

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Guerino Mazzola • Gérard Milmeister •
Jody Weissmann

Comprehensive Mathematics
for Computer Scientists 1
Sets and Numbers, Graphs and Algebra,
Logic and Machines, Linear Geometry

With 118 Figures

(Second Edition)

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer-Verlag. Violations are liable for
prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

The use of general descriptive names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: Erich Kirchner, Heidelberg
Typesetting: Camera ready by the authors

Guerino Mazzola
Gérard Milmeister
Jody Weissmann

Department of Informatics
University Zurich
Winterthurerstr. 190
8057 Zurich, Switzerland

The text has been created using LATEX 2ε . The graphics were drawn using Dia, an
open-source diagramming software. The main text has been set in the Y&Y Lucida
Bright type family, the headings in Bitstream Zapf Humanist 601.

Library of Congress Control Number: 2006929906

ISBN 3-540-36873-6 Springer-Verlag Berlin Heidelberg New York

springer.com

 Printed on acid-free paper SPIN: 11803911 40/3142/SPi - 543210

ISBN (First Edition) 3-540-20835-6

Mathematics Subject Classification (2000): 00A06

© Springer-Verlag Berlin Heidelberg 2006

Preface to the Second Edition

A second edition of a book is a success and an obligation at the same

time. We are satisfied that a number of university courses have been orga-

nized on the basis of the first volume of Comprehensive Mathematics for

Computer Scientists. The instructors recognized that the self-contained

presentation of a broad specturm of mathematical core topics is a firm

point of departure for a sustainable formal education in computer sci-

ence.

We feel obliged to meet the valuable feedback of the responsible in-

structors of such courses, in particular of Joel Young (Computer Science

Department, Brown University) who has provided us with numerous re-

marks on misprints, errors, or obscurities. We would like to express our

gratitude for these collaborative contributions. We have reread the entire

text and not only eliminated identified errors, but also given some addi-

tional examples and explications to statements and proofs which were

exposed in a too shorthand style.

A second edition of the second volume will be published as soon as the

errata, the suggestions for improvements, and the publisher’s strategy

are in harmony.

Zurich, Guerino Mazzola

June 2006 Gérard Milmeister

Jody Weissmann

Preface

The need for better formal competence as it is generated by a sound

mathematical education has been confirmed by recent investigations by

professional associations, but also by IT opinion leaders such as Niklaus

Wirth or Peter Wegner. It is rightly argued that programming skills are a

necessary but by far not sufficient qualification for designing and control-

ling the conceptual architecture of valid software. Often, the deficiency in

formal competence is compensated by trial and error programming. This

strategy may lead to uncontrolled code which neither formally nor ef-

fectively meets the given objectives. According to the global view such

bad engineering practice leads to massive quality breakdowns with cor-

responding economical consequences.

Improved formal competence is also urged by the object-oriented para-

digm which progressively requires a programming style and a design

strategy of high abstraction level in conceptual engineering. In this con-

text, the arsenal of formal tools must apply to completely different prob-

lem situations. Moreover, the dynamics and life cycle of hard- and soft-

ware projects enforce high flexibility of theorists and executives on all

levels of the computer science academia and IT industry. This flexibil-

ity can only be guaranteed by a propaedeutical training in a number of

typical styles of mathematical argumentation.

With this in mind, writing an introductory book on mathematics for com-

puter scientists is a somewhat delicate task. On the one hand, computer

science delves into the most basic machinery of human thought, such

as it is traced in the theory of Turing machines, rewriting systems and

grammars, languages, and formal logic. On the other hand, numerous ap-

plications of core mathematics, such as the theory of Galois fields (e.g.,

for coding theory), linear geometry (e.g., for computer graphics), or dif-

ferential equations (e.g., for simulation of dynamic systems) arise in any

VIII Preface

relevant topic of computational science. In view of this wide field of math-

ematical subjects the common practice is to focus one’s attention on

a particular bundle of issues and to presuppose acquaintance with the

background theory, or else to give a short summary thereof without any

further details.

In this book, we have chosen a different presentation. The idea was to set

forth and prove the entire core theory, from axiomatic set theory to num-

bers, graphs, algebraic and logical structures, linear geometry—in the

present first volume, and then, in the second volume, topology and cal-

culus, differential equations, and more specialized and current subjects

such as neural networks, fractals, numerics, Fourier theory, wavelets,

probability and statistics, manifolds, and categories.

There is a price to pay for this comprehensive journey through the over-

whelmingly extended landscape of mathematics: We decided to omit

any not absolutely necessary ramification in mathematical theorization.

Rather it was essential to keep the global development in mind and to

avoid an unnecessarily broad approach. We have therefore limited ex-

plicit proofs to a length which is reasonable for the non-mathematician.

In the case of lengthy and more involved proofs, we refer to further read-

ings. For a more profound reading we included a list of references to

original publications. After all, the student should realize as early as pos-

sible in his or her career that science is vitally built upon a network of

links to further knowledge resources.

We have, however, chosen a a modern presentation: We introduce the

language of commutative diagrams, universal properties and intuitionis-

tic logic as advanced by contemporary theoretical computer science in

its topos-theoretic aspect. This presentation serves the economy and el-

egance of abstraction so urgently requested by opinion leaders in com-

puter science. It also shows some original restatements of well-known

facts, for example in the theory of graphs or automata. In addition, our

presentation offers a glimpse of the unity of science: Machines, formal

concept architectures, and mathematical structures are intimately related

with each other.

Beyond a traditional “standalone” textbook, this text is part of a larger

formal training project hosted by the Department of Informatics at the

University of Zurich. The online counterpart of the text can be found

on http://math.ifi.unizh.ch. It offers access to this material and in-

cludes interactive tools for examples and exercises implemented by Java

Preface IX

applets and script-based dynamic HTML. Moreover, the online presenta-

tion allows switching between textual navigation via classical links and a

quasi-geographical navigation on a “landscape of knowledge”. In the lat-

ter, parts, chapters, axioms, definitions, and propositions are visualized

by continents, nations, cities, and paths. This surface structure describes

the top layer of a three-fold stratification (see the following screenshot of

some windows of the online version).

On top are the facts, below, in the middle layer, the user will find the

proofs, and in the third, deepest stratum, one may access the advanced

topics, such as floating point arithmetic, or coding theory. The online

counterpart of the book includes two important addenda: First, a list of

X Preface

errata can be checked out. The reader is invited to submit any error en-

countered while reading the book or the online presentation. Second, the

subject spectrum, be it in theory, examples, or exercises, is constantly up-

dated and completed and, if appropriate, extended. It is therefore recom-

mended and beneficial to work with both, the book and its online coun-

terpart.

This book is a result of an educational project of the E-Learning Center

of the University of Zurich. Its production was supported by the Depart-

ment of Informatics, whose infrastructure we were allowed to use. We

would like to express our gratitude to these supporters and hope that

the result will yield a mutual profit: for the students in getting a high

quality training, and for the authors for being given the chance to study

and develop a core topic of formal education in computer science. We

also deeply appreciate the cooperation with the Springer Publishers, es-

pecially with Clemens Heine, who managed the book’s production in a

completely efficient and unbureaucratic way.

Zurich, Guerino Mazzola

February 2004 Gérard Milmeister

Jody Weissmann

Contents

I Sets, Numbers, and Graphs 1

1 Fundamentals—Concepts and Logic 3

1.1 Propositional Logic . 4

1.2 Architecture of Concepts . 8

2 Axiomatic Set Theory 15

2.1 The Axioms . 17

2.2 Basic Concepts and Results . 20

3 Boolean Set Algebra 25

3.1 The Boolean Algebra of Subsets . 25

4 Functions and Relations 29

4.1 Graphs and Functions . 29

4.2 Relations . 41

5 Ordinal and Natural Numbers 45

5.1 Ordinal Numbers . 45

5.2 Natural Numbers . 50

6 Recursion Theorem and Universal Properties 55

6.1 Recursion Theorem . 56

6.2 Universal Properties . 58

6.3 Universal Properties in Relational Database Theory 66

7 Natural Arithmetic 73

7.1 Natural Operations . 73

7.2 Euclid and the Normal Forms . 76

8 Infinities 79

8.1 The Diagonalization Procedure . 79

XII Contents

9 The Classical Number Domains Z, Q, R, and C 81

9.1 Integers Z . 82

9.2 Rationals Q . 87

9.3 Real Numbers R . 90

9.4 Complex Numbers C . 102

10 Categories of Graphs 107

10.1 Directed and Undirected Graphs . 108

10.2 Morphisms of Digraphs and Graphs . 114

10.3 Cycles . 125

11 Construction of Graphs 129

12 Some Special Graphs 137

12.1n-ary Trees . 137

12.2 Moore Graphs . 139

13 Planarity 143

13.1 Euler’s Formula for Polyhedra . 143

13.2 Kuratowski’s Planarity Theorem . 147

14 First Advanced Topic 149

14.1 Floating Point Arithmetic . 149

14.2 Example for an Addition . 154

II Algebra, Formal Logic, and Linear Geometry 157

15 Monoids, Groups, Rings, and Fields 159

15.1 Monoids . 159

15.2 Groups . 163

15.3 Rings . 171

15.4 Fields . 177

16 Primes 181

16.1 Prime Factorization . 181

16.2 Roots of Polynomials and Interpolation 186

17 Formal Propositional Logic 191

17.1 Syntactics: The Language of Formal Propositional Logic . . 193

17.2 Semantics: Logical Algebras. 196

17.3 Signification: Valuations . 200

17.4 Axiomatics . 203

Contents XIII

18 Formal Predicate Logic 209

18.1 Syntactics: First-order Language . 211

18.2 Semantics: Σ-Structures . 217

18.3 Signification: Models . 218

19 Languages, Grammars, and Automata 223

19.1 Languages . 224

19.2 Grammars . 229

19.3 Automata and Acceptors . 243

20 Categories of Matrixes 261

20.1 What Matrixes Are . 262

20.2 Standard Operations on Matrixes . 265

20.3 Square Matrixes and their Determinant 271

21 Modules and Vector Spaces 279

22 Linear Dependence, Bases, and Dimension 287

22.1 Bases in Vector Spaces . 288

22.2 Equations . 295

22.3 Affine Homomorphisms . 296

23 Algorithms in Linear Algebra 303

23.1 Gauss Elimination . 303

23.2 The LUP Decomposition . 307

24 Linear Geometry 311

24.1 Euclidean Vector Spaces . 311

24.2 Trigonometric Functions from Two-Dimensional Rotations 320

24.3 Gram’s Determinant and the Schwarz Inequality 323

25 Eigenvalues, the Vector Product, and Quaternions 327

25.1 Eigenvalues and Rotations . 327

25.2 The Vector Product . 331

25.3 Quaternions . 333

26 Second Advanced Topic 343

26.1 Galois Fields . 343

26.2 The Reed-Solomon (RS) Error Correction Code 349

26.3 The Rivest-Shamir-Adleman (RSA) Encryption Algorithm . 353

A Further Reading 357

XIV Contents

B Bibliography 359

Index 363

Volume II

III Topology and Calculus

Limits and Topology, Differentiability, Inverse and Implicit Func-

tions, Integration, Fubini and Changing Variables, Vector Fields,

Fixpoints, Main Theorem of ODEs

IV Selected Higher Subjects

Numerics, Probability and Statistics, Splines, Fourier, Wavelets,

Fractals, Neural Nets, Global Coordinates and Manifolds, Cate-

gories, Lambda Calculus

PART I

Sets, Numbers, and Graphs

CHAPTER 1

Fundamentals—

Concepts and Logic

Die Welt ist alles, was der Fall ist.

Ludwig Wittgenstein

“The world is everything that is the case” — this is the first tractatus in

Ludwig Wittgenstein’s Tractatus Logico-Philosophicus.

In science, we want to know what is true, i.e., what is the case, and what is

not. Propositions are the theorems of our language, they are to describe

or denote what is the case. If they do, they are called true, otherwise they

are called false. This sounds a bit clumsy, but actually it is pretty much

what our common sense tells us about true and false statements. Some

examples may help to clarify things:

“This sentence contains five words”

This proposition describes something which is the case, therefore it

is a true statement.

“Every human being has three heads”

Since I myself have only one head (and I assume this is the case with

you as well), this proposition describes a situation which is not the

case, therefore it is false.

In order to handle propositions precisely, science makes use of two fun-

damental tools of thought:

4 Fundamentals—Concepts and Logic

• Propositional Logic

• Architecture of Concepts

These tools aid a scientist to construct accurate concepts and to formu-

late new true propositions from old ones.

The following sections may appear quite diffuse to the reader; some

things will seem to be obviously true, other things will perhaps not make

much sense to start with. The problem is that we have to use our natural

language for the task of defining things in a precise way. It is only by

using these tools that we can define in a clear way what a set is, what

numbers are, etc.

1.1 Propositional Logic

Propositional logic helps us to navigate in a world painted in black and

white, a world in which there is only truth or falsehood, but nothing in

between. It is a boiled down version of common sense reasoning. It is the

essence of Sherlock Holmes’ way of deducing that Professor Moriarty was

the mastermind behind a criminal organization (“Elementary, my dear

Watson”). Propositional logic builds on the following two propositions,

which are declared to be true as basic principles (and they seem to make

sense. . .):

Principle of contradiction (principium contradictionis)

A proposition is never true and false at the same time.

Principle of the excluded third (tertium non datur)

A proposition is either true or false—there is no third possibility.

In other words, in propositional logic we work with statements that are

either true (T) or false (F), no more and no less. Such a logic is also known

as absolute logic.

In propositional logic there are also some operations which are used to

create new propositions from old ones:

Logical Negation

The negation of a true proposition is a false proposition, the negation

of a false proposition is a true proposition. This operation is also

called ‘NOT’.

1.1 Propositional Logic 5

Logical Conjunction

The conjunction of two propositions is true if and only if both pro-

positions are true. In all other cases it is false. This operation is also

called ‘AND’.

Logical Disjunction

The disjunction of two propositions is true if at least one of the

propositions is true. If both propositions are false, the disjunction

is false, too. This operation is also known as ‘OR’.

Logical Implication

A proposition P1 implies another proposition P2 if P2 is true when-

ever P1 is true. This operation is also known as ‘IMPLIES’.

Often one uses so-called truth tables to show the workings of these oper-

ations. In these tables, A stands for the possible truth values of a propo-

sition A, and B stands for the possible truth values of a proposition B.

The rows labeled “A AND B” and “A OR B” contain the truth value of the

conjunction and disjunction of the propositions.

A NOT A

F T

T F

A B A AND B

F F F

F T F

T F F

T T T

A B A OR B

F F F

F T T

T F T

T T T

A B A IMPLIES B

F F T

F T T

T F F

T T T

Let us look at a few examples.

1. Let proposition A be “The ball is red”. The negation of A, (i.e., NOT

A) is “It is not the case that the ball is red”. So, if the ball is actually

green, that means thatA is false and that NOTA is true.

2. Let proposition A be “All balls are round” and proposition B “All

balls are green”. Then the conjunctionA AND B of A and B is false,

because there are balls that are not green.

3. Using the same propositions, the disjunction of A and B, A OR B is

true.

4. For any proposition A, A AND (NOT A) is always false (principle of

contradiction).

5. For any proposition A, A OR (NOT A) is always true (principle of

excluded third).

6 Fundamentals—Concepts and Logic

In practice it is cumbersome to say: “The proposition It rains is true”.

Instead, one just says: “It rains.” Also, since the formal combination of

propositions by the above operators is often an overhead, we mostly use

the common language denotation, such as: “2 = 3 is false” instead of

“NOT (2 = 3)” or: “It’s raining or/and I am tired.” instead of “It’s rain-

ing OR/AND I am tired”, or: “If it’s raining, then I am tired” instead of

“It’s raining IMPLIES I am tired.” Moreover, we use the mathematical ab-

breviation “A iff B” for “(A IMPLIES B) AND (B IMPLIES A)”. Observe that

brackets (. . .) are used in order to make the grouping of symbols clear if

necessary.

The operations NOT, AND, OR, and IMPLIES have a number of properties

which are very useful for simplifying complex combinations of these op-

erations. Let P , Q, and R be truth values. Then the following properties

hold:

Commutativity of AND

P AND Q is the same as Q AND P .

Commutativity of OR

P OR Q is the same as Q OR P .

Associativity of AND

(P AND Q) AND R is the same as P AND (Q AND R).

One usually omits the parentheses and writes P AND Q AND

R.

Associativity of OR

(P OR Q) OR R is the same as P OR (Q OR R).

One usually omits the parentheses and writes P OR Q OR R.

De Morgan’s Law for AND

NOT (P AND Q) is the same as (NOT P) OR (NOT Q).

De Morgan’s Law for OR

NOT (P OR Q) is the same as (NOT P) AND (NOT Q).

Distributivity of AND over OR

P AND (Q OR R) is the same as (P AND Q) OR (P AND R).

Distributivity of OR over AND

P OR (Q AND R) is the same as (P OR Q) AND (P OR R).

Contraposition

P IMPLIES Q is the same as (NOT Q) IMPLIES (NOT P).

1.1 Propositional Logic 7

Idempotency of AND

P is the same as P AND P .

Idempotency of OR

P is the same as P OR P .

The validity of these properties can be verified by using the truth tables.

We will show how this is done for the example of “Distributivity of OR

over AND”.

We want to show that P OR (Q AND R) is the same as (P OR Q) AND (P

OR R), for every choice of P , Q, and R. To do so we first write a big truth

table which shows the values for P , Q, and R as well as Q AND R and P

OR (Q AND R) :

P Q R Q AND R P OR (Q AND R)

F F F F F

F F T F F

F T F F F

F T T T T

T F F F T

T F T F T

T T F F T

T T T T T

Then we write a truth table which shows the values for P , Q, and R as

well as P OR Q, P OR R, and (P OR Q) AND (P OR R):

P Q R P OR Q P OR R (P OR Q) AND (P OR R)

F F F F F F

F F T F T F

F T F T F F

F T T T T T

T F F T T T

T F T T T T

T T F T T T

T T T T T T

The truth values of the two expressions we are interested in (shown in

bold face) are indeed equal for every possible combination of P , Q, and

R.

8 Fundamentals—Concepts and Logic

The verification of the remaining properties is left as an exercise for the

reader.

1.2 Architecture of Concepts

In order to formulate unambiguous propositions, we need a way to de-

scribe the concepts we want to make statements about. An architecture of

concepts deals with the question: “How does one build a concept?” Such

an architecture defines ways to build new concepts from already existing

concepts. Of course one has to deal with the question where to anchor

the architecture, in other words, what are the basic concepts and how

are they introduced. This can be achieved in two different ways. The first

uses the classical approach of undefined primary concepts, the second

avoids primary concepts by circular construction. This second approach

is the one that is used for building the architecture of set theory in this

book.

1. A concept has a name, for example, “Number” or “Set” are names of

certain concepts.

2. Concepts have components, which are concepts, too.

These components are used to construct a concept.

3. There are three fundamental principles of how to combine such com-

ponents:

• Conceptual Selection: requires one component

• Conceptual Conjunction: requires one or two components

• Conceptual Disjunction: requires two components

4. Concepts have instances (examples), which have the following prop-

erties:

• Instances have a name

• Instances have a value

The construction principles mentioned above are best described using

instances:

The value of an instance of a concept constructed as a selection is the

collection of the references to selected instances of the component.

1.2 Architecture of Concepts 9

The value of an instance of a concept constructed as a conjunction is the

sequence of the references to the instances of each component.

The value of an instance of a concept constructed as a disjunction is a

reference to an instance of one of the components.

Perhaps some examples will clarify those three construction principles.

A selection is really a selection in its common sense meaning: You point

at a thing and say, “I select this”, you point at another thing and say “I

select this, too” and so on.

One example for a conjunction are persons’ names which (at least in the

western world) always consists of a first name and a family name. An-

other example is given by the points in the plane: every point is defined

by an x- and a y-coordinate.

A disjunction is a simple kind of “addition”: An instance of the disjunc-

tion of all fruits and all animals is either a fruit or an animal.

Notation

If we want to write about concepts and instances, we need an expressive

and precise notation.

Concept: ConceptName.ConstructionPrinciple(Component(s))

This means that we first write the concept’s name followed by a dot.

After the dot we write the construction principle (Selection, Conjunc-

tion, or Disjunction) used to construct the concept. Finally we add

the component or components which were used for the construction

enclosed in brackets.

Instance: InstanceName@ConceptName(Value)

In order to write down an instance, we write the instance’s name fol-

lowed by an ‘@’. After this, the name of the concept is added, followed

by a value enclosed in brackets. In the case of a disjunction, a semi-

colon directly following the value denotes the first component, and a

semicolon preceding the value denotes the second component.

Very often it is not possible to write down the entire information needed

to define a concept. In most cases one cannot write down components

and values explicitly. Therefore, instead of writing the concept or in-

stance, one only writes its name. Of course, this presupposes that these

10 Fundamentals—Concepts and Logic

objects can be identified by a name, i.e., there are enough names to distin-

guish these objects from one another. Thus if two concepts have identi-

cal names, then they have identical construction principles and identical

components. The same holds for instances: identicals name mean identi-

cal concepts and identical values.

By identifying names with objects one can say “let X be a concept” or “let

z be an instance”, meaning that X and z are the names of such objects

that refer to those objects in a unique way.

Here are some simple examples for concepts and instances:

CitrusFruits.Disjunction(Lemons, Oranges)

The concept CitrusFruit consists of the concepts Lemons and Or-

anges.

MyLemon@Citrusfruits(Lemon2;)

MyLemon is an instance of the concept CitrusFruit, and has the value

Lemon2 (which is itself an instance of the concept Lemons).

YourOrange@Citrusfruits(; Orange7)

YourOrange is an instance of the concept CitrusFruits, and has the

value Orange7 (which is itself an instance of the concept Oranges).

CompleteNames.Conjunction(FirstNames, FamilyNames)

The concept CompleteNames is a conjunction of the concept First-

Names and FamilyNames.

MyName@CompleteNames(John; Doe)

MyName is an instance of the concept CompleteNames, and has the

value John; Doe.

SmallAnimals.Selection(Animals)

The concept SmallAnimals is a selection of the concept Animals.

SomeInsects@SmallAnimals(Ant, Ladybug, Grasshopper)

SomeInsects is an instance of the concept SmallAnimals and has the

value Ant, Ladybug, Grasshopper.

Mathematics

The environment in which this large variety of concepts and propositions

is handled is Mathematics.

1.2 Architecture of Concepts 11

With the aid of set theory Mathematics is made conceptually precise and

becomes the foundation for all formal tools. Especially formal logic is

only possible on this foundation.

In Mathematics the existence of a concept means that it is conceivable

without any contradiction. For instance, a set exists if it is conceivable

without contradiction. Most of the useful sets exist (i.e., are conceiv-

able without contradiction), but one may conceive sets which don’t ex-

ist. An example of such a set is the subject of the famous paradox ad-

vanced by Bertrand Russell: the set containing all sets that do not contain

themselves—does this set contain itself, or not?

Set theory must be constructed successively to form an edifice of con-

cepts which is conceivable without any contradictions.

In this section we will first show how one defines natural numbers using

concepts and instances. After that, we go on to create set theory from

“nothing”.

Naive Natural Numbers

The natural numbers can be conceptualized as follows:

Number.Disjunction(Number, Terminator)

Terminator.Conjunction(Terminator)

The concept Number is defined as a disjunction of itself with a concept

Terminator, the concept Terminator is defined as a conjunction of itself

(and nothing else). The basic idea is to define a specific natural number

as the successor of another natural number. This works out for 34, which

is the successor of 33, and also for 786657, which is the successor of

786656. But what about 0? The number zero is not the successor of any

other natural number. So in a way we use the Terminator concept as a

starting point, and successively define each number (apart from 0) as the

successor of the preceding number. The fact that the concept Termina-

tor is defined as a conjunction of itself simply means: “Terminator is a

thing”. This is a first example of a circular construction used as an artifice

to ground the definition of natural numbers.

Now let us look at some instances of these concepts:

12 Fundamentals—Concepts and Logic

t@Terminator(t)

In natural language: the value of the instance t of Terminator is itself.

This is a second application of circularity.

0@Number(; t)

The instance of Number which we call 0 has the value t;.

1@Number(0;)

The instance of Number which we call 1 has the value 0;.

2@Number(1;)

The instance of Number which we call 2 has the value 1;.

If we expand the values of the numbers which are neither 0 nor t, we get

• the value of 1 is 0;

• the value of 2 is 1; which is 0;;

• the value of 3 is 2; which is 0;;;

• etc.

This could be interpreted by letting the semicolon stand for the operation

“successor of”, thus 3 is the successor of the successor of the successor

of 0.

Pure Sets

The pure sets are defined in the following circular way:

Set.Selection(Set)

Here, we say that a set is a selection of sets. Since one is allowed to

select nothing in a conceptual selection, there is a starting point for this

circularity. Let us look at some instances again:

∅@Set()

Here we select nothing from the concept Set. We therefore end up

with the empty set.

1@Set(∅)

Since ∅ is a set we can select it from the concept Set. The value of 1

is a set consisting of one set.

1.2 Architecture of Concepts 13

2@Set(∅, 1)

Here we select the two sets we have previously defined. The value of

2 is a set consisting of two sets.

Elements of the Mathematical Prose

In Mathematics, there is a “catechism” of true statements, which are

named after their relevance in the development of the theory.

An axiom is a statement which is not proved to be true, but supposed

to be so. In a second understanding, a theory is called axiomatic if its

concepts are abstractions from examples which are put into generic defi-

nitions in order to develop a theory from a given type of concepts.

A definition is used for building—and mostly also for introducing a sym-

bolic notation for—a concept which is described using already defined

concepts and building rules.

A lemma is an auxiliary statement which is proved as a truth prelimi-

nary to some more important subsequent true statement. A corollary is

a true statement which follows without significant effort from an already

proved statement. Ideally, a corollary should be a straightforward conse-

quence of a more difficult statement. A sorite is a true statement, which

follows without significant effort from a given definition. A proposition is

an important true statement, but less important than a theorem, which is

the top spot in this nomenclature.

A mathematical proof is the logical deduction of a true statement B from

another true statement C. Logical deduction means that the theorems

of absolute logic are applied to establish the truth of B, knowing the

truth of C. The most frequent procedure is to use as the true statement

C the truth of A and the truth of A IMPLIES B, in short, the truth of

A AND (A IMPLIES B). Then B is true since the truth of the implica-

tion with the true antecedent A can only hold with B also being true.

This is the so-called modus ponens. This scheme is also applied for indi-

rect proofs, i.e., we use the true fact (NOT B) IMPLIES (NOT A), which is

equivalent toA IMPLIES B (contraposition, see also properties on page 6).

Now, by the principle of the excluded third and the principle of contra-

diction, either B or NOT B will be true, but not both at the same time.

Then the truth of NOT B enforces the truth of NOTA. But by the princi-

ple of contradiction, A and NOT A cannot be both true, and since A is

true, NOT B cannot hold, and therefore, by the principles of the excluded

14 Fundamentals—Concepts and Logic

third and of contradiction, B is true. There are also more technical proof

techniques, such as the proof by induction, but logically speaking, they

are all special cases of the general scheme just described.

In this book, the end of a proof is marked by the symbol �.

CHAPTER 2

Axiomatic Set Theory

Axiomatic set theory is the theory of pure sets, i.e., it is built on a set

concept which refers to nothing else but itself. One then states a number

of axioms, i.e., propositions which are supposed to be true for sets (i.e.,

instances of the set concept). On this axiomatic basis, the whole mathe-

matical concept framework is built, leading from elementary numbers to

the most complex structures, such as differential equations or manifolds.

The concept of “pure sets” was already given in our introduction 1.2:

Set.Selection(Set)

and the instance scheme

SetName@Set(Value)

where the value is described such that each reference is uniquely identi-

fied.

Notation 1 If a set X has a set x amongst its values, one writes “x ∈ X”

and one says “x is an element of X”. If it is not the case that “x ∈ X”, one

writes “x ∉ X”.

If it is possible to write down the elements of a set explicitly, one uses curly

brackets: Instead of “A@Set(a, b, c, . . . z)” one writes1 “A = {a,b, c, . . . z}”.
For example, the empty set is ∅ = {}.
If there is an attribute F which characterizes the elements of a set A one

writes “A = {x | F(x)}”, where “F(x)” stands for “x has attribute F”.

1 In the context of set theory, this traditional notation is preferred, but can

always be reduced to the more generic @-notation.

16 Axiomatic Set Theory

Definition 1 (Subsets and equality of sets) Let A and B be sets. We say

that A is a subset of B, and we write “A ⊂ B” if for every set x the propo-

sition (x ∈ A IMPLIES x ∈ B) is true.

One says that A equals B and writes “A = B” if the proposition (A ⊂
B AND B ⊂ A) is true. If “A ⊂ B” is false, one writes “A 6⊂ B”. If “A = B” is

false, one writes “A ≠ B”. If A ⊂ B, but A ≠ B, one also writes “A ⊊ B”.

A subset A ⊂ B is said to be the smallest subset of B with respect to a

property P , if it has this property and is a subset of every subset X ⊂ B
having this property P .

Fig. 2.1. In order to give the reader a better intuition about sets, we

visualize them as bags, while their elements are shown as smaller bags—

or as symbols for such elements—contained in larger ones. For example,

∅ is drawn as the empty bag. The set in this figure is {∅, {∅}}.

Example 1 Let A = {a,b, {c, d}}. Then a ∈ A and {c, d} ∈ A, but c ∉ A;

{a,b} ⊂ A and {{c, d}} ⊂ A, but {c, d} 6⊂ A.

In these examples, sets are specified by enumerating their elements. For

an example of the use of an attribute for characterizing the members of a

set consider the propositional attributeA(x) defined by “x is a member

of the Apollo 11 crew”. Then {x | A(x)} = {Armstrong,Aldrin,Collins}.
The number of objects specified by an attribute need not be limited. Thus

the set {x | N (x)}, where N (x) is defined by “x is a number”, cannot

be written down by means of enumeration alone.

For any set X we have {} ⊂ X. To prove this, one has to show that the

proposition (x ∈ {} IMPLIES x ∈ X) is true. Since the empty set does

not have any elements, the left hand side of the implication is false. A

2.1 The Axioms 17

quick glance at the truth tables on page 5 shows that in this case the

implication as a whole is true, irrespective of the truth value of the right

hand side. This reasoning is to be kept in mind when dealing with the

empty set.

Example 2 Two empty sets A = {} and B = {} are equal. This is the case

because the previous example tells us that A ⊂ B and B ⊂ A, and this is

simply the definition for A = B.

It is impossible to decide whether two circular sets I = {I} and J = {J}
are equal.

2.1 The Axioms

Axiomatic set theory is defined by two components: Its objects are pure

sets, and the instances of such sets are required to satisfy a number of

properties, the axioms, which cannot be deduced by logical reasoning,

but must be claimed. It is hard to show that such axioms lead to math-

ematically existing sets. We circumvent this problem by stating a list of

common axioms.

The following collection of axioms is a variant of the collection proposed

by Ernst Zermelo and Abraham Fraenkel (ZFC, for short). However, we do

not include the axiom of foundation since modern theoretical computer

science has a need for circular sets which this axiom excludes. Finally,

we replace the axiom of extentionality by the axiom of equality, which

respects more properly the difference between equality and identity. For

a discussion of the classical ZFC axioms, see [20].

Axiom 1 (Axiom of Empty Set) There is a set, denoted by ∅, which con-

tains no element, i.e., for every set x, we have x 6∈ ∅, or, differently for-

mulated, ∅ = {}.

Axiom 2 (Axiom of Equality) If a,x,y are sets such that x ∈ a and x =
y , then y ∈ a.

Axiom 3 (Axiom of Union) If a is a set, then there is a set

{x | there exists an element b ∈ a such that x ∈ b}.

This set is denoted by
⋃
a and is called the union of a.

18 Axiomatic Set Theory

Notation 2 If a = {b, c}, or a = {b, c, d}, respectively, one also writes

b ∪ c, or b ∪ c ∪ d, respectively, instead of
⋃
a.

Axiom 4 (Axiom of Pairs) If a and b are two sets, then there is the pair

set c = {a,b}.

Notation 3 If φ is a propositional attribute for sets, then, if φ(x) is true,

we simply write “φ(x)” to ease notation within formulas.

Axiom 5 (Axiom of Subsets for Propositional Attributes) If a is a set,

and if φ is a propositional attribute for all elements of a, then there is

the set {x | x ∈ a and φ(x)}; it is called the subset of a for φ, and is

denoted by a|φ.

Axiom 6 (Axiom of Powersets) If a is a set, then there is the powerset

2a, which is defined by 2a = {x | x ⊂ a}, i.e., the propositional attribute

φ(x) = “x ⊂ a”. The powerset of a is also written P(a).

Example 3 The powerset of c = {a,b} is 2c = {∅, {a}, {b}, {a,b}}. If the

inclusion relation is drawn as an arrow from x to y if x ⊂ y then the

powerset of c can be illustrated as in figure 2.2.

{a,b}

∅

{a} {b}

Fig. 2.2. The powerset of {a,b}.

For the next axiom, one needs the following proposition:

Lemma 1 For any set a, there is the set a+ = a ∪ {a}. It is called the

successor of a.

Proof Axiom 6 states that for a given set a, the powerset of a exists. Since a ⊂ a,

{a} ∈ 2a, therefore {a} exists. Axiom 3 then implies that a∪ {a} exists. �

Axiom 7 (Axiom of Infinity) There is a set w with ∅ ∈ w and such that

x ∈ w implies x+ ∈ w.

2.1 The Axioms 19

Fig. 2.3. The successor a+ of a set a.

Remark 1 Axiom 1 is a consequence of axioms 5 and 7, but we include

it, since axiom 7 is very strong (the existence of an infinite set is quite

hypothetical for a computer scientist).

Definition 2 For two sets a and b, the set {x | x ∈ a and x ∈ b} is called

the intersection of a and b and is denoted by a∩ b. If a∩ b = ∅, then a

and b are called disjoint.

Axiom 8 (Axiom of Choice) Let a be a set whose elements are all non-

empty, and such that any two different elements x,y ∈ a are disjoint.

Then there is a subset c ⊂ ⋃a (called choice set) such that for every non-

empty x ∈ a, x ∩ c has exactly one element (see figure 2.4).

Fig. 2.4. Axiom of Choice: c is a choice set of the sets x, y , . . . ∈ a.

20 Axiomatic Set Theory

2.2 Basic Concepts and Results

We shall now develop the entire set theory upon these axioms. The be-

ginning is quite hard, but we shall be rewarded with a beautiful result:

all numbers from classical mathematics, all functions and all complex

structures will emerge from this construction.

Sorite 2 For any three sets a,b, c, we have

(i) a ⊂ a
(ii) If a ⊂ b and b ⊂ a, then a = b.

(iii) If a ⊂ b and b ⊂ c, then a ⊂ c.
Proof (i) If x ∈ a then, trivially, x ∈ a. (ii) This is true by definition 1. (iii) Let

x ∈ a. This implies x ∈ b, because a ⊂ b. Moreover, b ⊂ c implies x ∈ c. So,

x ∈ a implies x ∈ c for any x, and this means a ⊂ c by definition. �

Proposition 3 For any sets a,b, c, d:

(i) (Commutativity of unions) the set a∪ b exists and equals b ∪ a,

(ii) (Associativity of unions) the sets (a ∪ b) ∪ c and a ∪ (b ∪ c) exist

and are equal, we may therefore write a∪ b ∪ c instead,

(iii) (a ∪ b ∪ c) ∪ d and a ∪ (b ∪ c ∪ d) exist and are equal, we may

therefore write a∪ b ∪ c ∪ d instead.

Proof (i) By axiom 4 the set x = {a,b} exits. By axiom 3 both unions exist and we

have a ∪ b = ⋃x = {c | there is a m ∈ x such that c ∈ m} = {c | c ∈ a or c ∈
b}. On the other hand, b∪a = ⋃y , where y = {b,a} = x, so the two unions are

equal.

(ii) (a ∪ b) ∪ c = {x | x ∈ a ∪ b} ∪ c = {x | x ∈ a ∪ b or x ∈ c} = {x | x ∈
a or x ∈ b or x ∈ c}. On the other hand, a∪(b∪c) = {x | x ∈ a or x ∈ b∪c} =
{x | x ∈ a or x ∈ b or x ∈ c}, so the two are equal.

(iii) follows from (ii) by replacing d with c and b with b ∪ c in the proof. �

Remark 2 The set whose elements are all sets x with x 6∈ x does not

exist, in fact both, the property x ∈ x, as well as x 6∈ x lead to contradic-

tions. Therefore, by axiom 5, the set of all sets does not exist.

Proposition 4 If a ≠ ∅, then the set {x | x ∈ z for all z ∈ a} exists, it is

called the intersection of a and is denoted by
⋂
a. However, for a = ∅,

the attribute Φ(x) = “x ∈ z for all z ∈ a” is fulfilled by every set x, and

therefore
⋂∅ is inexistent, since it would be the non-existent set of all sets.

2.2 Basic Concepts and Results 21

Proof If a ≠ ∅, and if b ∈ a is one element satisfying the attribute Φ, the

required set is also defined by {x | x ∈ b and x ∈ z for all z ∈ a}. So this

attribute selects a subset of b defined by Φ, which is a legitimate set according

to axiom 5. If a = ∅, then the attribute Φ(x) alone is true for every set x, which

leads to the inexistent set of all sets. �

Definition 3 For two sets a and b, the complement of a in b or the dif-

ference of b and a is the set {x | x 6∈ a and x ∈ b}. It is denoted by

b − a.

Fig. 2.5. The complement c of a in b, or c = b − a.

Sorite 5 For any three sets a,b, c we have

(i) (c − a) ⊂ c,
(ii) If a ⊂ c, then c − (c − a) = a,

(iii) c −∅ = c,
(iv) c − c = ∅,

(v) a∩ (c − a) = ∅,

(vi) If a ⊂ c, then a∪ (c − a) = c,
(vii) c − (a∪ b) = (c − a)∩ (c − b),

(viii) c − (a∩ b) = (c − a)∪ (c − b),
(ix) c ∩ (a− b) = (c ∩ a)− (c ∩ b).

22 Axiomatic Set Theory

Proof We shall only prove part of the statements; the proof of the remaining

statements is left as an exercise for the reader.

(ii)

c − (c − a) = {x | x ∈ c and x 6∈ (c − a)}
= {x | x ∈ c and not (x ∈ c and x 6∈ a)}
= {x | x ∈ c and (x 6∈ c or not x 6∈ a)} (1)

= {x | x ∈ c and (x 6∈ c or x ∈ a)}
= {x | (x ∈ c and x 6∈ c) or (x ∈ c and x ∈ a)} (2)

= {x | x ∈ c and x ∈ a} (3)

= {x | x ∈ a} (4)

= a

Equality (1) follows from de Morgan’s law, equality (2) from distributivity of

AND over OR. Equality (3) holds because the condition (x ∈ c and x 6∈ c) is

always false. Equality (4) holds because a ⊂ c means that x ∈ a already implies

x ∈ c, which therefore can be omitted. For the rules of transformation and

simplification used here, see also the discussion of truthtables on page 5.

(iv) By definition, c − c = {x | x ∈ c and x 6∈ c}. Obviously, there is no x which

can fulfill both of these contradictory conditions, so c − c = ∅.

(v)

a∩ (c − a) = {x | x ∈ a and x ∈ c − a}
= {x | x ∈ a and (x ∈ c and x 6∈ a)}
= {x | x ∈ a and x 6∈ a and x ∈ c} (∗)
= ∅

Here we use the commutativity and associativity of AND to regroup and reorder

the terms of the propositional attribute. In line (∗) the attribute contains the

conjunction of a statement and its negation, which is always false, therefore the

result is the empty set.

(vii)

c − (a∪ b) = {x | x ∈ c and x 6∈ (a∪ b)}
= {x | x ∈ c and not (x ∈ a or x ∈ b)}
= {x | x ∈ c and (x 6∈ a and x 6∈ b)}
= {x | x ∈ c and x 6∈ a and x 6∈ b} (1)

= {x | x ∈ c and x 6∈ a and x ∈ c and x 6∈ b} (2)

= {x | (x ∈ c and x 6∈ a) and (x ∈ c and x 6∈ b)} (3)

= {x | x ∈ c − a and x ∈ c − b} (4)

2.2 Basic Concepts and Results 23

= {x | x ∈ c − a} ∩ {x | x ∈ c − b} (5)

= (c − a)∩ (c − b)

Equalities (1) and (3) hold because AND is associative. Equality (2) holds be-

cause P AND Q = P AND P AND Q for any truth values P and Q. Equality (4) is

the definition of the set difference. Equality (5) is the definition of the intersec-

tion of two sets. �

CHAPTER 3

Boolean Set Algebra

In this chapter, we shall give a more systematic account of the construc-

tion of sets by use of union, intersection and complement. The structures

which emerge in this chapter are prototypes of algebraic structures which

will appear throughout the entire course.

3.1 The Boolean Algebra of Subsets

Lemma 6 For two sets a and b, the union a ∪ b is a least upper bound,

i.e., a,b ⊂ a∪b, and for every set c with a,b ⊂ c, we have a∪b ⊂ c. This

property uniquely determines the union.

Dually, the intersection a∩ b is a greatest lower bound, i.e., a∩ b ⊂ a,b,

and for every set c with c ⊂ a,b, we have c ⊂ a∩b. This property uniquely

determines the intersection.

Proof Clearly, a∪ b is a least upper bound. If x and y are any two least upper

bounds of a and b, then by definition, we must have x ⊂ y and y ⊂ x, therefore

x = y . The dual statement is demonstrated by analogous reasoning. �

Summarizing the previous properties of sets, we have the following im-

portant theorem, stating that the powerset 2a of a set a is a Boolean

algebra. We shall discuss this structure in a more systematic way in chap-

ter 17.

Proposition 7 (Boolean Algebra of Subsets) For a given set a, the power-

set 2a has the following properties. Let x,y, z be any elements of 2a, i.e.,

subsets of a; also, denote x′ = a− x. Then:

26 Boolean Set Algebra

(i) (Reflexivity) x ⊂ x,

(ii) (Antisymmetry) if x ⊂ y and y ⊂ x, then x = y ,

(iii) (Transitivity) if x ⊂ y and y ⊂ z, then x ⊂ z,

(iv) we have a “minimal” set ∅ ∈ 2a and a “maximal” set a ∈ 2a, and

∅ ⊂ x ⊂ a,

(v) (Least upper bound) the union x ∪y verifies x,y ⊂ x ∪y , and for

every z, if x,y ⊂ z, then x ∪y ⊂ z,

(vi) (dually: Greatest lower bound) the intersection x∩y verifies x∩y ⊂
x,y , and for every z, if z ⊂ x,y , then z ⊂ x ∩y ,

(vii) (Distributivity) (x ∪ y) ∩ z = (x ∩ z) ∪ (y ∩ z) and (dually)

(x ∩y)∪ z = (x ∪ z)∩ (y ∪ z),
(viii) we have x ∪ x′ = a, x ∩ x′ = ∅

Proof (i) is true for any set, see sorite 2.

(ii) is the very definition of equality of sets.

(iii) is immediate from the definition of subsets.

(iv) is clear.

(v) and (vi) were proved in lemma 6.

(vii) is clear.

(viii) follows immediately from the definition of the complement x′. �

Example 4 Figure 3.1 uses Venn diagrams to illustrate distributivity of ∩
over ∪. In this intuitive representation, sets are drawn circular areas or

parts thereof.

y z

x

(x ∪y)∩ z

y z

x

(x ∩ z)∪ (y ∩ z)

Fig. 3.1. Distributivity of ∩ over ∪.

3.1 The Boolean Algebra of Subsets 27

Exercise 1 Given a set a = {r , s, t} consisting of pairwise different sets,

give a complete description of 2a and the intersections or unions, respec-

tively, of elements of 2a.

Here is a second, also important structure on the powerset of a given set

a:

Definition 4 For x,y ∈ 2a, we define x + y = (x ∪ y) − (x ∩ y) (sym-

metric set difference). We further define x ·y = x∩y . Both operations are

illustrated using Venn diagrams in figure 3.2.

x y

x +y

x y

x ·y

Fig. 3.2. Symmetric difference and intersection of sets.

Proposition 8 For a set a, and for any three elements x,y, z ∈ 2a, we

have:

(i) (Commutativity) x +y = y + x and x ·y = y · x,

(ii) (Associativity) x + (y + z) = (x + y) + z, x · (y · z) = (x · y) · z,

we therefore also write x +y + z and x ·y · z, respectively,

(iii) (Neutral elements) we have x +∅ = x and x · a = x,

(iv) (Distributivity) x · (y + z) = x ·y + x · z,

(v) (Idempotency) x · x = x,

(vi) (Involution) x + x = ∅,

(vii) the equation x +y = z has exactly one solution w for the unknown

x, i.e., there is exactly one set w ⊂ a such that w +y = z.

Proof (i) follows from the commutativity of the union a∪b and the intersection

a∩ b, see also proposition 3.

28 Boolean Set Algebra

(ii) associativity also follows from associativity of union and intersection, see

again proposition 3.

(iii) we have x +∅ = (x ∪∅)− (x ∩∅) = x −∅ = x, x · a = x ∩ a = x.

(iv)

x · (y + z) = x ∩ ((y ∪ z)− (y ∩ z))
= x ∩ (y ∪ z)− x ∩y ∩ z
= ((x ∩y)∪ (x ∩ z))− x ∩y ∩ z

whereas

x ·y + x · z = ((x ∩y)∪ (x ∩ z))− ((x ∩y)∩ (x ∩ z))
= ((x ∩y)∪ (x ∩ z))− x ∩y ∩ z

and we are done.

(v) and (vi) are immediate from the definitions.

(vii) in view of (vi),w = y+z is a solution. For any two solutionsw+y = w ′+y ,

one has w = w +y +y = w′ +y +y = w′. �

y z

x

x · (y + z)

y z

x

x ·y + x · z

Fig. 3.3. Distributivity of · over +.

Remark 3 This structure will later be discussed as the crucial algebraic

structure of a commutative ring, see chapter 15.

Exercise 2 Let a = {r , s, t} as in exercise 1. Calculate the solution of

w +y = z within 2a for y = {r , s} and z = {s, t}.

Exercise 3 Let a = {∅}. Calculate the complete tables of sums x+y and

products x · y , respectively, for x,y ∈ 2a, use the symbols 0 = ∅ and

1 = a. What do they remind you of?

CHAPTER 4

Functions and Relations

We have seen in chapter 1 that the conceptual architecture may be a se-

lection, conjunction, or disjunction. Sets are built on the selection type.

They are however suited for simulating the other types as well. More pre-

cisely, for the conjunction type, one needs to know the position of each

of two conceptual coordinates: Which is the first, which is the second. In

the selective type, however, no order between elements of a set is given,

i.e., {x,y} = {y,x}. So far, we have no means for creating order among

such elements. This chapter solves this problem in the framework of set

theory.

4.1 Graphs and Functions

Definition 5 If x and y are two sets, the ordered pair (x,y) is defined to

be the following set:

(x,y) = {{x}, {x,y}}

Observe that the set (x,y) always exists, it is a subset of the powerset of

the pair set {x,y}, which exists according to axiom 4.

Here is the essence of this definition:

Lemma 9 For any four sets a,b, c, d, we have (a, b) = (c, d) iff a = c and

b = d. Therefore one may speak of the first and second coordinate a and

b, respectively, of the ordered pair (a, b).

30 Functions and Relations

Fig. 4.1. The bag representation of the ordered pair (x,y).

Proof The ordered pair (x,y) has one single element {x} iff x = y , and it has

different elements {x} ≠ {x,y} iff x ≠ y . So, if (a, b) = (c, d), then either a = b
and c = d, and then {{a}} = (a, b) = (c, d) = {{c}}, whence a = c. Or else, a ≠ b

and c ≠ d. But then the only element with one element in (a, b) is {a}. Similarly

the only element with one element in (c, d) is {c}. So (a, b) = (c, d) implies

a = c. Similarly, the other element {a,b} of (a, b) must be equal to {c,d}. But

since a = c and a ≠ b, we have b = d, and we are done. The converse implication

is evident. �

Exercise 4 Defining (x,y, z) = ((x,y), z), show that (x,y, z) = (u,v,w)
iff x = u, y = v , and z = w.

Lemma 10 Given two sets a and b, there is a set

a× b = {(x,y) | x ∈ a and y ∈ b},

it is called the Cartesian product of a and b.

Proof We have the set v = a∪ b. Let P = 2(2
v) be the powerset of the powerset

of v , which also exists. Then an ordered pair (x,y) = {{x}, {x,y}}, with x ∈ a
and y ∈ b is evidently an element of P . Therefore a × b is the subset of those

p ∈ P defined by the propositional attribute Φ(p) = “there are x ∈ a and y ∈ b
such that p = (x,y).” �

Sorite 11 Let a,b, c, d be sets. Then:

(i) a× b = ∅ iff a = ∅ or b = ∅,

(ii) if a× b ≠∅, then a× b = c × d iff a = c and b = d.

Proof The first claim is evident. As to the second, if a × b ≠ ∅, then we have

a∪ b = ⋃(⋃(a× b)), as is clear from the definition of ordered pairs. Therefore

we have the subset a = {x | x ∈ a ∪ b, there is z ∈ a × b with z = (x,y)}.
Similarly for b, and therefore also a = c and b = d. �

4.1 Graphs and Functions 31

a

b

(x,y)

x

y

Fig. 4.2. It has become common practice to represent Cartesian products

a×b intuitively by two axes, the horizontal axis representing a, i.e., x ∈
a is drawn as a point on this axis, and the vertical axis representing the

set b, i.e., y ∈ b is drawn as a point on this axis. In traditional language,

the horizontal axis is called the abscissa, while the vertical axis is called

the ordinate. The element (x,y) is drawn as a point on the plane, whose

coordinates x and y are obtained by projections perpendicular to the

respective axes.

chicken lamb beef

salad

potatoes

rice

(beef,potatoes)

Fig. 4.3. The idea behind Cartesian products is to define sets which are

composed from two given sets by simultaneous specification of two el-

ements in order to define one of the Cartesian product. Here, to de-

fine a meal, we are given two intuitive sets: meat dish and accompany-

ing side dish. In OOP, the meal class would have two instance variables,

meat_dish and side_dish, both allowing appropriate character strings as

values, “chicken”, “beef”, “lamb”, and “salad”, “rice”, “potatoes”, respec-

tively. Logically, the information encoded in a Cartesian product is that

of a conjunction: To know an object of a Cartesian product is to know

its first coordinate AND its second coordinate.

32 Functions and Relations

Definition 6 If a Cartesian product a×b is non-empty, we call the uniquely

determined sets a and b its first and second projection, respectively, and

we write a = pr1(a× b) and b = pr2(a× b).

The following concept of a graph is a formalization of the act of associ-

ating two objects out of two domains, such as the pairing of a man and a

woman, or associating a human and its bank accounts.

Lemma 12 The following statements about a set g are equivalent:

(i) The set g is a subset of a Cartesian product set a× b.

(ii) Every element x ∈ g is an ordered pair x = (u,v).
Proof Clearly, (i) implies (ii). Conversely, if g consists of ordered pairs, we may

take P = ⋃(⋃g), and then immediately see that g ⊂ P × P . �

Definition 7 A set which satisfies one of the two equivalent properties of

lemma 12 is called a graph.

Example 5 For any set a, the diagonal graph is the graph

∆a = {(x,x) | x ∈ a}.

Lemma 13 For a graph g, there are two sets

pr1(g) = {u | (u,v) ∈ g} and pr2(g) = {v | (u,v) ∈ g},

and we have g ⊂ pr1(g)× pr2(g).

Proof As in the previous proofs, we take the double union P = ⋃
(
⋃
g) and

from P extract the subsets pr1(g) and pr2(g) as defined in this proposition. The

statement g ⊂ pr1(g)× pr2(g) is then straightforward. �

Proposition 14 If g is a graph, there is another graph, denoted by g−1

and called the inverse graph of g, which is defined by

g−1 = {(v,u) | (u,v) ∈ g}.

We have (g−1)−1 = g.

Proof According to lemma 12, there are sets a and b such that g ⊂ a × b.

Then g−1 ⊂ b × a is the inverse graph. The statement about double inversion is

immediate. �

4.1 Graphs and Functions 33

b

a
pr1(g)

pr2(g)

g

pr1(g)× pr2(g)

Fig. 4.4. The projections pr1(g) and pr2(g) (dark gray segments on the

axes) of a graph g (black curves). Note that g ⊂ pr1(g) × pr2(g) (light

gray rectangles).

b

a

g−1

g

Fig. 4.5. The inverse g−1 of a graph g.

Exercise 5 Show that g = ∆pr1(g) implies g = g−1; give counterexamples

for the converse implication.

Definition 8 If g and h are two graphs, there is a set g◦h, the composition

of g with h (attention: the order of the graphs is important here), which is

defined by

g ◦ h = {(v,w) | there is a set u such that (v,u) ∈ h and (u,w) ∈ g}.

34 Functions and Relations

Fig. 4.6. The composition S ◦ R of two graphs R and S.

Figure 4.6 illustrates the composition of two graphs R and S. The point x

is mapped by R to the point x′, which in turn is mapped by S to the point

x′′. R maps the point y to two points both denoted by y ′, and these two

points are mapped by S to two points y ′′. Last, z is mapped by R to a

segment z′. This segment is mapped by S to a segment z′′.

Sorite 15 Let f , g,h be three graphs.

(i) (Associativity) We have (f ◦ g) ◦ h = f ◦ (g ◦ h) and we denote this

graph by f ◦ g ◦ h.

(ii) We have ∆pr1(g) ⊂ g−1 ◦ g.

Proof These statements follow from a straightforward application of the defini-

tion. �

Definition 9 A graph g is called functional if (u,v) ∈ g and (u,w) ∈ g
imply v = w.

4.1 Graphs and Functions 35

Exercise 6 Show that the composition g ◦ h of two functional graphs g

and h is functional.

Example 6 For any sets a and b, the diagonal graph ∆a is functional,

whereas the Cartesian product a × b is not functional if a ≠ ∅ and if

there are sets x,y ∈ b with x ≠ y .

Definition 10 A function is a triple (a, f , b) such that f is a functional

graph, where a = pr1(f) and pr2(f) ⊂ b. The set a is called the domain

of the function, the set b is called its codomain, and the set pr2(f) is called

the function’s image and denoted by Im(f). One usually denotes a function

by a more graphical sign f : a→ b. For x ∈ a, the unique y ∈ b such that

(x,y) ∈ f is denoted by f(x) and is called the value of the function at the

argument x. Often, if the domain and codomain are clear, one identifies

the function with the graph sign f , but this is not the valid definition. One

then also notates a = dom(f) and b = codom(f).

Example 7 For any set a, the identity function (on a) Ida is defined by

Ida = (a,∆a, a).

Exercise 7 For the set 1 = {∅} and for any set a, show that there is

exactly one function (a, f ,1). We denote this function by ! : a → 1. (The

notation “1” is not quite arbitrary, we shall see the systematic background

in chapter 5.) If a = ∅, and if b is any set, show that there is a unique

function (∅, g, b), also denoted by ! :∅→ b.

Definition 11 A function f : a → b is called epimorphism, or epi, or

surjective or onto if Im(f) = codom(f).

It is called monomorphism, or mono, or injective or one-to-one if f(x) =
f(y) implies x = y for all sets x,y ∈ dom(f).

The function is called isomorphism, or iso, or bijective if it is epi and

mono. Isomorphisms are also denoted by special arrows, i.e., f : a
∼→ b.

Example 8 Figure 4.7 illustrates three functions, f : A→ B, g : B → A and

h : B → C. An arrow from an element (point) x ∈ X to an element y ∈ Y
indicates that (x,y) is in the graph κ ⊂ X×Y of a function k = (X, κ, Y).
The function f is epi, but not mono, g is mono, but not epi, and h is

mono and epi, and thus, iso. The star-shaped points are the “culprits”,

i.e., the reasons that f is not mono and g is not epi.

36 Functions and Relations

Fig. 4.7. Epimorphism f , monomorphism g and isomorphism h.

Exercise 8 The function ! : a → 1 is epi for a 6= ∅, the function ! :∅ → b
is always mono, and the identity function Ida is always iso.

Exercise 9 Show that the inverse graph of monomorphism is a functional

graph, but not necessarily the graph of a function.

Definition 12 Let f : a→ b and g : b → c be functions, then their compo-

sition is the function g ◦ f : a→ c.

When dealing with functions, one often uses a more graphical represen-

tation of the involved arrows by so-called arrow diagrams. The domains

and codomains are shown as symbols on the plane, which are connected

by arrows representing the given functions. For example, the functions

f : a → b and g : b → c and their composition h = g ◦ f are shown as

a triangular diagram. This diagram is commutative in the sense that both

“paths” a
f
ñ b

g
ñ c and a

h
ñ c define the same function h = g ◦ f .

a
f

ñ b

c

g

�

h

ñ

Sorite 16 Let f : a→ b, g : b → c and h : c → d be functions.

(i) The compositions (h ◦ g) ◦ f : a → d and h ◦ (g ◦ f) : a → d are

equal, we therefore denote them by h ◦ g ◦ f : a→ d.

(ii) The function g : b → c is mono iff the following condition holds: For

any two functions f , f ′ : a→ b, g ◦ f = g ◦ f ′ implies f = f ′.

4.1 Graphs and Functions 37

(iii) The function f : a → b is epi iff the following condition holds: For

any two functions g,g′ : b → c, g ◦ f = g′ ◦ f implies g = g′.
(iv) If f and g are epi, mono, iso, respectively, then so is g ◦ f .

(v) If f is mono and a ≠ ∅, then there is a—necessarily epi—function

r : b → a such that r ◦ f = Ida, such a function is called a left

inverse or retraction of f .

(vi) If f is epi, then there is a—necessarily mono—function s : b → a

such that f ◦ s = Idb, such a function is called a right inverse or

section of f .

(vii) The function f is iso iff there is a (necessarily unique) inverse, de-

noted by f−1 : b → a, such that f−1 ◦ f = Ida and f ◦ f−1 = Idb.

Proof (i) follows from the associativity of graph composition, see sorite 15.

(ii) For x ∈ a, (g ◦ f)(x) = (g ◦ f ′)(x) means g(f(x)) = g(f ′(x)), but since g

is mono, f(x) = f ′(x), for all x ∈ a, whence f = f ′. Conversely, take u,v ∈ b
such that g(u) = g(v). Define two maps f , f ′ : 1→ b by f(0) = u and f ′(0) = v .

Then g ◦ f = g ◦ f ′. So f = f ′, but this means u = f(0) = f ′(0) = v , therefore

g is injective.

(iii) If f is epi, then for every y ∈ b, there is x ∈ a with y = f(x). If g◦f = g′◦f ,

then g(y) = g(f(x)) = g′(f (x)) = g′(y), whence g = g′. Conversely, if f is

not epi, then let z 6∈ Im(f). Define a function g : b → {0,1} by g(y) = 0 for all

y ∈ b. Define g′ : b → {0,1} by g′(y) = 0 for all y ≠ z, and g′(z) = 1. We then

have two different functions g and g′ such that g ◦ f = g′ ◦ f .

(iv) This property follows elegantly from the previous characterization: let f and

g be epi, then for h,h′ : c → d, if h ◦ g ◦ f = h′ ◦ g ◦ f , then, since f is epi, we

conclude h ◦ g = h′ ◦ g, and since g is epi, we have h = h′. The same formal

argumentation works for mono. Since iso means mono and epi, we are done.

(v) If f : a → b is mono, then the inverse graph f−1 is also functional and

pr2(f
−1) = a. Take any element y ∈ a and take the graph r = f −1 ∪ (b −

Im(f))× {y}). This defines a retraction of f .

(vi) Let f be epi. For every x ∈ b, let F(x) = {y | y ∈ a, f (y) = x}. Since f is

epi, no F(x) is empty, and F(x)∩ F(x′) = ∅ if x ≠ x′. By the axiom of choice 8,

there is a set q ⊂ a such that q ∩ F(x) = {qx} is a set with exactly one element

qx for every x ∈ b. Define s(x) = qx . This defines the section s : b → a of f .

(vii) The case a = ∅ is trivial, so let us suppose a ≠ ∅. Then the characteri-

zations (v) and (vi), together with the fact that “mono + epi = iso”, answer our

problem. �

Remark 4 The proof of statement (vi) in sorite 16 is a very strong one

since it rests on the axiom of choice 8.

38 Functions and Relations

Definition 13 Let f : a → b be a function, and let a′ be a set. Then the

restriction of f to a′ is the function f |a′ : a∩ a′ → b, where the graph is

f |a′ = f ∩ ((a∩ a′)× b).

Definition 14 Let f : a → b and g : c → d be two functions. Then the

Cartesian product of f and g is the function f × g : a × c → b × d with

(f × g)(x,y) = (f (x), g(y)).

Sorite 17 Let f : a→ b and g : c → d be two functions. Then the Cartesian

product f × g is injective (surjective, bijective) if f and g are so.

Proof If one of the domains a or c is empty the claims are obvious. So suppose

a, c ≠∅. Let f and g be injective and take two elements (x,y) ≠ (x′, y ′) in a×b.

Then either x ≠ x′ or y ≠ y ′. in the first case, (f × g)(x,y) = (f (x), g(y)) ≠
(f (x′), g(y)) = (f ×g)(x′, y), the second case is analogous. A similar argument

settles the cases of epi maps, and the case of iso maps is just the conjunction of

the mono and epi cases. �

The next subject is the basis of the classification of sets. The question is:

When are two sets “essentially different”? This is the crucial definition:

Definition 15 A set a is said to be equipollent to b or to have the same

cardinality as b iff there is a bijection f : a
∼→ b. We often just write a

∼→ b
to indicate the fact that a and b are equipollent.

Example 9 In figure 4.8, the set A of stars, the set B of crosses and the

set C of plusses are equipollent. The functions f : A → B and g : B → C
are both bijections. The composition of g and f is a bijection h = g ◦ f :

A → C. The purpose of this example is to show that equipollence is a

feature independent of the shape, or “structure” of the set. It only tells

us that each element from the first set can be matched with an element

from the second set, and vice-versa.

Proposition 18 For all sets a, b and c, we have:

(i) (Reflexivity) a is equipollent to a.

(ii) (Symmetry) If a is equipollent to b, then b is equipollent to a.

(iii) (Transitivity) If a is equipollent to b, and if b is equipollent to c, then

a is equipollent to c.

Proof Reflexivity follows from the fact that the identity Ida is a bijection. Symme-

try follows from statement (vii) in sorite 16. Transitivity follows from statement

(iv) of sorite 16. �

4.1 Graphs and Functions 39

6 6 6 6 6 6 6 6 6 6 6 6

H H H H

H H H H

H H H H

: : :

: : :

: : :

: : :

B(6)

A(H)

C(:)

f

g

Fig. 4.8. The equipollence of sets A, B and C .

Are there arbitrary large sets? Here are first answers:

Exercise 10 Show that there is an injection sing : a → 2a for each set a,

defined by sing(x) = {x}.

An injection in the reverse direction never exists. We have in fact this

remarkable theorem.

Proposition 19 For any set a, a and 2a are never equipollent.

Proof Suppose that we have a function f : a → 2a. We show that f cannot be

surjective. Take the subset g ⊂ a defined by g = {x | x ∈ a,x 6∈ f(x)}. We claim

that g 6∈ Im(f). If z ∈ a with f(z) = g, then if z 6∈ g, then z ∈ g, a contradiction.

But if z ∈ g, then z 6∈ f(z) by definition of g, again a contradiction. So f(z) = g
is impossible. �

To see why this contradicts the existence of an injection 2a → a, we need

some further results:

Sorite 20 Let a,b, c, d be sets.

(i) If a
∼→ b and c

∼→ d, then a× c ∼→ b × d.

(ii) If a
∼→ b and c

∼→ d, and if a∩ c = b ∩ d = ∅, then a∪ c ∼→ b ∪ d.

Proof (i) If f : a→ b and g : c → d are bijections, then so is f × g by sorite 17.

(ii) If f : a→ b and g : c → d are bijections, then the graph f∪g ⊂ (a∪c)×(b∪d)
clearly defines a bijection. �

40 Functions and Relations

The following is a technical lemma:

Lemma 21 If p ∪ q ∪ r ∼→ p and p ∩ q = ∅, then p ∪ q ∼→ p.

Proof This proof is more involved and should be read only by those who really

are eager to learn about the innards of set theory. To begin with, fix a bijection

f : p ∪ q ∪ r → p. If x ⊂ p ∪ q ∪ r , we also write f(x) for {f(z) | z ∈ x}.
Consider the following propositional attribute Ψ(x) of elements x ∈ 2p∪q∪r : We

define Ψ(x) = “q∪f(x) ⊂ x”. For example, we have Ψ(p∪q). We now show that

if Ψ(x), then also Ψ(q∪f(x)). In fact, if q∪f(x) ⊂ x, then f(q∪f(x)) ⊂ f(x),
and a fortiori f(q ∪ f(x)) ⊂ q ∪ f(x), therefore q ∪ f(q ∪ f(x)) ⊂ q ∪ f(x),
thus Ψ(q ∪ f(x)), therefore Ψ(k).

Next, let b ⊂ 2p∪q∪r with Ψ(x) for all x ∈ b. Now we show that Ψ(
⋂
b). Denote

k = ⋂b. Since k ⊂ x for all x ∈ b, we also have f(k) ⊂ f(x) for all x ∈ b, and

therefore q ∪ f(k) ⊂ q ∪ f(x) ⊂ x for all x ∈ b. This implies q ∪ f(k) ⊂ k.

Now let b = e = {x | x ∈ 2p∪q∪r and Ψ(x)}; we know that e is non-empty. Then

k = d = ⋂ e. From the discussion above, it follows that Ψ(d), i.e., q ∪ f(d) ⊂ d.

But by the first consideration, we also know that Ψ(q∪f(d)), and, since d is the

intersection of all x such that Ψ(x), d ⊂ q ∪ f(d). This means that q ∪ f(d) ⊂
d ⊂ q ∪ f(d), i.e., q ∪ f(d) = d.

Moreover, d∩(p−f(d)) = ∅. In fact, d∩(p−f(d)) = (q∪f(d))∩(p−f(d)) =
(q∩(p−f(d)))∪(f (d)∩(p−f(d))) = ∅∪∅ = ∅ because we suppose p∩q = ∅.

So we have a disjoint union q ∪ p = d ∪ (p − f(d)). Now, we have a bijection

f : d
∼→ f(d) and a bijection (the identity) p − f(d) ∼→ p − f(d). Therefore by

sorite 20 (ii), we obtain the required bijection. �

This implies a famous theorem:

Proposition 22 (Bernstein-Schröder) Let a,b, c be three sets such that

there exist two injections f : a → b and g : b → c. If a and c are equipol-

lent, then all three sets are equipollent.

Proof We apply lemma 21 as follows. Let f : a → b and g : b → c be injections

and h : a → c a bijection. Then we may take the image sets a′ = g(f(a)) and

b′ = g(b) instead of the equipollent sets a and b, respectively. Therefore without

loss of generality we may show the theorem for the special situation of subsets

a ⊂ b ⊂ c such that a is equipollent to c. To apply our technical lemma we set

p = a, q = b − a and r = c − b. Therefore c = p ∪ q ∪ r and b = p ∪ q. In these

terms, we are supposing that p is equipollent to p∪ q∪ r . Therefore the lemma

yields that p is equipollent to p ∪ q, i.e., a is equipollent to b. By transitivity of

equipollence, b and c are also equipollent. �

In particular:

4.2 Relations 41

Corollary 23 If a ⊂ b ⊂ c, and if a is equipollent to c, then all three sets

are equipollent.

Corollary 24 For any set a, there is no injection 2a → a.

Proof If we had an injection 2a → a, the existing reverse injection a → 2a

from exercise 10 and proposition 22 would yield a bijection a
∼→ 2a which is

impossible according to proposition 19. �

4.2 Relations

Until now, we have not been able to deal with “relations” in a formal

sense. For example, the properties of reflexivity, symmetry, and transitiv-

ity, as encountered in proposition 18, are only properties of single pairs

of sets, but the whole set of all such pairs is not given. The theory of

relations will deal with such problems.

Definition 16 A binary relation on a set a is a subset R ⊂ a × a; this is a

special graph, where the domain and codomain coincide and are specified

by the choice of a. Often, instead of “(x,y) ∈ R”, one writes “xRy”.

Example 10 The empty relation ∅ ⊂ a × a, the complete relation R =
a × a, and the diagonal graph ∆a are relations on a. For each relation R

on a, the inverse relation R−1 = {(y,x) | (x,y) ∈ R} (the inverse graph)

is a relation on a. If R and S are two relations on a, then the composed

graph R ◦S defines the composed relation on a. In particular, we have the

second power R2 = R ◦ R of a relation R.

Notation 4 Often, relation symbols are not letters, but special symbols

such as <,≤,≺, Their usage is completely dependent on context and

has no universal meaning. Given relations < and ≤, the corresponding

inverse relations are denotated by > and ≥, respectively.

Definition 17 Let ≤ be a relation on a. The relation is called

(i) reflexive iff x ≤ x for all x ∈ a;

(ii) transitive iff x ≤ y and y ≤ z implies x ≤ z for all x,y, z ∈ a;

(iii) symmetric iff x ≤ y implies y ≤ x for all x,y ∈ a;

(iv) antisymmetric iff x ≤ y and y ≤ x implies x = y for all x,y ∈ a;

(v) total iff for any two x,y ∈ a, either x ≤ y or y ≤ x.

42 Functions and Relations

(vi) equivalence relation, iff it is reflexive, symmetric, and transitive. In

this case, the relation is usually denoted by ∼ instead of ≤.

Example 11 We shall illustrate these properties with examples from the

real world. The relation “x is an ancestor of y” is transitive, but neither

reflexive nor symmetric. The “subclass” relation of object-oriented pro-

gramming is reflexive, transitive, antisymmetric, but not symmetric.

The relation “x lives within 10 kilometers from y” is reflexive, symmetric,

but not transitive.

The relation “x is a sibling of y” is symmetric and transitive. It is not

reflexive. None of these relations is total.

A total, transitive relation, is, for instance, “x is not taller than y”.

Definition 18 Given a binary relation R ⊂ X × X, we call the smallest

set Rr , such that R ⊂ Rr and Rr is reflexive, the reflexive closure of R.

The smallest set Rs , such that R ⊂ Rs and Rs is symmetric, is called the

symmetric closure of R. The smallest set Rt , such that R ⊂ Rt and Rt is

transitive, is called the transitive closure of R. Finally, the smallest equiva-

lence relation Re containing R is called the equivalence relation generated

by R.

Proposition 25 If ∼ is an equivalence relation on a, and if s ∈ a, then a

subset

[s] = {r | r ∈ a and s ∼ r}
is called an equivalence class with respect to ∼. The set of equivalence

classes—a subset of 2a—is denoted by a/∼. It defines a partition of a, i.e.,

for any two elements s, t ∈ a, either [s] = [t] or [s] ∩ [t] = ∅, and

a = ⋃(a/∼).
Proof Since for every s ∈ a, s ∼ s, we have s ∈ [s], whence a = ⋃

(a/∼). If

u ∈ [s]∩ [t], then if r ∼ s we have r ∼ s ∼ u ∼ t, whence [s] ⊂ [t], the converse

inclusion holds with the roles of s and t interchanged, so [s] = [t]. �

Example 12 For an equivalence relation, consider “x has the same gen-

der as y”. The set of equivalence classes of this relation partitions

mankind into two sets, the set of males and the set of females.

Exercise 11 Show that the reflexive, symmetric, transitive closure ((Rr)s)t
of a relation R is the smallest equivalence relation Re containing R. Hint:

4.2 Relations 43

First, show that Re ⊃ ((Rr)s)t . Then, show that ((Rr)s)t is an equivalence

relation. The only critical property is symmetry. Show that the transitive

closure of a symmetric relation is symmetric.

Example 13 A relation R ⊂ A × A, where A = {a,b, c, d, e} is shown in

figure 4.9 in a graphical way. An element (x,y) ∈ R is represented by a

point at the intersection of the vertical line through x and the horizontal

line through y . For the reflexive, symmetric and transitive closure, added

elements are shown in gray.

a

a

b

b

c

c

d

d

e

e

(a)

a

a

b

b

c

c

d

d

e

e

(b)

a

a

b

b

c

c

d

d

e

e

(c)

a

a

b

b

c

c

d

d

e

e

(d)

Fig. 4.9. A relation R (a), its reflexive closure Rr (b), the reflexive, sym-

metric closure (Rr)s (c), and the reflexive, symmetric, transitive closure

Re = ((Rr)s)t (d).

Definition 19 A binary relation ≤ on a set a is called a partial ordering

iff it is reflexive, transitive and antisymmetric. A partial ordering is called

linear iff it is total. A linear ordering is called a well-ordering iff every

non-empty set b ⊂ a has a minimal element m, i.e., m ≤ x for all x ∈ b.

Example 14 We will later see that the set of natural numbers (0, 1, 2 . . .)

and the set of integers (. . . −2, −1, 0, 1, 2 . . .) are both linearly ordered by

“x is less than or equal to y”. However, whereas the natural numbers are

well-ordered with respect to this relation, the integers are not.

The aforementioned “subclass” relation is a partial ordering. It is not lin-

ear, because two classes can be completely unrelated, or derive from the

same class in the hierarchy without one being a subclass of the other.

Another example of a partial, but not linear, ordering is the inclusion

relation on sets.

44 Functions and Relations

Lemma 26 Let ≤ be a binary relation on a set a. Denoting x < y iff x ≤ y
and x ≠ y , the following two statements are equivalent:

(i) The relation ≤ is a partial ordering.

(ii) The relation ≤ is reflexive, the relation < is transitive, and for all

x,y ∈ a, x < y excludes y < x.

If these equivalent properties hold, we have x ≤ y iff x = y or else x < y .

In particular, if we are given < with the properties (ii), and if we define

x ≤ y by the preceding condition, then the latter relation is a partial

ordering.

Proof (i) implies (ii): If ≤ is a partial ordering, then it is reflexive by definition.

The relations a < b < c imply a ≤ c, but a = c is excluded since ≤ is antisym-

metric. The last statement is a consequence of the transitivity of <.

(ii) implies (i): ≤ is reflexive by hypothesis. It is transitive, since < is so, and the

cases of equality are obvious. Finally, if x < y , then y ≤ x is impossible since

equality is excluded by the exclusion of the simultaneous validity of x < y and

y < x, and inequality is by definition excluded by the same condition. �

Definition 20 If R is a relation on a, and if a′ is any set, the induced

relation R|a′ is defined to be the relation R∩ (a∩a′)× (a∩a′) on a∩a′.

Exercise 12 Show that the induced relation R|a′ is a partial ordering, a

linear ordering, a well-ordering, if R is so.

Exercise 13 Given a relation R on a and a bijection f : a → b, then we

consider the image Rf of the induced bijection (f × f)|R in b × b. This

new relation is called “structural transport” of R. Show that Rf inherits

all properties of R, i.e., it is a partial ordering, a linear ordering, a well-

ordering, iff R is so.

The strongest statement about relations on sets is this theorem (due to

Ernst Zermelo):

Proposition 27 (Zermelo) There is a well-ordering on every set.

Proof We shall not prove this quite involved theorem, but see [46]. �

Remark 5 If every set admits a well-ordering, the axiom of choice is a

consequence hereof. Conversely, the proposition 27 of Zermelo is proved

by use of the axiom 8 of choice. In other words: Zermelo’s theorem and

the axiom of choice are equivalent.

CHAPTER 5

Ordinal and Natural Numbers

Until now, our capabilities to produce concrete sets were quite limited.

In particular, we were only capable of counting from zero to one: from

the empty set 0 = ∅ to the set 1 = {0}. We are not even able to say

something like: “For n = 0,1, . . .”, since the dots have no sense up to

now! This serious lack will be abolished in this chapter: We introduce the

basic construction of natural numbers—together with one of the most

powerful proof techniques in mathematics: proof by infinite induction.

5.1 Ordinal Numbers

We shall now construct the basic sets needed for every counting and

number-theoretic task in mathematics (and all the sciences, which count

on counting, be aware of that!)

Definition 21 A set a is called transitive if x ∈ a implies x ⊂ a.

Example 15 The sets 0 and 1 are trivially transitive, and so is any set

J = {J} (if it exists).

Exercise 14 Show that if a and b are transitive, then so is a∩ b.

Definition 22 A set a is called alternative if for any two elements x,y ∈ a,

either x = y , or x ∈ y , or y ∈ x.

Exercise 15 Show that, if a is alternative and b ⊂ a, then b is alternative.

46 Ordinal and Natural Numbers

Fig. 5.1. Transitivity: Elements of an element x ∈ a of a transitive set a

are themselves elements of a.

Fig. 5.2. Alternativity: In an alternative set a, if x ≠ y are two elements

of a, then either x ∈ y or y ∈ x.

Definition 23 A set a is called founded if for each non-empty b ⊂ a, there

is x ∈ b with x ∩ b = ∅.

Example 16 The sets 0 and 1 are founded. What does it mean for a set

not to be founded. Consider the negation of foundedness: If a set a is

not founded, then there is “bad” non-empty subset b ⊂ a, such that for

all x ∈ b, we have x ∩ b ≠ ∅, in other words: every element of b has an

element, which already is in b. This means that there is an endless chain

of elements of b, each being an element of the previous one. The simplest

example is the “circular” set defined by the equation J = {J} (if it exists).

Here the chain is J 3 J 3 J . . . The property of foundedness ensures that

a set does not contain a bottomless pit.

5.1 Ordinal Numbers 47

Fig. 5.3. Foundedness: If b ⊂ a is non-empty, and a is founded, then

there is x ∈ b such that x ∩ b = ∅; here we have x = {r , s}, b =
{x,u,v,w} with r ≠ u,v,w and s ≠ u,v,w.

In modern computer science, however, such circular sets play an increas-

ingly important role, a prominent example being the modeling of circular

data structures, see [3].

The circular non-founded set is a special case of the following result:

Proposition 28 Suppose that a is founded, then x ∈ a implies x 6∈ x.

Proof For x ∈ a, consider the subset {x} ⊂ a. Then x ∈ x contradicts the fact

that {x} ∩ x must be empty because a is founded. �

Lemma 29 If d is founded, and if a,b, c ∈ d such that a ∈ b and b ∈ c,
then a ≠ c and c 6∈ a.

Proof Consider the subset {a,b} ∈ d. If x = b, then a ∈ x ∩ {a,b}. Therefore

x = a yields x ∩ {a,b} = ∅. But a = c enforces that b is in this intersection.

Therefore a ≠ c. If we had c ∈ a, then we cannot have a∩ {a,b, c} = ∅. By the

hypothesis of the lemma, b ∩ {a,b, c} contains a, and c ∩ {a,b, c} contains b.

Therefore the set {a,b, c} contradicts the foundedness of d and so c 6∈ a. �

Here is the fundamental concept for creating numbers:

Definition 24 A set is called ordinal if it is transitive, alternative, and

founded.

The following series of results is destined to control the basic properties

of ordinals.

48 Ordinal and Natural Numbers

Lemma 30 Let d be an ordinal. If a ⊂ d is non-empty, then there is x0 ∈ a
such that whenever x ∈ a, then either x0 = x or x0 ∈ x.

Proof Since d is an ordinal, it is founded, and there is an element x0 ∈ a such

that x0∩a = ∅. Let x ∈ a be any element different from x0. Since d is alternative,

either x ∈ x0 or x0 ∈ x. But x ∈ x0 contradicts x0 ∩ a = ∅, and we are done. �

Proposition 31 If d is ordinal, then x ∈ d implies that x is ordinal.

Proof Let x ∈ d. Then by transitivity of d, x ⊂ d. Hence x is alternative and

founded. Let b ∈ x. Then a ∈ b implies a ∈ x. In fact, x ⊂ d, therefore b ∈ d
and a ∈ b ∈ d. Since d is transitive, a ∈ d. So a,x ∈ d. Hence either a = x, or

a ∈ x, or x ∈ a. But by lemma 29, applied to the element chain a ∈ b ∈ x, we

must have a ∈ x. �

Proposition 32 A transitive proper subset c of an ordinal d is an element

of that ordinal.

Proof Since d is founded, there is y ∈ d− c with y ∩ (d− c) = ∅. We claim that

c = y . Since d is transitive, y ⊂ d, and by construction of y , y ⊂ c. Conversely,

let b ∈ c, then b ∈ d. Since d is alternative, either b ∈ y or b = y or y ∈ b. But

b = y implies b ∈ d− c, a contradiction. Further, y ∈ b and b ∈ c imply y ∈ c
by transitivity of c. Again, a contradiction. Therefore we have b ∈ y . �

Corollary 33 If d is an ordinal, then a set a is an element of d iff it is an

ordinal and a ⊊ d.

Proof Clearly, an element of an ordinal is a proper subset. The converse follows

from proposition 32. �

Exercise 16 Show that if d is a non-empty ordinal, then ∅ ∈ d.

Exercise 17 Show that if c is ordinal, then a ∈ b and b ∈ c imply a ∈ c.

Exercise 18 Show that if a and b are ordinals, then a ∈ b implies b 6∈ a.

Proposition 34 If a and b are ordinals, then either a ⊂ b or b ⊂ a.

Proof Suppose both conclusions are wrong. Then the intersection a ∩ b is a

proper subset of both a and b. But it is evidently transitive, hence an ordinal

element of both, a and b, hence an element of itself, a contradiction. �

Corollary 35 If a and b are ordinals, then exclusively either a ∈ b, or

a = b, or b ∈ a.

5.1 Ordinal Numbers 49

Proof Follows from propositions 32 and 34. �

Corollary 36 If all elements a ∈ b are ordinals, then b is alternative.

Proof Follows from corollary 35. �

Proposition 37 If every element x ∈ u of a set u is ordinal, then there

is exactly one element x0 ∈ u such that for every x ∈ u, we have either

x0 ∈ x or x0 = x.

Proof Uniqueness is clear since all elements of u are ordinal.

Existence: If u = {a}, then take x0 = a. Else, there are at least two different

elements c, c′ ∈ u, and either c ∈ c′ or c′ ∈ c. So either c ∩ u or c′ ∩ u is not

empty. Suppose c ∩u ≠∅. By lemma 30, there is an x0 ∈ c ∩u such that either

x0 = x or x0 ∈ x for all x ∈ c ∩ u. Take any y ∈ u. Then either: c ∈ y , but

x0 ∈ c, and therefore x0 ∈ y . Or: c = y , whence x0 ∈ y , or else y ∈ c, whence

y ∈ c ∩u, and x0 = y or x0 ∈ y according to the construction of x0. �

Corollary 38 If all elements of a set u are ordinals, then u is founded.

Proof Let c ⊂ u be a non-empty subset. Take the element x0 ∈ c as guaranteed

by proposition 37. Then clearly x0 ∩ c = ∅. �

Corollary 39 A transitive set a is ordinal iff all its elements are so.

Proof Follows immediately from the corollaries 36 and 38. �

Remark 6 There is no set Allord containing all ordinal sets. In fact, it

would be transitive, and therefore ordinal, i.e., we would have the absurd

situation Allord ∈ Allord.

Proposition 40 For any set a, the successor set a+ is non-empty, we have

a ∈ a+, and a is ordinal iff a+ is so.

Proof By definition, a ∈ a+, thus a successor is never empty. If a+ is ordinal, so

is its element a. Conversely, all the elements of a+ are ordinal. Moreover, a+ is

transitive, hence ordinal by corollary 39. �

Lemma 41 If a and b are ordinals with a ∈ b, then

(i) either a+ ∈ b or a+ = b;

(ii) a+ ∈ b+;

(iii) there is no x such that a ∈ x and x ∈ a+.

50 Ordinal and Natural Numbers

Proof Since a+ and b are ordinal, we have a+ ∈ b or a+ = b or b ∈ a+. But the

latter yields a contradiction to a ∈ b. The second statement follows from the

first. The third follows from the two impossible alternatives x = a or x ∈ a. �

Proposition 42 If a and b are ordinals, then a = b iff a+ = b+.

Proof Clearly, a = b implies a+ = b+. Conversely, a+ = b+ implies b = a or

b ∈ a, but the latter implies b+ ∈ a+, a contradiction. �

Corollary 43 If two ordinals a and b are equipollent, then so are their

successors.

Proof We have a bijection f : a
∼→ b. We define the following bijection g : a+ ∼→

b+: On elements x of a, g(x) = f(x). For a ∈ a+ and b ∈ b+, we know that

a 6∈ a and b 6∈ b, therefore we set g(a) = b. �

Proposition 44 Let Φ be an attribute of sets such that whenever it holds

for all elements x ∈ a of an ordinal a, then it also holds for a. Then Φ

holds for all ordinals.

Proof Observe that in particular, Φ holds for∅. Suppose that there is an ordinal

b such that Φ(b) does not hold. Then the subset b′ = {x | x ∈ b,NOT Φ(x)}
of b is not empty (since NOT Φ(b)) and a proper subset of b (since ∅ is not

in b′). According to proposition 37, there is a minimal element x0 ∈ b′, i.e.,

NOT Φ(x0), but every element of x0 is element of b − b′. This is a contradiction

to the hypothesis about Φ. �

5.2 Natural Numbers

The natural numbers, known from school in the common writing (0,) 1,

2, 3, 4, 5, . . . are constructed from the ordinal sets as follows. This con-

struction traditionally stems from an axiomatic setup, as proposed by

Giuseppe Peano. In the set-theoretical framework, the Peano axioms ap-

pear as propositional statements. This is why proposition 45 and propo-

sition 46 are named “Peano Axioms”.

Definition 25 A natural number is an ordinal set n which is either ∅ or a

successor m+ of an ordinal number m and such that every element x of

n is either x = ∅ or a successor x = y+ of an ordinal number y .

5.2 Natural Numbers 51

The membership relation of sets can be illustrated by a diagram where

an arrow from a set x to a set y means that x contains y as an element,

or y ∈ x. The following picture, for example, represents the set a =
{{b, c, d}, d,∅}:

a

{b, c, d}

b c d

∅

Using this method, the natural numbers 0 = ∅,1 = {∅}, 2 = {∅, {∅}},
3 = {∅, {∅}, {∅, {∅}}}, . . . can be drawn:

0 = ∅ 1

0

2

0 1

3

0 1 2

Proposition 45 (Peano Axioms 1 through 4) We denote the empty set by

the symbol 0 if we consider it as an ordinal.

(i) The empty set 0 is a natural number.

(ii) If n is natural, then so is n+.

(iii) The empty set 0 is not a successor.

(iv) If n and m are natural, then n+ =m+ implies n =m.

Proof This is straightforward from the propositions following the definition,

lemma 1 in chapter 2, of a successor. �

Proposition 46 (Peano Axiom 5) Let Ψ be an attribute of sets with these

properties:

(i) We have Ψ(0).

(ii) For every natural number n, Ψ(n) implies Ψ(n+).

Then Ψ holds for every natural number.

Proof Let m be a natural number with NOT Ψ(m). Since m ≠ 0, i.e., m = n+, by

hypothesis, the subset {x | x ∈m,NOT Ψ(x)} contains n. Take the minimum x0

within this subset. This is a successor x0 = y+ such that Ψ(y), a contradiction. �

52 Ordinal and Natural Numbers

Remark 7 Proposition 46 yields a proof scheme called “proof by induc-

tion”. One is given an attribute Ψ of sets, usually only specified for nat-

ural numbers. For other sets, we tacitly set Ψ to be false, but that value

is irrelevant for the given objective, which is to prove that Ψ holds for all

natural numbers. To this end, one proves (i) and (ii) in proposition 46 and

concludes as required.

The following proposition is the first result which follows from proposi-

tion 46, Peano’s fifth axiom:

Proposition 47 Let n be natural, and let a ⊊ n. Then there ism ∈ n such

that a
∼→m.

Proof We prove the proposition by induction: For any natural number n, let

Ψ(n) be the proposition that for every proper subset y ⊂ n, there is a naturalm,

which is equipollent to y . Clearly, Ψ(0). Suppose that n =m+ and Ψ(m) holds.

Let y be a proper subset of n. If y ⊂m, either y =m and we are done, or y is a

proper subset ofm and the induction hypothesis gives us the required bijection.

Else, ifm ∈ y , there is an element u ∈m−y . But then y ′ = (y −{m})∪ {u} is

equipollent to y , and we are redirected to the above case. �

Proposition 48 Let n be a natural number, and suppose that an ordinal

a is equipollent to n. Then a = n. In particular, two natural numbers m

and n are equipollent iff they are equal.

Proof We prove the claim by induction and consider the property Ψ(n) for nat-

ural numbers defined by Ψ(n) iff for any ordinal a, the fact that a is equipollent

to n implies a = n. Suppose that there is a counterexample m; evidently m ≠ 0.

Let a ≠ m be ordinal, but equipollent to m. Let m = {x | x ∈ m,Ψ(x)}, which

is not empty, since it contains 0.

1. m = m. Since a and m are ordinal, either a ∈ m or m ∈ a. In the first

case, Ψ(a), which contradicts the choice of m. So m ∈ a and m ⊂ a is a proper

subset. Let f : a → m be a bijection. Then f(m) is a proper subset of m. By

proposition 47, there is an element n ∈ m which is equipollent to f(m) and

therefore also to m. But we know that Ψ(n), whence m = n, which contradicts

n ∈m.

2. m −m ≠ ∅. Take the smallest x0 in this difference set. There is an ordinal

b ≠ x0, but equipollent to x0. Then either b ∈ x0 or x0 ∈ b. In the first case,

b is a natural number in m since x0 ⊂ m. So b = x0 by construction of x0, a

contradiction. If x0 ∈ b, then since b is ordinal, x0 ⊂ b is a proper subset, and

we may proceed as in the first case above. This concludes the proof. �

5.2 Natural Numbers 53

Remark 8 This means that natural numbers describe in a unique way

certain cardinalities of ordinals. Each natural number represents exactly

one cardinality, and two different natural numbers are never equipollent.

Definition 26 A set a is called finite if it is equipollent to a natural num-

ber. This number is then called cardinality of a and denoted by card(a),

by #(a), or by |a|, depending on the usage.

This definition is justified by the fact that the cardinality of a finite set

is a unique number which is equipollent to that set, i.e., which in our

previous terminology has the same cardinality as the given set.

Corollary 49 A subset of a finite set is finite.

Proof We may suppose that we are dealing with a subset of a natural number,

where the claim is clear. �

Corollary 50 An ordinal set is finite iff it is a natural number.

Proof This follows right from proposition 48. �

Corollary 51 If an ordinal a is not finite, it contains all natural numbers.

Proof For any natural number n, we have either a ∈ n or a = n or n ∈ a. The

middle case is excluded by definition of a. The left alternative is excluded since

every subset of a finite set is finite. So every n is an element of a. �

Corollary 52 A finite set is not equipollent to a proper subset.

Proof In fact, a proper subset of a natural number n is equipollent to an element

of n, hence equal to this element, a contradiction. �

From the axiom 7 of infinity, we derive this result:

Proposition 53 There is an ordinal N whose elements are precisely the

natural numbers.

Proof This follows immediately from the axiom 7. �

Notation 5 The relation n ∈m for elements of N defines a well-ordering

among natural numbers. We denote it by n < m and say “n is smaller

than m” or else “m is larger than n”.

54 Ordinal and Natural Numbers

Exercise 19 With the well-ordering ≤ among natural numbers defined by

<, show that we have the following facts: Every non-empty set of natural

numbers has a (uniquely determined) minimal element. Let b be a limited

non-empty set of natural numbers, i.e., there is x ∈ N such that y < x for

all y ∈ b. Then there is a (uniquely determined) maximal element z ∈ b,

i.e., y ≤ z for all y ∈ b. Hint: Proceed by induction on b.

CHAPTER 6

Recursion Theorem

and Universal Properties

Before developing the arithmetic of natural numbers more specifically,

we describe some crucial methods for the construction of sets and func-

tions on sets. These properties are the basis of a fundamental branch in

mathematics, called topos theory, a branch which is of great importance

to computer science too, since it provides a marriage of formal logic and

geometry (see [36]).

Proposition 54 If a and b are two sets, then there is a set, denoted by

Set(a, b), whose elements are exactly the functions f : a→ b.

Proof The elements of the required set Set(a, b) are triples (a, f , b), where

f ⊂ a × b is a functional graph. So (a, f , b) = ((a, f), b) ∈ (2a × 2a×b) × 2b,

whence Set(a, b) ⊂ (2a × 2a×b) × 2b is a subset selected by a straightforward

propositional attribute. �

Notation 6 The set Set(a, b) of functions is also denoted by ba if we want

to stress that it is a set, without emphasis on the specific nature, i.e., that

its elements are the functions f : a → b. This distinction may seem super-

fluous now, but we will understand this point when we will deal with more

general systems of objects and “functions” between such objects.

Example 17 Setting a = 0 (= ∅), we have Set(0, b) = {! :∅→ b}. Setting

b = 1 (= {0}), we have Set(a,1) = {! : a→ 1}. If a ≠ 0, then Set(a,0) = ∅.

56 Recursion Theorem and Universal Properties

6.1 Recursion Theorem

The set of functions allows a very important application of the fifth Peano

axiom (which is a theorem following from our set of axioms), namely

construction by induction. To this end, we need to look at functions f :

N→ a for any non-empty set a. If n ∈ N, we have the restriction f |n : n→
a as declared in definition 13. Observe that f |n is defined for all natural

numbers strictly smaller than n, but not for n. If g : n+ → a is a function,

then we denote by g∗ the function g∗ : N → a with g∗(m) = g(n) for

m > n and g∗(m) = g(m) form ≤ n. If g is ! : 0→ a, we pick an element

g0 ∈ a and set g∗(m) = g0 for all natural numbersm. Here is the general

recursion theorem:

Proposition 55 (Recursion Theorem) Let a be a set, and let Φ : aN → aN
be a function such that for every natural number n, if f , g ∈ aN are such

that f |n = g|n, then Φ(f)(n) = Φ(g)(n). Then Φ has a unique fixpoint

LΦ ∈ aN, which means that Φ(LΦ) = LΦ. Consider the function Φn : an → a
which evaluates to Φn(g) = Φ(g∗)(n). Then we have

LΦ(0) = Φ0(! : 0→ a)
LΦ(n

+) = Φn+(LΦ|n+).

Proof There is at most one such fixpoint. In fact, let L and M be two such

fixpoints, Φ(L) = L and Φ(M) = M , and suppose that they are different. Then

there is a smallest value n0 such that L(n0) ≠ M(n0). This means that L|n0 =
M|n0 . But then Φ(L)(n0) = Φ(M)(n0), a contradiction. So there is at most one

such fixpoint. For every n ∈ N, let S(n) ⊂ an be the set of those functions

f : n → a such that for all m ∈ n, f(m) = Φm(f |m). Clearly, either S(n) is

empty or S(n) contains precisely one function gn. The set S(0) is not empty. Let

N+ be the smallest natural number such that S(N+) is empty. We may define a

function h : N+ → a by h|N = gN and h(N) = ΦN(h|N). But this is a function

in S(N+), so every S(n) is non-empty. Now define L(n) = gn+(n). Clearly, this

function is our candidate for a fixpoint: To begin with, if n < m, then evidently,

by the uniqueness of the elements of S(n), g(m)|n = g(n). Therefore, L|n = gn
for all n. And L is a fixpoint, in fact: L(n) = gn+(n) = Φn(gn+ |n) = Φn(gn) =
Φ(g∗n)(n) = Φ(L)(n) since L|n = gn = g∗n |n. The claimed formula then follows

by construction. �

Remark 9 Very often, the above formal context will be treated in a rather

sloppy way. The common wording is this: One wants to define objects

(functions, sets of whatever nature) by the following data: one knows

6.1 Recursion Theorem 57

which object O0 you have to start with, i.e., the natural number 0. Then

you suppose that you have already “constructed” the objects Om, m ≤ n
for a natural number n, and your construction of On+ for the successor

n+ is given from O0, O1, . . .On and some “formula” Φ. Then you have

defined the objects On for every n ∈ N.

Example 18 In order to clarify the rather abstract recursion theorem, we

shall apply it to the definition of the function c+? : N → N which will be

discussed in depth in the next chapter. Intuitively, we want this function

to behave as follows:
c + 0 = c

c + b+ = (c + b)+

This corresponds to a function Φ : NN → NN given by Φ(f)(0) = c, and

Φ(f)(n+) = (f (n))+. This Φ satisfies the condition for the recursion

theorem: Let f , g ∈ NN be two functions with f |n+ = g|n+ . In particu-

lar, this implies that f(n) = g(n). Then, Φ(f)(0) = c = Φ(g)(0), and

Φ(f)(n+) = (f (n))+ = (g(n))+ = Φ(g)(n+). The recursion theorem now

states that Φ has a fixpoint LΦ ∈ NN with the property that

LΦ(0) = Φ0(! : 0→ N) = Φ((! : 0→ N)∗)(0) = c,

and

LΦ(n
+) = Φn+(LΦ|n+)
= Φ((LΦ|n+)∗)(n+)
= ((LΦ|n+)∗(n))+
= (LΦ|n+(n))+
= LΦ(n)+.

This is exactly the behavior we requested for our function c+?.

Exercise 20 Assuming the availability of the multiplication of natural

numbers (which will be introduced in the next chapter), let the factorial

function fact : N→ N be given by

fact(0) = 1 and fact(n+) = n+ · fact(n).

Explicitly write down the function Φ corresponding to this recursive def-

inition of fact, show that Φ satisfies the condition for the application of

the recursion theorem, and show that the function LΦ is equal to the

function fact.

58 Recursion Theorem and Universal Properties

6.2 Universal Properties

While the recursion theorem describes a constructive method for the

definition of new sets, universal properties comprise a more declarative

methodology for the construction of sets, which are uniquely character-

ized by certain functions on such sets. Such sets are universal in the

sense that their concrete construction is secondary compared with their

characteristic behavior.

Definition 27 A set b is called final iff for every set a, |Set(a, b)| = 1. A

set a is called initial iff for every set b, |Set(a, b)| = 1.

Proposition 56 (Existence of Final and Initial Sets) A set b is final iff

|b| = 1. The only initial set is ∅.

Proof This is immediate. �

We shall usually pick the set 1 = {∅} to represent the final sets.

Notation 7 Given two sets a and b, denote by pra : a × b → a and prb :

a × b → b the functions pra(x,y) = x and prb(x,y) = y for elements

(x,y) ∈ a × b. The functions pra, prb are called projections onto a, b,

respectively.

Proposition 57 (Universal Property of Cartesian Product) Given two

sets a and b and any set c, the function

β : Set(c, a× b) ∼→ Set(c, a)× Set(c, b)

defined by β(u) = (pra ◦u,prb ◦u) is a bijection.

The following commutative diagram shows the situation:

c

a ð
pra

pra ◦u

ð
a× b

u

�

prb
ñ b

prb ◦u

ñ

Proof If u : c → a×b, then for every x ∈ c, u(x) = (pra(u(x)),prb(u(x))), so u

is determined by its projections, and thus β is injective. If we are given v : c → a
and w : c → b, then define u(x) = (v(x),w(x)). Then evidently, β(u) = (v,w),
so β is surjective. �

6.2 Universal Properties 59

Exercise 21 Suppose that a set q, together with two functions pa : q → a
and pb : q → b has the property that

β : Set(c, q)
∼→ Set(c, a)× Set(c, b)

defined by β(u) = (pa ◦ u,pb ◦ u) is a bijection. Show that there is a

unique bijection i : q
∼→ a× b such that pra ◦ i = pa and prb ◦ i = pb.

Definition 28 Given two sets a and b, the disjoint sum or coproduct atb
of a and b is the set a t b = ({0} × a) ∪ ({1} × b), together with the

injections ina : a → at b, and inb : b → at b, where ina(x) = (0, x) and

inb(y) = (1, y) for all x ∈ a and y ∈ b.

Evidently, the coproduct a t b is the disjoint union of the two subsets

{0} × a and {1} × b. Here is the universal property for the coproduct

corresponding to the universal property of the Cartesian product proved

in proposition 57:

Proposition 58 (Universal Property of Coproduct) Given two sets a and

b and any set c, the function

γ : Set(at b, c) ∼→ Set(a, c)× Set(b, c)

defined by γ(u) = (u ◦ ina, u ◦ inb) is a bijection.

The following commutative diagram shows the situation:

c

a
ina

ñ

u ◦ ina

ñ

at b

u

�

ð
inb

b

u ◦ inb

ð

Proof Clearly, a map u : a t b → c is determined by its restrictions to its

partitioning subsets {0} × a and {1} × b, which in turn is equivalent to the pair

u◦ina and u◦inb of maps. So γ is injective. Conversely, if v : a→ c andw : b → c
are any two functions, then we define u((0, x)) = v(x) and u((1, y)) = w(y),
which shows the surjectivity of γ. �

Exercise 22 Suppose that a set q, together with two functions ia : a → q
and ib : b → q has the property that

γ : Set(q, c)
∼→ Set(a, c)× Set(b, c)

defined by γ(u) = (u◦ia, u◦ib) is a bijection. Show that there is a unique

bijection i : at b ∼→ q such that i ◦ ina = ia, i ◦ inb = ib.

60 Recursion Theorem and Universal Properties

Exercise 23 Use the universal property of coproducts to show that, for

three sets a, b and c, the coproducts (a t b) t c and a t (b t c) are

equipollent. Therefore we can write at b t c.1

The following proposition characterizes the set of functions cb as the

solution to a property of functions defined on a Cartesian product of

sets.

Proposition 59 (Universal Property of Exponentials) If a, b and c are

sets, there is a bijection

δ : Set(a× b, c) ∼→ Set(a, cb)

defined by

δ(f)(α)(β) = f((α,β))
for all α ∈ a and β ∈ b, and f ∈ Set(a× b, c). This bijection is called the

natural adjunction.

Proof The map δ is evidently injective. On the other hand, if g : a→ cb, then we

have the map f : a × b → c defined by f(α,β) = g(α)(β), and then δ(f) = g,

thus δ is surjective. �

For the next concepts we need to know what the fiber of a function is:

Definition 29 If f : a → b is a function, and if c ⊂ b, then one calls the

set {x | x ∈ a and f(x) ∈ c} “fiber of f over c”, or preimage or inverse

image of c under f , and denotes it by f−1(c). For a singleton c = {κ}, one

writes f−1(κ) instead of f−1({κ}).
We have this commutative diagram, where the horizontal arrows are the

inclusions:

f−1(c) ñ a

c

f |f−1(c)

�
ñ b

f

�

In axiom 6 we had introduced the somewhat strange notation 2a for the

powerset of a. Here is the explanation for this choice.

1 This corresponds to the procedure known as “currying” in λ-calculus.

6.2 Universal Properties 61

Fig. 6.1. The fiber f−1(c) ⊂ a of f over c ⊂ b.

Proposition 60 (Subobject Classifier) The natural number 2 = {0,1} is a

subobject classifier, i.e., for every set a, there is a bijection

χ : 2a
∼→ Set(a,2)

defined in the following way:

If b ⊂ a is an element of 2a, then χ(b)(α) = 0 if α ∈ b, and χ(b)(α) =
1 else. The function χ(b) is called the characteristic function of b. The

inverse of χ is the zero fiber, i.e., χ−1(f) = f−1(0).

Fig. 6.2. Subobject classifier: The values of χ for just two elements are

shown. For example, the subset {q, r , s} of a = {q, r , s, t} is mapped by

χ to its characteristic function χ({q, r , s}) illustrated in the upper right

of the figure. Note that χ−1({q, r , s}) = {q, r , s} = χ(q, r , s)−1(0), i.e.,

the zero fiber of the characteristic function.

62 Recursion Theorem and Universal Properties

Proof This result is immediate. �

Observe that now the subsets of a, elements of 2a, are identified with

functions a → 2, i.e., elements of Set(a,2) which we also denote by 2a,

and this is now perfectly legitimate by the above proposition.

A generalization of the Cartesian product is given by so-called families of

sets.

Definition 30 A family of sets is a surjective function f : a → b. The

images f(x) are also denoted by fx , and the function is also notated by

(fx)x∈a or by (fx)a. This means that the elements of b are “indexed” by

elements of a.

If c ⊂ a, then the subfamily (fx)x∈c is just the restriction f |c , together

with the codomain being the image Im(f |c).
The Cartesian product

∏
x∈a fx of a family (fx)x∈a of sets is the subset of

(
⋃
b)a consisting of all functions t : a → ⋃

b such that t(x) ∈ fx for all

x ∈ a. Such a function is also denoted by (tx)x∈a and is called a family of

elements. We shall always assume that when a family of elements is given,

that there is an evident family of sets backing this family of elements, often

without mentioning these sets explicitly.

For a given index x0, we have the x0-th projection prx0
:
∏
x∈a fx → fx0

which sends (tx)x∈a to tx0 .

Example 19 Figure 6.3 shows a family of sets f : a → b, with a =
{x,y} and b = {{q, r , s}, {s, t}}. It is defined as fx = {q, r , s} and

fy = {s, t}. The Cartesian product
∏
x∈a fx is given by the functions

ti : a → {q, r , s, t} with t1 = {(x, q), (y, s)}, t2 = {(x, r), (y, s)},
t3 = {(x, s), (y, s)}, t4 = {(x, q), (y, t)}, t5 = {(x, r), (y, t)}, t6 =
{(x, s), (y, t)}, where the graphs of the functions have been used to de-

scribe them.

One defines the union of the family (fx)a by
⋃
a fx =

⋃
Im(f), i.e., by

the union of all its member sets. Similarly one defines the intersection

of the family (fx)a by
⋂
a fx =

⋂
Im(f), i.e., by the intersection of all

its member sets. The intersection however exists only for a non-empty

family.

Sorite 61 Let (fx)a be a non-empty family of sets, i.e., a ≠∅.

6.2 Universal Properties 63

Fig. 6.3. A family of sets f : a→ b.

(i) The Cartesian product
∏
x∈a fx is non-empty iff each fx is non-

empty.

(ii) If all sets fx coincide and are equal to c, then
∏
x∈a fx = ca.

(iii) If a = 2, then
∏
x∈2 fx

∼→ f0 × f1.

(iv) If (ux : d → fx)x∈a is a family of functions, then there is a unique

function u : d→∏
x∈a fx such that ux = prx ◦u for all x ∈ a.

Proof (i) By definition, the Cartesian product is non-empty for a ≠∅ iff each fx
is so.

(ii) This is an immediate consequence of the definition of the Cartesian product

and of the fact that here, c = ⋃x∈a c.
(iii) The functions g : 2→ f0∪f1, where g(0) ∈ f0 and g(1) ∈ f1, are in bijection

with the pairs of their evaluations (g(0), g(1)) ∈ f0 × f1.

(iv) The reader should think about the set where the family of functions is de-

duced. But if this is done, the statement is immediate. �

Example 20 Families where the index set a is a natural number n or

the set N of all natural numbers are called sequences. For a = n, we

have the finite sequences (ti)i∈n, or, in an equivalent notation, (ti)i<n.

One then often writes ti, i = 0,1, . . . n − 1 instead, or also t0, t1, . . . tn−1.

For a = N, one writes also (ti)i=0,1,2,... or else t0, t1, The length of a

sequence (ti)i∈n is the (uniquely determined) number n. One also calls

such a sequence an n-tuple.

In computer science, one often calls sequences lists, and it is also agreed

that list indexes start with 0, as do natural number indexes. The empty

list is also that sequence with index set a = 0, the empty set.

64 Recursion Theorem and Universal Properties

Exercise 24 Prove that there is exactly one empty family, i.e., a family

with an empty index set.

Cartesian products
∏
x∈a fx also admit linear orderings if their members

do so. Here is the precise definition of the so-called “lexicographic order-

ing”:

Definition 31 Suppose that we are given a family (fx)a of sets such that

each fx bears a linear ordering <x , and such that the index set a is well-

ordered by the relation <. Then, for two different families (tx)a, (sx)a ∈∏
x∈a fx the relation

(tx)a ≺ (sx)a iff the smallest index y , where ty ≠ sy , has ty <y sy

is called the lexicographic ordering on
∏
x∈a fx .

Lemma 62 The lexicographic ordering is a linear ordering.

Proof According to lemma 26, we show that ≺ is transitive, antisymmetric and

total. Let (tx)a ≺ (sx)a ≺ (ux)a. If the smallest index y , where these three

families differ, is the same, then transitivity follows from transitivity of the total

ordering at this index. Else, one of the two smallest indexes is smaller than the

other, let y1 < y2 for the index y1 of the left pair (tx)a ≺ (sx)a. Then the

inequalities at this index are ty1 <y1 sy1 = uy1 , whence ty1 <y1 uy1 , i.e., (tx)a ≺
(ux)a; similarly for the other situation, namely, y2 < y1. The same argument

works for antisymmetry. As to totality: Let (tx)a and (sx)a be any two families. If

they are different, then the smallest index y where they differ has either ty <y sy
or sy <y ty since <y is total. �

Exercise 25 Show that the lexicographic ordering on
∏
n∈N fn is a well-

ordering iff each linear ordering <n on fn is so. The same is true for a

finite sequence of sets, i.e., for
∏
n<N fn, where N ∈ N.

Exercise 26 Suppose that we are given a finite alphabet set A of “let-

ters”. Suppose that a bijection u : A ∼→ N with the natural number

N = card(A) is fixed, and consider the ordering of letters induced by

this bijection, i.e., X < Y iff u(X) < u(Y). Suppose that an element ∈A
is selected. Consider now the restriction of the lexicographic ordering on

AN to the subsetA(N) consisting of all sequences (τn)N such that τn =
for all but a finite number of indexes. Show that this set may be identi-

fied with the set of all finite words in the given alphabet. Show that the

6.2 Universal Properties 65

induced lexicographic ordering on A(N) coincides with the usual lexico-

graphic ordering in a dictionary of words from the alphabet A; here the

special sign plays the role of the empty space unit.

The name “lexicographic” effectively originates in the use of such an or-

dering in compiling dictionaries. As an example we may consider words

of length 4, i.e., the setA4. Let the ordering onA be < A < B . . .Z. Then,

writing the sequence (ti)i=0,1,2,3, ti ∈A as t0t1t2t3, we have, for instance:

BALD ≺ BAR ≺ BASH ≺ I AM ≺ MAN ≺ MANE ≺ MAT ≺ SO ≺ SORE

The minimal element ofA4 is , the maximal element is ZZZZ.

Definition 32 If (fx)a is a family of sets, where each set fx bears a binary

relation Rx , then the Cartesian product
∏
x∈a fx bears the product relation

R =∏x∈a Rx which is defined “coordinatewise”, i.e.,

(tx)aR(sx)a iff tx Rx sx for each x ∈ a.

Attention: Even if each binary relation on the set fx is a linear ordering.

Therefore product relation is not, in general, a linear ordering, so the

lexicographic ordering is a remarkable construction since it “preserves”

linear orderings.

Until now, we only considered binary relations. By use of Cartesian prod-

ucts of families of sets, one can now introduce the concept of an n-ary

relation for n ∈ N as follows:

Definition 33 If n is a natural number and a is a set, an n-ary relation

on a is a subset R of the n-fold Cartesian product an, the binary relation

being the special case of n = 2.

Not every binary relation is an equivalence relation, but very often, one

is interested in a kind of minimal equivalence relation which contains a

given relation. Here is the precise setup:

Lemma 63 If (Rx)a is a non-empty family of equivalence relations on a set

b, then the intersection
⋂
a Rx is an equivalence relation. It is the largest

equivalence relation (for the subset inclusion relation), which is contained

in all relations Rx, x ∈ a.

Proof This is straightforward to check. �

66 Recursion Theorem and Universal Properties

Proposition 64 Given a relation R on a set a, the smallest equivalence

relation ∼ containing R consists of all pairs (x,y) such that either x = y
or there exists a finite sequence x = x0, x1, . . . xn+ = y with xiRxi+ or

xi+Rxi for all i = 0,1, . . . n.

Proof Clearly, the smallest equivalence relation must contain these pairs. But

these pairs visibly define an equivalence relation, and we are done. �

Definition 34 The equivalence relation ∼ defined in proposition 64 is

called the equivalence relation generated by the relation R.

6.3 Universal Properties in Relational Database

Theory

Relational database theory serves as a very useful example of the univer-

sal properties of Cartesian product constructions. More than that: It even

requires a construction which is slightly more general than the Carte-

sian product: the fiber product. Let us first introduce it, before we dis-

cuss a concrete database process implemented in the relational database

management system language SQL (Structured Query Language). SQL is

an ANSI (American National Standards Institute) standard computer lan-

guage for accessing and manipulating database systems. SQL statements

are used to retrieve and update data in a database (see [24] for a reference

to SQL and [18] for relational database theory).

Definition 35 (Universal property of fiber products) Given three sets a,

b and c and two maps f : a→ c and g : b → c, a couple of maps sa : d→ a
and sb : d→ b is called a fiber product, or pullback, with respect to f and

g iff f ◦sa = g◦sb, and if for every couple of maps u : x → a and v : x → b
s, there is exactly one map l : x → d such that sa ◦ l = u and sb ◦ l = v .

Compare the commutative diagram in figure 6.4 for this situation.

The existence and uniqueness of fiber products is easily shown, see the

following proposition. But one special case is already at our hands: Sup-

pose that c = {∅} = 1. Then, by its universal property as a final set, there

is always exactly one couple of maps ! : a → 1 and ! : b → 1. Further, the

commutativity conditions f ◦ sa = g ◦ sb, sa ◦ l = u and sb ◦ l = v are also

automatically fulfilled. So, if we set d = a × b, this is a fiber product in

6.3 Universal Properties in Relational Database Theory 67

x

d

l
�

a

u

ð

sa
ð

b

v

ñ

sb
ñ

c

g

ð

f
ñ

Fig. 6.4. Universal property of fiber products.

this case. In other words, the Cartesian product is the special case of a

fiber product with c = 1, the final set.

Proposition 65 Given three sets a,b and c and two maps f : a → c and

g : b → c, there exists a fiber product sa : d → a and sb : d → b with

respect to f and g, and for any fiber product s′a : d′ → a and s′b : d′ → b
with respect to f and g, there is a unique bijection t : d

∼→ d′ such that

s′a ◦ t = sa and s′b ◦ t = sb. The fiber product is denoted by d = a×c b, the

two maps f and g being implicitly given.

More explicitly, such a fiber product is constructed as follows: Take the

Cartesian product a × b, together with its projections pra and prb. Then

consider the subspace a×c b ⊂ a× b consisting of all couples (x,y) such

that f(x) = g(y). On this set, take the restriction of the projections, i.e.,

sa = pra|a×cb and sb = prb|a×cb.

Exercise 27 The easy proof is left to the reader.

Exercise 28 Given two subsets a ⊂ c and b ⊂ c, show that a×cb ∼→ a∩b.

Exercise 29 Given a map f : a → c and a subset g : b ⊂ c, prove that

the fiber product of these two maps is the fiber sa : f−1(c) ⊂ a, with the

second map sb = f |f−1(c).

With this small extension to theory, the relational database structure is

easily described. We make an illustrative example and interpret its mech-

68 Recursion Theorem and Universal Properties

anisms in terms of the fiber product and other set-theoretical construc-

tions.

To begin with, one is given domains from where values can be taken.

However, these domains also have a name, not only values. We therefore

consider sets with specific names X, but also isomorphisms X
∼→ VX with

given sets of values. Then, whenever we need to take elements x ∈ X,

their values will be taken to lie in VX , so that we may distinguish the

elements, but nevertheless compare their values. In our example, we con-

sider these sets of values: INTEGER = {1,2,3,4,5 . . .}, this is a finite set

of numbers (we assume that these are given, we shall discuss the precise

definition of numbers later), whose size is defined by the standard imple-

mentation of numbers on a given operating system. Next, we are given a

set

TEXT = {Apples,Cookies,Oranges,Donald Duck,

Mickey Mouse,Goofy,Bunny, Shrek, . . .}
of words, which also depends on the computer memory (again, words in

a formal sense will be defined later). We now need the sets:

ORDER_ID
∼→ INTEGER

CUSTOMER_ID
∼→ INTEGER

PRODUCT
∼→ TEXT

NAME
∼→ TEXT

ADDRESS
∼→ TEXT

We consider two subsets ORDERS and CUSTOMERS, called relations in

database theory,

ORDERS ⊂ ORDER_ID× PRODUCT× CUSTOMER_ID

CUSTOMERS ⊂ CUSTOMER_ID×NAME×ADDRESS

which we specify as follows, to be concrete. The set ORDERS:

ORDER_ID PRODUCT CUSTOMER_ID

7 Apples 3

8 Apples 4

11 Oranges 3

13 Cookies 3

77 Oranges 7

6.3 Universal Properties in Relational Database Theory 69

and the set CUSTOMERS:

CUSTOMER_ID NAME ADDRESS

3 Donald Duck Pond Ave.

4 Mickey Mouse Cheeseway

5 Goofy Dog Street

6 Bunny Carrot Lane

7 Shrek Swamp Alley

The rows of each table are its single records. A first operation on such

tables is their so-called join. The join operation bears no relation to the

join operator in mathematical lattice theory, but the terminology is com-

mon in database theory. Mathematically speaking, it is a fiber product,

which works as follows: Observe that the two relations ORDERS and

CUSTOMERS are subsets of Cartesian products where factor spaces with

common values appear, for example CUSTOMER_ID of ORDERS and CUS-

TOMER_ID of CUSTOMERS. In the join, we want to look for records having

the same value for their CUSTOMER_ID coordinate. We therefore consider

the composed maps

F : ORDER_ID× PRODUCT× CUSTOMER_ID→ CUSTOMER_ID

and

G : CUSTOMER_ID×NAME×ADDRESS→ CUSTOMER_ID

derived from the first projections and the identification bijections for the

values. Their restrictions f = F|ORDERS and g = G|CUSTOMERS yield the situ-

ation needed for a fiber product, and the join is exactly this construction:

ORDERS×CUSTOMER_ID CUSTOMERS

ORDERS

sa

ð
CUSTOMERS

sb
ñ

CUSTOMER_ID

g

ð

f

ñ

In the SQL syntax, the join is defined by the command

70 Recursion Theorem and Universal Properties

ORDERS JOIN CUSTOMERS

ON (ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID)

The dot notation ORDERS.CUSTOMER_ID means the choice of the coordi-

nate CUSTOMER_ID, i.e., this is the definition of the arrow f , whereas

CUSTOMERS.CUSTOMER_ID defines g in the fiber product, and the equal-

ity sign “=” means that these two arrows f and g are taken for the fiber

product construction.

We therefore obtain the following fiber product table:

ORDER_ID PRODUCT CUSTOMER_ID NAME ADDRESS

7 Apples 3 Donald Duck Pond Ave.

11 Oranges 3 Donald Duck Pond Ave.

13 Cookies 3 Donald Duck Pond Ave.

8 Apples 4 Mickey Mouse Cheeseway

77 Oranges 7 Shrek Swamp Alley

For the next operation on this join we consider subsets thereof which are

defined by the additional code WHERE... as in the following example:

ORDERS JOIN CUSTOMERS

ON (ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID)

WHERE

ORDERS.PRODUCT = ’Apples’

OR

ORDERS.PRODUCT = ’Oranges’

This means that one chooses all elements in the join such that their pro-

jection to the coordinate ORDERS is either “Apples” or “Oranges”. Mathe-

matically, this again implies fiber products: We first consider the fiber of

the projection to the factor PRODUCT:

pPRODUCT : ORDERS×CUSTOMER_ID CUSTOMERS→ PRODUCT.

Then we consider the fiber of the singleton {“Apples”}:

p−1
PRODUCT(“Apples”)

inclusion
---→ ORDERS×CUSTOMER_ID CUSTOMERS

y
ypPRODUCT

{“Apples”} inclusion
---→ PRODUCT

6.3 Universal Properties in Relational Database Theory 71

This gives us all elements of the join which have the PRODUCT coordinate

“Apples”. The same is done with the “Oranges” coordinate:

p−1
PRODUCT(“Oranges”)

inclusion
---→ ORDERS×CUSTOMER_ID CUSTOMERS

y
ypPRODUCT

{“Oranges”} inclusion
---→ PRODUCT

So we have obtained two sets in the join set which we now may com-

bine with the Boolean operation “OR”, which amounts to taking the union

p−1
PRODUCT(“Apples”)∪ p−1

PRODUCT(“Oranges”) of these two fibers.

Concluding this example, one then chooses a number of coordinates and

omits the others in the union set by the prepended SELECT command

SELECT PRODUCT, NAME

FROM

ORDERS JOIN CUSTOMERS

ON (ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID)

WHERE

ORDERS.PRODUCT = ’Apples’

OR

ORDERS.PRODUCT = ’Oranges’

Mathematically, we take the image

pNAME,PRODUCT(p
−1
PRODUCT(“Apples”)∪ p−1

PRODUCT(“Oranges”))

of the union under the projection

pNAME,PRODUCT : ORDERS×CUSTOMER_ID CUSTOMERS→ NAME× PRODUCT

which gives us this list:

PRODUCT NAME

Apples Donald Duck

Oranges Donald Duck

Apples Mickey Mouse

Oranges Shrek

CHAPTER 7

Natural Arithmetic

This chapter is central insofar as the basic arithmetic operations, i.e.,

addition, multiplication, and exponentiation of natural numbers are in-

troduced, operations which are the seed of the entire mathematical cal-

culations.

7.1 Natural Operations

All these operations are defined by recursion, i.e., by applying the recur-

sion theorem 55.

Definition 36 Given a natural number a, addition to a is recursively de-

fined as the function1 a+ ? : N→ N which evaluates to

a+ 0 = a and a+ b+ = (a+ b)+.
Supposing that addition is defined, multiplication with a is defined as the

function a · ? : N→ N which evaluates to

a · 0 = 0 and a · (b+) = (a · b)+ a.
Supposing that addition and multiplication are defined, exponentiation of

a ≠ 0 is defined as the function a? : N→ N which evaluates to

a0 = 1 and a(b
+) = (ab) · a.

If a = 0, we define 00 = 1 and 0b = 0 for b ≠ 0.

1 When defining function symbols, the question mark is used to indicate the

position of the arguments.

74 Natural Arithmetic

Evidently, a+ = a+1, and from now on we identify these two expressions.

The number a+b is called the sum of a and b. The number a ·b is called

the product of a and b. These operations share the following properties.

All these properties can be demonstrated by induction.

Sorite 66 Let a,b, c be natural numbers. We have these laws:

(i) (Additive neutral element) a+ 0 = 0+ a = a,

(ii) (Additive associativity) a+ (b+ c) = (a+ b)+ c, which is therefore

written as a+ b + c,
(iii) (Additive commutativity) a+ b = b + a,

(iv) (Multiplicative neutral element) a · 1 = 1 · a = a,

(v) (Multiplicative associativity) a·(b·c) = (a·b)·c, which is therefore

written as a · b · c,
(vi) (Multiplicative commutativity) a · b = b · a,

(vii) (Multiplication distributivity) a · (b + c) = a · b + a · c,
(viii) (Exponential neutral element) a1 = a,

(ix) (Exponentiation (+)-distributivity) ab+c = ab · ac ,
(x) (Exponentiation (·)-distributivity) (a · b)c = ac · bc ,

(xi) (Additive monotony) if a < b, then a+ c < b + c,
(xii) (Multiplicative monotony) if c ≠ 0 and a < b, then a · c < b · c,

(xiii) (Exponential base monotony) if c ≠ 0 and a < b, then ac < bc ,

(xiv) (Exponential exponent monotony) if c ≠ 0,1 and a < b, then ca <

cb,

(xv) (Ordering of operations) if a,b > 1, then a+ b ≤ a · b ≤ ab.

Proof (i) We have a + 0 = a by definition, while 0 + (a+) = (0 + a)+ = a+ by

recursion on a.

(ii) This is true for c = 0 by (i). By recursion on c, we have a + (b + c+) =
a+ ((b + c)+) = (a+ (b + c))+ = ((a+ b)+ c)+ = (a+ b)+ c+.

(iii) This is true for b = 0 by (i). We also have a + 1 = 1 + a, in fact, this is true

for a = 0, and by recursion, (a+)+ = (a + 1)+ = (a + (1+)) = a + (1 + 1) =
(a+1)+1 = (a+)+1. By recursion on b, we have a+b+ = (a+b)+ = (b+a)+ =
b + (a+) = b + (a+ 1) = b + (1+ a) = (b + 1)+ a = b+ + a.

(iv) We have a · 1 = (a · 0) + a = 0 + a = a. Therefore 1 · 0 = 0 = 0 · 1, while

1 · a+ = (1 · a)+ 1 = a+ 1 = a+.

(vii) We have a · (b + c) = a · b + a · c for c = 0. By recursion on c we have

a · (b + c+) = a · ((b + c)+) = a · (b + c)+ a = a · b + a · c + a = a · b + a · c+.

7.1 Natural Operations 75

(v) For c = 0,1 we have associativity by the previous results. By recursion on c we

have a·(b·c+) = a·(b·c+b) = a·(b·c)+a·b = (a·b)·c+(a·b)·1 = (a·b)·c+.

(vi) Commutativity is known for b = 1. By recursion on b we have a · b+ =
a · (b + 1) = a · b + a = b · a+ a = 1 · a+ b · a = (1+ b) · a = b+ · a.

(viii) We have a1 = a0 · a = 1 · a = a.

(ix) We have a(b+0) = ab = ab·a0, and a(b+c+) = a((b+c)+) = a(b+c)·a = ab·ac·a =
ab · (ac · a) = ab · a(c+).
(x) We have (a · b)0 = 1 = 1 · 1 = a0 · b0, and (a · b)(c+) = (a · b)c · (a · b) =
ac · bc · a · b = (ac · a) · (bc · b) = a(c+) · b(c+).
(xi) If a < b, then a+ 0 < b+ 0, and a+ c+ = (a+ c)+ < (b+ c)+ = b+ c+, since

x < y implies x+ < y+ by lemma 41 (ii).

(xii) If a < b, then a·1 < b ·1, and a·c+ = a·c+a < b ·c+a < b ·c+b = b ·c+.

(xiii) For a = 0 or c = 1 it is clear, suppose a ≠ 0 and do recursion on c. Then

a(c
+) = ac · a < bc · a < bc · b = b(c+).

(xiv) For b = a+ it is clear, so suppose b = d+, a < d. Then by recursion on b,

ca < cd and therefore cd < cd · c = cb.
(xv) To begin with denote 1+ = 2 (attention: we still have not introduced the

common notation for natural numbers) and take b = 2. Then a+2 ≤ a·2 ≤ a2 is

easily proved by induction on a, starting with the famous equality 2+2 = 2 ·2 =
22. We then prove the inequalities by induction on b, the details being left to be

completed by the reader. �

Proposition 67 If a and b are natural numbers such that a ≤ b, then

there is exactly one natural number c such that a+ c = b.

Proof We use induction on b. If b = a, then c = 0 solves the problem. If b > a,

then b = d+ with d ≥ a. Then, since d < b, we can use the induction hypothesis

to find e, such that a+e = d. We set c = e+, and we have by definition of addition

a + c = a + e+ = (a + e)+ = d+ = b. If c and c′ are two different solutions, we

must have c < c′, for example. Then monotony implies a+ c < a+ c′, i.e., b < b,

a contradiction. �

If n is a natural number different from 0, we may look for the unique m,

such that m + 1 = n. Clearly, it is the m such that n = m+. This is the

predecessor of n, which we denote by n−1, a notation which will become

clear later, when subtraction has been defined.

76 Natural Arithmetic

7.2 Euclid and the Normal Forms

The following theorem is Euclid’s so-called “division theorem”. It is a cen-

tral tool for the common representation of natural, and also rational and

real numbers in the well-known decimal format. Moreover, it is the cen-

tral step in the calculation of the greatest common divisor of two natural

numbers by the Euclidean algorithm2, see chapter 16.

Proposition 68 (Division Theorem) If a and b are natural numbers with

b ≠ 0, then there is a unique pair q and r of natural numbers with r < b

such that

a = q · b + r .
Proof Existence: Let t be the minimal natural number such that a < t · b. For

example, according to sorite 66, a < a · b, so t exists and evidently is non-

zero, t = q+. This means that q ·b ≤ a. So by proposition 67, there is r such that

a = q·b+r . If b ≤ r we have r = b+p, and by the choice of t, a = q·b+b+p =
(q + 1)b + p = t · b + p > a, a contradiction. So the existence is proved.

Uniqueness: If we have two representations a = q·b+r = q′ ·b+r ′ with q′ ≥ q+,

then we have a = q′ · b + r ′ ≥ r · b + b + r ′ > q · b + r = a, a contradiction. So

q = q′, and equality of r and r ′ follows from proposition 67. �

Proposition 69 If a and b are natural numbers with a ≠ 0 and b ≠ 0,1,

then there is a unique triple c, s, r of natural numbers with r < bc and

0 < s < b such that

a = s · bc + r .
Proof Let t be the minimal natural number such that a < bt , and clearly t =
w+1. Such a t exists since a < b+a ≤ b ·a ≤ ba by sorite 66. Therefore a ≥ bw .

We now apply proposition 68 and have a = r · bw + s, s < bw . Now, if r = b+p,

then we also have a = (b + p) · bw + s = bt + p · bw + s, a contradiction to the

choice of t. So we have one such desired representation. Uniqueness follows by

the usual contradiction from different s coefficients, and then form different r ’s

for equal s coefficients. �

In order to define the b-adic representation of a natural number, of which

the decimal (10-adic) representation is a special case, we need to define

2 An algorithm is a detailed sequence of actions (steps), starting from a given

input, to perform in order to accomplish some task, the output. It is named

after Al-Khawarizmi, a Persian mathematician who wrote a book on arithmetic

rules about A.D. 825.

7.2 Euclid and the Normal Forms 77

what is the sum of a finite sequence (ai)i<n of length n of natural num-

bers ai.

Definition 37 Given a finite sequence (ai)i≤n of natural numbers, its sum

is denoted by
∑
i≤n ai, by a0+a1+ . . . an, or by

∑
i=0,1,...n ai, and is defined

by recursion on the sequence length as follows:

n = 0 :
∑

i≤0

ai = a0

n > 0 :
∑

i≤n
ai =

 ∑

i≤n−1

ai

+ an

Because of the associative law of addition, it is in fact not relevant how

we group the sum from a0 to an.

Proposition 70 (Adic Normal Form) If a and b are non-zero natural

numbers and b ≠ 1, then there is a uniquely determined finite number

n and a sequence (si)i=0,...n, with sn ≠ 0 and si < b for all i, such that

a =
∑

i=0,...n

si · bi. (7.1)

Proof This immediately results from proposition 69 and by induction on the

(unique) remainder r in that proposition. �

Definition 38 Given non-zero natural numbers a and b, and b ≠ 1 as in

proposition 70, the number b which occurs in the representation (7.1), is

called the base of the adic representation, and the representation is called

the b-adic representation of a. It is denoted by

a =b snsn−1 . . . s1s0 (7.2)

or, if the base is clear, by

a = snsn−1 . . . s1s0.

Remark 10 In computer science, the term -adic is usually replaced by the

term -ary.

Example 21 For the basis b = 2, we have the 2-adic representation, which

is also known as the dual or binary representation. Here, the representa-

tion a =b snsn−1 . . . s1s0 from formula (7.2) reduces to a sequence of 1s

and 0s.

78 Natural Arithmetic

With the well-known notations 3 = 2+ 1, 4 = 3+ 1, 5 = 4+ 1, 6 = 5+ 1,

7 = 6+1, 8 = 7+1, 9 = 8+1, Z = 9+1, we have the decadic representation

a =Z snsn−1 . . . s1s0 0 ≤ si ≤ 9

with special cases Z = 10, Z2 = 100, Z3 = 1000, and so on.

For the hexadecimal baseH =Z 16, one introduces the symbols 1, 2, . . . ,9,

A =Z 10, B =Z 11, C =Z 12, D =Z 13, E =Z 14, F =Z 15.

For example x =Z 41663 becomes, in the hexadecimal base, x =H A2BF ,

and, in the binary representation, x =2 1010001010111111.

CHAPTER 8

Infinities

We already know that the powerset 2a of any set a has larger cardinality

than a itself, i.e., there is an injection a→ 2a but no injection in the other

direction. This does not mean, however, that constructions of larger sets

from given ones always lead to strictly larger cardinalities.

8.1 The Diagonalization Procedure

We first have to reconsider the universal constructions of the Cartesian

product and coproduct. Given a set a and a non-zero natural number n,

we have the n-th power an, but we could also define recursively a×1 = a
and a×n+1 = a×n × a, and it is clear that a×n ∼→ an. Dually, we define

at1 = a and atn+1 = atn t a.

Proposition 71 If a is a set that has the cardinality of N (in which case a

is called denumerable), then for any positive natural number n, the sets

a, a×n and atn have the same cardinality, i.e., are equipollent.

Proof The proof of this proposition depends on the Bernstein-Schröder theo-

rem 22, which we apply to the situation of pairs of injections a → a×n → a and

a → atn → a. Now, an injection a → atn is given by the known injection to

the last cofactor defined in definition 28. An injection a → a×n is also given by

the identity a → a on each factor. So we are left with the injections in the other

direction. We may obviously suppose n = 2 and deduce from this the general

case by induction on n. We also may suppose a = N.

Now, a map f : N t N → N is given as follows: for x in the left cofactor, we

define f(x) = x · 2, for x in the right cofactor, we set f(x) = x · 2 + 1. By

80 Infinities

the uniqueness in proposition 68, this is an injection. To obtain an injection

g : N × N → N, we consider any pair (x,y) ∈ N2. We may then associate each

pair (x,y) with the pair (x,x + y) = (x,n) ∈ N2 with 0 ≤ x ≤ n, n ∈ N. Call

N<2 the set of these pairs. Then we have a bijection u : N2 ∼→ N<2. Consider the

function f : N<2 → N defined by f(x,n) = 2n + x. We have f(0,0) = 1, and for

0 < n, x ≤ n < 2 ·n ≤ 2n, so the uniqueness part of proposition 69 applies, and

we have an injection (see figure 8.1). �

(x,n) 0 1 2 3 · · ·

0

1

2

3

...

1 2

3

4

5

6

8

9

10

11

Fig. 8.1. The entries in the table are the values of the injection f from

N<2 to N. The arrows indicate the order on the natural numbers.

Remark 11 The proof of proposition 71 uses the so-called “diagonal pro-

cedure”, which is a central tool in aligning n-tuples in a linear order-

ing. This procedure also works for non-denumerable infinite sets, i.e., the

proposition is also true for any infinite sets, but this is not relevant for

general computer science.

Remark 12 The equivalence of the axiom of choice and the proposition

that every set can be well-ordered has a special meaning for finite or de-

numerable sets: If a set is denumerable, then it can be well-ordered by the

ordering among natural numbers, and therefore, the axiom of choice eas-

ily follows from this well-ordering for denumerable sets. In other words,

for denumerable sets, the axiom of choice is a theorem by the very defi-

nition of denumerability.

CHAPTER 9

The Classical Number

Domains Z, Q, R, and C

This chapter is the recompensation for the abstract initialization of math-

ematics: it will give us all the central number domains as they are con-

structed from the natural numbers. In general, there are different meth-

ods for the construction of the same number domains. We have decided

to present the most direct methods which also lead to effective represen-

tations of numbers in computer environments.

First, the domain Z of integer numbers is constructed from natural num-

bersN, then rational numbers or fractionsQ from integers, and real num-

bers (also called decimal numbers in a special representation) from ratio-

nal numbers. This process culminates in the building of complex num-

bers from real numbers. These examples are also very important for the

understanding of subsequent chapters on algebra.

Basically, the construction of new number domains is motivated by the

absence of many operations one would like to apply to numbers. For

example, it is in general not possible to solv the domain of natural num-

bers. Moreover, we do not have any possibility to model most of the com-

mon geometric objects such as lines. Finally, non-linear equations such

as a2 = b cannot be solved.

Mathematics must supply tools that help us understand the solution

spaces for such problems. The set-theoretic approach has provided us

with the construction of numbers, and we are now ready to find solu-

tions to the aforementioned problems.

82 The Classical Number Domains Z, Q, R, and C

9.1 Integers Z

We have seen that the equation a+x = b for natural numbers has exactly

one solution in the case a ≤ b, we call it b − a. But for a > b, such a

solution does not exist within the domain of natural numbers. Integer

numbers, however, can solve this problem.

Lemma 72 Consider the relation R among pairs (a, b), (p, q) ∈ N2, de-

fined by “(a, b)R(p, q) iff a+ q = b + p”.

(i) The relation R is an equivalence relation.

(ii) A pair (a, b) ∈ N2 with a ≥ b is equivalent to (a− b,0), whereas a

pair (a, b) ∈ N2 with a < b is equivalent to (0, b − a).
(iii) Two pairs (x,0), (y,0), or (0, x), (0, y), respectively, are equivalent

iff x = y . Two pairs (x,0), (0, y) are equivalent iff x = y = 0.

Proof The relation R is reflexive since (a, b)R(a, b) iff a + b = b + a by

the commutativity of addition. It is symmetric for the same reason. And if

(a, b)R(p, q) and (p, q)R(r , s), then a + q = b + p and p + s = q + r , whence

a+q+p+s = b+p+q+r , but then we may cancel p+q and obtain the desired

equality a+ s = b+ r . The other claims follow immediately from equivalence of

ordered pairs. �

Definition 39 The set N2/R is denoted by Z, its elements [a, b] are called

integers. Each integer is uniquely represented by either [a,0] for a ∈ N,

or by [0, b], b ∈ N−{0}. We identify the former class [a,0] with its unique

associated natural number a, and the latter class [0, b] with the uniquely

determined natural number b, together with a minus sign, i.e., by −b.

The numbers [a,0] with a ≠ 0 are called the positive integers, while the

numbers −b, b ≠ 0 are called the negative integers. The meeting point

between these number types is the number 0 = −0 (zero) which is neither

positive nor negative.

The linear ordering on the natural numbers is extended to the integers by

the rule that [a,0] < [c,0] iff a < c, and [0, a] < [0, c], i.e., −a < −c iff

a > c. Further, we set [a,0] > [0, b], i.e., a > −b for all natural b ≠ 0

and natural a. We finally set |[a,0]| = a and |[0, b]| = b and call this the

absolute value of the integer.

If x = [a, b] is an integer, we further denote by −x the integer [b,a]

and call it the additive inverse. This definition evidently generalizes the

convention −c = [0, c]. We also write a− b for a+ (−b).

9.1 Integers Z 83

N

N

0 1 2 3 4 5

−5

−4

−3

−2

−1

Fig. 9.1. If the relation R used for the definition of the integers is drawn

as a subset of N × N, each equivalence class (i.e., each integer) consists

of the points lying on a dashed diagonal line.

This means that we have “embedded” the natural number set N in the

larger set Z of integers as the non-negative integers, and that the ordering

among natural numbers has been extended to a linear ordering on Z.

Observe however that the linear ordering on Z is not a well-ordering since

there is no smallest integer.

To calculate the “size” of Z, observe that by lemma 72, Z = (N−{0})t−N.

But we have two bijections p : N
∼→ N− {0} : n , n+ 1 and q : N

∼→ −N :

n , −n. Therefore Z
∼→ N t N, and N

∼→ N t N by proposition 71, so

Z
∼→ N, i.e., Z and N have the same cardinality.

0 1 2 3 N

⊂

−3 −2 −1 0 1 2 3 Z

Fig. 9.2. The common representation of integers shows them as equidis-

tant points on a straight line, with increasing values from left to right.

84 The Classical Number Domains Z, Q, R, and C

Next, we will create an arithmetic on Z which extends the arithmetic on

the natural numbers. The following technique for defining addition of in-

tegers is a prototype of the definition of functions on equivalence classes:

One defines these functions on elements (representatives) of such equiv-

alence classes and then shows that the result is in fact not a function

of the representative, but only of the class as a such. If a definition on

representatives works in this sense, one says that the function is well

defined.

Definition 40 Given two integers [a, b] and [c, d], their sum is defined

by [a, b] + [c, d] = [a + c, b + d], i.e., “factor-wise”. This function is well

defined.

In order to show that this function is well defined, we have to make sure

that it is independent of the specific representatives of the equivalence

classes. So assume that [a, b] = [x,y], and [c, d] = [r , s], i.e., a + y =
b+x, and c+s = d+r , respectively. We have to show that [a+c, b+d] =
[x + r ,y + s], i.e., a+ c +y + s = b + d+ x + r . But

a+ c +y + s = a+y + c + s
= b + x + c + s
= b + x + d+ r
= b + d+ x + r ,

where the properties of commutativity and associativity of natural num-

bers have been used. Thus the addition of integers is indeed well defined.

Sorite 73 Let Z be provided with the addition + : Z× Z→ Z, and let a,b, c

be any integers. Then we have these properties.

(i) (Associativity) (a+ b)+ c = a+ (b + c) = a+ b + c,
(ii) (Commutativity) a+ b = b + a,

(iii) (Additive neutral element) a+ 0 = a,

(iv) (Additive inverse element) a− a = 0,

(v) (Extension of natural arithmetic) If a,b ∈ N, then [a + b,0] =
[a,0] + [b,0], i.e., it amounts to the same if we add two natural

numbers a and b or the corresponding non-negative integers, also

denoted by a and b.

(vi) (Solution of equations) The equation a+ x = b in the “unknown” x

has exactly one integer number solution x, i.e., x = b − a.

9.1 Integers Z 85

Proof (i), (ii), (iii) Associativity, commutativity, and the neutrality of 0 immedi-

ately follows from associativity for natural numbers and the factor-wise defini-

tion of addition.

(iv) For a = [u,v], we have a−a = a+(−a) = [u,v]+[v,u] = [u+v,u+v] = 0.

The rest is immediate from the definitions. �

Definition 41 Let (ai)i=0,...n be a sequence of integers. Then the sum of

this sequence is defined by

n = 0 :
∑

i=0,...n

ai = a0,

n > 0 :
∑

i=0,...n

ai =

 ∑

i=0,...n−1

ai

+ an.

It is also possible to extend the multiplication operation defined on N to

the integers. The definition is again one by representatives of equivalence

classes [a, b]. To understand the definition, we first observe that a class

[a, b] is equal to the difference a− b of natural numbers with the above

identification. In fact, [a, b] = [a,0]+ [0, b] = a+ (−b) = a−b. So, if we

want to extend the arithmetic on the natural numbers, we should try to

observe the hoped for and given rules, and thereby get the extension. So

we should have [a, b] · [c, d] = (a− b) · (c − d) = ac + bd− ad− bc =
[ac + bd,ad+ bc]. This motivates the following definition:

Definition 42 Given two integers [a, b] and [c, d], their product is defined

by [a, b] · [c, d] = [ac + bd,ad+ bc]. This function is well defined.

Sorite 74 Let a,b, c be three integers. We have these rules for their multi-

plication.

(i) (Associativity) (a · b) · c = a · (b · c) = a · b · c,
(ii) (Commutativity) a · b = b · a,

(iii) (Multiplicative neutral element) the element 1 = [1,0] is neutral for

multiplication, a · 1 = a,

(iv) (Zero and negative multiplication) a ·0 = 0 and a ·(−b) = −(a ·b),
(v) (Distributivity) a · (b + c) = a · b + a · c,

(vi) (Integrity) If a,b ≠ 0, then a · b ≠ 0,

(vii) (Additive monotony) if a < b, then a+ c < b + c,
(viii) (Multiplicative monotony) if a < b and 0 < c, then a · c < b · c,

86 The Classical Number Domains Z, Q, R, and C

(ix) (Extension of natural arithmetic) For two natural numbers a and b,

we have [a·b,0] = [a,0]·[b,0]. This allows complete identification

of the natural numbers as a subdomain of the integers, with respect

to addition and multiplication.

Proof Statements (i) through (v) and (ix) are straightforward and yield good

exercises for the reader.

(vi) If a = [r , s] and b = [u,v], then the hypothesis means r ≠ s and u ≠ v .

Suppose that r > s and u > v . Then a = [r − s,0] and b = [u − v,0], with

the notation of differences of natural numbers as defined at the beginning of

this section. But then a · b = [(r − s) · (u − v),0] ≠ [0,0]. The other cases

r < s,u < v , or r < s,u > v , or r > s,u < v are similar.

(vii) First suppose that r ≥ s and u ≥ v , and let a = [r , s] = [r − s,0] and

b = [u,v] = [u−v,0]. Then a < bmeans e = r−s < f = u−v . So for c = [g,h],
we have a+c = [e+g,h] and b+c = [f+g,h]. We may suppose that either h or g

is zero. If h = 0, then e+g < f+g implies a+c = [e+g,0] < [f+g,0] = b+c. Else

we have a+c = [e,h] and b+c = [f ,h]. Suppose that h ≤ e. Then e−h < f −h,

whence a + c = [e,h] = [e − h,0] < [f − h,0] = b + c. If e < h ≤ f , then

a + c = [e,h] = [0, h − e] < [f − h,0] = b + c. If e, f < h, then h − e > h − f ,

and then a+ c = [e,h] = [0, h− e] < [0, h− f]. The other cases r < s,u < v , or

r < s,u > v , or r > s,u < v are similar.

(viii) If 0 ≤ a < b, we are done since this is the case for natural numbers, already

proven in sorite 66. Else if a < b < 0, then we have 0 < (−b) < (−a), and then

by the previous case, (−b) · c < (−a) · c, whence, −(−a) · c < −(−b) · c, but

−(−a) · c = a · c,−(−b) · c = b · c, whence the statement in this case. Else if

a ≤ 0 < b, then a · c ≤ 0 < b · c. �

We are now capable of adding and subtracting any two integers, and of

solving an equation of the type a + x = b. But equations of the type

a · x = b have no integer solution in general, for example, there is no

integer x such that 2 · x = 3.

Definition 43 If a and b are two integers, we say that a divides b iff there

is an integer c with a · c = b. We then write a|b.

Exercise 30 For any integer b, we have b|b, −b|b, 1|b, and −1|b.

Definition 44 If b ≠ ±1 is such that it is divided only by ±b, 1 and −1,

then we call b a prime integer.

We shall deal with the prime numbers in chapter 16. For the moment, we

have the following exercise concerning prime decomposition of integers.

For this we also need the product of a finite sequence of integers, i.e.,

9.2 Rationals Q 87

Definition 45 Let (ai)i=0,...n be a sequence of integers. Then the product

of this sequence is defined by

n = 0 :
∏

i=0,...n

ai = a0,

n > 0 :
∏

i=0,...n

ai =

 ∏

i=0,...n−1

ai

 · an.

Exercise 31 Show that every non-zero integer a ≠ ±1 has a multiplica-

tive decomposition a = σ · ∏i pi where
∏
i pi is a product of positive

primes pi and σ = ±1.

Notation 8 We shall henceforth also write ab instead of a · b if no confu-

sion is possible.

Proposition 75 (Triangle Inequality) If a and b are two integers, then we

have the triangle inequality:

|a+ b| ≤ |a| + |b|.

Exercise 32 Give a proof of proposition 75 by distinction of all possible

cases for non-negative or negative a,b.

9.2 Rationals Q

The construction of the rational numbers is very similar to the procedure

we have used for the construction of the integers. The main difference is

that the underlying building principle is multiplication instead of addi-

tion. We denote by Z∗ the set Z− {0}.

Lemma 76 On the set Z × Z∗, the relation R, defined by “(a, b)R(c, d) iff

ad = bc”, is an equivalence relation.

Proof This is an exercise for the reader. �

Definition 46 The set (Z× Z∗)/R of equivalence classes for the relation R

defined in lemma 76 is denoted by Q. Its elements, the classes [a, b], are

called rational numbers and are denoted by
a
b or a/b. The (non uniquely

determined) number a is called the numerator, whereas the (non uniquely

determined) number b is called the denominator of the rational number

88 The Classical Number Domains Z, Q, R, and C

a
b . Numerator and denominator are only defined relative to a selected rep-

resentative of the rational number.

Before we develop the arithmetic operations onQ, let us verify that again,

the integers are embedded in the rationals. In fact, we may identify an

integer a with its fractional representation a
1 , and easily verify that a1 = b

1

iff a = b.

Here is the arithmetic construction:

Definition 47 Let
a
b and

c
d be two rationals. Then we define

a
b + c

d = ad+bc
bd

a
b · cd = ac

bd .

We further set −ab = −a
b for the additive inverse of

a
b . If a ≠ 0, we set(

a
b

)−1 = b
a , the latter being the multiplicative inverse of a

b . These opera-

tions are all well defined.

In order to manage comparison between rational numbers, we need the

following exercise.

Exercise 33 If ab and c
d are rational numbers, show that one may always

find numerators and denominators such that b = d (common denomina-

tor) and 0 < b.

Definition 48 If
a
b and

c
d are rational numbers, we have the (well defined)

relation
a
b <

c
d iff a < c, where we suppose that we have a common positive

denominator 0 < b = d.

Sorite 77 Let
a
b ,
c
d ,
e
f be rational numbers. Then these rules hold.

(i) (Additive associativity) (ab + c
d)+ e

f = a
b + (cd + e

f) = a
b + c

d + e
f

(ii) (Additive commutativity)
a
b + c

d = c
d + a

b

(iii) (Additive neutral element)
a
b + 0

1 = a
b

(iv) (Additive inverse element)
a
b + −a

b = 0
1

(v) (Multiplicative associativity) (ab · cd) · ef = a
b · (cd · ef) = a

b · cd · ef
(vi) (Multiplicative commutativity)

a
b · cd = c

d · ab
(vii) (Multiplicative neutral element)

a
b · 1

1 = a
b

(viii) (Multiplicative inverse element) If a,b ≠ 0, then
a
b · ba = 1

1

9.2 Rationals Q 89

(ix) (Distributivity)
a
b · (cd + e

f) = a
b · cd + a

b · ef
(x) (Linear ordering) The relation< among rational numbers is a linear

ordering. Its restriction to the integers
a
1 induces the given linear

ordering among integers.

(xi) (Additive monotony) If
a
b <

c
d , then

a
b + e

f <
c
d + e

f .

(xii) (Multiplicative monotony) If
a
b <

c
d and

0
1 <

e
f , then

a
b · ef < c

d · ef .

(xiii) (Archimedean ordering) For any two positive rational numbers
a
b

and
c
d there is a natural number n such that

n
1 · ab > c

d .

Proof Everything here is straightforward once one has shown that in fact a
b
<

c
d

is well defined. For then we may calculate everything on (common) positive

denominators and thereby reduce the problem to the integers, where we have

already established these properties. So let a
b
< c

b
, and b be positive. Suppose

that a
b
= a′

b′ and c
b
= c′

b′ . We know a < c. Then ab′ = ba′ and cb′ = c′b, and

therefore a′b = b′a < b′c = c′b, whence a′ < c′, since b is positive. �

Given the complete compatibility of original natural numbers within inte-

gers, and the complete compatibility of integers within rational numbers,

we also “abuse” the injections

N→ Z→ Q

and treat them as inclusions, in the sense that

• a natural number is denoted by n rather than by the equivalence class

[n,0] in Z,

• an integer is denoted by z rather than by the equivalence class z
1 in Q.

Definition 49 If a rational number x is represented by x = a
b , then we

define its absolute value |x| by |x| = |a|
|b| . This is a well-defined definition.

Exercise 34 Prove that |x| is well defined. An alternative definition is

this: |x| = x if 0 ≤ x, otherwise it is |x| = −x. Give a proof of this.

Proposition 78 (Triangle Inequality) If a and b are rational numbers,

then we have the triangle inequality:

|a+ b| ≤ |a| + |b|.

Exercise 35 Use proposition 75 to give a proof of proposition 78.

90 The Classical Number Domains Z, Q, R, and C

0 1 2 3 N

⊂

−3 −2 −1 0 1 2 3 Z

⊂

−3 −2 −1 0 1 2 3 Q

−2
3

1
2

18
7

Fig. 9.3. The common representation of N, Z and Q shows their sets as

point-sets on a straight line, where the rational number q
p

is drawn as

the equally divided line between the integer points 0 and q (supposing

p > 0).

Since, in contrast to natural numbers and integers, there is a rational

number between any two others, are there many more rationals than in-

tegers? The answer is negative. In fact, it can be shown that Z and Q have

the same cardinality by an argument similar to the one used to prove that

N and Z have the same cardinality.

9.3 Real Numbers R

We are now able to solve equations of the type ax+b = c for any rational

coefficients a,b, c provided that a ≠ 0. We also have a linear ordering on

Q and we are provided with arbitrary near numbers in the sense that for

any two different rationals x < y , there is a rational number in-between,

namely x < 1
2(x + y) < y . But there are still many problems which

cannot be solved in Q. Intuitively, with rational numbers, there are now

many points on the straight line, but there are still some gaps to be filled.

Some of the gaps on the rational number line are identified when we ask

whether a so-called algebraic equation x2 = x ·x = 2 can be solved in Q.

It will be shown later in chapter 16 that there is no such solution in Q.

9.3 Real Numbers R 91

We recognize once again that in fact all our efforts in the construction of

more numbers originate in the problem of solving special equations in a

given number domain.

The real numbers are constructed from the rational numbers by an idea

which results from the observation that the search for a solution of x2 =
2 yields rational numbers y and z such that y2 < 2 < z2 and |y − z| <
1/n for any non-zero natural number n, in other words, y and z are

arbitrary near to each other. The point is that there is no rational number

which gives us a precise solution, nonetheless, we would like to invent

a number which solves the problem and in some sense is the “infinite

approximation” suggested by the rational approximations.

In order to extend the rationals to the reals, we need to formalize what we

vaguely described by “infinite approximation”. This definition goes back

to the French mathematician Augustin Cauchy (1789–1857).

Definition 50 A Cauchy sequence of rational numbers is a sequence

(ai)i∈N of rational numbers ai such that for any positive natural num-

ber L, there is an index number N such that whenever indexes n,m satisfy

N < n,m, then |an − am| < 1
L .

The set of all Cauchy sequences is denoted by C.

Exercise 36 Every rational number r gives rise to the constant Cauchy

sequence e(r) = (ai)i which has ai = r for all indexes 0 ≤ i.
The sequence (1/(i + 1))i∈N is a Cauchy sequence. More generally, any

sequence (a + ai)i is a Cauchy sequence if a is a rational number and if

(ai)i is a Cauchy sequence.

A sequence of rational numbers (ai)i is said to converge to a rational

number a if for any positive natural number L, there is an index N such

that n > N implies |an − a| < 1
L .

Show that a convergent sequence is a Cauchy sequence, and that the ratio-

nal number to which it converges is uniquely determined. We then write

limi→∞ ai = a. The sign∞means “infinity”, but it has no precise meaning

when used without a determined context, such as limn→∞.

Definition 51 A zero sequence is a Cauchy sequence (ai)i which con-

verges to 0:

lim
i→∞

ai = 0.

92 The Classical Number Domains Z, Q, R, and C

The zero sequences are those sequences which we would like to forget

about. To develop this idea, we begin with the following definition.

Definition 52 If (ai)i and (bi)i are sequences of rational numbers, their

sum is defined by

(ai)i + (bi)i = (ai + bi)i,
and their product is defined by

(ai)i · (bi)i = (ai · bi)i.

Proposition 79 The following properties hold for sequences of rational

numbers:

(i) If (ai)i and (bi)i are Cauchy sequences, then so are their sum and

product.

(ii) If (ai)i and (bi)i are zero sequences, then so is their sum.

(iii) If (ai)i is a zero sequence and if (bi)i is a Cauchy sequence, then

their product is a zero sequence.

Proof Let (ai)i and (bi)i be Cauchy sequences. Given any positive natural

number L, there is a common natural number N such that n,m > N implies

|an − am| < 1
2L and |bn − bm| < 1

2L if n,m > N. Then

|(an + bn)− (am + bm)| = |(an − am)+ (bn − bm)|
≤ |an − am| + |bn − bm|
< 1

2L + 1
2L

= 1
L

by the triangle inequality. Further

|(an · bn)− (am · bm)| = |(an · bn)− (an · bm)+ (an · bm)− (am · bm)|
= |(an · (bn − bm)+ (an − am) · bm)|
≤ |an · (bn − bm)| + |(an − am) · bm|
= |an| · |bn − bm| + |an − am| · |bm|
< (|an| + |bm|) 1

L

if n,m > N. Now, |an| = |(an − aN+1) + aN+1| ≤ 1
L
+ |aN+1| if n > N. Also

|bm| ≤ 1
L
+ |bN+1| if m > N. So, |(an · bn) − (am · bm)| ≤ kN · 1

L
if n,m > N,

where kN is a positive constant which is a function of N. Now, select N ′ such that

|an−am| < 1
kNL

for n,m > N′ then we have |(an ·bn)−(am ·bm)| ≤ kN · 1
kNL

= 1
L

for n,m > N′.

9.3 Real Numbers R 93

If (ai)i and (bi)i converge to 0, let N be such that |an|, |bn| < 1
2L for n > N.

Then |an + bn| ≤ |an| + |bn| < 1
2L + 1

2L = 1
L

for n > N.

Let (ai)i and (bi)i be two Cauchy sequences such that (ai)i converges to 0.

From the previous discussion we know that there is a positive constant k such

that |bn| < k for all n. Now, let N be such that |an| < 1
kL

for all n > N. Then

|an · bn| = |an| · |bn| < k · 1
kL
= 1
L

for n > N. �

The properties (ii) and (iii) of the set O of zero sequences make O a so-

called ideal. This is an important structure in algebra, we come back to

its systematic discussion in chapter 15. We are now ready to define real

numbers.

Lemma 80 The binary relation R on C defined by “(ai)iR(bi)i iff (ai)i −
(bi)i = (ai − bi)i is a zero sequence” is an equivalence relation.

Proof Clearly, R is reflexive and symmetric. Let (ai)i, (bi)i, (ci)i be Cauchy se-

quences such that (ai)iR(bi)i and (bi)iR(ci)i. Then |an − cn| = |an − bn + bn −
cn| ≤ |an−bn|+|bn−cn| < 1

L
for n > N if N is such that |an−bn|, |bn−cn| < 1

2L

for n > N. �

Definition 53 The set C/R of equivalence classes under the relation R de-

fined in lemma 80 is denoted by R. Its elements are called real numbers.

Lemma 81 The equivalence class (the real number) of a Cauchy sequence

(ai)i is given by the “coset” of the ideal O, i.e., [(ai)i] = {(ai)i + (ci)i |
(ci)i ∈ O} = (ai)i +O.

Proof If (ai)i and (bi)i are equivalent, then by definition (ai)i = (bi)i + ((ai)i−
(bi)i), and (ai)i − (bi)i ∈ O. Conversely, if (ai)i = (bi)i + (oi)i, (oi)i ∈ O, then

(ai)iR(bi)i by the definition of R. �

Lemma 82 We have an injection e : Q → R defined by e(a) = (a)i +O.

Exercise 37 Give a proof of lemma 82.

We now want to develop the arithmetics on R, and we want to show that

the purpose of this construction is effectively achieved.

Lemma 83 Let (ai)i, (bi)i, (ci)i be Cauchy sequences of rational numbers.

(i) If (ai)i, (bi)i are equivalent, then so are (ai)i + (ci)i, (bi)i + (ci)i.
(ii) If (ai)i, (bi)i are equivalent, then so are (ai)i · (ci)i, (bi)i · (ci)i.

94 The Classical Number Domains Z, Q, R, and C

Proof (i) In fact, ((ai)i + (ci)i) − ((bi)i + (ci)i) = (ai − bi)i, which is a zero

sequence.

(ii) Similarly, ((ai)i·(ci)i)−((bi)i·(ci)i) = ((ai−bi)i)(ci)i, but by proposition 79

this is a zero sequence. �

This enables the definition of addition and multiplication of real num-

bers:

Definition 54 If (ai)i + O and (bi)i + O are two real numbers, then we

define

((ai)i +O)+ ((bi)i +O) = (ai + bi)i +O
((ai)i +O) · ((bi)i +O) = (ai · bi)i +O.

By lemma 83, this definition is independent of the representative Cauchy

sequences, i.e., it is well-defined.

Evidently, these operations, when restricted to the rational numbers, em-

bedded via e(r), r ∈ Q, as above, yield exactly the operations on the

rationals, i.e., e(r + s) = e(r) + e(s) and e(r · s) = e(r) · e(s). We there-

fore also use the rational numbers r instead of e(r) when working in R.

If x = (ai)i+O, we write −x for (−ai)i+O and call it the additive inverse

or negative of x.

The arithmetic properties of these operations on R are collected in the

following sorite:

Sorite 84 Let x,y, z be real numbers.

(i) (Additive associativity) (x +y)+ z = x + (y + z) = x +y + z
(ii) (Additive commutativity) x +y = y + x

(iii) (Additive neutral element) The rational zero 0 is also the additive

neutral element of the reals, i.e., x + 0 = x.

(iv) (Additive inverse element) x + (−x) = 0

(v) (Multiplicative associativity) (x ·y) · z = x · (y · z) = x ·y · z
(vi) (Multiplicative commutativity) x ·y = y · x

(vii) (Multiplicative neutral element) The rational unity 1 is also the mul-

tiplicative neutral element of the reals, i.e., x · 1 = x.

(viii) (Multiplicative inverse element) If x ≠ 0, then there is exactly one

multiplicative inverse x−1, i.e., x · x−1 = 1, more precisely, there

exists in this case a Cauchy sequence (ai)i representing x and such

9.3 Real Numbers R 95

that ai ≠ 0 for all i, and we may represent x−1 by the Cauchy

sequence (a−1
i)i.

(ix) (Distributivity) x · (y + z) = x ·y + x · z
Proof (i) through (vii) as well as (ix) are straightforward, because all the relevant

operations are defined factor-wise on the sequence members (definition 54).

As to (viii), since (ai)i does not converge to zero, there is a positive natural

L such that for every N there is n > N with |an| ≥ 1
L
. Choose N such that

|an − am| < 1
2L for all n,m > N. Fix n > N such that |an| ≥ 1

L
as above. Then

|am| ≥ |an| − |an − am| ≥ 1
L
− 1

2L = 1
2L > 0 for n,m > N. Therefore (ai)i is

equivalent to a sequence (a′i)i without zero members, more precisely: there is I

such that a′i = ai for i > I. Then evidently the sequence (1/a′i)i is the inverse

of (ai)i. The uniqueness of the inverse follows from the purely formal fact that

x · y = x · y ′ = 1 implies y = 1 · y = (y · x) · y = y · (x · y) = y · (x · y ′) =
(y · x) ·y ′ = 1 ·y ′ = y ′. �

Corollary 85 If a,b, c are real numbers such that a ≠ 0, then the equation

ax + b = c has exactly one solution x.

This means that we have “saved” the algebraic properties of Q to R. But

we wanted more than that. Let us first look for the linear ordering struc-

ture on R.

Definition 55 A real number x = (ai)i +O is called positive iff there is a

rational number ε > 0 such that ai > ε for all but a finite set of indexes.

This property is well defined. We set x < y for two real numbers x and y

iff y − x is positive. In particular, x is positive iff x > 0.

Proposition 86 The relation < on R from definition 55 defines a linear

ordering. The set R is the disjoint union of the subset R+ of positive real

numbers, the subset R− = −R+ = {−x | x ∈ R+} of negative real num-

bers, and the singleton set {0}. We have

(i) R+ +R+ = {x +y | x,y ∈ R+} = R+,

(ii) R+ ·R+ = {x ·y | x,y ∈ R+} = R+,

(iii) R− +R− = {x +y | x,y ∈ R−} = R−,

(iv) R− ·R− = {(−x) · (−y) | x,y ∈ R+} = R+,

(v) R+ +R− = {x −y | x,y ∈ R+} = R ,

(vi) R+ ·R− = {x · (−y) | x,y ∈ R+} = R−,

(vii) (Monotony of addition) if x,y, z are real numbers with x < y , then

x + z < y + z,

96 The Classical Number Domains Z, Q, R, and C

(viii) (Monotony of multiplication) if x,y, z are real numbers with x < y

and 0 < z, then xz < yz,

(ix) (Archimedean property) if x and y are positive real numbers, there

is a natural number N such that y < Nx,

(x) (Density of rationals in reals) if ε > 0 is a positive real number, then

there is a rational number ρ with 0 < ρ < ε.

Proof Let us first show that < is antisymmetric. If x < y , then y − x is repre-

sented by a sequence (ai)i with ai > ε for a positive rational ε. Then x − y is

represented by (−ai)i, and −ai < ε < 0 for all but a finite set of indexes. If this

were equivalent to a sequence (bi)i with bi > ε′ > 0 except for a finite number of

indexes, then bi− (−ai) = bi+ai > ε+ ε′ could not be a zero sequence. Whence

antisymmetry.

Also, if y − x is represented by (ai)i with ai > ε and z − y is represented by

(bi)i with bi > ε′ for all but a finite number of indexes, then z−x = z−y+y−x
is represented by (ai)i + (bi)i = (ai + bi)i, and ai + bi > ε + ε′ > 0 for all but a

finite number of indexes, whence transitivity. Finally, if x ≠ y , then x − y ≠ 0.

By the same argument as used in the previous proof, if (di)i represents x − y ,

then there is a positive rational ε and N, such that |dn| > ε for n > N. But since

(di)i is a Cauchy sequence, too, the differences |dn−dm| become arbitrary small

for large n and m. So either dn is positive or negative, but not both, for large

n, and therefore x − y is either positive or negative. This immediately entails

statements (i) through (viii).

(ix) If x is represented by (ai)i and y is represented by (bi)i, then there is a

positive rational ε and an index M such that an, bn > ε for n > M . But since

(bi)i is a Cauchy sequence, there is also a positive δ and index M ′ such that

bn < δ for n > M ′, and we may take the larger of M and M ′ and then suppose

thatM = M ′ for our two conditions. Then, sinceQ has the Archimedean ordering

property by sorite 77, there is a natural N such that N · ε > 2 · δ. Then we have

N · an > N · ε > 2 · δ > δ > bn for n > M , whence N · an − bn > δ > 0, whence

the claim.

(x) If the real number ε > 0 is represented by a Cauchy sequence (ei)i, then, by

the very definition of positivity, there is a positive rational number δ such that

ei > δ for all but a finite number of indexes. But then ei − δ
2 >

δ
2 for all but a

finite number of indexes, and ρ = δ
2 is sought-after rational number. �

Definition 56 The absolute value |a| of a real number a is a if it is non-

negative, and −a else.

Proposition 87 (Triangle Inequality) If a and b are two real numbers,

then we have the triangle inequality:

9.3 Real Numbers R 97

|a+ b| ≤ |a| + |b|.

Proof Observe that, if a is represented by a Cauchy sequence (ai)i, then |a|
is represented by (|ai|)i. Therefore, if b is represented by (bi)i, then |a + b| is

represented by (|ai + bi|)i, but by the triangle inequality for rationals, we have

|ai|+|bi| ≥ |ai+bi|, i.e., |a|+|b|−|a+b| is represented by (|ai|+|bi|−|ai+bi|)i,
so it is not negative, thus |a| + |b| − |a+ b| ≥ 0, i.e., |a| + |b| ≥ |a+ b|. �

We now have a completely general criterion for convergence in R. Con-

vergence is to be defined entirely along the lines of the definition of con-

vergence for rational sequences.

Definition 57 A sequence (ai)i of real numbers is said to converge to a

real number a iff for every real ε > 0, there is an index N such that n > N

implies |an − a| < ε. Clearly, if such an a exists, then it is unique, and we

denote convergence to a by limi→∞ ai = a.

The sequence (ai)i is Cauchy, iff for every real number ε > 0, there is a

natural number N such that n,m > N implies that |an − am| < ε.

Proposition 88 (Convergence on R) A sequence (ai)i of real numbers

converges iff it is Cauchy.

Proof We omit the detailed proof since it is quite technical. However, the idea

of the proof is easily described: Let (ai)i be a Cauchy sequence of real numbers.

For each i > 0, there is a rational number ri such that |ai − ri| < 1
i
. This rational

number can be found as follows: Represent ai by a rational Cauchy sequence

(aij)j . Then there is an index Ii such that r , s > Ii implies |air − ais| < 1
i
. Then

take ri = air for any r > Ii. One then shows that (ri)i is Cauchy and that (ai)i
converges to (ri)i. �

This result entails a huge number of theorems about the existence of

special numbers. We just mention one particularly important concept.

Definition 58 (Upper Bound) A real number b is an upper bound of a set

A ⊂ R, if b ≥ a for all a ∈ A, in short b ≥ A.

Corollary 89 (Existence of Suprema) If A is a bounded, non-empty set,

i.e., if there is b ∈ R such that b ≥ A, then there is a uniquely determined

supremum or least upper bound s = sup(A), i.e., an upper bound s ≥ A
such that for all t < s, there is a ∈ A with a > t.

Proof One first constructs a Cauchy sequence (ui)i of upper bounds ui of A as

follows: Let u0 be an existing upper bound and take a0 ∈ A. Then consider the

98 The Classical Number Domains Z, Q, R, and C

middle v1 = (a0 + u0)/2. If v1 is an upper bound, set u1 = v1, otherwise set

u1 = u0. In the first case, set a1 = a0, in the second case, there is a1 > v1; then

consider the pair a1, u1. In either case, their distance is half the first distance

|a0 − u0|. We now again take the middle of this interval, i.e., v2 = (a1 + u1)/2

and go on in the same way, i.e., defining a sequence of ui by induction, and

always taking the smallest possible alternative. This is a Cauchy sequence since

the intervals are divided by 2 in each step. Further, the limit u = limi→∞ui, which

exists according to proposition 88, is an upper bound, and there is no smaller

one, as is easily seen from the construction. The details are left to the reader. �

This corollary entails the following crucial fact:

Corollary 90 (Existence of n-th roots) Let a ≥ 0 be a non-negative real

number and n ≥ 1 a positive natural number, then there is exactly one

number b ≥ 0 such that bn = a. This number is denoted by n
√
a or by a

1
n ,

in the case of n = 2 one simply writes 2
√
a = √a.

Proof The cases n = 1 or a = 0 are clear, so suppose n > 1 and a > 0. Let A

be the set of all q, such that qn < a. This set is bounded since an > a. Take

b = sup(A). We claim that bn = a. Clearly bn ≤ a. Suppose that bn < a. Then

consider the following construction of a contradiction:

First we claim that for any d > 0 there is a natural number m such that (1 +
1
m
)n < 1+d. We show this by induction on n. In the case n = 1 we have (1+ 1

m
) <

1+ d, we choose m such that m > 1
d

, which exists since d > 0.

Suppose that, for n, we have found M such that (1 + 1
m
)n < 1 + d

2 for m ≥ M .

Then, for n+1, (1+ 1
m
)n+1 = (1+ 1

m
)(1+ 1

m
)n < (1+ 1

m
)(1+ d

2) = 1+ 1
m
+ d

2 + d
2m .

We require 1+ 1
m
+ d

2 + d
2m < 1+ d, but this is true if m> 1+ 2

d
.

Next, replace b by b(1+ 1
m
) and then we ask for an m such that (b(1+ 1

m
))n =

bn(1+ d) < a. But we find such an m by the fact that for any positive d, we can

find m such that (1 + 1
m
)n < 1 + d, and it suffices to take d < a/bn − 1, this

contradicts the supremum property of b, and we are done. �

Exercise 38 Show that for two a,b ≥ 0, we have n
√
a · b = n

√
a · n

√
b.

Definition 59 One can now introduce more general rational powers xq,

q ∈ Q of a positive real number x as follows. First, one defines x0 = 1,

then for a negative integer −n, one puts x−n = 1/xn. For q = n/m ∈ Q
with positive denominator m, one defines xn/m = (x1/m)n. One easily

checks that this definition does not depend on the fractional representation

of q.

9.3 Real Numbers R 99

Exercise 39 Prove that for two rational numbers p and q and for two

positive real numbers x and y , one has xp+q = xpxq, xpq = (xp)q, and

(xy)p = xpyp .

Exercise 40 Let a > 1 and x > 0 be real numbers. Show that the set

{q ∈ Q | there are two integers m,n,0 < n,

such that am ≤ xn and q =m/n}

is non-empty and bounded from above. Its supremum is called the loga-

rithm of x for basis a, and is denoted by loga(x). It is the fundament of

the construction of the exponential function and of the sine and cosine

functions.

The general shape of real numbers as equivalence classes of rational

Cauchy sequences is quite abstract and cannot, as such, be handled by

humans when calculating concrete cases, and a fortiori cannot be han-

dled by computers in hard- and software contexts. Therefore, one looks

for more explicit and concrete representations of real numbers. Here is

such a construction, which generalizes the b-adic representation of nat-

ural numbers discussed in chapter 7. We consider a natural base number

b > 1 and for an integer n the index set n] = {i | i ∈ Z and i ≤ n}. Let

(ai)i∈n] be a sequence of natural numbers with 0 ≤ ai < b and an ≠ 0.

Consider the partial sums Σj =
∑
i=n,n−1,n−2,...j aib

i for j ∈ n].

Lemma 91 The sequence (Σj)n] of partial sums as defined previously con-

verges to a real number which we denote by
∑
i∈n] aibi, and, when the

base b is clear, by

anan−1 . . . a0.a−1a−2a−3 . . . (9.1)

for non-negative n, or, if n < 0, by

0.00 . . . anan−1 . . . , (9.2)

i.e., we put zeros on positions −1, . . . n + 1 until the first non-zero co-

efficient an appears on position n. The number zero is simply denoted

by 0.0 or even 0. The dots are meant to represent the given coeffi-

cients. If the coefficients vanish after a finite number of indexes, we can

either stop the representation at the last non-vanishing coefficient am:

anan−1 . . . a0.a−1 . . . am+1am, or append any number of zeros, such as

anan−1 . . . am+1am000.

100 The Classical Number Domains Z, Q, R, and C

Proof Let us show that the differences |Σk − Σj| of the rational partial sums

become arbitrarily small for large k and j. We may suppose that j > k and then

have Σk − Σj = aj−1b
j−1 + . . . akbk < bj + . . . bk+1 = bj(1+ b−1 + . . . bk+1−j). But

we have this quite general formula which is immediately checked by evaluation:

1+ b−1 + . . . b−r = (1− b−r−1)/(1− b) < 1/(1− b). And therefore 0 ≤ Σk − Σj <
bj ·1/(1−b). But the right side converges to zero as j → −∞, and we are done. �

Definition 60 The representation of a real number in the forms (9.1)

or (9.2) is called the b-adic representation; in computer science, the syn-

onymous term b-ary is more common. For b = 2 it is called the binary

representation, for b = 10, the decimal representation, and for b = 16, it

is called the hexadecimal representation. The extension of the b-adic rep-

resentation to negative real numbers is defined by prepending the sign −.

This extended representation is also called b-adic representation.

Proposition 92 (Adic Representation) Given a base number b ∈ N, b >

1, every real number can be represented in the b-adic representation. The

representation is unique up to the following cases: If the coefficients ai are

smaller than b − 1 until index m, and equal to b − 1 from m − 1 until

infinity, then this number is equal to the number whose coefficients are

the old ones for i > m, while the coefficient at index m is am + 1, and all

lower coefficients vanish.

Proof We may evidently suppose that the real number to be represented is pos-

itive, the other cases can be deduced from this. We construct the representation

by induction as follows: Observe that we have bi > bj > 0 whenever i > j, i

and j being integers. Moreover, bi converges to 0 as i → −∞, and bi becomes

arbitrarily large if i→∞. Therefore, there is a unique j such that bj ≤ x < bj+1.

Within this interval of b powers there is a unique natural aj with 0 < aj < b

such that ajbj ≤ x < (aj + 1)bj . Consider the difference x′ = x − ajbj , then

we have 0 ≤ x′ < bj and there is a unique natural 0 ≤ aj−1 < b such that

aj−1b
j−1 ≤ x′ < (aj−1 + 1)bj−1. Then x′′ = x′ − aj−1b

j−1 = x − ajbj − aj−1b
j−1

has 0 ≤ x′′ < bj−1, and we may go on in this way, defining a b-adic number. It

is immediate that this number converges to x. The failure of uniqueness in the

case where one has b − 1 until infinity is left as an exercise to the reader. �

Example 22 In the decadic representation, the number 0.999 . . . with

a non-terminating sequence of 9s is equal to 1.0. Often, one writes

. . . am+1am in order to indicate that the coefficient is constant and equal

to am for all indexes m,m − 1,m − 2, Thus, in the binary represen-

tation, 0.1 equals 1.0.

9.3 Real Numbers R 101

Example 23 Show that for every real number, there is exactly one rep-

resentation (without the exceptional ambiguity, i.e., avoiding the typical

decimal 0.999 . . . representation) of a real number r in the form

r = ±(a0.a−1a−2 . . .) · be

with a0 ≠ 0 for r ≠ 0.

This is the so-called floating point representation, which for b = 2 has

been standardized by the IEEE society to computerized representations.

See chapter 14 on the first advanced topic for this subject.

At this point we are able to tackle the question whether the cardinalities

of N and R are equal. This is not the case, in fact, there are many more

reals than natural numbers. More precisely, there is an injection N → R,

which is induced by the chain N → Z → Q → R of injections, but there is

no bijection N
∼→ R. To show this, let us represent the reals by decimal

numbers x = n(x) + 0.x0x1 . . ., where n(x) ∈ Z and 0 ≤ 0.x0x1 . . . < 1.

Suppose that we take the unique representation x = n(x)+0.x0x1 . . . xt0

instead of x = n(x) + 0.x0x1 . . . (xt − 1)9, for the case of an ambiguous

representation. Now, suppose we are given a bijection f : N
∼→ R. The f -

image ofm ∈ N is then f(m) = n(f(m))+0.f (m)0f(m)1 Let a ∈ R
be the following “antidiagonal” element a = 0.a0a1 . . . am We define

am = 2 if f(m)m = 1 and am = 1 else. This is a decimal representation of

a number a which must occur in our bijection. Suppose that a = f(m0).

Then by construction of a, the digit of f(m0) at positionm0 after the dot

is different from the digit of a at position m0 after the dot, so a cannot

occur, which is a contradiction to the claimed bijection f .

f(0) 92736.282109927835 . . .

f (1) 2.814189264762 . . .

f (2) 1623.109473637637 . . .
...

...

f(m0) = a ? 0.121 . . .

Fig. 9.4. A tentative “bijection” f : N→ R.

102 The Classical Number Domains Z, Q, R, and C

9.4 Complex Numbers C

The last number domain which we need in the general mathematical en-

vironment are the complex numbers. The theory that we have developed

so far enables us to solve equations such as ax + b = c, and we have

convergence of all Cauchy sequences, including the standard adic repre-

sentations. But there is still a strong deficiency: General equations cannot

be solved in R. More precisely, one can easily show that an equation of the

form ax3 +bx2 + cx +d = 0 with real coefficients a,b, c, d and a ≠ 0 al-

ways has a solution (a “root”) in R. But an equation with an even maximal

power of the unknown, such as ax4 + bx3 + cx2 +dx + e = 0, cannot be

solved in general. Two hundred years ago, mathematicians were search-

ing for a domain of numbers where the special equation x2 + 1 = 0 has

a solution. Evidently, such a solution does not exist in R since in R any

square is non-negative, and therefore x2 + 1 ≥ 1.

The solution was rigorously conceptualized by Carl Friedrich Gauss. In-

stead of working in R, he considers the plane R2 of pairs of real num-

bers. His trick is to give this set an arithmetic structure, i.e., addition

and multiplication, such that the existing R arithmetic and the entire

Cauchy sequence structure are embedded and such that we can effec-

tively solve the critical equation x2 + 1 = 0. But Gauss’ invention is

much deeper: It can be shown that in his construction, every equation

anx
n + an−1x

n−1 + . . . + a1x + a0 = 0 has a solution, this is the funda-

mental theorem of algebra, see remark 22 in chapter 16. Therefore, the

solvability of that single equation x2 + 1 = 0 implies that we are done

once for all with this type of equation solving. The type of equation is

called polynomial equation, we shall come back to this structure in the

second part of the book (chapter 15).

Gauss’ complex numbers are defined as follows. We consider the Carte-

sian product R2, i.e., the set of ordered pairs (x,y) of real numbers.

When thinking of the arithmetical structure (addition, multiplication) on

R2, we denote this domain by C and call it the domain of complex num-

bers. Here are the two fundamental operations, addition and multiplica-

tion of complex numbers:

Definition 61 Given two complex numbers (x,y) and (u,v) ∈ C, we de-

fine the sum

(x,y)+ (u,v) = (x +u,y + v),

9.4 Complex Numbers C 103

while the product is defined by

(x,y) · (u,v) = (xu−yv,xv +yu).

Here is the sorite for this arithmetic structure:

Sorite 93 Let x,y, z be complex numbers, and denote 0 = (0,0) and 1 =
(1,0). Then:

(i) (Additive associativity) We have (x+y)+z = x+(y+z) and denote

this number by x +y + z.

(ii) (Multiplicative associativity) We have (x · y) · z = x · (y · z) and

denote this number by x ·y ·z, or also xyz, if no confusion is likely.

(iii) (Commutativity) We have x +y = y + x and x ·y = y · x.

(iv) (Distributivity) We have x · (y + z) = x ·y + x · z.

(v) (Additive and multiplicative neutral elements) We have 0 + x = x
and 1 · x = x.

(vi) If a ≠ 0, then every equation a · x = b has a unique solution; in

particular, the solution of a · x = 1, the multiplicative inverse of a,

is denoted by a−1. The solution of a+x = 0, the additive inverse (or

negative) of a, is denoted by −a.

Proof The statements (i) through (v) follow from the arithmetic properties of

reals.

(vi) Let a = (x,y) ≠ (0,0), Then x2 + y2 > 0. But then (1
x2+y2 ,0) · (x,−y) ·

(x,y) = (1,0), so a−1 = (1
x2+y2 ,0) · (x,−y) is an inverse of a. It is unique by an

argument already used in corresponding situations. If z and z′ are two inverses

of a, then z = z · 1 = z · (a · z′) = (z · a) · z′ = 1 · z′ = z′. �

The geometric view of Gauss is this: We have an injection R → C which

sends a real number a to the complex number (a,0). Similarly to the

embedding Q → R discussed above, all arithmetic operations, addition

and multiplication, “commute” with this embedding, i.e., (a + b,0) =
(a,0) + (b,0) and (a · b,0) = (a,0) · (b,0). We therefore identify the

real number a with its image (a,0) in C. With this convention, denote

the complex number (0,1) by i, and call it the imaginary unit. Evidently,

i2 = −1. This means that in C, the equation x2+1 = 0 now has a solution,

namely x = i.
Further, for a complex number x = (a, b), we write Re(x) = a and call it

the real part of x, similarly we write Im(x) = b and call it the imaginary

104 The Classical Number Domains Z, Q, R, and C

part of x; complex numbers of the shape (0, b) are called imaginary.

Clearly, x is uniquely determined by its real and imaginary parts, in fact:

x = (Re(x), Im(x)).

We then have this crucial result, justifying the geometric point of view:

Proposition 94 For any complex number x, we have a unique represen-

tation

x = Re(x)+ i · Im(x)

as the sum of a real number (i.e., Re(x)) and an imaginary number (i.e.,

i · Im(x)).

Proof This is obvious. �

iR

R

x

Re(x)
= Re(x)

(0,0)

x−x −i · Im(x)
= i · Im(x)

i · Im(x)

Fig. 9.5. The representation of complex numbers in the plane as intro-

duced by the German mathematician Carl Friedrich Gauss (1777–1855).

In the Gauss-plane, the conjugate x of x is the point obtained by reflect-

ing x at the abscissa, while −x is the point obtained from x by a rotation

of 180◦ around the origin (0,0) of the Gauss-plane.

Exercise 41 Using the representation introduced in proposition 94, show

the validity of these arithmetical rules:

1. (a+ i · b)+ (c + i · d) = (a+ c)+ i · (b + d),
2. (a+ i · b) · (c + i · d) = (ac − bd)+ i · (ad+ bc).

9.4 Complex Numbers C 105

The complex numbers have a rich inner structure which is related to the

so-called conjugation.

Definition 62 The conjugation is a map C → C : x , x defined by x =
Re(x)− i · Im(x), i.e., Re(x) = Re(x) and Im(x) = −Im(x).

The norm of a complex number x is defined by |x| = √x · x, which is a

non-negative real, since x · x = Re(x)2 + Im(x)2 ≥ 0.

Observe that the norm of a complex number x = a+ i ·b is the Euclidean

length of the vector (a, b) ∈ R2 known from high school.

Sorite 95 Let x,y ∈ C. Then

(i) x = x iff x ∈ R, and x = −x iff x is imaginary,

(ii) |x| = 0 iff x = 0,

(iii) Re(x) = x+x
2 and Im(x) = x−x

2i ,

(iv) if x ≠ 0, then the multiplicative inverse of x is x−1 = |x|−2 · x,

(v) x = x; in particular, conjugation is a bijection,

(vi) x +y = x +y ,

(vii) x ·y = x ·y ,

(viii) if x is real, then |x| in the sense of real numbers coincides with |x| in
the sense of complex numbers, which justifies the common notation,

(ix) |x ·y| = |x| · |y|,
(x) (Triangle inequality) |x +y| ≤ |x| + |y|.

Proof The only non-trivial statement is the triangle inequality. It suffices to show

that |x+y|2 ≤ (|x|+ |y|)2. This gives us the inequality yx+xy ≤ 2|x||y|, and

then, by putting a = xy , we get inequality a+ a ≤ |a| + |a| which is obvious by

simple explication of the coordinates of the complex number a. �

CHAPTER 10

Categories of Graphs

In this chapter, we introduce the concept of a graph. Note that, this is

homonymous with but really different from the already known concept

of a graph relation. Please do observe this historically grown ambiguity.

Of course, both concepts are related by the fact that they allude to some-

thing being drawn: The graph of a function is just what in nice cases

will be drawn as a graphical representation of that function, whereas

the other meaning is related to the graphical representation of assign-

ments between nodes of a processual assembly—the concrete situations

are completely different.

As a preliminary construction we need this setup: Given a set V , always

finite in this context, we have the Cartesian product V 2 = V × V . In ad-

dition we define the edge set as 2V = {a ⊂ V | 1 ≤ card(a) ≤ 2}. It

has this name because it parametrizes the set of all undirected lines, i.e.,

edges, including single points (“loop at x”), between any two elements of

V . We have the evident surjection |?| : V 2 → 2V : (x,y) , {x,y}, which

has a number of sections which we (somewhat ambiguously) denote by
-→
? : 2V → V2, i.e., |?| ◦ -→? = Id 2V .

Exercise 42 Give reasons for the existence of sections
-→
? of |?|.

We further denote by ?∗ : V2 → V2 : (x,y) , (y,x) the exchange bijec-

tion, and note that (x,y)∗∗ = (x,y).

108 Categories of Graphs

10.1 Directed and Undirected Graphs

Definition 63 A directed graph or digraph is a map Γ : A → V 2 between

finite sets. The elements of the set A are called arrows, the elements of V

are called vertexes of the directed graph. By the universal property of the

Cartesian product (see proposition 57), these data are equivalent to the

data of two maps, headΓ : A → V and tailΓ : A → V ; more precisely, we

set tailΓ = pr1 ◦ Γ and headΓ = pr2 ◦ Γ . For a ∈ A and h = headΓ (a) and

t = tailΓ (a), we also write a : t → h or t
a
ñ h.

The intuitive meaning of a directed graph is that we are given a set of

objects some of which are connected by arrows, and that there may exist

several “parallel” arrows between a pair of given tail and head objects.

Notation 9 An intuitive two-dimensional notation of digraphs involves

drawing them in the plane: vertexes are arbitrarily placed as dots with

a label attached (the label denotes the element from V). Arrows are drawn

as curves from the the dot representing the tail vertex to the dot represent-

ing the head vertex, with an arrow head attached. A label is attached to the

curve denoting the corresponding element from A. For convenience, dots

may be omitted and the labels of the vertexes put in their place. Both vertex

and arrow labels can be omitted, if the particular labeling is immaterial to

the specific situation.

Example 24 The graph Γ consists of the set of vertexes V = {B,C,D, F}
and the set of arrows A = {a,b, c, d, e, g} (figure 10.1).

F B

C D

a

g

b

c
d

e

Γ

Fig. 10.1. The graph Γ : A→ V 2.

If the simplified notation is used, the map Γ is given by:

10.1 Directed and Undirected Graphs 109

F
a
ñ B, F

b
ñ D,C

c
ñ F,C

d
ñ D,C

e
ñ D,B

g
ñ B

Taking the arrow a as an example, we have

tailΓ (a) = F and headΓ (a) = B.

Example 25 For every directed graph Γ : A→ V 2, we have the dual graph

Γ∗ = ?∗ ◦ Γ , evidently Γ∗∗ = Γ .

F B

C D

a∗

g

b∗

c∗
d∗

e∗

Γ∗

Fig. 10.2. The dual graph Γ∗ of the graph Γ from example 24 (figure 10.1).

Example 26 Given a binary relation A in a set V , we have the associated

directed graph defined by Γ = A ⊂ V 2, the inclusion of A in V 2. So the

arrows here identify with the associated ordered pairs. In particular, the

complete directed graph CompDi(V) over a set V is defined by the identity

on the Cartesian product A = V 2 (figure 10.3)). Clearly, CompDi(V)∗ ∼→
CompDi(V). The discrete directed graph DiDi(V) over the set V is the one

defined by the empty set of arrows (figure 10.4).

Example 27 In process theory, a labeled transition system (LTS) is a sub-

set T ⊂ S × Act × S of the Cartesian product of a state space S, a set Act

of labels, together with a selected start state s0 ∈ S. For each state s ∈ S,

there is a number of transitions, e.g., the triples (s, l, t) ∈ T , parameteriz-

ing “transitions from state s to state t via the transition type l”. Defining

the directed graph Γ = T → S2 via headΓ = pr3 and tailΓ = pr1, we

associate a directed graph with the LTS, together with a distinct vertex

s0. Show that conversely, every directed graph, together with a distinct

vertex defines an LTS. How are these two constructions related?

Example 28 If for a directed graph Γ = A ⊂ V 2, the vertex set is a disjoint

union V = V1 ∪ V2 of subsets, and if for all arrows a, we have Γ(a) ∈

110 Categories of Graphs

DA

B C

Fig. 10.3. The complete digraph CompDi(V) over the vertex set V =
{A,B,C,D}.

DA

B C

Fig. 10.4. The discrete digraph DiDi(V) over the vertex set V =
{A,B,C,D}.

V1×V2∪V2×V1, then the graph is called bipartite (with respect to V1 and

V2). For any partition V = V1 ∪ V2 of a finite set V , one has the complete

bipartite digraph BipDi(V1, V2), defined by the inclusion V1×V2∪V2×V1 ⊂
V2.

U = V ∪W

B

A

G

F

H
D

C

V W

D

C

B

A
F

G

H

Fig. 10.5. A bipartite graph with vertexes U = V ∪W .

10.1 Directed and Undirected Graphs 111

C

B

A

E

D

Fig. 10.6. A complete bipartite graph with vertexes U = {A,B,C}∪{D,E}.

Example 29 In automata theory, a special type of directed graphs is

called Petri net, which was introduced by Carl Adam Petri in 1962. A Petri

net is specified by two sets: the set P of places, and the set Tr of transi-

tions. It is supposed that some places are related “by input arcs” to transi-

tions as input places, whereas some places are related “by output arcs” to

transitions as output places. It is also assumed that every transition has

at least one input and one output place, and that an input place cannot

be an output place of the same transition. This means that we can view a

Petri net as an LTS (except that no initial state s0 is specified) where the

labels are the transitions, and where the triples (p, t, q) ∈ P × Tr × P are

the elements of the ternary state space relation T in example 27. The ax-

iom eliminating the possibility “input = output” means that the directed

graph of the Petri net has no loop, i.e., no arrow of type p
a
ñ p.

The next subject relates set theory to graph theory.

Definition 64 For a set x and for n ∈ N, we define inductively
⋃0
x =

x and
⋃n+1

x = ⋃
(
⋃n
x). The set x is called totally finite iff there is a

natural number m such that
⋃m

x = ∅. Call the minimal such m the

level lev(x) of x.

Example 30 Let x = {{{{∅},∅},∅, {∅}}, {{∅}}}. Then x0 =
⋃0
x = x,

x1 =
⋃1
x = ⋃

x0 = {{{∅},∅},∅, {∅}}, x2 =
⋃2
x = ⋃

x1 = {{∅},∅},
x3 =

⋃3
x = ⋃x2 = {∅}, and, finally, x4 =

⋃4
x = ⋃x3 = ∅. Thus x is

totally finite and lev(x) = 4.

The set N of natural numbers is not totally finite. The set a = {a} is finite,

but not totally finite, as can be easily verified.

112 Categories of Graphs

Clearly, if x is totally finite, and if y ∈ x, then y is also totally finite

and lev(y) < lev(x). We now associate the notation Fi(x) to any totally

finite set as follows (Paul Finsler (1894–1970) was a mathematician at the

University of Zurich).

Definition 65 The vertex set V of the Finsler digraph Fi(x) of a totally

finite set x is the union V = {x} ∪ ⋃i=0,...lev(x)−1
⋃i
x. Observe that all

pairs {x}, ⋃i x of sets are mutually disjoint, otherwise, x would not be

totally finite! The arrow set is the set {(r , s) | s ∈ r} ⊂ V 2, i.e., the arrows

r
a
ñ s of Fi(x) correspond to the element (∈) relation.

Example 31 With x defined as in example 30, the vertex set of Fi(x) is

V = {x}∪⋃i=0,1,2,3
⋃i
x = {x}∪⋃i=0,1,2,3 xi = {x}∪x0∪x1∪x2∪x3. De-

noting a = {{{∅},∅},∅, {∅}}, b = {{∅}}, c = {{∅},∅}, and d = {∅},
then V = {x}∪{a,b}∪{c, d,∅}∪{d,∅}∪{∅} = {x,a, b, c, d,∅}. The ar-

row set is {(x,a), (x, b), (a, c), (a,d), (a,∅), (b, d), (c, d), (c,∅), (d,∅)}.
The resulting Finsler digraph is shown in figure 10.7.

x

b a

c

d ∅

Fi(x)

Fig. 10.7. The Finsler digraph Fi(x) of the set x from example 31.

The Finsler digraphs characterize totally finite sets, in other words, we

may redefine such sets starting from graphs. This is a new branch of the-

oretical computer science used in parallel computing theory, formal on-

tologies, and artificial intelligence. Important contributions to this branch

of computer science, mathematics, and formal logic have been made by

Jon Barwise, Lawrence Moss [3], and Peter Aczel [1].

Example 32 In an object-oriented language, for example Java, we con-

sider a class library which we suppose being given as a set L, the elements

10.1 Directed and Undirected Graphs 113

C of which represent the library’s classes, including (for simplicity) the

primitive type classes of integers, floating point numbers, strings, and

booleans. For each class C we have a number of fields (instance vari-

ables) defined by their names F and class types T ∈ L. This defines a

digraph ΛL, the vertex set being L, and the arrows being either the triples

(C, F, T) where F is the name of a field of class C, and where T is the type

class of F , or the pairs (C, S), where S is the direct superclass of C; we

set headΛ(C, F, T) = T and tailΛ(C, F, T) = C, or, for superclass arrows,

headΛ(C, S) = S and tailΛ(C, S) = C.

If one forgets about the direction in a digraph, the remaining structure

is that of an “undirected” graph, or simply “graph”. We shall henceforth

always write digraph for a directed graph, and graph for an undirected

graph, if confusion is unlikely.

Definition 66 An undirected graph (or simply graph) is a map Γ : A → 2V

between finite sets. The elements of the set A are called edges, the elements

of V are called vertexes of the graph. For a ∈ A and Γ(a) = {x,y}, we

also write x
a
y , which is the same as y

a
x.

The two-dimensional notation for graphs is similar to that of digraphs,

except that arrow heads are omitted.

Example 33 For each directed graph Γ , one generates the associated

graph |Γ | = |?| ◦ Γ , and for any given (undirected) graph Γ , one generates

an associated directed graph
-→
Γ = -→

? ◦ Γ , the latter construction supposing

that a section
-→
? for the graph’s vertex set is given.

F B

C D

|a|
|g|

|b|
|c| |d|

|e|

|Γ |

Fig. 10.8. The graph |Γ | associated to the graph from example 24 (fig-

ure 10.1).

114 Categories of Graphs

Example 34 A graph Γ : A → 2V is complete iff Γ is a bijection onto the

subset 2V −{{x} | x ∈ V} ⊂ 2V . The complete graph Comp(V) of a set V

is the inclusion 2V−{{x} | x ∈ V} ⊂ 2V , i.e., intuitively the set of all edges

between any two different points in V . A graph Γ : A → 2V is bipartite, iff

there is a partition V = V1 ∪ V2 such that for all edges a, Γ(a) = {x,y}
with x ∈ V1 and y ∈ V2. The complete bipartite graph Bip(V1, V2) for two

disjoint sets V1 and V2 is the embedding {{x,y} | x ∈ V1, y ∈ V2} ⊂ 2V .

The discrete (undirected) graph over the vertex set V is denoted by Di(V).

10.2 Morphisms of Digraphs and Graphs

Evidently, there are many (directed or undirected) graphs which look es-

sentially the same, similarly to sets which are essentially the same, in the

sense that they are equipollent, i.e., they have same cardinality. In order

to control this phenomenon, we need a means to compare graphs in the

same way as we had to learn how to compare sets by use of functions.

Definition 67 Let Γ : A → V 2 and ∆ : B → W 2 be two digraphs. A mor-

phism f : Γ → ∆ of digraphs is a pair f = (u,v) of maps u : A → B and

v : V → W such that v2 ◦ Γ = ∆◦u, in other words, for any arrow t
a
ñ h

in Γ , we have v(t)
u(a)

ñ v(h). This means that we have the following

commutative diagram:

A
Γ

ñ V2

B

u

�

∆
ñ W 2

v2

�

In particular, the identity IdΓ = (IdA, IdV) is a morphism, and, if f =
(u,v) : Γ → ∆ and g = (u′, v′) : ∆ → Θ are two morphisms, then their

composition is a morphism g ◦ f = (u′ ◦u,v′ ◦ v) : Γ → Θ.

We denote the set of digraph morphisms f : Γ → ∆ by Digraph(Γ ,∆).

Example 35 Figure 10.9 shows two digraphs Γ and ∆ and a morphism

f = (u,v). The map v on the vertexes is drawn with light gray arrows,

the map u on edges is drawn with dark gray arrows.

10.2 Morphisms of Digraphs and Graphs 115

A

B

D

C

X

Y

a′

c′

a

d

c

b b′ d′

v uΓ ∆

Fig. 10.9. A morphism of digraphs.

Sorite 96 Call the two maps u and v defining a digraph morphism f =
(u,v) its components.

(i) If f : Γ → ∆, g : ∆ → Θ, h : Θ → Ψ are morphisms of digraphs, then

h ◦ (g ◦ f) = (h ◦ g) ◦ f , which we denote (as usual) by h ◦ g ◦ f .

(ii) Given f : Γ → ∆, there is a morphism k : ∆→ Γ such that k ◦ f = IdΓ

and f ◦ k = Id∆ iff the components u and v of f = (u,v) are

bijections. In this case, f is called an isomorphism of digraphs.

Proof (i) Associativity of digraph morphisms follows directly from the associa-

tivity of set maps which define digraph morphisms.

(ii) Since the composition of two digraph morphisms is defined by the set-

theoretic composition of their two components, the claim is immediate from

the synonymous facts for set maps. �

Remark 13 Informally speaking, the system Digraph of digraphs Γ ,∆, . . .

together with their sets Digraph(Γ ,∆) of morphisms, including their as-

sociative composition (sorite 96) is called the category of digraphs. A

formal definition of a category will be given in volume II of this book.

Evidently, we already have encountered the structure of category for sets

and their functions. Categories constantly appear in all of mathematics,

they are the most powerful unifying structure of modern mathematics

and computer science.

Example 36 An immediate class of morphisms is defined by directed sub-

graphs (or subdigraphs). More precisely, given a digraph Γ : A → V 2, if

inclusions u : A′ ⊂ A and v : V ′ ⊂ V of subsets A′ and V ′ are such

that Γ(A′) ⊂ (V ′)2, then we have an induced digraph Γ ′ : A′ → (V ′)2, and

a subdigraph inclusion morphism (u,v) : Γ ′ ⊂ Γ . In particular, if for a

116 Categories of Graphs

subset V ′ ⊂ V , we take A′ = Γ−1((V ′)2), we obtain the subdigraph Γ |V ′
induced on V ′.

The set cardinality classifies sets up to bijections. In particular, for finite

sets, the natural number card(a) is a classifying property. Similarly, for

digraphs we also want to have prototypes of digraphs such that each

digraph is isomorphic to such a prototype. To begin with we have this:

Exercise 43 Show that each digraph Γ : A → V 2 is isomorphic to a di-

graph Γ ′ : A→ card(V)2.

Exercise 44 Prove the equality BipDi(V1, V2) = BipDi(V2, V1) and the iso-

morphism BipDi(V1, V2)
∗ ∼→ BipDi(V1, V2).

For a digraph Γ : A → V 2 and e, f ∈ V , we consider the sets Ae,f =
Γ−1(e, f) = {a | a ∈ A, tail(a) = e,head(a) = f}.

Definition 68 Let Γ : A → V 2 be a digraph, and fix a bijection c :

card(V)
∼→ V . The adjacency matrix of Γ (with respect to c) is the function

Adjc(Γ) : card(V)2 → N defined by (i, j), card(Ac(i),c(j)).

We shall deal extensively with matrixes in chapter 21. But we will already

now show the standard representation of a matrix, and in particular of

the adjacency matrix. It is a function of a finite number of pairs (i, j).

Such a function is usually represented in a graphical form as a tabular

field with n rows and n columns, and for each row number i and column

number j, we have an entry showing the function value Adjc(i, j), i.e.,

Adjc =

Adjc(0,0) Adjc(0,1) . . . Adjc(0, n− 1)

Adjc(1,0) Adjc(1,1) . . . Adjc(1, n− 1)
...

...
...

Adjc(n− 1,0) Adjc(n− 1,1) . . . Adjc(n− 1, n− 1)

Observe however that here, the row and column indexes start at 0,

whereas in usual matrix theory, these indexes start at 1, i.e., for usual

matrix notation, the entry at position (i, j) is our position (i− 1, j − 1).

Example 37 For simplicity’s sake, let the vertexes of a digraph Γ be the

natural numbers less than 6. Thus, the bijection c is the identity. The

adjacency matrix of Γ is shown below the digraph in figure 10.10.

10.2 Morphisms of Digraphs and Graphs 117

0

1

4

2

3
5

Γ

Adjc(Γ) =

0 0 0 0 0 0

1 0 1 0 2 0

0 0 0 0 0 2

0 0 0 1 0 0

0 0 0 0 0 0

2 0 0 0 0 1

Fig. 10.10. Adjacency matrix of a digraph.

The following numerical criterion for isomorphic digraphs is very impor-

tant for the computerized representations of digraphs:

Proposition 97 If Γ and ∆ are two digraphs such that Adj(Γ) = Adj(∆),

then they are isomorphic, i.e., there is an isomorphism Γ
∼→ ∆.

Proof Suppose that for two digraphs Γ : A → V 2 and ∆ : B → W 2, Adj(Γ) =
Adj(∆). Then the number of rows of the two matrixes is the same, and therefore

we have a bijection v : V → W such that the matrix index (i, j) in Adj(Γ) corre-

sponds to the same index of Adj(∆). Moreover, we have A = ⊔
x∈V2 Γ

−1(x) and

B = ⊔
y∈W2 ∆

−1(y). But since by hypothesis card(Γ−1(x)) = card(∆−1(v2(x))

for all x ∈ V , setting v2 = v × v , we have bijections ux : Γ−1(x) → ∆−1(v2(x))

and their disjoint union yields a bijection u : A → B which defines the desired

isomorphism (u,v). �

So the adjacency matrix of a digraph describes the digraph “up to iso-

morphisms”. The converse is not true, but it can easily be said what is

missing: Essentially, we have to take into account the bijection c, which

labels the vertexes. In fact, if Γ
∼→ ∆, then their adjacency matrixes are re-

lated to each other by conjugation with a permutation matrix relabeling

the vertexes.

Example 38 The bipartite digraphs can now be denoted by simple num-

bers, i.e., if n and m are natural numbers, we have the bipartite digraph

BipDi(n,m), and every bipartite digraph BipDi(V1, V2) with card(V1) = n

118 Categories of Graphs

and card(V2) = m is isomorphic to BipDi(n,m). This applies also to

complete or discrete digraphs. Given a natural number n, the com-

plete digraph CompDi(n) is isomorphic to any CompDi(V) such that

card(V) = n. And the discrete digraph DiDi(n) is isomorphic to any

DiDi(V) if card(V) = n.

An important type of morphisms with special digraphs, namely chains,

as domains is defined as follows:

Definition 69 Given n ∈ N, the directed chain [n] of length n is the di-

graph on the vertex set V = n + 1 with the n arrows (i, i + 1), i ∈ n. In

particular, if n = 0, then [0] = DiDi(1) (discrete with one vertex), whereas

in general, the leftmost arrow is 0 ñ 1, followed by 1 ñ 2, etc., up to

(n− 1) ñ n.

Definition 70 Given a digraph Γ and n ∈ N, a path of length n in Γ is a

morphism p : [n]→ Γ , write l(p) = n for the length. (Equivalently, p may

be described as a sequence of arrows (ai)i=1,...n in Γ such that for every

i < n, head(ai) = tail(ai+1).) If p(0) = v and p(n) = w, one also says

that p is a path from v tow. If there is a path from v tow, we say, thatw

is reachable from v . A path of length 0—just one vertex v in Γ—is called

the lazy path at v , and also denoted by v . A non-lazy path p : [n] → Γ

such that p(0) = p(n) is called a cycle in Γ . A cycle of length 1 at a vertex

v is called a loop at v .

0

Directed chain [0] of length 0

0 1

Directed chain [1] of length 1

0 1 2

Directed chain [2] of length 2

0 1 2 3 4

Directed chain [4] of length 4

Fig. 10.11. Directed chains.

10.2 Morphisms of Digraphs and Graphs 119

Example 39 In the digraph of figure 10.12, the light gray arrows form a

path from A to B, the dark gray ones a cycle from A to A, and the dashed

arrow is a loop at D.

Fig. 10.12. Paths and cycles in a digraph.

Definition 71 A vertex v in a digraph Γ such that for every vertex w in Γ ,

there is a path from v tow, is called a root or source of Γ , a root in the dual

digraph is called a co-root or sink of Γ . A digraph without directed cycles

and with a (necessarily unique) root is called a directed tree. A vertex v in

a directed tree, which is not the tail of an arrow, is called a leaf of the tree.

Example 40 The roots in the figure are {A,C, E} and the co-roots are

{D,B}. Note that if a root lies on a cycle, all vertexes on the cycle are

roots. The analogue statement is valid for co-roots.

A

B

C

D

E

The following figure shows a tree with root A and no co-root, with leaves

{D,E, F,H, I}.

120 Categories of Graphs

A

B C

D E F G

H I

Exercise 45 Given two paths p and q of lengths n and m, respectively,

in a digraph Γ such that p ends where q begins, we have an evident com-

position qp of paths of length l(qp) = n +m = l(q) + l(p), defined by

joining the two arrow sequences in the connecting vertex. Composition

of paths is associative, and the composition with a lazy path at v , if it is

defined, yields vp = p, or pv = p.

This allows us to characterize totally finite sets by their Finsler digraphs

(see definition 65). To this end, we consider the following subgraph con-

struction: If Γ is a graph and v a vertex, we define v〉 to be the set of

all vertexes w such that there is a path from v to w.The directed sub-

x

b a

c

d ∅

Fi(x)

Fig. 10.13. The vertexes and edges of the subdigraph a〉 of Fi(x) from

figure 10.7 are shown in bold.

graph induced on v〉 is also denoted by v〉 and is called the subdigraph

generated by v .

Proposition 98 A digraph Γ is isomorphic to a Finsler digraph Fi(x) of a

totally finite set x iff it is a directed tree such that for any two vertexes v1

and v2, if v1〉 is isomorphic to v2〉, then v1 = v2.

10.2 Morphisms of Digraphs and Graphs 121

Proof Let x be totally finite. Then in the Finsler digraph Fi(x), every y ∈ x
is reached from the vertex x. And if z ∈ ⋃n+1

x = ⋃⋃n
x, then it is reached

from a selected element in
⋃n
x. So x is the root of Fi(x). If y is a vertex in

Fi(x), then clearly y〉 = Fi(y). Let us show by induction on lev(y) that an iso-

morphism Fi(y)
∼→ Fi(z) implies y = z. In fact, if lev(y) = 0, then Fi(y) and

Fi(z) are both one-point digraphs, and both y and z must be the empty set. In

general, if Fi(y)
∼→ Fi(z), then the roots must also correspond under the given

isomorphism, and therefore there is a bijection between the vertexes yi reached

from y by an arrow, and the vertexes zi reached from z by an arrow. If zi cor-

responds to yi, then also zi〉 ∼→ yi〉, and therefore, by recursion, yi = zi, which

implies y = z. Conversely, if a directed tree F : V → A2 is such that any two

vertexes v1 and v2 with v1〉 ∼→ v2〉 must be equal, then it follows by induction

on the length of the maximal path from a given vertex that F is isomorphic to

the Finsler digraph of a totally finite set. In fact, if a directed tree has maximal

path length 0 from the root, it is the Finsler digraph of the empty set. In general,

the vertexes yi, i = 1, . . . k reached from the root y by an arrow have a shorter

maximal path than the root and are also directed trees with the supposed condi-

tions. So by recursion, they are Finsler digraphs Fi(ti) of totally finite, mutually

different sets ti. Then evidently, y is isomorphic to the Finsler digraph of the set

{ti | i = 1, . . . k}. �

We now turn to the subject of morphisms between undirected graphs. We

need the undirected variant of the square map v2 : V2 → W 2 associated

with a map v : V → W , i.e., 2v : 2V → 2W : {x,y}, {v(x), v(y)}.

Definition 72 Let Γ : A→ 2V and ∆ : B → 2W be two graphs. A morphism

f : Γ → ∆ of graphs is a pair f = (u,v) of maps u : A → B and v : V → W
such that 2v ◦ Γ = ∆ ◦ u, in other words, for any edge t

a
h in Γ , we

have v(t)
u(a)

v(h). This means we have the commutative diagram

A
Γ

ñ 2V

B

u

�

∆
ñ 2W

2v

�

In particular, the identity IdΓ = (IdA, IdV) is a morphism, and, if f =
(u,v) : Γ → ∆ and g = (u′, v′) : ∆ → Θ are two morphisms, then their

composition is a morphism g ◦ f = (u′ ◦u,v′ ◦ v) : Γ → Θ.

Exercise 46 Show that the mapping Γ , |Γ | can be extended to mor-

phisms, i.e., if f = (u,v) : Γ → ∆, is a morphism, then so is |f | : |Γ | → |∆|.
Also, |IdΓ | = Id|Γ |, and |f ◦ g| = |f | ◦ |g|.

122 Categories of Graphs

The following sorite looks exactly like its corresponding version for di-

graphs:

Sorite 99 Call the two maps u and v defining a graph morphism f =
(u,v) its components.

(i) If f : Γ → ∆, g : ∆ → Θ, and h : Θ → Ψ are morphisms of graphs,

then h◦(g ◦f) = (h◦g)◦f , which we (as usual) denote by g ◦h◦f .

(ii) Given f : Γ → ∆, there is a morphism k : ∆→ Γ such that k ◦ f = IdΓ

and f ◦ k = Id∆ iff the components u and v of f = (u,v) are

bijections. In this case, f is called an isomorphism of graphs.

Proof This results from the corresponding set-theoretic facts much as it did for

the digraph sorite 96. �

Example 41 In complete analogy with example 36 on directed subgraphs,

we have subgraphs of undirected graphs, i.e., we require that for a graph

Γ : A → 2V and two subsets u : A′ ⊂ A and v : V ′ ⊂ V , Γ restricts to

Γ ′ : A′ → 2V ′, and in particular, if A′ = Γ−1(2(V ′)), we get the subgraph

Γ |V ′ induced on V ′.

As for digraphs, clearly every graph with vertex set V is isomorphic to

a graph the vertexes of which are elements of the natural number n =
card(V). If {e, f} ∈ 2V , we denote A{e,f} = Γ−1({e, f}).

Definition 73 Let Γ : A→ 2V be a graph, and fix a bijection c : card(V)→
V . The adjacency matrix of Γ (with respect to c) is the function Adjc(Γ) :

card(V)2 → N : (i, j), card(A{c(i),c(j)}).

Example 42 The adjacency matrix for |Γ | (where Γ is the same as in ex-

ample 37) is:

Adjc(|Γ |) =

0 1 0 0 0 2

1 0 1 0 2 0

0 1 0 0 0 2

0 0 0 1 0 0

0 2 0 0 0 0

2 0 2 0 0 1

Obviously the adjacency matrix of an undirected graph is symmetrical,

i.e., Adjc(Γ)(i, j) = Adjc(Γ)(j, i) for all pairs i, j.

10.2 Morphisms of Digraphs and Graphs 123

Proposition 100 If Γ and ∆ are two graphs such that Adj(Γ) = Adj(∆),

then they are isomorphic.

Proof The proof of this proposition is completely analogous to the proof of the

corresponding proposition 97 for digraphs. �

Definition 74 Given n ∈ N, the chain |n| of length n is the graph on the

vertex set V = n + 1 such that we have the n edges {i, i + 1}, i ∈ n. In

particular, if n = 0, then |0| = Di(1) (discrete with one vertex), whereas

in general, the leftmost edge is 0 1, followed by 1 2, etc., up to

(n− 1) n.

Example 43 For any natural number n, we have the complete graph

Comp(n), which in literature is often denoted by Kn, it is isomorphic

to any complete graph Comp(V) with card(V) = n. For two natural num-

bers n and m, we have the complete bipartite graph Bip(n,m), often

denoted by Kn,m, which is isomorphic to any complete bipartite graph

Bip(V1, V2) such that card(V1) = n and card(V2) =m.

K1 K2 K3 K4 K5

Fig. 10.14. The complete graphs Kn for n = 1 . . .5.

Definition 75 Given a graph Γ and n ∈ N, a walk of length n in Γ is a

morphism p : |n| → Γ , we write l(p) = n for its length. If p(0) = v and

p(n) = w, one also says that p is a walk from v to w. If there is a walk

from v to w, we say that w is reachable from v . A walk of length 0 (just

one vertex v in Γ) is called the lazy walk at v , and also denoted by v . A

non-lazy walk p : |n| → Γ such that p(0) = p(n) is called a cycle in Γ . A

cycle of length 1 at a vertex v is called a loop at v .

A graph is said to be connected if any two vertexes can be joined by a

walk. A connected graph without (undirected) cycles is called a tree.

A directed graph Γ is called connected if |Γ | is so.

124 Categories of Graphs

K1,1 K2,1 K3,1

K2,2 K3,2 K3,3

Fig. 10.15. The complete bipartite graphs Kn,m, for 1 ≤ n ≤ 3 and 1 ≤
m ≤ 3.

As with directed graphs, we may also compose walks, more precisely, if p

is a walk from v to w, and q is one from w to z, then we have an evident

walk qp from v to z of length l(qp) = l(q)+ l(p).

Remark 14 Alternatively we can define a walk from v to w in a graph Γ

as a path from v to w in any digraph
-→
Γ such that Γ = | -→Γ |. We shall also

use this variant if it is more appropriate to the concrete situation.

Lemma 101 If Γ is a graph, the binary relation ∼ defined by “v ∼ w iff

there is a walk from v to w” is an equivalence relation. The subgraph

induced on an equivalence class is called a connected component of Γ .

If Γ is a directed graph, its connected components are the directed sub-

graphs induced on the equivalence classes of vertexes defined by the as-

sociated graph |Γ |. Since there are no paths or walks between any two

distinct connected components, two (di)graphs Γ and ∆ are isomorphic iff

there is an enumeration Γi,∆i, i = 1, . . . k of their connected components

such that component Γi is isomorphic to component ∆i.

Proof The relation∼ is evidently reflexive, just take the lazy walk. It is symmetric

since, if p : |n| → Γ is a walk from v to w, then the “reverse” walk r : |n| → |n|
with r(i) = n− i turns p into the walk p → r from w to v . The rest is clear. �

Remark 15 If Γ is a tree with vertex set V , and if v is a vertex, then

the graph induced on V − {v} is a disjoint union of connected compo-

nents Γi which are also trees. Therefore, the tree Γ is determined by these

10.3 Cycles 125

subtrees Γi, together with the vertexes being joined by an edge from v

to determined vertexes vi in Γi (in fact, if there were more than one such

vertex, we would have cycles, and Γ would not be a tree). This allows us to

define the tree concept recursively by the total vertex set V , the selected

vertex v , the edges v vi, and the subtrees Γi. This is the definition of

a tree given by Donald Knuth in his famous book, “The Art of Computer

Programming” [31]. It has however the shortcoming that it distinguishes

a vertex v , which is not the intrinsic property of a tree. For computer

science it has the advantage that it is constructive and recursive.

10.3 Cycles

In this section, we want to state a number of elementary facts concerning

the existence or absence of cycles in directed and undirected graphs.

Definition 76 An Euler cycle e in a digraph/graph Γ is a cycle such that

every vertex and every arrow/edge of Γ lies on the cycle (i.e., e is surjective

on the vertexes and on the arrows/edges), but every arrow/edge appears

only once (i.e., e is bijective on the arrows/edges).

A Hamilton cycle h in a digraph/graph Γ is a cycle which contains ev-

ery vertex exactly (i.e., h is surjective on the vertexes), except for the

start and end vertex which it its twice (i.e., is a bijection on the vertexes

0,1,2, . . . l(h)− 1).

The condition for the existence of Euler cycles in digraphs uses the degree

of a vertex:

Definition 77 If v is a vertex of a digraph Γ : A → V 2, the head degree of

v is the number

deg−(v) = card({h | h ∈ A,head(h) = v}),

the tail degree of v is the number

deg+(v) = card({h | h ∈ A, tail(h) = v}),

and the degree of v is the number

deg(v) = deg−(v)+ deg+(v).

126 Categories of Graphs

For a graph Γ , the degree deg(v) of a vertex v is defined as the degree of

v in any of the digraphs
-→
Γ such that | -→Γ | = Γ ; observe that this number is

independent of the choice of the digraph
-→
Γ .

Here are two classical results by Leonhard Euler (1707–1783):

Proposition 102 Let Γ be a digraph. Then it has an Euler cycle iff it is

connected and for every vertex v , we have deg−(v) = deg+(v).

Proof In both implications we may give the proof for the subgraph of Γ obtained

by omitting the loops. We may then put the loops back again without changing

the validity of the proof.

If Γ has an Euler cycle c : [n] → Γ , any two vertexes are connected by a sub-

path associated to this cycle, so Γ is connected. If v is a vertex of Γ , and if

w
a
ñ v,w ≠ v is an arrow of Γ , then a appears right before a subsequent

arrow v
a′
ñ w′ in the cycle c. But these two arrows appear exactly once each

in c, and therefore deg
−(v) = deg

+(v).

Conversely, if Γ is connected and for every vertex v , deg
−(v) = deg

+(v), then

we first construct a covering of Γ by cycles ci. Here we need only the hypothesis

that the degrees are all even. Let a be an arrow of Γ , then there must exist an

arrow a′ starting from head(a). The head of a′ must also have an arrow a′′ the

tail of which is the head of a′. After a finite number of such steps, we end up at

a vertex which we had already encountered before, and this defines a first cycle.

Now omit all these cycle’s arrows, and the hypothesis about the even number

of degrees still holds, but for the smaller digraph obtained after elimination of

the cycle’s arrows. By induction we have a covering of this digraph by cycles,

and, together with our first cycle obtain the desired covering. Clearly, a union of

cycles with disjoint arrows covering a connected digraph is again a cycle. To see

this observe that (1) a cycle may start at any of its vertexes; (2) if two cycles c

and d in Γ have the vertex v in common, but have disjoint arrow sets, then there

is also a cycle containing the union of these arrow sets; (3) if Γ is connected,

any given cycle in Γ can be extended by adding to it another cycle of the given

covering, having disjoint arrows. �

Proposition 103 Let Γ be a graph. Then it has an Euler cycle iff it is con-

nected and for every vertex v , deg(v) is an even number (a multiple of

2).

Proof The proof is similar to the case of digraphs, except that the existence

of an Euler cycle for an even number deg(v) in each vertex v has to shown.

Here, we may couple edges at v in pairs of edges and associate with each pair

one incoming and one outgoing arrow. This procedure yields a digraph over the

given graph, and we may apply proposition 102. �

10.3 Cycles 127

Fig. 10.16. A Hamilton cycle (heavy lines) on the flattened dodecahedron

and a Euler cycle (dashed line) on the flattened octahedron. The dodeca-

hedron has no Euler cycle, since there are vertexes with odd degree.

Exercise 47 A political group wants to make a demonstration in Zurich

and asks for official permission. The defined street portions of the

demonstration path are the following edges, connecting these places in

Zurich: Z = Zweierplatz, S = Sihlporte, HB = Hauptbahnhof, C = Central,

HW = Hauptwache, Pr = Predigerplatz,M = Marktgasse, Pa = Paradeplatz,

B = Bellevue.

Z S,Z Pa, S HB, S Pa,HB C,

HB HW ,Pa HW , Pa M,Pa
1
B,Pa

2
B,

HW Pr,Pr M,M B,B C.

The permission is given if a walk can be defined such that each connec-

tion is passed not more than once. Will the permission be given?

A spanning sub(di)graph of a (di)graph is a sub(di)graph which contains

all vertexes.

Proposition 104 Every connected graph has a spanning tree, i.e., a span-

ning subgraph which is a tree.

Proof The proof is by induction on the number of edges. If there is only one

vertex, we are done. Else, there are at least two different vertexes v and w which

are connected by an edgea. Discard that edge. Then, if the remaining graph is

still connected, we are done. Else, every vertex must be reachable from either v

orw. Assume that, before eliminating a, every vertex x was reachable from v . So

128 Categories of Graphs

if x is still reachable from v it pertains to the connected component of v , else,

there walk from x to v must traverse w via a. But then, x is in the connected

component of w. So the graph without a has exactly the two connected compo-

nents Cv of v and Cw ofw. By induction, each component Cv , Cw has a spanning

tree Tv , Tw , respectively. Adding the edge a to the union of the disjoint spanning

trees Tv and Tw still yields a tree, which is the required spanning tree. �

Fig. 10.17. Spanning tree of an undirected graph.

CHAPTER 11

Construction of Graphs

We already know about some constructions of new (di)graphs from given

ones: The dual digraph is such a construction. The spanning tree is a

second one. Here more of these constructions are presented.

We have seen in set theory that there are universal constructions of new

sets from given ones, such as the Cartesian product a × b, the coprod-

uct a t b, and the function set ab. In graph theory, one also has such

constructions which we discuss now. They are of very practical use, espe-

cially in computer science where the systematic construction of objects

is a core business of software engineering.

Given two digraphs Γ : A → V 2 and ∆ : B → W 2, we have the Cartesian

product Γ ×∆ : A×B → (V ×W)2, defined by the canonical1 isomorphism

of sets t : V 2 ×W 2 → (V ×W)2 : ((e1, e2), (f1, f2)), ((e1, f1), (e2, f2)). In

other words, we have

head(a, b) = (head(a),head(b))

tail(a, b) = (tail(a), tail(b)).

Example 44 Figure 11.1 shows the Cartesian product of two digraphs Γ

and ∆.

1 In mathematics, a construction is called “canonical” if no particular trick is

necessary for its elaboration, it is realized by the given “surface structures”.

Attention: the attribute “natural”, which we would also like to use instead, is

reserved for a technical term in category theory.

130 Construction of Graphs

Γ

A

B

Cc

a

b

d

∆

X

Y
y

x

Γ ×∆

(B, Y)
(A, Y)

(A,X)

(B,X)

(C,X)

(C, Y)

(d,x)

(c,x)

(a,x)

(b,x)

(b,y)

(d,y)

(c,y)

Fig. 11.1. The Cartesian product of two digraphs Γ and ∆.

Exercise 48 Show that the Cartesian product shares formal properties

which are completely analogous to those stated for sets. Use the commu-

tative diagram introduced in that context.

We also have a coproduct Γ t ∆ : A t B → (V t W)2, defined by the

coproduct A t B → V 2 tW 2 of the given maps, followed by the obvious

injection V 2 tW 2 → (V tW)2.

Exercise 49 Show that the coproduct shares formal properties which are

completely analogous to those stated for sets. Use the commutative dia-

gram introduced in that context.

The coproduct of undirected graphs is constructed in the same way as the

coproduct of digraphs, except that we have to replace the right exponent

X2 by the left one 2X and do the analogous mappings. The coproduct of

(di)graphs is also called the disjoint union of (di)graphs.

Construction of Graphs 131

Γ

A

B

Cc

a

b

d

∆

A

D
e

b

Γ t∆

(0, A)

(0, B)

(0, C)(0, c)

(0, a)

(0, b)

(0, d)

(1, A)

(1,D)
(1, e)

(1, b)

Fig. 11.2. The coproduct of the same two digraphs Γ and ∆ as in fig-

ure 11.1. The construction of the coproduct of sets (definition 28) en-

sures that homonymous vertexes and edges (e.g., A) are disambiguated

(i.e., (0, A) resulting from Γ and (1, A) from ∆).

The Cartesian product of undirected graphs Γ and ∆ cannot be con-

structed analogously to the Cartesian product of directed graphs. In this

case, however, motivated by exercise 46, we can construct a graph, which

can be considered the best approximation to a product: Take the Carte-

sian product of two digraphs
-→
Γ and

-→
∆ , together with the two projections

-→
Γ × -→

∆ → -→
Γ and

-→
Γ × -→

∆ → -→
∆ , and then the associated undirected projec-

tions | -→Γ × -→
∆| → Γ and | -→Γ × -→

∆| → ∆. Denote the product | -→Γ × -→
∆| by Γ

-→×∆
to stress that this object is not well defined.

Example 45 Consider the case for Γ = ∆ = K3. The directed graphs as-

sociated to the undirected complete graph K3 fall into two equivalence

classes, where equivalence is defined by isomorphy. One contains those
-→
K3, that are directed cycles, the other those that are not. Both types are

shown at the top of figure 11.4. The product | -→Γ × -→
∆| depends strongly

on the particular type of the directed graphs chosen, as can be seen in

figures 11.3, 11.4, and 11.5.

132 Construction of Graphs

B

CA

b

c

a
Γ

Y

ZX

y

z

x
∆

(B, Y)

(C,Z)(A,X)

(b,y)

(c, z)

(a,x)

(B, Z)

(C,X)(A,Y)

(b, z)

(c, x)

(a,y)

(B,X)

(C, Y)(A,Z)

(b,x)

(c,y)

(a, z)

Γ ×∆

Fig. 11.3. The product of two directed versions of K3, both of which are

cyclic. The product consists of three connected components.

B

CA

b

c

a
Γ

Y

ZX

y

z

x
∆

(A, Y)

(B, Z)

(C,X)

(A,Z)(B,X)(C, Y)(A,X)

(B, Y)

(C,Z)

(a,y)

(b, z)

(c, z)

(a, z)(b,x)(c,y)

(a,x)

(b,y)

(c,y)

Γ ×∆

Fig. 11.4. The product of two directed versions of K3, where one is cyclic

and the other one is not. The product is a connected graph.

Construction of Graphs 133

B

CA

b

c

a
Γ

Y

ZX

y

z

x
∆

(A,X)(B,Z)

(A, Y) (C,Z) (B,X) (C,X)

(A,Z)(C, Y)

(B, Y)

(a, z)

(a,y)

(c,y) (b, z)

(b,x)

(c,x)

(a,x)

(b.y)

Γ ×∆

Fig. 11.5. The product of two directed versions of K3 none of which is

cyclic. The product consists of a connected component and two isolated

vertexes.

Given two digraphs Γ and ∆, their join BipDi(Γ ,∆) is the digraph obtained

from Γ t ∆ by adding two arrows v → w and w → v between any pair

of vertexes v of Γ and w of ∆ (both directions). This generalizes the

BipDi-construction from example 28. A similar construction works for

two graphs Γ and ∆, their join Bip(Γ ,∆) adds one edge v w between

any two vertexes v in Γ and w in ∆.

Graphs may also be constructed from non-graphical data, one of which is

defined by a covering of a set:

Definition 78 A covering of a non-empty finite set X is a subset V of 2X ,

consisting of non-empty sets, such that
⋃
V = X.

A covering gives rise to a graph as follows:

Definition 79 Let V be a covering. Then the line skeleton LSK(V) of V

is the graph the vertex set of which is V , while the edge set is the set of

two-element sets {v,w} ⊂ V such that v ∩w ≠∅.

134 Construction of Graphs

Γ
B

A

a

∆

A

D

a

b

join BipDi(Γ ,∆)

(0, B)

(0, A)

(0, a)
(1, A)

(1,D)

(1, a)

(1, b)

Fig. 11.6. The join bipartite digraph of two digraphs Γ and ∆.

A large class of graphs is indeed derived from coverings:

Proposition 105 Every graph Γ : A→ 2V without loops and multiple edges

(i.e., Γ has no values of form {v}, and is injective) is isomorphic to the line

skeleton of a covering.

Proof In fact, let Γ : A → 2V be such a graph. Then for each vertex x, we set

Ax = {a | a ∈ A,x ∈ Γ(a)} for the set of lines joining x to another vertex. Then

the subsets Ax ⊂ A define a covering C of A, and for two different vertexes x

and y , Ax ∩Ay is a singleton set containing exactly the line joining x to y . This

means LSK(C)
∼→ Γ . �

Example 46 Figure 11.7 shows a covering V = {A,B,C,D, E, F,G} of the

set of letters from a to q, and, on the right, its line skeleton LSK(V).

Another example is taken from music theory. Consider the C major scale

C = {c, d, e, f , g,h} and denote the seven triadic degrees by I = {c, e, g},
II = {d, f ,a}, III = {e, g,h}, IV = {f ,a, c}, V = {g,h,d}, VI = {a, c, e}
and VII = {h,d, f}. These triads obviously form a covering of C. The line

skeleton LSK({I , II , III , IV ,V ,VI ,VII}) is illustrated in figure 11.8.

We have chosen a 3-dimensional representation, in order to emphasize

the geometric structure induced by the triangles formed by three adja-

Construction of Graphs 135

Fig. 11.7. A covering (a), and its LSK(b).

cent triads. These triangles have as their vertexes three triads sharing

exactly one element. Such a geometric structure is called a Möbius strip.

Fig. 11.8. The line skeleton of the covering of a major scale by triads.

CHAPTER 12

Some Special Graphs

We shall discuss two types of special graphs: n-ary trees and Moore

graphs.

12.1 n-ary Trees

Binary trees and, more generally, n-ary trees are very frequent in com-

puter algorithms. Intuitively, they formalize a decision hierarchy, where

at each step, there is a limited number of alternatives. To formalize these

alternatives, we first need the digraph of n-ary alternatives for natural

n ≥ 2. This is the loop digraph Loop(n) : n → 1, consisting of n loops

0,1, . . . n − 1 and one vertex 0 (figure 12.1). More generally, the loop di-

graph of a set L is the unique digraph Loop(L) : L→ 1.

0

1

2

(a)

0

(b) (c)

Fig. 12.1. Loop digraphs: (a) Loop(3), (b) Loop(1), (c) Loop(0). In all three

cases, the single vertex carries the label 0.

138 Some Special Graphs

Definition 80 For a natural number n ≥ 2, an n-ary tree is a morphism

of digraphs N : Γ → Loop(n), such that

(i) |Γ | is an undirected tree,

(ii) Γ has a root,

(iii) each vertex v of Γ has deg+(v) ≤ n,

(iv) for any two arrows a and b with common tail v , N(a) ≠ N(b).

For an arrow v
a
ñ w in an n-ary tree, w is called a child of v , whereas

the necessarily unique v for a given w is called the parent of w.

For n = 2, i.e., for binary trees, the labeling has values 0 and 1, but one

often calls the value 0 the left and 1 the right alternative.

L R

L R

A

B C

D

(a)

L R

L R

A

C B

D

(b)

Fig. 12.2. A binary tree where the left alternative is labeled L, and the

right alternative R (a). The binary tree in (b) is isomorphic to (a) as a

directed graph, but not as a binary tree. The order of the branches, indi-

cated by the angle arrows, is crucial.

Often, the value N(a) of an arrow in an n-ary tree is denoted as a label of

a, but it is more than just a labeling convention. In fact, the comparison

of n-ary trees is defined by special morphisms:

Definition 81 Given two n-ary trees N : Γ → Loop(n) and R : ∆ →
Loop(n), a morphism of n-ary trees is a triple (f : Γ → ∆, N,R) denoted by

f : N → R, where f : Γ → ∆ is a morphism of digraphs such that N = R◦f .

12.2 Moore Graphs 139

In particular, for binary trees, this means that a left/right arrow of Γ must

be mapped to a left/right arrow of ∆. So it may happen that Γ and ∆ are

isomorphic digraphs without being isomorphic with the added n-labels

of alternatives.

12.2 Moore Graphs

A Moore graph is a special type of a process digraph as already presented

in a generic form in example 27. Moore graphs arise in the theory of

sequential machines and automata, which we introduce here since their

concepts are ideally related to the theory of digraphs thus far developed.

To begin with, we denote by Path(Γ) the set of paths in a digraph Γ ,

including the composition qp of paths p and q if possible (see exercise 45

for this construction). Also denote by Pathv(Γ) the set of paths starting at

vertex v . For a loop digraph Loop(A), the composition of any two paths

is possible and associative, moreover, the lazy path e at vertex 0 is a

“neutral element” for this composition, i.e., e ·p = p · e = p for any path

p ∈ Path(Loop(A)). This structure is also denoted by Word(A) and called

the word monoid over A (a justification for this terminology is given in

chapter 15). Any path p in Word(A) is defined by the (possibly empty)

sequence a1, . . . ak of its arrows (the letters of the word) from A since the

vertex 0 is uniquely determined. Further, If p = a1 . . . ak and q = b1 . . . bl,

the composition is exactly the concatenation of the letters of the two

words: q · p = b1 . . . bla1 . . . ak.

In automata theory, if n is a positive natural number, one considers

as “input set” the n-cube Qn = 2n, the elements of which are the “n-

bit words” such as w = (0,0,1,0,1,1, . . . ,1) (see also figure 13.3 on

page 146). For n = 1 the two words (0) and (1) are called bits, thus

elements of Qn are also defined as sequences of n bits. An 8-bit word

is called a byte. Evidently card(Qn) = 2n. The word monoid Word(Qn)

is called the input monoid, its elements are called tapes, so tapes in

Word(Qn) are just sequences consisting of n-bit words.

Definition 82 An automaton of n variables is a set function

A : Word(Qn)→ Q.

All automata can be constructed by a standard procedure which is de-

fined by sequential machines:

140 Some Special Graphs

Definition 83 A sequential machine of n variables is a map M : S ×Qn →
S, where S is called the state space of the machine M . If M is clear from

the context, we also write s · q instead of M(s, q).

The Moore graph of a sequential machine M is the digraph Moore(M) :

S ×Qn → S2 defined by Moore(M)(s, q) = (s,M(s, q)).

Example 47 Consider a sequential machine with Q = 2 and n = 2, i.e.,

Qn = {00,01,10,11}, and the set of states S = {s0, s1, s2}. Let the map M

be as follows:

M(s0,00) = s0, M(s1,00) = s0, M(s2,00) = s2,
M(s0,01) = s0, M(s1,01) = s1, M(s2,01) = s1,
M(s0,10) = s1, M(s1,10) = s2, M(s2,10) = s2,
M(s0,11) = s1, M(s1,11) = s2, M(s2,11) = s0.

The Moore graph Moore(M) is defined by the set of vertexes V = S =
{s0, s1, s2} and arrows A = S × {0,1}2 and is illustrated in figure 12.3.

s0

s1 s2

(s0,00)(s0,01)

(s1,01)

(s2,00)

(s2,10)

(s0,10)

(s0,11)

(s1,00)

(s1,10)

(s1,11)

(s2,11)

(s2,01)

Fig. 12.3. The Moore graph Moore(M).

Here is the description of paths in the Moore graph of a sequential ma-

chine:

12.2 Moore Graphs 141

Proposition 106 For a sequential machine M : S ×Qn → S, a canonical

bijection

PW : Path(Moore(M)) → S ×Word(Qn)

is given as follows:

If

p = s1 (s1,q1)
ñ s2

(s2,q2)
ñ s3 · · · (sm−1,qm−1)

ñ sm,

then PW(p) = (s1, q1q2 . . . qm−1).

Under this bijection, for a given state s ∈ S, the set Paths(Moore(M)) cor-

responds to the set {s} ×Word(Qn).

Proof The map PW is injective since from the word q1q2 . . . qm−1 and the state

s1 we can read all the letters q1, q2, . . . qm−1, and then reach the other states

by s2 = s1q1, s3 = s2q2, . . . sm = sm−1qm−1. It is surjective, since for any pair

(s1, q1q2 . . . qm−1) the above reconstruction yields a preimage. The last statement

is immediate from the definition of PW . �

We are now ready to define automata associated with sequential ma-

chines. To this end, we fix a sequential machine M in n variables over

the state space S, an “initial” state s, and a so-called output function

O : S → Q. The automaton Automaton(M, s,O) : Word(Qn) → Q is de-

fined as follows. Denote by head : Paths(Moore(M)) → S : p , head(p)

the map associating with each path the head of its last arrow. Also denote

(s, ?) : Word(Qn)→ {s} ×Word(Qn) : w , (s,w). Then we define

Automaton(M, s,O) = O ◦ head ◦ PW−1 ◦ (s, ?) : Word(Qn)→ Q.

leads to the following result:

Proposition 107 For every automaton A, there is a sequential machineM ,

an initial state s, and an output function O such that

A = Automaton(M, s,O).

Proof In fact, given the automaton A : Word(Qn) → Q, take the state space

S = Word(Qn), the output function O = A and the sequential machine M :

S ×Qn → Q defined by M(s, q) = sq. With the initial state e (the empty word) we

have the automaton Automaton(M, e,A), and this is the given automaton O. �

Example 48 We revisit the sequential machine from example 47 and de-

fine the output function O : S → Q as:

142 Some Special Graphs

O(s0) = 0,

O(s1) = 1,

O(s2) = 1.

This yields an automaton A = Automaton(M, s0, O), where s0 has been

chosen as the “start” state. The result of A applied to the input sequence

10 10 00 01 11 ∈ Word(Qn) is computed as the value of the expression

O(head(PW−1((s0, ?)(10 10 00 01 11)))). Let us do this step by step:

1. (s0, ?)(10 00 01 01 11) = (s0,10 10 00 01 11) ;

2. PW−1(s0,10 10 00 01 11) is the path traced in the Moore graph of

figure 12.3 starting at s0 ; it is:

p = s0 (s0,10)
ñ s1

(s1,10)
ñ s2

(s2,00)
ñ s2

(s2,01)
ñ s1

(s1,11)
ñ s2

3. head(p) = s2 ;

4. O(s2) = 1 .

CHAPTER 13

Planarity

Planarity deals with the problem of how graphs can be drawn on a

particular surface, such as the plane R2, the sphere S2 = {(x,y, z) |
x2 + y2 + z2 = 1} ⊂ R3, or the torus, which intuitively looks like the

surface of a doughnut. We shall use here several concepts which will only

be explained rigorously in the chapter on topology in the second volume

of this book. However, the elementary character of the results and the

important problem of drawing graphs suggests a preliminary treatment

of the subject in this first part of the course.

13.1 Euler’s Formula for Polyhedra

To begin with, this chapter only deals with undirected graphs which have

no loops and no multiple edges. In fact, drawing such graphs immediately

implies drawing of any more general graphs. In view of proposition 105,

we shall call such graphs skeletal graphs. So skeletal graphs are character-

ized by their set V of vertexes, together with a subset A ⊂ 2V containing

only edges with exactly two elements.

The ad hoc definition we use now (and explain in a more general way in

the chapter on limits) is that of continuity:

Definition 84 A continuous curve inR2 (or on the sphere S2) is an injective

map c : [0,1] → R2 (or [0,1] → S2) defined on the unit interval [0,1] =
{x | 0 ≤ x ≤ 1} ⊂ R such that for any ε > 0 and any s ∈ [0,1], there is

a δ > 0 such that for any t ∈ [0,1], if |s − t| < δ, then d(c(t), c(s)) < ε,

144 Planarity

where the common Euclidean distance function d is defined by

d((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 −y2)2.

Intuitively, continuity of such a curve means that you can draw the curve

from the beginning (curve parameter 0) to the end (curve parameter 1)

without lifting the pencil. We shall consider only continuous curves here

and omit this adjective in the following discussion. Denote by]0,1[the

unit interval without the two endpoints 0 and 1, the so-called interior of

the unit interval. Here is the definition of a drawing of a skeletal graph:

Definition 85 A drawing D of a skeletal graph Γ : A → 2V in X (where

X is commonly the plane R2, but can also be the sphere S2 or any more

general space, where continuity is reasonably defined) is given by D =
(r , c = (ca)a∈A), where

(i) r : V → X is an injection,

(ii) for each edge v
a
w in A, there is a curve ca : [0,1] → X such

that

{ca(0), ca(1)} = r(Γ (a)),

(iii) for any two different edges a and b, the image ca(]0,1[) of the

interior of the first curve is disjoint from the image cb([0,1]) of the

entire second curve.

A skeletal graph is planar iff it has a drawing in R2.

The image
⋃
a∈A Im(ca) is denoted by D(Γ) and is called the drawn graph.

Remark 16 It is easy to prove this proposition: A graph has a drawing in

R2 iff it has a drawing in S2. The proof uses the stereographic projection,

known from geography, in fact a bijection S2 − NorthPole → R2, which

will be introduced in the chapter on topology. This implies that planarity

is equivalent to the existence of a drawing on the sphere S2.

A drawing of a connected skeletal graph on S2 is also called a polyhedron.

This is justified by the fact that if you are positioned within a polyhedron

(such as a cube or a tetrahedron), you see the edges of the polyhedron on

your visual sphere as if they were edges of a graph drawing on S2.

If D is a drawing of a skeletal graph Γ , then the complement R2 − D(Γ)
of the drawn graph is the disjoint union of a number of regions which

13.1 Euler’s Formula for Polyhedra 145

d
c e

a b
Γ

R

R

r(a)
r(b)

r(c)

r(d)

r(e)

D(Γ)

Fig. 13.1. A graph Γ and its drawing D(Γ). Intuitively speaking, in a draw-

ing, no two lines intersect except at their endpoints.

are separated by the drawn graph. They are defined as follows: On any

subset X ⊂ R2, we consider the relation x ∼ y iff there is any curve c in

X (attention: these curves are not the curves used in drawings of graphs)

such that c(0) = x and c(1) = y .

Exercise 50 Show that ∼ is an equivalence relation.

The equivalence classes of ∼ are called the connected components of X.

We are now able to write down the famous Euler formula for polyhedra:

Proposition 108 For a skeletal graph Γ : A → 2V , let D(Γ) be a polyhe-

dron, and C the set of connected components of the drawing’s complement

R2 −D(Γ), and set

1. ε = card(V),

2. ϕ = card(A),

3. σ = card(C).

Then we have

ε −ϕ + σ = 2.

Proof Postponed to the chapter on topology in volume II. �

146 Planarity

x

y
c

z

Fig. 13.2. The gray regions are the connected components of a graph.

Here x and y are in the same equivalence class, whereas x and z are

not.

Exercise 51 The n-cube Qn introduced in section 12.2 gives rise to the

n-cube graph, also denoted by Qn. It is a skeletal graph with vertex set

Qn and edges of the form {x,y}, where x and y differ exactly by one bit.

Find a drawing D of Q3. Show that in this case, the numbers in the Euler

formula are ε = 8,ϕ = 12, σ = 6.

Fig. 13.3. Hypercube Q4.

13.2 Kuratowski’s Planarity Theorem 147

Example 49 In figure 13.4 a dodecahedron has been flattened to show

the number of vertexes (circled numbers), edges (small-sized numbers)

and faces (large-sized numbers). Euler’s formula can be verified using

ε = 20, ϕ = 30 and σ = 12, i.e., 20 − 30 + 12 = 2. This shows that the

flattened dodecahedron can be drawn with no intersecting edges.

Fig. 13.4. The dodecahedron and its flattened and stretched representa-

tion as a graph.

Observe that in Euler’s formula there is a rather deep insight into draw-

ings: In fact, the numbers ε and ϕ are defined by the “abstract” graph,

whereas the number σ is a function of the specific drawing. Therefore,

all drawings must show the same number of connected components of

the drawing’s complement.

13.2 Kuratowski’s Planarity Theorem

The previous formula is applicable only if we are sure that the graph

is planar. Evidently, planarity of a graph Γ is a property which remains

conserved if we pass to an isomorphic graph. In other words, there should

be an abstract criterion which tells us when a skeletal graph is planar. We

shall present the criterion proved by Kazimierz Kuratowski (1896–1980).

To this end we first need the following construction:

148 Planarity

Definition 86 If Γ → 2V is a skeletal graph, and if Γ(a) = {x,y} ∈ V is

any two-element set defined by an edge a, we denote by Γa : A′ → 2V ′ the

skeletal graph with A′ = A − {a} and V ′ = (V − {x,y}) t {a}, and we

have

1. if Γ(b)∩ {x,y} = ∅, then Γa(b) = Γ(b),
2. else Γa(b) = (Γ(b)− {x,y})∪ {a}.

Γa is called an elementary contraction of Γ . A contraction of a skeletal

graph Γ is a graph ∆ which is isomorphic to a finite succession

(. . . ((Γa1)a2) . . .)am

of elementary contractions of Γ .

Intuitively, Γa results from the removal of the edge a in Γ , the insertion

of a new point, and the connection of all open-ended edges from the

removal to the new point.

x

y

a

Γ

a

Γa

Fig. 13.5. A graph Γ and its elementary contraction Γa.

Proposition 109 If ∆ is a contraction of Γ , then, if Γ is planar, so is ∆.

Exercise 52 Give a proof of proposition 109. Draw this for an elementary

contraction.

This is the main theorem:

Proposition 110 A skeletal graph is planar iff it contains no subgraph

that has a contraction which is isomorphic to one of the graphs K3,3 or K5.

Proof Postponed to the chapter on topology in volume II. �

Exercise 53 Can you find a drawing of Q4 (figure 13.3)? Hint: Search for

a K5 or K3,3.

CHAPTER 14

First Advanced Topic

14.1 Floating Point Arithmetic

In this section, we give an overview of computer-oriented arithmetic

based on the adic representation of real numbers as described in propo-

sition 92. Evidently, representation of numbers and arithmetic calcu-

lations on a computer are bounded by finite memory and time. Since

real numbers are based upon infinite information, computer arithmetic

must be limited to finite truncations of real arithmetic. Floating point

arithmetic is one approach to this problem. It is based on the well-

known approximative representation of real numbers in scientific con-

texts, such as Avogadro’s number N ≈ 6.02214× 1023, Planck’s constant

h ≈ 6.6261 × 10−34J s or the circle circumference number π ≈ 3.14159.

Here we consent that any number can be written as a small positive or

negative number f (in fact 1 ≤ |f | < 10 or f = 0 in the decimal system)

times a power 10e of the basis (here 10) for a positive or negative integer

exponent e. The term “floating point” stems from the difference to the

“fixed point” representation given in proposition 92 of chapter 9, where

the dot is relative to the 0-th power of the base, whereas here, the dot is

a relative information related to the variable power of the base.

Remark 17 Observe that the limitation to a finite number of digits in the

adic representation of real numbers implies that we are limited to special

rational numbers (not even 1/3 = 0.333 . . . is permitted in the decimal

system!). So why not just take the fractional representation which is a

precise one? The point is that, evidently, numerator and denominator of

150 First Advanced Topic

a fraction would also grow to unlimited size when doing arithmetic. So

the problem is not the fractional representation (though it would make

arithmetic precise in some cases), but the general program for calculating

with numbers within an absolutely limited memory space.

The IEEE (Institute for Electrical and Electronics Engineers) #754 standard

defines a specific way of floating point representation of real numbers. It

is specified for base 2 by a triple of (s, e, f), where s ∈ {0,1} is the bit for

the sign, i.e., s = 0 iff the number is not negative, s = 1 iff it is negative.

The number e is the exponent and takes integer values e ∈ [−127,128],

corresponding to a range of 8-bits (28 = 256). The exponent is encoded

by a bias integer bias = 127. This means that we have to consider e−bias

instead of e in the computerized representation. The extra value −127

is set to 0. This exponent is reserved to represent number zero. We will

make this more precise in a moment. The maximal value e = 128, shifted

to 255 by the bias, is used to represent different variants of infinity and

“not-a-number” symbols. We therefore may vary the exponents in the in-

teger interval [−126,127]. In the binary representation using eight bits,

and with regard to the bias, this amounts to considering the zero num-

ber exponent symbol 00000000 whereas the infinities and not-a-number

symbols are represented by the maximum 11111111 (= 28 − 1 = 255).

So the exponent for common numbers takes shifted values in the binary

interval [00000001,11111110], corresponding to the unshifted interval

[−126,127].

The third number f is called the mantissa (an official, but mathematically

ill-chosen terminology) or fraction (non-official, but correct terminology,

also adapted by Knuth). We stick to the latter. The fraction f is encoded

in binary representation f = f1f2f3 . . . f23 ∈ [0,223 − 1], i.e., in binary

representation

00000000000000000000000 ≤ f1f2 . . . f23 ≤ 11111111111111111111111

and stands for the fraction 1.f = 1.f1f2 . . . f23 in binary representation.

Given these three ingredients, the number 〈s, e, f 〉 denoted by the triple

(s, e, f) is the following real number:

〈s, e, f 〉 = (−1)s × 2e−bias × 1.f

This is the normalized floating point representation of the IEEE standard

#754. It is also called single precision representation since a finer repre-

sentation using two 32-bit words exists, but we shall not discuss this

14.1 Floating Point Arithmetic 151

s e7 e6 e5 e4 e3 e2 e1 e0 f22f21f20f19f18f17f16f15f14f13f12f11f10 f9 f8 f7 f6 f5 f4 f3 f2 f1 f0

sign exponent fraction

Fig. 14.1. IEEE 32-bit representation.

refinement here. Figure 14.1 shows a schematic representation of the

configuration of s, e and f in a 32-bit word. The values s = e = f = 0

represent zero:

0 = (0,00000000,00000000000000000000000).

Non-zero numbers are given by these 32-bit words:

• s ∈ {0,1}, one bit,

• e ∈ [00000001,11111110], eight bits,

• f ∈ [00000000000000000000000,11111111111111111111111], 23

bits.

The largest positive number that can be stored is

1.11111111111111111111111× 2127 = 3.402823 . . .× 1038,

whereas the smallest positive number is

1.00000000000000000000000× 2−126 = 1.175494 . . .× 10−38.

The special infinities and not-a-number (NaN) values are the following

32-bit words:

• (0,11111111,00000000000000000000000) = Inf, positive infinity,

• (1,11111111,00000000000000000000000) = −Inf, negative infinity,

• (0,11111111,01111111111111111111111) = NaNS, NaN generating

a “trap” for the compiler, while

• (0,11111111,10000000000000000000000) = NaNQ, where Q means

“quiet”, calculation proceeds without generating a trap.

Given this standardized normal representation, we shall now discuss the

arithmetical routines. The general procedure is a very simple two-step

152 First Advanced Topic

algorithm: first, one of the operations of addition, subtraction, multipli-

cation, or division is performed, and then, in a second step, the result is

recast to the normalized representation shown above.

Regarding the first step, we shall only discuss addition, since the other

operations run in a completely similar way. To make the algorithm more

transparent, we use another (also Knuth’s, but not IEEE-standardized)

normalization by replacing the representation 1.f × 2e−bias by 0.1f ×
2e−bias+1. Denote this representation by 〈〈s, e, g〉〉 = (−1)s × 2e−bias × g
with 0 ≤ g < 1, i.e., we have 〈s, e, f 〉 = 〈〈s, e + 1,0.1f 〉〉. Observe that

we now need 24 bits after the dot in order to represent this second nor-

malized representation. Observe also that the third coordinate g of the

second representation is the real number, including zero 0.0, and not just

the 23-bit word to the right of the dot as with the IEEE standard.

Given two normalized representations 〈〈su, eu, gu〉〉, 〈〈sv , ev , gv〉〉, the

computer calculation does not yield the exact sum, but an approxima-

tion 〈〈sw , ew , gw〉〉. In general, it is not normalized anymore. This will be

corrected by the subsequent normalization algorithm. However, the latter

will perform a further rounding error.

Here is the algorithm A for addition:

A.1: We check whether eu ≥ ev . If not, we exchange the summands and

proceed. As addition is commutative, this is a reasonable step, and

it will also be the reason why floating point addition is in fact com-

mutative.

A.2: Set ew = eu.

A.3: If eu−ev ≥ 24+2 = 26, we have a large difference of exponents, i.e.,

the smaller summand has its highest digit below the 24 digits admit-

ted in the normalized representation of 〈〈su, eu, gu〉〉. We therefore

set gw = gu. In this case, go to A.6. Actually, in this case, the result

is already normalized, and we could terminate the entire addition

here.

A.4: Divide gv by 2eu−ev , i.e., shift the binary representation by up to 9

places to the right. Attention: This procedure requires the computer

memory to hold up to 24+ 9 = 33 places temporarily.

14.1 Floating Point Arithmetic 153

A.5: Set gw = gu + gv . This last step gives us the correct sum

〈〈sw , ew , gw〉〉, but we have a gw which might not be normalized,

i.e., we could have gw ≥ 1.

A.6: Normalize, i.e., apply the normalization algorithm N to

〈〈sw , ew , gw〉〉.

The normalization algorithm N runs as follows, it converts a “raw” expo-

nent e and a “raw” fraction 0 ≤ g into a normalized representation.

N.1: If g ≥ 1 (fractional overflow), then go to step N.4. If g = 0, set e to

the lowest possible exponent in the normalized representation (in

fact e = −127 or 00000000 in the biased binary IEEE representation

and e = −126 in the second normalized representation).

N.2: (Normalization of g, i.e., g < 1 but large enough) If g ≥ 1/2, go to

step N.5.

N.3: (g is too small, but does not vanish) Multiply g by 2, decrease e by

1 and return to step N.2.

N.4: Divide g by 2 and increase e by 1 and return to step N.1.

N.5: (Round g to 24 places) This means that we want to change g to the

nearest multiple of 2−24. One looks at 224×g = . . . g−24.h and checks

the part h after the dot. According to whether h is less than 1/2 or

not, this part is omitted and 224 × g is replaced by . . . g−24.0 + 1 or

. . . g−24.0, see the following remark 18 for a comment. If the rounded

g is 1, return to step N.1.

N.6: (check e) If e is too large (more than 127), an exponent overflow

condition is sensed. If e is too small (less than −126 in the IEEE

standard, or less than−125 in the second normalized form 〈〈〉〉 used

in this algorithm), then an exponent underflow condition is sensed.

This concludes the normalization algorithm (except for the actions to be

taken for the over- and underflow situations).

Remark 18 There is an axiomatic version of this theory, where the round-

ing round(x) of a number x is given axiomatically with conditions

round(−x) = −round(x) and x ≤ y implies round(x) ≤ round(y). We

then define rounded arithmetic operations by u⊕v = round(u+v),u⊗
v = round(u× v),u	 v = round(u− v),u� v = round(u/v).

154 First Advanced Topic

Attention: The floating point operations lose virtually all of the nice prop-

erties of the original operations. In particular, associativity and distribu-

tivity are lost. However, all floating point operations remain commutative

if the originals were so, in particular addition and multiplication with

floating point numbers are commutative. See [32].

14.2 Example for an Addition

Let u = 235.5 and v = 22.6 as an example for the addition algorithm. We

expect the result to be w = 258.1.

Binary representation

u = 1.110101110000000000000002 × 27

and

v = 1.0110100110011001100110 . . .2 × 24

Note that v cannot be exactly represented as a binary number with

finitely many non-vanishing digits: it is an infinite fraction with periodi-

cally recurring digits.

IEEE notation

u = 〈0, 1000 0110, 1101 0111 0000 0000 0000 000〉
and

v = 〈0, 1000 0011, 0110 1001 1001 1001 1001 101〉
Note that in this representation the last digit of v has been rounded up.

Knuth’s notation

u = 〈〈0, 1000 0101, 0.1110 1011 1000 0000 0000 0000〉〉
and

v = 〈〈0, 1000 0010, 0.1011 0100 1100 1100 1100 1101〉〉

In particular

gu = 0.111010111000000000000000

14.2 Example for an Addition 155

and

gv = 0.101101001100110011001101

Adding u and v

A.1: nothing to do: u is already greater than v

A.2: ew = eu = 1000 0101

A.3: nothing to do: the exponents differ only by 3

A.4: the division results in g′v = 0.000101101001100110011001101, we

now need 27 places to work with this number

A.5: performing the addition gw = gu + g′v we have

0.111010111000000000000000

+ 0.000101101001100110011001101

gw = 1.000000100001100110011001101

A.6: normalization is necessary, because gw > 1.

Normalization

N.1: gw ≥ 1, so we continue at N.4.

N.4: g′w = gw/2 = 0.1000000100001100110011001101, and

e′w = ew + 1 = 1000 0110

do N.1 again.

N.1: Now, g′w < 1.

N.2: Since g′w ≥ 1/2, we continue at N.5.

N.5: 224 · g′′w = 100000010000110011001100.1101.

Since the first place after the decimal point is 1, so we need to in-

crease this product by 1, divide it by 224 and truncate it after 24

digits:

g′′′w = 0.100000010000110011001101

N.6: Nothing to do, since the exponent is small.

156 First Advanced Topic

Knuth’s notation

Assembling the various parts (sw , e′w , g′′′w) we get:

w = 〈〈0, 1000 0110, 0.1000 0001 0000 1100 1100 1101〉〉

IEEE notation

w = 〈0, 1000 0111, 0000 0010 0001 1001 1001 101〉

Binary representation

w = 1.000000100001100110011012 × 28

which translates to

1.00820314884185791015625× 256 = 258.100006103515625

Remark 19 The result of the addition algorithm is quite close, but not

exactly equal, to our expected result 258.1. This fact shows that calcula-

tions with floating point numbers are always only approximations.

PART II

Algebra, Formal Logic, and

Linear Geometry

CHAPTER 15

Monoids, Groups, Rings,

and Fields

This chapter introduces the indispensable minimal algebraic structures

needed for any further discussion, be it for formal logic and data struc-

tures, solving of linear equations, geometry, or differential calculus. The

students are asked to study this omnipresent material with particular

care.

We shall also see that many of the following structures have been en-

countered implicitly in the previous theory. We have encountered recur-

rent “laws” such as associativity, or identity properties. Therefore, the

following theory is also an exercise in abstraction, a essential activity in

computer science.

15.1 Monoids

Definition 87 A monoid is a pair (M,∗) where M is a set, and where

∗ : M ×M → M is a “composition” map satisfying these properties:

(i) (Associativity) For any triple k, l,m ∈ M , we have

(k∗ l)∗m = k∗ (l∗m),
which we also write as k∗ l∗m.

(ii) (Neutral element) There is an element e ∈ M such that

m∗ e = e∗m =m

160 Monoids, Groups, Rings, and Fields

for allm ∈ M . Evidently, this element is uniquely determined by this

property. It is called the neutral element of the monoid.

A monoid (M,∗) is called commutative iff, for all m,n ∈ M ,

m∗n = n∗m.

Usually, we identify a monoid (M,∗) with its set M if the composition

∗ is clear. The notation of the product m ∗ n may vary according to the

concrete situation, sometimes even without any notation, such asmn for

m ∗ n. For commutative monoids, one often uses the symbol + instead

of ∗ and says that the monoid is additive.

Example 50 Denoting by ∗ the multiplication on N,Z,Q,R,C, these sets

define monoids, all of them commutative, with the number 1 being the

neutral element in each of them. They are usually called the multiplicative

monoids of these number domains.

The subset U = S(C) = {z | |z| = 1} of C is a monoid under ordinary

multiplication since |1| = 1 and |z ·w| = |z| · |w|, whence z ·w ∈ U if

z,w ∈ U . The monoid U is also called the unit circle.

Example 51 Given a set X, the set End(X) of set maps f : X → X, to-

gether with the usual composition of maps, is a monoid with neutral ele-

ment e = IdX . If we restrict the situation to the bijective maps in End(X),

we obtain a monoid Sym(X) (same neutral element). This monoid will

play a crucial role: We shall discuss it extensively in the following section

about groups.

Example 52 If Γ : A → V 2 is a directed graph, the set End(Γ) of endo-

morphisms of Γ , i.e., of morphisms f = (u,v) : Γ → Γ , together with the

composition ◦ of digraph morphisms, is a monoid. In general, this is not

a commutative monoid. We have a number of important special cases of

this construction.

To begin with, if the arrow set A of Γ is empty, the endomorphism monoid

identifies with the monoid End(V).

In section 12.2 on Moore graphs, we introduced the word monoid Word(A)

of a set A. A path p ∈ Word(A) is just a sequence of elements p =
(a1, a2, . . . ak), and also the composition p = a1 · a2 · . . . ak of the paths

ai of length one. This is why this monoid is also called the word monoid

15.1 Monoids 161

over the alphabet A. A word is then a synonym for “path”, and the letters

of the word are the elements of A. The lazy path is called the empty word.

As with sets, where we introduced functions or set maps, we need the

formalism for comparing different instances of the monoid concept. Here

is the evident definition:

Definition 88 Given two monoids (M,∗M) and (N,∗N), a homomor-

phism f : (M,∗M)→ (N,∗N) is a set map f : M → N such that

(i) f(m∗M n) = f(m)∗N f(n) for all m,n ∈ M ,

(ii) f(eM) = eN for the neutral elements eM ∈ M and eN ∈ N.

Again, if the multiplications are clear, then we just write f : M → N to

denote a monoid homomorphism. The set of monoid homomorphisms f :

M → N is denoted by Monoid(M,N).

If we are given three monoids M,N,O and two monoid homomorphisms

f : M → N and g : N → O, their composition g ◦ f : M → O is defined by

the underlying set map composition, and this is also a monoid homomor-

phism.

Exercise 54 Show that the composition of three monoid homomor-

phisms, if defined, is associative, and that the identity map IdM : M → M
of any monoid M is a monoid homomorphism, the identity homomor-

phism of M .

Show that for a monoid homomorphism f : M → N the following state-

ments are equivalent:

(i) There is a homomorphism g : N → M such that

g ◦ f = 1M and f ◦ g = 1N ,

(ii) f is a bijection of sets.

A homomorphism satisfying these properties is called an isomorphism of

monoids. One says that two monoids M and N are isomorphic iff there

is an isomorphism f : M → N. The homomorphism g is uniquely deter-

mined and is called the inverse of f . It is denoted by g = f −1. If M = N
(i.e., they are same as monoids, not only as sets), a homomorphism is

called an endomorphism. The set of monoid endomorphisms, together

with the composition of monoid homomorphisms and the identity on M ,

is itself a monoid and is denoted by End(M). An isomorphism which is

162 Monoids, Groups, Rings, and Fields

also an endomorphism is called automorphism. The subset of automor-

phisms in End(M) is also a monoid and is denoted by Aut(M).

Here is the “universal property” of the word monoid construction:

Proposition 111 (Universal Property of the Word Monoid) Let A be a

set, and N a monoid. Then the following map of sets is a bijection:

r : Monoid(Word(A),N)→ Set(A,N) : f , f |A
Proof The map r is injective since, if f(a) is given for all letters a ∈ A, then

f(a1 · a2 · . . . ak) = f(a1) · f(a2) · . . . f (ak), for any word a1 · a2 · . . . ak ∈
Word(A), the empty path v must be mapped to the neutral element eN , and we

know f from its action on letters. Conversely, if g : A → N is a set map, define

f(a1 ·a2 · . . . ak) = g(a1)·g(a2)· . . . g(ak), which is well defined since the letters

of the word a1·a2·. . . ak are uniquely determined. Also, set f(v) = eN . Then this

yields a monoid homomorphism, since the multiplication of words is defined as

their concatenation. So r is surjective. �

The word monoid is therefore a kind of “free” object in the sense that any

“wild” map on its letters extends uniquely to a monoid homomorphism.

The so-called submonoids constitute a special type of homomorphisms:

Definition 89 If (M,∗) is a monoid with neutral element e, a submonoid

(M′,∗′) of M is a subset M ′ ⊂ M such that for all m,n ∈ M ′,m∗n ∈ M ′
and e ∈ M ′, while the multiplication ∗′ is the restriction of ∗ to M ′. A

submonoid therefore gives rise to the evident embedding homomorphism

iM : M′ ↩ M .

Exercise 55 Given a monoid (M,∗) and a (possibly empty) subset S ⊂ M ,

there is a unique minimal submonoid M ′ of M such that S ⊂ M ′. It is

denoted by 〈S〉 and is called the submonoid generated by S. Show that

〈S〉 consists of all finite products s1∗s2∗ . . . sn, si ∈ S, and of the neutral

element e.

Example 53 We have plenty of submonoids among our previous exam-

ples (with the ordinary multiplications): N ⊂ Z ⊂ Q ⊂ R ⊂ C, U ⊂ C. If Γ

is a digraph, we have Aut(Γ) ⊂ End(Γ).

Exercise 56 The additive monoids, i.e., where ∗ is +, also define a chain

of submonoids N ⊂ Z ⊂ Q ⊂ R ⊂ C. If A is any set, the map l : Word(A)→
(N,+) defined by the length of a word is a monoid homomorphism, i.e.,

l(pq) = l(p)+ l(q) and l(e) = 0.

15.2 Groups 163

15.2 Groups

Definition 90 A monoid (G,∗) is called a group if every g ∈ G is invert-

ible, i.e.,

there is h ∈ G such that g ∗ h = h∗ g = e.
The element h is uniquely determined by g and is called the inverse of g

and denoted by g−1. A commutative or abelian group is a group which is

a commutative monoid.

If G and H are two groups, a monoid homomorphism f : G → H is called

a group homomorphism. The set of group homomorphisms f : G → H is

denoted by Group(G,H). A group isomorphism is a monoid isomorphism

among groups. Accordingly, the set of monoid endomorphisms of a group

G is denoted by End(G), while the monoid of automorphisms is denoted

by Aut(G). A subgroup G ⊂ H is a submonoid G ⊂ H where the involved

monoids G and H are groups.

Example 54 The symmetries on the square form a non-commutative

group. The eight elements of the group are: the identity i, the three clock-

wise rotations r1, r2 and r3 by angles 90◦, 180◦ and 270◦, respectively;

further, the four reflections about the horizontal axis h, the vertical axis

v , the first diagonal d1 and the second diagonal d2. Figure 15.1 shows

a graphical representation of those eight operations. The product of two

Fig. 15.1. The symmetries on the square.

elements x and y , i.e., x ·y , is defined as applying the operation y first,

164 Monoids, Groups, Rings, and Fields

then x. The multiplication table for this group is shown in figure 15.2.

Although this group is not commutative, it has commutative subgroups,

for example {i, r1, r2, r3}.

· i r1 r2 r3 h v d1 d2

i i r1 r2 r3 h v d1 d2

r1 r1 r2 r3 i d1 d2 v h

r2 r2 r3 i r1 v h d2 d1

r3 r3 i r1 r2 d2 d1 h v

h h d2 v d1 i r2 r3 r1

v v d1 h d2 r2 i r1 r3

d1 d1 h d2 v r1 r3 i r2

d2 d2 v d1 h r3 r1 r2 i

Fig. 15.2. The multiplication table of the group of symmetries on the

square. The entry in row x and column y is the product x ·y

Example 55 The inclusion chain of additive monoids Z ⊂ Q ⊂ R ⊂ C are

all commutative groups. The set Z∗ = {1,−1} is a multiplicative group

in the multiplicative monoid Z. More generally, if (M,∗) is a monoid,

the subset M∗ of invertible elements in the sense of definition 90 is a

subgroup of M . It is called the group of invertible elements of M . Then

we have this inclusion chain of groups of invertible elements within the

multiplicative monoids of numbers: Z∗ ⊂ Q∗ ⊂ R∗ ⊂ C∗. Observe that

Z∗ = {−1,1}, Q∗ = Q− {0}, R∗ = R− {0}, and C∗ = C− {0}.

Exercise 57 Show that for a monoidM the submonoid Aut(M) ⊂ End(M)

is a group. Aut(M) is called the automorphism group of M .

The submonoid Sym(X) ⊂ End(X) of bijections of a set X is a very im-

portant group. It is called the symmetric group of X, its elements are

called the permutations of X. The permutation group of the interval

[1, n] = {1,2,3, . . . n} of natural numbers is called the symmetric group

of rank n and denoted by Sn.

Exercise 58 Show that, if card(X) = n is finite, then there is an isomor-

phism of groups Sym(X)
∼→ Sn.

15.2 Groups 165

A permutation p ∈ Sn is best described by cycles. A cycle for p is a se-

quence C = (c1, c2, . . . ck) of pairwise different elements of [1, n] such

that p(c1) = c2, p(c2) = c3, . . .p(ck−1) = ck, p(ck) = c1, where k is called

the length of C and denoted by l(C). The underlying set {c1, c2, . . . ck}
is denoted by |C|, i.e., l(C) = card(|C|). Conversely, each sequence

C = (c1, c2, . . . ck) of pairwise different elements of [1, n] denotes by def-

inition a permutation p such that p(c1) = c2, p(c2) = c3, . . . p(ck−1) =
ck, p(ck) = c1, while the other elements of [1, n] are left fixed under p.

We also denote this p by C. Given such cycles C1, C2, . . . Cr , one denotes

by C1C2 . . . Cr the permutation C1 ◦ C2 ◦ . . . Cr . If a cycle C has length 2,

i.e., C = (x,y), then it is called a transposition, it just exchanges the two

elements x and y , and (x,y)(x,y) = Id.

Exercise 59 Let n = 4, take C1 = (124) and C2 = (23). Calculate the

permutation C1C2.

Proposition 112 Let p ∈ Sn. Then there is a sequence C1, C2, . . . Cr of

cycles of Sn such that

(i) the underlying sets |Ci| are mutually disjoint,

(ii) [1, n] = ⋃i |Ci|,
(iii) p = C1C2 . . . Cr .

The sets |Ci| are uniquely determined by p, and for any two such repre-

sentations C1, C2, . . . Cr and C′1, C
′
2, . . . C

′
r of p, if |Ci| = |C′j|, then there

is an index 1 ≤ t ≤ l = l(Ci) = l(C′j) such that Ci = (c1, c2, . . . cl) and

C′j = (ct , ct+1, . . . cl, c1, c2, . . . ct−1).

This representation of p is called the cycle representation.

Proof If such a cycle representation of p exists, then if i ∈ Cj , then Cj =
{pk(i) | k = 0,1,2 . . .}, and conversely, every such so-called orbit set {pk(x) |
k = 0,1,2 . . .} defines the cycle containing x. So the cycles are identified by these

orbits which are defined uniquely by p. Such sets define a partition of [1, n]. In

fact, if {pk(i) | k = 0,1,2 . . .} ∩ {pk(i′) | k = 0,1,2 . . .} ≠ ∅, then there are k

and k′ such that pk(i) = pk′(i′). Suppose k ≥ k′. Then multiplying by (p−1)k
′
,

we obtain pk−k′(i) = i′, i.e., the orbit of i′ is contained in that of i. But since

Sn is finite, not all powers p,p2, p3, . . . can be different. If pl = pl+t , t ≥ 1,

then by multiplication with (p−1)l, we have pt = Id, i.e., p−1 = pt−1. Therefore

pk
′−k(i′) = (p−1)k−k′(i′) = (pt−1)k−k′(i′) = i, and both orbits coincide. So the

cycle representation is the uniquely determined orbit representation, which is a

partition of [1, n], thus (i) and (ii) follow.

166 Monoids, Groups, Rings, and Fields

Part (iii) follows since the cycles act like p on their elements. The last statement

is clear. �

Exercise 60 Beside the cycle representation of permutations, a tabular

representation can be used, where an element on the top line is mapped

to the element below it. Find the cycle representation for the following

permutations:

1 2 3 4 5 6 7 8

4 6 5 8 7 2 3 1
∈ S8

1 2 3 4 5 6

6 1 4 2 5 3
∈ S6

Definition 91 The cardinality of a group G is called the order of G, it is

denoted by ord(G). A group with finite order is called a finite group. A

group G with ord(G) = 1 is called trivial.

Exercise 61 Show that any two trivial groups are isomorphic.

Definition 92 If n ∈ N, we define n! = 1 if n = 0, and n! = 1·2·3·4· . . .n
else. The number n! is called n-factorial.

Exercise 62 Give a rigorous inductive definition of n!.

Proposition 113 If n ∈ N, then

ord(Sn) = n!

Proof The image i = p(n) of n under a permutation p ∈ Sn can be any of the n

elements in [1, n]. The other elements in [1, n − 1] are sent to the complement

[1, n]− {i} having n− 1 elements. By induction, this gives (n− 1)! possibilities,

and we have n · ((n− 1)!) = n!, as required, and since the induction start n = 1

is evident, we are done. �

The following result is a fundamental tool for constructing subgroups of

a given group:

Proposition 114 Let X ⊂ G be any subset of a group G. Then there is a

unique minimal subgroup H of G such that X ⊂ H. The group H consists

of the neutral element e of G and of all finite products x1 ∗ x2 ∗ . . . xk,
where either xi ∈ X or xi = y−1

i , yi ∈ X. The subgroup H is denoted by

〈X〉 and is called the subgroup generated by (the elements of) X.

If there is a finite set X ⊂ G such that G is generated by X, i.e., G = 〈X〉,
then G is called a finitely generated group. In particular, if X = {x}, one

writes G = 〈x〉 and calls G a cyclic group.

15.2 Groups 167

Proof The uniqueness of the minimal subgroup H results from the fact that for

any non-empty family (Gi)i of subgroups of G, their intersection
⋂
iGi is a sub-

group of G. The family of all subgroups Gi containing X is not empty (G is in the

family), so the intersection is this unique minimal subgroup H. Clearly, H con-

tains all finite products of the described type. Moreover, this set is a subgroup,

the inverse of a product x1 ∗ x2 ∗ · · ·xk being x−1
k ∗ x−1

k−1 ∗ . . . x−1
1 , which is of

the required type. �

Exercise 63 Find some 2-element sets that generate the group of symme-

tries on the square (see figures 15.1 and 15.2). Can you state a necessary

condition for a 2-element set to generate the group?

Definition 93 For an element x of a group G, the order of 〈x〉 is called

the order of x.

Proposition 115 If n ≥ 2 is a natural number, then Sn is generated by the

set {(1, k) | k = 2,3, . . . n} of transpositions. Since a transposition has or-

der 2, any x ∈ Sn can be written as a product x = (1, k1)(1, k2) . . . (1, kr).

The subset An of the elements x ∈ Sn which can be written as a product

of an even number (a multiple of 2) of transpositions is a subgroup of Sn

of order n!/2. It is called the alternating group of rank n.

Proof For n = 2, Sn is obviously generated by (1,2). For the general case n > 2,

let p(n) = i for a given permutation p ∈ Sn. Then (i,n)p fixes n and is an ele-

ment of Sn−1. Therefore, by induction, it is a product of transpositions (1, r), r <

n. But (i,n) = (1, i)(1, n)(1, i), so p = (i,n)(i,n)p = (1, i)(1, n)(1, i)((i,n)p),
and we are done.

Clearly, An is a subgroup. If (1, i) is any transposition, then An → Sn : p ,

(1, i)p is an bijective map from An to the set Bn of permutations which are

products of an odd number of transpositions. If we can show that An ∩ Bn =
∅, then Sn is the disjoint union of An and Bn, and therefore Sn = An t Bn,

whence card(An) = n!/2. To show this, given a permutation p, denote by i(p) =
(i1, i2, . . . in) the sequence with j = p(ij). Let s(p) be 1 if the number of pairs

u < v such that iu > iv in i(p) is even, and −1 if it is odd. Clearly, s(Id) = 1.

If (i, i + 1) is a transposition of neighboring numbers, then evidently s((i, i +
1) · p) = −s(p) Moreover, a general transposition (i, j) is the product of an odd

number of transpositions (k, k+ 1) of neighboring numbers. In fact, if j = i+ 1,

we are done, and for j > i+ 1, we have (i, j) = (i, k)(k, j)(i, k) for i < k < j, so

our claim follows by induction. Therefore s((i, j)) = −1. If p is a product of r

transpositions, we have s(p) = −1r , and r cannot be even and odd at the same

time. So An ∩ Bn = ∅. �

168 Monoids, Groups, Rings, and Fields

The alternating group An is a typical example of a group construction

which has far-reaching consequences for all mathematical theories which

involve groups, and this is virtually the entire mathematical science. The

observation is that An is related to a particular group homomorphism

sig : Sn → Z∗ defined by sig(x) = 1 if x ∈ An, and sig(x) = −1 else

(verify that sig is indeed a group homomorphism). The point is that, by

definition, An = {x ∈ Sn | sig(x) = 1}, i.e., An is the subgroup of ele-

ments being sent to the neutral element 1 of the codomain group. The

systematic context is this:

Definition 94 The kernel of a group homomorphism f : G → H is the

subgroup Ker(f) = {x ∈ G | f(x) = eH}.
The image of f is the set-theoretic image Im(f), a subgroup of H.

Proposition 116 A group homomorphism f is an injective map iff its ker-

nel is trivial.

Proof If f is injective, then Ker(f) = f−1(e) must be a singleton, so it is triv-

ial. Conversely, if Ker(f) = e, then f(x) = f(y) implies e = f(x)f(y)−1 =
f(x)f(y−1) = f(xy−1) = e, whence xy−1 = e, there x = y . �

Therefore we have An = Ker(sig). But there is more: We have two equipol-

lent complementary subsets An and Sn−An of the full group Sn, and the

image group Z∗ is of order 2. This suggests that we may try to recon-

struct the codomain group from the domain group and the kernel group.

This can effectively be done, but we need a small preliminary discussion.

Definition 95 Given a subgroup H ⊂ G and an element g ∈ G, the left

H-coset of g is the set gH = {gh | h ∈ H} . The set of left H-cosets of G is

denoted by G/H. The right H-coset is the set Hg = {hg | h ∈ H}. The set

of right H-cosets of G is denoted by H\G.

Sorite 117 Given a subgroup H ⊂ G, we have these facts:

(i) The relation “x ∼ y iff x ∈ yH” is an equivalence relation, where

the equivalence classes are the left cosets, i.e., two cosets are either

disjoint or equal, and G/H = G/∼. Each left coset gH is equipollent

with H by means of h, gh. This means that we have a set bijection

G/H ×H ∼→ G.

(ii) The relation “x ∼ y iff x ∈ Hy” is an equivalence relation, the

equivalence classes are the right cosets, i.e., two cosets are either

15.2 Groups 169

disjoint or equal, andH\G = G/∼. Each right cosetHg is equipollent

with H by means of h , hg. We have a set bijection H\G ∼→ G/H,

and therefore also H\G ×H ∼→ G.

The common cardinality of G/H or H\G is denoted by (G : H) and

is called the index of H in G.

(iii) Let G be a finite group, then we have the Lagrange equation

card(G) = card(H) · (G : H).

In particular, the order of any subgroupH of a finite groupG divides

the order of G. More specifically, if x ∈ G is any element and if G is

finite, then the order of x divides the order of G.

Proof (i) The relation x ∼ y means that x = yh, for some h ∈ H. Taking h = e,
we obtain x ∼ x, and from x = yh one deduces y = xh−1, i.e., y ∼ x. Finally,

x = yh and y = zk, k ∈ H, implies x = zkh, whence x ∼ z.

The surjection fg : H → gH : h , gh, g ∈ G, is an injection because f −1
g (gh) =

fg−1(gh) = g−1(gh) = h. So G/H ×H ∼→ G. The proof of (ii) works similarly with

“left” and “right” being exchanged.

The Lagrange equation (iii) now follows from (ii) since card(G) = card(G/H ×
H) = card(G/H) · card(H) = (G : H) · card(H). �

The kernel of a homomorphism is more than a subgroup, it is exactly

such that the set of cosets G/H can be made into a group in a canonical

way.

Proposition 118 Let H be a subgroup of a group G. Then the following

properties are equivalent:

(i) There is a group K and a group homomorphism f : G → K such

that H = Ker(f).

(ii) Left and right cosets coincide, i.e., for all x ∈ G, xH = Hx.The

composition xH · yH = xyH then defines a group structure, the

quotient group, on G/H. The group H is the kernel of the group

homomorphism G → G/H : x , xH.

Proof (i) implies (ii): If H = Ker(f), then for every x ∈ G and every h ∈ H,

f(xhx−1) = f(x)f(h)f(x−1) = f(x)f(x−1) = f(x)f(x)−1 = e, so xHx−1 ⊂ H,

but also x−1Hx ⊂ H, whence xHx−1 = H, i.e., xH = Hx, for all x.

(ii) implies (i): The composition xH · yH = xyH is well defined since if xH =
x′H, then xyH = xHy = x′Hy = x′yH, and if yH = y ′H, then xyH = xy ′H.

It is a group composition having H as neutral element and x−1H as the inverse

170 Monoids, Groups, Rings, and Fields

of xH. The map f : G , G/H : g , gH is a surjective homomorphism, and

gH = H iff g ∈ H. So H = Ker(f). �

Definition 96 A subgroup H ⊂ G with the equivalent properties of propo-

sition 118 is called a normal subgroup of G; the group G/H is called the

quotient group of G modulo H.

Taking proposition 118 (i) with G = Sn, H = An, K = Z∗ and f = sig, we

see that the alternating group An is a normal subgroup of Sn.

Exercise 64 Show that every subgroup of a commutative group is nor-

mal. For example, given n ∈ N, we consider the additive subgroup

〈n〉 ⊂ Z. Show that this is the group consisting of all multiples z·n,z ∈ Z
of n; therefore, we also write Z ·n for 〈n〉.

Definition 97 The quotient group Z/(Z ·n) is denoted by Zn and is called

the cyclic group of order n. Its order is indeed n. In fact, by the Euclidean

division theorem, every integer w is written uniquely in the form w =
q·n+r ,0 ≤ r < n. Therefore every coset is of the form r+Z·n, 0 ≤ r < n,

and if r +Z·n = r ′+Z·n, then r = r ′+q ·n, therefore q = 0, and r ′ = r .

If we deal with elements of Zn, they are represented by cosets r +Z. Often,

one makes calculations on Zn but works with such representatives. In order

to tell that two representatives r , s ∈ Z represent the same coset, one writes

r ≡ s mod n or r ≡ s (mod n) or else r ≡ s (n) or even r = s(n).

We are now ready for the reconstruction of the image Im(f) of a group

homomorphism f by means of the domain group and the kernel Ker(f):

Proposition 119 If f : G → H is a group homomorphism, there is a canon-

ical isomorphism of groups

p : G/Ker(f)
∼→ Im(f)

given by p(gKer(f)) = f(g) and satisfying the following commutative

diagram:

G
f

ñ H

G/Ker(f)
� ∼

ñ Im(f)

�

15.3 Rings 171

Proof The map p : G/Ker(f) → Im(f) is well defined since gKer(f) = hKer(f)

iff g−1h ∈ Ker(f), so e = f(g−1h) = f(g−1)f (h), i.e., f(g) = f(h). It is sur-

jective by construction and also a group homomorphism by the definition of the

quotient group. Its kernel is the set of those cosets gKer(f) such that f(g) = e,
i.e., g ∈ Ker(f), i.e., gKer(f) = Ker(f), the neutral element of the quotient

group G/Ker(f). So by proposition 116 it is injective. �

Example 56 Reconsidering the homomorphism sig : Sn → Z∗, we know

that Ker(sig) = An, and Im(sig) = Z∗. Therefore, by proposition 119,

Sn/An
∼→ Z∗.

15.3 Rings

Although groups are fundamental to mathematics, their structure is

somewhat too poor for realistic applications. We have seen in chapter 9

that the important number domains Z,Q,R,C share a simultaneous pres-

ence of two kinds of operations: addition and multiplication. We have

even learned that the very construction of the real numbers needs the

auxiliary space of Cauchy sequences, which also shares addition and mul-

tiplication with the other spaces. Here is the precise statement about the

common properties of these combined operations:

Definition 98 A ring is a triple (R,+,∗) such that (R,+) is an additive

abelian group with neutral element 0R (or 0 if the context is clear), and

where (R,∗) is a multiplicative monoid with neutral element 1R (or 1 if

the context is clear). These two structures are coupled by the distributivity

laws:

for all x,y, z ∈ R, x ∗ (y + z) = x ∗y + x ∗ z
and (x +y)∗ z = x ∗ z +y ∗ z.

One refers to (R,+) when referring to the additive group of a ring and

to (R,∗) when referring to the multiplicative monoid of the ring. Usually,

one simply writes R for the ring (R,+,∗) if addition and multiplication are

clear from the context. The group of multiplicatively invertible elements of

a ring is denoted by R∗. If the context is clear, then one often writes ab or

a · b or a.b instead of a∗ b.

A ring is commutative iff its multiplicative monoid is so.

172 Monoids, Groups, Rings, and Fields

A subring of a ring is a ring which is simultaneously an additive subgroup

and a multiplicative submonoid.

Example 57 As already announced, we have a number of prominent rings

from previous theory. If we denote by + and ∗ the ordinary addition and

multiplication, respectively, in the number domains Z,Q,R and C, then

each of (Z,+,∗), (Q,+,∗), (R,+,∗), and (C,+,∗) is a commutative ring.

Moreover, the set of Cauchy sequences C, together with the sum and

product of Cauchy sequences, is a commutative ring.

The additive cyclic groups (Zn,+) can also be turned into commutative

rings by defining the multiplication (r +n · Z)∗ (s +n · Z) = rs +n · Z.

Evidently, this multiplication is well defined, since two representations

r ≡ r ′ (mod n) have their difference in n · Z.

Exercise 65 Verify that multiplication in Zn is well defined. What is the

multiplicative neutral element 1Zn?

Rings are also related to each other by ring homomorphisms:

Definition 99 A set map f : R → S of rings R and S is a ring homomor-

phism if f is a group homomorphism of the additive groups of R and S

and if f is a monoid homomorphism of the multiplicative monoids of R and

S. The set of ring homomorphisms from R to S is denoted by Ring(R, S).

The composition of two ring homomorphisms f : R → S and g : S → T
is the set-theoretic composition g ◦ f . The properties of group and monoid

homomorphisms imply that composition is also a ring homomorphism.

An isomorphism f of rings is a homomorphism of rings which is an

isomorphism of additive groups and of multiplicative monoids (which is

equivalent to the condition that f is a bijective set map). An endomor-

phism or rings is a homomorphisms of one and the same ring. A ring

automorphism is an endomorphism which is an isomorphism of rings.

Example 58 The inclusions Z ⊂ Q ⊂ R ⊂ C are ring homomorphisms.

The conjugation ? : C
∼→ C is an automorphism of C. The canonical maps

Z→ Zn are ring homomorphisms.

Example 59 A crucial construction of rings which are not commutative

in general is the so-called “monoid algebra”. A very important special case

15.3 Rings 173

is the omnipresent polynomial ring, so the following construction is far

from an academic exercise.

To construct a monoid algebra, we need a commutative ring (R,+, ·) and

a monoid (M,∗). The monoid algebra of R andM is the following ring: Its

set is the subset R〈M〉 of the set RM consisting of all functions h : M → R
such that h(z) = 0R for all but a finite number of arguments z ∈ M . Given

a pair (r ,m) ∈ R×M , the special function f : M → R with f(m) = r and

f(n) = 0 for all n ≠ m is denoted by r ·m. The addition on R〈M〉 is

defined by (f +g)(m) = f(m)+g(m). Clearly this function evaluates to

0R for all but a finite number of arguments if f and g do so. The product

is defined by (f · g)(m) = ∑n,t g(n) · f(t), where the sum is taken over

the finite number of pairs (n, t) such that n∗ t =m and either g(n) or

f(t) differs from 0R. If there is no such non-zero value, the product is

defined to be the zero function 0R · eM .

Exercise 66 Given a ring R and a monoid M as above, show that the

monoid algebra R〈M〉 defined in example 59 is a ring with additive neu-

tral element 0R · eM and multiplicative neutral element 1R · eM . It is com-

mutative iff M is so. Every element f ∈ R〈M〉 can be written as a finite

sum f =∑i=1,...k fi ·mi = f1 ·m1+f2 ·m2+ . . . fk ·mk, with fi = f(mi).

If f ≠ 0, the the summands fi ·mi are uniquely determined up to per-

mutations if one only adds up those with fi ≠ 0. One therefore also uses

the notation f = ∑m fm ·m where it is tacitly supposed that only a finite

number of summands is considered, of course comprising only those m

where f(m) ≠ 0.

There is an injective ring homomorphism R → R〈M〉 : r , r · eM , and

an injective homomorphism M → R〈M〉 : m , 1R ·m of multiplicative

monoids. One therefore also identifies elements of R and M their respec-

tive images in the monoid algebra. We observe that under this identifica-

tion, any two elements r ∈ R and f ∈ R〈M〉 commute, i.e., r · f = f · r .

This is the theoretical reason why the word “R-algebra” comes into this

construction.

Example 60 If in particular M = Word(A) is the word monoid of an

alphabet A, then the monoid algebra is called the R-algebra of non-

commutative polynomials in the indeterminates from A. So every ele-

ment is a sum of so-called monomials r · X1X2 . . . Xk in the indeter-

minates Xi ∈ A. In particular, if A = {X1, X2, . . . Xn} is a finite set of

174 Monoids, Groups, Rings, and Fields

so-called “indeterminates” Xi, then the monoid algebra is denoted by

R〈X1, X2, . . . Xn〉.
The most prominent such algebra is the case for A = {X}. We then get

the words Xk = XXX . . .X, the k-fold juxtaposition of the unique letter

X. A polynomial in the indeterminate X is then written in the form

f = rk ·Xk + rk−1 ·Xk−1 + rk−2 ·Xk−2 + . . . r2 ·X2 + r1 ·X + r0,

or else f(X) in order to put the indeterminate X in evidence. The monoid

algebra is then commonly denoted by R[X] instead of R〈X〉. Compare

addition and multiplication of such polynomials in X to what you know

from high school mathematics.

For a non-zero polynomial in X, the maximal power Xk of X such that the

coefficient rk is different from zero is called the degree of f , in symbols

deg(f), and rk is called the leading coefficient.

In particular, if the degree of f is 3 the polynomial f(X) is called cubic, if

it is 2, then f(X) is called quadratic, if it is 1, then f(X) is called linear,

and if f(X) = r0 ∈ R, then f(X) is called a constant polynomial.

Remark 20 Consider the monoid ComWord(A) whose elements are equi-

valence classes of words over A in the sense that w ∼ w ′ iff the words’

letters are just permutations of each other. Then the product of words

from Word(A) is well defined on equivalence classes, which are also

called commutative words. Taking the monoid ComWord(A), the monoid

algebra is commutative and is denoted by R[A] = R〈ComWord(A)〉. It

is called the R-algebra of commutative polynomials in the indeterminates

from A.

The power of the monoid algebra construction is shown in this proposi-

tion:

Proposition 120 (Universal Property of Monoid Algebras) Let R be a

commutative ring, M a monoid, and S a (not necessarily commutative)

ring. Suppose that f : R → S is a ring homomorphism such that for all

r ∈ R and s ∈ S, f(r) · s = s ·f(r). Then for any monoid homomorphism

µ : M → S into the multiplicative monoid of S, there is exactly one ring

homomorphism f 〈µ〉 : R〈M〉 → S which extends f and µ, i.e., f 〈µ〉|R = f
and f 〈µ〉|M = µ.

15.3 Rings 175

Proof On an argument
∑
m gm ·m, any ring homomorphism f 〈µ〉 which extends

f and µ as required, must be defined by f 〈µ〉(∑m gm ·m) =
∑
m f 〈µ〉(gm) ·

f 〈µ〉(m) = ∑
m f(gm) · µ(m). But this is a well defined map since the sum

representation of the argument is unique. It is now straightforward to check

that this map is indeed a ring homomorphism. �

The most important consequence of this proposition is this corollary:

Corollary 121 If R is a commutative ring, and if {X1, X2, . . . Xn} is a finite

set, then every set map v : Xi , xi ∈ R extends to a ring homomorphism

R〈v〉 : R〈X1, X2, . . . Xn〉 → R, whose value on a monomial r ·Xi1Xi2 . . . Xik
is r ·xi1xi2 . . . xik . This homomorphism is called the evaluation of polyno-

mials with respect to v .

Proof This follows at once from proposition 111 and proposition 120, applying

the universal property of the word monoid over the symbols Xi to obtain µ, and

the universal property of a monoid algebra for f = IdR and µ. �

Example 61 If f = f(X) = rk·Xk+rk−1·Xk−1+rk−2·Xk−2+. . . r2·X2+r1·
X+r0 is a polynomial in C[X], then the map X , x ∈ C defines the evalu-

ation f(x) = rk·xk+rk−1·xk−1+rk−2·xk−2+. . . r2·x2+r1·x+r0 of f(X)

at x. This means that a polynomial f(X) defines a function f(?) : C→ C,

which is called a polynomial function. Generally speaking, a polynomial

function is simply a function defined by a polynomial and an evaluation

of its indeterminates, as guaranteed by the above proposition 120.

In analogy to normal subgroups, which are the kernels of group homo-

morphisms, it is possible to define structures which are the kernels of

ring homomorphisms. We shall only need the theory for commutative

rings. Here is the characterization:

Proposition 122 Let J be an additive subgroup of a commutative ring R.

Then the following properties are equivalent:

(i) There is a homomorphism of commutative rings f : R → S such that

J = Ker(f) for the underlying additive groups.

(ii) J is a subgroup of the additive group of R, and for every r ∈ R,

if x ∈ J, then r · x ∈ J. The multiplication (x + J) · (y + J) =
xy + J defines the multiplication of a ring structure on the quotient

group R/J, the quotient ring. The group J is the kernel of the ring

homomorphism R → R/J : x , x + J.

176 Monoids, Groups, Rings, and Fields

Proof The proof is completely analogous to that regarding normal subgroups

and kernels of group homomorphisms. We leave it as an exercise to the reader. �

Definition 100 A subgroup J ⊂ R with the equivalent properties of propo-

sition 122 is called an ideal of R.

Example 62 We are now capable to better understand the construction of

the ring of real numbers R from Cauchy sequences. The set C of Cauchy

sequences as defined in definition 50 is a commutative ring, this is state-

ment (i) in proposition 79, together with the constant sequence (1)i as

multiplicative neutral element, while statements (i) and (ii) in proposi-

tion 79 tell us that the zero sequences O define an ideal. Finally, by

lemma 81, the equivalence relation in lemma 80 is precisely the relation

defined by the ideal O, and the quotient structure C/O is the same as the

structure defined in definition 54.

Example 63 Reconsidering the construction of the cyclic groups Zn, we

recognize that the subgroup Z·n of Z is in fact an ideal. The construction

of the ring multiplication on the quotient group Z/(Z · n) is exactly the

one we just defined for the quotient ring.

The type of ideal in the previous example is of major importance for the

theory of prime numbers and follows from the Euclidean algorithm:

Definition 101 An ideal J of a commutative ring R is called a principal

ideal if there is an element x ∈ J such that J = R · x = {r · x | r ∈ R}.
Such an ideal is also denoted by J = (x). A ring the ideals of which are all

principal is called a principal ideal ring.

Proposition 123 The ring Z is a principal ideal ring. If J is an ideal of Z,

then either J = (0) or J = (n), where n ∈ N is the smallest positive integer

in J.

Proof If J is an non-zero ideal in Z, then there is a smallest positive element

n in J. For any j ∈ J, we have j = an + b, 0 ≤ b < n, by elementary natural

arithmetic. But then b = j − an ∈ J, whence b = 0, therefore J = (n). �

We also have the analogous ring-theoretic proposition analogous to propo-

sition 119 for groups:

Proposition 124 If f : R → S is a homomorphism of commutative rings,

there is a canonical isomorphism of rings

15.4 Fields 177

R/Ker(f)
∼→ Im(f).

It is given by the map g + Ker(f) , f(g) and satisfies the commutative

diagram

R
f

ñ S

R/Ker(f)
� ∼

ñ Im(f)

�

Proof The proof of this proposition follows the same line as that of proposi-

tion 119, we leave it as an exercise. �

We shall see in the following section that this proposition entails the

remarkable isomorphism of rings C
∼→ R[X]/(X2 + 1). To this end we

need some extra properties specific to rings such as R.

15.4 Fields

Definition 102 A ring K ≠ 0 is called a skew field if every non-zero ele-

ment is invertible. A commutative skew field is also called a field.

Example 64 The rings Q, R and C are fields. This follows right from the

properties of these rings which we have exhibited in chapter 9.

The main fact about polynomial rings K[X] over fields K is that they are

principal ideal rings. To see this, we need the following lemma:

Lemma 125 If K is a field, and if f and g are non-zero polynomials in

K[X], then

deg(f · g) = deg(f)+ deg(g).

Proof If f = anXn + an−1X
n−1 + . . . a0 and g = bmXm + bn−1X

n−1 + . . . b0 with

an, bm ≠ 0, then f · g = anbmXn+m + . . . a0b0, the highest coefficient anbm ≠ 0

because we are in a field, so deg(f · g) = deg(f)+ deg(g). �

This entails Euclid’s division theorem for polynomial rings over fields:

Proposition 126 (Division Theorem) If f and g are non-zero polynomi-

als in the polynomial algebra K[X] over a field K, then there is a polyno-

mial h such that either f = h ·g or f = h ·g+ r , where deg(r) < deg(g).

The polynomials h and r are uniquely determined.

178 Monoids, Groups, Rings, and Fields

Proof Let deg(f) < deg(g), then f = 0 · g + f is a solution. If deg(f) ≥ deg(g),

then for f = anXn + an−1X
n−1 + . . . a0 and g = bmXm + bn−1X

n−1 + . . . b0,

we consider f ′ = f − an
bm
Xn−m · g. The polynomial f ′ has smaller degree than

f , and we may proceed by induction to find a solution f ′ = h′ · g + r ′. Then

f = (an
bm
Xn−m+h′) ·g+ r ′ solves the problem. As to uniqueness, if we have two

decompositions f = h1 · g + r1 = h2 · g + r2, then (h1 −h2) · g = r2 − r1, which,

for reasons of degree, only works if h1 − h2 = r2 − r1 = 0. �

Example 65 To compute the quotient and remainder of the division of

2X4+4x3+17x2+13x+23 by 2x2+5, the tabular method can be used:

2x4 + 4x3 + 17x2 + 13x + 23 : 2x2 + 5 = x2 + 2x + 6

2x4 + 5x2

4x3 + 12x2 + 13x

4x3 + 10x

12x2 + 3x + 23

12x2 + 30

3x +−7

Thus, the quotient is x2 + 2x + 6 and the remainder is 3x − 7.

The Division Theorem implies the announced result:

Proposition 127 If K is a field, then the polynomial ring K[X] is a prin-

cipal ideal ring. If J is an ideal of K[X], then either J = (0) or J = (g),
where g is a polynomial in J of minimal degree.

Proof In fact, the proof works like for integers. Take a minimal polynomial f of

positive degree in an ideal J, then by proposition 126, J = (f). �

We may now demonstrate the announced isomorphism between C and

R[X]/(X2 + 1). Consider the ring homomorphism v : R[X] → C defined

by the natural embedding R ⊂ C and the evaluation X , i = √−1. Clearly,

v is surjective, i.e., Im(v) = C. The kernel of v is a principal ideal ring,

Ker(v) = (t). But no non-zero linear polynomial a·X+b is in this kernel,

since a · i + b = 0 iff a = b = 0. On the other hand, X2 + 1 ∈ Ker(v),

therefore by proposition 127, Ker(v) = (X2+1). By proposition 124, this

implies R[X]/(X2 + 1)
∼→ C.

Exercise 67 Using the isomorphism R[X]/(X2 + 1)
∼→ C, try to describe

the conjugation on C by means of the quotient ring R[X]/(X2 + 1).

15.4 Fields 179

For both constructions, that of R from Cauchy sequences, and that of C

from polynomials over R, we are left with the question: Why do these

quotient rings yield fields? Here is the answer:

Definition 103 A proper ideal J of a commutative ring R is called maxi-

mal if there is no ideal I such that J Ð I Ð R.

Proposition 128 An ideal J is maximal in R iff the quotient R/J is a field.

Proof If J is not maximal, than a strictly larger ideal I such that J Ð I Ð R has an

image I′ in R/J which is a proper ideal such that 0 Ð I′ Ð R/J, so R/J cannot be

a field. In fact, suppose that R/J is a field and take x ≠ 0 ∈ I ′. Take its inverse

x−1. Then, since I′ is an ideal, x−1x = 1 is an element of I′. Therefore I′ = R/J. If

J is maximal, then any x 6∈ J must generate the improper ideal R together with

J, in particular there are u ∈ R and v ∈ J such that 1 = ux + v . Then the image

1 + J = ux + J = (u + J) · (x + J), i.e., every non-zero element x + J in R/J is

invertible, and we have a field. �

Now, the missing links are easily inserted:

Example 66 The ideal (X2+1) in R[X] is maximal. In fact, a strictly larger

ideal must be of shape (X + a), but then we must have the factorization

X2+1 = (X+a)·(X+b). Evaluating (X2+1) at x = −a yields a2+1 = 0, an

impossibility in R. Turning to Cauchy sequences, any non-zero sequence

(ai)i has a sequence (bi)i such that (ai)i · (bi)i converges to 1, this was

shown in statement (viii) of sorite 84. So every ideal which is strictly larger

than O must be the principal ideal (1), i.e., the entire ring, and we are

done.

CHAPTER 16

Primes

This chapter is devoted to prime numbers and prime polynomials, a type

of objects which play an important role in cryptography. Every computer

scientist should therefore have some knowledge about prime factoriza-

tion in the ring of integers Z and the polynomial algebras K[X] over one

indeterminate X with coefficients in a field K.

16.1 Prime Factorization

We first need a small preliminary discussion about the construction of

ideals by generators, a generalization of the concept of a principal ideal

introduced in the last chapter.

Definition 104 If G ⊂ R is a non-empty subset of a commutative ring R,

the ideal generated by G is defined as the set of all sums r1 ·g1 + r2 ·g2 +
. . . rk · gk where gi ∈ G and ri ∈ R. It is denoted by (G) or (h1, h2, . . . ht)

if G = {h1, h2, . . . ht} is finite.

Exercise 68 Show that that the set (G) is indeed an ideal.

Here is the definition of a prime element in a commutative ring:

Definition 105 A non-zero element p ∈ R in a commutative ring R is

prime if it is not invertible and if p = q · r implies that either q or r

is invertible. For polynomial algebras, prime polynomials are also called

irreducible.

182 Primes

To begin with, we make sure that in the most interesting rings, every

non-invertible element has a factorization into prime elements:

Lemma 129 If R = Z or R = K[X], where K is a field, then every non-

invertible element x ≠ 0 has a factorization x = p1 · p2 · . . . pk as a

product of primes pi.

Proof For a non-invertible, non-zero p ∈ Z, we proceed by induction on |p| ≥ 2.

A factorization p = q · r implies |p| = |q| · |r |. So if |p| = 2, then p = ±2 is

already prime, since one of its factors in 2 = q · r must be 1. In the general

case, a factorization p = q · r with non-invertible factors implies |q|, |r | < |p|,
so by induction on these factors, we are done. For a non-invertible, non-zero

p ∈ K[X], we proceed by induction on deg(p) ≥ 1. A factorization p = q · r
implies deg(p) = deg(q)+ deg(r). If deg(p) = 1, then either q or r is a constant

(degree zero), and therefore invertible. If deg(p) > 1, then if all factorizations

have either q or r of degree zero, then these factors are invertible and p is prime.

Else, degrees decrease and induction applies to the factors. �

One could imagine that there is only a finite number of primes. But we

have the classical result about prime numbers in Z, Euclid’s theorem:

Proposition 130 The set of primes in Z is infinite.

Proof Suppose that p1 = 2, p2 = 3, . . . pk is the finite set all positive primes

in Z. Then the prime factorization of q = 1 +∏i=1,2,...k pi must contain one of

these primes, say pt . Then we have q = pt ·u = 1+∏i=1,2,...k pi, and therefore1

1 = pt · (u −
∏
i=1,2,...t̂,...k pi), which is impossible since pt is not invertible by

hypothesis. So there are infinitely many primes in Z. �

Example 67 In particular 0R is not prime since 0R = 0R · 0R, and 1R,−1R
are not prime since they are invertible. The numbers ±2, ±3, ±5, ±7, ±11,

±13,±17,±19 in Z are primes, while 12,−24,15 are not. In R[X] all linear

polynomials a·X+b,a ≠ 0, and all quadratic polynomials a·X2+b with

a,b > 0 are prime. (Use the argumentation from example 66 to prove

that X2 + 1 = (u ·X + v)(r ·X + s) is impossible in R[X].)

Clearly, prime factorization is not unique because of the commutativ-

ity of the ring and the existence of invertibles, e.g., 12 = 2 · 2 · 3 =
1 The convention x̂i means that in an indexed sequence, the object xi

with index i is omitted, and only the earlier and later terms are consid-

ered. For example, x1, x2, x3, . . . x̂9, . . . x20 means that we take the sequence

x1, x2, x3, . . . x8, x10, . . . x20.

16.1 Prime Factorization 183

3 · (−2) · (−2). However, this is the only source of ambiguities in prime

factorization for our prominent rings.

Definition 106 If x and y are two elements in a commutative ring such

that there is an element z with y = x · z, then we say that x divides y

or that x is a divisor of y and write x|y . If x does not divide y , we write

x ö y . Clearly, x|y is equivalent to the inclusion (y) ⊂ (x) of ideals.

If 0 = x · y for x,y ≠ 0, then x is called a zero divisor. A commutative

ring without zero divisors is called an integral domain.

Lemma 131 In an integral domain R, the generator of a principal ideal a

is unique up to invertible elements, i.e., (a) = (b) iff there is c ∈ R∗ such

that b = c · a.

Proof Clearly the existence of such an c ∈ R∗ is sufficient. Conversely, (a) = (b)
implies a = xb and b = ya, whence a = xya, i.e., xy = 1 if a ≠ 0. But if a = 0,

then also b = 0 and we have discussed all cases. �

Notation 10 If R is a principal integral domain, the ideal generated by

two elements a and b is principal, i.e., (a, b) = (d). This is equivalent to

the two facts that (1) d|a and d|b, (2) there are two elements u and v such

that d = u · a + v · b. Such a d is called the greatest common divisor of

a and b, in symbols d = gcd(a, b). The ideal (a) ∩ (b) is also principal,

(a) ∩ (b) = (l). This means that (1) a|l and b|l, (2) whenever a|x and

b|x, then l|x. Such an l is called the least common multiple of a and b,

in symbols l = lcm(a, b). Observe that gcd and lcm are only determined

up to invertible elements.

Proposition 132 (Euclidean Algorithm) For two integers a and b the

gcd(a, b) is calculated by this recursive algorithm:

gcd(a, b) =
{
a if b = 0

gcd(b, r) otherwise

where r is determined by the Division Theorem: a = q · b + r (proposi-

tion 68).

Proof Suppose that we have this chain of successive divisions:

184 Primes

a = q1 · b + r1,

b = q2 · r1 + r2,

r1 = q3 · r2 + r3,

r2 = q4 · r3 + r5,

...

rk = qk+2 · rk+1.

Then the claim is that rk+1 = gcd(a, b). In fact, clearly rk+1|a and rk+1|b, by suc-

cessive replacement in these formulas from the end. Moreover, each remainder

r1, r2, etc. is a combination u ·a+v ·b, and so is in particular the last, i.e., rk+1,

whence the proposition. �

Example 68 Using the Euclidean Algorithm, the greatest common divisor

of 17640 and 462 is calculated as follows:

17640 = 38 · 462+ 84

462 = 5 · 84+ 42

84 = 2 · 42

a = q1 · b + r1

b = q2 · r1 + r2

r1 = q3 · r2

Therefore, gcd(17640,462) = 42.

Example 69 Fields and all subrings of fields are integral domains. In

particular, all the rings Z,Q,R,C are integral domains, and so are the

polynomial algebras K[X] over a field K, because formula deg(f · g) =
deg(f) + deg(g) guarantees that f · g ≠ 0 for non-zero polynomials f

and g.

Remark 21 The converse is also true: Any integral domain is a subring

of a field.

Lemma 133 If the principal ideal ring R is an integral domain, then an

ideal I is maximal iff there is a prime p with I = (p). If q is another prime

with I = (q), then there is an invertible element e such that q = e · p.

Proof If I = (p) is maximal, then p = q · r implies (p) ⊂ (q), so either (q) = R,

and q ∈ R∗, or else (p) = (q), whence r ∈ R∗, therefore p is prime. If I is not

maximal, there is q such that I Ð (q) Ð R, i.e., p = q · r , and q, r 6∈ R∗, therefore

p is not prime. �

Proposition 134 For a positive prime number p ∈ Z, the finite ring Zp is

a field. In particular, the multiplicative group Z∗p has p − 1 elements, and

16.1 Prime Factorization 185

therefore for every integer x, we have xp ≡ x mod (p), and xp−1 ≡ 1

mod (p) if p ö x. The latter statement is called Fermat’s little theorem.

Proof The finite ring Zp is a field by lemma 133. By the Langrage equation from

sorite 117, the order of an element x ∈ G divides the order of G. Since the order

of Z∗p is p − 1, we have xp−1 = 1. �

The next result leads us towards the uniqueness property of prime fac-

torization:

Proposition 135 Let R be a principal integral domain and p ∈ R prime.

Then if p|a1 · a2 · . . . an, then there is an index i such that p|ai.
Proof In fact, by lemma 133, R/(p) is a field, and therefore, the fact that p|a1 ·
a2 · . . . an yields 0 = a1 · a2 · . . . an in the field R/(p), but this implies that one

of these factors vanishes, i.e., p divides one of the factors ai. �

Proposition 136 Let R be a principal integral domain. Then, if an element

a has two prime factorizations a = p1 · p2 · . . . pk = q1 · q2 · . . . ql, then

k = l, and there is a permutation π ∈ Sk and a sequence e1, e2, . . . ek of

invertible elements such that qi = ei · pπ(i), i = 1,2, . . . k.

Proof This is clear from the preceding proposition 135 if we take the factoriza-

tion q1 ·q2 · . . . ql and a divisor pj of this product. This means pj = ei ·qi for an

invertible ei. Then, dividing everything by pj reduces to a shorter product, and

we proceed by induction. �

Proposition 137 In Z, every non-invertible element a ≠ 0 has a unique

factorization by positive primes p1 < p2 < . . . pr and positive powers

t1, t2, . . . tr of the form

a = ±pt11 · pt22 · . . . ptrr .

Proof This follows directly from the above proposition 136, when ordering the

prime numbers by size. �

Corollary 138 In the polynomial algebra K[X] over a field K, every poly-

nomial of positive degree is a product of irreducible polynomials, and this

factorization is unique in the sense of proposition 136. In particular, every

linear polynomial is irreducible.

Proof This follows from the existence of a prime factorization after lemma 129

and the uniqueness statement in proposition 136. �

186 Primes

Remark 22 It can be shown that in C[X], the irreducible polynomials are

exactly the linear polynomials. This means that every polynomial f(X) of

positive degree is a product f(X) = a(X −b1)(X −b2) . . . (X −bk), a ≠ 0.

This is a quite profound theorem, the so-called fundamental theorem of

algebra.

Exercise 69 Show that
√

2 is not a rational number. Use the prime factor-

ization of numerator a and denominator b in a fictitious representation√
2 = a

b .

Exercise 70 Use exercise 69 to show that the set Q(
√

2) consisting of the

real numbers of form z = a√2+b, with a,b ∈ Q, is a subfield of R. Show

that Q(
√

2)
∼→ Q[X]/(X2 − 2).

16.2 Roots of Polynomials and Interpolation

In this section, let K be a field. Let x ∈ K. Then we know from example 61

that for a polynomial f(X) ∈ K[X], there is an evaluation f(x) ∈ K. We

now want to discuss the relation between the polynomial f(X) and the

polynomial function f(?) : K → K : x , f(x).

Definition 107 If f(X) ∈ K[X], then an element x ∈ K is a root of f(X)

if f(x) = 0.

Lemma 139 If x ∈ K is a root of a polynomial f(X) ∈ K[X], then (X −
x)|f(X).
Proof We have the division with remainder f(X) = Q(X) · (X − x) + c, c ∈ K.

The evaluation of f at x yields c = 0, whence the claim. �

Proposition 140 If x1, x2, . . . xr are r different roots of f(X) ∈ K[X],
then

(X − x1)(X − x2) . . . (X − xr)|f(X).
In particular, a non-zero polynomial f(X) has at most deg(f) different

roots.

Proof The proof uses induction on r . By the above lemma 139, the claim is true

for r = 1. But since each X − xr is prime and differs from all X − xj , j ≠ i, we

have a factorization f(X) = g(X) · (X − xr). So all xi, i < r are roots of g(X),

and by the induction hypothesis, we are done. �

16.2 Roots of Polynomials and Interpolation 187

Corollary 141 If two polynomials f , g ∈ K[X] of degrees deg(f) < n and

deg(g) < n agree on n different argument values xi, i = 1,2, . . . n, i.e.,

f(xi) = g(xi), then f = g.

Proof This is an easy exercise using proposition 140. �

Corollary 142 If for K = Q,R,C, two polynomial functions f(?) and g(?)

coincide, then the polynomials f(X), g(X) ∈ K[X] are equal.

Proof This follows from the fact that we have infinitely many arguments, where

the functions coincide. �

This allows us to identify polynomials and their associated functions,

but this is only a special situation, which does not generalize to arbitrary

polynomial algebras.

As an example that the fact stated in corollary 142 is not valid for K = Z2,

consider the polynomials f(X) = X2 + 1 and g(X) = X + 1 in Z2[X].

Evidently, f(X) and g(X) are different regarded as polynomials, but

f(0) = g(0) = 1, and f(1) = g(1) = 0, and thus are equal regarded

as polynomial functions.

We have not yet determined if there is always a polynomial f(X) of de-

gree strictly less than n such that its values f(xi) = yi can be prescribed

for n different arguments x1, x2, . . . xn. This is indeed guaranteed by var-

ious so-called interpolation formulas, the best known being those by La-

grange and Newton. Since the result must be unique by corollary 141, we

may pick one such formula.

Proposition 143 (Newton Interpolation Formula) Suppose that we are

given a sequence (x1, y1), (x2, y2), . . . (xn, yn) of couples (xi, yi) ∈ K2

for a field K, where xi ≠ xj for i ≠ j. Then there is a (necessar-

ily unique) polynomial f(X) ∈ K[X] of degree deg(f) < n such that

f(xi) = yi, i = 1,2, . . . n. It is given by the Newton interpolation formula

f(X) = a0 + a1(X − x1)+ a2(X − x1)(X − x2)+ . . .
an−1(X − x1)(X − x2) . . . (X − xn−1).

Exercise 71 Give a proof of proposition 143. Start with the evaluation at

x1 and calculate the coefficient a0. Then proceed successively with the

calculation of all coefficients a1, a2, . . . an−1.

188 Primes

Why are such formulas called “interpolation formulas”? The point is that

we are often given a series of “values” yi for arguments xi, but we do

not know which function f : K → K takes these values, yi = f(xi). In

most cases there is a large number of solutions for this problem. Any

solution, such as the polynomial solution given in proposition 143, will

also give us values for all other x ∈ K. For example, if K = R, we get all

the evaluations f(x) for the intervals x ∈ [xi, xi+1]. This means that f

can also be evaluated on values ‘between’ the given arguments, which is

the very meaning of the word ‘interpolation’.

Example 70 Given are the four points p1 = (−2,3), p2 = (−1
2 ,−1

2), p3 =
(1, 1

2) and p4 = (2,−1) in R2. The goal is to construct the interpolation

polynomial f(X) ∈ R[X] through these points. Proposition 143 ensures

that f(X) is of the form:

f(X) = a0 + a1(X − x1)+ a2(X − x1)(X − x2)+
a3(X − x1)(X − x2)(X − x3)

Now, setting X = xi and f(X) = yi for i = 1,2,3,4, the aj for j = 0,1,2,3

are calculated as follows:

For p1, every term but the first, a0, vanishes, thus

a0 = 3

For p2:

−1
2 = a0 + a1(−1

2 − (−2))

thus, after substituting the known value for a0, and solving for a1:

a1 = −7
3

For p3:
1
2 = a0 + a1(1− (−2))+ a2(1− (−2))(1− (− 1

2))

which yields, using the previously calculated values for a0 and a1:

a2 = 1

And finally, for p4:

−1 = a0 + a1(2− (−2))+ a2(2− (−2))(2− (− 1
2))+

a3(2− (−2))(2− (− 1
2))(2− 1)

16.2 Roots of Polynomials and Interpolation 189

produces

a3 = − 7
15

Putting everything together, and expanding the polynomial:

f(X) = 3− 7
3(X + 2)+ (X + 2)(X + 1

2)− 7
15(X + 2)(X + 1

2)(X − 1)

= − 7
15X

3 + 3
10X

2 + 13
15X − 1

5

The polynomial f(X) is drawn in figure 16.1.

1

1

(− 1
2 ,− 1

2)

(−2,3)

(1, 1
2)

(2,−1)

f

Fig. 16.1. The polynomial f(X) = − 7
15X

3 + 3
10X

2 + 13
15X − 1

5 .

Observe that the interpolation polynomial may not necessarily satisfy

specific conditions on the “smoothness” of the curve. Indeed, if n points

are specified, the resulting polynomial will have degree n − 1, its shape

becoming increasingly “bumpy” as the degree rises, with interpolated val-

ues straying widely off the mark.

Therefore, for practical purposes, more flexible interpolation techniques,

like splines, are used (see [6] and second volume of this book for exam-

ples).

CHAPTER 17

Formal Propositional Logic

Until now, we have been using logic in its role as a guiding principle of

human thought—as such it has been described under the title of “propo-

sitional logic” in the introductory section 1.1. We are not going to replace

this fundamental human activity, but we are interested in the problem

of mimicking logical reasoning on a purely formal level. What does this

mean? The idea is that one would like to incorporate logic in the math-

ematical theory, which means that we want to simulate the process of

logical evaluation of propositions by a mathematical setup. Essentially,

this encompasses three tasks:

1. The first task is to give a mathematical construction which describes

the way in which logically reasonable propositions should be built.

For example, as we have learned from section 1.1, if A,B are propo-

sitions, one may want to build “NOTA”, “A IMPLIES B”, and so forth.

But the construction should not deal with contents, it should just

describe the combinatorial way a new expression is constructed. In

other words, this is a problem of syntax (relating to how expressions

of a sign system are combined independent of their specific meaning).

The question addressed by the first task is: How can such a syntacti-

cal building scheme be described? This task is evidently required if we

want to delegate some logical work to machines such as computers,

where content cannot be achieved without a very precise and mechan-

ical control of form.

2. Suppose that the first task of formalization has been achieved. One

then needs to rebuild the truth values which propositions should ex-

192 Formal Propositional Logic

press. This refers to the meaning or semantics of such propositions.

This is a radical point of view: The meaning of a proposition is not its

specific contents, but one of the two truth values: “true” or “false”, or,

equivalently, “is the case” or “is not the case”. For example, the mean-

ing of the proposition “if it is raining, then I am tired” has nothing to

do with rain or fatigue, it is only the truth value of the implication.

It is this semantical issue which is mimicked by the formal theory of

propositional logic. So one needs a domain of truth values, which is

addressed by a formal propositional expression in order to evaluate

its ‘meaning’. Such domains will be called logical algebras. Therefore,

the second task is to give a rigorous mathematical description of what

a logical algebra is which manages the semantic issue of propositional

logic.

3. The third task deals with the connection of the first two tasks, i.e.,

given a syntactical description of how to build correct propositions,

as well as a logical algebra which manages the semantics of truth val-

ues, we need to specify how these two levels are related to each other.

This third task is that of “signification”, i.e., the mathematically rigor-

ous definition of an association of meaning with a given propositional

expression.

We should, however, pay attention to the power of such a formalization

procedure, since often a naive understanding thereof claims to be a re-

placement of our human reasoning and its contents by purely formal de-

vices. There is a fundamental error, which is easily explained: A formal,

i.e., mathematical theory of propositional logic as sketched above, must

rely on given mathematical structures and results, the most important

one being set theory, the theory of natural numbers, and—above all—the

recursion theorem, which is a fundamental tool for the construction of

formal expressions and for the proof of properties which are shared by

formal expressions. In order to keep the level of human thought and the

formal logical level separate, we never use symbols of formal logic in for-

mulas which are meant as a human thought. In a famous 1931 paper On

Formally Undecidable Propositions of Principia Mathematica and Related

Systems, the mathematician Kurt Gödel demonstrated that within any

given branch of mathematics, there would always be some propositions

that could not be proved either true or false using the rules and axioms

of that mathematical branch itself. Gödel himself alluded to machine-

supported logical reasoning. But subsequently, many philosophers, the-

17.1 Syntactics: The Language of Formal Propositional Logic 193

ologists and would-be scientists concluded that human thought, as well,

is tainted by these incompleteness properties, actually derived for formal

systems only. We hope that the reader may understand in the following

that these formalizations of human thought are just low-level simulations

of its mechanical flattening, and not of proper thought. An example will

be presented arguing that there are propositions which are undecidable

in a given formal system, but can be decided using unformalized thought.

17.1 Syntactics: The Language of Formal

Propositional Logic

The language of formal propositional logic aims to create the variety of

possible propositions. The concept of proposition is elementary. There-

fore, the only possibility to build new propositions is to start with given

ones and to combine them by logical operations. Here is the formal setup

of the repertory of expressions with which we shall work in order to build

logically reasonable propositions:

Definition 108 A propositional alphabet is a triple A = (V , B, C) of mutu-

ally disjoint sets, where

(i) the set V is supposed to be denumerable, i.e., equipollent to N, and

the elements v0, v1, . . . ∈ V are called propositional variables;

(ii) the set B = {(,)} of (, the left bracket and), the right bracket;

(iii) the set C = {!, &, |, −> } consists of these four logical connective

symbols, the negation symbol !, the conjunction symbol &, the dis-

junction symbol |, and the implication symbol −> .

The monoid EX = EX (A) = Word(V t B t C) is called the monoid of

expressions over A. Within EX , the subset S(EX) of sentences over A is

the smallest subset S(EX) ⊂ EX with the following properties:

(i) V ⊂ S(EX);

(ii) if α ∈ S(EX), then (!α) ∈ S(EX);

(iii) if α,β ∈ S(EX), then (α & β) ∈ S(EX);

(iv) if α,β ∈ S(EX), then (α | β) ∈ S(EX);

(v) if α,β ∈ S(EX), then (α −> β) ∈ S(EX).

The set S(EX) is also called the propositional language defined by A.

194 Formal Propositional Logic

Observe that the symbols of A have been chosen for the sake of the log-

ical context, but strictly speaking, they are simply sets with no special

properties whatsoever.

As it is defined, the language S(EX (A)) is not effectively described—

we can only tell that, for example, expressions such as v0, (!v3), and

(v2 & v6) are sentences. But there is no general control of what is possi-

ble and what is not.

Exercise 72 Show that the expression !(!v1) is not a sentence.

Is (v3 −> (!v2)) a sentence?

We now give a recursive construction of the subset S(EX) ⊂ EX for a

given alphabet A. To this end, we use the fact that we have the union of

disjoint sets S(EX) = ⋃
n≥0 Sn(EX), where Sn(EX) = S(EX) ∩ EXn, with

EXn = {w ∈ EX | l(w) = n} the set of expressions of word length n.

Here is the structure of S(EX) given in these terms:

Definition 109 Given a propositional alphabet A, let Sn be the following

subsets of EXn, which we define by recursion on n:

(i) For n = 0,2,3, we set Sn = ∅;

(ii) we set S1 = V ;

(iii) we set S4 = {(!vi) | vi ∈ V};
(iv) we set S5 to the set of words of one of these three types: (vi & vj),

(vi | vj), (vi −> vj), where vi, vj ∈ V are any two propositional

variables;

(v) for n > 5, we set Sn = S !
n ∪ S&

n ∪ S|n ∪ S −>n , where S∗n = {(α ∗ β) |
α,β ∈ ⋃i<n Si, l(α)+ l(β) = n− 3} for the symbols ∗ ∈ {&, |, −> },
and where S !

n = {(!α) | α ∈ Sn−3}.

We then set S = ⋃n≥0 Sn.

Example 71 To illustrate the construction of the sets Si, we give them

for the set of variables V = {v} up to S8. The sets grow quickly with

increasing i even with only one variable. The reader should check that

the sets conform to the rules of definition 109, in particular that each Si
only contains expressions of exacty length i.

17.1 Syntactics: The Language of Formal Propositional Logic 195

S0 = {},
S1 = {v},
S2 = {},
S3 = {},
S4 = {(!v)}
S5 = {(v & v), (v | v), (v −> v)}
S6 = {}
S7 = {(!(!v))}
S8 = {(v & (!v)), ((!v) & v),

(v | (!v)), ((!v) | v),
(v −> (!v)), ((!v) −> v),
(!(v & v)), (!(v | v)), (!(v −> v))}

Proposition 144 Given a propositional alphabet A, we have

S(EX) = S,

where S is the set defined in definition 109.

Proof Clearly, S is contained in S(EX). Let us check that it fulfills the five axioms

(i) through (v). By construction, V = S1, whence (i). If α ∈ S, then for l(α) ≤ 3,

we only have α ∈ V , and S4 covers the case (!α) ∈ S, else l(α) > 3, and this case

is covered by construction v of the definition of S, whence (ii). The cases (iii)–(v)

are similar: for l(α)+ l(β) ≤ 3, we must have α,β ∈ V , this is covered by (iv) in

the definition of S. For l(α)+ l(β) > 3, construction (v) in the definition does the

job. �

We now know how the construction of the sentences over A works, but

we still do not know how many sentences α and β could give rise to one

and the same sentence, say w = (α & β).

Lemma 145 If left(w) and right(w) denote the numbers of left and right

brackets, respectively, in a sentence w ∈ S(EX), then we have left(w) =
right(w).

Proof The construction of S(EX) by S guaranteed by proposition 144 yields a

straightforward inductive proof by the length of a sentence. �

Exercise 73 Give a proof of lemma 145 by recursion on the length of w.

196 Formal Propositional Logic

Lemma 146 Let w ∈ S(EX), and suppose that we have a left bracket (in

w, i.e., w = u(x, with l(u) > 0. Then if the number of left brackets in (x

is l and the number of right brackets in (x is r , we have l < r .

Proof Induction on l(w): For l(w) ≤ 5, it is clear by the explicit words from

rules (i)–(iv) in the definition of S. For general w, if w = u(x = (!α), then u = (!

or u = (!u′, where u′(v′ = α. By induction, the number of left brackets in (v ′

is smaller than the number of right brackets. So the same is true for (x = (v ′).

A similar argument is used for the other connectives. �

Proposition 147 Letw ∈ S(EX). Then exactly one of the following decom-

positions is the case: w ∈ V , or w = (!α), or w = (α & β), or w = (α | β),
or w = (α −> β), where α and β are uniquely determined sentences. They

are called the components of w.

Proof First, suppose (!α) = (!α′), then clearly the inner words α and α′ must be

equal. Second, suppose (!α) = (β ∗ γ), then the letter ! must be the first letter

of β, which is impossible for any sentence. Then suppose (α ∗ β) = (γ ∗ δ). If

l(α) = l(γ), then α = γ, therefore also β = δ. So suppose wlog (without loss of

generality) l(α) < l(γ). Then β = (γ′∗δ, where γ = x(γ′. So by lemma 146, (γ′

has fewer left than right brackets. But this contradicts the fact that β and δ have

the same number of left and right brackets. �

This proposition has deep implications. In fact, it allows the definition of

functions on S(EX) by recursion on the length of sentences and and in

function of the unique logical connectives defining compound sentences.

But let us first discuss the announced “logical algebras”.

17.2 Semantics: Logical Algebras

On the syntactic level of a formal propositional language S(EX) over a

propositional alphabetA, the sentences look like meaningful expressions.

However, they really only look meaningful. In order to load such expres-

sions with logical meaning, we need to provide the system with logical

values. In order to have a first orientation of what a logical algebra should

be, we refer to the “Boolean algebra” of subsets L = 2a of a set a as dis-

cussed in chapter 3, and especially in proposition 7. More specifically, in

the special case of a = 1 = {0}, we have two subsets, ⊥ = ∅ = 0 and

> = 1. Following a classical idea of the great mathematician and philoso-

pher Gottfried Wilhelm Leibniz (1646–1716) and its elaboration by the

mathematician George Boole (1815–1864), one can mimic truth values on

17.2 Semantics: Logical Algebras 197

the Boolean algebra L = 2 = 21 as described in proposition 7. The value

“true” is represented by >, whereas the value “false” is represented by ⊥.

The truth table of the conjunction A AND B is given by the Boolean op-

eration of intersection of the truth values assigned to the components,

i.e., if A is true and B is false, the truth value of the conjunction is

> ∩ ⊥ = ⊥, and so on with all other combinations. In other words, we

are combining the values value(A), value(B) ∈ 2 under Boolean oper-

ations. We see immediately that the Boolean operation “∩” stands for

conjunction, “∪” for disjunction, and complementation “−” for negation,

whereas the truth value ofA IMPLIES B is the value of (NOTA) OR B, i.e.,

(−value(A))∪ value(B). However, it is not always reasonable to deduce

logical implication from negation and disjunction, we rather would like

to leave this operation as an autonomous operation. This is very impor-

tant in order to cope with non-classical logical approaches, such as fuzzy

logic. This approach was formalized by the mathematician Arend Heyting

(1898–1980):

Definition 110 A Heyting algebra (HA) is a partially ordered set (L,≤),
together with

• three binary operations: the join a∨ b, the meet a∧ b, and the impli-

cation a⇒ b for a,b ∈ L, and

• two distinguished elements ⊥ and >, called “False” and “True”, respec-

tively.

These data are subjected to the following properties:

(i) ⊥ and > are the minimal and maximal element with respect to the

given partial ordering, i.e., ⊥ ≤ x ≤ > for all x ∈ L.

(ii) The operations join and meet are commutative.

(iii) Join and meet are mutually distributive, i.e., x∧(y∨z) = (x∧y)∨
(x ∧ z) and x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z), for all x,y, z ∈ L.

(iv) The join x ∨y is a least upper bound (l.u.b) of x and y , i.e., x,y ≤
x ∨y and for any z with x,y ≤ z, we have x ∨y ≤ z.

(v) The meet x ∧ y is a greatest lower bound (g.l.b.) of x and y , i.e.,

x ∧y ≤ x,y and for any z with z ≤ x,y , we have z ≤ x ∧y .

(vi) (Adjunction) For any z ∈ L, z ≤ (x ⇒ y) iff z ∧ x ≤ y .

For an element x of a Heyting algebra L, we define the negation of x by

¬x = (x ⇒ ⊥).

198 Formal Propositional Logic

Exercise 74 Show that in a Heyting algebra, we always have y ≤ ¬x iff

y ∧ x = ⊥. Deduce from this that always

¬x ∧ x = ⊥.

Use the adjunction characterization (vi) of definition 110 to prove that

((x ∨y)⇒ z) = ((x ⇒ z)∧ (y ⇒ z)).

More specifically, prove De Morgan’s first law:

¬(x ∨y) = ¬x ∧¬y.

Definition 111 In a Heyting algebra L, a complement of an element x is

an element a such that x ∧ a = ⊥ and x ∨ a = >.

Lemma 148 The complement of an element x in a Heyting algebra L, if it

exists, is uniquely determined.

Proof If b is another complement of x, we have b = b ∧ > = b ∧ (x ∨ a) =
(b ∧ x)∨ (b ∧ a) = (x ∧ a)∨ (b ∧ a) = (x ∨ b)∧ a = >∧ a = a. �

Exercise 75 Show that y ≤ ¬xa y ∧ x = ⊥.

An important and classical type of special Heyting algebras is defined by

these properties:

Lemma 149 For a Heyting algebra L, the following properties are equiva-

lent: For all x ∈ L,

(i) x ∨¬x = >,

(ii) we have ¬¬x = x.

Proof Observe that always ¬> = ⊥ and ¬⊥ = >.

(i) implies (ii): If x ∨ ¬x = >, then by De Morgan’s first law (exercise 74), ¬x ∧
¬¬x = ⊥. So ¬¬x is a complement of ¬x, but x is also a complement of ¬x,

therefore, by uniqueness of complements (lemma 148), ¬¬x = x.

Conversely, if ¬¬x = x, then by De Morgan’s first law, x∨¬x = ¬(¬x∧¬¬x) =
¬(¬x ∧ x) = ¬⊥ = >. �

Definition 112 A Heyting algebra which has the equivalent properties of

lemma 149 is called a Boolean algebra (BA).

17.2 Semantics: Logical Algebras 199

Example 72 The classical example is the “Boolean algebra” of subsets

L = 2a of a given set a, as discussed in chapter 3. Here, the partial or-

dering is the set inclusion, i.e., x ≤ y iff x ⊂ y . We define −x = a − x,

and have ⊥ = ∅,> = a, ∨ = ∪,∧ = ∩, and x ⇒ y = −x ∪ y . Evi-

dently, ¬x = (−x)∪∅ = −x, whence x ⇒ y = (¬x)∨y , i.e., implication

is deduced from the other operations. It is really a BA since the double

complementation is the identity: −(−(x)) = x. This is the a posteriori

justification for the name “Boolean algebra”, which we attributed to the

powerset algebra in chapter 3. But observe that for a general set a, many

truth values are possible besides the classical ⊥ and >.

Example 73 A less classic example is the set L = Fuzzy(0,1) of all inter-

vals Ix = [0, x[⊂ [0,1[of the “half open” real unit interval [0,1[= {x |
0 ≤ x < 1} ⊂ R. Its elements are so-called fuzzy truth values, meaning

that something may be true to x · 100%, i.e., not entirely true, and not

entirely false. The percentage is given by the upper number x of the in-

terval Ix . The partial ordering is again that of subset inclusion, and the

extremal values are ⊥ = I0 = ∅ and > = I1. We also take ∨ = ∪ and

∧ = ∩. This means Ix ∨ Iy = Imax(x,y) and Ix ∧ Iy = Imin(x,y).

The implication is a little more tricky. We must have Iz ≤ (Ix ⇒ Iy) iff

Iz ∩ Ix ⊂ Iy . The solution therefore must be Ix ⇒ Iy =
⋃
z,Iz∩Ix⊂Iy Iz.

Therefore Ix ⇒ Iy = Iw , with w = sup{z | Iz ∩ Ix ⊂ Iy}. This gives the

following implications: Ix ⇒ Iy = > if x ≤ y , and Ix ⇒ Iy = Iy if x > y .

In particular, ¬Ix = ⊥ if x ≠ 0, ¬⊥ = >. And finally, ¬¬Ix = > if x ≠ 0,

¬¬⊥ = ⊥. This also shows that this Heyting algebra Fuzzy(0,1) is not

Boolean. For the general theory of fuzzy systems, see [34] or [48].

We shall henceforth use the term logical algebra for a Heyting algebra or,

more specifically, for a Boolean algebra. Intuitively, a logical algebra is a

structure which provides us with those operations “negation”, “conjunc-

tion”, “disjunction”, and “implication” which are defined by the formal

logical setup and should simulate the “reality of logical contents”.

Here are the general properties of logical algebras:

Sorite 150 Let L be a Heyting algebra and x,y ∈ L. Then

(i) x ≤ ¬¬x,

(ii) x ≤ y implies ¬y ≤ ¬x,

(iii) ¬x = ¬¬¬x,

200 Formal Propositional Logic

(iv) (De Morgan’s first law) ¬(x ∨y) = ¬x ∧¬y .

(v) ¬¬(x ∧y) = ¬¬x ∧¬¬y ,

(vi) x ∧y = ⊥ iff y ≤ ¬x,

(vii) x ∧¬x = ⊥,

(viii) (x ⇒ x) = >,

(ix) x ∧ (x ⇒ y) = x ∧y ,

(x) y ∧ (x ⇒ y) = y ,

(xi) x ⇒ (y ∧ z) = (x ⇒ y)∧ (x ⇒ z).
In particular, if L is a Boolean algebra, then

(xii) x = ¬¬x,

(xiii) x ∨¬x = >,

(xiv) x ⇒ y = ¬x ∨y ,

(xv) x ≤ y iff ¬y ≤ ¬x,

(xvi) (De Morgan’s second law) ¬(x ∧y) = ¬x ∨¬y .

Proof By exercise 74, x ≤ ¬¬x iff x ∧ ¬x = ⊥, but the latter is always true. If

x ≤ y , then also x ∧¬y ≤ y ∧¬y = ⊥, so ¬y ∧ x = ⊥, therefore ¬y ≤ ¬x.

Statement (iii) follows immediately from (i) and (ii).

(iv) is De Morgan’s first law (see exercise 74).

The proof of (v) is quite technical and is omitted, see [36].

Statements (vi) and (vii) follow from exercise 74.

Statements (viii) to (xi) immediately follow from the characterization of the g.l.b.

and adjointness for implication.

(xii) and (xiii) is the characterization from lemma 149.

For (xiv), we show z ≤ (¬x ∨ y) iff z ∧ x ≤ y . If z ∧ x ≤ y , then z = z ∧ 1 =
z ∧ (¬x ∨ x) = (z ∧¬x)∨ (z ∧ x) ≤ ¬x ∨ y . Conversely, if z ≤ (¬x ∨ y), then

z ∧y ≤ (¬x ∨y)∧y ≤ (¬x ∧y)∨ (y ∧y) ≤ (¬x ∧y)∨y .

(xv) follows from (ii) and (xii). �

17.3 Signification: Valuations

We may now turn to the third component of a semiotic (sign-theoretic)

system: the signification process from the expressive surface down to

the semantic depth. Our modeling of such a system by use of a proposi-

tional alphabet A and a logical algebra L must provide us with a function

17.3 Signification: Valuations 201

value : S(EX) → L such that each sentence w ∈ S(EX) is assigned a truth

value value(w) ∈ L. Such a valuation should however keep track with the

requirement that logical evaluation is related to the logical composition

of these sentences. Here is the precise setup:

Definition 113 Given a propositional alphabet A and a logical algebra

L, a valuation is a map value : S(EX) → L such that for all sentences

α,β ∈ S(EX), we have

(i) value((!α)) = ¬(value(α)),

(ii) value((α | β)) = value(α)∨ value(β),

(iii) value((α & β)) = value(α)∧ value(β),

(iv) value((α −> β)) = value(α)⇒ value(β).

The set of valuations value : S(EX) → L over the propositional alphabet A

with values in the logical algebra L is denoted by V (A, L).

And here is the existence theorem for valuations:

Proposition 151 Given a propositional alphabet A, a set of variables V

and a logical algebra L, the functional restriction map

var : V (A, L)→ Set(V , L) : value , value|V
is a bijection, i.e., for each set map v : V → L defined on the propositional

variables, there is exists exactly one valuation value : S(EX) → L such that

value|V = v . In other words, once we know the values of the variables, we

know the values of all expressions.

Proof Injectivity is proved by induction on the length of a sentence w. For

length 1, we have values from V , and this is what we want. For l(w) > 1, we have

one of the formsw = (!α), (α | β), (α & β), (α −> β), and the induction hypothe-

sis on α,β, together with the axiomatic properties (i)–(iv) of valuations solve the

problem. Conversely, if a map vV : V → L is given, its extension to any sentence

w ∈ S(EX) may be defined by recursion following the axiomatic properties (i)–

(iv) of valuations. This is indeed well defined, because by proposition 147, the

form and the components of a compound sentence are uniquely determined by

w. �

Exercise 76 Given a propositional alphabet A, let a = 3 = {0,1,2} and

consider the powerset Boolean algebra L = 23. Let a value map value ∈
V(A, L) be defined by value(v0) = ⊥, value(v1) = {0,2}, value(v2) =
{1}, Calculate the value

202 Formal Propositional Logic

value(((!(v2 & (!v0))) | ((!v1) −> v2))).

Notation 11 For long expressions, such as the still rather short example

in the previous exercise 76, the number of brackets becomes cumbersome

to keep under control. To avoid this effect, one uses the same trick as for

ordinary arithmetic: strength of binding, i.e., the formal rules are replaced

by some implicit bracket constructions which enable us to omit brackets in

the notation. The rules of binding strength are these: ! binds stronger than

& and |, and these bind stronger than −> . Under this system of rules, the

above example

((!(v2 & (!v0))) | ((!v1) −> v2))

would be shortened to

!(v2 & !v0) | (!v1 −> v2)

The main problem of formal propositional logic is to understand which

kind of sentences w ∈ S(EX) have the value value(w) = > under cer-

tain valuations. The most prominent of these questions is the problem

of so-called tautologies, i.e., sentences, which have the value > under all

possible valuations of a given class. Here is the formalism:

Definition 114 Given a propositional alphabet A, a logical algebra L, a

sentence s ∈ S(EX), and a valuation v ∈ V(A, L), one says that s is v-

valid if v(s) = >, in signs: v î s. If v î s for all v ∈ V(A, L), one says

that s is L-valid, in signs L î s. In particular, if 2 î s, one says that s is

classically valid or that s is a tautology and writes î s. If s is valid for all

Boolean algebras, one says that s is Boolean valid and writes BA î s. If s is

valid for all Heyting algebras, one says that s is Heyting valid and writes

HA î s.

Exercise 77 Show that for any sentence s ∈ S(EX), we have HA î
s −> !!s and BA î !!s −> s. Give an example of a HA L such that

L î !!s −> s is false.

In order to control what kinds of sentences are valid for given valuation

classes, one needs a more constructive approach, such as the axiomatic

method.

17.4 Axiomatics 203

17.4 Axiomatics

Axiomatics is about the construction of a set of new sentences from given

ones by use of a predetermined system of inference rules. This setup is a

particular case of so-called production grammars, which will be discussed

in chapter 19. Here, we stay rather intuitive as to the general nature of

such an inference rule system and will only concentrate on a special type,

the one defined by the classical inference rule modus ponens (the Latin

name is a marker for the Medieval tradition of formal logic). It is the

rule which we apply constantly: If A is the case (i.e., true), and if the

implication A IMPLIES B is the case, then also B is the case. In fact,

otherwise, by absolute logic, B would not be the case (false), but then A
IMPLIES B cannot be the case by the very definition of implication. The

formal restatement of this inference rule defines classical axiomatics as

follows.

Definition 115 One is given a set AX ⊂ S(EX) of sentences, called axioms.

A proof sequence (with respect to AX) is a finite sequence p = (si)i=1,2...n ∈
S(EX)n of positive length l(p) = n such that s1 ∈ AX , and for i > 1, either

si ∈ AX , or there are two sentences sk and sl = (sk −> si) where k, l < i.

A terminal sentence sn in a proof chain is called a theorem with respect

to AX . The set of theorems is denoted by SAX (EX). If SAX (EX) is clear, the

fact that s ∈ SAX (EX) is also denoted by |——
AX
s.

Intuitively, the role of axioms is this: One accepts axioms as being true a

priori, i.e., one only looks for classes of valuations which map all axioms

to >. One then wants to look for all sentences which are also true if the

axioms are so. The only rule is the formalized modus ponens: Given two

theorems s and (s −> t), then t is also a theorem. Evidently, this pro-

cess can be managed by a machine. The point of axiomatics is that proof

sequences starting from a particular set of axioms yield the tautologies.

Definition 116 The axioms of classical logic (CL) are the sentences which

can be built from any given three sentences α,β, γ ∈ S(EX) by one of the

following constructions:

(i) (α −> (α & α))

(ii) ((α & β) −> (β & α))

(iii) ((α −> β) −> ((α & γ) −> (β & γ)))

204 Formal Propositional Logic

(iv) (((α −> β) & (β −> γ)) −> (α −> γ))
(v) (β −> (α −> β))

(vi) ((α & (α −> β)) −> β)
(vii) (α −> (α | β))

(viii) ((α | β) −> (β | α))
(ix) (((α −> β) & (β −> γ)) −> ((α | β) −> γ))
(x) ((!α) −> (α −> β))

(xi) (((α −> β) & (α −> (!β))) −> (!α))
(xii) (α | (!α))

The axioms of intuitionistic logic (IL) are those sentences in CL built from

all constructions except for the last, (α | (!α)).

The intuitionistic axiom system IL contains those axioms which we need

to produce sentences which are Heyting valid. Recall that we have in fact

Heyting algebras L, for example L = Fuzzy(0,1), where x ∨ (¬x) ≠ > in

general. The crucial proposition is this:

Proposition 152 Given a propositional alphabet A and a sentence s ∈
S(EX), the following statements are equivalent:

For classical logic:

(i) The sentence s is a tautology, i.e., î s.
(ii) The sentence s is Boolean valid, i.e., BA î s.

(iii) s is a theorem with respect to CL, i.e., |——
CL
s

And for intuitionistic logic:

(i) The sentence s is Heyting valid, i.e., HA î s.
(ii) s is a theorem with respect to IL, i.e., |——

IL
s

Proof (ii) implies (i): This is similar to proposition 153 which deals with (iii)

implies (i), i.e., the special case where BA is the set 2.

(i) implies (iii): This part is proposition 154.

The equivalence of (i) and (ii) in the intuitionistic case follows these lines: Sound-

ness, i.e., (i) implies (ii) follows as easily as soundness for Boolean algebras. Com-

pleteness is proved as follows: From |——
IL
s, one constructs a special Heyting al-

gebra, the so-called Lindenbaum algebra HIL. Then one shows that the validity

for this algebra implies |——
IL
s. So finally, as HA î s implies HIL î s, we are

17.4 Axiomatics 205

done. The details are beyond the scope of this introductory book, but see [38]

for details. �

The equivalence of (i) and (iii) of the Boolean part of this theorem is of

particular significance. Historically, each direction has been introduced

as a distinct theorem. We now state both theorems separately.

The first theorem, corresponding to the direction from (iii) to one deals

with the requirement that only tautologies can be proved from the axiom

system CL of classical logic, only tautologies are generated. This is the

so-called soundness theorem:

Proposition 153 (Soundness) If |——
CL
s, then î s.

This is just an exercise:

Exercise 78 Prove proposition 153 as follows: First show that all axioms

are classically valid. Then show by induction on the proof chain length

that any theorem is classically valid.

The more involved part is the converse, the so-called completeness theo-

rem:

Proposition 154 (Completeness) If î s, then |——
CL
s.

We shall not give a proof of the completeness theorem, which is quite

involved. The original proof of such a theorem was given in 1921 by Emil

Post (see [45]).

Example 74 The sentences (α −> (β | α)) for α,β ∈ S(EX) seem to

be obvious theorems of CL, especially since (α −> (α | β)) is an axiom

schema. But we have to provide a proper proof sequence in order to estab-

lish this fact. On the right of each line of the proof sequence we indicate

whether we have used an axiom (ax.) or applied modus ponens (m.p.) to

two of the previous lines. Circled numbers À and Á are used as abbrevi-

ations to refer to the formulas in line 1 and line 2, respectively. (To be

absolutely accurate, we should state that the following proof sequence is

really a schema for generating proof sequences of (α −> (β | α)) for all

α,β ∈ S(EX)).

206 Formal Propositional Logic

1. (α −> (α | β)) ax. (vii)

2. ((α | β) −> (β | α)) ax. (viii)

3. (À −> (Á −> À)) ax. (v)

4. (Á −> À) m.p. 1, 3

5. ((Á −> À) −> ((Á & Á) −> (À & Á))) ax. (iii)

6. ((Á & Á) −> (À & Á)) m.p. 4, 5

7. (Á −> (Á & Á)) ax. (i)

8. (Á & Á) m.p. 2, 7

9. (À & Á) m.p. 6, 8

10. (((α −> (α | β)) & ((α | β) −> (β | α))) −> (α −> (β | α))) ax. (iv)

11. (α −> (β | α)) m.p. 9, 10

Hence |——
CL
(α −> (β | α)) for all α,β ∈ S(EX).

This proof was rather easy and short. However, proof sequences for the-

orems of even a little more complexity tend to become long and intricate.

Therefore, whenever one has established the theoremhood of a sentence,

one may use it in subsequent proof sequences just as if it were an axiom.

If asked, one could then always recursively expand the theorems to their

proof sequences to get a sequence in the originally required form.

Sorite 155 Abbreviating ((α −> β) & (β −> α)) by (α <−> β), the follow-

ing sentences are tautologies:

1. (Associativity)

((α | β) | γ <−> α | (β | γ)) and ((α & β) & γ <−> α & (β & γ))

2. (Commutativity) (α | β <−> β | α) and (α & β <−> β & α)

3. (De Morgan’s Laws)

((!(α | β)) <−> (!α & !β)) and ((!(α & β)) <−> (!α | !β))

Proof The sentences can be proved along the lines of example 74. However the

proofs quickly become very unwieldy, and to handle them at all, a number of

tools have to be developed, such as the Deduction Theorem. For more details

about proof theory, see any book on mathematical logic, such as [17]. �

One also calls sentences s and t equivalent iff (s <−> t) is a tautology.

Notice that from the associativity, we may group conjunctions or disjunc-

tions in any admissible way and obtain sentences which are equivalent to

each other. We therefore also omit brackets in multiple conjunctions or

disjunctions, respectively.

17.4 Axiomatics 207

Exercise 79 A sentence s is in disjunctive normal form iff s = s1|s2| . . . sk,
where each si is of the form si = si1 & si2 & . . . sik(i) with sij being a

propositional variable v ∈ V or its negation (!v).

A sentence s is in conjunctive normal form iff s = s1 & s2 & . . . sk, where

each si is of the form si = si1 | si2 | . . . sik(i) with sij being a propositional

variable v ∈ V or its negation (!v).

Use the axioms and the sorite 155 to show that every sentence is equiv-

alent to a sentence in disjunctive normal form and also to a sentence in

conjunctive normal form.

Exercise 80 Define the Sheffer stroke operator by (α || β) = (!(α & β)).

Show that every sentence is equivalent to a sentence, where only the Shef-

fer operator occurs. In electrical engineering the stroke operator is also

known as NAND.

CHAPTER 18

Formal Predicate Logic

Up to now, we have succeeded in formalizing basic logic as controlled by

truth values produced by the propositional connectives !,&, |, and −>
of negation, conjunction, disjunction, and implication. However, nothing

has been done to mimic the ‘anatomy of propositions’, in fact, we had

just offered an ‘amorphous’ set of propositional variables v0, v1, . . . with

no further differentiation. So the truth value of sentences was based on

the completely arbitrary valuation of propositional variables.

Now, mathematics needs more refined descriptions of how truth and

falsity are generated. For example, the simple set-theoretic definition

a ∩ b = {x | x ∈ a and x ∈ b} uses composed predicates: (1) P(x)

is true iff x ∈ a, (2) Q(x) is true iff x ∈ b, and the combination thereof

(P & Q)(x) is true iff P(x) andQ(x) are both true. So, first of all we need

to formalize the concept of a predicate.

Next, let us look at the pair axiom: “If a and b are two sets, then there is

the pair set {a,b}.” This statement uses the predicates (1) S(x) is true iff

x is a set, (2) E(x,y) is true iff both S(x) and S(y) are true, and x ∈ y .

We implicitly also need the predicate I(x,y) which is true iff both S(x)

and S(y) are true, and x = y . This setup transforms the axiom to the

shape “If a and b are such that S(a) and S(b), then there is c with E(a, c)

and E(b, c), and if x is such that E(x, c), then I(x,a) or I(x, b).” Besides

the predicative formalization, we here encounter two more specifications:

the first part “If a and b are such that S(a) and S(b). . . ”, which means

“Whenever we take a, b. . . ”, in other words, we suppose a given universe

of objects from where we may select instances a and b and then ask them

to comply with certain predicates S(a) and S(b), i.e., to be sets. This is

210 Formal Predicate Logic

expressed by the so-called universal quantifier : “For all a, b. . . ”. Further,

we also recognize an existence quantifier : “. . . there is c with . . . ”, which

is expressed by “. . . there exists c with . . . ”.

In order to cope with the common mathematical constructions, one usu-

ally is a bit more specific in the formalization of predicates. As modeled

from set theory, there are two basic types of predicates: relations and

functions. This means that we are considering predicates defined by re-

lations and functions in the following sense: Given n sets A1, . . . An and

an n-ary relation, i.e., a subset R ⊂ A1× . . . An of their Cartesian product,

one defines the associated n-ary predicate by R(x1, . . . xn) which is true

iff (x1, . . . xn) ∈ R. Observe that n-ary relations generalize the more re-

strictive concept of an n-ary relation R ⊂ an introduced in definition 33

by varying each of the n factors of an. Similarly, if f : A1× . . . An → An+1

is a set function, one defines the predicate f(x1, . . . xn, y) which is true

iff f(x1, . . . xn) = y . This includes the two special cases where n = 0. For

0-ary relations, this means that we consider the ‘empty Cartesian prod-

uct’ (check the universal property of Cartesian products to understand

the following definition). We are given a subset of the final set 1, in other

words, one of the classical truth values ⊥,> of the Boolean algebra 2.

Thus, we also include the extremal truth values as basic predicates. As to

functions of 0 variables, this means that the domain is again the empty

Cartesian product 1. So a 0-ary function f : 1 → A1 is identified with

the image y = f(0) of the unique argument 0 ∈ 1, in other words, 0-ary

functions are just ‘constant’ elements in A1.

A last remark must be made concerning variables. We have constantly

used some symbols a,b,x, etc. to feed the predicates. The nature of

these variables has not been discussed. Since predicates are generated

by relations or functions, we may interpret variables to refer to values in

the corresponding domain sets Ai. However, variables may not refer to

relations or functions or even higher order objects, such as relations of

relations, etc. Together with this last restriction we have what is called

first order (formal) predicate logic.

We are now ready to set up the formal framework. The methodology is

quite the same as for formal propositional logic: One first defines the

syntactical structures, then the objects of semantics, and finally the for-

malization of signification.

18.1 Syntactics: First-order Language 211

18.1 Syntactics: First-order Language

The basis of the formalized language is again a set of alphabetic symbols

which we then combine to obtain reasonable words. Let us first formalize

the relations and functions, together with the corresponding variables.

To this end, if S is a set, define by Sequ(S) the set of finite sequences

s = (A1, . . . , An),Ai ∈ S, where for n = 0 we take by definition the unique

sequence which is defined on the empty index set 0.

Exercise 81 Show that the set Sequ(S) always exists, and that Sequ(S) =
Sequ(T) iff S = T .

Definition 117 For a finite set S, a signature is a triple

Σ = (FunType : Fun→ Sequ(S),RelType : Rel → Sequ(S), (VA)A∈S)

of two set maps and a family of denumerable sets VA. In the uniquely

determined S, finite by hypothesis, the elements A ∈ S are called sorts, the

elements f ∈ Fun (in the uniquely determined set Fun) are called function

symbols, and the elements R ∈ Rel (in the uniquely determined set Rel) are

called relation symbols. One supposes that all the sets Fun,Rel, and VA are

mutually disjoint. The elements x ∈ VA are called variables of sort A. The

values of FunType(f) and RelType(R) are called the types of f and R,

respectively. The length n ≥ 0 of the type (A1, . . . An) of a relation symbol

is called its arity; the number n ≥ 0 in the type (A1, A2, . . . An+1) of a

function symbol is called its arity; so by definition, function symbols always

have at least one sort in their type. In particular, 0-ary functions are called

constants, whereas 0-ary relations are called atomic propositions.

Given a signature Σ, a function symbol f , together with its type

(A1 . . . An, An+1), is denoted by

f : A1 . . . An → An+1,

where the last sort is denoted by A since its semantic role to be defined later

is that of a codomain, but it is a sort much as the others are. A relation

symbol R, together with its type (A1 . . . An), is denoted by

R) A1 . . . An.

In order to denote the sort A of a variable x ∈ VA or the (n + 1)st sort A

of a function f : A1 . . . An → A one also writes x : A, or f : A, respectively.

212 Formal Predicate Logic

Since we are interested in a vocabulary of general usage, we shall more-

over suppose that the following special symbols are part of our signature:

• For each sort A, the relational equality symbol
A= with RelType(

A=) =
(A,A) is an element of Rel, and we usually use the infix notation (a

A=
b) instead of

A= (a, b), and, if the sort A is clear, we just write a = b,

but be warned: this is by no means equality in the sense of set theory,

it is just an abbreviation of
A= and has no content whatsoever on the

present syntactical level of the theory.

• Among the atomic proposition symbols we have the falsity atom ⊥ and

the truth atom >. We shall not invent new symbols for these entities

in order to distinguish them from the synonymous entities in logical

algebras since there is no danger of confusion.

Example 75 As a prototypical example, we shall develop the predicate

logic which describes Peano’s construction of natural arithmetic, a setup,

which we have modeled on the set theory of finite ordinal numbers, and

which has been described in terms of Peano’s five axioms (see proposi-

tions 45 and 47).

For Peano’s axioms we need this repertory of symbols and operations:

• A symbol for the constant 0;

• a set of variables x,y, . . . to designate natural numbers;

• a predicate symbol of equality x = y between natural numbers x,y ;

• a function symbol for the sum x +y of two natural numbers x,y ;

• a function symbol for the product x ·y of two natural numbers x,y ;

• a function symbol for the successor x+ of a natural number x.

This requirement analysis yields the following signature: We have a single

sort (the natural numbers) A, so the set of sorts is S = {A}. Accordingly,

we have one (denumerable) set of variables VA, from which we choose the

variables x,y, To fix ideas, take the set of words VA = {x0, x1, x2, . . .}
with indexes being natural numbers in their decimal representation. The

set of relation symbols is Rel = { A=) AA,⊥) 0,>) 1}, the sot of func-

tion symbols is Fun = { A+ : AA → A, A· : AA → A,+A : A → A,
A

0 : 1 → A},
the superscripts being added to indicate that we are only setting up

a symbol set, and not real arithmetic operations. The type maps have

18.1 Syntactics: First-order Language 213

been given by the arrow notation within Fun. This means, that actually,

FunType(
A+) = (A,A,A), and FunType(

A

0) = (A), the latter being the con-

stant symbol for zero.

With these symbols, one now defines the alphabet of a predicate language

as follows:

Definition 118 A predicative alphabet is a triple P = (Σ, B, C) of these

sets:

(i) The set Σ is a signature, with the defined set S of sorts, the set Fun

of function symbols, the set Rel of relation symbols, and the family

(VA)S of sets of variables.

(ii) The set B = {(,), , } of left and right brackets, and the comma.

(iii) The set C = {!,&, |, −> ,∀,∃} of connectives, where ∀ is called the

universal quantifier, and ∃ is called the existence quantifier.

One again supposes that the sets VA, Fun,Rel, B, C are mutually disjoint.

We again have this monoid of predicative expressions:

Definition 119 Given a predicative alphabet P as explicited in defini-

tion 118, the monoid EX = EX (P) of expressions over P is the word

monoid Word(VS t Funt Rel t B t C), with VS =
⊔
A∈S VA.

Like with sentences, we want to construct reasonable predicative expres-

sions, which this time we call formulas instead of sentences. The con-

struction needs an intermediate step.

Definition 120 Given a predicative alphabet P , the set Term(P), the ele-

ments of which are called terms, is defined as the (uniquely determined)

minimal subset Term(P) ⊂ EX (P) such that the following two conditions

hold. Simultaneously we add the recursive definition of the sort of a term.

(i) VS ⊂ Term(P), and a variable x ∈ VA regarded as a term has the

same sort x : A as the variable as such. Attention: the expressions

x : A and f : A are not words of Term(P) or of any other formula,

they are normal mathematical formulas.

(ii) If, for 0 ≤ n, t1 : A1, . . . tn : An are terms with the respective sort

sequence of sorts (type) A1, . . . An, and if f : (A1 . . . An) → A is a

function symbol, then the expression f(t1, . . . tn) is a term, and we

214 Formal Predicate Logic

define f(t1, . . . tn) : A. In particular, the constants f() : A are terms

(the case of n = 0); for practical reasons we also include the words

f (and the notation f : A for f() : A) together with the constants

f().

Example 76 Taking up our prototypical example 75 of Peano arithmetic,

we have these terms:

• the variables xn with their (unique) sort xn : A,

• the constant symbol
A

0 : A,

• the function symbols with terms in their argument places, e.g., +A(
A

0),

which we presently also abbreviate by
A

1, etc., n
A+ 1 for +A(

A

n) (atten-

tion: this is only an informal convention to save space, but not strictly

conforming to the definition)

• the function expressions (
A

0
A+
A

0), (
A

0
A·
A

0), (
A

0
A+
A

1), ((
A

0
A·
A

0)
A+
A

1), and so

forth.

Similarly to the recursive construction of sentences in definition 109 and

proposition 144, one may describe Term(P) recursively.

Exercise 82 Give a recursive definition of Term(P) in terms of its inter-

sections Term(P)n = Term(P) ∩ EX (P)n, starting from Term(P)0 = ∅
and Term(P)1 = Fun0 t VS , where Fun0 = {f | f ∈ Fun, FunType(f) =
(A), i.e., 0-ary} is the set of constant symbols.

We may now define general formulas for a predicative language by induc-

tion:

Definition 121 Given a predicative alphabet P , the set F(EX) over the

predicative alphabet P is the smallest subset F(EX) ⊂ EX = EX (P) con-

taining all these words which are called its formulas:

(i) the relational formulas R(t1, . . . tn) for R ∈ Rel, and terms ti ∈
Term(P) with ti : Ai for the type RelType(R) = (A1, . . . An), includ-

ing the 0-ary relation words R(), which we again shorten to R; this

includes in particular the equality formulas (t
A= s) for terms s : A

and t : A;

(ii) the truth formula > and the falsity formula ⊥;

18.1 Syntactics: First-order Language 215

(iii) negation: if φ is a formula, then so is (!φ);

(iv) disjunction: if φ and ψ are formulas, then so is (φ | ψ);
(v) conjunction: if φ and ψ are formulas, then so is (φ & ψ);

(vi) implication: if φ and ψ are formulas, then so is (φ −> ψ);
(vii) universal quantification: if φ is a formula, and if x is any variable,

then (∀x)φ is a formula;

(viii) existential quantification: if φ is a formula, and if x is any variable,

then (∃x)φ is a formula.

The set F(EX) of formulas over the predicative alphabet P is called the

predicative language defined by P .

Example 77 Continuing example 76 of Peano arithmetic, we have these

formulas: In addition to the falsity and truth formulas ⊥ and >, we have

the equality relation formulas t
A= s, for terms s and t, e.g.,

A

0
A= (

A

0
A+

A

0). We then have the formulas obtained by logical connectives which are

recursively applied to formulas, e.g., (!⊥), (!
A

0
A= (

A

0
A+ x7)), (> & (

A

0
A=

A

0)).

Finally we have the formulas obtained from the universal quantifier, e.g.,

(∀x3)(
A

0
A= (x3

A+ x7)), or from the existence quantifier, e.g., (∃x1)(
A

0
A=

+A(x1)).

Exercise 83 Give a recursive definition of F(EX) which is based on the

formulas of given word length n, namely, F(EX)n = F(EX) ∩ EXn, where

EXn is the set of expression with word length n.

Within this vast vocabulary, many formulas are just meaningless ‘forms’.

For example, the formula (f (x) = 3) has no meaning if the variable

x is not specified, even if we know a priori that the sorts f : B and

3 : B coincide. However, if we prepend the existence quantifier, i.e.,

(∃x)(f(x) = 3), then the formula may become meaningful, i.e., loaded

with a semantic truth value. Therefore one is interested in defining which

variables in a formula are “bound” by a quantifier, and which are not, i.e.,

“free”. Here is the precise definition of the set Free(φ) ⊂ VS of free vari-

ables of φ. It is, however, convenient to start this definition with the set

of free variables of terms. Attention: We use the fact that the components

of compound formulas, such as (∀x)φ or (φ −> ψ), are uniquely deter-

mined. We have shown such a uniqueness theorem in proposition 147,

216 Formal Predicate Logic

and it is recommended to meditate over this fact in the present context,

too! In particular, the scope of a variable x is the uniquely determined for-

mulaφ following (∀x) or (∃x) in a formula . . . (∀x)φ . . . or . . . (∃x)φ . . .,
respectively.

• Free(>) = Free(⊥) = ∅;

• for a constant term t = f(), we set Free(t) = ∅;

• for a variable x, we set Free(x) = {x};
• for a term t = f(t1, . . . tn),n > 0, we set Free(t) = ⋃i Free(ti);

• if φ = R(t1, . . . tn) is a relational formula, then Free(φ) = ⋃i Free(ti),

i.e., the set of all variables appearing in the terms ti;

• we set Free((!φ)) = Free(φ);

• if σ is one of the formulas (φ | ψ), (φ & ψ), (φ −> ψ), then Free(σ) =
Free(φ)∪ Free(ψ);

• we set Free((∀x)φ) = Free((∃x)φ) = Free(φ)− {x}.

The concept of free variables is quite delicate. For example, the variable x

is free in the formula ((∀x)(f(x) = g(y)) & (x = x)) because it is free in

the second formula, whereas it is not free in the first formula. Intuitively,

the role of x in these two component formulas is completely different:

In the first one, x could be replaced by any other variable of the same

sort without changing the formula’s meaning. In the second component,

we could not do so because the usage of this one changes radically if we

embed it in a larger context of formulas and variables.

Definition 122 A formula φ without free variables, i.e., Free(φ) = ∅, is

called a (predicative) sentence.

The only way to produce non-trivial sentences without free variables is to

apply quantifiers. Suppose that the set VS of variables is linearly ordered

(we know that a finite disjoint union of n denumerable sets can be linearly

ordered, for example by interpreting the jth element of the ith set, i =
0,1,2 . . . n− 1, as the natural number j ·n+ i). We write this ordering as

x < y for variables x and y .

Definition 123 Given a formula φ ∈ F(EX), let x1 < x2 < . . . xr be

the ordered sequence of the elements of Free(φ). Then we denote by

18.2 Semantics: Σ-Structures 217

(∀)φ the sentence (∀x1)(∀x2) . . . (∀xr)φ, and by (∃)φ the sentence

(∃x1)(∃x2) . . . (∃xr)φ and call these sentences the universal or existen-

tial closures, respectively, of φ.

18.2 Semantics: Σ-Structures

Semantics has to provide us with logical algebras, where the truth values

can be calculated from the formal data. Here is the framework for this

calculation. Given an alphabet, the invariant data are the sets B of brack-

ets and comma, and the set C of connectives. The set which can vary is

the signature Σ. The semantic structure is tied to the signature. We need

these objects:

Definition 124 Given a signature Σ, a (set-theoretic) Σ-structure M is de-

fined by these sets:

(i) For each sort A ∈ S, we are given a set MA.

(ii) For each n-ary relational symbol R) A1 . . . An, we are given a sub-

set MR ⊂MA1 × . . .MAn , called a relation (recall that we had defined

a relation by a subset of the second power X2 of a set X, and a graph

as a subset of a Cartesian product X×Y of sets X and Y , the present

one is a generalization of those concepts). In particular, for atomic

propositions with n = 0, e.g., ⊥ and >, we are given the subsets of

the final set 1, i.e., the truth values ⊥ = 0 and > = 1, elements in the

Boolean algebra 2.

(iii) For each n-ary function symbol f : A1 . . . An → A, we are given a

set function Mf : MA1 × . . .MAn → MA. In particular, for n = 0 we

are given a “constant”, i.e., an element Mf ∈MA.

(iv) For each equality symbol
A=, we are given the diagonal relation MA= =

∆A ⊂M
2
A.

We shall now be able to define truth values in the Boolean algebras of the

sets MA1 × . . .MAn and to define signification of formulas with respect to

these logical algebras.

Of course, if we would take a more general Heyting algebra on the pow-

erset of such a Cartesian product, or even on Cartesian products of di-

graphs and still more ‘exotic’ objects, we would obtain a more general

218 Formal Predicate Logic

predicate logic. This can be done in the so-called topos theory (see for ex-

ample [21]), but for our modest needs, we stick to the classical situation

of Boolean powerset algebras. This is what we mean when talking about

“set-theoretic” Σ-structures.

Example 78 Following up our prototypical example 77 of Peano arith-

metic, we may define a Σ-structure M which everybody would expect: For

the sort A, take MA = N. For ⊥ and >, we have no choice by definition, i.e.,

⊥ = 0 ⊂ 1 and > = 1 ⊂ 1. For equality, we have to take MA= = ∆N. For the

function
A+ we take the ordinary addition MA+ : N×N→ N : (x,y), x+y ,

for
A· we take the ordinary multiplication MA· : N×N→ N : (x,y), x ·y ,

and for +A we take the ordinary successor M+A : N → N : x , x+. Finally,

set MA
0
= 0 ∈ N.

But we could also take any other structure M′, for example exchanging

addition and multiplication in the above M, i.e., M
′
A+
= MA· and M

′
A· = MA+,

and setting M
′
A
0
= 23 ∈ N.

18.3 Signification: Models

The truth values of formulas are constructed as follows.

Definition 125 Let M be a Σ-structure. If t is a term and φ is a for-

mula, and if x1 < . . . xn are their free variables with corresponding sorts

A1, . . . An, we denote by Mt and Mφ, the Cartesian product MA1 × . . .MAn ,

including the special case n = 0, where we set Mt = 1 or Mφ = 1. This set

is called the free range of t and φ.

Next, we need to define evaluation of a term for specific values under a

given Σ-structure. Let t be a term, and x ∈Mt . Then the evaluation s[x] ∈
Ms at x of a term s with Free(s) ⊂ Free(t) is recursively defined by (1) the

component at position s, s[x] = xs ∈ MA if s : A is a variable of sort A;

(2) the value s[x] = Mf (t1[x], . . . tm[x]) ∈ MA for s = f(t1, . . . tm) and

we have f : A.

We shall now attribute to each formula φ ∈ F(EX) a truth value t(φ) in

the Boolean algebra 2Mφ , i.e., a subset t(φ) ⊂Mφ.

18.3 Signification: Models 219

Definition 126 If φ ∈ F(EX) is a formula, and if M is a Σ-structure, one

defines t(φ) according to these cases:

(i) If φ = R is an atomic proposition, one sets t(φ) = MR ∈ 2, in

particular, t(>) = > and t(⊥) = ⊥.

(ii) If φ = R(t1, . . . tm),m > 0, then

t(φ) = {x | x ∈Mφ, (t1[x], . . . tm[x]) ∈MR}

(iii) If φ = (!ψ), then Free(φ) = Free(ψ), and we set t(φ) =Mφ−t(ψ).

(iv) For the three cases φ = (ψ ∗ ρ) where ∗ = {&, |, −> }, one has

Free(φ) = Free(ψ) ∪ Free(ρ), and therefore canonical projections

pψ : Mφ → Mψ and pρ : Mφ → Mρ . We then use the Boolean con-

nectives and define

• t((ψ & ρ)) = p−1
ψ (t(ψ))∩ p−1

ρ (t(ρ)),

• t((ψ | ρ)) = p−1
ψ (t(ψ))∪ p−1

ρ (t(ρ)),

• t((ψ −> ρ)) = t(((!ψ) | ρ)),
(v) For φ = (∀x)ψ or φ = (∃x)ψ, one has Free(φ) = Free(ψ) − {x}

and therefore the projection p : Mψ →Mφ. Then one sets

• t((∀x)ψ) = {y | y ∈Mφ, p
−1(y) ⊂ t(ψ)},

• t((∃x)ψ) = {y | y ∈Mφ, p
−1(y)∩ t(ψ) ≠∅},

including the special case where x 6∈ Free(ψ). In this case the

projection is the identity, and we have t((∀x)ψ) = t(ψ) and

t((∃x)ψ) = t(ψ).

Given these truth evaluations of formulas, one can state validity of for-

mulas similarly to propositional validity. If Free(φ) = x1 < x2 < . . . xm

defines a subsequence of a sequence y1 < y2 < . . .yn of variables with

sorts yi : Bi, then, if y ∈ MB1 × . . .MBn , we have the projection yφ of

y to the coordinate sequence from Mφ. We then define that φ is valid

in y , M î φ[y] iff yφ ∈ t(φ). If φ is a sentence, we write M î φ for

this fact (which is now independent of y), and this means that t(φ) = >.

One then says that the Σ-structure M is a model for the sentence φ. If φ

is not a sentence, one considers its universal closure sentence (∀)φ, see

definition 123, and defines validity of φ by “M î φ iff M î (∀)φ”, which

means that M î φ[y] for all y as above.

Example 79 To conclude example 78 of Peano arithmetic, we want to

model the formulas which are given by Peano’s five axioms. Here are

220 Formal Predicate Logic

these formulas, including those defining addition and multiplication, all

of which are in fact sentences (observe that one could omit the quan-

tifiers in the following sentences and then use the universal closure to

model the Peano axioms):

(i) (Zero is not a successor) (∀x1)(!(
A

0
A= +A(x1))),

(ii) (Equal successors have equal predecessors)

(∀x1)(∀x2)((
+A(x1)

A= +A(x2)) −> (x1
A= x2)),

(iii) (Zero is additive neutral element) (∀x1)((x1
A+
A

0)
A= x1),

(iv) (Recursive definition of addition)

(∀x1)(∀x2)((x1
A+ +A(x2))

A= (+A(x1
A+ x2))),

(v) (Zero is multiplicative “neutralizer”) (∀x1)((x1
A·
A

0)
A=

A

0),

(vi) (Recursive definition of multiplication)

(∀x1)(∀x2)((x1
A· +A(x2))

A= ((x1
A· x2)

A+ x1)),

(vii) (Principle of induction) Denote by Φ(xi) a formula, where xi per-

tains to its free variables. By Φ(+A(xi)) and Φ(
A

0), we denote the

formula after the replacement of each occurrence of xi by +A(xi)

and
A

0, respectively. Then, for each formula Φ(xi), we have this for-

mula:

((Φ(
A

0) & (∀xi)(Φ(xi) −> Φ(+A(xi)))) −> (∀xi)Φ(xi)).

The last item (vii) is not one formula, but one formula for each formula Φ.

A Peano structure is a structure M such that for each of the formulas Ψ

described in (i)–(vii), we have M î Ψ .

Let us now check the validity of formula (i) for our structure M described

in example 78. Formula (i) has the shape φ = (∀x1)ψ, which is evaluated

according to the projection p : Mψ → Mφ = 1, since Free(φ) = ∅. So

let us check the fiber Mψ = p−1(0) and test whether Mψ ⊂ t(ψ), i.e.,

Mψ = t(ψ). But t(ψ) = t((!(
A

0
A= +A(x1)))) = N − t(

A

0
A= +A(x1)), and

t(
A

0
A= +A(x1)) = {x | x ∈Mψ = N,0 =

A

0[x] = +A(x1)[x] = x + 1}, which

is the empty set, we are done, i.e., t(ψ) = N and M î φ.

18.3 Signification: Models 221

Exercise 84 Check whether our structure M described in example 78 is

a Peano structure. Do the same for the structure M′.

Many of the possible formulas are equivalent in the sense that they yield

the same logical values. More precisely:

Definition 127 Given a Σ-structure M, two formulas φ and ψ are called

equivalent iff we have M î (φ <−> ψ) with the usual biimplication

(φ <−> ψ) as an abbreviation for the conjunction ((φ −> ψ) & (ψ −> φ)).

So we are looking for equivalent formulas which look as simple as possi-

ble. One such simplified type is the prenex normal form:

Definition 128 A formula is in prenex normal form (or shorter: is prenex)

iff it is an uninterrupted (possible empty) sequence of universal or existen-

tial quantifiers, followed by a formula without quantifiers. It is in Skolem

normal form if it is in prenex normal form such that all existential quanti-

fiers precede all universal quantifiers.

Example 80 The formula (∀x)(∃y)(∀z)((x = y) | (z < w)) is in prenex

normal form.

Here is the crucial result with regard to Skolem normalization:

Proposition 156 Every formula φ of a Σ-structure M is equivalent to a

Skolem formula ψ.

Proof The proof of this theorem is by induction on the length of the formula. It

is not difficult, but uses a number of auxiliary lemmas which we have no place

to deal with here. However, the principal ideas are these: To begin with, if a

bound quantifier in (∀x)φ is replaced by any other variable z except the free

variables of φ different from x, the new formula is equivalent to the old one.

One then shows that !((∀x)φ) is equivalent to (∃x)(!φ) and that !((∃x)φ) is

equivalent to (∀x)(!φ). If (φ ∗ (∃x)ψ), where ∗ ∈ {|, &}, is a formula, we may

suppose that x is not one of the variables in Free(ψ), and then (φ ∗ (∃x)ψ)
is equivalent to (∃x)(φ ∗ ψ), similarly for the existence quantifier. Formulas

of shape (ψ −> φ) are equivalent to ((!ψ) | φ) by the very definition of truth

values for implications. This gives us the prenex normal form. To construct the

Skolem normal form, one needs auxiliary formulas and free variables, which

must be added to the given formula in order to enable the existence quantifiers

to precede the universal quantifiers, see [27] for details. �

222 Formal Predicate Logic

Example 81 The mathematician Paul Finsler has proposed a problem in

absolute vs. formal mathematical reasoning which has provoked violent

reactions among mathematicians. His proposal regards statements which

cannot be proved by formal reasoning, but nevertheless can be proved by

non-formal reasoning, i.e., by non-formalized human thought.

Suppose that we are given a formal system and a finite (or even denumer-

able) alphabet which is used to write down formal proofs in the shape

of finite chains of words (including the empty space to separate words),

as described in the preceding chapters. Clearly, the set of these chains

is denumerable. Now, we are only interested in such chains of words

which are correct (formal) proofs of a very specific type of statement: We

consider binary representations of numbers d = 0.d1d2 . . ., and we only

consider those chains Ch → d of words which are correct proofs of the

fact that either a specific binary number d has or has not infinitely many

zeros. We may order these proofs lexicographically and also order their

binary numbers according to this ordering. We then obtain a sequence

d(1), d(2), . . . d(n), . . . of all binary numbers which admit any proof chain

of the given type. So observe that there are no other formal proofs in this

formal framework which decide on the infinity or non-infinity of zeros in

binary numbers. Now define a new binary number a by an antidiagonal

procedure: an = 1− d(n)n, n = 1,2, For this binary number, there is

no formal proof in our repertory, since any proof Ch → a would place

a at a position m, say. And if a = d(m), then we have a contradiction

am = 1− d(m)m = d(m)m. So a has no formal proof.

But we may give an informal proof, and show that a has an infinity of

zeros:

In fact, take the binary sequence d = 0.1111 . . . having only 1 as

entries. By definition, this d has no zeros. A formal proof, say

Ch0 → 0.1111 . . ., of this is immediate. But then the formal proofs

Ch0 & Ch0 & Ch0 . . .Ch0, n times, for n = 1,2,3 . . . all also do the

job. So the number 0.1111 . . . appears an infinity of times (once

for each such formal proof), and the antidiagonal therefore has

an infinity of zeros.

The point is that by construction of the set of all proofs in the given for-

mal system, this set cannot contain the proof just delivered. (The formal

description uses the above letters which we may easily suppose to be part

of our alphabet.) Finsler argues that we must have left the formal system,

because the proof is, by construction, not in the list of proofs.

CHAPTER 19

Languages, Grammars,

and Automata

Until now, all formalizations of logic have been presented on a level which

does not directly involve computers in the sense of machines which can

execute commands and produce an output relating to formalized logical

expressions. So our overall plan to incorporate logical reasoning in com-

puterized operations still lacks the conceptual comprehension of how

machines may (or may not) tackle such a task. We have learned in chap-

ters 17 and 18 that formalized logic is built upon word monoids over ade-

quate finite or infinite alphabets. We have also learned that the reasonable

expressions of formal logic are words which can be given by recursion on

the word length and a defined set of construction rules. More explicitly,

this was formalized in the axiomatic setup of formal logic, where the

deduction of theorems starts from a set of axioms and proceeds by the

application of a set of deduction rules.

Now, it turns out that this setup of formal logic and its construction

methods is not really bound to the logical context. In fact, computers

don’t care about what words they are dealing with, the only relevant point

of view to them is that they are allowed to build new words from given

ones, following certain rules, and specific alphabets. The semantical issue

of logic is not a conditio sine qua non for the formal control of reasonable

expressions (words). In what follows, we shall therefore develop the more

comprising context of general formal languages, their generative descrip-

tion by use of so-called phrase structure grammars, and their machine-

oriented restatements by automata. So we have a triple perspective: first

224 Languages, Grammars, and Automata

the “static” description of a (formal) language, second its more “dynamic”

description by grammatical production systems, and third, the machine

processes of automata, which encompass certain languages. The point of

this triple approach is that in fact, with respect to the languages they are

generating, certain classes of grammars correspond to prominent classes

of automata (such as stack automata or Turing machines) arranged in a

four-fold hierarchy due to the linguist Noam Chomsky [14].

19.1 Languages

This section is not more than a souped-up review of what we have al-

ready learned about word monoids in section 15.1. To deal with (formal)

languages, we need an alphabet and then investigate the set of words gen-

erated by some determined procedure. However, it is worth extending the

word concept to infinite words, streams, for the sake of completeness of

conceptualization. In this section, we shall always reserve the letterA for

a set which plays the role of an alphabet. Attention: The alphabet may

be a finite or infinite set, no restriction on the cardinality is assumed in

general.

Definition 129 Given an alphabet A, a stream or infinite word (over A)

(in contrast to a common word, which is also termed finite stream) is an

infinite sequence s = (s0, s1, . . .) ∈AN ofA-letters. The length of a stream

s is said to be infinity, in symbols: l(s) = ∞. The (evidently disjoint) union

Word(A)∪AN is denoted by Stream(A) and is called the stream monoid

over A. Its monoid product is defined as follows: If x,y ∈ Word(A), we

reuse the given product xy in Word(A). If x ∈ AN is a stream and y

is any element of Stream(A), we set xy = x and say that streams are

right absorbing; if x = a1a2 . . . an ∈ Word(A) and y = (y0, y1, . . .) is a

stream, we define xy = (a1, a2, . . . an, y0, y1, . . .), i.e., x is prepended to

the stream y . In particular, if x = ε is the neutral element, we set xy = y .

In theoretical computer science it is common to call a proper left (right)

factor x of a word or stream z, i.e., z = xy (z = yx) a prefix (suffix) of z;

if z = uxv with u,v ≠ ε, then x is called infix of z.

Exercise 85 Verify that Stream(A) is indeed a monoid, and that we have

the submonoid Word(A) ⊂ Stream(A) of finite words.

19.1 Languages 225

Definition 130 Given an alphabet A, a stream language (over A) is a

subset L ⊂ Stream(A). If the stream language L is contained in the sub-

monoid Word(A), it is called a word language, or simply a language. The

set of languages over A identifies with the powerset 2Word(A) and is de-

noted by Lang(A).

We shall mostly deal with word languages, except in rare cases, where

the exception is explicitly indicated. So languages are completely un-

structured subsets of Word(A). Therefore, the Boolean operations on

the Boolean algebra Lang(A) generate new languages from given ones,

in particular, we have the union L1 ∪ L2 and the intersection L1 ∩ L2 of

two languages L1 and L2, as well as the complement −L of a language

L over A. Moreover, if L1, L2 ∈ Lang(A), we have the product language

L1L2 = {xy | x ∈ L1, y ∈ L2}. In particular, for n ∈ N, we have the

powers Ln = LL . . . L (n times) of L, including L0 = {ε}, the unit language

overA. We say that L is closed under concatenation iff L2 ⊂ L.

Example 82 Let A = {a,b}, and L1, L2, L3 ∈ Lang(A) be defined as fol-

lows: L1 is the language of non-empty words of the form abab . . . of finite

or infinite length (we also write L1 = {(ab)n | n > 0}). L2 is the language

of words of length ≤ 4. L3 is the language of non-empty words of the

form baba . . . of finite of infinite length (L3 = {(ba)n | n > 0}). Then

L1 ∩ L2 is the set {ab,abab}. L2
2 is the language of words of length ≤ 8

and L1 is closed under concatenation. L1 ∪ L3 is the language of all non-

empty words with alternating letters a and b, finite or infinite, with first

letter a or b. The complement −L2 contains all words with length > 4.

Finally, L1 ∩ L3 is empty.

Exercise 86 Show that for a given alphabet A, Lang(A), together with

the product of languages is a monoid with neutral element {ε}.

Definition 131 Given an alphabetA, the Kleene operator is the map

∗ : Lang(A)→ Lang(A) : L, L∗ = 〈L〉

which associates with every language L the monoid L∗ generated by L.

Example 83 LetA= {a,b, c} and L = {aa,ab,ac, ba, bb, bc, ca, cb, cc}.
Then L∗ is the language of all words of even length.

226 Languages, Grammars, and Automata

Exercise 87 Show that for a given alphabetA, a language L is closed un-

der concatenation iff L∗ = L∪{ε}. Further show that the Kleene operator

is idempotent, i.e., L∗∗ = L∗.

Remark 23 We avoid the common, but ill-chosen notation A∗ for the

word monoid Word(A) since it conflicts with the Kleene operator. In fact,

Word(L) ≠ L∗ in general. Verify this latter inequality.

We shall now give an important example of languages as related to au-

tomata, which will be dealt with more extensively in section 19.3. Re-

call from section 12.2 about Moore graphs that a sequential machine

of n variables was a map M : S × Qn → S involving a state space S

and the n-cube Qn as an input set. More generally, we may define a se-

quential machine over an alphabet A and state space S as being a map

M : S × A → S, and again we write s · a for M(s,a) if M is clear. The

Moore graph of M is defined as previously in the special case A = QN
by Moore(M) : S ×A → S2 : (s, a) , (s, s · a). The proposition 106 of

section 12.2 discussed in the case of A = Qn is also valid for general

alphabets:

Proposition 157 For a sequential machine M : S × A → S, a canonical

bijection

PW : Path(Moore(M))→ S ×Word(A)
is given as follows. If

p = s1 (s1,a1)
ñ s2

(s2,a2)
ñ s3 . . .

(sm−1,am−1)
ñ sm,

then PW (p) = (s1, a1a2 . . . am−1).

Under this bijection, for a given state s ∈ S, the set Paths(Moore(M)) of

paths starting at s corresponds to the set {s} ×Word(A).
Proof The proof is completely analogous to the proof of proposition 106 in the

case ofA= Qn, we therefore refer to that text. �

Under the previous bijection PW we can associate with each couple

(s,w) ∈ S×Word(A) the stateW(M)(s,w) resulting from the successive

application of the word’s letters by this map:

W(M) : S ×Word(A)→ S : (s,w), head(PW−1(s,w))

If M is clear, we shall also write s ·w instead of W(M)(s,w).

19.1 Languages 227

Example 84 Given a sequential machine M over an alphabetA and state

space S, one is often interested in a set E ⊂ S of final states insofar as

they may be reached by M from an initial state i ∈ S. This means by

definition that we look for words w ∈ Word(A) such that i · w ∈ E.

Denote the language (i.e., the set) of these words by (i : M : E), or (i : E)

if M is clear from the context, and call these words the words which are

accepted by the sequential machine M and this language the language

which is accepted by the sequential machine M .

To give a concrete example, take S = {1,2,3,4},A = {a,b, c}, while the

machine M is defined by this table (state i is mapped by letter x to the

state on the column below x on the row of state i, e.g., 3 · c = 4):

letter → a b c

state 1 2 2 1

state 2 1 2 3

state 3 1 2 4

state 4 1 3 1

The graph for this machine is shown in figure 19.1.

Take i = 2, E = {4,2} and calculate the language (i : E).

1

2

3

4

a

b
a

c

b

a c

b

c
a

c

b

Fig. 19.1. The graph for the sequential machine of example 84.

Before leaving this generic subject, we should make a concluding remark

about alphabets as they occur in the real life of computer scientists. Math-

ematically, the set A comprising the “letters” x ∈ A is quite irrelevant,

228 Languages, Grammars, and Automata

and this is also generally true for computer science. Therefore standard-

ization committees have agreed to create standard alphabets of natural

numbers that represent known sets of letters. The most famous is the

American Standard Code for Information Interchange (ASCII) character

set codification, as made precise by the Standard ANSI X3.4-1986, “US-

ASCII. Coded Character Set - 7-Bit American Standard Code for Informa-

tion Interchange”. Figure 19.2 shows a sample of that encoding.1

octal decimal hexadecimal Name

...
...

...
...

060 48 0x30 0 (zero)

061 49 0x31 1

062 50 0x32 2

063 51 0x33 3

064 52 0x34 4

065 53 0x35 5

066 54 0x36 6

067 55 0x37 7

070 56 0x38 8

071 57 0x39 9

072 58 0x3a : (colon)

073 59 0x3b ; (semicolon)

074 60 0x3c < (less than)

075 61 0x3d = (equals)

076 62 0x3e > (greater than)

077 63 0x3f ? (question mark)

0100 64 0x40 @ (commercial at)

0101 65 0x41 A

0102 66 0x42 B

0103 67 0x43 C

0104 68 0x44 D

...
...

...
...

Fig. 19.2. Excerpt from ASCII encoding.

1 See http://www.asciitable.com for the complete table of the 27 = 128 charac-

ters encoded by ASCII.

19.2 Grammars 229

Here, the octal representation refers to the 8-ary representation of num-

bers, whereas the hexadecimal refers to basis 16. One has the following

prefix notations in order to distinguish different adic representations: bi-

nary and decimal numbers have no prefix, octal numbers have the prefix

0, and hexadecimal numbers start with 0x.

Thus ASCII sets up a bijection of the integer interval [0,127] and a set

of relevant characters, predominantly used in the Angloamerican culture.

However, as computers have spread over all cultures, more comprehen-

sive character and sign types have been included in the standardization,

ultimately leading to the Unicode standard. This is a 16-bit character set

standard, designed and maintained by the non-profit consortium Uni-

code Inc. Parallel to the development of Unicode an ISO/IEC standard

was worked on, putting a large emphasis on being compatible with ex-

isting character codes such as ASCII. Merging the ISO (International Or-

ganization for Standardization) standard effort and Unicode in 1992, the

Basic Multilingual Plane BMP was created. But presently the BMP is half

empty, although it covers all major languages, including Roman, Greek,

Cyrillic, Chinese, Hiragana, Katakana, Devanagari, Easter Island “rongo-

rongo”, and even Elvish (but leaves out Klingon).2

19.2 Grammars

We evidently need means to classify languages, since to date the Baby-

lonian variety of languages is beyond control: just imagine all possible

languages based on the traditional European alphabet. We are rightly

confused by the world’s variety of dead or living languages, and by the

ever growing variety of computer languages. A natural way to access lan-

guages is a rule system which directly produces language items, i.e., a

grammatical construction which we also use in natural language to build

new sentences from given ones and from phrase building schemes. Ob-

serve that this is a totally different approach to languages as compared

to the language construction by a sequential machine introduced in the

above example 84. We shall however relate these approaches in the fol-

lowing section 19.3 on automata.

2 See http://www.unicode.org for more information about the Unicode stan-

dard.

230 Languages, Grammars, and Automata

Definition 132 Given an alphabet A, a production grammar over A is a

map

f : Lang(A)→ Lang(A)
which commutes with unions, i.e., for any family (Li)i∈I of languages Li

overA, we have

f(
⋃

I

Li) =
⋃

I

f(Li),

in particular f(∅) = ∅. Ifw ∈ Word(A) is a word, we set f(w) = f({w})
and obtain a restricted map f : Word(A) → Lang(A) : x , f(x), which

we denote by the same symbol. One then has

f(L) =
⋃

x∈L
f(x)

for any language L ∈ Lang(A). Conversely, if we are given any map

g : Word(A) → Lang(A) : x , f(x), we obtain a production grammar

(again denoted by the same symbol) f : Lang(A) → Lang(A) defined by

the above formula f(L) = ⋃
x∈L f(x). In examples, we shall use either

definition according to the concrete situation.

If a production grammar is such that f(x) is always a singleton set, i.e.,

f(x) = {y} for all x ∈ Word(A), then one calls f deterministic, oth-

erwise, it is called nondeterministic. For a deterministic f , we also write

f(x) = y instead of f(x) = {y}.
Given a production grammar f : Lang(A) → Lang(A) and an initial lan-

guage I ∈ Lang(A), one has the language f∞(I) generated by f starting

from I, i.e., f∞(I) = ⋃
0≤i f i(I) with f 0 = Id and f i = f ◦ f ◦ . . . f , i

times, for positive i. If we are also given a language of terminals T , the

language generated starting from I and terminating in T is defined by

(I : f : T) = T ∩ f∞(I). If the production grammar f is clear, one also

writes (I : T) instead of (I : f : T). For a given alphabetA, two production

grammars f1 and f2 with initial and terminal languages I1 and I2 and T1

and T2, respectively, are called equivalent iff (I1 : f1 : T1) = (I2 : f2 : T2).

Example 85 L-systems are a type of production grammar proposed by

biologist Aristid Lindenmayer in 1968 to provide an axiomatic descrip-

tion of plant growth. We give a simple example of a so-called turtle

graphics production grammar t to illustrate the power of L-systems for

the production of complex graphical objects associated with the lan-

guage t∞(I). One starts with a small alphabet A = {F,G,+,-}, a gram-

mar t = tw1,...wn which is defined by a finite set {w1, . . .wn} of words

19.2 Grammars 231

and the function t = tw1,...wn(x) = {x|w1, . . . x|wn} on words x, where

x|w denotes the word deduced from x by replacing each appearance

of the letter F by w. For example, if x = F-FG+F and w = FG-F, then

x|w = FG-F-FG-FG+FG-F.

Let us consider the deterministic case tw ,w = F-FG+F with one initial

word x0 = FG, i.e., I = {x0 = FG}. Then the language t∞w(x0) is the infinite

set

{FG,F-FG+FG,F-FG+F-F-FG+FG+F-FG+FG . . .}.
The turtle language graphically interprets letters and words as follows:

Read a word as a sequence of commands from left to right, so F+FG

means: First do F, then do +, then do F, then do G. The command as-

sociated with F is this: You are a turtle moving on a white paper surface.

Whenever you move, you leave a trace of ink on the surface. Now, doing

F in a word where we have k appearances of the letter x means that the

turtle has a given direction and moves on a straight line of defined length
1
k . Doing G means that the turtle draws a circle of diameter 1

4k around

its center, but then recovers its position after drawing the circle. Doing

+ means that the turtle just turns clockwise by 90 degrees around its

center, whereas - means a counter-clockwise turn by 90 degrees.

What is the graphical interpretation of the production rule x , x|w?

It means that every straight line segment in the turtle drawing defined

by x is replaced by the drawing defined by w placed in the direction of

that line and shrunk by the factor k such that the total length of the

drawing remains constant, i.e., 1 in our case. This is also why L-systems

are labeled “rewriting systems”. Observe that in contrast to F, the action

G is not rewritten, it is a kind of “terminal” entity.

Fig. 19.3. The graphical interpretation of the first three words of the

L-system featured in example 85.

232 Languages, Grammars, and Automata

An important class of production grammars is described by the following

definition:

Definition 133 We are given a finite alphabet A = T ∪N , which is the

disjoint union of two subsets of letters: the (lower case) terminal symbols

t ∈ T and the (upper case) nonterminal symbols X ∈ N . We are also

given a start symbol S ∈ N and a relation R ⊂ (Word(A)−Word(T))×
Word(A). The production grammar fT ,N ,S,R is defined by the quadruple

(T ,N , S, R) on words x ∈ Word(A) as follows:

fT ,N ,S,R(x) = {x}
if there is no u ∈ pr1(R), a, b ∈ Word(A) with x = aub

fT ,N ,S,R(x) = {y | there are words a,b and (u,v) ∈ R
such that x = aub and y = avb}

otherwise.

The quadruple (T ,N , S, R), together with the production grammar it de-

fines, is called a phrase structure grammar. In this context, the language

(S : Word(T)) is called the language generated by the phrase structure

grammar (T ,N , S, R). If y ∈ fT ,N ,S,R(x), one also writes x → y and says

that y is obtained from x by application of the rules R. This applies in

particular if (x,y) ∈ R, then one says for x → y that x is the pattern

for the replacement y . If f(x) is a finite set {y1, y2, . . . yr}, then one also

writes x → y1|y2| . . . yr .

Remark 24 We should add a remark here concerning the question when

two languages L and L′ are identical. By definition, there are two alpha-

bets A and A′ such that L ⊂ Word(A) and L′ ⊂ Word(A′). Saying that

the sets L and L′ are the same means that their elements coincide, i.e.,

the words in L and in L′ are the same, and this means that they are the

same sequences of letters from A and A′ respectively. In other words,

there is a common subset A′′ ⊂ A ∩A′ such that L ⊂ Word(A′′) and

L′ ⊂ Word(A′′) and that these subsets are equal. In the above definition

of a language (S : Word(T)) generated by a phrase grammar, this ap-

plies in the sense that neither the set of nonterminals nor the total set

of terminals is relevant to the definition of (S : Word(T)), it is only the

set-theoretic identification which counts.

19.2 Grammars 233

19.2.1 The Chomsky Hierarchy

We now discuss the four-fold hierarchy

type 3 ⊂ type 2 ⊂ type 1 ⊂ type 0

of successively more comprising language types introduced by Noam

Chomsky. In the following discussion of Chomsky types, we suppose that

in a phrase structure grammar (T ,N , S, R), the sets T ,N and R are all

finite. To begin with, we look at the innermost set of languages, those of

type 3.

Definition 134 If for a phrase structure grammar (T ,N , S, R), every rule

x → y in R has the shape X → Yt (X → tY) or X → s for nonterminal

letters X and Y and terminal letters s and t, the grammar is called left

linear (right linear). If a rule X → ε is also admitted in a left linear (right

linear) phrase structure grammar, it is called left (right) regular.

Proposition 158 For a language L the following four properties are equiv-

alent:

(i) There is a left linear phrase structure grammar which generates the

language L− {ε}.
(ii) There is a right linear phrase structure grammar which generates

the language L− {ε}.
(iii) There is a left regular phrase structure grammar which generates

the language L.

(iv) There is a right regular phrase structure grammar which generates

the language L.

Proof (i) implies (iii): If the left linear phrase structure grammar Gl =
(T ,N , S, R) generates L − {ε} (it cannot generate ε, by the nature of its rules).

If ε ∈ L, then we add a new nonterminal element S0 and the rules S → S0 and

S0 → ε, and the new left regular phrase structure grammar does the job.

(iii) implies (i): If the left regular phrase structure grammar (T ,N , S, R) gener-

ates L, and ε ∈ L, then we successively reduce the number of nonterminals X

which have the rule X → ε until they have disappeared. The crucial the case is

X → ε, when this is the only rule for X on the left side. If we omit this rule, we

not only prevent ε from being generated, but all the words stemming from a rule

Y → xX followed by X → ε are in danger. Therefore, we have to add the rule

Y → x for each Y → xX, then we can omit X → ε, and are done.

234 Languages, Grammars, and Automata

The proof for the right linear cases ((ii) iff (iv)) works the same way, therefore we

omit it.

We are left with the equivalence of left linear and right linear generation of lan-

guages, i.e., (i) iff (ii). We show that (i) implies (ii), the converse follows by ex-

changing left and right. To begin with, we may choose a new start symbol S ′

and add to every rule S → ? a rule S ′ → ?. Then the new grammar never has its

start symbol on the right hand side of any rule and is of course equivalent to

the original. So we may suppose wlog that S never appears on the right side of

a rule. We then construct a right linear grammar Gr = G∗l which is equivalent to

Gl. But we construct more: The rules of Gr are such that the same operator ∗,

when applied to Gr , with left and right exchanged, yields ∗Gr = Gl.
This is the new rule set R∗, the alphabet being unaltered:

1. The rules S → t are left unchanged.

2. A rule S → Xs is replaced by the rule X → s.
3. A rule X → s with X ≠ S, is replaced by the rule S → sX.

4. A rule X → Yt with X ≠ S, is replaced by the rule Y → tX.

We now show that (S : R : T) ⊂ (S : R∗ : T). The converse is true by exchanging

the roles of left and right and by the remark that the star operator, when applied

to Gr gives us back Gl. The proof is by induction on the length n of a path S →
Xs → . . .w with w ∈ (S : R : T). For n = 1 this is rule 1. If S → Xs → . . . vu = w
in Gl has length n+ 1, where the path Xs → . . . vu has length n and stems from

the length n path X → . . . v , then we show that we have a path S → . . . vX → vu
in Gr . We show by induction on path length, that if X → . . . v in Gl has length

m, then there is a path S → vX of length m in Gr . For m = 1, this is rule 3. In

general, we have X → Yx → . . . yx = v , where the rule X → Yx in R is converted

into the rule Y → xX in R∗ according to rule 4 above. By induction hypothesis

we now have this new path: S → . . . yY → yxX = vX, the first part being implied

from Y → . . . y to the right of X → Yx → . . . yx, and we are done. �

Definition 135 A language which shares the equivalent properties of

proposition 158 is called regular or of type 3.

The crucial fact about type 3 languages is this:

Proposition 159 If L, L′ ∈ Lang(A) are of type 3 (i.e., regular), then so

are

L∪ L′, L∩ L′, L∗, LL′,Word(A)− L.
Languages of type 3 are closed under all boolean operations as well as the

Kleene operator and the product of languages.

19.2 Grammars 235

Proof The proof idea is exemplified for the statement of L ∪ L′ being of type

3 if L and L′ are so. Take two phrase structure grammars G = (T ,N , S, R) and

G′ = (T ,N ′, S′, R′) which generate L and L′, respectively. It is clear that one

may suppose that the nonterminal sets N and N ′ are disjoint. From the proof

of proposition 158, we may also assume that the start symbols S and S ′ are never

on the right side of a rule. But then we create a new setN ∗ =N∪N ′∪{S∗} with

a new start symbol S∗ not inN andN ′, while the old rules are inherited, except

for the rules S → w,S′ → w′, which we replace by the rules S∗ → w,S∗ → w′,
and we are done. We refer to [43] for a complete proof. �

Example 86 Let T = {a,b, c} and N = {S,A, B, C} and consider the

language L1 = {albmcn | l > 0,m > 0, n > 0}. A right linear grammar for

this language consists of the rules R1 = {S → aA,A → aA,A → bB, B →
bB, B → cC, B → c, C → cC,C → c}. A right regular grammar can be

expressed with the (simpler) set of rules RR1 = {S → aA,A → aA,A →
bB, B → bB, B → cC,C → cC,C → ε}. Note the different handling of the

end of words. A regular grammar can also be found for the language

L2 = {albmcn | l ≥ 0,m ≥ 0, n ≥ 0}, with the rules R2 = {S → A,A →
aA,A → B, B → bB, B → C,C → cC,C → ε}. For L2 no linear grammar

exists.

A left linear grammar for L1 is given by the rules RL1 = {S → Bc, S →
Cc,C → Cc,C → Bc, B → Bb, B → Ab,A → Aa,A → a}. Using this gram-

mar a derivation for the word abcc is given as follows:

S → Cc
→ Bcc
→ Abcc
→ abcc

A useful property of languages of type 3 is embodied by the following

lemma:

Lemma 160 (Type 3 Pumping Lemma) Let G = (T ,N , S, R) be a linear

grammar and L the language generated by G. Let x ∈ L where l(x) >

card(N). Then there exist words x, z,w ∈ Lang(T), z ≠ ε, such that

x = yzw and yzkw ∈ L for k = 0,1,

Proof Consider a word x of length |x| > |N |. Then a derivation consists of

|x| steps. Since the number of nonterminals is less than |x|, there must be a

subderivation of length at most |N | that begins with a nonterminal, say A, and

236 Languages, Grammars, and Automata

ends with the same non-terminal A, e.g. S → . . . yA → . . . yzA → . . . yzw. But

the subderivation A → . . . zA, can be substituted for the second A, thus yielding

yzzw, and again, yzzzw, and so on. The subderivation can be left out entirely,

yielding yw. �

The languages of type 2 are the context free languages which may be used

to describe programming languages, mainly in its wide-spread Backus-

Naur form (BNF), and more standardized as augmented BNF (ABNF) or

the extended BNF (EBNF) (standard ISO 14977); see 19.2.2 below for this

type of grammars.

Definition 136 A phrase structure grammar (T ,N , S, R), with alphabet

A= T ∪N is said to be

(i) context free if its rules are all of shape X → x with X ∈ N and

x ∈ Word(A);
(ii) reduced if it is context free and for each nonterminal A different

from the start symbol S, there is a rule A → t with t ∈ T terminal,

and for each nonterminal A ∈ N , there is a rule S → vAw with

v,w ∈ Word(A);
(iii) in Chomsky normal form if its rules are of shape X → t or X → AB

for X,A, B ∈N and t ∈ T ;

(iv) in Greibach normal form if its rules are of shape X → xw with

X ∈N , x ∈ T , and w ∈ Word(N).

Proposition 161 For a language L the following four properties are equiv-

alent:

(i) There is a context free phrase structure grammar which generates

the language L.

(ii) There is a reduced context free phrase structure grammar which

generates the language L.

(iii) There is a phrase structure grammar in Chomsky normal form

which generates the language L− {ε}.
(iv) There is a phrase structure grammar in Greibach normal form

which generates the language L− {ε}.
Proof We have given a proof of proposition 158. The proof of this proposition

is however too long for our context, therefore we refer to [43]. �

Definition 137 A language which shares the equivalent properties of

proposition 161 is called context free or of type 2.

19.2 Grammars 237

By virtue of the first criterion in definition 136, a language of type 3 is

evidently of type 2. The crucial fact about type 2 languages is this:

Proposition 162 If L, L′ ∈ Lang(A) are of type 2 (i.e., context free), then

so are

L∪ L′, L∗ and LL′.

Proof Again, we give an idea of the proof for the union L ∪ L′. Take the defini-

tion 136, (i), for two type 2 languages L and L′. Let two phrase structure gram-

mars G = (T ,N , S, R) and G′ = (T ,N ′, S′, R′) generate languages L and L′,
respectively. One may again assume that the sets N and N ′ of nonterminals

are disjoint. Then just take the union ofN andN ′ and add a new start symbol

S∗, together with the two rules S∗ → S and S∗ → S′, which solves the problem.

We refer to [43] for a complete proof. �

There exists also a pumping lemma for languages of type 2:

Lemma 163 (Type 2 Pumping Lemma) Let L be context free. Then there

exists n such that for every x ∈ L with l(x) ≥ n there exist words

u,v,y, z,w where v ≠ ε or z ≠ ε such that x = uvyzw and uvkyzkw ∈
L for k = 0,1, . . .

Proof See [28] for a proof. �

Example 87 We can use a context free grammar to describe expres-

sions of elementary arithmetic. Expressions of this type are common

in the syntax of programming languages. Let N = {S, E, F, T} and take

T = {+,∗, (,),x,y,z} where the letters x, y and z denote variables in

the programming language. The rules are given by R = {E → T+E, E →
T , T → F∗T , T → F, F → (E), F → x|y|z}.
A derivation of the expression x+ y∗ (z+ y) is given in figure 19.4.

Note how the rules model the usual precedence rules of the operators +
and ∗. This is of great practical value when implementing a parser for an

actual programming language.

Figure 19.5 shows the derivation in form of a syntax tree. Each node of

the tree is an application of a rule, the resulting expression can be read

off the leaves of the tree in left-to-right order.

Exercise 88 Not every language of type 2 is of type 3, i.e., the inclusion

type 3 ⊂ type 2 is proper. Construct a context free grammar for the lan-

guage L = {anbn | n ≥ 1} overA = {a,b}, then use the pumping lemma

for type 3 languages to show that there is no regular grammar for L.

238 Languages, Grammars, and Automata

E → T + E
→ F + E
→ x+ E
→ x+ T
→ x+ F ∗ T
→ x+ y∗ T
→ x+ y∗ F
→ x+ y∗ (E)
→ x+ y∗ (T + E)
→ x+ y∗ (F + E)
→ x+ y∗ (z+ E)
→ x+ y∗ (z+ T)
→ x+ y∗ (z+ F)
→ x+ y∗ (z+ y)

Fig. 19.4. A derivation of the expression x+ y∗ (z+ y)

Definition 138 A phrase structure grammar (T ,N , S, R), with alphabet

A = T ∪N is said to be context sensitive iff for every rule x → y in R,

we have l(x) ≤ l(y). A language is called context sensitive or of type 1

iff it is generated by a context sensitive phrase structure grammar.

Evidently, the characterization of context free languages by Chomsky nor-

mal form grammars implies that type 2 is a subset of type 1. The crucial

fact about type 1 languages is this:

Proposition 164 If L ∈ Lang(A) are of type 1 (i.e., context sensitive), then

so is its complement language Word(A)− L.

Proof We refer to [43] for a proof. �

Example 88 Let T = {a,b, c} and N = {S,A, B, C,D, E}. The language

L = {akbkck | k > 0} is of type 1. The rather complicated grammar is

given by the following set of rules: R = {S → Abc,A → a,A → aB, B →
aC,Cb → bC,Cc → Dc,D → bc,D → Ebc, bE → Eb,aE → aB}. Let us see

how this works on the example of the word aaabbbccc:

19.2 Grammars 239

S → Abc
→ aBbc
→ aaCbc
→ aabCc
→ aabDc
→ aabEbcc
→ aaEbbcc
→ aaBbbcc
→ aaaCbbcc
→ aaabCbcc
→ aaabbCcc
→ aaabbDcc
→ aaabbbccc

Fig. 19.5. The syntax tree for x+ y∗ (z+ y).

240 Languages, Grammars, and Automata

We have yet to prove that there is no grammar of type 2 generating this

language. We do this by invoking the type 2 pumping lemma 163. Sup-

pose that L is context free. The lemma assures, that there is a number n

such that the properties of the lemma will be fulfilled for words of length

≥ n. Let us choose the word anbncn ∈ L which is certainly longer than

n. The lemma tells us that this word must have a structure uvyzw such

that uvkyzkw ∈ L for k = 0,1, But however we choose two subwords

in anbncn, the resulting “pumped-up” word will not be in L. Either the

equal number of as, bs and cs will not be maintained, or the order of the

letters will not be respected, as can be easily checked. Thus L cannot be

context free.

Exercise 89 Prove, by finding a counterexample, that the intersection of

two context free languages need not be context free.

The last type 0 is that of completely general phrase structure grammars:

Definition 139 A phrase structure grammar (T ,N , S, R), with alphabet

A= T ∪N is called

(i) general if there are no further conditions,

(ii) separated if each of its rules x → y has one of the following shapes:

a) x ∈ Word(N)− {ε} with y ∈ Word(N),
b) x ∈N with y ∈ T , or

c) x ∈N with y = ε,
(iii) normal if each of its rules x → y has one of the following shapes:

a) x ∈N with y ∈ T ,

b) x ∈N with y = ε,
c) x ∈N with y ∈N 2, or

d) x,y ∈N 2.

It should be stressed that the definition (i) “general phrase structure

grammar” is redundant, but has been used in the computer community

as a synonym of “phrase structure grammar”. So the following proposi-

tion effectively is a statement about phrase structure grammars without

any further attribute.

Proposition 165 For a language L the following four properties are equiv-

alent:

19.2 Grammars 241

(i) There is a (general) phrase structure grammar generating L.

(ii) There is a separated phrase structure grammar generating L.

(iii) There is a normal phrase structure grammar generating L.

Proof We refer to [43] for a proof. �

Definition 140 A language L which shares the equivalent properties of

proposition 165 is called recursively enumerable or of type 0.

19.2.2 Backus-Naur Normal Forms

The syntax of most programming languages, e.g., Algol, Pascal, C or Java,

can be described by context free grammars. Originally, BNF was used by

Peter Naur for the description of Algol 60 in an adaptation of a notation

developed by John Backus.

The idea was to set up a standardized formal procedure to create termi-

nal and nonterminal symbols and to describe the rules. Recall that the

rules in context free grammars have the particular form X → w, where

w ∈ Word(A) and X is a nonterminal symbol. To begin with, the ar-

row “→” in a rule is replaced by the sign “::=” derived from the math-

ematical symbol “:=” meaning that x is defined by y in the expression

x := y . The alternative x → y1|y2| . . . yn is written analogously, i.e., by

x ::= y1|y2| . . . yn.

The more important contribution of BNF is that the terminal and non-

terminal symbols are provided by a standard construction from a given

character set CH , in the ASCII encoding, say, i.e., “CH = ASCII”. The pro-

cedure is very simple: Terminals are just single characters from CH . Non-

terminals are all words of shape 〈w〉,w ∈ Word(CH). The start symbol is

mostly clear from the given rule system. For example, the Algol 60 spec-

ification of a floating point constant is called “<unsigned number>”, and

this is the start symbol, which defines the sublanguage of floating-point

constants as follows:

<unsigned integer> ::= <digit> | <unsigned integer> <digit>

<integer> ::= <unsigned integer> | + <unsigned integer> |

- <unsigned integer>

<decimal fraction> ::= . <unsigned integer>

<exponent part> ::= _10_ <integer>

<decimal number> ::= <unsigned integer> | <decimal fraction> |

242 Languages, Grammars, and Automata

<unsigned integer> <decimal fraction>

<unsigned number> ::= <decimal number> | <exponent part> |

<decimal number> <exponent part>

<digit> ::= 0|1|2|3|4|5|6|7|8|9

Here, the start symbol is S = <unsigned number>. In comparison, the

Extended BNF notation (EBNF) of the same grammar is this:

unsigned integer = digit | unsigned integer, digit;

integer = unsigned integer | "+", unsigned integer |

"-", unsigned integer;

decimal fraction = ".", unsigned integer;

exponent part = "_10_", integer;

decimal number = unsigned integer | decimal fraction |

unsigned integer, decimal fraction;

unsigned number = decimal number | exponent part |

decimal number, exponent part;

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9";

The EBNF notation also includes some extensions to BNF, which improve
readability and conciseness, e.g., the Kleene cross for a sequence of one
or more elements of the class so marked, for example

unsigned integer = digit+;

The changes are evident, the idea behind this standardization is clear and

is usually learned by doing some examples.3

It is also customary to represent a BNF grammar by use of syntax di-

agrams, i.e., groups of flow charts, where the alternatives in a rule

X ::= y1|y2| . . . yn are flow ramifications starting from the block of X and

terminating at the leftmost symbol in the target replacement yi. Here, the

leaves are the terminal symbols. Figure 19.6 is a syntax diagram; such di-

agrams were used for the first time by Jensen and Wirth.

Exercise 90 Define (the fragments of) an alphabet and write the BNF

rules corresponding to the flow charts shown in figure 19.6.

3 See http://www.cl.cam.ac.uk/˜mgk25/iso-14977-paper.pdf for a more

complete description of the BNF standard.

19.3 Automata and Acceptors 243

Fig. 19.6. A syntax diagram as used by Kathleen Jensen and Niklaus

Wirth in [29].

19.3 Automata and Acceptors

In this section, we shall establish a systematic relation between phrase

structure languages and abstract machines, as they are axiomatically de-

scribed by sequential machines, automata and acceptors. It will turn out

that the languages of different Chomsky types are precisely those which

may be defined by specific types of machines, such as Turing machines,

for instance.

We have defined sequential machines in a preliminary context earlier.

Now it is time to give the full-fledged setup of those concepts.

Definition 141 Given a finite alphabet setA, a finite set S of “states”, and

an “initial” state i ∈ S an automaton over A with initial state i is a pair

(M, i) where M is a set map

M : 2S ×A→ 2S

such that M commutes with unions, i.e., for all families (Ui)i∈I of sets of

states Ui ∈ 2S , and for all a ∈A, we have M(
⋃
iUi, a) =

⋃
iM(Ui, a); if M

is clear from the context, one writes U ·a instead ofM(U,a). In particular,

we always have ∅ · a = ∅. The map M is completely determined by its

values on singletons {s} ∈ 2S , i.e., on single states s. As with production

grammars, we therefore also write M({s}, a) = s · a. The corresponding

map S ×A → 2S (now without any further properties), is also denoted by

244 Languages, Grammars, and Automata

M and serves as an alternate definition for an automaton, much as this

was done for production grammars.

An automaton is called deterministic if its images s · a on singletons are

always singletons s · a = {x} (attention: in particular, the images s · a
are never empty!). We then also write s · a = x, and correspondingly M :

S×A→ S. A nondeterministic automaton is one which is not deterministic.

The elementary graph of an automaton is the digraph ΓM : Arr(M) → S2

the arrow set of which is Arr(M) = {(s, a,x) | a ∈ A, s ∈ S,x ∈ s · a}
with ΓM((s, a,x)) = (s, x). The initial state i is rephrased as a morphism

of digraphs i : 1→ ΓM pointing to the vertex i. A path

p = s1 (s1,a1,s2)
ñ s2

(s2,a2,s3)
ñ s3 . . .

(sm−1,am−1,sm)
ñ sm

in ΓM starting at the initial state i (i.e., with s1 = i) is called a state sequence

of the automaton associated with the word Wp = a1a2 . . . am. The lazy

path is associated with the empty word.

Evidently, every automaton (M, i) determines its alphabet A and state

set S, so we do not need to mention them explicitly.

Any automaton defines the associated power automaton (M ′, i′), which,

evidently, is always deterministic, with these data: We replace S by S ′ =
2S and i by i′ = {i}. Then the same map M ′ = M defines an automaton,

but we take the alternate definition M ′ : S′×A→ S′. this time! Using this

definition we don’t need to deal with 22S , as would have been required by

the first definition. This is nothing more than a trick of switching from

the first definition to the second one. The point is that, however, not every

deterministic automaton is of this type, since its state set need not be a

powerset, and the commutation with unions need not work.

Although the elementary graph of an automaton is customary in com-

puter science, it has some serious structural drawbacks which enforce

a second digraph associated with an automaton: the power graph ΓM of

an automaton (i,M) is the elementary graph of the associated power

automaton, ΓM = ΓM′ . Since the power automaton is a priori determin-

istic, the power graph may be described more economically (it is in

fact the Moore graph of the underlying sequential machine, check this

out) as follows: vertexes are the sets of states, its arrows are the pairs

(s, a) ∈ 2S ×A, which are mapped to the state set pairs (s, s ·a), and the

initial state pointer is i′ : 1→ ΓM .

19.3 Automata and Acceptors 245

As to the graph representation i : 1 → ΓM of the automaton (M, i), the

representation of the associated deterministic automaton i′ : 1 → ΓM′

contains the entire original information, whereas the original graph i :

1→ ΓM need not in case where each set s · a is empty.

Definition 142 An acceptor is a triple (M, i, F), where (M : S ×A→ 2S , i)

is an automaton and where F ⊂ S is a subset of “terminal” or “accepting”

states. By definition, the language (i : M : F), or (i : F) if M is clear,

accepted by the acceptor (M, i, F) is the set of words Wp associated with

state sequences p, which start at i and terminate in an element of F . In

particular, the empty wordWi associated with the lazy path at i is accepted

iff i ∈ F . If the automaton is given by the first definition, i.e., (M : 2S×A→
2S , i), then a word Wp is accepted iff its path p starts in {i} and ends in a

set sn of states such that sn ∩ F ≠ ∅. Two acceptors are called equivalent

if they accept the same language.

Observe that an automaton (M, i) can be identified with the acceptor

(M, i,∅). This is why we mostly talk about acceptors from now on,

thereby including automata as special cases.

Proposition 166 Every acceptor (M : 2S ×A → 2S , i, F) is equivalent to

the deterministic power acceptor (M ′, i′, F ′) with M′ = M, i′ = {i}, F ′ =
{s ∈ 2S | s ∩ F ≠∅}.

Exercise 91 The proof is left as an exercise.

This proposition ensures that one can built an equivalent deterministic

acceptor from a nondeterministic acceptor. This means that there is no

fundamental difference between deterministic and nondeterministic au-

tomata.

Like automata, acceptors (M, i, F) are also represented in the form of di-

graphs. The elementary graph of an acceptor is the elementary graph ΓM
of the underlying automaton (M, i), together with the initial state pointer

i : 1 → ΓM , and with the set f : 1 → ΓM of digraph morphisms pointing to

the elements f ∈ F . Also, the power graph of an acceptor (M, i, F) is the

power graph ΓM of the underlying automaton, together with the initial

pointer i′ : 1 → ΓM and the final set pointer F : 1 → ΓM pointing to the

element F ∈ 2S .

246 Languages, Grammars, and Automata

Example 89 Figure 19.7 shows the elementary graph for an acceptor with

states S = {A,B,C,D} and alphabet {a,b, c, d}. Its initial state i = A is

drawn as a square, the terminal states, given by F = {C,D}, as double

circles. This acceptor is nondeterministic: from state A for example there

are two transitions for the letter a.

A

BB

C

D

a

c

b

c

d
a

Fig. 19.7. The elementary graph for a nondeterministic acceptor.

a b c d

{A} {B,D} ∅ ∅ ∅
{B} ∅ {D} {C} ∅
{C} ∅ ∅ {B} ∅
{D} ∅ ∅ ∅ {C}
{A,B} {B,D} {D} {C} ∅
{A,C} {B,D} ∅ {B,C} ∅
{A,D} {B,D} ∅ ∅ {C}
{B,C} ∅ {D} {B,C} ∅
{B,D} ∅ {D} {C} {C}
{C,D} ∅ ∅ {B} {C}
{A,B,C} {B,D} {D} {B,C} ∅
{B,C,D} ∅ {D} {B,C} {C}
{A,C,D} {B,D} ∅ {B} {C}
{A,B,D} {B,D} {D} {C} {C}
{A,B,C,D} {B,D} {D} {B,C} {C}

∅ ∅ ∅ ∅ ∅

Fig. 19.8. The combined states of the power graph.

19.3 Automata and Acceptors 247

I

U

Z

V

X

Y

a

b, c, d

a

c,d

b

a,b, c

b

d

c

ca,d

a,b,d

a,b, c, d

Fig. 19.9. The power graph for the nondeterministic acceptor of fig-

ure 19.7. Note that non-accessible states have been removed.

The associated power graph is shown in Figure 19.9. To compute its tran-

sition function, it is best to draw up a table of the combined states, as in

figure 19.8.

By inspection we see that the only states reachable from the initial state

I = {A} are X = {B}, Y = {C}, Z = {D}, U = {B,D} and V = ∅, where we

have renamed the combined states for easier reference. The new terminal

states are F ′ = {U,Y ,Z}.

Clearly, one is not interested in acceptors of a given language which have

superfluous ingredients, for example too many letters a which are never

used in that language because their output s · a is always empty, or else

states which do not contribute to the language. So we need to compare

acceptors and to construct new ones from given ones. This leads to the

concept of a morphism of automata and acceptors. To this end we use

the following general construction on set maps known from set theory: If

f : X → Y is a set map, then we have an associated set map 2f : 2X → 2Y :

U , f(U), moreover, if g : Y → Z is a second map, then 2g◦f = 2g ◦ 2f .

Definition 143 If (i,M : S ×A → 2S) and (j,N : T × B → 2T) are two

automata, a morphism of automata (σ ,α) : (i,M) → (j,N) is a pair of

set maps σ : S → T and α :A→ B such that

248 Languages, Grammars, and Automata

(i) initial states are conserved: σ(i) = j, and

(ii) for any (s, a) ∈ S ×A, we have 2σ (s · a) = σ(s) ·α(a), where the

products must be taken in the respective automata, i.e., one has the

following commutative diagram

S ×A M
ñ 2S

T ×B

σ ×α
� N

ñ 2T

2σ

�

If (i,M, F) and (j,N,G) are two acceptors, a morphism of the underly-

ing automata (σ ,α) : (i,M) → (j,N) is a morphism of acceptors iff the

terminal sets are also respected, i.e., if σ(F) ⊂ G.

Let (σ ,α) : (i,M : S ×A → 2S) → (j,N : T × B → 2T) and (τ, β) : (j,N :

T ×B → 2T) → (k,O : U × C → 2U) be two morphisms of automata, then

their composition (τ, β)◦(σ ,α) is defined by (τ, β)◦(σ ,α) = (τ◦σ,β◦α).
The same definition is given for the composition of morphisms of acceptors.

For an automaton (i,M : S × A → 2S), denote by Id(i,M) the mor-

phism (IdS , IdA). The notation for the identity of acceptors is correspond-

ingly Id(i,M,F). The morphism (σ ,α) is called an isomorphism of au-

tomata/acceptors iff there is a morphism (τ : T → S, β : B → A) such

that (τ, β) ◦ (σ ,α) = (IdS , IdA) and (σ ,α) ◦ (τ, β) = (IdT , IdB).

Sorite 167 Morphisms of automata/acceptors have these standard prop-

erties:

(i) (Associativity) Whenever the composition (µ, γ) ◦ ((τ, β) ◦ (σ ,α)) is

defined, it is equal to ((µ, γ) ◦ (τ, β)) ◦ (σ ,α) and is denoted by

(µ, γ) ◦ (τ, β) ◦ (σ ,α).
(ii) (Identity) For any morphism (σ : S → T , α : A → B) of automata,

or acceptors, the identities (IdS , IdA) and (IdT , IdB), are right, re-

spectively left, neutral, i.e.,

(IdT , IdB) ◦ (σ ,α) = (σ ,α) = (σ ,α) ◦ (IdS , IdA).

(iii) (Isomorphisms) A morphism (σ ,α) is iso iff σ and α are both bijec-

tions of sets.

Proof This is an easy exercise left to the reader. �

19.3 Automata and Acceptors 249

Exercise 92 Let (σ ,α) : (i,M : S ×A → 2S) → (j,N : T × B → 2T) be a

morphism of automata, show that the map (s, a,x), (σ(s),α(a),σ(x))

on arrows and σ on vertexes defines a morphism Γ(σ ,α) : ΓM → ΓN which

also maps the initial pointers into each other. Also, if we have sets of final

states and therefore acceptors, the corresponding pointers to final states

are preserved. Show that on power graphs ΓM and ΓN we have a corre-

sponding morphism Γ (σ ,α) : ΓM → ΓN defined by 2σ × α on arrows and

2σ on vertexes. Show that for two morphisms (τ, β) and (σ ,α) which

can be composed to (τ, β) ◦ (σ ,α), we have Γ(τ,β)◦(σ ,α) = Γ(τ,β) ◦ Γ(σ ,α)
and Γ (τ,β)◦(σ ,α) = Γ (τ,β) ◦ Γ (σ ,α). This kind of passage from one type of

objects (automata) to another type (digraphs), which also preserves mor-

phisms and their composition, is called functorial and will be discussed

extensively in the second volume of this book dedicated to so-called cate-

gories. Categories are a fundamental subject in modern mathematics and

are becoming more and more important in computer science.

Proposition 168 If (σ : S → T ,α : A → B) is a morphism of acceptors

(σ ,α) : (i,M, F) → (j,N,G), then the induced homomorphism of the lan-

guage set Word(α) : Word(A)→ Word(B)maps (i : M : F) into (j : N : G).

If in particular (σ ,α) is an isomorphism, then Word(α) induces a bijec-

tion (i : M : F)
∼→ (j : N : G). More specifically, if also α = IdA, then

(i : M : F) = (j : N : G).

Exercise 93 Use the elementary graph of an acceptor and the morphism

Γ(σ ,α) to give a proof of proposition 168.

Definition 144 If (σ ,α) : (i,M, F) → (j,N,G) is a morphism of acceptors

over the alphabets A and B respectively, such that α : A ↩ B and σ :

S ↩ T are subset inclusions, then we say that (i,M, F) is a subacceptor of

(j,N,G).

Corollary 169 If (i,M, F) is a subacceptor of (j,N,G), then (i : M : F) is

a sublanguage of (j : N : G).

Proof This follows immediately from proposition 168. �

Definition 145 An acceptor (i,M, F) is simple iff every state s ∈ S is a

vertex of a state sequence p from i to F .

Proposition 170 Every acceptor has an equivalent simple subacceptor.

250 Languages, Grammars, and Automata

Proof Since the states not appearing in any state sequence have no meaning

for the generated words, one obtains the same language when omitting those

states. �

Besides the simplification procedure for an acceptor, we may also need to

look for subacceptors which are present in multiple “copies”, i.e., which

play the same role with respect to the language they accept. We now

want to eliminate such multiplicities, since it is not reasonable to have

machines with equivalent functional units in multiple instantiations.

Definition 146 IfM is a sequential machine and F ⊂ S a set of final states,

then two states s, t ∈ S are called equivalent if (s : M : F) = (t : M : F). If

for an acceptor (i,M, F) any two different states s ≠ t on state sequences

from i to F are not equivalent, the acceptor is called reduced.

We now discuss the construction of a reduced acceptor from a given de-

terministic acceptor (i,M : S×A→ S, F). To begin with, we need a generic

sequential machine associated with the alphabetA.

Definition 147 For the alphabetA the sequential machine LangMachineA
ofA is defined by the map

LangMachineA : Lang(A)×A→ Lang(A)
(L,a), L/a = {x ∈ Word(A) | a · x ∈ L}.

If (i,M, F) is an acceptor, the associated generic acceptor is defined by

(iA,LangMachineA, FA), where

(i) iA = (i : M : F)

(ii) and FA = {(f : M : F) | f ∈ F}.

Exercise 94 If one defines more generally L/w = {x ∈ Word(A) | w·x ∈
L} for w ∈ Word(A), then v,w ∈ Word(A) implies (L/v)/w = L/(vw).

Proposition 171 For a deterministic acceptor (i,M : S ×A → S, F), con-

sider the morphism

(σ , IdA) : (i,M, F)→ (iA,LangMachineA, FA)

of acceptors given by σ(s) = (s : M : F). Then the image (i,M, F)A of

(σ , IdA) is an equivalent reduced deterministic acceptor, more precisely,

for each state s ∈ S we have

(s : M : F) = ((s : M : F) : LangMachineA : FA).

19.3 Automata and Acceptors 251

(i) If (i,M, F) is simple, then so is (i,M, F)A.

(ii) If (i,M, F) is reduced, then (σ , IdA) : (i,M, F) → (i,M, F)A is an

isomorphism.

(iii) If (i,M, F) and (j,N,G) are reduced, simple, and equivalent, then

(i,M, F)A = (j,N,G)A.

Proof To begin with, we have to check whether (σ , IdA) is a morphism. This

readily follows from the fact that for a pair (s, a) ∈ S×A, we have (s ·a,M, F) =
(s,M, F)/a. To show that

(s :M : F) = ((s : M : F) : LangMachineA : FA),

letw ∈ (s :M : F). Then s·w ∈ F . Therefore, (s : M : F)·w = (s·w : M : F) ∈ FA,

whence w ∈ ((s : M : F) : LangMachineA : FA), i.e., (s : M : F) ⊂ ((s : M : F) :

LangMachineA : FA). Conversely, if w ∈ ((s : M : F) : LangMachineA : FA),
then we have (s : M : F)/w = (f : M : F), f ∈ F . In other words, s ·w · v ∈ F
iff f · v ∈ F , for any word v . In particular, v = ε, the empty word gives us

f · ε = f ∈ F whence s · w · ε = s · w ∈ F , so w ∈ (s : M : F), whence

(s : M : F) ⊃ ((s : M : F) : LangMachineA : FA), and equality holds.

The new acceptor is deterministic by construction, and it is reduced since the

language we obtain in the image ((s : M : F) : LangMachineA : FA) is exactly

the starting state (s : M : F), so no two different starting states can produce the

same language. If (s : M : F) is simple, every state t is visited by a state sequence

starting at s in a wordw. But then the state (s·w,M, F) is reached byw from the

starting point (s,M, F), whence claim (i). As to claim (ii), observe that the fiber of

a state (s,M, F) is the set of states t which generate the same language (t,M, F),

i.e., the equivalent states of the (possibly) not reduced acceptor. Therefore, if

all fibers are singletons, the map on states is a bijection, and we are done. To

prove (iii), observe that the initial states (i : M : F) and (j,N : G) are equal

by hypothesis. But the composition rule is the same in LangMachineA, so the

terminal states of these acceptors are the same, i.e., the images of the common

initial state under the common language. �

Definition 148 An acceptor over the alphabet A which has a minimal

number of states for a given language L ∈ Lang(A) is called minimal.

Corollary 172 (Theorem of Myhill-Nerode) Any two minimal acceptors

(i,M, F) and (j,N,G) of a given language L ∈ Lang(A) are isomorphic.

In fact, we have (i,M, F)A = (j,N,G)A.

Proof In fact, a minimal acceptor is reduced and simple, whence the claim by

proposition 171. �

We now have a central theorem which relates acceptors and languages:

252 Languages, Grammars, and Automata

Proposition 173 Let L ∈ Lang(A) be a language over the alphabet A.

Then the following statements are equivalent.

(i) The language L is of Chomsky type 3, i.e., regular.

(ii) There is a minimal (and therefore deterministic, reduced, simple)

acceptor (i,M, F) such that L = (i : M : F).

(iii) There is an acceptor (i,M, F) such that L = (i : M : F).

Proof The equivalence of statements (ii) and (iii) is evident from the above the-

ory. For the equivalence of (i) and (iii), see [43]. �

19.3.1 Stack Acceptors

Stack acceptors are a special type of acceptors. The characteristic prop-

erty is that their state space is not finite and is composed in a specific way

of three kinds of entities: a (finite) set S of elementary states, a (finite) el-

ementary alphabet A and a stack alphabet K. The practical relevance of

a a stack is illustrated by the typical example: Consider a pile of plates

in a cafeteria. Each time when a plate is taken away (the so-called pop

action) from the top of the stack, a spring moves the stack of the remain-

ing plates upwards in order to make available a new plate to the service

personnel. When, on the contrary, a clean plate is put onto the existing

stack (the so-called push action), the augmented stack moves down one

unit to receive the new top plate.4 The theoretical relevance of such stack

acceptors consists in the fact that the languages which are accepted by

this type of acceptors are precisely the context free, or type 2, languages.

In the context of stack automata, one starts from three finite sets S,A, K,

the elements of which are called the elementary states, input letters,

and stack elements, respectively. We then consider the Cartesian prod-

uct Word(S,A, K) = Word(S) × Word(A) × Word(K) of word monoids

which is a monoid by factorwise multiplication, i.e., (u,v,w) · (x,y, z) =
(ux,vy,wz). If X ⊂ Word(S,A, K) and x ∈ Word(S,A, K), we write

X/x for the set of elements y such that x ·y ∈ X. This is a construction

we already encountered in the theory of generic acceptors. We further

need the setAε =A∪{ε} ⊂ Word(A), ε being the neutral (empty) word.

This is all we need to describe stack acceptors. Observe that as acceptors,

stack automata are deterministic. But attention: in theoretical computer

4 In computer science the behavior is call LIFO which stands for “Last In, First

Out.”

19.3 Automata and Acceptors 253

science a slightly different terminology is customary, as will be explained

below.

Definition 149 Given three sets S,A, K of elementary states, input let-

ters, and stack elements, respectively, a stack acceptor over S,A, K (also:

push down acceptor) consists of

(i) the state space 2S for the set of configurations S = S ×Word(A) ×
Word(K) ⊂ Word(S,A, K),

(ii) the stack alphabet Alpha = Alpha(S,A, K) = S ×Aε ×K,

(iii) a state transition function µ : Alpha→ 2S×Word(K), which defines the

following operation on states M : 2S ×Alpha→ 2S:

Let x ∈ Alpha and X ⊂ S. Then we define

M(X,x) = X · x
= µ(x) · (X/x)
= {(z, ε, k) ·y | y ∈ X/x, (z, k) ∈ µ(x)}

(iv) the initial element (in 2S) is defined by two elementary initial ele-

ments i ∈ S and k ∈ K and is given by Ii,k = {i} ×Word(A)× {k},
(v) the final set is defined by an elementary final set E ⊂ S via

EE = {Y × {ε} × {ε} ⊂ S | Y ∩ E ≠∅} ⊂ 2S.

Such a stack acceptor is symbolized by Stack(i, µ, E), and again, the el-

ementary sets S,A, K are determined by µ. Contrary to the strict ter-

minology a stack acceptor is traditionally called deterministic iff (1) all

µ(u,v,w) are empty or singletons, and (2), µ(u, ε,w) = ∅ implies that

all µ(u,v,w), v ∈ A are singletons; vice versa, if µ(u, ε,w) is a single-

ton, then µ(u,v,w) = ∅ for all v ∈A. This means in particular that X·x
is a singleton or empty if X is a singleton. It is called nondeterministic if it

is not deterministic. In order to distinguish these confusing wordings, we

mark this traditional terminology by the prefix “stack”, i.e., saying “stack

deterministic/nondeterministic” if a confusion is likely.

Definition 150 The stack language which is accepted by Stack(i, µ, E)will

be denoted by Stack(i : µ : E) and consists by definition of all words

w ∈ Word(A) such that there is a word Wp = (z1, a1, k1)(z2, a2, k2) . . .

(zn, an, kn) of a state sequence in (Ii,k : µ : EE) with w = a1 · a2 · . . . an.

254 Languages, Grammars, and Automata

Exercise 95 The initial element Ii,k has the property that, if it contains

(s,w, t), then it also contains all elements (s, v, t), v ∈ Word(A). Show

that this property is inherited under the state operation M . More pre-

cisely, if X ⊂ S is such that, it it contains a configuration (s,w, t), then

it also contains all configurations (s, v, t), v ∈ Word(A), then so is X · x
for any x ∈ Alpha. In other words, for any state sequence in (Ii,k : µ : EE),
all its states share the property that any input words are admitted in the

middle coordinate. We may therefore adopt the saying that when calcu-

lating a state sequence, we may “read a word, or letter, v from the input

alphabet”. This means that we are given any triple (s,w, t) ∈ X and then

choose any v , take (s, v, t), which is also in X, and look for configura-

tions in X · x deduced from (s, v, t). Therefore, in a more sloppy deno-

tation, one also forgets about the middle coordinate and only denotes

the elementary state and stack coordinates. This is what will be done in

example 90.

And here is the long awaited proposition about languages and stack au-

tomata:

Proposition 174 A language L over an alphabet A is context free, i.e., of

type 2, iff it is the language Stack(i : µ : E) of a stack acceptor over the

input alphabetA.

Proof For the lengthy proof of this proposition, we refer to [43]. �

Example 90 Reprising our earlier example 87 of the context free lan-

guage generating arithmetical expressions, we endeavour to construct

a stack acceptor e = Stack(ie, µe, Ee) for this language. The elementary

states, input letters and stack elements are defined as Se = {i, f}, Ae =
{+,∗, (,), x,y, z} and Ke =Ae∪{E, T , F, k} = {+,∗, (,), x,y, z, E, T , F, k},
respectively. The final set Ee ⊂ S is {f} and the elementary initial ele-

ments are ie = i and ke = k.

Table 19.10 describes the state transition function µe.

We now write down a derivation of the word x +y . Note that the sets of

states become rather large, therefore we abbreviate the sets involved and

leave out the states that will play no further role. We begin with the set

of states {(i, k)}. Reading the empty word, i.e., reading nothing at all, we

reach the set {(f , E)}. At each step we apply every matching rule of the

transition map µe to all states in the current state set. In the following,

→a indicates a transition by reading letter a from the input word.

19.3 Automata and Acceptors 255

Se ×Aeε ×Ke -→µe 2S×Word(K)

(i, ε,k) {(f , E)}
(f , ε,E) {(f , T + E), (f ,T)}
(f , ε,T) {(f , F ∗ E), (f , F)}
(f , ε, F) {(f , (E)), (f , x), (f ,y), (f , z)}
(f , x, x) {(f , ε)}
(f ,y,y) {(f , ε)}
(f , z, z) {(f , ε)}
(f ,+,+) {(f , ε)}
(f ,∗,∗) {(f , ε)}
(f , (, () {(f , ε)}
(f ,) ,)) {(f , ε)}

Fig. 19.10. The transition map µe for the stack acceptor of example 90.

{(i, k)} →ε {(f , E)}
→ε {(f , T + E), (f , T)}
→ε {(f , F ∗ E + E), (f , F ∗ E), (f , F + E), (f , F)}
→ε {. . . , (f , x + E), . . .}
→x {. . . , (f ,+E), . . .}
→+ {. . . , (f , E), . . .}
→ε {. . . , (f , T + E), (f , T), . . .}
→ε {. . . , (f , F ∗ E + E), (f , F ∗ E), (f , F + E), (f , F), . . .}
→ε {. . . , (f ,y), . . .}
→y {. . . , (f , ε), . . .}

In the final line, the current set of states includes a state (f , ε) which

satisfies the conditions of a final state, Ee being {f} and the stack word

being empty.

Note how the form of a rule (s, a, k) → (s, k1k) justifies the image of

“push”, k1 being pushed on top of k. In the same way a rule (s, a, k) →
(s, ε) “pop”s off k.

We leave it to the reader to compare the map µe with the set of grammar

rules in example 87 and to find out how they relate.

256 Languages, Grammars, and Automata

19.3.2 Turing Machines

Intuitively, Turing machines—named after the mathematician Alan Tur-

ing (1912–1954), one of the founders of computer science—are finite au-

tomata which are provided with an infinite tape memory and sequen-

tial access using a read/write head. We shall give a formal definition be-

low, but we should make a point concerning the general formalism of

automata and the concrete technical setup where particular types of au-

tomata are realized. We had in fact already learned above that stack ac-

ceptors are acceptors which are defined by auxiliary operations on com-

plex spaces. The same is true for Turing machines.

For Turing machines, one is essentially given a state set S, a tape alphabet

B which includes a special sign # for a “blank” entry on a specific place on

the tape. The tape is thought to be infinite to the left and to the right of

the read/write head. On the tape, we may have any elements of B, except

that only finitely many differ from #. The set of tape states is therefore

described by the subset B(Z) of BZ of those sequences t = (ti), ti ∈ B
with ti = # for all but finitely many indexes i ∈ Z (mathematicians often

say in this case: “for almost all indexes”). The read/write head position

is by definition the one with index i = 0. With this vocabulary, a Turing

machine, as we shall define shortly, yields a map

τ : S × B(Z) → 2S×B
(Z)
,

which describes the transition from one pair “state s of automaton plus

tape state t” to a set of possible new pairs s′ and t′ of the same type.

The machine continues updating states and tape until it reaches a “halt”

state. This looks somewhat different from the definition of an automa-

ton, which requires a map S × A → S. However, this formalism is also

present in the previous description. One must in fact use the natural ad-

junction of set maps discussed in proposition 59: The sets Set(a × b, c)
and Set(a, cb) are in a natural bijection. Therefore

Ad : Set(S × B(Z),2S×B(Z)) ∼→ Set(S × B(Z) × B(Z),2S)

which means that the Turing automaton map τ corresponds to a map

Ad(τ) : S × (B(Z) × B(Z))→ 2S ,

19.3 Automata and Acceptors 257

and this is precisely the type of maps we need for automata, i.e., the al-

phabet isA= B(Z)×B(Z). We call the bijectionAd the Turing adjunction.5

The alphabetA happens to be infinite, but the formalism is the required

one. The meaning ofAd(τ) is this: We are given a present state s ∈ S and

a pair (t, t′) of tape states, t is the present tape state, whereas t′ is one of

the possible successor tape state. The set Ad(τ)(s, t, t′) is precisely the

set of those successor states s′ ∈ S such that (s′, t′) ∈ τ(s, t), i.e., which

correspond to the successor tape state t′.

But we shall stick to the original map τ in order to maintain the intuitive

setup. Here is the formal definition of Turing machines:

Definition 151 A Turing machine is given by

(i) a finite state set S, an initial state i ∈ S, and a special halt state sH

to be specified,

(ii) a finite tape alphabet B, containing a special blank sign #, together

with an input alphabetA⊂ B,

(iii) three symbols H,L,R not in B, one writes BHLR = {H,L,R} ∪ B,

(iv) a state transition map tr : S × B → 2S×BHLR with tr(s, b) ≠ ∅ for

all (s, b) ∈ S × B and such that only pairs (sH ,H) ∈ tr(s, b) may

appear with second coordinate H.

A Turing machine is deterministic iff every set tr(s, b) is a singleton, oth-

erwise it is called nondeterministic. The Turing machine is also denoted

by Turing(i, tr , sH), according to our general notation of acceptors.

This definition generates the following map τ. To begin with, the element

q ∈ BHLR of the extended tape alphabet operates on tape states t ∈ B(Z)
as follows (we write q · t for the result of the operation of q on t):

1. if q ∈ B, then (q · t)i = ti for i ≠ 0, and (q · t)0 = q, i.e., the zero

position on the tape is replaced by q;

2. if q = H, nothing happens: q · t = t;
3. if q = R, the tape moves one unit to the right, i.e., (q · t)i = ti−1;

4. if q = L, the tape moves one unit to the left, i.e., (q · t)i = ti+1.

5 Observe the omnipresence of universal constructions of mathematics in com-

puter science.

258 Languages, Grammars, and Automata

Then we have this map:

τ : S × B(Z) → 2S×B
(Z)

τ(s, t) = {(s′, b′ · t) | (s′, b′) ∈ tr(s, t0)}

and the idea is that the change of states should go on until the halt state

sH is obtained. More precisely,

Definition 152 With the above notations, a state sequence of a Turing

machine Turing(i, tr, sH) is a sequence (s(0), t(0)), (s(1), t(1)), . . . (s(n), t(n))

such that (s(i+1), t(i+1)) ∈ τ(si, ti) for all indexes i = 0,1, . . . n− 1.

A word w = w1w2 . . .wk ∈ Word(A) is accepted by Turing(i, tr , sH) iff

there is a state sequence (s(0), t(0)), (s(1), t(1)), . . . (s(n), t(n)) which termi-

nates at the halt state, i.e., s(n) = sH , and starts at state s(0) = i and a tape

state t(0) with t
(0)
i = #, for i ≤ 0 and i > k, and t

(0)
i = wi for i = 1,2, . . . k.

The language of words accepted by the Turing machine Turing(i, tr, sH)

is denoted by Turing(i : tr : sH). Languages of type Turing(i, tr, sH) for

given Turing machines are also called semi-decidable.

And here is the rewarding proposition relating Turing machines and type

0 languages:

Proposition 175 A language L ∈ Lang(A) is of type 0 (i.e., recursively

enumerable) iff it is semi-decidable, i.e., iff there is a Turing machine

Turing(i, tr , sH) with input alphabetA such that L = Turing(i : tr : sH).

Proof For the complicated proof of this proposition, we refer to [43]. �

Example 91 A simple example of an actual “program” for a Turing ma-

chine shall illustrate the principles of the foregoing discussion, and show

that Turing machines are capable of doing “useful” work, in this case

the incrementation of a natural number in binary representation, i.e.,

encoded using the symbols 0 and 1 on the initial tape state, where the

least-significant bit of the number is on the right of the tape. Thus the

number 151 will appear on the tape as . . .####10010111#### At the

beginning, the machine’s head will be at the position indicated by #. The

final tape state when the machine terminates in the halt state will be

. . .####10011000#### . . ., i.e., 152. Note that we use the Turing machine

a little differently than previously described. The object here is not to

accept an initial word, but to transform the initial word into the result

word.

19.3 Automata and Acceptors 259

Fig. 19.11. A schematic illustration of a Turing machine, with the tran-

sition map (“program”) tr , current state s, input alphabet A = {a,b, c}.
The gray arrows show the flow of information into and out of the ma-

chine.

Now we proceed to describe the required data for the Turing machine

TI : the state set SI = {i,A, B, C,D, E, F, sH} and the tape alphabet BI =
{#,1,0}. The state transition map tr I is shown in table 19.12. We assume

that, initially, the tape is not empty, and omit any kind of error handling.

The rudimentary character of Turing machines wouldn’t allow much of

anything in this direction anyhow. Observe that TI is essentially deter-

ministic, since the values of the transition map are all singletons, except

that we left out the definition of tr I for some pairs (s, b) that wouldn’t

occur anyway.

The reader is invited to simulate this machine on a few input words.

Concluding this short section on Turing machines, we should note that

the length of a state sequence which accepts a word w as a function of

the word length l(w) may be exorbitant, and one is therefore interested

in those languages where the lengths of accepting state sequences for

their words are not too long. Here is the precise definition.

Definition 153 A language L ∈ Lang(A) is called of (polynomial) com-

plexity class P if there is a polynomial P(X) and a deterministic Turing

machine Turing(i, tr, sH) with input alphabetA and L = Turing(i, tr , sH),

such that each word w ∈ L is accepted by a state sequence of length at

most P(l(w)).

A language L ∈ Lang(A) is called of (nondeterministic polynomial) com-

plexity class NP if there is a polynomial P(X) and a nondeterministic

260 Languages, Grammars, and Automata

SI × BI -→trI 2SI×BIHLR

(i,#) {(A, L)}
(A,0) {(A, L)}
(A,1) {(A, L)}
(A,#) {(B,R)}
(B,1) {(D,0)}
(B,0) {(E,1)}
(B,#) {(E,1)}
(D,0) {(B,R)}
(D,1) {(B,R)}
(E,0) {(C,R)}
(E,1) {(C,R)}
(C,0) {(E,0)}
(C,1) {(E,1)}
(C,#) {(F, L)}
(F,0) {(sH ,H)}
(F,1) {(sH ,H)}

Fig. 19.12. The transition map tr I for the Turing machine of example 91.

Turing machine Turing(i, tr, sH) with input alphabet A and language

L = Turing(i, tr , sH), such that each word w ∈ L is accepted by a state

sequence of length at most P(l(w)).

A final remark: It is one of the deepest unsolved problems of computer

science to understand the relation between class P and class NP. In par-

ticular, it is not currently known whether “P = NP”. Recently, it has been

shown that there is a deterministic algorithm that decides for every nat-

ural number n in (log(n))k steps, k being a fixed natural exponent,

whether n is prime or not. The logarithm is proportional to the length

of n in its binary representation, so it represents the length of the word

needed to write down n. This is what is meant, when the result is stated

as “PRIME is in P”. See [11] for a lucid exposition.

A comprehensive treatment of automata theory and languages is [28]. For

more on the subject of computability, P and NP, see [30].

CHAPTER 20

Categories of Matrixes

The present chapter opens a field of mathematics which is basic to all

applications, be it in equation solving, geometry, optimization, calculus,

or numerics. This field is called linear algebra. It is the part of algebra,

which we do control best—in contrast to non-linear algebra, also called

algebraic geometry, which is far more difficult. Linear algebra deals with

the structural theory of vectors, and the geometry they describe. We shall,

however, see later in the chapters on calculus that even non-linear, or—

worse than that—non-algebraic phenomena of continuous and infinites-

imal phenomena can in a first approximation be dealt with by linear al-

gebra. So here we enter one of the most powerful domains of mathe-

matics, and also one for which algorithms and corresponding computer

programs are most developed.

The structure of linear algebra rests on three pillars, which complement

each other, but are of equal importance for a real grasp of the subject:

Matrix theory, axiomatic theory of vector spaces, and linear geometry.

First, matrix theory is the calculatory backbone, it is nothing less than

the mathematical theory of tables. Without knowing the essentials about

matrixes, any understanding of arrays, lists, or vectors becomes difficult,

and no real, concrete calculation is possible. Strangely enough it turns out

that the system of matrixes is at the same time the most concrete and the

most abstract structure of this field. This is hinted at by attribute “cate-

gory” in our title, a specification which will become more and more clear

with the evolution of the student’s understanding of fundamental struc-

tures in mathematics. Recall that we have already added this attribute

in the context of graphs. It is remarkable that things seemingly so dis-

262 Categories of Matrixes

tant as graphs and tables turn out to be core instances of a common

substance: the structure of a category. Presently, this is a philosophical

allusion rather than hard mathematics. But it is a hint at the beauty of

mathematics that any reader should learn to feel in the course of this

curriculum.

Second, axiomatic vector space theory is the account to the fact that the

truths which are “hard coded” in matrix theory can be encountered in

much less concrete situations. These situations seem to be unrelated to

matrixes, but, when analyzed in view of their structural substance, re-

veal a fantastic kind of conceptual generalization of matrix calculus. This

effect provides very operational perspectives to seemingly abstract situ-

ations.

Last, linear geometry is a very traditional branch of geometry, which

can be traced back to to Descartes and his analytical geometry. If one

rephrases the structural substance of points, lines, surfaces, together

with their operations, metrical properties, and transformational behav-

ior, then it turns out that one gets what is essentially the theory of vector

spaces. And this gives the dry calculations of matrix theory and the ab-

stract manipulations of vector space theory a sensorial perspective which

is not only beautiful by itself, but in turn helps to understand abstract

phenomena of matrix theory in a revealing environment of geometric in-

tuition. We should however point out that the geometric intuition about

abstract truths is not the only one: the auditory intuition as cultivated by

the experience music is another sensorial image of abstract mathematical

truths which for a number of problems is even better suited to yield ev-

idence of “abstract artifacts” (or even what some scientific businessmen

call “abstract nonsense”).

20.1 What Matrixes Are

In this and the following sections of this chapter, the zero and unit of a

ring R will be denoted by 0 and 1, respectively, if the context is clear. For

any natural number n, we denote by [1, n] the set of natural numbers

between 1 and n, including the extremal values 1 and n. For n = 0, the

set [1,0] is the empty set.

Definition 154 Given a ring R and two natural numbers m and n, a ma-

trix of size m × n, or m × n-matrix, with coefficients in R is a triple

20.1 What Matrixes Are 263

(m,n, M : [1,m]× [1, n]→ R). For non-zero m and n, the value M(i, j),

which is also written as Mij , is called the coefficient of M at index pair ij;

the number i is called the row index, while j is called the column index.

If the number of rows m and the number of columns n are clear, M is

also denoted by (Mij). For a row number i the i-th row matrix in M is the

matrix Mi• of size 1 × n with (Mi•)1j = Mij . For a column number j the

j-th column matrix inM is the matrixM•j of sizem×1 with (M•j)i1 = Mij .
The set of m × n-matrixes over R is denoted by Mm,n(R), while the set of

all matrixes, i.e., the disjoint union of all setsMm,n(R), is denoted byM(R).

Clearly, every ring homomorphism f : R → S between rings gives rise to

a map M(f) : M(R) → M(S), which sends a matrix M = (Mij) ∈ M(R) to

the matrix f(M) = f ◦M ∈ M(S) with (f (M)ij) = (f (Mij)), and which

therefore also sends Mm,n(R) into Mm,n(S).

Example 92 There is a number of special matrixes:

• The unique matrix for either m or n equal to 0 is denoted by 0�n,

m�0, or 0�0, respectively.

• If m = n, the matrix is called a square matrix.

• The following convention is very useful in matrix calculus: If i and j

are two natural numbers, the Kronecker delta symbol is the number

δij =

1 ∈ R if i = j,
0 ∈ R if i ≠ j.

Then the square n× n-matrix defined by En = (δij) is called the unit

matrix of rank n—including the unique matrix 0�0 as a “degenerate”

special case.

• Also important are the so-called elementary matrixes. Given an index

pair ij, the number of rows m and the number of columns n, the

elementarym×n-matrix for this datum is the matrix E(i, j) such that

(E(i, j))uv = 0 except for uv = ij, where we have (E(i, j))ij = 1 (see

also figure 20.1).

Usually, a matrix M is represented as a rectangular table, where the entry

on row i and column j is the matrix coefficient Mij . Here is the tabular

representation of one example of a 2× 3-matrix M over the ring R = Z of

integer numbers:

264 Categories of Matrixes

M =
(−2 5 0

0 26 3

)

If we have the canonical ring homomorphism f = mod7 : Z → Z7, then

the image f(M) is equal to this matrix over Z7:

f(M) =
(

mod7(−2) mod7(5) mod7(0)

mod7(0) mod7(26) mod7(3)

)

One also writesM ≡ N mod d ifM,N ∈Mm,n(Z) and their images under

the canonical homomorphism modd : Z→ Zd coincide; so for example,

(−2 5 0

0 26 3

)
≡
(

5 5 0

0 5 3

)
mod 7.

Or else, consider the 4× 3-matrix

M =

3.5+ i · 4 −i 4+ i · √5

−0.5 0 4− i · 2

i · 20 1 3.78− i
0 −i −5− i · √3

with complex coefficients. We have the field automorphism of conjuga-

tion f(z) = z, which gives us the conjugate matrix

f(M) =M =

3.5+ i · 4 −i 4+ i · √5

−0.5 0 4− i · 2

i · 20 1 3.78− i
0 −i −5− i · √3

=

3.5− i · 4 i 4− i · √5

−0.5 0 4+ i · 2

−i · 20 1 3.78+ i
0 i −5+ i · √3

.

A third example comes closer to tables in common usage: word process-

ing environments. Suppose that we are given an alphabet C, which, to

be concrete, denotes the letters in the Courier font, whereas S denotes

the alphabet of letters in the Old German Schwabacher font. In a com-

mon word processing software, a text may be converted from Courier to

Schwabacher, more formally, we have a map γ : C → S. By the universal

property of monoids (proposition 111) and monoid algebras (proposi-

tion 120), the map γ induces a ring homomorphism

20.2 Standard Operations on Matrixes 265

f = IdZ〈Word(γ)〉 : Z〈Word(C)〉 → Z〈Word(S)〉,

which we may now apply to a table with Courier-typed text, i.e., elements

from the ring Z〈Word(C)〉, in order to obtain a table with text in the

Schwabacher font, i.e., elements from the ring Z〈Word(S)〉. For example,

if

M =
(
Author: Shakespeare
Work: Hamlet

)

then

f(M) =
()

Definition 155 For any ring R, the transposition is the map

?τ : M(R)→M(R)

defined by (Mτ)ij = Mji for all index pairs ij, thereby transforming a

m×n-matrix M into a n×m-matrix Mτ . A matrix M is called symmetric

if Mτ = M .

Exercise 96 For any natural number n, the identity matrix En is sym-

metric. If E(i, j) is elementary, then E(i, j)τ = E(j, i). Show that for any

matrix M , we have

(Mτ)τ = M.
In particular, matrix transposition is a bijection on the set M(R).

E3 =

1 0 0

0 1 0

0 0 1

 E(2,3) =

0 0 0

0 0 1

0 0 0

 E(3,2) =

0 0 0

0 0 0

0 1 0

Fig. 20.1. The unit matrix and the elementary matrixes E(2,3) and

E(3,2) = E(2,3)τ in M3,3.

20.2 Standard Operations on Matrixes

We now proceed to the algebraic standard operations on matrixes. We

now tacitly assume that the underlying ring R for M(R) is commutative,

and we shall explicitly state any deviation from this general assumption.

266 Categories of Matrixes

Definition 156 Given two matrixes M,N ∈ Mm,n(R), their sum M +N ∈
Mm,n(R) is defined as follows: If one of the numbers m or n is 0, then

there is only one matrix in Mm,n(R), and we set M + N = m�n. Else, we

set (M +N)ij = Mij +Nij .

Sorite 176 With the addition defined in definition 156, the set Mm,n(R)

becomes an abelian group. For m or n equal to 0, this is the trivial (zero)

group. In the general case, the neutral element of Mm,n(R) is the zero

matrix 0 = (0), whereas the additive inverse −M is defined by (−M)ij =
−Mij .

Exercise 97 Give a proof of sorite 176.

Definition 157 Given a matrix M ∈ Mm,n(R), and a scalar λ ∈ R, the

scalar multiplication λ·M is defined as follows: If one of the numbersm or

n is 0, then there is only one matrix in Mm,n(R), and we set λ ·M =m�n.

Otherwise we set (λ ·M)ij = λ ·Mij . The matrix λ ·M is also called “M

scaled by λ.”

In other words, as is the case with ring homomorphisms and addition,

scalar multiplication proceeds coefficient-wise, i.e., by operating on each

coefficient of the involved matrixes.

Sorite 177 With the definitions 156 and 157 of addition and scalar multi-

plication, we have these properties for any λ, µ ∈ R and M,N ∈Mm,n(R):

(i) Scalar multiplication is homogeneous, i.e., we have λ · (µ · M) =
(λ · µ) ·M , therefore we may write λ · µ ·M for this expression.

(ii) Scalar multiplication is distributive, i.e., we have

(λ+ µ) ·M = λ ·M + µ ·M

and

λ · (M +N) = λ ·M + λ ·N.

(iii) Scalar multiplication and transposition commute: (λ ·M)τ = λ ·Mτ .

Exercise 98 Give a proof of sorite 177.

Proposition 178 Given positive row and column numbersm and n, every

matrix M ∈Mm,n(R) can be uniquely represented as a sum

20.2 Standard Operations on Matrixes 267

M =
∑

i=1,...m
j=1,...n

Mij · E(i, j)

of scaledm×n elementary matrixes E(i, j). I.e., if we have any represen-

tation

M =
∑

i=1,...m
j=1,...n

µij · E(i, j)

with µij ∈ R, then µij = Mij .
Proof The sum

∑
i=1,...m,j=1,...nMij · E(i, j), when evaluated at an index pair uv ,

yields
∑
i=1,...m,j=1,...nMij · (E(i, j)(uv)) = Muv , since all elementary matrixes

vanish, except for ij = uv . If any representation M = ∑i=1,...m,j=1,...n µij · E(i, j)
of M is given, then Muv = µuv , and we are done. �

The next operation is the most important in matrix theory: the product

of two matrixes. It is most important to learn this operation by heart.

Definition 158 Let M ∈Mm,n(R) and N ∈Mn,l(R) be two matrixes, then

a matrix M ·N ∈Mm,l(R), the product of M and N, is defined as follows:

If one of the outer numbers, m or l is 0, then M · N = m�l ∈ Mm,l(R)

is the unique matrix in Mm,l(R). Otherwise, if the middle number n = 0,

then we set M · N = 0 ∈ Mm,l(R), the m × l-matrix with zeros at every

position. In the general case (no number m,n, l vanishes), one sets

(M ·N)ij =
∑

k=1,...n

MikNkj

for every index pair ij.

i→

Mi1 · · · Min

·

j

↓

Nij
...

Nnj

=

j

↓

(MN)ij

← i

Fig. 20.2. Multiplication of matrixes M ∈ Mm,n and N ∈ Mn,l, with the

result MN ∈Mm,l.

So pay attention: The product of matrixes M ∈ Mm,n(R) and N ∈
Mn′,l(R) is never defined if n ≠ n′. To make this restriction really evident,

268 Categories of Matrixes

we set up a more telling representation of matrixes. If M ∈Mm,n(R), we

shall also write

M : En → Em or else En
M
ñ Em

in order to indicate the possibilities to compose matrixes as if they were

set maps! In fact, the product of El
N
ñ En′ and En

M
ñ Em is only

possible if n = n′, i.e., the “codomain” En′ of N equals the “domain” En
of M , and then gives us the matrix product El

M·N
ñ Em which we may

visualize by a commutative diagram:

El
N

ñ En

Em

M

�

M ◦N
ñ

What looks somehow mysterious here is a very modern point of view of

maps: Matrixes look like maps without domains or codomains. We just

have composition of maps, and the domains and codomains must be

reinvented by a trick. Let us take this approach as it is and postpone

its deeper signification to a more advanced discussion of category theory

in the second volume of this book. The only point to retain here is the

very useful notational advantage which immediately makes evident which

matrixes may be multiplied with each other. What should however be ex-

pected from this arrow formalism is, that matrix products are associative

whenever defined. This is of course true:

Sorite 179 Let A : En → Em, B : Em → El and C : El → Ek be three matrixes

over R. Then

(i) (Associativity) (C · B) ·A = C · (B ·A), which we therefore write as

C · B ·A.

(ii) (Distributivity) If C ′ : El → Ek and B′ : Em → El are two matrixes

over R, then (C+C′)·B = C ·B+C′·B and C ·(B+B′) = C ·B+C ·B′.
(iii) (Homogeneity) If λ ∈ R is a scalar, then λ · (C · B) = (λ · C) · B =

C · (λ · B), which we therefore write as λ · C · B.

(iv) (Neutrality of identity matrixes) We have A · En = Em ·A = A.

(v) (C · B)τ = Bτ · Cτ .

Proof Let A = (Atu), B = (Bst) and C = (Crs), with 1 ≤ r ≤ k, 1 ≤ s ≤ m and

1 ≤ t ≤ n. Then ((C · B) · A)ru =
∑
t(C · B)rt · Atu =

∑
t(
∑
s(Crs · Bst)) · Atu =

20.2 Standard Operations on Matrixes 269

∑
t

∑
s(Crs ·Bst) ·Atu =

∑
s

∑
t Crs · (Bst ·Atu) =

∑
s Crs · (

∑
t Bst ·Atu) =

∑
s(Crs ·

(B ·A)su) = (C · (B ·A))ru, whence (i).

Then ((C + C′) · B)rt =
∑
s(C + C′)rs · Bst =

∑
s(Crs + C′rs) · Bst =

∑
s(Crs · Bst +

C′rs · Bst) =
∑
s Crs · Bst +

∑
s C

′
rs · Bst = (C · B)rt + (C · B′)rt , whence (ii).

Further, (λ · (C · B))rt = λ · (C · B)rt = λ ·
∑
s Crs · Bst =

∑
s(λ · Crs) · Bst =

((λ · C) · B)rt , and similarly
∑
s(λ · Crs) · Bst =

∑
s Crs · (λ · Bst) = (C · (λ · B))rt ,

whence (iii).

Claim (iv) is left to the reader.

Finally, ((C · B)τ)tr = (C · B)rt =
∑
s Crs · Bst =

∑
s B

τ
ts · Cτsr = (Bτ · Cτ)tr . �

The definition of the matrix product now needs first justifications more

practical points of view. Here are some examples.

Example 93 From high school and practical experience it is well known

that linear equations are very important. Here is one such equation, which

we set up in its concrete shape

3.7 = 23x1 − x2 + 45x4

−8 = 0.9x1 + 9.6x2 + x3 − x4

0 = 20x2 − x3 + x4

1 = 3x2 + x3 − 2x4

in order to let the student recognize the common situation. This system

of equations is in fact an equation among matrixes: On the left hand side

of the equation, we have a 4× 1-matrix which is the product

3.7

−8

0

1

=

23 −1 0 45

0.9 9.6 1 −1

0 20 −1 1

0 3 1 −2

·

x1

x2

x3

x4

of a 4×4-matrix and a 4×1-matrix, the latter being the matrix of the un-

knowns x1, . . . x4. Hence the theory of matrix products should (and will)

provides tools for finding solutions of linear equations. The ideal thing

would be to construct a kind of inverse to the 4 × 4-matrix of the equa-

tion’s coefficients and then multiply both sides with this inverse. This is

indeed what is done, but we are not yet ready for such a construction and

need more theory.

Example 94 This example is taken from graph theory and uses the ad-

jacency matrix introduced in definition 68. Given a digraph Γ : A → V 2,

270 Categories of Matrixes

and fixing a bijection c : [1, n]→ V with n = card(V), we obtain a n×n-

matrix Adjc = (Adjc(i, j)), where Adjc(i, j) is the number of arrows from

the vertex c(i) to the vertex c(j).

What is the role of matrix products in this graph-theoretical context?

The entry at index ij of the adjacency matrix is the number of arrows

from vertex c(i) to vertex c(j), i.e., the number of paths of length one

from i to j. We contend that the square Adj2
c of the adjacency matrix has

as entry at ij the number of paths of length 2. In fact, any such path

must reach c(j) from c(i) through an intermediate vertex, which runs

through c(1), . . . c(n). Now, for each such intermediate vertex c(k), the

paths which cross it are one arrow c(i)→ c(k), composed with one arrow

c(k) → c(j), and this yields the product Adjc(i, k) · Adjc(k, j), therefore

the total number of paths of length 2 is the coefficient at ij of the square

Adj2
c . More generally, the numbers of paths of length r are the coefficients

in the r -th power Adjrc of the adjacency matrix.

We consider again the adjacency matrix of the graph Γ from example 37

in section 10:

Adjc(Γ) =

0 0 0 0 0 0

1 0 1 0 2 0

0 0 0 0 0 2

0 0 0 1 0 0

0 0 0 0 0 0

2 0 0 0 0 1

The square of this matrix is:

Adj2
c(Γ) =

0 0 0 0 0 0

0 0 0 0 0 2

4 0 0 0 0 2

0 0 0 1 0 0

0 0 0 0 0 0

2 0 0 0 0 1

As an illustration, figure 20.3 shows the four paths from vertex 2 to vertex

0 as indicated by entry (Adj2
c(Γ))3,1. Remember that vertex number i is

associated with matrix index i+ 1.

Exercise 99 What does it mean for the adjacency matrix of a digraph if

the digraph has three connected components? Try to find a reasonable

indexing of the vertexes. How do the powers of such a matrix look like?

20.3 Square Matrixes and their Determinant 271

Fig. 20.3. The four paths of length 2 from vertex 2 to vertex 0.

20.3 Square Matrixes and their Determinant

The most important matrixes are the square matrixes M of positive size

n, i.e., M ∈ Mn,n(R). We also tacitly assume R ≠ 0. We have this general

result to start with:

Proposition 180 Let n be a positive natural number and R a commuta-

tive, non-zero ring. Then the setMn,n(R), together with the sum and prod-

uct of matrixes is a ring which is not commutative except for n = 1. The

homomorphism of rings ∆ : R → Mn,n(R) : r , r · En identifies R with

the diagonal matrixes of size n with Mii = r , and Mij = 0 for i ≠ j. We

therefore also identify r ∈ R with its diagonal matrix r ·En if no confusion

is likely. Then, we have r ·M = M · r for all M ∈ Mn,n(R); we say that

R commutes with all matrixes of size n. No other matrixes commute with

all of Mn,n(R).

Proof The proposition immediately follows from sorite 179, except for the last

statement. Suppose that a n × n-matrix N commutes with all of Mn,n(R). Then

it must commute with all elementary matrixes E(i, j). But N · E(i, j) has zeros

except in column j which is N•i, whereas the product E(i, j)·N has zeros except

in row i which is Nj•. So, at the intersection of this row and this column, we

have the equation Nii = Njj , whereas all other coefficients must vanish, whence

N = λ = λ · En. �

Definition 159 The group Mn,n(R)
∗ of invertible matrixes of size n is

called the general linear group of size n and denoted by GLn(R). An in-

vertible matrix is also called regular.

272 Categories of Matrixes

In order to handle GLn(R), one needs a special function, the determinant

of a square matrix. Here is its construction:

Definition 160 If M = (Mij) ∈Mn,n(R), then det(M) ∈ R is defined by

det(M) =
∑

π∈Sn
(−1)sig(π)

∏

j=1...n

Mπ(j)j

where Sn is the symmetric group of rank n defined in section 15.2.

Observe that, a priori, this function has n! summands and will there-

fore require special tools to handle with reasonable effort, especially in

computerized implementations. Before delving into the many beautiful

properties of this strange formula, let us give some easy examples:

Example 95 For n = 1, we have det(M) = M11, and for n = 2, we have

the formula

det(M) = M11M22 −M21M12

which is well known from high school. For n = 3, we have

det(M) = M11M22M33 −M11M32M23 −M21M12M33

+M21M32M13 +M31M12M23 −M31M22M13

Exercise 100 Calculate the determinants of these matrixes, the first over

C, the second over Z[X|:
(

2− i · 3
√

3+ i
3 1− i

)

X2 + 2 3X − 1 0

−X X3 + 5 4

0 X + 12 −8

Show that for any positive n, det(En) = 1.

Proposition 181 For a ring R and a positive natural number n, we have

these properties:

(i) If M ∈Mn,n(R), then det(M) = det(Mτ).

(ii) (Column Additivity) If for a column M•j of M ∈ Mn,n(R), we have

M•j = N + L, and if M|N is the matrix obtained from M after re-

placing M•j by N, while M|L is the matrix obtained from M after

replacing M•j by L, then det(M) = det(M|N)+ det(M|L).

20.3 Square Matrixes and their Determinant 273

(iii) (Row Additivity) If for a row Mi• of M ∈ Mn,n(R), we have Mi• =
N+L, and ifM|N is the matrix obtained fromM after replacingMi•
by N, while M|L is the matrix obtained from M after replacing Mi•
by L, then det(M) = det(M|N)+ det(M|L).

(iv) (Column Homogeneity) If for a column M•j of M ∈ Mn,n(R), we

have M•j = λ · N, and if M|N is the matrix obtained from M after

replacing M•j by N, then det(M) = λ · det(M|N).
(v) (Row Homogeneity) If for a rowMi• ofM ∈Mn,n(R), we haveMi• =
λ ·N, and if M|N is the matrix obtained from M after replacing Mi•
by N, then det(M) = λ · det(M|N).

(vi) (Column Skew Symmetry) If M ′ is obtained from M ∈ Mn,n(R)

by exchanging two columns M•j ,M•k, with j ≠ k, then det(M ′) =
−det(M).

(vii) (Row Skew Symmetry) If M ′ is obtained from M ∈ Mn,n(R) by ex-

changing two rows Mi•,Mk•, with i ≠ k, then det(M ′) = −det(M).

(viii) (Column Equality Annihilation) If in M ∈ Mn,n(R), we have two

equal columns M•j = M•k with j ≠ k, then det(M) = 0.

(ix) (Row Equality Annihilation) If in M ∈ Mn,n(R), we have two equal

rows Mi• = Mk• with i ≠ k, then det(M) = 0.

(x) (Uniqueness of Determinant) Any function D : Mn,n(R) → R with

properties (ii), (iv), (viii) is uniquely determined by its value D(En),

and then we have D(M) = D(En) · det(M).

(xi) (Product Rule for Determinants) If M,N ∈Mn,n(R), then

det(M ·N) = det(M) · det(N).

(xii) (General Linear Group Homomorphism) The determinant function

induces a homomorphism

det : GLn(R)→ R∗

onto the multiplicative group R∗ of invertible elements of R. Its ker-

nel is denoted by SLn(R) and called the special linear group of size

n, whence GLn(R)/SLn(R)
∼→ R∗.

(xiii) (Invariance under Conjugation) If M ∈ Mn,n(R) and C ∈ GLn(R),

then

det(C ·M · C−1) = det(M),

the matrix C ·M · C−1 being called the C-conjugate of M .1

1 Do not confuse matrix conjugation with the conjugation of a complex number.

274 Categories of Matrixes

Proof We have

det(M) =
∑

π∈Sn
(−1)sig(π)

∏

j=1...n

Mπ(j)j

=
∑

π∈Sn
(−1)sig(π)

∏

π(j)=1...n

Mπ(j)π−1(π(j))

=
∑

π∈Sn
(−1)sig(π)

∏

j=1...n

Mjπ−1(j)

=
∑

π∈Sn
(−1)sig(π)

∏

j=1...n

Mjπ(j)

=
∑

π∈Sn
(−1)sig(π)

∏

j=1...n

Mτπ(j)j

= det(Mτ),

whence (i).

If we have Mij = Ni + Li, for all i, then for each product in the determinant

function, we have
∏

t=1...n

Mπ(t)t = Mπ(j)j
∏

t≠j

Mπ(t)t

= Nπ(j)
∏

t≠j

Mπ(t)t + Lπ(j)
∏

t≠j

Mπ(t)t

= (M|N)π(j)j
∏

t≠j

Mπ(t)t + (M|L)π(j)j
∏

t≠j

Mπ(t)t

= (M|N)π(j)j
∏

t≠j

(M|N)π(t)t + (M|L)π(j)j
∏

t≠j

(M|N)π(t)t

=
∏

t

(M|N)π(t)t +
∏

t

(M|L)π(t)t

whence (ii).

To prove (iii), we use (ii) because of (i).

For column homogeneity (iv), we observe that
∏

t

Mπ(t)t = Mπ(j)j
∏

t≠j

Mπ(t)t

= λ(Nπ(j)
∏

t≠j

Mπ(t)t)

=
∏

t

(M|N)π(t)t .

Row homogeneity (v) follows from (iv) and (i).

Suppose that (viii) is true. Then (vi) follows immediately. In fact, take a matrix

M and two column indexes k and j. Take the new matrix M ′ which is derived

from M by adding column M•k to column M•j and adding M•j to column M•k.
Then by (viii), det(M ′) = 0. But by (iii), 0 = det(M ′) = det(M|k|k)+ det(M|j|j)+

20.3 Square Matrixes and their Determinant 275

det(M|j|k)+ det(M), where M|k|k is the matrix derived from M , where we have

the k-th column M•k at column positions k, j, and M|j|j is the matrix derived

from M , where we have the j-th column M•j at column positions k and j, while

M|j|k is the matrix where the k-th and j-th columns of M have been exchanged.

But by (viii)det(M|k|k) = det(M|j|j) = 0, whence det(M|j|k) = −det(M). Also,

by (i) and (vi), (vii) follows.

To prove (viii), recall that the number of even permutations is n!/2 and that for

each even permutation π there is an odd permutation π∗ = (π(k),π(j)) ◦ π .

This gives us a bijection from even to odd permutations. But then, the product∏
tMπ(t)t is equal to the product

∏
tMπ∗(t)t since both columns at positions k

and j are equal. So by the change of signs, i.e., (−1)π
∗ = −(−1)π , these products

neutralize each other. Further, by (i) and (viii), (ix) follows.

Claim (x) is demonstrated as follows: Each column is the sum of special columns

N, where only one coefficient Ni is possibly different from zero. So the function

D(M) is determined on matrixes having only one coefficient possibly different

from zero. But such a column N is also the scaling N = Ni · N′, where N′ has

coefficient 1 instead of Ni, and zeros else. So by homogeneity in columns, the

functionD is determined by its values on matrixes which have only columns with

a 1 and zero coefficients else. Now, by (viii), the value of our function D must

vanish if two columns are equal. If not, the matrix M results from a permutation

π of the columns of En, and the value must be D(M) = (−1)sig(π)D(En). Now,

sinceD(En)·det(M) has all the properties (ii),(iv),(viii) ofD, andD(En)·det(En) =
D(En) we must have D(M) = D(En)det(M).

Suppose for (xi) that M,N ∈ Mn,n(R). Then, fixing M , the function D(N) =
det(M · N) evidently has the properties (ii), (iv), and (viii) by the laws of matrix

multiplication. Since its value for N = En is det(M), we are done by (x). Further,

since by (xi) the determinant commutes with products of matrixes, it sends the

product En = M−1 ·M to 1 = det(M−1) · det(M), i.e., we have a group homomor-

phism GLn(R)→ R∗, which is surjective, since the matrixM = (λ−1)E(1,1)+En
has det(M) = λ.

Claim (xii) follows from (xi) and the fact that det(En) = 1.

Claim (xiii) is evident from claim (xii). �

The calculation of the inverse of an invertible square matrix uses the

determinant function in a rather complex way. We first establish the nec-

essary auxiliary structures.

Definition 161 For positive n, we denote by iM
j the (n − 1) × (n − 1)-

matrix derived from M ∈ Mn,n(R) by the cancellation of its i-th row and

j-th column. For n > 1, the determinant det(iMj) is called the ij-minor

of M . The number cof (M)ij = (−1)i+j det(jMi) is called the ij-cofactor of

276 Categories of Matrixes

M . The matrix Ad(M) = (cof (M)ij) ∈ M(R) is called the adjoint of M . If

n = 1, we set Ad(M) = E1.

Lemma 182 For a matrix M ∈ Mn,n(R), of size n > 1, if 1 ≤ i ≤ n is a

row index, then

det(M) =
∑

j=1,...n

Mijcof (M)ji.

If 1 ≤ j ≤ n is a column index, then

det(M) =
∑

i=1,...n

Mijcof (M)ji.

Proof We have

det(M) =
∑

π∈Sn
(−1)sig(π)

∏

t=1...n

Mπ(t)t

=
∑

i=1,...n

Mij
∑

π∈Sn,π(j)≠i
(−1)sig(π)

∏

t≠j

Mπ(t)t .

The factor
∑
π∈Sn,π(j)≠i(−1)sig(π)

∏
t≠jMπ(t)t is easily seen to be cof (M)ji, whence

the second formula. The first follows from the invariance of the determinant un-

der transposition. �

Proposition 183 (Cramer’s Rule) For a matrix M ∈ Mn,n(R), of positive

size n, we have the following equation:

M ·Ad(M) = det(M) · En.

Proof Cramer’s rule is an immediate consequence of lemma 182. If we take the

formula
∑
j=1,...nMijcof (M)ji and change the coefficient i to k ≠ i, then this is

the same formula for the matrix deduced from M , where the row at index i is

replaced by the row at index k. But such a matrix has determinant zero by row

equality annihilation (ix) in proposition 181. So the Cramer formula results. �

Proposition 184 A matrix M ∈Mn,n(R), of positive size n is invertible iff

det(M) ∈ R∗. In particular, if R is a field, this means that det(M) ≠ 0. If

M is invertible, then the inverse is given by this formula:

M−1 = 1

det(M)
Ad(M).

Proof If M is invertible, we know that det(M) ∈ R∗. Conversely, if det(M) ∈ R∗,

then Cramer’s formula yields that the inverse is given by M−1 = 1
det(M)Ad(M). �

20.3 Square Matrixes and their Determinant 277

Exercise 101 Decide whether the matrix

M =
(

25 −1

12 5

)

over Z is invertible. Is its image M mod 12 over Z12 invertible? Try to

calculate the adjoint and, if M is invertible, the inverse matrix of M .

Exercise 102 Show that, if M ∈ Mn,n(R) is an upper triangular matrix,

i.e., Mij = 0 for all i > j, then det(M) =∏i=1...nMii.

Exercise 103 As a special case of matrix multiplications, we have already

mentioned linear equations, such as shown in example 93 above. We are

now in a position to solve such an equation

3.7

−8

0

1

=

23 −1 0 45

0.9 9.6 1 −1

0 20 −1 1

0 3 1 −2

·

x1

x2

x3

x4

.

In fact, if the coefficient matrix

23 −1 0 45

0.9 9.6 1 −1

0 20 −1 1

0 3 1 −2

is invertible, then the solution is

x1

x2

x3

x4

=

23 −1 0 45

0.9 9.6 1 −1

0 20 −1 1

0 3 1 −2

−1

.

3.7

−8

0

1

.

Proposition 185 If f : R → S is a ring homomorphism of commutative

rings, then for a matrix M ∈Mn,n(R) of positive size n > 0, we have

det(f (M)) = f(det(M)).

Proof We have det(f (M)) = det(f ((Mij))), but the determinant is a sum of

products of the images f(Mij), and since f is a ring homomorphism, we have

det(f ((Mij))) = f(det((Mij))). �

278 Categories of Matrixes

Proposition 186 (Cayley-Hamilton Theorem) If T is a commutative ring,

and if N ∈ Mn,n(T) for positive n, the characteristic polynomial of N is

the polynomial χN(X) = det(N − X · En) ∈ T[X], where En ∈ Mn,n(T) is

the unit matrix of size n over T , and X is an indeterminate. Then we have

the Cayley-Hamilton equation

χN(N) = 0 ∈Mn,n(T),

moreover,

χN(0) = det(N).

The coefficients of the characteristic polynomial are invariant under con-

jugation, i.e., if C ∈ GLn(T), then χN = χC·N·C−1 .

Proof Let R = T[X] be the polynomial algebra over the commutative ring T

with the indeterminate X. By the universal property of the polynomial algebra,

if N ∈Mn,n(T), we have a unique ring homomorphism f : R →Mn,n(T) defined

by X , N. Its image ring S is commutative, since the polynomial ring T[X] is

so. The ring S consists of all polynomials in N with coefficients in T . Therefore,

by proposition 185, det(f (M)) = f(det(M)) for any matrix M ∈ Mn,n(T[X]).

In particular, if M = N − X · En for N ∈ Mn,n(T) for the unit matrix En in

Mn,n(T), then det(M) = χN(X) ∈ T[X], and we have f(χN(X)) = χN(N). But

also f(χN(X)) = f(det(M)) = det(f (M)) = det(f (N−X ·En)) = det(N−N) = 0.

Therefore,

χN(N) = 0.

As for the invariance under conjugation, we have

χC·N·C−1 = det(C ·N · C−1 −X · En)
= det(C ·N · C−1 −X · C · C−1)

= det(C · (N −X · En) · C−1)

= det(N −X · En)
= χN .

�

Exercise 104 Calculate the characteristic polynomial χN for the matrix

N =
(−1 0

2 3

)

over the integers. Verify the Cayley-Hamilton equation χN(N) = 0.

CHAPTER 21

Modules and Vector Spaces

If the matrixes are the backbones of linear algebra, here is the flesh: the

axiomatic theory of modules and vector spaces, which encompasses a

large variety of comparable structures. They will eventually be cast into

matrixes in many interesting cases. The setup is drawn from the historic

approach of René Descartes in his analytic geometry. In this chapter, we

shall again stick to commutative rings except when we explicitly state the

contrary.

Definition 162 Let R be a ring, then a left R-module is a triple (R,M,µ :

R ×M → M), where M is an additively written abelian group of so-called

vectors, and µ is the scalar multiplication, usually written as µ(r ,m) =
r ·m if µ is clear, with these properties:

(i) We have 1 ·m =m, for all m ∈ M .

(ii) For all r , s ∈ R and m,n ∈ M , we have

(r + s) ·m = r ·m+ s ·m
r · (m+n) = r ·m+ r ·n
r · (s ·m) = (rs) ·m

Given an R-module M , a subgroup S ⊂ M is called a submodule of M , if

for each r ∈ R and s ∈ S, then r · s ∈ S. It is also an R-module on its own

right. If the ring R is a field, the module is called an R-vector space.

Exercise 105 Show that by statement (ii) of definition 162, one always

has 0 ·m = r · 0 = 0 in a module.

280 Modules and Vector Spaces

Example 96 In the course of the last chapter, we have encountered

plenty of modules: Each set M =Mm,n(R), together with the sum of ma-

trixes and the scalar multiplication by ring elements defined in sorite 177

is an R-module. In particular, we have zero modules M0,n(R), Mm,0(R),

M0,0(R), each consisting of a zero group and the only possible scalar

multiplication.

But the fundamental idea of defining matrixes as R-valued functions on

certain domains ([1,m] × [1, n] for matrixes) can easily be generalized:

Take any setD and consider the set RD of functions onD with values in R.

Then the addition f +g of f , g ∈ RD defined by (f +g)(d) = f(d)+g(d)
and the scalar multiplication (r · f)(d) = r · f(d) for r ∈ R defines a

module, which generalizes the idea for matrixes.

The following important subset of RD is also a module under the same

addition and scalar multiplication: the set R(D) of functions f : D → R

such that f(d) = 0 except for at most a finite number of arguments. For

example, if we consider the monoid algebra R〈M〉 of a monoid M , this

is precisely R(M), and the sum of its elements is the one we just defined.

Moreover, the identification of R-elements r with the element r ·eM yields

the scalar multiplication r · f for elements f ∈ R〈M〉.
This idea generalizes as follows: We may view R as an R-module over it-

self: The vectors are the elements of R, the sum is the given sum in R,

and the scalar multiplication is the ring multiplication. This module is of

course “isomorphic” to M1,1(R) (we shall define what a module isomor-

phism is in a few lines from here). It is called the free R-module of dimen-

sion one and denoted by RR, or simply by R if the context is clear. With

this special module in mind, suppose we are given a module M over R.

Then for any set D, we have the module M (D) whose elements f : D → M
vanish except for a finite set of arguments d, and where sum and scalar

multiplication are again defined point-wise, i.e., (f +g)(d) = f(d)+g(d)
and (r ·f)(d) = r ·f(d). This module is called the direct sum of D copies

of M and usually denoted by M⊕D; in the special case where D = n is a

natural number, M⊕n is also written as Mn. We now recognize that part

of the structure of complex numbers C can be regarded as the module

R2. In fact, addition of complex numbers is the vector addition on R2,

whereas the multiplication of a real number r with a complex number z

plays the role of the scalar multiplication r · z. The special case M = RR

has been introduced above in the module R(D). We also recognize that

the matrix module Mm,n(R) identifies with R⊕[1,m]×[1,n].

Modules and Vector Spaces 281

If we are given a finite family (Mi)i=1,...n of R-modules, the Cartesian prod-

uctM1×. . .Mn is given a module structure as follows: Vector addition and

scalar multiplication are defined component-wise, i.e.,

(m1, . . .mn)+ (m′
1, . . .m

′
n) = (m1 +m′

1, . . .mn +m′
n),

and

r · (m1, . . .mn) = (r ·m1, . . . r ·mn).

This module is denoted by
⊕
i=1,...nMi and is called the direct sum of the

modules M1, . . .Mn.

The following example is a very comfortable restatement of abelian

groups in terms of modules: Each abelian group M is automatically a

Z-module by the following scalar multiplication: One defines z · m =
m+m + . . .m, z times, for z > 0, −((−z) ·m) for z < 0, and 0 ·m = 0.

Verify that this construction satisfies the module axioms.

Already after these first examples one recognizes that many modules are

manifestations of essentially the same structure. And this is why we once

more return to the principle of morphisms, after we already used it for

sets, digraphs, rings, and automata:

Definition 163 If (R,M,µ : R ×M → M) and (R,N, ν : R × N → N) are

two R-modules, an R-linear homomorphism f : M → N is a group homo-

morphism such that for all (r ,m) ∈ R ×M , f(µ(r ,m)) = ν(r , f (m)). If

no ambiguity about the scalar multiplications in M and in N is likely, one

uses the dot notation, and then linearity reads as f(r ·m) = r · f(m).
The set of R-linear homomorphisms f : M → N is denoted by LinR(M,N).

By point-wise addition and scalar multiplication, LinR(M,N) is also pro-

vided with the structure of an R-module, which we henceforth tacitly as-

sume.

If L is a third R-module, the composition g ◦ f of two R-linear homomor-

phisms f ∈ LinR(M,N) and g ∈ LinR(N, L) is defined by their set-theoretic

composition; it is again R-linear.

For M = N, one writes EndR(M) = LinR(M,M) and calls its elements R-

module endomorphisms. In particular, the identity IdM : M → M is an

R-module endomorphism on M .

An R-linear homomorphism f : M → N is called an isomorphism if it has

an inverse g : N → M such that g ◦ f = IdM and f ◦ g = IdN . Evidently,

282 Modules and Vector Spaces

this is the case iff the underlying group homomorphism is a group iso-

morphism; the inverse is uniquely determined and denoted by g = f −1. If,

moreover, M = N, an isomorphism is called automorphism.

Exercise 106 Show that the matrix R-module Mm,n(R) is isomorphic

to Rmn. In particular, the column matrix module Mm,1(R) and the row

matrix module M1,m(R) are both isomorphic to Rm, and all modules

M0,n(R), Mm,0(R), M0,0(R) and R0 are isomorphic, i.e., they are trivial

R-modules.

Exercise 107 Show that the ring LinR(R,R) is isomorphic to R, in par-

ticular, observe that therefore these objects are also isomorphic as R-

modules.

Sorite 187 If f ∈ LinR(N, L) and g ∈ LinR(M,N), then

(i) if f = f1 + f2, then f ◦ g = (f1 + f2) ◦ g = f1 ◦ g + f2 ◦ g, whereas

for g = g1 + g2, f ◦ g = f ◦ (g1 + g2) = f ◦ g1 + f ◦ g2.

(ii) If r ∈ R, then r · (f ◦ g) = (r · f) ◦ g = f ◦ (r · g).
(iii) With the addition and composition of linear endomorphisms on M ,

the set EndR(M) is a (generally not commutative) ring. If M ≠ 0,

R identifies with the subring R · IdM by the ring isomorphism R
∼→

R · IdM : r , r · IdM , and it commutes with every endomorphism.

The group of invertible elements in EndR(M) is denoted by GL(M),

it is called the general linear group of M .

Proof Let g : M → N and f : N → L be R-linear homomorphisms. If f = f1 + f2,

then for x ∈ M , ((f1 + f2) ◦ g)(x) = (f1 + f2)(g(x)) = f1(g(x)) + f2(g(x)) =
(f1 ◦ g)(x) + (f2 ◦ g)(x) = ((f1 ◦ g) + (f2 ◦ g))(x). If g = g1 + g2, then (f ◦
(g1 + g2))(x) = f((g1 + g2)(x)) = f(g1(x) + g2(x)) = f(g1(x)) + f(g2(x)) =
(f ◦ g1)(x)+ (f ◦ g2)(x) = ((f ◦ g1)+ (f ◦ g2))(x), whence (i).

If r ∈ R, then (r · (f ◦g))(x) = r · ((f ◦g)(x)) = r · (f (g(x)). But also ((r ·f)◦
g)(x) = ((r · f)(g(x)) = r · f(g(x)). Finally (f ◦ (r · g))(x) = f((r · g)(x)) =
f(r · g(x)) = r · f(g(x)), whence (ii).

Claim (iii) follows now immediately from (i) and (ii). �

Example 97 Consider the R-modulesMn,1(R) andMm,1(R) of n-element

and m-element columns. Then an m × n-matrix M : En → Em defines a

map fM : Mn,1(R)→Mm,1(R) by the matrix multiplication fM(X) = M ·X.

This gives us an a posteriori justification of the functional notation of a

Modules and Vector Spaces 283

matrix. The general laws of matrix multiplication stated in sorite 179 im-

ply that this map is R-linear. Moreover, applying fM to the elementary

column E(i,1) ∈ Mn,1(R) gives us the column Mi• of M . Therefore the

map M , fM is injective. We shall soon see that the map is often also

surjective, i.e., the matrixes are essentially the same thing as linear ho-

momorphisms! This is not always the case, but for a large class of rings,

the fields, and therefore for all vector spaces, this is true.

Analogous to groups, one can also build quotient and image modules as

follows:

Proposition 188 Given an R-linear homomorphism f : M → N, the image

group Im(f) is a submodule of N. The kernel Ker(f) of the underlying

group homomorphism is a submodule of M .

If S ⊂ M is a submodule of the R-module M , then the quotient group M/S

is also an R-module by the scalar multiplication r · (m + S) = r ·m + S.

This will be called the quotient R-module.

Proof The fact that Im(f) and Ker(f) are submodules is immediate and left

to the reader. If S ⊂ M is a submodule, then the scalar multiplication is well

defined, in fact, m+ S =m′ + S iff m−m′ ∈ S But then r ·m+ S = r ·m′ + S
since r ·m − r ·m′ = r(m −m′) ∈ S. That this scalar multiplication satisfies

the module axioms is then immediate. �

And here is the universal property of quotient modules:

Proposition 189 Let M be an R-module and S ⊂ M a R-submodule of M .

Then for every R-module N, we have a bijection

LinR(M/S,N)
∼→ {f | f ∈ LinR(M,N) and S ⊂ Ker(f)}.

Proof Let p : M → M/S be the canonical projection. If g : M/S → N is R-linear,

then the composition g◦p : M → N is in the set on the right hand side. Since p is

surjective, the map g , g ◦p is injective (see the characterization of surjections

of sets in sorite 16). Conversely, if f : M → N is such that S ⊂ Ker(f), then we

may define a map g : M/S → N : m + S , f(m). Is this map well defined? If

m + S =m′ + S, then m −m′ ∈ S, hence f(m)− f(m′) = f(m −m′) = 0. It is

evidently R-linear, and we are done, since f = g ◦ p. �

Here is the (double) universal property of the finite direct sum:

Proposition 190 If M1, . . .Mn is a finite family of R-modules Mi, we have

R-linear injections ιj : Mj →
⊕
iMi : m , (0, . . .0,m,0, . . .0) for each

284 Modules and Vector Spaces

j = 1, . . . n, which map an element m ∈ Mj to the n-tuple having zeros

except at the j-th position, where the element m is placed. For any R-

module N, this defines a bijection

LinR(
⊕

i

Mi, N)
∼→
⊕

i

LinR(Mi, N)

between sets of homomorphisms defined by f , (f ◦ ιi)i.
Dually, we have R-linear projections πj :

⊕
iMi → Mj : (mi)i , mj , for

each j = 1, . . . n. For any R-module N, this defines a bijection

LinR(N,
⊕

i

Mi)
∼→
⊕

i

LinR(N,Mi)

between sets of homomorphisms defined by f , (πi ◦ f)i.
Proof The isomorphisms f , (f ◦ ιi)i and f , (πi ◦ f)i indicated in the propo-

sition allow an immediate verification of the claims. We leave the details to the

reader. �

Exercise 108 Suppose we are given two subspaces U,V ⊂ M and con-

sider the homomorphism f : U ⊕ V → M guaranteed by proposition 190

and these two inclusions. Then show that f is an isomorphism iff (i)

U ∩ V = 0 and (ii) M = U + V , which means that every m ∈ M is a

sum m = u + v of u ∈ U and v ∈ V . In this case M is also called the

inner direct sum of U and V , and U and V are said to be complements to

each other.

Remark 25 If we consider the two injections iM : M → M ⊕ N and iN :

N → M ⊕ N, an element m ∈ M is mapped to iM(m) = (m,0), while

an element n ∈ N is mapped to iN(n) = (0, n). If it is clear from the

context that m belongs to the direct summand M and n to N, then one

also identifiesm with iM(m) and n to iN(n). With this identification, one

may add m to n and write m + n instead of iM(m) + iN(n). From now

on, this comfortable and economic notation will often be used without

special emphasis.

The following enables the reduction of linear algebra to matrix algebra

for a class of modules called free:

Definition 164 For a finite number n, an R-module M is called free of

dimension n if it is isomorphic to Rn.

Modules and Vector Spaces 285

Attention: for general rings, a module is not necessarily free. A very sim-

ple example is a finite abelian group, such as Zn, which, as a Z-module,

cannot be free since any free non-zero Z module is infinite. At present,

you cannot know whether the dimension of a free module is uniquely

determined. That it is in fact unique is shown by this result:

Proposition 191 If an R-module M is free of dimension n and free of di-

mensionm, then n =m, and this uniquely defined dimension is also called

dim(M).

Proof This follows from the properties of the determinant. Let f : Rn → Rm

be an R-linear isomorphism with n < m. Any element x = (x1, . . . xn) ∈ Rn
can be written as x = ∑

i=1,...n xiei, where ei = (0, . . .0,1,0, . . .0) has 1 at the

i-th position. Then since every element y ∈ Rm is an image under f , it can

be written as y = ∑
i xif(ei). Now, consider the unit matrix Em, for which

we have det(Em) = 1. By the above, we may write each row E(1, i) ∈ Rm as

E(1, j) = ∑i=1,...n x(j)if(ei), for x(j)i ∈ R, i.e., as a combination of less than m

row vectors f(ei), i = 1, . . . n. Therefore, by the properties of the determinant,

especially equal row annihilation, the determinant must vanish, a contradiction,

therefore n ≥m. A symmetric argument shows m ≥ n, whence the claim. �

Example 98 The free R-module RÂš is called the real plane, and RÂş is

called the real three-dimensional space.

It will be shown in the course of the next chapter that every vector space

has a dimension.

Proposition 192 IfM is a free R-module of dimension n, and if N is a free

R-module of dimension m, then the R-module LinR(M,N) is isomorphic to

Mm,n(R), i.e., free of dimension mn.

Proof We may wlog suppose thatM = Rn and N = Rm. Then by proposition 190,

we have an R-linear isomorphism LinR(M,N)
∼→ ⊕

i=1,...m,j=1,...n LinR(R,R), with

LinR(R,R)
∼→ R, and therefore dim(LinR(M,N)) = n ·m. One now maps the

homomorphism f defined by the sequence (mij)i=1...m,j=1,...n ∈
⊕
i=1,...m,j=1,...n R

to the matrix Mf with (Mf)ij =mij . This map is evidently a linear bijection. �

We are now in the position to define the determinant of any linear endo-

morphism of a moduleM of dimension n by the following observation: If

we have a free R-module M of dimension n and a linear endomorphism

f : M → M , then, if u : M → Rn is an isomorphism, we may consider the

linear homomorphism u ◦ f ◦ u−1 : Rn → Rn. This corresponds to a ma-

trix Mf ,u ∈ Mn,n(R). If we take another isomorphism u′ : M → Rn, then

286 Modules and Vector Spaces

we have the corresponding matrix Mf ,u′ ∈Mn,n(R), and it easily follows

that

Mf ,u′ = (u′u−1) ·Mf ,u · (u′u−1)−1.

Therefore, the determinant of f , if defined by

det(f) = det(Mf ,u)

is well defined by our previous result on conjugation of matrixes, see (xiii)

of theorem 181.

Free modules are therefore fairly transparent, since their theory seems to

reduce to matrix theory. However, we still have some unknown situations

even with this easy type of modules: For example, if f : Rn → Rm is an R-

linear map, what is the structure of Ker(f) or Im(f)? Are these modules

free? In general, they are not, but again, for vector spaces, this is true.

This will be shown in the next chapter.

CHAPTER 22

Linear Dependence, Bases,

and Dimension

In practice, modules often do not occur as free constructions, but as sub-

spaces, more precisely: kernels or even quotient spaces related to linear

homomorphisms. For example, if we are given a matrix M ∈ Mm,n(R),

the corresponding linear homomorphism fM : Rn → Rm has a kernel

Ker(fM) which plays a crucial role in the theory of linear equations. A

linear equation is a matrix equation of this type:

y1

y2

...

ym

=

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

·

x1

x2

...

xn

where the matrixes (yi) and M = (aij) are given and one looks for the

unknown column matrix (xi). One reinterprets this equation by the linear

homomorphism fM : Rn → Rm associated with M . We are given an ele-

ment y = (y1, y2, . . . ym) ∈ Rm and look for the inverse image f−1
M (y)

of y under fM . The solutions of the above equations are by definition the

elements x ∈ f−1
M (y). So this solution space is structured as follows: If x̃

is a particular solution, the solution space is

f−1
M (y) = x̃ + Ker(fM).

This means that we have to deal with the following two problems: (1)

Deciding if there is at least one particular solution and possibly find it.

(2) Describing the kernel of fM .

288 Linear Dependence, Bases, and Dimension

22.1 Bases in Vector Spaces

To tackle these problems, we shall restrict our theory to vector spaces, i.e.,

module over fields R during the rest of our discussion of linear algebra.

Definition 165 A finite sequence (xi) = (x1, x2, . . . xk), k ≥ 1, of elements

xi ∈ M of an R-vector space M is called linearly independent if one of the

following equivalent properties holds:

(i) A linear combination
∑
i=1,...k λixi of the vectors xi equals 0 iff we

have λi = 0 for all scalars λi.

(ii) The R-linear homomorphism f : Rk → M defined by f(λ1, . . . λk) =∑
i=1,...k λixi is injective, i.e., Ker(f) = 0.

If (xi) is not linearly independent, the sequence is called linearly depen-

dent.

Exercise 109 Give a proof of the equivalence of the properties in defini-

tion 165.

Exercise 110 Show that a linearly independent sequence (xi) cannot

contain the zero vector, nor can it contain the same vector twice. If (xi)

is linearly independent, then so is every permutation of this sequence.

This means that linear independence is essentially a property of the un-

derlying set {xi, i = 1, . . . k} of vectors. However, there are many reasons

to keep the sequential order here and in the following definitions of gen-

erators and bases, as well.

Exercise 111 Show that in the real vector space R(N), every sequence

(ei)i=0,1,2,...k, k ≥ 1 with ei = (0, . . .0,1,0, . . .) having a 1 exactly in po-

sition i ∈ N and 0 else, is linearly independent.

Exercise 112 Show that in a free vector space Rn of dimension n, the

sequence (xi)i=1,2,...n of the vectors x = (1,1, . . . ,1,0,0 . . .0) whose com-

ponents are 1 up to and including the i-th coordinate, and 0 thereafter,

is linearly independent.

Exercise 113 Consider the Q-vector space R, defined by the usual addi-

tion of “vectors”, i.e., real numbers, and the usual scalar multiplication,

but restricted to rational scalars. Show that the two vectors 1 and
√

2

22.1 Bases in Vector Spaces 289

are linearly independent over Q. Use the results of exercise 69 about the

irrationality of
√

2.

Definition 166 A finite sequence (xi) = (x1, x2, . . . xk), k ≥ 1, of elements

xi ∈ M of an R-vector spaceM is said to generateM if one of the following

equivalent properties holds:

(i) The vector space M equals the subspace of all linear combinations∑
i=1,...k λixi of the vectors xi (also called the space generated by

(xi)).

(ii) The R-linear homomorphism f : Rk → M defined by f(λ1, . . . λk) =∑
i=1,...k λixi is surjective, i.e., Im(f) = M .

A vector space M is called finitely generated if there is a finite sequence

(xi) = (x1, x2, . . . xk), k ≥ 1 of elements xi ∈ M which generates M .

Exercise 114 Give a proof of the equivalence of the properties in defini-

tion 166.

Exercise 115 Consider the R-vector spaceM = R[X, Y]/(X12, Y 12). Show

that it is generated by the images of XiY j ,0 ≤ i, j,≤ 11, in M .

Definition 167 A finite sequence (xi) = (x1, x2, . . . xk), k ≥ 1 of elements

xi ∈ M of an R-vector space M is called a basis of M iff it is linearly inde-

pendent and generates M . Equivalently, (xi) is a basis, iff the R-linear ho-

momorphism f : Rk → M : (λ1. . . . λk) ,
∑
i=1,...k λixi is an isomorphism.

Since by proposition 191, the dimension ofM is uniquely determined, every

basis of M must have the same number of elements, i.e., k = dim(M).

Remark 26 We have excluded the zero vector spaces here, because in

those no finite sequence (x1, . . . xk), k ≥ 1, can be linearly independent.

To complete the general terminology, one also says that the empty se-

quence is linearly independent, and that it forms a basis for a zero space,

but this is merely a convention.

Exercise 116 Show that in a free vector space Rn of dimension n, the

sequence (xi)i=1,2,...n of the vectors x = (1,1, . . . ,1,0,0 . . .0) whose com-

ponents are 1 up to and including the i-th coordinate, and 0 thereafter,

is a basis of Rn. Show that the elementary matrixes E(i, j) of Mm,n(R),

m,n > 0, form a basis of this vector space (R being any field).

Here is the guarantee that bases always exist:

290 Linear Dependence, Bases, and Dimension

Proposition 193 A vector space which is finitely generated has a basis,

more precisely, for every finite sequence (xi) of generators, there is a sub-

sequence which is a basis of M .

Proof Let (x1, . . . xk), k ≥ 1, be a generating sequence, then consider the first

xi ≠ 0 (if there is none, we have the case of a zero space, and the “empty ba-

sis” does the job). The one-element sequence (xi1) is linearly independent since

λ·xi1 = 0, with λ ≠ 0, implies λ−1 ·λ·xi1 = xi1 = 0, a contradiction. Suppose we

have found a subsequence (xi1 , xi2 , . . . xir), i1 < i2 < . . . ir , of linearly indepen-

dent vectors of maximal length. Then this generates the space for the following

reason: If i is an index i1 < i < ir , then xi is linearly dependent on the vectors

xij , ij ≤ i, by construction. If i > ir , then there is a non-trivial linear combination

0 = µ · xi +
∑
j=1,...r xij by the maximality of our sequence. But then µ ≠ 0, oth-

erwise, we would have linear dependence of the maximal sequence. Therefore xi
is contained in the space generated by the maximal sequence (xi1 , xi2 , . . . xir),

and we are done. �

Here is the famous Steinitz exchange theorem, which guarantees that vec-

tor subspaces are always embedded in a distinct way:

Proposition 194 (Steinitz Exchange Theorem) If (y1, y2, . . . yl) is a se-

quence of linearly independent vectors in a finitely generated vector space

M , and if (x1, x2, . . . xk) is a basis of M (guaranteed by proposition 193),

then l ≤ k, and there is a (possibly empty) subsequence (xi1 , xi2 , . . . xik−l)

of (x1, x2, . . . xk) such that (y1, y2, . . . yl, xi1 , xi2 , . . . xik−l) is a basis of M .

Proof There is a representation y1 =
∑
i λixi. Since y1 ≠ 0, there is a t, such that

λt ≠ 0. Then xt is in the space generated by the sequence (y1, x1, . . . x̂t , . . . xr)

(refer to the footnote of page 182 for the ̂ notation). But this is again a ba-

sis, since it generates the whole space and it is linearly independent. In fact,

if 0 = µ · y1 +
∑
i=1,...t̂,...r λixi is a non-trivial linear combination, then neces-

sarily, µ ≠ 0, but then y1 also has a representation as a linear combination

without xt , so 0 = y1 − y1 would have a non-trivial representation by the ba-

sis, a contradiction! Therefore we have a new basis (y1, x1, . . . x̂t , . . . xr). Sup-

pose now that we have found a new basis (y1, y2, . . . yr , xi1 , xi2 , . . . xik−l), r ≤ l.
If r = l we are done, otherwise we may proceed as initially with y1, how-

ever, we must show that we can still eliminate one of the remaining xij . But

if yr+1 =
∑
e=1,...r µeye +

∑
f=1,...k−r λfxif , then there must exist a λf0 ≠ 0, other-

wise, the y would be linearly dependent. So we may eliminate xif0 and we may

proceed until all y are integrated in the basis. �

Remark 27 The proof of the Steinitz theorem is quite algorithmic. Let

us sketch the procedure: Suppose that we can find a linear combination

22.1 Bases in Vector Spaces 291

yj =
∑
i=1,...k λjixi for each yj . Then, starting with y1, take the first non-

vanishing coefficient λ1i(1) in the sequence (λ1i), which exists since y1 is

not zero. Clearly, replacing xi(1) by y1 in the basis (xi) gives us a new

basis. Now, suppose that we have already replaced some xi by y1, . . . yr

and still have a basis. Now, yr+1 (if such a vector is left) is also a lin-

ear combination of these new basis elements. However, it is impossible

that all coefficients of the remaining xi vanish since then the (yj) would

not be linearly independent. So we may go on as in the beginning and re-

place one such xi whose coefficient is not zero. This procedure eventually

yields the new basis which contains all yj .

Corollary 195 If N is a subspace of a vector space M of dimension

dim(M), then N is also finitely generated and dim(N) ≤ dim(M), equality

holding iff N = M . Moreover, there is a subspace C ⊂ M complemen-

tary to N, i.e., the homomorphism N ⊕ C → M defined by the inclusions

C,N ⊂ M via the universal property of direct sums (proposition 190) is an

isomorphism; in other words, M is the inner direct sum of N and C (see

exercise 108).

Proof We first show that N has a basis. If N = 0, we are done. Otherwise we

take a maximal sequence (y1, . . . yr) of linearly independent vectors in N. Then

r ≤ k by Steinitz. This must generate N, otherwise, let z ∈ N be a vector which

is not a linear combination of y1, . . . yr . Then evidently (y1, . . . yr , z) is linearly

independent, a contradiction. So let (y1, . . . yl) be a basis of N, and (x1, . . . xk) a

basis of M . Then, by Steinitz, l ≤ k. If N = M , then by uniqueness of dimension,

l = k. If l = k, we may replace all of (x1, . . . xk) by the basis elements y1, . . . yr ,

and therefore N = M .

To find a complement of N, take the space spanned by the k − l elements x of

the old basis in the basis (y1, y2, . . . yl, xi1 , xi2 , . . . xik−l). This is clearly a com-

plement. �

Remark 28 So we have this image in the case of finite-dimensional vector

spaces over a fixed field R: If we fix an isomorphism uM : M
∼→ Rdim(M)

for each R-vector space M , we obtain an isomorphism

tuM ,uN : LinR(M,N)
∼→Mdim(N),dim(M)(R)

defined by the conjugation f : M → N , uN◦f ◦(uM)−1 and the canonical

interpretation of linear maps Rn → Rm as matrixes. In this setup, if we

are given a second linear map g : N → L, dim(L) = l, then we have

tuM ,uL(g ◦ f) = tuN ,uL(g) · tuM ,uN (f) and tuM ,uM (IdM) = Edim(M),

292 Linear Dependence, Bases, and Dimension

i.e., the matrix product commutes with the composition of linear maps.

This may be visualized by commutative diagrams:

M
uM

ñ Rm � Em

N
uN

ñ

f

ñ

Rn

t(f)

ñ

� En

Mt(f)

ñ

L

g ◦ f

�

uL
ñ

g

ð

Rl

t(g ◦ f)
�

t(g)

ð

� El

Mt(g◦f)

�

Mt(g)

ð

We therefore have restated vector space structures in terms of matrixes,

as predicted. But what happens if we change the basis of a vector space

M? Let us discuss this for endomorphisms of M which we transform

into square matrixes in Mn,n(R) of size n = dim(M). Suppose we are

given two bases which induce the isomorphisms u,v : M
∼→ Rn. Then

u ◦ v−1 : Rn
∼→ Rn defines a matrix X such that we have

tv,v(f) = X−1 · tu,u(f) ·X,

i.e., conjugation with the base change matrix X gives us the second matrix

of f . In particular, if M = Rn, and if v = IdRn , then this formula gives us

the matrix of f when calculated in the matrix representation from the

new basis, whose elements are the column vectors of X. In other words:

Corollary 196 If we have a new basis (xi) of the vector space Rn given

in terms of a matrix C of columns C•i which correspond to xi, then the

representation of a linear map matrix f : Rn → Rn in terms of the basis

(xi) is C−1 · f · C.

We can now state the relation between the dimensions of the kernel and

the image of a linear map.

Corollary 197 Let f : M → N be a linear homomorphism defined on a

finite-dimensional R-vector space M (the vector space N need not be finite-

dimensional). Then we have

dim(M) = dim(Im(f))+ dim(Ker(f)).

22.1 Bases in Vector Spaces 293

More precisely, there is a subspace U ⊂ M , which is a complement of

Ker(f), i.e., M
∼→ U ⊕Ker(f), and such that f |U : U → Im(f) is an isomor-

phism.

Proof Let U be a complement of Ker(f) in M . Then dim(U) + dim(Ker(f)) =
dim(M), by corollary 195. But the restriction f |U : U → N is evidently a sur-

jection onto Im(f) since Ker(f) is mapped to zero. Moreover, Ker(f) ∩ U = 0

means that Ker(f |U) = 0. Therefore f |U : U
∼→ Im(f) is an isomorphism, and we

are done. �

Example 99 A simple example of this fact is illustrated in figure 22.1.

Here we have a projection π of the 3-dimensional space R3 onto the 2-

dimensional plane R2. A point x in R3 is mapped to a point π(x) in the

plane of dimension 2, which is Im(π). The points on the line through the

origin O parallel to the projection axis are all mapped to O, i.e., these

are all the points y such that π(y) = O. Thus this line of dimension 1

is Ker(π). As predicted by corollary 197, dim(Im(π)) + dim(Ker(π)) =
dim(R3), i.e., 2+ 1 = 3.

Fig. 22.1. The image and kernel of a projection.

Definition 168 The dimension dim(Im(f)) of a linear homomorphism f :

M → N of R-vector spaces is called the rank of f .

Here is the numerical criterion which allows us to calculate the rank of f

in terms of its matrix:

294 Linear Dependence, Bases, and Dimension

Definition 169 The rank rk(M) of a matrix M ∈ Mm,n(R), for positive

m and n over a field R is the maximal r such that there is a square r ×
r -submatrix D of M with det(D) ≠ 0, r = 0 meaning that M = 0. By

definition, such a submatrix is obtained by eliminating m − r rows and

n− r columns from M .

Proposition 198 The rank of a linear homomorphism f : M → N of non-

trivial R-vector spaces coincides with the rank of an associated matrix

t(f) ∈Mdim(N),dim(M)(R) with respect to selected bases.

Proof We know that the matrix t(f) of a linear homomorphism f : M → N

with respect to selected bases of M and N is described as follows: The asso-

ciated linear map g : Rn → Rm with n = dim(M) and m = dim(N), has the

images g(ej)τ = t(f)•j for the canonical basis ei = E(i,1)•1, i = 1, . . . n, of Rn,

and of course rk(g) = rk(f). If we take the submatrix of t(f) defined by se-

lecting q > rk(f) columns, then these q columns are linearly dependent. This

remains true if we cancel all but q rows of this matrix. After canceling, we have

a q × q submatrix with linearly dependent columns, which clearly has zero de-

terminant. So the rank of t(f) is at most rk(f). Take k = rk(f) columns, which

generate a basis of Im(g). Then, using Steinitz, complete we can complete this

basis by elementary columns eπ(j), j = k + 1, . . .m. This yields a m ×m matrix

whose determinant does not vanish. But the determinant only changes its sign

if we permute columns or rows. We may obviously exchange rows and columns

such that the new matrix has as last m − k columns the elementary columns

ek+1, . . . em, filling up the diagonal with 1s after the columns associated with the

basis of Im(g). But then the determinant is the necessarily non-zero determinant

of the upper left k × k-block of the matrix, so the rank of t(f) is at least k and

we are done. �

q

q

n

m

k

k

n

m

1

1

Fig. 22.2. Illustrating the proof of proposition198. Left: A q × q subma-

trix with linearly dependent column vectors. Right: A k × k submatrix

extended to a regular m×m matrix.

22.2 Equations 295

22.2 Equations

We may now decide upon the existence of a solution of the linear equation

y1

y2

...

ym

=

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...

am1 am2 . . . amn

·

x1

x2

...

xn

with given matrixes (yi),M = (aij) and unknown (xi): Let (y,M) be the

m × (n + 1)-matrix obtained by prepending the column y to the left of

M . Here is the somewhat redundant but useful list of cases for solutions

of the system:

Proposition 199 With the preceding notations, the linear equation y =
M · x

(i) has a solution iff rk(M) = rk((y,M));

(ii) has at most one solution if rk(M) = n;

(iii) has exactly one solution iff rk((y,M)) = rk(M) = n;

(iv) has the unique solution x = M−1 · y in the case m = n = rk(M)

(so-called “regular equation”).

(v) Given one solution x0, and a basis (zt)t=1,...s of the kernel of the

linear map fM associated with M , the solution space consists of the

coset x0 + Ker(fM), i.e., all the vectors x0 +
∑
t=1,...s λtzt , λt ∈ R.

The elements of Ker(fM) are also called the solutions of the homo-

geneous equation 0 = M · x associated with y = M · x.

Proof If the equation y = M · x has a solution, it is of the form y =∑
j=1,...d λiM•ji for a basis (Mτ•j1 , . . .M

τ
•jd) of the image of the homomorphism

fM : Rn → Rm associated with M . But then the matrix (y,M) has no regular

square submatrix containing the column y , by the common column equality

annihilation argument, whence rk(M) = rk((y,M)). Conversely, consider the

linear map h : Rn ⊕ R → Rm which on the first summand is fM , and on the

second summand just maps the basis 1 to y . Then since rk(M) = rk((y,M)),

dim(Im(h)) = dim(fM), so the images are equal, and y is in the image of fM ,

this proves (i).

As to (ii), if rk(M) = n, then by corollary 197, Ker(fM) = 0 and fM is injective.

If in (iii) we suppose rk((y,M)) = rk(M) = n, then by (i) and (ii), there is exactly

one solution. Conversely, if there is exactly one solution, then there is a solution,

and (i) shows rk((y,M)) = rk(M), while if rk(M) < n would yield a non-trivial

296 Linear Dependence, Bases, and Dimension

kernel, and for each solution y , we get another solution y+w forw ∈ Ker(fM)−
{0}. Therefore also rk(M) = n.

Statements (iv) and (v) are clear, since the difference of any two solutions is n the

kernel, and any solution y , when changed to y+w,w ∈ Ker(fM), yields another

solution. �

In chapter 23, we shall present more algorithmic methods for finding

solutions.

22.3 Affine Homomorphisms

It is sometimes customary to distinguish between vectors and points

when dealing with elements of an R-vector space M . Why? Because vec-

tors may play different roles within a space. So far we know that vectors

are elements of a space which may be added and scaled. But all vectors

play the same role. The representation of a vector x ∈ M by means of its

coordinate sequence f(x) = (λ1, . . . λn) for a given basis (xi) of M and

the associated isomorphism f : M
∼→ Rn positions the vector in a coordi-

nate system, whose axes are the 1-dimensional base spaces R ·xi. This is

the common image of traditional analytical geometry.

In “affine geometry” however, one adopts a slightly different point of view

in that the addition u+y of two vectors is restated as an operation of u

upon y . This operation is denoted by Tu : M → M : y , Tu(y) = u+ y ,

and is called the translation by u. The exponential notation has its justi-

fication in the obvious formula Tu ◦ Tv = Tu+v . In this understanding, y

plays the role of a point which is shifted by the vector u to a new point

Tu(y) = u+ y . Clearly, we therefore have an injection T : M → Sym(M)

of the additive group of M into the symmetric group of M ; denote by TM

the image group of translations on M . This identification of a vector u

with its translation Tu creates two kinds of vectors in affine geometry:

the given ones, y , and the associated operators Ty . In this way, addition

of vectors is externalized as an operator on the “point set M”. Like linear

algebra, affine algebra deals with modules and in particular vector spaces,

but the morphisms between such spaces are a little more general, since

they also include translations. Here is the formal definition.

Definition 170 If M and N are R-vector spaces, then a map f : M → N
is called an R-affine homomorphism, if there is a map g ∈ LinR(M,N)

and a vector u ∈ N such that f = Tu ◦ g. The homomorphism g is called

22.3 Affine Homomorphisms 297

the linear part, whereas Tu is called the translation part of f . The set of

affine homomorphisms f : M → N is denoted by Aff R(M,N). The group of

invertible elements in the ring Aff R(M,M) of affine endomorphisms of M

is denoted by GA(M) and called the general affine group of M .

Fig. 22.3. An affine homomorphism f = Tu ◦ g on R2 is shown as a

rotation g around the origin, followed by a translation T u.

For an affine homomorphism f = Tu ◦ g, the translation part u = f(0)
and the linear part g = T−u ◦ f are uniquely determined by f . They are

denoted by u = τ(f) and g = λ(f), i.e.,

f = T τ(f) ◦ λ(f).

Exercise 117 Show that together with the point-wise addition and scalar

multiplication, Aff R(M,N) is also an R-vector space.

Lemma 200 If f : M → N and g : N → L are R-affine homomorphisms,

then their composition g ◦ f : M → L is R-affine and we have this formula:

g ◦ f = (T τ(g) ◦ λ(g)) ◦ (T τ(f) ◦ λ(f)) = T τ(g)+λ(g)(τ(f)) ◦ (λ(g) ◦ λ(f)).

The inverse of an affine isomorphism f = T τ(f) ◦ λ(f) (i.e., its linear part

is an isomorphism) is given by the formula

f−1 = T−λ(f)−1(τ(f)) ◦ λ(f)−1.

Proof The lemma follows without any trick from the explicit formulas, which it

presents. We therefore leave it to the reader. �

298 Linear Dependence, Bases, and Dimension

Fig. 22.4. Composition g ◦ f of affine homomorphisms g and f acting

on a vector u.

Exercise 118 Show that the group TM of translations is a normal sub-

group of GA(M). Show that GA(M)/TM
∼→ GL(M).

It has turned out advantageous to represent linear maps by matrixes, so

let us see how this can be obtained for affine maps. Of course, the usual

representation does not work, because, in general, affine maps do leave

origin fixed. But there is a beautiful trick to interpret an affine map as if

it would. The trick consists in inventing a new origin and embedding the

given vector space in a larger space, where we have a linear map which on

the embedded space behaves like the given affine map. The new system is

related to what is known as the method of “homogeneous coordinates”.

We have the affine injection

ηM : M → M ⊕ R :m , (m,1)

of homogenization, i.e., ηM = T (0,1) ◦ i1, where i1 is the usual linear em-

bedding of M as first summand of M ⊕ R. Then, for a given affine homo-

morphism f : M → N, we consider the linear homomorphism

f̂ : M ⊕ R → N ⊕ R : (m, r), (λ(f)(m),0)+ r(τ(f),1)

associated with an affine homomorphism f : M → N. Clearly, f̂ sends

ηM(M) to ηN(N). More precisely, we have

22.3 Affine Homomorphisms 299

f̂ ◦ ηM = ηN ◦ f ,

which is best represented as a commutative diagram

M
ηM

ñ M ⊕ R

N

f

�

ηN
ñ N ⊕ R

f̂

�

We may get back f by the formula

π1 ◦ f̂ ◦ ηM = f

with the first projection π1 : N ⊕ R → N, since π1 ◦ ηN = IdN . Because

ηM(m) = (m,1), then we have f̂ ((m,1)) = (f (m),1). If M is identified

with Rn and N is identified with Rm by the choice of two bases, then

the linear part λ(f) identifies with a m × n-matrix (aij), the translation

vector τ(f) with a column vector (ti1) and f̂ can be represented by the

matrix

a11 a12 . . . a1n t11

...
...

...
...

am1 am2 . . . amn tm1

0 0 . . . 0 1

which evidently sends a column (yi1) from the image ηM(M) with last

coordinate 1 to a column with the same last coordinate. The homogeneous

coordinates of a column vector are the given coordinates plus the new last

coordinate 1.

Exercise 119 Show that ÎdM = IdM⊕R. Given two affine homomorphisms

f : M → N and g : N → L, show that ĝ ◦ f = ĝ ◦ f̂ .

Example 100 Anticipating the concept of angles and associated ma-

trixes, the counter-clockwise rotation R0 by 60 degrees around the origin

(0,0) in R2 is given by the matrix

MR0 =

1
2 −

√
3

2√
3

2
1
2

This subject will be treated properly in section 24, but for the moment,

we may just recall the high school education in mathematics. We now

300 Linear Dependence, Bases, and Dimension

consider the counter-clockwise rotation Rp of 60 degrees around any

point p = (x,y). Figure 22.5 illustrates the case of p = (2,1) and the

value Rp(a) of the point a = (− 1
2 ,−1). The rotation Rp is an affine trans-

Fig. 22.5. The rotation Rp(a) of the point a = (− 1
2 ,−1) by θ = 60 de-

grees around the point p = (2,1).

formation on R2 by the following argument: consider the composition

T−p◦Rp◦Tp. This map fixes the origin and is in fact the counter-clockwise

rotation R0 of 60 degrees around the origin (0,0). Then the equation

R0 = T−p◦Rp◦Tp yields Rp = Tp◦R0◦T−p = T∆p◦R0 with ∆p = p−R0(p).

Let us calculate the numeric values and the 3 × 3-matrix of R̂p in terms

of homogeneous coordinates for the concrete vector p = (2,1). We have

∆p =
(

2

1

)
−

1
2 −

√
3

2√
3

2
1
2

 ·

(
2

1

)
=

 1+

√
3

2
1
2 −
√

3

and therefore the matrix MR̂pof R̂p is

MR̂p =
(
MR0 ∆p

0 1

)
=

1
2 −

√
3

2 1+
√

3
2√

3
2

1
2

1
2 −
√

3

0 0 1

 .

22.3 Affine Homomorphisms 301

The transformation corresponding to MR̂p is shown in figure 22.6. If ap-

plied to a vector a = (− 1
2 ,−1), rewritten in homogeneous coordinates

â = (−1
2 ,−1,1), we get the product

R̂p(â)
τ =

1
2 −

√
3

2 1+
√

3
2√

3
2

1
2

1
2 −
√

3

0 0 1

 ·

−1
2

−1

1

 =

3
4 +
√

3

−5
√

3
4

1

 .

Fig. 22.6. The same transformation as in figure 22.5, but this time in

homogeneous coordinates, i.e., R̂p(â), where â = (− 1
2 ,−1,1).

CHAPTER 23

Algorithms in Linear Algebra

In practice, one needs algorithmic methods to calculate matrixes which

arise from problems in linear algebra or vector spaces. In particular, it is

important to obtain solutions of linear equations, to calculate determi-

nants and inverse matrixes. This is a vast field of numerical mathematics

and of ongoing research, since fast and reliable algorithms for special ma-

trixes are of crucial importance for the entire computer-aided science, be

it physics, economics, chemistry or biology. There are also very important

applications of matrix calculations in special technological fields such as

signal processing (e.g., Fast Fourier Transform, see later in the second

volume of this book), which are particularly sensitive to fast methods be-

cause they pertain to real-time applications. We shall only discuss some

very elementary algorithms here in order to give a first idea of the sub-

ject. For object-oriented implementations of these and other algorithms,

we refer to [6].

23.1 Gauss Elimination

The Gauss algorithm is based on two simple observations about the so-

lutions of linear equations:

1. If we are given a linear equation y = f(x) for an R-linear map f : M →
N, the solutions x are unchanged if we compose f with a g ∈ GL(N)

and thus obtain the new equation g(y) = g(f(x)) = (g ◦ f)(x).

304 Algorithms in Linear Algebra

2. If we have a well-known h ∈ GL(M), then we may rewrite the equation

as y = f(x) = (f ◦h−1)◦h(x), and hope that the new unknown h(x)

is easier to manage than the original one.

The first observation can be applied to matrixes as follows: We are given

a system of linear equations

yi =
∑

j=0,...n

aij · xj

with m equations (i = 1, . . .m) and n unknowns (j = 1, . . . n). This can

be written as matrix equation

y = A · x

where A = (aij), x = (xj) and y = (yi). Then the solution set is left

unchanged if we multiply both sides by an invertible m ×m-matrix B,

obtaining the new matrix equation

y ′ = B ·y = (B ·A) · x = A′ · x.

The second observation suggests that we take an invertible n×n-matrix

C and rewrite

y = A · x = (A · C−1) · (C · x) = A′ · x′

with the new unknowns

x′ = C · x.

The method of Gauss elimination consists of a clever choice of a series

of transformations B and C which successively change the equation until

it has a particularly simple shape. Mostly, Gauss elimination is applied

in the case of a regular system of n equations with n unknowns, i.e.,

the coefficient matrix A is supposed to be invertible, such that we have

exactly one solution.

The idea of this procedure is to obtain an upper triangular coefficient

matrix A, i.e., aij = 0 for i > j. This means that the diagonal elements

aii ≠ 0, because their product is the non-zero determinant. Then we may

solve the equation system by backward substitution, which means that

we first calculate xn, then xn−1, etc. until we obtain the solution of x1. In

fact, a triangular matrix yields these n equations:

23.1 Gauss Elimination 305

yi =
∑

j=i,i+1,...n

aijxj

which can be solved recursively, beginning with

xn = 1

ann
yn

and yielding

xi =
yi −

∑
j=i+1,...n aijxj

aii

from the calculation of xn, xn−1, . . . xi+1.

So we are left with the construction of an upper triangular coefficient

matrix. Again, this is a recursive construction, proceeding along the size

n. To begin with, one would like to have a11 ≠ 0. If this is not the case, we

look for a first index k > 1 such that a1k ≠ 0. This exists since otherwise,

the determinant of A would vanish. Now we rename the unknowns: x1

becomes xk, and xk becomes x1. This is achieved by replacing A with

A′ = A·P(1, k) and the column x with x′ = P(1, k)·x. The matrix P(1, k)

corresponds to the transposition (1k) in the symmetric group Sn and is

defined by P(1, k) = En − E(1,1)− E(k, k)+ E(k,1)+ E(1, k). Multiplying

A from the right by P(1, k) exchanges column 1 and k of A, whereas

multiplying x by P(1, k) from the left, exchanges x1 and xk, and this

does not change anything in the product y = A′ ·x′, since P(1, k)2 = En.

Therefore, up to renaming x1 to x′k, and xk to x′1, and leaving all other

unknowns xj = x′j , we have achieved that a11 ≠ 0. Next, we find an

invertible B such that A′ = B · A has zeros a′ij = 0 i > j. This is the

matrix:

B = En −
∑

i=2,...n

ai1

a11
· E(i,1).

It is invertible (the determinant is 1) and and the product A′ = B ·A has

zeros a′i1 = 0, for i > 1. Proceeding recursively, the situation is restricted

to the equations i = 2, . . . n involving only the unknowns x2, . . . xn. This

settles the problem.

Example 101 Consider the system of equations

2x1 + 3x2 + 4x3 = 8

4x1 + 2x2 − x3 = −3

2x1 − 3x2 + 3x3 = 17

This can be rewritten as

306 Algorithms in Linear Algebra

A · x = y
where

A =

2 3 4

4 2 −1

2 −3 3

 and y =

8

−3

17

To perform Gauss elimination, we first have to transform a into an upper

triangular matrix. In a first step, we will multiply the equation with a

matrix B that nullifies the second and third entries in the first column.

After that, a matrix C will be used that nullifies the third entry in the

second column, i.e.,

C · B ·A · x = C · B ·y
where C · B · A will be an upper triangular matrix. As defined above, the

matrix B is given by

B = E3 −
∑

i=2,3

ai1

a11
· E(i,1)

i.e.,

B =

1 0 0

0 1 0

0 0 1

−

4

2
·

0 0 0

1 0 0

0 0 0

+

2

2
·

0 0 0

1 0 0

0 0 0

 =

1 0 0

−2 1 0

−1 0 1

A simple calculation shows

B ·A =

2 3 4

0 −4 −9

0 −6 −1

 and B ·y =

8

−19

9

Now we have to nullify the third element in the second row of B · A. For

this, we look at the submatrix A′ of A:

A′ =
(
−4 −9

−6 −1

)

Using the same procedure as above, we get

C′ = E2 − a
′
21

a′11
· E(2,1) =

(
1 0

0 1

)
− 3

2
·
(

0 0

1 0

)
=
(

0 0

−3
2 0

)

This yields

23.2 The LUP Decomposition 307

C =

1 0 0

0 1 0

0 −3
2 1

hence

C · B ·A =

2 3 4

0 −4 −9

0 0 25
2

 and C · B ·y =

8

−19
75
2

Now we have modified our original equation to

A · x = y

where

A =

2 3 4

0 −4 −9

0 0 25
2

 and y =

8

−19
75
2

Going for the third unknown

x3 = 1

a33
y3 = 2

25

75

2
= 3

x2 = y2 − a23x3

a22
= −19+ 9 · 3

−4
= 8

−4
= −2

and finally

x1 = y3 − a12x2 − a13x3

a11
= 8− 3 · (−2)− 4 · 3

2
= 2

2
= 1

It is left as an exercise for the reader to check that these values satisfy

the original equation.

23.2 The LUP Decomposition

This algorithm computes a decomposition of a regular matrix A = (aij)
which is also useful for calculating its determinant. The decomposition

yields a product:

A = L ·U · P
where the factors are as follows: L = (lij) is a lower triangular n × n-

matrix (i.e., lij = 0 for i < j), U is an upper triangular n × n-matrix,

and P is a permutation matrix (see figure 23.1). This means that P =∑
i=1,...n E(i,π(i)) for a permutation π ∈ Sn.

308 Algorithms in Linear Algebra

 = · ·

1

1

1

A = L · U · P

Fig. 23.1. The LUP decomposition of a matrix A.

Such a decomposition yields det(A) as a product of the diagonal coeffi-

cients of L, times the product of the diagonal elements of U , times the

determinant of P , which is the signature sig(π) of the given permutation.

The solution of an equation (yi) = A · (xi) proceeds in three steps: first

one solves the auxiliary equation (yi) = L · (zi). The lower diagonal L

allows this recursive calculation of zi by forward substitution:

z1 = 1

l11
y1

and producing

zi =
yi −

∑
j=1,...i−1 lijzj

lii

from the calculation of z1, z2, . . . zi−1. Then, we observe that the per-

mutation P · (xi) is nothing but a renaming of the indexes of the un-

knowns. Apart from this renaming, the remaining problem is an equation

(zi) = U · (xi), which is solved by the above backward substitution.

The algorithm for the LUP decomposition runs as follows: First, we

rewrite A as A = A · En = A · P2 by use of a permutation matrix P ,

which permutes two columns 1 and k of A as described above in 23.1,

such that (A · P)11 ≠ 0. Therefore wlog we can assume that a11 ≠ 0. One

then writes A as a block-configuration of four submatrixes:

A =
(
a11 w

v A′

)

where v ∈ Mn−1,1(R), w ∈ M1,n−1(R), and A′ ∈ Mn−1,n−1(R). The two

matrixes v and w define their product matrix v ·w ∈Mn−1,n−1(R). Sup-

posing that a11 ≠ 0, we now have this equation:

A =
(
a11 w

v A′

)
=
(

1 0
1
a11
· v En−1

)
·
(
a11 w

0 A′ − 1
a11
· v ·w

)
(23.1)

23.2 The LUP Decomposition 309

where the regular submatrix A′− 1
a11
·v ·w is called the Schur complement

of A with respect to the pivot element a11. By induction, we assume that

this complement has a LUP decomposition

A′ − 1

a11
· v ·w = L′ ·U ′ · P ′

which we now use to obtain the desired LUP decomposition

A =
(

1 0
1
a11
· v L′

)
·
(
a11 w · (P ′)−1

0 U ′

)
·
(

1 0

0 P ′

)

of A.

Example 102 The goal is to calculate the LUP decomposition of the ma-

trix A ∈M3,3(Q):

A =

2 −3 1

1 −2 −3

1 4 1

 .

Equation 23.1 yields the following values:

a11 = 2 A′ =
(−2 −3

4 1

)
v =

(
1

1

)
w = (−3,1)

The Schur complement B is then computed as

B = A′ − 1

a11
· v ·w

=
(−2 −3

4 1

)
− 1

2
·
(

1

1

)
· (−3,1)

=
(−1

2 −7
2

11
2

1
2

)

thus

A = L ·U =

1 0 0
1
2 1 0
1
2 0 1

 ·

2 −3 1

0 −1
2 −7

2

0 11
2

1
2

 .

The next step is to recursively construct the LUP decomposition of the

Schur complement B. First the required parts are extracted:

b11 = −1

2
B′ = 1

2
v′ = 11

2
w′ = −7

2

The Schur complement C at this (last) stage is simply a 1× 1-matrix:

310 Algorithms in Linear Algebra

C = B′ − 1

b11
· v′ ·w′

= 1

2
+ 2 · 11

2
· −7

2

= −38

therefore

B = L′ ·U ′ =
(

1 0

−11 1

)
·
(
−1

2 −7
2

0 −38

)
.

Finally, the LUP decomposition is built up using the components just

determined. Luckily, during the entire procedure there has never been a

need for an exchange of columns; all permutation matrixes are therefore

unit matrixes and can be omitted:

A =

1 0 0
1
2 1 0
1
2 −11 1

 ·

2 −3 1

0 −1
2 −7

2

0 0 −38

It is now easy to calculate the determinant of A:

det(A) = det(L) · det(U) = 1 · 1 · 1 · 2 · −1

2
· −38 = 38

Of course, in this case we could have applied the formula for determi-

nants of 3×3-matrixes, but in larger sized matrixes, the LUP decomposi-

tion provides a much more efficient procedure than using the definition

of determinants directly.

CHAPTER 24

Linear Geometry

The previous mathematical development has covered a considerable

number of familiar objects and relations, such as sets, numbers, graphs,

grammars, or rectangular tables, which are abstractly recast in the ma-

trix calculus. The axiomatic treatment of modules and, more specifically,

vector spaces, has also allowed us to rebuild what is commonly known

as coordinate systems. However, one very important aspect of everyday’s

occupation with geometric objects has not been even alluded to: distance

between objects, angles between straight lines, lengths of straight lines

connecting two points in space. Even more radically, the concept of a

neighborhood has not been thematized, although it is a central concept

in the comparison of positions of objects in a sensorial space, such as

the visual, tactile, gestural, or auditive space-time. The following chapter

is devoted to the very first steps towards the concept of a mathematical

model of geometric reality (the Greek etymology of “geometry” being “to

measure the earth”). In this spirit, we shall exclusively deal with real vector

spaces in the last two chapters of this part, i.e., the coefficient set is R. We

shall also assume that the vector spaces are always of finite dimension—

unless the contrary is stated.

24.1 Euclidean Vector Spaces

We begin with some preliminary definitions. For a real vector space V ,

the vector space of linear homomorphisms LinR(V ,R) is called the dual

space of V and denoted by V∗. If V is finite-dimensional of dimension

312 Linear Geometry

dim(V) = n, then we know that V∗ ∼→ M1,n(R)
∼→ Rn

∼→ V . A linear map

l ∈ V∗ is called an R-linear form on V .

In order to generate the basic metric structures, one first needs bilinear

forms:

Definition 171 Given a real vector space V , a map b : V ×V → R is called

R-bilinear iff for each v ∈ V , both maps b(v, ?) : V → R : x , b(v,x) and

b(?, v) : V → R : x , b(x,v) are R-linear forms. A bilinear form is called

symmetric iff b(x,y) = b(y,x) for all (x,y) ∈ V ×V . It is called positive

definite iff b(x,x) > 0 for all x ≠ 0.

Given a symmetric, positive definite bilinear form b, the pair (V , b) is

called a Euclidean vector space.

An isometry f : (V , b) → (W, c) between Euclidean spaces is a linear map

f ∈ LinR(V ,W) such that for all (x,y) ∈ V ×V , we have c(f(x), f (y)) =
b(x,y). The set of isometries f : (V , b) → (W, c) is denoted by Ob,c(V ,W)

or O(V ,W) if the bilinear forms are clear. If (V , b) = (W, c), one writes

O(V) instead.

For a vector x in a Euclidean vector space (V , b), the norm of x is the

non-negative real number ‖x‖ = √b(x,x).

Lemma 201 For a Euclidean space (V , b), the norm has this property for

any vectors x,y ∈ V :

‖x +y‖2 = ‖x‖2 + 2 · b(x,y)+ ‖y‖2,

On the other hand, the form b is determined by the associated norm with

the formula

b(x,y) = 1

2
(‖x +y‖2 − ‖x‖2 − ‖y‖2).

Proof We have

‖x +y‖2 = b(x +y,x +y)
= b(x,x)+ b(x,y)+ b(y,x)+ b(y,y)
= ‖x‖2 + 2 · b(x,y)+ ‖y‖2.

�

Lemma 202 For a finite-dimensional Euclidean space (V , b), the map
∗b : V → V∗ : v , b(v, ?) is a linear isomorphism and is equal to the

map b∗ : V → V∗ : v , b(?, v).

24.1 Euclidean Vector Spaces 313

Proof The map v , b(v, ?), where b(v, ?) : V → R : w , b(v,w), maps into

V∗, where dim(V∗) = dim(V) according to the remark at the beginning of this

section. So it is sufficient to show that ∗b is a linear injection. If b(v, ?) = 0, then

also b(v,v) = 0, but then, v = 0, since b is positive definite. Further b(v1 +
v2,w) = b(v1,w) + b(v2,w), and b(λ · v,w) = λ · b(v,w), so ∗b is linear. By

symmetry of b, we also have b∗ = ∗b. �

Exercise 120 Let (V , b) be a Euclidean space and f : V → V is a lin-

ear endomorphism. Prove that for any x ∈ V , the map y , b(x, f (y))

is a linear form. By lemma 202, there is a vector τf(x) ∈ V such that

b(x, f (y)) = b(τf(x),y) for all y . Show that τf is a linear map. It is

called the adjoint of f .

Proposition 203 An isometry f ∈ O(V ,W) is always injective, and it is an

isomorphism, whose inverse is also an isometry, if V and W have the same

finite dimension n. The composition g ◦f of two isometries f : V → W and

g : W → X is an isometry, and O(V) is a subgroup of GL(V), called the

orthogonal group of V .

Proof For an isometry f : (V , b) → (W, c) and v ∈ V , ‖f(v)‖ = ‖v‖ in the

respective norms, i.e., f conserves norms. But then, if v ≠ 0, f(v) ≠ 0, so f

is injective. If both spaces have the same finite dimension, f must also be sur-

jective, and the inverses of such isometries also conserve norms, and norms

define the bilinear forms. So they are also isometries. Further, the composition

of isometries is an isometry, since conservation of norms is a transitive relation.

Hence O(V) is a subgroup of GL(V). �

Exercise 121 For V = Rn, n > 0, we have the standard bilinear form

(?, ?) : Rn ×Rn → R, or scalar product with

((x1, . . . xn), (y1, . . . yn)) = (x1, . . . xn) · (y1, . . . yn)
τ =

∑

i=1,...n

xiyi,

the product of a row and a column matrix, where we omit the parentheses

surrounding the resulting number. Show that the standard bilinear form

is symmetric and positive definite.

The bilinear form of any non-zero Euclidean space can be calculated by

means of matrix products as follows: Let (ei)i=1...n be a basis of V , and

define the associated matrix of the bilinear form by B = (Bij) ∈ Mn,n(R)

with Bij = b(ei, ej). Then the bilinearity of b implies the following for-

mula for the representations x = ∑
i ξiei and y = ∑i ηiei of the vectors

x and y by their n-tuples in Rn:

314 Linear Geometry

b(x,y) = (ξi) · (Bij) · (ηj)τ

One recognizes that the scalar product defined above is the special case

of a bilinear form where (Bij) = (δij) = En. The question, whether one

may find a basis for every Euclidean space such that its associated ma-

trix becomes this simple, can be answered by “yes!”, but we need some

auxiliary theory which will also justify the hitherto mysterious wording

“orthogonal group”.

Definition 172 In a Euclidean space (V , b), a vector x is said to be orthog-

onal to a vector y iff b(x,y) = 0, in signs: x⊥y . Since b is symmetric,

orthogonality is a symmetric relation. A sequence (x1, . . . xk) of vectors in

V is called orthogonal iff xi⊥xj for all i ≠ j. It is called orthonormal iff it

is orthogonal and we have ‖xi‖ = 1 for all i.

Two subspaces U,W ⊂ V are called orthogonal to each other, in signs

U⊥W iff u⊥w for all u ∈ U andw ∈ W . The subspace of all vectors which

are orthogonal to a subspace U is the largest subspace orthogonal to U

and is denoted by U⊥.

Proposition 204 (Gram-Schmidt Orthonormalization) If (x1 . . . xk) with

k > 0 is a sequence of linearly independent vectors in a Euclidean space

(V , b), then there is an orthonormal sequence (e1 . . . ek) of linearly in-

dependent vectors such that for every index i = 1, . . . k, (x1 . . . xi) and

(e1 . . . ei) generate the same subspace. In particular, if (x1 . . . xn) is a ba-

sis of V , then there is a orthonormal basis (e1, . . . en) such that (x1 . . . xi)

and (e1 . . . ei) generate the same subspaces for all i = 1, . . . n.

Proof The construction is by induction on the length k of the sequence. For

k = 1, e1 = 1
‖x1‖x1 does the job. Suppose that all x1, x2, . . . xi are represented by

an orthonormal sequence e1, e2, . . . ei in the required way. Setting ei+1 = xi+1 +∑
j=1,...i λjej , if we find a solution, then clearly the space generated by x1, . . . xi+1

coincides with the space generated by e1, . . . ei+1. But the condition that ei+1⊥ej ,
for all j = 1, . . . i, means that b(ej , xi+1) + λj · ‖ej‖2 = 0, which yields λj =
−b(ej , xi+1), since ‖ej‖ = 1. Now, the resulting ei+1 is orthogonal to all previous

ej and cannot vanish, because of the dimension i+ 1 of the subspace generated

by e1, . . . ei+1. So, to obtain the correct norm 1 of ei+1, replace it by 1
‖ei+1‖ei+1,

and everything is perfect. �

Observe that the proof of proposition 204 is constructive, i.e., algorith-

mic, and should be kept in mind together with the result.

24.1 Euclidean Vector Spaces 315

Example 103 Let x1 = (2,2,0), x2 = (1,0,2) and x3 = (0,2,1) be a ba-

sis of R3. We compute an orthonormal basis {e1, e2, e3} using the Gram-

Schmidt procedure. For the linear form b we use the ordinary scalar prod-

uct.

The computation of e1 is simple. It consists in normalizing x1:

e1 = 1

‖x1‖x1

= 1√
22 + 22 + 02

(2,2,0)

= 1

2
√

2
(2,2,0)

=
(√

2

2
,

√
2

2
,0

)

For the second vector e2 we first compute an intermediate value e′2 using
the formula from the proof of proposition 204:

e′2 = x2 − (e1, x2) · e1

= (1,0,2)−
((√

2

2
,

√
2

2
,0

)
, (1,0,2)

)
·
(√

2

2
,

√
2

2
,0

)

= (1,0,2)−
√

2

2
·
(√

2

2
,

√
2

2
,0

)

=
(

1−
√

2

2
·
√

2

2
,−
√

2

2
·
√

2

2
,2

)

=
(

1

2
,−1

2
,2
)

and then normalize to get e2:

e2 = 1

‖e′2‖
e′2

= 1√
1/22 + 1/22 + 22

(
1

2
,−1

2
,2
)
=
√

2

3

(
1

2
,−1

2
,2
)

=
(√

2

6
,−
√

2

6
,
2
√

2

3

)

The formula for the last vector becomes more complex:

316 Linear Geometry

e′3 = x3 − (e1, x3) · e1 − (e2, x3) · e2

= x3 −
((√

2

2
,

√
2

2
,0

)
, (0,2,1)

)
· e1 −

((√
2

6
,−
√

2

6
,
2
√

2

3

)
, (0,2,1)

)
· e2

= x3 −
√

2 ·
(√

2

2
,

√
2

2
,0

)
−
√

2

3
·
(√

2

6
,−
√

2

6
,
2
√

2

3

)

= (0,2,1)− (1,1,0)−
(

1

9
,−1

9
,
4

9

)

=
(
−10

9
,
10

9
,
5

9

)

Normalizing e′3 finally yields e3:

e3 = 1

‖e′3‖
e′3

= 1√
(−−10

9)
2 + (10

9)
2 + (5

9)
2
e′3

= 3

5
·
(
−10

9
,
10

9
,
5

9

)

=
(
−2

3
,
2

3
,
1

3

)

Summarizing, the orthonormal basis is:

e1 =
(√

2

2
,

√
2

2
,0

)
, e2 =

(√
2

6
,−
√

2

6
,
2
√

2

3

)
, e3 =

(
−2

3
,
2

3
,
1

3

)

Figure 24.1 shows both bases. It is left to the reader to check that the ei
are indeed pairwise orthogonal.

Exercise 122 Show that, for an endomorphism f : V → V on a Euclidean

space, if A is the matrix of f with respect to an orthonormal basis, the

adjoint endomorphism τf has the transpose Aτ as its matrix with respect

to this basis.

Corollary 205 For an n-dimensional Euclidean space (V , b), if (ei) is an

orthonormal basis (which exists according to Gram-Schmidt), then the

group O(V) identifies with the subgroup On(R) ⊂ GLn(R) consisting

of all matrixes A with Aτ · A = En. In particular, det(f) = ±1 for

f ∈ O(V). The orthogonal group is the disjoint union of the normal sub-

group SO(V) ⊂ O(V) of the isometries f with det(f) = 1, called rotations,

and the coset O−(V) of the isometries f with det(f) = −1. SO(V) is called

the special orthogonal group of V .

24.1 Euclidean Vector Spaces 317

Fig. 24.1. The base xi and its orthonormalization ei from example 103.

Proof Given a orthonormal basis (e1, . . . en) of (V , b), if f ∈ O(V) is represented

by the matrix A relative to this basis, then δij = b(ei, ej) = b(f(ei), f (ej)) =∑
t=1,...nAtiAtj =

∑
t=1,...nA

τ
itAtj = (Aτ ·A)ij . This means that Aτ ·A = En. Con-

versely, if the latter equation holds, then reading these equalities in the other

direction, we have δij = b(ei, ej) = b(f(ei), f (ej)), and therefore f conserves

the bilinear form’s values for the orthonormal basis (e1, . . . en). But then, by bi-

linearity, it conserves bilinear form values b(x,y) for any x and y . The rest is

straightforward. �

Corollary 206 In a Euclidean space (V , b), if U is a subspace, then U⊥ is

a complement of U in V , i.e., we have an isomorphism U ⊕ U⊥ ∼→ V . In

particular,

dim(U)+ dim(U⊥) = dim(V).

Exercise 123 Give a proof of the corollary 206 by using proposition 204

and the Steinitz theorem 194.

We are now ready to describe hyperplanes in a Euclidean space.

Definition 173 In a Euclidean space (V , b) of dimension n > 0, a hyper-

plane is the translate H = Tv(W) of a vector subspaceW ⊂ V of codimen-

sion 1, i.e., dim(W) = n− 1.

318 Linear Geometry

Proposition 207 In a Euclidean space (V , b), a hyperplane H can be de-

fined by an equation

H = {h | h ∈ V, k⊥(h− v)}

where v and k are vectors with k ≠ 0.

Fig. 24.2. The construction of a 2-dimensional hyperplane H in a 3-

dimensional Euclidean space, according to proposition 207.

Exercise 124 Give a proof of proposition 207. Use this idea: We know

that H = Tv(W) for a subspace W of codimension 1. Since h ∈ H means

that (h − v) ∈ W , and since W = (W⊥)⊥ with dim(W⊥) = 1, we have

h− v⊥k for any generator k of W⊥.

Exercise 125 Rewrite the equation in proposition 207 in terms of an

equation using coordinates for an orthonormal basis.

A special type of isometries are the reflections at a hyperplane H of a

non-zero Euclidean space (V , b). By definition, a hyperplane is a vector

subspace H ⊂ V of dimension dim(H) = dim(V)−1. By corollary 206, we

have a 1-dimensional complement H⊥ = R · x, where x ≠ 0 is any vector

in H⊥, and V = H ⊕H⊥. This defines a linear map ρH on V by

24.1 Euclidean Vector Spaces 319

ρH(y) = y − 2 · b(y,x)
b(x,x)

· x

where any other generator x′ ∈ H⊥ is a scaling of x, x′ = λx, and

therefore yields the same map, so the map only depends on H. In fact,

ρH|H = IdH and ρH|H⊥ = −IdH⊥ . Therefore ρH ∈ O−(V) and ρ2
H = IdV .

The isometry ρH is therefore called the reflection at H.

Exercise 126 Show that if x ≠ y are two different vectors of equal norm

‖x‖ = ‖y‖, then the reflection ρH at H = (x − y)⊥ exchanges x and y ,

i.e., ρH(x) = y .

Fig. 24.3. If ‖x‖ = ‖y‖, x ≠ y , and H = (x −y)⊥, then ρH(x) = y .

This exercise entails the theorem about the fundamental role of reflec-

tions:

Proposition 208 Every f ∈ O(V) for a non-zero Euclidean space V is the

product of at most dim(V) reflections (the identity for zero reflections). Ev-

ery rotation is the product of an even number of reflections. In particular,

for dim(V) = 2, a rotation is a product of two reflections.

Proof Suppose that f ≠ IdV . Then there is x such that f(x) = y ≠ x. Following

exercise 126, the reflection ρH at H = (x − y)⊥ exchanges x and y and fixes

the orthogonal space H pointwise. Therefore ρH ◦ f fixes the line ∆ = R(x − y)
pointwise, and, since it is an isometry, also H, but not necessarily pointwise.

Then the restriction of g = ρH ◦f to H is an isometry of H, which has dimension

dim(V) − 1. So, by recursion, we have g = Id∆ × gH with gH ∈ O(H). If gH =
IdH , we have f = ρH , and we are finished. Else, we have gH = ρH1 × . . . ρHk ,

320 Linear Geometry

k ≤ dim(V) − 1, for hyperplanes Hj ⊂ H. But each reflection ρHi extends to a

reflection at Hi ⊕∆, leaving ∆ pointwise fixed, since ∆⊥H, and therefore ∆⊥H⊥i ,

where H⊥i is the line orthogonal to Hi in H. So we are done, since f = ρH ◦ g.

Finally, since a rotation in a 2-dimensional space cannot be one single reflection,

it must be the product of two of them, since it is the product of at most two of

them. �

In figure 24.4, the geometrical object x is first reflected through the axis

R, then through S. This corresponds to a rotation by an angle a.

Fig. 24.4. A rotation in R2 is a product of two reflections.

Among the orthonormal bases (ei) and (di) of a Euclidean space (V , b)

we have an equivalence relation (ei) ∼ (di) iff the transition isometry

ei , di has determinant 1. Bases in one of the two equivalence classes

are said to have the same orientation, i.e., each of these two equivalence

classes defines an orientation.

24.2 Trigonometric Functions from Two-Dimensional

Rotations

In this section we deal exclusively with the case dim(V) = 2, i.e., the plane

geometry, and the structure of the group SO(V) of rotations.

24.2 Trigonometric Functions from Two-Dimensional Rotations 321

Proposition 209 Given an orthonormal basis (ei) of V , let Mf ∈ M2,2(R)

be the associated matrix of an isometry f ∈ GL(V). Then

(i) we have f ∈ SO(V) (a rotation) iff Mf =
(
a −b
b a

)
and a2 + b2 = 1,

(ii) we have f ∈ O−(V) (a reflection) iffMf =
(
a b

b −a

)
and a2+b2 = 1.

(iii) The group SO(V) is abelian and the product matrix for two rotations

f and g is

Mg ·Mf =
(
u −v
v u

)
·
(
a −b
b a

)
=
(
au− bv −(av + bu)
av + bu au− bv

)
.

(iv) The number a is independent of the chosen orthonormal basis, and

so is |b|. If another orthonormal basis (e′i) with the same orientation

is chosen, then b does not change.

(v) For any two vectors x,y ∈ S(V) = {z | z ∈ V,‖z‖ = 1}, there is

exactly one f ∈ SO(V) such that f(x) = y .

Proof Clearly, concerning points (i) and (ii), according to corollary 205 the ma-

trixes in the described form define isometries f which are rotations or reflec-

tions, respectively. Conversely, if

(
a

b

)
is the first column of Mf , then we must

have a2 + b2 = 1, since the norm must be 1. On the other hand, the second col-

umn must be orthogonal to the first, and

(−b
a

)
is orthogonal to the first and

has norm 1. So

(−b
a

)
must be ±f(e2). But the determinant must be 1 if f is a

rotation, so the second column must be

(−b
a

)
. Since the determinant must be

−1, if f is a reflection, the second column must be the negative of the first, so (i)

and (ii) are settled.

For point (iii), knowing that rotation matrixes have the shape described in (i), the

formula in (iii) shows that the product of rotations is commutative.

For (iv), we shall see in proposition 215 that the characteristic polynomial χMf (X)

of f is independent of its matrixMf (that result does not presuppose the present

one). But the coefficient of X in χf (X) is −2a with the notation described in (i)

and (ii). So a is uniquely determined, and therefore also |b|. If one changes the

base by a rotation, then the new matrix of f is the conjugate of the old matrix

by a rotation matrix. A straight calculation shows that b is also invariant.

Statement (v) follows from the fact that the orthogonal spaces x⊥ and y⊥ are

1-dimensional. So there are two possibilities to map a unit vector in x⊥ to a

322 Linear Geometry

unit vector in y⊥. Exactly one of them has positive determinant, and this is our

candidate from SO(V). �

Fig. 24.5. Using a =
√

3
2 and b = 1

2 in the matrixes of proposition 209,

on the left is a rotation f ∈ SO(R2) by the angle γ, and on the right a

reflection g ∈ O−(R2) about the axis G.

Exercise 127 In the case (ii) of a reflection in proposition 209, calculate

the reflection formula ρH .

We now have to justify the word “rotation” and want to define the cosine

and sine functions, together with the associated angles. To this end, recall

that U is the unit circle S(C), i.e., the multiplicative group of complex

numbers z with norm |z| = 1.

Proposition 210 Suppose that we are given an orthonormal basis of V ,

dim(V) = 2. Consider the maps cos : SO(V) → R : f , a = (Mf)11 and

sin : SO(V)→ R : f , b = (Mf)21, then the map

cis : SO(V)→ U : f , cos(f)+ i · sin(f)

is an isomorphism of groups. The isomorphism remains unchanged if we

select another orthonormal basis of the same orientation.

Proof The only point is the multiplication of complex numbers, which corre-

sponds to the product of rotations, but this is evident from the product formula

in proposition 209, (iii). �

Now we know that rotations identify with complex numbers on the unit

circle group U in C, but we would like to have the concept of an angle

which gives rise to a complex number in U . In fact, we have this result:

24.3 Gram’s Determinant and the Schwarz Inequality 323

Proposition 211 There is a surjective group homomorphism A : R →
U whose kernel is Ker(A) = 2πZ, where π is the positive number

3.1415926 . . . which will in the chapter on limits and topology of the sec-

ond volume of this book. So with f ∈ SO(V) a coset of numbers θ ∈ R is

associated such that cos(f) + i sin(f) = A(θ). We also write cos(θ) and

sin(θ) instead of cos(f) and sin(f) respectively for the rotation associated

with θ. Any such θ is called angle of f . The matrix of f is:

Mf =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

So the rotation angle θ is determined up to multiples of 2π . The product

formula in statement (iii) of proposition 209 translates into the classical

goniometric formulas for cos(θ ± η) and sin(θ ± η):

cos(θ ± η) = cos(θ) cos(η)∓ sin(θ) sin(η),

sin(θ ± η) = sin(θ) cos(η)± cos(θ) sin(η).

Proof The only point to be proved here are the formulas for cos(θ ± η) and

sin(θ ± η). But both relate to the cos and sin functions of sums/differences of

angles, and this means that one looks for the product of the rotations (or the

product of one with the inverse of the other) associated with these angles, i.e.,

cos(f ◦ g±1) and sin(f ◦ g±1). Then we know the formulas from the product

formula in proposition 209, (iii). �

24.3 Gram’s Determinant and the Schwarz Inequality

Given an n-dimensional Euclidean space (V , b) and an orthonormal basis

(ei), we may consider the determinant of the linear map associated with

a sequence x• = (xi) of length n by f : ei , xi. On the other hand, we

also have the Gram determinant Gram(xi) of (xi) defined by

Gram(xi) = det

b(x1, x1) b(x1, x2) . . . b(x1, xn)

b(x2, x1) b(x2, x2) . . . b(x2, xn)
...

...
...

b(xn, x1) b(xn, x2) . . . b(xn, xn)

But the Gram matrix (b(xi, xj)) clearly equalsMτf ·Mf . Therefore we have

the Gram equation

324 Linear Geometry

Gram(xi) = det(f)2

For n = 2 we immediately deduce the Schwarz inequality:

Proposition 212 (Schwarz Inequality) If x and y are two vectors in a

Euclidean space (V , b), then

|b(x,y)| ≤ ‖x‖‖y‖,

equality holding iff x and y are linearly dependent.

Proof

0 ≤ det(f)2
= Gram(x,y)

= det

(
b(x,x) b(x,y)

b(y,x) b(y,y)

)

= b(x,x) · b(y,y)− b(x,y)2

Therefore, b(x,y)2 ≤ b(x,x)·b(y,y), which, due to the definition of the norm,

implies the desired result. �

This result may be reinterpreted in terms of the cosine function. If x,y ≠

0, choose a 2-dimensional subspace W of V containing x and y , and

carrying the induced bilinear form b|W×W . Then we have
∣∣∣ b(x,y)‖x‖‖y‖

∣∣∣ ≤ 1,

and defining c(x,y) = b(x,y)
‖x‖‖y‖ , we have b(x,y) = c(x,y) · ‖x‖ · ‖y‖

with |c(x,y)| ≤ 1. If f ∈ SO(W) is the unique rotation with f(x/‖x‖) =
y/‖y‖, then c(x,y) = cos(f) = cos(θ(x,y)), which means that the

angle is determined up to integer multiples of 2π by the unit vectors

x/‖x‖ and y/‖y‖ or equivalently the half lines R+x and R+y through

x and y . This gives us the famous cosine formula for the bilinear form,

where one has chosen an orthogonal basis on a plane containing x and

y :

b(x,y) = cos(θ(x,y)) · ‖x‖ · ‖y‖.

We also obtain the following intuitive fact: the triangle inequality for

norms.

Corollary 213 (Triangle Inequality) If x and y are two vectors in a Eu-

clidean space (V , b), then

‖x +y‖ ≤ ‖x‖ + ‖y‖.

24.3 Gram’s Determinant and the Schwarz Inequality 325

Proof Since both sides are non-negative numbers, we may prove that the squares

of these numbers fulfill the inequality. But by the Schwarz inequality from propo-

sition 212, we have

‖x +y‖2 = b(x +y,x +y)
= b(x,x)+ 2b(x,y)+ b(y,y)
= ‖x‖2 + 2b(x,y)+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖ + ‖y‖2

= (‖x‖ + ‖y‖)2.

�

Defining the distance between two vectors x and y in a Euclidean space

by

d(x,y) = ‖x −y‖,
we obtain these characteristic properties of a distance function:

Proposition 214 Given a Euclidean space (V , b), the distance function

d(x,y) = ‖x −y‖ has these properties for all x,y, z ∈ V :

(i) d(x,y) ≥ 0, and d(x,y) = 0 iff x = y ,

(ii) (Symmetry) d(x,y) = d(y,x),
(iii) (Triangle Inequality) d(x, z) ≤ d(x,y)+ d(y, z).

Fig. 24.6. Triangle Inequality: The beeline between Basel and Zurich is

shorter than a detour over Berne.

Proof Claim (i) is true because the norm is always non-negative, and strictly

positive if the argument is not zero (b is positive definite).

326 Linear Geometry

For (ii), we have d(x,y)2 = ‖x−y‖2 = b(x−y,x−y) = (−1)2b(y−x,y−x) =
‖y − x‖2 = d(y,x)2.

For (iii), again by the Schwarz inequality from proposition 212, we have d(x, z) =
‖x − z‖ = ‖(x −y)+ (y − z)‖ ≤ ‖x −y‖ + ‖y − z‖. �

These three properties are those which will define a metric in the chapter

on topology in volume II. So proposition 214 guarantees that a Euclidean

space has a metric which is induced by the norm derived from the given

positive definite bilinear form.

CHAPTER 25

Eigenvalues, the Vector

Product, and Quaternions

This chapter deals with the geometry in three dimensions, a very impor-

tant case since we all live in 3D space. Computer graphics makes exten-

sive use of this space and its transformations. Again, in this chapter we

shall only deal with finite-dimensional R-vector spaces.

25.1 Eigenvalues and Rotations

We begin with an analysis of the special orthogonal group SO(V) where

dim(V) = 3; recall that for the standard scalar product (?, ?) on R3 this

group is also denoted by SO3(R).

First, we want to show that every f ∈ SO(V) is really what one would call

a rotation: it has a rotation axis and turns the space around this axis by

a specific angle as introduced in the last chapter. In other words we are

looking for a rotation axis, i.e., a 1-dimensional vector subspace R = Rx
which remains fixed under f , i.e., f(x) = x. Rewriting this equation as

f(x) − 1 · x = 0 means that there is a solution of the linear equation

(f −1· IdV)(x) = 0, i.e., the linear map f −1· IdV has a non-trivial kernel,

namely x ∈ Ker(f − 1 · IdV) − {0}. We know from the theory of linear

equations that the condition Ker(f − 1 · IdV) ≠ 0 is equivalent to the

vanishing of the determinant det(f −1 · IdV). This means that we have to

look for solutions of the equation det(f − X · IdV) = 0. Let us make this

equation more precise.

328 Eigenvalues, the Vector Product, and Quaternions

Fig. 25.1. Points on the rotation axis xR like R are not affected by the

rotation.

Lemma 215 If V is a real vector space of finite dimension n, if f ∈
End(V), and if M ∈ Mn,n(R) is the matrix representation of f with re-

spect to a basis, then the characteristic polynomial χM = det(M−X ·En) is

independent of the chosen basis. We therefore also write χf instead of χM .

We have

χf =
∑

i=0,...n

tiX
i = (−1)nXn + (−1)n−1tr(f)Xn−1 ± . . .+ det(f)

where the second coefficient tr(f) = ∑
i=1,...nMii is called the trace of f

(or of the matrix which represents f).

Proof If we change the basis of V , the new matrix M ′ of f is the conjugate

M′ = C−1 ·M · C of M by the basis change matrix C , this is corollary 196. But

we know from corollary 186 that the characteristic polynomial does not change

under conjugation. The general formula for χf follows from an argument by

induction on the dimension n. �

So our problem is this: to find special solutions of the characteristic poly-

nomial equation χf (X) = 0.

Definition 174 If V is a real vector space of finite dimension n, and if

f ∈ End(V), the zeros λ of the characteristic polynomial χf

χf (λ) = 0

25.1 Eigenvalues and Rotations 329

are called the eigenvalues of f . The non-zero elements x of the non-trivial

kernel Ker(f − λ · IdV) for an eigenvalue λ are called eigenvectors of f

(corresponding to λ). They are characterized by f(x) = λx.

Remark 29 In the case where all eigenvalues of f are real, i.e., λi ∈ R

for all i, the corresponding eigenvectors form a basis of Rn, and in this

basis the matrix of f is diagonal, where the diagonal elements are the

eigenvalues.

We are more concretely interested in the case dim(V) = 3, where we have

the polynomial

χf = −X3 + tr(f)X2 + t1X + det(f),

and we are looking for solutions λ such that−λ3+tr(f)λ2+t1λ+det(f) =
0. It will be shown in the second volume of this book that every polyno-

mial P ∈ R[X] of odd degree has at least one root in R. Therefore, the

characteristic polynomial has a real eigenvalue λ0. Let us show that in the

case of f ∈ SO(V), there is a positive eigenvalue. The equation factorizes

to

−X3 + tr(f)X2 + t1X + det(f) = −X3 + tr(f)X2 + t1X + 1

= −(X − λ0)(X
2 + bX + c)

= −X3 + (λ0 − b)X2 + (λ0b − c)X + λ0c

and therefore λ0 ·c = 1. If λ0 < 0, then c < 0, and then we have two more

real solutions λ1,2 = −b±√b2−4c
2 since b2 − 4c ≥ 0, and square roots of

non-negative elements exist in R (see corollary 90 in chapter 9). Therefore

1 = λ0λ1λ2, which means that one of these solutions must be positive.

So, after renaming the roots, we take a positive eigenvalue λ0 and look

at a corresponding eigenvector x, i.e., f(x) = λ0x. Since f is an isom-

etry, we have ‖f(x)‖ = |λ0|‖x‖ = ‖x‖, whence λ0 = 1, and we have a

1-dimensional subspace Rx which is left pointwise fixed under f . This

shows:

Proposition 216 Every rotation f ∈ SO(V) for an Euclidean space (V , b)

with dim(V) = 3, has a rotation axis Af = Rx, i.e., f |Af = IdAf . If f ≠ IdV ,

the rotation axis is unique.

Proof The only open point here is uniqueness of a rotation axis. But if we had

two rotation axes, the plane H generated by these axes would be fixed pointwise,

330 Eigenvalues, the Vector Product, and Quaternions

so H⊥ would have to be reflected or remain unchanged. In both cases, this would

not yield a non-trivial transformation in SO(V). �

Since Af ⊕ A⊥f
∼→ V , the isometry f which leaves the rotation axis point-

wise invariant also leaves invariant the 2-dimensional orthogonal plane

A⊥f , i.e., each point of A⊥f is mapped to another point of A⊥f . Taking an

orthonormal basis (a1, a2) of A⊥f , we may rewrite f in terms of the or-

thonormal basis (a0, a1, a2), a0 = x/‖x‖ as a matrix

Mf =

1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

which makes explicit the rotation in the plane A⊥f orthogonal to the ro-

tation axis Af . This representation is unique for all orthonormal bases

(a′0, a
′
1, a

′
2) of same orientation, which represent the orthogonal decom-

position defined by the rotation axis, i.e., Af = Ra′0 and A⊥f = Ra′1+Ra′2.

The above formula and the invariance of the trace tr(f) with respect to

basis changes implies this uniqueness result:

Corollary 217 Every rotation in SO(V) for an Euclidean space (V , b) with

dim(V) = 3, has a rotation angle θ whose cos(θ) is uniquely determined,

i.e.,

cos(θ) = 1

2
(tr(f)− 1).

So we are left with the elements f ∈ O−(V) for dim(V) = 3. There are

two cases for the characteristic polynomial:

1. Either it has a positive solution λ0 = 1, then we have again a rotation

axis Af and the orthogonal complement is left invariant not by a ro-

tation, but by a reflection at a line Bf ∈ A⊥f . This line and the axis Af
are left point-wise invariant, whereas the orthogonal complement line

C = B⊥f in A⊥f is inverted by −1. This means that f is a reflection ρH

at the plane H generated by Af and Bf .

2. Or else, there is no positive eigenvalue. Then we have the eigenvalue

−1 and an eigenvector x with f(x) = −x. Then the reflection ρH at

the planeH = x⊥ yields an isometry g = ρH◦f ∈ SO(V), with rotation

axis Ag = Rx. Therefore, f = ρH ◦ g is the composition of a rotation

g and a reflection ρH orthogonal to the rotation axis of g.

So this classification covers all cases of isometries in O(V),dim(V) = 3.

25.2 The Vector Product 331

25.2 The Vector Product

If we are given a triple (x1, x2, x3) of vectors xi ∈ V in a Euclidean space

(V , b) of dimension 3, and if (ei) is an orthonormal basis of V , then the

linear map f : ei , xi has a determinant det(f), which we also write as

det(ei)(x1, x2, x3). We know that this determinant does only depend on

the orientation defined by (ei). So if we fix the orientation ω of (ei), we

have a function detω(x1, x2, x3). In the basis (ei), The columns of Mf ,

the matrix of f , are the vectors x1, x2 and x3, therefore we can deduce

the following properties from the general properties of the determinant

described in theorem 181 of chapter 20:

1. The function detω(x1, x2, x3) is linear in each argument.

2. The function is skew-symmetric, i.e., detω(x1, x2, x3) = 0 if two of

the three xi are equal. This entails that detω(xπ(1), xπ(2), xπ(3)) =
sig(π)detω(x1, x2, x3) for a permutation π ∈ S3.

3. detω(x1, x2, x3) = 1 for any orthonormal basis (x1, x2, x3) ∈ω.

Therefore we define the vector product as follows:

Definition 175 Given a 3-dimensional Euclidean space (V , b), with the

previous notations, fix a pair (x1, x2) of vectors in V . Then under the iso-

morphism ∗b : V
∼→ V∗, the linear form

d(x1,x2) ∈ V∗ defined by d(x1,x2)(x) = detω(x1, x2, x)

corresponds to a vector (∗b)−1d(x1,x2) ∈ V which we denote by x1 ∧ x2,

and which is characterized by the equation

b(x1 ∧ x2, x) = detω(x1, x2, x),

and which is called the vector product of x1 and x2 (in this order).1 The

orientation ω is not explicitly denoted in the vector product expression,

but should be fixed in advance, otherwise the product is only defined up to

sign.

Given the representations x1 =
∑
i x1iei and x2 =

∑
i x2iei, the vector

product has these coordinates in terms of the basis (ei):

1 Some texts also use the notation x1 × x2 instead of x1 ∧ x2.

332 Eigenvalues, the Vector Product, and Quaternions

(x1 ∧ x2)1 = x12x23 − x13x22,

(x1 ∧ x2)2 = x13x21 − x11x23,

(x1 ∧ x2)3 = x11x22 − x12x21.

From the definition, it follows that x1 ∧ x2 is linear in each argument and

skew-symmetric, i.e., x1 ∧ x2 = −x2 ∧ x1.

Exercise 128 Show that (x ∧ y)⊥x and (x ∧ y)⊥y . Calculate e2 ∧ e1

for two basis vectors of an orthonormal basis (e1, e2, e3) of the given

orientation.

Exercise 129 Calculate the vector product (1,−12,3) ∧ (0,3,6) of two

vectors in R3 with the standard scalar product b = (?, ?) and the orienta-

tion of the standard basis (e1 = (1,0,0), e1 = (0,1,0), e1 = (0,0,1)).

Proposition 218 Given a 3-dimensional Euclidean space (V , b) with a

fixed orientation, the vector product satisfies these identities for any three

vectors u,v and w:

(i) u∧ (v ∧w) = b(u,w)v − b(u,v)w ,

(ii) (Jacobi Identity) u∧ (v ∧w)+ v ∧ (w ∧u)+w ∧ (u∧ v) = 0.

Proof Since the expressions in question are all linear in each argument, it suffices

to verify them for u = ei, v = ej ,w = ek, i, j, k = 1,2,3, where e1, e2, e3 is an

orthonormal basis. Further, (i) is skew-symmetric in v andw whence some cases

can be omitted. We leave to the reader the detailed verification, which follows

from the formulas given in this section for the coordinatewise definition of the

vector product. �

Fig. 25.2. The parallelepiped spanned by the vectors x, y and z.

25.3 Quaternions 333

Remark 30 We should add a remark on surfaces of parallelograms and

volumes of parallelepipeds which have not yet been defined and which

belong to the chapters on calculus in the second volume of this book.

However, from high school the reader may temporarily recall the defi-

nitions of surfaces and volumes and read these remarks which will be

fully justified later. If we are given x,y, z ∈ V , a Euclidean space of di-

mension 3, then we can consider the parallelogram spanned by x and y ,

i.e., the set Parallel(x,y) = {t | t = λx + µy,0 ≤ λ, µ ≤ 1} as well as

the parallelepiped spanned by x, y and z, i.e., the set Parallel(x,y, z) =
{t | t = λx + µy + νz,0 ≤ λ, µ, ν ≤ 1}. The surface of Parallel(x,y) is

|x∧y|, whereas the volume of Parallel(x,y, z) is |b(x∧y,z)|, and these

numbers are independent of the orientation.

25.3 Quaternions

We have learned that 2-dimensional rotations are essentially products of

complex numbers of norm 1. We shall see in this section that in three

dimensions, we also have an algebraic structure, the quaternions, which

can be used to describe rotations in three dimensions. It seems that there

is a deep relation between algebra and geometry, a relation which is clas-

sical in algebraic geometry, but which turns out to become more intense

for the groups of transformations in linear geometry. It is not by chance

that this field of research is named geometric algebra.

The quaternions were invented by the mathematician William Rowan

Hamilton (1805–1865), who was in search for a correspondence to the

geometric interpretation of complex numbers for three dimensions. Al-

though quaternions were overrated by the so-called “quaternionists”

(see [12]) as being a kind of magic objects, they are firmly established

in computer graphics and also in aerospace science (see [35]).

Let us first motivate how quaternions relate to the vector product. As

is shown by the Jacobi identity in proposition 218, the anticommutative

(i.e., x ∧ y = −y ∧ x) vector product is not associative. In particular,

0 = (x ∧ x) ∧ y , while x ∧ (x ∧ y) may be different from 0. Quater-

nions were invented while looking for the construction of an algebraic

multiplication structure which is associative, such that the square of an

element x cannot be annihilated (as it happens with the vector product,

since always x∧x = 0). As already seen with the complex numbers, such

334 Eigenvalues, the Vector Product, and Quaternions

a desideratum may be met by adding supplementary dimensions to the

given space. Hamilton’s solution was to add one dimension to the three

dimensions of R3 and to delegate the non-vanishing part of the square to

that new dimension. His philosophical justification of this procedure was

that the three space coordinates must be supplemented by one time coor-

dinate to describe the comprising four-dimensional space-time. It is not

by chance (recall the definition of the vector product, which is intimately

related to the bilinear form of the Euclidean space) that the new compo-

nent of the Hamilton product of u,v ∈ R3 was just the negative of the

scalar product −(u,v). There is in fact nothing arbitrary in Hamilton’s

construction. It can not only be shown that C is the only field of dimen-

sion two over the reals, but that the set of quaternions H is the only skew

field of dimension four over the reals! Here is the formal definition:

Definition 176 The quaternions are a skew field H (for Hamilton), whose

additive group is R4, and whose multiplication is defined as follows. One

identifies R4 with the direct sum R ⊕ R3 defined by the projections R :

H → R : (r , x,y, z) , r and P : H → R3 : (r , x,y, z) , (x,y, z), such

that every q ∈ H is uniquely decomposed as q = r + p with r = R(q) ∈
R(H)

∼→ R and p = P(q) ∈ P(H) ∼→ R3. The summand p is called the pure

part of q, and if r = 0,then q is called a pure quaternion. The summand r

is called the real part of q, and if p = 0, then q is called a real quaternion.

If the context is clear, the additive notation q = r + p is always meant in

this understanding.2 The pure part is provided with the standard scalar

product (?, ?) in R3, together with the orientation given by the canonical

basis ((1,0,0), (0,1,0), (0,0,1)). The quaternion product is now defined

by

(r + p) · (r ′ + p′) = (r · r ′ − (p,p′))+ (r · p′ + r ′ · p + p ∧ p′),

i.e.,

R((r + p) · (r ′ + p′)) = r · r ′ − (p,p′),
and

P((r + p) · (r ′ + p′)) = r · p′ + r ′ · p + p ∧ p′.
On H, conjugation is defined by ? : H → H : q = r + p , q = r − p. The

norm ‖q‖ of a quaternion q is defined by

‖q‖ =
√
q · q,

2 Remember remark 25 concerning addition in direct sums.

25.3 Quaternions 335

which makes sense since q · q = r 2 + (p,p) is a non-negative real quater-

nion, which coincides with the square norm of q when interpreted in the

standard Euclidean space (R4, (?, ?)).

The immediate properties of H, in particular the skew field properties,

are summarized in the following sorite:

Sorite 219 Let q, q′ ∈ H be quaternions. Then

(i) Conjugation ? : H → H is a linear anti-involution, i.e., q = q and

q · q′ = q′ · q.

(ii) q = q iff q is real, i.e., q = R(q).
(iii) q = −q iff q is pure, i.e., q = P(q).
(iv) q is pure iff q2 is a real number ≤ 0.

(v) q is real iff q2 is a real number ≥ 0.

(vi) We have ‖q · q′‖ = ‖q‖ · ‖q′‖.
(vii) With the quaternion product,H becomes a skew field with 1H = 1+0.

The inverse of q ≠ 0 is the quaternion q−1 = 1
‖q‖2q.

(viii) The injection R → H : r , r · 1H identifies the subfield R of real

quaternions, which commutes with all quaternions, i.e., r · q = q · r
for all r ∈ R, q ∈ H. Conversely, if q′ · q = q · q′ for all q, then q′ is

real.

(ix) By linearity in each factor, the multiplication x · y on H is entirely

determined by the following multiplication rules for the four basis

vectors 1H, i, j, k. Observe that i, j, k are pure and, therefore, their

vector product is defined.

1H · t = t · 1H = t for all t = 1H, i, j, k,

i2 = j2 = k2 = −1H,

ij = −ji = i∧ j = k,
jk = −kj = j ∧ k = i,
ki = −ik = k∧ i = j.

The permutation (i, j, k) induces an automorphism of H.

(x) Setting i = (0,1,0,0), j = (0,0,1,0), k = (0,0,0,1), the three injec-

tions

336 Eigenvalues, the Vector Product, and Quaternions

(i) : C→ H : a+ ib , a+ ib,
(j) : C→ H : a+ ib , a+ jb,
(k) : C→ H : a+ ib , a+ kb

define identifications of the field C with the subfields R + iR,R +
jR,R + kR, respectively, which are related with each other by the

automorphism of H induced by the permutation (i, j, k).

(xi) We have (q, q′) = 1
2(qq

′ + q′q).
Proof For (i) and a quaternion q = r + p, we have q = (r − p) = r − (−p) =
r + p = q. And for q′ = r ′ + p′, we have

q · q′ = (r · r ′ − (p,p′))+ (r · p′ + r ′ · p + p ∧ p′)
= (r · r ′ − (p,p′))− (r · p′ + r ′ · p + p ∧ p′)
= (r ′ · r − (p′, p))+ (r · (−p)+ r ′ · (−p′)+ p′ ∧ p)
= q′ · q

Points (ii) and (iii) are obvious.

For (iv), we have this general formula: q2 = (r 2 − (p,p)) + 2rp. If q = p, then

q · q = −‖p‖2 ≤ 0. Conversely, if r ≠ 0, then if p ≠ 0, P(q2) = 2rp ≠ 0. If q is

real, then q2 = r 2 > 0.

The proof of point (v) proceeds along the same straightforward calculation, we

therefore leave it as an exercise for the reader.

Next, we prove (viii). The commutativity of real quaternions with all quaternions

is immediate from the definition of the quaternion product. Conversely, if q·q′ =
q′ ·q for all q′, then p∧p′ = p′∧p = −p∧p′ = 0 for all p′. But for p ≠ 0, taking

p,p′ linearly independent yields a contradiction, so p = 0.

As to (vi), ‖q · q′‖ =
√
q · q′ · q · q′ =

√
q · q′ · q′ · q =

√
q · ‖q′‖2 · q, but

real quaternions commute with all quaternions by (viii), so
√
q · ‖q′‖2 · q =√

‖q′‖2 · q · q =
√
‖q′‖2 · ‖q‖2 = ‖q′‖ · ‖q‖, and we are done.

Next, we prove (ix). The first point is R-linearity in each argument. But in view of

the defining formula of multiplication, this follows from linearity of the scalar

product (?, ?) and of the vector product ∧. The permutation (i, j, k) of the basis

(1H is fixed) transforms the equation i · j = k into j ·k = i and this into k · i = j,
and this latter into the first, furthermore i2 = j2 = k2 = −1 is invariant under all

permutations of i, j, k, and so are the products with 1H.

Point (vii) is straightforward, except that we must verify associativity. This fol-

lows from the associativity of multiplication rules for the basis (1H, i, j, k) in

(ix), since multiplication is R-linear in each factor. The reader should verify all

equalities x · (y · z) = (x · y) · z for three arbitrary basis elements, but should

also use the permutation (i, j, k) to minimize the cases to be studied.

25.3 Quaternions 337

Point (x) is obvious.

Point (xi) is an immediate consequence of the definition of the product. �

We have now established all the necessary algebraic ingredients to tackle

the promised geometric features. To this end, recall that we have a group

isomorphism of SO2(R) (the special orthogonal group of R2) and the mul-

tiplicative group U ⊂ C of complex numbers of norm 1, i.e., the unit cir-

cle U = S(C) = {z | ‖z‖ = 1}. Therefore we suggest to consider the

group S(H) = {q | ‖q‖ = 1} of unit quaternions (in a Euclidean space,

this subset is called the unit sphere). This is a group because of point

(vi) in sorite 219. The relation between quaternion multiplication and 3-

dimensional isometries is this:

Proposition 220 Let s, s′ ∈ H∗ be non-zero quaternions.

(i) If s ∈ P(H) is pure, then the map q , −s · q · s−1 leaves the pure

quaternion space P(H) invariant and its restriction to P(H) is the

reflection ρs⊥ in P(H) at the plane s⊥ orthogonal to s.

(ii) The map q , Ints(q) = s · q · s−1 leaves the pure quaternion

space P(H) invariant, and its restriction IntPs to P(H) is a rotation

in SO3(R).

(iii) We have IntPs = IntPs′ iff Rs = Rs′.
(iv) The restriction IntPSs of the map IntPs to arguments s in the unit

sphere S(H) is a surjective group homomorphism

IntPS? : S(H)→ SO3(R)

with kernel Ker(IntPS) = {±1}.
Proof (i) By criterion (iv) in sorite 219, we suppose q2 is a real number ≤ 0. So

(±s ·q ·s−1)2 = s ·q2 ·s−1 = q2 is also real and ≤ 0, i.e., ±s ·q ·s−1 is pure. These

maps are evidently R-linear. Since ‖ ± s · q · s−1‖ = ‖s‖ · ‖q‖ · ‖s‖−1 = ‖q‖, the

maps q , ±s · q · s−1 conserve norms and therefore their restrictions to P(H)

are in O3(R). Now, if s is pure, then −s · s · s−1 = −s, whereas for a pure q⊥s,
by (xi) we have 0 = (q, s) = 1

2(q · s + s · q) = −1
2 (q · s + s · q), i.e., −q · s = s · q,

whence −s · q · s−1 = q · s · s−1 = q, and therefore the plane s⊥ orthogonal to s

remains fixed, i.e., q , −s · q · s−1 on P(H) is a reflection at s⊥.

(ii) For any quaternion s the map IntPs ∈ O3(R), because

(sqs−1, sq′s−1) = 1

2
(sqs−1 · sq′s−1 + sq′s−1 · sq′s−1)

= 1

2
(s−1 · sq · sq′s−1 + s−1 · sq′ · sqs−1)

338 Eigenvalues, the Vector Product, and Quaternions

= 1

2
(s−1 · q · s · sq′s−1 + s−1 · q′ · s · sqs−1)

= 1

2
(
s

‖s‖2
q · (‖s‖2s−1) · sq′s−1 + s

‖s‖2
q′ · (‖s‖2s−1) · sqs−1)

= 1

2
(sqs−1 · sq′s−1 + sq′s−1 · sqs−1)

= 1

2
s(qq′ + q′q)s−1

= 1

2
(qq′ + q′q)

= (q, q′)

The map Ints for a real s is the identity, so suppose s is not real. Consider for

µ ∈ [0,1], the real unit interval, the quaternion sµ = (1 − µ) + µ · s, so s0 =
1, s1 = s, and sµ ≠ 0 for all µ ∈ [0,1]. So IntPsµ ∈ O3(R) for all µ ∈ [0,1],
i.e., f(µ) = det(IntPsµ) is never zero, and it is always ±1. We shall show in the

chapter on topology in volume II of this book, that f has the property of being

continuous (a concept to be introduced in that chapter). Evidently, f(0) = 1. On

the other hand, if we had f(1) = −1, then by continuity of f , there would exist

µ ∈ [0,1] with f(µ) = 0, a contradiction, so IntPs ∈ SO3(R).

(iii) If s′ = λs, λ ∈ R∗, then s′ · q · s′−1 = λs · q · λ−1s−1 = s · q · s−1. Conversely,

if IntPs′ = IntPs , then −IntPs′ = −IntPs , so the rotation axis Rs = Rs′ is uniquely

determined.

As to (iv), the map IntPS is a group homomorphism, since (s′ · s) · q · (s′ · s)−1 =
s′ · s · q · s−1 · s′−1. It is surjective, since every rotation is the product of an

even number of reflections at hyperplanes (see proposition 208). So since the

reflections are represented by the quaternion multiplications −s · q · s−1 by (i),

rotations are represented by the product of an even number of such reflections

which yields the required map. Since two rotations are equal iff their quaternions

s define the same line Rs, and since any line has exactly two points t,−t on the

sphere S(H), the kernel is {±1}. �

So we recognize that rotations in SO3(R) can be described by conjuga-

tions IntPSs with quaternions, and the composition of rotations corre-

sponds to the conjugation of products. This is exactly what was expected

from the 2-dimensional case of complex multiplication. The identifica-

tion of the quotient group S(H)/{±1} and SO3(R) gives us an interesting

geometric interpretation of SO3(R): Observe that each line R · x ⊂ R3

intersects the unit sphere S(R3) exactly in two points s,−s of norm 1.

These points are identified via the two-element group {±1}. So the quo-

tient group identifies with the set P3(R) of lines through the origin (1-

dimensional subspaces) in R4. This space is called the three-dimensional

projective space of R3. So we have this corollary:

25.3 Quaternions 339

Corollary 221 The group SO3(R) is isomorphic to the projective space

P3(R) with the group structure induced from the quaternion multiplica-

tion.

At this point we know that every rotation can be described by the conju-

gation with a quaternion s. However we do not yet know how the rotation

axis and the rotation angle related to s.

Proposition 222 Let s = r + p be a non-zero quaternion. If s is real, it

induces the identity rotation. So let us suppose p ≠ 0. Then Rp is the

rotation axis of IntPSs . The rotation angle θ ∈ [0, π] is given by

tan
(
θ
2

)
= sin

(
θ
2

)
/ cos

(
θ
2

)
= ‖p‖/r if r 6= 0,

and by

θ = π if r = 0,

the second case corresponding to a reflection orthogonally through Rp.

Proof Wlog, we may suppose that ‖s‖ = 1. If p ≠ 0, then s · p · s−1 = (r + p) ·
p · (r −p) = p · (r 2 −p2) = p(r 2+ (p,p)) = p. So p generates the rotation axis.

We omit the somewhat delicate proof of the tangent formula and refer to [4]. �

Remark 31 Of course, this is a fairly comfortable situation for the para-

metric description of rotations via quaternions. However, there is an am-

biguity by the two-element kernel of the group homomorphism IntPS . But

there is no right inverse group homomorphism f : SO3(R) → S(H), i.e.,

such that IntPS? ◦ f = IdSO3(R). For details, see [4].

For practical purposes it is advantageous to restate the fact that s ∈ S(H).
If s = r + p is the real-pure decomposition, then s ∈ S(H) means

r 2 + ‖p‖2 = 1. Thus, for the rotation angle θ calculated in proposi-

tion 222, we have r = cos
(
θ
2

)
and p = sin

(
θ
2

)
(ix + jy + kz), where

(x,y, z) ∈ S2 = S(R3), the unit sphere in R3. In other words, writing

sθ =
(
cos

(
θ
2

)
, sin

(
θ
2

))
and sdir = (x,y, z) we have a representation of

s as sS = (sθ, sdir) ∈ S1 × S2, the Cartesian product of the unit circle and

the unit sphere.

Example 104 Let us now consider a rotation of 120 degrees about the

axis defined by (1,1,1). This rotation should take the x-axis to the y-

axis, the y-axis to the z-axis, and the z-axis to the x-axis.

340 Eigenvalues, the Vector Product, and Quaternions

Fig. 25.3. The representation of s ∈ S(H) as sS(sθ , sdir), where sθ is a

vector on the unit circle S1 and sdir a vector on the unit sphere S2.

According to the representation above, the quaternion s describing this

rotation can be written as

sS = (sθ, sdir)

where

sθ =
(

cos
(
θ

2

)
, sin

(
θ

2

))
and sdir = 1√

3
(1,1,1).

Now to rotate a point p = (px , py , pz) we first have to write it as a pure

quaternion p̂ = ipx + jpy + kpz and then calculate

p̂′ = s · p̂ · s,

knowing from sorite 219, (vii), that for s ∈ S(H), s−1 = s. Some calcula-

tions using the multiplication rules lined out in sorite 219, (x), (we advise

the student to do them as an exercise) lead to the following result:

p̂′ = i(px(u
2 − v2)+ 2py(v

2 −uv)+ 2pz(v
2 +uv))+

j(2px(v
2 +uv)+ py(v2 −u2)+ 2pz(v

2 −uv))+
k(2px(v

2 −uv)+ 2py(v
2 +uv)+ pz(u2 − v2)),

where

u = cos
(
θ

2

)
and v = 1√

3
sin

(
θ

2

)
.

25.3 Quaternions 341

Fig. 25.4. The rotation by θ = 2π
3 around the axis defined by the vector

(1√
3 ,

1√
3 ,

1√
3) maps a point p on the x-axis to a point p′ on the y-axis.

If we look at the coordinates of p̂′ using the value of 2π
3 for the 120◦-

rotation which we want to perform, we find that

u2 − v2 = cos2
(
π

3

)
− 1

3
sin2

(
π

3

)

=
(

1

2

)2

− 1

3

(√
3

2

)2

=
(

1

2

)2

−
(

1

2

)2

= 0

v2 −uv = 1

3
sin2

(
π

3

)
− cos

(
π

3

)
· 1√

3
· sin

(
π

3

)

= 1

3

(√
3

2

)2

− 1

2
· 1√

3
·
√

3

2

= 0

v2 +uv = 1

3
sin2

(
π

3

)
+ cos

(
π

3

)
· 1√

3
· sin

(
π

3

)

342 Eigenvalues, the Vector Product, and Quaternions

= 1

3

(√
3

2

)2

+ 1

2
· 1√

3
·
√

3

2

= 1

2

Here we use the trigonometric facts that sin(π3) =
√

3
2 , and cos(π3) = 1

2 .

Putting this together again, we get

p̂′ = ipz + jpx + kpy

and for p = (1,0,0) we do indeed get p′ = (0,1,0).

CHAPTER 26

Second Advanced Topic

In this second advanced chapter, we shall briefly describe the theory of

finite fields, called Galois fields, and then give two important applications

of this theory: The first is Reed’s and Solomon’s error correction code,

which is of great importance in media encoding for CDs, DVDs, ADSL,

etc. The second is the encryption algorithm developed by Rivest, Shamir

and Adleman, which is of practical use in digital signature generation, for

example.

26.1 Galois Fields

Galois fields are by definition commutative fields with finite cardinality.

(In field theory, it can be shown that every finite skew field is in fact

automatically commutative, so no other finite fields exist.) Their name

has been chosen in honor of the French mathematician Evariste Galois

(1811–1832), who invented the algebraic theory of polynomial equations

and thereby was, among others, able to solve some of the most difficult

questions in mathematics: The conjecture of the impossibility of a gener-

ally valid construction by compass and straightedge of the trisection of

an angle or the Delian problem concerning the duplication of the cube by

the same type of construction. Unfortunately, he was killed in a duel at

the age of 20. His research had not been understood during his short life-

time. The famous mathematician Siméon-Denis Poisson commented on a

Galois paper: “His argument is neither sufficiently clear nor sufficiently

developed to allow us to judge its rigor.” Only in 1843, the mathemati-

344 Second Advanced Topic

cian Joseph Liouville recognized Galois’ work as a solution “as correct as

it is deep of this lovely problem: Given an irreducible equation of prime

degree, decide whether or not it is soluble by radicals.” This is in fact the

abstract statement implying the solution of the old problems mentioned

above.

We shall outline the theory of Galois fields, because they play a crucial

role in coding theory, the theory dealing with the methods for storing and

transmitting digital information through noisy media. In fact, bit strings

can be represented by polynomials with coefficients in Z2, which are ele-

ments of a particular Galois field. Thus we can take over the results from

the theory of Galois fields to the realm of bit strings. In the next section,

this will be exemplified by the famous Reed-Solomon error correction

code.

We start with a few definitions:

Definition 177 Let K be a field, where 0K is the additive neutral element,

and 1K is the multiplicative unit. Consider the ring homomorphism p : Z→
K, with

p(n) = n · 1K = 1K + · · ·1K︸ ︷︷ ︸
n times

.

The characteristic of K, denoted by char(K) is the smallest positive n, such

that p(n) = 0k. If there is no such n, then, by definition, char(K) = 0.

Definition 178 Let K be a field. The prime field of K, denoted by P(K), is

the smallest subfield of K.

Since 1K ∈ P(K), we have char(P(K)) = char(K). The following lemma

provides a classification of prime fields.

Lemma 223 Given a field K, consider the unique homomorphism of rings

p : Z→ K : n, n · 1K from definition 177.

Then Ker(p) = (char(K)) is the principal ideal generated by char(K).

There are two cases to consider:

1. Ker(p) is trivial, i.e., char(K) = 0. Then P(K) is isomorphic to Q, be-

cause it contains all integers and, being a field, all inverses of integers.

2. The characteristic char(K) > 0. Since Z/(char(K)) is a field, char(K)

is a prime by lemma 133. By proposition 124, Im(p)
∼→ Z/(char(K)).

26.1 Galois Fields 345

Since P(K) = Im(p) (Im(p) ⊂ P(K), but because P(K) is minimal,

P(K) = Im(p)), we have P(K)
∼→ Z/(char(K)).

Thus a Galois field (which is just another name for finite field) K has

positive prime characteristic p. Clearly, a Galois field is a vector space

over its prime field, and of finite dimension n. So, since the prime field

P(K) of K is isomorphic to Zp, we have the vector space isomorphism

K
∼→ Znp , and therefore card(K) = card(Znp) = pn.

Moreover, since the group K∗ has order pn − 1, and every element a of

the group has an order which divides pn − 1, we have ap
n−1 = 1 (see

sorite 117 (iii)). Therefore all elements of K∗ are roots of the polynomial

Xp
n−1 − 1.

Together with 0K , the elements of a field K with characteristic p and pn

elements constitute the set of roots of the polynomial X(Xp
n−1 − 1) =

Xp
n − X ∈ Zp[X]. Since the degree of this polynomial is pn, it has at

most pn different roots, and therefore it decomposes into a product

Xp
n −X =

∏

x∈K
(X − x)

of pn different linear factors. It remains to establish whether the char-

acteristic and the polynomial uniquely determine K up to field isomor-

phisms.

To this end, we sketch a short but comprehensive run through the theory

dealing with the existence and uniqueness of fields defined by roots of

certain polynomials. In all these discussions, a field extension is a pair

of fields K,L such that K ⊂ L. If K ⊂ L is such a field extension, then

L is called an extension of K. If T ⊂ L, we denote by K(T) the smallest

extension of K in L containing T and call it the extension of K generated

by T . If T = {x}, then we also write K(x) instead of K({x}).
To begin with, we have the following definition:

Definition 179 If K ⊂ L is an extension and f ∈ K[X]−{0}, then x ∈ L is

called an algebraic element (over K) if f(x) = 0.

An extension K ⊂ L is called an algebraic extension if every element of L

is algebraic over K.

We have this lemma about the uniqueness of extensions.

346 Second Advanced Topic

Lemma 224 If K ⊂ L is an extension, and if x ∈ L is algebraic, then there is

a unique irreducible polynomial r = Xm+am−1X
m−1+ . . . a0 ∈ K[X] such

that the extension K(x) ⊂ L of K is isomorphic to K[X]/(r), and which,

as a K-vector space, has dimension m = deg(r), a basis being defined by

the sequence (xm−1, . . . x2, x,1). The polynomial r is called the defining

polynomial of x.

If the dimension of an extension K ⊂ L as a K-vector space is finite, then

L is algebraic over K. In particular the extension K(x) by an algebraic

element x is algebraic. If extensions K ⊂ L and L ⊂ M are algebraic, then

so is K ⊂ M .

Conversely, given an irreducible polynomial r = Xm+am−1X
m−1+. . . a0 ∈

K[X], there is an algebraic extension K ⊂ L = K(x) such that the defining

polynomial of x is r , i.e., K(x) is isomorphic to K[X]/(r).

Example 105 A Galois field K of characteristic p and dimension n is an

algebraic extension of its prime field P(X) which is isomorphic to Zp . We

have seen that every element x ∈ K is a root of a polynomial in Zp[X] (to

be precise, the polynomial Xp
n −X), i.e., every element is algebraic.

Exercise 130 Show that the R ⊂ C is an algebraic extension.

Proposition 225 Consider two field extensions K ⊂ L = K(x1, x2, . . . xr)

and K′ ⊂ L′ = K′(x′1, x′2, . . . x′r). Let k be an isomorphism k : K
∼→ K′ with

this property: there is a polynomial f ∈ K[X], such that f = (X −x1)(X −
x2) . . . (X − xr) ∈ L[X], which is mapped to the polynomial f ′ ∈ K′[X]
by the extension of k to the polynomial ring K[X], such that f ′ = (X −
x′1)(X − x′2) . . . (X − x′r) ∈ L′[X]. Then there is an extension l : L

∼→ L′ of

k, i.e., l|K = k.

The proof of proposition 225 is by induction on the maximal degree of

the irreducible factors in the decomposition of f in K[X], and then on

the number of such maximal degree factors. The inductive step is in fact

provided by the above lemma 224.

The next proposition ensures that every polynomial over a field K gives

rise to a field extension of K.

Proposition 226 If K is a field, and if f ∈ K[X] is a polynomial, there

exists a splitting field extension K ⊂ L of f , i.e., L = K(x1, . . . xr) where

xi are roots of f such that in L[X], f = a(X − x1)(X − x2) . . . (X − xr).

26.1 Galois Fields 347

The proof of this proposition is again an immediate consequence of

lemma 224. In fact, for each irreducible factor g of f in K[X], we may

embed K in the field K[X]/(g), which, by construction, contains a root of

g. And so forth until f has been split into linear factors.

We are now ready to state the main result of this section:

Corollary 227 For a given prime characteristic p and a given exponent

n > 0, there is a Galois field of the cardinality pn. It is a splitting field of

the polynomial Xp
n −X, and any two such fields are isomorphic. They are

denoted by GF(pn).

Summarizing, for every prime p and every positive natural exponent n,

there is one, and, up to field isomorphisms, only one Galois field GF(pn)

of pn elements. Let us now show that in fact, GF(pn) = Zp(ζ), i.e., an

algebraic extension by a single element ζ.

Proposition 228 The multiplicative group GF(pn)∗ of a Galois field is

cyclic, i.e., isomorphic to the additive group Zpn−1. A generator ζ of this

group is called a (pn − 1)-th primitive root of unity.

The proof is easy, see [46, page 42] for details.

Therefore a Galois field GF(pn) is an algebraic extension GF(pn) = Zp(ζ)
by a primitive root of unity ζ, whose defining polynomial Z ∈ Zp[X] is

of degree n, the powers 1, ζ, ζ2, . . . ζn−1 forming a basis over the prime

field. But observe that there may be different defining polynomials for

the same Galois field.

26.1.1 Implementation

We shall discuss the Reed-Solomon error correction code for the special

prime field Z2 which may be identified with the bit set Bit = {0,1} for

computerized implementation. In this case, we need to master the arith-

metics in GF(2n) on the basis of bit-wise encoding.

Identifying GF(2n) with Z2[X]/(Z), where Z is the defining polynomial of

a primitive (2n−1)-th root of unity ζ, we know that elements u ∈ GF(2n)

are uniquely represented in the basis (xn−1, . . . x2, x1,1), where x is the

image of X ∈ Z2[X] in Z2[X]/(Z) by the canonical homomorphism and

corresponds to ζ. Through the identification of GF(2n) with Z2[X]/(Z),

348 Second Advanced Topic

and the vector space identification GF(2n)
∼→ Zn2 , we can identify u(x) ∈

Z2[X]/(Z) with the vector u = (un−1, . . . u2, u1, u0) ∈ Zn2 , i.e., with a bit

sequence of length n, which encodes the class of the polynomial residue

u(x) = un−1x
n−1 + . . . u2x

2 +u1x +u0 in Z2[X]/(Z).

Arithmetic in this representation is as follows:

• Addition is the coordinate-wise addition of bits and has nothing to do

with the defining polynomial, except for its degree n:

(un−1, . . . u1, u0)+(vn−1, . . . v1, v0) = (un−1+vn−1, . . . u1+v1, u0+v0)

This addition may also be viewed as the logical exclusive alternative

xor on the Boolean algebra Bit = 2, via a+ b = ¬(aa b) = xor(a, b).

• Multiplication u(x) · v(x) is defined as follows:

The multiplication of u(x) by a constant ν ∈ Z2 is the coordinate-

wise multiplication of bits, i.e., corresponding to logical conjunction

a · b = a & b.

For the multiplication u(x) · x, first the residue r(x) in xn = 1 ·
Z + r(x) has to be calculated. This has to be done only once for the

given n and Z. With r = (rn−1, . . . r2, r1, r0) the following two steps

are performed:

1. a shift of u = (un−1, . . . u2, u1, u0) to the left, yielding

l(u) = (un−2, . . . u1, u0,0),

2. the addition l(u)+ r in case un−1 ≠ 0.

The full multiplication u(x) ·v(x) is written as a succession of these

elementary operations (easily implemented in hardware using a shift

register, and a simple logical unit capable of & and xor operations). It

is the realization of the stepwise multiplication of u(x) by the terms

of v(x) (also known as Horner scheme):

u(x) · vn−1

(u(x) · vn−1) · x
((u(x) · vn−1) · x)+ vn−2

(((u(x) · vn−1) · x)+ vn−2) · x
((((u(x) · vn−1) · x)+ vn−2) · x)+ vn−3

...

26.2 The Reed-Solomon (RS) Error Correction Code 349

(. . . (u(x) · vn−1) · x) . . .)+ v0

Example 106 We consider the Galois field GF(24). It has 16 elements,

which are represented as four-bit words, e.g., u = (1,1,0,1) corresponds

to u(x) = x3 + x2 + 1. The primitive root of unity can be defined by the

polynomials Z = X4+X+1 or Z = X4+X3+1. Let us take Z = X4+X+1.

Then we have the remainder formula X4 = 1·Z+(X+1) (observe that 1 =
−1 in Z2). So x4 = x + 1 in Z2[X]/(Z) which is represented as (0,0,1,1).

Therefore the multiplication u(x) · x is implemented as a left shift of u

followed by the addition of (0,0,1,1).

Exercise 131 Calculate the 16 powers xi of x for i = 1,2,3, . . .16 in the

example 106 by means of the multiplication algorithm described above.

The product in GF(pn) is also easily encoded by observing the fact that

the multiplicative group GF(pn)∗ is isomorphic to the additive group

Zpn−1. In the representation Zp[X]/(Z) of GF(pn), x is a generator, i.e.,

every non-zero element of Zp[X]/(Z) occurs as a power xi. Thus, we have

the group isomorphism ϕ : GF(pn)∗ → Zpn−1, defined by ϕ(xi) = i, and

ϕ(xixj) = i+ j. Therefore, multiplication in Zp[X]/(Z) can be replaced

by addition in Zpn−1.

As an example, the 32 − 1 = 8 elements of GF(32)∗ when represented as

elements of Zp[X]/(X3+X+1) can be calculated as the powers of x, i.e.,

by successive multiplication by x, starting with 1 (all operations are in

Zp[X]/(X
3 +X + 1)):

x0 = 1, x4 = (2x + 2) · x = 2x2 + 2x,

x1 = x, x5 = (2x2 + 2x) · x = 2x2 + x + 1,

x2 = x · x = x2, x6 = (2x2 + x + 1) · x = x2 + 2x + 1,

x3 = x2 · x = 2x + 2, x7 = (x2 + 2x + 1) · x = 2x2 + 2.

26.2 The Reed-Solomon (RS) Error Correction Code

The Reed-Solomon error correction code was invented in 1960 by Lincoln

Laboratory (MIT) members Irving S. Reed and Gustave Solomon and pub-

lished in [39]. When it was written, digital technology was not advanced

enough to implement the concept. The key to the implementation of

Reed-Solomon codes was the invention of an efficient decoding algorithm

350 Second Advanced Topic

by Elwyn Berlekamp, a professor of electrical engineering at the Univer-

sity of California, Berkeley (see his paper [5]). The Reed-Solomon code is

used in storage devices (including tape, Compact Disk, DVD, barcodes,

etc.), wireless or mobile communications (such as cellular telephones or

microwave links), satellite communications, digital television, high-speed

modems such as ADSL. The encoding of digital pictures sent back by the

Voyager space mission in 1977 was the first significant application.

The following development is akin to the exposition in [42]. The Reed-

Solomon code adds redundant information to a message, such that errors

in the entire transmitted message can be found and even corrected. We

call the code RS(s, k, t), where s, k, t are natural numbers which define

specific choices as follows:

We start from a sequence S = (bi)i of bits, which are subdivided into

words of s bits each. So the sequence S is interpreted as a sequence (cj)j ,

where cj = (bs·j , bs·j+1, . . . bs·j+s−1) ∈ GF(2s). This sequence is split into

blocks c = (c0, c1, . . . ck−1) ∈ GF(2s)k of k elements cj ∈ GF(2s) each (see

figure 26.1). The encoding is an injective GF(2s)-linear map

ε : GF(2s)k → GF(2s)k+2t

with k, t such that k+ 2t ≤ 2s − 1.

To define ε, one takes a primitive (2s − 1)-th root ζ of unity in the

cyclic group GF(2s)∗, and considers the polynomial p(X) = (X − ζ)(X −
ζ2) . . . (X − ζ2t) ∈ GF(2s)[X]. One then encodes the block vector c =
(c0, c1, . . . ck−1) ∈ GF(2s)k as a polynomial c(X) = ∑

i=0,...k−1 ciX
i ∈

GF(2s)[X]. Then, p(X) · c(X) = ∑i=0,...k+2t−1 diX
i, and we set

ε(c) = d = (d0, d1, . . . dk+2t−1)

which is obviously linear in c and injective, since c can be recovered from

d: denote the polynomial
∑
i=0,...k+2t−1 diX

i as d(X), i.e., p(X) · c(X) =
d(X), whence c(X) = d(X)/p(X).

b0 b1 · · · bs−1

c0

bs bs+1 · · · b2s−1

c1

· · · bs(k−1) bs(k−1)+1 · · · bsk−1

ck−1

Fig. 26.1. One block c consists of k elements ci with s bits each.

26.2 The Reed-Solomon (RS) Error Correction Code 351

Proposition 229 (2t-error detection) Given the above notations, if the

measured value f differs from the encoded value d in at most 2t posi-

tions, and we denote the noise e = f − d ∈ GF(2s)k+2t , then e = 0 (i.e.,

there has been no error from noise) iff (f (ζi))i=1,...2t = 0, where f(ξ) is

the evaluation of f(X) at ξ.

In fact, evaluating e(X) at ζi for all i, we have e(ζi) = f(ζi)+d(ζi), and,

since d(ζi) = 0 by construction, e(ζi) = f(ζi). This can be rewritten as

matrix equation:

(f (ζi))τ =

1 ζ ζ2 . . . ζk+2t−1

1 ζ2 ζ4 . . . ζ2(k+2t−1)

...
...

...
...

1 ζ2t ζ4t . . . ζ2t(k+2t−1)

· (ei)τ .

Now, if all ei = 0 except of at most 2t indexes i1 < i2 < . . . i2t , then the

above equation reduces to

(f (ζi))τ =

ζi1 ζi2 . . . ζi2t

ζ2i1 ζ2i2 . . . ζ2i2t

...
...

...

ζ2ti1 ζ2ti2 . . . ζ2ti2t

· (eij)τ = Z · (eij)τ

where (eij) is a row vector of length 2t. But the (2t × 2t)-matrix Z of the

ζ-powers is of rank 2t, therefore Z is invertible, and we have (eij)
τ =

Z−1f(ζi))τ = 0, whence the claim, that (f (ζi))i=1,...2t = 0 implies e = 0.

Let us understand why Z is regular. We have

det(Z) = ζi1+i2+···i2t · det

1 1 . . . 1

ζi1 ζi2 . . . ζi2t

ζ2i1 ζ2i2 . . . ζ2i2t

...
...

...

ζ(2t−1)i1 ζ(2t−1)i2 . . . ζ(2t−1)i2t

.

using the properties of the determinant presented in propostion 181. The

matrix to the right of the power of ζ is a Vandermonde matrix, whose de-

terminant is known to be
∏

1≤u<v≤2t(ζ
iu−ζiv). See [23] for a proof. Since

iu < k+ 2t by construction of the matrix and k+ 2t ≤ 2s − 1 by hypoth-

esis, no two powers ζiu , ζiv are equal for u ≠ v , and the Vandermonde

matrix is regular.

352 Second Advanced Topic

Proposition 230 (t-error correction) If with the above notations, the en-

coded value d is altered in at most t positions, then e can be calculated

from f , and therefore the original value d and, hence, c can be recon-

structed.

We already know that, under these assumptions, the above Vander-

monde 2t × 2t-matrixes for subsequences i• of indexes i1 < i2 < . . . i2t
are regular. Take all these subsequences i• and calculate the vectors

ei• = Z−1
i• f(ζ

i))τ . Then, if one such vector has at most t non-vanishing

entries, we are done, i.e., the error vector vanishes outside the indexes

i• and is ei• for the indexes i•. In fact, any two solutions ei′• and ei′′• , if

they are different, yield two different solutions to a 2t index sequence

i• containing the union of indexes, where the two solutions do not van-

ish, a contradiction to the regularity of the corresponding Vandermonde

matrix.

Example 107 Let us consider an example from the digital storage of

music on compact disks. It can be shown that one hour of stereo mu-

sic with 16-bit resolution and 44100 Hz sampling rate needs roughly

635MB = 635 × 8 × 106 = 5080000000 bits. Suppose that we want to

be able to correct a burst of up to 200 bit errors. This means that if a

block has s bits, such a burst hits up to d200/se + 1 blocks, where dxe
is the least integer ≥ x. We may reconstruct such errors if t > d200/se.
Moreover, the condition k+2t ≤ 2s−1 implies k+2d200/sek+2t ≤ 2s−1

and can be met by k = 2s −3−2d200/se, whence also t = d200/se+1. So

one block of k · s bits makes a total of d5080000000/(k · s)e blocks, and

each being expanded to k+ 2t blocks, we get a number of

N(s) = d5080000000/(k · s)e · (k+ 2t) · s
= d5080000000/(2s − 3− 2d200/se) · se · (2s − 1) · s

bits. This yields the following numbers of MB required to meet this task

for s = 6 . . .12:

s 6 7 8 9 10 11 12

N(s) -5715.00 1203.66 797.66 700.83 662.19 647.66 640.63

Observe that below s ≤ 6 no reasonable bit number is possible, and that

for s = 12, we get quite close to the original size.

26.3 The Rivest-Shamir-Adleman (RSA) Encryption Algorithm 353

26.3 The Rivest-Shamir-Adleman (RSA) Encryption

Algorithm

The RSA algorithm was published in 1978 by Ron Rivest, Adi Shamir,

and Leonhard Adleman [40]. It can be used for public key encryption and

digital signatures. Its security is based on the difficulty of factoring large

integers, and again uses the theory of Galois fields.

The first step is the generation of the public and private key and runs as

follows:

1. Generate two different large primes, p and q, of approximately equal

size, such that their product n = pq is of a bit length, e.g., 1024

bits, which is required for the representation of the message as a big

number, see below in the next paragraph.

2. One computes n = pq and φ = (p − 1)(q − 1).

3. One chooses a natural number e,1 ≤ e ≤ φ, such that gcd(e,φ) = 1.

Then by definition, the couple (e,n) is the public key.

4. From the previous choice and the verification that gcd(e,φ) = 1, one

computes the inverse d,1 ≤ d ≤ φ, i.e. de = 1 mod φ. By definition,

the couple (d,n) is the private key.

5. The values p,q,φ, and d are kept secret.

The second step describes the encryption of the message sent from A to

B. The private knowledge (pB , qB ,φB) is attributed to B who will be able

to decipher the encrypted message from A.

1. B’s public key (nB , eB) is transmitted to A.

2. The message is represented by a (possibly very large) natural number

1 ≤m ≤ nB .

3. The encrypted message (the “cyphertext”) is defined by

c =meB mod nB .

4. The cyphertext c is sent to B.

Since B knows that the message number m is unique in ZnB , then once

we have recalculated m mod nB , we are done.

354 Second Advanced Topic

The third step deals with the decryption of the original message number

m by B.

1. Receiver B must use his or her private key (dB , nB) and calculate

the number cdB mod nB , where he must use the fact that m =
cdB mod nB .

2. He then reconstructs A’s full message text from the numeric repre-

sentation of m.

Why is it true that m = cdB mod nB? By construction, we have cdB =
meBdB =m1+s·φ in ZnB . Consider now the projection

π : Z→ ZpB × ZqB : z , (z mod pB , z mod qB)

of rings. The kernel is the principal ideal (pBqB) by the prime factor-

ization theory. So we have an injection of rings ZnB → ZpB × ZqB , and

because both rings have equal cardinality, this is an isomorphism. To

show that m = meBdB in ZnB is therefore equivalent to show this equa-

tion holds in each factor ring ZpB and ZqB . Now, if m = 0 in ZpB or

in ZqB , the claim is immediate, so let us assume that m ≠ 0 mod pB .

Then we have m = meBdB = m1msφ, and it suffices to show that

mφ =m(pB−1)(qB−1) = 1 in ZpB . This follows readily from the small Fermat

theorem 134 mpB−1 = 1 in ZpB , for m ≠ 0 mod pB . The same argument

holds for qB , and we are done.

For an in-depth treatment of cryptography, theory and implementation,

see [44] and [41].

Appendix

APPENDIX A

Further Reading

Set theory. Keith Devlin’s The Joy of Sets [20] is a modern treatment

of set theory, including non-well-founded sets. As the title indicates, the

style is rather relaxed, but the treatment is nevertheless elaborate.

Graph theory. Harris’, Hirst’s and Mossinghoff’s Combinatorics and

Graph Theory [26] includes recent results and problems that empha-

size the cross-fertilizing power of mathematics. Frank Harary’s Graph

theory [25] is a very classical book including many interesting problems

and written by one of the leading graph theorists.

Abstract algebra. Among the wealth of books on algebra, Bhattacharya’s,

Jain’s and Nagpaul’s Basic Abstract Algebra [7] is very readable. A text

with a more practical focus is Discrete Mathematics [8] by Norman Biggs.

Number theory. The branch of mathematics that deals with natural

numbers and their properties, such as primes, is called number theory.

Despite its elementary basis, number theory quickly becomes very in-

volved, with many unsolved problems. Andrews’ Number Theory [2] pro-

vides a clear introduction to the subject.

Formal logic. Alonzo Church and Willard Van Orman Quine were pio-

neers of mathematical logic. Church’s Introduction to Mathematical Logic

[15] and Quine’s Mathematical Logic [37] deal with with classical propo-

sitional and predicate logic, and their relation to set theory, with a slight

philosophical flavor. A modern text is Dirk van Dalen’s Logic and Struc-

ture [17], which also provides an exposition of natural deduction and

intuitionistic logic.

358 Further Reading

Languages, grammars and automata. Hopcroft’s, Motwani’s and Ull-

man’s Introduction to Automata Theory, Languages, and Computation [28]

provides a comprehensive exposition of formal languages and automata.

Although the theory of computation has its origin in the work of Alan

Turing and Alonzo Church, the modern treatment is much indebted to

Martin Davis’ Computability and Unsolvability [19] from 1958.

Linear algebra. Werner Greub’s Linear Algebra is a classical text, which

is written in a lucid and precise style, also extending to multilinear alge-

bra in a second volume. The two volumes Basic Linear Algebra [9] and

Further Linear Algebra [10] by Blyth and Robertson are more recent texts

for first year students, working from concrete examples towards abstract

theorems, via tutorial-type exercises. Marcel Berger’s Geometry [4] is one

of the best introductions to linear geometry, including a large number

of examples, figures, and applications from different fields, including the

arts and classical synthetic geometry.

Computer mathematics. Mathematics in the context of computers can

be roughly divided into three domains: algorithms, numerics and com-

puter algebra.

Donald Knuth’s series of The Art of Computer Programming [31, 32, 33]

has the great merit of introducing to computer science a more rigorous

mathematical treatment of algorithms such as sorting and searching or

machine arithmetic. His books have become the yardstick for all subse-

quent literature in this branch of computer science. They are, however,

not for the faint of heart. A more recent book is Cormen’s, Leiserson’s,

Rivest’s and Stein’s Introduction to Algorithms [16].

Numerics is probably the oldest application of computers, accordingly

the literature is extensive. A recent publication is Didier Besset’s Object-

Oriented Implementation of Numerical Methods [6] which exploits object-

oriented techniques.

In contrast to numerics, computer algebra focusses on the symbolic so-

lution of many of the problems presented in this book. A recent work

is von zur Gathen’s and Gerhard’s Modern Computer Algebra [47]. Com-

puter algebra is the foundation of such symbolic computation systems

as Maple or Mathematica.

APPENDIX B

Bibliography

[1] Aczel, Peter. Non-Well-Founded Sets. CSLI LN 14, Stanford, Cal. 1988.

[2] Andrews, George E. Number Theory. Dover, New York 1994.

[3] Barwise, Jon & Moss, Lawrence. Vicious Circles. CSLI Publications,

Stanford, Cal. 1996.

[4] Berger, Marcel. Geometry I, II. Springer, Heidelberg et al. 1987.

[5] Berlekamp, Elwyn. “Bit-Serial Reed-Solomon Encoders.” IEEE Trans-

actions on Information Theory, IT 28, 1982, pp. 869–874.

[6] Besset, Didier H. Object-Oriented Implementation of Numerical Meth-

ods. Morgan Kaufmann, San Francisco et al. 2001.

[7] Bhattacharya, P. B., Jain, S. K. & Nagpaul S. R. Basic Abstract Algebra.

Cambridge University Press, Cambridge 1994.

[8] Biggs, Norman L. Discrete Mathematics. Oxford University Press, Ox-

ford 2002.

[9] Blyth, Thomas S. & Robertson, Edmund F. Basic Linear Algebra.

Springer, Heidelberg et al. 2002.

[10] Blyth, Thomas S. & Robertson, Edmund F. Further Linear Algebra.

Springer, Heidelberg et al. 2001.

[11] Bornemann, Folkmar. “PRIME Is in P: A Breakthrough for ‘Every-

man’.” Notices of the AMS, vol. 50, No. 5, May 2003.

[12] Bourbaki, Nicolas. Eléments d’histoire des mathématiques. Hermann,

Paris 1969.

360 Bibliography

[13] Cap, Clemens H. Theoretische Grundlagen der Informatik. Springer,

Heidelberg et al. 1993.

[14] Chomsky, Noam. “Three models for the description of language.”

I.R.E. Transactions on information theory, volume 2, pp. 113–124, IT,

1956.

[15] Church, Alonzo. Introduction to Mathematical Logic. Princeton Uni-

versity Press, Princeton 1996.

[16] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L. & Stein,

Clifford. Introduction to Algorithms. MIT Press, Cambridge 2001.

[17] van Dalen, Dirk. Logic and Structure. Springer, Heidelberg et al. 1994.

[18] Date, C. J. An Introduction to Database Systems. Addison-Wesley,

Reading 2003.

[19] Davis, Martin. Computability and Unsolvability. Dover, New York

1985.

[20] Devlin, Keith J. The Joy of Sets: Fundamentals of Contemporary Set

Theory. Springer, Heidelberg et al. 1999.

[21] Goldblatt, Robert. Topoi—The Categorical Analysis of Logic. North-

Holland, Amsterdam, 1984.

[22] Greub, Werner. Linear Algebra. Springer, Heidelberg et al. 1975.

[23] Gröbner, Wolfgang. Matrizenrechnung. Bibliographisches Institut,

Mannheim 1966.

[24] Groff, James R. & Weinberg, Paul N. SQL: The Complete Reference.

McGraw-Hill Osborne, New York 2002.

[25] Harary, Frank. Graph Theory. Addison-Wesley, Reading 1972.

[26] Harris, John M., Hirst, Jeffrey L. & Mossinghoff, Michael J. Combina-

torics and Graph Theory. Springer, Heidelberg et al. 2000.

[27] Hilbert, David & Ackermann, Wilhelm. Grundzüge der theoretischen

Logik. Springer, Heidelberg et al. 1967.

[28] Hopcroft, John E., Motwani, Rajeev & Ullman, Jeffrey D. Introduction

to Automata Theory, Languages and Computation. Addison Wesley,

Reading 2000.

[29] Jensen, Kathleen & Wirth, Niklaus. PASCAL—User Manual and Report

ISO Pascal Standard. Springer, Heidelberg et al. 1974.

Bibliography 361

[30] Garey, Michael R. & Johnson, David S. Computers and Intractibility:

A Guide to the Theory of NP-Completeness. W H Freeman & Co., New

York 1979.

[31] Knuth, Donald Ervin. The Art of Computer Programming. Volume I:

Fundamental Algorithms. Addison-Wesley, Reading 1997.

[32] Knuth, Donald Ervin. The Art of Computer Programming. Volume II:

Seminumerical Algorithms. Addison-Wesley, Reading 1998.

[33] Knuth, Donald Ervin. The Art of Computer Programming. Volume III:

Sorting and Searching. Addison-Wesley, Reading 1998.

[34] Kruse, Rudolf et al. Foundations of Fuzzy Systems. John Wiley & Sons,

New York 1996.

[35] Kuipers, Jack B. Quaternions and Rotation Sequences. Princeton Uni-

versity Press, Princeton-Oxford 1998.

[36] Mac Lane, Saunders & Moerdijk, Ieke. Sheaves in Geometry and Logic.

Springer, Heidelberg et al. 1992.

[37] Quine, Willard Van Orman. Mathematical Logic. Harvard University

Press, Cambridge 1981.

[38] Rasiowa, Helena & Sikorski, Roman. The Mathematics of Metamathe-

matics. Polish Scientific Publishers, Warsaw 1963.

[39] Reed, Irving S. & Solomon, Gustave. “Polynomial Codes over Certain

Finite Fields.” Journal of the Society for Industrial and Applied Math-

ematics, Vol. 8, 1960, pp. 300–304.

[40] Rivest, Ronald L., Shamir, Adi & Adleman, Leonard A. “A method for

obtaining digital signatures and public-key cryptosystems.” Commu-

nications of the ACM, Vol. 21, Nr. 2, 1978, pp. 120–126.

[41] Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and

Source Code in C. John Wiley & Sons, New York 1996.

[42] Steger, Angelika. Diskrete Strukturen I. Springer, Heidelberg et al.

2001.

[43] Stetter, Franz. Grundbegriffe der Theoretischen Informatik. Springer,

Heidelberg et al. 1988.

[44] Stinson, Douglas R. Cryptography: Theory and Practice. CRC Press,

Boca Raton 1995.

362 Bibliography

[45] Surma, Stanislav. Studies in the History of Mathematical Logic. Polish

Academy of Sciences, 1973.

[46] van der Waerden, Bartel Leendert. Algebra I. Springer, Heidelberg et

al. 1966.

[47] von zur Gathen, Joachim & Gerhard, Jürgen. Modern Computer Alge-

bra. Cambridge University Press, Cambridge 1999.

[48] Zadeh, Lotfi A. “Fuzzy Sets.” Information and Control 8:338–363,

1965.

Index

Symbols
! 35, 193
n! 166
(G) 181
(Mij) 263
(i) 335
(i : M : E) 227
(i : M : F) 245
(j) 335
(k) 335
(x,y) 29
∗ 159
?∗ 107, 225
V∗ 311
b∗ 312
∗b 312
+ 73, 84, 94, 160
a+ 18
−> 193
−a
b

88
−x 82
G/H 168
a/b 87
0 74, 171
0R 171
1 74, 171
1H 335
1R 171
G : H 169
f : A 211
x : A 211
::= 241
< 44, 53, 82, 88, 95
<−> 206, 221

≤ 41
= 16
A= 212
An 167
BHLR 257
E(i, j) 263
En 263
K(T) 345
Kn 123
Kn,m 123
M∗ 164
P(H) 334
Qn 139
R(H) 334
R∗ 171
S(C) 160
S(H) 337
S(EX) 193
S2 143
Sn 164
SAX 203
t(φ) 218
Tu 296
R[A] 174
R[X] 174
[1, n] 262
[n] 118
[s] 42
256
#(a) 53
& 193
M•j 263
Mi• 263
C 102

364 Index

C∗ 164
H 334
M(R) 263
M(f) 263
Mm,n(R) 263
N 53
P3(R) 338
Q 87
Q∗ 164
R 93
R∗ 164
R+ 95
R− 95
⇒ 197
Σ 211
Z 82
Z∗ 164
Zn 170
H\G 168⋂

20⋃
17⋃n
x 111

U 160, 322, 337
U⊥ 314
U⊥W 314
x⊥y 314
⊥ 196
∩ 19
M ·N 267
· 73, 85, 94
χf 328
cos(θ) 323
cos(f) 322
∪ 18
δij 263
det(M) 272
detω(x1, x2, x3) 331
∅ 12
r ≡ s 170
ηM 298
a
b

87
GA(M) 297
GF(2n) 347
GF(pn) 347
GL(M) 282
GLn(R) 271

O(V) 313
O(V ,W) 312
On(R) 316
SO(V) 316
SO3(R) 327
AX 203
Adj(G) 116, 122
Aff R(M,N) 297
Aut(G) 163
Aut(M) 162
BipDi(V1, V2) 110
BipDi(Γ ,∆) 133
Bip(V1, V2) 114
Bip(Γ ,∆) 133
ComWord(A) 174
CompDi(V) 109
Comp(V) 114
DiDi(V) 109
Di(V) 114
EX 193, 213
End(G) 163
End(M) 161
End(X) 160
EndR(M) 281
Free(φ) 215
FunType 211
Fun 211
Fuzzy(0,1) 199
Gram(xi) 323
Group(G,H) 163
Id 35
IdΓ 121
Im(f) 35, 283
Im(x) 103
IntPs 337
IntPS 337
IntPSs 337
Ints 337
Ker(f) 283
LSK(V) 133
LangMachineA 250
LinR(M,N) 281
Loop(L) 137
Loop(n) 137
Monoid(M,N) 161
Moore(M) 226

Index 365

Parallel(x,y) 333
Path(Γ) 139
Pathv(Γ) 139
RS(s, k, t) 350
RelType 211
Rel 211
Re(x) 103
Ring(R, S) 172
Sequ(S) 211
Set(a, b) 55
Stack(i, µ, E) 253
Stack(i : µ : E) 253
Stream(A) 224
Sym(X) 160, 164
Term(P) 213
Turing(i, tr, sH) 257
Turing(i : tr : sH) 258
Word(A) 139
card(a) 53
codom(f) 35
deg(f) 174
deg(v) 126
deg

+(v) 125
deg

−(v) 125
dim(M) 285
dom(f) 35
gcd(a, b) 183
headΓ 108
lcm(a, b) 183
left(w) 195
lev(x) 111
loga(x) 99
ord(G) 166
pr(a) 32, 58
right(w) 195
rk(M) 294
round(x) 153
sig(x) 168
tailΓ 108
tr 257
tr(f) 328
value(x) 201
var(x) 201
xor 348
∈ 15
∞ 91

λ(f) 297
〈S〉 162
〈X〉 166
R〈M〉 173
R〈X1, . . . Xn〉 174
C 176
O 176
V (A, L) 201
M 217
¬ 197
≠ 16
x ö y 183
6⊂ 16
∉ 15
ω 331
M⊕D 280⊕
i=1,...nMi 281

M⊕n 280
am 100
q 334
x 105
-→
? 107
-→
Γ 113
π 323∏

87

t
a
ñ h 108

v〉 120
ρH 318
→ 232
En

M
ñ Em 268

f : a→ b 35
) 211
∼→ 38
∼ 42
sin(θ) 323
sin(f) 322
t 59
n
√
a 98√
a 98

0�0 263
0�n 263
m�0 263
⊂ 16
⊊ 16∑

85

366 Index

τ 256
Mτ 265
τf 313
τ(f) 297
Γ ×∆ 129
× 30
×c 67
> 196
2 î s 202
BA î s 202
HA î s 202
L î s 202
M î φ[y] 219
v î s 202
î s 202
|——

AX
203

|——
IL

204

∨ 197
∧ 197
x1 ∧ x2 331
{} 15
]0,1[144
d(x,y) 325
i 103, 335
j 335
k 335
2V 107
(a
b
)−1 88

2a 18
2f 247
B(Z) 256
R(D) 280
ΓM 244
ab 73
a

1
n 98
ba 55
f∞(I) 230

RR 280
| 193
a|b 86
x|y 183
|?| 107
|Γ | 113
|a| 53, 82, 96
|n| 123

|x| 105
|| 207
‖q‖ 334
‖x‖ 312
@ 9
RS(s, k, t) 350
f̂ 298
x̂i 182

A
Aε 252
An 167
abelian group 163, 281
ABNF 236
absolute value

of integer 82
of rational number 89
of real number 96

absorbing 224
accepted language 245
accepting state 245
acceptor 245

elementary graph of - 245
generic - 250
minimal - 251
push down - 253
reduced - 250
simple - 249
stack - 253

acceptors
equivalent - 245
isomorphism of - 248
morphism of - 248

Aczel, Peter 112
addition 73

algorithm for - 152
additive inverse

of a rational number 88
of an integer 82

additive monoid 160
Adjc(Γ) 116, 122
adjacency matrix 116, 122, 269
adjoint

linear homomorphisms 313
matrix 276

adjunction 197

Index 367

Turing - 257
Adleman, Leonhard 353
Aff R(M,N) 297
affine homomorphism 296
algebra

Boolean - 196, 198
Heyting - 197
linear - 261
logical - 192, 199
monoid - 172

algebraic
element 345
extension 345
geometry 261

algorithm 76
Euclidean - 183
for addition 152

alphabet
input - 257
predicative - 213
propositional - 193
tape - 256

alternating group 167
alternative

left - 138
right - 138

alternative set 45
AND 5, 197
angle 323
ANSI 66, 228
antisymmetry 26
application of rules 232
Archimedean ordering 89
architecture of concepts 8
arity 211
arrow 108
ASCII 228
associated

digraph 113
graph 113
matrix of bilinear form 313
power automaton 244

associativity 20
atomic proposition 211
attribute of sets 18
Aut(G) 163

Aut(M) 162
automata

isomorphism of - 248
morphism of - 247

automaton 139
deterministic - 244
elementary graph of - 244

automorphism
group 164
of groups 163
of modules 282
of monoids 162
of rings 172

AX 203
axiom 13, 203

of choice 19, 44, 80
of empty set 17
of equality 17
of infinity 18
of pairs 18
of powersets 18
of subsets for attributes 18
of union 17

axiomatic 13
set theory 17
vector space theory 262

axiomatics 203
axis, rotation 327

B
BHLR 257
b-adic representation 100
BA 198
Backus, John 241
Backus-Naur form 236, 241
backward substitution 304
Barwise, Jon 112
basis

of logarithm 99
of vector space 289

Berlekamp, Elwyn 350
Bernstein-Schröder theorem 40
bias 150
bijective 35
bilinear form 312

associated matrix of - 313

368 Index

positive definite - 312
standard - 313
symmetric - 312

binary 229
normal form 77
relation 41
representation 100

binding strength 202
Bip(Γ ,∆) 133
Bip(V1, V2) 114
bipartite

complete - 110
digraph 110
graph 114

BipDi(Γ ,∆) 133
BipDi(V1, V2) 110
blank 256
BMP 229
BNF 236
Boole, George 196
Boolean

algebra 25, 196, 198
operations 197
valid 202

bound variable 215
bounded set 97
bracket 193, 213

C
C 176
C 102
C∗ 164
card(a) 53
cardinality 38

of a set 53
Cartesian product 30

of digraphs 129
of functions 38
universal property of - 58

category 249, 261
Cauchy sequence 91
Cauchy, Augustin 91
Cayley-Hamilton equation 278
chain 123

directed - 118
length of - 118, 123

characteristic 344
characteristic polynomial 328

of a matrix 278
child 138
Chomsky

hierarchy 233
normal form 236
types 233

Chomsky, Noam 224
circular 12
CL 203
class, equivalence 42
classical logic 203
classically valid 202
closed under concatenation 225
closure

existential - 217
universal - 217

co-root of digraph 119
coding theory 344
codom(f) 35
codomain 35
coefficient of a matrix 263
cofactor 275
column

index 263
matrix 263

comma 213
common denominator 88
commutative

group 163
ring 171

commutativity 20
commute 271
Comp(V) 114
compact disk 352
CompDi(V) 109
complement 284, 317

Schur - 309
set - 21

complete
bipartite digraph 110
digraph 109
graph 114

complete relation 41
completeness theorem 205

Index 369

complex number 102
complex numbers

product of - 102
sum of - 102

component
connected - 124, 145
of digraph morphism 115
of graph 122
of sentence 196

composition
of affine homomorphisms 297
of automata morphisms 248
of digraph morphisms 114
of functions 36
of graph morphisms 121
of graphs 33
of isometries 313
of linear homomorphisms 281
of monoid monomorphisms 161
of paths 120
of ring homomorphisms 172

computer 223
ComWord(A) 174
concatenation, closed under 225
concept 8

architecture 8
component 8
existence of - 11
instance 8
name 8

configuration 253
conjugate matrix 264, 273
conjugation

in C 105
of quaternions 334

conjunction 5
formula 215
symbol 193

conjunctive normal form 207
connected

component 124, 145
digraph 123
graph 123

constant 210, 211
sequence 91

construction by induction 56

context
free grammar 236
sensitive grammar 238

continuous curve 143
contraction, elementary 148
contradiction, principle of 4
convergent sequence 91, 97
coordinate 29
coordinates, homogeneous 298
coproduct 59

of digraphs 130
of graphs 130
universal property of - 59

corollary 13
cos(f) 322
cos(θ) 323
coset 93

left - 168
right - 168

cosine
formula 324
function 322

covering
of a set 133
skeleton of - 133

curve, continuous 143
cycle 165

Euler - 125
Hamilton - 125
in a digraph 118
in a graph 123

cyclic
group 170

cyclic group 166
cyphertext 353

D
d(x,y) 325
database, relational 66
De Morgan’s Laws 206
decadic normal form 78
decimal 229

representation 100
decomposition, LUP 307
decryption 354
defining polynomial 346

370 Index

definition 13
deg(f) 174
deg(v) 126
deg+(v) 125
deg

−(v) 125
degree 125

head - 125
tail - 125

denominator 87
common - 88

density of rational numbers in reals
96

denumerable set 79
Descartes, René 279
detω(x1, x2, x3) 331
det(M) 272
determinant 272

Gram - 323
deterministic

automaton 244
production grammar 230
stack acceptor 253
Turing machine 257

Di(V) 114
diagonal

graph 32
procedure 80

DiDi(V) 109
difference

set - 21
symmetric set - 27

digraph 108
associated - 113
bipartite - 110
co-root of - 119
complete - 109
connected - 123
coproduct 130
discrete - 109
Finsler - 112
induced - 115
isomorphism 115
join - 133
loop - 137
morphism 114

component of - 115

root of - 119
sink of - 119
source of - 119

digraphs, Cartesian product of 129
dim(M) 285
dimension of a module 285
direct sum 281

inner - 284
directed

chain 118
graph 108
tree 119

directed subgraph 115
discrete

digraph 109
graph 114

disjoint 19
sum 59

disjunction 5
formula 215
symbol 193

disjunctive normal form 207
distance 325
distributivity 26, 27, 171, 197
division of integers 86
division theorem, Euclid’s 76, 177
divisor 183

zero - 183
dom(f) 35
domain 35

integral - 183
drawing 144
drawn graph 144
dual

graph 109
normal form 77
space 311

E
En 263
E(i, j) 263
EBNF 236
edge 113

set 107
eigenvalue 329
eigenvector 329

Index 371

element 15
algebraic - 345
neutral - 160
order of - 167

elementary
contraction 148
graph of acceptor 245
graph of automaton 244
matrix 263
state 252

elements, stack 252
elimination, Gauss 303
empty

list 63
relation 41
word 161

encryption 353
EndR(M) 281
End(G) 163
End(M) 161
End(X) 160
endomorphism

of groups 163
of modules 281
of monoids 161
of rings 172

epimorphism 35
equal sets 16
equation 27, 82, 84, 90, 95, 102

Cayley-Hamilton - 278
Gram - 323
homogeneous - 295
Lagrange - 169
linear - 287, 303
polynomial - 102

equipollent 38
equivalence

class 42
relation 42

generated - 66
equivalent

acceptors 245
formulas 221
sentences 206
states 250

error
correction 352
detection 351

Euclid 182
Euclid’s division theorem 76, 177
Euclidean

algorithm 183
vector space 312

Euler
cycle 125
formula 145

Euler, Leonhard 126
evaluation of polynomials 175
EX 193, 213
excluded third, principle of 4
existence of a concept 11
existence quantifier 210, 213, 215
existential closure 217
exponentials, universal property of

60
exponentiation 73
expression 193, 213
extension

algebraic - 345
of a field 345

F
factorial 166
factorization, unique 185
false 3, 197
falsity formula 214
family

of elements 62
of sets 62

Fermat’s little theorem 185
fiber 60

product 66
universal property of - 66

field
extension 345

generated - 345
Galois - 343
prime - 344
skew - 177
splitting - 346

372 Index

final
set 58
state 227

finite
group 166
set 53

finite sequence 63
finitely generated 166, 289
Finsler digraph 112
Finsler, Paul 112
first order predicate logic 210
floating point representation 101,

150
normalized - 150

form
bilinear - 312
linear - 312

formula 214
conjunction - 215
cosine - 324
disjunction - 215
falsity - 214
goniometric - 323
implication - 215
interpolation - 187
negation - 215
relational - 214
truth - 214

formulas
equivalent - 221
validity for - 219

forward substitution 308
founded set 46
free

module 284
range 218
variable 215

Free(φ) 215
Fun 211
function 35

0-ary - 210
identity - 35
polynomial - 175
symbol 211

functional graph 34

functions
Cartesian product of - 38
composition of - 36

functorial 249
fundamental theorem of algebra

102, 186
FunType 211
fuzzy 199
fuzzy logic 197
Fuzzy(0,1) 199

G
Gödel, Kurt 192
GA(M) 297
Galois field 343
Galois, Evariste 343
Gauss elimination 303
Gauss, Carl Friedrich 102
gcd(a, b) 183
general

affine group of a vector space 297
grammar 240
linear group 271

of a module 282
generate 289
generated

equivalence relation 66
field extension 345
finitely - 166
group 166
ideal 181
language 230, 232
vector space 289

generic acceptor 250
geometry

algebraic - 261
linear - 262

GF(2n) 347
GF(pn) 347
GLn(R) 271
GL(M) 282
goniometric

formula 323
Gram

determinant 323
equation 323

Index 373

Gram(xi) 323
Gram-Schmidt orthonormalization

314
grammar

context free - 236
context sensitive - 238
general - 240
left linear - 233
left regular - 233
normal - 240
phrase structure - 232
production - 230
reduced - 236
right linear - 233
right regular - 233
separated - 240

graph (graph theory) 113
associated - 113
bipartite - 114
complete - 114
components of - 122
connected - 123
coproduct 130
directed - 108
discrete - 114
drawn - 144
dual - 109
isomorphism 122
join - 133
Moore - 140, 226
morphism 121
planar - 144
skeletal - 143

graph (relation theory) 32
diagonal 32
functional 34
inverse 32

graphs, composition of 33
greatest common divisor (gcd) 183
greatest lower bound (g.l.b.) 26, 197
Greibach normal form 236
group 163

abelian - 163, 281
alternating - 167
automorphism 163, 164
commutative - 163

cyclic 170
cyclic - 166
endomorphism 163
finite - 166
general affine - 297
general linear - 271
general linear - of a module 282
generated - 166
homomorphism 163

image 168
kernel 168

inverse 163
isomorphism 163
of invertible elements 164
of translations 296
order 166
orthogonal - 313
special orthogonal - 316
symmetric - 164
trivial - 166

Group(G,H) 163

H
H 334
HA 197
halt state 257
Hamilton cycle 125
Hamilton, William Rowan 333
headΓ 108
head degree 125
head, read/write 256
hexadecimal 229

normal form 78
representation 100

Heyting
algebra 197
valid 202

Heyting, Arend 197
hierarchy, Chomsky 233
homogeneous 266

coordinates 298
equation 295

homogenization 298
homomorphism

affine - 296
linear - 281

374 Index

of groups 163
of monoids 161
of rings 172

hyperplane 317

I
Id 35
IdΓ 121
ideal 93, 176

generated - 181
maximal - 179
prime - 181
principal - 176

idempotency 27, 226
identity

function 35
of languages 232

IEEE 101, 150
standard #754 150

IL 204
Im(f) 35, 283
Im(x) 103
image 35

of group homomorphism 168
of linear homomorphism 283

imaginary
complex number 104
part 103
unit 103

implication 5, 197
formula 215
symbol 193

IMPLIES 5, 197
indeterminate 173
index

column - 263
of subgroup 169
row - 263
set 62

indirect proof 13
induced

digraph 115
relation 44

induction, construction by 56
inequality

Schwarz - 324

triangle - 87, 89, 96, 105, 324, 325
Inf 151
infinite word 224
infix 224
initial

language 230
set 58
state 141, 227, 243

injective 35
input

alphabet 257
letters 252
place 111

instance
name 8
value 8

IntPs 337
IntPS 337
IntPSs 337
Ints 337
integer 82

absolute value of - 82
additive inverse of - 82
negative - 82
positive - 82
prime - 86

integers
division of - 86
product of - 85
sum of - 84

integral domain 183
interior of unit interval 144
interpolation 188

formula 187
intersection 19, 20
intuitionistic logic 204
inverse graph 32
invertible 163
involution 27
irreducible polynomial 181
ISO 229
isometry 312
isomorphism 35

of acceptors 248
of automata 248
of digraphs 115

Index 375

of graphs 122
of groups 163
of modules 281
of monoids 161
of rings 172

J
Java 112
Jensen, Kathleen 242
join 197

of digraphs 133
of graphs 133

join (SQL) 69

K
Kn 123
Kn,m 123
K(T) 345
Ker(f) 283
kernel

of group homomorphism 168
of linear homomorphism 283

key
private - 353
public - 353

Kleene
cross 242
operator 225

Knuth, Donald 125
Kronecker delta 263
Kuratowski, Kazimierz 147

L
L-system 230
L-valid 202
labeled transition system 109
Lagrange equation 169
LangMachineA 250
language

accepted
by sequential machine 227

accepted - 245
generated - 230, 232
initial - 230
of type 0 241
of type 1 238

of type 2 236
of type 3 234
predicative - 215
propositional - 193
recursively enumerable - 241
semi-decidable - 258
sequential machine of - 250
stream - 225
terminal - 230
word - 225

lazy
path 118
walk 123

lcm(a, b) 183
leading coefficient 174
leaf 119
least common multiple (lcm) 183
least upper bound (l.u.b.) 26, 197
left(w) 195
Leibniz, Gottfried Wilhelm 196
lemma 13
length

of chain 118, 123
of path 118
of sequence 63
of walk 123

letters, input 252
lev(x) 111
level 111
lexicographic ordering 64
lim 91
LinR(M,N) 281
Lindenmayer, Aristid 230
linear

algebra 261
equation 287, 303
form 312
geometry 262
homomorphism 281

adjoint - 313
image of - 283
kernel of - 283
rank of - 293

ordering 43
part 297

376 Index

linearly
dependent 288
independent 288

Liouville, Joseph 344
list 63

empty - 63
loga(x) 99
logarithm 99

basis of - 99
logic

classical - 203
fuzzy - 197
intuitionistic - 204
propositional - 4

logical
algebra 192, 199
connective symbol 193

loop 111
digraph 137
in a digraph 118
in a graph 123

Loop(L) 137
Loop(n) 137
lower triangular matrix 307
LSK(V) 133
LTS 109
LUP decomposition 307

M
M 217
Mm,n(R) 263
M(f) 263
M(R) 263
M∗ 164
machine 223

sequential - 226
Turing - 257

mantissa 150
map, transition 257
matrix 262

adjacency - 116, 122, 269
adjoint - 276
characteristic polynomial of - 278
coefficient 263
column - 263
conjugate - 264, 273

elementary - 263
lower triangular - 307
product 267
rank of - 294
regular - 271
row - 263
scaled - 266
square - 271
sum 266
symmetric - 265
tabular representation of - 263
theory 261
unit - 263
upper triangular - 277
Vandermonde - 351

maximal ideal 179
meet 197
minimal 43

acceptor 251
minor 275
mod n 170
model 219
module 279

dimension of - 285
free - 284

modus ponens 13, 203
monoid 159

additive - 160
algebra 172

universal property of - 174
automorphism 162
endomorphism 161
homomorphism 161
isomorphism 161
multiplicative - 160
stream - 224
word - 139, 160

Monoid(M,N) 161
monomial 173
monomorphism 35
monotony

additive - 74
multiplicative - 74

Moore graph 140, 226
Moore(M) 226

Index 377

morphism
of acceptors 248
of automata 247
of digraphs 114
of graphs 121

Moss, Lawrence 112
multiplication 73

scalar - 279
multiplicative

inverse of a rational number 88
monoid 160

music storage 352
Myhill-Nerode, theorem of - 251

N
N 53
n-ary predicate 210
n-ary relation 65
n-ary tree 138
n-bit word 139
n-cube 139
n-th root 98
NaN 151
NaNQ 151
NaNS 151
natural number 50
Naur, Peter 241
negation 4, 197

formula 215
symbol 193

negative
integer 82
real number 95

neutral element 27, 160
additive - 74
exponential - 74
multiplicative - 74

Newton interpolation formula 187
nondeterministic

automaton 244
production grammar 230
stack acceptor 253
Turing machine 257

nondeterministic polynomial com-
plexity 259

nonterminal symbol 232

norm 312
of a complex number 105
quaternion - 334

normal
grammar 240
subgroup 170

normal form
adic - 77
ary - 77
binary - 77
Chomsky - 236
conjunctive - 207
decadic - 78
disjunctive - 207
dual - 77
Greibach - 236
hexadecimal - 78
prenex - 221
Skolem - 221

normalized floating point representa-
tion 150

NOT 4, 197
not-a-number 150, 151
NP 259
0-ary function 210
0-ary function 210
number

complex - 102
natural - 50
rational - 87
real - 93

numerator 87

O
O 176
On(R) 316
O(V) 313
O(V ,W) 312
octal 229
one-to-one 35
onto 35
operator, Kleene 225
OR 5, 197
ord(G) 166
order

of element 167

378 Index

of group 166
ordered pair 29
ordering

Archimedean - 89
lexicographic - 64
linear - 43
partial - 43

ordinal set 47
orientation 320, 331
orthogonal

group 313
vector spaces 314
vectors 314

orthonormal 314
orthonormalization, Gram-Schmidt

314
output place 111
overflow

exponent - 153
fractional - 153

P
P 259
P3(R) 338
P(H) 334
pair, ordered 29
Parallel(x,y) 333
parallelepiped, volume of 333
parallelogram, surface of 333
parent 138
partial ordering 43
partition 42
path 118

lazy - 118
length of - 118

Path(Γ) 139
Pathv(Γ) 139
paths, composition of 120
pattern 232
Paul, Finsler 222
Peano axioms 51
permutation 164
Petri net 111
phrase structure grammar 232
π = 3.1415926 323
place 111

input - 111
output - 111

planar graph 144
Poisson, Siméon-Denis 343
polyhedron 144
polynomial

characteristic - 328
commutative - 174
complexity (P) 259
constant - 174
cubic - 174
defining - 346
equation 102
evaluation 175
function 175
irreducible - 181
linear - 174
non-commutative - 173
quadratic - 174
root of - 186

pop 252
positive

integer 82
real number 95

positive definite bilinear form 312
Post, Emil 205
power

automaton, associated 244
graph 244, 245
rational - 98

powerset 18
pr(a) 32, 58
predicate 209
n-ary - 210
logic, first order 210

predicative
alphabet 213
language 215
sentence 216

prefix 224
prenex normal form 221
prime 181

ideal 181
integer 86

prime field 344
primitive root of unity 347

Index 379

principal

ideal 176

ideal ring 176

principle

of contradiction 4

of excluded third 4

private key 353

product

Cartesian - 30

fiber - 66

of complex numbers 102

of integers 85

of matrixes 267

of natural numbers 74

of rational numbers 88

of real numbers 94

relation 65

scalar - 313

production grammar 230

deterministic - 230

nondeterministic - 230

projection 32, 58

stereographic - 144

projective space 338

proof 13

by induction 52

indirect - 13

sequence 203

proposition 3, 13

atomic - 211

propositional

alphabet 193

language 193

logic 4

variable 193

public key 353

pullback 66

pumping lemma 235, 237

pure

part 334

quaternion 334

set 12

push 252

push down acceptor 253

Q
Q 87
Q∗ 164
Qn 139
quantifier

existence - 210, 213, 215
universal - 210, 213, 215

quaternion 334
conjugation 334
norm 334
pure - 334
real - 334

quotient module 283

R
R 93
R∗ 171
R∗ 164
R+ 95
R− 95
R(H) 334
R-algebra 173
range, free 218
rank

of a linear homomorphism 293
of a matrix 294

rational number 87
absolute value of - 89

rational numbers
product of - 88
sum of - 88

rational power 98
Re(x) 103
reachable 118, 123
read/write head 256
real

part 103, 334
quaternion 334

real number 93
absolute value of - 96
negative - 95
positive - 95

real numbers
product of - 94
sum of - 94

recursion theorem 56

380 Index

recursively enumerable language
241

reduced
acceptor 250
grammar 236

Reed, Irving S. 349
Reed-Solomon 349
reflection 319
reflexivity 26
regular matrix 271
Rel 211
relation 210
n-ary - 65
0-ary - 210
binary - 41
complete - 41
empty - 41
equivalence - 42
induced - 44
product - 65
symbol 211

relational
database 66

relational formula 214
RelType 211
representation

binary - 100
decimal - 100
floating point - 101, 150
hexadecimal - 100

restriction 38
rewriting system 231
right(w) 195
ring 171

commutative - 171
endomorphism 172
homomorphism 172
isomorphism 172
principal ideal - 176

Ring(R, S) 172
Rivest, Ronald 353
rk(M) 294
root

of a polynomial 186
of digraph 119

rotation 316

axis 327
round(x) 153
rounding 153
row

index 263
matrix 263

rules, application of 232
Russell, Bertrand 11

S
SAX (EX) 203
Sn 164
S(EX) 193
S(H) 337
S2 143
scalar

multiplication 266, 279
product 313

scaled matrix 266
Schur complement 309
Schwarz inequality 324
scope of variable 216
SELECT (SQL) 71
selection 8
semantics 192, 217
semi-decidable language 258
sentence 193

component of - 196
predicative - 216

sentences
equivalent - 206

separated grammar 240
Sequ(S) 211
sequence 63

Cauchy - 91
constant - 91
convergent - 91, 97
finite - 63
length of a - 63
proof - 203
state - 244
terminal - 203
zero - 91

sequential machine 140, 226
of a language 250

Index 381

set
alternative - 45
attribute 18
bounded - 97
cardinality 53
complement 21
denumerable - 79
difference 21

symmetric - 27
final - 58
finite - 53
founded - 46
initial - 58
ordinal - 47
pure - 12
singleton - 39
state - 256
theory, axiomatic 17
totally finite - 111
transitive - 45

Set(a, b) 55
sets

equal - 16
family of - 62

Shamir, Adi 353
Sheffer stroke operator 207
sig(x) 168
Σ-structure 217
signature 211
signification 192, 218
simple acceptor 249
sin(f) 322
sin(θ) 323
sine function 322
single precision representation 150
singleton set 39
sink of digraph 119
skeletal graph 143
skeleton of a covering 133
skew field 177

commutative - 177
skew-symmetric 331
Skolem normal form 221
SO3(R) 327
SO(V) 316
Solomon, Gustave 349

solution of linear equation 287
sorite 13
sort 211

of term 213
soundness theorem 205
source of digraph 119
space

dual - 311
projective - 338
state - 109, 140, 226
vector - 279

spanning 127
tree 127

special orthogonal group 316
sphere 143

unit - 337
splitting field 346
square matrix 271
stack acceptor 253

deterministic - 253
nondeterministic - 253

stack elements 252
Stack(i, µ, E) 253
Stack(i : µ : E) 253
standard bilinear form 313
state

accepting - 245
elementary - 252
final - 227
halt - 257
initial - 141, 227, 243
sequence 244

of Turing machine 258
set 256
space 109, 140, 226
terminal - 245
transition function 253

states 243
equivalent - 250

Steinitz exchange theorem 290
stereographic projection 144
stream 224

language 225
monoid 224

Stream(A) 224
strength of binding 202

382 Index

structural transport 44
subacceptor 249
subdigraph 115
subgraph

generated by a vertex 120
subgroup 163

normal - 170
submodule 279
submonoid 162

generated - 162
subobject classifier 61
subring 172
subset 16
substitution

backward - 304
forward - 308

successor 18
suffix 224
sum

of complex numbers 102
of integers 84
of matrixes 266
of natural numbers 74
of rational numbers 88
of real numbers 94

supremum 97
surface of parallelogram 333
surjective 35
Sym(X) 160, 164
symbol

conjunction - 193
disjunction - 193
function - 211
implication - 193
negation - 193
nonterminal - 232
relation - 211
terminal - 232

symmetric
bilinear form 312
group 164

of rank n 164
matrix 265
set difference 27

syntactics 211
syntax 191

diagram 242

T
tabular representation of a matrix

263
tailΓ 108
tail degree 125
tape 256

alphabet 256
tautology 202
term 213

sort of - 213
Term(P) 213
terminal

language 230
sequence 203
state 245
symbol 232

theorem 13, 203
completeness - 205
of Myhill-Nerode 251
of recursion 56
soundness - 205
Steinitz exchange - 290

topos theory 218
totally finite set 111
tr 257
tr(f) 328
trace 328
transition 111

function, state 253
map 257

transitive
set 45

transitivity 26
translation 296

part 297
translations

group of - 296
transposition 165, 265
tree 123
n-ary - 138
directed - 119

triangle inequality 87, 89, 96, 105,
324, 325

trivial group 166

Index 383

true 3, 197
truth

formula 214
table 5

Turing
adjunction 257
machine 257

deterministic - 257
nondeterministic - 257
state sequence of - 258

Turing(i, tr, sH) 257
Turing(i : tr : sH) 258
Turing, Alan 256
turtle graphics 230
type 211
type 0 language 241
type 1 language 238
type 2 language 236
type 3 language 234

U
U 160, 322, 337
underflow, exponent 153
Unicode 229
unique factorization 185
unit 263

circle 160, 337
imaginary - 103
interval, interior of 144

universal
closure 217
quantifier 210, 213, 215

universal property
of Cartesian product 58
of coproduct 59
of exponentials 60
of fiber product 66
of monoid algebra 174
of word monoid 162

upper bound 97
upper triangular matrix 277

V
V (A, L) 201
valid 219

Boolean - 202
classically - 202
Heyting - 202

validity for formulas 219
valuation 201
value 197
value(x) 201
Vandermonde matrix 351
var(x) 201
variable 211

bound - 215
free - 215
propositional - 193
scope of - 216

vector 279
vector space 279

basis of - 289
Euclidean - 312
generated - 289

Venn diagram 26
vertex 108, 113

subgraph generated by - 120
volume of parallelepiped 333

W
walk 123

lazy - 123
well defined 84
well-ordering 43
Wirth, Niklaus 242
Wittgenstein, Ludwig 3
word
n-bit - 139
empty - 161
infinite - 224
language 225

word monoid 139, 160
universal property of - 162

Word(A) 139

X
xor 348

Z
Z 82
Z∗ 164
Zn 170
Zermelo, Ernst 44
zero

divisor 183
sequence 91

Universitext

Aguilar, M.; Gitler, S.; Prieto, C.: Algebraic
Topology from a Homotopical Viewpoint

Aksoy, A.; Khamsi, M. A.: Methods in Fixed
Point Theory

Alevras, D.; Padberg M. W.: Linear Opti-
mization and Extensions

Andersson, M.: Topics in Complex Analysis

Aoki, M.: State Space Modeling of Time
Series

Arnold, V. I.: Lectures on Partial Differen-
tial Equations

Arnold, V. I.; Cooke, R.: Ordinary Differen-
tial Equations

Audin, M.: Geometry

Aupetit, B.: A Primer on Spectral Theory

Bachem, A.; Kern, W.: Linear Programming
Duality

Bachmann, G.; Narici, L.; Beckenstein, E.:
Fourier and Wavelet Analysis

Badescu, L.: Algebraic Surfaces

Balakrishnan, R.; Ranganathan, K.: A Text-
book of Graph Theory

Balser, W.: Formal Power Series and Linear
Systems of Meromorphic Ordinary Differ-
ential Equations

Bapat, R.B.: Linear Algebra and Linear
Models

Benedetti, R.; Petronio, C.: Lectures on Hy-
perbolic Geometry

Benth, F. E.: Option Theory with Stochastic
Analysis

Berberian, S. K.: Fundamentals of Real
Analysis

Berger, M.: Geometry I, and II

Bliedtner, J.; Hansen, W.: Potential Theory

Blowey, J. F.; Coleman, J. P.; Craig, A. W.
(Eds.): Theory and Numerics of Differential
Equations

Blyth, T. S.: Lattices and Ordered Algebraic
Structures

Börger, E.; Grädel, E.; Gurevich, Y.: The
Classical Decision Problem

Böttcher, A; Silbermann, B.: Introduction
to Large Truncated Toeplitz Matrices

Boltyanski, V.; Martini, H.; Soltan, P. S.:
Excursions into Combinatorial Geometry

Boltyanskii, V. G.; Efremovich, V. A.: Intu-
itive Combinatorial Topology

Bonnans, J. F.; Gilbert, J. C.; Lemaréchal, C.;
Sagastizábal, C. A.: Numerical Optimiza-
tion

Booss, B.; Bleecker, D. D.: Topology and
Analysis

Borkar, V. S.: Probability Theory

Brunt B. van: The Calculus of Variations

Carleson, L.; Gamelin, T. W.: Complex
Dynamics

Cecil, T. E.: Lie Sphere Geometry: With
Applications of Submanifolds

Chae, S. B.: Lebesgue Integration

Chandrasekharan, K.: Classical Fourier
Transform

Charlap, L. S.: Bieberbach Groups and Flat
Manifolds

Chern, S.: Complex Manifolds without
Potential Theory

Chorin, A. J.; Marsden, J. E.: Mathematical
Introduction to Fluid Mechanics

Cohn, H.: A Classical Invitation to Alge-
braic Numbers and Class Fields

Curtis, M. L.: Abstract Linear Algebra

Curtis, M. L.: Matrix Groups

Cyganowski, S.; Kloeden, P.; Ombach, J.:
From Elementary Probability to Stochastic
Differential Equations with MAPLE

Da Prato, G.: An Introduction to Infinite
Dimensional Analysis

Dalen, D. van: Logic and Structure

Das, A.: The Special Theory of Relativity:
A Mathematical Exposition

Debarre, O.: Higher-Dimensional Algebraic
Geometry

Deitmar, A.: A First Course in Harmonic
Analysis

Demazure, M.: Bifurcations and Cata-
strophes

Devlin, K. J.: Fundamentals of Contempo-
rary Set Theory

DiBenedetto, E.: Degenerate Parabolic
Equations

Diener, F.; Diener, M.(Eds.): Nonstandard
Analysis in Practice

Dimca, A.: Sheaves in Topology

Dimca, A.: Singularities and Topology of
Hypersurfaces

DoCarmo, M. P.: Differential Forms and
Applications

Duistermaat, J. J.; Kolk, J. A. C.: Lie Groups

Dumortier.: Qualitative Theory of Planar
Differential Systems

Edwards, R. E.: A Formal Background to
Higher Mathematics Ia, and Ib

Edwards, R. E.: A Formal Background to
Higher Mathematics IIa, and IIb

Emery, M.: Stochastic Calculus in Mani-
folds

Endler, O.: Valuation Theory

Engel, K.-J.; Nagel, R.: A Short Course on
Operator Semigroups

Erez, B.: Galois Modules in Arithmetic

Everest, G.; Ward, T.: Heights of Polynomi-
als and Entropy in Algebraic Dynamics

Farenick, D. R.: Algebras of Linear Trans-
formations

Foulds, L. R.: Graph Theory Applications

Franke, J.; Hrdle, W.; Hafner, C. M.: Statis-
tics of Financial Markets: An Introduction

Frauenthal, J. C.: Mathematical Modeling in
Epidemiology

Friedman, R.: Algebraic Surfaces and Holo-
morphic Vector Bundles

Fuks, D. B.; Rokhlin, V. A.: Beginner’s
Course in Topology

Fuhrmann, P. A.: A Polynomial Approach
to Linear Algebra
Gallot, S.; Hulin, D.; Lafontaine, J.: Rie-
mannian Geometry
Gardiner, C. F.: A First Course in Group
Theory
Gårding, L.; Tambour, T.: Algebra for Com-
puter Science
Godbillon, C.: Dynamical Systems on
Surfaces
Godement, R.: Analysis I, and II
Goldblatt, R.: Orthogonality and Spacetime
Geometry
Gouvêa, F. Q.: p-Adic Numbers
Gross, M. et al.: Calabi-Yau Manifolds and
Related Geometries
Gustafson, K. E.; Rao, D. K. M.: Numerical
Range. The Field of Values of Linear Oper-
ators and Matrices
Gustafson, S. J.; Sigal, I. M.: Mathematical
Concepts of Quantum Mechanics
Hahn, A. J.: Quadratic Algebras, Clifford
Algebras, and Arithmetic Witt Groups
Hájek, P.; Havránek, T.: Mechanizing Hy-
pothesis Formation
Heinonen, J.: Lectures on Analysis on Met-
ric Spaces
Hlawka, E.; Schoißengeier, J.; Taschner, R.:
Geometric and Analytic Number Theory
Holmgren, R. A.: A First Course in Discrete
Dynamical Systems
Howe, R., Tan, E. Ch.: Non-Abelian Har-
monic Analysis
Howes, N. R.: Modern Analysis and Topol-
ogy
Hsieh, P.-F.; Sibuya, Y. (Eds.): Basic Theory
of Ordinary Differential Equations
Humi, M., Miller, W.: Second Course in Or-
dinary Differential Equations for Scientists
and Engineers
Hurwitz, A.; Kritikos, N.: Lectures on Num-
ber Theory
Huybrechts, D.: Complex Geometry: An In-
troduction
Isaev, A.: Introduction to Mathematical
Methods in Bioinformatics

Istas, J.: Mathematical Modeling for the Life
Sciences

Iversen, B.: Cohomology of Sheaves

Jacod, J.; Protter, P.: Probability Essentials

Jennings, G. A.: Modern Geometry with
Applications

Jones, A.; Morris, S. A.; Pearson, K. R.: Ab-
stract Algebra and Famous Impossibilities

Jost, J.: Compact Riemann Surfaces

Jost, J.: Dynamical Systems. Examples of
Complex Behaviour

Jost, J.: Postmodern Analysis

Jost, J.: Riemannian Geometry and Geomet-
ric Analysis

Kac, V.; Cheung, P.: Quantum Calculus

Kannan, R.; Krueger, C. K.: Advanced
Analysis on the Real Line

Kelly, P.; Matthews, G.: The Non-Euclidean
Hyperbolic Plane

Kempf, G.: Complex Abelian Varieties and
Theta Functions

Kitchens, B. P.: Symbolic Dynamics

Kloeden, P.; Ombach, J.; Cyganowski, S.:
From Elementary Probability to Stochastic
Differential Equations with MAPLE

Kloeden, P. E.; Platen; E.; Schurz, H.: Nu-
merical Solution of SDE Through Computer
Experiments

Kostrikin, A. I.: Introduction to Algebra

Krasnoselskii, M. A.; Pokrovskii, A. V.: Sys-
tems with Hysteresis

Kurzweil, H.; Stellmacher, B.: The Theory of
Finite Groups. An Introduction

Lang, S.: Introduction to Differentiable
Manifolds

Luecking, D. H., Rubel, L. A.: Complex
Analysis. A Functional Analysis Approach

Ma, Zhi-Ming; Roeckner, M.: Introduction
to the Theory of (non-symmetric) Dirichlet
Forms

Mac Lane, S.; Moerdijk, I.: Sheaves in
Geometry and Logic

Marcus, D. A.: Number Fields

Martinez, A.: An Introduction to Semiclas-
sical and Microlocal Analysis
Matoušek, J.: Using the Borsuk-Ulam The-
orem
Matsuki, K.: Introduction to the Mori Pro-
gram
Mazzola, G.; Milmeister G.; Weissman J.:
Comprehensive Mathematics for Computer
Scientists 1
Mazzola, G.; Milmeister G.; Weissman J.:
Comprehensive Mathematics for Computer
Scientists 2
Mc Carthy, P. J.: Introduction to Arithmeti-
cal Functions
McCrimmon, K.: A Taste of Jordan Alge-
bras
Meyer, R. M.: Essential Mathematics for
Applied Field
Meyer-Nieberg, P.: Banach Lattices
Mikosch, T.: Non-Life Insurance Mathe-
matics
Mines, R.; Richman, F.; Ruitenburg, W.: A
Course in Constructive Algebra
Moise, E. E.: Introductory Problem Courses
in Analysis and Topology
Montesinos-Amilibia, J. M.: Classical Tes-
sellations and Three Manifolds
Morris, P.: Introduction to Game Theory
Nikulin, V. V.; Shafarevich, I. R.: Geome-
tries and Groups
Oden, J. J.; Reddy, J. N.: Variational Meth-
ods in Theoretical Mechanics
Øksendal, B.: Stochastic Differential Equa-
tions
Øksendal, B.; Sulem, A.: Applied Stochastic
Control of Jump Diffusions
Poizat, B.: A Course in Model Theory
Polster, B.: A Geometrical Picture Book
Porter, J. R.; Woods, R. G.: Extensions and
Absolutes of Hausdorff Spaces
Radjavi, H.; Rosenthal, P.: Simultaneous
Triangularization
Ramsay, A.; Richtmeyer, R. D.: Introduc-
tion to Hyperbolic Geometry
Rautenberg, W.: A Concise Introduction to
Mathematical Logic

Rees, E. G.: Notes on Geometry

Reisel, R. B.: Elementary Theory of Metric
Spaces

Rey, W. J. J.: Introduction to Robust and
Quasi-Robust Statistical Methods

Ribenboim, P.: Classical Theory of Alge-
braic Numbers

Rickart, C. E.: Natural Function Algebras

Rotman, J. J.: Galois Theory

Rubel, L. A.: Entire and Meromorphic
Functions

Ruiz-Tolosa, J. R.; Castillo E.: From Vectors
to Tensors

Runde, V.: A Taste of Topology

Rybakowski, K. P.: The Homotopy Index
and Partial Differential Equations

Sagan, H.: Space-Filling Curves

Samelson, H.: Notes on Lie Algebras

Sauvigny, F.: Partial Differential Equa-
tions I

Sauvigny, F.: Partial Differential Equa-
tions II

Schiff, J. L.: Normal Families

Sengupta, J. K.: Optimal Decisions under
Uncertainty

Séroul, R.: Programming for Mathemati-
cians

Seydel, R.: Tools for Computational Fi-
nance

Shafarevich, I. R.: Discourses on Algebra

Shapiro, J. H.: Composition Operators and
Classical Function Theory

Simonnet, M.: Measures and Probabilities

Smith, K. E.; Kahanpää, L.; Kekäläinen, P.;
Traves, W.: An Invitation to Algebraic
Geometry

Smith, K. T.: Power Series from a Computa-
tional Point of View

Smoryński, C.: Logical Number Theory I.
An Introduction

Stichtenoth, H.: Algebraic Function Fields
and Codes

Stillwell, J.: Geometry of Surfaces

Stroock, D. W.: An Introduction to the The-
ory of Large Deviations

Sunder, V. S.: An Invitation to von Neu-
mann Algebras

Tamme, G.: Introduction to Étale Coho-
mology

Tondeur, P.: Foliations on Riemannian
Manifolds

Toth, G.: Finite Möbius Groups, Minimal
Immersions of Spheres, and Moduli

Verhulst, F.: Nonlinear Differential Equa-
tions and Dynamical Systems

Wong, M. W.: Weyl Transforms

Xambó-Descamps, S.: Block Error-Cor-
recting Codes

Zaanen, A.C.: Continuity, Integration and
Fourier Theory

Zhang, F.: Matrix Theory

Zong, C.: Sphere Packings

Zong, C.: Strange Phenomena in Convex
and Discrete Geometry

Zorich, V. A.: Mathematical Analysis I

Zorich, V. A.: Mathematical Analysis II

	I Sets, Numbers, and Graphs
	1 Fundamentals: Concepts and Logic
	1.1 Propositional Logic
	1.2 Architecture of Concepts

	2 Axiomatic Set Theory
	2.1 The Axioms
	2.2 Basic Concepts and Results

	3 Boolean Set Algebra
	3.1 The Boolean Algebra of Subsets

	4 Functions and Relations
	4.1 Graphs and Functions
	4.2 Relations

	5 Ordinal and Natural Numbers
	5.1 Ordinal Numbers
	5.2 Natural Numbers

	6 Recursion Theorem and Universal Properties
	6.1 Recursion Theorem
	6.2 Universal Properties
	6.3 Universal Properties in Relational Database Theory

	7 Natural Arithmetic
	7.1 Natural Operations
	7.2 Euclid and the Normal Forms

	8 Infinities
	8.1 The Diagonalization Procedure

	9 The Classical Number Domains Z, Q, R, and C
	9.1 Integers Z
	9.2 Rationals Q
	9.3 Real Numbers R
	9.4 Complex Numbers C

	10 Categories of Graphs
	10.1 Directed and Undirected Graphs
	10.2 Morphisms of Digraphs and Graphs
	10.3 Cycles

	11 Construction of Graphs
	12 Some Special Graphs
	12.1 n-ary Trees
	12.2 Moore Graphs

	13 Planarity
	13.1 Euler's Formula for Polyhedra
	13.2 Kuratowski's Planarity Theorem

	14 First Advanced Topic
	14.1 Floating Point Arithmetic
	14.2 Example for an Addition

	II Algebra, Formal Logic, and Linear Geometry
	15 Monoids, Groups, Rings, and Fields
	15.1 Monoids
	15.2 Groups
	15.3 Rings
	15.4 Fields

	16 Primes
	16.1 Prime Factorization
	16.2 Roots of Polynomials and Interpolation

	17 Formal Propositional Logic
	17.1 Syntactics: The Language of Formal Propositional Logic
	17.2 Semantics: Logical Algebras
	17.3 Signification: Valuations
	17.4 Axiomatics

	18 Formal Predicate Logic
	18.1 Syntactics: First??order Language
	18.2 Semantics: Sigma??Structures
	18.3 Signification: Models

	19 Languages, Grammars, and Automata
	19.1 Languages
	19.2 Grammars
	19.3 Automata and Acceptors

	20 Categories of Matrixes
	20.1 What Matrixes Are
	20.2 Standard Operations on Matrixes
	20.3 Square Matrixes and their Determinant

	21 Modules and Vector Spaces
	22 Linear Dependence, Bases, and Dimension
	22.1 Bases in Vector Spaces
	22.2 Equations
	22.3 Affine Homomorphisms

	23 Algorithms in Linear Algebra
	23.1 Gauss Elimination
	23.2 The LUP Decomposition

	24 Linear Geometry
	24.1 Euclidean Vector Spaces
	24.2 Trigonometric Functions from Two??Dimensional Rotations
	24.3 Gram's Determinant and the Schwarz Inequality

	25 Eigenvalues, the Vector Product, and Quaternions
	25.1 Eigenvalues and Rotations
	25.2 The Vector Product
	25.3 Quaternions

	26 Second Advanced Topic
	26.1 Galois Fields
	26.2 The Reed??Solomon (RS) Error Correction Code
	26.3 The Rivest??Shamir??Adleman (RSA) Encryption Algorithm

	A Further Reading
	B Bibliography
	Index

