is called the (natural) logarithm. In
particular, log(1) = 0, and log(x ·y) = log(x)+ log(y) for all x,y ∈ R+.

The number e = exp(1) = ∑∞
k=0

1
k! = 2.7182818 . . . is called the Euler

number; it is also equal to limn→∞(1+ 1
n)
n. For a rational number p

q with

q > 0, we have exp(pq ) = e
p
q = ( q√e)p . The general value exp(z) for z ∈ C

is therefore also written as ez.

Proof By proposition 256, exp is a group homomorphism, i.e., for all w,z ∈ C,
exp(w + z) = exp(w) · exp(z). In particular, 1 = exp(0) = exp(w + (−w)) =
exp(w)·exp(−w), whence exp : C→ C∗ is a group homomorphism into the mul-
tiplicative group of non-zero complex numbers. Moreover, exp is continuous. In
fact, for any w ∈ C, we have exp(w + z)− exp(w) = exp(z)(exp(w)− 1). So we
have to show that exp(w)−1 → 0 ifw → 0. But ‖ exp(w)−1‖ ≤ ‖w‖·∑k

‖w‖k
(k+1)! ≤

‖w‖ ·∑k
‖w‖k
k! ≤ ‖w‖ ·∑k ‖w‖k = ‖w‖

1−‖w‖ for ‖w‖ < 1, which evidently converges

4 This means that x < y implies exp(x) < exp(y). In calculus this is also called
a strictly monotonous map.
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to 0 as ‖w‖ → 0. Now, clearly exp(z) = exp(z). Therefore, for θ ∈ R, we have
1

exp(i·θ) = exp(−i · θ) = exp(i · θ), which means that we have a group homomor-
phism exp : i ·R → U . Setting the Euler equation exp(i · θ) = cos(θ)+ i · sin(θ)
for the real an complex parts of exp(i · θ), we have cos(θ)2 + sin(θ)2 = 1, and
the alternative definitions of cos(θ) and sin(θ) in terms of the exponential func-
tion follow immediately. The series for cos(θ) and sin(θ) are also visible from
the real and imaginary contributions in the series expansion of the exponential
function.

We now want to calculate the kernel of exp. To this end, observe that for k ≥ 2
and 0 < θ ≤ 3, we have θk

k! >
θk+1

(k+1)! . Therefore, under these conditions, the series
for the cosine converges by the Leibniz criterion proposition 250. Coming back
to that proposition’s proof, we recognize that 1− θ2

2 < cos(θ) < 1− θ2

2 + θ4

24 for

0 < θ < 3. But then, u = √2 is the smallest zero of 1 − θ2

2 while v =
√

6− 2
√

3

is the smallest zero of 1 − θ2

2 + θ4

24 in the interval 0 < θ < 3. Therefore, by
proposition 245, there is a zero of cos(θ) in the interval

]
u,v

[
. Since cos(θ)

is continuous by the way it is derived from exp(i · θ), and since cos(0) = 1,
there is a smallest zero of cos, lying between u and v . Call it π

2 . Therefore all
values in

[
0,1

]
are taken for arguments θ between 0 and π

2 by cos(θ). So exp(i ·
π
2 ) = i, exp(i · π) = −1, exp(i · 3π

2 ) = −i, and exp(i · 2π) = 1. Therefore, the
cosine takes all values between 1 and −1. This implies that exp(i · θ) is onto
U . The goniometric addition theorem from proposition 210 in volume 1 is a
consequence of the group homomorphism property of exp. For 0 ≤ θ < θ + η <
π
2 , it yields cos(θ + η) = cos(θ) cos(η)− sin(θ) sin(η) < cos(θ) cos(η) < cos(θ),
so the cosine function is strictly monotonously decreasing. So for every x ∈[
0,1

]
, there is exactly one θ ∈ [0, π2 ] such that cos(θ) = x. By cos(θ)2+sin(θ)2 =

1, the sine function is monotonously increasing from 0 to 1 as θ moves from 0 to
π
2 . Again, by the addition theorem for the cosine function, we have cos(θ+ π

2 ) =
− sin(θ). This gives us the values for cos(θ) for the arguments in

[π
2 , π

]
: The

values cos(θ) decrease monotonously from 0 to −1 as θ moves from π
2 to π .

By the same argumentation, from π to 2π , cos(θ) increases monotonously from
−1 to 1. All this together proves that i · 2πZ is the kernel of exp.

Let us finally concentrate on the real arguments in exp. Since e = exp(1) > 1,
there are arbitrary large real numbers exp(n) = en for real arguments, and by
exp(−n) = 1

exp(n) also arbitrary small real values for real arguments. By propo-
sition 245, every positive real value is taken by exp(x) for x ∈ R. Now, ev-
ery complex number z ≠ 0 can be written as z = ‖z‖u, u ∈ U . Therefore
there are x,θ ∈ R, such that exp(x) = ‖z‖ and exp(i · θ) = u. This means
that z = ‖z‖u = exp(x) exp(i · θ) = exp(x + i · θ), and we have shown that
exp : C → C∗ is surjective. For x ∈ R, we have exp(−x) = 1

exp(x) . But for pos-
itive x ∈ R, exp(x) > 1. So exp(x) > 0 for all x ∈ R. Moreover, for real num-
bers x < y , we have exp(x) < exp(x) exp(y − x) = exp(y), whence exp |R
is strictly monotonous onto the multiplicative group R+ of positive real num-
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bers. The statements about the logarithm are now immediate. The statements
about the coincidence exp(pq ) = e

p
q are left as an exercise. For the equation

e = limn→∞(1+ 1
n)

n, we refer to [14]. �

Fig. 27.10. The sine (a) and cosine (b) functions, with their domains re-
stricted to R.

Definition 187 If a ∈ R+, one defines the exponential function for basis
a by ax = expa(x) = exp(x · log(a)). If moreover a ≠ 1, one also defines
the logarithm function for basis a by loga(x) = 1

log(a) log(x). In older
literature, log is also denoted by ln (logarithmus naturalis), while one uses
the notation log for log10 and calls that the decadic logarithm, but we
refrain from such atavisms.

Sorite 258 The logarithm loga for basis a ∈ R+ has the following proper-
ties. Let x,y ∈ R.

(i) If b ∈ R+ is a second basis, we have logb(x) = logb(a) · loga(x),

(ii) logb(a) · loga(b) = 1,

(iii) loga(bx) = x · loga(b),

(iv) if x ∈ Q, then the exponential function ax and the rational powers
defined earlier, denoted by the same signs, coincide,

(v) ax+y = ax · ay , and (ax)y = ax·y .

(vi) If b ∈ R+ is a second basis, we have bx = aloga(b)·x .
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Fig. 27.11. The exponential (a) and logarithm (b) functions, with their
domains restricted to R.

Proof The proof of this sorite is left as an exercise, using the straightforward
definition of the logarithm, i.e., applying the exponential function as the inverse
isomorphism to log to verify the specific claims. �

27.5 Proof of Euler’s Formula for Polyhedra
and Kuratowski’s Planarity Theorem

Recall from chapter 13 of volume 1 that a skeletal graph Γ : A → 2V is a
graph without multiple edges or loops. A drawing of a skeletal graph Γ
as defined in definition 84, chapter 13, volume 1, is intuitively a family
of (continuous) curves ca :

[
0,1

] → R such that ca(
]
0,1

[
) is disjoint

of the image of all other curves. Recall also that a drawing may also
be defined on the unit sphere S2 ⊂ R3, instead of R2. The Northpole
is the top point with coordinates (0,0,1). By the stereographic projec-
tion τ : S2 − Northpole

∼→ R2, which is a homeomorphism of topological
spaces, every drawing on S2 induces one in R2, and conversely. Here is
the definition of τ (see figure 27.12). We write x = (h,v) ∈ R2 × R for a
point in S2.

τ(h,v) = 1
1− v h.

Exercise 143 Show that inverse map is τ−1(z) =
(

2
‖z‖2+1 · z, ‖z‖

2−1
‖z‖2+1

)
. Use

propositions 240 and 241 to show that these maps are continuous.
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Fig. 27.12. A stereographic projection of a sphere onto the plane T
through the equator. The point p is mapped to p′ on T , where p, p′

and the northpole N are collinear.

We called a polyhedron a drawing of a connected skeletal graph Γ on
S2, but we also use this terminology for a drawing D of Γ in R2, too.
The elements of the finite set C of connected components of the drawn
graph D(Γ) are called the faces of D(Γ). In the drawing on R2 there is
one face which is not bounded, this one corresponds to the face on S2

which includes the Northpole. It is called the exterior face, the others are
called the interior faces of the drawing. We now want to prove Euler’s
formula for polyhedra from proposition 108, volume 1. Recall from that
proposition that ε = card(V), φ = card(A), σ = card(C).

Proof The proof is by induction on the number ξ = ε + φ. For ξ = 1, there is
a single point and no edge, whence Euler’s formula for polyhedra ε − φ + σ =
1 + 0 + 1 = 2. Suppose that the drawing D has a “bridge”, i.e., an edge line ca
such that the drawing minus this line is no more connected (see figure 27.13 (a)).
Then the drawing of the remainder of the graph after omitting a decomposes
into a disjoint union of two connected subdrawings D′,D′′. These subdrawings
obviously each have a ξ which is smaller than that of the drawing D. Therefore,
Euler’s formula for polyhedra holds for both D′ and D′′: ε′ − φ′ + σ ′ = 2 and
ε′′ −φ′′ +σ ′′ = 2. Now let us express ε,φ, and σ of D in terms of the values for
D′ and D′′:
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ε = ε′ + ε′′
φ = φ′ +φ′′ + 1 (the bridge)

σ = σ ′ + σ ′′ − 1 (both share the exterior face)

So we have

ε −φ+ σ = (ε′ + ε′′)− (φ′ +φ′′ + 1)+ (σ ′ + σ ′′ − 1)

= ε′ −φ+ σ ′ + ε′′ −φ′′ + σ ′′ − 1− 1

= 2+ 2− 2

= 2

Fig. 27.13. Reducing the drawing D of a graph to drawings of smaller
graphs: (a) by removing a connecting edge, (b) by removing a vertex and
the edges connected to it.

If there is no bridge, take a vertex v which is on the boundary of the exterior
face. The k lines terminating at v define a total of k faces containing v in their
boundaries (see figure 27.13 (b)). Omitting the point v and all lines terminating
in v in the drawing D defines the drawing D′ of a connected graph with k − 1
less faces, since the interior faces around v are now united to the exterior face
of D. Again, Euler’s formula for polyhedra holds for D′, and we have

ε = ε′ + 1 (the vertex v)

φ = φ′ + k (k edges connecting to v)

σ = σ ′ + (k− 1) (k− 1 new faces)

This yields
ε −φ+ σ = (ε′ + 1)− (φ′ + k)+ (σ ′ + k− 1) = 2,

and the proof is complete. �
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Corollary 259 The graphs K5 and K3,3 are not planar.

Proof In fact, suppose that we have a drawing D of K5. Then every three vertexes
define a triangular face, so σ =

(
5
3

)
= 10, but then ε−φ+σ = 5−10+10 = 5 ≠ 2.

For K3,3, the faces are defined by rectangular cycles through 4 vertexes each.
There are 9 such cycles (choose 2 upper and 2 lower points and connect them to
a cycle), so we have ε −φ+ σ = 6− 9+ 9 = 6 ≠ 2 �

Now, Kuratowski’s theorem attributes a central role to the two graphs
K5 and K3,3 in that planarity of any skeletal graph Γ is based on the
non-inclusion of essentially one of these non-planar graphs. “Essentially”
means one of these alternatives: (1) There is a subgraph Γ ′ ⊂ Γ which
has a contraction isomorphic to K5 or K3,3 (see definition 85, chapter 13,
vol 1). (2) There is a subgraph Γ ′ ⊂ Γ which results from K5 or K3,3 by
a succession of subdivisions of their edges. A subdivisions of an edge
x a y is the addition of one more vertex v to V and the replacement

of a by two edges x ax v and v
ay y .

We have these auxiliary facts:

Lemma 260 Suppose that we can prove the special case that Γ is planar
iff it contains no subgraph which is a subdivision of a graph isomorphic to
K5 or K3,3. Then the theorem follows.

Proof If Γ has no subgraph which can be contracted to a graph isomorphic to
K5 or K3,3, then in particular, it has no subgraph, which is a subdivision of a
graph isomorphic to K5 or K3,3, since subdivisions can be contracted to the orig-
inal graphs. By the assumption made in lemma 260 it then can be concluded
that Γ is planar. Conversely, if Γ is planar and there is a contraction to a graph
isomorphic to K5 or K3,3, then there is a sequence of elementary contractions,
which define this contraction. The idea is this: If it can be shown that an ele-
mentary contraction preserves the planarity of a graph, then K5 or K3,3 must be
planar, which a contradiction. So, if a drawing of a planar graph Γ is given, an
elementary contraction of the line x a y can be performed by isolating a
small tubular neighborhood around the drawing of a and then piping the lines
ending at x within that tubular neighborhood to y (see figure 27.14). Obviously,
this construction conserves planarity. Thus the lemma is proved. �

Kuratowski’s theorem

So one is left with the proof of the subdivision version of Kuratowski’s
theorem. Now, we already know that a graph containing a subdivision of
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Fig. 27.14. The graphical process of an elementary contraction conserves
planarity.

a copy of K5 or of K3,3 can not be planar, since the contractions yielding
K5 or K3,3 would yield drawings of graphs containing drawings of K5 or of
K3,3, which is impossible by corollary 259. So we are left with the proof
of the other implication, i.e., that a non-planar graph must necessarily
contain a subdivision of drawings of K5 or of K3,3.

Suppose there is a Γ which, being non-planar, contains no subgraph which
is a subdivision of a copy of K5 or of K3,3. Take one with a minimal num-
ber of edges. It cannot have a bridge line, since then it is easily seen that
one of the subgraphs connected by this bridge would be non-planar and
therefore would contain a subdivision of one of the two critical graphs.
Moreover, it cannot contain points x with deg(x) = 1,2, since the non-
planarity would be conserved omitting these points. So all points have
deg(x) ≥ 3. Then the omission of an arbitrary line x l y in Γ yields
a smaller graph Φ which does not contain a subdivision of K5 or of K3,3

and therefore is planar.

The proof idea is to show that, under these assumptions, one can find a
subgraph of Φ which is isomorphic to K5 or K3,3, and this would contra-
dict the assumption that Γ does not contain any of these subgraphs. To
do so, one first shows that there is a cycle Z in Φ containing the points
x,y defined above. One then makes a drawing of Φ such that there is a
maximum of faces interior to the drawing of Z . One considers the compo-
nents of the subgraph of Φ induced on the vertexes outside the drawing
of Z and then defines outer pieces as those subgraphs of Φ which are
either induced on outer components, plus the points on Z which they
are connected to, or else which are outer edges of the drawing of Z con-
necting two points of Z . Inner components and inner pieces are defined
in an analogous way. For a pair of points u,v on Z , one looks for inner
or outer pieces such that they contain points ≠ u,v on both walks on Z
(in clockwise orientation, say) between u and v . These pieces are called
(u–v)-separating.
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One can find an inner piece H and four points u0, u1, v0, v1 such that

Z = u0 . . . u1 . . . v0 . . . v1 . . . u0,

and such that H is (u0–v0)- and (u1–v1)-separating. Thus H meets the
clockwise walks u0 . . . u1, u1 . . . v0, v0 . . . v1, and
v1 . . . u0 in four points q, r , s, t, all different from u0, u1, v0, v1.
The proof now closes with an analysis of four cases of possible positions
of the points q, r , s, t on the cycle Z , and where each case yields a sub-
graph isomorphic to K5 or K3,3. This is a contradiction to the assumption
that the original graph Γ (of which Φ is a subgraph) does not contain a
subgraph isomorphic to K5 or K3,3. The details of the proof are described
in [12]. It goes back to Gabriel Andrew Dirac and Seymour Schuster, A
theorem of Kuratowski. Nderl. Akad. Wetensch. Proc. Ser. A 57, 1954.



CHAPTER 28

Differentiability

28.1 Introduction

Differentiation is probably the single most influential concept in the his-
tory of modern science. It is at the basis of virtually all of the physi-
cal theories which have changed our lives and ideas so fundamentally.
Isaac Newton’s (1643–1727) principles of mechanics and gravitation and
James Clerk Maxwell’s (1831–1897) equations of electrodynamics cannot
even be stated without differentiation as a basic language. It was indeed
Galileo Galilei (1564–1642) who recognized in his creation of mathemat-
ical physics that nature is like a book which we can only read if we learn
the language and the symbols in which it is written, and that this language
is mathematics. At Galileo’s times, this language was still not sufficiently
developed to be able to control mechanical phenomena. This discrepancy
became irritating when Galileo was performing physical experiments with
balls moving down an inclined plane, since these experiments suggested
a concept of instantaneous velocity of a body being constantly acceler-
ated. While this concept became manageable by Galileo’s experimental
access to phenomena, there was at that time no concept of instantaneous
velocity except for a constant velocity being maintained for a finite time.
In the Medieval scholastic tradition, such as described by the French sci-
entist Nicholas Oresme (1323–1382), an accelerated movement was only
conceivable as a succession of locally constant movements, so that a ball
would move down the inclined plane in step-wise portions of successively
increasing, but at every time constant, velocities.
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While Galileo’s understanding of instantaneous velocity was experimen-
tally tractable, it took a few decades more until the the problem of defin-
ing the concept of a velocity having no duration whatsoever was finally
settled. The solution came from what we now call “(infinitesimal) calcu-
lus”. It was a parallel and independent discovery by Newton (published in
detail under the title of a “fluxion method” the first time in an appendix
to his book “Opticks” 1704) and by Leibniz (in 1684, he published the first
description of the differential dx in the journal “Acta Eruditorum”, and
in 1686, in the same journal, the first description of the now (in)famous
integral sign

∫
). Although these scientists had a perfect, though some-

what mystical, intuition of what these “infinitary” concepts were about,
the first precise description of their basics was given by Jean Le Rond
d’Alembert in his article about limits in the famous “Encyclopédie” pub-
lished in 1751:

One magnitude is said to be the limit of another magnitude when
the second may approach the first within any given magnitude,
however small, though the second magnitude may never exceed
the magnitude it approaches.

This definition is not very operational, but we have already learned how
the limit of a Cauchy sequence or the continuity of a function make this
idea precise. Fortunately, the concepts of infinitesimal calculus are just
one more application of limits. Before starting with the technical discus-
sion of calculus, we should mention that the concept of a limit has also
been generalized to the end that a majority of fundamental constructions
in virtually all important fields of mathematics, such as algebra, the the-
ory of machines, differential geometry, for example, are special cases of
constructions by limits. We shall learn more about this approach, which
is also fundamental in theoretical computer science, in chapter 36.

In this section, we shall introduce the theory of differentiation of func-
tions f : U → V having domains U ⊂ Rn and codomains V ⊂ Rm in the
standard Euclidean spaces. We shall give the fundamental propositions
about such functions and thereby solve the Medieval problem of instan-
taneous velocity.

We begin with the basic definition of a limit for a given function:

Definition 188 Given a open set U ⊂ Rn and x ∈ U , let f : U −{x} → Rm

be a function defined on the punctured open set U − {x}. Given a point
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z ∈ Rm, one says that the limit of f at x is z iff for every real ε > 0 there
is a δ > 0 such that y ∈ Bδ(x) implies that f(y) ∈ Bε(z). In symbols:
limy→x f(y) = z, or: f(y)→ z if y → x.

Exercise 144 Show that the limit property of a function f from defini-
tion 188 is equivalent to the following: For every sequence (xi)i in U−{x}
which converges to x, the sequence (f (xi))i converges to z.

Observe that the limit property and its equivalent from exercise 144 is a
substitute for continuity of f in x if f were defined in x, too!

28.2 Differentiation

As we are only interested in the local behavior of functions, we first need
to make precise what it means to speak of the behavior of a function on
“arbitrary small neighborhoods” of a given argument x.

Definition 189 If f : U → Rm and g : V → Rm are two functions defined
in open neighborhoods U,V of 0 ∈ Rn, then they are called equivalent if
there is a neighborhood N ⊂ U ∩V of 0 such that f |N = g|N . This relation
is an equivalence relation, and the equivalence class [f ] of a function f is
called the germ of f (at 0).

The set F0 of germs of functions f : U → Rm with f(0) = 0 is a real
vector space as follows: (1) The sum of germs is [f ]+ [g] = [f |W + g|W ],
W = U ∩ V being the intersection of the domains U and V of f and g
representing the germs [f ] and [g], and (2) the scalar multiplication is
λ[f] = [λf].

Exercise 145 Show that the vector space structure defined on the set of
function germs F0 at 0 ∈ Rn in definition 189 is well defined.

Lemma 261 The canonical linear map LinR(Rn,Rm) → F0 : f � [f ] is
injective.

Proof According to proposition 116, chapter 15, volume 1, we have to show that
the kernel of LinR(Rn,Rm) is trivial. But [f ] = 0 means that there is an open
cube Kε(0) with f |Kε(0) = 0. Evidently the basis (ε/2 · ei)i for the canonical basis
vectors e1 = (1,0, . . .0), . . . en = (0, . . .0,1), is contained in Kε(0), therefore the
linear map f vanishes. �



40 Differentiability

Fig. 28.1. The functions f and g are in the same germ [f ] = [g], both
functions are identical on the interval delimited by the dashed vertical
lines. The third function h is not in [f ], it intersects f and g in a single
point, the origin.

This means that linear maps are determined by their germs, i.e., their
behavior in any vicinity of 0. In other words, for linear maps, local and
global behavior is the same. This is the missing link in the Medieval strug-
gle between constant and instantaneous velocity.

Proposition 262 The subset DF0 of those germs [f ] ∈ F0 such that
‖f(z)‖
‖z‖ → 0 if z → 0 is a vector subspace DF0 ⊂ F0 such that DF0 ∩

LinR(Rn,Rm) = 0.

Proof If δ > 0 is such that for two germs [f ], [g] ∈ DF0 we have ‖f(z)‖
‖z‖ < ε

2

and ‖g(z)‖
‖z‖ < ε

2 for ‖z‖ < δ, then by the triangle inequality, ‖(f+g)(z)‖‖z‖ ≤ ‖f(z)‖
‖z‖ +

‖g(z)‖
‖z‖ < ε. If for [f ] ∈ DF0 and a real number λ ≠ 0, δ > 0 is such that ‖f(z)‖

‖z‖ < ε
λ ,

for ‖z‖ < δ, then ‖(λ·f)(z)‖
‖z‖ < ε; the case λ = 0 is trivial. If f ∈ LinR(Rn,Rm)∩DF0,

then for a canonical basis vector ei and λ ≠ 0, one has ‖f(λ·ei)‖
‖λ·ei‖ = |λ|·‖f(ei)‖

|λ|‖ei‖ =
‖f(ei)‖
‖ei‖ , a constant. If λ→ 0, this must tend to 0, i.e., it is 0. Whence f(ei) = 0 for

all i. �

Definition 190 A function f : U → Rm which is defined in an open neigh-
borhood U of a point x ∈ Rn is differentiable in x, iff there is a linear
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map D ∈ LinR(Rn,Rm) such that (the germ of) ∆xf − D ∈ DF0, where
∆xf(z) = f(x + z)− f(x). By proposition 262, D is uniquely determined
and is denoted by Dfx .

The matrix of Dfx is called the Jacobian matrix of f at x, its coefficient in
the standard bases at row i and column j is denoted by ∂fi/∂xj(x).

The function f : U → V ⊂ Rm is called differentiable, iff it is dif-
ferentiable in every x ∈ U . The set of these differentiable functions is
denoted by Diff (U,V). The derivative of f ∈ Diff (U,V) is the func-
tion Df : U → LinR(Rn,Rm) : x � Dfx where the Euclidean space
LinR(Rn,Rm) is identified with Rnm as usual.

Differentiability is stronger than continuity:

Lemma 263 If f : U → Rm is differentiable in x ∈ U , then it is continuous
in x. Therefore we have Diff (U,V) ⊂ Top(U,V) for any open sets U ⊂ Rn
and V ⊂ Rm.

Exercise 146 Give a proof of lemma 263 using these facts:

1. The limit condition on ‖f(z+x)−f(x)−D(z)‖
‖z‖ implies that f(z+x)−f(x)−

D(z) is continuous at x.

2. The linear function D is continuous at x.

3. The sum of continuous functions is continuous.

4. The constant function with value f(x) is continuous.

Intuitively, differentiability of f in x does not only mean that the value
of f at x and the values of f at neighboring points x+ z around x differ
much like the linear map D(z), but also that the difference between the f
differences and the linear values “tends faster to zero” than the argument
z does. In fact, the statement ∆xf −D ∈ DF0 means

‖f(z + x)− f(x)−D(z)‖
‖z‖ → 0 if z → 0.

The classical one-dimensional case may give further evidence to what we
have defined so far. In this case, n = m = 1, LinR(R1,R1) ∼→ R and the
derivative Dfx identifies with the number f ′(x) which describes a linear
map Dfx : R → R : z � f ′(x) · z. This number is precisely the slope of
the line which is tangent to the graph of the function f : U → R in the
point (x, f (x)), see figure 28.2. In other words, we have
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f ′(x) = (pr2 ◦ Tf ◦∆)(x),

where ∆ : x � (x,1).

Fig. 28.2. The derivative f ′(x) at x is equal to the slope of the tangent
to the curve at the point (x, f (x)).

The calculation of the derivative of a function can be quite intricate. There
is however an efficient method, called chain rule, which we shall expose
in the following, to the effect that using this rule we may calculate the
derivatives of a large number of common functions. The most elegant
formulation of the chain rule requires a tiny extra effort, but we contend
that it is worth the reward which we shall draw from it. Coming back to
the derivative Df : U → LinR(Rn,Rm) of a function, the meaning of the
derivative is somewhat hidden in this form. In fact, the meaning of dif-
ferentiability is that we may not only consider values f(x + z) but also
values of the linear map Dfx(z). So we are dealing with two arguments:
x and z, and with two values, f(x) and Dfx(z). This entails a natural re-
statement of the derivative: For any open set U ⊂ Rn, the tangent bundle
over U is the Cartesian product TU = U ×Rn. An element (x, t) ∈ TU is
called a tangent of U at x.

Definition 191 Given f ∈ Diff (U,V) as above, the tangent map of f is
defined by

Tf : TU → TV : (x, t)� Tf(x, t) = (f (x),Dfx(t)).
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This means that for a fixed x ∈ U , the map t � Dfx(t) is linear from the
fiber {x} ×Rn to the fiber {f(x)} ×Rm.

Here is the famous chain rule in terms of tangent bundles.1

Proposition 264 Given differentiable functions f ∈ Diff (U,V) and g ∈
Diff (V ,W), their (usual set-theoretic) composition g ◦ f is differentiable
and we have

T(g ◦ f) = Tg ◦ Tf .
In other words, if (x, t) ∈ TU , then D(g ◦ f)x(t) = (Dgf(x) ◦Dfx)(t), or

D(g ◦ f)x = Dgf(x) ◦Dfx,

the classical chain rule statement. Moreover, T IdU = IdTU .

Proof Observe that for a linear map l : Rn → Rm, there is a constant λ ≥ 0 such
that ‖l(x)‖ ≤ λ ·‖x‖. In fact, taking the canonical basis (ei)i of Rn, if x =∑i ξi ·
ei, we have ‖l(x)‖ = ‖∑i ξi · l(ei)‖ ≤

∑
i |ξi| · ‖l(ei)‖. Let λ = n ·maxi(‖l(ei)‖).

Then we have
∑
i |ξi| · ‖l(ei)‖ ≤ λ

n
∑
i |ξi| ≤ λ

n
∑
i ‖x‖ = λ · ‖x‖. Now consider

these functions:

φ(t) = f(x + t)− f(x)−Dfx(t),
ψ(t) = g(f(x)+ t)− g(f(x))−Dgf(x)(t),
σ(t) = g(f(x + t))− g(f(x))−Dgf(x)(Dfx(t)),

with
‖φ(t)‖
‖t‖ → 0 and

‖ψ(t)‖
‖t‖ → 0

for t → 0. We have to show that also ‖σ(t)‖
‖t‖ → 0 if t → 0. But

σ(t) = g(f(x + t))− g(f(x))−Dgf(x)(Dfx(t))
= g(f(x + t))− g(f(x))−Dgf(x)(f (x + t)− f(x)−φ(t))
= ψ(f(x + t)− f(x))+Dgf(x)(φ(t)).

So now, by the above limitation for linear maps, there exists a λ ≥ 0 with
‖Dgf(x)(s)‖ ≤ λ · ‖s‖, and therefore

‖σ(t)‖
‖t‖ ≤ ‖ψ(f(x + t)− f(x))‖

‖t‖ + ‖Dgf(x)(φ(t))‖‖t‖
≤ ‖ψ(f(x + t)− f(x))‖

‖t‖ + ‖φ(t)‖‖t‖ · λ.

1 This is a modern statement of so-called functorial character, i.e., the construc-
tion U � TU “commutes with the composition of differentiable functions”. We
shall discuss functoriality in a precise way in chapter 36. Check that we have
quite often encountered functorial behavior in previous chapters!
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So the second term tends to 0 if t → 0. As to the first term, we know that
‖ψ(f(x + t) − f(x))‖ ≤ ‖f(x + t) − f(x)‖ · ε if ‖f(x + t) − f(x)‖ < δ′ for
an adequate δ′ > 0. Since f is continuous at x by lemma 263, there is a δ > 0
such that ‖t‖ < δ implies ‖f(x + t) − f(x)‖ < δ′. Therefore, ‖t‖ < δ implies
‖ψ(f(x+t)−f(x))‖

‖t‖ < ε, and we are done. �

Exercise 147 Show that in the one-dimensional case of proposition 264,
we have the well-known chain rule

(g ◦ f)′(x) = g′(f (x)) · f ′(x).

The chain rule applies in this sense: If one is given a function which can be
written as a composition of functions whose derivatives are known, then
the chain rule allows the calculation of the derivative of the composed
function.

Sorite 265 If U ⊂ Rn and V ⊂ Rm, then we have a canonical bijection
T(U × V) ∼→ TU × TV : ((u,v), (t, s)) � ((u, t), (v, s)), which we use
without special mention in the following statements:

(i) If f1 : U1 → V1 and f2 : U2 → V2 are differentiable, then so is f1×f2,
and we have T(f1 × f2) = Tf1 × Tf2.

(ii) The projections prU : U × V → U and prV : U × V → V are dif-
ferentiable, and we have TprU = prTU and TprV = prTV , where
prTU : TU × TV → TU and prTV : TU × TV → TV are the canonical
projections of the tangent bundles.

(iii) If f : U → V and g : U → W are differentiable, then so is the
universal map (f , g) : U → V×W , and we have T(f , g) = (Tf , Tg),
the universal map of the tangent maps.

(iv) If f : U → V is constant in a neighborhood of x ∈ U , then Dfx = 0.

(v) If f : U → V is the restriction of a linear map f = L|U , then Df(x) =
L for all x ∈ U .

(vi) The product function µ : R2 → R : (x,y) � x · y is differentiable
and we have Dµ(x,y) = (y,x).

(vii) If f , g : U → Rm are differentiable, then so is f · g : U → R :
u � (f (u), g(u)), the standard scalar product (see volume 1, exer-
cise 122), and for u ∈ U , we have D(f · g) = f τ · Dg + gτ · Df ,
the latter evaluating to the product of matrixes at each argument
u ∈ U . In particular, if m = n = 1, we have the classical product
rule for derivatives of functions, i.e., (f · g)′ = f · g′ + g · f ′.
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(viii) If f , g ∈ Diff (U,R), and if for u ∈ U , g(u) ≠ 0, then f/g : W →
R : u� f(u)/g(u) is defined in a neighborhood W of u, is differen-
tiable in u, and we have

D(f/g)u = g(u)Dfu − f(u)Dgu
g(u)2

.

Proof Claim (i): The Cartesian product f1 × f2 at a point (x1, x2) such that fi
is differentiable at xi for i = 1,2, involves two functions φi(ti) = fi(xi + ti) −
f(xi)−Dfxi(ti). We know that ‖φi(ti)‖

‖ti‖ → 0 for ti → 0. Therefore, for ε > 0, there
is δ > 0 such that ‖xi‖ < δ implies ‖φi(ti)‖ < ‖ti‖ · ε2 . But then

‖(φ1(t1),φ2(t2))‖
‖(t1, t2)‖ ≤ ‖t1‖

‖(t1, t2)‖ ·
ε
2
+ ‖t2‖
‖(t1, t2)‖ ·

ε
2
< ε.

But this means that the coordinatewise derivatives yield the derivative of the
Cartesian product, whence the claim (i).

Claim (v) is an easy exercise.

Claim (ii) is a special case of (v) since projections are linear.

Claim (iii) results from the fact that (f , g) = (f × g) ◦∆, where ∆U : U → U ×U :
x � (x,x) is the linear diagonal map, so, by the chain rule and claim (v), we have
T(f , g) = (Tf × Tg) ◦∆TU = (Tf , Tg).
Claim (iv) is clear, and (vi) is an easy exercise.

Claim (vii) results from the decomposition

f · g : U
(f ,g)
�→ Rm ×Rm µm

�→ Rm
+
�→ R,

where µm is the m-fold Cartesian product of the product map µ, and where +
is the linear sum map (xi) �

∑
i x. In fact, we then apply the chain rule and the

statements (iii), (v), and (vi).

As to the last claim (viii), if f/g is differentiable, we have f = g · f/g, and the
formula from claim (vii) yields the formula in (viii). So we have to test its validity
in the definition of differentiability. This is a routine calculation and is left to the
reader. �

This powerful sorite allows us to differentiate a large number of func-
tions. But we first need to consider derivatives of the single most impor-
tant function of mathematics, exp, together with its “satellites” cos and
sin:

Proposition 266 The functions exp, cos, sin : R → R are differentiable on
all of R and we have exp′ = exp, cos′ = − sin and sin′ = cos.
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Proof We have

exp(x + t)− exp(x)− exp(x) · t
t

= exp(x)
exp(t)− 1

t
− exp(x).

So it suffices to prove exp(t)−1
t → 1 for t → 0. Now, exp(t)−1

t = 1 + t
2! + t2

3! + . . .,
which clearly tends to 1 as t → 0. As to the derivative of sin, observe that by the
power series representation of sin and cos in proposition 257, we have cos(t)−1

t →
0, sin(t)

t → 1 as t → 0. Now, using the addition theorem for the sine function, we
get

sin(x + t)− sin(x)
t

= sin(x) · cos(t)− 1
t

+ cos(x)
sin(t)
t

,

which converges to cos(x) as t → 0, therefore sin′ = cos. Since we have cos(x) =
sin(x + π

2 ), the chain rule yields cos′ = − sin. �

Here is a list of derivatives whose calculation we leave as an exercise.

Exercise 148 Examples of derivatives of functions calculated by use of
the above rules.

1. For an integer n, if f(x) = xn then f ′(x) = nxn−1. More precisely:
If n = 0, then f is constant and f ′ is the zero function on all of R. If
n < 0, then f(x) is not defined at x = 0, but the formula is valid for
all other arguments. Give a proof of this statement by induction on
n > 0 and using proposition 264 and sorite 265.

2. Let f(x) be the real function associated with a polynomial f(X) =∑n
i=0 aiXi. Then the derivative f ′(x) is the function associated with

the polynomial f ′(X) =∑n
i=1 iaiXi−1.

3. For a positive basis number a ≠ 1, we have exp′a = log(a) · exp.

4. Let f(x) = x
1
p , p �= 0, x > 0. Use the chain rule and the fact that

(x
1
p )p = x to show that f ′(x) = 1

px
1
p−1, in particular, (

√
x)′ = 1

2
√
x .

5. Use the chain rule to show that log′(x) = 1
x , for x > 0.

6. Let f(x) = xr , r �= 0, x > 0. Use the chain rule and the fact that
xr = er log(x) to show that f ′(x) = rxr−1.

Refer to [7] for derivatives of frequently occurring functions.

Exercise 149 Define the domains and calculate the derivatives of these
functions:

1. f(x,y, z) = xz



28.2 Differentiation 47

2. f(x,y) = cos(xy)

3. f(x,y) = det

(
cos(x) sin(y)
−2x2 y · cos(3x)

)

4. f(x,y) =
(

2 5
−2 3

)
·
(
y2

x3

)
·

Example 106 Consider the function f : U → R3 : (x,y)� (x,y,g(x,y)),
where

g(x,y) = 3+
√

1− 1
4
x2 −y2,

and choose U = {(x,y) ∈ R2 : 1
4x

2 − y2 ≤ 1}, i.e., an ellipse two units
long and one unit wide. This choice of U ensures that the square root
in g always yields real numbers. The graph of f is the upper half of an
ellipsoid, see figure 28.3.

Calculate the Jacobian matrix of f at x by applying the chain rule for the
differentiation of g: Writing g as g = s ◦ t, where t(x,y) = 1− 1

4x
2 −y2,

and s(z) = 3+√z results in

Dg(x,y) =
⎛⎝−1

4
x√

(1− 1
4x2 −y2)

,− y√
(1− 1

4x2 −y2)

⎞⎠ ,
since

Dt(x,y) =
(
−1

2
x,−2y

)
and

Dsz = 1
2
z−

1
2 .

Therefore, the differential of f at (x,y) is:

Df(x,y) =

⎛⎜⎜⎝
1 0
0 1

−1
4

x√
(1− 1

4x2−y2)
− y√

(1− 1
4x2−y2)

⎞⎟⎟⎠
This enables the calculation of the tangential plane at any point of the
ellipsoid: Select a point p = (x,y) ∈ U and a vector t ∈ R2. Calculate the
image pE of p on the ellipsoid, pE = (x,y,g(x,y)). Now use the tangent
map Tf to get the tangent Dfp(t)). To make this example concrete, as-
sume p = (1.4,0.3), and t = (−0.5,0.1). Then pE ≈ (1.4,0.3,3.64807),
and the Jacobian matrix is
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Fig. 28.3. Tangential plane at a point on the ellipsoid from example 106.

Dfp ≈

⎛⎜⎜⎝
1 0
0 1

−0.540062 −0.46291

⎞⎟⎟⎠ ,
so

Dfp(t) ≈

⎛⎜⎜⎝
1 0
0 1

−0.540062 −0.46291

⎞⎟⎟⎠
(
−0.5
0.1

)
≈

⎛⎜⎜⎝
−0.5
0.1

0.22374

⎞⎟⎟⎠ .
The tangent calculated here is the vector starting at pE and ending at
pE +Dfp(t).
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The derivative Df : U → LinR(Rn,Rm)
∼→ Rnm is a function which may

again be differentiable. We write D2f = D(Df) in that case. More gener-
ally, for r ∈ N, we define Drf , if it exists, recursively by D0f = f and
Dr+1f = D(Drf), and call Drf the r -th derivative of f . We may also
recursively extend the tangent operator f � Tf to higher powers if the
r -th derivative of the involved functions exists, by T rf = T(T r−1f).

Exercise 150 Show that if the functions f : U → V and g : V → W are r
times differentiable, then we have T r (g ◦ f) = T rg ◦ T rf .

Definition 192 For open sets U ⊂ Rn and V ⊂ Rm, the set of functions
f : U → V such that all derivatives Dsf for s = 0,1, . . . r exist and are con-
tinuous (check that this is always the case if they exist, except for the last
derivative Drf ), is denoted by Cr (U,V). Such a function is called r times
continuously differentiable. In particular, C0(U,V) = Top(U,V), and
Diff (U,V) ⊂ C1(U,V). The set

⋂
r=0,1,... Cr (U,V) is denoted by C∞(U,V),

and its elements are called C∞ functions. C1 functions are also called con-
tinuously differentiable.

Example 107 All polynomial functions as well as exp, sin, and cos are
C∞ functions.

The function

f(x) =
⎧⎨⎩ x2 if x ≥ 0,

−x2 if x < 0

is continuous on R. Its derivative exists, is continuous, and is defined by

f ′(x) =
⎧⎨⎩ 2x if x ≥ 0,

−2x if x < 0.

The second derivative f ′′, however, does not exist at x = 0, where there
is a jump from −2 to 2. Therefore f is in C1, but not in C2.

Let us close with the very important mean value theorem.

Proposition 267 (Mean Value Theorem) If for real numbers a < b, a
function f :

[
a,b

] → R is continuous and also differentiable in
]
a,b

[
,

then there is a point x ∈ ]
a,b

[
such that f ′(x) = f(b)−f(a)

b−a .

Proof Replacing f(x) by g(x) = f(x)− f(b)−f(a)
b−a (x−a), we have g(a) = g(b) =

f(a). If we can prove the proposition for g, we find a ξ ∈ ]a,b[ with g′(ξ) = 0.
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But g′(x) = f ′(x) − f(b)−f(a)
b−a . Whence f ′(ξ) = f(b)−f(a)

b−a , and we are done. So
suppose that f(a) = f(b). If f is constant, everything is clear. If not, then the
closed interval f(

[
a,b

]
), image of the compact set

[
a,b

]
under the continuous

map f according to proposition 245, has a maximum or a minimum ≠ f(a) for
an argument ξ ∈ ]a,b[. Suppose that it is a maximum, the minimum case works
alike. Then suppose that f ′(ξ) > 0 (the case f ′(ξ) < 0 is similar). Then there is
δ > 0 such that 0 ≤ t < δ implies |f(ξ+ t)−f(ξ)− t ·f ′(ξ)| < t ·f ′(ξ). But this
means that f(ξ + t) > f(ξ), a contradiction. So taking x = ξ yields f ′(x) = 0. �

Fig. 28.4. Mean value theorem.

28.2.1 Partial Derivatives

The existence of the derivative of a function is not evident in general, but
there is an important additional information that gives necessary and
sufficient conditions for the existence of derivatives. This information is
provided by partial derivatives. The idea is completely natural: In order
to understand the behavior of a function f on an open set U ⊂ Rn, one
does not evaluate the function at every point of U but rather considers
the restriction of f to special curves ci : Ui → U defined on open sets
Ui ⊂ R. Under good conditions for these restrictions, we can tell a lot
about the original function f . Here is the technical setup:

Lemma 268 If U ⊂ Rn is an open set, if j = 1,2, . . . n is an index, and if

α = (α1, α2, . . . , αj−1, αj+1, . . . αn) ∈ Rn−1,
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then the set Uαj = {x | x ∈ R, (α1, α2, . . . , αj−1, x,αj+1, . . . αn) ∈ U} is
open. The curve uαj : Uαj → U : x � (α1, α2, . . . , αj−1, x,αj+1, . . . αn) is an
injective C∞ function.

Proof Since open sets in Rn are unions of open cubes Kε(x), the set Uαj is clearly
open. The curve uαj is an injection, and we have

uαj (x) = (α1, α2, . . . , αj−1,0, αj+1, . . . αn)+ x · ej ,

i.e., the sum of a constant and a linear function, so by sorite 265, the curve is
C∞, since constants, addition, and linear functions are so. �

If f : U → V , and if j,α are as in lemma 268, then we may consider
the compositions α

jf = f ◦ uαj : Uαj → V . If α
jf is differentiable in x ∈

Uαj , we have the derivative Dαj f(x), which is denoted by Djf(a) with
a = (α1, α2, . . . , αj−1, x,αj+1, . . . αn) ∈ U . This is called the j-th partial
derivative of f in a. Often, if the j-th variable is known by the name v ,
say, then one writes Dvf(a) instead of Djf(a).

Proposition 269 A function f : U → V , U ⊂ Rn, V ⊂ Rm open, with com-
ponent functions fi, for i = 1, . . .m, is continuously differentiable iff all
partial derivatives Djfi, j = 1, . . . n, exist and are continuous. For x ∈ U ,
we then have Djfi(x) = ∂fi/∂xj(x), i.e., the coefficients of the Jacobian
matrix of f are the partial derivatives of the component functions.

Proof By sorite 265, f is C1 if the components fi are so. If these are C1, then by
lemma 268, the partial derivatives Djf i exist and are continuous. Moreover, the
derivative of a curve uαj is the column vector eτj . Therefore, by the chain rule,
for x ∈ U , the entry ∂fi/∂xj equals Djfi(x). The converse, i.e., that f is C1 if its
partial derivatives are all continuous, follows by a standard estimation using the
mean value theorem 267 and then calculating the difference f(x + t)− f(x) by
a decomposition

f(x + t)− f(x) = (f (x + t)− f(x + tn−1))+
(f (x + tn−1)− f(x + tn−2))+ . . . (f (x + t1)− f(x)),

where the step vector t = (t1, t2, . . .) is replaced by a sequence of step vectors
t1 = (t1,0, . . .0), t2 = (t1, t2,0 . . .0), . . . tn−1 = (t1, t2, . . . tn−1,0). Thereby, each
successive difference f(x + ti) − f(x + ti−1) has a difference in its arguments,
which relates only to one coordinate i. To the above decomposition, one then
applies the mean value theorem for the partial derivatives in the i-th coordinates
and estimates the total difference. We leave the details as an exercise. �
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Example 108 Consider the function f from R2 to R2 defined by

f(x,y) =
(

cos
(
x
2

)
+y − 1

2
, x − sin(y)+ 1

2

)
.

Fig. 28.5. The mapping f(x,y) = (cos( x2 )+y − 1
2 , x − sin(y)+ 1

2 ) from
R2 to R2.

The transformation defined by f is illustrated in figure 28.5. Here the
grid on the left side, consisting of lines parallel to the axes through x =
−2,−1,0,1,2 and y = −2,−1,0,1,2 respectively, is transformed to the
corresponding curves on the right side. The origin (0,0) is mapped to
(1

2 ,
1
2), the unit rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, shown in light gray, is

mapped to the corresponding patch, and the point (1,1) is mapped to the
corresponding point ( 1

2 + cos(1
2),

3
2 − cos(1)). If, in addition, we consider

the axes m and n and their images by f , it is obvious that the mapping
also changes orientation.

The Jacobian matrix of f at (x,y) is

Df(x,y) =
(
−1

2 sin(x2 ) 1
1 − cos(y)

)
.

Its determinant, also simply called Jacobian, is

det(Df(x,y)) = 1
2

cos(y) sin
(
x
2

)
− 1.

Partial derivatives are useful in giving necessary conditions for maxima
or minima of functions:

Proposition 270 If a differentiable function f : U → R has a maximal or
minimal value at x ∈ U , then Djf(x) = 0 for all j.
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Proof We know from the proof of the mean value theorem 267 that a maximal
or minimal value f(x) of a continuous function f :

[
a,b

] → R, which is differ-
entiable in the interior

]
a,b

[
, has f ′(x) = 0 at an interior point x ∈ ]a,b[. Now,

the partial derivative Djf is the derivative of the composition of f with a curve
uαj , and therefore that argument applies. �

Attention, the conditions of proposition 270 are not sufficient for a max-
imum, as is shown by the example f(x,y) = x2 − y2. Its first partial
derivatives are Dxf(x,y) = 2x − y2 and Dyf(x,y) = x2 − 2y . At
(x,y) = (0,0) the said conditions are fulfilled, however f has neither
maximum nor minimum, but a so-called saddle point at this value, see
figure 28.6.

0

0

0

s

Fig. 28.6. The graph of f(x,y) = x2−y2. At the saddle point s = (0,0),
Dxf(s) = 0 andDyf(s) = 0, but s is neither a maximum nor a minimum.

28.3 Taylor’s Formula

We have defined the exponential function exp(z) = ∑∞
k=0

zk
k! as a conver-

gent series limiting the sequence en(z) =
∑n
k=0

zk
k! of polynomial func-
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tions en(z) of the complex variable z. Taylor’s formula inverses this fact:
it provides us with the representation of quite general functions of a real
variable as limits of polynomial functions. The special form of such rep-
resentation is motivated by this observation: Let f = ∑n

k=0 akXk be a
polynomial f ∈ R[X]. The polynomial function f : R → R : x � f(x) is
in C∞(R), and we have Dkf(0) = k!ak for k = 0,1, . . . n. This means that

f(x) =
n∑
k=0

Dkf(0)
k!

xk.

In other words, the polynomial function is represented by an expression,
whose coefficients are determined from calculus: they are derivatives of
the given function and do not directly refer to its polynomial character!
Comparing this result to the representation exp(x) = ∑∞

k=0
xk
k! , x ∈ R,

we recognize that the coefficient of the k-th power of x is also Dkf(0)
k!

with f = exp, in view of the fact that Dk exp = exp and exp(0) = 1.
So the conjecture is that under adequate conditions, any differentiable
function f should admit a representation f(x) = ∑∞

k=0
Dkf(0)
k! xk. This is

the famous Taylor expansion, which we shall now discuss in more detail.

To begin with, we generalize the reference argument x = 0 in the above
evaluation of the derivatives to a general x0 and then obtain the expres-
sion g(h) = f(x0 + h) for h ∈ R. Then by applying the chain rule (exer-
cise 147), Dkg(0) = Dkf(x0). Therefore,

f(x0 + h) =
n∑
k=0

Dkf(x0)
k!

hk,

or, setting x = x0 + h,

f(x) =
n∑
k=0

Dkf(x0)
k!

(x − x0)k.

In this form, suppose that f ∈ C∞(I), where I = ]
a,b

[
is an open interval

in R. Then for x0 ∈ I and n ∈ N, the n-th Taylor polynomial of f in x0 is
the polynomial function

Taylornx0
f(x) =

n∑
k=0

Dkf(x0)
k!

(x − x0)k.

The only critical point is to investigate the conditions under which the
n-th remainder
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Rn(x − x0) = f(x)− Taylornx0
f(x)

converges to zero. If we have convergence, we obtain Taylor’s formula

f(x) = Taylorx0
f(x) =

∞∑
k=0

Dkf(x0)
k!

(x − x0)k.

There are several useful formulas for the n-th remainder, one of which is
particularly elegant:

Proposition 271 Let f ∈ C∞(I) as above, then there is ρ ∈ ]
0,1

[
such

that

Rn(x − x0) = 1
(n+ 1)!

Dn+1f(x0 + ρ(x − x0))(x − x0)n+1.

For the Taylor polynomial we therefore have

f(x) = f(x0)+Df(x0)(x − x0)+ 1
2!
D2f(x0)(x − x0)2 + . . .

+ 1
n!
Dnf(x0)(x − x0)n

+ 1
(n+ 1)!

Dn+1f(x0 + ρ(x − x0))(x − x0)n+1.

Proof Consider the C∞-function in the closed interval
[
x0, x

]

∆(z) = f(x)− f(z)−Df(z)(x − z)− 1
2!
D2f(z)(x − z)2 − . . .

− 1
n!
Dnf(z)(x − z)n − 1

(n+ 1)!
· d · (x − z)n+1.

for a constant d, which is chosen such that ∆(x0) = 0. Then we have ∆(x0) =
∆(x) = 0. Therefore, by the mean value theorem 267, there is 0 < ρ < 1 such
that for δ = x0 + ρ(x − x0), we have ∆′(δ) = 0. But

∆′(z) = − 1
n!
Dn+1f(z)(x − z)n + 1

n!
· d · (x − z)n,

and therefore d = Dn+1f(δ). �

In other words, we have a finite Taylor formula under the condition that
the last term takes the derivative of f not exactly at x0, but somewhere
between x0 and x.

There are several propositions which guarantee the zero convergence of
the remainder. We shall present a frequently used criterion here, see [14]
for more refined criteria:
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Lemma 272 If f ∈ C∞(I) and there are positive real constants A,B such
that for all x ∈ I and all n ∈ N, we have

|Dnf(x)| ≤ A · Bn

then the Taylor formula representation f(x) = Taylorx0
f(x) holds for all

x ∈ I.
Proof By proposition 271, we have to show that the remainder term

Rn(x) = 1
(n+ 1)!

Dn+1f(x0 + ρ(x − x0))(x − x0)n+1

tends to zero as n→∞. But the supposed estimation implies

|Rn(x)| ≤ A · (B|x − x0|)n+1

(n+ 1)!
,

which converges to 0, as we know. �

Example 109 We look at the first Taylor polynomials in 0 of the function

f(x) = cos(x)+ sin(2x).

Derivatives of f must be calculated first:

D0f(x) = f(x),
D1f(x) = − sin(x)+ 2 cos(2x),

D2f(x) = − cos(x)− 4 sin(2x),

D3f(x) = sin(x)− 8 cos(2x),

D4f(x) = cos(x)+ 16 sin(2x).

For the Taylor expansion of f in 0, these derivatives must be evaluated
at 0:

D0f(0) = 1,

D1f(0) = 2,

D2f(0) = −1,

D3f(0) = −8,

D4f(0) = 1.

Now the Taylor polynomials, according to the Taylor formula, can be cal-
culated:
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Taylor0
0f(x) = t0 =

1
0!
,

Taylor1
0f(x) = t1 =

1
0!
+ 2

1!
x,

Taylor2
0f(x) = t2 =

1
0!
+ 2

1!
x + −1

2!
x2,

Taylor3
0f(x) = t3 =

1
0!
+ 2

1!
x + −1

2!
x2 + −8

3!
x3,

Taylor4
0f(x) = t4 =

1
0!
+ 2

1!
x + −1

2!
x2 + −8

3!
x3 + 1

4!
x4.

Thus, evaluating, t0 = 1, a constant function and t1 = 2x + 1, an affine
function. Further, t2 = −1

2x
2 + 2x + 1, t3 = −4

3x
3 − 1

2x
2 + 2x + 1 and

t4 = 1
24x

4 − 4
3x

3 − 1
2x

2 + 2x + 1.

The polynomials t1 to t4, and further ones up to t10, are shown in fig-
ure 28.7. The backmost curve is the exact function f .

Fig. 28.7. At the back is the function f(x) = cos(x) + sin(2x). From
front to back, t1 to t10 are increasingly exact Taylor approximations of
f . The straight line in the middle indicates that all curves have the value
1 at 0.
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Inverse and Implicit Functions

29.1 Introduction

If a function f : U → R defined on U ⊂ R is continuously differentiable
and has f ′(x) > 0 for a point x ∈ U , then by continuity of f ′, f ′(y) > 0
for all y in an open ball Uε(x) around x. Therefore, by the mean value
theorem 267, if y1 and y2, with y1 < y2, are in Uε(x), then there is a z
with y1 < z < y2, such that f(y2)−f(y1) = f ′(z)(y2−y1), thus f(y1) <
f(y2), and f is injective on Uε(x). Its image f(Uε(x)) is evidently also
an open interval, and there is an inverse function f−1 : f(Uε(x))→ Uε(x)
(see figure 29.1).

Suppose that f−1 is differentiable. Then, if y = f(x), x = f−1(y), and,
since f−1(f (x)) = x, we have

(f−1(f (x)))′ = (x)′
(f−1)′(f (x)) · f ′(x) = 1,

by the chain rule, therefore,

(f−1)′(f (x)) = 1
f ′(x)

,

and finally, replacing x by f−1(y) again,

(f−1)′(y) = 1
f ′(f−1(y))

,

for y ∈ f(Uε(x)). The existence of the derivative is easily proved from
its very definition.
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Fig. 29.1. The inverse function f−1 (in gray) of f (black) on the interval]
a,b

[
.

29.2 The Inverse Function Theorem

The inverse function theorem is the generalization of this fact to n-
dimensional continuously differentiable maps. It is easy to guess that
the role of the slope f ′(x) will be played by the Jacobian matrix, and the
fact that the slope is non-zero carries over to the fact that the Jacobian
matrix is invertible. We only need a single and easy technical lemma to
deal with the general case:

Lemma 273 Let K = [
a1, b1

] × [
a2, b2

] × . . . [an, bn] be a closed cube in
Rn. Suppose that a function f = (f1, . . . fn) : K → Rn is continuous and its
restriction f |Ko to the open cube Ko = ]

a1, b1
[ × ]

a2, b2
[ × . . . ]an, bn[ is

continuously differentiable such that there is a number L with |Djfi(x)| ≤
L for all x ∈ Ko. Then for all x,y ∈ K, we have ‖f(x)−f(y)‖ ≤ n2L‖x−
y‖.
Proof For x = (x1, . . . xn),y = (y1, . . . yn) ∈ K, and for any index i, we have

fi(y)− fi(x) =
∑

j=1,...n
(fi(y1, . . . yj , xj+1, . . . xn)− fi(y1, . . . yj−1, xj , . . . xn))

and then, by the mean value theorem 267 on each coordinate,

∣∣fi(y1, . . . yj , xj+1, . . . xn)−fi(y1, . . . yj−1, xj , . . . xn)
∣∣ = ∣∣yj −xj∣∣ ·∣∣Djfi(wij)

∣∣
for some vector wij . Supposing

∣∣Djfi(x)∣∣ ≤ L, we get
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∣∣fi(y)− fi(x)∣∣ ≤∑
j

∣∣yj − xj∣∣ · L ≤ n‖x −y‖L
and therefore

∣∣f(x)− f(y)∣∣ ≤∑
i

∣∣fi(y)− fi(x)∣∣ ≤ n2‖x −y‖L.

�

Proposition 274 (Inverse Function Theorem) Let f ∈ C1(U,V) for two
subsets U,V ⊂ Rn. Suppose that det(Df(x)) ≠ 0 for a point x ∈ U . Then
there is an open set O with x ∈ O such that W = f(O) is open, f |O is
bijective onto W and (f |O)−1 ∈ C1(W,O). In particular, f |O is an open
map (i.e., images of open sets Q ⊂ O are open), and its inverse is open.

Proof Suppose that we found open sets O and W as claimed. Then by the chain
rule, since the inverse f−1 has inverse Jacobian matrixes, the determinants of the
Jacobian matrixes must be invertible on all x ∈ O. Therefore the theorem applies
to any of these points, and the map and (mutatis mutandis the arguments) its
inverse are open.

To begin with, the theorem is trivially true for affine automorphisms of Rn,
where the Jacobian matrix is the linear part of those automorphisms. So we may
assume from the beginning that a = f(a) = 0, and that the Jacobian matrix at
the origin is Df0 = Id. Now, suppose f(h) = f(0) = 0. Then ‖f(h)−f(0)−Id(h)‖

‖h‖ = 1,

but we also have ‖f(h)−f(0)−Id(h)‖
‖h‖ → 0 if ‖h‖ → 0. So f(h) ≠ f(0) for all h

in a closed cube K(0) around 0. Choosing a sufficiently small K(0), we may
also assume that det(Dfx) ≠ 0, and that |Djfi(x) − Djfi(0)| < 1

2n2 for all
i and j and all x ∈ K(0), since the partial derivatives are continuous func-
tions. Applying lemma 273 to k = f − Id, and using the inequality |Djk(x)| =
|Djfi(x)−Djfi(0)| < 1

2n2 , one sees that

‖k(x)− k(y)‖ = ‖f(x)− x − (f (y)−y)‖ ≤ 1
2‖x −y‖

for x,y ∈ K(0), and, because ‖x−y‖−‖f(x)−f(y)‖ ≤ ‖f(x)−x−(f (y)−y)‖,
we get

‖x −y‖ ≤ 2‖f(x)− f(y)‖
for any x,y ∈ K(0). Further, since f is continuous, the image f(∂K(0)) of the
compact set ∂K = K(0)−K(0) is compact and disjoint from 0 = f(0). Therefore,
there is δ > 0 such that ‖f(x)‖ ≥ δ for all x ∈ ∂K(0). Clearly then ‖y−f(x)‖ >
‖y − f(0)‖ = ‖y‖ for all y ∈ Bδ/2(0) and x ∈ ∂K(0). Now we show that for
every y ∈ Bδ/2(0), there is a unique x ∈ K(0) such that y = f(x). In fact,
consider the function u : K(0) → R : x � ‖y − f(x)‖2. This is a continuous
function with a minimum on the compact set K(0). But since on x ∈ ∂K(0), we
have ‖y − f(x)‖2 > ‖y‖2, the minimum occurs not on ∂K(0). Therefore the
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minimum x occurs in the open cube K(0), and there, by proposition 270, all
partial derivatives Dju(x) of u vanish. But this means that∑

i
2(yi − fi(x)) ·Djfi(x) = 0,

for all j. But the Jacobian matrix is invertible, i.e., we have yi = fi(x) for all i,
i.e., y = f(x). But we know that ‖x−y‖ ≤ 2‖f(x)−f(y)‖ for any x,y ∈ K(0),
so the x is unique. Therefore, in the intersection V = K(0) ∩ f −1(Bδ/2), there is
an inverse function f−1, and, again, by rewriting ‖x − y‖ ≤ 2‖f(x) − f(y)‖ as
‖f−1(w)− f−1(z)‖ ≤ 2‖w − z‖, we see that f−1 : W = K(0)→ V is a continuous
inverse of f : V → W . So we are left with the proof that f −1 is differentiable. Take
M = Df(x) for x ∈ V . It must be shown that for y = f(x), Df−1(y) = M−1. We
set φ(t) = f(x + t)− f(x)−Dfx(t) with ‖φ(t)‖

‖t‖ → 0 for t → 0. This implies

M−1(f (x + t)− f(x)) = t +M−1(φ(t)).

But since f is a bijection between V and W , setting s = f(x + t) − f(x), this
equation may be rewritten as

M−1(s) = f−1(y + s)− f−1(y)+M−1(φ(f−1(y + s)− f−1(y))),

whence we must prove that

‖M−1(φ(f−1(y + s)− f−1(y)))‖
‖s‖ → 0

for s → 0. But we know from the proof of proposition 264 that for the linear map
M : Rn → Rn, there is a constant λ ≥ 0 such that ‖M(x)‖ ≤ λ · ‖x‖. Therefore
we only have to show that

‖φ(f−1(y + s)− f−1(y))‖
‖s‖ → 0

for s → 0. But we have

‖φ(f−1(y+s)−f−1(y))‖
‖s‖ = ‖φ(f−1(y+s)−f−1(y))‖

‖f−1(y+s)−f−1(y)‖ · ‖f−1(y+s)−f−1(y)‖
‖s‖ ,

where the second factor is less than 2 by the above estimation ‖f −1(w) −
f−1(z)‖ ≤ 2‖w − z‖, and the first factor tends to zero as s → 0, since then
also φ(f−1(y + s) − f−1(y)) tends to 0 by the continuity of f−1 and by the
defining property of φ. �

Exercise 151 Consider the function f : R2 → R2 : (x,y)� (x2−y2, x2+
y2). Discuss its behavior at the origin x = (0,0) and the failure of the
claim in proposition 274.

Example 110 The function f(x) = x3 is a bijection on R, but f ′(0) = 0,
and the inverse f−1(x) = 3

√
x is not differentiable in x = 0.
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Bijections f ∈ Cr (O,W) between open sets O,W ⊂ Rn such that their in-
verse maps f−1 are in Cr (W,O) are called Cr -diffeomorphisms, or simply
diffeomorphisms, if r is clear. Diffeomorphisms play the role of “isomor-
phisms” in differential calculus. The inverse function theorem guarantees
the local existence of diffeomorphisms for non-vanishing Jacobians.

Corollary 275 If f : U → V is a continuously differentiable bijection be-
tween open sets of R such that f ′(x) ≠ 0 for all x ∈ U , then f is a
C1-diffeomorphism.

Proof By the proposition 274, f has its inverse which is C1 in a neighborhood
of every x ∈ U . So f−1 is C1. �

Example 111 The exponential function exp : R
∼→ R∗+ and its inverse

function log : R∗+
∼→ R are C∞-diffeomorphisms.

Example 112 The restriction sin :
]−π2 , π2 [ ∼→ ]−1,1

[
is a C∞-diffeomor-

phism, whose inverse is denoted by arcsin (figure 29.2). The chain rule
yields arcsin′(x) = 1√

1−x2 . Similarly, the restriction cos :
]
0, π

[ ∼→ ]−1,1
[

is a C∞-diffeomorphism, whose inverse is denoted by arccos. The chain
rule yields arccos′(x) = −1√

1−x2 .

Fig. 29.2. The sine function and its inverse arcsin.
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Exercise 152 For x ∈ ]−π2 , π2 [, we define the tangent function tan(x) =
sin(x)
cos(x) . Show that this is a C∞-diffeomorphism onto R with derivative

tan′(x) = 1
cos2(x) and inverse tan−1 = arctan (figure 29.3), whose deriva-

tive is arctan′(x) = 1
1+x2 . For x ∈ ]

0, π
[
, we have the cotangent func-

tion cot(x) = cos(x)
sin(x) . Show hat this is a C∞-diffeomorphism onto R with

derivative cot′(x) = −1
sin2(x) and inverse cot−1 = arccot, whose derivative

is arccot′(x) = −1
1+x2 .

Fig. 29.3. The tangent function and its inverse arctan.

We now turn to a theorem which is intimately related to the inverse func-
tion theorem: the implicit function theorem. In some textbooks the in-
verse function theorem is even interpreted as a special case of the im-
plicit function theorem, but we refrain from this approach in our modest
environment.

29.3 The Implicit Function Theorem

The implicit function theorem arises from the intuitively evident fact that
many non-functional graphs “locally” look like graphs of functions, i.e.,
if we do not vary too much the arguments and values, then the graph



29.3 The Implicit Function Theorem 65

behaves like a function. For example, take the function f : R3 → R given
by f(x,y, z) = 3(x2+y2)+4z2−1. Then consider the zero fiber V(f) =
f−1(0). See figure 29.4 for the visualization of the elliptic shape V(f).

Fig. 29.4. The zero fiber V(f) = f−1(0), i.e., the set of the solutions
(x,y, z) of 3(x2 +y2)+ 4z2 − 1 = 0.

If we select a solution (r , s, t) ∈ V(f) such that r 2 + s2 ≤ 1
3 , then there is

an open neighborhood U(r , s) of (r , s) and an open neighborhood W(t)
of t such that V(f)∩ (U(r , s)×W(t)) is a functional graph. The function
is evidently given by t = 1

2

√
1− 3(r 2 + s2) or t = −1

2

√
1− 3(r 2 + s2), de-

pending on the condition t > 0 or t < 0 for our solution. See figure 29.5
for the graphs of both functions.

Such a functional dependence is said to be given implicitly by the equa-
tion f(r , s, t) = 0. What are the general properties of such a function f
and of points x ∈ V(f) such that a local functional graph can be found
in V(f)? The next proposition gives the general answer.

Proposition 276 Given three open sets U ⊂ Rn,W , T ⊂ Rm, let f : U ×
W → T be a C1 function. We set V(f) = f−1(0) and suppose that (r , s) ∈
U ×W is in V(f). If the matrix D = (Dn+jfi(r , s))1≤i,j≤m has det(D) ≠ 0,
then there are open neighborhoods U(r) ⊂ U of r and W(s) ⊂ W of s,
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Fig. 29.5. The functional graphs t = 1
2

√
1− 3(r 2 + s2) (left) and t =

− 1
2

√
1− 3(r 2 + s2) (right) on U = {(r , s) | r 2 + s2 ≤ 1

3}.

such that V(f)∩U(r)×W(s) defines a function g : U(r)→ W(s), i.e., the
solutions of V(f)∩U(r)×W(s) are exactly the pairs (x, g(x)), x ∈ U(r).
Moreover, the function g is differentiable.

Proof Let F : U × W → Rn × T be defined by F(x,y) = (x, f (x,y)). Clearly
det(DF(r ,s)) = det(D) ≠ 0. so by proposition 274, there are open sets V,W ⊂
Rn+m, such that (r , s) ∈ V, (r ,0) ∈ W and F : V ∼→ W is a C1-diffeomorphism.
We may even take V = R × S, a product of open sets R ⊂ Rn, S ⊂ Rm. Then we
have F−1(x,y) = (x, q(x,y)), for a C1 function q, and

f(x, q(x,y)) = f ◦ F−1(x,y) = pry ◦ F ◦ F−1(x,y) = y,

whence f(x, q(x,0)) = 0, i.e., (x, q(x,0)) ∈ V(f). Now, set g(x) = q(x,0), and
we are done. �

Example 113 A cardioid is a member of the family of curves in R2 satis-
fying

(x2 +y2 − 2ax)2 = 4a2(x2 +y2),

i.e, the solution set V(fa) of the equation fa(x,y) = 0, where

fa(x,y) = (x2 +y2 − 2ax)2 − 4a2(x2 +y2).

From now on, we consider the cardioid for f = f1 (figure 29.6).

With the notation of proposition 276, we have U ⊂ R, W ⊂ R and T ⊂ R.
Then the curve is the fiber of 0, V(f) = f−1(0). The matrix

D = (Dyf(r , s)) = (4s(r 2 + s2 − 2r)− 8s)
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Fig. 29.6. The cardioid V(f) = V((x2 +y2 − 2x)2 − 4(x2 +y2)).

has determinant det(D) = 4s(r 2 + s2 − 2r) − 8s. Wanted are the points
where det(D) = 0 for (r , s) ∈ V(f). They are the solutions S of the
system of polynomial equations

(r 2 + s2 − 2r)2 − 4(r 2 + s2) = 0

4s(r 2 + s2 − 2r)− 8s = 0

We will not go into the details of solving such equations, we simply state
the result:

S = {(0,0), (4,0), (− 1
2 ,
√

3
2 ), (−1

2 ,−
√

3
2 )}

Now we have to find Ui and Vi, such that S ∩ (Ui×Vi) ≠ 0, i.e., rectangles
covering the curve V(f) except at the “singular” points in S. Looking at
figure 29.6, where the singular points are marked in black, we can divide
the curve into four arcs, each starting and ending at a singular point. The
four arcs are covered by the following open sets

O1 =
]−1

2 ,4
[× ]√3

2 ,∞
[∪ ]

0,4
[×R

O2 =
]−1

2 ,4
[× ]−√3

2 ,−∞
[∪ ]

0,4
[×R

O3 = U3 × V3 =
]−1

2 ,0
[× ]

0,
√

3
2

[
O4 = U4 × V4 =

]−1
2 ,0

[× ]
0,−

√
3

2

[
Proposition 276 assures us that for each U1 = U2 =

]−1
2 ,4

[
, and U3 =

U4 =
]−1

2 ,0
[

we can find an explicit function gi defined on Ui, whose
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graph is the arc of the curve which is contained in Oi:

g1(x) =
√

2+ 2x − x2 + 2
√

1+ 2x

g2(x) = −
√

2+ 2x − x2 + 2
√

1+ 2x

g3(x) =
√

2+ 2x − x2 − 2
√

1+ 2x

g4(x) = −
√

2+ 2x − x2 − 2
√

1+ 2x

Exercise 153 In example 113, the functions y = gi(x) result from a con-
sideration of the matrix Dyf(r , s). Similarly, functions x = hi(y) can
be found by considering Dxh(r , s). Perform the analogous procedure to
determine the hi.

Knowing that g in proposition 276 is differentiable, it is no problem to
effectively find its derivative. We have fi(x, g(x)) = 0 for x ∈ U(r). Then,
taking the partial derivative with respect to the j-th coordinate of x, and
using the chain rule, yields

0 = Djfi(x, g(x))+
∑

t=1,...m
Dn+tfi(x, g(x)) ·Djgt(x).

For each j = 1,2, . . . n, we have m linear equations for i = 1,2, . . .m and
m unknowns Djgt(x), t = 1,2, . . .m. Since the determinant det(D) ≠ 0,
this system of m linear equations (for fixed j) in the partial derivatives
Djgt(x) has a unique solution.

Example 114 Let us come back to the above example f(x,y, z) = 3(x2+
y2)+4z2−1 defined on R2×R, so n = 2 and m = 1. We have to take the
two partial derivatives for j = 1,2:

0 = D1f(x,y,g(x,y))+D3f(x,y,g(x,y)) ·D1g(x,y)

= 6x + 8g(x,y) ·D1g(x,y)

0 = D2f(x,y,g(x,y))+D3f(x,y,g(x,y)) ·D2g(x,y)

= 6y + 8g(x,y) ·D2g(x,y).

Here det(D) is equal to 8g(x,y) and does not vanish for x2 + y2 < 1
3 .

We have
D1g(x,y) = −3x

4g(x,y)
= ∓3x

2
√

1− 3(x2 +y2)

and
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D2g(x,y) = −3y
4g(x,y)

= ∓3y

2
√

1− 3(x2 +y2)

depending on the solution

g(x,y) = 1
2

√
1− 3(x2 +y2)

or
g(x,y) = −1

2

√
1− 3(x2 +y2).

29.3.1 A Remark on Global Coordinates and Manifolds

The implicit function theorem 29.3 gives rise to a fascinating generaliza-
tion of the concept of coordinate spaces. Consider the simple example
f(x,y, z) = 3(x2 + y2) + 4z2 − 1 from above and the associated solu-
tion set V(f) = {(x,y, z) | f(x,y, z) = 0}. We have seen that if the
Jacobian matrix Df has the third partial derivative Dzf(x,y, z) ≠ 0,
we may find an open neighborhood B of (x,y, z) such that V(f) ∩ B
is the graph of a function g : U → R. This means that the projection
prx,y : V(f) ∩ B → U is a bijection. So around (x,y, z) ∈ V(f), V(f)
is bijective with an open set of R2. But what happens on points where
Dzf(x,y, z) = 0? Now, the equation f = 0 does not actually stress
the third coordinate, we just need to consider one of the three coordi-
nates w = x,y, z with Dwf(x,y, z) ≠ 0. Then a permutation of the
coordinates yields such a local parametrization by an open set in R2.1

In fact, we have df = (6x,6y,8z), and this number never vanishes on
V(f), since (0,0,0) �∈ V(f). So every point v ∈ V(f) has a neighbor-
hood U(v) such that a projection pr : U(v)∩ V(f) → Wv ⊂ R2 is a local
parametrization, however not always with the same projections! One calls
such a local bijection a chart for V(f). So we are interested in the com-
patibility of such charts, more precisely, if v,w ∈ V(f), then we have
two charts prv : U(v) ∩ V(f) → Wv and prw : U(w) ∩ V(f) → Ww .
Consider now the restrictions prv |U(v)∩U(w) : U(v)∩U(w)∩ V(f) → Wv
and prw|U(v)∩U(w) : U(v)∩ U(w)∩ V(f) → Ww , and their images, which
we denote by Wv |w and Ww|v , respectively, which are in fact open sets.
Then, by composing the inverse of prv|U(v)∩U(w) with prw|U(v)∩U(w), we
have a bijection qv,w : Wv |w ∼→ Ww|v of open sets, which in fact is a
diffeomorphism.

1 This procedure has been hinted at in exercise 153.
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So we have this situation: The solution set V(f) is not globally in bi-
jection with an open set of R2, but it is so locally in the neighborhood
of every point. And moreover, if we have two such local parametriza-
tions by open sets of R2, they are compatible insofar as on their inter-
sections, the parametrizations are related to each other by a diffeomor-
phism. This is the birth of what Bernhard Riemann has inaugurated in
his habilitation talk in 1854 (“Über die Hypothesen, welche der Geome-
trie zugrunde liegen”): the theory of differentiable manifolds. In a first
description, a differentiable manifold of dimension k is a subset M ⊂ Rn
which is covered by a family (Ui)i of open sets of Rn such that ev-
ery intersection set Mi = Ui ∩ M is bijective to an open set Ki ⊂ Rk,
fi : Mi

∼→ Ki, and such that for any pair i, j of indexes, the restrictions
fij = fi|Mi∩Mj ∼→ Kij = Im(fij) are open in Ki and such that all com-
positions fji ◦ f−1

ij : Mi ∩Mj ∼→ Mj ∩Mi are diffeomorphisms. The sys-
tem (Mi, fi)i is called an atlas of M . Intuitively, this means that M is a
patchwork of subsets, which are glued together in a differentiable way
from open charts in Rk. Famous examples of manifolds are the unit cir-
cle S1 = V(X2 + y2 − 1), the unit sphere S2 = V(X2 + y2 + z2 − 1), or
the torus T = {(cos(t)− 1

2 cos(s) cos(t), sin(t)− 1
2 cos(s) sin(t), 1

2 sin(s)) |
0 ≤ s, t ≤ 2π} (figure 29.7).

Fig. 29.7. A torus T ⊂ R3 is made up of “patches” that are in bijection
with open squares in R2.
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Example 115 The curve M in figure 29.8 is a manifold of dimension 1. It
is covered by open sets Ui, for 1 ≤ i ≤ 6. Every arcMi = Ui∩M is bijective
to an open interval Ki by a bijection fi. Thus (Mi, fi)i form an atlas of M .

Fig. 29.8. An atlas of M consisting of the open sets Mi = Ui∩M together
with the bijections Mi

∼→ Ki, where Ki are open intervals.



CHAPTER 30

Integration

30.1 Introduction

This chapter is a short introduction to the integral calculus, as it ap-
pears from the point of view of surface and volume calculation. In the
next chapter, we shall relate the present theory to the differential cal-
culus by the fundamental theorem of calculus (proposition 285), which
interprets the calculation of surfaces as an inverse procedure to differen-
tiation. Surface and volume calculation has a very long tradition, which
had its first climax in the work of the Greek mathematician Archimedes
(287–212 BC), including the calculation of the volume of cylinder and
sphere. Only in the seventeenth century did Johannes Kepler reconsider,
in his work “Nova stereometria doliorum vinariorum” (“New volume mea-
surement of vine casks”) from 1615, the method of infinite summation
method introduced by Archimedes. In the infinitesimal calculus of Leib-
niz, the infinite summation gained its modern shape, also by the intro-
duction of the integral sign

∫
in 1676 as a stylization of the sum sign S.

Leibniz called his method “calculus summatorius”, but Johann Bernoulli
changed that title to the nowadays current “calculus integralis”. It is re-
markable that Newton did not mention his contribution to the integral
calculus (which he called “methodus fluxionum”) in his monumental work
“Principia”, since he did not want to be criticized for something not so
certain. With Augustin Cauchy and then Bernhard Riemann in his famous
habilitation talk “Über die Hypothesen, welche der Geometrie zugrunde
liegen” from 1854, in which he absorbed Cauchy’s approach, the Riemann
integral was created, giving the infinite summation a precise meaning in
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terms of limits. Later, when successively more “pathological” functions
were considered for integration, more powerful integral concepts based
on Henri-Léon Lebesgue’s measure theory were created in 1902. However
we refrain from these theories, since in an introductory book, they cannot
be treated in due detail, and since the special case of a Riemann integral
is sufficient for all the examples which we shall deal with.

30.2 Partitions and the Integral

For the theory of integration, we need some easy preliminary structures.
The first of these is concerned with the approximation of a function by
step functions on a tiling of the domain of the function which one would
like to integrate.

Definition 193 Given a pair (a, b) of real numbers with a < b, the set
Part(a, b) is the set of all finite subsets P ⊂ [

a,b
]

with {a,b} ⊂ P . The
elements of Part(a, b) are called the partitions of the interval

[
a,b

]
. If

P ∈ Part(a, b), then its elements can be put into increasing order a =
x0 < x1 < . . . xk = b. Whenever we enumerate the members of P , we
mean this ordering.

By definition, the set I(P) consists of all closed intervals
[
xi, xi+1

]
delim-

ited by successive elements of P and is called the interval set of P . On
Part(a, b), one has the refinement relation which is the set inclusion, i.e.,
one says that Q refines P , iff P ⊂ Q, which is denoted by P → Q. Since
Part(a, b) is closed under intersection and union, there is, for any pair
P and P ′ of partitions of

[
a,b

]
, a refinement Q such that P → Q and

P ′ → Q. Such a refinement Q is called a common refinement of P and P ′.
For P ∈ Part(a, b) and I = [

xi, xi+1
] ∈ I(P), we set vol(I) = xi+1−xi and

call it the volume of I.

Starting with these one-dimensional partitions one introduces n-dimen-
sional partitions as follows.

Definition 194 For n ∈ N, n > 1, and a sequence

(a., b.) = (a1, a2, . . . an, b1, b2, . . . bn) ∈ R2n

with ai < bi, i = 1,2, . . . n, we define the partition set
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Fig. 30.1. Q is a common refinement of the partitions P and P ′ of
[
a,b

]
.

Part(a., b.) =
∏
i

Part(ai, bi)

as the Cartesian product of the one-dimensional partition sets Part(ai, bi).
On Part(a., b.), one considers the product relation of refinements in the
n factors, i.e., if P = (Pi)i,Q = (Qi)i ∈ Part(a., b.), then P → Q, iff
Pi → Qi for all i = 1,2, . . . n. A common refinement Q of two partitions
P, P ′ ∈ Part(a., b.) always exists and is denoted by P → Q and P ′ → Q in
analogy with the 1-dimensional case.

For P = (Pi)i ∈ Part(a., b.), the set of cubes I(P) consists of all closed
cubes K = ∏

iKi, for Ki ∈ I(Pi), i.e., of the Cartesian products of n
intervals (the one-dimensional cubes). We denote by K(a., b.) the cube∏
i
[
ai, bi

]
defined by the minimal sets Pi = {ai, bi}. In accordance with

the elementary concept of a volume, we set vol(K) =∏
i vol(Ki).

Example 116 In the Euclidean space R3, we consider partitions of the
cuboid {(x,y, z) | 1

2 ≤ x ≤ 4, 1
2 ≤ y ≤ 3,1 ≤ z ≤ 3}. In this case, we have

a1 = 1
2 , b1 = 4, a2 = 1

2 , b2 = 3 and a3 = 1, b3 = 3. The set of partitions is
given by

Part(1
2 ,

1
2 ,1,4,3,3) = Part(1

2 ,4)× Part(1
2 ,3)× Part(1,3).

The particular partition P in figure 30.2 is

P = ({1
2 ,

3
4 ,3,4}, {1

2 ,1,
3
2 ,

5
2 ,3}, {1, 7

4 ,3})

The elements of the three sets are of course unordered, but we enumerate
them here in increasing order to emphasize that these sets are partitions.
To complete this example, we pick out one K, namely, the dark gray one
in the figure, K = [

3,4
]×[1, 3

2

]×[1, 7
4

]
, its volume is vol(K) = (4−3)·( 3

2−
1)·(7

4−1) = 3
8 . The volume of the whole cuboid is vol(K( 1

2 ,
1
2 ,1,4,3,3)) =

(4− 1
2) · (3− 1

2) · (3− 1) = 35
2 .



76 Integration

Fig. 30.2. A particular partition in Part(a1, a2, a3, b1, b2, b3).

Let (a., b.) be a sequence of real numbers as in definition 194 and let
K ∈ I(P). Take a bounded function f : K → R, i.e., there is b ∈ R with
|f(x)| ≤ b, for all x ∈ K. Then we denote mK(f ) = inf{f(x) | x ∈ K}
and MK(f ) = sup{f(x) | x ∈ K}. The infimum inf(X) of a set X of real
numbers is by definition inf(X) = − sup(−X), where −X = {−x | x ∈ X}.
Clearly, if a cube K′ is such that K′ ⊂ K, then mK′(f ) ≥ mK(f ) and
MK′(f ) ≤MK(f ).

Definition 195 Let (a., b.) be a sequence of real numbers as in defini-
tion 194. If f : K(a., b.)→ R is a bounded function, and if P ∈ Part(a., b.),
we define the lower sum of f over P by

L(f , P) =
∑

K∈I(P)
mK(f ) · vol(K)

and the upper sum of f over P by

U(f , P) =
∑

K∈I(P)
MK(f ) · vol(K)
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Example 117 Figure 30.3 shows the upper and lower sums for the func-
tion

f : R→ R : x � 8
3x

3 − 41
5 x

2 + 9
2x + 33

10

for a partition P = {0, 1
2 ,1,

3
2 ,2,

5
2}.

Fig. 30.3. The lower sum (area of the dark gray rectangles) and upper
sum (dark gray and light gray rectangles) of f .

The minima of the partition intervals are

m[0, 12 ]
= 33

10 , m[ 1
2 ,1]

= 34
15 ,

m[1, 32 ]
= 3

5 , m[ 3
2 ,2]

= 26029−781
√

781
12000 ,

m[2, 52 ]
= 5

6 .

Since vol(K) = 1
2 , for K ∈ I(P), the lower sum is

L(f , P) =
∑

K∈I(P)
mK · vol(K) = 1

2

∑
K∈I(P)

mK ≈ 5.49.

For the maxima of the partition intervals, we have

M[0, 12 ] =
26029+781

√
781

12000 , M[ 1
2 ,1]

= 23
6 ,

M[1, 32 ] =
34
15 , M[ 3

2 ,2]
= 5

6 ,

M[2, 52 ] =
149
30 ,

and the upper sum is
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U(f , P) =
∑

K∈I(P)
MK · vol(K) = 1

2

∑
K∈I(P)

MK ≈ 7.94.

Figure 30.4 shows the upper and lower sums for the function

g : R2 → R : (x,y)�
4

x + 2y + 1

for a partition P = ({0,1,2}, {0,1,2}).

Fig. 30.4. The lower and upper sums of the surface g.

Lemma 277 If P → Q is a refinement with respect to the sequence (a., b.),
and if f : K(a., b.)→ R is a bounded function, then L(f , P) ≤ L(f ,Q) and
U(f ,Q) ≤ U(f , P).
Proof Since every cube K ∈ I(P) is the union of a number K1, . . . Kr of cubes of
Q, and since different cubes in I(P) are unions of disjoint sets of cubes of Q, it
suffices to show the lemma for P having one single cube K. But then
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L(f , P) =mK(f ) · vol(K)

=mK(f ) ·
r∑
i=1

vol(Ki)

=
r∑
i=1

mK(f ) · vol(Ki)

≤
r∑
i=1

mKi(f ) · vol(Ki)

= L(f ,Q).

The same argument yields U(f ,Q) ≤ U(f , P). �

Proposition 278 If P and Q are any two partitions in Part(a., b.), and
if f : K(a., b.) → R is a bounded function, then L(f , P) ≤ U(f ,Q). In
particular, we have this inequality of real numbers:

sup{L(f , P) | P ∈ Part(a., b.)} ≤ inf{U(f , P) | P ∈ Part(a., b.)}.

Proof Take a common refinement P → P ′,Q→ P ′ of P,Q, then lemma 277 yields
L(f , P) ≤ L(f , P ′) ≤ U(f , P ′) ≤ U(f ,Q). The inequality between suprema and
infima is then obvious. �

Definition 196 Under the condition of proposition 278, if we have the
equality

sup{L(f , P) | P ∈ Part(a., b.)} = inf{U(f , P) | P ∈ Part(a., b.)},

then this number is denoted by
∫
(a.,b.) f and is called the (Riemann) inte-

gral of f over (a., b.). The function f is then called integrable. In more
traditional texts, the notation∫

(a.,b.)
f(x1, x2, . . . xn)dx1 . . . dxn

is also used. For n = 1, where (a., b.) = (a, b), the notations
∫ b
a f and∫ b

a f(x)dx are also customary.

The set of (Riemann) integrable bounded functions f : K(a., b.) → R is
denoted by R(a., b.).

Exercise 154 Show that a constant function f = c is integrable, and that
in this case

∫
(a.,b.) f = c · vol(K(a., b.)).
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Exercise 155 The function f :
[
0,1

]× [
0,1

]→ R defined by

f(x,y) =
⎧⎨⎩0 if x +y ∈ Q,

1 else.

is not integrable, while the function f :
[
0,1

]× [
0,1

]→ R defined by

f(x,y) =
⎧⎨⎩0 if y ≤ 1/3 and x ≤ 2/3,

1 else.

is integrable. Hint for the second function: Choose adequate partitions to
calculate the lower and upper sums.

The following result yields an important method for the construction of
integrable functions, and also for the calculation of integrals.

Sorite 279 Let (a., b.) be a sequence defining the closed cube K(a., b.) ⊂
Rn.

(i) The map
∫
(a.,b.) : R(a., b.)→ R is linear, i.e., for any f , g ∈ R(a., b.)

and λ,µ ∈ R, we have the formulas∫
(a.,b.)

λf + µg = λ
∫
(a.,b.)

f + µ
∫
(a.,b.)

g.

(ii) Set f ≤ g iff f(x) ≤ g(x) for all x ∈ K(a., b.). Then, if f ≤ g for
f , g ∈ R(a., b.), we have∫

(a.,b.)
f ≤

∫
(a.,b.)

g.

(iii) (Mean Value Theorem of Integral Calculus) If f : K(a., b.) → R is
continuous, then there is x ∈ K(a., b.) such that∫

(a.,b.)
f = f(x) · vol(K(a., b.)).

(iv) If f ∈ R(a., b.), then |f | : x � |f(x)| is also integrable, and we
have ∣∣∣∣∣

∫
(a.,b.)

f

∣∣∣∣∣ ≤
∫
(a.,b.)

∣∣f∣∣.
Proof Claim (i) follows from the fact that the supremum or infimum of a linear
combination of bounded functions is the linear combination of the suprema and
infima of these functions.
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Claim (ii) is evident.

As to claim (iii), Im(f ) is a closed interval
[
a,b

]
. And clearly,

a · vol(K(a., b.)) ≤
∫
(a.,b.)

f ≤ b · vol(K(a., b.)).

Therefore,

a ≤
∫
(a.,b.) f

vol(K(a., b.)
≤ b.

So there is x such that f(x) =
∫
(a.,b.)

vol(K(a.,b.) , and we are done.

For claim (iv), if |f | is integrable, then, evidently, the claimed inequality holds.
So it remains to show that |f | is integrable if f is so. Integrability means that
for every ε > 0, there is a partition P such that 0 ≤ U(f , P) − L(f , P) < ε.
Now, if this holds, then for every cube K ∈ P , it is easy to check that we have
MK(f )−mK(f ) ≥ MK(|f |)−mK(|f |) ≥ 0, therefore 0 ≤ U(|f |, P)− L(|f |, P) ≤
U(f , P)− L(f , P) < ε, and |f | is integrable. �

Despite this general result, it is hard to calculate integrals at this stage
of the theory. In the following, we shall develop several tools and criteria
for calculating integrals. However, it is not true that integration is always
explicitly representable by “well-known” functions, on the contrary: inte-
gration is a device for generating truly new functions from known ones.

30.3 Measure and Integrability

It can be shown that a function f : K(a., b.) → R is integrable, iff it is
continuous except for a “negligible” subset of points. We want to give a
precise description of the meaning of the term “negligible”. We again need
closed cubes K ⊂ Rn, i.e., by definition, subsets of the form K =∏

i
[
li, ui

]
where

[
li, ui

] ⊂ R are closed intervals of R with li < ui. As above, the
cube’s volume is vol(K) =∏

i(ui − li).

Definition 197 A subset M ⊂ Rn has measure 0, iff for every ε > 0, there
is a covering family (Ki)i∈N of cubes Ki for M , i.e., M ⊂ ⋃

iKi, such that

V =
∑
i

vol(Ki) = lim
N→∞

N∑
i=0

vol(Ki)

exists, and V < ε.

Exercise 156 Show that, if M ⊂ Rn is finite, then it has measure zero.
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Example 118 IfM is denumerable, i.e., by definition, if there is a bijection
M ∼→ N, then it has measure 0. In fact, we may enumerate the elements
of M in a sequence (mi)i∈N, M = {mi | i ∈ N}. Take the covering family
(Ki)i with the closed cubes Ki = Kε/2i+1(mi). Then

∑
i vol(Ki) =

∑
i
ε

2n ·
(2−n)i = ε

2n
1

1−2−n < ε.

Fig. 30.5. (a) A covering of M of measure π4/36, (b) a covering of mea-
sure π4/72.

The set M = {(x,y) ∈ R2 | x,y ∈ N − {0}}, subset of R2, is clearly
denumerable. For a first covering by squares, each point (i, j) in M is
covered by a square of volume (area) Vij = 1

(ij)2 , i.e., a square of side

length 1
ij (see figure 30.5 (a)). Then the volume V of the whole covering is

V =
∞∑

i=1,j=1

Vij =
∞∑

i=1,j=1

1
(ij)2

= π4

36
.

With ε = π4

18 , we have V < ε. To proceed from ε to ε/2, simply halve the
areas of each square, i.e., Vij = 1

2(ij)
2. The side length of a point (i, j) is

now 1√
2ij and V = π4

72 which is less than ε/2 = π4

36 (figure 30.5 (b)).

This is quite dramatic, since the exampleM = Qn ⊂ Rn yields a set which
seems to fill almost all of Rn, but is effectively too small to yield a non-
zero measure. In general, the measure of a set M ⊂ Rn is defined as the
infimum of the sums

∑
i vol(Ki) for all possible covering families (Ki)i∈N

of closed cubes Ki ⊂ Rn.
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A straightforward generalization of example 118 is the following propo-
sition.

Proposition 280 If M = ⋃
i∈NMi is the union of a family (Mi)i of sets Mi

of measure 0, then M has measure 0.

Proof The idea is to take a covering (Kji )j∈N for each Mi with
∑
j vol(Kji ) <

ε ·2−(i+1) for every i. Then consider the zigzag covering sequence K1
1 , K1

2 , K2
1 , K1

3 ,
K2

2 , K3
1 , . . . of M and we evidently have

∑
i,j vol(Kji ) < ε ·

∑
i 2−(i+1) < ε. �

For the announced characterization of integrable functions, we need a
restatement of continuity.

Definition 198 For a subset K ⊂ Rn, and a bounded function f : K → R, a
point x0 ∈ K, and a positive real number δ, we set

m(x0, f , δ) = inf{f(x) | x ∈ Bδ(x0)∩K},
M(x0, f , δ) = sup{f(x) | x ∈ Bδ(x0)∩K}.

Then the oscillation o(f ,x0) at x0 is defined by the (evidently existing)
limit

o(f ,x0) = lim
δ→0

(
M(x0, f , δ)−m(x0, f , δ)

)
.

The relation with continuity is as follows:

Proposition 281 For a subset K ⊂ Rn, a function f : K → R, and a point
x0 ∈ K, we have o(f ,x0) = 0, iff f is continuous at x0.

Proof This is evident, it is left as an exercise for the reader. �

Lemma 282 Let f : K → R be a bounded function on a closed cube K ⊂ Rn,
K = K(a., b.), and ε > 0. If o(f ,x) < ε for all x ∈ K, then there is a
partition P ∈ Part(a., b.) such that U(f , P)− L(f , P) < ε · vol(K).

Proof For each x ∈ K, take a closed cube K(x) such that ε > MK(x) −mK(x). By
compactness of K, there is a finite number K(x1), . . . K(xr ) of such cubes, which
cover K. Choose a partition of K ∈ P(a., b.), which is fine enough such that every
cube Ki ∈ I(P) is contained in one of the above cubes K(x1), . . . K(xr ). Then for
this partition, U(f , P)− L(f , P) < ε · vol(K). �

And this is the announced characterization:
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Proposition 283 Let K = K(a., b.) ⊂ Rn be a closed cube and f : K →
R a bounded function. Then f is integrable, iff the set NC = {x | x ∈
K, f is not continuous at x} has measure 0.

Proof The proof is quite technical and not very inspiring, it uses lemma 282
as well as proposition 280. We therefore omit it here and refer to the beautiful
book [39]. �

Exercise 157 Use propositions 280 and 283 to show that if f , g ∈
R(a., b.), then f · g ∈ R(a., b.).

A special case of the integral is the volume of a general subset S ⊂ K of a
closed cube K ∈ Rn. We need a couple of topological concepts.

Definition 199 If X ⊂ Rn is given the relative topology as defined in defi-
nition 182, then for a subset Y ⊂ X, we define Y o as the union of all U ⊂ Y
which are open in the relative topology on X, or, equivalently, Y o is the
maximal open subset in Y with respect to the relative topology on X. The
set Y o is called the interior of Y .

The set Y is the intersection of all W ⊂ X, containing Y , which are closed
in the relative topology on X, or, equivalently, the smallest closed superset
of Y in the relative topology of X, is called the closure of Y .

The set ∂Y = Y − Y o is called the boundary of Y (with respect to X).

Exercise 158 With the preceding notations, show that Y = X − (X − Y)o
and Y o = X − (X − Y). Also show that Y = Y and (Y o)o = Y o.

Proposition 284 The characteristic function χS : K → R of a subset S ⊂ K
of a closed cube K = K(a., b.) ⊂ Rn is integrable, iff its boundary (in K or
in Rn, it makes no difference since K is closed) has measure 0.

Proof The characteristic function χS is constant on the relatively open sets So

and on K − S. So it is continuous there. In x ∈ ∂S, both values, 0 and 1 are taken
in any neighborhood of x. Therefore no neighborhood of x is mapped into a
neighborhood U1/2(f (x)), and χS cannot be continuous on ∂S. The claim now
follows from proposition 283. �

Exercise 159 Show that the characteristic function of the subset S of
rationals in K = [

0,1
]

is not integrable, in fact, ∂S = K.
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Definition 200 A subset S ⊂ K of a closed cube K = K(a., b.) ⊂ Rn with
boundary ∂S having measure 0 is called Jordan-measurable. Its volume
vol(S) is defined as the integral

vol(S) =
∫
K
χS

of its characteristic function. Observe that the omission of the cube K in
the volume notation is justified by the fact that the integral to the right
does not depend on the surrounding cube K.

Example 119 Definition 200 may be used to calculate the volume or area
of a geometric object, for example the shape S bounded by the curve in
figure 30.6. To formulate a Riemann integral we define the characteristic
function χ(Ai) of an area element Ai to be equal to 1 if Ai ∩ S ≠ ∅, and
0 else.

Fig. 30.6. A partition (a) and a refinement (b) of a square that completely
contains the shape S bounded by the curve. The squares that intersect S
are shown in dark gray.

In figure 30.6 (a), the square K with side length a, which completely con-
tains S, is partitioned into 64 little squares Ai of area vol(Ai) = a2

64 . We
have the sum ∑

i
χ(Ai) · vol(Ai).
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This sum counts the number of squares that intersect S. In the concrete
example of figure 30.6 (a), this number is 47, thus we have the approxi-
mated area 47

64 · a2.

In figure 30.6 (b) the partition is refined by halving the side length of
the squares. Here we have 154 squares, each of side length a2

256 , giving a
better approximation 154

256 · a2 for the area of S.

Successive refinements generate squares whose areas tend to 0 and lead
to the Riemann integral

lim
vol(Ai)→0

∑
i
χ(Ai) · vol(Ai) =

∫
K
χS = vol(S).



CHAPTER 31

The Fundamental Theorem of
Calculus and Fubini’s

Theorem

31.1 Introduction

The theory of integration offers several methods for dealing with the a
priori quite cryptic concept of integrals. A first group consists of re-
cursive methods. We first deal with one-dimensional integration and
then show how higher-dimensional integrals can be reduced to lower-
dimensional ones. The former is essentially the fundamental theorem
of calculus which interprets integration and differentiation as reciprocal
processes. Roughly speaking, in dimension 1, integration of a function f
may be settled by finding functions F such that DF(x) = (f (x)) (recall
that DF(x) is a matrix, whence the parentheses around f(x)). The induc-
tion step is Fubini’s theorem which transforms an integral

∫
K1×K2

f over a
Cartesian product of cubes K1 and K2 to a double integral

∫
K1

∫
K2
f , where

the inner integral
∫
K2
f is regarded as a function on the cube K1.

The second group of methods deals with changing variables, a procedure
which we know from the chain rule for differentiation. It permits the
reinterpretation of seemingly complex functions as simpler ones for a
composed function, thereby changing the cube’s limit values.
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31.2 The Fundamental Theorem of Calculus

This is the one-dimensional “anchorage of induction”. To begin with, we
need a slight generalization of differentiation concerning the domains
where derivatives of functions are defined. Let f :

[
a,b

] → R be a
function on a closed interval. Then its derivative f ′(x) in the interior[
a,b

]o = ]
a,b

[
of the closed interval

[
a,b

]
is defined. We now also need

a definition of the derivative at the boundary points a and b of the closed
interval. Reviewing all the definitions necessary for the concept of a
derivative, one recognizes that the limit process limz→0

‖f(a+z)−f(a)−D(a)‖
‖z‖

must be restricted to z > 0, and, analogously limz→0
‖f(b+z)−f(b)−D(b)‖

‖z‖
must be restricted to z < 0. So the one-sided limit of such an expression,
if it exists, is the derivative Dfx of f at the boundary points x = a,b. It
is clearly unique by the arguments known from the discussion of open
domains. This is what we shall assume henceforth when saying that
f :

[
a,b

]→ R is differentiable on
[
a,b

]
.

Proposition 285 (Fundamental Theorem of Calculus) For a real interval[
a,b

]
, if f ∈ C0(

[
a,b

]
), then the integral function

F :
[
a,b

]→ R : x �
∫ x
a
f

is in C1(
[
a,b

]
), and we have

F ′(x) = f(x) for all x ∈ [
a,b

]
.

In other words, the linear map D : C1(
[
a,b

]
) → C0(

[
a,b

]
) is surjective

and has a section
∫
a : f → ∫ ?

a f . We have Ker(D) = Const. ∼→ R. Any
function in the fiberD−1f = R+∫ ?

a f is called a primitive function of f . If F
is any primitive function of f , then we have

∫ b
a f = F(b)−F(a). The latter

is also denoted by F|ba. A primitive function F of f is also denoted by the so-
called indefinite integral F = ∫

f or, more conservatively, F = ∫
f(x)dx,

whereas the Riemann integral
∫ b
a f is called the definite integral. To be

clear, the indefinite integral is a function, while the definite integral is a
real number.

Proof Let y ∈ [a,b] then F(y + t)− F(y) = ∫ y+ty f . Now, for ε > 0, let δ > 0 be
such that |t| < δ implies |f(y + t)− f(y)| < ε. Then we have |t| · (f (y)− ε) <∫ y+t
y f < |t| · (f (y)+ ε), i.e., |f(y)− ε| < |F(y+t)−F(y)|

|t| < |f(y)+ ε|. �
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This proposition has a very useful application for calculating one-dim-
ensional integrals. In fact, one often knows primitive functions just by
checking their derivative. One may then calculate the definite integral by
evaluation of the primitive function at the boundary values. This is the
one-dimensional anchorage of the n-dimensional integral operation. We
now have to deal with the induction step n� n+ 1.

Remark 31 If a > b, then the integral
∫ b
a f is defined by − ∫ a

b f , so that
we may integrate over the interval between a and b in every case.

An easy consequence of the fundamental theorem of calculus is the fol-
lowing corollary concerning the change of variables. In higher dimensions
such a result is also true, but too involved to be exposed in our context,
but see [39].

Corollary 286 If for the real numbers a ≤ b, the function g :
[
a,b

]→ R is
C1, and if f :

[
c,d

]→ R is continuous, and such that Im(g) ⊂ [
c,d

]
, then∫ b

a
(f ◦ g) · g′ =

∫ g(b)
g(a)

f .

Example 120 As an easy example, we are going to integrate h(x) =
sin(πx2)x from 0 to 1. Setting g(x) = πx2, then g′(x) = 2πx which
is “almost” x. By multiplying and dividing h(x) by the constant 2π ,
we get h(x) = 1

2π sin(πx2)2πx which is of the required form, letting
f(x) = 1

2π sin(x) and h(x) = f(g(x))g′(x).
Thus: ∫ 1

0
h(x) =

∫ 1

0
f(g(x))g′(x) =

∫ g(1)
g(0)

f(x) =
∫ π

0

1
2π

sin(x)

= − 1
2π

cos(x)
∣∣∣∣π

0
= − 1

2π
(cos(π)− cos(0))

= − 1
2π

(−1− 1) = 1
π
.

Exercise 160 Give a proof of corollary 286 using the calculation of the
definite integral by use of primitive functions. Observe that if F is a prim-
itive function for f , then F ◦ g is a primitive function for (f ◦ g) · g′ by
the chain rule.

Definition 201 Let f , g : X → Rn be two continuous functions on a subset
X ⊂ Rm. Recall from sorite 265 that we denote by f · g : X → R the
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continuous function, which evaluates to the standard scalar product (f ·
g)(x) = (f (x), g(x)) of the two vectors f(x) and g(x). If X = K(a., b.)
is a closed cube in Rn, then the scalar product of f and g is the number

(f , g) =
∫
(a.,b.)

f · g.

Evidently, (f , f ) ≥ 0, and we therefore set ‖f‖ =
√
(f , f ) and call this

non-negative real number the norm of f .

Sorite 287 If (a., b.) defines a cube K(a., b.) ⊂ Rm, then the scalar prod-
uct (f , g) on functions f and g in the (infinite-dimensional) R-vector space
C0(K(a., b.),Rn) has these properties:

(i) (f , g) is a positive definite symmetric bilinear form.

(ii) (Schwarz Inequality) We have |(f , g)| ≤ ‖f‖ · ‖g‖.
(iii) (Triangle Inequality) We have ‖f + g‖ ≤ ‖f‖ + ‖g‖.

Proof Claim (i) is evident except for the fact that (f , f ) = ∫
(a.,b.) f · f = 0 im-

plies f = 0. But if f(x) ≠ 0, with (f (x), f (x)) = q ≠ 0, say, then by con-
tinuity of the scalar product (f (z), f (z)) as a function of z, there is a cube
neighborhood Kδ(x) of x such that (f (z), f (z)) > q/2 > 0 if z ∈ Kδ(x). Then
(f , f ) ≥ (2δ)nq/2.

The Schwarz inequality was deduced for the standard scalar product in volume 1
by use of Gram’s determinant. Here, we use a more general argument: Let λ ∈ R.
Then 0 ≤ (f + λ · g, f + λ · g) = ‖f‖2 + λ · 2(f , g) + λ2 · ‖g‖2 = Q(λ). So the
quadratic polynomial function Q(λ) has only non-negative values, i.e., it cannot
have two different zeros and produce negative values in between. This means
that 4(f , g)2 − 4‖f‖2‖g‖2 ≤ 0 since the solutions of a quadratic polynomial

c+λb+λ2a are λ = −a±
√
b2−4ac

2a , and two different real zeros arise iff b2−4ac > 0.
This yields (ii).

Item (iii) is left as exercise 161. �

Exercise 161 Show that the triangle inequality follows from the Schwarz
inequality.

Proposition 288 For a closed interval
[
a,b

] ⊂ R, a ≤ b, and two C1 func-
tions f , g :

[
a,b

]→ Rn, we have the equation of integration by parts∫ b
a
Df · g = (f · g)

∣∣∣b
a
−
∫ b
a
f ·Dg.
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Example 121 To compute the integral∫ b
a
x cos(x)dx

we use integration by parts, setting f ′(x) = cos(x) and g(x) = x. Then
f(x) = sin(x) and g′(x) = 1, and∫ b

a
f ′(x) · g(x)dx = (f (x) · g(x))

∣∣∣b
a
−
∫ b
a
f(x) · g′(x)dx

= (sin(x) · x)
∣∣∣b
a
−
∫ b
a

sin(x)dx

= sin(b) · b − sin(a) · a− (− cos(x))
∣∣∣b
a

= sin(b) · b − sin(a) · a+ cos(b)− cos(a).

By treating a as a constant and b as a variable, it follows that the primitive
function of x cos(x) is cos(x)+ x · sin(x)+ C.

The integral ∫ b
a
x2 sin(x)dx

looks similar to the previous one, but is slightly more complicated to
solve. In fact, it requires applying integration by parts twice. Again, we
set f ′(x) = sin(x) and g(x) = x2. Then∫ b

a
f ′(x) · g(x)dx = (f (x) · g(x))

∣∣∣b
a
−
∫ b
a
f(x) · g′(x)dx

= (− cos(x) · x2)
∣∣∣b
a
−
∫ b
a
− cos(x) · 2xdx

= (− cos(x) · x2)
∣∣∣b
a
+ 2

∫ b
a

cos(x) · xdx.

To compute
∫

cos(x) · xdx, we would have to integrate by parts again,
but since we have already done so in the first part of the example we
simply substitute our solution and get∫ b

a
f ′(x) · g(x)dx = (− cos(x) · x2)

∣∣∣b
a

+ 2(sin(b) · b − sin(a) · a+ cos(b)− cos(a))

= − cos(b) · b2 + cos(a) · a2

+ 2(sin(b) · b − sin(a) · a+ cos(b)− cos(a))

= (2− b2) cos(b)+ 2b sin(b)

+ (a2 − 2) cos(a)− 2a sin(a).
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The primitive function of x cos(x) is accordingly

(2− x2) cos(x)+ 2x sin(x)+ C.

Exercise 162 Give a proof of proposition 288 using the fundamental the-
orem of calculus and the fact D(f ·g) = f τ ·Dg+gτ ·Df from sorite 265
(vii).

31.3 Fubini’s Theorem on Iterated Integration

Proposition 289 (Fubini’s Theorem) Let (a., b.) define a cube K(a., b.) in
Rn, and (c., d.) define a cube K(c., d.) in Rm. These data define a sequence
(a.c., b.d.) and therefore a cube K(a.c., b.d.) = K(a., b.) × K(c., d.)
in Rn+m. Let f : K(a.c., b.d.) → R be a continuous function. Then if
x ∈ K(a., b.), we have the restriction function fx : K(c., d.) → R : y �
fx(y) = f(x,y), which is also continuous. Therefore, we have the inte-
grals F(x) = ∫

(c.,d.) fx for each x ∈ K(a., b.). The function F : K(a., b.) →
R is continuous, and we have the iterated integrals∫

(a.c.,b.d.)
f =

∫
(a.,b.)

F

or, if we denote the variable of K(a., b.) by x and the variable of K(c., d.)
by y , the equation∫

(a.c.,b.d.)
f(x,y)dx dy =

∫
(a.,b.)

(∫
(c.,d.)

f(x,y)dy
)
dx

in more traditional terms.

In particular, if a cube is given by (a1a2 . . . an, b1b2 . . . bn), and the func-
tion f : K = [

a1, b1
] × [

a2, b2
] × . . . [an, bn] → R is continuous, then we

have the n-fold iterated integral∫
K
f(x1, . . . xn)dx1 . . . dxn =

∫ bn
an

(
. . .

(∫ b1

a1

f(x1, . . . xn)dx1

)
. . .
)
dxn.

Proof Let P and Q be partitions of (a., b.) and (c., d.), respectively, defining
a partition P × Q of the cube K(a.c., b.d.). Then, using the notation of defini-
tion 195, we have

L(f , P ×Q) =
∑

(K,L)∈I(P)×I(Q)
mK×L(f ) · vol(K × L)

=
∑

K∈I(P)

⎛
⎝ ∑
L∈I(Q)

mK×L(f ) · vol(L)

⎞
⎠ · vol(K).
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But for x ∈ K, mK×L(f ) ≤mL(fx), hence

∑
L∈I(Q)

mK×L(f ) · vol(L) ≤
∑

L∈I(Q)
mL(fx) · vol(L) ≤

∫
K(c.,d.)

fx = F(x).

But this is valid for any x ∈ K, so
∑
L∈I(Q)mK×L(f ) · vol(L) ≤mK(F). Therefore

L(f , P ×Q) ≤
∑

K∈I(P)
mK(F) · vol(K) ≤ L(F, P).

A similar argument yields U(F, P) ≤ U(f , P ×Q), so we have

L(f , P ×Q) ≤ L(F, P) ≤ U(F, P) ≤ U(f , P ×Q),

but the left and right outer expressions converge to
∫
(a.c.,b.d.) f , so that F turns

out to be integrable, too, and the theorem follows. �

Example 122 Let us calculate the volume of a rhombic pyramid whose
base is given by the points (a,0,0), (0, b,0), (−a,0,0), (0,−b,0), see fig-
ure 31.1 (a). For reasons of symmetry, it is sufficient to calculate the vol-
ume of the tetrahedron over the positive quadrant (see figure 31.1 (b))
and multiply it by 4.

Fig. 31.1. The rhombic pyramid (a), and one of the pyramid’s four con-
stituting tetrahedra (b). The dashed lines show the extents of the 2-cube
over which the integration occurs.

The tetrahedron in question is defined by the plane passing through the
points (a,0,0), (0, b,0), and (0,0, h). Using methods from linear algebra
one finds the equation
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z = f(x,y) = h− h
a
x − h

b
y

for the plane. However, to obtain the volume VT of the tetrahedron, we
must not use f , as it would contribute negative values outside of the
tetrahedron’s base ∆. The solution is to use g(x,y) = (f ◦ χ∆)(x,y),
where χ∆ is the characteristic function of ∆, returning 1 if (x,y) ∈ ∆,
and 0 otherwise. If we consider a fixed value for x, we have to integrate
the function

z = fx(y) = h− hax −
h
b
y.

Figure 31.2 shows that, again, we must take care to integrate only where
the function fx is positive, i.e., over the interval

[
0, b − b

ax
]
.

Fig. 31.2. A section of the tetrahedron for a fixed value of x.

So the integral for the tetrahedron’s volume is

VT =
∫ a

0

∫ b− b
ax

0

(
h− h

a
x − h

b
y
)
dydx

=
∫ a

0

(
h(a− x)y

a
− hy

2

2b

)∣∣∣∣∣
b− b

ax

0

dx

=
∫ a

0

⎛⎝h(a− x)(b − b
ax)

a
− h(b −

b
ax)

2

2b

⎞⎠dx
= h

∫ a
0

(
b − 2b

a
x + b

a2
x − b

2
+ b
a
x − b

2a2
x2

)
dx

= h
∫ a

0

(
b
2
− b
a
x + b

2a2x
2
)
dx

= h
(
b
2
x − b

2a
x2 + b

6a2
x3

)∣∣∣∣a
0
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= h
(
ab
2
− a

2b
2a

+ a
3b

6a2

)

= abh
6

Because our original pyramid consists of four such tetrahedra, its volume
is V = 2abh

3 , which is in accordance to the well-known rule that a pyra-
mid’s volume is one third of the product of the area of its base and its
height.

Remark 32 The integral may be extended to functions f : K(a., b.)→ Rm

with component functions fi = pri ◦ f , i = 1,2, . . .m, by defining∫
(a.,b.)

f =
(∫

(a.,b.)
f1,

∫
(a.,b.)

f2, . . .
∫
(a.,b.)

fm

)
.

In particular, if m = 2, we may integrate functions with values in C by
identifying C with R2 and integrating separately the real and imaginary
parts of such functions.



CHAPTER 32

Vector Fields

32.1 Introduction

In everyday life, when you are presented the weather forecast, a map
with the wind velocities may be shown. At every moment, this defines a
wind velocity vector at every point of the geographic map (figure 32.1).
Or when the water streams are described, one is given a water velocity at
every point of the sea surface, at every moment. Or, if we leave the earth
and fix a point in the interplanetary space, the sum of all gravitational
forces at a given moment yields the gravitational force in that point, a
force, which you feel every day by the dominant force field of the earth
gravitation, or a force which the earth is subjected to and mainly caused
by the sun’s gravitational field, in its elliptic orbit. All these are examples
of vector fields and, at the same time, illustrate that vector fields are
natural and intuitive structures.

The concept of a vector field is however a very local one in the sense that
one does not know how, for example, a cloud is moved through space
by the vector field induced by winds. The calculation of orbits of objects
along given vector fields is the subject of the theory of differential equa-
tions, see chapter 34. The local character of vector fields makes them a
very powerful tool in the definition of complex trajectories, such as plan-
etary orbits or the motion of clouds. They are central concepts in any
non-trivial simulation of dynamical systems, a branch of computational
science which requires the most powerful computation power and is the
effective domain of supercomputing. We should understand that vector
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Fig. 32.1. A geographic map showing the wind velocities as a vector field.

fields are, from an information-theoretic point of view, definitions of con-
cepts which describe the behavior only in local contexts, but are targeted
at global concepts. A good portion of physics is built upon “local” laws in
form of vector fields, but they aim to describe global phenomena such as
planetary orbits.

The difficulty to understand the global implication of a vector field leads
to an alternate description, the interpretation of a vector field as an oper-
ator, which transforms a function into another function through the local
calculation of the scalar product of the function’s partial derivatives (its
differential) with the field’s vectors. One shows that vector fields and such
so-called “derivation” operators are in one-to-one correspondence. This
fact leads to a very powerful method for constructing new vector fields,
the Lie product, which is crucial in physics [2], but also in mathematical
music theory [28].

32.2 Vector Fields

Let U ⊂ Rn be an open set. Recall that TU = U × Rn. By sorite 265 (iii),
we have a bijection

p : Cr (U, TU) ∼→ Cr (U,U)×Cr (U,Rn).

This applies to the following definition.

Definition 202 Let U ⊂ Rn. A Cr -vector field V on U is a Cr -section V :
U → TU of the projection pr1 : TU → U , or, by the above bijection, a
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section V : U → TU such that pr2 ◦ V : U → Rn is Cr . The set of Cr -vector
fields V : U → TU is denoted by V r (U).

The set V r (U) is an R-vector space by the following: If F,G ∈ V r (U), u ∈
U , and F(u) = (u, Fu) and G(u) = (u,Gu) then (F+G)(u) = (u, Fu+Gu).
If λ ∈ R, then (λF)(u) = (u, λFu).

Example 123 Figure 32.2 shows a vector field F : R2 → TR2 defined by1

F(x,y) = (x,y ; sin(xy), cos(xy)).

At each point (x,y) the vector (sin(xy), cos(xy)) anchored at this point
is drawn.

Fig. 32.2. A vector field F : R2 → TR2. The field is drawn for 0 ≤ x ≤ π
and 0 ≤ y ≤ π . Note that the length of arrows have been scaled down in
order to make the picture clearer.

A vector field G : R3 → TR3 is shown in figure 32.3. It is defined by

G(x,y, z) = (x,y, z; cos(y), sin(x), z).

1 The correct expression is F((x,y)) = ((x,y), (sin(xy), cos(xy))), but for
the sake of readability, we use the simplified form above.
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Fig. 32.3. A vector field G : R3 → TR3. The field is drawn for −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1 and −1 ≤ z ≤ 1.

If f ∈ Cr (U), we have Tf : TU → TR = R2. The differential of f is the
composition

df : pr2 ◦ Tf : TU → R : (u, t) � Dfu(t),

a function in Cr−1(TU). If g ∈ Cr (U), one defines

(g · df)(u, t) = g(u) · df(u, t).

If g,h : TU → R, we set

(g + h)(t,u) = g(t,u)+ h(t,u).

Example 124 From physics we know the function f(r) = 1
r , which de-

scribes the gravitational potential of a point (x,y) at distance r =√
x2 +y2 from a point mass at 0. Writing f in terms of x and y , we

have
f(x,y) = 1√

x2 +y2
.

Its differential df is
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df(x,y ;u,v) = Df(x,y)(u,v)

=
(
− 2x
(x2 +y2)3/2

,− 2y
(x2 +y2)3/2

)
·
(
u
v

)
,

which describes the gravitational gradient (defined below) at the point
(x,y).

Lemma 290 If f , g ∈ Cr (U), then d(f · g) = f · dg + g · df .

Exercise 163 Give a proof of lemma 290 using the fact from sorite 265
that D(f · g) = f ·Dg + g ·Df .

We have an operation of a vector field F ∈ V r (U) on f ∈ Cr+1(U) defined
by

LFf = df ◦ F : U → R.

The function LFf is in Cr (U). It is called the Lie derivative of f with
respect to F . In particular, if F ∈ V∞(U) and f ∈ C∞(U), then also LFf ∈
C∞(U). If for u ∈ U , we have the linear form Dfu = (∂1fu, ∂2fu, . . . ∂nfu),
whose transpose Df τu is called the gradient of f at u, and if F(u) =
(F1(u), F2(u), . . . Fn(u)), then

LFf(u) =
∑
i
∂ifu · Fi(u),

the classical standard scalar product of the vectors Dfu and F(u) in
Rn. In particular, if f(u) = prj(u), the j-th coordinate function, then
∂iprj = δij , and therefore, LFprj(u) = Fj(u). In particular, F is uniquely
determined by the Lie derivative LF .

The Lie derivative has these properties:

Lemma 291 If F ∈ V∞(U) then the Lie derivative LF : C∞(U) → C∞(U)
on the real vector space C∞(U) is a derivation, i.e.,

(i) LF is R-linear.

(ii) For f , g ∈ C∞(U), we have LF(f · g) = f · LFg + LFf · g.

(iii) If c ∈ C∞(U) is a constant, then LFc = 0.

The set Der(C∞(U)) of derivations C∞(U) → C∞(U), together with the
usual pointwise sum (D + E)(u) = D(u)+ E(u) and scalar multiplication
(λD)(u) = λ ·D(u) is a real vector space.
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Proof Since the derivative of a function f ∈ C∞(U) is linear in f , the differential
df is also linear in f , but LF(f ) = df ◦ F is linear in df , therefore (i) holds.

Claim (ii) follows immediately from lemma 290.

Claim (iii) follows from the fact that Dc = 0 for a constant c, whence dc = 0, and
therefore LF(c) = dc ◦ F = 0. The proof that the set Der(C∞(U)) is a real vector
space is left as a standard verification to the reader. �

Example 125 Let f be the potential function from example 124. Consider
the constant vector field

F(x,y) = (x,y ; 1,−1)

which can be regarded as a velocity field with constant magnitude
√

2 and
direction (1,−1).

The Lie derivative of f with respect to F is

LFf(x,y) = (df ◦ F)(x,y)
= df(F(x,y))
= df(x,y ; 1,−1)

=
(
− 2x
(x2 +y2)3/2

,− 2y
(x2 +y2)3/2

)
·
(

1
−1

)

= − 2x
(x2 +y2)3/2

+ 2y
(x2 +y2)3/2

If a point (x,y) moves with velocity
√

2 along a straight line with direc-
tion (1,−1), LFf(x,y) is effectively the gravitational force acting on the
point in the direction of its movement (figure 32.4).

Proposition 292 Let U ⊂ Rn be an open set. Then the Lie derivative de-
fines a linear isomorphism

L : V∞(U) ∼→ Der(C∞(U)) : F � LF .

Proof We have already seen that for the Lie derivative of a vector field F =
(IdU , F1, . . . Fn), we have LFprj = Fj . Therefore, L is injective, and it is evidently
R-linear. The only remaining point is its surjectivity. Now, by injectivity of L,
the only candidate for the vector field F yielding a given derivation D is Fj =
D(prj), j = 1, . . . n. This means that we have to prove the formula

D(f) = df ◦ (IdU ,D(pr1), . . .D(prn)).

To this end, we make use of an integral form of the mean value theorem. Let
x ∈ U and y ∈ Bε(x) for a small ball Bε(x) ⊂ U . Then the affine curve
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Fig. 32.4. The velocity vector field F and the gradient Df(x,y). The thick
vectors have length LFf(x,y). They measure the gravitational force in
the direction of the velocity field.

c :
[
0,1

]→ U : t � x + t · (y − x)

induces a C∞-function e = f ◦ c :
[
0,1

] → R, and we have f(y)− f(x) = e(1)−
e(0) = ∫ 1

0 Dedt =
∑
j(yj − xj) ·

∫ 1
0 Djedt. Writing fj(y) =

∫ 1
0 Djedt, we have

f(y) = f(x)+
∑
j
(prj(y)− xj)fj(y),

as a function of y with x being fixed, and where the constituents pr j and fj
are C∞-functions with fj(x) = Djf(x). Then the properties of D as a derivation
yield

D(f) = D(f(x))+
∑
j
(D(prj)−D(xj))fj +

∑
j
(prj(y)− xj)D(fj)

=
∑
j
D(prj)fj +

∑
j
(prj(y)− xj)D(fj),

which, when evaluated at y = x, yields

D(f)(x) =
∑
j
D(prj)(x)Djf(x) = df(x)

(
D(pr1)(x), . . .D(prn)(x)

)
,

and this proves the above formula. �

This opens an important technique of vector field construction, the Lie
bracket. To this end, consider the following fact:
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Proposition 293 If D,E ∈ Der(C∞(U)), then so is the endomorphism

[D, E] = D ◦ E − E ◦D.

The derivation [D, E] is called the Lie bracket of D and E. The Lie bracket
is R-bilinear and has these properties for all D,E, F ∈ Der(C∞(U)):

(i) [D,D] = 0,

(ii) (Jacobi Identity) [D, [E, F]]+ [E, [F,D]]+ [F, [D, E]] = 0.

Proof This is a straightforward verification which we omit. �

Corollary 294 For two vector fields F,G ∈ V∞(U) there is a unique vec-
tor field [F,G] ∈ V∞(U) such that [LF , LG] = L[F,G]. It is called the Lie
derivative of F and G.

Proof This follows immediately from proposition 293. �

An explicit representation of [F,G] in terms of F and G can be given as
follows: We know that the i-th component of a vector field F is given
by the Lie derivative of the i-th coordinate function pr i : U → R, i.e.,
Fi = LF(pi) = dpri ◦ F . Thus we have

[F,G]i = L[F,G](pri)

= LF(LG(pri))− LG(LF(pri))

= d(dpri ◦G) ◦ F − d(dpri ◦ F) ◦G
= dGi ◦ F − dFi ◦G
=
∑
j
DjGi · Fj −DjFi ·Gj .

The Lie bracket appears somewhat mysterious here. For an intuitive un-
derstanding of its use in control theory, see example 135 in chapter 34.



CHAPTER 33

Fixpoints

33.1 Introduction

Fixpoint theory is a vast field which we shall only discuss for a special
case. However, already in this case, it will become clear that this theory is
a fundamental tool in many branches of mathematics. In particular, it will
turn out that the solution of a differential equation and the definition of a
concept by use of the recursion theorem are, both, solutions of a fixpoint
problem. This opens the perspective of viewing the solution of a differen-
tial equation as a kind of “infinitesimal definition of a concept”, while the
recursive construction of a concept (such as the arithmetic operations
on natural numbers) may be restated as the solution of a “differential
equation of a concept”.

33.2 Contractions

We encountered distance functions in the discussion of Euclidean spaces,
in particular in proposition 213 of volume 1. Here, we shall introduce
those spaces which are defined by such distance functions:

Definition 203 A metric space is a pair (X,d), where X is a set and d :
X ×X → R is a distance function on X with these properties:

(i) (Positive Definiteness) For all x ∈ X, d(x,y) ≥ 0, and d(x,y) = 0,
iff x = y .
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(ii) (Symmetry) We have d(x,y) = d(y,x) for all (x,y) ∈ X ×X.

(iii) (Triangle Inequality) For all x,y, z ∈ X, d(x,y)+d(y, z) ≥ d(x, z).

Example 126 As already indicated, the distance function of a Euclidean
space (V , b), which is deduced from the norm, defines a metric, see
proposition 213 of volume 1.

Example 127 In the theory of integration, we considered a closed cube
K(a., b.) ⊂ Rn defined by a sequence (a., b.) of 2n real numbers with
ai ≤ bi. If we take a function f ∈ C0(K(a., b.)), then we have the norm
‖f‖ =

√
(f , f ) =

√∫
(a.,b.) f 2 (cf. definition 201). The triangle inequality in

sorite 287 guarantees that the function d(f , g) = ‖f − g‖ on f , g ∈ X =
C0(K(a., b.)) is a distance function.

Exercise 164 For the recursion theorem, we considered the space X =
aN of sequences with values in a set a, see chapter 6.1 in volume 1. If
(xi)i, (yi)i ∈ X, are two different sequences, we set d

(
(xi)i, (yi)i

) = 1
2n ,

where n is the minimal index i ∈ N such that xi ≠ yi; if (xi)i = (yi)i
we set d

(
(xi)i, (yi)i

) = 0. Clearly, this function is positive definite and
symmetric. Prove that the triangle inequality also holds.

For a metric space (X,d) one can also define a topology by the set
Open(X,d) of open sets. To this end, we proceed in complete analogy to
the topologies for Euclidean spaces as discussed in section 27.2. If ε > 0
and x ∈ X, we define the ε-ball around x by Bε(x) = {y | d(x,y) < ε}. A
subset O ⊂ X is called open, iff it is the union of open balls. The axioms
of a topology as listed in sorite 231 are obviously true, just replace Rn by
X. Again, a closed set is the complement in X of an open set. For example,
the closed ε-ball around x is the closed set Bε(x) = {y | d(x,y) ≤ ε},
complement of the open set {y | d(x,y) > ε}.
On a metric space (X,d), one may again consider convergent and Cauchy
sequences, the definition is in nearly complete analogy with the corre-
sponding definition 177, except that the open cube neighborhoods are
not defined here.

Definition 204 For a metric space (X,d), a sequence (ci)i of elements in
X is called convergent if there is an element c ∈ X such that for every
ε > 0, there is an index N with ci ∈ Bε(c) for i > N. If (ci)i converges to
c, one writes limi→∞ ci = c. A sequence which does not converge is called
divergent.
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A sequence (ci)i of elements in X is called a Cauchy sequence, if for every
ε > 0, there is an index N with ci ∈ Bε(cj) for i, j > N. A metric space
(X,d), in which every Cauchy sequence converges, is called complete.

Example 128 The Euclidean space (V , b) (see example 126) is a complete
metric space, this is the restatement of proposition 232.

The metric function space C0(K(a., b.)) from example 127 is not com-
plete, we state this without a proof. However, the proof idea is simple:
One takes a step function s : K(a., b.)→ R, for example s(x1, x2 . . . xn) =
0 if x1 ≤ (a1 + b1)/2, and s(x1, x2 . . . xn) = 1 otherwise. This function,
which is obviously not in C0(K(a., b.)), is easily seen to be the limit of a
sequence (fi)i of continuous functions fi ∈ C0(K(a., b.)).

Exercise 165 The space (aN, d) from exercise 164 is complete. Give a
proof thereof.

Exercise 166 If Y ⊂ X is a closed subset of a complete metric space
(X,d), then the metric space (Y ,d|Y×Y ) is also complete.

The main strategy in the proofs of the recursion theorem and of the main
theorem of ordinary differential equations (to be dealt with in the fol-
lowing chapter 34) is the construction of a uniquely determined fixpoint
x = k(x) of a map k : X → X, where X is a complete metric space. The
guarantee that such a fixpoint exists follows from the following central
result:

Proposition 295 Call a function k : X → Y between metric spaces a con-
traction, iff there is a real number c with 0 < c < 1 such that for all
x,y ∈ X, we have

d
(
k(x), k(y)

) ≤ c · d(x,y).
If k : X → X is a contraction on a complete metric space (X,d), then there
is a unique fixpoint fk ∈ X of k, i.e., k(fk) = fk, and if k(f) = f , then
f = fk. More precisely, the fixpoint is the limit

fk = lim
i→∞

ki(x)

for any point x ∈ X. We also denote the fixpoint by Fix(k).

Proof Clearly, a fixpoint is uniquely determined, since if k(x) = x and k(y) =
y , then d(x,y) = d

(
k(x), k(y)

) ≤ c · d(x,y) < d(x,y), a contradiction for
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d(x,y) ≠ 0. The existence follows from the completeness of X, if we show that
any sequence (ki(x))i∈N is Cauchy. But one has d

(
kj(x), kj(y)

) ≤ cj · d(x,y).
So, suppose k(x) ≠ x. Then for N ≤ M ,

d
(
kN(x), kM(x)

) ≤ d(kN(x), kN+1(x)
)+ · · ·d(kM−1(x), kM(x)

)

=
M−N−1∑
i=0

d
(
kN+i(x), kN+i(k(x))

)

≤
M−1∑
i=0

d
(
kN+i(x), kN+i(k(x))

)

≤
M−1∑
i=0

cN+id(x, k(x))

≤ d(x, k(x)) · cN ·
M−1∑
i=0

ci

≤ d(x, k(x)) · cN · 1
1− c ,

Since 0 < c < 1, d(x, k(x)) · cN · 1
1−c tends to 0 as N →∞, thus d

(
kN(x), kM(x)

)
(which is positive) also tends to 0 as N → ∞. Thus (ki(x))i is Cauchy and the
theorem proved. �

Example 129 The iterative procedure to approximate the fixpoint of k =
cos :

[
0,1

] → [
0,1

]
can be nicely illustrated with a picture. The map k

is a contraction, since, by the mean value theorem, for 0 < ξ < 1, we
have | cos(x) − cos(y)| = |x − y| · | sin(ξ)| ≤ |x − y| · sin(1), where
0 < sin(1) < 1.

Fig. 33.1. The fixpoint tcos ≈ 0.739085. The iteration starts with t0 = 0.1.
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We seek the solution to x = cos(x), i.e., the fixpoint Fix(cos). In fig-
ure 33.1 we see that curve for y = cos(x) intersects the straight line
y = x somewhere between x = 0.1 and x = 0.9. The simultaneous solu-
tion to both equations is obviously Fix(cos).

Starting with t0 = 0.01, draw a line to t1 = cos(t0). To proceed to cos(t1),
draw a horizontal line to the straight line y = x. Hence we get, by pro-
jecting downwards to the curve, the value t2 = cos(t1). The procedure
is iterated, closing in on the fixed point, until we are satisfied with the
approximation. Here we get the approximated fixpoint tcos ≈ 0.739085.

Fig. 33.2. The limit of tn = logn(1 + i) is the fixpoint tlog ≈ 0.318132 +
i · 1.337236.

Example 130 We have seen the logarithm for real values. It can be easily
continued to complex values: If z = |z|ei·arg(z), then

log(z) = log |z| + i · arg(z).

For any point z ∈ C, z �∈ R, we have

tlog = lim
n→∞ logn(z) ≈ 0.318132+ i · 1.337236.
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In figure 33.2, we start with the point t0 = 1+i. The result is a logarithmic
spiral which approaches tlog.

Exercise 167 In recursion theory (see chapter 6.1 in volume 1), we dealt
with the unique fixpoint LΦ = Φ(LΦ) of the function Φ : aN → aN. Show
that we have d

(
Φ(f ),Φ(g)

) ≤ 1
2d(f , g). So if g is any sequence, we have

LΦ = lim
i→∞

Φi(g).

This means that the “concept LΦ” which we define recursively via Φ, is
the limit of a Cauchy sequence.

Corollary 296 Let r > 0 and x ∈ X for a complete metric space (X,d). If
k : Br (x) → X is a contraction with a constant of contraction c such that
d(k(x),x) ≤ (1− c)r , then k has a unique fixpoint in Br (x).

Proof If y ∈ Br (x), then

d(k(y),x) ≤ d(k(y), k(x))+ d(k(x),x)
≤ c · d(x,y)+ (1− c)r
≤ cr + (1− c)r
= r .

Thus, the contraction maps the complete subspace Br (x) into itself and there-
fore is a contraction on this ball, hence it has its unique fixpoint in Br (x) ac-
cording to proposition 295. �

Example 131 We illustrate corollary 296 with the simple function f :
R→ R, x � 1

3x + 1. We have, for x,y ∈ R,

|f(x)− f(y)| = |1
3x − 1

3y|
= 1

3 |x −y|.

Thus f is a contraction on the whole of Rwith contraction constant c = 1
3 .

Moreover c is the minimal such constant. Taking B1(2),

|f(2)− 2| = 1
3 ≤ (1− c)r = 2

3 · 1 = 2
3 .

Thus there is a unique fixpoint in the interval
[
1,3

]
. We proceed by split-

ting the interval into two halves,
[
1,2

]
and

[
2,3

]
, and see that the con-

dition from the corollary is fulfilled for B1/2(3
2), but not for B1/2(5

2), so
there is no need to look further for a fixpoint in

[
2,3

]
, since the fixpoint

is unique in [1,3]. We continue with this procedure of binary search to
find that 3

2 = Fix(f ).
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Example 132 (Newton’s method) A famous application of fixpoint the-
ory is Newton’s method for finding roots of a function. The Taylor series
of a function f about a point x is

f(x + h) = f(x)+ hf ′(x)+ 1
2h

2f ′′(x)+ . . . .

If h is small, we can neglect terms of order greater than 2:

f(x + h) ≈ f(x)+ hf ′(x).

Given x we want to find a step h such that f(x + h) = 0. With this
condition we can compute an approximate h that leads us closer to the
root:

h = − f(x)
f ′(x)

,

hence from a given value xn we get to the next value xn+1:

xn+1 = xn − f(xn)
f ′(xn)

.

If we set g(x) = x− f(x)
f ′(x) , then the value we seek is the fixpoint x = g(x),

i.e., x = x − f(x)
f ′(x) , or 0 = − f(x)

f ′(x) , finally f(x) = 0.

The theoretical justification is as follows: We are given a C2 function f :
U → R in a neighborhood U of a point p. Suppose that f(p) = 0 and that
f ′(p) ≠ 0. Then there is a closed interval I = [

p−d,p+d] such that the
function g(x) = x − f(x)

f ′(x) is defined on I and is a contraction on I. Since
g(p) = p, this function fixes p. The point is that according to the fixpoint
theorem 295, the sequence gi(x0) converges to p for any x0 ∈ I. So we
may find p by successive approximation. The geometric meaning of g is
shown in figure 33.3. Let us see why we have a contraction. We have

g′(x) = 1− f
′(x)2 − f ′′(x)f(x)

f ′(x)2
,

which is defined and continuous in a neighborhood V of p where f ′(x) ≠
0. Since g′(p) = 0, there is a neighborhood

[
p − d,p + d] of p such that

g is defined and |g′(x)| ≤ c < 1 for x ∈ I. Now, for x ∈ I, by the mean
value theorem, we have

|g(x)− p| = |g(x)− g(p)|
= |g′(ξ) · (x − p)|
< c · |(x − p)|
< d
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for a ξ with p−d < ξ < p+d, therefore g maps I into I. Further, for any
x,y ∈ I, the same argument yields |g(x) − g(y)| = |g′(η) · (x − y)| <
c|x −y| for a mean value η.

Fig. 33.3. Newton’s method for finding the solution of ex = 2. Note that
the next point xn+1 of the iteration is found as the intersection of the
tangent at xn with the axis y = 0.

Figure 33.3 shows a few iterations of the Newton algorithm for finding
the root of f(x) = ex − 2, starting with x0 = 1.5. The approximative
solution of ex = 2 is 0.693147.



CHAPTER 34

Main Theorem of ODEs

34.1 Introduction

We have learned that the integral F(x) = F0 +
∫ x
a f solves the problem of

finding a primitive function F such that F ′ = f and F(a) = F0. Intuitively,
this means that we are given a velocity field with value f(x) at time x,
and we are looking for a path function F such that its initial position (at
time x = a) is predefined by Fa and its velocity function F ′ coincides with
the given velocity function f .

Ordinary differential equations generalize this setup and also have an ex-
istence theorem for primitive functions, which can be seen as a general-
ization of the fundamental theorem of calculus. But this generalization is
not merely of a technical nature: As already stressed in the introduction
to chapter 32, the existence of a global synthesis of the local information
provided by a vector field is crucial for the existence of global concepts in
natural and computational sciences. But the essence of the local-to-global
transition is the existence and uniqueness of global solutions, and this is
a kind of convergence towards a fixpoint as described in chapter 33. The
desired global concept is the fixpoint of a contraction associated with
the vector field. We recall that this parallels the theory of recursively de-
fined entities, which, as we saw in example 167, is also the passage from
a “local information flow” to a global concept, guaranteed as a fixpoint
of a contraction. Inverting the perspective, the solution of a differential
equation defined by a vector field is just another type of concept, which
is given by a local information flow and has its existential foundation in
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a fixpoint theorem for what one could call “informational” contractions.
Much like in general recursion theory, where the recursion theorem is the
vital basis, the main theorem of ordinary differential equations (ODEs) is
the vital basis for all theories which emanate from the globalization or
integration of vector field constructions.

34.2 Conservative and Time-Dependent Ordinary
Differential Equations: The Local Setup

The local setup is this:

Definition 205 Let (ζ, η) ∈ R × Rn. Let I ∈ R be an open interval con-
taining ζ and U ⊂ Rn an open neighborhood of η. Let F : U → TU : x �
(x, F2(x)) be a continuous vector field on U . A local integral curve of F at
(ζ, η) is a C1 function y : I → U such that y(ζ) = η and such that the
diagram

I ∆
����������������������������������������������������������������������������������������������������������������������������→ TI

y
⏐⏐! ⏐⏐!Ty
U F

����������������������������������������������������������������������������������������������������������������������������→ TU
commutes. Here ∆ : I → TI : ξ � (ξ,1) is the constant vector field with
value 1. This means that

Ty ◦∆ = F ◦y,
or, setting y ′ = pr2 ◦ Ty ◦∆,

y ′(t) = F2(y(t)) for all t ∈ I,

with the initial condition
y(ζ) = η.

This is the form in which an ordinary differential equation (ODE) is tra-
ditionally presented.1 The equation is regarded as an equation in the un-
known function y of one variable t ∈ I.

1 In contrast to ODEs, partial differential equations (PDEs) involve partial deriva-
tives of functions of several variables. We shall not deal with PDEs in our
modest context and refer the interested reader to [17].
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Often, in literature, so-called “time-dependent” vector fields and corre-
sponding differential equations are considered, in contrast to the so-
called “conservative” vector field F above. This reads as follows: Instead
of a vector field F : U → TU , one considers a continuous function
F : J ×U → TU , where J is an open interval with I ⊂ J, and then asks for
a solution y as above such that

I ∆
����������������������������������������������������������������������������������������������������������������������������→ TI

(IdI ,y)
⏐⏐! ⏐⏐!Ty

J ×U F
����������������������������������������������������������������������������������������������������������������������������→ TU

(∗)

commutes. This condition can be the written as the equation

y ′(t) = F2(t,y(t))

with the same initial condition as above. But this seemingly more general
setup is only a special case of the conservative situation if we apply the
following trick. Taking the open set U∗ = J × U ⊂ Rn+1, we extend the
time-dependent vector field to a conservative field F∗ : U∗ → T(U∗) =
Rn+1 : (t,u) � (1, F(u)). The boundary condition now reads y∗(ζ) =
(ζ, η). Then a solution y∗ = (y1, y) : I → U∗ of the diagram

I ∆
����������������������������������������������������������������������������������������������������������������������������→ TI

y∗
⏐⏐! ⏐⏐!Ty∗
U∗ F∗

����������������������������������������������������������������������������������������������������������������������������→ TU ∗

reads as follows: We have F∗ = (∆, F) and Ty∗ = Ty1 × Ty for a solu-
tion y of equation (∗). Therefore, the first coordinate of this diagram is
commutative, iff y1 solves y ′1 = 1 and y1(ζ) = ζ, i.e., y1 = IdI . So we
have this result:

Proposition 297 With the above notations, a conservative solution y∗ for
F∗ is equivalent to a time-dependent solution y .

We therefore stick to conservative ODEs and the question of the existence
of solutions of such equations.

34.3 The Fundamental Theorem: Local Version

Given the data from definition 205, we denote by A(F,ζ, η, I, U) the set
of local integral curves y : I → U of F : U → TU at (ζ, η). This set can



116 Main Theorem of ODEs

be described by an alternative property: Given F, ζ and η, we have the
operator

Tζ,η,F(y) = η+
∫ ?

ζ
F2 ◦y

defined as an endomorphism on the set of curves y : I → U . We then
consider the set B(F, ζ, η, I, U) of C1-curves y : I → U which are fixpoints
of Tζ,η,F , i.e.,

Tζ,η,F(y) = y.

Lemma 298 With the preceding notations, we have

A(F,ζ, η, I, U) = B(F, ζ, η, I, U).

Exercise 168 Give a proof of lemma 298.

This identification of sets A and B induces a beautiful proof and also a
method for the construction of solutions of such an ODE: One shows that
under a certain condition, a so-called Lipschitz condition, for the vector
field F , and by the selection of an adequate subset of functions y , the
operator Tζ,η,F is a contraction and therefore has a unique fixpoint which
solves the equation.

Definition 206 A vector field F : U → TU with second projection F2 : U →
Rn is called locally Lipschitz, iff for every u ∈ U there is a neighborhood
N(u) ⊂ U and a positive real number L such that for all x1, x2 ∈ N(u),
we have ‖F2(x1)− F2(x2)‖ ≤ L · ‖x1 − x2‖ for the Euclidean norm.

Evidently, a locally Lipschitz vector field is continuous, as the condition
is in fact something between continuous and differentiable. Here is the
local fundamental theorem of ODEs:

Proposition 299 (Local Fundamental Theorem of ODEs) If for an open
set U ⊂ Rn, the vector field F : U → TU is locally Lipschitz, then
for the initial conditions ζ ∈ R and η ∈ U , there is an open interval
I(ζ) containing ζ and an open neighborhood U(η) ⊂ U of η such that
A(F,ζ, η, I(ζ),U(η)) = {y}. This singleton’s element y is called the local
solution of the differential equation y ′ = F ◦y at I(ζ) and U(η).

The proof involves some calculations in Banach spaces (complete metric
spaces, defined by norms). But we have a rather explicit procedure which
guarantees a contraction as follows.
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1. Select a radius r1 > 0 such that Br1(η) ⊂ U .

2. Select the radius r2 such that there is a Lipschitz constant L with
‖F2(x1)− F2(x2)‖ ≤ L · ‖x1 − x2‖ for all x1, x2 ∈ Br2(η).

3. Set r = min(r1, r2).

4. Take a number m such that ‖F2(x)‖ ≤ m on all x ∈ Br (η) (which
exists since Br (η) is compact and F is continuous).

5. Take a positive number δ < r
2(m+rL) .

6. Consider now the open interval I = ]
ζ − δ,ζ + δ[ around ζ and

the set BC(I,Rn) = {f : I → Rn | f ∈ C0,‖f‖∞ < ∞}, where
‖f‖∞ = supξ∈I f(ξ) is the so-called uniform norm. We also denote
by d(f , g) = ‖f − g‖∞ the derived metric, since no confusion is pos-
sible.

7. Next take the constant function η : I → Rn : ξ � η, which is evidently
in BC(I,Rn).

8. Finally, consider the closed ball of functions Br (η) = {f ∈ BC(I,Rn) |
d(f , η) ≤ r}. Then it can be shown (see [23]) that

Tζ,η,F : Br (η)→ BC(I,Rn),

and that this operator is a contraction with a constant c satisfying
d(Tζ,η,F(η), η) < (1−c)r . By corollary 296, and the fact that BC(I,Rn)
is complete with the distance derived from the uniform norm, we
infer that there is a unique fixpoint y ∈ Br (η).

9. This fixpoint may be obtained by starting from η and then calculating
the Cauchy sequence (T iζ,η,F(η))i which has

lim
i→∞

T iζ,η,Fη = y.

This is the Picard-Lindelöf iteration procedure.

34.4 The Special Case of a Linear ODE

Let us now look at the special case of a linear ODE. It is given by the
vector field TA : R → TRn : x � (x,A(x)), where A ∈ LinR(Rn,Rn) is a
linear endomorphism. This is classically written as

y ′ = A(y)
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with initial condition y(ζ) = η. Evidently, TA is a continuous vector field.
We also have ‖A(x1)−A(x2)‖ = ‖A(x1 − x2)‖ ≤ ‖A‖ · ‖x1 − x2‖ by the
Schwarz inequality, and where ‖A‖ is the Euclidean norm of the matrix of
A in the standard basis. Therefore TA is Lipschitz with a global Lipschitz
constant L = ‖A‖.

Exercise 169 Give a proof of the inequality ‖A(x1−x2)‖ ≤ ‖A‖·‖x1−x2‖
using the Schwarz inequality in the standard Euclidean space Rn.

Let us now look at the limit process limi→∞ T iζ,η,Fη = y when starting
from a constant function η defined by an initial vector η ∈ Rn and the
initial parameter ζ = 0 (this is no essential restriction to the general
solution).

Lemma 300 With the preceding notations, the i-th Picard-Lindelöf itera-
tion T i0,η,TAη at the curve parameter t has the shape

T i0,η,TAη(t) =
⎛⎝ i∑
j=0

1
j!
tjAj

⎞⎠ (η). (∗)

Exercise 170 Give a proof of the formula (∗). Proceed by induction on i.

It follows from the general theory of function limits that the limit func-
tion, i.e., the fixpoint of this ODE is the function which at t evaluates to
the limit

T∞0,η,TAη(t) =
⎛⎝ ∞∑
j=0

1
j!
tjAj

⎞⎠ (η)
of the above series. For obvious reasons, this solution is written as

y(t) = etA(η).

Example 133 Consider the equation y ′ = Ay where

A =
(

0 1
−1 0

)
,

i.e., a clockwise rotation by π
2 .

If we write y = (y1, y2), then our equation is equivalent to a system of
linear ODEs:



34.5 The Fundamental Theorem: Global Version 119

y ′1 = y2,

y ′2 = −y1.

To solve this equation, we have to exponentiate the matrix A, so let us
look at its powers:

A2 =
(
−1 0

0 −1

)
= −E2, A3 =

(
0 −1
1 0

)
= −A,

A4 =
(

1 0
0 1

)
= E2, A5 = A.

Exploiting this periodicity, we can rewrite the exponential and thus solve
our equation:

∞∑
j=0

1
j!
tjAj =

∞∑
j=0

1
(4j)!

t4jE2 +
∞∑
j=0

1
(4j + 1)!

t4j+1A−

∞∑
j=0

1
(4j + 2)!

t4j+2E2 −
∞∑
j=0

1
(4j + 3)!

t4j+3A

=
∞∑
j=0

(−1)j

(2j)!
t2jE2 −

∞∑
j=0

(−1)j

(2j + 1)!
t2j+1A

Using the representation of the sine and cosine functions as given in
proposition 257, and writing down the matrixes explicitly, we get

∞∑
j=0

1
j!
tjAj = cos(t)E2 − sin(t)A =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

In other words, y(t) = etA(η) describes a clockwise motion on a circle
with radius |η|. Writing the initial condition vector η = (η1, η2), the solu-
tion to the system of linear equations is:

y1(t) = cos(t)η1 − sin(t)η2,

y2(t) = sin(t)η1 + cos(t)η2.

See also example 134.

34.5 The Fundamental Theorem: Global Version

The local fundamental theorem of ODEs is unsatisfactory in that it does
only describe solutions around a possibly very small neighborhood of a
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point of the domain U of the vector field F . However, the uniqueness
of solutions offers itself to a process of gluing together local solutions
to form a global solution. Here is the setup for the generation of global
solutions.

Definition 207 If F : U → TU is a Lipschitz continuous vector field and
u,v ∈ U , then we say that u is equivalent to v , in signs u ∼ v , iff there is
a local integral curve y for F such that {u,v} ⊂ Im(y).

Lemma 301 The relation ∼ in definition 207 is an equivalence relation.
The equivalence class of u ∈ U is denoted by [u]. The quotient U/∼ is
called the phase portrait of F , it is denoted by U/F .

Proof Evidently, ∼ is reflexive and symmetric. We have to show that the relation
is also transitive. So let u ∼ v ∼w. Then we have two integral curves y1 : I1 → U
and y2 : I2 → U such that y1(ξ1) = v = y2(ξ2). Let I∗2 = T ξ1−ξ2(I2), where
Tx is the translation by x defined in section 22.3 of volume 1. Then the curve
y∗2 = y2 ◦ T ξ2−ξ1 : I∗2 → U is an integral curve such that y∗2 (ξ1) = v , because
(y∗2 )′(t) = y ′2(T ξ2−ξ1(t)) = F2(y2(T ξ2−ξ1(t)) = F2(y∗2 (t)). By the uniqueness of
a solution of the differential equation, both solutions y∗2 and y1 coincide on the
intersection I1∩ I∗2 . Therefore, we get an integral curve on the union I1∪ I∗2 , and
here u ∼ w. �

We now describe the equivalence classes [u] of the phase portrait.

Proposition 302 Let u ∈ U , then there is a unique local integral curve
y : J → U for F with y(0) = u and such that if z : I → U is any integral
curve for F with z(0) = u, then I ⊂ J and z = y|I . This curve is called the
global integral curve through u and is denoted by

∫
u F . We have Im(

∫
u F) =

[u]. In particular, the phase portrait is the collection of images of global
integral curves, and U is partitioned into the images of such curves.

In particular, if u1 ∼ u2, and if
∫
u1
F(t2) = u2, then we have

∫
u2
F =∫

u1
F ◦ T t2 . The domains J1, J2 of

∫
u1
F,
∫
u2
F , respectively, are related by

J2 = T−t2(J1).

Proof If we have two integral curves y1 and y2 with y1(0) = y2(0) = u, then by
uniqueness, they coincide on the intersection of their domains, so they define an
integral curve on the union of their domains. Therefore the union of all integral
curves z with z(0) = u is a maximal integral curve y with y(0) = u. Clearly
for this curve, we have [u] = Im(y). Also, if

∫
u1
F is maximal, then so is

∫
u1
F ◦

T t2 , and therefore it coincides with
∫
u2
F . The statement about the domains is

immediate. �
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Fig. 34.1. Some integral curves from the phase portrait of the vector field
F(x,y) = (x,y,1,1− 3xy), drawn for −1 ≤ x ≤ 3

2 and −1 ≤ y ≤ 3
2 .

Proposition 303 A global integral curve
∫
w F , which is not an injective

function of the curve parameter, is called a cycle of F . If for a curve pa-
rameter t1 of a cycle

∫
w F , we have

∫
w F(t1) =

∫
w F(t1 + P) for P ≠ 0, then

the cycle domain is R and
∫
w F(t) =

∫
w F(t + P) for all t, i.e., the cycle is

P -periodic.

Proof Since
∫
w F(t1) =

∫
w F ◦ T P (t1), and both curves

∫
w F and

∫
w F ◦ T P are

maximal integral curves with common value at t1, we have
∫
w F = ∫

w F ◦ T P .
Therefore, for their common domain J, we have J = T PJ, i.e., J = R. �

Example 134 Let U = R2 and F(x,y) = (x,y,y,−x), the linear vector
field defined by a clockwise rotation by π

2 (see section 34.4). Then the
integral curves of this differential equation are all cycles, and their images
are concentric circles around the origin.

Example 135 Lie brackets (proposition 293) play an important role in
Hamiltonian mechanics, but they are also an essential tool in modern
robotics. In non-linear control theory, problems of motion planning are a
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Fig. 34.2. The linear vector field F(x,y) = (x,y,y,−x). The gray circle
is one of the local integral curves.

core issue, which is important for multi-legged robot motion, for exam-
ple. It is here, where the Lie bracket has a very practical interpretation.
To this end, one has to give a second interpretation of the Lie bracket
[F,G] of two (Lipschitz continuous) vector fields on an open set U ⊂ Rn.
If u ∈ U , then we have integral curves of F and G in a neighborhood
of u. Let us focus on this neighborhood. Taking a small ε > 0, we fol-
low a four-part trajectory starting at u on

∫
u F , see figure 34.3. We in-

terrupt the walk at the point v = ∫
u F(ε). Then we proceed on the in-

tegral curve
∫∫
u F(ε)G and stop at point w = ∫

v G(ε) =
∫∫
u F(ε)G(ε). We

now proceed again in the direction of F , but backwards, i.e., we move to
x = ∫

w F(−ε) =
∫∫
∫
u F(ε) G(ε)

F(−ε). Finally, having arrived at this point, we
move in the direction of G again, but backwards, and we stop at

L(ε) =
∫
∫
∫∫
u F(ε)

G(ε) F(−ε)
G(−ε).

Finally, we take the limit ε → 0 and it can be shown that

[F,G](x) = lim
ε→0

1
ε2
L(ε).
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Fig. 34.3. The Lie derivative [F,G](x) can be calculated as the limit of a
four-part walk on the integral curves of F and G.

Surprisingly, this interpretation of Lie brackets has a well-known applica-
tion in common life: when you are parking your car, the combined steer-
ing strategy is precisely a Lie bracket action. In fact, we may describe the
car’s position by the coordinates Q = (x,y, θ) ∈ R3, where x and y are
the spatial coordinates of the car’s center, while θ is the angle of the car’s
motion axis. We have two types of movements, which we suppose to be
occurring at a constant speed 1: Steering to the right has spatial veloc-
ity (cos(θ), sin(θ)), while the angle decreases constantly with rate −q, so
the three-dimensional velocity field at Q is F2(Q) = (cos(θ), sin(θ),−q).
Therefore the velocity, i.e., the derivative of the motion coordinates at
time t yields

F2(Q) = dQ
dt

= (cos(θ), sin(θ),−q).
Similarly, steering to the left yields

G2(Q) = dQ
dt

= (cos(θ), sin(θ), q).

Now, interpreting the Lie bracket [F,G] as above, we have the following
trajectory for the parking movement: First we drive in forward motion
to the right (with angle rate −q) moving along F for ε seconds, then we
still drive forwards, but steer to the left (now with positive rate q) we
follow G for ε seconds. Then we move backwards along F , steering to the
right (again with rate −q), and again for ε seconds, and conclude with a
backwards motion along G (again with rate q), for another ε seconds. The
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new position approaches the Lie bracket vector field

[F,G]2(Q) = (0,2q cos(θ),0),

which is a vector field in y direction, i.e., a shift movement perpendicular
to the street axis, exactly what was desired by the driver.

Fig. 34.4. A sideways parking movement of a car can be achieved by
going through a sequence of forward and backward movements, illus-
trating the geometric meaning of Lie brackets.



CHAPTER 35

Third Advanced Topic

35.1 Introduction

Numerical mathematics is a vast field which we can only slightly touch.
It is, however, very important to computer science and practice since
the way many mathematical theories are presented is far from computa-
tional. In fact, some theories are in principle beyond computability. These
fields are not as outlandish as one might guess at first sight. We have al-
ready encountered the definite imprecision of floating point arithmetic.
Another source for problems of computability is the amount of compu-
tational effort required to obtain a desired result. The algorithms which
would return optimal results are sometimes excessively time-consuming,
so one has to look for faster algorithms that deliver less precise, in short,
suboptimal, solutions. Numerics is therefore also concerned with the
propagation of errors along an algorithmic computation.

35.2 Numerics of ODEs

In this chapter, we want to deal with a problem of numerical solutions
of ODEs which is not due to some flaw specific to computers, but mainly
to the non-constructive proof of existence of solutions, which can only
be made explicit by approximations. In principle, this kind of objects
is intimately tied to the topological completeness of R, i.e., their non-
constructive nature lies in the non-constructive nature of the real num-
bers as a such. But it is not only this known gap in constructions, which
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emerge so dramatically in the case of ODE solutions, it is the fact that
such solutions effectively express new kinds of functions, which have
properties not shared by already known types of function. This phe-
nomenon already arises in calculus: The integral, when seen as the primi-
tive function of a given function, may generate completely new functions.
The main theorem of ODEs is based on a fixpoint theorem, and we know
from the recursion theorem, which is a special case of a fixpoint theorem
(see exercise 167) that new and basic operations in all fields of mathe-
matics (and in particular in programming) are generated as fixpoints of
contractions. So by the very nature of the contraction towards its fix-
point, we have to approach solutions of ODEs by approximations, i.e., by
so-called numerical methods. This is nothing more than a computation-
ally effective, but approximative, path towards the ideal fixpoint object.

A priori, the fixpoint theorem for ODE solutions does not suggest a spe-
cific formalism for the approximation. However, in the case of linear
ODEs, as discussed in section 34.4, the Picard-Lindelöf iteration yields
the Taylor approximation by polynomials. It is therefore no great surprise
that the numerical methods for ODE solutions refer to Taylor’s formula.
Whereas Euler’s method refers to the approximation by first derivatives,
Runge-Kutta’s method uses up to the third derivative in Taylor’s devel-
opment and, thus, yields more precise results.

But why do such methods produce sensible results at all? In fact, Tay-
lor’s formula involves the derivatives of an unknown function y(t) if the
ODE has the shape dy

dt (t) = F(t,y(t)) (we only look at one-dimensional
ODEs in this chapter). The point is that the very form of an ODE is re-
cursive with regard to the degree of derivation. So, in principle, one may
replace the derivative dny

dtn by dn−1F
dtn−1 . But the trouble begins with the in-

creasingly complicated explicit formulas that arise when one deals with
higher derivatives. To manage the growing complexity approximative ap-
proaches therefore become mandatory.

Henceforth, we shall consider the standard situation in numerics: a one-
dimensional time-dependent ODE, which we state as

dy
dt
(t) = F(t,y(t)),

together with the initial condition y(t0) = y0. We also assume that gen-
eral conditions for the uniqueness and existence of a solution y to such
an equation are fulfilled. More precisely, we suppose that F is C∞ in
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an open neighborhood of the point (t0, y0) ∈ R2, a condition which is
stronger than the Lipschitz condition used in the main theorem 299.

Fig. 35.1. The solution y(t) of an ODE y ′(t) = F(t,y(t)) with initial
condition y(t0) = y0. At values t0, t1, t2 and t3, the slopes of the curve
are, respectively, s0 = F(t0, y(t0)), s1 = F(t1, y(t1)), s2 = F(t2, y(t2))
and s3 = F(t3, y(t3)).

Similarly to the construction of values of a recursively defined object ac-
cording to the recursion theorem, the solution of an ODE must also start
from the initial datum y(t0) = y0. In contrast to the recursive object,
the solution is not a function of a discrete sequence 0,1,2, . . . of natural
number arguments, but of real numbers t. Since it is, in principle, out of
the question to compute the values of the solution at all time points, one
starts with an increasing sequence of discrete time points (tk)k=0,1,..., i.e.,
t0 < t1 < t2 < . . . tk < tk+1 < . . . . Using an adequately chosen method,
a more or less precise approximation yk to the exact solution y(tk) is
computed. From the results thus obtained, one proceeds by refining the
sequence of time points, and then computing a better approximation.

Such a method M may be assessed according to its precision for a given
sequence (tk)k of time points and then by its behavior for a successive
refinement of the time sequence. When such approximations are calcu-
lated, two types of errors occur:

1. Round-off errors: These are errors that are caused by the calculation
process itself due to numerical imprecisions, because of the inher-



128 Third Advanced Topic

Fig. 35.2. A fictitious method determines a (rather bad) approximation
to the solution y(t) of an ODE for the sequence t0, t1, . . . t4 (light gray).
After a refinement of the time sequence to t0, t′0, . . . , t

′
3, t4, it yields a

better approximation (dark gray).

ently flawed floating point arithmetic of the computer, or because of
the choice of the representation of numbers, selected for reasons of
improving calculation time, for example.

2. Truncation errors: This type of errors is caused by the approxima-
tion method M itself. Truncation errors are two-fold for the follow-
ing reason. As most common methods M are based on formulas pro-
ceeding inductively with the calculation of yk, i.e., they calculate the
value yk+1 = M(y0, y1, . . . yk) based on the knowledge of the values
y0, y1, . . . yk (the time arguments are suppressed in our description
of the methods).

• Local truncation errors: These errors measure the deviation of the
correct value y(tk+1) from the valueM(y(t0),y(t1), . . . y(tk)) de-
termined by M.

• Cumulative truncation errors: These errors measure the deviation
of the correct value y(tN) at a final time tN from the value

yN =M(y0, y1, . . . yN−1) =M(y0,M(y0),M(y0,M(y0)), . . .)

calculated by successive application of M, including the round-off
errors. Here it is important to note that, in general, the cumulative
truncation error is not the sum of the local truncation errors.
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Fig. 35.3. A local truncation error EL, and the cumulative truncation er-
ror EC at tN .

Definition 208 A method M is called an r -step method iff the calculated
value yk+1 = M(y0, y1, . . . yk) depends only on the last r predecessors
yk−r+1, yk−r+2, . . . yk of yk+1.

35.3 The Euler Method

Euler’s original method E is a one-step method, which means that yk+1 =
E(yk). We want to discuss it for the sequence tk = t0 + k · h, for k =
0,1, . . .N, of N + 1 equidistant time points, with a positive, appropriately
small step size h. The idea behind E is the Taylor formula of degree 1
and remainder term of degree 2:

y(tk+1) = y(tk + h)

= y(tk)+ h · dydt (tk)+
h2

2
· d

2y
dt2

(tk + ξ · h)

with 0 < ξ < 1, according to proposition 271. Neglecting the remainder
term, we have the approximation

yk+1 = y(tk)+ h · dydt (tk),

where we may replace y(tk) by yk and the derivative dy
dt (tk) by the ex-

pression provided by the ODE, i.e., dydt (tk) = F(tk, yk), together with the
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previous value yk, yielding

yk+1 = yk + h · F(tk, yk) = E(yk), (1)

the expression provided by the Euler method.

This method is also called Cauchy polygon method, since the piecewise
linear approximations can be used to define a polygon connecting the
points (t0, y0), (t1, y1), . . . (tN , yN).

Example 136 Here is an example of the polygonal shape of the Euler
method for the equation

dy
dt
(t) = sin(t)− 10 · t ·y(t)

and the initial condition t0 = 0 and y0 = 1. We apply E using a step size
h = 0.1 and a number N = 10 of steps starting with 0 on, i.e., we have
tk = k · 0.1, with k = 0,1, . . .10.

The formula used in Euler’s method is then

yk+1 = yk + h · (sin(tk)− 10 · tk ·yk)
= yk + 0.1 · (sin(tk)− k ·yk).

k tk yk y(tk) |y(tk)−yk|
0 0.0 1.0000000000 1.0000000000 0.0000000000
1 0.1 1.0000000000 0.9561023853 0.0438976147
2 0.2 0.9099833417 0.8367953265 0.0731880152
3 0.3 0.7478536064 0.6735741493 0.0742794571
4 0.4 0.5530495452 0.5035696686 0.0494798766
5 0.5 0.3707715613 0.3560822075 0.0146893538
6 0.6 0.2333283345 0.2455946823 0.0122663478
7 0.7 0.1497955811 0.1726399793 0.0228443982
8 0.8 0.1093604431 0.1294062851 0.0200458420
9 0.9 0.0936076977 0.1057920514 0.0121843537
10 1.0 0.0876934607 0.0932629680 0.0055695073

Fig. 35.4. The values determined by the Euler method are in the third col-
umn, the values for the exact solution in the fourth column, everything
computed with a precision of 10 digits after the decimal point. The fifth
column shows their absolute differences.

Table 35.4 shows the values for y0, y1, . . . y10 calculated with a precision
of 10 digits after the decimal point.
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Figure 35.5 compares the exact solution with the values calculated using
the Euler method.

Fig. 35.5. The approximation (in gray) to the solution of the equation
from example 136 using Euler’s method with step size h = 0.1. The
exact solution is shown in black.

The main result about the power of approximation power of E is:

Proposition 304 If F is C∞, and if we are given the time sequence tk = t0+
k ·h, with k = 0, . . .N, then the cumulative truncation error |y(tN)−yN|
defined by E as specified in formula (1), is not greater than C · h for a
constant C which depends only on F , t0, and tN , but not on h.

35.4 Runge-Kutta Methods

The Runge-Kutta method RK is more precise than the elementary Euler
method E, but it is also a one-step method. We want to discuss it again
for the sequence tk = t0 + k · h, with k = 0,1, . . .N of N + 1 equidistant
times for a positive, appropriately small step size h. RK uses the Taylor
formula in the following way: One considers the Taylor development until
degree 2, plus the remainder term of degree 3:
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y(tk+1) = y(tk + h)

= y(tk)+ h · dydt (tk)+
h2

2
· d

2y
dt2

(tk)+ h
3

3!
· d

3y
dt3

(tk + ξ · h)
(2)

for 0 < ξ < 1. The first derivative in this formula is again replaced by the
right hand side of the ODE dy

dt (tk) = F(tk, yk), additionally the second
derivative is the first derivative of the right hand side. Using the chain
rule from proposition 264, we get

d2y
dt2

(t) = ∂F
∂t
(t,y)+ ∂F

∂y
(t,y) · dy

dt
(t)

= ∂F
∂t
(t,y)+ ∂F

∂y
(t,y) · F(t,y(t)).

Again, we neglect the cubic term and obtain the approximation

yk+1 = yk+h·F(tk, yk)+ h
2

2
·
[
∂F
∂t
(tk, yk)+ ∂F

∂y
(tk, yk) · F(tk, yk)

]
(3)

with a local truncation error

h3

3!
· d

3y
dt3 (tk + ξ · h).

If controllable information were available about the partial derivative ex-
pressions for ∂F

∂t and ∂F
∂y that could be applied for the arguments tk and

yk, everything would work out nicely, but this is often not the case. The
RK method circumvents this problem through a formula which eventu-
ally guarantees a local truncation error not greater than C · h5, but does
only use the function F , not its partial derivatives. We shall omit a dis-
cussion of this result, since its proof is quite involved.

There are in fact several Runge-Kutta method variants, however, here
we shall only present the so-called classical fourth-order Runge-Kutta
method. The method is best described by the successive determination
of four variables. Here is the formula:

yk+1 = RK(yk)
= yk + h

6

(
p1 + 2 · p2 + 2 · p3 + p4

)
,

where
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p1 = F(tk, yk),
p2 = F(tk + h

2 , yk + h
2 · p1),

p3 = F(tk + h
2 , yk + h

2 · p2),

p4 = F(tk + h,yk + h · p3).

This formula needs a few comments: The expression RK(yk) looks like
an Euler method, except that the slope is not taken at one, but at four
different points. The first slope p1 is the slope at the Euler point (tk, yk),
just as before. The second slope p2 is the slope taken at the midpoint h

2

for the Euler approximation, i.e., at the argument (tk+ h
2 , yk+ h

2 ·p1). The
third value p3 is again the slope at a midpoint, but this time the slope is
taken at the y-value yk + h

2 · p2 instead of yk + h
2 · p1 The fourth and

last value p4 is the slope at the endpoint tk + h = tk+1, with y-value
yk + h · p3. The final slope used to compute yk+1 is a weighted average
of the slopes p1 (weight 1

6 ), p2 (weight 1
3 ), p3 (weight 1

3 ) and p4 (weight
1
6 ). For an illustration of this process, see figure 35.6.

Fig. 35.6. The classical Runge-Kutta method uses four derivatives to cal-
culate the value yk+1. The first derivate p1 is the slope at the start point
(tk, yk) (black), the second p2 at the midpoint tk+ 1

2h, where the y-value
is determined by following the slope p1 from yk (gray). The third deriva-
tive is calculated similarly, but this time using the slope p2 (light gray).
The last derivative is calculated at the endpoint tk+1 following the slope
p3. The resulting value yk+1 is calculated at tk, following a slope that is
a weighted average of p1, p2, p3 and p4.
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Example 137 We take up again the ODE from example 136 and apply the
fourth-order Runge-Kutta method using the same step size h = 0.1. The
results are shown in table 35.7.

k tk yk y(tk) |y(tk)−yk|
0 0.0 1.0000000000 1.0000000000 0.0000000000
1 0.1 0.9561021361 0.9561023853 0.0000002492
2 0.2 0.8367935726 0.8367953265 0.0000017539
3 0.3 0.6735735888 0.6735741493 0.0000005605
4 0.4 0.5035853290 0.5035696686 0.0000156604
5 0.5 0.3561408033 0.3560822075 0.0000585958
6 0.6 0.2457182467 0.2455946823 0.0001235645
7 0.7 0.1728260648 0.1726399793 0.0001860854
8 0.8 0.1296241703 0.1294062851 0.0002178852
9 0.9 0.1059991483 0.1057920514 0.0002070969
10 1.0 0.0934268053 0.0932629680 0.0001638374

Fig. 35.7. The values determined by the classical fourth-order Runge-
Kutta method are in the third column, the values for the exact solution
in the fourth column, everything computed with a precision of 10 digits
after the decimal point. The fifth column shows their absolute differ-
ences.

As can been seen, the deviations are much smaller than the deviations for
Euler’s method. We omit a graphical illustration of the results, since, at
this resolution, no difference between the calculated values and the exact
value can be discerned.

We shall not give a proof of the classical RK method, but rather show,
how a Runge-Kutta type approximation can be produced with respect to
the degree 3 Taylor approximation (2). Our solution will yield a Runge-
Kutta formula with p3 = p4 = 0. Let us start with a formula

yk+1 = yk + h
[
uF(tk, yk)+ vF(tk + νh,yk + µhF(tk, yk))

]
(4)

with unknown constants u,v, ν and µ. We now use Taylor’s formula for
the function F of two variables:1

1 The Taylor formula for functions in two variables is

F(x+d,y+e) = F(x,y)+d· ∂F
∂x
(x,y)+e· ∂F

∂y
(x,y)+ higher terms in d and e,

for details, see [15].
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F(tk + νh,yk + µhF(tk, yk)) =

F(tk, yk)+ νh∂F∂t (tk, yk)+ µhF(tk, yk)
∂F
∂y
(tk, yk)+ Rh2,

which, when inserted in (4), yields

yk+1 = yk + h(u+ v)F(tk, yk)

+ h2

[
νv

∂F
∂t
(tk, yk)+ µvF(tk, yk) ∂F∂y (tk, yk)

]
+ Rvh3.

Then, choosing u+ v = 1, νv = 1
2 and µv = 1

2 yields

yk+1 = yk + hF(tk, yk)

+ h
2

2

[
∂F
∂t
(tk, yk)+ F(tk, yk) ∂F∂y (tk, yk)

]
+ Rvh3,

which is an approximated Taylor expansion as in (3), up to a term in h3.

Example 138 We take the ODE dy
dt = 2y with y0 = 3 and t0 = 1 and cal-

culate an approximation of the solution by the third-order Runge-Kutta
method RK, that we have just developed, for h = 0.2 and N = 3.

Then we have dy
dt = F(t,y) where F(t,y) = 2y . Therefore ∂F

∂t (t,y) =
2dydt = F(t,y) and ∂F

∂y (t,y) = 2dydy = 2.

By substituting these values, we can specialize our formula, neglecting
the cubic term Rvh3,

yk+1 = yk + hF(tk, yk)+ h
2

2
(F(tk, yk)+ F(tk, yk) · 2)

= yk + hF(tk, yk)+ 3h2

2
F(tk, yk)

= yk + 2hyk + 2
3h2

2
yk

= yk(1+ 2h+ 3h2)

The values calculated according to our conditions are shown in table 35.8.
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k tk yk y(tk) |y(tk)−yk| |y(tk)−yEk|
0 1.0 3.0000000000 3.0000000000 0.0000000000 0.0000000000
1 1.2 4.2720000000 4.4754740929 0.2034740929 0.2754740929
2 1.4 6.0833280000 6.6766227855 0.5932947855 0.7966227855
3 1.6 8.6626590720 9.9603507682 1.2976916962 1.7283507682

Fig. 35.8. The values for the third-order approximation of example 138.
To facilitate a comparison between this method and the Euler method,
the sixth column shows the differences for the Euler method.

Fig. 35.9. The approximation (in gray) to the solution of the equation
from example 138 by a third-order Runge-Kutta method with step size
h = 0.2. The exact solution is shown in black. As comparison the Euler
approximation of the same solution is drawn in light gray.
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CHAPTER 36

Categories

36.1 Introduction

We have encountered a considerable number of types of mathematical
structure, such as sets and functions, digraphs and digraph morphisms,
groups and group homomorphisms, R-modules and R-linear maps, au-
tomata and morphisms of automata, or metric spaces and continuous
maps. All these structures have some common features which give rise
to a unifying concept: that of a category. A category is a collection of ob-
jects and relations between such objects, called morphisms, together with
a small number of rules for combining and comparing morphisms. Cate-
gories were introduced to mathematics in 1945 by Samuel Eilenberg and
Saunders Mac Lane in their paper General Theory of Natural Equivalences
to provide a systematic account for the relations between algebraic struc-
tures (such as groups) and topological spaces. In the sixties the mathe-
matician Alexander Grothendieck made use of special categories, called
toposes, to solve important problems of algebraic geometry (the general
theory of solutions of polynomial equations). Simultaneously, the math-
ematician William Lawvere used toposes to create a synthesis between
geometry and logic, a theory which has profound implications also in the-
oretical computer science, see [18] and [37]. Moreover, toposes are also
used for new directions in mathematical music theory. So categories are a
universal and profound theoretical approach with which every computer
scientist should have some acquaintance.
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The theory of categories has two basic subjects: (1) functors and nat-
ural transformations between categories, (2) universal constructions of
new objects. Functors describe the relations between different categories,
while natural transformations describe relations between different func-
tors. We have encountered functors, for example, in the theory of vector
spaces, where each vector space V is sent to the identity matrix Edim(M),
whereas the linear maps f : V → W are sent to transformation matrixes
of size dim(W)×dim(V) (see section 22.1 in volume 1) in such a way that
the composition of maps commutes with the composition of matrixes.

Universal constructions deal with the creation of new objects from a spe-
cific diagram system of given objects and morphisms, in such a way that
these new objects are the best possible solution with respect to a specific
property. For example, the Cartesian product X × Y of two sets, together
with its projections prX : X × Y → X and prY : X × Y → Y , has the uni-
versal property described in proposition 57 in section 6.2 of volume 1.
This prototype of a property is in fact also encountered in other cate-
gories, for example the category of digraphs or the category of groups.
Category theory deals with the unified description and analysis of such
constructions.

If one should give category theory a unifying stamp, one would say that
while algebra deals with the solution of algebraic equations, category the-
ory deals with the solution of diagram equations.

36.2 What Categories Are

The prototype of a category is the set M(R) = ∐
m,nMm,n(R) of all ma-

trixes over a ring R, which we introduced in definition 152, section 20.1,
of volume 1. What are the characteristic features of this structure? A ma-
trix M ∈ Mm,n(R) represents a linear map Rn → Rm between modules.
Such a representation needs two types of concepts: map and module, or
in set-theoretic terms, function and object. But the concept of object is
in fact superfluous. One may replace the object Rn by the identity matrix
En, since there is a 1-to-1 correspondence between the two. We have al-
ready used this identification in the notation M : En → Em in section 20.1
of volume 1. This means that we replace module objects by special maps,
the identities on those module objects. But what about the elements of
modules? Are they lost in our new conceptual space? No, in fact, we know
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that the linear maps x : R1 → Rm are the elements ofM1,m(R), i.e., the el-
ements of Rm. Therefore, every element of a module is recovered by a ma-
trix. So we may really work in the environment of linear maps Rn → Rm

between modules Rn and Rm in the exclusive language of matrixes in
M(R).

Another example for the obsolete role of objects as compared to maps
or morphisms is the situation for sets. We know that two sets x and y
are equal iff their identities Idx and Idy are so. We may therefore write
f : Idx → Idy instead of the traditional notation f : x → y for a set
function f . Again, we have to check what happens with set elements for
this conceptual transition. But there is a bijection ε : x ∼→ Set(1, x) via
ε(ξ)(0) = ξ for ξ ∈ x.

What is the characteristic property of an identity map? For set maps, an
identity Id has this property: For every set function f , if the composition
f ◦ Id is defined, then it equals f , and similarly from the other side: for
every matrix or set function g, if the composition Id ◦g is defined, then it
equals g. Same property, mutatis mutandis, for matrix identities En. This
motivates the following definition:

Definition 209 A category C is a collection of entities f , g,h, . . . which
are called morphisms, together with a partial composition, i.e., for some
morphisms f and g, a new morphism f ◦g of C is defined. An identity or
object in C is by definition a morphism e such that, whenever defined, we
have e ◦ f = f and g ◦ e = g. We have these axioms:

1. If f ◦ g and g ◦ h are both defined, (f ◦ g) ◦ h is defined.

2. Whenever one of the two compositions (f ◦ g) ◦ h or f ◦ (g ◦ h) is
defined, both are defined and they are equal; we denote the resulting
morphism by f ◦ g ◦ h.

3. For every morphism f there are two identities, a “left” identity eL and
a “right” identity eR, such that eL ◦ f and f ◦ eR are defined (and
necessarily equal to f ).

Lemma 305 Two identities e and e′ of C can be composed iff they are
equal, and then e ◦ e = e (identities are idempotent.).

Proof If eL is a left identity for an identity e, then, by the property of identities,
we have eL ◦ e = e and eL ◦ e = eL. So an identity is equal to its left identity, and
the same for the right identity. In particular, e ◦ e = e is defined. If e ≠ e′ for two
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identities, then the existence of e ◦ e′ means also that e ◦ e′ = e and e ◦ e′ = e′
by the defining properties of identities, a contradiction. Therefore e ◦ e′ is not
defined. �

Lemma 306 The left, resp. right, identities of a morphism f are uniquely
determined by f .

Proof Let e ◦ f = e′ ◦ f = f be two left identities. Then we have f = e′ ◦ f =
e′ ◦ (e ◦ f), so the composition (e′ ◦ e) ◦ f is also defined, and therefore also
e′ ◦ e, but then by lemma 305, e = e′; the same argumentation works for right
identities. �

The right and left identities are called eR = dom(f ), the domain of f ,
and eL = codom(f ), the codomain of f . We write f : eR → eL to fix this
information. For given objects r and l in C, the collection of morphisms
f : r → l with dom(f ) = r and codom(f ) = l is denoted by C(r , l), or
also HomC(r , l), or Hom(r , l) if C is clear. Evidently, every morphism is
a member of a unique collection C(r , l), viz. that with r = dom(f ) and
l = codom(f ). In other words, the collections C(r , l) define a partition of
C in a non-set-theoretic common sense. In order to denote an identity e
in an evident way, one usually writes e = Ide.

Lemma 307 If f : r → l and g : r ′ → l′ are morphisms in a category C,
then their composition g ◦ f is defined iff codom(f ) = l = r ′ = dom(g).

Proof If e is a right identity for g, then if g ◦ f is defined, we have g ◦ f =
(g ◦ e) ◦ f = g ◦ (e ◦ f), therefore e ◦ f is defined and necessarily equals f ,
so dom(g) = codom(f ). Conversely, if dom(g) = codom(f ), then for the right
identity e of g which equals the left identity of f , both, g◦e and e◦f are defined,
hence also g ◦ f . �

Before we go over to a discussion of prominent examples of categories,
we will introduce a number of concepts which we will recognize as gen-
eralizations of well-known concepts from previous theories.

Definition 210 Let f , g, f ′, g′, h be morphisms of a category C.

(i) A morphism f is mono, or a monomorphism, iff for any two com-
positions f ◦g and f ◦g′, the equality f ◦g = f ◦g′ implies g = g′.

(ii) A morphism f is epi, or an epimorphism, iff for any two composi-
tions g ◦ f and g′ ◦ f , the equality g ◦ f = g′ ◦ f implies g = g′.

(iii) A morphism f is called a section if there is a left inverse g, i.e.,
g ◦ f = dom(f ).
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(iv) A morphism f is called a retraction if it has a right inverse h, i.e.,
f ◦ h = dom(h).

(v) A morphism f that is a section and a retraction is iso, or an isomor-
phism. Its right and left inverse coincide, it is uniquely determined,
called inverse and denoted by f−1.

(vi) If dom(f ) = codom(f ) = c, then f is called endo, or an endo-
morphism of c. The collection of endomorphisms of c is denoted by
End(c).

(vii) An endomorphism which is an isomorphism is called auto, or an
automorphism. The collection of automorphisms of c is denoted by
Aut(c).

If End(c) and Aut(c) are sets, they define monoids and groups, respec-
tively, with the identity Idc as unit, called endomorphism monoids of the
object c and automorphism groups of the object c, respectively.

36.3 Examples

Here is a list of important examples of categories, also including those
discussed in previous and some later chapters. If adequate, we shall add
some specific comments on these categories. The reader should verify the
axioms of a category reviewing the chapters where the specific objects
have been introduced.

Example 139 Given a ring R, the category M(R) is an ordinary set, the
morphisms are the matrixes, the compositionsM ◦N are the matrix prod-
uctsM ·N, the identities are the identity matrixes En, n ∈ N. The elements
in the objects En are by definition the morphisms M : E1 → En, they iden-
tify with Rn, as we have already seen above.

Exercise 171 Given a field R, show that a matrix M ∈ Mm,n(R) in the
category M(R) is a section iff rk(M) = n. It is a retraction iff rk(M) =m,
and it is an isomorphism iff det(M) ≠ 0. See definition 167, section 22.1
in volume 1, for the definition of the rank of a matrix.

Example 140 The morphisms in the category Sets are the set functions
f : x → y . The set of morphisms f : x → y is denoted by Set(x,y). The
identities are the identities Idx , one for each set x.
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To satisfy the axioms of definition 209, only one representative of a set
is allowed, i.e., we should find a way to identify x and Idx , for each set x.
There are two ways to do so: Either we replace sets by identities, or vice
versa. The first alternative leads to an infinite regress: Because then we
would have replaced each function f , which in fact is a set, by its identity
Idf , and then each Idf , which is a set, by its identity IdIdf , and so on ad
infinitum. Therefore we are left with the second alternative: to replace
every identity Idx by the set x. Assuming the axiom of foundation, i.e.,
all sets are founded, this replacement will terminate.

An element of a set object x is by definition a morphism f : 1 → x, this
identification having already been discussed above.

Exercise 172 Show that in the category of sets Sets, a morphism is mono
iff it is injective. Show that it is epi iff it is surjective. Show that it is iso iff
it is a bijection, in other words, it is iso iff it is mono and epi. Show that
two morphisms f , g : x → y are equal iff they coincide on the elements
of x, i.e., iff for each element ξ : 1 → x, we have f ◦ξ = g◦ξ. In a category,
an object which has this property, shared by the set 1 in Sets, is said to
generate the category.

In category theory, (di)graphs may have infinite sets of arrows and ver-
texes. The definition of possibly infinite (di)graphs and morphisms be-
tween them is literally the same as for finite graphs. One just omits the
restriction of finiteness. We admit (di)graphs without this restriction in
what follows.

Example 141 The category of (now possibly infinite) digraphs Digraph
has as morphisms the elements of the sets Digraph(Γ ,∆) of morphisms
between digraphs Γ and ∆, while the identities are the identities of di-
graphs, the identification of digraphs and morphisms is similar to the
situation for sets discussed before.

Example 142 Given a digraph Γ : A → V 2, the path category of Γ is the
set of paths Path(Γ) in Γ , as defined in section 12.2 of volume 1. The
composition p ◦ q of two paths p and q is the product of paths pq. The
identities are the lazy paths v at vertex v ∈ V . Since the length of paths
is added under composition, and since lazy paths have length 0, there
are no isomorphisms except the lazy paths. However, every morphism is
epi and mono since the paths determine the arrows which they are built
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of. This is an example of a category, where, in contrast to Sets, “epi” and
“mono” is not equivalent to “iso”.

Example 143 For (now possibly infinite) graphs, we have the category
Graph composed of sets Graph(Γ ,∆) of morphisms between graphs Γ
and ∆, while the identities are the identities of graphs, the identification
of graphs and morphisms is similar to the situation for sets discussed
before.

Example 144 The morphisms of the category Mon of monoids are the
elements of the sets Mon(M,N) = Monoid(M,N) of monoid homomor-
phisms f : M → N. Observe that here the set-theoretic elementsm ∈M of
a monoid M are no longer automatically accessible from the trivial, one-
element monoid 1 = {0}. In fact, the image of the neutral element 0 ∈ 1
under a monoid homomorphism must be the neutral element e ∈M . How
then can we access the other elements? The solution is the word monoid
Word(x) generated by a single letter x, by the universal property (propo-
sition 111 in section 15.1 of volume 1) of the word monoid, since then
we have the set bijection Monoid(Word(x),M) ∼→ M .

Example 145 A monoid M is a category, whose morphisms are the el-
ements of M , the composition is the composition in the monoid; the
unique object is the neutral element e ∈M .

Example 146 The category Gr of groups works in complete analogy with
the category Mon. In fact this is an example of a so-called subcategory,
i.e., the members of the collection Gr are monoid homomorphisms, i.e.,
members of the category Mon. The objects are just special monoids, i.e.,
those M which have the property M∗ = M . Such a subcategory is also
a full subcategory, which means that for every pair of objects M and N
in Gr, we have Gr(M,N) = Group(M,N) = Monoid(M,N), i.e., the mor-
phisms between objects of the subcategory are all the morphisms be-
tween these objects in the larger category. It is easily seen that we have a
bijection Group(Z, G) ∼→ G for any group G.

Example 147 The category Rings of rings is composed of all sets of mor-
phisms Rings(R, S) = Ring(R, S) between rings R and S. Again, here the
set-theoretic elements r ∈ R of a ring R are described by the universal
property of the monoid algebra Z[X] over the integers and one indeter-
minate X since we have exactly one ring homomorphism Z→ R and then
we have the bijection of sets Ring(Z[x], S) ∼→ S.
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Example 148 The category LinR of modules over a ring R consists of
the sets LinR(R,V) = LinR(V ,W) of R-linear module homomorphisms
f : V → W .

Example 149 The category AffR of R-modules is composed of the sets
AffR(V ,W) = Aff R(V ,W) of R-affine module homomorphisms f : V → W .
The category LinR is a proper subcategory of AffR: For a pair V,W of
modules, the linear homomorphisms form a proper subset of the set of
affine homomorphisms.

Example 150 Recall that in definition 141, section 19.3 of volume 1, au-
tomata morphisms (σ ,α) : (i,M) → (j,N) are pairs (σ : S → T ,α : A →
B) between state spaces S, T and alphabets A,B with conditions (i), (ii)
(see definition 141). The set of morphisms (i,M) → (j,N) is denoted by
Automata((i,M), (j,N)). The category Automata of automata comprises
all sets Automata((i,M), (j,N)). See sorite 166 in section 19.3, volume 1,
to check the standard category properties of this collection of morphisms
defining the category of automata Automata.

Example 151 The category of acceptors Acceptors is composed of the
sets Acceptors((i,M, F), (j,N,G)) of morphisms of acceptors (σ ,α) :
(i,M, F)→ (j,N,G). The category of acceptors is not a subcategory of the
category of automata since many acceptors may give rise to the same au-
tomaton. Nevertheless, every morphism of acceptors (σ ,α) : (i,M, F) →
(j,N,G) gives rise to a morphism of automata (σ ,α) : (i,M)→ (j,N) and
the composition of two morphisms of acceptors induces the composition
of the corresponding morphisms of automata. This is a typical situation
of a functor, i.e., a transfer of a category to another, to be discussed later
in section 36.4.

Example 152 Take the subcategory of Sets composed of all open sets
U ⊂ Rn as objects, the morphisms f : U → V being the continuous maps.
Then this category, denoted by C0, is composed of the sets of morphisms
C0(U,V) of continuous maps f : U → V between objects U and V .

Example 153 (See chapter 40) For metric spaces (X,d) and (Y , e), one
has the category Metr whose sets of morphisms Metr((X,d), (Y , e)) con-
sists of the continuous set maps f : X → Y for the topologies on the
metric spaces X and Y .
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Example 154 The subcategory of C0 consisting of differentiable maps
between open subsets of Rn is denoted by Diff and comprises the sets
of morphisms Diff(U,V) = Diff (U,V) for open sets U ⊂ Rn and V ⊂ Rm
consisting of differentiable maps f : U → V .

Example 155 The subcategory of Cr consisting of r times continuously
differentiable maps between open subsets of Rn is denoted by Cr and
comprises the sets of morphisms Cr (U,V) for open sets U ⊂ Rn and V ⊂
Rm consisting of r times continuously differentiable maps f : U → V .

Example 156 (See chapter 41) The neural category CN is a special case
of a path category associated with the digraph E → N 2. Observe that
in this case, the graph is not built on finite sets, but the definition of a
(di)graph is valid for infinite sets of arrows and vertexes, too, without any
change.

Example 157 For every category C there is the opposite category Copp. Its
morphisms are the same, but composition is defined as f ◦opp g = g ◦ f ,
i.e., it is defined iff the composition with opposite factors is defined in
C. This opposite construction exchanges the domains and codomains of
morphisms. Intuitively, an arrow f : x → y in C corresponds to a arrow
f : y → x in Copp.

Example 158 For every couple C and D of categories, whose morphisms
are all sets (all the categories we have dealt with so far have this property),
we have the Cartesian product category C × D. Its morphisms are the
pairs (f , g) of morphisms f in C and g in D. The composition (f1, g1) ◦
(f2, g2) = (f1 ◦ f2, g1 ◦ g2) of two morphisms (f1, g1) and (f2, g2) is
defined iff both f1◦f2 and g1◦g2 are defined. In particular, dom((f , g)) =
(dom(f ),dom(g)) and codom((f , g)) = (codom(f ), codom(g)).

36.4 Functors and Natural Transformations

As already mentioned in the introduction, the principal subject of the
original paper by Eilenberg and Mac Lane were not categories, but func-
tors and natural transformations, i.e., specific structure-conserving rela-
tions between given categories. In other words, functors are the “mor-
phisms” between categories:
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Definition 211 If C and D are categories, a functor F : C → D is an as-
signment which attributes to every morphism c in C a morphism F(c) in
D such that:

(i) F(c) is an identity if c is so.

(ii) If c ◦ c′ is defined in C, then F(c) ◦ F(c′) is defined and F(c ◦ c′) =
F(c) ◦ F(c′).

In particular, functors carry isomorphisms to isomorphisms. Moreover, the
composition F ◦ G : C → E of two functors F : C → D and G : D → E is a
functor, and composition of functors is associative if defined.

Definition 212 Some notations and properties pertaining to functors:

(i) Two categories C and D are called isomorphic if there exists an
isomorphism of functors, i.e., there exist two functors F : C

∼→ D and
F−1 : D

∼→ C such that F−1 ◦F = IdC and F ◦F−1 = IdD. Here IdC and
IdD denote the identity functors on C and D.

(ii) A functor F is called full if F(HomC(x,y)) = HomD(F(x), F(y)) for
all object pairs x and y .

(iii) A functor F is called faithful if F : HomC(x,y)→ HomD(F(x), F(y))
is injective for all pairs x and y .

(iv) A functor F is called fully faithful if it is full and faithful, i.e., the
map F : HomC(x,y)→ HomD(F(x), F(y)) is a bijection.

(v) Functors F are also called “covariant” since they are opposed to
functors F : Copp → D, which are called “contravariant” but still
denoted by F : C → D.

The properties (i) and (ii) in definition 211 show that there is a category of
all categories, denoted by Cat, whose objects are the categories, while the
functors F : C → D between two categories C and D are the morphisms of
Cat.

Example 159 If C and D are any two categories, pick one object d in D.
Then we have the constant functor [d] : C → D which to every morphism
in C assigns the object (i.e., the identity) d.

Example 160 Recalling example 145, which shows that every monoid is
a category, the monoid homomorphisms F : M → N are precisely the
functors between these monoids qua categories.
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Example 161 The assignment Γ � |Γ | and f = (u,v) : (Γ → ∆) � f :
|Γ | → |∆| is a functor |?| : Digraph → Graph, this was in fact shown in
exercise 46 of section 10.2 in volume 1.

Example 162 Let f = (u,v) : Γ → ∆ be a morphism of digraphs. We write
f(a) = u(a) and f(x) = v(x) for arrows a and vertexes x, respectively,
in Γ . Then the function Path(f ) : Path(Γ) → Path(∆) which sends a path
p = anan−1 . . . a0 to Path(f )(p) = f(an)f (an−1) . . . f (a0) and a lazy
path x to f(x), is a functor on the path categories. Observe that the
latter are just sets with a composition operation. The assignment Path :
Γ � Path(Γ) is also a functor Digraph→ Cat.

Example 163 Recall from proposition 167, section 19.3 in volume 1, that
we have a map (i,M, F) � (i : M : F) from the acceptor (i,M, F) to the
language (i : M : F), which we regard as an object of the category Sets.
This defines the language functor Acceptors → Sets.

Example 164 Given the category LinR of real vector spaces with linear
homomorphisms, one has the assignment ?∗ : V � V∗ = LinR(V ,R) of
the dual space. Moreover, if f : V → W is in LinR(V ,R), we have a linear
map f∗ : W∗ → V∗ : h � h ◦ f . This assignment defines a contravariant
functor ?∗ : LinR → LinR, i.e., a functor ?∗ : LinR → Linopp

R .

This idea generalizes to any space X instead of the one-dimensional R,
i.e., one defines LinR(?, X) : V � LinR(V ,X), and analogously LinR(f ,X) :
LinR(W,X) � LinR(V ,X) : h � h ◦ f for a linear map f : V → W . This
yields the contravariant functor LinR(?, X) : LinR → LinR.

Example 165 More generally, for any category C, such that all collections
of morphisms C(x,y) are sets, if any object y of C is fixed, one has this
contravariant functor C(?, y) : C → Sets given by C(?, y)(x) = C(x,y),
while for a morphism f : x1 → x2 in C, one has the set map C(f ,y) :
C(x2, y)→ C(x1, y) : h� h ◦ f .

Example 166 If we have a Cartesian product category C × D (see exam-
ple 158) the assignments pr1 : (f , g) � f and pr2 : (f , g) � g define two
functors pr1 : C×D → C and pr2 : C×D → D.

Example 167 On the category Diff, one has the tangent assignment T :
U � TU , which on a differentiable map f : U → V yields the tangent map
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Tf : TU → TV on the tangent bundles. By proposition 264, this defines
the tangent functor T : Diff → Sets.

Example 168 For this example, we refer to chapter 40. On the category
Metr, one has the assignment H : (X,d) � (H (X,d),h(d)) of the
Hausdorff-metric space, which on a continuous map f : X → Y of metric
spaces yields the continuous map H (f ) : H (X) → H (Y). By proposi-
tion 347, this defines a functor H : Metr→ Metr.

The most important functors are diagrams in a category, which are de-
fined in a graphical way as follows. Observe that this general setup com-
prises the informal terminology concerning diagrams and commutative
diagrams, which has been used throughout the entire course of this book.

Definition 213 A diagram in a category C is a functor D : Path(Γ) → C
on the path category of a digraph Γ . The digraph Γ is called the diagram
scheme of D. A diagram D is called commutative, if for any two paths
p,q : v → w in Γ with common domain v and codomain w, the images
D(p) and D(q) are equal (see figure 36.1).

Here is the operational restatement of what basic data a diagram in a
category really requires.

Lemma 308 Given a digraph Γ and a category C, an assignment F : p �
F(p) from paths in Γ to morphisms in C is a functor if the assignment F :
a � F(a), F : v � F(v) on the arrows a and vertexes v of Γ has the prop-
erty: Whenever head(a) = tail(b), we have codom(F(a)) = dom(F(b)),
and whenever v = head(a) or v = tail(a), then F(v) = codom(F(a)) or
F(v) = dom(F(a)), respectively. This means that defining such a diagram
means defining its values on arrows and vertexes plus the condition on the
tails and heads. Therefore, one also denotes a diagram by its restriction to
arrows and vertexes, i.e., by a morphism on “digraphs”, where C is under-
stood as digraph whose arrows are the morphisms and whose vertexes are
the objects, the heads corresponding to the codomains, and the tails to the
domains:

D : Γ → C

Proof Clearly the condition head(a) = tail(b) is necessary by the definition of a
functor. If conversely, the assignment F : v � F(v) on the arrows and vertexes
of Γ has the named property, then the functor F∗ on the path category of Γ is
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C •

D(v) • D(p2 ◦ p1)
= D(q3 ◦ q2 ◦ q0)

�

D(p1)
�

• D(w)

D(p2)

�

• D(q2)
�

D(q1)
�

•
D(q3)

�

Fig. 36.1. Part of the path category of a digraph Γ and its image in C
under the functor D.

defined as follows: Let p = anan−1 . . . a0 be a path in Γ . This is also the compo-
sition of the “morphisms” ai in the path category. So we have to define F∗(p) =
F(an) ◦ F(an−1) ◦ . . . F(a0). This is well defined if the domains dom(F(ai)) and
codomains codom(F(ai−1)) of successive morphisms coincide. But this is guar-
anteed by the property stated in the lemma. So the definition is legitimate. And
then, if we are given a second path q = bmbm−1 . . . b0 whose tail is the head of p,
then we have F∗(qp) = F(bm)◦F(bm−1)◦ . . . F(b0)◦F(an)◦F(an−1)◦ . . . F(a0) =
(F(bm) ◦ F(bm−1) ◦ . . . F(b0)) ◦ (F(an) ◦ F(an−1) ◦ . . . F(a0) = F∗(q) ◦ F∗(p). On
the lazy path at vertex x, we necessarily have F∗(x) = dom(v) if tail(f ) = x or
F∗(x) = codom(v) if head(f ) = x. If there is no arrow starting or ending in x,
no condition on the image F∗(x) is required. �

The original Eilenberg-Mac Lane paper cited above had something more
involved in mind, using categories and functors, but also structured re-
lations between different functors F,G : C → D on the same categories.
Let us give an example of such a relation before we state the general
definition.
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For every set function f : A → B there are two set functions iA : A →
Word(A) and iB : B → Word(B). We know from proposition 111 in sec-
tion 15.1 of volume 1, that there is a unique monoid homomorphism
Word(f ) : Word(A) → Word(B), which generates the following commuta-
tive diagram

A iA����������������������������������������������������������������������������������������������������������������������������→ Word(A)

f
⏐⏐! ⏐⏐!Word(f )

B iB����������������������������������������������������������������������������������������������������������������������������→ Word(B)
of sets. This means that we have two functors: IdSets : Sets → Sets and
Word : Sets → Sets, which are related, in each object, by the embedding
iX of a set X in its word monoid. This relation was called “natural” by
Eilenberg and Mac Lane.

This is the idea of a natural transformation:

Definition 214 If F,G : C → D are two functors, a natural transformation
t : F → G is a system of morphisms t(c) : F(c)→ G(c) in D, for each object
c in C, such that for every morphism f : x → y in C, we have the following
commutative diagram in D:

F(x) t(x)
����������������������������������������������������������������������������������������������������������������������������→ G(x)

F(f )
⏐⏐! ⏐⏐!G(f)

F(y)
t(y)
����������������������������������������������������������������������������������������������������������������������������→ G(y)

So the above example is a natural transformation

i : IdSets → Word.

Natural transformations can be composed in an evident way, and the
composition is associative. For every functor F we have the natural iden-
tity IdF . We therefore have the category Func(C,D) of functors F : C → D
and natural transformations Nat(F,G) between two functors F,G : C →
D. Properties between such functors are said to be natural if they relate
to the category Func(C,D), for example, F ∼→ G is a natural isomorphism
iff it is an isomorphism among the natural transformations from F to G.

Exercise 173 Take any two categories C and D. Then for any two objects
d and e in D, Nat([d], [e]), the collection of natural transformations be-
tween two constant functors, is in bijection with the collection D(d, e)
of morphisms from d to e. In other words, the natural transformations
between constant functors [d] : C → D recover the target category D.
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36.5 Limits and Colimits

The most prominent use of natural transformations occurs in the con-
struction of universal objects, which we shall discuss now. Let us do one
example, which we have used all over the book: the Cartesian product.
We have encountered Cartesian products in different contexts, but the
typical one is the set-theoretic environment. Given two sets a and b, the
Cartesian product was described by its universal property in proposi-
tion 57 of section 6.2 in volume 1. We need two maps pra : a × b → a
and prb : a × b → b. The universal property tells us that for any couple
v : c → a and w : c → b, there is exists a unique map (v,w) : c → a× b
such that v = pra ◦ (v,w) and w = prb ◦ (v,w). Intuitively, we could
rephrase this as follows: Take the category whose objects are the dia-
grams D = (v : c → a,w : c → b), while, given two such “objects”,
D1 = (v1 : c1 → a,w1 : c1 → b) and D2 = (v2 : c2 → a,w2 : c2 → b) the
morphisms f : D1 → D2 are the maps f : c1 → c2 such that v1 = v2 ◦ f
and w1 = w2 ◦ f , i.e., the following diagram commutes:

c1
f

� c2

w1

a

v2

�

v1

�

b

w2

��

In this category, the Cartesian product is a special object: there is a
unique arrow (a, b) : c → a × b into the Cartesian product a × b for
every object D = (v : c → a,w : c → b). We have already encountered
such objects in set theory: the set 1 = {0} has this property, we had
written ! : c → 1 for that unique arrow.

Definition 215 An object e in a category C such that there is a unique
morphism ! : c → e for every object c in C, is called a final object, it
is usually denoted by 1. A final object i in the opposite category Copp is
called an initial object in C; it is usually denoted by 0. This means that for
every object c in C, there is a unique morphism ! : 0 → c. The notations !, 1,
and 0 are ambiguous, but very useful and are applied whenever possible.
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Example 169 In the category Sets, the set 1 = {0} is final and the empty
set 0 = ∅ is initial. A set e is final iff card(e) = 1, the only initial set is
the empty set.

Example 170 In the category Digraph, the digraph 1Digraph : 1 → 12( ∼→ 1)
is final while the empty digraph 0Digraph : 0 → 02 = 0 is initial.

Exercise 174 Show that in a category any two initial (final) objects are
isomorphic.

So Cartesian products are a special case of final elements in some cate-
gory built from diagrams. Let us make this precise.

Definition 216 Suppose we are given a category C, a digraph (the dia-
gram scheme) ∆ and a diagram D : ∆ → C. For an object c in C, we
consider the constant diagram [c] : ∆→ C. Then a natural transformation
s : [c] → D is called a cone on ∆. A natural transformation t : D → [c] is
called a cocone over ∆.

This looks more complicated than it is. In fact, a cone is this: For every
vertex v of ∆ we are given a morphism s(v) : c →D(v) such that for any
arrow a : v → w of ∆, one has a commutative triangle of morphisms in
C:

c

�

D(v) D(a) �

s(v)

�
D(w)

s(w)

�

Same for cocones: For every vertex v of the digraph ∆, we are given a
morphism t(v) : D(v) → c such that for any arrow a : v → w of ∆, one
has a commutative triangle of morphisms in C:

D(v) D(a)
� D(w)

�

c

t(w)
�

t(v)
�
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Example 171 The special case of the situation of the Cartesian product
is that of a discrete diagram scheme ∆ = {1,2} consisting of two points
1 and 2, which are mapped to the objects a and b, i.e., D(1) = a and
D(2) = b. The projections onto the factors define a cone, where the com-
mutativity condition is empty. The cone is the pair of projections for the
object c = a× b, i.e., s(1) = pra and s(2) = prb:

a× b

a

pra

� b

prb

�

Example 172 More generally, a fiber product a ×d b, introduced in sec-
tion 6.3 of volume 1, deals with the situation of a diagram scheme δ
consisting of three points 1,2,3 and two arrows 1 → 3,2 → 3, the cone
then is the commutative diagram of sets

a×d b

a

pra

�
� � b

prb

�

d

q

�

g

�

f
�

with f and g the maps given for the definition of the fiber product, with
q = f ◦ pra = g ◦ prb and with D(1) = a, D(2) = b and D(3) = d.

Example 173 Refer to the coproduct construction in section 6.2 of vol-
ume 1 for this example. Dually to example 171, the situation of the co-
product is again that of a discrete diagram scheme ∆ = {1,2} consisting
of two points 1 and 2, which are mapped to the objects a and b, i.e.,
D(1) = a and D(2) = b. The injections into the cofactors define a co-
cone, where the commutativity condition is empty. The cocone is the pair
of injections for the object c = a� b, i.e., t(1) = ina and t(2) = inb:
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a b

a� b
inb

�

ina
�

Definition 217 Given a diagram D : ∆ → C, the cone category Cone(D)
has as objects all cones t : [c]→D, c objects in C, whereas the morphisms
f : t1 → t2 between cones t1 : [c1] → D, t2 : [c2] → D are the morphisms
f : c1 → c2 in C such that t1 = t2◦f . The same data define the cocone cat-
egory Cocone(D). Here the objects are the cocones t : D → [c], c objects
in C, whereas the morphisms f : t1 → t2 between cocones t1 : D → [c1]
and t2 : D→ [c2] are the morphisms f : c1 → c2 in C such that f ◦ t1 = t2.

Here is the general role of a Cartesian product, a fiber product or a co-
product played in this category-theoretic setting:

Definition 218 For a diagram D : ∆ → C, a limit of D is a final object in
the cone category Cone(D). This object (which is determined up to isomor-
phism as we know from exercise 174) is denoted by lim(D). Thus, the limit
is not an object of C, but a cone, including the constant “top object” of the
cone. But often, if the rest is clear, one also writes lim(D) to denote that
top object.

Dually, a colimit ofD is an initial object in the cocone category Cocone(D).
This object (which is determined up to isomorphism as we know from ex-
ercise 174) is denoted by colim(D). Thus, the colimit is not an object of
C, but a cocone, including the constant “bottom object” of the cocone. But
often, if the rest is clear, one also writes colim(D) to denote that bottom
object.

A category C for which all limits (of finite diagram schemes) exist is called
(finitely) complete; a category C for which all colimits (of finite diagram
schemes) exist is called (finitely) cocomplete.

Exercise 175 Here is an intuitive interpretation of limits in classical
terms of limits in analysis. Let C be the category, where objects are the
real numbers x ∈ R, and whose morphisms are all pairs f = (x,y) of
real numbers, such that x ≤ y . Take a subset S ⊂ R and look at the dia-
gram D defined by the pairs x → y , i.e., x ≤ y in S. Show that colim(D)
exists and equals sup(S) iff sup(S) < ∞. Also show that lim(D) exists
and equals inf(S) iff inf(S) > −∞.
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The first observation is that for the category of sets, the limit and colimit
of the discrete diagram with two points is precisely the product and the
coproduct, this is clear from the discussion preceding the general defi-
nitions. But there is more, we have arbitrary limits and colimits in Sets.
Since this is a fundamental fact which is often used in the construction of
limit and colimit objects, we also include an explicit description of such
constructions in the following proposition.

Proposition 309 The category Sets of sets is complete and cocomplete.
More precisely: Let ∆ : A → V 2 be a diagram scheme and D : ∆ → Sets a
diagram of sets and set maps.

A limit can be constructed by the following method: Consider the Cartesian
product D = ∏

v∈V D(v), and take the subset L ⊂ D consisting of all
families (xv)v∈V such that for every arrow a : v → w in A, we have
D(a)(xv) = xw . Then lim(D) is represented by the cone l : [L] →D such
that for all v ∈ V , l(v) : L → D(v) is the restriction of the projection
prl : D →D(v) to L.

A colimit can be constructed in the following way: Consider the family
F = (D′(v))v∈V , withD′(v) = {v}×D(v), of pairwise disjoint setsD′(v),
each of which is evidently equipollent to D(v) by the second projection
D′(v) → D(v). We replace the transition maps D(a) : D(v) → D(w) for
arrows a : v → w by the evident maps D′(a) : D′(v) → D′(w). Take
the (now disjoint) union U = ⋃

v∈V D′(v). On this set, we have a relation
x ∼ y iff there is an arrow a : v → w in A with x ∈ D′(v),y ∈ D′(w)
and y = D′(a)(x). The equivalence relation ≈ generated by ∼ defines
the set C = U/ ≈, together with the maps c(v) : D(v) → C, which are
induced by the bijections D(v) ∼→ D′(v), the injections D′(v) → U , and
the canonical map U → C. The colimit colim(D) is represented by the
cocone c : D→ [C].

Proof For the cone t : [c] → D, we define the following set map f : c → L =
lim(D). If x ∈ c, then for every vertex v of the diagram scheme Γ , we have a
map t(v) : c → D(v). Take f(x) = (t(v)(x))v∈V . Then the functorial naturality
relation for any arrow v a

� w ∈ A of Γ means D(a) ◦ t(v) = t(w). Therefore
f(x) ∈ L. Clearly, by construction, f is a morphism of cones f : t → lim(D).
But it is also the only candidate, since the commutation relation defining cone
morphisms means prv(f (x)) = t(v)(x).
For the cocone t : D → [c], we take the following map f : C → c. Let x ∈
C . Then x = c(v)(ξ) for a vertex v of Γ and an element ξ ∈ D(v). The we
define f(x) = t(v)(ξ). We have to show that this is a well-defined map. If ξ ≈
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η, where η ∈ D(w), then, by the definition of ≈, this means that there is a
sequence of vertexes v = v0, v1, . . . vn = w and maps D(ai) : D(vi) → D(vi+1)
or D(ai) : D(vi+1) → D(vi) and a sequence of elements ξ = ξ0, ξ1, . . . ξn =
η with ξi ∈ D(vi) such that for D(ai) : D(vi) → D(vi+1), we have ξi+1 =
D(ai)(ξi) or for D(ai) : D(vi+1) → D(vi), we have ξi = D(ai)(ξi+1). But then,
by the naturality of the cocone t, this means that t(vi)(ξi) = t(vi+1)(ξi+1), all i,
so we have t(v)(ξ) = t(w)(η), and f is well defined. Since by construction, every
element of C is an image of an element of one of the sets D(v), the function f
is unique. �

Again, this construction yields the following, not really complicated re-
statement of what it means to have a limit: Given any cone t : [c] → D,
there is a unique set map f : c → lim(D) such that for all vertexes v of
the diagram scheme ∆, we have a commutative diagram

c
f

� lim(D)

�

D(v)
l(v)

�

t(v)
�

of set maps.

And dually: Given any cocone s : D → [d], there is a unique set map
f : colim(D) → c such that for all vertexes v of the diagram scheme ∆,
we have a commutative diagram

colim(D) f
� d

�

D(v)
s(v)

�

c(v)

�

of set maps.

Exercise 176 Compare this to the constructions of the Cartesian product
(proposition 57, section 6.2 in volume 1), the more general fiber product
(proposition 65, section 6.3 in volume 1), and the coproduct (proposi-
tion 58, section 6.2 in volume 1), and verify that those objects are con-
structed following the construction rules of limits and colimits in propo-
sition 309.
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36.6 Adjunction

We conclude this short introduction to categories by a construction which
has been used in the theory of Turing machines under the title of “Turing
adjunction” (see section 19.3.2 in volume 1). The concept of adjunction
is in fact a most fruitful one in category theory, it has far-reaching ap-
plications in all mathematical branches, and, most prominently in formal
logic and topos theory, i.e., the foundations of computer science. So this
very short section should not mislead the reader: the subject is as central
as it is short, but it is too advanced to be treated in length in such an
introductory text. In this section, we suppose that all collections C(x,y)
of morphisms with given domain and codomain are sets.

Definition 219 Given two functors F : C → D and G : D → C, we say that
F is left adjoint to G or that G is right adjoint to F , iff the functors

D(F(?), ?) : Copp ×D → Sets : (x,y)� D(F(x),y)

and
C(?, G(?)) : Copp ×D → Sets(x,y)� C(x,G(y))

are (naturally) isomorphic. One also writes this fact in these symbols:

x → G(y)
F(x)→ y

meaning that morphisms in the numerator correspond one-to-one to mor-
phisms in the denominator.

Example 174 We have encountered one very important instance of an
adjoint pair of functors in proposition 59 of section 6.2 in volume 1. We
take C = D = Sets and fix a set a. The first functor is F = a×? : x � a×x.
The second functor is G = ?a : x � xa. From proposition 59 of section 6.2
in volume 1, we know that for each pair (x,y) of sets, there is a canonical
isomorphism

δx,y : Set(a× x,y) ∼→ Set(x,ya),

defined by δx,y(f )(ξ)(α) = f(ξ,α) for f : a × x → y,ξ ∈ x,α ∈ a. It
is easy to check that this isomorphism defines a natural transformation
and therefore we have the adjunction

x → ay

a× x → y

in Sets.
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Splines

37.1 Introduction

Splines are a generic term for a widespread technique for constructing
continuous curves and surfaces which have to pass through given points
and, locally, realize a specific type of functions, such as polynomials, dif-
ferentiable functions, or other functions satisfying similar qualifications.
The name “spline” comes from ship construction where a spline is a thin
narrow wooden or metallic strip fitted into a groove in the edge of a
board. The special case of Bézier splines is of great importance in indus-
trial shape design. It was first developed by the aviation and automobile
industry, in the late fifties by James Ferguson (Boeing), Pierre Bézier (Re-
nault), and Paul de Faget de Casteljau (Citroën). In the following we shall
mainly sketch the theory of Bézier splines, keeping however in mind the
generic approach underlying all these splining methods.

37.2 Preliminaries on Simplexes

Before delving into the subject of splines proper, a small parenthesis on
affine maps on polyhedra is required.

Definition 220 Given a natural number d, the standard simplex ∆d of
dimension d is the set of points (ξ0, ξ1, . . . ξd) ∈ Rd+1 with

∑
i ξi = 1 and

0 ≤ ξi ≤ 1, for all i ∈ {0, . . . d}.
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Fig. 37.1. (a) The standard simplex ∆1 ⊂ R2, (b) the standard simplex
∆2 ⊂ R3.

Definition 221 Given natural numbersn and d, and a sequence (Pi)i=0,...d

of points Pi ∈ Rn, the affine simplex ∆(P0, . . . Pd) is the unique map
∆(P0, . . . Pd) : ∆d → Rn induced by an affine map on Rd+1 such that
∆(P0, . . . Pd)(ei) = Pi, for all i = 0,1, . . . d, for the standard basis vec-
tors ei = (0, . . . ,0,1,0, . . .0) ∈ Rd+1, the number 1 being at position i+ 1.
We write ∆[P0, . . . Pd] = Im(∆(P0, . . . Pd)) for the image set of the affine
simplex.

Exercise 177 Show the existence and uniqueness of the map ∆(P0, . . . Pd),
which extends to an affine map on Rd+1. To this end, show that the re-
striction of an affine map to ∆d is uniquely determined by its values on
the basis vectors ei.

Exercise 178 Show that the following formula holds:

∆[P0, . . . Pd] =
⎧⎨⎩
d∑
i=0

λiPi
d∑
i=0

λi = 1,0 ≤ λi ≤ 1

⎫⎬⎭ .
Lemma 310 If ∆(P0, . . . Pd) : ∆d → Rn is an affine simplex, and if f : Rn →
Rm is an affine map, then the composed map f ◦ ∆(P0, . . . Pd) : ∆d → Rm

is the affine simplex defined by the f -images of the points Pi, i.e.,

f ◦∆(P0, . . . Pd) = ∆(f (P0), . . . f (Pd)).
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Proof Clearly, the composition f ◦ ∆(P0, . . . Pd) is an affine simplex, since the
composition of restrictions of affine maps is a restriction of an affine map. The
formula is then evident. �

Definition 222 A subset X ⊂ Rn is called convex, iff for all x,y ∈ X the
closed line ∆[x,y] is a subset of X. Since for any non-empty family (Ci)i∈I
of convex sets Ci ⊂ Rn containing a given set D, the intersection

⋂
i Ci is

convex and containsD, there is a minimal convex set containingD, namely
the intersection of all convex sets in Rn containing D. This set is called the
convex hull of D, we denote it by Conv(D).

Fig. 37.2. X is convex, while Y is obviously not.

Fig. 37.3. In gray, the convex hull Conv(D) of the set of points D.

Example 175 Let u,v ∈ Rn be two vectors, u ≠ 0. Then the set H = {x |
(u,x−v) = 0} is called a hyperplane in Rn. To one side of H we have the
set consisting of those x such that (u,x − v) ≥ 0, we call it the closed
positive halfspace defined by H and denote it by H+. Then H+ is convex.

Lemma 311 Let (Pi)i=0...d be a finite sequence of points Pi ∈ Rn. Then the
convex hull of the set {Pi | i = 0, . . . d} is the image ∆[P0, . . . Pd] of the
affine simplex ∆(P0, . . . Pd).
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Proof Clearly, for any two points a,b ∈ ∆[P0, . . . Pd], the straight line ∆[a, b] is
in ∆[P0, . . . Pd], so ∆[P0, . . . Pd] is convex. Conversely, every point in ∆[P0, . . . Pd]
is in its convex hull. In fact, this is true by the definition of convexity for d = 1.
Then, any point x ∈ ∆[P0, . . . Pd] is the combination ξ0 ·P0+

∑d
i=1 ξi ·Pi. If ξ0 = 0

we are done by induction. Else, we have

ξ0 · P0 +
d∑
i=1

ξi · Pi = ξ0 · P0 + (1− ξ0) ·
d∑
i=1

ξi
1− ξ0

· Pi,

where the second sum u = ∑d
i=1

ξi
1−ξ0

· Pi is a point in ∆[P1, . . . Pd], so it is in
the convex hull of P1, . . . Pd, and therefore, by the definition of convexity, the
combination ξ · P0 + (1− ξ0) ·u is in the convex hull of {Pi | i = 0, . . . d}. �

Lemma 312 The convex hull of a set X ⊂ Rn is the union of all affine
simplex images ∆[P0, . . . Pd] of finite sequences (P0, . . . Pd) of points in X.

Proof Since X ⊂ Y implies Conv(X) ⊂ Conv(Y), each ∆[P0, . . . Pd] is a subset
of Conv(X). Conversely, this union is convex. In fact, if a ∈ ∆[P0, . . . Pd] and
b ∈ ∆[Q0, . . .Qe], then also a,b ∈ ∆[P0, . . . Pd,Q0, . . .Qe], and we are done, since
the latter set is a convex subset of Conv(X). �

Proposition 313 Let D ⊂ Rn and f : Rn → Rm be an affine map (see
definition 168 in section 22.3 of volume 1). We have

f(Conv(D)) = Conv(f (D)).

In particular, the f -image of a convex set D ⊂ Rn is convex.

Proof According to lemma 312, we have Conv(D) = ⋃P0,...Pd∈D ∆[P0, . . . Pd]. So

f(Conv(D)) =
⋃

P0,...Pd∈D
f(∆[P0, . . . Pd])

=
⋃

P0,...Pd∈D
∆[f (P0), . . . f (Pd)]

=
⋃

Q0,...Qd∈f(D)
∆[Q0, . . .Qd] = Conv(f (D)).

�

37.3 What are Splines?

In order to define a spline, recall that in integration theory (section 30.2),
we defined sets Part(a., b.) of partitions of n-dimensional cubes K(a., b.)



37.3 What are Splines? 165

in Rn, yielding the cubes K ∈ P , where P = (Pi)i ∈ Part(a., b.) is a parti-
tion. Besides these data, one needs a type Tm(K) of functions f : K → Rm

defined on cubes K. Usually, types like polynomial functions, differen-
tiable functions, or polynomial functions of degree at most d, etc., are
available. The only common feature required by the different types is
that a type forms a real vector space. Thus a type Tm(K) is a real vec-
tor space of functions with values in Rm. One prominent example is the
type Pol dm(K) consisting of all functions f : K → Rm where the coordi-
nate functions fi : K → R are polynomials of total degree at most d in
the n coordinate variables x1, . . . xn of K. For d = 1 one speaks of linear
splines, for d = 2 quadratic splines, and for d = 3 one has the famous
cubic splines. Here is the definition of a spline:

Definition 223 Given a type Tm(K) of functions on cubes K ⊂ Rn with
values in Rm, an n-dimensional spline function on a partition P ∈
Part(a., b.) is a function f : K(a., b.) → Rm such that on each cube
K ∈ I(P), the restriction f |K to K is in Tm(K). If, moreover, a condition
C on the behavior of the functions f |K on the cubes K of the partition is
required, one calls f a spline of type T with condition C. In particular,
for n = 1 one speaks of spline curves, for n = 2, of spline surfaces.

The simplest case involves one-dimensional splines, defined for a parti-
tion a = x0 < x1 < . . . xk = b of the interval

[
a,b

]
, taking the type Pol 1

1

of linear polynomials. It is obvious that there is exactly one linear spline
on the interval

[
a,b

]
satisfying these conditions.

Often, the conditions C meet the etymology of “spline” in the sense
that, for two adjacent cubes K1 and K2 of the partition the derivatives
of f1 = f |K1 and f2 = f |K2 on the intersection ∂K1 ∩ ∂K2 must coin-
cide. For example, for one-dimensional cubes and the type of differen-
tiable functions, one is given a partition a = x0 < x1 < . . . xk = b of
the interval

[
a,b

]
and then requires that, for any two adjacent intervals

K1 =
[
xi−1, xi

]
and K2 =

[
xi, xi+1

]
, one has df1

dx (xi) = df2
dx (xi). The next

proposition gives the reason why cubic splines are so popular.

Proposition 314 For each one-dimensional partition P = (a = x0 < x1 <
. . . xk = b), and two sequences (y0, y1, . . . yk), (t0, t1, . . . tk), with yi, ti ∈
Rm, with the intervals Ki =

[
xi, xi+1

]
, i = 0, . . . k − 1, there is a uniquely

determined spline function f :
[
a,b

]→ Rm of type Pol 3
m with the condition

f(xi) = yi for i = 0,1, . . . k and such that Dfi−1(xi) = Dfi(xi) = ti, for
i = 1, . . . k− 1, and Df0(x0) = t0,Dfk−1(xk) = tk, where fj = f |Kj .
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Exercise 179 Give a proof of proposition 314, which is based on the
following core fact. One considers the single unit interval

[
0,1

]
or real

numbers. Two arbitrary values y0, y1 ∈ R, as well as two arbitrary slope
numbers t0, t1 ∈ R are given. Then there is a unique cubic polynomial
f(X) = a+ bX + cX2 + dX3 such that f(0) = y0, f(1) = y1, f ′(0) = t0,
f ′(1) = t1. In fact, the conditions mean that we have this linear system
of four equations for the unknown coefficients a,b, c, d:

y0 = a,
y1 = a+ b + c + d,
t0 = b,
t1 = b + 2c + 3d,

which yields

a = y0,

b = t0,
c = 3(y1 −y0)− 2t0 − t1,
d = 2y0 − 2y1 + t0 + t1.

Example 176 Required is a function f :
[
1,5

] → R satisfying the follow-
ing conditions:

f(1) = 1, f ′(1) = 2,

f (3) = 4, f ′(3) = 0,

f (4) = 2, f ′(4) = −3,

f (5) = 2, f ′(5) = 2.

These conditions induce a partition of
[
1,5

]
into the three intervals K0 =[

1,3
]
, K1 =

[
3,4

]
, K2 =

[
4,5

]
. The restriction of f to Ki is modeled by a

polynomial of degree 3:

f |K0(X) = a0 + b0X + c0X2 + d0X3

f |K1(X) = a1 + b1X + c1X2 + d1X3

f |K2(X) = a2 + b2X + c2X2 + d2X3

The coefficients ai, bi, ci and di are determined by substituting the con-
ditions on Ki in f |Ki and f ′|Ki = bi + 2ciX + 3diX2. The result is the
following system of equations:
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For f |[1,3]:

a0 + b01+ c012 + d013 = 1

b0 + 2c01+ 3d012 = 2

a0 + b03+ c032 + d033 = 4

b0 + 2c03+ 3d032 = 0

For f |[3,4]:

a1 + b13+ c132 + d133 = 4

b1 + 2c13+ 3d132 = 0

a1 + b14+ c142 + d143 = 2

b1 + 2c14+ 3d142 = −3

For f |[4,5]:

a2 + b24+ c242 + d243 = 2

b2 + 2c24+ 3d242 = −3

a2 + b25+ c252 + d253 = 2

b2 + 2c25+ 3d252 = 2

Solving for the unknowns ai, bi, ci, di the resulting polynomials are

f |[1,3](X) = −1
2 + 3

4X +X2 − 1
4X

3,

f |[3,4](X) = 50+ 45X − 12X2 +X3,

f |[4,5](X) = 142− 83X + 16X2 −X3.

and, piecing together, the required function f is:

f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

2 + 3
4x + x2 − 1

4x
3 if 1 ≤ x ≤ 3,

50+ 45x − 12x2 + x3 if 3 ≤ x ≤ 4,

142− 83x + 16x2 − x3 if 4 ≤ x ≤ 5.

Exercise 180 Let K =∏
i
[
ai, bi

]
be an n-dimensional cube with a set P =

{P1, . . . Pk} ⊂ K of k points. Then there is a polynomial spline f : K → Rm
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Fig. 37.4. The function f :
[
1,5

]→ R from example 176.

which is a C1 function, satisfies DfPi = 0, for all i = 1,2, . . . k, and is
of degree ≤ 3 in each coordinate of the cubes Kj of the partition of the
spline.

To solve the problem, first reduce it to m = 1, and proceed by induc-
tion on n as follows. Define the partition P ∈ Part(a., b.) through the n
projections prj(P) ⊂ R into the j-th coordinate space, and take as con-
dition that DfPi = 0 on the points Pi, which are now special points of
the cubes of the partition. Now, let x = (w, z) ∈ Rn−1 × R be a point of
the cube K. If z = bn, the value of the recursively given function g(w)
on K′ = ∏

i=1,...n−1
[
ai, bi

]
with the set P ′ = p(P), p being the projec-

tion into the first n − 1 coordinates, is taken. Else, let u,v ∈ prn(P)
be the unique pair such that u ≤ z < v . Take the recursively given
functions gu, gv : K′ → R relative to the fibers Ku = pr−1

n (u) ∩ K
and Kv = pr−1

n (v) ∩ K, and apply F(X) to X = z, where F(X) is the
unique cubic polynomial such that F(u) = gu(w), F(v) = gv(w) and
F ′(u) = F ′(v) = 0 guaranteed by exercise 179.

37.4 Lagrange Interpolation

The spline approach is well illustrated by the Lagrange interpolation tech-
nique. The situation is that of one-dimensional splines. One is interested
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in a type T of functions which are determined by a number of so-called
control points, i.e., values P0, P1, . . . Pd in the spline codomain Rm, and
then looks for polynomial functions f :

[
a,b

] → Rm such that they not
only take the values P0 = f(a) and Pd = f(b) at the boundary of the
interval, but also take the control values Pi = f(xi), i = 1, . . . d− 1 for an
increasing sequence a = x0 < x1 < x2 . . . xd−1 < xd = b of arguments xi,
called knots.

The simplest situation involves real-valued functions, i.e., m = 1. We
know from proposition 143, section 16.2, in volume 1, that there is ex-
actly one polynomial f ∈ R[X] of degree ≤ d such that f(xi) = Pi, for
all i ∈ {0, . . . d}. The Newton interpolation formula allows us to calculate
the coefficients of f . But this formula does not explicitly refer to the con-
trol points. Lagrange’s formula meets this requirement. For the following
development we consider the real vector space Rd[X] ⊂ R[X] of those
polynomials with deg(f ) ≤ d. Evidently, the sequence (1, X, . . . Xd) is a
basis of Rd[X], i.e., dim(Rd[X]) = d+ 1.

Proposition 315 Given a sequence a = x0 < x1 < x2, . . . xd−1 < b = xd
of real numbers, the sequence (Li)i=0,1,...d of Lagrange polynomials

Li =
d∏

j=0,j≠i

X − xj
xi − xj

in X is a basis of Rd[X]. More precisely, and more generally, if P0, P1, . . . Pd
is any sequence of control points in Rm, then the unique polynomial func-
tion f : R → Rm of degree ≤ d in each coordinate, such that f(xi) = Pi,
for all i, is given by

f =
∑
i
PiLi.

In particular, we have the identity 1 = ∑
i Li.

Proof Obviously the Lagrange polynomials Li have degree ≤ d and make pos-
sible the condition f(xi) = Pi, since Li(xj) = δij . If in every coordinate of a
polynomial function f the polynomials are of degree ≤ d, then they must coin-
cide with the Lagrange polynomial expressions by proposition 140, section 16.2,
volume 1 (this is not the fundamental theorem of algebra, but an easy prelimi-
nary result concerning the number of roots of polynomials). �

Now, in a certain sense this is the best we can expect if we want to tra-
verse all control points. Let us restate the formula in more geometric



170 Splines

terms. We know that the standard simplex ∆d is the convex hull of the ba-
sis vectors e0, e1, . . . ed ∈ Rd+1, its elements are described as linear com-
binations x = ∑

i ξiei, where 1 = ∑
i ξi and 0 ≤ ξi ≤ 1. So ∆d ⊂ Λd, the

subset of Rd+1 defined by the solutions of the linear equation 1 = ∑
i ξi.

In other words, we have the Lagrange curve

L :
[
a,b

]→ Λd : x � (L0(x), L1(x), . . . Ld(x)),

and then, taking the unique map δ : Λd → Rm, with δ(ei) = Pi, which
extends to an affine map on Rd+1, the above interpolation function f has
this shape:

f = δ ◦ L.
Now, the Lagrange curve L hits all basis points ei of the standard simplex
∆d, starts at e0, and ends at ed. But it is not contained in ∆d. This is quite
obvious, since it is a C1-curve which cannot stay within ∆d at the transient
vertexes ei for i ≠ 0, d, if its derivative does not vanish, see figure 37.5.
The reason that we want a curve to be contained in a simplex is that this
guarantees a certain degree of predictable behavior. In practice, a curve
satisfying this condition will be contained in the convex hull of its control
points and will not wildly run around as may do Lagrange polynomials of
higher degrees. This, then, is the problem which Bézier interpolation and
its splines solve.

Fig. 37.5. (a) The Lagrange curve L on the simplex ∆2 in R3. (b) A curve
with non-vanishing differential cannot lie completely within the simplex
if it passes through a corner point.
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37.5 Bézier Curves

The Bézier approach is best understood in the “generic” environment of
the standard simplex ∆d. In fact, much as the Lagrange interpolation,
which is the affine image of the Lagrange curve in Λd, a Bézier curve is
the affine image of one single standard Bézier curve B on ∆d. What is the
role of the basis points ei for the Bézier method? Recall that the Lagrange
curve L traverses all basis points, with the additional condition that the
order in which the curve passes through the points must be e0, e1, . . . ed.
In contrast, Bézier curves do not satisfy the condition that intermediate
basis points lie on the curve. Instead a geometrically very useful condi-
tion is required: the Bézier curve B starts at e0, ends at ed and remains
within ∆d for all curve parameters. This goal is met by an ingenious in-
terpretation of the following observation. Let us concentrate on the ele-
mentary curve parameter interval I = [

0,1
]
. The one-dimensional curve

b(x) = (x,1−x) in ∆1 has the coordinate sum 1, which, by the binomial
theorem 255 in section 27.4.1, is rewritten as

1 = (x + (1− x))d =
d∑
i=0

(
d
i

)
xi(1− x)d−i.

This formula describes d + 1 functions, the Bernstein polynomials of de-
gree d:

Bdi (X) =
(
d
i

)
Xi(1−X)d−i.

Their sum is 1 for all x ∈ R:

1 =
d∑
i=0

Bdi (x),

and for x ∈ [
0,1

]
, we have

0 ≤ Bdi (x) ≤ 1.

This means that the Bernstein curve

Bd :
[
0,1

]→ ∆d : x � (Bd0 (x), . . . B
d
d(x))

of degree d has values in the standard d-dimensional simplex, and such
that Bd(0) = e0 and Bd(1) = ed. See figure 37.6 and compare it to fig-
ure 37.5 for Lagrange polynomials.

Here is the analogue of the property for Lagrange polynomials:
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Fig. 37.6. The Bernstein curve B2 on the simplex ∆2 in R3. The curve is
completely contained in the simplex.

Proposition 316 The sequence (Bdi )i=0,...d of Bernstein polynomials of de-
gree d is a basis of Rd[X].

Proof Since the number of Bernstein polynomials (Bdi )i=0,1,...d is d + 1, it suf-
fices to show that these polynomials are linearly independent. Let 0 = f(x) =∑
i ci · Bdi (x) be the zero polynomial function of x ∈ R. Then f(1) = cd = 0. Its

derivative f ′ is also the zero function, so f ′(1) = cd−1(Bdd−1)′(1) = 0, whence
cd−1 = 0, etc., for higher derivatives, and we conclude that all ci vanish. �

Definition 224 Given an affine simplex ∆(P0, P1, . . . Pd) : ∆d → Rn, the
Bézier curve defined by the control points P0, P1, . . . Pd is the composed
map

B(P0, P1, . . . Pd) = ∆(P0, P1, . . . Pd) ◦ Bd

of the Bernstein curve Bd and the affine simplex ∆(P0, P1, . . . Pd). Denote
by B[P0, P1, . . . Pd] the image of B(P0, P1, . . . Pd) in Rn.

Corollary 317 Let B(P0, P1, . . . Pd) be a Bézier curve of degree d, then its
image B[P0, P1, . . . Pd] is contained in the convex hull of the control points.
If f : Rn → Rm is any affine map, then we have

f ◦ B(P0, P1, . . . Pd) = B(f(P0), f (P1), . . . f (Pd)).

Therefore the affine image of a Bézier curve is the Bézier curve of the
affine image of its control points. This is the so-called covariance of the
Bézier construction.
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Proof The convex hull of the control points is the image of the standard sim-
plex, and this contains the Bernstein curve Bd, whence the claim concerning the
convex hull of control points. Moreover, we have

f ◦ B(P0, P1, . . . Pd) = f ◦∆(P0, P1, . . . Pd) ◦ Bd
= ∆(f (P0), f (P1), . . . f (Pd)) ◦ Bd
= B(f(P0), f (P1), . . . f (Pd)),

by lemma 310 and definition 224. �

For the shaping of Bézier splines, the most important fact is

Proposition 318 If B(P.) = B(P0, P1, . . . Pd) is a Bézier curve of degree d,
then we have

dB(P.)
dx

(P0) = d · (P1 − P0),

dB(P.)
dx

(Pd) = d · (Pd − Pd−1),

i.e., the tangent to the Bézier curve at the beginning and ending points is
just the d-fold difference of the first and last consecutive control points,
respectively.

Proof Since the derivative of an affine function F inducing the map ei � Pi
is its linear part, we have the derivative matrix DF = (P0, P1, . . . Pd). This ap-
plies to the derivative DBd(0) = (DBd0 (0),DBd1 (0), . . .DBdd(0)) = (−d,d,0, . . .0),
whence dB(P.)

dx (P0) = d · (P1 − P0). The second formula results from DBd(1) =
(0, . . .0,−d,d). �

Note that this last property is extremely useful for controlling the initial
and final tangent of a Bézier curve, and thus enables this splining tech-
nique: In order to spline two Bézier curves B(P.) and B(P ′.) of degrees d
and d′, respectively, at a common control point Pd = P ′0, one must satisfy
the equation

Pd − Pd−1 = P ′1 − P ′0.

Example 177 Let B :
[
0,1

]→ R2 be the Bézier curve with control points

P0 = (1
2 ,2), P1 = (1,3), P2 = (2, 1

2), P3 = (3,1), P4 = (5
2 ,

5
2).
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Then

B(x) = P0B4
0(x)+ P1B4

1(x)+ P2B4
2(x)+ P3B4

3(x)+ P4B4
4(x)

= (1
2 ,2)(1− x)4 + (1,3)4(1− x)3x + (2, 1

2)6(1− x)2x2

+ (3,1)4(1− x)x3 + (5
2 ,

5
2)x

4

= (1
2 + 2x + 3x2 − 2x3 − x4,2+ 4x − 21x2 + 26x3 − 17

2 x
4).

Fig. 37.7. The Bézier curve with control points P0, P1, P2, P3 and P4, in
that order.

The curve B(x), for x ∈ [
0,1

]
, including the control points, is shown in

figure 37.7. Note that the curve lies completely within the convex hull (in
light gray) of {P0, P1, P2, P3, P4}.

37.5.1 Bernstein and de Casteljau Recursion

For the practical calculations related to Bézier curves, two recursive pro-
cedures are important: the calculation of Bernstein polynomials and the
calculation of curve parameters.

Concerning Bernstein polynomials, we have these formulas:

Proposition 319 For degree d > 0 and i = 1,2, . . . d, one has

Bdi = XBd−1
i−1 + (1−X)Bd−1

i .

Proof Recall from lemma 254 the recursive formula
(
d−1
i−1

)
+
(
d−1
i

)
=
(
d
i

)
for

binomial coefficients. Then we have
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XBd−1
i−1 + (1−X)Bd−1

i =
(
d− 1
i− 1

)
Xi(1−X)d−i +

(
d− 1
i

)
Xi(1−X)d−i

=
(
d
i

)
Xi(1−X)d−i

= Bdi .

�

The procedure for calculating curve points at parameter value x uses the
following result:

Proposition 320 (de Casteljau Algorithm) Given the control points P0,
P1, . . . Pd of a Bézier curve of degree d, the value B(P0, P1, . . . Pd)(x) is cal-
culated by the following recursive formula, defining a sequence of points
P ji for j = 1,2, . . . d and i = 0,1, . . . d− j, via

P ji = (1− x)P j−1
i + xP j−1

i+1 .

where P0
i = Pi. Then we have

B(P0, P1, . . . Pd)(x) = Pd0 (x).

Proof The algorithm follows from the recursive formulas for Bernstein polyno-
mials in proposition 319, we omit it and refer to [36]. �

This is best visualized by a schema, which we show for d = 3. In this
schema a value at the tail of an arrow is multiplied by the factor above
the arrow. The value at the head of the arrow is the sum of two of those
scaled values:

P0
1−x P1

0
1−x P2

0
1−x P3

0

P1
1−x

x

P1
1

1−x

x

P2
1

x

P2
1−x

x

P1
2

x

P3

x

Figure 37.8 illustrates two realizations of de Casteljau’s algorithm.
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Fig. 37.8. De Casteljau’s algorithm for the control points P0, P1, P2, P3

and P4. The P ji are the result of an execution of the algorithm for x = 7
12 .

Also shown in gray is a second execution for x = 3
4 .

Putting together Bézier curves is now straightforward. We are given a
partition a = x0 < x1 < . . . xk = b of the interval

[
a,b

]
. For each interval

Ki =
[
xi, xi+1

]
, i = 0,1, . . . k − 1, we have an affine bijection ti : Ki

∼→[
0,1

]
with ti(x) = x−xi

xi+1−xi . Then we take the stretched Bézier curves Bi =
B(. . .) ◦ ti connecting successive last and first control points for the i-th
Bézier curve, and finally glue them together to a Bézier spline f :

[
a,b

]→
Rn, with f |Ki = Bi.

37.6 Tensor Product Splines

Bézier and other curves that follow similar construction principles can
be used to generate surfaces and higher-dimensional shapes. We present
here an elegant method for combining a number of curves to such shapes
of higher complexity. The method is part of a general theory of mathe-
matical structures, called tensor products. We shall, however, not develop
this theory in its full-fledged generality, but only use some elementary no-
tations indicating that behind our ad-hoc approach a far-reaching method
is hidden.
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The idea is this: Often, the real vector space Rn is not given without
further information, but having its dimension decomposed as a prod-
uct n = n1 · n2 · . . . nk. Assuming such a factorization, the members
of the canonical basis e0, e1, . . . en−1 of Rn are reindexed by a sequence
of indexes (i1, i2, . . . ik) with 0 ≤ i1 ≤ n1 − 1,0 ≤ i2 ≤ n2 − 1, . . .0 ≤
ik ≤ nk − 1. In this reindexing system, we write ei1⊗i2⊗...ik for es(i1,i2,...ik)
under a fixed bijection of sets1 s : n1 × n2 × . . . nk ∼→ n. The specific
choice of s is irrelevant, so we omit it in the following discussion. The
symbol ⊗ is the tensor product sign, which we only use as an abstract
symbol without any further meaning here. In this representation, the vec-
tor space Rn is denoted by Rn1⊗n2⊗...nk . For example, in R2⊗2, we have
the basis (e0⊗0, e0⊗1, e1⊗0, e1⊗1), corresponding to, say, the canonical ba-
sis (e0, e1, e2, e3). We shall see that this is in fact a very practical notation
for higher-dimensional spline theory.

The tensor product is used as follows: For a given factorization n = n1 ·
n2 · . . . nk, there is a map

t(n1, n2, . . . nr ) : Rn1 ×Rn2 × . . .Rnk → Rn1⊗n2⊗...nk

which is defined as follows: If xi =
∑
j=0,1,...ni−1 ξij · ej ∈ Rni for i =

1,2, . . . k, then

t(n1, n2, . . . nk)(x1, x2, . . . xk) =
∑
ξ1
i1ξ

2
i2 . . . ξ

k
ik · ei1⊗i2⊗...ik ,

where the sum is over all indexes 0 ≤ i1 ≤ n1 − 1,0 ≤ i2 ≤ n2 − 1, . . .0 ≤
ik ≤ nk − 1. This map is linear in each argument xi.

If we work with standard simplexes ∆d, then we also adapt the dimen-
sional notation, i.e., we write ∆d1⊗d2⊗...dk for the ∆d, where d + 1 =∏
i(di + 1). In fact, if the vertexes of ∆di are the eji , then the vertexes

of ∆d1⊗d2⊗...dk are the basis vectors ej1⊗j2⊗...jk .

Proposition 321 Let d1, d2 . . . dk be a sequence of natural numbers, then
the map t(d1+1, d2+1, . . . dk+1)maps ∆d1×∆d2×. . .∆dk into ∆d1⊗d2⊗...dk .

Exercise 181 Give a proof of proposition 321. Observe that the coeffi-
cients ξ1

i1ξ
2
i2 . . . ξ

k
ik in the definition of t(d1+1, d2+1, . . . dk+1) also arise

in the development of the product
∏
i
∑
j=0,...di ξ

i
j , where all factors are

sums yielding 1.

1 Recall here that natural numbers are ordinal sets.
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These facts now make it possible to construct higher-dimensional shapes.
Suppose that we are given a curve Ri :

[
0,1

] → ∆di of a certain type—a
Bernstein curve Bdi , for example—for each degree di, i = 1,2, . . . k. Then
the direct product of these data yields this application:

)
i
Ri :

[
0,1

]k R1×···Rk−−−−−−�→ ∆d1 × · · ·∆dk
t(d1+1,...dk+1)−−−−−−−−−−−�→ ∆d1⊗···dk

Once we have understood this map, the rest is straightforward. We only
need to define the unique map ∆(P0⊗···0, . . . Pd1⊗···dk) : ∆d1⊗d2⊗···dk → Rn

with control points Pj1⊗···jk ∈ Rn and to compose it with
⊗
i Ri. This

yields the k-dimensional shape map

∆(P0⊗···0, . . . Pd1⊗···dk) ◦
)
i
Ri :

[
0,1

]k → Rn.

Here, the indexing of the control points by the product of k indexes sug-
gests that the control points are arranged in a k-dimensional grid. For
example, if k = 3, we view the control points as distributed in a three-
dimensional grid, although their positions may be completely messed
up. Let us look at the frequent example of k = 2 and n = 3. This means
we are considering a surface, defined by two independent parameters
x,y ∈ [

0,1
]
, with values in R3. If R1 and R2 are Bernstein curves, then

we have a Bézier surface with values in the three-dimensional real space.
Such surfaces are used as functions on the rectangular units of parti-
tions for two-dimensional splines. For example, in automobile industry
and similar applications, this construction is essential.

Example 178 Consider the construction of a spline surface based on
Bernstein polynomials B3 and B2 on the simplexes ∆3 and ∆2. The con-
struction described above is the composition of 3 functions:

First
f = R1 × R2 :

[
0,1

]2 → ∆3 ×∆2,

where R1 = B3, and R2 = B2 are the Bernstein polynomials. Next

g = t(4,3) : ∆3 ×∆2 → ∆3⊗2,

and finally
h = ∆(P0⊗0, ...P3⊗2) : ∆3⊗2 → R3,

which requires 12 control points P0⊗0, ...P3⊗2.
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Now, a pair (x,y) ∈ [
0,1

]2 is mapped by f to the pair (B3(x), B2(y)),
a pair (u,v) ∈ ∆3 × ∆2 is mapped to

∑
i,j uivjei⊗j , and this result is

projected into R3 by "substituting" each basis vector ei⊗j by the corre-
sponding vector Pi⊗j .

Putting everything together yields

(h ◦ g ◦ f)(x,y) =
(1− x)3(1−y)2P0⊗0 + 2y(1− x)3(1−y)P0⊗1 + (1− x)3y2P0⊗2 +

3x(1− x)2(1−y)2P1⊗0 + 6xy(1− x)2(1−y)P1⊗1 + 3xy2(1− x)2P1⊗2 +
3x2(1− x)(1−y)2P2⊗0 + 6x2y(1− x)(1−y)P2⊗1 + 3x2y2(1− x)P2⊗2 +

x3(1−y)2P3⊗0 + 2x3y(1−y)P3⊗1 + x3y2P3⊗2

An alternative approach, which leads to the same result, considers what
it means to add a further parameter y to a single parameter Bézier curve.
Looking back at figure 37.7, imagine that the control points are not fixed,
but are themselves described by Bézier splines parameterized by the sec-
ond variable y . Having m+ 1 control points Pi, 0 ≤ i ≤m, each a Bézier
curve with n+1 control points Pij , 0 ≤ j ≤ n, which makes (m+1)(n+1)
control points in total, we have the following:

Pi(y) =
n∑
j=0

PijBnj (y), for 0 ≤ i ≤m.

Putting the pieces together, we get the surface function

B(x,y) =
m∑
i=0

Pi(y)Bmi (x)

=
m∑
i=0

n∑
j=0

PijBnj (y)B
m
i (x).

Putting m = 3 and n = 2, we get the same function as above, with Pij =
Pi⊗j .

Figure 37.9 shows a Bézier surface for sixteen control points, i.e., the case
where m = n = 3.

37.7 B-Splines

There are still other types of curves, which may be better suited for the
construction of specific curve shapes, such as B-splines or their gener-
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Fig. 37.9. Bézier surface with 4× 4 control points.

alization to NURBS, i.e., Non Uniform Rational B-Splines. Like the Bern-
stein curve, the B-spline curve is of the type discussed above, i.e., hav-
ing its image within the standard simplex ∆d, and not only on the sur-
rounding “linear space” Λd, such as is the case for the Lagrange curve
L. And they are also defined by recursion for a given degree d, which
counts the number d + 1 of control points P0, . . . Pd in Rn. They take up
the idea, known from Lagrange interpolation, of an increasing sequence
0 = x0 ≤ x1 ≤ · · ·xm = 1 of m + 1 parameter “knots” and to prescribe
function values defined according to these knots. The functions f pi to be
defined are given for every order p ∈ N with p ≤ m − d − 1 and for
i = 0,1, . . . d, and constructed recursively:

1. The functions of order 0 are the characteristic functions of the closed-
open knot intervals, i.e.,

f 0
i = χ[xi,xi+1[,

2. The functions of order p > 0 are built from functions of order p − 1,
i.e.,

fpi (x) =
x − xi
xi+p − xi f

p−1
i (x)+ xi+p+1 − x

xi+p+1 − xi+1
fp−1
i+1 (x).
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Since consecutive xi and xi+1 may be equal, the denominator of a factor
can be 0, in which case we set the factor to 0.

For every order p, there is a B-spline curve BS p :
[
0,1

]→ ∆d, yielding the
affine simplex

BS p(P0, . . . Pd) = ∆(P0, . . . Pd) ◦ BS p.

The condition that the resulting curve be contained in the standard sim-
plex ∆d requires that xi = 0, for i < p, and xi = 1, for i > m − p. If, in
addition, it is desired that the curve starts at P0 and ends at Pd, we set
xp = 0 and xm−p = 1. If the knots xi, p ≤ i ≤m − p are evenly spaced,
the B-spline is said to be uniform.

Fig. 37.10. A cubic B-spline with eight control points (in black), and
twelve knots (in gray), the first four lie at P0, the last four at P7.

Example 179 A cubic B-spline has p = 3, i.e, if there are (d + 1) control
points, then at least (d+1)+4 parameter knots are required. For example,
a non-uniform cubic B-spline with d = 7 (figure 37.10) is given by the
following eight control points

P0 = (0,0), P1 = (−1
2 ,−1), P2 = (1

2 ,−3
2), P3 = (2,−1

2),

P4 = (4,−3
2), P5 = ( 9

10 ,−1), P6 = (4, 1
2), P7 = (3,0)

and twelve knots
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x0 = x1 = x2 = x3 = 0,

x4 = 1
3 , x5 = 1

2 , x6 = 3
5 , x7 = 9

10 ,

x8 = x9 = x10 = x11 = 1.

NURBS are derived from B-splines by putting numerical weightswi at the
control points, i.e., Pi is replaced by wi · Pi. We omit the details here and
refer to [19].

A lot of information on curves and surfaces can be found in a standard
text on computer graphics, see [11].



CHAPTER 38

Fourier Theory

38.1 Introduction

Fourier theory goes back to the work of the mathematician and politi-
cian Jean Baptiste Joseph Fourier (1768–1830). It was initiated in his
work from 1807 on solutions of the partial differential heat equation
D2
xxT(x, t) = c · DtT(x, t) that describes the infinitesimal behavior of

the temperature T of a metallic pole as a function of position x and time
t. Fourier’s method introduces infinite sums of sine and cosine functions,
the famous structures which were later coined Fourier series. This paper
“Théorie de la propagation de la chaleur dans les solides” was strongly
criticized by his fellow mathematicians because of the lack of mathemat-
ical rigor. Nonetheless, it received the mathematics prize in 1811 and
thus became a starting point of a big mathematical theory, which has an
incredible omnipresence in modern natural science. Fourier was not only
a mathematical revolutionary, he was also politically active and even was
put to jail as a terrorist during the French revolution.

Mathematically, Fourier’s achievement provides us with a generalization
of the idea of representing vectors as finite linear combinations to vec-
tor spaces of not too pathological functions f(x) of a real variable x,
having a given period p, i.e., f(x + p) = f(x). This setup goes beyond
algebra in that the sum representation f = ∑

i λi · ei need not be fi-
nite, and therefore, the summation means convergence for some met-
ric topology on the given vector space of functions. One is also given a
scalar product on that space, such that orthogonality and length of func-
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tions are defined. Fourier found an orthonormal basis, namely (en)n∈Z,
with en(x) = einx for p = 2π , a basis which by the Euler equation
einx = cos(nx)+ i sin(nx) yields the Fourier series in terms of sine and
cosine functions.

However, mathematically speaking, this basis is far from trivial. We know
from chapter 257 that Euler’s equation and all the properties of the re-
lated functions are far from elementary. The very definition of the expo-
nential function or, equivalently, of the sine and cosine function requires
convergent power series, for example. The Fourier basis is at the same
time extraordinary since it is of a striking simplicity: just the integer pow-
ers en(x) = einx = (eix)n of a single germinal function eix . But the latter
is a complex mathematical construction. There are many justifications
for such a choice of basis functions. One of them is their appearance as
solutions of basic differential equations in mechanics, such as Hooke’s
law m ·D2

tx = −k ·x of a mass m at position x, which is tied to a spring
with the spring constant k. The solution of this equation is in fact a sine
function, since D2 sin = − sin is a differential equation of the above type.
But this justification is a physical one relating to an elementary mechani-
cal situation. Mathematically speaking, there are many other orthonormal
bases besides Fourier’s basis.

The prominence of Fourier’s basis is that it has a strong relation to im-
portant differential equations in physics and that therefore, highly de-
veloped technologies, including Fast Fourier Transform (FFT) algorithms,
are available. Modern audio technology (including compression methods
such as MP3 and its successors) is based on Fourier’s theory, and image
processing in computer graphics is unthinkable without Fourier’s theory.
Moreover, the recent development of wavelets is based on Fourier trans-
forms. The latter is a limit situation, where the period p tends to infinity.
We append a short exposition of Fourier transforms, because this the-
ory is needed to deal with the theory of wavelets, which we present in
chapter 39. But a transcendental justification of Fourier theory, as it is
preconized by the old theory of Fourier analysis of the human ear, or by
the belief that musical harmony is best understood by Fourier analysis,
has not been confirmed by modern research, see [28], and pertains rather
to the mysticism of overtones than to science.
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38.2 Spaces of Periodic Functions

Since Fourier theory is built upon integrability of periodic functions, we
first need to define what a periodic function is as well as what it means
to call a periodic function integrable.

Definition 225 Let p > 0 be a real number. A function f : R→ C is called
periodic with period p or p-periodic iff f = f ◦ Tp, i.e., for all x ∈ R,
f(x) = f(x + p).

Fig. 38.1. A periodic function with period p.

For the following proposition, recall from remark 32 that a function f :
X → Rn is integrable iff each of its components fi = pri ◦ f , for i =
1,2, . . . n is so, and that integration for f : X → C is regarded as the
special case of n = 2.

Proposition 322 For a p-periodic function f : R → C, the following state-
ments are equivalent:

(i) f is integrable on every closed interval
[
a,b

]
.

(ii) f is integrable on the interval
[
0, p

]
.

Proof We use the criterion in proposition 283 of integrability of a function.
Observe that our function has complex values, and therefore the set of non-
continuity is just the union of the sets of non-continuity for the real part and
the imaginary part of the function. Now, (ii) is a special case of (i). Conversely, if
f is integrable on

[
0, p

]
, then it has a setN ⊂ [0, p] of non-continuity of measure
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zero. Since f is p-periodic, the set Nn of non-continuity of f on a shifted interval
Tnp

[
0, p

]
is also of measure zero. But the interval

[
a,b

]
is a subset of a finite

union of such shifted intervals Tnp
[
0, p

]
, and therefore the finite union of theNn

has measure zero by proposition 280, and the same is true for the intersection
of this set with

[
a,b

]
. �

Definition 226 A p-periodic function f : R → C is called integrable iff it
satisfies the equivalent properties of proposition 225. The set of p-periodic
integrable functions is denoted by

∫
p(R,C).

Lemma 323 If f ∈ ∫
p(R,C), then for all intervals I = [

a,a+p], the value
of

∫
I f is one and the same.

Proof Suppose that f is continuous. By proposition 286, setting ξ(x) = x + p,
we have

∫ p
0 f(x)dx =

∫ p
0 f(x + p)dx =

∫ p
0 f(ξ(x))ξ′(x)dx =

∫ a+p
a f(ξ)dξ. The

theorem of change of variable is also valid for integrable functions, see [14],
chapter 3.9, for a proof, so the same argument works in the general case. �

Proposition 324 Given a period p, let f , g ∈ ∫
p(R,C). Then:

(i) f + g ∈ ∫
p(R,C), where (f + g)(x) = f(x) + g(x), the sum being

in C.

(ii) f · g ∈ ∫
p(R,C), where (f · g)(x) = f(x) · g(x), the product being

in C.

(iii) With the previously defined sum and product,
∫
p(R,C) is a commu-

tative ring containing the subring of constant functions, which is
identified with C. Therefore,

∫
p(R,C) is called the C-algebra of inte-

grable p-periodic functions.

(iv) If f denotes the conjugate function defined by f(x) = f(x), then
f ∈ ∫

p(R,C) and f = f . Moreover, f + g = f + g and f · g = f · g,
i.e., conjugation is a ring automorphism, and it leaves the subring
of constant functions C invariant.

(v) The absolute value function |f |(x) = |f(x)| is also an element of∫
p(R,C), and so are the functions f+ = (f + |f |)/2 and f− = (f −
|f |)/2.

Proof Observe that if f , g ∈ ∫p(R,C) are integrable, then so are continuous func-
tions applied to the pair map (f , g) : R→ C2, for example + : C2 → C, · : C2 → C,
or the special case |f | =

√
Re(f )2 + Im(f )2. Up to straightforward verifications,

this yields all the statements of the proposition. �
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Fourier’s theorem is concerned with a special subalgebra of
∫
p(R,C),

which is defined by functions which are a patchwork of C1-functions,
more precisely:

Definition 227 A p-periodic function is called piecewise smooth iff there
is a partition P ∈ Part(0, p) of the period-interval

[
0, p

]
such that for every

interval J ∈ I(P), there is a function gJ ∈ C1(J,C) such that gJ|Jo = f |Jo .
The set of p-periodic, piecewise smooth functions is denoted by PC1

p(R,C),
it is a subset of

∫
p(R,C) by proposition 283. It is closed under sums and

products of functions and contains C, therefore it is called the C-algebra of
piecewise smooth p-periodic functions.

Fig. 38.2. Three curves in PC1
p(R,R): (a) the sawtooth curve, (b) the rect-

angle curve, (c) the triangle or zigzag curve.

The Fourier theory deals with the description of the algebra PC1
p(R,C) in

terms of special orthonormal C-vector space bases.
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38.3 Orthogonality

The special functions mentioned before are the trigonometric functions
cos and sin, or their complex counterpart: the exponential function for
imaginary arguments, i.e., eix = cos(x) + i sin(x), where x ∈ R. In this
basic section, we shall focus our attention to the period p = 2π . Later we
shall present more general, but mathematically straightforward, state-
ments for arbitrary periods.

Notation 1 For n ∈ Z, we denote by en the function in PC1
2π(R,C) with

en(x) = einx .

Lemma 325 For any non-empty finite set B ⊂ Z, the sequence (eb)b∈B is
linearly independent over C.

Proof Suppose that
∑
b λbeb = 0. This is equivalent to ek·

∑
b λbeb =

∑
b λbeb+k =

0 for any k ∈ Z. So we may suppose that the equation has the shape
∑
j=0,...m µm ·

(eit)j = 0 for all t ∈ R. This means that the polynomial
∑
j=0,...m µj · (eit)j = 0

of degree ≤m vanishes for an infinity of different values eit , which by proposi-
tion 140, section 16.2, in volume 1, is only possible if it is the zero polynomial. �

In particular, for N ∈ N, the sequence (e−N , e−N+1, . . . e−1, e0, e1, . . . eN)
is the basis of a (2N + 1)-dimensional C-vector space UN , whose ele-
ments

∑N
n=−N cn · en are called trigonometric polynomials of degree ≤ N.

If N1 < N2, then we have the canonical embedding iN1 : UN1 → UN2 as well
as the canonical retraction pN1 : UN2 → UN1 of iN1 , given by pN1(en) = 0
for N2 ≥ n > N1. We denote by U∞ the limit U∞ = limN UN with respect
to the retractions pN , recall chapter 36 for a discussion of limits in cate-
gories. What are the elements of U∞? By definition of a limit, they are the
sequences (SN)N∈N, where SN =

∑N
−N cN,n · en, and where pN1(SN2) = SN1

for all N1 < N2. So the coefficients cN,n are in fact independent of the
index N, and we may therefore denote the limit element (SN)N∈N by a
symbolic infinite sum

∑
lim cn ·en, which represents the sequence of com-

plex numbers(cn)n∈Z, but also takes into account that the finite partial
sums

∑N
−N cn·en are the elements of the vector spaces UN . Of course, this

notation is introduced in view of the fact that in many interesting situa-
tions, the infinite sum is a function in PC1

2π(R,C) and not just a formal
construction in a limit set.

Next, we introduce a form on PC1
2π(R,C), which is slightly more general

than the bilinear forms encountered on real vector spaces in chapter 24
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of volume 1 and in definition 201 and sorite 287. For f , g ∈ PC1
2π(R,C),

we define the complex number1

〈f , g〉 = 1
2π

∫ 2π

0
f · g,

where the product f · g of f and the conjugate of g is in the algebra
PC1

2π(R,C). In particular, 〈f , f 〉 is a non-negative real number, and one
defines the norm of a function f with respect to this form by

‖f‖2 =
√
〈f , f 〉.

Here are the important properties of this generalized bilinear form:

Sorite 326 The form 〈?, ?〉 : PC1
2π(R,C)2 → C has the following properties

for f , g,h ∈ PC1
2π(R,C) and λ ∈ C:

(i) 〈g, f 〉 = 〈f , g〉,
(ii) 〈f + g,h〉 = 〈f ,h〉 + 〈g,h〉,

(iii) 〈λ · f ,h〉 = λ · 〈f ,h〉,
(iv) 〈f , g + h〉 = 〈f , g〉 + 〈f ,h〉,
(v) 〈f , λ · g〉 = λ · 〈f , g〉,

(vi) (Schwarz Inequality) |〈f , g〉| ≤ ‖f‖2 · ‖g‖2,

(vii) ‖f‖2 ≥ 0, and ‖f‖2 = 0 iff the set {x | 0 ≤ x ≤ 2π,f(x) ≠ 0} is
finite,

(viii) (Triangle Inequality) ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.

Due to properties (i) to (v), the form 〈?, ?〉 is called Hermitian.

Proof Except for statement (vii), this sorite is straightforward, in particular, the
Schwarz inequality is proved by the same method as the Schwarz inequality in
sorite 287. As to (vii), the finiteness condition is clearly sufficient for the van-
ishing of ‖f‖2, conversely, if the set {x | 0 ≤ x ≤ 2π,f(x) ≠ 0} is infinite, its
intersection with the points in

[
0,2π

]
where f is continuous is non-empty. From

this fact, one immediately deduces the non-vanishing of ‖f‖2 as we already did
in the proof of sorite 287. �

With respect to this Hermitian form, one writes f ⊥ g for the equation
〈f , g〉 = 0 and calls f orthogonal to g. Evidently, orthogonality is a sym-
metric relation. If V ⊂ PC1

2π(R,C) is any subset, define the orthogonal
space V⊥ of V by

1 Often the factor 1
2π is omitted in this definition, and in the related definition

of ‖f‖2. We insert it for reasons of normalization.
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V⊥ = {x | x ∈ PC1
2π(R,C), x⊥v, all v ∈ V}.

Exercise 182 Show that V⊥ is a vector subspace of PC1
2π(R,C).

Recall that the Kronecker delta symbol is defined by δij = 0 if i ≠ j, and
δii = 1, where i, j ∈ Z.

For the following orthogonality relations, we need this exercise about
primitive functions.

Exercise 183 Let m,n ∈ Z. Use the trigonometric equations

sin(mx) sin(nx) = 1
2
(cos((m−n)x)− cos((m+n)x))

sin(mx) cos(nx) = 1
2
(sin((m−n)x)+ sin((m+n)x))

cos(mx) cos(nx) = 1
2
(cos((m−n)x)+ cos((m+n)x))

to prove the following primitive function expressions:

∫
sin(mx) sin(nx)dx =

⎧⎪⎨⎪⎩
1
2

(
sin((m−n)x)

m−n − sin((m+n)x)
m+n

)
for m ≠ ±n,

±1
2

(
x − sin(2mx)

2m

)
for m = ±n.∫

sin(mx) cos(nx)dx =
⎧⎪⎨⎪⎩−

1
2

(
cos((m−n)x)

m−n + cos((m+n)x)
m+n

)
for m ≠ ±n,

−1
2

cos(2mx)
2m for m = ±n.∫

cos(mx) cos(nx)dx =
⎧⎪⎨⎪⎩

1
2

(
sin((m−n)x)

m−n + sin((m+n)x)
m+n

)
for m ≠ ±n,

1
2

(
x + sin(2mx)

2m

)
for m = ±n.

Proposition 327 (Trigonometric Orthogonality Relations) Let k, l ∈ Z.
Then:

(i)
∫ 2π
0 cos(kx) cos(lx)dx = ∫ 2π

0 sin(kx) sin(lx)dx = πδkl for k or l
≠ 0.

(ii)
∫ 2π
0 cos(kx) sin(lx)dx = 0.

(iii)
∫ 2π
0 ek = 2πδ0k.

(iv) ‖ek‖2 = 1, and ek ⊥ el for k ≠ l. The basis (en)n=−N,−N+1,...N−1,N

of UN is an orthonormal basis, i.e., its vectors have norm 1 and are
mutually orthogonal with respect to the Hermitian form 〈?, ?〉.

Proof These equations are direct applications of the orthogonality formulas in
exercise 183. �
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38.4 Fourier’s Theorem

Definition 228 Let n ∈ Z. Then the map

?̂n : PC1
2π(R,C)→ C : f � f̂n = 〈f , en〉 = 1

2π

∫ 2π

0
f(x) · e−inx dx

is C-linear, and the value f̂n is called the n-th Fourier coefficient of f . For
N ∈ N, the C-linear map

FN : PC1
2π(R,C)→ UN : f � FN(f ) =

N∑
−N
f̂n · en =

N∑
−N
〈f , en〉 · en

is idempotent: (FN)2 = FN , and onto UN . The image FN(f ) of a function
f ∈ PC1

2π(R,C) is called the N-th partial sum of the Fourier series of f ,
while the universally guaranteed limit

F∞(f ) =
∑
lim

f̂n · en

of the partial sums FN(f ) of f in U∞ is called the Fourier series of f . The
Fourier series map

F∞ : PC1
2π(R,C)→ U∞

is also a C-linear function for the component-wise vector-space structure
on U∞.

The final question is whether we can reconstruct functions from their
Fourier series. We need the following auxiliary construction: If f ∈
PC1

2π(R,C), then there may be some points of discontinuity. What values
at those points can we derive from the information given by Fourier se-
ries information at those points? By virtue of integrating over the whole
period, we can evidently not expect to obtain the delicate information
about the behavior of f at such critical points. But we have this infor-
mation: If x is a point of the partition P ∈ Part(0,2π) for f , then there
is a smooth function f1 defined on the closed interval ending with x,
and there is a smooth function f2 defined on the closed interval begin-
ning at x. Evidently, f1(x) = limy<x,y→x f1(y) = limy<x,y→x f(y), while
f2(x) = limy>x,y→x f2(y) = limy>x,y→x f(y), so the values f1(x) and
f2(x) depend only on f and not on the smooth auxiliary functions f1

and f2. Define the value αf(x) = (f1(x)+ f2(x))/2. For a point which is
not a splitting point of the partition I, define αf(x) = f(x). This function
αf ∈ PC1

2π(R,C) is what one can recover from the Fourier series.
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Exercise 184 Show that the map

α? : PC1
2π(R,C)→ PC1

2π(R,C) : f � αf

is a linear idempotent map. The sub-vector space CC1
2π(R,C) of contin-

uous piece-wise smooth 2π -periodic functions is left pointwise invariant
by this map.

Proposition 328 (Fourier’s Theorem) If f ∈ PC1
2π(R,C), and if x ∈ R,

then limN→∞FN(f )(x) exists, and equals αf(x). This limit is denoted by∑∞
−∞ f̂n · en(x). So we have

αf(x) =
∞∑
−∞
f̂n · en(x).

In other words, we have a function
∑∞
−∞ f̂n·en, which evaluates to

∑∞
−∞ f̂n·

en(x) at each x ∈ R. In particular, if f is also continuous, then

f =
∞∑
−∞
f̂n · en.

This means thatF∞ : CC1
2π(R,C)→ U∞ is injective and that f is calculated

from F∞(f ) =
∑

lim f̂n · en by the limit function
∑∞
−∞ f̂n · en. Sometimes,

these two objects are confused, but we stress that the difference is real, not
just notational. However, for continuous piece-wise smooth functions, the
difference does not matter.

Proof We shall not give a complete proof, but describe essential steps thereof,
which can be stated in a compact way. We first need an informative expression
of the remainder FN(f )(x) − αf(x) at a given point x. Then this remainder is
shown to converge to zero by use of what is called Riemann’s lemma. We restrict
our proof sketch to a C1 function f in order to avoid special case manipulations
for non-differentiable points. To describe the remainder, we need this function

g(t) = f(x + t)− f(x)
2 sin(t/2)

for t ∈ [0,2π],
which is continuous on

[
0,2π

]
and converges to limt→0

f(x+t)−f(x)
2t/2 · 2t/2

2 sin(t/2) =
f ′(0) · 1 according to what we know from the proof of proposition 266. Then it
is shown that the remainder has this form:

FN(f )(x)− f(x) = 1
π

∫ 2π

0
g(t) sin

(
t(N + 1

2 )
)
dt.

Riemann’s lemma states that limλ→0
∫ b
a g(t) sin(λt)dt = 0 if g :

[
a,b

] → C

is piecewise continuous. So the remainder converges to 0 as N → ∞. Here is
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the proof of Riemann’s lemma. We may clearly suppose that g is continuous
and then treat the general case by adding up the continuous parts of g. Sub-
stituting t by t = τ + π

λ we have sin(λt) = sin(λτ + π) = − sin(λτ). Setting

Lλ =
∫ b
a g(t) sin(λt)dt, we obtain Lλ = −

∫ b− πλ
a− πλ

g(τ + π
λ ) sin(λτ)dt. Choosing λ

large enough to obtain a < b − π
λ < b, we have

2Lλ =
∫ b
b− πλ

g(t) sin(λt)dt −
∫ a
a− πλ

g(t + π
λ ) sin(λt)dt+
∫ b−πλ
a

(
g(t)− g(t + π

λ )
)

sin(λt)dt.

Setting s(λ) = sup{|g(t)−g(t′)| | t, t′ ∈ [a,b], |t−t′| ≤ π
λ } and γ = sup{|g(t)| |

t ∈ [a,b]}, we obtain

2|Lλ| ≤ 2γ
π
λ
+ s(λ)(b − a).

But s(λ) → 0 if λ → ∞ since |g(t) − g(t′)| vanishes on the diagonal t = t′ of[
a,b

] × [a,b], and becomes arbitrary small in a small neighborhood thereof.
Therefore Lλ → 0 if λ→∞. �

There is a beautiful a posteriori justification for the Fourier series F∞(f )
of a function f in geometrical terms. Given N ∈ N, consider the orthog-
onal subspace U⊥N . Let f ∈ PC1

2π(R,C) and set GN(f ) = f − FN(f ) (an
element of Ker(FN), by the idempotency of FN ). Clearly, GN(f ) ⊥ en for
|n| ≤ N, i.e., GN(f ) ∈ U⊥N . Therefore f = GN(f ) + FN(f ) is an orthogo-
nal decomposition of f , i.e., FN(f ) ∈ UN and GN(f ) ∈ U⊥N . But evidently,
UN ∩U⊥N = 0. This means that we have a direct orthogonal decomposition

PC1
2π(R,C) = UN ⊕U⊥N .

The special role of FN(f ) is made evident by this result:

Proposition 329 With the above notations, if f ∈ PC1
2π(R,C), and if

F ∈ UN , then ‖f − F‖ ≥ ‖f − FN(f )‖ and equality holds iff F = FN(f ).
Moreover, limN→∞ ‖f − FN(f )‖ = 0, or, equivalently, we have Parseval’s
equation, a kind of infinite “Pythagorean theorem”:

∞∑
n=−∞

(f̂n)2 = ‖f‖2.

Proof We have ‖f − F‖2 = ‖f −FN(f )‖2 +‖F −FN(f )‖2 + 2Re(〈f −FN(f ), F −
FN(f )〉). But (f −FN(f )) ⊥ (F −FN(f )), therefore ‖f − F‖2 = ‖f −FN(f )‖2 +
‖F −FN(f )‖2, i.e., ‖f − F‖ ≥ ‖f −FN(f )‖ and equality holds iff F = FN(f ). For
the proof of Parseval’s equation, we refer to [14], section 4.7. �

Intuitively, this proposition states that the N-th partial sum of the Fourier
series of f is the nearest point to f in UN .
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38.5 Restatement in Terms of the Sine and Cosine
Functions

This last part of the general theory deals with the restatement of Fourier’s
theorem in terms of trigonometric functions, and in particular deals with
Fourier series of real-valued periodic functions.

The alternate representation of Fourier series stems from a base change
on UN induced by base changes on the subspaces Dn = Cen ⊕ Ce−n for
n > 0 and D0 = Ce0. The new basis on Dn is defined by the well-known
Euler formulas, see also proposition 257:

cos(nx) = einx + e−inx
2

and sin(nx) = einx − e−inx
2i

.

In other words, given a Fourier series

N∑
n=−N

cneinx ,

the question is whether it can be rewritten as

N∑
n=0

an cos(nx)+ bn sin(nx).

Here are the corresponding formulas in terms of the base change

(en(x), e−n(x))� (cos(nx), sin(nx))

for n ≠ 0, and (e0 = 1) � (2 cos(0x) = 2). The latter is in conformance
with the general formula, which, for all n ≥ 0, reads

an = cn + c−n and bn = i(cn − c−n),

in particular, a0 = 2c0 and b0 = 0. Conversely, one has, for all n ≥ 0,

cn = an − ibn
2

and c−n = an + ibn
2

.

This yields, for every Dn, n > 0,

cneinx + c−ne−inx = an cos(nx)+ bn sin(nx)

With these base change translation formulas, the functions f are approx-
imated by
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N∑
n=−N

cneinx = a0

2
+

N∑
n=1

an cos(nx)+ bn sin(nx),

while the limit representation is

F∞(f ) =
∑
lim

cnen = a0

2
+
∑
lim

an cos(n·?)+ bn sin(n·?),

or for the functions

αf(x) =
∞∑

n=−∞
cneinx = a0

2
+

∞∑
n=1

an cos(nx)+ bn sin(nx).

By the uniqueness of the coefficients cn and their integral formula cn =
f̂n (see definition 228), f is real iff c−n = cn for all n ≥ 0. This condition
is equivalent to an and bn being real, as can be seen from the transforma-
tion formulas given above. The formula c−n = cn is the classical Fourier
statement for real-valued 2π -periodic piecewise smooth functions. For
real-valued functions, there is a frequently used equivalent statement
using phase quantities, which follows from the trigonometric relation
sin(a+ b) = cos(a) sin(b)+ sin(a) cos(b):

a0

2
+

∞∑
n=1

an cos(nx)+ bn sin(nx) = a0

2
+

∞∑
n=1

An sin(nx + Pn)

with

An =
√
a2
n + b2

n,

Pn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arctan(bn/an) if an ≠ 0,

0 if bn = 0 and an = 0,
π
2 if bn > 0 and an = 0,

−π2 if bn < 0 and an = 0.

The sequence (An)n is called the amplitude spectrum, and the sequence
(Pn)n is called the phase spectrum of f . The function An sin(nx + Pn) is
called the n-th partial or harmonic of the Fourier series, the first partial
is also called the fundamental of the series.

Example 180 From given amplitude and phase spectra, a periodic func-
tion can be constructed. Let a0 = 0, (An)n = (1/n)n and (Pn)n = (0)n.
The amplitude spectrum (An)n is shown in figure 38.3.



196 Fourier Theory

Fig. 38.3. An amplitude spectrum (An)n where An = 1/n.

Fig. 38.4. The function described by f(x) = ∑5
n=1

1
n sin(nx).

The function f(x) = ∑5
n=1An sin(nx + Pn), i.e., the Fourier series with

five terms, is shown in figure 38.4. It is apparent that f is an approxima-
tion of a sawtooth curve.

Keeping the amplitude spectrum (An)n, but replacing (Pn)n by (P ′n)n =
(n2)n, we get the function reproduced in figure 38.5.

This technique of proceeding from amplitude and phase spectra to the
corresponding function is called Fourier synthesis.

If we have a more general period p instead of 2π , then the formulas are
these: Call ν = 1/p the frequency of f ∈ PC1

p(R,C). Then we have the
representation
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Fig. 38.5. The function described by f(x) = ∑5
n=1

1
n sin(nx + n2). This

function looks quite different from figure 38.4, but its amplitude spec-
trum is the same, while its phase spectrum differs.

αf(x) =
∞∑

n=−∞
cnei2πnνx

= a0

2
+

∞∑
n=1

an cos(2πnνx)+ bn sin(2πnνx).

And for real-valued functions:

αf(x) = a0

2
+

∞∑
n=1

An sin(2πnνx + Pn)

where the coefficients and the members of the amplitude and phase spec-
tra are calculated by

an = 2ν
∫ p

0
f(x) cos(2πnνx)dx n ≥ 0,

bn = 2ν
∫ p

0
f(x) sin(2πnνx)dx n > 0,

An =
√
a2
n + b2

n,

Pn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

arctan(bn/an) if an ≠ 0,

0 if bn = 0 and an = 0,
π
2 if bn > 0 and an = 0,

−π2 if bn < 0 and an = 0.
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Example 181 We take up the example of figure 38.2 (b), the rectangle
curve, and compute the Fourier coefficients an and bn. Consider a partic-
ular 1-periodic rectangle function (figure 38.7 (d)):

f(x) =
⎧⎨⎩ 1 for n ≤ x < 1

2 +n,n ∈ Z,
−1 for 1

2 +n ≤ x < 1+n,n ∈ Z.

Then ν = 1/p = 1, and we have the following equations:

an = 2
∫ 1

0
f(x) cos(2πnx)dx n ≥ 0,

bn = 2
∫ 1

0
f(x) sin(2πnx)dx n > 0.

For n = 0 in particular:

a0 = 2
∫ 1

2

0
cos(2π0x)dx + 2

∫ 1

1
2

− cos(2π0x)dx

= 2
∫ 1

2

0
−1 dx + 2

∫ 1

1
2

1 dx = 0

and, in general, for n > 0:

an = 2
∫ 1

2

0
− cos(2πnx)dx + 2

∫ 1

1
2

cos(2πnx)dx

= 1
πn

(sin(2πn)− 2 sin(πn)),

bn = 2
∫ 1

2

0
− sin(2πnx)dx + 2

∫ 1

1
2

sin(2πnx)dx

= s
πn

(cos(πn)− 1).

We calculate the coefficients an and bn for n = 1,2,3:

a1 = 0, b1 = − 4
π
,

a2 = 0, b2 = 0,

a3 = 0, b3 = − 4
3π

.

Generally, an = 0 for all n and

bn =
⎧⎨⎩−

4
πn if n odd,

0 if n even.
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We have thus the approximation

F3(f )(x) = a0

2
+

3∑
n=1

an cos(2πnx)+ bn sin(2πnx)

= − 4
π

sin(2πx)− 4
3π

sin(6πx).

The corresponding amplitude and phase spectra are given by:

An =
⎧⎨⎩

4
πn if n odd,

0 if n even,

Pn =
⎧⎨⎩π if n odd,

0 if n even.

The amplitude spectrum (An)n is shown in figure 38.6.

Fig. 38.6. Amplitude spectrum (An)n.

The Fourier series for f is given by

αf(x) =
∞∑
n=0

4
π(2n+ 1)

sin(2π(2n+ 1)x +π).

See figure 38.7 for F3(F), F5(f ) and F7(f ). The wobbling at the ridges
is an indicator of the discontinuities of the approximated function f . As
terms of higher order are added, the wobbling gets more intensive.

This technique of calculating the coefficients an and bn (or, equiva-
lently, the frequency spectrum (An)n and phase spectrum (Pn)n) is called
Fourier analysis. In digital signal processing (DSP), where the focus is on
time-dependent functions, Fourier analysis is also known as passing from
the time domain to the frequency domain.
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Fig. 38.7. Approximations to the rectangle function f : (a) F3(f ), (b)
F5(f ), (c) F7(f ), and (d) f itself.

38.6 Finite Fourier Series and Fast Fourier Transform

For practical purposes, the general Fourier theory may appear to be over-
loaded for two reasons: First, concrete functions which are to be be rep-
resented by Fourier series are virtually never periodic, and second, the
functions to be represented are given only as a finite set of values. How
are such obstructions overcome?

Non-periodic functions can be interpreted as having a period that tends
to infinity. This means that we have to extend the theory from finite to
infinite periods. This branch leads to the so-called Fourier transform f̂ of
a function f , an instance of which was already alluded to in the Fourier
coefficients f̂n. We give a short overview of this theory in section 38.8.
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The finiteness constraint leads to finite Fourier series, a theory which is
also applicable to the computerized Fourier theory as it is implemented
in the Fast Fourier Transform (FFT) algorithm. We shall briefly describe
this portion of the practical application of Fourier’s theory, because it
plays an omnipresent role in the theory of digital signal processing, and
more specifically in image and sound analysis for multimedia science.
For example, the popular MP3 audio compression algorithms are based
on Fourier theory.

The concrete situation is this: One determines the values f(x) on a finite
set A ⊂ R of arguments of a function f : R → C and would like to find
a finite Fourier series S (an element of UN ) such that the series coincides
with the function on all measured arguments, i.e., f(x) = S(x), for all
x ∈ A. Of course, the measured function is by no means periodic, i.e., the
finite measurements cannot imply any (finite) period. The idea therefore
is to interpret the measured values as if they they were derived from a
periodic function, and then apply the Fourier method to these data.

As we shall apply this setup to the FFT algorithm, we need to have a very
special distribution of the arguments from A as follows. To fix the ideas,
we assume that A = ZN = { kN | k = 0,1, . . .N − 1}—but this is simply a
normalized setup which could be adopted to a realistic size without any
difficulty. It means that one measures N values fk = f(k/N) ∈ C with
a sampling period of ∆ = 1/N, corresponding to a sampling frequency
of 1/∆ = N. Moreover, the FFT algorithm requires that N = 2M , but at
present, we can get by with a general N and specialize later on. One then
looks for a representation

fk =
N−1∑
n=0

γnei2πn
k
N , k = 0,1,2, . . .N − 1,

with frequency ν = 1. This means that the fundamental frequency is
defined by the period 1, the total length of the N sampling periodsN·∆ =
1. In other words, the function f is cooked down to a periodic function
of period p = 1, or, in other words, the trace of the function f on those
N measured points is extrapolated in a 1-periodic way to the left and to
the right of the closed unit interval

[
0,1

]
. This representation needs a

word of caution concerning the intervening powers n = 0,1, . . .N − 1 of
the fundamental function ei2π

k
N . We know from the discussion above that

a trigonometric series is real-valued iff the coefficients cn are conjugate
under change of index sign. The above formula looks as if it contained
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positive powers only. However, this impression is erroneous, since we
have ei2π

n
N ·ei2π N−n

N = 1, i.e., the second factor is the inverse ei2π
−n
N of the

first one, and is related to −n instead of n, as required in the symmetric
Fourier series formula. In most practical cases, the number N is even,
N = 2M . The highest frequency in the sinusoidal representation is then
N/2 = M , half the sampling frequency. This frequency is also called the
Nyquist frequency.

The remainder of this discussion is devoted to the solution of the above
formula, i.e., the proof that there is exactly one sequence (γn)n=0,1,...N−1

yielding the required function values fk. To this end, denote by εn the
functions εn(k) = ei2πn

k
N defined on ZN (in fact: if k = k′ mod N, then

εn(k) = εn(k′)). We also work on ZN concerning the given function f ,
i.e., we are given a set function f : ZN → C : k � fk, an element in the
N-dimensional C-vector space CZN . On this space, we have a Hermitian
form (a discrete version of the form 〈?, ?〉 known from the Fourier theory)

〈g,h〉 = 1
N

N−1∑
k=0

g(k)h(k)

with associated norm ‖h‖ = 1
N
∑N−1
k=0 |g(k)|2.

Proposition 330 For any two m, l = 0,1, . . .N − 1, we have

〈εm, εl〉 = δml (Kronecker).

Exercise 185 Give a proof of proposition 330. For the case m ≠ l, use
the fact that 1+ q + q2 + . . . qN−1 = 1−qN

1−q and apply this to q = ei2π m−l
N .

The following corollary yields the representation of f at N given argu-
ments in terms of the given basis as required above.

Corollary 331 On CZN , the sequence (εn)n=0,1,...N−1 is an orthonormal ba-
sis, and each εn is a group homomorphism εn : ZN → U , where U is the
multiplicative group of complex numbers z with norm |z| = 1. A function
f ∈ CZN has the representation

f =
N−1∑
n=0

γnεn,

with uniquely determined Fourier coefficients
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γn = 〈f , εn〉 = 1
N

N−1∑
k=0

fk · e−i2πn
k
N ,

and we have Parseval’s equation

‖f‖2 =
N−1∑
n=0

|γn|2 =
N−1∑
n=0

|〈f , εn〉|2.

Example 182 Given is a function f defined at points 0,1, . . .7 by fk =
1 for k ∈ {0,1,2,3} and fk = 0 for k ∈ {4,5,6,7}. The finite Fourier
transform assumes that f is effectively a function of period 8. Figure 38.8
shows f and its periodic continuation.

Fig. 38.8. The function f from example 182 (black), and its periodic
continuation (gray).

The Fourier transform of f involves calculating the coefficient γk, for
k ∈ {0,1, . . .7}:

γn = 1
8

7∑
k=0

fk · e−i2πn
k
8 = 1

8

(
1+ e−iπn 1

4 + e−iπn 1
2 + e−iπn 3

4

)
.

This translates into the following equations, after applying some trigono-
metric transformations:

γ0 = 1
2
, γ1 = 1

8
+ i

(
−1

8
− 1

4
√

2

)
,

γ2 = 0, γ3 = 1
8
+ i

(
1
8
− 1

4
√

2

)
,

γ4 = 0, γ5 = 1
8
+ i

(
−1

8
+ 1

4
√

2

)
,

γ6 = 0, γ7 = 1
8
+ i

(
1
8
+ 1

4
√

2

)
.



204 Fourier Theory

Recall that a complex number z can be written as z = |z|ei·arg(z), where
−π < arg(z) ≤ π . In figure 38.9, both spectra |γk| and arg(γk) are
shown. The previous discussion has emphasized, that γ5, γ6 and γ7 are
the complex conjugates of γ3, γ2, and γ1, respectively. This can be seen in
the amplitude spectrum, where the symmetry about the point 4 is obvi-
ous, and in the phase spectrum, where the values for points greater than
4 are the negatives of the points less than 4.

Fig. 38.9. The amplitude spectrum |γk| (a), and phase spectrum abs(γk)
(b), of f .

38.7 Fast Fourier Transform (FFT)

The FFT algorithm is a way to speed up the calculation of Fourier co-
efficients for finite Fourier analysis. In order to describe the notion of
calculation speed in a precise way, one introduces the Landau symbols:

Definition 229 (Landau’s O Symbol) For two sequences c = (cn)n and
d = (dn)n ∈ RN, one says that d is of order O of c, in signs d ≤O c,
iff there is a positive real number λ and a natural number L such that
dn ≤ λcn for n > L. This relation is reflexive and transitive, but not an-
tisymmetric. We define O(c) = {d | d ≤O c}, i.e., d is of order O of c,
iff d ∈ O(c). The equivalence relation ≤O ∩ ≤−1

O is denoted by ∼O . The
equivalence class of a sequence c under ∼O is denoted by Θ(c). The ∼O-
equivalence classes are called growth classes. The relation ≤O induces a
partial ordering on growth classes, which is denoted by ≤. In particular,
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Θ(c) = Θ(d) iff there are positive real numbers λ,µ and a natural number
L such that λcn ≤ dn ≤ µcn for n > L.

Exercise 186 Show that Θ(256 · n2 + 50 · n) < Θ(n3). Show that for
every polynomial p ∈ R[X], Θ(p(n)) < Θ(en). Show that for every non-
constant polynomial p = akXk + ak−1Xk−1 + . . . a0 ∈ R[X] with posi-
tive leading coefficient ak, we have log(n) <O p(n). Show that for any
two polynomials p,q ∈ R[X] with positive leading coefficients, we have
Θ(p) ≤ Θ(q) iff deg(p) ≤ deg(q). Show that O(n log(n)) < O(p(n)) for
a quadratic polynomial with positive leading coefficient.

Let us now estimate the growth class of the number of arithmetic opera-
tions needed to calculate the Fourier coefficients

γn = 1
N

N−1∑
k=0

fk · e−i2πn
k
N .

We suppose that the quantities f0, f1 . . . fN−1 as well as the basic value
ε(N) = e−i2π

1
N are given. To calculate all γn, one needs at most N − 2

multiplications to calculate the powers ε(N)2, . . . ε(N)N−1, and for each n,
one needs N multiplications to get the fk·ε(N)kn, furtherN−1 additions,
and one multiplication by 1

N , so we need at most q(N) = 2N2 +N arith-
metic operations to get all coefficients γn. The FFT algorithm manages to
reduce this growth class O(q(N)) = O(N2) to the class O(log(N)N) ⊊
O(N2) for the special values N = 2n of dyadic powers.

Proposition 332 Let N = 2n. Suppose that the quantity ε(N) = e−i2π 1
N as

well as the values f0, f1 . . . fN−1 of f ∈ CZN are given. Then the calculation
of the Fourier coefficients γn = 〈f , εn〉 takes at most 4·n·2n = 4N log2(N)
operations, i.e., if Fourier(N) denotes the growth function of the minimal
number of arithmetic operations (addition, multiplication) needed to cal-
culate all the γn, then we have

Θ(Fourier(N)) ≤ Θ(N log(N)).

To begin with, the case N = 2 is straightforward. In fact,

γ0 = 1
2
(f0 + f1), γ1 = 1

2
(f0 + (−1)f1),

which needs less than 4·1·21 = 8 operations. The proof relies on a lemma
which manages the recursive step from Fourier(N) to Fourier(2N).
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Lemma 333 Given all the quantities ε(N), we have

Fourier(2N) ≤ 2Fourier(N)+ 8N.

With this lemma, and the induction hypothesis that for N = 2n−1, one
needs at most 4 · (n − 1) · 2(n−1) operations, it follows that for N = 2n,
we need at most 2 · 4 · (n− 1) · 2(n−1) + 8 · 2n−1 = 4 ·n · 2n operations,
and the proposition follows.

But the lemma is more than an auxiliary result, its very content is im-
plemented in the calculation routines, so we should make it explicit in
its own right, instead of hiding it in a proof section. The main idea is a
recursion by splitting the calculation of the 2N Fourier coefficients γn of
f ∈ CZ2N into two subcalculations of auxiliary functions f+, f− ∈ CZN ,
defined by

f+k = f2k k = 0,1,2, . . .N,

f−k = f2k+1 k = 0,1,2, . . .N.

By induction hypothesis, it is assumed that we have already calculated
the coefficients

γ+0 , γ
+
1 , . . . γ

+
N−1,

γ−0 , γ
−
1 , . . . γ

−
N−1.

of f+ and f−, respectively, each requiring not more than Fourier(N)
arithmetic operations. Then we have

γk = 1
2
(γ+k + ε(2N)k · γ−k ), k = 0,1, . . .2N − 1 (∗)

where one sets γ±k+N = γ±k .

Exercise 187 Give a proof of the preceding formula.

Now, knowing the 2N coefficients γ±0 , γ
±
1 , . . . γ

±
N−1, the above formula

needs three operations (two multiplications and one addition) for each
0 ≤ k < 2N,then at most 2N multiplications for the powers ε(2N)k, and
not more than 2Fourier(N) calculations for the two auxiliary functions.
This means that

Fourier ≤ 2N · 3+ 2N + 2 · Fourier(N) = 2Fourier(N)+ 8N,

and we are done.
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Example 183 Consider the case of a function given by 8 values fk,0 ≤
k < 8. According to the recursion described above, the Fourier coeffi-
cients for two smaller functions, f+ and f− must be found, where

f+i = f2i, i = 0,1,2,3
f−i = f2i+1, i = 0,1,2,3

Continuing the process, these functions are again subdivided, yielding

f++j = f+2j = f4j , j = 0,1
f+−j = f+2j+1 = f4j+2, j = 0,1
f−+j = f−2j = f4j+1, j = 0,1
f−−j = f−2j+1 = f4j+3, j = 0,1

Now the function is broken down into parts with only two values each—
the calculation of the coefficients can now begin by using

γ++0 = 1
2(f

++
0 + f++1 ), γ++1 = 1

2(f
++
0 − f++1 )

γ+−0 = 1
2(f

+−
0 + f+−1 ), γ+−1 = 1

2(f
+−
0 − f+−1 )

γ−+0 = 1
2(f

−+
0 + f−+1 ), γ−+1 = 1

2(f
−+
0 − f−+1 )

γ−−0 = 1
2(f

−−
0 + f−−1 ), γ−−1 = 1

2(f
−−
0 − f−−1 )

After having completed the calculations for N = 2, one can proceed to
the case N = 4 in which the new coefficients are calculated from the old
coefficients, following equation (∗). This yields

γ+0 = 1
2(γ

++
0 + ε(4)0 · γ+−0 ), γ+1 = 1

2(γ
++
1 + ε(4)1 · γ+−1 )

γ+2 = 1
2(γ

++
0 + ε(4)2 · γ+−0 ), γ+3 = 1

2(γ
++
1 + ε(4)3 · γ+−1 )

γ−0 = 1
2(γ

−+
0 + ε(4)0 · γ−−0 ), γ−1 = 1

2(γ
−+
1 + ε(4)1 · γ−−1 )

γ−2 = 1
2(γ

−+
0 + ε(4)2 · γ−−0 ), γ−3 = 1

2(γ
−+
1 + ε(4)3 · γ−−1 )

Note that the indexes of the coefficients have been reduced by the rule
γ±k+N = γ±k . Now the final step can be performed:

γ0 = 1
2(γ

+
0 + ε(8)0 · γ−0 ), γ1 = 1

2(γ
+
1 + ε(8)1 · γ−1 )

γ2 = 1
2(γ

+
2 + ε(8)2 · γ−2 ), γ3 = 1

2(γ
+
3 + ε(8)3 · γ−3 )

γ4 = 1
2(γ

+
0 + ε(8)4 · γ−0 ), γ5 = 1

2(γ
+
1 + ε(8)5 · γ−1 )

γ6 = 1
2(γ

+
2 + ε(8)6 · γ−2 ), γ7 = 1

2(γ
+
3 + ε(8)7 · γ−3 )

This can be visualized in a so-called butterfly diagram, as in figure 38.10.
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Fig. 38.10. Schema of the Fast Fourier Transform for N = 8. For the sake
of clarity, the expressions of the form ε(4)k as well as ε(8)2j have been
evaluated, whereas for odd k the abbreviations εk8 = 1

2ε(8)
k have been

used.
Each γ can be reached from two other nodes a and b. To calculate a
factor γ, one has to multiply a with the value next to the arrow joining
a and γ and add that to the result of multiplying b with the value next
to the arrow joining a and γ.
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By replacing all γ’s with their values, making use of the fact that ε(4) =
e−i2π

1
4 = −i, and expressing all intermediate functions by the original f :

γ0 = 1
2(

1
2(

1
2(f0 + f4)+ 1

2(f2 + f6))+ ε(8)0 1
2(

1
2(f1 + f5)+ 1

2(f3 + f7)))

γ1 = 1
2(

1
2(

1
2(f0 − f4)− i

2(f2 − f6))+ ε(8)1 1
2(

1
2(f1 − f5)− i

2(f3 − f7)))

γ2 = 1
2(

1
2(

1
2(f0 + f4)− 1

2(f2 + f6))+ ε(8)2 1
2(

1
2(f1 + f5)− 1

2(f3 + f7)))

γ3 = 1
2(

1
2(

1
2(f0 − f4)+ i

2(f2 − f6))+ ε(8)3 1
2(

1
2(f1 − f5)+ i

2(f3 − f7)))

γ4 = 1
2(

1
2(

1
2(f0 + f4)+ 1

2(f2 + f6))+ ε(8)4 1
2(

1
2(f1 + f5)+ 1

2(f3 + f7)))

γ5 = 1
2(

1
2(

1
2(f0 − f4)− i

2(f2 − f6))+ ε(8)5 1
2(

1
2(f1 − f5)− i

2(f3 − f7)))

γ6 = 1
2(

1
2(

1
2(f0 + f4)− 1

2(f2 + f6))+ ε(8)6 1
2(

1
2(f1 + f5)− 1

2(f3 + f7)))

γ7 = 1
2(

1
2(

1
2(f0 − f4)+ i

2(f2 − f6))+ ε(8)7 1
2(

1
2(f1 − f5)+ i

2(f3 − f7)))

Applying this result to example 182, where f0 = f1 = f2 = f3 = 1, and

f4 = f5 = f6 = f7 = 0, and observing that ε(8) = e−i2π
1
8 = 1√

2 −
i√
2 we

get:

γ0 = 1
2(

1
2(

1
2 + 1

2)+ ε(8)0 1
2(

1
2 + 1

2)) = 1
2

γ1 = 1
2(

1
2(

1
2 − i

2)+ ε(8)1 1
2(

1
2 − i

2)) = 1
8 + i(−1

8 − 1
4
√

2)

γ2 = 1
2(

1
2(

1
2 − 1

2)+ ε(8)2 1
2(

1
2 − 1

2)) = 0

γ3 = 1
2(

1
2(

1
2 + i

2)+ ε(8)3 1
2(

1
2 + i

2)) = 1
8 + i(1

8 − 1
4
√

2)

γ4 = 1
2(

1
2(

1
2 + 1

2)+ ε(8)4 1
2(

1
2 + 1

2)) = 0

γ5 = 1
2(

1
2(

1
2 − i

2)+ ε(8)5 1
2(

1
2 − i

2)) = 1
8 + i(−1

8 + 1
4
√

2)

γ6 = 1
2(

1
2(

1
2 − 1

2)+ ε(8)6 1
2(

1
2 − 1

2)) = 0

γ7 = 1
2(

1
2(

1
2 + i

2)+ ε(8)7 1
2(

1
2 + i

2)) = 1
8 + i(1

8 + 1
4
√

2)

These results are identical to those obtained in example 182.

38.8 The Fourier Transform

For a thorough treatment of the Fourier transform, we refer to advanced
texts for this subjects, e.g. [40]. However, we need to sketch this more
advanced topic briefly, not only because of its theoretical prominence,
but also because it is basic to the following chapter on wavelets. We shall
therefore not include the proofs of the results of this section.
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Recall from section 38.5 that the exponential version of the Fourier series
of a 2π -periodic function is given by

αf(x) =
∞∑

n=−∞
cnei2πnνx.

More generally, if the function f is piecewise C1, continuous, and has
period p with corresponding frequency ν = 1/p, then we have the repre-
sentation

f(x) =
∞∑

n=−∞
cnei2πnνx ,

where

cn = 1
p

∫ p/2
−p/2

f(x)e−i2πn
1
px dx.

In order to deduce a formula corresponding to the limit period p → ∞,
one writes

f(x) = 1√
2π

∞∑
n=−∞

Fp(f )(n2π
p )e

i(n 2π
p )x · 2π

p
,

with

Fp(f )(ξ) = 1√
2π

∫ p/2
−p/2

f(x)e−iξx dx.

This infinite sum represents an approximation with integration argu-
ments n · 2π

p of step width 2π
p to an integral

f(x) = 1√
2π

∫∞
−∞
F(f )(ξ)eiξxdξ,

with

F(f )(ξ) = 1√
2π

∫∞
−∞
f(x)e−iξx dx,

and where the integration interval is in fact the whole real line and not
a proper compact interval as in the integral defined before. In view of
the fact that this infinite integration interval stems from the infinite sum∑∞
n=−∞ = limN→∞

∑N
−N this motivates the following definition:

Definition 230 If g : R→ C is integrable on every closed interval of R, we
write

∫∞
−∞ g(x)dx for the limit limb→∞

∫ b
−b g(x)dx, if this limit exists. The

number
∫∞
−∞ g(x)dx ∈ R is called the improper integral of g.
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Here is an important class of functions which admit the improper inte-
gral:

Definition 231 For a positive natural number r , denote by Lr (R) the
C-vector subspace of functions f : R → C such that |f |r is integrable
on every closed interval

[
a,b

] ⊂ R and such that the improper inte-
gral

∫∞
−∞ |f(x)|r dx exists. Such functions are also said to be absolutely

r -integrable on R, and for r = 1, absolutely integrable on R. In Lr (R), we
have the C-vector subspaceN of functions f such that {x | f(x) ≠ 0} has
measure 0 (see definition 197). Denote Lr (R) = Lr (R)/N . When talking
about absolutely r -integrable functions, one usually identifies functions f
and g when f −g ∈N . The following statements should be understood in
this sense of considering the classes of functions in Lr (R).

The interest in these functions resides in the following proposition:

Proposition 334 If g ∈ L1(R), then the improper integral
∫∞
−∞ g(x)dx

exists.

Observe that with g ∈ Lr (R), and ξ ∈ R, we have also g · ei·ξ·? ∈ Lr (R)
since |g · ei·ξ·?|r = |g|r . This makes possible the following definition:

Definition 232 Let f ∈ L1(R). Then the Fourier transform of f is the
function F(f ) : R→ C, also denoted by f̂ , which evaluates to

F(f )(ξ) = 1√
2π

∫∞
−∞
f(x)e−iξx dx.

One also has the adjoint transform F∗(f ) : R→ C, defined by

F∗(f )(x) = F(f )(−x) = 1√
2π

∫∞
−∞
f(ξ)eixξ dξ.

The two transforms are related by the Fourier integral theorem:

Proposition 335 (Fourier Integral Theorem) If f ∈ L2(R), then so are
the Fourier transform F(f ) and the adjoint Fourier transform F∗(f ).
Moreover, in L2(R),

f(x) = F∗(F(f ))(x)

= 1√
2π

∫∞
−∞
F(f )(ξ)eixξ dξ

= 1
2π

∫∞
−∞

∫∞
−∞
f(u)eiξ(x−u) dudξ.
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This means that the adjoint is the inverse of F , F∗ = F−1, and F :
L2(R) ∼→ L2(R) is an automorphism. Moreover, if we denote by 〈f , g〉 =∫∞
−∞ f(x) · g(x)dx the Hermitian form2 for elements f , g ∈ L2(R), then

the Fourier transform and its inverse are isometries, i.e.,

〈F(f ),F(g)〉 = 〈F∗(f ),F∗(g)〉 = 〈f , g〉,

and therefore
〈F(f ), g〉 = 〈f ,F∗(g)〉.

Example 184 The Fourier transform of the step function

f(x) =
⎧⎨⎩1 if −b ≤ x ≤ b,

0 else,

is sought (figure 38.11).

Fig. 38.11. A step function of width 2b.

We have

F(f )(ξ) = 1√
2π

∫∞
−∞
f(x)e−iξx dx.

Since f is 0 outside the interval
[−b,b], the integral becomes

2 The Hölder inequality
∣∣∣∫∞−∞ f(x)g(x)dx

∣∣∣ ≤ ‖f‖2·‖g‖2, with the norm ‖f‖2 =√
〈f , f 〉, guarantees that the form is a finite number. See [3, p. 116].
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F(f )(ξ) = 1√
2π

∫ b
−b
f(x)e−iξx dx

= 1√
2π

∫ b
−b
e−iξx dx (since f(x) = 1 in

[−b,b])
= 1√

2π

(
i
ξ
e−iξx

)∣∣∣∣∣
b

−b

= 1√
2π

(
i
ξ
e−iξb − i

ξ
eiξb

)

= 1√
2π

2
ξ

(
eiξb − e−iξb

2i

)
(multiplying by 2i

2i )

=
√

2
π

sin(bξ)
ξ

(Euler formula for sin)

The function sin(x)
x occurs frequently in DSP. It is not defined at x = 0,

but, since limx→0,x<0 = limx→0,x>0 = 1, we can extend its domain to x = 0
by defining it to be equal to 1 there. Thus extended, it is called sinc(x)
and looks like figure 38.12.

Fig. 38.12. The sinc function.



CHAPTER 39

Wavelets

39.1 Introduction

The Fourier representation of functions, be it by Fourier series or by the
Fourier transform, is based on periodic functions which, by definition, are
not very realistic in the sense that real functions never take values differ-
ent from zero outside a finite interval. For example, acoustic sounds have
a finite duration, so the defining air pressure differs only for a finite time
from the normal pressure. In other words, such periodic functions are
smeared over an infinite time, whereas the function to be described is
localized in a small finite window. The success of wavelet theory was es-
tablished in 1984 with a paper by Pierre Goupillaud, Jean Morlet and Alex
Grossman (Cycle-Octave and Related Transforms in Seismic Signal Analy-
sis. Geoexploration, 23:85–102, 1984), following the idea of constructing
general functions from wavelets, i.e., small, localized “excitation pack-
ages” ψ : R → C, i.e., either their support supp(ψ)—by definition the clo-
sure of {x | ψ(x) ≠ 0}—is compact, or at least their values tend to zero
very fast (in a specific technical sense). Figure 39.1 shows the graphs of
some the following wavelets:

1. Haar’s wavelet:

H(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 0 ≤ x < 1

2 ,

−1 if 1
2 ≤ x < 1,

0 else.
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Fig. 39.1. Types of wavelets: (a) Haar’s wavelet H(x), (b) Murenzi’s Mex-
ican Hat wavelet ψMex(x), (c) Morlet’s wavelet with ν = 1, Re(ψMor ,ν(x))
(black), Im(ψMor,ν(x)) (gray).

2. Murenzi’s Mexican Hat wavelet:

ψMex(x) = (1− x2)e−x
2/2.

3. Morlet’s wavelet (ν > 0.8):

ψMor,ν(x) = 1√
2π

e−x
2/2ei2πνx .

4. Meyer’s wavelet is given indirectly by its Fourier transform

ψ̂Mey,ν(ξ) = 1√
2π

eiξ/2(w(ξ)+w(−ξ)),
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where

w(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin

(
π
2 ν

(
3ξ
2π − 1

))
if 2π

3 ≤ ξ ≤ 4π
3 ,

cos
(
π
2 ν

(
3ξ
4π − 1

))
if 4π

3 ≤ ξ ≤ 8π
3 ,

0 else.

The idea is that one should be able to describe a sufficiently tame func-
tion f by an integral. This is similar to the Fourier transform, where the
“coefficients” involve the exponential function, but here a fixed wavelet
ψ plays this role. This idea is however only of theoretical use and must
be adapted to a calculus which can be handled by computers. This latter
program is met with the so-called frame theory, a theory which rests on
the fact that one may find a denumerable basis, much like the powers of
ei2πνx in Fourier theory, which permits a representation of the original
function in the form of a series. We shall first give a concise presentation
of the general theory and then specialize to the frame theory, in particu-
lar the theory involving the Haar wavelet.

39.2 The Hilbert Space L2(R)

We shall not develop full Hilbert space theory here, but introduce the
characteristic features of Hilbert spaces for the specific case of L2(R). To
begin with, the C-vector space L2(R) is provided with the Hermitian form

〈f , g〉 =
∫∞
−∞
f(x)g(x)dx

and the associated norm ‖f‖ =
√
〈f , f 〉 introduced in proposition 335

of chapter 38, and which has the properties (i)–(vi), and (viii) (triangle
inequality) of sorite 326, whereas property (vii) of that sorite is replaced
by a stronger property

(vii’) ‖f‖ ≥ 0, and ‖f‖ = 0 iff f = 0.

(Attention, this is in L2(R) and means that f ∈N .)

The space L2(R) becomes a metric space by the usual distance d(f , g) =
‖f − g‖. The name “Hilbert space” is associated with the fact that (1)
(L2(R), d) is a complete metric space (see definition 204 in chapter 33)
and (2) the metric d is deduced from a norm ‖x‖ = √〈x,x〉, which stems
from a Hermitian form 〈?, ?〉. For such a space, one extends the concept
of a basis from linear algebra to a Schauder basis.
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Definition 233 A Schauder basis, or simply a basis, of L2(R) is a sequence
(bi)i∈N of functions bi ∈ L2(R) such that every function f ∈ L2(R) can be
written as a convergent series

∑
i βi · bi = limN→∞

∑
i=0,1,...N βi · bi, where

(βi)i∈N is a unique sequence of complex numbers. In particular, any finite
subsequence of such a basis consists of linearly independent functions.

A Schauder basis (βi)i is called orthonormal Schauder basis iff in the
given Hermitian form we have 〈bi, bj〉 = δij for all i, j ∈ N.

It can be shown1 that, for an orthonormal Schauder basis, the represen-
tation as a convergent sum is the same if one changes the indexes by a
permutation π : N

∼→ N, i.e.,
∑
i βi · bi =

∑
i βπ(i) · bπ(i).

We have already encountered this type of basis in Fourier theory, see the
orthogonality relations in proposition 327 and Fourier’s theorem 328.

Here is a slightly different description of L2(R):

Proposition 336 Suppose that we are given an orthonormal Schauder ba-
sis (ei)i of L2(R). Then the map

f � 〈f , e.〉 = (〈f , ei〉)i ∈ CN

is a linear isomorphism 〈?, e.〉 : L2(R) ∼→ l2 onto the complex vector space
l2 of sequences (ci)i ∈ CN such that

∑
i |ci|2 <∞. If we define a Hermitian

form
〈(ci)i, (di)i〉 =

∑
i
ci · di

on l2, then 〈?, e.〉 is an isometry of Hilbert spaces.

Proof Clearly, the map 〈?, e.〉 is a linear injection by the definition of a Schauder
basis. Now, by the Cauchy criterion a series x = ∑

i ci · ei is convergent iff
the partial sums

∑
N≤i≤M ci · ei tend to zero as N,M → ∞, and this means∑

N≤i≤M |ci|2 → 0, because the basis vectors ei are orthonormal. This is equiv-
alent to the statement (〈f , ei〉)i ∈ l2. On the other hand, the condition

∑
i |ci|2 <

∞ implies that on l2, the Hermitian form 〈(ci)i, (di)i〉 is defined. In fact, for all
finite sums

∑
i=0,...N ci · di, we have the Schwarz inequality |∑i=0,...N ci · di|2 ≤∑

i=0,...N |ci|2 +
∑
i=0,...N |di|2 ≤ ∑

i |ci|2 +
∑
i |di|2 < ∞. Therefore the series∑

i ci · di is absolutely convergent and the Hermitian form is defined. �

A last fact, concerning Hilbert subspaces, must be mentioned. By defini-
tion, a Hilbert subspace V ⊂ L2(R) is more than a vector subspace, one

1 Consult any book on functional analysis, for example [34].
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also asks for completeness, i.e., V , with the induced Hermitian form, must
be complete, which is equivalent to closedness, see exercise 166. Here is
the crucial fact about orthogonal Hilbert subspaces:

Proposition 337 If H is a Hilbert space with Hermitian form 〈?, ?〉, then
for every Hilbert subspace S ⊂ H, we have a direct decomposition

H = S ⊕ S⊥,

where S⊥ is the Hilbert subspace of vectors orthogonal to all of S.

Proof Let x ∈ H. Let ξ = inf{d(x, s)|s ∈ S}. Then there is a sequence (si)i of
elements of S, such that ξ = limi→∞ ‖si − x‖. But the sequence (si)i is Cauchy.
In fact, we have the general equation ‖u + v‖2 + ‖u − v‖2 = 2(‖u‖2 + ‖v‖2),
whence (with x − sm = u, sn − x = v)

‖sm − sn‖2 = 2(‖x − sm‖2 + ‖x − sn‖2)− 4‖x − 1
2
(sm + sn)‖2.

But since 1
2 (sm + sn) ∈ S, we have ‖x − 1

2 (sm + sn)‖2 ≤ ξ2, and there is an index
N such that for ε > 0, ‖x − sm‖2 < 1

4ε + ξ2 for m > N. Taking m,n > N, we get

2(‖x − sm‖2 + ‖x − sn‖2)− 4‖x − 1
2
(sm + sn)‖2 < ε,

whence the claim. By the completeness of S, (si)i converges to p ∈ S. Let us show
that S⊥(x − p). Let t ≠ 0 in S (the case S = 0 is trivial). Suppose 〈t, x − p〉 ≠ 0.
Replacing t by i · t, we may suppose that 〈t, x − p〉 ≠ 0 is not imaginary. Then
we have P(λ) = ‖λ · t + (x − p)‖2 = λ2 · ‖t‖2 + 2λ · Re(〈t, x − p〉) + ‖x − p‖2.
Its minimal value is achieved where the derivative P ′(λ) vanishes. So we have
the equation λ = − Re(〈t,x−p〉)

‖t‖2 for λ ≠ 0. This means that p is not the nearest
point, a contradiction, whence S⊥(x−p). The same argument also yields unicity
of the solution p, since for another solution p′, the line λ · p + (1 − λ) · p′
would contain a point nearer the the two p,p′. So H = S + S⊥, and the evident
intersection S ∩ S⊥ = 0 yields the direct sum representation H = S ⊕ S⊥. �

The theory of wavelets is based on the idea of calculating the scalar
product of a function f ∈ L2(R) with a double-parametric family (T ba •
ψ)b∈R,a∈R∗ of “deformations” of a fixed wavelet ψ by means of the scalar
product family 〈f , T ba•ψ〉 of “wavelet coefficients” of f . Its efficiency is
due to the fact that, by use of the so-called frame construction method,
one may find an orthonormal basis (T biai • ψ)i∈N within the family of
deformations (T ba •ψ)b,a.

Before we proceed, recall the notations GL(M) and GA(M) for the gen-
eral linear group and the general affine group over a module M , from
sorite 186 and definition 168 in volume 1.
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We construct a group action of GA on L2(R), i.e., by definition2, a group
homomorphism

• : GA(R)→ GL(L2(R))

defined by (T ba • f)(x) = 1√
|a|f(

x−b
a ), where the transformation T ba =

Tb ◦ a is the affine map sending r ∈ R to T ba(r) = b + ar .

Exercise 188 Verify that • is a group action.

Proposition 338 If T ba ∈ GA(R), then

Tba • ? : L2(R) ∼→ L2(R)

is an isometry, i.e., for any f , g ∈ L2(R), we have

〈Tba • f , Tba • g〉 = 〈f , g〉.

In particular, (T ba • f)⊥ (T ba • g) iff f ⊥ g, and ‖T ba • f‖ = ‖f‖.
Proof Since we have a group action, the linear map T ba • ? is a bijection. More-
over, we have

〈T ba • f , T ba • g〉 =
∫∞
−∞

1√|a|f
(x − b

a

)
1√|a|g

(x − b
a

)
dx

=
∫∞
−∞
f(η)g(η)dη with η = x − b

a
= 〈f , g〉.

�

Definition 234 A function ψ ∈ L2(R) is called a wavelet if

0 < cψ = 2π
∫∞
−∞

|ψ̂(ξ)|2
|ξ| dξ <∞,

where ψ̂ is the Fourier transform of ψ, see definition 232.

Given two real numbers a and b, with a ≠ 0, the ψ-wavelet coefficient at
index a,b of f ∈ L2(R) is the scalar product

2 A (left) group action of a group G on a set X is a homomorphism µ : G → S(X)
into the symmetry group of X, or, equivalently, a map ν : G × X → X such
that (1) ν(e,x) = x for all x ∈ X and the neutral element e ∈ G, and (2)
ν(h, ν(g,x)) = ν(hg,x) for all x ∈ X,h,g,∈ G. The equivalence is induced
by ν(g,x) = µ(g)(x).
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Lψf(a, b) = 1√
cψ
〈f , Tba •ψ〉 = 1√

cψ|a|

∫∞
−∞
f(x) ·ψ

(
x − b
a

)
dx,

which defines a function Lψf ∈ L2(R2).

There are many wavelets, more precisely, the set W ⊂ L2(R) of wavelets
is dense, i.e., by definition, W = L2(R). In other words, there are wavelets
in every neighborhood of each function f ∈ L2(R), see [24] for a proof.

It is theoretically important (and comforting) to know that the family of
ψ-wavelet coefficients Lψf(a, b) is rich enough to rebuild f . The formula
is as follows. If f ∈ L2(R) and ψ is a wavelet, then

f(t) = 1√
cψ

∫∞
−∞

∫∞
−∞
Lψf(a, b) · T ba •ψdadba2

.

See [24] for a proof. This theoretical result, together with the density of
wavelets and the density of the denumerable set Q of rational numbers
in R suggests that it might be possible to reconstruct f using only a
countable set of wavelets T biai •ψ. This is what frame theory is about,
and what gives us back the advantage of Fourier’s approach against the
doubly real-valued set of indexes a,b of wavelet coefficients.

39.3 Frames and Orthonormal Wavelet Bases

Frames are families (T biaj • ψ)i,j∈Z of deformed wavelets T biaj • ψ for
special values of the deformation indexes aj and bi.

Definition 235 Given two real numbers a0 > 1 and b0 > 0, a frame index
family is a family

FI(a0, b0) = ((am0 , nb0am0 ))m,n∈Z,

of elements in R∗ × R. A frame function system for a wavelet ψ and
FI(a0, b0) is the family of wavelets

(ψ,a0, b0) =
(
ψa0,b0
m,n

)
m,n∈Z , where ψa0,b0

m,n = Tnb0am0 am0 •ψ

indexed by two integers m and n, which define the action of the affine
transformation Tnb0am0 am0 for the deformation index pair (am0 , nb0am0 ) ∈
FI(a0, b0).
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A wavelet ψ is called orthonormal if the family (ψ,2,1) defines an or-
thonormal Schauder basis of L2(R). In this case, we also write

ψm,n = ψ2,1
m,n = Tn2m2m •ψ, i.e.,

ψm,n(x) = 2−m/2ψ(2−mx −n).

Remark 33 Observe that in Hilbert space theory, the invariance of infi-
nite series of orthogonal vectors under permutations of the index set N,
guarantees that we may take any bijection of N

∼→ Z × Z to define the
double sum of the representation of f . Such a basis solves our problem
of selecting a denumerable deformation index set (ai, bi)i such that f is
represented by the wavelet coefficients Lψf(ai, bi).

Fig. 39.2. Part of the frame index family FI(2,1) for m,n ∈ {−2, . . .2}.
The diagram has been rotated counter-clockwise by 90◦.

The following corollary is immediate from the isometric property of de-
formations:

Corollary 339 If (ψk)k∈Z is a family of orthonormal functions in L2(R),
and if m,n ∈ Z, then so is (ψkm,n)k.

For example, let χ ∈ L2(R) be the characteristic function of the half-open
interval

[
0,1

[
, i.e.,

χ(x) =
⎧⎨⎩1 if x ∈ [

0,1
[
,

0 else.

Then, with the notations of definition 235, we have
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χn,k(x) = 2−n/2χ(2−nx − k)

=
⎧⎨⎩2−n/2 if x ∈ [

2nk,2n(k+ 1)
[
,

0 else.

The system (ψk = χ0,k)k is orthonormal, and so is the system (ψkn)k with
ψkn = (χ0,k)n,0 = χn,k, by corollary 339. The deformations of χ are related
by the two-scale equation:

χm,n = 1√
2
(χm−1,2n + χm−1,2n+1). (∗)

We need the characteristic function since it is strongly related to the Haar
wavelet H. In fact, we have this two-scale relation:

Hm,n = 1√
2
(χm−1,2n − χm−1,2n+1). (∗∗)

Next, we start the construction of the Haar wavelet basis using a chain of
auxiliary Hilbert subspaces Vn ⊂ L2(R).

Proposition 340 For n ∈ Z, the map

vn : l2 → L2(R) : (ak)k �
∑
k
akχn,k

is a linear isometry of Hilbert spaces onto the Hilbert subspace Vn =
Im(vn), in particular (χn,k)k is an orthonormal Schauder basis of Vn. We
have a commutative diagram of isomorphisms of Hilbert spaces

l2

Vn 2m • ?
�

vn

�
Vn+m

vn+m

�

The sequence of spaces (Vn)n∈Z has these properties:

(i) For all n ∈ Z, Vn ⊂ Vn−1.

(ii)
⋃
n Vn = L2(R), i.e., for every f ∈ L2(R), there is a sequence

(fn)n∈N with fn ∈ V−n, which converges to f , i.e., limn→∞ fn = f .

(iii)
⋂
n Vn = 0.

(iv) If Wn = V⊥n ⊂ Vn−1 is the orthogonal space of Vn in Vn−1, then
the isometry 2m • ? induces an isomorphism Wn

∼→ Wn+m of Hilbert
spaces.



224 Wavelets

Proof (i) The linear map vn is an isometry because the canonical basis (ek)k, with
ek = (0, . . .0,1,0 . . .0) having a 1 at index k and 0 else, is mapped bijectively onto
the orthonormal sequence (χn,k)k. Moreover, 2m • χn,k = (2m ◦ T k2n2n) • χ =
T k2m+n2m+nχ = χm+n,k. The inclusion Vn ⊂ Vn−1 follows from the two-scale
equation (∗).

Claim (ii) is a standard result in functional analysis, we do not prove it here.

As to claim (iii), if f ∈ ⋂n Vn, then f must be constant over any interval
[
k2n, (k+

1)2n
[

of length 2n for all n→∞, i.e., x must be a constant in L2(R), i.e., it must
vanish.

For claim (iv), observe that the deformation isomorphism 2m • ? maps Vn−1 onto
Vm+n−1 and also the subspace Vn ⊂ Vn−1 onto Vm+n ⊂ Vm+n−1. Since 2m • ? is an
isometry, the orthogonal spaces Wn,Wm+n also do correspond. �

This implies that Wn⊥Wm for all m ≠ n. In order to construct a Haar
wavelet basis of L2(R), we first construct one for W0. Then we observe
that the Hilbert space isomorphism 2m • ? : W0

∼→ Wm induced by the
deformation 2m • ? on wavelets generates a basis for Wm. We then take
any f ∈ L2(R) and use the limit representation limn→∞ fn = f with fn ∈
V−n. We then rewrite fn+1 = fn + gn, with gn ∈ W−n. Therefore f = f0 +∑
n∈N gn. Similarly, one can show that f0 =

∑
n∈N g−n+1, and therefore

f = ∑
n∈Z gn, i.e., L2(R) = ⊕

n∈ZWn in the sense of converging infinite
sums.

Proposition 341 The system of deformed Meyer wavelets is orthonormal.

The proof technique of this proposition is far beyond our modest context.
See [24] for a proof. However, the essential technique can also be traced
for the Haar wavelet. This is what we shall discuss now.

Lemma 342 The system of deformed Haar wavelets (H0,k)k∈Z is an or-
thonormal basis of W0.

We need the proof idea for the fast wavelet transform, so let us make it
explicit here: The system is evidently an orthonormal system of shifted
wavelets in V−1, by the two-scale relation (∗∗) with m = 0. Why is it also
a basis of W0? Take g ∈ W0 = V⊥0 ⊂ V−1. Then by proposition 340,

g =
∑
k∈Z

akχ−1,k, (ak)k ∈ l2

=
∑
k∈Z
(a2kχ−1,2k + a2k+1χ−1,2k+1).
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But, since g is in the space orthogonal to V0, and thus orthogonal to the
basis functions χ0,k of V0,

0 = 〈g,χ0,k〉

=
∫∞
−∞

∑
l∈Z
(a2lχ−1,2l + a2l+1χ−1,2l+1)χ0,k

=
∫∞
−∞
(a2kχ−1,2k + a2k+1χ−1,2k+1)χ0,k

=
∫ k+1

k
(a2kχ−1,2k + a2k+1χ−1,2k+1)χ0,k

=
∫ k+1

k
(a2k2−1/2 + a2k+12−1/2)

= 2−1/2(a2k + a2k+1).

This implies
a2k + a2k+1 = 0.

Therefore

a2kχ−1,2k + a2k+1χ−1,2k+1 = a2kχ−1,2k − a2kχ−1,2k+1

= a2k(χ−1,2k − χ−1,2k+1)

= a2k
√

2H0,k,

thus, finally,
g =

∑
k∈Z

√
2a2kH0,k.

Corollary 343 Forn ∈ Z, the system of deformed Haar wavelets (Hn,k)k∈Z
is an orthonormal basis of Wn.

This follows from lemma 342 and proposition 340. And here is the
promised Haar basis, a fact which follows from corollary 343 and the
result L2(R) =⊕

n∈ZWn mentioned above.

Proposition 344 The system of deformed Haar wavelets (Hn,k)n,k∈Z is an
orthonormal basis of L2(R).

39.4 The Fast Haar Wavelet Transform

We shall now discuss an algorithm for computing the coefficients of a
function in the Haar wavelet basis (Hn,k)n,k∈Z.
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We start from a function f whose approximation fN on VN is given by

fN =
∑
k∈Z

aNkχN,k.

In practical cases, one has evidently only finitely many different coeffi-
cients, or still more concretely, finitely many coefficients different from
0. The fast Haar wavelet transform is an algorithm which tends to reduce
the components from the basis (χN,k)k of VN and to replace them by Haar
wavelet components. We know from proposition 340 that the decreasing
chain . . . ⊃ Vn ⊃ Vn+1 ⊃ . . . tends towards 0, so we want to restrict the
χn,k components to spaces Vn with successively increasing index n. The
two-scale formulas (∗) and (∗∗) are used in the algorithm as follows.

These formulas define a new basis of the space Vm−1 in terms of the
space Vm and of the space Wm, in fact:

χm−1,2n = 1√
2
(χm,n +Hm,n),

χm−1,2n+1 = 1√
2
(χm,n −Hm,n).

So one starts rewriting fN as

fN =
∑
k
aN+1,kχN+1,k +

∑
k
cN+1,kHN+1,k

where the coefficients aN+1,k and cN+1,k are calculated from the two-scale
formulas. The general step is this: suppose that the coefficients

am,k and cm,k for m = n,n− 1, . . .N + 1

are calculated, then we obtain the coefficients am+1,k and cm+1,k by the
two-scale formulas via the linear expressions

am+1,k = 1√
2
(am,2k + am,2k+1),

cm+1,k = 1√
2
(am,2k − am,2k+1),

which are calculated in finite time if the original data are zero for all but
finitely many coefficients.

The preceding procedure is coined multiscale analysis (MSA) and was in-
troduced by Stéphane Mallat in 1989 and Yves Meyer in 1990.

Let us recapitulate the MSA described here with respect to the chain
. . . Vn+1 ⊂ Vn ⊂ Vn−1 . . . of subspaces, which fill out L2(R). We are
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given an approximation fN of f ∈ L2(R) by deformations of character-
istic functions of a certain granularity, i.e., fN ∈ VN . We therefore write
fN =

∑
k aN,kχN,k. We now use the successive orthogonal decomposition

VN = VN+1⊕WN+1, VN+1 = VN+2⊕WN+2, etc., until Vm−1 = Vm⊕Wm for a
certain m > N. This yields a corresponding successive decomposition of
fN by fN = fN+1 + gN+1, fN+1 = fN+2 + gN+2, etc., until fm−1 = fm + gm
with fm ∈ Vm, gm ∈ Wm. We may visualize this decomposition by

fN � fN+1 � fN+2 � . . . � fm

. . .

gN+1

�
gN+2

�
. . .
�

gm
�

This yields the decomposition fN = fm+
∑m
i=N+1 gi, where for increasing

m, the summand fm tends to be constant over successively increasing
intervals, while the summand captures more and more the non-constant
contributions to fN . The two-scale formulas yield the successive split-off
of g-components (c-coefficients) from the f -components (a-coefficients).

Example 185 Consider a function f0 on the interval
[
0,16

[
which is de-

fined as a sum of characteristic functions f0 =
∑15
k=0 a0,kχ0,k (see fig-

ure 39.3).

Fig. 39.3. The function f0 which is to be transformed (one may think of
f0 as being a sequence of samples read from a CD, for instance).
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In this example we show how f0 is approximated by a sum of Haar-
wavelets. Using the formulas given above one can calculate the coeffi-
cients a1,k, c1,k and split the function f0 into f1 =

∑15
k=0 a1,kχ1,k and

g1 =
∑15
k=0 c1,kH1,k (see figure 39.4).

Fig. 39.4. The functions f1 (a) and g1 (b), which actually is the first ap-
proximation of f0.

Continuing this process, one gets the coefficients a2,k, c2,k, which yield
f2 =

∑15
k=0 a2,kχ2,k and g2 =

∑15
k=0 c2,kH2,k with the approximation to f0

now being g2 = g1 + g2 (see figure 39.5).

Fig. 39.5. The functions f2 (a) and g2 (b), as well as the approximation
g2 = g1 + g2 (c).

Figures 39.6 and 39.7 show the next approximation steps. For n > 4, all
coefficients an,k, cn,k vanish, i.e, fn = 0 and gn = 0.

Exercise 189 Calculate the first four Haar approximation levels of

f3 = 0.5χ3,0 − 2χ3,1 + χ3,4.

Haar wavelets exemplify in a simple way the principles behind wavelet ap-
proximation. However, Haar approximations of continuous functions are
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Fig. 39.6. The functions f3 (a), g3 (b), and the approximation g3 = g1 +
g2 + g3 (c).

Fig. 39.7. The functions f4 (a), g4 (b), and the approximation g4 = g1 +
g2 + g3 + g4 (c).

step functions and, thus, not continuous. Other wavelets, like Mirenzi’s
or Morlet’s, are continuous functions, hence better suited for approxi-
mating smooth functions. However, the calculation of transforms based
on such wavelets is more complicated and does not fit into the modest
scope of an introductory exposition.



CHAPTER 40

Fractals

40.1 Introduction

This chapter gives a first insight into the fascinating world of fractals.
These geometric objects have been unleashed to science and popularized
by the mathematician Benoit Mandelbrot around 1982, mainly through
his book The Fractal Geometry of Nature [27], following a preliminary
study of the Julia set. The novelty of this mathematical approach was
hinted at in the book’s title, claiming that nature is based on a special
type of geometry. This time, however, nature was not to be restricted
to planetary trajectories cast into quadratic equations by classical geom-
etry. It rather included complex inorganic shapes, such as snow flakes
or clouds, but also living nature, such as plants, in particular shapes of
leaves. This is perhaps the reason why this kind of geometry has attracted
the interest of scientists and artists alike. Mathematically, we encounter
a much more prosaic scenery. We want to present a thoroughly math-
ematical setup of the basic ideas of a particular kind of fractals. It is
based on contractions on metric spaces and their fixpoints. However, in
this theory, the points being mapped by contractions are not original ge-
ometric points, but big objects, i.e., compact sets in given natural metric
spaces. Therefore, fixpoints for fractals are compact sets having bizarre
shapes, for example those snow flakes, clouds or fern leaves mentioned
above. Our presentation also includes a first glance at the notion of the
dimension of a complex geometric object, which is more refined than that
known from classical geometry.
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Before we come to the specific theory, let us complete some elementary
aspects of metric spaces. A review of section 33.2 for the elementary facts
about metric spaces will be helpful. We have learned that each metric
space (X,d) induces a canonical topology on X whose open sets are the
subsets O ⊂ X such that for every element x ∈ O, there is an open ball
Bε(x) = {y | d(x,y) < ε} contained in O. A closed set in X is defined as
the complement in X of an open set. If (X, c) and (Y ,d) are two metric
spaces, then a map f : X → Y is continuous iff it fulfills the following
three equivalent conditions (completely analogous to the definition of
continuity for subsets of Rn, compare to lemma 238; in fact, those sets
bear a topology which is also induced by a metric, i.e., the metric defined
on the englobing Rn):

(i) The inverse image f−1(O) of every open set O ⊂ Y is open in X.

(ii) The inverse image f−1(C) of every closed set C ⊂ Y is closed in X.

(iii) For every x ∈ X and ε > 0, there is a δ > 0 such that f(Bδ(x)) ⊂
Bε(f (x)).

It is easy to check that the metric spaces, together with continuous maps
and their set-theoretic compositions define a category Metr. A typical
continuous map f : X → Y is an isometry, by definition a map such that
d(f(x), f (y)) = c(x,y) for all x,y ∈ X. In fact, we may then choose
δ = ε in the criterion (iii) for continuity.

In this chapter, (X,d) will always denote a complete metric space.

40.2 Hausdorff-Metric Spaces

The theory of fractals deals with compact sets K ⊂ X of a complete metric
space (X,d). Recall the three-fold characterization of a compact set in Rn

given in proposition 236. The equivalence of (i) and (ii) in this proposition
is true without change for any complete metric space and its associated
topology as defined in section 33.2 under the second axiom of count-
ability which requires that there is countable basis of the topology. This
means that there is countable set of open sets, such that every every open
set is a union of sets from this basis. Reread the proof, and everything
will work mutatis mutandis.

Lemma 345 If f : X → Y is a continuous map between metric spaces, then
the image f(K) of a compact subset K ⊂ X is compact.
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Exercise 190 Give a proof of lemma 345 using the second characteriza-
tion (ii) of compactness given in proposition 236.

We are now going to define a new complete metric space, which is derived
from X. Its underlying set is

H (X) = {K | K a non-empty compact subset of X}.

The metric on H is given as follows. Let A,B ∈ H . Then for any x ∈ X,
the map

dx : B → R : b � d(x,b)

is continuous, and therefore, by lemma 345 and exercise 138, has a min-
imum

d(x, B) = min{d(x,b) | b ∈ B}.
Analogously, the function d(?, A) : B → R : b � d(b,A) is continuous,
and we may define

d(A,B) = max{d(a, B) | a ∈ A}.

Evidently, d(A,B) is not symmetric in general, so one sets

h(A,B) = max(d(A, B), d(B,A)).

Fig. 40.1. In this case, clearly d(A,B) > d(B,A), so h(A,B) = d(A,B).

Exercise 191 Verify the claims concerning the continuity of the distance
functions dx and d(?, A).
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Proposition 346 The function

h = h(d) : H (X)×H (X)→ R

is a metric, called the Hausdorff metric, and H (X) is complete. If (Ci)i is
a Cauchy sequence inH (X), then it converges to the compact set C whose
points are the limits limi→∞ ci of Cauchy sequences in X with ci ∈ Ci, for
all i. The metric space (H (X),h) is called the Hausdorff-metric space of
(X,d).

Proof Clearly, h(A,A) = 0, and, by definition, h(A,B) = h(B,A). If A ≠ B, then
(up to an exchange of roles) we may suppose that there is a ∈ A − B. Then
d(a, B) > 0, by the compactness of B. So d(A,B) = max{d(x, B) | x ∈ A} ≥
d(a, B) > 0. Therefore also h(A,B) > 0. To prove the triangle inequality, take
three compact sets A,B and C . We first show that d(A,C) ≤ d(A,B) + d(B,C)
and, symmetrically, d(C,A) ≤ d(C, B)+ d(B,A). For a ∈ A, we have

d(a,C) = min{d(a, c) | c ∈ C}
≤ min{d(a,b)+ d(b, c) | b ∈ B, c ∈ C}, for all b ∈ B
≤ min{d(a,b) | b ∈ B} +max{min{d(b, c) | c ∈ C} | b ∈ B}
= d(a, B)+max{d(b,C) | b ∈ B}
= d(a, B)+ d(B,C).

Whence d(A,C) ≤ d(A,B)+ d(B,C). Then we have

h(A,C) ≤ max(d(A, B)+ d(B,C), d(C, B)+ d(B,A))
≤ max(d(A, B), d(B,A))+max(d(B,C), d(C, B))

= h(A,B)+ h(B,C).

The completeness of H (X) requires a long technical proof, which we must omit
here. Refer to [5], section 2.7, for details. �

The perfect naturality of the Hausdorff-metric space construction results
from the following consideration: We have an injective isometry

iX : X →H (X) : x � {x},

i.e., h(i(x), i(y)) = d(x,y), and iX is therefore continuous and gives
us back the space (X,d) by restriction of the Hausdorff-metric space to
the image Im(iX). Moreover, we know from lemma 345 that for any con-
tinuous map f : X → Y between metric spaces, the induced set map
H (f ) : H (X) → H (Y) : K � f(K) is defined. The next result is enti-
tled “naturality of the Hausdorff metric”. This refers to the commutation



40.2 Hausdorff-Metric Spaces 235

of the H -construction with composition of maps, with the identity, and
also to the commutative of proposition 347. The systematic background
of this type of commutativity has been dealt with in the chapter 36 on
category theory under the title of natural transformations.

Proposition 347 (Naturality of the Hausdorff Metric) With the above no-
tations, if f : X → Y is continuous, then so is

H (f ) : H (X)→H (Y)

Moreover, if g : Y → Z is a second continuous map between metric spaces,
then we have

H (g ◦ f) : H (g) ◦H (f ),

and H (IdX) = IdH (X). Finally, we have this commutative diagram

X iX����������������������������������������������������������������������������������������������������������������������������→ H (X)

f
⏐⏐! ⏐⏐!H (f )

Y iY����������������������������������������������������������������������������������������������������������������������������→ H (Y)

of continuous maps. In particular, H : Top(X, Y) → Top(H (X),H (Y)) is
an injection.

Proof Let f : X → Y be a continuous map between the complete metric spaces
(X,d) and (Y , e). We show thatH (f ) :H (X)→H (Y) is also continuous by use
of the criterion (iii) for continuity described in the introduction of this chapter.
So let ε > 0, and take compact sets K,L ⊂ X. We have to find δ > 0 such
that h(K, L) < δ implies h(f(K), f (L)) < ε. It is sufficient to find δ such that
d(K, L) < δ implies e(f(K), f (L)) < ε. The function g(x) = e(f(x), f (L)) is
continuous and for each x ∈ L, we have g(x) = 0. For every x ∈ L take a
δ(x) > 0 such that d(z,x) < δ(x) implies g(z) ≤ ε. Then take a finite cover of
L by Uδ(xi)/2(xi) and then take the minimum δ of all δ(xi)/2. Then, if for a z,
we have d(z,y) < δ for a y ∈ L, then, if y ∈ Uδ(xi0 )/2(xi0), we have d(z,xi0) <
δ(xi), whence g(z) < ε. So, if d(K, L) < δ, then for all k ∈ K, d(k, L) < δ, whence
g(k) < ε, i.e., e(f(k), f (L)) < ε, whence e(f(K), f (L)) < ε.

If g : Y → Z is a second continuous map, then for a compact K ⊂ X, H (g ◦
f)(K) = (g(f(K)) = H (g)(H (f )(K)) = H (g) ◦ H (f )(K). Clearly H (IdX) =
IdH (X), so H is a functor on the category of metric spaces with continuous
maps. Moreover, for a singleton x ∈ X, we have H (f )(iX(x)) = H (f )({x}) =
{f(x)} = iX(f (x)), and the diagram commutes. �
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40.3 Contractions on Hausdorff-Metric Spaces

The Hausdorff metric construction is not only natural on metric spaces,
but also conserves contractions. More precisely:

Proposition 348 Let (X,d) and (Y , e) be metric spaces and denote by
Contra(X, Y) the set of contractions f : X → Y as defined in proposi-
tion 295. Then we have Contra(X, Y) ⊂ Top(X, Y) and the Hausdorff map
H transforms contractions into contractions, i.e., we have an injection

H : Contra(X, Y)→ Contra(H (X),H (Y)).

Proof We already know that isometries are continuous. Now, a contraction
f is similar to an isometry, only that there is an even stronger condition
e(f(x), f (y)) ≤ k · d(x,y) compared to e(f(x), f (y)) = d(x,y) for an isome-
try. Therefore Contra(X, Y) ⊂ Top(X, Y). On the other hand, let f : X → Y be a
contraction with e(f(x), f (y)) ≤ k·d(x,y) for all x,y ∈ X. Then for a compact
set L ⊂ X and a point x ∈ X, we have e(f(x), f (L)) = min{e(f(x), f (l)) | l ∈
L} ≤ min{k·d(x, l) | l ∈ L} = k·d(x, L). So e(f(K), f (L)) =max{e(f(x), f (L)) |
x ∈ K} ≤ max{k · d(x, L) | x ∈ K} = k · d(K, L). Therefore h(f(K), f (L)) ≤
k · h(K, L), and we are done. �

In particular, if X = Y , we set Contra(X) = Contra(X,X), and if c ∈
Contra(X), then, by the commutativity of the diagram from proposi-
tion 347, we have the commutative diagram

X iX����������������������������������������������������������������������������������������������������������������������������→ H (X)

c
⏐⏐! ⏐⏐!H (c)

X iX����������������������������������������������������������������������������������������������������������������������������→ H (X)

which connects two contractions by the injection iX . We then write iX :
c → H (c). More generally, if f : X → Y is a continuous map, and if
cX ∈ Contra(X) and cY ∈ Contra(Y) are such that the diagram

X
f

����������������������������������������������������������������������������������������������������������������������������→ Y

cX
⏐⏐! ⏐⏐!cY
X

f
����������������������������������������������������������������������������������������������������������������������������→ Y

commutes, then we write f : cX → cY and call this a morphism of contrac-
tions. Clearly, morphisms of contractions can be composed, composition
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is associative, and the identity IdX is a morphism c → c. We may there-
fore speak about the “category of contractions”, for the precise meaning
of this wording, please refer to chapter 36.

Proposition 349 If f : cX → cY is a morphism of contractions, and if
Fix(cX) and Fix(cY ) are the unique fixpoints of these contractions as guar-
anteed by proposition 295, then we have

f(Fix(cX)) = Fix(cY ).

In particular, the fixpoint Fix(c) maps to the fixpoint Fix(H (c)) =
{Fix(c)} under the canonical embedding iX : X → H (X). This result
tells us that the Hausdorff transition does not create interesting new
fixpoints from a given contraction. However, there is a dramatic gener-
alization when we consider the set of all contractions Contra(H (X)) and
its subset H (Contra(X)).

Lemma 350 The set Contra(X) is closed under composition, i.e., if c1, c2 ∈
Contra(X), then also c1 ◦ c2 ∈ Contra(X) (it is a semigroup, i.e., a
monoid without neutral element), and so is the subset H (Contra(X)) of
Contra(H (X)), because of the naturality of the H -operator.

Proof If c1, c2 ∈ Contra(X) with constants 0 < u1, u2 < 1, respectively, such
that

d(c1(x), c1(y)) ≤ u1 · d(x,y) and d(c2(x), c2(y)) ≤ u2 · d(x,y),

then d((c1 ◦ c2)(x), (c1 ◦ c2)(y)) ≤ u1 · d(c2(x), c2(y)) ≤ u1u2 · d(x,y) with
0 < u1u2 < 1. �

On the Hausdorff-metric space H (X), the contraction set is significantly
richer by the following lemma:

Lemma 351 If c,d ∈ Contra(H (X)), then the sum map c � d : H (X) →
H (X), defined by (c�d)(K) = c(K)∪d(K), is also a contraction. We have
the following structure1 on Contra(H (X)): If c,d, e ∈ Contra(H (X)),
then

(i) c � d = d� c.

(ii) (c � d)� e = c � (d� e) = c � d� e.
1 This is called a semiring, since it is both a commutative additive and a multi-

plicative semigroup which are related by distributivity.
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(iii) (c ◦ d) ◦ e = c ◦ (d ◦ e) = c ◦ d ◦ e.
(iv) (c � d) ◦ e = (c ◦ e)� (d ◦ e), and c ◦ (d� e) = (c ◦ d)� (c ◦ e).

Proof We first show that for any compact B,D, E ⊂ X, we have d(B,D ∪ E) ≤
d(B,D). In fact,

d(B,D ∪ E) =max{d(b,D ∪ E) | b ∈ B}
=max{min{d(b,D),d(b, E)} | b ∈ B}
≤max{d(b,D) | b ∈ B} = d(B,D).

Then we have

d(B ∪ C,D ∪ E) ≤ max{d(B,D ∪ E),d(C,D ∪ E)}
≤ max{d(B,D),d(C, E)}
≤ max{h(B,D),h(C, E)},

The last expression is symmetric under exchange of B,D and C,E, so we have
h(B ∪ C,D ∪ E) ≤ max{h(B,D),h(C, E)}. Now, taking the two above yields

h((c1 � c2)(K), (c1 � c2)(L)) = h(c1(K)∪ c2(K), c1(L)∪ c2(L))

≤ max{h(c1(K), c1(L)), h(c2(K), c2(L))}
≤ max{u1, u2} · h(K, L),

if u1 and u2 are the constants of contraction of c1 and c2, respectively, whence
c1 � c2 is a contraction. Showing properties (i) through (iv) reduces to straight-
forward set-theoretic calculations. �

This finally gives us the necessary structure for the definition of so-called
deterministic fractals on X.

Definition 236 Given a complete metric space (X,d), denote by

Frac(X) = 〈H (Contra(X))〉

the semiring in Contra(H (X)) which is generated 2 by the semigroup
H (Contra(X)). By lemma 351, this is the set of all finite sums�iH (ci),
where ci ∈ Contra(X). The elements f ∈ Frac(X) are called (determinis-
tic) fractals on X, while the fixpoint Fix(f ) of such a fractal f is called its
attractor. If we identify the attractor of f with the constant contraction,
we have the evident constant morphism f → Fix(f ) of fractals.

Observe that we do not identify a fractal with its attractor, but rather
stress the generating contraction as its structural essence.

2 This is the smallest semiring in Contra(X) which contains H (Contra(X)).
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Lemma 352 If h = T t ◦ g ∈ Aff R(Rn) is an affine endomorphism of the
Euclidean n-space, then h is a contraction iff its linear part g is so, and the
latter is true if the Euclidean norm ‖g‖ < 1. In this case, the fixpoint of h
is

Fix(T t ◦ g) =
⎛⎝ ∞∑
i=0

gi
⎞⎠ (t).

Proof We know that d(T t ◦g(x), T t ◦g(y)) = ‖T t ◦g(x)−T t ◦g(y)‖ = ‖g(x−
y)‖ ≤ ‖g‖ · ‖x − y‖ = ‖g‖ · d(x,y), so this proves the statements about the
affine contractions. If such a contraction is given, then (T t ◦ g)((∑∞

i=0 gi)(t)) =
t + (∑∞

i=1 gi)(t) = (
∑∞
i=0 gi)(t). �

Fig. 40.2. The application of 1
2E2 � T (

1
2 ,

1
2 ) ◦ 1

2E2 to ∆. The result at the

lower right is ∆ = 1
2E2(∆)∪ T ( 1

2 ,
1
2 ) ◦ 1

2E2(∆).

Example 186 A first simple, but very instructive example of a fractal in-
volves the diagonal line ∆ = {λ · (1,1) | λ ∈ [

0,1
]} of the unit square
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in R2, see figure 40.2. It is the attractor of the fractal 1
2E2 � T (

1
2 ,

1
2 ) ◦ 1

2E2,
where E2 is the 2× 2 unit matrix. The fact that the involved affine homo-
morphisms are contractions follows from lemma 352. Observe that the
fixpoints of the induced contractions involved are Fix( 1

2E2) = (0,0) and

Fix(T (
1
2 ,

1
2 ) ◦ 1

2E2) = (1
2 ,

1
2).

Example 187 The Sierpinski carpet is very similar to the diagonal from
the previous example. We start with the unit square � = {(x,y) | 0 ≤
x ≤ 1,0 ≤ y ≤ 1}. The fractal is given by

Sierpinski =
(
I�T (

1
3 ,0)�T (0,

1
3 )�T (

2
3 ,0)�T (0,

2
3 )�T (

2
3 ,

1
3 )�T (

1
3 ,

2
3 )�T (

2
3 ,

2
3 )
)
◦ 1

3E2.

In other words, the content of the unit square is scaled by 1
3 and then

placed at the north, south, west, east, northeast, northwest, southeast,
southwest of the unit square. Figure 40.3 illustrates the first three appli-
cations of Sierpinski.

Fig. 40.3. (a) The unit square �, (b) the first step Sierpinski(�), (c) the
second step Sierpinski 2(�).

An approximation of the attractor Fix(Sierpinski) is shown in figure 40.4,
but, of course, in contrast to the diagonal from example 186, the attrac-
tor itself cannot effectively be drawn, since it is infinitely “riddled with
holes”.

Example 188 The famous Koch curve is constructed using the same pro-
cedure as the previous two examples. To make things more clear, the
transformation is split into four parts:

Koch1 = 1
3E2: A scaling by 1

3 .
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Fig. 40.4. The (approximated) attractor of the Sierpinski fractal. In fact it
is the fifth iterate Sierpinski 5(�).

Koch2 = T (
1
3 ,0)R60

1
3E2: A scaling by 1

3 , followed by a rotation R60 by
60◦ and then a translation by the vector ( 1

3 ,0).

Koch3 = T (
1
2 ,
√

3
6 )R−60

1
3E2: A scaling by 1

3 , followed by a rotation by

−60◦ and then a translation by the vector ( 1
2 ,
√

3
6 ).

Koch4 = T (
2
3 ,0) 1

3E2: A scaling by 1
3 , followed by a translation by the

vector (2
3 ,0).

Then the fractal whose attractor is the Koch curve is

Koch = Koch1 � Koch2 � Koch3 � Koch4.

The first three iterations, starting with the unit interval u = [
0,1

]
, are

shown in figure 40.5. To make the four parts of the transformation more
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easily recognizable, their respective results are set in black for Koch1,
dark gray for Koch2, middle gray for Koch3 and light gray for Koch4.

Fig. 40.5. (a) The unit interval u = [
0,1

] = Koch0(u), (b) Koch1(u),
(c) Koch2(u), and (d) Koch3(u).

Fig. 40.6. The fifth iterate Koch5(u).

40.4 Fractal Dimension

The classification of fractals is far from being settled. By definition, a
classification involves describing all “essentially” different fractals and
grouping “similar” fractals into classes. More precisely, one may ask for
the description of all equivalence classes of fractals under the relation
a ∼ b (here a ∈ Frac(X) and b ∈ Frac(Y), where (X,d) and (Y , c) are
complete metric spaces) iff there is an isomorphism f : a→ b such that d
and the transported metric cf (x,y) = c(f(x), f (y)) on X are equivalent.
The latter means that there are two positive constants u and v such that
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for all x,y ∈ X,

u · d(x,y) ≤ cf (x,y) ≤ v · d(x,y).

Exercise 192 Prove that equivalence among metrics is in fact an equiva-
lence relation.

A classical method for determining such equivalence classes is the exhibi-
tion of numerical invariants, i.e., numbers associated with fractals which
do not change within an equivalence class. It is then hoped that one may
find enough such invariants such that their totality is fine enough to dis-
tinguish classes by their associated invariants. For example, in the ele-
mentary case of finite sets X, the invariant card(X) ∈ N completely de-
scribes the equivalence class of such a set under set bijections (equipol-
lence): X is equipollent to Y iff card(X) = card(Y).

For a fractal a, a first such numerical invariant is its dimension dim(a).
This is a non-negative real number, which need not be defined for every
fractal, but if it is defined for a on (X,d), and if the fractal b on (Y , c) is
equivalent to a in the above sense, then dim(b) = dim(a), which means
that the dimension is a numeric invariant for the said equivalence rela-
tion.

The concept of a geometric dimension is motivated by two observations:
To begin with, when we have a curved line A in Rn, the dimension should
be 1. Similarly, we expect that a subset A ⊂ Rn, which is a patchwork of
smoothly deformed pieces of a plane, has dimension equal to 2.

The second point is that the covering argument for such a patchwork can
also be considered as “casting” of a “wild set” into a patchwork of “stan-
dard” covering charts, like line intervals, open/closed balls or cubes, etc.
The ingenious idea in the concept of dimension, which we shall now de-
scribe, is that both observations can be merged into one and the same cri-
terion. This criterion is, described intuitively, that the covering by “stan-
dard” charts exhibits a specific behavior when one successively decreases
their admitted size. For example, if one covers a square S by adjacent
small squares Si having side length equal to, say, 1

10 of the side length of
S, then one needs 102 such squares, whereas if one covers an interval I by
adjacent intervals of length 1

10 of the length of I, one needs 101 of them.
So the growth of the number of covering standard charts is an indicator
of the dimension: 2 for a square, 1 for an interval. This combinatorial
growth factor is the idea behind the following definition, which—as we
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shall see below—covers a number of fractals which are far from being
standard geometric forms.

The number N(n) of standard charts grows like ndim if you cover your
object by charts of ε = 1/n the object size, or, equivalently, N(ε) be-
haves like ε−dim. If the dimension of an object is defined in this way, the
dimension of a fractal is a real number and need not be a natural num-
ber. This, then, is the origin of the name “fractal”: It describes geometric
forms having fractional dimension.

Definition 237 Let K ∈ X be a non-empty compact set in a metric space
(X,d). For a positive real number ε, call N (K, ε) the minimal natural
number N such that there is a covering of K by N closed balls Bε(xi), i =
1,2, . . .N. Since K is compact, this number always exists. For a positive real
number ε, the ε-dimension of K is defined by

dim(K, ε) = log(N (K, ε))
log(1/ε)

,

i.e.,
N (K, ε) = ε−dim(K,ε).

We say that K has fractal dimension dim(K) iff limε→0 dim(K, ε) exists
and is equal to dim(K), i.e.,

dim(K) = lim
ε→0

dim(K, ε).

There is an important subtlety in this definition. It is obvious that the
ε-dimension dim(K, ε) depends on the basic choice of closed balls for
the covering number N (K, ε). If, instead, we had taken closed cubes,
the number would change. However, it would not change dramatically,
but this difference must be dealt with, when one calculates the limit.
Now, suppose that some change of the covering standard charts causes
a change from N (K, ε) to c ·N (K, ε) for a positive constant c. Then the
ε-dimension changes to

dim∗(K, ε) = log(c ·N (K, ε))
log(1/ε)

= log(c)
log(1/ε)

+ dim(K, ε),

which evidently converges to the limit of dim(K, ε) since the first sum-
mand converges to zero. So we are happy that the quite arbitrary choice
of the type of “standard” chart is in fact not relevant for the definition of
the dimension.
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There is another point which matters in this definition: The limit process
uses all ε, while, in reality, such a condition is far from computationally
effective. Happily, one has this result, which also uses closed cubes as
easier “standard” charts instead of closed balls in the case of X = Rn

with the standard Euclidean distance.

Proposition 353 (Box Counting Theorem) Let K ⊂ Rm be a non-empty
compact set. Define Nn(K) as the number of closed cubes (“boxes”) of side
length 1

2n , B = [
k1 · 1

2n , (k1 + 1) · 1
2n
] × [

k2 · 1
2n , (k2 + 1) · 1

2n
] × . . . [km ·

1
2n , (km + 1) · 1

2n
]
, ki ∈ Z, which have a non-empty intersection with K. If

dim(K) exists, then we have

dim(K) = 1
log(2)

· lim
n→∞

log(Nn(K))
n

.

Proof This theorem is a statement regarding the transition from counting balls
in a finite covering of K by balls to counting small cubes in a finite covering of
K by cubes. But it is also a theorem about the replacement of the limit for ε → 0
by the limit for a sequence of size parameters εn → 0. We shall not prove the
following technical (but not really difficult) fact concerning the transition to a
sequence of size parameters: It states that if we are given a compact set K ⊂ X
and a sequence εn = c · rn with c > 0 and 0 < r < 1, then the dimension D
of K is defined iff the limit D = limn→∞ dim(K, c · rn) exists. The necessity of
this fact is clear, its sufficiency essentially follows from the fact that N (K, ε)
is an increasing function of ε. For the details, refer to [5], section 5.1. Admit-
ting this result, observe that a ball of radius 1

2n hits at most 2m of our boxes
of length 1

2n−1 (to see this intuitively, you may draw a picture for m = 1,2,3).
Therefore, 2−mNn−1(K) ≤ N (K, 1

2n ). If a ball has radius 1
2n , then by the the-

orem of Pythagoras, it can include a cube of largest length 1
2l(n)

, where l(n) is
the smallest integer with 1

2l(n)
≤ 1

2n−1√m , i.e., l(n) ≥ n − 1 + 1
2 log(m). Clearly,

limn→∞ l(n)
n = 1. Therefore we also have N (K, 1

2n ) ≤Nl(n)(K) and

2−mNn−1(K) ≤N (K, 1
2n ) ≤Nl(n)(K) ≤N2n(K)

for large n. Hence

1
log(2)

lim
n→∞

log(Nn(K))
n

= 1
log(2)

lim
n→∞

log(2−mNn(K))
n

= lim
n→∞dim(K,1/2n)

= 1
log(2)

lim
n→∞

2 log(N2n(K))
2n

= 1
log(2)

lim
n→∞

log(Nn(K))
n

defines the fractal dimension. �
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Example 189 Let K = [
0,1

]3 ⊂ R3 be the unit cube. Then we have
N1(K) = 8,N2(K) = 64, . . .Nn(K) = 8n. Therefore

1
log(2)

· log(Nn(K))
n

= 1
log(2)

· n log(8)
n

= 3,

whence dim(K) = 3, as expected.

Example 190 We calculate the dimension of the Koch curve using the
original definition of dimension by closed balls (in this case, closed disks).
By the preceding discussion, we can use as ε the diameter of the closed
disks, instead of their radius, this will make the calculation a little sim-
pler.

With K = Fix(Koch), and referring to figure 40.7 (a), with diameter ε = 1
3 ,

N (K, 1
3) = 4, thus

dim(K, 1
3) =

log(4)
log(3)

.

Fig. 40.7. Minimal coverings of the Koch curve, by disks of diameter
(a) 1/3, (b) 1/9, and (c) 1/27.

Parts (b) and (c) of the figure show the situation for ε = 1
9 and ε = 1

27 ,
respectively. The corresponding values for dim(K, ε) are

dim(K, 1
9) =

log(16)
log(9)

and dim(K, 1
27) =

log(64)
log(27)

.

In general, it can be seen that
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dim(K,3−n) = log(4n)
log(3n)

= n log(4)
n log(3)

= log(4)
log(3)

.

Thus, the dimension of the Koch curve is

dim(K) = log(4)
log(3)

≈ 1.26186.

A further interesting feature is the length of the Koch curve. The length
of the unit interval is, of course, 1. The length of the first iterate is 4/3,
of the second 16/9. Thus, the length of the attractor is limn→∞ 4n

3n , which
diverges to infinity. On the other hand, the area under the curve is finite,
because the whole curve fits into the unit square. We have here an ex-
ample of the “infinitely long coastline” of an island, often alluded to in
popular literature on fractals.

Example 191 In order to calculate the dimension of the Sierpinski carpet,
it is convenient to adapt the box counting theorem to use boxes of side
length 1/3n instead of 1/2n. The definition of dimension is accordingly
adapted to:

dim(K) = 1
log(3)

· lim
n→∞

log(Nn(K))
n

.

Fig. 40.8. Coverings of the Sierpinski carpet by squares of side length
1/3 (a), and 1/9 (b).

Setting K = Fix(Sierpinski), we see from figure 40.8, that N1(K) = 8,
N2(K) = 64, and, in general, Nn(K) = 8n. With the above formula
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dim(K) = 1
log(3)

· lim
n→∞

log(8n)
n

= 1
log(3)

· lim
n→∞

n log(8)
n

= 1
log(3)

· log(8)

= 3 · log(2)
log(3)

≈ 1.8928.

Exercise 193 The Sierpinski gasket (or triangle) is defined by the follow-
ing contraction:

Gasket =
(
I � T (

1
4 ,
√

3
4 ) � T (

1
2 ,0)

)
◦ 1

2E2.

Draw a few iterations to get an approximation of Fix(Gasket), starting
with a triangle of side length 1.

Use the box counting theorem to determine dim(Fix(Gasket)).

Exercise 194 All examples so far have been about compact subsets of
R2. The principles of this chapter, however, readily apply to R3 (and Rn

for any integer n > 0, for that matter). Figure 40.9 shows the attrac-
tor of Sponge, the Sierpinski carpet extended to R3, also called “Menger
sponge”.

Proceed analogously to the Sierpinski carpet to define the contraction
Sponge and use the box counting theorem to compute its dimension.

Proposition 354 Let (X,d) and (Y , c) be complete metric spaces, and a ∈
Frac(X) and b ∈ Frac(Y). Suppose that we have a fractal isomorphism
f : a → b which also induces an equivalence of metrics c and df , (i.e.,
a ∼ b in the sense of the introduction of this section). Then dim(Fix(a)) =
dim(Fix(b)).

Proof The proof of this theorem is very technical, we have to omit it here and
again refer to [5], section 5.1. �

Example 192 Let S be a shearing by 2 and R a rotation by 30◦ defined by
the matrixes

S =
(

1 2
0 1

)
and R =

⎛⎝ √
3

2
1
2

−1
2

√
3

2

⎞⎠ ,
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Fig. 40.9. This is not the Borg spaceship, but an approximation of
Fix(Sponge).

and let T be the isomorphism T = RS.

We have the metric spaces (R2, d) and (R2, c), where d is the usual Eu-
clidean metric on R2, and c(x,y) = d(T−1x,T−1y). Then c is a met-
ric (the reader should verify this), and, since cT (x,y) = c(Tx, Ty) =
d(T−1Tx,T−1Ty) = d(x,y), both metrics, d and c, are equivalent.

According to proposition 354, the dimensions of K and T(K), where K =
Fix(Koch), are equal (figure 40.10).

A last example will close this chapter and illustrate how fractals can be
used to model forms that occur in nature. The fractal function for Barns-
ley’s fern is defined through these four functions from R2 to R2:
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Fig. 40.10. The Koch curve K (a), and its transformation T(K) (b).

fern1((x,y)) =
(

0.85 0.04
−0.04 0.85

)(
x
y

)
+
(

0
1.60

)
,

fern2((x,y)) =
(
−0.15 0.28

0.26 0.24

)(
x
y

)
+
(

0
0.44

)
,

fern3((x,y)) =
(

0.20 −0.26
−0.23 0.22

)(
x
y

)
+
(

0
1.60

)
,

fern4((x,y)) =
(

0 0
0 0.16

)(
x
y

)
.

Then Ferni =H (ferni), and Fern = Fern1�Fern2�Fern3�Fern4. The com-
pact start set can be chosen quite arbitrarily, however, the single point
(0,0) is enough to generate the beautiful picture in figure 40.11.
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Fig. 40.11. The (approximated) attractor Fix(Fern).



CHAPTER 41

Neural Networks

41.1 Introduction

The term “Neural Networks” denotes an information processing paradigm
which differs fundamentally from ordinary programming: instead of us-
ing a single powerful central processing unit one deals with a multitude
of interconnected units. This model is based on the structure of biological
brains which are huge networks of neurons (“brain cells”), see figure 41.1.

Fig. 41.1. Schematic rendering of two biological neurons, each of which
transmits electrochemically encoded information through its axon and
receives information on its dendritic ramifications.
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As mentioned above, artificial or formal neurons are modeled after bio-
logical neurons: every neuron receives signals from other neurons, does
some processing, and sends signals to other neurons to which it is con-
nected.

The processing performed by formal neurons consists of several stages:
first, a weighted sum is calculated from the inputs Ii and the synaptic
weights wi. This sum is passed to a activation function a, which deter-
mines how strong the “reaction” to the weighted sum should be. This
result is changed (i.e., scaled or transformed etc.) by an output function
o. The result of the output function, finally, is the value which is sent off
to other formal neurons (see figure 41.2).

Fig. 41.2. The inner workings of a formal neuron.

A special feature of neural networks is their ability to “learn”: Neural net-
works can be modified to better respond to a given set of inputs. Such
training typically involves changing of the neurons’ synaptic weights de-
pending on their output. This process is called “Hebbian learning”.

Since their introduction in the 1940s neural networks have been used in
research and industry, especially for AI and robotics.

41.2 Formal Neurons

The theory of artificial neural networks (ANN) is an information pro-
cessing theory, which is based on the exchange of time-dependent data
streams. The mathematical model we pursue in this chapter deals with
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discrete time in Z and is based on data values in R. Here is the basic
framework of data streams.

Definition 238 For n ∈ N, the n-stream domain is the R-vector space
Dn = (RZ)n. For n = 1, we also call it the stream domain D. An element
x = (xt)t∈Z ∈ Dn is called an n-stream. Its evaluation xt at “time” t ∈ Z
is denoted by x(t). We use the notation pi : Dn → D for the i-th projection.

By the canonical identification (RZ)n ∼→ RZ×n ∼→ (Rn)Z, an n-stream x is
regarded either as an n-dimensional vector x = (x1, . . . xn) of streams
xi ∈ D or else as a stream of n-dimensional vectors x(t) ∈ Rn. Depending
on the given context we shall make use of the appropriate view without
special emphasis.

For n ≥ 1, there is a canonical injection

Rn → Dn : ξ � x(t) = ξ, for all t ∈ Z,

identifying a vector ξ ∈ Rn with what is called a constant n- stream,
which we then also denote by ξ. An n-stream x ∈ Dn is called initially
constant, iff there is t0 ∈ Z such that x(t) = x(t0) for all t ≤ t0; it is called
eventually constant iff there is t0 ∈ Z such that x(t) = x(t0) for all t ≥ t0.

Fig. 41.3. (a) Eventually constant 1-stream, (b) initially constant 1-stream.

For λ ∈ Z, one has a linear map, called the shift operator,

λ? : Dn ∼→ Dn

sending x to λx such that λx(t) = x(t + λ), the n-stream shifted by λ. A
n-stream x is called periodic iff there is an integer period τ > 0 such that
τx = x.
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Fig. 41.4. (a) A 1-stream x, (b) the shifted 1-stream −3x.

Sorite 355 With the notations of definition 238, we have these facts:

(i) The shift operator λ? defines a group action

Z→ GL(Dn),

i.e., 0x = x and µ(λx) = µ+λx, for all x ∈ Dn and λ,µ ∈ Z.

(ii) The subspace Rn ⊂ Dn of constant streams is the subspace of those
streams x left invariant by every shifting, i.e., λx = x, all λ ∈ Z. In
other words: Rn = ⋂

λ∈Z λDn, where λDn is the vector subspace of
Dn consisting of all λ-periodic streams; observe that 0Dn = Dn.

(iii) The stream domain projections pi and the shift operators commute,
i.e., the diagrams

µDn
λ?

����������������������������������������������������������������������������������������������������������������������������→ µDn

pi
⏐⏐! ⏐⏐!pi
µD

λ?
����������������������������������������������������������������������������������������������������������������������������→ µD

shiftops

commute for all i = 1, . . . n and λ,µ ∈ Z.

To define a formal neuron, we shall deal with functions between n-stream
domain spaces. The common construction is as follows. One is given a
function f : Rn → Rm and applies this function at every time t ∈ Z to n-
streams, i.e., one defines an induced function f : Dn → Dm by f(x)(t) =
f(x(t)), the symbol f being unchanged, if no confusion is likely. Clearly
such a function commutes with every shift operator (the reader should
verify this as an exercise). For example, if (?, ?) : Rn × Rn → R is the
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standard scalar product, we obtain a bilinear function b : Dn ×Dn → D.
But observe that the shift operators λ?, with λ ≠ 0, are not of this type of
induced functions. We will also deal with other more general functions h :
Dn → Dm between stream domains. A common one is defined by a family
h = (h(t))t∈Z of functions h(t) : Rn → Rm, i.e. h(x)(t) = h(t)(x(t)).
Before proceeding to the definition of a formal neuron, it is of advan-
tage to describe some simple processes in the language of diagrams and
n-streams. Consider the way a neuron processes its input. All the sig-
nals that ever reach the neuron as inputs or leave the neuron can be
interpreted as n-streams. If the weights can change over time as is the
case in Hebbian learning, they must be described as n-streams, too. The
weighted sum calculated from the inputs is now the stream that is the re-
sult of the scalar product of the input and weight n-streams. The entire
process performed by a neuron can be represented by the diagram

Dn ×Dn
(?, ?)

� D
a

� D
o

� D

From the n-streams describing weights and inputs a stream of output
values is generated: A pair (w,x) of weight n-stream w and input n-
stream x is mapped to the output stream o(a(w,x)).

Hebbian learning, which changes the weight vector at “time” t depending
on the weight vector and an output value at “time” t − 1 can be repre-
sented like this:

Dn �
h

Dn ×D

Dn

Id

�

−1?
� Dn

pr1

�

Here the identity Id and the projection pr1 simply ensure that the the
n-stream of weight represented in the upper line is identical to the one
in the lower line. The time shift by −1 describes the fact that any weight
which is changed by h is the successor in time of the weight which h uses
as an argument.

Keep in mind that the arrows in this diagram do not depict the flow of
data, but instead define certain relations between the sets.
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Definition 239 A formal neuron is a triple of functions

N = (a : R→ R, o : R→ R, h : Dn ×D → Dn),

where a is called the activation function, o is called the output function,
h = (h(t))t is called the Hebbian learning function, and n is called the
fan-in dimension of N. If the symbol N is given, then one writes n = dimN ,
a = actN , and o = outN .

The process diagram PN of a formal neuron N is the diagram of set func-
tions

Dn �
h

Dn ×D

Dn

pr1

�

Dn ×Dn

pr1

�

−1?×−1?
� Dn ×Dn

pr1

�

(?, ?)
� D

a
� D

o
�

pr2

�

D

with the standard scalar product (?, ?) as explained above. The process
diagram gives rise to its limit1

SN = limPN .

This is called the state space of the formal neuron N.

Let α : SN → D be the projection into the codomain D of the out-
put function o in PN ; α is called the axon or output of N. For each
i = 1, . . . n, we have the projection δi : SN → D induced by the projec-

tion Dn ×Dn pr2� Dn
pri� D from the 2n-stream space in the left lower

corner of PN ; δi is called the i-th dendrite or input of N. The associated
diagram of set functions

1 Remember that for the category of sets the limit can be constructed by se-
lecting the subset of the Cartesian product of all n-streams which contains
exactly those n-streams which form a solution of the “equations” described
by the diagram (see proposition 309).
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D . . . D . . . D

SN

δi

�

δn

�

δ1

�

D

α

�

is denoted by �N and is called the input-output shape, or IO-shape, of
N. An element s ∈ SN is called a state of N, and for a state s, its vector
δ(s) = (δ1(s), . . . δn(s)) ∈ Dn is called its input vector, the value α(s) ∈ D
its output, and the first projection ω(s) of s to Dn in the lower left corner
Dn × Dn of the process diagram is called the weight of s. If in a neuron,
the weight is fixed to w, one denotes by Nw the corresponding restricted
structure, including the restricted limit SwN ⊂ SN , and the corresponding
IO-shape �wN .

Example 193 If dimN = 0, then the process diagram reduces to

0 �
!

D

0

!
�

0

!

�

!
� 0

!
�

0
� D

a
� D

o
�

Id

�
D

and the limit consists of exactly one element: From the lowest horizontal
level, we have the image 0 ∈ D of the 0 map into D. Its image a(0), and
the image o(a(0)), together with the image a(0) under the identity on
D concludes the description of the unique limit element. Therefore, the
only output element in the axon of such a neuron is the element o(a(0)).
This means that a zero-dimensional neuron N is essentially defined by a
single stream o = o(a(0)) ∈ D. Therefore a zero-dimensional neuron is
also called an input neuron, since its state space is a singleton, yielding
a single axonal output stream o. Such a neuron’s IO-shape �N is denoted
by �o. An input neuron typically represents the sensorial input for the
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Fig. 41.5. This figure shows how the elements of the various n-streams
are handled in a neuron. The diagonal arrows represent the time-shift
operator: they transfer input and weights from t−1 to t. The calculation
of the weighted sum is symbolized by the pair of curved arrows going
to the right. The dashed arrows represent the Hebb learning function,
which uses the weights from the previous time step and the current
result of the activation function to change the current weights.

neural processing, such as it is provided by the retina (visual sense) or
cochlea (auditory sense).

Example 194 Neurons may also just pipe information without further
changes. Such a neuron N is defined by dimN = 1 and aN = oN = IdD,
whereas h is the constant map with value 1. What does the state space
look like? Let x ∈ D be any stream. Then it consists of all these elements
at the places of our diagram:

1 �
1

(1,−1x)

1

pr1

�

(1, x)

pr1

�

−1?×−1?
� (1,−1x)

pr1

�

(?, ?)〉�
−1x

IdD
� −1x

IdD
�

pr2

�
−1x
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We denote this neuron by Thru, and its IO-shape�Thru byD Thru
�→ D, so that

its elements are the pairs x Thru� �→ −1x. This means that the Thru neuron just
shifts input and output time by −1, i.e., the output stream at time t is the
input stream at time t − 1.

Example 195 Suppose that the activation function of a neuron N with di-
mension n = dimN is the negative translation by θ ∈ R, aN = T−θ . A sig-
moid function is a monotone (non-decreasing) function σ : R→ [

0,1
] ⊂ R

such that limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1, see figure 41.9. If
the output function of N is the sigmoid function σ , then the neuron is
denoted by Percn,θ,σ , and it is called a σ -perceptron with threshold θ. In
particular, if σ = χ[0,∞[ = η, the Heaviside function, then Percn,θ,η is also
called a perceptron or a McCulloch-Pitts neuron MCPercn,θ . In this case,
for any pair (w,x) ∈ Dn ×Dn of a weight w and an input x of a state s,
the output of that state at time t + 1 is 0 if (w(t), x(t)) < θ, and 1 else.

Example 196 A special case is the invariant weight learning function
hN = pr1 : Rn×R→ Rn, which, as the name suggests, does not change the
weights. This means that in the state space, the weights must be constant.
Therefore the state space SN of such a neuron contains the non-empty
subspace CSwN of constant inputs and outputs and weight w. While any
input x ∈ Dn is allowed, the corresponding output is oN(aN((w,x))),
and, in the case of a McCulloch-Pitts neuron MCPercn,θ, the constant state
space CSwMCPercn,θ for w is described by the IO-pairs (x, η((w,x)−θ)), or,
equivalently, by the input vectors x ∈ Rn alone. Identifying CSwMCPercn,θ

with Rn, the McCulloch-Pitts neuron MCPercn,θ defines a partition of the
input space Rn by the two fibers CSw,+MCPercn,θ = {x | η((w,x) − θ) = 1}
and CSw,−MCPercn,θ = {x | η((w,x)−θ) = 0} of the output function. For any
subset X ⊂ Rn of constant inputs, we then write X+ = X ∩ CSw,+MCPercn,θ
and X− = X ∩CSw,−MCPercn,θ , supposing that the perceptron parameters n,θ
are clear. Furthermore, as a shorthand notation, we write the weights of
McCulloch-Pitts neuron as a superscript: MCPerc−1,0.5

2,0.5 is a neuron having
two inputs with assigned weights −1 and 0.5, respectively.

In logical applications, the interesting subset is X = Qn = 2n of bit se-
quences of length n. The subsets Qn,+ and Qn,− represent those n-bit
sequences with output 1 and 0, respectively. So this situation deals with
the problem of representing logical functions f : Qn → Q by means of
perceptron state spaces for given weight w and threshold θ.
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Example 197 Consider the neuron MCPerc(−1,1)
2,−0.5. We want to show that

it represents the implication IMPLIES : Q2 → Q. We simply calculate the
result for all four input combinations:

η(((0,0), (−1,1))− (−0.5)) = η(0.5) = 1

η(((0,1), (−1,1))− (−0.5)) = η(1.5) = 1

η(((1,0), (−1,1))− (−0.5)) = η(−0.5) = 0

η(((1,1), (−1,1))− (−0.5)) = η(0.5) = 1

The results are in complete accordance with the truth table for the logical
operation ‘IMPLIES’ (cf. section 1.1 in volume 1).

Exercise 195 Show that the negation NOT : Q → Q is represented by the
neuron MCPerc−1

1,−0.5, the conjunction AND : Q2 → Q by MCPerc(1,1)2,1.5, and

the disjunction OR : Q2 → Q by MCPerc(1,1)2,0.5.

41.2.1 Geometric Interpretation of Perceptron Processing

By an easy calculation it can be shown that there is no perceptron that
represents the XOR function, which returns 1 exactly for (0,1) and (1,0).
In general, it can be shown that of all possible functions f : Qn → Q, only
a small number can be represented by a perceptron. Let us briefly give a
geometric interpretation of the situation. We suppose w ≠ 0, otherwise
everything becomes trivial.

For a given weight w, the value of activation function x � (w,x) − θ
is checked for being non-negative or negative by the Heaviside output
function. The separating value is x � (w,x) − θ = 0. The solutions of
this equation are described as follows. Since (w,w) ≠ 0, there is a real
number r such that (w, r · w) = θ, i.e., we find a vector d such that
(w,d) = θ. Therefore the equation becomes

(w,x − d) = 0, i.e., w ⊥ (x − d).

This means that the solutions are those x, which, when shifted by −d,
are contained in the subspace w⊥ ⊂ Rn. The latter is the kernel of the
non-zero linear form (w, ?) : Rn → R. This means that w⊥ is an (n − 1)-
dimensional subspace of Rn, i.e., a hyperplane of Rn, see definition 216
of section 24.1 in volume 1. Therefore the solution set of the activation
function (w,x − d) = 0 is the shifted hyperplane H = T+dw⊥. We can
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now regard the space Rn as split into two subsets H+ and H−, where our
hyperplane H is the boundary between the closed set H+ and the open
complement H−, see figure 41.6. This is clear from the fact that (w, ?−d)
is continuous.

Fig. 41.6. A hyperplane in R3 is a Euclidean plane, here the plane satis-
fying the equation x −y + 2z = 2. The vector w is normal to the plane.

As an application one recognizes immediately that XOR is not repre-
sentable by a perceptron. In fact, the fibers XOR−1(1) and XOR−1(0) are
two sets of two points each, which both lie on diagonal positions on the
rectangle spanned by Q2, see figure 41.7. Such subsets evidently cannot
be separated by a hyperplane H ⊂ R2, i.e., a line.

The question is whether one can find a weight w which yields a separa-
tion of the two fibers of a logical function f by means of an algorithm.
Now, one procedure would be to start from a first weight chosen at ran-
dom, and then successively approximating a “good” weight. This leads us
to the learning process, which has been defined by the Hebb function h
above, i.e., to non-constant weight streams.

But there is more to be done in our conceptualization in order to solve
the XOR problem and other problems related to the representation of
logical functions by use of perceptrons.
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Fig. 41.7. (a) In R2 there is a hyperplane separating the fibers OR−1(1)
and OR−1(0). (b) In the case of XOR, there is no hyperplane which can
separate XOR−1(1) and XOR−1(0).

41.3 Neural Networks

Single formal neurons are only the elements of a construction which
tends to simulate neural behavior by mathematical objects. The combi-
nation of neurons is defined as follows. Let N be the set of all neurons.

Definition 240 If N1 and N2 are neurons, and 1 ≤ i ≤ dim(N2), then the
triple (N1, N2, i) is called an elementary morphism from N1 to N2, and is
denoted by i : N1 → N2. Denote by E the set of all elementary morphisms.
Then the neural category CN is the path category of the directed graph
EN : E → N 2, where Γ(i : N1 → N2) = (N1, N2). A neural network is

a (finite) diagram D in CN . Except when explicitly stressed, neural net-
works are assumed to be elementary in the sense that its morphisms are
all elementary. This means that we are given a morphism D : ∆ → EN of
digraphs. An output neuron in a neural network is a neuron which is not
the domain of a morphism of D.

Observe that there is no elementary morphism i : N1 → �o whose
codomain is an input neuron, because dim(�o) = 0. An elementary mor-
phism i : N1 → N2 gives rise to the following diagram
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D D

...
...

D �
δj SN1

α
�

δ1

�

D �
δi SN2

α
�

δ1

�

D

...
...

D

δn1

�
D

δn2

�

denoted by �N1

i
�→�N2 and called input-output (or IO-) shape of the ele-

mentary morphism i : N1 → N2. Such a neural connection is also visual-
ized by triangles, where the morphism index i is visualized as a bullet,
see figure 41.8.

Fig. 41.8. Graphical representation of a neural network showing how the
axon output serves as dendritic input for one or more other neurons.

More generally, if we are given any morphism

f : N1
i1�→ N2

i2�→ N3 · · · ik�→ Nk,

we obtain a corresponding diagram
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�f :�N1

i1�→�N2

i2�→�N3 · · ·
ik�→�Nk

also called input-output (or IO-) shape of f . In particular, we have �IdN=
�N . If one is given a neural network D, then one deduces the diagram
of set maps from the IO-shapes of the diagram’s morphisms. This one
is denoted by �D and called the input-output (or IO-) shape of D. The
limit SD = lim �D of this diagram is called the state space of the neural
network D. If one fixes a family w. = (wi)i of weight streams wi, the
subspace of SD with w. as weight coordinate is denoted by Sw.D . The sub-
family of input neurons of D is denoted by �D, whereas the subfamily
of output neurons is denoted by D�. This gives rise to a diagram �SD�
of set maps given by the projections for all inputs and outputs:

�o1 D

...
...

�oj �
ιj SD αl �

α1

�

ι1

�

D

...
...

�oJ

ιJ
�

D

αL
�

and called input-output (or IO-) interface of the neural network D. If one
has fixed a weight stream family w., the corresponding diagram is de-
noted by �Sw.D �. Here, the αl-arrow is the projection into the stream do-
main given by the limit projection to the axonal map codomain of the l-th
output neuron. The input map ιj is the projection onto the unique stream
oj defined by the specific j-th input neuron. If in a neural network D, a
neuron has an input index which is not connected to the axonal output
of another neuron, it is called a free input.

These constructions deserve and need a number of comments and illus-
trations.

Remark 34 To begin with, if a general neural network is given, it may
happen that one would like to have the output of a neuron Ni which is
not an output neuron. For example, it may happen that one has a circular
neural network, defined by a cyclic digraph, and that one would like to
trace the local outputs of the cycle. This is easily realized by adding a
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neuron D
Thru−�→ D, which starts at the required local output domain. One

may also require that the time shift of the output is not +1 as given per
default on Thru. This is easily settled in the following exercise 196. By
using such Thru pipes, one may suppose, without loss of generality, that
the only output of a neural network D is the information really available
on its output D�.

Exercise 196 The morphism of neurons defined by a path of k concate-
nated Thru neurons

Thruk : D
Thru−�→ D

Thru−�→ D · · · Thru−�→ D

produces a time shift of k units. The morphism of neurons defined by a
path of k concatenated Thru neurons in the reversed direction

Thru−k : D
Thru←�− D Thru←�− D · · · Thru←�− D

produces a (−k)-fold time shift. The concatenation Thru0 : D
Thru−�→ D

Thru←�−
D produces a zero-time shift morphism, i.e., a morphism, whose output
is exactly the input. These types of neural morphisms play the role of
stream pipes without further functionality, except for a controlled time
shift.

Remark 35 The threshold θ in a perceptron N = MCPercn,θ can be exter-
nalized and thereby set to 0 by the following trick. We first change to a
perceptron Nθ = MCPercn+1,0 with the learning rule hθ : Rn+1 × R →
Rn+1 : ((w, z), x) � (w,θ). This means that the old learning rule is
preserved for the first n coordinates (w) and yields the constant value
θ for the (n + 1)-st coordinate. The input is augmented by one dimen-
sion, but here, at the (n+ 1)-st input slot, we insert the output of the in-
put neuron �−1 with constant stream −1. This yields the bilinear values
((w,θ), (x,−1)) = (w,x) − θ, and we have recovered the old threshold.
This means that the neural network �−1 → Nθ simulates N = MCPercn,θ
with a specialized input set, but with the zero threshold on Nθ instead
of θ. This is a variant of the classical method to turn an affine map into a
linear map by homogenization, see also section 22.1 in volume 1.

The following construction of a perceptron learning algorithm is crucial
for finding weights that separate two finite sets X,Y ⊂ Rn of constant
streams by adequate hyperplanes H. Without loss of generality, we may
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even suppose that X and Y have no points on H (otherwise, shift H a
little away from X). By the previous remark 35, we may suppose that the
threshold vanishes, i.e., that H = w⊥ is a vector subspace. Then separa-
tion means that X ⊂ H+, Y ⊂ H−, both disjoint from H. But this is clearly
equivalent to X∪−Y ⊂ (Hn)o, or else, (z,w) > 0 for all z ∈ X∪−Y . So we
are led to this problem: Given a finite subset Z ⊂ Rn, find a vectorw such
that (z,w) > 0, all z ∈ Z . The point is that one has to know that such a
vector exists. Supposing this is the case, how can one find a candidate?
This is the perceptron learning algorithm. The remarkable thing is that it
is itself a neuron N, more precisely:

Definition 241 (Perceptron Learning Algorithm) Suppose that these data
are given: A natural number n > 0, a constant weight w0 ∈ Rn, a finite
set Z ⊂ Rn of constant n-streams, an input stream p with positive bounds,
0 < e ≤ p(t) ≤ f <∞, all t ∈ Z. Let u be in Dn, with values u(t) ∈ Z , and
such that for each z ∈ Z , and each time t0, there is t ≥ t0 with u(t) = z.

Let Nu,p,w0 = (a, o,h) be the n-dimensional neuron with a = o = IdR. The
learning function h = (h(t))t reads a follows:

(i) h(t) = const. = w0 for all t ≤ 0.

(ii) Suppose that t > 0. Then for (v, λ) ∈ Rn × R, if (v, z) > 0, for all
z ∈ Z , then h(t)(v, λ) = v .

(iii) If for t > 0 there is a z ∈ Z with (v, z) ≤ 0, set h(t)(v, λ) = v if
λ > 0, else set h(t)(v, λ) = v +u(t − 1)p(t − 1).

The perceptronlearning algorithm for u,p,w0 is the neural network

�u → Nu,p,w0 .

Its state space is evidently a singleton and may be identified with the re-
cursively defined weight stream w(u,p,w0), called the generated weight.

The point of this weight construction is that w(u,p,w0) is eventually
constant and solves the problem of finding a separating vector!

Proposition 356 (Perceptron Convergence Theorem) For n > 0, let Z ⊂
Rn be a finite set of constant streams. Suppose there is a constant weight
w∗ ∈ Rn such that (w∗, z) > 0, all z ∈ Z . Let u,p,w0 as in definition 241.
Thenw(u,p,w0) is eventually constant and the eventually constant value
w∞ also has the separating property

(w∞, z) > 0, all z ∈ Z.
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Proof Let α = e ·min{(w∗, z) | z ∈ Z} and β = f ·max{‖z‖ | z ∈ Z}. So for all
times and all z ∈ Z , 0 < α ≤ p(t) · (w∗, z). Set w′ = β2

α w
∗. Consider the case

where the weight w = w(u,p,w0) needs a proper update w(t + 1) ≠ w(t) from
time t to time t + 1, i.e., (w(t),u(t)) ≤ 0. Then

‖w(t + 1)−w′‖2 = ‖w(t)+ p(t)u(t)−w′‖2

= ‖w(t)−w′‖2 + 2p(t)(u(t), (w(t)−w′))+ p(t)2‖u(t)‖2

≤ ‖w(t)−w′‖2 − 2p(t)(u(t),w′)+ β2

≤ ‖w(t)−w′‖2 − 2p(t)(u(t),w∗)
β2

α
+ β2

≤ ‖w(t)−w′‖2 + β2.

Now, take an increasing sequence of indexes t0 < t1 < t2, . . . such w(ti − 1) ≠
w(ti). Then the weight sequence for these times fulfills the conditions for the
above estimation. So we obtain 0 ≤ ‖w(ts+1)−w′‖2 ≤ ‖w(t0)−w′‖2−sβ2, which
means s ≤ ‖w(t0)−w′‖2

β2 . Therefore such changes must stop for large times as the
increasing sequences t0 < t1 < t2 . . . must be finite. �

41.4 Multi-Layered Perceptrons

We have seen that a perceptron is not capable of representing the
XOR function. But it suffices to consider very simple neural networks
to do so. Here is one construction. To this end, consider the percep-
trons NOTMCPerc = MCPerc−1

1,−0.5, ANDMCPerc = MCPerc(1,1)2,1.5 and ORMCPerc =
MCPerc(1,1)2,0.5, which were defined in exercise 195. Then we consider this
neural network XOR:

NOTMCPerc

THRU0

�

ANDMCPerc

�

ORMCPerc
�

THRU0

�

ANDMCPerc

�

�

NOTMCPerc

�

�
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Then the IO-shape of XOR evaluates the free input values (x1, x2) to
XOR(x1, x2). Therefore, one is interested in the construction of neural
networks in order to represent logical functions f : Qn → Q.

The above functionality can however be achieved by a slightly simpler
neural network. To this end, we integrate the negation in the conjunc-
tion through this change of weights and thresholds: Let AND∗MCPerc =
MCPerc(−1,1)

2,−0.5 and AND∗∗MCPerc = MCPerc(1,−1)
2,−0.5. Then the neural network

XOR∗

THRU0 � AND∗MCPerc

ORMCPerc
�

THRU0 �

�

AND∗∗MCPerc

�

�

has an IO-shape which also represents the XOR function. It is a network
which is of a type called multi-layered perceptron. We recognize an input
layer consisting of the two THRU0 neurons, a so-called hidden layer con-
sisting of the perceptrons AND∗MCPerc and AND∗∗MCPerc, and the output layer
of the OR perceptron.

Definition 242 Let n > 0 be a natural number. A digraph Γ : A → V
is called n-layered if V = ∐

i=0,1,...n,n+1 Vi is a disjoint union of non-
empty subsets, the layers of Γ , all arrows are from Vi to Vi+1, for each
v ∈ Vi, i ≤ n, deg+(v) > 0, for each v ∈ Vi,0 < i, deg−(v) > 0, for
v ∈ V0, deg−(v) = 0, and for v ∈ Vn+1, deg+(v) = 0. Layer V0 is called
the input layer, layer Vn+1 is called the output layer of Γ . The other layers
are called the hidden layers.

Definition 243 For a sigmoid function σ , a neural network D is called
an n-layered (σ -)perceptron iff its graph is n-layered, and each neuron of
the network is a (σ -)perceptron (including input neurons �o for the input
layer). Moreover, D is called saturated iff no neuron has a free input,
unless it lies in the input layer.

Exercise 197 Show that every non-saturated n-layered perceptron can
be embedded in a saturated (n + 2)-layered σ -perceptron, whose input
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neurons are all one-dimensional by adding an adequate number of THRU0

neurons, without changing its state space.

Definition 244 A feed-forward neural network is a neural network D
whose digraph is acyclic. A neural network whose digraph is cyclic is called
recurrent.

Example 198 An n-layered (σ -)perceptron is a feed-forward neural net-
work.

Example 199 A Hopfield network D is the following type of recurrent
neural network. The digraph ofD is a complete digraph withm vertexes,
i.e., for any two vertexes vi, vj , i, j = 1,2, . . .m, there is exactly one arrow
vi → vj (see also example 23 in volume 1). Its neurons are perceptrons
Percwim,θi . Call the (m ×m)-matrix W , whose rows are the weight vectors
wi, the weight matrix, and write θ = (θi). If the total output vector is
x ∈ Dm, then we have the Hopfield network equation

x(t + 1) = η(W · x(t)− θ)

for all times t ∈ Z, with η being applied to each coordinate. It can be
shown that for a symmetric weight matrix, the state space contains only
constant streams x∞ ∈ Rm or else period-2 streams x∞, i.e., 2x∞ = x∞.

The following proposition shows that 1-layer perceptrons can be used to
represent any logical function.

Proposition 357 Any logical function f : Qn → Q can be represented by
a 1-layer saturated perceptron.

The following proposition shows that 2-layer perceptrons are sufficient
for the separation of any two disjoint closed sets, if one of them is
bounded.

Proposition 358 Any two disjoint subsets A,B ⊂ Rn, with A closed and B
compact, can be separated by a function f : Rn → Q which is realized by
a 2-layer saturated perceptron, i.e., A ⊂ f−1(0) and B ⊂ f−1(1).

For proofs of these propositions, see [42].
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41.5 The Back-Propagation Algorithm

The back-propagation algorithm is a procedure for the successive im-
provement of the weights of a multi-layered σ -perceptron based on given
inputs and required corresponding outputs. It was first proposed by
Frank Rosenblatt in [33]. In contrast to proposition 358, this algorithm
starts with a given neural network and does not vary its vertexes, but only
the weights. This procedure does not aim at finding weights which gener-
ate exact outputs for given inputs, but just offers a method for approach-
ing the desired output. In general, it is not even guaranteed that this algo-
rithm really produces convergent results, but only a way of “training” the
network to work better according to a predefined process. It is however
one of the backbones of artificial neural network theory and practice.

The back-propagation algorithm typically uses a sigmoid function

σ(x) = 1
1+ e−x

which is a diffeomorphism σ : R
∼→ ]

0,1
[

onto the open unit interval. It
has the property that its derivative is expressed in terms of the function
itself, i.e., σ ′ = σ(1−σ). Its inverse is σ−1(x) = log( x

1−x ), see figure 41.9.

Fig. 41.9. The sigmoid function σ(x) = 1
1+e−x .

The neurons of the multi-layered perceptron D in this situation are σ -
perceptrons Percd,0,σ , where one has set the threshold to 0 as describe in
remark 35. We also assume that D is saturated and one-dimensional. To
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fix the ideas, we assume that D is (M − 1)-layered, so the output layer
is VM . Within the layer Vm,m > 0, of D, the weight of perceptron Pmi =
Percdi,0,σ ∈ Vm at time t is denoted by wm

i (t) ∈ Rdi . Its component at
time t for the axon connection from perceptron Pm−1

j ∈ Vm−1 is denoted
by wm

ij (t). Denote by w(t) the sequence (wm
ij (t))m,i,j ∈ RW of all weight

components of D at time t. The input vector from the input family �D
at time t is denoted by x(t) ∈ RI , whereas the output vector2 at time
t from the output family D� is denoted by z(t) ∈ RO . The network is
given a target output ζ(t) ∈ RO . The problem is that the output z is
different from the target ζ, and that one would like to adjust the weight
w such that the output is as near as possible to ζ in the sense that the
Euclidean distance measure Ez(w) = 1

2‖ζ − z‖2 is as small as possible.
To this end, one offers the system a training set, i.e., a sequence T =
(x1 = x(t1), . . . xN = x(tN)) of training inputs for a temporarily constant
weightw, make it calculate the corresponding outputs z1, . . . zN , and asks
for a minimization of the summed distance ET (w) =

∑N
i=1 Ezi(w).

The correction of w is obtained from the map

ET : RW → R

knowing that the value of ET (w) grows maximally in the direction of the
gradient dET (w) = (Dwm

ij
ET (w)) ∈ RW . In fact, if γ(s) ∈ RW is a curve

with γ(0) = w, such that ET (γ(s)) is constant, then the derivative of
ET ◦ γ must vanish identically, we therefore have 0 = D(ET ◦ γ)(0) =
dET (w)(Dγ(0)), i.e., the tangent of γ at s = 0 is orthogonal to the gra-
dient. This means that one has to move along the gradient direction with
the argument w in order to reach a weight for a local minimum with
maximal efficiency.

This means that w(t) is corrected by the amount −φt · dET (w(t)) to a
new weight

w(t +∆t) = w(t)−φt · dET (w(t)) (∗)

with a time delay ∆t, which expresses the time needed by the system to
calculate the correction. The usually positive coefficient φt is called the
learning rate at time t. The back-propagation algorithm manages to cal-
culate the correction term dET (w(t)) by means of a recursive calculation
of correction terms related to the output layer, and then going back to

2 Observe that because of the acyclicity of multi-layered perceptrons, the output
is always uniquely determined by the input for given weights.
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Fig. 41.10. ET visualized as a hilly landscape. Peaks represent minimal
ET values. On the right side, gradient vectors indicate the fastest path to
a peak.

terms for successively earlier layers until it reaches V1; this is why it is
called back-propagation algorithm.

In order to ease notation, we temporarily omit the time reference in the
following calculations. Call ivmj the output of perceptron Vmj for the in-
put xi. Denote by ihmj the scalar product

∑
kwm

jk iv
m−1
k . Then the gradi-

ent component for the variable wm
jl , i.e., the partial derivative of ET with

respect to wm
jl is

Dwm
jl
ET = ∂ET

∂wm
jl

=
N∑
i=1

∂ET
∂ivmj

·
d(ivmj )
d(ihmj )

·
∂ihmj
∂wm

jl

=
N∑
i=1

∂ET
∂ivmj

·σ(ihmj )(1− σ(ihmj )) ·
∂ihmj
∂wm

jl

=
N∑
i=1

iεmj · ivm−1
l

with the notation

iεmj = ∂ET
∂ivmj

·
d(ivmj )
d(ihmj )

= ∂ET
∂ivmj

· σ(ihmj )(1− σ(ihmj )).

Note that the derivative of σ enters the equation, because ivmj = σ(ihmj ).
Next, the iεmj must be calculated recursively. For m =M , we have

∂ET
∂ivMj

= ζj − ivMj ,
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where ivMj is a coordinate of the output vector zi, therefore the numbers

iεMj are given for the start of recursion for the i-th training series pairing
(xi, zi). The other ε numbers for m < M are calculated according to the
formula

∂ET
∂ivmj

=
∑
k

∂ET
∂ivm+1

k
· d(iv

m+1
k )

d(ihm+1
k )

· d(ih
m+1
k )

d(ivmk )

=
∑
k

iεm+1
k · iwm+1

jk ,

which implies the desired recursive formula for iεmj from the values of ε
on level m+ 1:

iεmj = ∂ET
∂ivmj

·σ(ihmj )(1− σ(ihmj ))

= σ(ihmj )(1− σ(ihmj ))
∑
k

iεm+1
k · iwm+1

jk . (∗∗)

When all these numbers have been calculated for each i, the total change
is calculated according to the gradient formula (∗). This defines the next
weight and we may either proceed to another training series T ′ or else
reuse T . As already mentioned, there is no guarantee that this algorithm
eventually yields a stable result and that this result is in fact a local mini-
mum.

41.5.1 Comments on the Learning Paradigm
for Back-Propagation

Learning in neural network theory means that the weights of a network
are changed in order to improve the performance of the network. So
the previous back-propagation method is used for learning. This type of
learning is called supervised learning since the change of the weights fol-
lows external target, i.e., the given pairings (xi, zi) of the training set T .
For unsupervised learning, the system evolves independently of external
targets in the sense of what is called self-organization.

If we were to realize the above multi-layered perceptron and the back-
propagation rule as a learning artificial brain, this would look like having
a training set T and an external control level, where the intermediate
results pertaining to the algorithm are stored. At the end of the training,
the new weight would be defined from this “deus ex machina” in order
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to improve the artificial brain’s performance. This is far from what is
happening in a real environment. There is no such an external level and
no intervention into the brain by a “divine” entity.

It is however possible to modify the multi-layered perceptron D such
that an external intervention is no more necessary for improving con-
figuration of the weights. Let us indicate the essential steps needed for
rendering the system autonomous. There are several partial problems to
solve. We give a sketch of the necessary improvements and temporal re-
finements and leave the details to the interested reader.

1. The weights on layer m + 1 in the recursive formula (∗∗) are not
transferred to layer m neurons. One therefore needs to add an ele-
mentary morphism from the output of a neuron Pm+1

k to an input of
a neuron Pml if these neurons are connected.

2. If an elementary morphism Pm+1
k → Pml is given, we need to generate

an output from Pm+1
k which represents the weight wkl. Now, if the

activation number in Pm+1
k is that weight, the inverse sigma function

σ−1 may convert the output into the weight.

3. Next, we have to look for a method to convert the interior informa-
tion about a neuron’s weight into an output. Here, we need an input
vector v(t) at a given time, which has exactly one coordinate 1 at the
position l of wkl, and the scalar product (wk(t), v(t)) = wkl yields
the wanted activation value.

4. Conversely to the previous problem, one has to convert the input of
the weight information via the morphism Pm+1

k → Pml into a weight
information of neuron Pml . This is achieved by taking a subsidiary
(and temporally intermediate) weight vector in Pml such that its scalar
product with the input yields the input from Pm+1

k encoding the
weight wkl via its σ -value σ(wkl). Now, the Hebb learning map can
be used to recover wkl from σ(wkl) by use of σ−1.

5. The training set T should also be realized as a temporal construc-
tion in the temporal stream of our system. To this end, each detailed
calculation of errors ε for a given test index i is realized as a tempo-
ral training segment in the whole process. Then, each such training
segment is juxtaposed to the previous segment, and at the end of
all segments, the calculation of the total change (the gradient) is per-
formed by a Hebb function referring to all previous weight data from
the totality of training segments.
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The desired output for a given input, which is needed to correct the
weights in the neural net can be thought of being hard-coded into the
Hebb functions. An alternative would be to extend the input stream by
sending the desired outputs along with the inputs, so they are available
at the output layer to be used for changing the weights.

Closing this chapter on neural networks, we should add a remarkable
theorem by George Cybenko [9]. The question is how well any function
may be approximated by a multi-layered network. Here is an answer:

Proposition 359 (Cybenko Approximation Theorem) Given a sigmoidal
function σ , a real number ε > 0, and any continuous function

f :
[
0,1

]n → R,

there is a natural number N, two sequences (αi)i=1,...N , (θi)i=1,...N of real
numbers, and a sequence of vectors (yi)i=1,...N , yi ∈ Rn such that the
function

G(x) =
N∑
i=1

αiσ((yi, x)− θi)

defined on
[
0,1

]n approximates f with precision ε, i.e., |G(x)− f(x)| < ε
for all x ∈ [

0,1
]n.

We recognize that this function is the output resulting from a 1-layer
perceptron with N hidden neurons, input dimension n and output di-
mension 1. The αi are the weights for the output, and yi and θi are
the weights and thresholds, respectively, of the N hidden neurons. This
means that any approximation is possible by a multi-layered perceptron.



CHAPTER 42

Probability Theory

42.1 Introduction

This short overview of probability theory serves the aim to describe the
mathematical framework on which statistical investigations are based.
Proper statistics in the sense of inductive statistics, i.e., the scientific the-
ory of testing probability distribution parameters from sample series,
must be delegated to more specialized literature, since it is not possi-
ble to deal with this science within such a limited space. We shall how-
ever give a short sketch of the ideas in inductive statistics, in particular
the maximum-likelihood method for guessing probability distribution pa-
rameters.

42.2 Event Spaces and Random Variables

Probability deals with events which are observed and which belong to
a determined space of possible events. The first definition introduces
the type of a mathematical space fundamental to probability theory and
statistics.

Definition 245 Given a set Ω, a σ -algebra over Ω is a subset A ⊂ 2Ω such
that

(i) Ω ∈ A,

(ii) If A ∈ A, then its complement A′ = Ω−A is an element of A.
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(iii) For any countable family (Ai)∈N of elements Ai ∈ A, we have⋃
iAi ∈ A.

In probability theory, a σ -algebra A is called an event space, the elements
of A are called events, whereas the elements ω ∈ Ω are called outcomes,
and the corresponding singletons {ω}, if they are in A, are called elemen-
tary events. The maximal element Ω of the event space is called the certain
event, while its complement∅ (which is in A by axiom (ii)), is called the im-
possible event. If two events A and B are such that A ∩ B = ∅, they are
called incompatible.

Observe that by (ii) and (iii), the intersection
⋂
iAi = (

⋃
iA′i)

′ of a count-
able family (Ai)i∈N of elements Ai ∈ A is in A. Further, if k ≥ 0, taking all
members Ai in (Ai)i∈N constant for i ≥ k, all finite unions A0∪A1∪ . . .Ak
and intersections A0 ∩ A1 ∩ . . . Ak, of elements Ai ∈ A are in A. Also ob-
serve that it is not necessary to denote specifically the set Ω besides the
set A since we have Ω = ⋃

A. We therefore often write ΩA for Ω.

Example 200 The dice1 space is Ω = {1,2,3,4,5,6}. Usually one con-
siders the full σ -algebra A = 2Ω. Here, an event is any subset of faces,
describing a property of faces, e.g., the subset E = {2,4,6} of even face
numbers.

Fig. 42.1. The outcome space Ω consisting of all possible dice faces, with
the event E, subset of Ω, of even face figures.

Example 201 We are checking n devices for their operativeness. Each
device i = 1,2, . . . n, can be either operational or defective. An outcome

1 Henceforth, we assume that dice are of cubic form, their faces bearing the
numbers 1 to 6.
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is an n-tuple w = (w1,w2, . . .wn) ∈ Ω = 2n, where wi = 1 if device i
is operational, and wi = 0 if it is defective . Again, we take A = 2Ω. For
example, the event A = {w | ∑iwi ≥ 3} is the event of all checks of the
n devices, such that at least 3 devices are operational.

Example 202 For every subset E ⊂ Ω, there is a minimal σ -algebra 〈E〉 ⊂
2Ω containing E. It is called the σ -algebra generated by E. For example,
the set I of all intervals

[
a,b

]
,
[
a,b

[
,
]
a,b

]
,
]
a,b

[
, be they open, closed,

or half-open, with a,b ∈ R, generates the σ -algebra B = 〈I〉 of Borel sets.
It can be shown that B = 〈J〉 = 〈O〉, where J is the set of all intervals]−∞, a], a ∈ Q, and where O is the set of open sets in the usual topology
of R.

The following definition of a morphism of σ -algebras is completely anal-
ogous to the definition of continuous maps between topological spaces,
which uses the characterization by inverse images of open sets, see defi-
nition 183 and lemma 238.

Definition 246 Given two σ -algebras A and C over the sets of outcomes
ΩA and ΩC, a morphism f : A → C is a set map f : ΩA → ΩC such that
f−1 : 2ΩC → 2ΩA restricts to a map C → A, i.e., if c ∈ C, then f−1(c) ∈ A.
Clearly, set-theoretic compositions of morphisms of σ -algebras are again
such morphisms, the identity IdΩA : A

∼→ A is a morphism, and composition
of morphisms is associative. In other words, we have the category σ -Alg
of σ -algebras. Often, if the involved event spaces A and C are clear, one
also writes f : ΩA → ΩC instead of f : A → C.

Exercise 198 Show that a continuous map f : R→ R defines a morphism
f : B → B.

Example 203 Given the σ -algebra B of Borel sets, consider the n-dimen-
sional real space Rn and the n projections pr i : Rn → R. Then the inverse
image maps pr−1

i : 2R → 2R
n

restrict to pr−1
i : B → 2R

n
. Their images

pr−1
i (B) by definition generate the σ -algebra Bn of n-dimensional Borel

sets. This algebra is also generated by the set O of open sets in Rn, and
also by the set of inverse images pr−1

i (
]
a,b

[
) of open intervals

]
a,b

[ ⊂ R.
It follows that a map f : ΩA → Rn is a morphism f : A → Bn iff all its
projections pr i ◦ f : ΩA → R are morphisms pr i ◦ f : A → B.
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The most important morphisms of event spaces2 in probability theory
are the random variables:

Definition 247 A random variable on an event space A is a morphism

X : A → B, often denoted by X : ΩA → R,

of σ -algebras into the algebra B of Borel sets. If the event set A is finite or
countable, then X is called a discrete random variable. We denote by VX
the image set of X, and call it the set of values of X.

Observe that if the event space is the power set space A = 2ΩA of the
certain event ΩA, then any set map f : A → B is a morphism.

Example 204 If we take the dice space as A = 2{1,2,3,4,5,6}, the random
variable X(A) = ∑

i∈A i adds the values of the faces contributing to the
event A.

Example 205 Consider the event space A of device operativeness from
example 201 over the total event set Ω = 2n. For i = 1,2, . . . n, we take the
random variable Xi : A → B with Xi(w) = 1 if the i-th device is working,
and Xi(w) = 0 else. Another random variable is the sum X = ∑

iXi,
whose value is the number X(w) = ∑

iXi(w) of operational devices at
outcome w.

The last example gives rise to an n-dimensional generalization of random
variables and leads to the construction of one-dimensional variables de-
duced from n-dimensional variables.

Definition 248 Given a positive natural number n, an n-dimensional ran-
dom variable on an event space A is an n-tuple X = (X1, X2, . . . Xn) of ran-
dom variables. Equivalently, by the universal property of n-dimensional
Borel sets discussed in example 203, X is a morphism

X : A → Bn, often denoted by (X1, X2, . . . Xn) : ΩA → Rn,

of σ -algebras into the algebra Bn of n-dimensional Borel sets.

2 We shall mainly use the term event space for σ -algebras in our present con-
text.
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If X = (X1, X2, . . . Xn) : ΩA → Rn is an n-dimensional random variable,
then any morphism of σ -algebras g : Bn → Bm induces anm-dimensional
random variable g ◦ X : A → Bm. For example, in the above example 205,
we took m = 1 and the continuous function g(x1, . . . xn) =

∑
i xi, defin-

ing the sum
∑
iXi of the random variables Xi. More generally, anyR-linear

combination
∑
i λi · Xi of random variables is again a random variable,

i.e., the set of random variables on A is a real vector space Rand(A). An
important linear combination of random variables X1, X2, . . . Xn is their
arithmetic mean or average

X = 1
n

∑
i
Xi.

More generally, any polynomial function
∑
i1,i2,...in λi1,i2,...inX

i1Xi2 . . . Xin

of random variables Xi with real coefficients λi1,i2,...in is a random vari-
able, since polynomial functions are continuous. So Rand(A) is in fact a
commutative ring containing the subring of constant random variables
Λ ∈ R.

42.3 Probability Spaces

Probability theory deals with the chance that a random variable takes
a given combination of values. In fact, it is less interesting to know an
event in the dice event space than the frequency it has when throwing a
dice for a number of times. This leads to the second pillar of probabil-
ity theory: probability functions on event spaces. Only the combination
of random variables and probability functions generates relevant prob-
abilistic statements. Here is the axiomatic setup introduced by Andrei
Nikolaevich Kolmogorov in 1933 [20].

Definition 249 (Kolmogorov Axioms) Let A be an event space. Then a
probability measure P for A is a map

P : A → R

with the following properties:

(i) P(A) ≥ 0, for all A ∈ A,

(ii) P(ΩA) = 1,

(iii) For every family (Ai)i∈N of pairwise incompatible (i.e., disjoint)
events Ai ∈ A, we have
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P(
⋃
i
Ai) =

∑
i
P(Ai).

The domain A = AP of the probability measure P is also called a probabil-
ity space over the set ΩA of outcomes, if one wants to stress the space A
and its set ΩA of outputs.

Observe that for any event A ∈ A, we have P(A∪A′) = P(A)+ P(A′) = 1.
Therefore P(A) ≤ 1, and the convergence of the right side of the sum∑
i P(Ai) is guaranteed, and is also independent of the order of the sum-

mation by the “unconditional convergence” theorem for absolutely con-
vergent series, see the observation following proposition 256 in chap-
ter 27.

Sorite 360 Let P : A → R be a probability measure. Then we have these
properties:

(i) For every event A ∈ A, 0 ≤ P(A) ≤ 1.

(ii) P(∅) = 0 and P(ΩA) = 1.

(iii) For every event A ∈ A, P(A′) = 1− P(A).
(iv) If A and B are events in A, then A ⊂ B implies P(A) ≤ P(B).
(v) If A and B are events in A, then A ⊂ B implies

P(A∪ B) = P(A)+ P(B)− P(A∩ B).

(vi) More generally, if A1, A2, . . . An are events in A, then

P(A1 ∪A2 ∪ . . . An) =∑
i
P(Ai)−

∑
i<j
P(Ai ∩Aj)+

∑
i<j<k

P(Ai ∩Aj ∩Ak)−

. . .+ (−1)n+1P(A1 ∩ . . . An)

Proof The first three claims are immediate from the formula P(A∪A′) = P(A)+
P(A′) = 1.

Claim (iv) follows from P(B) = P(A∪ (B −A)) = P(A)+ P(B −A) ≥ P(A), since
P(B −A) ≥ 0.

For claim (v), we have the disjoint union A ∪ B = (A − B) ∪ (B − A) ∪ (A ∩ B),
whence P(A ∪ B) = P(A − B)+ P(B − A)+ P(A ∩ B) = (P(A − B)+ P(A ∩ B))+
(P(B −A)+ P(A∩ B))− P(A∩ B) = P(A)+ P(B)− P(A∩ B).
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To show claim (vi), we apply statement (v) to (A1 ∪ . . . An−1) ∪ An, which yields
P((A1∪. . . An−1)∪An) = P(A1∪. . . An−1)+P(An)−P((A1∩An)∪. . . (An−1∩An)).
Then induction for the first and last terms yields

P(A1 ∪ . . . An−1) =
∑
i<n
P(Ai)−

∑
i<j<n

P(Ai ∩Aj)+
∑

i<j<k<n
P(Ai ∩Aj ∩Ak)−

. . .+ (−1)nP(A1 ∩ . . . An−1)

and

P((A1 ∩An)∪ . . . (An−1 ∩An)) =
∑
i<n
P(Ai ∩An)−

∑
i<j<n

P(Ai ∩Aj ∩An)

+
∑

i<j<k<n
P(Ai ∩Aj ∩Ak ∩An)−

. . .+ (−1)nP(A1 ∩ . . . An−1 ∩An).

This adds up to the correct formula for n. �

Exercise 199 In the dice space A = 2{1,2,3,4,5,6}, the probability P may be
taken as the relative number of outcomes within an event A, i.e., P(A) =
card(A)/6. For example, P({2,4,6}) = 3

6 = 1
2 . Verify that this probability

measure conforms to the Kolmogorov axioms.

The previous exercise realizes the so-called Laplace principle, which re-
quires that if one has no further knowledge about the elementary events
in the powerset algebra A = 2Ω of a finite set Ω, then the probability
P({w}) of an elementary event associated with an outcome w should be

P({w}) = 1
card(Ω)

,

i.e., every elementary event has equal probability, summing up to 1 for
the certain event.

Example 206 Let us observe a harddisk regarding its reliability. The out-
comes are the sequences si of i ≥ 1 attempts to write data to the hard-
disk, with the first failure occurring at the i-th attempt. So Ω = {si |
i = 1,2, . . .} is a denumerably infinite set. Suppose that there is a chance
of 0 < p < 1 to obtain a failure for one writing process unit. Then the
first i− 1 attempts each have chance 1− p to happen, while the last has
chance p to happen. It is therefore reasonable to define the probabili-
ties for elementary events P({si}) = p · (1 − p)i−1, and then necessar-
ily P(A) = ∑

si∈A p · (1 − p)i−1. We have P(Ω) = ∑
1≤i p · (1 − p)i−1 =
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p
∑

0≤i(1−p)i = p · 1
1−(1−p) = 1, the sum of a geometric series, see exam-

ple 104. The third Kolmogorov axiom is clear from the definition of P as
a sum of the values of the outcomes in an event.

Probabilities are often considered as relative values with respect to a
given event B, in the sense that one pretends that B is the certain event.
This leads to the concept of conditional probability, which we shall moti-
vate after the following definition.

Definition 250 For a probability space P : A → R and a selected event
B ∈ A, with P(B) > 0, the conditional probability of an event A ∈ A is
defined by

P(A|B) = P(A∩ B)
P(B)

.

Proposition 361 Let B1, B2, . . . Bn be a sequence of pairwise incompatible
events in the probability space A with probability function P , such that⋃
Bi = ΩA, and P(Bi) > 0, for all i, then we have

P(A) =
∑
i
P(A|Bi) · P(Bi).

If, further, P(A) > 0, then we have the Bayes formula

P(Bi|A) = P(A|Bi) · P(Bi)
P(A)

for all i.

Proof These formulas are straightforward applications of the definition of con-
ditional probability. �

Example 207 The Bayes formula is often useful in experimental setups.
Imagine that chemist analyzes a sample x. He already knows, from previ-
ous tests, that it contains traces of a substance a with probability 2

3 , i.e.,
P(A) = 2

3 , or of a substance b with probability 1
3 , i.e., P(B) = 1

3 , but not
both, i.e., P(A∪B) = P(A)+P(B). To test for a specific substance, he uses
an indicator that colors green, we call this event G, or remains unchanged.
From long experience, he knows that if a sample contains a, then the indi-
cator colors green with probability 4

5 , i.e. P(G|A) = 4
5 , and if it contains b,

the indicator becomes green with probability 1
5 , i.e. P(G|B) = 1

5 . With all
this information, the chemist wants to know the probability that, given
that the indicator turns green, the sample contains traces of a, i.e., he
seeks P(A|G). The Bayes formula yields
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P(A|G) = P(G|A) · P(A)
P(G)

.

The only number yet to be determined is P(G). But P(G) = P(G∩(A∪B)),
sinceA∪B is the certain event. Therefore, by distributivity, P(G) = P((G∩
A) ∪ (G ∩ B)). Since A and B are incompatible, G ∩ A and G ∩ B are so
too and P(G) = P(G ∩ A) + P(G ∩ B). Thus, converting to conditional
probabilities, P(G) = P(G|A)·P(A)+P(G|B)·P(B) and the Bayes formula
becomes

P(A|G) = P(G|A) · P(A)
P(G|A) · P(A)+ P(G|B) · P(B) .

All the quantities on right hand side are known to the chemist, therefore

P(A|G) =
4
5 · 2

3
4
5 · 2

3 + 1
5 · 1

3

= 8
9
.

Since the method used in the previous example is very common, we now
state the general formula. Let Ai, with 1 ≤ i ≤ n, be mutually incompat-
ible events that sum to A, i.e., Ai ∩ Aj = ∅, for i ≠ j, and

⋃
iAi = A.

Then

P(Aj|A) =
P(A|Aj) · P(Aj)∑
i P(A|Ai) · P(Ai)

.

Example 208 (Monty Hall Problem) An amusing application of the Bayes
formula is the following problem, whose solution by Marylin vos Savant
caused an uproar and fierce discussions among mathematicians and am-
ateurs alike because of its counterintuitiveness.

Suppose game show host Monty Hall gives you the choice of three doors,
A, B or C. Behind one door is a car, behind the other two are goats (you
definitely don’t want to win a goat). Monty lets you pick a door without
opening it. He knows what is behind the doors and opens one which has
a goat, then asks you if you want to switch to the third door. The problem
is: Is it better to switch or not to switch?

An intuitive argument may conclude that it doesn’t matter, the probabil-
ities for the two still closed doors to hide the car being equal, i.e., 1

2 .

The a priori probability that door X hides the prize is P(X) = 1
3 . So far,

so good. Without loss of generality, assume that you have picked door
A and Monty Hall opens door B with a goat behind it. By MB denote the
event “Monty Hall opens B”, and by X the event “The car is behind X”, for
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X ∈ {A,B,C}. Note that A, B and C are mutually incompatible. Then we
have the following conditional probabilities:

P(MB|A) = 1
2 (a)

P(MB|B) = 0 (b)

P(MB|C) = 1 (c)

The probability (a) holds because Monty has equal choice between B and
C, (b) holds because Monty will never open the door with the prize and (c)
holds because Monty is forced to open B, since C has the prize. Now, we
want to compute P(A|MB), i.e., the probability that the first chosen door
A contains the prize, after we know that Monty opened B.

P(A|MB) = P(MB|A) · P(A)
P(MB|A) · P(A)+ P(MB|B) · P(B)+ P(MB|C) · P(C)

=
1
2 · 1

3
1
2 · 1

3 + 0 · 1
3 + 1 · 1

3

= 1
3
.

Similarly, P(C|MB) = 2
3 . Therefore you can double your chance of winning

by switching from A to C!

Example 209 From a card game with 32 cards, including 4 aces, the
player draws two cards, one after the other, without putting back the
first one. How large is the probability to draw an ace in the second turn?
The set of outcomes is the set Ω = 32 × 31, and the event set is A = 2Ω.
Under the Laplace principle, we have the probability P({w}) = 1

32·31 for
each elementary event w = (0,0), (0,1), . . . (31,30). Let A be the event
“ace in the second turn”, B1 the event “ace in the first turn”, and B2 the
event “no ace in the first turn”, i.e., the complement of B1. Then we have

P(B1) = 4 · 31
32 · 31

= 1
8
, P(B2) = 28 · 31

32 · 31
= 7

8
,

P(A∩ B1) = 4 · 3
32 · 31

= 3
248

, P(A∩ B2) = 28 · 4
32 · 31

= 7
62
,

whence

P(A|B1) = P(A∩ B1)
P(B1)

= 3
31
, P(A|B2) = P(A∩ B2)

P(B2)
= 4

31
.
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An application of proposition 361 then yields

P(A) = P(A|B1) · P(B1)+ P(A|B2) · P(B2) = 3
31
· 1

8
+ 4

31
· 7

8
= 1

8
.

Proposition 362 (Multiplication Formula) Let A1, A2, . . . An be n events
in the event space A with P(A1 ∩A2 ∩ . . . An) > 0. Then we have

P(A1 ∩A2 ∩ . . . An) =
P(A1) · P(A2|A1) · P(A3|A1 ∩A2) · . . . P(An|A1 ∩A2 ∩ . . . An−1).

Proof This follows by induction on n ≥ 2. For n = 2, it is the definition of
conditional probability. The general case results from P(A1 ∩ A2 ∩ . . . An) =
P((A1∩A2∩. . .An−1)∩An) = P(A1∩A2∩. . . An−1)·P(An|(A1∩A2∩. . . An−1)). �

Definition 251 Two events A and B of a probability space AP are called
independent iff we have

P(A∩ B) = P(A) · P(B).

Exercise 200 Show that if two events A and B are independent, then so
are the pairs A and B′, and therefore, by an exchange of the respective
roles of these events, so are also A′ and B, and A′ and B′.

Example 210 Consider a device T , which is composed of two subdevices
T1 and T2. They can be defective, and we suppose that they can be op-
erational independently. Call Ai the event “Ti is operational”. The subde-
vices may be combined in a series, T2 after T1, say, yielding the combined
event G, or in parallel, yielding the combined event G∗. Then the serial
combination G is operational iff each of the subdevices is so. Thus, the
probability of the event G is

P(G) = P(A1 ∩A2) = P(A1) · P(A2).

In the parallel combination G∗, the operativeness is guaranteed if either
A1 or A2 is operational. Thus, the probability of G∗, using sorite 360 (vi),
is

P(G∗) = P(A1 ∪A2) = P(A1)+ P(A2)− P(A1) · P(A2).

If, for example, P(A1) = 3
4 and P(A2) = 2

5 , then we obtain

P(G) = 3
4
· 2

5
= 3

10
= 0.3

and
P(G∗) = 3

4
+ 2

5
− 3

10
= 17

20
= 0.85.
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The definition of independence of n events is as follows:

Definition 252 A sequence A1, A2, . . . An of n events is said to be indepen-
dent, if for every subsequence Ai1 , Ai2 , . . . Aik , we have

P(Ai1 ∩Ai2 ∩ . . . Aik) = P(Ai1) · P(Ai2) · . . . P(Aik).

Equivalently, independence means that

P(A1 ∩A2 ∩ . . . An) = P(A1) · P(A2) · . . . P(An)

and that any subsequence of n− 1 ≥ 2 elements is independent.

Exercise 201 Prove the equivalence of the two versions of independence
in definition 252.

42.4 Distribution Functions

The access to the information encoded in a probability space P : A → R
and a random variable X on the event space AP is often eased by a con-
cept which is more important for calculation purposes: the distribution
function. To this end, given a random variable X over A, probability the-
ory makes use of the notation P(X|I) = P(X−1(I)) for the probability of
the inverse image under X of a Borel set I ∈ B. In a more intuitive nota-
tion, for example, if I = [

a,b
]
, one writes P(X|[a,b]) = P(a ≤ X ≤ b);

or, if I = ]−∞, x], one writes P(X|]−∞, x]) = P(X ≤ x).
Definition 253 Given a probability space P : A → R, the distribution of P
(or else of AP , if P is clear), is the map

FP,X : R→ [
0,1

]
: x � P(X ≤ x).

If P is clear, one writes FX , and if X is also clear, one writes F .

Sorite 363 Given a probability space P : A → R and a random variable X
over A, we have these properties of the distribution F = FP,X . Hereafter,
we fix the real numbers a < b and an argument x.

(i) The distribution F is monotonous, i.e., x ≤ y implies F(x) ≤ F(y).
(ii) P(a < X ≤ b) = F(b)− F(a).

(iii) P(X > a) = 1− F(a).
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(iv) The following limits exist and are denoted as on the left side of the
equations:

F(x − 0) = lim
h>0,h→0

F(x − h)

F(x + 0) = lim
h>0,h→0

F(x + h)

F(−∞) = lim
y→−∞F(y)

F(∞) = lim
y→∞F(y)

(v) The distribution F is right continuous, i.e., F(x) = F(x + 0).

(vi) F(−∞) = 0 and F(∞) = 1.

(vii) P(X = x) = F(x)− F(x − 0).

(viii) P(a ≤ X ≤ b) = F(b)− F(a− 0).

(ix) P(a ≤ X < b) = F(b − 0)− F(a− 0).

Proof If x ≤ y , then we have the inclusion (X ≤ x) ⊂ (X ≤ y) of events, whence
claim (i).

Since we have (a < X ≤ b) = (X ≤ b)− (X ≤ a), claim (ii) follows.

Further, ΩA − (X ≤ a) = (X > a) implies claim (iii).

Since F is monotonous by (i), and bounded to the range
[
0,1

]
, the four limits in

claim (iv) do exist.

We have a countable disjoint union

R = ]−∞, x]∪ ]1+ x,∞[∪ ⋃
i∈N

]
x + 1

i+2 , x + 1
i+1

]
.

Therefore 1 = P(R) = P(]−∞, x]) + P(]1 + x,∞[) +∑i∈N P(
]
x + 1

i+2 , x + 1
i+1

]
).

This implies that the partial sums P(
]
1 + x,∞[) + ∑i≤n P(

]
x + 1

i+2 , x + 1
x+1

]
)

converge to 1 − P(]−∞, x]) = 1 − F(x). In other words, the complementary set
X ≤ x+1/xn defines a value F(x+1/xn) which tends to F(x), whence claim (v).

We further have the countable disjoint union

R = ]−∞,0]∪ ⋃
i∈N

]
i, i+ 1

]
,

whence 1 = P(R) = P(
]−∞,0]) + ∑i P(

]
i, i + 1

]
). Therefore the partial sums

P(
]−∞,0])+∑i≤n P(

]
i, i+1

]
) converge to 1 as n→∞, hence F(∞) = 1. Similarly

we have the disjoint union R = ]0,∞[∪⋃i∈N]−i−1,−i], which as before implies
that the partial sums P(

]
0,∞[)+∑i≤n

]−i−1,−i] converge to 1 as n→∞. But this
means that the probability P(X ≤ −n− 1) of the complement event X ≤ −n− 1
converges to 0, i.e., F(−∞) = 0, thus claim (vi).

The statements (vii) through (ix) are left as easy exercises to the reader. �
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What is the point of this sorite? It allows us to calculate the probability
of values of a random variable X in terms of its distribution function.
This means that for calculations, one may often stick to the distribution
function. In what follows, we describe a number of frequent distribution
functions.

42.4.1 Distribution Functions for Discrete Random Variables

In the following definitions, we always select a discrete variable X : AP →
R. Recall that VX denotes the set of values of X. We shall only define
special values P(X = vi), vi ∈ VX , where i is a natural index of the finite
or denumerable value set, since the distribution at a value in VX can be
calculated from the summation of these values. The values for other ar-
guments x �∈ VX are set to the value at x, the largest natural number ≤ x.
This means that the distribution function is a step function.

Definition 254 (Geometric Distribution) If VX = N − {0} and 0 < p < 1,
then the distribution of X is called geometric iff for every i ∈ VX ,

P(X = i) = p · (1− p)i−1.

Fig. 42.2. Geometric distribution with p = 1
2 : (a) probability measure, (b)

distribution function.
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Example 211 The geometric distribution is often used to describe coin
flipping. If p is the probability that a head is flipped, then 1 − p is the
probability that a tail is flipped. The random variable X describes the
number of flips until a head results, i.e., the probability P(X = i) is the
probability that a tail is flipped i−1 times (i.e., (1−p)i−1), times the prob-
ability that a head is flipped (i.e., p). The distribution function P(X ≤ i) is
the probability that a head results after less than or equal to i flips. If the
coin is “fair”, then p = 1

2 , and the graphs of probability and distribution
functions look like those in figure 42.2.

Definition 255 (Binomial Distribution) If VX = {0,1,2, . . . n} and 0 <
p < 1, the binomial distribution, more precisely, B(n,p)-distribution, is
defined by

PB(n,p)(X = i) =
(
n
i

)
· pi · (1− p)n−i.

Fig. 42.3. Binomial distribution with p = 1
3 : (a) probability measure, (b)

distribution function.

Example 212 Taking up coin flipping again, consider a series of n flips.
Then a certain configuration, for example HTTTHTHTTT, where n = 10,
contains i heads and n − i tails, in this case 3 heads and 7 tails. The
probability of occurrence of this particular configuration is pi·(1−p)n−i,
if p is the probability of a head flip. Since there are

(
n
i

)
configurations

in which exactly i heads occur, the probability that a series of n flips
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contains exactly i heads is P(X = i) =
(
n
i

)
·pi · (1−p)n−i. See figure 42.3

for the graphs of the binomial distribution.

Definition 256 (Poisson Distribution) If VX = N and λ > 0, the Poisson
distribution with parameter λ is defined by

Pλ(X = i) = λi

i!
e−λ.

Fig. 42.4. Poisson distribution with λ = 2: (a) probability measure, (b)
distribution function.

Example 213 The Poisson distribution arises from the binomial distribu-
tion by fixing the expected number λ = np and letting n become large.
Then

Pλ(X = i) = lim
n→∞PB(n,λ/n)(X = i).

For example, let λ = 4 be the average number X of misprints per page
of a particular book. Because the number of characters on a page is large
compared to the number of expected misprints, X can be modeled using
the Poisson distribution P4. The probability of 5 misprints on a page is

P4(X = 5) = 45

5!
e−4 ≈ 0.1563.
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42.4.2 Distribution Functions for Continuous Random Variables

The continuous analogue of a specific function for P(X = i) is a density
function, which instead of summing up to the distribution function yields
this function by an integral.

Definition 257 A random variable X is called continuously distributed
with density f if its distribution function F has the shape

F(x) =
∫ x
−∞
f ,

where f ≥ 0 is a non-negative integrable3 function on R, and where the
integral is the limit

∫ x
−∞ f = lima→−∞

∫ x
a f

Sorite 364 If the random variable X is continuously distributed with den-
sity f , then:

(i) F(∞) = ∫∞
−∞ f = 1.

(ii) The distribution F is continuous on R and, therefore,

P(X = x) = F(x)− F(x − 0) = 0.

(iii) If f is continuous in x, then F is differentiable in x, and

dF
dx
(x) = f(x).

Exercise 202 Give a proof of sorite 364. Check the following points: The
first claim follows from sorite 363. The second follows from the bound-
edness of the density. The third follows from the fact that the difference
quotient 1

h ·
∫ x+h
x f is limited by f(x) ± ε if x ∈ Uδ(x) for an adequate

δ > 0 if f is continuous in x.

Definition 258 (Rectangular (or Uniform) Distribution) Let a < b be real
numbers, then the continuously distributed random variable X is R(a,b)-
distributed (R for “rectangular”) iff its density has the form

f(x) = 1
b − a · χ]a,b[(x).

The associated distribution function is

3 Bounded by definition.
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F(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x ≤ a,
x−a
b−a if a < x < b,

1 else.

Fig. 42.5. Rectangular distribution: (a) probability measure, (b) distribu-
tion function.

Example 214 A random variable X which is uniformly distributed takes
values equally likely between a and b. Good pseudo-random number gen-
erators (PRNG) implemented by computer algorithms approximate such
a distribution for a = 0 and b = 1.

Definition 259 (Normal Distribution) Let µ,σ ∈ R, σ > 0 . Then the con-
tinuously distributed random variable X is N(µ,σ 2)-distributed (or nor-
mally distributed) iff its density has the form

f(x) = 1
σ
√

2π
· exp

(
−1

2

(
x − µ
σ

)2
)
.

For µ = 0 and σ = 1, X is called standard normally distributed. The
distribution function associated to the standard normal distribution is

Φ(x) = 1√
2π

∫ x
−∞

exp
(
−1

2
t2
)
dt.

See figure 42.6 for the graphical representation.
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Fig. 42.6. Standard normal distribution: (a) density function, (b) distri-
bution function.

Note that the standard normal distribution function Φ(x) cannot be ex-
pressed using the functions we have seen so far. Therefore a special func-
tion has been introduced, the so-called “error” function:

Erf(x) = 2√
π

∫ x
0
e−t

2
dt.

Using Erf and the fact that Φ(0) = 1
2 , the standard normal distribution

function can then be written as

Φ(x) = 1
2

(
1+ Erf

(
x√
2

))
.

It should be observed that the normal distribution density function is an
affine deformation of the standard normal density function, similar to
deformations of wavelets in section 39.2.

Normal distributions with parameters µ and σ are very common for
events whose values concentrate around µ. Here σ is a measure for how
far from µ values tend to deviate. The normal distribution fully reveals
its importance in the context of the central limit theorem 371.

Proposition 365 If a ≠ 0 and b are real numbers, and X is a random
variable, then if X is N(µ,σ 2)-distributed, the random variable a · X + b
is N(a · µ + b,a2 · σ 2)-distributed.

If for i = 1, . . . n, the random variables Xi are N(µi, σ 2
i )-distributed, then

the R-linear combination X = ∑
i aiXi is N(

∑
i aiµi,

∑
i a2

iσ
2
i )-distributed.
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Proof If the random variable X is N(µ,σ 2)-distributed, then we have

P(X ≤ x) = 1
σ
√

2π
·
∫ t
−∞

exp

(
−1
2

(
t − µ
σ

)2
)
dt

= 1√
2π

·
∫ x−µ

σ

−∞
exp

(−1
2
s2
)
ds

= Φ
(
x − µ
σ

)
.

Now, taking the so-called standardization V = X−µ
σ of X, the above equation

yields
P(V ≤ x) = P(X ≤ µ + σx) = Φ(x),

which means that V has the standard normal distribution. Let a > 0. With X =
σ ·V +µ, the random variable T = a·X+b has P(T ≤ t) = P(a·(σ ·V +µ)+b ≤
t) = P

(
V ≤ t−(aµ+b)

aσ

)
= Φ

(
t−(aµ+b)

aσ

)
. So T is a N(µ,σ 2)-distributed random

variable. Using the symmetry of the normal distribution density, one proves the
claim for a < 0 by the same method. We omit the proof of the linearity of normal
distribution, which is quite technical, and refer to [35]. �

Definition 260 (Exponential Distribution) Let λ > 0 be a real number.
Then the random variable X is called Ex(λ)-distributed, or also exponen-
tially distributed with parameter λ iff it is defined by the density function

f(x) =
⎧⎨⎩0 if x ≤ 0,

λe−λx if x > 0.

The distribution function is

Fλ(x) =
⎧⎨⎩0 if x ≤ 0,

1− e−λx if x > 0.

Example 215 The exponential distribution is often used to model situ-
ations where an event occurs after a time interval t. An example is the
time between successive events in a waiting queue. The probability of the
arrival of the next event in a queue between t0 and t1 is

P(t0 ≤ X ≤ t1) =
∫ t1
t0
λe−λxdx = F(t1)− F(t0) = e−λt0 − e−λt1 .

Or, more simply, the probability that the next event occurs before time t
is

P(X ≤ t) = F(t) = 1− e−λt .
Of course, the parameter λ has to be so chosen as to meet the require-
ments of the situation.
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Fig. 42.7. Exponential distribution with λ = 3
4 : (a) density function, (b)

distribution function.

There are many more types of distributions, but those that we have intro-
duced are the most common and are suitable for modeling a large variety
of situations.

42.5 Expectation and Variance

The theory of random variables is the theoretical packaging of what
in descriptive statistics is calculated from sample series. We therefore
give a short overview of quantities usually deduced from sample se-
ries. We consider a one-dimensional sample series, i.e., a sequence x. =
(x1, x2, . . . xn) of real numbers acquired from the measurement of n > 0
events. The sequence x. is also called the data vector. For such a sample
series, one has these common quantities:

Definition 261 Given a sample series x. = (x1, x2, . . . xn), their arith-
metic mean is

x = 1
n

∑
i
xi.

If the sample series is permuted by π to xπ(.) = (xπ(1), xπ(2), . . . xπ(n))
such that the permuted sequence is ordered, i.e., xπ(i) ≤ xπ(j) if i < j,
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then the median is the value4

x̃ =
⎧⎨⎩xπ(n/2) if n ≡ 0 (2),

xπ((n+1)/2) else.

The range of the sample series is the difference

v = xπ(n) − xπ(1)

of an ordered permuted sequence, i.e., the difference between the largest
and the smallest value in the sequence x. of measurements.

For n > 1, the standard deviation of x. is the number

s =
√√√√ 1
n− 1

∑
i
(xi − x)2,

and its square s2 is called the empirical variance.

The data vector x. is called deterministic - if it is constant, i.e, x. = c ·
∆, where ∆ = (1,1, . . .1). The above quantities are involved in solving
the problem of finding a deterministic data vector c · ∆ such that the
difference x − c ·∆ has minimal length, i.e., such that (x − c ·∆)⊥∆.

Exercise 203 Show that the unique solution of (x − c · ∆)⊥∆ is the
arithmetic mean x = c. We have x. = x · ∆ + (x. − x · ∆), where the
summands are orthogonal. Therefore, by the theorem of Pythagoras,
‖x.‖2 = ‖x ·∆‖2 + ‖x.− x ·∆‖2. This means∑

i
x2
i = nx2 +

∑
i
(xi − x)2

or else
s2 = 1

n− 1

∑
i
(x2

i −nx2),

a common expression for the calculation of the variance.

With this background, random variables are seen as the mathematical
counterparts of empirical measurements. Here is the concept represent-
ing the arithmetic mean of random variables:

4 Observe that this value is independent of the non-uniquely determined per-
mutation π .
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Definition 262 Let X be a random variable. The expectation E(X) is de-
fined as follows, depending on whether X is discrete or not:

(i) (Discrete Case) If X is discrete, then, if
∑
x∈VX |x|P(X = x) <∞, the

expectation of X is the number5

E(X) =
∑
x∈VX

x · P(X = x).

(ii) (Continuous Case) If X is continuously distributed with density f ,
then if

∫∞
−∞ |x|·f(x)dx <∞ (the limit lima→∞

∫ a
−a |x|·f(x)dx), the

expectation of X is the number

E(X) =
∫∞
−∞
x · f(x)dx.

Example 216 A random variable X with B(n,p)-distribution has expec-
tation

E(X) =
n∑
x=0

x ·
(
n
x

)
· px · (1− p)n−x

= np

For our example of n flippings of a fair coin (p = 1
2 ), the expected number

of heads is n
2 .

The expectation of a random variable Y , which is uniformly distributed
between a and b, is easily calculated:

E(Y) =
∫∞
−∞
x · 1

b − a · χ]a,b[(x)dx

=
∫ b
a
x · 1

b − a dx

=
(

1
b − a

x2

2

)∣∣∣∣∣
b

a

= b2 − a2

2(b − a)
= a+ b

2
.

The expected value of a PRNG will therefore approximately be 1
2 .

5 Observe that the absolute convergence of the sum guarantees that the order
of summation is irrelevant in this definition.
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A strong criterion for the calculation of expectation values is the sym-
metric case:

Definition 263 For a real number z, a random variable X is called sym-
metric around a real number z iff

P(X ≤ z − x) = P(X ≥ z + x)

for all real x ≥ 0.

Exercise 204 Show that if a continuously distributed random variable X
has a density f such that f(z − x) = f(z + x) for all x ∈ R, then X is
symmetric.

Proposition 366 If X is symmetric around z, and if the expectation of X
exists, then we have

E(X) = z.
Proof Let us prove the continuous case for a symmetric density f(z−x) = f(z+
x), the other cases are similar, we have to replace the integrals by corresponding
sums.

E(X) =
∫∞
−∞
x · f(x)dx

=
∫ z
−∞
x · f(x)dx +

∫∞
z
x · f(x)dx

=
∫∞

0
(z − ξ) · f(z − ξ)dξ +

∫∞
0
(z + ξ) · f(z + ξ)dξ

=
∫∞

0
z(f(z − ξ)+ f(z + ξ))dξ −

∫∞
0
ξ(f(z − ξ)− f(z + ξ))dξ

=
∫∞

0
z(f(z − ξ)+ f(z + ξ))dξ

= z ·
∫ z
−∞
f(ξ)dξ + z ·

∫∞
z
f(ξ)dξ = z · 1 = z.

�

Example 217 If a random variable X is N(µ,σ 2)-distributed, then its ex-
pectation is E(X) = µ.

Often, the expectation E(X) can be calculated directly from the distribu-
tion function of X:
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Proposition 367 If X ≥ 0, then

E(X) =
∫∞

0
1− FX

if this improper integral exists.

We then also have

E(X) =
∫∞

0
P(X ≥ x)dx =

∫∞
0
P(X > x)dx.

In particular, if X is discrete with non-negative integer values, then

E(X) =
∞∑
n=0

P(X > n)

if this sum converges.

Proof Let us prove the claim for a continuously distributed variable defined by
a density function f(x), the case of a discrete variable is similar. Since X has no
negative values, we have

∫ x
−∞ f = F(x) = P(X ≤ x) = 0 for x < 0. We therefore

may suppose f(x) = 0 for x < 0. We have
∫∞

0
(1− F(t))dt =

∫∞
0

(∫∞
t
f(x)dx

)
dt

=
∫
∆
f with ∆ = {(x, t) | x ≥ t ≥ 0}

=
∫∞

0

(∫ t
0
dt
)
f(x)dx

=
∫∞

0
xf(x)dx

= E(X).

In the case of a continuously distributed variable, the distribution function F(x)
is continuous, therefore P(X > x) = 1−F(x) = 1−F(x−0) = P(X ≥ x), and the
second claim follows. For a discrete variable, the distribution function is only
non-continuous for an at most countable set, i.e., the functions P(X > x) and
P(X ≥ x) differ at most for a countable set of points, which has measure zero.
Therefore (see the criterion 283 for integrability) the integrals also coincide. �

Example 218 If the random variable X has a geometric distribution with
parameter p, then

P(X > n) =
∞∑
i=n

p · (1− p)i = (1− p)n.
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Thus, proposition 367 yields

E(X) =
∞∑
n=0

(1− p)n = 1
p
.

The probability of throwing the number 6 with a fair dice is 1
6 . This means

that the expected number of rollings before throwing a 6 is 1/(1/6) = 6.

For an exponentially distributed Y with parameter λ

P(Y ≤ x) = 1− e−λx,

thus
P(Y > x) = e−λx .

As Y ≥ 0, the expectation of Y is then

E(Y) =
∫∞

0
P(|Y | > x)dx

=
∫∞

0
P(Y > x)dx

=
∫∞

0
e−λx dx

=
(
−1
λ
e−λx

)∣∣∣∣∞
0

= 1
λ
.

The next result states that the expectation operator is linear:

Proposition 368 If ai ∈ R, for i = 0, . . . n, and if X1, . . . Xn are random
variables having expectations E(Xi), then

E
(
a0 +

n∑
i=1

ai ·Xi
)
= a0 +

n∑
i=1

ai · E(Xi).

Proof This claim follows from the special cases E(X + Y) = E(X) + E(Y) and
E(a · X + b) = a · E(X) + b for real numbers a and b. This requires the theory
of probability functions for several random variables, which we will not develop
in sufficient details, we shall only give a short introduction in section 42.6. We
refer to [22] for this subject. �

The next empirical quantity, which we want to adopt for random vari-
ables, is variance.
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Definition 264 If X is a random variable such that E(X) and E([X −
E(X)]2) exist, then the number

Var(X) = E([X − E(X)]2)

is called the variance of X. Its square-root σ = √
Var(X) is called the

standard deviation of X.

Example 219 If a random variable X is N(µ,σ 2)-distributed, then its
variance is Var(X) = σ 2. This, together with example 217, provides an
explanation for the parameters µ and σ of normal distributions.

Here is a useful result for squares of random variables:

Proposition 369 Let X be a random variable such that E(X2) exists, and
let a,b ∈ R. Then:

(i) The expectation E(X) and variance Var(X) both exist.

(ii) Var(X) = E(X2)− (E(X))2.

(iii) Var(a ·X + b) = a2 · Var(X).

Proof If E(X2) = ∫∞
x P(X2 > x)dx exists, then this integral is also equal to∫∞

x P(|X| >
√
x)dx. Since for x ≥ 1, we have (|X| > x) ⊂ (|X| > √

x), and
therefore P(|X| > x) ≤ P(|X| > √x), the integral

∫∞
x P(|X| > x)dx is also finite,

but (X > x) ⊂ (|X| > x), and therefore E(X) = ∫∞
x P(X > x)dx is also finite.

Using proposition 368, this yields

Var(X) = E([X − E(X)]2)
= E(X2)− 2E(X)2 + E(X)2
= E(X2)− E(X)2.

Finally,

Var(a ·X + b) = E((a ·X + b − a · E(X)− b)2)

= E(a2 · (X − E(X))2)
= a2 · Var(X).

�

Example 220 The variance of a uniformly distributed random variable X
is

Var(X) = E(X2)− (E(X))2.
We already know that (E(X))2 = (a+b

2

)2. It remains to calculate E(X2):
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E(X2) =
∫ b
a
x2 · 1

b − a dx

= 1
b − a ·

(
x3

3

)∣∣∣∣∣
b

a

= b3 − a3

3 · (b − a)
= a2 + ab + b2

3

Therefore

Var(X) = a2 + ab + b2

3
−
(
a+ b

2

)2

= (a− b)2
12

The variance of the PRNG is therefore 1
12 . The linearity of expectation

allows us to start from a PRNG X delivering values between 0 and 1 and
build a new one, Y , which uniformly delivers values between a and b, i.e.,
Y = (b − a) ·X + a. Then

E(Y) = E((b − a) ·X + a)
= (b − a) · E(X)+ a

= 1
2
(b − a)+ a

= a+ b
2

and

Var(Y) = Var((b − a) ·X + a)
= (b − a)2 · Var(X)

= (b − a)2
12

as expected.

42.6 Independence and the Central Limit Theorem

We now generalize distribution functions to n-dimensional random vari-
ables. Given an n-dimensional random variable X = (X1, . . . Xn) on the
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probability space AP , and a vector x = (x1, . . . xn) ∈ Rn, each Borel set of
form I = ]−∞, x1

] × . . . ]−∞, xn] ∈ Bn gives rise to the Borel set X−1(I)
and thereby to the n-dimensional distribution function FP,X : Rn → [

0,1
]

via
FP,X(x1, . . . xn) = P(X−1(I)).

Observe that X−1(I) is the intersection of the Borel sets defined by the
condition “X1 ≤ x1”, . . . “Xn ≤ xn”. We again use the intuitive notation
for the values of F and write

FP,X(x1, . . . xn) = P(X1 ≤ x1, . . . Xn ≤ xn).

This suggests the definition of independent random variables:

Definition 265 Then random variables X1, . . . Xn on the probability space
AP , are said to be independent iff

FP,X(x1, . . . xn) = FP,X1(x1) · . . . FP,Xn(xn)
or, restated using the probability measure,

P(X1 ≤ x1, . . . Xn ≤ xn) = P(X1 ≤ x1) · . . . P(Xn ≤ xn)

for all x1, . . . xn ∈ R.

Here is a useful theorem concerning the density function of a sum of
independent continuously distributed random variables (see [35]):

Proposition 370 If X,Y : AP → R are independent, continuously dis-
tributed random variables with densities fX , fY , respectively, then their
sum X + Y is continuously distributed with the density

fX+Y (z) =
∫∞
−∞
fX(ξ) · fY (z − ξ)dξ.

The integral on the right hand side is also called the convolution of fX and
fY , and written fX ∗ fY . Thus we can write more concisely

fX+Y (z) = (fX ∗ fY )(z).

Example 221 If a random variable Z ∈ Rand(A) has the distribution
function

FZ(x) = P(Z2
1 + . . . Z2

s ≤ x), for all x ∈ R,

with all the Zi ∈ Rand(A) being independent and having the standard
normal distribution, then Z is called χ2

s -distributed.
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The following is a fundamental theorem of probability theory. It justifies
the importance of normal distributions.

Proposition 371 (Central Limit Theorem)
Let the random variables X1, . . . Xn : AP → R be independent and have the
same distribution. Suppose that their common expectation is E(Xi) = µ
and that their common variance is Var(Xi) = σ 2 > 0 and consider their
sum Sn =

∑n
i=1Xi.

Then the distribution of the random variable

Zn = 1
σ
√
n

(
Sn −nµ

)
converges to the standard normal distribution in each point, i.e., for all
x ∈ R,

lim
n→∞FZn(x) = Φ(x).

This means effectively that the distribution of Sn tends toN(nµ,nσ 2), thus
E(Sn)→ nµ and Var(Sn)→ nσ 2, as n→∞.

Intuitively, this means that linear combinations of a large number of iden-
tically distributed independent variables tend towards a normal distribu-
tion.

Example 222 Figure 42.8 shows Galton’s board, also known as quincunx.
Marbles roll from top to bottom through a grid of pegs to land in one of
n compartment, here n = 15. At each peg, a marble may fall to left or to
the right with equal probability p = 1

2 . Since there are n−1 levels, we can
describe a path by a sequence of random variables Xi taking the value
0 for left and 1 for right. The number of 1 in the sequence, or simply∑
iXi, is the number of the compartment that a marble following this

path reaches.

We know that Sn−1 =
∑n−1
i=0 Xi follows a binomial distribution B(n−1, 1

2),
i.e. the probability that a marble lands in case i, for 0 ≤ i < n, is
PB(n−1,1/2)(Sn−1 = i) (it is revealing to compare this with example 212).

Since the random variables Xi are independent and have the same distri-
bution, namely P(Xi = 0) = 1

2 and P(Xi = 1) = 1
2 , we can apply the central

limit theorem to get an approximation to the binomial distribution. We
have µ = E(Xi) = 0 · 1

2 + 1 · 1
2 = 1

2 and σ 2 = Var = E(X2
i )− (E(Xi))2 = 1

4 .
The central limit theorem now states that the distribution of Sn−1 is ap-
proximatively N((n − 1)µ, (n − 1)σ 2) = N(1

2(n − 1), 1
4(n − 1)), in our
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Fig. 42.8. Marbles rolling down Galton’s board.

concrete case this means that S14 approaches a random variable Y with
distribution N(7, 7

2). This means that the probability that a marble lands
in case i is approximatively P(Y = i). In an experimental setting such
as the one shown in the figure, after m marbles have been rolled, each
compartment i will contain approximatively m · P(Y = i) marbles. The
columns built by the marbles will tend in shape towards the density func-
tion of a normal distribution. Of course, more compartments and more
marbles will improve the approximation.
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42.7 A Remark on Inferential Statistics

The preceding considerations look like nice abstract mathematics and
somewhat resemble the situation in quantum mechanics, where the com-
mon physical reality is paralleled by a “fictitious” reality of observables,
whose eigenvalues are the measured quantities. However, in statistics,
one is given sample series x. = (x1, . . . xn) of numbers, and not ran-
dom variables. What, then, is the relation between sample series and the
abstract level of random variables, which are never observed as a such?
This is the subject of inferential statistics: To investigate the relations be-
tween the “Platonic” world of random variables and the empirical world
of sample series.

To get off the ground, one supposes that each measured quantity xi is the
value of one random variable Xi, and one also assumes that the n random
variables Xi are independent and realize one and the same distribution
FXi = F . The event space is given from the outcome set of all possible
sequences of n measurements of the system.

Next, one supposes that the distribution F is defined by a parameter vec-
tor δ, such as the parameter pair δ = (µ,σ 2) of a normal distribution.
Let φ(x,δ) be the probability P(X = x) for a discrete distribution or the
density f(x, δ) for a continuously distributed variable. Then the number

L(x., δ) =
∏
i
φ(xi, δ)

describes the probability of a sample series x. to be realized for the sys-
tem parameter δ. Under these assumptions, one wants to find a param-
eter δ such that this probability L(x., δ) is maximal. This leads to the
definition

Definition 266 With the above assumptions and notations, a distribution
parameter δ is called a maximum likelihood estimate iff

L(x., δ) ≥ L(x., δ′)

for every possible δ′.

Example 223 The following is an example of the maximum likelihood
method in the case of a continuously distributed variable. Suppose that
the distribution is normal, i.e.,
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φ(x,δ) = f(x, µ,σ 2)

= 1
σ
√

2π
· exp

(
−1
2

(
x − µ
σ

)2
)
.

Then the likelihood function is

L(x., δ) = L(x., µ,σ 2)

=
(

1
σ
√

2π

)n
·
∏
i

exp

(
−1
2

(
xi − µ
σ

)2
)
.

To maximize this function, we maximize its logarithm:

l(x., µ,σ 2) = log
(
L(x., µ,σ 2)

)
= −n · (log(

√
2π)+ log(σ)

)− 1
2

∑
i

(
xi − µ
σ

)2

.

A necessary condition for a local maximum of l(x., µ,σ 2) is that Dµl =
Dσ l = 0 vanishes for its partial derivatives. This means

Dµl(x., µ,σ 2) =
∑
i

xi − µ
σ

= 0

Dσ l(x., µ,σ 2) = −n
σ
+
∑
i

(xi − µ)2
σ 3 = 0.

These equations yield µ = 1
n
∑
i xi = x and σ 2 = 1

n
∑
i(xi − µ)2. This

means that the maximum likelihood estimate is the arithmetic mean plus
nearly the empirical variance s. In fact, we have the denominator n in-
stead of n− 1 as required for s. See [35] for a detailed discussion of the
maximum likelihood method.



CHAPTER 43

Lambda Calculus

43.1 Introduction

The two volumes of this book introduce a wide range of mathematical
objects and functions. Since the second half of the nineteenth century,
mathematicians have been concerned about how these fit into a frame-
work of effective computation. The development of mathematical logic
has been the main outcome of this quest. From the 1930’s on mechanical
computation has become real, and these questions have attained practi-
cal relevance. Here the link to effective computation is the Church-Turing
thesis which says that any real-world computation can be translated into
a computation on a Turing machine or in Alonzo Church’s (1903–1995)
own invention, the λ-calculus. Church devised the λ-formalism as a kind
of computational logic and showed that it is equivalent to a universal1

Turing machine.

The λ-calculus has become a major tool for describing computations and
is the foundation of many real-world programming languages, of which
functional programming languages like LISP, Scheme, SML or Haskell
come closest to its spirit. We may even say that functional languages
are more or less direct implementations of the λ-calculus. Stated con-
cisely, one can say that the λ-calculus is the theory of abstraction and
application of functions.

1 A Turing machine that can emulate any specific Turing machine.
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In this chapter we formally describe the λ-language and introduce its
computation model. In the end we will be able to use the formalism just
like a real programming language.

Towards the end of the chapter we describe the kind of functions which
the Church-Turing thesis originally envisioned.

43.2 The Lambda Language

The λ-calculus is based on a formal language L as discussed in sec-
tion 19.1 ff. of volume 1. The language L = L(V,C) is built from a de-
numerable set V = {x,y, z . . .} of variables and a second, disjoint, set
C = {c,d, . . .} of constants. We always suppose that V and C are given a
well-ordering. If C is empty, L is called pure. It finally contains the sym-
bols (, ), λ and the dot (.). The language L is by definition the smallest
language over the alphabet A= V ∪C∪{(, ), λ, .} with the properties 1–3
listed below. Its elements are called λ-terms. The length of a term t, being
composed of variables, constants, parentheses, or the dot, is denoted by
l(t), and counts by definition the occurrences of variables and constants.
Observe that this differs from the length of t as a word: the parentheses,
the symbol λ and the dot are ignored.

1. V ∪ C ⊂ L, i.e., variables or constants are the λ-terms of length one;
they are called atoms of L.

2. If N,M ∈ L, then (NM) ∈ L; the λ-term (NM) is called application (of
N to M); we have l((NM)) = l(N)+ l(M).

3. If x ∈ V and M is a λ-term of L, then (λx.M) is a λ-term in L; it is
called abstraction. We have l((λx.M)) = l(M)+ 1.

Exercise 205 Give a definition of the syntax of λ-language L(V,C) as a
context free grammar and cast it in BNF notation (in particular, the alpha-
bet of the grammar must be finite).

In practice, the large number of parentheses in λ-terms is irritating, one
therefore adopts the convention to write the typical terms

• PWQR for (((PW)Q)R) (association to the left),

• λx.PQR for (λx.((PQ)R)),
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• λxy . . . z.P for (λx.(λy. . . . (λz.P) . . .))).

• Moreover, if one writes λx1 . . . xn.M , then the special case n = 0
means M . In the same vein, if one writes MN1 . . .Nk, then the spe-
cial case k = 0 means M . Observe that the empty word is not a term
in the language of the λ-calculus.

In a term t, the forms of application or abstraction are mutually exclusive,
and in either case, the subterms M and N of t = (MN), or x and M of
t = (λx.M) are uniquely determined. If a term t is part of a larger term
s, one says that t occurs in s. Moreover, if a term t = (λx.M) occurs in s,
then the term M is called the scope of the variable x in t. Attention, the
scope of a variable is strictly tied to the λ which precedes the variable.

Example 224 The completely parenthesized λ-term

(λx.(x(λy.(λx.(xy)))))

is written according to the convention

λx.xλy.λx.xy.

In each of following terms, the scope of boldfaced variables is underlined:

λx.xλy.λx.xy, λx.xλy.λx.xy, λx.xλy.λx.xy.

Definition 267 Let t ∈ L(V,C) be a term. Then V(t) denotes the set of
variables occurring in t. The set FV (t) of free variables of t is defined by
recursion on l(t):

(i) If t = x is a variable (l(t) = 1), then FV (t) = {x}.
(ii) If t = (MN), then FV (t) = FV (M)∪ FV (N).

(iii) If t = (λx.M), then FV (t) = FV (M)− {x}.
If FV (t) = ∅, then t is called a closed term. A variable in V(t) − FV (t) is
called a bound variable of t.

A word of caution: A variable may be free in a term, but the same variable
may be bound in a larger scope by a λ abstraction. Similarly a variable
may be bound in a term, but free in a larger context. Thus, for exam-
ple FV (xy) = {x,y}, but FV (λx.xy) = {y} and FV (λy.λx.xy) = ∅.
But also, FV (xλx.λy.λx.xy) = {x}. Therefore it is important to always
specify the term, relative to which a variable is considered to be either
free or bound.
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43.3 Substitution

In the present state of our theory, the calculus is very rigid. To begin with,
this functional formalism should be extended to make it possible to re-
place bound variables by specific terms in order to evaluate the abstrac-
tion forms. For that purpose the concept of substitution is introduced.
Observe that the following notation for substitutions is not part of the
language L, but is a notation for operations on the language.

Definition 268 Suppose that u and t are terms in L, and that x ∈ V is
a variable. Then the term [t/x]u of substitution is defined as follows by
recursion on the length of u:

(i) If u = x, then [t/x]u = t.
(ii) If u is a constant or a variable different from x, then [t/x]u = u.

(iii) If u = (MN), then [t/x]u = ([t/x]M [t/x]N).
(iv) If u = λx.v , then [t/x]u = u.

(v) If u = λy.v with y ≠ x and y �∈ FV (t), or x �∈ FV (v) then

[t/x]u = λy.[t/x]v.

(vi) If u = λy.v with y ≠ x, and y ∈ FV (t), and x ∈ FV (v), then
choose the first variable z greater than all variables in the set
FV (t)∪ FV (v). Then

[t/x]u = λz.[t/x]([z/y]v).

For the expression [t/x]u we say “substitute x by t in u”.

Again, pay attention to the notation [t/x]u: this is not a term in L, it is
an expression denoting the action of the map [x/t] : L → L on the term
u, and the result [t/x]u as a term in L looks completely different from
“[t/x]u”.

The following sorites state some useful properties of substitution.

Sorite 372 If x,y ∈ V and t,u ∈ L, then

(i) (Identity action) We have [x/x]u = u.

(ii) (Ineffectiveness of bound variables) If x �∈ FV (u), then [t/x]u = u.

(iii) (Invariance of length) We have l([y/x]u) = l(u).
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(iv) (Free variables of substitution) If x ∈ FV (u), then

FV ([t/x]u) = FV (t)∪ (FV (u)− {x}).

Proof The proof strategy is obvious: We have to check all six cases in the defi-
nition of a substitution, and in each case, if reasonable, proceed by induction on
the word length of a term.

Let us prove claim (i). For cases (ii) and (iv) in definition 268, the action is the
identity by definition. In case (i), t = x = u yields [t/x]u = t = x = u. Case
(iii) is immediate by induction. Case (vi) cannot occur since y ≠ x excludes
y ∈ FV (t) = FV (x) = {x}.
For claim (ii), case (i) is excluded, case (ii) yields the right result anyway, case
(iii) inherits the condition x �∈ FV (u) = FV (M) ∪ FV (N) on free variables to
the terms M and N, and induction applies. Case (iv) works by definition, case
(v) inherits x �∈ FV (u) to v since the formula FV (u) = FV (v) − {y} does not
omit the variable x from FV (v), so x �∈ FV (v), and induction applies. Case (vi)
is impossible since x ∈ FV (v) implies x ∈ FV (u) in this case.

For claim (iii), cases (i), (ii) and (iv) are trivial. Case (iii) can be shown by induction,
since l(M) < l(u), and l(N) < l(u). For case (v), we have [t/x]u = λy.[t/x]v
and therefore l([t/x]u) = l(λy.[t/x]v) = 1 + l([t/x]v). But because l(v) <
l(u), we have l([t/x]v) = l(v) by induction, and we are done. Case (vi) can be
shown in a similar way.

Claim (iv) is immediate for all cases. �

Sorite 373 Let x,y, z ∈ V be three distinct variables, and let u, t, q ∈ L
be terms such that no bound variable in u is free in ztq. Then

(i) (Canceling) If z �∈ FV (u), then [t/z][z/x]u = [t/x]u.

(ii) (Inversion) If z �∈ FV (u), then [x/z][z/x]u = u.

(iii) (Composition) If z �∈ FV (t), then

[t/x][q/y]u = [([t/x]q)/y][t/x]u.

(iv) (Commutation) If y �∈ FV (t) and x �∈ FV (q), then

[t/x][q/y]u = [q/y][t/x]u.

(v) (Repeated substitution) We have

[t/x][q/x]u = [([t/x]q)/x]u.

Proof Claim (ii) follows from claim (i) and statement (i) in sorite 372.
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Claim (iv) follows from claim (iii) and statement (ii) in sorite 372.

For claim (i), we go through all six cases:

Case (i): u = x, we suppose z ≠ u = x, then [t/z][z/x]x = [t/z]z = t = [t/x]x.

Case (ii): the atom u is ≠ x and we suppose z ≠ u: [t/z][z/x]u = [t/z]u = u =
[t/x]u.

Case (iii): this is evident by induction.

Case(iv): u = λx.p, then [t/z][z/x]u = [t/z][z/x](λx.p) = [t/z]λx.p = λx.p
since z is not free in u = λx.p. This coincides with λx.p = [t/x]λx.p.

Case (v): again u = λy.p with y ≠ x and y ≠ z by the hypothesis on free
and bound variables. So by induction, [t/z][z/x]λy.p = [t/z]λy.[z/x]p =
λy.[t/z][z/x]p = λy.[t/x]p = [t/x]λy.p.

Case (vi): again u = λy.p with y ≠ x and y = z, x ∈ FV (p), but y = z contra-
dicts the hypothesis on free and bound variables, so the case is impossible.

The proofs of points (iii) and (v) work along the same mechanical lines, we leave
them as easy exercises to the reader. �

Despite their formalistic shape, these statements are completely natural.
They express in a precise way when and how we may substitute free vari-
ables.

Exercise 206 Perform the substitution [t/x]u for the following t and u:

1. t = x and u = λy.x,

2. t = y and u = λzx.x,

3. t = λz.zy and u = λy.xy ,

4. t = λv.vz and u = λy.xλz.x.

43.4 Alpha-Equivalence

In the following discourse, we shall be interested in certain (equivalence)
relations among λ-terms which are compatible with the constructors of
application and abstraction.

Definition 269 A relation R ⊂ L× L is called λ-compatible iff

(i) whenever tRs, then also (λx.t)R(λx.s), for all variables x ∈ V ;

(ii) whenever tRs,uRv , then (tu)R(sv).
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This type of relation is desirable to hold between terms that are the
“same up to bound variables”, which means that a change of bound vari-
ables should be irrelevant to the meaning of a term. Here is the typical
λ-compatible relation of congruence:

Definition 270 If in a term t, the term λx.u occurs, and if for a variable
y , we have y �∈ FV (u), then one can replace t by the term, where the
given occurrence of λx.u is replaced by λy.[y/x]u. The new term t′ is
said to be obtained from t by a change of a bound variable in t. One says
that t is α-congruent to s, or also that t α-converts to s, in signs t ≡α s,
iff it is obtained by a sequence of 0 ≤ k < ∞ changes of bound variables
from t.

Example 225 If x,y,u,v, z are variables, then we have

λxy.xzxyλx.x = (λx.(λy.((((xz)x)y)(λx.x))))
≡α (λx.(λv.((((xz)x)v)(λx.x))))
≡α (λu.(λv.((((uz)u)v)(λx.x))))
≡α (λu.(λv.((((uz)u)v)(λw.w))))
= λuv.uzuvλw.w.

The congruence relation is exactly what one expects from identification
of terms if they play the same role. This is made explicit in the sorite
about α-congruence:

Sorite 374 let u and v be terms in L, and let x1, . . . xk be variables in V .
Then

(i) If u ≡α v , then FV (u) = FV (v).

(ii) There exists a term u′ in L such that u ≡α u′ and none of the xi is
bound in u′.

(iii) The congruence relation ≡α on L is an equivalence relation. The set
of equivalence classes is denoted by Λ = L/≡α.

(iv) The congruence relation is λ-compatible.

Proof The proof of claim (i) is again by induction on the term length and on the
length of the sequence of changes of bound variables. We only need to deal with
sequences of length one. For u = λx.w, we use statement (iv) in sorite 372 and
get FV (λy.[y/x]w) = ({y} ∪ (FV (w) − {x})) − {y} = FV (w) − {x}, whereas
FV (λx.w) = FV (w) − {x}. If λx.w is a proper subterm of u, then it may be a
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subterm in an application u = (qt), i.e., λx.w occurs in q or in t, and induction
applies with the subterm q or t. If λx.w occurs in q for u = λy.q, then we again
apply induction since the free variables of u are those of q minus y . This does
not change if q is replaced by a congruent term, and we are done.

Claim (ii) is evident since there are infinitely many variables in V , and we may
produce congruences by eliminating all the xi.

For claim (iii), it is evident that congruence is reflexive and transitive. Let us
show that it is also symmetric. It must be shown that for y ≠ x, if y �∈ FV (u),
then λy.[y/x]u ≡α λx.u. Suppose that x �∈ FV (u). Then [y/x]u = u. So
λy.[y/x]u = λy.u, and the latter yields λx.u = λx.[x/y]u by a change of
the bound variable y . If x ∈ FV (u), then by sorite 372, statement (iv), we have
x �∈ FV ([y/x]u), therefore λy.[y/x]u ≡α λx.[x/y][y/x]u.

We have to show [x/y][y/x]u ≡α u for x ≠ y and y �∈ FV (u). But by
sorite 373, (ii), [x/y][y/x]u = u if y �∈ FV (u) and no bound variable in u
is x or y . Else, if x is bound in u, then [y/x]u = u, and then [x/y]u = u. If
x is free in u, but y is bound in u, then [x/y][y/x]u ≡α u by a mechanical
case-by-case inductive proof on the length of u, which we delegate to the reader.

for claim (iv), suppose that t ≡α s by a change of a bound variable, then this
operation also α-converts λx.t to λx.s, since the operation take place within the
t term. If t ≡α s,u ≡α v , then we have this chain of α-conversions: (tu) ≡α
(su) ≡α (sv), and we are done. �

The last statement in sorite 374 enables the definition of application and
abstraction on the set Λ of term congruence classes. Moreover, substitu-
tion is also defined on congruence classes in the following sense:

Proposition 375 If s ≡α t and u ≡α v , then [s/x]u ≡α [t/x]v . This
implies that substitution is well-defined on congruence classes in Λ.

Proof This proposition is again proved by a case-by-case verification for the
intermediate relations [s/x]u ≡α [t/x]u ≡α [t/x]v . �

43.5 Beta-Reduction

Whereas α-congruence is an equivalence relation, which essentially re-
duces to a change of bound variables, β-reduction has a semantic back-
ground, which has much more dramatic implications for the form of
terms. The essence is that the abstraction λx.u formally captures the
idea of turning u into a function in the variable x, which can be replaced
by a concrete value in an “abstract” formula, and the application (ut)
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captures the idea of evaluating u at the value t. And in the case of an
abstraction, (λx.u)t, this means evaluating the abstract formula λx.u at
the value t. This means replacing all occurrences of x in u by t. In other
words, we are “reducing” the term (λx.u)t to the term [t/x]u, which
results from u by replacing all occurrences of x by t in the way the oper-
ation of substitutions is defined in definition 268.

Definition 271 If a term (λx.u)t occurs in a term v , then its replacement
by [t/x]u in v defines a new term w. We say that w is a β-contraction
of v , or that v contracts to w if w results from v by such a replacement
operation, in symbols: v �1β w. A term (λx.u)t is called a β-redex, while
the term resulting from the operation [t/x]u is called its contractum.
Clearly, the contractum of a β-redex does not uniquely determine the β-
redex in general.

We say that a term v β-reduces to w, in signs: v �β w iff there is a
sequence of terms v = v1, . . . vk = w, with k ≥ 1, such that for each
i = 1,2, . . . k−1, we have either vi ≡α vi+1 or vi �1β vi+1. In other words,
if w results from v by a finite (possibly empty) sequence of changes of
bound variables or contractions.

Sorite 376 With the notations of definition 271, we have these facts:

(i) If v �β w, and v ≡α v′ and w ≡α w′, then v′ �β w′, in other
words: β-reduction induces a (homonymous) relation �β on the set
Λ of congruence classes.

(ii) The relation �β is reflexive and transitive. In other words, the collec-
tion of objects in L (or else in Λ), together with the arrows u �β v ,
defines the structure of a category.

(iii) (Substitution is �β-order preserving) If v �β w, then for any term
t and variable x, we have [t/x]v �β [t/x]w.

(iv) (Substitution decreases free variables) If v �β w, then FV (v) ⊇
FV (w).

(v) If v �β w, then for any term t, we have [v/x]t �β [w/x]t.

Proof Claim (i) is immediate since the chain v �β w can prolonged by the
prepended relation v ′ ≡α v (recall that ≡α is an equivalence relation) and the
appended relation w ≡α w′ to yield a chain v ′ �β w′.

Claim (ii) is obvious: the identity is the identity relation, which is included in ≡α.

We leave the proof of claims (iii)–(v) to the reader. �
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Example 226 Let x,y, z,w be four variables, then

(λx.(λy.xy)z)w �1β [w/x](λy.xy)z

= (λy.wy)z
�1β [z/y]wy

= wz.

Example 227 An example showing that β-reduction need not simplify
terms and may even expand them is the following case:

(λx.xxy)(λx.xxy) �1β (λx.xxy)(λx.xxy)y

�1β (λx.xxy)(λx.xxy)yy

�1β (λx.xxy)(λx.xxy)yyy

�1β . . .

In this case, we say that the term (λx.xxy)(λx.xxy) diverges.

The following, similar, term remains the same after β-contraction, but
since there is always a β-redex, β-reduction does not terminate.

(λx.xx)(λx.xx) �1β (λx.xx)(λx.xx)

�1β (λx.xx)(λx.xx)

�1β (λx.xx)(λx.xx)

�1β . . .

The termination of a sequence of β-contraction is by definition guaran-
teed iff at a certain stage, no β-redex term is left.

Definition 272 A term that contains no β-redex is called a β-normal form
or β-normal. The set of β-normal forms is denoted by β−NF, and for a
β-reduction v �β w with w ∈ β−NF, one says that v has the β-normal
form w.

The term (λx.(λy.xy)z)w from example 226, has a β-normal form wz,
while neither terms from example 227 has no β-normal form. But there
are even worse cases: A term may be β-contracted in different ways such
that in one way, the result never β-normalizes, while in a second way,
β-normalization is reached.
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Example 228 Let x,y, z,w be four variables, then the term q = (λz.w)r
with the diverging term r = (λx.xxy)(λx.xxy), has these β-reductions:

q = (λz.w)r
�1β [r/z]w

= w.

by performing a β-contraction first on the outer β-redex. If β-contraction
is applied first to the r -term at each step in the derivation, then

q = (λz.w)r
�1β (λz.w)(ry)

�1β (λz.w)(ryy)

�1β . . . ,

thus, in this case, q diverges. The reason this happens is, of course, that
in λz.w, the “argument” z is not needed for the evaluation of the “body”
w. Therefore there is no need to reduce r first and get stuck in an infinite
process.

It has become customary to distinguish two concrete strategies for reduc-
ing λ-terms: applicative order and normal order. Applicative order can be
stated concisely as leftmost innermost, i.e., the next redex to consider is
the one at the deepest level. If there are several of them at the same level,
ties are broken by choosing the leftmost one. Normal order reduction in
contrast is leftmost outermost. Here the next redex to choose for reduc-
tion is the one at the highest level, ties being broken again by choosing
the leftmost. The distinguishing property is that, if a λ-term has a nor-
mal form, normal order will find it (hence the name), applicative order,
in contrast, may diverge for the same term. The disadvantage of normal-
order is that the terms in the derivation may grow fast in size. Applicative
order reduction, if it doesn’t diverge, generally performs better in this re-
gard. In Example 228, the first reduction uses normal order, the second
applicative order. Some programming languages, like Haskell, implement
a version of normal order called lazy evaluation, however, most, like SML
and derivates of C implement applicative order, known as strict evalua-
tion in this context. See the excellent [1] for further details.

Despite these subtle variants of reduction, the normal form of a term, if
it exists, is unique in Λ, i.e., two normal forms of the same term are α-
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congruent. This is what one would expect from a fairly reasonable theory
of functional expressions. Here is one of the main results of λ-calculus:

Proposition 377 (Church-Rosser Theorem for β-Reduction) If for three
terms t,u,v ∈ L, we have t �β u and t �β v , then there is a term s such
that u �β s and v �β s. In other words, each diagram

t

u

�β

� v

�β

�

in the category L can be completed to a square

t

u

�β

� v

�β

�

s

�β
�

�β
�

of �β-relations.

It is however not claimed that s is the colimit of the diagram. But it can be
shown2 that s can be so chosen as to be the colimit of the diagram, which
means that the category L (and Λ) has pushouts.3

Proof The proof of this classical result is quite involved, splitting in a number
of subcases, we cannot give it here and refer to the proof given in appendix 1
of [16]. The existence of a colimit s is proved in Exercise 12.4.4 in [4]. �

This theorem implies what we were looking for:

Corollary 378 If the term u has two β-normal forms t and s, then they
are α-congruent. In other words: In the category Λ, any term t has at

most one arrow t
�β
�→ w with β-normal codomain w, which is then called

the β-normal form of t; we denote it by β(t).
2 Exercise 12.4.4 in [4].
3 The pushout is the colimit of the dual diagram (reversed arrows) to a fiber

product diagram. Our diagram is precisely of this type.
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Proof If we apply the Church-Rosser theorem 377 to the two arrows u �β t and
u �β s, then we obtain a pair of arrows t �β w and s �β w. But then each of
these arrows can only contain ≡α relations, and therefore s ≡α t. �

An even stronger form of the Church-Rosser theorem is true. It is about
terms which are connected by any sequence of β-reduction arrows, where
the direction may be from a term to its contractum or vice-versa.

Definition 273 The relation of β-equality is the equivalence relation =β
on L (or on Λ) generated by the relation �β. If t =β s, we say that t is
β-convertible to s.

The following is immediate:

Sorite 379 If t, v,w are terms, then v =β w implies [v/x]t =β [w/x]t
and [t/x]v =β [t/x]w.

Proposition 380 (Church-Rosser Theorem for β-Conversion) For terms
v,w ∈ L, we have v =β w iff there is a term t such that v �β t, and
w �β t. So the horizontal line in the following diagram can always be
completed to a triangle with �β arrows (which realize a particularly short
instance of their =β-relation):

v
=β

w

t

�β
�..
.....

.....
.....

.....
.....

.....

�β

................................�

Proof We prove the theorem by induction on the minimal length of a chain
of ≡α or �1β relations defining v =β w. If only ≡α are needed, the claim is
trivial. We may suppose that only �1β relations intervene, and that there are
n + 1 such relations connecting v and w, say by v = v0 �1β v1 . . . vn = w or
w = v0 . . . vn−1 �1β vn = v , depending on whether there is an arrow starting
at v or terminating at v . In the first case, by induction, there is a t such that
v1 �β t and w �β t, and the composition v �1β v1 �β t, together with w �β t
does the job. For the second case, by induction, there are two arrows w �β s
and vn−1 �β s and, according the the Church-Rosser theorem 377 for the pair
vn−1 �β s and vn−1 �β v , two arrows s �β t and v �β t, so that the composed
arrow w �β s �β t does the job for w. �
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Corollary 381 If we have v =β t where t is β-normal, then v �β t. If both,
v and t, are β-normal, then v =β t implies v ≡α t, i.e., on normal terms
in Λ, β-conversion classes reduce to equality (congruence classes).

Proof This is immediate from proposition 380 and from the fact that normality
excludes contractions. �

43.6 The λ-Calculus as a Programming Language

The λ-calculus, even its pure form, is a powerful formalism to describe
actual functions. In this section we define a few necessary constructs
within the λ-calculus, such as natural numbers with the corresponding
arithmetic, Booleans, conditionals (if . . . then . . . else), and recursion.

We begin with definition of the Booleans true and false.

true = λx.λy.x,
false = λx.λy.y.

Informally true and false are functions taking two arguments, true re-
turns its first argument, false its second argument. This is exactly what
we need to define the conditional:

test = λx.λy.λz.xyz.

Here is an example of its use:

test true uv = (λx.λy.λz.xyz) true uv

�β (λy.λz.true yz)uv

�β (λz.true uz)v

�β true uv

= (λx.λy.x)uv
�β (λy.u)v

�β u.

Likewise test false uv = v .

The definition of natural numbers follows the Peano axioms. Since in pure
λ-calculus there are no constants, the natural number 0 is defined to be
the λ-term
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0 = λx.λy.y
= false.

More generally, if for two λ-terms x and y and a natural k, we define

x0y = y,
xk+1y = x(xky),

then we have k = λx.λy.xky for every natural number k. This k is called
the Church numeral associated with the natural number k.

The successor operation is

succ = λn.λx.λy.x(nxy).

This looks rather abstract, but let us see what succ 0 reduces to:

succ 0 = (λn.λx.λy.x(nxy))(λx.λy.y)
�1β λx.λy.x((λx.λy.y)xy)

�1β λx.λy.x((λy.y)y)

�1β λx.λy.xy

= 1.

In the same way, we have 2 = λx.λy.x(xy) = succ 1. A useful operation
is

iszero = λx.((x(λy.false)) true)

which applied to 0 reduces to true and to false for k with k > 0.

Next we define addition:

plus = λu.λv.λx.λy.ux(vxy).

Exercise 207 Perform complete reductions of iszero 0 and iszero 2. Re-
duce the λ-term plus 3 2 and check that the result is effectively 5. Use
plus to define times.

Using similar principles, it is possible, but a little more intricate, to define
pred, such that pred x = x − 1, if x > 0, and pred x = 0, if x = 0. See [31]
for details.

There is no explicit provision in λ-calculus for recursion. Interestingly,
there is a λ-term that effectively computes the fixpoint of a function:
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Y = λf .(λx.f (λy.xxy))(λx.f(λy.xxy)).

This so-called Y -combinator is hard to read, and even harder to under-
stand. However, it is sufficient here to note that its essential property is
that g = Yf computes the fixpoint g of f , i.e., g =β fg or Yf =β f(Yf).

Example 229 Let us construct the λ-term for the factorial function using
the Y -combinator. The factorial contains a recursive call to itself, so the
trick is to define a function that not only takes a numerical argument, but
as a further argument the function that is to be called in recursion.

g = λf .λx.(test (iszero x) 1 (times x (f (pred x)))).

It is clear that if we had a “real” factorial fact, then g fact would again
be the “real” factorial. This, however, just means that we look for the
solution fact of fact = g fact, and this is just what the Y -combinator
provides. Thus:

factorial = Yg.

Exercise 208 Calculate a reduction of factorial 2. Be warned: This is
a long and wearisome exercise. You may replace terms of the form
iszero x, times x y and pred x immediately by their results.

43.7 Recursive Functions

The lambda calculus provides us with a formalism for representing all
partial recursive functions, “representation” being understood in a pre-
cise technical sense to be explained in section 43.8. Recursive functions
are a type of functions which can be defined using a recursive rule, apply-
ing the recursion theorem (proposition 55 in volume 1), and restricting
the domains and codomains to powers Nd of the set of natural numbers.
In other words, it is all what you might expect from doing “strictly natu-
ral” arithmetic. To this end, we consider the set NF = ⋃

d∈N Sets(Nd,N).
The sets of recursive functions we shall consider are subsets of NF .
Here is their definition.

Definition 274 The set PF of primitive recursive functions is the smallest
subset of NF containing:
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(i) the elementary functions, i.e., the

Zero function:
z : N→ N : n� 0,

Successor function:

s : N→ N : n� n+ 1.

For each positive power Nk and each index 1 ≤ i ≤ k,

the projection
pki : Nk → N : (x1, . . . xk)� xi.

(ii) (Composition) If fi : Nn → N, for i = 1,2, . . .m, and g : Nm → N are
in PF , then so is

g ◦ (f1, f2, . . . fm) : Nn → N : x � g(f1(x), f2(x), . . . fm(x)),

where (f1, f2, . . . fm) : Nn → Nm is the universal arrow guaranteed
by the universal property of the Cartesian product.

(iii) (Primitive recursion) If g : Nn → N and h : Nn+2 → N are in PF ,
then the function r : Nn+1 → N is also in PF , where r is defined by

r(x1, . . . xn,0) = g(x1, . . . xn),

r(x1, . . . xn, y + 1) = h(x1, y, r(x1, . . . xn, y)).

In the special case n = 0, g : N0 → N is a constant value in g ∈ N
and we have h : N2 → N, and r : N→ N is defined by

r(0) = g,
r(y + 1) = h(y, r(y)).

Example 230 Using the constructs for primitive recursion, we can now
define the sum plus of natural numbers:

plus(x,0) = g(x),
plus(x,y + 1) = h(y,plus(x,y)).

This is an instance of the schema (iii) of primitive recursion with n = 1.
We still have to define g and h:

g(x) = p1
1(x), h(y, z) = s(p2

2(y, z)).
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Exercise 209 Show that the following functions are primitive recursive:
natural multiplication times : N×N→ N : (x,y)� x ·y , and the factorial
fact : N→ N : x � x!.

Example 231 The function P : N → N with P(n) = 1 iff n is prime, and
P(n) = 0 else (the characteristic function of the set of natural primes) is
in PF .

Despite their simple structure, primitive recursive functions are already
quite powerful, as the examples suggest. There are, however, functions
which are not in PF . One such function is the Ackermann function A :
N2 → N. It is recursively defined as follows:

A(0,0) = 1,

A(0,1) = 2,

A(0, y + 2) = y + 4,

A(x + 1,0) = A(x,1),
A(x + 1, y + 1) = A(x,A(x + 1, y)).

This is a recursive definition which is not of the primitive recursive form.
This does not mean, of course, that no primitive recursive definition for A
can be found. It can however be shown that A �∈ PF and that, therefore,
there is no primitive recursive form for A. The larger set PRF of par-
tial recursive functions encompasses PF and additionally includes this
type of functions. Its definition requires a slightly more general set of
domains, i.e., we admit that a function f : D → N has a domain D which
is a proper subset D ⊂ Nd. This makes things a bit more complicated,
since composition of only partially defined functions (not for all tuples)
is not always defined. We work around this complication by introducing
a special sign ⊥ �∈ N (also called bottom). Then we consider the larger set
N⊥ = {⊥} ∪ N. We now look at the subset NF⊥ ⊂

⋃
d∈N Sets(Nd⊥,N⊥)

consisting of all set functions f : Nd⊥ → N⊥ such that f(z1, . . . zd) = ⊥
if at least one of the arguments zi is ⊥. Then for such an f , its domain
D is the complement in Nd⊥ of the fiber f−1(⊥) over ⊥. Observe that all
tuples with at least one ⊥ are contained in this fiber. It also guarantees
that if the image f(x1, . . . xn) of an argument (x1, . . . xn) ∈ Nn is not in
the domain of a second function g, then the argument is also in the fiber
of (g ◦ f)−1(⊥), i.e., the composition is not defined in x1, . . . xn.
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Definition 275 The set PRF of partial recursive functions is the smallest
subset PRF ⊂NF⊥ which contains these functions:

(i) (Elementary functions) It contains all elementary functions intro-
duced in definition 274.

(ii) (Composition) If fi : Nn⊥ → N⊥, for i = 1,2, . . .m, and g : Nm⊥ → N⊥
are in PRF , then so is

g ◦ (f1, f2, . . . fm) : Nm⊥ → N⊥ : x � g(f1(x), f2(x), . . . fm(x)),

where (f1, f2, . . . fm) : Nn⊥ → Nm⊥ is the universal arrow guaranteed
by the universal property of the Cartesian product.

(iii) (Primitive recursion) If g : Nn⊥ → N⊥ and h : Nn+2⊥ → N⊥ are in PRF ,
then the function r : Nn+1⊥ → N⊥ is also in PRF , where r is defined
as follows:

r(x1, . . . xn,0) = g(x1, . . . xn),

r(x1, . . . xn, y + 1) = h(x1, y, r(x1, . . . xn, y)).

(iv) (Minimization) If f : Nn+1⊥ → N⊥ is partially recursive, then so is

µ(f) : Nn⊥ → N⊥,

µ(f )(x1, . . . xn) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x if f(x1, . . . xn, x) = 0

and f(x1, . . . xn, y) ≠ ⊥,0 for all u < x,

⊥ else.

Exercise 210 Show that there is a canonical embedding PF ⊂ PRF .

Exercise 211 Show that the Ackermann function is in PRF .

43.8 Representation of Partial Recursive Functions

This section merges the theory of partial recursive functions and lambda
calculus in the sense that one can characterize partial recursive functions
by the properties of β-normalization of λ-terms.

We have already defined Church numerals k, where k is a natural number.
If Ψ is any term, and if k1, k2, . . . kr are Church numerals, then we have
the term Ψk1, k2, . . . kr which by the left association convention equals
the application chain (. . . ((Ψk1)k2) . . . kr ).
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Definition 276 Let ψ : Nm⊥ → N⊥ be a partial recursive function. Then a
term Ψ ∈ L is said to represent ψ iff for all (k1, k2, . . . km) ∈ Nm,

• if ψ(k1, k2, . . . km) = ⊥ (i.e., ψ is undefined for k1, k2, . . . km), then
Ψk1, k2, . . . km has no normal form;

• if ψ(k1, k2, . . . km) = k ∈ N (i.e., ψ is defined for k1, k2, . . . km), then
β(Ψk1, k2, . . . km) exists and is equal to k.

Finally we have the following significant connection between partial re-
cursive functions and the power of lambda calculus:

Proposition 382 Every partial recursive functionψ can be represented by
a λ-term Ψ .

Proof For a proof, we refer to [21]. �
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Further Reading

Calculus. Both books Calculus [39] and Calculus on Manifolds [38] by
Michael Spivak are among the most brilliantly written books on modern
calculus, the latter being a concise and substantial introduction to the
essential theorems of calculus. Advanced Calculus [23] by Lynn Loomis
and Shlomo Sternberg is a comprehensive treatment of calculus, ODEs
and calculus of manifolds, including classical mechanics.

Numerics. The book on numerical mathematics [36] by Hans Rudolf
Schwarz is a comprehensive and computer oriented reference. Ordinary
Differential Equations by Fred Brauer and John Nohel is not only a reli-
able reference to the theory of ODEs, but also includes some chapters on
numerics of ODEs, such as Runge-Kutta methods.

Categories. Saunders Mac Lane’s Categories for the Working Mathemati-
cian [26] is a standard reference written by one of the fathers of category
theory. Benjamin Pierce’s little book Basic Category Theory for Computer
Scientists [30] is especially tailored to computer scientists.

Splines in all variants are a workhorse in computer graphics, espe-
cially CAD (computer aided design) applications. Many books on numer-
ical mathematics include a discussion of splines. The encyclopedic vol-
ume Computer Graphics: Principles and Practice by James Foley and col-
leagues [11] provides many details on theoretical and implementation
issues.

Fourier Theory. Discussions of Fourier theory is generally found in any
book on numerical mathematics (see above). Since especially the Fast
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Fourier Transform appears throughout digital signal processing, a book
on DSP like Richard Lyons’ [25] will be useful for the technical details.

Wavelets. Wavelet Transforms [32] by Raghuveer Rao and Ajit Bopar-
dikar is a good reference to the theory of wavelets and includes many
algorithms and examples. The article Fourier Analysis and Wavelet Anal-
ysis [41] by James Walker provides an excellent comparison of Fourier
against Wavelets algorithms.

Fractals. The approach used in this book is comprehensively developed
in Michael Barnsley’s Fractals Everywhere [5]. It is mathematically com-
plete and beautifully presented. For a wider scope see [29].

Neural Nets. Introduction to the Theory of Neural Computation [13] by
John Hertz, Andreas Krogh and Richard Palmer offers a thorough treat-
ment of a large variety of neural networks.

Probability Theory. The book on discrete structures [35] by Thomas
Schickinger and Angelika Steger is a good reference focused on discrete
probability and statistics, including many useful exercises. For a thor-
oughly mathematical treatment, refer to Kai Lai Chung’s A Course in Prob-
ability Theory [8].

Lambda Calculus. Any text on functional programming worth its sub-
ject features an introduction to the λ-calculus, for example the one by
Field and Harrison [10]. An accessible dedicated work is Hindley’s and
Seldin’s Introduction to combinators and λ-calculus [16]. The classical
treatise is Barendregt’s comprehensive The Lambda Calculus [4].
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language functor 149
Laplace principle 285
Lawvere, William 139
layer 270

hidden - 271
input - 271
output - 271

lazy evaluation 323
learning 275

rate 274
supervised - 276
unsupervised - 276

Lebesgue, Henri Léon 74
left

adjoint 159
identity 141
inverse 142

leftmost
innermost 323
outermost 323

Leibniz criterion 22
Lie

bracket 104, 123
derivative 101, 104
product 98

limi→∞ ci 9
limy→x f(y) 39
lim(D) 156
limit 38, 156

of a function 39
one-sided - 88

LinR 146
LinR(?, X) 149
linear

ODE 117
spline 165

Lipschitz condition 116
LISP 313
local

fundamental theorem of ODEs 116

information flow 113
integral curve 114
truncation error 128

locally Lipschitz 116
log 27
loga 29
logarithm

decadic - 29
for basis a 29
natural - 27

logic
fuzzy - 9
spatial - 4
three-valued - 8
two-valued - 8

logical
algebra 8
function 262

lower sum 76

M
MK(f ) 76
mK(f ) 76
M(x0, f , δ) 83
m(x0, f , δ) 83
Mac Lane, Saunders 139
Mallat, Stéphane 226
Mandelbrot, Benoit 231
manifold, differentiable 70
maximum likelihood estimate 310
Maxwell, James Clerk 37
McCulloch-Pitts neuron 261
MCPercn,θ 261
mean value theorem 49

of integral calculus 80
measure zero 81
median 300
Menger sponge 248
methodus fluxionum 73
Metr 146
metric 4
Mexican hat wavelet 216
Meyer wavelet 216
Meyer, Yves 226
minimization 331
Mon 145



Index 351

mono 142
monomorphism 142
monotonously decreasing 23
Monty Hall problem 287
Morlet wavelet 216
Morlet, Jean 215
morphism 141

elementary - 264
of σ -algebras 281
of cocones 156
of cones 156
of contractions 236

motion planning 121
MSA 226
multiplication formula 289
multiscale analysis 226

N
N⊥ 330
N 264
Nn(K) 245
Nθ 267
Nw 259
N (K, ε) 244
N(µ,σ 2) 296
n-layered

digraph 270
perceptron 271

n-stream 255
domain 255
eventually constant - 255
initially constant - 255
periodic - 255
shifted - 255

Nat(F,G) 152
natural 152

logarithm 27
transformation 152

naturality of Hausdorff metric 235
NC 84
network, neural 253
neural

category 264
network 253

feed-forward - 271
recurrent - 271

neuron 253
formal - 258
input - 259
McCulloch-Pitts - 261
output - 265

Newton’s method 111
Newton, Isaac 37
NF 328
norm 4, 90, 217
normal distribution 296
normal order reduction 323
NOT 262
numerical

invariant 243
mathematics 125
solutions 125

NURBS 180

O
o(f ,x0) 83
O(R, n) 21
object 141

final - 153
initial - 153
universal - 153

occurrence of a variable 315
ODE 114
one-sided limit 88
open set 7, 106
Open(X,d) 106
opposite category 147
OR 262
ordinary differential equation 114
Oresme, Nicholas 37
orthonormal 218

basis 219
wavelet 222

oscillation 83
outN 258
outcome 280
output 258

function 258
layer 271
neuron 265
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P
Pλ 294
P(A|B) 286
Part(a, b) 74
Part(a., b.) 74
partial

derivative 51
differential equation 114

partial recursive function 330
partition 74
Pascal triangle 25
path category 144
PDE 114
Peano axioms 326
Percn,θ,σ 261
perceptron 261
n-layered - 271
convergence theorem 269
learning algorithm 268

periodic n-stream 255
PF 328
phase portrait 120
π 26
Picard-Lindelöf iteration procedure

117, 126
plus 329
plus 327
Poisson distribution 294
polar coordinate representation 27
positive definiteness 105
power series 24
pred 327
PRF 330
primitive

function 88
recursion 329, 331
recursive function 328

PRNG 296
probability

measure 283
space 284

process diagram 258
projection 329
pseudo-random number generator

(PRNG) 296
punctured 38

pure λ-calculus 314
pushout 324

Q
quadratic spline 165
quincunx 308

R
Rn 54
R(a., b.) 79
Rand(A) 283
random variable 282
n-dimensional - 282, 306
continuously distributed - 295
discrete - 282
symmetric - 302

range of sample series 300
rectangular distribution 295
recurrent neural network 271
recursion theory 110
refinement

common - 74
relation 74

relative topology 15
remainder, n-th - 54
representation of partial recursive

functions 332
retraction 143
Riemann integral 79
Riemann, Bernhard 70, 73
right

adjoint 159
identity 141
inverse 143

Rings 145
RK 130
robot motion 122
robotics 121
roots of a function 111
Rosenblatt, Frank 272
round-off error 127
Runge-Kutta method 126, 130

classical fourth-order - 132

S
SD 265
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SwN 259
saddle point 53
sample series 299
saturated 271
scalar product 4, 90
Schauder basis 217
Scheme 313
scheme, diagram 150
Schuster, Seymour 35
Schwarz inequality 90
scope of a variable 315
section 142
self-organization 276
semigroup 237
semiring 237
sensorial input 259
Sequ(R, n) 21
sequence

bounded - 10
Cauchy - 9, 107
convergent - 9, 106
divergent - 9

series 21
alternating - 22
geometric - 22
harmonic - 22
power - 24
sample - 299

set
Borel - 281
closed - 7
interval - 74
of cubes 75
of values 282
open - 7, 106

Sets 143
shift operator 255
shifted n-stream 255
Sierpinski 240
Sierpinski

carpet 240
dimension 247

gasket 248
σ 305
σ -Alg 281
σ -algebra 279

σ -algebra
generated by E 281

sigmoid function 261
simplex

affine - 162
standard - 161

sin 27
sine function 27
SML 313, 323
space

Banach 116
dice - 280
event - 280
Hilbert 217
probability - 284
state - 258

spline 161
cubic - 165
curve 165
function 165
linear - 165
quadratic - 165
surface 165

Sponge 248
standard

deviation 300, 305
normal distribution 296
simplex 161

state 259
space 258

of a neural network 265
statistics, inferential 310
stereographic projection 30
stream 255

constant - 255
domain 255

strict evaluation 323
subsequence 11
subspace, Hilbert 218
substitution 316

canceling 317
commutation 317
composition 317
inversion 317

succ 327
successor function 329
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sum
lower - 76
map 237
upper - 76

supervised learning 276
supp(ψ) 215
support 215
surface, Bézier 178, 179
symmetric random variable 302
synaptic weight 254

T
T 8
Tf 42
Tm(K) 165
T rf 49
TU 42
tan 64
tangent 42

bundle 42
function 64
functor 150
map 42

Taylor
approximation 126
polynomial 54

Taylorx0
f(x) 55

Taylornx0
f(x) 54

Taylor’s formula 55
tensor product 176

sign 177
spline 176

test 326
theoretical computer science 139
three-valued logic 8
threshold 261
Thru 261
Thruk 267
time delay 274
time-dependent

data stream 254
vector field 115

Top(X, Y) 16
topology 8, 106

relative - 15
topos 139

torus 70
transformation, natural 152
triangle inequality 90, 106
true 326
truncation error 128
Turing adjunction 159
Turing machine 313
two-scale

equation 223
relation 223

two-valued logic 8
type of functions 165

U
U(f , P) 76
unconditionally convergent 26
uniform
B-spline 181
distribution 295
form 117

universal
construction 140
object 153

unsupervised learning 276
upper sum 76

V
Vn 223
vn 223
V r (U) 99
VX 282
V(f) 65
V(t) 315
Var(X) 305
variable 314

bound - 315
free - 315
occurrence of - 315
scope of - 315

variance 305
empirical - 300

vector
data - 299
field 97, 98

velocity field 113
vol(I) 74
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vol(K) 75
vol(S) 85
volume 74, 85

of a cube 75

W
Wn 223
wavelet 215, 220

coefficient 219, 220
Haar - 215
Mexican hat - 216
Meyer - 216
Morlet - 216
orthonormal - 222

weight matrix 271

X
XOR 262, 269

Y
Y -combinator 328

Z
zero

fiber 65
function 329

Zwischenwertsatz 19
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