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Preface

It has long been the established policy of CRC Press to publish, in handbook form,

the most up-to-date, authoritative, logically arranged, and readily usable reference

material available.

Just as pocket calculators obviated the need for tables of square roots and

trigonometric functions; the internet has made many other tables and formulas un-

necessary. Prior to the preparation of this 32nd Edition of the CRC Standard Mathe-

matical Tables and Formulae, the content has been reconsidered. The criteria estab-

lished for inclusion in this edition are:

• information that is immediately useful as a reference (e.g., names of powers of

10, addition in hexadecimal);

• information about which many readers may be unaware and should know about

(e.g., visual proofs, sequences);

• information that is more complete or concise than that which can be found on

the internet (e.g., table of conformal mappings);

• information that cannot be found on the internet due to the difficulty of entering

a query (e.g., integral tables);

• illustrations of how mathematical information is interpreted.

Using these criteria, the previous edition has been carefully analyzed by practition-

ers from mathematics, engineering, and the sciences. As a result, numerous changes

have been made in several sections, and several new areas were added. These im-

provements include:

• There is a new chapter entitled “Mathematical Formulas from the Sciences.” It

contains, in concise form, the most important formulas from a variety of fields

(including: acoustics, astrophysics, . . . ); a total of 26 topics.

• New material on contingency tables, estimators, process capability, runs test,

and sample sizes has been added to the statistics chapter.

• New material on cellular automata, knot theory, music, quaternions, and ratio-

nal trigonometry has been added.

• In many places, tables have been updated and streamlined. For example, the

prime number table now only goes to 8,000. Also, many of the tables in the

section on financial computations have been updated (while the examples illus-

trating those tables remained).

Of course, the same successful format which has characterized earlier editions of the

Handbook has been retained, while its presentation has been updated and made more

consistent from page to page. Material is presented in a multi-sectional format, with

each section containing a valuable collection of fundamental reference material—

tabular and expository.

xi
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xii

In line with the established policy of CRC Press, the Handbook will be updated

in as current and timely a manner as is possible. Suggestions for the inclusion of new

material in subsequent editions and comments regarding the present edition are wel-

comed. The home page for this book, which will include errata, will be maintained

at http://smtf.mathtable.com.

This new edition of the Handbook will continue to support the needs of practi-

tioners of mathematics in the mathematical and scientific fields, as it has for over 80

years. Even as the internet becomes more ubiquitous, it is this editor’s opinion that

the new edition will continue to be a valued reference.

Updating this edition and making it a useful tool has been exciting. It would not have

been possible without the loving support of my family, Janet Taylor and Kent Taylor

Zwillinger.

Daniel Zwillinger

ZwillingerBooks@gmail.com
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1.1 PROOFS WITHOUT WORDS

—the Chou pei suan ching

(author unknown, circa B.C. 200?)

The Pythagorean Theorem

A Property of the Sequence of Odd 
Integers (Galileo, 1615)

1

3

1+3

5+7

1+3+5

7+9+11
= = . . .=

1+3+ . . . +(2n–1)

(2n+1)+(2n+3)+ . . . +(4n–1)

1

3
=

1+2+ . . . + n =
n(n+1)

2

1+2+ . . . +n = n 2

2
n

2
+1 1. . = n(n+1)

2

—Ian Richards

1 + 3 + 5 + . . . + (2n–1) = n
2

1+3+ . . . + (2n–1) = 1
4

(2n)   = n2 2



“smtf32” — 2011/5/20 — 2:09 — page 4 — #14

4 CHAPTER 1. NUMBERS AND ELEMENTARY MATHEMATICS

  Geometric Series

—Rick Mabry

2 31

4

1

3
+

1

4
+ + . . . =

1

4

1

1

r

1–r

2r

r

2r

...

1

Geometric Series

1 + r + r  + ...
2

1

1

1 – r
=

—Benjamin G. Klein

and Irl C. Bivens

sinxsiny

co
sxsin

y

siny

cosxcosy

sin
xco

sy

1

 x

y

 x

co
sy

Addition Formulae for the Sine 
and Cosine

sin(x + y) = sinxcosy + cosxsiny

cos(x + y) = cosxcosy – sinxsiny

d
(a,b)

(a,ma + c)

x

y

y = mx + c

|ma + c – b|

1 
+

 m
2

1

m

d |ma + c – b|

1
=

1 + m 2

The Distance Between a Point and a Line

—R. L. Eisenman
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The Arithmetic Mean-Geometric Mean 
Inequality

 a  b

ab

a+b
2

—Charles D. Gallant

a,b > 0
a+b

ab
2

The Mediant Property

—Richard A. Gibbs

a

b

c

d

a + c

b + d
<<<

a

b

c

d

a

b

c

d

a

d

Reprinted from “Proofs Without Words: Exercises in Visual Thinking,” by

Roger B. Nelsen, 1997, MAA, pages: 3, 40, 49, 60, 70, 72, 115, 120. Copyright

The Mathematical Association of America. All rights reserved.

Reprinted from “Proofs Without Words II: More Exercises in Visual Thinking,”

by Roger B. Nelsen, 2001, MAA, pages 46, 111. Copyright The Mathematical As-

sociation of America. All rights reserved.

1.2 CONSTANTS

1.2.1 BINARY PREFIXES

A byte is 8 bits. A kibibyte is 210 = 1024 bytes. Other prefixes for power of 2 are:

Factor Prefix Symbol

210 kibi Ki

220 mebi Mi

230 gibi Gi

240 tebi Ti

250 pebi Pi

260 exbi Ei
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1.2.2 DECIMAL MULTIPLES AND PREFIXES

The prefix names and symbols below are taken from Conference Générale des Poids

et Mesures, 1991. The common names are for the United States.

Factor Prefix Symbol Common name

10(10
100) googolplex

10100 googol

1024 yotta Y heptillion

1021 zetta Z hexillion

1 000 000 000 000 000 000 = 1018 exa E quintillion

1 000 000 000 000 000 = 1015 peta P quadrillion

1 000 000 000 000 = 1012 tera T trillion

1 000 000 000 = 109 giga G billion

1 000 000 = 106 mega M million

1 000 = 103 kilo k thousand

100 = 102 hecto H hundred

10 = 101 deka da ten

0.1 = 10−1 deci d tenth

0.01 = 10−2 centi c hundredth

0.001 = 10−3 milli m thousandth

0.000 001 = 10−6 micro µ millionth

0.000 000 001 = 10−9 nano n billionth

0.000 000 000 001 = 10−12 pico p trillionth

0.000 000 000 000 001 = 10−15 femto f quadrillionth

0.000 000 000 000 000 001 = 10−18 atto a quintillionth

10−21 zepto z hexillionth

10−24 yocto y heptillionth

1.2.3 INTERPRETATIONS OF POWERS OF 10

10−15 the radius of the hydrogen nucleus (a proton) in meters

10−11 the likelihood of being dealt 13 top honors in bridge

10−10 the radius of a hydrogen atom in meters

10−9 the number of seconds it takes light to travel one foot

10−6 the likelihood of being dealt a royal flush in poker

100 the density of water is 1 gram per milliliter

101 the number of fingers that people have

102 the number of stable elements in the periodic table

105 the number of hairs on a human scalp

106 the number of words in the English language

107 the number of seconds in a year

108 the speed of light in meters per second

109 the number of heartbeats in a lifetime for most mammals

1010 the number of people on the earth



“smtf32” — 2011/5/20 — 2:09 — page 7 — #17

1.2. CONSTANTS 7

1015 the surface area of the earth in square meters

1016 the age of the universe in seconds

1018 the volume of water in the earth’s oceans in cubic meters

1019 the number of possible positions of Rubik’s cube

1021 the volume of the earth in cubic meters

1024 the number of grains of sand in the Sahara desert

1028 the mass of the earth in grams

1033 the mass of the solar system in grams

1050 the number of atoms in the earth

1078 the volume of the universe in cubic meters

(Note: these numbers have been rounded to the nearest power of ten.)

1.2.4 ROMAN NUMERALS

The major symbols in Roman numerals are I = 1, V = 5, X = 10, L = 50, C = 100,

D = 500, and M = 1,000. The rules for constructing Roman numerals are:

1. A symbol following one of equal or greater value adds its value. (For example,

II = 2, XI = 11, and DV = 505.)

2. A symbol following one of lesser value has the lesser value subtracted from

the larger value. An I is only allowed to precede a V or an X, an X is only

allowed to precede an L or a C, and a C is only allowed to precede a D or

an M. (For example IV = 4, IX = 9, and XL = 40.)

3. When a symbol stands between two of greater value, its value is subtracted

from the second and the result is added to the first. (For example, XIV=
10+(5−1) = 14, CIX= 100+(10−1) = 109, DXL= 500+(50−10) = 540.)

4. When two ways exist for representing a number, the one in which the symbol

of larger value occurs earlier in the string is preferred. (For example, 14 is

represented as XIV, not as VIX.)

Decimal number 1 2 3 4 5 6 7 8 9

Roman numeral I II III IV V VI VII VIII IX

10 14 50 200 400 500 600 999 1000

X XIV L CC CD D DC CMXCIX M

1950 1960 1970 1980 1990

MCML MCMLX MCMLXX MCMLXXX MCMXC

1995 1999 2000 2001 2011 2012

MCMXCV MCMXCIX MM MMI MMXI MMXII
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1.2.5 TYPES OF NUMBERS

1. Natural numbers The set of natural numbers, {0, 1, 2, . . .}, is customarily

denoted by N. Many authors do not consider 0 to be a natural number.

2. Integers The set of integers, {0,±1,±2, . . .}, is customarily denoted by Z.

3. Rational numbers The set of rational numbers, { pq | p, q ∈ Z, q 6= 0}, is

customarily denoted by Q.

(a) Two fractions p
q and r

s are equal if and only if ps = qr.

(b) Addition of fractions is defined by p
q + r

s = ps+qr
qs .

(c) Multiplication of fractions is defined by p
q · rs = pr

qs .

4. Real numbers Real numbers are defined to be converging sequences of

rational numbers or as decimals that might or might not repeat. The set of real

numbers is customarily denoted by R.

Real numbers can be divided into two subsets. One subset, the algebraic num-

bers, are real numbers which solve a polynomial equation in one variable with

integer coefficients. For example;
√
2 is an algebraic number because it solves

the polynomial equation x2 − 2 = 0; and all rational numbers are algebraic.

Real numbers that are not algebraic numbers are called transcendental num-

bers. Examples of transcendental numbers include π and e.

5. Definition of infinity The real numbers are extended to include the symbols

+∞ and −∞ with the following definitions

(a) for x in R: −∞ < x <∞
(b) for x in R: x+∞ =∞
(c) for x in R: x−∞ = −∞

(d) for x in R:
x

∞ =
x

−∞ = 0

(e) if x > 0 then x · ∞ =∞
(f) if x > 0 then x·(−∞) = −∞
(g) ∞+∞ =∞
(h) −∞−∞ = −∞
(i) ∞ ·∞ =∞
(j) −∞ · (−∞) =∞

6. Complex numbers The set of complex numbers is customarily denoted

by C. They are numbers of the form a + bi, where i2 = −1, and a and b are

real numbers.

Operation computation result

addition (a+ bi) + (c+ di) (a+ c) + i(b+ d)
multiplication (a+ bi)(c+ di) (ac− bd) + (ad+ bc)i

reciprocal
1

a+ bi

(
a

a2 + b2

)
−
(

b

a2 + b2

)
i

complex conjugate z = a+ bi z = a− bi

Properties include: z + w = z + w and zw = z w.
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1.2.6 DEMOIVRE’S THEOREM

A complex number a + bi can be written in the form reiθ , where r2 = a2 + b2 and

tan θ = b/a. Because eiθ = cos θ + i sin θ,

(a+ bi)n = rn(cosnθ + i sinnθ),

n
√
1 = cos

2kπ

n
+ i sin

2kπ

n
, k = 0, 1, . . . , n− 1.

n
√
−1 = cos

(2k + 1)π

n
+ i sin

(2k + 1)π

n
, k = 0, 1, . . . , n− 1.

(1.2.1)

1.2.7 REPRESENTATION OF NUMBERS

Numerals as usually written have radix or base 10, so the numeral anan−1 . . . a1a0
represents the number an10

n + an−110
n−1 + · · · + a210

2 + a110 + a0. However,

other bases can be used, particularly bases 2, 8, and 16. When a number is written in

base 2, the number is said to be in binary notation. The names of other bases are:

2 binary

3 ternary

4 quaternary

5 quinary

6 senary

7 septenary

8 octal

9 nonary

10 decimal

11 undenary

12 duodecimal

16 hexadecimal

20 vigesimal

60 sexagesimal

When writing a number in base b, the digits used range from 0 to b − 1. If

b > 10, then the digit A stands for 10, B for 11, etc. When a base other than 10 is

used, it is indicated by a subscript:

101112 = 1× 24 + 0× 23 + 1× 22 + 1× 2 + 1 = 23,

A316 = 10× 16 + 3 = 163,

5437 = 5× 72 + 4× 7 + 3 = 276.

(1.2.2)

To convert a number from base 10 to base b, divide the number by b, and the

remainder will be the last digit. Then divide the quotient by b, using the remainder

as the previous digit. Continue this process until a quotient of 0 is obtained.

EXAMPLE To convert 573 to base 12, divide 573 by 12, yielding a quotient of 47 and a

remainder of 9; hence, “9” is the last digit. Divide 47 by 12, yielding a quotient of 3 and

a remainder of 11 (which we represent with a “B”). Divide 3 by 12 yielding a quotient

of 0 and a remainder of 3. Therefore, 57310 = 3B912.

Converting from base b to base r can be done by converting to and from base

10. However, it is simple to convert from base b to base bn. For example, to con-

vert 1101111012 to base 16, group the digits in fours (because 16 is 24), yielding

1 1011 11012, and then convert each group of 4 to base 16 directly, yielding 1BD16.

1.2.8 SYMMETRIC BASE THREE REPRESENTATION

In this representation, powers of 3 are added and subtracted to represent numbers.

The symbols {↓, 0, ↑} are used for {−1, 0, 1}. For example “5” is written as ↑↓↓
since 5 = 9 − 3 − 1. To negate a number, turn its symbol upside down: “−5” is

written as ↓↑↑. Basic arithmetic operations are simple in this representation.
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1.2.9 HEXADECIMAL ADDITION AND SUBTRACTION TABLE

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
Example: 6 + 2 = 8; hence 8− 6 = 2 and 8− 2 = 6.

Example: 4 + E = 12; hence 12− 4 = E and 12− E = 4.

1 2 3 4 5 6 7 8 9 A B C D E F

1 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10

2 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11

3 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12

4 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13

5 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14

6 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15

7 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16

8 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17

9 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18

A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19

B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A

C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B

D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C

E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D

F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E

1.2.10 HEXADECIMAL MULTIPLICATION TABLE

Example: 2× 4 = 8.
Example: 2× F = 1E.

1 2 3 4 5 6 7 8 9 A B C D E F

1 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

2 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E

3 03 06 09 0C 0F 12 15 18 1B 1E 21 24 27 2A 2D

4 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C

5 05 0A 0F 14 19 1E 23 28 2D 32 37 3C 41 46 4B

6 06 0C 12 18 1E 24 2A 30 36 3C 42 48 4E 54 5A

7 07 0E 15 1C 23 2A 31 38 3F 46 4D 54 5B 62 69

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 09 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E 87

A 0A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 8C 96

B 0B 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A A5

C 0C 18 24 30 3C 48 54 60 6C 78 84 90 9C A8 B4

D 0D 1A 27 34 41 4E 5B 68 75 82 8F 9C A9 B6 C3

E 0E 1C 2A 38 46 54 62 70 7E 8C 9A A8 B6 C4 D2

F 0F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 D2 E1
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1.2.11 HEXADECIMAL–DECIMAL FRACTION CONVERSION

Hex Decimal

.00 0

.01 0.0039

.02 0.0078

.03 0.0117

.04 0.0156

.05 0.0195

.06 0.0234

.07 0.0273

.08 0.0313

.09 0.0352

.0A 0.0391

.0B 0.0430

.0C 0.0469

.0D 0.0508

.0E 0.0547

.0F 0.0586

.10 0.0625

.11 0.0664

.12 0.0703

.13 0.0742

.14 0.0781

.15 0.0820

.16 0.0859

.17 0.0898

.18 0.0938

.19 0.0977

.1A 0.1016

.1B 0.1055

.1C 0.1094

.1D 0.1133

.1E 0.1172

.1F 0.1210

.20 0.1250

.21 0.1289

.22 0.1328

.23 0.1367

.24 0.1406

.25 0.1445

.26 0.1484

.27 0.1523

.28 0.1563

.29 0.1602

.2A 0.1641

.2B 0.1680

.2C 0.1719

.2D 0.1758

.2E 0.1797

.2F 0.1836

Hex Decimal

.30 0.1875

.31 0.1914

.32 0.1953

.33 0.1992

.34 0.2031

.35 0.2070

.36 0.2109

.37 0.2148

.38 0.2188

.39 0.2227

.3A 0.2266

.3B 0.2305

.3C 0.2344

.3D 0.2383

.3E 0.2422

.3F 0.2461

.40 0.2500

.41 0.2539

.42 0.2578

.43 0.2617

.44 0.2656

.45 0.2695

.46 0.2734

.47 0.2773

.48 0.2813

.49 0.2852

.4A 0.2891

.4B 0.2930

.4C 0.2969

.4D 0.3008

.4E 0.3047

.4F 0.3086

.50 0.3125

.51 0.3164

.52 0.3203

.53 0.3242

.54 0.3281

.55 0.3320

.56 0.3359

.57 0.3398

.58 0.3438

.59 0.3477

.5A 0.3516

.5B 0.3555

.5C 0.3594

.5D 0.3633

.5E 0.3672

.5F 0.3711

Hex Decimal

.60 0.3750

.61 0.3789

.62 0.3828

.63 0.3867

.64 0.3906

.65 0.3945

.66 0.3984

.67 0.4023

.68 0.4063

.69 0.4102

.6A 0.4141

.6B 0.4180

.6C 0.4219

.6D 0.4258

.6E 0.4297

.6F 0.43365

.70 0.4375

.71 0.4414

.72 0.4453

.73 0.4492

.74 0.4531

.75 0.4570

.76 0.4609

.77 0.4648

.78 0.4688

.79 0.4727

.7A 0.4766

.7B 0.4805

.7C 0.4844

.7D 0.4883

.7E 0.4922

.7F 0.4961

.80 0.5000

.81 0.5039

.82 0.5078

.83 0.5117

.84 0.5156

.85 0.5195

.86 0.5234

.87 0.5273

.88 0.5313

.89 0.5352

.8A 0.5391

.8B 0.5430

.8C 0.5469

.8D 0.5508

.8E 0.5547

.8F 0.5586

Hex Decimal

.90 0.5625

.91 0.5664

.92 0.5703

.93 0.5742

.94 0.5781

.95 0.5820

.96 0.5859

.97 0.5898

.98 0.5938

.99 0.5977

.9A 0.6016

.9B 0.6055

.9C 0.6094

.9D 0.6133

.9E 0.6172

.9F 0.6211

.A0 0.6250

.A1 0.6289

.A2 0.6328

.A3 0.6367

.A4 0.6406

.A5 0.6445

.A6 0.6484

.A7 0.6523

.A8 0.6563

.A9 0.6602

.AA 0.6641

.AB 0.6680

.AC 0.6719

.AD 0.6758

.AE 0.6797

.AF 0.68365

.B0 0.6875

.B1 0.6914

.B2 0.6953

.B3 0.6992

.B4 0.7031

.B5 0.7070

.B6 0.7109

.B7 0.7148

.B8 0.7188

.B9 0.7227

.BA 0.7266

.BB 0.7305

.BC 0.7344

.BD 0.7383

.BE 0.7422

.BF 0.7461

Hex Decimal

.C0 0.7500

.C1 0.7539

.C2 0.7578

.C3 0.7617

.C4 0.7656

.C5 0.7695

.C6 0.7734

.C7 0.7773

.C8 0.7813

.C9 0.7852

.CA 0.7891

.CB 0.7930

.CC 0.7969

.CD 0.8008

.CE 0.8047

.CF 0.8086

.D0 0.8125

.D1 0.8164

.D2 0.8203

.D3 0.8242

.D4 0.8281

.D5 0.8320

.D6 0.8359

.D7 0.8398

.D8 0.8438

.D9 0.8477

.DA 0.8516

.DB 0.8555

.DC 0.8594

.DD 0.8633

.DE 0.8672

.DF 0.8711

.E0 0.8750

.E1 0.8789

.E2 0.8828

.E3 0.8867

.E4 0.8906

.E5 0.8945

.E6 0.8984

.E7 0.9023

.E8 0.9063

.E9 0.9102

.EA 0.9141

.EB 0.9180

.EC 0.9219

.ED 0.9258

.EE 0.9297

.EF 0.9336

Hex Decimal

.F0 0.9375

.F1 0.9414

.F2 0.9453

.F3 0.9492

.F4 0.9531

.F5 0.9570

.F6 0.9609

.F7 0.9648

.F8 0.9688

.F9 0.9727

.FA 0.9766

.FB 0.9805

.FC 0.9844

.FD 0.9883

.FE 0.9922

.FF 0.9961
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1.3 SPECIAL NUMBERS

1.3.1 POWERS OF 2

1 2 0.5

2 4 0.25

3 8 0.125

4 16 0.0625

5 32 0.03125

6 64 0.015625

7 128 0.0078125

8 256 0.00390625

9 512 0.001953125

10 1024 0.0009765625

11 2048 0.00048828125

12 4096 0.000244140625

13 8192 0.0001220703125

14 16384 0.00006103515625

15 32768 0.000030517578125

16 65536 0.0000152587890625

17 131072 0.00000762939453125

18 262144 0.000003814697265625

19 524288 0.0000019073486328125

20 1048576 0.00000095367431640625

21 2097152 0.000000476837158203125

22 4194304 0.0000002384185791015625

23 8388608 0.00000011920928955078125

24 16777216 0.000000059604644775390625

25 33554432 0.0000000298023223876953125

26 67108864 0.00000001490116119384765625

27 134217728 0.000000007450580596923828125

28 268435456 0.0000000037252902984619140625

29 536870912 0.00000000186264514923095703125

30 1073741824 0.000000000931322574615478515625

31 2147483648 0.0000000004656612873077392578125

32 4294967296 0.00000000023283064365386962890625

33 8589934592 0.000000000116415321826934814453125

34 17179869184 0.0000000000582076609134674072265625

35 34359738368 0.00000000002910383045673370361328125

36 68719476736 0.000000000014551915228366851806640625

37 137438953472 0.0000000000072759576141834259033203125

38 274877906944 0.00000000000363797880709171295166015625

39 549755813888 0.000000000001818989403545856475830078125

40 1099511627776 0.0000000000009094947017729282379150390625
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1.3.2 POWERS OF 16 IN DECIMAL SCALE

n 16n 16−n

0 1 1

1 16 0.0625

2 256 0.00390625

3 4096 0.000244140625

4 65536 0.0000152587890625

5 1048576 0.00000095367431640625

6 16777216 0.000000059604644775390625

7 268435456 0.0000000037252902984619140625

8 4294967296 0.00000000023283064365386962890625

9 68719476736 0.000000000014551915228366851806640625

10 1099511627776 0.0000000000009094947017729282379150390625

11 17592186044416 5.684341886080801486968994140625 × 10−14

12 281474976710656 3.5527136788005009293556213378 · · · × 10−15

13 4503599627370496 2.2204460492503130808472633361 · · · × 10−16

14 72057594037927936 1.3877787807814456755295395851 · · · × 10−17

15 1152921504606846976 8.6736173798840354720596224069 · · · × 10−19

16 18446744073709551616 5.4210108624275221700372640043 · · · × 10−20

17 295147905179352825856 3.3881317890172013562732900027 · · · × 10−21

18 4722366482869645213696 2.1175823681357508476708062516 · · · × 10−22

19 75557863725914323419136 1.3234889800848442797942539073 · · · × 10−23

20 1208925819614629174706176 8.2718061255302767487140869206 · · · × 10−25

1.3.3 POWERS OF 10 IN HEXADECIMAL SCALE

n 10n 10−n

0 116 116
1 A16 0.19999999999999999999. . .16
2 6416 0.028F5C28F5C28F5C28F5. . .16
3 3E816 0.004189374BC6A7EF9DB2. . .16
4 271016 0.00068DB8BAC710CB295E. . .16
5 186A016 0.0000A7C5AC471B478423. . .16
6 F424016 0.000010C6F7A0B5ED8D36. . .16
7 98968016 0.000001AD7F29ABCAF485. . .16
8 5F5E10016 0.0000002AF31DC4611873. . .16
9 3B9ACA0016 0.000000044B82FA09B5A5. . .16

10 2540BE40016 0.000000006DF37F675EF6. . .16
11 174876E80016 0.000000000AFEBFF0BCB2. . .16
12 E8D4A5100016 0.000000000119799812DE. . .16
13 9184E72A00016 0.00000000001C25C26849. . .16
14 5AF3107A400016 0.000000000002D09370D4. . .16
15 38D7EA4C6800016 0.000000000000480EBE7B. . .16
16 2386F26FC1000016 0.0000000000000734ACA5. . .16
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1.3.4 SPECIAL CONSTANTS

1.3.4.1 The constant π

The transcendental number π is defined as the ratio of the circumference of a circle

to the diameter. It is also the ratio of the area of a circle to the square of the radius

(r) and appears in several formulas in geometry and trigonometry

circumference of a circle = 2πr, volume of a sphere =
4

3
πr3,

area of a circle = πr2, surface area of a sphere = 4πr2.

One method of computing π is to use the infinite series for the function tan−1 x and

one of the identities

π = 4 tan−1 1 = 6 tan−1 1√
3

= 2 tan−1 1

2
+ 2 tan−1 1

3
+ 8 tan−1 1

5
− 2 tan−1 1

239

= 24 tan−1 1

8
+ 8 tan−1 1

57
+ 4 tan−1 1

239

= 48 tan−1 1

18
+ 32 tan−1 1

57
− 20 tan−1 1

239

(1.3.1)

There are many identities involving π. For example:

π =

∞∑

i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)

π = lim
k→∞

2k

√√√√√√√2−

√√√√√√2 +

√√√√√
2 +

√√√√
2 +

√

2 +

√
2 + · · ·+

√
2 +
√
2

︸ ︷︷ ︸
k square roots

2

π
=

∞∏

k=1

k square roots︷ ︸︸ ︷√

2 +

√
2 + · · ·+

√
2 +
√
2

2

π3

32
=

∞∑

n=0

(−1)n
(2n+ 1)3

= 1− 1

27
+

1

125
− 1

343
+ . . .

To 200 decimal places:
π ≈ 3. 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510

58209 74944 59230 78164 06286 20899 86280 34825 34211 70679

82148 08651 32823 06647 09384 46095 50582 23172 53594 08128

48111 74502 84102 70193 85211 05559 64462 29489 54930 38196
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In different bases:

π ≈ 11.00100100001111110110101010001000100001011010001. . . 2
π ≈ 3.11037552421026430215142306305056006701632112201. . . 8
π ≈ 3.243F6A8885A308D313198A2E03707344A4093822299F. . . 16

To 50 decimal places:

π/8 ≈ 0.39269 90816 98724 15480 78304 22909 93786 05246 46174 92189

π/4 ≈ 0.78539 81633 97448 30961 56608 45819 87572 10492 92349 84378

π/3 ≈ 1.04719 75511 96597 74615 42144 61093 16762 80657 23133 12504

π/2 ≈ 1.57079 63267 94896 61923 13216 91639 75144 20985 84699 68755√
π ≈ 1.77245 38509 05516 02729 81674 83341 14518 27975 49456 12239

In 2009 π was computed to 2.7 trillion decimal digits. The frequency counts of the

digits for π − 3, using 1 trillion decimal places, are:

digit 0: 99999485134 digit 5: 99999671008

digit 1: 99999945664 digit 6: 99999807503

digit 2: 100000480057 digit 7: 99999818723

digit 3: 99999787805 digit 8: 100000791469

digit 4: 100000357857 digit 9: 99999854780

1.3.4.2 The constant e

The transcendental number e is the base of natural logarithms. It is given by

e = lim
n→∞

(
1 +

1

n

)n

=

∞∑

n=0

1

n!
. (1.3.2)

e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995

95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 . . .

In different bases:

e ≈ 10.10110111111000010101000101100010100010101110110. . . 2
e ≈ 2.55760521305053551246527734254200471723636166134. . . 8
e ≈ 2.B7E151628AED2A6ABF7158809CF4F3C762E7160F3. . . 16

The exponential function is ex =

∞∑

n=0

xn

n!
. Euler’s formula relates e and π: eπi = −1

1.3.4.3 The constant γ

Euler’s constant γ is defined by

γ = lim
n→∞

(
n∑

k=1

1

k
− logn

)
. (1.3.3)

It is not known whether γ is rational or irrational.

γ ≈ 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992

35988 05767 23488 48677 26777 66467 09369 47063 29174 67495 . . .



“smtf32” — 2011/5/20 — 2:09 — page 16 — #26

16 CHAPTER 1. NUMBERS AND ELEMENTARY MATHEMATICS

1.3.4.4 The constant φ

The golden ratio, φ, is defined as the positive root of the equation φ
1 = 1+φ

φ or

φ2 = φ+1; that is φ = 1+
√
5

2 . There is the continued faction representationφ =

[
1

]

and the representation in square roots

φ =

√

1 +

√
1 +

√
1 +
√
1 + . . .

φ ≈ 1.61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 . . .

1.3.5 FACTORIALS

The factorial of n, denoted n!, is the product of all positive integers less than or equal

to n; n! = n ·(n−1) ·(n−2) · · ·2 ·1. By definition, 0! = 1. If n is a negative integer

(n = −1,−2, . . . ) then n! = ±∞. The generalization of the factorial function to

non-integer arguments is the gamma function (see page 437); when n is an integer,

Γ(n) = (n− 1)!.
The double factorial of n is denoted by n!! and is defined as n!! = n(n− 2)(n−

4) · · · , where the last element in the product is either 2 or 1, depending on whether n
is even or odd. The shifted factorial (also called Pochhammer’s symbol) is denoted

by (a)n and is defined as

(a)n = a · (a+ 1) · (a+ 2) · · · (a+ n− 1)︸ ︷︷ ︸
n terms

=
(a+ n− 1)!

(a− 1)!
=

Γ(a+ n)

Γ(a)
(1.3.4)

Approximations to n! for large n include Stirling’s formula (the first term of the

following)

n! ≈
√
2πe

(n
e

)n+ 1
2

(
1 +

1

12n
+

1

288n2
+ . . .

)
(1.3.5)

and Burnsides’s formula

n! ≈
√
2π

(
n+ 1

2

e

)n+ 1
2

(1.3.6)

n n! log10 n! n!! log10 n!!

0 1 0.00000 1 0.00000
1 1 0.00000 1 0.00000
2 2 0.30103 2 0.30103
3 6 0.77815 3 0.47712
4 24 1.38021 8 0.90309
5 120 2.07918 15 1.17609
6 720 2.85733 48 1.68124
7 5040 3.70243 105 2.02119
8 40320 4.60552 384 2.58433
9 3.6288× 105 5.55976 945 2.97543

10 3.6288× 106 6.55976 3840 3.58433
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n n! log10 n! n!! log10 n!!

20 2.4329× 1018 18.38612 3.7159× 109 9.57006
30 2.6525× 1032 32.42366 4.2850× 1016 16.63195
40 8.1592× 1047 47.91165 2.5511× 1024 24.40672
50 3.0414× 1064 64.48307 5.2047× 1032 32.71640
60 8.3210× 1081 81.92017 2.8481× 1041 41.45456
70 1.1979× 10100 100.07841 3.5504× 1050 50.55028
80 7.1569× 10118 118.85473 8.9711× 1059 59.95284
90 1.4857× 10138 138.17194 4.2088× 1069 69.62416

100 9.3326× 10157 157.97000 3.4243× 1079 79.53457
150 5.7134× 10262 262.75689 9.3726× 10131 131.97186
500 1.2201× 101134 1134.0864 5.8490× 10567 567.76709
1000 4.0239× 102567 2567.6046 3.9940× 101284 1284.6014

1.3.6 BERNOULLI POLYNOMIALS AND NUMBERS

The Bernoulli polynomialsBn(x) are defined by the generating function

text

et − 1
=

∞∑

n=0

Bn(x)
tn

n!
. (1.3.7)

These polynomials can be defined recursively by B0(x) = 1, B′
n(x) = nBn−1(x),

and
∫ 1

0 Bn(x) dx = 0 for n ≥ 1. The identityBk+1(x+1)−Bk+1(x) = (k+1)xk

means that sums of powers can be computed via Bernoulli polynomials

1k + 2k + · · ·+ nk =
Bk+1(n+ 1)−Bk+1(0)

k + 1
. (1.3.8)

The Bernoulli numbers are the Bernoulli polynomials evaluated at 0: Bn = Bn(0).

A generating function for the Bernoulli numbers is

∞∑

n=0

Bn
tn

n!
=

t

et − 1
. In the

following table each Bernoulli number is written as a fraction of integers: Bn =
Nn/Dn. Note that B2m+1 = 0 for m ≥ 1.

n Bn(x)
0 1
1 (2x− 1)/2
2 (6x2 − 6x+ 1)/6
3 (2x3 − 3x2 + x)/2
4 (30x4 − 60x3 + 30x2 − 1)/30
5 (6x5 − 15x4 + 10x3 − x)/6

n Nn Dn Bn

0 1 1 1.00000× 100

1 −1 2 −5.00000× 10−1

2 1 6 1.66667× 10−1

4 −1 30 −3.33333× 10−2

6 1 42 2.38095× 10−2

8 −1 30 −3.33333× 10−2

10 5 66 7.57576× 10−2
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1.3.7 EULER POLYNOMIALS AND NUMBERS

The Euler polynomials En(x) are defined by the generating function

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
. (1.3.9)

Alternating sums of powers can be computed in terms of Euler polynomials

n∑

i=1

(−1)n−iik = nk − (n− 1)k + · · · ∓ 2k ± 1k =
Ek(n+ 1) + (−1)nEk(0)

2
.

(1.3.10)

The Euler numbers are defined as En = 2nEn(
1
2 ). A generating function is

∞∑

n=0

En
tn

n!
=

2et

e2t + 1
(1.3.11)

n En(x)

0 1
1 (2x− 1)/2
2 x2 − x
3 (4x3 − 6x2 + 1)/4
4 x4 − 2x3 + x
5 (2x5 − 5x4 + 5x2 − 1)/2

n En

2 −1
4 5
6 −61
8 1385

10 −50521
12 2702765

1.3.8 FIBONACCI NUMBERS

The Fibonacci numbers {Fn} are defined by the recurrence:

F1 = 1, F2 = 1, Fn+2 = Fn + Fn+1. (1.3.12)

An exact formula is available (see page 179):

Fn =
1√
5

[(
1 +
√
5

2

)n

−
(
1−
√
5

2

)n]
(1.3.13)

Note that Fn is the integer nearest φn/
√
5 as n → ∞, where φ is the golden ratio

(see page 16). Hence, lim
n→∞

Fn+1

Fn
= φ.

n Fn

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

9 34

10 55

n Fn

11 89

12 144

13 233

14 377

15 610

16 987

17 1597

18 2584

19 4181

20 6765

n Fn

21 10946

22 17711

23 28657

24 46368

25 75025

26 121393

27 196418

28 317811

29 514229

30 832040

n Fn

31 1346269

32 2178309

33 3524578

34 5702887

35 9227465

36 14930352

37 24157817

38 39088169

39 63245986

40 102334155
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1.3.9 SUMS OF POWERS OF INTEGERS

1. Define

sk(n) = 1k + 2k + · · ·+ nk =

n∑

m=1

mk. (1.3.14)

(a) sk(n) = (k + 1)−1 [Bk+1(n+ 1)−Bk+1(0)]
(where the Bk are Bernoulli polynomials, see Section 1.3.6).

(b) If sk(n) =
∑k+1

m=1 amn
k−m+2, then

sk+1(n) =

(
k + 1

k + 2

)
a1n

k+2 + · · ·+
(
k + 1

k

)
a3n

k

+ · · ·+
(
k + 1

2

)
ak+1n

2 +

[
1− (k + 1)

k+1∑

m=1

am
k + 3−m

]
n.

(c) Note the specific values

s1(n) = 1 + 2 + 3 + · · ·+ n =
1

2
n(n+ 1)

s2(n) = 12 + 22 + 32 + · · ·+ n2 =
1

6
n(n+ 1)(2n+ 1)

s3(n) = 13 + 23 + 33 + · · ·+ n3 =
1

4
n2(n+ 1)2 = [s1(n)]

2

s4(n) = 14 + 24 + 34 + · · ·+ n4 =
1

5
(3n2 + 3n− 1)s2(n)

s5(n) = 15 + 25 + 35 + · · ·+ n5 =
1

12
n2(n+ 1)2(2n2 + 2n− 1)

2.

n∑

k=1

(km− 1) =
1

2
mn(n+ 1)− n

3.

n∑

k=1

(km− 1)2 =
n

6

[
m2(n+ 1)(2n+ 1)− 6m(n+ 1) + 6

]

4.

n∑

k=1

(−1)k+1(km− 1) =
(−1)n

4
[2− (2n+ 1)m] +

m− 2

4

5.

n∑

k=1

(−1)k+1(km− 1)2 = (−1)n+1

2

[
n(n+ 1)m2 − (2n+ 1)m+ 1

]
+ 1−m

2

n
n∑

k=1

k
n∑

k=1

k2
n∑

k=1

k3
n∑

k=1

k4
n∑

k=1

k5

1 1 1 1 1 1

2 3 5 9 17 33

3 6 14 36 98 276

4 10 30 100 354 1300

5 15 55 225 979 4425
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1.3.10 NEGATIVE INTEGER POWERS

Riemann’s zeta function is defined to be ζ(n) =
∑∞

k=1
1
kn (it is defined for Re k > 1

and extended to C). Related functions are

α(n) =

∞∑

k=1

(−1)k+1

kn
, β(n) =

∞∑

k=0

(−1)k
(2k + 1)n

, γ(n) =

∞∑

k=0

1

(2k + 1)n
.

Properties include:

1. α(n) = (1 − 21−n)ζ(n)

2. ζ(2k) =
(2π)2k

2(2k)!
|B2k|

3. γ(n) = (1− 2−n)ζ(n)

4. β(2k + 1) =
(π/2)2k+1

2(2k)!
|E2k|

5. The series β(1) = 1− 1
3 + 1

5 − · · · = π/4 is known as Gregory’s series.

6. Catalan’s constant is G = β(2) ≈ 0.915966.

7. Riemann hypothesis: The non-trivial zeros of the Riemann zeta function (i.e.,

the {zi} that satisfy ζ(zi) = 0) lie on the critical line given by Re zi = 1
2 .

(The trivial zeros are z = −2,−4,−6, . . . .)

n ζ(n) =

∞∑

k=1

1

kn

∞∑

k=1

(−1)k+1

kn

∞∑

k=0

(−1)k
(2k + 1)n

∞∑

k=0

1

(2k + 1)n

1 ∞ 0.6931471805 0.7853981633 ∞
2 1.6449340669 0.8224670334 0.9159655941 1.2337005501
3 1.2020569032 0.9015426773 0.9689461463 1.0517997903
4 1.0823232337 0.9470328294 0.9889445517 1.0146780316
5 1.0369277551 0.9721197705 0.9961578281 1.0045237628
6 1.0173430620 0.9855510912 0.9986852222 1.0014470766
7 1.0083492774 0.9925938199 0.9995545079 1.0004715487
8 1.0040773562 0.9962330018 0.9998499902 1.0001551790
9 1.0020083928 0.9980942975 0.9999496842 1.0000513452
10 1.0009945752 0.9990395075 0.9999831640 1.0000170414

β(1) = π/4 ζ(2) = π2/6
β(3) = π3/32 ζ(4) = π4/90
β(5) = 5π5/1536 ζ(6) = π6/945
β(7) = 61π7/184320 ζ(8) = π8/9450
β(9) = 277π9/8257536 ζ(10) = π10/93555
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1.3.11 INTEGER SEQUENCES

These sequences are in numerical order (disregarding leading zeros or ones).

1. 1, −1, −1, 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, 1, 1, 0, −1, 0, −1, 0, 1, 1, −1, 0, 0, 1, 0,

0, −1, −1, −1, 0, 1, 1, 1, 0, −1, 1, 1, 0, −1, −1, −1, 0, 0, 1, −1, 0, 0, 0, 1, 0, −1, 0,

1, 0 Möbius function µ(n), n ≥ 1

2. 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1,

0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1,

0 Number of ways of writing n as a sum of 2 squares, n ≥ 0

3. 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2,

2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2,

2 Number of distinct primes dividing n, n ≥ 1

4. 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1,

1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1,

2 Number of Abelian groups of order n, n ≥ 1

5. 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51,

1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4,

267 Number of groups of order n, n ≥ 1

6. 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2,

2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3,

2 Number of 1’s in binary expansion of n, n ≥ 0

7. 1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594,

52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008

Number of binary irreducible polynomials of degree n, or n-bead necklaces, n ≥ 0

8. 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4,

4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2,

6 d(n), the number of divisors of n, n ≥ 1

9. 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 11, 11,

11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16,

16 π(n), the number of primes ≤ n, for n ≥ 1

10. 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 104, 122,

142, 165, 192, 222, 256, 296, 340, 390, 448, 512, 585, 668, 760, 864, 982, 1113, 1260,

1426 Number of partitions of n into distinct parts, n ≥ 1

11. 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28,

8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42

Euler totient function φ(n): count numbers ≤ n and prime to n, for n ≥ 1

12. 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53,

59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128,

131 Powers of prime numbers

13. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 60, 61, 67, 71, 73, 79,

83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 168,

173 Orders of simple groups

14. 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792,

1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310,

14883 Number of partitions of n, n ≥ 1
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15. 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217,

4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049,

216091, 756839, 859433 Mersenne primes: n such that 2n − 1 is prime

16. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,

6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040,

1346269 Fibonacci numbers: F (n) = F (n− 1) + F (n− 2)

17. 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620,

92378, 184756, 352716, 705432, 1352078, 2704156, 5200300, 10400600, 20058300

Central binomial coefficients: C(n, ⌊n/2⌋), n ≥ 1

18. 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, 7741, 19320, 48629, 123867,

317955, 823065, 2144505, 5623756, 14828074, 39299897, 104636890,

279793450 Number of trees with n unlabeled nodes, n ≥ 1

19. 0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988

Number of prime knots with n crossings, n ≥ 1

20. 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50,

52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104,

106 Numbers that are sums of 2 squares

21. 1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390,

450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1828, 2030, 2268, 2506

Binary partitions (partitions of 2n into powers of 2), n ≥ 0

22. 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,

65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216,

33554432, 67108864 Powers of 2

23. 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381,

634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984,

2067174645 Number of rooted trees with n unlabeled nodes, n ≥ 1

24. 1, 1, 2, 4, 9, 22, 59, 167, 490, 1486, 4639, 14805, 48107, 158808, 531469, 1799659,

6157068, 21258104, 73996100, 259451116, 951695102, 3251073303

Number of different scores in n-team round-robin tournament, n ≥ 1

25. 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971,

3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678,

43191857688 Polyominoes with n cells, n ≥ 1

26. 1, 1, 2, 5, 14, 38, 120, 353, 1148, 3527, 11622, 36627, 121622, 389560, 1301140,

4215748, 13976335, 46235800, 155741571, 512559185, 1732007938,

5732533570 Number of ways to fold a strip of n blank stamps, n ≥ 1

27. 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841,

2290792932, 32071101049, 481066515734, 7697064251745, 130850092279664

Derangements: permutations of n elements with no fixed points, n ≥ 1

28. 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60,

31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48,

124 σ(n), sum of the divisors of n, n ≥ 1

29. 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 49, 52, 57, 61, 63,

64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124,

127 Numbers of the form x2 + xy + y2

For information on these and hundreds of thousands of other sequences, see “The

On-Line Encyclopedia of Integer Sequences,” at oeis.org.
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1.3.12 p-ADIC NUMBERS

Given a prime p, a non-zero rational number x can be written as x =
a

b
pn where n

is an integer and p does not divide a or b. Define the p-adic norm of x as |x|p = p−n

and also define |0|p = 0. The p-adic norm has the properties:

1. |x|p ≥ 0 for all non-negative rational numbers x
2. |x|p = 0 if and only if x = 0
3. For all non-negative rational numbers x and y

(a) |xy|p = |x|p|y|p
(b) |x+ y|p ≤ max (|x|p, |y|p) ≤ |x|p + |y|p

Note the product formula: |x|∏p∈{2,3,5,7,11,... } |x|p = 1.

Let Qp be the topological completion of Q with respect to | · |p. Then Qp is the

field of p-adic numbers. The elements of Qp can be viewed as infinite series: the

series
∑∞

n=0 an converges to a point in Qp if and only if limn→∞ |an|p = 0.

EXAMPLE The number 140
297

= 22 · 3−3 · 5 · 7·−11 has the different p-adic norms:

•
∣∣∣∣
140

297

∣∣∣∣
2

= 2−2 =
1

4

•
∣∣∣∣
140

297

∣∣∣∣
3

= 33 = 27

•
∣∣∣∣
140

297

∣∣∣∣
5

= 5−1 =
1

5

•
∣∣∣∣
140

297

∣∣∣∣
7

= 7−1 =
1

7

•
∣∣∣∣
140

297

∣∣∣∣
11

= 111 = 11

1.3.13 DE BRUIJN SEQUENCES

A sequence of length qn over an alphabet of size q is a de Bruijn sequence if every

possible n-tuple occurs in the sequence (allowing wraparound to the start of the se-

quence). There are de Bruijn sequences for any q and n. (In fact, there are q!q
n−1

/q!
distinct sequences.) The table below contains some small examples.

q n Length Sequence

2 1 2 01

2 2 4 0110

2 3 8 01110100

2 4 16 0101001101111000

3 2 9 001220211

3 3 27 000100201101202102211121222

4 2 16 0011310221203323
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1.4 NUMBER THEORY

Divisibility The notation “a|b” means that the number a evenly divides the number b.
That is, the ratio b

a is an integer.

1.4.1 CONGRUENCES

1. If the integers a and b leave the same remainder when divided by the numbern,

then a and b are congruent modulo n. This is written a ≡ b (mod n).
2. If the congruencex2 ≡ a (mod p) has a solution, then a is a quadratic residue

of p. Otherwise, a is a quadratic non-residue of p.

(a) Let p be an odd prime. Legendre’s symbol
(

a
p

)
has the value +1 if a is

a quadratic residue of p, and the value−1 if a is a quadratic non-residue

of p. This can be written
(

a
p

)
≡ a(p−1)/2 (mod p).

(b) The Jacobi symbol generalizes the Legendre symbol to non-prime mod-

uli. If n =
∏k

i=1 p
bi
i then the Jacobi symbol can be written in terms of

the Legendre symbol as follows

( a
n

)
=

k∏

i=1

(
a

pi

)bi

. (1.4.1)

3. An exact covering sequence is a set of non-negative ordered pairs

{(ai, bi)}i=1,...,k such that every non-negative integer n satisfies n ≡ ai
(mod bi) for exactly one i. An exact covering sequence satisfies

k∑

i=1

xai

1− xbi =
1

1− x . (1.4.2)

For example, every positive integer n is either congruent to 1 mod 2, or 0

mod 4, or 2 mod 4. Hence, the three pairs {(1, 2), (0, 4), (2, 4)} of residues

and moduli exactly cover the positive integers. Note that

x

1− x2 +
1

1− x4 +
x2

1− x4 =
1

1− x . (1.4.3)

4. Carmichael numbers are composite numbers {n} that satisfy an−1 ≡ 1
(mod n) for every a (with 1 < a < n) that is relatively prime to n. There are

infinitely many Carmichael numbers. Every Carmichael number has at least

three prime factors. If n =
∏

i pi is a Carmichael number, then (pi−1) divides

(n− 1) for each i.
There are 43 Carmichael numbers less than 106 and 105,212 less than 1015.

The Carmichael numbers less than ten thousand are 561, 1105, 1729, 2465,

2821, 6601, and 8911.
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1.4.1.1 Properties of congruences

1. If a ≡ b (mod n), then b ≡ a (mod n).
2. If a ≡ b (mod n), and b ≡ c (mod n), then a ≡ c (mod n).
3. If a ≡ a′ (mod n), and b ≡ b′ (mod n), then a± b ≡ a′ ± b′ (mod n).
4. If a ≡ a′ (mod n), then a2 ≡ (a′)2 (mod n), a3 ≡ (a′)3 (mod n), etc.

5. If GCD(k,m) = d, then the congruence kx ≡ n (mod m) is solvable if and

only if d divides n. It then has d solutions.

6. If p is a prime, then ap ≡ a (mod p).
7. If p is a prime, and p does not divide a, then ap−1 ≡ 1 (mod p).
8. If GCD(a,m) = 1, then aφ(m) ≡ 1 (mod m). (See Section 1.4.12 for φ(m).)
9. If p is an odd prime and a is not a multiple of p, then Wilson’s theorem states

(p− 1)! ≡ −
(

a
p

)
a(p−1)/2 (mod p).

10. If p and q are odd primes, then Gauss’ law of quadratic reciprocity states that(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4. Therefore, if a and b are relatively prime odd

integers and b ≥ 3, then
(a
b

)
= (−1)(a−1)(b−1)/4

(
b

a

)
.

11. The number −1 is a quadratic residue of primes of the form 4k + 1 and a

non-residue of primes of the form 4k + 3. That is

(−1
p

)
= (−1)(p−1)/2 =

{
+1 when p ≡ 1 (mod 4)

−1 when p ≡ 3 (mod 4)

12. The number 2 is a quadratic residue of primes of the form 8k ± 1 and a non-

residue of primes of the form 8k ± 3. That is

(
2

p

)
= (−1)(p2−1)/8 =

{
+1 when p ≡ ±1 (mod 8)

−1 when p ≡ ±3 (mod 8)

1.4.2 CHINESE REMAINDER THEOREM

Let m1,m2, . . . ,mr be pairwise relatively prime integers. The system of

congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ar (mod mr)

(1.4.4)

has a unique solution modulo M = m1m2 · · ·mr. This unique solution can be

written as

x = a1M1y1 + a2M2y2 + · · ·+ arMryr (1.4.5)

where Mk =M/mk, and yk is the inverse of Mk (modulomk).
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EXAMPLE For the system of congruences

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

we haveM = 3·5·7 = 105 withM1 = 35,M2 = 21, andM3 = 15. The equation for

y1 is M1y1 = 35y1 ≡ 1 (mod 3) with solution y1 ≡ 2 (mod 3). Likewise, y2 ≡ 1
(mod 5) and y3 ≡ 1 (mod 7). This results in x = 1 ·35 ·2+2 ·21 ·1+3 ·15 ·1 ≡ 52
(mod 105).

1.4.3 CONTINUED FRACTIONS

The symbol [a0, a1, . . . , aN ], with ai > 0, represents the simple continued fraction,

[a0, a1, . . . , aN ] = a0 +
1

a1 +
1

a2 +
1

a3 +
1

a4 +
. . .

· · ·+ 1

aN
.

(1.4.6)

The nth convergent (with 0 < n < N ) of [a0, a1, . . . , aN ] is defined to be

[a0, a1, . . . , an]. If {pn} and {qn} are defined by

p0 = a0, p1 = a1a0 + 1, pn = anpn−1 + pn−2 (2 ≤ n ≤ N)

q0 = 1, q1 = a1, qn = anqn−1 + qn−2 (2 ≤ n ≤ N)

then [a0, a1, . . . , an] = pn/qn. The continued fraction is convergent if and only if

the infinite series
∑∞

i ai is divergent.

If the positive rational number x can be represented by a simple con-

tinued fraction with an odd (even) number of terms, then it is also repre-

sentable by one with an even (odd) number of terms. (Specifically, if an =
1 then [a0, a1, . . . , an−1, 1] = [a0, a1, . . . , an−1 + 1], and if an ≥ 2, then

[a0, a1, . . . , an] = [a0, a1, . . . , an − 1, 1].) Aside from this indeterminacy, the sim-

ple continued fraction of x is unique. The error in approximating by a convergent is

bounded by ∣∣∣∣x−
pn
qn

∣∣∣∣ ≤
1

qnqn+1
<

1

q2n
. (1.4.7)

The algorithm for finding a continued fraction expansion of a number is to re-

move the integer part of the number (this becomes ai), take the reciprocal, and repeat.
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For example, for the number π:

β0 = π ≈ 3.14159 a0 = ⌊β0⌋ = 3

β1 = 1/(β0 − a0) ≈ 7.062 a1 = ⌊β1⌋ = 7

β2 = 1/(β1 − a1) ≈ 15.997 a2 = ⌊β2⌋ = 15

β3 = 1/(β2 − a2) ≈ 1.0034 a3 = ⌊β3⌋ = 1

β4 = 1/(β3 − a3) ≈ 292.6 a4 = ⌊β4⌋ = 292

Since π = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, . . . ] approximations to π may be

found from the convergents: 22
7 ≈ 3.142, 333106 ≈ 3.14150, 355113 ≈ 3.1415929.

Since e = [2, 1, 2, 1, 1, 4, 1, 1, 6, . . . , 1, 1, 2n, . . . ] approximations to e may be

found from the convergents: 8
3 ≈ 2.6, 114 ≈ 2.75, 197 ≈ 2.714, 8732 ≈ 2.7187, . . ..

A periodic continued fraction is an infinite continued fraction in which al =
al+k for all l ≥ L. The set of partial quotients aL, aL+1, . . . , aL+k−1 is the period.

A periodic continued fraction may be written as

[a0, a1, . . . , aL−1, aL, aL+1, . . . , aL+k−1] . (1.4.8)

For example,
√
2 = [1, 2]√
3 = [1, 1, 2]√
4 = [2]√
5 = [2, 4]

√
6 = [2, 2, 4]√
7 = [2, 1, 1, 1, 4]√
8 = [2, 1, 4]√
9 = [3]

√
10 = [3, 6]√
11 = [3, 3, 6]√
12 = [3, 2, 6]√
13 = [3, 1, 1, 1, 1, 6]

√
14 = [3, 1, 2, 1, 6]√
15 = [3, 1, 6]√
16 = [4]√
17 = [4, 8]

If x = [b, a] then x = 1
2 (b+

√
b2 + 4b

a ). For example, [1] = [1, 1] = (1+
√
5)/2,

[2] = [2, 2] = 1 +
√
2, and [2, 1] = 1 +

√
3.

Functions can be represented as continued fractions. Using the notation

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + . . .

≡ b0 +
a1
b1+

a2
b2+

a3
b3+

a4
b4+

. . . (1.4.9)

we have (allowable values of z may be restricted in the following)

(a) ln(1 + z) = z
1+

z
2+

z
3+

4z
4+

4z
5+

9z
6+ . . .

(b) ez = 1
1−

z
1+

z
2−

z
3+

z
2−

z
5+

z
2− · · · = 1 + z

1−
z
2+

z
3−

z
2+

z
5−

z
2+

z
7− . . .

(c) tan z = z
1−

z2

3−
z2

5−
z2

7− . . .

(d) tanh z = z
1+

z2

3+
z2

5+
z2

7+ . . .
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1.4.4 DIOPHANTINE EQUATIONS

A diophantine equation is one whose solutions are integers.

1. Fermat’s last theorem states that there are no integer solutions to xn+yn = zn,

when n > 2. This was proved by Andrew Wiles in 1995.

2. The Hurwitz equation, x21 + x22 + · · · + x2n = ax1x2 · · ·xn, has no integer

solutions for a > n.

3. Bachet’s equation, y2 = x3 + k, has no solutions when k is: −144, −105,

−78,−69,−42,−34,−33,−31,−24,−14, −5, 7, 11, 23, 34, 45, 58, 70.

4. Ramanujan’s “square equation,” 2n = 7+ x2, has solutions for n = 3, 4, 5, 7,

and 15 corresponding to x = 1, 3, 5, 11, and 181.

5. For given k and m consider ak1 + ak2 + · · · + akm = bk1 + bk2 + · · · + bkn with

a1 ≥ a2 ≥ · · · ≥ am, b1 ≥ b2 ≥ · · · ≥ bn, a1 > 1, and m ≤ n. For example:

52 = 42 + 32

123 + 13 = 103 + 93

1584 + 594 = 1344 + 1334

4224814 = 4145604 + 2175194 + 958004

1445 = 1335 + 1105 + 845 + 275

Given k andm the least value of n for which a solution is known is as follows:

m = 1 2 3 4 5 6

k = 2 2

3 3 2

4 3 2

5 4 3

6 7 5 3

7 7 6 5 4

8 8 7 5 4

9 10 8 8 6 5

10 12 12 11 9 7 6

6. Cannonball problem: If n2 cannonballs can be stacked to form a square pyra-

mid of height k, what are n and k? The Diophantine equation is
∑k

i=1 i
2 =

1
6k(k+1)(2k+1) = n2 with solutions (k, n) = (1, 1) and (k, n) = (24, 70).

7. The Euler equation, 2n = 7x2 + y2, has a unique solution for n ≥ 3:

x =
2n/2+1

√
7

∣∣∣sin
(
n tan−1

√
7
)∣∣∣ y = 2n/2+1

∣∣∣cos
(
n tan−1

√
7
)∣∣∣

so the solutions are (n, x, y) = {(3, 1, 1), (4, 1, 3), (5, 1, 5), (6, 3, 1), . . .}
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8. Apart from the trivial solutions (with x = y = 0 or x = u), the general

solution to the equation x3 + y3 = u3 + v3 is given parametrically by

x = λ
[
1− (a− 3b)(a2 + 3b2)

]
y = λ

[
(a+ 3b)(a2 + 3b2)− 1

]

u = λ
[
(a+ 3b)− (a2 + 3b2)2

]
v = λ

[
(a2 + 3b2)2 − (a− 3b)

]

where {λ, a, b} are any rational numbers except that λ 6= 0.

9. A parametric solution to x4 + y4 = u4 + v4 is given by

x = a7 + a5b2 − 2a3b4 + 3a2b5 + ab6

y = a6b − 3a5b2 − 2a4b3 + a2b5 + b7

u = a7 + a5b2 − 2a3b4 − 3a2b5 + ab6

v = a6b + 3a5b2 − 2a4b3 + a2b5 + b7

10. Parametric solutions to the equation (A2+B2)(C2+D2) = E2+F 2 are given

by the Fibonacci identity (a2+b2)(c2+d2) = (ac±bd)2+(bc∓ad)2 = e2+f2.

A similar identity is the Euler four-square identity (a21 + a22 + a23 +
a24)(b

2
1 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)2 + (a1b2 + a2b1 +

a3b4−a4b3)2+(a1b3−a2b4+a3b1+a4b2)2+(a1b4+a2b3−a3b2−a4b1)2.

1.4.4.1 Pythagorean triples

If the positive integersA, B, andC satisfyA2+B2 = C2, then the triplet (A,B,C)
is a Pythagorean triple. A right triangle can be constructed with sides of length A
and B and a hypotenuse of C. There are infinitely many Pythagorean triples. The

general solution to A2 +B2 = C2, with GCD(A,B) = 1 and A even, is given by

A = 2xy, B = x2 − y2, C = x2 + y2, (1.4.10)

where x and y are relatively prime integers of opposite parity (i.e., one is even and

the other is odd) with x > y > 0. The following table shows some Pythagorean

triples with the associated (x, y) values.

x y A = 2xy B = x2 − y2 C = x2 + y2

2 1 4 3 5

4 1 8 15 17

6 1 12 35 37

8 1 16 63 65

10 1 20 99 101

3 2 12 5 13

5 2 20 21 29

7 2 28 45 51

4 3 24 7 25

n p q A B C

6 1 18 7 24 25

6 2 9 8 15 17

6 3 6 9 12 15

Another representation is obtained by factoring even squares as n2 = 2pq. Here

A = n+ p, B = n+ q, and C = n + p + q. The table above shows the (p, q) and

(A,B,C) values obtained from the factorizations 36 = 2 ·1 ·18 = 2 ·2 ·9 = 2 ·3 ·6.
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1.4.4.2 Pell’s equation

Pell’s equation is x2 − dy2 = 1. The solutions, integral values of (x, y), arise from

continued fraction convergents of
√
d. If (x, y) is the least positive solution to Pell’s

equation (with d square-free), then every positive solution (xk, yk) is given by

xk + yk
√
d = (x+ y

√
d)k (1.4.11)

The following tables contain the least positive solutions to Pell’s equation with d
square-free and d < 100.

d x y

2 3 2

3 2 1

5 9 4

6 5 2

7 8 3

10 19 6

11 10 3

13 649 180

14 15 4

15 4 1

17 33 8

19 170 39

21 55 12

22 197 42

23 24 5

26 51 10

29 9,801 1,820

30 11 2

31 1,520 273

33 23 4

d x y

35 6 1

37 73 12

38 37 6

39 25 4

41 2,049 320

42 13 2

43 3,482 531

46 24,335 3,588

47 48 7

51 50 7

53 66,249 9,100

55 89 12

57 151 20

58 19,603 2,574

59 530 69

61 1,766,319,049 226,153,980

62 63 8

65 129 16

66 65 8

67 48,842 5,967

d x y

69 7,775 936

70 251 30

71 3,480 413

73 2,281,249 267,000

74 3,699 430

77 351 40

78 53 6

79 80 9

82 163 18

83 82 9

85 285,769 30,996

86 10,405 1,122

87 28 3

89 500,001 53,000

91 1,574 165

93 12,151 1,260

94 2,143,295 221,064

95 39 4

97 62,809,633 6,377,352

EXAMPLES

1. The number
√
2 has the continued fraction expansion [1, 2, 2, 2, 2, . . . ], with conver-

gents 3
2
, 7
5
, 17
12
, 41
29
, 99
70
, . . . . In this case, every second convergent represents a solution:

32 − 2 · 22 = 1, 172 − 2 · 122 = 1, 992 − 2 · 702 = 1
2. The least positive solution for d = 11 is (x, y) = (10, 3). Since (10 + 3

√
11)2 =

199 + 60
√
11, another solution is given by (x2, y2) = (199, 60).
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1.4.4.3 Lagrange’s theorem

Lagrange’s theorem states: “Every positive integer is the sum of four squares.” After

showing every prime can be written as the sum of four squares, the following identity

can be used to show how products can be written as the sum of four squares:

(x21 + x22 + x23 + x24)(y
2
1 + y22 + y23 + y24) =

(x1y1 + x2y2 + x3y3 + x4y4)
2 + (x1y2 − x2y1 + x3y4 − x4y3)2

+ (x1y3 − x3y1 + x4y2 − x2y4)2 + (x1y4 − x4y1 + x2y3 − x3y2)2 (1.4.12)

Note also the identity for sums of two squares:

(x21 + x22)(y
2
1 + y22) = (x1y2 + x2y1)

2 + (x2y2 − x1y1)2

1.4.5 GREATEST COMMON DIVISOR

The greatest common divisor of the integers n andm is the largest integer that evenly

divides both n and m; this is written as GCD(n,m) or (n,m). The Euclidean algo-

rithm is frequently used for computing the GCD of two numbers; it utilizes the fact

that m =
⌊
m
n

⌋
n+ p where 0 ≤ p < n.

Given the integers m and n, two integers a and b can always be found so that

am+ bn = GCD(n,m).
Two numbers,m and n, are said to be relatively prime if they have no divisors in

common; i.e., if GCD(a, b) = 1. The probability that two integers chosen randomly

are relatively prime is π/6.

EXAMPLE Consider 78 and 21. Since 78 = 3 · 21 + 15, the largest integer that evenly

divides both 78 and 21 is also the largest integer that evenly divides both 21 and 15.

Iterating results in:

78 = 3 · 21 + 15

21 = 1 · 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 + 0

Hence GCD(78, 21) = GCD(21, 15) = GCD(15, 6) = GCD(6, 3) = 3. Note that

78 · (−4) + 21 · 15 = 3.

1.4.6 LEAST COMMON MULTIPLE

The least common multiple of the integers a and b (denoted LCM(a, b)) is the least

integer r that is divisible by both a and b. The simplest way to find the LCM of a
and b is via the formula LCM(a, b) = ab/GCD(a, b). For example, LCM(10, 4) =

10·4
GCD(10,4) =

10·4
2 = 20.
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1.4.7 MÖBIUS FUNCTION

The Möbius function is defined by

1. µ(1) = 1
2. µ(n) = 0 if n has a squared factor

3. µ(p1p2 . . . pk) = (−1)k if all the primes {p1, . . . , pk} are distinct

Its properties include:

1. If GCD(m,n) = 1 then µ(mn) = µ(m)µ(n)

2.
∑

d|n
µ(d) =

{
1 if n = 1

0 if n > 1

3. Generating function:

∞∑

n=0

µ(n)n−s =
1

ζ(s)

4. The Möbius inversion formula states that, if g(n) =
∑

d|n
f(d), then

f(n) =
∑

d|n
µ
(n
d

)
g(d) =

∑

d|n
µ(d)g

(n
d

)
. (1.4.13)

For example, the Möbius inversion of n =
∑

d|n
φ(d) is φ(n) = n

∑

d|n

µ(d)

d
.

The table below has the value of µ(10n+ k) in row n and column k. For example,

µ(2) = −1, µ(4) = 0, and µ(6) = 1.

0 1 2 3 4 5 6 7 8 9

0 1 −1 −1 0 −1 1 −1 0 0
1 1 −1 0 −1 1 1 0 −1 0 −1
2 0 1 1 −1 0 0 1 0 0 −1
3 −1 −1 0 1 1 1 0 −1 1 1
4 0 −1 −1 −1 0 0 1 −1 0 0
5 0 1 0 −1 0 1 0 1 1 −1
6 0 −1 1 0 0 1 −1 −1 0 1
7 −1 −1 0 −1 1 0 0 1 −1 −1
8 0 0 1 −1 0 1 1 1 0 −1
9 0 1 0 1 1 1 0 −1 0 0

10 0 −1 −1 −1 0 −1 1 −1 0 −1
11 −1 1 0 −1 −1 1 0 0 1 1
12 0 0 1 1 0 0 0 −1 0 1
13 −1 −1 0 1 1 0 0 −1 −1 −1
14 0 1 1 1 0 1 1 0 0 −1
15 0 −1 0 0 −1 1 0 −1 1 1
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1.4.8 PRIME NUMBERS

1. A prime number is a positive integer greater than 1 with no positive, inte-

gral divisors other than 1 and itself. There are infinitely many prime num-

bers, 2, 3, 5, 7, . . . . The sum of the reciprocals of the prime numbers diverges:∑
n

1
pn

= 1
3 + 1

5 + 1
7 + . . . =∞.

2. Twin primes are prime numbers that differ by two: (3, 5), (5, 7), (11, 13),
(17, 19), . . . . It is not known whether there are infinitely many twin primes.

The sum of the reciprocals of the twin primes converges; the value

B =

(
1

3
+

1

5

)
+

(
1

5
+

1

7

)
+

(
1

11
+

1

13

)
+ . . .+

(
1

p
+

1

p+ 2

)
+ . . .

known as Brun’s constant is approximatelyB ≈ 1.90216054.

3. For every integer n ≥ 2, the numbers {n! + 2, n! + 3, . . . , n! + n} are a

sequence of n− 1 consecutive composite (i.e., not prime) numbers.

4. Dirichlet’s theorem on primes in arithmetic progressions: Let a and b be rel-

atively prime positive integers. Then the arithmetic progression an + b (for

n = 1, 2, . . . ) contains infinitely many primes.

5. Goldbach conjecture: every even number is the sum of two prime numbers.

6. The function π(x) represents the number of primes less than x. The prime

number theorem states that π(x) ∼ x/ log x as x→∞. The exact number of

primes less than a given number is:

x 100 1000 10,000 105 106 107 108

π(x) 25 168 1,229 9,592 78,498 664,579 5,761,455

x 1010 1015 1021

π(x) 455,052,511 29,844,570,422,669 21,127,269,486,018,731,928

1.4.8.1 Prime formulas

The polynomial x2 − x + 41 yields prime numbers when evaluated at x = 0, 1, 2,

. . . , 39.
The set of prime numbers is identical with the set of positive values taken on by

the polynomial of degree 25 in the 26 variables {a, b, . . . , z}:

(k+2){1− [wz+h+j−q]2− [(gk+2g+k+1)(h+j)+h−z]2− [2n+p+q+z−e]2

−[16(k+1)3(k+2)(n+1)2+1−f2]2−[e3(e+2)(a+1)2+1−o2]2−[(a2−1)y2+1−x2]2

−[16r2y4(a2−1)+1−u2]2−[((a+u2(u2−a))2−1)(n+4dy)2+1−(x+cu)2]2−[n+l+v−y]2

−[(a2−1)l2+1−m2]2−[ai+k+1−l−i]2−[p+l(a−n−1)+b(2an+2a−n2−2n−2)−m]2

−[q+y(a−p−1)+s(2ap+2a−p2−2p−2)−x]2−[z+pl(a−p)+t(2ap−p2−1)−pm]2}.

Although this polynomial appears to factor, the factors are improper,P = P ·1. Note

that this formula will also take on negative values, such as −76. There also exists

a prime representing polynomial with 12 variables of degree 13697, and one of 10

variables and degree about 1045.



“smtf32” — 2011/5/20 — 2:09 — page 34 — #44

34 CHAPTER 1. NUMBERS AND ELEMENTARY MATHEMATICS

1.4.8.2 Lucas–Lehmer primality test

Define the sequence rm+1 = r2m − 2 with r1 = 3. If p is a prime of the form 4n+ 3
and Mp = 2p − 1, then Mp will be prime (called a Mersenne prime) if and only if

Mp divides rp−1.

This simple test is the reason that the largest known prime numbers are

Mersenne primes. For example, consider p = 7 and M7 = 127. The {rn} sequence

is {3, 7, 47, 2207 ≡ 48, 2302 ≡ 16, 254 ≡ 0}; hence M7 is prime.

1.4.8.3 Primality test certificates

A primality certificate is an easily verifiable statement (easier than it was to deter-

mine that a number is prime) that proves that a specific number is prime. There are

several types of certificates. The Atkin–Morain certificate uses elliptic curves.

To show that the number p is prime, Pratt’s certificate consists of a number a
and the factorization of the number p− 1. The number p will be prime if there exists

a primitive root a in the field GF[p] that satisfies the conditions ap−1 = 1 (mod p)
and a(p−1)/q 6= 1 (mod p) for any prime q that divides p− 1.

EXAMPLE The number p = 31 has p− 1 = 30 = 2 · 3 · 5, and a primitive root is given

by a = 3. Hence, to verify that p = 31 is prime, we compute

3(31−1)/2 = 315 ≡ 14348907 ≡ −1 6= 1 (mod 31),

3(31−1)/3 = 310 ≡ 59049 ≡ 25 6= 1 (mod 31),

3(31−1)/5 = 36 ≡ 729 ≡ 16 6= 1 (mod 31),

3(31−1) =
(
3(31−1)/2

)2
≡ (−1)2 = 1 (mod 31).

1.4.8.4 Probabilistic primality test

Let n be a number whose primality is to be determined. Probabilistic primality tests

can return one of two results: either a proof that the number n is composite or a

statement of the form, “The probability that the number n is not prime is less than ǫ,”
where ǫ can be specified by the user. Typically, we take ǫ = 2−200 < 10−60.

From Fermat’s theorem, if b 6= 0, then bn−1 = 1 (mod n) whenever n is prime.

If this holds, then n is a probable prime to the base b. Given a value of n, if a value

of b can be found such that this does not hold, then n cannot be prime. It can happen,

however, that a probable prime is not prime.

Let P (x) be the probability that n is composite under the hypotheses:

1. n is an odd integer chosen randomly from the range [2, x];
2. b is an integer chosen randomly from the range [2, n− 2];
3. n is a probable prime to the base b.

Then P (x) ≤ (log x)−197 for x ≥ 1010000.

A different test can be obtained from the following theorem. Given the number

n, find s and t with n− 1 = 2st, with t odd. Then choose a random integer b from

the range [2, n− 2]. If either

bt = 1 (mod n) or b2
it = −1 (mod n), for some i < s,
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then n is a strong probable prime to the base b. Every odd prime must pass this test.

If n > 1 is an odd composite, then the probability that it is a strong probable prime

to the base b, when b is chosen randomly, is less than 1/4.

A stronger test can be obtained by choosing k independent values for b in the

range [2, n − 2] and checking the above relation for each value of b. Let Pk(x) be

the probability that n is found to be a strong probable prime to each base b. Then

Pk(x) ≤ 4−(k−1)P (x)/(1 − P (x)).

1.4.9 PRIME NUMBERS OF SPECIAL FORMS

1. The largest known prime numbers, in descending order, are

Prime number Number of digits

243112609 − 1 12,978,189

242643801 − 1 12,837,064

237156667 − 1 11,185,272

232582657 − 1 9,808,358

230402457 − 1 9,152,052

225964951 − 1 7,816,230

224036583 − 1 7,235,733

220996011 − 1 6,320,430

213466917 − 1 4,053,946

19249 · 213018586 + 1 3,918,990

2. The largest known twin primes are: 65516468355 · 2333333 ± 1 (with 100,355

digits) and 2003663613 · 2195000 ± 1 (with 58,711 digits).

3. There exist constants θ ≈ 1.30637788 and ω ≈ 1.9287800 such that
⌊
θ3

n⌋

and

22·
··
2ω

︸ ︷︷ ︸
n

 are prime for every n ≥ 1.

4. Primes with special properties

(a) A Sophie Germain prime p has the property that 2p + 1 is also prime.

Sophie Germain primes include: 2, 3, 5, 11, 23, 29, 41, 53, 83, 89,

113, 131, . . . , 3714089895285 · 260000 − 1, 984798015 · 266444 − 1,

109433307 · 266452 − 1, . . . .

(b) An odd prime p is called a Wieferich prime if 2p−1 ≡ 1 (mod p2).
Wieferich primes include 1093 and 3511.

(c) A Wilson prime satisfies (p − 1)! ≡ −1 (mod p2). Wilson primes in-

clude 5, 13, and 563.

5. For each n shown below, the numbers {a+md | m = 0, 1, . . . , n− 1} are an

arithmetic sequence of n prime numbers. (Note that 23# = 223092870.)

n a d

3 3 2

4 61 6

5 11 30

10 199 210

26 43142746595714191 23681770·23#
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6. Define p# to be the product of the prime numbers less than or equal to p.

Form Values of n or p for which the form is prime

22
n

+ 1 0, 1, 2, 3, 4 . . . (Fermat primes)

2n − 1 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279,

2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937,

21701, 23209, 44497, 86243, 110503, 132049, 216091,

756839, 859433, . . . , 43112609 . . .

(Mersenne primes)

n!− 1 3, 4, 6, 7, 12, 14, 30, 32, 33, 38, 94, 166, 324, 379, 469,

546, 974, 1963, 3507, 3610, 6917, . . .

(factorial primes)

n! + 1 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427,

872, 1477, 6380, . . . (factorial primes)

p#− 1 3, 5, 11, 13, 41, 89, 317, 337, 991, 1873, 2053, 2377, 4093,

4297, 4583, 6569, 13033, 15877, . . .

(primorial or Euclid primes)

p#+ 1 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787,

11549, 13649, 18523, 23801, 24029, 42209, . . . , 145823,

366439, 392113, . . . (primorial or Euclid primes)

n2n + 1 1, 141, 4713, 5795, 6611, 18496, 32292, 32469, 59656,

90825, 262419, 361275, . . . , 481899, . . .

(Cullen primes)

n2n − 1 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, 462, 512, 751,

822, 5312, 7755, 9531, 12379, 15822, 18885, . . . 143018,

151023, 667071, . . . (Woodall primes)

7. Prime numbers of the form
an − 1

a− 1
(called repunits).

Form Values of n for which the form is prime

2n − 1

1
These are Mersenne primes; see the previous table.

3n − 1

2
3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, . . .

5n − 1

4
3, 7, 11, 13, 47, 127, 149, 181, 619, 929, 3407, 10949, . . .

6n − 1

5
2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, . . .

7n − 1

6
5, 13, 131, 149, 1699, . . .

10n − 1

9
2, 19, 23, 317, 1031, 49081, 86453, . . .
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8. Prime numbers of the forms 2n ± a, 10n ± b and 16n ± c
In the following table, for a given value of n, the quantities a±, b±, and c±
are the least values such that 2n + a±, 10n + b±, and 16n + c± are probably

primes. (A probabilistic primality test was used.)

For example, for n = 3, the numbers 23−1 = 7, 23+3 = 11, 103−3 = 997,

103 + 9 = 1009, 163 − 3 = 4093, and 163 + 3 = 4099 are all prime.

2n + a 10n + b 16n + c

n a− a+ b− b+ c− c+
2 −1 1 −3 1 −5 1

3 −1 3 −3 9 −3 3

4 −3 1 −27 7 −15 1

5 −1 5 −9 3 −3 7

6 −3 3 −17 3 −3 43

7 −1 3 −9 19 −57 3

8 −5 1 −11 7 −5 15

9 −3 9 −63 7 −5 31

10 −3 7 −33 19 −87 15

11 −9 5 −23 3 −17 7

12 −3 3 −11 39 −59 21

13 −1 17 −29 37 −47 21

14 −3 27 −27 31 −5 81

15 −19 3 −11 37 −93 33

16 −15 1 −63 61 −59 13

17 −1 29 −3 3 −23 33

18 −5 3 −11 3 −93 15

19 −1 21 −39 51 −15 15

20 −3 7 −11 39 −65 13

50 −27 55 −57 151 −75 235

100 −15 277 −797 267 −593 181

150 −3 147 −273 67 −95 187

200 −75 235 −189 357 −105 25

300 −153 157 −69 331 −305 1515

400 −593 181 −513 69 −2273 895

500 −863 55 −1037 961 −2217 841

600 −95 187 −1791 543 −5 255

700 −1113 535 −2313 7 −909 2823

800 −105 25 −1007 1537 −1683 751

900 −207 693 −773 1873 −1193 8767

1000 −1245 297 −1769 453 −2303 63



“smtf32” — 2011/5/20 — 2:09 — page 38 — #48

38 CHAPTER 1. NUMBERS AND ELEMENTARY MATHEMATICS

1.4.10 PRIME NUMBERS LESS THAN 8,000

The prime number p10n+k is found by looking at row n and column k.

0 1 2 3 4 5 6 7 8 9

0 2 3 5 7 11 13 17 19 23
1 29 31 37 41 43 47 53 59 61 67
2 71 73 79 83 89 97 101 103 107 109
3 113 127 131 137 139 149 151 157 163 167
4 173 179 181 191 193 197 199 211 223 227
5 229 233 239 241 251 257 263 269 271 277

6 281 283 293 307 311 313 317 331 337 347
7 349 353 359 367 373 379 383 389 397 401
8 409 419 421 431 433 439 443 449 457 461
9 463 467 479 487 491 499 503 509 521 523

10 541 547 557 563 569 571 577 587 593 599

11 601 607 613 617 619 631 641 643 647 653
12 659 661 673 677 683 691 701 709 719 727
13 733 739 743 751 757 761 769 773 787 797
14 809 811 821 823 827 829 839 853 857 859
15 863 877 881 883 887 907 911 919 929 937

16 941 947 953 967 971 977 983 991 997 1009
17 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063
18 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129
19 1151 1153 1163 1171 1181 1187 1193 1201 1213 1217
20 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289

21 1291 1297 1301 1303 1307 1319 1321 1327 1361 1367
22 1373 1381 1399 1409 1423 1427 1429 1433 1439 1447
23 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499
24 1511 1523 1531 1543 1549 1553 1559 1567 1571 1579
25 1583 1597 1601 1607 1609 1613 1619 1621 1627 1637

26 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723
27 1733 1741 1747 1753 1759 1777 1783 1787 1789 1801
28 1811 1823 1831 1847 1861 1867 1871 1873 1877 1879
29 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979
30 1987 1993 1997 1999 2003 2011 2017 2027 2029 2039

31 2053 2063 2069 2081 2083 2087 2089 2099 2111 2113
32 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207
33 2213 2221 2237 2239 2243 2251 2267 2269 2273 2281
34 2287 2293 2297 2309 2311 2333 2339 2341 2347 2351
35 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417

36 2423 2437 2441 2447 2459 2467 2473 2477 2503 2521
37 2531 2539 2543 2549 2551 2557 2579 2591 2593 2609
38 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683
39 2687 2689 2693 2699 2707 2711 2713 2719 2729 2731
40 2741 2749 2753 2767 2777 2789 2791 2797 2801 2803

41 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897
42 2903 2909 2917 2927 2939 2953 2957 2963 2969 2971
43 2999 3001 3011 3019 3023 3037 3041 3049 3061 3067
44 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169
45 3181 3187 3191 3203 3209 3217 3221 3229 3251 3253

46 3257 3259 3271 3299 3301 3307 3313 3319 3323 3329
47 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407
48 3413 3433 3449 3457 3461 3463 3467 3469 3491 3499
49 3511 3517 3527 3529 3533 3539 3541 3547 3557 3559
50 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637
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0 1 2 3 4 5 6 7 8 9

51 3643 3659 3671 3673 3677 3691 3697 3701 3709 3719
52 3727 3733 3739 3761 3767 3769 3779 3793 3797 3803
53 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889
54 3907 3911 3917 3919 3923 3929 3931 3943 3947 3967
55 3989 4001 4003 4007 4013 4019 4021 4027 4049 4051

56 4057 4073 4079 4091 4093 4099 4111 4127 4129 4133
57 4139 4153 4157 4159 4177 4201 4211 4217 4219 4229
58 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289
59 4297 4327 4337 4339 4349 4357 4363 4373 4391 4397
60 4409 4421 4423 4441 4447 4451 4457 4463 4481 4483

61 4493 4507 4513 4517 4519 4523 4547 4549 4561 4567
62 4583 4591 4597 4603 4621 4637 4639 4643 4649 4651
63 4657 4663 4673 4679 4691 4703 4721 4723 4729 4733
64 4751 4759 4783 4787 4789 4793 4799 4801 4813 4817
65 4831 4861 4871 4877 4889 4903 4909 4919 4931 4933

66 4937 4943 4951 4957 4967 4969 4973 4987 4993 4999
67 5003 5009 5011 5021 5023 5039 5051 5059 5077 5081
68 5087 5099 5101 5107 5113 5119 5147 5153 5167 5171
69 5179 5189 5197 5209 5227 5231 5233 5237 5261 5273
70 5279 5281 5297 5303 5309 5323 5333 5347 5351 5381

71 5387 5393 5399 5407 5413 5417 5419 5431 5437 5441
72 5443 5449 5471 5477 5479 5483 5501 5503 5507 5519
73 5521 5527 5531 5557 5563 5569 5573 5581 5591 5623
74 5639 5641 5647 5651 5653 5657 5659 5669 5683 5689
75 5693 5701 5711 5717 5737 5741 5743 5749 5779 5783

76 5791 5801 5807 5813 5821 5827 5839 5843 5849 5851
77 5857 5861 5867 5869 5879 5881 5897 5903 5923 5927
78 5939 5953 5981 5987 6007 6011 6029 6037 6043 6047
79 6053 6067 6073 6079 6089 6091 6101 6113 6121 6131
80 6133 6143 6151 6163 6173 6197 6199 6203 6211 6217

81 6221 6229 6247 6257 6263 6269 6271 6277 6287 6299
82 6301 6311 6317 6323 6329 6337 6343 6353 6359 6361
83 6367 6373 6379 6389 6397 6421 6427 6449 6451 6469
84 6473 6481 6491 6521 6529 6547 6551 6553 6563 6569
85 6571 6577 6581 6599 6607 6619 6637 6653 6659 6661

86 6673 6679 6689 6691 6701 6703 6709 6719 6733 6737
87 6761 6763 6779 6781 6791 6793 6803 6823 6827 6829
88 6833 6841 6857 6863 6869 6871 6883 6899 6907 6911
89 6917 6947 6949 6959 6961 6967 6971 6977 6983 6991
90 6997 7001 7013 7019 7027 7039 7043 7057 7069 7079

91 7103 7109 7121 7127 7129 7151 7159 7177 7187 7193
92 7207 7211 7213 7219 7229 7237 7243 7247 7253 7283
93 7297 7307 7309 7321 7331 7333 7349 7351 7369 7393
94 7411 7417 7433 7451 7457 7459 7477 7481 7487 7489
95 7499 7507 7517 7523 7529 7537 7541 7547 7549 7559

96 7561 7573 7577 7583 7589 7591 7603 7607 7621 7639
97 7643 7649 7669 7673 7681 7687 7691 7699 7703 7717
98 7723 7727 7741 7753 7757 7759 7789 7793 7817 7823
99 7829 7841 7853 7867 7873 7877 7879 7883 7901 7907

100 7919 7927 7933 7937 7949 7951 7963 7993 8009 8011

101 8017 8039 8053 8059 8069 8081 8087 8089 8093 8101
102 8111 8117 8123 8147 8161 8167 8171 8179 8191 8209
103 8219 8221 8231 8233 8237 8243 8263 8269 8273 8287
104 8291 8293 8297 8311 8317 8329 8353 8363 8369 8377
105 8387 8389 8419 8423 8429 8431 8443 8447 8461 8467
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1.4.11 FACTORIZATION TABLE

The following table has the factors of all numbers up to 459. When a number is

prime, it is shown in a boldface font.

0 1 2 3 4 5 6 7 8 9

0 2 3 22 5 2·3 7 23 32

1 2·5 11 22 ·3 13 2·7 3·5 24 17 2·32 19

2 22 ·5 3·7 2·11 23 23 ·3 52 2·13 33 22 ·7 29

3 2·3·5 31 25 3·11 2·17 5·7 22 ·32 37 2·19 3·13
4 23 ·5 41 2·3·7 43 22 ·11 32 ·5 2·23 47 24 ·3 72

5 2·52 3·17 22 ·13 53 2·33 5·11 23 ·7 3·19 2·29 59

6 22 ·3·5 61 2·31 32 ·7 26 5·13 2·3·11 67 22 ·17 3·23
7 2·5·7 71 23 ·32 73 2·37 3·52 22 ·19 7·11 2·3·13 79

8 24 ·5 34 2·41 83 22 ·3·7 5·17 2·43 3·29 23 ·11 89

9 2·32 ·5 7·13 22 ·23 3·31 2·47 5·19 25 ·3 97 2·72 32 ·11
10 22 ·52 101 2·3·17 103 23 ·13 3·5·7 2·53 107 22 ·33 109

11 2·5·11 3·37 24 ·7 113 2·3·19 5·23 22 ·29 32 ·13 2·59 7·17
12 23 ·3·5 112 2·61 3·41 22 ·31 53 2·32 ·7 127 27 3·43
13 2·5·13 131 22 ·3·11 7·19 2·67 33 ·5 23 ·17 137 2·3·23 139

14 22 ·5·7 3·47 2·71 11·13 24 ·32 5·29 2·73 3·72 22 ·37 149

15 2·3·52 151 23 ·19 32 ·17 2·7·11 5·31 22 ·3·13 157 2·79 3·53
16 25 ·5 7·23 2·34 163 22 ·41 3·5·11 2·83 167 23 ·3·7 132

17 2·5·17 32 ·19 22 ·43 173 2·3·29 52 ·7 24 ·11 3·59 2·89 179

18 22 ·32 ·5 181 2·7·13 3·61 23 ·23 5·37 2·3·31 11·17 22 ·47 33 ·7
19 2·5·19 191 26 ·3 193 2·97 3·5·13 22 ·72 197 2·32 ·11 199

20 23 ·52 3·67 2·101 7·29 22 ·3·17 5·41 2·103 32 ·23 24 ·13 11·19
21 2·3·5·7 211 22 ·53 3·71 2·107 5·43 23 ·33 7·31 2·109 3·73
22 22 ·5·11 13·17 2·3·37 223 25 ·7 32 ·52 2·113 227 22 ·3·19 229

23 2·5·23 3·7·11 23 ·29 233 2·32 ·13 5·47 22 ·59 3·79 2·7·17 239

24 24 ·3·5 241 2·112 35 22 ·61 5·72 2·3·41 13·19 23 ·31 3·83
25 2·53 251 22 ·32 ·7 11·23 2·127 3·5·17 28 257 2·3·43 7·37
26 22 ·5·13 32 ·29 2·131 263 23 ·3·11 5·53 2·7·19 3·89 22 ·67 269

27 2·33 ·5 271 24 ·17 3·7·13 2·137 52 ·11 22 ·3·23 277 2·139 32 ·31
28 23 ·5·7 281 2·3·47 283 22 ·71 3·5·19 2·11·13 7·41 25 ·32 172

29 2·5·29 3·97 22 ·73 293 2·3·72 5·59 23 ·37 33 ·11 2·149 13·23
30 22 ·3·52 7·43 2·151 3·101 24 ·19 5·61 2·32 ·17 307 22 ·7·11 3·103
31 2·5·31 311 23 ·3·13 313 2·157 32 ·5·7 22 ·79 317 2·3·53 11·29
32 26 ·5 3·107 2·7·23 17·19 22 ·34 52 ·13 2·163 3·109 23 ·41 7·47
33 2·3·5·11 331 22 ·83 32 ·37 2·167 5·67 24 ·3·7 337 2·132 3·113
34 22 ·5·17 11·31 2·32 ·19 73 23 ·43 3·5·23 2·173 347 22 ·3·29 349

35 2·52 ·7 33 ·13 25 ·11 353 2·3·59 5·71 22 ·89 3·7·17 2·179 359

36 23 ·32 ·5 192 2·181 3·112 22 ·7·13 5·73 2·3·61 367 24 ·23 32 ·41
37 2·5·37 7·53 22 ·3·31 373 2·11·17 3·53 23 ·47 13·29 2·33 ·7 379

38 22 ·5·19 3·127 2·191 383 27 ·3 5·7·11 2·193 32 ·43 22 ·97 389

39 2·3·5·13 17·23 23 ·72 3·131 2·197 5·79 22 ·32 ·11 397 2·199 3·7·19
40 24 ·52 401 2·3·67 13·31 22 ·101 34 ·5 2·7·29 11·37 23 ·3·17 409

41 2·5·41 3·137 22 ·103 7·59 2·32 ·23 5·83 25 ·13 3·139 2·11·19 419

42 22 ·3·5·7 421 2·211 32 ·47 23 ·53 52 ·17 2·3·71 7·61 22 ·107 3·11·13
43 2·5·43 431 24 ·33 433 2·7·31 3·5·29 22 ·109 19·23 2·3·73 439

44 23 ·5·11 32 ·72 2·13·17 443 22 ·3·37 5·89 2·223 3·149 26 ·7 449

45 2·32 ·52 11·41 22 ·113 3·151 2·227 5·7·13 23 ·3·19 457 2·229 33 ·17
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1.4.12 EULER TOTIENT FUNCTION

1.4.12.1 Definitions

1. φ(n) the totient function, is the number of integers not exceeding

and relatively prime to n.

2. σ(n) is the sum of the divisors of n.

3. τ(n) is the number of divisors of n. (Also called the d(n) function.)

Define σk(n) to be the kth divisor function, the sum of the kth powers of the

divisors of n. Then τ(n) = σ0(n) and σ(n) = σ1(n).

EXAMPLE The numbers that are less than 6 and relatively prime to 6 are {1, 5}. Hence

φ(6) = 2. The divisors of 6 are {1, 2, 3, 6}. There are τ (6) = 4 divisors. The sum of

these numbers is σ(6) = 1 + 2 + 3 + 6 = 12.

1.4.12.2 Properties of the totient function

1. φ is a multiplicative function: if (n,m) = 1, then φ(nm) = φ(m)φ(n).

2. If p is prime, then φ(p) = p− 1. In general, φ(n) = n
∏

p|n

(
1− 1

p

)
.

3. Gauss’ theorem states: n =
∑

d|n φ(d).

4. When n =
∏

i p
αi

i , and the {pi} are prime

σk(n) =
∑

d|n
dk =

∏

i

p
k(αi+1)
i − 1

pki − 1
(1.4.14)

5. Generating functions

∞∑

n=1

σk(n)

ns
= ζ(s)ζ(s − k)

∞∑

n=1

φ(n)

ns
=
ζ(s− 1)

ζ(s)
(1.4.15)

6. A perfect number n satisfies σ(n) = 2n. The integer n is an even perfect

number if and only if n = 2m−1(2m − 1), where m is a positive integer such

that Mm = 2m − 1 is a Mersenne prime. The sequence of perfect numbers is

{6, 28, 496, . . . }, corresponding to m = 2, 3, 5, . . . . It is not known whether

there exists an odd perfect number.

1.4.12.3 Table of totient function values
n φ(n) τ(n) σ(n) n φ(n) τ(n) σ(n) n φ(n) τ(n) σ(n) n φ(n) τ(n) σ(n)
1 0 1 1 2 1 2 3 3 2 2 4 4 2 3 7

5 4 2 6 6 2 4 12 7 6 2 8 8 4 4 15

9 6 3 13 10 4 4 18 11 10 2 12 12 4 6 28

13 12 2 14 14 6 4 24 15 8 4 24 16 8 5 31

17 16 2 18 18 6 6 39 19 18 2 20 20 8 6 42

21 12 4 32 22 10 4 36 23 22 2 24 24 8 8 60

25 20 3 31 26 12 4 42 27 18 4 40 28 12 6 56

29 28 2 30 30 8 8 72 31 30 2 32 32 16 6 63

33 20 4 48 34 16 4 54 35 24 4 48 36 12 9 91

37 36 2 38 38 18 4 60 39 24 4 56 40 16 8 90

41 40 2 42 42 12 8 96 43 42 2 44 44 20 6 84

45 24 6 78 46 22 4 72 47 46 2 48 48 16 10 124

49 42 3 57 50 20 6 93 51 32 4 72 52 24 6 98



“smtf32” — 2011/5/20 — 2:09 — page 42 — #52

42 CHAPTER 1. NUMBERS AND ELEMENTARY MATHEMATICS

1.5 SERIES AND PRODUCTS

1.5.1 DEFINITIONS

If {an} is a sequence of numbers or functions, then

1. SN =
∑N

n=1 an = a1 + a2 + ...+ aN is the N th partial sum.

2. For an infinite series: S = limN→∞ SN =
∑∞

n=1 an (when the limit exists).

Then S is called the sum of the series.

3. The series is said to converge if the limit exists and diverge if it does not.

4. If an = bnx
n, where bn is independent of x, then S is called a power series.

5. If an = (−1)n|an|, then S is called an alternating series.

6. If
∑ |an| converges, then the series converges absolutely.

7. If SN converges, but not absolutely, then it converges conditionally.

EXAMPLES

1. The harmonic series S = 1 + 1
2
+ 1

3
+ . . . diverges. The corresponding alternating

series (called the alternating harmonic series) S = 1− 1
2
+ 1

3
−· · ·+(−1)n−1 1

n
+ . . .

converges (conditionally) to log 2.

2. The harmonic numbers are Hn =

n∑

k=1

1

k
. The first few value are {1, 3

2
, 11

6
, 25
12
, . . . }.

Asymptotically, Hn ∼ lnn+ γ + 1
2n

.

3. SN =

N∑

n=0

xn =
1− xN+1

1− x if x 6= 1.

1.5.2 GENERAL PROPERTIES

1. Adding or removing a finite number of terms does not affect the convergence

or divergence of an infinite series.

2. The terms of an absolutely convergent series may be rearranged in any manner

without affecting its value.

3. A conditionally convergent series can be made to diverge or to converge to any

value, including±∞, by suitable rearranging of its terms.

4. If the component series are convergent, then

∑
(αan + βbn) = α

∑
an + β

∑
bn.

5.

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)
=

∞∑

n=0

cn where cn = a0bn + a1bn−1 + · · ·+ anb0.



“smtf32” — 2011/5/20 — 2:09 — page 43 — #53

1.5. SERIES AND PRODUCTS 43

6. Summation by parts: let
∑
an and

∑
bn converge. Then

∑
anbn =

∑
Sn(bn − bn+1) + (boundary terms)

where Sn =
∑
an is the nth partial sum of the {an}.

7. A power series may be integrated and differentiated term-by-term within its

interval of convergence.

8. Schwartz inequality:

∑
|an| |bn| ≤

(∑
|an|2

)1/2(∑
|bn|2

)1/2

9. Holder inequality: when 1/p+ 1/q = 1 and p, q > 1

∑
|anbn| ≤

(∑
|an|p

)1/p (∑
|bn|q

)1/q

10. Minkowski inequality: when p ≥ 1

(∑
|an + bn|p

)1/p
≤
(∑

|an|p
)1/p

+
(∑

|bn|p
)1/p

11. Arithmetic mean—geometric mean inequality: If ai ≥ 0 then

a1 + a2 + . . .+ an
n

≥ (a1a2 · · · an)1/n

12. Kantorovich inequality: Suppose that 0 < x1 < x2 < . . . < xn. If λi ≥ 0
and

∑n
i=1 λi = 1 then

(∑
λixi

)(∑ λi
xi

)
≤ A2G−2

where A = 1
2 (x1 + xn) and G =

√
x1xn.

EXAMPLES

1. Let T be the alternating harmonic series S rearranged so that each positive term is

followed by the next two negative terms. By combining each positive term of T with

the succeeding negative term, we find that T3N = 1
2
S2N . Hence, T = 1

2
log 2.

2. The series 1 + 1
2
− 1

3
+ 1

4
+ 1

5
− 1

6
+ 1

7
+ 1

8
− 1

9
+ . . . diverges, whereas

(
1 +

1

3
− 1

2

)
+

(
1

5
+

1

7
− 1

4

)
+ · · ·+

(
1

4n− 3
+

1

4n− 1
− 1

2n

)
+ . . .

converges to log(2
√
2).
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1.5.3 CONVERGENCE TESTS

1. Comparison test

If |an| ≤ bn and
∑
bn converges, then

∑
an converges.

2. Limit test

If lim
n→∞

an 6= 0, or the limit does not exist, then
∑
an is divergent.

3. Ratio test

Let ρ = lim
n→∞

|an+1

an
|. If ρ < 1, the series converges absolutely. If ρ > 1, the

series diverges.

4. Cauchy root test

Let σ = lim
n→∞

|an|1/n. If σ < 1, the series converges. If σ > 1, it diverges.

5. Integral test

Let |an| = f(n) with f(x) being monotone decreasing, and limx→∞ f(x) =
0. Then

∫∞
A f(x) dx and

∑
an both converge or both diverge for any A > 0.

6. Gauss test

If

∣∣∣∣
an
an+1

∣∣∣∣ = 1 +
p

n
+
An

nq
, for sufficiently large n, where q > 1 and the

sequence {An} is bounded, then the series is absolutely convergent if and

only if p > 1.

7. Alternating series test

If |an| tends monotonically to 0, then
∑

(−1)n|an| converges.

8. If ai > 0 and α = lim
log an
logn

and β = lim
log an
logn

, then we can apply the test

• if α < −1 then
∑
an converges

• if β > 1 then
∑
an diverges

EXAMPLES

1. For S =
∑∞

n=1 n
cxn, ρ = limn→∞(1 + 1

n
)cx = x. Hence, using the ratio test, S

converges for |x| < 1 and any value of c.

2. For S =
∑∞

n=1
5n

n20 , σ = limn→∞( 5n

n20 )
1/n = 5. Therefore the series diverges.

3. For S =
∑∞

n=1 n
−t, consider f(x) = x−t. Then

∫ ∞

1

f(x) dx =

∫ ∞

1

dx

xt
=






1

t− 1
for t > 1

diverges for t ≤ 1

Hence, S converges for t > 1.

4. The sum
∑∞

n=2
1

n(log n)s
converges for s > 1 by the integral test.

5. Let an =
(c)n
n!

=
c(c+ 1) . . . (c+ n− 1)

n!
where c is not 0 or a negative integer.

Then

∣∣∣∣
an
an+1

∣∣∣∣ = 1 +
1− c
n
− 1

n2

(
cn(1− c)
n+ c

)
. By Gauss’s test, the series is abso-

lutely convergent if and only if c < 0.
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1.5.4 TYPES OF SERIES

1.5.4.1 Power series

1. The values of x, for which the power series
∑∞

n=0 anx
n converges, form an

interval (interval of convergence) which may or may not include one or both

endpoints.

2. A power series may be integrated and differentiated term-by-term within its

interval of convergence.

3. Note that [1 +
∑∞

n=1 anx
n]−1 = 1 −∑∞

n=1 bnx
n, where b1 = a1 and bn =

an +
∑n−1

k=1 bn−kak for n ≥ 2.

4. Inversion of power series: If s =
∑∞

n=1 anx
n, then x =

∑∞
n=1Ans

n, where

A1 = 1/a1, A2 = −a2/a31, A3 = (2a22−a1a3)/a51, A4 = (5a1a2a3−a21a4−
5a32)/a

7
1, A5 = (6a21a2a4 + 3a21a

2
3 + 14a42 − a31a5 − 21a1a

2
2a3)/a

9
1.

1.5.4.2 Taylor series

1. Taylor series in 1 variable:

f(a+ x) =

N∑

n=0

f (n)(a)

n!
xn +RN .

or

f(x) = f(a) + f ′(a)(x − a) + f ′′(a)

2!
(x− a)2 + f ′′′(a)

3!
(x− a)3 + . . .

or, specializing to a = 0, results in the MacLaurin series

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + . . .

2. Lagrange’s form of the remainder:

RN =
xN+1

(N + 1)!
f (N+1)(a+ θx), for some 0 < θ < 1.

3. Taylor series in 2 variables:

f(a+ x, b+ y) = f(a, b) + xfx(a, b) + yfy(a, b)+

1

2!

[
x2fxx(a, b) + 2xyfxy(a, b) + y2fyy(a, b)

]
+ . . . .

4. Taylor series for vectors:

f(a+ x) =

N∑

n=0

[(x · ∇)nf ](a)
n!

+RN (a) = f(a) + x · ∇f(a) + . . . .

EXAMPLE

• Binomial series: (x+ y)ν =

∞∑

n=0

Γ(ν + 1)

Γ(ν − n+ 1)

xnyν−n

n!
.

When ν is a positive integer, this series terminates at n = ν.
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1.5.4.3 Telescoping series

If limn→∞ F (n) = 0, then
∑∞

n=1[F (n)− F (n+ 1)] = F (1). For example,

∞∑

n=1

1

(n+ 1)(n+ 2)
=

∞∑

n=1

[
1

n+ 1
− 1

n+ 2

]
=

1

2
. (1.5.1)

The Wilf–Zeilberger algorithm expresses a proposed identity in the form of a tele-

scoping series
∑

k[F (n + 1, k) − F (n, k)] = 0, then searches for a G(n, k) that

satisfies F (n + 1, k) − F (n, k) = G(n, k + 1) − G(n, k) and G(n,±∞) = 0.

The search assumes that G(n, k) = R(n, k)F (n, k − 1) where R(n, k) is a rational

expression in n and k. When R is found, the proposed identity is verified.

• The identity

∞∑

k=−∞
(−1)k

(
n

k

)(
2k

k

)
4n−k =

(
2n

n

)
has the proof

R(n, k) = (2k − 1)/(2n− 1). This is equivalent to

F (n, k) = (−1)m
(
n
k

)(
2k
k

)
4n−K/

(
2n
n

)
and G(n, k) = R(n,K)F (n, k − 1).

• The identity

n∑

k=0

(
n

k

)2

=

(
2n

n

)
has the proof R(n, k) = − k2(3n+3−2k)

2(n+1−k)2(2n+1)

• The Pfaff–Saalschutz identity:

∞∑

k=−∞

(a+ k)!(b+ k)!(c− a− b+ n− 1− k)!
(k + 1)!(n− k)!(c+ k)!

=
(c− a+ n)!(c− b+ n)!

(n+ 1)!(c+ n)!
,

has the proof R(n, k) = − (b + k)(a+ k)

(c− b + n+ 1)(c− a+ n+ 1)
.

1.5.4.4 Bessel series

1. Fourier–Bessel series:

∞∑

n=0

anJν(jν,nz) (jν,k is a zero of Jν(x))

2. Neumann series:

∞∑

n=0

anJν+n(z)

3. Kapteyn series:

∞∑

n=0

anJν+n[(ν + n)z]

4. Schlömilch series:

∞∑

n=1

anJν(nz)

EXAMPLES

1.

∞∑

n=0

1

n!
Jν+n(2) =

1

Γ(ν + 1)

2.

∞∑

n=1

Jn(nz) =
1

2

z

1− z for 0 < z < 1

3.

∞∑

n=1

(−1)n+1J0(nz) =
1

2
for 0 < z < π
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1.5.4.5 Dirichlet series

These are series of the form
∑∞

n=1
an

nx . They converge for x > x0, where x0 is the

abscissa of convergence. Assuming the limits exist:

1. If
∑
an diverges, then x0 = lim

n→∞
log |a1 + · · ·+ an|

logn
.

2. If
∑
an converges, then x0 = lim

n→∞
log |an+1 + an+2 + . . . |

logn
.

EXAMPLES

1. Riemann zeta function: ζ(x) =
∞∑

n=1

1

nx
, x0 = 1

2.

∞∑

n=1

µ(n)

nx
=

1

ζ(x)
, x0 = 1 (µ(n) denotes the Möbius function; see page 32)

3.

∞∑

n=1

d(n)

nx
= ζ2(x), x0 = 1 (d(n) is the number of divisors of n; see page 41)

1.5.4.6 Hypergeometric series

The hypergeometric function is

pFq

(
a1 a2 . . . ap
b1 b2 . . . bq

x

)
=

∞∑

n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

xn

n!
(1.5.2)

where (a)n = Γ(a+ n)/Γ(a) is the shifted factorial. Any infinite series
∑
An with

An+1/An a rational function of n is a hypergeometric series. These include series

of products and quotients of binomial coefficients.

EXAMPLES

• 2F1

(
a, b
c

1

)
=

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) (Gauss)

• 3F2

(
−n, a, b
c, 1 + a+ b− c− n 1

)
=

(c− a)n(c− b)n
(c)n(c− a− b)n

(Saalschutz)

1.5.4.7 Other types of series

1. Arithmetic series:

N∑

n=1

(a+ nd) = Na+
1

2
N(N + 1)d.

2. Arithmetic power series:

N∑

n=0

(a+ nb)xn =
a− (a+ bN)xN+1

1− x +
bx(1 − xN )

(1− x)2 , (x 6= 1).

3. Geometric series: 1 + x+ x2 + x3 + · · · = 1

1− x (|x| < 1)

4. Arithmetic–geometric series:

a+(a+b)x+(a+2b)x2+(a+3b)x3+ · · · = a

1− x+
bx

(1− x)2 for (|x| < 1).
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5. Combinatorial sums (x can be complex):

(a)
∑n

k=0

(
x−k
n−k

)
=
(
x+1
n

)

(b)
∑m

k=−∞(−1)k
(
x
k

)
= (−1)m

(
x−1
m

)

(c)
∑n

k=0

(
k+m
k

)
=
(
m+n+1

n

)

(d)
∑m

k=−∞(−1)k
(
x+m
k

)
=
(−x
m

)

(e)
∑∞

k=−∞
(

x
m+k

)(
y

n−k

)
=
(
x+y
m+n

)

(f)
∑∞

k=−∞
(

l
m+k

)(
x

n+k

)
=
(

l+x
l−m+n

)

(g)
∑l

k=0

(
l−k
m

)(
q+k
n

)
=
(

l+q+1
m+n+1

)
(for m ≥ q)

6. Generating functions:

(a) Bessel functions:
∑∞

k=−∞ Jk(x)z
k = exp(12x

z2−1
z )

(b) Chebyshev polynomials:
∑∞

n=1 Tn(x)z
n = z(z+2x)

2xz−z2−1

(c) Hermite polynomials:
∑∞

n=0
Hn(x)

n! zn = exp(2xz − z2)
(d) Laguerre polynomials:

∑∞
n=0 L

(α)
n (x)zn = (1 − z)−α−1 exp[ xz

z−1 ]

(e) Legendre polynomials:
∑∞

n=0 Pn(z)x
n = 1√

1−xz+x2
, for |x| < 1

7. Multiple series:

(a)
∑ (−1)l+m+n√

(l+1/6)2+(m+1/6)2+(n+1/6)2
=
√
3

where −∞ < l,m, n <∞ and they are not all zero

(b)
∑

1
(m2+n2)z = 4β(z)ζ(z) for −∞ < m,n <∞ not both zero

(c)
∑∞

m,n=0
(−1)n

n!
Γ(n+1/2)

Γ(m+n+1/2)z
m+n =

√
πez erf(

√
z−z)√

z−z
for z > 0

(d)
∑∞

m,n=1
m2−n2

(m2+n2)2 = π
4

(e)
∑

1
k2
1k

2
2...k

2
n
= π2n

(2n+1)! for 1 ≤ k1 < · · · < kn <∞

8. Lagrange series: If f(z) is analytic at z = z0, f(z0) = w0, and f ′(z0) 6= 0,

then the equation w = f(z) has the unique solution z = F (w). If both

functions are expanded

f(z) = f0 + f1(z − z0) + f2(z − z0)2 + . . .

F (w) = F0 + F1(w − w0) + F2(w − w0)
2 + . . .

(1.5.3)

with F0 = F (w0) = z, then

Fj =
1

j!

[
dj−1

dzj−1

{
z − z0

f(z)− f0

}j
∣∣∣∣∣
z=z0

(1.5.4)

For example: F1 =
1

f1
, F2 = − f2

f3
1

, F3 =
2f2

2 − f1f3
f5
1

, . . . .
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1.5.5 FOURIER SERIES

If f(x) is a bounded periodic function of period 2L (that is, f(x+2L) = f(x)) and

satisfies the Dirichlet conditions,

1. In any period, f(x) is continuous, except possibly for a finite number of jump

discontinuities.

2. In any period f(x) has only a finite number of maxima and minima.

Then f(x) may be represented by the Fourier series,

f(x) =
a0
2

+
∞∑

n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (1.5.5)

where {an} and {bn} are determined as follows:

an =
1

L

∫ α+2L

α

f(x) cos
nπx

L
dx for n = 0, 1, 2, . . . ,

=
1

L

∫ 2L

0

f(x) cos
nπx

L
dx,

=
1

L

∫ L

−L

f(x) cos
nπx

L
dx;

(1.5.6)

bn =
1

L

∫ α+2L

α

f(x) sin
nπx

L
dx for n = 1, 2, 3, . . . ,

=
1

L

∫ 2L

0

f(x) sin
nπx

L
dx,

=
1

L

∫ L

−L

f(x) sin
nπx

L
dx,

(1.5.7)

where α is any real number (the second and third lines of each formula represent

α = 0 and α = −L, respectively).

The series in Equation (1.5.5) will converge (in the Cesaro sense) to every point

where f(x) is continuous, and to
f(x+) + f(x−)

2
(i.e., the average of the left-hand

and right-hand limits) at every point where f(x) has a jump discontinuity.

1.5.5.1 Special cases

1. If, in addition to the Dirichlet conditions in Section 1.5.5, f(x) is an even

function (i.e., f(x) = f(−x)), then the Fourier series becomes

f(x) =
a0
2

+

∞∑

n=1

an cos
nπx

L
. (1.5.8)

That is, every bn = 0. In this case, the {an} may be determined from

an =
2

L

∫ L

0

f(x) cos
nπx

L
dx n = 0, 1, 2, . . . . (1.5.9)
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If, in addition to the above requirements, f(x) = −f(L− x), then an will be

zero for all even values of n. In this case the expansion becomes

f(x) =

∞∑

m=1

a2m−1 cos
(2m− 1)πx

L
. (1.5.10)

2. If, in addition to the Dirichlet conditions in Section 1.5.5, f(x) is an odd func-

tion (i.e., f(x) = −f(−x)), then the Fourier series becomes

f(x) =
∞∑

n=1

bn sin
nπx

L
. (1.5.11)

That is, every an = 0. In this case, the {bn} may be determined from

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx n = 1, 2, 3, . . . . (1.5.12)

If, in addition to the above requirements, f(x) = f(L − x), then bn will be

zero for all even values of n. In this case the expansion becomes

f(x) =

∞∑

m=1

b2m−1 sin
(2m− 1)πx

L
. (1.5.13)

The series in Equation (1.5.10) and Equation (1.5.13) are known as odd har-

monic series, since only the odd harmonics appear. Similar rules may be stated for

even harmonic series, but when a series appears in even harmonic form, it means that

2L has not been taken to be the smallest period of f(x). Since any integral multiple

of a period is also a period, series obtained in this way will also work, but, in general,

computation is simplified if 2L is taken as the least period.

Writing the trigonometric functions in terms of complex exponentials, we obtain

the complex form of the Fourier series known as the complex Fourier series or as the

exponential Fourier series. It is represented by

f(x) =

∞∑

n=−∞
cne

iωnx (1.5.14)

where ωn =
nπ

L
for n = 0,±1,±2, . . . and the {cn} are determined from

cn =
1

2L

∫ L

−L

f(x)e−iωnx dx. (1.5.15)

The set of coefficients {cn} is often referred to as the Fourier spectrum.
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1.5.5.2 Alternate forms

The Fourier series in Equation (1.5.5) may be represented in the alternate forms:

1. When φn = tan−1(−an/bn), an = cn sinφn, bn = −cn cosφn,

and cn =
√
a2n + b2n, then

f(x) =
a0
2

+

∞∑

n=1

cn sin
(nπx
L

+ φn

)
. (1.5.16)

2. When φn = tan−1(an/bn), an = cn sinφn, bn = cn cosφn,

and cn =
√
a2n + b2n, then

f(x) =
a0
2

+

∞∑

n=1

cn cos
(nπx
L

+ φn

)
. (1.5.17)

1.5.5.3 Fourier series

1. If f(x) has the Laplace transform F (k) =
∫∞
0
e−xkf(x) dx, then

∞∑

k=1

F (k) cos(kt) =
1

2

∫ ∞

0

cos(t)− e−x

cosh(x)− cos(t)
f(x) dx,

∞∑

k=1

F (k) sin(kt) =
1

2

∫ ∞

0

sin(t) f(x)

cosh(x)− cos(t)
dx.

(1.5.18)

2.

∞∑

n=1

sin(2nπx)

n2k+1
=

(−1)k−1

2

(2π)2k+1

2k + 1
B2k+1(x), for 0 < x < 1

2

3.

∞∑

n=1

cos(2nπx)

n2k
=

(−1)k−1

2

(2π)2k

(2k)!
B2k(x) for 0 < x < 1

2

4.

∞∑

n=1

an sin(nx) =
a sin(x)

1− 2a cos(x) + a2
for |a| < 1

5.

∞∑

n=0

an cos(nx) =
1− a cos(x)

1− 2a cos(x) + a2
for |a| < 1

1.5.5.4 Useful series

(a) 1 =
4

π

[
sin

πx

L
+

1

3
sin

3πx

L
+

1

5
sin

5πx

L
+ . . .

]
(0 < x < L)

(b) x =
2L

π

[
sin

πx

L
− 1

2
sin

2πx

L
+

1

3
sin

3πx

L
+ . . .

]
(−L < x < L)

(c) x =
L

2
− 4L

π2

[
cos

πx

L
+

1

32
cos

3πx

L
+

1

52
cos

5πx

L
+ . . .

]
(0 < x < L)

(d) x2 =
2L2

π3

[(
π2

1
− 4

1

)
sin

πx

L
− π2

2
sin

2πx

L
+

(
π2

3
− 4

33

)
sin

3πx

L

−π
2

4
sin

4πx

L
+

(
π2

5
− 4

53

)
sin

5πx

L
. . .

]
(0 < x < L)
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(e) x2 =
L2

3
− 4L2

π2

[
cos

πx

L
− 1

22
cos

2πx

L
+

1

32
cos

3πx

L
− 1

42
cos

4πx

L
+ . . .

]

(−L < x < L)

(f)
π

4
= 1− 1

3
+

1

5
− 1

7
+ . . .

(g)
π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · · = 2

(
1− 1

22
+

1

32
− 1

42
+ . . .

)

1.5.5.5 Expansions of basic periodic functions

(a) f(x) =
c

L
+

2

π

∞∑

n=1

(−1)n
n

sin
nπc

L
cos

nπx

L

f(x)

1

0

2c

2L xL

(b) f(x) =
4

π

∑

n=1,3,5,...

1

n
sin

nπx

L

f(x)

1

0

-1
L 2L x

(c) f(x) =
2

π

∞∑

n=1

(−1)n
n

(
cos

nπc

L
− 1
)
sin

nπx

L

f(x)

1

0

-1

c

2L x

c

L

(d) f(x) =
2

L

∞∑

n=1

sin
nπ

2

sin(nπc/2L)

nπc/2L
sin

nπx

L

f(x)

1/c

0

1/c
2L xL

c

L / 2

c

3L /2

(e) f(x) =
4

π

∞∑

n=1

1

n
sin

nπ

4
sin nπa sin

nπx

L
(a = c

2L)

f(x)

1

0

-1

2L x

c

c

LL/4

7L /4

(f) f(x) =
1

2
− 1

π

∞∑

n=1

1

n
sin

nπx

L

f(x)

1

0
2L x

(g) f(x) =
1

2
− 4

π2

∑

n=1,3,5,...

1

n2
cos

nπx

L

f(x)

1

0
2L xL

(h) f(x) =
1 + a

2
+

2

π2(1− a)

∞∑

n=1

1

n2
[(−1)n cosnπa− 1] cos

nπx

L
(a = c

2L)

f(x)

1

0
2L x

c

L
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(i) f(x) =
1

2
− 4

π2(1− 2a)

∑

n=1,3,5,...

1

n2
cosnπa cos

nπx

L
(a = c

2L)

f(x)

1

0
2L x

c

L 2L - c/2c/2

(j) f(x) =
2

π

∞∑

n=1

(−1)n−1

n

[
1 +

sinnπa

nπ(1− a)

]
sin

nπx

L
(a = c

2L)

f(x)

1

0

-1

2L x

c/2

c/2

L

(k) f(x) =
2

π

∞∑

n=1

(−1)n−1

n

[
1 +

1 + (−1)n
nπ(1− 2a)

sinnπa

]
sin

nπx

L
(a = c

2L)

f(x)

1

0

-1

2L x

c/2

c/2 L

c/2

2L - c/2

(l) f(x) =
2

π

∞∑

n=1

(−1)n+1

n
sin

nπx

L

f(x)

1

0

-1

2L

x

L

(m) f(x) =
8

π2

∑

n=1,3,5,...

(−1)(n−1)/2

n2
sin

nπx

L

f(x)

1

0

-1
2L xLL / 2

3L /2

(n) f(x) =
9

π2

∞∑

n=1

1

n2
sin

nπ

3
sin

nπx

L

f(x)

1

0

-1

2L

xLL/3

5L /3

(o) f(x) =
32

3π2

∞∑

n=1

1

n2
sin

nπ

4
sin

nπx

L

f(x)

1

0

-1

2L

xLL/4

7L /4

(p) f(x) =
1

π
+

1

2
sinωt− 2

π

∑

n=2,4,6,...

1

n2 − 1
cosnωt

f(x)

1

0
tπ/ω

sin ωt T = 2π/ω

2π/ω
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1.5.6 SERIES EXPANSIONS OF SPECIAL FUNCTIONS

1.5.6.1 Algebraic functions

(x+ y)n = xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + . . . .

(1± x)n = 1±
(
n

1

)
x+

(
n

2

)
x2 ±

(
n

3

)
x3 + . . . , (x2 < 1).

(1± x)−n = 1∓
(
n

1

)
x+

(
n+ 1

2

)
x2 ∓

(
n+ 2

3

)
x3 + . . . , (x2 < 1).

√
1 + x = 1 +

1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 + . . . , (x2 < 1).

(1 + x)−1/2 = 1− 1

2
x+

3

8
x2 − 5

16
x3 +

35

128
x4 + . . . , (x2 < 1).

(1± x)−1 = 1∓ x+ x2 ∓ x3 + x4 ∓ x5 + . . . , (x2 < 1).

(1± x)−2 = 1∓ 2x+ 3x2 ∓ 4x3 + 5x4 ∓ 6x5 + . . . , (x2 < 1).

1.5.6.2 Exponential functions

e = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
+ · · · .

ex = 1 +
x

1!
+
x2

2!
+ · · ·+ xn

n!
+ · · · , (all real values of x)

=
1

1− x +

∞∑

n=1

xn+1

n!(x− n)(n+ 1− x) (x not a positive integer)

= ea
[
1 + (x − a) + (x− a)2

2!
+ · · ·+ (x− a)n

n!
+ . . .

]
.

ax = 1 + x loge a+
(x loge a)

2

2!
+ · · ·+(x loge a)

n

n!
+ · · · .

(all real values of x)

1.5.6.3 Logarithmic functions

log x =
x− 1

x
+

1

2

(
x− 1

x

)2

+ · · ·+ 1

n

(
x− 1

x

)n

+ · · · , (x > 1
2 ),

= (x− 1)− 1

2
(x− 1)2 +

1

3
(x− 1)3 − . . . , (2 ≥ x > 0),

= 2

[
x− 1

x+ 1
+

1

3

(
x− 1

x+ 1

)3

+
1

5

(
x− 1

x+ 1

)5

+ . . .

]
, (x > 0).

= log a+
(x − a)
a

− (x− a)2
2a2

+
(x− a)3

3a2
− . . . , (0 < x ≤ 2a).
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log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ . . . , (−1 < x ≤ 1).

log(x+ 1) = log(x − 1) + 2

[
1

x
+

1

3x3
+

1

5x5
+ . . .

]
. (x > 1).

log(a+ x) = log a+ 2

[
x

2a+ x
+

1

3

(
x

2a+ x

)3

+
1

5

(
x

2a+ x

)5

+ . . .

]
,

(a > 0, −a < x).

log
1 + x

1− x = 2

[
x+

x3

3
+ · · ·+ x2n−1

2n− 1
+ . . .

]
, (−1 < x < 1).

1.5.6.4 Trigonometric functions

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ . . . . (all real values of x).

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ . . . . (all real values of x).

tanx = x+
x3

3
+

2x5

15
+ . . . 5!+

(−1)n−122n(22n − 1)B2n

(2n)!
x2n−1 + . . .

(x2 < π2

4 , Bn is the nth Bernoulli number).

cotx =
1

x
− x

3
− x3

45
− 2x5

945
− x7

4725
− . . .+(−1)n+122nB2n

(2n)!
x2n−1 + . . .

(x2 < π2, Bn is the nth Bernoulli number).

secx = 1+
x2

2
+

5

24
x4 +

61

720
x6 +

277

8064
x8 + . . .+

(−1)nE2n

(2n)!
x2n + . . .

(x2 < π2

4 , En is the nth Euler number).

cscx =
1

x
+
x

6
+

7x3

360
+

31x5

15120
+ . . .+

(−1)n+12(22n−1 − 1)B2n

(2n)!
x2n−1 + . . .

(x2 < π2, Bn is the nth Bernoulli number).

log sinx = log x− x2

6
− x4

180
− x6

2835
− . . . (x2 < π2).

log cosx = −x
2

2
− x4

12
− x6

45
− 17x6

2520
− . . . (x2 < π2

4 ).

log tanx = log x+
x2

3
+

7x4

90
+

62x6

2835
+ . . . (x2 < π2

4 ).

sinx = sina+ (x− a) cos a− (x− a)2
2!

sina− (x− a)3
3!

cos a+ . . . .
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1.5.6.5 Inverse trigonometric functions

sin−1 x = x+
1

2 · 3x
3 +

1 · 3
2 · 4 · 5x

5 +
1 · 3 · 5

2 · 4 · 6 · 7x
7 + . . .

(x2 < 1, −π
2 < sin−1 x < π

2 ).

cos−1 x =
π

2
−
(
x+

1

2 · 3x
3 +

1 · 3
2 · 4 · 5x

5 +
1 · 3 · 5

2 · 4 · 6 · 7x
7 + . . .

)

(x2 < 1, 0 < cos−1 x < π).

tan−1 x = x− x3

3
+
x5

5
− x7

7
+ . . . (x2 < 1),

=
π

2
− 1

x
+

1

3x3
− 1

5x5
+

1

7x7
− . . . (x > 1),

= −π
2
− 1

x
+

1

3x3
− 1

5x5
+

1

7x7
− . . . (x < −1).

cot−1 x =
π

2
− x+

x3

3
− x5

5
+
x7

7
− . . . (x2 < 1).

1.5.6.6 Hyperbolic functions

sinhx = x+
x3

3!
+
x5

5!
+
x7

7!
+ · · ·+ x(2n+1)

(2n+ 1)!
+ . . . .

sinh ax =
2

π
sinhπa

[
sinx

a2 + 12
− 2 sin 2x

a2 + 22
+

3 sin 3x

a2 + 32
+ . . .

]
(|x| < π).

coshx = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ · · ·+ x2n

(2n)!
+ . . . .

coshax =
2a

π
sinhπa

[
1

2a2
− cosx

a2 + 12
+

cos 2x

a2 + 22
− cos 3x

a2 + 32
+ . . .

]
(|x| < π).

tanhx = x− 1

3
x3+

2

15
x5 − · · ·+ 22n(22n − 1)B2n

(2n)!
x2n−1 + . . . (|x| < π

2 ),

= 1− 2e−2x + 2e−4x − 2e−6x + . . . (Re x > 0),

= 2x

[
1

(
π
2

)2
+ x2

+
1

(
3π
2

)2
+ x2

+
1

(
5π
2

)2
+ x2

+ . . .

]
.

cothx =
1

x
+
x

3
− x3

45
+

2x5

945
+ · · ·+ 22nB2n

(2n)!
x2n−1 + . . . (0 < |x| < π),

= 1 + 2e−2x + 2e−4x + 2e−6x + . . . (Re x > 0),

sechx = 1− 1

2!
x2 +

5

4!
x4 − 61

6!
x6 + · · ·+ E2n

(2n)!
x2n + . . .

(|x| < π
2 , En is the nth Euler number),

= 2
(
e−x − e−3x + e−5x − e−7x + . . .

)
(Re x > 0),
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cschx =
1

x
− x

6
+
7x3

360
+ · · ·+ 2(22n−1 − 1)B2n

(2n)!
x2n−1 + . . . (0 < |x| < π),

= 2
(
e−x + e−3x + e−5x + e−7x + . . .

)
(Re x > 0),

sinhnu = sinhu
[
(2 coshu)n−1 − (n− 2)

1!
(2 coshu)n−3

+
(n− 3)(n− 4)

2!
(2 coshu)n−5

− (n− 4)(n− 5)(n− 6)

3!
(2 coshu)n−7 + . . .

]
.

coshnu =
1

2

[
(2 coshu)n− n

1!
(2 coshu)n−2 +

n(n− 3)

2!
(2 coshu)n−4

− n(n− 4)(n− 5)

3!
(2 coshu)n−6 + . . .

]
.

1.5.6.7 Inverse hyperbolic functions

sinh−1 x = x− 1

2 · 3x
3 +

1 · 3
2 · 4 · 5x

5 − 1 · 3 · 5
2 · 4 · 6 · 7x

7 + . . . (|x| < 1),

= log(2x) +
1

2
· 1

2x2
+

1 · 3
2 · 4 ·

1

4x4
+

1 · 3 · 5
2 · 4 · 6 ·

1

6x6
+ . . . (|x| > 1).

cosh−1 x = ±
[
log(2x)− 1

2
· 1

2x2
− 1 · 3

2 · 4 ·
1

4x4
+ . . .

]
(x > 1).

csch−1 x =
1

x
− 1

2
· 1

3x3
− 1 · 3

2 · 4 ·
1

5x5
− 1 · 3 · 5

2 · 4 · 6 ·
1

7x7
+ . . . (|x| > 1),

= log
2

x
+

1

2
· x

2

2
− 1 · 3

2 · 4 ·
x4

4
+

1 · 3 · 5
2 · 4 · 6 ·

x6

6
− . . . (0 < x < 1).

sech−1 x = log
2

x
− 1

2
· x

2

2
− 1 · 3

2 · 4 ·
x4

4
− 1 · 3 · 5

2 · 4 · 6 ·
x6

6
− . . . (0 < x < 1).

tanh−1 x = x+
x3

3
+
x5

5
+
x7

7
+ · · ·+ x2n+1

2n+ 1
+ . . . (|x| < 1).

coth−1 x =
1

x
+

1

3x3
+

1

5x5
+

1

7x7
+ · · ·+ 1

(2n+ 1)x2n+1
+ . . . (|x| > 1).

gdx = x− 1

6
x3 +

1

24
x5 + · · ·+ E2n

(2n+ 1)!
x2n+1 + . . . (|x| < 1).
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1.5.7 SUMMATION FORMULAS

1. Euler–MacLaurin summation formula: As n→∞,

n∑

k=0

f(k) ∼ 1

2
f(n) +

∫ n

0

f(x) dx + C +

∞∑

j=1

(−1)j+1Bj+1
f (j)(n)

(j + 1)!

where Bj is the j th Bernoulli number and

C = lim
m→∞

[
m∑

j=1

(−1)jBj+1
f (j)(0)

(j + 1)!
+

1

2
f(0)

+
(−1)m
(m+ 1)!

∫ ∞

0

Bm+1(x − ⌊x⌋)f (m+1)(x) dx

]
.

2. Poisson summation formula: If f is continuous,

1

2
f(0) +

∞∑

n=1

f(n) =

∫ ∞

0

f(x) dx + 2

∞∑

n=1

[∫ ∞

0

f(x) cos(2nπx)dx

]
.

3. Plana’s formula: If f is analytic,

n∑

k=1

f(k) =
1

2
f(n) +

∫ n

a

f(x) dx+

∞∑

j=1

(−1)j−1Bj
f (2j+1)(n)

2j!

where a is a constant dependent on f and Bj is the j th Bernoulli number.

EXAMPLES

1.

n∑

k=1

1

k
∼ log n+ γ +

1

2n
− B2

2n2
− . . . where γ is Euler’s constant.

2. 1 + 2

∞∑

n=1

e−n2x =

√
π

x

[

1 + 2

∞∑

n=1

e−π2n2/x

]

(Jacobi)

1.5.8 FASTER CONVERGENCE: SHANKS TRANSFORMATION

Let sn be the nth partial sum. The sequences {S(sn)}, {S(S(sn))}, . . . often con-

verge successively more rapidly to the same limit as {sn}, where

S(sn) =
sn+1sn−1 − s2n

sn+1 + sn−1 − 2sn
. (1.5.19)

EXAMPLE For sn =

n∑

k=0

(−1)kzk, we find S(sn) =
1

1 + z
for all n.
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1.5.9 SUMMABILITY METHODS

Unique values can be assigned to divergent series in a variety of ways which preserve

the values of convergent series.

1. Abel summation:

∞∑

n=0

an = lim
r→1−

∞∑

n=0

anr
n.

2. Cesaro (C, 1)-summation:

∞∑

n=0

an = lim
N→∞

s0 + s1 + . . . sN
N + 1

where sn =
∑n

m=0 am are the partial sums.

EXAMPLES

• 1− 1 + 1− 1 + · · · = 1
2

(in the sense of Abel summation)

• 1− 1 + 0 + 1− 1 + 0 + 1− · · · = 1
3

(in the sense of Cesaro summation)

1.5.10 OPERATIONS WITH POWER SERIES

Let y = a1x+ a2x
2 + a3x

3 + . . . , and let z = z(y) = b1x+ b2x
2 + b3x

3 + . . . .

z(y) b0 b1 b2 b3

1/(1− y) 1 a1 a21 + a2 a31 + 2a1a2 + a3
√
1 + y 1 1

2a1 − 1
8a

2
1 +

1
2a2

1
16a

3
1 − 1

4a1a2 +
1
2a3

(1 + y)−1/2 1 − 1
2a1

3
8a

2
1 − 1

2a2 − 5
16a

3
1 +

3
4a1a2 − 1

2a3

ey 1 a1
1
2a

2
1 + a2

1
6a

3
1 + a1a2 + a3

log(1 + y) 0 a1 a2 − 1
2a

2
1 a3 − a1a2 + 1

3a
3
1

sin y 0 a1 a2 − 1
6a

3
1 + a3

cos y 1 0 − 1
2a

2
1 −a1a2

tan y 0 a1 a2
1
3a

3
1 + a3

1.5.11 MISCELLANEOUS SUMS

1.
∑n

k=1
1

k(k+1)(k+2) = 1
4 − 1

2(n+1)(n+2) .

2.
∑∞

k=1
1

k(k+1)···(k+p) =
1

p·p! .

3.

∞∑

k=3

1

k log k(log log k)2
converges to 38.43. . . so slowly that it requires

103.14·10
86

terms to give two-decimal accuracy.

4.

∞∑

k=3

1

k log k(log log k)
diverges, but the partial sums exceed 10 only after a

googolplex of terms have appeared.
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1.5.12 INFINITE PRODUCTS

For the sequence of complex numbers {ak}, an infinite product is
∏∞

k=1(1 + ak).
A necessary condition for convergence is that limn→∞ an = 0. A necessary and

sufficient condition for convergence is that
∑∞

k=1 log(1+ ak) converges. Examples:

(a) sin z = z

∞∏

k=1

cos
z

2k

(b) sinπz = πz

∞∏

k=1

(
1− z2

k2

)

(c) cosπz =

∞∏

k=1

(
1− 4z2

(2k − 1)2

)

(d) sinh z = z

∞∏

k=1

(
1 +

z2

k2π2

)

(e) cosh z =

∞∏

k=0

(
1 +

4z2

(2k + 1)2π2

)

(f) z! =

∞∏

k=1

(
1 + 1

k

)z

1 + z
k

(g) sin(a+ z) = (sin a)

∞∏

k=0,±1,±2,...

(
1 +

z

a+ kπ

)

(h) cos(a+ z) = (cos a)

∞∏

k=±1,±3,±5,...

(
1 +

2z

2a+ kπ

)

1.5.12.1 Weierstrass theorem

DefineE(w,m) = (1−w) exp
(
w +

w2

2
+ · · ·+ wm

m

)
. For k = 1, 2, . . . let {bk}

be a sequence of complex numbers such that |bk| → ∞. Then the infinite product

P (z) =

∞∏

k=1

E

(
z

bk
, k

)
is an entire function with zeros at bk and at these points

only. The multiplicity of the root at bn is equal to the number of indices j such that

bj = bn.

1.5.13 INFINITE PRODUCTS AND INFINITE SERIES

1. The Rogers–Ramanujan identities (for a = 0 or a = 1) are

1 +
∞∑

k=1

qk
2+ak

(1 − q)(1− q2) · · · (1 − qk)

=

∞∏

j=0

1

(1 − q5j+a+1)(1− q5j−a+4)
. (1.5.20)

2. Jacobi’s triple product identity is

∞∑

k=−∞
q(

k
2)xk =

∞∏

j=1

(1− qj)(1 + x−1qj)(1 + xqj−1). (1.5.21)
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2.1 ELEMENTARY ALGEBRA

2.1.1 BASIC ALGEBRA

2.1.1.1 Laws of exponents

Assuming all quantities are real, a and b positive, and no denominators are zero, then

axay = ax+y,
ax

ay
= ax−y, (ab)x = axbx,

a0 = 1 if a 6= 0, a−x =
1

ax
,

(a
b

)x
=
ax

bx
,

(ax)y = axy, a
1
x = x

√
a,

x
√
ab = x

√
a

x
√
b,

x

√
y
√
a = xy

√
a, a

x
y = y
√
ax = ( y

√
a)x, x

√
a

b
=

x
√
a

x
√
b
.

2.1.1.2 Proportion

If
a

b
=
c

d
, then

• a+ b

b
=
c+ d

d

• a− b
a+ b

=
c− d
c+ d

• a− b
b

=
c− d
d

• a

c
=
b

d

• ad = bc

• If a, b, c, and d are all positive numbers and a is the largest of the four numbers,

then a+ d > b+ c.

2.1.2 PROGRESSIONS

2.1.2.1 Arithmetic progression

An arithmetic progression is a sequence of numbers such that the difference of any

two consecutive numbers is constant. If the sequence is a1, a2, . . . an, where ai+1 −
ai = d, then ak = a1 + (k − 1)d and

a1 + a2 + · · ·+ an =
n

2

(
2a1 + (n− 1)d

)
. (2.1.1)

In particular, the arithmetic progression 1, 2, . . . , n has the sum n(n+ 1)/2.

2.1.2.2 Geometric progression

A geometric progression is a sequence of numbers such that the ratio of any two

consecutive numbers is constant. If the sequence is a1, a2, . . . an, where ai+1/ai =
r, then ak = a1r

k−1.
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a1 + a2 + · · ·+ an =

{
a1

1−rn

1−r r 6= 1

na1 r = 1.
(2.1.2)

If |r| < 1, then the infinite geometric series a1(1 + r + r2 + r3 + · · · ) converges to
a1

1−r . For example, 1 + 1
2 + 1

4 + 1
8 + · · · = 2.

2.1.2.3 Means

1. The arithmetic mean of a and b is given by a+b
2 . More generally, the arithmetic

mean of a1, a2, . . . , an is given by (a1 + a2 + · · ·+ an)/n.

2. The geometric mean of a and b is given by
√
ab. More generally, the geometric

mean of a1, a2, . . . , an is given by n
√
a1a2 . . . an. The geometric mean of n

numbers is less than the arithmetic mean, unless all of the numbers are equal.

3. The harmonic mean of a and b is given by
1

1
2

(
1
a + 1

b

) =
2ab

a+ b
.

If A, G, and H represent the arithmetic, geometric, and harmonic means of a and b,
then AH = G2. The arithmetic mean–geometric mean inequality states that A ≥ G
when the {ai} are positive numbers.

2.1.2.4 Algebraic equations

A polynomial equation in one variable has the form f(x) = 0 where f(x) is a

polynomial of degree n

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0. (2.1.3)

and an 6= 0.

A complex number z is a root of the polynomial f(x) if f(z) = 0. A complex

number z is a root of multiplicity k if f(z) = f ′(z) = f ′′(z) = · · · = f (k−1)(z) = 0,

but f (k)(z) 6= 0. A root of multiplicity 1 is called a simple root. A root of multiplicity

2 is called a double root, and a root of multiplicity 3 is called a triple root.

2.1.2.5 Roots of polynomials

1. Fundamental theorem of algebra

A polynomial equation of degree n has exactly n complex roots, where a dou-

ble root is counted twice, a triple root three times, and so on. If the n roots of

the polynomial f(x) are z1, z2, . . . , zn (where a double root is listed twice, a

triple root three times, and so on), then the polynomial can be written as

f(x) = an(x− z1)(x− z2) . . . (x− zn). (2.1.4)

2. If the coefficients of the polynomial, {a0, a1, . . . , an}, are real numbers, then

the polynomial will always have an even number of complex roots occurring

in pairs. That is, if z is a complex root, then so is z. If the polynomial has an

odd degree and the coefficients are real, then it must have at least one real root.

3. Equations for roots of 2nd, 3rd, and 4th order equations are on pages 67– 68.
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4. The coefficients of a polynomial may be expressed as symmetric functions of

the roots. For example, the elementary symmetric functions {si}, and their

values for a polynomial of degree n (known as Viete’s formulas), are:

s1 = z1 + z2 + · · ·+ zn = −an−1

an
,

s2 = z1z2 + z1z3 + z2z3 + · · · =
∑

i>j

zizj =
an−2

an
,

...

sn = z1z2z3 . . . zn = (−1)n a0
an
.

(2.1.5)

where sk is the sum of
(
n
k

)
products, each product combining k factors of roots

without repetition.

5. The discriminant of a polynomial is
∏

i>j(zi − zj)2, where the ordering of

the roots is irrelevant. The discriminant can always be written as a polynomial

combination of a0, a1, . . . , an, divided by an.

(a) For the quadratic equation ax2 + bx+ c = 0 the discriminant is b2−4ac
a2 .

(b) For the cubic equation ax3 + bx2 + cx+ d = 0 the discriminant is

b2c2 − 4b3d− 4ac3 + 18abcd− 27a2d2

a4
.

6. The number of roots of a polynomial in modular arithmetic is difficult to pre-

dict. For example

(a) y4 + y + 1 = 0 has one root modulo 51: y = 37
(b) y4 + y + 2 = 0 has no root modulo 51

(c) y4 + y + 3 = 0 has six roots modulo 51: y = {15, 27, 30, 32, 44, 47}

2.1.2.6 Algebraic identities

(a± b)2 = a2 ± 2ab+ b2.

(a± b)3 = a3 ± 3a2b+ 3ab2 ± b3.
(a± b)4 = a4 ± 4a3b+ 6a2b2 ± 4ab3 + b4.

(a± b)n =

n∑

k=0

(
n

k

)
ak(±b)n−k where

(
n

k

)
=

n!

k!(n− k)! .

a2 + b2 = (a+ bi)(a− bi).
a4 + b4 = (a2 +

√
2ab+ b2)(a2 −

√
2ab+ b2).

a2 − b2 = (a− b)(a+ b).

a3 − b3 = (a− b)(a2 + ab+ b2).

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1).

(a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc.

(a+ b+ c)3 = a3 + b3 + c3 + 3(a2b+ ab2 + a2c+ ac2 + b2c+ bc2) + 6abc.
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2.1.3 PARTIAL FRACTIONS

The technique of partial fractions allows a quotient of two polynomials to be written

as a sum of simpler terms.

Let f(x) and g(x) be polynomials and let the fraction be
f(x)
g(x) . If the degree

of f(x) is greater than the degree of g(x) then divide f(x) by g(x) to produce a

quotient q(x) and a remainder r(x), where the degree of r(x) is less than the degree

of g(x). That is,
f(x)
g(x) = q(x)+ r(x)

g(x) . Therefore, assume that the fraction has the form
r(x)
g(x) , where the degree of the numerator is less than the degree of the denominator.

The techniques used to find the partial fraction decomposition of
r(x)
g(x) depend on the

factorization of g(x).

2.1.3.1 Single linear factor

Suppose that g(x) = (x− a)h(x), where h(a) 6= 0. Then

r(x)

g(x)
=

A

x− a +
s(x)

h(x)
, (2.1.6)

where s(x) can be computed and the number A is given by r(a)/h(a). For example

(here r(x) = 2x, g(x) = x2 − 1 = (x− 1)(x+ 1), h(x) = x+ 1, and a = 1):

2x

x2 − 1
=

1

x− 1
+

1

x+ 1
. (2.1.7)

2.1.3.2 Repeated linear factor

Suppose that g(x) = (x− a)kh(x), where h(a) 6= 0. Then

r(x)

g(x)
=

A1

x− a +
A2

(x− a)2 + · · ·+ Ak

(x− a)k +
s(x)

h(x)
, (2.1.8)

for a computable s(x) where

Ak =
r(a)

h(a)
, Ak−1 =

d

dx

(
r(x)

h(x)

)∣∣∣∣
x=a

,

Ak−2 =
1

2!

d2

dx2

(
r(x)

h(x)

)∣∣∣∣
x=a

, Ak−j =
1

j!

dj

dxj

(
r(x)

h(x)

)∣∣∣∣
x=a

.

(2.1.9)

2.1.3.3 Single quadratic factor

Suppose that g(x) = (x2 + bx + c)h(x), where b2 − 4c < 0 (so that x2 + bx + c
does not factor into real linear factors) and h(x) is relatively prime to x2 + bx + c
(that is h(x) and x2 + bx+ c have no factors in common). Then

r(x)

g(x)
=

Ax+B

x2 + bx+ c
+
s(x)

h(x)
. (2.1.10)
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In order to determine A and B, multiply the equation by g(x) so that there are no

denominators remaining, and substitute any two values for x, yielding two equations

for A and B.

When A and B are both real, if after multiplying the equation by g(x) a root of

x2 + bx+ c is substituted for x, then the values of A and B can be inferred from this

single complex equation by equating real and imaginary parts. (Since x2 + bx + c
divides g(x), there are no zeros in the denominator.) This technique can also be used

for repeated quadratic factors (below).

2.1.3.4 Repeated quadratic factor

Suppose that g(x) = (x2 + bx + c)kh(x), where b2 − 4c < 0 (so that x2 + bx + c
does not factor into real linear factors) and h(x) is relatively prime to x2 + bx + c.
Then

r(x)

g(x)
=

A1x+B1

x2 + bx+ c
+

A2x+B2

(x2 + bx+ c)2
+

A3x+B3

(x2 + bx+ c)3

+ · · ·+ Akx+ Bk

(x2 + bx+ c)k
+
s(x)

h(x)
.

In order to determine Ai and Bi, multiply the equation by g(x) so that there are no

denominators remaining, and substitute any 2k values for x, yielding 2k equations

for Ai and Bi.

2.2 POLYNOMIALS

All polynomials of degree 2, 3, or 4 are solvable by radicals. That is, their roots can

be written in terms of algebraic operations (+, −, ×, and ÷) and root-taking ( n
√

).

While some polynomials of higher degree can be solved by radicals (e.g., x10 = 1
can be solved), the general polynomial of degree 5 or higher cannot be solved by

radicals.

2.2.1 QUADRATIC EQUATION

The solution of the quadratic equation ax2 + bx+ c = 0, where a 6= 0, is given by

x =
−b±

√
b2 − 4ac

2a
. (2.2.1)

The discriminant of this equation is ∆ = (b2 − 4ac)/a2. If a, b, and c are all real

and

• ∆ < 0, then the two roots are complex numbers which are conjugate.

• ∆ > 0, then the two roots are unequal real numbers.

• ∆ = 0, then the two roots are equal.
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2.2.2 CUBIC POLYNOMIALS

To find the roots {x1, x2, x3} of ax3 + bx2 + cx + d = 0, with a 6= 0, perform the

following computations:

1. F =
(
3c− b2

)
/3

2. G =
(
2b3 − 9bc+ 27d

)
/27

3. H =
G2

4
+
F 3

27
4. If H < 0, then there will be 3 real roots. Continue with

(a) I =

√
G2

4
−H

(b) J =
3
√
I

(c) K = a cos (−G/2I)
(d) M = cos (K/3)

(e) N =
√
3 sin (K/3)

(f) P = −b/3
(g) x1 = P + 2JM
(h) x2,3 = P − J(M ±N)

5. If H > 0, then there will be 1 real root and 2 complex roots. Continue with

(a) R = −G
2
+
√
H

(b) S =
3
√
R

(c) T = −G
2
−
√
H

(d) U = − 3
√
−T

(e) x1 = S + U − b

3

(f) x2,3 = −S + U

2
− b

3
± i (S − U)

√
3

2

2.2.3 QUARTIC POLYNOMIALS

To find the roots {x1, x2, x3, x4} of Ax4 +Bx3+Cx2+Dx+E = 0, withA 6= 0,

perform the following computations:

1. α = −3

8

B2

A2
+
C

A

2. β =
B3

8A3
− BC

2A2
+
D

A

3. γ = − 3B4

256A4
+
B2C

16A3
− BD

4A2
+
E

A

4. If β = 0 then the four roots are xi = −
B

4A
±

√
−α±

√
α2 − 4γ

2
5. If β 6= 0 then continue with

(a) P = −α
2

12
− γ

(b) Q = − α3

108
+
αγ

3
− β2

8

(c) R = −Q
2
±
√
Q2

4
+
P 3

27
(can use either square root)

(d) U =
3
√
R (can use any cube root)
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(e) Y =

{
− 5

6α+ U − P
3U if U 6= 0

− 5
6α+ U − 3

√
Q if U = 0

(f) W =
√
α+ 2Y

(g) x1,2 = − B

4A
+

W ±
√
−
(
3α+ 2Y + 2β

W

)

2

(h) x3,4 = − B

4A
+

−W ±
√
−
(
3α+ 2Y − 2β

W

)

2

2.2.4 RESULTANTS

Let f(x) = anx
n+an−1x

n−1+ · · ·+a0 and g(x) = bmx
m+bm−1x

m−1+ · · ·+b0,

where an 6= 0 and bm 6= 0. The resultant of f and g is the determinant of the

(m+ n)× (m+ n) matrix

det




an an−1 . . . . . . a0 0 . . . 0
0 an an−1 . . . a1 a0 0
...

. . .
. . .

. . .
. . .

. . .

0 . . . 0 an an−1 . . . a1 a0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 bm . . . b1 b0
... . .

.
. .

.

0 bm bm−1 . . . b0 0 . . . 0
bm bm−1 . . . b0 0 . . . . . . 0




(2.2.2)

The resultant of f(x) and g(x) is 0 if and only if f(x) and g(x) have a common

root.

EXAMPLES

1. For f(x) = x2 + 2x+ 3 and g(x;α) = 4x3 + 5x2 + 6x+ (7 + α), the resultant is

det





1 2 3 0 0
0 1 2 3 0
0 0 1 2 3
0 4 5 6 7 + α
4 5 6 7 + α 0




= (16 + α)2

Note that g(x;−16) = (4x− 3)(x2 + 2x+ 3) = (4x− 3)f(x).
2. The resultant of ax+ b and cx+ d is da− bc.
3. The resultant of (x+ a)5 and (x+ b)5 is (b− a)25.
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2.2.5 POLYNOMIAL NORMS

The polynomial P (x) =

n∑

j=0

ajx
j has the norms:

||P ||1 =

∫ 2π

0

∣∣P
(
eiθ
)∣∣ dθ

2π
|P |1 =

n∑

j=0

|aj |

||P ||2 =

(∫ 2π

0

∣∣P
(
eiθ
)∣∣2 dθ

2π

)1/2

|P |2 =




n∑

j=1

|aj |2



1/2

||P ||∞ = max
|z|=1

|P (z)| |P |∞ = max
j
|aj |

For the double bar norms, P is considered as a function on the unit circle; for the

single bar norms, P is identified with its coefficients. These norms are comparable:

|P |∞ ≤ ||P ||1 ≤ |P |2 = ||P ||2 ≤ ||P ||∞ ≤ |P |1 ≤ n|P |∞. (2.2.3)

2.2.6 OTHER POLYNOMIAL PROPERTIES

1. Jensen’s inequality: For the polynomial P (x) =

n∑

j=0

ajx
j , with a0 6= 0

∫ 2π

0

log
∣∣P
(
eiθ
)∣∣ dθ

2π
≥ log |a0| (2.2.4)

2. Symmetric form: The polynomial P (x1, . . . , xn) =
∑

|α|=m

aαx
α1
1 xα2

2 . . . xαN

N ,

where α = (α1, . . . , αN ) can be written in the symmetric form

P (x1, . . . , xn) =
N∑

i1,...,im=1

ci1,...,imxi1xi2 . . . xim (2.2.5)

with ci1,...,im = 1
m!

∂mP
∂xi1 ...∂xim

. This means that the x1x2 term is written as
1
2 (x1x2 + x2x1), the term x1x

2
2 becomes 1

3 (x1x2x2 + x2x1x2 + x2x2x1).
3. The Mahler measure (a valuation) of the polynomial P (x) = anx

n +
an−1x

n−1 + · · ·+ a0 = an(x− z1)(x − z2) . . . (x − zn) is given by

M(P ) = |an|
n∏

i=1

max(1, |zi|) = exp

(∫ 1

0

log
∣∣P
(
e2πit

)∣∣ dt
)

This valuation satisfies the properties:

(a) M(P )M(Q) =M(PQ)

(b) M(P (x)) =M(P (−x)) =M(P (xk)) for k ≥ 1

(c) M(P (x)) =M(xnP (x−1))
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2.2.7 CYCLOTOMIC POLYNOMIALS

The dth cyclotomic polynomial, Φd(x) is

Φd(x) =

d∏

k=1,2,...
(k,d)=1

(x− ξk) = xφ(d) + . . . (2.2.6)

where the ξk = e2πik/d are the primitive dth roots of unity

Φp(x) =

p−1∑

k=0

xk =
xp − 1

x− 1
if p is prime

xn − 1 =
∏

d|n
Φd(x)

xn + 1 =
x2n − 1

xn − 1
=

∏
d|2nΦd(x)∏
d|n Φd(x)

=
∏

d|m
Φ2td(x)

(2.2.7)

where n = 2t−1m and m is odd.

n cyclotomic polynomial of degree n

1 −1 + x
2 1 + x

3 1 + x+ x2 = x3−1
x−1

4 1 + x2

5 1 + x+ x2 + x3 + x4 = x5−1
x−1

6 1− x+ x2

7 1 + x+ x2 + x3 + x4 + x5 + x6 = x7−1
x−1

8 1 + x4

9 1 + x3 + x6

10 1− x+ x2 − x3 + x4

11 1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = x11−1
x−1

12 1− x2 + x4

Some relations:

1. If p is an odd prime:

(a) Φp(x) =
xp − 1

x− 1

(b) Φ2p(x) =
x2p − 1

xp − 1

x− 1

x2 − 1

(c) Φ4p(x) =
x4p − 1

x2p − 1

x2 − 1

x4 − 1
(d) xp − 1 = Φ1(x)Φp(x)
(e) x2p−1 = Φ1(x)Φ2(x)Φp(x)Φ2p(x)

2. If p is a prime and

(a) p does not divide n then Φnp(x) =
Φn(x

p)

Φn(x)

(b) p divides n then Φnp(x) = Φn(x
p)
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2.3 VECTOR ALGEBRA

2.3.1 NOTATION FOR VECTORS AND SCALARS

A vector is an ordered n-tuple of values. A vector is usually represented by a low-

ercase, boldfaced letter, such as v. The individual components of a vector v are

typically denoted by a lowercase letter along with a subscript identifying the relative

position of the component in the vector, such as v = [v1, v2, . . . , vn]. In this case,

the vector is said to be n-dimensional. If the n individual components of the vector

are real numbers, then v ∈ R
n. Similarly, if the n components of v are complex,

then v ∈ C
n.

Subscripts are often used to identify individual vectors within a set of vectors all

belonging to the same type. For example, a set of n velocity vectors can be denoted

by {v1, . . . , vn}. In this case, a boldface type is used on the individual members of

the set to signify these elements of the set are vectors and not vector components.

Two vectors, v and u, are said to be equal if all their components are equal. The

negative of a vector, written as −v, is one that acts in a direction opposite to v, but is

of equal magnitude.

2.3.2 PHYSICAL VECTORS

Any quantity that is completely determined by its magnitude is called a scalar. For

example, mass, density, and temperature are scalars. Any quantity that is completely

determined by its magnitude and direction is called, in physics, a vector. We often

use a three-dimensional vector to represent a physical vector. Examples of physical

vectors include velocity, acceleration, and force. A physical vector is represented by

a directed line segment, the length of which represents the magnitude of the vector.

Two vectors are said to be parallel if they have exactly the same direction, i.e., the

angle between the two vectors equals zero.

2.3.3 FUNDAMENTAL DEFINITIONS

1. A row vector is a vector whose components are aligned horizontally. A column

vector has its components aligned vertically. The transpose operator, denoted

by the superscript T, switches the orientation of a vector between horizontal

and vertical.

EXAMPLE

v = [1, 2, 3, 4], vT =





1
2
3
4



 , (vT)T = [1, 2, 3, 4].

row vector column vector row vector

Vectors are traditionally written either with rounded braces or with square

brackets.
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2. Two vectors, v and u, are said to be orthogonal if vTu = 0. (This is also

written v · u = 0, where the “·” denotes an inner product; see page 74.)

3. A set of vectors {v1, . . . , vn} is said to be orthogonal if vT
i vj = 0 for all i 6= j.

4. A set of orthogonal vectors {v1, . . . , vm} is said to be orthonormal if, in addi-

tion to possessing the property of orthogonality, the set possesses the property

that vT
i vi = 1 for all 1 ≤ i ≤ m.

2.3.4 LAWS OF VECTOR ALGEBRA

1. The vector sum of v and u, represented by v + u, results in another vector of

the same dimension, and is calculated by simply adding corresponding vector

components, e.g., if v, u ∈ R
n, then v+ u = [v1 + u1, . . . , vn + un].

2. The vector subtraction of u from v, represented by v − u, is equivalent to the

addition of v and −u.

3. If r > 0 is a scalar, then the scalar multiplication rv (equal to vr) represents

a scaling by a factor r of the vector v in the same direction as v. That is, the

multiplicative scalar is distributed to each component of v.

4. If 0 ≤ r < 1, then the scalar multiplication of r and v shrinks the length of v,

multiplication by r = 1 leaves v unchanged, and, if r > 1, then rv stretches

the length of v. When r < 0, scalar multiplication of r and v has the same

effect on the magnitude (length) of v as when r > 0, but results in a vector

oriented in the direction opposite to v.

EXAMPLE

4




1
0
3



 =




4
0
12



 , −4




1
0
3



 =




−4
0
−12



 .

5. If r and s are scalars, and v, u, and w are vectors, the following rules of algebra

are valid:

v+ u = u+ v,

(r + s)v = rv + sv = vr + vs = v(r + s),

r(v + u) = rv + ru,

v+ (u+ w) = (v+ u) + w = v+ u+ w.

(2.3.1)

2.3.5 VECTOR NORMS

1. A norm is the vector analog to the measure of absolute value for real scalars.

Norms provide a distance measure for a vector space.

2. A vector norm applied to a vector v is denoted by a double bar notation ‖v‖.
3. A norm on a vector space equips it with a metric space structure.

4. The properties of a vector norm are:

(a) For any vector v 6= 0, ‖v‖ > 0,

(b) ‖γv‖ = |γ| ‖v‖, and

(c) ‖v+ u‖ ≤ ‖v‖+ ‖u‖ (triangle inequality).
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5. The most commonly used vector norms on R
n or Cn are:

(a) The L1 norm is defined as ‖v‖1 = |v1|+ · · ·+ |vn| =
∑n

i=1 |vi|.
(b) The L2 norm (Euclidean norm) is defined as

‖v‖2 = (|v1|2 + |v2|2 + · · ·+ |vn|2)1/2 =

(
n∑

i=1

v2i

)1/2

. (2.3.2)

(c) The L∞ norm is defined as ‖v‖∞ = max
1≤i≤n

|vi|.

6. In the absence of any subscript, the norm ‖·‖ is usually assumed to be the L2

(Euclidean) norm.

7. A unit vector with respect to a particular norm ‖·‖ is a vector that satisfies the

property that ‖v‖ = 1, and is sometimes denoted by v̂.

2.3.6 DOT, SCALAR, OR INNER PRODUCT

1. The dot (or scalar or inner product) of two vectors of the same dimension,

represented by v · u or vTu, has two common definitions, depending upon the

context in which this product is encountered.

(a) The dot or scalar product is defined by v · u = ‖v‖ ‖u‖ cos θ,
where θ represents the angle between the vectors v and u.

(b) The inner product of two vectors, u and v, is equivalently defined as

uTv =

n∑

i=1

uivi = u1v1 + · · ·+ unvn. (2.3.3)

From the first definition, it is apparent that the inner product of two perpendic-

ular, or orthogonal, vectors is zero, since the cosine of 90◦ is zero.

2. The inner product of two parallel vectors (with u = rv) is given by v · u =
r ‖v‖2 . For example, when r > 0,

v · u = ‖v‖ ‖u‖ cos 0 = ‖v‖ ‖u‖ = ‖v‖ ‖rv‖ = r ‖v‖2 . (2.3.4)

3. The dot product is distributive, e.g.,

(v+ u) · w = v · w+ u · w. (2.3.5)

4. For v, u,w ∈ Rn with n > 1,

vTu = vTw 6⇒ u = w. (2.3.6)

However, it is valid to conclude that

vTu = vTw ⇒ vT(u− w) = 0, (2.3.7)

i.e., the vector v is orthogonal to the vector (u− w).
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FIGURE 2.1
Depiction of right-hand rule.

v1 × v2

v1

v2
n

2.3.7 VECTOR OR CROSS-PRODUCT

1. The vector (or cross-product) of two non-zero 3-dimensional vectors v and u

is defined as

v× u = n̂ ‖v‖ ‖u‖ sin θ, (2.3.8)

where n̂ is the unit normal vector (i.e., vector perpendicular to both v and u)

in the direction adhering to the right-hand rule (see Figure 2.1) and θ is the

angle between v and u.

2. If v and u are parallel, then v× u = 0.

3. The quantity ‖v‖ ‖u‖ |sin θ| represents the area of the parallelogram deter-

mined by v and u.

4. The following rules apply for vector products:

(γv)× (αu) = (γα)v× u,

v× u = −u× v,

v× (u+ w) = v× u+ v× w,

(v+ u)× w = v× w+ u× w,

v× (u× w) = u(w · v)− w(v · u),
(v × u) · (w× z) = (v · w)(u · z)− (v · z)(u · w),
(v× u)× (w× z) = [v · (u× z)]w− [v · (u× w)]z

= [v · (w× z)]u− [u · (w× z)]v.

(2.3.9)

5. The pairwise cross-products of the unit vectors î, ĵ, and k̂, corresponding to

the directions of v = v1 î+ v2 ĵ+ v3k̂, are given by

î× ĵ = −(̂j× î) = k̂,

ĵ× k̂ = −(k̂× ĵ) = î,

k̂× î = −(̂i× k̂) = ĵ, and

î× î = ĵ× ĵ = k̂× k̂ = 0.

(2.3.10)
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6. If v = v1̂i+ v2 ĵ+ v3k̂ and u = u1̂i+ u2ĵ+ u3k̂, then

v× u =

∣∣∣∣∣∣

î ĵ k̂

v1 v2 v3
u1 u2 u3

∣∣∣∣∣∣

= (v2u3 − u2v3)̂i+ (v3u1 − u3v1)̂j+ (v1u2 − u1v2)k̂.

(2.3.11)

2.3.8 SCALAR AND VECTOR TRIPLE PRODUCTS

1. The scalar triple product involving three 3-dimensional vectors v, u, and w,

sometimes denoted by [vuw] (not to be confused with a matrix containing three

columns
[
v u w

]
), can be computed using the determinant

[vuw] = v · (u× w) = v ·
[ ∣∣∣∣
u2 u3
w2 w3

∣∣∣∣ î−
∣∣∣∣
u1 u3
w1 w3

∣∣∣∣ ĵ+
∣∣∣∣
u1 u2
w1 w2

∣∣∣∣ k̂
]

= v1

∣∣∣∣
u2 u3
w2 w3

∣∣∣∣− v2
∣∣∣∣
u1 u3
w1 w3

∣∣∣∣+ v3

∣∣∣∣
u1 u2
w1 w2

∣∣∣∣

=

∣∣∣∣∣∣

v1 v2 v3
u1 u2 u3
w1 w2 w3

∣∣∣∣∣∣
= ‖v‖ ‖u‖ ‖w‖ cosφ sin θ,

(2.3.12)

where θ is the angle between u and w, and φ is the angle between v and the

normal to the plane defined by u and w.

2. The absolute value of a triple scalar product calculates the volume of the par-

allelepiped determined by the three vectors. The result is independent of the

order in which the triple product is taken.

3. (v× u)× (w× z) = [vwz]u− [uwz]v = [vuz]w− [vuw]z
4. Given three non-coplanar reference vectors u, v, and w, the reciprocal system

is given by u∗, v∗, and w∗, where

u∗ =
w× v

[vuw]
, v∗ =

u× w

[vuw]
, w∗ =

v× u

[vuw]
. (2.3.13)

If the vectors v, u, and w are mutually perpendicular, then

1 = v · v∗ = u · u∗ = w · w∗

and 0 = v · u∗ = v · w∗ = u · v∗, etc.
(2.3.14)

The system î, ĵ, k̂ is its own reciprocal.

5. The vector triple product involving three 3-dimensional vectors v, u, and w,

given by v× (u×w), results in a vector, perpendicular to v, lying in the plane

of u and w, and is defined as

v× (u× w) = (v · w)u− (v · u)w,

=

∣∣∣∣∣∣∣∣

î ĵ k̂

v1 v2 v3∣∣∣∣
u2 u3
w2 w3

∣∣∣∣
∣∣∣∣
u3 u1
w3 w1

∣∣∣∣
∣∣∣∣
u1 u2
w1 w2

∣∣∣∣

∣∣∣∣∣∣∣∣
.

(2.3.15)
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2.4 LINEAR AND MATRIX ALGEBRA

2.4.1 DEFINITIONS

1. Anm×nmatrix is a 2-dimensional array of numbers consisting of m rows and

n columns. By convention, a matrix is denoted by a capital letter emphasized

with italics, as in A, B, D, or boldface, A, B, D. Sometimes a matrix has a

subscript denoting the dimensions of the matrix, e.g.,A2×3. IfA is a real n×m
matrix, then we write A ∈ R

n×m. Higher-dimensional matrices, although

less frequently encountered, are accommodated in a similar fashion, e.g., a

3-dimensional matrix Am×n×p, and so on.

2. Am×n is called rectangular if m 6= n.

3. Am×n is called square if m = n.

4. A particular component (or element) of a matrix is denoted by the lowercase

letter corresponding to the matrix name, along with two subscripts for the row i
and column j location of the component in the matrix, e.g.,

Am×n has components aij ;

Bm×n has components bij .

For example, a23 is the component in the second row and third column of

matrix A.
5. Any component aij with i = j is called a diagonal component.

6. The diagonal alignment of components in a matrix extending from the upper

left to the lower right is called the principal or main diagonal.

7. Any component aij with i 6= j is called an off-diagonal component.

8. Two matrices A and B are said to be equal if they have the same number of

rows (m) and columns (n), and aij = bij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

9. An m × 1 dimensional matrix is called a column vector. Similarly, a 1 × n
dimensional matrix is called a row vector.

10. A vector with all components equal to zero is called a null vector and is usually

denoted by 0.

11. A zero, or null matrix is one whose elements are all zero (notation is “0”).

12. A column vector with all components equal to one is often denoted by e. The

analogous row vector is denoted by eT.

13. The standard basis consists of the vectors {e1, e2, . . . , en} where ei is an n×1
vector of all zeros, except for the ith component, which is one.

14. The scalar xTx =
∑n

i=1 x
2
i is the sum of squares of all components of the

vector x.

15. The weighted sum of squares is defined by xTDwx =
∑n

i=1 wix
2
i , when x has

n components and the diagonal matrix Dw is of dimension (n× n).
16. If Q is a square matrix, then xTQx is called a quadratic form (see page 95).

17. An n × n matrix A is called non-singular, or invertible, or regular, if there

exists an n × n matrix B such that AB = BA = I . The unique matrix B
satisfying this condition is called the inverse of A, and is denoted by A−1.
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18. The scalar xTy =
∑n

i=1 xiyi, the inner product of x and y, is the sum of

products of the components of x by those of y.

19. The weighted sum of products is xTDwy =
∑n

i=1 wixiyi, when x and y have

n components, and the diagonal matrix Dw is (n× n).
20. The map x, y 7→ xTQy is called a bilinear form, whereQ is a matrix of appro-

priate dimension.

21. The transpose of an m× n matrix A, denoted by AT, is an n×m matrix with

rows and columns interchanged, so that the (i, j) component of A is the (j, i)
component of AT, and (AT)ji = (A)ij = aij .

22. The Hermitian conjugate of a matrix A, denoted by AH, is obtained by trans-

posing A and replacing each element by its complex conjugate. Hence, if

akl = ukl + ivkl, then (AH)kl = ulk − ivik, with i =
√
−1.

23. If Q is a square matrix, then the map x 7→ xHQx is called a Hermitian form.

2.4.2 TYPES OF MATRICES

1. A square matrix with all components not on the principal diagonal equal to

zero is called a diagonal matrix, typically denoted by the letter D with a sub-

script indicating the typical element in the principal diagonal. For example:

Da =



a11 0 0
0 a22 0
0 0 a33


 , Dλ =



λ11 0 0
0 λ22 0
0 0 λ33


 .

2. A matrix whose components are arranged in m rows and a single column is

called a column matrix, or column vector, and is typically denoted using bold-

face, lowercase letters, e.g., a and b.

3. A matrix whose components are arranged in n columns and a single row is

called a row matrix, or row vector, and is typically denoted as a transposed

column vector, e.g., aT and bT.

4. The identity matrix, denoted by I , is the diagonal matrix with aij = 1 for all

i = j, and aij = 0 for i 6= j. The n× n identity matrix is denoted In.

5. The elementary matrix, Eij , is defined differently in different contexts:

(a) Elementary matrices have the form Eij = eie
T
j . Hence, A =∑

i

∑
j aijEij .

(b) In Gaussian elimination, the matrix that subtracts a multiple l of row j
from row i is called Eij , with 1’s on the diagonal and the number −l in

row i column j. For example:

E31 =




1 0 0 0
0 1 0 0
−5 0 1 0
0 0 0 1


 .

(c) Elementary matrix are also written as E = I − αuvT, where I is the

identity matrix, α is a scalar, and u and v are vectors of the same dimen-

sion. In this context, the elementary matrix is referred to as a rank one

modification of an identity matrix.
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6. A matrix with all components above the principal diagonal equal to zero is

called a lower triangular matrix. For example:

A =



a11 0 0
a21 a22 0
a31 a32 a33


 is lower triangular.

7. A matrix with all components below the principal diagonal equal to zero is

called an upper triangular matrix. (The transpose of a lower triangular matrix

is an upper triangular matrix.)

8. A matrix A = (aij) has lower bandwidth p if aij = 0 whenever i > j+ p and

upper bandwidth q if aij = 0 whenever j > i + q. When they are equal, they

are the bandwidth of A. A diagonal matrix has bandwidth 0. A tridiagonal

matrix has bandwidth 1. An upper (resp. lower) triangular matrix has upper

(resp. lower) bandwidth of n− 1 (resp. m− 1).

9. An m× n matrix A with orthonormal columns has the propertyATA = I .

10. A square matrix is called symmetric if A = AT.

11. A square matrix is called skew symmetric if AT = −A.

12. A square matrix is called idempotent if AA = A2 = A.

13. A square matrix is called Hermitian if A = AH. A square matrix A is called

skew-Hermitian if AH = −A. All real symmetric matrices are Hermitian.

14. A square matrix is called unitary if AHA = I . A real unitary matrix is orthog-

onal. All eigenvalues of a unitary matrix have an absolute value of one.

15. A square matrix is called a permutation matrix if its columns are a permutation

of the columns of I . A permutation matrix is orthogonal.

16. A square matrix is called a projection matrix if it is both Hermitian and idem-

potent: AH = A2 = A.

17. A square matrix is called normal if AHA = AAH. The following matrices are

normal: diagonal, Hermitian, unitary, skew-Hermitian.

The pseudospectrum of a matrix A is the collection of eigenvalues of all ma-

trices which are “ǫ-close to A”; that is:

(λ | (A+ E)x = λx, for some matrix E with||E|| ≤ ǫ)

The pseudospectra are useful for understanding non-normal operators.

18. A square matrix is called nilpotent to index k if Ak = 0 but Ak−1 6= 0. The

eigenvalues of a nilpotent matrix are all zero.

19. A square matrix, whose elements are constant along each diagonal, is called

a Toeplitz matrix. Toeplitz matrices are symmetric about a diagonal extend-

ing from the upper right-hand corner element to the lower left-hand corner

element. This type of symmetry is called persymmetry. Example Toeplitz

matrices:

A =



a d e
b a d
c b a


 and M =




4 0 1
−11 4 0
3 −11 4
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20. A square matrix Q with orthonormal columns is said to be orthogonal. It

follows directly that the rows of Q must also be orthonormal, so that QQT =
QTQ = I , or QT = Q−1. The determinant of an orthogonal matrix is ±1.

A rotation matrix is an orthogonal matrix whose determinant is equal to +1.

21. A Vandermonde matrix is a square matrix V ∈ R
(n+1)×(n+1) in which each

column contains unit increasing powers of a single matrix value:

V =




1 1 · · · 1
v1 v2 · · · v(n+1)

v21 v22 · · · v2(n+1)

...
...

...

vn1 vn2 · · · vn(n+1)



. (2.4.1)

22. A square matrix U is said to be in upper Hessenberg form if uij = 0 whenever

i > j+1. An upper Hessenberg matrix is essentially an upper triangular matrix

with an extra non-zero element immediately below the main diagonal entry in

each column of U . For example,

U =




u11 u12 u13 u14
b21 u22 u23 u24
0 b32 u33 u34
0 0 b43 u44


 is upper Hessenberg.

23. A circulant matrix is an n× n matrix of the form

C =




c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3

...
...

c1 c2 c3 · · · cn−1 c0



, (2.4.2)

where the components cij are such that (j − i) = k mod n have the same

value ck. These components comprise the kth stripe of C.

24. If a rotation is defined by the matrix A =
[
a11 a12 a13
a21 a22 a23
a31 a32 a33

]
then its fixed axis of

rotation is given by v = i(a23 − a32) + j(a31 − a13) + k(a12 − a21).
25. A Givens rotation is defined as a rank two correction to the identity matrix

given by

G(i, k, θ) =




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · s · · · 0
...

...
. . .

...
...

0 · · · −s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




i

k

i k

(2.4.3)
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where c = cos θ and s = sin θ for some angle θ. Pre-multiplication by

G(i, k, θ)T induces a counterclockwise rotation of θ radians in the (i, k) plane.

For x ∈ R
n and y = G(i, k, θ)Tx, the components of y are given by

yj =





cxi − sxk, for j = i

sxi + cxk, for j = k

xj , for j 6= i, k.

(2.4.4)

26. If the sum of the components of each column of a matrix A ∈ R
n×n equals

one, then A is called a Markov matrix.

27. A Householder transformation, or Householder reflection, is an n× n matrix

H of the formH = I− (2uuT)/(uTu), where the Householder vector u ∈ Rn

is non-zero.

28. A principal sub-matrix of a symmetric matrix A is formed by deleting rows

and columns ofA simultaneously, e.g., row 1 and column 1; row 9 and column

9, etc.

2.4.3 HADAMARD MATRICES

A Hadamard matrix of order n is an n × n matrix H with entries ±1 such that

HHT = nIn. In order for a Hadamard matrix to exist, n must be 1, 2, or a mul-

tiple of 4. It is conjectured that this condition is also sufficient. If H1 and H2 are

Hadamard matrices, then so is the Kronecker productH1 ⊗H2.

Without loss of generality, a Hadamard matrix can be assumed to have a first

row and column consisting of all +1s.

For the constructs below, we use either “−” to denote−1 or � to denote +1.

n = 2 n = 4 n = 8

[
1 1
1 −

]




1 1 1 1
1 − 1 −
1 1 − −
1 − − 1









1 1 1 1 1 1 1 1
1 − 1 − 1 − 1 −
1 1 − − 1 1 − −
1 − − 1 1 − − 1
1 1 1 1 − − − −
1 − 1 − − 1 − 1
1 1 − − − − 1 1
1 − − 1 − 1 1 −





n = 4 n = 8 n = 12 n = 16
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2.4.4 MATRIX ADDITION AND MULTIPLICATION

1. Two matrices A and B can be added (subtracted) if they are of the same di-

mension. The result is a matrix of the same dimension.

EXAMPLE

A2×3 +B2×3 =

[
3 2 −1
4 0 9

]
+

[
11 −2 3
0 1 1

]
=

[
14 0 2
4 1 10

]
.

2. Multiplication of a matrix or a vector by a scalar is achieved by multiplying

each component by that scalar. If B = αA, then bij = αaij .

3. The matrix multiplication AB is only defined if the number of columns of A
is equal to the number of rows of B.

4. The multiplication of two matricesAm×n and Bn×q results in a matrix Cm×q

whose components are defined as

cij =

n∑

k=1

aikbkj (2.4.5)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , q. Each cij is the result of the inner (dot)

product of the ith row of A with the j th column of B.







ith row of A







jth column of B

=







ijth element of C

This rule applies similarly for matrix multiplication involving more than two

matrices. If ABCD = E then

eij =
∑

k

∑

l

∑

m

aikbklclmdmj . (2.4.6)

The second subscript for each matrix component must coincide with the first

subscript of the next one.

EXAMPLE

[
2 −1 3
−4 1 4

] 


5 −3 −3
2 2 −1
−7 1 5



 =

[
−13 −5 10
−46 18 31

]
.

5. Multiplication of rows times matrices and matrices times columns can be il-

lustrated as follows:





[ ]

=





 and

[ ] [ ]
=
[ ]
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6. In general, matrix multiplication is not commutative: AB 6= BA.

7. Matrix multiplication is associative: A(BC) = (AB)C.

8. The distributive law of multiplication and addition holds: C(A+B) = CA+
CB and (A+B)C = AC +BC.

9. Both the transpose operator and the Hermitian operator reverse the order of

matrix multiplication: (ABC)T = CTBTAT and (ABC)H = CHBHAH.

10. Strassen algorithm: The matrix product

[
a11 a12
a21 a22

] [
b11 b12
b21 b22

]
=

[
c11 c12
c21 c22

]

can be computed in the following way:

m1 = (a12 − a22)(b21 + b22),

m2 = (a11 + a22)(b11 + b22),

m3 = (a11 − a21)(b11 + b12),

m4 = (a11 + a12)b22,

m5 = a11(b12 − b22),
m6 = a22(b21 − b11),
m7 = (a21 + a22)b11,

c11 = m1 +m2 −m4 +m6,

c12 = m4 +m5,

c21 = m6 +m7, and

c22 = m2 −m3 +m5 −m7.

This computation uses 7 multiplications and 18 additions and subtractions.

Using this formula recursively allows multiplication of two n × n matrices

using O(nlog2 7) = O(n2.807...) scalar multiplications. Improved algorithms

can achieve O(n2.376...).
11. The order in which matrices are grouped for multiplication changes the

number of scalar multiplications required. The number of scalar multi-

plications needed to multiply matrix Xa×b by matrix Yb×c is abc, with-

out using clever algorithms such as Strassen’s. Consider the product P =
A10×100B100×5C5×50. The groupingP = ((AB)C) requires (10×100×5)+
(10 × 5 × 50) = 7, 500 scalar multiplications. The grouping P = (A(BC))
requires (10× 100× 50) + (100× 5× 50) = 75,000 scalar multiplications.

12. Pre-multiplication by a diagonal matrix scales the rows




d11 0 · · · 0
0 d22 0
...

0 0 dnn







a11 · · · a1m
a21 · · · a2m

...
. . .

...

an1 · · · anm


 =




d11a11 · · · d11a1m
d22a21 · · · d22a2m

...
. . .

...

dnnan1 · · · dnnanm




13. Post-multiplication by a diagonal matrix scales the columns




a11 · · · a1m
a21 · · · a2m

...
. . .

...

an1 · · · anm







d11 0 · · · 0
0 d22 0
...

0 0 dmm


 =




d11a11 · · · dmma1m
d11a21 · · · dmma2m

...
. . .

...

d11an1 · · · dmmanm
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2.4.5 DETERMINANTS

1. The determinant of a square matrix A, denoted by |A| or det(A) or detA, is

a scalar function of A defined as

det(A) = det




a11 a12 · · · a1n
a21 a22 · · · a2n

...
... . . .

...

an1 an2 · · · ann


 =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣

=
∑

σ

sgn(σ)a1,σ(1) a2,σ(2) · · · an,σ(n)

=
∑

(−1)δa1i1a2i2 · · · anin

(2.4.7)

where the sum is taken either

(a) over all permutationsσ of {1, 2, . . . , n} and the signum function, sgn(σ),
is (−1) raised to the power of the number of successive transpositions

required to change the permutation σ to the identity permutation; or

(b) over all permutations i1 6= i2 6= · · · 6= in, and δ denotes the number of

transpositions necessary to bring the sequence (i1, i2, . . . , in) back into

the natural order (1, 2, . . . , n).

2. For a 2× 2 matrix, | a11 a12
a21 a22 | = a11a22 − a12a21.

For a 3× 3 matrix,

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33.

(2.4.8)

3. The determinant of the identity matrix is one.

4. Note that |A| |B| = |AB| and |A| = |AT|.
5. Interchanging two rows (or columns) of a matrix changes the sign of its

determinant.

6. A determinant does not change its value if a linear combination of other rows

(or columns) is added to or subtracted from any given row (or column).

7. Multiplying an entire row (or column) of A by a scalar γ causes the determi-

nant to be multiplied by the same scalar γ.

8. For an n× n matrix A, |γA| = γn|A|.
9. If det (A) = 0, then A is singular; if det (A) 6= 0, then A is non-singular or

invertible.

10. det (A−1) = 1/ det (A).
11. When the edges of a parallelepiped P are defined by the rows (or columns)

of A, the absolute value of the determinant of A measures the volume of P .

Thus, if any row (or column) of A is dependent upon another row (or column)

of A, the determinant of A equals zero.
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12. The cofactor of a square matrixA, cofij(A), is the determinant of a sub-matrix

obtained by striking the ith row and the j th column ofA and choosing a positive

(negative) sign if (i+ j) is even (odd).

EXAMPLE

cof23




2 4 3
6 1 5
−2 1 3



 = (−1)2+3

∣∣∣∣
2 4
−2 1

∣∣∣∣ = −(2 + 8) = −10. (2.4.9)

13. Let aij denote the components of A and aij those of A−1. Then,

aij = cofji(A)/|A|. (2.4.10)

14. Partitioning of determinants: Let A = [B C
D E ]. Assuming all inverses exist,

then

|A| = |E|
∣∣(B − CE−1D)

∣∣ = |B|
∣∣(E −DB−1C)

∣∣ . (2.4.11)

15. Laplace development: The determinant of A is a combination of row i (col-

umn j) and the cofactors of row i (column j), i.e.,

|A| = ai1cofi1(A) + ai2cofi2(A) + · · ·+ aincofin(A),

= a1jcof1j(A) + a2jcof2j(A) + · · ·+ anjcofnj(A),
(2.4.12)

for any row i or any column j.
16. Omitting the signum function in Equation (2.4.7) yields the definition of per-

manent of A, given by perA =
∑

σ a1,σ(1) · · · an,σ(n). Properties of the per-

manent include:

(a) If A is an m× n matrix and B is an n×m matrix, then

|per(AB)|2 ≤ per(AAH) per(BHB). (2.4.13)

(b) If P and Q are permutation matrices, then perPAQ = perA.

(c) If D and G are diagonal matrices, then perDAG = perD perAperG.

(d) Computation of the permanent is #P-complete.

2.4.6 TRACES

1. The trace of an n × n matrix A, usually denoted as tr(A), is defined as the

sum of the n diagonal components of A.

2. The trace of an n× n matrix A equals the sum of the n eigenvalues of A, i.e.,

trA = a11 + a22 + · · ·+ ann = λ1 + λ2 + · · ·+ λn.

3. The trace of a 1× 1 matrix, a scalar, is itself.

4. If A ∈ R
m×k and B ∈ R

k×m, then tr(AB) = tr(BA).
5. If A ∈ Rm×k, B ∈ Rk×r, and C ∈ Rr×m, then tr(ABC) = tr(BCA) =

tr(CAB). For example, if B = b is a column vector and C = cT is a row

vector, then tr(AbcT) = tr(bcTA) = tr(cTAb).
6. tr(A+ γB) = tr(A) + γ tr(B), where γ is a scalar.

7. tr(AB) = (VecAT)T VecB (see Section 2.4.18 for the Vec operation)
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2.4.7 MATRIX NORMS

1. The mapping g : Rm×n ⇒ R is a matrix norm if g satisfies the same three

properties as a vector norm:

(a) g(A) ≥ 0 for all A and g(A) = 0 if and only if A ≡ 0, so that (in norm

notation) ‖A‖ > 0 for all non-zeroA.

(b) For two matrices A,B ∈ R
m×n, g(A + B) ≤ g(A) + g(B), so that

‖A+B‖ ≤ ‖A‖+ ‖B‖.
(c) g(rA) = |r|g(A), where r ∈ R, so that ‖γA‖ = |γ| ‖A‖.

2. The most common matrix norms are the Lp norms and the Frobenius norm.

3. The Lp norm of a matrix A is the number defined by

‖A‖p = sup
x6=0

‖Ax‖p
‖x‖p

(2.4.14)

where ‖·‖p represents one of the Lp (vector) norms with p = 1, 2, or∞.

(a) The L1 norm of Am×n is defined as ‖A‖1 = max1≤j≤n

∑m
i=1 |aij |.

(b) The L2 norm of A is the square root of the greatest eigenvalue of ATA,

(i.e., ‖A‖22 = λmax(A
TA)), which is the same as the largest singular

value of A, ‖A‖2 = σ1(A).

(c) The L∞ norm is defined as ‖A‖∞ = max1≤i≤m

∑n
j=1 |aij |.

4. The Frobenius or Hilbert–Schmidt norm of a matrix A is the number

‖A‖F =

√√√√
m∑

i=1

n∑

j=1

|aij |2 (2.4.15)

which satisfies ‖A‖2F = tr(ATA). Since R
m×n is isomorphic to R

mn, the

Frobenius norm can be interpreted as the L2 norm of an nm×1 column vector

in which each column of A is appended to the next in succession.

5. When A is symmetric, then ‖A‖2 = maxj |λj |, where {λj} are the eigenval-

ues of A.

6. The following properties hold:

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n ‖A‖1 ,

max
i,j
|aij | ≤ ‖A‖2 ≤

√
mn max

i,j
|aij |, and

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m ‖A‖∞ .

(2.4.16)

7. The matrix p norms satisfy the additional property of consistency, defined as

‖AB‖p ≤ ‖A‖p ‖B‖p.

8. The Frobenius norm is compatible with the vector 2 norm, i.e., ‖Ax‖F ≤
‖A‖F ‖x‖2. Additionally, the Frobenius norm satisfies the condition ‖A‖2 ≤
‖A‖F ≤

√
n ‖A‖2.
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2.4.8 SINGULARITY, RANK, AND INVERSES

1. An n × n matrix A is called singular if there exists a vector x 6= 0 such that

Ax = 0 or ATx = 0. (Note that x = 0 means that all components of x are

zero). If a matrix is not singular, it is called non-singular. (This is consistent

with note 17 on page 77.)

2. (AB)−1 = B−1A−1, provided all inverses exist.

3. (A−1)T = (AT)−1.

4. (γA)−1 = (1/γ)A−1.

5. If Dw is a diagonal matrix, then D−1
w = D1/w.

EXAMPLE If Dw =

[
w11 0
0 w22

]
then D−1

w = D1/w =

[ 1
w11

0

0 1
w22

]
.

6. Partitioning: Let A = [ B C
D E ]. Assuming that all inverses exist, then A−1 =

[X Y
Z U ], where

X = (B − CE−1D)−1, U = (E −DB−1C)−1,

Y = −B−1CU, Z = −E−1DX.

7. The inverse of a 2× 2 matrix is as follows (defined when ad 6= bc):
[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]

8. If A and B are both invertible, then

(A+ B)−1 = B−1
(
A−1 +B−1

)−1
A−1 = A−1

(
A−1 +B−1

)−1
B−1.
(2.4.17)

9. The row rank of a matrix A is defined as the number of linearly independent

rows of A. Likewise, the column rank equals the number of linearly indepen-

dent columns of A. For any matrix, the row rank equals the column rank.

10. If A ∈ R
n×n has rank of n, then A is said to have full rank.

11. A square matrix is invertible if and only if it has full rank.

12. Rank(AB) ≤ min [rank(A), rank(B)].
13. Rank(ATA) = rank(AAT) = rank(A).

2.4.9 SYSTEMS OF LINEAR EQUATIONS

1. Suppose that A is a matrix. Then Ax = b is a system of linear equations. If A
is square and non-singular, there exists a unique solution x = A−1b.

2. For the linear system of equations involvingn variables andm equations, writ-

ten as Ax = b or

a11x1 + a12x2 + · · ·+ a1mxm = b1,

a21x1 + a22x2 + · · ·+ a2mxm = b2,

...

an1x1 + an2x2 + · · ·+ anmxm = bn,

(2.4.18)
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the possible outcomes when searching for a solution are:

(a) A unique solution exists, and the system is called consistent.

(b) No such solution exists and the system is called inconsistent.

(c) Multiple solutions exist, the system has an infinite number of solutions,

and the system is called undetermined.

3. The solvability cases of the linear systems Ax = b (when A is m× n) are:

(a) If rank(A) = m = n, then there is a unique solution.

(b) If rank(A) = m < n, then there is an exact solution with free parameters.

(c) If rank(A) = n < m, then either there is a unique solution, or there is a

unique least squares solution.

(d) If rank(A) < m < n, or rank(A) < n < m, or rank(A) < n = m:

then either there is an exact solution with free parameters, or there are

non-unique least squares solutions.

4. Fredholm’s alternative Either Ax = b has a solution or yTA = 0 has a

solution with yTb 6= 0.

5. If the system of equations Ax = b is underdetermined, then we may find the

x that minimizes ‖Ax− b‖p for some p.

EXAMPLE IfA =
[
1 1 1

]T
and b =

[
b1 b2 b3

]T
with b1 ≥ b2 ≥ b3 ≥ 0

then the minimum of ‖Ax− b‖p in different norms is given by:

p = 1 ⇒ xoptimal = b2

p = 2 ⇒ xoptimal = (b1 + b2 + b3)/3

p =∞ ⇒ xoptimal = (b1 + b3)/2

(2.4.19)

6. For the system of linear equations Ax = b (with A square and non-singular),

the sensitivity of the solution x to perturbations in A and b is given in terms of

the condition number of A defined by

cond(A) =
∥∥A−1

∥∥ ‖A‖ . (2.4.20)

where ‖·‖ is any of the Lp norms. In all cases, cond(A) ≥ 1.

When cond(A) is equal to one, A is said to be perfectly conditioned. Matrices

with small condition numbers are called well-conditioned. If cond(A) is large,

then A is called ill-conditioned.

7. For the system of equations (A+ ǫF )x(ǫ) = (b+ ǫf), the solution satisfies

‖x(ǫ)− x(0)‖
‖x(0)‖ ≤ cond(A)

(
ǫ
‖F‖
‖A‖ + ǫ

‖f‖
‖b‖

)
+O(ǫ2). (2.4.21)

8. WhenA is singular, the definition of condition number is modified slightly, in-

corporating the pseudo-inverse ofA, and is defined by cond(A) = ‖A+‖ ‖A‖
(see page 91).

9. The size of the determinant of a square matrixA is not related to the condition

number of A. For example, the n× n matrices below have κ∞(Bn) = n2n−1

and det(Bn) = 1; κp(Dn) = 1 and det(Dn) = 10−n.

Bn =




1 −1 ... −1
0 1 −1

...
. . .

0 0 1


 , Dn = diag(10−1, . . . , 10−1).
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10. Let A = (aij) be an n× n matrix. Using the L2 condition number, condA =
maxj |λj(A)| /mini |λi(A)|:

Matrix An×n = (aij) Condition number

A is orthogonal cond (A) = 1

aij =
√
2/(n+ 1) sin(ijπ/(n+ 1)) cond (A) = 1

aij = nδij + 1 cond (A) = 2

aij = (i+ j)/p, n = p− 1, p a prime cond (A) =
√
n+ 1

The circulant whose first row is (1, 2, . . . , n) cond (A) ∼ n

aij =

{
i/j if i ≤ j
j/i if i > j

cond (A) ∼ cn1+ǫ,

0 ≤ ǫ ≤ 1

aij =





−2 if i = j

1 if |i− j| = 1

0 if |i− j| ≥ 2

cond (A) ∼ 4n2

π2

aij = 2min(i, j)− 1 cond (A) ∼ 16n2/π2

aij = (i+ j − 1)−1 (Hilbert matrix)
log cond (A) ∼ Kn,

K ≈ 3.5

2.4.10 MATRIX EXPONENTIALS

1. Matrix exponentiation is defined as (the series always converges):

eAt = I +At+
(At)2

2!
+

(At)3

3!
+ · · · . (2.4.22)

2. Common properties of matrix exponentials are:

(a)
(
eAs
) (

eAt
)
= eA(s+t),

(b)
(
eAt
) (

e−At
)
= I ,

(c) d
dte

At = AeAt,

(d) When A and B are square matrices, the commutator of A and B is

C = [B,A] = BA − AB. Then e(A+B) = eAeBeC/2 provided that

[C,A] = [C,B] = 0 (i.e., each of A and B commute with their commu-

tator). In particular, if A and B commute then eA+B = eAeB.

3. For a matrix A ∈ R
n×n, the determinant of eAt is given by:

det
(
eAt
)
= eλ1teλ2t · · · eλnt = etr(At). (2.4.23)

4. The diagonalization of eAt, when A is diagonalization, is given by eAt =
SeDtS−1 where the columns of S consist of the eigenvectors of A, and the

entries of the diagonal matrix D are the corresponding eigenvalues of A, that

is, A = SDS−1.



“smtf32” — 2011/5/20 — 2:09 — page 90 — #100

90 CHAPTER 2. ALGEBRA

2.4.11 LINEAR SPACES AND LINEAR MAPPINGS

1. A subspace is the space generated by linear combinations of any set of rows

or set of columns of a real matrix.

2. Let R(A) andN(A) denote, respectively, the range space and null space of an

m× n matrix A. They are defined by:

R(A) = {y | y = Ax; for some x ∈ R
n} ,

N(A) = {x ∈ R
n | Ax = 0} . (2.4.24)

3. The projection matrix, onto a subspace S, denoted PS , is the unique square

matrix possessing the three properties:

(a) PS = P T
S ;

(b) P 2
S = PS (the projection matrix is idempotent);

(c) The vector bS lies in the subspace S if and only if bS = PSv for some

vector v. In other words, bS can be written as a linear combination of the

columns of PS .

4. When the m× n matrix A (with n ≤ m) has rank n, the projection of A onto

the subspaces of A is given by:

PR(A) = A(ATA)−1AT,

PR(AT) = I,

PN(AT) = I −A(ATA)−1AT.

(2.4.25)

WhenA is of rankm, the projection of A onto the subspaces ofA is given by:

PR(A) = I,

PR(AT) = AT(AAT)−1A,

PN(A) = I −AT(AAT)−1A.

(2.4.26)

5. When A is not of full rank, the matrix AÃ satisfies the requirements for a

projection matrix. The matrix Ã is the coefficient matrix of the system of

equations x+ = Ãb, generated by the least squares problem min ‖b−Ax‖22.

Thus,

PR(A) = AÃ,

PR(AT) = ÃA,

PN(A) = I − ÃA,
PN(AT) = I −AÃ.

(2.4.27)

6. A matrix B ∈ Rn×n is called similar to a matrix A ∈ Rn×n if B = T−1AT
for some non-singular matrix T .

7. If B is similar to A, then B has the same eigenvalues as A.

8. If B is similar to A and if x is an eigenvector of A, then y = T−1x is an

eigenvector of B corresponding to the same eigenvalue.
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2.4.12 GENERALIZED INVERSES

1. Every matrixA (singular or non-singular, rectangular or square) has a general-

ized inverse, or pseudo-inverse,A+ defined by the Moore–Penrose conditions:

AA+A = A,

A+AA+ = A+,

(AA+)T = AA+,

(A+A)T = A+A.

(2.4.28)

2. There is a unique pseudo-inverse satisfying the conditions in (2.4.28). If (and

only if) A is square and non-singular, then A+ = A−1.

3. If A is a rectangularm×n matrix of rank n, with m > n, thenA+ is of order

n × m and A+A = I ∈ Rn×n. In this case A+ is called a left inverse, and

AA+ 6= I .

4. IfA is a rectangularm×nmatrix of rankm, withm < n, thenA+ is of order

n×m and AA+ = I ∈ R
m×m. In this case A+ is called a right inverse, and

A+A 6= I .

5. For a square singular matrix A, AA+ 6= I , and A+A 6= I .

6. The matrices AA+ and A+A are idempotent.

7. The least squares problem is to find the x that minimizes ‖y−Ax‖2. The x of

least norm is x = A+y.

8. The pseudo-inverse is ill-conditioned with respect to rank changing perturba-

tions. For example
([

1 −1
2 −2

]
+ ǫ

[
1 0
0 2

])+

=
1

ǫ2

[
−1 1

2
−1 1

2

]
+

1

ǫ

[
1 0
0 1

2

]
.

9. Computing the pseudo-inverse: The pseudo-inverse of Am×n can be deter-

mined by the singular value decompositionA = UΣV T. If A has rank r > 0,

then Σm×n has r positive singular values (σi) along the main diagonal extend-

ing from the upper left-hand corner and the remaining components of Σ are

zero. Then A+ = (UΣV T)+ = (V T)+Σ+U+ = V Σ+UT since (V T)+ = V
and U+ = UT because of their orthogonality. The components σ+

i in Σ+ are

σ+
i =

{
1/σi, if σi 6= 0 ;

0, if σi = 0.
(2.4.29)

10. Computing the pseudo-inverse: Let Am×n be of rank r. Select r rows and

r columns which form a basis of A. Then compute the pseudo-inverse of

A as follows: invert the regular r × r matrix and place the inverse (without

transposing) into the r rows corresponding to the column numbers and the r
columns corresponding to the row numbers of the basis, and place zero into

the remaining component positions. For example, if A is of order 5 × 4 and

rank 3, and if rows 1, 2, 4 and columns 2, 3, 4 are selected as a basis ofA, then

A+ will be of order 4× 5 and will contain the inverse components of the basis

in rows 2, 3, 4 and column 1, 2, 4, and zeros elsewhere.



“smtf32” — 2011/5/20 — 2:09 — page 92 — #102

92 CHAPTER 2. ALGEBRA

2.4.13 EIGENSTRUCTURE

1. If A is a square n × n matrix, then the nth degree polynomial defined by

det (A− λI) = 0 is called the characteristic polynomial, or characteristic

equation of A.

2. The n roots (not necessarily distinct) of the characteristic polynomial are

called the eigenvalues (or characteristic roots) of A. Therefore, the values,

λi, i = 1, . . . , n, are eigenvalues if and only if |A− λiI| = 0.

3. The characteristic polynomial det (A− λI) =∑n
i=0 riλ

i has the properties

rn = (−1)n,
rn−1 = −rn tr(A),

rn−2 = −1

2

[
rn−1 tr(A) + rn tr(A2)

]
,

rn−3 = −1

3

[
rn−2 tr(A) + rn−1 tr(A

2) + rn tr(A
3)
]
,

...

r0 = − 1

n

[
n∑

p=1

rp tr(A
p)

]
.

4. Each eigenvalue λ has a corresponding eigenvector x (different from 0) that

solves the system Ax = λx, or (A− λI)x = 0.

5. If x solves Ax = λx, then so does γx, where γ is an arbitrary scalar.

6. Cayley–Hamilton theorem: Any matrix A satisfies its own characteristic

equation. That is
∑n

i=0 riA
i = 0.

7. If A is a real matrix with positive eigenvalues, then

λmin(AA
T) ≤ [λmin(A)]

2 ≤ [λmax(A)]
2 ≤ λmax(AA

T), (2.4.30)

where λmin denotes the smallest and λmax the largest eigenvalue.

8. If all the eigenvalues of a real symmetric matrix are distinct, then their associ-

ated eigenvectors are also distinct (linearly independent).

9. The determinant of a matrix is equal to the product of the eigenvalues. That is,

if A has the eigenvalues λ1, λ2, . . . , λn, then det (A) = λ1λ2 · · ·λn.

10. The following table shows the eigenvalues of specific matrices

matrix eigenvalues

diagonal matrix diagonal elements

upper or lower triangular diagonal elements

A is n× n and nilpotent 0 (n times)

A is n× n and idempotent of rank r 1 (r times); and 0 (n− r times)

(a− b)In + bJn, where Jn is the

n× n matrix of all 1’s

a+ (n− 1)b; and a− b (n− 1
times)

11. The eigenvalues of a triangular (or diagonal) matrix are the diagonal compo-

nents of the matrix.
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12. The eigenvalues of idempotent matrices are zeros and ones.

13. Real symmetric and Hermitian matrices have real eigenvalues.

14. Let A have the eigenvalues {λ1, λ2, . . . , λn}. The eigenvalues of some func-

tions of A are shown below:

matrix eigenvalues

AT eigenvalues of A

AH complex conjugates of {λk1 , λk2 , . . . , λkn}
Ak, k an integer {λk1 , λk2 , . . . , λkn}
A−k, k an integer, A non-singular {λ−k

1 , λ−k
2 , . . . , λ−k

n }
q(A), q is a polynomial {q(λk1), q(λk2), . . . , q(λkn)}
SAS−1, S non-singular eigenvalues of A

AB, where A is m× n, B is

n×m, and m ≥ n
eigenvalues of BA; and 0 (m− n times)

2.4.14 MATRIX FACTORIZATIONS

1. Singular value decomposition (SVD): Any m × n matrix A can be written as

the product A = UΣV T, where U is an m × m orthogonal matrix, V is an

n× n orthogonal matrix, and Σ = diag(σ1, σ2, . . . , σp), with p = min (m,n)
and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. The values σi, i = 1, . . . , p, are called the

singular values of A.

(a) When rank(A) = r > 0, A has exactly r positive singular values, and

σr+1 = · · · = σp = 0.

(b) When A is a symmetric n× n matrix, then σ1 = |λ1|, . . . , σn = |λn|,
where λ1, λ2, . . . , λn are the eigenvalues of A.

(c) When A is an m × n matrix, if m ≥ n then the singular values of A
are the square roots of the eigenvalues of ATA. Otherwise, they are the

square roots of the eigenvalues of AAT.

2. Schur decomposition: If A ∈ C
n×n then A = UTUH, where U is a unitary

matrix and T is an upper triangular matrix which has the eigenvalues of A
along its diagonal.

3. QR factorization: If all the columns of A ∈ R
m×n are linearly independent,

then A can be factored as A = QR, where Q ∈ R
m×n has orthonormal

columns and R ∈ Rn×n is upper triangular and non-singular.

4. If A ∈ R
n×n is symmetric positive definite, then

A = LDLT = LD1/2D1/2LT =
(
LD1/2

)(
LD1/2

)T

= GGT (2.4.31)

where L is a lower triangular matrix and D is a diagonal matrix. The factor-

ization A = GGT is called the Cholesky factorization, and the matrix G is the

Cholesky triangle.

5. Any m× n matrix A can be factored as PA = LU , where P is a permutation

matrix, L is lower triangular, and U is upper triangular.
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2.4.15 MATRIX DIAGONALIZATION

1. If A ∈ Rn×n possesses n linearly independent eigenvectors x1, . . . , xn, then

A can be diagonalized as S−1AS = Λ = diag(λ1, . . . , λn), where the eigen-

vectors of A are chosen to comprise the columns of S.

2. If A ∈ Rn×n can be diagonalized into S−1AS = Λ, then Ak = SΛkS−1, or

Λk = S−1AkS.

3. Spectral decomposition: Any real symmetric matrix A ∈ Rn×n can be diago-

nalized into the form A = UΛUT, where Λ is the diagonal matrix of ordered

eigenvalues ofA such that λ1 ≥ λ2 ≥ · · · ≥ λn, and the columns of U are the

corresponding n orthonormal eigenvectors of A.

That is, ifA ∈ R
n×n is symmetric, then a real orthogonal matrixQ exists such

that QTAQ = diag(λ1, . . . , λn) = diagonal matrix with {λi} on the diagonal.

4. The spectral radius of a real symmetric matrixA, commonly denoted by ρ(A),
is defined as ρ(A) = max1≤i≤n |λi(A)|.

5. If A ∈ Rn×n and B ∈ Rn×n are diagonalizable, then they share a common

eigenvector matrix S if and only if AB = BA. (Not every eigenvector of A
need be an eigenvector forB, e.g., the above equation is always true ifA = I .)

6. Schur decomposition: If A ∈ Cn×n, then a unitary matrix Q ∈ Cn×n exists

such that QHAQ = D +N , where D = diag(λ1, . . . , λn) and N ∈ C
n×n is

strictly upper triangular. The matrix Q can be chosen so that the eigenvalues

λi appear in any order along the diagonal.

7. If A ∈ R
n×n possesses s ≤ n linearly independent eigenvectors, it is similar

to a matrix with s Jordan blocks (for some matrix M )

J =M−1AM =




J1
. . .

0

0 . . .

Js



,

where each Jordan block Ji is an upper triangular matrix with (a) the single

eigenvalue λi repeated ni times along the main diagonal; (b) (ni − 1) 1’s

appearing above the diagonal entries; and (c) all other components zero:

Ji =




λi 1 0
. . . 1

. . . 1

0 λi



. (2.4.32)
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2.4.16 QUADRATIC FORMS

1. For a symmetric matrixA, the map x 7→ xTAx is called a pure quadratic form.

It has the form

xTAx =
n∑

i=1

n∑

j=1

aijxixj = a11x
2
1 + a12x1x2 + a21x2x1 + · · ·+ annx

2
n.

(2.4.33)

2. For A symmetric, the gradient of xTAx/xTx equals zero if and only if x is

an eigenvector of A. Thus, the stationary values of this function (where the

gradient vanishes) are the eigenvalues of A.

3. The ratio of two quadratic forms (B non-singular) u(x) = (xTAx)/(xTBx)
attains stationary values at the eigenvalues of B−1A. In particular,

umax = λmax(B
−1A), and umin = λmin(B

−1A).

4. A matrix A is positive definite if xTAx > 0 for all x 6= 0.

5. A matrix A is positive semi-definite if xTAx ≥ 0 for all x.

6. For a real, symmetric matrix A ∈ Rn×n, the following are necessary and

sufficient conditions to establish the positive definiteness of A:

(a) All eigenvalues of A have λi > 0, for i = 1, . . . , n, and

(b) The upper-left sub-matrices of A, called the principal sub-matrices, de-

fined by A1 =
[
a11
]
,

A2 =

[
a11 a12
a21 a22

]
, . . . , An =




a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...

an1 an2 · · · ann


 ,

have det(Ak) > 0, for all k = 1, . . . , n.

7. If A is positive definite, then all of the principal sub-matrices of A are also

positive definite. Additionally, all diagonal entries of A are positive.

8. For a real, symmetric matrix A ∈ R
n×n, the following are necessary and

sufficient conditions to establish the positive semi-definiteness of A:

(a) All eigenvalues of A have λi ≥ 0, for i = 1, . . . , n,

(b) The principal sub-matrices of A have detAk ≥ 0, for all k = 1, . . . , n.

9. If A is positive semi-definite, then all of the principal sub-matrices of A are

also positive semi-definite. Additionally, all diagonal entries of A are non-

negative.

10. If the matrix Q is positive definite, then (xT − xT
0)Q

−1(x − x0) = 1 is the

equation of an ellipsoid with its center at xT
0 . The lengths of the semi-axes are

equal to the square roots of the eigenvalues of Q; see page 227.
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2.4.17 THEOREMS

1. Frobenius–Perron theorem: If A > 0 (that is, aij > 0), then there exists a

λ0 > 0 and x0 > 0 such that

(a) Ax0 = λ0x0,

(b) if λ is any other eigenvalue of A, λ 6= λ0, then |λ| < λ0, and

(c) λ0 is an eigenvalue with geometric and algebraic multiplicity equal to

one. (That is, there is no x1 6= x0 with Ax1 = λ0x1.)

2. If A ≥ 0 (i.e., aij ≥ 0), and Ak > 0 for some positive integer k, then the

results of the Frobenius–Perron theorem apply to A.

3. Courant–Fischer minimax theorem: If λi(A) denotes the ith largest eigenvalue

of a matrix A = AT ∈ Rn×n, then

λj(A) = max
Sj

min
06=x∈Sj

xTAx

xTx
j = 1, . . . , n (2.4.34)

where x ∈ Rn and Sj is a j-dimensional subspace.

From this follows Raleigh’s principle: The quotient R(x) = xTAx/xTx is

minimized by the eigenvector x = x1 corresponding to the smallest eigenvalue

λ1 of A. The minimum of R(x) is λ1, that is,

minR(x) = min
xTAx

xTx
= R(x1) =

xT
1Ax1
xT
1x

=
xT
1λ1x1
xT
1x

= λ1. (2.4.35)

4. Cramer’s rule: The j th component of x = A−1b is given by

xj =
detBj

detA
, where

Bj =



a11 a12 . . . a1,j−1 b1 a1,j+1 . . . a1n

...
...

...
...

...
...

an1 an2 . . . an,j−1 bn an,j+1 . . . ann




(2.4.36)

The vector b =
[
b1 . . . bn

]T
replaces the jth column of the matrix A to

form the matrix Bj .

5. Sylvester’s law of inertia: For a symmetric matrix A ∈ Rn×n, the matrices A
and CTAC, for C non-singular, have the same number of positive, negative,

and zero eigenvalues.

6. Gerschgorin circle theorem: Each eigenvalue of an arbitrary n × n matrix

A = (aij) lies in at least one of the circles {C1, C2, . . . , Cn} in the complex

plane, where circle Ci has center aii and radius ρi given by ρi =

n∑

j=1
j 6=i

|aij |.
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2.4.18 THE VECTOR OPERATION

The matrix Am×n can be represented as a collection of m× 1 column vectors: A =[
a1 a2 . . . an

]
. Define VecA as the matrix of size nm× 1 (i.e., a vector) by

VecA =




a1
a2
...

an


 . (2.4.37)

This operator has the following properties:

1. trAB =
(
VecAT

)T
VecB.

2. The permutation matrix U that associates VecX and VecXT (that is,

VecXT = U VecX) is given by:

U =
[
VecET

11 VecET
21 . . . VecET

n1

]
=
∑

r,s

Ers ⊗ ET
rs. (2.4.38)

3. Vec(AY B) = (BT ⊗A)VecY.
4. If A and B are both of size n× n, then

(a) VecAB = (In ⊗A)VecB.

(b) VecAB = (BT ⊗A)Vec In.

2.4.19 KRONECKER SUMS

If the matrix A = (aij) has size n × n and matrix B = (bij) has size m ×m, then

the Kronecker sum of these matrices, denoted A⊕B, is defined1 as

A⊕B = A⊗ Im + In ⊗B. (2.4.39)

The Kronecker sum has the following properties:

1. IfA has eigenvalues {λi} andB has eigenvalues {µj}, then A⊕B has eigen-

values {λi + µj}.
2. The matrix equation AX +XB = C may be equivalently written as

(BT ⊕A)VecX = VecC, where Vec is defined in Section 2.4.18.

3. eA⊕B = eA ⊗ eB .

1Note that A⊕ B is also used to denote the (m + n)× (m + n) matrix

[
A 0
0 B

]
.
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2.4.20 KRONECKER PRODUCTS

If the matrix A = (aij) has size m × n, and the matrix B = (bij) has size r × s,
then the Kronecker product (sometimes called the tensor product) of these matrices,

denoted A⊗B, is defined as the partitioned matrix

A⊗B =




a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

...

am1B am2B . . . amnB


 . (2.4.40)

Hence, the matrix A⊗B has size mr × ns.

EXAMPLE If A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
, then

A⊗B =

[
a11B a12B
a21B a22B

]
=





a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22



 . (2.4.41)

The Kronecker product has the following properties:

1. If z and w are vectors of appropriate dimensions, then

Az⊗Bw = (A⊗B)(z⊗ w).
2. If α is a scalar, then (αA) ⊗B = A⊗ (αB) = α(A ⊗B)
3. The Kronecker product is distributive with respect to addition:

(a) (A+B)⊗ C = A⊗ C +B ⊗ C, and

(b) A⊗ (B + C) = A⊗B +A⊗ C.

4. The Kronecker product is associative: A⊗ (B ⊗ C) = (A⊗B)⊗ C.

5. (A⊗B)T = AT ⊗BT.

6. The mixed product rule: If the dimensions of the matrices are such that the

following expressions exist, then (A⊗B)(C ⊗D) = AC ⊗ BD.

7. If the inverses exist, then (A⊗B)−1 = A−1 ⊗B−1.

8. If {λi} and {xi} are the eigenvalues and the corresponding eigenvectors for

A, and {µj} and {yj} are the eigenvalues and the corresponding eigenvectors

for B, then A ⊗ B has eigenvalues {λiµj} with corresponding eigenvectors

{xi ⊗ yj}.
9. If matrix A has size n × n and B has size m × m, then det(A ⊗ B) =

(detA)m(detB)n.

10. If f is an analytic matrix function and A has size n× n, then

(a) f(In ⊗A) = In ⊗ f(A), and

(b) f(A⊗ In) = f(A)⊗ In.

11. tr(A⊗B) = (trA)(trB).
12. If A, B, C, and D are matrices with A similar to C and B similar to D, then

A⊗B is similar to C ⊗D.

13. If C(t) = A(t) ⊗B(t), then dC
dt = dA

dt ⊗B +A⊗ dB
dt .



“smtf32” — 2011/5/20 — 2:09 — page 99 — #109

2.5. ABSTRACT ALGEBRA 99

2.5 ABSTRACT ALGEBRA

2.5.1 DEFINITIONS

1. A binary operation on a set S is a function ⋆ : S × S → S.

2. An algebraic structure (S, ⋆1, . . . , ⋆n) consists of a non-empty set S with one

or more binary operations ⋆i defined on S. If the operations are understood,

then the binary operations need not be mentioned explicitly.

3. The order of an algebraic structure S is the number of elements in S, written

|S|.
4. A binary operation ⋆ on an algebraic structure (S, ⋆) may have the following

properties:

(a) Associative: a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c for all a, b, c ∈ S.

(b) Identity: there exists an element e ∈ S (identity element of S) such that

e ⋆ a = a ⋆ e = a for all a ∈ S.

(c) Inverse: a−1 ∈ S is an inverse of a if a ⋆ a−1 = a−1 ⋆ a = e.
(d) Commutative (or Abelian): if a ⋆ b = b ⋆ a for all a, b ∈ S.

5. A semigroup (S, ⋆) consists of a non-empty set S and an associative binary

operation ⋆ on S.

6. A monoid (S, ⋆) consists of a non-empty set S with an identity element and

an associative binary operation ⋆.

2.5.1.1 Examples of semigroups and monoids

1. The sets N = {0, 1, 2, 3, . . .} (natural numbers), Z = {0,±1,±2, . . .} (in-

tegers), Q (rational numbers), R (real numbers), and C (complex numbers)

where ⋆ is either addition or multiplication are semigroups and monoids.

2. The set of positive integers under addition is a semigroup but not a monoid.

3. If A is any non-empty set, then the set of all functions f : A → A where ⋆ is

the composition of functions is a semigroup and a monoid.

4. Given a set S, the set of all strings of elements of S, where ⋆ is concatenation

of strings, is a monoid (the identity is λ, the empty string).

2.5.2 GROUPS

1. A group (G, ⋆) consists of a setG with a binary operation ⋆ defined onG such

that ⋆ satisfies the associative, identity, and inverse laws. Note: The operation

⋆ is often written as + (an additive group) or as · or× (a multiplicative group).

(a) If + is used, the identity is written 0 and the inverse of a is written −a.

Usually, in this case, the group is commutative. The following notation

na = a+ . . .+ a︸ ︷︷ ︸
n times

is then used.

(b) If multiplicative notation is used, a ⋆ b is often written ab, the identity is

often written 1, and the inverse of a is written a−1.
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2. The order of a ∈ G is the smallest positive integer n such that an = 1 where

an = a · a · · ·a (n times) (or a + a+ · · ·+ a = 0 if G is written additively).

If there is no such integer, the element has infinite order. In a finite group of

order n, each element has some order k (depending on the particular element)

and it must be that k divides n.

3. (H, ⋆) is a subgroup of (G, ⋆) if H ⊆ G and (H, ⋆) is a group (using the same

binary operation as in (G, ⋆)).

4. The cyclic subgroup 〈a〉 generated by a ∈ G is the subgroup {an | n ∈ Z} =
{. . . , a−2 = (a−1)2, a−1, a0 = e, a, a2, . . .}. The element a is a generator of

〈a〉. A group G is cyclic if there is a ∈ G such that G = 〈a〉.
5. If H is a subgroup of a group G, then a left [right] coset of H in G is the set

aH = {ah | h ∈ H} [Ha = {ha | h ∈ H}] .

6. A normal subgroup of a group G is a subgroup H such that aH = Ha for all

a ∈ G.

7. A simple group is a groupG 6= {e}with onlyG and {e} as normal subgroups.

8. If H is a normal subgroup of G, then the quotient group (or factor group) of

G modulo H is the group G/H = {aH | a ∈ G}, with binary operation

aH · bH = (ab)H .

9. A finite group G is solvable if there is a sequence of subgroups G1 =
G,G2, . . . , Gk−1, with Gk = {e}, such that each Gi+1 is a normal subgroup

of Gi and Gi/Gi+1 is Abelian.

2.5.2.1 Facts about groups

1. The identity element is unique.

2. Each element has exactly one inverse.

3. Each of the equations a ⋆ x = b and x ⋆ a = b has exactly one solution,

x = a−1 ⋆ b and x = b ⋆ a−1.

4. (a−1)−1 = a.

5. (a ⋆ b)−1 = b−1 ⋆ a−1.

6. The left (respectively right) cancellation law holds in all groups: If a⋆b = a⋆c
then b = c (respectively, if b ⋆ a = c ⋆ a then b = c).

7. Lagrange’s theorem: If G is a finite group and H is a subgroup of G, then the

order of H divides the order of G.

8. Every group of prime order is Abelian and hence simple.

9. Every cyclic group is Abelian.

10. Every Abelian group is solvable.

11. Feit–Thompson theorem: All groups of odd order are solvable. Hence, all

finite non-Abelian simple groups have even order.

12. Finite simple groups are of the following types:

(a) Zp (p prime)

(b) A group of Lie type

(c) An (n ≥ 5)

(d) Sporadic groups (see table on page 113)
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2.5.2.2 Examples of groups

1. Z, Q, R, and C, with ⋆ the addition of numbers, are additive groups.

2. For n a positive integer, nZ = {nz | z ∈ Z} is an additive group.

3. Q − {0} = Q∗, R − {0} = R∗, C − {0} = C∗, with ⋆ the multiplication of

numbers, are multiplicative groups.

4. Zn = Z/nZ = {0, 1, 2, . . . , n− 1} is a group where ⋆ is addition modulo n.

5. Z∗
n = {k | k ∈ Zn, k has a multiplicative inverse (under multiplication mod-

ulo n) in Zn} is a group under multiplication modulo n. If p is prime, Z∗
p is

cyclic. If p is prime and a ∈ Z
∗
p has order (index) p − 1, then a is a primitive

root modulo p. See the tables on pages 121 and 122 for power residues and

primitive roots.

6. If (G1, ⋆1), (G2, ⋆2), . . . , (Gn, ⋆n) are groups, the (direct) product group is

(G1 × G2 × · · · × Gn, ⋆) = {(a1, a2, . . . , an) | ai ∈ Gi, i = 1, 2, . . . , n}
where ⋆ is defined by

(a1, a2, . . . , an) ⋆ (b1, b2, . . . , bn) = (a1 ⋆1 b1, a2 ⋆2 b2, . . . , an ⋆n bn).
7. All m× n matrices with real entries form a group under addition of matrices.

8. All n × n matrices with real entries and non-zero determinants form a group

under matrix multiplication.

9. All 1–1, onto functions f : S → S (permutations of S), where S is any non-

empty set, form a group under composition of functions. See Section 2.5.8.

In particular, if S = {1, 2, 3, . . . , n}, the group of permutations of S is

called the symmetric group, Sn. In Sn, each permutation can be written as

a product of cycles. A cycle is a permutation σ = (i1 i2 · · · ik), where

σ(i1) = i2, σ(i2) = i3, . . . , σ(ik) = i1. Each cycle of length greater than 1

can be written as a product of transpositions (cycles of length 2). A permuta-

tion is even (odd) if it can be written as the product of an even (odd) number of

transpositions. (Every permutation is either even or odd.) The set of all even

permutations in Sn is a normal subgroup, An, of Sn. The group An is called

the alternating group on n elements.

10. Given a regular n-gon, the dihedral group Dn is the group of all symme-

tries of the n-gon, that is, the group generated by the set of all rotations

around the center of the n-gon through angles of 360k/n degrees (where

k = 0, 1, 2, . . . , n − 1), together with all reflections in lines passing through

a vertex and the center of the n-gon, using composition of functions. Alter-

nately, Dn = {aibj | i = 0, 1; j = 0, 1, . . . , n− 1; aba−1 = b−1}.
2.5.2.3 Matrix classes that are groups

In the following, the group operation is ordinary matrix multiplication:

1. GL(n,C) all complex non-singular n× n matrices

2. GL(n,R) all real non-singular n× n matrices

3. O(n) all n× n matrices A with AAT = I , also called the

orthogonal group

4. SL(n,C) all complex n × n matrices of determinant 1, also called

the unimodular group or the special linear group

5. SL(n,R) all real n× n matrices of determinant 1

6. SO(2) rotations of the plane: matrices

[
cos θ − sin θ
sin θ cos θ

]
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2.5.3 RINGS

2.5.3.1 Definitions

1. A ring (R,+, ·) consists of a non-empty set R and two binary operations, +
and ·, such that (R,+) is an Abelian group, the operation · is associative, and

the left distributive law a(b + c) = (ab) + (ac) and the right distributive law

(a+ b)c = (ac) + (bc) hold for all a, b, c ∈ R.

2. A subset S of a ringR is a subring ofR if S is a ring using the same operations

used in R with the same unit.

3. A ringR is a commutative ring if the multiplication operation is commutative:

ab = ba for all a, b ∈ R.

4. A ring R is a ring with unity if there is an element 1 (called unity) such that

a1 = 1a = a for all a ∈ R.

5. A unit in a ring with unity is an element a with a multiplicative inverse a−1

(that is, aa−1 = a−1a = 1).

6. If a 6= 0, b 6= 0, and ab = 0, then a is a left divisor of zero and b is a right

divisor of zero.

7. A subset I of a ring (R,+, ·) is a (two-sided) ideal ofR if (I,+) is a subgroup

of (R,+) and I is closed under left and right multiplication by elements of R
(if x ∈ I and r ∈ R, then rx ∈ I and xr ∈ I).

8. An ideal I ⊆ R is

(a) Proper: if I 6= {0} and I 6= R
(b) Maximal: if I is proper and if there is no proper ideal properly contain-

ing I
(c) Prime: if ab ∈ I implies that a or b ∈ I
(d) Principal: if there is a ∈ R such that I is the intersection of all ideals

containing a.

9. If I is an ideal in a ring R, then a coset is a set r + I = {r + a | a ∈ I}.
10. If I is an ideal in a ring R, then the quotient ring is the ring R/I = {r + I |

r ∈ R}, where (r+ I)+ (s+ I) = (r+ s)+ I and (r+ I)(s+ I) = (rs)+ I .

11. An integral domain (R,+, ·) is a commutative ring with unity such that can-

cellations hold: if ab = ac then b = c (respectively, if ba = ca then b = c)
for all a, b, c ∈ R, where a 6= 0. (Equivalently, an integral domain is a

commutative ring with unity that has no divisors of zero.)

12. If R is an integral domain, then a non-zero element r ∈ R that is not a unit is

irreducible if r = ab implies that either a or b is a unit.

13. If R is an integral domain, a non-zero element r ∈ R that is not a unit is

a prime if, whenever r|ab, then either r|a or r|b (x|y means that there is an

element z ∈ R such that y = zx.).

14. A unique factorization domain (UFD) is an integral domain such that every

non-zero element that is not a unit can be written uniquely as the product of

irreducible elements (except for factors that are units and except for the order

in which the factor appears).

15. A principal ideal domain (PID) is an integral domain in which every ideal is a

principal ideal.



“smtf32” — 2011/5/20 — 2:09 — page 103 — #113

2.5. ABSTRACT ALGEBRA 103

16. A division ring is a ring in which every non-zero element has a multiplicative

inverse (that is, every non-zero element is a unit). (Equivalently, a division

ring is a ring in which the non-zero elements form a multiplicative group.) A

non-commutative division ring is called a skew field.

2.5.3.2 Facts about rings

1. The set of all units of a ring is a group under the multiplication defined on the

ring.

2. Every principal ideal domain is a unique factorization domain.

3. If R is a commutative ring with unity, then every maximal ideal is a prime

ideal.

4. If R is a commutative ring with unity, then R is a field if and only if the only

ideals of R are R and {0}.
5. If R is a commutative ring with unity and I 6= R is an ideal, then R/I is an

integral domain if and only if I is a prime ideal.

6. If R is a commutative ring with unity, then I is a maximal ideal if and only if

R/I is a field.

7. If f(x) ∈ F [x] (where F is a field) and the ideal generated by f(x) is not {0},
then the ideal is maximal if and only if f(x) is irreducible over F .

8. There are exactly four normed division rings, they have dimensions 1, 2, 4,

and 8. They are the real numbers, the complex numbers, the quaternions, and

the octonions. The quaternions are non-commutative and the octonions are

non-associative.

2.5.3.3 Examples of rings

1. Z (integers), Q (rational numbers), R (real numbers), and C (complex num-

bers) are rings, with ordinary addition and multiplication of numbers.

2. Zn is a ring, with addition and multiplication modulo n.

3. If
√
n is not an integer, then Z[

√
n] = {a + b

√
n | a, b ∈ Z}, where (a +

b
√
n) + (c + d

√
n) = (a + c) + (b + d)

√
n and (a + b

√
n)(c + d

√
n) =

(ac+ nbd) + (ad+ bc)
√
n is a ring.

4. The set of Gaussian integers Z[i] = {a + bi | a, b ∈ Z} is a ring, with the

usual definitions of addition and multiplication of complex numbers.

5. The polynomial ring in one variable over a ringR is the ring R[x] = {anxn +
· · · + a1x + a0 | ai ∈ R; i = 0, 1, . . . , n; n ∈ N}. (Elements of R[x] are

added and multiplied using the usual rules for addition and multiplication of

polynomials.) The degree of a polynomial anx
n+ · · ·+a1x+a0 with an 6= 0

is n. A polynomial is monic if an = 1. A polynomial f(x) is irreducible over

R if f(x) cannot be factored as a product of polynomials in R[x] of degree

less than the degree of f(x). A monic irreducible polynomial f(x) of degree

k in Zp[x] (p prime) is primitive if the order of x in Zp[x]/(f(x)) is pk − 1,

where (f(x)) = {f(x)g(x) | g(x) ∈ Zp[x]} (the ideal generated by f(x)).
For example, the polynomial x2 + 1 is

(a) Irreducible in R[x] because x2 + 1 has no real root

(b) Reducible in C[x] because x2 + 1 = (x − i)(x+ i)
(c) Reducible in Z2[x] because x2 + 1 = (x+ 1)2

(d) Reducible in Z5[x] because x2 + 1 = (x+ 2)(x+ 3)
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6. The division ring of quaternions is the ring ({a + bi + cj + dk | a, b, c, d ∈
R},+, ·), where operations are carried out using the rules for polynomial ad-

dition and multiplication and the defining relations for the quaternion groupQ
(see page 118).

7. Every octonion is a real linear combination of the unit octonions {1, e1, e2, e3,

e4, e5, e6, e7}. Their properties include: (a) e2i = −1; (b) eiej = −ejei when

i 6= j; (c) the index doubling identity: eiej = ek =⇒ e2ie2j = e2k; and

(d) the index cycling identity: eiej = ek =⇒ ei+1ej+1 = ek+1 where the

indices are computed modulo 7. The full multiplication table is as follows:
1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e4 e7 −e2 e6 −e5 −e3
e2 e2 −e4 −1 e5 e1 −e3 e7 −e6
e3 e3 −e7 −e5 −1 e6 e2 −e4 e1
e4 e4 e2 −e1 −e6 −1 e7 e3 −e5
e5 e5 −e6 e3 −e2 −e7 −1 e1 e4
e6 e6 e5 −e7 e4 −e3 −e1 −1 e2
e7 e7 e3 e6 −e1 e5 −e4 −e2 −1

8. The following table gives examples of rings with additional properties:

Ring Commuta-

tive ring

with unity

Integral

domain

Principal

ideal

domain

Euclidean

domain

Division

ring

Field

Q, R, C yes yes yes yes yes yes

Z yes yes yes yes no no

Zp (p prime) yes yes yes yes yes yes

Zn (n composite) yes no no no no no

Z[x] yes yes no no no no

Mn×n no no no no no no

2.5.4 FIELDS

2.5.4.1 Definitions

1. A field (F,+, ·) is a commutative ring with unity such that each non-zero ele-

ment of F has a multiplicative inverse (equivalently, a field is a commutative

division ring).

2. A finite field is a field that contains a finite number of elements.

3. The characteristic of a field (or a ring) is the smallest positive integer n such

that 1 + 1 + · · · + 1 = 0 (n summands). If no such n exists, the field has

characteristic 0 (or characteristic∞).

4. FieldK is an extension field of the field F if F is a subfield ofK (i.e., F ⊆ K ,

and F is a field using the same operations used in K).

2.5.4.2 Examples of fields

1. Q, R, and C with ordinary addition and multiplication are fields.

2. Zp (p a prime) is a field under addition and multiplication modulo p.

3. F [x]/(f(x)) is a field, provided that F is a field and f(x) is a non-constant

polynomial irreducible in F [x].
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2.5.5 QUADRATIC FIELDS

2.5.5.1 Definitions

1. A complex number is an algebraic integer if it is a root of a polynomial with

integer coefficients that has a leading coefficient of 1.

2. If d is a square-free integer, then Q(
√
d) = {a + b

√
d}, where a and b are

rational numbers, is called a quadratic field. If d > 0 then Q(
√
d) is a real

quadratic field; if d < 0 then Q(
√
d) is an imaginary quadratic field.

3. The integers of an algebraic number field are the algebraic integers that belong

to this number field.

4. If {α, β, γ} are integers in Q(
√
d) such that αγ = β, then we say that α

divides β; written α|β.

5. An integer ǫ in Q(
√
d) is a unit if it divides 1.

6. If α = a+ b
√
d then

(a) the conjugate of α is α = a− b
√
d.

(b) the norm of α is N(α) = αα = a2 − db2.

7. If α is an integer of Q(
√
d) and if ǫ is a unit of Q(

√
d), then the number ǫα

is an associate of α. A prime in Q(
√
d) is an integer of Q(

√
d) that is only

divisible by the units and its associates.

8. A quadratic field Q(
√
d) is a Euclidean field if, given integers α and β in

Q(
√
d) with β 6= 0, there are integers γ and δ in Q(

√
d) such that α = γβ+ δ

and |N(δ)| < |N(β)|.
9. A quadratic field Q(

√
d) has the unique factorization property if, when-

ever α is a non-zero, non-unit, integer in Q(
√
d) with α = ǫπ1π2 · · ·πr =

ǫ′π′
1π

′
2 · · ·π′

s where ǫ and ǫ′ are units, then r = s and the primes πi and π′
j can

be paired off into pairs of associates.

2.5.5.2 Facts about quadratic fields

1. The integers of Q(
√
d) are of the form

(a) a+ b
√
d, with a and b integers, if d ≡ 2 mod 4 or d ≡ 3 mod 4.

(b) a+ b
(√

d−1
2

)
, with a and b integers, if d ≡ 1 mod 4.

2. Norms are positive in imaginary quadratic fields, but not necessarily positive

in real quadratic fields. It is always true that N(αβ) = N(α)N(β).
3. If α is an integer in Q(

√
d) and N(α) is an integer that is prime, then α is

prime.

4. The number of units in Q(
√
d) is as follows:

(a) If d = −3, there are 6 units: ±1, ±−1+
√
−3

2 , and ±−1−
√
−3

2 .

(b) If d = −1, there are 4 units: ±1 and ±i.
(c) If d < 0 and d 6= −1 and d 6= −3 there are 2 units: ±1.

(d) If d > 0 there are infinitely many units. There is a fundamental unit, ǫ0,

such that all other units have the form±ǫn0 where n is an integer.

5. The quadratic field Q(
√
d) is Euclidean if and only if d is one of the following:

−11,−7,−3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.
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6. If d < 0 then the imaginary quadratic field Q

(√
d
)

has the unique factoriza-

tion property if and only if d is one of the following: −1, −2, −3, −7, −11,

−19,−43,−163.

7. Of the 60 real quadratic fields Q(
√
d) with 2 ≤ d ≤ 100, exactly 38 of them

have the unique factorization property: d = 2, 3, 5, 6, 7, 11, 13, 14, 17, 19,

21, 22, 23, 29, 31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61, 62, 67, 69, 71, 73,

77, 83, 86, 89, 93, 94, and 97.

2.5.5.3 Examples of quadratic fields

1. The algebraic integers of Q(
√
−1) are of the form a + bi where a and b are

integers; they are called the Gaussian integers.

2. The number 1+
√
2 is a fundamental unit of Q(

√
2). Hence, all units in Q(

√
2)

have the form±(1 +
√
2)n for n = 0,±1,±2, . . . .

3. The field Q
(√
−5
)

is not a unique factorization domain. This is illustrated by

6 = 2 · 3 = (1 +
√
−5) · (1−

√
−5), yet each of {2, 3, 1 +

√
−5, 1 −

√
−5}

is prime in this field.

4. The field Q
(√

10
)

is not a unique factorization domain. This is illustrated by

6 = 2 · 3 = (4 +
√
10) · (4 −

√
10), yet each of {2, 3, 4 +

√
10, 4 −

√
10} is

prime in this field.

2.5.6 FINITE FIELDS

2.5.6.1 Facts about finite fields

1. If p is prime, then the ring Zp is a finite field.

2. If p is prime and n is a positive integer, then there is exactly one field (up to

isomorphism) with pn elements. This field is denoted GF (pn) or Fpn and is

called a Galois field. (See the table on page 120.)

3. For F a finite field, there is a prime p and a positive integer n such that F has

pn elements. The prime number p is the characteristic of F . The field F is a

finite extension of Zp, that is, F is a finite dimensional vector space over Zp.

4. IfF is a finite field, then the set of non-zero elements ofF under multiplication

is a cyclic group. A generator of this group is a primitive element.

5. There are φ(pn−1)/n primitive polynomials of degree n (n > 1) overGF (p),
where φ is the Euler φ-function. (See table on page 41.)

6. There are (
∑

j|k µ(k/j)p
nj)/k irreducible polynomials of degree k over

GF (pn), where µ is the Möbius function.

7. If F is a finite field where |F | = k and p(x) is a polynomial of degree n
irreducible over F , then the field F [x]/(p(x)) has order kn. If α is a root of

p(x) ∈ F [x] of degree n ≥ 1, then F [x]/(p(x)) = {cn−1α
n−1 + · · ·+ c1α+

c0 | ci ∈ F for all i}.
8. When p is a prime, GF (pn) can be viewed as a vector space of dimension

n over Fp. A basis of Fpn of the form {α, αp, αp2

, . . . , αpn−1} is called a

normal basis. If α is a primitive element of Fpn , then the basis is said to be a

primitive normal basis. Such an α satisfies a primitive normal polynomial of

degree n over Fp.
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Degree Primitive normal polynomials

n p = 2 p = 3 p = 5

2 x2 + x+ 1 x2 + x+ 2 x2 + x+ 2
3 x3 + x2 + 1 x3 + 2x2 + 1 x3 + x2 + 2
4 x4 + x3 + 1 x4 + x3 + 2 x4 + x3 + 4x+ 2
5 x5 + x4 + x2 + x+ 1 x5 + 2x4 + 1 x5 + 2x4 + 3
6 x6 + x5 + 1 x6 + x5 + x3 + 2 x6 + x5 + 2
7 x7 + x6 + 1 x7 + x6 + x2 + 1 x7 + x6 + 2

2.5.7 HOMOMORPHISMS AND ISOMORPHISMS

2.5.7.1 Definitions

1. A group homomorphism from group G1 to group G2 is a function ϕ : G1 →
G2 such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G1. Note: aϕ is often written

instead of ϕ(a).
2. A character of a group G is a group homomorphism χ : G → C

∗ (non-zero

complex numbers under multiplication). (See table on page 121.)

3. A ring homomorphism from ring R1 to ring R2 is a function ϕ : R1 → R2

such that ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R1.

4. An isomorphism from group (ring) S1 to group (ring) S2 is a group (ring)

homomorphism ϕ : S1 → S2 that is 1-1 and onto S2. If an isomorphism

exists, then S1 is said to be isomorphic to S2. Write S1
∼= S2. (See the table

on page 112 for numbers of non-isomorphic groups and the table on page 114

for examples of groups of orders less than 16.)

5. An automorphism of S is an isomorphism ϕ : S → S.

6. The kernel of a group homomorphism ϕ : G1 → G2 is ϕ−1(e) = {g ∈
G1 | ϕ(g) = e}. The kernel of a ring homomorphism ϕ : R1 → R2 is

ϕ−1(0) = {r ∈ R1 | ϕ(r) = 0}.

2.5.7.2 Facts about homomorphisms and isomorphisms

1. If ϕ : G1 → G2 is a group homomorphism, then ϕ(G1) is a subgroup of G2.

2. Fundamental homomorphism theorem for groups: If ϕ : G1 → G2 is a

group homomorphism with kernel K , then K is a normal subgroup of G1 and

G1/K ∼= ϕ(G1).
3. If G is a cyclic group of infinite order, then G ∼= (Z,+).
4. If G is a cyclic group of order n, then G ∼= (Zn,+).
5. If p is prime, then there is only one group (up to isomorphism) of order p, the

group (Zp,+).

6. Cayley’s theorem: If G is a finite group of order n, then G is isomorphic to

some subgroup of the group of permutations on n objects.

7. Zm × Zn
∼= Zmn if and only if m and n are relatively prime.

8. If n = n1 · n2 · . . . · nk where each ni is a power of a different prime, then

Zn
∼= Zn1 × Zn2 × · · · × Znk

.

9. Fundamental theorem of finite Abelian groups: Every finite Abelian group G
(order ≥ 2) is isomorphic to a product of cyclic groups where each cyclic
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group has order a power of a prime. That is, there is a unique set {n1, . . . , nk}
where each ni is a power of some prime such thatG ∼= Zn1×Zn2×· · ·×Znk

.

10. Fundamental theorem of finitely generated Abelian groups: If G is a finitely

generated Abelian group, then there is a unique integer n ≥ 0 and a unique set

{n1, . . . , nk} where each ni is a power of some prime such that G ∼= Zn1 ×
Zn2 × · · · ×Znk

×Z
n (G is finitely generated if there are a1, a2, . . . , an ∈ G

such that every element of G can be written as aǫ1k1
aǫ2k2
· · · aǫjkj

where ki ∈
{1, . . . , n} (the ki are not necessarily distinct) and ǫi ∈ {1,−1}).

11. Fundamental homomorphism theorem for rings: If ϕ : R1 → R2 is a ring

homomorphism with kernelK , then K is an ideal in R1 and R1/K ∼= ϕ(R1).

2.5.8 PERMUTATION GROUPS

Name Symbol Order Definition

Symmetric group Sp p! All permutations on {1, 2, . . . , p}
Alternating group Ap p!/2 All even permutations on {1, 2, . . . , p}
Cyclic group Cp p Generated by (12 · · · p)
Dihedral group Dp 2p Generated by (12 · · · p) and (1p)(2 p− 1)(3 p− 2) · · ·
Identity group Ep 1 (1)(2) · · · (p) is the only permutation

EXAMPLE For p = 3 elements, the identity permutation is (123), and:

A3 = {(123), (231), (312)},
C3 = {(123), (231), (312)},
D3 = {(231), (213), (132), (321), (312), (123)},
E3 = {(123)} and

S3 = {(231), (213), (132), (321), (312), (123)}.

EXAMPLE The 16 elements in the group D8 can be illustrated as

2.5.8.1 Creating new permutation groups

Let A have permutations {Xi}, order n, degree d, let B have permutations {Yj},
orderm, degree e, and let C (a function ofA andB) have permutations {Wk}, order

p, degree f .

Name Definition Permutation Order Degree

Sum C = A+B W = X ∪ Y p = mn f = d+ e
Product C = A×B W = X × Y p = mn f = de
Composition C = A[B] W = X × Y p = mnd f = de
Power C = BA W = Y X p = mn f = ed
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2.5.8.2 Polya theory

Let π be a permutation. Define Inv (π) to be the number of invariant elements (i.e.,

mapped to themselves) in π. Define cyc (π) as the number of cycles in π. Suppose π
has b1 cycles of length 1, b2 cycles of length 2, . . . , bk cycles of length k in its unique

cycle decomposition. Then π can be encoded as the expression xb11 x
b2
2 · · ·xbkk . Sum-

ming these expressions for all permutations in the group G, and normalizing by the

number of elements in G results in the cycle index of the group G:

PG(x1, x2, . . . , xl) =
1

|G|
∑

π∈G

(
xb11 x

b2
2 · · ·xbkk

)
. (2.5.1)

1. Burnside’s lemma: Let G be a group of permutations of a set A, and let S be

the equivalence relation on A induced by G. Then the number of equivalence

classes in A is given by
1

|G|
∑

π∈G

Inv (π).

2. Special case of Polya’s theorem: Let R be an m element set of colors. Let

G be a group of permutations {π1, π2, . . . } of the set A. Let C(A,R) be the

set of colorings of the elements of A using colors in R. Then the number of

distinct colorings in C(A,R) is given by

1

|G|
[
mcyc (π1) +mcyc (π2) + . . .

]
.

3. Polya’s theorem: LetG be a group of permutations on a setA with cycle index

PG(x1, x2, . . . , xk). Let C(A,R) be the collection of all colorings of A using

colors in R. If w is a weight assignment on R, then the pattern inventory of

colorings in C(A,R) is given by

PG

(∑

r∈R

w(r),
∑

r∈R

w2(r), · · ·
∑

r∈R

wk(r)

)
.

EXAMPLES

1. Consider necklaces constructed of 2k beads. Since a necklace can be flipped over,

the appropriate permutation group is G = {π1, π2} with π1 = (1)(2) . . . (2k) and

π2 =
(
1 2k

) (
2 2k − 1

) (
3 2k − 2

)
. . .
(
k k + 1

)
. Hence, cyc (π1) = 2k,

cyc (π2) = k, and the cycle index is PG(x1, x2) =
(
x2k
1 + xk

2

)
/2. Using r colors,

the number of distinct necklaces is (r2k + rk)/2.

For a 4-bead necklace (k = 2) using r = 2 colors (sayw1 = b for “black” and w2 = w
for “white”), the (24 + 22)/2 = 10 different necklaces are {bbbb}, {bbbw}, {bbwb},
{bbww}, {bwbw}, {bwwb}, {wbbw}, {bwww}, {wbww}, and {wwww}. The pat-

tern inventory of colorings, PG(
∑

i wi,
∑

i w
2
i ) =

(
(b+ w)4 + (b2 + w2)2

)
/2 =

b4 + 2b3w + 4b2w2 + 2bw3 + w4, tells how many colorings of each type there are.
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2. Consider coloring the corners of a square. If the squares can be rotated, but not re-

flected, then the number of distinct colorings, using k colors, is 1
4

(
k4 + k2 + 2k

)
. If

the squares can be rotated and reflected, then the number of distinct colorings, using k
colors, is 1

8

(
k4 + 2k3 + 3k2 + 2k

)
.

(a) If k = 2 colors are used, then there are 6 distinct classes of colorings whether

reflections are allowed, or not. These classes are the same in both cases. The 16

colorings of a square with 2 colors form 6 distinct classes as shown:

(b) If k = 3 colors are used, then there are 21 distinct classes of colorings if reflections

are allowed, and 24 distinct classes of colorings if reflections are not allowed.

Shown below are representative elements of each of these classes:

← include these 3 for no reflections case

3. Number of distinct corner colorings of regular polygons using rotations and reflections,

or rotations only, with no more than k colors:

rotations & reflections rotations only

object k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

triangle 4 10 20 4 11 24

square 6 21 55 6 24 70

pentagon 8 39 136 8 51 208

hexagon 13 92 430 14 130 700
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4. Coloring regular 2- and 3-dimensional objects with no more than k colors:

(a) tetrahedron

i. corners of a tetrahedron 1
12

(
k6 + 3k4 + 8k2

)

ii. edges of a tetrahedron 1
12

(
k6 + 3k4 + 8k2

)

iii. faces of a tetrahedron 1
12

(
k4 + 11k2

)

(b) cube

i. corners of a cube 1
24

(
k8 + 17k4 + 6k2

)

ii. edges of a cube 1
24

(
k12 + 6k7 + 3k6 + 8k4 + 6k3

)

iii. faces of a cube 1
24

(
k6 + 3k4 + 12k3 + 8k2

)

(c) corners of a triangle

i. with rotations 1
3

(
k3 + 2k

)

ii. with rotations and reflections 1
6

(
k3 + 3k2 + 2k

)

(d) corners of a square

i. with rotations 1
4

(
k4 + k2 + 2k

)

ii. with rotations and reflections 1
8

(
k4 + 2k3 + 3k2 + 2k

)

(e) corners of an n-gon

i. with rotations 1
n

∑
d|n φ(d)k

n
d

ii. with rotations and reflections (n even)

1
2n

∑
d|n φ(d)k

n
d a+ 1

4

(
k

n
2 + k

n+2
2

)

iii. with rotations and reflections (n odd)

1
2n

∑
d|n φ(d)k

n
d + 1

2
k

n+1
2

5. The cycle index P (x1, x2, . . . ) and number of black-white colorings

of regular objects under all permutations:

(a) corners of a triangle

i. cycle index 1
6

(
x3
1 + 3x1x2 + 2x3

)

ii. pattern inventory 1b3 + 1b2w + 1bw2 + 1w3

(b) corners of a square

i. cycle index 1
8

(
x4
1 + 2x2

2x2 + 3x2
2 + 2x4

)

ii. pattern inventory 1b4 + 1b3w + 2b2w2 + 1bw3 + 1w4

(c) corners of a pentagon

i. cycle index 1
10

(
x5
1 + 4x5 + 5x1x

2
2

)

ii. pattern inventory

1b5 + 1b4w + 2b3w2 + 2b2w3 + 1bw4 + 1w5

(d) corners of a cube

i. cycle index 1
24

(
x8
1 + 6x2

4 + 9x4
2 + 8x2

1x
2
3

)

ii. pattern inventory

b8 + b7w + 3b6w2 + 3b5w3 + 7b4w4 + 3b3w5 + 3b2w6 + bw7 + w8

Note that the pattern inventory for the black-white colorings is given by

P ((b+ w), (b2 + w2), (b3 + w3), . . . ).
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2.5.9 TABLES

2.5.9.1 Number of non-isomorphic groups of different orders

The 10n+k entry is is found by looking at row n and the column k. There are 267

non-isomorphic groups with 64 elements.

0 1 2 3 4 5 6 7 8 9

0 1 1 1 2 1 2 1 5 2

1 2 1 5 1 2 1 14 1 5 1

2 5 2 2 1 15 2 2 5 4 1

3 4 1 51 1 2 1 14 1 2 2

4 14 1 6 1 4 2 2 1 52 2

5 5 1 5 1 15 2 13 2 2 1

6 13 1 2 4 267 1 4 1 5 1

7 4 1 50 1 2 3 4 1 6 1

8 52 15 2 1 15 1 2 1 12 1

9 10 1 4 2 2 1 231 1 5 2

10 16 1 4 1 14 2 2 1 45 1

11 6 2 43 1 6 1 5 4 2 1

12 47 2 2 1 4 5 16 1 2328 2

13 4 1 10 1 2 5 15 1 4 1

14 11 1 2 1 197 1 2 6 5 1

15 13 1 12 2 4 2 18 1 2 1

16 238 1 55 1 5 2 2 1 57 2

17 4 5 4 1 4 2 42 1 2 1

18 37 1 4 2 12 1 6 1 4 13

29 4 1 1543 1 2 2 12 1 10 1

20 52 2 2 2 12 2 2 2 51 1

21 12 1 5 1 2 1 177 1 2 2

22 15 1 6 1 197 6 2 1 15 1

23 4 2 14 1 16 1 4 2 4 1

24 208 1 5 67 5 2 4 1 12 1

25 15 1 46 2 2 1 56092 1 6 1

26 15 2 2 1 39 1 4 1 4 1

27 30 1 54 5 2 4 10 1 2 4

28 40 1 4 1 4 2 4 1 1045 2

29 4 2 5 1 23 1 14 5 2 1

30 49 2 2 1 42 2 10 1 9 2

31 6 1 61 1 2 4 4 1 4 1

32 1640 1 4 1 176 2 2 2 15 1

33 12 1 4 5 2 1 228 1 5 1

34 15 1 18 5 12 1 2 1 12 1

35 10 14 195 1 4 2 5 2 2 1

36 162 2 2 3 11 1 6 1 42 2

37 4 1 15 1 4 7 12 1 60 1

38 11 2 2 1 20169 2 2 4 5 1

39 12 1 44 1 2 1 30 1 2 5
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2.5.9.2 Number of non-isomorphic Abelian groups of different

orders

The 10n+ k entry is is found by looking at row n and the column k.

0 1 2 3 4 5 6 7 8 9

0 1 1 1 2 1 1 1 3 2

1 1 1 2 1 1 1 5 1 2 1

2 2 1 1 1 3 2 1 3 2 1

3 1 1 7 1 1 1 4 1 1 1

4 3 1 1 1 2 2 1 1 5 2

5 2 1 2 1 3 1 3 1 1 1

2.5.9.3 List of all sporadic finite simple groups

These are the sporadic finite simple groups that are not in any of the standard classes

(see page 100).

M11 24 · 32 · 5 · 11
M12 26 · 33 · 5 · 11
M22 27 · 32 · 5 · 7 · 11
M23 27 · 32 · 5 · 7 · 11 · 23
M24 210 · 33 · 5 · 7 · 11 · 23
J1 23 · 3 · 5 · 7 · 11 · 19
J2 27 · 33 · 52 · 7
J3 27 · 35 · 5 · 17 · 19
J4 221 · 33 · 5 · 7 · 113 · 23 · 29 · 31 · 37 · 43
HS 29 · 32 · 53 · 7 · 11
Mc 27 · 36 · 53 · 11
Suz 213 · 37 · 52 · 7 · 11 · 13
Ru 214 · 33 · 53 · 7 · 13 · 29
He 210 · 33 · 52 · 73 · 17
Ly 28 · 37 · 56 · 7 · 11 · 31 · 37 · 67
ON 29 · 34 · 5 · 73 · 11 · 19 · 31
.1 221 · 39 · 54 · 72 · 11 · 13 · 23
.2 218 · 36 · 53 · 7 · 11 · 23
.3 210 · 37 · 53 · 7 · 11 · 23

M(22) 217 · 39 · 52 · 7 · 11 · 13
M(23) 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23
M(24)′ 221 · 316 · 52 · 73 · 11 · 13 · 23 · 29
F5 215 · 310 · 53 · 72 · 13 · 19 · 31
F3 214 · 36 · 56 · 7 · 11 · 19
F2 241 · 313 · 56 · 72 · 11 · 13 · 17 · 19 · 23 · 31 · 47
F1 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
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2.5.9.4 Names of groups of small order

Order n Distinct groups of order n

1 {e}
2 C2

3 C3

4 C2 × C2, C4

5 C5

6 C6, D3

7 C7

8 C2 × C2 × C2, C2 × C4, C8, Q, D4

9 C3 × C3, C9

10 C10, D5

11 C11

12 C2 × C6, C12, A4, D6, T = C3 × C4

13 C13

14 C14, D7

15 C15

2.5.9.5 Representations of groups of small order

In all cases the identity element, {1}, forms a subgroup of order 1.

1. C2, the cyclic group of order 2

Generator: a with relation a2 = 1

1 a
1 1 a
a a 1

Elements

(a) order 2: a

Subgroups

(a) order 2: {1, a}

2. C3, the cyclic group of order 3

Generator: a with relation a3 = 1

1 a a2

1 1 a a2

a a a2 1
a2 a2 1 a

Elements

(a) order 3: a, a2

Subgroups

(a) order 3: {1, a, a2}
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3. C4, the cyclic group of order 4

Generator: a with relation a4 = 1

1 a a2 a3

1 1 a a2 a3

a a a2 a3 1
a2 a2 a3 1 a
a3 a3 1 a a2

Elements

(a) order 4: a, a3

(b) order 2: a2

Subgroups

(a) order 4:
{
1, a, a2, a3

}

(b) order 2:
{
1, a2

}

4. V , the Klein four group

Generators: a, b with relations a2 = 1, b2 = 1, ba = ab

1 a b ab

1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

Elements

(a) order 2: a, b, ab

Subgroups

(a) order 4: {1, a, b, ab}
(b) order 2: {1, a}, {1, b}, {1, ab}

5. C5, the cyclic group of order 5

Generator: a with relation a5 = 1

1 a a2 a3 a4

1 1 a a2 a3 a4

a a a2 a3 a4 1
a2 a2 a3 a4 1 a
a3 a3 a4 1 a a2

a4 a4 1 a a2 a3

Elements

(a) order 5: a, a2, a3, a4

Subgroups

(a) order 5:
{
1, a, a2, a3, a4

}

6. C6, the cyclic group of order 6

Generator: a with relation a6 = 1

1 a a2 a3 a4 a5

1 1 a a2 a3 a4 a5

a a a2 a3 a4 a5 1
a2 a2 a3 a4 a5 1 a
a3 a3 a4 a5 1 a a2

a4 a4 a5 1 a a2 a3

a5 a5 1 a a2 a3 a4

Elements

(a) order 6: a, a5

(b) order 3: a2, a4

(c) order 2: a3

Subgroups

(a) order 6:
{
1, a, a2, a3, a4, a5

}

(b) order 3:
{
1, a2, a4

}

(c) order 2:
{
1, a3

}
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7. S3, the symmetric group on three elements

Generators: a, b with relations a3 = 1, b2 = 1, ba = a−1b
1 a a2 b ab a2b

1 1 a a2 b ab a2b
a a a2 1 ab a2b b
a2 a2 1 a a2b b ab
b b a2b ab 1 a2 a
ab ab b a2b a 1 a2

a2b a2b ab b a2 a 1

Elements

(a) order 3: a, a2

(b) order 2: b, ab, a2b

Subgroups

(a) order 6:
{
1, a, a2, b, ab, a2b

}
(is a normal subgroup)

(b) order 3:
{
1, a, a2

}
(is a normal subgroup)

(c) order 2: {1, b}, {1, ab},
{
1, a2b

}

8. C7, the cyclic group of order 7

Generator: a with relation a7 = 1

1 a a2 a3 a4 a5 a6

1 1 a a2 a3 a4 a5 a6

a a a2 a3 a4 a5 a6 1
a2 a2 a3 a4 a5 a6 1 a
a3 a3 a4 a5 a6 1 a a2

a4 a4 a5 a6 1 a a2 a3

a5 a5 a6 1 a a2 a3 a4

a6 a6 1 a a2 a3 a4 a5

Elements

(a) order 7: a, a2, a3, a4, a5, a6

Subgroups

(a) order 7:
{
1, a, a2, a3, a4, a5, a6

}

9. C8, the cyclic group of order 8

Generator: a with relation a8 = 1
1 a a2 a3 a4 a5 a6 a7

1 1 a a2 a3 a4 a5 a6 a7

a a a2 a3 a4 a5 a6 a7 1
a2 a2 a3 a4 a5 a6 a7 1 a
a3 a3 a4 a5 a6 a7 1 a a2

a4 a4 a5 a6 a7 1 a a2 a3

a5 a5 a6 a7 1 a a2 a3 a4

a6 a6 a7 1 a a2 a3 a4 a5

a7 a7 1 a a2 a3 a4 a5 a6

Elements

(a) order 8: a, a3, a5, a7

(b) order 4: a2, a6

(c) order 2: a4

Subgroups

(a) order 8:
{
1, a, a2, a3, a4, a5, a6, a7

}

(b) order 4:
{
1, a2, a4, a6

}

(c) order 2:
{
1, a4

}
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10. C4×C2, the direct product of a cyclic group of order 4 and a cyclic group

of order 2

Generators: a, b with relations a4 = 1, b2 = 1, and ba = ab
1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b ab a2b a3b 1 a a2 a3

ab ab a2b a3b b a a2 a3 1
a2b a2b a3b b ab a2 a3 1 a
a3b a3b b ab a2b a3 1 a a2

Elements

(a) order 4: a, a3, ab, a3b
(b) order 2: a2, b, a2b

Subgroups

(a) order 8:
{
1, a, a2, a3, b, ab, a2b, a3b

}

(b) order 4:
{
1, a, a2, a3

} {
1, ab, a2, a3b

} {
1, a2, b, a2b

}

(c) order 2:
{
1, a2

}
, {1, b},

{
1, a2b

}

11. C2 × C2 × C2, the direct product of 3 cyclic groups of order 2

Generators: a, b, c with relations a2 = 1, b2 = 1, c2 = 1, ba = ab, ca = ac,
cb = bc

1 a b ab c ac bc abc

1 1 a b ab c ac bc abc
a a 1 ab b ac c abc bc
b b ab 1 a bc abc c ac
ab ab b a 1 abc bc ac c
c c ac bc abc 1 a b ab
ac ac c abc bc a 1 ab b
bc bc abc c ac b ab 1 a
abc abc bc ac c ab b a 1

Elements

(a) order 2: a, b, ab, c, ac, bc, abc

Subgroups

(a) order 8: {1, a, b, ab, c, ac, bc, abc}
(b) order 4: {1, a, b, ab}, {1, a, c, ac}, {1, a, bc, abc}, {1, b, c, bc},
{1, b, ac, abc}, {1, ab, c, abc}, {1, ab, ac, bc}

(c) order 2: {1, a}, {1, b}, {1, ab}, {1, c}, {1, ac}, {1, bc}, {1, abc}
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12. D4, the dihedral group of order 8

Generators: a, b with relations a4 = 1, b2 = 1, ba = a−1b
1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b a3b a2b ab 1 a3 a2 a
ab ab b a3b a2b a 1 a3 a2

a2b a2b ab b a3b a2 a 1 a3

a3b a3b a2b ab b a3 a2 a 1

Elements

(a) order 4: a, a3

(b) order 2: a2, b, ab, a2b, a3b

Normal subgroups

(a) order 8:
{
1, a, a2, a3, b, ab, a2b, a3b

}

(b) order 4:
{
1, a2, b, a2b

}
,
{
1, a, a2, a3

}
,
{
1, a2, ab, a3b

}

(c) order 2:
{
1, a2

}

Additional subgroups

(a) order 2: {1, b},
{
1, a2b

}
, {1, ab},

{
1, a3b

}

13. Q, the quaternion group (of order 8)

Generators: a, b with relations a4 = 1, b2 = a2, ba = a−1b
1 a a2 a3 b ab a2b a3b

1 1 a a2 a3 b ab a2b a3b
a a a2 a3 1 ab a2b a3b b
a2 a2 a3 1 a a2b a3b b ab
a3 a3 1 a a2 a3b b ab a2b
b b a3b a2b ab a2 a 1 a3

ab ab b a3b a2b a3 a2 a 1
a2b a2b ab b a3b 1 a3 a2 a
a3b a3b a2b ab b a 1 a3 a2

Elements

(a) order 4: a, a3, b, ab, a2b, a3b
(b) order 2: a2

Subgroups (all of them are normal subgroups)

(a) order 8:
{
1, a, a2, a3, b, ab, a2b, a3

}

(b) order 4:
{
1, a, a2, a3

}
,
{
1, b, a2, a2b

}
,
{
1, ab, a2, a3b

}

(c) order 2:
{
1, a2

}
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Notes

• Q can be defined as the set {1,−1, i,−i, j,−j, k,−k}where multiplica-

tion is defined by: i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
and ki = −ik = j. This is an alternate group representation with:

– Elements

∗ order 4: i, −i, j, −j, k, −k
∗ order 2: −1

– Subgroups (all of them are normal subgroups)

∗ order 8: {1,−1, i,−i, j,−j, k,−k}
∗ order 4: {1, i,−1,−i}, {1, j,−1,−j}, {1, k,−1,−k}
∗ order 2: {1,−1}

• Q can be defined as the group composed of the 8 matrices:

+ 1q =

[
1 0
0 1

]
,−1q =

[
−1 0
0 −1

]
,+iq =

[
−i 0
0 i

]
,−iq =

[
i 0
0 −i

]
,

+ jq =

[
0 i
i 0

]
,−jq =

[
0 −i
−i 0

]
,+kq =

[
0 1
−1 0

]
,−kq =

[
0 −1
1 0

]

where a subscript of q indicates a quaternion element, i2 = −1, and

matrix multiplication is the group operation.

2.5.9.6 Small finite fields

In the following, the entries under αi denote the coefficient of powers of α. For

example, the last entry of the p(x) = x3 + x2 + 1 table is 1 1 0. That is: α6 ≡
1α2 + 1α1 + 0α0 modulo p(α), where the coefficients are taken modulo 2.

q = 4 x2 + x+ 1

i αi

0 0 1

1 1 0

2 1 1

q = 8 x3 + x+ 1

i αi

0 0 0 1

1 0 1 0

2 1 0 0

3 0 1 1

4 1 1 0

5 1 1 1

6 1 0 1

q = 8 x3 + x2 + 1

i αi

0 0 0 1

1 0 1 0

2 1 0 0

3 1 0 1

4 1 1 1

5 0 1 1

6 1 1 0

q = 16 x4 + x+ 1

i αi 7 1 0 1 1

0 0 0 0 1 8 0 1 0 1

1 0 0 1 0 9 1 0 1 0

2 0 1 0 0 10 0 1 1 1

3 1 0 0 0 11 1 1 1 0

4 0 0 1 1 12 1 1 1 1

5 0 1 1 0 13 1 1 0 1

6 1 1 0 0 14 1 0 0 1

q = 16 x4 + x3 + 1

i αi 7 0 1 1 1

0 0 0 0 1 8 1 1 1 0

1 0 0 1 0 9 0 1 0 1

2 0 1 0 0 10 1 0 1 0

3 1 0 0 0 11 1 1 0 1

4 1 0 0 1 12 0 0 1 1

5 1 0 1 1 13 0 1 1 0

6 1 1 1 1 14 1 1 0 0



“smtf32” — 2011/5/20 — 2:09 — page 120 — #130

120 CHAPTER 2. ALGEBRA

2.5.9.7 Addition and multiplication tables for F2, F3, F4, and F8

(a) F2 addition and multiplication:

+ 0 1 · 0 1

0 0 1 0 0 0

1 1 0 1 0 1

(b) F3 addition and multiplication:

+ 0 1 2 · 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

(c) F4 addition and multiplication (using β = α+ 1):

+ 0 1 α β · 0 1 α β
0 0 1 α β 0 0 0 0 0
1 1 0 β α 1 0 1 α β
α α β 0 1 α 0 α β 1
β β α 1 0 β 0 β 1 α

(d) F8 addition and multiplication (using strings of 0s and 1s to represent the poly-

nomials: 0 = 000, 1 = 001, α = 010, α + 1 = 011, α2 = 100, α2 + α = 110,

α2 + 1 = 101, α2 + α+ 1 = 111):

+ 000 001 010 011 100 101 110 111

000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

· 000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 001 010 011 100 101 110 111
010 000 010 100 110 011 001 111 101
011 000 011 110 101 111 100 001 010
100 000 100 011 111 110 010 101 001
101 000 101 001 100 010 111 011 110
110 000 110 111 001 101 011 010 100
111 000 111 101 010 001 110 100 011
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2.5.9.8 Linear characters

A linear character of a finite groupG is a homomorphism fromG to the multiplica-

tive group of the non-zero complex numbers. Let χ be a linear character of G, let ι
be the identity of G and assume g, h ∈ G. Then

χ(ι) = 1 χ(g ⋆ h) = χ(g)χ(h) χ(g−1) = χ(g)

χ(g) = e2πik/n for some integer k, where n is the order of g

The trivial character of G maps every element to 1. If χ1 and χ2 are two linear char-

acters, then so is χ = χ1χ2 defined by χ(g) = χ1(g)χ2(g). The linear characters

form a group.

Group Characters

Cn For m = 0, 1, . . . , n− 1, χm : k 7→ e2πikm/n

G Abelian G ∼= Zn1 × Zn2 × · · · × Znj with each ni a power of a prime.

For mj = 0, 1, . . . , nj − 1 and gj = (0, . . . , 0, 1, 0, . . . , 0)
χm1,m2,...,mn : gj 7→ e2πimj/nj

Dn dihedral For x = ±1, y =

{
±1 if n even,

1 if n odd,

χx,y : a 7→ x, b 7→ y. (See definition of Dn.)

Quaternions For x± 1 and y = ±1 or ∓1,

χx,y :

[
0 1
−1 0

]
7→ x, χx,y :

[
−i 0
0 i

]
7→ y

Sn symmetric The trivial character and sgn, where sgn is the signum function

on permutations. (See Section 5.13.2.)

2.5.9.9 Indices and power residues

For Z∗
n the following table lists the index (order) of a and the power residues a, a2,

. . . , aindex(a) = 1 for each element a, where (a, n) = 1.

Group Element Index Power

residues

Z
∗
2 1 1 1

Z∗
3 1 1 1

2 2 2,1

Z
∗
4 1 1 1

3 2 3,1

Z
∗
5 1 1 1

2 4 2,4,3,1

3 4 3,4,2,1

4 2 4,1

Z∗
6 1 1 1

5 2 5,1

Group Element Index Power

residues

Z
∗
7 1 1 1

2 3 2,4,1

3 6 3,2,6,4,5,1

4 3 4,2,1

5 6 5,4,6,2,3,1

6 2 6,1

Z
∗
8 1 1 1

3 2 3,1

5 2 5,1

7 2 7,1



“smtf32” — 2011/5/20 — 2:09 — page 122 — #132

122 CHAPTER 2. ALGEBRA

2.5.9.10 Power residues in Zp

For prime p < 40, the following table lists the minimal primitive root a and the

power residues of a. These can be used to find am (mod p) for any (a, p) = 1. For

example, to find 37 (mod 11) (a = 3,m = 7), look in row p = 11 until the power

of a that is equal to 3 is found. In this case 28 ≡ 3 (mod 11). This means that

37 ≡ (28)7 ≡ 256 ≡ (210)5 · 26 ≡ 26 ≡ 9 (mod 11).

p a Power residues

3 2
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 1

5 2
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 4 3 1

7 3
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 3 2 6 4 5 1

11 2

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 4 8 5 10 9 7 3 6

1. 1

13 2

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 4 8 3 6 12 11 9 5

1. 10 7 1

17 3

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 3 9 10 13 5 15 11 16 14

1. 8 7 4 12 2 6 1

19 2

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 4 8 16 13 7 14 9 18

1. 17 15 11 3 6 12 5 10 1

23 5

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 5 2 10 4 20 8 17 16 11

1. 9 22 18 21 13 19 3 15 6 7

2. 12 14 1

29 2

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 4 8 16 3 6 12 24 19

1. 9 18 7 14 28 27 25 21 13 26

2. 23 17 5 10 20 11 22 15 1

31 3

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 3 9 27 19 26 16 17 20 29

1. 25 13 8 24 10 30 28 22 4 12

2. 5 15 14 11 2 6 18 23 7 21

3. 1

37 2

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9

0. 1 2 4 8 16 32 27 17 34 31

1. 25 13 26 15 30 23 9 18 36 35

2. 33 29 21 5 10 20 3 6 12 24

3. 11 22 7 14 28 19 1
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2.5.9.11 Table of primitive monic polynomials

In the table below, the elements in each string are the coefficients of the polynomial

after the highest power of x. (For example, 564 represents x3 + 5x2 + 6x+ 4.)
Field Degree Primitive polynomials

F2 1 0 1

2 11

3 011 101

4 0011 1001

5 00101 01001 01111 10111 11011 11101

6 000101 011011 100001 100111 101101 110011

F3 1 0 1

2 12 22

3 021 121 201 211

4 0012 0022 1002 1122 1222 2002

2112 2212

F5 1 0 2 3

2 12 23 33 42

3 032 033 042 043 102 113

143 203 213 222 223 242

302 312 322 323 343 403

412 442

F7 1 0 2 4

2 13 23 25 35 45 53

55 63

3 032 052 062 112 124 152

154 214 242 262 264 304

314 322 334 352 354 362

422 432 434 444 504 524

532 534 542 552 564 604

612 632 644 654 662 664

2.5.9.12 Table of irreducible polynomials in Z2[x]

Each polynomial is represented by its coefficients (which are either 0 or
1), beginning with the highest power. For example,x4+x+1 is represented as 10011.

degree 1: 10 11

degree 2: 111

degree 3: 1011 1101

degree 4: 10011 11001 11111

degree 5: 100101 101001 101111 110111 111011 111101

degree 6: 1000011 1001001 1010111 1011011 1100001 1100111

1101101 1110011 1110101

degree 7: 10000011 10001001 10001111 10010001 10011101 10100111

10101011 10111001 10111111 11000001 11001011 11010011

11010101 11100101 11101111 11110001 11110111 11111101

degree 8: 100011011 100011101 100101011 100101101 100111001 100111111

101001101 101011111 101100011 101100101 101101001 101110001

101110111 101111011 110000111 110001011 110001101 110011111

110100011 110101001 110110001 110111101 111000011 111001111

111010111 111011101 111100111 111110011 111110101 111111001
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2.5.9.13 Table of primitive roots

The number of integers not exceeding and relatively prime to the integer n is φ(n)
(see page 41). These integers form a group under multiplication module n; the group

is cyclic if and only if n = 1, 2, 4 or n is of the form pk or 2pk, where p is an odd

prime. The number g is a primitive root of n if it generates that group, i.e., if {g, g2,

. . . , gφ(n)} are distinct modulo n. There are φ(φ(n)) primitive roots of n.

1. If g is a primitive root of p and gp−1 6≡ 1 (mod p2), then g is a primitive root

of pk for all k.

2. If gp−1 ≡ 1 (mod p2) then g + p is a primitive root of pk for all k.

3. If g is a primitive root of pk, then either g or g + pk, whichever is odd, is a

primitive root of 2pk.

4. If g is a primitive root of n, then gk is a primitive root of n if and only if k and

φ(n) are relatively prime, i.e., (φ(n), k) = 1.

In the following table,

• g denotes the least primitive root of p
• G denotes the least negative primitive root of p
• ǫ denotes whether 10,−10, or both, are primitive roots of p

p p− 1 g G ǫ p p− 1 g G ǫ

3 2 2 −1 — 5 22 2 −2 —

7 2 · 3 3 −2 10 11 2 · 5 2 −3 —

13 22 · 3 2 −2 — 17 24 3 −3 ±10
19 2 · 32 2 −4 10 23 2 · 11 5 −2 10
29 22 · 7 2 −2 ±10 31 2 · 3 · 5 3 −7 −10
37 22 · 32 2 −2 — 41 23 · 5 6 −6 —

43 2 · 3 · 7 3 −9 −10 47 2 · 23 5 −2 10
53 22 · 13 2 −2 — 59 2 · 29 2 −3 10
61 22 · 3 · 5 2 −2 ±10 67 2 · 3 · 11 2 −4 −10
71 2 · 5 · 7 7 −2 −10 73 23 · 32 5 −5 —

79 2 · 3 · 13 3 −2 — 83 2 · 41 2 −3 −10
89 23 · 11 3 −3 — 97 25 · 3 5 −5 ±10

101 22 · 52 2 −2 — 103 2 · 3 · 17 5 −2 —

107 2 · 53 2 −3 −10 109 22 · 33 6 −6 ±10
113 24 · 7 3 −3 ±10 127 2 · 32 · 7 3 −9 —

131 2 · 5 · 13 2 −3 10 137 23 · 17 3 −3 —

139 2 · 3 · 23 2 −4 — 149 22 · 37 2 −2 ±10
151 2 · 3 · 52 6 −5 −10 157 22 · 3 · 13 5 −5 —

163 2 · 34 2 −4 −10 167 2 · 83 5 −2 10
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2.5.9.14 Table of factorizations of xn − 1

n Factorization of xn − 1 mod 2

1 −1 + x
2 (−1 + x) (1 + x)
3 (−1 + x)

(
1 + x+ x2

)

4 (−1 + x) (1 + x)
(
1 + x2

)

5 (−1 + x)
(
1 + x+ x2 + x3 + x4

)

6 (−1 + x) (1 + x)
(
1− x+ x2

) (
1 + x+ x2

)

7 (−1 + x)
(
1 + x+ x2 + x3 + x4 + x5 + x6

)

8 (−1 + x) (1 + x)
(
1 + x2

) (
1 + x4

)

9 (−1 + x)
(
1 + x+ x2

) (
1 + x3 + x6

)

10 (−1 + x) (1 + x)
(
1− x+ x2 − x3 + x4

) (
1 + x+ x2 + x3 + x4

)

11 (−1 + x)
(
1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

)

12 (−1 + x) (1 + x)
(
1 + x2

) (
1− x+ x2

) (
1 + x+ x2

) (
1− x2 + x4

)

13 (−1 + x)
(∑12

k=0 x
k
)

14 (−1 + x) (1 + x)
(
1− x+ x2 − x3 + x4 − x5 + x6

)
(
1 + x+ x2 + x3 + x4 + x5 + x6

)

15 (−1 + x)
(
1 + x+ x2

) (
1 + x+ x2 + x3 + x4

)
(
1− x+ x3 − x4 + x5 − x7 + x8

)

16 (−1 + x) (1 + x)
(
1 + x2

) (
1 + x4

) (
1 + x8

)

17 (−1 + x)
(∑16

k=0 x
k
)

18 (−1 + x) (1 + x)
(
1− x+ x2

) (
1 + x+ x2

) (
1− x3 + x6

) (
1 + x3 + x6

)

19 (−1 + x)
(∑18

k=0 x
k
)

20 (−1 + x) (1 + x)
(
1 + x2

) (
1− x+ x2 − x3 + x4

) (
1 + x+ x2 + x3 + x4

)
(
1− x2 + x4 − x6 + x8

)

21 (−1 + x)
(
1 + x+ x2

) (
1 + x+ x2 + x3 + x4 + x5 + x6

)
(
1− x+ x3 − x4 + x6 − x8 + x9 − x11 + x12

)

22 (−1 + x) (1 + x)
(
1− x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10

)
(
1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10

)

23 (−1 + x)
(∑22

k=0 x
k
)

24 (−1 + x) (1 + x)
(
1 + x2

) (
1− x+ x2

) (
1 + x+ x2

) (
1 + x4

) (
1− x2 + x4

)
(
1− x4 + x8

)

25 (−1 + x)
(
1 + x+ x2 + x3 + x4

) (
1 + x5 + x10 + x15 + x20

)

26 (−1 + x) (1 + x)(
1− x+ x2 − x3 + x4 − x5 + x6 − x7 + x8 − x9 + x10 − x11 + x12

)
(
1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12

)

27 (−1 + x)
(
1 + x+ x2

) (
1 + x3 + x6

) (
1 + x9 + x18

)

28 (−1 + x) (1 + x)
(
1 + x2

) (
1− x+ x2 − x3 + x4 − x5 + x6

)
(
1 + x+ x2 + x3 + x4 + x5 + x6

) (
1− x2 + x4 − x6 + x8 − x10 + x12

)

29 (−1 + x)
(∑28

k=0 x
k
)

30 (−1 + x) (1 + x)
(
1− x+ x2

) (
1 + x+ x2

) (
1− x+ x2 − x3 + x4

)
(
1 + x+ x2 + x3 + x4

) (
1− x+ x3 − x4 + x5 − x7 + x8

)
(
1 + x− x3 − x4 − x5 + x7 + x8

)

32 (−1 + x) (1 + x)
(
1 + x2

) (
1 + x4

) (
1 + x8

) (
1 + x16

)
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3.1 SET THEORY

3.1.1 SETS

A set is a collection of distinct objects. Some examples of sets are

1. The population of Cleveland on January 1, 1995

2. The real numbers between 0 and 1 inclusive

3. The prime numbers 2, 3, 5, 7, 11, . . .
4. The numbers 1, 2, 3, and 4

5. All of the formulas in this book

3.1.2 SET OPERATIONS AND RELATIONS

If x is an element in a set A, then we write x ∈ A (read “x is in A.”) If x is not in

A, we write x 6∈ A. When considering sets, a set U , called the universe, is chosen,

from which all elements are taken. The null set or empty set ∅ is the set containing

no elements. Thus, x 6∈ ∅ for all x ∈ U . Some relations on sets are as follows:

Relation Read as Definition

A ⊆ B A is contained in B Any element of A is also an element of B

A = B A equalsB (A ⊆ B) ∧ (B ⊆ A)
Some basic operations on sets are as follows:

Operation Read as Definition

A ∪B A union B The elements in A or in B

A ∩B A intersection B The elements in both A and B

A−B A minus B The elements in A which are not in B

A′ or A or AC Complement of A The elements in U which are not in A

P(A) or 2A Power set of A The collection of all subsets of A

A⊕B or A∆B Symmetric difference

of A and B
The elements of A and B that are not

in both A and B (i.e., the union

minus the intersection)

3.1.3 CONNECTION BETWEEN SETS AND PROBABILITY

Set concept Probability concept

Set Event

Set containing a single element Indecomposable, elementary, or

atomic event
Set with more than one element Compound event

Universal set or space Sample space

Complement of a set Non-occurrence of an event

Function on the universal set Random variable

Measure of a set Probability of an event

Integral with respect to the measure Expectation or expected value
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3.1.4 VENN DIAGRAMS

The operations and relations on sets can be illustrated by Venn diagrams. The dia-

grams below show a few possibilities.

A B A B A B

A ∪ B A ∩ B A – B

A

A´

A´ A ⊆ B

A B

Venn diagrams can be constructed to show combinations of

many events. Each of the 24 regions created by the rectangles

in the diagram to the right represents a different combination.

3.1.5 PARADOXES AND THEOREMS OF SET THEORY

3.1.5.1 Russell’s paradox

Around 1900, Bertrand Russell presented a paradox, paraphrased as follows: since

the elements of sets can be arbitrary, sets can contain sets as elements. Therefore, a

set can possibly be a member of itself. (For example, the set of all sets would be a

member of itself. Another example is the collection of all sets that can be described

in fewer than 50 words.) Now let A be the set of all sets which are not members of

themselves. Then if A is a member of itself, it is not a member of itself. And if A is

not a member of itself, then by definition, A is a member of itself. This paradox led

to a more careful consideration of how sets should be defined.

3.1.5.2 Infinite sets and the continuum hypothesis

Georg Cantor showed how the number of elements of infinite sets can be counted,

much as finite sets. He used the symbol ℵ0 (read “aleph null”) for the number of

integers and introduced larger infinite numbers such as ℵ1, ℵ2, and so on. A few of

his results were as follows (note: the “+” sign below is a set operation)

ℵ0 + ℵ0 = ℵ0, (ℵ0)2 = ℵ0, c = 2ℵ0 = ℵℵ0
0 > ℵ0.

where c is the cardinality of real numbers. The continuum hypothesis asks whether

or not c = ℵ1, the first infinite cardinal greater than ℵ0. In 1963, Cohen showed this

result is independent of the other axioms of set theory: “. . . the truth or falsity of the

continuum hypothesis . . . cannot be determined by set theory as we know it today.”
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FIGURE 3.1
Left: Hasse diagram for integers up to 12 with x � y meaning “the number x divides the

number y.” Right: Hasse diagram for the power set of {a, b, c} with x � y meaning “the set

x is a subset of the set y.”

10 4

8 12

7 115 2 3

1

6 9

φ

{a, b, c}

{b, c}{a, c}{a, b}

{c}{a} {b}

3.1.6 PARTIALLY ORDERED SETS

Consider a set S and a relation on it. Given any two elements x and y in S, we can

determine whether or not x is “related” to y; if it is, “x � y.” The relation “�” will

be a partial order on S if it satisfies the following three conditions:

reflexive s � s for every s ∈ S,
antisymmetric s � t and t � s imply s = t, and

transitive s � t and t � u imply s � u.

If � is a partial order on S, then the pair (S,�) is called a partially ordered set

or a poset. Given the partial order� on the set S, define the relation ≺ by

x ≺ y if and only if x � y and x 6= y.

We say that the element t covers the element s if s ≺ t and there is no element u
with s ≺ u ≺ t. A Hasse diagram of the poset (S,�) is a figure consisting of the

elements of S with a line segment directed generally upward from s to t whenever t
covers s. (See Figure 3.1.)

Two elements x and y in a poset (S,�) are said to be comparable if either x � y
or y � x. If every pair of elements in a poset is comparable, then (S,�) is a chain.

An antichain is a poset in which no two elements are comparable (i.e., x � y if and

only if x = y for all x and y in the antichain). A maximal chain is a chain that is not

properly contained in another chain (and similarly for a maximal antichain).

EXAMPLES

1. Let S be the set of natural numbers up to 12 and let “x � y” mean “the number

x divides the number y.” Then (S,�) is a poset with the Hasse diagram shown in

Figure 3.1 (left). Observe that the elements 2 and 4 are comparable, but elements 2 and

5 are not comparable.

2. Let S be the set of all subsets of the set {a, b, c} and let “x � y” mean “the set x
is contained in the set y.” Then (S,�) is a poset with the Hasse diagram shown in

Figure 3.1 (right).
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3. There are 16 different isomorphism types of posets of size 4. There are 5 different

isomorphism types of posets of size 3, shown below:

a b c a

b

c

b

a

c

a

c

b a

c

b

3.1.7 INCLUSION/EXCLUSION

Let {a1, a2, . . . , ar} be properties that the elements of a set may or may not have. If

the set has N objects, then the number of objects having exactly m properties (with

m ≤ r), em, is given by

em = sm −
(
m+ 1

1

)
sm+1 +

(
m+ 2

2

)
sm+2 −

(
m+ 3

3

)
sm+3 + . . .

· · ·+ (−1)p
(
m+ p

p

)
sm+p · · ·+ (−1)r−m

(
m+ (r −m)

(r −m)

)
sr.

(3.1.1)

Here st =
∑
N(ai1ai2 · · ·ait) is the number of elements that have any t distinct

properties. When m = 0, this is the usual inclusion/exclusion rule:

e0 = s0 − s1 + s2 − · · ·+ (−1)rsr,
= N −

∑

i

N(ai) +
∑

i, j distinct

N(aiaj)−
∑

i, j, k distinct

N(aiajak) + · · ·+ (−1)rN(a1a2 . . . ar).

(3.1.2)

EXAMPLE Hatcheck problem: distribute n hats to their n owners. Let ai be the property

that the ith person receives their own hat. Then N(a1a2 . . . ar) = (n − r)! and so

st =
∑
N(ai1ai2 · · · ait) =

(
n
t

)
(n − t)!. Therefore the number of ways in which

exactly one person gets their own hat back is e1 = s1 −
(
2
1

)
s2 +

(
3
2

)
s3 − . . . =

n!

[
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n−1

(n− 1)!

]
= nDn−1. (See page 137 for Dn.)

3.1.8 PIGEONHOLE PRINCIPLE

Pigeonhole Principle
If n items are put into m pigeonholes with n > m, then at least one

pigeonhole must contain more than one item.

Generalized Pigeonhole Principle
If n items are put into m containers, then
• at least one container must hold no fewer than ⌈ nm⌉ objects;

• at least one container must hold no more than ⌊ nm⌋ items.

where ⌈·⌉ (⌊·⌋) is the ceiling (floor) function.

EXAMPLES

• If you select five numbers from the integers 1 to 8, then two of them must add up to nine.

• In any group of two or more people, there must be at least two people who have the same

number of friends in the group.
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3.2 COMBINATORICS

3.2.1 SAMPLE SELECTION

There are four different ways in which a sample of r elements can be obtained from

a set of n distinguishable objects:

C(n, r) =

(
n

r

)
=

n!

r! (n− r)! ,

P (n, r) = (n)r = nr =
n!

(n− r)! ,

CR(n, r) = C(n+ r − 1, r) =
(n+ r − 1)!

r!(n− 1)!
, and

PR(n, r) = nr.

(3.2.1)

EXAMPLE There are four ways to choose a 2-element sample from the set {a, b}:

r-combination C(2, 2) = 1 ⇒ ab
r-permutation P (2, 2) = 2 ⇒ ab and ba
r-combination with replacement CR(2, 2) = 3 ⇒ aa, ab, and bb
r-permutation with replacement PR(2, 2) = 4 ⇒ aa, ab, ba, and bb

3.2.2 BALLS INTO CELLS

There are eight different ways in which n balls can be placed into k cells:

Distinguish Distinguish Can cells Number of ways to

the balls? the cells? be empty? place n balls into k cells

Yes Yes Yes kn

Yes Yes No k!
{
n
k

}

Yes No Yes
{
n
1

}
+
{
n
2

}
+ . . .+

{
n
k

}

Yes No No
{
n
k

}

No Yes Yes C(k + n− 1, n) =
(
k+n−1

n

)

No Yes No C(n− 1, k − 1) =
(
n−1
k−1

)

No No Yes p1(n) + p2(n) + . . .+ pk(n)

No No No pk(n)

where
{
n
k

}
is the Stirling subset number (see page 140) and pk(n) is the number of

partitions of the number n into exactly k integer pieces (see page 138).

Given n distinguishable balls and k distinguishable cells, the number of ways in

which we can place n1 balls into cell 1, n2 balls into cell 2, . . ., nk balls into cell k,

is given by the multinomial coefficient
(

n
n1,n2,...,nk

)
(see page 136).
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EXAMPLE
Consider placing n = 3 balls into k = 2 cells. Let {A,B,C} denote the names of the

balls (when needed) and {a, b, c} denote the names of the cells (when needed). A cell

will be denoted like this . Begin with: Are the balls distinguishable?

1. Yes, the balls are distinguishable. Are the cells distinguishable?

(a) Yes, the cells are distinguishable. Can the cells be empty?

i. Yes. Number of ways is kn = 23 = 8:

a

ABC

b

AB C

a b

A

a

B C

b

B

a

AC

b

C

a

AB

b

B C

a

A

b

AC

a

B

b

AB

a

C

b

ii. No. Number of ways is k!
{
n
k

}
= 2!

{
3
2

}
= 6:

A

a

B C

b

B

a

AC

b

C

a

AB

b

B C

a

A

b

AC

a

B

b

AB

a

C

b

(b) No, the cells are not distinguishable. Can the cells be empty?

i. Yes. Number of ways is
{
n
1

}
+ . . .+

{
n
k

}
=
{
3
1

}
+
{
3
2

}
= 1 + 3 = 4:

ABC A B C B AC C AB

ii. No. Number of ways is
{
n
k

}
=
{
3
2

}
= 3:

A B C B AC C AB

2. No, the balls are not distinguishable. Are the cells distinguishable?

(a) Yes, the cells are distinguishable. Can the cells be empty?

i. Yes. Number of ways is
(
k+n−1

n

)
=
(
4
3

)
= 4:

a

• • •
b

• • •
a b

•
a

••
b

••
a

•
b

ii. No. Number of ways is
(
n−1
k−1

)
=
(
2
1

)
= 2: •

a

••
b

••
a

•
b

(b) No, the cells are not distinguishable. Can the cells be empty?

i. Yes. Number of ways is p1(n)+. . .+pk(n) = p1(3)+p2(3) = 1+1 = 2:

• • • • ••

ii. No. Number of ways is pk(n) = p2(3) = 1: • ••
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3.2.3 BINOMIAL COEFFICIENTS

The binomial coefficient C(n,m) =
(
n
m

)
is the number of ways of choosing m

objects from a collection of n distinct objects without regard to order:

EXAMPLE For the 5-element set {a, b, c, d, e} there are
(
5
3

)
= 5!

3!2!
= 10 subsets con-

taining exactly three elements. They are:

{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e},
{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}.

Properties of binomial coefficients include:

1.

(
n

m

)
=

n!

m!(n−m)!
=
n(n− 1) · · · (n−m+ 1)

m!
=

(
n

n−m

)
.

2.

(
n

0

)
=

(
n

n

)
= 1 and

(
n

1

)
= n.

3.

(
2n

n

)
=

2n(2n− 1)!!

n!
=

2n(2n− 1)(2n− 3) · · · 3 · 1
n!

.

4. If n and m are integers, and m > n, then
(
n
m

)
= 0.

5. The recurrence relation:
(
n+1
m

)
=
(
n
m

)
+
(

n
m−1

)
.

6. Two generating functions for binomial coefficients are
∑n

m=0

(
n
m

)
xm =

(1 + x)n for n = 1, 2, . . ., and
∑∞

n=m

(
n
m

)
xn−m = (1 − x)−m−1.

7. The Vandermonde convolution is

(
x+ y

n

)
=

n∑

k=0

(
x

k

)(
y

n− k

)
.

3.2.3.1 Pascal’s triangle

The binomial coefficients
(
n
k

)
can be arranged in a triangle in which each number is

the sum of the two numbers above it. For example
(
3
2

)
=
(
2
1

)
+
(
2
2

)
.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

(
0

0

)

(
1

0

) (
1

1

)

(
2

0

) (
2

1

) (
2

2

)

(
3

0

) (
3

1

) (
3

2

) (
3

3

)

(
4

0

) (
4

1

) (
4

2

) (
4

3

) (
4

4

)
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3.2.3.2 Binomial coefficient relationships

The binomial coefficients satisfy

[a]
(n + 1

m + 1

)
=

(n

m

)
+

( n

m + 1

)
,

[b]
(n

m

)
=

( n

n − m

)
,

[c]
(n + m + 1

n + 1

)
=

(n
n

)
+

(n + 1

n

)
+

(n + 2

n

)
+ . . .+

(n + m

n

)
,

[d]
(2n
n

)
=

(n
0

)2
+

(n
1

)2
+ . . .+

(n
n

)2
,

[e]
(m + n

p

)
=

(m
0

)(n
p

)
+

(m
1

)( n

p − 1

)
+ . . .+

(m
p

)(n
0

)
,

[f ] 2n =
(n
0

)
+

(n
1

)
+ . . .+

(n
n

)
,

[g] 0 =
(n
0

)− (n
1

)
+ . . .+ (−1)n(n

n

)
for n ≥ 1,

[h] 2n−1 =
(n
0

)
+

(n
2

)
+

(n
4

)
+ . . . for n ≥ 1,

[i] 2n−1 =
(n
1

)
+

(n
3

)
+

(n
5

)
+ . . . for n ≥ 1,

[j] 0 = 1
(n
1

)− 2
(n
2

)
+ . . .+ (−1)n+1n

(n
n

)
for n ≥ 1.

3.2.4 MULTINOMIAL COEFFICIENTS

The multinomial coefficient
(

n
n1,n2,...,nk

)
(also written C(n;n1, n2, . . . , nk)) is the

number of ways of choosing n1 objects, then n2 objects, . . . , then nk objects from a

collection of n =
∑k

j=1 nj distinct objects without regard to order. The multinomial

coefficient is numerically evaluated as

(
n

n1, n2, . . . , nk

)
=

n!

n1!n2! · · · nk!
. (3.2.2)

EXAMPLE The number of ways to choose 2 objects, then 1 object, then 1 object from

the set {a, b, c, d} is
(

4
2,1,1

)
= 4!

2! 1! 1!
= 24

2
= 12; they are as follows (vertical bars

show the ordered selections):

| ab | c | d |, | ab | d | c |, | ac | b | d |, | ac | d | b |,
| ad | b | c |, | ad | c | b |, | bc | a | d |, | bc | d | a |,
| bd | a | c |, | bd | c | a |, | cd | a | b |, | cd | b | a |.

To count the number of ordered selections assume that there are p types of

objects with ni indistinguishable objects of type i (for i = 1, 2, . . . , p). Then

the number of distinguishable permutations of length k, with up to ni objects

of type i, is the coefficient of xk/k! in the exponential generating function(
1 + x+ x2

2! + · · ·+ xn1

n1!

)(
1 + x+ x2

2! + · · ·+ xn2

n2!

)
. . .
(
1 + x+ x2

2! + · · ·+ xnp

np!

)
.

EXAMPLE The number of 2 letter words formed from the set {A,A,B,B,C} is the

coefficient of x2

2!
in
(
1 + x+ x2

2!

)(
1 + x+ x2

2!

)
(1 + x) = 1 + 3x + 4x2 + . . . ,

or 8. They are: {AA,AB,AC,BA,BB,BC,CA,CB}.
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3.2.5 ARRANGEMENTS AND DERANGEMENTS

The number of ways to arrange n distinct objects in a row is n!; this is the number of

permutations of n objects. For example, for the three objects {a, b, c}, the number

of arrangements is 3! = 6. These permutations are: abc, bac, cab, acb, bca, and cba.

The number of ways to arrange n objects (assuming that there are k types

of objects and ni copies of each object of type i) is the multinomial coefficient(
n

n1,n2,...,nk

)
. For example, for the set {a, a, b, c} the parameters are n = 4, k = 3,

n1 = 2, n2 = 1, and n3 = 1. Hence, there are
(

4
2,1,1

)
= 4!

2! 1! 1! = 12 arrangements;

they are

aabc, aacb, abac, abca, acab, acba,

baac, baca, bcaa, caab, caba, cbaa.

A derangement is a permutation of objects, in which object i is not in the ith

location. For example, all of the derangements of {1, 2, 3, 4} are

2143, 2341, 2413,

3142, 3412, 3421,

4123, 4312, 4321.

The number of derangements of n elements, Dn, satisfies the recursion relation

Dn = (n− 1) (Dn−1 +Dn−2) with the initial values D1 = 0 and D2 = 1. Hence,

Dn = n!

(
1− 1

1!
+

1

2!
− 1

3!
+ . . .+ (−1)n 1

n!

)
.

The numbers Dn are also called sub-Factorials or rencontres numbers. For large

values of n,Dn/n! ∼ e−1 ≈ 0.37. Hence more than one of every three permutations

is a derangement.

n 1 2 3 4 5 6 7 8 9 10

Dn 0 1 2 9 44 265 1854 14833 133496 1334961

3.2.6 CATALAN NUMBERS

The Catalan numbers are Cn =
1

n+ 1

(
2n

n

)
. There is the recurrence relation:

Cn = C0Cn−1 + C1Cn−2 + . . .+ Cn−1C0. (3.2.3)

n 0 1 2 3 4 5 6 7 8 9 10

Cn
1/2 1 1 2 5 14 42 132 429 1430 4862

The Catalan numbers count many things. For example, the number of permutations

of {1, . . . , n} that avoid the pattern “123.”

EXAMPLE Given the product A1A2 . . . An, the number of ways to pair terms keeping

the original order is Cn. For example, with n = 4, there are C4 = 5 ways to group the

terms; they are: (A1A2)(A3A4), ((A1A2)A3)A4, (A1(A2A3))A4, A1((A2A3)A4),
and A1(A2(A3A4)).
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3.2.7 PARTITIONS

A partition of a number n is a representation of n as the sum of any number of

positive integral parts. The number of partitions of n is denoted p(n). For example:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1
so that p(5) = 7.

1. The number of partitions of n into exactly m parts is equal to the number

of partitions of n into parts the largest of which is exactly m; this is denoted

pm(n). For example, p2(5) = 2 and p3(5) = 2. Note that
∑

m pm(n) = p(n).
2. The number of partitions of n into at most m parts is equal to the number of

partitions of n into parts which do not exceed m.

The generating function for p(n) is

1 +

∞∑

n=1

p(n)xn =
1

(1− x)(1 − x2)(1− x3) · · · (3.2.4)

n 1 2 3 4 5 6 7 8 9 10

p(n) 1 2 3 5 7 11 15 22 30 42

n 11 12 13 14 15 16 17 18 19 20

p(n) 56 77 101 135 176 231 297 385 490 627

A table of pm(n) values.

The columns sum to p(n).

m n = 1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5

3 1 1 2 3 4 5 7 8 10

4 1 1 2 3 5 6 9 11

5 1 1 2 3 5 7 10

6 1 1 2 3 5 7

7 1 1 2 3 5

8 1 1 2 3

9 1 1 2

3.2.8 BELL NUMBERS

The Bell number Bn denotes the number of partitions of a set with n elements.

For example: the 5 ways to partition the 3-element set {a, b, c} are: {(a), (b), (c)},
{(a), (b, c)}, {(b), (a, c)}, {(c), (a, b)}, and {(a, b, c)}. Computationally, the Bell

numbers may be written in terms of the Stirling subset numbers: Bn =
∑n

m=1

{
n
m

}
.

n 1 2 3 4 5 6 7 8 9 10

Bn 1 2 5 15 52 203 877 4140 21147 115975

1. A generating function for Bell numbers is
∑∞

n=0Bnx
n = exp (ex − 1) − 1.

This gives Dobinski’s formula: Bn = e−1
∑∞

m=0m
n/m!.

2. For large values of n, Bn ∼ n−1/2[λ(n)]n+1/2eλ(n)−n−1 where λ(n) is de-

fined by the relation: λ(n) log λ(n) = n.
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3.2.9 STIRLING CYCLE NUMBERS

The number
[
n
k

]
, called a Stirling cycle number, is the number of permutations of n

symbols which have exactly k non-empty cycles. These are also called the signed

Stirling numbers of the first kind.

EXAMPLE For the 4-element set {a, b, c, d}, there are
[
4
2

]
= 11 permutations containing

exactly 2 cycles. They are:

(
1 2 3 4
2 3 1 4

)
= (123)(4),

(
1 2 3 4
3 1 2 4

)
= (132)(4),

(
1 2 3 4
3 2 4 1

)
= (134)(2),

(
1 2 3 4
4 2 1 3

)
= (143)(2),

(
1 2 3 4
2 4 3 1

)
= (124)(3),

(
1 2 3 4
4 1 3 2

)
= (142)(3),

(
1 2 3 4
1 3 4 2

)
= (234)(1),

(
1 2 3 4
1 4 2 3

)
= (243)(1),

(
1 2 3 4
2 1 4 3

)
= (12)(34),

(
1 2 3 4
3 4 1 2

)
= (13)(24),

(
1 2 3 4
4 3 2 1

)
= (14)(23).

3.2.9.1 Properties of Stirling cycle numbers
[n
k

]

1.

[
n

k

]
= (n− 1)

[
n− 1

k

]
+ n

[
n− 1

k − 1

]
for k > 0.

2.

[
n

0

]
=

{
1 if n = 0

0 if n 6= 0
3.

[
n

1

]
= (n− 1)!

4.

[
n

2

]
= (n− 1)!Hn−1 5.

[
n

n− 1

]
=

(
n

2

)
6.

n∑

k=0

[
n

k

]
= n!

7.

[
n

k

]
=

n−k∑

m=0

(−1)m
(
n− 1 +m

n− k +m

)(
2n− k

n−m− k

){
n−m− k

m

}

where

{
n−m− k

k

}
is a Stirling subset number.

8.

∞∑

n=0

s(n, k)
xn

n!
=

(log(1 + x))
k

k!
for |x| < 1. Here s(n, k) is a Stirling number

of the first kind and can be written as s(n, k) = (−1)n−k
[
n
k

]
.

9. The factorial polynomial, defined as x(n) = x(x − 1) · · · (x − n + 1) with

x(0) = 1, can be written as

x(n) =

n∑

k=0

s(n, k)xk = s(n, 1)x+ s(n, 2)x2 + . . .+ s(n, n)xn (3.2.5)

For example: x(3) = x(x−1)(x−2) = 2x−3x2+x3 =
[
3
1

]
x−
[
3
2

]
x2+

[
3
3

]
x3.
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3.2.10 STIRLING SUBSET NUMBERS

The Stirling subset number,
{
n
k

}
, is the number of ways to partition n into k blocks.

Equivalently, it is the number of ways that n distinguishable balls can be placed

into k indistinguishable cells, with no cell empty. These are also called the Stirling

numbers of the second kind.

EXAMPLE Placing the 4 distinguishable balls {a, b, c, d} into 2 indistinguishable cells,

so that no cell is empty can be done in
{
4
2

}
= 7 ways. These are (vertical bars delineate

the cells)

| ab | cd |, | ad | bc |, | ac | bd |, | a | bcd |,
| b | acd |, | c | abd |, | d | abc | .

3.2.10.1 Properties of Stirling subset numbers
{n
k

}

1. Stirling subset numbers are also called Stirling numbers of the second kind,

and are denoted by S(n, k).

2.

{
n

0

}
=

{
1 if n = 0

0 if n 6= 0.
3.

{
n

1

}
=

{
n

n

}
= 1.

4.

{
n

2

}
= 2n−1 − 1. 5.

∞∑

n=0

{
n

k

}
xn

n!
=

(ex − 1)
k

k!
.

6.

{
n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k − 1

}
for k > 0.

7.

{
n

k

}
=

1

k!

k∑

m=0

(−1)k−m

(
k

m

)
mn.

8. Ordinary powers can be expanded in terms of factorial polynomials. If n > 0,

then

xn =
n∑

k=0

{
n

k

}
x(k) =

{
n

0

}
x(0) +

{
n

1

}
x(1) + . . .+

{
n

n

}
x(n). (3.2.6)

For example,

x3 =

{
3

0

}
x(0) +

{
3

1

}
x(1) +

{
3

2

}
x(2) +

{
3

3

}
x(3)

=

{
3

0

}
+

{
3

1

}
x+

{
3

2

}
x(x − 1) +

{
3

3

}
x(x − 1)(x− 2)

= 0 + x+ 3(x2 − x) + (x3 − 3x2 + 2x).

(3.2.7)
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3.2.11 TABLES

3.2.11.1 Combinations C(n,m) =
(n
m

)

These tables contain the number of combinations of n distinct things taken m at a

time, given by C(n,m) =

(
n

m

)
=

n!

m!(n−m)!
.

m

n 0 1 2 3 4 5 6 7

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

7 1 7 21 35 35 21 7 1

8 1 8 28 56 70 56 28 8

9 1 9 36 84 126 126 84 36

10 1 10 45 120 210 252 210 120

11 1 11 55 165 330 462 462 330

12 1 12 66 220 495 792 924 792

13 1 13 78 286 715 1287 1716 1716

14 1 14 91 364 1001 2002 3003 3432

15 1 15 105 455 1365 3003 5005 6435

16 1 16 120 560 1820 4368 8008 11440

17 1 17 136 680 2380 6188 12376 19448

18 1 18 153 816 3060 8568 18564 31824

19 1 19 171 969 3876 11628 27132 50388

20 1 20 190 1140 4845 15504 38760 77520

21 1 21 210 1330 5985 20349 54264 116280

22 1 22 231 1540 7315 26334 74613 170544

23 1 23 253 1771 8855 33649 100947 245157

24 1 24 276 2024 10626 42504 134596 346104

25 1 25 300 2300 12650 53130 177100 480700

26 1 26 325 2600 14950 65780 230230 657800

27 1 27 351 2925 17550 80730 296010 888030

28 1 28 378 3276 20475 98280 376740 1184040

29 1 29 406 3654 23751 118755 475020 1560780

30 1 30 435 4060 27405 142506 593775 2035800

31 1 31 465 4495 31465 169911 736281 2629575

32 1 32 496 4960 35960 201376 906192 3365856

33 1 33 528 5456 40920 237336 1107568 4272048

34 1 34 561 5984 46376 278256 1344904 5379616

35 1 35 595 6545 52360 324632 1623160 6724520

36 1 36 630 7140 58905 376992 1947792 8347680

37 1 37 666 7770 66045 435897 2324784 10295472

38 1 38 703 8436 73815 501942 2760681 12620256

39 1 39 741 9139 82251 575757 3262623 15380937

40 1 40 780 9880 91390 658008 3838380 18643560
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3.2.11.2 Permutations P (n,m)

These tables contain the number of permutations of n distinct things taken m at a

time, given by P (n,m) =
n!

(n−m)!
= n(n− 1) · · · (n−m+ 1).

m

n 0 1 2 3 4 5 6 7 8

0 1

1 1 1

2 1 2 2

3 1 3 6 6

4 1 4 12 24 24

5 1 5 20 60 120 120

6 1 6 30 120 360 720 720

7 1 7 42 210 840 2520 5040 5040

8 1 8 56 336 1680 6720 20160 40320 40320

9 1 9 72 504 3024 15120 60480 181440 362880

10 1 10 90 720 5040 30240 151200 604800 1814400

11 1 11 110 990 7920 55440 332640 1663200 6652800

12 1 12 132 1320 11880 95040 665280 3991680 19958400

13 1 13 156 1716 17160 154440 1235520 8648640 51891840

14 1 14 182 2184 24024 240240 2162160 17297280 121080960

15 1 15 210 2730 32760 360360 3603600 32432400 259459200

m

n 9 10 11 12 13

9 362880

10 3628800 3628800

11 19958400 39916800 39916800

12 79833600 239500800 479001600 479001600

13 259459200 1037836800 3113510400 6227020800 6227020800

14 726485760 3632428800 14529715200 43589145600 87178291200

15 1816214400 10897286400 54486432000 217945728000 653837184000

3.2.11.3 Table of Stirling cycle numbers
[
n
k

]

k

n 0 1 2 3 4 5 6 7

0 1

1 0 1

2 0 1 1

3 0 2 3 1

4 0 6 11 6 1

5 0 24 50 35 10 1

6 0 120 274 225 85 15 1

7 0 720 1764 1624 735 175 21 1

8 0 5040 13068 13132 6769 1960 322 28

9 0 40320 109584 118124 67284 22449 4536 546

10 0 362880 1026576 1172700 723680 269325 63273 9450
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3.2.11.4 Table of Stirling subset numbers
{n
k

}

k

n 0 1 2 3 4 5 6 7

0 1

1 0 1

2 0 1 1

3 0 1 3 1

4 0 1 7 6 1

5 0 1 15 25 10 1

6 0 1 31 90 65 15 1

7 0 1 63 301 350 140 21 1

8 0 1 127 966 1701 1050 266 28

9 0 1 255 3025 7770 6951 2646 462

10 0 1 511 9330 34105 42525 22827 5880

3.2.11.5 Fractional binomial coefficients
(a
k

)

k

a 0 1 2 3 4 5

1/2 1 1/2 −1/8 1/16 −5/128 7/256
1/3 1 1/3 −1/9 5/81 −10/243 22/729
1/4 1 1/4 −3/32 7/128 −77/2048 231/8192
1/5 1 1/5 −2/25 6/125 −21/625 399/15625
1/6 1 1/6 −5/72 55/1296 −935/31104 4301/186624

1/7 1 1/7 −3/49 13/343 −65/2401 351/16807
1/8 1 1/8 −7/128 35/1024 −805/32768 4991/262144
1/9 1 1/9 −4/81 68/2187 −442/19683 3094/177147
2/3 1 2/3 −1/9 4/81 −7/243 14/729
2/5 1 2/5 −3/25 8/125 −26/625 468/15625

2/7 1 2/7 −5/49 20/343 −95/2401 494/16807
2/9 1 2/9 −7/81 112/2187 −700/19683 4760/177147
3/4 1 3/4 −3/32 5/128 −45/2048 117/8192
3/5 1 3/5 −3/25 7/125 −21/625 357/15625
3/7 1 3/7 −6/49 22/343 −99/2401 495/16807

3/8 1 3/8 −15/128 65/1024 −1365/32768 7917/262144
4/5 1 4/5 −2/25 4/125 −11/625 176/15625
4/7 1 4/7 −6/49 20/343 −85/2401 408/16807
4/9 1 4/9 −10/81 140/2187 −805/19683 5152/177147
5/6 1 5/6 −5/72 35/1296 −455/31104 1729/186624
5/7 1 5/7 −5/49 15/343 −60/2401 276/16807

5/8 1 5/8 −15/128 55/1024 −1045/32768 5643/262144
5/9 1 5/9 −10/81 130/2187 −715/19683 4433/177147
6/7 1 6/7 −3/49 8/343 −30/2401 132/16807
7/8 1 7/8 −7/128 21/1024 −357/32768 1785/262144
7/9 1 7/9 −7/81 77/2187 −385/19683 2233/177147

8/9 1 8/9 −4/81 40/2187 −190/19683 1064/177147
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3.3 GRAPHS

3.3.1 NOTATION

3.3.1.1 Notation for graphs

E edge set V vertex set

G graph φ incidence mapping

3.3.1.2 Graph invariants

Aut(G) automorphism group c(G) circumference

d(u, v) distance between two vertices diam(G) diameter

deg x degree of a vertex e(G) size

ecc(x) eccentricity gir(G) girth

rad(G) radius PG(x) chromatic polynomial

Z(G) center α(G) independence number

χ(G) chromatic number χ′(G) chromatic index

δ(G) minimum degree ∆(G) maximum degree

γ(G) genus γ̃(G) crosscap number

κ(G) vertex connectivity λ(G) edge connectivity

ν(G) crossing number ν(G) rectilinear crossing number

θ(G) thickness Υ(G) arboricity

ω(G) clique number |G| order

3.3.1.3 Examples of graphs

Cn cycle

Kn empty graph

Kn complete graph

Km,n complete bipartite graph

K
(m)
n Kneser graphs

Mn Möbius ladder

On odd graph

Pn path

Qn cube

Sn star

Tn,k Turán graph

Wn wheel

3.3.2 BASIC DEFINITIONS

There are two standard definitions of graphs, a general definition and a more com-

mon simplification. Except where otherwise indicated, this book uses the simplified

definition, according to which a graph is an ordered pair (V,E) consisting of an ar-

bitrary set V and a set E of 2-element subsets of V . Each element of V is called a

vertex (plural vertices). Each element of E is called an edge.
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According to the general definition, a graph is an ordered triple G = (V,E, φ)
consisting of arbitrary sets V andE and an incidence mapping φ that assigns to each

element e ∈ E a non-empty set φ(e) ⊆ V of cardinality at most two. Again, the

elements of V are called vertices and the elements of E are called edges. A loop is

an edge e for which |φ(e)| = 1. A graph has multiple edges if edges e 6= e′ exist for

which φ(e) = φ(e′).
A (general) graph is simple if it has neither loops nor multiple edges. Because

each edge in a simple graph can be identified with the two-element set φ(e) ⊆ V ,

the simplified definition of graph given above is an alternative definition of a simple

graph.

The word multigraph is used to discuss general graphs with multiple edges but

no loops. Occasionally the word pseudograph is used to emphasize that the graphs

under discussion may have both loops and multiple edges. Every graph G = (V,E)
considered here is finite, i.e., both V and E are finite sets.

Specialized graph terms include the following:

acyclic: A graph is acyclic if it has no cycles.

adjacency: Two distinct vertices v and w in a graph are adjacent if the pair {v, w}
is an edge. Two distinct edges are adjacent if their intersection is non-empty,

i.e., if there is a vertex incident with both of them.

adjacency matrix: For an ordering v1, v2, . . . , vn of the vertices of a graph G =
(V,E) of order |G| = n, there is a corresponding n×n adjacency matrix A =
(aij) defined as follows:

aij =

{
1 if {vi, vj} ∈ E;

0 otherwise.
(3.3.1)

arboricity: The arboricity Υ(G) of a graph G is the minimum number of edge-

disjoint spanning forests into which G can be partitioned.

automorphism: An automorphism of a graph is a permutation of its vertices that

is an isomorphism.

automorphism group: The composition of two automorphisms is again an auto-

morphism; with this binary operation, the automorphisms of a graphG form a

group Aut(G) called the automorphism group of G.

ball: The ball of radius k about a vertex u in a graph is the set

B(u, k) = {v ∈ V | d(u, v) ≤ k}. (3.3.2)

See also sphere and neighborhood.

block: A block is a graph with no cut vertex. A block of a graph is a maximal

subgraph that is a block.

bridge: A bridge is an edge in a connected graph whose removal would disconnect

the graph.

cactus: A cactus is a connected graph, each of whose blocks is a cycle.

cage: An (r, n)-cage is a graph of minimal order among r-regular graphs with

girth n. A (3, n)-cage is also called an n-cage.

center: The center Z(G) of a graph G = (V,E) consists of all vertices whose

eccentricity equals the radius of G:

Z(G) = {v ∈ V (G) | ecc(v) = rad(G)}. (3.3.3)
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Each vertex in the center of G is called a central vertex.

characteristic polynomial: All adjacency matrices of a graph G have the same

characteristic polynomial, which is called the characteristic polynomial of G.

chromatic index: The chromatic index χ′(G) is the least k for which there exists

a proper k-coloring of the edges of G; in other words, it is the least number of

matchings into which the edge set can be decomposed.

chromatic number: The chromatic number χ(G) of a graph G is the least k for

which there exists a proper k-coloring of the vertices of G; in other words, it

is the least k for which G is k-partite. See also multipartite.

chromatic polynomial: For a graph G of order |G| = n with exactly k connected

components, the chromatic polynomial of G is the unique polynomial PG(x)
for which PG(m) is the number of proper colorings of G with m colors for

each positive integer m.

circuit: A circuit in a graph is a trail whose first and last vertices are identical.

circulant graph: A graph G is a circulant graph if its adjacency matrix is a circu-

lant matrix; that is, the rows are circular shifts of one another.

circumference: The circumference of a graph is the length of its longest cycle.

clique: A clique is a set S of vertices for which the induced subgraph G[S] is

complete.

clique number: The clique number ω(G) of a graphG is the largest cardinality of

a clique in G.

coloring: A partition of the vertex set of a graph is called a coloring, and the

blocks of the partition are called color classes. A coloring with k color classes

is called a k-coloring. A coloring is proper if no two adjacent vertices belong

to the same color class. See also chromatic number and chromatic polynomial.

complement: The complement G of a graph G = (V,E) has vertex set V and

edge set
(
V
2

)
\E; that is, its edges are exactly the pairs of vertices that are not

edges of G.

complete graph: A graph is complete if every pair of distinct vertices is an edge;

Kn denotes a complete graph with n vertices.

component: A component of a graph is a maximal connected subgraph.

connectedness: A graph is said to be connected if each pair of vertices is joined by

a walk; otherwise, the graph is disconnected. A graph is k-connected if it has

order at least k + 1 and each pair of vertices is joined by k pairwise internally

disjoint paths. If a graph is disconnected, then its complement is connected.

connectivity: The connectivity κ(G) of G is the largest k for which G is k-

connected.

contraction: To contract an edge {v, w} of a graph G is to construct a new graph

G′ from G by removing the edge {v, w} and identifying the vertices v and w.

A graph G is contractible to a graph H if H can be obtained from G via the

contraction of one or more edges of G.

cover: A set S ⊆ V is a vertex cover if every edge of G is incident with some

vertex in S. A set T ⊆ E is an edge cover of a graph G = (V,E) if each

vertex of G is incident to at least one edge in T .

crosscap number: The crosscap number γ̃(G) of a graphG is the least g for which

G has an embedding in a non-orientable surface obtained from the sphere by

adding g crosscaps. See also genus.



“smtf32” — 2011/5/20 — 2:09 — page 147 — #157

3.3. GRAPHS 147

crossing: A crossing is a point lying in images of two edges of a drawing of a

graph on a surface.

crossing number: The crossing number ν(G) of a graph G is the minimum num-

ber of crossings among all drawings of G in the plane. The rectilinear cross-

ing number ν(G) of a graphG is the minimum number of crossings among all

drawings of G in the plane for which the image of each edge is a straight line

segment.

cubic: A graph is a cubic graph if it is regular of degree 3.

cut: For each partition of the vertex V set of a graphG = (V,E) into two disjoint

blocks (V1 and V2), the set of all edges joining a vertex in V1 to a vertex in V2
is called a cut.

cut space: The cut space of a graph G is the subspace of the edge space of G
spanned by the cut vectors.

cut vector: The cut vector corresponding to a cut C of a graph G = (V,E) is the

mapping v : E → GF (2) in the edge space of G

v(e) =

{
1, e ∈ C,
0, otherwise.

(3.3.4)

cut vertex: A cut vertex of a connected graph is a vertex whose removal, along

with all edges incident with it, leaves a disconnected graph.

cycle: A cycle is a circuit, each pair of whose vertices other than the first and the

last are distinct.

cycle space: The cycle space of a graph G is the subspace of the edge space of G
consisting of all 1-chains with boundary 0. An indicator mapping of a set of

edges with which each vertex is incident an even number of times is called a

cycle vector. The cycle space is the span of the cycle vectors.

degree: The degree deg x of a vertex x in a graph is the number of vertices adja-

cent to it. The maximum and minimum degrees of vertices in a graph G are

denoted ∆(G) and δ(G), respectively.

degree sequence: A sequence (d1, . . . , dn) is a degree sequence of a graph if there

is some ordering v1, . . . , vn of the vertices for which di is the degree of vi for

each i.
diameter: The diameter ofG is the maximum distance between two vertices ofG;

thus it is also the maximum eccentricity of a vertex in G.

digraph: A digaph is a directed graph in which each edge has a direction.

distance: The distance d(u, v) between vertices u and v in a graph G is the mini-

mum among the lengths of u, v-paths in G, or∞ if there is no u, v-path.

drawing: A drawing of a graphG in a surface S consists of a one-to-one mapping

from the vertices ofG to points of S and a one-to-one mapping from the edges

of G to open arcs in X so that (i) no image of an edge contains an image of

some vertex, (ii) the image of each edge {v, w} joins the images of v and w,

(iii) the images of adjacent edges are disjoint, (iv) the images of two distinct

edges never have more than one point in common, and (v) no point of the

surface lies in the images of more than two edges.

eccentricity: The eccentricity ecc(x) of a vertex x in a graph G is the maximum

distance from x to a vertex of G.
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edge connectivity: The edge connectivity or line connectivity ofG, denoted λ(G),
is the minimum number of edges whose removal results in a disconnected or

trivial graph.

edge space: The edge space of a graph G = (V,E) is the vector space of all

mappings fromE to the two-element fieldGF (2). Elements of the edge space

are called 1-chains.

embedding: An embedding of a graph G in a topological space X consists of an

assignment of the vertices of G to distinct points of X and an assignment of

the edges of G to disjoint open arcs in X so that no arc representing an edge

contains some point representing a vertex and so that each arc representing an

edge joins the points representing the vertices incident with the edge. See also

drawing.

end vertex: A vertex of degree 1 in a graph is called an end vertex.

Eulerian circuits and trails: A trail or circuit that includes every edge of a graph

is said to be Eulerian, and a graph is Eulerian if it has an Eulerian circuit.

even: A graph is even if the degree of every vertex is even.

factor of a graph: A factor of a graph G is a spanning subgraph of G. A factor in

which every vertex has the same degree k is called a k-factor. If G1, G2, . . . ,

Gk (k ≥ 2) are edge-disjoint factors of the graph G, and if
⋃k

i=1E(Gi) =
E(G), then G is said to be factored into G1, G2, . . . , Gk and we write G =
G1 ⊕G2 ⊕ · · · ⊕Gk.

forest: A forest is an acyclic simple graph; see also tree.

genus: The genus γ(G) (plural form genera) of a graph G is the least g for which

G has an embedding in an orientable surface of genus g. See also crosscap

number.

girth: The girth gir(G) of a graphG is the minimum length of a cycle in G, or∞
if G is acyclic.

Hamiltonian cycles and paths: A path or cycle through all the vertices of a graph

is said to be Hamiltonian. A graph is Hamiltonian if it has a Hamiltonian

cycle.

homeomorphic graphs: Two graphs are homeomorphic to one another if there is

a third graph of which each is a subdivision.

identification of vertices: To identify vertices v and w of a graphG is to construct

a new graph G′ from G by removing the vertices v and w and all the edges

ofG incident with them and introducing a new vertex u and new edges joining

u to each vertex that was adjacent to v or to w in G. See also contraction.

incidence: A vertex v and an edge e are incident with one another if v ∈ e.
incidence matrix: For an ordering v1, v2, . . . , vn of the vertices and an ordering

e1, e2, . . . , em of the edges of a graph G = (V,E) with order |G| = n and

size e(G) = m, there is a corresponding n ×m incidence matrix B = (bij)
defined as follows:

bij =

{
1, if vi and ej are incident,

0, otherwise.
(3.3.5)

independence number: The independence number α(G) of a graph G = (V,E)
is the largest cardinality of an independent subset of V .
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FIGURE 3.2
Three graphs that are isomorphic.

independent set: A set S ⊆ V is said to be independent if the induced sub-

graph G[S] is empty. See also matching.

internally disjoint paths: Two paths in a graph with the same initial vertex v
and terminal vertex w are internally disjoint if they have no internal vertex in

common.

isolated vertex: A vertex is isolated if it is adjacent to no other vertex.

isomorphism: An isomorphism between graphs G = (VG, EG) and H =
(VH , EH) is a bijective mapping ψ : VG → VH for which {x, y} ∈ EG if and

only if {ψ(x), ψ(y)} ∈ EH . If there is an isomorphism between G and H ,

then G and H are said to be isomorphic to one another; this is denoted as

G ∼= H . Figure 3.2 contains three graphs that are isomorphic.

labeled graph: Graph theorists sometimes speak loosely of labeled graphs of

order n and unlabeled graphs of order n to distinguish between graphs with

a fixed vertex set of cardinality n and the family of isomorphism classes of

such graphs. Thus, one may refer to labeled graphs to indicate an intention to

distinguish between any two graphs that are distinct (i.e., have different vertex

sets and/or different edge sets). One may refer to unlabeled graphs to indicate

the intention to view any two distinct but isomorphic graphs as the ‘same’

graph, and to distinguish only between non-isomorphic graphs.

matching: A matching in a graph is a set of edges, no two having a vertex in

common. A maximal matching is a matching that is not a proper subset of any

other matching. A maximum matching is a matching of greatest cardinality.

For a matching M , an M -alternating path is a path whose every other edge

belongs toM , and anM -augmenting path is anM -alternating path whose first

and last edges do not belong to M . A matching saturates a vertex if the vertex

belongs to some edge of the matching.

monotone graph property: A property P that a graph may or may not enjoy is

said to be monotone if, wheneverH is a graph enjoyingP , every supergraphG
of H with |G| = |H | also enjoys P .

multipartite graph: A graph is k-partite if its vertex set can be partitioned into

k disjoint sets called color classes in such a way that every edge joins vertices

in two different color classes (see also coloring). A two-partite graph is called

bipartite.

neighbor: Adjacent vertices v and w in a graph are said to be neighbors of one

another.
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neighborhood: The sphere S(x, 1) is called the neighborhood of x, and the

ball B(x, 1) is called the closed neighborhood of x.

order: The order |G| of a graph G = (V,E) is the number of vertices in G; in

other words, |G| = |V |.
path: A path is a walk whose vertices are distinct.

perfect graph: A graph is perfect if χ(H) = ω(H) for all induced subgraphs H
of G.

planarity: A graph is planar if it has an embedding in the plane.

radius: The radius rad(G) of a graph G is the minimum vertex eccentricity in G.

regularity: A graph is k-regular if each of its vertices has degree k. A graph is

strongly regular with parameters (k, λ, µ) if (i) it is k-regular, (ii) every pair of

adjacent vertices has exactly λ common neighbors, and (iii) every pair of non-

adjacent vertices has exactly µ common neighbors. A graph G = (V,E) of

order |G| ≥ 3 is called highly regular if there exists an n×nmatrixC = (cij),
where 2 ≤ n < |G|, called a collapsed adjacency matrix, so that, for each

vertex v of G, there is a partition of V into n subsets V1 = {v}, V2, . . . , Vn so

that every vertex y ∈ Vj is adjacent to exactly cij vertices in Vi. Every highly

regular graph is regular.

rooted graph: A rooted graph is an ordered pair (G, v) consisting of a graph G
and a distinguished vertex v of G called the root.

self-complementary: A graph is self-complementary if it is isomorphic to its com-

plement.

similarity: Two vertices u and v of a graph G are similar (in symbols u ∼ v) if

there is an automorphism α of G for which α(u) = v. Similarly, two edges

(u, v) and (a, b) in the graph G are similar if an automorphism α of G exists

for which {α(u), α(v)} = {a, b}.
size: The size e(G) of a graph G = (V,E) is the number of edges of G, that is,

e(G) = |E|.
spectrum: The spectrum of a graphG is the spectrum of its characteristic polyno-

mial, i.e., the non-decreasing sequence of |G| eigenvalues of the characteristic

polynomial of G. Since adjacency matrices are real symmetric, their spectrum

is real.

sphere: The sphere of radius k about a vertex u is the set

S(u, k) = {v ∈ V | d(u, v) = k}. (3.3.6)

See also ball and neighborhood.

subdivision: To subdivide an edge {v, w} of a graphG is to construct a new graph

G′ from G by removing the edge {v, w} and introducing new vertices xi and

new edges {v, x1}, {xk, w} and {xi, xi+1} for 1 ≤ i < k. A subdivision of a

graph is a graph obtained by subdividing one or more edges of the graph.

subgraph: A graph H = (VH , EH) is a subgraph of a graph G = (VG, EG) (in

symbols,H � G), if VH ⊆ VG andEH ⊆ EG. In that case,G is a supergraph

ofH (in symbols,G � H). If VH = VG, thenH is called a spanning subgraph

ofG. For each set S ⊆ VG, the subgraphG[S] ofG induced by S is the unique

subgraph of G with vertex set S for which every edge of G incident with two

vertices in S is also an edge of G[S].
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symmetry: A graph is vertex symmetric if every pair of vertices is similar. A graph

is edge symmetric if every pair of edges is similar. A graph is symmetric if it

is both vertex and edge symmetric.

2-switch: For vertices v, w, x, y in a graph G for which {v, w} and {x, y} are

edges, but {v, y} and {x,w} are not edges, the construction of a new graphG′

fromG via the removal of edges {v, w} and {x, y} together with the insertion

of the edges {v, y} and {x,w} is called a 2-switch.

thickness: The thickness θ(G) of a graph G is the least k for which G is a union

of k planar graphs.

trail: A trail in a graph is a walk whose edges are distinct.

tree: A tree is a connected forest, i.e., a connected acyclic graph. A spanning

subgraph of a graph G that is a tree is called a spanning tree of G.

triangle: A 3-cycle is called a triangle.

trivial graph: A trivial graph is a graph with exactly one vertex and no edges.

vertex space: The vertex space of a graph G is the vector space of all mappings

from V to the two-element field GF (2). The elements of the vertex space are

called 0-chains.

walk: A walk in a graph is an alternating sequence v0, e1, v1, . . . , ek, vk of ver-

tices vi and edges ei for which ei is incident with vi−1 and with vi for each i.
Such a walk is said to have length k and to join v0 and vk. The vertices v0
and vk are called the initial vertex and terminal vertex of the walk; the remain-

ing vertices are called internal vertices of the walk.

3.3.3 CONSTRUCTIONS

3.3.3.1 Operations on graphs

For graphs G1 = (V1, E1) and G2 = (V2, E2), there are several binary operations

that yield a new graph fromG1 and G2. The table below gives the names of some of

those operations and the orders and sizes of the resulting graphs.

Operation producingG Order |G| Size e(G)

Composition G1[G2] = |G1| · |G2| = |G1| e(G2) + |G2| e(G1)
Conjunction G1 ∧G2 = |G1| · |G2|
Edge suma G1 ⊕G2 = |G1| = |G2| ≤ (e(G1) + e(G2))
Join G1 +G2 = |G1|+ |G2| = e(G1) + e(G2) + |G1| · |G2|
Product G1 ×G2 = |G1| · |G2| = |G1|e(G2) + |G2|e(G1)
Union G1 ∪G2 = |G1|+ |G2| = e(G1) + e(G2)

aWhen applicable.

composition: For graphs G1 = (V1, E1) and G2 = (V2, E2), the composition

G = G1[G2] is the graph with vertex set V1×V2 whose edges are (1) the pairs

{(u, v), (u,w)}with u ∈ V1 and {v, w} ∈ E2 and (2) the pairs {(t, u), (v, w)}
for which {t, v} ∈ E1.

conjunction: The conjunction G1 ∧ G2 of two graphs G1 = (V1, E1) and G2 =
(V2, E2) is the graph G3 = (V3, E3) for which V3 = V1 × V2 and for which

vertices e1 = (u1, u2) and e2 = (v1, v2) in V3 are adjacent in G3 if and only

if u1 is adjacent to v1 in G1 and u2 is adjacent to v2 in G2.
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edge difference: For graphsG1 = (V,E1) andG2 = (V,E2) with the same vertex

set V , the edge differenceG1−G2 is the graph with vertex set V and edge set

E1 \ E2.

edge sum: For graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex

set V , the edge sum of G1 and G2 is the graphG1 ⊕G2 with vertex set V and

edge set E1 ∪ E2. Sometimes the edge sum is denotedG1 ∪G2.

join: For graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, the join

G1 + G2 = G2 + G1 is the graph obtained from the union of G1 and G2 by

adding edges joining each vertex in V1 to each vertex in V2.

power: For a graph G = (V,E), the kth power Gk is the graph with the same

vertex set V whose edges are the pairs {u, v} for which d(u, v) ≤ k inG. The

square of G is G2.

product: For graphsG1 = (V1, E1) andG2 = (V2, E2), the productG1×G2 has

vertex set V1 × V2; its edges are all of the pairs {(u, v), (u,w)} for which u ∈
V1 and {v, w} ∈ E2 and all of the pairs {(t, v), (u, v)} for which {t, u} ∈ E1

and v ∈ V2.

union: For graphs G1 = (V1, E1) and G2 = (V2, E2) with V1 ∩ V2 = ∅, the

union of G1 and G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The union

is sometimes called the disjoint union to distinguish it from the edge sum.

3.3.3.2 Graphs described by one parameter

complete graph, Kn: A complete graph of order n is a graph isomorphic to the

graphKn with vertex set {1, 2, . . . , n}whose every pair of vertices is an edge.

The graph Kn has size
(
n
2

)
and is Hamiltonian. If G is a graph g of order n,

then Kn = G⊕G.

cube, Qn: An n-cube is a graph isomorphic to the graph Qn whose vertices are

the 2n binary n-vectors and whose edges are the pairs of vectors that differ in

exactly one place. It is an n-regular bipartite graph of order 2n and size n2n−1.

An equivalent recursive definition is Q1 = K2 and Qn = Qn−1 ×K2.

cycle, Cn: A cycle of order n is a graph isomorphic to the graph Cn with vertex

set {0, 1, . . . , n− 1} whose edges are the pairs {vi, vi+1} with 0 ≤ i < n and

arithmetic modulo n. The cycle Cn has size n and is Hamiltonian.

The graph Cn is a special case of a circulant graph. The graph C3 is called a

triangle, the graph C4 is called a square.

empty graph: A graph is empty if it has no edges; Kn denotes an empty graph of

order n.

Kneser graphs, K
(m)
n : For n ≥ 2m, the Kneser graph K

(m)
n is the complement

of the intersection graph of the m-subsets of an n-set. The odd graph Om is

the Kneser graph K
(m)
2m+1. The Petersen graph is the odd graph O2 = K

(2)
5 .

ladder: A ladder is a graph of the form Pn × P2. The Möbius ladder Mn is the

graph obtained from the ladder Pn × P2 by joining the opposite end vertices

of the two copies of Pn.

path, Pn: A path of order n is a graph isomorphic to the graph Pn whose vertex

set is {1, . . . , n} and whose edges are the pairs {vi, vi+1} with 1 ≤ i < n. A

path of order n has size n− 1 and is a tree.
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star, Sn: A star of order n is a graph isomorphic to the graph Sn = K1,n. It has

a vertex cover consisting of a single vertex, its size is n, and it is a complete

bipartite graph and a tree.

wheel, Wn: The wheel Wn of order n ≥ 4 consists of a cycle of order n − 1
and an additional vertex adjacent to every vertex in the cycle. Equivalently,

Wn = Cn−1 +K1. This graph has size 2(n− 1).

3.3.3.3 Graphs described by two parameters

complete bipartite graph, Kn,m: The complete bipartite graph Kn,m is the

graph Kn + Km. Its vertex set can be partitioned into two color classes of

cardinalities n andm, respectively, so that each vertex in one color class is ad-

jacent to every vertex in the other color class. The graphKn,m has order n+m
and size nm.

planar mesh: A graph of the form Pn × Pm is called a planar mesh.

prism: A graph of the form Cm × Pn is called a prism.

toroidal mesh: A graph of the form Cm × Cn with m ≥ 2 and n ≥ 2 is called a

toroidal mesh.

Turán graph, Tn,k: The Turán graph Tn,k is the complete k-partite graph in

which the cardinalities of any two color classes differ by, at most, one. It has

n− k ⌊n/k⌋ color classes of cardinality ⌊n/k⌋+1 and k−n+ k ⌊n/k⌋ color

classes of cardinality ⌊n/k⌋. Note that ω(Tn,k) = k.

3.3.3.4 Graphs described by three or more parameters

Cayley graph: For a group Γ and a set X of generators of Γ, the Cayley graph

of the pair (Γ, X) is the graph with vertex set Γ in which {α, β} is an edge if

either α−1β ∈ X or β−1α ∈ X .

complete multipartite graph, Kn1,n2,...,nk
: The complete k-partite graph

Kn1,n2,...,nk
is the graph Kn1 + · · ·+Knk

. It is a k-partite graph with color

classes Vi of cardinalities |Vi| = ni for which every pair of vertices in two

distinct color classes is an edge. The graph Kn1,n2,...,nk
has order

∑k
i=1 nk

and size
∑

1≤i<j≤k ninj .

double loop graph, DLG(n; a, b): The double loop graph DLG(n; a, b) (with a
and b between 1 and (n− 1)/2), consists of n vertices with every vertex i con-

nected by an edge to the vertices i± a and i± b (modulo n). The name comes

from the following fact: If GCD(a, b, n) = 1, then DLG(n; a, b) is Hamilto-

nian and, additionally, DLG(n; a, b) can be decomposed into two Hamiltonian

cycles. These graphs are also known as circulant graphs.

intersection graph: For a family F = {S1, . . . , Sn} of subsets of a set S, the

intersection graph of F is the graph with vertex set F in which {Si, Sj} is an

edge if and only if Si∩Sj 6= ∅. Each graphG is an intersection graph of some

family of subsets of a set of cardinality at most
⌊
|G|2/4

⌋
.

interval graph: An interval graph is an intersection graph of a family of intervals

on the real line.
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FIGURE 3.3
Examples of graphs with 6 or 7 vertices.

K6 = P6 =

S6 = W7 =

C6 = K6 =

C6 = K3,3 =

3.3.4 FUNDAMENTAL RESULTS

3.3.4.1 Walks and connectivity

1. Every x, y walk includes all the edges of some x, y path.

2. Some path in G has length δ(G).
3. Connectivity is a monotone graph property. If more edges are added to a

connected graph, the new graph is itself connected.

4. A graph is disconnected if and only if it is the union of two graphs.

5. Every vertex of a graph lies in at least one block.

6. For every graph G, 0 ≤ κ(G) ≤ |G| − 1.

7. For all integers a, b, c with 0 < a ≤ b ≤ c, a graph G exists with κ(G) = a,

λ(G) = b, and δ(G) = c.
8. For any graph G, κ(G) ≤ λ(G) ≤ δ(G).
9. Menger’s theorem: Suppose that G is a connected graph of order greater

than k. Then G is k-connected if and only if it is impossible to disconnect G
by removing fewer than k vertices, and G is k-edge connected if and only if it

is impossible to disconnect G by removing fewer than k edges.

10. If G is a connected graph with a bridge, then λ(G) = 1. If G has order n and

is r-regular with r ≥ n/2, then λ(G) = r.



“smtf32” — 2011/5/20 — 2:09 — page 155 — #165

3.3. GRAPHS 155

3.3.4.2 Circuits and cycles

1. Euler’s theorem: A multigraph is Eulerian if and only if it is connected and

even.

2. If G is Hamiltonian, and if G′ is obtained from G by removing a non-empty

set S of vertices, then the number of components of G′ is at most |S|.
3. Ore’s theorem: If G is a graph for which deg v + degw ≥ |G| whenever v

and w are non-adjacent vertices, then G is Hamiltonian.

4. Dirac’s theorem: If G is a graph of order |G| ≥ 3 and deg v ≥ |G|/2 for each

vertex v, then G is Hamiltonian.

5. (Erdös–Chvátal) If α(G) ≤ κ(G), then G is Hamiltonian.

6. Every 4-connected planar graph is Hamiltonian.

7. The following table indicates which graphs are Eulerian or Hamiltonian:

Graph Is it Eulerian? Is it Hamiltonian?

Cn yes yes, for n ≥ 1
Kn yes, for odd n yes, for n ≥ 3
Km,n yes, for m and n both even yes, for m = n
Qn yes, for n even yes, for n ≥ 2
Wn no yes, for n ≥ 2

3.3.4.3 Trees

1. A graph is a tree if and only if it is acyclic and has size |G| − 1.

2. A graph is a tree if and only if it is connected and has size |G| − 1.

3. A graph is a tree if and only if each of its edges is a bridge.

4. A graph is a tree if and only if each vertex of degree greater than 1 is a cut

vertex.

5. A graph is a tree if and only if each pair of its vertices is joined by exactly one

path.

6. Every tree of order greater than 1 has at least two end vertices.

7. The center of a tree consists of one vertex or two adjacent vertices.

8. For a graph G, every tree with at most δ(G) edges is a subgraph of G.

9. Every connected graph has a spanning tree.

10. Kirchhoff matrix-tree theorem: LetG be a connected graph and letA be an ad-

jacency matrix for G. Obtain a matrix M from−A by replacing each term aii
on the main diagonal with deg vi. Then all cofactors of M have the same

value, which is the number of spanning trees of G.

11. Nash–Williams arboricity theorem: For a graphG and for each n ≤ |G|, define

en(G) = max{e(H) : H � G, and |H | = n} . Then

Υ(G) = max
n

⌈
en
n− 1

⌉
. (3.3.7)

3.3.4.4 Cliques and independent sets

1. A set S ⊆ V is a vertex cover if and only if V \ S is an independent set.

2. Turán’s theorem: If |G| = n and ω(G) ≤ k, then e(G) ≤ e(Tn,k).
3. Ramsey’s theorem: For all positive integers k and l, there is a least inte-

ger R(k, l) for which every graph of order at least R(k, l) has either a clique

of cardinality k or an independent set of cardinality l. For k ≥ 2 and l ≥ 2,

R(k, l) ≤ R(k, l− 1) +R(k − 1, l).
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R(k, l) l = 1 2 3 4 5 6 7

k = 1 1 1 1 1 1 1 1

2 1 2 3 4 5 6 7

3 1 3 6 9 14 18 23

3.3.4.5 Colorings and partitions

1. Every graphG is k-partite for some k; in particular, G is |G|-partite.

2. Every graphG has a bipartite subgraphH for which e(H) ≥ e(G)/2.

3. PG(x) = PG−e(x) − PG\e(x).
4. Brooks’ theorem: If G is a connected graph that is neither a complete graph

nor a cycle of odd length, then χ(G) ≤ ∆(G).
5. For all positive integers g and c, a graphG exists with χ(G) ≥ c and gir(G) ≥
g.

6. Nordhaus–Gaddum bounds: For every graphG,

2
√
|G| ≤ χ(G) + χ(Ḡ) ≤ |G|+ 1, and

|G| ≤ χ(G)χ(Ḡ) ≤
( |G|+ 1

2

)2

.

7. Szekeres–Wilf theorem: For every graph G = (V,E),

χ(G) ≤ 1 + max
S⊆V

δ(G[S]).

8. (König) If G is bipartite, then χ′(G) = ∆(G).
9. Vizing’s theorem: For every graphG, ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

10. The following table gives the chromatic numbers and chromatic polynomials

of various graphs:

G χ(G) PG(x)

Kn n x(x − 1) · · · (x− n+ 1)
Kn 1 xn

Tn 2 x(x − 1)n−1

Pn 2 x(x − 1)n−1

C4 2 x(x − 1)(x2 − 3x+ 3)
11. The following table gives the chromatic numbers and edge-chromatic numbers

(i.e., edges are colored instead of vertices) of various graphs:

G χ(G) χ1(G)
Cn with n even, n ≥ 2 2 2
Cn with n odd, n ≥ 3 3 3
Kn with n even, n ≥ 2 n n− 1
Kn with n odd, n ≥ 3 n n
Km,n with m,n ≥ 1 2 max(m,n)
Km1,...,mk

with mi ≥ 1 k max(m1, . . . ,mk)
Pn 2 2
Petersen graph 3 4
Wn with n even, n ≥ 2 3 n
Wn with n odd, n ≥ 3 4 n
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12. (Appel–Haken) Four-color theorem: χ(G) ≤ 4 for every planar graphG.

13. For each graphG of order |G| = n and size e(G) = m with exactly k compo-

nents, the chromatic polynomial is of the form

PG(x) =
n−k∑

i=0

(−1)iaixn−i, (3.3.8)

with a0 = 1, a1 = m and every ai positive.

14. Not every polynomial is a chromatic polynomial. For example P (x) = x4 −
4x3 + 3x2 is not a chromatic polynomial.

15. Sometimes a class of chromatic polynomials can only come from a specific

class of graphs. For example:

(a) If PG(x) = xn, then G = Kn.

(b) If PG(x) = (x)n, then G = Kn.

3.3.4.6 Distance

1. A metric space (X, d) is the metric space associated with a connected graph

with vertex set X if and only if it satisfies two conditions: (i) d(u, v) is a non-

negative integer for all u, v ∈ X , and (ii) whenever d(u, v) ≥ 2, some element

of X lies between u and v. The edges of the graph are the pairs {u, v} ⊆ X
for which d(u, v) = 1. (In an arbitrary metric space (X, d), a point v ∈ X is

said to lie between distinct points u ∈ X and w ∈ X if it satisfies the triangle

equality d(u,w) = d(u, v) + d(v, w).)
2. If G = (V,E) is connected, then distance is always finite, and d is a metric

on V . Note that deg(x) = |S(x, 1)|.
3. Moore bound: For every connected graph G,

|G| ≤ 1 + ∆(G)

diam(G)∑

i=1

(∆(G) − 1)i. (3.3.9)

A graph for which the Moore bound holds exactly is called a Moore graph

with parameters (|G|,∆(G), diam(G)). Every Moore graph is regular. If G
is a Moore graph with parameters (n, r, d), then (n, r, d) = (n, n − 1, 1) (in

which case G is complete), (n, r, d) = (2m + 1, 2,m) (in which case G is a

(2m+ 1)-cycle), or (n, r, d) ∈ {(10, 3, 2), (50, 7, 2), (3250, 57, 2)}.

3.3.4.7 Drawings, embeddings, planarity, and thickness

1. Every graph has an embedding in R
3 for which the arcs representing edges

are all straight line segments. Such an embedding can be constructed by using

distinct points on the curve {(t, t2, t3) : 0 ≤ t ≤ 1} as representatives for the

vertices.

2. For n ≥ 2,

γ(Qn) = (n− 4)2n−3 + 1 and γ̃(Qn) = (n− 4)2n−2 + 2.
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3. For r, s ≥ 2,

γ(Kr,s) =

⌈
(r − 2)(s− 2)

4

⌉
and γ̃(Kr,s) =

⌈
(r − 2)(s− 2)

2

⌉
.

4. For n ≥ 3,

γ(Kn) =

⌈
(n− 3)(n− 4)

12

⌉
and γ̃(Kn) =

⌈
(n− 3)(n− 4)

6

⌉
.

5. Heawood map coloring theorem: The greatest chromatic number among

graphs of genus n is

max{χ(G) | γ(G) = n} =
⌈
7 +
√
1 + 48n

2

⌉
.

6. Kuratowski’s theorem: A graph is planar if and only if it has no subgraph

homeomorphic to K5 or K3,3.

7. A graph is planar if and only if it does not have a subgraph contractible to K5

or K3,3.

8. The graphKn is non-planar if and only if n ≥ 5.

9. Every planar graph can be embedded in the plane so that every edge is a

straight line segment; this is a Fary embedding.

10. The four-color theorem states that any planar graph is four colorable.

11. For every graph G of order |G| ≥ 3, θ(G) ≥
⌈

e(G)

3|G| − 6

⌉
.

12. The complete graphsK9 and K10 have thickness 3; for n /∈ {9, 10},

θ(Kn) =

⌊
n+ 7

6

⌋
. (3.3.10)

13. The n-cube has thickness θ(Qn) = ⌊n/4⌋+ 1.

14. For every planar graph G, ν(G) = ν(G). That equality does not hold for all

graphs: ν(K8) = 18, and ν(K8) = 19.

3.3.4.8 Vertex degrees

1. Handshaking lemma: For every graph G,
∑

v∈V deg v = 2e(G).
2. Every 2-switch preserves the degree sequence.

3. If G and H have the same degree sequence, then H can be obtained from G
via a sequence of 2-switches.

4. Havel–Hakimi theorem: The values {d1, d2, . . . , dn} with d1 ≥ d2 ≥ · · · ≥
dn > 0 are a degree sequence if and only if the sequence obtained by deleting

d1 and subtracting 1 from each of the next d1 largest values (i.e., {d2 − 1,

d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn}) is a degree sequence.

5. Erdos–Gallai theorem: The values {d1, d2, . . . , dn} are a degree sequence if

and only if the sum of vertex degrees is even and the sequence has the property,

for each integer r ≤ n− 1:

r∑

i=1

di ≤ r(r − 1) +
n∑

i=r+1

min(r, di).
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3.3.4.9 Algebraic methods

1. The bipartite graphsKn,n are circulant graphs.

2. For a graph G with exactly k connected components, the cycle space has di-

mension e(G)− |G|+ k, and the cut space has dimension |G| − k.

3. In the kth power Ak = (akij) of the adjacency matrix, each entry akij is the

number of vi, vj walks of length k.

4. The incidence matrix of a graph G is totally unimodular if and only if G is

bipartite. (Unimodular matrices form a group under matrix multiplication.)

5. The smallest graph that is vertex symmetric, but is not edge symmetric, is the

prism K3 ×K2. The smallest graph that is edge symmetric, but is not vertex

symmetric, is S2 = P3 = K1,2.

6. The spectrum of a disconnected graph is the union of the spectra of its compo-

nents.

7. The sum of the eigenvalues in the spectrum of a graph is zero.

8. The number of distinct eigenvalues in the spectrum of a connected graph is

greater than the diameter of the graph.

9. The largest eigenvalue in the spectrum of a graph G is, at most, ∆(G), with

equality if and only if G is regular.

10. (Wilf) If G is a connected graph and its largest eigenvalue is λ, then χ(G) ≤
1+λ. Moreover, equality holds if and only if G is a complete graph or a cycle

of odd length.

11. (Hoffman) IfG is a connected graph of order n with spectrum λ1 ≥ · · · ≥ λn,

then χ(G) ≥ 1− λ1/λn.

12. Integrality condition: If G is a strongly regular graph with parameters

(k, λ, µ), then the quantities

1

2

(
|G| − 1± (|G| − 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)

)
(3.3.11)

are non-negative integers.

13. The following table gives the automorphism groups of various graphs:

G Aut(G)

Cn for n ≥ 3 Dn

Kn Sn

Kn Sn

14. A graph and its complement have the same group; Aut(G) = Aut(G).
15. Frucht’s theorem: Every finite group is the automorphism group of some

graph.

16. If G and G′ are edge isomorphic, then G and G′ are not necessarily required

to be isomorphic. For example, the graphsC3 and S3 are edge isomorphic, but

not isomorphic. (Two graphs are edge isomorphic if edges are incident in one

graph if and only if the corresponding edges are incident in the other graph.)

17. If the graphG has order n, then the order of its automorphism group |Aut(G)|
is a divisor of n!. The order of the automorphism group equals n! if and only

if G ≃ Kn or G ≃ Kn.
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3.3.4.10 Enumeration

1. The number of labeled graphs of order n is 2(
n
2).

2. The number of labeled graphs of order n and size m is
((n2)

m

)
.

3. The number of different ways in which a graph G of order n can be labeled is

n!/|Aut(G)|.
4. Cayley’s formula: The number of labeled trees of order n is nn−2.

5. The number of labeled trees of order n with exactly t end vertices is
n!
t! S(n− 2, n− t) for 2 ≤ t ≤ n− 1 (where S(, ) is a Stirling number of the

second kind).

6. Define the generating functions T (x) =
∑∞

n=0 Tnx
n and

t(x) =
∑∞

n=0 tnx
n. Then T (x) = x exp

(∑∞
r=1

1
rT (xr)

)
, and

t(x) = T (x)− 1
2

[
T 2(x)− T

(
x2
)]

.

7. The following table lists the number of graphs, and other objects, of different

orders.
Order Graphs Digraphs Trees (tn) Rooted trees (Tn)

1 1 1 1 1

2 2 3 1 1

3 4 16 1 2

4 11 218 2 4

5 34 9608 3 9

6 156 1540944 6 20

7 1044 882033440 11 48

8 12346 1793359192848 23 115

9 274668 47 286

10 12005168 106 719

8. The following table lists the number of isomorphism classes of digraphs with

n vertices and m arcs.
m n = 1 2 3 4 5

0 1 1 1 1 1

1 2 6 12 20

2 1 15 66 190

3 20 220 1,140

4 15 495 4,845

5 6 792 15,504

6 1 924 38,760

7 792 77,520

9. The following table gives the number of isomorphism classes of graphs of

order n exhibiting various properties:

n 1 2 3 4 5 6 7 8

All 1 2 4 11 34 156 1 044 12 346

Connected 1 1 2 6 21 112 853 11 117

Even 1 1 2 3 7 16 54 243

Eulerian 1 0 1 1 4 8 37 184

Blocks 0 1 1 3 10 56 468 7 123

Trees 1 1 1 2 3 6 11 23

Rooted trees 1 1 2 4 9 20 48 115
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10. The following table gives the number of labeled graphs of order n having

various properties:

n 1 2 3 4 5 6 7 8

All 1 2 8 64 1 024 215 221 228

Connected 1 1 4 38 728 26 704 1 866 256 251 548 592

Even 1 1 2 8 64 1 024 215 221

Trees 1 1 3 16 125 1 296 16 807 262 144

11. The following table lists the number of isomorphism classes of graphs of or-

der n and size m.
m n = 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 1

3 1 3 4 5 5 5 5

4 2 6 9 10 11 11

5 1 6 15 21 24 25

6 1 6 21 41 56 63

7 4 24 65 115 148

8 2 24 97 221 345

9 1 21 131 402 771

10 1 15 148 663 1637

3.3.4.11 Descriptions of graphs with few vertices

The small graphs can be described in terms of the operations on page 151. Let Gn,m
denote the family of isomorphism classes of graphs of order n and size m. Then

G1,0 = {K1} G4,0 = {K4}
G2,0 = {K2} G4,1 = {P2 ∪K2}
G2,1 = {K2} G4,2 = {P3 ∪K1, P2 ∪ P2}
G3,0 = {K3} G4,3 = {P4, K3 ∪K1, K1,3}
G3,1 = {K2 ∪K1} G4,4 = {C4, (K2 ∪K1) +K1}
G3,2 = {P3} G4,5 = {K4 − e}
G3,3 = {K3} G4,6 = {K4}

3.3.4.12 Matchings

1. A matching M is a maximum matching if and only if there is no M -

augmenting path.

2. Hall’s theorem (Marriage theorem): For a set of vertices V in a graph G, let

NG(V ) be the set of all vertices adjacent to some element of X . A bipartite

graph G with bipartition (S, T ), with |S| = |T |, has a perfect matching if and

only if |X | ≤ |NG(X)| for everyX in S.

3. König’s theorem: In a bipartite graph, the cardinality of a maximum matching

equals the cardinality of a minimum vertex cover.
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3.3.5 TREE DIAGRAMS

Let Tn,m denote the mth isomorphism class of trees of order n.
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3.4 COMBINATORIAL DESIGN THEORY

Combinatorial design theory is the study of families of subsets with various pre-

scribed regularity properties. An incidence structure is an ordered pair (X,B):

1. X = {x1, . . . , xv} is a set of points.

2. B = {B1, . . . , Bb} is a set of blocks or lines; each Bj ⊆ X .

3. The replication number ri of xi is the number of blocks that contain xi.
4. The size of Bj is kj .

Counting the number of pairs (x,B) with x ∈ B yields
∑v

i=1 ri =
∑b

j=1 kj . The

incidence matrix of an incidence structure is the v×bmatrixA = (aij) with aij = 1
if xi ∈ Bj and 0 otherwise.

3.4.1 ttt-DESIGNS

The incidence structure (X,B) is called a t-(v, k, λ) design if

1. For all j, kj = k and 1 < k < v, and

2. Any subset of t points is contained in exactly λ blocks.

A 1-design is equivalent to a v × b 0-1 matrix with constant row and column sums.

Every t-(v, k, λ) design is also a ℓ-(v, k, λℓ) design (1 ≤ ℓ ≤ t), where

λℓ = λ

(
v − ℓ
t− ℓ

)/(
k − ℓ
t− ℓ

)
. (3.4.1)

A necessary condition for the existence of a t-(v, k, λ) design is that λℓ must be an

integer for all ℓ, 1 ≤ ℓ ≤ t. Another necessary condition is the generalized Fisher’s

inequality: if t = 2s then b ≥
(
v
s

)
.

3.4.1.1 Related designs

The existence of a t-(v, k, λ) design also implies the existence of the following de-

signs:

Complementary design

Let BC = {X\B | B ∈ B}. Then the incidence structure (X,BC) is a

t-(v, v − k, λ
(
v−t
k

)/(
v−t
k−t

)
) design (provided v ≥ k + t).

Derived design

Fix x ∈ X and let BD = {B\{x} | B ∈ B with x ∈ B}. Then the incidence

structure (X\{x},BD) is a (t− 1)-(v − 1, k − 1, λ) design.

Residual design

Fix x ∈ Xand let BR = {B | B ∈ B with x /∈ B}. Then the incidence

structure (X\{x},BR) is a (t− 1)-(v − 1, k − 1, λ
(

v−t
k−t+1

)/(
v−t
k−t

)
) design.
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3.4.1.2 The Mathieu 5-design

The following are the 132 blocks of a 5-(12,6,1) design. The blocks are the supports

of the weight-6 codewords in the ternary Golay code (page 700). Similarly, the

supports of the 759 weight-8 codewords in the binary Golay code form the blocks of

a 5-(24,8,1) design.

0 1 2 3 4 11 0 1 2 3 5 10 0 1 2 3 6 8 0 1 2 3 7 9
0 1 2 4 5 9 0 1 2 4 6 10 0 1 2 4 7 8 0 1 2 5 6 7
0 1 2 5 8 11 0 1 2 6 9 11 0 1 2 7 10 11 0 1 2 8 9 10
0 1 3 4 5 8 0 1 3 4 6 7 0 1 3 4 9 10 0 1 3 5 6 9
0 1 3 5 7 11 0 1 3 6 10 11 0 1 3 7 8 10 0 1 3 8 9 11
0 1 4 5 6 11 0 1 4 5 7 10 0 1 4 6 8 9 0 1 4 7 9 11
0 1 4 8 10 11 0 1 5 6 8 10 0 1 5 7 8 9 0 1 5 9 10 11
0 1 6 7 8 11 0 1 6 7 9 10 0 2 3 4 5 7 0 2 3 4 6 9
0 2 3 4 8 10 0 2 3 5 6 11 0 2 3 5 8 9 0 2 3 6 7 10
0 2 3 7 8 11 0 2 3 9 10 11 0 2 4 5 6 8 0 2 4 5 10 11
0 2 4 6 7 11 0 2 4 7 9 10 0 2 4 8 9 11 0 2 5 6 9 10
0 2 5 7 8 10 0 2 5 7 9 11 0 2 6 7 8 9 0 2 6 8 10 11
0 3 4 5 6 10 0 3 4 5 9 11 0 3 4 6 8 11 0 3 4 7 8 9
0 3 4 7 10 11 0 3 5 6 7 8 0 3 5 7 9 10 0 3 5 8 10 11
0 3 6 7 9 11 0 3 6 8 9 10 0 4 5 6 7 9 0 4 5 7 8 11
0 4 5 8 9 10 0 4 6 7 8 10 0 4 6 9 10 11 0 5 6 7 10 11
0 5 6 8 9 11 0 7 8 9 10 11 1 2 3 4 5 6 1 2 3 4 7 10
1 2 3 4 8 9 1 2 3 5 7 8 1 2 3 5 9 11 1 2 3 6 7 11

1 2 3 6 9 10 1 2 3 8 10 11 1 2 4 5 7 11 1 2 4 5 8 10
1 2 4 6 7 9 1 2 4 6 8 11 1 2 4 9 10 11 1 2 5 6 8 9
1 2 5 6 10 11 1 2 5 7 9 10 1 2 6 7 8 10 1 2 7 8 9 11
1 3 4 5 7 9 1 3 4 5 10 11 1 3 4 6 8 10 1 3 4 6 9 11
1 3 4 7 8 11 1 3 5 6 7 10 1 3 5 6 8 11 1 3 5 8 9 10
1 3 6 7 8 9 1 3 7 9 10 11 1 4 5 6 7 8 1 4 5 6 9 10
1 4 5 8 9 11 1 4 6 7 10 11 1 4 7 8 9 10 1 5 6 7 9 11
1 5 7 8 10 11 1 6 8 9 10 11 2 3 4 5 8 11 2 3 4 5 9 10
2 3 4 6 7 8 2 3 4 6 10 11 2 3 4 7 9 11 2 3 5 6 7 9
2 3 5 6 8 10 2 3 5 7 10 11 2 3 6 8 9 11 2 3 7 8 9 10
2 4 5 6 7 10 2 4 5 6 9 11 2 4 5 7 8 9 2 4 6 8 9 10
2 4 7 8 10 11 2 5 6 7 8 11 2 5 8 9 10 11 2 6 7 9 10 11
3 4 5 6 7 11 3 4 5 6 8 9 3 4 5 7 8 10 3 4 6 7 9 10
3 4 8 9 10 11 3 5 6 9 10 11 3 5 7 8 9 11 3 6 7 8 10 11
4 5 6 8 10 11 4 5 7 9 10 11 4 6 7 8 9 11 5 6 7 8 9 10

3.4.1.3 Other Examples

• 2-(4,3,1)-design: X = {1, 2, 3, 4} and B = {1, 2, 3}, {2, 3, 4}, {3, 4, 1},
{4, 1, 2} v = 4 points, b = 4 blocks, block size k = 3, replication number

r = 3, λ = 1 (each t = 2 points appear together in one block)

• 2-(7,3,1)-design: X = {1, 2, 3, 4, 5, 6, 7} and B = {1, 2, 4}, {2, 3, 5},
{3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3} v = 7 points, b = 7 blocks,

block size k = 3, replication number r = 3, λ = 1 (each t = 2 points appear

together in one block)

• 3-(8,4,1)-design: X = {1, 2, 3, 4, 5, 6, 7, 8} andB = {1, 2, 5, 6}, {3, 4, 7, 8},
{1, 3, 5, 7}, {2, 4, 6, 8}, {1, 4, 5, 8}, {2, 3, 6, 7}, {1, 2, 3, 4}, {5, 6, 7, 8},
{1, 2, 7, 8}, {3, 4, 5, 6}, {1, 3, 6, 8}, {2, 4, 5, 7}, {1, 4, 6, 7}, {2, 3, 5, 8}
v = 8 points, b = 14 blocks, block size k = 4, replication number r = 7,

λ = 1 (each t = 3 points appear together in one block)

• 2-(8,4,3)-design: X = {1, 2, 3, 4, 5, 6, 7, 8} andB = {1, 3, 7, 8}, {1, 2, 4, 8},
{2, 3, 5, 8}, {3, 4, 6, 8}, {4, 5, 7, 8}, {1, 5, 6, 8}, {2, 6, 7, 8}, {1, 2, 3, 6},
{1, 2, 5, 7}, {1, 3, 4, 5}, {1, 4, 6, 7}, {2, 3, 4, 7}, {2, 4, 5, 6}, {3, 5, 6, 7} v =
8 points, b = 14 blocks, block size k = 4, replication number r = 7, λ = 3
(each t = 2 points appear together in three blocks)
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3.4.2 BALANCED INCOMPLETE BLOCK DESIGNS (BIBDS)

Balanced incomplete block designs (BIBDs) are t-designs with t = 2, so that every

pair of points is on the same number of blocks. The relevant parameters are v, b, r,
k, and λ with

vr = bk and v(v − 1)λ = bk(k − 1). (3.4.2)

If A is the v × b incidence matrix, then AAT = (r − λ)Iv + λJv , where In is the

n× n identity matrix and Jn is the n× n matrix of all ones.

3.4.2.1 Symmetric designs

Fisher’s inequality states that b ≥ v. If b = v (equivalently, r = k), then the BIBD

is called a symmetric design, denoted as a (v, k, λ)-design. The incidence matrix for

a symmetric design satisfies

JvA = kJv = AJv and ATA = (k − λ)Iv + λJv, (3.4.3)

that is, any two blocks intersect in λ points. The dualness of symmetric designs can

be summarized by the following:

v points ←→ v blocks,

k blocks on a point ←→ k points in a block, and

Any two points on λ blocks ←→ Any two blocks share λ points.

Some necessary conditions for symmetric designs are

1. If v is even, then k − λ is a square integer.

2. Bruck–Ryser–Chowla theorem: If v is odd, then the following equation has

integer solutions (not all zero):

x2 = (k − λ)y2 + (−1)(v−1)/2λz2.

3.4.2.2 Existence table for BIBDs

Some of the most fruitful construction methods for BIBD are dealt with in sepa-

rate sections, difference sets (page 167), finite geometry (page 170), Steiner triple

systems (page 173), and Hadamard matrices (page 81). The table below gives all

parameters for which BIBDs exist with k ≤ v/2 and b ≤ 30.

v b r k λ v b r k λ v b r k λ
6 10 5 3 2 10 18 9 5 4 15 30 14 7 6

6 20 10 3 4 10 30 9 3 2 16 16 6 6 2

6 30 15 3 6 10 30 12 4 4 16 20 5 4 1

7 7 3 3 1 11 11 5 5 2 16 24 9 6 3

7 14 6 3 2 11 22 10 5 4 16 30 15 8 7

7 21 9 3 3 12 22 11 6 5 19 19 9 9 4

7 28 12 3 4 13 13 4 4 1 21 21 5 5 1

8 14 7 4 3 13 26 6 3 1 21 30 10 7 3

8 28 14 4 6 13 26 8 4 2 23 23 11 11 5

9 12 4 3 1 13 26 12 6 5 25 25 9 9 3

9 18 8 4 3 14 26 13 7 6 25 30 6 5 1

9 24 8 3 2 15 15 7 7 3 27 27 13 13 6

10 15 6 4 2
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3.4.3 DIFFERENCE SETS

Let G be a finite group of order v (see page 99). A subset D of size k is a (v, k, λ)-
difference set in G if every non-identity element of G can be written λ times as

a “difference” d1d
−1
2 with d1 and d2 in D. If G is the cyclic group Zv, then the

difference set is a cyclic difference set. The order of a difference set is n = k − λ.

For example, {1, 2, 4} is a (7, 3, 1) cyclic difference set of order 2.

The existence of a (v, k, λ)-difference set implies the existence of a (v, k, λ)-
design. The points are the elements of G and the blocks are the translates of D: all

sets Dg = {dg : d ∈ D} for g ∈ G. Note that each translateDg is itself a difference

set.

EXAMPLES

1. Here are the 7 blocks for a (7, 3, 1)-design based on D = {1, 2, 4}:
1 2 4 2 3 5 3 4 6 4 5 0 5 6 1 6 0 2 0 1 3

2. A (16, 6, 2)-difference set in G = Z2 ⊕Z2 ⊕ Z2 ⊕ Z2 is

0000 0001 0010 0100 1000 1111

3. A (21, 5, 1)-difference set in G =
〈
a, b : a3 = b7 = 1, a−1ba = a4

〉
is

{a, a2, b, b2, b4}.

3.4.3.1 Some families of cyclic difference sets

Paley: Let v be a prime congruent to 3 modulo 4. Then the non-zero squares in Zv

form a (v, (v−1)/2, (v−3)/4)-difference set. Example: (v, k, λ) = (11, 5, 2).

Stanton–Sprott: Let v = p(p+ 2), where p and p+ 2 are both primes. Then there

is a (v, (v− 1)/2, (v− 3)/4)-difference set. Example: (v, k, λ) = (35, 17, 8).

Biquadratic residues (I): If v = 4a2 + 1 is a prime with a odd, then the non-

zero fourth powers modulo v form a (v, (v− 1)/4, (v− 5)/16)-difference set.

Example: (v, k, λ) = (37, 9, 2).
Biquadratic residues (II): If v = 4a2 + 9 is a prime with a odd, then zero and

the fourth powers modulo v form a (v, (v + 3)/4, (v + 3)/16)-difference set.

Example: (v, k, λ) = (13, 4, 1).
Singer: If q is a prime power, then there exists a(

qm − 1

q − 1
,
qm−1 − 1

q − 1
,
qm−2 − 1

q − 1

)
-difference set for all m ≥ 3.
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3.4.3.2 Existence table of cyclic difference sets

This table gives all cyclic difference sets for k ≤ v/2 and v ≤ 50 up to equivalence

by translation and multiplication by a number relatively prime to v.

v k λ n Difference set

7 3 1 2 1 2 4

11 5 2 3 1 3 4 5 9

13 4 1 3 0 1 3 9

15 7 3 4 0 1 2 4 5 8 10

19 9 4 5 1 4 5 6 7 9 11 16 17

21 5 1 4 3 6 7 12 14

23 11 5 6 1 2 3 4 6 8 9 12 13 16 18

31 6 1 5 1 5 11 24 25 27

31 15 7 8 1 2 3 4 6 8 12 15 16 17 23 24 27 29 30

1 2 4 5 7 8 9 10 14 16 18 19 20 25 28

35 17 8 9 0 1 3 4 7 9 11 12 13 14 16 17 21 27 28 29 33

37 9 2 7 1 7 9 10 12 16 26 33 34

40 13 4 9 1 2 3 5 6 9 14 15 18 20 25 27 35

43 21 10 11 1 2 3 4 5 8 11 12 16 19 20 21 22 27 32 33 35 37 39 41 42

1 4 6 9 10 11 13 14 15 16 17 21 23 24 25 31 35 36 38 40 41

47 23 11 12 1 2 3 4 6 7 8 9 12 14 16 17 18 21 24 25 27 28 32 34 36 37

42

3.4.4 FINITE FIELDS

Pertinent definitions for finite fields may be found in Section 2.5.6 on page 106.

3.4.4.1 Irreducible polynomials

Let Nq(n) be the number of monic irreducible polynomials of degree n over GF(q).

Then

qn =
∑

d|n
dNq(d) and Nq(n) =

1

n

∑

d|n
µ
(n
d

)
qd, (3.4.4)

where µ(·) is the number theoretic Möbius function (see page 32).

3.4.4.2 Table of binary irreducible polynomials

The table lists the non-zero coefficients of binary irreducible polynomials, e.g., 2 1 0

corresponds to x2+x1+x0 = x2+x+1. The exponent of an irreducible polynomial

is the smallest L such that f(x) divides xL − 1. A “P ” after the exponent indicates

that the polynomial is primitive.
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f(x) Exponent

2 1 0 3 P

3 1 0 7 P

3 2 0 7 P

4 1 0 15 P

4 2 0 15 P

4 3 2 1 0 5

5 2 0 31 P

5 3 0 31 P

5 3 2 1 0 31 P

5 4 2 1 0 31 P

5 4 3 1 0 31 P

5 4 3 2 0 31 P

6 1 0 63 P

6 3 0 9

6 4 2 1 0 21

6 4 3 1 0 63 P

6 5 0 63 P

6 5 2 1 0 63 P

6 5 3 2 0 63 P

6 5 4 1 0 63

6 5 4 2 0 21 P

7 1 0 127 P

7 3 0 127 P

f(x) Exponent

7 3 2 1 0 127 P

7 4 0 127 P

7 4 3 2 0 127 P

7 5 2 1 0 127 P

7 5 3 1 0 127 P

7 5 4 3 0 127 P

7 5 4 3 2 1 0 127 P

7 6 0 127 P

7 6 3 1 0 127 P

7 6 4 1 0 127 P

7 6 4 2 0 127 P

7 6 5 2 0 127 P

7 6 5 3 2 1 0 127 P

7 6 5 4 0 127 P

7 6 5 4 2 1 0 127 P

7 6 5 4 3 2 0 127 P

8 4 3 1 0 51

8 4 3 2 0 255 P

8 5 3 1 0 255 P

8 5 3 2 0 255 P

8 5 4 3 0 17

8 5 4 3 2 1 0 85

8 6 3 2 0 255 P

f(x) Exponent

8 6 4 3 2 1 0 255 P

8 6 5 1 0 255 P

8 6 5 2 0 255 P

8 6 5 3 0 255 P

8 6 5 4 0 255 P

8 6 5 4 2 1 0 85

8 6 5 4 3 1 0 85

8 7 2 1 0 255 P

8 7 3 1 0 85

8 7 3 2 0 255 P

8 7 4 3 2 1 0 51

8 7 5 1 0 85

8 7 5 3 0 255 P

8 7 5 4 0 51

8 7 5 4 3 2 0 85

8 7 6 1 0 255 P

8 7 6 3 2 1 0 255 P

8 7 6 4 2 1 0 17

8 7 6 4 3 2 0 85

8 7 6 5 2 1 0 255 P

8 7 6 5 4 1 0 51

8 7 6 5 4 2 0 255 P

8 7 6 5 4 3 0 85

3.4.4.3 Table of binary primitive polynomials

Listed below1 are primitive polynomials, with the least number of non-zero terms,

of degree from 1 to 64. Only the exponents of the non-zero terms are listed, e.g., 2 1

0 corresponds to x2 + x+ 1.

f(x)
1 0

2 1 0

3 1 0

4 1 0

5 2 0

6 1 0

7 1 0

8 4 3 2 0
9 4 0

10 3 0

11 2 0

12 6 4 1 0

13 4 3 1 0

f(x)
14 5 3 1 0

15 1 0

16 5 3 2 0

17 3 0

18 5 2 1 0

19 5 2 1 0

20 3 0

21 2 0
22 1 0

23 5 0

24 4 3 1 0

25 3 0

26 6 2 1 0

f(x)
27 5 2 1 0

28 3 0

29 2 0

30 6 4 1 0

31 3 0

32 7 5 3 2 1 0

33 6 4 1 0

34 7 6 5 2 1 0
35 2 0

36 6 5 4 2 1 0

37 5 4 3 2 1 0

38 6 5 1 0

39 4 0

f(x)
40 5 4 3 0

41 3 0

42 5 4 3 2 1 0

43 6 4 3 0

44 6 5 2 0

45 4 3 1 0

46 8 5 3 2 1 0

47 5 0
48 7 5 4 2 1 0

49 6 5 4 0

50 4 3 2 0

51 6 3 1 0

52 3 0

f(x)
53 6 2 1 0

54 6 5 4 3 2 0

55 6 2 1 0

56 7 4 2 0

57 5 3 2 0

58 6 5 1 0

59 6 5 4 3 1 0

60 1 0
61 5 2 1 0

62 6 5 3 0

63 1 0

64 4 3 1 0

1Taken in part from “Primitive Polynomials (Mod 2),” E. J. Watson, Math. Comp., 16, 368–369, 1962.
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3.4.5 FINITE GEOMETRY

3.4.5.1 Affine planes

A finite affine plane is a finite set of points together with subsets of points called

lines that satisfy the axioms:

1. Any two points are on exactly one line.

2. (Parallel postulate) Given a point P and a line L not containing P , there is

exactly one line through P that does not intersect L.

3. There are four points, no three of which are collinear.

These axioms are sufficient to show that a finite affine plane is a BIBD (see page

166) with

v = n2 b = n2 + n r = n+ 1 k = n λ = 1

(n is called the order of the plane). The lines of an affine plane can be divided into

n+1 parallel classes each containing n lines. A sufficient condition for affine planes

to exist is for n to be a prime power.

Below are two views of the affine plane of order 2 showing the parallel classes.

Below is the affine plane of order 3 showing the parallel classes.

3.4.5.2 Projective planes

A finite projective plane is a finite set of points together with subsets of points called

lines that satisfy the axioms:

1. Any two points are on exactly one line.

2. Any two lines intersect in exactly one point.

3. There are four points, no three of which are collinear.
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These axioms are sufficient to show that a finite affine plane is a symmetric design

(see page 166) with

v = n2 + n+ 1 k = n+ 1 λ = 1 (3.4.5)

(n is the order of the plane). A sufficient condition for affine planes to exist is for n
to be a prime power.

A projective plane of order n can be constructed from an affine plane of order n
by adding a line at infinity. A line of n + 1 new points is added to the affine plane.

For each parallel class, one distinct new point is added to each line. The construction

works in reverse: removing any one line from a projective plane of order n and its

points leaves an affine plane of order n. Below is the projective plane of order 2. The

center circle functions as a line at infinity; removing it produces the affine plane of

order 2.

3.4.6 GRAY CODE

A Gray code is a sequence ordering such that a small change in the sequence number

results in a small change in the sequence. The standard recursive construction for

Gray codes is Gn = 0Gn−1, 1G
reversed
n−1 .

EXAMPLES

1. The four 2-bit strings can be ordered so that adjacent bit strings differ in only 1 bit:

{00, 01, 11, 10}.
2. The eight 3-bit strings can be ordered so that adjacent bit strings differ in only 1 bit:

{000, 001, 011, 010, 110, 111, 101, 100}.
3. The sixteen 4-bit strings can be ordered so that adjacent bit strings differ in only 1 bit:

{0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, 1101, 1111, 1110, 1010,
1011, 1001, 1000}.

4. The subsets of {a, b, c} can be ordered so that adjacent subsets differ by only the

insertion or deletion of a single element:

φ, {a}, {a, b}, {b}, {b, c}, {a, b, c}, {a, c}, {c}.
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3.4.7 LATIN SQUARES

A Latin square of size n is an n × n array S = [sij ] of n symbols such that every

symbol appears exactly once in each row and column. Two Latin squares S and T
are orthogonal if every pair of symbols occurs exactly once as a pair (sij , tij). Let

M(n) be the maximum size of a set of mutually orthogonal Latin squares (MOLS).

1. M(n) ≤ n− 1.

2. M(n) = n− 1 if n is a prime power.

3. M(n1n2) ≥ min(M(n1),M(n2)).
4. M(6) = 1 (i.e., there are no two MOLS of size 6).

5. M(n) ≥ 2 for all n ≥ 3 except n = 6. (Latin squares of all sizes exist.)

The existence of n − 1 MOLS of size n is equivalent to the existence of an affine

plane of order n (see page 170).

3.4.7.1 Examples of mutually orthogonal Latin squares

These are complete sets of MOLS for n = 3, 4, and 5.

n = 3 n = 4

0 1 2

1 2 0

2 0 1

0 1 2

2 0 1

1 2 0

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

0 1 2 3

3 2 1 0

1 0 3 2

2 3 0 1

n = 5
0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

0 1 2 3 4

2 3 4 0 1

4 0 1 2 3

1 2 3 4 0

3 4 0 1 2

0 1 2 3 4

3 4 0 1 2

1 2 3 4 0

4 0 1 2 3

2 3 4 0 1

0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0

These are two superimposed MOLS for n = 7 and n = 8.

n = 7

00 11 22 33 44 55 66

16 20 31 42 53 64 05

25 36 40 51 62 03 14

34 45 56 60 01 12 23

43 54 65 06 10 21 32

52 63 04 15 26 30 41

61 02 13 24 35 46 50

n = 8

00 11 22 33 44 55 66 77

12 03 30 21 56 47 74 65

24 35 06 17 60 71 42 53

33 22 11 00 77 66 55 44

46 57 64 75 02 13 20 31

57 46 75 64 13 02 31 20

65 74 47 56 21 30 03 12

71 60 53 42 35 24 17 06
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3.4.8 STEINER TRIPLE SYSTEMS

A Steiner triple system (STS) is a 2-(v,3,1) design. In particular, STSs are BIBDs

(see page 166). STSs exist if and only if v ≡ 1 or 3 (mod 6). The number of blocks

in an STS is b = v(v − 1)/6.

3.4.8.1 Some families of Steiner triple systems

v = 2m − 1: Take as points all non-zero vectors over Z2 of length m. A block

consists of any set of three distinct vectors {x, y, z} such that x+ y + z = 0.

v = 3m: Take as points all vectors over Z3 of length m. A block consists of any set

of three distinct vectors {x, y, z} such that x+ y + z = 0.

3.4.8.2 Resolvable Steiner triple systems

An STS is resolvable if the blocks can be divided into parallel classes such that each

point occurs in exactly one block per class. A resolvable STS exists if and only if

v ≡ 3 (mod 6). For example, the affine plane of order 3 is a resolvable STS with

v = 9 (see page 170).

A resolvable STS with v = 15 (b = 35) is known as the Kirkman schoolgirl

problem and dates from 1850. Each column of 5 triples is a parallel class:

a b i

c d f

g j o

e k n

h l m

a c j

d e g

h k i

f l o

b m n

a d k

e f h

b l j

g m i

c n o

a e l

f g b

c m k

h n j

d o i

a f m

g h c

d n l

b o k

e i j

a g n

h b d

e o m

c i l

f j k

a h o

b c e

f i n

d j m

g k l

3.4.9 DESIGNS AND HADAMARD MATRICES

See page 81 for Hadamard matrices.

BIBDs: Let H be a Hadamard matrix of order 4t, normalized so the first row and

column are 1’s. Remove the first row and column. Let A be the remaining

(4t− 1)× (4t− 1) matrix. If J is the (4t− 1)× (4t− 1) matrix of all ones,

then the incidence matrix

• for a 2-(4t− 1, 2t− 1, t− 1) design is given by 1
2 (J +A).

• for a 2-(4t− 1, 2t, t) design is given by 1
2 (J −A).

3-Designs: Let H be a Hadamard matrix of order 4t. Choose any row and normal-

ize it (scale the columns as needed) so that every entry is +1. Let the columns

represent points. Let the sets of columns carrying +1s and −1s in all but the

chosen row be blocks. This results in a 3-(4t, 2t, t− 1) design; it is an affine

design. Different choices of row may, or may not, give isomorphic designs.
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3.4.10 ROOK POLYNOMIALS

Consider an n×m board in which some certain squares are forbidden (shown white)

and others are acceptable (shown dark). Let rk(B) be the number of ways to choose

k acceptable (darkened) squares, no two of which lie in the same row and no two of

which lie in the same column. (This scenario might arise from a job assignment.)

Equivalently, in how many ways can k rooks be placed on a board’s dark squares in

such a way that no two can take each other? The expression

R(x,B) = r0(B) + r1(B)x + r2(B)x2 + . . . (3.4.6)

is the board’s rook polynomial.

Consider the 2 × 2 board B1 = . For this board there is 1 way to place

no rooks, 2 ways to place one rook (use either darkened square), 1 way to place two

rooks (use both darkened squares), and no way to place more than two rooks. Hence,

R(x,B1) = 1 + 2x+ x2.

Consider the 2 × 2 board B2 = . For this board there is 1 way to place

no rooks, 4 ways to place one rook (use any square), 2 ways to place two rooks (use

diagonal squares), and no way to place more than two rooks. Hence, R(x,B2) =
1 + 4x+ 2x2.

Suppose I is a set of darkened squares in a boardB andBI is the board obtained

from B by lightening the darkened squares in B that are not in I . If the darkened

squares inB are partitioned into two sets, I and J , such that no square in I lies in the

same row or column as any square of J , thenBI andBJ decompose the boardB. In

this case: R(x,B) = R(x,B1) R(x,B2). See the following example.

B BI BJ

Suppose that s is any darkened square in a board B. Let Bs be obtained from

B by lightening s. Let B′
s be obtained from B by lightening all squares in the same

row and column as s. Then R(x,B) = R(x,Bs) + xR(x,B′
s). (See the following

example, where s is the darkened square in row 3, column 3.)

B Bs B′
s

EXAMPLES For a square checkerboard in which every square is darkened (Bn), the rook

polynomial is R(x,Bn) = n!xn Ln

(
− 1

x

)
, where Ln is the nth Laguerre polynomial.

R(x,B3) = 1 + 9x+ 18x2 + 6x3 R(x,B4) = 1 + 16x+ 72x2 + 96x3 + 24x4

R(x,B5) = 1 + 25x+ 200x2 + 600x3 + 600x4 + 120x5

R(x,B6) = 1 + 36x+ 450x2 + 2400x3 + 5400x4 + 4320x5 + 720x6
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3.4.11 BINARY SEQUENCES

3.4.11.1 Barker sequences

A Barker sequence is a sequence (s1, . . . , sN ) with sj = ±1 such that∑N−i
j=1 sjsj+i = ±1 or 0, for i = 1, . . . , N − 1. The following table lists all known

Barker sequences (up to reversal, multiplication by −1, and multiplying alternate

values by −1).

Length Barker sequence

2 +1 +1
3 +1 +1 −1
4 +1 +1 +1 −1
4 +1 +1 −1 +1
5 +1 +1 +1 −1 +1
7 +1 +1 +1 −1 −1 +1 −1

11 +1 +1 +1 −1 −1 −1 +1 −1 −1 +1 −1
13 +1 +1 +1 +1 +1 −1 −1 +1 +1 −1 +1 −1 +1

3.4.11.2 Periodic sequences

Let s = (s0, s1, . . . , sN−1) be a periodic sequence with period N . A (left) shift

of s is the sequence (s1, . . . , sN−1, s0). For τ relatively prime to N , the decima-

tion of s is the sequence (s0, sτ , s2τ , . . . ), which also has period N . The periodic

autocorrelation is defined as the vector (a0, . . . , aN−1), with

ai =

N−1∑

j=0

sjsj+i, (subscripts taken modulo N ). (3.4.7)

An autocorrelation is two-valued if all values are equal except possibly for the 0th

term.

3.4.11.3 Themmm-sequences

A binary m-sequence of length N = 2r − 1 is the sequence of period N defined by

(s0, s1, . . . , sN−1), si = Tr(αi), (3.4.8)

where α is a primitive element of GF(2r) and Tr is the trace function from GF(2r)
to GF(2).2

1. All m-sequences of a given length are equivalent under decimation.

2. Binarym-sequences have a two-valued autocorrelation (with the identification

that 0↔ +1 and 1↔ −1).

3. All m-sequences possess the span property: all binary r-tuples occur in the

sequence except the all-zeros r-tuple.

The existence of a binary sequence of length 2n − 1 with a two-valued autocor-

relation is equivalent to the existence of a cyclic difference set with parameters

(2n − 1, 2n−1 − 1, 2n−2 − 1).

2If x ∈ F = GF (qm) and K = GF (q), the trace function TrF/K(x) from F onto K is defined by

TrF/K(x) = x+ xq + · · ·+ xq
m−1

.
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3.4.11.4 Shift registers

Below are examples of the two types of shift registers used to generate binary m-

sequences. The generating polynomial in each case is x4 + x+ 1, the initial register

loading is 1 0 0 0, and the generated sequence is {0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1,

1, . . . }.

Additive shift register Multiplicative shift register

1 0 0 0- - - - -

	)
1 0 0 0- - - - - -

?

3.4.11.5 Binary sequences with two-valued autocorrelation

The following table lists all binary sequences with two-valued periodic autocorrela-

tion of length 2n−1 for n = 3 to 8 (up to shifts, decimations, and complementation).

The table indicates the positions of 0; the remaining values are 1. An S indicates that

the sequence has the span property.

n Positions of 0
3 S 1 2 4

4 S 0 1 2 4 5 8 10

5 S 1 2 3 4 6 8 12 15 16 17 23 24 27 29 30

5 1 2 4 5 7 8 9 10 14 16 18 19 20 25 28

6 S 0 1 2 3 4 6 7 8 9 12 13 14 16 18 19 24 26 27 28 32 33 35 36 38 41 45 48 49 52 54 56

6 0 1 2 3 4 5 6 8 9 10 12 16 17 18 20 23 24 27 29 32 33 34 36 40 43 45 46 48 53 54 58

7 1 2 4 8 9 11 13 15 16 17 18 19 21 22 25 26 30 31 32 34 35 36 37 38 41 42 44 47 49 50 52 60 61 62 64 68
69 70 71 72 73 74 76 79 81 82 84 87 88 94 98 99 100 103 104 107 113 115 117 120 121 122 124

7 1 2 3 4 5 6 7 8 10 12 14 16 19 20 23 24 25 27 28 32 33 38 40 46 47 48 50 51 54 56 57 61 63 64 65 66 67
73 75 76 77 80 87 89 92 94 95 96 97 100 101 102 107 108 111 112 114 117 119 122 123 125 126

7 S 1 2 3 4 6 7 8 9 12 14 15 16 17 18 24 27 28 29 30 31 32 34 36 39 47 48 51 54 56 58 60 61 62 64 65 67 68
71 72 77 78 79 83 87 89 94 96 97 99 102 103 105 107 108 112 113 115 116 117 120 121 122 124

7 1 2 3 4 6 7 8 9 12 13 14 16 17 18 19 24 25 26 27 28 31 32 34 35 36 38 47 48 50 51 52 54 56 61 62 64 65
67 68 70 72 73 76 77 79 81 87 89 94 96 97 100 102 103 104 107 108 112 115 117 121 122 124

7 1 2 3 4 5 6 8 9 10 12 15 16 17 18 19 20 24 25 27 29 30 32 33 34 36 38 39 40 48 50 51 54 55 58 59 60 64
65 66 68 71 72 73 76 77 78 80 83 89 91 93 96 99 100 102 105 108 109 110 113 116 118 120

7 1 2 3 4 5 6 8 10 11 12 16 19 20 21 22 24 25 27 29 32 33 37 38 39 40 41 42 44 48 49 50 51 54 58 63 64 65
66 69 73 74 76 77 78 80 82 83 84 88 89 95 96 98 100 102 105 108 111 116 119 123 125 126

8 S 0 1 2 3 4 6 7 8 12 13 14 16 17 19 23 24 25 26 27 28 31 32 34 35 37 38 41 45 46 48 49 50 51 52 54 56 59
62 64 67 68 70 73 74 75 76 82 85 90 92 96 98 99 100 102 103 104 105 108 111 112 113 118 119 123 124
127 128 129 131 134 136 137 139 140 141 143 145 146 148 150 152 153 157 161 164 165 170 177 179
180 183 184 187 189 191 192 193 196 197 198 199 200 204 206 208 210 216 217 219 221 222 223 224
226 227 236 237 238 239 241 246 247 248 251 253 254

8 0 1 2 4 7 8 9 11 14 16 17 18 19 21 22 23 25 27 28 29 32 33 34 35 36 38 42 43 44 46 49 50 51 54 56 58 61
64 66 68 69 70 71 72 76 79 81 84 85 86 87 88 89 92 93 95 97 98 99 100 101 102 108 112 113 116 117 119
122 125 128 131 132 133 136 137 138 139 140 141 142 144 145 149 152 153 158 162 163 167 168 170
171 172 174 175 176 177 178 184 186 187 190 193 194 196 197 198 200 202 204 209 211 213 215 216
221 224 226 232 233 234 235 238 244 245 250

8 0 1 2 3 4 6 8 12 13 15 16 17 24 25 26 27 29 30 31 32 34 35 39 47 48 50 51 52 54 57 58 59 60 61 62 64 67
68 70 71 78 79 85 91 94 96 99 100 102 103 104 107 108 109 114 116 118 119 120 121 122 124 127 128
129 134 135 136 140 141 142 143 145 147 151 153 156 157 158 161 163 167 170 173 177 179 181 182
187 188 191 192 195 198 199 200 201 203 204 206 208 209 211 214 216 217 218 221 223 225 227 228
229 232 233 236 238 239 240 241 242 244 247 248 251 253 254

8 0 1 2 3 4 6 7 8 11 12 14 15 16 17 21 22 23 24 25 28 29 30 32 34 35 37 41 42 44 46 47 48 50 51 56 58 60 64
68 69 70 71 73 74 81 82 84 85 88 91 92 94 96 97 100 102 107 109 111 112 113 116 119 120 121 123 127
128 129 131 133 135 136 138 139 140 142 145 146 148 151 153 162 163 164 168 170 173 176 181 182
183 184 187 188 189 191 192 193 194 195 197 200 203 204 209 214 218 219 221 222 223 224 225 226
229 232 237 238 239 240 242 246 247 251 253 254
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3.5 DIFFERENCE EQUATIONS

In many ways, difference equations are analogous to differential equations.

3.5.1 THE CALCULUS OF FINITE DIFFERENCES

1. ∆(f(x)) = f(x+ h)− f(x) (forward difference).

2. ∆2(f(x)) = f(x+ 2h)− 2f(x+ h) + f(x).

3. ∆n(f(x)) = ∆
(
∆n−1(f(x))

)
=

n∑

k=0

(−1)k
(
n

k

)
f(x+ (n− k)h).

4. ∆(cf(x)) = c∆(f(x)).
5. ∆(f(x) + g(x)) = ∆(f(x)) + ∆(g(x)).
6. ∆(f(x)g(x)) = g(x)∆(f(x)) + f(x)∆(g(x)).

7. ∆
(

f(x)
g(x)

)
=
g(x)∆(f(x))− f(x)∆(g(x))

g(x)g(x+ h)
, provided that g(x)g(x+ h) 6= 0.

8. ∆n(xn) = n!hn, n = 0, 1, . . ..

3.5.2 EXISTENCE AND UNIQUENESS

A difference equation of order k has the form

xn+k = f(xn, xn+1, . . . , xn+(k−1), n) (3.5.1)

where f is a given function and k is a positive integer. A solution to Equation (3.5.1) is

a sequence of numbers {xn}∞n=0 which satisfies the equation. Any constant solution

of Equation (3.5.1) is called an equilibrium solution.

A linear difference equation of order k is one that can written in the form

a
(k)
n xn+k + a

(k−1)
n xn+(k−1) + · · ·+ a

(1)
n xn−1 + a

(0)
n xn = gn, (3.5.2)

where k is a positive integer and the coefficients a
(0)
n , . . . , a

(k)
n along with {gn} are

known. If the sequence gn is identically zero, then Equation (3.5.2) is called homo-

geneous; otherwise, it is called non-homogeneous. If the coefficients a
(0)
n , . . . , a

(k)
n

are constants (i.e., do not depend on n), Equation (3.5.2) is a difference equation with

constant coefficients; otherwise it is a difference equation with variable coefficients.

THEOREM 3.5.1 (Existence and uniqueness)

Consider the initial value problem (IVP)

xn+k + b
(k−1)
n xn+(k−1) + · · ·+ b

(1)
n xn+1 + b

(0)
n xn = fn,

xi = αi, i = 0, 1, . . . , k − 1,
(3.5.3)

for n = 0, 1, . . ., where b
(i)
n and fn are given sequences with b

(0)
n 6= 0 for all n and

the {αi} are given initial conditions. Then the above equations have exactly one

solution.
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3.5.3 LINEAR INDEPENDENCE: GENERAL SOLUTION

The sequences x(1), x(2), . . . , x(k) (sequencex(i) has the terms {x(i)1 , x
(i)
2 , x

(i)
2 , . . . })

are linearly dependent if constants c1, c2, . . . , ck (not all of them zero) exist such that

k∑

i=1

cix
(i)
n = 0 for n = 0, 1, . . .. (3.5.4)

Otherwise the sequences x(1), x(2), . . . , x(k) are linearly independent.

The Casoratian of the k sequences x(1), x(2), . . . , x(k) is the k× k determinant

C
(
x
(1)
n , x

(2)
n , . . . , x

(k)
n

)
=

∣∣∣∣∣∣∣∣∣

x
(1)
n x

(2)
n · · · x

(k)
n

x
(1)
n+1 x

(2)
n+1 · · · x

(k)
n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x
(1)
n+k−1 x

(2)
n+k−1 · · · x

(k)
n+k−1

∣∣∣∣∣∣∣∣∣
. (3.5.5)

THEOREM 3.5.2
The solutions x(1), x(2), . . . , x(k) of the linear homogeneous difference equation,

xn+k + b
(k−1)
n xn+(k−1)+ · · ·+ b(1)n xn+1+ b

(0)
n xn = 0, n = 0, 1, . . . , (3.5.6)

are linearly independent if and only if their Casoratian is different from zero for

n = 0.

Note that the solutions to Equation (3.5.6) form a k-dimensional vector space.

The set {x(1), x(2), . . . , x(k)} is a fundamental system of solutions for Equation

(3.5.6) if and only if the sequences x(1), x(2), . . . , x(k) are linearly independent

solutions of the homogeneous difference Equation (3.5.6).

THEOREM 3.5.3
Consider the non-homogeneous linear difference equation

xn+k+ b
(k−1)
n xn+(k−1)+ · · ·+ b(1)n xn+1+ b

(0)
n xn = dn, n = 0, 1, . . . (3.5.7)

where b
(i)
n and dn are given sequences. Let x

(h)
n be the general solution of the corre-

sponding homogeneous equation

xn+k + b
(k−1)
n xn+(k−1) + · · ·+ b

(1)
n xn+1 + b

(0)
n xn = 0, n = 0, 1, . . . ,

and let x
(p)
n be a particular solution of Equation (3.5.7). Then x

(p)
n + x

(h)
n is the

general solution of Equation (3.5.7).

THEOREM 3.5.4 (Superposition principle)

Let x(1) and x(2) be solutions of the non-homogeneous linear difference equations

xn+k + b
(k−1)
n xn+(k−1) + · · ·+ b

(1)
n xn+1 + b

(0)
n xn = αn, n = 0, 1, . . . ,
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and

xn+k + b
(k−1)
n xn+(k−1) + · · ·+ b

(1)
n xn+1 + b

(0)
n xn = βn, n = 0, 1, . . . ,

respectively, where b(i) and {αn} and {βn} are given sequences. Then x(1) + x(2)

is a solution of the equation

xn+k + b
(k−1)
n xn+(k−1) + · · ·+ b

(1)
n xn+1 + b

(0)
n xn = αn + βn, n = 0, 1, . . . .

3.5.4 HOMOGENEOUS EQUATIONS WITH CONSTANT

COEFFICIENTS

The results given below for second-order linear difference equations extend naturally

to higher order equations.

Consider the second-order linear homogeneous difference equation,

α2xn+2 + α1xn+1 + α0xn = 0, (3.5.8)

where the {αi} are real constant coefficients with α2α0 6= 0. The characteristic

equation corresponding to Equation (3.5.8) is defined as the quadratic equation

α2λ
2 + α1λ+ α0 = 0. (3.5.9)

The solutions λ1, λ2 of the characteristic equation are the eigenvalues or the charac-

teristic roots of Equation (3.5.8).

THEOREM 3.5.5
Let λ1 and λ2 be the eigenvalues of Equation (3.5.8). Then the general solution of

Equation (3.5.8) is given as described below with arbitrary constants c1 and c2.

Case 1: λ1 6= λ2 with λ1, λ2 ∈ R (real and distinct roots).

The general solution is given by xn = c1λ
n
1 + c2λ

n
2 .

Case 2: λ1 = λ2 ∈ R (real and equal roots) .

The general solution is given by xn = c1λ
n
1 + c2nλ

n
1 .

Case 3: λ1 = λ2 (complex conjugate roots).

Suppose that λ1 = reiφ. The general solution is given by

xn = c1r
n cos(nφ) + c2r

n sin(nφ).

The constants {c1, c2} are determined from the initial conditions.

EXAMPLE The unique solution of the initial value problem

Fn+2 = Fn+1 + Fn, n = 0, 1, . . . ,

F0 = 0, F1 = 1,
(3.5.10)

is the Fibonacci sequence. The equation λ2 = λ + 1 has the real and distinct roots

λ1,2 = 1±
√

5
2

. Using Theorem 3.5.5 the solution is

Fn =
1√
5

[(
1 +
√
5

2

)n

−
(
1−
√
5

2

)n]
, n = 0, 1, . . . . (3.5.11)
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3.5.5 NON-HOMOGENEOUS EQUATIONS

THEOREM 3.5.6 (Variation of parameters)

Consider the difference equation, xn+2 + αnxn+1 + βnxn = γn, where {αn},
{βn}, and {γn} are given sequences with βn 6= 0. Let x(1) and x(2) be two linearly

independent solutions of the homogeneous equation corresponding to this equation.

A particular solution x(p) has the component values x
(p)
n = x

(1)
n v

(1)
n +x

(2)
n v

(2)
n where

the sequences v(1) and v(2) satisfy the following system of equations:

x
(1)
n+1

(
v
(1)
n+1 − v

(1)
n

)
+ x

(2)
n+1

(
v
(2)
n+1 − v

(2)
n

)
= 0, and

x
(1)
n+2

(
v
(1)
n+1 − v

(1)
n

)
+ x

(2)
n+2

(
v
(2)
n+1 − v

(2)
n

)
= γn.

(3.5.12)

3.5.6 GENERATING FUNCTIONS AND ZZZ TRANSFORMS

Generating functions can be used to solve initial value problems of difference equa-

tions in the same way that Laplace transforms are used to solve initial value problems

of differential equations.

The generating function of the sequence {xn}, denoted by G[xn], is defined by

the infinite series

G[xn] =

∞∑

n=0

xns
n (3.5.13)

provided that the series converges for |s| < r, for some positive number r. The

following are useful properties of the generating function:

1. Linearity: G [c1xn + c2yn] = c1G [xn] + c2G [yn] .

2. Translation invariance: G [xn+k] =
1

sk

(
G [xn]−

k−1∑

n=0

xns
n

)
.

3. Uniqueness: G [xn] = G [yn]⇐⇒ xn = yn for n = 0, 1, . . . ,

The Z-transform of a sequence {xn} is denoted by Z[xn] and is defined by the

infinite series,

Z[xn] =
∞∑

n=0

xn
zn
, (3.5.14)

provided that the series converges for |z| > r, for some positive number r. (The

Z-transform is also in Section 6.36 on page 488.)

Comparing the definitions for the generating function and the Z-transform one

can see that they are connected because Equation (3.5.14) can be obtained from

Equation (3.5.13) by setting s = z−1.
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3.5.6.1 Generating functions for some common sequences

{xn} G [xn]

1
1

1− s

an
1

1− as

nan
as

(1− as)2

npan
(
s
d

ds

)p
1

1− as

n
s

(1− s)2

n+ 1
1

(1− s)2

np

(
s
d

ds

)p
1

1− s

{xn} G [xn]

sin(βn)
s sinβ

1− 2s cosβ + s2

cos(βn)
1− s cosβ

1− 2s cosβ + s2

an sin(βn)
as sinβ

1− 2as cosβ + a2s2

an cos(βn)
1− as cosβ

1− 2as cosβ + a2s2

xn+1
1

s
(G [xn]− x0)

xn+2
1

s2
(G [xn]− x0 − sx1)

xn+k
1

sk

(
G [xn]−

k−1∑

n=0

xns
n

)

3.5.7 CLOSED-FORM SOLUTIONS FOR SPECIAL EQUATIONS

In general, it is difficult to find a closed-form solution for a difference equation which

is not linear of order one or linear of any order with constant coefficients. A few spe-

cial difference equations which possess closed-form solutions are presented below.

3.5.7.1 First-order equation

The general solution of the first-order linear difference equation with variable

coefficients,

xn+1 − αnxn = βn, n = 0, 1, . . . , (3.5.15)

is given by

xn =

(
n−1∏

k=0

αk

)
x0 +

n−2∑

m=0

(
n−1∏

k=m+1

αk

)
βm + βn−1, n = 0, 1, . . . , (3.5.16)

where x0 is an arbitrary constant.
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3.5.7.2 Riccati equation

Consider the non-linear first-order equation,

xn+1 =
αnxn + βn
γnxn + δn

, n = 0, 1, . . . , (3.5.17)

where αn, βn, γn, δn are given sequences of real numbers with

γn 6= 0 and

∣∣∣∣
αn βn
γn δn

∣∣∣∣ 6= 0, n = 0, 1, . . . . (3.5.18)

The following statements are true:

1. The change of variables,

un+1

un
= γnxn + δn, n = 0, 1, . . . ,

u0 = 1,
(3.5.19)

reduces Equation (3.5.17) to the linear second-order equation,

un+2 = Anun+1 +Bnun, n = 0, 1, . . . ,

u0 = 1,

u1 = γ0x0 + δ0,

(3.5.20)

where An = δn+1 + αn
γn+1

γn
, and Bn = (βnγn − αnδn)

γn+1

γn
.

2. Let x(p) be a particular solution of Equation (3.5.17). The change of variables,

vn =
1

xn − x(p)n

, n = 0, 1, . . . , (3.5.21)

reduces Equation (3.5.17) to the linear first-order equation,

vn+1 + Cnvn +Dn = 0, n = 0, 1, . . . , (3.5.22)

where Cn =

(
γnx

(p)
n + δn

)2

βnγn − αnδn
, and Dn =

γn

(
γnx

(p)
n + δn

)

βnγn − αnδn
.

3. Let x(1) and x(2) be two particular solutions of Equation (3.5.17) with x
(1)
n 6=

x
(2)
n for n = 0, 1, . . .. Then the change of variables,

wn =
1

xn − x(1)n

+
1

x
(1)
n − x(2)n

, n = 0, 1, . . . , (3.5.23)

reduces Equation (3.5.17) to the linear homogeneous first-order equation,

wn+1 + Enwn = 0, n = 0, 1, . . . , (3.5.24)

where En =

(
γnx

(1)
n + δn

)2

βnγn − αnδn
.
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3.5.7.3 Logistic equation

Consider the initial value problem

xn+1 = rxn

(
1− xn

k

)
, n = 0, 1, . . . , (3.5.25)

x0 = α, with α ∈ [0, k],

where r and k are positive numbers with r ≤ 4. The following are true:

1. When r = k = 4, Equation (3.5.25) reduces to

xn+1 = 4xn − x2n. (3.5.26)

If α = 4 sin2(θ) with θ ∈ [0, π2 ], then Equation (3.5.26) has the closed-form

solution

xn+1 = 4 sin2(2n+1θ), n = 0, 1, . . . , (3.5.27)

x0 = 4 sin2(θ), with θ ∈
[
0,
π

2

]
.

2. When r = 4 and k = 1, Equation (3.5.25) reduces to

xn+1 = 4xn − 4x2n. (3.5.28)

If α = sin2(θ) with θ ∈
[
0, π2

]
, then Equation (3.5.28) has the closed-form

solution

xn+1 = sin2(2n+1θ), n = 0, 1, . . . , (3.5.29)

x0 = sin2(θ), with θ ∈
[
0,
π

2

]
.
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4.1 EUCLIDEAN GEOMETRY

Euclidean geometry is based on 5 axioms:

1. One can draw a straight line from any point to any point.

2. One can extend a finite straight line continuously in a straight line.

3. One can describe a circle with any center and radius.

4. All right angles are equal to one another.

5. If a straight line falling on two straight lines make the interior angles on the

same side less than two right angles, the two straight lines, if produced indef-

initely, meet on that side where the angles are less than the two right angles.

(Parallel Postulate)

A logically equivalent formulation of the parallel postulate is Playfair’s postulate:

• (5’) Through a point not on a given straight line, at most one line can be drawn

that never meets the given line.

The essential difference between Euclidean and non-Euclidean geometry is the na-

ture of parallel lines. Changing the parallel postulate results in other geometries:

• Hyperbolic geometry

– (5 hyperbolic) Through a point not on a given straight line, infinitely many

lines can be drawn that never meet the given line.

– The surface of a hyperboloid is an example of hyperbolic geometry.

• Elliptic geometry

– (5 elliptic) Through a point not on a given straight line, no lines can be

drawn that never meet the given line.

– The surface of a sphere is an example of elliptic geometry.
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4.2 COORDINATE SYSTEMS IN THE PLANE

4.2.1 CONVENTION

When we talk about “the point with coordinates (x, y)” or “the curve with equation

y = f(x),” we always mean Cartesian coordinates. If a formula involves other

coordinates, this fact will be stated explicitly.

4.2.2 SUBSTITUTIONS AND TRANSFORMATIONS

Formulas for changes in coordinate systems can lead to confusion because (for ex-

ample) moving the coordinate axes up has the same effect on equations as moving

objects down while the axes stay fixed. (To read the next paragraph, you can move

your eyes down or slide the page up.)

To avoid confusion, we will carefully distinguish between transformations of

the plane and substitutions, as explained below. Similar considerations will apply to

transformations and substitutions in three dimensions (Section 4.12).

4.2.2.1 Substitutions

A substitution, or change of coordinates, relates the coordinates of a point in one

coordinate system to those of the same point in a different coordinate system. Usually

one coordinate system has the superscript ′ and the other does not, and we write
{
x = Fx(x

′, y′),

y = Fy(x
′, y′),

or (x, y) = F (x′, y′) (4.2.1)

(where subscripts and primes are not derivatives, they are coordinates). This means:

given the equation of an object in the unprimed coordinate system, one obtains

the equation of the same object in the primed coordinate system by substituting

Fx(x
′, y′) for x andFy(x

′, y′) for y in the equation. For instance, suppose the primed

coordinate system is obtained from the unprimed system by moving the x axis up a

distance d. Then x = x′ and y = y′ + d. The circle with equations x2 + y2 = 1 in

the unprimed system has equations x′2 + (y′ + d)2 = 1 in the primed system. Thus,

transforming an implicit equation in (x, y) into one in (x′, y′) is immediate.

The point P = (a, b) in the unprimed system, with equation x = a, y = b,
has equation Fx(x

′, y′) = a, Fy(x
′, y′) = b in the new system. To get the primed

coordinates explicitly, one must solve for x′ and y′ (in the example just given we

have x′ = a, y′ + d = b, which yields x′ = a, y′ = b − d). Therefore, if possible,

we give the inverse equations
{
x′ = Gx′(x, y),

y′ = Gy′(x, y)
or (x′, y′) = G(x, y),

which are equivalent to Equation (4.2.1) if G(F (x′, y′)) = (x′, y′) and

F (G(x, y)) = (x, y). Then to go from the unprimed to the primed system, one
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merely inserts the known values of x and y into these equations. This is also the

best strategy when dealing with a curve expressed parametrically, that is, x = x(t),
y = y(t).

4.2.2.2 Transformations

A transformation associates with each point (x, y) a different point in the same co-

ordinate system; we denote this by

(x, y) 7→ F (x, y), (4.2.2)

where F is a map from the plane to itself (a two-component function of two

variables). For example, translating down by a distance d is accomplished by

(x, y) 7→ (x, y − d) (see Section 4.3). Thus, the action of the transformation on

a point whose coordinates are known (or on a curve expressed parametrically) can

be immediately computed.

If, on the other hand, we have an object (say a curve) defined implicitly by the

equation C(x, y) = 0, finding the equation of the transformed object requires using

the inverse transformation

(x, y) 7→ G(x, y) (4.2.3)

defined by G(F (x, y)) = (x, y) and F (G(x, y)) = (x, y). The equation of the

transformed object is C(G(x, y)) = 0. For instance, if C is the circle with equation

x2 + y2 = 1 and we are translating down by a distance d, the inverse transformation

is (x, y) 7→ (x, y + d) (translating up), and the equation of the translated circle is

x2 + (y + d)2 = 1. Compare to the example following Equation (4.2.1).

FIGURE 4.1
Change of coordinates by a rotation.

x

yx′

y′

θ

4.2.2.3 Using transformations to perform changes of coordi-

nates

Usually, we will not give formulas of the form (4.2.1) for changes between two coor-

dinate systems of the same type, because they can be immediately derived from the

corresponding formulas (4.2.2) for transformations, which are given in Section 4.3.

We give two examples for clarity.
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Let the two Cartesian coordinate systems (x, y) and (x′, y′) be related as fol-

lows: They have the same origin, and the positive x′-axis is obtained from the pos-

itive x-axis by a (counterclockwise) rotation through an angle θ (Figure 4.1). If a

point has coordinates (x, y) in the unprimed system, its coordinates (x′, y′) in the

primed system are the same as the coordinates in the unprimed system of a point that

undergoes the inverse rotation, that is, a rotation by an angle α = −θ. According to

Equation (4.3.2) (page 194), this transformation acts as follows:

(x, y) 7→
[

cos θ sin θ
− sin θ cos θ

]
(x, y) = (x cos θ+ y sin θ, −x sin θ+ y cos θ). (4.2.4)

Therefore the right-hand side of Equation (4.2.4) is (x′, y′), and the desired substi-

tution is
x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ.
(4.2.5)

Switching the roles of the primed and unprimed systems, we get the equivalent

substitution
x = x′ cos θ − y′ sin θ,
y = x′ sin θ + y′ cos θ

(4.2.6)

(because the x-axis is obtained from the x′-axis by a rotation through an angle−θ).

Similarly, let the two Cartesian coordinate systems (x, y) and (x′, y′) differ by

a translation: x is parallel to x′ and y to y′, and the origin of the second system

coincides with the point (x0, y0) of the first system. The coordinates (x, y) and

(x′, y′) of a point are related by

x = x′ + x0,

y = y′ + y0,

x′ = x− x0,
y′ = y − y0.

(4.2.7)

4.2.3 CARTESIAN COORDINATES IN THE PLANE

In Cartesian coordinates (or rectangular coordinates), the “address” of a point P is

given by two real numbers indicating the positions of the perpendicular projections

from the point to two fixed, perpendicular, graduated lines, called the axes. If one

coordinate is denoted x and the other y, the axes are called the x-axis and the y-axis,

and we write P = (x, y). Usually the x-axis is horizontal, with x increasing to the

right, and the y-axis is vertical, with y increasing vertically up. The point x = 0,

y = 0, where the axes intersect, is the origin. See Figure 4.2.

4.2.4 POLAR COORDINATES IN THE PLANE

In polar coordinates a point P is also characterized by two numbers: the distance

r ≥ 0 to a fixed pole or origin O, and the angle θ that the rayOP makes with a fixed

ray originating at O, which is generally drawn pointing to the right (this is called the

initial ray). The angle θ is defined only up to a multiple of 360◦ or 2π radians. In

addition, it is sometimes convenient to relax the condition r > 0 and allow r to be a

signed distance, so (r, θ) and (−r, θ+ 180◦) represent the same point (Figure 4.3).
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FIGURE 4.2
In Cartesian coordinates, P1 = (4, 3), P2 = (−1.3, 2.5), P3 = (−1.5,−1.5), P4 =

(3.5,−1), and P5 = (4.5, 0). The axes divide the plane into four quadrants. P1 is in the

first quadrant, P2 in the second, P3 in the third, and P4 in the fourth. P5 is on the positive

x-axis.

−2 −1 1 2 3 4 5
x

−2
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1

2

3
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P2

P3
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FIGURE 4.3
Among the possible sets of polar coordinates for P are (10, 30◦), (10, 390◦) and

(10, −330◦). Among the sets of polar coordinates for Q are (2.5, 210◦) and (−2.5, 30◦).

P

Q

θ = 30◦

r = 10

r = −2.5

4.2.4.1 Relations between Cartesian and polar coordinates

Consider a system of polar coordinates and a system of Cartesian coordinates with

the same origin. Assume that the initial ray of the polar coordinate system coincides

with the positive x-axis, and that the ray θ = 90◦ coincides with the positive y-axis.

Then the polar coordinates (r, θ) with r > 0 and the Cartesian coordinates (x, y)
of the same point are related as follows (x and y are assumed positive for the θ
definition):

{
x = r cos θ,

y = r sin θ,




r =

√
x2 + y2,

θ = tan−1 y

x
,





sin θ =
y√

x2 + y2
,

cos θ =
x√

x2 + y2
.
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FIGURE 4.4
The point P with spatial coordinates (x, y, t) projects to the point Q with spatial coordinates

(x/t, y/t, 1). The plane Cartesian coordinates of Q are (x/t, y/t), and (x : y : t) is one set

of homogeneous coordinates for Q. Any point on the line L (except for the origin O) would

also project to P ′.

x

y

t = 1

t
P

Q

O

L

4.2.5 HOMOGENEOUS COORDINATES IN THE PLANE

A triple of real numbers (x : y : t), with t 6= 0, is a set of homogeneous coordinates

for the point P with Cartesian coordinates (x/t, y/t). Thus the same point has many

sets of homogeneous coordinates: (x : y : t) and (x′ : y′ : t′) represent the same

point if and only if there is some real numberα such that x′ = αx, y′ = αy, z′ = αz.

When we think of the same triple of numbers as the Cartesian coordinates of

a point in three-dimensional space (page 242), we write it as (x, y, t) instead of

(x : y : t). The connection between the point in space with Cartesian coordinates

(x, y, t) and the point in the plane with homogeneous coordinates (x : y : t) becomes

apparent when we consider the plane t = 1 in space, with Cartesian coordinates

given by the first two coordinates x, y of space (Figure 4.4). The point (x, y, t) in

space can be connected to the origin by a line L that intersects the plane t = 1 in the

point with Cartesian coordinates (x/t, y/t) or homogeneous coordinates (x : y : t).
Homogeneous coordinates are useful for several reasons. One the most impor-

tant is that they allow one to unify all symmetries of the plane (as well as other

transformations) under a single umbrella. All of these transformations can be re-

garded as linear maps in the space of triples (x : y : t), and so can be expressed in

terms of matrix multiplications (see page 195).

If we consider triples (x : y : t) such that at least one of x, y, t is non-zero,

we can name not only the points in the plane but also points “at infinity.” Thus,

(x : y : 0) represents the point at infinity in the direction of the ray emanating from

the origin going through the point (x, y).
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4.2.6 OBLIQUE COORDINATES IN THE PLANE

The following generalization of Cartesian coordinates is sometimes useful. Consider

two axes (graduated lines), intersecting at the origin but not necessarily perpendic-

ularly. Let the angle between them be ω. In this system of oblique coordinates, a

point P is given by two real numbers indicating the positions of the projections from

the point to each axis, in the direction of the other axis (see Figure 4.5). The first

axis (x-axis) is generally drawn horizontally. The case ω = 90◦ yields a Cartesian

coordinate system.

FIGURE 4.5
In oblique coordinates, P1 = (4, 3), P2 = (−1.3, 2.5), P3 = (−1.5,−1.5), P4 = (3.5,−1),
and P5 = (4.5, 0). Compare to Figure 4.2.

−2 −1 1 2 3 4 5

P1

P2

P3

P4

P5
ω

4.2.6.1 Relations between two oblique coordinate systems

Let the two oblique coordinate systems (x, y) and (x′, y′), with angles ω and ω′,
share the same origin, and suppose the positive x′-axis makes an angle θ with the

positive x-axis. The coordinates (x, y) and (x′, y′) of a point in the two systems are

related by

x =
x′ sin(ω − θ) + y′ sin(ω − ω′ − θ)

sinω
,

y =
x′ sin θ + y′ sin(ω′ + θ)

sinω
.

(4.2.8)

This formula also covers passing from a Cartesian system to an oblique system and

vice versa, by taking ω = 90◦ or ω′ = 90◦.

The relation between two oblique coordinate systems that differ by a translation

is the same as for Cartesian systems. See Equation (4.2.7).



“smtf32” — 2011/5/20 — 2:09 — page 194 — #204

194 CHAPTER 4. GEOMETRY

4.3 PLANE SYMMETRIES OR ISOMETRIES

A transformation of the plane (invertible map of the plane to itself) that preserves

distances is called an isometry of the plane. Every isometry of the plane is of one of

the following types:

1. The identity (which leaves every point fixed)

2. A translation by a vector v

3. A rotation through an angle α around a point P
4. A reflection in a line L
5. A glide-reflection in a line L with displacement d

4.3.1 SYMMETRIES: CARTESIAN COORDINATES

In the formulas below, a multiplication between a matrix and a pair of coordinates

should be carried out regarding the pair as a column vector (i.e., a matrix with two

rows and one column). Thus
[
a b
c d

]
(x, y) = (ax+ by, cx+ dy).

1. Translation by (x0, y0):

(x, y) 7→ (x+ x0, y + y0). (4.3.1)

2. Rotation through α (counterclockwise) around the origin:

(x, y) 7→
[
cosα − sinα
sinα cosα

]
(x, y). (4.3.2)

3. Rotation through α (counterclockwise) around an arbitrary point (x0, y0):

(x, y) 7→ (x0, y0) +

[
cosα − sinα
sinα cosα

]
(x− x0, y − y0). (4.3.3)

4. Reflection:

in the x-axis: (x, y) 7→ (x, −y),
in the y-axis: (x, y) 7→ (−x, y),

in the diagonal x = y: (x, y) 7→ (y, x).
(4.3.4)

5. Reflection in a line with equation ax+ by + c = 0:

(x, y) 7→ 1

a2 + b2

([
b2 − a2 −2ab
−2ab a2 − b2

]
(x, y)− (2ac, 2bc)

)
. (4.3.5)

6. Reflection in a line going through (x0, y0) and making an angle α with the

x-axis:

(x, y) 7→ (x0, y0) +

[
cos 2α sin 2α
sin 2α − cos 2α

]
(x− x0, y − y0). (4.3.6)
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7. Glide-reflection in a line L with displacement d: Apply first a reflection in L,

then a translation by a vector of length d in the direction of L, that is, by the

vector
1

a2 + b2
(±ad,∓bd) (4.3.7)

if L has equation ax+ by + c = 0.

4.3.2 SYMMETRIES: HOMOGENEOUS COORDINATES

All isometries of the plane can be expressed in homogeneous coordinates in terms

of multiplication by a matrix. This fact is useful in implementing these transforma-

tions on a computer. It also means that the successive application of transformations

reduces to matrix multiplication. The corresponding matrices are as follows:

1. Translation by (x0, y0):

T(x0,y0) =



1 0 x0
0 1 y0
0 0 1


 . (4.3.8)

2. Rotation through α around the origin:

Rα =



cosα − sinα 0
sinα cosα 0
0 0 1


 . (4.3.9)

3. Reflection in a line going through the origin and making an angle α with the

x-axis:

Mα =



cos 2α sin 2α 0
sin 2α − cos 2α 0

0 0 1


 . (4.3.10)

From this, one can deduce all other transformations.

EXAMPLE To find the matrix for a rotation through α around an arbitrary point P =
(x0, y0), we apply a translation by −(x0, y0) to move P to the origin, a rotation

through α around the origin, and then a translation by (x0, y0):

T(x0,y0)RαT−(x0,y0) =




cosα − sinα x0 − x0 cosα+ y0 sinα
sinα cosα y0 − y0 cosα− x0 sinα
0 0 1



 (4.3.11)

(notice the order of the multiplication).

4.3.3 SYMMETRIES: POLAR COORDINATES

1. Rotation around the origin through an angle α: (r, θ) 7→ (r, θ + α).
2. Reflection in a line through the origin and making an angle α with the positive

x-axis: (r, θ) 7→ (r, 2α− θ).
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4.3.4 CRYSTALLOGRAPHIC GROUPS

A group of symmetries of the plane that is doubly infinite is a wallpaper group,

or crystallographic group. There are 17 types of such groups, corresponding to 17

essentially distinct ways to tile the plane in a doubly periodical pattern. (There are

also 230 three-dimensional crystallographic groups.)

4.3.4.1 Crystallographic group classification

To classify an image representing a crystallographic group, answer the following

sequence of questions starting with: “What is the minimal rotational invariance?”.

• None

Is there a reflection?

– No.

Is there a glide-reflection?

∗ No: p1

∗ Yes: pg

– Yes.

Is there a glide-reflection in

an axis that is not a reflection

axis?

∗ No: pm

∗ Yes: cm

• 2-fold (180◦ rotation);

Is there a reflection?

– No.

Is there a glide-reflection?

∗ No: p2

∗ Yes: pgg

– Yes.

Are there reflections in two di-

rections?

∗ No: pmg

∗ Yes: Are all rotation cen-

ters on reflection axes?

· No: cmm

· Yes: pmm

• 3-fold (120◦ rotation);

Is there a reflection?

– No: p3

– Yes.

Are all centers of threefold ro-

tations on reflection axes?

∗ No: p31m

∗ Yes: p3m1

• 4-fold (90◦ rotation);

Is there a reflection?

– No: p4

– Yes.

Are there four reflection axes?

∗ No: p4g

∗ Yes: p4m

• 6-fold (60◦ rotation);

Is there a reflection?

– No: p6

– Yes: p6m
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4.3.4.2 Crystallographic groups descriptions

The simplest crystallographic group involves translations only (page 198, top left).

The others involve, in addition to translations, one or more of the other types of

symmetries (rotations, reflections, glide-reflections). The Conway notation for crys-

tallographic groups is based on the types of non-translational symmetries occurring

in the “simplest description” of the group:

1. ◦ indicates a translations only,

2. ∗ indicates a reflection (mirror symmetry),

3. × a glide-reflection,

4. a number n indicates a rotational symmetry of order n (rotation by 360◦/n).

In addition, if a number n comes after the ∗, the center of the corresponding rotation

lies on mirror lines, so that the symmetry there is actually dihedral of order 2n.

Thus the group ∗∗ has two inequivalent lines of mirror symmetry; the group 333
has three inequivalent centers of order-3 rotation; the group 22∗ has two inequivalent

centers of order-2 rotation as well as mirror lines; and ∗632 has points of dihedral

symmetry of order 12 (= 2× 6), 6, and 4.

The table on page 198 gives the groups in the Conway notation and in the nota-

tion traditional in crystallography. It also gives the quotient space of the plane by the

action of the group. The entry “4,4,2 turnover” means the surface of a triangular puff

pastry with corner angles 45◦(= 180◦/4), 45◦ and 90◦. The entry “4,4,2 turnover

slit along 2,4” means the same surface, slit along the edge joining a 45◦ vertex to

the 90◦ vertex. Open edges are silvered (mirror lines); such edges occur exactly for

those groups whose Conway notation includes a ∗.

The last column of the table gives the dimension of the space of inequivalent

groups of the given type (equivalent groups are those that can be obtained from one

another by proportional scaling or rigid motion). For instance, there is a group of type
◦ for every shape parallelogram, and there are two degrees of freedom for the choice

of such a shape (say the ratio and angle between sides). Thus, the ◦ group is based

on a square fundamental domain, while for the ◦ group a fundamental parallelogram

would have the shape of two juxtaposed equilateral triangles. These two groups are

inequivalent, although they are of the same type.
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Conway Cryst Quotient space Dim
◦ p1 Torus 2
×× pg Klein bottle 1
∗∗ pm Cylinder 1
×∗ cm Möbius strip 1

22× pgg Non-orientable football 1

22∗ pmg Open pillowcase 1

2222 p2 Closed pillowcase 2

2∗22 cmm 4,4,2 turnover, slit along 4,4 1
∗2222 pmm Square 1

442 p4 4,4,2 turnover 0

4∗2 p4g 4,4,2 turnover, slit along 4,2 0
∗442 p4m 4,4,2 triangle 0

333 p3 3,3,3 turnover 0
∗333 p3m1 3,3,3 triangle 0

3∗3 p31m 6,3,2 turnover, slit along 3,2 0

632 p6 6,3,2 turnover 0
∗632 p6m 6,3,2 triangle 0

The following figures show wallpaper patterns for each of the 17 types of crys-

tallographic groups (two patterns are shown for the ◦, or translations-only, type).

Thin lines bound unit cells, or fundamental domains. When solid, they represent

lines of mirror symmetry, and are fully determined. When dashed, they represent ar-

bitrary boundaries, which can be shifted so as to give different fundamental domains.

Dots at the intersections of thin lines represent centers of rotational symmetry.

Some of the relationships between the types are made obvious by the patterns.

However, there are more relationships than can be indicated in a single set of pictures.

For instance, there is a group of type ×× hiding in any group of type 3∗3.

◦ p1 ×× pg
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∗∗ pm

×∗ cm

22× pgg

22∗ pmg

2222 p2

2∗22 cmm

∗2222 pmm

442 p4



“smtf32” — 2011/5/20 — 2:09 — page 200 — #210

200 CHAPTER 4. GEOMETRY

4∗2 p4g

∗442 p4m

◦ p1

333 p3

∗333 p3m1

3∗3 p31m

632 p6

∗632 p6m
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4.4 OTHER TRANSFORMATIONS OF THE PLANE

4.4.1 SIMILARITIES

A transformation of the plane that preserves shapes is called a similarity. Every sim-

ilarity of the plane is obtained by composing a proportional scaling transformation

(also known as a homothety) with an isometry. A proportional scaling transformation

centered at the origin has the form

(x, y) 7→ (ax, ay), (4.4.1)

where a 6= 0 is the scaling factor (a real number). The corresponding matrix in

homogeneous coordinates is

Ha =



a 0 0
0 a 0
0 0 1


 . (4.4.2)

In polar coordinates, the transformation is (r, θ) 7→ (ar, θ).

4.4.2 AFFINE TRANSFORMATIONS

A transformation that preserves lines and parallelism (maps parallel lines to parallel

lines) is an affine transformation. There are two important particular cases of such

transformations:

A non-proportional scaling transformation centered at the origin has the form

(x, y) 7→ (ax, by), where a, b 6= 0 are the scaling factors (real numbers). The

corresponding matrix in homogeneous coordinates is

Ha,b =



a 0 0
0 b 0
0 0 1


 . (4.4.3)

A shear preserving horizontal lines has the form (x, y) 7→ (x + ry, y), where r
is the shearing factor (see Figure 4.6). The corresponding matrix in homogeneous

coordinates is

Sr =



1 r 0
0 1 0
0 0 1


 . (4.4.4)

Every affine transformation is obtained by composing a scaling transformation with

an isometry, or a shear with a homothety and an isometry.
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FIGURE 4.6
A shear with factor r = 1

2
.

ry

y

FIGURE 4.7
A perspective transformation with center O, mapping the plane P to the plane Q. The trans-

formation is not defined on the line L, where P intersects the plane parallel to Q and going

through O.

L

O

P

Q

4.4.3 PROJECTIVE TRANSFORMATIONS

A transformation that maps lines to lines (but does not necessarily preserve paral-

lelism) is a projective transformation. Any plane projective transformation can be

expressed by an invertible 3 × 3 matrix in homogeneous coordinates; conversely,

any invertible 3 × 3 matrix defines a projective transformation of the plane. Projec-

tive transformations (if not affine) are not defined on all of the plane but only on the

complement of a line (the missing line is “mapped to infinity”).

A common example of a projective transformation is given by a perspective

transformation (Figure 4.7). Strictly speaking this gives a transformation from one

plane to another, but, if we identify the two planes by (for example) fixing a Cartesian

system in each, we get a projective transformation from the plane to itself.
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4.5 LINES

The (Cartesian) equation of a straight line is linear in the coordinates x and y:

ax+ by + c = 0. (4.5.1)

The slope of this line is −a/b, the intersection with the x-axis (or x-intercept) is

x = −c/a, and the intersection with the y-axis (or y-intercept) is y = −c/b. If

a = 0, the line is parallel to the x-axis, and if b = 0, then the line is parallel to the

y-axis.

(In an oblique coordinate system, everything in the preceding paragraph remains

true, except for the value of the slope.)

When a2 + b2 = 1 and c ≤ 0 in the equation ax + by + c = 0, the equation

is said to be in normal form. In this case −c is the distance of the line to the origin,

and ω (with cosω = a and sinω = b) is the angle that the perpendicular dropped to

the line from the origin makes with the positive x-axis (Figure 4.8, with p = −c).
To reduce an arbitrary equation ax + by + c = 0 to normal form, divide by

±
√
a2 + b2, where the sign of the radical is chosen opposite the sign of c when

c 6= 0 and the same as the sign of b when c = 0.

4.5.1 LINES WITH PRESCRIBED PROPERTIES

1. Line of slope m intersecting the x-axis at x = x0: y = m(x− x0).
2. Line of slope m intersecting the y-axis at y = y0: y = mx+ y0.

3. Line intersecting the x-axis at x = x0 and the y-axis at y = y0:

x

x0
+

y

y0
= 1. (4.5.2)

(This formula remains true in oblique coordinates.)

4. Line of slope m passing through (x0, y0): y − y0 = m(x− x0).
5. Line passing through points (x0, y0) and (x1, y1):

y − y1
x− x1

=
y0 − y1
x0 − x1

or

∣∣∣∣∣∣

x y 1
x0 y0 1
x1 y1 1

∣∣∣∣∣∣
= 0. (4.5.3)

(These formulas remain true in oblique coordinates.)

6. Slope of line going through points (x0, y0) and (x1, y1):
y1 − y0
x1 − x0

.

7. Line passing through points with polar coordinates (r0, θ0) and (r1, θ1):

r(r0 sin(θ − θ0)− r1 sin(θ − θ1)) = r0r1 sin(θ1 − θ0). (4.5.4)

4.5.2 DISTANCES

The distance between two points in the plane is the length of the line segment joining

the two points. If the points have Cartesian coordinates (x0, y0) and (x1, y1), this
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FIGURE 4.8
The normal form of the line L is x cosω + y sinω = p.

x

y

ω

L

p

distance is √
(x1 − x0)2 + (y1 − y0)2. (4.5.5)

If the points have polar coordinates (r0, θ0) and (r1, θ1), this distance is
√
r20 + r21 − 2r0r1 cos(θ0 − θ1). (4.5.6)

If the points have oblique coordinates (x0, y0) and (x1, y1), this distance is
√
(x1 − x0)2 + (y1 − y0)2 + 2(x1 − x0)(y1 − y0) cosω, (4.5.7)

where ω is the angle between the axes (Figure 4.5).

The point k% of the way from P0 = (x0, y0) to P1 = (x1, y1) is

(kx1 + (100− k)x0
100

,
ky1 + (100− k)y0

100

)
. (4.5.8)

(The same formula also works in oblique coordinates.) This point divides the seg-

ment P0P1 in the ratio k : (100 − k). As a particular case, the midpoint of P0P1 is

given by
(
1
2 (x0 + x1),

1
2 (y0 + y1)

)
.

The distance from the point (x0, y0) to the line ax+ by + c = 0 is
∣∣∣∣
ax0 + by0 + c√

a2 + b2

∣∣∣∣ . (4.5.9)

4.5.3 ANGLES

The angle between two lines a0x+ b0y + c0 = 0 and a1x+ b1y + c1 = 0 is

tan−1

(
b1
a1

)
− tan−1

(
b0
a0

)
= tan−1

(
a0b1 − a1b0
a0a1 + b0b1

)
. (4.5.10)

In particular, the two lines are parallel when a0b1 = a1b0, and perpendicular when

a0a1 = −b0b1.

The angle between two lines of slopes m0 and m1 is tan−1(m1)− tan−1(m0)
(or tan−1((m1 −m0)/(1 +m0m1))). In particular, the two lines are parallel when

m0 = m1 and perpendicular when m0m1 = −1.
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4.5.4 CONCURRENCE AND COLLINEARITY

Three lines a0x+ b0y + c0 = 0, a1x + b1y + c1 = 0, and a2x + b2y + c2 = 0 are

concurrent (i.e., intersect at a single point) if and only if

∣∣∣∣∣∣

a0 b0 c0
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
= 0. (4.5.11)

(This remains true in oblique coordinates.)

Three points (x0, y0), (x1, y1) and (x2, y2) are collinear (i.e., all three points

are on a straight line) if and only if

∣∣∣∣∣∣

x0 y0 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣
= 0. (4.5.12)

(This remains true in oblique coordinates.)

Three points with polar coordinates (r0, θ0), (r1, θ1) and (r2, θ2) are collinear

if and only if

r1r2 sin(θ2 − θ1) + r0r1 sin(θ1 − θ0) + r2r0 sin(θ0 − θ2) = 0. (4.5.13)

4.6 POLYGONS

Given k ≥ 3 points A1, . . . , Ak in the plane, in a certain order, we obtain a k-sided

polygon or k-gon by connecting each point to the next, and the last to the first, with

a line segment. The points Ai are the vertices and the segments AiAi+1 are the

sides or edges of the polygon. When k = 3 we have a triangle, when k = 4 we

have a quadrangle or quadrilateral, and so on (see page 212 for names of regular

polygons). Here we assume that all polygons are simple: no consecutive edges are

on the same line and no two edges intersect (except that consecutive edges intersect

at the common vertex).

FIGURE 4.9
Two simple quadrilaterals (left and middle) and one that is not simple (right). We will treat

only simple polygons.

A1

A2
A3

A4
A1

A2
A3

A4

A1

A2

A3

A4
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When we refer to the angle at a vertex Ak we have in mind the interior angle

(as marked in the leftmost polygon in Figure 4.9). We denote this angle by the same

symbol as the vertex. The complement of Ak is the exterior angle at that vertex;

geometrically, it is the angle between one side and the extension of the adjacent side.

In any k-gon, the sum of the angles equals 2(k− 2) right angles, or 2(k− 2)× 90◦;

for example, the sum of the angles of a triangle is 180◦.

The area of a polygon whose vertices Ai have coordinates (xi, yi), for 1 ≤ i ≤
k, is the absolute value of

area = 1
2 (x1y2 − x2y1) + · · ·+ 1

2 (xk−1yk − xkyk−1) +
1
2 (xky1 − x1yk),

=
1

2

k∑

i=1

(xiyi+1 − xi+1yi),
(4.6.1)

where in the summation we take xk+1 = x1 and yk+1 = y1. For a triangle

area = 1
2 (x1y2− x2y1 + x2y3− x3y2 + x3y1− x1y3) =

1

2

∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
. (4.6.2)

In oblique coordinates with angle ω between the axes, the area is as given above,

multiplied by sinω.

If the vertices have polar coordinates (ri, θi), for 1 ≤ i ≤ k, the area is the

absolute value of

area =
1

2

k∑

i=1

riri+1 sin(θi+1 − θi), (4.6.3)

where we take rk+1 = r1 and θk+1 = θ1.

4.6.1 TRIANGLES

Because the angles of a triangle add up to 180◦, at least two of them must be acute

(less than 90◦). In an acute triangle all angles are acute. A right triangle has one

right angle, and an obtuse triangle has one obtuse angle.

The altitude corresponding to a side is the perpendicular dropped to the line

containing that side from the opposite vertex. The bisector of a vertex is the line

that divides the angle at that vertex into two equal parts. The median is the segment

joining a vertex to the midpoint of the opposite side. See Figure 4.10.

Every triangle also has an inscribed circle tangent to its sides and interior to

the triangle (in other words, any three non-concurrent lines determine a circle). The

center of this circle is the point of intersection of the bisectors. We denote the radius

of the inscribed circle by r.
Every triangle has a circumscribed circle going through its vertices; in other

words, any three non-collinear points determine a circle. The point of intersection of

the medians is the center of mass of the triangle (considered as an area in the plane).

We denote the radius of the circumscribed circle by R.

Introduce the following notations for an arbitrary triangle of vertices A, B, C
and sides a, b, c (see Figure 4.10). Let hc, tc, and mc be the lengths of the altitude,

bisector and median originating in vertex C, let r and R be as usual the radii of the

inscribed and circumscribed circles, and let s be the semi-perimeter: s = 1
2 (a+b+c).
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FIGURE 4.10
Notations for an arbitrary triangle of sides a, b, c and vertices A, B, C. The altitude cor-

responding to C is hc, the median is mc, the bisector is tc. The radius of the circumscribed

circle is R, that of the inscribed circle is r.

r

R

C

C
2

A B

b

a

hc

mctc

c

A+B + C = 180◦

c2 = a2 + b2 − 2ab cosC (law of cosines),

a = b cosC + c cosB,

a

sinA
=

b

sinB
=

c

sinC
(law of sines),

area = 1
2hcc =

1
2ab sinC =

c2 sinA sinB

2 sinC
= rs =

abc

4R
,

=
√
s(s− a)(s− b)(s− c) (Heron formula),

r = c sin(12A) sin(
1
2B) sec(12C) =

ab sinC

2s
= (s− c) tan(12C),

=
( 1

ha
+

1

hb
+

1

hc

)−1

,

R =
c

2 sinC
=

abc

4 area
,

hc = a sinB = b sinA =
2 area

c
,

tc =
2ab

a+ b
cos 1

2C =

√
ab
(
1− c2

(a+ b)2

)
, and

mc =
√

1
2a

2 + 1
2b

2 − 1
4c

2.
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A triangle is equilateral if all of its sides have the same length, or, equivalently,

if all of its angles are the same (and equal to 60◦). It is isosceles if two sides are the

same, or, equivalently, if two angles are the same. Otherwise it is scalene.

For an equilateral triangle of side a we have

area = 1
4a

2
√
3, r = 1

6a
√
3, R = 1

3a
√
3, h = 1

2a
√
3, (4.6.4)

where h is any altitude. The altitude, the bisector, and the median for each vertex

coincide.

For an isosceles triangle, the altitude for the unequal side is also the corre-

sponding bisector and median, but this is not true for the other two altitudes. Many

formulas for an isosceles triangle of sides a, a, c can be immediately derived from

those for a right triangle whose legs are a and 1
2c (see Figure 4.11, left).

For a right triangle, the hypotenuse is the longest side and (opposite the right

angle); the legs are the two shorter sides (adjacent to the right angle). The altitude

for each leg equals the other leg. In Figure 4.11 (right), h denotes the altitude for the

hypotenuse, while m and n denote the segments into which this altitude divides the

hypotenuse.

The following formulas apply to a right triangle:

A+B = 90◦,

r =
ab

a+ b+ c
,

a = c sinA = c cosB,

mc = b2,

area = 1
2ab,

c2 = a2 + b2 (Pythagoras),

R = 1
2c,

b = c sinB = c cosA,

nc = a2,

hc = ab, mn = h2.

FIGURE 4.11
Left: an isosceles triangle can be divided into two congruent right triangles. Right: notations

for a right triangle.

c

a a

C

A B

b a
h

m n

c

The hypotenuse is a diameter of the circumscribed circle. The median joining

the midpoint of the hypotenuse (the center of the circumscribed circle) to the right

angle makes angles 2A and 2B with the hypotenuse.
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FIGURE 4.12
Left: Ceva’s theorem. Right: Menelaus’s theorem.
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Additional facts about triangles:

1. In any triangle, the longest side is opposite the largest angle, and the shortest

side is opposite the smallest angle. This follows from the law of sines.

2. Ceva’s theorem (see Figure 4.12, left): In a triangleABC, let D, E, and F be

points on the lines BC, CA, and AB, respectively. Then the lines AD, BE,
andCF are concurrent if and only if the signed distancesBD, CE, . . . satisfy

BD · CE · AF = DC · EA · FB. (4.6.5)

This is so in three important particular cases: when the three lines are the

medians, when they are the bisectors, and when they are the altitudes.

3. Menelaus’s theorem (see Figure 4.12, right): In a triangleABC, let D, E, and

F be points on the lines BC, CA, and AB, respectively. Then D, E, and F
are collinear if and only if the signed distances BD, CE, . . . satisfy

BD · CE ·AF = −DC ·EA · FB. (4.6.6)

4. Each side of a triangle is less than the sum of the other two. For any three

lengths such that each is less than the sum of the other two, there is a triangle

with these side lengths.

5. Determining if a point is inside a triangle.

Given a triangle’s vertices {P0, P1, P2} and the test point P3. Place P0 at the

origin by subtracting its coordinates from each of the others. Then compute

(here Pi = (xi, yi))

a = x1y2 − x2y1,
b = x1y3 − x3y1,
c = x2y3 − x3y2.

(4.6.7)

The point P3 is inside the triangle {P0, P1, P2} if and only if

ab > 0 and ac < 0 and a(a− b+ c) > 0. (4.6.8)
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4.6.2 QUADRILATERALS

The following formulas give the area of a general quadrilateral (see Figure 4.13,

left, for the notation).

area = 1
2pq sin θ =

1
4 (b

2 + d2 − a2 − c2) tan θ
= 1

4

√
4p2q2 − (b2 + d2 − a2 − c2)2

=
√
(s− a)(s− b)(s− c)(s− d)− abcd cos 1

2 (A+ C).

(4.6.9)

FIGURE 4.13
Left: notation for a general quadrilateral; in addition s = 1

2
(a + b + c + d). Right: a

parallelogram.
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Often, however, it is easiest to compute the area by dividing the quadrilateral into

triangles. One can also divide the quadrilateral into triangles to compute one side

given the other sides and angles, etc.

More formulas can be given for special cases of quadrilaterals. In a parallel-

ogram, opposite sides are parallel and the diagonals intersect in the middle (Fig-

ure 4.13, right). It follows that opposite sides have the same length and that two

consecutive angles add up to 180◦. In the notation of the figure, we have

A = C, B = D,

h = a sinA = a sinB,

p =
√
a2 + b2 − 2ab cosA,

A+B = 180◦,

area = bh,

q =
√
a2 + b2 − 2ab cosB.

(All this follows from the triangle formulas applied to the trianglesABD andABC.)

Two particular cases of parallelograms are

1. The rectangle , where all angles equal 90◦. The diagonals of a rectangle

have the same length. The general formulas for parallelograms reduce to

h = a, area = ab, and p = q =
√
a2 + b2. (4.6.10)

2. The rhombus or diamond ♦ , where adjacent sides have the same length (a =
b). The diagonals of a rhombus are perpendicular. In addition to the general

formulas for parallelograms, we have area = 1
2pq and p2 + q2 = 4a2.



“smtf32” — 2011/5/20 — 2:09 — page 211 — #221

4.6. POLYGONS 211

The square or regular quadrilateral is both a rectangle and a rhombus.

A quadrilateral is a trapezoid if two sides are parallel.

In the notation of the figure on the right we have

CD

BA

h

A+D = B + C = 180◦, area = 1
2 (AB + CD)h.

The diagonals of a quadrilateral with consecutive sides a, b, c, d are perpendic-

ular if and only if a2 + c2 = b2 + d2.

A quadrilateral is cyclic if it can be inscribed in a circle, that is, if its four vertices

belong to a single, circumscribed, circle. This is possible if and only if the sum of

opposite angles is 180◦. If R is the radius of the circumscribed circle, we have (in

the notation of Figure 4.13, left)

area =
√
(s− a)(s− b)(s− c)(s− d) = 1

2 (ac+ bd) sin θ,

=

√
(ac+ bd)(ad+ bc)(ab + cd)

4R
(Brahmagupta),

p =

√
(ac+ bd)(ab + cd)

(ad+ bc)
,

R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

(s− a)(s− b)(s− c)(s− d) ,

sin θ =
2 area

ac+ bd
,

pq = ac+ bd (Ptolemy).

A quadrilateral is circumscribable if it has an inscribed circle (that is, a circle

tangent to all four sides). Its area is rs, where r is the radius of the inscribed circle

and s is as above. A quadrilateral is circumscribable if and only if a+ c = b+ d.

For a quadrilateral that is both cyclic and circumscribable, we have the following

additional equalities, where m is the distance between the centers of the inscribed

and circumscribed circles:

a+ c = b+ d, area =
√
abcd = rs,

R =
1

4

√
(ac+ bd)(ad+ bc)(ab+ cd)

abcd
,

1

r2
=

1

(R−m)2
+

1

(R+m)2
.

4.6.3 REGULAR POLYGONS

A polygon is regular if all its sides are equal and all its angles are equal. Either

condition implies the other in the case of a triangle, but not in general. (A rhombus

has equal sides but not necessarily equal angles, and a rectangle has equal angles but

not necessarily equal sides.)
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For a k-sided regular polygon of side a, let θ be the angle at any vertex, and r
and R the radii of the inscribed and circumscribed circles (r is called the apothem).

As usual, let s = 1
2ka be the half-perimeter. Then

θ =

(
k − 2

k

)
180◦,

a = 2r tan
180◦

k
= 2R sin

180◦

k
,

area = 1
4ka

2 cot
180◦

k
= kr2 tan

180◦

k

= 1
2kR

2 sin
360◦

k
,

r = 1
2a cot

180◦

k
,

R = 1
2a csc

180◦

k
.

RR

r

a

θ

Name k area r R

Equilateral triangle 3 0.43301 a2 0.28868 a 0.57735 a
Square 4 a2 0.50000 a 0.70711 a
Regular pentagon 5 1.72048 a2 0.68819 a 0.85065 a
Regular hexagon 6 2.59808 a2 0.86603 a a
Regular heptagon 7 3.63391 a2 1.03826 a 1.15238 a
Regular octagon 8 4.82843 a2 1.20711 a 1.30656 a
Regular nonagon 9 6.18182 a2 1.37374 a 1.46190 a
Regular decagon 10 7.69421 a2 1.53884 a 1.61803 a
Regular undecagon 11 9.36564 a2 1.70284 a 1.77473 a
Regular dodecagon 12 11.19625 a2 1.86603 a 1.93185 a

If ak denotes the side of a k-sided regular polygon inscribed in a circle of radius R

a2k =

√
2R2 −R

√
4R2 − a2k. (4.6.11)

If Ak denotes the side of a k-sided regular polygon circumscribed about the same

circle,

A2k =
2RAk

2R+
√
4R2 +A2

k

. (4.6.12)

In particular,

A2k =
akAk

ak +Ak
, a2k =

√
akA2k

2
. (4.6.13)

The areas sk, s2k, Sk and S2k of the same polygons satisfy

s2k =
√
skSk, S2k =

2s2kSk

s2k + Sk
. (4.6.14)
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4.7 SURFACES OF REVOLUTION: THE TORUS

A surface of revolution is formed by the rotation of a planar curveC about an axis in

the plane of the curve and not cutting the curve. The Pappus–Guldinus theorem says

that:

1. The area of the surface of revolution on a curve C is equal to the product of

the length of C and the length of the path traced by the centroid of C (which

is 2π times the distance from this centroid to the axis of revolution).

2. The volume bounded by the surface of revolution on a simple closed curve C
is equal to the product of the area bounded by C and the length of the path

traced by the centroid of the area bounded by C.

When C is a circle, the surface obtained is a

circular torus or torus of revolution. Let r be the

radius of the revolving circle and let R be the

distance from its center to the axis of rotation.

The area of the torus is 4π2Rr, and its volume is

2π2Rr2.

R

r

4.8 QUADRICS

A surface defined by an algebraic equation of degree two is called a quadric.

Spheres, circular cylinders, and circular cones are quadrics. By means of a rigid

motion, any quadric can be transformed into a quadric having one of the following

equations (where a, b, c 6= 0):

1. Real ellipsoid: x2/a2 + y2/b2 + z2/c2 = 1
2. Imaginary ellipsoid: x2/a2 + y2/b2 + z2/c2 = −1
3. Hyperboloid of one sheet: x2/a2 + y2/b2 − z2/c2 = 1
4. Hyperboloid of two sheets: x2/a2 + y2/b2 − z2/c2 = −1
5. Real quadric cone: x2/a2 + y2/b2 − z2/c2 = 0
6. Imaginary quadric cone: x2/a2 + y2/b2 + z2/c2 = 0
7. Elliptic paraboloid: x2/a2 + y2/b2 + 2z = 0
8. Hyperbolic paraboloid: x2/a2 − y2/b2 + 2z = 0
9. Real elliptic cylinder: x2/a2 + y2/b2 = 1

10. Imaginary elliptic cylinder: x2/a2 + y2/b2 = −1
11. Hyperbolic cylinder: x2/a2 − y2/b2 = 1
12. Real intersecting planes: x2/a2 − y2/b2 = 0
13. Imaginary intersecting planes: x2/a2 + y2/b2 = 0
14. Parabolic cylinder: x2 + 2y = 0
15. Real parallel planes: x2 = 1
16. Imaginary parallel planes: x2 = −1
17. Coincident planes: x2 = 0
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Surfaces with Equations 9–17 are cylinders over the plane curves of the same

equation (Section 4.19). Equations 2, 6, 10, and 16 have no real solutions, so that

they do not describe surfaces in real three-dimensional space. A surface with Equa-

tion 5 can be regarded as a cone (Section 4.20) over a conic C (any ellipse, parabola

or hyperbola can be taken as the directrix; there is a two-parameter family of essen-

tially distinct cones over it, determined by the position of the vertex with respect to

C). The surfaces with Equations 1, 3, 4, 7, and 8 are shown in Figure 4.14.

The surfaces with Equations 1–6 are central quadrics; in the form given, the

center is at the origin. The quantities a, b, c are the semi-axes.

The volume of the ellipsoid with semi-axes a, b, c is 4
3πabc. When two of the

semi-axes are the same, we can also write the area of the ellipsoid in closed-form.

Suppose b = c, so the ellipsoid x2/a2+(y2+z2)/b2 = 1 is the surface of revolution

obtained by rotating the ellipse x2/a2 + y2/b2 = 1 around the x-axis. Its area is

2πb2+
2πa2b√
a2 − b2

sin−1

√
a2 − b2
a

= 2πb2+
πa2b√
b2 − a2

log
b+
√
b2 − a2

b−
√
b2 − a2

. (4.8.1)

The two quantities are equal, but only one avoids complex numbers, depending on

whether a > b or a < b. When a > b, we have a prolate spheroid, that is, an ellipse

rotated around its major axis; when a < b we have an oblate spheroid, which is an

ellipse rotated around its minor axis.

Given a general quadratic equation in three variables,

ax2 + by2 + cz2 + 2fyz + 2gzx+ 2hxy + 2px+ 2qy + 2rz + d = 0, (4.8.2)

one can determine the type of conic by consulting the table:

ρ3 ρ4 ∆ k signs K signs Type of quadric

3 4 < 0 Real ellipsoid

3 4 > 0 Same Imaginary ellipsoid

3 4 > 0 Opp Hyperboloid of one sheet

3 4 < 0 Opp Hyperboloid of two sheets

3 3 Opp Real quadric cone

3 3 Same Imaginary quadric cone

2 4 < 0 Same Elliptic paraboloid

2 4 > 0 Opp Hyperbolic paraboloid

2 3 Same Opp Real elliptic cylinder

2 3 Same Same Imaginary elliptic cylinder

2 3 Opp Hyperbolic cylinder

2 2 Opp Real intersecting planes

2 2 Same Imaginary intersecting planes

1 3 Parabolic cylinder

1 2 Opp Real parallel planes

1 2 Same Imaginary parallel planes

1 1 Coincident planes
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FIGURE 4.14
The five non-degenerate real quadrics. Top left: ellipsoid. Top right: hyperboloid of two

sheets (one facing up and one facing down). Bottom left: elliptic paraboloid. Bottom middle:

hyperboloid of one sheet. Bottom right: hyperbolic paraboloid.

The columns have the following meaning. Let

e =



a h g
h b f
g f c


 and E =




a h g p
h b f q
g f c r
p q r d


 . (4.8.3)

Let ρ3 and ρ4 be the ranks of e and E, and let ∆ be the determinant of E. The

column “k signs” refers to the non-zero eigenvalues of e, that is, the roots of
∣∣∣∣∣∣

a− x h g
h b− x f
g f c− x

∣∣∣∣∣∣
= 0; (4.8.4)

if all non-zero eigenvalues have the same sign, choose “same,” otherwise “opposite.”

Similarly, “K signs” refers to the sign of the non-zero eigenvalues of E.
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4.8.1 SPHERES

The set of points in space whose distance to a fixed point (the center) is a fixed

positive number (the radius) is a sphere. A circle of radius r and center (x0, y0, z0)
is defined by the equation

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2, (4.8.5)

or

x2 + y2 + z2 − 2xx0 − 2yy0 − 2zz0 + x20 + y20 + z20 − r2 = 0. (4.8.6)

Conversely, an equation of the form

x2 + y2 + z2 + 2dx+ 2ey + 2fz + g = 0 (4.8.7)

defines a sphere if d2 + e2 + f2 > g; the center is (−d, −e, −f) and the radius is√
d2 + e2 + f2 − g.

1. Four points not in the same plane determine a unique sphere. If the points have

coordinates (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x4, x4, z4), the equation

of the sphere is

∣∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1

x21 + y21 + z21 x1 y1 z1 1

x22 + y22 + z22 x2 y2 z2 1

x23 + y23 + z23 x3 y3 z3 1

x24 + y24 + z24 x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (4.8.8)

2. Given two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2), there is a unique

sphere whose diameter is P1P2; its equation is

(x− x1)(x− x2) + (y − y1)(y − y2) + (z − z1)(z − z2) = 0. (4.8.9)

3. The area of a sphere of radius r is 4πr2, and the volume is 4
3πr

3.

4. The area of a spherical polygon (that is, of a polygon on the sphere whose

sides are arcs of great circles) is

S =
( n∑

i=1

θi − (n− 2)π
)
r2, (4.8.10)

where r is the radius of the sphere, n is the number of vertices, and θi are

the internal angles of the polygons in radians. In particular, the sum of the

angles of a spherical triangle is always greater than π = 180◦, and the excess

is proportional to the area.
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FIGURE 4.15
Left: a spherical cap. Middle: a spherical zone (of two bases). Right: a spherical segment.
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4.8.1.1 Spherical cap

Let the radius be r (Figure 4.15, left). The area of the curved region is 2πrh = πp2.

The volume of the cap is 1
3πh

2(3r − h) = 1
6πh(3a

2 + h2).

4.8.1.2 Spherical zone (of two bases)

Let the radius be r (Figure 4.15, middle). The area of the curved region (called a

spherical zone) is 2πrh. The volume of the zone is 1
6πh(3a

2 + 3b2 + h2).

4.8.1.3 Spherical segment and lune

Let the radius be r (Figure 4.15, right). The area of the curved region (called a

spherical segment or lune) is 2r2θ, the angle being measured in radians. The volume

of the segment is 2
3r

3θ.

4.8.1.4 Volume and area of spheres

If the volume of an n-dimensional sphere of radius r is Vn(r) and its surface area is

Sn(r), then

Vn(r) =
2πr2

n
Vn−2(r) =

2πn/2rn

nΓ
(
n
2

) =
πn/2rn(

n
2

)
!
,

Sn(r) =
n

r
Vn(r) =

d

dr
[Vn(r)].

(4.8.11)

Hence, the area of a circle is V2 = πr2 ≈ 3.1416r2, the volume of a 3-dimensional

sphere is V3 = 4
3πr

3 ≈ 4.1888r3, the volume of a 4-dimensional sphere is V4 =
1
2π

2r4 ≈ 4.9348r4, the circumference of a circle is S2 = 2πr, and the surface area

of a sphere is S3 = 4πr2.

For large values of n,

Vn(r) ≈
n−(n+1)/2

√
π

(2πe)n/2rn. (4.8.12)
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4.9 SPHERICAL GEOMETRY & TRIGONOMETRY

The angles in a spherical triangle do not have to add up to 180 degrees. It is possible

for a spherical triangle to have 3 right angles.

4.9.1 RIGHT SPHERICAL TRIANGLES

Let a, b, and c be the sides of a right spherical triangle with opposite angles A, B,

andC, respectively, where each side is measured by the angle subtended at the center

of the sphere. Assume that C = π/2 = 90◦ (see Figure 4.16, left). Then,

sin a = tan b cotB = sinA sin c, cosA = tan b cot c = cos a sinB,

sin b = tan a cotA = sinB sin c, cosB = tan a cot c = cos b sinA,

cos c = cosA cotB = cos a cos b.

FIGURE 4.16
Right spherical triangle (left) and diagram for Napier’s rule (right).
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4.9.1.1 Napier’s rules of circular parts

Arrange the five quantities a, b, co-A (this is the complement of A), co-c, co-B
of a right spherical triangle with right angle at C, in cyclic order as pictured in

Figure 4.16, right. If any one of these quantities is designated a middle part, then

two of the other parts are adjacent to it, and the remaining two parts are opposite to

it. The formulas above for a right spherical triangle may be recalled by the following

two rules:

1. The sine of any middle part is equal to the product of the tangents of the two

adjacent parts.

2. The sine of any middle part is equal to the product of the cosines of the two

opposite parts.

4.9.1.2 Rules for determining quadrant

1. A leg and the angle opposite to it are always of the same quadrant.

2. If the hypotenuse is less than 90◦, the legs are of the same quadrant.

3. If the hypotenuse is greater than 90◦, the legs are not in different quadrants.
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4.9.2 OBLIQUE SPHERICAL TRIANGLES

In the following:

• a, b, c represent the sides of any spherical triangle.

• A, B, C represent the corresponding opposite angles.

• a′, b′, c′, A′, B′, C′ are the corresponding parts of the polar triangle.1

• s = (a+ b+ c)/2.

• S = (A+B + C)/2.

• ∆ is the area of the spherical triangle.

• E is the spherical excess of the triangle.

• R is the radius of the sphere upon which the triangle lies.

0◦ < a+ b+ c < 360◦, 180◦ < A+B + C < 540◦,

E = A+B + C − 180◦, ∆ = πR2E/180.

tan
1

4
E =

√
tan

s

2
tan

1

2
(s− a) tan 1

2
(s− b) tan 1

2
(s− c).

A = 180◦ − a′, B = 180◦ − b′, C = 180◦ − c′,
a = 180◦ −A′, b = 180◦ −B′, c = 180◦ − C′.

4.9.2.1 Spherical law of sines
sin a

sinA
=

sin b

sinB
=

sin c

sinC
.

4.9.2.2 Spherical law of cosines for sides

cosa = cos b cos c+ sin b sin c cosA,

cos b = cos c cos a+ sin c sina cosB,

cos c = cos a cos b+ sin a sin b cosC.

4.9.2.3 Spherical law of cosines for angles

cosA = − cosB cosC + sinB sinC cos a,

cosB = − cosC cosA+ sinC sinA cos b,

cosC = − cosA cosB + sinA sinB cos c.

4.9.2.4 Spherical law of tangents

tan 1
2 (B − C)

tan 1
2 (B + C)

=
tan 1

2 (b − c)
tan 1

2 (b + c)
,

tan 1
2 (C −A)

tan 1
2 (C +A)

=
tan 1

2 (c− a)
tan 1

2 (c+ a)
,

tan 1
2 (A−B)

tan 1
2 (A+B)

=
tan 1

2 (a− b)
tan 1

2 (a+ b)
.

1Given 3 vertices of a spherical triangle, the spherical triangle formed by connecting those 3 points

with great circles is called the “polar triangle.”
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4.9.2.5 Spherical half angle formulas

Define k2 = (tan r)2 =
sin(s− a) sin(s− b) sin(s− c)

sin s
. Then

tan

(
A

2

)
=

k

sin(s− a) ,

tan

(
B

2

)
=

k

sin(s− b) ,

tan

(
C

2

)
=

k

sin(s− c) .

(4.9.1)

4.9.2.6 Spherical half side formulas

Define K2 = (tanR)2 =
− cosS

cos(S −A) cos(S −B) cos(S − C) . Then

tan(a/2) = K cos(S −A),
tan(b/2) = K cos(S −B),

tan(c/2) = K cos(S − C).
(4.9.2)

4.9.2.7 Gauss’s formulas

sin 1
2 (a− b)
sin 1

2c
=

sin 1
2 (A−B)

cos 1
2C

,
cos 1

2 (a− b)
cos 1

2c
=

sin 1
2 (A+B)

cos 1
2C

,

sin 1
2 (a+ b)

sin 1
2c

=
cos 1

2 (A−B)

sin 1
2C

,
cos 1

2 (a+ b)

cos 1
2c

=
cos 1

2 (A+B)

sin 1
2C

.

4.9.2.8 Napier’s analogs

sin 1
2 (A−B)

sin 1
2 (A+B)

=
tan 1

2 (a− b)
tan 1

2c
,

sin 1
2 (a− b)

sin 1
2 (a+ b)

=
tan 1

2 (A−B)

cot 1
2C

,

cos 1
2 (A−B)

cos 1
2 (A+B)

=
tan 1

2 (a+ b)

tan 1
2c

,
cos 1

2 (a− b)
cos 1

2 (a+ b)
=

tan 1
2 (A+B)

cot 1
2C

.

4.9.2.9 Rules for determining quadrant

1. If A > B > C, then a > b > c.
2. A side (angle) which differs by more than 90◦ from another side (angle) is in

the same quadrant as its opposite angle (side).

3. Half the sum of any two sides and half the sum of the opposite angles are in

the same quadrant.



“smtf32” — 2011/5/20 — 2:09 — page 221 — #231

4.9. SPHERICAL GEOMETRY AND TRIGONOMETRY 221

4.9.2.10 Summary of solution of oblique spherical triangles

Given Solution Check

Three sides Half-angle formulas Law of sines

Three angles Half-side formulas Law of sines

Two sides and

included angle

Napier’s analogies (to find sum and difference

of unknown angles); then law of sines (to find

remaining side).

Gauss’s

formulas

Two angles and

included side

Napier’s analogies (to find sum and difference

of unknown sides); then law of sines (to find

remaining angle).

Gauss’s

formulas

Two sides and

an opposite

angle

Law of sines (to find an angle); then Napier’s

analogies (to find remaining angle and side).

Note the number of solutions.

Gauss’s

formulas

Two angles and

an opposite side

Law of sines (to find a side); then Napier’s

analogies (to find remaining side and angle).

Note the number of solutions.

Gauss’s

formulas

4.9.2.11 Finding the distance between two points on the earth

To find the distance between two points on the surface of a spherical earth, let point

P1 have a (latitude, longitude) of (φ1, θ1) and point P2 have a (latitude, longitude)

of (φ2, θ2). Two different computational methods are as follows:

1. Let A be the North pole and let B and C be the points P1 and P2. Then

the spherical law of cosines gives the desired distance, a, on a sphere of unit

radius:

cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A)

where the angleA is the difference in longitudes, and b and c are the angles of

the points from the pole (i.e., 90◦− latitude). Scale by R⊕ (the radius of the

earth) to get the final answer.

2. In (x, y, z) space (with +z being the North pole) points P1 and P2 are repre-

sented as vectors from the center of the earth

v1 =
[
R⊕ cos(φ1) cos(θ1) R⊕ cos(φ1) sin(θ1) R⊕ sin(φ1)

]
,

v2 =
[
R⊕ cos(φ2) cos(θ2) R⊕ cos(φ2) sin(θ2) R⊕ sin(φ2)

]
.

(4.9.3)

The angle between these vectors, α, is given by

cosα =
v1 · v2
|v1| |v2|

=
v1 · v2
R2

⊕
= cos(φ1) cos(φ2) cos(θ1 − θ2) + sin(φ1) sin(φ2)

= 2 tan−1

√
b

1− b

where b = sin2
(

φ1−φ2

2

)
+ cos(φ1) cos(φ2) sin

2
(
θ1−θ2

2

)
. The great circle

distance between P1 and P2 is then R⊕α.

EXAMPLE The angle between PNew York with (φ1 = 40.78◦, θ1 = 73.97◦) and PBeijing

with (φ2 = 39.93◦, θ2 = 243.58◦) is α = 98.8◦. Using R⊕ = 6367 the great circle

distance between New York and Beijing is about 11,000 km.
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4.10 CONICS

A conic (or conic section) is a plane curve that can be obtained by intersecting a right

circular cone (page 257) with a plane that does not go through the vertex of the cone.

There are three possibilities, depending on the relative positions of the cone and the

plane (Figure 4.17). If no line of the cone is parallel to the plane, then the intersection

is a closed curve, called an ellipse. If one line of the cone is parallel to the plane,

the intersection is an open curve whose two ends are asymptotically parallel; this is

called a parabola. Finally, there may be two lines in the cone parallel to the plane;

the curve in this case has two open segments, and is called a hyperbola.

FIGURE 4.17
A section of a cone by a plane can yield an ellipse (left), a parabola (middle) or a hyperbola

(right).

4.10.1 ALTERNATIVE CHARACTERIZATION

Assume given a point F in the plane, a line d not going through F , and a positive

real number e. The set of points P such that the distance PF is e times the distance

from P to d (measured along a perpendicular) is a conic. We call F the focus, d the

directrix, and e the eccentricity of the conic. If e < 1 we have an ellipse, if e = 1 a

parabola, and if e > 1 a hyperbola (Figure 4.18). This construction gives all conics

except the circle, which is a particular case of the ellipse according to the earlier

definition (we can recover it by taking the limit e→ 0).

For any conic, a line perpendicular to d and passing through F is an axis of

symmetry. The ellipse and the hyperbola have an additional axis of symmetry, per-

pendicular to the first, so that there is an alternate focus and directrix, F ′ and d′,
obtained as the reflection of F and d with respect to this axis. (By contrast, the focus

and directrix are uniquely defined for a parabola.)

The simplest analytic form for the ellipse and hyperbola is obtained when the

two symmetry axes coincide with the coordinate axes. The ellipse in Figure 4.19 has

equation
x2

a2
+
y2

b2
= 1, (4.10.1)
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FIGURE 4.18
Definition of conics by means of the ratio (eccentricity) between the distance to a point and

the distance to a line. On the left, e = .7; in the middle, e = 1; on the right, e = 2.

P

d

F

P

d

F

P

d

F

with b < a. The x-axis is the major axis, and the y-axis is the minor axis. These

names are also applied to the segments, determined on the axes by the ellipse, and

to the lengths of these segments: 2a for the major axis and 2b for the minor. The

vertices are the intersections of the major axis with the ellipse and have coordinates

(a, 0) and (−a, 0). The distance from the center to either focus is
√
a2 − b2, and the

sum of the distances from a point in the ellipse to the foci is 2a. The latera recta

(in the singular, latus rectum) are the chords perpendicular to the major axis and

going through the foci; their length is 2b2/a. The eccentricity is
√
a2 − b2/a. All

ellipses of the same eccentricity are similar; in other words, the shape of an ellipse

depends only on the ratio b/a. The distance from the center to either directrix is

a2/
√
a2 − b2.

The hyperbola in Figure 4.20 has equation

x2

a2
− y2

b2
= 1. (4.10.2)

FIGURE 4.19
Ellipse with major semiaxis a and minor semiaxis b. Here b/a = 0.6.

x

y

d′ d

OF ′ F (a, 0)

(0, b)
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FIGURE 4.20
Hyperbola with transverse semiaxis a and conjugate semiaxis b. Here b/a = 0.4.

x

y
d′ d

OF ′ F

(a, 0)

(0, b)

The x-axis is the transverse axis, and the y-axis is the conjugate axis. The

vertices are the intersections of the transverse axis with the hyperbola and have co-

ordinates (a, 0) and (−a, 0). The segment thus determined, or its length 2a, is also

called the transverse axis, while the length 2b is also called the conjugate axis. The

distance from the center to either focus is
√
a2 + b2, and the difference between the

distances from a point in the hyperbola to the foci is 2a. The latera recta are the

chords perpendicular to the transverse axis and going through the foci; their length

is 2b2/a. The eccentricity is
√
a2 + b2/a. The distance from the center to either

directrix is a2/
√
a2 + b2. The legs of the hyperbola approach the asymptotes, lines

of slope ±b/a that cross at the center.

All hyperbolas of the same eccentricity are similar; in other words, the shape

of a hyperbola depends only on the ratio b/a. Unlike the case of the ellipse (where

the major axis, containing the foci, is always longer than the minor axis), the two

axes of a hyperbola can have arbitrary lengths. When they have the same length, so

that a = b, the asymptotes are perpendicular, and e =
√
2, the hyperbola is called

rectangular.

The simplest analytic form for the parabola is obtained when the axis of sym-

metry coincides with one coordinate axis, and the vertex (the intersection of the axis

with the curve) is at the origin.

The equation of the parabola on the right is

y2 = 4ax, (4.10.3)

where a is the distance from the vertex to the focus, or, which

is the same, from the vertex to the directrix. The latus rectum

is the chord perpendicular to the axis and going through the

focus; its length is 4a. All parabolas are similar: they can be

made identical by scaling, translation, and rotation.

x

y
d

F = (a, 0)



“smtf32” — 2011/5/20 — 2:09 — page 225 — #235

4.10. CONICS 225

4.10.2 THE GENERAL QUADRATIC EQUATION

The analytic equation for a conic in arbitrary position is the following:

Ax2 +By2 + Cxy +Dx+ Ey + F = 0, (4.10.4)

where at least one of A, B, C is nonzero. To reduce this to one of the forms given

previously, perform the following steps (note that the decisions are based on the most

recent values of the coefficients, taken after all the transformations so far):

1. If C 6= 0, simultaneously perform the substitutions x 7→ qx + y and y 7→
qy − x, where

q =

√(
B −A
C

)2
+ 1 +

B −A
C

. (4.10.5)

Now C = 0. (This step corresponds to rotating and scaling about the origin.)

2. If B = 0, interchange x and y. Now B 6= 0.

3. If E 6= 0, perform the substitution y 7→ y − 1
2 (E/B). (This corresponds to

translating in the y direction.) Now E = 0.

4. If A = 0:

(a) If D 6= 0, perform the substitution x 7→ x − (F/D) (translation in the

x direction), and divide the equation by B to get Equation (4.10.3). The

conic is a parabola.

(b) If D = 0, the equation gives a degenerate conic. If F = 0, we have the

line y = 0 with multiplicity two. If F < 0, we have two parallel lines

y = ±
√
F/B. If F > 0 we have two imaginary lines; the equation has

no solution within the real numbers.

5. If A 6= 0:

(a) If D 6= 0, perform the substitution x 7→ x − 1
2 (D/A). Now D = 0.

(This corresponds to translating in the x direction.)

(b) If F 6= 0, divide the equation by F to get a form with F = 1.

i. If A and B have opposite signs, the conic is a hyperbola; to get to

Equation (4.10.2), interchange x and y, if necessary, so that A is

positive; then make a = 1/
√
A and b = 1/

√
B.

ii. If A and B are both positive, the conic is an ellipse; to get to Equa-

tion (4.10.1), interchange x and y, if necessary, so that A ≤ B, then

make a = 1/
√
A and b = 1/

√
B. The circle is the particular case

a = b.

iii. If A and B are both negative, we have an imaginary ellipse; the

equation has no solution in real numbers.

(c) If F = 0, the equation again represents a degenerate conic: when A and

B have different signs, we have a pair of lines y = ±
√
−B/Ax, and,

when they have the same sign, we get a point (the origin).
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EXAMPLE Here is an example for clarity. Suppose the original equation is

4x2 + y2 − 4xy + 3x− 4y + 1 = 0. (4.10.6)

In step 1 we apply the substitutions x 7→ 2x + y and y 7→ 2y − x. This gives

25x2 + 10x − 5y + 1 = 0. Next we interchange x and y (step 2) and get 25y2 +
10y − 5x+1 = 0. Replacing y by y− 1

5
in step 3, we get 25y2 − 5x = 0. Finally, in

step 4a we divide the equation by 25, thus giving it the form of Equation (4.10.3) with

a = 1
20

. We have reduced the conic to a parabola with vertex at the origin and focus

at ( 1
20
, 0). To locate the features of the original curve, we work our way back along

the chain of substitutions (recall the convention about substitutions and transformations

from Section 4.2.2):

Substitution y 7→ y − 1
5

x 7→y
y 7→x

x 7→2x+y
y 7→2y−x

Vertex (0, 0) (0,− 1
5
) (− 1

5
, 0) (− 2

5
,− 1

5
)

Focus ( 1
20
, 0) ( 1

20
,− 1

5
) (− 1

5
, 1
20
) (− 7

20
, 6
20
)

We conclude that the original curve, Equation (4.10.6), is a parabola with vertex

(− 2
5
,− 1

5
) and focus (− 7

20
, 6
20
).

An alternative analysis of Equation (4.10.4) consists in forming the quantities

∆ =

∣∣∣∣∣∣∣

A 1
2C

1
2D

1
2C B 1

2E
1
2D

1
2E F

∣∣∣∣∣∣∣
J =

∣∣∣∣
A 1

2C
1
2C B

∣∣∣∣

K =

∣∣∣∣
A 1

2D
1
2D F

∣∣∣∣+
∣∣∣∣
B 1

2E
1
2E F

∣∣∣∣ I = A+B

(4.10.7)

and finding the appropriate case in the following table, where an entry in parentheses

indicates that the equation has no solution in real numbers:

∆ J ∆/I K Type of conic

6= 0 < 0 any any Hyperbola

6= 0 0 any any Parabola

6= 0 > 0 < 0 any Ellipse

6= 0 > 0 > 0 any (Imaginary ellipse)

0 < 0 any any Intersecting lines

0 > 0 any any Point

0 0 any < 0 Distinct parallel lines

0 0 any > 0 (Imaginary parallel lines)

0 0 any 0 Coincident lines

For the central conics (the ellipse, the hyperbola, intersecting lines, and the point),

the center (x0, y0) is the solution of the system of equations

2Ax+ Cy +D = 0,

Cx + 2By + E = 0,

namely

(x0, y0) =

(
2BD − CE
C2 − 4AB

,
2AE − CD
C2 − 4AB

)
, (4.10.8)



“smtf32” — 2011/5/20 — 2:09 — page 227 — #237

4.10. CONICS 227

and the axes have slopes q and −1/q, where q is given by Equation (4.10.5). (The

value −1/q can be obtained from Equation (4.10.5) by simply placing a minus sign

before the radical.) The length of the semiaxis with slope q is

√
|∆|
|Jr| , where r =

1

2
(A+B +

√
(B −A)2 + C2); (4.10.9)

note that r is one of the eigenvalues of the matrix of which J is the determinant. To

obtain the other semiaxis, take the other eigenvalue (change the sign of the radical in

the expression of r just given).

EXAMPLE Consider the equation 3x2 + 4xy − 2y2 + 3x− 2y + 7 = 0. We have

∆ =

∣∣∣∣∣∣

6 4 3
4 −4 −2
3 −2 14

∣∣∣∣∣∣
= −596 6= 0

J =

∣∣∣∣
6 4
4 −4

∣∣∣∣ = −40 < 0

We conclude that this is a hyperbola.

4.10.3 ADDITIONAL PROPERTIES OF ELLIPSES

Let C be the ellipse with equation x2/a2 + y2/b2 = 1, with a > b, and let F, F ′ =
(±
√
a2 − b2, 0) be its foci (see Figure 4.19).

1. A parametric representation for C is given by

(a cos θ, b sin θ). The area of the shaded sec-

tor on the right is 1
2abθ = 1

2ab cos
−1(x/a).

The length of the arc from (a, 0) to the point

(a cos θ, b sin θ) is given by the elliptic integral

(a cos θ, b sin θ) = (x, y)

b

a

a

∫ θ

0

√
1− e2 cos2 φdφ = a

(
E
(π
2
, e
)
− E

(π
2
− θ, e

))
,

where e is the eccentricity. (See page 463 for elliptic integrals.) Setting θ = 2π
results in

area = πab, perimeter = 4aE(π/2, e). (4.10.10)

Note the approximation: perimeter≈ π
[
3(a+ b)−

√
(3a+ b)(a+ 3b)

]

2. Given an ellipse in the form Ax2 + Bxy + Cy2 = 1, form the matrix D =[
A B/2

B/2 C

]
. Let the eigenvalues of D be {λ1, λ2} and let {v1, v2} be the

corresponding unit eigenvectors (choose them orthogonal if λ1 = λ2). Then

the major and minor semiaxes are given by vi =
ui√
λi

and

(a) The area of the ellipse is
π√
λ1λ2

=
2π√

4AC −B2
.

(b) The ellipse has the parametric representation x(t) = cos(t)v1+sin(t)v2.

(c) The rectangle with vertices (±v1,±v2) is tangent to the ellipse.
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3. A rational parametric representation for C is given by

(
a
1− t2
1 + t2

,
2bt

1 + t2

)
.

4. The polar equation for C in the usual polar coordinate system is

r =
ab√

a2 sin2 θ + b2 cos2 θ
. (4.10.11)

With respect to a coordinate system with origin at a focus, the equation is

r =
l

1± e cos θ , (4.10.12)

where l = b2/a is half the latus rectum. (Use the + sign for the focus with

positive x-coordinate and the− sign for the focus with negative x-coordinate.)

5. Let P be any point of C. The sum of the distances PF and PF ′ is constant

and equal to 2a.

6. Let P be any point of C. Then the rays PF and PF ′ make the same angle

with the tangent to C at P . Thus any light ray originating at F and reflected

in the ellipse will go through F ′.
7. Let T be any line tangent to C. The product of the distances from F and F ′ to

T is constant and equals b2.

8. Lahire’s theorem: LetD andD′ be fixed lines in the plane, and consider a third

moving line on which three points P , P ′ and P ′′ are marked. If we constrain

P to lie in D and P ′ to lie in D′, then P ′′ describes an ellipse.

4.10.4 ADDITIONAL PROPERTIES OF HYPERBOLAS

Let C be the hyperbola with equation x2/a2 − y2/b2 = 1, and let

F, F ′ = (±
√
a2 + b2, 0) (4.10.13)

be its foci (see Figure 4.20). The conjugate hyperbola of C is the hyperbolaC′ with

equation −x2/a2 + y2/b2 = 1. It has the same asymptotes as C, the same axes

(transverse and conjugate axes being interchanged), and its eccentricity e′ is related

to that of C by e′−2
+ e−2 = 1.

1. A parametric representation for C is given

by (a sec θ, b tan θ). A different paramet-

ric representation, which gives one branch

only, is (a cosh θ, b sinh θ). The area of the

shaded sector on the right is

1
2abθ =

1
2ab cosh

−1(x/a)

= 1
2ab log

x+
√
x2 − a2
a

.

(a cosh θ, b sinh θ)
b

a

where x = a cosh θ. The length of the arc from (a, 0) to the point

(a cosh θ, b sinh θ) is given by the elliptic integral

a

∫ θ

0

√
e2 cosh2 φ− 1 dφ = −biE

(
θi,

ea

b

)
= a

∫ x

1

√
e2ξ2 − a2
ξ2 − a2 dξ,
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where e is the eccentricity and i =
√
−1.

2. A rational parametric representation for C is given by

(
a
1 + t2

1− t2 ,
2bt

1− t2
)
. (4.10.14)

3. The polar equation for C in the usual polar coordinate system is

r =
ab√

a2 sin2 θ − b2 cos2 θ
. (4.10.15)

With respect to a system with origin at a focus, the equation is

r =
l

1± e cos θ , (4.10.16)

where l = b2/a is half the latus rectum. (Use the − sign for the focus with

positive x-coordinate and the + sign for the focus with negative x-coordinate.)

4. Let P be any point of C. The unsigned difference between the distances PF
and PF ′ is constant and equal to 2a.

5. Let P be any point of C. Then the rays PF and PF ′ make the same angle

with the tangent to C at P . Thus any light ray originating at F and reflected

in the hyperbola will appear to emanate from F ′.
6. Let T be any line tangent to C. The product of the distances from F and F ′ to

T is constant and equals b2.

7. Let P be any point of C. The area of the parallelogram formed by the asymp-

totes and the parallels to the asymptotes going throughP is constant and equals
1
2ab.

8. Let L be any line in the plane. If L intersects C at P and P ′ and intersects

the asymptotes at Q and Q′, the distances PQ and P ′Q′ are the same. If L
is tangent to C we have P = P ′, so that the point of tangency bisects the

segment QQ′.

4.10.5 ADDITIONAL PROPERTIES OF PARABOLAS

Let C be the parabola with equation y2 = 4ax, and let F = (a, 0) be its focus.

1. Let P = (x, y) and P ′ = (x′, y′) be points on C. The area bounded by the

chord PP ′ and the corresponding arc of the parabola is

|y′ − y|3
24a

. (4.10.17)

It equals four-thirds of the area of the triangle PQP ′, where Q is the point on

C whose tangent is parallel to the chord PP ′ (formula due to Archimedes).

2. The length of the arc from (0, 0) to the point (x, y) is

y

4

√
4 +

y2

a2
+ a sinh−1

( y
2a

)
=
y

4

√
4 +

y2

a2
+ a log

y +
√
y2 + 4a2

2a
.

(4.10.18)
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3. The polar equation for C in the usual polar coordinate system is

r =
4a cos θ

sin2 θ
. (4.10.19)

With respect to a coordinate system with origin at F, the equation is

r =
l

1− cos θ
, (4.10.20)

where l = 2a is half the latus rectum.

4. Let P be any point of C. Then the ray PF and the horizontal line through P
make the same angle with the tangent to C at P . Thus light rays parallel to the

axis and reflected in the parabola converge onto F (principle of the parabolic

reflector).

4.10.6 CIRCLES

The set of points in a plane whose distance to a fixed point (the center) is a fixed

positive number (the radius) is a circle. A circle of radius r and center (x0, y0) is

described by the equation

(x− x0)2 + (y − y0)2 = r2, (4.10.21)

or

x2 + y2 − 2xx0 − 2yy0 + x20 + y20 − r2 = 0. (4.10.22)

Conversely, an equation of the form

x2 + y2 + 2dx+ 2ey + f = 0 (4.10.23)

defines a circle if d2 + e2 > f ; the center is (−d, −e) and the radius is√
d2 + e2 − f .

Three points not on the same line determine a unique circle. If the points have

coordinates (x1, y1), (x2, y2) and (x3, y3), then the equation of the circle is

∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x21 + y21 x1 y1 1
x22 + y22 x2 y2 1
x23 + y23 x3 y3 1

∣∣∣∣∣∣∣∣
= 0. (4.10.24)

A chord of a circle is a line segment between two of its points (Figure 4.21).

A diameter is a chord that goes through the center, or the length of such a chord

(therefore the diameter is twice the radius). Given two points P1 = (x1, y1) and

P2 = (x2, y2), there is a unique circle whose diameter is P1P2; its equation is

(x− x1)(x− x2) + (y − y1)(y − y2) = 0. (4.10.25)

The length or circumference of a circle of radius r is 2πr, and the area is πr2.

The length of the arc of circle subtended by an angle θ, shown as s in Figure 4.21, is
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rθ. (All angles are measured in radians.) Other relations between the radius, the arc

length, the chord, and the areas of the corresponding sector and segment are, in the

notation of Figure 4.21,

d = R cos 1
2θ =

1
2c cot

1
2θ =

1
2

√
4R2 − c2,

c = 2R sin 1
2θ = 2d tan 1

2θ = 2
√
R2 − d2 =

√
4h(2R− h),

θ =
s

R
= 2 cos−1 d

R
= 2 tan−1 c

2d
= 2 sin−1 c

2R
,

area of sector = 1
2Rs =

1
2R

2θ,

area of segment = 1
2R

2(θ − sin θ) = 1
2 (Rs− cd) = R2 cos−1 d

R
− d
√
R2 − d2

= R2 cos−1 R− h
R

− (R− h)
√

2Rh− h2.

FIGURE 4.21
The arc of a circle subtended by the angle θ is s; the chord is c; the sector is the whole slice of

the pie; the segment is the cap bounded by the arc and the chord (that is, the slice minus the

triangle).

R

θ

s

c
h

d

FIGURE 4.22
Left: the angle ACB equals 1

2
θ for any C in the long arc AB; ADB equals 180◦ − 1

2
θ for

any D in the short arc AB. Right: the locus of points, from which the segment AB subtends

a fixed angle θ, is an arc of the circle.

θ

A

B

C
D

θ

θ
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Other properties of circles:

1. If the central angle AOB equals θ, the angle ACB, where C is any point on

the circle, equals 1
2θ or 180◦ − 1

2θ (Figure 4.22, left). Conversely, given a

segment AB, the set of points that “see” AB under a fixed angle is an arc of a

circle (Figure 4.22, right). In particular, the set of points that see AB under a

right angle is a circle with diameter AB.

2. Let P1, P2, P3, P4 be points in the plane, and let dij , for 1 ≤ i, j ≤ 4, be the

distance between Pi and Pj . A necessary and sufficient condition for all of the

points to lie on the same circle (or line) is that one of the following equalities

be satisfied:

d12d34 ± d13d24 ± d14d23 = 0. (4.10.26)

This is equivalent to Ptolemy’s formula for cyclic quadrilaterals (page 211).

3. In oblique coordinates with angle ω, a circle of center (x0, y0) and radius r is

described by the equation

(x− x0)2 + (y − y0)2 + 2(x− x0)(y − y0) cosω = r2. (4.10.27)

4. In polar coordinates, the equation for a circle centered at the pole and having

radius a is r = a. The equation for a circle of radius a passing through the

pole and with center at the point (r, θ) = (a, θ0) is r = 2a cos(θ − θ0). The

equation for a circle of radius a and with center at the point (r, θ) = (r0, θ0)
is

r2 − 2r0r cos(θ − θ0) + r20 − a2 = 0. (4.10.28)

5. If a line intersects a circle of center O at points A and B, the segments OA
and OB make equal angles with the line. In particular, a tangent line is per-

pendicular to the radius that goes through the point of tangency.

6. Fix a circle and a point P in the plane, and consider a line through P that

intersects the circle at A and B (with A = B for a tangent). Then the product

of the distances PA · PB is the same for all such lines. It is called the power

of P with respect to the circle.
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4.11 SPECIAL PLANE CURVES

4.11.1 ALGEBRAIC CURVES

Curves that can be given in implicit form as f(x, y) = 0, where f is a polynomial,

are called algebraic. The degree of f is called the degree or order of the curve. Thus,

conics (page 222) are algebraic curves of degree two. Curves of degree three already

have a great variety of shapes, and only a few common ones will be given here.

The simplest case is the curve which is a graph of a polynomial of degree three:

y = ax3 + bx2 + cx + d, with a 6= 0. This curve is a (general) cubic parabola

(Figure 4.23), symmetric with respect to the pointB where x = −b/3a.

The equation of a semi-cubic parabola (Figure 4.24, left) is y2 = kx3; by pro-

portional scaling one can take k = 1. This curve should not be confused with the

cissoid of Diocles (Figure 4.24, middle), whose equation is (a − x)y2 = x3 with

a 6= 0.

FIGURE 4.23
The general cubic parabola for a > 0. For a < 0, reflect in a horizontal line.

B B B

b2 > 3ac b2 = 3ac b2 < 3ac

FIGURE 4.24
The semi-cubic parabola, the cissoid of Diocles, and the witch of Agnesi.

O diameter a

P

A

B

O diameter a

P

A

B
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The latter is asymptotic to the line x = a, whereas the semi-cubic parabola has

no asymptotes. The cissoid’s points are characterized by the equality OP = AB in

Figure 4.24, middle. One can take a = 1 by proportional scaling.

More generally, any curve of degree three with equation (x − x0)y2 = f(x),
where f is a polynomial, is symmetric with respect to the x-axis and asymptotic

to the line x = x0. In addition to the cissoid, the following particular cases are

important:

1. The witch of Agnesi has equation xy2 = a2(a − x), with a 6= 0, and is

characterized by the geometric construction shown in Figure 4.24, right. This

construction provides the parametric representation x = a cos2 θ, y = a tan θ.

Once more, proportional scaling reduces to the case a = 1.

2. The folium of Descartes (Figure 4.25, left) is described by equation (x −
a)y2 = −x2(13x + a), with a 6= 0 (reducible to a = 1 by proportional

scaling). By rotating 135◦ (right) we get the alternative and more familiar

equation x3 + y3 = cxy, where c = 1
3

√
2a. The folium of Descartes is a

rational curve, that is, it is parametrically represented by rational functions. In

the tilted position, the equation is x = ct/(1 + t3), y = ct2/(1 + t3) (so that

t = y/x).

3. The strophoid’s equation is (x − a)y2 = −x2(x + a), with a 6= 0 (reducible

to a = 1 by proportional scaling). It satisfies the property AP = AP ′ = OA
in Figure 4.25, right; this means that POP ′ is a right angle. The strophoid’s

polar representation is r = −a cos 2θ sec θ, and the rational parametric repre-

sentation is x = a(t2−1)/(t2+1), y = at(t2−1)/(t2+1) (so that t = y/x).

FIGURE 4.25
The folium of Descartes in two positions, and the strophoid.

a3a aa
O

P ′

P
A

Among the important curves of degree four are the following:

1. A Cassini’s oval is characterized by the following condition: Given two foci

F and F ′, a distance 2a apart, a point P belongs to the curve if the product of

the distances PF and PF ′ is a constant k2. If the foci are on the x-axis and

equidistant from the origin, the curve’s equation is (x2+y2+a2)2−4a2x2 =
k4. Changes in a correspond to rescaling, while the value of k/a controls

the shape: the curve has one smooth segment and one with a self-intersection,

or two segments depending on whether k is greater than, equal to, or smaller
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FIGURE 4.26
Cassini’s ovals for k = 0.5a, 0.9a, a, 1.1a and 1.5a (from the inside to the outside). The

foci (dots) are at x = a and x = −a. The black curve, k = a, is also called Bernoulli’s

lemniscate.

than a (Figure 4.26). The case k = a is also known as the lemniscate (of Jakob

Bernoulli); the equation reduces to (x2 + y2)2 = a2(x2− y2), and upon a 45◦

rotation to (x2 + y2)2 = 2a2xy. Each Cassini’s oval is the section of a torus

of revolution by a plane parallel to the axis of revolution.

2. A conchoid of Nichomedes is the set of points such that the signed distance

AP in Figure 4.27, left, equals a fixed real number k (the line L and the origin

O being fixed). If L is the line x = a, the conchoid’s polar equation is r =
a sec θ+k. Once more, a is a scaling parameter, and the value of k/a controls

the shape: when k > −a the curve is smooth, when k = −a there is a cusp,

and when k < −a there is a self-intersection. The curves for k and −k can

also be considered two leaves of the same conchoid, with Cartesian equation

(x− a)2(x2 + y2) = k2x2.

3. A limaçon of Pascal is the set of points such that the distance AP in Fig-

ure 4.28, left, equals a fixed positive number k measured on either side (the

circle C and the origin O being fixed). If C has diameter a and center at

(0, 12a), the limaçon’s polar equation is r = a cos θ + k, and its Cartesian

equation is

(x2 + y2 − ax)2 = k2(x2 + y2). (4.11.1)

The value of k/a controls the shape, and there are two particularly interesting

cases. For k = a, we get a cardioid (see also page 238). For a = 1
2k, we get

a curve that can be used to trisect an arbitrary angle α. If we draw a line L
through the center of the circle C making an angle α with the positive x-axis,

and if we call P the intersection of L with the limaçon a = 1
2k, the line from

O to P makes an angle with L equal to 1
3α.

Hypocycloids and epicycloids with rational ratios (see next section) are also

algebraic curves, generally of higher degree.
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FIGURE 4.27
Defining property of the conchoid of Nichomedes (left), and curves for k = ±0.5a, k = ±a,

and k = ±1.5a (right).

L

O

P
A

a

k

O O O

FIGURE 4.28
Defining property of the limaçon of Pascal (left), and curves for k = 1.5a, k = a, and

k = 0.5a (right). The middle curve is the cardioid; the one on the right a trisectrix.

C

O

P

A

diameter a

k
C

O

C

O

FIGURE 4.29
Cycloid (top) and trochoids with k = 0.5a and k = 1.6a, where k is the distance PQ from

the center of the rolling circle to the pole.
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4.11.2 ROULETTES (SPIROGRAPH CURVES)

Suppose given a fixed curve C and a moving curve M , which rolls on C without

slipping. The curve drawn by a point P kept fixed with respect to M is called a

roulette, of which P is the pole.

The most important examples of roulettes arise when M is a circle and C is

a straight line or a circle, but an interesting additional example is provided by the

catenary y = a cosh(x/a), which arises by rolling the parabola y = x2/(4a) on the

x-axis with pole the focus of the parabola (that is, P = (0, a) in the initial position).

The catenary is the shape taken under the action of gravity by a chain or string of

uniform density whose ends are held in the air.

A circle rolling on a straight line gives a trochoid, with the cycloid as a special

case when the pole P lies on the circle (Figure 4.29). If the moving circle M has

radius a and the distance from the pole P to the center of M is k, the trochoid’s

parametric equation is

x = aφ− k sinφ, y = a− k cosφ. (4.11.2)

The cycloid, therefore, has the parametric equation

x = a(φ− sinφ), y = a(1− cosφ). (4.11.3)

One can eliminate φ to get x as a (multivalued) function of y, which takes the fol-

lowing form for the cycloid:

x = ±
(
a cos−1

(
a− y
a

)
−
√
2ay − y2

)
(4.11.4)

The length of one arch of the cycloid is 8a, and the area under the arch is 3πa2.

FIGURE 4.30
Left: initial configuration for epitrochoid (black) and configuration at parameter value θ

(gray). Middle: epicycloid with b = 1
2
a (nephroid). Right: epicycloid with b = a (cardioid).

P Q

C

M

θ

θa/b

a k b

A trochoid is also called a curtate cycloid when k < a (that is, when P is inside

the circle) and a prolate cycloid when k > a.
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A circle rolling on another circle and exterior to it gives an epitrochoid. If a is

the radius of the fixed circle, b that of the rolling circle, and k is the distance from P
to the center of the rolling circle, the parametric equation of the epitrochoid is

x = (a+ b) cos θ − k cos((1 + a/b)θ), y = (a+ b) sin θ − k sin((1 + a/b)θ).
(4.11.5)

These equations assume that, at the start, everything is aligned along the positive

x-axis, as in Figure 4.30, left. Usually one considers the case when a/b is a rational

number, say a/b = p/q where p and q are relatively prime. Then the rolling circle

returns to its original position after rotating q times around the fixed circle, and the

epitrochoid is a closed curve—in fact, an algebraic curve. One also usually takes

k = b, so thatP lies on the rolling circle; the curve in this case is called an epicycloid.

The middle diagram in Figure 4.30 shows the case b = k = 1
2a, called the nephroid;

this curve is the cross-section of the caustic of a spherical mirror. The diagram on the

right shows the case b = k = a, which gives the cardioid (compare to Figure 4.28,

middle).

Hypotrochoids and hypocycloids are defined in the same way as epitrochoids and

epicycloids, but the rolling circle is inside the fixed one. The parametric equation of

the hypotrochoid is

x = (a− b) cos θ + k cos((a/b− 1)θ), y = (a− b) sin θ − k sin((a/b− 1)θ),
(4.11.6)

where the letters have the same meaning as for the epitrochoid. Usually one takes

a/b rational and k = b. There are several interesting particular cases:

• b = k = a gives a point.

• b = k = 1
2a gives a diameter of the circle C.

• b = k = 1
3a gives the deltoid (Figure 4.31, left), whose algebraic equation is

(x2 + y2)2 − 8ax3 + 24axy2 + 18a2(x2 + y2)− 27a4 = 0. (4.11.7)

• b = k = 1
4a gives the astroid (Figure 4.31, right), an algebraic curve of de-

gree six whose equation can be reduced to x2/3 + y2/3 = a2/3. The figure

illustrates another property of the astroid: its tangent intersects the coordinate

axes at points that are always the same distance a apart. Otherwise said, the

astroid is the envelope of a moving segment of fixed length whose endpoints

are constrained to lie on the two coordinate axes.

4.11.3 CURVES IN POLAR COORDINATES

polar equation type of curve

r = a circle

r = a cos θ circle

r = a sin θ circle

r2 − 2br cos(θ − β) + (b2 − a2) = 0 circle at (b, β) of radius a

r =
k

1− e cos θ





e = 1 parabola

0 < e < 1 ellipse

e > 1 hyperbola
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FIGURE 4.31
The hypocycloids with a = 3b (deltoid) and a = 4b (astroid).

a

4.11.4 SPIRALS

A number of interesting curves have polar equation r = f(θ), where f is a mono-

tonic function (always increasing or decreasing). This property leads to a spiral

shape. The logarithmic spiral or Bernoulli spiral (Figure 4.32, left) is self-similar:

by rotation the curve can be made to match any scaled copy of itself. Its equation

is r = keaθ; the angle between the radius from the origin and the tangent to the

curve is constant and equal to φ = cot−1 a. A curve parameterized by arc length

and such that the radius of curvature is proportional to the parameter at each point is

a Bernoulli spiral.

FIGURE 4.32
The Bernoulli or logarithmic spiral (left), the Archimedes or linear spiral (middle), and the

Cornu spiral (right).

φ

φ

2πa

2πa

In the Archimedean spiral or linear spiral (Figure 4.32, middle), the spacing

between intersections along a ray from the origin is constant. The equation of this

spiral is r = aθ; by scaling one can take a = 1. It has an inner endpoint, in contrast

with the logarithmic spiral, which spirals down to the origin without reaching it. The

Cornu spiral or clothoid (Figure 4.32, right), important in optics and engineering,

has the following parametric representation in Cartesian coordinates:

X = aC(t) = a

∫ t

0

cos(12πs
2) ds, y = aS(t) = a

∫ t

0

sin(12πs
2) ds.

(4.11.8)

(C and S are the so-called Fresnel integrals; see page 443). A curve parameterized

by arc length and such that the radius of curvature is inversely proportional to the

parameter at each point is a Cornu spiral (compare to the Bernoulli spiral).
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4.11.5 THE PEANO CURVE AND FRACTAL CURVES

There are curves (in the sense of continuous maps from the real line to the plane)

that completely cover a two-dimensional region of the plane. We give a construction

of such a Peano curve, adapted from David Hilbert’s example. The construction

is inductive and is based on replacement rules. We consider building blocks of six

shapes: , the length of the straight segments being twice

the radius of the curved ones. A sequence of these patterns, end-to-end, represents a

curve, if we disregard the gray and black half-disks. The replacement rules are the

following:

The rules are applied taking into account the way each piece is turned. Here we

apply the replacement rules to a particular initial pattern:

(We scale the result so it has the same size as the original.) Applying the process

repeatedly gives, in the limit, the Peano curve. Note that the sequence converges

uniformly and thus the limit function is continuous. Here are the first five steps:

The same idea of replacement rules leads to many interesting fractal, and often

self-similar, curves. For example, the substitution leads to the

Koch snowflake when applied to an initial equilateral triangle, like this (the first three

stages and the sixth are shown):
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4.11.6 FRACTAL OBJECTS

Given an object X , if n(ǫ) open sets of diameter of ǫ are required to cover X , then

the capacity dimension of X is

dcapacity = lim
ǫ→0

lnn(ǫ)

ln ǫ
(4.11.9)

indicating that n(ǫ) scales as ǫdcapacity . Note that

dcorrelation ≤ dinformation ≤ dcapacity. (4.11.10)

The capacity dimension of various objects:

Object Dimension

Logistic equation 0.538

Cantor set ln 2
ln 3 ≈ 0.6309

Koch snowflake 2 ln 2
ln 3 ≈ 1.2619

Cantor dust ln 5
ln 3 ≈ 1.4650

Minkowski sausage 3
2 = 1.5

Object Dimension

Sierpiński sieve ln 3
ln 2 ≈ 1.5850

Pentaflake ln 2+ln 3
ln(1+φ)3 ≈ 1.8617

Sierpiński carpet 3 ln 2
ln 3 ≈ 1.8928

Tetrix 2

Menger sponge 2 ln 2+ln 5
ln 3 ≈ 2.7268

4.11.7 CLASSICAL CONSTRUCTIONS

The ancient Greeks used straightedges and compasses to find the solutions to numer-

ical problems. For example, they found square roots by constructing the geometric

mean of two segments. Three famous problems that have been proved intractable by

this method are:

1. The trisection of an arbitrary angle.

2. The squaring of the circle (the construction of a square whose area is equal to

that of a given circle).

3. The doubling of the cube (the construction of a cube with double the volume

of a given cube).

A regular n-gon inscribed in the unit circle can be constructed by straightedge

and compass alone if and only if n has the form n = 2ℓp1p2 . . . pk, where ℓ is a

nonnegative integer and {pi} are distinct Fermat primes (primes of the form 22
m

+1).

The only known Fermat primes are for 3, 5, 17, 257, and 65537, corresponding to

m = 1, 2, 3, 4. Thus, regular n-gons can be constructed for n = 3, 4, 5, 6, 8, 10, 12,

15, 16, 17, 20, 24, . . . , 257, . . . .
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4.12 COORDINATE SYSTEMS IN SPACE

4.12.1 CONVENTIONS

When we talk about “the point with coordinates (x, y, z)” or “the surface with equa-

tion f(x, y, z),” we always mean Cartesian coordinates. If a formula involves another

type of coordinates, this fact will be stated explicitly. Note that Section 4.2.2 has

information on substitutions and transformations relevant to the three-dimensional

case.

4.12.2 CARTESIAN COORDINATES IN SPACE

In Cartesian coordinates (or rectangular coordinates), a point P is referred to by

three real numbers, indicating the positions of the perpendicular projections from the

point to three fixed, perpendicular, graduated lines, called the axes. If the coordinates

are denoted x, y, z, in that order, the axes are called the x-axis, etc., and we write

P = (x, y, z). Often the x-axis is imagined to be horizontal and pointing roughly

toward the viewer (out of the page), the y-axis also horizontal and pointing more

or less to the right, and the z-axis vertical, pointing up. The system is called right-

handed if it can be rotated so the three axes are in this position. Figure 4.33 shows a

right-handed system. The point x = 0, y = 0, z = 0 is the origin, where the three

axes intersect.

FIGURE 4.33
In Cartesian coordinates, P = (4.2, 3.4, 2.2).

P

x

y

z

4.12.3 CYLINDRICAL COORDINATES IN SPACE

To define cylindrical coordinates, we take an axis (usually called the z-axis) and a

perpendicular plane, on which we choose a ray (the initial ray) originating at the

intersection of the plane and the axis (the origin). The coordinates of a point P are

the polar coordinates (r, θ) of the projection of P on the plane, and the coordinate z
of the projection of P on the axis (Figure 4.34). See Section 4.2.4 for remarks on the

values of r and θ.
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FIGURE 4.34
Among the possible sets (r, θ, z) of cylindrical coordinates for P are (10, 30◦, 5) and

(10, 390◦, 5).
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θ
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4.12.4 SPHERICAL COORDINATES IN SPACE

To define spherical coordinates, we take an axis (the polar axis) and a perpendicular

plane (the equatorial plane), on which we choose a ray (the initial ray) originating

at the intersection of the plane and the axis (the originO). The coordinates of a point

P are the distance ρ from P to the origin, the (zenith) angle φ between the line OP
and the positive polar axis, and the (azimuth) angle θ between the initial ray and the

projection of OP to the equatorial plane. See Figure 4.35. As in the case of polar

and cylindrical coordinates, θ is only defined up to multiples of 360◦, and likewise φ.

Usually φ is assigned a value between 0 and 180◦, but values of φ between 180◦ and

360◦ can also be used; the triples (ρ, φ, θ) and (ρ, 360◦−φ, 180◦+ θ) represent the

same point. Similarly, one can extend ρ to negative values; the triples (ρ, φ, θ) and

(−ρ, 180◦ − φ, 180◦ + θ) represent the same point.

FIGURE 4.35
A set of spherical coordinates for P is (ρ, θ, φ) = (10, 60◦, 30◦).

P

θ

ρ

φ
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FIGURE 4.36
Standard relations between Cartesian, cylindrical, and spherical coordinate systems. The

origin is the same for all three. The positive z-axes of the Cartesian and cylindrical systems

coincide with the positive polar axis of the spherical system. The initial rays of the cylindrical

and spherical systems coincide with the positive x-axis of the Cartesian system, and the rays

θ = 90◦ coincide with the positive y-axis.

P

φ

θ

r

ρ

x

y

z

4.12.5 RELATIONS BETWEEN CARTESIAN, CYLINDRICAL,

AND SPHERICAL COORDINATES

Consider a Cartesian, a cylindrical, and a spherical coordinate system, related as

shown in Figure 4.36. The Cartesian coordinates (x, y, z), the cylindrical coordi-

nates (r, θ, z), and the spherical coordinates (ρ, φ, θ) of a point are related as follows

(where the tan−1 function must be interpreted correctly in all quadrants):

cart↔ cyl





x = r cos θ,

y = r sin θ,

z = z,





r =
√
x2 + y2,

θ = tan−1 y

x
,

z = z,





sin θ =
y√

x2 + y2
,

cos θ =
x√

x2 + y2
,

z = z.

cyl↔ sph





r = ρ sinφ,

z = ρ cosφ,

θ = θ,





ρ =
√
r2 + z2,

φ = tan−1 r

z
,

θ = θ,





sinφ =
r√

r2 + z2
,

cosφ =
z√

r2 + z2
,

θ = θ.

cart↔ sph





x = ρ cos θ sinφ,

y = ρ sin θ sinφ,

z = ρ cosφ,





ρ =
√
x2 + y2 + z2,

θ = tan−1 y

x
,

φ = tan−1

√
x2 + y2

z

= cos−1 z√
x2 + y2 + z2

.
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4.12.6 HOMOGENEOUS COORDINATES IN SPACE

A quadruple of real numbers (x : y : z : t), with t 6= 0, is a set of homogeneous

coordinates for the point P with Cartesian coordinates (x/t, y/t, z/t). Thus the

same point has many sets of homogeneous coordinates: (x : y : z : t) and (x′ : y′ :
z′ : t′) represent the same point if and only if there is some real number α such that

x′ = αx, y′ = αy, z′ = αz, t′ = αt. If P has Cartesian coordinates (x0, y0, z0),
one set of homogeneous coordinates for P is (x0, y0, z0, 1).

Section 4.2.5 has more information on the relationship between Cartesian and

homogeneous coordinates. Section 4.13.2 has formulas for space transformations in

homogeneous coordinates.

4.13 SPACE SYMMETRIES OR ISOMETRIES

A transformation of space (invertible map of space to itself) that preserves distances

is called an isometry of space. Every isometry of space is a composition of transfor-

mations of the following types:

1. The identity (which leaves every point fixed)

2. A translation by a vector v

3. A rotation through an angle α around a line L
4. A screw motion through an angle α around a line L, with displacement d
5. A reflection in a plane P
6. A glide-reflection in a plane P with displacement vector v

7. A rotation-reflection (rotation through an angle α around a line L composed

with reflection in a plane perpendicular to L).

The identity is a particular case of a translation and of a rotation; rotations are

particular cases of screw motions; reflections are particular cases of glide-reflections.

However, as in the plane case, it is more intuitive to consider each case separately.

4.13.1 SYMMETRIES: CARTESIAN COORDINATES

In the formulas below, multiplication between a matrix and a triple of coordinates

should be carried out regarding the triple as a column vector (or a matrix with three

rows and one column).

1. Translation by (x0, y0, z0):

(x, y, z) 7→ (x + x0, y + y0, z + z0). (4.13.1)

2. Rotation through α (counterclockwise) around the line through the origin with

direction cosines a, b, c (see page 249): (x, y, z) 7→ M(x, y, z), where M is

the matrix

a2(1− cosα) + cosα ab(1− cosα)− c sinα ac(1− cosα) + b sinα
ab(1− cosα) + c sinα b2(1 − cosα) + cosα bc(1− cosα)− a sinα
ac(1− cosα)− b sinα bc(1− cosα) + a sinα c2(1− cosα) + cosα


 .

(4.13.2)
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3. Rotation through α (counterclockwise) around the line with direction cosines

a, b, c through an arbitrary point (x0, y0, z0):

(x, y, z) 7→ (x0, y0, z0) +M(x− x0, y − y0, z − z0), (4.13.3)

where M is given by Equation (4.13.2).

4. Arbitrary rotations and Euler angles: Any rotation of space fixing the origin

can be decomposed as a rotation by φ about the z-axis, followed by a rotation

by θ about the y-axis, followed by a rotation by ψ about the z-axis. The

numbers φ, θ and ψ are called the Euler angles of the composite rotation,

which acts as: (x, y, z) 7→M(x, y, z), where M is the matrix given by

cosφ cos θ cosψ − sinφ sinψ − sinφ cos θ cosψ − cosφ sinψ sin θ cosψ
sinφ cosψ + cosφ cos θ sinψ − sinφ cos θ sinψ + cosφ cosψ sin θ sinψ

− cosφ sin θ sin θ sinφ cos θ


 .

(4.13.4)

FIGURE 4.37
The coordinate raysOx, Oy, Oz, together with their imagesOξ, Oη, Oζ under a rotation, fix

the Euler angles associated with that rotation, as follows: θ = zOζ, ψ = xOr = yOs, and

φ = sOη. (Here the rayOr is the projection of Oζ to the xy-plane. The rayOs is determined

by the intersection of the xy- and ξη-planes.)

x

y

z

ξ

η

ζ

r
s

θ

ψ
φ

(An alternative decomposition, more natural if we think of the coordinate sys-

tem as a rigid trihedron that rotates in space, is the following: a rotation by ψ
about the z-axis, followed by a rotation by θ about the rotated y-axis, followed

by a rotation by φ about the rotated z-axis. Note that the order is reversed.)

Provided that θ is not a multiple of 180◦, the decomposition of a rotation in

this form is unique (apart from the ambiguity arising from the possibility of

adding a multiple of 360◦ to any angle). Figure 4.37 shows how the Euler

angles can be read off geometrically.

Warning: Some references define Euler angles differently; the most common

variation is that the second rotation is taken about the x-axis instead of about

the y-axis.
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5. Screw motion with angle α and displacement d around the line with direction

cosines a, b, c through an arbitrary point (x0, y0, z0):

(x, y, z) 7→ (x0+ad, y0+bd, z0+cd)+M(x−x0, y−y0, z−z0), (4.13.5)

where M is given by (4.13.2).

6. Reflection

in the xy-plane: (x, y, z) 7→ (x, y, −z).
in the xz-plane: (x, y, z) 7→ (x, −y, z). (4.13.6)

in the yz-plane: (x, y, z) 7→ (−x, y, z).
7. Reflection in a plane with equation ax+ by + cz + d = 0:

(x, y, z) 7→ 1

a2 + b2 + c2
(
M(x0, y0, z0)− (2ad, 2bd, 2cd)

)
, (4.13.7)

where M is the matrix

M =



−a2 + b2 + c2 −2ab −2ac
−2ab a2 − b2 + c2 −2bc
−2ac −2bc a2 + b2 − c2


 . (4.13.8)

8. Reflection in a plane going through (x0, y0, z0) and whose normal has direc-

tion cosines a, b, c:

(x, y, z) 7→ (x0 + y0 + z0) +M(x− x0, y − y0, z − z0), (4.13.9)

where M is as in (4.13.8).

9. Glide-reflection in a plane P with displacement vector v: Apply first a reflec-

tion in P , then a translation by the vector v.

4.13.2 SYMMETRIES: HOMOGENEOUS COORDINATES

All isometries of space can be expressed in homogeneous coordinates in terms of

multiplication by a matrix. As in the case of plane isometries (Section 4.3.2), this

means that the successive application of transformations reduces to matrix multipli-

cation. (In the formulas below, [M 0
0 1 ] is the 4 × 4 projective matrix obtained from

the 3× 3 matrix M by adding a row and a column as stated.)

1. Translation by (x0, y0, z0):




1 0 0 x0
0 1 0 y0
0 0 1 z0
0 0 0 1


 .

2. Rotation through the origin:

[
M 0
0 1

]
,

where M is given in (4.13.2) or (4.13.4), as the case may be.

3. Reflection in a plane through the origin:

[
M 0
0 1

]
,

where M is given in (4.13.8).

From this, one can deduce all other transformations, as in the case of plane

transformations (see page 194).
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4.14 OTHER TRANSFORMATIONS OF SPACE

4.14.1 SIMILARITIES

A transformation of space that preserves shapes is called a similarity. Every simi-

larity of the plane is obtained by composing a proportional scaling transformation

(also known as a homothety) with an isometry. A proportional scaling transformation

centered at the origin has the form

(x, y, z) 7→ (ax, ay, az), (4.14.1)

where a 6= 0 is the scaling factor (a real number). The corresponding matrix in

homogeneous coordinates is

Ha =




a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 1


 . (4.14.2)

In cylindrical coordinates, the transformation is (r, θ, z) 7→ (ar, θ, az). In spherical

coordinates, it is (r, φ, θ) 7→ (ar, φ, θ).

4.14.2 AFFINE TRANSFORMATIONS

A transformation that preserves lines and parallelism (maps parallel lines to parallel

lines) is an affine transformation. There are two important particular cases of such

transformations:

1. A non-proportional scaling transformation centered at the origin has the form

(x, y, z) 7→ (ax, by, cz), where a, b, c 6= 0 are the scaling factors (real num-

bers). The corresponding matrix in homogeneous coordinates is

Ha,b,c =




a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1


 . (4.14.3)

2. A shear in the x-direction and preserving horizontal planes has the form

(x, y, z) 7→ (x + rz, y, z), where r is the shearing factor. The correspond-

ing matrix in homogeneous coordinates is

Sr =




1 0 r 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (4.14.4)

Every affine transformation is obtained by composing a non-proportional scaling

transformation with an isometry, or one or two shears with a homothety and an isom-

etry.
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4.14.3 PROJECTIVE TRANSFORMATIONS

A transformation that maps lines to lines (but does not necessarily preserve paral-

lelism) is a projective transformation. Any spatial projective transformation can be

expressed by an invertible 4×4 matrix in homogeneous coordinates; conversely, any

invertible 4× 4 matrix defines a projective transformation of space. Projective trans-

formations (if not affine) are not defined on all of space, but only on the complement

of a plane (the missing plane is “mapped to infinity”).

The following particular case is often useful, especially in computer graphics,

in projecting a scene from space to the plane. Suppose an observer is at the point

E = (x0, y0, z0) of space, looking toward the origin O = (0, 0, 0). Let P , the

screen, be the plane throughO and perpendicular to the ray EO. Place a rectangular

coordinate system ξη on P with origin atO so that the positive η-axis lies in the half-

plane determined byE and the positive z-axis of space (that is, the z-axis is pointing

“up” as seen from E). Then consider the transformation that associates with a point

X = (x, y, z) the triple (ξ, η, ζ), where (ξ, η) are the coordinates of the point, where

the line EX intersects P (the screen coordinates of X as seen from E), and ζ is the

inverse of the signed distance from X to E along the line EO (this distance is the

depth of X as seen from E). This is a projective transformation, given by the matrix


−r2y0 r2x0 0 0
−rx0z0 −ry0z0 rρ2 0

0 0 0 rρ
−ρx0 −ρy0 −ρz0 r2ρ


 (4.14.5)

with ρ =
√
x20 + y20 and r =

√
x20 + y20 + z20 .

4.15 DIRECTION ANGLES AND DIRECTION
COSINES

Given a vector (a, b, c) in three-dimensional space, the direction cosines of this vec-

tor are

cosα =
a√

a2 + b2 + c2
,

cosβ =
b√

a2 + b2 + c2
,

cos γ =
c√

a2 + b2 + c2
.

(4.15.1)

Here the direction angles α, β, γ are the angles that the vector makes with the posi-

tive x-, y- and z-axes, respectively. In formulas, usually the direction cosines appear,

rather than the direction angles. We have

cos2 α+ cos2 β + cos2 γ = 1. (4.15.2)
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4.16 PLANES

The (Cartesian) equation of a plane is linear in the coordinates x, y, and z:

ax+ by + cz + d = 0. (4.16.1)

The normal direction to this plane is (a, b, c). The intersection of this plane with the

x-axis, or x-intercept, is x = −d/a, the y-intercept is y = −d/b, and the z-intercept

is z = −d/c. The plane is vertical (perpendicular to the xy-plane) if c = 0. It is

perpendicular to the x-axis if b = c = 0, and likewise for the other coordinates.

When a2 + b2 + c2 = 1 and d ≤ 0 in the equation ax + by + cz + d = 0, the

equation is said to be in normal form. In this case −d is the distance of the plane to

the origin, and (a, b, c) are the direction cosines of the normal.

To reduce an arbitrary equation ax+ by+ cz+ d = 0 to normal form, divide by

±
√
a2 + b2 + c2, where the sign of the radical is chosen opposite the sign of d when

d 6= 0, the same as the sign of c when d = 0 and c 6= 0, and the same as the sign of

b otherwise. (If b is also equal to 0, then there is no equation.)

4.16.1 PLANES WITH PRESCRIBED PROPERTIES

1. Plane through (x0, y0, z0) and perpendicular to the direction (a, b, c):

a(x− x0) + b(y − y0) + c(z − z0) = 0. (4.16.2)

2. Plane through (x0, y0, z0) and parallel to the directions (a1, b1, c1) and

(a2, b2, c2): ∣∣∣∣∣∣

x− x0 y − y0 z − z0
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
= 0. (4.16.3)

3. Plane through (x0, y0, z0) and (x1, y1, z1) and parallel to the direction (a, b, c):∣∣∣∣∣∣

x− x0 y − y0 z − z0
x1 − x0 y1 − y0 z1 − z0

a b c

∣∣∣∣∣∣
= 0. (4.16.4)

4. Plane going through (x0, y0, z0), (x1, y1, z1) and (x2, y2, z2):∣∣∣∣∣∣∣∣

x y z 1
x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1

∣∣∣∣∣∣∣∣
= 0 or

∣∣∣∣∣∣

x− x0 y − y0 z − z0
x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0

∣∣∣∣∣∣
= 0.

(4.16.5)

(The last three formulas remain true in oblique coordinates; see page 193.)

5. The distance from the point (x0, y0, z0) to the plane ax+ by + cz + d = 0 is∣∣∣∣
ax0 + by0 + cz0 + d√

a2 + b2 + c2

∣∣∣∣ . (4.16.6)

6. The angle between two planes a0x + b0y + c0z + d0 = 0 and a1x + b1y +
c1z + d1 = 0 is

cos−1 a0a1 + b0b1 + c0c1√
a20 + b20 + c20

√
a21 + b21 + c21

. (4.16.7)
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In particular, the two planes are parallel when a0 : b0 : c0 = a1 : b1 : c1, and

perpendicular when a0a1 + b0b1 + c0c1 = 0.

4.16.2 CONCURRENCE AND COPLANARITY

Four planes a0x+b0y+c0z+d0 = 0, a1x+b1y+c1z+d1 = 0, a2x+b2y+c2z+d2 =
0, and a3x+ b3y + c3z + d3 = 0 are concurrent (share a point) if and only if∣∣∣∣∣∣∣∣

a0 b0 c0 d0
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

∣∣∣∣∣∣∣∣
= 0. (4.16.8)

Four points (x0, y0, z0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) are coplanar (lie

on the same plane) if and only if∣∣∣∣∣∣∣∣

x0 y0 z0 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣
= 0. (4.16.9)

(Both of these assertions remain true in oblique coordinates.)

4.17 LINES IN SPACE

Two planes that are not parallel or coincident intersect in a straight line, such that

one can express a line by a pair of linear equations{
ax+ by + cz + d = 0
a′x+ b′y + c′z + d′ = 0

}
(4.17.1)

such that bc′ − cb′, ca′ − ac′, and ab′ − ba′ are not all zero. The line thus defined is

parallel to the vector (bc′−cb′, ca′−ac′, ab′−ba′). The direction cosines of the line

are those of this vector. See Equation (4.15.1). (The direction cosines of a line are

only defined up to a simultaneous change in sign, because the opposite vector still

gives the same line.)

The following particular cases are important:

1. Line through (x0, y0, z0) parallel to the vector (a, b, c):
x− x0
a

=
y − y0
b

=
z − z0
c

. (4.17.2)

2. Line through (x0, y0, z0) and (x1, y1, z1):
x− x0
x1 − x0

=
y − y0
y1 − y0

=
z − z0
z1 − z0

. (4.17.3)

This line is parallel to the vector (x1 − x0, y1 − y0, z1 − z0).
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4.17.1 DISTANCES

1. The distance between two points in space is the length of the line segment

joining them. The distance between the points (x0, y0, z0) and (x1, y1, z1) is√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2. (4.17.4)

2. The point k% of the way from P0 = (x0, y0, z0) to P1 = (x1, y1, z1) is
(kx1 + (100− k)x0

100
,
ky1 + (100− k)y0

100
,
kz1 + (100− k)z0

100

)
. (4.17.5)

(The same formula also applies in oblique coordinates.) This point divides the

segment P0P1 in the ratio k : (100− k). As a particular case, the midpoint of

P0P1 is given by (
x1 + x0

2
,
y1 + y0

2
,
z1 + z0

2

)
. (4.17.6)

3. The distance between the point (x0, y0, z0) and the line through (x1, y1, z1) in

direction (a, b, c):√√√√√
∣∣∣∣
y0 − y1 z0 − z1

b c

∣∣∣∣
2

+

∣∣∣∣
z0 − z1 x0 − x1
c a

∣∣∣∣
2

+

∣∣∣∣
x0 − x1 y0 − y1

a b

∣∣∣∣
2

a2 + b2 + c2

(4.17.7)

4. The distance between the line through (x0, y0, z0) in direction (a0, b0, c0) and

the line through (x1, y1, z1) in direction (a1, b1, c1):∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣

x1 − x0 y1 − y0 z1 − z0
a0 b0 c0
a1 b1 c1

∣∣∣∣∣∣
√∣∣∣∣

b0 c0
b1 c1

∣∣∣∣
2

+

∣∣∣∣
c0 a0
c1 a1

∣∣∣∣
2

+

∣∣∣∣
a0 b0
a1 b1

∣∣∣∣
2

∣∣∣∣∣∣∣∣∣∣∣∣

. (4.17.8)

4.17.2 ANGLES

The angle between lines with directions (a0, b0, c0) and (a1, b1, c1):

cos−1

(
a0a1 + b0b1 + c0c1√

a20 + b20 + c20
√
a21 + b21 + c21

)
. (4.17.9)

In particular, the two lines are parallel when a0 : b0 : c0 = a1 : b1 : c1, and

perpendicular when a0a1 + b0b1 + c0c1 = 0.

The angle between lines with direction angles α0, β0, γ0 and α1, β1, γ1:

cos−1(cosα0 cosα1 + cosβ0 cosβ1 + cos γ0 cos γ1). (4.17.10)
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4.17.3 CONCURRENCE, COPLANARITY, PARALLELISM

Two lines, each specified by point and direction, are coplanar if and only if the

determinant in the numerator of Equation (4.17.8) is zero. In this case they are

concurrent (if the denominator is non-zero) or parallel (if the denominator is zero).

Three lines with directions (a0, b0, c0), (a1, b1, c1) and (a2, b2, c2) are parallel

to a common plane if and only if∣∣∣∣∣∣

a0 b0 c0
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣
= 0. (4.17.11)

4.18 POLYHEDRA

For any polyhedron topologically equivalent to a sphere—in particular, for any con-

vex polyhedron—the Euler formula holds:

v − e+ f = 2, (4.18.1)

where v is the number of vertices, e is the number of edges, and f is the number of

faces.

Many common polyhedra are particular cases of cylinders (Section 4.19) or

cones (Section 4.20). A cylinder with a polygonal base (the base is also called a

directrix) is called a prism. A cone with a polygonal base is called a pyramid. A

frustum of a cone with a polygonal base is called a truncated pyramid. Formu-

las (4.19.1), (4.20.1), and (4.20.2) give the volumes of a general cylinder, cone, and

truncated cone.

A prism whose base is a parallelogram is a parallelepiped. The volume of a

parallelepiped with one vertex at the origin and adjacent vertices at (x1, y1, z1),
(x2, y2, z2), and (x3, y3, z3) is given by

volume =

∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
. (4.18.2)

The rectangular parallelepiped is a particular case: all of its faces are rectangles. If

the side lengths are a, b, c, the volume is abc, the total surface area is 2(ab+ac+bc),
and each diagonal has length

√
a2 + b2 + c2. When a = b = c we get the cube. See

Section 4.18.1.

A pyramid whose base is a triangle is a tetrahedron. The volume of a tetrahedron

with one vertex at the origin and the other vertices at (x1, y1, z1), (x2, y2, z2), and

(x3, y3, z3) is given by

volume =
1

6

∣∣∣∣∣∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣
. (4.18.3)

In a tetrahedron with vertices P0, P1, P2, P3, let dij be the distance (edge length)
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from Pi to Pj . Form the determinants

∆ =

∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d201 d202 d203
1 d201 0 d212 d213
1 d202 d212 0 d223
1 d203 d213 d223 0

∣∣∣∣∣∣∣∣∣∣

and Γ =

∣∣∣∣∣∣∣∣

0 d201 d202 d203
d201 0 d212 d213
d202 d212 0 d223
d203 d213 d223 0

∣∣∣∣∣∣∣∣
. (4.18.4)

Then the volume of the tetrahedron is
√
|∆|/288, and the radius of the circumscribed

sphere is 1
2

√
|Γ/2∆|.

Expanding the determinant we find that the volume V satisfies the formula:

144V 2 =− d201d212d202 − d201d213d203 − d212d213d223 − d202d203d223
+ d201d

2
02d

2
13 + d212d

2
02d

2
13 + d201d

2
12d

2
03 + d212d

2
02d

2
03

+ d212d
2
13d

2
03 + d202d

2
13d

2
03 + d201d

2
12d

2
23 + d201d

2
02d

2
23

+ d201d
2
13d

2
23 + d202d

2
13d

2
23 + d201d

2
03d

2
23 + d212d

2
03d

2
23

− d202d202d213 − d202d213d213
− d212d212d203 − d212d203d203
− d201d201d223 − d201d223d223.

(4.18.5)

(Mnemonic: Each of the first four negative terms corresponds to a closed path around

a face; each positive term to an open path along three consecutive edges; each re-

maining negative term to a pair of opposite edges with weights 2 and 1. All such

edge combinations are represented.)

For an arbitrary tetrahedron, let P be a vertex and let a, b, c be the lengths of the

edges converging on P . If A, B, C are the angles between the same three edges, the

volume of the tetrahedron is

V =
1

6
abc
√
1− cos2A− cos2B − cos2 C + 2 cosA cosB cosC. (4.18.6)

4.18.1 CONVEX REGULAR POLYHEDRA

Figure 4.38 shows the five regular polyhedra, or Platonic solids. In the following

tables and formulas, a is the length of an edge, θ the dihedral angle at each edge, R
the radius of the circumscribed sphere, r the radius of the inscribed sphere, V the

volume, S the total surface area, v the total number of vertices, e the total number of

edges, f the total number of faces, p the number of edges in a face (3 for equilateral

triangles, 4 for squares, 5 for regular pentagons), and q the number of edges meeting

at a vertex.

Note that fp = vq = 2e.
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FIGURE 4.38
The Platonic solids. Top: the tetrahedron (self-dual). Middle: the cube and the octahedron

(dual to one another). Bottom: the dodecahedron and the icosahedron (dual to one another).

θ = 2 sin−1

(
cos(180◦/q)

sin(180◦/p)

)
,

R

a
=

1
2 sin(180

◦/q)

sin(180◦/p) cos 1
2θ
,

r

a
=

1

2
cot

(
180◦

p

)
tan

(
θ

2

)
,

R

r
= tan

(
180◦

p

)
tan

(
180◦

q

)
,

S

a2
=
fp

4
cot

(
180◦

p

)
,

V = 1
3rS.

(4.18.7)

Name v e f p q sin θ θ

Regular tetrahedron 4 6 4 3 3 2
√
2/3 70◦31′44′′

Cube 8 12 6 4 3 1 90◦

Regular octahedron 6 12 8 3 4 2
√
2/3 109◦28′16′′

Regular dodecahedron 20 30 12 5 3 2/
√
5 116◦33′54′′

Regular icosahedron 12 30 20 3 5 2/3 138◦11′23′′
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Name R/a r/a

Tetrahedron
√
6/4 0.612372

√
6/12 0.204124

Cube
√
3/2 0.866025 1

2 0.5

Octahedron
√
2/2 0.707107

√
6/6 0.408248

Dodecahedron 1
4 (
√
15 +

√
3) 1.401259 1

20

√
250 + 110

√
5 1.113516

Icosahedron 1
4

√
10 + 2

√
5 0.951057 1

12

√
42 + 18

√
5 0.755761

Name S/a2 V/a3

Tetrahedron
√
3 1.73205

√
2/12 0.117851

Cube 6 6. 1 1.

Octahedron 2
√
3 3.46410

√
2/3 0.471405

Dodecahedron 3
√
25 + 10

√
5 20.64573 1

4 (15 + 7
√
5) 7.663119

Icosahedron 5
√
3 8.66025 5

12 (3 +
√
5) 2.181695

4.18.2 POLYHEDRA NETS

Nets for the five Platonic solids are shown: (a) tetrahedron, (b) octahedron, (c) icosa-

hedron, (d) cube, and (e) dodecahedron. Paper models can be made by making an

enlarged photocopy of each, cutting them out along the exterior lines, folding on the

interior lines, and using tape to join the edges.

(a) (b)

(c)

(d) (e)
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FIGURE 4.39
Left: an oblique cylinder with generator L and directrix C. Right: a right circular cylinder.

L

P

C

θ

h

r

4.19 CYLINDERS

Given a lineL and a curveC in a planeP , the cylinder with generatorL and directrix

C is the surface obtained by movingL parallel to itself, so that a point of L is always

on C. If L is parallel to the z-axis, the surface’s implicit equation does not involve

the variable z. Conversely, any implicit equation that does not involve one of the

variables (or that can be brought to that form by a change of coordinates) represents

a cylinder.

If C is a simple closed curve, we also apply the word cylinder to the solid en-

closed by the surface generated in this way (Figure 4.39, left). The volume contained

between P and a plane P ′ parallel to P is

V = Ah = Al sin θ, (4.19.1)

whereA is the area in the plane P enclosed byC, h is the distance between P and P ′

(measured perpendicularly), l is the length of the segment of L contained between

P and P ′, and θ is the angle that L makes with P . When θ = 90◦ we have a right

cylinder, and h = l. For a right cylinder, the lateral area between P and P ′ is hs,
where s is the length (circumference) of C.

The most important particular case is the right circular cylinder (often simply

called a cylinder). If r is the radius of the base and h is the altitude (Figure 4.39,

right), the lateral area is 2πrh, the total area is 2πr(r+h), and the volume is πr2h.

The implicit equation of this surface can be written x2+ y2 = r2; see also page 213.

4.20 CONES

Given a curve C in a plane P and a point O not in P , the cone with vertex O and

directrix C is the surface obtained as the union of all rays that join O with points

of C. If O is the origin and the surface is given implicitly by an algebraic equation,

that equation is homogeneous (all terms have the same total degree in the variables).

Conversely, any homogeneous implicit equation (or one that can be made homoge-

neous by a change of coordinates) represents a cone.
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FIGURE 4.40
Top: a cone with vertex O and directrix C. Bottom left: a right circular cone. Bottom right:

A frustum of the latter.

O

P

C

h

l

r

h

l
r2

r1

If C is a simple closed curve, we also apply the word cone to the solid enclosed

by the surface generated in this way (Figure 4.40, top). The volume contained be-

tween P and the vertexO is

V = 1
3Ah, (4.20.1)

where A is the area in the plane P enclosed by C and h is the distance from O and

P (measured perpendicularly).

The solid contained between P and a plane P ′ parallel to P (on the same side

of the vertex) is called a frustum. Its volume is

V = 1
3h(A+A′ +

√
AA′), (4.20.2)

whereA andA′ are the areas enclosed by the sections of the cone by P and P ′ (often

called the bases of the frustum), and h is the distance between P and P ′.
The most important particular case of a cone is the right circular cone (often

simply called a cone). If r is the radius of the base, h is the altitude, and l is the

length between the vertex and a point on the base circle (Figure 4.40, bottom left),

the following relationships apply:

l =
√
r2 + h2,

Lateral area = πrl = πr
√
r2 + h2,

Total area = πrl + πr2 = πr(r +
√
r2 + h2), and

Volume = 1
3πr

2h.

The implicit equation of this surface can be written x2 + y2 = z2; see Section 4.8.

For a frustum of a right circular cone (Figure 4.40, bottom right),

l =
√
(r1 − r2)2 + h2,

Lateral area = π(r1 + r2)l,

Total area = π(r21 + r22 + (r1 + r2)l), and

Volume = 1
3πh(r

2
1 + r22 + r1r2).
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4.21 DIFFERENTIAL GEOMETRY

4.21.1 CURVES

4.21.1.1 Definitions

1. A regular parametric representation of class Ck, k ≥ 1, is a vector valued

function f : I → R3, where I ⊂ R is an interval that satisfies (i) f is of class

Ck (i.e., has continuous kth order derivatives), and (ii) f′(t) 6= 0, for all t ∈ I .

In terms of a standard basis of R3, we write x = f(t) = (f1(t), f2(t), f3(t)),
where the real valued functions fi, i = 1, 2, 3 are the component functions of f.

2. An allowable change of parameter of class Ck is any Ck function φ : J → I ,

where J is an interval and φ(J) ⊂ I , that satisfies φ′(τ) 6= 0, for all τ ∈ J .

3. A Ck regular parametric representation f is equivalent to a Ck regular para-

metric representation g if and only if an allowable change of parameter φ exists

so that φ(Ig) = If , and g(τ) = f(φ(τ)), for all τ ∈ Ig .

4. A regular curveC of classCk is an equivalence class ofCk regular parametric

representation under the equivalence relation on the set of regular parametric

representations defined above.

5. The arc length of any regular curveC defined by the regular parametric repre-

sentation f, with If = [a, b], is defined by L =

∫ b

a

∣∣f′(u)
∣∣ du.

6. An arc length parameter along C is defined by s = α(t) = ±
∫ t

c

∣∣f′(u)
∣∣ du.

The choice of sign is arbitrary and c is any number in If .

7. A natural representation of classCk of the regular curve defined by the regular

parametric representation f is defined by g(s) = f(α−1(s)), for all s ∈ [0, L].
8. A property of a regular curve C is any property of a regular parametric rep-

resentation representing C which is invariant under any allowable change of

parameter.

9. Let g be a natural representation of a regular curveC. The following quantities

may be defined at each point x = g(s) of C:

Binormal line y = λb(s) + x

Curvature κ(s) = n(s) · k(s)
Curvature vector k(s) = ṫ(s)

Moving trihedron {t(s), n(s), b(s)}
Normal plane (y− x) · t(s) = 0

Osculating plane (y− x) · b(s) = 0

Osculating sphere (y− c) · (y− c) = r2 where

c = x+ ρ(s)n(s)− (κ̇(s)/(κ2(s)τ(s)))b(s)
and r2 = ρ2(s) + κ2(s)/(κ4(s)τ2(s))

Principal normal line y = λn(s) + x

Principal normal unit

vector

n(s) = ±k(s)/|k(s)|, for k(s) 6= 0 defined to be

continuous along C

Radius of curvature ρ(s) = 1/ |κ(s)|, when κ(s) 6= 0

Rectifying plane (y− x) · n(s) = 0
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Tangent line y = λt(s) + x

Torsion τ(s) = −n(s) · ḃ(s)
Unit binormal vector b(s) = t(s)× n(s)

Unit tangent vector t(s) = ġ(s) with
(
ġ(s) = dg

ds

)

4.21.1.2 Results

The arc length L and the arc length parameter s of any regular parametric represen-

tation f are invariant under any allowable change of parameter. Thus, L is a property

of the regular curve C defined by f.

The arc length parameter satisfies ds
dt = α′(t) = ±

∣∣f′(t)
∣∣, which implies that∣∣f′(s)

∣∣ = 1, if and only if t is an arc length parameter. Thus, arc length parameters

are uniquely determined up to the transformation s 7→ s̃ = ±s+ s0, where s0 is any

constant.

The curvature, torsion, tangent line, normal plane, principal normal line, recti-

fying plane, binormal line, and osculating plane are properties of the regular curve

C defined by any regular parametric representation f.

If x = (x(t), y(t), z(t)) = f(t) is any regular representation of a regular

curve C, the following results hold at point f(t) of C:

|κ| = |x
′′ × x′|
|x′|3

=

√
(z′′y′ − y′′z′)2 + (x′′z′ − z′′x′)2 + (y′′x′ − x′′y′)2

(x′2 + y′2 + z′2)3/2

τ =
det(x′, x′′, x′′′)

|x′ × x′′|2
=

(x′ × x′′) · x′′′)
|x′ × x′′|2

=
z′′′(x′y′′ − y′x′′) + z′′(x′′′y′ − x′y′′′) + z′(x′′y′′′ − x′′′y′′)

(x′2 + y′2 + z′2)(x′′2 + y′′2 + z′′2)
(4.21.1)

The vectors of the moving trihedron satisfy the Serret–Frenet equations

ṫ = κn, ṅ = −κt+ τb, ḃ = −τn. (4.21.2)

For any plane curve represented parametrically by x = f(t) = (t, f(t), 0),

|κ| =

∣∣∣d2x
dt2

∣∣∣
(
1 +

(
dx
dt

)2)3/2 . (4.21.3)

Expressions for the curvature vector and curvature of a plane curve corresponding to

different representations are given in the following table:

Representation x = f(t),
y = g(t)

y = f(x) r = f(θ)

Curvature vector

k
(ẋÿ − ẏẍ)

(ẋ2 + ẏ2)2
(−ẏ, ẋ)

y′′

(1 + y′2)2
(−y′, 1)

(r2 + 2r′2 − rr′′)

(r2 + r′2)2
(−ṙ sin θ − r cos θ,

ṙ cos θ − r sin θ)

Curvature
|κ| = ρ−1

|ẋÿ − ẏẍ|
(ẋ2 + ẏ2)3/2

|y′′|
(1 + y′2)3/2

r2 + 2r′2 − rr′′
(r2 + r′2)3/2

The equation of the osculating circle of a plane curve is given by

(y− c) · (y− c) = ρ2, (4.21.4)

where c = x+ ρ2k is the center of curvature.
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THEOREM 4.21.1 (Fundamental existence and uniqueness theorem)

Let κ(s) and τ(s) be any continuous functions defined for all s ∈ [a, b]. Then there

exists, up to a congruence, a unique space curve C for which κ is the curvature

function, τ is the torsion function, and s an arc length parameter along C.

4.21.1.3 Example

A regular parametric representation of the circular helix is given by x = f(t) =
(a cos t, a sin t, bt), for t ∈ R, where a > 0 and b 6= 0 are constant. By differentia-

tion,

x′ = (−a sin t, a cos t, b),

x′′ = (−a cos t,−a sin t, 0),
x′′′ = ( a sin t,−a cos t, 0),

(4.21.5)

so that ds
dt = |x′| =

√
a2 + b2. Hence,

1. Arc length parameter: s = α(t) = t(a2 + b2)
1
2

2. Curvature vector: k = dt
ds = dt

ds
dt
dt = (a2 + b2)−1(−a cos t,−a sin t, 0)

3. Curvature: κ = |k| = a(a2 + b2)−1

4. Principal normal unit vector: n = k/ |k| = (− cos t,− sin t, 0)

5. Unit tangent vector: t = x′/|x′| = (a2 + b2)−
1
2 (−a sin t, a cos t, b)

6. Unit binormal vector:

b = t× n = (a2 + b2)−
1
2 (b sin t, b cos t, a)

ḃ =
dt

ds

db

dt
= b(a2 + b2)−1(cos t, sin t, 0)

7. Torsion: τ = −n · ḃ = b(a2 + b2)−1

The values of |κ| and τ can be verified using (4.21.1). The sign of (the invariant) τ
determines whether the helix is right-handed, τ > 0, or left-handed, τ < 0.

4.21.2 SURFACES

4.21.2.1 Definitions

1. A coordinate patch of class Ck, k ≥ 1 on a surface S ⊂ R
3 is a vector valued

function f : U → S, where U ⊂ R2 is an open set, that satisfies (i) f is

class Ck on U , (ii) ∂f
∂u (u, v) × ∂f

∂v (u, v) 6= 0, for all (u, v) ∈ U , and (iii) f is

one-to-one and bi-continuous on U .

2. In terms of a standard basis of R3 we write x = f(u, v) = (f1(u, v), f2(u, v),
f3(u, v)), where the real valued functions {f1, f2, f3} are the component func-

tions of f. The notation x1 = xu = ∂f
∂u , x2 = xv = ∂f

∂v , u1 = u, u2 = v, is

frequently used.

3. A Monge patch is a coordinate patch where f has the form f(u, v) =
(u, v, f(u, v)), where f is a real valued function of class Ck.
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4. The u-parameter curves v = v0 on S are the images of the lines v = v0 in U .

They are parametrically represented by x = f (u, v0). The v-parameter curves

u = u0 are defined similarly.

5. An allowable parameter transformation of class Ck is a one-to-one function

φ : U → V , where U, V ⊂ R
2 are open, that satisfies

det

[
∂φ1

∂u (u, v) ∂φ1

∂v (u, v)
∂φ2

∂u (u, v) ∂φ2

∂v (u, v)

]
6= 0, (4.21.6)

for all (u, v) ∈ U , where the real valued functions, φ1 and φ2, defined by

φ(u, v) = (φ1(u, v), φ2(u, v)) are the component functions of φ. One may

also write the parameter transformation as ũ1 = φ1(u1, u2), ũ2 = φ2(u1, u2).

6. A local property of surface S is any property of a coordinate patch that is

invariant under any allowable parameter transformation.

7. Let f define a coordinate patch on a surface S. The following quantities may

be defined at each point x = f(u, v) on the patch:

Asymptotic direction A direction du : dv for which κn = 0

Asymptotic line A curve on S whose tangent line at each point

coincides with an asymptotic direction

Dupin’s indicatrix ex21 + 2fx1x2 + gx22 = ±1
Elliptic point eg − f2 > 0

First fundamental form I = dx · dx = gαβ(u, v) du
α duβ

= E(u, v) du2 + 2F (u, v) du dv +G(u, v) dv2

First fundamental metric

coefficients




E(u, v) = g11(u, v) = x1 · x1
F (u, v) = g12(u, v) = x1 · x2
G(u, v) = g22(u, v) = x2 · x2

Fundamental differential dx = xα du
α = xu du + xv dv (a repeated upper

and lower index signifies a summation for

α = 1, 2)

Gaussian curvature K = κ1κ2 =
eg − f2

EG− F 2

Geodesic curvature vector of

curve C on S through x
kg = k− (k · N)N = [üα + Γα

βγ u̇
βu̇γ ]xα where

Γα
βγ denote the Christoffel symbols of the second

kind for the metric gαβ , defined in Section 5.9.3

Geodesic on S A curve on S which satisfies kg = 0 at each point

Hyperbolic point eg − f2 < 0

Line of curvature A curve on S whose tangent line at each point

coincides with a principal direction

Mean curvature H =
κ1 + κ2

2
=
gE + eG− 2fF

2(EG− F 2)

Normal curvature vector of

curve C on S through x
kn = (k · N)N
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Normal curvature in the

du : dv direction

κn = k · N =
II

I

Normal line y = λN + x

Normal vector N = xu × xv

Parabolic point eg − f2 = 0 not all of e, f, g = 0

Planar point e = f = g = 0

Principal curvatures The extreme values κ1 and κ2 of κn

Principal directions The perpendicular directions du : dv in which κn
attains its extreme values

Second fundamental form II = −dx · dN = bαβ(u, v) du
α duβ

= e(u, v) du2 + 2f(u, v) du dv + g(u, v) dv2

Second fundamental metric

coefficients




e(u, v) = b11(u, v) = x11 · N
f(u, v) = b12(u, v) = x12 · N
g(u, v) = b22(u, v) = x22 · N

Tangent plane (y− x) · N = 0, or y = x+ λxu + µxv

Umbilical point κn = constant for all directions du : dv

Unit normal vector N =
xu × xv

|xu × xv|
4.21.2.2 Results

1. The tangent plane, normal line, first fundamental form, second fundamental

form and all derived quantities thereof are local properties of any surface S.

2. The transformation laws for the first and second fundamental metric coeffi-

cients under any allowable parameter transformation are given, respectively,

by

g̃αβ = gγδ
∂uγ

∂ũα
∂uδ

∂ũβ
, and b̃αβ = bγδ

∂uγ

∂ũα
∂uδ

∂ũβ
. (4.21.7)

Thus gαβ and bαβ are the components of type (0, 2) tensors.

3. I ≥ 0 for all directions du : dv; and I = 0 if and only if du = dv = 0.

4. The angle θ between two tangent lines to S at x = f(u, v) defined by the

directions du : dv and δu : δv, is given by

cos θ =
gαβ du

αδuβ

(gαβ duα duβ)
1
2 (gαβδuαδuβ)

1
2

. (4.21.8)

The angle between the u-parameter curves and the v-parameter curves is

given by cos θ = F (u, v)/(E(u, v)G(u, v))
1
2 . The u-parameter curves and

v-parameter curves are orthogonal if and only if F (u, v) = 0.

5. Suppose two curves, y = f1(x) and y = f2(x), intersect at the pointP (X,Y ).
If the derivatives exist, then the angle of intersection (α) is given by:

tanα =
f ′
2(X)− f ′

1(X)

1 + f ′
1(X)f ′

2(X)
. (4.21.9)

If (tanα) > 0 then α is an acute angle; otherwise, α is an obtuse angle.
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6. The arc length of a curve C on S, defined by x = f(u1(t), u2(t)), with a ≤
t ≤ b, is given by

L =

∫ b

a

√
gαβ(u1(t), u2(t))u̇αu̇β dt

=

∫ b

a

√
E(u(t), v(t))u̇2 + 2F (u(t), v(t))u̇v̇ +G(u(t), v(t))v̇2 dt.

(4.21.10)

7. The area of S = f(U) is given by

A =

∫∫

U

√
det(gαβ(u1, u2)) du

1 du2

=

∫∫

U

√
E(u, v)G(u, v)− F 2(u, v) du dv.

(4.21.11)

8. The principal curvatures are the roots of the characteristic equation, det(bαβ−
λgαβ) = 0, which may be written as λ2 − bαβgαβλ+ b/g = 0, where gαβ is

the inverse of gαβ , b = det(bαβ), and g = det(gαβ). This expands into

(EG− F 2)λ2 − (eG− 2fF + gE)λ+ eg − f2 = 0. (4.21.12)

9. The principal directions du : dv are obtained by solving the homogeneous

equation

b1αg2β du
α duβ − b2αg1β duα duβ = 0, (4.21.13)

or

(eF − fE) du2 + (eG− gE) du dv + (fG− gF ) dv2 = 0. (4.21.14)

10. Rodrigues formula: du : dv is a principal direction with principal curvature κ
if and only if dN+ κ dx = 0.

11. A point x = f(u, v) on S is an umbilical point if and only if there exists a

constant k such that bαβ(u, v) = kgαβ(u, v).

12. The principal directions at x are orthogonal if x is not an umbilical point.

13. The u- and v-parameter curves at any non-umbilical point x are tangent to

the principal directions if and only if f(u, v) = F (u, v) = 0. If f defines a

coordinate patch without umbilical points, the u- and v-parameter curves are

lines of curvature if and only if f = F = 0.

14. If f = F = 0 on a coordinate patch, the principal curvatures are κ1 = e/E
and κ2 = g/G. It follows that the Gaussian and mean curvatures are

K =
eg

EG
, and H =

1

2

( e
E

+
g

G

)
. (4.21.15)

15. Gauss equation: xαβ = Γγ
αβxγ + bαβN.

16. Weingarten equation: Nα = −bαβgβγxγ .

17. Gauss–Mainardi–Codazzi equations: bαβbγδ − bαγbβδ = Rδαβγ , bαβ,γ −
bαγ,β +Γδ

αβbδγ −Γδ
αγbδβ = 0, whereRδαβγ is the Riemann curvature tensor.



“smtf32” — 2011/5/20 — 2:09 — page 265 — #275

4.21. DIFFERENTIAL GEOMETRY 265

THEOREM 4.21.2 (Gauss’ theorema egregium)

The Gaussian curvature K depends only on the components of the first fundamental

metric gαβ and their derivatives.

THEOREM 4.21.3 (Fundamental theorem of surface theory)

If gαβ and bαβ are sufficiently differentiable functions of u and v which satisfy the

Gauss–Mainardi–Codazzi equations, det(gαβ) > 0, g11 > 0, and g22 > 0, then a

surface exists with I = gαβ du
α duβ and II = bαβ du

α duβ as its first and second

fundamental forms. This surface is unique up to a congruence.

4.21.2.3 Example: paraboloid of revolution

A Monge patch for a paraboloid of revolution is given by x = f(u, v) = (u, v, u2 +
v2), for (u, v) ∈ U = R2. By successive differentiation: xu = (1, 0, 2u), xv =
(0, 1, 2v), xuu = (0, 0, 2), xuv = (0, 0, 0), and xvv = (0, 0, 2).

1. Unit normal vector: N = (1 + 4u2 + 4v2)−
1
2 (−2u,−2v, 1).

2. First fundamental coefficients: E(u, v) = g11(u, v) = 1 + 4u2, F (u, v) =
g12(u, v) = 4uv, G(u, v) = g22(u, v) = 1 + 4v2.

3. First fundamental form: I = (1+4u2) du2+8uv du dv+(1+4v2) dv2. Since

F (u, v) = 0 ⇒ u = 0 or v = 0, it follows that the u-parameter curve v = 0,

is orthogonal to any v-parameter curve, and the v-parameter curve u = 0 is

orthogonal to any u-parameter curve. Otherwise the u- and v-parameter curves

are not orthogonal.

4. Second fundamental coefficients: e(u, v) = b11(u, v) = 2(1 + 4u2 + 4v2)−
1
2 ,

f(u, v) = b12(u, v) = 0, g(u, v) = b22(u, v) = 2(1 + 4u2 + 4v2)−
1
2 .

5. Second fundamental form: II = 2(1 + 4u2 + 4v2)−
1
2 (du2 + dv2).

6. Classification of points: e(u, v)g(u, v) = 4(1+4u2+4v2) > 0 implies that all

points on S are elliptic points. The point (0, 0, 0) is the only umbilical point.

7. Equation for the principal directions: uv du2+(v2−u2) du dv+uv dv2 = 0
factors to read (u du+ v dv)(v du− u dv) = 0.

8. Lines of curvature: Integrate the differential equations, u dv + v dv = 0, and

v du−v du = 0, to obtain, respectively, the equations of the lines of curvature,

u2 + v2 = r2, and u/v = cot θ, where r and θ are constant.

9. Characteristic equation: (1 + 4u2 + 4v2)λ2 − 4(1 + 2u2 + 2v2) (1 + 4u2 +

4v2)−
1
2λ+ 4(1 + 4u2 + 4v2)−1 = 0.

10. Principal curvatures: κ1 = 2(1+4u2+4v2)−
1
2 and κ2 = 2(1+4u2+4v2)−

3
2 .

The paraboloid of revolution may also be represented by x = f̂(r, θ) =
(r cos θ. r sin θ, r2). In this representation the r- and θ-parameter curves are

lines of curvature.

11. Gaussian curvature: K = 4(1 + 4u2 + 4v2)−2 .

12. Mean curvature: H = 2(1 + 2u2 + 2v2)(1 + 4u2 + 4v2)−
3
2 .
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5.1 DIFFERENTIAL CALCULUS

5.1.1 LIMITS

If lim
x→a

f(x) = A <∞ and lim
x→a

g(x) = B <∞ then

1. lim
x→a

(f(x) ± g(x)) = A±B
2. lim

x→a
f(x)g(x) = AB

3. lim
x→a

f(x)

g(x)
=
A

B
(if B 6= 0)

4. lim
x→a

[f(x)]g(x) = AB (if A > 0)

5. lim
x→a

h(f(x)) = h(A) (if h continuous)

6. If f(x) ≤ g(x), then A ≤ B
7. If A = B and f(x) ≤ h(x) ≤ g(x), then lim

x→a
h(x) = A

EXAMPLES

1. lim
x→∞

(
1 +

t

x

)x

= et

2. lim
x→∞

x1/x = 1

3. lim
x→∞

(log x)p

xq
= 0 (if q > 0)

4. lim
x→0+

xp |log x|q = 0 (if p > 0)

5. lim
x→0

sin ax

x
= a

6. lim
x→0

ax − 1

x
= log a

7. lim
x→0

log(1 + x)

x
= 1

5.1.2 DERIVATIVES

The derivative of the function f(x), written f ′(x), is defined as

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)
∆x

(5.1.1)

if the limit exists. If y = f(x), then dy
dx = f ′(x). The nth derivative is

y(n) =
dy(n−1)

dx
=

d

dx

(
dn−1y

dxn−1

)
=
dny

dxn
= f (n)(x).

The second and third derivatives are usually written as y′′ and y′′′. Sometimes the

fourth and fifth derivatives are written as y(iv) and y(v).
The partial derivative of f(x, y) with respect to x, written fx(x, y) or ∂f

∂x , is

defined as

fx(x, y) = lim
∆x→0

f(x+∆x, y)− f(x, y)
∆x

. (5.1.2)
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5.1.3 DERIVATIVE FORMULAS

Let u, v, w be functions of x, and let a, c, and n be constants. Appropriate non-zero

values, differentiability, and invertibility are assumed.

(a)
d

dx
(a) = 0 (b)

d

dx
(x) = 1

(c)
d

dx
(au) = a

du

dx
(d)

d

dx
(u+ v) =

du

dx
+
dv

dx

(e)
d

dx
(uv) = v

du

dx
+ u

dv

dx
(f)

d

dx
(uvw) = uv

dw

dx
+uw

dv

dx
+ vw

du

dx

(g)
d

dx

(u
v

)
=

1

v

du

dx
− u

v2
dv

dx
=
v(du/dx)− u(dv/dx)

v2

(h)
d

dx
(un) = nun−1du

dx
(i)

d

dx
(uv) = vuv−1 du

dx
+ (loge u)u

v dv

dx

(j)
d

dx

(√
u
)
=

1

2
√
u

du

dx
(k)

d

dx
(loge u) =

1

u

du

dx

(l)
d

dx
(loga u) = (loga e)

1

u

du

dx
(m)

d

dx

(
1

u

)
= − 1

u2
du

dx

(n)
d

dx

(
1

un

)
= − n

un+1

du

dx
(o)

d

dx

(
un

vm

)
=
un−1

vm+1

(
nv
du

dx
−mudv

dx

)

(p)
d

dx
(unvm) = un−1vm−1

(
nv
du

dx
+mu

dv

dx

)

(q)
d

dx
(f(u)) =

df

du
· du
dx

(r)
d2

dx2
(f(u)) =

df

du
· d

2u

dx2
+
d2f

du2
·
(
du

dx

)2

(s)
d3

dx3
(f(u)) =

df

du
· d

3u

dx3
+ 3

d2f

du2
· du
dx
· d

2u

dx2
+
d3f

du3
·
(
du

dx

)3

(t)
dn

dxn
(uv) =

(
n

0

)
v
dnu

dxn
+

(
n

1

)
dv

dx

dn−1u

dxn−1
+ · · ·+

(
n

n

)
dnv

dxn
u

(u)
d

dx

∫ x

c

f(t) dt = f(x) (v)
d

dx

∫ c

x

f(t) dt = −f(x)

(w)
dx

dy
=

(
dy

dx

)−1

and
d2x

dy2
= −d

2y

dx2

/(
dy

dx

)3

(x) If F (x, y) = 0, then
dy

dx
= −Fx

Fy
and

d2y

dx2
= −

(
FxxF

2
y − 2FxyFxFy + FyyF

2
x

)

F 3
y
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(y) Leibniz’s rule gives the derivative of an integral:

d

dx

(∫ g(x)

f(x)

h(x, t) dt

)
= g′(x)h(x, g(x))−f ′(x)h(x, f(x))+

∫ g(x)

f(x)

∂h

∂x
(x, t) dt.

(z) If x = x(t) and y = y(t) then (the dots denote differentiation with respect to t):

dy

dx
=
ẏ(t)

ẋ(t)
,

d2y

dx2
=
ẋÿ − ẍẏ
(ẋ)3

.

5.1.4 DERIVATIVES OF COMMON FUNCTIONS

Let a be a constant.

f(x) f ′(x) f(x) f ′(x) f(x) f ′(x)

sinx cosx sinhx coshx xa axa−1

cosx − sinx coshx sinhx 1
xa − a

xa+1

tanx sec2 x tanhx sech2 x
√
x 1

2
√
x

cscx − cscx cotx cschx − cschx cothx ln |x| 1/x
secx secx tanx sechx − sechx tanhx ex ex

cotx − csc2 x cothx − csch2 x ax (a > 0) ax ln a

sin−1 x 1√
1−x2

sinh−1 x 1√
x2+1

|x| x/|x|
cos−1 x − 1√

1−x2
cosh−1 x 1√

x2−1

tan−1 x 1
1+x2 tanh−1 x 1

1−x2

csc−1 x − 1
x
√
x2−1

csch−1 x −1
|x|

√
1+x2

sec−1 x 1
x
√
x2−1

sech−1 x −1
|x|

√
1−x2

cot−1 x − 1
1+x2 coth−1 x 1

1−x2

5.1.5 DERIVATIVE THEOREMS

1. Fundamental theorem of calculus: Suppose f is continuous on [a, b].

(a) If G is defined as G(x) =

∫ x

a

f(t) dt for all x in [a, b], then G is an

anti-derivative of f on [a, b].

(b) If F is any anti-derivative of f , then

∫ b

a

f(t) dt = F (b)− F (a).

2. Intermediate value theorem: If f(x) is continuous on [a, b] and if f(a) 6=
f(b), then f takes on every value between f(a) and f(b) in the interval (a, b).

3. Rolle’s theorem: If f(x) is continuous on [a, b] and differentiable on (a, b),
and if f(a) = f(b), then f ′(c) = 0 for at least one number c in (a, b).

4. Mean value theorem: If f(x) is continuous on [a, b] and differentiable on

(a, b), then a number c exists in (a, b) such that f(b)− f(a) = (b− a)f ′(c).
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5.1.6 THE TWO-DIMENSIONAL CHAIN RULE

If x = x(t), y = y(t), and z = z(x, y), then

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
, and

d2z

dt2
=
∂z

∂x

d2x

dt2
+
dx

dt

(
∂2z

∂x2
dx

dt
+

∂2z

∂x∂y

dy

dt

)

+
∂z

∂y

d2y

dt2
+
dy

dt

(
∂2z

∂y2
dy

dt
+

∂2z

∂x∂y

dx

dt

)
.

(5.1.3)

If x = x(u, v), y = y(u, v), and z = z(x, y), then

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
and

∂z

∂v
=
∂z

∂x

∂x

∂v
+
∂z

∂y

∂y

∂v
. (5.1.4)

If u = u(x, y), v = v(x, y), and f = f(x, y), then the partial derivative of f

with respect to u, holding v constant, written
(

∂f
∂u

)
v
, can be expressed as

(
∂f

∂u

)

v

=

(
∂f

∂x

)

y

(
∂x

∂u

)

v

+

(
∂f

∂y

)

x

(
∂y

∂u

)

v

. (5.1.5)

5.1.7 THE CYCLIC RULE

If x, y, and z all depend on one another (say, through f(x, y, z) = 0), then the partial

derivative of x with respect to y, holding z constant, written
(

∂x
∂y

)
z
, is

(
∂x

∂y

)

z

=

[(
∂y

∂x

)

z

]−1

= − (∂f/∂y)x,z
(∂f/∂x)y,z

, (5.1.6)

and we find (this is the cyclic rule)(
∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

= −1. (5.1.7)

EXAMPLE For the function z = xy2 it is straightforward to compute

(
∂x

∂y

)

z

= −2y−3z,

(
∂y

∂z

)

x

=
1

2
(xz)−1/2,

(
∂z

∂x

)

y

= y2,

so that

[
−2y−3z

] [1
2
(xz)−1/2

] [
y2
]
= −y−1z1/2x−1/2 = −1. (5.1.8)
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5.1.8 MAXIMA AND MINIMA OF FUNCTIONS

1. If a function f(x) has a local extremum at a number c, then either f ′(c) = 0
or f ′(c) does not exist.

2. If f ′(c) = 0, f(x) and f ′(x) are differentiable on an open interval contain-

ing c, and

(a) if f ′′(c) < 0, then f has a local maximum at c;
(b) if f ′′(c) > 0, then f has a local minimum at c.

5.1.8.1 Lagrange multipliers

To extremize the function f(x1, x2, . . . , xn) = f(x) subject to them side constraints

g(x) = 0, introduce an m-dimensional vector of Lagrange multipliers λ and define

F (x, λ) = f(x) + λTg(x). Then extremize F with respect to all of its arguments:

∂F

∂xi
=

∂f

∂xi
+ λT ∂g

∂xi
= 0, and

∂F

∂λj
= gj = 0. (5.1.9)

For the case of extremizing f(x, y) subject to g(x, y) = 0 (i.e., n = 2 and m = 1):

fx + λgx = 0, fy + λgy = 0, and g = 0. (5.1.10)

EXAMPLE Find points on the unit circle (given by g(x, y) = (x−1)2+(y−2)2−1 = 0)

that are the closest to and furthest from the origin (the distance squared from the origin

is f(x, y) = x2 + y2). This is solved by creating, and solving, the three (non-linear)

algebraic equations:

2x+ 2λ(x− 1) = 0, 2y + 2λ(y − 2) = 0, (x− 1)2 + (y − 2)2 = 1.

The solutions are
{
x = 1 + 1/

√
5, y = 2 + 2/

√
5, λ = −1−

√
5
}

(furthest), and{
x = 1− 1/

√
5, y = 2− 2/

√
5, λ = −1 +

√
5
}

(closest).

5.1.9 L’HÔPITAL’S RULE

If f(x) and g(x) are differentiable in a punctured neighborhood of point a, and if

f(x) and g(x) both tend to 0 or∞ as x→ a, then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
(5.1.11)

if the right-hand side exists. Sometimes, by manipulating functions, this rule can

determine the value of the indeterminate forms {1∞, 00,∞0, 0 · ∞,∞−∞}. The

rule can also be applied repeatedly.

EXAMPLES

lim
x→0

x− sin x

x3
= lim

x→0

1− cos x

3x2
= lim

x→0

sin x

6x
= lim

x→0

cos x

6
=

1

6
,

lim
x→∞

xn

ex
= lim

x→∞

nxn−1

ex
= lim

x→∞

n(n− 1)xn−2

ex
= · · · = lim

x→∞

n!

ex
= 0,

lim
x→1

(
x

x− 1
− 1

ln x

)
= lim

x→1

x ln x− x+ 1

(x− 1) ln x
= lim

x→1

ln x
x−1
x

+ ln x
= lim

x→1

x ln x

x− 1 + x ln x

= lim
x→1

1 + lnx

2 + lnx
=

1

2
.
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5.1.10 VECTOR CALCULUS

1. Definitions of “div,” “grad,” and “curl” are on page 370.

2. A vector field F is irrotational if ∇× F = 0.

3. A vector field F is solenoidal if ∇ · F = 0.

4. In Cartesian coordinates,∇ =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)
= i ∂

∂x + j ∂
∂y + k ∂

∂z .

5. ∇ · u =
∑3

i=1
∂u
∂xi

is a scalar while F · ∇ =
∑3

i=1 Fi
∂

∂xi
is an operator.

6. If u and v are scalars and F and G are vectors in R
3, then

(a) ∇(u + v) = ∇u+∇v
(b) ∇(uv) = u∇v + v∇u
(c) ∇(F+G) = ∇F+∇G
(d) ∇(F ·G) = (F · ∇)G + (G · ∇)F+ F× (∇×G) +G× (∇× F)
(e) ∇ · (uF) = u(∇ · F) + F · ∇u
(f) ∇ · (F×G) = G · (∇× F)− F · (∇×G)
(g) ∇× (uF) = u(∇× F) + (∇u)× F

(h) ∇× (F+G) = ∇× F+∇×G

(i) ∇× (F×G) = F(∇ ·G)−G(∇ · F) + (G · ∇)F− (F · ∇)G
(j) F · dFdt = |F| d|F|dt
(k) ∇× (∇× F) = ∇(∇ · F)−∇2F

(l) ∇× (∇u) = 0

(m) ∇ · (∇× F) = 0
(n) ∇2(uv) = u∇2v + 2(∇u) · (∇v) + v∇2u

7. If r = |r|, a is a constant vector, and n is an integer, then

Φ ∇Φ ∇2Φ

a · r a 0
rn nrn−2r n(n+ 1)rn−2

log r r/r2 1/r2

F ∇ · F ∇× F (G · ∇)F
r 3 0 G

a× r 0 2a a×G

arn nrn−2(r · a) nrn−2(r× a) nrn−2(r ·G)a
rrn (n+ 3)rn 0 rnG+ nrn−2(r ·G)r

a log r r · a/r2 r× a/r2 (G · r)a/r2

F ∇2F ∇∇ · F
r 0 0

a× r 0 0
arn n(n+ 1)rn−2a nrn−2a+ n(n− 2)rn−4(r · a)r
rrn n(n+ 3)rn−2r n(n+ 3)rn−2r

a log r a/r2 [r2a− 2(r · a)r]/r4
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8.
d

dt
(F+G) =

dF

dt
+
dG

dt

9.
d

dt
(F ·G) = F · dG

dt
+
dF

dt
·G

10.
d

dt
(F×G) = F× dG

dt
+
dF

dt
×G

11.
d

dt
(V1 × V2 × V3) =

(
dV1

dt

)
× (V2 × V3) + V1 ×

((
dV2

dt

)
× V3

)
+

V1 ×
(
V2 ×

(
dV3

dt

))

12.
d

dt
[V1V2V3] =

[(
dV1

dt

)
V2V3

]
+

[
V1

(
dV2

dt

)
V3

]
+

[
V1V2

(
dV3

dt

)]
,

where [V1V2V3] = V1 · (V2 × V3) is the scalar triple product (see page 76).

13. If A = A(t) and B = B(t) are matrices then

(a)
∂
(
AB
)

∂t
=
dA

dt
B +A

dB

dt

(b)
∂
(
A⊗B

)

∂t
=
dA

dt
⊗B +A⊗ dB

dt

(c)
∂
(
A−1

)

∂t
= −AdA

dt
A−1

5.1.11 MATRIX AND VECTOR DERIVATIVES

5.1.11.1 Definitions

1. The derivative of the row vector y =
[
y1 y2 . . . ym

]
with respect to the

scalar x is
∂y

∂x
=

[
∂y1
∂x

∂y2
∂x

. . .
∂ym
∂x

]
. (5.1.12)

2. The derivative of a scalar y with respect to the vector x is

∂y

∂x
=




∂y
∂x1
∂y
∂x2

...
∂y
∂xn



. (5.1.13)
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3. Let x be a n × 1 vector and let y be a m × 1 vector. The derivative of y with

respect to x is the matrix

∂y

∂x
=




∂y1

∂x1

∂y2

∂x1
. . . ∂ym

∂x1
∂y1

∂x2

∂y2

∂x2
. . . ∂ym

∂x2

...
...

. . .
...

∂y1

∂xn

∂y2

∂xn
. . . ∂ym

∂xn




(5.1.14)

In multivariate analysis, if x and y have the same length, then the absolute

value of the determinant of ∂y
∂x is called the Jacobian of the transformation

determined by y = y(x); written
∂(y1,y2,...,yn)
∂(x1,x2,...,xn)

.

4. The Jacobian of the derivatives ∂φ
∂x1

, ∂φ
∂x2

, . . . ∂φ
∂xn

of the function φ(x1, . . . .xn)
with respect to x1, . . . , xn is called the Hessian H of φ:

H =

∣∣∣∣∣∣∣∣∣∣∣

∂2φ
∂x2

1

∂2φ
∂x1 ∂x2

∂2φ
∂x1 ∂x3

. . . ∂2φ
∂x1 ∂xn

∂2φ
∂x2 ∂x1

∂2φ
∂x2

2

∂2φ
∂x2 ∂x3

. . . ∂2φ
∂x2 ∂xn

...
...

...
...

∂2φ
∂xn ∂x1

∂2φ
∂xn ∂x2

∂2φ
∂xn ∂x3

. . . ∂2φ
∂x2

n

∣∣∣∣∣∣∣∣∣∣∣

5. The derivative of the matrixA(t) = (aij(t)), with respect to the scalar t, is the

matrix
dA(t)
dt =

(
daij(t)

dt

)
.

6. If X = (xij) is a m × n matrix and if y is a scalar function of X , then the

derivative of y with respect to X is (here, Eij = eie
T
j ):

∂y

∂X
=




∂y
∂x11

∂y
∂x12

. . . ∂y
∂x1n

∂y
∂x21

∂y
∂x22

. . . ∂y
∂x2n

...
...

. . .
...

∂y
∂xm1

∂y
∂xm2

. . . ∂y
∂xmn



=

∑

1≤i≤m
1≤j≤n

Eij
∂y

∂xij
. (5.1.15)

7. If Y = (yij) is a p× q matrix and X is a m× n matrix, then the derivative of

Y with respect to X is

∂Y

∂X
=




∂Y
∂x11

∂Y
∂x12

. . . ∂Y
∂x1n

∂Y
∂x21

∂Y
∂x22

. . . ∂Y
∂x2n

...
...

. . .
...

∂Y
∂xm1

∂Y
∂xm2

. . . ∂Y
∂xmn


 =

∑

1≤i≤m
1≤j≤n

Eij ⊗
∂Y

∂xij
. (5.1.16)
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5.1.11.2 Properties

1. Differentiation with respect to a vector x. (HereA is constant.)
∂Ax

∂xT
= A and

y (a scalar or a vector) ∂y
∂x (where x is a vector)

xT I

Ax AT

xTA A

xTx 2x

xTAx Ax+ATx

2. Differentiation with respect to a matrix X . (Here {a, b, A,B} are constants,

Y = Y (X), and Z = Z(X).)

y (a scalar, vector, or matrix) ∂y
∂X (where X is a matrix)

Y Z Y dZ
dX + dY

dXZ

AXB ATBT

aTXTXb X(abT + baT)

aTXTXa 2XaaT

aTXTCXb CTXabT + CXbaT

aTXTCXa (C + CT)XaaT

(Xa+ b)TC(Xa+ b) (C + CT)(Xa+ b)aT

3. Differentiation of specific scalar functions with respect to a matrix X .

(Here {A,B} are constants.)

y (a scalar) ∂y
∂X (where X is a matrix)

tr(X) I
tr(ATX), tr(XAT), tr(AXT), or tr(XTA) A

tr(AXB) ATBT

tr(XAXT) XT(A+AT)
tr(XTAX) (A+AT)X
tr(XTAXB) AXB +ATXBT

tr(eX) eX
T

det(X) or det(XT) det(X) (X−1)T

det(AXB) det(AXB) (X−1)T

log |X | (X−1)T

4. If Y = AX−1B, then

(a) ∂Y
∂xrs

= −AX−1ErsX
−1B.

(b)
∂yij

∂X = −(X−1)TATEijB
T(X−1)T.
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5. If Y = AXB then ∂Y
∂xij

= AEijB where Eij = eie
T
j has the same size as X .

6. If Y = AXTB, then
∂yij

∂X = BET
ijA.

7. If Y = XTAX, then

(a) ∂Y
∂xrs

= ET
rsAX +XTAErs.

(b)
∂yij

∂X = AXET
ij +ATXEij .

8. If y = VecY and x = VecX (see page 97), then

(a) If Y = AX , then ∂y
∂x = I ⊗AT.

(b) If Y = XA, then ∂y
∂x = A⊗ I.

(c) If Y = AX−1B, then ∂y
∂x = −(X−1B)⊗ (X−1)TAT.

9. The derivative of the determinant of a matrix can be written:

(a) If Yij is the cofactor of element yij in |Y |, then
∂|Y |
∂xrs

=
∑

i

∑
j Yij

∂yij

∂xrs
.

(b) If all of the components (xij) of X are independent, then
∂|X|
∂X =

|X | (X−1)T.

10. Derivatives of powers of matrices are obtained as follows:

(a) If Y = Xr, then ∂Y
∂xrs

=
∑r−1

k=0X
kErsX

n−k−1.

(b) If Y = X−r, then ∂Y
∂xrs

= −X−r
(∑r−1

k=0X
kErsX

n−k−1
)
X−r.

(c) The nth derivative of the rth power of the matrixA−1, in terms of deriva-

tives of the matrix A, is

dnA−r

dxn
= n!

(
n∑

k=1

(−1)kPi1

i1!

Pi2

i2!
. . .
Pik

ik!

)
A−r (5.1.17)

where Pi = A−r diAr

dxi and the summation is taken over all positive in-

tegers (i1, i2, . . . , ik), distinct or otherwise, such that
∑k

m=1 im = n.

Setting n = r = 1 results in

dA−1

dx
= −A−1 dA

dx
A−1. (5.1.18)

11. Derivative formulas:

(a) If z = z(y(x)), then
∂z

∂y
=
∂z

∂x

∂x

∂y
.

(b) If X and Y are matrices, then
(
∂Y
∂X

)T
= ∂Y T

∂XT .
(c) If X , Y , and Z are matrices of size m × n, n × v, and p × q, then

∂(XY )
∂Z = ∂X

∂Z (Iq ⊗ Y ) + (Ip ⊗X)∂Y∂Z .
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5.2 DIFFERENTIAL FORMS

Let dxk(·) be the function that assigns a vector its kth coordinate; for the vector a =
(a1, . . . , ak, . . . , an) we have dxk(a) = ak. Geometrically, dxk(a) is the length,

with appropriate sign, of the projection of a on the kth coordinate axis. If the {Fi}
are functions then the following linear combination of the functions {dxk}

ωx = F1(x) dx1 + F2(x) dx2 + · · ·+ Fn(x) dxn (5.2.1)

is a new function ωx that acts on vectors a as

ωx(a) = F1(x) dx1(a) + F2(x) dx2(a) + · · ·+ Fn(x) dxn(a). (5.2.2)

Such a function is a differential 1-form or a 1-form. For example:

1. If a = (−2, 0, 4) then dx1(a) = −2, dx2(a) = 0, and dx3(a) = 4.

2. If in R2, ωx = ω(x,y) = x2 dx + y2 dy, then ω(x,y)(a, b) = ax2 + by2 and

ω(1,−3)(a, b) = a+ 9b.
3. Note that∇xf , the differential of f at x, is a 1-form with

∇xf(a) =
∂f

∂x1
(x) dx1(a) +

∂f

∂x2
(x) dx2(a) +

∂f

∂x3
(x) dx3(a)

=
∂f

∂x1
(x)a1 +

∂f

∂x2
(x)a2 +

∂f

∂x3
(x)a3.

5.2.1 PRODUCTS OF 1-FORMS

The basic 1-forms in R
3 are dx1, dx2, and dx3. The wedge product (or exterior

product) dx1 ∧ dx2 is defined so that it is a function of ordered pairs of vectors

in R
2. Geometrically, dx1 ∧ dx2(a, b) is the area of the parallelogram spanned by

the projections of a and b into the (x1, x2)-plane. The sign of the area is determined

so that if the projections of a and b have the same orientation as the positive x1 and

x2 axes, then the area is positive; it is negative when these orientations are opposite.

Thus, if a = (a1, a2, a3) and b = (b1, b2, b3), then

dx1 ∧ dx2(a, b) = det

[
a1 b1
a2 b2

]
= a1b2 − a2b1, (5.2.3)

and the determinant automatically gives the correct sign. This generalizes to

dxi ∧ dxj(a, b) = det

[
dxi(a) dxi(b)
dxj(a) dxj(b)

]
= det

[
ai bi
aj bj

]
. (5.2.4)

1. If f and g are real-valued functions and

(a) If ω and µ are 1-forms, then fω + gµ is a 1-form.

(b) If ω, ν, and µ are 1-forms, then (fω + gν) ∧ µ = f ω ∧ µ+ g ν ∧ µ.

2. dxi ∧ dxj = −dxj ∧ dxi
3. dxi ∧ dxi = 0
4. dxi ∧ dxj(b, a) = −dxi ∧ dxj(a, b)
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5.2.2 DIFFERENTIAL 2-FORMS

In R3, the most general linear combination of the functions dxi ∧ dxj has the form

c1 dx2 ∧ dx3 + c2 dx3 ∧ dx1 + c3 dx1 ∧ dx2. If F = (F1, F2, F3) is a vector field,

then the function of ordered pairs,

τx(a, b) = F1(x) dx2 ∧ dx3 + F2(x) dx3 ∧ dx1 + F3(x) dx1 ∧ dx2 (5.2.5)

is a differential 2-form or 2-form.

EXAMPLES

1. For the specific 2-form τx = 2 dx2 ∧ dx3 + dx3 ∧ dx1 +5 dx1 ∧ dx2, if a = (1, 2, 3)
and b = (0, 1, 1), then

τx(a, b) = 2 det

[
2 1
3 1

]
+ det

[
3 1
1 0

]
+ 5det

[
1 0
2 1

]

= 2 · (−1) + 1 · (−1) + 5 · (1) = 2

independent of x. Note that a × b = det




i j k

1 2 3
0 1 1



 = (−1,−1, 1), and so

τx(a, b) = (2, 1, 5) · (a × b). (Of course, this only works in 2 dimensions since

cross-products are not defined in higher dimensions.)

2. When changing from Cartesian coordinates to polar coordinates, the element of area

dA can be written

dA = dx ∧ dy
= (−r sin θ dθ + cos θ dr) ∧ (r cos θ dθ + sin θ dr)

= −r2 sin θ cos θ (dθ ∧ dθ) + sin θ cos θ (dr ∧ dr)
− r sin2 θ (dθ ∧ dr) + r cos2 θ (dr ∧ dθ)

= r dr ∧ dθ.

(5.2.6)

5.2.3 THE 2-FORMS IN RN

Every 2-form can be written as a linear combination of “basic 2-forms.” For example,

in R2 there is only one basic 2-form (which may be taken to be dx1 ∧ dx2) and in

R
3 there are 3 basic 2-forms (possibly the set {dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1}).

The exterior product of any two 1-forms (in, say, Rn) is found by multiplying the 1-

forms as if they were ordinary polynomials in the variables dx1, . . . , dxn, and then

simplifying using the rules for dxi ∧ dxj .

EXAMPLE Denoting the basic 1-forms in R3
as dx, dy, and dz then

(xdx+ y2 dy) ∧ (dx+ xdy) = x (dx ∧ dx) + y2 (dy ∧ dx),
+ x2 (dx ∧ dy) + xy2 (dy ∧ dy),

= 0− y2 (dx ∧ dy) + x2 (dx ∧ dy) + 0,

= (x2 − y2) dx ∧ dy.

(5.2.7)
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5.2.4 HIGHER DIMENSIONAL FORMS

The basic 3-form dx1 ∧ dx2 ∧ dx3 represents a signed volume:

dx1 ∧ dx2 ∧ dx3(a, b, c) = det



a1 b1 c1
a2 b2 c2
a3 b3 c3


 (5.2.8)

which is a 3-dimensional oriented volume of the parallelepiped defined by the vectors

a, b, and c.

The basic p-forms in Rn, with p ≥ 1, are

dxk1 ∧ dxk2 ∧ · · · ∧ dxkp(a1, . . . , ap) = det(dxki(aj))i=1,...,p
j=1,...,p

. (5.2.9)

The general p-forms are linear combinations of the basic p-forms.

1. The general p-form can be written ωp =
∑

i1<···<ip
fi1,...,ipdxi1 ∧ · · · ∧ dxik ,

where 1 ≤ ik ≤ n for k = 1, . . . , p. This sum has
(
n
p

)
distinct non-zero terms.

2. If ωp is a p-form in Rn and ωq is a q-form in Rn, then

ωp ∧ ωq = (−1)pq ωq ∧ ωp.
3. A basic p-form with a repeated factor is zero. Thus if p > n, then any p-form

is identically zero.

4. Stoke’s Theorem:
∫
M dω =

∫
∂M ω where ω is a differential form.

5.2.5 THE EXTERIOR DERIVATIVE

The exterior differentiation operator is denoted by d. When d is applied to a scalar

function f(x), the result is a 1-form df = ∇xf = ∂f
∂x1

dx1 + · · ·+ ∂f
∂xn

dxn. For the

1-form ω1 = f1 dx + · · · + fn dxn the exterior derivative is dω1 = (df1) ∧ dx1 +
· · ·+ (dfn) ∧ dxn. This generalizes to higher dimensional forms.

EXAMPLE
If ω1

(x1,x2)
= x1x2 dx1 + (x2

1 + x2
2) dx2, then dω1 is given by

dω1 = d(x1x2 dx1 + (x2
1 + x2

2) dx2)

= (x2 dx1 + x1 dx2) ∧ dx1 + (2x1 dx1 + 2x2 dx2) ∧ dx2

= x1 dx1 ∧ dx2.

5.2.6 PROPERTIES OF THE EXTERIOR DERIVATIVE

1. If f1(x1, x2) and f2(x1, x2) are differentiable functions, then

df1 ∧ df2 = det

(
∂(f1, f2)

∂(x1, x2)

)
dx1 ∧ dx2. (5.2.10)

2. If ωp and ωq represent a p-form and a q-form, then

d(ωp ∧ ωq) = (dωp) ∧ ωq + (−1)pqωp ∧ (dωq). (5.2.11)

3. If ωp is a p-form with at least two derivatives, then d(dωp) = 0.

• d(dω0) = 0 is equivalent to curl(gradf) = ∇× (∇f) = 0.
• d(dω1) = 0 is equivalent to div(curlF) = ∇ · (∇F) = 0.
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5.3 INTEGRATION

5.3.1 DEFINITIONS

The following definitions apply to the expression I =
∫ b

a
f(x) dx:

1. The integrand is f(x).
2. The upper limit is b.
3. The lower limit is a.

4. I is the integral of f(x) from a to b.

It is conventional to indicate the indefinite integral of a function represented

by a lowercase letter by the corresponding uppercase letter. For example, F (x) =∫ x

a
f(t) dt andG(x) =

∫ x

a
g(t) dt. Note that all functions that differ from F (x) by a

constant are also indefinite integrals of f(x). We have the following notation:

1.
∫
f(x) dx indefinite integral of f(x) (also written

∫ x
f(t) dt)

2.
∫ b

a
f(x) dx definite integral of f(x); for a continuous function de-

fined as lim
n→∞

(
b− a
n

n∑

k=1

f

[
a+

k

n
(b− a)

])

3.
∮
C f(x) dx definite integral of f(x), taken along the contour C

4.
∫∞
a f(x) dx defined as lim

R→∞

∫ R

a

f(x) dx

5.
∫∞
−∞ f(x) dx defined as the limit of

∫ R

−S f(x) dx as R and S inde-

pendently go to∞
6. Improper integral integral for which the region of integration is not

bounded, or the integrand is not bounded
7. Cauchy principal value

(a) The Cauchy principal value of the integral
∫ b

a f(x) dx, denoted

−
∫ b

a f(x) dx, is defined as lim
ǫ→0+

(∫ c−ǫ

a

f(x) dx +

∫ b

c+ǫ

f(x) dx

)
, as-

suming that f is singular only at c.
(b) The Cauchy principal value of the integral

∫∞
−∞ f(x) dx is defined as the

limit of

∫ R

−R

f(x) dx as R→∞.

8. If, at the complex point z = a, f(z) is either analytic or has an isolated sin-

gularity, then the residue of f(z) at z = a is given by the contour integral

Resf (a) =
1

2πi

∮
C f(ξ) dξ; where C is a closed contour around a in a positive

direction.
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5.3.2 PROPERTIES OF INTEGRALS

Indefinite integrals have the properties (here F is the anti-derivative of f ):

1.
∫
[af(x) + bg(x)] dx = a

∫
f(x) dx+ b

∫
g(x) dx (linearity).

2.
∫
f(x)g(x) dx = F (x)g(x) −

∫
F (x)g′(x) dx (integration by

parts).

3.
∫
f(g(x))g′(x) dx = F (g(x)) (substitution).

4.
∫
f(ax+ b) dx = 1

aF (ax+ b).
5. If f(x) is an odd function and F (0) = 0, then F (x) is an even function.

6. If f(x) is an even function and F (0) = 0, then F (x) is an odd function.

7. If f(x) has a finite number of discontinuities, then the integral
∫
f(x) dx is

the sum of the integrals over those subintervals where f(x) is continuous (pro-

vided they exist).

8. Fundamental theorem of calculus If f(x) is bounded, and integrable on [a, b],
and there exists a function F (x) such that F ′(x) = f(x) for a ≤ x ≤ b then∫ x

a

f(x) dx = F (x)
∣∣x
a
= F (x)− F (a) (5.3.1)

for a ≤ x ≤ b.

Definite integrals have the properties:

1.
∫ a

a
f(x) dx = 0.

2.
∫ b

a f(x) dx = −
∫ a

b f(x) dx.

3.
∫ b

a
f(x) dx +

∫ c

b
f(x) dx =

∫ c

a
f(x) dx (additivity).

4.
∫ b

a [cf(x) + dg(x)] dx = c
∫ b

a f(x) dx+ d
∫ b

a g(x) dx (linearity).

5.3.3 CONVERGENCE TESTS

1. If
∫ b

a
|f(x)| dx is convergent, and f is integrable, then

∫ b

a
f(x) dx is conver-

gent.

2. If 0 ≤ f(x) ≤ g(x),
∫ b

a g(x) dx is convergent, and f is integrable, then∫ b

a
f(x) dx is convergent.

3. If 0 ≤ g(x) ≤ f(x) and
∫ b

a g(x) dx is divergent, then
∫ b

a f(x) dx is divergent.

The following integrals are often used with the above tests:

(a)

∫ ∞

2

dx

x(log x)p
and

∫ ∞

1

dx

xp
converge when p > 1, and diverge when p ≤ 1.

(b)

∫ 1

0

dx

xp
converges when p < 1, and diverges when p ≥ 1.
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5.3.4 APPLICATIONS OF INTEGRATION

1. Using Green’s theorems, the area bounded by the simple, closed, positively

oriented contour C is

area =

∮

C
x dy = −

∮

C
y dx. (5.3.2)

2. Arc length:

(a) s =

∫ x2

x1

√
1 + y′2 dx for y = f(x).

(b) s =

∫ t2

t1

√
φ̇2 + ψ̇2 dt for x = φ(t), y = ψ(t).

(c) s =

∫ θ2

θ1

√
r2 +

(
dr

dφ

)2

dθ =

∫ r2

r1

√
1 + r2

(
dr

dφ

)2

dr for r = f(θ).

3. Surface area for surfaces of revolution:

(a) A = 2π

∫ x2

x1

f(x)
√

1 + (f ′(x))2 dx

when y = f(x) is rotated about the x-axis.

(b) A = 2π

∫ y2

y1

x
√

1 + (f ′(x))2 dy

when y = f(x) is rotated about the y-axis and f is one-to-one.

(c) A = 2π

∫ t2

t1

ψ

√
φ̇2 + ψ̇2 dt

for x = φ(t), y = ψ(t) rotated about the x-axis.

(d) A = 2π

∫ t2

t1

φ

√
φ̇2 + ψ̇2 dt

for x = φ(t), y = ψ(t) rotated about the y-axis.

(e) A = 2π

∫ φ2

φ1

r sinφ

√
r2 +

(
dr

dφ

)2

dφ

for r = r(φ) rotated about the x-axis.

(f) A = 2π

∫ φ2

φ1

r cosφ

√
r2 +

(
dr

dφ

)2

dφ

for r = r(φ) rotated about the y-axis.

4. Volumes of revolution:

(a) V = π

∫ x2

x1

f2(x) dx for y = f(x) rotated about the x-axis.

(b) V = π

∫ x2

x1

x2f ′(x) dx for y = f(x) rotated about the y-axis.

(c) V = π

∫ y2

y1

g2(y) dy for x = g(y) rotated about the y-axis.

(d) V = π

∫ t2

t1

ψ2φ̇ dt for x = φ(t), y = ψ(t) rotated about the x-axis.

(e) V = π

∫ t2

t1

φ2ψ̇ dt for x = φ(t), y = ψ(t) rotated about the y-axis.
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(f) V = π

∫ φ2

φ1

sin2 φ

(
dr

dφ
cosφ− r sinφ

)
dφ for r = f(φ) rotated about

the x-axis.

(g) V = π

∫ φ2

φ1

cos2 φ

(
dr

dφ
sinφ− r cosφ

)
dφ for r = f(φ) rotated about

the y-axis.

5. The area enclosed by the curve xb/c + yb/c = ab/c, where a > 0, c is an odd

integer and b is an even integer, is A =
2ca2

b

[
Γ
(
c
b

)]2

Γ
(
2c
b

) .

6. The integral I =
∫∫∫
R

xh−1ym−1zn−1 dV , where R is the region of space

bounded by the coordinate planes and that portion of the surface
(x
a

)p
+

(y
b

)q
+
(z
c

)k
= 1, in the first octant, and where {h,m, n, p, q, k, a, b, c} are

all positive real numbers, is given by

∫ a

0

xh−1 dx

∫ b[1−(x
a )

p
]
1
q

0

ym−1 dy

∫ c[1−(x
a )

p−( y
b )

q
]
1
k

0

zn−1 dz

=
ahbmcn

pqk

Γ
(

h
p

)
Γ
(

m
q

)
Γ
(
n
k

)

Γ
(

h
p + m

q + n
k + 1

) .

5.3.5 INTEGRAL INEQUALITIES

1. Schwartz inequality:
∫ b

a |fg| ≤
√(∫ b

a |f |2
)(∫ b

a |g|2
)

.

2. Minkowski’s inequality:
(∫ b

a |f + g|p
)1/p

≤
(∫ b

a |f |p
)1/p

+
(∫ b

a |g|p
)1/p

when p ≥ 1.

3. Hölder’s inequality:

∫ b

a
|fg| ≤

[∫ b

a
|f |p

]1/p [∫ b

a
|g|q
]1/q

when 1
p + 1

q = 1, p > 1, and q > 1.

4.
∣∣∣
∫ b

a f(x) dx
∣∣∣ ≤

∫ b

a |f(x)| dx ≤
(

max
x∈[a,b]

|f(x)|
)
(b − a) assuming a ≤ b.

5. If f(x) ≤ g(x) on the interval [a, b], then
∫ b

a f(x) dx ≤
∫ b

a g(x) dx.

5.3.6 METHODS OF EVALUATING INTEGRALS

5.3.6.1 Substitution

Substitution can be used to change integrals to simpler forms. When the trans-

form t = g(x) is chosen, the integral I =
∫
f(t) dt becomes I =

∫
f(g(x)) dt =∫

f(g(x))g′(x) dx. Several precautions must be taken when using substitutions:
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1. Make the substitution in the dx term, as well as everywhere else in the integral.

2. Ensure that the function substituted is one-to-one and differentiable. If this is

not true, then the integral must be restricted in such a way as to make it true.

3. With definite integrals, the limits should also be expressed in terms of the new

dependent variables. With indefinite integrals, it is necessary to perform the

reverse substitution to obtain the answer in terms of the original independent

variable. This may also be done for definite integrals, but it is usually easier to

change the limits.

EXAMPLE Consider the integral

I =

∫
x4

√
a2 − x2

dx (5.3.3)

for a 6= 0. Choosing the substitution x = |a| sin θ we find dx = |a| cos θ dθ and

√
a2 − x2 =

√
a2 − a2 sin2 θ = |a|

√
1− sin2 θ = |a| |cos θ| . (5.3.4)

Note the absolute value signs. It is important to interpret the square root radical con-

sistently as the positive square root. Thus
√
x2 = |x|.

Note that the substitution chosen is not a one-to-one function, that is, it does not

have a unique inverse. Thus the range of θ must be restricted in such a way as to make

the function one-to-one. In this case we can solve for θ to obtain

θ = sin−1 x

|a| . (5.3.5)

This will be unique if we restrict the inverse sine to the principal values −π
2
≤ θ ≤ π

2
.

Thus, the integral becomes (with dx = |a| cos θ dθ)

I =

∫
a4 sin4 θ

|a| |cos θ| |a| cos θ dθ. (5.3.6)

For the range of values chosen for θ, we find that cos θ is always non-negative. Thus,

removing the absolute value signs from cos θ results in

I = a4
∫

sin4 θ dθ. (5.3.7)

Using integration formula #283 on page 311, and simplifying, this becomes

I = −a
4

4
sin3 θ cos θ − 3a4

8
sin θ cos θ +

3a4

8
θ + C. (5.3.8)

To obtain an evaluation of I as a function of x, we must transform variables from θ
to x. We have

cos θ = ±
√

1− sin2 θ = ±
√

1− x2

a2
= ±
√
a2 − x2

|a| . (5.3.9)

Because of the previously recorded fact that cos θ is non-negative for our range of θ,

we may omit the ± sign. Using sin θ = x/ |a| and cos θ =
√
a2 − x2/ |a| we can

evaluate Equation (5.3.8) to obtain the final result,

I =

∫
x4

√
a2 − x2

= −x
3

4

√
a2 − x2 − 3a2x

8

√
a2 − x2 +

3a4

8
sin−1 x

|a| + C. (5.3.10)
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5.3.6.2 Useful transformations

The following transformations may make evaluation of an integral easier:

1.
∫
f
(
x,
√
x2 + a2

)
dx = a

∫
f(a tanu, a secu) sec2 u du

when u = tan−1 x
a and a > 0.

2.
∫
f
(
x,
√
x2 − a2

)
dx = a

∫
f(a secu, a tanu) secu tanu du

when u = sec−1 x
a and a > 0.

3.
∫
f
(
x,
√
a2 − x2

)
dx = a

∫
f(a sinu, a cosu) cosu du

when u = sin−1 x
a and a > 0.

4.
∫
f(sinx) dx = 2

∫
f
(

2z
1+z2

)
dz

1+z2 when z = tan x
2 .

5.
∫
f(cosx) dx = 2

∫
f
(

1−z2

1+z2

)
dz

1+z2 when z = tan x
2 .

6.
∫
f(cosx) dx = −

∫
f(v) dv√

1−v2
when v = cosx.

7.
∫
f(sinx) dx =

∫
f(u) du√

1−u2
when u = sinx.

8.
∫
f(sinx, cosx) dx =

∫
f
(
u,
√
1− u2

)
du√
1−u2 when u = sinx.

9.
∫
f(sinx, cosx) dx = 2

∫
f
(

2z
1+z2 ,

1−z2

1+z2

)
dz

1+z2 when z = tan x
2 .

10.
∫∞
−∞ f(u) dx =

∫∞
−∞ f(x) dx when u = x −

n∑

j=1

aj
x− cj

where {ai} is any

sequence of positive constants and the {cj} are any real constants whatsoever.

Several transformations of the integral
∫∞
0 f(x) dx, with an infinite integration

range, to an integral with a finite integration range, are shown:

t(x) x(t) dx
dt Finite interval integral

e−x − log t − 1
t

∫ 1

0
f(− log t)

t dt
x

1+x
t

1−t
1

(1−t)2

∫ 1

0 f
(

t
1−t

)
dt

(1−t)2

tanhx 1
2 log

1+t
1−t

1
1−t2

∫ 1

0
f
(

1
2 log

1+t
1−t

)
dt

1−t2

5.3.6.3 Partial fraction decomposition

An integral of the form
∫
R(x) dx, where R is a rational function, can be evaluated

in terms of elementary functions. The technique is to factor the denominator of R
and create a partial fraction decomposition; each resulting sub-integral is elementary.

EXAMPLE Consider I =

∫
2x3 − 10x2 + 13x − 4

x2 − 5x+ 6
dx. This can be written as

I =

∫ (
2x+

x− 4

x2 − 5x+ 6

)
dx =

∫ (
2x+

2

x− 2
− 1

x− 3

)
dx

which can be readily integrated I = x2 + 2 ln(x− 2) − ln(x− 3).
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5.3.6.4 Integration by parts

In one dimension, the integration by parts formula is∫
u dv = uv −

∫
v du for indefinite integrals, (5.3.11)

∫ b

a

u dv = uv
∣∣b
a
−
∫ b

a

v du for definite integrals. (5.3.12)

When evaluating a given integral by this method, u and v must be chosen so that the

form
∫
u dv becomes identical to the given integral. This is usually accomplished by

specifying u and dv and deriving du and v. Then the integration by parts formula

will produce a boundary term and another integral to be evaluated. If u and v were

well chosen, then this second integral may be easier to evaluate.

EXAMPLE Consider the integral

I =

∫
x sin xdx.

Two obvious choices for the integration by parts formula are {u = x, dv = sin xdx}
and {u = sin x, dv = x dx}. We try each of them in turn.

1. Using {u = x, dv = sin xdx}, we compute du = dx and v =
∫
dv =

∫
sin xdx =

− cos x. Hence, we can represent I in the alternative form as

I =

∫
x sin xdx =

∫
u dv = uv −

∫
v du = −x cos x+

∫
cos xdx.

In this representation of I, we must evaluate the last integral. Because we know∫
cosx dx = sin x the final result is I = sin x− x cos x.

2. Using {u = sin x, dv = xdx} we compute du = cosx dx and v =
∫
dv =

∫
xdx =

x2/2. Hence, we can represent I in the alternative form as

I =

∫
x sin x dx =

∫
u dv = uv −

∫
v du =

x2

2
sin x−

∫
x2

2
cosxdx.

In this case, we have actually made the problem “worse” since the remaining integral

appearing in I is “harder” than the one we started with.

EXAMPLE Consider the integral

I =

∫
ex sin x dx.

We choose to use the integration by parts formula with u = ex and dv = sin x dx.

From these we compute du = ex dx and v =
∫
dv =

∫
sin xdx = − cosx. Hence,

we can represent I in the alternative form as

I =

∫
ex sin xdx =

∫
u dv = uv −

∫
v du = −ex cosx+

∫
ex cosx dx

If we write this as

I = −ex cosx+ J with J =

∫
ex cosx dx, (5.3.13)
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then we can apply integration by parts to J using {u = ex, dv = cosx dx}. From

these we compute du = ex dx and v =
∫
dv =

∫
cosx dx = sin x. Hence, we can

represent J in the alternative form as

J =

∫
ex cos xdx =

∫
u dv = uv −

∫
v du = ex sin x−

∫
ex sin xdx

If we write this as

J = ex sin x− I, (5.3.14)

then we can solve the linear Equations (5.3.13) and (5.3.14) simultaneously to deter-

mine both I and J . We find

I =

∫
ex sin x dx =

1

2
(ex sin x− ex cosx) , and

J =

∫
ex cos xdx =

1

2
(ex sin x+ ex cos x) .

(5.3.15)

5.3.6.5 Extended integration by parts rule

The following rule is the result of n+ 1 applications of integration by parts. Let

g1(x) =

∫
g(x) dx, g2(x) =

∫
g1(x) dx, . . . , gm(x) =

∫
gm−1(x) dx.

(5.3.16)

Then∫
f(x)g(x) dx = f(x)g1(x)− f ′(x)g2(x) + f ′′(x)g3(x) − . . .

+ (−1)nf (n)(x)gn+1(x) + (−1)n+1

∫
f (n+1)(x)gn+1(x) dx. (5.3.17)

5.3.7 TYPES OF INTEGRALS

5.3.7.1 Line and surface integrals

A line integral is a definite integral whose path of integration is along a specified

curve; it can be evaluated by reducing it to ordinary integrals. If f(x, y) is continuous

on C, and the integration contour C is parameterized by (φ(t), ψ(t)) as t varies from

a to b, then
∫

C
f(x, y) dx =

∫ b

a

f

(
φ(t), ψ(t)

)
φ′(t) dt,

∫

C
f(x, y) dy =

∫ b

a

f

(
φ(t), ψ(t)

)
ψ′(t) dt.

(5.3.18)

In a simply connected domain, the line integral I =
∫
C X dx + Y dy + Z dz is

independent of the closed curve C if and only if u = (X,Y, Z) is a gradient vector,

u = gradF (that is, Fx = X , Fy = Y , and Fz = Z).

Green’s theorem: Let D be a domain of the xy plane, and let C be a piecewise

smooth, simple closed curve in D whose interior R is also in D. Let P (x, y) and

Q(x, y) be functions defined inD with continuous first partial derivatives inD. Then
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∮

C
(P dx+Qdy) =

∫∫

R

(
∂Q

∂x
− ∂P

∂y

)
dx dy. (5.3.19)

This theorem may be written in the two alternative forms (using u = P (x, y)i +
Q(x, y)j and v = Q(x, y)i− P (x, y)j),∮

C
uT ds =

∫∫

R

curlu dx dy and

∮

C
vn ds =

∫∫

R

div v dx dy. (5.3.20)

where T represents the tangent vector and n represents the normal vector. The first

equation above is a simplification of Stokes’s theorem; the second equation is the

divergence theorem.

Stokes’s theorem: Let S be a piecewise smooth oriented surface in space,

whose boundary C is a piecewise smooth simple closed curve, directed in accor-

dance with the given orientation of S. Let u = Li + M j + Nk be a vector field

with continuous and differentiable components in a domain D of space including S.

Then,
∫
C uT ds =

∫∫
S

(curl u) · n dσ, where n is the chosen unit normal vector on S,

that is
∫

C
Ldx+M dy +N dz =

∫∫

S

(
∂N

∂y
− ∂M

∂z

)
dy dz

+

(
∂L

∂z
− ∂N

∂x

)
dz dx+

(
∂M

∂x
− ∂L

∂y

)
dx dy. (5.3.21)

Divergence theorem: Let v = Li+M j+Nk be a vector field in a domain D
of space. Let L, M , and N be continuous with continuous derivatives in D. Let S
be a piecewise smooth surface in D that forms the complete boundary of a bounded

closed region R in D. Let n be the outer normal of S with respect to R. Then∫∫
S

vn dσ =
∫∫∫
R

div v dx dy dz, that is

∫∫

S

Ldy dz +M dz dx+N dxdy

=

∫∫∫

R

(
∂L

∂x
+
∂M

∂y
+
∂N

∂z

)
dx dy dz. (5.3.22)

If D is a three-dimensional domain with boundary B, let dV represent the vol-

ume element of D, let dS represent the surface element of B, and let dS = n dS,

where n is the outer normal vector of the surface B. Then Gauss’ formulas are∫∫∫

D

∇ · A dV =

∫∫

B

dS · A =

∫∫

B

(n · A) dS,

∫∫∫

D

∇× A dV =

∫∫

B

dS× A =

∫∫

B

(n× A) dS, and

∫∫∫

D

∇φdV =

∫∫

B

φdS,

(5.3.23)
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where φ is an arbitrary scalar and A is an arbitrary vector.

Green’s theorems also relate a volume integral to a surface integral: Let V be

a volume with surface S, which we assume is simple and closed. Define n as the

outward normal to S. Let φ and ψ be scalar functions which, together with∇2φ and

∇2ψ, are defined in V and on S. Then

1. Green’s first theorem states that∫

S

φ
∂ψ

∂n
dS =

∫

V

(
φ∇2ψ +∇φ · ∇ψ

)
dV. (5.3.24)

2. Green’s second theorem states that∫

S

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dS =

∫

V

(
φ∇2ψ − ψ∇2φ

)
dV. (5.3.25)

5.3.7.2 Contour integrals

If f(z) is analytic in the region inside of the simple closed curve C (with proper

orientation), then

1. The Cauchy–Goursat integral theorem is
∮
C f(ξ) dξ = 0.

2. Cauchy’s integral formula is

f(z) =
1

2πi

∮

C

f(ξ)

ξ − z dξ and f ′(z) =
1

2πi

∮

C

f(ξ)

(ξ − z)2 dξ.
(5.3.26)

In general, f (n)(z) =
n!

2πi

∮

C

f(ξ)

(ξ − z)n+1
dξ.

The residue theorem: For every simple closed contour C enclosing at most a finite

number of (necessarily isolated) singularities {z1, z2, . . . , zn} of a single-valued an-

alytic function f(z) continuous on C,

1

2πi

∮

C
f(ξ) dξ =

n∑

k=1

Resf (zk) (5.3.27)

5.3.8 VARIATIONAL PRINCIPLES

If J depends on a function g(x) and its derivatives through an integral of the form

J [g] =
∫
F (g, g′, . . . ) dx, then J will be stationary to small perturbations (i.e., first

derivative zero) if F satisfies the corresponding Euler–Lagrange equation.

Function Euler–Lagrange equation∫
R F (x, y, y′) dx ∂F

∂y − d
dx

(
∂F
∂y′

)
= 0

∫
R
F
(
x, y, y′, . . . , y(n)

)
dx ∂F

∂y − d
dx

(
∂F
∂y′

)
+ d2

dx2

(
∂F
∂y′′

)
−

· · ·+ (−1)n dn

dxn

(
∂F

∂y(n)

)
= 0

∫∫
R

[
a
(
∂u
∂x

)2
+ b

(
∂u
∂x

)2
+ cu2 + 2fu

]
dx dy ∂

∂x

(
a∂u
∂x

)
+ ∂

∂y

(
b∂u∂y

)
−cu = f

∫∫
R

F (x, y, u, ux, uy, uxx, uxy, uyy) dx dy
∂F
∂u − ∂

∂x

(
∂F
∂ux

)
− ∂

∂y

(
∂F
∂uy

)
+

∂2

∂x2

(
∂F
∂uxx

)
+ ∂2

∂x∂y

(
∂F
∂uxy

)
+

∂2

∂y2

(
∂F
∂uyy

)
= 0
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5.3.9 CONTINUITY OF INTEGRAL ANTI-DERIVATIVES

Consider the following different anti-derivatives of an integral

F (x) =

∫
f(x) dx =

∫
3

5− 4 cosx
dx =





2 tan−1
(
3 tan x

2

)

2 tan−1(3 sinx/(cos x+ 1))

− tan−1(−3 sinx/(5 cosx− 4))

2 tan−1
(
3 tan x

2

)
+ 2π

⌊
x
2π + 1

2

⌋

where ⌊·⌋ denotes the floor function. These anti-derivatives are all “correct” because

differentiating any of them results in the original integrand (except at isolated points).

However, if we desire
∫ 4π

0 f(x) dx = F (4π) − F (0) to hold, then only the last

anti-derivative is correct. This is true because the other anti-derivatives of F (x) are

discontinuous when x is a multiple of π.

In general, if F̂ (x) =
∫ x

f(t) dt is a discontinuous evaluation (with F̂ (x) dis-

continuous at the single point x = b), then a continuous evaluation on a finite interval

is given by
∫ c

a
f(x) dx = F (c)− F (a), where

F (x) = F̂ (x) − F̂ (a) +H(x− b)
[
lim

x→b−
F̂ (x) − lim

x→b+
F̂ (x)

]
(5.3.28)

and where H(·) is the Heaviside function. For functions with an infinite number of

discontinuities, note that

∞∑

n=1

H(x− pn− q) =
⌊
x− q
p

⌋
.

5.3.10 ASYMPTOTIC INTEGRAL EVALUATION

1. Laplace’s method: If f ′(x0) = 0, f ′′(x0) < 0, and λ→∞, then

Ix0(λ) ≡
∫ x0+ǫ

x0−ǫ

g(x)eλf(x) dx ∼ g(x0)eλf(x0)

√
2π

λ |f ′′(x0)|
+ . . . .

(5.3.29)

Hence, if points of local maximum {xi} satisfy f ′(xi) = 0 and f ′′(xi) < 0,

then
∫∞
−∞ g(x)eλf(x) dx ∼∑i Ixi(λ).

2. Method of stationary phase: If f(x0) 6= 0, f ′(x0) = 0, f ′′(x0) 6= 0, g(x0) 6=
0, and λ→∞, then

Jx0,ǫ(λ) =

∫ x0+ǫ

x0−ǫ

g(x)eiλf(x) dx

∼ g(x0)
√

2π

λ |f ′′(x0)|
exp

[
iλf(x0) +

iπ

4
sgn f ′′(x0)

]
+ . . . . (5.3.30)
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5.3.11 TABLES OF INTEGRALS

While there are extensive compilations of integrals in tables, it is fairly uncommon

to find the exact integral desired. Usually some transformation will be required. The

simplest type of transformation is substitution. Simple forms of substitutions, such

as y = ax are employed, almost unconsciously, by experienced users of integral

tables. Finding the right substitution is largely a matter of intuition and experience.

We adopt the following conventions in the integral tables:

1. A constant of integration must be included with all indefinite integrals.

2. All angles are measured in radians, inverse trigonometric and hyperbolic func-

tions represent principal values.

3. Logarithmic expressions are to base e, unless otherwise specified, and are to

be evaluated for the absolute value of the arguments involved therein.

4. The natural logarithm function is denoted as log x.

5. The variables n and m usually denote integers. The denominator of the ex-

pressions shown are not allowed to be zero; this may require that a 6= 0 or

m 6= n or some other similar statement.

6. When inverse trigonometric functions occur in the integrals, be sure that any

replacements made for them are strictly in accordance with the rules for

such functions. This causes little difficulty when the argument of the inverse

trigonometric function is positive, because all angles involved are in the first

quadrant. However, if the argument is negative, special care must be used.

Thus, if u > 0 then

sin−1 u = cos−1
√
1− u2 = csc−1 1

u
= . . . .

However, if u < 0, then

sin−1 u = − cos−1
√
1− u2 = −π − csc−1 1

u
= . . . .
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5.4 TABLE OF INDEFINITE INTEGRALS

5.4.1 ELEMENTARY FORMS

1.

∫
a dx = ax.

2.

∫
a f(x) dx = a

∫
f(x) dx.

3.

∫
φ(y(x))dx =

∫
φ(y)

y′
dy, where y′ = dy

dx
.

4.

∫
(u+ v) dx =

∫
u dx+

∫
v dx, where u and v are any functions of x.

5.

∫
u dv = u

∫
dv −

∫
v du = uv −

∫
v du.

6.

∫
u
dv

dx
dx = uv −

∫
v
du

dx
dx.

7.

∫
xn dx =

xn+1

n+ 1
, except when n = −1.

8.

∫
dx

x
= log x.

9.

∫
f ′(x)

f(x)
dx = log f(x), (df(x) = f ′(x) dx).

10.

∫
f ′(x)

2
√
f(x)

dx =
√
f(x), (df(x) = f ′(x) dx).

11.

∫
ex dx = ex.

12.

∫
eax dx =

eax

a
.

13.

∫
bax dx =

bax

a log b
, b > 0.

14.

∫
log x dx = x log x− x.

15.

∫
ax dx =

ax

log a
, a > 0.

16.

∫
dx

a2 + x2
=

1

a
tan−1 x

a
.

17.

∫
dx

a2 − x2
=






1

a
tanh−1 x

a
,

or
1

2a
log

a+ x

a− x, a2 > x2.

18.

∫
dx

x2 − a2 =






−1

a
coth−1 x

a
,

or
1

2a
log

x− a
x+ a

, x2 > a2.



“smtf32” — 2011/5/20 — 2:09 — page 295 — #305

5.4. TABLE OF INDEFINITE INTEGRALS 295

19.

∫
dx√
a2 − x2

=






sin−1 x

|a| ,
or

− cos−1 x

|a| , a2 > x2.

20.

∫
dx√
x2 ± a2

= log
(
x+

√
x2 ± a2

)
.

21.

∫
dx

x
√
x2 − a2

=
1

|a| sec
−1 x

a
.

22.

∫
dx

x
√
a2 ± x2

= −1

a
log

(
a+
√
a2 ± x2

x

)
.

5.4.2 FORMS CONTAINING a+ bxa+ bxa+ bx

23.

∫
(a+ bx)n dx =

(a+ bx)n+1

(n+ 1)b
, n 6= −1.

24.

∫
x(a+ bx)n dx =

1

b2(n+ 2)
(a+ bx)n+2 − a

b2(n+ 1)
(a+ bx)n+1,

n 6= −1, n 6= −2.

25.

∫
x2(a+ bx)n dx =

1

b3

[
(a+ bx)n+3

n+ 3
− 2a

(a+ bx)n+2

n+ 2
+ a2

(a+ bx)n+1

n+ 1

]
,

n 6= −1, n 6= −2, n 6= −3.

26.

∫
xm(a+ bx)n dx =





xm+1(a+ bx)n

m+ n+ 1
+

an

m+ n+ 1

∫
xm(a+ bx)n−1 dx,

or
1

a(n+ 1)

[
−xm+1(a+ bx)n+1 + (m+ n+ 2)

∫
xm(a+ bx)n+1 dx

]
,

or
1

b(m+ n+ 1)

[
xm(a+ bx)n+1 −ma

∫
xm−1(a+ bx)n dx

]
.

27.

∫
dx

a+ bx
=

1

b
log |a+ bx|.

28.

∫
dx

(a+ bx)2
= − 1

b(a+ bx)
.

29.

∫
dx

(a+ bx)3
= − 1

2b(a+ bx)2
.

30.

∫
x

a+ bx
dx =






1

b2
[a+ bx− a log (a+ bx)] ,

or
x

b
− a

b2
log (a+ bx).

31.

∫
x

(a+ bx)2
dx =

1

b2

[
log (a+ bx) +

a

a+ bx

]
.

32.

∫
x

(a+ bx)n
dx =

1

b2

[
−1

(n− 2)(a+ bx)n−2
+

a

(n− 1)(a+ bx)n−1

]
,

n 6= 1, n 6= 2.



“smtf32” — 2011/5/20 — 2:09 — page 296 — #306

296 CHAPTER 5. ANALYSIS

33.

∫
x2

a+ bx
dx =

1

b3

(
1

2
(a+ bx)2 − 2a(a+ bx) + a2 log (a+ bx)

)
.

34.

∫
x2

(a+ bx)2
dx =

1

b3

(
a+ bx− 2a log (a+ bx)− a2

a+ bx

)
.

35.

∫
x2

(a+ bx)3
dx =

1

b3

(
log (a+ bx) +

2a

a+ bx
− a2

2(a+ bx)2

)
.

36.

∫
x2

(a+ bx)n
dx =

1

b3

[
−1

(n− 3)(a+ bx)n−3
+

2a

(n− 2)(a+ bx)n−2

− a2

(n− 1)(a+ bx)n−1

]
, n 6= 1, n 6= 2, n 6= 3.

37.

∫
dx

x(a+ bx)
= −1

a
log

a+ bx

x
.

38.

∫
dx

x(a+ bx)2
=

1

a(a+ bx)
− 1

a2
log

a+ bx

x
.

39.

∫
dx

x(a+ bx)3
=

1

a3

[
1

2

(
2a+ bx

a+ bx

)2

− log
a+ bx

x

]

.

40.

∫
dx

x2(a+ bx)
= − 1

ax
+

b

a2
log

a+ bx

x
.

41.

∫
dx

x3(a+ bx)
=

2bx− a
2a2x2

+
b2

a3
log

x

a+ bx
.

42.

∫
dx

x2(a+ bx)2
= − a+ 2bx

a2x(a+ bx)
+

2b

a3
log

a+ bx

x
.

5.4.3 FORMS CONTAINING c2 ± x2c2 ± x2c2 ± x2 AND x2 − c2x2 − c2x2 − c2

43.

∫
dx

c2 + x2
=

1

c
tan−1 x

c
.

44.

∫
dx

c2 − x2
=

1

2c
log

c+ x

c− x, c2 > x2.

45.

∫
dx

x2 − c2 =
1

2c
log

x− c
x+ c

, x2 > c2.

46.

∫
x

c2 ± x2
dx = ±1

2
log (c2 ± x2).

47.

∫
x

(c2 ± x2)n+1
dx = ∓ 1

2n(c2 ± x2)n
, n 6= 0.

48.

∫
dx

(c2 ± x2)n
=

1

2c2(n− 1)

[
x

(c2 ± x2)n−1
+ (2n− 3)

∫
dx

(c2 ± x2)n−1

]
.

49.

∫
dx

(x2 − c2)n =
1

2c2(n− 1)

[
− x

(x2 − c2)n−1
− (2n− 3)

∫
dx

(x2 − c2)n−1

]
.

50.

∫
x

x2 − c2 dx =
1

2
log (x2 − c2).

51.

∫
x

(x2 − c2)n+1
dx = − 1

2n(x2 − c2)n .
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5.4.4 FORMS CONTAINING a+ bxa+ bxa+ bx AND c+ dxc+ dxc+ dx

u = a+ bx, v = c+ dx, and k = ad− bc. (If k = 0, then v = (c/a)u.)

52.

∫
dx

uv
=

1

k
log
( v
u

)
.

53.

∫
x

uv
dx =

1

k

(a
b
log u− c

d
log v

)
.

54.

∫
dx

u2v
=

1

k

(
1

u
+
d

k
log

v

u

)
.

55.

∫
x

u2v
dx = − a

bku
− c

k2
log

v

u
.

56.

∫
x2

u2v
dx =

a2

b2ku
+

1

k2

(
c2

d
log v +

a(k − bc)
b2

log u

)
.

57.

∫
dx

unvm
=

1

k(m− 1)

[
−1

un−1vm−1
− b(m+ n− 2)

∫
dx

unvm−1

]
.

58.

∫
u

v
dx =

bx

d
+

k

d2
log v.

59.

∫
um

vn
dx =






− 1

k(n− 1)

[
um+1

vn−1
+ b(n−m− 2)

∫
um

vn−1
dx

]
,

or

− 1

d(n−m− 1)

[
um

vn−1
+mk

∫
um−1

vn
dx

]
,

or

− 1

d(n− 1)

[
um

vn−1
−mb

∫
um−1

vn−1
dx

]
.

5.4.5 FORMS CONTAINING a+ bxna+ bxna+ bxn

60.

∫
dx

a+ bx2
=

1√
ab

tan−1 x
√
ab

a
, ab > 0.

61.

∫
dx

a+ bx2
=






1

2
√
−ab

log
a+ x

√
−ab

a− x
√
−ab

, ab < 0,

or

1√
−ab

tanh−1 x
√
−ab
a

, ab < 0.

62.

∫
dx

a2 + b2x2
dx =

1

ab
tan−1 bx

a
.

63.

∫
x

a+ bx2
dx =

1

2b
log (a+ bx2).

64.

∫
x2

a+ bx2
dx =

x

b
− a

b

∫
dx

a+ bx2
.

65.

∫
dx

(a+ bx2)2
=

x

2a(a+ bx2)
+

1

2a

∫
dx

a+ bx2
.

66.

∫
dx

a2 − b2x2
=

1

2ab
log

a+ bx

a− bx .
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67.

∫
dx

(a+ bx2)m+1
=






1

2ma

x

(a+ bx2)m
+

2m− 1

2ma

∫
dx

(a+ bx2)m
,

or

(2m)!

(m!)2

[
x

2a

m∑

r=1

r!(r − 1)!

(4a)m−r(2r)!(a+ bx2)r
+

1

(4a)m

∫
dx

a+ bx2

]
.

68.

∫
xdx

(a+ bx2)m+1
= − 1

2bm(a+ bx2)m
, m 6= 0.

69.

∫
x2 dx

(a+ bx2)m+1
= − x

2mb(a+ bx2)m
+

1

2mb

∫
dx

(a+ bx2)m
, m 6= 0.

70.

∫
dx

x(a+ bx2)
=

1

2a
log

x2

a+ bx2
.

71.

∫
dx

x2(a+ bx2)
= − 1

ax
− b

a

∫
dx

a+ bx2
.

72.

∫
dx

x (a+ bx2)m+1 =






1

2am(a+ bx2)m
+

1

a

∫
dx

x (a+ bx2)m
,

or

1

2am+1

[
m∑

r=1

ar

r(a+ bx2)r
+ log

x2

a+ bx2

]
.

73.

∫
dx

x2 (a+ bx2)m+1 =
1

a

∫
dx

x2(a+ bx2)m
− b

a

∫
dx

(a+ bx2)m+1
.

74.

∫
dx

a+ bx3
=

k

3a

[
1

2
log

(k + x)3

a+ bx3
+
√
3 tan−1 2x− k

k
√
3

]
, k = 3

√
a
b

.

75.

∫
x dx

a+ bx3
=

1

3bk

[
1

2
log

a+ bx3

(k + x)3
+
√
3 tan−1 2x− k

k
√
3

]
, k = 3

√
a
b

.

76.

∫
x2 dx

a+ bx3
=

1

3b
log a+ bx3.

77.

∫
dx

a+ bx4
=






k

2a

[
1

2
log

x2 + 2kx+ 2k2

x2 − 2kx+ 2k2
+ tan−1 2kx

2k2 − x2

]
, ab > 0, k =

( a
4b

)1/4
,

or
k

2a

[
1

2
log

x+ k

x− k + tan−1 x

k

]
, ab < 0, k =

(
−a
b

)1/4
.

78.

∫
x

a+ bx4
dx =

1

2bk
tan−1 x

2

k
, ab > 0, k =

√
a
b

.

79.

∫
x

a+ bx4
dx =

1

4bk
log

x2 − k
x2 + k

, ab < 0, k =
√
− a

b
.

80.

∫
x2

a+ bx4
dx =

1

4bk

[
1

2
log

x2 − 2kx+ 2k2

x2 + 2kx+ 2k2
+ tan−1 2kx

2k2 − x2

]
,

ab > 0, k =
(

a
4b

)1/4
.

81.

∫
x2 dx

a+ bx4
=

1

4bk

[
log

x− k
x+ k

+ 2 tan−1 x

k

]
, ab < 0, k = 4

√
− a

b
.

82.

∫
x3 dx

a+ bx4
=

1

4b
log
(
a+ bx4).
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83.

∫
dx

x(a+ bxn)
=

1

an
log

xn

a+ bxn
, n 6= 0.

84.

∫
dx

(a+ bxn)m+1
=

1

a

∫
dx

(a+ bxn)m
− b

a

∫
xn dx

(a+ bxn)m+1
.

85.

∫
xm dx

(a+ bxn)p+1
=

1

b

∫
xm−n dx

(a+ bxn)p
− a

b

∫
xm−n dx

(a+ bxn)p+1
.

86.

∫
dx

xm(a+ bxn)p+1
=

1

a

∫
dx

xm(a+ bxn)p
− b

a

∫
dx

xm−n(a+ bxn)p+1
.

87.

∫
xm(a+ bxn)p dx =






1

b(np+m+ 1)

[
xm−n+1(a+ bxn)p+1 − a(m− n+ 1)

∫
xm−n(a+ bxn)p dx

]
,

or
1

np+m+ 1

[
xm+1(a+ bxn)p + anp

∫
xm(a+ bxn)p−1 dx

]
,

or
1

a(m+ 1)

[
xm+1(a+ bxn)p+1 − b(m+ 1 + np+ n)

∫
xm+n(a+ bxn)p dx

]
,

or
1

an(p+ 1)

[
−xm+1(a+ bxn)p+1 + (m+ 1 + np+ n)

∫
xm(a+ bxn)p+1 dx

]
.

5.4.6 FORMS CONTAINING c3 ± x3c3 ± x3c3 ± x3

88.

∫
dx

c3 ± x3
= ± 1

6c2
log

(
(c± x)3
c3 ± x3

)
+

1

c2
√
3
tan−1 2x∓ c

c
√
3
.

89.

∫
dx

(c3 ± x3)2
=

x

3c3(c3 ± x3)
+

2

3c3

∫
dx

c3 ± x3
.

90.

∫
dx

(c3 ± x3)n+1
=

1

3nc3

[
x

(c3 ± x3)n
+ (3n− 1)

∫
dx

(c3 ± x3)n

]
, n 6= 0.

91.

∫
x dx

c3 ± x3
=

1

6c
log

c3 ± x3

(c± x)3 ±
1

c
√
3
tan−1 2x∓ c

c
√
3
.

92.

∫
xdx

(c3 ± x3)2
=

x2

3c3(c3 ± x3)
+

1

3c3

∫
x dx

c3 ± x3
.

93.

∫
xdx

(c3 ± x3)n+1
=

1

3nc3

[
x2

(c3 ± x3)n
+ (3n− 2)

∫
xdx

(c3 ± x3)n

]
, n 6= 0.

94.

∫
x2 dx

c3 ± x3
= ±1

3
log (c3 ± x3).

95.

∫
x2 dx

(c3 ± x3)n+1
= ∓ 1

3n(c3 ± x3)n
, n 6= 0.

96.

∫
dx

x(c3 ± x3)
=

1

3c3
log

x3

c3 ± x3
.

97.

∫
dx

x(c3 ± x3)2
=

1

3c3(c3 ± x3)
+

1

3c6
log

x3

c3 ± x3
.

98.

∫
dx

x(c3 ± x3)n+1
=

1

3nc3(c3 ± x3)n
+

1

c3

∫
dx

x(c3 ± x3)n
, n 6= 0.
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99.

∫
dx

x2(c3 ± x3)
= − 1

c3x
∓ 1

c3

∫
x dx

(c3 ± x3)
.

100.

∫
dx

x2(c3 ± x3)n+1
=

1

c3

∫
dx

x2(c3 ± x3)n
∓ 1

c3

∫
x dx

(c3 ± x3)n+1
.

5.4.7 FORMS CONTAINING c4 ± x4c4 ± x4c4 ± x4

101.

∫
dx

c4 + x4
=

1

2c3
√
2

[
1

2
log

(
x2 + cx

√
2 + c2

x2 − cx
√
2 + c2

)
+ tan−1 cx

√
2

c2 − x2

]
.

102.

∫
dx

c4 − x4
=

1

2c3

[
1

2
log

c+ x

c− x + tan−1 x

c

]
.

103.

∫
xdx

c4 + x4
=

1

2c2
tan−1 x

2

c2
.

104.

∫
xdx

c4 − x4
=

1

4c2
log

c2 + x2

c2 − x2
.

105.

∫
x2 dx

c4 + x4
=

1

2c
√
2

[
1

2
log

(
x2 − cx

√
2 + c2

x2 + cx
√
2 + c2

)
+ tan−1 cx

√
2

c2 − x2

]
.

106.

∫
x2 dx

c4 − x4
=

1

2c

[
1

2
log

c+ x

c− x − tan−1 x

c

]
.

107.

∫
x3 dx

c4 ± x4
= ±1

4
log (c4 ± x4).

5.4.8 FORMS CONTAINING a+ bx+ cx2a+ bx+ cx2a+ bx+ cx2

X = a+ bx+ cx2 and q = 4ac− b2.

If q = 0, then X = c
(
x+ b

2c

)2
and other formulas should be used.

108.

∫
dx

X
=






2√
q
tan−1 2cx+ b√

q
, q > 0,

or
−2√−q tanh−1 2cx + b√−q , q < 0,

or
1√−q log

2cx+ b−√−q
2cx+ b+

√−q , q < 0.

109.

∫
dx

X2
=

2cx+ b

qX
+

2c

q

∫
dx

X
.

110.

∫
dx

X3
=

2cx+ b

q

(
1

2X2
+

3c

qX

)
+

6c2

q2

∫
dx

X
.

111.

∫
dx

Xn+1
=






2cx+ b

nqXn
+

2(2n− 1)c

qn

∫
dx

Xn
,

or

(2n)!

(n!)2

(
c

q

)n
[
2cx+ b

q

n∑

r=1

( q

cX

)r ( (r − 1)!r!

(2r)!

)
+

∫
dx

X

]

.
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112.

∫
x dx

X
=

1

2c
logX − b

2c

∫
dx

X
.

113.

∫
xdx

X2
= − bx+ 2a

qX
− b

q

∫
dx

X
.

114.

∫
x dx

Xn+1
= −2a+ bx

nqXn
− b(2n− 1)

nq

∫
dx

Xn
, n 6= 0.

115.

∫
x2 dx

X
=
x

c
− b

2c2
logX +

b2 − 2ac

2c2

∫
dx

X
.

116.

∫
x2 dx

X2
=

(b2 − 2ac)x+ ab

cqX
+

2a

q

∫
dx

X
.

117.

∫
xm dx

Xn+1
= − xm−1

(2n−m+ 1)cXn
− n−m+ 1

2n−m+ 1

b

c

∫
xm−1

Xn+1
dx

+
m− 1

2n−m+ 1

a

c

∫
xm−2

Xn+1
dx.

118.

∫
dx

xX
=

1

2a
log

x2

X
− b

2a

∫
dx

X
.

119.

∫
dx

x2X
=

b

2a2
log

X

x2
− 1

ax
+

(
b2

2a2
− c

a

)∫
dx

X
.

120.

∫
dx

xXn
=

1

2a(n− 1)Xn−1
− b

2a

∫
dx

Xn
+

1

a

∫
dx

xXn−1
, n 6= 1.

121.

∫
dx

xmXn+1
= − 1

(m− 1)axm−1Xn
− n+m− 1

m− 1

b

a

∫
dx

xm−1Xn+1

−2n+m− 1

m− 1

c

a

∫
dx

xm−2Xn+1
.

5.4.9 FORMS CONTAINING
√
a+ bx
√
a+ bx
√
a+ bx

122.

∫ √
a+ bx dx =

2

3b

√
(a+ bx)3.

123.

∫
x
√
a+ bx dx = −2(2a− 3bx)

15b2

√
(a+ bx)3.

124.

∫
x2
√
a+ bx dx =

2(8a2 − 12abx+ 15b2x2)

105b3

√
(a+ bx)3.

125.

∫
xm
√
a+ bx dx =






2

b(2m+ 3)

[
xm
√

(a+ bx)3 −ma
∫
xm−1

√
a+ bx dx

]
,

or

2

bm+1

√
a+ bx

m∑

r=0

m!(−a)m−r

r!(m− r)!(2r + 3)
(a+ bx)r+1.

126.

∫ √
a+ bx

x
dx = 2

√
a+ bx+ a

∫
dx

x
√
a+ bx

.

127.

∫ √
a+ bx

xm
dx = − 1

(m− 1)a

[√
(a+ bx)3

xm−1
+

(2m− 5)b

2

∫ √
a+ bx

xm−1
dx

]
.

128.

∫
dx√
a+ bx

=
2
√
a+ bx

b
.
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129.

∫
x dx√
a+ bx

= −2(2a− bx)
3b2

√
a+ bx.

130.

∫
x2 dx√
a+ bx

=
2(8a2 − 4abx+ 3b2x2)

15b3

√
a+ bx.

131.

∫
xm dx√
a+ bx

=






2

(2m+ 1)b

[
xm
√
a+ bx−ma

∫
xm−1

√
a+ bx

dx

]
,

or

2(−a)m
√
a+ bx

bm+1

m∑

r=0

(−1)rm!(a+ bx)r

(2r + 1)r!(m− r)!ar .

132.

∫
dx

x
√
a+ bx

=






2√
−a tan−1

√
a+ bx

−a , a < 0,

or

1√
a
log

(√
a+ bx−√a√
a+ bx+

√
a

)
, a > 0.

133.

∫
dx

x2
√
a+ bx

= −
√
a+ bx

ax
− b

2a

∫
dx

x
√
a+ bx

.

134.

∫
dx

xn
√
a+ bx

=






−
√
a+ bx

(n− 1)axn−1
− (2n− 3)b

(2n− 2)a

∫
dx

xn−1
√
a+ bx

,

or

(2n− 2)!

[(n− 1)!]2

[
−
√
a+ bx

a

n−1∑

r=1

r!(r − 1)!

xr(2r)!

(
− b

4a

)n−r−1

+

(
− b

4a

)n−1 ∫
dx

x
√
a+ bx

]
.

135.

∫
(a+ bx)±n/2 dx =

2(a+ bx)(2±n)/2

b(2± n) .

136.

∫
x(a+ bx)±n/2 dx =

2

b2

[
(a+ bx)(4±n)/2

4± n − a(a+ bx)(2±n)/2

2± n

]
.

137.

∫
dx

x(a+ bx)n/2
=

1

a

∫
dx

x(a+ bx)(n−2)/2
− b

a

∫
dx

(a+ bx)n/2
.

138.

∫
(a+ bx)n/2

x
dx = b

∫
(a+ bx)(n−2)/2 dx+ a

∫
(a+ bx)(n−2)/2

x
dx.

5.4.10 FORMS CONTAINING
√
a+ bx
√
a+ bx
√
a+ bx AND

√
c+ dx
√
c+ dx
√
c+ dx

u = a+ bx, v = c+ dx, k = ad− bc.
If k = 0, then v = c

au, and other formulas should be used.

139.

∫
dx√
uv

=






2√
bd

tanh−1

√
bduv

bv
, bd > 0, k < 0,

2√
bd

tanh−1

√
bduv

du
, bd > 0, k > 0,

1√
bd

log
(bv +

√
bduv)2

v
, bd > 0,

2√
−bd

tan−1

√
−bduv
bv

, bd < 0,

− 1√
−bd

sin−1

(
2bdx+ ad+ bc

|k|

)
, bd < 0.
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140.

∫ √
uv dx =

k + 2bv

4bd

√
uv − k2

8bd

∫
dx√
uv
.

141.

∫
dx

v
√
u

=






1√
kd

log
d
√
u−
√
kd

d
√
u+
√
kd
, kd > 0,

or

1√
kd

log

(
d
√
u−
√
kd
)2

v
, kd > 0,

or
2√
−kd

tan−1 d
√
u√
−kd

, kd < 0.

142.

∫
xdx√
uv

=

√
uv

bd
− ad+ bc

2bd

∫
dx√
uv
.

143.

∫
dx

v
√
uv

= −2
√
uv

kv
.

144.

∫
v dx√
uv

=

√
uv

b
− k

2b

∫
dx√
uv
.

145.

∫ √
v

u
dx =

v

|v|

∫
v dx√
uv
.

146.

∫
vm
√
u dx =

1

(2m+ 3)d

(
2vm+1√u+ k

∫
vm dx√

u

)
.

147.

∫
dx

vm
√
u

= − 1

(m− 1)k

( √
u

vm−1
+

(
m− 3

2

)
b

∫
dx

vm−1
√
u

)
, m 6= 1.

148.

∫
vm√
u
dx =






2

b(2m+ 1)

(
vm
√
u−mk

∫
vm−1

√
u

dx

)
,

or

2(m!)2
√
u

b(2m+ 1)!

m∑

r=0

(
−4k

b

)m−r
(2r)!

(r!)2
vr.

5.4.11 FORMS CONTAINING
√
x2 ± a2
√
x2 ± a2
√
x2 ± a2

149.

∫ √
x2 ± a2 dx =

1

2

[
x
√
x2 ± a2 ± a2 log

(
x+

√
x2 ± a2

)]
.

150.

∫
dx√
x2 ± a2

= log
(
x+

√
x2 ± a2

)
.

151.

∫
dx

x
√
x2 − a2

=
1

|a| sec
−1 x

a
.

152.

∫
dx

x
√
x2 + a2

= −1

a
log

(
a+
√
x2 + a2

x

)
.

153.

∫ √
x2 + a2

x
dx =

√
x2 + a2 − a log

(
a+
√
x2 + a2

x

)
.

154.

∫ √
x2 − a2
x

dx =
√
x2 − a2 − |a| sec−1 x

a
.

155.

∫
x√

x2 ± a2
dx =

√
x2 ± a2.

156.

∫
x
√
x2 ± a2 dx =

1

3

√
(x2 ± a2)3.
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157.

∫ √
(x2 ± a2)3 dx =

1

4

[
x
√

(x2 ± a2)3 ± 3a2x

2

√
x2 ± a2

+
3a4

2
log
(
x+

√
x2 ± a2

)]
.

158.

∫
dx√

(x2 ± a2)3
=

±x
a2
√
x2 ± a2

.

159.

∫
x√

(x2 ± a2)3
dx =

−1√
x2 ± a2

.

160.

∫
x
√

(x2 ± a2)3 dx =
1

5

√
(x2 ± a2)5.

161.

∫
x2
√
x2 ± a2 dx =

x

4

√
(x2 ± a2)3 ∓ a2

8
x
√
x2 ± a2 − a4

8
log
(
x+

√
x2 ± a2

)
.

162.

∫
x3
√
x2 + a2 dx =

1

15
(3x2 − 2a2)

√
(x2 + a2)3.

163.

∫
x3
√
x2 − a2 dx =

1

5

√
(x2 − a2)5 + a2

3

√
(x2 − a2)3.

164.

∫
x2

√
x2 ± a2

dx =
x

2

√
x2 ± a2 ∓ a2

2
log
(
x+

√
x2 ± a2

)
.

165.

∫
x3

√
x2 ± a2

dx =
1

3

√
(x2 ± a2)3 ∓ a2

√
x2 ± a2.

166.

∫
dx

x2
√
x2 ± a2

dx = ∓
√
x2 ± a2
a2x

.

167.

∫
dx

x3
√
x2 + a2

dx = −
√
x2 + a2

2a2x2
+

1

2a3
log

(
a+
√
x2 + a2

x

)
.

168.

∫
dx

x3
√
x2 − a2

dx =

√
x2 − a2
2a2x2

+
1

2|a|3
sec−1 x

a
.

169.

∫
x2
√

(x2 ± a2)3 dx =
x

6

√
(x2 ± a2)5 ∓ a2x

24

√
(x2 ± a2)3 − a4x

16

√
x2 ± a2

∓a
6

16
log
(
x+

√
x2 ± a2

)
.

170.

∫
x3
√

(x2 ± a2)3 dx =
1

7

√
(x2 ± a2)7 ∓ a2

5

√
(x2 ± a2)5.

171.

∫ √
x2 ± a2
x2

dx = −
√
x2 ± a2
x

+ log
(
x+

√
x2 ± a2

)
.

172.

∫ √
x2 + a2

x3
dx = −

√
x2 + a2

2x2
− 1

2a
log

(
a+
√
x2 + a2

x

)
.

173.

∫ √
x2 − a2
x3

dx = −
√
x2 − a2
2x2

+
1

2 |a| sec
−1 x

a
.

174.

∫ √
x2 ± a2
x4

dx = ∓
√

(x2 ± a2)3
3a2x3

.

175.

∫
x2 dx√

(x2 ± a2)3
= − x√

x2 ± a2
+ log

(
x+

√
x2 ± a2

)
.

176.

∫
x3 dx√

(x2 ± a2)3
=
√
x2 ± a2 ± a2√

x2 ± a2
.
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177.

∫
dx

x
√

(x2 + a2)3
=

1

a2
√
x2 + a2

− 1

a3
log

(
a+
√
x2 + a2

x

)
.

178.

∫
dx

x
√

(x2 − a2)3
= − 1

a2
√
x2 − a2

− 1

|a3| sec
−1 x

a
.

179.

∫
dx

x2
√

(x2 ± a2)3
= − 1

a4

[√
x2 ± a2
x

+
x√

x2 ± a2

]
.

180.∫
dx

x3
√

(x2 + a2)3
= − 1

2a2x2
√
x2 + a2

− 3

2a4
√
x2 + a2

+
3

2a5
log

(
a+
√
x2 + a2

x

)
.

181.

∫
dx

x3
√

(x2 − a2)3
=

1

2a2x2
√
x2 − a2

− 3

2a4
√
x2 − a2

− 3

2 |a5| sec
−1 x

a
.

182.

∫
xm dx√
x2 ± a2

=
1

m
xm−1

√
x2 ± a2 ∓ m− 1

m
a2
∫

xm−2

√
x2 ± a2

dx.

183.

∫
x2m dx√
x2 ± a2

=
(2m)!

22m(m!)2

[
√
x2 ± a2

m∑

r=1

r!(r − 1)!

(2r)!
(∓a2)m−r(2x)2r−1

+(∓a2)m log
(
x+

√
x2 ± a2

)]
.

184.

∫
x2m+1 dx√
x2 ± a2

=
√
x2 ± a2

m∑

r=0

(2r)!(m!)2

(2m+ 1)!(r!)2
(∓4a2)m−rx2r.

185.

∫
dx

xm
√
x2 ± a2

= ∓
√
x2 ± a2

(m− 1)a2xm−1
∓ (m− 2)

(m− 1)a2

∫
dx

xm−2
√
x2 ± a2

.

186.

∫
dx

x2m
√
x2 ± a2

=
√
x2 ± a2

m−1∑

r=0

(m− 1)!m!(2r)!22m−2r−1

(r!)2(2m)!(∓a2)m−rx2r+1
.

187.

∫
dx

x2m+1
√
x2 + a2

=
(2m)!

(m!)2

[√
x2 + a2

a2

m∑

r=1

(−1)m−r+1 r!(r − 1)!

2(2r)!(4a2)m−rx2r

+
(−1)m+1

22ma2m+1
log

(√
x2 + a2 + a

x

)]
.

188.

∫
dx

x2m+1
√
x2 − a2

=
(2m)!

(m!)2

[√
x2 − a2
a2

m∑

r=1

r!(r − 1)!

2(2r)!(4a2)m−rx2r

+
1

22m |a|2m+1
sec−1 x

a

]
.

189.

∫
dx

(x− a)
√
x2 − a2

= −
√
x2 − a2
a(x− a) .

190.

∫
dx

(x+ a)
√
x2 − a2

=

√
x2 − a2
a(x+ a)

.

5.4.12 FORMS CONTAINING
√
a2 − x2
√
a2 − x2
√
a2 − x2

191.

∫ √
a2 − x2 dx =

1

2

(
x
√
a2 − x2 + a2 sin−1 x

|a|

)
.

192.

∫
dx√
a2 − x2

= sin−1 x

|a| = − cos−1 x

|a| .
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193.

∫
dx

x
√
a2 − x2

= −1

a
log

(
a+
√
a2 − x2

x

)
.

194.

∫ √
a2 − x2

x
dx =

√
a2 − x2 − a log

(
a+
√
a2 − x2

x

)
.

195.

∫
x√

a2 − x2
dx = −

√
a2 − x2.

196.

∫
x
√
a2 − x2 dx = −1

3

√
(a2 − x2)3.

197.

∫ √
(a2 − x2)3 dx =

1

4

(
x
√

(a2 − x2)3 +
3a2x

2

√
a2 − x2 +

3a4

2
sin−1 x

|a|

)
.

198.

∫
dx√

(a2 − x2)3
=

x

a2
√
a2 − x2

.

199.

∫
x√

(a2 − x2)3
dx =

1√
a2 − x2

.

200.

∫
x
√

(a2 − x2)3 dx = −1

5

√
(a2 − x2)5.

201.

∫
x2
√
a2 − x2 dx = −x

4

√
(a2 − x2)3 +

a2

8

(
x
√
a2 − x2 + a2 sin−1 x

|a|

)
.

202.

∫
x3
√
a2 − x2 dx =

(
−1

5
x2 − 2

15
a2
)√

(a2 − x2)3.

203.

∫
x2
√

(a2 − x2)3 dx = −1

6
x
√

(a2 − x2)5 +
a2x

24

√
(a2 − x2)3

+
a4x

16

√
a2 − x2 +

a6

16
sin−1 x

|a| .

204.

∫
x3
√

(a2 − x2)3 dx =
1

7

√
(a2 − x2)7 − a2

5

√
(a2 − x2)5.

205.

∫
x2

√
a2 − x2

dx = −x
2

√
a2 − x2 +

a2

2
sin−1 x

|a| .

206.

∫
dx

x2
√
a2 − x2

= −
√
a2 − x2

a2x
.

207.

∫ √
a2 − x2

x2
dx = −

√
a2 − x2

x
− sin−1 x

|a| .

208.

∫ √
a2 − x2

x3
dx = −

√
a2 − x2

2x2
+

1

2a
log

(
a+
√
a2 − x2

x

)
.

209.

∫ √
a2 − x2

x4
dx = −

√
(a2 − x2)3

3a2x3
.

210.

∫
x2 dx√

(a2 − x2)3
=

x√
a2 − x2

− sin−1 x

|a| .

211.

∫
x3 dx√
a2 − x2

= −2

3

√
(a2 − x2)3 − x2

√
a2 − x2.

212.

∫
x3 dx√

(a2 − x2)3
= 2
√
a2 − x2 +

x2

√
a2 − x2

=
a2√

a2 − x2
+
√
a2 − x2.

213.

∫
dx

x3
√
a2 − x2

= −
√
a2 − x2

2a2x2
− 1

2a3
log

(
a+
√
a2 − x2

x

)
.
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214.

∫
dx

x
√

(a2 − x2)3
=

1

a2
√
a2 − x2

− 1

a3
log

(
a+
√
a2 − x2

x

)
.

215.

∫
dx

x2
√

(a2 − x2)3
=

1

a4

(
−
√
a2 − x2

x
+

x√
a2 − x2

)
.

216.∫
dx

x3
√

(a2 − x2)3
= − 1

2a2x2
√
a2 − x2

+
3

2a4
√
a2 − x2

− 3

2a5
log

(
a+
√
a2 − x2

x

)
.

217.

∫
xm

√
a2 − x2

dx = −x
m−1
√
a2 − x2

m
+

(m− 1)a2

m

∫
xm−2

√
a2 − x2

dx.

218.

∫
x2m

√
a2 − x2

dx =
(2m)!

(m!)2

[
−
√
a2 − x2

m∑

r=1

r!(r − 1)!

22m−2r+1(2r)!
a2m−2rx2r−1

+
a2m

22m
sin−1 x

|a|

]
.

219.

∫
x2m+1

√
a2 − x2

dx = −
√
a2 − x2

m∑

r=0

(2r)!(m!)2

(2m+ 1)!(r!)2
(4a2)m−rx2r.

220.

∫
dx

xm
√
a2 − x2

= −
√
a2 − x2

(m− 1)a2xm−1
+

(m− 2)

(m− 1)a2

∫
dx

xm−2
√
a2 − x2

.

221.

∫
dx

x2m
√
a2 − x2

= −
√
a2 − x2

m−1∑

r=0

(m− 1)!m!(2r)!22m−2r−1

(r!)2(2m)!a2m−2rx2r+1
.

222.

∫
dx

x2m+1
√
a2 − x2

=
(2m)!

(m!)2

[

−
√
a2 − x2

a2

m∑

r=1

r!(r − 1)!

2(2r)!(4a2)m−rx2r

+
1

22ma2m+1
log

(
a−
√
a2 − x2

x

)]
.

223.

∫
dx

(b2 − x2)
√
a2 − x2

=






1

2b
√
a2 − b2

log

(
(b
√
a2 − x2 + x

√
a2 − b2)2

b2 − x2

)
, a2 > b2,

or

1

b
√
b2 − a2

tan−1 x
√
b2 − a2

b
√
a2 − x2

, b2 > a2.

224.

∫
dx

(b2 + x2)
√
a2 − x2

=
1

b
√
a2 + b2

tan−1 x
√
a2 + b2

b
√
a2 − x2

.

225.

∫ √
a2 − x2

b2 + x2
dx =

√
a2 + b2

|b| sin−1 x
√
a2 + b2

|a|
√
x2 + b2

− sin−1 x

|a| , b2 > a2.

5.4.13 FORMS CONTAINING
√
a+ bx+ cx2
√
a+ bx+ cx2
√
a+ bx+ cx2

X = a+ bx+ cx2, q = 4ac− b2, and k = 4c/q.

If q = 0, then
√
X =

√
c
∣∣x+ b

2c

∣∣ .

226.

∫
dx√
X

=






1√
c
log

(
2
√
cX + 2cx + b√

q

)
, c > 0,

or
1√
c
sinh−1 2cx + b√

q
, c > 0,

or

− 1√−c sin
−1 2cx+ b√−q , c < 0.
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227.

∫
dx

X
√
X

=
2(2cx+ b)

q
√
X

.

228.

∫
dx

X2
√
X

=
2(2cx + b)

3q
√
X

(
1

X
+ 2k

)
.

229.

∫
dx

Xn
√
X

=






2(2cx+ b)
√
X

(2n− 1)qXn
+

2k(n− 1)

2n− 1

∫
dx

Xn−1
√
X
,

or

(2cx+ b)(n!)(n− 1)!4nkn−1

q(2n)!
√
X

n−1∑

r=0

(2r)!

(4kX)r(r!)2
.

230.

∫ √
X dx =

(2cx + b)
√
X

4c
+

1

2k

∫
dx√
X
.

231.

∫
X
√
X dx =

(2cx+ b)
√
X

8c

(
X +

3

2k

)
+

3

8k2

∫
dx√
X
.

232.

∫
X2
√
X dx =

(2cx+ b)
√
X

12c

(
X2 +

5X

4k
+

15

8k2

)
+

5

16k3

∫
dx√
X
.

233.

∫
Xn
√
X dx =






(2cx+ b)Xn
√
X

4(n+ 1)c
+

2n+ 1

2(n+ 1)k

∫
Xn−1

√
X dx,

or

(2n+ 2)!

[(n+ 1)!]2 (4k)n+1

[
k(2cx+ b)

√
X

c

n∑

r=0

r!(r + 1)!(4kX)r

(2r + 2)!
+

∫
dx√
X

]
.

234.

∫
xdx√
X

=

√
X

c
− b

2c

∫
dx√
X
.

235.

∫
xdx

X
√
X

= −2(bx+ 2a)

q
√
X

.

236.

∫
x dx

Xn
√
X

= −
√
X

(2n− 1)cXn
− b

2c

∫
dx

Xn
√
X
.

237.

∫
x2 dx√
X

=

(
x

2c
− 3b

4c2

)√
X +

3b2 − 4ac

8c2

∫
dx√
X
.

238.

∫
x2 dx

X
√
X

=
(2b2 − 4ac)x+ 2ab

cq
√
X

+
1

c

∫
dx√
X
.

239.

∫
x2 dx

Xn
√
X

=
(2b2 − 4ac)x+ 2ab

(2n− 1)cqXn−1
√
X

+
4ac+ (2n− 3)b2

(2n− 1)cq

∫
dx

Xn−1
√
X
.

240.

∫
x3 dx√
X

=

(
x2

3c
− 5bx

12c2
+

5b2

8c3
− 2a

3c2

)√
X +

(
3ab

4c2
− 5b3

16c3

)∫
dx√
X
.

241.

∫
xn dx√
X

=
1

nc
xn−1

√
X − (2n− 1)b

2nc

∫
xn−1 dx√

X
− (n− 1)a

nc

∫
xn−2 dx√

X
.

242.

∫
x
√
X dx =

X
√
X

3c
− b(2cx+ b)

8c2

√
X − b

4ck

∫
dx√
X
.

243.

∫
xX
√
X dx =

X2
√
X

5c
− b

2c

∫
X
√
X dx.

244.

∫
xXn

√
X dx =

Xn+1
√
X

(2n+ 3)c
− b

2c

∫
Xn
√
X dx.
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245.

∫
x2
√
X dx =

(
x− 5b

6c

)
X
√
X

4c
+

5b2 − 4ac

16c2

∫ √
X dx.

246.

∫
dx

x
√
X

=






1√−a sin−1

(
bx+ 2a

|x|√−q

)
, a < 0,

or

−2
√
X

bx
, a = 0,

or

− 1√
a
log

(
2
√
aX + bx+ 2a

x

)
, a > 0.

247.

∫
dx

x2
√
X

= −
√
X

ax
− b

2a

∫
dx

x
√
X
.

248.

∫ √
X

x
dx =

√
X +

b

2

∫
dx√
X

+ a

∫
dx

x
√
X
.

249.

∫ √
X

x2
dx = −

√
X

x
+
b

2

∫
dx

x
√
X

+ c

∫
dx√
X
.

5.4.14 FORMS CONTAINING
√
2ax− x2
√
2ax− x2
√
2ax− x2

250.

∫ √
2ax− x2 dx =

1

2

[
(x− a)

√
2ax− x2 + a2 sin−1 x− a

|a|

]
.

251.

∫
dx√

2ax− x2
=






cos−1

(
a− x
|a|

)
,

or

sin−1

(
x− a
|a|

)
.

252.

∫
xn
√

2ax− x2 dx =






−x
n−1
√

(2ax− x2)3

n+ 2
+

(2n+ 1)a

n+ 2

∫
xn−1

√
2ax− x2 dx,

or
√

2ax− x2

[
xn+1

n+ 2
−

n∑

r=0

(2n+ 1)!(r!)2an−r+1

2n−r(2r + 1)!(n+ 2)!n!
xr

]

+
(2n+ 1)!an+2

2nn!(n+ 2)!
sin−1

(
x− a
|a|

)
.

253.

∫ √
2ax− x2

xn
dx =

√
(2ax− x2)3

(3− 2n)axn
+

n− 3

(2n− 3)a

∫ √
2ax− x2

xn−1
dx.

254.

∫
xn dx√
2ax− x2

=





−x
n−1
√
2ax− x2

n
+
a(2n− 1)

n

∫
xn−1

√
2ax− x2

dx,

or

−
√

2ax− x2

n∑

r=1

(2n)!r!(r − 1)!an−r

2n−r(2r)!(n!)2
xr−1+

(2n)!an

2n(n!)2
sin−1

(
x− a
|a|

)
.

255.

∫
dx

xn
√
2ax− x2

=






√
2ax− x2

a(1− 2n)xn
+

n− 1

(2n− 1)a

∫
dx

xn−1
√
2ax− x2

,

or

−
√

2ax− x2

n−1∑

r=0

2n−r(n− 1)!n!(2r)!

(2n)!(r!)2an−rxr+1
.
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256.

∫
dx√

(2ax− x2)3
=

x− a
a2
√
2ax− x2

.

257.

∫
xdx√

(2ax− x2)3
=

x

a
√
2ax− x2

.

5.4.15 MISCELLANEOUS ALGEBRAIC FORMS

258.

∫
dx√

2ax+ x2
= log

(
x+ a+

√
2ax+ x2

)
.

259.

∫ √
ax2 + c dx =






x

2

√
ax2 + c+

c

2
√−a sin−1

(
x

√
−a
c

)
, a < 0,

or
x

2

√
ax2 + c+

c

2
√
a
log
(
x
√
a+

√
ax2 + c

)
, a > 0.

260.

∫ √
1 + x

1− x dx = sin−1 x−
√

1− x2.

261.

∫
dx

x
√
axn + c

=






1

n
√
c
log

√
axn + c−√c√
axn + c+

√
c
,

or

2

n
√
c
log

√
axn + c−√c√

xn
, c > 0,

or

2

n
√
−c sec

−1

√
−ax

n

c
, c < 0.

262.

∫
dx√
ax2 + c

=






1√−a sin−1

(
x

√
−a
c

)
, a < 0,

or
1√
a
log
(
x
√
a+

√
ax2 + c

)
, a > 0.

263.

∫
(ax2 + c)m+1/2 dx =






x(ax2 + c)m+1/2

2(m+ 1)
+

(2m+ 1)c

2(m+ 1)

∫
(ax2 + c)m−1/2 dx,

or

x
√
ax2 + c

m∑

r=0

(2m+ 1)!(r!)2cm−r

22m−2r+1m!(m+ 1)!(2r + 1)!
(ax2 + c)r

+
(2m+ 1)!cm+1

22m+1m!(m+ 1)!

∫
dx√
ax2 + c

.

264.

∫
x(ax2 + c)m+1/2 dx =

(ax2 + c)m+3/2

(2m+ 3)a
.

265.

∫
(ax2 + c)m+1/2

x
dx =





(ax2 + c)m+1/2

2m + 1
+ c

∫
(ax2 + c)m−1/2

x
dx,

or
√
ax2 + c

m∑

r=0

cm−r(ax2 + c)r

2r + 1
+ cm+1

∫
dx

x
√
ax2 + c

.
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266.

∫
dx

(ax2 + c)m+1/2
=






x

(2m− 1)c(ax2 + c)m−1/2
+

2m− 2

(2m− 1)c

∫
dx

(ax2 + c)m−1/2
,

or

x√
ax2 + c

m−1∑

r=0

22m−2r−1(m− 1)!m!(2r)!

(2m)!(r!)2cm−r(ax2 + c)r
.

267.

∫
dx

xm
√
ax2 + c

= −
√
ax2 + c

(m− 1)cxm−1
− (m− 2)a

(m− 1)c

∫
dx

xm−2
√
ax2 + c

, m 6= 1.

268.

∫
1 + x2

(1− x2)
√
1 + x4

dx =
1√
2
log

(
x
√
2 +
√
1 + x4

1− x2

)
.

269.

∫
1− x2

(1 + x2)
√
1 + x4

dx =
1√
2
tan−1 x

√
2√

1 + x4
.

270.

∫
dx

x
√
xn + a2

= − 2

na
log

(
a+
√
xn + a2√
xn

)
.

271.

∫
dx

x
√
xn − a2

= − 2

na
sin−1 a√

xn
.

272.

∫ √
x

a3 − x3
dx =

2

3
sin−1

(x
a

)3/2
.

5.4.16 FORMS INVOLVING TRIGONOMETRIC FUNCTIONS

273.

∫
sin ax dx = −1

a
cos ax.

274.

∫
cos ax dx =

1

a
sin ax.

275.

∫
tan ax dx = −1

a
log cos ax =

1

a
log sec ax.

276.

∫
cot ax dx =

1

a
log sin ax = −1

a
log csc ax.

277.

∫
sec ax dx =

1

a
log (sec ax+ tan ax) =

1

a
log tan

(π
4
+
ax

2

)
.

278.

∫
csc ax dx =

1

a
log (csc ax− cot ax) =

1

a
log tan

ax

2
.

279.

∫
sin2 ax dx =

x

2
− 1

2a
cos ax sin ax =

x

2
− 1

4a
sin 2ax.

280.

∫
sin3 ax dx = − 1

3a
(cos ax)(sin2 ax+ 2).

281.

∫
sin4 ax dx =

3x

8
− sin 2ax

4a
+

sin 4ax

32a
.

282.

∫
sinn ax dx = − sinn−1 ax cos ax

na
+
n− 1

n

∫
sinn−2 ax dx.

283.

∫
sin2m ax dx = − cos ax

a

m−1∑

r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2
sin2r+1 ax+

(2m)!

22m(m!)2
x.
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284.

∫
sin2m+1 ax dx = − cos ax

a

m−1∑

r=0

22m−2r(m!)2(2r)!

(2m+ 1)!(r!)2
sin2r ax.

285.

∫
cos2 ax dx =

1

2
x+

1

2a
sin ax cos ax =

1

2
x+

1

4a
sin 2ax

286.

∫
cos3 ax dx =

1

3a
sin ax(cos2 ax+ 2).

287.

∫
cos4 ax dx =

3

8
x+

sin 2ax

4a
+

sin 4ax

32a
.

288.

∫
cosn ax dx =

1

na
cosn−1 ax sin ax+

n− 1

n

∫
cosn−2 ax dx.

289.

∫
cos2m ax dx =

sin ax

a

m−1∑

r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2
cos2r+1 ax+

(2m)!

22m(m!)2
x.

290.

∫
cos2m+1 ax dx =

sin ax

a

m∑

r=0

22m−2r(m!)2(2r)!

(2m+ 1)!(r!)2
cos2r ax.

291.

∫
dx

sin2 ax
=

∫
cosec2 ax dx = −1

a
cot ax.

292.

∫
dx

sinm ax
=

∫
cosecm ax dx = − 1

a(m− 1)

cos ax

sinm−1 ax
+
m− 2

m− 1

∫
dx

sinm−2 ax
.

293.

∫
dx

sin2m ax
=

∫
cosec2m ax dx = −1

a
cos ax

m−1∑

r=0

22m−2r−1(m− 1)!m!(2r)!

(2m)!(r!)2 sin2r+1 ax
.

294.

∫
dx

sin2m+1 ax
=

∫
cosec2m+1 ax dx =

−1

a
cos ax

m−1∑

r=0

(2m)!(r!)2

22m−2r(2r + 1)!(m!)2 sin2r+2 ax
+

1

a

(2m)!

22m(m!)2
log tan

ax

2
.

295.

∫
dx

cos2 ax
=

∫
sec2 ax dx =

1

a
tan ax.

296.

∫
dx

cosm ax
=

∫
secm ax dx =

1

a(m− 1)

sin ax

cosm−1 ax
+
m− 2

m− 1

∫
dx

cosm−2 ax
.

297.

∫
dx

cos2m ax
=

∫
sec2m ax dx =

1

a
sin ax

m−1∑

r=0

22m−2r−1(m− 1)!m!(2r)!

(2m)!(r!)2 cos2r+1 ax
.

298.∫
dx

cos2m+1 ax
=

∫
sec2m+1 ax dx =

1

a
sin ax

m−1∑

r=0

(2m)!(r!)2

22m−2r(m!)2(2r + 1)! cos2r+2 ax

+
1

a

(2m)!

22m(m!)2
log (sec ax+ tan ax).

299.

∫
(sinmx)(sinnx) dx =

sin (m− n)x
2(m− n) − sin (m+ n)x

2(m+ n)
, m2 6= n2.

300.

∫
(cosmx)(cosnx) dx =

sin (m− n)x
2(m− n) +

sin (m+ n)x

2(m+ n)
, m2 6= n2.

301.

∫
(sin ax)(cos ax) dx =

1

2a
sin2 ax.

302.

∫
(sinmx)(cosnx) dx = − cos (m− n)x

2(m− n) − cos (m+ n)x

2(m+ n)
, m2 6= n2.
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303.

∫
(sin2 ax)(cos2 ax) dx = − 1

32a
sin 4ax+

x

8
.

304.

∫
(sin ax)(cosm ax) dx = − cosm+1 ax

(m+ 1)a
.

305.

∫
(sinm ax)(cos ax) dx =

sinm+1 ax

(m+ 1)a
.

306.

∫
(cosm ax)(sinn ax) dx =






cosm−1 ax sinn+1 ax

(m+ n)a
+
m− 1

m+ n

∫
(cosm−2 ax)(sinn ax) dx,

or

− cosm+1 ax sinn−1 ax

(m+ n)a
+

n− 1

m+ n

∫
(cosm ax)(sinn−2 ax) dx.

307.

∫
cosm ax

sinn ax
dx =






− cosm+1 ax

a(n− 1) sinn−1 ax
− m− n+ 2

n− 1

∫
cosm ax

sinn−2 ax
dx,

or

cosm−1 ax

a(m− n) sinn−1 ax
+
m− 1

m− n

∫
cosm−2 ax

sinn ax
dx.

308.

∫
sinm ax

cosn ax
dx =






sinm+1 ax

a(n− 1) cosn−1 ax
− m− n+ 2

n− 1

∫
sinm ax

cosn−2 ax
dx,

or

− sinm−1 ax

a(m− n) cosn−1 ax
+
m− 1

m− n

∫
sinm−2 ax

cosn ax
dx.

309.

∫
sin ax

cos2 ax
dx =

1

a cos ax
=

sec ax

a
.

310.

∫
sin2 ax

cos ax
dx = −1

a
sin ax+

1

a
log tan

(π
4
+
ax

2

)
.

311.

∫
cos ax

sin2 ax
dx = − csc ax

a
= − 1

a sin ax
.

312.

∫
dx

(sin ax)(cos ax)
=

1

a
log tan ax.

313.

∫
dx

(sin ax)(cos2 ax)
=

1

a

(
sec ax+ log tan

ax

2

)
.

314.

∫
dx

(sin ax)(cosn ax)
=

1

a(n− 1) cosn−1 ax
+

∫
dx

(sin ax)(cosn−2 ax)
.

315.

∫
dx

(sin2 ax)(cos ax)
= −1

a
csc ax+

1

a
log tan

(π
4
+
ax

2

)
.

316.

∫
dx

(sin2 ax)(cos2 ax)
= −2

a
cot 2ax.

317.

∫
dx

sinm ax cosn ax
=






− 1

a(m− 1) sinm−1 ax cosn−1 ax
+
m+ n− 2

m− 1

∫
dx

sinm−2 ax cosn ax
,

or
1

a(n− 1) sinm−1 ax cosn−1 ax
+
m+ n− 2

n− 1

∫
dx

sinm ax cosn−2 ax
.

318.

∫
sin (a+ bx) dx = −1

b
cos (a+ bx).
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319.

∫
cos (a+ bx) dx =

1

b
sin (a+ bx).

320.

∫
dx

1± sin ax
= ∓1

a
tan

(π
4
∓ ax

2

)
.

321.

∫
dx

1 + cos ax
=

1

a
tan

ax

2
.

322.

∫
dx

1− cos ax
= −1

a
cot

ax

2
.

323.

∫
dx

a+ b sin x
=






2√
a2 − b2

tan−1

(
a tan x

2
+ b√

a2 − b2

)
,

or

1√
b2 − a2

log

(
a tan x

2
+ b−

√
b2 − a2

a tan x
2
+ b+

√
b2 − a2

)

.

324.

∫
dx

a+ b cos x
=






2√
a2 − b2

tan−1

√
a2 − b2 tan x

2

a+ b
,

or

1√
b2 − a2

log

(√
b2 − a2 tan x

2
+ a+ b√

b2 − a2 tan x
2
− a− b

)
.

325.

∫
dx

a+ b sin x+ c cos x
=






1√
b2 + c2 − a2

log

(
b−
√
b2 + c2 − a2 + (a− c) tan x

2

b+
√
b2 + c2 − a2 + (a− c) tan x

2

)
, a 6= c, a2 < b2 + c2,

or

2√
a2 − b2 − c2

tan−1 b+ (a− c) tan x
2√

a2 − b2 − c2
, a2 > b2 + c2,

or
1

a

[
a− (b+ c) sin x− (b− c) sin x
a− (b+ c) sin x+ (b− c) sin x

]
. a2 = b2 + c2.

326.

∫
sin2 x

a+ b cos2 x
dx =

1

b

√
a+ b

a
tan−1

(√
a

a+ b
tan x

)
− x

b
, ab > 0, |a| > |b|.

327.

∫
dx

a2 cos2 x+ b2 sin2 x
=

1

ab
tan−1

(
b tan x

a

)
.

328.

∫
cos2 cx

a2 + b2 sin2 cx
dx =

√
a2 + b2

ab2c
tan−1

√
a2 + b2 tan cx

a
− x

b2
.

329.

∫
sin cx cos cx

a cos2 cx+ b sin2 cx
dx =

1

2c(b− a) log
(
a cos2 cx+ b sin2 cx

)
, a 6= b.

330.

∫
cos cx

a cos cx+ b sin cx
dx =

∫
dx

a+ b tan cx
=

1

c(a2 + b2)
[acx+ b log (a cos cx+ b sin cx)] .

331.

∫
sin cx

a cos cx+ b sin cx
dx =

∫
dx

b+ a cot cx
=

1

c(a2 + b2)
[bcx− a log (a cos cx+ b sin cx)] .
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332.

∫
dx

a cos2 x+ 2b cosx sin x+ c sin2 x
=






1

2
√
b2 − ac

log

(
c tanx+ b−

√
b2 − ac

c tanx+ b+
√
b2 − ac

)
, b2 > ac,

or
1√

ac− b2
tan−1

(
c tanx+ b√
ac− b2

)
, b2 < ac,

or

− 1

c tanx+ b
, b2 = ac.

333.

∫
sin ax

1± sin ax
dx = ±x+

1

a
tan

(π
4
∓ ax

2

)
.

334.

∫
dx

(sin ax)(1± sin ax)
=

1

a
tan

(π
4
∓ ax

2

)
+

1

a
log tan

ax

2
.

335.

∫
dx

(1 + sin ax)2
= − 1

2a
tan

(π
4
− ax

2

)
− 1

6a
tan3

(π
4
− ax

2

)
.

336.

∫
dx

(1− sin ax)2
=

1

2a
cot
(π
4
− ax

2

)
+

1

6a
cot3

(π
4
− ax

2

)
.

337.

∫
sin ax

(1 + sin ax)2
dx = − 1

2a
tan

(π
4
− ax

2

)
+

1

6a
tan3

(π
4
− ax

2

)
.

338.

∫
sin ax

(1− sin ax)2
dx = − 1

2a
cot
(π
4
− ax

2

)
+

1

6a
cot3

(π
4
− ax

2

)
.

339.

∫
sin x

a+ b sin x
dx =

x

b
− a

b

∫
dx

a+ b sin x
.

340.

∫
dx

(sin x)(a+ b sin x)
=

1

a
log tan

x

2
− b

a

∫
dx

a+ b sin x
.

341.

∫
dx

(a+ b sin x)2
=






b cosx

(a2 − b2)(a+ b sin x)
+

a

a2 − b2
∫

dx

a+ b sin x
,

or
a cosx

(b2 − a2)(a+ b sin x)
+

b

b2 − a2
∫

dx

a+ b sin x
.

342.

∫
dx

a2 + b2 sin2 cx
=

1

ac
√
a2 + b2

tan−1

(√
a2 + b2 tan cx

a

)
.

343.

∫
dx

a2 − b2 sin2 cx
=






1

ac
√
a2 − b2

tan−1

(√
a2 − b2 tan cx

a

)
, a2 > b2,

or

1

2ac
√
b2 − a2

log

(√
b2 − a2 tan cx+ a√
b2 − a2 tan cx− a

)
, a2 < b2.

344.

∫
cos ax

1 + cos ax
dx = x− 1

a
tan

ax

2
.

345.

∫
cos ax

1− cos ax
dx = −x− 1

a
cot

ax

2
.

346.

∫
dx

(cos ax)(1 + cos ax)
=

1

a
log tan

(π
4
+
ax

2

)
− 1

a
tan

ax

2
.

347.

∫
dx

(cos ax)(1− cos ax)
=

1

a
log tan

(π
4
+
ax

2

)
− 1

a
cot

ax

2
.

348.

∫
dx

(1 + cos ax)2
=

1

2a
tan

ax

2
+

1

6a
tan3 ax

2
.
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349.

∫
dx

(1− cos ax)2
= − 1

2a
cot

ax

2
− 1

6a
cot3

ax

2
.

350.

∫
cos ax

(1 + cos ax)2
dx =

1

2a
tan

ax

2
− 1

6a
tan3 ax

2
.

351.

∫
cos ax

(1− cos ax)2
dx =

1

2a
cot

ax

2
− 1

6a
cot3

ax

2
.

352.

∫
cosx

a+ b cos x
dx =

x

b
− a

b

∫
dx

a+ b cos x
.

353.

∫
dx

(cosx)(a+ b cosx)
=

1

a
log tan

(x
2
+
π

4

)
− b

a

∫
dx

a+ b cosx
.

354.

∫
dx

(a+ b cosx)2
=

b sin x

(b2 − a2)(a+ b cos x)
− a

b2 − a2
∫

dx

a+ b cos x
.

355.

∫
cos x

(a+ b cosx)2
dx =

a sin x

(a2 − b2)(a+ b cos x)
− b

a2 − b2
∫

dx

a+ b cos x
.

356.

∫
dx

a2 + b2 − 2ab cos cx
=

2

c(a2 − b2) tan
−1

(
a+ b

a− b tan
cx

2

)
.

357.

∫
dx

a2 + b2 cos2 cx
=

1

ac
√
a2 + b2

tan−1 a tan cx√
a2 + b2

.

358.

∫
dx

a2 − b2 cos2 cx =






1

ac
√
a2 − b2

tan−1

(
a tan cx√
a2 − b2

)
, a2 > b2,

or

1

2ac
√
b2 − a2

log

(
a tan cx−

√
b2 − a2

a tan cx+
√
b2 − a2

)
, b2 > a2.

359.

∫
sin ax

1± cos ax
dx = ∓1

a
log (1± cos ax).

360.

∫
cos ax

1± sin ax
dx = ±1

a
log (1± sin ax).

361.

∫
dx

(sin ax)(1± cos ax)
= ± 1

2a(1± cos ax)
+

1

2a
log tan

ax

2
.

362.

∫
dx

(cos ax)(1± sin ax)
= ∓ 1

2a(1± sin ax)
+

1

2a
log tan

(ax
2

+
π

4

)
.

363.

∫
sin ax

(cos ax)(1± cos ax)
dx =

1

a
log (sec ax± 1).

364.

∫
cos ax

(sin ax)(1± sin ax)
dx = −1

a
log (csc ax± 1).

365.

∫
sin ax

(cos ax)(1± sin ax)
dx =

1

2a(1± sin ax)
± 1

2a
log tan

(ax
2

+
π

4

)
.

366.

∫
cos ax

(sin ax)(1± cos ax)
dx = − 1

2a(1± cos ax)
± 1

2a
log tan

ax

2
.

367.

∫
dx

sin ax± cos ax
=

1

a
√
2
log tan

(ax
2
± π

8

)
.

368.

∫
dx

(sin ax± cos ax)2
=

1

2a
tan

(
ax∓ π

4

)
.

369.

∫
dx

1 + cos ax± sin ax
= ±1

a
log
(
1± tan

ax

2

)
.

370.

∫
dx

a2 cos2 cx− b2 sin2 cx
=

1

2abc
log

(
b tan cx+ a

b tan cx− a

)
.
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371.

∫
x sin ax dx =

1

a2
sin ax− x

a
cos ax.

372.

∫
x2 sin ax dx =

2x

a2
sin ax+

2− a2x2

a3
cos ax.

373.

∫
x3 sin ax dx =

3a2x2 − 6

a4
sin ax+

6x− a2x3

a3
cos ax.

374.

∫
xm sin ax dx =





−1

a
xm cos ax+

m

a

∫
xm−1 cos ax dx,

or

cos ax

⌊m2 ⌋∑

r=0

(−1)r+1m!

(m− 2r)!

xm−2r

a2r+1
+ sin ax

⌊m−1
2 ⌋∑

r=0

(−1)rm!

(m− 2r − 1)!

xm−2r−1

a2r+2
.

375.

∫
x cos ax dx =

1

a2
cos ax+

x

a
sin ax.

376.

∫
x2 cos ax dx =

2x

a2
cos ax+

a2x2 − 2

a3
sin ax.

377.

∫
x3 cos ax dx =

3a2x2 − 6

a4
cos ax+

a2x3 − 6x

a3
sin ax.

378.

∫
xm cos ax dx =





xm

a
sin ax− m

a

∫
xm−1 sin ax dx,

or

sin ax

⌊m2 ⌋∑

r=0

(−1)rm!

(m− 2r)!

xm−2r

a2r+1
+ cos ax

⌊m−1
2 ⌋∑

r=0

(−1)rm!

(m− 2r − 1)!

xm−2r−1

a2r+2
.

379.

∫
sin ax

x
dx =

∞∑

n=0

(−1)n (ax)2n+1

(2n+ 1)(2n+ 1)!
.

380.

∫
cos ax

x
dx =

∞∑

n=0

(−1)n (ax)2n

(2n)(2n)!
.

381.

∫
x sin2 ax dx =

x2

4
− x

4a
sin 2ax− 1

8a2
cos 2ax.

382.

∫
x2 sin2 ax dx =

x3

6
−
(
x2

4a
− 1

8a3

)
sin 2ax− x

4a2
cos 2ax.

383.

∫
x sin3 ax dx =

x

12a
cos 3ax− 1

36a2
sin 3ax− 3x

4a
cos ax+

3

4a2
sin ax.

384.

∫
x cos2 ax dx =

x2

4
+

x

4a
sin 2ax+

1

8a2
cos 2ax.

385.

∫
x2 cos2 ax dx =

x3

6
+

(
x2

4a
− 1

8a3

)
sin 2ax+

x

4a2
cos 2ax.

386.

∫
x cos3 ax dx =

x

12a
sin 3ax+

1

36a2
cos 3ax+

3x

4a
sin ax+

3

4a2
cos ax.

387.

∫
sin ax

xm
dx =

sin ax

(1−m)xm−1
+

a

m− 1

∫
cos ax

xm−1
dx.
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388.

∫
cos ax

xm
dx =

cos ax

(1−m)xm−1
+

a

1−m

∫
sin ax

xm−1
dx.

389.

∫
x

1± sin ax
dx = ∓ x cos ax

a(1± sin ax)
+

1

a2
log (1± sin ax).

390.

∫
x

1 + cos ax
dx =

x

a
tan

ax

2
+

2

a2
log cos

ax

2
.

391.

∫
x

1− cos ax
dx = −x

a
cot

ax

2
+

2

a2
log sin

ax

2
.

392.

∫
x+ sin x

1 + cos x
dx = x tan

x

2
.

393.

∫
x− sin x

1− cos x
dx = −x cot x

2
.

394.

∫ √
1− cos ax dx = − 2 sin ax

a
√
1− cos ax

= −2
√
2

a
cos

ax

2
.

395.

∫ √
1 + cos ax dx =

2 sin ax

a
√
1 + cos ax

=
2
√
2

a
sin

ax

2
.

For the following six integrals, each k represents an integer.

396.

∫ √
1 + sin x dx =






2
(
sin

x

2
− cos

x

2

)
, (8k − 1)π

2
< x ≤ (8k + 3)π

2
,

or

−2
(
sin

x

2
− cos

x

2

)
, (8k + 3)π

2
< x ≤ (8k + 7)π

2
.

397.

∫ √
1− sin xdx =






2
(
sin

x

2
+ cos

x

2

)
, (8k − 3)π

2
< x ≤ (8k + 1)π

2
,

or

−2
(
sin

x

2
+ cos

x

2

)
, (8k + 1)π

2
< x ≤ (8k + 5)π

2
.

398.

∫
dx√

1− cos x
=






√
2 log tan

x

4
, 4kπ < x ≤ (4k + 2)π,

or

−
√
2 log tan

x

4
(4k + 2)π < x ≤ (4k + 4)π.

399.

∫
dx√

1 + cos x
=






√
2 log tan

(x+ π

4

)
, (4k − 1)π < x ≤ (4k + 1)π,

or

−
√
2 log tan

(x+ π

4

)
, (4k + 1)π < x ≤ (4k + 3)π.

400.

∫
dx√

1− sin x
=






√
2 log tan

(x
4
− π

8

)
, (8k + 1)π

2
< x ≤ (8k + 5)π

2
,

or

−
√
2 log tan

(x
4
− π

8

)
, (8k + 5)π

2
< x ≤ (8k + 9)π

2
.

401.

∫
dx√

1 + sin x
=






√
2 log tan

(x
4
+
π

8

)
, (8k − 1)π

2
< x ≤ (8k + 3)π

2
,

or

−
√
2 log tan

(x
4
+
π

8

)
, (8k + 3)π

2
< x ≤ (8k + 7)π

2
.

402.

∫
tan2 ax dx =

1

a
tan ax− x.

403.

∫
tan3 ax dx =

1

2a
tan2 ax+

1

a
log cos ax.

404.

∫
tan4 ax dx =

1

3a
tan3 ax− 1

a
tan ax+ x.
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405.

∫
tann ax dx =

1

a(n− 1)
tann−1 ax−

∫
tann−2 ax dx.

406.

∫
cot2 ax dx = −1

a
cot ax− x.

407.

∫
cot3 ax dx = − 1

2a
cot2 ax− 1

a
log sin ax.

408.

∫
cot4 ax dx = − 1

3a
cot3 ax+

1

a
cot ax+ x.

409.

∫
cotn ax dx = − 1

a(n− 1)
cotn−1 ax−

∫
cotn−2 ax dx.

410.

∫
x

sin2 ax
dx =

∫
x csc2 ax dx = −x cot ax

a
+

1

a2
log sin ax

411.

∫
x

sinn ax
dx =

∫
x cscn ax dx = − x cos ax

a(n− 1) sinn−1 ax

− 1

a2(n− 1)(n− 2) sinn−2 ax
+
n− 2

n− 1

∫
x

sinn−2 ax
dx.

412.

∫
x

cos2 ax
dx =

∫
x sec2 ax dx =

x

a
tan ax+

1

a2
log cos ax.

413.

∫
x

cosn ax
dx =

∫
x secn ax dx =

x sin ax

a(n− 1) cosn−1 ax

− 1

a2(n− 1)(n− 2) cosn−2 ax
+
n− 2

n− 1

∫
x

cosn−2 ax
dx.

414.

∫
sin ax√

1 + b2 sin2 ax
dx = − 1

ab
sin−1 b cos ax√

1 + b2
.

415.

∫
sin ax√

1− b2 sin2 ax
dx = − 1

ab
log
(
b cos ax+

√
1− b2 sin2 ax

)
.

416.

∫
(sin ax)

√
1 + b2 sin2 ax dx = − cos ax

2a

√
1 + b2 sin2 ax− 1 + b2

2ab
sin−1 b cos ax√

1 + b2
.

417.

∫
(sin ax)

√
1− b2 sin2 ax dx = − cos ax

2a

√
1− b2 sin2 ax

−1− b2
2ab

log
(
b cos ax+

√
1− b2 sin2 ax

)
.

418.

∫
cos ax√

1 + b2 sin2 ax
dx =

1

ab
log
(
b sin ax+

√
1 + b2 sin2 ax

)
.

419.

∫
cos ax√

1− b2 sin2 ax
dx =

1

ab
sin−1 (b sin ax).

420.

∫
(cos ax)

√
1 + b2 sin2 ax dx =

sin ax

2a

√
1 + b2 sin2 ax

+
1

2ab
log
(
b sin ax+

√
1 + b2 sin2 ax

)
.

421.

∫
(cos ax)

√
1− b2 sin2 ax dx =

sin ax

2a

√
1− b2 sin2 ax+

1

2ab
sin−1 (b sin ax).



“smtf32” — 2011/5/20 — 2:09 — page 320 — #330

320 CHAPTER 5. ANALYSIS

For the following integral, k represents an integer and a > |b|
422.

∫
dx√

a+ b tan2 cx
=






1

c
√
a− b

sin−1

(√
a− b
a

sin cx

)

, (4k − 1)π
2
< x ≤ (4k + 1)π

2
,

or

−1
c
√
a− b

sin−1

(√
a− b
a

sin cx

)

, (4k + 1)π
2
< x ≤ (4k + 3)π

2
.

423.

∫
cosn xdx =

1

2n−1

n
2
−1∑

k=0

(
n

k

)
sin [(n− 2k)x]

(n− 2k)
+

1

2n

(
n
n
2

)
x, n is an even integer.

424.

∫
cosn xdx =

1

2n−1

n−1
2∑

k=0

(
n

k

)
sin [(n− 2k)x]

(n− 2k)
, n is an odd integer.

425.

∫
sinn x dx =

1

2n−1

n
2
−1∑

k=0

(
n

k

)
sin
([
(n− 2k)(π

2
− x)

])

(2k − n) +
1

2n

(
n
n
2

)

x,

n is an even integer.

426.

∫
sinn x dx =

1

2n−1

n−1
2∑

k=0

(
n

k

)
sin
([
(n− 2k)(π

2
− x)

])

(2k − n) , n is an odd integer.

5.4.17 FORMS INVOLVING INVERSE TRIGONOMETRIC

FUNCTIONS

427.

∫
sin−1 ax dx = x sin−1 ax+

√
1− a2x2

a
.

428.

∫
cos−1 ax dx = x cos−1 ax−

√
1− a2x2

a
.

429.

∫
tan−1 ax dx = x tan−1 ax− 1

2a
log (1 + a2x2).

430.

∫
cot−1 ax dx = x cot−1 ax+

1

2a
log (1 + a2x2).

431.

∫
sec−1 ax dx = x sec−1 ax− 1

a
log
(
ax+

√
a2x2 − 1

)
.

432.

∫
csc−1 ax dx = x csc−1 ax+

1

a
log
(
ax+

√
a2x2 − 1

)
.

433.

∫ (
sin−1 x

a

)
dx = x sin−1 x

a
+
√
a2 − x2, a > 0.

434.

∫ (
cos−1 x

a

)
dx = x cos−1 x

a
−
√
a2 − x2, a > 0.

435.

∫ (
tan−1 x

a

)
dx = x tan−1 x

a
− a

2
log (a2 + x2).

436.

∫ (
cot−1 x

a

)
dx = x cot−1 x

a
+
a

2
log (a2 + x2).

437.

∫
x sin−1 (ax)dx =

1

4a2

(
(2a2x2 − 1) sin−1 (ax) + ax

√
1− a2x2

)
.
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438.

∫
x cos−1 (ax) dx =

1

4a2

(
(2a2x2 − 1) cos−1 (ax)− ax

√
1− a2x2

)
.

439.

∫
xn sin−1 (ax) dx =

xn+1

n+ 1
sin−1 (ax)− a

n+ 1

∫
xn+1

√
1− a2x2

dx, n 6= −1.

440.

∫
xn cos−1 ax dx =

xn+1

n+ 1
cos−1 (ax) +

a

n+ 1

∫
xn+1

√
1− a2x2

dx, n 6= −1.

441.

∫
x tan−1 (ax) dx =

1 + a2x2

2a2
tan−1 (ax)− x

2a
.

442.

∫
xn tan−1 (ax) dx =

xn+1

n+ 1
tan−1 (ax)− a

n+ 1

∫
xn+1

1 + a2x2
dx.

443.

∫
x cot−1 (ax) dx =

1 + a2x2

2a2
cot−1 (ax) +

x

2a
.

444.

∫
xn cot−1 (ax) dx =

xn+1

n+ 1
cot−1 (ax) +

a

n+ 1

∫
xn+1

1 + a2x2
dx.

445.

∫
sin−1 (ax)

x2
dx = a log

(
1−
√
1− a2x2

x

)
− sin−1 (ax)

x
.

446.

∫
cos−1 (ax)

x2
dx = − 1

x
cos−1 (ax) + a log

(
1 +
√
1− a2x2

x

)
.

447.

∫
tan−1 (ax)

x2
dx = − 1

x
tan−1 (ax)− a

2
log

(
1 + a2x2

x2

)
.

448.

∫
cot−1 (ax)

x2
dx = − 1

x
cot−1 (ax)− a

2
log

(
x2

1 + a2x2

)
.

449.

∫
(sin−1 (ax))2 dx = x(sin−1 (ax))2 − 2x+

2
√
1− a2x2

a
sin−1 (ax).

450.

∫
(cos−1 (ax))2 dx = x(cos−1 (ax))2 − 2x− 2

√
1− a2x2

a
cos−1 (ax).

451.

∫
(sin−1 (ax))n dx =






x(sin−1 (ax))n +
n
√
1− a2x2

a
(sin−1 (ax))n−1 − n(n− 1)

∫
(sin−1 (ax))n−2 dx,

or

⌊n2 ⌋∑

r=0

(−1)rn!
(n− 2r)!

x(sin−1 ax)n−2r +

⌊n−1
2 ⌋∑

r=0

(−1)r n!
√
1− a2x2

(n− 2r − 1)!a
(sin−1 ax)n−2r−1.

452.

∫
(cos−1 (ax))n dx =






x(cos−1 (ax))n − n
√
1− a2x2

a
(cos−1 (ax))n−1 − n(n− 1)

∫
(cos−1 (ax))n−2 dx,

or

⌊n2 ⌋∑

r=0

(−1)rn!
(n− 2r)!

x(cos−1 ax)n−2r −
⌊n−1

2 ⌋∑

r=0

(−1)r n!
√
1− a2x2

(n− 2r − 1)!a
(cos−1 ax)n−2r−1.

453.

∫
sin−1 ax√
1− a2x2

dx =
1

2a

(
sin−1 ax

)2
.
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454.

∫
xn sin−1 ax√

1− a2x2
dx = −x

n−1

na2

√
1− a2x2 sin−1 ax+

xn

n2a

+
n− 1

na2

∫
xn−2 sin−1 ax√

1− a2x2
dx.

455.

∫
cos−1 ax√
1− a2x2

dx = − 1

2a

(
cos−1 ax

)2
.

456.

∫
xn cos−1 ax√

1− a2x2
dx = −x

n−1

na2

√
1− a2x2 cos−1 ax− xn

n2a

+
n− 1

na2

∫
xn−2 cos−1 ax√

1− a2x2
dx.

457.

∫
tan−1 ax

1 + a2x2
dx =

1

2a

(
tan−1 ax

)2
.

458.

∫
cot−1 ax

1 + a2x2
dx = − 1

2a

(
cot−1 ax

)2
.

459.

∫
x sec−1 ax dx =

x2

2
sec−1 ax− 1

2a2

√
a2x2 − 1.

460.

∫
xn sec−1 ax dx =

xn+1

n+ 1
sec−1 ax− 1

n+ 1

∫
xn

√
a2x2 − 1

dx.

461.

∫
sec−1 ax

x2
dx = − sec−1 ax

x
+

√
a2x2 − 1

x
.

462.

∫
x csc−1 ax dx =

x2

2
csc−1 ax+

1

2a2

√
a2x2 − 1.

463.

∫
xn csc−1 ax dx =

xn+1

n+ 1
csc−1 ax+

1

n+ 1

∫
xn

√
a2x2 − 1

dx.

464.

∫
csc−1 ax

x2
dx = − csc−1 ax

x
−
√
a2x2 − 1

x
.

5.4.18 LOGARITHMIC FORMS

465.

∫
log xdx = x log x− x.

466.

∫
x log xdx =

x2

2
log x− x2

4
.

467.

∫
x2 log xdx =

x3

3
log x− x3

9
.

468.

∫
xn log xdx =

xn+1

n+ 1
log x− xn+1

(n+ 1)2
.

469.

∫
(log x)2 dx = x(log x)2 − 2x log x+ 2x.

470.

∫
(log x)n dx =






x(log x)n − n
∫

(log x)n−1 dx, n 6= −1,

or

(−1)nn!x
n∑

r=0

(− log x)r

r!
, n 6= −1.

471.

∫
(log x)n

x
dx =

1

n+ 1
(log x)n+1, n 6= −1.
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472.

∫
dx

log x
= log (log x) + log x+

(log x)2

2 · 2! +
(log x)3

3 · 3! + . . . .

473.

∫
dx

x log x
= log (log x).

474.

∫
dx

x(log x)n
=

1

(1− n)(log x)n−1
, n 6= 1.

475.

∫
xm dx

(log x)n
=

xm+1

(1− n)(log x)n−1
+
m+ 1

n− 1

∫
xm dx

(log x)n−1
, n 6= 1.

476.

∫
xm(log x)n dx =






xm+1(log x)n

m+ 1
− n

m+ 1

∫
xm(log x)n−1 dx,

or

(−1)n n!

m+ 1
xm+1

n∑

r=0

(− log x)r

r!(m+ 1)n−r
.

477.

∫
xp cos (b log x) dx =

xp+1

(p+ 1)2 + b2
[b sin (b log x) + (p+ 1) cos (b log x)] .

478.

∫
xp sin (b log x) dx =

xp+1

(p+ 1)2 + b2
[(p+ 1) sin (b log x)− b cos (b log x)] .

479.

∫
log (ax+ b) dx =

ax+ b

a
log (ax+ b)− x.

480.

∫
log (ax+ b)

x2
dx =

a

b
log x− ax+ b

bx
log (ax+ b).

481.

∫
xm log (ax+ b) dx =

1

m+ 1

[
xm+1 −

(
− b
a

)m+1
]
log (ax+ b)

− 1

m+ 1

(
− b
a

)m+1 m+1∑

r=1

1

r

(
−ax
b

)r
.

482.

∫
log (ax+ b)

xm
dx = − 1

m− 1

log (ax+ b)

xm−1
+

1

m− 1

(
−a
b

)m−1

log
ax+ b

x

+
1

m− 1

(
−a
b

)m−1
m−2∑

r=1

1

r

(
− b

ax

)r

, m > 2.

483.

∫
log

x+ a

x− a dx = (x+ a) log (x+ a)− (x− a) log (x− a).

484.

∫
xm log

x+ a

x− a dx =
xm+1 − (−a)m+1

m+ 1
log (x+ a)− xm+1 − am+1

m+ 1
log (x− a)

+
2am+1

m+ 1

⌊m+1
2 ⌋∑

r=1

1

m− 2r + 2

(x
a

)m−2r+2

.

485.

∫
1

x2
log

x+ a

x− a dx =
1

x
log

x− a
x+ a

− 1

a
log

x2 − a2
x2

.

For the following two integrals, X = a+ bx+ cx2.

486.

∫
logX dx =





(
x+

b

2c

)
logX − 2x+

√
4ac− b2
c

tan−1 2cx+ b√
4ac− b2

, b2 − 4ac < 0,

or(
x+

b

2c

)
logX − 2x+

√
b2 − 4ac

c
tanh−1 2cx+ b√

b2 − 4ac
, b2 − 4ac > 0.
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487.

∫
xn logX dx =

xn+1

n+ 1
logX − 2c

n+ 1

∫
xn+2

X
dx− b

n+ 1

∫
xn+1

X
dx, n 6= −1.

488.

∫
log (x2 + a2) dx = x log (x2 + a2)− 2x+ 2a tan−1 x

a
.

489.

∫
log (x2 − a2) dx = x log (x2 − a2)− 2x+ a log

x+ a

x− a .

490.

∫
x log (x2 + a2) dx =

1

2

(
x2 + a2

)
log
(
x2 + a2

)
− 1

2
x2.

491.

∫
log
(
x+

√
x2 ± a2

)
dx = x log

(
x+

√
x2 ± a2

)
−
√
x2 ± a2.

492.

∫
x log

(
x+

√
x2 ± a2

)
dx =

(
x2

2
± a2

4

)
log
(
x+

√
x2 ± a2

)
− x
√
x2 ± a2
4

.

493.

∫
xm log

(
x+

√
x2 ± a2

)
dx =

xm+1

m+ 1
log
(
x+

√
x2 ± a2

)

− 1

m+ 1

∫
xm+1

√
x2 ± a2

dx.

494.

∫
log
(
x+
√
x2 + a2

)

x2
dx = − log

(
x+
√
x2 + a2

)

x
− 1

a
log

a+
√
x2 + a2

x
.

495.

∫
log
(
x+
√
x2 − a2

)

x2
dx = − log

(
x+
√
x2 − a2

)

x
+

1

|a| sec
−1 x

a
.

496.

∫
xn log

(
x2 − a2

)
dx =

1

n+ 1



xn+1 log (x2 − a2)− an+1 log (x− a)

−(−a)n+1 log (x+ a)− 2

⌊n2 ⌋∑

r=0

a2rxn−2r+1

n− 2r + 1



 .

5.4.19 EXPONENTIAL FORMS

497.

∫
ex dx = ex.

498.

∫
e−x dx = −e−x.

499.

∫
eax dx =

eax

a
.

500.

∫
xeax dx =

eax

a2
(ax− 1).

501.

∫
xmeax dx =






xmeax

a
− m

a

∫
xm−1eax dx,

or

eax
m∑

r=0

(−1)r m!xm−r

(m− r)!ar+1
.

502.

∫
eax

x
dx = log x+

ax

1!
+
a2x2

2 · 2! +
a3x3

3 · 3! + . . . .

503.

∫
eax

xm
dx =

1

1−m
eax

xm−1
+

a

m− 1

∫
eax

xm−1
dx, m 6= 1.
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504.

∫
eax log xdx =

eax log x

a
− 1

a

∫
eax

x
dx.

505.

∫
dx

1 + ex
= x− log (1 + ex) = log

ex

1 + ex

506.

∫
dx

a+ bepx
=
x

a
− 1

ap
log (a+ bepx).

507.

∫
dx

aemx + be−mx
=

1

m
√
ab

tan−1

(
emx

√
a

b

)
, a > 0, b > 0.

508.

∫
dx

aemx − be−mx
=






1

2m
√
ab

log

(√
aemx −

√
b

√
aemx +

√
b

)
, a > 0, b > 0,

or

−1
m
√
ab

tanh−1

(√
a

b
emx

)
, a > 0, b > 0.

509.

∫ (
ax − a−x

)
dx =

ax + a−x

log a
.

510.

∫
eax

b+ ceax
dx =

1

ac
log (b+ ceax).

511.

∫
xeax

(1 + ax)2
dx =

eax

a2(1 + ax)
.

512.

∫
xe−x2

dx = −1

2
e−x2

.

513.

∫
eax sin (bx) dx =

eax [a sin (bx)− b cos (bx)]
a2 + b2

.

514.

∫
eax sin (bx) sin (cx) dx =

eax [(b− c) sin (b− c)x+ a cos (b− c)x]
2 [a2 + (b− c)2]

−e
ax [(b+ c) sin (b+ c)x+ a cos (b+ c)x]

2 [a2 + (b+ c)2]
.

515.

∫
eax sin (bx) cos (cx) dx =

eax [a sin (b− c)x− (b− c) cos (b− c)x]
2 [a2 + (b− c)2]

+
eax [a sin (b+ c)x− (b+ c) cos (b+ c)x]

2 [a2 + (b+ c)2]
.

516.

∫
eax sin (bx) sin (bx+ c) dx =

eax cos c

2a
− eax [a cos 2bx+ c+ 2b sin 2bx+ c]

2 [a2 + 4b2]
.

517.

∫
eax sin (bx) cos (bx+ c) dx = −e

ax sin c

2a
+
eax [a sin 2bx+ c− 2b cos 2bx+ c]

2 [a2 + 4b2]
.

518.

∫
eax cos (bx) dx =

eax

a2 + b2
[a cos (bx) + b sin (bx)] .

519.

∫
eax cos (bx) cos (cx) dx =

eax [(b− c) sin (b− c)x+ a cos (b− c)x]
2 [a2 + (b− c)2]

+
eax [(b+ c) sin (b+ c)x+ a cos (b+ c)x]

2 [a2 + (b+ c)2]
.

520.

∫
eax cos (bx) cos (bx+ c) dx =

eax cos c

2a
+
eax [a cos 2bx+ c+ 2b sin 2bx+ c]

2 [a2 + 4b2]
.

521.

∫
eax cos (bx) sin (bx+ c) dx =

eax sin c

2a
+
eax [a sin 2bx+ c− 2b cos 2bx+ c]

2 [a2 + 4b2]
.
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522.

∫
eax sinn (bx) dx =

1

a2 + n2b2
[
(a sin (bx)− nb cos (bx))eax sinn−1 (bx)

+n(n− 1)b2
∫
eax sinn−2 (bx) dx

]
.

523.

∫
eax cosn (bx) dx =

1

a2 + n2b2
[
(a cos (bx) + nb sin (bx))eax cosn−1 (bx)

+n(n− 1)b2
∫
eax cosn−2 (bx) dx

]
.

524.

∫
xmex sin x dx =

1

2
xmex(sinx− cosx)− m

2

∫
xm−1ex sin xdx

+
m

2

∫
xm−1ex cos xdx.

525.

∫
xmeax sin bx dx = xmeax

a sin (bx)− b cos (bx)
a2 + b2

− m

a2 + b2

∫
xm−1eax(a sin (bx)− b cos (bx)) dx.

526.

∫
xmex cos xdx =

1

2
xmex(sin x+ cos x)− m

2

∫
xm−1ex sin x dx

−m
2

∫
xm−1ex cos xdx.

527.

∫
xmeax cos bx dx = xmeax

a cos (bx) + b sin (bx)

a2 + b2

− m

a2 + b2

∫
xm−1eax(a cos (bx) + b sin (bx)) dx.

528.

∫
eax cosm x sinn xdx =






eax(cosm−1 x)(sinn x) [a cos x+ (m+ n) sin x]

(m+ n)2 + a2

− na

(m+ n)2 + a2

∫
eax(cosm−1 x)(sinn−1 x) dx

+
(m− 1)(m+ n)

(m+ n)2 + a2

∫
eax(cosm−2 x)(sinn x) dx,

or

eax(cosm x)(sinn−1 x) [a sin x− (m+ n) cos x]

(m+ n)2 + a2

+
ma

(m+ n)2 + a2

∫
eax(cosm−1 x)(sinn−1 x) dx

+
(n− 1)(m+ n)

(m+ n)2 + a2

∫
eax(cosm x)(sinn−2 x) dx,

or

eax(cosm−1 x)(sinn−1 x)
[
a sin x cosx+m sin2 x− n cos2 x

]

(m+ n)2 + a2

+
m(m− 1)

(m+ n)2 + a2

∫
eax(cosm−2 x)(sinn x) dx

+
n(n− 1)

(m+ n)2 + a2

∫
eax(cosm x)(sinn−2 x) dx,

or

eax(cosm−1 x)(sinn−1 x)
[
a sin x cosx+m sin2 x− n cos2 x

]

(m+ n)2 + a2

+
m(m− 1)

(m+ n)2 + a2

∫
eax(cosm−2 x)(sinn−2 x) dx

+
(n−m)(n+m− 1)

(m+ n)2 + a2

∫
eax(cosm x)(sinn−2 x) dx.
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529.

∫
xeax sin (bx) dx =

xeax

a2 + b2
[a sin (bx)− b cos (bx)]

− eax

(a2 + b2)2
[(
a2 − b2

)
sin bx− 2ab cos (bx)

]
.

530.

∫
xeax cos (bx) dx =

xeax

a2 + b2
[a cos (bx) + b sin (bx)]

− eax

(a2 + b2)2
[(
a2 − b2

)
cos bx+ 2ab sin (bx)

]
.

531.

∫
eax

sinn x
dx = −e

ax [a sin x+ (n− 2) cos x]

(n− 1)(n− 2) sinn−1 x
+

a2 + (n− 2)2

(n− 1)(n− 2)

∫
eax

sinn−2 x
dx.

532.

∫
eax

cosn x
dx = −e

ax [a cos x− (n− 2) sin x]

(n− 1)(n− 2) cosn−1 x
+

a2 + (n− 2)2

(n− 1)(n− 2)

∫
eax

cosn−2 x
dx.

533.

∫
eax tann x dx = eax

tann−1 x

n− 1
− a

n− 1

∫
eax tann−1 xdx−

∫
eax tann−2 xdx.

5.4.20 HYPERBOLIC FORMS

534.

∫
sinhx dx = cosh x.

535.

∫
cosh xdx = sinh x.

536.

∫
tanhxdx = log cosh x.

537.

∫
coth xdx = log sinhx.

538.

∫
sech xdx = tan−1 (sinh x).

539.

∫
csch xdx = log tanh

(x
2

)
.

540.

∫
x sinh xdx = x cosh x− sinh x.

541.

∫
xn sinhx dx = xn cosh x− n

∫
xn−1(cosh x) dx.

542.

∫
x cosh x dx = x sinhx− cosh x.

543.

∫
xn cosh xdx = xn sinhx− n

∫
xn−1(sinh x) dx.

544.

∫
sech x tanhx dx = − sech x.

545.

∫
csch x coth xdx = − csch x.

546.

∫
sinh2 xdx =

sinh 2x

4
− x

2
.
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547.

∫
sinhm x coshn x dx =






1

m+ n
sinhm+1 x coshn−1 x+

n− 1

m+ n

∫
sinhm x coshn−2 xdx, m+ n 6= 0,

or
1

m+ n
sinhm−1 x coshn+1 x− m− 1

m+ n

∫
sinhm−2 x coshn xdx, m+ n 6= 0.

548.

∫
dx

(sinhm x)(coshn x)
=






− 1

(m− 1)(sinhm−1 x)(coshn−1 x)
− m+ n− 2

m− 1

∫
dx

(sinhm−2 x)(coshn x)
dx, m 6= 1,

or
1

(n− 1)(sinhm−1 x)(coshn−1 x)
+
m+ n− 2

n− 1

∫
dx

(sinhm x)(coshn−2 x)
dx, n 6= 1.

549.

∫
tanh2 xdx = x− tanhx.

550.

∫
tanhn xdx = − tanhn−1 x

n− 1
+

∫
(tanhn−2 x) dx, n 6= 1.

551.

∫
sech2 x dx = tanh x.

552.

∫
cosh2 xdx =

sinh 2x

4
+
x

2
.

553.

∫
coth2 xdx = x− cothx.

554.

∫
cothn xdx = − cothn−1 x

n− 1
+

∫
cothn−2 x dx, n 6= 1.

555.

∫
csch2 x dx = − coth x.

556.

∫
(sinhmx)(sinhnx) dx =

sinh (m+ n)x

2(m+ n)
− sinh (m− n)x

2(m− n) , m2 6= n2.

557.

∫
(coshmx)(coshnx) dx =

sinh (m+ n)x

2(m+ n)
+

sinh (m− n)x
2(m− n) , m2 6= n2.

558.

∫
(sinhmx)(coshnx) dx =

cosh (m+ n)x

2(m+ n)
+

cosh (m− n)x
2(m− n) , m2 6= n2.

559.

∫ (
sinh−1 x

a

)
dx = x sinh−1 x

a
−
√
x2 + a2, a > 0.

560.

∫
x
(
sinh−1 x

a

)
dx =

(
x2

2
+
a2

4

)
sinh−1 x

a
− x

4

√
x2 + a2, a > 0.

561.

∫
xn sinh−1 xdx =

xn+1

n+ 1
sinh−1 x− 1

n+ 1

∫
xn+1

√
1 + x2

dx, n 6= −1.

562.

∫ z

cosh−1 x

a
dx =






z cosh−1 z

a
−
√
z2 − a2, cosh−1 z

a
> 0,

or

z cosh−1 z

a
+
√
z2 − a2, cosh−1 z

a
< 0, a > 0.

563.

∫
x
(
cosh−1 x

a

)
dx =

(
x2

2
− a2

4

)
cosh−1 x

a
− x

4

√
x2 − a2.
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564.

∫
xn cosh−1 x dx =

xn+1

n+ 1
cosh−1 x− 1

n+ 1

∫
xn+1

√
x2 − 1

dx, n 6= −1.

565.

∫ (
tanh−1 x

a

)
dx = x tanh−1 x

a
+
a

2
log (a2 − x2),

∣∣ x
a

∣∣ < 1.

566.

∫ (
coth−1 x

a

)
dx = x coth−1 x

a
+
a

2
log (x2 − a2),

∣∣ x
a

∣∣ > 1.

567.

∫
x
(
tanh−1 x

a

)
dx =

x2 − a2
2

tanh−1 x

a
+
ax

2
,
∣∣ x
a

∣∣ < 1.

568.

∫
xn tanh−1 x dx =

xn+1

n+ 1
tanh−1 x− 1

n+ 1

∫
xn+1

1− x2
dx, n 6= −1.

569.

∫
x
(
coth−1 x

a

)
dx =

x2 − a2
2

coth−1 x

a
+
ax

2
,
∣∣ x
a

∣∣ > 1.

570.

∫
xn coth−1 xdx =

xn+1

n+ 1
coth−1 x+

1

n+ 1

∫
xn+1

x2 − 1
dx, n 6= −1.

571.

∫
sech−1 x dx = x sech−1 x+ sin−1 x.

572.

∫
x sech−1 xdx =

x2

2
sech−1 x− 1

2

√
1− x2.

573.

∫
xn sech−1 xdx =

xn+1

n+ 1
sech−1 x+

1

n+ 1

∫
xn

√
1− x2

dx, n 6= −1.

574.

∫
csch−1 xdx = x csch−1 x+

x

|x| sinh
−1 x.

575.

∫
x csch−1 x dx =

x2

2
csch−1 x+

1

2

x

|x|
√

1 + x2.

576.

∫
xn csch−1 xdx =

xn+1

n+ 1
csch−1 x+

1

n+ 1

x

|x|

∫
xn

√
1 + x2

dx, n 6= −1.

5.4.21 BESSEL FUNCTIONS

Zp(x) represents any of the Bessel functions {Jp(x), Yp(x), Kp(x), Ip(x)}.

577.

∫
xp+1Zp(x) dx = xp+1Zp+1(x).

578.

∫
x−p+1Zp(x) dx = −x−p+1Zp−1(x).

579.

∫
x [Zp(ax)]

2 dx =
x2

2

[
[Zp(ax)]

2 − Zp−1(ax)Zp+1(ax)
]
.

580.

∫
Z1(x) dx = −Z0(x).

581.

∫
xZ0(x) dx = xZ1(x).
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582.

∫ ∞

0

xn−1e−x dx = Γ(n), Re n > 0.

583.

∫ ∞

0

xnp−x dx =
n!

(log p)n+1
, p > 0, n is a non-negative integer.

584.

∫ ∞

0

xn−1e−(a+1)x dx =
Γ(n)

(a+ 1)n
, n > 0, a > −1.

585.

∫ 1

0

xm

(
log

1

x

)n

dx =
Γ(n+ 1)

(m+ 1)n+1
, m > −1, n > −1.

586.

∫ 1

0

xm−1 (1− x)n−1 dx =

∫ ∞

0

xm−1

(1 + x)m+n
=

Γ(m) Γ(n)

Γ(m+ n)
, n > 0, m > 0.

587.

∫ b

a

(x− a)m(b− x)n dx = (b− a)m+n+1 Γ(m+ 1) Γ(n+ 1)

Γ(m+ n+ 2)
,

m > −1, n > −1, b > a.

588.

∫ ∞

1

dx

xm
=

1

m− 1
, m > 1.

589.

∫ ∞

0

dx

(1 + x)xp
= π csc pπ, 0 < p < 1.

590.

∫ ∞

0

dx

(1− x)xp
= −π cot pπ, 0 < p < 1.

591.

∫ 1

0

xp

(1− x)p dx = pπ csc pπ, |p| < 1.

592.

∫ 1

0

xp

(1− x)p+1
dx =

∫ 1

0

(1− x)p
xp+1

dx = −π cosec pπ, −1 < p < 0.

593.

∫ ∞

0

xp−1

1 + x
dx =

π

sin pπ
, 0 < p < 1.

594.

∫ ∞

0

xm−1

1 + xn
dx =

π

n sin mπ
n

, 0 < m < n.

595.

∫ ∞

0

xa

(m+ xb)c
dx =

m(a+1−bc)/b

b

Γ
(
a+1
b

)
Γ
(
c− a+1

b

)

Γ(c)
,

a > −1, b > 0, m > 0, c > a+1
b

.

596.

∫ ∞

0

dx

(1 + x)
√
x

= π.

597.

∫ ∞

0

a

a2 + x2
dx =






π

2
, a > 0,

or

0, a = 0,

or

−π
2
, a < 0.

598.

∫ a

0

(
a2 − x2)n/2

dx =

∫ a

−a

1

2

(
a2 − x2)n/2

dx =
n!!

(n+ 1)!!

π

2
an+1,

a > 0, n is an odd integer.
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599.

∫ a

0

xm (a2 − x2)n/2
dx =

1

2
am+n+1Γ

(
m+1

2

)
Γ
(
n+2
2

)

Γ
(
m+n+3

2

) , a > 0, m > −1, n > −2.

600.

∫ π/2

0

sinn xdx =

∫ π/2

0

cosn xdx =






√
π

2

Γ
(
n+1
2

)

Γ
(
n+2
2

) , n > −1,

or
(n− 1)!!

n!!

π

2
, n 6= 0, n is an even integer,

or
(n− 1)!!

n!!
, n 6= 1, n is an odd integer.

601.

∫ ∞

0

sin ax

x
dx =






π

2
, a > 0,

or

0, a = 0,
or

−π
2
, a < 0.

602.

∫ ∞

0

cosx

x
dx =∞.

603.

∫ ∞

0

tanx

x
dx =

π

2
.

604.

∫ ∞

0

tan ax

x
dx =

π

2
, a > 0.

605.

∫ π

0

sin (nx) sin (mx) dx =

∫ π

0

cos (nx) cos (mx) dx = 0,

n 6= m, n is an integer, m is an integer.

606.

∫ π/n

0

sin (nx) cos (nx) dx =

∫ π

0

sin (nx) cos (nx) dx = 0, n is an integer.

607.

∫ π

0

sin ax cos bx dx =






2a

a2 − b2 , a− b is an odd integer.

or

0, a− b is an even integer.

608.

∫ ∞

0

sin x cos ax

x
dx =






0, |a| > 1,

or
π

4
, |a| = 1,

or
π

2
, |a| < 1.

609.

∫ ∞

0

sin ax sin bx

x2
dx =






πa

2
, 0 < a ≤ b,
or

πb

2
, 0 < b ≤ a.

610.

∫ π

0

sin2mxdx =

∫ π

0

cos2mxdx =
π

2
, m is an integer.

611.

∫ ∞

0

sin2 px

x2
dx =

π |p|
2
.

612.

∫ ∞

0

sin x

xp
dx =

π

2Γ(p) sin (pπ/2)
, 0 < p < 1.
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613.

∫ ∞

0

cosx

xp
dx =

π

2Γ(p) cos (pπ/2)
, 0 < p < 1.

614.

∫ ∞

0

1− cos px

x2
dx =

π |p|
2
.

615.

∫ ∞

0

sin px cos qx

x
dx =






0 q > p > 0,

or
π

2
, p > q > 0,

or
π

4
, p = q > 0.

616.

∫ ∞

0

cosmx

x2 + a2
dx =

π

2 |a|e
−|ma|.

617.

∫ ∞

0

cosx2 dx =

∫ ∞

0

sin x2 dx =
1

2

√
π

2
.

618.

∫ ∞

0

sin (axn) dx =
1

na1/n
Γ

(
1

n

)
sin

π

2n
, n > 1.

619.

∫ ∞

0

cos (axn) dx =
1

na1/n
Γ

(
1

n

)
cos

π

2n
, n > 1.

620.

∫ ∞

0

sin x√
x
dx =

∫ ∞

0

cos x√
x
dx =

√
π

2
.

621.

∫ ∞

0

sin3 x

x
dx =

π

4
.

622.

∫ ∞

0

sin3 x

x2
dx =

3

4
log 3.

623.

∫ ∞

0

sin3 x

x3
dx =

3π

8
.

624.

∫ ∞

0

sin4 x

x4
dx =

π

3
.

625.

∫ π/2

0

dx

1 + a cosx
dx =

cos−1 a√
1− a2

, |a| < 1.

626.

∫ π

0

dx

a+ b cos x
dx =

π√
a2 − b2

, a > b ≥ 0.

627.

∫ 2π

0

dx

1 + a cos x
dx =

2π√
1− a2

, |a| < 1.

628.

∫ ∞

0

cos ax− cos bx

x
dx = log

∣∣∣∣
b

a

∣∣∣∣.

629.

∫ π/2

0

dx

a2 sin2 x+ b2 cos2 x
dx =

π

2 |ab| .

630.

∫ π/2

0

dx

(a2 sin2 x+ b2 cos2 x)2
dx =

π(a2 + b2)

4a3b3
, a > 0, b > 0.

631.

∫ π/2

0

sinn−1 x cosm−1 xdx =
1

2
B
(n
2

) m
2
,

m is a positive integer, n is a positive integer.

632.

∫ π/2

0

sin2n+1 xdx =
(2n)!!

(2n+ 1)!!
, n is a positive integer.
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633.

∫ π/2

0

sin2n xdx =
(2n− 1)!!

(2n)!!

π

2
, n is a positive integer.

634.

∫ π/2

0

x

sin x
dx = 2

(
1

12
− 1

32
+

1

52
− 1

72
+ . . .

)
.

635.

∫ π/2

0

dx

1 + tanm x
dx =

π

4
, m is a non-negative integer.

636.

∫ π/2

0

√
cos x dx =

(2π)3/2

(Γ(1/4))2
.

637.

∫ π/2

0

tanh xdx =
π

2 cos
(
hπ
2

) , 0 < h < 1.

638.

∫ π/2

0

tan−1 ax− tan−1 bx

x
dx =

π

2
log

a

b
, a > 0, b > 0.

639.

∫ ∞

0

e−ax dx =
1

a
, a > 0.

640.

∫ ∞

0

e−ax − e−bx

x
dx = log

b

a
, a > 0, b > 0.

641.

∫ ∞

0

xne−ax dx =






Γ(n+ 1)

an+1
, a > 0, n > −1,

or
n!

an+1
, a > 0, n is a positive integer.

642.

∫ ∞

0

xne−axp

dx =
Γ((n+ 1)/p)

pa(n+1)/p
, a > 0, p > 0, n > −1.

643.

∫ ∞

0

e−a2x2

dx =
1

2a

√
π, a > 0.

644.

∫ b

0

e−ax2

dx =
1

2

√
π

a
erf
(
b
√
a
)
, a > 0.

645.

∫ ∞

b

e−ax2

dx =
1

2

√
π

a
erfc

(
b
√
a
)
, a > 0.

646.

∫ ∞

0

xe−x2

dx =
1

2
.

647.

∫ ∞

0

x2e−x2

dx =

√
π

4
.

648.

∫ ∞

0

x2ne−ax2

dx =
(2n− 1)!!

2(2a)n

√
π

a
, a > 0, n > 0.

649.

∫ ∞

0

x2n+1e−ax2

dx =
n!

2an+1
, a > 0, n > −1.

650.

∫ 1

0

xme−ax dx =
m!

am+1

[

1− e−a
m∑

r=0

ar

r!

]

.

651.

∫ ∞

0

e(−x2−a2/x2) dx =
e−2|a|√π

2
.

652.

∫ ∞

0

e(−ax2−b/x2) dx =
1

2

√
π

a
e−2

√
ab, a > 0, b > 0.

653.

∫ ∞

0

√
xe−ax dx =

1

2a

√
π

a
, a > 0.
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654.

∫ ∞

0

e−ax

√
x
dx =

√
π

a
, a > 0.

655.

∫ ∞

0

e−ax cosmxdx =
a

a2 +m2
, a > 0.

656.

∫ ∞

0

e−ax cos (bx+ c) dx =
a cos c− b sin c

a2 + b2
, a > 0.

657.

∫ ∞

0

e−ax sinmxdx =
m

a2 +m2
, a > 0.

658.

∫ ∞

0

e−ax sin (bx+ c) dx =
b cos c+ a sin c

a2 + b2
, a > 0.

659.

∫ ∞

0

xe−ax sin bx dx =
2ab

(a2 + b2)2
, a > 0.

660.

∫ ∞

0

xe−ax cos bx dx =
a2 − b2

(a2 + b2)2
, a > 0.

661.

∫ ∞

0

xne−ax sin bx dx =
n!
[
(a+ ib)n+1 − (a− ib)n+1

]

2i(a2 + b2)n+1
, a > 0.

662.

∫ ∞

0

xne−ax cos bx dx =
n!
[
(a− ib)n+1 + (a+ ib)n+1

]

2(a2 + b2)n+1
, a > 0, n > −1.

663.

∫ ∞

0

e−ax sin x

x
dx = cot−1 a, a > 0.

664.

∫ ∞

0

e−a2x2

cos bx dx =

√
π

2 |a| exp
−b2/(4a2), ab > 0.

665.

∫ ∞

0

e−x cosφxb−1 sin (x sinφ) dx = Γ(b) sin (bφ), b > 0, −π
2
< φ < π

2
.

666.

∫ ∞

0

e−x cosφxb−1 cos (x sin φ) dx = Γ(b) cos (bφ), b > 0, −π
2
< φ < π

2
.

667.

∫ ∞

0

xb−1 cos xdx = Γ(b) cos

(
bπ

2

)
, 0 < b < 1.

668.

∫ ∞

0

xb−1 sin xdx = Γ(b) sin

(
bπ

2

)
, 0 < b < 1.

669.

∫ 1

0

(log x)n dx = (−1)nn!, n > −1.

670.

∫ 1

0

√
log

1

x
dx =

√
π

2
.

671.

∫ 1

0

(
log

1

x

)n

dx = n! n > −1.

672.

∫ 1

0

x log (1− x) dx = −3

4
.

673.

∫ 1

0

x log (1 + x) dx =
1

4
.

674.

∫ 1

0

xm(log x)n dx =
(−1)nΓ(n+ 1)

(m+ 1)m+1
, m > −1, n is a non-negative integer.

675.

∫ 1

0

log x

1 + x
dx = −π

2

12
.
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676.

∫ 1

0

log x

1− x dx = −π
2

6
.

677.

∫ 1

0

log (1 + x)

x
dx =

π2

12
.

678.

∫ 1

0

log (1− x)
x

dx = −π
2

6
.

679.

∫ 1

0

(log x) log (1 + x) dx = 2− 2 log 2− π2

12
.

680.

∫ 1

0

(log x) log (1− x) dx = 2− π2

6
.

681.

∫ 1

0

log x

1− x2
dx = −π

2

8
.

682.

∫ 1

0

log

(
1 + x

1− x

)
dx

x
=
π2

4
.

683.

∫ 1

0

log x√
1− x2

dx = −π
2
log 2.

684.

∫ 1

0

xm

[
log

(
1

x

)]n
dx =

Γ(n+ 1)

(m+ 1)n+1
, m > −1, n > −1.

685.

∫ 1

0

xp − xq

log x
dx = log

(
p+ 1

q + 1

)
, p > −1, q > −1.

686.

∫ 1

0

dx√
log (− log x)

=
√
π.

687.

∫ ∞

0

log

(
ex + 1

ex − 1

)
dx =

π2

4
.

688.

∫ π/2

0

log sin x dx =

∫ π/2

0

log cos xdx = −π
2
log 2.

689.

∫ π/2

0

log secx dx =

∫ π/2

0

log cosecx dx =
π

2
log 2.

690.

∫ π

0

x log sin x dx = −π
2

2
log 2.

691.

∫ π/2

0

(sin x) log sin xdx = log 2− 1.

692.

∫ π/2

0

log tan xdx = 0.

693.

∫ π

0

log (a± b cos x) dx = π log

(
a+
√
a2 − b2
2

)
, a ≥ b.

694.

∫ π

0

log (a2 − 2ab cosx+ b2) dx =






2π log a, a ≥ b > 0,

or

2π log b, b ≥ a > 0.

695.

∫ ∞

0

sin ax

sinh bx
dx =

π

2b
tanh

aπ

2 |b| .

696.

∫ ∞

0

cos ax

cosh bx
dx =

π

2b
sech

aπ

2b
.
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697.

∫ ∞

0

dx

cosh ax
=

π

2 |a| .

698.

∫ ∞

0

x

sinh ax
dx =

π2

4a2
, a ≥ 0.

699.

∫ ∞

0

e−ax cosh (bx) dx =
a

a2 − b2 , |b| < a.

700.

∫ ∞

0

e−ax sinh (bx) dx =
b

a2 − b2 , |b| < a.

701.

∫ ∞

0

sinh ax

ebx + 1
dx =

π

2b
csc

aπ

b
− 1

2a
, b ≥ 0.

702.

∫ ∞

0

sinh ax

ebx − 1
dx =

1

2a
− π

2b
cot

aπ

b
, b ≥ 0.

703.∫ π/2

0

dx√
1− k2 sin2 x

=
π

2

[
1 +

(
1

2

)2

k2 +

(
1 · 3
2 · 4

)2

k4 +

(
1 · 3 · 5
2 · 4 · 6

)2

k6 + . . .

]
,

k2 < 1.

704.

∫ π/2

0

dx

(1− k2 sin2 x)3/2
=
π

2

[
1 +

(
1

2

)2

3k2 +

(
1 · 3
2 · 4

)2

5k4

+

(
1 · 3 · 5
2 · 4 · 6

)2

7k6 + . . .

]

, k2 < 1.

705.

∫ π/2

0

√
1− k2 sin2 x dx =

π

2

[
1−

(
1

2

)2

k2 −
(
1 · 3
2 · 4

)2
k4

3

−
(
1 · 3 · 5
2 · 4 · 6

)2
k6

5
− . . .

]

, k2 < 1.

706.

∫ ∞

0

e−x log xdx = −γ.

707.

∫ ∞

0

e−x2

log xdx = −
√
π

4
(γ + 2 log 2).

708.

∫ ∞

0

(
1

1− e−x
− 1

x

)
e−x dx = γ.

709.

∫ ∞

0

1

x

(
1

1 + xk
− e−x

)
dx = γ. k > 0.

5.5.1 SPECIAL FUNCTIONS DEFINED BY INTEGRALS

Not all integrals of elementary functions (sines, cosines, rational functions, and oth-

ers) can be evaluated in terms of elementary functions. For example, the integral∫
e−x2

dx is represented by the special function “erf(x)” (see page 442).

The dilogarithm function is defined by Li2(x) = −
∫ x

0
ln(1− t)/t dt (see

page 447). All integrals of the form
∫ x

P (x,
√
R) logQ(x,

√
R) dx, where P and

Q are rational functions and R = A + Bx + Cx2, can be evaluated in terms of

elementary functions and dilogarithms.

All integrals of the form
∫
xR(x,

√
T (x)) dx, where R is a rational function of

its arguments and T (x) is a third or fourth order polynomial, can be integrated in

terms of elementary functions and elliptic functions (see page 463).
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5.6 ORDINARY DIFFERENTIAL EQUATIONS

5.6.1 LINEAR DIFFERENTIAL EQUATIONS

A linear differential equation is one that can be written in the form

bn(x)y
(n) + bn−1(x)y

(n−1) + · · ·+ b1(x)y
′ + b0(x)y = R(x) (5.6.1)

or p(D)y = R(x), where D is the differentiation operator (Dy = dy/dx), p(D) is

a polynomial in D with coefficients {bi} depending on x, and R(x) is an arbitrary

function. In this notation, a power of D denotes repeated differentiation, that is,

Dny = dny/dxn. For such an equation, the general solution has the form

y(x) = yh(x) + yp(x) (5.6.2)

where yh(x) is a homogeneous solution and yp(x) is the particular solution. These

functions satisfy p(D)yh = 0 and p(D)yp = R(x).

5.6.1.1 Vector representation

Equation (5.6.1) can be written in the form
dy

dx
= A(x)y + r(x) where

y =




y
y′

y′′

...

y(n−1)



, A(x) =




0 1 0 . . . 0
0 0 1 0
...

...
. . .

0 0 0 1

− b0
bn
− b1

bn
− b2

bn
. . . − bn−1

bn



, r(x) =




0
0
...

0
R
bn



.

5.6.1.2 Second order linear constant coefficient equation

Consider ay′′ + by′ + cy = 0, where a, b, and c are real constants. Let m1 and m2

be the roots of am2 + bm+ c = 0. There are three forms of the solution:

1. If m1 and m2 are real and distinct, then y(x) = c1e
m1x + c2e

m2x

2. If m1 and m2 are real and equal, then y(x) = c1e
m1x + c2xe

m1x

3. If m1 = p + iq and m2 = p− iq (with p = −b/2a and q =
√
4ac− b2/2a),

then y(x) = epx (c1 cos qx+ c2 sin qx)

Consider ay′′ + by′ + cy = R(x), where a, b, and c are real constants. Let m1

and m2 be as above.

1. If m1 and m2 are real and distinct, then y(x) = C1e
m1x + C2e

m2x +
em1x/(m1 −m2)

∫ x
e−m1zR(z) dz + em2x/(m2 −m1)

∫ x
e−m2zR(z) dz.

2. If m1 and m2 are real and equal, then y(x) = C1e
m1x + C2xe

m1x +
xem1x

∫ x
e−m1zR(z) dz − em1x

∫ x
ze−m1zR(z) dz.

3. If m1 = p + iq and m2 = p− iq, then y(x) = epx (c1 cos qx+ c2 sin qx) +
epx sin qx/q

∫ x
e−pzR(z) cos qz dz − epx cos qx/q

∫ x
e−pzR(z) sin qz dz.
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5.6.1.3 Homogeneous solutions

For the special case of a linear differential equation with constant coefficients (i.e.,

the {bi} in Equation (5.6.1) are constants), the procedure for finding the homoge-

neous solution is as follows:

1. Factor the polynomial p(D) into real and complex linear factors, just as if D
were a variable instead of an operator.

2. For each non-repeated linear factor of the form (D− a), where a is real, write

a term of the form ceax, where c is an arbitrary constant.

3. For each repeated real linear factor of the form (D− a)m, write the following

sum of m terms

c1e
ax + c2xe

ax + c3x
2eax + · · ·+ cmx

m−1eax (5.6.3)

where the ci’s are arbitrary constants.

4. For each non-repeated complex conjugate pair of factors of the form

(D − a+ ib)(D − a− ib), write the following two terms

c1e
ax cos bx+ c2e

ax sin bx. (5.6.4)

5. For each repeated complex conjugate pair of factors of the form

(D − a+ ib)m(D − a− ib)m, write the following 2m terms

c1e
ax cos bx+ c2e

ax sin bx+ c3xe
ax cos bx+ c4xe

ax sin bx+ . . .

+ c2m−1x
m−1eax cos bx+ c2mx

m−1eax sin bx. (5.6.5)

6. The sum of all the terms thus written is the homogeneous solution.

EXAMPLE For the linear equation

y(7) − 14y(6) + 81y(5) − 252y(4) + 455y(3) − 474y′′ + 263y′ − 60y = 0,

p(D) factors as p(D) = (D − 1)3(D − (2 + i))(D − (2− i))(D − 3)(D − 4). The

roots are thus {1, 1, 1, 2 + i, 2 − i, 3, 4}. Hence, the homogeneous solution has the

form

yh(x) =
(
c0 + c1x+ c2x

2) ex + (c3 sin x+ c4 cosx) e
2x + c5e

3x + c6e
4x

where {c0, . . . , c6} are arbitrary constants.
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5.6.1.4 Particular solutions

The following are solutions for some specific ordinary differential equations. These

assume that P (x) is a polynomial of degree n and {a, b, p, q, r, s} are constants. If

you wish to replace “sin” with “cos” in R(x), then use the given result but replace

“sin” by “cos,” and replace “cos” by “− sin.”

1. Particular solutions to y′ − ay = R(x)

(a) If R(x) = erx, y = erx/(r − a)
(b) R(x) = sin sx,

y = −a sin sx+ s cos sx

a2 + s2
= −

(
a2 + s2

)−1/2
sin
(
sx+ tan−1 s

a

)

(c) R(x) = P (x),

y = −1

a

[
P (x) +

P ′(x)

a
+
P ′′(x)

a2
+ · · ·+ P (n)(x)

an

]

(d) R(x) = erx sin sx,

Replace a by (a− r) in formula (1b) and multiply solution by erx

(e) R(x) = P (x)erx,

Replace a by (a− r) in formula (1c) and multiply solution by erx

(f) R(x) = P (x) sin sx,

y =− sin sx
[ a

a2 + s2
P (x) +

a2 − s2
(a2 + s2)2

P ′(x)

+ · · ·+ ak −
(
k
2

)
ak−2s2 +

(
k
4

)
ak−4s4 − . . .

(a2 + s2)k
P (k−1)(x) + . . .

]

− cos sx
[ s

a2 + s2
P (x) +

2as

(a2 + s2)2
P ′(x)

+ · · ·+
(
k
1

)
ak−1s−

(
k
3

)
ak−3s3 + . . .

(a2 + s2)k
P (k−1)(x) + . . .

]
.

(g) R(x) = P (x)erx sin sx,

Replace a by (a− r) in formula (1f) and multiply solution by erx

(h) If R(x) = eax, y = xeax

(i) If R(x) = eax sin sx, y = −eax cos sx/s
(j) If R(x) = P (x)eax, y = eax

∫ x
P (z) dz

(k) R(x) = P (x)eax sin sx,

y =
eax sin sx

s

[
P ′(x)

s
− P ′′′(x)

s3
+
P (5)(x)

s5
+ . . .

]

−e
ax cos sx

s

[
P (x)− P ′′(x)

s2
+
P (4)(x)

s4
+ . . .

]
.

2. Particular solutions to y′′ − 2ay′ + a2y = R(x)

(a) If R(x) = erx, y = erx/(r − a)2.
(b) If R(x) = sin sx, y =

(a2 − s2) sin sx+ 2as cos sx

(a2 + s2)2
=

1

a2 + s2
sin

(
sx+ tan−1 2as

a2 − s2
)
.
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(c) R(x) = P (x),

y =
1

a2

[
P (x) +

2P ′(x)

a
+

3P ′′(x)

a2
+ · · ·+ (n+ 1)P (n)(x)

an

]

(d) R(x) = erx sin sx,

Replace a by (a− r) in formula (2a) and multiply solution by erx

(e) R(x) = P (x)erx,

Replace a by (a− r) in formula (2b) and multiply solution by erx.

(f) If R(x) = P (x) sin sx,

y =sin sx
[ a2 − s2
(a2 + s2)2

P (x) + 2
a2 − 3as2

(a2 + s2)3
P ′(x).

+ · · ·+ (k − 1)
ak −

(
k
2

)
ak−2s2 +

(
k
4

)
ak−4s4 − . . .

(a2 + s2)k
P (k−2)(x) + . . .

]

+ cos sx
[ 2as

(a2 + s2)2
P (x) + 2

3a2s− s3
(a2 + s2)3

P ′(x)

+ · · ·+ (k − 1)

(
k
1

)
ak−1s−

(
k
3

)
ak−3s3 + . . .

(a2 + s2)k
P (k−2)(x) + . . .

]

(g) R(x) = P (x)erx sin sx,

Replace a by (a− r) in formula (2e) and multiply solution by erx.

(h) If R(x) = eax, y = x2eax/2
(i) If R(x) = eax sin sx, y = −eax sin sx/s2

(j) If R(x) = P (x)eax, y = eax
∫ x ∫ y

P (z) dz dy

(k) R(x) = P (x)eax sin sx,

y =− eax sin sx

s2

[
P (x)− 3P ′′(x)

s2
+

5P (4)(x)

s4
+ . . .

]

− eax cos sx

s2

[
2P (x)

s
− 4P ′′′(x)

s3
+

6P (5)(x)

s5
+ . . .

]

3. Particular solutions to y′′ + qy = R(x)

(a) If R(x) = erx, y = erx/(r2 + q)
(b) If R(x) = sin sx, y = sin sx/(q − s2)
(c) R(x) = P (x),

y =
1

q

[
P (x)− P ′′(x)

q
+
P (4)(x)

q2
+ · · ·+ (−1)kP

(2k)(x)

qk
+ · · ·

]

(d) If R(x) = erx sin sx, y = (r2−s2+q)erx sin sx−2rserx cos sx
(r2−s2+q)2+(2rs)2 =

erx√
(r2−s2+q)2+(2rs)2

sin
[
sx− tan−1 2rs

r2−s2+q

]

(e) R(x) = P (x)erx,

y =
erx

q + r2

[
P (x)− 2r

q + r2
P ′(x) +

3r2 − q
(q + r2)2

P ′′(x)

+ · · ·+ (−1)k−1

(
k
1

)
rk−1 −

(
k
3

)
rk−3q + . . .

(q + r2)k−1
P (k−1)(x) + . . .

]
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(f) R(x) = P (x) sin sx,

y =
sin sx

q − s2
[
P (x) − 3s2 + q

(q − s2)2P
′′(x)

+ · · ·+ (−1)k
(
2k+1

1

)
s2k +

(
2k+1

3

)
s2k−2q + . . .

(q − s2)2k P (2k)(x) + . . .
]

− s cos sx

q − s2
[ 2P ′(x)

(q − s2) −
4s2 + 4q

(q − s2)3P
′′′(x)

+ · · ·+ (−1)k+1

(
2k
1

)
s2k−2 +

(
2k
3

)
s2k−4q + . . .

(q − s2)2k−1
P (2k−1)(x) + . . .

]

4. Particular solutions to y′′ + b2y = R(x)

(a) If R(x) = sin bx, y = −x cos bx/2b
(b) If R(x) = P (x) sin bx, y = sin bx

(2b)2

[
P (x)− P ′′(x)

(2b)2 + P (4)(x)
(2b)4 + · · ·

]
−

cos bx
2b

∫ [
P (x)− P ′′(x)

(2b)2 + · · ·
]
dx

5. Particular solutions to y′′ + py′ + qy = R(x)

(a) If R(x) = erx, y = erx/(r2 + pr + q)

(b) If R(x) = sin sx, y = (q−s2) sin sx−ps cos sx
(q−s2)2+(ps)2 =

sin
(
sx−tan−1 ps

q−s2

)

√
(q−s2)2+(ps)2

(c) If R(x) = P (x),

y =
1

q

[
P (x)− p

q
P ′(x) +

p2 − q
q2

P ′′(x)− p2 − 2pq

q2
P ′′′(x)

+ · · ·+ (−1)n p
n −

(
n−1
1

)
pn−2q +

(
n−2
2

)
pn−4q2 − . . .

qn
P (n)(x)

]

(d) R(x) = erx sin sx,

In (5b): replace p by (p+ 2r), q by (q + pr + r2), multiply by erx.

(e) R(x) = P (x)erx,

In (5c): replace p by (p+ 2r), q by (q + pr + r2), multiply by erx.

6. Particular solutions to (D − a)ny = R(x)

(a) If R(x) = erx, y = erx/(r − a)n
(b) If R(x) = sin sx, y = (−1)n

(a2+s2)n

[(
an −

(
n
2

)
an−2s2 +

(
n
4

)
an−4s4 − . . .

)
sin sx+

((
n
1

)
an−1s+

(
n
3

)
an−3s3 + . . .

)
cos sx

]

(c) If R(x) = P (x), y =
(−1)n
an

[
P (x)+

(
n

1

)
P ′(x)

a
+

(
n+ 1

2

)
P ′′(x)

a2
+

(
n+ 2

3

)
P ′′′(x)

a3
+. . .

]

(d) R(x) = erx sin sx,

Replace a by (a− r) in formula (6b) and multiply solution by erx.

(e) R(x) = P (x)erx,

Replace a by (a− r) in formula (6c) and multiply solution by erx.
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5.6.1.5 Damping: none, under, over, and critical

Consider the linear ordinary differential equation x′′ + µx′ + x = 0. If the damping

coefficient µ is positive, then all solutions decay to x = 0. If µ = 0, the system is

undamped and the solution oscillates without decaying. The value of µ such that the

roots of the characteristic equation λ2 + µλ+ 1 = 0 are real and equal is the critical

damping coefficient. If µ is less than (greater than) the critical damping coefficient,

then the system is under (over) damped.

Consider four cases with the same initial values: y(0) = 1 and y′(0) = 0.

1. y′′ + y = 0 Undamped

2. y′′ + 0.2y′ + y = 0 Underdamped

3. y′′ + 3y′ + y = 0 Overdamped

4. y′′ + 2y′ + y = 0 Critically damped
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5.6.2 TRANSFORM TECHNIQUES

Transforms can sometimes be used to solve linear differential equations. Laplace

transforms (page 479) are appropriate for initial value problems, while Fourier trans-

forms (page 470) are appropriate for boundary value problems.

EXAMPLE Consider the linear second order equation y′′ + y = p(x), with the initial

conditions y(0) = 0 and y′(0) = 0. Multiplying this equation by e−sx and integrating

with respect to x from 0 to∞ results in
∫ ∞

0

e−sxy′′(x) dx+

∫ ∞

0

e−sxy(x)dx =

∫ ∞

0

e−sxp(x) dx.

Integrating by parts, and recognizing that Y (s) = L[y(x)] =
∫∞
0
e−sxy(x) dx is the

Laplace transform of y, we simplify to

(s2 + 1)Y (s) =

∫ ∞

0

e−sxp(x)dx = L[p(x)].

If p(x) ≡ 1, then L[p(x)] = s−1. The table of Laplace transforms (entry 20 in the

table on page 500) shows that the y(x) corresponding to Y (s) = 1/[s(1 + s2)] is

y(x) = L−1[Y (s)] = 1− cosx.
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5.6.3 SOLUTION TECHNIQUES

Differential equation Solution or solution technique

Autonomous equation

f(y(n), y(n−1), . . . , y′′, y′, y) = 0

Change dependent variable to

u(y) = y′(x)

Bernoulli’s equation

y′ + f(x)y = g(x)yn
Change dependent variable to

v(x) = (y(x))1−n

Clairaut’s equation

f(xy′ − y) = g(y′)
One solution is f(xC − y) = g(C)

Constant coefficient equation

a0y
(n) + a1y

(n−1) + . . .

+ an−1y
′ + any = 0

There are solutions of the form

y = xkeλx. See Section 5.6.1.3.

Dependent variable missing

f(y(n), y(n−1), . . . , y′′, y′, x) = 0

Change dependent variable to

u(x) = y′(x)

Euler’s equation

a0x
ny(n) + a1x

n−1y(n−1) + . . .

+ an−1xy + any = 0

Change independent variable to x = et

Exact equation

M(x, y) dx +N(x, y) dy = 0
with ∂M

∂y = ∂N
∂x

Integrate M(x, y) with respect to x
holding y constant, call this m(x, y).

Then m(x, y) +

∫ (
N − ∂m

∂y

)
dy = C

Homogeneous equation

y′ = f
(y
x

) lnx =

∫
dv

f(v)− v + C unless

f(v) = v, in which case y = Cx.

Linear first-order equation

y′ + f(x)y = g(x)

y(x) =

e−
∫ x f(t) dt

[∫ x

e
∫ z f(t) dtg(z) dz + C

]

Reducible to homogeneous

(a1x+ b1y + c1) dx

+ (a2x+ b2y + c2) dy = 0

with a1/a2 6= b1/b2

Change variables to u = a1x+ b1y + c
and v = a2x+ b2y + c

Reducible to separable

(a1x+ b1y + c1) dx

+ (a2x+ b2y + c2) dy = 0

with a1/a2 = b1/b2

Change dependent variable to

u(x) = a1x+ b1y

Separation of variables

y′ = f(x)g(y)

∫
dy

g(y)
=

∫
f(x) dx+ C



“smtf32” — 2011/5/20 — 2:09 — page 344 — #354

344 CHAPTER 5. ANALYSIS

5.6.4 INTEGRATING FACTORS

An integrating factor is a multiplicative term that makes a differential equation

become exact; that is, form an exact differential. If the differential equation

M(x, y) dx + N(x, y) dy = 0 is not exact (i.e., My 6= Nx), then it may be made

exact by multiplying by the integrating factor.

1. If
1

N

(
∂M

∂y
− ∂N

∂x

)
= f(x), a function of x alone,

then u(x) = exp
(∫ x

f(z) dz
)

is an integrating factor.

2. If
1

M

(
∂N

∂y
− ∂M

∂x

)
= g(y), a function of y alone,

then v(y) = exp
(∫ y

g(z) dz
)

is an integrating factor.

EXAMPLE The equation
y

x
dx + dy = 0 has {M = y/x, N = 1} and f(x) = 1/x.

Hence u(x) = exp
(∫ x 1

z
dz
)
= exp (log x) = x is an integrating factor. Multiplying

the original equation by u(x) results in y dx+ x dy = 0 or d(xy) = 0.

5.6.5 VARIATION OF PARAMETERS

If the linear second order equation L[y] = y′′ + P (x)y′ + Q(x)y = R(x) has the

independent homogeneous solutions u(x) and v(x) (i.e., L[u] = 0 = L[v]), then the

solution to the original equation is given by

y(x) = −u(x)
∫
v(x)R(x)

W (u, v)
dx+ v(x)

∫
u(x)R(x)

W (u, v)
dx, (5.6.6)

where W (u, v) = uv′ − u′v = | u v
u′ v′ | is the Wronskian.

EXAMPLE The homogeneous solutions to y′′ + y = csc x are u(x) = sin x and v(x) =
cosx. Here, W (u, v) = −1. Hence, y(x) = sin x log(sin x)− x cos x.

If the linear third order equation L[y] = y′′′ + P2(x)y
′′ + P (x)y′ + Q(x)y =

R(x) has the homogeneous solutions y1(x), y2(x), and y3(x) (i.e., L[yi] = 0), then

the solution to the original equation is given by

y(x) = y1(x)

∫

∣∣∣∣∣∣

0 y2 y3
0 y′2 y′3
R y′′2 y′′3

∣∣∣∣∣∣
W (y1, y2, y3)

dx+ y2(x)

∫

∣∣∣∣∣∣

y1 0 y3
y′1 0 y′3
y′′1 R y′′3

∣∣∣∣∣∣
W (y1, y2, y3)

dx

+ y3(x)

∫

∣∣∣∣∣∣

y1 y2 0
y′1 y′2 0
y′′1 y′′2 R

∣∣∣∣∣∣
W (y1, y2, y3)

dx

(5.6.7)

where W (y1, y2, y3) =

∣∣∣∣
y1 y2 y3

y′
1 y′

2 y′
3

y′′
1 y′′

2 y′′
3

∣∣∣∣ is the Wronskian.
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5.6.6 GREEN’S FUNCTIONS

Let L[y] = f(x) be an nth order linear differential equation with linear and homo-

geneous boundary conditions {Bi[y] =
∑n−1

j=0 (aijy
(j)(x0) + bijy

(j)(x1)) = 0}, for

i = 1, 2, . . . , n. If there is a Green’s functionG(x; z) that satisfies

L[G(x; z)] = δ(x − z),
Bi[G(x; z)] = 0,

(5.6.8)

where δ is Dirac’s delta function, then the solution of the original system can be

written as y(x) =
∫
G(x; z)f(z) dz, integrated over an appropriate region.

EXAMPLE To solve y′′ = f(x) with y(0) = 0 and y(L) = 0, the appropriate Green’s

function is

G(x; z) =






x(z − L)
L

for 0 ≤ x ≤ z,
z(x− L)

L
for z ≤ x ≤ L.

(5.6.9)

Hence, the solution is

y(x) =

∫ L

0

G(x; z) f(z) dz =

∫ x

0

z(x− L)
L

f(z) dz +

∫ L

x

x(z − L)
L

f(z) dz. (5.6.10)

5.6.7 TABLE OF GREEN’S FUNCTIONS

The Green’s function is G(x, ξ) when x ≤ ξ and G(ξ, x) when x ≥ ξ.

1. For the equation
d2y

dx2
= f(x) with

(a) y(0) = y(1) = 0, G(x, ξ) = −(1− ξ)x,
(b) y(0) = 0, y′(1) = 0, G(x, ξ) = −x,
(c) y(0) = −y(1), y′(0) = −y′(1), G(x, ξ) = − 1

2 (x− ξ)− 1
4 , and

(d) y(−1) = y(1) = 0, G(x, ξ) = − 1
2 (x− ξ − xξ + 1).

2. For the equation
d2y

dx2
− y = f(x) with y finite G(x, ξ) = − 1

2e
x−ξ.

3. For the equation
d2y

dx2
+ k2y = f(x) with

(a) y(0) = y(1) = 0, G(x, ξ) = − sin kx sin k(1 − ξ)
k sin k

,

(b) y(−1) = y(1) and y′(−1) = y′(1) G(x, ξ) =
cos k(x− ξ + 1)

2k sin k
.

4. For the equation
d2y

dx2
− k2y = f(x) with

(a) y(0) = y(1) = 0, G(x, ξ) = − sinh kx sinh k(1 − ξ)
k sinh k

,

(b) y(−1) = y(1) and y′(−1) = y′(1) G(x, ξ) = −coshk(x− ξ + 1)

2k sinh k
.

5. For the equation
d

dx

(
x
dy

dx

)
= f(x), with y(0) finite and y(1) = 0

G(x, ξ) = ln ξ

6. For the equation
d4y

dx4
= f(x), with y(0) = y′(0) = y(1) = y′(1) = 0

G(x, ξ) = −x
2(ξ − 1)2

6
(2xξ + x− 3ξ)
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5.6.8 LIE GROUPS

An algorithm for integrating second order ordinary differential equations is:

1. Determine the admitted Lie algebra Lr, where r is the dimension.

2. If r < 2, then Lie groups are not useful for the given equation.

3. If r > 2, determine a subalgebra L2 ⊂ Lr.

4. From the commutator and pseudoscalar product, change the basis to obtain

one of the four cases in the table below.

5. Introduce canonical variables specified by the change of basis.

6. Integrate the new equation. Rewrite solution in terms of the original variables.

The invertible transformation {x = φ(x, y, a), y = ψ(x, y, a)} forms a 1 parameter

group if φ(x, y, b) = φ(x, y, a+ b) and ψ(x, y, b) = ψ(x, y, a+ b). For small a,

x = x+ aξ(x, y) +O(a2) and y = y + aη(x, y) +O(a2) (5.6.11)

If D = ∂
∂x + y′ ∂

∂y + y′′ ∂
∂y′ + . . ., then the derivatives of the new variables are

y′ =
dy

dx
=
Dψ

Dφ
=
ψx + y′ψy

φx + y′φy
= P (x, y, y′, a) = y′ + aζ1 +O(a2), and

y′′ =
dy′

dx
=
DP

Dφ
=
Px + y′Py + y′′Py′

φx + y′φy
= y′′ + aζ2 +O(a2),

(5.6.12)

where
ζ1 = D(η)− y′D(ξ) = ηx + (ηy − ξx)y′ − y′2ξy, and

ζ2 = D(ζ1)− y′′D(ξ) = ηxx + (2ηxy − ξxx)y′ + (ηyy − 2ξxy)y
′2

− y′3ξyy + (ηy − 2ξx − 3y′ξy)y
′′.

(5.6.13)

Define the infinitesimal generatorX = ξ(x, y) ∂
∂x + η(x, y) ∂

∂y , and its prolonga-

tionsX(1) = X+ζ1
∂

∂y′ andX(2) = X(1)+ζ2
∂

∂y′′ . For a given differential equation,

these infinitesimal generators will generate an r-dimensional Lie group (Lr).

For the equationF (x, y, y′, y′′) = 0 to be invariant under the action of the above

group,X(2)F |F=0 = 0. When F = y′′ − f(x, y, y′) this determining equation is
ηxx + (2ηxy − ξxx)y′ + (ηyy−2ξxy)y′2 − y′3ξyy

+(ηy − 2ξx − 3y′ξy)f−
[
ηx + (ηy − ξx)y′ − y′2

]
fy′ − ξfx − ηfy = 0.

Given two generatorsX1 = ξ1
∂
∂x +η1

∂
∂y andX2 = ξ2

∂
∂x +η2

∂
∂y , the pseudoscalar

product is X1 ∨ X2 = ξ1η2 − ξ2η1 and the commutator is [X1, X2] = X1X2 −
X2X1. By changing basis any Lie algebra L2 can be changed to one of four types:

No. Commutator Pseudoscalar Typified by

I [X1, X2] = 0 X1 ∨X2 6= 0 {X1 = ∂
∂x , X2 = ∂

∂y}
II [X1, X2] = 0 X1 ∨X2 = 0 {X1 = ∂

∂y , X2 = x ∂
∂y}

III [X1, X2] = X1 X1 ∨X2 6= 0 {X1 = ∂
∂y , X2 = x ∂

∂x + y ∂
∂y}

IV [X1, X2] = X1 X1 ∨X2 = 0 {X1 = ∂
∂y , X2 = y ∂

∂y}
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5.6.9 STOCHASTIC DIFFERENTIAL EQUATIONS

A stochastic differential equation for the unknown X(t) has the form (here, a and b
are given):

dX(t) = a(X(t)) dt+ b(X(t)) dB(t) (5.6.14)

where B(t) is a Brownian motion. Brownian motion has a Gaussian probability

distribution and independent increments. The probability density function fX(t) for

X(t) satisfies the forward Kolmogorov equation

∂
∂tfX(t)(x) =

1
2

∂2

∂x2

[
b2(x)fX(t)(x)

]
− ∂

∂x

[
a(x)fX(t)(x)

]
. (5.6.15)

The conditional expectation of the function φ(X(t)), which is u(t, x) =
E [φ(X(t)) | X(0) = x], satisfies

∂

∂t
u(t, x) =

1

2
b2(x)

∂2

∂x2
u(t, x) + a(x)

∂

∂x
u(t, x) with u(0, x) = φ(x).

(5.6.16)

5.6.10 TYPES OF CRITICAL POINTS

An ODE may have several types of critical points; these include improper node,

deficient improper node, proper node, saddle, center, and focus. See Figure 5.1.

FIGURE 5.1
Types of critical points. Clockwise from upper left: center, improper node, deficient improper

node, spiral, star, and saddle.
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5.6.11 NAMED ORDINARY DIFFERENTIAL EQUATIONS

1. Airy equation: y′′ = xy
Solution: y = c1 Ai(x) + c2 Bi(x)

2. Bernoulli equation: y′ = a(x)yn + b(x)y

3. Bessel equation: x2y′′ + xy′ + (λ2x2 − n2)y = 0
Solution: y = c1Jn(λx) + c2Yn(λx)

4. Bessel equation (transformed): x2y′′ + (2p+ 1)xy′ + (λ2x2r + β2)y = 0

Solution: y = x−p

[
c1Jq/r

(
λ

r
xr
)
+ c2Yq/r

(
λ

r
xr
)]

q ≡
√
p2 − β2

5. Bôcher equation: y′′ + 1
2

[
m1

x−a1
+ · · ·+ mn−1

x−an−1

]
y′

+ 1
4

[
A0+A1x+···+Alx

l

(x−a1)m1(x−a2)m2 ···(x−an−1)
mn−1

]
y = 0

6. Duffing equation: y′′ + y + ǫy3 = 0

7. Emden–Fowler equation: (xpy′)′ ± xσyn = 0

8. Hypergeometric equation: y′′ +
(

1−α−α′

x−a + 1−β−β′

x−b + 1−γ−γ′

x−c

)
y′

−
(

αα′

(x−a)(b−c) +
ββ′

(x−b)(c−a) +
γγ′

(x−c)(a−b)

)
(a−b)(b−c)(c−a)
(x−a)(x−b)(x−c)u = 0

Solution: y = P




a b c
α β γ x
α′ β′ γ′



 (Riemann’s P function)

9. Legendre equation: (1 − x2)y′′ − 2xy′ + n(n+ 1)y = 0
Solution: y = c1Pn(x) + c2Qn(x)

10. Mathieu equation: y′′ + (a− 2q cos 2x)y = 0

11. Painlevé transcendents

(a) first y′′ = 6y2 + tx
(b) second y′′ = 2y3 + xy + a
(c) third y′′ = 1

y (y
′)2 − 1

xy
′ + 1

x(αy
2 + β) + γy3 + δ

y

(d) fourth y′′ = 1
2y (y′)2 + 3y3

2 + 4xy2 + 2(x2 − α)y + β
y

(e) fifth

y′′ =
(

1
2y + 1

y−1

)
(y′)2 − 1

xy
′ + (y−1)2

x2

(
αy + β

y

)
+ γy

x + δy(y+1)
y−1

(f) sixth y′′ = 1
2

(
1
y + 1

y−1 + 1
y−x

)
(y′)2 −

(
1
x + 1

x−1 + 1
y−x

)
y′ +

y(y−1)(y−x)
x2(x−1)2

[
α+ βx

y2 + γ(x−1)
(y−1)2 + δx(x−1)

(y−x)2

]

12. Parabolic cylinder equation: y′′ + (ax2 + bx+ c)y = 0

13. Riccati equation: y′ = a(x)y2 + b(x)y + c(x)
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5.7 PARTIAL DIFFERENTIAL EQUATIONS

5.7.1 CLASSIFICATIONS OF PDES

Consider second order partial differential equations, with two independent variables,

of the form

A(x, y)∂
2u

∂x2 +B(x, y) ∂2u
∂x∂y + C(x, y)∂

2u
∂y2 = Ψ

(
u, ∂u∂x ,

∂u
∂y , x, y

)
. (5.7.1)

If



B2 − 4AC > 0
B2 − 4AC = 0
B2 − 4AC < 0


 at some point (x, y), then Equation (5.7.1) is




hyperbolic

parabolic

elliptic


 at

that point. If an equation is of the same type at all points, then the equation is simply

of that type.

5.7.2 WELL-POSEDNESS OF PDES

Partial differential equations involving u(x) usually have the following types of

boundary conditions:

1. Dirichlet conditions: u = 0 on the boundary

2. Neumann conditions: ∂u
∂n = 0 on the boundary

3. Cauchy conditions: u and ∂u
∂n specified on the boundary

A well-posed differential equation meets these conditions:

1. The solution exists.

2. The solution is unique.

3. The solution is stable (i.e., the solution depends continuously on the boundary

conditions and initial conditions).

Type of equation

Type of boundary

conditions

Elliptic Hyperbolic Parabolic

Dirichlet

Open surface Undetermined Undetermined Unique, stable

solution in one

direction

Closed surface Unique, stable

solution

Undetermined Undetermined

Neumann

Open surface Undetermined Undetermined Unique, stable

solution in one

direction

Closed surface Overdetermined Overdetermined Overdetermined

Cauchy

Open surface Not physical Unique, stable

solution

Overdetermined

Closed surface Overdetermined Overdetermined Overdetermined
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5.7.3 TRANSFORMING PARTIAL DIFFERENTIAL EQUATIONS

To transform a partial differential equation, construct a new function which depends

upon new variables, and then differentiate with respect to the old variables to see

how the derivatives transform.

EXAMPLE Consider transforming

fxx + fyy + xfy = 0, (5.7.2)

from the {x, y} variables to the {u, v} variables, where {u = x, v = x/y}. Note that

the inverse transformation is given by {x = u, y = u/v}.
First, define g(u, v) as the function f(x, y) when written in the new variables, that

is

f(x, y) = g(u, v) = g

(
x,
x

y

)
. (5.7.3)

Now create the needed derivative terms, carefully applying the chain rule. For example,

differentiating Equation (5.7.3) with respect to x results in

fx(x, y) = gu
∂

∂x
(u) + gv

∂

∂x
(v) = g1

∂

∂x
(x) + g2

∂

∂x

(
x

y

)

= g1 + g2
1

y
= g1 +

v

u
g2,

where a subscript of “1” (“2”) indicates a derivative with respect to the first (sec-

ond) argument of the function g(u, v), that is, g1(u, v) = gu(u, v). Use of this

“slot notation” tends to minimize errors. In like manner

fy(x, y) = gu
∂

∂y
(u) + gv

∂

∂y
(v) = g1

∂

∂y
(x) + g2

∂

∂y

(
x

y

)

= − x

y2
g2 = −v

2

u
g2.

The second order derivatives can be calculated similarly:

fxx(x, y) =
∂

∂x
(fx(x, y)) =

∂

∂x

(
g1 +

1

y
g2

)

= g11 +
2v

u
g12 +

v2

u2
g22,

fxy(x, y) =
∂

∂x

(
− x

y2
g2

)
= −u

2

v2
g2 −

u3

v3
g12 −

u2

v2
g22,

fyy(x, y) =
∂

∂y

(
− x

y2
g2

)
=

2v3

u2
g2 +

v4

u2
g22.

Finally, Equation (5.7.2) in the new variables has the form,

0 = fxx + fyy + xfy

=

(
g11 +

2v

u
g12 +

v2

u2
g22

)
+

(
2v3

u2
g2 +

v4

u2
g22

)
+ (u)

(
−v

2

u
g2

)

=
v2(2v − u2)

u2
gv + guu +

2v

u
guv +

v2(1 + v2)

u2
gvv.



“smtf32” — 2011/5/20 — 2:09 — page 351 — #361

5.7. PARTIAL DIFFERENTIAL EQUATIONS 351

5.7.4 GREEN’S FUNCTIONS

The Green’s function, G(r; r0), of a linear differential operator L[·] is a solution of

L[G(r; r0)] = δ(r− r0) where δ(·) is the Dirac delta function.

In the following, r = (x, y, z), r0 = (x0, y0, z0), R
2 = |r− r0|2 = (x−x0)2+

(y − y0)2 + (z − z0)2, and P 2 = (x− x0)2 + (y − y0)2.

1. For the potential equation ∇2G + k2G = −4πδ(r − r0), with the radiation

condition (outgoing waves only), the solution is

G =





2πi

k
eik|x−x0| in one dimension,

iπH
(1)
0 (kP ) in two dimensions, and

eikR

R
in three dimensions,

(5.7.4)

where H
(1)
0 (·) is a Hankel function (see page 454).

2. For the n-dimensional diffusion equation

∇2G− a2 ∂G
∂t

= −4πδ(r− r0)δ(t− t0), (5.7.5)

with the initial conditionG = 0 for t < t0, and the boundary conditionG = 0
at r =∞, the solution is

G =
4π

a2

(
a

2
√
π(t− t0)

)N

exp

(
−a

2|r− r0|2
4(t− t0)

)
. (5.7.6)

3. For the wave equation

∇2G− 1

c2
∂2G

∂t2
= −4πδ(r− r0)δ(t− t0), (5.7.7)

with the initial conditionsG = Gt = 0 for t < t0, and the boundary condition

G = 0 at r =∞, the solution is

G =





2cπH

[
(t− t0)−

|x− x0|
c

]
in one space dimension,

2c√
c2(t− t0)2 − P 2

H

[
(t− t0)−

P

c

]
in two space dimensions, and

1

R
δ

[
R

c
− (t− t0)

]
in three space dimensions.

(5.7.8)

where H(·) is the Heaviside function.
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5.7.5 SEPARATION OF VARIABLES

A solution of a linear PDE in n dimensions is attempted in the form u(x) =
u(x1, x2, · · · , xn) = X1(x1)X2(x2) . . .Xn(xn). Logic may determine the {Xi}.
EXAMPLE The diffusion or heat equation in a circle is

∂u

∂t
= ∇2u =

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
(5.7.9)

for u(t, r, θ), where (r, θ) are the polar coordinates. If u(t, r, θ) = T (t)R(r)Θ(θ),
then

1

rR

d

dr

(
r
dR

dr

)
+

1

r2Θ

d2Θ

dθ2
− 1

T

dT

dt
= 0. (5.7.10)

Logic about which terms depend on which variables leads to

1

T

dT

dt
= −λ, 1

Θ

d2Θ

dθ2
= −ρ, r

d

dr

(
r
dR

dr

)
+ (−ρ+ r2λ)R = 0.

where λ and ρ are unknown constants. Solving these ordinary differential equations

yields the general solution,

u(t, r, θ) =

∫ ∞

−∞
dλ

∫ ∞

−∞
dρ e−λt

[
B(λ, ρ) sin(

√
ρθ) + C(λ, ρ) cos(

√
ρθ)
]

×
[
D(λ, ρ)J√ρ(

√
λr) + E(λ, ρ)Y√

ρ(
√
λr)
]
.

(5.7.11)

Boundary conditions are required to determine the {B,C,D,E}.

1. A necessary and sufficient condition for a system with Hamiltonian

H = 1
2 (p

2
x + p2y) + V (x, y), to be separable in elliptic, polar, parabolic, or

Cartesian coordinates is that the expression,

(Vyy−Vxx)(−2axy− b′y− bx+d)+2Vxy(ay
2−ax2+ by− b′x+ c− c′)

+ Vx(6ay + 3b) + Vy(−6ax− 3b′), (5.7.12)

vanishes for some constants (a, b, b′, c, c′, d) 6= (0, 0, 0, c, c, 0).

2. Consider the orthogonal coordinate system {u1, u2, u3}, with the metric {gii},
and g = g11g22g33. The Stäckel matrix is defined as

S =



Φ11(u

1) Φ12(u
1) Φ13(u

1)
Φ21(u

2) Φ22(u
2) Φ23(u

2)
Φ31(u

3) Φ32(u
3) Φ33(u

3)


 , (5.7.13)

where the {Φij}, which are analogous to the {Xi} above, have been tabulated

for many different coordinate systems. The determinant of S can be written as

s = Φ11M11 +Φ21M21 +Φ31M33, where

M11 =

∣∣∣∣
Φ22 Φ23

Φ32 Φ33

∣∣∣∣ , M21 = −
∣∣∣∣
Φ12 Φ13

Φ32 Φ33

∣∣∣∣ M31 =

∣∣∣∣
Φ12 Φ13

Φ22 Φ23

∣∣∣∣ .
(5.7.14)
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If the separability conditions, gii = s/Mi1 and
√
g/s = f1(u

1)f2(u
2)f3(u

3),
are met then the Helmholtz equation ∇2W + λ2W = 0 separates with

W = X1(u
1)X2(u

2)X3(u
3). Here the {Xi} are defined by

1

fi

d

dui

(
fi
dXi

dui

)
+Xi

3∑

j=1

αjΦij = 0, (5.7.15)

with α1 = λ2, and α2 and α3 arbitrary.

(a) Necessary and sufficient conditions for the separation of the Laplace

equation (∇2W = 0) are

gii
gjj

=
Mj1

Mi1
and

√
g

gii
= f1(u

1)f2(u
2)f3(u

3)Mi1. (5.7.16)

(b) Necessary and sufficient conditions for the separation of the scalar

Helmholtz equation are

gii =
S

Mi1
and

√
g

S
= f1(u

1)f2(u
2)f3(u

3) (5.7.17)

EXAMPLE In parabolic coordinates {µ, ν,ψ} the metric coefficients are g11 = g22 =
µ2 + ν2 and g33 = µ2ν2. Hence,

√
g = µν(µ2 + ν2). For the Stäckel matrix

S =




µ2 −1 −1/µ2

ν2 1 −1/ν2
0 0 1



 (5.7.18)

(for which s = µ2 + ν2, M11 = M21 = 1, and M31 = µ−2 + ν−2), the separability

condition holds with f1 = µ, f2 = ν, and f3 = 1. Hence, the Helmholtz equation

separates in parabolic coordinates. The separated equations are

1

µ

d

dµ

(
µ
dX1

dµ

)
+X1

(
α1µ

2 − α2 − α3

µ2

)
= 0,

1

ν

d

dν

(
ν
dX2

dν

)
+X2

(
α1ν

2 + α2 − α3

ν2

)
= 0, and

d2X3

dψ2
+ α3X3 = 0,

(5.7.19)

where W = X1(µ)X2(ν)X3(ψ).
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5.7.6 SOLUTIONS TO THE WAVE EQUATION

1. Consider the wave equation ∂2u
∂t2 = ∇2u = ∂2u

∂x1
2 + · · · + ∂2u

∂xn
2 , with x =

(x1, . . . , xn) and the initial data u(0, x) = f(x) and ut(0, x) = g(x). When n
is odd (and n ≥ 3), the solution is

u(t, x) =
1

1 · 3 · · · (n− 2)

{
∂

∂t

(
∂

t ∂t

)(n−3)/2

tn−2ω[f ; x, t]

+

(
∂

t ∂t

)(n−3)/2

tn−2ω[g; x, t]

}
,

(5.7.20)

where ω[h; x, t] is the average of the function h(x) over the surface of

an n-dimensional sphere of radius t centered at x; that is, ω[h; x, t] =
1

σn−1(t)

∫
h(ζ) dΩ, where |ζ − x|2 = t2, σn−1(t) is the surface area of the

n-dimensional sphere of radius t, and dΩ is an element of area.

When n is even, the solution is given by

u(t, x) =
1

2 · 4 · · · (n− 2)

{
∂

∂t

(
∂

t ∂t

)(n−2)/2∫ t

0

ω[f ; x, ρ]
ρn−1 dρ√
t2 − ρ2

+

(
∂

t ∂t

)(n−2)/2∫ t

0

ω[g; x, ρ]
ρn−1 dρ√
t2 − ρ2

}
,

(5.7.21)

where ω[h; x, t] is defined as above. Since this expression is integrated over

ρ, the values of f and g must be known everywhere in the interior of the

n-dimensional sphere.

Using un for the solution in n dimensions, the above simplify to

u1(x, t) =
1

2
[f(x− t) + f(x+ t)] +

1

2

∫ x+t

x−t

g(ζ) dζ, (5.7.22)

u2(x, t) =
1

2π

∂

∂t

∫∫

R(t)

f(x1 + ζ1, x2 + ζ2)√
t2 − ζ21 − ζ22

dζ1 dζ2

+
1

2π

∫∫

R(t)

g(x1 + ζ1, x2 + ζ2)√
t2 − ζ21 − ζ22

dζ1 dζ2, and (5.7.23)

u3(x, t) =
∂

∂t

(
tω[f ; x, t]

)
+ tω[g; x, t], (5.7.24)

where R(t) is the region {(ζ1, ζ2) | ζ21 + ζ22 ≤ t2} and

ω[h; x, t] =
1

4π

∫ 2π

0

∫ π

0

h(x1 + t sin θ cosφ,x2 + t sin θ sinφ,

x3 + t cos θ)× sin θ dθ dφ.

(5.7.25)
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2. The solution of the one-dimensional wave equation

vtt = c2vxx

v(0, t) = 0, for 0 < t <∞, (5.7.26)

v(x, 0) = f(x), for 0 ≤ x <∞,

vt(x, 0) = g(x), for 0 ≤ x <∞,

is

v(x, t) =

{
1
2 [f(x+ ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct
g(ζ) dζ, for x ≥ ct,

1
2 [f(x+ ct)− f(ct− x)] + 1

2c

∫ x+ct

ct−x
g(ζ) dζ, for x < ct.

(5.7.27)

3. The solution of the inhomogeneous wave equation

∂2u

∂t2
− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
= F (t, x, y, z), (5.7.28)

with the initial conditions u(0, x, y, z) = 0 and ut(0, x, y, z) = 0, is

u(t, x, y, z) =
1

4π

∫∫∫

ρ≤t

F (t− ρ, ζ, η, ξ)
ρ

dζ dη dξ, (5.7.29)

with ρ =
√
(x− ζ)2 + (y − η)2 + (z − ξ)2.

5.7.7 SOLUTIONS OF LAPLACE’S EQUATION

1. If ∇2u = 0 in a circle of radius R and u(R, θ) = f(θ), for 0 ≤ θ < 2π, then

u(r, θ) is

u(r, θ) =
1

2π

∫ 2π

0

R2 − r2
R2 − 2Rr cos(θ − φ) + r2

f(φ) dφ.

2. If∇2u = 0 in a sphere of radius one and u(1, θ, φ) = f(θ, φ), then

u(r, θ, φ) =
1

4π

∫ π

0

∫ 2π

0

f(Θ,Φ)
1− r2

(1− 2r cos γ + r2)3/2
sinΘ dΘ dΦ,

where cos γ = cos θ cosΘ + sin θ sinΘ cos(φ− Φ).

3. If∇2u = 0 in the half plane y ≥ 0, and u(x, 0) = f(x), then

u(x, y) =
1

π

∫ ∞

−∞

f(t)y

(x− t)2 + y2
dt.

4. If∇2u = 0 in the half space z ≥ 0, and u(x, y, 0) = f(x, y), then

u(x, y, z) =
z

2π

∫ ∞

−∞

∫ ∞

−∞

f(ζ, η)

[(x− ζ)2 + (y − η)2 + z2]
3/2

dζ dη.
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5.7.8 QUASI-LINEAR EQUATIONS

Consider the first-order quasi-linear differential equation for u(x) = u(x1, . . . , xN ),

a1(x, u)ux1 + a2(x, u)ux2 + · · ·+ aN(x, u)uxN = b(x, u). (5.7.30)

Defining ∂xk

∂s = ak(x, u), for k = 1, 2, . . . , N , this equation becomes du
ds = b(x, u).

The initial conditions can often be parameterized as (with t = (t1, . . . , tN−1))

u(s = 0, t) = v(t),

x1(s = 0, t) = h1(t),

x2(s = 0, t) = h2(t),

...

xN (s = 0, t) = hN(t),

(5.7.31)

To solve the original equation, the differential equations for u(s, t) and the {xk(s, t)}
must be solved; these are the characteristic equations. This often results in an im-

plicit solution.

EXAMPLES

• Consider the wave equation cux + uy = 0, where c is a constant, with x = x0 and

u = f(x0) when y = 0. The characteristic equations are

∂x

∂s
= c,

∂y

∂s
= 1,

du

ds
= 0.

with the conditions

y(s = 0) = 0, x(s = 0) = x0, u(s = 0) = f(x0).

The solutions of these equations are:

y = s, x = x0 + cs, u = f(x0).

These can be combined to obtain

u = f(x0) = f(x− cs) = f(x− cy),
which represents a traveling wave.

• Consider the equation ux+x
2uy = −yuwith u = f(y) when x = 0. The characteristic

equations are
∂x

∂s
= 1,

∂y

∂s
= x2,

du

ds
= −yu.

The original initial data can be written parametrically as

x(s = 0, t1) = 0, y(s = 0, t1) = t1, u(s = 0, t1) = f(t1).

Solving for x results in x(s, t1) = s. The equation for y is then integrated to ob-

tain y(s, t1) = s3

3
+ t1. Then the equation for u is integrated to obtain u(s, t1) =

f(t1) exp
(
− s4

12
− st1

)
. These solutions constitute an implicit solution of the original

system.

In this case, it is possible to eliminate the s and t1 variables analytically to obtain the

explicit solution: u(x, y) = f

(
y − x3

3

)
exp

(
x4

4
− xy

)
.
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5.7.9 PARTICULAR SOLUTIONS TO TWO PDES

In these tables, we assume that P (x) is a polynomial of degree n.

If R(x) is A particular solution to zx +mzy = R(x, y) is

(1) eax+by eax+by/(a+mb).

(2) f(ax+ by)
∫
f(y) du/(a+mb), u = ax+ by.

(3) f(y −mx) xf(y −mx).

(4) φ(x, y)f(y −mx) evaluate f(y −mx)
∫
φ(x, a+mx) dx; then

substitute a = y −mx.

If R(x) is A particular solution to zx +mzy − kz = R(x, y) is

(5) eax+by eax+by/(a+mb− k).

(6) sin(ax+ by) − (a+bm) cos(ax+by)+k sin(ax+by)
(a+bm)2+k2 .

(7) eαx+βy sin(ax+ by) Replace k by k− α−mβ in formula (6) and multiply

by eαx+βy.

(8) exkf(ax+ by) ekx
∫
f(y) du/(a+mb), u = ax+ by.

(9) f(y −mx) −f(y −mx)/k.

(10) P (x)f(y −mx) − 1
kf(y−mx)

[
P (x)+ P ′(x)

k + P ′′(x)
k2 + · · ·+ P (n)(x)

kn

]
.

(11) ekxf(y −mx) xekxf(y −mx).

5.7.10 NAMED PARTIAL DIFFERENTIAL EQUATIONS

1. Biharmonic equation: ∇4u = 0

2. Burgers’ equation: ut + uux = νuxx
3. Diffusion (or heat) equation: ∇(c(x, t)∇u) = ut
4. Hamilton–Jacobi equation: Vt +H(t, x, Vx1 , . . . , Vxn) = 0

5. Helmholtz equation: ∇2u+ k2u = 0

6. Korteweg de Vries equation: ut + uxxx − 6uux = 0

7. Laplace’s equation: ∇2u = 0

8. Navier–Stokes equations: ut + (u · ∇)u = −∇P
ρ + ν∇2u

9. Poisson equation: ∇2u = −4πρ(x)
10. Schrödinger equation: − ~

2

2m∇2u+ V (x)u = i~ut
11. Sine–Gordon equation: uxx − uyy ± sinu = 0

12. Tricomi equation: uyy = yuxx
13. Wave equation: c2∇2u = utt
14. Telegraph equation: uxx = autt + but + cu
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5.8 INTEGRAL EQUATIONS

h(x)u(x) = f(x) + λ

∫ b(x)

a

k(x, t)G[u(t); t] dt.

5.8.1 DEFINITIONS

1. Terms in an integral equation

• k(x, t) kernel

• u(x) function to be determined

• h(x), f(x), b(x), G[z, t] given functions

• λ eigenvalue

2. Classification of integral equations

(a) Linear G[u(x);x] = u(x)
(b) Volterra b(x) = x
(c) Fredholm b(x) = b
(d) First kind h(x) = 0
(e) Second kind h(x) = 1
(f) Third kind h(x) 6= constant

(g) Homogeneous f(x) = 0
(h) Singular a = −∞, b =∞

3. Classification of kernels

(a) Symmetric k(x, t) = k(t, x)
(b) Hermitian k(x, t) = k(t, x)
(c) Separable/degenerate k(x, t) =

∑n
i=1 ai(x)bi(t), n <∞

(d) Difference k(x, t) = k(x− t)
(e) Cauchy k(x, t) = 1

x−t
(f) Singular k(x, t)→∞ as t→ x

(g) Hilbert–Schmidt
∫ b

a

∫ b

a |k(x, t)|
2
dx dt <∞

5.8.2 CONNECTION TO DIFFERENTIAL EQUATIONS

The initial value problem

u′′(x) +A(x)u′(x) +B(x)u(x) = g(x), x > a,

u(a) = c1, u′(a) = c2,
(5.8.1)

is equivalent to the Volterra integral equation,

u(x) = f(x) +

∫ x

a

k(x, t)u(t) dt, x ≥ a,

f(x) =

∫ x

a

(x− t)g(t) dt+ (x− a)[A(a)c1 + c2] + c1,

k(x, t) = (t− x)[B(t) −A′(t)]− A(t).

(5.8.2)



“smtf32” — 2011/5/20 — 2:09 — page 359 — #369

5.8. INTEGRAL EQUATIONS 359

The boundary value problem

u′′(x) +A(x)u′(x) +B(x)u(x) = g(x), a < x < b,

u(a) = c1, u(b) = c2,
(5.8.3)

is equivalent to the Fredholm integral equation

u(x) = f(x) +

∫ b

a

k(x, t)u(t) dt, a ≤ x ≤ b,

f(x) = c1 +

∫ x

a

(x− t)g(t) dt+ x− a
b− a

[
c2 − c1 −

∫ b

a

(b− t)g(t) dt
]
,

k(x, t) =

{
x−b
b−a{A(t)− (a− t)[A′(t)−B(t)]}, x > t,
x−a
b−a {A(t)− (b− t)[A′(t)−B(t)]}, x < t.

(5.8.4)

5.8.3 SPECIAL EQUATIONS WITH SOLUTIONS

1. Generalized Abel equation:

∫ x

0

u(t) dt

[h(x)− h(t)]α = f(x). The solution is

u(x) =
sin(απ)

π

d

dx

∫ x

0

h′(t)f(t) dt

[h(x)− h(t)]1−α
(5.8.5)

where 0 ≤ x ≤ 1, 0 ≤ α < 1, 0 ≤ h(x) ≤ 1, h′(x) > 0, and h′(x) is

continuous.

2. Cauchy equation: µu(x) = f(x) +−
∫ 1

0

u(t)

t− x dt. The solution is

u(x) =





xγsin2
(πγ)

π2
d
dx

∫ 1

x
ds

(s−x)γ

∫ s

0
t−γf(t)
(s−t)1−γ dt, µ < 0,

(1−x)γsin2
(πγ)

π2
d
dx

∫ x

0
ds

(x−s)γ

∫ 1

s
(1−t)−γf(t)
(t−s)1−γ dt, µ > 0,

(5.8.6)

where 0 < x < 1, µ is real, µ 6= 0, |µ| = π cot(πγ), 0 < γ < 1/2, and the

integral is a Cauchy principal value integral.

3. Volterra equation with difference kernel: u(x) = f(x)+λ

∫ x

0

k(x−t)u(t) dt.
The solution is

u(x) = L−1

[
F (s)

1− λK(s)

]
, (5.8.7)

for x ≥ 0, L [f(x)] = F (s) and L [k(x)] = K(s).
4. Singular equation with difference kernel:

u(x) = f(x) + λ

∫ ∞

−∞
k(x− t)u(t) dt. The solution is

u(x) =
1√
2π

∫ ∞

−∞
e−iαx F (α)

1− λK(α)
dα (5.8.8)

where−∞ < x <∞, F (α) = F [f(x)] and K(α) = F [k(x)]
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5. Fredholm equation with separable kernel:

u(x) = f(x) + λ

∫ b

a

n∑

k=1

ak(x)bk(t)u(t) dt. The solution is

u(x) = f(x) + λ

n∑

k=1

ckak(x), (5.8.9)

with cm =

∫ b

a

bm(t)f(t) dt + λ
n∑

k=1

ck

∫ b

a

bm(t)ak(t) dt where a ≤ x ≤ b,

n <∞, and m = 1, 2, . . . , n (see page 470).

6. Fredholm equation with symmetric kernel:

u(x) = f(x) + λ

∫ b

a

k(x, t)u(t) dt. Solve un(x) = λn
∫ b

a
k(x, t)un(t) dt

for {un, λn}n=1,2,.... Then

(a) For λ 6= λn, solution is u(x) = f(x) + λ

∞∑

n=1

un(x)
∫ b

a
f(t)un(t) dt

(λn − λ)
∫ b

a u
2
n(t) dt

.

(b) For λ = λn and
∫ b

a
f(t)um(t) dt = 0 for all m, solutions are

u(x) = f(x) + cum(x) + λm

∞∑

n=1

n6=m

un(x)
∫ b

a f(t)un(t) dt

(λn − λm)
∫ b

a
u2n(t) dt

,

for m = 1, 2, . . . .

where a ≤ x ≤ b, and k(x, t) = k(t, x) (see Section 5.8.4).

7. Volterra equation of second kind: u(x) = f(x) + λ

∫ x

a

k(x, t)u(t) dt

Solution is

u(x) = f(x) + λ

∫ x

a

∞∑

n=0

λnkn+1(x, t)f(t) dt, (5.8.10)

where k1(x, t) = k(x, t), kn+1(x, t) =
∫ x

t
k(x, s)kn(s, t) ds, when k(x, t)

and f(x) are continuous, λ 6= 0, and x ≥ a.

5.8.4 FREDHOLM ALTERNATIVE

For u(x) = f(x)+λ
∫ b

a k(x, t)u(t) dtwith λ 6= 0, consider the solutions to uH(x) =

λ
∫ b

a
k(x, t)uH(t) dt.

1. If the only solution is uH(x) = 0, then there is a unique solution u(x).

2. If uH(x) 6= 0, then there is no solution unless
∫ b

a u
∗
H(t)f(t) dt = 0 for all

u∗H(x) such that u∗H(x) = λ
∫ b

a
k(t, x)u∗H(t) dt. In this case, there are in-

finitely many solutions.
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5.9 TENSOR ANALYSIS

5.9.1 DEFINITIONS

1. An n-dimensional coordinate manifold of class Ck, k ≥ 1, is a point set M
together with the totality of allowable coordinate systems onM . An allowable

coordinate system (φ, U) on M is a one-to-one mapping φ : U → M , where

U is an open subset of Rn. The n-tuple (x1, . . . , xn) ∈ U give the coordinates

of the corresponding point φ(x1, . . . , xn) ∈M .

If (φ̃, Ũ) is a second coordinate system on M , then the one-to-one cor-

respondence φ̃−1 ◦ φ : U → Ũ , called a coordinate transforma-

tion on M , is assumed to be of class Ck. It may be written as

x̃i = f̃ i(x1, . . . , xn), i = 1, . . . , n,where the f̃ are defined by (φ̃−1 ◦
φ)(x1, . . . , xn) = (f̃1(x1, . . . , xn), . . . , f̃n(x1, . . . , xn)).

The coordinate transformation φ̃−1 ◦ φ has inverse φ−1 ◦ φ̃, expressible in

terms of the coordinates as xi = f i(x̃1, . . . , x̃n), i = 1, . . . , n.
2. In the Einstein summation convention, a repeated upper and lower index sig-

nifies summation over the range k = 1, . . . , n.

3. The Jacobian matrix of the transformation, ∂x̃i

∂xj , satisfies ∂x̃i

∂xk
∂xk

∂x̃j = δij and

∂xi

∂x̃k
∂x̃k

∂xj
= δij , where δij =

{
1, i = j
0, i 6= j

denotes the Kronecker delta. Note

also that det
(

∂x̃i

∂xj

)
6= 0.

4. A functionF : M → R is called a scalar invariant onM . The coordinate rep-

resentation of F in any coordinate system (φ, U) is defined by f := F ◦φ. The

coordinate representations f̃ of F with respect to a second coordinate system

(φ̃, Ũ) is related to f by f̃(x̃1, . . . , x̃n) = f(f1(x̃1, . . . , x̃n), . . . , fn(x̃1, . . .,
x̃n)).

5. A mixed tensor T of contravariant valence r, covariant valence s, and weight

w at p ∈ M , called a tensor of type (r, s, w), is an object which, with respect

to each coordinate system on M , is represented by nr+s real numbers whose

values in any two coordinate systems, φ and φ̃, are related by

T̃ i1···ir
j1···js =

[
det

(
∂xi

∂x̃j

)]w
T k1···kr

ℓ1···ℓs
∂x̃i1

∂xk1
· · · ∂x̃

ir

∂xkr︸ ︷︷ ︸
r factors

∂xℓ1

∂x̃j1
· · · ∂x

ℓs

∂x̃js
.

︸ ︷︷ ︸
s factors

(5.9.1)

The superscripts are called contravariant indices and the subscripts covariant

indices. If w 6= 0, then T is said to be a relative tensor. If w = 0, then

T is said to be an absolute tensor or a tensor of type (r, s). In this section

only absolute tensors, which will be called tensors, will be considered unless

otherwise indicated. A tensor field T of type (r, s) is an assignment of a tensor

of type (r, s) to each point of M . A tensor field T is Ck if its component

functions are Ck for every coordinate system on M .
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6. A parameterized curve on M is a mapping γ : I →M , where I ⊂ R is some

interval. The coordinate representation of γ in any coordinate system (φ, U)
is a mapping g : I → R

n defined by g = φ−1 ◦ γ. The mapping g defines a

parameterized curve in R
n. The component functions of g denoted by gi (for

i = 1, . . . , n) are defined by g(t) = (g1(t), · · · , gn(t)). The curve γ is Ck

if and only if the functions gi are Ck for every coordinate system on M . The

coordinate representation g̃ of γ with respect to a second coordinate system

(φ̃, ũ) is related to g by g̃i(t) = f̃ i(g1(t), · · · , gn(t)).

5.9.2 ALGEBRAIC TENSOR OPERATIONS

1. Addition: The components of the sum of the tensors T1 and T2 of type (r, s)
are given by

T i1···ir
3 j1···js

= T i1···ir
1 j1···js

+ T i1···ir
2 j1···js

. (5.9.2)

2. Multiplication: The components of the tensor or outer product of a tensor T1
of type (r, s) and a tensor T2 of type (t, u) are given by

T i1···irk1···kt

3 j1···jsℓ1···ℓu = T i1···ir
1 j1···jsT

k1···kt

2 ℓ1···ℓu . (5.9.3)

3. Contraction: The components of the contraction of the tth contravariant index

with the uth covariant index of a tensor T of type (r, s), with rs 6= 0, are given

by T
i1···it−1kit+1···ir

j1···ju−1kju+1···js .

4. Permutation of indices: Let T be any tensor of type (0, r) and Sr the group

of permutations of the set {1, · · · , r}. The components of the tensor, obtained

by permuting the indices of T with any σ ∈ Sr, are given by (σT )i1···ir =
Tiσ(1)···iσ(r)

. The symmetric part of T , denoted by S(T ), is the tensor whose

components are given by

S(T )i1···ir = T(i1···ir) =
1

r!

∑

σǫSr

Tiσ(1)···iσ(r)
. (5.9.4)

The tensor T is said to be symmetric if and only if Ti1···ir = T(i1···ir). The

skew symmetric part of T , denoted by A(T ), is the tensor whose components

are given by

A(T )i1···ir = T[i1···ir] =
1

r!

∑

σ∈Sr

sgn(σ)Tiσ(1) ···iσ(r)
, (5.9.5)

where sgn(σ) = ±1 according to whether σ is an even or odd permutation.

The tensor T is said to be skew symmetric if and only if Ti1···ir = T[i1···ir ]. If

r = 2, S(T )i1i2 = 1
2 (Ti1i2 + Ti2i1) andA(T )i1i2 = 1

2 (Ti1i2 − Ti2i1 ).
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5.9.3 DIFFERENTIATION OF TENSORS

1. In tensor analysis, a comma is used to denote partial differentiation and a semi-

colon to denote covariant differentiation.

2. A linear connection ∇ at p ∈ M is an object which, with respect to each

coordinate system on M , is represented by n3 real numbers Γi
jk, called the

connection coefficients, whose values in any two coordinate systems φ and φ̃
are related by

Γ̃i
jk = Γℓ

mn

∂x̃i

∂xℓ
∂xm

∂x̃j
∂xn

∂x̃k
+

∂2xℓ

∂x̃j∂x̃k
∂x̃i

∂xℓ
(5.9.6)

The quantities Γi
jk are not the components of a tensor of type (1, 2). A linear

connection ∇ on M is an assignment of a linear connection to each point

of M . A connection ∇ is Ck if its connection coefficients Γi
jk are Ck in

every coordinate system on M .

3. The components of the covariant derivative of a tensor field T of type (r, s),
with respect to a connection∇, are given by

∇kT
i1···ir

j1···js = ∂kT
i1···ir

j1···js + Γi1
ℓkT

ℓi2···ir
j1···js + · · ·

· · ·+ Γir
ℓkT

i1···ir−1ℓ
j1···js − Γℓ

j1kT
i1···ir

ℓj2···js · · · − Γℓ
jskT

i1···ir
j1···js−1ℓ

,

(5.9.7)

where ∂kT
i1···ir

ji···js = T i1···ir
j1···js,k =

∂T i1···ir
j1···js

∂xk
.

This formula has this structure:

(a) A partial derivative term, a negative affine term for each covariant index

and a positive affine term for each contravariant index.

(b) The second subscript in the Γ-symbols is always the differentiated index

(k in this case).

4. Let Y i(t) be a contravariant vector field and Zi(t) a covariant vector field

defined along a parameterized curve γ. The absolute covariant derivatives of

Y i and Zi are defined as follows:

δY i

δt
=
dY i

dt
+ Γi

jk Y
j dx

k

dt

δZi

δt
=
dZi

dt
− Γj

ik Zj
dxk

dt

(5.9.8)

where xi denotes the components of γ in the coordinate system φ. This deriva-

tive may also be defined for tensor fields of type (r, s) defined along γ.

5. A parameterized curve γ in M is said to be an affinely parameterized geodesic

if the component functions of γ satisfy

δ

δt

(dxi
dt

)
=
d2xi

dt2
+ Γi

jk
dxj

dt

dxk

dt
= 0

which is equivalent to the statement that the tangent vector dxi

dt to γ is parallel

along γ.
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6. A vector field Y i(t) is parallel along a parameterized curve γ if δY i

δt = 0.

7. The components of the torsion tensor S of∇ on M are defined by

Si
jk = Γi

jk − Γi
kj . (5.9.9)

8. The components of the curvature tensor R of∇ on M are defined by

Ri
jkℓ = ∂kΓ

i
jℓ − ∂ℓΓi

jk + Γm
jℓΓ

i
mk − Γm

jkΓ
i
mℓ. (5.9.10)

(In some referencesR is defined with the opposite sign.)

9. The Ricci tensor of∇ is defined by Rjk = Rℓ
jkℓ .

5.9.4 METRIC TENSOR

1. A covariant metric tensor field on M is a tensor field gij which satisfies

gij = gji and g = det(gij) 6= 0 on M . The contravariant metric gij sat-

isfies gikgkj = δij . The line element is expressible in terms of the metric

tensor as ds2 = gijdx
idxj .

2. Signature of the metric: For each p ∈ M , a coordinate system exists such

that gij(p) = diag (1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1)︸ ︷︷ ︸
n−r

. The signature of gij is defined

by s = 2r − n. It is independent of the coordinate system in which gij(p)
has the above diagonal form and is the same at every p ∈ M . A metric is

said to be positive definite if s = n. A manifold, admitting a positive definite

metric, is called a Riemannian manifold. A metric is said to be indefinite if

s 6= n and s 6= −n. A manifold, admitting an indefinite metric, is called a

pseudo-Riemannian manifold. If s = 2 − n or n − 2, the metric is said to be

Lorentzian and the corresponding manifold is called a Lorentzian manifold.

3. The inner product of a pair of vectors X i and Y j is given by gijX
iY j . If

X i = Y i, then gijX
iXj defines the “square” of the length of X i. If gij is

positive definite, then gijX
iXj ≥ 0 for all X i, and gijX

iXj = 0 if and

only if X i = 0. In the positive definite case, the angle θ between two tangent

vectors X i and Y j is defined by cos θ = gijX
iY j/(gkℓX

kXℓgmnY
mY n)

1
2 .

If g is indefinite, gijX
iXj may have a positive, negative, or zero value. A

non-zero vector X i, satisfying gijX
iXj = 0, is called a null vector. If gij is

indefinite, it is not possible in general to define the angle between two tangent

vectors.

4. Operation of lowering indices: The components of the tensor resulting from

lowering the tth contravariant index of a tensor T of type (r, s), with r ≥ 1,

are given by

T
i1···it−1 · it+1···ir

it j1···js = gitkT
i1···it−1kit+1···ir

j1···js . (5.9.11)

5. Operation of raising indices: The components of the tensor resulting from

raising the tth covariant index of a tensor T of type (r, s), with s ≥ 1, are

given by

T i1···ir jt
ji···jt−1 · jt+1···js = gjtkT i1···ir

j1···jt−1kjt+1···js . (5.9.12)



“smtf32” — 2011/5/20 — 2:09 — page 365 — #375

5.9. TENSOR ANALYSIS 365

6. The arc length of a parameterized curve γ : I → M , where I = [a, b], and φ
is any coordinate system, is defined by

L =

∫ b

a

√
ǫgij(x1(t), · · · , xn(t))ẋiẋj dt, (5.9.13)

where ǫ = sgn(gij ẋ
iẋj) = ±1 and ẋi = dxi

dt .

5.9.5 RESULTS

The following results hold on any manifoldM admitting any connection∇:

1. The covariant derivative operator∇k is linear with respect to tensor addition,

satisfies the product rule with respect to tensor multiplication, and commutes

with contractions of tensors.

2. If T is any tensor of type (0, r), then

∇[kTi1···ir ] = T[i1···ir ,k] −
1

2

(
Sℓ

[i1k
T|ℓ|i2···ir ] + · · ·+ Sℓ

[irk
Ti1···ir−1]ℓ

)
,

where | | indicates that the enclosed indices are excluded from the symmetriza-

tion. Thus T[i1···ir ,k] defines a tensor of type (0, r + 1), and ∇[kTi1···ir ] =
T[i1···ir ,k] in the torsion free case. If Tj = ∇jf = f,j , where f is any scalar in-

variant, then∇[i∇j]f = 1
2f,kS

k
ij . In the torsion free case,∇i∇jf = ∇j∇if .

3. If X i is any contravariant vector field on M , then the identity 2∇[j∇k]X
i +

∇ℓX
iSℓ

jk = XℓRi
ℓjk , called the Ricci identity, reduces to 2∇[j∇k]X

i =

Ri
ℓjkX

ℓ, in the torsion free case. If Yi is any covariant vector field, the Ricci

identity has the form 2∇[i∇j]Yk −∇ℓYkS
ℓ
ij = −YℓRℓ

kij . The Ricci identity

may be extended to tensor fields of type (r, s). For the tensor field T i
jk , it has

the form

2∇[i∇j]T
k
ℓm −∇nT

k
ℓmS

n
ij = T n

ℓmR
k
nij − T k

nmR
n
ℓij − T k

ℓnR
n
mij .

If g is any metric tensor field, the above identity implies that

R(ij)kℓ = ∇[k∇ℓ]gij − 1
2∇mgijS

m
kℓ.

4. The torsion tensor S and curvature tensor R satisfy the following identities:

Si
(jk) = 0, 0 = Ri

j[kl;m] −Ri
jn[kS

n
ℓm], (5.9.14)

Ri
j(kℓ) = 0, Ri

[jkℓ] = −Si
[jk;ℓ] + Si

m[jS
m
kℓ]. (5.9.15)

In the torsion free case, these identities reduce to the cyclical identityRi
[jkℓ] =

0 and Bianchi’s identity Ri
j[kℓ;m] = 0.

The following results hold for any pseudo-Riemannian manifold M with a metric

tensor field gij :

1. A unique connection ∇ called the Levi–Civita or pseudo-Riemannian con-

nection with vanishing torsion (Si
jk = 0) exists that satisfies ∇igjk = 0.
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It follows that ∇ig
jk = 0. The connection coefficients of ∇, called the

Christoffel symbols of the second kind, are given by Γi
jk = giℓ[jk, ℓ], where

[jk, ℓ] = 1
2 (gjℓ,k + gkℓ,j − gjk,ℓ) are the Christoffel symbols of the first kind.

Γk
jk = 1

2∂j(log g) = |g|−
1
2 ∂j |g|

1
2 and gij,k = [ki, j] + [kj, i].

2. The operations of raising and lowering indices commute with the covariant

derivative. For example if Xi = gijX
j , then∇kXi = gij∇kX

j .

3. The divergence of a vector X i is given by ∇iX
i = |g|− 1

2 ∂i(|g| 12X i).
The Laplacian of a scalar invariant f is given by ∆f = gij∇i∇jf =

∇i(g
ij∇jf) = |g|− 1

2 ∂i(|g| 12 gij∂jf).
4. The equations of an affinely parameterized geodesic may be written as

d
dt(gij ẋ

j)− 1
2gjk,iẋ

j ẋk = 0.

5. Let X i and Y i be the components of any vector fields which are propagated

in parallel along any parameterized curve γ. Then d
dt(gijX

iY j) = 0, which

implies that the inner product gijX
iY j is constant along γ. In particular, if ẋi

are the components of the tangent vector to γ, then gij ẋ
iẋj is constant along γ.

6. The Riemann tensor, defined by Rijkℓ = gimR
m
jkℓ , is given by

Rijkℓ = [jℓ, i],k−[jk, i],ℓ+[iℓ,m]Γm
jk − [ik,m]Γm

jℓ

=
1

2
(giℓ,jk + gjk,iℓ − gjℓ,ik − gik,jℓ)

+ gmn([iℓ,m][jk, n]− [ik,m][jℓ, n]).

(5.9.16)

It has the following symmetries:

Rij(kℓ) = R(ij)kℓ = 0, Rijkℓ = Rkℓij , and Ri[jkℓ] = 0. (5.9.17)

Consequently it has a maximum of n2(n2 − 1)/12 independent components.

7. The equations Rijkℓ = 0 are necessary and sufficient conditions for M to be

a flat pseudo-Riemannian manifold, that is, a manifold for which a coordinate

system exists so that the components gij are constant on M .

8. The Ricci tensor is given by

Rij = ∂jΓ
k
ik − ∂kΓk

ij + Γk
iℓΓ

ℓ
kj − Γk

ijΓ
ℓ
kℓ

=
1

2
∂i∂j(log |g|)−

1

2
Γk

ij∂k(log |g|)− ∂kΓk
ij + Γk

imΓm
kj .

It possesses the symmetryRij = Rji, and thus has a maximum of n(n+1)/2
independent components.

9. The scalar curvature or curvature invariant is defined by R = gijRij .

10. The Einstein tensor is defined by Gij = Rij − 1
2Rgij . In view of the Bianchi

identity, it satisfies: gjk∇jGki = 0.

11. A normal coordinate system with origin x0ǫM is defined by
0
gij x

j = gijx
j ,

where a “0” affixed over a quantity indicates that the quantity is evaluated

at x0. The connection coefficients satisfy
0

Γi
(j1j2···jr) = 0 (for r = 2, 3, 4, . . . )

in any normal coordinate system. The equations of the geodesics through x0
are given by xi = ski, where s is an affine parameter and ki is any constant

vector.
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5.9.6 EXAMPLES OF TENSORS

1. The components of the gradient of a scalar invariant ∂f
∂xi define a tensor of

type (0,1), since they transform as ∂f̃
∂x̃i = ∂f

∂xj
∂xj

∂x̃i .

2. The components of the tangent vector to a parameterized curve dxi

dt define a

tensor of type (1,0), because they transform as dx̃i

dt = dxj

dt
∂x̃i

∂xj .

3. The determinant of the metric tensor g defines a relative scalar invariant of

weight of w = 2, because it transforms as g̃ =
∣∣∣ ∂xi

∂x̃j

∣∣∣
2

g.

4. The Kronecker deltas δji are the components of a constant absolute tensor of

type (1, 1), because δij = δkℓ
∂x̃i

∂xk
∂xℓ

∂x̃j .

5. The permutation symbol defined by

ei1···in =





1, if i1 · · · in is an even permutation of 1 · · ·n,

−1, if i1 · · · in is an odd permutation of 1 · · ·n, and

0 otherwise,

(5.9.18)

satisfies
∣∣∣∂xi

∂x̃i

∣∣∣ ej1···jn = ei1···in
∂xi1

∂x̃j1
· · · ∂xin

∂x̃jn . Hence it defines a tensor of type

(0, n,−1), that is, it is a relative tensor of weight w = −1. The contravariant

permutation symbol ei1···in , defined in a similar way, is a relative tensor of

weight w = 1.

6. The Levi–Civita symbol, ǫi1···in = |g| 12 ei1···in , defines a covariant absolute

tensor of valence n. The contravariant Levi–Civita tensor satisfies

ǫi1···in = gi1j1 · · · ginjnǫj1···jn = (−1)n−s
2 |g|− 1

2 ei1···in . (5.9.19)

Using this symbol, the dual of a covariant skew-symmetric tensor of valence

r is defined by *Ti1···in−r = 1
r!ǫ

j1···jr
i1···in−r

Tj1···jr .

7. Cartesian tensors: Let M = E3 (i.e., Euclidean 3 space) with metric tensor

gij = δij with respect to Cartesian coordinates. The components of a Carte-

sian tensor of valence r transform as

T̃i1···ir = Tj1···jrOi1j1 · · ·Oirjr , (5.9.20)

where Oij are the components of a constant orthogonal matrix which satisfies

(O−1)ij = (OT)ij = Oji. For Cartesian tensors, all indices are written as co-

variant, because no distinction is required between covariant and contravariant

indices.

8. Note the useful relations: ǫijkǫklm = δilδjm − δimδjl, ǫiklǫklm = 2δim, and

ǫijkǫlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm − δinδjmδkl − δimδjlδkn −
δilδjnδkm.

9. The stress tensor Eij and the strain tensor eij are Cartesian tensors.
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10. Orthogonal curvilinear coordinates: Let M be a 3-dimensional Riemannian

manifold admitting a coordinate system [x1, x2, x3] such that the metric tensor

has the form gii = h 2
i (x

1, x2, x3) for i = 1, . . . , 3 with gij = gij = 0 for i 6=
j. The metric tensor onE3 has this form with respect to orthogonal curvilinear

coordinates. The non-zero components of various quantities corresponding to

this metric are:

(a) Covariant metric tensor

g11 = h1
2, g22 = h2

2, g33 = h3
2 (5.9.21)

(b) Contravariant metric tensor

g11 = h1
−2, g22 = h2

−2, g33 = h3
−2 (5.9.22)

(c) Christoffel symbols of the first kind (note that [ij, k] = 0 if i, j, and k
are all different),

[11, 1] = h1h1,1 [11, 2] = −h1h1,2 [11, 3] = −h1h1,3
[12, 1] = h1h1,2 [12, 2] = h2h2,1 [13, 1] = h1h1,3

[13, 3] = h3h3,1 [22, 1] = −h2h2,1 [22, 2] = h2h2,2

[22, 3] = −h2h2,3 [23, 2] = h2h2,3 [23, 3] = h3h3,2

[33, 1] = −h3h3,1 [33, 2] = −h3h3,2 [33, 3] = h3h3,3.

(d) Christoffel symbols of the second kind (note that Γk
ij = 0 if i, j, and k

are all different),

Γ1
11 = h1

−1h1,1 Γ1
12 = h1

−1h1,2 Γ1
13 = h1

−1h1,3

Γ1
22 = −h1−2h2h2,1 Γ1

33 = −h1−2h3h3,1 Γ2
11 = −h1h2−2h1,2

Γ2
12 = h2

−1h2,1 Γ2
22 = h2

−1h2,2 Γ2
23 = h2

−1h2,3

Γ2
33 = −h2−2h3h3,2 Γ3

11 = −h1h3−2h1,3 Γ3
13 = h3

−1h3,1

Γ3
22 = −h2h3−2h2,3 Γ3

23 = h3
−1h3,2 Γ3

33 = h3
−1h3,3.

(e) Vanishing Riemann tensor conditions (Lamé equations),

h1,2,3 − h2−1h1,2h2,3 − h3−1h1,3h3,2 = 0,

h2,1,3 − h1−1h1,3h2,1 − h3−1h3,1h2,3 = 0,

h3,1,2 − h1−1h1,2h3,1 − h2−1h2,1h3,2 = 0,

h2h2,3,3 + h3h3,2,2 + h1
−2h2h3h2,1h3,1 − h2−1h3h2,2h3,2

− h2h3−1h2,3h3,3 = 0,

h1h1,3,3 + h3h3,1,1 + h1h2
−2h3h1,2h3,2 − h1−1h3h1,1h3,1

− h1h3−1h1,3h3,3 = 0,

h1h1,2,2 + h2h2,1,1 + h1h2h3
−2h1,3h2,3 − h1−1h2h1,1h2,1

− h1h2−1h1,2h2,2 = 0.
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11. Polar coordinates: The line element is given by ds2 = dr2 + r2dθ2. Thus

the metric tensor is gij =
(
1 0
0 r2

)
, and the non-zero Christoffel symbols are

[21, 2] = [12, 2] = −[22, 1] = r.
12. The 2-sphere: A coordinate system [θ, φ] for the 2-sphere x2+y2+z2 = r2 is

given by x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, where [θ, φ] ∈ U =
(0, π) × (0, 2π). This is a non-Euclidean space. The non-zero independent

components of various quantities defined on the sphere are:

(a) Covariant metric tensor components: g11 = r2, g22 = r2 sin2 θ.

(b) Contravariant metric tensor components:

g11 = r−2, g22 = r−2 csc2 θ.

(c) Christoffel symbols of the first kind:

[12, 2] = r2 sin θ cos θ, [22, 1] = −r2 sin θ cos θ.

(d) Christoffel symbols of the second kind:

Γ1
22 = − sin θ cos θ, Γ2

12 = − cos θ csc θ.

(e) Covariant Riemann tensor components: R1212 = r2 sin2 θ.

(f) Covariant Ricci tensor components: R11 = −1, R22 = − sin2 θ.

(g) The Ricci scalar: R = −2r−2.

13. The 3-sphere: A coordinate system [ψ, θ, φ] for the 3-sphere x2 + y2 + z2 +
w2 = r2 is given by x = r sinψ sin θ cosφ, y = r sinψ sin θ sinφ, z =
r sinψ cos θ, andw = r cosψ, where [ψ, θ, φ] ∈ U = (0, π)×(0, π)×(0, 2π).
The non-zero components of various quantities defined on the sphere are:

(a) Covariant metric tensor components:

g11 = r2, g22 = r2 sin2 ψ, g33 = r2 sin2 ψ sin2 θ
(b) Contravariant metric tensor components:

g11 = r−2, g22 = r−2 csc2 ψ, g33 = r−2 csc2 ψ csc2 θ
(c) Christoffel symbols of the first kind:

[22, 1] = −r2 sinψ cosψ [33, 1] = −r2 sinψ cosψ sin2 θ

[12, 2] = r2 sinψ cosψ [33, 2] = −r2 sin2 ψ sin θ cos θ

[13, 3] = r2 sinψ cosψ sin2 θ [23, 3] = r2 sin2 ψ sin θ cos θ.

(d) Christoffel symbols of the second kind:

Γ1
22 = − sinψ cosψ Γ1

33 = − sinψ cosψ sin2 θ

Γ2
12 = cotψ Γ2

33 = − sin θ cos θ

Γ3
13 = cotψ Γ3

23 = cot θ.

(e) Covariant Riemann tensor components: R1212 = r2 sin2 ψ,

R1313 = r2 sin2 ψ sin2 θ, R2323 = r2 sin4 ψ sin2 θ.
(f) Covariant Ricci tensor components:

R11 = −2, R22 = −2 sin2 ψ, R33 = −2 sin2 ψ sin2 θ.

(g) The Ricci scalar: R = −6r−2.
(h) Covariant Einstein tensor components:

G11 = 1, G22 = sin2 ψ, G33 = sin2 ψ sin2 θ
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5.10 ORTHOGONAL COORDINATE SYSTEMS

In an orthogonal coordinate system, let {ai} denote the unit vectors in each of the

three coordinate directions, and let {ui} denote distance along each of these axes.

The coordinate system may be designated by the metric coefficients {g11, g22, g33},
defined by

gii =

(
∂x1
∂ui

)2

+

(
∂x2
∂ui

)2

+

(
∂x3
∂ui

)2

, (5.10.1)

where {x1, x2, x3} represent rectangular coordinates. With these, we define g =
g11g22g33.

Operations for orthogonal coordinate systems are sometimes written in terms of

{hi} functions, instead of the {gii} terms. Here, hi =
√
gii, so that

√
g = h1h2h3.

For example, in cylindrical coordinates, {x1 = r cos θ, x2 = r sin θ, x3 = z}, so

that {h1 = 1, h2 = r, h3 = 1}.
In the following, φ represents a scalar, and E = E1a1 + E2a2 + E3a3 and

F = F1a1 + F2a2 + F3a3 represent vectors.

gradφ = ∇φ = the gradient of φ

=
a1√
g11

∂φ

∂u1
+

a2√
g22

∂φ

∂u2
+

a3√
g33

∂φ

∂u3
, (5.10.2)

divE = ∇ · E = the divergence of E

=
1√
g

{
∂

∂u1

(
gE1

g11

)
+

∂

∂u2

(
gE2

g22

)
+

∂

∂u3

(
gE3

g33

)}
, (5.10.3)

curlE = ∇× E = the curl of E

= a1
Γ1√
g11

+ a2
Γ2√
g22

+ a3
Γ3√
g33

(5.10.4)

=

∣∣∣∣∣∣

a1
h2h3

a2
h1h3

a3
h1h2

∂
∂u1

∂
∂u2

∂
∂u3

h1E1 h2E2 h3E3

∣∣∣∣∣∣
, (5.10.5)

[(F · ∇)E]j = the convective operator

=

3∑

i=1

[
Fi

hi

∂Ej

∂ui
+

Ei

hihj

(
Fj
∂hj
∂ui
− Fi

∂hi
∂uj

)]
, (5.10.6)

∇2φ = the Laplacian of φ (sometimes written as ∆φ)

=
1

h1h2h3

{
∂

∂u1

[
h2h3
h1

∂φ

∂u1

]
+

∂

∂u2

[
h3h1
h2

∂φ

∂u2

]
+

∂

∂u3

[
h1h2
h3

∂φ

∂u3

]}

=
1√
g

{
∂

∂u1

[√
g

g11

∂φ

∂u1

]
+

∂

∂u2

[√
g

g22

∂φ

∂u2

]
+

∂

∂u3

[√
g

g33

∂φ

∂u3

]}
, (5.10.7)

graddivE = ∇(∇ · E) = a1√
g11

∂Υ

∂x1
+

a2√
g22

∂Υ

∂x2
+

a3√
g33

∂Υ

∂x3
, (5.10.8)
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curl curlE = ∇× (∇× E)

= a1

√
g11
g

[
∂Γ3

∂x2
− ∂Γ2

∂x3

]
+ a2

√
g22
g

[
∂Γ1

∂x3
− ∂Γ3

∂x1

]

+ a3

√
g33
g

[
∂Γ2

∂x1
− ∂Γ1

∂x2

]
,

(5.10.9)

△▽E = graddivE− curl curlE = the vector Laplacian of E

= ∇(∇ · E)−∇× (∇× E)

= a1

{
1√
g11

∂Υ

∂x1
+

√
g11
g

[
∂Γ2

∂x3
− ∂Γ3

∂x2

]}

+ a2

{
1√
g22

∂Υ

∂x2
+

√
g22
g

[
∂Γ3

∂x1
− ∂Γ1

∂x3

]}

+ a3

{
1√
g33

∂Υ

∂x3
+

√
g33
g

[
∂Γ1

∂x2
− ∂Γ2

∂x1

]}
,

(5.10.10)

where Υ and Γ = (Γ1,Γ2,Γ3) are defined by

Υ =
1√
g

{
∂

∂x1

[
E1

√
g

g11

]
+

∂

∂x2

[
E2

√
g

g22

]
+

∂

∂x3

[
E3

√
g

g33

]}
,

Γ1 =
g11√
g

{
∂

∂x2
(
√
g33E3)−

∂

∂x3
(
√
g22E2)

}
,

Γ2 =
g22√
g

{
∂

∂x3
(
√
g11E1)−

∂

∂x1
(
√
g33E3)

}
,

Γ3 =
g22√
g

{
∂

∂x1
(
√
g22E2)−

∂

∂x2
(
√
g11E1)

}
.

(5.10.11)

5.10.1 TABLE OF ORTHOGONAL COORDINATE SYSTEMS

The {fi} listed below are the separated components of the Laplace or Helmholtz

equations (see (5.7.16) and (5.7.17)). See Moon and Spencer for details.

The eleven coordinate systems listed below are the only coordinate systems in

Euclidean space (up to an isometry) for which the Laplace or Helmholtz equation

may be solved by separation of variables.

The corresponding equations for the four separable coordinate systems which

exist in two-dimensions may be obtained from the coordinate systems 1–4 listed

below by suppressing the z coordinate and assuming that all functions depend only

on the x and y coordinates.

1. Rectangular coordinates {x, y, z}
Ranges: −∞ < x <∞, −∞ < y <∞, −∞ < z <∞.

g11 = g22 = g33 =
√
g = 1,

f1 = f2 = f3 = 1.

In this coordinate system the following notation is sometimes used:

i = ax, j = ay , k = az .
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gradf = ax
∂f

∂x
+ ay

∂f

∂y
+ az

∂f

∂z

divE =
∂

∂x
(Ex) +

∂

∂y
(Ey) +

∂

∂z
(Ez)

curlE =

(
∂Ez

∂y
− ∂Ey

∂z

)
ax +

(
∂Ex

∂z
− ∂Ez

∂x

)
ay +

(
∂Ey

∂x
− ∂Ex

∂y

)
az

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2

[(F · ∇)E]x = Fx
∂Ex

∂x
+ Fy

∂Ex

∂y
+ Fz

∂Ex

∂z

(5.10.12)

2. Circular cylinder coordinates {r, θ, z}
Relations: x = r cos θ, y = r sin θ, z = z.

Ranges: 0 ≤ r <∞, 0 ≤ θ < 2π, −∞ < z <∞.

g11 = g33 = 1, g22 = r2,
√
g = r,

f1 = r, f2 = f3 = 1.

grad f = ar
∂f

∂r
+

aθ

r

∂f

∂θ
+ az

∂f

∂z

divE =
1

r

∂

∂r
(rEr) +

1

r

∂Eθ

∂θ
+
∂Ez

∂z

(curlE)r =
1

r

∂Ez

∂θ
− ∂Eθ

∂z

(curlE)θ =
∂Er

∂z
− ∂Ez

∂r

(curlE)z =
1

r

∂(rEθ)

∂r
− 1

r

∂Er

∂θ

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
+
∂2f

∂z2

(5.10.13)

3. Elliptic cylinder coordinates {η, ψ, z}
Relations: x = a cosh η cosψ, y = a sinh η sinψ, z = z.

Ranges: 0 ≤ η <∞, 0 ≤ ψ < 2π, −∞ < z <∞.

g11 = g22 = a2(cosh2 η − cos2 ψ), g33 = 1,√
g = a2(cosh2 η − cos2 ψ),

f1 = f2 = f3 = 1.

4. Parabolic cylinder coordinates {µ, ν, z}
Relations: x = 1

2 (µ
2 − ν2), y = µν, z = z.

Ranges: 0 ≤ µ <∞, −∞ < ν < 2π, −∞ < z <∞.

g11 = g22 = µ2 + ν2, g33 = 1,
√
g = µ2 + ν2,

f1 = f2 = f3 = 1.
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5. Spherical coordinates {r, θ, ψ}
Relations: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ.

Ranges: 0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ ψ < 2π.

g11 = 1, g22 = r2, g33 = r2 sin2 θ,
√
g = r2 sin θ,

f1 = r2, f2 = sin θ, f3 = 1.

gradf = er
∂f

∂r
+

eθ

r

∂f

∂θ
+

eφ

r sin θ

∂f

∂φ

divE =
1

r2
∂

∂r
(r2Er) +

1

r sin θ

∂

∂θ
(Eθ sin θ) +

1

r sin θ

∂Eφ

∂φ

(curlE)r =
1

r sin θ

[
∂

∂θ
(Eφ sin θ)−

∂Aθ

∂φ

]

(curlE)θ =
1

r sin θ

∂Er

∂φ
− 1

r

∂(rEφ)

∂r

(curlE)φ =
1

r

∂(rEθ)

∂r
− 1

r

∂Er

∂θ

(5.10.14)

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

6. Prolate spheroidal coordinates {η, θ, ψ}
Relations: x = a sinh η sin θ cosψ, y = a sinh η sin θ sinψ,

z = a cosh η cos θ.

Ranges: 0 ≤ η <∞, 0 ≤ θ ≤ π, 0 ≤ ψ < 2π.

g11 = g22 = a2(sinh2 η + sin2 θ), g33 = a2 sinh2 η sin2 θ,√
g = a3(sinh2 η + sin2 θ) sinh η sin θ.

f1 = sinh η, f2 = sin θ, f3 = a.

7. Oblate spheroidal coordinates {η, θ, ψ}
Relations: x = a cosh η sin θ cosψ, y = a cosh η sin θ sinψ,

z = a sinh η cos θ.

Ranges: 0 ≤ η <∞, 0 ≤ θ ≤ π, 0 ≤ ψ < 2π.

g11 = g22 = a2(cosh2 η − sin2 θ), g33 = a2 cosh2 η sin2 θ,√
g = a3(cosh2 η − sin2 θ) cosh η sin θ.

f1 = cosh η, f2 = sin θ, f3 = a.

8. Parabolic coordinates {µ, ν, ψ}
Relations: x = µν cosψ, y = µν sinψ, z = 1

2 (µ
2 − ν2).

Ranges: 0 ≤ µ <∞, 0 ≤ ν ≤ ∞, 0 ≤ ψ < 2π.

g11 = g22 = µ2 + ν2, g33 = µ2ν2,
√
g = µν(µ2 + ν2).

f1 = µ, f2 = ν, f3 = 1.
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9. Conical coordinates {r, θ, λ}
Relations: x2 = (rθλ/bc)2, y2 = r2(θ2 − b2)(b2 − λ2)/[b2(c2 − b2)],
z2 = r2(c2 − θ2)(c2 − λ2)/[c2(c2 − b2)].
Ranges: 0 ≤ r <∞, b2 < θ2 < c2, 0 < λ2 < b2.

g11 = 1, g22 = r2(θ2 − λ2)/((θ2 − b2)(c2 − θ2)),
g33 = r2(θ2 − λ2)/((b2 − λ2)(c2 − λ2)),√
g = r2(θ2 − λ2)/

√
(θ2 − b2)(c2 − θ2)(b2 − λ2)(c2 − λ2).

f1 = r2, f2 =
√
(θ2 − b2)(c2 − θ2), f3 =

√
(b2 − λ2)(c2 − λ2).

10. Ellipsoidal coordinates {η, θ, λ}
Relations: x2 = (ηθλ/bc)2,

y2 = (η2 − b2)(θ2 − b2)(b2 − λ2)/[b2(c2 − b2)],
z2 = (η2 − c2)(c2 − θ2)(c2 − λ2)/[c2(c2 − b2)].
Ranges: c2 ≤ η2 <∞, b2 < θ2 < c2, 0 < λ2 < b2.

g11 = (η2 − θ2)(η2 − λ2)/((η2 − b2)(η2 − c2)),
g22 = (θ2 − λ2)(η2 − θ2)/((θ2 − b2)(c2 − θ2)),
g33 = (η2 − λ2)(θ2 − λ2)/((b2 − λ2)(c2 − λ2)),
√
g = (η2−θ2)(η2−λ2)(θ2−λ2)√

(η2−b2)(η2−c2)(θ2−b2)(c2−θ2)(b2−λ2)(c2−λ2)
.

f1 =
√
(η2 − b2)(η2 − c2), f2 =

√
(θ2 − b2)(c2 − θ2),

f3 =
√
(b2 − λ2)(c2 − λ2).

11. Paraboloidal coordinates {µ, ν, λ}
Relations: x2 = 4(µ− b)(b− ν)(b − λ)/(b − c),
y2 = 4(µ− c)(c− ν)(λ− c)/(b− c), z = µ+ ν + λ− b− c.
Ranges: b < µ <∞, 0 < ν < c, c < λ < b.
g11 = (µ− ν)(µ− λ)/((µ− b)(µ− c)),
g22 = (µ− ν)(λ − ν)/((b − ν)(c− ν)),
g33 = (λ − ν)(µ− λ)/((b − λ)(λ − c)),
√
g = (µ−ν)(µ−λ)(λ−ν)√

(µ−b)(µ−c)(b−ν)(c−ν)(b−λ)(λ−c)
.

f1 =
√
(µ− b)(µ− c), f2 =

√
(b − ν)(c− ν), f3 =

√
(b− λ)(λ − c)
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5.11 INTERVAL ANALYSIS

1. Definitions

(a) An interval x is a subset of the real line:

x = [x, x] = {z ∈ R | x ≤ z ≤ x}.
(b) A thin interval is a real number: x is thin if x = x

(c) mid(x) =
x+ x

2

(d) rad(x) =
x− x
2

(e) |x| = mag(x) = max
z∈x
|z|

(f) 〈x〉 = mig(x) = min
z∈x
|z|

The MATLAB package INTLAB performs interval computations.

2. Interval arithmetic rules

Operation Rule

x+ y
[
x+ y, x+ y

]

x− y
[
x− y, x− y

]

xy
[
min(xy, xy, xy, xy),max(xy, xy, xy, xy)

]

x
y

[
min

(
x
y ,

x
y ,

x
y ,

x
y

)
,max

(
x
y ,

x
y ,

x
y ,

x
y

)
)
]

if 0 6∈ y

3. Interval arithmetic properties

Property + and − ∗ and /

commutative x+ y = y + x xy = yx

associative x+ (y + z) = (x+ y) + z x(yz) = (xy)z

identity elements 0 + x = x+ 0 = x 1 ∗ y = y ∗ 1 = y

sub-distributivity x(y ± z) ⊆ xy ± xz (equality holds if x is thin)

sub-cancellation x− y ⊆ (x+ z)− (y + z) x
y ⊆ xz

yz

0 ∈ x− x 1 ∈ y
y

4. Examples

(a) [1, 2] + [−2, 1] = [−1, 3]
(b) [1, 2]− [1, 2] = [−1, 1]

(c) [1, 2] ∗ [−2, 1] = [−4, 2]
(d) [1, 2]/[1, 2] =

[
1
2 , 2
]

(e) If f(a, b;x) = ax+ b then (when a = [1, 2], b = [5, 7], and x = [2, 3]);

f([1, 2], [5, 7]; [2, 3]) = [1, 2]·[2, 3]+[5, 7] = [1·2, 2·3]+[5, 7] = [7, 13]
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5.12 REAL ANALYSIS

5.12.1 RELATIONS

For two sets A and B, the product A× B is the set of all ordered pairs (a, b) where

a is in A and b is in B. Any subset of the product A × B is called a relation. A

relationR on a productA×A is called an equivalence relation if the following three

properties hold:

1. Reflexive: (a, a) is in R for every a in A.

2. Symmetric: If (a, b) is in R, then (b, a) is in R.

3. Transitive: If (a, b) and (b, c) are in R, then (a, c) is in R.

When R is an equivalence relation then the equivalence class of an element a in A
is the set of all b in A such that (a, b) is in R.

1. If |A| = n, there are 2n
2

relations on A.

2. If |A| = n, the number of equivalence relations on A is given by the Bell

numberBn.

EXAMPLE The set of rational numbers has an equivalence relation “=” defined by the

requirement that an ordered pair (a
b

, c
d

) belongs in the relation if and only if ad = bc.
The equivalence class of 1

2
is the set { 1

2
, 2
4
, 3
6
, . . . , −1

−2
, −2
−4
, . . . }.

5.12.2 FUNCTIONS (MAPPINGS)

A relation f on a set X × Y is a function (or mapping) from X into Y if (x, y) and

(x, z) in the relation implies that y = z, and each x ∈ X has a y ∈ Y such that

(x, y) is in the relation. The last condition means that there is a unique pair in f
whose first element is x. We write f(x) = y to mean that (x, y) is in the relation f ,

and emphasize the idea of mapping by the notation f : X → Y . The domain of f is

the set X . The range of a function f is a set containing all the y for which there is a

pair (x, y) in the relation. The image of a set A in the domain of a function f is the

set of y in Y such that y = f(x) for some x in A. The notation for the image of A
under f is f [A]. The inverse image of a set B in the range of a function f is the set

of all x in X such that f(x) = y for some y in B. The notation is f−1[B].
A function f is one-to-one (or univalent, or injective) if f(x1) = f(x2) implies

x1 = x2. A function f : X → Y is onto (or surjective) if for every y in Y there is

some x in X such that f(x) = y. A function is bijective if it is both one-to-one and

onto.

EXAMPLES

1. f(x) = ex, as a mapping from R to R, is one-to-one because ex1 = ex2 implies

x1 = x2 (by taking the natural logarithm). It is not onto because −1 is not the value of

ex for any x in R.
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2. g(x) = x3−x, as a mapping fromR toR, is onto because every real number is attained

as a value of g(x), for some x. It is not one-to-one because g(−1) = g(0) = g(1).
3. h(x) = x3, as a mapping from R to R, is bijective.

For an injective function f mapping X into Y , there is an inverse function f−1

mapping the range of f into X which is defined by: f−1(y) = x if and only if

f(x) = y.

EXAMPLE The function f(x) = ex mapping R into R
+

(the set of positive reals) is

bijective. Its inverse is f−1(x) = ln(x) which maps R+
into R.

For functions f : X → Y and g : Y → Z , with the range of f contained in the

domain of g, the composition (g ◦ f) : X → Z is a function defined by (g ◦ f)(x) =
g(f(x)) for all x in the domain of f .

1. Note that g ◦ f may not be the same as f ◦ g. For example, for f(x) = x+ 1,

and g(x) = 2x, we have (g ◦f)(x) = g(f(x)) = 2f(x) = 2(x+1) = 2x+2.

However (f ◦ g)(x) = f(g(x)) = g(x) + 1 = 2x+ 1.

2. For every function f and its inverse f−1, we have (f ◦ f−1)(x) = x, for all

x in the domain of f−1, and (f−1 ◦ f)(x) = x for all x in the domain of f .

(Note that the inverse function, f−1, does not mean 1
f ).

5.12.3 SETS OF REAL NUMBERS

A sequence is the range of a function having the natural numbers as its domain. It

can be denoted by {xn | n is a natural number} or simply {xn}. For a chosen natural

number N , a finite sequence is the range of a function having natural numbers less

than N as its domain. Sets A and B are in a one-to-one correspondence if there is

a bijective function from A into B. Two sets A and B have the same cardinality if

there is a one-to-one correspondence between them. A set which is equivalent to the

set of natural numbers is denumerable (or countably infinite). A set which is empty

or is equivalent to a finite sequence is finite (or finite countable).

EXAMPLES The set of letters in the English alphabet is finite. The set of rational num-

bers is denumerable. The set of real numbers is uncountable.

5.12.3.1 Axioms of order

1. There is a subset P (positive numbers) of R for which x + y and xy are in P
for every x and y in P .

2. Exactly one of the following conditions can be satisfied by a number x in R

(trichotomy): x ∈ P , −x ∈ P , or x = 0.

5.12.3.2 Definitions

A number b is an upper (or lower) bound of a subset S in R if x ≤ b (or x ≥ b) for

every x in S. A number c is a least upper bound (lub, supremum, or sup) of a subset

S in R if c is an upper bound of S and b ≥ c for every upper bound b of S. A number

c is a greatest lower bound (glb, infimum, or inf ) if c is a lower bound of S and c ≥ b
for every lower bound b of S.
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5.12.3.3 Completeness (or least upper bound) axiom

If a non-empty set of real numbers has an upper bound, then it has a least upper

bound.

5.12.3.4 Characterization of the real numbers

The set of real numbers is the smallest complete ordered field that contains the ratio-

nals. Alternatively, the properties of a field, the order properties, and the least upper

bound axiom characterize the set of real numbers. The least upper bound axiom

distinguishes the set of real numbers from other ordered fields.

Archimedean property of R: For every real number x, there is an integerN such

that x < N . For every pair of real numbers x and y with x < y, there is a rational

number r such that x < r < y. This is sometimes stated: The set of rational numbers

is dense in R.

5.12.3.5 Inequalities among real numbers

The expression a > b means that a− b is a positive real number.

1. If a < b and b < c then a < c.
2. If a < b then a± c < b± c for any real number c.

3. If a < b and

{
if c > 0 then ac < bc

if c < 0 then ac > bc

4. If a < b and c < d then a+ c < b+ d.

5. If 0 < a < b and 0 < c < d then ac < bd.

6. If a < b and

{
ab > 0

ab < 0

}
then





1

a
>

1

b
1

a
<

1

b





5.12.4 TOPOLOGICAL SPACE

A topology on a set X is a collection T of subsets of X (called open sets) having the

following properties:

1. The empty set and X are in T .

2. The union of elements in an arbitrary subcollection of T is in T .

3. The intersection of elements in a finite subcollection of T is in T .

The complement of an open set is a closed set. A set is compact if every open

cover has a finite subcover. The set X together with a topology T is a topological

space.

5.12.4.1 Notes

1. A subset E of X is closed if and only if E contains all its limit points.

2. The union of finitely many closed sets is closed.

3. The intersection of an arbitrary collection of closed sets is closed.

4. The image of a compact set under a continuous function is compact.
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5.12.5 METRIC SPACE

A metric (or distance function) on a set E is a function ρ : E ×E → R that satisfies

the following conditions:

1. Positive definiteness: ρ(x, y) ≥ 0 for all x, y in E, and ρ(x, y) = 0 if and only

if x = y.

2. Symmetry: ρ(x, y) = ρ(y, x) for all x, y in E.

3. Triangle inequality: ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all x, y, z in E.

EXAMPLE
The set of real numbers with distance defined by d(x, y) = |x− y| is a metric space.

A δ neighborhood of a point x in a metric space E is the set of all y in E such that

d(x, y) < δ. For example, a δ neighborhood of x in R is the interval centered at x
with radius δ, (x − δ, x + δ). In a metric space the topology is generated by the δ
neighborhoods.

1. A subset G of R is open if, for every x in G, there is a δ neighborhood of x
which is a subset of G. For example, intervals (a,b), (a,∞), (−∞,b) are open

in R.

2. A number x is a limit point (or a point of closure, or an accumulation point)

of a set F if, for every δ > 0, there is a point y in F , with y 6= x, such that

|x− y| < δ.

3. A subset F of R is closed if it contains all of its limit points. For example,

intervals [a, b], (−∞, b], and [a,∞) are closed in R.

4. A subset F is dense in R if every element of R is a limit point of F .

5. A metric space is separable if it contains a denumerable dense set. For ex-

ample, R is separable because the subset of rationals is a denumerable dense

set.

6. Theorems:

Bolzano–Weierstrass theorem Any bounded infinite set of

real numbers has a limit point in R.

Heine–Borel theorem A subset of R is compact if and only if it

is closed and bounded.
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5.12.6 CONVERGENCE IN R WITH METRIC |x− y||x− y||x− y|
5.12.6.1 Limit of a sequence

A number L is a limit point of a sequence {xn} if, for every ǫ > 0, there is a natural

number N such that |xn − L| < ǫ for all n > N . If it exists, a limit of a sequence

is unique. A sequence is said to converge if it has a limit. A number L is a cluster

point of a sequence {xn} if, for every ǫ > 0 and every index N , there is an n > N
such that |xn − L| < ǫ.

EXAMPLE The limit of a sequence is a cluster point, as in { 1
n
}, which converges to 0.

However, cluster points are not necessarily limits, as in {(−1)n}, which has cluster

points +1 and −1 but no limit.

Let {xn} be a sequence. A number L is the limit superior (limsup) if, for every

ǫ > 0, there is a natural numberN such that xn > L− ǫ for infinitely many n ≥ N ,

and xn > L + ǫ for only finitely many terms. An equivalent definition of the limit

superior is given by

lim supxn = inf
N

sup
k≥N

xk. (5.12.1)

The limit inferior (liminf) is defined in a similar way by

lim inf xn = sup
N

inf
k≥N

xk. (5.12.2)

For example, the sequence {xn} with xn = 1 + (−1)n + 1
2n has lim supxn = 2,

and lim inf xn = 0.

Theorem Every bounded sequence {xn} in R has a lim sup and

a lim inf . In addition, if lim supxn = lim inf xn, then the sequence

converges to their common value.

A sequence {xn} is a Cauchy sequence if, for any ǫ > 0, there exists a positive

integer N such that |xn − xm| < ǫ for every n > N and m > N .

Theorem A sequence {xn} in R converges if and only if it is a

Cauchy sequence.

A metric space in which every Cauchy sequence converges to a point in the space is

called complete. For example, R with the metric d(x, y) = |x− y| is complete.

5.12.6.2 Limit of a function

A number L is a limit of a function f as x approaches a number a if, for every ǫ > 0,

there is a δ > 0 such that |f(x) − L| < ǫ for all x with 0 < |x − a| < δ. This

is represented by the notation limx→a f(x) = L. The symbol ∞ is the limit of a

function f as x approaches a number a if, for every positive number M , there is

a δ > 0 such that f(x) > M for all x with 0 < |x − a| < δ. The notation is

limx→a f(x) =∞. A number L is a limit of a function f as x approaches∞ if, for

every ǫ > 0, there is a positive number M such that |f(x) − L| < ǫ for all x > M ;

this is written limx→∞ f(x) = L. The number L is said to be the limit at infinity.
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EXAMPLES lim
x→2

3x− 1 = 5, lim
x→0

1

x2
=∞, lim

x→∞
1

x
= 0.

5.12.6.3 Limit of a sequence of functions

A sequence of functions {fn(x)} is said to converge pointwise to the function f(x)
on a set E if for every ǫ > 0 and x ∈ E there is a positive integer N such that

|f(x) − fn(x)| < ǫ for every n ≥ N . A sequence of functions {fn(x)} is said to

converge uniformly to the function f on a set E if, for every ǫ > 0, there exists a

positive integer N such that |f(x)− fn(x)| < ǫ for all x in E and n ≥ N .

Note that these formulations of convergence are not equivalent. For example,

the functions fn(x) = xn on the interval [0, 1] converge pointwise to the function

f(x) = 0 for 0 ≤ x < 1, f(1) = 1. They do not converge uniformly because, for

ǫ = 1/2, there is no N such that |fn(x) − f(x)| < 1/2 for all x in [0, 1] and every

n ≥ N .

A function f is Lipschitz if there exists k > 0 in R such that |f(x) − f(y)| ≤
k|x− y| for all x and y in its domain. The function is a contraction if 0 < k < 1.

Fixed point or contraction mapping theorem Let E be a

complete metric space. If the function f : E → E is a contraction, then

there is a unique point x in E such that f(x) = x. The point x is called

a fixed point of f .

EXAMPLE Newton’s method for finding a zero of f(x) = (x+ 1)2 − 2 on the interval

[0, 1] produces xn+1 = g(xn) with the contraction g(x) = x
2
− 1

2
+ 1

x+1
. This has

the unique fixed point
√
2− 1 in [0, 1].

5.12.7 CONTINUITY IN R WITH METRIC |x− y||x− y||x− y|
A function f : R → R is continuous at a point a if f is defined at a and

limx→a f(x) = f(a). The function f is continuous on a set E if it is continu-

ous at every point ofE. A function f is uniformly continuous on a set E if, for every

ǫ > 0, there exists a δ > 0 such that |f(x) − f(y)| < ǫ for every x and y in E with

|x − y| < δ. A sequence {fn(x)} of continuous functions on the interval [a, b] is

equicontinuous if, for every ǫ > 0, there exists a δ > 0 such that |fn(x)−fn(y)| < ǫ
for every n and for all x and y in [a, b] with |x− y| < δ.

1. A function can be continuous without being uniformly continuous. For exam-

ple, the function g(x) = 1
x is continuous but not uniformly continuous on the

open interval (0, 1).
2. A collection of continuous functions can be bounded on a closed interval with-

out having a uniformly convergent sub-sequence. For example, the continuous

functions fn(x) = x2

x2+(1−nx)2 are each bounded by 1 in the closed inter-

val [0, 1] and for every x there is the limit: limn→∞ fn(x) = 0. However,

fn
(
1
n

)
= 1 for every n, so that no sub-sequence can converge uniformly to 0

everywhere on [0, 1]. This sequence is not equicontinuous.
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3. Theorems:

Theorem Let {fn(x)} be a sequence of functions mapping R into

R which converges uniformly to a function f . If each fn(x) is continu-

ous at a point a, then f(x) is also continuous at a.

Theorem If a function f is continuous on a closed bounded setE,

then it is uniformly continuous on E.

Ascoli–Arzela theorem Let K be a compact set in R. If

{fn(x)} is uniformly bounded and equicontinuous on K , then {fn(x)}
contains a uniformly convergent sub-sequence on K .

Weierstrass polynomial approximation theorem Let K be

a compact set in R. If f is a continuous function onK , then there exists

a sequence of polynomials that converges uniformly to f on K .

5.12.8 BANACH SPACE

A norm on a vector space E with scalar field R is a function || · || from E into R that

satisfies the following conditions:

1. Positive definiteness: ||x|| ≥ 0 for all x in E, and ||x|| = 0 if and only if

x = 0.

2. Scalar homogeneity: For every x in E and a in R, ||ax|| = |a| ||x||.
3. Triangle inequality: ||x+ y|| ≤ ||x|| + ||y|| for all x, y in E.

Every norm || · || gives rise to a metric ρ by defining: ρ(x, y) = ||x− y||.
EXAMPLES

1. R with absolute value as the norm has the metric ρ(x, y) = |x− y|.
2. R × R (denoted R2

) with the Euclidean norm ‖(x, y)‖ =
√
x2 + y2, has the metric

ρ((x1, y1), (x2, y2)) =
√

(x1 − x2)2 + (y1 − y2)2.

A Banach space is a complete normed space.

A widely studied example of a Banach space is the (vector) space of measurable

functions f on [a, b] for which
∫ b

a |f(x)|p dx <∞ with 1 ≤ p <∞. This is denoted

by Lp[a, b] or simply Lp. The space of essentially bounded measurable functions on

[a, b] is denoted by L∞[a, b].

The Lp norm for 1 ≤ p < ∞ is defined by ‖f‖p =
(∫ b

a
|f(x)|p dx

)1/p
. The

L∞ norm is defined by

‖f‖∞ = ess sup
a≤x≤b

|f(x)| , (5.12.3)

where

ess sup
a≤x≤b

|f(x)| = inf{M |m{t : f(t) > M} = 0}. (5.12.4)

Let {fn(x)} be a sequence of functions in Lp (with 1 ≤ p <∞) and f be some

function in Lp. We say that {fn} converges in the mean of order p (or simply in

LP -norm) to f if limn→∞ ‖fn − f‖p = 0.

Riesz–Fischer theorem The Lp spaces are complete.
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5.12.8.1 Inequalities

1. Arithmetic mean–geometric mean inequality If An and Gn are the arith-

metic and geometric means of the set of positive numbers {a1, a2, . . . , an}
then An ≥ Gn. That is

a1 + a2 + . . .+ an
n

≥ (a1a2 · · · an)1/n

2. Carleman’s inequality IfAn andGn are the arithmetic and geometric means

of the set of positive numbers {a1, a2, . . . , an} then

n∑

r=1

Gr ≤ neAn

3. Hölder inequality If p and q are non-negative extended real numbers such

that 1/p+ 1/q = 1 and f ∈ Lp and g ∈ Lq, then ‖fg‖1 ≤ ‖f‖p ‖g‖q:

∫ b

a

|fg| ≤
(∫ b

a

|f |p
)1/p(∫ b

a

|g|q
)1/q

for 1 ≤ p <∞, (5.12.5)

and (taking the limit as q → 1 and p→ 0)

∫ b

a

|fg| ≤ (ess sup |f |)
∫ b

a

|g|. (5.12.6)

4. Jensen inequality A continuous function f on [a, b] is called convex if the

Jensen inequality holds

f

(
x1 + x2

2

)
≤ f(x1) + f(x2)

2
(5.12.7)

for all x1 and x2 in [a, b].

5. Minkowski inequality If f and g are in Lp with 1 ≤ p ≤ ∞, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p:

(∫ b

a

|f + g|p
)1/p

≤
(∫ b

a

|f |p
)1/p

+

(∫ b

a

|g|p
)1/p

for 1 ≤ p <∞,

(5.12.8)

ess sup |f + g| ≤ ess sup |f |+ ess sup |g|.

6. Schwartz (or Cauchy–Schwartz) inequality If f and g are in L2, then

‖fg‖1 ≤ ‖f‖2 ‖g‖2. This is the special case of Hölder’s inequality with

p = q = 2.
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5.12.9 HILBERT SPACE

An inner product on a vector space E with scalar field C (complex numbers) is a

function from E × E into C that satisfies the following conditions:

1. 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and only if x = 0.

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉
3. 〈cx, y〉 = c 〈x, y〉
4. 〈x, y〉 = 〈y, x〉

Every inner product 〈x, y〉 gives rise to a norm ‖x‖ by defining ‖x‖ = 〈x, x〉1/2.

A Hilbert space is a complete inner product space. A widely studied Hilbert

space is L2[a, b] with the inner product 〈f, g〉 =
∫ b

a f(t)g(t) dt.

Two functions f and g in L2[a, b] are orthogonal if
∫ b

a
fg = 0. A set of L2

functions {φn} is orthogonal if
∫ b

a φmφn = 0 for m 6= n . The set is orthonormal

if, in addition, each member has norm 1. That is, ‖φn‖2 = 1. For example, the

functions {sinnx} are mutually orthogonal on (−π, π). The functions { sinnx√
π
} form

an orthonormal set on (−π, π).
Let {φn} be an orthonormal set in L2 and f be in L2. The numbers cn =∫ b

a
fφn dx are the generalized Fourier coefficients of f with respect to {φn}, and the

series
∑∞

n=1 cnφn(x) is called the generalized Fourier series of f with respect to

{φn}.
For a function f in L2, the mean square error of approximating f by the sum∑N

n=1 anφn is 1
b−a

∫ b

a
|f(x) −∑N

n=1 anφn(x)|2 dx. An orthonormal set {φn} is

complete if the only measurable function f that is orthogonal to every φn is zero.

That is, f = 0 a.e. (In the context of elementary measure theory, two measurable

functions f and g are equivalent if they are equal except on a set of measure zero.

They are said to be equal almost everywhere. This is denoted by f = g a.e.)
Bessel’s inequality: For a function f in L2 having generalized Fourier coeffi-

cients {cn},
∑∞

n=1

∣∣c2n
∣∣ ≤

∫ b

a
|f(x)|2 dx.

1. Riesz–Fischer theorem Let {φn} be an orthonormal set in L2 and let

{cn} be constants such that
∑∞

n=1

∣∣c2n
∣∣ converges. Then a unique function f

in L2 exists such that the cn are the Fourier coefficients of f with respect to

{φn} and
∑∞

n=1 cnφn converges in the mean (or order 2) to f .

2. Theorem The generalized Fourier series of f in L2 converges in the

mean (of order 2) to f .

3. Theorem Parseval’s identity holds:

∫ b

a

|f(x)|2 dx =

∞∑

n=1

∣∣c2n
∣∣ .

4. Theorem The mean square error of approximating f by the series∑∞
n=1 anφn is minimum when all coefficients an are the Fourier coefficients

of f with respect to {φn}.

EXAMPLE Suppose that the series ao
2

+
∑∞

n=1(|an|2 + |bn|2) converges. Then the

trigonometric series ao
2
+
∑∞

n=1(an cosnx+ bn sinnx) is the Fourier series of some

function in L2.
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5.12.10 ASYMPTOTIC RELATIONSHIPS

Asymptotic relationships are indicated by the symbolsO, Ω, Θ, o, and ∼.

1. The symbol O (pronounced “big-oh”): f(x) ∈ O(g(x)) as x → x0 if a pos-

itive constant C exists such that |f(x)| ≤ C |g(x)| for all x sufficiently close

to x0. Note that O(g(x)) is a class of functions. Sometimes the statement

f(x) ∈ O(g(x)) is written (imprecisely) as f = O(g).
2. The symbol Ω : f(x) ∈ Ω(g(x)) as x → x0 if a positive constant C exists

such that |g(x)| ≤ C |f(x)| for all x sufficiently close to x0.

3. The symbol Θ : f(x) ∈ Θ(g(x)) as x → x0 if positive constants c1 and c2
exist such that c1g(x) ≤ f(x) ≤ c2g(x) for all x sufficiently close to x0. This

is equivalent to: f(x) = O(g(x)) and g(x) = O(f(x)). The symbol ≈ is

often used for Θ (i.e., f(x) ≈ g(x)).
4. The symbol o (pronounced “little-oh”): f(x) ∈ o(g(x)) as x → x0 if, given

any µ > 0, we have |f(x)| < µ|g(x)| for all x sufficiently close to x0.

5. The symbol ∼ (pronounced “asymptotic to”): f(x) ∼ (g(x)) as x → x0 if

f(x) = g(x) [1 + o(1)] as x→ x0.

6. Two functions, f(x) and g(x), are asymptotically equivalent as x → x0 if

f(x)/g(x) ∼ 1 as x→ x0.

7. A sequence of functions, {gk(x)}, forms an asymptotic series at x0 if

gk+1(x) = o(gk(x)) as x→ x0.

8. Given a function f(x) and an asymptotic series {gk(x)} at x0, the formal

series
∑∞

k=0 akgk(x), where the {ak} are given constants, is an asymptotic

expansion of f(x) if f(x)−∑n
k=0 akgk(x) = o(gn(x)) as x→ x0 for everyn;

this is expressed as f(x) ∼∑∞
k=0 akgk(x). Partial sums of this formal series

are called asymptotic approximations to f(x). This formal series need not

converge.

Think of O being an upper bound on a function, Ω being a lower bound, and Θ
being both an upper and lower bound. For example: sinx ∈ O(x) as x→ 0, logn ∈
o(n) as n→∞, and n9 ∈ Ω(n9 + n2) as n→∞.

The statements: n2 = o(n5), n5 = o(2n), 2n = o(n!), and n! = o(nn) as

n → ∞ can be illustrated as follows. If a computer can perform 109 operations

per second, and a procedure takes f(n) operations, then the following table indicates

approximately how long it will take a computer to perform the procedure, for various

functions and values of n.

complexity n = 10 n = 20 n = 50 n = 100 n = 300

f(n) = n2 10−7 sec 10−7 sec 10−6 sec 10−5 sec 10−4 sec

f(n) = n5 10−4 sec 10−3 sec 0.3 sec 10 sec 41 minutes

f(n) = 2n 10−6 sec 10−3 sec 2 weeks 1011 centuries 1072 centuries

f(n) = n! 10−3 sec 77 years 1046 centuries 10139 centuries 10596 centuries

f(n) = nn 10 sec 107 centuries 1066 centuries 10181 centuries 10724 centuries
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5.13 GENERALIZED FUNCTIONS

5.13.1 DELTA FUNCTION

Dirac’s delta function is a distribution defined by δ(x) =

{
0 x 6= 0

∞ x = 0
, and is nor-

malized so that
∫∞
−∞ δ(x) dx = 1. Properties include (assuming that f(x) is contin-

uous):

1.

∫ ∞

−∞
f(x)δ(x − a) dx = f(a).

2.

∫ ∞

−∞
f(x)

dmδ(x)

dxm
dx = (−1)m d

mf(0)

dxm
.

3. xδ(x), as a distribution, equals zero.

4. δ(ax) =
1

|a|δ(x) when a 6= 0.

5. δ(x2 − a2) = 1

2a
[δ(x+ a) + δ(x− a)].

6. δ(x) =
1

2L
+

1

L

∞∑

n=1

cos
nπx

L
(Fourier series).

7. δ(x− ξ) = 2

L

∞∑

n=1

sin
nπξ

L
sin

nπx

L
for 0 < ξ < L (Fourier sine series).

8. δ(x) =
1

2π

∫ ∞

−∞
eikx dk (Fourier transform).

9. δ(ρ− ρ′) = ρ

∫ ∞

0

kJm(kρ)Jm(kρ′) dk.

Sequences of functions {φn} that approximate the delta function as n→∞ are

known as delta sequences.

EXAMPLES

1. φn(x) =
n

π

1

1 + n2x2

2. φn(x) =
n√
π
e−n2x2

3. φn(x) =
1

nπ

sin2 nx

x2

4. φn(x) =

{
0 |x| ≥ 1/n

n/2 |x| < 1/n
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The delta function δ(x− x′) = δ(x1 −x′1)δ(x2 − x′2)δ(x3 − x′3) in terms of the

coordinates (ξ1, ξ2, ξ3), related to (x1, x2, x3), via the Jacobian J(xi, ξj), is written

δ(x− x′) =
1

|J(xi, ξj)|
δ(ξ1 − ξ′1)δ(ξ2 − ξ′2)δ(ξ3 − ξ′3). (5.13.1)

For example, in spherical polar coordinates

δ(x − x′) =
1

r2
δ(r − r′)δ(φ − φ′)δ(cos θ − cos θ′). (5.13.2)

The solutions to differential equations involving delta functions are called

Green’s functions (see pages 345 and 351).

5.13.2 OTHER GENERALIZED FUNCTIONS

The Heaviside function, or step function, is defined as

H(x) =

∫ x

−∞
δ(t) dt =

{
0 x < 0

1 x > 0.
(5.13.3)

Sometimes H(0) is stated to be 1/2. This function has the representations:

1. H(x) =
1

2
+

2

π

∞∑

n=odd

1

n
sin

nπx

L
(when |x| < L)

2. H(x) =
1

2πi

∫ ∞

−∞

eikx

k
dk (this is a principal-value integral)

The related signum function gives the sign of its argument:

sgn(x) = 2H(x)− 1 =

{
−1 if x < 0

1 if x > 0.
(5.13.4)
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5.14 COMPLEX ANALYSIS

5.14.1 DEFINITIONS

A complex number z has the form z = x + iy where x and y are real numbers, and

i =
√
−1; the number i is sometimes called the imaginary unit. We write x = Re z

and y = Im z. The number x is called the real part of z and y is called the imaginary

part of z. This form is also called the Cartesian form of the complex number.

Complex numbers can also be written in polar form, z = reiθ , where r, called

the modulus, is given by r = |z| =
√
x2 + y2, and θ is called the argument: θ =

arg z = tan−1 y
x (when x > 0). The geometric relationship between Cartesian and

polar forms is shown below

x

y r

z = x + iy = reiθ

θ

The complex conjugate of z, denoted z, is defined as z = x− iy = re−iθ . Note

that |z| = |z|, arg z̄ = − arg z, and |z| =
√
zz. In addition, z = z, z1 + z2 =

z1 + z2, and z1z2 = z1z2.

5.14.2 OPERATIONS ON COMPLEX NUMBERS

1. Addition and subtraction:

z1 ± z2 = (x1 + iy1)± (x2 + iy2) = (x1 ± x2) + i(y1 ± y2).

2. Multiplication:

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1) = r1r2e
i(θ1+θ2).

|z1z2| = |z1||z2|, arg(z1z2) = arg z1 + arg z2 = θ1 + θ2.

3. Division:

z1
z2

=
z1z2
z2z2

=
(x1x2 + y1y2) + i(x2y1 − x1y2)

x22 + y22
=
r1
r2
ei(θ1−θ2).

∣∣∣∣
z1
z2

∣∣∣∣ =
|z1|
|z2|

, arg

(
z1
z2

)
= arg z1 − arg z2 = θ1 − θ2.
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4. Powers:

zn = rneinθ = rn(cosnθ + i sinnθ) (DeMoivre’s Theorem).

5. Roots:

z1/n = r1/nei(θ+2kπ)/n = r1/n
(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
,

for k = 0, 1, . . . , n− 1. The principal root has −π < θ ≤ π and k = 0.

5.14.3 FUNCTIONS OF A COMPLEX VARIABLE

A complex function

w = f(z) = u(x, y) + iv(x, y) = |w|eiφ,
where z = x+ iy, associates one or more values of the complex dependent variable

w with each value of the complex independent variable z for those values of z in a

given domain.

A function f(z) is said to be analytic (or holomorphic) at a point z0 if f(z) is

defined in each point z of a disc with positive radius R around z0, h is any complex

number with |h| < R, and the limit of [f(z0+h)−f(z0)]/h exists and is independent

of the mode in which h tends to zero. This limiting value is the derivative of f(z)
at z0 denoted by f ′(z0). A function is called analytic in a connected domain if it is

analytic at every point in that domain.

A function is called entire if it is analytic in C.

Liouville’s theorem: A bounded entire function is constant.

EXAMPLES

1. f(z) = zn is analytic everywhere when n is a non-negative integer. If n is a negative

integer, then f(z) is analytic except at the origin.

2. f(z) = z is nowhere analytic.

3. f(z) = ez is analytic everywhere.

5.14.4 CAUCHY INTEGRAL THEOREM AND FORMULA

Cauchy integral theorem

If f(z) is analytic at all points within and on a simple closed curve C, then
∫

C

f(z) dz = 0. (5.14.1)

Cauchy integral formula

If f(z) is analytic inside and on a simple closed contour C and if z0 is interior

to C, then

f(z0) =
1

2πi

∫

C

f(z)

z − z0
dz. (5.14.2)

Moreover, since the derivatives f ′(z0), f ′′(z0), . . . of all orders exist, then

f (n)(z0) =
n!

2πi

∫

C

f(z)

(z − z0)n+1
dz. (5.14.3)
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5.14.5 TAYLOR SERIES EXPANSIONS

If f(z) is analytic inside of and on a circle C of radius r centered at the point z0,

then a unique and uniformly convergent series expansion exists in powers of (z−z0)
of the form

f(z) =

∞∑

n=0

an(z − z0)n, |z − z0| < r, z0 6=∞, (5.14.4)

where

an =
1

n!
f (n)(z0) =

1

2πi

∫

C

f(z)

(z − z0)n+1
dz. (5.14.5)

If M(r) is an upper bound of |f(z)| on C, then

|an| =
1

n!
|f (n)(z0)| ≤

M(r)

rn
(Cauchy’s inequality). (5.14.6)

If the series is truncated with the term an(z− z0)n, the remainderRn(z) is given by

Rn(z) =
(z − z0)n+1

2πi

∫

C

f(s)

(s− z)(s− z0)n+1
ds, (5.14.7)

and

|Rn(z)| ≤
( |z − z0|

r

)n
rM(r)

r − |z − z0|
. (5.14.8)

5.14.6 LAURENT SERIES EXPANSIONS

If f(z) is analytic inside the annulus between the concentric circles C1 and C2 cen-

tered at z0 with radii r1 and r2 (r1 < r2), respectively, then a unique series expansion

exists in terms of positive and negative powers of z − z0 of the following form:

f(z) =

∞∑

n=1

bn(z − z0)−n +

∞∑

n=0

an(z − z0)n

= · · ·+ b2
(z − z0)2

+
b1

z − z0
+ a0 + a1(z − z0) + a2(z − z0)2 + . . .

(5.14.9)

with (here C is a contour between C1 and C2)

an =
1

2πi

∫

C

f(s)

(s− z0)n+1
ds, n = 0, 1, 2, . . . ,

bn =
1

2πi

∫

C

f(s)(s− z0)n−1 ds, n = 1, 2, 3, . . .

(5.14.10)

Equation (5.14.9) is often written in the form

f(z) =

∞∑

n=−∞
cn(z − z0)n for r1 < |z − z0| < r2

with cn =
1

2πi

∫

C

f(z)

(z − z0)n+1
dz for n = 0,±1,±2, . . . .

(5.14.11)
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5.14.7 CAUCHY–RIEMANN EQUATIONS

A necessary and sufficient condition for f(z) = u(x, y) + iv(x, y) to be analytic is

that it satisfies the Cauchy–Riemann equations:

∂u

∂x
=
∂v

∂y
, and

∂u

∂y
= −∂v

∂x
. (5.14.12)

If these equations are satisfied, then both u and v are harmonic functions. That is,

they satisfy∇2u = uxx + uyy = 0 and∇2v = vxx + vyy = 0.

5.14.8 THE ARGUMENT PRINCIPLE

Let f(z) be analytic on a simple closed curve C with no zeros on C and analytic

everywhere inside C except possibly at a finite number of poles. Let ∆C arg f(z)
denote the change in the argument of f(z) (that is, final value − initial value) as z
transverses the curve once in the positive sense. Then

1

2π
∆C arg f(z) =

1

2πi

∫

C

f ′(z)

f(z)
dz = N − P, (5.14.13)

whereN is number of zeros of f(z) inside C, and P is the number of poles inside C.

The zeros and poles are counted according to their multiplicities.

5.14.9 ZEROS AND SINGULARITIES

The points z for which f(z) = 0 are called zeros of f(z). A function f(z) which is

analytic at z0 has a zero of order m there, where m is a positive integer, if and only

if the first m coefficients a0, a1, . . . , am−1 in the Taylor expansion at z0 vanish.

A singular point or singularity of the function f(z) is any point at which f(z)
is not analytic. An isolated singularity of f(z) at z0 may be classified as one of:

1. A removable singularity if and only if all coefficients bn in the Laurent series

expansion of f(z) at z0 vanish. This implies that f(z) can be analytically

extended to z0.

2. A pole is of order m if and only if (z − z0)mf(z), but not (z − z0)m−1f(z),
is analytic at z0, (i.e., if and only if bm 6= 0 and 0 = bm+1 = bm+2 = . . . in

the Laurent series expansion of f(z) at z0). Equivalently, f(z) has a pole of

order m if 1/f(z) is analytic at z0 and has a zero of order m there.

3. An isolated essential singularity if and only if the Laurent series expansion of

f(z) at z0 has an infinite number of terms involving negative powers of z−z0.

If not isolated, then a point may be a branch point. These are usually the result of

a multi-valued function (e.g.,
√
z or log z). A function can be made single valued

within a domain by introducing a cut (a line or curve) which allows discontinuous

values of the function on opposite sides of the cut.
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Riemann removable singularity theorem Suppose that a function f is analytic

and bounded in some deleted neighborhood 0 < |z − z0| < ǫ of a point z0. If f is

not analytic at z0, then it has a removable singularity there.

Casorati–Weierstrass theorem Suppose that z0 is an essential singularity of a

function f , and let w be an arbitrary complex number. Then, for any ǫ > 0, the

inequality |f(z) − w| < ǫ is satisfied at some point z in each delted neighborhood

0 < |z − z0| < δ of z0.

5.14.10 RESIDUES

Given a point z0 where f(z) is either analytic or has an isolated singularity, the

residue of f(z) is the coefficient of (z − z0)−1 in the Laurent series expansion of

f(z) at z0, or

Res(z0) = b1 =
1

2πi

∫

C

f(z) dz. (5.14.14)

If f(z) is either analytic or has a removable singularity at z0, then b1 = 0 there. If

z0 is a pole of order m, then

b1 =
1

(m− 1)!

dm−1

dzm−1
[(z − z0)mf(z)]

∣∣∣∣
z=z0

. (5.14.15)

For every simple closed contour C enclosing at most a finite number of singularities

z1, z2, . . . , zn of an function analytic in a neighborhood of C,

∫

C

f(z) dz = 2πi

n∑

k=1

Res(zk), (5.14.16)

where Res(zk) is the residue of f(z) at zk.

5.14.11 TRANSFORMATIONS AND MAPPINGS

A function w = f(z) = u(z) + iv(z) maps points of the z-plane into corresponding

points of the w-plane. At every point z such that f(z) is analytic and f ′(z) 6= 0,

the mapping is conformal, i.e., the angle between two curves in the z-plane through

such a point is equal in magnitude and sense to the angle between the corresponding

curves in the w-plane. A table giving real and imaginary parts, zeros, and singu-

larities for frequently used functions of a complex variable and a table illustrating a

number of special transformations of interest are at the end of this section.

A function is said to be simple in a domain D if it is analytic in D and assumes

no value more than once in D.

Riemann’s mapping theorem

IfD is a simply connected domain in the complex z plane, which is nei-

ther the z plane nor the extended z plane, then there is a simple function

f(z) such that w = f(z) maps D onto the disc |w| < 1.



“smtf32” — 2011/5/20 — 2:09 — page 393 — #403

5.14. COMPLEX ANALYSIS 393

5.14.11.1 Bilinear transformations

The bilinear transformation is defined by w =
az + b

cz + d
, where a, b, c, and d are com-

plex numbers and ad 6= bc. It is also known as the linear fractional transformation.

The bilinear transformation is defined for all z 6= −d/c. The bilinear transformation

is conformal and maps circles and lines onto circles and lines.

The inverse transformation is given by z =
−dw + b

cw − a , which is also a bilinear

transformation. Note that w 6= a/c.
The cross-ratio of four distinct complex numbers zk (for k = 1, 2, 3, 4) is given

by

(z1, z2, z3, z4) =
(z1 − z2)(z3 − z4)
(z1 − z4)(z3 − z2)

.

If any of the zk’s is complex infinity, the cross-ratio is redefined so that the quotient of

the two terms on the right containing zk is equal to 1. Under the bilinear transforma-

tion, the cross-ratio of four points is invariant: (w1, w2, w3, w4) = (z1, z2, z3, z4).
The Möbius transformation is a special case of the bilinear transformation; it is

defined by w(z) = z−a
1−az where a is a complex constant of modulus less than 1. It

maps the unit disk onto itself.

5.14.11.2 Table of conformal mappings

In the following functions z = x+ iy and w = u+ iv = ρeiφ.

1.

v

u

A'B'

C'
D'x

y

A

B

C

D
w = z2.

2.

v

ux

y

AB

C D D'

A'B'

C' w = z2.

3.

v

uD'x

y

A

BC

D A'

B'C'k

w = z2; A′, B′ on the

parabola ρ =
2k2

1 + cosφ
.

4.

v

u

D'

x

y

A

B

C

D

A'

B'

C'
w =

1

z
.
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5.

v

ux

y

A B

C

A'

B'

C'

w =
1

z
.

6.

v

u

D'

x

y

ABC

D

A'B'C'

E Fπi

1

F' E'

w = ez .

7.

v

u

D'

x

y

A B

C

D

A' B'

E
πi

1

C'

E'

w = ez .

8.

v

u

D'

x

y

A B

C

D

A' B'

E
πi

C'

F
F'

E'

w = ez .

9.

v

u

D'

x

y

A

BCD A'B'C'

E

1−π/2 π/2

E'

w = sin z.

10.

v

u

D'

x

y

A

BC

D

A'B'C'

1π/2

w = sin z.

11.

v

u

D'

x

y

A

B
C

D

A' B'E

π/2

C'

F F'

−π/2 1

E'

w = sin z; BCD: y = k, B′C′D′

is on the ellipse( u

coshk

)2
+
( v

sinh k

)2
= 1.
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12.

v

u

D'

A

B

C

D

A'

B'

E

ι

C'

1

y

x

E'

w =
z − 1

z + 1
.

13.

v

u

D'

A B C D A'

B'

E

1 C'

1

y

x E' w =
i− z
i+ z

.

14.

v

u

D'

x

y

A

B

C

D

A'

B'

C'

E

F

G E'

F'

G'
x1x2 R0

1
1

w =
z − a
az − 1

; a =
1+ x1x2 +

√
(1 − x21)(1 − x22)

x1 + x2
;

R0 =
1− x1x2 +

√
(1− x21)(1− x22)

x1 − x2
(a > 1 and R0 > 1 when −1 < x2 < x1 < 1).

15.

v

uD'x

A

B

C D A'

B'

C'

y

E

F

E'

F'x2
R01 1x1

w =
z − a
az − 1

; a =
1+ x1x2 +

√
(x21 − 1)(x22 − 1)

x1 + x2
;

R0 =
x1x2 − 1−

√
(x21 − 1)(x22 − 1)

x1 − x2
(x2 < a < x1 and 0 < R0 < 1 when 1 < x2 < x1).

16.

v

uD'x

y

A

B

C

D A'B'

E 1

C'

2

E'
w = z +

1

z
.

17.

v

u

D'

x

y

AB

C

D A'B'E

1

C'

2

E'

w = z +
1

z
.
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18.

v

u

D'

xB

C

D

A' B'E

C'

F'

y

A

F

k1

2

E'

w = z + 1/z; B′C′D′ is on the

ellipse(
ku

k2 + 1

)2

+

(
kv

k2 − 1

)2

= 1.

19.

≠i

v

u

D'

x

y

A B C D A' B'

C'

E

1

B'D'

E'

w = log
z − 1

z + 1
.

20.

v

u

D'

x

y

A

B

C

D

A' B'

1

C'

E F

F' ≠i

ki

E'

w = log
z − 1

z + 1
; ABC is on the

circle x2 + y2 − 2y cot k = 1.

21. u

D'

xA

BC D

v

A'

B'

C'

y

E

F

F'

c1 c21

πi

−πi

E'

w = log
z + 1

z − 1
; relationship

between centers and radii: centers

of circles at zn = coth cn, radii are

csch cn, n = 1, 2.

22.

πi

v

u
G'

x

y

A B C D

A'

F'

C'

E

1

B'

D'

--1

GF

xx1

kπi

E'

w = k log
k

1− k + log 2(1− k) +
iπ−k log(z+1)−(1−k) log(z−1);
x1 = 2k − 1.

23.

v

u

D'

x

y

A B

C

D

A' B'

E
πi

1

C'

E'

w = tan2
(z
2

)
.

24. uD'x

A

B

C D

A'

B'

Eπi

v

C'

y

F

G

H

H'

G' E'F'

w = coth
(z
2

)
.
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25. uD'x

A

B

C D

A'B'Eπi

v

C'

y

F

G

H

H'G'

F'

πi/2

E'

w = log coth
(z
2

)
.

26.

v

ux

y

A B C D A'

C'

E

1

B'

D'

1+πi E'

w = πi+ z − log z.

27.

v

ux

y

A B C D

A'

C'

E

-1

B'

D'

πi

E'

w = 2(z + 1)1/2 + log
(z + 1)1/2 − 1

(z + 1)1/2 + 1
.

28.

v

ux

y

A B CD

A'

C'

1

B'

D'

πi

-k-2

E F

E'

F'

-π/k

w =
i

k
log

1 + ikt

1− ikt + log
1 + t

1− t ;

t =

(
z − 1

z + k2

)1/2

.

29.

v

ux

y

A B C D

A'

C'

1
B'

D'

ih

--1
w =

h

π

[
(z2 − 1)1/2 + cosh−1 z

]
.

30.

v

ux

y

A B C D

A'

C'

B'

D'

πi

k

F'

π/k

1

FE

E'

w = cosh−1

(
2z − k − 1

k − 1

)
−

1

k
cosh−1

[
(k + 1)z − 2k

(k − 1)z

]
.
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f(z) = w(x, y) u(x, y) = Re w(x, y) v(x, y) = Im w(x, y) Zeros (and order m) Singularities (and order m)

z x y z = 0, m = 1 Pole (m = 1) at z =∞
z2 x2 − y2 2xy z = 0, m = 2 Pole (m = 2) at z =∞
1

z

x

x2 + y2
−y

x2 + y2
z =∞, m = 1 Pole (m = 1) at z = 0

1

z2
x2 − y2

(x2 + y2)2
−2xy
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1
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6.1 CEILING AND FLOOR FUNCTIONS

The ceiling function of x, denoted ⌈x⌉, is the least integer that is not smaller than x.

For example, ⌈π⌉ = 4, ⌈5⌉ = 5, and ⌈−1.5⌉ = −1.

The floor function of x, denoted ⌊x⌋, is the largest integer that is not larger

than x. For example, ⌊π⌋ = 3, ⌊5⌋ = 5, and ⌊−1.5⌋ = −2.

6.2 EXPONENTIATION

For a any real number and m a positive integer, the exponential am is defined as

am = a · a · a · · ·a︸ ︷︷ ︸
m terms

. (6.2.1)

The following three laws of exponents follow for a 6= 0:

1. an · am = am+n.
2. (am)n = a(mn). 3.

am

an
=





am−n, if m > n,

1, if m = n,
1

an−m , if m < n.

The nth root function is defined as the inverse of the nth power function:

If bn = a, then b = n
√
a = a(1/n). (6.2.2)

If n is odd, there will be a unique real number satisfying the definition of n
√
a,

for any real value of a. If n is even, for positive values of a there will be two real

values for n
√
a, one positive and one negative. By convention, the symbol n

√
a means

the positive value. If n is even and a is negative, then there are no real values for n
√
a.

To extend the definition to include at (for t not necessarily a positive integer), so

as to maintain the laws of exponents, the following definitions are required (where

we now restrict a to be positive, p and q are integers):

a0 = 1 ap/q = q
√
ap a−t =

1

at
(6.2.3)

With these restrictions, the third law of exponents can be written as
am

an
= am−n.

If a > 1, then the function ax is monotone increasing while, if 0 < a < 1 then

the function ax is monotone decreasing.
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6.3 LOGARITHMIC FUNCTIONS

6.3.1 DEFINITION OF THE NATURAL LOGARITHM

The natural logarithm (also known as the Napierian logarithm) of z is written as ln z
or as loge z. It is sometimes written log z (this is also used to represent a “generic”

logarithm, a logarithm to any base). One definition is

ln z =

∫ z

1

dt

t
, (6.3.1)

where the integration path from 1 to z does not cross the origin or the negative real

axis.

For complex values of z the natural logarithm, as defined above, can be repre-

sented in terms of its magnitude and phase. If z = x+ iy = reiθ , then

ln z = ln r + i(θ + 2kπ), (6.3.2)

for some k = 0,±1, . . . , where r =
√
x2 + y2, x = r cos θ, and y = r sin θ.

Usually, the value of k is chosen so that 0 ≤ (θ + 2kπ) < 2π.

6.3.2 LOGARITHMS TO A DIFFERENT BASE

The logarithmic function to the base a, written loga, is defined as

loga z =
logb z

logb a
=

ln z

ln a
. (6.3.3)

Note the properties:

1. loga a
p = p.

2. loga b =
1

logb a
.

3. log10 z =
ln z

ln 10
= (log10 e) ln z ≈ (0.4342944819) lnz.

4. ln z = (ln 10) log10 z ≈ (2.3025850929) log10 z.

6.3.3 LOGARITHM OF SPECIAL VALUES

• ln (−1) = iπ + 2πik
• ln 0 = −∞
• ln 1 = 0

• ln e = 1

• ln (±i) = ± iπ
2

+ 2πik
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6.3.4 RELATING THE LOGARITHM TO THE EXPONENTIAL

For positive values of z the logarithm is a monotonic function, as is the exponential

for real z. Any monotonic function has a single-valued inverse function; the natural

logarithm is the inverse of the exponential. If x = ey , then y = lnx, and x = elnx.

The same inverse relations hold for bases other than e. That is, if u = aw, then

w = loga u, and u = aloga u.

6.3.5 IDENTITIES

loga z1z2 = loga z1 + loga z2, for (−π < arg z1 + arg z2 < π).

loga
z1
z2

= loga z1 − loga z2, for (−π < arg z1 − arg z2 < π).

loga z
n = n loga z, for (−π < n arg z < π), when n is an integer.

6.3.6 SERIES EXPANSIONS FOR THE NATURAL LOGARITHM

ln (1 + z) = z − 1

2
z2 +

1

3
z3 − . . . , for |z| < 1.

ln z =

(
z − 1

z

)
+

1

2

(
z − 1

z

)2

+
1

3

(
z − 1

z

)3

+ . . . , for Re z ≥ 1

2
.

6.3.7 DERIVATIVE AND INTEGRATION FORMULAS

d ln z

dz
=

1

z
,

∫
dz

z
= ln z,

∫
ln z dz = z ln z − z.

6.4 EXPONENTIAL FUNCTION

exp(z) = ez = lim
m→∞

(
1 +

z

m

)m

= 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ . . . .

(6.4.1)

0

5

10

15

20

−3 −2 −1 0 1 2 3
x

ex

e−x

• If z = x + iy, then ez = exeiy =
ex(cos y + i sin y).

•
∫
exdx =

dex

dx
= ex.

• The value of e is on page 15.



“smtf32” — 2011/5/20 — 2:09 — page 404 — #414

404 CHAPTER 6. SPECIAL FUNCTIONS

6.5 TRIGONOMETRIC FUNCTIONS

6.5.1 CIRCULAR FUNCTIONS

Consider the rectangular coordinate system in Figure 6.1. The coordinate x is posi-

tive to the right of the origin and the coordinate y is positive above the origin. The

radius vector r shown terminating on the point P (x, y) is shown rotated by the angle

α up from the x axis. The radius vector r has component values x and y.

The trigonometric or circular functions of the angle α are defined in terms of

the signed coordinates x and y and the length r which is always positive. Note that

the coordinate x is negative in quadrants II and III and the coordinate y is negative

in quadrants III and IV. The definitions of the trigonometric functions in terms of the

Cartesian coordinates x and y of the point P (x, y) are shown below. The angle α
can be specified in radians, degrees, or any other unit.

sineα = sinα = y/r, cosineα = cosα = x/r,

tangentα = tanα = y/x, cotangentα = cotα = x/y, (6.5.1)

cosecantα = cscα = r/y, secantα = secα = r/x.

There are also the following seldom used functions:
versed sine of α = versine of α = versα = 1− cosα,
coversed sine of α = versed cosine of α = coversα = 1− sinα,
exsecant of α = exsecα = secα− 1,
haversine of α = havα = 1

2 versα = 1
2 (1− cosα).

6.5.1.1 Signs in the four quadrants

Quadrant sin cos tan csc sec cot

I + + + + + +

II + − − + − −
III − − + − − +

IV − + − − + −

FIGURE 6.1
The four quadrants (left) and notation for trigonometric functions (right).

Quadrants

II I

III IV

x

y

O

x

P(x, y)

y α

r
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6.5.2 DEFINITION OF ANGLES

If two lines intersect and one line is rotated about the point of intersection, the angle

of rotation is designated positive if the rotation is counterclockwise. Angles are com-

monly measured in units of radians or degrees. Degrees are a historical unit related

to the calendar defined by a complete revolution equaling 360 degrees (the approx-

imate number of days in a year), written 360◦. Radians are the angular unit usually

used for mathematics and science. Radians are specified by the arc length traced by

the tip of a rotating line divided by the length of that line. Thus a complete rotation

of a line about the origin corresponds to 2π radians of rotation. It is a convenient

convention that a full rotation of 2π radians is divided into four angular segments of

π/2 each and that these are referred to as the four quadrants using Roman numerals

I, II, III, and IV to designate them (see Figure 6.1).

A right angle is the angle between two perpendicular lines. It is equal to π/2 ra-

dians or 90 degrees. An acute angle is an angle less than π/2 radians. An obtuse

angle is one between π/2 and π radians. A convex angle is one between 0 and π
radians.

The angle π radians corresponds to 180 degrees. Therefore,

one radian =
180

π
degrees = 57.30 degrees,

one degree =
π

180
radians = 0.01745 radians.

(6.5.2)

FIGURE 6.2
Definitions of angles.

3
4π,135◦

5
6π,150◦

π,180◦

7
6π,210◦

5
4π,225◦

4
3π,240◦

2
3π,120◦

3
2π,270◦

1
2π,90◦ 1

3π,60◦

5
3π,300◦

1
4π,45◦

7
4π,315◦

1
6π,30◦

0π,0◦

2π,360◦

11
6 π,330◦
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FIGURE 6.3
Sine and cosine, angles are in radians.

−1

−0.5

0

0.5

1

−2π −π 0 π 2π

sin x
cos x

FIGURE 6.4
Tangent and cotangent, angles are in radians.

−2

−1

0

1

2

−2π −π 0 π 2π

tan x
cot x

6.5.3 SYMMETRY AND PERIODICITY RELATIONSHIPS

sin (−α) = − sinα, cos (−α) = + cosα, tan (−α) = − tanα. (6.5.3)

When n is any integer,

sin (α + n2π) = sinα,

cos (α + n2π) = cosα,

tan (α+ nπ) = tanα.

(6.5.4)
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6.5.4 ONE CIRCULAR FUNCTION IN TERMS OF ANOTHER

For 0 ≤ x ≤ π/2,
sinx cosx tanx

sinx = sinx
√
1− cos2 x

tanx√
1 + tan2 x

cosx =
√
1− sin2 x cosx

1√
1 + tan2 x

tanx =
sinx√

1− sin2 x

√
1− cos2 x

cosx
tanx

cscx =
1

sinx

1√
1− cos2 x

√
1 + tan2 x

tanx

secx =
1√

1− sin2 x

1

cosx

√
1 + tan2 x

cotx =

√
1− sin2 x

sinx

cosx√
1− cos2 x

1

tanx

cscx secx cotx

sinx =
1

cscx

√
sec2 x− 1

secx

1√
1 + cot2 x

cosx =

√
csc2 x− 1

cscx

1

secx

cotx√
1 + cot2 x

tanx =
1√

csc2 x− 1

√
sec2 x− 1

1

cotx

cscx = cscx
secx√

sec2 x− 1

√
1 + cot2 x

secx =
cscx√

csc2 x− 1
secx

√
1 + cot2 x

cotx

cotx =
√
csc2 x− 1

1√
sec2 x− 1

cotx

6.5.5 CIRCULAR FUNCTIONS IN TERMS OF EXPONENTIALS

cos z =
eiz + e−iz

2
eiz = cos z + i sin z

sin z =
eiz − e−iz

2i
e−iz = cos z − i sin z

tan z =
sin z

cos z
=

eiz − e−iz

i(eiz + e−iz)
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6.5.6 FUNCTIONS IN TERMS OF ANGLES IN THE FIRST

QUADRANT

When n is any integer:

−α π

2
± α π ± α 3π

2
± α 2nπ ± α

sin − sinα cosα ∓ sinα − cosα ± sinα
cos cosα ∓ sinα − cosα ± sinα +cosα
tan − tanα ∓ cotα ± tanα ∓ cotα ± tanα
csc − cscα secα ∓ cscα − secα ± cscα
sec secα ∓ cscα − secα ± cscα secα
cot − cotα ∓ tanα ± cotα ∓ tanα ± cotα

6.5.7 FUNDAMENTAL IDENTITIES

1. Reciprocal relations

sinα =
1

cscα
, cosα =

1

secα
, tanα =

sinα

cosα
=

1

cotα
,

cscα =
1

sinα
, secα =

1

cosα
, cotα =

cosα

sinα
=

1

tanα
.

2. Pythagorean theorem

sin2 z + cos2 z = 1 sec2 z − tan2 z = 1

csc2 z − cot2 z = 1

3. Product relations

sinα = tanα cosα cosα = cotα sinα

tanα = sinα secα cotα = cosα cscα

secα = cscα tanα cscα = secα cotα

4. Quotient relations

sinα =
tanα

secα
cosα =

cotα

cscα
tanα =

sinα

cosα

cscα =
secα

tanα
secα =

cscα

cotα
cotα =

cosα

sinα

6.5.8 PRODUCTS OF SINE AND COSINE

cosα cosβ =
1

2
cos (α− β) + 1

2
cos (α+ β).

sinα sinβ =
1

2
cos (α− β)− 1

2
cos (α+ β).

sinα cosβ =
1

2
sin (α− β) + 1

2
sin (α+ β).
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6.5.9 ANGLE SUM AND DIFFERENCE RELATIONSHIPS

sin (α± β) = sinα cosβ ± cosα sinβ

cos (α± β) = cosα cosβ ∓ sinα sinβ

tan (α± β) = tanα± tanβ

1∓ tanα tanβ

cot (α± β) = cotα cotβ ∓ 1

cotβ ± cotα

6.5.10 DOUBLE ANGLE FORMULAS

sin 2α = 2 sinα cosα =
2 tanα

1 + tan2 α

cos 2α = 2 cos2 α− 1 = 1− 2 sin2 α = cos2 α− sin2 α =
1− tan2 α

1 + tan2 α

tan 2α =
2 tanα

1− tan2 α

cot 2α =
cot2 α− 1

2 cotα

6.5.11 MULTIPLE ANGLE FORMULAS

sin 3α = −4 sin3 α+ 3 sinα.

sin 4α = −8 sin3 α cosα+ 4 sinα cosα.

sin 5α = 16 sin5 α− 20 sin3 α+ 5 sinα.

sin 6α = 32 sinα cos5 α− 32 sinα cos3 α+ 6 sinα cosα.

sinnα = 2 sin (n− 1)α cosα− sin (n− 2)α.

cos 3α = 4 cos3 α− 3 cosα.

cos 4α = 8 cos4 α− 8 cos2 α+ 1.

cos 5α = 16 cos5 α− 20 cos3 α+ 5 cosα.

cos 6α = 32 cos6 α− 48 cos4 α+ 18 cos2 α− 1.

cosnα = 2 cos (n− 1)α cosα− cos (n− 2)α.

tan 3α =
− tan3 α+ 3 tanα

−3 tan2 α+ 1
.

tan 4α =
−4 tan3 α+ 4 tanα

tan4 α− 6 tan2 α+ 1
.

tannα =
tan (n− 1)α+ tanα

− tan (n− 1)α tanα+ 1
.
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6.5.12 HALF ANGLE FORMULAS

cos
α

2
= ±

√
1 + cosα

2

(positive if α/2 is in quadrant I or IV, negative if in II or III).

sin
α

2
= ±

√
1− cosα

2

(positive if α/2 is in quadrant I or II, negative if in III or IV).

tan
α

2
=

1− cosα

sinα
=

sinα

1 + cosα
= ±

√
1− cosα

1 + cosα

(positive if α/2 is in quadrant I or III, negative if in II or IV).

cot
α

2
=

1 + cosα

sinα
=

sinα

1− cosα
= ±

√
1 + cosα

1− cosα

(positive if α/2 is in quadrant I or III, negative if in II or IV).

6.5.13 POWERS OF CIRCULAR FUNCTIONS

sin2 α =
1

2
(1− cos 2α). cos2 α =

1

2
(1 + cos 2α).

sin3 α =
1

4
(− sin 3α+ 3 sinα). cos3 α =

1

4
(cos 3α+ 3 cosα).

sin4 α =
1

8
(3− 4 cos 2α+ cos 4α). cos4 α =

1

8
(3 + 4 cos 2α+ cos 4α).

tan2 α =
1− cos 2α

1 + cos 2α
. cot2 α =

1 + cos 2α

1− cos 2α
.

6.5.14 SUMS OF CIRCULAR FUNCTIONS

sinα± sinβ = 2 sin
α± β
2

cos
α∓ β
2

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β
2

cosα− cosβ = −2 sin α+ β

2
sin

α− β
2

tanα± tanβ =
sinα± β
cosα cosβ

cotα± cotβ =
sinβ ± α
sinα sinβ

sinα+ sinβ

sinα− sinβ
=

tan α+β
2

tan α−β
2

sinα+ sinβ

cosα− cosβ
= cot

−α+ β

2

sinα+ sinβ

cosα+ cosβ
= tan

α+ β

2

sinα− sinβ

cosα+ cosβ
= tan

α− β
2
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6.5.15 RATIONAL TRIGONOMETRY

“Rational trigonometry” is a new approach to trigonometry. Whereas (usual)

trigonometry considers distance and angles as fundamental quantities, Rational

trigonometry uses quadrance and spread.

1. A point is an ordered pair of numbersA = [x, y]. Two points define a line ℓ.
2. The quadrance between pointsA1 = [x1, y1] andA2 = [x2, y2] is the number

Q(A1, A2) = (x1 − x2)2 + (y1 − y2)2 ≡ Q12 (6.5.5)

3. For the points {A1, A2, A3} define: Q23 = Q(A2, A3), Q13 = Q(A1, A3),
and Q12 = Q(A1, A2). If the points {A1, A2, A3} are collinear (i.e., are on

the line ax+ by + c = 0) then the Triple quad formula holds:

(Q12 +Q23 +Q12)
2
= 2

(
Q2

12 +Q2
23 +Q2

12

)
(6.5.6)

which can be written as

(Q23 +Q13 −Q12)
2
= 4Q23Q13 (6.5.7)

4. Consider two lines: ℓ1 (defined by a1x + b1y + c1 = 0) and ℓ2 (defined by

a2x+ b2y + c2 = 0). The spread of the lines ℓ1 and ℓ2 is the number

s(ℓ1, ℓ2) =
(a1b2 − a2b1)2

(a21 + b21)(a
2
2 + b22)

= s(ℓ2, ℓ1) (6.5.8)

(a) The spread s is in [0, 1] and is the square of the sine of the angle.

(b) If s = 0 then the lines are parallel and a1b2 − a2b1 = 0
(c) If s = 1 then the lines are perpendicular and a1a2 + b1b2 = 0
(d) The spread of lines meeting: at an angle of 30◦ or 150◦ is s = 1/4; at an

angle of 45◦ or 135◦ is s = 1/2; at an angle of 60◦ or 120◦ is s = 3/4.

5. Main laws of rational trigonometry:

(define si,jk = s(ℓij , ℓik) = s(AiAj , AiAk) = si,kj )

(a) Pythagoras’ theorem The linesA1A3 andA2A3 are perpendicular pre-

cisely when Q23 +Q13 = Q12.

(b) Spread law (similar to the law of sines) For the triangle created by

the points {A1, A2, A3}
s1,23
Q23

=
s2,13
Q13

=
s3,12
Q12

(6.5.9)

(c) Cross law (similar to the law of cosines) For the triangle created by

the points {A1, A2, A3}
(Q23 +Q13 −Q12)

2
= 4Q23Q13 (1− s3,12)︸ ︷︷ ︸

the “cross”

(6.5.10)

(d) Triple spread law For the triangle created by the points {A1, A2, A3}
(s1,23 + s2,13 + s3,12)

2 = 2
(
s21,23 + s22,13 + s23,12

)
+ 4s1,23s2,13s3,12

(6.5.11)
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6.6 CIRCULAR FUNCTIONS AND PLANAR
TRIANGLES

Right triangle

A

B

a

C
b

c

General triangle

B

b
C

c a

A

6.6.1 RIGHT TRIANGLES

Let A, B, and C designate the vertices of a right triangle with C the right angle and

a, b, and c the lengths of the sides opposite the corresponding vertices.

1. Trigonometric functions in terms of the sides of the triangle (a mnemonic is

SOH-CAH-TOA)

sinA =
a

c
=

opposite

hypotenuse
=

1

cscA

cosA =
b

c
=

adjacent

hypotenuse
=

1

secA

tanA =
a

b
=

opposite

adjacent
=

1

cotA

(6.6.1)

2. The Pythagorean theorem states that a2 + b2 = c2.

3. The sum of the interior angles equals π, i.e., A+B + C = π.

6.6.2 GENERAL PLANE TRIANGLES

Let A, B, and C designate the interior angles of a general triangle and let a, b, and c
be the length of the sides opposite those angles.

1. Radius of the inscribed circle:

r =

√
(s− a)(s− b)(s− c)

s
,

where s = 1
2 (a+ b + c), the semi-perimeter.

2. Radius of the circumscribed circle:

R =
a

2 sinA
=

b

2 sinB
=

c

2 sinC
=

abc

4(Area)
.
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3. Law of sines:
a

sinA
=

b

sinB
=

c

sinC
.

4. Law of cosines:

a2 = c2 + b2 − 2bc cosA, cosA =
c2 + b2 − a2

2bc
.

b2 = a2 + c2 − 2ca cosB, cosB =
a2 + c2 − b2

2ca
.

c2 = b2 + a2 − 2ab cosC, cosC =
b2 + a2 − c2

2ab
.

5. Triangle sides in terms of other components:

a = b cosC + c cosB,

c = b cosA+ a cosB,

b = a cosC + c cosA.

6. Law of tangents:

a+ b

a− b =
tan A+B

2

tan A−B
2

,
b+ c

b− c =
tan B+C

2

tan B−C
2

,

a+ c

a− c =
tan A+C

2

tan A−C
2

.

7. Area of general triangle:

Area =
bc sinA

2
=
ac sinB

2
=
ab sinC

2
,

=
c2 sinA sinB

2 sinC
=
b2 sinA sinC

2 sinB
=
a2 sinB sinC

2 sinA
,

= rs =
abc

4R
=
√
s(s− a)(s− b)(s− c) (Heron’s formula).

8. Mollweide’s formulas:

b− c
a

=
sin 1

2 (B − C)
cos 1

2A
,

c− a
b

=
sin 1

2 (C −A)
cos 1

2B
,

a− b
c

=
sin 1

2 (A−B)

cos 1
2C

.

9. Newton’s formulas:

b+ c

a
=

cos 1
2 (B − C)
sin 1

2A
,

c+ a

b
=

cos 1
2 (C −A)
sin 1

2B
,

a+ b

c
=

cos 1
2 (A−B)

sin 1
2C

.
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FIGURE 6.5
Different triangles requiring solution.

c c

b b b
C C

A B

6.6.3 SOLUTION OF TRIANGLES

A triangle is totally described by specifying any side and two additional parameters:

either the remaining two sides (if they satisfy the triangle inequality), another side

and the included angle, or two specified angles. If two sides are given and an angle

that is not the included angle, then there might be 0, 1, or 2 such triangles. Two angles

alone specify the shape of a triangle, but not its size, which requires specification of

a side.

6.6.3.1 Three sides given

Formulas for any one of the angles:

cosA =
c2 + b2 − a2

2bc
, sinA =

2

bc

√
s(s− a)(s− b)(s− c),

sin
A

2
=

√
(s− b)(s− c)

bc
, cos

A

2
=

√
s(s− a)
bc

,

tan
A

2
=

√
(s− b)(s− c)
s(s− a) =

r

s− a .

6.6.3.2 Given two sides (b, c) and the included angle (A)

See Figure 6.5, left. The remaining side and angles can be determined by repeated

use of the law of cosines. For example,

1. Non-logarithmic solution; perform these steps sequentially:

(a) a2 = b2 + c2 − 2bc cosA
(b) cosB = (a2 + c2 − b2)/2ca
(c) cosC = (a2 + b2 − c2)/2ba

2. Logarithmic solution; perform these steps sequentially:

(a) B + C = π −A
(b) tan

(B − C)
2

=
b− c
b+ c

tan
(B + C)

2

(c) B =
B + C

2
+
B − C

2
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(d) C =
B + C

2
− B − C

2

(e) a =
b sinA

sinB

6.6.3.3 Given two sides (b, c) and an angle (C), not the included

angle

See Figure 6.5, middle. The remaining angles and side are determined by use of the

law of sines and the fact that the sum of the angles is π, A+B + C = π.

sinB =
b sinC

c
, A = π − B − C, a =

b sinA

sinB
. (6.6.2)

6.6.3.4 Given one side (b) and two angles (B,C)

See Figure 6.5, right. The third angle is specified byA = π−B−C. The remaining

sides are found by

a =
b sinA

sinB
, c =

b sinC

sinB
. (6.6.3)

6.6.4 HALF ANGLE FORMULAS

tan
A

2
=

r

s− a tan
B

2
=

r

s− b tan
C

2
=

r

s− c

sin
A

2
=

√
(s− b)(s− c)

bc
cos

A

2
=

√
s(s− a)
bc

sin
B

2
=

√
(s− c)(s− a)

ca
cos

B

2
=

√
s(s− b)
ca

sin
C

2
=

√
(s− a)(s− b)

ab
cos

C

2
=

√
s(s− c)
ab
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6.7 TABLES OF TRIGONOMETRIC FUNCTIONS

6.7.1 CIRCULAR FUNCTIONS OF SPECIAL ANGLES

Angle 0 = 0◦ π/12 = 15◦ π/6 = 30◦ π/4 = 45◦ π/3 = 60◦

sin 0
√
2
4 (
√
3− 1) 1/2

√
2/2

√
3/2

cos 1
√
2
4 (
√
3 + 1)

√
3/2

√
2/2 1/2

tan 0 2−
√
3

√
3/3 1

√
3

csc ∞
√
2(
√
3 + 1) 2

√
2 2

√
3/3

sec 1
√
2(
√
3− 1) 2

√
3/3

√
2 2

cot ∞ 2 +
√
3

√
3 1

√
3/3

Angle 5π/12 = 75◦ π/2 = 90◦ 7π/12 = 105◦ 2π/3 = 120◦

sin
√
2
4 (
√
3 + 1) 1

√
2
4 (
√
3 + 1)

√
3/2

cos
√
2
4 (
√
3− 1) 0 −

√
2
4 (
√
3− 1) −1/2

tan 2 +
√
3 ∞ −(2 +

√
3) −

√
3

csc
√
2(
√
3− 1) 1

√
2(
√
3− 1) 2

√
3/3

sec
√
2(
√
3 + 1) ∞ −

√
2(
√
3 + 1) −2

cot 2−
√
3 0 −(2−

√
3) −

√
3/3

Angle 3π/4 = 135◦ 5π/6 = 150◦ 11π/12 = 165◦ π = 180◦

sin
√
2/2 1/2

√
2
4 (
√
3− 1) 0

cos −
√
2/2 −

√
3/2 −

√
2
4 (
√
3 + 1) −1

tan −1 −
√
3/3 −(2−

√
3) 0

csc
√
2 2

√
2(
√
3 + 1) ∞

sec −
√
2 −2

√
3/3 −

√
2(
√
3− 1) −1

cot −1 −
√
3 −(2 +

√
3) ∞

6.7.2 EVALUATING SINES AND COSINES AT MULTIPLES OF πππ

The following table is useful for evaluating sines and cosines in multiples of π:

n an integer n even n odd n/2 odd n/2 even

sinnπ 0 0 0 0 0
cosnπ (−1)n +1 −1 +1 +1
sinnπ/2 0 (−1)(n−1)/2 0 0

cosnπ/2 (−1)n/2 0 −1 +1

n odd n/2 odd n/2 even

sinnπ/4 (−1)(n2+4n+11)/8/
√
2 (−1)(n−2)/4 0

Note the useful formulas (where i2 = −1)

sin
nπ

2
=
in+1

2
[(−1)n − 1] , cos

nπ

2
=
in

2
[(−1)n + 1] . (6.7.1)
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6.7.3 TRIGONOMETRIC FUNCTIONS FOR DEGREE

ARGUMENTS

(degrees)

x sinx cosx tanx cotx secx cscx

0 0 1 0 ±∞ 1 ±∞
5 0.0872 0.9962 0.0875 11.4300 1.0038 11.4737

10 0.1736 0.9848 0.1763 5.6713 1.0154 5.7588
15 0.2588 0.9659 0.2680 3.7321 1.0353 3.8637
20 0.3420 0.9397 0.3640 2.7475 1.0642 2.9238
25 0.4226 0.9063 0.4663 2.1445 1.1034 2.3662
30 0.5000 0.8660 0.5774 1.7321 1.1547 2.0000
35 0.5736 0.8192 0.7002 1.4282 1.2208 1.7434
40 0.6428 0.7660 0.8391 1.1918 1.3054 1.5557
45 0.7071 0.7071 1.0000 1.0000 1.4142 1.4142
50 0.7660 0.6428 1.1918 0.8391 1.5557 1.3054
55 0.8192 0.5736 1.4282 0.7002 1.7434 1.2208
60 0.8660 0.5000 1.7321 0.5774 2.0000 1.1547
65 0.9063 0.4226 2.1445 0.4663 2.3662 1.1034
70 0.9397 0.3420 2.7475 0.3640 2.9238 1.0642
75 0.9659 0.2588 3.7321 0.2680 3.8637 1.0353
80 0.9848 0.1736 5.6713 0.1763 5.7588 1.0154
85 0.9962 0.0872 11.4300 0.0875 11.4737 1.0038
90 1 0 ±∞ 0 ±∞ 1

105 0.9659 −0.2588 −3.7321 −0.2680 −3.8637 1.0353
120 0.8660 −0.5000 −1.7321 −0.5774 −2.0000 1.1547
135 0.7071 −0.7071 −1.0000 −1.0000 −1.4142 1.4142
150 0.5000 −0.8660 −0.5774 −1.7321 −1.1547 2.0000
165 0.2588 −0.9659 −0.2680 −3.7321 −1.0353 3.8637
180 0 −1 0 ±∞ −1 ±∞
195 −0.2588 −0.9659 0.2680 3.7321 −1.0353 −3.8637
210 −0.5000 −0.8660 0.5774 1.7321 −1.1547 −2.0000
225 −0.7071 −0.7071 1.0000 1.0000 −1.4142 −1.4142
240 −0.8660 −0.5000 1.7321 0.5774 −2.0000 −1.1547
255 −0.9659 −0.2588 3.7321 0.2680 −3.8637 −1.0353
270 −1 0 ±∞ 0 ±∞ −1
285 −0.9659 0.2588 −3.7321 −0.2680 3.8637 −1.0353
300 −0.8660 0.5000 −1.7321 −0.5774 2.0000 −1.1547
315 −0.7071 0.7071 −1.0000 −1.0000 1.4142 −1.4142
330 −0.5000 0.8660 −0.5774 −1.7321 1.1547 −2.0000
345 −0.2588 0.9659 −0.2680 −3.7321 1.0353 −3.8637
360 0 1 0 ±∞ 1 ±∞
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6.7.4 TRIGONOMETRIC FUNCTIONS FOR RADIAN

ARGUMENTS

(radians)

x sinx cosx tanx cotx secx cscx

0 0 1 0 ±∞ 1 ±∞
0.1 0.0998 0.9950 0.1003 9.9666 1.0050 10.0167
0.2 0.1987 0.9801 0.2027 4.9332 1.0203 5.0335
0.3 0.2955 0.9553 0.3093 3.2327 1.0468 3.3839
0.4 0.3894 0.9211 0.4228 2.3652 1.0857 2.5679
0.5 0.4794 0.8776 0.5463 1.8305 1.1395 2.0858

0.6 0.5646 0.8253 0.6841 1.4617 1.2116 1.7710
0.7 0.6442 0.7648 0.8423 1.1872 1.3075 1.5523
0.8 0.7174 0.6967 1.0296 0.9712 1.4353 1.3940
0.9 0.7833 0.6216 1.2602 0.7936 1.6087 1.2766
1.0 0.8415 0.5403 1.5574 0.6421 1.8508 1.1884

1.1 0.8912 0.4536 1.9648 0.5090 2.2046 1.1221
1.2 0.9320 0.3624 2.5722 0.3888 2.7597 1.0729
1.3 0.9636 0.2675 3.6021 0.2776 3.7383 1.0378
1.4 0.9854 0.1700 5.7979 0.1725 5.8835 1.0148
1.5 0.9975 0.0707 14.1014 0.0709 14.1368 1.0025

π/2 1 0 ±∞ 0 ±∞ 1

1.6 0.9996 −0.0292 −34.2325 −0.0292 −34.2471 1.0004
1.7 0.9917 −0.1288 −7.6966 −0.1299 −7.7613 1.0084
1.8 0.9738 −0.2272 −4.2863 −0.2333 −4.4014 1.0269
1.9 0.9463 −0.3233 −2.9271 −0.3416 −3.0932 1.0567
2.0 0.9093 −0.4161 −2.1850 −0.4577 −2.4030 1.0998

2.1 0.8632 −0.5048 −1.7098 −0.5848 −1.9808 1.1585
2.2 0.8085 −0.5885 −1.3738 −0.7279 −1.6992 1.2369
2.3 0.7457 −0.6663 −1.1192 −0.8935 −1.5009 1.3410
2.4 0.6755 −0.7374 −0.9160 −1.0917 −1.3561 1.4805
2.5 0.5985 −0.8011 −0.7470 −1.3386 −1.2482 1.6709

2.6 0.5155 −0.8569 −0.6016 −1.6622 −1.1670 1.9399
2.7 0.4274 −0.9041 −0.4727 −2.1154 −1.1061 2.3398
2.8 0.3350 −0.9422 −0.3555 −2.8127 −1.0613 2.9852
2.9 0.2392 −0.9710 −0.2464 −4.0584 −1.0299 4.1797
3.0 0.1411 −0.9900 −0.1425 −7.0153 −1.0101 7.0862
3.1 0.0416 −0.9991 −0.0416 −24.0288 −1.0009 24.0496
π 0 −1 0 ±∞ −1 ±∞



“smtf32” — 2011/5/20 — 2:09 — page 419 — #429

6.8. ANGLE CONVERSION 419

6.8 ANGLE CONVERSION

Degrees Radians

1◦ 0.0174533

2◦ 0.0349066

3◦ 0.0523599

4◦ 0.0698132

5◦ 0.0872665

6◦ 0.1047198

7◦ 0.1221730

8◦ 0.1396263

9◦ 0.1570796

10◦ 0.1745329

Minutes Radians

1’ 0.00029089

2’ 0.00058178

3’ 0.00087266

4’ 0.00116355

5’ 0.00145444

6’ 0.00174533

7’ 0.00203622

8’ 0.00232711

9’ 0.00261799

10’ 0.00290888

Seconds Radians

1” 0.0000048481

2” 0.0000096963

3” 0.0000145444

4” 0.0000193925

5” 0.0000242407

6” 0.0000290888

7” 0.0000339370

8” 0.0000387851

9” 0.0000436332

10” 0.0000484814

Radians Deg. Min. Sec. Degrees

1 57◦ 17’ 44.8” 57.2958

2 114◦ 35’ 29.6” 114.5916

3 171◦ 53’ 14.4” 171.8873

4 229◦ 10’ 59.2” 229.1831

5 286◦ 28’ 44.0” 286.4789

6 343◦ 46’ 28.8” 343.7747

7 401◦ 4’ 13.6” 401.0705

8 458◦ 21’ 58.4” 458.3662

9 515◦ 39’ 43.3” 515.6620

Radians Deg. Min. Sec. Degrees

0.1 5◦ 43’ 46.5” 5.7296

0.2 11◦ 27’ 33.0” 11.4592

0.3 17◦ 11’ 19.4” 17.1887

0.4 22◦ 55’ 5.9” 22.9183

0.5 28◦ 38’ 52.4” 28.6479

0.6 34◦ 22’ 38.9” 34.3775

0.7 40◦ 6’ 25.4” 40.1070

0.8 45◦ 50’ 11.8” 45.8366

0.9 51◦ 33’ 58.3” 51.5662

Radians Deg. Min. Sec. Degrees

0.01 0◦ 34’ 22.6” 0.5730

0.02 1◦ 8’ 45.3” 1.1459

0.03 1◦ 43’ 7.9” 1.7189

0.04 2◦ 17’ 30.6” 2.2918

0.05 2◦ 51’ 53.2” 2.8648

0.06 3◦ 26’ 15.9” 3.4377

0.07 4◦ 0’ 38.5” 4.0107

0.08 4◦ 35’ 1.2” 4.5837

0.09 5◦ 9’ 23.8” 5.1566

Radians Deg. Min. Sec. Degrees

0.001 0◦ 3’ 26.3” 0.0573

0.002 0◦ 6’ 52.5” 0.1146

0.003 0◦ 10’ 18.8” 0.1719

0.004 0◦ 13’ 45.1” 0.2292

0.005 0◦ 17’ 11.3” 0.2865

0.006 0◦ 20’ 37.6” 0.3438

0.007 0◦ 24’ 3.9” 0.4011

0.008 0◦ 27’ 30.1” 0.4584

0.009 0◦ 30’ 56.4” 0.5157
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6.9 INVERSE CIRCULAR FUNCTIONS

6.9.1 DEFINITION IN TERMS OF AN INTEGRAL

arc sin(z) = sin−1 z =

∫ z

0

dt√
1− t2

,

arc cos(z) = cos−1 z =

∫ 1

z

dt√
1− t2

=
π

2
− sin−1 z,

arc tan(z) = tan−1 z =

∫ z

0

dt

1 + t2
=
π

2
− cot−1 z,

(6.9.1)

where z can be complex. The path of integration must not cross the real axis in the

first two cases and the imaginary axis in the third case except possibly inside the unit

circle. If −1 ≤ x ≤ 1, then sin−1 x and cos−1 x are real, −π
2 ≤ sin−1 x ≤ π

2 , and

0 ≤ cos−1 x ≤ π.

csc−1 z = sin−1(1/z),

sec−1 z = cos−1(1/z),

cot−1 z = tan−1(1/z),

sec−1 z + csc−1 z = π/2.

(6.9.2)

6.9.2 PRINCIPAL VALUES OF THE INVERSE CIRCULAR

FUNCTIONS

The general solutions of {sin t = z, cos t = z, tan t = z} are, respectively:

t = sin−1 z = (−1)kt0 + kπ, with sin t0 = z,

t = cos−1 z = ±t1 + 2kπ, with cos t1 = z,

t = tan−1 z = t2 + kπ, with tan t2 = z,

where k is an arbitrary integer. While “sin−1 x” can denote, as above, any angle

whose sin is x; the function sin−1 x usually denotes the principal value. The princi-

pal values of the inverse trigonometric functions are defined as follows:

1. When −1 ≤ x ≤ 1, then −π/2 ≤ sin−1 x ≤ π/2.
2. When −1 ≤ x ≤ 1, then 0 ≤ cos−1 x ≤ π.
3. When −∞ ≤ x ≤ ∞, then −π/2 ≤ tan−1 x ≤ π/2.
4. When 1 ≤ x, then 0 ≤ csc−1 x ≤ π/2.

When x ≤ −1, then −π/2 ≤ csc−1 x ≤ 0.
5. When 1 ≤ x, then 0 ≤ sec−1 x ≤ π/2.

When x ≤ −1, then π/2 ≤ sec−1 x ≤ π.
6. When −∞ ≤ x ≤ ∞, then 0 ≤ cot−1 x ≤ π.
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6.9.3 FUNDAMENTAL IDENTITIES

sin−1 x+ cos−1 x = π/2 tan−1 x+ cot−1 x = π/2

If α = sin−1 x, then

sinα = x, cosα =
√
1− x2, tanα =

x√
1− x2

,

cscα =
1

x
, secα =

1√
1− x2

, cotα =

√
1− x2
x

.

If α = cos−1 x, then

sinα =
√
1− x2, cosα = x, tanα =

√
1− x2
x

,

cscα =
1√

1− x2
, secα =

1

x
, cotα =

x√
1− x2

.

If α = tan−1 x, then

sinα =
x√

1 + x2
, cosα =

1√
1 + x2

, tanα = x,

cscα =

√
1 + x2

x
, secα =

√
1 + x2, cotα =

1

x
.

6.9.4 FUNCTIONS OF NEGATIVE ARGUMENTS

sin−1 (−z) = − sin−1 z, sec−1 (−z) = π − sec−1 z,

cos−1 (−z) = π − cos−1 z, csc−1 (−z) = − csc−1 z,

tan−1 (−z) = − tan−1 z, cot−1 (−z) = π − cot−1 z.

6.9.5 SUM AND DIFFERENCE OF TWO INVERSE

TRIGONOMETRIC FUNCTIONS

sin−1 z1 ± sin−1 z2 = sin−1

(
z1

√
1− z22 ± z2

√
1− z21

)
.

cos−1 z1 ± cos−1 z2 = cos−1

(
z1z2 ∓

√
(1− z22)(1 − z21)

)
.

tan−1 z1 ± tan−1 z2 = tan−1

(
z1 ± z2
1∓ z1z2

)
.

sin−1 z1 ± cos−1 z2 = sin−1

(
z1z2 ±

√
(1− z21)(1− z22)

)
,

= cos−1

(
z2

√
1− z21 ∓ z1

√
1− z22

)
.

tan−1 z1 ± cot−1 z2 = tan−1

(
z1z2 ± 1

z2 ∓ z1

)
= cot−1

(
z2 ∓ z1
z1z2 ± 1

)
.

These formulas must be used with much thought, as the forms shown presume prin-

cipal values of the inverse functions.
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6.10 HYPERBOLIC FUNCTIONS

sinh z =
ez − e−z

2
, csch z =

1

sinh z
,

cosh z =
ez + e−z

2
, sech z =

1

cosh z
,

tanh z =
ez − e−z

ez + e−z
=

sinh z

cosh z
, coth z =

1

tanh z
.

When z = x+ iy,

sinh z = sinhx cos y + i coshx sin y, tanh z =
sinh 2x+ i sin 2y

cosh 2x+ cos 2y
,

cosh z = coshx cos y + i sinhx sin y, coth z =
sinh 2x− i sin 2y
cosh 2x− cos 2y

.

Function
Domain

(interval of u)

Range

(interval of function)
Remarks

sinhu (−∞,+∞) (−∞,+∞)
coshu (−∞,+∞) [1,+∞)
tanhu (−∞,+∞) (−1,+1)
cschu (−∞, 0) (0,−∞) Two branches,

(0,+∞) (+∞, 0) pole at u = 0.

sechu (−∞,+∞) (0, 1]
cothu (−∞, 0) (−1,−∞) Two branches,

(0,+∞) (+∞, 1) pole at u = 0.

−20

−10

0

10

20

−4 −2 0 2 4
x

sinhx
coshx

−5

0

5

−4 −2 0 2 4
x

tanhx
cothx

6.10.1 RELATIONSHIP TO CIRCULAR FUNCTIONS

cosh z = cos iz, sinh z = −i sin iz, tanh z = −i tan iz.
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6.10.2 HYPERBOLIC FUNCTIONS IN TERMS OF ONE

ANOTHER

Function sinhx coshx tanhx

sinhx = sinhx ±
√
(coshx)2 − 1

tanhx√
1− (tanh x)2

coshx =
√
1 + (sinhx)2 coshx

1√
1− (tanhx)2

tanhx =
sinhx√

1 + (sinhx)2
±
√
(coshx)2 − 1

coshx
tanhx

cschx =
1

sinhx
± 1√

(coshx)2 − 1

√
1− (tanhx)2

tanhx

sechx =
1√

1 + (sinhx)2
1

coshx

√
1− (tanh x)2

cothx =

√
1 + (sinhx)2

sinhx
± coshx√

(coshx)2 − 1

1

tanhx

Function cschx sechx cothx

sinhx =
1

cschx
±
√
1− (sechx)2

sechx
± 1√

(cothx)2 − 1

coshx = ±
√
(cschx)2 + 1

cschx

1

sechx
± cothx√

(cothx)2 − 1

tanhx =
1√

(cschx)2 + 1
±
√
1− (sechx)2

1

cothx

cschx = cschx ± sechx√
1− (sechx)2

±
√
(cothx)2 − 1

sechx = ± cschx√
(cschx)2 + 1

sechx ±
√
(cothx)2 − 1

cothx

cothx =
√
(cschx)2 + 1 ± 1√

1− (sechx)2
cothx

6.10.3 RELATIONS AMONG HYPERBOLIC FUNCTIONS

ez = cosh z + sinh z, e−z = cosh z − sinh z,

(cosh z)2 − (sinh z)2 = (tanh z)2 + (sech z)2 = (coth z)2 − (csch z)2 = 1.

6.10.4 SYMMETRY RELATIONSHIPS

cosh (−z) = + cosh z, sinh (−z) = − sinh z, tanh (−z) = − tanh z.
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6.10.5 SERIES EXPANSIONS

cosh z = 1 +
z2

2!
+
z4

4!
+
z6

6!
+ . . . , |z| <∞.

sinh z = z +
z3

3!
+
z5

5!
+
z7

7!
+ . . . , |z| <∞.

tanh z = z − z3

3
+

2 z5

15
− 17 z7

315
+ . . . , |z| < π

2
.

6.10.6 PRODUCTS OF FUNCTIONS

sinhu sinhw =
1

2
(cosh(u+ w) − cosh(u− w)) ,

sinhu coshw =
1

2
(sinh(u+ w) + sinh(u− w)) ,

coshu coshw =
1

2
(cosh(u+ w) + cosh(u− w)) .

6.10.7 SUM AND DIFFERENCE FORMULAS

cosh (z1 ± z2) = cosh z1 cosh z2 ± sinh z1 sinh z2,

sinh (z1 ± z2) = sinh z1 cosh z2 ± cosh z1 sinh z2,

tanh (z1 ± z2) =
tanh z1 ± tanh z2
1± tanh z1 tanh z2

=
sinh 2z1 ± sinh 2z2
cosh 2z1 ± cosh 2z2

,

coth (z1 ± z2) =
1± coth z1 coth z2
coth z1 ± coth z2

=
sinh 2z1 ∓ sinh 2z2
cosh 2z1 − cosh 2z2

.

6.10.8 SUMS OF FUNCTIONS

sinhu± sinhw = 2 sinh
u± w

2
cosh

u∓ w
2

,

coshu+ coshw = 2 cosh
u+ w

2
cosh

u− w
2

,

coshu− coshw = 2 sinh
u+ w

2
sinh

u− w
2

,

tanhu± tanhw =
sinhu± w

coshu coshw
,

cothu± cothw =
sinhu± w
sinhu sinhw

.
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6.10.9 HALF–ARGUMENT FORMULAS

sinh
z

2
= ±

√
cosh z − 1

2
, cosh

z

2
= +

√
cosh z + 1

2
,

tanh
z

2
= ±

√
cosh z − 1

cosh z + 1
=

sinh z

cosh z + 1
, coth

z

2
= ±

√
cosh z + 1

cosh z − 1
=

sinh z

cosh z − 1
.

6.10.10 MULTIPLE ARGUMENT RELATIONS

sinh 2α = 2 sinhα coshα =
2 tanhα

1− tanh2 α
.

sinh 3α = 3 sinhα+ 4 sinh3 α = sinhα(4 cosh2 α− 1).

sinh 4α = 4 sinh3 α coshα+ 4 cosh3 α sinhα.

cosh 2α = cosh2 α+ sinh2 α = 2 cosh2 α− 1,

= 1 + 2 sinh2 α =
1 + tanh2 α

1− tanh2 α
.

cosh 3α = −3 coshα+ 4 cosh3 α = coshα(4 sinh2 α+ 1).

cosh 4α = cosh4 α+ 6 sinh2 α cosh2 α+ 6 sinh4 α.

tanh 2α =
2 tanhα

1 + tanh2 α
.

tanh 3α =
3 tanhα+ tanh3 α

1 + 3 tanh2 α
.

coth 2α =
1 + coth2 α

2 cothα
.

coth 3α =
3 cothα+ coth3 α

1 + 3 coth2 α
.

6.10.11 SUM AND DIFFERENCE OF INVERSE FUNCTIONS

sinh−1 x± sinh−1 y = sinh−1
(
x
√
1 + y2 ± y

√
1 + x2

)
,

cosh−1 x± cosh−1 y = cosh−1
(
xy ±

√
(y2 − 1)(x2 − 1)

)
,

tanh−1 x± tanh−1 y = tanh−1

(
x± y
xy ± 1

)
,

sinh−1 x± cosh−1 y = sinh−1
(
xy ±

√
(1 + x2)(y2 − 1)

)
,

= cosh−1
(
y
√
1 + x2 ± x

√
y2 − 1

)
,

tanh−1 x± coth−1 y = tanh−1

(
xy ± 1

y ± x

)
= coth−1

(
y ± x
xy ± 1

)
.



“smtf32” — 2011/5/20 — 2:09 — page 426 — #436

426 CHAPTER 6. SPECIAL FUNCTIONS

6.11 INVERSE HYPERBOLIC FUNCTIONS

cosh−1 z =

∫ z

0

dt√
t2 − 1

, sinh−1 z =

∫ z

0

dt√
1 + t2

, tanh−1 z =

∫ z

0

dt

1− t2 .

Function Domain Range Remarks

sinh−1 u (−∞,+∞) (−∞,+∞) Odd function

cosh−1 u [1,+∞) (−∞,+∞) Even function, double valued

tanh−1 u (−1,+1) (−∞,+∞) Odd function

csch−1 u (−∞, 0), (0,∞) (0,−∞), (∞, 0) Odd function, two branches,

pole at u = 0

sech−1 u (0, 1] (−∞,+∞) Double valued

coth−1 u (−∞,−1), (1,∞) (−∞, 0), (∞, 0) Odd function, two branches

6.11.1 RELATIONSHIPS WITH LOGARITHMIC FUNCTIONS

sinh−1 x = log
(
x+

√
x2 + 1

)
, csch−1 x = log

(
1±
√
1 + x2

x

)
,

cosh−1 x = log
(
x±

√
x2 − 1

)
, sech−1 x = log

(
1±
√
1− x2
x

)
,

tanh−1 x =
1

2
log

(
1 + x

1− x

)
, coth−1 x =

1

2
log

(
x+ 1

x− 1

)
.

6.11.2 RELATIONSHIPS WITH CIRCULAR FUNCTIONS

sinh−1 x = −i sin−1 ix sinh−1 ix = +i sin−1 x

tanh−1 x = −i tan−1 ix tanh−1 ix = +i tan−1 x

csch−1 x = +i csc−1 ix csch−1 ix = −i csc−1 x

coth−1 x = +i cot−1 ix coth−1 ix = −i cot−1 x

6.11.3 DIFFERENTIATION FORMULAS

dsinh z

dz
= cosh z,

dcosh z

dz
= sinh z,

dtanh z

dz
= (sech z)2,

dcsch z

dz
= − csch z coth z,

dsech z

dz
= − sech z tanh z,

dcoth z

dz
= −(csch z)2.
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6.11.4 RELATIONSHIPS AMONG INVERSE HYPERBOLIC

FUNCTIONS

Function sinh−1 x cosh−1 x tanh−1 x

sinh−1 x = sinh−1 x ± cosh−1
√
x2 + 1 tanh−1 x√

1 + x2

cosh−1 x = ± sinh−1
√
x2 − 1 cosh−1 x ± tanh−1

√
x2 − 1

x

tanh−1 x = sinh−1 x√
1− x2

± cosh−1 1√
1− x2

tanh−1 x

csch−1 x = sinh−1 1

x
± cosh−1

√
1 + x2

x
tanh−1 1√

1 + x2

sech−1 x = ± sinh−1

√
1− x2
x

cosh−1 1

x
± tanh−1

√
1− x2

coth−1 x = sinh−1 1√
x2 − 1

± cosh−1 x√
x2 − 1

tanh−1 1

x

Function csch−1 x sech−1 x coth−1 x

sinh−1 x = csch−1 1

x
± sech−1 1√

1 + x2
coth−1

√
1 + x2

x

cosh−1 x = ± csch−1 1√
x2 − 1

sech−1 1

x
± coth−1 x√

x2 − 1

tanh−1 x = csch−1

√
1− x2
x

± sech−1
√
1− x2 coth−1 1

x

csch−1 x = csch−1 x ± sech−1 x√
1 + x2

coth−1
√
1 + x2

sech−1 x = ± csch−1 x√
1− x2

sech−1 x ± coth−1 1√
1− x2

coth−1 x = csch−1
√
x2 − 1 sech−1

√
x2 − 1

x
coth−1 x
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6.12 GUDERMANNIAN FUNCTION

−2

−1

0

1

2

−5 −3 −1 1 3 5
x

gd(x)

This function relates circular and hyperbolic functions without the use of functions

of imaginary argument. The Gudermannian is a monotonic odd function which is

asymptotic to ±π
2 as x→ ±∞. It is zero at the origin.

gdx = the Gudermannian of x

=

∫ x

0

dt

cosh t
= 2 tan−1

(
tanh

x

2

)
= 2 tan−1 ex − π

2
.

gd−1 x = the inverse Gudermannian of x

=

∫ x

0

dt

cos t
= log

[
tan

(π
4
+
x

2

)]
= log (secx+ tanx).

(6.12.1)

If gd(x+ iy) = α+ iβ, then

tanα =
sinhx

cos y
, tanhβ =

sin y

coshx
,

tanhx =
sinα

coshβ
, tan y =

sinβ

coshα
.

6.12.1 FUNDAMENTAL IDENTITIES

tanh
(x
2

)
= tan

(
gdx

2

)
,

ex = coshx+ sinhx = sec gdx+ tan gdx,

= tan

(
π

4
+

gdx

2

)
=

1 + sin (gdx)

cos(gdx)
,

i gd−1 x = gd−1(ix), where i =
√
−1.

6.12.2 DERIVATIVES OF GUDERMANNIAN

d(gdx)

dx
= sechx

d(gd−1 x)

dx
= secx.
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6.12.3 RELATIONSHIP TO HYPERBOLIC AND CIRCULAR

FUNCTIONS
sinhx = tan (gdx), cschx = cot (gdx),

coshx = sec (gdx), sechx = cos (gdx),

tanhx = sin (gdx), cothx = csc (gdx).

6.12.4 NUMERICAL VALUES OF HYPERBOLIC FUNCTIONS

x ex lnx gd x sinh x cosh x tanhx

0 1 −∞ 0 0 1 0

0.1 1.1052 −2.3026 0.0998 0.1002 1.0050 0.0997
0.2 1.2214 −1.6094 0.1987 0.2013 1.0201 0.1974
0.3 1.3499 −1.2040 0.2956 0.3045 1.0453 0.2913
0.4 1.4918 −0.9163 0.3897 0.4108 1.0811 0.3799
0.5 1.6487 −0.6931 0.4804 0.5211 1.1276 0.4621
0.6 1.8221 −0.5108 0.5669 0.6367 1.1855 0.5370
0.7 2.0138 −0.3567 0.6490 0.7586 1.2552 0.6044
0.8 2.2255 −0.2231 0.7262 0.8881 1.3374 0.6640
0.9 2.4596 −0.1054 0.7985 1.0265 1.4331 0.7163

1.0 2.7183 −0.0000 0.8658 1.1752 1.5431 0.7616
1.1 3.0042 0.0953 0.9281 1.3356 1.6685 0.8005
1.2 3.3201 0.1823 0.9857 1.5095 1.8107 0.8337
1.3 3.6693 0.2624 1.0387 1.6984 1.9709 0.8617
1.4 4.0552 0.3365 1.0872 1.9043 2.1509 0.8854
1.5 4.4817 0.4055 1.1317 2.1293 2.3524 0.9051
1.6 4.9530 0.4700 1.1724 2.3756 2.5775 0.9217
1.7 5.4739 0.5306 1.2094 2.6456 2.8283 0.9354
1.8 6.0496 0.5878 1.2432 2.9422 3.1075 0.9468
1.9 6.6859 0.6419 1.2739 3.2682 3.4177 0.9562

2.0 7.3891 0.6931 1.3018 3.6269 3.7622 0.9640
2.1 8.1662 0.7419 1.3271 4.0219 4.1443 0.9705
2.2 9.0250 0.7885 1.3501 4.4571 4.5679 0.9757
2.3 9.9742 0.8329 1.3709 4.9370 5.0372 0.9801
2.4 11.0232 0.8755 1.3899 5.4662 5.5569 0.9837
2.5 12.1825 0.9163 1.4070 6.0502 6.1323 0.9866
2.6 13.4637 0.9555 1.4225 6.6947 6.7690 0.9890
2.7 14.8797 0.9933 1.4366 7.4063 7.4735 0.9910
2.8 16.4446 1.0296 1.4493 8.1919 8.2527 0.9926
2.9 18.1741 1.0647 1.4609 9.0596 9.1146 0.9940

3.0 20.0855 1.0986 1.4713 10.0179 10.0677 0.9951
3.1 22.1980 1.1314 1.4808 11.0765 11.1215 0.9959
3.2 24.5325 1.1632 1.4893 12.2459 12.2866 0.9967
3.3 27.1126 1.1939 1.4971 13.5379 13.5748 0.9973
3.4 29.9641 1.2238 1.5041 14.9654 14.9987 0.9978
3.5 33.1155 1.2528 1.5104 16.5426 16.5728 0.9982
3.6 36.5982 1.2809 1.5162 18.2855 18.3128 0.9985
3.7 40.4473 1.3083 1.5214 20.2113 20.2360 0.9988
3.8 44.7012 1.3350 1.5261 22.3394 22.3618 0.9990
3.9 49.4024 1.3610 1.5303 24.6911 24.7113 0.9992
4.0 54.5982 1.3863 1.5342 27.2899 27.3082 0.9993
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6.13 ORTHOGONAL POLYNOMIALS

Orthogonal polynomials are classes of polynomials, {pn(x)}, which obey an orthog-

onality relationship of the form

∫

I

w(x) pn(x) pm(x) dx = cnδnm (6.13.1)

for a given weight function w(x) and interval I .

6.13.1 HERMITE POLYNOMIALS

Symbol: Hn(x)
Interval: (−∞,∞)
Differential Equation: y′′ − 2xy′ + 2ny = 0

Explicit Expression: Hn(x) =

⌊n/2⌋∑

m=0

(−1)mn!(2x)n−2m

m!(n− 2m)!

Recurrence Relation: Hn+1(x) = 2xHn(x)− 2nHn−1(x)

Weight: e−x2

Standardization: Hn(x) = 2nxn + . . .

Norm:
∫∞
−∞ e−x2

[Hn(x)]
2
dx = 2nn!

√
π

Rodrigues’ Formula: Hn(x) = (−1)nex2 dn

dxn (e
−x2

)

Generating Function:

∞∑

n=0

Hn(x)
zn

n!
= e−z2+2zx

Inequality: |Hn(x)| <
√
2nex2n!

6.13.2 JACOBI POLYNOMIALS

Symbol: P
(α,β)
n (x)

Interval: [−1, 1]
Parameter Range: α, β > −1
Differential Equation:

(1− x2)y′′ + [β − α− (α+ β + 2)x]y′ + n(n+ α+ β + 1)y = 0
Explicit Expression:

P (α,β)
n (x) =

1

2n

n∑

m=0

(
n+ α

m

)(
n+ β

n−m

)
(x− 1)n−m(x+ 1)m

Recurrence Relation:

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)P
(α,β)
n+1 (x)

= (2n+ α+ β + 1)[(α2 − β2) + (2n+ α+ β + 2)(2n+ α+ β)x]P (α,β)
n (x)

−2(n+ α)(n+ β)(2n+ α+ β + 2)P
(α,β)
n−1 (x)

Weight: (1− x)α(1 + x)β

Standardization: P
(α,β)
n (1) =

(
n+α
n

)
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Norm: ∫ 1

−1

(1 − x)α(1 + x)β
[
P (α,β)
n (x)

]2
dx = 2α+β+1Γ(n+α+1)Γ(n+β+1)

(2n+α+β+1)n!Γ(n+α+β+1)

Rodrigues’ Formula:

P (α,β)
n (x) =

(−1)n
2nn!(1− x)α(1 + x)β

dn

dxn
[
(1− x)n+α(1 + x)n+β

]

Generating Function:
∞∑

n=0

P (α,β)
n (x)zn = 2α+βR−1(1− z +R)−α(1 + z +R)−β ,

where R =
√
1− 2xz + z2 and |z| < 1

Inequality:

max
−1≤x≤1

∣∣∣P (α,β)
n (x)

∣∣∣ =
{(

n+q
n

)
∼ nq, if q = max(α, β) ≥ − 1

2 ,∣∣∣P (α,β)
n (x′)

∣∣∣ ∼ n−1/2, if q = max(α, β) < − 1
2 ,

where α, β > 1 and x′ (in the second result) is one of the two maximum points

nearest (β − α)/(α + β + 1).

6.13.3 LAGUERRE POLYNOMIALS

Symbol: Ln(x).
Interval: [0,∞).

Ln(x) is the same as L
(0)
n (x) (see the generalized Laguerre polynomials).

6.13.4 GENERALIZED LAGUERRE POLYNOMIALS

Symbol: L
(α)
n (x)

Interval: [0,∞)
Differential Equation: xy′′ + (α+ 1− x)y′ + ny = 0

Explicit Expression: L(α)
n (x) =

n∑

m=0

(−1)m
m!

(
n+ α

n−m

)
xm

Recurrence Relation:

(n+ 1)L
(α)
n+1(x) = [(2n+ α+ 1)− x]L(α)

n (x) − (n+ α)L
(α)
n−1(x)

Weight: xαe−x

Standardization: L(α)
n (x) =

(−1)n
n!

xn + . . .

Norm:

∫ ∞

0

xαe−x
[
L(α)
n (x)

]2
dx =

Γ(n+ α+ 1)

n!

Rodrigues’ Formula: L(α)
n (x) =

1

n!xαe−x

dn

dxn
[xn+αe−x]

Generating Function:

∞∑

n=0

L(α)
n (x)zn = (1− z)−α−1 exp

(
xz

z − 1

)

Inequality:
∣∣∣L(α)

n (x)
∣∣∣ ≤

{Γ(n+α+1)
n!Γ(α+1) e

x/2, if x ≥ 0 and α > 0,[
2− Γ(n+α+1)

n!Γ(α+1)

]
ex/2, if x ≥ 0 and −1 < α < 0.

Note that α > −1 and L(m)
n (x) = (−1)m dm

dxm
[Ln+m(x)] .
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6.13.5 LEGENDRE POLYNOMIALS

Symbol: Pn(x)
Interval: [−1, 1]
Differential Equation: (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

Explicit Expression: Pn(x) =
1

2n

⌊n/2⌋∑

m=0

(−1)m
(
n

m

)(
2n− 2m

n

)
xn−2m

Recurrence Relation: (n+ 1)Pn+1(x) = (2n+ 1)xPn(x) − nPn−1(x)
Weight: 1
Standardization: Pn(1) = 1

Norm:

∫ 1

−1

[Pn(x)]
2
dx =

2

2n+ 1

Rodrigues’ Formula: Pn(x) =
(−1)n
2nn!

dn

dxn
[(1 − x2)n]

Generating Function:
∞∑

n=0

Pn(x)z
n = (1− 2xz + z2)−1/2, for−1 < x < 1 and |z| < 1

Inequality: |Pn(x)| ≤ 1 for −1 ≤ x ≤ 1

See Section 6.21.7 on page 451.

6.13.6 CHEBYSHEV POLYNOMIALS, FIRST KIND

Symbol: Tn(x)
Interval: [−1, 1]
Differential Equation: (1− x2)y′′ − xy′ + n2y = 0
Explicit Expression:

Tn(x) = cos
(
n cos−1 x

)
=
n

2

⌊n/2⌋∑

m=0

(−1)m (n−m− 1)!

m!(n− 2m)!
(2x)n−2m

Recurrence Relation: Tn+1(x) = 2xTn(x)− Tn−1(x)
Weight: (1− x2)−1/2

Standardization: Tn(1) = 1

Norm:
∫ 1

−1(1− x2)−1/2 [Tn(x)]
2
dx =

{
π, n = 0,

π/2, n 6= 0.

Rodrigues’ Formula: Tn(x) =

√
π(1− x2)

(−2)nΓ(n+ 1
2 )

dn

dxn

[
(1 − x2)n−1/2

]

Generating Function:
∞∑

n=0

Tn(x)z
n =

1− xz
1− 2xz + z2

, for−1 < x < 1 and |z| < 1

Inequality: |Tn(x)| ≤ 1 for −1 ≤ x ≤ 1

Note that Tn(x) =
n!
√
π

Γ(n+ 1
2 )
P (−1/2,−1/2)
n (x).
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6.13.7 CHEBYSHEV POLYNOMIALS, SECOND KIND

Symbol: Un(x)
Interval: [−1, 1]
Differential Equation: (1− x2)y′′ − 3xy′ + n(n+ 2)y = 0

Explicit Expression: Un(x) =

⌊n/2⌋∑

m=0

(−1)m(n−m)!

m!(n− 2m)!
(2x)n−2m

and Un(cos θ) =
sin[(n+ 1)θ]

sin θ
Recurrence Relation: Un+1(x) = 2xUn(x) − Un−1(x)
Weight: (1− x2)1/2
Standardization: Un(1) = n+ 1

Norm:

∫ 1

−1

(1− x2)1/2 [Un(x)]
2
dx =

π

2
Rodrigues’ Formula:

Un(x) =
(−1)n(n+ 1)

√
π

(1− x2)1/22n+1Γ(n+ 3
2 )

dn

dxn
[(1− x2)n+(1/2)]

Generating Function:
∞∑

n=0

Un(x)z
n =

1

1− 2xz + z2
, for−1 < x < 1 and |z| < 1

Inequality: |Un(x)| ≤ n+ 1 for −1 ≤ x ≤ 1

Note that Un(x) =
(n+ 1)!

√
π

2Γ(n+ 3
2 )
P (1/2,1/2)
n (x).

6.13.8 TABLES OF ORTHOGONAL POLYNOMIALS

6.13.8.1 Table of Jacobi polynomials

Notation: (m)n = m(m+ 1) . . . (m+ n− 1).

P
(α,β)
0 (x) = 1.

P
(α,β)
1 (x) =

1

2

(
2(α+ 1) + (α+ β + 2)(x− 1)

)
.

P
(α,β)
2 (x) =

1

8

(
4(α+ 1)2 + 4(α+ β + 3)(α+ 2)(x− 1) + (α+ β + 3)2(x− 1)2

)
.

P
(α,β)
3 (x) =

1

48

(
8(α+ 1)3 + 12(α+ β + 4)(α+ 2)2(x− 1)

+ 6(α+ β + 4)2(α+ 3)(x− 1)2 + (α+ β + 4)3(x − 1)3
)
.

P
(α,β)
4 (x) =

1

384

(
16(α+ 1)4 + 32(α+ β + 5)(α+ 2)3(x− 1)

+ 24(α+ β + 5)2(α+ 3)2(x − 1)2 + 8(α+ β + 5)3(α+ 4)(x− 1)3

+ (α+ β + 5)4(x− 1)4
)
.
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6.13.9 TABLES OF ORTHOGONAL POLYNOMIALS (H, L, P, T, U)

H0 = 1 x8 = (1680H0 + 3360H2 + 840H4 + 56H6 +H8)/256
H1 = 2x x7 = (840H1 + 420H3 + 42H5 +H7)/128
H4 = 16x4 − 48x2 + 12 x6 = (120H0 + 180H2 + 30H4 +H6)/64
H2 = 4x2 − 2 x5 = (60H1 + 20H3 +H5)/32
H3 = 8x3 − 12x x4 = (12H0 + 12H2 +H4)/16
H5 = 32x5 − 160x3 + 120x x3 = (6H1 +H3)/8
H6 = 64x6 − 480x4 + 720x2 − 120 x2 = (2H0 +H2)/4
H7 = 128x7 − 1344x5 + 3360x3 − 1680x x = (H1)/2
H8 = 256x8 − 3584x6 + 13440x4 − 13440x2 + 1680 1 = H0

L0 = 1 x6 = 720L0 − 4320L1 + 10800L2 − 14400L3 + 10800L4 − 4320L5 + 720L6

L1 = −x+ 1 x5 = 120L0 − 600L1 + 1200L2 − 1200L3 + 600L4 − 120L5

L2 = (x2 − 4x+ 2)/2 x4 = 24L0 − 96L1 + 144L2 − 96L3 + 24L4

L3 = (−x3 + 9x2 − 18x + 6)/6 x3 = 6L0 − 18L1 + 18L2 − 6L3

L4 = (x4 − 16x3 + 72x2 − 96x+ 24)/24 x2 = 2L0 − 4L1 + 2L2

L5 = (−x5 + 25x4 − 200x3 + 600x2 − 600x + 120)/120 x = L0 − L1

L6 = (x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x + 720)/720 1 = L0

P0 = 1 x8 = (715P0 + 2600P2 + 2160P4 + 832P6 + 128P8)/6435
P1 = x x7 = (143P1 + 182P3 + 88P5 + 16P7)/429
P2 = (3x2 − 1)/2 x6 = (33P0 + 110P2 + 72P4 + 16P6)/231
P3 = (5x3 − 3x)/2 x5 = (27P1 + 28P3 + 8P5)/63
P4 = (35x4 − 30x2 + 3)/8 x4 = (7P0 + 20P2 + 8P4)/35
P5 = (63x5 − 70x3 + 15x)/8 x3 = (3P1 + 2P3)/5
P6 = (231x6 − 315x4 + 105x2 − 5)/16 x2 = (P0 + 2P2)/3
P7 = (429x7 − 693x5 + 315x3 − 35x)/16 x = P1

P8 = (6435x8 − 12012x6 + 6930x4 − 1260x2 + 35)/128 1 = P0

T0 = 1 x8 = (35T0 + 56T2 + 28T4 + 8T6 + T8)/128
T1 = x x7 = (35T1 + 21T3 + 7T5 + T7)/64
T2 = 2x2 − 1 x6 = (10T0 + 15T2 + 6T4 + T6)/32
T3 = 4x3 − 3x x5 = (10T1 + 5T3 + T5)/16
T4 = 8x4 − 8x2 + 1 x4 = (3T0 + 4T2 + T4)/8
T5 = 16x5 − 20x3 + 5x x3 = (3T1 + T3)/4
T6 = 32x6 − 48x4 + 18x2 − 1 x2 = (T0 + T2)/2
T7 = 64x7 − 112x5 + 56x3 − 7x x = T1

T8 = 128x8 − 256x6 + 160x4 − 32x2 + 1 1 = T0

U0 = 1 x8 = (14U0 + 28U2 + 20U4 + 7U6 + U8)/256
U1 = 2x x7 = (14U1 + 14U3 + 6U5 + U7)/128
U2 = 4x2 − 1 x6 = (5U0 + 9U2 + 5U4 + U6)/64
U3 = 8x3 − 4x x5 = (5U1 + 4U3 + U5)/32
U4 = 16x4 − 12x2 + 1 x4 = (2U0 + 3U2 + U4)/16
U5 = 32x5 − 32x3 + 6x x3 = (2U1 + U3)/8
U6 = 64x6 − 80x4 + 24x2 − 1 x2 = (U0 + U2)/4
U7 = 128x7 − 192x5 + 80x3 − 8x x = (U1)/2
U8 = 256x8 − 448x6 + 240x4 − 40x2 + 1 1 = U0
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6.13.10 ZERNIKE POLYNOMIALS

The circle polynomials or Zernike polynomials form a complete orthogonal set over

the interior of the unit circle. They are Um
n (r, θ) = Rm

n (r)eimθ where Rm
n (r) are

radial polynomials, n and m are integers with n− |m| even, and 0 ≤ |m| ≤ n.

1. Orthogonality

∫ 2π

0

∫ 1

0

Um
n (r, θ)Um′

n′ (r, θ) r dr dθ =
π

n+ 1
δnn′δmm′

∫ 1

0

Rm
n (r)Rm

n′ (r) r dr =
1

2(n+ 1)
δnn′ .

2. Explicit formula for the radial polynomials

R±m
n (r) =

1(
n−|m|

2

)
! r|m|





(
∂

∂(r2)

)n−|m|
2
[(
r2
)n+|m|

2
(
r2 − 1

)n−|m|
2

]


=

n−|m|
2∑

s=0

(−1)s(n− s)!
s!
(

n+|m|
2 − s

)
!
(

n−|m|
2 − s

)
!
rn−2s. (6.13.2)

3. Expansions in Zernike polynomials

(a) If f(r, θ) is a piecewise continuous function then

f(r, θ) =
∞∑

n=0

n∑

m=−n

Am
n U

m
n (r, θ) where n− |m| is even.

Am
n = A−m

n =
n+ 1

π

∫ 2π

0

∫ 1

0

Um
n (r, θ)f(r, θ) r dr dθ.

(b) If f(r, θ) is a real piecewise continuous function then

f(r, θ) =
∞∑

n=0

n∑

m=0

[
Cm

n cos(mθ) + Sm
n sin(mθ)

]
Rm

n (r)

where n− |m| is even and ǫm =

{
1 if m = 0

2 otherwise.
[
Cm

n

Sm
n

]
=
ǫm(n+ 1)

π

∫ 2π

0

∫ 1

0

f(r, θ)Rm
n (r)

[
cos(mθ)
sin(mθ)

]
r dr dθ

n m = 0 2 4

0 1
2 2r2 − 1 r2

4 6r4 − 6r2 + 1 4r4 − 3r2 r4

6 20r6 − 30r4 + 12r2 − 1 15r6 − 20r4 + 6r2 6r6 − 5r4

n m = 1 3 5

1 r
3 3r3 − 2r r3

5 10r5 − 12r3 + 3r 5r5 − 4r3 r5

7 35r7 − 60r5 + 30r3 − 4r 21r7 − 30r5 + 10r3 7r7 − 6r5
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6.13.11 SPHERICAL HARMONICS

The spherical harmonics are defined by

Ylm(θ, φ) =

√
2l+ 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (6.13.3)

for l an integer and m = −l, −l+ 1, . . . , l − 1, l. They satisfy

Yl,−m(θ, φ) = (−1)mYl,m(θ, φ),

Yl0(θ, φ) =

√
2l+ 1

4π
Pl(cos θ),

Ylm

(π
2
, φ
)
=





√
(2l+1)(l−m)!(l+m)!

4π
(−1)(l+m)/2eimφ

2l( l−m
2 )!( l+m

2 )!
, l+m

2 integral,

0, l+m
2 not integral.

(6.13.4)

The normalization and orthogonality conditions are

∫ 2π

0

dφ

∫ π

0

sin θ dθ Yl′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ , (6.13.5)

and

∫ 2π

0

dφ

∫ π

0

sin θ dθ Yl1m2(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ),

=

√
(2l2 + 1)(2l3 + 1)

4π(2l1 + 1)

(
l1 l3
m2 m3

l1
m1

)(
l1 l3
0 0

l1
0

)
, (6.13.6)

where the terms on the right-hand side are Clebsch–Gordan coefficients (see

page 468).

Because of the (distributional) completeness relation,

∞∑

l=0

l∑

m=−l

Ylm(θ, φ)Ylm(θ′, φ′) = δ(φ− φ′)δ(cos θ − cos θ′), (6.13.7)

an arbitrary function g(θ, φ) can be expanded in spherical harmonics as

g(θ, φ) =

∞∑

l=0

l∑

m=−l

AlmYlm(θ, φ), Alm =

∫
Ylm(θ, φ)g(θ, φ) dΩ. (6.13.8)

In spherical coordinates,

∇2 [f(r)Ylm(θ, φ)] =

[
1

r2
d

dr

(
r2
df

dr

)
− l(l + 1)

f(r)

r2

]
Ylm(θ, φ). (6.13.9)
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6.13.11.1 Table of spherical harmonics

l = 0 Y00 =
1√
4π
.

l = 1





Y11 = −
√

3

8π
sin θ eiφ,

Y10 =

√
3

4π
cos θ.

l = 2





Y22 =
1

4

√
15

2π
sin2 θ e2iφ,

Y21 = −
√

15

8π
sin θ cos θ eiφ,

Y20 =
1

2

√
5

4π
(3 cos2 θ − 1).

6.14 GAMMA FUNCTION

Γ(z) =

∫ ∞

0

tz−1 e−t dt, z = x+ iy, x > 0.

6.14.1 RECURSION FORMULA

Γ(z + 1) = z Γ(z).

The relation Γ(z) = Γ(z+1)/z can be used to define the gamma function in the left

half plane with z not equal to a non-positive integer (i.e., z 6= 0,−1,−2, . . .).

6.14.2 GAMMA FUNCTION OF SPECIAL VALUES

Γ(n+ 1) = n! if n = 0, 1, 2, . . . ,where 0! = 1,

Γ(1) = 1, Γ(2) = 1, Γ(3) = 2, Γ(12 ) =
√
π,

Γ

(
m+

1

2

)
=

1 · 3 · 5 · · · (2m− 1)

2m
√
π, m = 1, 2, 3, . . . ,

Γ

(
−m+

1

2

)
=

(−1)m2m

1 · 3 · 5 · · · (2m− 1)

√
π, m = 1, 2, 3, . . . .

Γ
(
1
4

)
= 3.62560 99082, Γ

(
1
3

)
= 2.67893 85347,

Γ
(
1
2

)
=
√
π = 1.77245 38509, Γ

(
2
3

)
= 1.35411 79394,

Γ
(
3
4

)
= 1.22541 67024, Γ

(
3
2

)
=
√
π/2 = 0.88622 69254.
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FIGURE 6.6
Graphs of Γ(x) and 1/Γ(x) for x real. (From N. M. Temme, Special Functions: An Introduc-

tion to the Classical Functions of Mathematical Physics, John Wiley & Sons, 1996. Reprinted

with permission of John Wiley & Sons, Inc.)

2

−1
31

2

1

−2

−2 −1

Γ(x) :

1/Γ(x) :

−3

3

−3

6.14.3 PROPERTIES

1. Singular points:

The gamma function has simple poles at z = −n, (for n = 0, 1, 2, . . .), with

the respective residues (−1)n/n!; that is,

lim
z→−n

(z + n)Γ(z) =
(−1)n
n!

.

2. Definition by products:

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
,

1

Γ(z)
= z eγz

∞∏

n=1

[
(1 + z/n) e−z/n

]
, γ is Euler’s constant.

3. Other integrals:

Γ(z) cos
πz

2
=

∫ ∞

0

tz−1 cos t dt, 0 < Re z < 1,

Γ(z) sin
πz

2
=

∫ ∞

0

tz−1 sin t dt, −1 < Re z < 1.

4. Derivative at x = 1:

Γ′(1) =

∫ ∞

0

ln t e−t dt = −γ.
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5. Multiplication formula:

Γ(2z) = π−1/2 22z−1 Γ(z) Γ

(
z +

1

2

)
.

6. Reflection formulas:

Γ(z) Γ(1− z) = π

sin πz
,

Γ
(
1
2 + z

)
Γ
(
1
2 − z

)
=

π

cos πz
,

Γ(z − n) = (−1)nΓ(z) Γ(1 − z)
Γ(n+ 1− z) =

(−1)n π
sinπz Γ(n+ 1− z) .

6.14.4 ASYMPTOTIC EXPANSION

For z →∞, | arg z| < π:

Γ(z) ∼
√

2π

z
zz e−z

[
1 +

1

12 z
+

1

288 z2
− 139

51 840 z3
+ . . .

]
.

ln Γ(z) ∼ ln

(√
2π

z
zze−z

)
+

∞∑

n=1

B2n

2n (2n− 1)

1

z2n−1

∼ ln

(√
2π

z
zze−z

)
+

1

12z
− 1

360z3
+

1

1 260z5
− 1

1 680z7
+ . . . ,

(6.14.1)

where Bn are the Bernoulli numbers. If we let z = n a large positive integer, then a

useful approximation for n! is given by Stirling’s formula,

Γ(n+ 1) = n! ∼
√
2πnnn e−n, n→∞. (6.14.2)

6.14.5 LOGARITHMIC DERIVATIVE OF THE GAMMA FUNCTION

1. Definition:

ψ(z) =
d

dz
ln Γ(z) = −γ +

∞∑

n=0

(
1

n+ 1
− 1

z + n

)
, z 6= 0,−1,−2, . . . .

2. Special values:

ψ(1) = −γ, ψ
(
1
2

)
= −γ − 2 ln 2.

3. Asymptotic expansion:

For z →∞, | arg z| < π:

ψ(z) ∼ ln z − 1

2z
−

∞∑

n=1

B2n

2nz2n

∼ ln z − 1

2 z
− 1

12 z2
+

1

120 z4
− 1

252 z6
+ . . . .



“smtf32” — 2011/5/20 — 2:09 — page 440 — #450

440 CHAPTER 6. SPECIAL FUNCTIONS

6.14.6 NUMERICAL VALUES OF GAMMA FUNCTION

x Γ(x) ln Γ(x) ψ(x) ψ′(x)
1.00 1.00000000 0.00000000 −0.57721566 1.64493407
1.04 0.97843820 −0.02179765 −0.51327488 1.55371164
1.08 0.95972531 −0.04110817 −0.45279934 1.47145216
1.12 0.94359019 −0.05806333 −0.39545533 1.39695222
1.16 0.92980307 −0.07278247 −0.34095315 1.32920818

1.20 0.91816874 −0.08537409 −0.28903990 1.26737721
1.24 0.90852106 −0.09593721 −0.23949368 1.21074707
1.28 0.90071848 −0.10456253 −0.19211890 1.15871230
1.32 0.89464046 −0.11133336 −0.14674236 1.11075532
1.36 0.89018453 −0.11632650 −0.10321006 1.06643142

1.40 0.88726382 −0.11961291 −0.06138454 1.02535659
1.44 0.88580506 −0.12125837 −0.02114267 0.98719773
1.48 0.88574696 −0.12132396 0.01762627 0.95166466
1.52 0.88703878 −0.11986657 0.05502211 0.91850353
1.56 0.88963920 −0.11693929 0.09113519 0.88749142

1.60 0.89351535 −0.11259177 0.12604745 0.85843189
1.64 0.89864203 −0.10687051 0.15983345 0.83115118
1.68 0.90500103 −0.09981920 0.19256120 0.80549511
1.72 0.91258058 −0.09147889 0.22429289 0.78132645
1.76 0.92137488 −0.08188828 0.25508551 0.75852269

1.80 0.93138377 −0.07108387 0.28499143 0.73697414
1.84 0.94261236 −0.05910015 0.31405886 0.71658233
1.88 0.95507085 −0.04596975 0.34233226 0.69725865
1.92 0.96877431 −0.03172361 0.36985272 0.67892313
1.96 0.98374254 −0.01639106 0.39665832 0.66150345

2.00 1.00000000 0.00000000 0.42278434 0.64493407
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6.15 BETA FUNCTION

B(p, q) =

∫ 1

0

tp−1(1− t)q−1 dt, Re p > 0, Re q > 0. (6.15.1)

1. Relations:

B(p, q) = B(q, p), B(p, q + 1) =
q

p
B(p+ 1, q) =

q

p+ q
B(p, q).

2. Relation with the gamma function:

B(p, q) =
Γ(p) Γ(q)

Γ(p+ q)
, B(p, q)B(p+ q, r) =

Γ(p) Γ(q) Γ(r)

Γ(p+ q + r)
.

3. Other integrals: (in all cases Re p > 0 and Re q > 0)

B(p, q) = 2

∫ π/2

0

sin2p−1 θ cos2q−1 θ dθ

=

∫ ∞

0

tp−1

(t+ 1)p+q
dt =

∫ ∞

0

e−pt
(
1− e−t

)q−1
dt

= rq(r + 1)p
∫ 1

0

tp−1(1 − t)q−1

(r + t)p+q
dt, r > 0.

6.15.1 NUMERICAL VALUES OF THE BETA FUNCTION

p q = 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000

0.1 19.715 14.599 12.831 11.906 11.323 10.914 10.607 10.365 10.166 10.000

0.2 14.599 9.502 7.748 6.838 6.269 5.872 5.576 5.345 5.157 5.000

0.3 12.831 7.748 6.010 5.112 4.554 4.169 3.883 3.661 3.482 3.333

0.4 11.906 6.838 5.112 4.226 3.679 3.303 3.027 2.813 2.641 2.500

0.5 11.323 6.269 4.554 3.679 3.142 2.775 2.506 2.299 2.135 2.000

0.6 10.914 5.872 4.169 3.303 2.775 2.415 2.154 1.954 1.796 1.667

0.7 10.607 5.576 3.883 3.027 2.506 2.154 1.899 1.705 1.552 1.429

0.8 10.365 5.345 3.661 2.813 2.299 1.954 1.705 1.517 1.369 1.250

0.9 10.166 5.157 3.482 2.641 2.135 1.796 1.552 1.369 1.226 1.111

1.0 10.000 5.000 3.333 2.500 2.000 1.667 1.429 1.250 1.111 1.000

1.2 9.733 4.751 3.099 2.279 1.791 1.468 1.239 1.069 0.938 0.833

1.4 9.525 4.559 2.921 2.113 1.635 1.321 1.101 0.938 0.813 0.714

1.6 9.355 4.404 2.779 1.982 1.513 1.208 0.994 0.837 0.718 0.625

1.8 9.213 4.276 2.663 1.875 1.415 1.117 0.909 0.758 0.644 0.556

2.0 9.091 4.167 2.564 1.786 1.333 1.042 0.840 0.694 0.585 0.500

2.2 8.984 4.072 2.480 1.710 1.264 0.979 0.783 0.641 0.536 0.455

2.4 8.890 3.989 2.406 1.644 1.205 0.925 0.734 0.597 0.495 0.417

2.6 8.805 3.915 2.340 1.586 1.153 0.878 0.692 0.558 0.460 0.385

2.8 8.728 3.848 2.282 1.534 1.107 0.837 0.655 0.525 0.430 0.357

3.0 8.658 3.788 2.230 1.488 1.067 0.801 0.622 0.496 0.403 0.333
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6.16 ERROR FUNCTIONS

erf x =
2√
π

∫ x

0

e−t2 dt,

erfcx =
2√
π

∫ ∞

x

e−t2 dt.

The function erf x is known as the error function. The function erfcx is known as

the complementary error function.

6.16.1 PROPERTIES

1. Relationships:

erf x+ erfcx = 1, erf(−x) = − erf x, erfc(−x) = 2− erfcx.

2. Relationship with normal probability function:

1√
2π

∫ x

0

e−
1
2 t

2

dt =
1

2
erf

(
x√
2

)
.

6.16.2 ERROR FUNCTION OF SPECIAL VALUES

erf(±∞) = ±1, erfc(−∞) = 2, erfc∞ = 0,

erf x0 = erfc x0 =
1

2
if x0 ≈ 0.476936.

6.16.3 EXPANSIONS

1. Series expansions:

erf x =
2√
π

∞∑

n=0

(−1)n x2n+1

(2n+ 1)n!
=

2√
π

(
x− x3

3
+

1

2!

x5

5
− 1

3!

x7

7
+ . . .

)

=
2√
π

∞∑

n=0

Γ
(
3
2

)
e−x2

Γ
(
n+ 3

2

) x2n+1 =
2√
π
e−x2

(
x+

2

3
x3 +

4

15
x5 . . .

)
.

2. Asymptotic expansion: For z →∞, | arg z| < 3
4π,

erfc z ∼ 2√
π

e−z2

2z

∞∑

n=0

(−1)n (2n)!
n!(2z)2n

∼ 2√
π

e−z2

2z

(
1− 1

2 z2
+

3

4 z4
− 15

8 z6
+ . . .

)
.



“smtf32” — 2011/5/20 — 2:09 — page 443 — #453

6.17. FRESNEL INTEGRALS 443

6.16.4 SPECIAL CASES

1. Dawson’s integral F (x) = e−x2

∫ x

0

et
2

dt = −1

2
i
√
π e−x2

erf(ix).

2. Plasma dispersion function

w(z) = e−z2

erfc(−iz) = 1

πi

∫ ∞

−∞

e−t2

t− z dt, Im z > 0

= 2 e−z2 − w(−z) =
∞∑

n=0

(iz)n

Γ(n2 + 1)
.

6.17 FRESNEL INTEGRALS

C(z) =

√
2

π

∫ z

0

cos t2 dt, S(z) =

√
2

π

∫ z

0

sin t2 dt.

6.17.1 PROPERTIES

1. Relations: C(z) + iS(z) =
1 + i

2
erf

(1− i)z√
2

.

2. Limits: lim
z→∞

C(z) =
1

2
, lim

z→∞
S(z) =

1

2
.

3. Representations:

C(z) =
1

2
+ f(z) sin(z2)− g(z) cos(z2),

S(z) =
1

2
− f(z) cos(z2)− g(z) sin(z2),

where

f(z) =
1

π
√
2

∫ ∞

0

e−z2t

√
t(t2 + 1)

dt, g(z) =
1

π
√
2

∫ ∞

0

√
te−z2t

(t2 + 1)
dt.

4. The figure shows Cornu’s spiral (also called an Euler spiral) formed from Fres-
nel functions, given by x = C(t) and y = S(t) for t ≥ 0. (Figure from N. M.

Temme, Special Functions: An Introduction to the Classical Functions of Mathemat-

ical Physics, John Wiley & Sons, 1996. Reprinted with permission of John Wiley &

Sons, Inc.):

x

y

t

(0.5,0.5)

√
2

π

∫ ∞

z

eit
2

dt = [g(z) + if(z)] eiz
2

.
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6.17.2 ASYMPTOTIC EXPANSION

And for z →∞, | arg z| < 1
2π,

f(z) ∼ 1

π
√
2

∞∑

n=0

(−1)nΓ(2n+ 1/2)

z2n+1/2
=

1√
2πz

[
1− 3

4 z2
+

105

16 z4
− . . .

]
,

g(z) ∼ 1

π
√
2

∞∑

n=0

(−1)nΓ(2n+ 3/2)

z2n+3/2
=

1

2z
√
2πz

[
1− 15

4 z2
+

945

16 z4
− . . .

]
.

6.17.3 NUMERICAL VALUES OF ERROR FUNCTIONS AND

FRESNEL INTEGRALS

x erf(x) ex
2

erfc(x) C(x) S(x)
0.0 0.00000000 1.00000000 0.00000000 0.00000000
0.2 0.22270259 0.80901952 0.15955138 0.00212745
0.4 0.42839236 0.67078779 0.31833776 0.01699044
0.6 0.60385609 0.56780472 0.47256350 0.05691807
0.8 0.74210096 0.48910059 0.61265370 0.13223984

1.0 0.84270079 0.42758358 0.72170592 0.24755829
1.2 0.91031398 0.37853742 0.77709532 0.39584313
1.4 0.95228512 0.33874354 0.75781398 0.55244498
1.6 0.97634838 0.30595299 0.65866707 0.67442706
1.8 0.98909050 0.27856010 0.50694827 0.71289443

2.0 0.99532227 0.25539568 0.36819298 0.64211874
2.2 0.99813715 0.23559296 0.32253723 0.49407286
2.4 0.99931149 0.21849873 0.40704642 0.36532279
2.6 0.99976397 0.20361325 0.55998756 0.36073841
2.8 0.99992499 0.19054888 0.64079292 0.48940140

3.0 0.99997791 0.17900115 0.56080398 0.61721360
3.2 0.99999397 0.16872810 0.41390216 0.58920847
3.4 0.99999848 0.15953536 0.39874249 0.44174492
3.6 0.99999964 0.15126530 0.53845493 0.39648758
3.8 0.99999992 0.14378884 0.60092662 0.52778933

4.0 0.99999998 0.13699946 0.47431072 0.59612656
4.2 1.00000000 0.13080849 0.41041217 0.46899697
4.4 1.00000000 0.12514166 0.54218734 0.41991084
4.6 1.00000000 0.11993626 0.56533023 0.55685845
4.8 1.00000000 0.11513908 0.42894668 0.54293254

5.0 1.00000000 0.11070464 0.48787989 0.42121705
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6.18 SINE, COSINE, AND EXPONENTIAL
INTEGRALS

6.18.1 SINE AND COSINE INTEGRALS

Si(z) =

∫ z

0

sin t

t
dt, Ci(z) = γ + ln z +

∫ z

0

cos t− 1

t
dt,

where γ is Euler’s constant.

1. Alternative definitions:

Si(z) =
1

2
π −

∫ ∞

z

sin t

t
dt, Ci(z) = −

∫ ∞

z

cos t

t
dt.

2. Limits: lim
z→∞

Si(z) =
1

2
π, lim

z→∞
Ci(z) = 0.

3. Representations:

Si(z) = −f(z) cosz − g(z) sin z + 1

2
π,

Ci(z) = +f(z) sin z − g(z) cos z,

where

f(z) =

∫ ∞

0

e−zt

t2 + 1
dt, g(z) =

∫ ∞

0

te−zt

t2 + 1
dt.

FIGURE 6.7
Sine and cosine integrals Si(x) and Ci(x), for 0 ≤ x ≤ 8. (From N. M. Temme, Special

Functions: An Introduction to the Classical Functions of Mathematical Physics, John Wiley

& Sons, 1996. Reprinted with permission of John Wiley & Sons, Inc.)

π/2

2

1

5

Si(x)

Ci(x)

−1

−2

0



“smtf32” — 2011/5/20 — 2:09 — page 446 — #456

446 CHAPTER 6. SPECIAL FUNCTIONS

4. Asymptotic expansion: For z →∞, | arg z| < π,

f(z) ∼ 1

z

∞∑

n=0

(−1)n (2n)!
z2n

, g(z) ∼ 1

z2

∞∑

n=0

(−1)n (2n+ 1)!

z2n
.

6.18.2 EXPONENTIAL INTEGRALS

En(z) =

∫ ∞

1

e−zt

tn
dt, Re z > 0, n = 1, 2, . . . .

=
zn−1e−z

Γ(n)

∫ ∞

0

e−zttn−1

t+ 1
dt, Re z > 0.

1. Special case: E1(z) =

∫ ∞

z

e−t

t
dt, | arg z| < π.

For real values Ei(x) =

∫ x

−∞

et

t
dt, where for x > 0 the integral is interpreted

as a Cauchy principal value integral.

2. Representations:

E1(z) = −γ − ln z +

∫ z

0

1− e−t

t
dt,

E1

(
ze

1
2πi
)
= −γ − ln z − Ci(z) + i

[
−1

2
π + Si(z)

]
.

E1(x) = −Ei(−x), x > 0

6.18.3 LOGARITHMIC INTEGRAL

li(x) =

∫ x

0

dt

ln t
= Ei(lnx),

where for x > 1 the integral is interpreted as a Cauchy principal value integral.

6.18.4 NUMERICAL VALUES

x Si(x) Ci(x) exE1(x) e−x Ei(x)

0.0 0.00000000 −∞ ∞ −∞
0.2 0.19955609 −1.04220560 1.49334875 −0.67280066
0.4 0.39646146 −0.37880935 1.04782801 0.07022623
0.6 0.58812881 −0.02227071 0.82793344 0.42251981
0.8 0.77209579 0.19827862 0.69124540 0.60542430
1.0 0.94608307 0.33740392 0.59634736 0.69717488
2.0 1.60541298 0.42298083 0.36132862 0.67048271
3.0 1.84865253 0.11962979 0.26208374 0.49457640
4.0 1.75820314 −0.14098170 0.20634565 0.35955201
5.0 1.54993124 −0.19002975 0.17042218 0.27076626
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6.19 POLYLOGARITHMS

Li1(z) =

∫ z

0

dt

1− t = − ln(1 − z), logarithm,

Li2(z) =

∫ z

0

Li1(t)

t
dt = −

∫ z

0

ln(1 − t)
t

dt, dilogarithm,

Lin(z) =

∫ z

0

Lin−1(t)

t
dt, n ≥ 2, polylogarithm,

Liν(z) =
z

Γ(ν)

∫ ∞

0

tν−1

et − z dt, Re ν > 0, z /∈ {Re z ∈ [1,∞], Im z = 0} .

6.19.1 POLYLOGARITHMS OF SPECIAL VALUES

Li2(1) =
π2

6
, Li2(−1) = −

π2

12
, Li2(

1
2 ) =

π2

12
− (ln 2)2

2
,

Liν(1) = ζ(ν), Re ν > 1 (Riemann zeta function).

6.19.2 POLYLOGARITHM PROPERTIES

1. Definition: For any complex ν

Liν(z) =

∞∑

k=1

zk

kν
, |z| < 1.

2. Singular points: z = 1 is a singular point of Liν(z).
3. Generating function:

∞∑

n=2

wn−1 Lin(z) = z

∫ ∞

0

ewt − 1

et − z dt, z /∈ [1,∞).

The series converges for |w| < 1, the integral is defined for Re w < 1.

4. Functional equations for dilogarithms:

Li2(z) + Li2(1− z) =
1

6
π2 − ln z ln(1− z),

1

2
Li2(x

2) = Li2(x) + Li2(−x),

Li2(−1/x) + Li2(−x) = −
1

6
π2 − 1

2
(ln x)2,

2Li2(x) + 2Li2(y) + 2Li2(z) =

Li2(−xy/z) + Li2(−yz/x) + Li2(−zx/y),

where 1/x+ 1/y + 1/z = 1.
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6.20 HYPERGEOMETRIC FUNCTIONS

Recall the geometric series and binomial expansion (|z| < 1),

(1− z)−1 =

∞∑

n=0

zn, (1− z)−a =

∞∑

n=0

(−a
n

)
(−z)n =

∞∑

n=0

(a)n
n!

zn

where the shifted factorial, (a)n, is defined in Section 1.3.5.

The Gauss hypergeometric function, F , is defined by:

F (a, b; c; z) =

∞∑

n=0

(a)n (b)n
(c)n n!

zn

= 1 +
ab

c
z +

a(a+ 1) b(b+ 1)

c(c+ 1) 2!
z2 + . . . , |z| < 1,

= F (b, a; c; z)

(6.20.1)

where a, b and c may all assume complex values, c 6= 0,−1,−2, . . ..

6.20.1 SPECIAL CASES

1. F (a, b; b; z) = (1− z)−a

2. F (1, 1; 2; z) = − ln(1− z)
z

3. F

(
1

2
, 1;

3

2
; z2
)

=
1

2z
ln

(
1 + z

1− z

)

4. F

(
1

2
, 1;

3

2
;−z2

)
=

tan−1 z

z

5. F

(
1

2
,
1

2
;
3

2
; z2
)

=
sin−1 z

z

6. F

(
1

2
,
1

2
;
3

2
;−z2

)
=

ln(z +
√
1 + z2)

z
7. Polynomial case; for m = 0, 1, 2, . . .

F (−m, b; c; z) =
m∑

n=0

(−m)n (b)n
(c)n n!

zn =

m∑

n=0

(−1)n
(
m

n

)
(b)n
(c)n

zn. (6.20.2)

6.20.2 PROPERTIES

1. Derivatives:

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z),

dn

dzn
F (a, b; c; z) =

(a)n (b)n
(c)n

F (a+ n, b+ n; c+ n; z).
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2. Special values; when Re (c− a− b) > 0:

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

3. Integral; when Re c > Re b > 0:

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−a dt.

4. Functional relationships:

F (a, b; c; z) = (1− z)−aF
(
a, c− b; c; z

z − 1

)

= (1− z)−bF
(
c− a, b; c; z

z − 1

)

= (1− z)c−a−bF (c− a, c− b; c; z).
5. Differential equation:

z(1− z)F ′′ + [(c− (a+ b+ 1)z]F ′ − abF = 0,

with (regular) singular points z = 0, 1,∞. (See page 391 for singular points.)

6.20.3 RECURSION FORMULAS

Notation: F is F (a, b; c; z); F (a+), F (a−) are F (a+ 1, b; c; z) ,
F (a− 1, b; c; z), respectively, etc.

1. (c− a)F (a−) + (2a− c− az + bz)F + a(z − 1)F (a+) = 0
2. c(c−1)(z−1)F (c−)+c[c−1−(2c−a−b−1)z]F+(c−a)(c−b)zF (c+) = 0
3. c[a+ (b− c)z]F − ac(1− z)F (a+) + (c− a)(c− b)zF (c+) = 0
4. c(1 − z)F − cF (a−) + (c− b)zF (c+) = 0
5. (b − a)F + aF (a+)− bF (b+) = 0
6. (c− a− b)F + a(1− z)F (a+)− (c− b)F (b−) = 0
7. (c− a− 1)F + aF (a+)− (c− 1)F (c−) = 0
8. (b − a)(1− z)F − (c− a)F (a−) + (c− b)F (b−) = 0
9. [a− 1 + (b+ 1− c)z]F + (c− a)F (a−)− (c− 1)(1− z)F (c−) = 0

6.21 LEGENDRE FUNCTIONS

6.21.1 DIFFERENTIAL EQUATION

The Legendre differential equation is,

(1− z2)w′′ − 2zw′ + ν(ν + 1)w = 0.

The solutions Pν(z), Qν(z) can be given in terms of Gaussian hypergeometric

functions.
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FIGURE 6.8
Legendre functions Pn(x), n = 1, 2, 3 (left) and Qn(x), n = 0, 1, 2, 3 (right) on the interval

[−1, 1]. (From N. M. Temme, Special Functions: An Introduction to the Classical Functions

of Mathematical Physics, John Wiley & Sons, 1996. Reprinted with permission of John Wiley

& Sons, Inc.)

n = 1

n = 3

n = 2

n = 0

n = 3n = 1
n = 2

1

−1

1

2

−1

−2

3

−3

6.21.2 DEFINITION

Pν(z) = F

(
−ν, ν + 1; 1;

1

2
− 1

2
z

)
,

Qν(z) =

√
π Γ(ν + 1)

Γ
(
ν + 3

2

)
(2z)ν+1

F

(
1

2
ν + 1,

1

2
ν +

1

2
; ν +

3

2
; z−2

)
.

The Qν function is not defined if ν = −1,−2, . . ..

6.21.3 SINGULAR POINTS

Pν(z) has a singular point at z = −1 and is analytic in the remaining part of the

complex plane, with a branch cut along (−∞,−1]. Qν(z) has singular points at

z = ±1 and is analytic in the remaining part of the complex z−plane, with a branch

cut along (−∞,+1].

6.21.4 RELATIONSHIPS

P−ν−1(z) = Pν(z),

Q−ν−1(z) = Qν(z)− π cot νπPν(z).
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6.21.5 RECURSION RELATIONSHIPS

(ν + 1)Pν+1(z) = (2ν + 1)zPν(z)− νPν−1(z),

(2ν + 1)Pν(z) = P ′
ν+1(z)− P ′

ν−1(z),

(ν + 1)Pν(z) = P ′
ν+1(z)− zP ′

ν(z),

νPν(z) = zP ′
ν(z)− P ′

ν−1(z),

(1− z2)P ′
ν(z) = νPν−1(z)− νzPν(z).

The functionsQν(z) satisfy the same relations.

6.21.6 INTEGRALS

Pν(coshα) =
2

π

∫ α

0

cosh(ν + 1
2 )θ√

2 coshα− 2 cosh θ
dθ

=
1

π

∫ α

−α

e−(ν+1/2)θ

√
2 coshα− 2 cosh θ

dθ

=
1

π

∫ π

0

dψ

(coshα+ sinhα cosψ)ν+1

=
1

π

∫ π

0

(coshα+ sinhα cosψ)ν dψ.

(6.21.1)

Pν(cos β) =
2

π

∫ β

0

cos(ν + 1
2 )θ√

2 cos θ − 2 cosβ
dθ

=
1

π

∫ π

0

dψ

(cosβ + i sinβ cosψ)ν+1

=
1

π

∫ π

0

(cosβ + i sinβ cosψ)ν dψ.

(6.21.2)

Qν(z) = 2−ν−1

∫ 1

−1

(1− t2)ν
(z − t)ν+1

dt Re ν > −1, | arg z| < π, z /∈ [−1, 1]

=

∫ ∞

0

[
z +

√
z2 − 1 coshφ

]−ν−1

dφ

=

∫ ∞

α

e−(ν+1/2)θ

√
2 cosh θ − 2 coshα

dθ, z = coshα.
(6.21.3)

6.21.7 POLYNOMIAL CASE

Legendre polynomials occur when ν = n = 0, 1, 2, . . . (see page 432)

Pn(x) = F

(
−n, n+ 1; 1;

1

2
− x

2

)

=

m∑

k=0

(−1)k(2n− 2k)!

2n k! (n− k)! (n− 2k)!
xn−2k, m =

{
1
2n, if n even,

1
2 (n− 1), if n odd.

(6.21.4)
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The Legendre polynomials satisfy

∫ 1

−1

Pn(x)Pm(x) dx =
2

2m+ 1
δnm.

The Legendre series representation is

f(x) =
∞∑

n=0

AnPn(x), An =
2n+ 1

2

∫ 1

−1

f(x)Pn(x) dx. (6.21.5)

For integer order, we distinguish two cases: Qn(x) (defined for x ∈ (−1, 1))
and Qn(z) (defined for Re z /∈ [−1, 1]):

Q0(x) =
1

2
ln

1 + x

1− x, Q1(x) =
1

2
x ln

1 + x

1− x − 1, (6.21.6)

and

Q0(z) =
1

2
ln
z + 1

z − 1
, Q1(z) =

1

2
z ln

z + 1

z − 1
− 1. (6.21.7)

In both cases

Qn(y) = Pn(y)Q0(y)−
n−1∑

k=0

(2k + 1)[1− (−1)n+k]

(n+ k + 1)(n− k) Pk(y). (6.21.8)

Legendre polynomials Pn(x) and functionsQn(x), x ∈ (−1, 1).
n Pn(x) Qn(x)

0 1 1
2 ln[(1 + x)/(1 − x)]

1 x P1(x)Q0(x)− 1

2 1
2 (3x

2 − 1) P2(x)Q0(x) − 3
2 x

3 1
2 x(5x

2 − 3) P3(x)Q0(x)− 5
2 x

2 + 2
3

4 1
8 (35x

4 − 30x2 + 3) P4(x)Q0(x)− 35
8 x

3 + 55
24 x

5 1
8 x(63x

4 − 70x2 + 15) P5(x)Q0(x) − 63
8 x

4 + 49
8 x

2 − 8
15

6.21.8 ASSOCIATED LEGENDRE FUNCTION

The associated Legendre differential equation is

(1 − z2)y′′ − 2zy′ +

[
ν(ν + 1)− µ2

1− z2
]
y = 0.

The solutions Pµ
ν (z), Q

µ
ν (z), the associated Legendre functions, can be given in

terms of Gauss hypergeometric functions. We only consider integer values of µ, ν,

and replace them with m,n, respectively. Then the associated differential equation

follows from the Legendre differential equation after it has been differentiated m
times.
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6.21.9 RELATIONSHIPS BETWEEN THE ASSOCIATED AND

ORDINARY LEGENDRE FUNCTIONS

The following relationships are for z 6∈ [−1, 1]

Pm
n (z) = (z2 − 1)

1
2m

dm

dzm
Pn(z),

=
(−1)m
2nn!

(z2 − 1)
1
2m

dn+m

dxn+m
(z2 − 1)n,

P−m
n (z) =

(n−m)!

(n+m)!
Pm
n (z),

Qm
n (z) = (z2 − 1)

1
2m

dm

dzm
Qn(z),

Q−m
n (z) =

(n−m)!

(n+m)!
Qm

n (z),

P−m
n (z) = (z2 − 1)−

1
2m

∫ z

1

· · ·
∫ z

1︸ ︷︷ ︸
m

Pn(z) (dz)
m,

Q−m
n (z) = (−1)m(z2 − 1)−

1
2m

∫ ∞

z

· · ·
∫ ∞

z︸ ︷︷ ︸
m

Qn(z) (dz)
m,

Pm
−n−1(z) = Pm

n (z).

6.21.10 ORTHOGONALITY RELATIONSHIP

Let n ≥ m, then

∫ 1

−1

Pm
n (x)Pm

k (x) dx =





0, if k 6= n,

2

2n+ 1

(n+m)!

(n−m)!
, if k = n.

6.21.11 RECURSION RELATIONSHIPS

Pm+1
n (z) +

2mz√
z2 − 1

Pm
n (z) = (n−m+ 1)(n+m)Pm−1

n (z),

(z2 − 1)
dPm

n (z)

dz
= mzPm

n (z) +
√
z2 − 1Pm+1

n (z),

(2n+ 1)zPm
n (z) = (n−m+ 1)Pm

n+1(z) + (n+m)Pm
n−1(z),

(z2 − 1)
dPm

n (z)

dz
= (n−m+ 1)Pm

n+1(z)− (n+ 1)zPm
n (z),

Pm
n−1(z)− Pm

n+1(z) = −(2n+ 1)
√
z2 − 1Pm−1

n (z).

The functionsQm
n (z) satisfy the same relations.
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6.22 BESSEL FUNCTIONS

6.22.1 DIFFERENTIAL EQUATION

The Bessel differential equation,

z2y′′ + zy′ + (z2 − ν2)y = 0.

The solutions are denoted with

Jν(z), Yν(z) (the ordinary Bessel functions)

and

H(1)
ν (z), H(2)

ν (z) (the Hankel functions).

Further solutions are

J−ν(z), Y−ν(z), H
(1)
−ν (z), H

(2)
−ν (z).

When ν is an integer,

J−n(z) = (−1)nJn(z), n = 0, 1, 2, . . . .

J (x)
0

1J (x)

1

5 10

−1

0

Y (x)

Y (x)

0

1

Bessel functions J0(x), J1(x), Y0(x), Y1(x), 0 ≤ x ≤ 12. (From N. M. Temme,

Special Functions: An Introduction to the Classical Functions of Mathematical Physics, John

Wiley & Sons, 1996. Reprinted with permission of John Wiley & Sons, Inc.)

6.22.2 SINGULAR POINTS

The Bessel differential equation has a regular singularity at z = 0 and an irregular

singularity at z =∞.
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6.22.3 RELATIONSHIPS

H(1)
ν (z) = Jν(z) + iYν(z), H(2)

ν (z) = Jν(z)− iYν(z).
Neumann function: If ν 6= 0,±1,±2, . . .

Yν(z) =
cos νπ Jν(z)− J−ν(z)

sin νπ
.

When ν = n (integer) then the limit ν → n should be taken in the right-hand side of

this equation. Complete solutions to Bessel’s equation may be written as

c1Jν(z) + c2J−ν(z), if ν is not an integer,

c1Jν(z) + c2Yν(z), for any value of ν,

c1H
(1)
ν (z) + c2H

(2)
ν (z), for any value of ν.

6.22.4 SERIES EXPANSIONS

For any complex z,

Jν(z) = (12 z)
ν

∞∑

n=0

(−1)n (12 z)2n
Γ(n+ ν + 1)n!

,

J0(z) = 1− (12 z)
2 +

1

2! 2!
(12 z)

4 − 1

3! 3!
(12 z)

6 + . . . ,

J1(z) =
1

2
z

[
1− 1

1! 2!
(12 z)

2 +
1

2! 3!
(12 z)

4 − 1

3! 4!
(12 z)

6 + . . .

]
,

Yn(z) =
2

π
Jn(z) ln(

1
2 z)−

(12z)
−n

π

n−1∑

k=0

(n− k − 1)!

k!
(12 z)

2k −

(12 z)
n

π

∞∑

k=0

[ψ(k + 1) + ψ(n+ k + 1)]
(−1)k(12 z)2k
k! (n+ k)!

,

where ψ is the logarithmic derivative of the gamma function.

6.22.5 RECURRENCE RELATIONSHIPS

Cν−1(z) + Cν+1(z) =
2ν

z
Cν(z),

Cν−1(z)− Cν+1(z) = 2C′
ν(z),

C′
ν(z) = Cν−1(z)−

ν

z
Cν(z),

C′
ν(z) = −Cν+1(z) +

ν

z
Cν(z),

where Cν(z) denotes one of the functions Jν(z), Yν(z), H
(1)
ν (z), H

(2)
ν (z).
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6.22.6 BEHAVIOR AS z → 0z → 0z → 0

Let Re ν > 0, then

Jν(z) ∼
(12z)

ν

Γ(ν + 1)
, Yν(z) ∼ −

1

π
Γ(ν)

(
2

z

)ν
,

H(1)
ν (z) ∼ 1

πi
Γ(ν)

(
2

z

)ν
, H(2)

ν (z) ∼ − 1

πi
Γ(ν)

(
2

z

)ν
.

The same relations hold as Re ν →∞, with z fixed.

6.22.7 INTEGRALS

Let Re z > 0 and ν be any complex number.

Jν(z) =
1

π

∫ π

0

cos(νθ − z sin θ) dθ − sin νπ

π

∫ ∞

0

e−νt− z sinh t dt

=
(z/2)ν√
πΓ(ν + 1

2 )

∫ 1

−1

(
1− t2

)ν− 1
2 cos zt dt, Re ν > − 1

2 , z complex, z 6= 0,

=
2
(
1
2x
)−ν

√
πΓ
(
1
2 − ν

)
∫ ∞

1

sinxt

(t2 − 1)
ν+ 1

2

dt, x > 0, |Re ν| < − 1
2 ,

Yν(z) =
1

π

∫ π

0

sin(z sin θ − νθ) dθ −
∫ ∞

0

(
eνt + e−νt cos νπ

)
e−z sinh t dt

= − 2
(
1
2x
)−ν

√
πΓ
(
1
2 − ν

)
∫ ∞

1

cosxt

(t2 − 1)ν+
1
2

dt, x > 0, |Re ν| < − 1
2 .

When ν = n (an integer), the second integral in the first relation disappears.

6.22.8 FOURIER EXPANSION

For any complex z,

e−iz sin t =

∞∑

n=−∞
e−intJn(z),

with Parseval relation ∞∑

n=−∞
J2
n(z) = 1.

6.22.9 AUXILIARY FUNCTIONS

Let χ = z − (12 ν +
1
4 )π and define

P (ν, z) =
√
πz/2[ Jν(z) cosχ+ Yν(z) sinχ],

Q(ν, z) =
√
πz/2[−Jν(z) sinχ+ Yν(z) cosχ].
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6.22.10 INVERSE RELATIONSHIPS

Jν(z) =
√
2/(πz) [P (ν, z) cosχ−Q(ν, z) sinχ],

Yν(z) =
√
2/(πz) [P (ν, z) sinχ+Q(ν, z) cosχ].

For the Hankel functions,

H(1)
ν (z) =

√
2/(πz) [P (ν, z) + iQ(ν, z)]eiχ,

H(2)
ν (z) =

√
2/(πz) [P (ν, z)− iQ(ν, z)]e−iχ.

The functions P (ν, z), Q(ν, z) are the slowly varying components in the asymptotic

expansions of the oscillatory Bessel and Hankel functions.

6.22.11 ASYMPTOTIC EXPANSIONS

Let (α, n) be defined by

(α, n) =
2−2n

n!
{(4α2 − 1)(4α2 − 32) · · · (4α2 − (2n− 1)2)}

=
Γ(12 + α+ n)

n! Γ(12 + α− n) , n = 0, 1, 2, . . . ,

=
(−1)n cos(πα)

πn!
Γ(12 + α+ n)Γ(12 − α+ n),

with recursion

(α, n+ 1) = − (n+ 1
2 )

2 − α2

n+ 1
(α, n), n = 1, 2, 3, . . . , (α, 0) = 1.

Then, for z →∞,

P (ν, z) ∼
∞∑

n=0

(−1)n (ν, 2n)
(2z)2n

, Q(ν, z) ∼
∞∑

n=0

(−1)n (ν, 2n+ 1)

(2z)2n+1
.

With µ = 4ν2,

P (ν, z) ∼ 1− (µ− 1)(µ− 9)

2! (8z)2
+

(µ− 1)(µ− 9)(µ− 25)(µ− 49)

4! (8z)4
− . . . ,

Q(ν, z) ∼ µ− 1

8z
− (µ− 1)(µ− 9)(µ− 25)

3! (8z)3
+ . . . .

For large positive values of x,

Jν(x) =
√
2/(πx)

[
cos(x − 1

2
νπ − 1

4
π) +O(x−1)

]
,

Yν(x) =
√
2/(πx)

[
sin(x− 1

2
νπ − 1

4
π) +O(x−1)

]
.
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6.22.12 ZEROS OF BESSEL FUNCTIONS

For ν ≥ 0, the zeros jν,k (and yν,k) of Jν(x) (and Yν(x)) can be arranged as se-

quences

0 < jν,1 < jν,2 < · · · < jν,n < · · · , lim
n→∞

jν,n =∞,

0 < yν,1 < yν,2 < · · · < yν,n < · · · , lim
n→∞

yν,n =∞.

Between two consecutive positive zeros of Jν(x), there is exactly one zero of

Jν+1(x). Conversely, between two consecutive positive zeros of Jν+1(x), there is

exactly one zero of Jν(x). The same holds for the zeros of Yν(z). Moreover, be-

tween each pair of consecutive positive zeros of Jν(x), there is exactly one zero of

Yν(x), and conversely.

6.22.12.1 Asymptotics of the zeros

When ν is fixed, s≫ ν, and µ = 4ν2,

jν,s ∼ α−
µ− 1

8α

[
1− 4(7µ2 − 31)

3(8α)2
− 32(83µ2 − 982µ+ 3779)

15(8α)4
+ . . .

]

where α = (s + 1
2ν − 1

4 )π; yν,s has the same asymptotic expansion with α =
(s+ 1

2ν − 3
4 )π.

n j0,n j1,n y0,n y1,n

1 2.40483 3.83171 0.89358 2.19714
2 5.52008 7.01559 3.95768 5.42968
3 8.65373 10.17347 7.08605 8.59601
4 11.79153 13.32369 10.22235 11.74915
5 14.93092 16.47063 13.36110 14.89744
6 18.07106 19.61586 16.50092 18.04340
7 21.21164 22.76008 19.64131 21.18807

Positive zeros jν,n, yν,n of Bessel functions Jν(x), Yν(x), ν = 0, 1.

6.22.13 HALF ORDER BESSEL FUNCTIONS

For integer values of n, let

jn(z) =
√
π/(2z) Jn+ 1

2
(z), yn(z) =

√
π/(2z) Yn+ 1

2
(z).

Then

j0(z) = y−1(z) =
sin z

z
, y0(z) = −j−1(z) = −

cos z

z
,

and, for n = 0, 1, 2, . . . ,

jn(z) = (−z)n
[
1

z

d

dz

]n
sin z

z
, yn(z) = −(−z)n

[
1

z

d

dz

]n
cos z

z
.
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• Recursion relationships: The functions jn(z), yn(z) both satisfy

z[fn−1(z) + fn+1(z)] = (2n+ 1)fn(z),

nfn−1(z)− (n+ 1)fn+1(z) = (2n+ 1)f ′
n(z).

• Differential equation

z2f ′′ + 2zf ′ + [z2 − n(n+ 1)]f = 0.

6.22.14 MODIFIED BESSEL FUNCTIONS

1. Differential equation

z2y′′ + zy′ − (z2 + ν2)y = 0.

2. Solutions Iν(z), Kν(z),

Iν(z) =
(z
2

)ν ∞∑

n=0

(z/2)2n

Γ(n+ ν + 1)n!
,

Kν(z) =
π

2

I−ν(z)− Iν(z)
sin νπ

,

where the right-hand side should be determined by l’Hôpital’s rule when ν
assumes integer values. When n = 0, 1, 2, . . . ,

Kn(z) =(−1)n+1In(z) ln
z

2
+

1

2

(
2

z

)n n−1∑

k=0

(n− k − 1)!

k!

(
−z

2

4

)k

+
(−1)n

2

(z
2

)n ∞∑

k=0

[ψ(k + 1) + ψ(n+ k + 1)]
(z/2)2k

k! (n+ k)!
.

3. Relations with the ordinary Bessel functions

Iν(z) = e−
1
2νπiJν

(
ze

1
2πi
)
, −π < arg z ≤ π

2
,

Iν(z) = e
3
2νπiJν

(
ze−

3
2πi
)
,

π

2
< arg z ≤ π,

Kν(z) =
π

2
ie

1
2νπiH(1)

ν

(
ze

1
2πi
)
, −π < arg z ≤ π

2
,

Kν(z) = −
π

2
ie−

1
2νπiH(2)

ν

(
ze−

1
2πi
)
, −π

2
< arg z ≤ π,

Yν

(
ze

1
2πi
)
= e

1
2 (ν+1)πiIν(z)−

2

π
e−

1
2νπiKν(z), −π < arg z ≤ π

2
.

For n = 0, 1, 2, . . . ,

In(z) = i−nJn(iz), Yn(iz) = in+1In(z)−
2

π
i−nKn(z),

I−n(z) = In(z), K−ν(z) = Kν(z), for any ν.
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4. Recursion relationships

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z), Kν+1(z)−Kν−1(z) =

2ν

z
Kν(z),

Iν−1(z) + Iν+1(z) = 2I ′ν(z), Kν−1(z) +Kν+1(z) = −2K ′
ν(z).

5. Integrals

Iν(z) =
1

π

∫ π

0

ez cos θ cos(νθ) dθ − sin νπ

π

∫ ∞

0

e−νt− z cosh t dt

=
(2z)νez√
πΓ
(
ν + 1

2

)
∫ 1

0

e−2zt[t(1 − t)]ν− 1
2 dt,

Re ν > − 1
2 , z complex, z 6= 0.

Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt) dt

=

√
π
(
2
z

)ν
e−z

Γ
(
ν + 1

2

)
∫ ∞

0

e−2zttν−
1
2 (t+ 1)ν−

1
2 dt,

Re ν > − 1
2 , Re z > 0,

Kν(xz) =
Γ
(
ν + 1

2

)
(2z)ν√

πxν

∫ ∞

0

cosxt dt

(t2 + z2)ν+
1
2

dt,

Re ν > − 1
2 , x > 0, |arg z| < 1

2π.

When ν = n (an integer), the second integral in the first relation disappears.

6.22.15 AIRY FUNCTIONS

1. Differential equation: y′′ − zy = 0.
2. Solutions are Ai(z) and Bi(z):

Ai(z) = c1f(z)− c2g(z),
Bi(z) =

√
3 [c1f(z) + c2g(z)]

where

f(z) = 1 +
1

3!
z3 +

1 · 4
6!

z6 +
1 · 4 · 7

9!
z9 + . . . ,

g(z) = z +
2

4!
z4 +

2 · 5
7!

z7 +
2 · 5 · 8
10!

z10 + . . . ,

c1 = Ai(0) = Bi(0)/
√
3 = 3−2/3Γ(23 ) = 0.35502 80538 87817 ,

c2 = −Ai′(0) = Bi′(0)/
√
3 = 3−1/3Γ(13 ) = 0.25881 94037 92807 .

3. Wronskian relation:

Ai(z) Bi′(z)−Ai′(z) Bi(z) =
1

π
.
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FIGURE 6.9
Graphs of the Airy functions Ai(x) and Bi(x), x real. (From N. M. Temme, Special Func-

tions: An Introduction to the Classical Functions of Mathematical Physics, John Wiley &

Sons, 1996. Reprinted with permission of John Wiley & Sons, Inc.)

−1

1

2

Bi(x)

Ai(x)

−1 1

4. Relations with the Bessel functions: Let ζ = 2
3z

3
2 , then

Ai(z) =
1

3

√
z
[
I− 1

3
(ζ) − I 1

3
(ζ)
]
=

1

π

√
z

3
K 1

3
(ζ).

Ai(−z) = 1

3

√
z
[
J 1

3
(ζ) + J− 1

3
(ζ)
]
.

Bi(z) =

√
z

3

[
I− 1

3
(ζ) + I 1

3
(ζ)
]
.

Bi(−z) =
√
z

3

[
J− 1

3
(ζ) − J 1

3
(ζ)
]
.

5. Asymptotic behavior: Let ζ = 2
3z

3
2 . Then, for z →∞,

Ai(z) =
1

2
√
π
z−

1
4 e−ζ

[
1 +O

(
ζ−1

)]
, | arg z| < π,

Bi(z) =
1√
π
z−

1
4 eζ

[
1 +O

(
ζ−1
)]
, | arg z| < 1

3π,

Ai(−z) = 1√
π
z−

1
4

[
sin
(
ζ + 1

4π
)
+O

(
ζ−1
)]
, | arg z| < 2

3π,

Bi(−z) = − 1√
π
z−

1
4

[
cos
(
ζ + 1

4π
)
+O

(
ζ−1
)]
, | arg z| < 2

3π.

6. Integrals for real x:

Ai(x) =
1

π

∫ ∞

0

cos
(
1
3 t

3 + xt
)
dt,

Bi(x) =
1

π

∫ ∞

0

e−
1
3 t

3+xt dt+
1

π

∫ ∞

0

sin
(
1
3 t

3 + xt
)
dt.
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6.22.16 NUMERICAL VALUES FOR THE BESSEL FUNCTIONS

x J0(x) J1(x) Y0(x) Y1(x)

0.0 1.00000000 0.00000000 −∞ −∞
0.2 0.99002497 0.09950083 −1.08110532 −3.32382499
0.4 0.96039823 0.19602658 −0.60602457 −1.78087204
0.6 0.91200486 0.28670099 −0.30850987 −1.26039135
0.8 0.84628735 0.36884205 −0.08680228 −0.97814418

1.0 0.76519769 0.44005059 0.08825696 −0.78121282
1.2 0.67113274 0.49828906 0.22808350 −0.62113638
1.4 0.56685512 0.54194771 0.33789513 −0.47914697
1.6 0.45540217 0.56989594 0.42042690 −0.34757801
1.8 0.33998641 0.58151695 0.47743171 −0.22366487

2.0 0.22389078 0.57672481 0.51037567 −0.10703243
2.2 0.11036227 0.55596305 0.52078429 0.00148779
2.4 0.00250768 0.52018527 0.51041475 0.10048894
2.6 −0.09680495 0.47081827 0.48133059 0.18836354
2.8 −0.18503603 0.40970925 0.43591599 0.26354539

3.0 −0.26005195 0.33905896 0.37685001 0.32467442
4.0 −0.39714981 −0.06604333 −0.01694074 0.39792571
5.0 −0.17759677 −0.32757914 −0.30851763 0.14786314

x e−xI0(x) e−xI1(x) exK0(x) exK1(x)

0.0 1.00000000 0.00000000 ∞ ∞
0.2 0.82693855 0.08228312 2.14075732 5.83338603
0.4 0.69740217 0.13676322 1.66268209 3.25867388
0.6 0.59932720 0.17216442 1.41673762 2.37392004
0.8 0.52414894 0.19449869 1.25820312 1.91793030

1.0 0.46575961 0.20791042 1.14446308 1.63615349
1.2 0.41978208 0.21525686 1.05748453 1.44289755
1.4 0.38306252 0.21850759 0.98807000 1.30105374
1.6 0.35331500 0.21901949 0.93094598 1.19186757
1.8 0.32887195 0.21772628 0.88283353 1.10480537

2.0 0.30850832 0.21526929 0.84156822 1.03347685
2.2 0.29131733 0.21208773 0.80565398 0.97377017
2.4 0.27662232 0.20848109 0.77401814 0.92291367
2.6 0.26391400 0.20465225 0.74586824 0.87896728
2.8 0.25280553 0.20073741 0.72060413 0.84053006

3.0 0.24300035 0.19682671 0.69776160 0.80656348
4.0 0.20700192 0.17875084 0.60929767 0.68157595
5.0 0.18354081 0.16397227 0.54780756 0.60027386



“smtf32” — 2011/5/20 — 2:09 — page 463 — #473

6.23. ELLIPTIC INTEGRALS 463

6.23 ELLIPTIC INTEGRALS

Any integral of the type
∫
R(x, y) dx, where R(x, y) is a rational function of x

and y, with y2 being a polynomial of the third or fourth degree in x (that is y2 =
a0x

4 + a1x
3 + a2x

2 + a3x+ a4 with |a0|+ |a1| > 0) is called an elliptic integral.

All elliptic integrals can be reduced to three basic types:

1. Elliptic integral of the first kind

F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ x

0

dt√
(1− t2)(1 − k2t2)

, x = sinφ, k2 < 1.

2. Elliptic integral of the second kind

E(φ, k) =

∫ φ

0

√
1− k2 sin2 θ dθ

=

∫ x

0

√
1− k2t2√
1− t2

dt, x = sinφ, k2 < 1.

3. Elliptic integral of the third kind

Π(n;φ, k) =

∫ φ

0

1

1 + n sin2 θ

dθ√
1− k2 sin2 θ

=

∫ x

0

1

1 + nt2
dt√

(1− t2)(1 − k2t2)
, x = sinφ, k2 < 1.

where for n < −1 the integral should be interpreted as a Cauchy principal

value integral.

6.23.1 COMPLETE ELLIPTIC INTEGRALS

1. The complete elliptic integrals of the first and second kinds are

K =K(k) = F
(π
2
, k
)
=

∫ π/2

0

(
1− k2 sin2 t

)−1/2
dt =

π

2
F

(
1

2
,
1

2
; 1; k2

)
,

K(α) =

∫ π/2

0

(
1− sin2 α sin2 t

)−1/2
dt,

E =E(k) = E
(π
2
, k
)
=

∫ π/2

0

(
1− k2 sin2 t

)1/2
dt =

π

2
F

(
−1

2
,
1

2
; 1; k2

)
,

E(α) =

∫ π/2

0

(
1− sin2 α sin2 t

)1/2
dt,

where F
(
± 1

2 ,
1
2 ; 1; k

2
)

is the Gauss hypergeometric function.
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2. Complementary integrals

In these expressions, primes do not mean derivatives. k is called the modulus,

k′ =
√
1− k2 is called the complementary modulus.

K ′ = K ′(k) = K(k′) =

∫ π/2

0

(
1− (1− k2) sin2 t

)−1/2
dt = F

(π
2
, k′
)
,

E′ = E′(k) = E(k′) =

∫ π/2

0

(
1− (1− k2) sin2 t

)1/2
dt = E

(π
2
, k′
)
,

3. The Legendre relation is,

KE′ + EK ′ −KK ′ =
π

2
.

4. Extension of the range of φ

F (π, k) = 2K, E(π, k) = 2E,

and, for m = 0, 1, 2, . . . ,

F (φ+mπ, k) = mF (π, k) + F (φ, k) = 2mK + F (φ, k),

E(φ +mπ, k) = mE(π, k) + E(φ, k) = 2mE + E(φ, k).

0.5 1.0

1.0

2.0

K(k)

E(k)

π/2

0.5

0



k →

The complete elliptic integrals E(k) and K(k), 0 ≤ k ≤ 1. (From N. M. Temme,

Special Functions: An Introduction to the Classical Functions of Mathematical Physics, John

Wiley & Sons, 1996. Reprinted with permission of John Wiley & Sons, Inc.)
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6.23.2 NUMERICAL VALUES OF THE ELLIPTIC INTEGRALS

F (φ,α) =

∫ φ

0

(
1− sin2 α sin2 t

)−1/2
dt (note that k = sinα)

α
φ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10◦ 0.1745 0.1746 0.1746 0.1748 0.1749 0.1751 0.1752 0.1753 0.1754 0.1754

20◦ 0.3491 0.3493 0.3499 0.3508 0.3520 0.3533 0.3545 0.3555 0.3561 0.3564

30◦ 0.5236 0.5243 0.5263 0.5294 0.5334 0.5379 0.5422 0.5459 0.5484 0.5493

40◦ 0.6981 0.6997 0.7043 0.7116 0.7213 0.7323 0.7436 0.7535 0.7604 0.7629

50◦ 0.8727 0.8756 0.8842 0.8982 0.9173 0.9401 0.9647 0.9876 1.0044 1.0107

60◦ 1.0472 1.0519 1.0660 1.0896 1.1226 1.1643 1.2126 1.2619 1.3014 1.3170

70◦ 1.2217 1.2286 1.2495 1.2853 1.3372 1.4068 1.4944 1.5959 1.6918 1.7354

80◦ 1.3963 1.4056 1.4344 1.4846 1.5597 1.6660 1.8125 2.0119 2.2653 2.4362

90◦ 1.5708 1.5828 1.6200 1.6858 1.7868 1.9356 2.1565 2.5046 3.1534 ∞

E(φ, α) =

∫ φ

0

(
1− sin2 α sin2 t

)1/2
dt (note that k = sinα)

α
φ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦

0◦ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10◦ 0.1745 0.1745 0.1744 0.1743 0.1742 0.1740 0.1739 0.1738 0.1737 0.1736

20◦ 0.3491 0.3489 0.3483 0.3473 0.3462 0.3450 0.3438 0.3429 0.3422 0.3420

30◦ 0.5236 0.5229 0.5209 0.5179 0.5141 0.5100 0.5061 0.5029 0.5007 0.5000

40◦ 0.6981 0.6966 0.6921 0.6851 0.6763 0.6667 0.6575 0.6497 0.6446 0.6428

50◦ 0.8727 0.8698 0.8614 0.8483 0.8317 0.8134 0.7954 0.7801 0.7697 0.7660

60◦ 1.0472 1.0426 1.0290 1.0076 0.9801 0.9493 0.9184 0.8914 0.8728 0.8660

70◦ 1.2217 1.2149 1.1949 1.1632 1.1221 1.0750 1.0266 0.9830 0.9514 0.9397

80◦ 1.3963 1.3870 1.3597 1.3161 1.2590 1.1926 1.1225 1.0565 1.0054 0.9848

90◦ 1.5708 1.5589 1.5238 1.4675 1.3931 1.3055 1.2111 1.1184 1.0401 1.0000

α K(α) K′(α) E(α) E′(α)

0◦ π/2 ∞ π/2 1

5◦ 1.574 3.832 1.568 1.013

10◦ 1.583 3.153 1.559 1.040

15◦ 1.598 2.768 1.544 1.076

20◦ 1.620 2.505 1.524 1.118

25◦ 1.649 2.309 1.498 1.164

30◦ 1.686 2.157 1.467 1.211

35◦ 1.731 2.035 1.432 1.259

40◦ 1.787 1.936 1.393 1.306

45◦ 1.854 1.854 1.351 1.351

50◦ 1.936 1.787 1.306 1.393

60◦ 2.157 1.686 1.211 1.467

70◦ 2.505 1.620 1.118 1.524

80◦ 3.153 1.583 1.040 1.559

90◦ ∞ π/2 1 π/2

k2 K(k) K′(k) E(k) E′(k)

0 π/2 ∞ π/2 1

0.05 1.591 2.908 1.551 1.060

0.10 1.612 2.578 1.531 1.105

0.15 1.635 2.389 1.510 1.143

0.20 1.660 2.257 1.489 1.178

0.25 1.686 2.157 1.467 1.211

0.30 1.714 2.075 1.445 1.242

0.35 1.744 2.008 1.423 1.271

0.40 1.778 1.950 1.399 1.298

0.45 1.814 1.899 1.375 1.325

0.50 1.854 1.854 1.351 1.351

0.60 1.950 1.778 1.298 1.399

0.70 2.075 1.714 1.242 1.445

0.80 2.257 1.660 1.178 1.489

0.90 2.578 1.612 1.105 1.531

1 ∞ π/2 1 π/2



“smtf32” — 2011/5/20 — 2:09 — page 466 — #476

466 CHAPTER 6. SPECIAL FUNCTIONS

6.24 JACOBIAN ELLIPTIC FUNCTIONS

The Jacobian Elliptic functions are the inverses of elliptic integrals. If u = F (φ, k)
(the elliptic integral of the first kind)

u =

∫ φ

0

dθ√
1− k2 sin2 θ

=

∫ sinφ

0

dt√
(1− t2)(1 − k2t2)

, (6.24.1)

with k2 < 1, then the inverse function is

φ = amu (the amplitude of u). (6.24.2)

(Note that the parameter k is not always explicitly written.) The Jacobian elliptic

functions are then defined as

1. snu = sn(u, k) = sinφ = sin(amu)
2. cnu = cn(u, k) = cosφ = cos(amu) =

√
1− sn2 u

3. dnu = dn(u, k) =
√
1− k2 sin2 φ =

√
1− k2 sn2 u

Note that

u =

∫ cn(u,k)

1

dt√
(1− t2)(k′2 + k2t2)

=

∫ dn(u,k)

1

dt√
(1− t2)(t2 − k′2)

.

(6.24.3)

6.24.1 PROPERTIES

1. Relationships

sn2(u, k) + cn2(u, k) = 1,

dn2(u, k) + k2 sn2(u, k) = 1,

dn2(u, k)− k2 cn2(u, k) = 1− k2 = k′
2
.

2. Special values

(a) sn(0, k) = 0,

(b) cn(0, k) = 1,

(c) dn(0, k) = 1,

(d) am(0, k) = 0,

(e) sn(u, 0) = sinu,

(f) cn(u, 0) = cosu,

(g) dn(u, 0) = 1,

(h) sn(u, 1) = tanhu,
(i) cn(u, 1) = sechu,

(j) dn(u, 1) = sechu.

3. Symmetry properties

(a) sn(−u) = − sn(u),
(b) cn(−u) = cn(u),

(c) dn(−u) = dn(u),
(d) am(−u) = − am(u).
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4. Addition formulas

(a) sn(u ± v) = snu cn v dn v ± cnu sn v dn u

1− k2 sn2 u sn2 v ,

(b) cn(u ± v) = cnu cn v ∓ snu dnu sn v dn v

1− k2 sn2 u sn2 v ,

(c) dn(u± v) = dnu dn v ∓ k2 snu cnu sn v cn v
1− k2 sn2 u sn2 v .

5. The elliptic functions are doubly periodic functions with respect to the vari-

able u. The periods of

sn(u, k) are 4K and 2iK ′,

cn(u, k) are 4K and 2K + 2iK ′,

dn(u, k) are 2K and 4iK ′.

6.24.2 DERIVATIVES AND INTEGRALS

1.
d

du
snu = cnu dnu.

2.
d

du
cnu = − snu dnu.

3.
d

du
dnu = −k2 cnu snu.

4.

∫
snu du =

1

k
(dnu− k cnu).

5.

∫
cnu du =

1

k
cos−1(dn u).

6.

∫
dnu du = amu = sin−1(snu).

6.24.3 SERIES EXPANSIONS

sn(u, k) = u− (1 + k2)
u3

3!
+ (1 + 14k2 + k4)

u5

5!

− (1 + 135k2 + 135k4 + k6)
u7

7!
+ . . . ,

cn(u, k) = 1− u2

2!
+ (1 + 4k2)

u4

4!
− (1 + 44k2 + 16k4)

u6

6!
+ . . . ,

dn(u, k) = 1− k2u
2

2!
+ k2(4 + k2)

u4

4!
− k2(16 + 44k2 + k4)

u6

6!
+ . . . .

(6.24.4)

Let the nome q be defined by q = e−πK/K′
and v = πu/(2K). Then

sn(u, k) =
2π

kK

∞∑

n=0

qn+
1
2

1− q2n+1
sin[(2n+ 1)v],

cn(u, k) =
2π

kK

∞∑

n=0

qn+
1
2

1 + q2n+1
cos[(2n+ 1)v],

dn(u, k) =
π

2K
+

2π

K

∞∑

n=1

qn

1 + q2n
cos(2nv).

(6.24.5)
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6.25 CLEBSCH–GORDAN COEFFICIENTS

The Clebsch–Gordan coefficients arise in the integration of three spherical harmonic
functions (see Equation 6.13.6 on page 436).
(
j1 j2
m1 m2

j
m

)
= δm,m1+m2

√
(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!(2j + 1)

(j + j1 + j2 + 1)!

×
∑

0≤k<∞

(−1)k
√

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!

k!(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 +m2 − k)!(j − j2 +m1 + k)!(j − j1 −m2 + k)!
.

1. Conditions:

(a) Each of {j1, j2, j,m1,m2,m} may be an integer, or half an integer.
(b) j1 + j2 − j ≥ 0
(c) j1 − j2 + j ≥ 0
(d) −j1 + j2 + j ≥ 0
(e) j > 0, j1 > 0, j2 > 0

(f) j + j1 + j2 is an integer

(g) j1 +m1 is an integer

(h) j2 +m2 is an integer

(i) |m1| ≤ j1, |m2| ≤ j2, |m| ≤ j
2. Special values:

(a)

(
j1 j2
m1 m2

j
m

)
= 0 if m1 +m2 6= m.

(b)

(
j1 0
m1 0

j
m

)
= δj1,jδm1,m.

(c)

(
j1 j2
0 0

j
0

)
= 0 when j1 + j2 + j is an odd integer.

(d)

(
j1 j1
m1 m1

j
m

)
= 0 when 2j1 + j is an odd integer.

3. Symmetry relations: all of the following are equal to

(
j1 j2
m1 m2

j
m

)
:

(a)

(
j2 j1
−m2 −m1

j
−m

)
,

(b) (−1)j1+j2−j

(
j2 j1
m1 m2

j
m

)
,

(c) (−1)j1+j2−j

(
j1 j2
−m1 −m2

j
−m

)
,

(d)
√

2j+1
2j1+1 (−1)j2+m2

(
j j2
−m m2

j1
−m1

)
,

(e)
√

2j+1
2j1+1 (−1)j1−m1+j−m

(
j j2
m −m2

j1
m1

)
,

(f)
√

2j+1
2j1+1 (−1)j−m+j1−m1

(
j2 j
m2 −m

j1
−m1

)
,

(g)
√

2j+1
2j2+1 (−1)j1−m1

(
j1 j
m1 −m

j2
−m2

)
,

(h)
√

2j+1
2j2+1 (−1)j1−m1

(
j j1
m −m1

j2
m2

)
.
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By use of symmetry relations, Clebsch–Gordan coefficients

(
j1 j2
m1 m2

j
m

)
may be

put in the standard form j1 ≤ j2 ≤ j and m ≥ 0.

j1 j2 m1 m2 j m

(
1/2 1/2
m1 m2

j
m

)

1/2 1/2 −1/2 −1/2 1 −1 1

1/2 1/2 −1/2 1/2 0 0 −
(
1
2

)1/2
= −0.70711

1/2 1/2 −1/2 1/2 1 0
(
1
2

)1/2
= 0.70711

1/2 1/2 1/2 −1/2 0 0
(
1
2

)1/2
= 0.70711

1/2 1/2 1/2 −1/2 1 0
(
1
2

)1/2
= 0.70711

1/2 1/2 1/2 1/2 1 1 1

j1 j2 m1 m2 j m

(
1 1
m1 m2

1
m

)

1 1 −1 0 1 −1 −
(
1
2

)1/2
= −0.70711

1 1 −1 1 1 0 −
(
1
2

)1/2
= −0.70711

1 1 0 −1 1 −1
(
1
2

)1/2
= 0.70711

1 1 0 1 1 1 −
(
1
2

)1/2
= −0.70711

1 1 1 −1 1 0
(
1
2

)1/2
= 0.70711

1 1 1 0 1 1
(
1
2

)1/2
= 0.70711

j1 j2 m1 m2 j m

(
1 1
m1 m2

2
m

)

1 1 −1 −1 2 −2 1

1 1 −1 0 2 −1
(
1
2

)1/2
= 0.70711

1 1 −1 1 2 0
(
1
6

)1/2
= 0.40825

1 1 0 −1 2 −1
(
1
2

)1/2
= 0.70711

1 1 0 0 2 0
(
2
3

)1/2
= 0.81650

1 1 0 1 2 1
(
1
2

)1/2
= 0.70711

1 1 1 −1 2 0
(
1
6

)1/2
= 0.40825

1 1 1 0 2 1
(
1
2

)1/2
= 0.70711

1 1 1 1 2 2 1

j1 j2 m1 m2 j m

(
1 1/2
m1 m2

2
m

)

1 1/2 −1 −1/2 3/2 −3/2 1

1 1/2 −1 1/2 1/2 −1/2 −
(
2
3

)1/2
= −0.816497

1 1/2 −1 1/2 3/2 −1/2
(
1
3

)1/2
= 0.577350

1 1/2 0 −1/2 3/2 −1/2
(
2
3

)1/2
= 0.816497

1 1/2 0 −1/2 1/2 −1/2
(
1
3

)1/2
= 0.577350

1 1/2 0 1/2 1/2 1/2 −
(
1
3

)1/2
= −0.577350

1 1/2 0 1/2 3/2 1/2
(
2
3

)1/2
= 0.816497

1 1/2 1 −1/2 1/2 1/2
(
2
3

)1/2
= 0.816497

1 1/2 1 −1/2 3/2 1/2
(
1
3

)1/2
= 0.577350

1 1/2 1 1/2 3/2 3/2 1
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6.26 INTEGRAL TRANSFORMS: PRELIMINARIES

1. I = (a, b) is an interval, where−∞ ≤ a < b ≤ ∞.

2. L1(I) is the set of all Lebesgue integrable functions on I . In particular,L1(R)
is the set of all Lebesgue integrable functions on the real line R.

3. L2(I) is the set of all square integrable functions on I (i.e.,∫
I
|f(x)|2 dx <∞).

4. If f is integrable over every finite closed subinterval of I , but not necessarily

on I itself, we say that f is locally integrable on I . For example, the func-

tion f(x) = 1/x is not integrable on the interval I = (0, 1), yet it is locally

integrable on it.

5. A function f(x), defined on a closed interval [a, b], is said to be of bounded

variation if there is an M > 0 such that, for any partition a = x0 < x1 <

· · · < xn = b, the following relation holds:

n∑

i=1

|f(xi)− f(xi−1)| ≤M.

6. If f has a derivative f ′ at every point of [a, b], then by the mean value theorem,

for any a ≤ x < y ≤ b, we have f(x) − f(y) = f ′(z)(x − y), for some

x < z < y. If f ′ is bounded, then f is of bounded variation.

7. The left limit of a function f(x) at a point t (if it exists) will be denoted by

limx→t− f(x) = f(t−), and likewise the right limit at t will be denoted by

limx→t+ f(x) = f(t+).

6.27 FOURIER INTEGRAL TRANSFORM

The origin of the Fourier integral transformation can be traced to Fourier’s celebrated

work on the Analytical Theory of Heat, which appeared in 1822. Fourier’s major

finding was to show that an “arbitrary” function defined on a finite interval could be

expanded in a trigonometric series (series of sinusoidal functions, see page 49). In an

attempt to extend his results to functions defined on the infinite interval (−∞,∞),
Fourier introduced what is now known as the Fourier integral transform.

The Fourier integral transform of a function f(t) is defined by

F(f)(ω) = f̂(ω) = F (ω) =
1√
2π

∫ ∞

−∞
f(t)eitω dt, (6.27.1)

whenever the integral exists.

There is no universal agreement on the definition of the Fourier integral trans-

form. Some authors take the kernel of the transformation as e−itω, so that the kernel

of the inverse transformation is eitω. In either case, if we define the Fourier trans-

forms

f̂(ω) = a

∫ ∞

−∞
f(t)e±itω dt,

then its inverse is

f(t) = b

∫ ∞

−∞
f̂(ω)e∓itω dω,
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for some constants a and b, with ab = 1/2π. Again there is no agreement on the

choice of the constants; sometimes one of them is taken as 1 so that the other is

1/(2π). For the sake of symmetry, we choose a = b = 1/
√
2π. The functions f and

f̂ are called a Fourier transform pair.

A definition popular in the engineering literature is the one in which the kernel

of the transform is taken as e2πitω (or e−2πitω) so that the kernel of the inverse

transform is e−2πitω (or e2πitω). The main advantage of this definition is that the

constants a and b disappear and the Fourier transform pair becomes

f̂(ω) =

∫ ∞

−∞
f(t)e±2πitω dt and f(t) =

∫ ∞

−∞
f̂(ω)e∓2πitω dω. (6.27.2)

The Fourier cosine and sine coefficients of f(t) are defined by

a(ω) =
1

π

∫ ∞

−∞
f(t) cosωt dt and b(ω) =

1

π

∫ ∞

−∞
f(t) sinωt dt. (6.27.3)

The Fourier cosine and sine coefficients are related to the Fourier cosine and

sine integral transforms. For example, if f is even, then a(ω) =
√
2/πFc(ω) and, if

f is odd, b(ω) =
√
2/πFs(ω) (see Section 6.27.7).

Two other integrals related to the Fourier integral transform are Fourier’s re-

peated integral and the allied integral. Fourier’s repeated integral, S(f, t), of f(t) is

defined by

S(f, t) =

∫ ∞

0

(a(ω) cos tω + b(ω) sin tω) dω,

=
1

π

∫ ∞

0

dω

∫ ∞

−∞
f(x) cosω(t− x) dx.

(6.27.4)

The allied Fourier integral, S̃(f, t), of f is defined by

S̃(f, t) =

∫ ∞

0

(b(ω) cos tω − a(ω) sin tω) dω,

=
1

π

∫ ∞

0

dω

∫ ∞

−∞
f(x) sinω(x− t)dx.

(6.27.5)

6.27.1 PROPERTIES

1. Linearity: The Fourier transform is linear,

F [af(t) + bg(t)] (ω) = aF [f(t)] (ω) + bF [g(t)] (ω) = af̂(ω) + bĝ(ω),

where a and b are complex numbers.

2. Translation: F [f(t− b)] (ω) = eibω f̂(ω).

3. Dilation (scaling): F [f(at)] (ω) = 1
a f̂(

ω
a ), a > 0.

4. Translation and dilation:

F [f(at− b)] (ω) = 1

a
eibω/af̂

(ω
a

)
, a > 0.
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5. Complex conjugation: F
[
f(t)

]
(ω) = f̂(−ω).

6. Modulation: F
[
eiatf(t)

]
(ω) = f̂(ω + a), and

F
[
eiatf(bt)

]
(ω) =

1

b
f̂

(
ω + a

b

)
, b > 0. (6.27.6)

7. Differentiation: If f (k) ∈ L1(R), for k = 0, 1, 2, · · · , n and

lim|t|→∞ f (k)(t) = 0 for k = 0, 1, 2, · · · , n− 1, then

F
[
f (n)(t)

]
(ω) = (−iω)nf̂(ω). (6.27.7)

8. Integration: Let f ∈ L1(R), and define g(x) =
∫ x

−∞ f(t) dt. If g ∈ L1(R),

then ĝ(ω) = −f̂(ω)/(iω).
9. Multiplication by polynomials: If tkf(t) ∈ L1(R) for k = 0, 1, . . . , n, then

F
[
tkf(t)

]
(ω) =

1

(i)k
f̂ (k)(ω), (6.27.8)

and hence,

F
[(

n∑

k=0

akt
k

)
f(t)

]
(ω) =

n∑

k=0

ak
(i)k

f̂ (k)(ω). (6.27.9)

10. Convolution: The convolution operation, ⋆, associated with the Fourier trans-

form is defined as

h(t) = (f ⋆ g)(t) =
1√
2π

∫ ∞

−∞
f(x)g(t− x)dx,

where f and g are defined over the whole real line.

THEOREM 6.27.1
If f and g belong to L1(R), then so does h. Moreover, ĥ(ω) = f̂(ω)ĝ(ω). If

f̂ and ĝ belong to L1(R), then (f̂ ⋆ ĝ)(ω) = (̂fg)(ω).

11. Parseval’s relation: If f, g ∈ L2(R), and if F andG are the Fourier transforms

of f and g, respectively, then Parseval’s relation is
∫ ∞

−∞
F (ω)G(ω) dω =

∫ ∞

−∞
f(t)g(−t) dt. (6.27.10)

ReplacingG by G ( so that g(−t) is replaced by g(t)) results in a more conve-

nient form of Parseval’s relation
∫ ∞

−∞
F (ω)G(ω) dω =

∫ ∞

−∞
f(t)g(t) dt. (6.27.11)

In particular, for f = g,
∫ ∞

−∞
|F (ω)|2 dω =

∫ ∞

−∞
|f(t)|2 dt. (6.27.12)
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6.27.2 EXISTENCE

For the Fourier integral transform to exist, it is sufficient that f be absolutely inte-

grable on (−∞,∞), i.e., f ∈ L1(R).

THEOREM 6.27.2 (Riemann–Lebesgue lemma)

If f ∈ L1(R), then its Fourier transform f̂(ω) is defined everywhere, uniformly

continuous, and tends to zero as ω → ±∞.

The uniform continuity follows from the relationship

∣∣∣f̂(ω + h)− f̂(ω)
∣∣∣ ≤ 1√

2π

∫ ∞

−∞
|f(t)|

∣∣eiht − 1
∣∣ dt,

and the tendency toward zero as ω → ±∞ is a consequence of the Riemann–

Lebesgue lemma.

THEOREM 6.27.3 (Generalized Riemann–Lebesgue lemma)

Let f ∈ L1(I), where I = (a, b) is finite or infinite and let ω be real. Let a ≤ a′ <

b′ ≤ b and f̂ω(λ, a
′, b′) =

∫ b′

a′ f(t)e
iλωt dt. Then lim

ω→±∞
f̂ω(λ, a

′, b′) = 0, and the

convergence is uniform in a′ and b′. In particular, lim
ω→±∞

∫∞
−∞ f(t)eiωt dt = 0.

6.27.3 INVERSION FORMULA

Many of the theorems on the inversion of the Fourier transform are based on Dini’s

condition which can be stated as follows:

If f ∈ L1(R), then a necessary and sufficient condition for

S(f, x) = lim
λ→∞

1

π

∫ ∞

−∞
f(t)

sinλ(x − t)
(x − t) dt = a (6.27.13)

is that

lim
λ→∞

∫ δ

0

(f(x+ y) + f(x− y)− 2a)
sinλy

y
dy = 0, (6.27.14)

for any fixed δ > 0. By the Riemann–Lebesgue lemma, this condition is satisfied if

∫ δ

0

∣∣∣∣
f(x+ y) + f(x− y)− 2a

y

∣∣∣∣ dy <∞, (6.27.15)

for some δ > 0. In particular, condition (6.27.15) holds for a = f(x), if f is

differentiable at x, and for a = [f(x+) + f(x−)] /2, if f is of bounded variation in

a neighborhood of x.

THEOREM 6.27.4 (Inversion theorem)

Let f be a locally integrable function, of bounded variation in a neighborhood of the

point x. If f satisfies either one of the following conditions:
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1. f(t) ∈ L1(R), or

2. f(t)/(1+ |t|) ∈ L1(R), and the integral
∫∞
−∞ f(t)eiωt dt converges uniformly

on every finite interval of ω,

then
1√
2π

∫ ∞

−∞
f̂(ω)e−ixω dω = lim

λ→∞

1√
2π

∫ λ

−λ

f̂(ω)e−ixω dω

is equal to [f(x+) + f(x−)] /2 whenever the expression has meaning, to f(x)
whenever f(x) is continuous at x, and to f(x) almost everywhere. If f is contin-

uous and of bounded variation in the interval (a, b), then the convergence is uniform

in any interval interior to (a, b).

6.27.4 UNCERTAINTY PRINCIPLE

Let T and W be two real numbers defined by

T 2 =
1

E

∫ ∞

−∞
t2|f(t)|2 dt and W 2 =

1

E

∫ ∞

−∞
ω2|f̂(ω)|2 dω, (6.27.16)

where

E =

∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|f̂(ω)|2 dω. (6.27.17)

Assuming that f is differentiable and lim
|t|→∞

tf2(t) = 0, then 2TW ≥ 1, or

(∫ ∞

−∞
t2|f(t)|2 dt

)1/2(∫ ∞

−∞
ω2|f̂(ω)|2 dω

)1/2

≥ 1

2

∫ ∞

−∞
|f(t)|2 dt. (6.27.18)

This means that f and f̂ cannot both be very small. Another related property of the

Fourier transform is that, if either one of the functions f or f̂ vanishes outside some

finite interval, then the other one must trail on to infinity. In other words, they cannot

both vanish outside any finite interval.

6.27.5 POISSON SUMMATION FORMULA

The Poisson summation formula may be written in the form

1√
2π

∞∑

k=−∞
f

(
t+

kπ

σ

)
=
σ

π

∞∑

k=−∞
f̂(2kσ)e−2iktσ , σ > 0, (6.27.19)

provided that the two series converge. A sufficient condition for the validity of Equa-

tion (6.27.19) is that f = O(1 + |t|)−α as |t| → ∞, and f̂ = O ((1 + |ω|)−α) as

|ω| → ∞ for some α > 1.

Another version of the Poisson summation formula is
∞∑

k=−∞
f̂(ω + kσ)ĝ(ω + kσ) =

1

σ

∞∑

k=−∞

(∫ ∞

−∞
f(t)g

(
t− 2πk

σ

)
dt

)
e2πikω/σ .

(6.27.20)
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6.27.6 SHANNON’S SAMPLING THEOREM

If f is a function band-limited to [−σ, σ], i.e.,

f(t) =
1√
2π

∫ σ

−σ

F (ω)eitω dω,

with F ∈ L2(−σ, σ), then it can be reconstructed from its sample values at the points

tk = (kπ)/σ, k = 0,±1,±2, · · · , via the formula

f(t) =

∞∑

k=−∞
f(tk)

sinσ(t − tk)
σ(t − tk)

, (6.27.21)

with the series absolutely and uniformly convergent on compact sets.

The series on the right-hand side of Equation (6.27.21) can be written as

sinσt

∞∑

k=−∞
f(tk)

(−1)k
(σt− kπ) , which is a special case of a Cardinal series (these se-

ries have the form sinσt

∞∑

k=−∞
Ck

(−1)k
(σt− kπ) ).

6.27.7 FOURIER SINE AND COSINE TRANSFORMS

The Fourier cosine transform, Fc(ω), and the Fourier sine transform, Fs(ω), of f(t)
are defined for ω > 0 as

Fc(ω) =

√
2

π

∫ ∞

0

f(t) cosωt dt and Fs(ω) =

√
2

π

∫ ∞

0

f(t) sinωt dt.

(6.27.22)

The inverse transforms have the same functional form:

f(t) =

√
2

π

∫ ∞

0

Fc(ω) cosωt dω =

√
2

π

∫ ∞

0

Fs(ω) sinωt dω. (6.27.23)

If f is even, i.e., f(t) = f(−t), then F (ω) = Fc(ω), and if f is odd, i.e.,

f(t) = −f(−t), then F (ω) = iFs(ω).
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6.28 DISCRETE FOURIER TRANSFORM (DFT)

The discrete Fourier transform of the sequence {an}N−1
n=0 , where N ≥ 1, is a se-

quence {Am}N−1
m=0, defined by

Am =

N−1∑

n=0

an(WN )mn, for m = 0, 1, · · · , N − 1, (6.28.1)

where WN = e2πi/N . Note that
∑N−1

m=0W
m(k−n)
N = Nδkn. For example, the DFT

of the sequence {1, 0, 1, 1} is {3,−i, 1, i}.
The inversion formula is

an =
1

N

N−1∑

m=0

AmW
−mn
N , n = 0, 1, · · · , N − 1. (6.28.2)

Equations (6.28.1) and (6.28.2) are called a discrete Fourier transform (DFT) pair of

order N . The factor 1/N and the negative sign in the exponent of WN that appear

in Equation (6.28.2) are sometimes introduced in Equation (6.28.1) instead. We use

the notation

FN [(an)] = Am F−1
N [(Am)] = an, (6.28.3)

to indicate that the discrete Fourier transform of order N of the sequence {an} is

{Am} and that the inverse transform of {Am} is {an}.
Because W

±(m+N)n
N =W±mn

N , Equations (6.28.1) and (6.28.2) can be used to

extend the sequences {an}N−1
n=0 and {Am}N−1

m=0, as periodic sequences with period

N . This means that Am+N = Am, and an+N = an. This will be used in what

follows without explicit note. Using this, the summation limits, 0 and N − 1, can

be replaced with n1 and n1 + N − 1, respectively, where n1 is any integer. In the

special case where n1 = −M and N = 2M + 1, Equations (6.28.1) and (6.28.2)

become

Am =

M∑

n=−M

anW
mn
N , for m = −M,−M + 1, · · · ,M − 1,M, (6.28.4)

and

an =
1

2M + 1

M∑

m=−M

AmW
−mn
N , for n = −M,−M + 1, · · · ,M − 1,M.

(6.28.5)
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6.28.1 PROPERTIES

1. Linearity: The discrete Fourier transform is linear, that is

FN [α(an) + β(bn)] = αAm + βBm,

for any complex numbers α and β, where the sum of two sequences is defined

as (an) + (bn) = (an + bn).

2. Translation: FN [(an−k)] = Wmk
N Am, or

e2πimk/NAm =
∑N−1

n=0 an−kW
mn
N .

3. Modulation: FN [(Wnk
N an)] = Am+k, or Am+k =

∑N−1
n=0 e

2πink/NanW
mn
N .

4. Complex Conjugation: FN [(a−n)] = Am, or Am =
∑N−1

n=0 a−nW
mn
N .

5. Symmetry: FN [(a−n)] = A−m, or A−m =
∑N−1

n=0 a−nW
mn
N .

6. Convolution: The convolution of the sequences {an}N−1
n=0 and {bn}N−1

n=0 is the

sequence {cn}N−1
n=0 given by

cn =

N−1∑

k=0

akbn−k. (6.28.6)

The convolution relation of the DFT is FN [(cn)] = FN [(an)]FN [(bn)], or

Cm = AmBm. A consequence of this and Equation (6.28.2), is the relation

N−1∑

k=0

akbn−k =
1

N

N−1∑

m=0

AmBmW
−mn
N . (6.28.7)

7. Parseval’s relation:

N−1∑

n=0

andn =
1

N

N−1∑

m=0

AmDm. (6.28.8)

In particular,
N−1∑

n=0

|an|2 =
1

N

N−1∑

m=0

|Am|2. (6.28.9)

In (4) and (5), the fact thatWN =W−1
N has been used. A sequence {an} is said

to be even if {a−n} = {an} and is said to be odd if {a−n} = {−an}. The following

are consequences of (4) and (5):

1. If {an} is a sequence of real numbers (i.e., an = an), then Am = A−m.
2. {an} is real and even if and only if {Am} is real and even.

3. {an} is real and odd if and only if {Am} is pure imaginary and odd.
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6.29 FAST FOURIER TRANSFORM (FFT)

To determine Am for each m = 0, 1, · · · ,M − 1 (using Equation (6.28.1)), M − 1
multiplications are required. Hence the total number of multiplications required to

determine all the Am’s is (M − 1)2. This number can be reduced by using decima-

tion.

Assuming M is even, we define M = 2N and write

F2N [(an)] = Am. (6.29.1)

Now split {an} into two sequences, one consisting of terms with even subscripts

(bn = a2n) and one with odd subscripts (cn = a2n+1). Then

Am = Bm +Wm
2NCm. (6.29.2)

For the evaluation of Bm and Cm, the total number of multiplications required is

2(N − 1)2. To determineAm from Equation (6.29.2), we must calculate the product

Wm
2NCm, for each fixed m. Therefore, the total number of multiplications required

to determineAm from Equation (6.29.2) is 2(N − 1)2 +2N − 1 = 2N2 − 2N +1.

But if we had determined Am from (6.29.1), we would have performed (2N −
1)2 = 4N2 − 4N + 1 multiplications. Thus, splitting the sequence {an} into two

sequences and then applying the discrete Fourier transform reduces the number of

multiplications required to evaluate Am approximately by a factor of 2.

If N is even, this process can be repeated. Split {bn} and {cn} into two se-

quences, each of length N/2. Then Bm and Cm are determined in terms of four

discrete Fourier transforms, each of order N/2. This process can be repeated k − 1
times if M = 2k for some positive integer k.

If we denote the required number of multiplications for the discrete Fourier

transform of order N = 2k by F (N), then F (2N) = 2F (N) + N and F (2) = 1,

which leads to F (N) = N
2 log2N .

6.30 MULTIDIMENSIONAL FOURIER
TRANSFORMS

If x = (x1, x2, . . . , xn) and u = (u1, u2, . . . , un), then (see the table on page 497):

1. Fourier transform F (u) = (2π)−n/2
∫
· · ·
∫

Rn

f(x)ei(x·u) dx.

2. Inverse Fourier transform f(x) = (2π)−n/2
∫
· · ·
∫

Rn

F (u)e−i(x·u) du.

3. Parseval’s relation
∫
· · ·
∫

Rn

f(x)g(x) dx =
∫
· · ·
∫

Rn

F (u)G(u) du.
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6.31 LAPLACE TRANSFORM

The Laplace transformation dates back to the work of the French mathematician,

Pierre Simon Marquis de Laplace (1749–1827), who used it in his work on probabil-

ity theory in the 1780s.

The Laplace transform of a function f(t) is defined as

F (s) = [Lf ] (s) =
∫ ∞

0

f(t)e−st dt (6.31.1)

(also written as [Lf(t)] and [L (f(t))] ), whenever the integral exists for at least one

value of s. The transform variable, s, can be taken as a complex number. We say that

f is Laplace transformable or the Laplace transformation is applicable to f if [Lf ]
exists for at least one value of s.

6.31.1 EXISTENCE AND DOMAIN OF CONVERGENCE

Sufficient conditions for the existence of the Laplace transform are

1. f is a locally integrable function on [0,∞), i.e.,
∫ a

0
|f(t)| dt < ∞, for any

a > 0.

2. f is of (real) exponential type, i.e., for some constantsM, t0 > 0 and real γ, f
satisfies

|f(t)| ≤Meγt, for all t ≥ t0. (6.31.2)

If f is a locally integrable function on [0,∞) and of (real) exponential type γ,

then the Laplace integral of f ,
∫∞
0
f(t)e−st dt, converges absolutely for Re s > γ

and uniformly for Re s ≥ γ1, for any γ1 > γ. Consequently, F (s) is analytic in

the half-plane Ω = {s ∈ C : Re s > γ}. It can be shown that if F (s) exists for

some s0, then it also exists for any s for which Re s > Re s0. The actual domain

of existence of the Laplace transform may be larger than the one given above. For

example, the function f(t) = cos et is of real exponential type zero, but F (s) exists

for Re s > −1.

If f(t) is a locally integrable function on [0,∞), not of exponential type, and

∫ ∞

0

f(t)e−s0t dt (6.31.3)

converges for some complex number s0, then the Laplace integral

∫ ∞

0

f(t)e−st dt (6.31.4)

converges in the region Re (s) > Re (s0) and converges uniformly in the region

|arg(s− s0)| ≤ θ < π
2 . Moreover, if Equation (6.31.3) diverges, then so does

Equation (6.31.4) for Re s < Re s0.
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6.31.2 PROPERTIES

1. Linearity: L(αf + βg) = αL(f) + βL(g) = αF + βG,
for any constants α and β.

2. Dilation: [L (f(at))] (s) = 1

a
F
( s
a

)
, for a > 0.

3. Multiplication by exponential functions:

[
L
(
eatf(t)

)]
(s) = F (s− a).

4. Translation: [L (f(t− a)H(t− a))] (s) = e−asF (s) for a > 0; where H is

the Heaviside function. This can be put in the form

[L(f(t)H(t− a))] (s) = e−as [L(f(t+ a))] (s),

Examples:

(a) If

g(t) =

{
0, 0 ≤ t ≤ a,
(t− a)ν , a ≤ t,

then g(t) = f(t− a)H(t − a) where f(t) = tν (for Re ν > −1). Since

L(tν) = Γ(ν +1)/sν+1, it follows that (Lg)(s) = e−asΓ(ν + 1)/sν+1,

for Re s > 0.

(b) If

g(t) =

{
t, 0 ≤ t ≤ a,
0, a < t,

we may write g(t) = t [H(t)−H(t− a)] = tH(t)− (t−a)H(t−a)−
aH(t− a). Thus by properties (1) and (4),

G(s) =
1

s2
− 1

s2
e−as − a

s
e−as.

5. Differentiation of the transformed function: If f is a differentiable function of

exponential type, limt→0+ f(t) = f(0+) exists, and f ′ is locally integrable

on [0,∞), then the Laplace transform of f ′ exists, and

(Lf ′) (s) = sF (s)− f(0). (6.31.5)

Note that although f is assumed to be of exponential type, f ′ need not be. For

example, f(t) = sin et
2

, but f ′(t) = 2tet
2

cos et
2

.

6. Differentiation of higher orders: Let f be an n times differentiable function

so that f (k) (for k = 0, 1, . . . , n − 1) are of exponential type with the addi-

tional assumption that limt→0+ f
(k)(t) = f (k)(0+) exists. If f (n) is locally

integrable on [0,∞), then its Laplace transform exists, and

[
L
(
f (n)

)]
(s) = snF (s)− sn−1f(0)− sn−2f ′(0)− . . .− f (n−1)(0).

(6.31.6)



“smtf32” — 2011/5/20 — 2:09 — page 481 — #491

6.31. LAPLACE TRANSFORM 481

7. Integration: If g(t) =
∫ t

0 f(x) dx, then (if the transforms exist) G(s) =
F (s)/s. Repeated applications of this rule result in

[
L
(
f (−n)

)]
(s) =

1

sn
F (s), (6.31.7)

where f (−n) is the nth anti-derivative of f defined by f (−n)(t) =
∫ t

0
dtn

∫ tn
0

dtn−1 · · ·
∫ t2
0
f(t1) dt1. Section 6.31.1 shows that the Laplace transform is an

analytic function in a half-plane. Hence it has derivatives of all orders at any

point in that half-plane. The next property shows that we can evaluate these

derivatives by direct calculation.

8. Multiplication by powers of t: Let f be a locally integrable function whose

Laplace integral converges absolutely and uniformly for Re s > σ. Then F is

analytic in Re s > σ, and (for n = 0, 1, 2, . . . , with Re s > σ)

[L (tnf(t))] (s) =
(
− d

ds

)n

F (s),

[
L
((

t
d

dt

)n

f(t)

)]
(s) =

(
− d

ds
s

)n

F (s),

(6.31.8)

where
(
t d
dt

)n
is the operator

(
t d
dt

)
applied n times.

9. Division by powers of t: If f is a locally integrable function of exponential

type such that f(t)/t is a Laplace transformable function, then

[
L
(
f(t)

t

)]
(s) =

∫ ∞

s

F (u) du, (6.31.9)

or, more generally,

[
L
(
f(t)

tn

)]
(s) =

∞∫

s

· · ·
∞∫

s3

∞∫

s2

F (s1) ds1 ds2 · · · dsn (6.31.10)

is the nth repeated integral. It follows from properties (7) and (9) that


L




t∫

0

f(x)

x
dx




 (s) =

1

s

∞∫

s

F (u) du. (6.31.11)

10. Periodic functions: Let f be a locally integrable function that is periodic with

period T . Then

[L(f)] (s) = 1

(1− e−Ts)

T∫

0

f(t)e−st dt. (6.31.12)

11. Hardy’s theorem: If f(t) =
∑∞

n=0 cnt
n for t ≥ 0 and

∑∞
n=0

cnn!
sn0

converges

for some s0 > 0, then [L(f)] (s) =∑∞
n=0

cnn!
sn for Re s > s0.
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6.31.3 INVERSION FORMULAS

6.31.3.1 Inversion by integration

If f(t) is a locally integrable function on [0,∞) such that

1. f is of bounded variation in a neighborhood of a point t0 ≥ 0 (a right-hand

neighborhood if t0 = 0),

2. The Laplace integral of f converges absolutely on the line Re s = c, then

lim
T→∞

1

2πi

c+iT∫

c−iT

F (s)est0ds =





0, if t0 < 0,
f(0+)/2 if t0 = 0,
[f(t0+) + f(t0−)] /2 if t0 > 0.

In particular, if f is differentiable on (0,∞) and satisfies the above conditions, then

lim
T→∞

1

2πi

c+iT∫

c−iT

F (s)estds = f(t), 0 < t <∞. (6.31.13)

6.31.3.2 Inversion by partial fractions

Suppose that F is a rational function F (s) = P (s)/Q(s) in which the degree of

the denominator Q is greater than that of the numerator P . For instance, let F be

represented in its most reduced form where P and Q have no common zeros, and

assume that Q has only simple zeros at a1, . . . , an, then

f(t) = L−1 (F (s)) (t) = L−1

(
P (s)

Q(s)

)
(t) =

n∑

k=1

P (ak)

Q′(ak)
eakt. (6.31.14)

EXAMPLE If P (s) = s−5 andQ(s) = s2+6s+13, then a1 = −3+2i, a2 = −3−2i,
and it follows that

f(t) = L−1

(
s− 5

s2 + 6s+ 13

)
=

(2i− 8)

4i
e(−3+2i)t +

(2i+ 8)

4i
e(−3−2i)t

= e−3t(cos 2t− 4 sin 2t).

6.31.4 CONVOLUTION

Let f(t) and g(t) be locally integrable functions on [0,∞), and assume that their

Laplace integrals converge absolutely in some half-plane Re s > α. Then the con-

volution operation, ⋆, associated with the Laplace transform, is defined by

h(t) = (f ⋆ g)(t) =

t∫

0

f(x)g(t− x) dx. (6.31.15)

The convolution of f and g is a locally integrable function on [0,∞) that is continu-

ous if f or g is continuous. Additionally, it has a Laplace transform given by

H(s) = (Lh) (s) = F (s)G(s), (6.31.16)

where (Lf)(s) = F (s) and (Lg)(s) = G(s).
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6.32 HANKEL TRANSFORM

The Hankel transform of order ν of a real-valued function f(x) is defined as

Hν(f)(y) = Fν(y) =

∫ ∞

0

f(x)
√
xyJν(yx)dx, (6.32.1)

for y > 0 and ν > −1/2, where Jν(z) is the Bessel function of the first kind of

order ν.

The Hankel transforms of order 1/2 and −1/2 are equal to the Fourier sine and

cosine transforms, respectively, because

J1/2(x) =

√
2

πx
sinx, J−1/2(x) =

√
2

πx
cosx. (6.32.2)

As with the Fourier transform, there are many variations on the definition of the

Hankel transform. Some authors define it as

Gν(y) =

∫ ∞

0

xg(x)Jν(yx)dx; (6.32.3)

however, the two definitions are equivalent; we only need to replace f(x) by
√
xg(x)

and Fν(y) by
√
yGν(y).

6.32.1 PROPERTIES

1. Existence: Since
√
xJν(x) is bounded on the positive real axis, the Hankel

transform of f exists if f ∈ L1(0,∞).
2. Multiplication by xm:

Hν (x
mf(x)) (y) = y1/2−ν

(
1

y

d

dy

)m [
yν+m−1/2Fν+m(y)

]
.

3. Division by x:

Hν

(
2ν

x
f(x)

)
(y) = y [Fν−1(y) + Fν+1(y)] ,

Hν

(
f(x)

x

)
(y) = y1/2−ν

∫ y

0

tν−1/2Fν−1(t) dt.

4. Differentiation:

Hν (2νf
′(x)) (y) = (ν − 1

2 )yFν+1(y)− (ν + 1
2 )yFν−1(y).

5. Differentiation and multiplication by powers of x:

Hν

[
x1/2−ν

(
1

x

d

dx

)m (
xν+m−1/2f(x)

)]
(y) = ymFν+m(y).
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6. Parseval’s relation: Let Fν and Gν denote the Hankel transforms of order ν
of f and g, respectively. Then

∫ ∞

0

Fν(y)Gν(y)dy =

∫ ∞

0

f(x)g(x)dx. (6.32.4)

In particular,
∫∞
0
|Fν(y)|2 dy =

∫∞
0
|f(x)|2dx.

7. Inversion formula: If f is absolutely integrable on (0,∞) and of bounded

variation in a neighborhood of point x, then
∫ ∞

0

Fν(y)
√
xyJν(yx)dy =

f(x+) + f(x−)
2

, (6.32.5)

whenever the expression on the right-hand side of the equation has a meaning;

the integral converges to f(x) whenever f is continuous at x.

6.33 HARTLEY TRANSFORM

Define the function casx = cosx+ sinx =
√
2 sin(x + π

4 ). The Hartley transform

of the real function g(t) is

(Hg)(ω) =

∫ ∞

−∞
g(t) cas(2πωt) dt. (6.33.1)

Let (Eg)(ω) and (Og)(ω) be the even and odd parts of (Hg)(ω),

(Eg)(ω) =
1

2

(
(Hg)(ω) + (Hg)(−ω)

)
,

(Og)(ω) =
1

2

(
(Hg)(ω)− (Hg)(−ω)

)
,

(6.33.2)

so that (Hg)(ω) = (Eg)(ω)+(Og)(ω). The Fourier transform of g (using the kernel

e2πiωt) can then be written in terms of (Eg)(ω) and (Og)(ω) as
∫ ∞

−∞
g(t)e2πiωt dt = (Eg)(ω) + i(Og)(ω). (6.33.3)

Notes:

• The Hartley transform, applied twice, returns the original function.

• Note that d
dx cas(x) = cas(−x).

• There is a fast Discrete Hartley transform (DHT) similar to the DFT.

• For even functions the Hartley and Fourier transforms are the same.

6.34 MELLIN TRANSFORM

The Mellin transform of the real function f(x) is

f∗(s) =M[f(x); s] =

∫ ∞

0

f(x)xs−1 dx. (6.34.1)

The inverse transform is

f(x) =M−1[f(s);x] =
1

2πi

∫ c+i∞

c−i∞
f∗(s)x−s ds. (6.34.2)
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6.35 HILBERT TRANSFORM

The Hilbert transform of f is defined as

(Hf)(x) = f̃(x) =
1

π

∫ ∞

−∞

f(t)

t− x dt =
1

π

∫ ∞

−∞

f(x+ t)

t
dt (6.35.1)

where the integral is a Cauchy principal value. See the table on page 499.

Since the definition is given in terms of a singular integral, it is sometimes im-

practical to use. An alternative definition is given below. First, let f be an integrable

function, and define a(t) and b(t) by

a(t) =
1

π

∫ ∞

−∞
f(x) cos txdx, b(t) =

1

π

∫ ∞

−∞
f(x) sin tx dx. (6.35.2)

Consider the function F (z), defined by the integral

F (z) =

∫ ∞

0

(a(t) − ib(t))eizt dt = U(z) + iŨ(z), (6.35.3)

where z = x+ iy. The real and imaginary parts of F are

U(z) =

∫ ∞

0

(a(t) cosxt+ b(t) sinxt)e−yt dt, and

Ũ(z) =

∫ ∞

0

(a(t) sinxt− b(t) cosxt)e−yt dt.

(6.35.4)

Formally,

lim
y→0

U(z) = f(x) =

∫ ∞

0

(a(t) cos xt+ b(t) sinxt) dt, (6.35.5)

and

lim
y→0

Ũ(z) = −f̃(x) =
∫ ∞

0

(a(t) sinxt− b(t) cosxt) dt, (6.35.6)

The Hilbert transform of a function f, given by Equation (6.35.5), is defined as

the function f̃ given by Equation (6.35.6).

6.35.1 EXISTENCE

If f ∈ L1(R), then its Hilbert transform (Hf)(x) exists for almost all x. For f ∈
Lp(R), p > 1, there is the following stronger result:

THEOREM 6.35.1
Let f ∈ Lp(R) for 1 < p < ∞. Then (Hf)(x) exists for almost all x and defines a

function that also belongs to Lp(R) with

∫ ∞

−∞
|(Hf)(x)|p dx ≤ Cp

∫ ∞

−∞
|f(x)|p dx. (6.35.7)
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In the special case of p = 2, we have

∫ ∞

−∞
|(Hf)(x)|2 dx =

∫ ∞

−∞
|f(x)|2 dx. (6.35.8)

The theorem is not valid if p = 1 because, although it is true that (Hf)(x)
is defined almost everywhere, it is not necessarily in L1(R). The function f(t) =
(t log2 t)−1H(t) provides a counterexample.

6.35.2 PROPERTIES

1. Translation: The Hilbert transform commutes with the translation operator

(Hf)(x+ a) = H(f(t+ a))(x).
2. Dilation: The Hilbert transformation also commutes with the dilation operator

(Hf)(ax) = H(f(at))(x) a > 0,

but

(Hf)(ax) = −H(f(at))(x) for a < 0.

3. Multiplication by t: H(tf(t))(x) = x(Hf)(x) + 1

π

∫ ∞

−∞
f(t) dt.

4. Differentiation: H(f ′(t))(x) = (Hf)′(x), provided that f(t) = O(t) as |t| →
∞.

5. Orthogonality: The Hilbert transform of f ∈ L2(R) is orthogonal to f in the

sense
∫∞
−∞ f(x)(Hf)(x)dx = 0.

6. Parity: The Hilbert transform of an even function is odd and that of an odd

function is even.

7. Inversion formula: If (Hf)(x) = 1

π

∫ ∞

−∞

f(t)

t− x dt, then

f(t) = − 1

π

∫ ∞

−∞

(Hf)(x)
x− t dx or, symbolically,

H (Hf) (x) = −f(x), (6.35.9)

that is, applying the Hilbert transform twice returns the negative of the original

function. Moreover, if f ∈ L1(R) has a bounded derivative, then the allied

integral (see Equation 6.27.5) equals (Hf)(x).
8. Meromorphic invariance:

(Hf)(u(x)) = f̃(u(x)) =
1

π

∫ ∞

−∞

f(t)

t− u(x) dt =
1

π

∫ ∞

−∞

f [u(t)]

t− x dt

where

u(t) = t−
∞∑

n=1

an
t− bn

,

for arbitrary an ≥ 0 and bn real.
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6.35.3 RELATIONSHIP WITH THE FOURIER TRANSFORM

From Equations (6.35.3)–(6.35.6), we obtain

lim
y→0

F (z) = F (x) =

∫ ∞

0

(a(t)− ib(t))eixt dt = f(x)− i(Hf)(x),

where a(t) and b(t) are given by Equation (6.35.2).

Let g be a real-valued integrable function and consider its Fourier transform

ĝ(x) = 1√
2π

∫∞
−∞ g(t)eixt dt. If we denote the real and imaginary parts of ĝ by f

and f̃ , respectively, then

f(x) =
1√
2π

∫ ∞

−∞
g(t) cosxt dt, and

f̃(x) =
1√
2π

∫ ∞

−∞
g(t) sinxt dt.

Splitting g into its even and odd parts, ge and go, respectively, we obtain

ge(t) =
g(t) + g(−t)

2
and go(t) =

g(t)− g(−t)
2

;

hence

f(x) =

√
2

π

∫ ∞

0

ge(t) cos xt dt, and f̃(x) =

√
2

π

∫ ∞

0

go(t) sinxt dt,

(6.35.10)

or

f(x) =
1√
2π

∫ ∞

−∞
ge(t)e

ixt dt, and f̃(x) =
−i√
2π

∫ ∞

−∞
go(t)e

ixt dt.

(6.35.11)

This shows that, if the Fourier transform of the even part of a real-valued function

represents a function f(x), then the Fourier transform of the odd part represents the

Hilbert transform of f (up to multiplication by i).

THEOREM 6.35.2
Let f ∈ L1(R) and assume thatHf is also in L1(R). Then

F(Hf)(ω) = −i sgn(ω)F(f)(ω), (6.35.12)

where F denotes the Fourier transformation. Similarly, if f ∈ L2(R), then (Hf) ∈
L2(R), and Equation (6.35.12) remains valid.
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6.36 Z-TRANSFORM

The Z-transform of a sequence {f(n)}∞−∞ is defined by

Z[f(n)] = F (z) =

∞∑

n=−∞
f(n)z−n, (6.36.1)

for all complex numbers z for which the series converges.

The series converges at least in a ring of the form 0 ≤ r1 < |z| < r2 ≤ ∞,

whose radii, r1 and r2, depend on the behavior of f(n) at ±∞:

r1 = lim sup
n→∞

n
√
|f(n)|, r2 = lim inf

n→∞
1

n
√
|f(−n)|

. (6.36.2)

If there is more than one sequence involved, we may denote r1 and r2 by r1(f)
and r2(f), respectively. It may happen that r1 > r2, so that the function is nowhere

defined. The function F (z) is analytic in this ring, but it may be possible to continue

it analytically beyond the boundaries of the ring. If f(n) = 0 for n < 0, then

r2 =∞, and if f(n) = 0 for n ≥ 0, then r1 = 0.

Let z = reiθ . Then the Z-transform evaluated at r = 1 is the Fourier transform

of the sequence {f(n)}∞−∞,

∞∑

n=−∞
f(n)e−inθ. (6.36.3)

6.36.1 EXAMPLES

1. Let a be a complex number and define f(n) = an, for n ≥ 0, and zero

otherwise, then

Z[f(n)] =
∞∑

n=0

anz−n =
z

z − a , |z| > |a|. (6.36.4)

Special case: step impulse function. If a = 1 then Z[u(n)] = z

z − 1
and

f(n) = u(n) =

{
1, n ≥ 0,

0, n < 0,
.

2. If f(n) = nan, for n ≥ 0, and zero otherwise, then

Z[f(n)] =
∞∑

n=0

nanz−n =
az

(z − a)2 , |z| > |a|.

3. Let δ(n) =

{
1, n = 0,

0, otherwise,
then Z[δ(n−k)] = z−k for k = 0,±1,±2, . . . .
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6.36.2 PROPERTIES

The region of convergence of the Z-transform of the sequence {f(n)} will be de-

noted Df .

1. Linearity:

Z[af(n)+bg(n)] = aZ[f(n)]+bZ[g(n)] = aF (z)+bG(z), z ∈ Df∩Dg.

The regionDf

⋂
Dg contains the ring r1 < |z| < r2, where

r1 = maximum {r1(f), r1(g)} and r2 = minimum {r2(f), r2(g)}.
2. Translation: Z[f(n− k)] = z−kF (z).
3. Multiplication by exponentials: Z[(anf(n))] = F (z/a) when

|a|r1 < |z| < |a|r2.

4. Multiplication by powers of n: For k = 0, 1, 2, . . . and z ∈ Df ,

Z[(nkf(n))] = (−1)k
(
z
d

dz

)k

F (z). (6.36.5)

5. Conjugation: Z[f(−n)] = F

(
1

z

)
.

6. Initial and final values: If f(n) = 0 for n < 0, then limz→∞ F (z) = f(0)
and, conversely, if F (z) is defined for r1 < |z| and for some integer m,
limz→∞ zmF (z) = A (with A 6= ±∞), then f(m) = A and f(n) = 0,

for n < m.

7. Parseval’s relation: Let F,G ∈ L2(−π, π), and let F (z) and G(z) be the

Z-transforms of {f(n)} and {g(n)}, respectively. Then

∞∑

n=−∞
f(n)g(n) =

1

2π

∫ π

−π

F (eiω)G(eiω) dω. (6.36.6)

In particular,
∞∑

n=−∞
|f(n)|2 =

1

2π

∫ π

−π

|F (eiω)|2 dω. (6.36.7)

6.36.3 INVERSION FORMULA

Consider the sequences

f(n) = u(n) =

{
1, n ≥ 0,

0, n < 0,
and g(n) = −u(−n− 1) =

{
−1, n < 0,

0, n ≥ 0.

Note that F (z) =
z

z − 1
for |z| > 1, and G(z) =

z

z − 1
for |z| < 1. Hence, the

inverse Z-transform of the function z/(z − 1) is not unique. In general, the inverse

Z-transform is not unique, unless its region of convergence is specified.
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1. Inversion by using series representation:

If F (z) is given by its series

F (z) =

∞∑

n=−∞
anz

−n, r1 < |z| < r2,

then its inverse Z-transform is unique and is given by f(n) = an for all n.

2. Inversion by using complex integration:

If F (z) is given in a closed-form as an algebraic expression and its domain of

analyticity is known, then its inverseZ-transform can be obtained by using the

relationship

f(n) =
1

2πi

∮

γ

F (z)zn−1dz, (6.36.8)

where γ is a closed contour surrounding the origin once in the positive

(counter-clockwise) direction in the domain of analyticity of F (z).
3. Inversion by using Fourier series:

If the domain of analyticity of F contains the unit circle, |r| = 1, and if F is

single valued therein, then F (eiθ) is a periodic function with period 2π, and,

consequently, it can be expanded in a Fourier series. The coefficients of the

series form the inverse Z-transform of F and they are given explicitly by

f(n) =
1

2π

∫ π

−π

F (eiθ)einθdθ. (6.36.9)

(This is a special case of (2) with γ(θ) = eiθ .)

4. Inversion by using partial fractions:

Dividing Equation (6.36.4) by z and differentiating both sides with respect to

z, results in

Z−1
[
(z − a)−k

]
=

(
n− 1

n− k

)
an−ku(n− k), (6.36.10)

for k = 1, 2, . . . and |z| > |a| > 0. Moreover,

Z−1
[
z−k

]
= δ(n− k). (6.36.11)

Let F (z) be a rational function of the form

F (z) =
P (z)

Q(z)
=
aNz

N + . . .+ a1z + a0
bMzM + . . .+ b1z + b0

.

with aN 6= 0 and bM 6= 0.

(a) Consider the case N < M . The denominator Q(z) can be factored over

the field of complex numbers as Q(z) = c(z − z1)k1 · · · (z − zm)km ,

where c is a constant and k1, . . . , km are positive integers satisfying k1+
. . .+ km =M . Hence, F can be written in the form

F (z) =

m∑

i=1

ki∑

j=1

Ai,j

(z − zi)j
, (6.36.12)
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where

Ai,j =
1

(ki − j)!
lim
z→zi

dki−j

dzki−j

(
(z − zi)kiF (z)

)
. (6.36.13)

The inverse Z-transform of the fractional decomposition Equation

(6.36.12) in the region that is exterior to the smallest circle containing

all the zeros of Q(z) can be obtained by using Equation (6.36.10).

(b) Consider the case N ≥ M . We must divide until F can be reduced to

the form

F (z) = H(z) +
R(z)

Q(z)
,

where the remainder polynomial, R(z), has degree less than or equal to

M − 1, and the quotient, H(z), is a polynomial of degree N −M . The

inverse Z-transform of the quotient polynomial can be obtained by using

Equation (6.36.11) and that of R(z)/Q(z) can be obtained as in the case

N < M .

EXAMPLE To find the inverse Z-transform of the function,

F (z) =
z4 + 5

(z − 1)2(z − 2)
, |z| > 2, (6.36.14)

the partial fraction expansion,

z4 + 5

(z − 1)2(z − 2)
= z + 4− 6

(z − 1)2
− 10

(z − 1)
+

21

(z − 2)
, (6.36.15)

is computed. With the aid of Equation (6.36.10) and Equation (6.36.11),

Z−1 [F (z)] = δ(n+ 1) + 4δ(n)− 6(n− 1)u(n− 2)

− 10u(n− 1) + 21 · 2n−1u(n− 1), (6.36.16)

or f(n) = −6n − 4 + 21 · 2n−1, for n ≥ 2, with the initial values f(−1) = 1,

f(0) = 4, and f(1) = 11.

6.36.4 CONVOLUTION AND PRODUCT

The convolution of two sequences, {f(n)}∞−∞ and {g(n)}∞−∞ , is a sequence

{h(n)}∞−∞ defined by h(n) =
∑∞

k=−∞ f(k)g(n − k). The Z-transform of the

convolution of two sequences is the product of their Z-transforms,

Z[h(n)] = Z[f(n)]Z [g(n)],
for z ∈ Df

⋂
Dg, or H(z) = F (z)G(z).

The Z-transform of the product of two sequences is given by

Z[f(n)g(n)] = 1

2πi

∮

γ

F (ω)G
( z
ω

) dω
ω
, (6.36.17)

where γ is a closed contour surrounding the origin in the positive direction in the

domain of convergence of F (ω) and G(z/ω).
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6.37 TABLES OF TRANSFORMS

Finite sine transforms

fs(n) =

∫ π

0

F (x) sinnxdx, for n = 1, 2, . . . .

No. fs(n) F (x)

1 (−1)n+1fs(n) F (π − x)

2 1/n π − x/π

3 (−1)n+1/n x/π

4 1− (−1)n/n 1

5
2

n2
sin

nπ

2

{
x when 0 < x < π/2

π − x when π/2 < x < π

6 (−1)n+1/n3 x(π2 − x2)/6π

7 1− (−1)n/n3 x(π − x)/2

8 π2(−1)n−1

n
− 2[1− (−1)n]

n3
x2

9 π(−1)n
(

6

n3
− π2

n

)
x3

10
n

n2 + c2
[1− (−1)necπ] ecx

11
n

n2 + c2
sinh c(π − x)

sinh cπ

12
n

n2 − k2 with k 6= 0, 1, 2, . . .
sin k(π − x)

sin kπ

13

{
π/2 when n = m

0 when n 6= m, m = 1, 2, . . .
sinmx

14

n

n2 − k2 [1− (−1)n cos kπ]
with k 6= 1, 2, . . . (0 if n = k)

cos kx

15
n

(n2 − k2)2 with k 6= 0, 1, 2, . . . π sinkx

2k sin2 kπ
− x cos k(π − x)

2k sin kπ

16 bn

n with |b| ≤ 1
2

π
tan−1 b sinx

1− b cosx

17
1− (−1)n

n
bn with |b| ≤ 1

2

π
tan−1 2b sinx

1− b2
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Finite cosine transforms

fc(n) =

∫ π

0

F (x) cosnxdx, for n = 0, 1, 2, . . . .

No. fc(n) F (x)

1 (−1)nfc(n) F (π − x)

2

{
π n = 0

0 n = 1, 2, . . .
1

3




0 n = 0
2

n
sin

nπ

2
n = 1, 2, . . .

{
1 for 0 < x < π/2

−1 for π/2 < x < π

4




π2

2
n = 0

(−1)n − 1/n2 n = 1, 2, . . .
x

5




π2

6
n = 0

(−1)n/n2 n = 1, 2, . . .

x2

2π

6

{
0 n = 0

1/n2 n = 1, 2, . . .
(x− π)2

2π
− π

6

7





π4

4
n = 0

3π2 (−1)n
n2

− 6
1− (−1)n

n4

n = 1, 2, . . .

x3

8
(−1)necπ − 1

n2 + c2
1
ce

cx

9
1

n2 + c2

cosh c(π − x)
c sinh cπ

10
k

n2 − k2 [(−1)
n cosπk − 1]

with k 6= 0, 1, 2, . . .

sin kx

11




0 m = 1, 2, . . .
(−1)n+m − 1

n2 −m2
m 6= 1, 2, . . .

1

m
sinmx

12
1

n2 − k2
with k 6= 0, 1, 2, . . .

− cos k(π − x)
k sinkπ

13

{
π/2 when n = m

0 when n 6= m
cosmx (m = 1, 2, . . . )
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Fourier sine transforms

F (ω) = Fs(f)(ω) =

√
2

π

∫ ∞

0

f(x) sin(ωx) dx, ω > 0.

No. f(x) F (ω)

1

{
1 0 < x < a

0 x > a

√
2

π

(
1− cosωa

ω

)

2 xp−1 (0 < p < 1)
√

2
π

Γ(p)
ωp sin pπ

2

3

{
sinx 0 < x < a

0 x > a
1√
2π

(
sin[a(1−ω)]

1−ω − sin[a(1+ω)]
1+ω

)

4 e−x
√

2
π

ω
1+ω2

5 xe−x2/2 ωe−ω2/2

6 cos
x2

2

√
2
[
sin ω2

2 C
(

ω2

2

)

− cos ω2

2 S
(

ω2

2

)]

7 sin
x2

2

√
2
[
cos ω2

2 C
(

ω2

2

)

+sin ω2

2 S
(

ω2

2

)]

Fourier cosine transforms

F (ω) = Fc(f)(ω) =

√
2

π

∫ ∞

0

f(x) cos(ωx) dx, ω > 0.

No. f(x) F (ω)

1

{
1 0 < x < a

0 x > a

√
2

π

sin aω

ω

2 xp−1 (0 < p < 1)
√

2
π

Γ(p)
ωp cos pπ

2

3

{
cosx 0 < x < a

0 x > a
1√
2π

(
sin[a(1−ω)]

1−ω + sin[a(1+ω)]
1+ω

)

4 e−x
√

2
π

1
1+ω2

5 e−x2/2 e−ω2/2

6 cos x2

2 cos
(

ω2

2 − π
4

)

7 sin x2

2 cos
(

ω2

2 + π
4

)
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Fourier transforms: functional relations

F (ω) = F(f)(ω) = 1√
2π

∫ ∞

−∞
f(x)eiωx dx

No. f(x) F (ω)

1 ag(x) + bh(x) aG(ω) + bH(ω)

2 f(ax) a 6= 0, Im a = 0 1
|a|F

(
ω
a

)

3 f(−x) F (−ω)

4 f(x) F (−ω)

5 f(x− τ) Im τ = 0 eiωτF (ω)

6 eiΩxf(x) Im Ω = 0 F (ω +Ω)

7 F (x) f(−ω)

8 dn

dxn f(x) (−iω)nF (ω)

9 (ix)nf(x) dn

dωnF (ω)

10 ∂
∂af(x, a)

∂
∂aF (ω, a)

Fourier transforms

F (ω) = F(f)(ω) = 1√
2π

∫ ∞

−∞
f(x)eiωx dx

No. f(x) F (ω)

1 δ(x) 1/
√
2π

2 δ(x− τ) eiωτ/
√
2π

3 δ(n)(x) (−iω)n/
√
2π

4 H(x) =

{
1 x > 0

0 x < 0
− 1

iω
√
2π

+

√
π

2
δ(ω)

5 sgn(x) =

{
1 x > 0

−1 x < 0
−
√

2

π

1

iω

6

{
1 |x| < a

−1 |x| > a

√
2

π

sin aω

ω

7

{
eiΩt |x| < a

0 |x| > a

√
2

π

sin a(Ω + ω)

Ω + ω

8 e−a|x| a > 0 −
√

2
π

a
a2+ω2
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Fourier transforms

F (ω) = F(f)(ω) = 1√
2π

∫ ∞

−∞
f(x)eiωx dx

No. f(x) F (ω)

9 sinΩx
x

√
π
2 [H(Ω− ω)−H(−Ω− ω)]

10 sin ax/x

{√
π
2 |ω| < a

0 |ω| > a

11

{
eiax p < x < q

0 x < p, x > q

i√
2π
eip(ω+a) − eiq(ω+a)/ω + a

12

{
e−cx+iax x > 0

0 x < 0
(c > 0)

i√
2π(ω + a+ ic)

13 e−px2

Re p > 0 1√
2p
e−ω2/4p

14 cos px2 1√
2p

cos
(

ω2

4p − π
4

)

15 sin px2 1√
2p

cos
(

ω2

4p + π
4

)

16 |x|−p (0 < p < 1)
√

2
π

Γ(1−p) sin pπ
2

|ω|1−p

17 e−a|x|/
√
|x|

√√
a2+ω2+a√
ω2+a2

18 cosh ax
coshπx (−π < a < π)

√
2
π

cos a
2 cosh ω

2

cosa+coshω

19 sinh ax
sinhπx (−π < a < π) 1√

2π
sin a

cosa+coshω

20

{
1√

a2−x2
|x| < a

0 |x| > a

√
π
2 J0(aω)

21 sin[b
√
a2+x2]√

a2+x2

{
0 |ω| > b√

π
2 J0(a

√
b2 − ω2) |ω| < b

22

{
Pn(x) |x| < 1

0 |x| > 1

in√
ω
Jn+1/2(ω)

23

{
cos[b

√
a2−x2]√

a2−x2
|x| < a

0 |x| > a

√
π
2 J0(a

√
ω2 + b2)

24

{
cosh[b

√
a2−x2]√

a2−x2
|x| < a

0 |x| > a

√
π
2 J0(a

√
ω2 − b2)
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Multidimensional Fourier transforms

F (u) = (2π)−n/2
∫
· · ·
∫

Rn

f(x)ei(x·u) dx

No. f(x) F (u)

In n-dimensions

1 f(ax) Im a = 0 |a|−n
F (a−1u)

2 f(x− a) e−ia·uF (u)

3 eia·xf(x) F (u+ a)

4 F (x) (2π)nf(−u)

Two dimensions: let x = (x, y) and u = (u, v).

5 f(ax, by)
1

|ab|F
(u
a
,
v

b

)

6 f(x− a, y − b) ei(au+bv)F (u, v)

7 ei(ax+by)f(x, y) F (u+ a, v + b)

8 F (x, y) (2π)2F (−u,−v)

9 δ(x− a)δ(y − b) 1

2π
e−i(au+bv)

10 e−x2/4a−y2/4b a, b > 0 2
√
ab e−au2−bv2

11

{
1 |x| < a, |y| < b

0 otherwise
(rectangle)

2 sinau sin bv

πuv

12

{
1 |x| < a

0 otherwise
(strip)

2 sinau

πuv
δ(v)

13

{
1 x2 + y2 < a2

0 otherwise
(circle)

aJ1(a
√
u2 + v2)√

u2 + v2

Three dimensions: let x = (x, y, z) and u = (u, v, w).

14 δ(x− a)δ(y − b)δ(z − c) 1

(2π)3/2
e−i(au+bv+cw)

15 e−x2/4a−y2/4b−z2/4c a, b, c > 0 23/2
√
abc e−au2−bv2−cw2

16

{
1 |x| < a, |y| < b, |z| < c

0 otherwise (box)

(
2

π

)3/2
sinau sin bv sin cw

uvw

17

{
1 x2 + y2 + z2 < a2

0 otherwise
(ball)

sin aρ− aρ cos aρ√
2πρ3

ρ2 = u2 + v2 +w2
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Hankel transforms

Hν(f)(y) = Fν(y) =

∫ ∞

0

f(x)
√
xyJν(yx) dx, y > 0.

No. f(x) Fν(y)

1

{
xν+1/2, 0 < x < 1

0, 1 < x

Re ν > −1
y−1/2Jν+1(y)

2

{
xν+1/2(a2 − x2)µ, 0 < x < a

0, a < x

Re ν, Re µ > −1

2µΓ(µ+ 1)aν+µ+1y−µ−1/2

× Jν+µ+1(ay)

3
xν+1/2(x2 + a2)−ν−1/2,

Re a > 0, Re ν > −1/2

√
πyν−1/22−νe−ay

× [Γ(ν + 1/2)]−1

4
xν+1/2e−ax,

Re a > 0, Re ν > −1
a(π)−1/22ν+1yν+1/2Γ(ν + 3/2)

× (a2 + y2)−ν−3/2

5
xν+1/2e−ax2

,

Re a > 0, Re ν > −1
yν+1/2(2a)−ν−1 exp

(
−y2/4a

)

6
e−ax/

√
x,

Re a > 0, Re ν > −1
y−ν+1/2

[√
(a2 + y2)− a

]ν

× (a2 + y2)−1/2

7
x−ν−1/2 cos(ax),

a > 0, Re ν > −1/2

√
π2−νy−ν+1/2[Γ(ν + 1/2)]−1

× (y2 − a2)ν−1/2H(y − a)

8
x1/2−ν sin(ax),

a > 0, Re ν > 1/2

a21−ν√πyν+1/2[Γ(ν − 1/2)]−1

× (y2 − a2)ν−3/2H(y − a)

9
x−1/2Jν−1(ax),

a > 0, Re ν > −1
aν−1y−ν+1/2H(y − a)

10
x−1/2Jν+1(ax),

a > 0, Re ν > −3/2

{
a−ν−1yν+1/2, 0 < y < a

0, a < y
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Hilbert transforms

H(f)(y) = F (y) =
1

π

∫ ∞

−∞

f(x)

x− y dx.

No. f(x) F (y)

1 1 0

2





0, −∞ < x < a

1, a < x < b

0, b < x <∞

1

π
log
∣∣(b− y)(a− y)−1

∣∣

3

{
0, −∞ < x < a

x−1, a < x <∞
(πy)−1 log

∣∣a(a− y)−1
∣∣ ,

0 6= y 6= a, a > 0

4 (x+ a)−1 Im a > 0 i(y + a)−1

5
1

1 + x2
− y

1 + y2

6
1

1 + x4
− y(1 + y2)√

2(1 + y4)

7 sin(ax), a > 0 cos(ay)

8
sin(ax)

x
, a > 0

cos(ay)− 1

y

9
sinx

1 + x2
cos y − e−1

1 + y2

10 cos(ax), a > 0 − sin(ay)

11
1− cos(ax)

x
, a > 0

sin(ay)

y

12 sgn(x) sin(a|x|1/2) a > 0 cos(a|y|1/2) + exp(−a|y|1/2)

13 eiax a > 0 ieiay
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Laplace transforms: functional relations

F (s) = L(f)(s) =
∫ ∞

0

f(t)e−st dt.

No. f(t) F (s)

1 af(t) + bg(t) aF (s) + bG(s)

2 f ′(t) sF (s)− F (0+)

3 f ′′(t) s2F (s)− sF (0+)− F ′(0+)

4 f (n)(t) snF (s)−
n−1∑

k=0

sn−1−kF (k)(0+)

5
∫ t

0
f(τ) dτ 1

sF (s)

6
∫ t

0

∫ τ

0 f(u) du dτ
1
s2F (s)

7
∫ t

0
f1(t− τ)f2(τ) dτ = f1 ∗ f2 F1(s)F2(s)

8 tf(t) −F ′(s)

9 tnf(t) (−1)nF (n)(s)

10 1
t f(t)

∫∞
s
F (z) dz

11 eatf(t) F (s− a)

12 f(t− b) with f(t) = 0 for t < 0 e−bsF (s)

13 1
cf
(
t
c

)
F (cs)

14 1
ce

bt/cf
(
t
c

)
F (cs− b)

15 f(t+ a) = f(t)
∫ a

0 e
−stf(t) dt/1− e−as

16 f(t+ a) = −f(t)
∫ a

0
e−stf(t) dt/1 + e−as

17

∑n
k=1

p(ak)
q′(ak)

eakt

with q(t) = (t− a1) · · · (t− an)
p(s)

q(s)

18 eat
n∑

k=1

φ(n−k)(a)

(n− k)!
tk−1

(k − 1)!

φ(s)

(s− a)n
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Laplace transforms

F (s) = L(f)(s) =
∫ ∞

0

f(t)e−st dt.

No. f(t) F (s)

1 δ(t), delta function 1

2 H(t), unit step function or
Heaviside function

1/s

3 t 1/s2

4 tn−1

(n−1)! 1/sn (n = 1, 2, . . . )

5 1/
√
πt 1/

√
s

6 2
√
t/π s−3/2

7 2ntn−1/2
√
π(2n−1)!!

s−(n+1/2) (n = 1, 2, . . . )

8 tk−1 Γ(k)
sk

(k > 0)

9 eat 1
s−a

10 teat 1
(s−a)2

11 1
(n−1)! t

n−1eat 1
(s−a)n (n = 1, 2, . . . )

12 tk−1eat Γ(k)
(s−a)k

(k > 0)

13 1
a−b

(
eat − ebt

)
1

(s−a)(s−b) (a 6= b)

14 1
a−b

(
aeat − bebt

)
s

(s−a)(s−b) (a 6= b)

15 − (b−c)eat+(c−a)ebt+(a−b)ect

(a−b)(b−c)(c−a)
1

(s−a)(s−b)(s−c) (a, b, c distinct)

16 1
a sin at 1

s2+a2

17 cos at s
s2+a2

18 1
a sinh at 1

s2−a2

19 coshat s
s2−a2

20 1
a2 (1− cos at) 1

s(s2+a2)

21 1
a3 (at− sin at) 1

s2(s2+a2)

22 1
2a3 (sin at− at cos at) 1

(s2+a2)2

23 t
2a sin at s

(s2+a2)2



“smtf32” — 2011/5/20 — 2:09 — page 502 — #512

502 CHAPTER 6. SPECIAL FUNCTIONS

Laplace transforms

F (s) = L(f)(s) =
∫ ∞

0

f(t)e−st dt.

No. f(t) F (s)

24 1
2a (sin at+ at cosat) s2

(s2+a2)2

25 t cos at s2−a2

(s2+a2)2

26 cosat−cos bt
b2−a2

s
(s2+a2)(s2+b2) (a2 6= b2)

27 1
b e

at sin bt 1
(s−a)2+b2

28 eat cos bt s−a
(s−a)2+b2

29
− e−at

4n−1b2n

∑n
k=1

(
2n−k−1

n−1

)

×(−2t)k−1 dk

dtk
[cos bt]

1

[(s− a)2 + b2]
n

30

e−at

4n−1b2n

{∑n
k=1

(
2n−k−1

n−1

) (−2t)k−1

(k−1)!

× dk

dtk
[a cos bt+ b sinat]

−2b∑n−1
k=1

(
2n−k−2

n−1

) (−2t)k−1

(k−1)!

× dk

dtk
[sin bt]

}

s

[(s− a)2 + b2]n

31

e−at

−eat/2
(
cos at

√
3

2 −
√
3 sin at

√
3

2

) 3a2

s3 + a3

32 sin at coshat− cos at sinh at 4a3

s4+4a4

33 1
2a2 sin at sinh at

s
s4+4a4

34 1
2a3 (sinh at− sin at) 1

s4−a4

35 1
2a2 (coshat− cos at) s

s4−a4

36 (1 + a2t2) sin at− cos at 8a3s2

(s2+a2)3

37 et

n!
dn

dtn (t
ne−t) 1

s

(
s−1
s

)n

38 1√
πt
eat(1 + 2at) s

(s−a)3/2

39 1

2
√
πt3

(ebt − eat) √
s− a−

√
s− b

40 1√
πt
− aea2t erfc(a

√
t) 1√

s+a

41 1√
πt

+ aea
2t erf(a

√
t)

√
s

s−a2
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Laplace transforms

F (s) = L(f)(s) =
∫ ∞

0

f(t)e−st dt.

No. f(t) F (s)

42 1√
πt
− 2a√

π
e−a2t

∫ a
√
t

0
eτ

2

dτ
√
s

s+a2

43 1
ae

a2t erf(a
√
t) 1√

s(s−a2)

44 2
a
√
π
e−a2t

∫ a
√
t

0
eτ

2

dτ 1√
s(s+a2)

45
ea

2t[b− a erf(a
√
t)]

−beb2t erfc(b
√
t)

b2 − a2
(s− a2)(b +√s)

46 ea
2t erfc(a

√
t) 1√

s(
√
s+a)

47 1√
b−a

e−at erf(
√
b− a

√
t) 1

(s+a)
√
s+b

48
ea

2t
[
b
a erf(a

√
t)− 1

]

+eb
2t erfc(b

√
t)

b2−a2
√
s(s−a2)(

√
s+b)

49 n!
(2n)!

√
πt
H2n(

√
t) (1−s)n

sn+1/2

50 − n!
(2n+1)!

√
π
H2n+1(

√
t) (1−s)n

sn+3/2

51 ae−at [I1(at) + I0(at)]
√
s+2a√

s
− 1

52 e−(a+b)t/2I0
(
a−b
2 t
)

1√
s+a

√
s+b

53

√
π
(

t
a−b

)k−1/2

e−(a+b)t/2

×Ik−1/2

(
a−b
2 t
)

Γ(k)

(s+ a)k(s+ b)k
(k ≥ 0)

54
te−(a+b)t/2

[
I0
(
a−b
2 t
)

+ I1
(
a−b
2 t
)]

1√
s+ a(s+ b)3/2

55 1
t e

−atI1(at)
√
s+2a−√

s√
s+2a+

√
s

56 J0(at)
1√

s2+a2

57 akJk(at)
(
√
s2+a2−s)k√

s2+a2
(k > −1)

58
√
π

Γ(k)

(
t
2a

)k−1/2
Jk−1/2(at)

1
(s2+a2)k

(k > 0)

59 kak

t Jk(at) (
√
s2 + a2 − s)k (k > 0)

60 akIk(at)
(s−

√
s2−a2)k√
s2−a2

(k > −1)

61
√
π

Γ(k)

(
t
2a

)k−1/2
Ik−1/2(at)

1
(s2−a2)k

(k > 0)
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Laplace transforms

F (s) = L(f)(s) =
∫ ∞

0

f(t)e−st dt.

No. f(t) F (s)

62

{
0 when 0 < t < k

1 when t > k

e−ks

s

63

{
0 when 0 < t < k

t− k when t > k

e−ks

s2

64

{
0 when 0 < t < k
(t−k)p−1

Γ(p) when t > k

e−ks

sp
(p > 0)

65

{
1 when 0 < t < k

0 when t > k

1− e−ks

s

66 |sin at| a
s2+a2 coth

πs
2a

67 J0(2
√
at) 1

se
−a/s

68 1√
πt

cos 2
√
at 1√

s
e−a/s

69 1√
πt

cosh 2
√
at 1√

s
ea/s

70 1√
πa

sin 2
√
at 1

s3/2
e−a/s

71 1√
πa

sinh 2
√
at 1

s3/2
ea/s

72
(
t
a

)(k−1)/2
Jk−1(2

√
at) 1

sk
e−a/s (k > 0)

73
(
t
a

)(k−1)/2
Ik−1(2

√
at) 1

sk
ea/s (k > 0)

74 a
2
√
πt
e−a2/4t e−a

√
s (a > 0)

75 erfc
(

a
2
√
t

)
1
se

−a
√
s (a ≥ 0)

76 1√
πt
e−a2/4t 1√

s
e−a

√
s (a ≥ 0)

77 2
√

t
π e

−a2/4t − a erfc
(

a
2
√
t

)
s−3/2e−a

√
s (a ≥ 0)

78 eak+a2t erfc
(
a
√
t+ k

2
√
t

)
e−k

√
s

√
s(a+

√
s)

(k ≥ 0)

79 J0(a
√
t2 + 2kt) e−k(

√
s2+a2−s)

√
s2+a2

(k ≥ 0)

80 Γ′(1)− log t 1
s log s

81 tk−1
[

Γ′(k)
|Γ(k)|2 −

log t
Γ(k)

]
1
sk

log s (k > 0)

82 eat[log a− Ei(−at)] log s
s−a (a > 0)
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Laplace transforms

F (s) = L(f)(s) =
∫ ∞

0

f(t)e−st dt.

No. f(t) F (s)

83 cos t Si(t)− sin tCi(t) log s
s2+1

84 − sin t Si(t)− cos tCi(t) t log s
s2+1

85 −Ei
(
− t

a

)
1
s log(1 + as) (a > 0)

86 1
t (e

bt − eat) log s−a
s−b

87 −2Ci
(
− t

a

)
1
s log(1 + a2s2)

88 2 log a− 2Ci(at) 1
s log(s

2 + a2) (a > 0)

89 2
a [at log a+ sin at− atCi(at)] 1

s2 log(s
2 + a2) (a > 0)

90 2
t (1− cos at) log s2+a2

s2

91 2
t (1− coshat) log s2−a2

s2

92 1
t sin at tan−1 a

s

93 1
a
√
π
e−t2/4a2

ea
2s2 erfc(as) (a > 0)

94 erf
(

t
2a

)
1
se

a2s2 erfc(as) (a > 0)

95
√
a

π
√
t(t+a)

eas erfc(
√
as) (a > 0)

96 1√
π(t+a)

1√
s
eas erfc(

√
as) (a > 0)

97 1
πt sin(2a

√
t) erf

(
a√
s

)

98 1
t+a −eas Ei(−as) (a > 0)

99 1
(t+a)2

1
a + seas Ei(−as) (a > 0)

100 1
t2+1

[
π
2 − Si(s)

]
cos s+Ci(s) sin s

101

{
0 when 0 < t < a

(t2 − a2)−1/2 when t > a
K0(as)
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Mellin transforms

f∗(s) =M[f(x); s] =

∫ ∞

0

f(x)xs−1 dx.

No. f(x) f∗(s)

1 ag(x) + bh(x) ag∗(s) + bh∗(s)

2 f (n)(x)† (−1)n Γ(s)
Γ(s−n)f

∗(s− n)

3 xnf (n)(x)† (−1)n Γ(s+n)
Γ(s) f∗(s)

4 Inf(x)‡ (−1)n Γ(s)
Γ(s+n)f

∗(s+ n)

5 e−x Γ(s) Re s > 0

6 e−x2 1
2Γ(

1
2s) Re s > 0

7 cosx Γ(s) cos(12πs) 0 < Re s < 1

8 sinx Γ(s) sin(12πs) 0 < Re s < 1

9 (1− x)−1 π cot(πs) 0 < Re s < 1

10 (1 + x)−1 π cosec(πs) 0 < Re s < 1

11 (1 + xa)−b Γ(s/a)Γ(b−s/a)
aΓ(b) 0 < Re s < ab

12 log(1 + ax) | arg a| < π
πs−1a−s cosec(πs)

− 1 < Re s < 0

13 tan−1 x
− 1

2πs
−1 sec(12πs)

− 1 < Re s < 0

14 cot−1 x 1
2πs

−1 sec(12πs) 0 < Re s < 1

15 cschax Re a > 0 2(1− 2−s)a−sΓ(s)ζ(s)Re s > 1

16 sech2 ax Re a > 0 4(2a)−sΓ(s)ζ(s− 1) Re s > 2

17 csch2 ax Re a > 0 4(2a)−sΓ(s)ζ(s− 1) Re s > 2

18 Kν(ax)
a−s2s−2Γ((s− ν)/2)
× Γ((s+ ν)/2) Re s > |Re ν|

†Assuming that limx→0+ x
s−r−1f (r)(x) = 0 for r = 0, 1, . . . , n− 1.

‡Where In denotes the nth repeated integral of f(x): I0f(x) = f(x), Inf(x) =∫ x

0
In−1(t) dt.
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7.1 PROBABILITY THEORY

7.1.1 INTRODUCTION

A sample space S associated with an experiment is a set S of elements such that any

outcome of the experiment corresponds to a unique element of the set. An event E is

a subset of a sample space S. An element in a sample space is called a sample point

or a simple event.

7.1.1.1 Definition of probability

If an experiment can occur in n mutually exclusive and equally likely ways, and if

exactly m of these ways correspond to an event E, then the probability of E is

P (E) =
m

n
. (7.1.1)

If E is a subset of S, and if to each element subset of S, a non-negative number,

called the probability, is assigned, and if E is the union of two or more different sim-

ple events, then the probability of E, denoted P (E), is the sum of the probabilities

of those simple events whose union is E.

Technically, a probability space consists of three parts: a sample space S (set

of possible outcomes); a set of events {A} (an event contains a set of outcomes);

and a probability measure P (a function on events such that P (A) ≥ 0, P (S) = 1,

and P (∪j∈JAj) =
∑

j∈J P (Aj) if {Aj | j ∈ J} is a countable, pairwise disjoint

collection of events).

7.1.1.2 Marginal and conditional probability

Suppose a sample space S is partitioned into rs disjoint subsets where the general

subset is denoted Ei ∩ Fj (with i = 1, 2, . . . , r and j = 1, 2, . . . , s). Then the

marginal probability of Ei is defined as

P (Ei) =

s∑

j=1

P (Ei ∩ Fj), (7.1.2)

and the marginal probability of Fj is defined as

P (Fj) =
r∑

i=1

P (Ei ∩ Fj). (7.1.3)

The conditional probability of Ei, given that Fj has occurred, is defined as

P (Ei | Fj) =
P (Ei ∩ Fj)

P (Fj)
, when P (Fj) 6= 0 (7.1.4)

and that of Fj , given that Ei has occurred, is defined as

P (Fj | Ei) =
P (Ei ∩ Fj)

P (Ei)
, when P (Ei) 6= 0. (7.1.5)
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7.1.1.3 Probability theorems

1. If ∅ is the null set, then P (∅) = 0.

2. If S is the sample space, then P (S) = 1.

3. If E and F are two events, then

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ). (7.1.6)

4. If E and F are mutually exclusive events, then

P (E ∪ F ) = P (E) + P (F ). (7.1.7)

5. If E and E′ are complementary events, then

P (E) = 1− P (E′). (7.1.8)

6. Two events are said to be independent if and only if

P (E ∩ F ) = P (E)P (F ). (7.1.9)

The event E is said to be statistically independent of the event F if

P (E | F ) = P (E) and P (F | E) = P (F ).
7. The events {E1, . . . , En} are called mutually independent if and only if every

combination of these events taken any number of times is independent.

8. Bayes’ rule: If {E1, . . . , En} are n mutually exclusive events whose union is

the sample space S, and if E is any event of S such that P (E) 6= 0, then

P (Ek | E) =
P (Ek)P (E | Ek)

P (E)
=

P (Ek)P (E | Ek)∑n
j=1 P (Ej)P (E | Ej)

. (7.1.10)

9. For a uniform probability distribution,

P (A) =
Number of outcomes in eventA

Total number of outcomes
. (7.1.11)

7.1.1.4 Terminology

1. A function whose domain is a sample space S and whose range is some set

of real numbers is called a random variable. This random variable is called

discrete if it assumes only a finite or denumerable number of values. It is

called continuous if it assumes a continuum of values.

2. Random variables are usually represented by capital letters (e.g., X , Y , Z).

3. “iid” or “i.i.d.” is often used for the phrase “independent and identically

distributed.”

4. Many probability distributions have special representations:

(a) χ2
n: chi-square random variable with n degrees of freedom

(b) E(λ): exponential distribution with parameter λ
(c) N(µ, σ): normal random variable with mean µ and standard deviation σ
(d) P (λ): Poisson distribution with parameter λ
(e) U [a, b): uniform random variable on the interval [a, b)
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7.1.1.5 Characterizing random variables

The density function is defined as follows:

1. When X is a continuous random variable, let f(x) dx denote the probability

that X lies in the region [x, x + dx]; f(x) is called the probability density

function. (We require f(x) ≥ 0 and
∫
f(x) dx = 1). Mathematically, for any

event E,

P (E) = P (X is in E) =

∫

E

f(x) dx. (7.1.12)

2. When X is a discrete random variable, let pk for k = 0, 1, . . . be the proba-

bility that X = xk (with pk ≥ 0 and
∑

k pk = 1). Mathematically, for any

event E,

P (E) = P (X is in E) =
∑

xk∈E

pk. (7.1.13)

A discrete random variable can be written as a continuous density f(x) =∑

k

pkδ(x− xk).

The cumulative distribution function, or simply the distribution function, is de-

fined by

F (x) = P(X ≤ x) =
{∑

xk≤x pk, in the discrete case,∫ x

−∞ f(t) dt, in the continuous case.
(7.1.14)

Note that F (−∞) = 0 and F (∞) = 1. The probability that X is between a and b is

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a). (7.1.15)

Let g(X) be a function of X . The expected value (or expectation) of g(X),
denoted by E [g(X)], is given by (when it exists)

E [g(X)] =

{∑
k pkg(xk), in the discrete case,∫

R g(t)f(t) dt, in the continuous case.
(7.1.16)

1. E [aX + bY ] = aE [X ] + bE [Y ].
2. E [XY ] = E [X ]E [Y ] if X and Y are independent.

The moments of X are defined by µ′
k = E

[
Xk
]
. The first moment, µ′

1, is

called the mean of X ; it is usually denoted by µ = µ′
1 = E [X ]. The centered

moments of X are defined by µk = E
[
(X − µ)k

]
. The second centered moment is

called the variance and is denoted by σ2 = µ2 = E
[
(X − µ)2

]
. Here, σ is called

the standard deviation. The skewness is γ1 = µ3/σ
3, and the excess or kurtosis is

γ2 = (µ4/σ
4)− 3.

Using σ2
Z to denote the variance for the random variable Z , we have

1. σ2
cX = c2σ2

X .

2. σ2
c+X = σ2

X .

3. σ2
aX+b = a2σ2

X .
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7.1.1.6 Generating and characteristic functions

In the case of a discrete distribution, the generating function for the random variable

X (when it exists) is given by G(s) = GX(s) = E
[
sX
]
=
∑∞

k=0 pks
xk . From this

function, the moments may be found from

µ′
n =

(
s
∂

∂s

)n

G(s)

∣∣∣∣
s=1

. (7.1.17)

1. If c is a constant, then the generating function of c+X is scG(s).
2. If c is a constant, then the generating function of cX is G(sc).
3. If Z = X + Y where X and Y are independent discrete random variables,

then GZ(s) = GX(s)GY (s).
4. If Y =

∑n
i=1Xi, the {Xi} are independent, and each Xi has the common

generating functionGX(s), then the generating function of Y is [GX(s)]n.

In the case of a continuous distribution, the characteristic function for the ran-

dom variable X is given by φ(t) = E
[
eitX

]
=
∫∞
−∞ eitxf(x) dx; the Fourier trans-

form of f(x). From this function, the moments may be found: µ′
n = i−nφ(n)(0).

If Z = X + Y where X and Y are independent continuous random variables, then

φZ(t) = φX(t)φY (t). The cumulant function is defined as the logarithm of the char-

acteristic function. The nth cumulant, κn, is defined as a certain term in the Taylor

series of the cumulant function,

logφ(t) =

∞∑

n=0

κn
(it)n

n!
. (7.1.18)

Note that κ1 = µ, κ2 = σ2, κ3 = µ3, and κ4 = µ4 − 3µ2
2. For a normal probability

distribution, κn = 0 for n ≥ 3. The centered moments in terms of cumulants are

µ2 = κ2,

µ3 = κ3,

µ4 = κ4 + 3κ22,

µ5 = κ5 + 10κ3κ2,

(7.1.19)

For both discrete and continuous distributions, the moment generating function

(when it exists) for the random variable X is given by G(t) = GX(t) = E
[
etX
]
.

(For a multi-dimensional random variable: G(t) = GX(t) = E
[
et

TX
]
.) The nth

moment is then given by µ′
n =

dn

dtn
G(t)

∣∣∣∣
t=0

.

7.1.2 CENTRAL LIMIT THEOREM

If {Xi} are independent and identically distributed random variables with mean µ
and finite variance σ2, then the random variable

Z =
(X1 +X2 + · · ·+Xn)− nµ√

nσ
(7.1.20)

tends (as n→∞) to a normal random variable with mean zero and variance one.
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7.1.3 MULTIVARIATE DISTRIBUTIONS

7.1.3.1 Discrete case

The k-dimensional random variable (X1, . . . , Xk) is a k-dimensional discrete ran-

dom variable if it assumes values only at a finite or denumerable number of points

(x1, . . . , xk). Define

P (X1 = x1, X2 = x2, . . . , Xk = xk) = f(x1, x2, . . . , xk) (7.1.21)

for every value that the random variable can assume. The function f(x1, . . . , xk) is

called the joint density of the k-dimensional random variable. If E is any subset of

the set of values that the random variable can assume, then

P (E) = P [(X1, . . . , Xk) is in E] =
∑

E

f(x1, . . . , xk) (7.1.22)

where the sum is over all the points (x1, . . . , xk) in E. The cumulative distribution

function is defined as

F (x1, x2, . . . , xk) =
∑

z1≤x1

∑

z2≤x2

· · ·
∑

zk≤xk

f(z1, z2, . . . , zk). (7.1.23)

7.1.3.2 Continuous case

The k random variables (X1, . . . , Xk) are said to be jointly distributed if a function

f exists so that f(x1, . . . , xk) ≥ 0 for all −∞ < xi <∞ (i = 1, . . . , k) and so that,

for any given event E,

P (E) = P [(X1, X2, . . . , Xk) is in E]

=

∫
· · ·
∫

E

f(x1, x2, . . . , xk) dx1 dx2 · · · dxk. (7.1.24)

The function f(x1, . . . , xk) is called the joint density of the random variables X1,

X2, . . . , Xk. The cumulative distribution function is defined as

F (x1, x2, . . . , xk) =

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xk

−∞
f(z1, z2, . . . , zk) dzk · · · dz2 dz1. (7.1.25)

Given the cumulative distribution function, the probability density may be found

from

f(x1, x2, . . . , xk) =
∂

∂x1

∂

∂x2
· · · ∂

∂xk
F (x1, x2, . . . , xk). (7.1.26)

7.1.3.3 Moments

The rth moment of Xi is defined as

E [Xr
i ] =





∑
x1
· · ·∑xk

xri f(x1, . . . , xk), in the discrete case,
∞∫

−∞
· · ·

∞∫
−∞

xri f(x1, . . . , xk) dx1 · · · dxk in the continuous case.

Joint moments about the origin are defined as E [Xr1
1 X

r2
2 · · ·Xrk

k ] where r1 + r2 +
· · · + rk is the order of the moment. Joint moments about the mean are defined as

E [(X1 − µ1)
r1(X2 − µ2)

r2 · · · (Xk − µk)
rk ] , where µk = E [Xk] .
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7.1.3.4 Marginal and conditional distributions

If the random variables X1, X2, . . . , Xk have the joint density function

f(x1, x2, . . . , xk), then the marginal distribution of the subset of the random vari-

ables, say, X1, X2, . . . , Xp (with p < k), is given by

g(x1, x2, . . . , xp) =



∑
xp+1

∑
xp+2
· · ·∑xk

f(x1, x2, . . . , xk), in the discrete case,
∞∫

−∞
· · ·

∞∫
−∞

f(x1, . . . , xk) dxp+1 · · · dxk, in the continuous case.
(7.1.27)

The conditional distribution of a certain subset of the random variables is the

joint distribution of this subset under the condition that the remaining variables are

given certain values. The conditional distribution of X1, X2, . . . , Xp, given Xp+1,

Xp+2, . . . , Xk, is

h(x1, . . . , xp | xp+1, . . . , xk) =
f(x1, x2, . . . , xk)

g(xp+1, xp+2, . . . , xk)
(7.1.28)

if g(xp+1, xp+2, . . . , xk) 6= 0.

The variance σii of Xi and the covariance σij of Xi and Xj are given by

σ2
ii = σ2

i = E
[
(Xi − µi)

2
]
,

σ2
ij = ρijσiσj = E [(Xi − µi)(Xj − µj)] ,

(7.1.29)

where ρij is the correlation coefficient, and σi and σj are the standard deviations of

Xi and Xj . The following figures illustrate different correlation coefficients.
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7.1.4 AVERAGES OVER VECTORS

Let f(n) denote the expectation of the function f as the unit vector n varies uniformly

in all directions in three dimensions. If a, b, c, and d are constant vectors, then

|a · n|2 = |a|2 /3,
(a · n)(b · n) = (a · b)/3,

(a · n)n = a/3,

|a× n|2 = 2 |a|2 /3,
(a × n) · (b× n) = 2a · b/3,

(a · n)(b · n)(c · n)(d · n) = [(a · b)(c · d) + (a · c)(b · d) + (a · d)(b · c)] /15.

(7.1.30)

Now let f(n) denote the average of the function f as the unit vector n varies uni-

formly in all directions in two dimensions. If a and b are constant vectors, then

|a · n|2 = |a|2 /2,
(a · n)(b · n) = (a · b)/2,

(a · n)n = a/2.

(7.1.31)

7.1.5 TRANSFORMING VARIABLES

1. Suppose that the random variable X has the probability density function

fX(x) and the random variable Y is defined by Y = g(X). If g is measurable

and one-to-one, then

fY (y) = fX(h(y))

∣∣∣∣
dh

dy

∣∣∣∣ (7.1.32)

where h(y) = g−1(y).
2. If the random variablesX and Y are independent and if their densities fX and

fY , respectively, exist almost everywhere, then the probability density of their

sum, Z = X + Y , is given by their convolution,

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x) dx. (7.1.33)

3. If the random variablesX and Y are independent and if their densities fX and

fY , respectively, exist almost everywhere, then the probability density of their

product, Z = XY , is given by the formula,

fZ(z) =

∫ ∞

−∞

1

|x|fX(x)fY

( z
x

)
dx. (7.1.34)
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7.1.6 INEQUALITIES

1. Markov inequality: If X is a random variable which takes only non-negative

values, then for any a > 0,

P (X ≥ a) ≤ E [X ]

a
. (7.1.35)

2. Cauchy–Schwartz inequality: Let X and Y be random variables for which

E
[
X2
]

and E
[
Y 2
]

exist, then

(E [XY ])2 ≤ E
[
X2
]

E
[
Y 2
]
. (7.1.36)

3. One-sided Chebyshev inequality: Let X be a random variable with zero mean

(i.e., E [X ] = 0) and variance σ2. Then, for any positive a,

P (X > a) ≤ σ2

σ2 + a2
. (7.1.37)

4. Chebyshev inequality: Let c be any real number and letX be a random variable

for which E
[
(X − c)2

]
is finite. Then, for every ǫ > 0 the following holds:

P (|X − c| ≥ ǫ) ≤ 1

ǫ2
E
[
(X − c)2

]
. (7.1.38)

5. Bienaymé–Chebyshev inequality: If E [|X |r] <∞ for all r > 0 (r not neces-

sarily an integer) then, for every a > 0,

P (|X | ≥ a) ≤ E [|X |r]
ar

. (7.1.39)

6. Generalized Bienaymé–Chebyshev inequality: Let g(x) be a non-decreasing

non-negative function defined on (0,∞). Then, for a ≥ 0,

P (|X | ≥ a) ≤ E [g(|X |)]
g(a)

. (7.1.40)

7. Chernoff bound: This bound is useful for sums of random variables. Let

Yn =
∑n

i=1Xi where the {Xi} are iid. Let M(t) = Ex[e
tX ] be the com-

mon moment generating function for the {Xi}, and define g(t) = logM(t).
Then (the prime in this formula denotes a derivative),

P (Yn ≥ ng′(t)) ≤ e−n[tg′(t)−g(t)], if t ≥ 0,

P (Yn ≤ ng′(t)) ≤ e−n[tg′(t)−g(t)], if t ≤ 0.

8. Kolmogorov inequality: Let X1, X2, . . . , Xn be n independent random vari-

ables such that E [Xi] = 0 and Var(Xi) = σ2
Xi

is finite. Then, for all a > 0,

P

(
max

i=1,...,n
|X1 +X2 + · · ·+Xi| > a

)
≤

n∑

i=1

σ2
i

a2
. (7.1.41)

9. Jensen inequality: If E [X ] exists, and if f(x) is a convex ∪ (“convex cup”)

function, then

E [f(X)] ≥ f(E [X ]). (7.1.42)
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7.1.7 GEOMETRIC PROBABILITY

1. Points in a line segment: If A and B are uniformly and independently

chosen from the interval [0, 1), and X is the distance between A and B (that

is, X = |A−B|) then the probability density of X is fX(x) = 2(1− x).
2. Many points in a line segment: Uniformly and independently choosen−1

random values in the interval [0, 1). This creates n intervals.

Pk(x) = Probability (exactly k intervals have length larger than x)

=

(
n

k

){
[1 − kx]n−1 −

(
n− k
1

)
[1− (k + 1)x]n−1+

· · ·+ (−1)s
(
n− k
s

)
[1− (k + s)x]n−1

}
,

(7.1.43)

where s =

⌊
1

x
− k
⌋

. From this, the probability that the largest interval length

exceeds x is

1− P0(x) =

(
n

1

)
(1− x)n−1 −

(
n

2

)
(1− 2x)n−1 + . . . . (7.1.44)

3. Points in the plane: Assume that the number of points in any region A of

the plane is a Poisson variate with mean λA (λ is the “density” of the points).

Given a fixed point P defineR1, R2, . . . , to be the distance to the point nearest

to P , second nearest to P , etc. Then

fRs(r) =
2(λπ)s

(s− 1)!
r2s−1e−λπr2 . (7.1.45)

4. Points in three-dimensional space: Assume that the number of points in

any volume V is a Poisson variate with mean λV (λ is the “density” of the

points). Given a fixed point P define R1, R2, . . . , to be the distance to the

point nearest to P , second nearest to P , etc. Then

fRs(r) =
3
(
4
3λπ

)s

Γ(s)
r3s−1e−

4
3λπr

3

. (7.1.46)

5. Points on a checkerboard: Consider the unit squares on a checkerboard

and select one point uniformly and independently in each square. The follow-

ing results concern the average distance between points:

(a) For adjacent squares (a black and white square with a common side) the

mean distance between points is 1.088.

(b) For diagonal squares (two white squares with a point in common) the

mean between points is 1.473.

6. Points in a cube: Choose two points uniformly and independently within

a unit cube. The distance between these points has mean 0.66171 and standard

deviation 0.06214.
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7. Points in an n-dimensional cube: Let two points be selected uniformly

and independently within a unit n-dimensional cube. The expected distance

between the points, ∆(n), is

• ∆(1) = 1
3

• ∆(2) ≈ 0.54141
• ∆(3) ≈ 0.66171
• ∆(4) ≈ 0.77766

• ∆(5) ≈ 0.87852
• ∆(6) ≈ 0.96895
• ∆(7) ≈ 1.05159
• ∆(8) ≈ 1.12817

8. Points on a circle: Select three points uniformly and independently on

a unit circle. These points determine a triangle with area A. The mean and

variance of the area are:

µA =
3

2π
≈ 0.4775

σ2
A =

3
(
π2 − 6

)

8π2
≈ 0.1470

(7.1.47)

9. Buffon needle problem: A needle of length L is randomly placed on a

plane on which has parallel lines a distance D apart. If L
D < 1 then only one

intersection is possible. The probability P that the needle intersects a line is

P =





2L

πD
if 0 < L ≤ D,

2L

πD


1−

√
1−

(
D

L

)2

+

(
1− 2

π
sin−1 D

L

)
if 0 < D ≤ L,

(7.1.48)

7.1.8 RANDOM SUMS OF RANDOM VARIABLES

If T =
∑N

i=1Xi, and if N is an integer-valued random variable with generating

functionGN (s), and if the {Xi} are discrete independent and identically distributed

random variables with generating function GX(s), and the {Xi} are independent

of N , then the generating function for T is GT (s) = GN (GX(s)). (If the {Xi} are

continuous random variables, then φT (t) = GN (φX(t)).) Hence,

1. µT = µNµX .

2. σ2
T = µNσ

2
X + µXσ

2
N .

EXAMPLE A game is played as follows. A fair coin is flipped until a tail shows up and

then the game stops. When a head appears, a die is rolled and the number shown is the

number of dollars paid. What is the amount expected to be paid playing this game?

1. The number of coin flips, N , has a geometric distribution so that the expected number

of flips is µN = µflips = 2.

2. The average return for the die is µX = µdie =
1
6
(1 + 2 + · · ·+ 6) = 7

2
.

3. Hence the expected return is µT = µflipsµdie = 7; or $7 per game.
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7.2 CLASSICAL PROBABILITY PROBLEMS

7.2.1 BIRTHDAY PROBLEM

The probability that n people have different birthdays (neglecting February 29th) is

qn =

(
364

365

)
·
(
363

365

)
· · ·
(
366− n
365

)
(7.2.1)

Let pn = 1 − qn. For 23 independent people the probability of at least two people

having the same birthday is more than half (p23 = 1− q23 > 1/2).

n 10 20 23 30 40 50

pn 0.117 0.411 0.507 0.706 0.891 0.970

That is, the number of people needed to have a 50% chance of two people having

the same birthday is 23. The number of people needed to have a 50% chance of three

people having the same birthday is 88. For four, five, and six people having the same

birthday the number of people necessary is 187, 313, and 460.

The number of people needed so that there is a 50% chance that two people

have a birthday within one day of each other is 14. In general, in an n-day year the

probability that p people all have birthdays at least k days apart (so k = 1 is the

original birthday problem) is

probability =

(
n− p(k − 1)− 1

p− 1

)
(p− 1)!

np−1
. (7.2.2)

7.2.2 COUPON COLLECTORS PROBLEM

There are n coupons that can be collected. Random coupons are selected, with

replacement. How long must one wait until they have a specified collection of

coupons?

Let Wn,j be the number of steps until j different coupons are seen; then

E [Wn,j ] = n

j∑

i=1

1

n− i+ 1
Var [Wn,j ] = n

j∑

i=1

i− 1

(n− i+ 1)2
(7.2.3)

When j = n, then all coupons are being collected and E [Wn,n] = nHn with Hn =
1 + 1/2 + 1/3 + · · ·+ 1/n. As n→∞, E [Wn,n] ∼ n logn.

n 2 5 10 50 100 200

E [Wn,n] 3 11.4 29.3 225 519 1,176

Var [Wn,n] 1.4 5.0 11.2 62 126 254
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7.2.3 CARD GAMES

1. Poker hands

The number of distinct 5-card poker hands is
(
52
5

)
= 2,598,960.

Hand Probability Odds

royal flush 1.54× 10−6 649,739:1

straight flush 1.39× 10−5 72,192:1

four of a kind 2.40× 10−4 4,164:1

full house 1.44× 10−3 693:1

flush 1.97× 10−3 508:1

straight 3.92× 10−3 254:1

three of a kind 0.0211 46:1

two pair 0.0475 20:1

one pair 0.423 1.37:1

2. Bridge hands

The number of distinct 13-card bridge hands is
(
52
13

)
= 635,013,559,600.

In bridge, the honors are the ten, jack, queen, king, or ace. Obtaining the three

top cards (ace, king, and queen) of three suits and the ace, king, queen, and

jack of the remaining suit is called 13 top honors. Obtaining all cards of the

same suit is called a 13-card suit. Obtaining 12 cards of the same suit with ace

high and the 13th card not an ace is called a 12-card suit, ace high. Obtaining

no honors is called a Yarborough.

Hand Probability Odds

13 top honors 6.30× 10−12 158,753,389,899:1

13-card suit 6.30× 10−12 158,753,389,899:1

12-card suit, ace high 2.72× 10−9 367,484,698:1

Yarborough 5.47× 10−4 1,827:1

four aces 2.64× 10−3 378:1

nine honors 9.51× 10−3 104:1

7.2.4 DISTRIBUTION OF DICE SUMS

When rolling two dice, the probability distribution of the sum is

Prob (sum of s) =
6− |s− 7|

36
for 2 ≤ s ≤ 12. (7.2.4)

When rolling three dice, the probability distribution of the sum is

Prob (sum of s) =
1

216





1
2 (s− 1)(s− 2) for 3 ≤ s ≤ 8

−s2 + 21s− 83 for 9 ≤ s ≤ 14
1
2 (19− s)(20− s) for 15 ≤ s ≤ 18

(7.2.5)

For 2 dice, the most common roll is a 7 (probability 1
6 ). For 3 dice, the most

common rolls are 10 and 11 (probability 1
8 each). For 4 dice, the most common roll

is a 14 (probability 73
648 ).
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7.2.5 GAMBLER’S RUIN PROBLEM

A gambler starts with z dollars. At each iteration the gambler wins one dollar with

probability p or loses one dollar with probability q (with p+ q = 1). Gambling stops

when the gambler has either A dollars or zero dollars.

If qz denotes the probability of eventually stopping with A dollars (“gambler’s

success”) then

qz =





(q/p)A − (q/p)z

(q/p)A − 1
if p 6= q,

1− z

A
if p = q = 1

2 .

(7.2.6)

For example:

p q z A qz
0.5 0.5 9 10 .900

fair 0.5 0.5 90 100 .900

game 0.5 0.5 900 1000 .900

0.5 0.5 9000 10000 .900

biased 0.4 0.6 90 100 .017

game 0.4 0.6 90 99 .667

7.2.6 GENDER DISTRIBUTIONS

For these problems, assume there is a 50/50 chance of male or female on each birth.

1. Hospital deliveries

Every day a large hospital delivers 1,000 babies and a small hospital delivers

100 babies. Which hospital has a better chance of having the same number of

boys as girls?

Answer: The small one. If 2n babies are born, then the probability of an even

split is
(
2n
n

)
2−2n. This is a decreasing function of n.

2. Family planning

Suppose that every family continues to have children until they have a girl,

then they stop having children. After many generations of families, what is

the ratio of males to females?

Answer: The ratio will be 50-50; half of all conceptions will be male, half

female.

3. If a person has two children and the older one is a girl, then the probability

that both children are girls is 1
2 .

4. If a person has two children and at least one is a girl, then the probability that

both children are girls is 1
3 .
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7.2.7 MONTE HALL PROBLEM

Consider a game in which there are three doors: one door has a prize, two doors

have no prize. A player selects one of the three doors. One of the two unselected

doors is opened and shown that it does not contain the prize. The player is then

allowed to exchange their originally selected door for the remaining unopened door.

To increase the chance of winning, the player should switch doors: without switching

the probability of winning is 1/3; by switching the probability of winning is 2/3.

7.2.8 NON-TRANSITIVE GAMES

A non-transitive game has strategies which produce “loops” of preferences. For

example, “rock-paper-scissors” is a non-transitive game.

1. Bingo cards

Consider the 4 bingo cards shown below (labeled A −D). Two players each

select a bingo card. Numbers from 1 to 6 are randomly drawn without re-

placement. If a selected number is on a card, it is marked. The first player to

complete a horizontal row wins. Probabilistically, card A beats card B, card

B beats card C, card C beats card D, and card D beats card A.

A B C D

1 2

3 4

2 4

5 6

1 3

4 5

1 5

2 6

2. Dice

Each player has 2 six-sided dice

(a) Player A’s dice have sides of {0, 0, 4, 4, 4, 4} and {2, 3, 3, 9, 10, 11}
(b) Player B’s dice have sides of {3, 3, 3, 3, 3, 3} and {0, 1, 7, 8, 8, 8}
(c) Player C’s dice have sides of {2, 2, 2, 2, 6, 6} and {5, 5, 6, 6, 6, 6}
(d) Player D’s dice have sides of {1, 1, 1, 5, 5, 5} and {4, 4, 4, 4, 12, 12}

The odds of

(a) A winning against B
(b) B winning against C

(c) C winning against D
(d) D winning against A

are all 2:1.
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7.2.9 ODDS OF WINNING THE LOTTERY

Consider a lottery in which a player chooses N values, without repetition, from the

numbers 1, 2, . . . , M . Then the winning N values are chosen, without repetition,

from among the numbers 1, 2, . . . , M . The number of ways to obtain k matching

values is
(
N
k

)(
M−N
N−k

)
. The number of possible player choices is

(
M
N

)
. The probability

of having exactly k values match is the ratio of these two numbers.

EXAMPLE In a “6/49” lottery, N = 6 number are chosen from M = 49 possibilities.

The probabilities are as follows:

1. no numbers match (k = 0); probability =
(
6
0

)(
43
6

)
/
(
49
6

)
≈ 0.4360

2. exactly k = 1 number matches; probability =
(
6
1

)(
43
5

)
/
(
49
6

)
≈ 0.4130

3. exactly k = 2 numbers match; probability =
(
6
2

)(
43
4

)
/
(
49
6

)
≈ 0.1324

4. exactly k = 3 numbers match; probability =
(
6
3

)(
43
3

)
/
(
49
6

)
≈ 0.0177

5. exactly k = 4 numbers match; probability =
(
6
4

)(
43
2

)
/
(
49
6

)
≈ 0.00097

6. exactly k = 5 numbers match; probability =
(
6
5

)(
43
1

)
/
(
49
6

)
≈ 0.000018

7. all k = 6 numbers match; probability =
(
6
6

)(
43
0

)
/
(
49
6

)
≈ 7.1× 10−8

7.2.10 RAISIN COOKIE PROBLEM

A baker creates enough cookie dough for C = 1000 raisin cookies. The number of

raisins to be added to the dough,R, is to be determined.

1. If you want to be 99% certain that the first cookie will have at least one raisin,

then 1−
(
C−1
C

)R
= 1−

(
999
1000

)R ≥ 0.99, or R ≥ 4, 603.

2. If you want to be 99% certain that every cookie will have at least one raisin,

then C−R
∑C

i=0

(
C
i

)
(−1)i(C − i)R ≥ 0.99. Hence R ≥ 11, 508.

7.2.11 WAITING PROBLEM

Assume two people arrive at a meeting place randomly and uniformly between 1

and 2 P.M. If person i waits wi (as a fraction of an hour) before they leave, then

the probability that the two people will be at the same place at the same time is:

P2 = (w1 + w2)− w2
1+w2

2

2 . For three people the probability of them all meeting is

P3 = (w1w2 + w1w3 + w2w3)−
1

2

(
w1w

2
2 + w1w

2
3 + w2w

2
3

)
− 1

3
w3

1 −
1

6
w3

2

For n people all waiting w, the probability is Pn = nwn−1 − (n− 1)wn.
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7.3 PROBABILITY DISTRIBUTIONS

FIGURE 7.1
Comparison of a binomial distribution and the approximating normal distribution. Left figure

is for (n = 8, θ = 0.2), right figure is for (n = 8, θ = 0.5); horizontal axis is x. Only use

the normal approximation for large n.
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7.3.1 DISCRETE DISTRIBUTIONS

1. Bernoulli distribution: This is a special case of the binomial distribution with

n = 1. Example: flipping a coin that has a probability p of coming up heads.

2. Binomial distribution: If the random variableX has a probability density func-

tion given by

P (X = x) = f(x) =

(
n

x

)
θx(1 − θ)n−x, for x = 0, 1, . . . , n, (7.3.1)

then the variable X has a binomial distribution. Note that f(x) is the general

term in the expansion of [θ + (1− θ)]n.

Properties:

Mean = µ = nθ,

Variance = σ2 = nθ(1− θ),
Standard deviation = σ =

√
nθ(1 − θ),

Moment generating function = G(t) = [θet + (1 − θ)]n.

(7.3.2)

As n → ∞ the binomial distribution approximates a normal distribution with

a mean of nθ and variance of nθ(1− θ); see Figure 7.1.

3. Discrete uniform distribution: If the random variableX has a probability den-

sity function given by

P (X = x) = f(x) =
1

n
, for x = x1, x2, . . . , xn, (7.3.3)

then the variable X has a discrete uniform probability distribution.
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Properties: When xi = i for i = 1, 2,. . . , n then

Mean = µ =
n+ 1

2
,

Variance = σ2 =
n2 − 1

12
,

Standard deviation = σ =

√
n2 − 1

12
,

Moment generating function = G(t) =
et(1− ent)
n(1− et) .

(7.3.4)

4. Geometric distribution: If the random variable X has a probability density

function given by

P (X = x) = f(x) = θ(1− θ)x−1 for x = 1, 2, 3, . . . , (7.3.5)

then the variable X has a geometric distribution.

Properties:

Mean = µ =
1

θ
,

Variance = σ2 =
1− θ
θ2

,

Standard deviation = σ =

√
1− θ
θ2

,

Moment generating function = G(t) =
θet

1− et(1− θ) .

(7.3.6)

5. Hypergeometric distribution: If the random variable X has a probability den-

sity function given by

P (X = x) = f(x) =

(
k
x

)(
N−k
n−x

)
(
N
n

) for x = 1, 2, 3, . . . ,min(n, k) (7.3.7)

then the variable X has a hypergeometric distribution.

Properties:

Mean = µ =
kn

N
,

Variance = σ2 =
k(N − k)n(N − n)

N2(N − 1)
,

Standard deviation = σ =

√
k(N − k)n(N − n)

N2(N − 1)
.

(7.3.8)

6. Multinomial distribution: If a set of random variables X1, X2, . . . , Xn has a

probability function given by

P (X1 = x1, X2 = x2, . . . , Xn = xn) = f(x1, x2, . . . , xn)

= N !
n∏

i=1

θxi

i

xi!

(7.3.9)
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where the {xi} are positive integers, each θi > 0, and

n∑

i=1

θi = 1 and

n∑

i=1

xi = N, (7.3.10)

then the joint distribution of X1, X2, . . . , Xn is called the multinomial

distribution. Note that f(x1, x2, . . . , xn) is a term in the expansion of

(θ1 + θ2 + · · ·+ θn)
N .

Properties:

Mean of Xi = µi = Nθi,

Variance of Xi = σ2
i = Nθi(1− θi),

Covariance of Xi and Xj = σ2
ij = −Nθiθj ,

Joint moment generating function = (θ1e
t1 + · · ·+ θne

tn)N .

(7.3.11)

7. Negative binomial distribution: If the random variable X has a probability

density function given by

P (X = x) = f(x) =

(
x+ r − 1

r − 1

)
θr(1− θ)x for x = 0, 1, 2, . . . ,

(7.3.12)

then the variableX has a negative binomial distribution (also known as a Pas-

cal or Polya distribution).

Properties:

Mean = µ =
r

θ
− r,

Variance = σ2 =
r

θ

(
1

θ
− 1

)
=
r(1 − θ)
θ2

,

Standard deviation =

√
r

θ

(
1

θ
− 1

)
=

√
r(1 − θ)
θ2

,

Moment generating function = G(t) = θr[1− (1− θ)et]−r.

(7.3.13)

8. Poisson distribution: If the random variable X has a probability density func-

tion given by

P (X = x) = f(x) =
e−λλx

x!
for x = 0, 1, 2, . . . , (7.3.14)

with λ > 0, then the variable X has a Poisson distribution.

Properties:

Mean = µ = λ,

Variance = σ2 = λ,

Standard deviation = σ =
√
λ,

Moment generating function = G(t) = eλ(e
t−1).

(7.3.15)
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7.3.2 CONTINUOUS DISTRIBUTIONS

1. Normal distribution: If the random variable X has the density function

f(x) =
1√
2πσ

exp

(
− (x− µ)2

2σ2

)
, for −∞ < x <∞, (7.3.16)

then the variable X has a normal distribution.

Properties:

Mean = µ,

Variance = σ2,

Standard deviation = σ,

Moment generating function = G(t) = exp

(
µt+

σ2t2

2

)
.

(7.3.17)

(a) Set y = x−µ
σ to obtain a standard normal distribution.

(b) The cumulative distribution function is

F (x) = Φ(x) =
1√
2πσ

∫ x

−∞
exp

(
− (t− µ)2

2σ2

)
dt.

2. Multi-dimensional normal distribution:

The random vectorX is a multivariate normal (or a multi-dimensional normal)

if and only if the linear combination aTX is normal for all vectors a. If the

mean of X is µ, and if the second moment matrix R = E
[
(X− µ)(X− µ)T

]

is non-singular, the density function of X is

f(x) =
1

(2π)n/2
√
detR

exp

[
−1

2
(x− µ)TR−1(x− µ)

]
. (7.3.18)

Sometimes integrals of the form Ik =

∫ ∞

−∞
· · ·
∫ ∞

−∞

(
xTMx

)k
f(x) dx are

desired. Defining ak = tr(MR)k, we find:

I0 = 1, I1 = a1, I2 = a21 + 2a2,

I3 = a31 + 6a1a2 + 8a3,

I4 = a41 + 12a21a2 + 32a1a3 + 12a22 + 48a4.

(7.3.19)

Shown below is Equation (7.3.18) with µ =
[
1 0

]T
and R−1 =

[
1 2
0 4

]
.
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3. Beta distribution: If the random variable X has the density function

f(x) = B(1 + α, 1 + β)xα(1− x)β =
Γ(α+ β + 2)

Γ(1 + α)Γ(1 + β)
xα(1− x)β ,

(7.3.20)

for 0 < x < 1, where α > −1 and β > −1, then the variable X has a beta

distribution.

Properties:

Mean = µ =
1 + α

2 + α+ β
,

Variance = σ2 =
(1 + α)(1 + β)

(2 + α+ β)2(3 + α+ β)
,

rth moment about the origin = νr =
Γ(2 + α+ β)Γ(1 + α+ r)

Γ(2 + α+ β + r)Γ(1 + α)
.

(7.3.21)

4. Chi-square distribution: If the random variable X has the density function

f(x) =
x(n−2)/2e−x/2

2n/2Γ(n/2)
for 0 < x <∞ (7.3.22)

then the variable Xhas a chi-square (χ2) distribution with n degrees of free-

dom. This is a special case of the gamma distribution.

Properties:

Mean = µ = n,

Variance = σ2 = 2n,

Standard deviation = σ =
√
2n.

(7.3.23)

(a) If Y1, Y2, . . . , Yn are independent and identically distributed normal ran-

dom variables with a mean of 0 and a variance of 1, then χ2 =
n∑

i=1

Y 2
i is

distributed as chi-square with n degrees of freedom.

(b) If χ2
1, χ2

2, . . . , χ2
k, are independent random variables and have chi-square

distributions with n1, n2, . . . , nk degrees of freedom, then
∑k

i=1 χ
2
i has

a chi-squared distribution with n =
∑k

i=1 ni degrees of freedom.

5. Exponential distribution: If the random variable X has the density function

f(x) =
e−x/θ

θ
, for 0 < x <∞, (7.3.24)

where θ > 0, then the variable X has an exponential distribution.

Properties:

Mean = µ = θ,

Variance = σ2 = θ2,

Standard deviation = σ = θ,

Moment generating function = G(t) = (1 − θt)−1.

(7.3.25)
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6. Gamma distribution: If the random variable X has the density function

f(x) =
1

Γ(1 + α)β1+α
xαe−x/β, for 0 < x <∞, (7.3.26)

with α > −1 and β > 0, then the variable X has a gamma distribution.

Properties:

Mean = µ = β(1 + α),

Variance = σ2 = β2(1 + α),

Standard deviation = σ = β
√
1 + α

Moment generating function = G(t) = (1− βt)−1−α, for t < β−1.

(7.3.27)

7. Rayleigh distribution: If the random variable X has the density function

f(x) =
x

σ2
exp

(
− x2

2σ2

)
, for x ≥ 0 (7.3.28)

for σ > 0, then the variable X has a Rayleigh distribution.

Properties:

Mean = µ = σ
√
π/2

Variance = σ2
(
2− π

2

)

Skewness =
(π − 3)

√
π/2

(
2− π

2

)3/2

(7.3.29)

8. Snedecor’s F -distribution: If the random variable X has the density function

f(x) =
Γ
(
n+m

2

) (
m
n

)m/2
x(m−2)/2

Γ
(
m
2

)
Γ
(
n
2

) (
1 + m

n x
)(n+m)/2

, for 0 < x <∞, (7.3.30)

then the variable X has a F -distribution with m and n degrees of freedom.

Properties:

Mean = µ =
n

n− 2
, for n > 2,

Variance =
2n2(m+ n− 2)

m(n− 2)2(n− 4)
, for n > 4.

(7.3.31)

(a) The transformation w =
mx/n

1 + mx
n

transforms the F -density to the beta

density.

(b) If the random variable X has a χ2-distribution with m degrees of free-

dom, the random variable Y has a χ2-distribution with n degrees of free-

dom, and X and Y are independent, then F =
X/m

Y/n
is distributed as an

F -distribution with m and n degrees of freedom.
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9. Student’s t-distribution: If the random variable X has the density function

f(x) =
Γ
(
n+1
2

)
√
nπΓ

(
n
2

) (
1 + x2

n

)(n+1)/2
, for −∞ < x <∞. (7.3.32)

then the variable X has a t-distribution with n degrees of freedom.

Properties:

Mean = µ = 0,

Variance = σ2 =
n

n− 2
, for n > 2.

(7.3.33)

(a) If the random variable X is normally distributed with mean 0 and vari-

ance σ2, and if Y 2/σ2 has a χ2 distribution with n degrees of freedom,

and if X and Y are independent, then t =
X
√
n

Y
is distributed as a

t-distribution with n degrees of freedom.

10. Uniform distribution: If the random variable X has the density function

f(x) =
1

β − α, for α < x < β, (7.3.34)

then the variable X has a uniform distribution.

Properties:

Mean = µ =
α+ β

2
,

Variance = σ2 =
(β − α)2

12
,

Standard deviation = σ =

√
(β − α)2

12
,

Moment generating function = G(t) =
eβt − eαt
(β − α)t

=
2

(β − α)t sinh
[
(β − α)t

2

]
e(α+β)t/2.

(7.3.35)

11. Weibull distribution: If the random variable X has the density function

f(x) =
α

βα
xα−1e−(x/β)α for x ≥ 0 (7.3.36)

for α > 0 and β > 0, then the variable X has a Weibull distribution.

Properties:

Mean = µ = β Γ

(
1 +

1

α

)

Variance = σ2 = β2

[
Γ

(
1 +

2

α

)
− Γ2

(
1 +

1

α

)] (7.3.37)
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7.3.3 RELATIONSHIPS AMONG DISTRIBUTIONS

Dotted lines represent limiting cases of a distribution. (From D. Zwillinger and

S. Kokoska, Standard Probability and Statistics Tables and Formulae, Chapman &

Hall/CRC, Boca Raton, Florida, 2000. With permission.)
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7.3.4 CIRCULAR NORMAL PROBABILITIES

The joint probability density of two independent and normally distributed random

variables X and Y (each of mean zero and variance σ2) is

f(x, y) =
1

2πσ2
exp

[
− 1

2σ2

(
x2 + y2

)]
(7.3.38)

The probability that a sample value ofX and Y is obtained inside a circleC of radius
R at a distance d from the origin is F

(
d
σ ,

R
σ

)
=
∫∫

C f(x, y) dx dy.

d/σ R/σ = 0.2 0.4 0.6 0.8 1.0 1.5 2.0 2.5 3.0

0.2 0.020 0.077 0.164 0.273 0.392 0.674 0.863 0.955 0.989

0.4 0.019 0.074 0.158 0.264 0.380 0.659 0.852 0.950 0.987

0.6 0.017 0.068 0.147 0.246 0.357 0.631 0.831 0.938 0.982

0.8 0.016 0.061 0.132 0.222 0.326 0.591 0.799 0.920 0.975

1.0 0.013 0.052 0.114 0.194 0.288 0.540 0.756 0.895 0.964

2.0 0.0040 0.016 0.037 0.069 0.111 0.264 0.469 0.676 0.837

3.0 0.0004 0.0018 0.0045 0.0094 0.017 0.060 0.154 0.311 0.510

4.0 0.0001 0.0002 0.0005 0.0011 0.006 0.024 0.072 0.171

5.0 0.0001 0.0008 0.0041 0.017

7.3.5 CIRCULAR ERROR PROBABILITIES

The joint probability density of two independent and normally distributed random

variables X and Y , each of mean zero and having variances σ2
x and σ2

y , is

f(x, y) =
1

2πσxσy
exp

[
−1

2

{(
x

σx

)2

+

(
y

σy

)2
}]

(7.3.39)

The probability that a sample value of X and Y will lie within a circle with center at
the origin and radiusKσx is given by P (K,σx, σy) =

∫∫
R f(x, y) dx dy whereR is

the region
√
x2 + y2 < Kσx. The following table gives the value of P for various

values of K and c = σx/σy (for convenience we assume that σy ≤ σx).

K c = 0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.1585 0.0885 0.0482 0.0327 0.0247 0.0198

0.4 0.3108 0.2635 0.1742 0.1238 0.0951 0.0769

0.6 0.4515 0.4256 0.3357 0.2548 0.2010 0.1647

0.8 0.5763 0.5604 0.4942 0.4026 0.3283 0.2739

1.0 0.6827 0.6724 0.6291 0.5461 0.4621 0.3935

1.5 0.8664 0.8628 0.8493 0.8129 0.7490 0.6753

2.0 0.9545 0.9534 0.9494 0.9388 0.9116 0.8647

2.5 0.9876 0.9873 0.9863 0.9838 0.9761 0.9561

3.0 0.9973 0.9972 0.9970 0.9965 0.9949 0.9889

3.5 0.9995 0.9995 0.9995 0.9994 0.9992 0.9978

4.0 0.9999 0.9999 0.9999 0.9999 0.9999 0.9997
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7.4 QUEUING THEORY

A queue is represented as A/B/c/K/m/Z where (see Figure 7.2):

1. A and B represent the interarrival times and service times:

GI general independent interarrival time,

G general service time distribution,

Hk k-stage hyperexponential interarrival or service time distribution,

Ek Erlang-k interarrival or service time distribution,

M exponential interarrival or service time distribution,

D deterministic (constant) interarrival or service time distribution.

2. c is the number of identical servers.

3. K is the system capacity.

4. m is the number in the source.

5. Z is the queue discipline:

FCFS first come, first served (also known as FIFO: “first in, first out”),

LIFO last in, first out,

RSS random,

PRI priority service.

When not all variables are present, the trailing ones have the default values,K =∞,

m =∞, and Z is FIFO. Note that the m and Z are rarely used.

FIGURE 7.2
Conceptual layout of a queue.

Arrivals Queue Servers Departures

1 −→ •
2• −→

• −→ • −→ • −→ . . . −→ •︸ ︷︷ ︸
m

−→ • •

︸ ︷︷ ︸
K

3• −→

...

c• −→
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7.4.1 VARIABLES

1. Proportions

(a) an: proportion of customers that find n customers already in the system

when they arrive.

(b) dn: proportion of customers leaving behind n customers in the system.

(c) pn: proportion of time the system contains n customers.

2. Intrinsic queue parameters

(a) λ: average arrival rate of customers to the system (number per unit time)

(b) µ: average service rate per server (number per unit time), µ = 1/E [Ts].
(c) u: traffic intensity, u = λ/µ.

(d) ρ: server utilization, the probability that any particular server is busy,

ρ = u/c = (λ/µ)/c.

3. Derived queue parameters

(a) L: average number of customers in the system.

(b) LQ: average number of customers in the queue.

(c) N : number in system.

(d) W : average time for customer in system.

(e) WQ: average time for customer in the queue.

(f) Ts: service time.

4. Probability functions

(a) fs(x): probability density function of customer’s service time.

(b) fw(x): probability density function of customer’s time in system.

(c) π(z): probability generating function of pn: πn =
∑∞

n=0 pnz
n.

(d) πQ(z): probability generating function of the number in the queue.

(e) α(s): Laplace transform of fw(x): α(s) =
∫∞
0
fw(x)e

−xs dx.

(f) αT (s): Laplace transform of the service time.

7.4.2 THEOREMS

1. Little’s law: L = λW and LQ = λWQ.

2. If the arrivals have a Poisson distribution: pn = an.

3. If customers arrive one at a time and are served one at a time: an = dn.

4. For an M/M/1 queue with ρ < 1,

(a) pn = (1− ρ)ρn,

(b) L = ρ/(1− ρ),
(c) LQ = ρ2/(1− ρ),
(d) W = 1/(µ− λ),
(e) WQ = ρ/(µ− λ),
(f) π(z) = (1− ρ)/(1− zρ),
(g) α(s) = (λ− µ)/(λ− µ− s) .
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5. For an M/M/c queue with ρ < 1 (so that µn = nµ for n = 1, 2, . . . , c and

µn = cµ for n > c),

(a) p0 =

[
uc

c!(1− ρ) +
c−1∑

n=0

un

n!

]−1

,

(b) pn =

{
p0u

n/n! for n = 0, 1, . . . , c,

p0u
n/c!cn−c for n > c,

(c) LQ = p0u
cρ/c!(1− ρ)2,

(d) WQ = LQ/λ,

(e) W =WQ + 1/µ,

(f) L = λW .

6. Pollaczek–Khintchine formula: For an M/G/1 queue with ρ < 1 and

E
[
T 2
s

]
<∞

(a) L = LQ + ρ,

(b) LQ =
λ2E

[
T 2
s

]

2(1− ρ) ,

(c) W = λL,

(d) WQ = λLQ,

(e) π(z) = πQ(z)αT (λ− λz),
(f) πQ(z) = (1− ρ)(1− z)/(α(λ− λz)− z).

7. For an M/G/∞ queue

(a) pn = e−uun/n!,
(b) π(z) = exp (−(1− z)u).

8. Erlang B formula: For an M/G/c/c queue, pc =
uc

c!

(
c∑

k=0

uk

k!

)−1

.

9. Distributional form of Little’s law: For any single server system for which: (i)

Arrivals are Poisson at rate λ, (ii) all arriving customers enter the system and

remain in the system until served (i.e., there is no balking or reneging), (iii) the

customers leave the system one at a time in order of arrival, (iv) for any time

t, the arrival process after time t and the time in the system for any customer

arriving before t are independent, then

(a) π(z) = α(λ(1 − z)),
(b) E [Ln] =

∑n
k=1 S(n, k)E

[
(λW )k

]

where S(n, k) is Stirling number of the second kind. For example:

i. E [L] = λE [W ] (Little’s law),

ii. E
[
L2
]
= E

[
(λW )2

]
+ E [λW ].
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7.5 MARKOV CHAINS

A discrete parameter stochastic process is a collection of random variables {X(t),
t = 0,1,2,. . .}. (The values of t usually represent points in time.) The values of

X(t) are the states of the process. The collection of states is the state space. (The

number of states is either finite or countably infinite.) A discrete parameter stochastic

process is called a Markov chain if, for any set of n time points t1 < t2 < · · · < tn,

the conditional distribution of X(tn) given values for X(t1), X(t2), . . . , X(tn−1)
depends only on X(tn−1). This can be written

P [X(tn) ≤ xn | X(t1) = x1, . . . , X(tn−1) = xn−1]

= P [X(tn) ≤ xn | X(tn−1) = xn−1] . (7.5.1)

A Markov chain is said to be stationary if the value of the conditional probability

P [X(tn+1) = xn+1|X(tn) = xn] is independent of n. The presentation here is re-

stricted to stationary Markov chains.

7.5.1 TRANSITION FUNCTION AND MATRIX

7.5.1.1 Transition function

Let x and y be states and let {tn} be time points in T = {0, 1, 2, . . .}. The transition

function, P (x, y), is defined by

P (x, y) = Pn,n+1(x, y) = P [X(tn+1) = y | X(tn) = x] , tn, tn+1 ∈ T.
(7.5.2)

P (x, y) is the probability that a Markov chain in state x at time tn will be in state y
at time tn+1. Note that P (x, y) ≥ 0 and

∑
y P (x, y) = 1. The values of P (x, y) are

commonly called the one-step transition probabilities.

The function π0(x) = P (X(0) = x), with π0(x) ≥ 0 and
∑

x π0(x) = 1 is

called the initial distribution of the Markov chain. It is the probability distribution

when the chain is started. Thus,

P [X(0) = x0, X(1) = x1, . . . , X(n) = xn]

= π0(x0)P0,1(x0, x1)P1,2(x1, x2) · · ·Pn−1,n(xn−1, xn). (7.5.3)

7.5.1.2 Transition matrix

A convenient way to summarize the transition function of a Markov chain is by using

the one-step transition matrix. It is defined as

P =




P (0, 0) P (0, 1) . . . P (0, n) . . .
P (1, 0) P (1, 1) . . . P (1, n) . . .

...
...

. . .
...

P (n, 0) P (n, 1) . . . P (n, n) . . .
...

...
...



. (7.5.4)
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Define the n–step transition matrix by P(n) as the matrix with entries

P (n)(x, y) = P [X(tm+n) = y | X(tm) = x] . (7.5.5)

This can be written in terms of the one-step transition matrix as P(n) = Pn.

Suppose the state space is finite. The one-step transition matrix is said to be

regular if, for some positive powerm, all of the elements of Pm are strictly positive.

THEOREM 7.5.1 (Chapman–Kolmogorov equation)

Let P (x, y) be the one-step transition function of a Markov chain and define

P (0)(x, y) = 1, if x = y, and 0, otherwise. Then, for any pair of non-negative inte-

gers, s and t, such that s+ t = n,

P (n)(x, y) =
∑

z

P (s)(x, z)P (t)(z, y). (7.5.6)

7.5.2 RECURRENCE

Define the probability that a Markov chain starting in state x returns to state x for

the first time after n steps by

fn(x, x) = P [X(tn) = x,X(tn−1) 6= x, . . . , X(t1) 6= x | X(t0) = x] . (7.5.7)

It follows that Pn(x, x) =
∑n

k=1 f
k(x, x)Pn−k(x, x). A state x is said to be recur-

rent if
∑∞

n=1 f
n(x, x) = 1. This means that a state x is recurrent if, after starting

in x, the probability of returning to it after some finite length of time is one. A state

which is not recurrent is said to be transient.

THEOREM 7.5.2
A state x of a Markov chain is recurrent if and only if

∑∞
n=1 P

n(x, x) =∞.

Two states, x and y, are said to communicate if, for some n > 0, Pn(x, y) >
0. This theorem implies that, if x is a recurrent state and x communicates with y,

y is also a recurrent state. A Markov chain is said to be irreducible if every state

communicates with every other state and with itself.

Let x be a recurrent state and define Tx the (return time) as the number of stages

for a Markov chain to return to state x, having begun there. A recurrent state x is

said to be null recurrent if E [Tx] =∞. A recurrent state that is not null recurrent is

said to be positive recurrent.

7.5.3 STATIONARY DISTRIBUTIONS

Let {X(t), t = 0, 1, 2, . . .} be a Markov chain having a one-step transition function

P (x, y). A function π(x) where each π(x) is non-negative,
∑

x π(x)P (x, y) =
π(y), and

∑
y π(y) = 1, is called a stationary distribution. If a Markov chain has a

stationary distribution and limn→∞ Pn(x, y) = π(y) for every x, then, regardless of

the initial distribution, π0(x), the distribution ofX(tn) approachesπ(x) as n tends to

infinity. When this happens, π(x) is often referred to as the steady state distribution.

The following categorizes those Markov chains with stationary distributions.
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THEOREM 7.5.3
Let XP denote the set of positive recurrent states of a Markov chain.

1. If XP is empty, the chain has no stationary distribution.

2. If XP is a non-empty irreducible set, the chain has a unique stationary

distribution.

3. If XP is non-empty but not irreducible, the chain has an infinite number of

distinct stationary distributions.

The period of a state x is denoted by d(x) and is defined as the greatest common

divisor of all integers, n ≥ 1, for which Pn(x, x) > 0. If Pn(x, x) = 0 for all

n ≥ 1, then define d(x) = 0. If each state of a Markov chain has d(x) = 1, the chain

is said to be aperiodic. If each state has period d > 1, the chain is said to be periodic

with period d. The vast majority of Markov chains encountered in practice are ape-

riodic. An irreducible, positive recurrent, aperiodic Markov chain always possesses

a steady-state distribution. An important special case occurs when the state space is

finite. Suppose that X = {1, 2, . . . , K}. Let π0 = {π0(1), π0(2), . . . , π0(K)}.

THEOREM 7.5.4
Let P be a regular one-step transition matrix and π0 be an arbitrary vector of initial

probabilities. Then limn→∞ π0(x)P
n = y, where yP = y, and

∑K
i=1 π0(yi) = 1.

7.5.3.1 Example: A simple three-state Markov chain

A Markov chain having three states {0, 1, 2} is shown

0

1

2

3/4

3/4

1/4

1/2

1/2

1/4

This Markov chain has the one-step and two-step transition matrices:

P =



1/2 0 1/2
1/4 3/4 0
0 3/4 1/4


 P (2) = P 2 =



1/4 3/8 3/8
5/16 9/16 1/8
3/16 3/4 1/16


 .

The one-step transition matrix is regular. This Markov chain is irreducible, and all

three states are recurrent. In addition, all three states are positive recurrent. Since all

states have period 1, the chain is aperiodic. The unique steady state distribution is

π(0) = 3/11, π(1) = 6/11, and π(2) = 2/11.

7.5.4 RANDOM WALKS

Let η(t1), η(t2), . . . be independent random variables having a common density

f(x), and let t1, t2, . . . be integers. Let X0 be an integer–valued random variable

that is independent of η(t1), η(t2), . . . , and X(tn) = X0 +
∑n

i=1 η(ti). The se-

quence {X(ti), i = 0, 1, . . . } is called a random walk. An important special case is
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a simple random walk. It is defined by

P (x, y) =





p, if y = x− 1,

r, if y = x,

q, if y = x+ 1,

where p+ q + r = 1, and P (0, 0) = p+ r.

(7.5.8)

Here, an object begins at a certain point in a lattice and at each step either stays at

that point or moves to a neighboring lattice point.

This one-dimensional random walk can be extended to higher-dimensional lat-

tices. A common case is that an object can only transition to an adjacent lattice point,

and all such transitions are equally likely. In this case

1. In a one- or two-dimensional lattice, a random walk will return to its starting

point with probability 1.

2. In a three-dimensional lattice, the probability that a random walk will return

to its starting point is P = 0.3405.

3. In a d-dimensional lattice (with d ≥ 3), the probability that a random walk will

return to its starting point is P = 1− 1

ud
with ud =

∫ ∞

0

e−t

[
I0

(
t

d

)]d
dt.

7.6 RANDOM NUMBER GENERATION

7.6.1 METHODS OF PSEUDORANDOM NUMBER GENERATION

In Monte Carlo applications, and other computational situations where randomness

is required, random numbers must be used. While numbers measured from a phys-

ical process known to be random have been used, it is much more practical to use

recursions that produce numbers that behave as random in applications and with re-

spect to statistical tests of randomness. These are called pseudorandom numbers

and are produced by a pseudorandom number generator (PRNG). Depending on the

application, either integers in some range or floating point numbers in [0, 1) are the

output from a PRNG. Since most PRNGs use integer recursions, a conversion into

integers in a desired range or into a floating point number in [0, 1) is required. If xn
is an integer produced by some PRNG in the range 0 ≤ xn ≤M −1, then an integer

in the range 0 ≤ xn ≤ N − 1, with N ≤M , is given by yn =
⌊
N
M xn

⌋
. If N ≪M ,

then yn = xn (mod N) may be used. Alternately, if a floating point value in [0, 1)
is desired, let yn = xn/M .

7.6.1.1 Linear congruential generators

Perhaps the oldest generator still in use is the linear congruential generator (LCG).

The underlying integer recursion for LCGs is

xn = axn−1 + b (mod M). (7.6.1)

Equation (7.6.1) defines a periodic sequence of integers moduloM starting with x0,

the initial seed. The constants of the recursion are referred to as the modulus M ,
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multiplier a, and additive constant b. If M = 2m, a very efficient implementation is

possible. Alternately, there are theoretical reasons why choosingM prime is optimal.

Hence, the only moduli that are used in practical implementations are M = 2m or

the primeM = 2p− 1 (i.e.,M is a Mersenne prime). With a Mersenne prime or any

modulus “close to” 2p, modular multiplication can be implemented at about twice

the computational cost of multiplication modulo 2p.

Equation (7.6.1) yields a sequence {xn} whose period, denoted Per(xn), de-

pends on M , a, and b. The values of the maximal period for the three most common

cases used and the conditions required to obtain them are

a b M Per(xn)
Primitive root of M Anything Prime M − 1

3 or 5 (mod 8) 0 2m 2m−2

1 (mod 4) 1 (mod 2) 2m 2m

A major shortcoming of LCGs modulo a power-of-two compared with prime

modulus LCGs derives from the following theorem for LCGs:

THEOREM 7.6.1
Define the following LCG sequence: xn = axn−1 + b (mod M1). If M2 divides

M1 then yn = xn (mod M2) satisfies yn = ayn−1 + b (mod M2).

Theorem 7.6.1 implies that the k least-significant bits of any power-of-two modulus

LCG with Per(xn) = 2m =M has Per(yn) = 2k, 0 < k ≤ m. Since a long period

is crucial in PRNGs, when these types of LCGs are employed in a manner that makes

use of only a few least-significant-bits, their quality may be compromised. When M
is prime, no such problem arises.

Since LCGs are in such common usage, below is a list of parameter values in

the literature. The Park–Miller LCG is widely considered a minimally acceptable

PRNG. Using any values other than those in the following table may result in a

“weaker” LCG.

a b M Source

75 0 231 − 1 Park–Miller

131 0 235 Neave

16333 25887 215 Oakenfull

7.6.1.2 Shift-register generators

Another popular method of generating pseudorandom numbers is using binary shift-

register sequences to produce pseudorandom bits. A binary shift-register sequence

(SRS) is defined by a binary recursion of the type,

xn = xn−j1 ⊕ xn−j2 ⊕ · · · ⊕ xn−jk , j1 < j2 < · · · < jk = ℓ, (7.6.2)

where⊕ is the exclusive “or” operation. Note that x⊕y ≡ x+y (mod 2). Thus the

new bit, xn, is produced by adding k previously computed bits together modulo 2.

The implementation of this recurrence requires keeping the last ℓ bits from the se-

quence in a shift register, hence the name. The longest possible period is equal to the

number of non-zero ℓ-dimensional binary vectors, namely 2ℓ − 1.
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A sufficient condition for achieving Per(xn) = 2ℓ − 1 is that the characteristic

polynomial, corresponding to Equation (7.6.2), be primitive modulo 2. Since prim-

itive trinomials of nearly all degrees of interest have been found, SRSs are usually

implemented using two-term recursions of the form,

xn = xn−k ⊕ xn−ℓ, 0 < k < ℓ. (7.6.3)

In these two-term recursions, k is the lag and ℓ is the register length. Proper choice

of the pair (ℓ, k) leads to SRSs with Per(xn) = 2ℓ − 1. Here is a list with suitable

(ℓ, k) pairs:

Primitive trinomial exponents

(5,2) (7,1) (7,3) (17,3) (17,5) (17,6)

(31,3) (31,6) (31,7) (31,13) (127,1) (521,32)

7.6.1.3 Lagged-Fibonacci generators

Another way of producing pseudorandom numbers uses lagged-Fibonacci genera-

tors. The term “lagged-Fibonacci” refers to two-term recurrences of the form,

xn = xn−k ⋄ xn−ℓ, 0 < k < ℓ, (7.6.4)

where ⋄ refers to one of the three common methods of combination: (1) addition

modulo 2m, (2) multiplication modulo 2m, or (3) bitwise exclusive ‘OR’ing of m-

long bit vectors. Combination method (3) can be thought of as a special implemen-

tation of a two-term shift-register sequence.

Using combination method (1) leads to additive lagged-Fibonacci sequences

(ALFSs). If xn is given by

xn = xn−k + xn−ℓ (mod 2m), 0 < k < ℓ, (7.6.5)

then the maximal period is Per(xn) = (2ℓ − 1)2m−1.

ALFSs are especially suitable for producing floating point deviates using the

real-valued recursion yn = yn−k + yn−ℓ (mod 1). This circumvents the need to

convert from integers to floating point values and allows floating point hardware to

be used. One caution with ALFSs is that Theorem 7.6.1 holds, and so the low-order

bits have periods that are shorter than the maximal period. However, this is not nearly

the problem as in the LCG case. With ALFSs, the j least-significant bits will have

period (2ℓ − 1)2j−1, so, if ℓ is large, there really is no problem. Note that one can

use the table of primitive trinomial exponents to find (ℓ, k) pairs that give maximal

period ALFSs.

7.6.1.4 Non-linear generators

Also possible for PRNGs are non-linear integer recurrences. For example, if in equa-

tion (7.6.4) “⋄” referred to multiplication modulo 2m, then this recurrence would be

a multiplicative lagged-Fibonacci generator (MLFG); a non-linear generator. The

mathematical structure of non-linear generators is qualitatively different than that of

linear generators. Thus, their defects and deficiencies are thought to be complemen-

tary to their linear counterparts.
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The maximal period of a MLFG is Per(xn) = (2ℓ−1)2m−3, a factor of 4 shorter

than the corresponding ALFS. However, there are benefits to using multiplication as

the combining function due to the bit mixing achieved. Because of this, the perceived

quality of the MLFG is considered superior to an ALFS with the same lag, ℓ.
We now illustrate two non-linear generators, the inversive congruential genera-

tors (ICGs), which were designed as non-linear analogs of the LCG.

1. The implicit ICG is defined by the following recurrence that is almost that of

an LCG (assume that M is a prime)

xn = axn−1 + b (mod M). (7.6.6)

The difference is that we must also take the multiplicative inverse of xn−1,

which is defined by xn−1 xn−1 ≡ 1 (mod M), and 0 = 0. This recurrence

is indeed non-linear, and avoids some of the problems inherent in linear recur-

rences, such as the fact that linear tuples must lie on hyperplanes.

2. The explicit ICG is

xn = an+ b (mod M). (7.6.7)

One drawback of ICGs is the cost of inversion, which is O(log2M) times the cost

of multiplication moduloM .

7.6.2 GENERATING NON-UNIFORM RANDOM VARIABLES

Suppose we want deviates from a distribution with probability density function f(x)
and distribution function F (x) =

∫ x

−∞ f(u) du. In the following “y is U [0, 1)”
means y is uniformly distributed on [0, 1).

Two general techniques for converting uniform random variables into those from

other distributions are as follows:

1. The inverse transform method:

If y is U [0, 1), then the random variable F−1(y) will have its density equal to

f(x). (Note that F−1(y) exists since 0 ≤ F (x) ≤ 1.)

2. The acceptance-rejection method:

Suppose the density can be written as f(x) = C h(x)g(x) where h(x)
is the density of a computable random variable, the function g satisfies

0 < g(x) ≤ 1, and C−1 =
∫∞
−∞ h(u)g(u) du is a normalization constant. If

x is U [0, 1), y has density h(x), and if x < g(y), then x has density f(x).
Thus one generates {x, y} pairs, rejecting both if x ≥ g(y) and returning x if

x < g(y).

EXAMPLES

1. Examples of the inverse transform method:

(a) Exponential distribution: The exponential distribution with rate λ has f(x) =
λe−λx (for x ≥ 0) and F (x) = 1 − e−λx. Thus u = F (x) can be solved to

give x = F−1(u) = −λ−1 ln(1 − u). If u is U [0, 1), then so is 1 − u. Hence

x = −λ−1 ln u is exponentially distributed with rate λ.
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(b) Normal distribution: Suppose the zi’s are normally distributed with density func-

tion f(z) = 1√
2π
e−z2/2. The polar transformation then gives random variables

r =
√
z21 + z22 (exponentially distributed with λ = 2) and θ = tan−1(z2/z1)

(uniformly distributed on
[
−π

2
, π
2

]
). Inverting these relationships results in

z1 =
√
−2 ln x1 cos 2πx2 and z2 =

√
−2 ln x1 sin 2πx2; each is normally

distributed when x1 and x2 are U [0, 1). (This is the Box–Muller technique.)

2. Examples of the rejection method:

(a) Exponential distribution with λ = 1:

i. Generate random numbers {Ui}Ni=1 uniformly in [0, 1]), stopping at

N = min{n | U1 ≥ · · · ≥ Un−1 < Un}.
ii. If N is even, accept that run, and go to step iii. If N is odd reject the run,

and return to step i.

iii. Set X equal to the number of failed runs plus U1 (the first random number

in the successful run).

(b) Normal distribution - using uniform random variables:

i. Select two random variables (V1, V2) from U [0, 1). Form R = V 2
1 + V 2

2 .

ii. If R > 1, then reject the (V1, V2) pair, and select another pair.

iii. If R < 1, then x = V1

√
−2 lnR

R
has a N(0, 1) distribution.

(c) Normal distribution - using exponential random variables:

i. Select two exponentially distributed random variables with rate 1: (V1, V2).
ii. If V2 ≥ (V1 − 1)2/2, then reject the (V1, V2) pair, and select another pair.

iii. Otherwise, V1 has a N(0, 1) distribution.

(d) Cauchy distribution:

To generate values of X from f(x) = 1
π(1+x2)

on −∞ < x <∞,

i. Generate random numbers U1, U2 (uniform on [0, 1)), and set

Y1 = U1 − 1
2

, Y2 = U2 − 1
2

.

ii. If Y 2
1 + Y 2

2 ≤ 1
4
, then return X = Y1/Y2. Otherwise return to step (a).

To generate values of X from a Cauchy distribution with parameters β and θ,(
f(x) =

β

π [β2 + (x− θ)2] for −∞ < x <∞
)

, construct X as above, and

then use βX + θ.

7.6.2.1 Discrete random variables

The density function of a discrete random variable that attains finitely many values

can be represented as a vector p = (p0, p1, . . . , pn−1, pn) by defining the probabili-

ties P (x = j) = pj (for j = 0, . . . , n). The distribution function can be defined by

the vector c = (c0, c1, . . . , cn−1, 1), where cj =
∑j

i=0 pi. Given this representation

of F (x), we can apply the inverse transform by computing x to be U [0, 1), and then

finding the index j so that cj ≤ x < cj+1. In this case event j will have occurred.

Examples:

1. (Binomial distribution) The binomial distribution with n trials of mean p has

pj =
(
n
j

)
pj(1− p)n−j , for j = 0, . . . , n.
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(a) As an example, consider the result of flipping a fair coin. In 2 flips, the

probability of obtaining (0, 1, 2) heads is p = (14 ,
1
2 ,

1
4 ). Hence c =

(14 ,
3
4 , 1). If x (chosen from U [0, 1)) turns out to be say, 0.4, then “1

head” is returned (since 1
4 ≤ 0.4 < 3

4 ).

(b) Note that, when n is large, it is costly to compute the density and distri-

bution vectors. When n is large and relatively few binomially distributed

pseudorandom numbers are desired, an alternative is to use the normal

approximation to the binomial.

(c) Alternately, one can form the sum
∑n

i=1 ⌊ui + p⌋, where each ui is

U [0, 1).

2. (Geometric distribution) To simulate a value from P (X = i) = p(1 − p)i−1

for i ≥ 1, use X = 1 +

⌈
logU

log(1− p)

⌉
.

3. (Poisson distribution) The Poisson distribution with mean λ has pj =
λje−λ/j! for j ≥ 0. The Poisson distribution counts the number of events

in a unit time interval if the times are exponentially distributed with rate λ.

Thus, if the times ti are exponentially distributed with rate λ, then j will

be Poisson distributed with mean λ when
∑j

i=0 ti ≤ 1 <
∑j+1

i=0 ti. Since

ti = −λ−1 lnui, where ui is U [0, 1), the previous equation may be written

as
∏j

i=0 ui ≥ e−λ >
∏j+1

i=0 ui. This allows us to compute Poisson random

variables by iteratively computing Pj =
∏j

i=0 ui until Pj < e−λ. The first

such j that makes this inequality true will have the desired distribution.

Random variables can be simulated using the following table (each U and Ui is

uniform on the interval [0, 1)):

Distribution Density Formula for deviate

Binomial pj =

(
n

j

)
pj(1− p)n−j

n∑

i=1

⌊Ui + p⌋

Cauchy f(x) =
σ

π(x2 + σ2)
σ tan(πU)

Exponential f(x) = λe−λx −λ−1 lnU

Pareto f(x) = aba/xa+1 b/U1/a

Rayleigh f(x) = x/σe−x2/2σ2

σ
√
− lnU

7.6.2.2 Testing pseudorandom numbers

The prudent way to check a complicated computation that makes use of pseudoran-

dom numbers is to run it several times with different types of pseudorandom number

generators and see if the results appear consistent across the generators. The fact that

this is not always possible or practical has led researchers to develop statistical tests

of randomness that should be passed by general purpose pseudorandom number gen-

erators. Some common tests are the spectral test, the equidistribution test, the serial

test, the runs test, the coupon collector test, and the birthday spacing test.
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7.7 CONTROL CHARTS AND RELIABILITY

7.7.1 CONTROL CHARTS

Control charts are graphical tools used to assess and maintain the stability of a pro-

cess. They are used to separate random variation from specific causes. Data mea-

surements are plotted versus time along with upper and lower control limits (UCL

and LCL) and a center line. If the process is in control and the underlying distribu-

tion is normal, then the control limits represent three standard deviations from the

center line (mean).

If all of the data points are contained within the control limits, the process is con-

sidered stable and the mean and standard deviations can be reliably calculated. The

variations between data points occur from random causes. Data outside the control

limits or forming abnormal patterns point to unstable, out-of-control processes.

There are two types of control charts:

• Control charts for attributes: the data are from a count. If every item is either

“good” or “bad,” then “defectives” are counted. If each item may have several

flaws, then “defects” are counted.

– p chart (defectives, sample size varies, uses Binomial statistics)

– np chart (defectives, sample size fixed, uses Binomial statistics)

– u chart (defects, sample size varies, uses Poisson statistics)

– c chart (defects, sample size varies, uses Poisson statistics)

• Control charts for variables: the data are from measurements on a variable or

continuous scale. Statistics of the measurements are used, Gaussian statistics

used.

– x−R chart (sample average versus sample range)

– x̃−R chart (sample median versus sample range)

– x− s chart (sample average versus sample standard deviation)

– x − Rs chart (samples versus moving range, Rs = |xi − xi−1|). Similar

to a x−R chart but single measurements are made. Used when measure-

ments are expensive or dispersion of measured values is small.

In the tables, k denotes the number of samples taken, i is an index for the samples

(i = 1 . . . k), n is the sample size (number of elements in each sample), and R is

the range of the values in a sample (minimum element value subtracted from the

maximum element value). The mean is µ and the standard deviation is σ.
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Types of control charts and limits (“P ” stands for parameter)

Chart
(µ, σ)
known?

P Centerline UCL LCL

x−R No x x =
∑

x
k

x+ A2R x− A2R

x−R No R R =
∑

R
k

D4R D3R

x−R Yes x x = µ µ+ 3σ√
n

µ− 3σ√
n

x−R Yes R R = d2σ D2σ D1σ

x̃−R No x̃ x̃ =
∑

x̃
k

x̃+m3A2 x̃−m3A2

x̃−R No R R =
∑

R
k

D4R D3R

x−Rs No x x =
∑

x
k

x+ 2.66Rs x− 2.66Rs

x−Rs No Rs Rs =
∑

Rs
k

3.27Rs —

pn No pn pn =
∑

pn
k

pn+
√
pn(1− p) pn−

√
pn(1− p)

p No p p =
∑

pn∑
n

pn+ 3
√

p(1−p)
n

pn− 3
√

p(1−p)
n

c No c c =
∑

c
k

c+ 3
√
c c− 3

√
c

u No u u =
∑

c∑
n

u+ 3
√

u
n

u− 3
√

u
n

Sample size n A2 d2 D1 D2 D3 D4 m3 m3A2

2 1.880 1.128 0 3.686 – 3.267 1.000 1.880

3 1.023 1.693 0 4.358 – 2.575 1.160 1.187

4 0.729 2.059 0 4.698 – 2.282 1.092 0.796

5 0.577 2.326 0 4.918 – 2.115 1.198 0.691

6 0.483 2.534 0 5.078 – 2.004 1.135 0.549

7 0.419 2.704 0.205 5.203 0.076 1.924 1.214 0.509

8 0.373 2.847 0.387 5.307 0.136 1.864 1.160 0.432

9 0.337 2.970 0.546 5.394 0.184 1.816 1.223 0.412

10 0.308 3.078 0.687 5.469 0.223 1.777 1.176 0.363

11 0.285 3.173 0.812 5.534 0.256 1.744

12 0.266 3.258 0.924 5.592 0.284 1.716

13 0.249 3.336 1.026 5.646 0.308 1.692

14 0.235 3.407 1.121 5.693 0.329 1.671

15 0.223 3.472 1.207 5.737 0.348 1.652

16 0.212 3.532 1.285 5.779 0.364 1.636

17 0.203 3.588 1.359 5.817 0.379 1.621

18 0.194 3.640 1.426 5.854 0.392 1.608

19 0.187 3.689 1.490 5.888 0.404 1.596

20 0.180 3.735 1.548 5.922 0.414 1.586

21 0.173 3.778 1.605 5.951 0.425 1.575

22 0.167 3.819 1.659 5.979 0.434 1.566

23 0.162 3.858 1.710 6.006 0.443 1.557

24 0.157 3.895 1.759 6.031 0.452 1.548

25 0.153 3.931 1.806 6.056 0.459 1.541
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Abnormal distributions of points in control charts

Abnormality Description

Sequence Seven or more consecutive points on one side of the

center line. Denotes the average value has shifted.

Bias Fewer than seven consecutive points on one side of the

center line, but most of the points are on that side.

• 10 of 11 consecutive points

• 12 or more of 14 consecutive points

• 14 or more of 17 consecutive points

• 16 or more of 20 consecutive points

Trend Seven or more consecutive rising or falling points.

Approaching the limit Two out of three or three or more out of seven

consecutive points are more than two-thirds the

distance from the center line to a control limit.

Periodicity The data points vary in a regular periodic pattern.

7.7.2 SIGMA CONVERSION TABLE

Defects per million Sigma level Cpk (Sigma level/3)

opportunities (with 1.5 sigma shift) with 1.5 sigma shift

933,200 0.000 0.000

500,000 1.500 0.500

66,800 3.000 1.000

6,210 4.000 1.333

233 5.000 1.667

3.4 6.000 2.000

7.7.3 RELIABILITY

1. The reliability of a product is the probability that the product will function

within specified limits for at least a specified period of time.

2. A series system is one in which the entire system will fail if any of its compo-

nents fail.

3. A parallel system is one in which the entire system will fail only if all of its

components fail.

4. Let Ri denote the reliability of the ith component.

5. Let Rs denote the reliability of a series system.

6. Let Rp denote the reliability of a parallel system.

The product law of reliabilities states Rs =

n∏

i=1

Ri.

The product law of unreliabilities states Rp = 1−
n∏

i=1

(1−Ri).
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7.7.4 FAILURE TIME DISTRIBUTIONS

1. Let the probability of an item failing between times t and t+∆t be f(t)∆t+
o(∆t) as ∆t→ 0.

2. The probability that an item will fail in the interval from 0 to t is

F (t) =

∫ t

0

f(x) dx. (7.7.1)

3. The reliability function is the probability that an item survives to time t

R(t) = 1− F (t). (7.7.2)

4. The instantaneous hazard rate, Z(t), is approximately the probability of fail-

ure in the interval from t to t + ∆t, given that the item survived to time t

Z(t) =
f(t)

R(t)
=

f(t)

1− F (t) . (7.7.3)

Note the relationships:

R(t) = e−
∫

t
0
Z(x) dx f(t) = Z(t)e−

∫
t
0
Z(x) dx (7.7.4)

EXAMPLE If f(t) = αβtβ−1eαtβ with α > 0 and β > 0, the probability distribution

function for a Weibull random variable, then the failure rate is Z(t) = αβtβ−1 and

R(t) = e−αtβ . Note that failure rate decreases with time if β < 1 and increases with

time if β > 1.

7.7.4.1 Use of the exponential distribution

If the hazard rate is a constantZ(t) = α (with α > 0) then f(t) = αe−αt (for t > 0)

which is the probability density function for an exponential random variable. If a

failed item is replaced with another having the same constant hazard rate α, then the

sequence of occurrence of failures is a Poisson process. The constant 1/α is called

the mean time between failures (MTBF). The reliability function is R(t) = e−αt.

If a series system has n components, each with constant hazard rate {αi}, then

Rs(t) = exp

(
−

n∑

i=1

αi

)
. (7.7.5)

The MTBF for the series system is µs

µs =
1

1
µ1

+ 1
µ2

+ · · ·+ 1
µn

. (7.7.6)

If a parallel system has n components, each with identical constant hazard rate α,

then the MTBF for the parallel system is µp

µp =
1

α

(
1 +

1

2
+ · · ·+ 1

n

)
. (7.7.7)
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7.7.5 PROCESS CAPABILITY

Notation

• Cp process capability

• Cpk process capability index

• Cpl process capability (one-sided)

• Cpm process capability index

• Cul process capability (one-sided)

• LSL lower specification limit

• T target value

• USL upper specification limit

• µ process mean

• σ process standard deviation

Definitions

Cpu =
USL− µ

3σ
Cpl =

µ− LSL

3σ

Cp =
USL− LSL

6σ
=
Cpu + Cpl

2

Cpk = min

(
USL− µ

3σ
,
µ− LSL

3σ

)
= min (Cpu, Cpl)

Cpm =
USL− LSL

6
√
σ2 + (µ− T )2

(7.7.8)

Estimates (here {µ̂, σ̂} are estimates of {µ, σ})

Ĉp =
USL− LSL

6σ̂

Ĉpk = min

(
USL− µ̂

3σ̂
,
µ̂− LSL

3σ̂

)

Ĉm =
USL− LSL

6
√
σ̂2 + (µ̂− T )2

(7.7.9)

Approximate 100(1− α)% confidence interval assuming normal data and n > 25:

Cpk = Ĉpk ± z1−α/2

√
1

9n
+

Ĉ2
pk

2(n− 1)

Comments

1. Cpk adjusts Cp to account for the effect of a non-centered distribution.

2. Cpm is used when a target value other than the center of the specification

spread has been designated as desirable.

3. Usually µ̂ = x̄. When there are subgroups (page 545 has d2 and d4 values):

(a) σ̂ = R̄/d2 where R̄ is the average of the ranges; or

(b) σ̂ = s̄/d4 where s̄ is the average of the sample standard deviations

4. The process must be in control before the process capability is computed; an

out-of-control process will not yield a valid σ̂ estimate.

EXAMPLE The specification limits of a process are LSL = 8 and USL = 20. Process

measurements yield x̄ = 16 and σ̂ = 2. Hence, ĈP = 1.0 which means that this

process is capable. However, Ĉpk = 0.67 which means this process is not good (a

value of Ĉpk ≥ 1 is desired).
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7.8 STATISTICS

7.8.1 DESCRIPTIVE STATISTICS

1. Sample distribution and density functions

(a) Sample distribution function:

F̂ (x) =
1

n

n∑

i=1

u(x− xi) (7.8.1)

where u(x) be the unit step function (or Heaviside function) defined by

u(x) = 0 for x ≤ 0 and u(x) = 1 for x > 0.

(b) Sample density function or histogram:

f̂(x) =
F̂ (x0 + (i+ 1)w) − F̂ (x0 + iw)

w
(7.8.2)

for x ∈ [x0 + iw, x0 + (i+1)w). The interval [x0 + iw, x0 + (i+1)w)

is called the ith bin, w is the bin width, and fi = F̂ (x0 + (i + 1)w) −
F̂ (x0 + iw) is the bin frequency.

2. Order statistics and quantiles:

(a) Order statistics are obtained by arranging the sample values

{x1, x2, . . . , xn} in increasing order, denoted by

x(1) ≤ x(2) ≤ · · · ≤ x(n). (7.8.3)

i. x(1) and x(n) are the minimum and maximum data values, respec-

tively.

ii. For i = 1, . . . , n, x(i) is called the ith order statistic.

(b) Quantiles: If 0 < p < 1, then the quantile of order p, ξp, is defined as

the p(n+ 1)th order statistic. It may be necessary to interpolate between

successive values.

i. If p = j/4 for j = 1, 2, or 3, then ξ j
4

is called the j th quartile.

ii. If p = j/10 for j = 1, 2, . . . , 9, then ξ j
10

is called the j th decile.

iii. If p = j/100 for j = 1, 2, . . . , 99, then ξ j
100

is called the j th per-

centile.

3. Measures of central tendency

(a) Arithmetic mean:

x =
1

n

n∑

i=1

xi =
x1 + x2 + · · ·+ xn

n
. (7.8.4)
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(b) α-trimmed mean:

xα =
1

n(1− 2α)

(
(1− r)

(
x(k+1) + x(n−k)

)
+

n−k−1∑

i=k+2

x(i)

)
,

(7.8.5)

where k = ⌊αn⌋ is the greatest integer less than or equal to αn, and

r = αn− k. If α = 0 then x̄α = x.

(c) Weighted mean: If to each xi is associated a weight wi ≥ 0 so that

n∑

i=1

wi = 1, then xw =
n∑

i=1

wixi. (7.8.6)

(d) Geometric mean: (for xi ≥ 0)

G.M. =

(
n∏

i=1

xi

)1/n

= (x1x2 · · ·xn)1/n . (7.8.7)

(e) Harmonic mean:

H.M. =
n∑n

i=1
1
xi

=
n

1
x1

+ 1
x2

+ · · ·+ 1
xn

. (7.8.8)

(f) Relationship between arithmetic, geometric, and harmonic means (for

xi ≥ 0):

H.M. ≤ G.M. ≤ x (7.8.9)

with equality holding only when all sample values are equal.

(g) The mode is the data value that occurs with the greatest frequency. Note

that the mode may not be unique.

(h) Median:

i. If n is odd and n = 2k + 1, then M = x(k+1).
ii. If n is even and n = 2k, then M = (x(k) + x(k+1))/2.

(i) Midrange:

mid =
x(1) + x(n)

2
. (7.8.10)

4. Measures of dispersion

(a) Mean deviation or absolute deviation:

M.D. =
1

n

n∑

i=1

|xi − x| , or A.D. =
1

n

n∑

i=1

|xi −M | .

(7.8.11)

(b) Sample standard deviation:

s =

√√√√ 1

n− 1

n∑

i=1

(xi − x)2 =

√∑n
i=1 x

2
i − nx2

n− 1
. (7.8.12)
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(c) The sample variance is the square of the sample standard deviation.

(d) Root mean square: R.M.S. =

√√√√ 1

n

n∑

i=1

x2i .

(e) Sample range: x(n) − x(1).
(f) Interquartile range: ξ 3

4
− ξ 1

4
.

(g) The quartile deviation or semi-interquartile range is one-half the in-

terquartile range.

5. Higher-order statistics

(a) Sample moments: mk =
1

n

n∑

i=1

xki .

(b) Sample central moments, or sample moments about the mean:

µk =
1

n

n∑

i=1

(xi − x)k . (7.8.13)

7.8.2 STATISTICAL ESTIMATORS

7.8.2.1 Definitions

1. A function of a set of random variables is a statistic. It is a function of ob-

servable random variables that does not contain any unknown parameters. A

statistic is itself an observable random variable.

2. Let θ be a parameter appearing in the density function for the random variable

X . Suppose that we know a formula for computing an approximate value θ̂

of θ from a given sample {x1, . . . , xn} (call such a function g). Then θ̂ =
g(x1, x2, . . . , xn) can be considered as a single observation of the random

variable Θ̂ = g(X1, X2, . . . , Xn). The random variable Θ̂ is an estimator for

the parameter θ.

3. A hypothesis is an assumption about the distribution of a random variable X .

This may usually be cast into the form θ ∈ Θ0. We use H0 to denote the null

hypothesis and H1 to denote an alternative hypothesis. The null hypothesis is

a statistical hypothesis tested for possible rejection (usually by finding that a

very unlikely event occurs when the null hypothesis is assumed to be true).

4. In significance testing, a test statistic T = T (X1, . . . , Xn) is used to reject

H0, or to not reject H0. Generally, if T ∈ C, whereC is a critical region, then

H0 is rejected.

5. A type I error, denoted α, is to reject H0 when it should not be rejected. A

type II error, denoted β, is to not reject H0 when it should be rejected.

6. The power of a test is η = 1− β.

Unknown truth

H0 H1

Do not reject H0
True decision.

Probability is 1− α
Type II error.

Probability is β

Reject H0
Type I error.

Probability is α
True decision.

Probability is η = 1− β
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7.8.2.2 Consistent estimators

Let Θ̂ = g(X1, X2, . . . , Xn) be an estimator for the parameter θ, and suppose that g
is defined for arbitrarily large values of n. If the estimator has the property,

E[(Θ̂− θ)2]→ 0, as n→∞, then the estimator is called a consistent estimator.

1. A consistent estimator is not unique.

2. A consistent estimator need not be unbiased.

7.8.2.3 Efficient estimators

An unbiased estimator Θ̂ = g(X1, X2, . . . , Xn) for a parameter θ is said to be effi-

cient if it has finite variance (E
[
(Θ̂−Θ)2

]
<∞) and if there does not exist another

estimator Θ̂∗ = g∗(X1, X2, . . . , Xn) for θ, whose variance is smaller than that of

Θ̂. The efficiency of an unbiased estimator is the ratio,

Cramer–Rao lower bound

Actual variance
.

The relative efficiency of two unbiased estimators is the ratio of their variances.

7.8.2.4 Maximum likelihood estimators (MLE)

Suppose X is a random variable whose density function is f(x; θ), where θ = (θ1,

. . . , θr). If the independent sample values x1, . . . , xn are obtained, then define the

likelihood function as L =
∏n

i=1 f(xi; θ). The MLE estimate for θ is the solution of

the simultaneous equations, ∂L
∂θi

= 0, for i = 1, . . . , r.

1. A MLE need not be consistent.

2. A MLE may not be unbiased.

3. A MLE need not be unique.

4. If a single sufficient statistic T exists for the parameter θ, the MLE of θ must

be a function of T.
5. Let Θ̂ be a MLE of θ. If τ(·) is a function with a single-valued inverse, then a

MLE of τ(θ) is τ(Θ̂).

Define x =
∑n

i=1Xi/n and S2 =
∑n

i=1(Xi − x)2/n (note that S 6= s). Then:

Distribution Estimated MLE estimate

parameter of parameter

ExponentialE(λ) 1/λ 1/x
ExponentialE(λ) λ2 = σ2 x2

Normal N(µ, σ) µ x
Normal N(µ, σ) σ2 S2

Poisson P (λ) λ x
Uniform U(0, θ) θ Xmax
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7.8.2.5 Method of moments (MOM)

Let {Xi} be independent and identically distributed random variables with density

f(x; θ). Let µ′
r(θ) = E[Xr] be the rth moment (if it exists). Let m′

r = 1
n

∑n
i=1 x

r
i

be the rth sample moment. Form the k equations, µ′
r = m′

r, and solve to obtain an

estimate of θ.

1. MOM estimators need not be unique.

2. MOM estimators may not be functions of sufficient or complete statistics.

7.8.2.6 Sufficient statistics

A statistic G = g(X1, . . . , Xn) is called as a sufficient statistic if and only if the

conditional distribution of H , given G, does not depend on θ for any statistic H =
h(X1, . . . , Xn).

Let {Xi} be independent and identically distributed random variables, with den-

sity f(x; θ). The statistics {G1, . . . , Gr} are said to be jointly sufficient statistics if

and only if the conditional distribution of X1, X2, . . . , Xn givenG1 = g1, G1 = g2,

. . . , Gr = gr does not depend on θ.

1. A single sufficient statistic may not exist.

7.8.2.7 UMVU estimators

A uniformly minimum variance unbiased estimator, called a UMVU estimator, is

unbiased and has the minimum variance among all unbiased estimators.

Define, as usual, x =
∑n

i=1Xi/n and s2 =
∑n

i=1(Xi − x)2/(n− 1). Then:

Distribution Estimated UMVU estimate Variance of

parameter of parameter estimator

ExponentialE(λ) λ
n− 1

s

λ2

n− 2

ExponentialE(λ)
1

λ
x

1

nλ2

Normal N(µ, σ) µ x
σ2

n

Normal N(µ, σ) σ2 s2
2σ4

n− 1

Poisson P (λ) λ x
λ2

n

Uniform U(0, θ) θ
n+ 1

n
Xmax

θ2

n(n+ 2)

7.8.2.8 Unbiased estimators

An estimator g(X1, X2, . . . , Xn) for a parameter θ is said to be unbiased if

E[g(X1, X2, . . . , Xn)] = θ. (7.8.14)

1. An unbiased estimator may not exist.

2. An unbiased estimator is not unique.

3. An unbiased estimator need not be consistent.
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7.8.2.9 Estimators for mean and variance

The estimates below do not use all of the data points; except in the n = 2 case.

Hence, their efficiencies are all less than 1.

The variance of the estimates below must be multiplied by the true variance of

the sample, σ2.

• Small samples

1. Estimating standard deviation σ from the sample range w

n Estimator Variance Efficiency

2 .886w .571 1.000

3 .591w .275 .992

4 .486w .183 .975

5 .430w .138 .955

10 .325w .067 .850

20 .268w .038 .700

2. Best linear estimate of the standard deviation σ
n Estimator Efficiency

2 .8862(x2 − x1) 1.000

3 .5908(x3 − x1) .992

4 .4539(x4 − x1) + .1102(x3 − x2) .989

5 .3724(x5 − x1) + .1352(x3 − x2) .988

6 .3175(x6 − x1) + .1386(x5 − x2) + .0432(x4 − x3) .988

7 .2778(x7 − x1) + .1351(x6 − x2) + .0625(x5 − x3) .989

• Large samples

Use percentile estimates to estimate the mean and standard deviation.

1. Estimators for the mean

Number of terms Estimator using percentiles Efficiency

1 P50 .64

2 1/2 (P25 + P75) .81

3 1/3 (P17 + P50 + P83) .88

4 1/4 (P12.5 + P37.5 + P62.5 + P87.5) .91

5 1/5 (P10 + P30 + P50 + P70 + P90) .93

2. Estimators for the standard deviation

Number of terms Estimator using percentiles Efficiency

2 .3388 (P93 − P7) .65

4 .1714 (P97 + P85 − P15 − P3) .80

6 .1180 (P98 + P91 + P80 − P20 − P9 − P2) .87
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7.8.3 CRAMER–RAO BOUND

The Cramer–Rao bound gives a lower bound on the variance of an unknown un-

biased statistical parameter, when n samples are taken. When the single unknown

parameter is θ,

σ2(θ) ≥ 1

−nE
[

∂2

∂θ2 log f(x; θ)
] = 1

nE
[(

∂
∂θ log f(x; θ)

)2] . (7.8.15)

EXAMPLES

1. For a normal random variable with unknown mean θ and known variance σ2, the den-

sity is f(x; θ) = 1√
2πσ

exp
(
− (x−θ)2

2σ2

)
. Hence, ∂

∂θ
log f(x; θ) = (x − θ)/σ2. The

computation

E

[
(x− θ)2
σ4

]
=

∫ ∞

−∞

(x− θ)2
σ4

1√
2πσ

e−(x−θ)2/2σ2

dx =
1

σ2

results in σ2(θ) ≥ σ2

n
.

2. For a normal random variable with known mean µ and unknown variance θ = σ2, the

density is f(x; θ) = 1√
2πθ

exp
(
− (x−µ)2

2θ2

)
. Hence, ∂

∂θ
log f(x; θ) = ((x − µ)2 −

2θ)/(2θ)2. The computation E
[
(x−µ)2−2θ

(2θ)2

]
= 1

2θ2
= 1

2σ4 results in σ2(θ) ≥ 2σ4/n.

3. For a Poisson random variable with unknown mean θ, the density is f(x; θ) =
θxe−θ/x!. Hence, ∂

∂θ
log f(x; θ) = x/θ − 1. The computation

E

[(x
θ
− 1
)2]

=
∞∑

x=0

(x
θ
− 1
)2 θxe−θ

x!
=

1

θ
results in σ2(θ) ≥ θ/n.

7.8.4 CLASSIC STATISTICS PROBLEMS

7.8.4.1 Sample size problem

Suppose that a Bernoulli random variable (page 591) is to be estimated from a sam-

ple. What sample size n is required so that, with 99% certainty, the error is no more

than e = 5 percentage points (i.e., Prob(|p̂− p| < 0.05) > 0.99)?

If an a priori estimate of p is available, then the minimum sample size is np =
z2α/2p(1 − p)/e2. If no a priori estimate is available (i.e., no estimate is available

before the experiment), then nn = z2α/2/4e
2 ≥ np |p=1/2. For the numbers above,

n ≥ nn = 664. Section 7.13 on page 590 has more information on sample sizes.

7.8.4.2 Large scale testing with infrequent success

Suppose that a disease occurs in one person out of every 1,000. Suppose that a test

for this disease has a type I and a type II error of 1% (that is, α = β = 0.01). Imagine

that 100,000 people are tested. Of the 100 people who have the disease, 99 will be

diagnosed as having it. Of the 99,900 people who do not have the disease, 999 will

be diagnosed as having it. Hence, only 99
1098 ≈ 9% of the people who test positive

for the disease actually have it.
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7.8.5 ORDER STATISTICS

When {Xi} are n independent and identically distributed random variables with

the common distribution function FX(x), let Zm be the mth largest of the values

(m = 1, 2, . . . , n). HenceZ1 is the maximum of the n values andZn is the minimum

of the n values. Then

FZm(x) =

n∑

i=m

(
n

i

)
[FX(x)]

i
[1− FX(x)]

n−i
(7.8.16)

Hence

Fmax(z) = [FX(z)]n , fmax(z) = n [FX(z)]n−1 fX(z), (7.8.17)

Fmin(z) = 1− [1− FX(z)]
n
, fmin(z) = n [1− FX(z)]

n−1
fX(z). (7.8.18)

The expected value of the ith order statistic is given by

E
[
x(i)
]
=

n!

(i − 1)!(n− i)!

∫ ∞

−∞
xf(x)F i−1(x)[1 − F (x)]n−i dx. (7.8.19)

7.8.5.1 Uniform distribution

If X is uniformly distributed on the interval [0, 1) then

E
[
x(i)
]
=

n!

(i − 1)!(n− i)!

∫ 1

0

xi(1− x)n−i dx. (7.8.20)

The expected value of the largest of n samples is n
n+1 ; the expected value of the least

of n samples is 1
n+1 .

7.8.5.2 Normal distribution

The following table gives values of E
[
x(i)
]

for a standard normal distribution. Miss-

ing values (indicated by a dash) may be obtained from E
[
x(i)
]
= −E

[
x(n−i+1)

]
.

i n =2 3 4 5 6 7 8 10

1 0.5642 0.8463 1.0294 1.1630 1.2672 1.3522 1.4236 1.5388

2 — 0.0000 0.2970 0.4950 0.6418 0.7574 0.8522 1.0014

3 — — 0.0000 0.2016 0.3527 0.4728 0.6561

4 — — — 0.0000 0.1522 0.3756

5 — — — — 0.1226

6 — — — —

EXAMPLE
If a person of average intelligence takes five intelligence tests (each test having a normal

distribution with a mean of 100 and a standard deviation of 20), then the expected value

of the largest score is 100 + (1.1630)(20) ≈ 123.



“smtf32” — 2011/5/20 — 2:09 — page 558 — #568

558 CHAPTER 7. PROBABILITY AND STATISTICS

7.9 CONFIDENCE INTERVALS

A probability distribution may have one or more unknown parameters. A confidence

interval is an assertion that an unknown parameter lies in a computed range, with a

specified probability. Before constructing a confidence interval, first select a confi-

dence coefficient, denoted 1 − α. Typically, 1 − α = 0.95, 0.99, or the like. The

definitions of zα, tα, and χ2
α are in Section 7.15.1 on page 598.

7.9.1 SAMPLE FROM ONE POPULATION

The following confidence intervals assume a random sample of size n, given by

{x1, x2, . . . , xn}.

# parameter assumptions
100(1− α)% confidence

interval

1 µ
normal distribution, σ2

known
x± zα/2σ/

√
n

2 µ
normal distribution, σ2

unknown
x± tα/2s/

√
n

3 p Bernoulli trials p̂± zα/2
√

p̂(1−p̂)
n

4 σ2 normal distribution
[
(n−1)s2

χ2
α/2

, (n−1)s2

χ2
1−α/2

]

5 quantile ξp large sample
[
x(k1), x(k2)

]

6 median large sample
[
w(k1), w(k2)

]

1. Find mean µ of the normal distribution with known variance σ2.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the mean x of the sample.

(c) Compute k = zα/2σ/
√
no.

(d) The 100(1 − α) percent confidence interval for µ is given by

[x− k, x+ k].

2. Find mean µ of the normal distribution with unknown variance σ2.

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the t-distribution with n− 1 degrees of freedom.

(b) Compute the mean x and standard deviation s of the sample.

(c) Compute k = tα/2s/
√
n.

(d) The 100(1 − α) percent confidence interval for µ is given by

[x− k, x+ k].
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3. Find the probability of success p for Bernoulli trials with large sample size.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the proportion p̂ of “successes” out of n trials.

(c) Compute k = zα/2

√
p̂ (1− p̂)

n
.

(d) The 100(1 − α) percent confidence interval for p is given by

[p̂− k, p̂+ k].

4. Find variance σ2 of the normal distribution.

(a) Determine the critical values χ2
α/2 and χ2

1−α/2 such that F
(
χ2
α/2

)
=

1 − α/2 and F
(
χ2
1−α/2

)
= α/2, where F (z) is the chi-square distri-

bution function with n− 1 degrees of freedom.

(b) Compute the sample standard deviation s.

(c) Compute k1 =
(n− 1)s2

χ2
α/2

and k2 =
(n− 1)s2

χ2
1−α/2

.

(d) The 100(1− α) percent confidence interval for σ2 is given by [k1, k2].
(e) The 100(1− α) percent confidence interval for the standard deviation σ

is given by
[√
k1,
√
k2
]
.

5. Find quantile ξp of order p for large sample sizes.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the order statistics x(1), x(2), . . . , x(n).

(c) Compute k1 =
⌊
np− zα/2

√
np(1− p)

⌋
and

k2 =
⌈
np+ zα/2

√
np(1− p)

⌉
.

(d) The 100(1 − α) percent confidence interval for ξp is given by[
x(k1), x(k2)

]
.

6. Find medianM based on the Wilcoxon one-sample statistic for a large sample.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the order statisticsw(1), w(2), . . . , w(N) of theN = n(n−1)/2
averages (xi + xj) /2, for 1 ≤ i < j ≤ n.

(c) Compute k1 =

⌊
N

2
− zα/2N√

3n

⌋
and k2 =

⌈
N

2
+
zα/2N√

3n

⌉
.

(d) The 100(1 − α) percent confidence interval for M is given by[
w(k1), w(k2)

]
.
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7.9.2 SAMPLES FROM TWO POPULATIONS

The following confidence intervals assume random samples from two large popula-

tions: one sample of size n, given by {x1, x2, . . . , xn}, and one sample of size m,

given by {y1, y2, . . . , ym}.

# parameter assumptions
100(1− α)% confidence

interval

1 µx − µy

independent samples,

known variances (x − y)± zα/2
√

σ2
x

n +
σ2
y

m

2 µx − µy

independent samples,

unknown variances (x − y)± zα/2
√

s2x
n +

s2y
m

3 µx − µy

independent samples,

unknown but equal

variances
(x − y)± tα/2 s

√
1
n + 1

m

4 µx − µy

paired samples,

unknown but equal

variances
µ̄d ± tα/2 sd/

√
n

5 px − py
independent samples,

Bernoulli trials, large

samples

(p̂x − p̂y)±
zα/2

√
p̂x(1−p̂x)

n +
p̂y(1−p̂y)

m

6 Mx −My

independent samples,

large samples

[
w(k1), w(k2)

]

7 σ2
x/σ

2
y

independent samples,

large samples

[
s2x
s2y
F1−α/2,

s2x
s2y
Fα/2

]

1. Find the difference in population means µx and µy from independent samples

with known variances σ2
x and σ2

y.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the means x and y.

(c) Compute k = zα/2

√
σ2
x

n
+
σ2
y

m
.

(d) The 100(1 − α) percent confidence interval for µx − µy is given by

[(x− y)− k, (x̄− y) + k].

2. Find the difference in population means µx and µy from independent samples

with unknown variances σ2
x and σ2

y.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the means x and y, and the standard deviations sx and sy.



“smtf32” — 2011/5/20 — 2:09 — page 561 — #571

7.9. CONFIDENCE INTERVALS 561

(c) Compute k = zα/2

√
s2x
n

+
s2y
m

.

(d) The 100(1 − α) percent confidence interval for µx − µy is given by

[(x− y)− k, (x̄− y) + k].

3. Find the difference in population means µx and µy from independent samples

with unknown but equal variances σ2
x = σ2

y.

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the t-distribution with n+m− 2 degrees of freedom.

(b) Compute the means x and y, the standard deviations sx and sy , and the

pooled standard deviation estimate,

s =

√
(n− 1)s2x + (m− 1)s2y

n+m− 2
. (7.9.1)

(c) Compute k = tα/2 s

√
1

n
+

1

m
.

(d) The 100(1 − α) percent confidence interval for µx − µy is given by

[(x− y)− k, (x− ȳ) + k].

4. Find the difference in population means µx and µy for paired samples with

unknown but equal variances σ2
x = σ2

y .

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the t-distribution with n− 1 degrees of freedom.

(b) Compute the mean µ̄d and standard deviation sd of the paired differences

x1 − y1, x2 − y2, . . . , xn − yn.

(c) Compute k = tα/2 sd/
√
n.

(d) The 100(1 − α) percent confidence interval for µd = µx − µy is given

by [µ̄d − k, µ̄d + k].

5. Find the difference in Bernoulli trial success rates, px−py, for large, indepen-

dent samples.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the proportions p̂x and p̂y of “successes” for the samples.

(c) Compute k = zα/2

√
p̂x (1− p̂x)

n
+
p̂y (1− p̂y)

m
.

(d) The 100(1 − α) percent confidence interval for px − py is given by

[(p̂x − p̂y)− k, (p̂x − p̂y) + k].

6. Find the difference in medians Mx − My based on the Mann–Whitney–

Wilcoxon procedure.

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the order statistics w(1), w(2), . . . , w(N) of theN = nm differ-

ences xi − yj , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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(c) Compute

k1 =
nm

2
+

⌊
0.5− zα/2

√
nm (n+m+ 1)

12

⌋

and

k2 =

⌈
nm

2
− 0.5 + zα/2

√
nm (n+m+ 1)

12

⌉
.

(d) The 100(1 − α) percent confidence interval for Mx −My is given by[
w(k1), w(k2)

]
.

7. Find the ratio of variances σ2
x/σ

2
y , for independent samples.

(a) Determine the critical values Fα/2 and F1−α/2 such that F
(
Fα/2

)
=

1 − α/2 and F
(
F1−α/2

)
= α/2, where F (·) is the F -distribution with

m− 1 and n− 1 degrees of freedom.

(b) Compute the standard deviations sx and sy of the samples.

(c) Compute k1 = F1−α/2 and k2 = Fα/2.

(d) The 100(1 − α) percent confidence interval for σ2
x/σ

2
y is given by[

s2x
s2y
k1,

s2x
s2y
k2

]
.

7.9.3 CONFIDENCE INTERVAL FOR BINOMIAL PARAMETER

The probability distribution function of a binomial random variable is

f(x;n, p) =

(
n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n (7.9.2)

For known n, any value of x′ less than n, and α < 1, lower and upper values of p
(plower and pupper) may be determined such that plower < pupper and

x′∑

x=0

f(x;n, plower) =
α

2
and

n∑

x=x′

f(x;n, pupper) =
α

2
(7.9.3)

The following tables show plower and pupper for α = 0.01 and α = 0.05.

EXAMPLE In a binomial experiment having n = 12 trials, a total of x = 3 successes

were observed. Determine a 95% and a 99% confidence interval for the probability of

a success p.

From the following tables with n− x = 9 and x = 3
• 95% confidence: plower = 0.055 and pupper = 0.572. Hence, the probability

is .95 that the interval (0.055, 0.572) contains the true value of p.

• 99% confidence: plower = 0.030 and pupper = 0.655. Hence, the probability

is .99 that the interval (0.030, 0.655) contains the true value of p.
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Confidence limits of proportions (confidence coefficient 0.95)

Denominator minus numerator: n− x
(Lower limit in italic type, upper limit in roman type)

x 1 2 3 4 5 6 7 8 9

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.975 0.842 0.708 0.602 0.522 0.459 0.410 0.369 0.336

1 0.013 0.008 0.006 0.005 0.004 0.004 0.003 0.003 0.003

0.987 0.906 0.806 0.716 0.641 0.579 0.527 0.482 0.445

2 0.094 0.068 0.053 0.043 0.037 0.032 0.028 0.025 0.023

0.992 0.932 0.853 0.777 0.710 0.651 0.600 0.556 0.518

3 0.194 0.147 0.118 0.099 0.085 0.075 0.067 0.060 0.055

0.994 0.947 0.882 0.816 0.755 0.701 0.652 0.610 0.572

4 0.284 0.223 0.184 0.157 0.137 0.122 0.109 0.099 0.091

0.995 0.957 0.901 0.843 0.788 0.738 0.692 0.651 0.614

5 0.359 0.290 0.245 0.212 0.187 0.168 0.152 0.139 0.128

0.996 0.963 0.915 0.863 0.813 0.766 0.723 0.684 0.649

20 0.762 0.708 0.664 0.626 0.593 0.564 0.537 0.513 0.492

0.999 0.989 0.972 0.953 0.932 0.910 0.889 0.868 0.847

50 0.896 0.868 0.843 0.821 0.800 0.781 0.763 0.746 0.730

0.999 0.995 0.988 0.979 0.970 0.960 0.949 0.939 0.928

100 0.946 0.931 0.917 0.904 0.892 0.881 0.870 0.859 0.849

1.000 0.998 0.994 0.989 0.984 0.979 0.973 0.967 0.962

Confidence limits of proportions (confidence coefficient 0.99)

Denominator minus numerator: n− x
(Lower limit in italic type, upper limit in roman type)

x 1 2 3 4 5 6 7 8 9

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.995 0.929 0.829 0.734 0.653 0.586 0.531 0.484 0.445

1 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

0.997 0.959 0.889 0.815 0.746 0.685 0.632 0.585 0.544

2 0.041 0.029 0.023 0.019 0.016 0.014 0.012 0.011 0.010

0.998 0.971 0.917 0.856 0.797 0.742 0.693 0.648 0.608

3 0.111 0.083 0.066 0.055 0.047 0.042 0.037 0.033 0.030

0.999 0.977 0.934 0.882 0.830 0.781 0.735 0.693 0.655

4 0.185 0.144 0.118 0.100 0.087 0.077 0.069 0.062 0.057

0.999 0.981 0.945 0.900 0.854 0.809 0.767 0.727 0.691

5 0.254 0.203 0.170 0.146 0.128 0.114 0.103 0.094 0.087

0.999 0.984 0.953 0.913 0.872 0.831 0.791 0.755 0.720

10 0.491 0.427 0.379 0.342 0.312 0.287 0.266 0.247 0.232

1.000 0.991 0.972 0.947 0.920 0.891 0.863 0.835 0.808

20 0.696 0.642 0.599 0.562 0.530 0.502 0.477 0.455 0.435

1.000 0.995 0.985 0.971 0.954 0.936 0.918 0.900 0.881

50 0.863 0.834 0.808 0.785 0.763 0.744 0.725 0.708 0.692

1.000 0.998 0.993 0.987 0.980 0.972 0.963 0.954 0.945

100 0.929 0.912 0.898 0.884 0.871 0.859 0.847 0.836 0.826

1.000 0.999 0.997 0.993 0.990 0.985 0.981 0.976 0.971
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7.9.4 CONFIDENCE INTERVAL FOR POISSON PARAMETER

The probability density function for a Poisson random variable is

f(x;λ) =
e−λλx

x!
for x = 0, 1, 2, . . . (7.9.4)

For any value of x′ and α < 1, lower and upper values of λ (λlower and λupper) may

be determined such that λlower < λupper and

x′∑

x=0

e−λlowerλxlower

x!
=
α

2
and

∞∑

x=x′

e−λupperλxupper

x!
=
α

2
(7.9.5)

The table below has λlower and λupper for α = 0.01 and α = 0.05. For x′ > 50, λupper

and λlower may be approximated by

λupper =
χ2
1−α,n

2
where 1− F (χ2

1−α,n) = α, and n = 2(x′ + 1)

λlower =
χ2
α,n

2
where F (χ2

α,n) = α, and n = 2x′
(7.9.6)

where F (χ2) is the cumulative distribution function for a chi-square random variable

with n degrees of freedom.

EXAMPLE In a Poisson process, 5 outcomes are observed during a time interval. Find a

95% and a 99% confidence interval for the parameter λ in this Poisson process.

For an observed count of 5 and a 95% significance level (α = 0.05), the confi-

dence interval bounds are λlower = 1.6 and λupper = 11.7. Hence, the probability is .95
that the interval (1.6, 11.7) contains the true value of λ.

For an observed count of 5 and a 99% significance level (α = 0.01), the confi-

dence interval bounds are λlower = 1.1 and λupper = 14.1. Hence, the probability is .99
that the interval (1.1, 14.1) contains the true value of λ.

Confidence limits for the parameter in a Poisson distribution.

Significance level

Observed α = 0.01 α = 0.05

count λlower λhigher λlower λhigher

0 0.0 5.3 0.0 3.7

1 0.0 7.4 0.0 5.6

2 0.1 9.3 0.2 7.2

3 0.3 11.0 0.6 8.8

4 0.7 12.6 1.1 10.2

5 1.1 14.1 1.6 11.7

6 1.5 15.7 2.2 13.1

7 2.0 17.1 2.8 14.4

8 2.6 18.6 3.5 15.8

9 3.1 20.0 4.1 17.1

10 3.7 21.4 4.8 18.4

Significance level

Observed α = 0.01 α = 0.05

count λlower λhigher λlower λhigher

11 4.3 22.8 5.5 19.7

12 4.9 24.1 6.2 21.0

13 5.6 25.5 6.9 22.2

14 6.2 26.8 7.7 23.5

15 6.9 28.2 8.4 24.7

20 10.4 34.7 12.2 30.9

25 14.0 41.0 16.2 36.9

30 17.8 47.2 20.2 42.8

35 21.6 53.3 24.4 48.7

40 25.6 59.4 28.6 54.5

45 29.6 65.3 32.8 60.2

50 33.7 71.3 37.1 65.9
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7.10 TESTS OF HYPOTHESES

A statistical hypothesis is a statement about the distribution of a random variable. A

statistical test of a hypothesis is a procedure in which a sample is used to determine

whether we should “reject” or “not reject” the hypothesis. Before employing a hy-

pothesis test, first select a significance level α. The significance level of a test is the

probability of mistakenly rejecting the null hypothesis. Typically, α is 0.05 or 0.01
(i.e, 5% or 1%) or similar.

7.10.1 HYPOTHESIS TESTS: PARAMETER FROM ONE

POPULATION

The following hypothesis tests assume a random sample of size n, given by

{x1, x2, . . . , xn}.

1. Test of the hypothesis µ = µ0 against the alternative µ 6= µ0 of the mean of a

normal distribution with known variance σ2:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the mean x of the sample.

(c) Compute the test statistic z =
(x− µ0)

√
n

σ
.

(d) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

2. Test of the hypothesis µ = µ0 against the alternative µ > µ0 (or µ < µ0) of

the mean of a normal distribution with known variance σ2:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Compute the mean x of the sample.

(c) Compute the test statistic z =
(x− µ0)

√
n

σ
. (For the alternativeµ < µ0,

multiply z by −1.)

(d) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

3. Test of the hypothesis µ = µ0 against the alternative µ 6= µ0 of the mean of a

normal distribution with unknown variance σ2:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the t-distribution with n− 1 degrees of freedom.

(b) Compute the mean x and standard deviation s of the sample.

(c) Compute the test statistic t =
(x− µ0)

√
n

s
.

(d) If |t| > tα/2, then reject the hypothesis. If |t| ≤ tα/2, then do not reject

the hypothesis.
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4. Test of the hypothesis µ = µ0 against the alternative µ > µ0 (or µ < µ0) of

the mean of a normal distribution with unknown variance σ2:

(a) Determine the critical value tα such that F (tα) = 1 − α, where F (·) is

the t-distribution with n− 1 degrees of freedom.

(b) Compute the mean x and standard deviation s of the sample.

(c) Compute the test statistic t =
(x− µ0)

√
n

s
. (For the alternative µ < µ0,

multiply t by −1.)

(d) If t > tα, then reject the hypothesis. If t ≤ tα, then do not reject the

hypothesis.

5. Test of the hypothesis p = p0 against the alternative p 6= p0 of the probability

of success for a binomial distribution, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the proportion p̂ of “successes” for the sample.

(c) Compute the test statistic z =
p̂− p0√
p0(1−p0)

n

.

(d) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

6. Test of the hypothesis p = p0 against the alternative p > p0 (or p < p0) of the

probability of success for a binomial distribution, large sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Compute the proportion p̂ of “successes” for the sample.

(c) Compute the test statistic z =
p̂− p0√
p0(1−p0)

n

. (For the alternative p < p0,

multiply z by −1.)

(d) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

7. Wilcoxon signed rank test of the hypothesis M = M0 against the alternative

M 6=M0 of the median of a population, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution.

(b) Compute the quantities |xi−M0|, and keep track of the sign of xi−M0.

If |xi −M0| = 0, then remove it from the list and reduce n by one.

(c) Order the |xi − M0| from smallest to largest, assigning rank 1 to the

smallest and rank n to the largest; |xi −M0| has rank ri if it is the rth
i

entry in the ordered list. In case of ties (i.e., |xi −M0| = |xj −M0| for

2 or more values) assign each the average of their ranks.

(d) Compute the sum of the signed ranksR =

n∑

i=1

sign (xi −M0) ri.
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(e) Compute the test statistic z =
R√

n(n+1)(2n+1)
6

.

(f) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

8. Wilcoxon signed rank test of the hypothesis M = M0 against the alternative

M > M0 (or M <M0) of the median of a population, large sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution.

(b) Compute the quantities |xi−M0|, and keep track of the sign of xi−M0.

If |xi −M0| = 0, then remove it from the list and reduce n by one.

(c) Order the |xi − M0| from smallest to largest, assigning rank 1 to the

smallest and rank n to the largest; |xi −M0| has rank ri if it is the rth
i

entry in the ordered list. If |xi −M0| = |xj −M0|, then assign each the

average of their ranks.

(d) Compute the sum of the signed ranksR =

n∑

i=1

sign (xi −M0) ri.

(e) Compute the test statistic z =
R√

n(n+1)(2n+1)
6

. (For the alternative

M < M0, multiply the test statistic by −1.)

(f) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

9. Test of the hypothesis σ2 = σ2
0 against the alternative σ2 6= σ2

0 of the variance

of a normal distribution:

(a) Determine the critical values χ2
α/2 and χ2

1−α/2 such that F
(
χ2
α/2

)
=

1− α/2 and F
(
χ2
1−α/2

)
= α/2, where F (·) is the chi-square distribu-

tion function with n− 1 degrees of freedom.

(b) Compute the standard deviation s of the sample.

(c) Compute the test statistic χ2 =
(n− 1)s2

σ2
0

.

(d) If χ2 < χ2
1−α/2 or χ2 > χ2

α/2, then reject the hypothesis.

(e) If χ2
1−α/2 ≤ χ2 ≤ χ2

α/2, then do not reject the hypothesis.

10. Test of the hypothesis σ2 = σ2
0 against the alternative σ2 > σ2

0 (or σ2 < σ2
0)

of the variance of a normal distribution:

(a) Determine the critical value χ2
α (χ2

1−α for the alternative σ2 < σ2
0) such

that F
(
χ2
α

)
= 1 − α (F

(
χ2
1−α

)
= α), where F (·) is the chi-square

distribution function with n− 1 degrees of freedom.

(b) Compute the standard deviation s of the sample.

(c) Compute the test statistic χ2 =
(n− 1)s2

σ2
0

.

(d) If χ2 > χ2
α (χ2 < χ2

1−α), then reject the hypothesis.

(e) If χ2 ≤ χ2
α (χ2

1−α ≤ χ2), then do not reject the hypothesis.
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7.10.2 HYPOTHESIS TESTS: PARAMETERS FROM TWO

POPULATIONS

The following hypothesis tests assume a random sample of size n, given by

{x1, x2, . . . , xn}, and a random sample of size m, given by {y1, y2, . . . , ym}. The

term “large sample” means that the underlying distribution is approximated well

enough by a normal distribution.

1. Test of the hypothesis µx = µy against the alternative µx 6= µy of the means

of independent normal distributions with known variances σ2
x and σ2

y :

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the means, x and y, of the samples.

(c) Compute the test statistic z =
x− y√
σ2
x

n +
σ2
y

m

.

(d) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

2. Test of the hypothesis µx = µy against the alternative µx > µy (or µx < µy)

of the means of independent normal distributions with known variances σ2
x

and σ2
y :

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Compute the means x and y of the samples.

(c) Compute the test statistic z =
x− y√
σ2
x

n +
σ2
y

m

. (For the alternative µx < µy ,

multiply z by −1.)

(d) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

3. Test of the hypothesis µx = µy against the alternative µx 6= µy of the means

of independent normal distributions with unknown variances σ2
x and σ2

y , large

sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution.

(b) Compute the means, x and y, and standard deviations, s2x and s2y , of the

samples.

(c) Compute the test statistic z =
x− y√
s2x
n +

s2y
m

.

(d) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

4. Test of the hypothesis µx = µy against the alternative µx > µy (or µx < µy)

of the means of independent normal distributions with unknown variances, σ2
x

and σ2
y , large sample:
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(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Compute the means, x and y, and standard deviations, s2x and s2y , of the

samples.

(c) Compute the test statistic z =
x− y√
s2x
n +

s2y
m

. (For the alternative µx < µy ,

multiply z by −1.)

(d) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

5. Test of the hypothesis µx = µy against the alternative µx 6= µy of the means

of independent normal distributions with unknown variances σ2
x = σ2

y :

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the t-distribution with n+m− 2 degrees of freedom.

(b) Compute the means, x and y, and standard deviations, s2x and s2y , of the

samples.

(c) Compute the test statistic t =
x− y√

(n−1)s2x+(m−1)s2y
n+m−2

√
1
n + 1

m

.

(d) If |t| > tα/2, then reject the hypothesis. If |t| ≤ tα/2, then do not reject

the hypothesis.

6. Test of the hypothesis µx = µy against the alternative µx > µy (or µx <
µy) of the means of independent normal distributions with unknown variances

σ2
x = σ2

y :

(a) Determine the critical value tα such that F (tα) = 1 − α, where F (·) is

the t-distribution with n+m− 2 degrees of freedom.

(b) Compute the means, x and y, and standard deviations, s2x and s2y , of the

samples.

(c) Compute the test statistic t =
x− y√

(n−1)s2x+(m−1)s2y
n+m−2

√
1
n + 1

m

. (For the

alternative µx < µy , multiply t by −1.)

(d) If t > tα, then reject the hypothesis. If t ≤ tα, then do not reject the

hypothesis.

7. Test of the hypothesis µx = µy against the alternative µx 6= µy of the means

of paired normal samples:

(a) Determine the critical value tα/2 so thatF
(
tα/2

)
= 1−α/2, where F (·)

is the t-distribution with n− 1 degrees of freedom.

(b) Compute the mean, µ̂d, and standard deviation, sd, of the differences

x1 − y1, x2 − y2, . . . , xn − yn.

(c) Compute the test statistic t =
µ̂d
√
n

sd
.

(d) If |t| > tα/2, then reject the hypothesis. If |t| ≤ tα/2, then do not reject

the hypothesis.
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8. Test of the hypothesis µx = µy against the alternative µx > µy (or µx < µy)

of the means of paired normal samples:

(a) Determine the critical value tα so that F (tα) = 1−α, where F (·) is the

t-distribution with n− 1 degrees of freedom.

(b) Compute the mean, µ̂d, and standard deviation, sd, of the differences

x1 − y1, x2 − y2, . . . , xn − yn.

(c) Compute the test statistic t =
µ̂d
√
n

sd
. (For the alternative µx < µy ,

multiply t by −1.)

(d) If t > tα, then reject the hypothesis. If t ≤ tα, then do not reject the

hypothesis.

9. Test of the hypothesis px = py against the alternative px 6= py of the proba-

bility of success for a binomial distribution, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Compute the proportions, p̂x and p̂y , of “successes” for the samples.

(c) Compute the test statistic z =
p̂x − p̂y√

p̂x(1−px)
n +

p̂y(1−py)
m

.

(d) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

10. Test of the hypothesis px = py against the alternative px > py (or px < py) of

the probability of success for a binomial distribution, large sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Compute the proportions, p̂x and p̂y , of “successes” for the samples.

(c) Compute the test statistic z =
p̂x − p̂y√

p̂x(1−px)
n +

p̂y(1−py)
m

. (Multiply it by

−1 for the alternative px < py .)

(d) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

11. Mann–Whitney–Wilcoxon test of the hypothesis Mx = My against the alter-

native Mx 6=My of the medians of independent samples, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution.

(b) Pool the N = m + n observations, but keep track of which sample the

observation was drawn from.

(c) Order the pooled observations from smallest to largest, assigning rank 1
to the smallest and rank N to the largest; an observation has rank ri if

it is the rth
i entry in the ordered list. If two observations are equal, then

assign each the average of their ranks.

(d) Compute the sum of the ranks from the first sample Tx.
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(e) Compute the test statistic z =
Tx − m(N+1)

2√
mn(N+1)

12

.

(f) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

12. Mann–Whitney–Wilcoxon test of the hypothesis Mx = My against the alter-

nativeMx > My (orMx < My) of the medians of independent samples, large

sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution.

(b) Pool the N = m + n observations, but keep track of which sample the

observation was drawn from.

(c) Order the pooled observations from smallest to largest, assigning rank 1
to the smallest and rank N to the largest; an observation has rank ri if

it is the rth
i entry in the ordered list. If two observations are equal, then

assign each the average of their ranks.

(d) Compute the sum of the ranks from the first sample Tx.

(e) Compute the test statistic z =
Tx − m(N+1)

2√
mn(N+1)

12

. (For the alternativeMx <

My , multiply the test statistic by −1.)

(f) If |z| > zα, then reject the hypothesis. If |z| ≤ zα, then do not reject the

hypothesis.

13. Wilcoxon signed rank test of the hypothesisMx = My against the alternative

Mx 6=My of the medians of paired samples, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution.

(b) Compute the paired differences di = xi − yi, for i = 1, 2, . . . , n.

(c) Compute the quantities |di| and keep track of the sign of di. If di = 0,

then remove it from the list and reduce n by one.

(d) Order the |di| from smallest to largest, assigning rank 1 to the smallest

and rank n to the largest; |di| has rank ri if it is the rth
i entry in the ordered

list. In case of ties (i.e., |di| = |dj | for 2 or more values) assign each the

average of their ranks.

(e) Compute the sum of the signed ranksR =

n∑

i=1

sign (di) ri.

(f) Compute the test statistic z =
R√

n(n+1)(2n+1)
6

.

(g) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

14. Wilcoxon signed rank test of the hypothesisMx = My against the alternative

Mx > My (or Mx < My) of the medians of paired samples, large sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution.
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(b) Compute the paired differences di = xi − yi, for i = 1, 2, . . . , n.

(c) Compute the quantities |di| and keep track of the sign of di. If di = 0,

then remove it from the list and reduce n by one.

(d) Order the |di| from smallest to largest, assigning rank 1 to the smallest

and rank n to the largest; |di| has rank ri if it is the rth
i entry in the ordered

list. In case of ties (i.e., |di| = |dj | for 2 or more values) assign each the

average of their ranks.

(e) Compute the sum of the signed ranksR =

n∑

i=1

sign (di) ri.

(f) Compute the test statistic z =
R√

n(n+1)(2n+1)
6

. (For the alternative

Mx < My , multiply the test statistic by −1.)

(g) If z > zα, then reject the hypothesis. If z ≤ zα, then do not reject the

hypothesis.

15. Test of the hypothesis σ2
x = σ2

y against the alternative σ2
x 6= σ2

y (or σ2
x > σ2

y)

of the variances of independent normal samples:

(a) Determine the critical value Fα/2 (Fα for the alternative σ2
x > σ2

y) such

that F
(
Fα/2

)
= 1 − α/2 (F (Fα) = 1 − α), where F (·) is the F -

distribution function with n− 1 and m− 1 degrees of freedom.

(b) Compute the standard deviations sx and sy of the samples.

(c) Compute the test statistic F =
s2x
s2y

. (For the two-sided test, put the larger

value in the numerator.)

(d) If F > Fα/2 (F > Fα), then reject the hypothesis. If F ≤ Fα/2 (F ≤
Fα), then do not reject the hypothesis.

7.10.3 HYPOTHESIS TESTS: DISTRIBUTION OF A

POPULATION

The following hypothesis tests assume a random sample of size n, given by

{x1, x2, . . . , xn}.

1. Run test for randomness of a sample of binary values, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the standard normal distribution function.

(b) Since the data are binary, denote the possible values of xi by 0 and 1.

Count the total number of zeros, and call this n1; count the total number

of ones, and call this n2. Group the data into maximal sub-sequences of

consecutive zeros and ones, and call each such sub-sequence a run. Let

R be the number of runs in the sample.

(c) Compute µR =
2n1n2

n1 + n2
+ 1, and σ2

R = (µR−1)(µR−2)
n1+n2−1 .
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(d) Compute the test statistic z =
R− µR

σR
.

(e) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

2. Run test for randomness against an alternative that a trend (an association be-

tween two variables) is present in a sample of binary values, large sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Since the data are binary, denote the possible values of xi by 0 and 1.

Count the total number of zeros, and call this n1; count the total number

of ones, and call this n2. Group the data into maximal sub-sequences of

consecutive zeros and ones, and call each such sub-sequence a run. Let

R be the number of runs in the sample.

(c) Compute µR =
2n1n2

n1 + n2
+ 1, and σ2

R = (µR−1)(µR−2)
n1+n2−1 .

(d) Compute the test statistic z =
R− µR

σR
.

(e) If z < −zα, then reject the hypothesis (this suggests the presence of a

trend in the data). If z ≥ −zα, then do not reject the hypothesis.

3. Run test for randomness against an alternative that the data are periodic for a

sample of binary values, large sample:

(a) Determine the critical value zα such that Φ (zα) = 1−α, where Φ (z) is

the standard normal distribution function.

(b) Since the data are binary, denote the possible values of xi by 0 and 1.

Count the total number of zeros, and call this n1; count the total number

of ones, and call this n2. Group the data into maximal sub-sequences of

consecutive zeros and ones, and call each such sub-sequence a run. Let

R be the number of runs in the sample.

(c) Compute µR =
2n1n2

n1 + n2
+ 1, and σ2

R = (µR−1)(µR−2)
n1+n2−1 .

(d) Compute the test statistic z =
R− µR

σR
.

(e) If z > zα, then reject the hypothesis (this suggests the data are periodic).

If z ≤ zα, then do not reject the hypothesis.

4. Chi-square test that the data are drawn from a specific k-parameter multino-

mial distribution, large sample:

(a) Determine the critical value χ2
α such that F

(
χ2
α

)
= 1− α, where F (x)

is the chi-square distribution with k − 1 degrees of freedom.

(b) The k-parameter multinomial has k possible outcomes A1, A2, . . . , Ak

with probabilities p1, p2, . . . , pk. For i = 1, 2, . . . , k, compute ni, the

number of xj’s corresponding to Ai.

(c) For i = 1, 2, . . . , k, compute the sample multinomial parameters p̂i =
ni/n.
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(d) Compute the test statistic χ2 =

k∑

i=1

(ni − npi)2
npi

.

(e) If χ2 > χ2
α, then reject the hypothesis. If χ2 ≤ χ2

α, then do not reject

the hypothesis.

5. Chi-square test for independence of attributes A and B having possible out-

comes A1, A2, . . . , Ak and B1, B2, . . . , Bm:

(a) Determine the critical value χ2
α such that F

(
χ2
α

)
= 1 − α, where F (·)

is the chi-square distribution with (k − 1)(m− 1) degrees of freedom.

(b) For i = 1, 2, . . . , k and j = 1, 2, . . . ,m, define oij to be the number of

observations having attributesAi andBj , and define oi· =
∑m

j=1 oij and

o·j =
∑k

i=1 oij .

(c) The variables defined above are often collected into a table, called a con-

tingency table:

Attribute B1 B2 · · · Bm Totals

A1 o11 o12 · · · o1m o1·
A2 o21 o22 · · · o2m o2·
...

...
...

. . .
...

...

Ak ok1 ok2 · · · okm ok·
Totals o·1 o·2 · · · o·m n

(d) For i = 1, 2, . . . , k and j = 1, 2, . . . ,m, compute the sample mean

number of observations in the ij th cell of the contingency table

eij =
oi·o·j
n

.

(e) Compute the test statistic, χ2 =

k∑

i=1

m∑

j=1

(oij − eij)2
eij

.

(f) If χ2 > χ2
α, then reject the hypothesis (that is, conclude that the attributes

are not independent). If χ2 ≤ χ2
α, then do not reject the hypothesis.

6. Kolmogorov–Smirnov test thatF0(x) is the distribution of the population from

which the sample was drawn:

(a) Determine the critical valueDα such that Q(Dα) = 1−α, whereQ(D)
is the distribution function for the Kolmogorov–Smirnov test statistic D.

(b) Compute the sample distribution function F̂ (x).
(c) Compute the test statistic, given the maximum deviation of the sample

and target distribution functionsD = max
∣∣∣F̂ (x)− F0(x)

∣∣∣.
(d) If D > Dα, then reject the hypothesis (that is, conclude that the data are

not drawn from F0(x)). If D ≤ Dα, then do not reject the hypothesis.

7.10.4 HYPOTHESIS TESTS: DISTRIBUTIONS OF TWO

POPULATIONS

The following hypothesis tests assume a random sample of size n, given by

{x1, x2, . . . , xn}, and a random sample of size m, given by {y1, y2, . . . , ym}.
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1. Chi-square test that two k-parameter multinomial distributions are equal, large

sample:

(a) Determine the critical value χ2
α such that F

(
χ2
α

)
= 1 − α, where F (·)

is the chi-square distribution with k − 1 degrees of freedom.

(b) The k-parameter multinomials have k possible outcomes A1, A2, . . . ,

Ak . For i = 1, 2, . . . , k, compute ni, the number of xj’s corresponding

to Ai, and computemi, the number of yj’s corresponding to Ai.

(c) For i = 1, 2, . . . , k, compute the sample multinomial parameters

p̂i = (ni +mi)/(n+m).
(d) Compute the test statistic,

χ2 =

k∑

i=1

(ni − np̂i)2
np̂i

+

k∑

i=1

(mi −mp̂i)2
mp̂i

. (7.10.1)

(e) If χ2 > χ2
α, then reject the hypothesis. If χ2 ≤ χ2

α, then do not reject

the hypothesis.

2. Mann–Whitney–Wilcoxon test for equality of independent continuous distri-

butions, large sample:

(a) Determine the critical value zα/2 such that Φ
(
zα/2

)
= 1 − α/2, where

Φ (z) is the normal distribution function.

(b) For i = 1, 2, . . . , n and j = 1, 2, . . . ,m, define Sij = 1 if xi < yj and

Sij = 0 if xi > yj . (Continuous distributions will not produce a tie.)

(c) Compute U =
∑n

i=1

∑m
j=1 Sij .

(d) Compute the test statistic z =
(
U − mn

2

)
/

√
mn(m+ n+ 1)

12
.

(e) If |z| > zα/2, then reject the hypothesis. If |z| ≤ zα/2, then do not reject

the hypothesis.

3. Spearman rank correlation coefficient for independence of paired samples,

large sample:

(a) Determine the critical valueRα/2 such that F
(
Rα/2

)
= 1−α/2, where

F (R) is the distribution function for the Spearman rank correlation co-

efficient.

(b) The samples are ordered, with the smallest xi assigned the rank r1 and

the largest assigned the rank rn; for i = 1, 2, . . . , n, xi is assigned rank

ri if it occupies the ith position in the ordered list. Similarly the yi’s are

assigned ranks si. In case of a tie within a sample, the ranks are averaged.

(c) Compute the test statistic

R =
n
∑n

i=1 risi − (
∑n

i=1 ri) (
∑n

i=1 si)√(
n
∑n

i=1 r
2
i − (

∑n
i=1 ri)

2
)(

n
∑n

i=1 s
2
i − (

∑n
i=1 si)

2
) .

(d) If |R| > Rα/2, then reject the hypothesis. If |R| ≤ Rα/2, then do not

reject the hypothesis.
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7.10.5 THE RUNS TEST

A run is a maximal subsequence of elements with a common property. The runs test

uses the hypotheses

H0 : the sequence is random

Ha : the sequence is not random
(7.10.2)

The decision variable V is the total number of runs. The hypothesis of randomness

(H0) is rejected when V ≥ v1 or V ≤ v2 where where v1 and v2 are critical values

for the runs test.

EXAMPLE Flipping a coin gave the following sequence of heads (H) and tails (T ): {H ,

H , T , T , H , T , H , T , T , T , T , H}. Is the coin biased? Writing the sequence as

HH | TT | H | T | H | TTTT | H | shows that there are m = 5 H’s, n = 7 T ’s,

and V = 7 runs.

The table (form = 5 and n = 7) indicates that 65% of the time one would expect

there to be 7 runs or fewer. The table (for m = 5 and n = 6) indicates that 42% of the

time one would expect there to be 6 runs or fewer. Hence, 58% (since 1−0.42 = 0.58)

of the time there would be 7 runs or more.

Hence, there is no evidence to suggest the coin is biased.

m,n v = 2 3 4 5 6 7 8 9

2, 2 0.3333 0.6667 1.0000

2, 3 0.2000 0.5000 0.9000 1.0000

2, 4 0.1333 0.4000 0.8000 1.0000

2, 5 0.0952 0.3333 0.7143 1.0000

2, 6 0.0714 0.2857 0.6429 1.0000

2, 7 0.0556 0.2500 0.5833 1.0000

2, 8 0.0444 0.2222 0.5333 1.0000

2, 9 0.0364 0.2000 0.4909 1.0000

2, 10 0.0303 0.1818 0.4545 1.0000

3, 3 0.1000 0.3000 0.7000 0.9000 1.0000

3, 4 0.0571 0.2000 0.5429 0.8000 0.9714 1.0000

3, 5 0.0357 0.1429 0.4286 0.7143 0.9286 1.0000

3, 6 0.0238 0.1071 0.3452 0.6429 0.8810 1.0000

3, 7 0.0167 0.0833 0.2833 0.5833 0.8333 1.0000

3, 8 0.0121 0.0667 0.2364 0.5333 0.7879 1.0000

3, 9 0.0091 0.0545 0.2000 0.4909 0.7455 1.0000

3, 10 0.0070 0.0455 0.1713 0.4545 0.7063 1.0000

4, 4 0.0286 0.1143 0.3714 0.6286 0.8857 0.9714 1.0000

4, 5 0.0159 0.0714 0.2619 0.5000 0.7857 0.9286 0.9921 1.0000

4, 6 0.0095 0.0476 0.1905 0.4048 0.6905 0.8810 0.9762 1.0000

4, 7 0.0061 0.0333 0.1424 0.3333 0.6061 0.8333 0.9545 1.0000

4, 8 0.0040 0.0242 0.1091 0.2788 0.5333 0.7879 0.9293 1.0000

4, 9 0.0028 0.0182 0.0853 0.2364 0.4713 0.7455 0.9021 1.0000

4, 10 0.0020 0.0140 0.0679 0.2028 0.4186 0.7063 0.8741 1.0000
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m,n v = 2 3 4 5 6 7 8 9 10

5, 5 0.0079 0.0397 0.1667 0.3571 0.6429 0.8333 0.9603 0.9921 1.0000

5, 6 0.0043 0.0238 0.1104 0.2619 0.5216 0.7381 0.9113 0.9762 0.9978

5, 7 0.0025 0.0152 0.0758 0.1970 0.4242 0.6515 0.8535 0.9545 0.9924

5, 8 0.0016 0.0101 0.0536 0.1515 0.3473 0.5758 0.7933 0.9293 0.9837

5, 9 0.0010 0.0070 0.0390 0.1189 0.2867 0.5105 0.7343 0.9021 0.9720

5, 10 0.0007 0.0050 0.0290 0.0949 0.2388 0.4545 0.6783 0.8741 0.9580

6, 6 0.0022 0.0130 0.0671 0.1753 0.3918 0.6082 0.8247 0.9329 0.9870

6, 7 0.0012 0.0076 0.0425 0.1212 0.2960 0.5000 0.7331 0.8788 0.9662

6, 8 0.0007 0.0047 0.0280 0.0862 0.2261 0.4126 0.6457 0.8205 0.9371

6, 9 0.0004 0.0030 0.0190 0.0629 0.1748 0.3427 0.5664 0.7622 0.9021

6, 10 0.0002 0.0020 0.0132 0.0470 0.1369 0.2867 0.4965 0.7063 0.8636

7, 7 0.0006 0.0041 0.0251 0.0775 0.2086 0.3834 0.6166 0.7914 0.9225

7, 8 0.0003 0.0023 0.0154 0.0513 0.1492 0.2960 0.5136 0.7040 0.8671

7, 9 0.0002 0.0014 0.0098 0.0350 0.1084 0.2308 0.4266 0.6224 0.8059

7, 10 0.0001 0.0009 0.0064 0.0245 0.0800 0.1818 0.3546 0.5490 0.7433

8, 8 0.0002 0.0012 0.0089 0.0317 0.1002 0.2145 0.4048 0.5952 0.7855

8, 9 .04823 0.0007 0.0053 0.0203 0.0687 0.1573 0.3186 0.5000 0.7016

8, 10 .04457 0.0004 0.0033 0.0134 0.0479 0.1170 0.2514 0.4194 0.6209

Whenm = n andm > 10 the following table can be used. The columns headed

0.5, 1, 2.5, and 5 give values of v such that v or fewer runs occur with probability

less than the indicated percentage. For example, for m = n = 12, the probability

of 8 or fewer runs is approximately 5%. The columns headed 95, 97.5, 99, and 99.5

give values of v for which the probability of v or more runs is less than 5, 2.5, 1, or

0.5%. The last columns describe the expected number of runs.

m = n 0.5 1.0 2.5 5.0 95.0 97.5 99.0 99.5 µ σ2 σ

11 5 6 7 7 16 16 17 18 12 5.24 2.29

12 6 7 7 8 17 18 18 19 13 5.74 2.40

13 7 7 8 9 18 19 20 20 14 6.24 2.50

14 7 8 9 10 19 20 21 22 15 6.74 2.60

15 8 9 10 11 20 21 22 23 16 7.24 2.69

20 12 13 14 15 26 27 28 29 21 9.74 3.12

25 16 17 18 19 32 33 34 35 26 12.24 3.50

30 20 21 23 24 37 38 40 41 31 14.75 3.84

40 29 30 31 33 48 50 51 52 41 19.75 4.44

50 37 38 40 42 59 61 63 64 51 24.75 4.97

60 46 47 49 51 70 72 74 75 61 29.75 5.45

70 55 56 58 60 81 83 85 86 71 34.75 5.89

80 64 65 68 70 91 93 96 97 81 39.75 6.30

90 73 74 77 79 102 104 107 108 91 44.75 6.69

100 82 84 86 88 113 115 117 119 101 49.75 7.05
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7.10.6 SEQUENTIAL PROBABILITY RATIO TESTS

When using a sequential probability ratio test, the number of samples taken is not

fixed a priori, but determined as sampling occurs. Given two simple hypotheses and

m observations, compute:

1. P0m = Prob (observations | H0).

2. P1m = Prob (observations | H1).

3. vm = P1m/P0m.

And then make one of the following decisions:

1. If vm ≥
1− β
α

then reject H0.

2. If vm ≤
β

1− α then reject H1.

3. If
β

1− α < vm <
1− β
α

then make another observation.

EXAMPLES

1. Let X be normally distributed with unknown mean µ and known standard deviation σ.

Consider the two simple hypotheses, H0 : µ = µ0 and H1 : µ = µ1. If Y is the sum

of the first m observations of X , then a (Y,m) control chart is constructed with the

two lines:

Y =
µ0 + µ1

2
m+

σ2

µ1 − µ0
log

β

1− α,

Y =
µ0 + µ1

2
m+

σ2

µ1 − µ0
log

1− β
α

.

(7.10.3)

2. Let θ denote the fraction of defective items. Two simple hypotheses are H0: θ = θ0 =
0.05 and H1: θ = θ1 = 0.15. Choose α = 5% and β = 10% (i.e., reject lot with

θ = θ0 about 5% of the time; accept lot with θ = θ1 about 10% of the time). If, after

m observations, there are d defective items, then

Pim =

(
m

d

)
θdi (1− θi)m−d and vm =

(
θ1
θ0

)d (
1− θ1
1− θ0

)m−d

(7.10.4)

or vm = 3d(0.895)m−d , using the above numbers. The critical values are β
1−α

=

0.105 and 1−β
α

= 18. The decision to perform another observation depends on whether

or not

0.105 ≤ 3d(0.895)m−d ≤ 18. (7.10.5)

Taking logarithms, a (m − d, d) control chart can be drawn with the following lines:

d = 0.101(m − d) − 2.049 and d = 0.101(m − d) + 2.63. On the figure below, a

sample path leading to rejection of H0 has been indicated:

6

-
n− d (non-defectives)

d
(defectives)

Reject H0

Reject H1
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7.11 LINEAR REGRESSION

1. The general linear statistical model assumes that the observed data values

{y1, y2, . . . , ym} are of the form

yi = β0 + β1xi1 + β2xi2 + · · ·+ βnxin + ǫi,

for i = 1, 2, . . . ,m.

2. For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the independent variables xij are

known (nonrandom).

3. {β0, β1, β2, · · · , βn} are unknown parameters.

4. For each i, ǫi is a zero-mean normal random variable with unknown vari-

ance σ2.

7.11.1 LINEAR MODEL yi = β0 + β1xi + ǫyi = β0 + β1xi + ǫyi = β0 + β1xi + ǫ

1. Point estimate of β1:

β̂1 =

m

m∑

i=1

xiyi −
(

m∑

i=1

xi

)(
m∑

i=1

yi

)

m

(
m∑

i=1

x2i

)
−
(

m∑

i=1

xi

)2 .

2. Point estimate of β0:

β̂0 = ȳ − β̂1x.
3. Point estimate of the correlation coefficient:

r = ρ̂ =

m

m∑

i=1

xiyi −
(

m∑

i=1

xi

) (
m∑

i=1

yi

)

√√√√m

(
m∑

i=1

x2i

)
−
(

m∑

i=1

xi

)2
√√√√m

(
m∑

i=1

y2i

)
−
(

m∑

i=1

yi

)2
.

4. Point estimate of error variance σ2: σ̂2 =

m∑

i=1

(
yi − β̂0 − β̂1xi

)2

m−2 .

5. The standard error of the estimate is defined as se =
√
σ̂2.

6. Least-squares regression line: ŷ = β̂0 + β̂1x.

7. Confidence interval for β0:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

m− 2 degrees of freedom.

(b) Compute the point estimate β̂0.
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(c) Compute k = tα/2se

√√√√√√
1

m
+

x2

m∑

i=1

(xi − x)2
.

(d) The 100(1 − α) percent confidence interval for β0 is given by[
β̂0 − k, β̂0 + k

]
.

8. Confidence interval for β1:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

m− 2 degrees of freedom.

(b) Compute the point estimate β̂1.

(c) Compute k = tα/2
se√√√√

m∑

i=1

(xi − x)2
.

(d) The 100(1 − α) percent confidence interval for β1 is given by[
β̂1 − k, β̂1 + k

]
.

9. Confidence interval for σ2:

(a) Determine the critical values χ2
α/2 and χ2

1−α/2 such that F
(
χ2
α/2

)
=

1−α/2 and F
(
χ2
1−α/2

)
= α/2, where F (·) is the cumulative distribu-

tion function for the chi-square distribution function with m− 2 degrees

of freedom.

(b) Compute the point estimate σ̂2.

(c) Compute k1 =
(n− 2)σ̂2

χ2
α/2

and k2 =
(n− 2)σ̂2

χ2
1−α/2

.

(d) The 100(1− α) percent confidence interval for σ2 is given by [k1, k2].

10. Confidence interval (predictive interval) for y, given x0:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

m− 2 degrees of freedom.

(b) Compute the point estimates β̂0, β̂1, and se.

(c) Compute k = tα/2se

√√√√√√
1

m
+

(x0 − x)2
m∑

i=1

(xi − x)2
and ŷ = β̂0 + β̂1x0.

(d) The 100(1 − α) percent confidence interval for β1 is given by

[ŷ − k, ŷ + k].

11. Test of the hypothesis β1 = 0 against the alternative β1 6= 0:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

m− 2 degrees of freedom.
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(b) Compute the point estimates β̂1 and se.

(c) Compute the test statistic t =
β̂1
se

√√√√
m∑

i=1

(xi − x)2.

(d) If |t| > tα/2, then reject the hypothesis. If |t| ≤ tα/2, then do not reject

the hypothesis.

7.11.2 GENERAL MODEL y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ǫy = β0 + β1x1 + β2x2 + · · ·+ βnxn + ǫy = β0 + β1x1 + β2x2 + · · ·+ βnxn + ǫ

1. The m equations (i = 1, 2, . . . ,m)

yi = β0 + β1xi1 + β2xi2 + · · ·+ βnxin + ǫi (7.11.1)

can be written in matrix notation as y = Xβ + ǫ where

y =




y1
y2
...

ym


 , β =




β0
β1
...

βn


 ǫ =




ǫ1
ǫ2
...

ǫm


 , (7.11.2)

and

X =




1 x11 x12 · · · x1n
1 x21 x22 · · · x2n
...

...
...

. . .
...

1 xm1 xm2 · · · xmn


 . (7.11.3)

2. Throughout the remainder of the section, we assume X has full column rank

(see page 87).

3. The least-squares estimate β̂ satisfies the normal equations XTXβ̂ = XTy.

That is, β̂ =
(
XTX

)−1
XTy.

4. Point estimate of σ2:

σ̂2 =
1

m− n− 1

(
yTy− β̂T

(XTy)
)
.

5. The standard error of the estimate is defined as se =
√
σ̂2.

6. Least-squares regression line: ŷ = xTβ̂.

7. In the following, let cij denote the (i, j)th entry in the matrix
(
XTX

)−1
.

8. Confidence interval for βi:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

m− n− 1 degrees of freedom.

(b) Compute the point estimate β̂i by solving the normal equations, and

compute se.

(c) Compute ki = tα/2se
√
cii.
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(d) The 100(1 − α) percent confidence interval for βi is given by[
β̂i − ki, β̂i + ki

]
.

9. Confidence interval for σ2:

(a) Determine the critical values χ2
α/2 and χ2

1−α/2 such that F
(
χ2
α/2

)
=

1 − α/2 and F
(
χ2
1−α/2

)
= α/2, where F (·) is the cumulative distri-

bution function for the chi-square distribution function with m − n − 1
degrees of freedom.

(b) Compute the point estimate σ̂2.

(c) Compute k1 =
(m− n− 1)σ̂2

χ2
α/2

and k2 =
(m− n− 1)σ̂2

χ2
1−α/2

.

(d) The 100(1− α) percent confidence interval for σ2 is given by [k1, k2].

10. Confidence interval (predictive interval) for y, given x0:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

n−m− 1 degrees of freedom.

(b) Compute the point estimate β̂i by solving the normal equations, and

compute se.

(c) Compute k = tα/2 se

√
1 + xT

0

(
XTX

)−1
x0 and ŷ = xT

0β̂.

(d) The 100(1 − α) percent confidence interval for y0 is given by

[ŷ − k, ŷ + k].

11. Test of the hypothesis βi = 0 against the alternative βi 6= 0:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

m− n− 1 degrees of freedom.

(b) Compute the point estimates β̂i and se by solving the normal equations.

(c) Compute the test statistic t =
β̂i

se
√
cii

.

(d) If |t| > tα/2, then reject the hypothesis. If |t| ≤ tα/2, then do not reject

the hypothesis.
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7.12 ANALYSIS OF VARIANCE (ANOVA)

Analysis of variance (ANOVA) is a statistical methodology for determining informa-

tion about means. The analysis uses variances both between and within samples.

7.12.1 ONE-FACTOR ANOVA

1. Suppose we have k samples from k populations, with the j th population con-

sisting of nj observations,

y11, y21, . . . , yn11

y12, y22, . . . , yn22

...

y1k, y2k, . . . , ynkk.
2. One-factor model:

(a) The one-factor ANOVA assumes that the ith observation from the j th

sample is of the form yij = µ+ τj + eij .

(b) For j = 1, 2, . . . , k, the parameter µj = µ+ τj is the unknown mean of

the j th population, and
∑k

j=1 τj = 0.

(c) For i = 1, 2, . . . , k and j = 1, 2, . . . , nj , the random variables eij are

independent and normally distributed with mean zero and variance σ2.

(d) The total number of observations is n = n1 + n2 + · · ·+ nk.

3. Point estimates of means:

(a) Total sample mean ŷ =
1

n

k∑

j=1

nj∑

i=1

yij .

(b) Sample mean of j th sample ŷj =
1

nj

nj∑

i=1

yij .

4. Sums of squares:

(a) Sum of squares between samples SSb =
k∑

j=1

nj (ŷj − ŷ)2.

(b) Sum of squares within samples SSw =

k∑

j=1

nj∑

i=1

(yij − ŷj)2.

(c) Total sum of squares Total SS =

k∑

j=1

nj∑

i=1

(yij − ŷ)2.

(d) Partition of total sum of squares Total SS = SSb + SSw.

5. Degrees of freedom:

(a) Between samples, k − 1.

(b) Within samples, n− k.
(c) Total, n− 1.
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6. Mean squares:

(a) Obtained by dividing sums of squares by their respective degrees of

freedom.

(b) Between samples, MSb =
SSb

k − 1
.

(c) Within samples (also called the residual mean square), MSw =
SSw

n− k .

7. Test of the hypothesis µ1 = µ2 = · · · = µk against the alternative µi 6= µj for

some i and j; equivalently, test the null hypothesis τ1 = τ2 = · · · = τk = 0
against the hypothesis τj 6= 0 for some j:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with k − 1
and n− k degrees of freedom.

(b) Compute the point estimates ŷ and ŷj for j = 1, 2, . . . , k.

(c) Compute the sums of squares SSb and SSw.

(d) Compute the mean squares MSb and MSw.

(e) Compute the test statistic F =
MSb

MSw

.

(f) If F > Fα, then reject the hypothesis.

If F ≤ Fα, then do not reject the hypothesis.

(g) The above computations are often organized into an ANOVA table:

Source SS D.O.F. MS F Ratio

Between samples SSb k − 1 MSb F = MSb

MSw

Within samples SSw n− k MSw

Total Total SS n− 1

8. Confidence interval for µi − µj , for i 6= j:

(a) Determine the critical value tα/2 such that F
(
tα/2

)
= 1 − α/2, where

F (·) is the cumulative distribution function for the t-distribution with

n− k degrees of freedom.

(b) Compute the point estimates ŷi and ŷj .

(c) Compute the residual mean square MSw.

(d) Compute k = tα/2

√
MSw

(
1

ni
+

1

nj

)
.

(e) The 100(1 − α) percent confidence interval for µi − µj is given by

[(ŷi − yj)− k, (ŷi − yj) + k].

9. Confidence interval for contrast in the means, defined by C = c1µ1 + c2µ2 +
· · ·+ ckµk, where c1 + c2 + · · ·+ ck = 0 :

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with k − 1
and n− k degrees of freedom.

(b) Compute the point estimates ŷj for j = 1, 2, . . . , k.

(c) Compute the residual mean square MSw.
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(d) Compute k =

√√√√√FαMSw


k − 1

n

k∑

j=1

c2j


.

(e) The 100(1 − α) percent confidence interval for the contrast C is


k∑

j=1

cj ŷj − k,
k∑

j=1

cj ŷj + k


.

7.12.2 UNREPLICATED TWO-FACTOR ANOVA

1. Suppose we have a sample of observations yij indexed by two factors i =
1, 2, . . . ,m and j = 1, 2, . . . , n.

2. Unreplicated two-factor model:

(a) The unreplicated two-factor ANOVA assumes that the ij th observation is

of the form yij = µ+ βi + τj + eij .

(b) µ is the overall mean, βi is the ith differential effect of factor one, τj is

the j differential effect of factor two, and

m∑

i=1

βi =
n∑

j=1

τj = 0.

(c) For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, the random variables eij are

independent and normally distributed with mean zero and variance σ2.

(d) Total number of observations is mn.

3. Point estimates of means:

(a) Total sample mean ŷ = 1
mn

∑m
i=1

∑n
j=1 yij .

(b) ith factor-one sample mean ŷi· =
1
n

∑n
j=1 yij .

(c) j th factor-two sample mean ŷ·j =
1
m

∑m
i=1 yij .

4. Sums of squares:

(a) Factor-one sum of squares SS1 = n
∑m

i=1 (ŷi· − ŷ)
2
.

(b) Factor-two sum of squares SS2 = m
∑n

j=1 (ŷ·j − ŷ)
2
.

(c) Residual sum of squares SSr =
∑m

i=1

∑n
j=1 (yij − ŷi· − ŷ·j + ŷ)

2
.

(d) Total sum of squares Total SS =
∑n

j=1

∑m
i=1 (yij − ŷ)

2
.

(e) Partition of total sum of squares Total SS = SS1 + SS2 + SSr.

5. Degrees of freedom:

(a) Factor one, m− 1.

(b) Factor two, n− 1.

(c) Residual, (m− 1)(n− 1).
(d) Total, mn− 1.
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6. Mean squares:

(a) Obtained by dividing sums of squares by their respective degrees of

freedom.

(b) Factor-one mean square MS1 = SS1

m−1 .

(c) Factor-two mean square MS2 = SS2

n−1 .

(d) Residual mean square MSr =
SSr

(m−1)(n−1) .

7. Test of the null hypothesis β1 = β2 = · · · = βm = 0 (no factor-one effects)

against the alternative hypothesis βi 6= 0 for some i:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with m− 1
and (m− 1)(n− 1) degrees of freedom.

(b) Compute the point estimates ŷ and ŷi· for i = 1, 2, . . . ,m.

(c) Compute the sums of squares SS1 and SSr.

(d) Compute the mean squares MS1 and MSr.

(e) Compute the test statistic F = MS1

MSr
.

(f) If F > Fα, then reject the hypothesis.

If F ≤ Fα, then do not reject the hypothesis.

8. Test of the null hypothesis τ1 = τ2 = · · · = τn = 0 (no factor-two effects)

against the alternative hypothesis τj 6= 0 for some j:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with n − 1
and (m− 1)(n− 1) degrees of freedom.

(b) Compute the point estimates ŷ and ŷ·j for j = 1, 2, . . . , n.

(c) Compute the sums of squares SS2 and SSr.

(d) Compute the mean squares MS2 and MSr.

(e) Compute the test statistic F = MS2

MSr
.

(f) If F > Fα, then reject the hypothesis. If F ≤ Fα, then do not reject the

hypothesis.

(g) The above computations are often organized into an ANOVA table:

Source SS D.O.F. MS F Ratio

Factor one SS1 m− 1 MS1 F = MS1

MSr

Factor two SS2 n− 1 MS2 F = MS2

MSr

Residual SSr (m− 1)(n− 1) MSr

Total Total SS mn− 1

9. Confidence interval for contrast in the factor-one means, defined by C =
c1β1 + c2β2 + · · ·+ cmβm, where c1 + c2 + · · ·+ cm = 0:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with m− 1
and (m− 1)(n− 1) degrees of freedom.

(b) Compute the point estimates ŷi· for i = 1, 2, . . . ,m.

(c) Compute the residual mean square MSr.

(d) Compute k =
√
FαMSr

(
m−1
n

∑m
i=1 c

2
i

)
.

(e) The 100(1 − α) percent confidence interval for the contrast C is

[
∑m

i=1 ciŷi· − k,
∑m

i=1 ciŷi· + k] .
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10. Confidence interval for contrast in the factor-two means, defined by C =
c1τ1 + c2τ2 + · · ·+ cnτn, where c1 + c2 + · · ·+ cn = 0:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with n − 1
and (m− 1)(n− 1) degrees of freedom.

(b) Compute the point estimates ŷ·j for j = 1, 2, . . . , n.

(c) Compute the residual mean square MSr.

(d) Compute k =

√
FαMSr

(
n−1
m

∑n
j=1 c

2
j

)
.

(e) The 100(1 − α) percent confidence interval for the contrast C is[∑n
j=1 cj ŷ·j − k,

∑n
j=1 cj ŷ·j + k

]
.

7.12.3 REPLICATED TWO-FACTOR ANOVA

1. Suppose we have a sample of observations yijk indexed by two factors i =
1, 2, . . . ,m and j = 1, 2, . . . , n. Moreover, there are p observations per factor

pair (i, j), indexed by k = 1, 2, . . . , p.

2. Replicated two-factor model:

(a) The replicated two-factor ANOVA assumes that the ijkth observation is

of the form yijk = µ+ βi + τj + γij + eijk .

(b) µ is the overall mean, βi is the ith differential effect of factor one, τj is

the j differential effect of factor two, and

m∑

i=1

βi =
n∑

j=1

τj = 0.

(c) For i = 1, 2, . . . ,m and j = 1, 2, . . . , n, γij is the ij th interaction effect

of factors one and two.

(d) For i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and k = 1, 2, . . . , p, the random

variables eijk are independent and normally distributed with mean zero

and variance σ2.

(e) Total number of observations is mnp.

3. Point estimates of means:

(a) Total sample mean ŷ = 1
mnp

∑m
i=1

∑n
j=1

∑p
k=1 yijk .

(b) ith factor-one sample mean ŷi·· =
1
np

∑n
j=1

∑p
k=1 yijk .

(c) j th factor-two sample mean ŷ·j· =
1

mp

∑m
i=1

∑p
k=1 yijk .

(d) ij th interaction mean ŷij· =
1
p

∑p
k=1 yijk .

4. Sums of squares:

(a) Factor-one sum of squares SS1 = np
∑m

i=1 (ŷi·· − ŷ)
2
.

(b) Factor-two sum of squares SS2 = mp
∑n

j=1 (ŷ·j· − ŷ)
2
.
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(c) Interaction sum of squares SS12 = p
∑m

i=1

∑n
j=1 (ŷij· − ŷ)

2
.

(d) Residual sum of squares

SSr =
∑m

i=1

∑n
j=1

∑p
k=1 (yijk − ŷi·· − ŷ·j· + ŷ)

2
.

(e) Total sum of squares Total SS =
∑m

i=1

∑n
j=1

∑p
k=1 (yijk − ŷ)

2
.

(f) Partition of total sum of squares Total SS = SS1 + SS2 + SS12 + SSr.

5. Degrees of freedom:

(a) Factor one, m− 1.

(b) Factor two, n− 1.

(c) Interaction, (m− 1)(n− 1).
(d) Residual, mn(p− 1).
(e) Total, mnp− 1.

6. Mean squares:

(a) Obtained by dividing sums of squares by their respective degrees of

freedom.

(b) Factor-one mean square MS1 = SS1

m−1 .

(c) Factor-two mean square MS2 = SS2

n−1 .

(d) Interaction mean square MS12 = SS12

(m−1)(n−1) .

(e) Residual mean square MSr =
SSr

mn(p−1) .

7. Test of the null hypothesis β1 = β2 = · · · = βm = 0 (no factor-one effects)

against the alternative hypothesis βi 6= 0 for some i:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with m− 1
and mn(p− 1) degrees of freedom.

(b) Compute the point estimates ŷ and ŷi·· for i = 1, 2, . . . ,m.

(c) Compute the sums of squares SS1 and SSr.

(d) Compute the mean squares MS1 and MSr.

(e) Compute the test statistic F = MS1

MSr
.

(f) If F > Fα, then reject the hypothesis.

If F ≤ Fα, then do not reject the hypothesis.

8. Test of the null hypothesis τ1 = τ2 = · · · = τn = 0 (no factor-two effects)

against the alternative hypothesis τj 6= 0 for some j:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with n − 1
and mn(p− 1) degrees of freedom.

(b) Compute the point estimates ŷ and ŷ·j· for j = 1, 2, . . . , n.

(c) Compute the sums of squares SS2 and SSr.

(d) Compute the mean squares MS2 and MSr.

(e) Compute the test statistic F = MS2

MSr
.

(f) If F > Fα, then reject the hypothesis.

If F ≤ Fα, then do not reject the hypothesis.
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9. Test of the null hypothesis γij = 0 for i = 1, 2, . . . ,m and j = 1, 2, . . . , n (no

factor-one effects) against the alternative hypothesis γij 6= 0 for some i and j:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with (m −
1)(n− 1) and mn(p− 1) degrees of freedom.

(b) Compute the point estimates ŷ, ŷi··, ŷ·j·, and ŷij· for i = 1, 2, . . . ,m and

j = 1, 2, . . . , n.

(c) Compute the sums of squares SS12 and SSr.

(d) Compute the mean squares MS12 and MSr.

(e) Compute the test statistic F = MS12

MSr
.

(f) If F > Fα, then reject the hypothesis.

If F ≤ Fα, then do not reject the hypothesis.

(g) The above computations are often organized into an ANOVA table:

Source SS D.O.F. MS F Ratio

Factor one SS1 m− 1 MS1 F = MS1/MSr

Factor two SS2 n− 1 MS2 F = MS2/MSr

Interaction SS12 (m− 1)(n− 1) MS12 F = MS12/MSr

Residual SSr mn(p− 1) MSr

Total Total SS mnp− 1

10. Confidence interval for contrast in the factor-one means, defined by C =
c1β1 + c2β2 + · · ·+ cmβm, where c1 + c2 + · · ·+ cm = 0:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with m− 1
and mn(p− 1) degrees of freedom.

(b) Compute the point estimates ŷi·· for i = 1, 2, . . . ,m.

(c) Compute the residual mean square MSr.

(d) Compute k =

√
FαMSr

(
m−1
np

∑m
i=1 c

2
i

)
.

(e) The 100(1 − α) percent confidence interval for the contrast C is

[
∑m

i=1 ciŷi·· − k,
∑m

i=1 ciŷi·· + k] .

11. Confidence interval for contrast in the factor-two means, defined by C =
c1τ1 + c2τ2 + · · ·+ cnτn, where c1 + c2 + · · ·+ cn = 0:

(a) Determine the critical value Fα such that F (Fα) = 1 − α, where F (·)
is the cumulative distribution function for the F -distribution with n − 1
and mn(p− 1) degrees of freedom.

(b) Compute the point estimates ŷ·j· for j = 1, 2, . . . , n.

(c) Compute the residual mean square MSr.

(d) Compute k =

√
FαMSr

(
n−1
mp

∑n
j=1 c

2
j

)
.

(e) The 100(1 − α) percent confidence interval for the contrast C is[∑n
j=1 cj ŷ·j· − k,

∑n
j=1 cj ŷ·j· + k

]
.
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7.13 SAMPLE SIZE

7.13.1 CONFIDENCE INTERVALS

To construct a confidence interval of specified width, a priori parameter estimates

and a bound on the error of estimation may be used to determine necessary sample

sizes. For a 100(1 − α)% confidence interval, let E = error of estimation (half

the width of the confidence interval). The following table presents some common

sample size calculations.

Parameter Estimate Sample size

µ x n =
(zα/2 · σ

E

)2

p p̂ n =
(zα/2)

2 · pq
E2

µ1 − µ2 x1 − x2 n1 = n2 =
(zα/2)

2(σ2
1 + σ2

2)

E2

p1 − p2 p̂1 − p̂2 n1 = n2 =
(zα/2)

2(p1q1 + p2q2)

E2

EXAMPLE An experiment will estimate the probability of a success, p, in a binomial

distribution. How large a sample is needed to estimate this proportion to within 5%

with 99% confidence? That is, what value of n satisfies Prob (|p̂− p| ≤ 0.05) ≥ 0.99.

Since no a priori estimate of p is available, use p = 0.5. The bound on the error

of estimation is E = .05 with 1− α = .99. Using the table

n =
z2.005 · pq
E2

=
(2.5758)(.5)(.5)

.052
= 663.5 (7.13.1)

A sample size of at least 664 should be used. This is a conservative sample size since

no a priori estimate of p was available. If, it was known that p was less than 0.3, then

using this value gives

n =
z2.005 · pq
E2

=
(2.5758)(.3)(.7)

.052
= 557.3 (7.13.2)

and a sample size of only 558 is needed.
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7.13.2 BERNOULLI VARIABLES

For a Bernoulli random variable with probability of success pB , sometimes it is

necessary to know how many trials are required to confirm that pB > pT for a given

threshold value pT at a significance level of α.

Define the hypotheses:

• H0 : pB < pT (note: expect more failures)

• Ha : pB ≥ pT (note: expect fewer failures)

The probability of N Bernoulli trials with probability of success pB having

1. exactly F failures is pdf(F ;N, pB) =
(
N
F

)
pN−F
B (1− pB)F .

2. F or fewer failures is cdf(F ;N, pB) =
∑

f=0,1,...,F pdf(f ;N, pB).

Recall that α = Prob (reject H0 | H0 is true). The probability of having exactly 0

failures is cdf(0;N, pB) = pdf(0;N, pB) = pNB . This will be less than α when,

using pB < pT when H0 is true, N ≥ N0 =
⌈

logα
log pT

⌉
. Hence, if N ≥ N0 sample

values of the Bernoulli random variable are obtained, and no failures occur, then H0

is rejected at a significance level of α.

If there is a failure within the N0 trials, then (if the goal is to reject H0)

more sample values must be obtained. Define N1 to be the least integer so that

cdf(1;N1, pT ) < α. If N ≥ N1 sample values of the Bernoulli random variable

are obtained, and no more than 1 failure occurs, then H0 is rejected at a significance

level of α.

Likewise if N ≥ N2 (with cdf(2;N2, pT ) < α) sample values of the Bernoulli

random variable are obtained, and no more than 2 failures occur, then H0 is rejected

at a significance level of α. The value N3 is defined analogously.

α = 10% α = 5% α = 1%

p N0 N1 N2 N3 N0 N1 N2 N3 N0 N1 N2 N3

0.90 22 38 52 65 29 46 61 76 44 64 81 97

0.91 25 42 58 73 32 51 68 84 49 71 91 109

0.92 28 48 65 82 36 58 77 95 56 81 102 122

0.93 32 55 75 94 42 66 88 109 64 92 117 140

0.94 38 64 88 110 49 78 103 127 75 108 137 164

0.95 45 77 105 132 59 93 124 153 90 130 165 198

0.96 57 96 132 166 74 117 156 192 113 164 207 248

0.97 76 129 176 221 99 157 208 257 152 219 277 332

0.98 114 194 265 333 149 236 313 386 228 330 418 499

0.99 230 388 531 667 299 473 628 773 459 662 838 1001
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7.13.3 OBSERVATIONS FOR VARIANCE COMPARISON

Suppose x1, x2, . . . , xn+1 is a random sample from a population with variance σ2
1 .

The sample variance, s21, has n degrees of freedom and may be used to test the hy-

pothesis that the population variance is σ2
0 . Let R be the ratio of the variances σ2

0

and σ2
1 . The table below shows the value of R for which a chi-square test, with

significance level α, will not be able to detect the difference in the variances with

probability β. Note that when R is far from one, few samples are needed to distin-

guish σ2
0 from σ2

1 , while for R near one many samples are needed.

EXAMPLE Testing for an increase in variance. Let α = 0.05, β = 0.01, and

R = 4. Using the table below with these values, the value R = 4 occurs between the

rows corresponding to n = 15 and n = 20. Using rough interpolation, this indicates

that the variance estimate should be based on 19 degrees of freedom.

EXAMPLE Testing for a decrease in variance. Let α = 0.05, β = 0.01, and R =
0.33. Using the table below with α′ = β = 0.01, β′ = α = 0.05 and R′ = 1/R = 3,

the value R′ = 3 occurs between the rows corresponding to n = 24 and n = 30.

Using rough interpolation, this indicates that the variance estimate should be based on

26 degrees of freedom.

α = 0.01 α = 0.05
n β = 0.01 β = 0.05 β = 0.1 β = 0.5 β = 0.01 β = 0.05 β = 0.1 β = 0.5

1 42237 1687.4 420.18 14.584 24454 976.94 243.27 8.444

2 458.21 89.781 43.709 6.644 298.07 58.404 28.433 4.322

3 98.796 32.244 19.414 4.795 68.054 22.211 13.373 3.303

4 44.686 18.681 12.483 3.955 31.933 13.349 8.920 2.827

5 27.217 13.170 9.369 3.467 19.972 9.665 6.875 2.544

6 19.278 10.280 7.627 3.144 14.438 7.699 5.713 2.354

7 14.911 8.524 6.521 2.911 11.353 6.490 4.965 2.217

8 12.202 7.352 5.757 2.736 9.418 5.675 4.444 2.112

9 10.377 6.516 5.198 2.597 8.103 5.088 4.059 2.028

10 9.072 5.890 4.770 2.484 7.156 4.646 3.763 1.960

15 5.847 4.211 3.578 2.133 4.780 3.442 2.925 1.743

20 4.548 3.462 3.019 1.943 3.803 2.895 2.524 1.624

25 3.845 3.033 2.690 1.821 3.267 2.577 2.286 1.547

30 3.403 2.752 2.471 1.735 2.927 2.367 2.125 1.492

40 2.874 2.403 2.192 1.619 2.516 2.103 1.919 1.418

50 2.564 2.191 2.021 1.544 2.272 1.942 1.791 1.368

75 2.150 1.898 1.779 1.431 1.945 1.716 1.609 1.294

100 1.938 1.743 1.649 1.367 1.775 1.596 1.510 1.252

150 1.715 1.575 1.506 1.297 1.594 1.464 1.400 1.206

∞ 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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7.13.4 ACCEPTANCE SAMPLING

Expression Meaning

AQL acceptable quality level

producer’s risk Type I error (percentage of “good” lots rejected)

consumer’s risk Type II error (percentage of “bad” lots accepted)

Military standard 105 D is a widely used sampling plan. There are three general

levels of inspection corresponding to different consumer’s risks. (Inspection level II

is usually chosen; level I uses smaller sample sizes and level III uses larger sample

sizes.) There are also three types of inspections: normal, tightened, and reduced.

Tables are available for single, double, and multiple sampling.

To use MIL-STD-105 D for single sampling, determine the sample size code

letter from the table below. Using this sample size code letter, find the sample size

and the acceptance and rejection numbers from Figure 7.3.

EXAMPLE Suppose that MIL-STD-105 D is to be used with incoming lots of 1,000

items, inspection level II is to be used in conjunction with normal inspection, and an

AQL of 2.5 percent is desired. How should the inspections be carried out?

1. From the table below the sample size code letter is J.

2. From page 594, for column J, the lot size is 80. Using the row labeled 2.5 the accep-

tance number is 5 and the rejection number is 6.

3. Thus, if a single sample of size 80 (selected randomly from each lot of 1,000 items)

contains 5 or fewer defectives, then the lot is to be accepted. If it contains 6 or more

defectives, then the lot is to be rejected.

Lot or batch size general inspection levels

I II III

2 to 8 A A B

9 to 15 A B C

16 to 25 B C D

26 to 50 C D E

51 to 90 C E F

91 to 150 D F G

151 to 280 E G H

281 to 500 F H J

501 to 1,200 G J K

1,201 to 3,200 H K L

3,201 to 10,000 J L M

10,001 to 35,000 K M N

35,001 to 150,000 L N P

150,001 to 500,000 M P Q

500,001 and over N Q R
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FIGURE 7.3
Master table for single sampling inspection (normal inspection) MIL-STD-105 D.
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AQL Acceptable quality level (normal inspection).

Ac|Re Accept if Ac or fewer are found, reject if Re or more are found.

← Use first sampling procedure to left.

→ Use first sampling procedure to right. If sample size equals, or exceeds, lot or

batch size, do 100 percent inspection.
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7.14 CONTINGENCY TABLES

The general I × J contingency table has the form:

Treatment 1 Treatment 1 . . . Treatment J Totals

Sample 1 n11 n12 . . . n1J n1.

Sample 2 n21 n22 . . . n2J n2.

...
...

...
. . .

...
...

Sample I nI1 nI2 . . . nIJ nI.

Totals n.1 n.2 . . . n.J n

where nk. =
∑J

j=1 nkj and n.k =
∑I

i=1 nik. For complete independence the prob-

ability of any specific row and column totals {n.k, nk.} is

Prob (n11, . . . , nIJ | n1., . . . , n.J) =
(ΠI

i ni.!)(Π
J
j n.j !)

n! ΠI
iΠ

J
j nij !

(7.14.1)

Let ǫ̂ij be the estimated expected count in the (i, j)th cell:

ǫ̂ij =
(ith row total)(j th column total)

grand total
=
ni.n.j

n
(7.14.2)

The test statistic is

χ2 =
∑

all cells

(observed− estimated expected)2

estimated expected
=

I∑

i=1

J∑

j=1

(nij − ǫ̂ij)2
ǫ̂ij

(7.14.3)

Under the null hypothesisχ2 is approximately chi-square distributed with (I−1)(J−
1) degrees of freedom. The approximation is satisfactory if ǫ̂ij ≥ 5 for all i and j.

7.14.1 SIGNIFICANCE TEST IN 2× 22× 22× 2 CONTINGENCY TABLES

A 2 × 2 contingency table is a special case that occurs often. Suppose n elements

are simultaneously classified as having either property 1 or 2 and as having property

I or II. The 2× 2 contingency table may be written as:

I II Totals

1 a A− a A
2 b B − b B

Totals r n− r n

If the marginal totals (r, A, andB) are fixed, the probability of a given configuration

may be written as

f(a | r, A,B) =

(
A
a

)(
B
b

)
(
n
r

) =
A!B! r! (n − r)!

n! a! b! (A− a)! (B − b)! (7.14.4)
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The table on page 597 can be used to conduct a hypothesis test concerning the differ-

ence between observed and expected frequencies in a 2×2 contingency table. Given

values of a, A, andB, the table entries show the largest value of b (in bold type, with

b < a) for which there is a significant difference between a/A and b/B). Critical

values of b (probability levels) are presented for α = 0.05, 0.025, 0.01, and 0.005.

The tables also satisfy the following conditions:

1. Categories 1 and 2 are defined so that A ≥ B.

2.
a

A
≥ b

B
or, aB ≥ bA.

3. If b is less than or equal to the integer in bold type, then a/A is significantly

greater than b/B (for a one-tailed test) at the probability level (α) indicated by

the column heading. For a two-tailed test, the significance level is 2α.

4. A dash in the body of the table indicates no 2× 2 table may show a significant

effect at that probability level and combination of a, A, and B.

5. For a given r, the probability b is less than the integer in bold type is shown in

small type following an entry.

Note that ifA andB are large, this test may be approximated by a two-sampleZ test

of proportions.

EXAMPLE In order to compare the probability of a success in two populations, the fol-

lowing 2× 2 contingency table was obtained.

Success Failure Totals

Sample from population 1 7 2 9

Sample from population 2 3 3 6

Totals 10 5 15

Is there any evidence to suggest the two population proportions are different? Use

α = .05.

1. In this 2 × 2 contingency table, a = 7, A = 9, and B = 6. For α = 0.05 the table

entry is 1.034.

2. The critical value for b is 1. If b ≤ 1 then the null hypothesis H0: p1 = p2 is rejected.

3. Conclusion: The value of the test statistic does not lie in the rejection region, b = 3.

There is no evidence to suggest the population proportions are different.

4. Note there are six 2×2 tables with the same marginal totals as the table in this example

(that is, A = 9, B = 6, and r = 10):
9 0

1 5

8 1

2 4

7 2

3 3

6 3

4 2

5 4

5 1

4 5

6 0

Assuming independence, the probability of obtaining each of these six tables (using

Equation (7.14.4), rounded) is {.002, .045, .24, .42, .25, .042}. That is, the first con-

figuration is the least likely, and the fourth configuration is the most likely.
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Contingency tables: 2× 2

a Probability

0.05 0.025 0.01 0.005

A = 3 B = 3 3 0.050 − − −
A = 4 B = 4 4 0.014 0.014 − −

B = 3 4 0.029 − − −
A = 5 B = 5 5 1.024 1.024 0.004 0.004

4 0.024 0.024 − −
B = 4 5 1.048 0.008 0.008 −

4 0.040 − − −
B = 3 5 0.018 0.018 − −
B = 2 5 0.048 − − −

A = 6 B = 6 6 2.030 1.008 1.008 0.001

5 1.039 0.008 0.008 −
4 0.030 − − −

B = 5 6 1.015 1.015 0.002 0.002

5 0.013 0.013 − −
4 0.045 − − −

B = 4 6 1.033 0.005 0.005 0.005

5 0.024 0.024 − −
B = 3 6 0.012 0.012 − −

5 0.048 − − −
B = 2 6 0.036 − − −

A = 7 B = 7 7 3.035 2.010 1.002 1.002

6 2.049 1.014 0.002 0.002

5 1.049 0.010 − −
4 0.035 − − −

B = 6 7 2.021 2.021 1.005 1.005

6 1.024 1.024 0.004 0.004

5 0.016 0.016 − −
4 0.049 − − −

B = 5 7 2.045 1.010 0.001 0.001

6 1.044 0.008 0.008 −
5 0.027 − − −

B = 4 7 1.024 1.024 0.003 0.003

6 0.015 0.015 − −
5 0.045 − − −

B = 3 7 0.008 0.008 0.008 −
6 0.033 − − −

B = 2 7 0.028 − − −
A = 8 B = 8 8 4.038 3.013 2.003 2.003

7 2.020 2.020 1.005 1.005

6 1.020 1.020 0.003 0.003

5 0.013 0.013 − −
4 0.038 − − −

B = 7 8 3.026 2.007 2.007 1.001

7 2.034 1.009 1.009 0.001

6 1.030 0.006 0.006 −
5 0.019 0.019 − −

B = 6 8 2.015 2.015 1.003 1.003

7 1.016 1.016 0.002 0.002

6 1.049 0.009 0.009 −
5 0.028 − − −

B = 5 8 2.035 1.007 1.007 0.001

7 1.031 0.005 0.005 0.005

a Probability

0.05 0.025 0.01 0.005

A = 8 B = 5 6 0.016 0.016 − −
5 0.044 − − −

B = 4 8 1.018 1.018 0.002 0.002

7 0.010 0.010 − −
6 0.030 − − −

B = 3 8 0.006 0.006 0.006 −
7 0.024 0.024 − −

B = 2 8 0.022 0.022 − −
A = 9 B = 9 9 5.041 4.015 3.005 3.005

8 3.024 3.024 2.007 1.002

7 2.027 1.007 1.007 0.001

6 1.024 1.024 0.005 0.005

5 0.015 0.015 − −
4 0.041 − − −

B = 8 9 4.029 3.009 3.009 2.002

8 3.041 2.013 1.003 1.003

7 2.041 1.012 0.002 0.002

6 1.035 0.007 0.007 −
5 0.020 0.020 − −

B = 7 9 3.019 3.019 2.005 2.005

8 2.024 2.024 1.006 0.001

7 1.020 1.020 0.003 0.003

6 0.010 0.010 − −
5 0.029 − − −

B = 6 9 3.044 2.011 1.002 1.002

8 2.045 1.011 0.001 0.001

7 1.034 0.006 0.006 −
6 0.017 0.017 − −
5 0.042 − − −

B = 5 9 2.027 1.005 1.005 1.005

8 1.022 1.022 0.003 0.003

7 0.010 0.010 − −
6 0.028 − − −

B = 4 9 1.014 1.014 0.001 0.001

8 0.007 0.007 0.007 −
7 0.021 0.021 − −
6 0.049 − − −

B = 3 9 1.045 0.005 0.005 0.005

8 0.018 0.018 − −
7 0.045 − − −

B = 2 9 0.018 0.018 − −
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7.15 PROBABILITY TABLES

7.15.1 CRITICAL VALUES

1. The critical value zα satisfies Φ(zα) = 1 − α (where, as usual, Φ(z) is the

distribution function for the standard normal). See Figure 7.4.

Φ(z) =
1√
2π

∫ ∞

−∞
e−t2/2 dt =

1

2

(
1 + erf

(
z√
2

))
(7.15.1)

x 1.282 1.645 1.960 2.326 2.576 3.090

Φ(x) 0.90 0.95 0.975 0.99 0.995 0.999

2[1− Φ(x)] 0.20 0.10 0.05 0.02 0.01 0.002

x 3.09 3.72 4.26 4.75 5.20 5.61 6.00 6.36

1− Φ(x) 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

For large values of x:

[
e−x2/2

√
2π

(
1

x
− 1

x3

)]
< 1− Φ(x) <

[
e−x2/2

√
2π

(
1

x

)]
(7.15.2)

2. The critical value tα satisfies F (tα) = 1 − α where F (·) is the distribution

function for the t-distribution (for a specified number of degrees of freedom).

3. The critical value χ2
α satisfies F (χ2

α) = 1 − α where F (·) is the distribution

function for the χ2-distribution (for a specified number of degrees of freedom).

4. The critical value Fα satisfies F (Fα) = 1 − α where F (·) is the distribution

function for the F -distribution (for a specified number of degrees of freedom).

FIGURE 7.4
The shaded region is defined by X ≥ zα and has area α (here X is N(0, 1)).

zα
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7.15.2 TABLE OF THE NORMAL DISTRIBUTION

For a standard normal random variable (see Figure 7.5):

Limits
Proportion of

the total area
Remaining

area
µ− λσ µ+ λσ (%) (%)

µ− σ µ+ σ 68.27 31.73

µ− 1.65σ µ+ 1.65σ 90 10

µ− 1.96σ µ+ 1.96σ 95 5

µ− 2σ µ+ 2σ 95.45 4.55

µ− 2.58σ µ+ 2.58σ 99.0 0.99

µ− 3σ µ+ 3σ 99.73 0.27

µ− 3.09σ µ+ 3.09σ 99.8 0.2

µ− 3.29σ µ+ 3.29σ 99.9 0.1

FIGURE 7.5
Illustration of σ and 2σ regions of a normal distribution.

68%

16% 16%

µ− σ µ µ+ σ

95%

2.3% 2.3%

µ− 2σ µ µ+ 2σ

x F (x) 1− F (x) f(x) x F (x) 1− F (x) f(x)

0.01 0.50399 0.49601 0.39892 0.02 0.50798 0.49202 0.39886

0.03 0.51197 0.48803 0.39876 0.04 0.51595 0.48405 0.39862

0.05 0.51994 0.48006 0.39844 0.06 0.52392 0.47608 0.39822

0.07 0.52790 0.47210 0.39797 0.08 0.53188 0.46812 0.39767

0.09 0.53586 0.46414 0.39733 0.10 0.53983 0.46017 0.39695

0.11 0.54380 0.45621 0.39654 0.12 0.54776 0.45224 0.39608

0.13 0.55172 0.44828 0.39559 0.14 0.55567 0.44433 0.39505

0.15 0.55962 0.44038 0.39448 0.16 0.56356 0.43644 0.39387

0.17 0.56749 0.43250 0.39322 0.18 0.57142 0.42858 0.39253

0.19 0.57534 0.42466 0.39181 0.20 0.57926 0.42074 0.39104

0.21 0.58317 0.41683 0.39024 0.22 0.58706 0.41294 0.38940

0.23 0.59095 0.40905 0.38853 0.24 0.59484 0.40516 0.38762

0.25 0.59871 0.40129 0.38667 0.26 0.60257 0.39743 0.38568
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x F (x) 1− F (x) f(x) x F (x) 1− F (x) f(x)
0.27 0.60642 0.39358 0.38466 0.28 0.61026 0.38974 0.38361

0.29 0.61409 0.38591 0.38251 0.30 0.61791 0.38209 0.38139

0.31 0.62172 0.37828 0.38023 0.32 0.62552 0.37448 0.37903

0.33 0.62930 0.37070 0.37780 0.34 0.63307 0.36693 0.37654

0.35 0.63683 0.36317 0.37524 0.36 0.64058 0.35942 0.37391

0.37 0.64431 0.35569 0.37255 0.38 0.64803 0.35197 0.37115

0.39 0.65173 0.34827 0.36973 0.40 0.65542 0.34458 0.36827

0.41 0.65910 0.34090 0.36678 0.42 0.66276 0.33724 0.36526

0.43 0.66640 0.33360 0.36371 0.44 0.67003 0.32997 0.36213

0.45 0.67365 0.32636 0.36053 0.46 0.67724 0.32276 0.35889

0.47 0.68082 0.31918 0.35723 0.48 0.68439 0.31561 0.35553

0.49 0.68793 0.31207 0.35381 0.50 0.69146 0.30854 0.35207

0.51 0.69497 0.30503 0.35029 0.52 0.69847 0.30153 0.34849

0.53 0.70194 0.29806 0.34667 0.54 0.70540 0.29460 0.34482

0.55 0.70884 0.29116 0.34294 0.56 0.71226 0.28774 0.34105

0.57 0.71566 0.28434 0.33912 0.58 0.71904 0.28096 0.33718

0.59 0.72240 0.27759 0.33521 0.60 0.72575 0.27425 0.33322

0.61 0.72907 0.27093 0.33121 0.62 0.73237 0.26763 0.32918

0.63 0.73565 0.26435 0.32713 0.64 0.73891 0.26109 0.32506

0.65 0.74215 0.25785 0.32297 0.66 0.74537 0.25463 0.32086

0.67 0.74857 0.25143 0.31874 0.68 0.75175 0.24825 0.31659

0.69 0.75490 0.24510 0.31443 0.70 0.75804 0.24196 0.31225

0.71 0.76115 0.23885 0.31006 0.72 0.76424 0.23576 0.30785

0.73 0.76731 0.23270 0.30563 0.74 0.77035 0.22965 0.30339

0.75 0.77337 0.22663 0.30114 0.76 0.77637 0.22363 0.29887

0.77 0.77935 0.22065 0.29659 0.78 0.78231 0.21769 0.29430

0.79 0.78524 0.21476 0.29200 0.80 0.78814 0.21185 0.28969

0.81 0.79103 0.20897 0.28737 0.82 0.79389 0.20611 0.28504

0.83 0.79673 0.20327 0.28269 0.84 0.79955 0.20045 0.28034

0.85 0.80234 0.19766 0.27798 0.86 0.80510 0.19490 0.27562

0.87 0.80785 0.19215 0.27324 0.88 0.81057 0.18943 0.27086

0.89 0.81327 0.18673 0.26848 0.90 0.81594 0.18406 0.26609

0.91 0.81859 0.18141 0.26369 0.92 0.82121 0.17879 0.26129

0.93 0.82381 0.17619 0.25888 0.94 0.82639 0.17361 0.25647

0.95 0.82894 0.17106 0.25406 0.96 0.83147 0.16853 0.25164

0.97 0.83398 0.16602 0.24923 0.98 0.83646 0.16354 0.24681

0.99 0.83891 0.16109 0.24439 1.00 0.84135 0.15865 0.24197
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7.15.3 PERCENTAGE POINTS, STUDENT’S ttt-DISTRIBUTION

For a given value of n and α this table gives the value of tα,n such that

F (tα,n) =

∫ tα,n

−∞

Γ((n+ 1)/2)√
nπΓ(n/2)

(
1 +

x2

n

)−(n+1)/2

dx = 1− α (7.15.3)

The t-distribution is symmetrical, so that F (−t) = 1− F (t).
EXAMPLE The table gives tα=0.60,n=2 = 0.325.

Hence, when n = 2, F (0.325) = 0.4.

F (t) =
n 0.6000 0.7500 0.9000 0.9500 0.9750 0.9900 0.9950 0.9990 0.9995

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 318.309 636.619

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 22.327 31.599

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 10.215 12.924

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 5.208 5.959

7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.785 5.408

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 4.501 5.041

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 4.025 4.437

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.930 4.318

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.852 4.221

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.686 4.015

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.646 3.965

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.610 3.922

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.552 3.850

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.450 3.725

50 0.255 0.679 1.299 1.676 2.009 2.403 2.678 3.261 3.496

100 0.254 0.677 1.290 1.660 1.984 2.364 2.626 3.174 3.390

∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.091 3.291
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7.15.4 PERCENTAGE POINTS, CHI-SQUARE DISTRIBUTION

For a given value of n this table gives the value of χ2 such that

F (χ2) =

∫ χ2

0

x(n−2)/2e−x/2

2n/2Γ(n/2)
dx (7.15.4)

is a specified number.
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7.15. PROBABILITY TABLES 603

7.15.5 PERCENTAGE POINTS, FFF -DISTRIBUTION

Given n and m this gives the value of f such that

F (f) =

∫ f

0

Γ((n+m)/2)

Γ(m/2)Γ(n/2)
mm/2nn/2xm/2−1(n+mx)−(m+n)/2 dx = 0.9.

m
=

n
1

2
3

4
5

6
7

8
9

1
0

5
0

1
0
0

∞
1

3
9
.8

6
4
9
.5

0
5
3
.5

9
5
5
.8

3
5
7
.2

4
5
8
.2

0
5
8
.9

1
5
9
.4

4
5
9
.8

6
6
0
.1

9
6
2
.6

9
6
3
.0

1
6
3
.3

3

2
8
.5

3
9
.0

0
9
.1

6
9
.2

4
9
.2

9
9
.3

3
9
.3

5
9
.3

7
9
.3

8
9
.3

9
9
.4

7
9
.4

8
9
.4

9

3
5
.5

4
5
.4

6
5
.3

9
5
.3

4
5
.3

1
5
.2

8
5
.2

7
5
.2

5
5
.2

4
5
.2

3
5
.1

5
5
.1

4
5
.1

3

4
4
.5

4
4
.3

2
4
.1

9
4
.1

1
4
.0

5
4
.0

1
3
.9

8
3
.9

5
3
.9

4
3
.9

2
3
.8

0
3
.7

8
3
.7

6

5
4
.0

6
3
.7

8
3
.6

2
3
.5

2
3
.4

5
3
.4

0
3
.3

7
3
.3

4
3
.3

2
3
.3

0
3
.1

5
3
.1

3
3
.1

0

6
3
.7

8
3
.4

6
3
.2

9
3
.1

8
3
.1

1
3
.0

5
3
.0

1
2
.9

8
2
.9

6
2
.9

4
2
.7

7
2
.7

5
2
.7

2

7
3
.5

9
3
.2

6
3
.0

7
2
.9

6
2
.8

8
2
.8

3
2
.7

8
2
.7

5
2
.7

2
2
.7

0
2
.5

2
2
.5

0
2
.4

7

8
3
.4

6
3
.1

1
2
.9

2
2
.8

1
2
.7

3
2
.6

7
2
.6

2
2
.5

9
2
.5

6
2
.5

4
2
.3

5
2
.3

2
2
.2

9

9
3
.3

6
3
.0

1
2
.8

1
2
.6

9
2
.6

1
2
.5

5
2
.5

1
2
.4

7
2
.4

4
2
.4

2
2
.2

2
2
.1

9
2
.1

6

1
0

3
.2

9
2
.9

2
2
.7

3
2
.6

1
2
.5

2
2
.4

6
2
.4

1
2
.3

8
2
.3

5
2
.3

2
2
.1

2
2
.0

9
2
.0

6

1
1

3
.2

3
2
.8

6
2
.6

6
2
.5

4
2
.4

5
2
.3

9
2
.3

4
2
.3

0
2
.2

7
2
.2

5
2
.0

4
2
.0

1
1
.9

7

1
2

3
.1

8
2
.8

1
2
.6

1
2
.4

8
2
.3

9
2
.3

3
2
.2

8
2
.2

4
2
.2

1
2
.1

9
1
.9

7
1
.9

4
1
.9

0

1
3

3
.1

4
2
.7

6
2
.5

6
2
.4

3
2
.3

5
2
.2

8
2
.2

3
2
.2

0
2
.1

6
2
.1

4
1
.9

2
1
.8

8
1
.8

5

1
4

3
.1

0
2
.7

3
2
.5

2
2
.3

9
2
.3

1
2
.2

4
2
.1

9
2
.1

5
2
.1

2
2
.1

0
1
.8

7
1
.8

3
1
.8

0

1
5

3
.0

7
2
.7

0
2
.4

9
2
.3

6
2
.2

7
2
.2

1
2
.1

6
2
.1

2
2
.0

9
2
.0

6
1
.8

3
1
.7

9
1
.7

6

1
6

3
.0

5
2
.6

7
2
.4

6
2
.3

3
2
.2

4
2
.1

8
2
.1

3
2
.0

9
2
.0

6
2
.0

3
1
.7

9
1
.7

6
1
.7

2

1
7

3
.0

3
2
.6

4
2
.4

4
2
.3

1
2
.2

2
2
.1

5
2
.1

0
2
.0

6
2
.0

3
2
.0

0
1
.7

6
1
.7

3
1
.6

9

1
8

3
.0

1
2
.6

2
2
.4

2
2
.2

9
2
.2

0
2
.1

3
2
.0

8
2
.0

4
2
.0

0
1
.9

8
1
.7

4
1
.7

0
1
.6

6

1
9

2
.9

9
2
.6

1
2
.4

0
2
.2

7
2
.1

8
2
.1

1
2
.0

6
2
.0

2
1
.9

8
1
.9

6
1
.7

1
1
.6

7
1
.6

3

2
0

2
.9

7
2
.5

9
2
.3

8
2
.2

5
2
.1

6
2
.0

9
2
.0

4
2
.0

0
1
.9

6
1
.9

4
1
.6

9
1
.6

5
1
.6

1

2
5

2
.9

2
2
.5

3
2
.3

2
2
.1

8
2
.0

9
2
.0

2
1
.9

7
1
.9

3
1
.8

9
1
.8

7
1
.6

1
1
.5

6
1
.5

2

5
0

2
.8

1
2
.4

1
2
.2

0
2
.0

6
1
.9

7
1
.9

0
1
.8

4
1
.8

0
1
.7

6
1
.7

3
1
.4

4
1
.3

9
1
.3

4

1
0
0

2
.7

6
2
.3

6
2
.1

4
2
.0

0
1
.9

1
1
.8

3
1
.7

8
1
.7

3
1
.6

9
1
.6

6
1
.3

5
1
.2

9
1
.2

0

∞
2
.7

1
2
.3

0
2
.0

8
1
.9

4
1
.8

5
1
.7

7
1
.7

2
1
.6

7
1
.6

3
1
.6

0
1
.2

4
1
.1

7
1
.0

0



“smtf32” — 2011/5/20 — 2:09 — page 604 — #614

604 CHAPTER 7. PROBABILITY AND STATISTICS

Given n and m this gives the value of f such that

F (f) =

∫ f

0

Γ((n+m)/2)

Γ(m/2)Γ(n/2)
mm/2nn/2xm/2−1(n+mx)−(m+n)/2 dx = 0.95.
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7.15. PROBABILITY TABLES 605

Given n and m this gives the value of f such that

F (f) =

∫ f

0

Γ((n+m)/2)

Γ(m/2)Γ(n/2)
mm/2nn/2xm/2−1(n+mx)−(m+n)/2 dx = 0.975.
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606 CHAPTER 7. PROBABILITY AND STATISTICS

Given n and m this gives the value of f such that

F (f) =

∫ f

0

Γ((n+m)/2)
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Given n and m this gives the value of f such that

F (f) =

∫ f

0

Γ((n+m)/2)

Γ(m/2)Γ(n/2)
mm/2nn/2xm/2−1(n+mx)−(m+n)/2 dx = 0.995.
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Given n and m this gives the value of f such that

F (f) =

∫ f

0

Γ((n+m)/2)

Γ(m/2)Γ(n/2)
mm/2nn/2xm/2−1(n+mx)−(m+n)/2 dx = 0.999.
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7.15.6 CUMULATIVE TERMS, BINOMIAL DISTRIBUTION

B(n, x; p) =
x∑

k=0

(
n

k

)
pk(1− p)n−k.

Note that B(n, x; p) = B(n, n− x; 1 − p).
If p is the probability of success, then B(n, x; p) is the probability of x or fewer

successes in n independent trials. For example, if a biased coin has a probability

p = 0.4 of being a head, and the coin is independently flipped 5 times, then there is

a 68% chance that there will be 2 or fewer heads (since B(5, 2; 0.4) = 0.6826).

p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.3600 0.2500

1 0.9975 0.9900 0.9775 0.9600 0.9375 0.9100 0.8400 0.7500

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2160 0.1250

1 0.9928 0.9720 0.9393 0.8960 0.8438 0.7840 0.6480 0.5000

2 0.9999 0.9990 0.9966 0.9920 0.9844 0.9730 0.9360 0.8750

4 0 0.8145 0.6561 0.5220 0.4096 0.3164 0.2401 0.1296 0.0625

1 0.9860 0.9477 0.8905 0.8192 0.7383 0.6517 0.4752 0.3125

2 0.9995 0.9963 0.9880 0.9728 0.9492 0.9163 0.8208 0.6875

3 1.0000 0.9999 0.9995 0.9984 0.9961 0.9919 0.9744 0.9375

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.0778 0.0312

1 0.9774 0.9185 0.8352 0.7373 0.6328 0.5282 0.3370 0.1875

2 0.9988 0.9914 0.9734 0.9421 0.8965 0.8369 0.6826 0.5000

3 1.0000 0.9995 0.9978 0.9933 0.9844 0.9692 0.9130 0.8125

4 1.0000 1.0000 0.9999 0.9997 0.9990 0.9976 0.9898 0.9688

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1177 0.0467 0.0156

1 0.9672 0.8857 0.7765 0.6554 0.5339 0.4202 0.2333 0.1094

2 0.9978 0.9841 0.9527 0.9011 0.8306 0.7443 0.5443 0.3438

3 0.9999 0.9987 0.9941 0.9830 0.9624 0.9295 0.8208 0.6562

4 1.0000 1.0000 0.9996 0.9984 0.9954 0.9891 0.9590 0.8906

5 1.0000 1.0000 1.0000 0.9999 0.9998 0.9993 0.9959 0.9844

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0280 0.0078

1 0.9556 0.8503 0.7166 0.5767 0.4450 0.3294 0.1586 0.0625

2 0.9962 0.9743 0.9262 0.8520 0.7564 0.6471 0.4199 0.2266

3 0.9998 0.9973 0.9879 0.9667 0.9294 0.8740 0.7102 0.5000

4 1.0000 0.9998 0.9988 0.9953 0.9871 0.9712 0.9037 0.7734

5 1.0000 1.0000 0.9999 0.9996 0.9987 0.9962 0.9812 0.9375

6 1.0000 1.0000 1.0000 1.0000 0.9999 0.9998 0.9984 0.9922

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0168 0.0039

1 0.9428 0.8131 0.6572 0.5033 0.3671 0.2553 0.1064 0.0352

2 0.9942 0.9619 0.8948 0.7969 0.6785 0.5518 0.3154 0.1445

3 0.9996 0.9950 0.9787 0.9437 0.8862 0.8059 0.5941 0.3633

4 1.0000 0.9996 0.9971 0.9896 0.9727 0.9420 0.8263 0.6367

5 1.0000 1.0000 0.9998 0.9988 0.9958 0.9887 0.9502 0.8555

6 1.0000 1.0000 1.0000 0.9999 0.9996 0.9987 0.9915 0.9648

7 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9993 0.9961
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p
n x 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0403 0.0101 0.0019

1 0.9288 0.7748 0.5995 0.4362 0.3003 0.1960 0.0705 0.0195

2 0.9916 0.9470 0.8591 0.7382 0.6007 0.4628 0.2318 0.0898

3 0.9994 0.9917 0.9661 0.9144 0.8343 0.7297 0.4826 0.2539

4 1.0000 0.9991 0.9944 0.9804 0.9511 0.9012 0.7334 0.5000

5 1.0000 0.9999 0.9994 0.9969 0.9900 0.9747 0.9006 0.7461

6 1.0000 1.0000 1.0000 0.9997 0.9987 0.9957 0.9750 0.9102

7 1.0000 1.0000 1.0000 1.0000 0.9999 0.9996 0.9962 0.9805

8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9980

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0283 0.0060 0.0010

1 0.9139 0.7361 0.5443 0.3758 0.2440 0.1493 0.0464 0.0107

2 0.9885 0.9298 0.8202 0.6778 0.5256 0.3828 0.1673 0.0547

3 0.9990 0.9872 0.9500 0.8791 0.7759 0.6496 0.3823 0.1719

4 0.9999 0.9984 0.9901 0.9672 0.9219 0.8497 0.6331 0.3770

5 1.0000 0.9999 0.9986 0.9936 0.9803 0.9526 0.8338 0.6230

6 1.0000 1.0000 0.9999 0.9991 0.9965 0.9894 0.9452 0.8281

7 1.0000 1.0000 1.0000 0.9999 0.9996 0.9984 0.9877 0.9453

8 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9983 0.9893

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9990

11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0036 0.0005

1 0.8981 0.6974 0.4922 0.3221 0.1971 0.1130 0.0302 0.0059

2 0.9848 0.9104 0.7788 0.6174 0.4552 0.3127 0.1189 0.0327

3 0.9984 0.9815 0.9306 0.8389 0.7133 0.5696 0.2963 0.1133

4 0.9999 0.9972 0.9841 0.9496 0.8854 0.7897 0.5328 0.2744

5 1.0000 0.9997 0.9973 0.9883 0.9657 0.9218 0.7535 0.5000

6 1.0000 1.0000 0.9997 0.9980 0.9924 0.9784 0.9006 0.7256

7 1.0000 1.0000 1.0000 0.9998 0.9988 0.9957 0.9707 0.8867

8 1.0000 1.0000 1.0000 1.0000 0.9999 0.9994 0.9941 0.9673

9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9941

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0022 0.0002

1 0.8816 0.6590 0.4435 0.2749 0.1584 0.0850 0.0196 0.0032

2 0.9804 0.8891 0.7358 0.5584 0.3907 0.2528 0.0834 0.0193

3 0.9978 0.9744 0.9078 0.7946 0.6488 0.4925 0.2253 0.0730

4 0.9998 0.9957 0.9761 0.9274 0.8424 0.7237 0.4382 0.1938

5 1.0000 0.9995 0.9954 0.9806 0.9456 0.8821 0.6652 0.3872

6 1.0000 1.0000 0.9993 0.9961 0.9858 0.9614 0.8418 0.6128

7 1.0000 1.0000 0.9999 0.9994 0.9972 0.9905 0.9427 0.8062

8 1.0000 1.0000 1.0000 0.9999 0.9996 0.9983 0.9847 0.9270

9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9972 0.9807

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9968

11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
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7.15.7 CUMULATIVE TERMS, POISSON DISTRIBUTION

F (x;λ) =
x∑

k=0

e−λλ
k

k!
.

If λ is the rate of Poisson arrivals, then F (x;λ) is the probability of x or fewer

arrivals occurring in a unit of time. For example, if customers arrive at the rate of

λ = 0.5 customers per hour, then the probability of having no customers in any

specified hour is 0.61 (the probability of one or fewer customers is 0.91).

x
λ 0 1 2 3 4 5 6 7 8 9

0.02 0.980 1.000

0.04 0.961 0.999 1.000

0.06 0.942 0.998 1.000

0.08 0.923 0.997 1.000

0.10 0.905 0.995 1.000

0.15 0.861 0.990 1.000 1.000

0.20 0.819 0.983 0.999 1.000

0.25 0.779 0.974 0.998 1.000

0.30 0.741 0.963 0.996 1.000

0.35 0.705 0.951 0.995 1.000

0.40 0.670 0.938 0.992 0.999 1.000

0.45 0.638 0.925 0.989 0.999 1.000

0.50 0.607 0.910 0.986 0.998 1.000

0.55 0.577 0.894 0.982 0.998 1.000

0.60 0.549 0.878 0.977 0.997 1.000

0.65 0.522 0.861 0.972 0.996 0.999 1.000

0.70 0.497 0.844 0.966 0.994 0.999 1.000

0.75 0.472 0.827 0.960 0.993 0.999 1.000

0.80 0.449 0.809 0.953 0.991 0.999 1.000

0.85 0.427 0.791 0.945 0.989 0.998 1.000

0.90 0.407 0.772 0.937 0.987 0.998 1.000

0.95 0.387 0.754 0.929 0.984 0.997 1.000

1.0 0.368 0.736 0.920 0.981 0.996 0.999 1.000

1.1 0.333 0.699 0.900 0.974 0.995 0.999 1.000

1.2 0.301 0.663 0.879 0.966 0.992 0.999 1.000

1.3 0.273 0.627 0.857 0.957 0.989 0.998 1.000

1.4 0.247 0.592 0.834 0.946 0.986 0.997 0.999 1.000

1.5 0.223 0.558 0.809 0.934 0.981 0.996 0.999 1.000

1.6 0.202 0.525 0.783 0.921 0.976 0.994 0.999 1.000

1.7 0.183 0.493 0.757 0.907 0.970 0.992 0.998 1.000

1.8 0.165 0.463 0.731 0.891 0.964 0.990 0.997 0.999 1.000

1.9 0.150 0.434 0.704 0.875 0.956 0.987 0.997 0.999 1.000

2.0 0.135 0.406 0.677 0.857 0.947 0.983 0.996 0.999 1.000

2.2 0.111 0.355 0.623 0.819 0.927 0.975 0.993 0.998 1.000

2.4 0.091 0.308 0.570 0.779 0.904 0.964 0.988 0.997 0.999 1.000



“smtf32” — 2011/5/20 — 2:09 — page 612 — #622

612 CHAPTER 7. PROBABILITY AND STATISTICS

x
λ 0 1 2 3 4 5 6 7 8 9

3 0.050 0.199 0.423 0.647 0.815 0.916 0.967 0.988 0.996 0.999

4 0.018 0.092 0.238 0.433 0.629 0.785 0.889 0.949 0.979 0.992

5 0.007 0.040 0.125 0.265 0.441 0.616 0.762 0.867 0.932 0.968

6 0.003 0.017 0.062 0.151 0.285 0.446 0.606 0.744 0.847 0.916

7 0.001 0.007 0.030 0.082 0.173 0.301 0.450 0.599 0.729 0.831

8 0.000 0.003 0.014 0.042 0.100 0.191 0.313 0.453 0.593 0.717

9 0.000 0.001 0.006 0.021 0.055 0.116 0.207 0.324 0.456 0.587

10 0.000 0.001 0.003 0.010 0.029 0.067 0.130 0.220 0.333 0.458

11 0.000 0.000 0.001 0.005 0.015 0.037 0.079 0.143 0.232 0.341

12 0.000 0.000 0.001 0.002 0.008 0.020 0.046 0.089 0.155 0.242

13 0.000 0.000 0.000 0.001 0.004 0.011 0.026 0.054 0.100 0.166

14 0.000 0.000 0.000 0.001 0.002 0.005 0.014 0.032 0.062 0.109

15 0.000 0.000 0.000 0.000 0.001 0.003 0.008 0.018 0.037 0.070

x
λ 10 11 12 13 14 15 16 17 18 19

3 1.000

4 0.997 0.999 1.000

5 0.986 0.995 0.998 0.999 1.000

6 0.957 0.980 0.991 0.996 0.999 1.000 1.000

7 0.901 0.947 0.973 0.987 0.994 0.998 0.999 1.000

8 0.816 0.888 0.936 0.966 0.983 0.992 0.996 0.998 0.999 1.000

9 0.706 0.803 0.876 0.926 0.959 0.978 0.989 0.995 0.998 0.999

10 0.583 0.697 0.792 0.865 0.916 0.951 0.973 0.986 0.993 0.997

11 0.460 0.579 0.689 0.781 0.854 0.907 0.944 0.968 0.982 0.991

12 0.347 0.462 0.576 0.681 0.772 0.844 0.899 0.937 0.963 0.979

13 0.252 0.353 0.463 0.573 0.675 0.764 0.836 0.890 0.930 0.957

14 0.176 0.260 0.358 0.464 0.570 0.669 0.756 0.827 0.883 0.923

15 0.118 0.185 0.268 0.363 0.466 0.568 0.664 0.749 0.820 0.875

x
λ 20 21 22 23 24 25 26 27 28 29

9 1.000

10 0.998 0.999 1.000

11 0.995 0.998 0.999 1.000

12 0.988 0.994 0.997 0.999 0.999 1.000

13 0.975 0.986 0.992 0.996 0.998 0.999 1.000

14 0.952 0.971 0.983 0.991 0.995 0.997 0.999 0.999 1.000

15 0.917 0.947 0.967 0.981 0.989 0.994 0.997 0.998 0.999 1.000
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7.15.8 CRITICAL VALUES, KOLMOGOROV–SMIRNOV TEST

One-sided test p = 0.90 0.95 0.975 0.99 0.995
Two-sided test p = 0.80 0.90 0.95 0.98 0.99

n = 1 0.900 0.950 0.975 0.990 0.995

2 0.684 0.776 0.842 0.900 0.929

3 0.565 0.636 0.708 0.785 0.829

4 0.493 0.565 0.624 0.689 0.734

5 0.447 0.509 0.563 0.627 0.669

6 0.410 0.468 0.519 0.577 0.617

7 0.381 0.436 0.483 0.538 0.576

8 0.358 0.410 0.454 0.507 0.542

9 0.339 0.387 0.430 0.480 0.513

10 0.323 0.369 0.409 0.457 0.489

11 0.308 0.352 0.391 0.437 0.468

12 0.296 0.338 0.375 0.419 0.449

13 0.285 0.325 0.361 0.404 0.432

14 0.275 0.314 0.349 0.390 0.418

15 0.266 0.304 0.338 0.377 0.404

20 0.232 0.265 0.294 0.329 0.352

25 0.208 0.238 0.264 0.295 0.317

30 0.190 0.218 0.242 0.270 0.290

35 0.177 0.202 0.224 0.251 0.269

40 0.165 0.189 0.210 0.235 0.252

Approximation

for n > 40:

1.07√
n

1.22√
n

1.36√
n

1.52√
n

1.63√
n

7.15.9 CRITICAL VALUES, TWO SAMPLE

KOLMOGOROV–SMIRNOV TEST

The value of D = max |Fn1(x) − Fn2(x)| shown below is so large that the hypoth-

esis H0, the two distributions are the same, is to be rejected at the indicated level of

significance. Here, n1 and n2 are assumed to be large.

Level of significance Value of D

α = 0.10 1.22
√

n1+n2

n1n2

α = 0.05 1.36
√

n1+n2

n1n2

α = 0.025 1.48
√

n1+n2

n1n2

α = 0.01 1.63
√

n1+n2

n1n2

α = 0.005 1.73
√

n1+n2

n1n2

α = 0.001 1.95
√

n1+n2

n1n2
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7.15.10 CRITICAL VALUES, SPEARMAN’S RANK

CORRELATION

Spearman’s coefficient of rank correlation, ρs, measures the correspondence between

two rankings. Let di be the difference between the ranks of the ith pair of a set of n
pairs of elements. Then Spearman’s rho is defined as

ρs = 1− 6
∑n

i=1 d
2
i

n3 − n = 1− 6Sr

n3 − n

where Sr =
∑n

i=1 d
2
i . The table below gives critical values for Sr when there is

complete independence.

n p = 0.90 p = 0.95 p = 0.99 p = 0.999
4 0.8000 0.8000 − −
5 0.7000 0.8000 0.9000 −
6 0.6000 0.7714 0.8857 −
7 0.5357 0.6786 0.8571 0.9643

8 0.5000 0.6190 0.8095 0.9286

9 0.4667 0.5833 0.7667 0.9000

10 0.4424 0.5515 0.7333 0.8667

11 0.4182 0.5273 0.7000 0.8364

12 0.3986 0.4965 0.6713 0.8182

13 0.3791 0.4780 0.6429 0.7912

14 0.3626 0.4593 0.6220 0.7670

15 0.3500 0.4429 0.6000 0.7464

20 0.2977 0.3789 0.5203 0.6586

25 0.2646 0.3362 0.4654 0.5962

30 0.2400 0.3059 0.4251 0.5479
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8.1 BASIC NUMERICAL ANALYSIS

8.1.1 APPROXIMATIONS AND ERRORS

Numerical methods involve finding approximate solutions to mathematical prob-

lems. Errors of approximation can result from two sources: error inherent in the

method or formula used and round-off error. Round-off error results when a calcu-

lator or computer is used to perform real-number calculations with a finite number

of significant digits. All but the first specified number of digits are either chopped or

rounded to that number of digits.

If p∗ is an approximation to p, the absolute error is defined to be |p− p∗| and

the relative error is |p− p∗|/|p|, provided that p 6= 0.

Iterative techniques often generate sequences that (ideally) converge to an exact

solution. It is sometimes desirable to describe the rate of convergence.

Definition Suppose lim βn = 0 and limαn = α. If a positive constant K exists with

|αn − α| < K |βn| for large n, then {αn} is said to converge to α with a rate of

convergence O(βn). This is read “big oh of βn” and written αn = α+O(βn).

Definition Suppose {pn} is a sequence that converges to p, with pn 6= p, for all n. If

positive constants λ and α exist with lim
n→∞

|pn+1 − p|
|pn − p|α

= λ, then {pn} converges to p

of order α, with asymptotic error constant λ.

In general, a higher order of convergence yields a more rapid rate of conver-

gence. A sequence has linear convergence if α = 1 and quadratic convergence if

α = 2.

8.1.1.1 Aitken’s △2 method

Definition Given {pn}∞n=0, the forward difference△pn is defined by△pn = pn+1−pn,

for n ≥ 0. Higher powers△kpn are defined recursively by△kpn = △(△k−1pn), for

k ≥ 2. In particular,△2pn = △(pn+1 − pn) = pn+2 − 2pn+1 + pn.

If a sequence {pn} converges linearly to p and (pn − p)(pn−1 − p) > 0, for

sufficiently large n, then the new sequence {p̂n} generated by Aitken’s△2 method,

p̂n = pn −
(△pn)2
△2pn

(8.1.1)

for all n ≥ 0, satisfies limn→∞
p̂n − p
pn − p

= 0.

8.1.1.2 Richardson’s extrapolation

Improved accuracy can be achieved by combining extrapolation with a low-order

formula. Suppose the unknown value M is approximated by a formula N(h) for

which

M = N(h) +K1h+K2h
2 +K3h

3 + . . . (8.1.2)
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for some unspecified constants K1, K2, K3, . . . . To apply extrapolation, set

N1(h) = N(h), and generate new approximationsNj(h) by

Nj(h) = Nj−1

(
h

2

)
+
Nj−1

(
h
2

)
−Nj−1(h)

2j−1 − 1
. (8.1.3)

Then M = Nj(h) + O(hj). A table of the following form is generated, one row at

a time:
N1(h)
N1 (h/2) N2(h)
N1 (h/4) N2 (h/2) N3(h)
N1 (h/8) N2 (h/4) N3 (h/2) N4(h).

Extrapolation can be applied whenever the truncation error for a formula has the

form
∑m−1

j=1 Kjh
αj + O(hαm) for constants Kj and α1 < α2 < · · · < αm. In

particular, if αj = 2j, the following computation can be used:

Nj(h) = Nj−1

(
h

2

)
+
Nj−1

(
h
2

)
−Nj−1(h)

4j−1 − 1
, (8.1.4)

and the entries in the j th column of the table have order O(h2j).

8.1.2 SOLUTION TO ALGEBRAIC EQUATIONS

Iterative methods generate sequences {pn} that converge to a solution p.

Definition A solution p of f(x) = 0 is a zero of multiplicitym if f(x) can be written as

f(x) = (x− p)mq(x), for x 6= p, where limx→p q(x) 6= 0. A zero is called simple if

m = 1.

8.1.2.1 Fixed-point iteration

A fixed point p for a function g satisfies g(p) = p. Given p0, generate {pn} by

pn+1 = g(pn) for n ≥ 0. (8.1.5)

If {pn} converges, then it will converge to a fixed point of g and the value pn can

be used as an approximation for p. The following theorem gives conditions that

guarantee convergence.

THEOREM 8.1.1 (Fixed-point theorem)

Let g ∈ C[a, b] and suppose that g(x) ∈ [a, b] for all x in [a, b]. Suppose also that

g′ exists on (a, b) with |g′(x)| ≤ k < 1, for all x ∈ (a, b). If p0 is any number

in [a, b], then the sequence defined by Equation (8.1.5) converges to the (unique)

fixed point p in [a, b]. Both of the error estimates |pn − p| ≤ kn

1−k |p0 − p1| and

|pn − p| ≤ knmax{p0 − a, b− p0} hold, for all n ≥ 1.

The iteration sometimes converges even if the conditions are not all satisfied.
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THEOREM 8.1.2
Suppose g is a function that satisfies the conditions of Theorem 8.1.1 and g′ is also

continuous on (a, b). If g′(p) 6= 0, then for any number p0 in [a, b], the sequence

generated by Equation (8.1.5) converges only linearly to the unique fixed point p in

[a, b].

THEOREM 8.1.3
Let p be a solution of the equation x = g(x). Suppose that g′(p) = 0 and g′′ are

continuous and bounded by a constant on an open interval I containing p. Then

there exists a δ > 0 such that, for p0 ∈ [p − δ, p + δ], the sequence defined by

Equation (8.1.5) converges at least quadratically to p.

8.1.2.2 Steffensen’s method

For a linearly convergent fixed-point iteration, convergence can be accelerated by

applying Aitken’s△2 method. This is called Steffensen’s method. Define p
(0)
0 = p0,

compute p
(0)
1 = g(p

(0)
0 ) and p

(0)
2 = g(p

(0)
1 ). Set p

(1)
0 = p̂0 which is computed using

Equation (8.1.1) applied to p
(0)
0 , p

(0)
1 and p

(0)
2 . Use fixed-point iteration to compute

p
(1)
1 and p

(1)
2 and then Equation (8.1.1) to find p

(2)
0 . Continuing, generate {p(n)0 }.

THEOREM 8.1.4
Suppose that x = g(x) has the solution p with |g′(p)| < 1 and g ∈ C3 in a neighbor-

hood of p. Then there exists a δ > 0 such that Steffensen’s method gives quadratic

convergence for the sequence {p(n)0 } for any p0 ∈ [p− δ, p+ δ].

8.1.2.3 Newton–Raphson method (Newton’s method)

To solve f(x) = 0, given an initial approximation p0, generate {pn} using

pn+1 = pn −
f(pn)

f ′(pn)
, for n ≥ 0. (8.1.6)

Figure 8.1 illustrates the method geometrically. Each value pn+1 represents the x-

intercept of the tangent line to the graph of f(x) at the point [pn, f(pn)].

THEOREM 8.1.5
Let f ∈ C2[a, b]. If p ∈ [a, b] is such that f(p) = 0 and f ′(p) 6= 0, then there exists

a δ > 0 such that Newton’s method generates a sequence {pn} converging to p for

any initial approximation p0 ∈ [p− δ, p+ δ].

Note:

1. Generally the conditions of the theorem cannot be checked. Therefore one

usually generates the sequence {pn} and observes whether or not it converges.

2. An obvious limitation is that the iteration terminates if f ′(pn) = 0.

3. For simple zeros of f , Theorem 8.1.5 implies that Newton’s method converges

quadratically. Otherwise, the convergence is much slower.
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FIGURE 8.1
Illustration of Newton’s method.1

Slope f´ (p1) y = f(x)

Slope f´ (p0)

(p1, f(p1))

(p0, f(p0))

p0 p2

p1

p

y

x

8.1.2.4 Modified Newton’s method

Newton’s method converges only linearly if p has multiplicity larger than one. How-

ever, the function u(x) = f(x)
f ′(x) has a simple zero at p. Hence, the Newton iteration

formula applied to u(x) yields quadratic convergence to a root of f(x) = 0. The

iteration simplifies to

pn+1 = pn −
f(pn)f

′(pn)

[f ′(pn)]2 − f(pn)f ′′(pn)
, for n ≥ 0. (8.1.7)

8.1.2.5 Root-bracketing methods

Suppose f(x) is continuous on [a, b] and f(a)f(b) < 0. The Intermediate Value

Theorem guarantees a number p ∈ (a, b) exists with f(p) = 0. A root-bracketing

method constructs a sequence of nested intervals [an, bn], each containing a solution

of f(x) = 0. At each step, compute pn ∈ [an, bn] and proceed as follows:

If f(pn) = 0, stop the iteration and p = pn.

Else,

if f(an)f(pn) < 0, then set an+1 = an, bn+1 = pn.

Else, set an+1 = pn, bn+1 = bn.

1From R. L. Burden and J. D. Faires, Numerical Analysis, 7th ed., Brooks/Cole, Pacific Grove, CA,

2001. With permission.
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8.1.2.6 Secant method

To solve f(x) = 0, the secant method uses the x-intercept of the secant line passing

through (pn, f(pn)) and (pn−1, f(pn−1)). The derivative of f is not needed. Given

p0 and p1, generate the sequence with

pn+1 = pn − f(pn)
(pn − pn−1)

f(pn)− f(pn−1)
, for n ≥ 1. (8.1.8)

8.1.2.7 Bisection method

This is a special case of the root-bracketing method. The values pn are computed by

pn = an +
bn − an

2
=
an + bn

2
, for n ≥ 1. (8.1.9)

Clearly, |pn − p| ≤ (b− a)/2n for n ≥ 1. The rate of convergence is O(2−n).
Although convergence is slow, the exact number of iterations for a specified accuracy

ǫ can be determined. To guarantee that |pN − p| < ǫ, use

N > log2

(
b− a
ǫ

)
=

ln(b − a)− ln ǫ

ln 2
. (8.1.10)

8.1.2.8 False position (regula falsi )

pn = bn − f(bn)
bn − an

f(bn)− f(an)
, for n ≥ 1. (8.1.11)

This root-bracketing method also converges if the initial criteria are satisfied.

8.1.2.9 Horner’s method with deflation

If Newton’s method is used to solve for roots of the polynomial P (x) = 0, then

the polynomials P and P ′ are repeatedly evaluated. Horner’s method efficiently

evaluates a polynomial of degree n using only n multiplications and n additions.

8.1.2.10 Horner’s algorithm

To evaluate P (x) = anx
n + an−1x

n−1 + . . .+ a0 and its derivative at x0:

INPUT: degree n, coefficients {a0, a1, . . . , an}; x0,

OUTPUT: y = P (x0); z = P ′(x0).
Algorithm:

1. Set y = an; z = an.

2. For j = n− 1, n− 2, . . . , 1,

set y = x0y + aj ; z = x0z + y.

3. Set y = x0y + a0.

4. OUTPUT (y, z). STOP.
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When satisfied with the approximation x̂1 for a root x1 of P , use synthetic division

to compute Q1(x) so that P (x) ≈ (x − x̂1)Q1(x). Estimate a root of Q1(x) and

write P (x) ≈ (x − x̂1)(x − x̂2)Q2(x), and so on. Eventually, Qn−2(x) will be a

quadratic, and the quadratic formula can be applied. This procedure, finding one root

at a time, is called deflation.

Note: Care must be taken since x̂1 is an approximation for x1. Some inaccuracy

occurs when computing the coefficients ofQ1(x), etc. Although the estimate x̂2 of a

root of Q1(x) can be very accurate, it may not be as accurate when estimating a root

of P (x).

8.1.3 INTERPOLATION

Interpolation involves fitting a function to a set of data points (x0, y0), (x1, y1),
. . . , (xn, yn). The xi are unique and the yi may be regarded as the values of some

function f(x), that is, yi = f(xi) for i = 0, 1, . . . , n. The following are polynomial

interpolation methods.

8.1.3.1 Lagrange interpolation

The Lagrange interpolating polynomial, denoted Pn(x), is the unique polynomial of

degree at most n for which Pn(xk) = f(xk) for k = 0, 1, . . . , n. It is given by

P (x) =

n∑

k=0

f(xk)Ln,k(x) (8.1.12)

where {x0, . . . , xn} are called node points, and

Ln,k(x) =
(x− x0)(x − x1) · · · (x− xk−1)(x− xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

=

n∏

i=0,i6=k

(x− xi)
(xk − xi)

, for k = 0, 1, . . . , n. (8.1.13)

THEOREM 8.1.6 (Error formula)

If x0, x1, . . . , xn are distinct numbers in [a, b] and f ∈ Cn+1[a, b], then, for each x
in [a, b], a number ξ(x) in (a, b) exists with

f(x) = P (x) +
f (n+1)(ξ(x))

(n+ 1)!
(x − x0)(x − x1) · · · (x − xn), (8.1.14)

where P is the interpolating polynomial given in Equation (8.1.12).

Although the Lagrange polynomial is unique, it can be expressed and evaluated

in several ways. Equation (8.1.12) is tedious to evaluate, and including more nodes

affects the entire expression. Neville’s method evaluates the Lagrange polynomial at

a single point without explicitly finding the polynomial and the method adapts easily

when new nodes are included.
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8.1.3.2 Neville’s method

Let Pm1,m2,...,mk
denote the Lagrange polynomial using distinct nodes {xm1 , xm2 ,

. . . , xmk
}. If P (x) denotes the Lagrange polynomial using nodes {x0, x1, . . . , xk}

and xi and xj are two distinct numbers in this set, then

P (x) =
(x− xj)P0,1,...,j−1,j+1,...,k(x) − (x− xi)P0,1,...,i−1,i+1,...,k(x)

(xi − xj)
.

8.1.3.3 Neville’s algorithm

Generate a table of entries Qi,j for j ≥ 0 and 0 ≤ i ≤ j where the terms are

Qi,j = Pi−j,i−j+1,...,i−1,i. Calculations use Equation (8.1.3.2) for a specific value

of x as shown:

x0 Q0,0 = P0

x1 Q1,0 = P1 Q1,1 = P0,1

x2 Q2,0 = P2 Q2,1 = P1,2 Q2,2 = P0,1,2

x3 Q3,0 = P3 Q3,1 = P2,3 Q3,2 = P1,2,3 Q3,3 = P0,1,2,3

Note that Pk = Pk(x) = f(xk) and {Qi,i} represents successive estimates of f(x)
using Lagrange polynomials. Nodes may be added until |Qi,i −Qi−1,i−1| < ǫ as

desired.

8.1.3.4 Divided differences

Some interpolation formulas involve divided differences. Given an ordered sequence

of values, {xi}. and the corresponding function values f(xi), the zeroth divided

difference is f [xi] = f(xi). The first divided difference is defined by

f [xi, xi+1] =
f(xi+1)− f(xi)

xi+1 − xi
=
f [xi+1]− f [xi]
xi+1 − xi

. (8.1.15)

The kth divided difference is defined by

f [xi, xi+1, . . . , xi+k−1, xi+k]

=
f [xi+1, xi+2, . . . , xi+k]− f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
. (8.1.16)

Divided differences are usually computed by forming a triangular table.

First Second Third

x f(x) divided differences divided differences divided differences

x0 f [x0]
f [x0, x1]

x1 f [x1] f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f [x2] f [x1, x2, x3]
f [x2, x3]

x3 f [x3]
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8.1.3.5 Newton’s interpolatory divided-difference formula

(also known as the Newton polynomial)

Pn(x) = f [x0] +

n∑

k=1

f [x0, x1, . . . , xk](x − x0) · · · (x− xk−1). (8.1.17)

Labeling the nodes as {xn, xn−1, . . . , x0}, a formula similar to Equation

(8.1.17) results in Newton’s backward divided-difference formula,

Pn(x) = f [xn] + f [xn, xn−1](x− xn)
+ f [xn, xn−1, xn−2](x− xn)(x − xn−1)

+ . . .+ f [xn, xn−1, . . . , x0](x− xn) · · · (x− x1).
(8.1.18)

If the nodes are equally spaced (that is, xi − xi−1 = h), define the parameter s by

x = x0 + sh. The following formulas evaluate Pn(x) at a single point:

1. Newton’s interpolatory divided-difference formula,

Pn(x) = Pn(x0 + sh) =

n∑

k=0

(
s

k

)
k!hkf [x0, x1, . . . , xk]. (8.1.19)

2. Newton’s forward-difference formula (Newton–Gregory),

Pn(x) = Pn(x0 + sh) =

n∑

k=0

(
s

k

)
△k f(x0). (8.1.20)

3. Newton–Gregory backward formula (fits nodes x−n to x0),

Pn(x) = f(x0) +

(
s

1

)
△ f(x−1) +

(
s+ 1

2

)
△2 f(x−2)+

. . .+

(
s+ n− 1

n

)
△n f(x−n). (8.1.21)

4. Newton’s backward-difference formula,

Pn(x) =
n∑

k=0

(−1)k
(−s
k

)
▽k f(xn), (8.1.22)

where▽kf(xn) is the kth backward difference, defined for a sequence {pn},
by ▽pn = pn − pn−1 for n ≥ 1. Higher powers are defined recursively by

▽kpn = ▽(▽k−1pn) for k ≥ 2. For notation, set▽0pn = pn.

5. Stirling’s formula (for equally spaced nodes x−m, . . . , x−1, x0, x1, . . . , xm),

Pn(x) = P2m+1(x) = f [x0] +
sh

2
(f [x−1, x0] + f [x0, x1])+

s2h2f [x−1, x0, x1] +
s(s2 − 1)h3

2
(f [x−2, x−1, x0, x1] + f [x−1, x0, x1, x2])

+ . . .+ s2(s2 − 1)(s2 − 4) · · · (s2 − (m− 1)2)h2mf [x−m, . . . , xm]

+
s(s2 − 1) · · · (s2 −m2)h2m+1

2
(f [x−m−1, . . . , xm]+f [x−m, . . . , xm+1]).
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Use the entire formula if n = 2m+1 is odd, and omit the last term if n = 2m
is even. The following table identifies the desired divided differences used in

Stirling’s formula:

First divided Second divided Third divided

x f(x) differences differences differences

x−2 f [x−2]
f [x−2, x−1]

x−1 f [x−1] f [x−2, x−1, x0]
f [x−1, x0] f [x−2, x−1, x0, x1]

x0 f [x0] f [x−1, x0, x1]
f [x0, x1] f [x−1, x0, x1, x2]

x1 f [x1] f [x0, x1, x2]
f [x1, x2]

x2 f [x2]

8.1.3.6 Inverse interpolation

Any method of interpolation which does not require the nodes to be equally spaced

may be applied by interchanging the nodes (x values) and the function values (y
values).

8.1.3.7 Hermite interpolation

Given distinct numbers {x0, x1, . . . , xn}, the Hermite interpolating polynomial for

a function f is the unique polynomial H(x) of degree at most 2n + 1 that satisfies

H(xi) = f(xi) and H ′(xi) = f ′(xi) for each i = 0, 1, . . . , n.

A technique and formula similar to Equation (8.1.17) can be used. For distinct

nodes {x0, x1, . . . , xn}, define {z0, z1, . . . , z2n+1} by z2i = z2i+1 = xi for i =
0, 1, . . . , n. Construct a divided difference table for the ordered pairs (zi, f(zi))
using f ′(xi) in place of f [z2i, z2i+1], which would be undefined. Denote the Hermite

polynomial by H2n+1(x).

8.1.3.8 Hermite interpolating polynomial

H2n+1(x) = f [z0] +

2n+1∑

k=1

f [z0, z1, . . . , zk](x− z0) · · · (x− zk−1)

= f [z0] + f [z0, z1](x− x0) + f [z0, z1, z2](x− x0)2

+ f [z0, z1, z2, z3](x− x0)2(x− x1)
+ . . .+ f [z0, . . . , z2n+1](x− x0)2 · · · (x− xn−1)

2(x− xn).

(8.1.23)

THEOREM 8.1.7 (Error formula)

If f ∈ C2n+2[a, b], then

f(x) = H2n+1(x) +
f (2n+2)(ξ(x))

(2n+ 2)!
(x− x0)2 · · · (x− xn)2 (8.1.24)

for some ξ(x) ∈ (a, b) and where xi ∈ [a, b] for each i = 0, 1, . . . , n.
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8.1.4 DATA FITTING

8.1.4.1 Piecewise polynomial approximation

An interpolating polynomial has large degree and tends to oscillate greatly for large

data sets. Piecewise polynomial approximation divides the interval into a collec-

tion of subintervals and constructs an approximating polynomial on each subinter-

val. Piecewise linear interpolation consists of simply joining the data points with

line segments. This collection is continuous but not differentiable at the node points.

Cubic spline interpolation is popular since no derivative information is needed.

Definition Given a function f defined on [a, b] and a set of numbers a = x0 < x1 <
. . . < xn = b, a cubic spline interpolant, S, for f is a function that satisfies

1. S is a cubic polynomial, denoted Sj , on [xj , xj+1] for j = 0, 1, . . . , n− 1.

2. For j = 0, 1, . . . , n: S(xj) = f(xj)
3. For j = 0, 1, . . . , n− 2.

• Sj+1(xj+1) = Sj(xj+1)
• S′

j+1(xj+1) = S′
j(xj+1)

• S′′
j+1(xj+1) = S′′

j (xj+1)

4. One of the following sets of boundary conditions is satisfied:

• S′′(x0) = S′′(xn) = 0 (free or natural boundary),

• S′(x0) = f ′(x0) and S′(xn) = f ′(xn) (clamped boundary).

If a function f is defined at all node points, then f has a unique natural spline

interpolant. If, in addition, f is differentiable at a and b, then f has a unique clamped

spline interpolant. To construct a cubic spline, set

Sj(x) = aj + bj(x− xj) + cj(x− xj)2 + dj(x− xj)3

for each j = 0, 1, . . . , n−1. The constants {aj, bj , cj , dj} are found by solving a tri-

adiagonal system of linear equations, which is included in the following algorithms.

8.1.4.2 Algorithm for natural cubic splines

INPUT: n, {x0, x1, . . . , xn},
a0 = f(x0), a1 = f(x1), . . . , an = f(xn).

OUTPUT: {aj, bj , cj , dj} for j = 0, 1, . . . , n− 1.

Algorithm:

1. For i = 0, 1, . . . , n− 1, set hi = xi+1 − xi.
2. For i = 1, 2, . . . , n−1, set αi =

3

hi
(ai+1−ai)−

3

hi−1
(ai−ai−1).

3. Set ℓ0 = 1, µ0 = 0, z0 = 0.

4. For i = 1, 2, . . . , n− 1,

set ℓi = 2(xi+1 − xi−1)− hi−1µi−1;

set µi = hi/ℓi;
set zi = (αi − hi−1zi−1)/ℓi.

5. Set ℓn = 1, zn = 0, cn = 0.
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6. For j = n− 1, n− 2, . . . , 0,

set cj = zj − µjcj+1;

set bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;

set dj = (cj+1 − cj)/(3hj).
7. OUTPUT (aj , bj, cj , dj for j = 0, 1, . . . , n− 1). STOP.

8.1.4.3 Algorithm for clamped cubic splines

INPUT: n, {x0, x1, . . . , xn}, F0 = f ′(x0), Fn = f ′(xn).
a0 = f(x0), a1 = f(x1), . . . , an = f(xn),

OUTPUT: {aj, bj , cj , dj} for j = 0, 1, . . . , n− 1.

Algorithm

1. For i = 0, 1, . . . , n− 1, set hi = xi+1 − xi.
2. Set α0 = 3(a1−a0)/h0−3F0, αn = 3Fn−3(an−an−1)/hn−1.

3. For i = 1, 2, . . . , n−1, set αi =
3

hi
(ai+1−ai)−

3

hi−1
(ai−ai−1).

4. Set ℓ0 = 2h0, µ0 = 0.5, z0 = α0/ℓ0.

5. For i = 1, 2, . . . , n− 1,

set ℓi = 2(xi+1 − xi−1)− hi−1µi−1;

set µi = hi/ℓi;
set zi = (αi − hi−1zi−1)/ℓi.

6. Set ℓn = hn−1(2− µn−1), zn = (αn − hn−1zn−1)/ℓn, cn = zn.

7. For j = n− 1, n− 2, . . . , 0,

set cj = zj − µjcj+1;

set bj = (aj+1 − aj)/hj − hj(cj+1 + 2cj)/3;

set dj = (cj+1 − cj)/(3hj).
8. OUTPUT (aj, bj , cj, dj for j = 0, 1, . . . , n− 1). STOP.

8.1.4.4 Discrete approximation

Another approach to fit a function to a set of data points {(xi, yi) | i = 1, 2, . . . ,m}
is approximation. If a polynomial of degree n is used, then Pn(x) =

∑n
k=0 akx

k is

found that minimizes the least squares error E =
∑m

i=1[yi − Pn(xi)]
2.

• Normal equations

To find {a0, a1, . . . , an}, solve the linear system, called the normal equations,

created by setting partial derivatives of E taken with respect to each ak equal

to zero. The coefficient of a0 in the first equation is actually the number of data

points, m.

a0

m∑

i=1

x0i + a1

m∑

i=1

x1i + a2

m∑

i=1

x2i + . . .+ an

m∑

i=1

xni =

m∑

i=1

yix
0
i ,

a0

m∑

i=1

x1i + a1

m∑

i=1

x2i + a2

m∑

i=1

x3i + . . .+ an

m∑

i=1

xn+1
i =

m∑

i=1

yix
1
i ,

...

a0

m∑

i=1

xni + a1

m∑

i=1

xn+1
i + a2

m∑

i=1

xn+2
i + . . .+ an

m∑

i=1

x2ni =
m∑

i=1

yix
n
i .

(8.1.25)
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Note: Pn(x) can be replaced by a function f of specified form. Unfortunately,

to minimize E, the resulting system is generally not linear. Although these

systems can be solved, one technique is to “linearize” the data. For example, if

y = f(x) = beax, then ln y = ln b+ ax. The method applied to the data points

(xi, ln yi) produces a linear system. Note that this technique does not find

the approximation for the original problem but, instead, minimizes the least-

squares for the “linearized” data.

• Best-fit line Given the points P1 = (x1, y1), P2 = (x2, y2), . . . , Pn =
(xn, yn), the line of best-fit, which minimizesE, is given by y− y = m(x−x)
where

x =
1

n

n∑

i=1

xi =
(x1 + x2 + . . .+ xn)

n
,

y =
1

n

n∑

i=1

yi =
(y1 + y2 + . . .+ yn)

n
,

m =
(x1y1 + x2y2 + . . .+ xnyn)− nx y

(x21 + x22 + . . .+ x2n)− nx2
=
xy − x y
x2 − x2

.

(8.1.26)

If x and y are column vectors containing {xi} and {yi}, and j is an n×1 vector

of ones, then: x = xTj/n, y = yTj/n, xy = xTy/n, and x2 = xTx/n.

8.1.5 BÉZIER CURVES

Bézier curves are widely used in computer graphics and image processing. Use of

these curves does not depend on understanding the underlying mathematics. This

section summarizes Bézier polynomials; the rational Bézier curves are not covered.

Bézier curves are defined using parametric equations; the curves are not required

to describe a function of one coordinate variable in terms of the other(s). A point P
is interpreted as a vector and a Bézier curve has the form B(t) = [x(t), y(t)] (or

B(t) = [x(t), y(t), z(t)]) where the parameter t satisfies 0 ≤ t ≤ 1.

A Bézier curve B(t) is a weighted average of the n + 1 control points

{P0, P1, . . . , Pn}, where the weights are the Bernstein basis polynomials:

B(t) =
n∑

i=0

(
n

i

)
(1− t)n−itiPi, 0 ≤ t ≤ 1 (8.1.27)

The curve starts at P0 and ends at Pn. It is said to have order n+ 1 (it has degree n)

since it uses n+ 1 control points. The first three orders are

(Linear) B(t) = (1 − t) P0 + tP1

(Quadratic) B(t) = (1 − t)2P0 + 2(1− t) tP1 + t2P2

(Cubic) B(t) = (1 − t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3



“smtf32” — 2011/5/20 — 2:09 — page 628 — #638

628 CHAPTER 8. SCIENTIFIC COMPUTING

Notes:

• Bézier curves of degree n can be viewed as a linear interpolation of two curves

of degree n− 1 since

BP0P1...Pn(t) = (1− t)BP0P1...Pn−1(t) + tBP1P2...Pn(t)

where BM1M2...Mk
denotes the Bézier curve using nodes {M1, M2, . . .Mk}.

• The cubic Bézier curve is essentially the cubic Hermite interpolating polyno-

mial. In general, the curve will not pass through {Pi} for i 6= 0 and i 6= n.

These points are sometimes called guidepoints since they each provide a direc-

tion for the curve. The line P0P1 (resp. P2P3) is the tangent to the curve at P0

(resp. P1).

• Bézier curves are often generated interactively so the user can vary the guide-

points to modify the appearance and shape of the curve.

The method to reproduce a given continuous curve is similar to spline interpolation.

The given curve is divided into segments by choosing several points on the curve and

a Bézier curve is used to interpolate between each pair of consecutive points. For

example, using a cubic curve between each pair of nodes (each requires four nodes),

two additional points must be selected to serve as guidepoints. The entire curve is

then described using the collection of Bézier curves, creating a Bézier spline. Note

that any changes made in one of the Bézier curves will only change the nodes of the

adjacent Bézier curves.

Bézier curves are infinitely differentiable so any continuity requirement imposed

is satisfied, except where two Bézier curves are joined. Suppose two connecting

Bézier curves,B1 andB2, of equal order are defined by the points {P0, P1, . . . , Pn}
and {Q0, Q1, . . .Qn}, respectively, whereQ0 = Pn. The method of constructing the

spline guarantees continuity (i.e., C0-continuity). C1-continuity requires P ′(1) =
Q′(0), so we must have Q1 − Q0 = Pn − Pn−1. Combined with the previous

condition this requires Q1 = 2Pn − Pn−1 = Pn + (Pn − Pn−1). Similarly, for

C2-continuity, we would need P ′′(1) = Q′′(0), which requires Q2 to satisfy Q2 =
4Pn − 4Pn−1 + Pn−2 = Pn−2 + 4(Pn − Pn−1). In this way, nodes Qk can be

determined for continuity restrictions of higher order.

The methods of constructing Bézier curves can be extended to define Bézier

surfaces. A tensor product Bézier surface, called a Bézier patch of order n + 1 is

defined by the (n+ 1)2 control points {Pi,j | 0 ≤ i, j ≤ n}:

P (s, t) =

n∑

i=0

(
n

i

)
(1 − s)n−1si

n∑

j=0

(
n

j

)
(1− t)n−jtjPi,j , for

0 ≤ s ≤ 1

0 ≤ t ≤ 1

Each patch can be viewed as a continuous set of Bézier curves. Adjacent patches are

linked in a manner similar to the way Bézier splines are formed from the individual

Bézier curves so that desired continuity conditions are satisfied.
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8.2 NUMERICAL LINEAR ALGEBRA

8.2.1 SOLVING LINEAR SYSTEMS

The solution of systems of linear equations using Gaussian elimination with back-

ward substitution is described in Section 8.2.2. The algorithm is highly sensitive

to round-off error. Pivoting strategies can reduce round-off error when solving an

n× n system. For a linear system Ax = b, assume that the equivalent matrix equa-

tion A(k)x = b(k) has been constructed. Call the entry, a
(k)
kk , the pivot element.

8.2.2 GAUSSIAN ELIMINATION

To solve the system Ax = b, Gaussian elimination creates the augmented matrix

A′ = [A
... b] =



a11 . . . a1n b1

...
...

...

an1 . . . ann bn


 . (8.2.1)

This matrix is turned into an upper-triangular matrix by a sequence of (1) row per-

mutations, and (2) subtracting a multiple of one row from another. The result is a

matrix of the form (the primes denote that the quantities have been modified)



a′11 a′12 . . . a′1n b′1
0 a′22 . . . a′2n b′2
...

. . .
. . .

...
...

0 . . . 0 a′nn b′n


 . (8.2.2)

This matrix represents a linear system that is equivalent to the original system. If

the solution exists and is unique, then back substitution can be used to successively

determine {xn, xn−1, . . . }.

8.2.2.1 Gaussian elimination algorithm

INPUT: number of unknowns and equations n, matrix A, and vector b.

OUTPUT: solution x = (x1, . . . , xn)
T to the linear system Ax = b,

or message that the system does not have a unique solution.

Algorithm:

1. Construct the augmented matrix A′ = [A
... b] = (a′ij)

2. For i = 1, 2, . . . , n− 1 do (a)–(c): (Elimination process)

(a) Let p be the least integer with i ≤ p ≤ n and a′pi 6= 0
If no integer can be found, then

OUTPUT(“no unique solution exists”). STOP.

(b) If p 6= i interchange rows p and i in A′. The new matrix is A′.
(c) For j = i+ 1, . . . , n do i.–ii:

i. Set mij = a′ji/a
′
ii.

ii. Subtract from row j the quantity (mij times row i).
Replace row j with this result.
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3. If a′nn = 0 then OUTPUT (“no unique solution exists”). STOP.

4. Set xn = a′n,n+1/a
′
nn. (Start backward substitution).

5. For i = n− 1, . . . , 2, 1 set xi =
[
a′i,n+1 −

∑n
j=i+1 a

′
ijxj

]
/a′ii.

6. OUTPUT (x1, . . . , xn), (Procedure completed successfully).

STOP.

8.2.2.2 Pivoting

Maximal column pivoting

Maximal column pivoting (often called partial pivoting) finds, at each step, the

element in the same column as the pivot element that lies on or below the main

diagonal having the largest magnitude and moves it to the pivot position. De-

termine the least p ≥ k such that
∣∣∣a(k)pk

∣∣∣ = maxk≤i≤n

∣∣∣a(k)ik

∣∣∣ and interchange

the kth equation with the pth equation before performing the elimination step.

Scaled-column pivoting

Scaled-column pivoting sometimes produces better results, especially when

the elements of A differ greatly in magnitude. The desired pivot element is

chosen to have the largest magnitude relative to the other values in its row.

For row i define a scale factor si by si = max1≤j≤n |aij |. The desired

pivot element at the kth step is determined by choosing the least integer p

with
∣∣∣a(k)pk

∣∣∣ /sp = maxk≤j≤n

∣∣∣a(k)jk

∣∣∣ /sj .

Maximal (or complete) pivoting

The desired pivot element at the kth step is the entry of largest magnitude

among {aij} with i = k, k + 1, . . . , n and j = k, k + 1, . . . , n. Both row and

column interchanges are necessary and additional comparisons are required,

resulting in additional execution time.

8.2.3 EIGENVALUE COMPUTATION

8.2.3.1 Power method

Assume that the n × n matrix A has n eigenvalues {λ1, λ2, . . . , λn} with linearly

independent eigenvectors {v(1), v(2), . . . , v(n)}. Assume further that A has a unique

dominant eigenvalue λ1, that is |λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. Note that for any

x ∈ R
n, x =

∑n
j=1 αjv

(j).

The algorithm is called the power method because powers of the input matrix

are taken: Akx ∼ λk1α1v
(1) as k →∞. However, this sequence converges to zero if

|λ1| < 1 and diverges if |λ1| > 1, provided α1 6= 0. Appropriate scaling of Akx is

necessary to obtain a meaningful limit. Begin by choosing a unit vector x(0) having

a component x
(0)
p0 such that x

(0)
p0 = 1 =

∥∥x(0)
∥∥
∞.

The algorithm inductively constructs sequences of vectors {x(m)}∞m=0 and

{y(m)}∞m=0 and a sequence of scalars {µ(m)}∞m=1 by

y(m) = Ax(m−1), µ(m) = y(m)
pm−1

, x(m) =
y(m)

y
(m)
pm

, (8.2.3)

where, at each step, pm represents the least integer for which
∣∣∣y(m)

pm

∣∣∣ =
∥∥y(m)

∥∥
∞.
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The sequence of scalars satisfies limm→∞ µ(m) = λ1, provided α1 6= 0, and

the sequence of vectors {x(m)}∞m=0 converges to an eigenvector associated with λ1
that has l∞ norm one.

8.2.3.2 Power method algorithm

INPUT: dimension n, matrix A, vector x, tolerance TOL, and

maximum number of iterationsN .

OUTPUT: approximate eigenvalue µ,

approximate eigenvector x (with ‖x‖∞ = 1),
or a message that the maximum number of iterations was exceeded.

Algorithm:

1. Set k=1.

2. Find the smallest integer p with 1 ≤ p ≤ n and |xp| = ‖x‖∞.

3. Set x = x/xp.

4. While (k ≤ N) do (a)–(g):

(a) Set y = Ax.

(b) Set µ = yp.

(c) Find the smallest integer p with 1 ≤ p ≤ n and |yp| = ‖y‖∞.

(d) If yp = 0 then OUTPUT (“Eigenvector,” x, “corresponds to

eigenvalue 0. Select a new vector x and restart.”); STOP.

(e) Set ERR = ‖x− y/yp‖∞; x = y/yp.

(f) If ERR < TOL then OUTPUT (µ, x)
(procedure successful) STOP.

(g) Set k = k + 1.

5. OUTPUT (“Maximum number of iterations exceeded”). STOP.
Notes:

1. The method does not require that λ1 be unique. If the multiplicity is greater

than one, the eigenvector obtained depends on the choice of x(0).

2. The sequence constructed converges linearly, so that Aitken’s △2 method

(Equation (8.1.1)) can be applied to accelerate convergence.

8.2.3.3 Inverse power method

The inverse power method modifies the power method to yield faster convergence

by finding the eigenvalue of A that is closest to a specified number q. Assume that

A satisfies the conditions as before. If q 6= λi, for i = 1, 2, . . . , n, the eigenvalues

of (A−qI)−1 are 1
λ1−q ,

1
λ2−q , . . . ,

1
λn−q , with the same eigenvectors v(1), . . . , v(n).

Apply the power method to (A − qI)−1. At each step, y(m) = (A − qI)−1x(m−1).

Generally, y(m) is found by solving (A − qI)y(m) = x(m−1) using Gaussian elimi-

nation with pivoting. Choose the value q from an initial approximation to the eigen-

vector x(0) by q = x(0)
T
Ax(0)/

(
x(0)

T
x(0)
)
.

The only changes in the algorithm for the power method are to set an initial

value q as described (do this prior to step 1), determine y in step (4a) by solving the

linear system (A − qI)y = x. (If the system does not have a unique solution, state

that q is an eigenvalue and stop.), delete step (4d), and replace step (4f) with

if ERR < TOL then set µ =
1

µ
+ q; OUTPUT(µ, x); STOP.
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8.2.3.4 Wielandt deflation

Once the dominant eigenvalue (λ1) has been found, the remaining eigenvalues can

be found by using deflation techniques. A new matrix B is formed having the same

eigenvalues as A, except that the dominant eigenvalue of A is replaced by 0.

One method is Wielandt deflation which defines x = 1

λ1v
(1)
i

[ai1 ai2 . . . ain]
T,

where v
(1)
i is a coordinate of v(1) that is non-zero, and the values {ai1, ai2, . . . , ain}

are the entries in the ith row ofA. Then the matrixB = A−λ1v(1)xT has eigenvalues

0, λ2, λ3, . . . , λn with associated eigenvectors {v(1), w(2), w(3), . . . , w(n)}, where

v(i) = (λi − λ1)w(i) + λ1(x
Tw(i))v(1) (8.2.4)

for i = 2, 3, . . . , n.

The ith row ofB consists entirely of zero entries andB may be replaced with an

(n − 1) × (n − 1) matrix B′ obtained by deleting the ith row and ith column of B.

The power method can be applied to B′ to find its dominant eigenvalue and so on.

8.2.4 HOUSEHOLDER’S METHOD

Definition Two n×nmatricesA andB are similar if a non-singular matrix S exists with

A = S−1BS. (If A and B are similar, then they have the same set of eigenvalues).

Householder’s method constructs a symmetric tridiagonal matrixB that is similar to

a given symmetric matrix A. After applying this method, the QR algorithm can be

used efficiently to approximate the eigenvalues of the resulting symmetric tridiagonal

matrix.

8.2.4.1 Algorithm for Householder’s method

To construct a symmetric tridiagonal matrix A(n−1) similar to the symmetric matrix

A = A(1), construct matrices A(2), A(3), . . . , A(n−1), where A(k) = (a
(k)
ij ) for k =

1, 2, . . . , n− 1.

INPUT: dimension n, matrix A.

OUTPUT: A(n−1). (At each step, A can be overwritten.)

Algorithm:

1. For k = 1, 2, . . . , n− 2 do (a)–(k).

(a) Set q =
∑n

j=k+1(a
(k)
jk )2.

(b) If a
(k)
k+1,k = 0 then set α = −q 1

2

else set α = −q 1
2 a

(k)
k+1,k/

∣∣∣a(k)k+1,k

∣∣∣.
(c) Set RSQ = α2 − αa(k)k+1,k.

(d) Set vk = 0. (Note: v1 = · · · = vk−1 = 0, but are not needed.)

set vk+1 = a
(k)
k+1,k − α;

for j = k + 2, . . . , n set vj = a
(k)
jk .

(e) For j = k, k + 1, . . . , n set uj =
(∑n

i=k+1 a
(k)
ji vi

)
/RSQ.

(f) Set PROD =
∑n

i=k+1 viui.
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(g) For j = k, k + 1, . . . , n set zj = uj − (PROD/2RSQ)vj .

(h) For ℓ = k + 1, k + 2, . . . , n− 1 do i.–ii.

i. For j = ℓ + 1, . . . , n set a
(k+1)
jℓ = a

(k)
jℓ − vℓzj − vjzℓ;

a
(k+1)
ℓj = a

(k+1)
jℓ .

ii. Set a
(k+1)
ℓℓ = a

(k)
ℓℓ − 2vℓzℓ.

(i) Set a
(k+1)
nn = a

(k)
nn − 2vnzn.

(j) For j = k + 2, . . . , n set a
(k+1)
kj = a

(k+1)
jk = 0.

(k) Set a
(k+1)
k+1,k = a

(k)
k+1,k − vk+1zk; a

(k+1)
k,k+1 = a

(k+1)
k+1,k .

(Note: The other elements of A(k+1) are the same as A(k).)

2. OUTPUT (A(n−1)). STOP.

(A(n−1) is symmetric, tridiagonal, and similar to A.)

8.2.5 QR ALGORITHM

The QR algorithm is generally used (instead of deflation) to determine all of the

eigenvalues of a symmetric matrix. The matrix must be symmetric and tridiagonal.

If necessary, first apply Householder’s method. Suppose the matrix A has the form

A =




a1 b2 0 · · · 0 0 0
b2 a2 b3 0 0 0
0 b3 a3 0 0 0
...

. . .
...

0 0 0 an−2 bn−1 0
0 0 0 bn−1 an−1 bn
0 0 0 · · · 0 bn an




. (8.2.5)

If b2 = 0 or bn = 0, then A has the eigenvalue a1 or an, respectively. If bj = 0 for

some j, 2 < j < n, the problem is reduced to considering the smaller matrices




a1 b2 0 · · · 0
b2 a2 b3 0
0 b3 a3 0
...

0 0 aj−2 bj−1

0 0 bj−1 aj−1




and




aj bj+1 0 · · · 0
bj+1 aj+1 bj+2 0
0 bj+2 aj+2 0
...

0 0 an−1 bn
0 0 bn an



. (8.2.6)

If no bj equals zero, the algorithm constructs A(1), A(2), A(3), . . . as follows:

1. A(1) = A is factored as A(1) = Q(1)R(1), with Q(1) orthogonal and R(1)

upper-triangular.

2. A(2) is defined as A(2) = R(1)Q(1).

In general, A(i+1) = R(i)Q(i) = (Q(i)T
A(i))Q(i) = Q(i)T

A(i)Q(i). Each

A(i+1) is symmetric and tridiagonal with the same eigenvalues as A(i) and, hence,

has the same eigenvalues as A.
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8.2.5.1 Algorithm for QR

To obtain eigenvalues of the symmetric, tridiagonal n× n matrix

A ≡ A1 =




a
(1)
1 b

(1)
2 0 · · · 0 0 0

b
(1)
2 a

(1)
2 b

(1)
3 0 0 0

0 b
(1)
3 a

(1)
3 0 0 0

...
. . .

...

0 0 0 a
(1)
n−2 b

(1)
n−1 0

0 0 0 b
(1)
n−1 a

(1)
n−1 b

(1)
n

0 0 0 · · · 0 b
(1)
n a

(1)
n




. (8.2.7)

INPUT: n; {a(1)1 , . . . , a
(1)
n , b

(1)
2 , . . . , b

(1)
n }, tolerance TOL, and

maximum number of iterationsM .

OUTPUT: eigenvalues of A, or recommended splitting of A,

or a message that the maximum number of iterations was exceeded.

Algorithm:

1. Set k = 1; SHIFT = 0. (Accumulated shift)

2. While k ≤M , do steps 3–12.

3. Test for success:

(a) If
∣∣∣b(k)n

∣∣∣ ≤ TOL, then set λ = a
(k)
n + SHIFT; OUTPUT (λ);

set n = n− 1.

(b) If
∣∣∣b(k)2

∣∣∣ ≤ TOL then set λ = a
(k)
1 + SHIFT; OUTPUT (λ);

set n = n− 1; a
(k)
1 = a

(k)
2 ;

for j = 2, . . . , n set a
(k)
j = a

(k)
j+1; b

(k)
j = b

(k)
j+1.

(c) If n = 0 then STOP.

(d) If n = 1 then set λ = a
(k)
1 + SHIFT; OUTPUT(λ); STOP.

(e) For j = 3, . . . , n− 1

if
∣∣∣b(k)j

∣∣∣ ≤ TOL then

OUTPUT (“split into,” {a(k)1 , . . . , a
(k)
j−1, b

(k)
2 , . . . , b

(k)
j−1},

“and” {a(k)j , . . . , a
(k)
n , b

(k)
j+1, . . . , b

(k)
n }, SHIFT); STOP.

4. Compute shift:

Set b = −(a(k)n−1 + a
(k)
n ); c = a

(k)
n a

(k)
n−1− [b

(k)
n ]2; d = (b2− 4c)

1
2 .

5. If b > 0, then set µ1 = −2c/(b+ d); µ2 = −(b+ d)/2;

else set µ1 = (d− b)/2; µ2 = 2c/(d− b).
6. If n = 2, then set λ1 = µ1 + SHIFT; λ2 = µ2 + SHIFT;

OUTPUT (λ1, λ2); STOP.

7. Choose s so that
∣∣∣s− a(k)n

∣∣∣ = min
(∣∣∣µ1 − a(k)n

∣∣∣ ,
∣∣∣µ2 − a(k)n

∣∣∣
)

.

8. Accumulate shift: Set SHIFT = SHIFT + s.
9. Perform shift: For j = 1, . . . , n set dj = a

(k)
j − s.

10. Compute R(k) :

(a) Set x1 = d1; y1 = b2.
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(b) For j = 2, . . . , n

set zj−1 = (x2j−1 + [b
(k)
j ]2)

1
2 ; cj = xj−1/zj−1;

set sj = b
(k)
j /zj−1; qj−1 = cjyj−1 + sjdj ;

set xj = −sjyj−1 + cjdj .

If j 6= n then set rj−1 = sjb
(k)
j+1; yj = cjb

(k)
j+1.

(At this point,A
(k)
j = PjA

(k)
j−1 has been computed (Pj is a rotation

matrix) and R(k) = A
(k)
n .)

11. Compute A(k+1).

(a) Set zn = xn; a
(k+1)
1 = s2q1 + c2z1; b

(k+1)
2 = s2z2.

(b) For j = 2, 3 . . . , n− 1,

set a
(k+1)
j = sj+1qj + cjcj+1zj ;

set b
(k+1)
j+1 = sj+1zj+1.

(c) Set a
(k+1)
n = cnzn.

12. Set k = k + 1.

13. OUTPUT (“Maximum number of iterations exceeded”);

(Procedure unsuccessful.) STOP.

8.2.6 NON-LINEAR SYSTEMS AND NUMERICAL OPTIMIZATION

8.2.6.1 Newton’s method

Many iterative methods exist for solving systems of non-linear equations. Newton’s

method is a natural extension from solving a single equation in one variable. Con-

vergence is generally quadratic but usually requires an initial approximation that

is near the true solution. Assume F(x) = 0 where x is an n-dimensional vector,

F : Rn → R
n, and 0 is the zero vector. That is,

F(x) = F(x1, x2, . . . , xn) = [f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)]
T.

A fixed-point iteration is performed on G(x) = x− (J(x))−1F(x) where J(x) is the

Jacobian matrix,

J(x) =




∂f1(x)
∂x1

∂f1(x)
∂x2

· · · ∂f1(x)
∂xn

∂f2(x)
∂x1

∂f2(x)
∂x2

· · · ∂f2(x)
∂xn

...
...

∂fn(x)
∂x1

∂fn(x)
∂x2

· · · ∂fn(x)
∂xn



. (8.2.8)

The iteration is given by

x(k) = G(x(k−1)) = x(k−1) −
[
J(x(k−1))

]−1

F(x(k−1)). (8.2.9)

The algorithm avoids calculating (J(x))−1
at each step. Instead, it finds a vector y

so that J(x(k−1))y = −F(x(k−1)), and then sets x(k) = x(k−1) + y.
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For the special case of a two-dimensional system (the equations f(x, y) = 0 and

g(x, y) = 0 are to be satisfied), Newton’s iteration becomes:

xn+1 = xn −
fgy − fyg
fxgy − fygx

∣∣∣∣
x=xn,y=yn

yn+1 = yn −
fxg − fgx
fxgy − fygx

∣∣∣∣
x=xn,y=yn

(8.2.10)

8.2.6.2 Method of steepest-descent

The method of steepest-descent determines the local minimum for a function of the

form g : Rn → R. It can also be used to solve a system {fi} of non-linear equations.

The system has a solution x = (x1, x2, . . . , xn)
T when the function

g(x1, x2, . . . , xn) =
n∑

i=1

[fi(x1, x2, . . . , xn)]
2 (8.2.11)

has the minimal value zero.

This method converges only linearly to the solution but it usually converges

even for poor initial approximations. It can be used to locate initial approximations

that are close enough so that Newton’s method will converge. Intuitively, a local

minimum for a function g : Rn → R can be found as follows:

1. Evaluate g at an initial approximation x(0) = (x
(0)
1 , . . . , x

(0)
n )T.

2. Determine a direction from x(0) that results in a decrease in the value of g.

3. Move an appropriate distance in this direction and call the new vector x(1).

4. Repeat steps 1 through 3 with x(0) replaced by x(1).

The direction of greatest decrease in the value of g at x is the direction given by

−∇g(x) where∇g(x) is the gradient of g.

Definition If g : Rn → R, the gradient of g at x = (x1, . . . , xn)
T, denoted ∇g(x), is

∇g(x) =
(
∂g

∂x1
(x),

∂g

∂x2
(x), . . . ,

∂g

∂xn
(x)

)T

. (8.2.12)

Thus, set x(1) = x(0) − α∇g(x(0)) for some constant α > 0. Ideally the value

of α minimizes the function h(α) = g
(
x(0) − α∇g(x(0))

)
. Instead of tedious di-

rect calculation, the method interpolates h with a quadratic polynomial using nodes

α1, α2, and α3 that are hopefully close to the minimum value of h.
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8.2.6.3 Algorithm for steepest-descent

To approximate a solution to the minimization problem min
x∈Rn

g(x), given an initial

approximation x.

INPUT: number n of variables, initial approximation x =
(x1, . . . , xn)

T, tolerance TOL, and maximum number of iterations N .

OUTPUT: approximate solution x = (x1, x2, . . . , xn)
T

or a failure message.

Algorithm:

1. Set k = 1.

2. While (k ≤ N), do steps (a)–(k).

(a) Set: g1 = g(x1, . . . , xn); (Note: g1 = g(x(k)).)
z = ∇g(x1, . . . , xn); (Note: z = ∇g(x(k)).)
z0 = ‖z‖2.

(b) If z0 = 0 then OUTPUT (“Zero gradient”);

(Procedure completed, may have a minimum.)

OUTPUT (x1, . . . , xn, g1); STOP.

(c) Set z = z/z0. (Make z a unit vector.)

Set α1 = 0; α3 = 1; g3 = g(x− α3z).
(d) While (g3 ≥ g1), do steps i.–ii.

i. Set α3 = α3/2; g3 = g(x− α3z).
ii. If α3 < TOL/2, then

(Procedure completed, may have a minimum.)

OUTPUT (“No likely improvement”);

OUTPUT (x1, . . . , xn, g1); STOP.

(e) Set α2 = α3/2; g2 = g(x− α2z).
(f) Set: h1 = (g2 − g1)/α2; h2 = (g3 − g2)/(α3 − α2);

h3 = (h2 − h1)/α3.

(g) Set: α0 = (α2 − h1/h3)/2; (Critical point occurs at α0.)

g0 = g(x− α0z).
(h) Find α from {α0, α3} so that g = g(x− αz) = min{g0, g3}.
(i) Set x = x− αz.

(j) If |g − g1| < TOL then OUTPUT (x1, . . . , xn, g);

(Procedure completed successfully.) STOP.

(k) Set k = k + 1.

3. OUTPUT (“Maximum iterations exceeded”);

(Procedure unsuccessful.) STOP.
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8.3 NUMERICAL INTEGRATION AND
DIFFERENTIATION

8.3.1 NUMERICAL INTEGRATION

Numerical quadrature involves estimating
∫ b

a
f(x) dx using a formula of the form

∫ b

a

f(x) dx ≈
n∑

i=0

cif(xi). (8.3.1)

8.3.1.1 Newton–Cotes formulas

A closed Newton–Cotes formula uses nodes xi = x0 + ih for i = 0, 1, . . . , n, where

h = (b− a)/n. Note that x0 = a and xn = b.
An open Newton–Cotes formula uses nodes xi = x0 + ih for i = 0, 1, . . . , n,

where h = (b − a)/(n + 2). Here x0 = a + h and xn = b − h. Set x−1 = a and

xn+1 = b. The nodes actually used lie in the open interval (a, b).
In all formulas, ξ is a number for which a < ξ < b and fi denotes f(xi).

8.3.1.2 Closed Newton–Cotes formulas

1. (n = 1) Trapezoidal rule∫ b

a

f(x) dx =
h

2
[f(x0) + f(x1)]−

h3

12
f ′′(ξ).

2. (n = 2) Simpson’s rule∫ b

a

f(x) dx =
h

3
[f(x0) + 4f(x1) + f(x2)]−

h5

90
f (4)(ξ).

3. (n = 3) Simpson’s three-eighths rule∫ b

a

f(x) dx =
3h

8
[f(x0) + 3f(x1) + 3f(x2) + f(x3)]−

3h5

80
f (4)(ξ).

4. (n = 4) Milne’s rule (also called Boole’s rule)∫ b

a

f(x) dx =
2h

45
[7f0 + 32f1 + 12f2 + 32f3 + 7f4]−

8h7

945
f (6)(ξ).

5. (n = 5)∫ b

a

f(x) dx =
5h

288
[19f0+75f1+50f2+50f3+75f4+19f5]−

275h7

12096
f (6)(ξ).

6. (n = 6) Weddle’s rule

∫ b

a

f(x) dx =
h

140
[41f0+216f1+27f2+272f3+27f4+216f5+41f6]

− 9h9

1400
f (8)(ξ).
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8.3.1.3 Open Newton–Cotes formulas

1. (n = 0) Midpoint rule∫ b

a

f(x) dx = 2hf(x0) +
h3

3
f ′′(ξ).

2. (n = 1)∫ b

a

f(x) dx =
3h

2
[f(x0) + f(x1)] +

3h3

4
f ′′(ξ).

3. (n = 2)∫ b

a

f(x) dx =
4h

3
[2f(x0)− f(x1) + 2f(x2)] +

14h5

45
f (4)(ξ).

4. (n = 3)∫ b

a

f(x) dx =
5h

24
[11f(x0) + f(x1) + f(x2) + 11f(x3)] +

95h5

144
f (4)(ξ).

5. (n = 4)∫ b

a

f(x) dx =
3h

10
[11f0 − 14f1 + 26f2 − 14f3 + 11f4] +

41h7

140
f (6)(ξ).

8.3.1.4 Composite rules

Some Newton–Cotes formulas extend to composite formulas. This consists of di-

viding the interval into sub-intervals and using a Newton–Cotes formulas on each

sub-interval, In the following, note that a < µ < b.

1. Composite trapezoidal rule for n subintervals: If f ∈ C2[a, b], h = (b− a)/n,

and xj = a+ jh, for j = 0, 1, . . . , n, then

∫ b

a

f(x) dx =
h

2

[
f(a) + 2

n−1∑

j=1

f(xj) + f(b)
]
− b − a

12
h2f ′′(µ).

2. Composite Simpson’s rule for n subintervals: If f ∈ C4[a, b], n is even, h =
(b− a)/n, and xj = a+ jh, for j = 0, 1, . . . , n, then

∫ b

a

f(x) dx =
h

3

[
f(a) + 2

(n/2)−1∑

j=1

f(x2j) + 4

n/2∑

j=1

f(x2j−1) + f(b)
]

− b− a
180

h4f (4)(µ).

3. Composite midpoint rule for n + 2 subintervals: If f ∈ C2[a, b], n is even,

h = (b−a)/(n+2), and xj = a+(j+1)h, for j = −1, 0, 1, . . . , n+1, then

∫ b

a

f(x) dx = 2h

n/2∑

j=0

f(x2j) +
b− a
6

h2f ′′(µ).
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√
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√
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√
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√
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√
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√
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√
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8.3.1.5 Romberg integration

Romberg integration uses the composite trapezoidal rule beginning with h1 = b −
a and hk = (b − a)/2k−1, for k = 1, 2, . . . , to give preliminary estimates for∫ b

a f(x) dx and improves these estimates using Richardson’s extrapolation. Since

many function evaluations would be repeated, the first column of the extrapolation

table (with entries denotedRi,j) can be more efficiently determined by the following

recursion formula:

R1,1 =
h1
2
[f(a) + f(b)] =

b− a
2

[f(a) + f(b)],

Rk,1 =
1

2


Rk−1,1 + hk−1

2k−2∑

i=1

f(a+ (2i− 1)hk)


 ,

(8.3.2)

for k = 2, 3, . . . . Now apply Equation (8.1.4) to complete the extrapolation table.

8.3.1.6 Gregory’s formula

Using fj to represent f(x0 + jh),

∫ x0+nh

x0

f(y) dy = h(
1

2
f0 + f1 + . . .+ fn−1 +

1

2
fn)

+
h

12
(△f0 −△fn−1)−

h

24
(△2f0 +△2fn−2)

+
19h

720
(△3f0 −△3fn−3)−

3h

160
(△4f0 +△4fn−4) + . . . . (8.3.3)

where△’s represent forward differences. The first expression on the right is the com-

posite trapezoidal rule, and additional terms provide improved approximations. Do

not carry this process too far; Gregory’s formula is only asymptotically convergent

and round-off error can be significant when computing higher differences.

8.3.1.7 Gaussian quadrature

A quadrature formula, whose nodes (abscissae) xi and coefficients wi are chosen

to achieve a maximum order of accuracy, is called a Gaussian quadrature formula.

The integrand usually involves a weight function w. An integral in t on an interval

(a, b) must be converted into an integral in x over the interval (α, β) specified for

the weight function involved. This can be accomplished by the transformation x =
(bα−aβ)
(b−a) + (β−α)t

(b−a) . Gaussian quadrature formulas generally take the form

∫ β

α

w(x)f(x) dx =
∑

i

wif(xi) + En (8.3.4)

where the error is En = Knf
(2n)(ξ) for some α < ξ < β and Kn is a constant.

Many weight functions and their associated intervals are summarized in Figure 8.2.

The following tables give abscissae and weights for selected formulas. If some

xi are specified (such as one or both end points), then use the Radau or Lobatto

methods.
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8.3.1.8 Gauss–Legendre quadrature

Weight function is w(x) = 1.

∫ 1

−1

f(x) dx ≈
n∑

i=1

wif(xi).

n Nodes {±xi} Weights {wi}
2 0.5773502692 1

3 0 0.8888888889
0.7745966692 0.5555555556

4 0.3399810436 0.6521451549
0.8611363116 0.3478548451

n Nodes {±xi} Weights {wi}
5 0 0.5688888889

0.5384693101 0.4786286705
0.9061798459 0.2369268851

6 0.2386191861 0.4679139346
0.6612093865 0.3607615730
0.9324695142 0.1713244924

8.3.1.9 Gauss–Laguerre quadrature

Weight function is w(x) = e−x.

∫ ∞

0

e−xf(x) dx ≈
n∑

i=1

wif(xi).

n Nodes {xi} Weights {wi}
2 0.5857864376 0.8535533905

3.4142135623 0.1464466094

3 0.4157745567 0.7110930099
2.2942803602 0.2785177335
6.2899450829 0.0103892565

n Nodes {xi} Weights {wi}
4 0.3225476896 0.6031541043

1.7457611011 0.3574186924
4.5366202969 0.0388879085
9.3950709123 0.0005392947

5 0.2635603197 0.5217556105
1.4134030591 0.3986668110
3.5964257710 0.0759424496
7.0858100058 0.0036117586

12.6408008442 0.0000233699

8.3.1.10 Gauss–Hermite quadrature

Weight function is w(x) = e−x2

.

∫ ∞

−∞
e−x2

f(x) dx ≈
n∑

i=1

wif(xi).

n Nodes {±xi} Weights {wi}
2 0.7071067811 0.8862269254

3 0 1.1816359006
1.2247448713 0.2954089751

4 0.5246476232 0.8049140900
1.6506801238 0.0813128354

n Nodes {±xi} Weights {wi}
5 0 0.9453087204

0.9585724646 0.3936193231
2.0201828704 0.0199532420

6 0.4360774119 0.7246295952
1.3358490740 0.1570673203
2.3506049736 0.0045300099
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8.3.1.11 Radau quadrature
∫ 1

−1

f(x) dx = w1f(−1) +
n∑

i=2

wif(xi) +
22n−1[n(n− 1)!]4

[(2n− 1)!]3
f (2n−1)(ξ),

where each free node xi is the ith root of
Pn−1(x)+Pn(x)

x+1 and wi =
1−xi

n2[Pn−1(xi)]2
for

i = 2, . . . , n, see the following table. Note that x1 = −1 and w1 = 2/n2.

n Nodes Weights {wi}
3 −0.2898979485 1.0249716523

0.6898979485 0.7528061254

4 −0.5753189235 0.6576886399
0.1810662711 0.7763869376
0.8228240809 0.4409244223

5 −0.7204802713 0.4462078021
−0.1671808647 0.6236530459
0.4463139727 0.5627120302
0.8857916077 0.2874271215

n Nodes Weights {wi}
6 −0.8029298284 0.3196407532
−0.3909285467 0.4853871884
0.1240503795 0.5209267831
0.6039731642 0.4169013343
0.9203802858 0.2015883852

7 −0.8538913426 0.2392274892
−0.5384677240 0.3809498736
−0.1173430375 0.4471098290
0.3260306194 0.4247037790
0.7038428006 0.3182042314
0.9413671456 0.1489884711

8.3.1.12 Lobatto quadrature

∫ 1

−1

f(x) dx = w1f(−1) + wnf(1)

+

n−1∑

i=2

wif(xi)−
n(n− 1)322n−1[(n− 2)!]4

(2n− 1)[(2n− 2)!]3
f (2n−2)(ξ)

where xi is the (i − 1)st root of P ′
n−1(x) and wi = 2

n(n−1)[Pn−1(xi)]2
for i =

2, . . . , n− 1. Note that x1 = −1, xn = 1, and w1 = wn = 2/(n(n− 1)).

n Nodes {±xi} Weights {wi}
3 0 1.3333333333

1 0.3333333333

4 0.4472135954 0.8333333333
1 0.1666666666

5 0 0.7111111111
0.6546536707 0.5444444444
1 0.1000000000

n Nodes {±xi} Weights {wi}
6 0.2852315164 0.5548583770

0.7650553239 0.3784749562
1 0.0666666666

7 0 0.4876190476
0.4688487934 0.4317453812
0.8302238962 0.2768260473
1 0.0476190476
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8.3.1.13 Chebyshev quadrature
∫ 1

−1

f(x) dx ≈ 2

n

n∑

i=1

f(xi).

n Nodes {±xi}
2 0.5773502691

3 0
0.7071067811

4 0.1875924740
0.7946544722

n Nodes {±xi}
5 0

0.3745414095
0.8324974870

6 0.2666354015
0.4225186537
0.8662468181

n Nodes {±xi}
7 0

0.3239118105
0.5296567752
0.8838617007

8.3.1.14 Multiple integrals

Quadrature methods can be extended to multiple integrals. The general idea, using

a double integral as an example, involves writing the double integral in the form of

an iterated integral, applying the quadrature method to the “inner integral” and then

applying the method to the “outer integral.”

8.3.1.15 Simpson’s double integral over a rectangle

To integrate f(x, y) over a rectangular region R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}
using the composite Simpson’s Rule produces the formula given below. Intervals

[a, b] and [c, d] must be partitioned using even integers n and m for evenly spaced

mesh points x0, x1, . . . , xn and y0, y1, . . . , ym, respectively.

∫ ∫

R

f(x, y) dydx =

∫ b

a

∫ d

c

f(x, y) dydx =
hk

9

n∑

i=0

m∑

j=0

ci,jf(xi, yj) + E

(8.3.5)

where the error term E is given by

E = − (d− c)(b− a)
180

[
h4
∂4f

∂x4
(η̄, µ̄) + k4

∂4f

∂y4
(η̂, µ̂)

]
(8.3.6)

for some (η̄, µ̄) and (η̂, µ̂) in R with h = (b − a)/n and k = (d − c)/m and the

coefficients ci,j are:

m 1 4 2 4 2 4 . . . 2 4 1

m− 1 4 16 8 16 8 16 . . . 8 16 4

m− 2 2 8 4 8 4 8 . . . 4 8 2
...

...
...

...
...

...
...

...
...

...

2 2 8 4 8 4 8 . . . 4 8 2

1 4 16 8 16 8 16 . . . 8 16 4

0 1 4 2 4 2 4 . . . 2 4 1

j
i 0 1 2 3 4 5 . . . n− 2 n− 1 n

Similarly, Simpson’s Rule can be extended for regions that are not rectangular. It is

simpler to give the following algorithm than to state a general formula.
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8.3.1.16 Simpson’s double integral algorithm

To approximate the integral I =

∫ b

a

∫ d(x)

c(x)

f(x, y) dy dx:

INPUT endpoints a, b; even positive integers m, n;

functions c(x), d(x), and f(x, y)
OUTPUT approximation J to I .

Algorithm:

1. Set h = (b− a)/n; J1 = 0; (End terms.)

J2 = 0; (Even terms.) J3 = 0. (Odd terms.)

2. For i = 0, 1, ..., n do (a)–(d).

(a) Set x = a+ ih; (Composite Simpson’s method for x.)

HX = (d(x) − c(x))/m;

K1 = f(x, c(x)) + f(x, d(x)); (End terms.)

K2 = 0; (Even terms.)

K3 = 0. (Odd terms.)

(b) For j = 1, 2, ...,m− 1 do i.–ii.

i. Set y = c(x) + jHX ; Q = f(x, y).
ii. If j is even then set K2 = K2+Q else setK3 = K3+Q.

(c) Set L = (K1 + 2K2 + 4K3)HX/3.
(
L ≈

∫ d(xi)

c(xi)

f(xi, y) dyby composite Simpson’s method.
)

(d) If i = 0 or i = n then set J1 = J1 + L;

else if i is even then set J2 = J2 + L;

else set J3 = J3 + L.

3. Set J = h(J1 + 2J2 + 4J3)/3.

4. OUTPUT(J); STOP.

8.3.1.17 Gaussian double integral

To apply Gaussian quadrature to I =

∫ b

a

∫ d(x)

c(x)

f(x, y) dy dx, first requires trans-

forming, for each x in [a, b], the interval [c(x), d(x)] to [−1, 1] and then applying

Gaussian quadrature. This is performed in the following algorithm.

8.3.1.18 Gauss–Legendre double integral

To approximate the integral I =

∫ b

a

∫ d(x)

c(x)

f(x, y) dy dx:

INPUT endpoints a, b; positive integers m, n; the needed roots ri,j
and coefficients ci,j for i = max{m,n} and for 1 ≤ j ≤ i.

(From table on page 642)

OUTPUT approximation J to I .
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Algorithm:

1. Set h1 = (b− a)/2; h2 = (b+ a)/2; J = 0.

2. For i = 1, 2, ...,m do (a)–(c).

(a) Set JX = 0;

x = h1rm,i + h2;

d1 = d(x); c1 = c(x);
k1 = (d1 − c1)/2; k2 = (d1 + c1)/2.

(b) For j = 1, 2, ..., n do

set y = k1rn,j + k2;

Q = f(x, y);
JX = JX + cn,jQ.

(c) Set J = J + cm,ik1JX .

3. Set J = h1J .

4. OUTPUT(J); STOP.

8.3.1.19 Double integrals of polynomials over polygons

If the vertices of the polygonA are {(x1, y1), (x2, y2), . . . , (xp, yp)}, and we define

wi = xiyi+1 − xi+1yi (with xp+1 = x1 and yp+1 = y1) then (see Marin, page 765)

∫ ∫

A

xmyn dA =

m!n!

(m+ n+ 2)!

p∑

i=1

wi

m∑

j=0

n∑

k=0

(
j + k

j

)(
m+ n− j − k

n− k

)
xm−j
i xji+1y

n−k
i yki+1.

(8.3.7)

8.3.1.20 Monte–Carlo methods

Monte–Carlo methods, in general, involve the generation of random numbers (ac-

tually pseudorandom when computer-generated) to represent independent, uniform

random variables over [0, 1]. Section 7.6 describes random number generation. Such

a simulation can provide insight into the solutions of very complex problems.

Monte–Carlo methods are generally not competitive with other numerical meth-

ods of this section. However, if the function fails to have continuous derivatives

of moderate order, those methods may not be applicable. One advantage of Monte–

Carlo methods is that they extend to multidimensional integrals quite easily, although

here only a few techniques for one-dimensional integrals I =
∫ b

a
g(x) dx are given.

8.3.1.21 Hit or miss method

Suppose 0 ≤ g(x) ≤ c, a ≤ x ≤ b, and Ω = {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ c}. If

(X,Y ) is a random vector which is uniformly distributed overΩ, then the probability

p that (X,Y ) lies in S (see Figure 8.3) is p = I/(c(b− a)).
If N independent random vectors {(Xi, Yi)}Ni=1 are generated, the parameter p

can be estimated by p̂ = NH/N where NH is the number of times Yi ≤ g(Xi), i =
1, 2, . . . , N , called the number of hits. (Likewise N −NH is the number of misses.)
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FIGURE 8.3
Illustration of the Monte–Carlo method. The sample points are shown as circles; the solid

circle is counted as a “hit,” the empty circle is counted as a “miss.”

0
a b x

g(x)

c

The value of I is then estimated by the unbiased estimator θ1 = c(b− a)NH/N .

8.3.1.22 Hit or miss algorithm

1. Generate {Uj}2Nj=1 of 2N random numbers, uniformly distributed in [0, 1).
2. Arrange the sequence into N pairs (U1, U

′
1), (U2, U

′
2), . . . , (UN , U

′
N), so that

each Uj is used exactly once.

3. Compute Xi = a+ Ui(b− a) and g(Xi) for i = 1, 2, . . . , N .

4. Count the number of cases NH for which g(Xi) ≥ cU ′
i .

5. Compute θ1 = c(b− a)NH/N . (This is an estimate of I .)

The number of trials N necessary for P (|θ1 − I| < ǫ) ≥ α is given by

N ≥ (1− p)p[c(b− a)]2
(1− α)ǫ2 . (8.3.8)

With the usual notation of zα for the value of the standard normal random vari-

able Z for which P (Z > zα) = α (see page 598), a confidence interval for I with

confidence level 1− α is

θ1 ± zα
2

√
p̂(1− p̂)(b− a)c√

N
. (8.3.9)

8.3.1.23 The sample-mean Monte–Carlo method

Write the integral I =
∫ b

a
g(x) dx as

∫ b

a
g(x)
fX (x)fX(x) dx, where f is any probability

density function for which fX(x) > 0 when g(x) 6= 0. Then I = E
[

g(X)
fX (X)

]

where the random variable X is distributed according to fX(x). Values from this

distribution can be generated by the methods discussed in Section 7.6.2. For the case

where fX(x) is the uniform distribution on [0, 1], I = (b− a)E[g(X)]. An unbiased
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estimator of I is its sample mean

θ2 = (b− a) 1
N

N∑

i=1

g(Xi). (8.3.10)

It follows that the variance of θ2 is less than or equal to the variance of θ1. In fact,

var θ1 =
I

N
[c(b − a)− I],

var θ2 =
1

N

[
(b − a)

∫ b

a

g2(x) dx − I2
]
.

(8.3.11)

Note that to estimate I with θ1 or θ2, g(x) is not needed explicitly. It is only neces-

sary to evaluate g(x) at any point x.

8.3.1.24 Sample-mean algorithm

1. Generate {Ui}Ni=1 of N random numbers, uniformly distributed in [0, 1).
2. Compute Xi = a+ Ui(b− a), for i = 1, 2, . . . , N .

3. Compute g(Xi) for i = 1, 2, . . . , N .

4. Compute θ2 according to Equation (8.3.10) (This is an estimate of I).

8.3.1.25 Integration in the presence of noise

Suppose g(x) is measured with some error: g̃(xi) = g(xi) + ǫi, for i = 1, 2, . . . , N ,

where ǫi are independent identically distributed random variables with E [ǫi] = 0,

var(ǫi) = σ2, and |ǫi| < k <∞.

If (X,Y ) is uniformly distributed on the rectangle a ≤ x ≤ b, 0 ≤ y ≤ c1,

where c1 ≥ g(x) + k, set θ̃1 = c1(b − a)NH/N as in the hit or miss method.

Similarly, set θ̃2 = 1
N (b−a)∑N

i=1 g̃(Xi) as in the sample-mean method. Then both

θ̃1 and θ̃2 are unbiased and converge almost surely to I . Again, var θ̃2 ≤ var θ̃1.

8.3.1.26 Weighted Monte–Carlo integration

Estimate the integral I =
∫ 1

0 g(x) dx according to the following algorithm:

1. Generate numbers {U1, U2, . . . , UN} from the uniform distribution on [0, 1).
2. Arrange U1, U2, . . . , UN in the increasing order U(1), U(2), . . . , U(N).

3. Compute θ3 =
1

2

[
N∑

i=0

(g(U(i)) + g(U(i+1))(U(i+1) − U(i))

]
, where U(0) ≡

0, U(N+1) ≡ 1. This is an estimate of I .

If g(x) has a continuous second derivative on [0, 1], then the estimator θ3 satis-

fies var θ3 = E
[
(θ3 − I)2

]
≤ k/N4, where k is some positive constant.
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8.3.2 NUMERICAL DIFFERENTIATION

8.3.2.1 Derivative estimates

Selected formulas to estimate the derivative of a function at a single point, with error

terms, are given. Nodes are equally spaced with xi − xi−1 = h; h may be positive

or negative and, in the error formulas, ξ lies between the smallest and largest nodes.

To shorten some of the formulas, fj is used to denote f(x0 + jh) and some error

formulas are expressed as O(hk).

1. Two-point formula for f ′(x0)

f ′(x0) =
1

h
(f(x0 + h)− f(x0))−

h

2
f ′′(ξ). (8.3.12)

This is called the forward-difference formula if h > 0 and the backward-

difference formula if h < 0.

2. Three-point formulas for f ′(x0)

f ′(x0) =
1

2h
[−3f(x0) + 4f(x0 + h)− f(x0 + 2h)] +

h2

3
f (3)(ξ)

=
1

2h
[f(x0 + h)− f(x0 − h)]−

h2

6
f (3)(ξ).

(8.3.13)

3. Four-point formula (or five uniformly spaced points) for f ′(x0)

f ′(x0) =
1

12h
[f−2 − 8f−1 + 8f1 − f2] +

h4

30
f (5)(ξ). (8.3.14)

4. Five-point formula for f ′(x0)

f ′(x0) =
1

12h
[−25f0 + 48f1 − 36f2 + 16f3 − 3f4] +

h4

5
f (5)(ξ). (8.3.15)

5. Formulas for the second derivative

f ′′(x0) =
1

h2
[f−1 − 2f0 + f1]−

h2

12
f (4)(ξ),

=
1

h2
[f0 − 2f1 + f2] +

h2

6
f (4)(ξ1)− hf (3)(ξ2).

(8.3.16)

6. Formulas for the third derivative

f (3)(x0) =
1

h3
[f3 − 3f2 + 3f1 − f0] +O(h),

=
1

2h3
[f2 − 2f1 + 2f−1 − f−2] +O(h2).

(8.3.17)

7. Formulas for the fourth derivative

f (4)(x0) =
1

h4
[f4 − 4f3 + 6f2 − 4f1 + f0] +O(h),

=
1

h4
[f2 − 4f1 + 6f0 − 4f−1 + f−2] +O(h2).

(8.3.18)
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Richardson’s extrapolation can be applied to improve estimates. The error term of

the formula must satisfy Equation (8.1.2) and an extrapolation procedure must be

developed. As a special case, however, Equation (8.1.4) may be used when first-

column entries are generated by Equation (8.3.13).

8.3.2.2 Computational molecules

A computational molecule is a graphical depiction of an approximate partial deriva-

tive formula. The following computational molecules are for h = ∆x = ∆y:

(a)
du

dx

∣∣∣∣
i,j

=
1

h2

{
i, j0 1−1

}
+O

(
h2
)

(b)
du

dy

∣∣∣∣
i,j

=
1

h2





i, j0

1

−1





+O
(
h2
)

(c)
d2u

dx2

∣∣∣∣
i,j

=
1

4h2

{
i, j−2 11

}
+O

(
h2
)

(d)
d2u

dx dy

∣∣∣∣
i,j

=
1

h2





i, j
0

0

0

0

1

−1

0

−1

1





+O
(
h2
)

(e) ∇2u
∣∣
i,j

=
1

h2





i, j−4

0

0

00





+O
(
h2
)

Other molecules:

2h2
∂2

∂x2
h2∇2 3

2
h2∇2
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8.3.2.3 Numerical solution of differential equations

Numerical methods to solve differential equations depend on whether small changes

in the statement of the problem cause small changes in the solution.

Definition The initial value problem,

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α, (8.3.19)

is said to be well-posed if

1. A unique solution, y(t), to the problem exists.

2. For any ǫ > 0, there exists a positive constant k(ǫ) with the property that, whenever

|ǫ0| < ǫ and δ(t) is continuous with |δ(t)| < ǫ on [a, b], a unique solution, z(t), to the

problem,
dz

dt
= f(t, z) + δ(t), a ≤ t ≤ b, z(a) = α+ ǫ0,

exists and satisfies |z(t)− y(t)| < k(ǫ)ǫ, for all a ≤ t ≤ b.

This is called the perturbed problem associated with the original problem. Al-

though other criteria exist, the following result gives conditions that are easy to check

to guarantee that a problem is well-posed.

THEOREM 8.3.1 (Well-posed condition)

Suppose that f and fy (its first partial derivative with respect to y) are continuous for

t in [a, b]. Then the initial value problem given by Equation (8.3.19) is well-posed.

Using Taylor’s theorem, numerical methods for solving the well-posed, first-

order differential equation given by Equation (8.3.19) can be derived. Using equally-

spaced mesh points ti = a+ ih (for i = 0, 1, 2, . . . , N ) and wi to denote an approx-

imation to yi ≡ y(ti), then methods generally use difference equations of the form

w0 = α, wi+1 = wi + hφ(ti, wi),

for each i = 0, 1, 2, . . . , N − 1. Here φ is a function depending on f . The difference

method has local truncation error given by

τi+1(h) =
yi+1 − yi

h
− φ(ti, yi),

for each i = 0, 1, 2, . . . , N − 1. The following formulas are called Taylor methods.

Each has local truncation error

hn

(n+ 1)!
f (n)(ξi, y(ξi)) =

hn

(n+ 1)!
y(n+1)(ξi, y(ξi))

for each i = 0, 1, 2, . . . , N − 1, where ξi ∈ (ti, ti+1). Thus, if y ∈ Cn+1[a, b] the

local truncation error is O(hn).

1. Euler’s method (n = 1):

wi+1 = wi + hf(ti, wi). (8.3.20)
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2. Taylor method of order n:

wi+1 = wi + hT (n)(ti, wi), (8.3.21)

where T (n)(ti, wi) = f(ti, wi) +
h
2 f

′(ti, wi) + . . .+ hn−1

n! f (n−1)(ti, wi).

The Runge–Kutta methods below are derived from the nth degree Taylor poly-

nomial in two variables.

3. Midpoint method:

wi+1 = wi + h
[
f
(
ti +

h
2 , wi +

h
2 f(ti, wi)

)]
. (8.3.22)

If all second-order partial derivatives of f are bounded, this method has local

truncation error O(h2), as do the following two methods.

4. Modified Euler method:

wi+1 = wi +
h
2 {f(ti, wi) + f [ti+1, wi + hf(ti, wi)]} . (8.3.23)

5. Heun’s method:

wi+1 = wi +
h

4

{
f(ti, wi) + 3f

[
ti +

2

3
h,wi +

2

3
hf(ti, wi)

]}
.

6. Runge–Kutta method of order four:

wi+1 = wi +
1

6
(k1 + 2k2 + 2k3 + k4), (8.3.24)

where

k1 = hf (ti, wi) ,

k2 = hf

(
ti +

h

2
, wi +

1

2
k1

)
,

k3 = hf

(
ti +

h

2
, wi +

1

2
k2

)
,

k4 = hf (ti+1, wi + k3) .

The local truncation error is O(h4) if the solution y(t) has five continuous

derivatives.
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8.3.2.4 Multistep methods and predictor-corrector methods

A multistep method is a technique whose difference equation to compute wi+1 in-

volves more prior values than just wi. An explicit method is one in which the com-

putation of wi+1 does not depend on f(ti+1, wi+1) whereas an implicit method does

involve f(ti+1, wi+1). For each formula, i = n− 1, n, . . . , N − 1.

8.3.2.5 Adams–Bashforth nnn-step (explicit) methods

1. (n = 2): w0 = α, w1 = α1, wi+1 = wi +
h
2 [3f(ti, wi)− f(ti−1, wi−1)].

The local truncation error is τi+1(h) =
5
12y

(3)(µi)h
2,

for some µi ∈ (ti−1, ti+1).
2. (n = 3): w0 = α, w1 = α1, w2 = α2,

wi+1 = wi +
h
12 [23f(ti, wi)− 16f(ti−1, wi−1) + 5f(ti−2, wi−2)].

The local truncation error is τi+1(h) =
3
8y

(4)(µi)h
3,

for some µi ∈ (ti−2, ti+1).
3. (n = 4): w0 = α, w1 = α1, w2 = α2, w3 = α3, wi+1 = wi +

h
24 [55f(ti, wi)− 59f(ti−1, wi−1) + 37f(ti−2, wi−2)− 9f(ti−3, wi−3)].

The local truncation error is τi+1(h) =
251
720y

(5)(µi)h
4,

for some µi ∈ (ti−3, ti+1).

8.3.2.6 Adams–Moulton nnn-step (implicit) methods

1. (n = 2): w0 = α, w1 = α1,

wi+1 = wi +
h
12 [5f(ti+1, wi+1) + 8f(ti, wi)− f(ti−1, wi−1)].

The local truncation error is τi+1(h) = − 1
24y

(4)(µi)h
3,

for some µi ∈ (ti−1, ti+1).
2. (n = 3): w0 = α, w1 = α1, w2 = α2, wi+1 = wi +

h
24 [9f(ti+1, wi+1) +

19f(ti, wi)− 5f(ti−1, wi−1) + f(ti−2, wi−2)].
The local truncation error is τi+1(h) = − 19

720y
(5)(µi)h

4,

for some µi ∈ (ti−2, ti+1).
3. (n = 4): w0 = α, w1 = α1, w2 = α2, w3 = α3,

wi+1 = wi +
h

720 [251f(ti+1, wi+1) + 646f(ti, wi)− 264f(ti−1, wi−1)
+106f(ti−2, wi−2)− 19f(ti−3, wi−3)].

The local truncation error is τi+1(h) = − 3
160y

(6)(µi)h
5,

for some µi ∈ (ti−3, ti+1).

In practice, implicit methods are not used by themselves. They are used to improve

approximations obtained by explicit methods. An explicit method predicts an ap-

proximation and the implicit method corrects this prediction. The combination is

called a predictor-corrector method. For example, the Adams–Bashforth method

with n = 4 might be used with the Adams–Moulton method with n = 3 since both

have comparable errors. Initial values may be computed, say, by the Runge–Kutta

method of order four, Equation (8.3.24).
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8.3.2.7 Higher-order differential equations and systems

A system of m first-order initial value problems can be expressed in the form

du1
dt

= f1(t, u1, u2, . . . , um), u1(a) = α1,

du2
dt

= f2(t, u1, u2, . . . , um), u2(a) = α2,

...

dum
dt

= fm(t, u1, u2, . . . , um), um(a) = αm.

(8.3.25)

Generalizations of methods for solving first-order equations can be used to solve

such systems. An example here uses the Runge-Kutta method of order four.

Partition [a, b] as before, and let wi,j denote the approximation to ui(tj) for

j = 0, 1, . . . , N and i = 1, 2, . . . ,m. For the initial conditions, set w1,0 = α1,

w2,0 = α2, . . . , wm,0 = αm. From the values {w1,j , w2,j , . . . , wm,j} previously

computed, obtain {w1,j+1, w2,j+1, . . . , wm,j+1} from

k1,i = hfi (tj , w1,j , w2,j , . . . , wm,j) ,

k2,i = hfi

(
tj +

h

2
, w1,j +

1

2
k1,1, w2,j +

1

2
k1,2, . . . , wm,j +

1

2
k1,m

)
,

k3,i = hfi

(
tj +

h

2
, w1,j +

1

2
k2,1, w2,j +

1

2
k2,2, . . . , wm,j +

1

2
k2,m

)
,

k4,i = hfi (tj + h,w1,j + k3,1, w2,j + k3,2, . . . , wm,j + k3,m) ,

wi,j+1 = wi,j +
1

6
[k1,i + 2k2,i + 2k3,i + k4,i],

(8.3.26)

where i = 1, 2, . . . ,m for each of the above.

A differential equation of high order can be converted into a system of first-order

equations. Suppose that a single differential equation has the form

y(m) = f(t, y, y′, y′′, . . . , y(m−1)), a ≤ t ≤ b (8.3.27)

with initial conditions y(a) = α1, y′(a) = α2, . . . , y(m−1)(a) = αm. All derivatives

are with respect to t. That is, y(k) = dky
dtk . Define u1(t) = y(t), u2(t) = y′(t), . . . ,

um(t) = y(m−1)(t). This yields first-order equations

du1
dt

= u2,
du2
dt

= u3, . . .
dum−1

dt
= um,

dum
dt

= f(t, u1, u2, . . . , um),

(8.3.28)

with initial conditions u1(a) = α1, . . . , um(a) = αm.
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8.3.2.8 Partial differential equations

To develop difference equations for partial differential equations, one needs to esti-

mate the partial derivatives of a function, say, u(x, y). For example,

∂u

∂x
(x, y) =

u(x+ h, y)− u(x, y)
h

− h

2

∂2u(ξ, y)

∂x2
for ξ ∈ (x, x + h), (8.3.29)

∂2u

∂x2
(x, y) =

1

h2
[u(x+ h, y)− 2u(x, y) + u(x− h, y)]− h2

12

∂4u(ξ, y)

∂x4
, (8.3.30)

for ξ ∈ (x− h, x+ h).

Notes:
1. Equation (8.3.29) is simply Equation (8.3.12) applied to estimate the partial

derivative. It is given here to emphasize its application for forming differ-

ence equations for partial differential equations. A similar formula applies for

∂u/∂y, and others could follow from the formulas in Section 8.3.2.1.

2. An estimate of ∂2u/∂y2 is similar. A formula for ∂2u/∂x∂y could be given.

However, in practice, a change of variables is generally used to eliminate this

mixed second partial derivative from the problem.

If a partial differential equation involves partial derivatives with respect to only one

of the variables, the methods described for ordinary differential equations can be

used. If, however, the equation involves partial derivatives with respect to both vari-

ables, the approximation of the partial derivatives require increments in both vari-

ables. The corresponding difference equations form a system of linear equations that

must be solved.

Three specific forms of partial differential equations with popular methods of

solution are given. The domains are assumed to be rectangular.

8.3.2.9 Wave equation

The wave equation is an example of a hyperbolic partial differential equation and has

the form

∂2u

∂t2
(x, t) − α2 ∂

2u

∂x2
(x, t) = 0, 0 < x < ℓ, t > 0. (8.3.31)

(whereα is a constant) subject to u(0, t) = u(ℓ, t) = 0 for t > 0, and u(x, 0) = f(x)

and
∂u

∂t
(x, 0) = g(x) for 0 ≤ x ≤ ℓ.

Select an integer m > 0, time-step size k > 0, and using h = ℓ/m, mesh

points (xi, tj) are defined by xi = ih and tj = jk. Using wi,j to represent an

approximation of u(xi, tj) and λ = αk/h, the difference equation becomes

wi,j+1 = 2(1− λ2)wi,j + λ2(wi+1,j + wi−1, j)− wi,j−1,

with w0,j = wm,j = 0 and wi,0 = f(xi), for i = 1, . . . ,m − 1 and j = 1, 2, . . . .
Also needed is an estimate for wi,1, for each i = 1, . . . ,m− 1, which can be written

wi,1 = (1− λ2)f(xi) +
λ2

2
f(xi+1) +

λ2

2
f(xi−1) + kg(xi).

The local truncation error of the method is O(h2 + k2) but the method is extremely

accurate if the true solution is infinitely differentiable. For the method to be stable,

it is necessary that λ ≤ 1.



“smtf32” — 2011/5/20 — 2:09 — page 656 — #666

656 CHAPTER 8. SCIENTIFIC COMPUTING

8.3.2.10 Poisson equation

The Poisson equation is an elliptic partial differential equation that has the form

∇2u(x, y) =
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = f(x, y) (8.3.32)

for (x, y) ∈ R = {(x, y) | a < x < b, c < y < d}, with u(x, y) = g(x, y) for

(x, y) ∈ S, where S = ∂R. When the function f(x, y) = 0 the equation is called

Laplace’s equation.

To begin, partition [a, b] and [c, d] by choosing integers n and m, define step

sizes h = (b − a)/n and k = (d − c)/m, and set xi = a + ih for i = 0, 1, . . . , n
and yj = c+ jk for j = 0, 1, . . . ,m. The lines x = xi, y = yj , are called grid lines

and their intersections are called mesh points. Estimates wi,j for u(xi, yj) can be

generated using Equation (8.3.30) to estimate ∂2u
∂x2 and ∂2u

∂y2 . The method described

here is called the finite-difference method.

Start with the values

w0,j = g(x0, yj), wn,j = g(xn, yj), wi,0 = g(xi, y0), wi,m = g(xi, ym),
(8.3.33)

and then solve the resulting system of linear algebraic equations

2

[(
h

k

)2

+ 1

]
wi,j−(wi+1,j+wi−1,j)−

(
h

k

)2

(wi,j+1+wi,j−1) = −h2f(xi, yj),

(8.3.34)

for i = 1, 2, . . . , n − 1 and j = 1, 2, . . . ,m − 1. The local truncation error is

O(h2 + k2).
If the interior mesh points are labeled Pℓ = (xi, yj) and wℓ = wi,j where

ℓ = i+ (m− 1− j)(n− 1), for i = 1, 2, . . . , n− 1, and j = 1, 2, . . . ,m− 1, then

the two-dimensional array of values becomes a one-dimensional array. This results

in a banded linear system. The case n = m = 4 yields ℓ = (n − 1)(m − 1) = 9.

Using the relabeled grid points, fℓ = f(Pℓ), the equations at the points Pi are

P1: 4w1 − w2 − w4 = w0,3 + w1,4 − h2f1,
P2: 4w2 − w3 − w1 − w5 = w2,4 − h2f2,
P3: 4w3 − w2 − w6 = w4,3 + w3,4 − h2f3,
P4: 4w4 − w5 − w1 − w7 = w0,2 − h2f4,
P5: 4w5 − w6 − w4 − w2 − w8 = 0− h2f5,
P6: 4w6 − w5 − w3 − w9 = w4,2 − h2f6,
P7: 4w7 − w8 − w4 = w0,1 + w1,0 − h2f7,
P8: 4w8 − w9 − w7 − w5 = w2,0 − h2f8,
P9: 4w9 − w8 − w6 = w3,0 + w4,1 − h2f9,

where the right-hand sides of the equations are obtained from the boundary condi-

tions.
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8.3.2.11 Heat or diffusion equation

The heat, or diffusion, equation is a parabolic partial differential equation of the form

∂u

∂t
(x, t) = α2 ∂

2u

∂x2
(x, t), 0 < x < ℓ, t > 0. (8.3.35)

where u(0, t) = 0 = u(ℓ, t) = 0, for t > 0, and u(x, 0) = f(x), for 0 ≤ x ≤ ℓ. An

efficient method for solving this type of equation is the Crank–Nicolson method.

To apply the method, select an integer m > 0, set h = ℓ/m, and select a time-

step size k. Here xi = ih, i = 0, . . . ,m and tj = jk, j = 0, . . . . The difference

equation is given by:

wi,j+1 − wi,j

k

− α2

2

[
wi+1,j − 2wi,j + wi−1,j

h2
+
wi+1,j+1 − 2wi,j+1 + wi−1,j+1

h2

]
= 0.

(8.3.36)

and has local truncation error O(k2 + h2). The difference equations can be rep-

resented in the matrix form Aw(j+1) = Bw(j), for each j = 0, 1, 2, . . . , where

λ = α2k/h2, w(j) = (w1,j , w2,j , . . . , wm−1,j)
T, and the matrices A and B are

A =




(1 + λ) −λ/2 0 0 · · · 0 0
−λ/2 (1 + λ) −λ/2 0 · · · 0 0
0 −λ/2 (1 + λ) −λ/2 0 0
0 0 −λ/2 (1 + λ) 0 0
...

...
. . .

0 0 0 0 (1 + λ) −λ/2
0 0 0 0 −λ/2 (1 + λ)




B =




(1− λ) λ/2 0 0 · · · 0 0
λ/2 (1− λ) λ/2 0 · · · 0 0
0 λ/2 (1− λ) λ/2 0 0
0 0 λ/2 (1− λ) 0 0
...

...
. . .

0 0 0 0 (1− λ) λ/2
0 0 0 0 λ/2 (1− λ)




(8.3.37)
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8.3.3 NUMERICAL SUMMATION

A sum of the form
∑n

j=0 f(x0+ jh) (nmay be infinite) can be approximated by the

Euler–MacLaurin sum formula,

n∑

j=0

f(x0 + jh) =
1

h

∫ x0+nh

x0

f(y) dy +
1

2
[f(x0 + nh) + f(x0)]

+
m∑

k=1

B2k

(2k)!
h2k−1[f (2k−1)(x0 + nh)− f (2k−1)(x0)] + Em (8.3.38)

where Em = nh2m+2B2m+2

(2m+2)! f (2m+2)(ξ), with x0 < ξ < x0 + nh. The Bn here are

Bernoulli numbers (see Section 1.3.6).

The above formula is useful even when n is infinite, although the error can no

longer be expressed in this form. A useful error estimate (which also holds when n
is finite) is that the error is less than the magnitude of the first neglected term in the

summation on the second line of Equation (8.3.38) if f (2m+2)(x) and f (2m+4)(x) do

not change sign and are of the same sign for x0 < x < x0 + nh. If just f (2m+2)(x)
does not change sign in the interval, then the error is less than twice the first neglected

term.

Quadrature formulas result from Equation (8.3.38) using estimates for the

derivatives.
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9.1 ACOUSTICS
Notation

• A total absorption (m2)

• a side of rectangular waveguide

• b side of rectangular waveguide

• c sound speed (c =
√

κ
ρ )

• H height of a room

• L length of a room or organ pipe

• P pressure

• T sound duration

• v velocity (v = ∇φ)

• V room volume (m3)

• W width of a room

• κ bulk modulus

• ρ density

• φ potential

• γ =
cp
cv

= specific heat at constant pressure
specific heat at constant volume

(≈ 1.4 in air)

With the following assumptions

1. The medium is a Newtonian fluid, homogeneous, and at rest (that is, v = 0)

2. The medium is an ideal, adiabatic, and reversible gas (that is,
dP

dρ
=
γp

ρ
)

3. There are no body forces and no viscous forces

4. There are small disturbances (that is, the equations are about a steady state)

5. There is irrotational flow (that is, ∇× v = 0)

The acoustic wave equation is any one of the following

∂2v

∂t2
− c2∇2v = 0

∂2P

∂t2
− c2∇2P = 0

∂2φ

∂t2
− c2∇2φ = 0

Equations

1. Room modes (where p, q, and r can be 0, 1, 2, . . . )

supported frequency =
c

2

√( p
L

)2
+
( q

W

)2
+
( r
H

)2

2. Cutoff frequency (rectangular waveguide,m and n are mode numbers)

ωc = c

√(nπ
a

)2
+
(mπ
b

)2

3. Sabine’s Reverberation Formula T = 0.161
V

A
4. Organ pipes

(a) open at one end and closed at one end

i. fundamental frequency n1 =
c

4L

ii. first overtone (third harmonic) n3 =
3c

4L
= 3n1

iii. second overtone (fifth harmonic) n5 =
5c

4L
= 5n1

(b) open at both ends

i. fundamental frequency n1 =
c

2L
ii. first overtone (second harmonic) n2 =

c

L
= 2n1

iii. second overtone (third harmonic) n3 =
3c

2L
= 3n1
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9.2 ASTROPHYSICS
Notation

• a semi-major axis

• AU astronomical unit

• b semi-minor axis

• b brightness ( W
m2 )

• c speed of light (≈ 3× 108 m/sec)

• d distance to star in parsecs

• D proper distance

• E eccentric anomaly

• G gravitational constant

• h angular momentum

• H0 Hubble’s constant

• L luminosity

• m mass

• M mean anomaly

• p semi-latus rectum

• P orbital period

• r distance

• rmin perihelion

• rmax aphelion

• t time since perihelion

• v velocity

• ǫ eccentricity

• µ standard gravitational parameter

• θ true anomaly

Equations

1. Escape velocity v ≥
√

2Gm

r

Escape velocity from the Earth’s surface is 11 km/s.

Escape velocity from the solar system (from Earth) is 42 km/s.

2. Hubble’s law v = H0D

3. Kepler’s equation M = E − ǫ sinE

4. Kepler’s laws

(a) The orbit of every planet is an ellipse with the Sun at one of the two foci.

r =
p

1 + ǫ cos θ

(b) A line joining a planet and the Sun sweeps out equal areas during equal

intervals of time. [Equivalently, angular momentum is conserved.]

d

dt

(
1

2
r2θ̇

)
= 0 h2 = G(m1 +m2) p

(c) The square of the orbital period of a planet is directly proportional to the

cube of the semi-major axis of its orbit.

P 2
planet

a3planet

= constant =
4π2

Gm

5. Luminosity L = 4πd2b

6. Magnitude of a star

(apparent magnitude)− (absolute magnitude) = 5 log10

(
d

10

)
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7. Orbital period

one large mass P = 2π

√
a3

Gm

two masses P = 2π

√
a3

G(m1 +m2)

For the solar system P =
√
a3 years, when a is in astronomical units (AU).

8. Relations

a =
p

1− ǫ2 b =
p√

1− ǫ2
µ = Gm

rmin =
p

1 + ǫ
rmax =

p

1− ǫ

M =
2πt

P
tan

θ

2
=

√
1 + ǫ

1− ǫ tan
(
E

2

)

ǫ =
rmax − rmin

rmax + rmin

1

rmin
− 1

p
=

1

p
− 1

rmax

9. Rocket equation vfinal = vexhaust log

(
minitial

mfinal

)

10. Schwarzschild radius RSch =
2Gm

c2

11. Vis-viva equation (elliptic orbits) v2 = G(m1 +m2)

(
2

r
− 1

a

)

12. Numerical parameters

• AU 149,597,870.7 km or 92,955,807.27 miles

• G (gravitational constant) 6.67428× 10−11 N m2

kg2

• Sun

– mass 1.9889× 1030 kg

– mean radius 696,000 km

– µ 132,712,440,018 km3s−2

• Earth

– eccentricity 0.016710219

– mass 5.9736× 1024 kg

– mean radius 6,367.454 km

– orbital period 365.256366 days

– semi-major axis 149,597,887.5 km

• Moon

– eccentricity 0.0549

– mass 7.3477× 1022 kg

– mean radius 1,737.10 km

– orbital period 27.321582 days

– semi-major axis 384,399 km
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9.3 ATMOSPHERIC PHYSICS
Notation

• a acceleration

• D density (kg/m3)

• DA density altitude (feet)

• R gas constant

• RH relative humidity

• T temperature (◦K)

• TC temperature (◦C)

• TR temperature (◦R)

• v velocity

• z altitude

• γ lapse rate

• Ω earth rotation rate

• Es saturation pressure of water vapor (mb)

• P total air pressure (P = Pd + Pv)

• PA station pressure (inches Hg)

• Pd pressure of dry air (partial pressure in Pascals)

• Pv pressure of water vapor (partial pressure in Pascals)

• Rd gas constant for dry air, 287.05 J/(kg ◦K)

• Rv gas constant for water vapor, 461.495 J/(kg ◦K)

Equations

1. Coriolis effect a = −2Ω× v

2. Density (approximation)

D =
P

RT
=

(
Pd

RdT

)
+

(
Pv

RvT

)
=

(
Pd

RdT

)(
1− 0.378

Pv

P

)

3. Density altitude (approximation)

DA = 145442.16

(
1−

(
17.326PA

TR

)0.235
)

4. Lapse rate γ = −dT
dz

The dry adiabatic lapse rate (DALR) is 9.8◦C/km

5. Saturation pressure (approximation)

Es = 6.1078× 107.5 TC/(237.3+TC)

6. Vapor pressure

(a) PV = Es at the dew point

(b) PV = RH Es otherwise
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9.4 ATOMIC PHYSICS
Notation

• E energy

• e charge

• h Planck constant

• L angular momentum

• m mass

• n principal quantum number

• r radius

• v velocity

• λ wavelength

• ω frequency
• c speed of light (≈ 3× 108 m/sec)

• ~ reduced Planck constant (~ = h
2π ≈ 10−34 J·s)

• k Coloumb’s constant ≈ 9× 109 N m2 C−2

• R Rydberg constant for electron energy (
m(ke2)2

2~2 ≈ 13.6 eV)

• Rλ Rydberg constant for reciprocal wavelength (
m(ke2)2

4πc~3 ≈ 107 m−1)

1. Bohr model

(a) angular momentum Ln = n~
(b) radiation/absorption of energy ~ω = En − Em

2. Hydrogen atom

(a) energy En =
mv2n
2
− ke2

rn
= −ke

2

2rn
= − R

n2

(b) radiation spectrum
1

λ
= Rλ

(
1

n2
initial

− 1

n2
final

)

for transitions between states. This is the Lyman series (nfinal = 1),
the Balmer series (nfinal = 2), and the Paschen series (nfinal = 3).

(c) radius rn =
n2~2

mke2

(d) Bohr radius a0 = r1 =
~2

mke2
= 0.53 Å

(e) velocity vn =
ke2

n~

9.4.1 RADIOACTIVITY
Notation

• A radioactive sample activity

• N number of intact nuclei

• t time

• T1/2 half-life

• λ decay constant

• τ mean lifetime

1. Governing equation
dN

N
= −λdt

2. Half-life T1/2 =
ln 2

λ
=

0.693

λ
3. Radioactive decay law N = N0e

−λt

4. Mean lifetime τ =

∫ ∞

0

tλe−λt dt =
1

λ
=
T1/2

ln 2

5. Radioactive sample activity A =

∣∣∣∣
dN

dt

∣∣∣∣ = λN = A0e
−λt
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9.5 BASIC MECHANICS
Notation

• a, a acceleration

• A area

• d distance

• F,F force

• I moment of inertia

• k spring constant

• m mass

• M moment

• p momentum

• P pressure

• r, r distance

• s speed

• T period

• v velocity

• V volume

• V potential

• W work

• x position

• ω angular velocity

• ρ density

• τ torque

• c speed of light (≈ 3× 108 m/sec)

• g acceleration due to gravity (≈ 9.8 m
s2

)

• G gravitational constant (≈ 6.67× 10−11 N m2

kg2
)

• α angular acceleration

• µk coefficient of kinetic friction

• µs coefficient of static friction

• θ angular displacement

Equations

1. Center of mass xcm =

∑
imixi

M
with M =

∑
imi

2. Conservative force

(a) F = ∇V
(b) (kinetic energy) + (potential energy) = (constant)

3. Density ρ =
m

V
4. Friction

(a) static friction Ffriction ≤ µsFnormal

(b) kinetic friction Ffriction = µkFnormal

5. Gravitational force F = G
m1m2

r2
6. Hooke’s law (∆x = displacement from equilibrium) F = −k∆x
7. Inclined plane (θ is angle between inclined plane and horizontal)

(a) Fnormal = mg cos θ
(b) Fincline = mg sin θ

8. Kinetic energy

linear =
1

2
mv2

rotational =
1

2
Iω2

rotational, without slipping =
1

2
mv2 +

1

2
Iω2

9. Moment M = r× F

10. Momentum p = mv
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11. Newtons’s laws

(a) first law: in equilibrium,
∑

F = 0 and τclockwise = τcounter-clockwise

(b) second law: F = ma

12. Pendulum (L = length of pendulum) T = 2π

√
L

g

13. Period of simple harmonic motion T = 2π

√
m

k

14. Pressure P =
F

A

15. Speed of a wave on a string v =

√
(length of string) (tension in string)

(mass of string)

16. Springs F (t) = k(x(t) − x0)
17. Torque (l = lever arm length) τ = F l
18. Work W = Fd
19. Equations of circular motion

(a) Angular speed v = rω

(b) Centripetal acceleration and force (constant speeds v, ω, radius R)

a =
v2

R
= ω2R F = m

v2

R
= mω2R

(c) Circular motion (constant acceleration)

ω = ω0 + αt

θ = θ0 + ω0t+
1

2
αt2

θ = θ0 + ωt− 1

2
αt2

θ = θ0 +
1

2
(ω + ω0) t

ω2 = ω2
0 + 2α(θ − θ0)

20. Equations of linear motion

(a) Average speed v =
d

t

(b) Free fall (from rest and a height of h) v =
√
2gh

(c) Linear motion (constant acceleration)

v = v0 + at

x = x0 + v0t+
1

2
at2

v2 = v20 + a(x− x0)
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9.6 BEAM DYNAMICS
Notation

• E Young’s modulus

• I moment of inertia

• K length factor

• L length of column

• M bending moment

• Q shear force

• q applied loading

• w beam displacement

• κ curvature

• φ slope of the beam

• σ bending stress

Equations

1. Static one-dimension beam equation
d2

dx2

(
EI

d2w

dx2

)
= q(x)

2. Derivable quantities

Bending moment M = EI
d2w

dx2

Shear force Q = −dM
dx

= − d

dx

(
EI

d2w

dx2

)

Slope φ =
dw

dx

Strain ǫx = −zκ = −z d
2w

dx2

Bending stress (with symmetry) σ =
Mz

I
= −zEd

2w

dx2

3. Boundary conditions The end x = z of the beam . . .

• is clamped w(z) = given and w′(z) = given

• is free w′′(z) = 0 and w′′′(z) = 0
• is simply supported w′′(z) = 0 and w(z) = given

• has a point force w′′(z) = 0 and w′′′(z) = given

• has a point torque w′′′(z) = 0 and w′′(z) = given

4. Boundary conditions The internal point x = z of the beam . . .

• is clamped w(z−) = w(z+) = given, w′(z−) = w′(z+) = given

• is simply supported

w(z−) = w(z+) = given, w′(z−) = w′(z+), w′′(z−) = w′′(z+)
• has a point force w(z−) = w(z+), w′(z−) = w′(z+),

w′′(z−) = w′′(z+), w′′′(z−) = w′′′(z+) = given

• has a point torque w(z−) = w(z+), w′(z−) = w′(z+),
w′′(z−) = w′′(z+) = given, w′′′(z−) = w′′′(z+)

5. Buckling of columns critical buckling force =
π2EI

(KL)2

• K = 1 if both ends pinned

• K = 0.5 if both ends fixed

• K = 0.699 if one end fixed, one end pinned

• K = 2 if one end fixed, one end moves laterally
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9.7 CLASSICAL MECHANICS
Notation

• H Hamiltonian

• J action variable

• K kinetic energy

• L Lagrangian

• p generalized momentum

• q generalized coordinate

• T temperature

• U potential energy

• θi action angle

• ρ probability density

• {, } Poisson bracket

Equations

1. Action angle evolution (for periodic motion)
dθi
dt

=
∂H

∂Ji
2. Action variable (for periodic motion)

Ji =
1

2π

∮
pi · dqi =

1

2π

∫ 2π

0

(
pi ·

∂qi
∂θi

)
dθi

3. Generalized momentum pi =
∂L

∂q̇i
4. Gibb’s distribution ρ(p, q) = ρ0e

−H(p,q)/T

5. Hamiltonian H(p, q) = K + U = −L+
∑

i

piq̇i

6. Hamilton’s equations of motion q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
7. Lagrangian L(q, q̇) = K − U
8. Lagrange’s equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

9. Time evolution (of any function f(p, q, t))
df

dt
=
∂f

∂t
+
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

=
∂f

∂t
+
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
=
∂f

∂t
+ {f,H}

10. Liouville’s theorem: For a probability distribution ρ = ρ(p, q)

dρ

dt
= 0 =

∂ρ

∂t
+ {ρ,H}

EXAMPLES

1. Consider a falling mass m. The kinetic energy is K = 1
2
mv2 = 1

2
mẋ2. The potential

energy is U = −mgx. The Lagrangian is L = K − U = 1
2
mẋ2 −mgx.

If q = x then q̇ = ẋ and p = ∂L
∂q̇

= ∂L
∂ẋ

= mẋ. Lagrangian’s equations become

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
=

d

dt
(mẋ)−mg = mẍ−mg = 0 or ẍ = g, as expected.

2. If two equal point masses (m) are connected by a spring (with spring constant k) of

length ℓ, then L = m
2

(
ẋ2
1 + ẋ2

2

)
− k

2
(x1 − x2 − ℓ)2.

3. If a pendulum (massless rigid stick of length ℓ) with a point mass (m) at the end is

swinging due to gravity (g), and θ is the angle between the stick and the vertical, then

L = m
2
ℓ2θ̇2 +mgℓ cos θ.
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9.8 COORDINATE SYSTEMS – ASTRONOMICAL
Notation

• a altitude

• A azimuth

• b galactic latitude

• H hour angle (H = LST− α)

• l galactic longitude

• LST local sidereal time

• α right ascension

• β ecliptic latitude

• δ declination

• ǫ Earth’s axial tilt (ǫ ≈ 23.4◦)

• λ ecliptic longitude

• φ geographic latitude

• θ zenith (θ = 90◦ − a)

Transformations

1. Ecliptic coordinates to equatorial coordinates (α, δ)

sin δ = sin ǫ sinλ cos β + cos ǫ sinβ

cosα cos δ = cosλ cosβ

sinα cos δ = cos ǫ sinλ cosβ − sin ǫ sinβ

2. Equatorial coordinates to ecliptic coordinates (β, λ)

sinβ = cos ǫ sin δ − sinα cos δ sin ǫ

cosλ cosβ = cosα cos δ

sinλ cosβ = sin ǫ sin δ + sinα cos δ cos ǫ

3. Equatorial coordinates to galactic coordinates (b, l)

b = sin−1 (cos δ cos 27.4◦ cos(α− 192.25◦) + sin δ sin 27.4◦)

l = tan−1

(
sin δ − sin b sin 27.4◦

cos δ sin(α − 192.25◦) cos 27.4◦

)
+ 33◦

4. Equatorial coordinates to horizontal coordinates (a,A)

sina = sinφ sin δ + cosφ cos δ cosH = cos θ

cosA =
cosφ sin δ − sinφ cos δ cosH

cos a

5. Galactic coordinates to equatorial coordinates (α, δ)

δ = sin−1 (cos b cos 27.4◦ sin(l − 33◦) + sin b sin 27.4◦)

α = tan−1

(
cos b cos(l − 33◦)

sin b cos 27.4◦ − cos b sin 27.4◦ − sin(l − 33◦)

)
+ 192.5◦

6. Horizontal coordinates to equatorial coordinates (α, δ)

sin δ = sinφ sin a− cosφ cos a cosA

cos δ cosH = cosφ sin a+ sinφ cos a cosA

cos δ sinH = − sinA cos a



“smtf32” — 2011/5/20 — 2:09 — page 671 — #681

9.9. COORDINATE SYSTEMS – TERRESTRIAL 671

9.9 COORDINATE SYSTEMS – TERRESTRIAL
Notation

• a semi-major axis

• b semi-minor axis

• e eccentricity

• e′ second eccentricity

• f flattening

• h height

• N radius of curvature in the prime

vertical

• α angular eccentricity

• λ longitude

• φ geodetic latitude

• φ′ geocentric latitude

• ENU local (East, North, Up) coordinates

• ECEF Earth-centered Earth-fixed coordinates

• ECF same as ECEF

• {Xr, Yr, Zr} reference point for ENU (in ECEF)

Relations

1. b = a(1− f)
2. e2 =

a2 − b2
a2

= f(2− f)

3. e′
2
=
a2 − b2
b2

=
f(2− f)
(1− f)2

4. f = 1− cosα =
a− b
a

5. N(φ) =
a√

1− sin2 φ sin2 α

6. α = cos−1

(
b

a

)

7. χ =

√
1− e2 sin2 φ.

8. tanφ′ =
a
χ (1− f)2 + h

a
χ + h

tanφ
Transformations

1. ECEF coordinates to ENU coordinates (x, y, z)



x
y
z


 =



− sinλ cosλ 0

− sinφ cosλ − sinφ sinλ cosφ
cosφ cosλ cosφ sinλ sinφ





X −Xr

Y − Yr
Z − Zr




2. ENU coordinates to ECEF coordinates (X,Y, Z)



X
Y
Z


 =



− sinλ − sinφ cosλ cosφ cosλ
cosλ − sinφ sinλ cosφ sinλ
0 cosφ sinφ





x
y
z


+



Xr

Yr
Zr




3. Geodetic coordinates to ECEF coordinates (X,Y, Z)

X =

(
a

χ
+ h

)
cosφ cosλ Y =

(
a

χ
+ h

)
cosφ sinλ

Z =

(
a(1− e2)

χ
+ h

)
sinφ

4. Geodetic coordinates to geocentric rectangular coordinates (X,Y, Z)

X = (N+h) cosφ cosλ Y = (N+h) cosφ sin λ Z =
(
N cos2 +h

)
sinφ
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9.10 EARTHQUAKE ENGINEERING
Notation
• A maximum excursion of a Wood-Anderson seismograph

• A0 empirical function

• ES radiated seismic energy

• M0 magnitude of the seismic moment (in dyne-centimeters)

• Me energy magnitude

• ML local magnitude (Richter magnitude)

• MW moment magnitude

• v velocity

• δ distance of seismograph to earthquake

• λ first Lamé parameter

• µ shear modulus

• ρ density
Information

1. Magnitude 0 event: earthquake showing a maximum combined horizontal

displacement of 1µm (0.00004 in) on a Wood–Anderson torsion seismometer

at a distance of 100 km from the earthquake epicenter.

2. ES = 1.6× 10−5M0

3. Me =
2
3 log10ES − 2.9

4. ML = log10A− log10A0(δ)

5. MW = 2
3 log10M0 − 10.7

6. Seismic moment = (Rigidity)× (Fault Area)× (Slip Length Area)

7. Speed of seismic waves

vS-wave =

√
λ+ 2µ

ρ
vP-wave =

√
µ

ρ

8. Energy in earthquakes

Richter Magnitude ML Amount of TNT Joule equivalent

0 15 g 63 kJ

1 474 g 2 MJ

2 15 kg 63 MJ

3 474 kg 2 GJ

4 15 metric tons 63 GJ

5 474 metric tons 2 TJ

6 15 kilotons 63 TJ

7 474 kilotons 2 PJ

8 15 megatons 63 PJ

9 474 megatons 2 EJ

10 15 gigatons 63 EJ
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9.11 ELECTROMAGNETIC TRANSMISSION

9.11.1 ANTENNAS
Notation

• A area of physical aperture

• BW antenna beamwidth in radians

• BWaz azimuth beamwidth

• BWel elevation beamwidth

• d antenna diameter

• G antenna gain

• L length of rectangular aperture

• W width of rectangular aperture

• η efficiency

• λ wavelength

Equations

1. Parabolic antenna beamwidth (in degrees) BW = 70λ
d

2. Antenna gain

(a) idealized uniform antenna pattern

G =
area of sphere

area of antenna pattern
=

4π

BWazBWel

(b) real antenna pattern G =
4πηA

λ2
(c) rectangular X-band aperture (L and W are in cm) G = 1.4 L W
(d) circular X-band aperture (d is in cm) G = d2η

9.11.2 WAVEGUIDES
Notation

• a dimension of waveguide (a > b)
• b dimension of waveguide

• c speed of light in medium

• r waveguide radius

• ǫ permittivity of medium

• µ permeability of medium

• fc cutoff frequency (transmitted above and attenuated below this frequency)

• fmn
c cutoff frequency for TEmn mode

• TE transverse electric mode (E-field orthogonal to axis of waveguide)

• TEij TE mode with i and j wave oscillations in a and b directions (i, j ≥ 0)

• TM transverse magnetic mode (H-field orthogonal to axis of waveguide)

• TMij TM mode with i and j wave oscillations in a and b directions (i, j ≥ 1)

Equations

1. Circular waveguide (TM01 mode) fc =
2.4048

r
√
µǫ

=
2.4048 c

r
2. Rectangular waveguide

fc =
c π

2a
fmn
c =

c π

2

√(m
a

)2
+
(n
b

)2
=

π

2
√
µǫ

√(m
a

)2
+
(n
b

)2

EXAMPLE

Rectangular (a = 2 cm, b = 1 cm) waveguide filled

with deionized water (µ = 1, ǫ = 81) operating at 3

GHz. Propagating modes and cutoff frequencies are:

Mode fmn
c

TE10 0.833 GHz

TE01, TE20 1.667 GHz

TE11, TM11 1.863 GHz

TE21, TM21 2.357 GHz

TE30 2.5 GHz
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9.12 ELECTROSTATICS AND MAGNETISM
Notation

• B,B magnetic field

• c speed of light

• D = ǫE displacement vector

• E,E electric field

• F,F force

• H = B/µ0 −M magnetic field

• I current

• J current density

• k = 1
4πǫ0

≈ 9× 109 N m2

C2

• q charge

• r separation

• S Poynting vector

• U potential energy

• ǫ dielectric constant

• ρ charge density

• v, v velocity

• µ0 = 4π × 10−7 T m2

AEquations

1. Ampere’s law ∇× B = µoJ

2. Biot–Savart law

(a) for a segment of wire ds dB =
µ0I

4π

ds× r

r3

(b) at distance r from an infinitely long wire B =
µ0I

2πr

(c) at the center of a loop of radiusR B =
µ0I

2R

3. Coulomb law F = k
q1q2
r2

4. Densities

(a) electric field energy density (E · D)/2
(b) magnetic field energy density (B ·H)/2
(c) momentum density (E× B)/c2

5. Electric field due to a point charge E = k
q

r2

6. Electric potential energy U = k
q1q2
r

7. Force

(a) in a constant electric field F = qE
(b) on a charge moving in a magnetic field F = qv× B

8. Gauss’ law ∇ · E =
ρ

ǫ0
9. Larmor formula (energy loss of an accelerated charge)

dE

dt
=

q2v̇2

6πc3ǫ0
10. Lorentz force F = q(e+ v× B)
11. Maxwell’s equations (differential form)

(a) ∇ · B = 0

(b) ∇× E = −∂B
∂t

(c) ∇ · D = ρfree

(d) ∇×H = Jfree +
∂D

∂t
12. Poynting vector S = E×H
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9.13 ELECTRONIC CIRCUITS
Notation

• A area

• C capacitance

• d distance

• I current

• L inductance

• P power

• Q charge

• R resistance

• V voltage

• Z impedance

• ω frequency

• ρ resistivity

• ǫ0 ≈ 8.85× 10−12 F
m

• κ dielectric constant

Equations

1. Ohm’s law V = IR

2. Electric power P = IV = I2R =
V 2

R
, Paverage = I2rmsR =

V 2
rms

R
3. Kirchhoff’s laws

(a) Loop rule
∑

around any loop ∆Vi = 0

(b) Node rule
∑

at any node Ii = 0

4. RMS values (for AC circuits) Vrms =
Vpeak√

2
, Irms =

Ipeak√
2

5. Resistors

(a) Adding in series RS = R1 +R2 +R3 + . . .

(b) Adding in parallel
1

RP
=

1

R1
+

1

R2
+

1

R3
+ . . .

(c) Resistance of a wire of lengthL and cross-sectional areaA R =
ρL

A
6. Capacitors

(a) Adding in series
1

CS
=

1

C1
+

1

C2
+

1

C3
+ . . .

(b) Adding in parallel CP = C1 + C2 + C3 + . . .

(c) Capacitance C =
Q

V

(d) Capacitance of a parallel plate capacitor C =
κǫ0A

d

(e) Current across a capacitor I(t) = C
dV (t)

dt

(f) Energy stored in a capacitor =
1

2
CV 2 =

1

2
QV =

1

2

Q2

C
7. Inductor (inductors add with the same formulas as that for resistors)

(a) Voltage across an inductor V (t) = L
dI(t)

dt

(b) Energy stored in an inductor =
1

2
LI2

8. Impedance (impedances add with the same formulas as that for resistors)

(a) Ideal resistor ZR = R
(b) Ideal inductor ZL = iωL

(c) Ideal capacitor ZC =
1

iωC
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9.14 EPIDEMIOLOGY
Notation

• I(t) infected individuals

• LR likelihood ratio

• PV predictive value

• R(t) recovered individuals

• S(t) susceptible individuals

• t time

• γ recovery rate

• λ infection rate (λ = βI/N )

• N population size (N = I(t) +R(t) + S(t) = constant)

Information

1. Operating characteristics

Disease

Yes No

Meets case definition Yes True positive (TP ) False positive (FP )

No False negative (FN ) True negative (TN )

(a) Sensitivity = Prob (T+ | D+) =
TP

TP + FN

(b) Specificity = Prob (T− | D−) = TN

TN + FP

(c) False positive rate = Prob (T+ | D−) = FP

TN + FP

(d) False negative rate = Prob (T− | D+) =
FN

TP + FN
(e) Positive predictive value

PV+ = (Sensitivity)(Prior Probability)
(Sensitivity)(Prior Probability)+(1−Sensitivity(1−Prior Probability))

(f) Likelihood ratios

LR+ =
Sensitivity

(1− Specificity)
LR− =

(1− Sensitivity)

Specificity

2. Cohort analysis for binomial data

Disease

Yes No

Exposure Yes a b
No c d

risk ratio = RR =
a/(a+ b)

c/(c+ d)

odds ratio = OR =
a/b

c/d

3. Epidemic model (SIR model)

dS

dt
= −β I(t)

N
S(t)

dI

dt
= β

I(t)

N
S(t)− γI(t)

dR

dt
= γI(t)
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9.15 FINANCE

9.15.1 OPTION PRICING
Notation

• F forward price

• K exercise price of the option

• P value of portfolio

• r risk-free interest rate

• S price of a share of stock

• t time

• V value of derivative security

• W Wiener process

• σ “volatility” constant

• µ constant
• T expiry date (the only date on which the option can be exercised)

• Φ cumulative probability distribution for the normal distribution

Equations

1. Black–Scholes formula

Assume S follows a geometric Brownian motion dS = S(µ dt + σ dW ).
Construct a portfolio of V and N shares of stock; its value is P = V +
SN . The random component of the portfolio increment (dP ) is removed by

choosing N = −∂V/∂S. Under arbitrage, we expect that dP = rP dt. This

results in the Black–Scholes equation for V (which assumes no transaction

costs):
1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
+
∂V

∂t
− rV = 0

IncludingK and T results in the solutions

• Call price C = SΦ(d1)−Ke−r(T−t)Φ(d2)
• Put price P = C +Ke−r(T−t) − S

where d1 =
log(S/K) + (r + σ2/2)(T − t)

σ
√
T − t d2 = d1 − σ

√
T − t

2. Black formula

• Call price (European option) C = e−rT [FΦ( d3)−KΦ( d4)]
• Put price P = e−rT [KΦ(−d4)− FΦ(−d3)]

where d3 =
log(F/K) + (σ2/2)T

σ
√
T

d4 = d3 − σ
√
T

9.15.2 ECONOMIC ORDER QUANTITY FORMULA
Notation

• A order cost (dollars per order)

• D demand rate (pieces per unit time)

• H holding cost (dollars per item)

• Q order quantity (pieces per order)

The optimal order size is Q∗ =
√

2AD
H
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9.16 FLUID MECHANICS
Notation

• A area

• g gravity

• h height

• M molar mass

• n number of moles of gas

• N number of molecules

• P pressure

• Q volume flow rate

• R gas law constant ≈ 8.31 J
K mole

• T temperature

• v velocity

• V volume

• µ fluid viscosity

• µm mass of molecule

• ν kinematic viscosity

• ω vorticity

• ρ density

• kB Boltzmann’s constant ≈ 1.38× 10−23 J
K

Equations

1. Average molecular kinetic energy Kavg =
3

2
kBT

2. Basic relations ω = ∇× v, ν =
µ

ρ

3. Bernoulli’s equation P + ρgh+
1

2
ρv2 = constant

4. Boyle’s law PV = constant

5. Continuity equation
∂ρ

∂t
+∇ · (ρv) = 0

6. Euler equation (incompressibility constraint and the following)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P

7. Hydrostatic pressure P = P0 + ρgh

8. Ideal gas law PV = nRT = NkBT

9. Incompressibility constraint (constant density)∇ · (v) = 0

10. Navier-Stokes equations (incompressibility constraint and the following)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + (body force)

Sometimes the “body force” is −ρgh.

11. Root mean square velocity vrms =

√
3RT

M
=

√
3kBT

µm

12. Reynolds number Re =
inertial forces

viscous forces
=
ρv2/L

µv/L2
=
ρvL

µ

where L is a characteristic length scale.

13. Volume flow rate Q = Av
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9.17 FUZZY LOGIC
Notation

• A, B, C fuzzy sets

• x element of a set

• µA membership function for set A;

in the range 0 ≤ µA(x) ≤ 1

Concepts

1. An ordinary set (not a fuzzy set) is a crisp set.

2. Definitions

(a) The point x belongs to the set A if and only if µA(x) = 1.

(b) Set equality A = B if and only if for all x, µA(x) = µB(x)
(c) Set inclusion A ⊂ B if and only if for all x, µA(x) ≤ µB(x)

3. Fuzzy set Operations

(a) Complement µnot A(x) = 1− µA(x)
(b) Intersection µA∩B(x) = min (µA(x), µB(x))
(c) Union µA∪B(x) = max (µA(x), µB(x))

4. Classical set theory operations that apply to fuzzy sets

(a) De Morgans law (A ∩B) = A ∪B
(A ∪B) = A ∩B

(b) Associativity (A ∩B) ∩ C = A ∩ (B ∩C)
(A ∪B) ∪ C = A ∪ (B ∪C)

(c) Commutativity A ∩B = B ∩A
A ∪B = B ∪A

(d) Distributivity A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C)

5. Hedges

Hedges are word concepts that can be interpreted as operators modifying fuzzy

values. For example:

(a) Very µA(x) = [µB(x)]
2

(b) Somewhat µA(x) = [µB(x)]
1/2

6. Fuzzy controllers

A common approach to creating a fuzzy controller is the sequence of steps:

(a) Fuzzification Define fuzzy sets and their membership functions.

Example: P = {Alice,Bob,Charlie}; µlike cool(p) = (0.1, 0.3, 0.3),
µlike warm(p) = (0.4, 0.8, 0.9), µcome to party(p) = (0.7, 0.3, 0.6), . . .

(b) Rule evaluation Implement rules such as “If variable is property then

action.” Example: “If very cool inside then turn on heat,” “If very

warm inside then turn on A/C,” “If cold outside then it takes several hours

to heat house,” . . .

(c) Defuzzification Obtain a crisp result from fuzzy analysis.

Example: “Turn on heat at 5 PM for party tonight.”
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9.18 HUMAN BODY
Notation

• a age (years)

• BMI body mass index

• BSA body surface area (m2)

• BMR basal metabolic rate ( kcal
day

)

• LBM lean body mass (kg)

• MET metabolic equivalent of task
• w weight (wkg for kilograms, wlb for pounds)

• h height (hcm for centimeters, hm for meters, hin for inches)

Information

1. Basal metabolic rate

• Using LBM BMR = 500 + 22LBM

• Mifflin–St. Jeor equations

– Men BMR = 10wkg + 6.25 hcm − 5a+ 5

= 22wlb + 2.46 hin − 5a+ 5

– Women BMR = 10wkg + 6.25 hcm − 5a− 161

= 22wlb + 2.46 hin − 5a− 161

2. Body mass index BMI =
wkg

h2m
(metric units)

= 703
wlb

h2in
(English units)

An “optimal” BMI value may be between 18.5 to 25.

3. Body surface area

• Dubois & Dubois BSA = 0.20247 h0.725m w0.425
kg

• Gehan & George BSA = 0.235 h0.42246cm w0.51456
kg

• Mosteller BSA =

√
hcm wkg

60
4. Caloric needs = BMR× (lifestyle factor) (Harris Benedict formula)

• (lifestyle factor) = 1.2 for sedentary lifestyle

• (lifestyle factor) = 1.375 for lightly active lifestyle

• (lifestyle factor) = 1.55 for moderately active lifestyle

• (lifestyle factor) = 1.725 for very active lifestyle

• (lifestyle factor) = 1.9 for extra active lifestyle

5. Calories burned = (duration in minutes)×MET× 3.5
200 × wkg

Sample MET values:

• sleeping 0.9

• watching television 1.0

• walking at 1.7 mph 2.3

• walking at 3.4 mph 3.6

• bicycling at 10 mph 4.0

• jogging 7.0

• calisthenics 8.0

• rope jumping 10
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9.19 IMAGE PROCESSING MATRICES

To achieve the specified effect, the matrices below are convolved with an image.

Using small filters is faster than larger filters and often achieves the desired effect.

1. Blurring filters (symmetric low-pass filters)

(a) Averaging



a a a
a a a
a a a


 or



0 a 0
a a a
0 a 0




(b) Gaussian



1 2 1
2 4 2
1 2 1


 =



1
2
1


 [1 2 1

]

2. Edge detection filters (asymmetric gradient filters)

(a) All directions



− 1

8 − 1
8 − 1

8
− 1

8 1 − 1
8

− 1
8 − 1

8 − 1
8




(b) Emphasize diagonal edges



−1 0 0
0 0 0
0 0 1




(c) Emphasize horizontal edges



−1 −1 −1
0 0 0
1 1 1




3. Embossing filters (asymmetric gradient filters)

(a) All directions



−1 −1 −1
−1 8 −1
−1 −1 −1




(b) Horizontal direction only




0 0 0
−1 2 −1
0 0 0




(c) Horizontal and vertical directions




0 −1 0
−1 4 −1
0 −1 0




(d) Lossy




1 −2 1
−2 4 −2
−2 −1 −2




(e) Vertical direction only



0 −1 0
0 0 0
0 1 0




4. Sharpness filters (symmetric high-pass filters)


0 −1 0
−1 5 −1
0 −1 0


 or



−1 −1 −1
−1 9 −1
−1 −1 −1
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9.20 MACROECONOMICS
Notation

• C consumption

• G government spending

• i nominal interest rate

• I investment

• M money supply

• P average price level of goods

• r real interest rate

• R reserve ratio

• S saving

• π inflation rate

• MPC marginal propensity to consume

• MPS marginal propensity to save

• Q index of real expenditures (e.g., newly produced goods and services)

• T index of expenditures (e.g., total number of economic transactions)

• V velocity of money on newly produced goods and services

• VT velocity of money on all transactions

Information

1. Equation of exchange MVT = PT or MV = PQ

2. Gross Domestic Product (GDP)

• (nominal) GDP =
∑

(number of goods)*(current cost for each good)

= QhotdogsPhotdogs +QhamburgersPhamburgers + . . .
= C + I +G+ [EXports− IMports]

• (real) GDP =
∑

(number of goods)*(base year cost for each good)

= QhotdogsPhotdogs; base year +QhamburgersPhamburgers; base year + . . .

3. Interest rates

• correct r =
1 + i

1 + π
− 1

• Fisher equation (approximation) r = i− π

4. Multipliers

• expenditures multiplier 1/MPS
• money multiplier 1/R

5. Savings

• open economy S = I + [EXports− IMports]
• closed economy (no trade) S = I
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9.21 MODELING PHYSICAL SYSTEMS

For many physical systems there are “across variables” A (whose value is the differ-

ence between two measurements) and “through variables” T . For these systems:

1. There is a through-type energy storage device; the energy stored scales as the

square of the T variable.

2. There is an across-type energy storage device; the energy stored scales as the

square of the A variable.

3. When using a graph (whose edges represent components) to model these sys-

tems there are conservation laws analogous to Kirkhoff’s laws in electricity:

(a) Conservation of through variables at each node:
∑

i∈node Ti = 0.

(b) Conservation of across variables along closed loops:
∑

j∈loop Aj = 0.

Domain across variable (A) through variable (T )

electrical voltage V current I

fluid pressure P volume flow rate Q
mechanical (rotation) angular velocity ω torque T

mechanical (translation) velocity v force F

Let EA be the energy stored in an A-type energy storage device, ET be the energy

stored in an T -type energy storage device, and let P represent dissipated power.

1. Electrical C = capacitance, L = inductance,R = resistance

A variable EA = 1
2CV

2 I = C dV
dt

T variable ET = 1
2LI

2 V = L dI
dt

Power & constitutive P = IV = 1
RV

2 I = 1
RV

2. Fluid I = fluid inertance, Cf = fluid capacitance,Rf = fluid resistance

A variable EA = 1
2CfP

2 Q = Cf
dP
dt

T variable ET = 1
2IQ

2 P = I dQ
dt

Power & constitutive P = QP = 1
Rf
P 2 Q = 1

Rf
P

3. Mechanical (rotational)

B = rotational damping,K = rotational stiffness, J = moment of inertia

A variable EA = 1
2Jω

2 T = J dω
dt

T variable ET = 1
2

1
KF

2 ω = 1
K

dT
dt

Power & constitutive P = Tω = Bω2 T = Bω

4. Mechanical (translational) m = mass, k = stiffness, b = damping

A variable EA = 1
2mv

2 F = mdv
dt

T variable ET = 1
2
1
kF

2 v = 1
k
dF
dt

Power & constitutive P = Fv = bv2 F = bv
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9.22 OPTICS
Notation

• f = focal length

• M = magnification of a lens

• n = refractive index

• P = power of a lens

• r = radius of curvature of a lens

• v = speed of light
• s = distance (so lens to object; si lens to image)

Facts:
1. A converging lens is “thicker in the center” than on the edges and has f < 0,

a diverging lens is “thinner in the center” than on the edges and has f > 0.

2. Focal length

(a) For thin lenses in contact:
1

f
=

1

f1
+

1

f2

(b) For thin lenses separated by d (with d < f1):
1

f
=

1

f1
+

1

f2
− d

f1f2

(c) Thin lens formula:
1

f
=

1

si
+

1

so
.

3. Lensmaker’s equation (d = thickness of a lens)

(a) For a lens in air:
1

f
= (nlens − 1)

(
1

R1
− 1

R2
+

(nlens − 1)d

nlensR1R2

)

(b) For a thin lens:
1

f
=

(
nlens − n

n

)(
1

R1
− 1

R2

)

4. Magnification of a thin lens: M =
si
so

=
image height

object height
5. Lens power

(a) Power of a thin lens: P =
1

f

(b) Power of many thin lenses in contact: P =
1

f1
+

1

f2
+

1

f3
+

1

f4
+ . . .

(c) Power is measured in diopter units; the inverse of the focal length in me-

ters (i.e., 1meter/f ). For example, a lens with a focal length of 500mm

has 1 meter
500 mm

= +2 diopters. For lenses in contact, diopters can be added:

adding a −2 diopter lens to a +4 diopter lens gives a +2 diopter lens.

6. Snell’s law: n1 sin θ1 = n2 sin θ2 where θi is the angle of the light ray.

7. Matrices in optics

(a) Propagation in free space:

[
1 t
0 1

]
where t is distance

(b) Refraction at curved surface:

[
1 0

n1−n2

Rn2

n1

n2

]
(R =∞ for flat surface)

(c) Reflection from curved mirror:

[
1 0
− 2

R 1

]
(R =∞ for flat mirror)

(d) Thin lens:

[
1 0
− 1

f 1

]
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9.23 POPULATION GENETICS
Notation

• Ne effective population size

• Nf number of females

• Nm number of males

• p frequency of allele A

• q frequency of allele a

• s selection coefficient (s = 1− w)

• u mutation rate A→ a
• v mutation rate a→ A
• w fitness (w = 1− s)

• f inbreeding coefficient (probability two alleles in a diploid zygote are identical

by descent)

Information

1. Effective population size (diploid individuals with separate sexes)

Ne =
4NfNm

Nf +Nm

2. Equilibrium: balanced polymorphism{
p̂ =

sAA

sAA + saa
, q̂ =

saa
sAA + saa

}

3. Equilibrium: recurrent mutation and selection q̂ =

√
u

sa

4. Equilibrium: mutation

{
p̂ =

v

u+ v
, q̂ =

u

u+ v

}

5. Fitness w = p2wAA + 2pqwAa + q2waa

6. Genetic drift (in one generation)

variation =
pq

Ne

7. Hardy–Weinberg equation p2 + 2pq + q2 = 1

8. Inbreeding

• frequency of AA p2 + pqf

• frequency of Aa p2 − 2pqf

• frequency of aa q2 + pqf

9. Mutation (generation (t− 1) to generation t)

• generational change ∆ = (upt−1 − vqt−1)

• frequency of A qt = qt−1 +∆

• frequency of a pt = pt−1 −∆
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9.24 QUANTUM MECHANICS
Notation

• A,B Hermitian operators

• c speed of light (≈ 3× 108 m/sec)

• E energy

• f frequency

• H Hamiltonian

• ~ = h/2π
• J∗ angular momentum

• m mass

• p, p momentum

• λ wavelength

• Ψ wavefunction

• σ standard deviation

• [, ] commutator

• 〈, 〉 bracket

Equations

1. Correspondences E 7→ i~
∂

∂t
, px 7→ −i~

∂

∂x
, p 7→ −i~∇

2. Dirac matrices

γ0 =

[ 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]
, γ1 =

[ 0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

]
, γ2 =

[ 0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0

]
, γ3 =

[ 0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

]

3. Energy

(a) blackbody radiation (n=1,2,. . . ) E = n~f
(b) photon (Plank’s law) E = ~f
(c) particle E = pc = mc2

(d) released by nuclear fission or fusion E = ∆m c2

4. Heisenberg uncertainty principle

〈
A2
〉 〈
B2
〉
≥ 1

4
|〈[A,B]〉|2 or σA σB ≥

1

2
|〈[A,B]〉|

Examples:

σx σpx = σposition σmomentum ≥
~

2
σposition σkinetic energy ≥

~

2m
|〈px〉|

σenergyσtime ≥
~

2
σJi σJj ≥

~

2
|〈Jk〉|

5. Probability density = |Ψ|2 = Ψ∗Ψ

6. Schrödinger equation

i~
∂Ψ

∂t
= HΨ =

(
p2

2m
+ V

)
Ψ =

(
− ~2

2m
∇2 + V

)
Ψ

7. Time evolution
d

dt
〈A〉 =

〈
dA

dt

〉
+
i

~
〈[H,A]〉

8. Wavelength λ =
h

p
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9.24.1 DIRAC BRAKET NOTATION

Bra-ket notation is used for vectors and linear functionals; its use is widespread in

quantum mechanics. The elements are: “bra” 〈φ|, “ket” |ψ〉, and “bra-ket” 〈φ|ψ〉.

1. A ket is conceptually a column vector: |ψ〉 =
[
c0 c1 c2 . . .

]T
.

2. A bra is the conjugate transpose of the ket and vice versa.

3. The bra corresponding to the above ket |ψ〉 is conceptually the row vector

〈ψ| =
[
c∗0 c∗1 c∗2 . . .

]
.

4. The combination of a bra with a ket to form a complex number is called a

bra-ket or braket.

5. If A is a linear operator, then

(a) Applying the operator A to the ket |ψ〉 results in the ket (A |ψ〉) which

may be written |Aψ〉.
(b) Composing the bra 〈φ|with the operatorA results in the bra (〈φ|A). This

is a linear functional defined by (〈φ|A) |ψ〉 = 〈φ| (A |ψ〉) = 〈φ|A|ψ〉 =
〈φ|Aψ〉

(c) The outer product |φ〉 〈ψ| is a rank-one linear operator that maps the ket

|ρ〉 to the ket |φ〉 〈ψ|ρ〉; note that 〈ψ|ρ〉 is a scalar.

6. The bra and ket operators are linear. If the {ci} are complex numbers, then

〈φ| (c1 |ψ1〉+ c2 |ψ2〉) = c1 〈φ|ψ1〉+ c2 〈φ|ψ2〉
(c1 〈φ1|+ c2 〈φ2|) |ψ〉 = c1 〈φ1|ψ〉+ c2 〈φ2|ψ〉

7. The bra and ket operators are associative:
〈φ| (A |ψ〉) = (〈φ|A) |ψ〉
(A |ψ〉) 〈φ| = A(|ψ〉 〈φ|)

In quantum mechanics:

1. The expectation of an observable represented by the linear operator A in the

state |ψ〉 is 〈ψ|A|ψ〉.
2. 〈φ|ψ〉 is the probability that state ψ collapses into the state φ.

3. The Schrödinger equation is Ĥ |Ψ〉 = E |Ψ〉
4. Quantum mechanical operators are easily represented:

p̂ =


 dp

2π
|p〉 p 〈p| =



dp

2π
|p〉
(
−i~ ∂

∂x

)
〈p|

x̂ =

dx |x〉 x 〈x| =


dx |x〉

(
i

~

∂

∂p

)
〈x|

(9.24.1)

5. A quantum wave function is represented as Ψ(x) = 〈x|Ψ〉. A linear operator

acting on this wavefunction is understood to operate on the underlying by kets

by Aψ(x) = 〈x|A|ψ〉. Likewise: Ψp = 〈p|Ψ〉, and Ψk = 〈k|Ψ〉,
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9.25 QUATERNIONS
Notation

• p point in space

• q quaternion

• u unit vector

• θ rotation angle

Concepts

1. A quaternion has the representations

q = w + xi+ yj+ zk = [w x y z] = (s, v)

where s = w, v = [x y z], and {i, j, k} represent unit vectors and satisfy:

ii = jj = kk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

2. The product of the quaternions q1 = (s1, v1) and q2 = (s2, v2) is

q1q2 = (s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2).
3. The conjugate of q is q′ = w − xi− yj− zk = (s,−v).
4. The magnitude of q is ||q|| = √qq′ =

√
w2 + x2 + y2 + z2 =

√
s2 + ||v||2.

5. A unit quaternion has ||q|| = 1. For a unit quaternion q−1 = q′.
6. Quaternion multiplication is associative: (q1q2)q3 = q1(q2q3).
7. Quaternion multiplication is not commutative: q1q2 6= q2q1 in general.

8. Rotations

(a) If u is a unit vector then the unit quaternionq = (s, v) with s = cos θ
2 and

v = u sin θ
2 represents a rotation about u by the angle θ. (The rotation is

clockwise if our line of sight points in the direction pointed to by u.)

(b) A point in space p can be represented by the quaternion P = (0, p). This

point, when rotated, has the representation Protated = qPq−1 = qPq′.
(c) To rotate p by the unit quaternions {qi}ni=1 (first by q1, then by q2, . . . )

form Protated by {qi} = (qn . . .q2q1)P(qn . . .q2q1)
′.

(d) The orthogonal matrix corresponding to a rotation by the unit quaternion

q = a+ bi+ cj+ dk is



a2 + b2 − c2 − d2 2bc− 2ad 2bd+ 2ac

2bc+ 2ad a2 − b2 + c2 − d2 2cd− 2ab
2bd− 2ac 2cd+ 2ab a2 − b2 − c2 + d2




EXAMPLE Consider rotation about the axis w = i + j + k by an angle of 120◦ = 2π
3

radians. The appropriate unit quaternion is

q = (s, v) =

(
cos

θ

2
,

w

||w|| sin
θ

2

)
=

(
cos

π

3
,
i+ j+ k√

3
sin

π

3

)
=

(
1

2
,
i+ j+ k

2

)

If a point has the representation p = ai+ bj+ ck then

Protated = q (0, p) q
′ =

(1, i+ j+ k)

2
(0, ai+ bj+ ck)

(1,−i− j− k)

2
= ci+ aj+ bk

as expected. (The rotation corresponds to a cube, held fixed at one point, being rotated

about the long diagonal through the fixed point. This permutes the axes cyclically.)
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9.26 RELATIVISTIC MECHANICS
Notation

• c speed of light (≈ 3× 108 m/sec)

• m mass

• t time

• x distance

• v velocity

• z redshift

• β Lorentz transformation factor

Equations

1. Factor β =

√
1− v2

c2

2. Redshift z =
v

c
3. Relativistic length contraction ∆x = β ∆x0

4. Relativistic mass increase m =
m0

β

5. Relativistic time dilation ∆t =
∆t0
β

9.26.1 LORENTZ TRANSFORMATION

Notation

• c speed of light (≈ 3× 108 m/sec)

• x0 = ct
• {x1, x2, x3} spatial dimensions

• xT =
[
x0 x1 x2 x3

]

• t time

The Lorentz group of transformations, A, leaves the length of the 4-vector x, invari-

ant under the flat space-time metric: g =

[−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
. Proper Lorentz transforma-

tions have |A| = 1 and are continuous with the identity transformation.

The transformation A can be written as A = exp
(
−∑3

i=1 (θiSi + ζiKi)
)

where θ and ζ are constant 3-vectors; their components are the six parameters of the

transformation. The {Si} matrices generate rotations in three spatial dimensions:

S1 =

[ 0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

]
, S2 =

[ 0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

]
, S3 =

[ 0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

]
(9.26.1)

The {Ki} matrices produce boosts:

K1 =

[
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

]
, K2 =

[
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

]
, K3 =

[
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

]
(9.26.2)

Powers of these matrices may be produced from the relations:

S2
1 =

[ 0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

]
, S2

2 =

[ 0 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 −1

]
, S2

3 =

[ 0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0

]
,

K2
1 =

[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
, K2

2 =

[
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

]
, K2

3 =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

]
,

(9.26.3)

along with S3
i = −Si, K

3
i = Ki and the commutator relations [Si, Sj ] = ǫijkSk,

[Si, Kj] = ǫijkKk, and [Ki, Kj ] = −ǫijkKk, where ǫijk is the permutation symbol.
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9.27 SOLID MECHANICS
Notation

• A area

• C stiffness (tensor)

• E Young’s modulus

• F , F force

• G shear modulus (G = µ)

• I identity matrix

• K bulk modulus

• P pressure

• u displacement

• v velocity

• V volume

• ǫ strain (tensor)

• λ first Lamé parameter

• µ shear modulus (µ = G)

• ν Poisson’s ratio

• ρ density

• σ stress (tensor)

• tr( ) trace function

Equations

1. Basic relations

σ =
F

A
P = −1

3
tr(σ) K = −V ∂P

∂V

ǫ =
1

2

(
∇u+ (∇u)T

)
or ǫij =

1

2
(ui,j + uj,i) =

1

2
(∂iuj + ∂jui)

σij = σji ǫij = ǫji Cijkl = Cklij = Cjikl = Cijlk

2. Constants: Engineering {G, Y, ν} Lamé {λ, µ}
3. Relations between constants (homogeneous isotropic materials)

E =
µ(3λ+ 2µ)

λ+ µ
= 2G(1 + ν) = 3K(1− 2ν)

ν =
λ

2(λ+ µ)
=

E

2G
− 1

µ = G =
λ(1 − 2ν)

2ν
=

E

2(1 + ν)

λ =
Eν

2(1 + ν)(1 − 2ν)
= K − 2G

3

4. Equations of motion ρü = ∇ · σ + F or ρ∂ttui = σji,j + Fi

5. Hooke’s Law σij = Cijklǫkl

6. Navier equations (steady state) (λ+2µ)∇(∇ · u)− µ∇× (∇× u) = 0

7. Saint-Venant’s conditions ǫij,km + ǫkm,ij − ǫik,jm − ǫjm,ik = 0

8. Speed of sound v =

√
K

ρ

9. Stress–strain relation (homogeneous isotropic material)

σ = 2µe+ λ tr(ǫ)I or σij = 2µεij + λδijǫkk

ǫij =
1

E
[(1 + ν)σij − νδijσkk]
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9.28 STATISTICAL MECHANICS
Notation

• Ei energy

• m mass

• T temperature

• Z(T ) partition function

• v velocity

• µ chemical potential

• ρ probability density

• gi degeneracy (number of states with energyEi)

• kB Boltzmann’s constant ≈ 1.38× 10−23 J
K

• Ni number of particles with energyEi

Equations

1. Boltzmann distribution
Ni

N
=
gie

−Ei/(kBT )

Z(T )

with N =
∑

iNi and Z(T ) =
∑

i gie
−Ei/(kBT )

2. Energy distributions [f(E) is the probability that a particle has energyE]

(a) Bose–Einstein f(E) =
1

eE/kT − 1

(b) Fermi–Dirac f(E) =
1

eE/kT + 1

(c) Maxwell–Boltzmann f(E) =
1

eE/kT

3. Characteristic speeds

(a) Average speed vaverage =
2√
π
vmax

(b) Maximum speed vmax =

√
2T

m

(c) Root mean square speed vrms =
3

2
vmax

4. Maxwellian distribution ρ(v) = n0

( m

2πT

)3/2
e−m|v|2/2T

5. Particle thermal energy

(a) One dimensional
mv2x
2

=
T

2

(b) Three dimensional
mv2

2
=

3T

2
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9.29 THERMODYNAMICS
Notation

• State variables

– N particle number

– P pressure

– Q heat

– S entropy

– T temperature

– V volume

– µ chemical potential

– νs frequency

• Thermodynamic potentials

– A Helmholtz free energy

– G Gibbs free energy

– H Enthalpy

– U Internal energy

• σ Stefan’s constant (≈ 5.67× 10−8 W
m2K4 )

1. Laws of thermodynamics

(a) Energy cannot be created, or destroyed, only modified in form.

dU = δQ− δW where

i. dU increase in internal energy of the system

ii. δW infinitesimal amount of Work (W )

iii. δQ infinitesimal amount of Heat (Q)

iv. δ is an “inexact differential” (i.e., path-dependent)

(b) A system operating in a cycle cannot produce a positive heat flow from a

colder body to a hotter body.

∫
δQ

T
=

∫
dS ≥ 0

(c) All processes cease as temperature approaches zero.

If T goes to zero then S becomes constant.

The zeroth law states that if two systems are in equilibrium with a third system,

then the two systems are in equilibrium with each other.

2. Thermodynamic potentials

dA (T, V,Ni) = −S dT − P dv +
∑

i

µidNi

dG (T, P,Ni) = −S dT + V dP +
∑

i

µidNi

dH (S, P,Ni) = T dS + V dP +
∑

i

µidNi

dU (S, V,Ni) = T dS − P dV +
∑

i

µidNi

3. Entropy change at constant T (for phase changes: melting, boiling, . . . )

∆S =
Q

T
4. Planck’s law (electromagnetic radiation at all wavelengths emitted from a

black body in a cavity in thermodynamic equilibrium)
2hν3

c2
1

ehν/kT − 1
5. Stefan’s law rate of energy radiated = σT 4

6. Work done on/by a gas W = P ∆V
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10.1 CALENDAR COMPUTATIONS

10.1.1 DAY OF WEEK FOR ANY GIVEN DAY

The following formula gives the day of the week for the Gregorian calendar (i.e., for

any date after 1582):

W ≡
(
d+ ⌊2.6m− 0.2⌋+ Y +

⌊
Y

4

⌋
+

⌊
C

4

⌋
− 2C

)
(mod 7) (10.1.1)

where

• W is the day of the week (Sunday⇒ 0, . . . , Saturday⇒ 6).

• d is the day of the month (1 to 31).

• m is the month where January and February are treated as months of the pre-

ceding year: March ⇒ 1, April ⇒ 2, . . . , December ⇒ 10, January ⇒ 11,

February⇒ 12.

• C is the century minus one (1997 has C = 19 while 2025 has C = 20).

• Y is the year (1997 has Y = 97 except Y = 96 for January and February).

• ⌊·⌋ denotes the integer floor function.

• The “mod” function returns a non-negative value.

EXAMPLE Consider the date 16 March 2011 for which d = 16, m = 1, C = 20, and

Y = 11. From Equation (10.1.1), we compute

W ≡ 16 + ⌊2.4⌋ + 11 +

⌊
11

4

⌋
+

⌊
20

4

⌋
− 40 (mod 7)

≡ 2 + 2 + 4 + 2 + 5− 5 (mod 7) ≡ 3 (mod 7)

So this date was a Wednesday.

Notes:

• In any given year the following dates fall on the same day of the week: 4/4, 6/6,

8/8, 10/10, 12/12, 9/5, 5/9, 7/11, 11/7, and the last day of February.

• Because 7 does not divide 400, January 1 occurs more frequently on some days

of the week than on others! In a cycle of 400 years, January 1 and March 1

occur on the following days with the following frequencies:

Sun Mon Tue Wed Thu Fri Sat

January 1 58 56 58 57 57 58 56

March 1 58 56 58 56 58 57 57

• The 13th of a month is more likely to be a Friday than any other day.

10.1.2 LEAP YEARS

If a year is divisible by 4, then it will be a leap year, unless the year is divisible by

100 (when it will not be a leap year), unless the year is divisible by 400 (when it will

be a leap year). Hence the list of leap years includes 1896, 1904, 1908, 1992, 1996,

2000, 2004, 2008 and the list of non-leap years includes 1900, 1998, 1999, 2001.
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10.2 CELLULAR AUTOMATA

In a cellular automata there is a grid of cells with each cell containing a state. The

cellular automata evolves according to rules. For a specific cell, the current state of

that cell and the cell’s neighbors control the state of that cell in the next iteration.

In the simplest case the cells are in a rectangular grid and the states are either

0 or 1 (indicated graphically as white and black). We assume that initially all cells,

except some specific ones, are white.

In a one-dimensional cellular automata there is a row of cells whose contents

are replaced each iteration using the rules. Graphically, the sequence of states is

shown as a two-dimensional figure, with each new set of states appearing below the

previous states. If a cell is updated based on its current value and the value of its 2k
nearest neighbors (k on each side), then the next state is based on the current state of

2k + 1 of cells. There are 2(2
2k+1) possible sets of rules in this case.

In the case of k = 1 there are 2(2
3) = 256 sets of rules. A specific rule in this

case is a set of triplet mappings, denoted textually {(111 ⇒ 0), (110 ⇒ 0), . . . ,

(001⇒ 1), (000⇒ 0)} or graphically:

1 1 1

⇓
, 0

1 1 0

⇓
, 0

1 0 1

⇓
, 0

1 0 0

⇓
, 1

0 1 1

⇓
, 1

0 1 0

⇓
, 1

0 0 1

⇓
, 1

0 0 0

⇓
, 0

The sequence of 0’s and 1’s that the rule produces can be interpreted as the number

of the rule. Hence, the above rule is rule number 30 (since 30 = 000111102).
Starting from a single black square, the following shows the evolution of rule 30

after 10, 50, and 100 iterations.

Even in the simple case of a one-dimensional cellular automata, with two types

of states, and only nearest neighbor interactions, there is a wide variety of possible

behavior. Below are the results of several different rules after 50 iterations:

26 126 182 122

138 60 94 73 89

• The cellular automata with rule 30 is chaotic and has been used as a random

number generator.

• Conway’s Game of Life, invented in 1970, is a two-dimensional cellular au-

tomata on a rectangular grid.
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10.3 COMMUNICATION THEORY

10.3.1 INFORMATION THEORY

Let pX = (px1 , px2 , . . . , pxn) be the probability distribution of the discrete random

variable X with Prob (X = xi) = pxi . The entropy of the distribution is

H(pX) = −
∑

xi

pxi log2 pxi . (10.3.1)

The units for entropy are bits. Entropy measures how much information is gained

from learning the value of X . When X takes only two values, p = (p, 1− p), then

H(pX) = H(p, 1− p) = −p log2 p− (1− p) log2(1 − p). (10.3.2)

This is also denoted H(p). The range of H(p) is from 0 to 1 with a maximum at

p = 0.5. Below is a plot of p versusH(p). The maximum of H(pX) is log2 n and is

obtained when X is uniformly distributed, taking n values.

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Given two discrete random variablesX and Y , pX×Y is the joint distribution of

X and Y . The mutual information of X and Y is defined by

I(X,Y ) = H(pX) +H(pY )−H(pX×Y ). (10.3.3)

Note that (a) I(X,Y ) = I(Y,X); (b) I(X,Y ) ≥ 0; and (c) I(X,Y ) = 0 if and only

if X and Y are independent. Mutual information gives the amount of information

that learning a value of X says about the value of Y (and vice versa).

10.3.1.1 Channel capacity

The transition probabilities are defined by tx,y = Prob (Y = y | X = x). The distri-

bution pX determines pY by py =
∑
tx,ypx. The matrix T = (tx,y) is the transition

matrix. The matrix T defines a channel given by a transition diagram (input is X ,

output is Y ). For example (here X and Y only take two values),

x1

x0

y1.

y0*

-j

-tx0,y0

tx1,y1

tx0,y1

tx1,y0
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The capacity of the channel is defined as

C = max
pX

I(X,Y ). (10.3.4)

A channel is symmetric if each row is a permutation of the first row and each

column is a permutation of the first column. The capacity of a symmetric channel

is C = log2 n −H(p), where p is the first row; the capacity is achieved when pX

represents equally likely inputs. The channel shown on the left is symmetric; both

channels achieve capacity with equally likely inputs.

Binary symmetric channel Binary erasure channel

1

0

1

0
*

-j

-
1− p

1− p

p

p

1

0

1

?

0

:

-

z

-
1− p

1− p
p

p

C = 1−H(p) C = 1− p

10.3.1.2 Shannon’s theorem

Let bothX and Y be discrete random variables with values in an alphabetA. A code

is a set of codewords (n-tuples with entries from A) that is in one-to-one correspon-

dence with a set of M messages. The rate R of the code is defined as 1
n log2M .

Assume that the codeword is sent via a channel with transition matrix T by sending

each vector element independently. Define

e = max
all codewords

Prob ((codeword incorrectly decoded)) . (10.3.5)

Shannon’s coding theorem states:

1. If R < C, then there is a sequence of codes with rate R and n→∞ such that

e→ 0.

2. If R ≥ C, then e is always bounded away from 0.

10.3.2 BLOCK CODING

10.3.2.1 Definitions

A code C over an alphabet A is a set of vectors of a fixed length n with entries from

A. Let A be the finite field GF(q) (see Section 2.5.6.1). If C is a vector space over

A, then C is a linear code; the dimension k of a linear code is its dimension as a

vector space. The Hamming distance dH(u, v) between two vectors, u and v, is the

number of places in which they differ. For a vector u over GF(q), define the weight,

wt(u), as the number of non-zero components. Then dH(u, v) = wt(u − v). The

minimum Hamming distance between two distinct vectors in a code C is called the

minimum distance d. A code can detect e errors if e < d. A code can correct t errors

if 2t+ 1 ≤ d.
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10.3.2.2 Coding diagram for linear codes

x message xG codeword y received word yH syndrome- - -

Encoding Channel Decoding

1. A message x consists of k information symbols.

2. The message is encoded as xG ∈ C, where G is a k × n matrix called the

generating matrix.

3. After transmission over a channel, a (possibly corrupted) vector y is received.

4. There exists a parity check matrix H such that c ∈ C if and only if cH = 0.

Thus the syndrome z = yH can be used to try to decode y.

5. IfG has the form [I A], where I is the k× k identity matrix, then H =

[
−A
I

]

10.3.2.3 Cyclic codes

A linear code C of length n is cyclic if (a0, a1, . . . , an−1) ∈ C implies

(an−1, a0, . . . , an−2) ∈ C. To each codeword (a0, a1, . . . , an−1) ∈ C is associated

the polynomial a(x) =
∑n−1

i=0 aix
i. Every cyclic code has a generating polyno-

mial g(x) such that a(x) corresponds to a codeword if and only if a(x) ≡ d(x)g(x)
(mod xn − 1) for some d(x). The roots of a cyclic code are roots of g(x) in some

extension field GF(q′) with primitive element α.

1. BCH Bound: If a cyclic code C has roots αi, αi+1, . . . , αi+d−2, then the min-

imum distance of C is at least d.

2. Binary BCH codes (BCH stands for Bose, Ray-Chaudhuri, and Hoc-

quenghem): Fix m, define n = 2m − 1, and let α be a primitive element

in GF(2m). Define fi(x) as the minimum binary polynomial of αi. Then

g(x) = LCM (f1(x), . . . , f2e(x)) (10.3.6)

defines a generating polynomial for a binary BCH code of length n and mini-

mum distance at least δ = 2e+1 (δ is called the designed distance). The code

dimension is at least n−me.
3. Dual code: Given a code C, the dual code is C⊥ = {a | a · x = 0 for all

x ∈ C}. The code C⊥ is an (n, n− k) linear code over the same field. A code

is self-dual if C = C⊥.

4. MDS codes: A linear code that meets the Singleton bound, n+ 1 = k + d, is

called MDS (for maximum distance separable). Any k columns of a generating

matrix of an MDS code are linearly independent.

5. Reed–Solomon codes: Let α be a primitive element for GF(q) and n = q − 1.

The generating polynomial g(x) = (x− α)(x − α2) · · · (x− αd−1) defines a

cyclic MDS code with distance d and dimension k = n− d+ 1.

6. Perfect codes: A linear code is perfect if it satisfies the Hamming bound,

qn−k =
∑e

i=0

(
n
i

)
(q − 1)i. The binary Hamming codes and Golay codes

are perfect.
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7. Binary Hamming codes: These codes have parameters {n = 2m − 1, k =
2m− 1−m, d = 3}. The parity check matrix is the 2m− 1×mmatrix whose
rows are all of the binary m-tuples in a fixed order. The generating and parity
check matrices for the (7, 4) Hamming code are

G =
[
I A

]
=





1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1



 , H =

[
−A
I

]
=





1 1 0
1 0 1
0 1 1
1 1 1
1 0 0
0 1 0
0 0 1





.

8. Ternary Golay code: This has the parameters {n = 12, k = 6, d = 6}. The
generating matrix is

G =
[
I A

]
=





1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 0 1 2 2 1

0 0 1 0 0 0 1 1 0 1 2 2

0 0 0 1 0 0 1 2 1 0 1 2

0 0 0 0 1 0 1 2 2 1 0 1

0 0 0 0 0 1 1 1 2 2 1 0




. (10.3.7)

10.3.2.4 Table of best binary codes

Let A(n, d) be the number of codewords1 in the largest binary code of length n
and minimum distance d. Note that A(n − 1, d − 1) = A(n, d) if d is odd and
A(n, 2) = 2n−1 (given, e.g., by even weight words).

n d = 4 d = 6 d = 8 d = 10

6 4 2 1 1

7 8 2 1 1

8 16 2 2 1

9 20 4 2 1

10 40 6 2 2

11 72–79 12 2 2

12 144–158 24 4 2

13 256 32 4 2

14 512 64 8 2

15 1024 128 16 4

16 2048 256 32 4

17 2720–3276 256–340 36–37 6

18 5248–6552 512–680 64–74 10

19 10496–13104 1024–1288 128–144 20

20 20480–26208 2048–2372 256–279 40

21 36864–43690 2560–4096 512 42–48

22 73728–87380 4096–6942 1024 68–88

23 147456–173784 8192–13774 2048 64–150

24 294912–344636 16384–24106 4096 128-280

1Data from Sphere Packing, Lattices and Groups by J. H. Conway and N. J. A. Sloane, 2nd ed.,

Springer-Verlag, New York, 1993.
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10.3.2.5 Bounds

Bounds for block codes investigate the trade-offs between the length n, the number

of codewords M , the minimum distance d, and the alphabet size q. The number of

errors that can be corrected is ewith 2e+1 ≤ d. If the code is linear, then the bounds

concern the dimension k with M = qk.

1. Hamming or sphere-packing bound: M ≤ qn
/∑e

i=0

(
n
i

)
(q − 1)i .

2. Plotkin bound: Suppose that d > n(q − 1)/q. Then M ≤ qd
qd−n(q−1) .

3. Singleton bound: For any code, M ≤ qn−d+1; if the code is linear, then

k + d ≤ n+ 1.

4. Varsharmov–Gilbert bound: There is a block code with minimum distance at

least d and M ≥ qn
/∑d−1

i=0

(
n
i

)
(q − 1)i.

10.3.3 SOURCE CODING FOR ENGLISH TEXT

English text has, on average, 4.08 bits/character.

Letter Probability Huffman code Alphabetical code

Space 0.1859 000 00

A 0.0642 0100 0100

B 0.0127 011111 010100

C 0.0218 11111 010101

D 0.0317 01011 01011

E 0.1031 101 0110

F 0.0208 001100 011100

G 0.0152 011101 011101

H 0.0467 1110 01111

I 0.0575 1000 1000

J 0.0008 0111001110 1001000

K 0.0049 01110010 1001001

L 0.0321 01010 100101

M 0.0198 001101 10011

N 0.0574 1001 1010

O 0.0632 0110 1011

P 0.0152 011110 110000

Q 0.0008 0111001101 110001

R 0.0484 1101 11001

S 0.0514 0010 1101

T 0.0796 0010 1110

U 0.0228 11110 111100

V 0.0083 0111000 111101

W 0.0175 001110 111110

X 0.0013 0111001100 1111110

Y 0.0164 001111 11111110

Z 0.0005 0111001111 11111111

Cost 4.0799 4.1195 4.1978
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10.4 CONTROL THEORY

General terminology

1. If the control is bounded above and below (say u−i < ui < u+i ), then a bang–

bang control is one for which ui = u−i or ui = u+i . (That is, for every t, either

ui(t) = u−i (t) or ui(t) = u+i (t); switches are possible.) A bang–off–bang

control is one for which ui = 0, ui = u−i , or ui = u+i .

2. If u(t) is the control signal sent to a system, y(t) is the measured output, r(t) is

the measured output, and the error is r(t) = r(t)−y(t), then the Proportional-

Integral-Differential (PID) controller has the form

u(t) = KP e(t) +KI

∫
e(t) dt+KD

de(t)

dt
(10.4.1)

3. In H∞ (i.e., “H-infinity”) methods a controller is selected to minimize the

H∞ norm. The H∞ norm is the maximum singular value of a matrix-valued

function; over the space of matrix-valued functions which are analytic and

bounded in the open right-half complex plane.

10.4.1 CONTINUOUS LINEAR TIME-INVARIANT SYSTEMS

Let x be a state vector, let y be an observation vector, and let u be the control. If a

system evolves as:

ẋ = Ax +Bu

y = Cx +Du
(10.4.2)

1. Taking Laplace transforms and solving the algebraic equations results in ỹ =
G(s)ũ where G(s) is the transfer function G(s) = C(sI −A)−1B +D.

2. A system is said to be controllable if and only if for any times {t0, t1} and any

states {x0, x1} there exists a control u(t) such that x(t0) = x0 and x(t1) = x1.

The system is controllable if and only if

rank
[
B AB A2B . . . An−1B

]
= n. (10.4.3)

For the discrete linear time-invariant system x(k + 1) = Ax(k) + Bu(k) the

system is controllable if and only if Equation (10.4.3) is satisfied.

3. If, given u(t) and y(t) on some interval t0 < t < t1, the value of x(t) can be

deduced on that interval, then the system is said to be observable. Observabil-

ity is equivalent to the condition

rank
[
CT ATCT . . .

(
A(n−1)

)T
CT

]
= n. (10.4.4)
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10.4.2 PONTRYAGIN’S MAXIMUM PRINCIPLE

Consider a system evolving as

dx

dt
= b(t, x, u) x(0) = given t ≥ 0 (10.4.5)

where u is the control. The goal is to minimize the total cost, defined to be

V (x(0)) =

∫ τ

0

c(t, x, u) dt+ C(τ, x(τ)) (10.4.6)

Define the Hamiltonian

H(t, x, u, λ) = λTb(t, x, u)− c(t, x, u) (10.4.7)

Pontryagin’s maximum principle states that, if (x∗, u∗) is optimal then, for all t ≤ τ ,

there are adjoint paths (λ) and µ such that

1. H(t, x∗, u, λ) + µ has a maximum value of 0, achieved at u = u∗

2.
dλT

dt
= −λT∇b(t, x∗, u∗) +∇c(t, x∗, u∗)

3.
dµ

dt
= −λT db(t, x∗, u∗)

dt
+
d c(t, x∗, u∗)

dt

4.
dx∗
dt

= b(t, x∗, u∗)

5. Transversality conditions. Either (“time-constrained” means τ is fixed):

(a) time un-constrained: µ+
dC

dt
= 0

(b) time-constrained:
(
λT +∇C(τ, x(τ))

)
σ = 0 for all σ ∈ Σ

Note that if b, c, and C do not depend explicitly on t, then µ = 0.

The first four statements can be written in terms of the Hamiltonian as

0 =
∂H

∂u
,

dλ

dt
= −∂H

∂x
,

dµ

dt
= −∂H

∂t
,

dx

dt
=
∂H

∂λ
. (10.4.8)

Example Consider a car on a straight road with initial position p0 and velocity q0. The

goal is to bring the car to rest, at position 0, in minimal time. The control is the acceleration u
with |u| ≤ 1 (i.e., u = 1 is full throttle and u = −1 is full reverse). The dynamics are:

d

dt

[
p
q

]
=
dx

dt
= b(t, x, u) =

[
q
u

]
x(0) =

[
p0
q0

]
, x(T ) =

[
0
0

]
.

The goal is to minimize
∫ T

0
1 dt; where T is the first time for which x(T ) = (0, 0); hence

c = 1 and C = 0. Since time un-constrained, µ need not be considered.

The Hamiltonian is H(t, x, u, λ) = λTb− c = λ1q + λ2u− 1.

1. To maximize H , u must be an extremal value. Since |u| ≤ 1, we have u∗ = sgn(λ2).
Hence, H = λ1q + |λ2| − 1.

2. When the car is stopped at t = T , we have q(T ) = 0; hence (since H = 0 for the

optimal control) we have λ2(T ) = ±1.
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3. The adjoint equations are:
dλ1

dt
= −∂H

∂p
= 0 and

dλ2

dt
= −∂H

∂q
= −λ1. So

λ1(t) = λ1 is a constant and λ2(t) = λ2(0) − λ1t.

4. Note that
dp

dt
=
∂H

∂λ1
= q and

dq

dt
=
∂H

∂λ2
= u = sgn(λ2).

5. There are now cases to consider:

(a) If λ2(T ) = 1 and λ1 ≥ 0, then λ2(t) ≥ 0. In this case q(t) = t and p(t) =
t2

2
= q2

2
.

(b) If λ2(T ) = 1 and λ1 < 0, then λ2(t) ≥ 0 (and p = q2

2
) only for t ≤ t0 = 1

|λ1| .

For t > t0 we have λ2(t) < 0, so u = −1, q(t) = t − 2t0 and p(t) =

2tt0 − t2

2
− t20.

There is a similar analysis for λ2(T ) = −1. The result is that there is a switching locus given

by p = − sgn(q) q
2

2
. An initial state (p0, q0) that is above the locus lies on a parabola with

p = − q2

2
+ d with d > 0. The optimal control is to initially move around the parabola until

the switching locus is reached. Then the acceleration changes sign and the car is brought to

rest at the origin by moving along the locus.

10.5 COMPUTER LANGUAGES

Common computer languages used by scientists and engineers.

1. Freely available

• Numerical C++ www.gnu.org/software/commoncpp

• Numerical Octave www.gnu.org/software/octave

• Statistics R www.r-project.org

• Symbolic Maxima maxima.sourceforge.net

• Symbolic Sage www.sagemath.org

2. Commercial

• Numerical MathCad www.mathsoft.com

• Numerical MATLAB www.mathworks.com

• Optimization AMPL www.ampl.com

• Statistics Minitab www.minitab.com

• Statistics SPSS www.spss.com

• Symbolic Maple www.maplesoft.com

• Symbolic Mathematica www.wolfram.com
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10.6 CRYPTOGRAPHY

Cryptography is the practice and study of hiding information. A cipher is a pair of

algorithms for encrypting and decrypting the message.

Suppose Alice wants to send a message (the plaintext) M to Bob. Using a key

Alice encrypts M to create the ciphertext E, and sends E to Bob. Bob converts E
back to M , also using a key. The goal is to make it difficult to convert E to M if

some information is unknown. Common cipher classes include:

• Secret key cryptography uses one key for encryption and decryption. Examples

include:

– Data Encryption Standard (DES) is a block-cipher that is out of use.

Triple-DES with 168-bit keys is currently used.

– Advanced Encryption Standard (AES) uses a block-cipher with 128-bit

keys and blocks.

• Public key cryptography uses one key for encryption and another key for de-

cryption. These depend upon one-way functions; mathematical functions that

are easy to compute but difficult to invert. (The existence of one-way functions

has never been proven. If P = NP, then they do not exist.)

For example, multiplying two 1,000-digit numbers is easy, factoring a 2,000-

digit number to obtain its 1,000-digit factors is hard. Also, given two number

a and b it is easy to compute ab. Given a number N that is of this form, it is

difficult to determine a and b.
Examples include:

– Elliptic curve cryptography (ECC); see Section 10.9. ECC encryption

exploits the difficulty of the logarithm problem. ECC methods provide

security equivalent to RSA while using fewer bits.

– RSA encryption (named after Rivest, Shamir, and Adleman) uses a vari-

able size encryption block and a variable size key. RSA encryption ex-

ploits the difficulty of factoring large numbers.

The RSA process is:

1. Initialization

(a) Bob randomly selects two large primes p and q, with p 6= q.

(b) The values n = pq and φ ≡ φ(n) = (p− 1)(q− 1) are computed, where

φ is Euler’s totient function.

(c) Bob selects an integer e with 1 < e < φ and GCD(e, φ) = 1.

(d) Bob computes the integer d such that 1 < d < φ and ed ≡ 1 (mod φ).
(This can be achieved with the Euclidean algorithm.)

(e) Bob publishes the values (n, e) and keeps the value of d secret.

2. Use

(a) Alice wants to send the plaintext number M to Bob.

(b) Alice computes the ciphertext E =M e (mod n) and sends it to Bob.

(c) Bob accepts E and computes Ed (mod n) = Mde (mod n) = M
(mod n); thus recovering the plaintext message.
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10.7 DISCRETE DYNAMICAL SYSTEMS AND
CHAOS

A dynamical system described by a function f :M →M is chaotic if

1. f is transitive—that is, for any pair of non-empty open sets U and V in M
there exists a positive constant k such that fk(U) ∩ V is not empty (here

fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

); and

2. The periodic points (the points that map to themselves after a finite number of

iterations) of f are dense in M ; and

3. f has a sensitive dependence on initial conditions—that is, there is a positive

number δ (depending only on f and M ) such that in every non-empty open

subset of M there is a pair of points whose eventual iterates under f are sepa-

rated by a distance of at least δ.

Some systems depend on a parameter and become chaotic for some values of that

parameter. There are various routes to chaos, one of them is via period doubling

bifurcations. Let the distance between successive bifurcations of a process be dk.

The limiting ratio δ = limk→∞ dk/dk+1 is constant in many situations and is equal

to Feigenbaum’s constant δ ≈ 4.6692016091029.

Some chaotic one-dimensional maps are:

1. Logistic map: xn+1 = 4xn(1− xn) with x0 ∈ [0, 1].

Solution is xn =
1

2
− 1

2
cos[2n cos−1(1− 2x0)].

2. Tent map: xn+1 = 1− 2
∣∣xn − 1

2

∣∣ with x0 ∈ [0, 1].

Solution is xn =
1

π
cos−1[cos(2nπx0)].

3. Baker transformation: xn+1 = 2xn (mod 1) with x0 ∈ [0, 1].

Solution is xn =
1

π
cot−1[cot(2nπx0)].

Chaotic differential equations include: ẍ+aẋ−ẋ2+x = 0 for 2.0168 < a < 2.0577
and ẍ+ x3 = sinΩt for most of the range 0 < Ω < 2.8.

10.7.1 ERGODIC HIERARCHY

The ergodic hierarchy is a classification of dynamical systems:

Ergodic ⊃Weak Mixing ⊃ Strong Mixing ⊃ Kolmogorov ⊃ Bernoulli (10.7.1)

with a precise technical definition for each of the five levels. The higher up levels

are “more random”, with a Bernoulli System being “completely random.” It may be

that Strong Mixing is a necessary condition for a system to be chaotic, and being a

Kolmogorov System is a sufficient condition for a system to be chaotic.
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10.7.2 JULIA SETS AND THE MANDELBROT SET

Consider the complex points {zn} formed by iterating the map zn+1 = z2n + c with

z0 = z. For each z, either the iterates remain bounded (z is in the prisoner set)

or they escape to infinity (z is in the escape set). The Julia set Jc is the boundary

between these two sets. Using lighter colors to indicate a “faster” escape to infinity,

Figure 10.1 shows two Julia sets. One of these Julia sets is connected, the other is

disconnected. The Mandelbrot set, M , is the set of those complex values c for which

Jc is a connected set (see Figure 10.2). Alternately, the Mandelbrot set consists of

all points c for which the discrete dynamical system, zn+1 = z2n + c with z0 = 0,

converges.

The boundary of the Mandelbrot set is a fractal. There is no universal agreement

on the definition of “fractal.” One definition is that it is a set whose fractal dimension

differs from its topological dimension.

FIGURE 10.1
Connected Julia set for c = −0.5i (left). Disconnected Julia set for c = − 3

4
(1 + i) (right).

(Julia sets are the black objects.)

FIGURE 10.2
The Mandelbrot set. The leftmost point has the coordinates (−2, 0).
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10.7.3 LOGISTIC MAP

Consider un+1 = f(un) = aun(1 − un) with a ∈ [0, 4]. Note that if 0 ≤ u0 ≤ 1
then 0 ≤ un ≤ 1. The fixed points satisfy u = f(u) = au(1 − u); they are u = 0
and u = (a− 1)/a.

1. If a = 0 then un = 0.
2. If 0 < a ≤ 1 then un → 0.
3. If 1 < a < 3 then un → (a− 1)/a.
4. If 3 ≤ a < 3.449490 . . . then un oscillates between the two roots of

u = f(f(u)) which are not roots of u = f(u), that is,

u± = (a+ 1±
√
a2 − 2a− 3)/2a.

The location of the final state is summarized by the following diagram (the horizontal

axis is the a value).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimal values of a at which a cycle with a given number of points appears:

n 2n points in a cycle minimal a

1 2 3

2 4 3.449490. . .

3 8 3.544090. . .

4 16 3.564407. . .

5 32 3.568750. . .

6 64 3.56969. . .

7 128 3.56989. . .

8 256 3.569934. . .

9 512 3.569943. . .

10 1024 3.5699451. . .

11 2048 3.569945557. . .
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10.8 ELECTRONIC RESOURCES

10.8.1 PROFESSIONAL MATHEMATICAL ORGANIZATIONS

1. American Mathematical Society (AMS) www.ams.org

2. American Mathematical Association of Two-Year Colleges

www.amatyc.org

3. American Statistical Association www.amstat.org

4. Association for Symbolic Logic www.aslonline.org

5. Association for Women in Mathematics www.awm-math.org

6. Canadian Applied Mathematics Society www.caims.ca

7. Canadian Applied and Industrial Mathematics Society

www.cms.math.ca

8. Casualty Actuarial Society www.casact.org

9. Conference Board of the Mathematical Sciences www.cbmsweb.org

10. Council on Undergraduate Research www.cur.org

11. The Fibonacci Association www.mscs.dal.ca/Fibonacci

12. Institute for Operations Research and the Management Sciences

(INFORMS) www.informs.org

13. Institute of Mathematical Statistics www.imstat.org

14. International Mathematics Union (IMU) www.mathunion.org

15. Joint Policy Board for Mathematics www.jpbm.org

16. Kappa Mu Epsilon (κµǫ) www.kappamuepsilon.org
17. The Mathematical Association of America (MAA) www.maa.org

18. Mathematical Programming Society www.mathprog.org

19. Mu Alpha Theta (µαθ) www.mualphatheta.org

20. National Association of Mathematicians www.nam-math.org

21. The National Council of Teachers of Mathematics www.nctm.org

22. Pi Mu Epsilon (πµǫ) www.pme-math.org
23. Rocky Mountain Mathematics Consortium rmmc.asu.edu

24. Society of Industrial and Applied Mathematics (SIAM) www.siam.org

25. The Society for Mathematical Biology www.smb.org

26. Society of Actuaries www.soa.org

27. Statistical Society of Canada www.ssc.ca

10.8.2 INTERACTIVE SITES

1. oeis.org
The On-Line Encyclopedia of Integer Sequences allows the “next term” in a sequence

to be determined. (See page 21.)

2. ddrive.cs.dal.ca/~isc/standard.html
If a real number is input to the Inverse Symbolic Calculator, it will determine where

this number might have come from.

3. aleph0.clarku.edu/~djoyce/julia/explorer.html
Useful for exploring the Mandelbrot and Julia sets.
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10.8.3 REFERENCE SITES

1. en.wikipedia.org/wiki/Mathematics
Entry point to a massive number of submitted articles on mathematics. Mathematical

tables are here en.wikipedia.org/wiki/Category:Mathematical_tables.

2. dir.yahoo.com/Science/mathematics
A very large list of useful sites relating to mathematics. It is perhaps the best place to

start researching an arbitrary mathematical question not covered elsewhere in this list.

3. www.ams.org/mathweb/mi-journals2.html
Contains a collection of electronic mathematics research journals.

4. gams.cam.nist.gov
The Guide to Available Mathematical Software.

5. www.ima.umn.edu
The Institute for Mathematics and its Applications at the University of Minnesota.

6. primes.utm.edu/largest.html
Information about primes, including largest known primes of various types.

7. www.wavelet.org
The Wavelet Digest contains questions and answers about wavelets, and announce-

ments of papers, books, journals, software, and conferences.

8. www.georgehart.com/virtual-polyhedra/vp.html
An online “Encyclopedia of Polyhedra.”

9. dlmf.nist.gov
The “NIST Handbook of Mathematical Functions” from the National Institute of Stan-

dards and Technology.

10. mathworld.wolfram.com
A comprehensive on-line encyclopedia of mathematics with more than 10,000 entries

and thousands of figures and animated graphics.

11. www.comap.com
The Consortium for Mathematics and its Applications (COMAP), with links appropri-

ate for elementary, high school, and college undergraduates. COMAP sponsors con-

tests in mathematics for college students and high school students.

12. arxiv.org/archive/math
A mathematics preprint server based at the Los Alamos National Laboratory.

13. www.fields.utoronto.ca/aboutus/jcfields/fields_medal.html
The Fields medal, a high honor, is a prize awarded to no more than four mathematicians

every four years.

14. www.genealogy.ams.org
The mathematics genealogy project; given the name of a PhD mathematician, this site

will tell you who their thesis advisor was.

Example: The editor-in-chief of this book has the ancestral sequence of advisors:

D. Zwillinger⇒ B. S. White⇒ G. C. Papanicolaou⇒ J. B. Keller⇒ R. Courant⇒
D. Hilbert⇒ C. L. F. Lindemann⇒ C. F. Klein⇒ R. O. S. Lipschitz and J. Plucker

⇒ G. P. L. Dirichlet⇒ S. D. Poisson⇒ J. L. Lagrange⇒ L. Euler⇒ J. Bernoulli
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10.9 ELLIPTIC CURVES

Consider the general cubic curve Ax3 + Bx2y + Cxy2 + Dy3 + Ex2 + Fxy +
Gy2 +Hx+ Iy + J = 0 over a field F . By an appropriate change of variables the

curve can be simplified:

• If F has characteristic 2, to y2+αy = x3 +βx2+ cxy+ dx+ e. A commonly

considered special case is (here b 6= 0)

y2 + xy = x3 + ax2 + b (10.9.1)

• If F has characteristic 3, to y2 = x3 + ax2 + bx+ c.
• If F has characteristic not equal to 2 or 3 (e.g., F is R or C) to

y2 = x3 + ax+ b (10.9.2)

The graph of Equation (10.9.2) is symmetric about the x-axis, see Figure 10.3

for different values of a and b.

FIGURE 10.3
The elliptic curve y2 = x3 + ax+ b for different values of a and b.

y2 = x3 − 1 y2 = x3 + 1 y2 = x3 − 3x+ 3 y2 = x3 − 4x

A curve F (x, y) = 0 is singular if there are any points with ∂F
∂x = 0 = ∂F

∂y .

Equation (10.9.2) will be non-singular if the curve’s discriminant,−16(4a3+27b2),
is non-zero. In this case the curve does not have repeated roots.

The points on an elliptic curve can form an Abelian group if the curve is non-

singular. There also needs to be a point at infinity indicated by ∞; it is the group

identity. The group’s binary operation is called addition, denoted “+.” Two points

P1 = (x1, y1) and P2 = (x2, y2) can be added,P1+P2 = P3 = (x3, y3), as follows:

• If P1 =∞ then P3 =∞+ P2 = P2.

• If P1 = −P2 then P3 =∞.

• Otherwise, for Equation (10.9.2)

– If x1 6= x2 then λ = y1−y2

x1−x2
, x3 = λ2−x1−x2, and y3 = λ(x1−x3)−y1.

– If P1 = P2 and y1 = 0 then P3 =∞.

– If P1 = P2 and y1 6= 0 then λ =
3x2

1+a
2y1

, x3 = λ2 − 2x1, and

y3 = λ(x1 − x3)− y1.
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• Otherwise, for Equation (10.9.1)

– If x1 6= x2 then λ = y1+y2

x1+x2
, x3 = λ2 + λ+ x1 + x2 + a, and

y3 = λ(x1 + x3) + x3 + y1.

– If P1 = P2 then λ = x1+
y1

x1
, x3 = λ2+λ+a, and y3 = x21+(λ+1)x3.

Addition can be understood geometrically: a line is drawn throughP1 and P2. Either

this line does not intersect the curve and the result is∞, or it does intersect the curve.

If the line does intersect the curve, then reflect the point of intersection about the x-

axis (i.e., change the sign of the y term); this results in P3. See Figure 10.4.

FIGURE 10.4
Addition of two points on an elliptic curve. Distinct points (left, R = P + Q) and the same

point (right, R = P + P = 2P ).

Now assume that the field F is not the real numbers (as implicitly assumed

above) but of finite order; for example, Fp for a prime p. If the determinant of

the curve is non-zero (modulo p) then the points form a group, as before. (The

computation of λ in the addition formulas is then taken modulo p.)

EXAMPLE

Consider the points on the curve

y2 = x3 − 1 over the field F17.

There are 17 such points:

{. . . , (3, 3), (3, 14), (7, 6),
(7, 11), (8, 1), (8, 16), . . . }.
Note that the points are

symmetric about the line y = 8.5.

EXAMPLE
Now assume that the field is F2m with 2m elements. In this case, the elliptic curve

in Equation (10.9.1) is used. For example, consider y2 + xy = x3 + g4x2 + 1 over

the field F24 , where g is a multiplicative generator of F24 satisfying g4 = g + 1. The

15 points on this elliptic curve are: (1, g6), (1, g13), (g3, g13), (g3, g8), (g5, g11),
(g5, g3), (g6, g14), (g6, g8), (g9, g10), (g9, g13), (g10, g8), (g10, g), (g12, g12),
(g12,∞), and (∞, 1).
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Scalar “multiplication” of an integer k by the elliptic curve point P to obtain

a new elliptic curve point is achieved by the “double and add” algorithm. That is:

2P = P + P , 3P = (2P ) + P , 4P = (2P ) + (2P ), 5P = (4P ) + P , etc. The

discrete logarithm for elliptic curves is to determine k when givenP and kP . Elliptic

curve cryptography (ECC) schemes exploit the difficulty of the logarithm problem.

• Key exchange is a process by which Alice and Bob secretly determine a key

that others cannot determine. The process is:

1. Alice and Bob agree on an elliptic curve to use, a finite field F , an initial

point P0, and a process for creating a secret key from an elliptic curve

point (e.g., given P = (x, y) the key could be x).

2. Alice selects a secret numberA, creates PA = AP0, sends PA to Bob.

3. Bob selects a secret number B, creates PB = BP0, sends PB to Alice.

4. Alice accepts PB and computes PAB = APB = ABP0.

5. Bob accepts PA and computes PAB = BPA = ABP0.

6. Alice and Bob create the same secret key from PAB .

Due to the difficulty of the logarithm problem, an observer who knows the

elliptic curve used and {F, P0, PA, PB} will not be able to easily determine

PAB and the resulting secret key.

The key exchange algorithm above is the basic Diffie–Hellman key exchange

done over an Elliptic Curve group. The more common approach is to use

Diffie–Hellman key exchange over a multiplicative group. In this method two

numbers are made public: p (a prime) and g (a primitive root modulo p). Alice

selects a secret number A, creates α = gA (mod p), and sends this to Bob.

Bob selects a secret numberB, creates β = gB (mod p), and sends this to Al-

ice. The secret key is thenK , computed by Alice as K = βA (mod p) = gAB

(mod p) and computed by Bob as K = αB (mod p) = gAB (mod p).

• Secure communication (El-Gamal process)

Alice and Bob agree on an elliptic curve to use, a finite field F , an initial point

P0, and a process for converting between a number and an elliptic curve point

(e.g., given P = (x, y) the value could be x).

1. Initialization

Bob selects a secret number B, creates PB = BP0, sends PB to Alice.

This can be used for many messages.

2. Encryption

Alice wants to send a message z, which maps to the pointPz on the elliptic

curve, to Bob. Alice selects a secret number A and creates the pair of

values (z1, z2) = (AP0, Pz +APB) and sends them to Bob.

3. Decryption

Bob accepts the pair of values (z1, z2) and determines the point sent via

z2 − Bz1 = (Pz + APB) − B(AP0) = Pz + (ABP0 − BAP0) = Pz .

From Pz the message z can be determined.
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10.10 FINANCIAL FORMULAS
Notation

A amount that P is worth, after n time periods, with i percent interest per period

B total amount borrowed

P principal to be invested (equivalently, present value)

a future value multiplier after one time period

i percent interest per time period (expressed as a decimal)

m amount to be paid each time period

n number of time periods

Note that the units of A, B, P , and m must all be the same, for example, dollars.

10.10.1 FORMULAS CONNECTING FINANCIAL TERMS

1. Interest: Let the principal amount P be invested at an interest rate of i% per

time period (expressed as a decimal), for n time periods. Let A be the amount

that this is worth after n time periods. Then

(a) Simple interest:

A = P (1 + ni) and P =
A

(1 + ni)
and i =

1

n

(
A

P
− 1

)
.

(10.10.1)

(b) Compound interest

A = P (1 + i)n and P =
A

(1 + i)n
and i =

(
A

P

)1/n

− 1.

(10.10.2)

When interest is compounded q times per time period for n time periods,

it is equivalent to an interest rate of (i/q)% per time period for nq time

periods.

A = P

(
1 +

i

q

)nq

,

P = A

(
1 +

i

q

)−nq

,

i = q

[(
A

P

)1/nq

− 1

]
.

(10.10.3)

Continuous compounding occurs when the interest is compounded in-

finitely often in each time period (i.e., q →∞). In this case: A = Pein.

2. Present value: If A is to be received after n time periods of i% interest per

time period, then the present value P of such an investment is given by (from

Equation (10.10.2)) P = A(1 + i)−n.
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3. Annuities: Suppose that the amountB (in dollars) is borrowed, at a rate of i%
per time period, to be repaid at a rate of m (in dollars) per time period, for a

total of n time periods.

m = Bi
(1 + i)n

(1 + i)n − 1
, (10.10.4)

B =
m

i

(
1− 1

(1 + i)n

)
. (10.10.5)

Using a = (1 + i), these equations can be written more compactly as

m = Bi
an

an − 1
and B =

m

i

(
1− 1

an

)
. (10.10.6)

10.10.2 EXAMPLES

1. Question: If $100 is invested at 5% per year, compounded annually for 10

years, what is the resulting amount?

• Analysis: Using Equation (10.10.2), we identify

(a) Principal invested, P = 100 (the units are dollars)

(b) Time period, 1 year

(c) Interest rate per time period, i = 5% = 0.05

(d) Number of time periods, n = 10

• Answer: A = P (1 + i)n or A = 100(1 + 0.05)10 = $162.89.

2. Question: If $100 is invested at 5% per year and the interest is compounded

quarterly (4 times a year) for 10 years, what is the final amount?

• Analysis: Using Equation (10.10.3) we identify

(a) Principal invested, P = 100 (the units are dollars)

(b) Time period, 1 year

(c) Interest rate per time period, i = 5% = 0.05

(d) Number of time periods, n = 10

(e) Number of compounding time periods, q = 4

• Answer: A = P
(
1 + i

q

)nq
or A = 100(1+ 0.05

4 )4·10 = 100(1.0125)40

= $164.36.

• Alternate analysis: Using Equation (10.10.2), we identify

(a) Principal invested, P = 100 (the units are dollars)

(b) Time period, quarter of a year

(c) Interest rate per time period, i = 5%
4 = 0.05

4 = 0.0125

(d) Number of time periods, n = 10 · 4 = 40

• Alternate answer: A = P (1 + i)n or A = 100(1.0125)40 = $164.36.
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3. Question: If $100 is invested now, and we wish to have $200 at the end of 10

years, what yearly compound interest rate must we receive?

• Analysis: Using Equation (10.10.2), we identify

(a) Principle invested, P = 100 (the units are dollars)

(b) Final amount,A = 200

(c) Time period, 1 year

(d) Number of time periods, n = 10

• Answer: i =
(
A
P

)1/n − 1 or i =
(
200
100

)1/10 − 1 = 0.0718. Hence, we

must receive an annual interest rate of 7.2%.

4. Question: An investment returns $10,000 in 10 years. If the interest rate will

be 10% per year, what is the present value? (That is, how much money would

have to be invested now to obtain this amount in 10 years?)

• Analysis: Using Equation (10.10.2), we identify

(a) Final amount,A =10,000 (the units are dollars)

(b) Time period, 10 years

(c) Interest rate per time period, i = 10% = 0.1

(d) Number of time periods, n = 10

• Answer: P = A(1 + i)−n = 10,000(1.1)−10 = 3855.43; the present

value of this investment is $3,855.43.

5. Question: A mortgage of $100,000 is obtained with which to buy a house.

The mortgage will be repaid at an interest rate of 6% per year, compounded

monthly, for 30 years. What is the monthly payment?

• Analysis: Using Equation (10.10.6), we identify

(a) Amount borrowed,B = 100, 000 (the units are dollars)

(b) Time period, 1 month

(c) Interest rate per time period, i = 0.06/12 = 0.005

(d) Number of time periods, n = 30 · 12 = 360

• Answer: a = 1 + i = 1.005 and m = Bi an

an−1 = (100, 000)(.005)

× (1.005)360

(1.005)360−1 = 599.55. The monthly payment is $599.55.

6. Question: Suppose that interest rates on 15-year mortgages are currently 6%,

compounded monthly. By spending $800 per month, what is the largest mort-

gage obtainable?

• Analysis: Using Equation (10.10.6), we identify

(a) Time period, 1 month

(b) Payment amount, m = 800 (the units are dollars)

(c) Interest rate per time period, i = 0.06/12 = 0.005

(d) Number of time periods, n = 15 · 12 = 180

• Answer:

a = 1 + i = 1.005 and B = m (1− 1/an) /i = 800
0.005

(
1− 1

1.005180

)

= 94802.81. The largest mortgage amount obtainable is $94,802.81.
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10.10.3 DOUBLING TIME - THE RULE OF 72

The “rule of 72” is an approximation for how long it takes the value of money to

double. The computation is simple: divide the yearly interest rate into the number

72, the result is a number of years needed. The value 72 is used since it has many

small divisors (e.g., 2,3,4,6,8); the value 69 would be more accurate.

EXAMPLE If you have $100 and the interest rate is 9%, it will take 72
9

= 8 years for

the money to double to $200. (The actual amount obtained after 8 years is (1.09)8 =
$199.26 ≈ $200.)

10.10.4 FINANCIAL TABLES

10.10.4.1 Compound interest: find final value

The following table uses Equation (10.10.2) to determine the final value in dollars

(A) when one dollar (P = 1) is invested at an interest rate of i per time period, the

length of investment time being n time periods.

For example, if $1 is invested at a return of 3% per time period, for n = 60 time

periods, then the final value would be $5.89. Analogously, if $10 had been invested,

then the final value would be $59.92.

Interest rate (i)
n 3% 4% 5% 6% 7% 8% 9% 10%

2 1.061 1.082 1.103 1.123 1.145 1.166 1.188 1.210

4 1.126 1.170 1.216 1.263 1.311 1.361 1.412 1.464

6 1.194 1.265 1.340 1.419 1.501 1.587 1.677 1.772

8 1.267 1.369 1.478 1.594 1.718 1.851 1.993 2.144

10 1.344 1.480 1.629 1.791 1.967 2.159 2.367 2.594

12 1.426 1.601 1.796 2.012 2.252 2.518 2.813 3.138

20 1.806 2.191 2.653 3.207 3.870 4.661 5.604 6.728

24 2.033 2.563 3.225 4.049 5.072 6.341 7.911 9.850

36 2.898 4.104 5.792 8.147 11.424 15.97 22.25 30.91

48 4.132 6.571 10.40 16.39 25.73 40.21 62.59 97.02

60 5.892 10.52 18.68 32.99 57.95 101.26 176.03 304.48
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10.10.4.2 Compound interest: find interest rate

The following table uses Equation (10.10.2) to determine the compound interest rate

i that must be obtained from an investment of one dollar (P = 1) to yield a final

value of A (in dollars) when the initial amount is invested for n time periods.

For example, if $1 is invested for n = 60 time periods, and the final amount

obtained is $4.00, then the interest rate was 2.34% per time period.

Return after investing $1 for n time periods (A)

n $2.00 $3.00 $4.00 $5.00 $6.00 $7.00 $8.00 $9.00 $10.00

1 100 200 300 400 500 600 700 800 900

2 41.4 73.2 100 123 144 164 182 200 216

3 25.9 44.2 58.7 71.0 81.7 91.3 100 108 115

4 18.9 31.6 41.4 49.5 56.5 62.7 68.2 73.2 77.8

5 14.8 24.5 31.9 37.9 43.1 47.6 51.6 55.3 58.5

10 7.18 11.6 14.8 17.4 19.6 21.5 23.1 24.6 25.9

12 5.95 9.59 12.2 14.3 16.1 17.6 18.9 20.1 21.2

20 3.53 5.65 7.18 8.38 9.37 10.2 11.0 11.6 12.2

24 2.93 4.68 5.95 6.94 7.75 8.45 9.05 9.59 10.1

36 1.94 3.10 3.93 4.57 5.10 5.55 5.95 6.29 6.61

48 1.46 2.31 2.93 3.41 3.80 4.14 4.43 4.68 4.91

60 1.16 1.85 2.34 2.72 3.03 3.30 3.53 3.73 3.91

10.10.4.3 Compound interest: find annuity

The following table uses Equation (10.10.4) to determine the annuity (or mortgage)

payment that must be paid each time period, for n time periods, at an interest rate of

i% per time period, to pay off a loan of one dollar (B = 1).

For example, if $100 is borrowed at 3% interest per time period, and the amount

is to be paid back in equal amounts over n = 10 time periods, then the amount paid

back per time period is $11.72.

Interest rate (i)
n 2% 3% 4% 5% 6% 7% 8% 9% 10%

1 1.020 1.030 1.040 1.050 1.060 1.070 1.080 1.090 1.100

2 0.515 0.523 0.530 0.538 0.545 0.553 0.562 0.569 0.576

3 0.347 0.354 0.360 0.367 0.374 0.381 0.388 0.395 0.402

4 0.263 0.269 0.276 0.282 0.289 0.295 0.302 0.309 0.316

5 0.212 0.218 0.225 0.231 0.237 0.244 0.251 0.257 0.264

6 0.179 0.185 0.191 0.197 0.203 0.210 0.216 0.223 0.230

7 0.155 0.161 0.167 0.173 0.179 0.186 0.192 0.199 0.205

8 0.137 0.143 0.149 0.155 0.161 0.168 0.174 0.181 0.187

9 0.123 0.128 0.135 0.141 0.147 0.154 0.160 0.167 0.174

10 0.111 0.117 0.123 0.130 0.136 0.142 0.149 0.156 0.163

12 0.095 0.101 0.107 0.113 0.119 0.126 0.133 0.140 0.147

20 0.061 0.067 0.074 0.080 0.087 0.094 0.102 0.110 0.118

24 0.053 0.059 0.066 0.073 0.080 0.087 0.095 0.103 0.111

36 0.039 0.046 0.053 0.060 0.069 0.077 0.085 0.094 0.103
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10.11 GAME THEORY

10.11.1 TWO PERSON NON-COOPERATIVE MATRIX GAMES

Given matrices A = (aij) and B = (bij) consider a game played as follows: Alice

chooses action i (out of n possible actions) and Bob chooses action j (out of m pos-

sible actions). The outcome of the game is (i, j) and Alice and Bob receive payoffs

of aij and bij , respectively. If using a mixed or random strategy, then Alice selects

xT = (x1, x2, . . . , xn) where xi corresponds to the probability that she chooses ac-

tion i and Bob selects yT = (y1, y2, . . . , ym) where yj corresponds to the probability

that he chooses action j. Each player seeks to maximize their average payoff; Alice

wants to maximize xTAy while Bob wants to maximize xTBy.

If aij ≤ ai∗j for all i and j then i∗ is a dominant strategy for Alice. Similarly, if

bij ≤ bij∗ for all i and j then j∗ is a dominant strategy for Bob. An outcome (i∗, j∗)
is Pareto optimal if, for all i and j, the relation ai∗j∗ < aij implies bi∗j∗ > bij .

If A + B = 0 then the game is a zero sum game and Bob equivalently is trying

to minimize Alice’s payoff. IfA+B 6= 0 then the game is a non-zero sum game and

there is potential for mutual gain or loss.

A pure strategy is one with no probabilistic component.

10.11.1.1 The pure zero sum game

Assume a zero sum game, A + B = 0. The outcome (̂i, ĵ) is an equilibrium if

aiĵ ≤ âiĵ ≤ âij for all i and j. (Note that this implies b̂ij ≤ b̂iĵ ≤ biĵ .)

1. If (̂iĵ) is an equilibrium then maxi minj aij = minj maxi aij = âiĵ .

2. For all A, maximinj aij ≤ minj maxi aij .

3. For all A, all outcomes are Pareto optimal as âiĵ < aij implies

b̂îj = −âîj > −aij = bij .

4. For some A, there will be no equilibrium. For example, if A = [ 1 2
2 1 ] then

1 = maxi minj aij < minj maxi aij = 2.
5. For someA, there will be an equilibrium which is not a dominant strategy. For

example, if A = [ 3 4
2 1 ], then outcome (1,1) is an equilibrium with the property

that Alice has the dominant strategy i = 1 as a1,1 ≥ a2,1 and a1,2 ≥ a2,2, but

there is no dominant strategy for Bob as a1,1 < a1,2 but a2,1 > a2,2.

6. For someA, there will be multiple equilibria. If (i1, j1) and (i2, j2) are each an

equilibrium then (i1, j2) and (i2, j1) are also equilibria. For example, if A =[
3 4 3
2 1 2
3 4 3

]
then the outcomes (1,1), (1,3), (3,1) and (3,3) are each an equilibrium.

7. Order of actions: If Alice chooses her action before Bob and she chooses i
then Bob will choose action β(i) = argminj aij . Hence Alice will choose

î = argmaxi aiβ(i) = argmaximinj aij which is the maximin strategy. Al-

ternatively, if Bob chooses his action before Alice he will choose the minimax

strategy ĵ = argminj maxi aij . A player should never prefer to choose an

action first but if there is an equilibrium the advantages of taking the second

action can be eliminated.
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10.11.1.2 The mixed zero sum game

The outcome (x̂, ŷ) is an equilibrium for the mixed zero sum game if

xTAŷ ≤ x̂
T
Aŷ ≤ x̂

T
Ay for all x ∈ Sx and all y ∈ Sy

where Sx = {x | 0 ≤ xi and
∑

i xi = 1} and Sy = {y | 0 ≤ yj and
∑

j yj = 1}.
1. If (x̂, ŷ) is an equilibrium then

max
x∈Sx

min
y∈Sy

xTAy = min
y∈Sy

max
x∈Sx

xTAy = x̂
T
Aŷ.

2. For all A, there exists at least one mixed strategy equilibrium. If there is

more than one equilibrium, the average payoff to each player is independent

of which equilibrium is used.

3. If minj
∑

i xiaij ≤ minj
∑

i x̂iaij for all x ∈ Sx and maxi
∑

j aijyj ≥
maxi

∑
j aij ŷj for all y ∈ Sy then (x̂, ŷ) is an equilibrium.

4. If A ≥ 0 then an equilibrium strategy for Alice solves maxx v subject to v ≤∑
i xiaij for all j, with

∑
i xi = 1 and xi ≥ 0. The optimal value of v

corresponds to the average payoff to Alice in equilibrium. If x′i = xi/v this is

minimize
∑

i

x′i subject to

{∑
i x

′
iaij ≥ 1, for all j,

x′i ≥ 0, for all i.

Similarly, if y′ = (y′1, . . . , y
′
n) is a solution to

maximize
∑

j

y′j subject to

{∑
j aijy

′
j ≤ 1, for all i,

y′j ≥ 0, for all j,

then y = y′/
∑

j y
′
j is the equilibrium strategy for Bob. The payoff to Alice in

equilibrium is v = 1/
∑

i x
′
i = 1/

∑
j y

′
j . For example, if A = [ 1 2

2 1 ] then

maximize x′1 + x′2 subject to

{
x′1 + 2x′2 ≥ 1, x′1 ≥ 0,

2x′1 + x′2 ≥ 1, x′2 ≥ 0,

has the solution x′1 = x′2 = 1
3 . The payoff to Alice in equilibrium is 3

2 and the

equilibrium is (x1, x2) = (12 ,
1
2 ).

5. If A is 2 × 2 and a1,1 < a1,2, a1,1 < a2,1, a2,2 < a2,1, and a2,2 < a1,2 (so

neither player has a dominant strategy) then the mixed strategy equilibrium is

x̂ =

(
a2,1 − a2,2

a1,2 + a2,1 − a1,1 − a2,2
,

a1,2 − a1,1
a1,2 + a2,1 − a1,1 − a2,2

)
,

ŷ =

(
a1,2 − a2,2

a1,2 + a2,1 − a1,1 − a2,2
,

a2,1 − a1,1
a1,2 + a2,1 − a1,1 − a2,2

) (10.11.1)

and the payoff to Alice in equilibrium is
a1,2a2,1−a1,1a2,2

a1,2+a2,1−a1,1−a2,2
. which is

max
x̂∈Sx

min
ŷ∈Sy

∑

i

∑

j

x̂iaij ŷj = min
ŷ∈Sy

max
x̂∈Sx

∑

i

∑

j

x̂iaij ŷj (10.11.2)

For example, if A = [ 1 2
2 1 ] then the solution is x̂ = ŷ = (12 ,

1
2 ) and the payoff

to Alice in equilibrium is 3
2 .
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6. Order of actions: It is never an advantage to take the first action. However,

if the first player uses a mixed strategy equilibrium, then the advantages of

taking the second action can always be eliminated.

10.11.1.3 The non-zero sum game

The outcome (̂iĵ) is a Nash equilibrium if aiĵ ≤ âiĵ for all i and b̂ij ≤ b̂îj for all

j. For the mixed strategy game the outcome (x̂, ŷ) is a Nash equilibrium if xTAŷ ≤
x̂

T
Aŷ for all x ∈ Sx and x̂

T
Ay ≤ x̂

T
Aŷ far all y ∈ Sy .

1. For all A and B, there exists at least one mixed strategy Nash equilibrium.

2. For all A and B, maxi
∑

j aij ŷj ≤
∑

i

∑
j x̂iaij ŷj and maxj

∑
i x̂ibij ≤∑

i

∑
j x̂ibij ŷj is a necessary and sufficient condition for (x̂, ŷ) to be a Nash

equilibrium. For example, if A = [ 4 1
1 3 ] and B = [ 3 1

1 4 ] then there are three

Nash equilibra: (i) {x̂ = (0, 1), ŷ = (0, 1)}, (ii) {x̂ = (35 ,
2
5 ), ŷ = (25 ,

3
5 )}, and

(iii) {x̂ = (1, 0), ŷ = (1, 0)}.
3. For all A and B, if

∑
j aij ŷj is a constant for all i and

∑
i x̂ibij is a constant

for all j (i.e., each player chooses an action to make the other indifferent to

their action) then (x̂, ŷ) is a Nash equilibrium.

4. For some A and B if (i1, j1) and (i2, j2) are each a (pure strategy) Nash equi-

librium then, unlike the case for a zero sum game, ai1j1 need not equal ai2j2 ,

bi1j1 need not equal bi2j2 , and neither (i1, j2) nor (i2, j1) need be a Nash equi-

librium. For example, if A = [ 4 1
1 3 ] and B = [ 3 1

1 4 ] then both of the outcomes

(1,1) and (2,2) are Nash equilibra yet neither (1,2) nor (2,1) are Nash equilibra.

5. Prisoners’ Dilemma: A game in which there is a dominant strategy for both

players but it is not Pareto optimal. For example, if A = [ 10 2
15 5 ] and B =

[ 10 15
2 5 ] then the dominant (and equilibrium) outcome is (2,2) since a2j > a1j

for all j and and bi2 > bi1 for all i. Here, Alice and Bob receive a payoff of

5 although the outcome (1,1) would be preferred by both because each would

receive a payoff of 10.

6. Braess Paradox: A game in which the Nash equilibrium has a worse payoff for

all players than the Nash equilibrium which would result if there were fewer

possible actions. For example, if A =
[
10 2 1
15 5 2
20 6 4

]
and B =

[
10 15 20
2 5 6
1 2 4

]
then

the Nash equilibrium is (3,3) which is worse for both players than the Nash

equilibrium (2,2) which would occur if the third option for each player was

unavailable.

7. Order of actions: If Alice chooses action i before Bob chooses an action,

then Bob will choose β(i) = argmaxj bij and hence Alice will choose î =
argmaxi aiβ(i). Alternatively, if Bob chooses an action before Alice, he will

choose ĵ = argmaxj bα(j)j where α(j) = argmaxi aij . Unlike the zero

sum game there might be an advantage to choosing the action first, e.g., for

A = [ 4 1
1 3 ] and B = [ 3 1

1 4 ] if Alice is first, the outcome will be (1,1) with a

payoff of 4 to Alice and 3 to Bob. If Bob is first the outcome will be (2,2) with

a payoff of 4 to Bob and 3 to Alice.
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10.12 KNOT THEORY

1. A knot is a closed, non-self-intersecting curve that is embedded in three di-

mensions and cannot be untangled to produce a simple loop (i.e., the unknot).

Knots do not exist in higher-dimensional spaces.

2. Each place in a knot where 2 strands touch and one passes over (or un-

der) the other is called a crossing. The number of crossings in a knot is

called the crossing number. Let N(n) be the number of distinct prime knots

with n crossings, counting chiral versions of the same knot separately. Then
1
3

(
2n−2 − 1

)
≤ N(n) . en.

n 3 4 5 6 7 8 9 10 11

Number of knots with n crossings 1 1 2 3 7 21 49 165 552

3. The traditional Alexander–Briggs notation for a knot (e.g., 31, 41, 52) is the

number of crossings with a subscript. The subscript starts at 1 and counts the

number of knots with that many crossings; the order is arbitrary.

4. The unknot, or trivial knot, is a closed loop that is not knotted.

5. The trefoil knot, or 31 knot or overhand knot, has three crossings.

6. The square knot is the knot sum of two trefoils with opposite chiralities:

31#3∗1. The granny knot is the knot sum of two trefoils with the same chi-

rality: 31#31. The knot sum operation is denoted #. Two knots are summed

by placing them side-by-side and joining them by straight bars so the orienta-

tion is preserved in the sum; this is not a well-defined operation as it depends

on the representation. The knot sum of two unknots is another unknot.

7. There are many knot representation schemes, including Alexander poly-

nomials (∆(x)), Conway polynomials (C(x)), and HOMFLY polynomials

(P (ℓ,m)). The left and right trefoil knots have the same Alexander poly-

nomials and different HOMFLY polynomials.

8. Some knot representations use skeins (see fig-

ure) to recursively simplify a knot. For exam-

ple, the Conway polynomial of a knot may be de-

termined by C (L+) = C (L−) + xC (L0) with

C(unknot) = 1.

L− L0 L+

9. Information about the simplest knots:

Name trefoil knot figure eight knot Solomon seal knot

Notation 31 41 51
∆(x) x− 1 + x−1 −x−1 + 3− x x2−x+1−x−1+x−2

P (ℓ,m) −ℓ4 +m2ℓ2 − 2ℓ2 m2−
(
ℓ2 + ℓ−2 + 1

)
m4ℓ4 +m2(−ℓ6 −
4ℓ4) + (3ℓ4 + 2ℓ6)

C(x) x2 + 1 1− x2 x4 + 3x2 + 1
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10.12.1 KNOTS UP TO EIGHT CROSSINGS

31 41 51 52 61

62 63 71 72 73

74 75 76 77 81

82 83 84 85 86

87 88 89 810 811

812 813 814 815 816

817 818 819 820 821

Image by Charlie Gunn and David Broman. Copyright The Geometry Center, Uni-

versity of Minnesota. With permission.
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10.13 LATTICES

Let B =
[
b1 b2 . . . bm

]
be a set of vectors in R

n. If the {bk} are independent,

then points in Rn can be written as linear combinations of the {bk}: x =
∑m

k=1 rkbk
where the {rk} are real numbers. Now, instead, only allow integer coefficients:

L =

{
m∑

k=0

dkbk dk are integers

}

Then L is a lattice of dimension n and rank m.

Given a lattice there are many bases that could be used to describe it. The goal

of lattice basis reduction is to determine, from an integer lattice basis, a basis with

“short,” nearly orthogonal vectors.

The size of a vector is its Euclidean length:

‖b‖2 =
√
bTb. The size of the basis, in the full

rank case, is the volume
√
det(BTB). This is

constant for a given lattice (up to sign) and is

called the lattice constant. The figure shows a

lattice with basis V =
[
v1 v2

]
and a “shorter”

basis U =
[
u1 u2

]
.

EXAMPLE
Consider the basis B = [ 1 4

9 37 ] =
[
b1 b2

]
with b1 =

[
1 9

]T
and b2 =

[
4 37

]T
.

Defining b′
1 = b2 − 4b1 =

[
0 1

]T
and b′

2 = b1 − 9b′
1 =

[
1 0

]T
results in the

basis B′ = [ 1 0
0 1 ] =

[
b′
1 b′

2

]
with shorter vectors. Here the lattice constant is 1.

It is difficult to determine the shortest vector for all bases. An approximate solution

is obtained by the LLL (for Lenstra, Lenstra, and Lovász) algorithm which runs in

polynomial time. It outputs a short vector b′
1 with

∥∥b′
∥∥
1
≤ 2(n−1)/4 det(L)1/n.

There are many applications of finding the shortest vector:

• Given the value α =
√
17−

√
13, find a polynomial that has α as a root.

If α satisfies a polynomial of degree p, then there is an integer relation among

the values {1, α, α2, . . . , αp}. Choosing p = 4, consider the basis

B =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
C Cα Cα2 Cα3 Cα4




(10.13.1)

where C is an arbitrary constant, the bigger the better. Using C = 1015

evaluate B to 10 decimal places and then round the values to the near-

est integer. Now B has integer values. This lattice has a shortest vector[
16 0 −60 0 1 −3

]T
suggesting that α is a solution of the polynomial

16− 60p2 + p4 = 0, which is correct.
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• Suspecting that β = cot π
8+cot 2π

8 +cot 3π
8 is a linear combination of {1,

√
2},

find that combination. Use the basis

B =




1 0 0
0 1 0
0 0 1

C C
√
2 Cβ


 , (10.13.2)

evaluate it numerically for C = 1020, round to integer values, and then use

LLL to find the shortest vector
[
−1 −2 1 0

]T
. This suggests that cot π

8 +

cot 2π
8 + cot 3π

8 = 1 + 2
√
2, which is correct.

• We remember the formula α tan−1 (1)+β tan−1
(
1
5

)
+γ tan−1

(
1

239

)
= 0 but

not the coefficients; find {α, β, γ}.
Use the basis

B =




1 0 0
0 1 0
0 0 1

C tan−1 (1) C tan−1
(
1
5

)
C tan−1

(
1

239

)


 , (10.13.3)

evaluate it numerically forC = 1020, round to integer values, and then use LLL

to find the shortest vector
[
1 −4 1 0

]T
. This suggests that tan−1 (1) −

4 tan−1
(
1
5

)
+ tan−1

(
1

239

)
= 0, which is correct.

• Suspecting that π =

∞∑

k=0

1

16k

[
a1

8k + 1
+

a2
8k + 2

+ · · ·+ a7
8k + 7

]
, find {ai}.

Use the basis

B =




1 0 0 0 . . . 0
0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
. . .

...

0 0 0 0 0
0 0 0 0 1
Cπ Cγ1 Cγ2 Cγ3 . . . Cγ8




, (10.13.4)

where γi =
∑∞

k=0
1

16k
1

8k+i . Use a large value of C and proceed as before. In

this case there are two short vectors (
[
−1 4 0 0 −2 −1 −1 0 0

]

and
[
−2 0 8 4 4 0 0 −1 0

]
) suggesting:

π =

∞∑

k=0

1

16k

[
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

]

2π =

∞∑

k=0

1

16k

[
8

8k + 2
+

4

8k + 3
+

4

8k + 4
− 1

8k + 7

] (10.13.5)

both of which are correct.
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10.14 MOMENTS OF INERTIA

Body Axis Moment of inertia

(1) Uniform thin rod Normal to the length, at one

end

m l2

3

(2) Uniform thin rod Normal to the length, at the

center

m l2

12

(3) Thin rectangular sheet, sides a

and b

Through the center parallel

to b
m a2

12

(4) Thin rectangular sheet, sides a and

b

Through the center

perpendicular to the sheet

m a2+b2

12

(5) Thin circular sheet of radius r Normal to the plate through

the center

m r2

2

(6) Thin circular sheet of radius r Along any diameter m r2

4

(7) Thin circular ring, radii r1 and r2 Through center normal to

plane of ring

m
r21+r22

2

(8) Thin circular ring, radii r1 and r2 Along any diameter m
r21+r22

4

(9) Rectangular parallelopiped, edges

a, b, and c

Through center

perpendicular to face ab
(parallel to edge c)

m a2+b2

12

(10) Sphere, radius r Any diameter m 2
5
r2

(11) Spherical shell, external radius r1,

internal radius r2

Any diameter m 2
5

r51−r52
r31−r32

(12) Spherical shell, very thin, mean

radius r

Any diameter m 2
3
r2

(13) Right circular cylinder of radius r,

length l

Longitudinal axis of the slide m r2

2

(14) Right circular cylinder of radius r,

length l

Transverse diameter m
(

r2

4
+ l2

12

)

(15) Hollow circular cylinder, radii r1
and r2, length l

Longitudinal axis of the

figure

m
r21+r22

2

(16) Thin cylindrical shell, length l,

mean radius r

Longitudinal axis of the

figure

mr2

(17) Hollow circular cylinder, radii r1
and r2, length l

Transverse diameter m
(

r21+r22
4

+ l2

12

)

(18) Hollow circular cylinder, very

thin, length l, mean radius r

Transverse diameter m
(

r2

2
+ l2

12

)

(19) Elliptic cylinder, length l,

transverse semiaxes a and b

Longitudinal axis m
(

a2+b2

4

)

(20) Right cone, altitude h, radius of

base r

Axis of the figure m 3
10
r2

(21) Spheroid of revolution, equatorial

radius r

Polar axis m 2
5
r2

(22) Ellipsoid, axes 2a, 2b, 2c Axis 2a m b2+c2

5
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10.15 MUSIC
The general principles in this section do not depend on any specific key.

The key of C is used in the examples.

Definitions

1. Map the pitches to numbers from 0 to 11 as follows:

• 0 = C
• 1 = C♯ = D♭
• 2 = D
• 3 = D♯ = E♭

• 4 = E
• 5 = F
• 6 = F♯ = G♭
• 7 = G

• 8 = G♯ = A♭
• 9 = A
• 10 = A♯ = B♭
• 11 = B

2. A pitch class set (or pcset), shown as {. . .}, is an unordered set of numbers

representing notes. For example, the C major chord {C,E,G} is {0, 4, 7}.
3. A pitch class segment (or pcseg), shown as 〈. . .〉, is an ordered set of numbers

representing notes. For example, the first part of the main theme in Hay-

din’s Surprise Symphony is 〈C,C,E,E,G,G,E, F, F,D,D,B,B,G〉 =
〈0, 0, 4, 4, 7, 7, 4, 5, 5, 2, 2, 11, 11, 7〉.

4. Define the transposition by n operator Tn by Tn(x) = x+ n (mod 12).
For example, the transposition of a C major pcset by 7 steps is

T7(C major pcset) = T7({C,E,G}) = T7({0, 4, 7})
= {T7(0), T7(4), T7(7)} = {7, 11, 2} = {G,B,D}
= G major chord

5. Define the inversion about n operator In by In(x) = −x+ n (mod 12).
6. Given a specific pcseg, define the collection of transpositions of it to be prime

forms, define the collection of inversions of it to be inverted forms. Let S be

the collection of all prime and inverted forms.

For example, given the pcseg 〈G,C,D〉 = 〈7, 0, 2〉, S has 24 elements con-

sisting of the following:
Prime forms Inverted forms

T0 〈7, 0, 2〉 = 〈7, 0, 2〉 I0 〈7, 0, 2〉 = 〈5, 0, 10〉
T1 〈7, 0, 2〉 = 〈8, 1, 3〉 I1 〈7, 0, 2〉 = 〈6, 1, 11〉
T2 〈7, 0, 2〉 = 〈9, 2, 4〉 I2 〈7, 0, 2〉 = 〈7, 2, 0〉

...
...

7. Given a 3-element pcseg x, define the operators P , L, and R as follows:

(a) P (parallel) is the form opposite in type to x with the first and third notes

switched: P (〈a, b, c〉) = Ia+c(〈a, b, c〉).
(b) L (leading tone exchange) is the form opposite in type to x with the

second and third notes switched: L(〈a, b, c〉) = Ib+c(〈a, b, c〉).
(c) R (relative) is the form opposite in type to x with the first and second

notes switched: R(〈a, b, c〉) = Ia+b(〈a, b, c〉).
For example:

• P 〈0, 4, 7〉 = 〈7, 3, 0〉 and P 〈3, 11, 8〉 = 〈8, 0, 3〉.
• L 〈0, 4, 7〉 = 〈11, 7, 4〉 and L 〈3, 11, 8〉 = 〈4, 8, 11〉.
• R 〈0, 4, 7〉 = 〈4, 0, 9〉 and R 〈3, 11, 8〉 = 〈1, 3, 6〉.
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A useful example: Starting with the C major chord 〈0, 4, 7〉, the set S
consists of the following:

Prime forms Inverted forms

C = 〈0, 4, 7〉 〈0, 8, 5〉 = f
C♯ = D♭ = 〈1, 5, 8〉 〈1, 9, 6〉 = f♯ = g♭

D = 〈2, 6, 9〉 〈2, 10, 7〉 = g
D♯ = E♭ = 〈3, 7, 10〉 〈3, 11, 8〉 = g♭ = a♭

E = 〈4, 8, 11〉 〈4, 0, 9〉 = a
F = 〈5, 9, 0〉 〈5, 1, 10〉 = a♭ = b♭

F ♯ = G♭ = 〈6, 10, 1〉 〈6, 2, 11〉 = b
G = 〈7, 11, 2〉 〈7, 3, 0〉 = c

G♯ = A♭ = 〈8, 0, 3〉 〈8, 4, 1〉 = c♭ = d♭
A = 〈9, 1, 4〉 〈9, 5, 2〉 = d

A♯ = B♭ = 〈10, 2, 5〉 〈10, 6, 3〉 = d♭ = e♭
B = 〈11, 3, 6〉 〈11, 7, 4〉 = e

where major chords have been given a capital letter and minor chords have

been given a lowercase letter.

Results

1. The transposition and inversions operators can be interpreted to apply to the

set S of forms. In this context, they satisfy the following rules (where “◦”
represents composition):

Tm ◦ Tn = Tm+n

Tm ◦ In = Im+n

Im ◦ Tn = Im−n

Im ◦ In = Tm−n

where the indices are interpreted mod 12. The collection of 12 transposition

operators and 12 inversion operators form a group called the T/I group.

2. The P , L, and R operators under composition form a group called the PLR
group.

3. The T/I group and the PLR groups are each isomorphic to the dihedral group

of order 24.

4. Consider the group of all permutations of S. In this larger group:

(a) the group T/I is the centralizer2 of the PLR group; and

(b) the group PLR is the centralizer of the T/I group.

5. The P , L, and R function have musical significance:

(a) The function P takes a chord and maps it to its parallel minor or major.

For example P (C major) = c minor and P (c minor) = C major.

(b) The function L is a leading tone exchange; L(C major) = e minor.

(c) The function R takes a chord and maps it to its relative minor or major.

For example R(C major) = a minor and R(a minor) = C major.

2The centralizer of a subgroup H of a group G is the set of elements of G which commute with all

elements of H .
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10.16 OPERATIONS RESEARCH

Operations research integrates mathematical modeling and analysis with engineering

in an effort to design and control systems.

10.16.1 LINEAR PROGRAMMING

Linear programming (LP) is a technique for modeling problems with linear objective

functions and linear constraints. The standard form for an LP model with n decision

variables and m resource constraints is

Minimize

n∑

j=1

cjxj (objective function),

Subject to





xj ≥ 0 for j = 1, · · · , n, (non-negativity requirement),
n∑

j=1

aijxj = bi for i = 1, · · · ,m, (constraint functions),

where xj is the amount of decision variable j used, cj is decision j′s per unit contri-

bution to the objective, aij is decision j′s per unit usage of resource i, and bi is the

total amount of resource i to be used.

Let x represent the (n × 1) vector (x1, · · · , xn)T, c the (n × 1) vector

(c1, · · · , cn)T, b the (m × 1) vector (b1, · · · , bm)T, A the (m × n) matrix (aij),
and A·j the (n × 1) column of A associated with xj . Then the standard model, in

matrix notation, is “minimize cTx subject toAx = b and x ≥ 0.” A vector x is called

feasible if and only if Ax = b and x ≥ 0.

10.16.1.1 Modeling in LP

LP is an appropriate modeling technique if the following four assumptions are satis-

fied by the situation:

1. All data coefficients are known with certainty.

2. There is a single objective.

3. The problem relationships are linear functions of the decisions.

4. The decisions can take on continuous values.

Here are two examples of LP modeling:

1. Product mix problem — Consider a company with three products to sell. Each

product requires four operations and the per unit data are given in the following

table:

Product Drilling Assembly Finishing Packing Profit

A 2 3 1 2 45

B 3 6 2 4 90

C 2 1 4 1 55

Hours available 480 960 540 320
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Let xA, xB , and xC represent the number of units of A, B, and C manufac-

tured daily. A model to maximize profit subject to the labor restrictions is

Maximize 45xA + 90xB + 55xC (total profit),

Subject to:





2xA + 3xB + 2xC ≤ 480 (drilling hours),

3xA + 6xB + 1xC ≤ 960 (assembly hours),

1xA + 2xB + 4xC ≤ 540 (finishing hours),

2xA + 4xB + 1xC ≤ 320 (packing hours),

xA ≥ 0, xB ≥ 0, xC ≥ 0.

2. Maximum flow through a network — Consider the directed network

below. Nodes S (and T ) are the source (and terminal) nodes. On each arc

material up to the arc capacity Cij can be shipped. Material is neither

created nor destroyed at nodes other than S and T . The goal is to maximize

the amount of material that can be shipped through the network from

S to T . If xij represents the amount of material shipped from node i
to node j, a model that determines the maximum flow is shown below.

42

1

S

3

T

Maximize x1T + x3T + x4T ,

Subject to





xS1 = x13 + x14 + x1T (node 1 conservation),

xS2 = x23 + x24 (node 2 conservation),

x13 + x23 = x3T (node 3 conservation),

xS4 + x24 + x14 = x4T (node 4 conservation),

0 ≤ xij ≤ Cij for all pairs (i, j) (arc capacity).

10.16.1.2 Transformation to standard form

Any LP model can be transformed to standard form as follows:

1. If the problem has “maximize objective” , change it to “minimize objective”

and multiply every cj by −1
2. If the problem has “≤” constraints , change them to “=” constraints by intro-

ducing non-negative slack variables ({Si}) to

n∑

j=1

aijxj ≤ bi.

For example:

n∑

j=1

aijxj + Si = bi.



“smtf32” — 2011/5/20 — 2:09 — page 731 — #741

10.16. OPERATIONS RESEARCH 731

3. If the problem has “≥” constraints , change them to “=” constraints by intro-

ducing non-negative surplus variables ({Ui}) to

n∑

j=1

aijxj ≥ bi.

For example:

n∑

j=1

aijxj + Ui = bi.

All slack and surplus variables have cj = 0.

10.16.1.3 Solving LP models: simplex method

Assume that there is at least one feasible x vector, and that A has rank m. Geo-

metrically, because all constraints are linear, the set of feasible x forms a convex

polyhedral set (bounded or unbounded) that must have at least one extreme point.

The motivation for the simplex method for solving LP models is the following:

For any LP model with a bounded optimal solution, an optimal solution

exists at an extreme point of the feasible set.

Given a feasible solution x, let xB be the components of x with xj > 0 and xN

be the components with xj = 0. Associated with xB , define B as the columns of A

associated with each xj in xB . For example, if x2, x4, and S1 are positive in x, then

xB = (x2, x4, S1)
T, and B is the matrix with columns A·2,A·4,A·S1 . Define N as

the remaining columns ofA, i.e., those associated with xN . A basic feasible solution

(BFS) is a feasible solution where the columns of B are linearly independent. The

following theorem relates a BFS with extreme points:

A feasible solution x is at an extreme point of the feasible region if and

only if x is a BFS.

The following simplex method finds an optimal solution to the LP by finding the

optimal partition of x into xB and xN :

Step (1) Find an initial basic feasible solution. Define xB , xN , B, N , cB , and cN as

above.

Step (2) Compute the vector c′ = (cN − cBB−1N). If c′j ≥ 0 for all j, then

stop; the solution xB = B−1b is optimal with objective value cBB−1b.

Otherwise, select the variable xj in xN with the most negative c′j value,

and go to Step (3).

Step (3) Compute A′
·j = B−1A·j . If A′

·j ≤ 0 for all j, then stop; the problem

is unbounded and the objective can decrease to −∞. Otherwise, compute

b′ = B−1b and find min
i|a′

ij>0

b′i
a′ij

. Assume the minimum ratio occurs in

row r. Insert xj into the rth position of xB , take the variable that was in

this position, and move it to the xN partition. Update B, N , cB , and cN

accordingly. Go to Step (2).
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Ties in the selections in Steps (2) and (3) can be broken arbitrarily. The unbound-

edness signal suggests that the model is missing constraints or that there has been

an incorrect data entry or computational error, because, in real problems, a profit or

cost cannot be unbounded. For maximization problems, only Step (2) changes. The

solution is optimal when c′j ≤ 0 for all j, then choose the variable with the maximum

c′j value to move into xB . Effective methods for updating B−1 in each iteration of

Step (3) exist to ease the computational burden.

To find an initial basic feasible solution define a variable Ai and add this vari-

able to the left-hand side of constraint i transforming to
∑n

j=1 aij + Ai = bi. The

new constraint is equivalent to the original constraint if and only if Ai = 0. Also,

because Ai appears only in constraint i and there are m Ai variables, the columns

corresponding to the Ai variables are of rank m. We now solve a “new” LP model

with the adjusted constraints and the new objective “minimize
∑m

i=1 Ai.” If the op-

timal solution to this new model is 0, the solution is a basic feasible solution to the

original problem and we can use it in step (1). Otherwise, no basic feasible solution

exists for the original problem.

10.16.1.4 Solving LP models: interior point method

An alternative way to determine extreme points is to cut through the middle of the

polyhedron and go directly towards the optimal solution. Karmarkar’s method as-

sumes that the LP model has the following form:

Minimize

n∑

j=1

cjxj ,

Subject to





n∑

j=1

aijxj = 0 for i = 1, · · · ,m,

n∑

j=1

xj = 1,

xj ≥ 0, for j = 1, · · · , n.

(10.16.1)

Also, assume that the optimal objective value is 0 and that xj = 1/n for j =
1, · · · , n is feasible. Any model can be transformed so that these assumptions hold.

The following centering transformation, relative to the kth estimate of solution

vector xk, takes a feasible solution vector x and transforms it to y such that xk is trans-

formed to the center of the feasible simplex: yj =
xj/x

k
j∑n

r=1(xr/x
k
r )
. Let Diag(xk)

represent an n×n matrix with off-diagonal entries equal to 0 and the diagonal entry

in row j equal to xkj . The formal algorithm is as follows:

Step (1) Initialize x0j = 1/n and set the iteration count k = 0.

Step (2) If

n∑

j=1

xkj cj is sufficiently close to 0, then stop; xk is optimal. Otherwise go

to Step (3).
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Step (3) Move from the center of the transformed space in an improving direction

using

yk+1 =

[
1

n
,
1

n
, · · · , 1

n

]T

− θ(I − PT (PPT )−1P )[Diag(xk)]cT

||Cp||
√
n(n− 1)

,

where ||Cp|| is the length of the vector (I − PT (PPT )−1P )[Diag(xk)]cT ,

P is an (m+1)×n matrix whose first m rows are A[Diag(xk)] and whose

last row is a vector of 1′s, and θ is a parameter between 0 and 1.

Step (4) Find the new point xk+1 in the original space by applying the inverse trans-

formation of the centering transformation to yk+1. Set k = k+1 and go to

Step (2).

The method is guaranteed to converge to the optimal solution when θ = 1
4 is used.

10.16.2 DUALITY AND COMPLEMENTARY SLACKNESS

Define yi as the dual variable (shadow price) representing the purchase price for a

unit of resource i. The dual problem to the primal model (maximize objective, all

constraints of the form “≤”) is

Minimize

m∑

i=1

biyi,

Subject to





m∑

i=1

aijyi ≥ cj for j = 1, . . . , n,

yi ≥ 0, for i = 1, . . . ,m.

(10.16.2)

The following results link the dual model (minimization) with its primal model (max-

imization).

1. Weak duality theorem: If that x and y are feasible solutions to the respective

primal and dual problems, then

n∑

j=1

cjxj ≤
m∑

i=1

biyi.

2. Strong duality theorem: If the primal model has a finite optimal solution x∗,

then the dual has a finite optimal solution y∗, and

n∑

j=1

cjx
∗
j =

m∑

i=1

biy
∗
i .

3. Complementary slackness theorem: If x and y are feasible solutions to the

respective primal and dual problems. Then, x is optimal for the primal and y

is optimal for the dual if and only if:

yi ·


bi −

n∑

j=1

aijxj


 = 0, for i = 1, · · · ,m, and

xj ·
(

m∑

i=1

aijyi − cj
)

= 0, for j = 1, · · · , n.
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10.16.3 LINEAR INTEGER PROGRAMMING

Linear integer programming models result from restricting the decisions in linear

programming models to be integer valued. The standard form is

Minimize

n∑

j=1

cjxj (objective function),

Subject to





xj ≥ 0, and integer for j = 1, . . . , n,
n∑

j=1

aijxj = bi for i = 1, . . . ,m (constraint functions).

(10.16.3)

As long as the variable values are bounded, then the general model can be trans-

formed into a model where all variable values are restricted to either 0 or 1. Hence,

algorithms that solve 0–1 integer programming models are usually sufficient.

10.16.3.1 Branch and bound

Branch and bound implicitly enumerates all feasible integer solutions to find the

optimal solution. The main idea is to break the feasible set into subsets (branching)

and then evaluate the best solution in each subset or determine that the subset cannot

contain the optimal solution (bounding). When a subset is evaluated, it is said to

be fathomed. The following algorithm performs the branching by partitioning on

variables with fractional values and uses a linear programming relaxation to generate

a bound on the best solution in a subset:

Step (1) Assume that a feasible integer solution, called the incumbent, is known

whose objective function value is z (initially, z may be set to infinity if no

feasible solution is known). Set p, the subset counter equal to 1. Make the

original model be the first problem in the subset list.

Step (2) If p = 0, then stop. The incumbent solution is the optimal solution. Other-

wise go to Step (3).

Step (3) Solve the LP relaxation of the pth problem in the subset list (allow all integer

valued variables to take on continuous values). Denote the LP objective

value by v. If v ≥ z or the LP is infeasible, then set p = p − 1 (fathom

by bound or infeasibility), and go to Step (2). If the LP solution is integer

valued, then update the incumbent to the LP solution, set z = min(z, v)
and p = p− 1, and go to Step (2). Otherwise, go to Step (4).

Step (4) Take any variable xj with fractional value in the LP solution. Replace prob-

lem p with two problems created by individually adding the constraints

xj ≤ ⌊xj⌋ and xj ≥ ⌈xj⌉ to problem p. Add these two problems to the

bottom of the subset list replacing the pth problem, set p = p+1, and go to

Step (2).
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10.16.4 NETWORK FLOW METHODS

A network consists ofN (a set of nodes) andA (a set of arcs). Each arc (i, j) defines

a connection from node i to node j. Depending on the application, arc (i, j) may

have an associated cost and upper and lower capacity on flow.

Decision problems on networks can often be modeled using linear programming

models, and these models usually have the property that solutions from the simplex

method are integer valued (the total unimodularity property). Because of the under-

lying graphical structure, more efficient algorithms are also available. We present

the augmenting path algorithm for the maximum flow problem and the Hungarian

method for the assignment problem.

10.16.4.1 Maximum flow

Let xij represent the flow on arc (i, j), cij the flow capacity of (i, j), S be the source

node, and T be the terminal node. The maximum flow problem is to ship as much

flow from S to T without violating the capacity on any arc, and all flow sent into a

node must leave that node (except for S and T ). The following algorithm solves the

problem by continually adding flow-carrying paths until no path can be found:

Step (1) Initialize xij = 0 for all (i, j).

Step (2) Find a flow-augmenting path from S to T using the following labeling

method. Start by labeling S with a∗. From any labeled node i, label node

j with the label i if j is unlabeled and xij < cij (forward labeling arc).

From any labeled node i, label node j with the label i if j is unlabeled

and xji > 0 (backward labeling arc). Perform labeling until no additional

nodes can be labeled. If T cannot be labeled, then stop. The current xij
values are optimal. Otherwise, go to Step (3).

Step (3) There is a path from S to T where flow is increased on the forward labeling

arcs, decreased on the backward labeling arcs, and gets more flow from S
to T . Let F be the minimum of cij − xij over all forward labeling arcs and

of xij over all backward labeling arcs. Set xij = xij + F for the forward

arcs and xij = xij − F for the backward arcs. Go to Step (2).

The algorithm terminates with a set of arcs with xij = cij and if these are

deleted, then S and T are in two disconnected pieces of the network. The algorithm

finds the maximum flow by finding the minimum capacity set of arcs that disconnects

S and T (minimum capacity cutset).

10.16.5 ASSIGNMENT PROBLEM

Consider a set J of m jobs and a set I of m employees. Each employee can do 1
job, and each job must be done by 1 employee. If job j is assigned to employee i,
then the cost to the company is cij . The problem is to assign employees to jobs to

minimize the overall cost.
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This problem can be formulated as an optimization problem on a bipartite graph

where the jobs are one part and the employees are the other. Let C be the m × m
matrix of costs cij . The following algorithm solves for the optimal assignment.

Step (1) Find li = min
j
cij for each row i. Let cij = cij − li. Find nj = min

i
cij for

each column j. Let cij = cij − nj .

Step (2) Construct a graph with nodes for S, T , and each element of the sets J
and I . Construct an arc from S to each node in I , and set its capacity to 1.

Construct an arc from each node in J to T , and set its capacity to 1. If

cij = 0, then construct an arc from i ∈ I to j ∈ J , and set its capacity

to 2. Solve a maximum flow problem on the constructed graph. If m units

of flow can go through the network, then stop. The maximum flow solution

on the arcs between I and J represents the optimal assignment. Otherwise,

go to Step (3).

Step (3) Update C using the following rules based on the labels in the solution to

the maximum flow problem: Let LI and LJ be the set of elements of I and

J , respectively, with labels when the maximum flow algorithm terminates.

Let δ = min
i∈LI ,j∈(J−LJ )

cij ; note that δ > 0. For i ∈ LI and j ∈ (J − LJ),

set cij = cij − δ. For i ∈ (I − LI) and j ∈ LJ , set cij = cij + δ. Leave

all other cij values unchanged. Go to Step (2).

In Step (3), the algorithm creates new arcs, eliminates some unused arcs, and

leaves unchanged arcs with xij = 1. When returning to Step (2), you can solve the

next maximum flow problem by adding and deleting the appropriate arcs and starting

with the flows and labels of the preceding execution of the maximum flow algorithm.

10.16.6 SHORTEST PATH PROBLEM

Consider a network (N,A) where N is the set of nodes, A the set of arcs, and dij
represents the “distance” of traveling on arc (i, j) (if no arc exists between i and

j, dij = ∞). For any two nodes R and S, the shortest path problem is to find the

shortest distance route through the network fromR to S. Let the state space beN and

a stage representing travel along one arc. f∗(i) is the optimal distance from node i
to S. The resultant recursive equations are f∗(i) = min

j∈N
[dij + f∗(j)] , for all i..

Dijkstra’s algorithm can be used successively to approximate the solution to the

equations when dij > 0 for all (i, j).

Step (1) Set f∗(S) = 0 and f∗(i) = diS for all i ∈ N . Let P be the set of

permanently labeled nodes; P = {S}. Let T = N − P be the set of

temporarily labeled nodes.

Step (2) Find i ∈ T with f∗(i) = min
j∈T

f∗(j). Set T = T − {i} and P = P ∪ {i}.
If T = ∅ (the empty set), then stop; f∗(R) is the optimal path length.

Otherwise, go to Step (3).

Step (3) Set f∗(j) = min[f∗(j), f∗(i) + dij ] for all j ∈ T . Go to Step (2).
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10.16.7 HEURISTIC SEARCH TECHNIQUES

Heuristic search techniques are commonly used for combinatorial optimization prob-

lems. A method starts with an initial vector x0 and attempts to find improved solu-

tions. Define x to be the current solution vector, f(x) to be its objective value and

N(x) to be its neighborhood. For the remainder of this section, assume that we seek

the minimum value of f(x). In each iteration of a neighborhood search algorithm,

we generate a number of solutions x′ ∈ N(x), and compare f(x) with each f(x′). If

f(x′) is a better value than f(x), then we update the current solution to x′ (termed

accepting x′ ) and we iterate again searching from x′. The process continues until

none of the generated neighbors of the current solution yield lower solutions. Com-

mon improvement procedures such as pairwise interchange and “k-opt,” are specific

instances of neighborhood search methods. Note that at each iteration, we move to a

better solution or we terminate with the best solution seen so far.

The key issues involved in designing a neighborhood search method are the def-

inition of the neighborhood of x, and the number of neighbors to generate in each

iteration. When the neighborhood of x is easily computed and evaluated, then one

can generate the entire neighborhood to ensure finding a better solution if one exists

in the neighborhood. It is also possible to generate only a portion of the neigh-

borhood (however, this could lead to premature termination with a poorer solution).

Generally, deterministic neighborhood search can only guarantee finding a local min-

imum solution to the optimization problem. One can make multiple runs, each with

different x0, to increase the chances of finding the global minimum solution.

10.16.7.1 Simulated annealing (SA)

Simulated annealing is a neighborhood search method that uses randomization to

avoid terminating at a locally optimal point. In each iteration of SA, a single neighbor

x′ of x is generated. If f(x′) ≤ f(x), then x′ is accepted. Otherwise, x′ is accepted

with a probability that depends upon f(x′) − f(x), and a non-stationary control

parameter. Define the following:

1. Ck is the kth control parameter

2. Lk is the maximum number of neighbors evaluated while the kth control pa-

rameter is in use

3. Ik is the counter for the number of solutions currently evaluated at the kth

control parameter

To initialize the algorithm, assume that we have an initial value x0 and sequences

{Ck} (termed the cooling schedule) and {Lk} such that Ck → 0 as k → ∞. The

SA algorithm to minimize f(x) is:

Step (1) Set x = x0, k = 1 and Ik = 0.

Step (2) Generate a neighbor x′ of x, compute f(x′) and increment Ik by 1.

Step (3) If f(x′) ≤ f(x), then replace x with x′ and go to Step (5).

Step (4) If f(x′) > f(x), then with probability e(f(x)−f(x′))/Ck , replace x with x′.
Step (5) If Ik = Lk, then increment k by 1, reset Ik = 0 and check for the termina-

tion criterion. If the termination criterion is met, then stop, x is the solution,

if not then go to Step (2).
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The algorithm terminates when Ck approaches 0, or there has been no improvement

in the solution over a number of Ck values. In the above description only the current

solution is stored; not the best solution encountered. In practice however, in Step

(2), we also compare f(x′) with an incumbent solution. If the incumbent solution

is worse, then we replace the incumbent with x′, otherwise we retain the current in-

cumbent. Note that SA only generates one neighbor of x in each iteration. However,

we may not accept x′ and therefore may generate another neighbor of x.

Several issues must be resolved when implementing SA. If Ck goes to zero too

quickly, then the algorithm can easily get stuck in a local minimum solution. IfC1 is

large and Ck tends to zero too slowly, then the algorithm requires more computation

to achieve convergence. Under various technical conditions, there are convergence

proofs for this method.

10.16.7.2 Tabu search (TS)

Tabu search is similar to simulated annealing. A problem in SA is that one can start

to climb out of a local minimum solution, only to return via a sequence of “better”

solutions that leads directly back to where the algorithm has already searched. Also,

the neighborhood structure may permit moving to extremely poor solutions where

one knows that no optimal solutions exist. Finally, a modeler may have insight on

where to look for good solutions and SA cannot easily enable searching of specific

areas. Tabu search tries to remedy each of these deficiencies.

The key terminology in TS is S(x), the set of moves from x. This is similar

to the neighborhood of x, and is all the solutions that you can get to from x in one

move. A “move” is similar to an SA “step,” but is more general because it can

be applied to both continuous and discrete variable problems. Let s be a move in

S(x). For example, consider a 5-city traveling salesman problem where x is a vector

containing the sequence of cities visited, including the return to the initial city. Let

x = (2, 1, 5, 3, 4, 2). If we define a move to be an “adjacent pairwise interchange,”

then the set of moves S(x) is:

{{(1, 2, 5, 3, 4, 1), (2, 5, 1, 3, 4, 2), (2, 1, 3, 5, 4, 2), (2, 1, 5, 4, 3, 2), (4, 1, 5, 3, 2, 4)}
As another example, if we use a standard non-linear programming direction–step

size search algorithm, then one can construct a family of moves of the form S(x) =
x+ud. Here, u is a step size scalar and d is the direction of movement and the family

depends on the values of u and d selected.

To run a Tabu search, define T as the tabu set; these are a set of moves that

the method should not use. Define OPT to be the function that selects a particular

s ∈ S(x) that creates an eventual improvement in the objective. Then

Step (1) Start with initial incumbent x0. Set x = x0, k = 0, T = φ.

Step (2) If S(x) − T = φ, then go to Step (4). Otherwise set k = k + 1 and select

sk ∈ S(x)− T such that sk(x) = OPT (s | s ∈ S(x)− T ).
Step (3) Let x = sk(x). If f(x) < f(x0), then x0 = x.

Step (4) If a chosen number of iterations has elapsed either in total or since x0 was

last improved, or if S(x) − T = φ from Step (2), then stop. Otherwise,

update T (if necessary) and go to Step (2).
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The method is more effective if the user understands the solution space and can guide

the search somewhat. Often the tabu list contains solutions that were previously

visited or solutions that would reverse properties of good solutions. Early in the

method, it is important that the search space is evaluated in a coarse manner so

that one does not skip an area where the optimal solution is located. Tabu search

can move to inferior solutions temporarily when OPT returns a solution that has a

worse objective value than f(x) and, in fact, this happens every time when x is a

local minimum solution.

10.16.7.3 Genetic algorithms

A different approach to heuristically solving difficult combinatorial optimization

problems mimics evolutionary theory within an algorithmic process. A population of

individuals is represented by K various feasible solutions xk for k = 1, . . . , K . The

collection of such solutions at any iteration of a genetic algorithm is referred to as a

generation, and the individual elements of each solution xk are called chromosomes.

For instance, in the context of the traveling salesman problem, a generation would

consist of a set of traveling salesman tours, and the chromosomes of an individual

solution would represent cities.

To continue drawing parallels with the evolutionary process, each iteration of

a genetic algorithm creates a new generation by computing new solutions based on

the previous population. More specifically, an individual of the new generation is

created from (usually two) parent solutions by means of a crossover operator. The

crossover operator describes how a solution is created by combining characteristics

of the parent solutions. The selection of the crossover operator is one of the most

important aspects of designing an algorithm.

The rules for composing a new generation differ among implementations, but

often consist of selecting some of the best solutions from the previous generation

along with some new solutions created by crossovers from the previous generation.

Additionally, these solutions may mutate from generation to generation in order to

introduce new elements and chromosomal patterns into the population. The objec-

tive value of each new solution in the new generation is computed, and the best

solution found thus far in the algorithm is updated if applicable. The creation of the

new generation of solutions concludes a genetic algorithm iteration. The algorithm

stops once some termination criteria is reached (e.g., after a specified number of

generations are evolved, or perhaps if no new best solution was recorded in the last

q generations). A typical genetic algorithm for minimization is:

Step (1) Choose a population size K , a maximum number of generations Q, and a

number of survivors S < K , whereK ,Q, and S are integers. Also, choose

a mutation probability p (typically, p is small, perhaps close to 0.05). Create

an initial set of solutions xk, for k = 1, . . . , K , and define Generation 0

to be these solutions. Calculate the objective function of each solution in

Generation 0, and let x∗ with objective function f(x∗) denote the best such

solution. Initialize the generation counter i = 0.

Step (2) Copy the best (according to objective function value)S solutions from Gen-

eration i into Generation i+ 1.
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Step (3) Create the remaining K − S solutions for Generation i + 1 by executing a

crossover operation on randomly selected parents from Generation i. For

each new solution xk created, calculate its objective function value f(xk).
If f(xk) < f(x∗), then set x∗ = xk and f(x∗) = f(xk).

Step (4) For k = 1, . . . , K , mutate solution xk in Generation i with probability p.

Calculate the new objective function value f(xk), and if f(xk) < f(x∗),
then set x∗ = xk and f(x∗) = f(xk).

Step (5) Set i = i + 1. If i = Q, then terminate with solution x∗. Otherwise, go to

Step 2.

Three specific process concerns are addressed below.

1. The initial population — Careful consideration should be given to the creation

of the initial set of solutions for Generation 0. For instance, a rudimentary

constructive heuristic may be used to create a set of good initial solutions rather

than using some blindly random approach. However, it is important that the set

of heuristic solutions is sufficiently diverse. That is, if all initial solutions are

nearly identical, then the solutions created in the next generation may closely

resemble those of the previous generation – limiting the scope of the genetic

algorithm search space. Hence, one may penalize solutions having too close a

resemblance to previously generated solutions in the initial step.

2. The crossover process — The crossover operator is the most important con-

sideration in a genetic algorithm. While the selection of the parents for the

crossover operation is done randomly, preference should be given to parent

solutions having better quality objective function values (imitating mating of

the most fit individuals, as in evolution theory). However, feasibility restric-

tions on the structure of a solution must be recognized and addressed.

EXAMPLE For example, in the traveling salesman problem, a feasibility restric-

tion is that each solution be a permutation of integers. Consider the following

two parent solutions, where a return to the first city is implied:

(1, 3, 5, 2, 4, 6) and (1, 2, 3, 6, 5, 4).

A crossover operator that takes the first (last) three chromosomes from the first

(second) parent would result in the solution (1, 3, 5, 6, 5, 4), which is not a per-

mutation and cannot be used. A better operator would start with the preceding

operator and post-process the result by replacing repeated chromosomes with

omitted chromosomes. In the above example, city 5 is repeated while city 2 is

omitted, and thus one of the following two solutions would be generated:

(1, 3, 2, 6, 5, 4) or (1, 3, 5, 6, 2, 4).

3. The mutation operator — A genetic algorithm without a mutation operator

may have the solutions within the same generation converge to a small set of

distinct solutions, from which radically different (and perhaps optimal) solu-

tions cannot be created via the crossover operator. The purpose of the mutation

operator is to inject diverse elements into future iterations. The mutation op-

erator must generate significant enough change in the solution to ensure that

there exists a chance of having this modification propagate into solutions in

future generations.
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10.17 RECREATIONAL MATHEMATICS

10.17.1 MAGIC SQUARES

A magic square is a square array of integers with the property that the sum of the

integers in each row or column is the same. If (c, n) = (d, n) = (e, n) = (f, n) =
(cf − en, n) = 1, then the array A = (aij) will be magic (and use the n2 numbers

k = 0, 1, . . . , n2 − 1) if aij = k with

i ≡ ck + e

⌊
k

n

⌋
(mod n) and j ≡ dk + f

⌊
k

n

⌋
(mod n)

For example, with c = 1, d = e = f = 2, and n = 3, a magic square is

6 1 5

2 3 7

4 8 0

.

10.17.2 POLYOMINOES

Consider the two-dimensional connected shapes formed from N unit squares.

1. For N = 1 there is only the single monomino.

2. For N = 2 there is only the single domino.

3. For N = 3 there are two distinct trominoes.

4. For N = 4 there are five distinct tetrominoes.

5. For N = 5 there are 12 distinct pentominoes (see below, where the customary

name for each shape is shown).

F I L N P T

U V W X Y Z
6. For N = 6, 7, 8, 9, . . . there are 35, 108, 369, 1285, . . . unique polyominoes.

The number of three-dimensional polyominoes with N cubes (for N = 1, 2, . . . ) is

1, 1, 2, 8, 29, 166, 1023, 6922, 48311, 346543, 2522522, 18598427, 138462649, . . . .
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10.18 RISK ANALYSIS AND DECISION RULES

Decision rules are actions that are taken based on the state {θ1, θ2, . . . } of a system.

For example, in making a decision about a trip, the states may be rain and no rain and

the decision rules are stay home, go with an umbrella, and go without an umbrella.

A loss function is a function that depends on a specific state and a decision rule.

For example, consider the following loss function ℓ(θ, a):

Loss function data

Possible actions System state

θ1 (rain) θ2 (no rain)

Stay home a1 4 4

Go without an umbrella a2 5 0

Go with an umbrella a3 2 5

It is possible to determine the “best” decision even without obtaining any data.

1. Minimax principle

With this principle one prepares for the worst. For each action it is possible

to determine the minimum possible loss that may be incurred. This loss is

assigned to each action; the action with the smallest (or minimum) maximum

loss is the action chosen.

For the given loss function data the maximum loss is 4 for action a1 and 5 for

action a2 or a3. Under a minimax principle, the chosen action would be a1
and the minimax loss would be 4.

2. Minimax principle for mixed actions

Assume that action ai is taken with probability pi (with p1 + p2 + p3 = 1).

Then the expected loss L(θi) is given by L(θi) = p1ℓ(θi, a1) + p2ℓ(θi, a2) +
p3ℓ(θi, a3). The above data results in the following expected losses:

[
L(θ1)
L(θ2)

]
= p1

[
4
4

]
+ p2

[
5
0

]
+ p3

[
2
5

]
(10.18.1)

The minimax point of this mixed action case satisfies L(θ1) = L(θ2). Using

this and p1 + p2 + p3 = 1 results in L(θ1) = L(θ2) = 4− 7p3/5. Hence, p3
should be as large as possible; or p = (08 ,

3
8 ,

5
8 ).

Hence, if action a2 is chosen 3/8’s of the time, and action a3 is chosen 5/8’s

of the time, then the minimax loss is equal to L = 25/8. This is a smaller loss

than using a pure strategy of only choosing a single action.

3. Bayes actions

If the probability distribution of the states {θ1, θ2, . . . } has the density function

g(θi) then the loss has an expectation of B(a) =
∑

i g(θi)ℓ(θi, a); this is the

Bayes loss for action a. A Bayes action is an action with minimal Bayes loss.

For example, assume that g(θ1) = 0.4 and g(θ2) = 0.6. Then B(a1) = 4,

B(a2) = 2, and B(a3) = 3.8 which leads to the choice of action a2.
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A course of action can also be based on data about the states of interest. For example,

a weather report Z will give data for the predictions of rain and no rain. Continuing

the example, assume that the correctness of these predictions is given as follows:

θ1 (rain) θ2 (no rain)

Predict rain z1 0.8 0.1

Predict no rain z2 0.2 0.9

That is, when it will rain, then the prediction is correct 80% of the time.

A decision function is an assignment of data to actions. For this example there

are 32 = 9 possible decision functions, {d1, d2, . . . , d9}; they are:

Decision functions

d1 d2 d3 d4 d5 d6 d7 d8 d9
Predict z1, take action a1 a2 a3 a1 a2 a1 a3 a2 a3
Predict z2, take action a1 a2 a3 a2 a1 a3 a1 a3 a2

The risk function R(θ, di) is the expected value of the loss when a specific decision

function is being used. This results in the following values:

Risk function evaluation

Decision Function θ1 (rain) θ2 (no rain)

d1 4 4

d2 5 0

d3 2 5

d4 4.2 0.4

d5 4.8 3.6

d6 3.6 4.9

d7 2.4 4.1

d8 4.4 4.5

d9 2.6 0.5

This array can now be treated as though it gave the loss function in a no–data prob-

lem. The minimax principle for mixed action results in the “best” solution being rule

d3 for 7
17 ’s of the time and rule d9 for 10

17 ’s of the time. This leads to a minimax loss

of 40
17 . Before the data Z is received, the minimax loss was 25

8 . Hence, the data Z is

“worth” 25
8 − 40

17 = 105
136 in using the minimax approach.

The regret function r(θ, a) is the loss, ℓ(θ, a), minus the minimum loss for that θ:

r(θ, a) = ℓ(θ, a) − minb ℓ(θ, b). This is the contribution to loss that even a good

decision cannot avoid. Hence r(θ, a) is a loss that could have been avoided had the

state been known—hence the term “regret.” For the given loss function data, the

minimum loss for θ = θ1 is 2, for θ = θ2 it is 0. In this case the regret function is

θ1 (rain) θ2 (no rain)

a1 2 4

a2 3 0

a3 0 5

If the minimax principle is used to determine the “best” action, then, in this example,

the “best” action is a2.
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10.19 SIGNAL PROCESSING

10.19.1 ESTIMATION

Let {et} be a white noise process (white noise satisfies E [et] = µ, Var [et] = σ2,

and Cov [et, es] = 0 for s 6= t). Suppose that {Xt} is a time series (sequence of

values in time). A non-anticipating linear model presumes that
∑∞

u=0 huXt−u = et,
where the {hu} are constants. This can be written H(z)Xt = et where H(z) =∑∞

u=0 huz
u and znXt = Xt−n. Alternately, Xt = H−1(z)et. In practice, several

types of models are used:

1. AR(k), autoregressive model of order k: This assumes that

H(z) = 1 + a1z + · · ·+ akzk and so

Xt + a1Xt−1 + . . . akXt−k = et. (10.19.1)

2. MA(l), moving average of order l: This assumes that

H−1(z) = 1 + b1z + · · ·+ bkzk and so

Xt = et + b1et−1 + . . . blet−l. (10.19.2)

3. ARMA(k, l), mixed autoregressive/moving average of order (k, l): This as-

sumes that H−1(z) = 1+b1z+···+blzl
1+a1z+···+akzk

and so

Xt + a1Xt−1 + . . . akXt−k = et + b1et−1 + · · ·+ blet−l. (10.19.3)

10.19.2 WINDOWING

A signal {x(n)} can be truncated by multiplying by a windowing sequence:

xw(n) = x(n)w(n) where

w(n) =

{
f(n) n = 0, 1, . . . , N − 1

0 otherwise

and f(n) ≤ 1. Windowing functions are often symmetric to avoid changing the

linear phase of the signal.

Window Expression First sidelobe Main

lobe

width

peak

reduc-

tion

Rectangular w(n) = 1 −13.46 dB 1 1

Hamming w(n) = 0.54− 0.46 cos
(

2πn
N−1

)
−41 dB 2 0.73

Hanning w(n) = 1
2

[
1− cos

(
2πn
N−1

)]
−32 dB 2 0.66
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10.19.3 MATCHED FILTERING

Let X(t) represent a signal to be recovered, let N(t) represent noise, and let Y (t) =
X(t) +N(t) represent the observable signal. A prediction of the signal is

Xp(t) =

∫ ∞

0

K(z)Y (t− z) dz, (10.19.4)

where K(z) is a filter. The mean square error is E
[
(X(t)−Xp(t))

2
]
; this is mini-

mized by the optimal (Wiener) filter Kopt(z).
WhenX and Y are stationary, define their autocorrelation functions asRXX(t−

s) = E [X(t)X(s)] and RY Y (t − s) = E [Y (t)Y (s)]. If F represents the Fourier

transform, then the optimal filter is given by

F [Kopt(t)] =
1

2π

F [RXX(t)]

F [RY Y (t)]
. (10.19.5)

For example, if X and N are uncorrelated, then

F [Kopt(t)] =
1

2π

F [RXX(t)]

F [RXX(t)] + F [RNN (t)]
. (10.19.6)

In the case of no noise, F [Kopt(t)] =
1
2π , Kopt(t) = δ(t), and Sp(t) = Y (t).

10.19.4 COSTAS ARRAYS

An n×n Costas array is an array of zeros and ones whose two-dimensional autocor-

relation function is n at the origin and no more than 1 anywhere else. There are Bn

basic Costas arrays; there are Cn arrays when rotations and flips are allowed. Each

array can be interpreted as a permutation.

n 1 2 3 4 5 6 7 8 9 10 11 12

Bn 1 1 1 2 6 17 13 17 30 60 555 990

Cn 1 2 4 12 40 116 200 444 760 2160 4368 7852

n 13 14 15 16 17 18 19 20

Bn 1616 2168 2467 2648 2294 1892 1283 810

Cn 12828 17252 19612 21104 18276 15096 10240 6464

Bn:

· · ·

C4:



“smtf32” — 2011/5/20 — 2:09 — page 746 — #756

746 CHAPTER 10. MISCELLANEOUS

10.19.5 KALMAN FILTERS

Kalman filtering is a linear least squares recursive estimator. It is used when the

state space has a higher dimension than the observation space. For example, in some

airport radars the distance to aircraft is measured and the velocity of each aircraft is

inferred.

1. x is the unknown state to be estimated

2. x̂ is the estimate of x

3. z is an observation

4. {w, v} are noise terms

5. {Q,R} are spectral density matrices

6. “a ∼ N(b, C)” means that the random variable a has a normal distribution

with a mean of b and a covariance matrix of C
7. “Extended Kalman filter”: State propagation is achieved through sequential

linearizations of the system model and the measurement model

8. “(−)” is the value before a new discrete observation and “(+)” is the value

after a new discrete observation

10.19.5.1 Discrete Kalman filter

1. System model xk = Φk−1xk−1 + wk−1; wk ∼ N(0, Qk)
2. Measurement model zk = Hkxk + vk; vk ∼ N(0, Rk)
3. Initial conditions E [x(0)] = x̂0,

E
[
(x(0)− x̂0)(x(0)− x̂0)

T
]
= P0

4. Other assumptions E
[
wkv

T
j

]
= 0 for all j and k

5. State estimate extrapolation x̂k(−) = Φk−1x̂k−1(+)
6. Error covariance extrapolation Pk(−) = Φk−1Pk−1(+)ΦT

k−1 +Qk−1

7. State estimate update x̂k(+) = x̂k(−) +Kk[zk −Hkx̂k(−)]
8. Error covariance update Pk(+) = [I −KkHk]Pk(−)
9. Kalman gain matrix Kk = Pk(−)HT

k

[
HkPk(−)HT

k +Rk

]−1

10.19.5.2 Continuous Kalman filter

1. System model ẋ(t) = F (t)x(t)+G(t)w(t); w(t) ∼ N(0, Q(t))
2. Measurement model z(t) = H(t)x(t)+v(t); v(t) ∼ N(0, R(t))
3. Initial conditions x̂(0) = x̂0, P (0) = P0,

E [x(0)] = x̂0, E
[
(x(0)− x̂0)(x(0)− x̂0)

T
]
= P0

4. Other assumptions R−1(t) exists, E
[
w(t)vT(τ)

]
= C(t)δ(t − τ)

5. State estimate propagation ˙̂x(t) = F (t)x̂(t) +K(t) [z(t)−H(t)x̂(t)]
6. Error covariance propagation

Ṗ (t) = F (t)P (t) + P (t)F T(t) +G(t)Q(t)GT(t)−K(t)R(t)KT(t)
7. Kalman gain matrix K(t) =

[
P (t)HT(t) +G(t)C(t)

]
R−1(t)
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10.19.5.3 Continuous extended Kalman filter

1. System model ẋ(t) = f(x(t), t) + w(t); w(t) ∼ N(0, Q(t))
2. Measurement model z(t) = h(x(t)) + v(t); v(t) ∼ N(0, R(t))
3. Initial conditions x(0) ∼ N(x̂0, P0)
4. Other assumptions E

[
w(t)vT(τ)

]
= 0 for all t and all τ

5. State estimate propagation ˙̂x(t) = f(x̂(t), t) +K(t) [z(t)− h(x̂(t), t)]
6. Error covariance propagation

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T(x̂(t), t) +Q(t)
−P (t)HT(x̂(t), t)R−1(t)H(x̂(t), t)P (t)

7. Gain equation K(t) = P (t)HT(x̂(t), t)R−1(t)

8. Definitions F (x̂(t), t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

H(x̂(t), t) =
∂h(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

10.19.5.4 Continuous-discrete extended Kalman filter

1. System model ẋ(t) = f(x(t), t) + w(t); w(t) ∼ N(0, Q(t))
2. Measurement model zk = hk(x(tk)) + vk; vk ∼ N(0, Rk)

k = 1, 2, . . .
3. Initial conditions x(0) ∼ N(x̂0, P0)
4. Other assumptions E

[
w(t)vT

k

]
= 0 for all k and all t

5. State estimate propagation ˙̂x(t) = f(x̂(t), t)
6. Error covariance propagation

Ṗ (t) = F (x̂(t), t)P (t) + P (t)F T(x̂(t), t) +Q(t)
7. State estimate update x̂k(+) = x̂k(−) +Kk [zk − hk(x̂k(−))]
8. Error covariance update Pk(+) = [I −KkHk(x̂k(−))]Pk(−)
9. Gain matrix

Kk = Pk(−)HT
k (x̂k(−))

[
Hk(x̂k(−))Pk(−)HT

k (x̂k(−)) +Rk

]−1

10. Definitions F (x̂(t), t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

Hk(x̂k(−)) =
∂hk(x(tk))

∂x(tk)

∣∣∣∣
x(tk)=x̂k(−)

10.19.6 WAVELETS

Constructing wavelet orthonormal bases {ψj,k}+∞
j,k=−∞ begins by choosing real co-

efficients h0, . . . , hn satisfying the following (set hk = 0 if k < 0 or k > n):

1. Normalization:
∑

k hk =
√
2.

2. Orthogonality:
∑

k hk hk−2j = 1 if j = 0 and 0 if j 6= 0.

3. Accuracy p:
∑

k(−1)kkjhk = 0 for j = 0, . . . , p− 1 with p > 0.
4. Cohen–Lawton criterion: A technical condition only rarely violated by coef-

ficients which satisfy the normalization, orthogonality, and accuracy p condi-

tions.
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These four conditions imply the existence of a solutionϕ ∈ L2(R), called the scaling

function, to the following refinement equation:

ϕ(x) =
√
2

n∑

k=0

hk ϕ(2x− k). (10.19.7)

The scaling function is normalized so that
∫
ϕ(x) dx = 1. Then ϕ(x) is unique,

and it vanishes outside of the interval [0, n]. The maximum possible accuracy is

p = (n+ 1)/2.

For each fixed integer j, let Vj be the closed subspace of L2(R) spanned by

the functions {ϕj,k}+∞
k=−∞ where ϕj,k(x) = 2j/2ϕ(2jx − k). The projection of

f(x) onto the subspace Vj is an approximation at resolution level 2−j . It is given by

fj(x) =
∑

k cj,k ϕj,k(x) with cj,k = 〈f, ϕj,k〉 =
∫
f(x)ϕj,k(x) dx.

The wavelet ψ is derived from the scaling function ϕ by the formula,

ψ(x) =
√
2

n∑

k=0

gk ϕ(2x− k), where gk = (−1)k hn−k. (10.19.8)

The wavelet ψ has the same smoothness as ϕ, and the accuracy p condition implies

vanishing moments for ψ:
∫
xjψ(x) dx = 0 for j = 0, . . . , p − 1. The functions

ψj,k(x) = 2j/2ψ(2jx − k) are orthonormal and the entire collection {ψj,k} (where

j ≥ 0 and 0 ≤ k < 2j) forms an orthonormal basis for the Hilbert space L2(R).

That is, functions f with finite energy, i.e.,
∫ +∞
−∞ |f(x)|2 dx <∞.

10.19.6.1 Haar wavelets

The Haar wavelet H(x) and its corresponding scaling function are

H(x) =





1 if 0 ≤ x < 1
2

−1 if 1
2 ≤ x < 1

0 otherwise

φ(x) =

{
1 if 0 ≤ x < 1

0 otherwise
(10.19.9)

Define the Haar system {Hj,k} by Hj,k(x) = 2j/2H(2jx − k). While the Haar

wavelet is the simplest possible, it is not continuous and therefore not differentiable.

-

61

0

−1
0 1 x

H0,0(x)

-

61

0

−1
0 1

2 1 2 x

H0,1(x)

-

6√
2

0

−
√
2

0 1
2 1 x

H1,0(x)

-

6√
2

0

−
√
2

0 1
2 1 3

2 2 x

H1,1(x)
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10.19.6.2 Daubechies wavelets

For each even integer N > 0, there is a unique set of coefficients h0, . . . , hN−1

which satisfy the normalization and orthogonality conditions with maximal accuracy

p = N/2. The corresponding ϕ and ψ are the Daubechies scaling function DN and

Daubechies wavelet WN . The Haar wavelet H is the Daubechies wavelet W2. For

the Haar wavelet, the coefficients are h0 = h1 = 1/
√
2 and the subspace Vj consists

of all functions which are piecewise constant on each interval [k2−j, (k + 1)2−j).

D4

1 2 3
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10.19.7 WALSH FUNCTIONS

The Rademacher functions are defined by rk(x) = sgn sin
(
2k+1πx

)
. If the binary

expansion of n has the form n = 2i1 + 2i2 + · · · + 2im , then the Walsh function

of order n is Wn(x) = ri1 (x)ri2 (x) . . . rim(x). The Rademacher functions are an

orthogonal system but they are not complete.
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10.20 SYMBOLIC LOGIC

10.20.1 PROPOSITIONAL CALCULUS

Propositional calculus is the study of statements: how they are combined and how

to determine their truth. Statements (or propositions) are combined by means of

connectives such as and (∧), or (∨), not (¬, or sometimes ∼), implies (→), and if

and only if (←→, sometimes written ⇐⇒ or “iff”). Propositions are denoted by

letters {p, q, r, . . .}. For example, if p is the statement “x = 3,” and q the statement

“y = 4,” then p ∨ ¬q would be interpreted as “x = 3 or y 6= 4.” To determine the

truth of a statement, truth tables are used. Using T (for true) and F (for false), the

truth tables for these connectives are as follows:

p q p ∧ q p ∨ q p→ q p←→ q p ¬p
T T T T T T T F

T F F T F F F T

F T F T T F

F F F F T T

The proposition p → q can be read “If p then q” or, less often, “q if p.” The

table shows that “p ∨ q” is an inclusive or because it is true even when p and q are

both true. Thus, the statement “I’m watching TV or I’m doing homework” is a true

statement if the narrator happens to be both watching TV and doing homework. Note

that p→ q is false only when p is true and q is false. Thus, a false statement implies

any statement and a true statement is implied by any statement.

10.20.2 TRUTH TABLES AS FUNCTIONS

If we assign the value 1 to T, and 0 to F, then the truth table for p ∧ q is simply the

value pq. This can be done with all the connectives as follows:

Connective Arithmetic function

p ∧ q pq
p ∨ q p+ q − pq
p→ q 1− p+ pq
p←→ q 1− p− q + 2pq
¬p 1− p

These formulas may be used to verify tautologies, because, from this point of view,

a tautology is a function whose value is identically 1. In using them, it is useful to

remember that pp = p2 = p, since p = 0 or p = 1.
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10.20.3 TAUTOLOGIES

A statement such as (p → (q ∧ r)) ∨ ¬p is a compound statement composed of

the atomic propositions p, q, and r. The letters P , Q, and R are used to designate

compound statements. A tautology is a compound statement which always is true,

regardless of the truth values of the atomic statements used to define it. For example,

a simple tautology is (¬¬p)←→ p. Tautologies are logical truths. More examples:

Law of the excluded middle p ∨ ¬p
De Morgan’s laws ¬(p ∨ q)←→ (¬p ∧ ¬q)

¬(p ∧ q)←→ (¬p ∨ ¬q)
Modus ponens (p ∧ (p→ q))→ q
Contrapositive law (p→ q)←→ (¬q → ¬p)
Reductio ad absurdum (¬p→ p)→ p
Elimination of cases ((p ∨ q) ∧ ¬p)→ q
Transitivity of implication ((p→ q) ∧ (q → r))→ (p→ r)
Proof by cases ((p→ q) ∧ (¬p→ q))→ q

Idempotent laws p ∧ p←→ p; p ∨ p←→ p
Commutative laws (p ∧ q)←→ (q ∧ p); (p ∨ q)←→ (q ∨ p)
Associative laws (p ∧ (q ∧ r))←→ ((p ∧ q) ∧ r)

(p ∨ (q ∨ r))←→ ((p ∨ q) ∨ r)

10.20.4 RULES OF INFERENCE

A rule of inference in propositional calculus is a method of arriving at a valid (true)

conclusion, given certain statements, assumed to be true, which are called the hy-

potheses. For example, suppose that P and Q are compound statements. Then if P
and P → Q are true, then Q must necessarily be true. This follows from the modus

ponens tautology in the above list of tautologies. We write this rule of inference

P, P → Q⇒ Q. It is also classically written

P
P → Q

Q

Some examples of rules of inferences follow, all derived from the above list of

tautologies:

Modus ponens P, P → Q⇒ Q
Contrapositive P → Q⇒ ¬Q→ ¬P
Modus tollens P → Q,¬Q⇒ ¬P
Transitivity P → Q,Q→ R⇒ P → R
Elimination of cases P ∨Q,¬P ⇒ Q
“And” usage P ∧Q⇒ P,Q
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10.20.5 DEDUCTIONS

A deduction from hypotheses is a list of statements, each one of which is either one of

the hypotheses, a tautology, or follows from previous statements in the list by a valid

rule of inference. It follows that if the hypotheses are true, then the conclusion must

be true. Suppose for example, that we are given hypotheses ¬q → p, q → ¬r, r; it

is required to deduce the conclusion p. A deduction showing this, with reasons for

each step is as follows:

Statement Reason

1. q → ¬r Hypothesis

2. r Hypothesis

3. ¬q Modus tollens (1,2)

4. ¬q → p Hypothesis

5. p Modus ponens (3,4)

10.20.6 PREDICATE CALCULUS

Unlike propositional calculus, which may be considered the skeleton of logical dis-

course, predicate calculus is the language in which most mathematical reasoning

takes place. It uses the symbols of propositional calculus, with the exception of the

propositional variables p, q, . . . . Predicate calculus uses the universal quantifier ∀,
the existential quantifier ∃, predicates P (x), Q(x, y), . . . , variables x, y, . . . , and

assumes a universe U from which the variables are taken. The quantifiers are illus-

trated in the following table.

Symbol Read as Usage Interpretation

∃ There exists an ∃x(x > 10) There is an x such that x > 10
∀ For all ∀x(x2 + 1 6= 0) For all x, x2 + 1 6= 0

Predicates are variable statements which may be true or false, depending on the

values of its variable. In the above table, “x > 10” is a predicate in the one variable

x as is “x2 + 1 6= 0.” Without a given universe, we cannot decide if a statement is

true or false. Thus ∀x(x2 + 1 6= 0) is true if the universe U is the real numbers, but

false if U is the complex numbers. A useful rule for manipulating quantifiers is

¬∃xP (x)←→ ∃x¬P (x),
¬∀xP (x)←→ ∃x¬P (x).

For example, it is not true that all people are mortal if and only if there is a person

who is immortal. Here the universe U is the set of people, and P (x) is the predicate

“x is mortal.” This works with more than one quantifier. Thus,

¬∀x∃yP (x, y)←→ ∃x∀y¬P (x, y).

For example, if it is not true that every person loves someone, then it follows that

there is a person who loves no one (and vice versa).

Fermat’s last theorem, stated in terms of the predicate calculus (U = the positive

integers), is ∀n∀a∀b∀c[(n > 2)→ (an + bn 6= cn)]
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10.21 UNITS

10.21.1 SI SYSTEM OF MEASUREMENT

SI, the abbreviation of the French words “Système Internationale d’Unités,” is the

accepted abbreviation for the International Metric System.

1. There are 7 base units

Quantity measured Unit Symbol

Length meter m

Mass kilogram kg

Time second s

Amount of substance mole mol

Electric current ampere A

Luminous intensity candela cd

Thermodynamic temperature kelvin K

2. There are 22 derived units with special names and symbols

Quantity SI Name Symbol Combination of

other SI units

(or base units)

Absorbed dose gray Gy J/kg

Activity (radiation source) becquerel Bq 1/s

Capacitance farad F C/V

Catalytic activity katal kat s−1 mol

Celsius temperature degree Celsius ◦C K

Conductance siemen S A/V

Dose equivalent sievert Sv J/kg

Electric charge coulomb C A s

Electric potential volt V W/A

Electric resistance ohm Ω V/A

Energy joule J N m

Force newton N kg m/s2

Frequency hertz Hz 1/s

Illuminance lux lx lm/m2

Inductance henry H Wb/A

Luminous flux lumen lm cd sr

Magnetic flux density tesla T Wb/m2

Magnetic flux weber Wb V s

Plane angle radian rad m · m−1

(unitless)

Power watt W J/s

Pressure or stress pascal Pa N/m2

Solid angle steradian sr m2 · m−2

(unitless)
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3. The following units are accepted for use with SI units.

Name Symbol Value in SI units

(angle) degree ◦ 1◦ = (π/180) rad

(angle) minute ′ 1′ = (1/60)◦ = (π/10800) rad

(angle) second ′′ 1′′ = (1/60)′ = (π/648000) rad

(time) day d 1 d = 24 h = 86400 s

(time) hour h 1 h = 60 min = 3600 s

(time) minute min 1 min = 60 s

astronomical unit au 1 au ≈ 1.49598× 1011 m

bel B 1 B = (1/2) ln 10 Np

(Note that 1 dB = 0.1 B)

electronvolt eV 1 eV ≈ 1.6021764× 10−19 C

liter L 1 L = 1 dm3 = 10−3 m3

metric ton t 1 t = 103 kg

neper Np 1 Np = 1 (unitless)

unified atomic mass unit u 1 u ≈ 1.66054× 10−27 kg

4. The following units are currently accepted for use with SI units

Name Symbol Value in SI units

angstrom Å 1Å= 0.1 nm = 10−10 m

are a 1 a = 1 dam2 = 102 m2

barn b 1 b = 100 fm2 = 10−28 m2

bar bar 1 bar = 0.1 MPa = 100 kPa = 1000 hPa = 105 Pa

curie Ci 1 Ci = 3.7× 1010 Bq

hectare ha 1 ha = 1 hm2 = 104 m2

knot 1 nautical mile per hour = (1852/3600) m/s

nautical mile 1 nautical mile = 1852 m

rad rad 1 rad = 1 cGy = 10−2 Gy

rem rem 1 rem = 1 cSv = 10−2 Sv

roentgen R 1 R = 2.58× 10−4 C/kg

10.21.2 TEMPERATURE CONVERSION

If tF is the temperature in degrees Fahrenheit and tC is the temperature in degrees

Celsius, then

tC =
5

9
(tF − 32) and tF =

9

5
tC + 32. (10.21.1)

−40◦C 0◦C 10◦C 20◦C 37◦C 100◦C

−40◦F 32◦F 50◦F 68◦F 98.6◦F 212◦F

If TK is the temperature in kelvin and TR is the temperature in degrees Rankine, then

TR = tF + 459.69 and TK = tC + 273.15 =
5

9
TR. (10.21.2)
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10.21.3 UNITED STATES CUSTOMARY SYSTEM OF WEIGHTS

AND MEASURES

1. Linear measure

1 mile = 5280 feet or 320 rods

1 rod = 16.5 feet or 5.5 yards

1 yard = 3 feet

1 foot = 12 inches

2. Linear measure: Nautical

1 fathom = 6 feet

1◦ of latitude = 69 miles

1◦ of longitude at 40◦ latitude = 46 nautical miles ≈ 53 miles

1 nautical mile = 6076.1 feet ≈ 1.1508 statute miles

3. Square measure

1 square mile = 640 acres

1 acre = 43,560 square feet

4. Volume measure

1 cubic yard = 27 cubic feet

1 cubic foot = 1728 cubic inches

5. Dry measure

1 bushel = 4 pecks

1 peck = 8 quarts

1 quart = 2 pints

6. Liquid measure

1 cubic foot = 7.4805 gallons

1 gallon = 4 quarts

1 quart = 2 pints

1 pint = 4 gills

7. Liquid measure: Apothecaries’

1 pint = 16 fluid ounces

1 fluid ounce = 8 drams

1 fluid dram = 60 minims

8. Weight: Apothecaries’

1 pound = 12 ounces

1 ounce = 8 drams

1 dram = 3 scruples

1 scruple = 20 grains

9. Weight: Avoirdupois

1 ton = 2000 pounds

1 pound = 16 ounces or 7000 grains

1 ounce = 16 drams or 437.5 grains

10. Weight: Troy

1 pound = 12 ounces

1 ounce = 20 pennyweights

1 pennyweight = 24 grains
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10.21.4 UNITS OF PHYSICAL QUANTITIES

The units of a system’s parameters constrain all the derivable quantities, regardless

of the equations describing the system. In particular, all derived quantities are func-

tions of dimensionless combinations of parameters. The number of dimensionless

parameters and their forms are given by the Buckingham pi theorem.

Suppose u = f(W1, . . . ,Wn) is to be determined in terms of n measurable

variables and parameters {Wi} where f is an unknown function. Let {u,Wi} in-

volve m fundamental dimensions labeled by L1, . . . , Lm (e.g., length or mass). The

dimensions of the {u,Wi} are given by a product of powers of the fundamental

dimensions. For example, the dimensions of Wi are Lbi1
1 Lbi2

2 · · ·Lbim
m where the

{bij} are real and called the dimensional exponents. A quantity is called dimension-

less if all of its dimensional exponents are zero. Let bi =
[
bi1 . . . bim

]T
be the

dimension vector of Wi and let B =
[
b1 . . . bn

]
be the m × n dimension ma-

trix of the system. Let a =
[
a1 . . . am

]T
be the dimension vector of u and let

y =
[
y1 . . . yn

]T
represent a solution of By = −a. Then,

1. The number of dimensionless quantities is k + 1 = n+ 1− rank(B).
2. The quantity u can be expressed in terms of dimensionless parameters as

u =W−y1

1 W−y2

2 · · ·W−yn
n g(π1, π2, . . . , πk) (10.21.3)

where {πi} are dimensionless quantities. Specifically, let x(i) =[
x1i . . . xni

]T
be one of k = n − r(B) linearly independent solutions

of the system Bx = 0 and define πi =W x1i
1 W x2i

2 · · ·W xni
n .

In the following, it may be easier to think “kilograms” for the mass M , “meters” for

the length L, “seconds” for the time T , and “degrees” for the temperature θ. For

example, acceleration is measured in units of L/T 2, or meters per second squared.

Quantity Dimensions

Acceleration L/T 2

Angular acceleration 1/T 2

Angular frequency 1/T
Angular momentum ML2/T
Angular velocity 1/T
Area L2

Displacement L
Energy ML2/T 2

Force ML/T 2

Frequency 1/T
Gravitational field strength ML/T 2

Gravitational potential ML2/T 2

Length L
Mass M
Mass density M/L3

Quantity Dimensions

Momentum ML/T
Period T
Power ML2/T 3

Pressure M/LT 2

Moment of inertia ML2

Time T
Torque ML2/T 2

Velocity L/T
Volume L3

Wavelength L
Work ML2/T 2

Entropy ML2/T 2θ
Internal energy ML2/T 2

Heat ML2/T 2
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EXAMPLES

1. Shock wave propagation from a point explosion

Suppose a nuclear explosion, represented as a point explosion of energy E, creates a

shock wave propagating into air of density ρ. After time t and we want to know the

radius r. Using the ordering
[
M L T

]
the physical quantities have dimensions:

• u = r has dimensions L or a =
[
0 1 0

]T

• W1 = t has dimensions T or b1 =
[
0 0 1

]T

• W2 = ρ has dimensions ML−3 or b2 =
[
1 −3 0

]T

• W3 = E has dimensions ML2T−2 or b3 =
[
1 2 −2

]T

so that n = 3 and B =
[
b1 b2 b3

]
=
[
0 1 1
0 −3 2
1 0 −2

]
. The rank of B is 3, so there is

n + 1 − rank(B) = 1 dimensionless quantity. The unique solution of By = −a is

y =
[
− 2

5
1
5
− 1

5

]T
.

Putting this together, the solution can be represented as

u = r = W−y1
1 W−y2

2 W−y3
3 g(π1) = t2/5ρ−1/5E1/5g(π1) or r = C

(
Et2

ρ

)1/5

where C is a constant. Note, in particular, the scaling law rlater = rearlier

(
tlater

tearlier

)2/5
.

2. A simple pendulum

A pendulum consisting of a (massless) rod of length ℓ, with a massm at the tip, swing-

ing under the force of gravity (g) will have an oscillation period of Tp that we want to

determine. Using the ordering
[
M L T

]
the physical quantities have dimensions:

• u = Tp has dimensions T or a =
[
0 0 1

]T

• W1 = ℓ has dimensions L or b1 =
[
0 1 0

]T

• W2 = m has dimensions M or b2 =
[
1 0 0

]T

• W3 = g has dimensions LT−2 or b3 =
[
0 1 −2

]T

so that n = 3 and B =
[
b1 b2 b3

]
=
[
0 1 0
1 0 1
0 0 −2

]
. The rank of B is 3, so there is

n + 1 − rank(B) = 1 dimensionless quantity. The unique solution of By = −a is

y =
[
− 1

2
0 1

2

]T
.

Putting this together, the solution can be represented as

u = Tp = W−y1
1 W−y2

2 W−y3
3 h(π1) = ℓ1/2m0g−1/2h(π1) or Tp = C

√
ℓ
g

where C

is a constant. Note, in particular, the period does not depend on the mass m.
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10.21.5 CONVERSION: METRIC TO ENGLISH

Multiply By To obtain

centimeters 0.3937008 inches

cubic meters 1.307951 cubic yards

cubic meters 35.31467 cubic feet

grams 0.03527396 ounces

kilograms 2.204623 pounds

kilometers 0.6213712 miles

liters 0.2641721 gallons (US)

meters 1.093613 yards

meters 3.280840 feet

milliliters 0.03381402 fluid ounces

milliliters 0.06102374 cubic inches

square centimeters 0.1550003 square inches

square meters 1.195990 square yards

square meters 10.76391 square feet

10.21.6 CONVERSION: ENGLISH TO METRIC

Multiply By To obtain

cubic feet 0.02831685 cubic meters

cubic inches 16.38706 milliliters

cubic yards 0.7645549 cubic meters

feet 0.3048000 meters

fluid ounces 29.57353 milliliters

gallons (US) 3.785412 liters

inches 2.540000 centimeters

miles 1.609344 kilometers

mils 25.4 micrometers

ounces 28.34952 grams

pounds 0.4535924 kilograms

square feet 0.09290304 square meters

square inches 6.451600 square centimeters

square yards 0.8361274 square meters

yards 0.9144000 meters
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10.21.7 MISCELLANEOUS CONVERSIONS

Multiply By To obtain

feet of water at 4◦C 2.950× 10−2 atmospheres

inches of mercury at 4◦C 3.342× 10−2 atmospheres

pounds per square inch 6.804× 10−2 atmospheres

foot-pounds 1.285× 10−3 BTU

joules 9.480× 10−4 BTU

cords 128 cubic feet

radian 57.29578 degree (angle)

foot-pounds 1.356× 107 ergs

atmospheres 33.90 feet of water at 4◦C

miles 5280 feet

horsepower 3.3× 104 foot-pounds per minute

horsepower-hours 1.98× 106 foot-pounds

kilowatt-hours 2.655× 106 foot-pounds

foot-pounds per second 1.818× 10−3 horsepower

atmospheres 2.036 inches of mercury at 0◦C

BTU 1.055060× 103 joules

foot-pounds 1.35582 joules

BTU per minute 1.758× 10−2 kilowatts

foot-pounds per minute 2.26× 10−5 kilowatts

horsepower 0.7457 kilowatts

miles per hour 0.8689762 knots

feet 1.893939× 10−4 miles

miles 0.8689762 nautical miles

degrees 1.745329× 10−2 radians

acres 43560 square feet

BTU per minute 17.5796 watts

10.21.8 PHYSICAL CONSTANTS

1. c (speed of light) = 299,792,458 m/s (exact value)

2. e (charge of electron)≈ 1.6021764× 10−19 C

3. ~ (Plank constant over 2π) ≈ 1.0545716× 10−34 J s

4. Acceleration, sea level, latitude 45◦ ≈ 9.806194 m/s2 ≈ 32.1726 ft/s2

5. Avogadro’s constant≈ 6.022142 mol−1

6. Density of mercury, at 0◦C ≈ 13.5951 g/mL

7. Density of water (maximum), at 3.98◦C ≈ 0.99997496 g/mL

8. Density of water, at 0◦C ≈ 0.9998426 g/mL

9. Density of dry air, at 0◦C, 760 mm of Hg ≈ 1.2927 g/L

10. Heat of fusion of water, at 0◦C ≈ 333.6 J/g

11. Heat of vaporization of water, at 100◦C ≈ 2256.8 J/g

12. Mass of hydrogen atom≈ 1.67353× 10−24 g

13. Velocity of sound, dry air, at 0◦C ≈ 331.36 m/s ≈ 1087.1 ft/s
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10.22 VOTING POWER

A weighted voting game is represented by the vector [q;w1, w2, . . . , wn]:

1. There are n players.

2. Player i has wi votes (with wi > 0).

3. A coalition is a subset of players.

4. A coalition S is winning if
∑

i∈S wi ≥ q, where q is the quota.

5. A game is proper if 1
2

∑
wi < q.

A player

1. Can have veto power: no coalition can win without this player

2. Can be a dictator: has more votes than the quota

3. Can be a dummy: cannot affect any coalitions

10.22.1 SHAPLEY–SHUBIK POWER INDEX

Consider all permutations of players. Scan each permutation from beginning to end

adding together the votes that each player contributes. Eventually a total of at least q
will be arrived at, this occurs at the pivotal player. The Shapley–Shubik power index

(φ) of player i is the number of permutations for which player i is pivotal; divided

by the total number of permutations.

EXAMPLE

1. Consider the [5; 4, 2, 1, 1] game, the players are {A,B,C,D}.
2. For the 4! = 24 permutations of four players the pivotal player is underlined:

ABCD BACD CABD DABC

ABDC BADC CADB DACB

ACBD BCAD CBAD DBAC

ACDB BCDA CBDA DBCA

ADBC BDAC CDAB DCAB

ADCB BDCA CDBA DCBA

3. Hence player A has power φ(A) = 18
24

= 0.75.

4. The other three players have equal power of 2
24
≈ 0.083.

10.22.2 BANZHAF POWER INDEX

Consider all 2N possible coalitions of players. For each coalition, if player i can

change the winning-ness of the coalition, by either entering it or leaving it, then i is

marginal or swing. The Banzhaf power index (β) of player i is proportional to the

number of times he is marginal; the total power of all players is 1.
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EXAMPLE

1. Consider the [5; 4, 2, 1, 1] game, the players are {A,B,C,D}.
2. There are 16 subsets of four players; each player is “in” (I) or is “out” (O) of a coalition.

For each coalition the marginal players are listed

O O O O ⇒ {}
O O O I ⇒ {A}
O O I O ⇒ {A}
O O I I ⇒ {A}
O I O O ⇒ {A}
O I O I ⇒ {A}
O I I O ⇒ {A}
O I I I ⇒ {A}

I O O O ⇒ {B,C,D}
I O O I ⇒ {A,D}
I O I O ⇒ {A,C}
I O I I ⇒ {A}
I I O O ⇒ {A,B}
I I O I ⇒ {A}
I I I O ⇒ {A}
I I I I ⇒ {A}

3. Player A is marginal 14 times, and has power β(A) = 14
20

= 0.7
4. The players B, C, and D are each marginal 2 times and have equal power of 2

20
= 0.1.

10.22.2.1 Voting power examples

1. For the game [51; 49, 48, 3] the winning coalitions are: {1, 2, 3}, {1, 2}, {1, 3}
and {2, 3}. These are the same winning coalitions as the game [3; 1, 1, 1].
Hence, all players have equal power even though the number of votes each

player has is different.

2. The original EEC (1958) had France, Germany, Italy, Belgium, The Nether-

lands, and Luxembourg. They voted as [12; 4, 4, 4, 2, 2, 1]. Therefore:

φ =
1

60
(14, 14, 14, 9, 9, 0) and β =

1

21
(5, 5, 5, 3, 3, 0). (10.22.1)

3. The UN security council has 15 members. The five permanent members have

veto power. For a motion to pass, it must be supported by at least 9 mem-

bers of the council and it must not be vetoed. A game representation is:

[39; 7, 7, 7, 7, 7︸ ︷︷ ︸
5 members

, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
10 members

].

(a) Shapley–Shubik powers: of each permanent member φmajor = 421
2145 ≈

0.196, of each minor member φminor =
4

2145 ≈ 0.002.

(b) Banzhaf powers: βmajor =
106
635 ≈ 0.167 and βminor =

21
1270 ≈ 0.017.

4. Changing the quota in a game may change the powers of the players:

(a) For the game [6; 4, 3, 2] have φ = 1
6 (4, 1, 1).

(b) For the game [7; 4, 3, 2] have φ = 1
2 (1, 1, 0).

(c) For the game [8; 4, 3, 2] have φ = 1
3 (1, 1, 1).

5. For the n-player game [q; a, 1, 1, 1, 1, . . . , 1] with 1 < a < q ≤ n < 2q+1−a
the powers are φmajor = a/n and φminor = (n− a)/n(n− 1).

6. Four-person committee, one member is chair. Use majority rule until dead-

lock, then chair decides. This is a [3; 2, 1, 1, 1] game so that φ = 1
6 (3, 1, 1, 1).

7. Five-person committee, with two co-chairs. Need a majority, and at least one

co-chair. This is a [7; 3, 3, 2, 2, 2] game so that φ = 1
12 (3, 3, 2, 2, 2) and β =

1
29 (7, 7, 5, 5, 5)
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10.23 GREEK ALPHABET

Greek Greek English

letter name equivalent

A α Alpha a

B β Beta b

Γ γ Gamma g

∆ δ Delta d

E ǫ ε Epsilon e

Z ζ Zeta z

H η Eta e

Θ θ ϑ Theta th

I ι Iota i

K κ Kappa k

Λ λ Lambda l

M µ Mu m

Greek Greek English

letter name equivalent

N ν Nu n

Ξ ξ Xi x

O o Omicron o

Π π ̟ Pi p

P ρ ̺ Rho r

Σ σ ς Sigma s

T τ Tau t

Υ υ Upsilon u

Φ φ ϕ Phi ph

X χ Chi ch

Ψ ψ Psi ps

Ω ω Omega o

10.24 BRAILLE CODE

0 1 2 3 4

· • · •
· • • •
• • · ·

· • • ·
· • · ·
• • · ·

· • • •
· • • ·
• • · ·

· • • •
· • · ·
• • · ·

· • • •
· • · •
• • · ·

5 6 7 8 9

· • • ·
· • · •
• • · ·

· • • •
· • • ·
• • · ·

· • • •
· • • •
• • · ·

· • • ·
· • • •
• • · ·

· • · •
· • • ·
• • · ·

10.25 MORSE CODE

A • —

B — • • •
C — • — •
D — • •
E •
F • • — •
G — — •
H • • • •
I • •
J • — — —

K — • —

L • — • •
M — —

N — •
O — — —

P • — — •
Q — — • —

R • — •
S • • •
T —

U • • —

V • • • —

W • — —

X — • • —

Y — • — —

Z — — • •

Period • — • — • —

Comma — — • • — —

Question • • — — • •
1 • — — — —

2 • • — — —

3 • • • — —

4 • • • • —

5 • • • • •
6 — • • • •
7 — — • • •
8 — — — • •
9 — — — — •
0 — — — — —
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Hölder inequality . . . . . . . . . . . . . . 43, 285, 383

holomorphic function . . . . . . . . . . . . . . . . . . .389

homeomorphic graph . . . . . . . . . . . . . . . . . . . 148

homogeneity, scalar . . . . . . . . . . . . . . . . . . . . 382

homogeneous

coordinates . . . . . . . . 192, 195, 245, 247

difference equations . . . . . . . . . . . . . . 179
equations . . . . . . . . . . . . . . . . . . . . . . . . 343

integral equation . . . . . . . . . . . . . . . . . 358

solution . . . . . . . . . . . . . . . . . . . . . 337, 338

homomorphism . . . . . . . . . . . . . . . . . . . . . . . . 107

homothety . . . . . . . . . . . . . . . . . . . . . . . . 201, 248

honors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Hooke’s law . . . . . . . . . . . . . . . . . . . . . . 666, 690
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Lamé equations . . . . . . . . . . . . . . . . . . . . . . . . 368

Laplace

development . . . . . . . . . . . . . . . . . . . . . . 85

equation . . . . . . . . . . . 353, 355, 357, 371

integral . . . . . . . . . . . . . . . . . . . . . . . . . . 479

method . . . . . . . . . . . . . . . . . . . . . . . . . . 292
partial differential equation . . . . . . . . 656

transform . . 51, 342, 479, 500, 534, 702

convolution . . . . . . . . . . . . . . . . . . . 482

Laplacian . . . . . . . . . . . . . . . . . . . . 353, 366, 370

latera recta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Latin square . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

latitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755
lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

Laurent series . . . . . . . . . . . . . . . . . . . . . . . . . 390



“smtf32” — 2011/5/20 — 2:09 — page 798 — #808

798 law INDEX

law

Ampere . . . . . . . . . . . . . . . . . . . . . . . . . 674
associative . . . . . . . . . . . . . . . . . . . . . . . 751

Biot–Savart . . . . . . . . . . . . . . . . . . . . . . 674

cancellation . . . . . . . . . . . . . . . . . 100, 102

commutative . . . . . . . . . . . . . . . . . . . . . 751

contrapositive . . . . . . . . . . . . . . . . . . . . 751

Coulomb . . . . . . . . . . . . . . . . . . . . . . . . 674

De Morgan’s . . . . . . . . . . . . . . . . . . . . . 751
distributive . . . . . . . . . . . . . . . . . . . . . . . .83

Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Hooke’s . . . . . . . . . . . . . . . . . . . . 666, 690

Hubble . . . . . . . . . . . . . . . . . . . . . . . . . . 662

idempotent . . . . . . . . . . . . . . . . . . . . . . 751

Kepler . . . . . . . . . . . . . . . . . . . . . . . . . . 662

Little’s . . . . . . . . . . . 535, see Little’s law

Newton’s . . . . . . . . . . . . . . . . . . . . . . . . 667
of cosines . . . . . . . . . . 207, 219, 411, 413

of exponents . . . . . . . . . . . . . . . . . .63, 401

of inertia . . . . . . . . . . . . . . . . . . . . . . . . . 96

of quadratic reciprocity . . . . . . . . . . . . 25

of reliabilities . . . . . . . . . . . . . . . . . . . . 547

of sines . . . . . . . . . . . . 207, 219, 411, 413

of tangents . . . . . . . . . . . . . . . . . . 219, 413

of the excluded middle . . . . . . . . . . . . 751
of unreliabilities . . . . . . . . . . . . . . . . . . 547

Planck . . . . . . . . . . . . . . . . . . . . . . . . . . 692

Stefan . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

least

common multiple . . . . . . . . . . . . . . . . . . 31

norm solution . . . . . . . . . . . . . . . . . . . . . 88

squares approximation . . . . . . . . .90, 626

squares problem . . . . . . . . . . . . . . . . . . . 91
upper bound . . . . . . . . . . . . . . . . . 377, 378

left

cancellation law . . . . . . . . . . . . . . . . . . 100

coset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

distributive law . . . . . . . . . . . . . . . . . . .102

divisor of zero . . . . . . . . . . . . . . . . . . . 102

hand limits . . . . . . . . . . . . . . . . . . . . . . . .49
handed . . . . . . . . . . . . . . . . . . . . . . . . . . 261

limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

matrix inverse . . . . . . . . . . . . . . . . . . . . . 91

shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Legendre

equation . . . . . . . . . . . . . . . . . . . . . . . . . 348

functions . . . . . . . . . . . . . . . . . . . . . . . . 449

associated . . . . . . . . . . . . . . . . . . . . 452
polynomials . . . . . . . . . 48, 431, 451, 640

relation . . . . . . . . . . . . . . . . . . . . . . . . . . 464

series . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

symbol (quadratic residue) . . . . . . . . . 24

Leibniz rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

lemma

Burnside’s . . . . . . . . . . . . . . . . . . . . . . . 109

handshaking . . . . . . . . . . . . . . . . . . . . . 158
Riemann–Lebesgue . . . . . . . . . . . . . . .473

length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 753

arc . . . . . . . . . . . . . . . . . . . . . 259, 284, 365
units . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

Levi–Civita

connection . . . . . . . . . . . . . . . . . . . . . . . 366

symbol . . . . . . . . . . . . . . . . . . . . . . . . . . 367

tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

Lie groups . . . . . . . . . . . . . . . . . . . . . . . . 100, 346

light speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759
likelihood function . . . . . . . . . . . . . . . . . . . . . 553
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