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Preface

Mathematics is playing an increasingly important role in the physical, biological and

engineering sciences, provoking a blurring of boundaries between scientific disciplines

and a resurgence of interest in the modern as well as the classical techniques of applied

mathematics. Remarkable progress has been made recently in both theory and applications

of all important areas of control theory.

Modern automatic control theory covers such topics as the algebraic theory of linear

systems (including controllability, observability, feedback equivalence, minimality of real-

ization, frequency domain analysis and synthesis etc.), Lyapunov stability theory, input–

output method, optimal control (maximum principle and dynamic programing), observers

and dynamic feedback, robust control (in Hardy and Lebesgue spaces), delay-systems con-

trol, the control of infinite-dimensional systems (governed by models in partial differential

equations), conflict and game situations, stochastic processes and effects, and many others.

Some elegant applications of control theory are presently being implemented in aerospace,

biomedical and industrial engineering, robotics, economics, power systems etc.

The efficient implementation of the basic principles of control theory to different

applications of special interest requires an interdisciplinary knowledge of advanced math-

ematical tools and such a combined expertise is hard to find. What is needed, therefore,

is a textbook making these tools accessible to a wide variety of engineers, researchers

and students.

Many suitable texts exist (practically there are no textbooks) that tackle some of the

areas of investigation mentioned above. Each of these books includes one or several

appendices containing the minimal mathematical background that is required of a reader

to actively work with this material. Usually it is a working knowledge of some mathe-

matical tools such as the elements of linear algebra, linear differential equations, fourier

analysis and, perhaps, some results from optimization theory, as well. In fact, there are no

textbooks containing all (or almost all) of the mathematical knowledge required for suc-

cessful studying and research within the control engineering community. It is important

to emphasize that the mathematical tools for automatic control engineers are specific and

significantly differ from those needed by people involved in fluid mechanics, electrical

engineering etc. To our knowledge, no similar books or publications exist. The material

in these books partially overlaps with several other books. However, the material covered

in each book cannot be found in a single book (dealing with deterministic or stochas-

tic systems). Nevertheless, some books may be considered as partially competitive. For

example:

• Guillemin (1949) The Mathematics of Circuit Analysis: Extensions to the Mathematical
Training of Electrical Engineers, John Wiley and Sons, Inc., New York. In fact this

xvii



xviii Preface

book is nicely written, but it is old, does not have anything on stochastic and is oriented

only to electrical engineers.
• Modern Mathematics for the Engineer (1956), edited by E.F. Beckenbah, McGraw-Hill,

New York. This is, in fact, a multi-author book containing chapters written by the best

mathematicians of the second half of the last century such as N. Wiener, R. Bellman

and others. There is no specific orientation to the automatic control community.
• Systèmes Automatisés (in French) (2001), Hermes-Science, Paris, five volumes. These

are multi-authored books where each chapter is written by a specific author or authors.
• Hinrichsen & Pritchard (2005) Mathematical Systems Theory I: Modelling, State Space
Analysis, Stability and Robustness, Texts in Applied Mathematics, Springer. This excel-

lent book is written by mathematicians for mathematicians working with mathematical

aspects of control theory.

The wide community of automatic control engineers requires a book like this. The primary

reason is that there exist no similar books, and, secondly, the mathematical tools are

spread over many mathematical books written by mathematicians and the majority of

them are unsuitable for the automatic control engineering community.

This book was conceived as a hybrid monograph/textbook. I have attempted to make

the development didactic. Most of the material comes from reasonably current periodic

literature and a fair amount of the material (especially in Volume 2) is my own work.

This book is practically self-contained since almost all lemmas and theorems within

contain their detailed proofs. Here, it makes sense to remember the phrase of David

Hilbert: “It is an error to believe that rigor in the proof is the enemy of simplicity. The

very effort for rigor forces us to discover simpler methods of proof. . . .”

Intended audience

My teaching experience and developing research activities convinced me of the need

for this sort of textbook. It should be useful for the average student yet also provide a

depth and rigor challenging to the exceptional student and acceptable to the advanced

scholar. It should comprise a basic course that is adequate for all students of automatic

control engineering regardless of their ultimate speciality or research area. It is hoped that

this book will provide enough incentive and motivation to new researchers, both from

the “control community” and applied and computational mathematics, to work in the

area. Generally speaking, this book is intended for students (undergraduate, postdoctoral,

research) and practicing engineers as well as designers in different industries. It was

written with two primary objectives in mind:

• to provide a list of references for researchers and engineers, helping them to find

information required for their current scientific work, and
• to serve as a text in an advanced undergraduate or graduate level course in mathematics

for automatic control engineering and related areas.

The particular courses for which this book might be used as a text, supplementary text

or reference book are as follows:
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Volume 1

• Introduction to automatic control theory,

• Linear and nonlinear control systems,

• Optimization,

• Control of robotic systems,

• Robust and adaptive control,

• Optimal control,

• Discrete-time and impulse systems,

• Sliding mode control,

• Theory of stability.

Volume 2

• Probability and stochastic processes in control theory,

• Signal and systems,

• Identification and parameters estimation,

• Adaptive stochastic control,

• Markov processes,

• Game theory,

• Machine learning,

• Intelligent systems,

• Design of manufacturing systems and operational research,

• Reliability,

• Signal processing (diagnosis, pattern recognition etc.).
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Notations and Symbols

R — the set of real numbers.

C — the set of complex numbers.

C− := {z ∈ C | Rez < 0} — the left open complex semi-plane.

F — an arbitrary field (a set) of all real or all complex numbers, i.e.,

F :=
{

R in the case of real numbers

C in the case of complex numbers

A = [aij ]
m,n

i,j=1
— rectangular m × n matrix where aij denotes the elements of this table

lying on the intersection of the ith row and j th column.

Rm×n — the set of all m× n matrices with real elements from R.

Cm×n — the set of all m× n matrices with complex elements from C.

(j1, j2, . . . , jn) — permutation of the numbers 1, 2, . . . , n.

t (j1, j2, . . . , jn) — a certain number of inversions associated with a given permutation

(j1, j2, . . . , jn).

detA — the determinant of a square matrix A ∈ Rn×n.
Aᵀ — the transpose of the matrix A obtained by interchanging the rows and columns of A.

A — the conjugate of A, i.e. A := ∥∥āij∥∥m,ni,j=1
.

A∗ := (
A
)ᵀ

— the conjugate transpose of A.

Mij — the minor of a matrix A ∈ Rn×n equal to the determinant of a submatrix of A

obtained by striking out the ith row and j th column.

Aij := (−1)i+j Mij — the cofactor (or ij -algebraic complement) of the element aij of

the matrix A ∈ Rn×n.
V1,n — the Vandermonde determinant.

A

(
i1 i2 · · · ip
j1 j2 · · · jp

)
:= det [aikjk ]

p

k=1
— the minor of order p of A.

A

(
i1 i2 · · · ip
j1 j2 · · · jp

)c
— the complementary minor equal to the determinant of a square

matrix A resulting from the deletion of the listed rows and columns.

Ac
(
i1 i2 · · · ip
j1 j2 · · · jp

)
:= (−1)s A

(
i1 i2 · · · ip
j1 j2 · · · jp

)c
— the complementary cofactor where

s = (
i1 + i2 + · · · + ip

)+ (
j1 + j2 + · · · + jp

)
xxi
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rank A — the minimal number of linearly independent rows or columns of A ∈ Rm×n.

diag [a11, a22, . . . , ann] :=

⎡
⎢⎢⎣
a11 0 · 0

0 a22 · 0

· · · ·
0 0 · ann

⎤
⎥⎥⎦ — the diagonal matrix with the mentioned

elements.

In×n := diag [1, 1, . . . , 1] — the unit (or identity) matrix of the corresponding size.

adjA :=
(
[Aji]

n

j,i=1

)ᵀ
— the adjoint (or adjugate) of a square matrix A ∈ Rn×n.

A−1 — inverse to A.

Cim := m!
i! (m− i)! — the number of combinations containing i different numbers from

the collection (1, 2, . . . , m). Here accepted that 0! = 1.

j — the imaginary unite, j 2 = −1.

A⊗B := [aijB]
m,n

i,j=1
∈ Rmp×nq — the direct (tensor) Kronecker product of two matrices,

may be of different sizes, i.e. A ∈ Rm×n, B ∈ Rp×q .

O, Ol×k — zero matrices (sometimes with the indication of the size l × k) containing the

elements equal to zero.

trA :=
n∑
i=1

aii — the trace of a quadratic matrix A ∈ Cn×n (may be with complex

elements).

(a, b) := a∗b =
n∑
i=1

āibi — a scalar (inner) product of two vectors a ∈ Cn×1 and b ∈ C1×n

which for real vectors a, b ∈ Rn becomes (a, b) := aᵀb =
n∑
i=1

aibi .

span {x1, x2, . . . , xk} := {x = α1x1 + α2x2 + . . .+ αkxk : αi ∈ C, i = 1, . . . , k} — the set

(a subspace) of all linear combinations of x1, x2, . . . , xk over C.

δij =
{
1 if i = j
0 if i �= j — the Kronecker (delta-function) symbol.

S⊥ = span {xk+1, xk+2, . . . , xn}— the orthogonal completion of a subspace S ⊂ Cn where

the vectors xk+j (j = 1, . . . , n− k) are orthonormal.

KerA = N (A) := {x ∈ Cn : Ax = 0} — the kernel (or null space) of the linear transfor-

mation A : Cn 
−→ Cm.

ImA = R(A) := {y ∈ Cm : y = Ax, x ∈ Cn} — the image (or range) of the linear

transformation A : Cn 
−→ Cm.

def A := dimKerA — the dimension of the subspace KerA = N (A).
λ(r) ∈ C — a right eigenvalue corresponding to a right eigenvector x of a matrix A,

i.e., Ax = λ(r)x.
λ(l) ∈ C — a left eigenvalue corresponding to a left eigenvector x of a matrix A,

i.e., x∗A = λ(l)x∗.
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σ (A) := {λ1, λ2, . . . , λn} — the spectrum (the set of all eigenvalues) of A.

ρ (A) := max
1≤i≤n

|λi | — the spectral radius of A.

σi (A) := √
λi (A∗A) = √

λi (AA∗) — ith singular value of A ∈ Cn×n.

In A := {π (A), ν (A), δ (A)} — the inertia of a square matrix A ∈ Rn×n, where π (A)
denotes the number of eigenvalues of A, counted with their algebraic multiplicities,

lying in the open right half-plane of C; ν (A) denotes the number of eigenvalues of

A, counted with their algebraic multiplicities, lying in the open left half-plane of C;
δ (A) is the number of eigenvalues of A, counted with their algebraic multiplicities,

lying on the imaginary axis.

sig H := π (H)− ν (H) — referred to as the signature of H .

Rλ (A) := (λIn×n − A)−1 — the resolvent of A ∈ Cn×n defined for all λ ∈ C which do

not belong to the spectrum of A.

H+ := lim
δ→0

(
HᵀH + δ2In×n

)−1
Hᵀ = lim

δ→0
Hᵀ (

HHᵀ + δ2In×n
)−1

— the pseudoinverse

(the generalized inverse) of H in the Moore–Penrose sense.

‖x‖1 := max
1≤i≤n

|xi | — the modul–sum vector norm.

‖x‖2 :=
(

n∑
i=1

x2i

)1/2

— the Euclidean vector norm.

‖x‖p :=
(

n∑
i=1

|xi |p
)1/p

, p ≥ 1 — the Hölder vector norm.

‖x‖∞ := max
1≤i≤n

|xi | — the Chebyshev vector norm.

‖x‖H := √
(Hx, x) = √

x∗Hx — the weighted vector norm.

‖A‖F :=
(

n∑
i=1

n∑
j=1

∣∣aij ∣∣2
)1/2

— the Frobenius (Euclidean) matrix norm.

‖A‖p :=
(

n∑
i=1

n∑
j=1

∣∣aij ∣∣p
)1/p

, 1 ≤ p ≤ 2 — the Hölder matrix norm.

‖A‖p := n max
1≤i,j≤n

∣∣aij ∣∣ — the weighted Chebyshev matrix norm.

‖A‖tr :=
√
tr (A∗A) = √

tr (AA∗) — the trace matrix norm.

‖A‖σ :=
√
max σi (A)

1≤i≤n
— the maximal singular-value matrix norm.

‖A‖S :=
∥∥SAS−1

∥∥ — the S-matrix norm where S is any nonsingular matrix and ‖·‖ is

any matrix norm.

co {λ1, λ2, . . . , λn} — the convex hull of the values λ1, λ2, . . . , λn.

colA := (
a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . . , am,1, . . . , am,n

)ᵀ
— the spreading operator for

some matrix A ∈ Cm×n.
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pA (λ) = λn+ a1λn−1+ · · ·+ an−1λ+ an — the monic (a0 = 1) characteristic polynomial

associated with a matrix A.

HA :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 · · 0

1 a2 a4 ·
0 a1 a3 ·
· 1 a2 · · ·
· 0 a1 · · ·
· · 1 · an ·
· · · an−1 0

0 0 0 · · an−2 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
— the Hurwitz matrix associated with pA (λ).

U (ω) := RepA (jω) — the real part and V (ω) := ImpA (jω) — the imaginary part.

C := [
B AB A2B · · ·An−1B

]
— the controllability matrix.

O :=

⎡
⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦ — the observability matrix.

[a, b) := {x : a ≤ x < b}.
|x| =

{
x if x ≥ 0

−x if x < 0
.

i — the imaginary unit such that i2 = −1.

z̄ := a − ib for z = a + ib.
cosh y := e

y + e−y
2

, sinh y := e
y − e−y

2
.

A ∼ B — means A is equivalent to B.⋃
α∈A

Eα — the union of sets Eα .⋂
α∈A

Eα — the intersection of sets Eα .

B −A := {x : x ∈ B, but x /∈ A}.
Ac — the complement of A.

cl E := E ∪ E ′ — the closure of E where E ′ is the set of all limit points of E .
∂E = cl E∩ cl(X − E) — the boundary of the set E ⊂ X .

int E := E − ∂E — the set of all internal points of the set E .
diam E := sup

x,y∈E
d (x, y) — the diameter of the set E .

f ∈ R[a,b] (α) — means that f is integrable in the Riemann sense with respect to α on

[a, b].

μ (A) — the Lebesgue measure of the set A.

f ∈ L (μ)— means that f is integrable (or summable) on E in the Lebesgue sense with

respect to the measure μ on E .
f ∼ g on E — means that μ ({x | f (x) �= g (x)} ∩ E) = 0.
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ess sup f := inf
c∈R

c such that μ ({x | f (x) > c}) = 0 — the essential supremum of f

(sometimes denoted also by “vraimax f ”).

ess inf f := sup
c∈R

c such that μ ({x | f (x) < c}) = 0 — the essential infimum of f

(sometimes denoted also by “vraimin f ”).

δ (x − x0)— the Dirac delta-function acting as
∫

X⊂R

f (x) δ (x − x0) dx = f (x0) for any
continuous function f : R → R.

f ′+ (c) and f
′
− (c) — the right- and left-hand side derivatives of f (x) in the point c.

g∪ : R → R — a convex downward (or simply convex) function.

g∩ : R → R — a convex upward (or simply concave) function.

�C (a, b) — the arc length of a path C on [a, b].∫
C

f (z)dz — the contour integral of the function f along C.∮
C

f (z) dz = 0 — the contour integral of the function f (z) around a closed path C.

resf (a) := 1

2πi

∮
C

f (z) dz — the residue of the function f (z) at the singular point a

within a contour C.

F (p) :=
∞∫
t=0

f (t)K (t, p) dt— the integral transformation of f (t) via the kernelK (t, p).

(f ∗ g) :=
t∫

τ=0

f (τ) g (t − τ) dτ — the convolution of two functions.

L {f } — the Laplace transformation of f .

L−1 {F } — the inverse Laplace transformation of F .

F (ω) := 1√
2π

∞∫
t=−∞

f (t) e−iωtdt — the Fourier transformation of f .

C [a, b] — the space of continuous functions.

Ck [a, b] — the space of k-times continuously differentiable functions.

Lp [a, b] (1 ≤ p <∞) — the Lebesgue space.

Slp (G) — the Sobolev spaces.

Hm×k
p , RHm×k

p , Hm×k
∞ and RHm×k

∞ — the Hardy spaces.

‖A‖ := sup
x∈D(A), x �=0

‖Ax‖Y
‖x‖X

= sup
x∈D(A), ‖x‖X=1

‖Ax‖Y — the induced norm of the operator A.

L (X ,F) — the space of all linear bounded functional (operators) acting from X to F .

f (x) or 〈x, f 〉 — the value of the linear functional f ∈ X ∗ on the element x ∈ X .

d� (x0 | h) := 〈h,�′ (x0)〉 — the Fréchet derivative of the functional � in a point

x0 ∈ D (�) in the direction h.

δ� (x0 | h) = Ax0 (h) =
〈
h,Ax0

〉
— the Gâteaux derivative of � in the point x0 (inde-

pendently on h).
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SN (x0, . . . , xN) :=
{
x ∈ X | x =

N∑
i=0

λixi, λi ≥ 0,

N∑
i=0

λi = 1

}
— an N -simplex.

DR |x (t)| := lim
0<h→0

1

h
[|x (t + h)| − |x (t)|] — the right-derivative for x ∈ C1 [a, b].

Conv
a.a. t∈[α,β]

∪ ẋ (t) — a convex closed set containing ∪ ẋ (t) for almost all t ∈ [α, β].

SIGN (S (x)) := (sign (S1 (x)) , . . . , sign (Sm (x)))ᵀ.
∂f (x) — a subgradient of the function f at the point x.

conv Q =
{
x =

n+1∑
i=1

λixi | xi ∈ Q,λi ≥ 0,

n+1∑
i=1

λi = 1

}
— the convex hull of a set

Q ⊆ Rn.

πQ {x} = argmin
y∈Q

‖x − y‖ — a projectional operator.[
A B

C D

]
— referred to as a state space realization.

F
∼
(s) := Fᵀ (−s) .

�G : Lk2 → Lm2 — the Laurent (or multiplication) operator.

�G :
(
Hk

2

)⊥ → Hm
2 — the Hankel operator.

�G : Hk
2 → Hm

2 — the Toeplitz operator.

�g : Lk2 [0,∞)→ Lm2 [0,∞) — the time-domain Hankel operator.
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1 Determinants

Contents

1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Properties of numerical determinants, minors and cofactors . . . . . . . . . 6

1.3 Linear algebraic equations and the existence of solutions . . . . . . . . . . 16

The material presented in this chapter as well as in the next chapters is based on

the following classical books dealing with matrix theory and linear algebra: Lancaster

(1969), Lankaster & Tismenetsky (1985), Marcus & Minc (1992), Bellman (1960)

and Gantmacher (1990). The numerical methods of linear algebra can be found in

Datta (2004).

1.1 Basic definitions

1.1.1 Rectangular matrix

Definition 1.1. An ordered array of elements aij (i = 1, . . . , m; j = 1, . . . , n) taken
from arbitrary field F (here F will always be the set of all real or all complex numbers,
denoted by R and C, respectively) written in the form of the table

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
a21 a22 · · · a2n
· · ·
· · ·
· · ·
am1 am2 · · · amn

⎤
⎥⎥⎥⎥⎥⎥⎦ = [aij ]

m,n

i,j=1
(1.1)

is said to be a rectangular m × n matrix where aij denotes the elements of this table
lying on the intersection of the ith row and j th column.

The set of all m × n matrices with real elements will be denoted by Rm×n and with

complex elements by Cm×n.

1.1.2 Permutations, number of inversions and diagonals

Definition 1.2. If j1, j2, . . . , jn are the numbers 1, 2, . . . , n written in any order
then (j1, j2, . . . , jn) is said to be a permutation of 1, 2, . . . , n. A certain number
of inversions associated with a given permutation (j1, j2, . . . , jn) denoted briefly by
t (j1, j2, . . . , jn).

3
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Clearly, there exists exactly n! = 1 · 2 · · · n permutations.

Example 1.1. (1, 3, 2), (3, 1, 2), (3, 2, 1), (1, 2, 3), (2, 1, 3), (2, 3, 1) are the permu-
tations of 1, 2, 3.

Example 1.2. t (2, 4, 3, 1, 5) = 4.

Definition 1.3. A diagonal of an arbitrary square matrix A ∈ Rn×n is a sequence of
elements of this matrix containing one and only one element from each row and one and
only one element from each column. Any diagonal of A is always assumed to be ordered
according to the row indices; therefore it can be written in the form

a1j1 , a2j2 , . . . , anjn

Any matrix A ∈ Rn×n has n! different diagonals.

Example 1.3. If (j1, j2, . . . , jn) = (1, 2, . . . , n) we obtain the main diagonal

a11, a22, . . . , ann

If (j1, j2, . . . , jn) = (n, n− 1, . . . , 1) we obtain the secondary diagonal

a1n, a2(n−1), . . . , an1

1.1.3 Determinants

Definition 1.4. The determinant detA of a square matrix A ∈ Rn×n is defined by

detA :=
∑

j1,j2,...,jn

(−1)t(j1,j2,...,jn) a1j1a2j2 · · · anjn

=
∑

j1,j2,...,jn

(−1)t(j1,j2,...,jn)
n∏
k=1

akjk

(1.2)

In other words, detA is a sum of n! products involving n elements of A belonging to

the same diagonal. This product is multiplied by (+1) or (−1) according to whether

t (j1, j2, . . . , jn) is even or odd, respectively.

Example 1.4. If A ∈ R2×2 then

det

[
a11 a12
a21 a22

]
= a11a22 − a12a21
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Example 1.5. (Sarrius’s rule) If A ∈ R3×3 (see Fig. 1.1) then

det

⎡
⎣ a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦

= a11a22a33 + a12a23a31 + a21a13a32
− a31a22a13 − a32a11a23 − a21a12a33

Example 1.6.

det

⎡
⎢⎢⎢⎢⎣

0 a12 0 0 0

0 0 0 a24 0

0 0 a33 a34 0

a41 a42 0 0 0

0 0 0 a54 a55

⎤
⎥⎥⎥⎥⎦ = (−1)t(2,4,3,1,5) a12a24a33a41a55

= (−1)4 a12a24a33a41a55 = a12a24a33a41a55

Example 1.7. The determinant of a low triangular matrix is equal to the product of its
diagonal elements, that is,

det

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 0 · · · 0
a21 a22 0 · · 0
· · · 0 · ·
· · · · 0 ·
0 · · · · 0
0 · · 0 an,n−1 ann

⎤
⎥⎥⎥⎥⎥⎥⎦ = a11a22 · · · ann =

n∏
i=1

aii

a11

a21

a31 a32 a33

a23a22

a12 a13

1

a11

a21

a31 a32 a33

a23a22

a12 a13

2

Fig. 1.1. Illustration of the Sarrius’s rule.
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Example 1.8. The determinant of an upper triangular matrix is equal to the product of
its diagonal elements, that is,

det

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n
0 a22 a23 · · a2n
0 0 a33 a34 · ·
· · 0 · · ·
0 · · 0 · an−1,n

0 · · 0 0 ann

⎤
⎥⎥⎥⎥⎥⎥⎦ = a11a22 · · · ann =

n∏
i=1

aii

Example 1.9. For the square matrix A ∈ Rn×n having only zero elements above
(or below) the secondary diagonal

detA = (−1)n(n−1)/2 a1na2,n−1 · · · an1
Example 1.10. The determinant of any matrix A ∈ Rn×n containing a zero row
(or column) is equal to zero.

1.2 Properties of numerical determinants, minors and cofactors

1.2.1 Basic properties of determinants

Proposition 1.1. If Ã denotes a matrix obtained from a square matrix A by multiplying
one of its rows (or columns) by a scalar k, then

det Ã = k detA (1.3)

Corollary 1.1. The determinant of a square matrix is a homogeneous over field F,
that is,

det (kA) = det [kaij ]
n,n

i,j=1
= kn detA

Proposition 1.2.

detA = detAᵀ

where Aᵀ is the transpose of the matrix A obtained by interchanging the rows and
columns of A, that is,

Aᵀ =

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a21 · · · an1
a12 a22 · · · an2
· · ·
· · ·
· · ·
a1n a2n · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎦ = [aji]

n,n

i,j=1
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Proof. It is not difficult to see that a diagonal a1j1 , a2j2 , . . . , anjn , ordered according to

the row indices and corresponding to the permutation (j1, j2, . . . , jn), is also a diag-

onal of Aᵀ since the elements of A and Aᵀ are the same. Consider now pairs of

indices

(1, j1), (2, j2), . . . , (n, jn) (1.4)

corresponding to a term of detA and pairs

(k1, 1), (k2, 2), . . . , (jn, n) (1.5)

obtained from the previous pairs collection by a reordering according to the second

term and corresponding to the term of detAᵀ with the same elements. Observe that

each interchange of pairs in (1.4) yields a simultaneous interchange of numbers in the

permutations (1, 2, . . . , n), (j1, j2, . . . , jn) and (k1, k2, . . . , kn). Hence,

t (j1, j2, . . . , jn) = t (k1, k2, . . . , kn)

This completes the proof. �

Proposition 1.3. If the matrix B ∈ Rn×n is obtained by interchanging two rows (or
columns) of A ∈ Rn×n then

detA = − detB (1.6)

Proof. Observe that the terms of detA and detB consist of the same factors taking

one and only one from each row and each column. It is sufficient to show that the

signs of each elements are changed. Indeed, let the rows be in general position with

rows r and s (for example, r < s). Then with (s − r)-interchanges of neighboring rows,

the rows

r, r + 1, . . . , s − 1, s

are brought into positions

r + 1, r + 2, . . . , s, r

A further (s − r − 1)-interchanges of neighboring rows produces the required order

s, r + 1, r + 2, . . . , s − 1, r

Thus, a total 2 (s − r)− 1 interchanges is always odd that completes the proof. �

Corollary 1.2. If the matrix A ∈ Rn×n has two rows (or columns) alike, then

detA = 0



8 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Proof. It follows directly from the previous proposition that since making the interchang-

ing of these two rows (or columns) we have

detA = − detA

which implies the result. �

Corollary 1.3. If a row (or column) is a multiple of another row (or column) of the same
matrix A then

detA = 0

Proof. It follows from the previous propositions that

det

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a21 · · · an1
· · · · · ·
a1j a2j · · · anj
ka1j ka2j · · · kanj
· · ·
a1n a2n · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎦

= k det

⎡
⎢⎢⎢⎢⎢⎢⎣

a11 a21 · · · an1
· · · · · ·
a1j a2j · · · anj
a1j a2j · · · anj
· · ·
a1n a2n · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎦ = 0

The result is proven. �

Proposition 1.4. Let B be the matrix obtained from A by adding the elements of the
ith row (or column) to the corresponding elements of its kth (k �= i) row (or column)
multiplied by a scalar α. Then

detB = detA (1.7)

Proof. Taking into account that in the determinant representation (1.2) each term contains

only one element from each row and only one from each column of the given matrix, we

have

detA=
∑

j1,j2,...,jn

(−1)t(j1,j2,...,jn) b1j1b2j2 · biji · bnjn
=

∑
j1,j2,...,jn

(−1)t(j1,j2,...,jn) a1j1a2j2 ·
(
aiji + αakjk

) · akjk · anjn
=

∑
j1,j2,...,jn

(−1)t(j1,j2,...,jn) a1j1a2j2 · aiji · akjk · anjn
+ α

∑
j1,j2,...,jn

(−1)t(j1,j2,...,jn) a1j1a2j2 · akjk · akjk · anjn
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The second determinant is equal to zero since it has two rows alike. This proves

the result. �

Corollary 1.4. (Gauss’s method of determinants evaluation) When the operation
described above is applied several times, the evaluation of a determinant can be
reduced to that of a triangular matrix.

Example 1.11.

det

⎡
⎢⎢⎣

1 2 1 −1

1 −2 1 0

−1 1 −2 1

0 −1 1 2

⎤
⎥⎥⎦ = det

⎡
⎢⎢⎣

1 2 1 −1

0 −4 0 1

−1 1 −2 1

0 −1 1 2

⎤
⎥⎥⎦

= det

⎡
⎢⎢⎣
1 2 1 −1

0−4 0 1

0 3 −1 0

0−1 1 2

⎤
⎥⎥⎦ = det

⎡
⎢⎢⎣
1 3 1 −1

0−4 0 1

0 2 −1 0

0 0 1 2

⎤
⎥⎥⎦

= det

⎡
⎢⎢⎣
1 3 1 −1

0−4 0 1

0 0 −1 0.5

0 0 1 2

⎤
⎥⎥⎦ = det

⎡
⎢⎢⎣
1 3 1 −1

0−4 0 2

0 0 −1 0.5

0 0 0 2.5

⎤
⎥⎥⎦ = 10

Corollary 1.5. If Ā denotes the complex conjugate of A ∈ Cn×n, then

det Ā = detA

Proof. Transforming det Ā to the determinant of a triangular matrix
[
triang Ā

]
and

applying the rule

ab = ab

valid within the field C of complex values, we get

detA= det
(
triang A

) = n∏
i=1

(
triang A

)
ii

=
n∏
i=1

(triang A)ii = det (triang A) = detA

The result is proven. �
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Corollary 1.6.

det (A∗) = detA (1.8)

Proposition 1.5. Let us consider the, so-called, n× n companion matrix

Ca :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · 0

0 0 1 0 · ·
· · 0 · · ·
· · 0 · 0

0 0 · · 0 1

−a0 −a1 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎥⎦

associated with the vector a = (a0, . . . , an−1)
ᵀ. Then

detCa = (−1)n a0

Proof. Multiplying the ith row (i = 1, . . . , n− 1) by ai , adding it to the last one and

moving the first column to the last right-hand side position, we obtain

det

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · 0

0 0 1 0 · ·
· · 0 · · ·
· · 0 · 0

0 0 · · 0 1

−a0 −a1 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎥⎦ = det

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · 0

0 0 1 0 · ·
· · 0 · · ·
· · 0 · 0

0 0 · · 0 1

−a0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

= (−1)n−1 det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · 0

0 1 0 0 · ·
· · 1 · · ·
· · · · 0

· · · · 1 0

0 0 · · · −a0

⎤
⎥⎥⎥⎥⎥⎥⎦ = (−1)n a0

The proposition is proven. �

1.2.2 Minors and cofactors

Definition 1.5. A minor Mij of a matrix A ∈ Rn×n is the determinant of a submatrix of
A obtained by striking out the ith row and j th column.

Example 1.12.

A =
⎡
⎣ 1 2 3

4 5 6

7 8 9

⎤
⎦, M23 = det

[
1 2

7 8

]
= −6
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Definition 1.6. The cofactor Aij (or ij -algebraic complement) of the element aij of the
matrix A ∈ Rn×n is defined as

Aij := (−1)i+j Mij (1.9)

Example 1.13.

A =
⎡
⎣ 1 2 3

4 5 6
¯

7 8 9

⎤
⎦, A23 = (−1)2+3 det

[
1 2

7 8

]
= 6

Lemma 1.1. (Cofactor expansion) For any matrix A ∈ Rn×n and any indices i, j =
1, . . . , n

detA =
n∑
j=1

aijAij =
n∑
i=1

aijAij (1.10)

Proof. Observing that each term in (1.2) contains an element of the ith row (or, analo-

gously, of the j th column) and collecting together all terms containing aij we obtain

detA :=
∑

j1,j2,...,jn

(−1)t(j1,j2,...,jn) a1j1a2j2 · · · anjn

=
n∑
ji=1

aiji

[ ∑
jk,k �=i

(−1)t(j1,j2,...,jn)
∏
k �=i
akjk

]

To fulfill the proof it is sufficient to show that

Ãiji :=
∑
jk,k �=i

(−1)t(j1,j2,...,jn)
∏
k �=i
akjk = Aiji

In view of the relation

(−1)t(j1,j2,...,jn) = (−1)i+ji (−1)t(j1,j2,...,ji−1,jj+1,...,jn)

it follows that

Ãiji = (−1)i+ji
[ ∑
jk,k �=i

(−1)t(j1,j2,...,ji−1,jj+1,...,jn)
∏
k �=i
akjk

]
= (−1)i+ji Miji = Aiji

which completes the proof. �
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Example 1.14.

det

⎡
⎣ 1 2 3

4 5 6

7 8 9

⎤
⎦= 1 (−1)1+1 det

[
5 6

8 9

]

+ 4 (−1)2+1 det

[
2 3

8 9

]
+ 7 (−1)3+1

[
2 3

5 6

]
= −3− 4 (−6)+ 7 (−3) = 0

Lemma 1.2. For any matrix A ∈ Rn×n and any indices i �= r, j �= s (i, j = 1, . . . , n) it
follows that

n∑
j=1

aijArj =
n∑
i=1

aijAis = 0

Proof. The result follows directly if we consider the matrix obtained from A by replacing

the row i (column j ) by the row r (column s) and then use the property of a determinant

with two rows (or columns) alike that says that it is equal to zero. �

Lemma 1.3. Vandermonde determinant

V1,n := det

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1

x1 x2 · · · xn
x21 x22 · · · x2n
· · · · · ·
xn−1
1 xn−1

2 · · · xn−1
n

⎤
⎥⎥⎥⎥⎦ =

n∏
j=1

n∏
i>j

(
xi − xj

)

Proof. Adding the ith row multiplied by (−x1) to the (i + 1) row (i = n − 1,

n− 2, . . . , 1) and applying the iteration implies

Vn = det

⎡
⎢⎢⎢⎢⎣
1 1 · · · 1

0 x2 − x1 · · · xn − x1
0 x22 − x1x2 · · · x2n − x1xn
· · · · · ·
0 xn−1

2 − x1xn−2
2 · · · xn−1

n − x1xn−2
n

⎤
⎥⎥⎥⎥⎦

= det

⎡
⎢⎢⎣

x2 − x1 · · · xn − x1
(x2 − x1) x2 · · · (xn − x1) xn

· · · · ·
(x2 − x1) xn−2

2 · · · (xn − x1) xn−2
n

⎤
⎥⎥⎦
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= (x2 − x1) · · · (xn − x1) det

⎡
⎢⎢⎣

1 · · · 1

x2 · · · xn
· · · · ·
xn−2
2 · · · xn−2

n

⎤
⎥⎥⎦

=
n∏
i=2

(xi − x1) V2,n = · · · =
n∏
j=1

n∏
i>j

(xi − xj )Vn,n =
n∏
j=1

n∏
i>j

(xi − xj )

since Vn,n = 1. �

1.2.3 Laplace’s theorem

Definition 1.7.

(a) If A is an m × n matrix, then the determinant of a p × p (1 ≤ p ≤ min (m, n))
submatrix of A, obtained by striking out (m−p) rows and (n−p) columns, is called
a minor of order p of A. If rows and columns retained are given by subscripts

1 ≤ i1 < i2 < · · · < ip ≤ m, 1 ≤ j1 < j2 < · · · < jp ≤ n (1.11)

respectively, then the corresponding minor is denoted by

A

(
i1 i2 · · · ip
j1 j2 · · · jp

)
:= det [aikjk ]

p

k=1
(1.12)

(b) The minors for which

ik = jk (k = 1, 2, . . . , p)

are called the principal minors.

(c) The minors for which

ik = jk = k (k = 1, 2, . . . , p)

are called the leading principal minors.

Definition 1.8. The determinant of a square matrix A resulting from the deletion of the
rows and columns listed in (1.11) is called the complementary minor and is denoted by

A

(
i1 i2 · · · ip
j1 j2 · · · jp

)c
The complementary cofactor to (1.12) is defined by

Ac

(
i1 i2 · · · ip
j1 j2 · · · jp

)
:= (−1)s A

(
i1 i2 · · · ip
j1 j2 · · · jp

)c
s = (

i1 + i2 + · · · + ip
)+ (

j1 + j2 + · · · + jp
)



14 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Example 1.15. For A = [aij ]
5

i,j=1
we have

A

(
2 3 5

1 2 4

)
=

⎡
⎣ a21 a22 a24a31 a32 a34
a51 a52 a54

⎤
⎦

A

(
2 3 5

1 2 4

)c
= A

(
1 4

3 5

)
=

[
a13 a15
a43 a45

]

Ac
(

2 3 5

1 2 4

)
= (−1)17

[
a13 a15
a43 a45

]
= − (a13a45 − a15a43)

Theorem 1.1. (Laplace’s theorem) Let A be an arbitrary n × n matrix and let any p
rows (or columns) of A be chosen. Then

detA =
∑

j1,j2,···,jp
A

(
i1 i2 · · · ip
j1 j2 · · · jp

)
Ac

(
i1 i2 · · · ip
j1 j2 · · · jp

)
(1.13)

where the summation extends over all Cpn :=
n!

p! (n− p)! distinct sets of column indices

j1, j2, · · ·, jp
(
1 ≤ j1 < j2 < · · · < jp ≤ n

)
Or, equivalently,

detA =
∑

i1,j2,···,ip
A

(
i1 i2 · · · ip
j1 j2 · · · jp

)
Ac

(
i1 i2 · · · ip
j1 j2 · · · jp

)
(1.14)

where

1 ≤ i1 < i2 < · · · < ip ≤ n

Proof. It can be arranged similarly to that of the cofactor expansion formula (1.10). �

1.2.4 Binet–Cauchy formula

Theorem 1.2. (Binet–Cauchy formula) Two matrices A ∈ Rp×n and B ∈ Rn×p are
given, that is,

A =

⎡
⎢⎢⎣
a11 a12 · a1n
a21 a22 · a2n
· · · ·
ap1 ap2 · apn

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
b11 b12 · b1p
b21 b22 · b2p
· · · ·
bn1 bn2 · bnp

⎤
⎥⎥⎦
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Multiplying the rows of A by the columns of B let us construct p2 numbers

cij =
n∑
k=1

aikbkj (i, j = 1, . . . , p)

and consider the determinant D := ∣∣cij ∣∣pi,j=1
. Then

1. if p ≤ n we have

D =
∑

1≤j1<j2<···<jp≤n
A

(
1 2 · · · p
j1 j2 · · · jp

)
B

(
j1 j2 · · · jp
1 2 · · · p

)
(1.15)

2. if p > n we have

D = 0

Proof. It follows directly from Laplace’s theorem. �

Example 1.16. Let us prove that

⎡
⎢⎢⎢⎣

n∑
k=1

akck

n∑
k=1

akdk

n∑
k=1

bkck

n∑
k=1

bkdk

⎤
⎥⎥⎥⎦ =

∑
1≤j<k≤n

[
aj ak
bj bk

] [
cj ck
dj dk

]
(1.16)

Indeed, considering two matrices

A =
[
a11 a12 · a1n
a21 a22 · a2n

]
, B =

⎡
⎢⎢⎣
c11 d12
c21 d22
· ·
cn1 dn2

⎤
⎥⎥⎦

and applying (1.15) we have (1.16).

Example 1.17. (Cauchy identity) The following identity holds

(
n∑
i=1

aici

)(
n∑
i=1

bidi

)
−
(

n∑
i=1

aidi

)(
n∑
i=1

bici

)
=

∑
1≤j<k≤n

(
ajbk − akbj

) (
cjdk − ckdj

)

It is the direct result of (1.16).
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1.3 Linear algebraic equations and the existence of solutions

1.3.1 Gauss’s method

Let us consider the set of m linear equations (a system of linear equations)

a11x1 + a12x2+ · · · + a1nxn = b1
a21x1 + a22x2+ · · · + a2nxn = b2

· · ·
am1x1 + am2x2+ · · · + amnxn = bm

(1.17)

in n unknowns x1, x2, . . . , xn ∈ R and m × n coefficients aij ∈ R. An n-tuple(
x∗1 , x

∗
2 , . . . , x

∗
n

)
is said to be a solution of (1.17) if, upon substituting x∗i instead of

xi (i = 1, . . . n) in (1.17), equalities are obtained. A system of linear equations (1.17)

may have

• a unique solution;
• infinitely many solutions;
• no solutions (to be inconsistent).

Definition 1.9. A system of linear equations

ã11x1 + ã12x2 + · · · + ã1nxn = b̃1
ã21x1 + ã22x2 + · · · + ã2nxn = b̃2

· · ·
ãm1x1 + ãm2x2 + · · · + ãmnxn = b̃m

(1.18)

is said to be equivalent to a system (1.17) if their sets of solutions coincide or they do
not exist simultaneously.

It is easy to see that the following elementary operations transform the given system

of linear equations to an equivalent one:

• interchanging equations in the system;
• multiplying an equation in the given system by a nonzero constant;
• adding one equation, multiplied by a number, to another.

Proposition 1.6. (Gauss’s rule) Any system of m linear equations in n unknowns has an
equivalent system in which the augmented matrix has a reduced row-echelon form, for
example, for m < n

ã11x1 + ã12x2 + · · · + ã1nxn = b̃1
ã21x1 + ã22x2 + · · · + ã2nxn = b̃2

· · ·
0 · x1 + · · · + 0 · xn−m−1 + ãmnxn−m + · · · + ãmnxn = b̃m

· · ·
0 · x1 + 0 · x2 + · · · + 0 · xn = 0
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Example 1.18.

2x1 − x2 − x3 + 3x4 = 1

4x1 − 22 − x3 + x4 = 5

6x1 − 32 − x3 − x4 = 9

2x1 − x2 + 2x3 − 12x4 = 10

∼
2x1 − x2 − x3 + 3x4 = 1

0 · x1 + 0 · x2 + x3 − 5x4 = 3

0 · x1 + 0 · x2 + 2x3 − 10x4 = 6

0 · x1 + 0 · x2 + 3x3 − 15x4 = 9

∼
2x1 − x2 − x3 + 3x4 = 1

0 · x1 + 0 · x2 + x3 − 5x4 = 3

0 · x1 + 0 · x2 + 0 · x3 + 0 · x4 = 0

0 · x1 + 0 · x2 + 0 · x3 + 0 · x4 = 0

Here the first elementary transform consists in multiplying the first row by 2, 3, 1 and
adding (with minus) to the following rows, correspondingly. The second elementary
transform consists in multiplying the second row by 2, 3 and adding (with minus) to the
following rows, correspondingly. Finally, one gets

2x1 − x2 − x3 + 3x4 = 1

x3 − 5x4 = 3

Taking x2 and x4 as free variables it follows that

x1 = 1

2
x2 + x4 + 2

x3 = 5x4 + 3

1.3.2 Kronecker–Capelli criterion

Lemma 1.4. (Kronecker–Capelli) A system of linear equations given in the form
(1.17) has

• a unique solution if m = n and

detA =

⎡
⎢⎢⎣
a11 a12 · a1n
a21 a22 · a2n
· · ·
an1 an2 · ann

⎤
⎥⎥⎦ �= 0

• infinitely many solutions if the minimal number of linearly independent rows of
A (denoted by rank A) is equal to one of the extended matrices (denoted by rank [A | b]),
that is,

rank A= rank

⎡
⎢⎢⎣
a11 a12 · a1n
a21 a22 · a2n
· · ·
an1 an2 · ann

⎤
⎥⎥⎦ = rank [A | b]= rank

⎡
⎢⎢⎣
a11 a12 · a1n b1
a21 a22 · a2n b2
· · · ·
an1 an2 · ann bn

⎤
⎥⎥⎦
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• no solutions (to be inconsistent) if

rank A �= rank [A | b]

The proof of this fact will be clarified in the next chapter where the inverse matrix will

be introduced.

1.3.3 Cramer’s rule

Proposition 1.7. (Cramer) If m = n and detA �= 0 the unique solution of (1.17) is
given by

xi = 1

detA

⎡
⎢⎢⎣
a11 · a1,i−1 b1 a1,i+1 · a1n
a21 · a2,i−1 b2 a2,i+1 · a2n
· · · · · · ·
an1 · an,i−1 bn an,i+1 · ann

⎤
⎥⎥⎦ (i = 1, . . . , n)

The proof of this fact will be also done in the next chapter.

Example 1.19.

x1 − 2x2 = 1

3x1 − 4x2 = 7

}
, detA =

∣∣∣∣1 −2

3 −4

∣∣∣∣ = 2 �= 0

x1 = 1

2

∣∣∣∣1 −2

7 −4

∣∣∣∣ = 10

2
, x2 = 1

2

∣∣∣∣1 1

3 7

∣∣∣∣ = 4

2
= 2
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2.1 Basic definitions

2.1.1 Basic operations over matrices

The definition of a matrix has been done in (1.1). Here the basic properties of matrices

and the operations with them will be considered.

Three basic operations over matrices are defined: summation, multiplication and

multiplication of a matrix by a scalar.

Definition 2.1.

1. The sum A + B of two matrices A = [aij ]
m,n

i,j=1
and B = [bij ]

m,n

i,j=1
of the same size is

defined as

A+ B := [aij + bij ]m,ni,j=1

2. The product C of two matrices A = [aij ]
m,n

i,j=1
and B = [bij ]

n,p

i,j=1
may be of different

sizes (but, as required, the number of columns of the first matrix coincides with the
number of rows of the second one) and is defined as

C = [cij ]
m,p

i,j=1
= AB :=

[
n∑
k=1

aikbkj

]m,p
i,j=1

(2.1)

(If m = p = 1 this is the definition of the scalar product of two vectors). In general,

AB �= BA

19
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3. The operation of multiplication of a matrix A ∈ Rm×n by a scalar α ∈ R is defined
as follows

αA = Aα := [αaij ]
m,n

i,j=1

4. The difference A − B of two matrices A = [aij ]
m,n

i,j=1
and B = [bij ]

m,n

i,j=1
of the same

size is called a matrix X satisfying

X + B = A

Obviously,

X = A− B := [aij − bij ]m,ni,j=1

2.1.2 Special forms of square matrices

Definition 2.2.

1. A diagonal matrix is a particular case of a squared matrix (m = n) for which all
elements lying outside the main diagonal are equal to zero:

A =

⎡
⎢⎢⎣
a11 0 · 0

0 a22 · 0

· · · ·
0 0 · ann

⎤
⎥⎥⎦ = diag [a11, a22, . . . , ann]

If a11 = a22 = . . . = ann = 1 the matrix A becomes the unit (or identity) matrix

In×n :=

⎡
⎢⎢⎣
1 0 · 0

0 1 · 0

· · · ·
0 0 · 1

⎤
⎥⎥⎦

(usually, the subindex in the unit matrix definition is omitted). If a11 = a22 = . . . =
ann = 0 the matrix A becomes a zero-square matrix:

On×n :=

⎡
⎢⎢⎣
0 0 · 0

0 0 · 0

· · · ·
0 0 · 0

⎤
⎥⎥⎦

2. The matrix Aᵀ ∈ Rn×m is said to be transposed to a matrix A ∈ Rm×n if

Aᵀ = [aji]
n,m

j,i=1
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3. The adjoint (or adjudged) of a square matrix A ∈ Rn×n, written adj A, is defined to
be the transposed matrix of cofactors Aji (1.9) of A, that is,

adjA :=
(
[Aji]

n

j,i=1

)ᵀ

4. A square matrix A ∈ Rn×n is said to be singular or nonsingular according to whether
detA is zero or nonzero.

5. A square matrix B ∈ Rn×n is referred to as an inverse of the square matrix
A ∈ Rn×n if

AB = BA = In×n (2.2)

and when this is the case, we write B = A−1.
6. A matrix A ∈ Cn×n

• is normal if AA∗ = A∗A and real normal if A ∈ Rn×n and AAᵀ = AᵀA;
• is Hermitian if A = A∗ and symmetric if A ∈ Rn×n and A = Aᵀ;
• is skew-Hermitian if A∗ = −A and skew-symmetric if A ∈ Rn×n and Aᵀ = −A.

7. A matrix A ∈ Rn×n is said to be orthogonal if AᵀA = AAᵀ = In×n, or, equivalently,
if Aᵀ = A−1 and unitary if A ∈ Cn×n and A∗A = AA∗ = In×n, or, equivalently, if
A∗ = A−1.

2.2 Some matrix properties

The following matrix properties hold:

1. Commutativity of the summing operation, that is,

A+ B = B + A

2. Associativity of the summing operation, that is,

(A+ B)+ C = A+ (B + C)

3. Associativity of the multiplication operation, that is,

(AB)C = A (BC)

4. Distributivity of the multiplication operation with respect to the summation operation,

that is,

(A+ B)C = AC + BC,C (A+ B) = CA+ CB
AI = IA = A
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5. For A = [aij ]
m,n

i,j=1
and B = [bij ]

n,p

i,j=1
it follows that

AB =
n∑
k=1

a(k)b(k)ᵀ (2.3)

where

a(k) :=
⎛
⎜⎝ a1k...
amk

⎞
⎟⎠, b(k) :=

⎛
⎜⎝bk1...
bkp

⎞
⎟⎠

6. For the power matrix Ap (p is a nonnegative integer number) defined as

Ap = AA · · · A︸ ︷︷ ︸
p

, A0 := I

the following exponent laws hold

ApAq =Ap+q
(Ap)q =Apq

where p and q are any nonnegative integers.

7. If two matrices commute, that is,

AB = BA

then

(AB)p = ApBp

and the formula of Newton’s binom holds:

(A+ B)m =
m∑
i=0

CimA
m−iBi

where Cim :=
m!

i! (m− i)! .
8. A matrix U ∈ Cn×n is unitary if and only if for any x, y ∈ Cn

(Ux,Uy) := (Ux)∗ Uy = (x, y)

Indeed, if U ∗U = In×n then (Ux,Uy) = (x, U ∗Uy) = (x, y). Conversely, if

(Ux,Uy) = (x, y), then (
[U ∗U − In×n] x, y

) = 0 for any x, y ∈ Cn that proves the

result.

9. If A and B are unitary, then AB is unitary too.
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10. If A and B are normal and AB = BA (they commute), then AB is normal too.

11. If Ai are Hermitian (skew-Hermitian) and αi are any real numbers, then the matrix
m∑
i=1

αiAi is Hermitian (skew-Hermitian) too.

12. Any matrix A ∈ Cn×n can be represented as

A = H + iK

where

H = A+ A
∗

2
, K = A− A

∗

2i
, i2 = −1

are both Hermitian. If A ∈ Rn×n, then

A = S + T

where

S = A+ A
ᵀ

2
, T = A− A

ᵀ

2

and S is symmetric and T is skew-symmetric.

13. For any two square matrices A and B the following determinant rule holds:

det (AB) = det (A) det (B)

This fact directly follows from Binet–Cauchy formula (1.15).

14. For any A ∈ Rm×n and B ∈ Rn×p

(AB)T = BᵀAᵀ

Indeed,

(AB)T =
[

n∑
k=1

ajkbki

]m,p
i,j=1

=
[

n∑
k=1

bkiajk

]m,p
i,j=1

= BᵀAᵀ

15. For any A ∈ Rn×n

adjAᵀ = (adjA)T
adjIn×n = In×n

adj (αA) = αn−1adjA for any α ∈ F

16. For any A ∈ Cn×n

adjA∗ = (adjA)∗
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17. For any A ∈ Rn×n

A (adjA) = (adjA)A = (detA) In×n (2.4)

This may be directly proven if we calculate the matrix product in the left-hand side

using the row expansion formula (1.10) that leads to a matrix with the number detA

in each position on its main diagonal and zeros elsewhere.

18. If detA �= 0, then

A−1 = 1

detA
adjA (2.5)

This may be easily checked if we substitute (2.5) into (2.2) and verify its validity,

using (2.4). As a consequence of (2.5) we get

det (adjA) = (detA)n−1

As a consequence, we have

det
(
A−1

) = 1

detA
(2.6)

This follows from (2.5) and (2.4).

19. If detA �= 0, then

(
A−1

)ᵀ = (Aᵀ)−1

Indeed,

In×n = AA−1 = (
AA−1

)ᵀ = (
A−1

)ᵀ
Aᵀ

So, by definitions,
(
A−1

)ᵀ = (Aᵀ)−1.

20. If A and B are invertible matrices of the same size, then

(AB)−1 = B−1A−1

As the result, the following fact holds: if detA = detB, then there exists a matrix C

such that

A=BC
detC = 1

Indeed, C = B−1A and

detC = det
(
B−1A

) = det
(
B−1

)
detA = detA

det (B)
= 1
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21. It is easy to see that for any unitary matrix A ∈ Cn×n is always invertible and the

following properties hold:

A−1 = A∗

detA = ±1

Indeed, since A∗A = AA∗ = In×n, it follows that A−1 = A∗. Also in view of (1.8)

we have

detA∗A = det In×n = 1

detA∗A = (detA∗) (detA) = (
detA

)
(detA) = |detA| = 1

22. Let A ∈ Rn×n, B ∈ Rn×r , C ∈ Rr×r and D ∈ Rr×n

(a) If A−1 and
(
Ir×r +DA−1BC

)−1
exist, then

(A+ BCD)−1

= A−1 − A−1BC
(
C + CDA−1BC

)−1
CDA−1

= A−1 − A−1BC
(
Ir×r +DA−1BC

)−1
DA−1

(2.7)

Indeed, the simple matrix multiplication implies[
A−1 − A−1BC

(
C + CDA−1BC

)−1
CDA−1

]
(A+ BCD)

= In×n − A−1BC
(
C + CDA−1BC

)−1
CD + A−1BCD

−A−1BC
(
C + CDA−1BC

)−1 [−C + C + CDA−1BC
]
D

= In×n − A−1BC
(
C + CDA−1BC

)−1
CD + A−1BCD

−A−1BC
(
C + CDA−1BC

)−1
CD − A−1BCD = In×n

Analogously,[
A−1 − A−1BC

(
Ir×r +DA−1BC

)−1
DA−1

]
(A+ BCD)

= In×n − A−1BC
(
Ir×r +DA−1BC

)−1
D + A−1BCD

−A−1BC
(
Ir×r +DA−1BC

)−1 [−Ir×r + Ir×r +DA−1BC
]
D

= In×n − A−1BC
(
Ir×r +DA−1BC

)−1
D + A−1BCD

+A−1BC
(
Ir×r +DA−1BC

)−1
D − A−1BCD = In×n

(b) In the partial case when r = 1, C = 1, B = u, D = vᵀ and vᵀA−1u �= −1, we

obtain the Sherman–Morrison formula:

(A+ uvᵀ)−1 = A−1 − A−1vᵀA−1

1+ vᵀA−1u
(2.8)
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The next statement seems to be important for understanding the internal relationship

within different classes of matrices.

Claim 2.1.

1. Any complex unitary, Hermitian, skew-Hermitian and real orthogonal, symmetric
and skew-symmetric matrix is normal, that is, it satisfies the condition

AA∗ = A∗A for complex matrices

and

AAᵀ = AᵀA for real matrices

2. AmatrixA is normal if and only if the matricesA andA∗ have the same eigenvectors.

Both of these properties can be easily checked directly.

2.3 Kronecker product

Definition 2.3. For two matrices A ∈ Rm×n, B ∈ Rp×q the direct (tensor) Kronecker
product, written A⊗ B, is defined to be the partitioned matrix

A⊗ B :=

⎡
⎢⎢⎣
a11B a12B · a1nB

a21B a22B · a2nB

· · · ·
am1B am2B · amnB

⎤
⎥⎥⎦

= [aijB]
m,n

i,j=1
∈ Rmp×nq

(2.9)

Example 2.1. If

A =
[
a11 a12 a13
a21 a22 a23

]
, B = [

b11 b12
]

then

A⊗ B =
[
a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a21b11 a21b12 a22b11 a22b12 a23b11 a23b12

]
The following properties for the Kronecker product are fulfilled:

(a)

In×n ⊗ A =

⎡
⎢⎢⎢⎢⎣
A O · · O

O A · · ·
· · · · ·
· · O A O

O · · O A

⎤
⎥⎥⎥⎥⎦ = diag [A,A, . . . , A] (2.10)
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(b) Im×n ⊗ Ip×q = Imp×nq

(c) for any α ∈ F it follows that

(αA)⊗ B = A⊗ (αB) = α (A⊗ B)

(d) (A+ C)⊗ B = A⊗ B + C ⊗ B

(e) A⊗ (B + C) = A⊗ B + A⊗ C

(f) (A⊗ B)⊗ C = A⊗ (B ⊗ C)

(g) (A⊗ B)ᵀ = Aᵀ ⊗ Bᵀ

and for complex matrices

(A⊗ B) = Ā⊗ B̄
(A⊗ B)∗ = A∗ ⊗ B∗

Next, very useful properties are less obvious.

Proposition 2.1. If A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×k and D ∈ Rq×r then

(A⊗ B) (C ⊗D) = (AC)⊗ (BD) (2.11)

Proof. It follows from the identity that

n∑
j=1

(
aijB

) (
cjsD

) =
(

n∑
j=1

aij cjs

)
BD

�
Corollary 2.1. If A ∈ Rn×n, B ∈ Rm×m then
1.

A⊗ B = (A⊗ In×n) (Im×m ⊗ B) = (Im×m ⊗ B) (A⊗ In×n)

(to prove this it is sufficient to take C = In×n and D = Im×m).
2.

(A1 ⊗ B1) (A2 ⊗ B2) · · ·
(
Ap ⊗ Bp

)
= (
A1A2 · · · Ap

)⊗ (
B1B2 · · · Bp

)
for all matrices Ai ∈ Rn×n and Bi ∈ Rm×m (i = 1, . . . , p).
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3.

(A⊗ B)−1 = A−1 ⊗ B−1

provided that both A−1 and B−1 exist. Indeed,

(A⊗ B) (A⊗ B)−1 = (A⊗ B) (A−1 ⊗ B−1
)

= (
AA−1

)⊗ (
BB−1

) = In×n ⊗ Im×m = Inm×nm
Proposition 2.2. If A ∈ Rn×n, B ∈ Rm×m then there exists a permutation P ∈ Rnm×nm

such that

Pᵀ (A⊗ B)P = B ⊗ A

Proof. It is easy to check that there exists a permutation matrix such that

Pᵀ (A⊗ In×n) P = In×n ⊗ A
Pᵀ (Im×m ⊗ B)P = B ⊗ Im×m (2.12)

Then, since for any permutation matrix PPᵀ = Inm×nm, by (2.1) it follows that

Pᵀ (A⊗ B)P = Pᵀ (A⊗ In×n) (Im×m ⊗ B)P
= Pᵀ (A⊗ In×n) PPᵀ (Im×m ⊗ B)P
= (In×n ⊗ A) (B ⊗ Im×m) = B ⊗ A

�

Corollary 2.2.

det (A⊗ B) = (detA)
n
(detB)

m (2.13)

Indeed, by (2.1)

det (A⊗ B) = [det (A⊗ In×n)] [det (Im×m ⊗ B)]

In view of (2.12) and (2.10) one has

det (A⊗ In×n)= det [Pᵀ (In×n ⊗ A)P ]
= det [PPᵀ (In×n ⊗ A)] = det (In×n ⊗ A)
= det (diag (A,A, . . . , A)) = (detA)n

Analogously,

det (Im×m ⊗ B) = (detB)m

which completes the proof.
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2.4 Submatrices, partitioning of matrices and Schur’s formulas

Given matrix A = [aij ]
m,n

i,j=1
, if a number of complete rows or columns of A are deleted,

or if some complete rows or complete columns are deleted, the new matrix that is obtained

is called a submatrix of A. A division of matrices into submatrices is referred to as a

partition of the matrix.

Proposition 2.3. If the matrices A and B are partitioned as follows

A =
[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]

where the corresponding submatrices Aij and Bij have the same size, then by direct
computation we get

A± B =
[
A11 ± B11 A12 ± B12

A21 ± B21 A22 ± B22

]
(2.14)

and

AB =
[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]
(2.15)

Proposition 2.4. If A11 and A22 are square matrices then

1. for

A =
[
A11 O

A21 A22

]

it follows that

detA = (detA11) (detA22)

2. for

A =
[
A11 A12

A21 O

]
∈ Rn×n

A12 ∈ Rp×p, A12 ∈ R(n−p)×(n−p)
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it follows that

detA = (−1)(n+1)p (detA12) (detA21)

Proposition 2.5. If A is block-diagonal, that is,

A = diag
[
A11 A22 · · ·Ann

]
then
1.

detA =
n∏
i=1

detAii

2.

rank diag
[
A11 A22 · · ·Ann

] = n∑
i=1

(rank Aii)

Lemma 2.1. (Schur’s formulas) For block-matrix

Ã =
[
A B

C D

]

where A and D may be of different sizes, the following properties hold:

det Ã =

⎧⎪⎪⎨
⎪⎪⎩

detA det
(
D − CA−1B

)
if detA �= 0

det
(
A− BD−1C

)
detD if detD �= 0

det (AD − CB) if AC = CA
det (AD − BC) if CD = DC

(2.16)

Proof. Notice that for the case when detA �= 0, we have

[
A B

C D

]
=

[
I O

CA−1 I

] [
A O

OD − CA−1B

] [
I A−1B

O I

]

which leads directly to the first formula. The second formula, when detD �= 0, may be

proven by the analogous way taking into account the decomposition
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[
A B

C D

]
=

[
I BD−1

O I

] [
A− BD−1C O

O D

] [
I O

D−1C I

]

For proofs of formulas three and four see Gantmacher (1990). �

Lemma 2.2. (on the inversion of a block-matrix) If

S :=
[
S11 S12
S21 S22

]
, S11 ∈ Rl×l , S22 ∈ Rk×k

then

S−1 :=
[
A B

C D

]
A = (

S11 − S12S−1
22 S21

)−1 ∈ Rl×l

B = −S−1
11 S12D

C = −S−1
22 S21A

D = (
S22 − S21S−1

11 S12
)−1 ∈ Rk×k

provided by the condition that all inverse matrices exist.

Proof. In view of the identity

SS−1 =
[
S11A+ S12C S11B + S12D
S21A+ S22C S21B + S22D

]
= I(l+k)×(l+k)

it is sufficient to check the equalities

S11A+ S12C = Il×l
S11B + S12D =Ol×k
S21A+ S22C =Ok×l
S21B + S22D = Ik×k

The second and third ones hold automatically. Then we have:

S11A+ S12C = S11A− S12S−1
22 S21A

= (
S11 − S12S−1

22 S21
)
A = A−1A = Il×l

and

S21B + S22D = −S21S−1
11 S12D + S22D

= (
S22 − S21S−1

11 S12
)
D = D−1D = Ik×k

�
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2.5 Elementary transformations on matrices

The determinants’ properties, mentioned above, indicate a very close relationship

between the determinants of square matrix A and matrices obtained from A by the

following elementary operations:

• Operation 1: interchanging two rows (or columns) in A;

• Operation 2:multiplying all elements of a row (or column) of A by a nonzero constant;

• Operation 3: adding to any row (or column) of A any other row (or column), multiplied

by a nonzero number.

Proposition 2.6. Each of the elementary operations described above can be achieved by
pre- and post-multiplications (respectively) of A by appropriate matrices containing only
0, 1 elements and, for the 3rd operation, also one element equal to k, that is,

• Matrix form of operation 1: the elementary operation of i1 and i2 rows interchanging
is equal to the following left-hand side multiplication E(1)A where

E
(1)
i1,i2

:=
(i1)

(i2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · 0

0 · 0 · ·
· 0 1 ·

0 0 · · · 1
0 1 · · ·
· · · · ·
0 · 0 1 ·
1 0 · 0 0 ·

· 0 1 · ·
· · 0 · 0

0 · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Matrix form of operation 2: the elementary operation of multiplication of all elements
of a row i of A by a nonzero constant α is equal to the following left-hand side
multiplication E(2)i (α)A where

E
(2)
i (α) := (i)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · 0

0 · 0 ·
· 0 1 ·

0 α 0 ·
0 1 0 ·

· · · · ·
0 · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

• Matrix form of operation 3: the elementary operation of adding to a row i1 of A any
other row i2, multiplied by a nonzero number α, is equal to the following left-hand



Matrices and matrix operations 33

side multiplication E(3)i1,i2 (α)A where

E
(3)
i1,i2
(α) :=

(i1)

(i2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · 0

0 · ·
· 0 1 0 · α

0 1 0 ·
· · · ·
0 · 0 1

· · · ·
· · · 0

0 · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, the multiplication of A on the right-hand side by the appropriate matrices

E
(1)
j1,j2
, E

(2)
j (α) or E

(3)
j1,j2
(α) leads to analogous changes in columns.

Example 2.2.

(a)

A=
⎡
⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦, E

(1)
1,3 =

⎡
⎣0 0 1

0 1 0

1 0 0

⎤
⎦

E
(1)
1,3A=

⎡
⎣0 0 1

0 1 0

1 0 0

⎤
⎦
⎡
⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦ =

⎡
⎣a31 a32 a33a21 a22 a23
a13 a12 a13

⎤
⎦

(b)

A=
⎡
⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦, E

(2)
2 =

⎡
⎣1 0 0

0 α 0

0 0 1

⎤
⎦

E
(2)
2 A=

⎡
⎣1 0 0

0 α 0

0 0 1

⎤
⎦
⎡
⎣a11 a12 a13a21 a22 a23
a31 a32 a33

⎤
⎦

=
⎡
⎣ a11 a12 a13
αa21 αa22 αa23
a31 a32 a33

⎤
⎦
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(c)

A =
⎡
⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦, E

(3)
1,3 (α) =

⎡
⎣ 1 0 α

0 1 0

0 0 1

⎤
⎦

E
(3)
1,3 (α)A =

⎡
⎣ 1 0 α

0 1 0

0 0 1

⎤
⎦
⎡
⎣ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

=
⎡
⎣ a11 + αa31 a12 + αa32 a13 + αa33

a21 a22 a23
a31 a32 a33

⎤
⎦

Proposition 2.7. For any subindices

detE
(1)
i1,i2

= −1, detE
(2)
i (α) = α, detE

(3)
i1,i2
(α) = 1 (2.17)

and

detE
(1)
i1,i2
A = detAE

(1)
j1,j2

= detA

detE
(2)
i (α)A = detAE

(2)
j (α) = α detA

detE
(3)
i1,i2
(α)A = detAE

(3)
j1,j2
(α) = detA

Proof. The formulas above are the simple mathematical expressions of the determinants,

properties (1.6), (1.3) and (1.7). �

Proposition 2.8. For any m × n matrix A there exists a finite sequence of elementary
matrices E1, E2, . . . , Ek+s such that

Ek · · · E2E1AEk+1 · · · Ek+s
is one of the following matrices

1. In×n for m = n

2.
[
Im×m Om×(n−m)

]
for m < n

3.

[
In×n

O(m−n)×n

]
for m > n

4.

[
Ir×r Or×(n−r)

O(n−r)×r O(n−r)×(n−r)

]
( r ≤ min (m, n))

(2.18)

known as canonical ones.

Proof. It follows directly from the elementary operations definition and its relation to the

canonical matrix forms. �
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Example 2.3. For

A =
⎡
⎣ 0 1 2 −1

−2 0 0 6

4 −2 −4 −10

⎤
⎦

we get

A1 := E(2)2 (−1/2) A =
⎡
⎣ 0 1 2 −1

1 0 0 −3

4 −2 −4 −10

⎤
⎦

A2 := E(3)2,3 (−4) A1 =
⎡
⎣ 0 1 2 −1

1 0 0 −3

0 −2 −4 2

⎤
⎦

A3 := E(1)1,2A2 =
⎡
⎣ 1 0 0 −3

0 1 2 −1

0 −2 −4 2

⎤
⎦

A4 := E(3)3,2 (2) A3 =
⎡
⎣ 1 0 0 −3

0 1 2 −1

0 0 0 0

⎤
⎦

A5 := A4E
(3)
4,1 (3) =

⎡
⎣ 1 0 0 0

0 1 2 −1

0 0 0 0

⎤
⎦

A6 := A5E
(3)
4,2 (1) =

⎡
⎣ 1 0 0 0

0 1 2 0

0 0 0 0

⎤
⎦

A7 := A6E
(3)
3,2 (−2) =

⎡
⎣ 1 0 0 0

0 1 0 0

0 0 0 0

⎤
⎦

that is,

E
(3)
3,2 (2) E

(1)
1,2E

(3)
2,3 (−4) E

(2)
2 (−1/2) AE

(3)
4,1 (3) E

(3)
4,2 (1) E

(3)
3,2 (−2)

=
[
I2×2 O

O O

]

Corollary 2.3. For any m × n matrix A there exist matrices P (det P �= 0) and Q
(detQ �= 0) such that PAQ is equal to one of the canonical matrices (2.18).
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Proof. It follows from (2.7) and the fact that

det

(
k∏
i=1

Ei

)
=

k∏
i=1

det (Ei) �= 0

�

Definition 2.4. Two matricesA and B are said to be equivalent (or belonging to the same
equivalent class) if they may be transformed by the elementary operations application to
the same canonical matrix form. This is written as A ∼ B.

Proposition 2.9. An n× n matrix A is nonsingular if and only if A ∼ In×n.

Proof. Since

det (PAQ) = (detA) (det P) (detQ) = det S

where S is one of the canonical matrices (2.18), we have

detA = det S

(det P) (detQ)
�= 0

if and only if S = In×n. �

Definition 2.5. A square n × n matrix A is said to be simple if it is equivalent to a
diagonal matrix D.

These definitions will be used frequently below.

2.6 Rank of a matrix

Definition 2.6. For a matrix A ∈ Rm×n the size

r (1 ≤ r ≤ min (m, n))

of the identity matrix in the canonical form for A is referred to as the rank of A, written
r = rankA. If A = Om×n then rankA = 0, otherwise rankA ≥ 1.

For each four canonical forms in (2.18) we have

rank In×n = n for m = n

rank
[
Im×m Om×(n−m)

] = m for m < n

rank

[
In×n

O(m−n)×n

]
= n for m > n
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[
Ir×r Or×(n−r)

O(n−r)×r O(n−r)×(n−r)

]
= r for r ≤ min (m, n)

Proposition 2.10. For a square matrix A ∈ Rn×n rankA = n if and only if it is nonsin-
gular.

Proof. It follows straightforwardly from proposition (2.9). �

Corollary 2.4. The rank of a matrix A ∈ Rm×n is equal to the order of its largest nonzero
minor.

Several important properties of rank are listed below.

1. (Frobenius inequality) If A,B and C are rectangular matrices and the product ABC

is well defined, then

rank(AB)+ rank(BC) ≤ rank(A)+ rank(ABC) (2.19)

rank(AB) ≤ min {rank(A), rank(B)} (2.20)

Indeed, taking in (2.19) first A and C to be appropriate size we obtain (2.20).

2. For any complex matrix A

rank(A) = rank(AA∗) = rank(A∗A)

3. If P and Q are nonsingular and A is square, then

rank(PAQ) = rank(A) (2.21)

Indeed, by (2.20) it follows

rank(PAQ) ≤ min {rank(P ), rank(AQ)}
= min {n, rank(AQ)} = rank(AQ)

≤ min {rank(A), rank(Q)} = rank(A)

= rank
(
P−1 [PAQ]Q−1

)
≤ min

{
rank

(
P−1

)
, rank

(
[PAQ]Q−1

)}
= rank

(
[PAQ]Q−1

)
≤ min

{
rank(PAQ), rank

(
Q−1

)} = rank(PAQ)

4.

rank(A) = rank(Aᵀ) = rank(A∗) (2.22)

5. For any A,B ∈ Rm×n

rank(A+ B) ≤ rank(A)+ rank(B) (2.23)
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6. (Sylvester’s rule) For any A ∈ Rm×n and B ∈ Rn×p

rank(A)+ rank(B)− n ≤ rank(AB)

≤ min {rank(A), rank(B)} (2.24)

7. For any A ∈ Rm×m and B ∈ Rn×m

rank(A⊗ B) = (rankA) (rankB) (2.25)

This follows from (2.11).

2.7 Trace of a quadratic matrix

Definition 2.7. The trace of a matrix A ∈ Cn×n (may be with complex elements), written
trA, is defined as the sum of all elements lying on the main diagonal of A, that is,

trA :=
n∑
i=1

aii (2.26)

Some evident properties of trace follow.

1. For any A,B ∈ Cn×n and any α, β ∈ C

tr(αA+ βB) = α trA+ β trB (2.27)

2. For any A ∈ Cm×n and any B ∈ Cn×m

tr(AB) = tr(BA) (2.28)

Indeed,

tr(AB) :=
m∑
i=1

n∑
k=1

aikbki =
m∑
i=1

n∑
k=1

bkiaik

=
n∑
k=1

m∑
i=1

bkiaik = tr(BA)

3. For any A ∈ Cn×n

tr(AA∗) = tr(A∗A) =
n∑
i=1

n∑
j=1

∣∣aij ∣∣2 (2.29)

(this follows directly from property 2).
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4. If S−1
(
S ∈ Cn×n

)
exists then for any A ∈ Cn×n

tr
(
S−1AS

) = tr
(
SS−1A

) = tr(A) (2.30)

5. For any A ∈ Cn×n and any B ∈ Cp×p

tr(A⊗ B) = tr(A) tr(B) (2.31)

Indeed,

tr(A⊗ B) :=
n∑
i=1

(
aii

p∑
j=1

bii

)

=
(

n∑
i=1

aii

)(
p∑
j=1

bii

)
= tr(A) tr(B)
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3.1 Vectors and linear subspaces

Definition 3.1. The matrix A ∈ Cn×1 := Cn, written as

a :=
⎛
⎜⎝a1...
an

⎞
⎟⎠

is called a vector a ∈ Cn×1.

Definition 3.2. The matrix product (2.1), written for a ∈ Cn×1 and b ∈ C1×n, is called a
scalar (inner) product of two vectors a and b and denoted by

(a, b) := a∗b =
n∑
i=1

āibi (3.1)

which for real vectors a, b ∈ Rn becomes

(a, b) := aᵀb =
n∑
i=1

aibi (3.2)

Definition 3.3. For the set of vectors x1, x2, . . . , xk ∈ Cn and elements α1, α2, . . . , αk ∈
C the following notions may be introduced:

1. Linear combinations of x1, x2, . . . , xk≤n over C are an element of the form

α1x1 + α2x2 + . . .+ αkxk
2. The set of all linear combinations of x1, x2, . . . , xk over C is called a subspace or the

span of x1, x2, . . . , xk , denoted by

span {x1, x2, . . . , xk} :=
{x = α1x1 + α2x2 + . . .+ αkxk : αi ∈ C, i = 1, . . . , k} (3.3)

41
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3. Some vectors x1, x2, . . . , xk ∈ Cn are said to be linearly dependent over C if there

exist α1, α2, . . . , αk ∈ C not all zero

(
n∑
i=1

|αi |2 > 0

)
such that

α1x1 + α2x2 + . . .+ αkxk = 0

Otherwise, they are said to be linearly independent.
4. If S is a subspace of Cn, then a set of vectors x1, x2, . . . , xk ∈ Cn is called a basis for
S if

• x1, x2, . . . , xk are linearly independent;
• S = span {x1, x2, . . . , xk}.
Such basis for a subspace S is not unique: all bases for S have the same number of
elements which is called the dimension of S, denoted by dim S.

5. Vectors x1, x2, . . . , xk ∈ Cn are mutually orthogonal if(
x∗i , xj

) = 0 for all i �= j

and are orthonormal if for all i, j = 1, . . . , n(
x∗i , xj

) = δij
where x∗i = (x̄i)ᵀ and δij =

{
1 if i = j
0 if i �= j is the Kronecker (delta-function) symbol.

6. The orthogonal completion S⊥ of a subspace S ⊂ Cn is defined by

S⊥ = span {xk+1, xk+2, . . . , xn} (3.4)

where the vectors xk+j (j = 1, . . . , n− k) are orthonormal.

Any matrix A ∈ Cm×n may be considered as a linear transformation from Cn

to Cm, i.e.,

A : Cn 
−→ Cm

Definition 3.4.

(a) The kernel (or null space) of the linear transformation A : Cn 
−→ Cm is defined by

KerA = N (A) := {x ∈ Cn : Ax = 0} (3.5)

(b) The image (or range) of the linear transformation A : Cn 
−→ Cm is

ImA = R(A) := {y ∈ Cm : y = Ax, x ∈ Cn} (3.6)

(c) The dimension of the subspace KerA = N (A) is referred to as the defect of the
transformation A and is denoted by defA, that is,

defA := dimKerA (3.7)
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By the definitions above, it is clear that both KerA and ImA are subspaces in Cn and

R(A), respectively. Moreover, it can be easily seen that

dim KerA+ dim ImA = n
dim ImA = dim(KerA)⊥

rankA ≤ dim ImA

rankA = rankA∗
(3.8)

Proposition 3.1. If A1, A2 : S1 ⊆ Cn 
−→ S2 ⊆ Cm then

Im(A1 + A2) ⊂ Im(A1)+ Im(A2)

rankA1 − rankA2 ≤ rank(A1 + A2) ≤ rankA1 + rankA2

It follows directly from the definitions above.

Proposition 3.2. If A : S1 ⊆ Cn 
−→ S2 ⊆ Cm and B : S3 ⊆ CmCm 
−→ S4 ⊆ Cp then

Im(BA) = BIm(A)
rank(BA) ≤ min{rankA, rankB}

This is the consequence of (3.8).

It is not difficult to verify that for any A : S1 ⊆ Cn 
−→ S2 ⊆ Cm and B : S3 ⊆ Cm


−→ S4 ⊆ Cp one has

1.

rankA+ def A = dim(S1) (3.9)

2. for any S ⊂ S1
dimA(S) = dim S − dim(S ∩ KerA)

3. for any A,B : S1 ⊆ Cn 
−→ S2 ⊆ Cm

KerA ∩ KerB ⊂ Ker(A+ B)

4. If S = S1 then

dimA(S) ≥ dim S − def T ≥ def AB

5.

def AB ≤ def A+ def B

6. If A is left invertible (S ⊂ S1) if and only if

dimA(S) = dim S
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7.

def A = n−m
3.2 Eigenvalues and eigenvectors

Definition 3.5. Let A ∈ Cn×n be a squared n×n matrix (may be with complex elements).
Then

(a) any nonzero vector x ∈ Cn is referred to as a right eigenvector of the matrix A if it
satisfies the equation

Ax = λ(r)x (3.10)

for some (may be zero) complex value λ(r) ∈ C called the eigenvalue of the matrix A
which corresponds to this right eigenvector x;

(b) any nonzero vector x ∈ Cn is referred to as a left eigenvector of the matrix A if it
satisfies the equation

x∗A = λ(l)x∗ (3.11)

for some (may be zero) complex value λ(l) ∈ C called the eigenvalue of the matrix A
which corresponds to this left eigenvector x.

Remark 3.1. If x is an eigenvalue, then for any nonzero α ∈ C the vector αx is also
the eigenvector. This means that for each λ(r) (the same for λ(l)) there exists a single
dimensional subspace

Sλ = {αx : Ax = λx, α ∈ C}

of the corresponding eigenvectors αx.

Proposition 3.3. For any matrix A ∈ Cn×n any eigenvalue λ(r) (as well as λ(l)) satisfies
the, so-called, characteristic equation

pA(λ) := det(λIn×n − A) = 0 (3.12)

Proof. By (3.10) (or (3.11)) it follows that(
λ(r)In×n − A

)
x = 0, x∗

(
λ(l)In×n − A

) = 0

Hence these equations have nonzero solutions if and only if (see Proposition 1.7) (3.12)

holds. �

Evidently, the characteristic polynomial

p(λ) = λn + a1λn−1 + · · · + an−1λ+ an (3.13)

has exactly n roots λi(i = 1, . . . , n). Some of these roots may coincide.
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Definition 3.6. The set of all roots of pA(λ) is called the spectrum of A and is denoted by

σ(A) := {λ1, λ2, . . . , λn}

where λj satisfies

pA(λj ) = 0

The maximum modulus of the eigenvalues is called the spectral radius of A, denoted by

ρ(A) := max
1≤j≤n

∣∣λj ∣∣ (3.14)

The following remark seems to be evident.

Remark 3.2. The spectrum of A contains all right eigenvalues as well as all left eigen-
values which implies that any λ(r)j has an equal λ(l)j , that is, there exist two indices i and
j such that

λ
(r)
i = λ(l)j

Proposition 3.4. If x is a right (left) eigenvector of a real matrix A ∈ Rn×n with the
corresponding eigenvalue λ, that is, Ax = λx, then the complex conjugated vector x̄ is
also an eigenvector of A with the corresponding eigenvalue λ̄.

Proof. Let x = u+ iv and λ = α + iβ. Then we have

Ax = A(u+ iv) = Au+ i(Av)
= λx = (α + iβ)(u+ iv) = (αu− βv)+ i(βu+ αv)

This implies

Au = αu− βv
Av = βu+ αv

or, equivalently,

Au = αu− (−β)(−v)
A(−v) = (−β)u+ α(−v)

which, after multiplication of the second equality by the complex unite i and summation

of both equalities, leads to the following identity

A(u− iv) = Ax̄ = (α − iβ)(u− iv) = λ̄x̄

For the left eigenvalues the proof is similar. �
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Corollary 3.1. The following presentation of the characteristic polynomial p(λ) (3.13)
takes place

p(λ) =
n∏
i=1

(λ− λi) =
(

s∏
i=1

[λi − ui]
)(

n−s∏
i=1

[
(λi − ui)2 + v2i

])
(3.15)

where s is the number of pure real eigenvalues and

ui = Reλi, vi = Imλi

Example 3.1. For

A =
⎡
⎣1−1 0

2 3 2

1 1 2

⎤
⎦

by Sarrius’s rule we have

pA(λ)= det(λI3×3 − A) = det

⎡
⎣λ− 1 1 0

−2 λ− 3 −2

−1 −1 λ− 2

⎤
⎦

= (λ− 1)(λ− 3)(λ− 2)+ 2− 2(λ− 1)+ 2(λ− 2)

= (λ− 1)(λ− 2)(λ− 3)

which implies

λ1 = 1, λ2 = 2, λ3 = 3

One of the solutions of the equation Ax(i) = λix(i) (i = 1, 2, 3) is

x(1) =
⎡
⎣−1

0

1

⎤
⎦, x(2) =

⎡
⎣−2

2

1

⎤
⎦, x(2) =

⎡
⎣−1

2

1

⎤
⎦

In this example a nonsymmetric matrix has real eigenvalues and the corresponding

eigenvectors. The next proposition shows when this occurs.

Proposition 3.5. If a square n× n matrix A is Hermitian or real symmetric, that is, if

A∗ = A or A = Aᵀ

then obligatory all eigenvalues λj are real. If A is real symmetric, then the corresponding
eigenvectors x(j) (j = 1, . . . , n) are real too.
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Proof. Suppose that λj and x
(j) are complex, i.e.,

λj = αj + iβj
x(j) = u(j) + iv(j)

Then

x(j)∗Ax(j) = x(j)∗ (λjx(j)) = λj ∣∣x(j)∣∣2
and calculating the complex conjugation plus transposition from both sides by symmetric-

ity we get(
x(j)∗Ax(j)

)∗ = x(j)∗A∗x(j) = x(j)∗Ax(j)x(j)∗ = λ̄j
∣∣x(j)∣∣2

which leads to the following relation

λj = λ̄j
This means that λj is real. Finally, by the Proposition 3.4 in the case of a real matrix we

obtain that the solution of the linear uniform system Ax(j) = λjx(j), containing only real

elements, with respect to x(j) may give only a real solution. �

Proposition 3.6. Eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent.

Proof. Let λ1, λ2, . . . , λs (s ≤ n) be the distinct eigenvalues of a matrix A and x1,

x2, . . . , xs denote corresponding eigenvectors. Suppose that there exist numbers

α1, α2, . . . , αs such that

s∑
i=1

αixi = 0,

s∑
i=1

|αi |2 > 0 (3.16)

Show that this is impossible. To prove that αi = 0 (i = 1, . . . , s) we first multiply both

sides of (3.16) on the left by

(A− λs−1In×n)(A− λs−2In×n) · · · (A− λ1In×n)

and noting that (A− λkIn×n)xk = 0, we get

(A− λs−1In×n)(A− λs−2In×n) · · · (A− λ1In×n)
s∑
i=1

αixi

= (A− λs−1In×n)(A− λs−2In×n) · · · (A− λ2In×n)
s∑
i=2

(λi − λ1)αixi
= (A− λs−1In×n)(A− λs−2In×n) · · · (A− λ3In×n)
×

s∑
i=3

(λi − λ1)(λi − λ2)αixi = · · ·
= (λs − λ1)(λs − λ2) · · · (λs − λs−1)αsxs = 0
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which implies that αs = 0. Analogously, we may prove that

α1 = α2 = · · · = αs−1 = 0

So, all αi = 0 which contradicts (3.16). �

Proposition 3.7. Eigenvectors of an Hermitian matrix (A = A∗), corresponding to
distinct eigenvalues, are orthogonal, that is,

x(i)∗x(j) = 0 (3.17)

for any indices i and j such that λi �= λj .

Proof. Pre-multiplying both equations below

x(j)∗ : Ax(i) = λix(i)
x(i)∗ : Ax(j) = λjx(j)

by x(j)∗ and x(j), we derive

x(j)∗Ax(i) = (
Ax(j)

)∗
x(i) = λix(j)∗x(i)(

x(i)∗Ax(j)
)∗ = (

Ax(j)
)∗
x(i) = λj

(
x(i)∗x(j)

)∗ = λjx(j)∗x(i)
Multiplying the second equation by (−1) and summing both equalities we obtain

0 = (λi − λj )x(j)∗x(i)

Since λi �= λj the result follows. �

Example 3.2. The matrix A = uvᵀ (u, v ∈ Rn×1) has one eigenvalue λ1 equal to vᵀu
(with the corresponding eigenvector x(1) = u) and all other eigenvalues λi �=1 equal to 0

(with the corresponding eigenvectors x(i �=1) = w(i �=1)⊥v). Indeed,
Au = u(vᵀu) = (vᵀu)u
Av(i �=1) = u(vᵀw(i �=1)) = On×1 = 0 · w(i �=1) (i = 2, . . . , n)

Proposition 3.8. If B = T −1AT and pA(λ) is the characteristic polynomial of A, then

pA(λ) = pB(λ)

that is, equivalent matrices have the same characteristic polynomials.

Proof. Indeed,

pA(λ) = det(λIn×n − A) = det T · det(λIn×n − A) · det T −1

= det(λT In×nT −1 − TAT −1) = det(λIn×n − B) = pB(λ)

�
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Corollary 3.2. The eigenvector x(j)(B) of the matrix B = T −1AT , corresponding to the
eigenvalue λi , is as follows

x(j)(B) = T −1x(j)(A)

where x(j)(A) is the eigenvector of the matrix A.

Proof. We have

Ax(j)(A) = λjx(j)(A)
(T −1AT )T −1x(j)(A) = Bx(j)(B) = λjT −1x(j)(A) = λjx(j)(B)

�

Proposition 3.9. For any A,B ∈ Cn×n, the matrices AB and BA have the same char-
acteristic polynomial and hence the same eigenvalues, that is,

pAB(λ) = pBA(λ)
σ (AB) = σ(BA) (3.18)

Proof. Let us select μ ∈ C such that A − μIn×n is nonsingular ([A− μIn×n]−1
exists).

Then we have

det
(
λIn×n − [A− μIn×n]B

)
= det

(
[A− μIn×n]

)
det

(
λ [A− μIn×n]−1 − B

)
= det

(
λ [A− μIn×n]−1 − B

)
det

(
[A− μIn×n]

)
= det

(
λIn×n − B [A− μIn×n]

)
which for λ̃ := λ+ μ implies

pAB

(
λ̃
)
= det

(
λ̃In×n − AB

)
= det

(
λ̃In×n − BA

)
= pBA

(
λ̃
)

�
Proposition 3.10. Let us show that the n× n companion matrix

Ca :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · 0

0 0 1 0 · ·
· · 0 · · ·
· · 0 · 0

0 0 · · 0 1

−an −an−2 · · · −a1

⎤
⎥⎥⎥⎥⎥⎥⎦

has the characteristic polynomial pCa (λ) equal to

pCa (λ) = λn + a1λn−1 + · · · + an−1λ+ an
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Proof. Indeed,

pCa (λ)O = det

⎡
⎢⎢⎢⎢⎢⎢⎣

λ −1 0 · · 0

0 λ −1 0 · ·
· · · · · ·
· · · · 0

0 0 · · · −1

an an−1 · · · λ+ a1

⎤
⎥⎥⎥⎥⎥⎥⎦

= (λ+ a1) det

⎡
⎢⎢⎢⎢⎣
λ −1 0 · ·
0 λ −1 0 ·
· · · · ·
· · · −1

0 0 · · λ

⎤
⎥⎥⎥⎥⎦

− a2 det

⎡
⎢⎢⎢⎢⎣
λ −1 0 · 0

0 λ −1 0 ·
· · · · ·
· · λ 0

0 0 · · −1

⎤
⎥⎥⎥⎥⎦

+ · · · −an−1 det

⎡
⎢⎢⎢⎢⎣
λ 0 · · 0

0 −1 0 · ·
· · · · ·
· · · 0

0 · · · −1

⎤
⎥⎥⎥⎥⎦

+ an det

⎡
⎢⎢⎢⎢⎣
−1 0 · · 0

λ −1 0 · ·
· · · · ·
· · · 0

0 · · λ −1

⎤
⎥⎥⎥⎥⎦

= (λ+ a1)λn−1 + a2λn−2 + · · · + an−1λ+ an
�

Proposition 3.11. For any square n× n matrix A

an = detA =
n∏
i=1

λi

an−1 = trA =
n∑
i=1

λi

(3.19)

Proof. The first formula follows directly from (3.15) if λ = 0. To prove that an−1 =
n∑
i=1

λi

it is sufficient to open parentheses in

pA(λ) =
n∏
i=1

(λ− λi) = λn +
n∑
i=1

aiλ
n−i (3.20)
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and to calculate the coefficient corresponding λ in the right-hand side. The second identity

trA = ∑n

i=1 λi may be easily proven using the so-called diagonal form transformation

which can be done below. �

Corollary 3.3.

trA = d

dλ
det(λIn×n − A) |λ=0 (3.21)

Proof. It follows directly from (3.20). �

Proposition 3.12. The spectrum of a unitary matrix U lies on the unit circle.

Proof. If Ux = λx and x∗x = 1, then

(Ux)∗Ux = x∗U ∗Ux = x∗x = 1

On the other hand

(Ux)∗Ux = (λx)∗(λx) = x∗λ∗λx = |λ|2 x∗x = |λ|2

The comparison yields |λ|2 = 1. �

Proposition 3.13. If x is a complex nonzero vector in Cn, then the Householder matrix
defined as

H = In×n − 2
xx∗

x∗x
(3.22)

is unitary.

Proof. We should show that

HH ∗ = H ∗H = In×n
One has

HH ∗ = H ∗H =
(
In×n − 2

xx∗

x∗x

)(
In×n − 2

xx∗

x∗x

)

= In×n − 4
xx∗

x∗x
+ 4
x(x∗x)x∗

(x∗x)2
= In×n

�
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Proposition 3.14. For any square n× n matrix A with the eigenvectors x(i)(A) corres-
ponding to the eigenvalue λi(A) (i = 1, . . . n) it follows

1.

x(i)(A) = x(i)(In×n − A)
λi(In×n − A) = 1− λi(A)

Indeed,

(In×n − A)x(i)(A)= x(i)(A)− Ax(i)(A)
= x(i)(A)− λi(A)x(i)(A)
= [1− λi(A)] x(i)(A)

2.

x(i)(Ap) = x(i)(A), p = 2, 3, . . .

λi(A
p) = λpi (A)

since

Apx(i)(A)= A(p−1)Ax(i)(A) = λi(A)A(p−1)x(i)(A)

= λ2i (A)A(p−2)x(i)(A) = · · · = λpi (A)x(i)(A)
3. If, in addition, A is real orthogonal (Aᵀ = A−1) and (In×n + A) is nonsingular

(λi(In×n + A) �= 0 for all i = 1, . . . , n), then A can be represented as (Cayley
transformation)

A = (In×n − S)(In×n + S)−1 (3.23)

where S is a real skew-matrix (2.6), i.e. Sᵀ = −S. This result follows directly based
on the construction of S: if (3.23) holds then

A(In×n + S) = (In×n − S)
AS + S = In×n − A
S = (In×n − A)(In×n + A)−1

and

Sᵀ = [
(In×n + A)−1

]ᵀ
(In×n − A)ᵀ

= (In×n + Aᵀ)−1(In×n − Aᵀ)

= (In×n + A−1)−1(In×n − A−1)

= [
A−1(A+ In×n)

]−1 [
A−1(A− In×n)

]
= [
(A+ In×n)

]−1 [
AA−1

]
(A− In×n) = −S

which means that S is a skew matrix.
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3.3 The Cayley–Hamilton theorem

The theorem discussed in this subsection plays a key role in matrix theory and has

important applications to Classical Control Theory.

Theorem 3.1. (Cayley–Hamilton theorem) If

pA(λ) = λn + a1λn−1 + · · · + an−1λ+ an = 0 (3.24)

is the characteristic polynomial of a squared matrix A, then

pA(A) := An + a1An−1 + · · · + an−1A+ anIn×n = 0 (3.25)

that is, the matrix A satisfies its characteristic equation.

Proof. By (2.5)

A−1 = 1

detA
adjA

we have

A adjA = (detA)In×n

which leads to the following identity

(λIn×n − A)adj(λIn×n − A)
= (det(λIn×n − A))In×n = pA(A)In×n

(3.26)

It is clear that adj(λIn×n − A) is matrix λn−1 as the maximal order, i.e.,

adj(λIn×n − A) = Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B1λ+ B0

Then (3.26) becomes

(λIn×n − A)(Bn−1λ
n−1 + Bn−2λ

n−2 + · · · + B1λ+ B0)

= (λn + a1λn−1 + · · · + an−1λ+ an)In×n
Comparing coefficients, we obtain

Bn−1 = In×n
Bn−2 − ABn−1 = a1In×n

...

B0 − AB1 = an−1In×n
−AB0 = anIn×n
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Multiplying the first of these equalities by An, the second one by An−1, the jth by An−j+1

and adding them together yields

0 = An + a1An−1 + · · · + an−1A+ anIn×n

which is exactly (3.25). �

Corollary 3.4. If A−1 exists (A is nonsingular), then

A−1 = − 1

an
(An−1 + a1An−2 + · · · + an−2A+ an−1In×n)

Proof. Since A is nonsingular (A has no zero eigenvalues) we have that an �= 0. Then

the result follows from the identity

A−1pA(A) = A−1(An + a1An−1 + · · · + an−1A+ anIn×n) = 0

�

3.4 The multiplicities and generalized eigenvectors

3.4.1 Algebraic and geometric multiplicities

For any n× n matrix A it may happen that some of its eigenvalues are equal, that is,

the corresponding characteristic polynomial pA(λ) may have the following structure

pA(λ) =
K∏
i=1

(λ− λi)μi ,
K∑
i=1

μi = n (3.27)

where μi is the number of times the factor (λ− λi) appears in (3.27).

Definition 3.7.

(a) the number μi is called the algebraic multiplicity of the eigenvalue λi of the
matrix A;

(b) the number

κi := dimKer(λiIn×n − A) (3.28)

is called the geometric multiplicity of the eigenvalue λi of the matrix A.

Example 3.3. For

A =
[
0 1

0 0

]
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we have

pA(λ) = det

[
λ −1

0 λ

]
= λ2

λ1 = λ2 = 0

which implies

μ1 = 2

and

κ1 = dimKer((λ1In×n − A)) = dimKer(A) = 1

Here we see that in this example κ1 < μ1.

In general, the following property holds.

Lemma 3.1. The geometric multiplicity of an eigenvalue does not exceed its algebraic
multiplicity, that is, for any i = 1, . . . , K

κi ≤ μi (3.29)

Proof. If r is the rank of (λiIn×n − A), then by (3.9) r = n − μi and all minors of

(λiIn×n − A) greater than (n− μi) are equal to zero. Hence, in

pA(λ) =
n∏
i=1

(λ− λi) = λn +
n∑
i=1

an−iλi

for all i ≤ μi − 1 we have ai = 0, which leads to the following

pA(λ) =
n∏
i=μi
(λ− λi)

This means that the last polynomial has a zero of multiplicity greater than or equal to μi
which implies the result. �

Corollary 3.5.

K∑
i=1

κi ≤
K∑
i=1

μi = n (3.30)



56 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

3.4.2 Generalized eigenvectors

Definition 3.8. Let an eigenvalue λi of a square n × n matrix A have the algebraic
multiplicity μi . Then the vectors x(i,k)(A) satisfying the equations

[A− λiIn×n] x(i,k)(A) = x(i,k−1)(A), k = 2, 3, . . . , r ≤ μi (3.31)

are called the generalized eigenvectors of A. Evidently,

x(i,1)(A) = x(i)(A)

is the corresponding eigenvector of A (by the definition x(i,0)(A) ≡ 0). The sequence of
vectors x(i,1)(A), x(i,2)(A), . . . , x(i,r)(A) is called a Jordan chain of length r ≤ μi .

If the eigenvector x(i,1)(A) = x(i)(A) is selected, then the next vectors x(i,2)(A), . . . ,

x(i,r)(A) are generated successively as far as the nonhomogeneous equation (3.31) has a

solution.

Proposition 3.15. x(i,k)(A) (k ≥ 2) is a generalized eigenvector of A if and only if the
vector [A− λiIn×n]k−1

x(i,k)(A) is the eigenvector of A, or equivalently, if and only if

[A− λiIn×n]k x(i,k)(A) = 0

Proof.

(a) Necessity. Let us prove this fact by induction. For k = 2 we have

[A− λiIn×n] x(i,2)(A) = x(i,1)

and, hence, pre-multiplying by A implies

A
(
[A− λiIn×n] x(i,2)(A)

) = Ax(i,1)
= λix(i,1) = λi

(
[A− λiIn×n] x(i,2)(A)

)
This means that

(
[A− λiIn×n] x(i,2)(A)

)
is the eigenvector of A. Notice that the last

identity may be rewritten as

0= A (
[A− λiIn×n] x(i,2)(A)

)− λi ([A− λiIn×n] x(i,2)(A))
= [A− λiIn×n]

(
[A− λiIn×n] x(i,2)(A)

) = [A− λiIn×n]2 x(i,2)(A)

So, for k = 2 the proposition is true. Suppose that it is valid for some k. Show that

it will be valid for k + 1 too. By this supposition we have

[A− λiIn×n]k x(i,k)(A) = 0
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Then

[A− λiIn×n] x(i,k+1)(A) = x(i,k)

and pre-multiplying by [A− λiIn×n]k implies

[A− λiIn×n]k
(
[A− λiIn×n] x(i,k+1)(A)

) = [A− λiIn×n]k x(i,k) = 0

or, equivalently,

[A− λiIn×n]k+1
x(i,k+1)(A) = 0

(b) Sufficiency. It follows directly from the definition of a generalized vector.

�

Proposition 3.16. Any Jordan chain consists of linearly independent elements.

Proof. Suppose that there exist αs(s = 1, . . . , r) such that

r∑
s=1

αix
(i,s)(A) = 0

Applying the transformation [A− λiIn×n]r−1
to both sides, we get

0 =
r∑
s=1

αi [A− λiIn×n]r−1−s
[A− λiIn×n]s x(i,s)(A) = αr

Then applying again the transformation [A− λiIn×n]r−2
, in view of the result before, we

obtain that αr−1 = 0. Repeating this procedure, we obtain the contradiction, and hence,

the result is established. �
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4.1 Spectral theorem for Hermitian matrices

4.1.1 Eigenvectors of a multiple eigenvalue for Hermitian matrices

Proposition 4.1. Let x(i,1), x(i,2), . . . , x(i,μi ) be the eigenvectors of an n × n Hermitian
matrix A ∈ Cn×n corresponding to the eigenvalue λi (which by (3.5) is always real)
with the algebraic multiplicity μi . Then these vectors may be supposed to be linearly
independent.

Proof. Indeed, if rank(λiIn×n − A) = n − μi , then, selecting the last components

z(i,2) :=
[
x
(i)
μi+1, x

(i)
μi+2, . . . , x

(i)
n

]ᵀ
as free variables and solving the linear systems

(λiIn×n − A) x(i) = 0

with respect to z(i,1) :=
(
x
(i)
1 , x

(i)
2 , . . . , x

(i)
n−μi

)ᵀ
, we get

x(i) :=
(
z(i,1)

z(i,2)

)
, A :=

(
A11 A12

A21 A22

)
, rankA11 = n− μi[(

λiI(n−μi)×(n−μi) − A11

) −A12

−A21

(
λiIμi×μi − A22

)](z(i,1)
z(i,2)

)
= 0

and, hence,

(
λiI(n−μi)×(n−μi) − A11

)
z(i,1) = A12z

(i,2)

or, equivalently,

z(i,1) =
[(
λiI(n−μi)×(n−μi) − A11

)−1
A12

]
z(i,2) (4.1)

59
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Taking then the free components as x(i,r)s = δs,r (s, r = μi + 1, . . . , n), we may define

the following linearly independent (in Cn−μi ) vectors

z(i,2,r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

x
(i,r)
μi+1

x
(i,r)
μi+2

...

x(i,r)n

⎞
⎟⎟⎟⎟⎟⎟⎠, r = 1, . . . , n− μi

Evidently, in spite of the fact that z(i,1,r) are linearly dependent on z(i,2,r) by (4.1), the

joint vectors

(
z(i,1,r)

z(i,2,r)

)
= x(i,r) remain linearly independent. �

4.1.2 Gram–Schmidt orthogonalization

Proposition 4.2. Eigenvectors of a Hermitian matrix are linearly independent; some of
them even correspond to the same eigenvalues.

Proof. This result immediately follows from the previous proposition and from (3.17).

�

Let
{
x(1), x(2), . . . , x(n)

}
be the set of linearly independent eigenvectors of an n × n

Hermitian matrix A ∈ Cn×n.

Lemma 4.1. (Gram–Schmidt orthogonalization process) The set
{
x̃(1), x̃(2) , . . . ,

x̃(n)
}
of vectors obtained from

{
x(1), x(2), . . . , x(n)

}
by the procedure

x̃(1) = x(1)

x̃(r) =
[
In×n −

r−1∑
s=1

x̃(s)x̃(s)
ᵀ∥∥x̃(s)∥∥2

]
x(r), (r = 2, . . . , n)

(4.2)

is orthogonal, that is,

(
x̄(r), x̄(s)

) = 0 (r �= s = 1, . . . , n) (4.3)

Proof. Let us do it by induction. For r = 2 we have

x̃(2) =
[
In×n − x̃

(1)x̃(1)
ᵀ∥∥x̃(1)∥∥2

]
x(2) = x(2) − x̃(1)∥∥x̃(1)∥∥2

(
x̃(1), x(2)

)
and, as the result, it follows that(

x̃(1), x̃(2)
) = (

x̃(1), x(2)
)− (

x̃(1), x(2)
) = 0
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Supposing that the vectors x̃(1), x̃(2), . . . , x̃(r−1) are orthogonal, we get

(
x̃(r−1), x̃(r)

)= (
x̃(r−1), x(r)

)− r−1∑
s=1

(
x̃(r−1), x̃(s)

)∥∥x̃(s)∥∥2

(
x̃(s), x(r)

)

= (
x̃(r−1), x(r)

)− (
x̃(r−1), x̃(r−1)

)∥∥x̃(r−1)
∥∥2

(
x̃(r−1), x(r)

) = 0

�

Remark 4.1. The set of the vectors

{
x̃(1)∥∥x̃(1)∥∥ , . . . , x̃

(n)∥∥x̃(n)∥∥
}

may be considered as an

orthonormal basis in Cn.

4.1.3 Spectral theorem

Theorem 4.1. (Spectral theorem) If
{
x(1), x(2), . . . , x(n)

}
is the set of linearly independ-

ent eigenvectors of an n×n Hermitian matrix A ∈ Cn×n corresponding to the eigenvalues
λ1, . . . , λn (maybe multiple), then the following representation holds

A = X�X−1 = X�X∗ =
n∑
i=1

λix
(i)x(i)

∗
(4.4)

where � = diag {λ1, . . . , λn} and X := [
x(1) x(2) · · · x(n) ] is unitary matrix, i.e., X∗ =

X−1.

Proof. Notice that the relations

Ax(i) = λix(i), i = 1, . . . , n

may be rewritten as

AX = X� (4.5)

Since x(1), x(2), . . . , x(n) are linearly independent it follows that X−1 exists and, hence,

A =X�X−1

A∗ =A = (
X−1

)∗
�X∗

and

A
(
X−1

)∗ = (
X−1

)∗
� (4.6)

The comparison of (4.5) and (4.6) implies

X = (
X−1

)∗
, X∗ = X−1
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and, hence, by (2.3) it follows that

A = X�X−1 = X�X∗ = X
⎡
⎢⎣λ1x

(1)∗
...

λnx
(n)∗

⎤
⎥⎦ =

n∑
i=1

λix
(i)x(i)

∗

�

4.2 Matrix transformation to the Jordan form

This subsection deals with the transformation of nonobligatory Hermitian matrices to

triplet form analogous to one given before.

4.2.1 The Jordan block

Definition 4.1. The matrix

Ji :=

⎡
⎢⎢⎢⎢⎣
λi 1 0 · 0

0 λi 1 · ·
· 0 · · 0

· · · λi 1

0 · · 0 λi

⎤
⎥⎥⎥⎥⎦ (4.7)

is referred to as a Jordan block (or cell) of order μi corresponding to the eigenvalue λi .

4.2.2 The Jordan matrix form

Theorem 4.2. (The Jordan normal canonical representation) For any square com-
plex matrix A ∈ Cn×n there exists a nonsingular matrix T such that

A = T JT −1 (4.8)

where

J = diag(J1, J2, . . . , JK)

Ji ∈ Cμi×μi

with

K∑
i=1

μi = n

and with λi (i = 1, . . . , K) as the distinct eigenvalues of A with the multiplicity μi . The
transformation T has the following form
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T = [
T1 T2 · · · TK

]
Ti =

[
x(i,1) x(i,2) · · · x(i,μi ) ] (4.9)

where x(i,1) are the eigenvectors of A corresponding to the eigenvalue λi and x(i,s)

(s = 2, . . . , μi) are the generalized vectors of A generated by (3.31).

Proof. Taking sufficiently large space, nevertheless it may be realized by the direct

verification of the identity AT = T J . �

Example 4.1.

A =
⎡
⎣ 6 2 2

−2 2 0

0 0 2

⎤
⎦

We have

det(A− λI3×3) = (2− λ) (4− λ)2

So,

λ1 = 2, λ2 = 4 with μ2 = 2

and

x(1) = [
0 −1 1

]ᵀ
, x(2,1) = [

2 −2 0
]ᵀ

(A− λI3×3) x
(2,2) = x(2,1) =⇒ x(2,2) = [

1 0 0
]ᵀ

As the result we have

A = T
⎡
⎣2 0 0

0 4 1
0 0 4

⎤
⎦ T −1

T = [
x(1) x(2,1) x(2,2)

] =
⎡
⎣ 0 2 1

−1 −2 0

1 0 0

⎤
⎦

4.3 Polar and singular-value decompositions

4.3.1 Polar decomposition

Proposition 4.3. (Polar factorization) For any square complex matrix A ∈ Cn×n there
exist unique positive semidefinite (λi ≥ 0 for all i = 1, . . . , n) Hermitian matrices H, K
and unitary matrices U, V all in Cn×n such that

A = UH = KV (4.10)
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Proof. First, notice the matrix A∗A is Hermitian and, hence, by (3.5) it has all eigenvalues

real. Moreover, all of them are nonnegative, since by

x(i)∗ : A∗Ax(i) = λix(i)

one has

x(i)∗A∗Ax(i) = ∥∥Ax(i)∥∥2 = λix(i)∗x(i) = λi
∥∥x(i)∥∥2

and, hence, for all i = 1, . . . , n

λi =
∥∥Ax(i)∥∥2∥∥x(i)∥∥2

≥ 0 (4.11)

Define r21 := λ1, r22 := λ2, . . . , r2n := λn such that

ri > 0 for i = 1, . . . , k

and

ri = 0 for i = k + 1, . . . , n

Then, for i, j = 1, . . . , k and for the corresponding orthonormal eigenvectors x(i), x(j)((
x(i), x(j)

) = δij), we have

(
Ax(i)

ri
,
Ax(j)

rj

)
=

(
A∗Ax(i), x(j)

rirj

)
= δij r

2
i

rirj

and thus the vectors

z(i) := Ax
(i)

ri
, i = 1, . . . , k (4.12)

are orthonormal. Define also two unitary matrices

X := [
x(1) . . . x(k) . . . x(n)

]
Z := [

z(1) . . . z(k)
] (4.13)

Then by (4.12) we have

Ax(i) = z(i)ri

or, with R := diag {r1, . . . , rn},

AX = ZR
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which, by post-multiplying by X∗, implies

AXX∗ = A = ZRX∗ (4.14)

Now, let

U = ZX∗, H = XRX∗ (4.15)

Clearly, U is unitary since X and Z are unitary. H evidently is Hermitian and has

all eigenvalues nonnegative, or in other words, it is positive semidefinite. Moreover,

by (4.14)

UH = ZX∗XRX∗ = ZRX∗ = A

Applying the above result to A∗ we obtain A = KV . �

Corollary 4.1. If A ∈ Cn×n is nonsingular (or, equivalently all eigenvalues λi = r2i of
A∗A are strictly positive (k = n)), then

Hᵀ = H, Kᵀ = K, Uᵀ = U−1, V ᵀ = V −1

and

AᵀA = H 2, AAᵀ = V 2

Example 4.2. For

A =
[
1 0

2 −1

]

it follows that

AᵀA =
[

5 −2

−2 1

]
λ1 (A

ᵀA) = 3− 2
√
2, x̃(1) =

[√
2− 1

1

]

λ2 (A
ᵀA) = 3+ 2

√
2, x̃(2) =

[−√2− 1

1

]

Notice that
(
x̃(1), x̃(2)

) = 0. The normalized eigenvectors are

x(1) = 1√
2
(
2−√

2
)
[√

2− 1

1

]
=

[
0.38268

0.92388

]

x(2) = 1√
2
(
2+√

2
)
[−√2− 1

1

]
=

[−0.92388

0.38268

]
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According to (4.13), we construct

X=
[
0.38268−0.92388

0.92388 0.38268

]

Z =
[
0.92387 −0.38268

−0.3827−0.92388

]

R =
[
0.41421 0.0

0.0 2.4142

]

Then by (4.15) we, finally, obtain

U = ZXᵀ =
[
0.70710 0.7071

0.7071 −0.70712

]

H = XRXᵀ =
[

2.1213 −0.70710

−0.70710 0.70710

]
To check the calculation just made above, we compute

A = UH =
[
0.70710 0.7071

0.7071 −0.70712

]

×
[

2.1213 −0.70710

−0.70710 0.70710

]
=

[
1 0

2−1

]

4.3.2 Singular-value decomposition

Let us consider a matrix A ∈ Cm×n. Evidently, all roots of the matrices A∗A ∈ Cn×n and
AA∗ ∈ Cm×m are real and nonnegative. Indeed, if λi(A

∗A), λi(AA∗) are some eigenvalues

and x(i) (A∗A) and x(i) (AA∗) are the corresponding eigenvectors, then

x(i)∗ (A∗A) : A∗Ax(i) (A∗A) = λi(A∗A)x(i) (A∗A)
x(i)∗ (AA∗) : AA∗x(i) (AA∗) = λi(AA∗)x(i) (AA∗)

and, thus,

x(i)∗ (A∗A)A∗Ax(i) (A∗A)= ∥∥Ax(i) (A∗A)
∥∥2

= λi(A∗A)x(i)∗ (A∗A) x(i) (A∗A) = λi(A∗A)
∥∥x(i) (A∗A)

∥∥2

x(i)∗ (AA∗) AA∗x(i) (AA∗)= ∥∥A∗x(i) (AA∗)
∥∥2

= λi(AA∗)x(i)∗ (AA∗) x(i) (AA∗) = λi(AA∗)
∥∥x(i) (AA∗)

∥∥2

or, equivalently,

λi(A
∗A) =

∥∥Ax(i) (A∗A)
∥∥2∥∥x(i) (A∗A)
∥∥2

≥ 0

λi(AA
∗) =

∥∥Ax(i) (AA∗)
∥∥2∥∥x(i) (AA∗)
∥∥2

≥ 0

(4.16)
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It also follows (if m = n this is the result of (3.18)) that the spectrums of A∗A and AA∗

coincide, that is,

σ(A∗A) = σ(AA∗)

and eigenvalues have the same algebraic multiplicity (the geometric multiplicity may be

different because of zero eigenvalues if they exist). More exactly,

Proposition 4.4.

σi(A
∗A) = σi(AA∗)

Proof. Indeed, if

[A∗A] x(i) (A∗A) = λi (A∗A) x(i) (A∗A)

then

AA∗ [Ax(i) (A∗A)
] = λi (A∗A)

[
Ax(i) (A∗A)

]
Thus, Ax(i) (A∗A) is the eigenvector of AA∗ which corresponds to the same eigenvalue

λi (A
∗A). �

In view of this property we may introduce the following definition.

Definition 4.2. The number

σi (A) := √
λi (A∗A) = √

λi (AA∗) (4.17)

is called the ith singular value of A ∈ Cn×n.

Remark 4.2. If a square matrix A ∈ Cn×n is normal, that is, satisfies the relation

AA∗ = A∗A

then

σi (A) =
√
λi (A∗A) = |λi (A)|

Proposition 4.5. The singular values of a squared matrix are invariant under unitary
transformation, that is, if U ∈ Cn×n satisfies U ∗U = UU ∗ = In×n, then for any A ∈ Cn×n

we have

σi (UA) = σi (AU) = σi (A) (4.18)

for all i = 1, . . . , n.
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Proof. Indeed,

σi (UA) =
√
λi (A∗U ∗UA) =√

λi (A∗A) = σi (A)

and

σi (AU)=
√
λi (U ∗A∗AU) =

√
λi (U ∗A∗AU)∗

=√
λi (AUU ∗A∗) =√

λi (AA∗) = σi (A)

�
The next theorem represents the main result of this subsection.

Theorem 4.3. (Singular-value decomposition) Let A ∈ Cm×n and σi (A) (i = 1, . . . ,

r ≤ min {m, n}) be the nonzero singular values of A. Then A can be represented in the
triplet form

A = UDV ∗ (4.19)

where U ∈ Cm×m and V ∈ Cn×n are unitary (i.e. satisfy U ∗U = UU ∗ = Im×m and
V ∗V = VV ∗ = In×n) and D ∈ Cm×n has σi (A) in the (i, i)th position (i = 1, . . . , r) and
zero elsewhere.

Proof. Following (4.12) we have that

Ax(i) = σi (A) z(i), i = 1, . . . , r

Ax(i) = 0, i = r + 1, . . . , n
(4.20)

where x(i) are orthogonal eigenvectors of A∗A and z(i) are orthogonal eigenvectors of

AA∗. Constructing the matrices

V = [
x(1) x(2) · · · x(n) ]

U = [
z(1) z(2) · · · z(m) ]

we may note that in view of (4.15) they are unitary by the construction. Then (4.20)

implies

AV = [
σ1 (A) z

(1) σ2 (A) z
(2) · · · σr (A) z(r) 0 · · · 0

] = UD
or, equivalently,

A = UDV −1 = UDV ∗

The result is established. �

Example 4.3. For

A =
⎡
⎣1 0

0 1

1 0

⎤
⎦
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we have

A∗A =
[
2 0

0 1

]
, AA∗ =

⎡
⎣1 0 1

0 1 0

1 0 1

⎤
⎦

and

σ1 (A) =
√
2, x(1) (A∗A) =

[
1

0

]
, z(1) (AA∗) =

⎡
⎣0

1

0

⎤
⎦

σ2 (A) = 1, x(2) (A∗A) =
[
0

1

]
, z(2) (AA∗) = 1√

2

⎡
⎣−1

0

1

⎤
⎦

z(3) (AA∗) = 1√
2

⎡
⎣1

0

1

⎤
⎦

So,

A =
⎡
⎣1/

√
2 0 −1/

√
2

0 1 0

1/
√
2 0 1/

√
2

⎤
⎦
⎡
⎣
√
2 0

0 1

0 0

⎤
⎦[

1 0

0 1

]

Proposition 4.6. Two matrices A,B ∈ Cm×n are unitary equivalent, that is,

A = UBV ∗ (4.21)

where U ∈ Cm×m and V ∈ Cn×n are unitary, if and only if they have the same singular
values.

Proof. Necessity. Assuming A = UBV ∗ one has

A = UADAV ∗
A = UBV ∗, B = UBDBV ∗

B

UADAV
∗
A = UUBDBV ∗

BV
∗

DA =
(
U ∗
AUUB

)
DB

(
V ∗
BV

∗VA
) = (

U ∗
AUUB

)︸ ︷︷ ︸
Ũ

DB
(
V ∗
AV VB

)︸ ︷︷ ︸
Ṽ

∗

DA = ŨDBṼ ∗

Viewing the last relation as the singular-value decomposition for DA and noting that DB
is uniquely defined, we conclude that DA = DB .

Sufficiency. If DA = DB , then
A= UADAV ∗

A = UADBV ∗
A = UA

(
U ∗
BUBDBV

∗
BVB

)
V ∗
A

= UAU ∗
B

(
UBDBV

∗
B

)
VBV

∗
A =

(
UAU

∗
B

)︸ ︷︷ ︸
U

B
(
VBV

∗
A

)︸ ︷︷ ︸
V ∗

= UBV ∗

�
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4.4 Congruent matrices and the inertia of a matrix

4.4.1 Congruent matrices

Definition 4.3. Two square matrices A,B ∈ Cn×n are said to be congruent if there
exists a nonsingular matrix P ∈ Cn×n such that

A = PBP ∗ (4.22)

It is clear that for a unitary P the matrix A is unitary equivalent to B.

Theorem 4.4. Any Hermitian matrix H ∈ Cn×n is congruent to the matrix

�0 :=
⎡
⎣Is×s 0 0

0 I(r−s)×(r−s) 0

0 0 0(n−r)×(n−r)

⎤
⎦ (4.23)

where r = rankH, and s is the number of positive eigenvalues of H counted according
to multiplicity.

Proof. By the spectral theorem (4.4) any H can be represented as

H = X�X∗ (4.24)

where � is a diagonal matrix of eigenvalues of H and X is unitary. Ordering the

eigenvalues so that the first s scalars λ1, . . . , λs on the main diagonal of � are positive

and the next (r − s) numbers λs+1, . . . , λr−s are negative, one may write

� = U�1�0�1U
∗ (4.25)

where �0 is as in (4.23) and

�1 = diag
(√
λ1, . . . ,

√
λs,

√|λs+1|, . . . ,
√|λr−s |, 0, . . . , 0

)
The matrix U is a permutation (and therefore a unitary) matrix. So, substituting (4.25)

into (3.22) gives

H = X�X∗ = (XU�1)�0 (�1U
∗X∗) = P�0P

∗

with P = XU�1. Theorem is proven. �

4.4.2 Inertia of a square matrix

Definition 4.4. The inertia of a square matrix A ∈ Rn×n, written as InA, is the triple
of integers

InA := {π (A), ν (A), δ (A)} (4.26)
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where

• π (A) denotes the number of eigenvalues of A, counted with their algebraic multiplic-
ities, lying in the open right half-plane of C;

• ν (A) denotes the number of eigenvalues of A, counted with their algebraic multiplici-
ties, lying in the open left half-plane of C;

• δ (A) is the number of eigenvalues of A, counted with their algebraic multiplicities,
lying on the imaginary axis.

Notice that

π (A)+ ν (A)+ δ (A) = n (4.27)

Remark 4.3. In the particular case of Hermitian matrices π (H) and ν (H) merely
denote the number of positive and, negative eigenvalues of H respectively. Notice that
for Hermitian matrices

π (H)+ ν (H) = rankH

The difference

sigH := π (H)− ν (H) (4.28)

is referred to as the signature of H .

Theorem 4.5. Let A,B ∈ Rn×n be Hermitian matrices of the same rank r and

A = MBM∗

for some matrix M (not obligatory nonsingular). Then

InA = InB

Proof. By Theorem 4.4 there exist nonsingular matrices P and Q such that

PAP ∗ = diag [It ,−Ir−t , 0] := �0 (A)

Q−1B
(
Q−1

)∗ = diag [Is,−Ir−s , 0] := �0 (B)

t = π (A), s = π (B)
To prove the theorem it is sufficient to show that t = s. Suppose that s < t and let us

seek a contradiction. Notice that since A = MBM∗ we have

�0 (A) = PAP ∗ = PMBM∗P ∗

= (PMQ)�0 (B) (Q
∗M∗P ∗) = R�0 (B)R

∗

R := PMQ
(4.29)

Let x ∈ Cn as

x =
[
x̃

0

]
, x̃ ∈ Ct, ‖x̃‖ > 0
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Then

x∗�0 (A) x =
t∑
i=1

|xi |2 = ‖x̃‖2 > 0 (4.30)

Partitioning of R in the form

R∗ :=
[
R11 R12

R21 R22

]
, R11 ∈ Cs×t

implies that x̃ can be chosen such that

R11x̃ = 0

keeping x̃ �= 0. Define now y = R21x̃ ∈ Cn−s which leads to the following identity

R∗x =
[
0

y

]

Then by (4.29)

x∗�0 (A) x = x∗R�0 (B)R
∗x = y∗�0 (B) y = −

r−s∑
j=1

∣∣yj ∣∣2 = −‖y‖2 ≤ 0

which contradicts (4.30). Similarly, interchanging the roles of �0 (A) and �0 (B), one

can find that t < s is impossible. Hence, s = t . Theorem is proven. �

Corollary 4.2. (Sylvester’s law of inertia) Congruent Hermitian matrices have the
same inertia characteristics.

Proof. Since A = PBP ∗ and P is nonsingular, then rankA = rankB and the result

follows. �

Example 4.4. Consider the quadratic form

fA (x) = (x,Ax) = 2x1x2 + 2x2x3 + x23
which corresponds to the following matrix

A =
⎡
⎣0 1 0

1 0 1

0 1 1

⎤
⎦

The transformation

x = T z, T =
⎡
⎣0 0 1

0 1 1

1 −1 −1

⎤
⎦
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implies

fA (x)= (x,Ax) =
(
z [, T ᵀAT ] z

)

=
⎛
⎝z,

⎡
⎣1 0 0

0 −1 0

0 0 1

⎤
⎦ z

⎞
⎠ = z21 − z22 + z23

So,

r = 3, π (A) = 2, ν (A) = 1, δ (A) = 0

4.5 Cholesky factorization

In this subsection we follow Highan (1996).

4.5.1 Upper triangular factorization

Theorem 4.6. (Cholesky factorization) Let A = Aᵀ ∈ Rn×n be a real symmetric n× n
matrix with positive definite eigenvalues λi(A) > 0 (i = 1, . . . , n). Then there is a unique
upper triangular matrix R ∈ Rn×n with positive diagonal elements such that

A = RᵀR (4.31)

Proof. It may be done by induction. For n = 1 the result is clear. Assume that it is true

for (n− 1). Let us consider An = Aᵀ
n ∈ Rn×n which can be represented in the following

block form

An =
[
An−1 c

cᵀ α

]
, c ∈ R1×(n−1), α ∈ R (4.32)

where An−1 = A
ᵀ
n−1 ∈ R(n−1)×(n−1) by the assumption of the induction method has a

unique Cholesky factorization An−1 = Rᵀ
n−1Rn−1. Then (4.32) may be rewritten as

An =
[
An−1 c

cᵀ α

]
=

[
R

ᵀ
n−1 0

rᵀ β

] [
Rn−1 r

0 β

]
:= Rᵀ

n Rn (4.33)

if

R
ᵀ
n−1r = c (4.34)

rᵀr + β2 = α (4.35)
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Notice that (4.34) has a unique solution since R
ᵀ
n−1 is nonsingular. Then (4.35) gives

β2 = α − rᵀr = α −
[(
R

ᵀ
n−1

)−1
c
]ᵀ [(

R
ᵀ
n−1

)−1
c
]

= α − cᵀ (Rn−1)
−1
(
R

ᵀ
n−1

)−1
c = α − cᵀA−1

n−1c

It remains to check that there exists a unique real positive β satisfying this equation, that

is, we need to show that

α − cᵀA−1
n−1c > 0

One has

0 < detAn = det(Rᵀ
n Rn) = det(Rᵀ

n ) det(Rn)

= [
det(R

ᵀ
n−1)β

]
[det(Rn−1)β] = [det(Rn−1)]

2
β2

which implies

β2 = detAn

[det(Rn−1)]
2
> 0

Hence there is a unique β > 0. So, (4.33) is valid. �

Corollary 4.3. Given the Cholesky factorization

AᵀA = RᵀR

the system of linear equations

Ax = b

or, equivalently,

(AᵀA) x = Aᵀb := b̃

can be solved via the two triangular linear systems

Rᵀy = b̃
Rx = y

which can be resolved by the simple Gaussian elimination procedure (1.6).

Corollary 4.4. Let rij be the elements of R andD := diag
(
r211, . . . r

2
nn

)
> 0. The Cholesky

factorization A = RᵀR (4.31) may be represented as

A = LDLᵀ
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where

L = Rᵀdiag
(
r−1
11 , . . . , r

−1
nn

)
4.5.2 Numerical realization

The following procedure is the direct algorithm for computation of matrix R:

for j = 1 : n
for i = 1 : j − 1

rij =
(
aij −

i−1∑
k=1

rkirkj

)
/rii

end

rjj =
√√√√ajj − i−1∑

k=1

r2kj

end

Example 4.5.

A=
⎡
⎣3 1 1

1 2 0

1 0 1

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣
√
3 0 0
1√
3

1

3

√
15 0

1√
3

− 1

15

√
15

1

5

√
15

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

√
3

1√
3

1√
3

0
1

3

√
15 − 1

15

√
15

0 0
1

5

√
15

⎤
⎥⎥⎥⎥⎥⎥⎦
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5 Matrix Functions
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5.1 Projectors

Definition 5.1. A Hermitian n× n matrix P is said to be a projector or an idempotent
matrix if it satisfies the condition

P ∗P = PP ∗ = P 2 = P = P ∗ (5.1)

Proposition 5.1. If P ∈ Cn×n is a projector, then

(a) the matrix

Q := In×n − P (5.2)

is a projector too and named the complementary projector to P;
(b)

Im(In×n − P) = Ker P (5.3)

(c)

Ker(In×n − P) = ImP (5.4)

Proof.

(a) To prove that Q is a projector too, note that

(In×n − P)2 = In×n − P − P + P 2

= In×n − P − P + P = In×n − P
(b) If y ∈ Im(In×n − P), then y = (In×n − P) x for some x ∈ Cn. Thus,

Py = P (In×n − P) x =
(
P − P 2

)
x = 0

It means that y ∈ Ker P .

77
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(c) By a similar argument, if y ∈ ImP , then y = Px for some x ∈ Cn and, hence,

(In×n − P) y = (In×n − P)Px =
(
P − P 2

)
x = 0

which exactly means (5.4).
�

Corollary 5.1. If P ∈ Cn×n is a projector, then

Ker P + Im P = Cn

Proof. Evidently, any x ∈ Cn may be represented as

x = (In×n − P) x + Px = x(1) + x(2)
x(1) := (In×n − P) x ∈ Ker P

x(2) := Px ∈ Ker(In×n − P) = Im P

�

Corollary 5.2. Any x(1) ∈ Ker P and x(2) ∈ Im P are orthogonal, that is

(
x(1), x(2)

) = 0

Proof. By the previous corollary, we have

x(1)∗x(2) = x∗ (In×n − P)∗ Px
= x∗ (In×n − P)Px = x∗

(
P − P 2

)
x = 0

�

The property given above in (5.2) exactly justifies the name projector for P .

Theorem 5.1. If P ∈ Cn×n is a projector, then

1. its eigenvalues λi (P ) are either equal to 1 or 0;
2. it is a simple matrix, that is, it is equivalent to a diagonal matrix with the diagonal

elements equal to 1 or 0;
3. it may be represented as

P =
r∑
i=1

x(i)x(i)∗ (5.5)

where r = rank P and
{
x(1), . . . , x(r)

}
is the system of the eigenvectors of P corre-

sponding to λi (P ) = 1.
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Proof.

1. If x(i) (P ) is an eigenvector of P corresponding to an eigenvalue λi (P ), then

Px(i) (P ) = λi (P ) x(i) (P )
and pre-multiplication of this identity by (In×n − P) implies

0= (In×n − P)Px(i) (P ) = λi (P ) (In×n − P) x(i) (P )
= λi (P )

[
x(i) (P )− Px(i) (P )] = λi (P ) [x(i) (P )− λi (P ) x(i) (P )]

= λi (P ) [1− λi (P )] x(i) (P )
which proves the first assertion.

(2) and (3) result from (1) and the spectral theorem (4.4).

�
5.2 Functions of a matrix

5.2.1 Main definition

Definition 5.2. Let A ∈ Cn×n be any square complex matrix and T ∈ Cn×n is the
nonsingular matrix T , defined by (4.9), transforming A to the Jordan canonical form,
that is,

A= T JT −1

J = diag(J1, J2, . . . , JK)

where Ji ∈ Cμi×μi is the ith Jordan block defined by (4.7). Also let

f (λ) : C −→ C

be a function which is (l − 1)-times differentiable in a neighborhood of each λi ∈ σ (A)
where

l := max
i=1,...,K

μi,

K∑
i=1

μi = n

(μi is the multiplicity of λi). Then

f (A) := T diag(f (J1) , f (J2) , . . . , f (JK)) T −1 (5.6)

where

f (Ji) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

f (λi)
1

1!f
(1)

(λi) · · · 1

(μi − 1)!f
(μi−1)

(λi)

0 f (λi)
. . .

...
...

. . .
. . .

1

1!f
(1)

(λi)

0 · · · 0 f (λi)

⎤
⎥⎥⎥⎥⎥⎥⎦ (5.7)

and f (k) (λ) is the kth derivative of f (λ) in the point λ.
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Example 5.1. Let

A =
⎡
⎣ 6 2 2

−2 2 0

0 0 2

⎤
⎦

Then the eigenvalues, the corresponding eigenvectors and the generalized eigenvectors
are as follows

λ1 = 2, x(1) =
⎡
⎣ 0

−1

1

⎤
⎦, μ1 = 1

λ2 = 4, x(2,1) =
⎡
⎣−2

2

0

⎤
⎦, μ2 = 2

From equation (3.31)

(A− 4I3×3) x
(2,2) = x(2,1)

we obtain

x(2,2) =
⎡
⎣1

0

0

⎤
⎦

and, hence

T =
⎡
⎣ 0 −2 1

−1 2 0

1 0 0

⎤
⎦, T −1 =

⎡
⎣0 0 1

0 1/2 1/2

1 1 1

⎤
⎦

So, for example,

(a)

ln (A)= T
⎡
⎣ ln 2 0 0

0 ln 4 1/4

0 0 ln 4

⎤
⎦ T −1

=
⎡
⎣ 0 −2 1

−1 2 0

1 0 0

⎤
⎦
⎡
⎣ ln 2 0 0

0 ln 4 1/4

0 0 ln 4

⎤
⎦
⎡
⎣0 0 1

0 1/2 1/2

1 1 1

⎤
⎦

=
⎡
⎣0.88629 −0.5 −0.5

0.5 1.8863 1.1931

0.0 0.0 0.69315

⎤
⎦
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(b)

sin (A)= T
⎡
⎣sin (2) 0 0

0 sin (4) cos (4)

0 0 sin (4)

⎤
⎦ T −1

=
⎡
⎣ 0 −2 1

−1 2 0

1 0 0

⎤
⎦
⎡
⎣sin (2) 0 0

0 sin (4) cos (4)

0 0 sin (4)

⎤
⎦
⎡
⎣0 0 1

0 1/2 1/2

1 1 1

⎤
⎦

=
⎡
⎣ 0.55048 1.3073 1.3073

−1.3073 −2.0641 −2.9734

0.0 0.0 0.90930

⎤
⎦

5.2.2 Matrix exponent

There exist two definitions of the matrix exponent eA of an arbitrary square matrix

A ∈ Cn×n.

1. The first definition may be done according to the general rule (5.6):

eA := T diag(eJ1 , eJ2 , . . . , eJK ) T −1

f (Ji) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

eλi
1

1!e
λi · · · 1

(μi − 1)!e
λi

0 eλi
. . .

...
...

. . .
. . .

1

1!e
λi

0 · · · 0 eλi

⎤
⎥⎥⎥⎥⎥⎥⎦

= eλi JI (μi)

(5.8)

where

JI (μi) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1

1! · · · 1

(μi − 1)!
0 1

. . .
...

...
. . .

. . .
1

1!
0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

2. The second definition is as follows:

eA :=
∞∑
k= 0

1

k!A
k (5.9)

Notice that the series in (5.9) always converges since the series
∑∞
k= 0

1

k!
(
Ak

)
ij
always

converges for any A ∈ Cn×n and any i, j = 1, . . . , n.
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Lemma 5.1. Definitions (5.8) and (5.9) coincide.

Proof. For normal matrices this claim is evident since in this case the Jordan blocks

are diagonal. In general cases this result can be checked by the simple evaluation (by

induction) of Ak using both definitions (5.8) and (5.9). �

A rather surprising formula holds.

Lemma 5.2.

det
(
eA
) = exp (trA) (5.10)

Proof. Using (5.8) and (3.19) one has

det
(
eA
)= det

(
T diag

(
eJ1 , eJ2 , . . . , eJK

)
T −1

)
= [det T ]

[
det diag

(
eJ1 , eJ2 , . . . , eJK

)] [
det T −1

]
= [

det diag
(
eJ1 , eJ2 , . . . , eJK

)] = K∏
i=1

det eJi

=
K∏
i=1

[exp(λi)]
μi =

K∏
i=1

exp(μiλi) = exp

(
K∑
i=1

μiλi

)

= exp

(
n∑
s=1

λs

)
= exp(trA)

�

Example 5.2. For the matrix A from the previous example (5.1) we have

exp

⎛
⎝
⎡
⎣ 6 2 2

−2 2 0

0 0 2

⎤
⎦
⎞
⎠

=
⎡
⎣ 0 −2 1

−1 2 0

1 0 0

⎤
⎦
⎡
⎣e2 0 0

0 e4 e4

0 0 e4

⎤
⎦
⎡
⎣0 0 1

0 1/2 1/2

1 1 1

⎤
⎦

=
⎡
⎣−54.598 −109.20 −109.20

109.20 163.79 156.41

0.0 0.0 7.3891

⎤
⎦

and by (5.10)
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det

⎡
⎣exp

⎛
⎝
⎡
⎣ 6 2 2

−2 2 0

0 0 2

⎤
⎦
⎞
⎠
⎤
⎦

= exp(trA) = exp(10)

The next result is very important in various matrix applications and especially in the

theory of ordinary differential equations.

Proposition 5.2. The identity

e(A+B)t = eAteBt

is valid for all t (including t = 1) if and only if the matrices A and B commute, that is,
when

AB = BA

Proof. This statement is sufficient for the class of normal matrices when the definition

(5.9) is applied. Since

e(A+B)t = In×n + t (A+ B)+ t
2

2
(A+ B)2 + · · ·

and

eAteBt =
(
In×n + tA+ t

2

2
A2 + · · ·

)(
In×n + tB + t

2

2
B2 + · · ·

)

= In×n + t (A+ B)+ t
2

2

(
A2 + B2 + 2AB

)+ · · ·

we obtain

e(A+B)t − eAteBt = (BA− AB) t
2

2
+ · · ·

which proves the proposition. �

Corollary 5.3. For any s, t ∈ C

eA(s+t) = eAseAt (5.11)

Corollary 5.4. The matrix exponent eAt is always nonsingular and its inverse matrix
is e−At .
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Proof. Indeed, taking in (5.11) s = −t we get

eA·0 = In×n = e−AteAt

which implies the result. �

5.2.3 Square root of a positive semidefinite matrix

In this subsection we will discuss the construction of the function which satisfies the

condition

A = A1/2A1/2 (5.12)

The formal implementation of the definition (5.6) demands to consider only the matrices

with nonnegative spectrum of eigenvalues, that is, when λi (A) ≥ 0 for all i = 1, . . . , n.

But to fulfill (5.12) this is not sufficient. Indeed, if there exists at least one complete

Jordan block this property never holds. Thus, we need to ask whether the Jordan block

would not be presented which is true only for Hermitian (in the case of real matrices,

symmetric) matrices. So, now we are ready to formulate the following proposition.

Proposition 5.3. The matrix A1/2 is well defined for a positive semidefinite Hermitian
matrix and, moreover, it is positive semidefinite Hermitian itself.

Proof. For Hermitian matrices the transforming matrix T is always unitary, that is,

T −1 = T ∗ and all eigenvalues are real. Thus,

A1/2 = T diag
(
(J1)

1/2, (J2)
1/2, . . . , (JK)

1/2
)
T −1

and, hence,(
A1/2

)∗ = (
T −1

)∗
diag

(
(J1)

1/2, (J2)
1/2, . . . , (JK)

1/2
)
T ∗

= T diag
(
(J1)

1/2, (J2)
1/2, . . . , (JK)

1/2
)
T −1 = A1/2

�

Example 5.3.[
3 1

1 1

]1/2
=

[√
2+ 1 −√2+ 1

1 1

]

×
[√√

2+ 2 0

0
√

2−√
2

]⎡⎢⎢⎣
√
2+ 2

4
√
2+ 4

√
2

4
√
2+ 4

−1

4

√
2

1

4

√
2+ 1

2

⎤
⎥⎥⎦

=
[
1.6892 0.38268

0.38268 0.92388

]
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5.3 The resolvent for a matrix

The complex function theory provides a third approach to the definition of f (A)

applicable when f (λ) is an analytical function of a complex variable λ. Sure, this approach

is consistent with general definition (5.6) of f (A) valid for multiplying differentiable

functions defined on the spectrum of A.

Let us consider a matrix A (λ) : C → Cm×n whose elements are functions of a complex

variable λ and define also

• the derivatives

dr

dλr
A (λ) = A(r) (λ), r = 0, 1, 2, . . . (5.13)

of the matrix A (λ) to be the matrix obtained by differentiating each element of A (λ);

• the integral∫
L

A (λ) dλ (5.14)

of the matrix A (λ) to be the matrix obtained by integrating each element of A (λ)

in the positive direction along a path L in a complex plane, which will be assumed

to be a finite system of simple piecewise smooth closed contours without points of

intersections.

Example 5.4. For a normal matrix A ∈ Cn×n using the series representation (5.9) the
following properties may be proven:

1.

d

dt

(
eAt

) = AeAt = eAtA (5.15)

2.

d

dt
(A (t))2 =

(
d

dt
A (t)

)
A+ A

(
d

dt
A (t)

)
(5.16)

Notice that in general

d

dt
(A (t))2 �= 2A

(
d

dt
A (t)

)

3. if all derivatives exist and p = 1, 2, . . . then

d

dt
(A (t))p =

p∑
i=1

Ai−1

(
d

dt
A (t)

)
Ap−i (5.17)
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4.

d

dt
(A (t))−p = −A−p

[
p∑
i=1

Ai−1

(
d

dt
A (t)

)
Ap−i

]
A−p (5.18)

This relation may be easily proven by simply differentiating the identity

A−pAp = In×n

which implies

[
d

dt
(A (t))−p

]
Ap + A−p

[
d

dt
(A (t))p

]
= On×n

and, thus,

[
d

dt
(A (t))−p

]
= −A−p

[
d

dt
(A (t))p

]
A−p

Definition 5.3. The matrix

Rλ (A) := (λIn×n − A)−1 (5.19)

defined for all λ ∈ C which do not belong to the spectrum of A ∈ Cn×n is known as the
resolvent of A.

The following properties of Rλ (A) seem to be important for the considerations below.

Proposition 5.4. For all λ /∈ σ (A)
1.

Rλ (A)− Rμ (A) = (μ− λ)Rλ (A)Rμ (A) (5.20)

2.

d

dλ
Rλ (A) = −R2

λ (A) (5.21)

3.

dr

dλr
Rλ (A) = (−1)r r!Rr+1

λ (A) (5.22)



Matrix functions 87

Proof. Formula (5.22) may be proven by induction taking into account (5.21). But (5.21)

results from (5.20). To prove (5.20) notice that

R−1
λ (A) [Rλ (A)− Rμ (A)]R−1

μ (A)

= R−1
λ (A)

[
(λIn×n − A)−1 − (μIn×n − A)−1

]
R−1
μ (A)

= R−1
μ (A)− R−1

λ (A) = (μ− λ) In×n

which implies (5.20). �

Theorem 5.2. The resolvent Rλ (A) of A ∈ Cn×n is a rational function of λ with poles
at the points of the spectrum of A and R∞ (A) = 0. Moreover, each λk ∈ σ (A) is a pole
of Rλ (A) of order μk where μk is the multiplicity of the eigenvalue λk , that is,

Rλ (A) = 1

m(λ)

K−1∑
j=1

(
K−1∑
i=1

γijλ
i

)
Aj (5.23)

where m(λ) =
K∏
s=1

(λ− λs)μs ,
K∑
s=1

μs = n.

Proof. Evidently

m(λ)−m(μ)
λ− μ =

K−1∑
i=1

K−1∑
j=1

γijλ
iμj

for some numbers γij . Using the matrix polynomial definition (as in the Cayley–Hamilton

theorem) for λk /∈ σ (A) the last relation (after formal substituting A for μ) implies

[m(λ) In×n −m(A)]Rλ (A) =
K−1∑
i=1

K−1∑
j=1

γijλ
iAj

Since by the Cayley–Hamilton theorem m(A) = 0, we obtain (5.23). �

Thus, using the terminology of complex analysis, the spectrum of a matrix A can be

described in terms of its resolvent. The next theorem establishes this relation exactly.

Theorem 5.3. (Cauchy integral theorem for matrices) Let f (λ) be a function of the
complex variable λ analytical in an open set D ∈ C, that is, f (λ) has a convergent
Taylor series expansion about each point of D. If A ∈ Cn×n has distinct eigenvalues
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λ1, . . . , λs≤n, the path L is a closed contour having λ1, . . . , λs as its interior, and f (λ)
is continuous in and analytic within L, then

f (A)= 1

2πi

∫
L

f (λ)
[
(λIn×n − A)−1

]
dλ

= 1

2πi

∫
L

f (λ)Rλ (A) dλ

(5.24)

Proof. This result may be established using (5.23) and the Cauchy theorem which

asserts that

f (r) (λ0) = r!
2πi

∫
L

f (λ0)

(λ− λ0)r+1
dλ

for any λ0 ∈ D. �

Corollary 5.5. The following identities are valid for any A ∈ Cn×n:

In×n = 1

2πi

∫
L

Rλ (A) dλ

A = 1

2πi

∫
L

λRλ (A) dλ

(5.25)

5.4 Matrix norms

5.4.1 Norms in linear spaces and in Cn

Definition 5.4. A real-valued function ‖x‖ : L → R defined on all elements x of a
linear space L of complex or real numbers, is called a norm (on L), if it satisfies the
following axioms:

1.

‖x‖ ≥ 0

for all x ∈ L and ‖x‖ = 0 if and only if x = 0;
2.

‖αx‖ = |α| ‖x‖

for all x ∈ L and all α ∈ C;
3. the triangle inequality holds, that is,

‖x + y‖ ≤ ‖x‖ + ‖y‖

for all x, y ∈ L.
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A linear space L together with a norm defined on it is called a normed linear space.

Consider the following examples of norms in Cn.

Example 5.5. Let x = (x1, x2, . . . , xn)
ᵀ be a typical vector in Cn (or, in particular,

in Rn). Then the following functions are norms in a finite-dimensional space
Cn (or Rn):

1. Modul-sum norm

‖x‖1 := max
1≤i≤n

|xi | (5.26)

2. Euclidean norm

‖x‖2 :=
(

n∑
i=1

x2i

)1/2

(5.27)

3. Hölder norm

‖x‖p :=
(

n∑
i=1

|xi |p
)1/p

, p ≥ 1 (5.28)

4. Chebyshev norm

‖x‖∞ := max
1≤i≤n

|xi | (5.29)

5. Weighted norm

‖x‖H := √
(Hx, x) = √

x∗Hx (5.30)

where H is a Hermitian (or symmetric) matrix with all positive definite eigenvalues.

It is not so difficult to check that functions (5.26)–(5.30) satisfy all three norm axioms.

Definition 5.5. Two norms ‖x‖′ and ‖x‖′′ are said to be equivalent in L, if there exist
positive numbers r1, r2 ∈ (0,∞) such that for any x ∈ L

‖x‖′ ≥ r2 ‖x‖′′, ‖x‖′′ ≥ r1 ‖x‖′
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Proposition 5.5. Any two norms in a finite-dimensional linear space are equivalent.

Proof. It is clear that a norm in a finite-dimensional linear space is a continuous function

since the inequality

‖x + z‖ ≤ ‖x‖ + ‖z‖

leads to the following relations

‖x + z‖ − ‖x‖ ≤ ‖z‖

and

‖y‖ − ‖x‖ ≤ ‖y − x‖
|‖y‖ − ‖x‖| ≤ ‖y − x‖

if z = y − x. The last inequality corresponds exactly to the continuity definition. Let us

consider two sets

X1 :=
{
x ∈ L : ‖x‖′ = 1

}
X2 :=

{
x ∈ L : ‖x‖′′ = 1

}
By the continuity property there exist two elements x01 ∈ X1 and x02 ∈ X2 such that

0 < γ1 := inf
x∈X1

‖x‖′′ = ‖x01‖′

0 < γ2 := inf
x∈X2

‖x‖′ = ‖x02‖′

Thus, for any nonzero element x ∈ L and the second norm axiom it follows that

0 < γ1 := inf
x∈X1

‖x‖′′ ≤
∥∥∥∥ x

‖x‖′
∥∥∥∥
′′

= ‖x‖′′
‖x‖′

0 < γ2 := inf
x∈X2

‖x‖′ ≤
∥∥∥∥ x

‖x‖′′
∥∥∥∥
′

= ‖x‖′
‖x‖′′

which for r1 = γ2 and r2 = γ1 corresponds to the desired result. �

5.4.2 Matrix norms

Here we will pay attention to norms on the linear space Cn×n, or in other words, to

norms in a space of squared matrices. Sure, all properties of norms discussed before

should be valid for the matrix case. However, some additional axiom (or axioms) are

required because of the possibility of multiplying any two matrices that give rise to the

question regarding the relation of ‖AB‖ and ‖A‖, ‖B‖ for any two matrices A,B ∈ Cn×n.
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Definition 5.6. (Axiom 4 for matrix norms) The function ‖A‖ defined for anyA ∈ Cn×n

is said to be a matrix or submultiplicative norm (in contrast to a standard norm in Cn×n)
if the following axiom holds

‖AB‖ ≤ ‖A‖ ‖B‖ (5.31)

Example 5.6. It is not difficult to check that the function

max
1≤i,j≤n

∣∣aij ∣∣
where aij is an element of A ∈ Cn×n, is a norm on Cn×n, but it is not a matrix norm.

Proposition 5.6. The following functions are the matrix norms for the matrix
A = [aij ]1≤i,j≤n:

1. Frobenius (Euclidean) norm

‖A‖F :=
(

n∑
i=1

n∑
j=1

∣∣aij ∣∣2
)1/2

(5.32)

2. Hölder norm

‖A‖p :=
(

n∑
i=1

n∑
j=1

∣∣aij ∣∣p
)1/p

(5.33)

is a matrix norm if and only if

1 ≤ p ≤ 2

3. Weighted Chebyshev norm

‖A‖p := n max
1≤i,j≤n

∣∣aij ∣∣ (5.34)

4. Trace norm

‖A‖tr :=
√
tr (A∗A) = √

tr (AA∗) (5.35)
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5. Maximal singular-value norm

‖A‖σ :=
√
max σi (A)

1≤i≤n

= √
max λi (A∗A)

1≤i≤n
=√

max λi (AA∗)
1≤i≤n

(5.36)

6. S-norm

‖A‖S :=
∥∥SAS−1

∥∥ (5.37)

where S is any nonsingular matrix and ‖·‖ is any matrix norm.

We leave the proof of this proposition for readers as an exercise. The next statement also

seems to be evident.

Proposition 5.7. For any matrix norm ‖·‖

‖In×n‖ ≥ 1∥∥Ak∥∥ ≤ ‖A‖k, k = 2, 3, . . .

∥∥A−1
∥∥ ≥ 1

‖A‖

There exists an estimate of any matrix norm related to the spectral radius (3.14).

Lemma 5.3. For any matrix A ∈ Cn×n with the spectral radius ρ (A) = max
1≤i≤n

|λi | and
any matrix norm ‖·‖ the following estimate holds

‖A‖ ≥ ρ (A) (5.38)

Proof. Let λ be the eigenvalue of A with the maximal module, i.e., ρ (A) = |λ|. Then
there exists the corresponding eigenvector x �= 0 such that Ax = λx. Define an n × n
matrix

B := [
x 0 0 · · · 0]

and observe that

AB = λB
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Then by the second and fourth norm axioms we deduce that

‖λB‖ = |λ| ‖B‖ = ρ (A) ‖B‖ ≤ ‖A‖ ‖B‖

Since B �= 0 it follows that ‖B‖ > 0 which proves the desired result (5.38). �

The following comments are very important for practical applications.

Remark 5.1.

1. The spectral radius ρ (A) itself cannot be considered as a matrix norm (and as any
norm in general) since it does not satisfy the first norm axiom, that is, if ρ (A) = 0,

we cannot conclude that A = On×n (one can consider the matrix A =
[
0 1

0 0

]
as an

example).
2. The inequality (5.38) may be considered as an upper estimate for the spectral radius
ρ (A).

5.4.3 Compatible norms

Definition 5.7. The vector norm ‖·‖v and matrix norm ‖·‖ are said to be compatible if
the inequality

‖Ax‖v ≤ ‖A‖ ‖x‖v (5.39)

is valid for any x ∈ Cn and any A ∈ Cn×n.

It is not difficult to check that

• the Frobenius matrix (5.32) and Euclidean vector (5.27) norm are compatible;
• the weighted Chebyshev norm (5.34) is compatible with Hölder norms (5.28) in Cn for

p = 1, 2,∞.

5.4.4 Induced matrix norm

Proposition 5.8. The quotient

f (A) := sup
x∈Cn,x �=0

‖Ax‖v
‖x‖v (5.40)

can be considered as a matrix norm induced by the vector norm ‖·‖v . In particular,
the matrix norm induced by the Euclidean vector norm is known as the spectral matrix
norm. For calculus purposes it may be calculated as

f (A) := max
x∈Cn:‖x‖v=1

‖Ax‖v (5.41)
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Proof.

(a) First, let us prove (5.41). Notice that (5.40) can be represented as

f (A) := sup
x∈Cn,x �=0

‖Ax‖v
‖x‖v

= sup
x∈Cn,x �=0

∥∥∥∥A x

‖x‖v

∥∥∥∥
v

= sup
x∈Cn:‖x‖v=1

‖Ax‖v

Since any vector norm is a continuous function, there exists a vector x0 : ‖x0‖v = 1

such that f (A) = ‖Ax0‖v , which means that sup is reachable, or in other words

(5.41) holds. Now we are ready to prove that f (A) defined by (5.41) is a vector

norm.

(b) To check axiom 1 notice that f (A) ≥ 0 and if A �= 0 it follows that Ax �= 0

(‖x‖v = 1) and, hence, ‖Ax‖v > 0. So, the first axiom is established. The second

axiom follows from the identity

f (λA)= max
x∈Cn:‖x‖v=1

‖λAx‖v

= |λ| max
x∈Cn:‖x‖v=1

‖Ax‖v = |λ| f (A)

The third one results from triangle inequality for vectors, i.e.,

‖(A+ B) x‖v ≤ ‖Ax‖v + ‖Bx‖v

which implies

‖(A+ B) x‖v ≤ max
x∈Cn:‖x‖v=1

‖Ax‖v + max
x∈Cn:‖x‖v=1

‖Bx‖v

and

max
x∈Cn:‖x‖v=1

‖(A+ B) x‖v ≤ max
x∈Cn:‖x‖v=1

‖Ax‖v + max
x∈Cn:‖x‖v=1

‖Bx‖v

So,

f (A+ B) ≤ f (A)+ f (B)

The fourth axiom follows from the next inequalities

f (AB)= max
x∈Cn:‖x‖v=1

‖(AB) x‖v = ‖(AB) x0‖v = ‖A (Bx0)‖v

≤ f (A) ‖Bx0‖v ≤ f (A) f (B) ‖x0‖v = f (A) f (B)

�
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Several properties of the induced norm given below turn out to be important in many

practical implementations.

Proposition 5.9.

1. For any induced norm

f (In×n) = 1 (5.42)

2. If A is unitary

f (A) = 1

3. If f (A) is the spectral norm then

f (A) =
√
max λi (A∗A)

1≤i≤n
=

√
max λi (AA∗)

1≤i≤n

4. If U is a unitary matrix then

f (AU) = f (UA) = f (A)

5. For the vector norm (5.26) the corresponding induced norm is

f1 (A) = max
1≤j≤n

n∑
i=1

∣∣aij ∣∣
The proof of this proposition results in simple vector calculations and these therefore

are omitted here.

Example 5.7.

f1

([
2 −1

2 3

])
= max {3; 5} = 5
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In this subsection we follow Albert (1972).

6.1 Classical least squares problem

Lemma 6.1. Let x be a vector and L is a linear manifold in Rn (that is, if x, y ∈ L, then
αx + βy ∈ L for any scalars α, β). Then if

x = x̂ + x̃ (6.1)

where x̂ ∈ L and x̃ ⊥ L, then x̂ is “nearest” to x, or, in other words, it is the projection
of x to the manifold L.

Proof. For any y ∈ L we have

∥∥x − y∥∥2 = ∥∥x̂ + x̃ − y∥∥2 = ∥∥(x̂ − y)+ x̃∥∥2

= ∥∥x̂ − y∥∥2 + 2
(
x̂ − y, x̃)+ ∥∥x̃∥∥2 = ∥∥x̂ − y∥∥2 + ∥∥x̃∥∥2

≥ ∥∥x̃∥∥2 = ∥∥x − x̂∥∥2

with strict inequality holding unless
∥∥y − x̂∥∥2 = 0. �

Theorem 6.1. Let z be an n-dimensional real vector and H ∈ Rn×m.
1. There is always a vector, in fact a unique vector x̂ of minimal (Euclidean) norm, which

minimizes

∥∥z−Hx∥∥2

97
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2. The vector x̂ is the unique vector in the range

R (Hᵀ) := {x : x = Hᵀz, z ∈ Rn}

which satisfies the equation

Hx̂ = ẑ

where ẑ is the projection of z on R (H).

Proof. By (6.1) we can write

z = ẑ+ z̃

where ẑ is the projection of z on the kernel (the null space)

N (Hᵀ) := {z ∈ Rn : 0 = Hᵀz}

Since Hx ∈ R (H) for any x ∈ Rm, it follows that

ẑ−Hx ∈ R (H)

and, since z̃ ∈ R⊥ (H),

z̃ ⊥ ẑ−Hx

Therefore,∥∥z−Hx∥∥2 = ∥∥(ẑ−Hx)+ z̃∥∥2

= ∥∥ẑ−Hx∥∥2 + ∥∥z̃∥∥2 ≥ ∥∥z̃∥∥2 = ∥∥z− ẑ∥∥2

This low bound is attainable since ẑ, being the range of H , is the afterimage of some x∗,
that is, ẑ = Hx∗.
1. Let us show that x∗ has a minimal norm. Since x∗ may be decomposed into two

orthogonal vectors

x∗ = x̂∗ + x̃∗

where x̂∗ ∈ R
(
H⊥) and x̃∗ ∈ N (H). Thus Hx∗ = Hx̂ we have

∥∥z−Hx∗∥∥2 = ∥∥z−Hx̂∥∥2

and ∥∥x∗∥∥2 = ∥∥x̂∗∥∥2 + ∥∥x̃∗∥∥2 ≥ ∥∥x̂∗∥∥2

with strict inequality unless x∗ = x̂∗. So, x∗ may be selected equal to x̂∗.
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2. Show now that x∗ = x̂∗ is unique. Suppose that Hx∗ = Hx∗∗ = ẑ. Then

(x∗ − x∗∗) ∈ R (H)

But H (x∗ − x∗∗) = 0, which implies,

(x∗ − x∗∗) ∈ N (H) = R⊥ (H⊥)
Thus (x∗ − x∗∗) is orthogonal to itself, which means that

∥∥x∗ − x∗∗∥∥2 = 0, or equiv-

alently, x∗ = x∗∗. �

Corollary 6.1.
∥∥z−Hx∥∥2

is minimized by x0 if and only if Hx0 = ẑ where ẑ is the
projection of z on R (H) .

Corollary 6.2. There is always an n-dimensional vector y such that

∥∥z−HHᵀy
∥∥2 = inf

x

∥∥z−Hx∥∥2

and if

∥∥z−Hx0∥∥2 = inf
x

∥∥z−Hx∥∥2

then ∥∥x0∥∥2 ≥ ∥∥Hᵀy
∥∥2

with strict inequality unless x0 = Hᵀy. The vector y satisfies the equation

HHᵀy = ẑ

Theorem 6.2. (on the system of normal equations) Among those vectors x, which
minimize

∥∥z−Hx∥∥2
, x̂, the one having minimal norm, is the unique vector of the form

x̂ = Hᵀy (6.2)

satisfying

HᵀHx̂ = Hᵀz (6.3)

Proof. By direct differentiation we have

∂

∂x

∥∥z−Hx∥∥2 = 2Hᵀ (z−Hx) = 0

which gives (6.3). The representation (6.2) follows from the previous corollary. �
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6.2 Pseudoinverse characterization

We are now in the position to exhibit an explicit representation for the minimum norm

solution to a least square problem.

Lemma 6.2. For any real symmetric matrix A ∈ Rn×n the limit

PA := lim
δ→0
(A+ δIn×n)−1A (6.4)

always exists. For any vector z ∈ Rn

ẑ = PAz

is the projection of x on R (A).

Proof. By symmetricity of A for all δ > 0 such that 0 < |δ| < min
j :λj (A)�=0

∣∣λj (A)∣∣ the matrix

(A+ δIn×n)−1 exists. Any z ∈ Rn may be represented as

z = ẑ+ z̃

where ẑ ∈ R (A), z̃ ∈ N (A) and Az = Aẑ. There exists x0 such that ẑ = Ax0, so

(A+ δIn×n)−1Az = (A+ δIn×n)−1Aẑ = (A+ δIn×n)−1A (Ax0)

By the spectral theorem (4.4) for symmetric matrices it follows that

A = T�Tᵀ

where � = diag (λ1, . . . , λn) and T
ᵀ = T −1. Thus

(A+ δIn×n)−1Az= (A+ δIn×n)−1A2x0

= (T �Tᵀ + δT Tᵀ)−1 T�2T ᵀx0

= (
T [�+ δIn×n] Tᵀ)−1

T�2T ᵀx0

= T ( [�+ δIn×n]−1
�2

)
T ᵀx0

It is plain to see that

lim
δ→0

[�+ δIn×n]−1
�2 = lim

δ→0
[�+ δIn×n]−1

[�+ δIn×n − δIn×n]�

= lim
δ→0

[
In×n − δ [�+ δIn×n]−1

]
�

=
[
lim
δ→0

diag

(
1− δ

λ1 + δ , . . . , 1−
δ

λn + δ
)]
� = �
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since

1− δ

λi + δ =
{

0 if λi = 0

→ 1 if λi �= 0

This implies

lim
δ→0
(A+ δIn×n)−1Az = T�Tᵀx0 = Ax0 = ẑ

�
Theorem 6.3. For any real (n×m)-matrix H the limit

H+ := lim
δ→0

(
HᵀH + δ2Im×m

)−1
Hᵀ

= lim
δ→0
Hᵀ (

HHᵀ + δ2In×n
)−1 (6.5)

always exists. For any vector z ∈ Rn

x̂ = H+z

is the vector of minimal norm among those which minimize

∥∥z−Hx∥∥2

Proof. It is clear that the right sides in (6.5) are equal, if either exists, since

HᵀHHᵀ + δ2Hᵀ = (
HᵀH + δ2Im×m

)
Hᵀ

= Hᵀ (
HHᵀ + δ2In×n

)
and the matrices

(
HᵀH + δ2Im×m

)
and

(
HHᵀ + δ2In×n

)
are inverse for any δ2 > 0. By

the composition

z = ẑ+ z̃

where ẑ ∈ R (Hᵀ), z̃ ∈ N (Hᵀ) and Hᵀz = Hᵀẑ, there exists x0 such that ẑ = Hx0. So,(
HᵀH + δ2Im×m

)−1
Hᵀz= (

HᵀH + δ2Im×m
)−1
Hᵀẑ

= (
HᵀH + δ2Im×m

)−1
HᵀHx0

By the previous Lemma there exists the limit

lim
δ→0

(
HᵀH + δ2Im×m

)−1
HᵀH = PHᵀH

which gives

lim
δ→0

(
HᵀH + δ2Im×m

)−1
HᵀHx0 = (PHᵀH ) x0 := x̂0
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where x̂0 is the projection on R (HᵀH) = R (Hᵀ). Thus we conclude that

x̂0 = lim
δ→0

(
HᵀH + δ2Im×m

)−1
Hᵀẑ

= lim
δ→0

(
HᵀH + δ2Im×m

)−1
Hᵀz

always exists and is an element of R (Hᵀ) satisfying ẑ = Hx̂0. �

Definition 6.1. The matrix limit H+ (6.5) is called the pseudoinverse (the generalized
inverse) of H in the Moore–Penrose sense.

Remark 6.1. It follows that

• (HH+z) is the projection of z on R (H);
• (H+Hx) is the projection of x on R (Hᵀ);
• (In×n −HH+)z is the projection of z on N (Hᵀ);
• (In×n −H+H)x is the projection of x on N (H).

The following properties can be proven by the direct application of (6.5).

Corollary 6.3. For any real n×m matrix H

1.

H+ = (HᵀH)+Hᵀ (6.6)

2.

(Hᵀ)+ = (
H+)T (6.7)

3.

H+ = Hᵀ (HHᵀ)+ (6.8)

4.

H+ = H−1 (6.9)

if H is square and nonsingular.

6.3 Criterion for pseudoinverse checking

The next theorem represents the criterion for a matrix B, to be the pseudoinverse H+

of H .
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Theorem 6.4. For any real n×m matrix H the matrix B = H+ if and only if

1.

HB and BH are symmetric (6.10)

2.

HBH = H (6.11)

3.

BHB = B (6.12)

Proof.

1. Necessity. Let B = H+.
(a) Since

HH+ = lim
δ→0
HHᵀ (

HHᵀ + δ2In×n
)−1

(
HH+)T =

(
H lim
δ→0

(
HᵀH + δ2Im×m

)−1
Hᵀ

)T

= H
[
lim
δ→0

(
HᵀH + δ2Im×m

)−1
]
Hᵀ = HH+

and

H+H =
[
lim
δ→0
Hᵀ (

HHᵀ + δ2In×n
)−1

]
H

(
H+H

)T =
([

lim
δ→0
Hᵀ (

HHᵀ + δ2In×n
)−1

]
H
)T

Hᵀlim
δ→0

(
HᵀH + δ2Im×m

)−1
H = H+H

the symmetricity (6.10) takes place.

(b) Since by (6.1) HH+ is a projector on R (H) and the projection of any vector

from R (H) coincides with the same vector, one has for any z ∈ Rn

HH+ (Hz) = Hz

which gives (6.11). By (6.6)

H+H = (HᵀH)+ (HᵀH)
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which, in view of (6.11) and the symmetricity property (6.10) of HH+, implies

H+ = (HᵀH)+Hᵀ = (HᵀH)+
(
HH+H

)T
= (HᵀH)+Hᵀ (

HH+)T = (HᵀH)+Hᵀ (
HH+)

= (HᵀH)+ (HᵀH)H+ = H+HH+

So, (6.12) is proven.

2. Sufficiency. Suppose B satisfies (6.10), (6.11) and (6.12). Since

BH = (BH )T , H = HBH

then

H = HBH = H (BH)T

Using this representation and since HH+H = H , we derive

H+H = H+H (BH)T = [
HH+H

]T
Bᵀ = HᵀBᵀ = BH (6.13)

Analogously, since B = BHB and HB is symmetric, we have

Bᵀ = HBBᵀ

Pre-multiplying this identity by HH+, we obtain

HH+Bᵀ = HH+HBBᵀ = HBBᵀ = Bᵀ

Taking transposes and in view of (6.13) we get

B = B (
HH+)T = B (

HH+) = BHH+ = H+HH+ = H+

�
The theorem above is extremely useful as a method for proving identities. If one thinks

that a certain expression coincides with the pseudoinverse of a certain matrix H , a good

way to decide is to run the expressions through conditions (6.10), (6.11), (6.12) and

observe whether or not they hold.

6.4 Some identities for pseudoinverse matrices

Lemma 6.3. b ∈ R (A) := Im (A) ⊆ Rn if and only if

AA+b = b (6.14)

Proof.

(a) Necessity. If b ∈ R (A), then there exists a vector d ∈ Rn such that b = Ad , and,
therefore,

AA+b = AA+ (Ad) = (
AA+A

)
d = Ad = b
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(b) Sufficiency. Suppose that (6.14) is true. Any vector b can be represented as

b = Ad + b⊥ with b⊥ ⊥ Ad, namely, b⊥ = (
I − AA+) v. Then

AA+ (Ad + b⊥) = Ad + b⊥
which implies AA+b⊥ = b⊥, and, hence,

AA+ (I − AA+) v = 0 = (
I − AA+) v = b⊥

So, b⊥ = 0, and, hence, b = Ad, or, equivalently, b ∈ R (A). Lemma is proven. �

The following identities can be proven more easily by simple verification of (6.10),

(6.11), (6.12).

Claim 6.1.

1.

(Om×n)+ = On×m (6.15)

2. For any x ∈ Rn (x �= 0)

x+ = xᵀ

‖x‖2 (6.16)

3.

(
H+)+ = H (6.17)

4. In general,

(AB)+ �= B+A+ (6.18)

The identity takes place if

AᵀA= I or

BBᵀ = I or

B =Aᵀ or

B =A+ or

both A and B are of full rank, or

rankA = rankB

The identity in (6.18) holds if and only if

R (BBᵀAᵀ) ⊆ R (Aᵀ) (6.19)



106 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

and

R (AᵀAB) ⊆ R (B) (6.20)

5.

(AB)+ = B+
1 A

+
1 (6.21)

where

B1 = A+AB

A1 = AB1B
+
1

6.

(HᵀH)+ = H+ (Hᵀ)+, (HHᵀ)+ = (Hᵀ)+H+ (6.22)

7. If A is symmetric and α > 0, then

(Aα)+ = (
A+)α

Aα (Aα)+ = (Aα)+Aα = AA+

A+Aα =AαA+
(6.23)

8. If A = U�Vᵀ where U,V are orthogonal and � is a diagonal matrix, then

A+ = V�+Uᵀ (6.24)

9. Greville’s formula (Greville 1960): if Cm+1 =
[
Cm
...cm+1

]
then

C+
m+1 =

⎡
⎣C+

m

[
I − cm+1k

ᵀ
m+1

]
· · · · · · · · · · · · · · ·

k
ᵀ
m+1

⎤
⎦ (6.25)

where

km+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[I − CmC+
m ] cm+1∥∥[I − CmC+
m ] cm+1

∥∥2
if [I − CmC+

m ] cm+1 �= 0

(
C+
m

)T
C+
mcm+1

1+ ∥∥C+
mcm+1

∥∥2
otherwise

10. If H is rectangular and S is symmetric and nonsingular then

(SH)+ = H+S−1

[
I − (

QS−1
)+ (
QS−1

)]
(6.26)
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where

Q = I −H+H

Example 6.1. Simple verification of (6.10), (6.11), (6.12) shows that⎡
⎣ 1 2

3 4

5 6

⎤
⎦+

=
[ −1.333 −0.333 0.667

1.8033 0.333 −0.4167

]

6.5 Solution of least squares problem using pseudoinverse

Theorem 6.5.
(a) The vector x0 minimizes ‖z−Hx‖2 if and only if it is of the form

x0 = H+z+ (
I −H+H

)
y (6.27)

for some vector y.
(b) Among all solutions x0 (6.27) the vector

x̄0 = H+z (6.28)

has the minimal Euclidean norm.

Proof. By theorem (6.3) we know that H+z minimizes ‖z−Hx‖2 and by (6.1), any x0
minimizes ‖z−Hx‖2 if and only if Hx0 = ẑ where ẑ is the projection of z on R (H).
In view of that

Hx0 = H
(
H+z

)
This means that x0 −H+z is a null vector of H that is true if and only if

x0 −H+z = (
I −H+H

)
y

for some y. So, (a) (6.27) is proven. To prove (b) (6.28) it is sufficient to notice that

∥∥x0∥∥2 = ∥∥H+z+ (
I −H+H

)
y
∥∥2 = ∥∥H+z

∥∥2

+ (
H+z,

(
I −H+H

)
y
)+ ∥∥(I −H+H

)
y
∥∥2 = ∥∥H+z

∥∥2

+ ((
I −H+H

)T
H+z, y

)+ ∥∥(I −H+H
)
y
∥∥2 = ∥∥H+z

∥∥2

+ ((
I −H+H

)
H+z, y

)+ ∥∥(I −H+H
)
y
∥∥2

= ∥∥H+z
∥∥2 + ∥∥(I −H+H

)
y
∥∥2 ≥ ∥∥H+z

∥∥2 = ∥∥x̄0∥∥2

�
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Corollary 6.4. (LS problem with constraints) Suppose the set

J = {x : Gx = u}

is not empty. Then the vector x0 minimizes
∥∥z−Hx∥∥2

over J if and only if

x0 = G+u+ H̄+z+ (
I −G+G

) (
I − H̄+H̄

)
y

H̄ := H (
I −G+G

) (6.29)

and among all solutions

x̄0 = G+u+ H̄+z (6.30)

has the minimal Euclidean norm.

Proof. Notice that by the Lagrange multipliers method x0 solves the problem if it mini-

mizes the Lagrange function

∥∥z−Hx∥∥2 + (λ,Gx − u)

for some λ. This λ and x0 satisfy the equation

∂

∂x

[∥∥z−Hx∥∥2 + (λ,Gx − u)
]
= −2Hᵀ (z−Hx0)+Gᵀλ = 0

or, equivalently,

HᵀHx0 =
[
Hᵀz− 1

2
Gᵀλ

]
:= z̃

which in view of (6.27) implies

x0 = (HᵀH)+ z̃+ [
I − (HᵀH)+ (HᵀH)

]
y

= (HᵀH)+
[
Hᵀz− 1

2
Gᵀλ

]
+ [
I − (HᵀH)+ (HᵀH)

]
y

(6.31)

But this x0 should satisfy Gx0 = u which leads to the following equality

Gx0 = G
[
(HᵀH)+

(
Hᵀz− 1

2
Gᵀλ

)
+ [
I − (HᵀH)+ (HᵀH)

]
y

]
= u

or, equivalently,

[
G(HᵀH)+

](1

2
Gᵀλ

)
=G(HᵀH)+Hᵀz

+G [
I − (HᵀH)+ (HᵀH)

]
y − u
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or

1

2
Gᵀλ = [

G(HᵀH)+
]+ [
G(HᵀH)+Hᵀz

+ G [
I − (HᵀH)+ (HᵀH)

]
y − u]

+
[
I − [

G(HᵀH)+
]+ [
G(HᵀH)+

]]
ỹ

(6.32)

Substitution of (6.32) into (6.31) and using the properties of the pseudoinverse implies

(6.29). The statement (6.30) is evident. �

6.6 Cline’s formulas

In fact, the direct verification leads to the following identities (see Cline (1964, 1965)).

Claim 6.2. (Pseudoinverse of a partitioned matrix)

[
U
... V

]+
=

⎡
⎣U+ − U+V J
· · · · · · · · · · · ·

J

⎤
⎦ (6.33)

where

J =C+ + (
I − C+C

)
KVᵀ (

U+)T U+ (I − VC+)
C = (

I − UU+)V
K = (

I + [
U+V

(
I − C+C

)]T [
U+V

(
I − C+C

)])−1

(6.34)

Claim 6.3. (Pseudoinverse of sums of matrices)

(UUᵀ + VVᵀ)+ = (CCᵀ)+ + [
I − (

VC+)T ]
× [
(UUᵀ)+ − (UUᵀ)+ V

(
I − C+C

)
KVᵀ (UUᵀ)+

]
× [
I − (

VC+)T ] (6.35)

where C and K are defined in (6.34).

6.7 Pseudo-ellipsoids

6.7.1 Definition and basic properties

Definition 6.2. We say that the set ε (x̊, A) ∈ Rn is the pseudo-ellipsoid (or elliptic
cylinder) in Rn with the center at the point x̊ ∈ Rn and with the matrix 0 ≤ A = Aᵀ ∈
Rn×n if it is defined by

ε (x̊, A) := {
x ∈ Rn | ‖x − x̊‖2A = (x − x̊, A (x − x̊)) ≤ 1

}
(6.36)
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If A > 0 the set ε (x̊, A) is an ordinary ellipsoid with the semi-axis equal to λ−1
i (A)

(i = 1, . . . , n).

Remark 6.2. If

(a) A > 0, then ε (x̊, A) is a bounded set;
(b) A ≥ 0, then ε (x̊, A) is an unbounded set.

Lemma 6.4. If 0 < A = Aᵀ ∈ Rn×n, b ∈ Rn and α < 1− ‖b‖2A−1 , then the set given by

(x,Ax)− 2 (b, x)+ α ≤ 1

is the ellipsoid ε

(
A−1b,

1

1− α + ‖b‖2A−1

A

)
.

Proof. It follows from the identity

∥∥x − A−1b
∥∥2

A
− ‖b‖2A−1 = ‖x‖2A − 2 (b, x)

�

Lemma 6.5. If 0 ≤ A = Aᵀ ∈ Rn×n, b ∈ R (A) ⊆ Rn and α < 1 − ‖b‖2A+ , then the set
given by

(x,Ax)− 2 (b, x)+ α ≤ 1

is the pseudo-ellipsoid ε

(
A+b,

1

1− α + ∥∥b∥∥2

A+
A

)
.

Proof. It follows from the identity

∥∥x − A+b
∥∥2

A
− ‖b‖2A+ = ‖x‖2A − 2 (b, x)

�

Lemma 6.6.

ε
(
A+Ax̊,A

) = ε (x̊, A) (6.37)

Proof. Indeed,(
x − A+Ax̊,A

(
x − A+Ax̊

)) = (
x − A+Ax̊,Ax − Ax̊)

(x,Ax)− (
A+Ax̊,Ax

)− (x,Ax̊)+ (
A+Ax̊,Ax̊

)
= (x,Ax)− 2 (x,Ax̊)+ (x̊, Ax̊) = (x − x̊, A (x − x̊))

�
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6.7.2 Support function

Definition 6.3. The function fS : Rn → R defined by

fS (y) := max
x∈S (y, x) (6.38)

is called the support (or Legendre) function (SF) of the convex closed set S ⊆ Rn.

Lemma 6.7. If S is the pseudo-ellipsoid ε (x̊, A) (6.36), that is,

S = ε (x̊, A) = {
x ∈ Rn | ‖x − x̊‖2A = (x − x̊, A (x − x̊)) ≤ 1

}
then

fS (y) = yᵀx̊ +√
yᵀA+y (6.39)

Proof. Using the Lagrange principle (see Theorem 21.12), for any y ∈ Rn we have

argmax
x∈S (y, x) = argmin

λ≥0
max
x∈Rn
L(x, λ | y)

L(x, λ | y) := (y, x)+ λ [(x − x̊, A (x − x̊))− 1]

and, therefore, the extremal point (x∗, λ∗) satisfies

0 = ∂

∂x
L(x∗, λ∗ | y) = y + λ∗A (x∗ − x̊)

λ∗ [(x∗ − x̊, A (x∗ − x̊))− 1] = 0

The last identity is referred to as the complementary slackness condition. The x satisfying
the first equation can be represented as follows

arg
x∈Rn

{y + λA (x − x̊) = 0} = argmin
x∈Rn

‖y + λA (x − x̊)‖2

If λ = 0, it follows that y = 0. But L(x, λ | y) is defined for any y ∈ Rn. So, λ > 0,

and hence, by (6.27),

x∗ − x̊ = 1

λ∗
A+y + (

I − A+A
)
v, v ∈ Rn

Substitution of this expression in the complementary slackness condition and taking into

account that A+ = (
A+)T implies

1=
(

1

λ∗
A+y + (

I − A+A
)
v,

1

λ∗
AA+y

)

= 1

(λ∗)2
(
y,A+AA+y

)+ (
A+A

(
I − A+A

)
v,

1

λ∗
y

)
= 1

(λ∗)2
(
y,A+y

)
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or, equivalently, λ∗ = √
(y,A+y), which finally gives

fS (y)= max
x∈S (y, x) = L(x

∗, λ∗ | y) = (y, x∗)

=
(
y, x̊ + 1

λ∗
A+y + (

I − A+A
)
v

)
= (y, x̊)+ 1

λ∗
(
y,A+y

)+ (
y,

(
I − A+A

)
v
)

= (y, x̊)+
(
y,A+y

)
√
(y,A+y)

− (
λA (x − x̊), (I − A+A

)
v
)

= (y, x̊)+
(
y,A+y

)
√
(y,A+y)

− (
λ (x − x̊), A (

I − A+A
)
v
)

= (y, x̊)+
(
y,A+y

)
√
(y,A+y)

Lemma is proven. �

6.7.3 Pseudo-ellipsoids containing vector sum of two pseudo-ellipsoids

The support function fS (y) (6.38) is particularly useful since the vector sum of convex

closed sets and a linear transformation Ā of S have their simple counterparts in the

support function description (see Appendix in Schlaepfer & Schweppe (1972)).

Lemma 6.8. (on SF for the vector sum of convex sets) Let

S1 ⊕ S2 := {x ∈ Rn | x = x1 + x2, x1 ∈ S1, x2 ∈ S2}

where S1, S2 are convex closed sets. Then

fS1⊕S2 (y) = fS1 (y)+ fS2 (y) (6.40)

Proof. By (6.38), it follows

fS1⊕S2 (y)= max
x∈S (y, x) = max

x1∈S1,x2∈S2
((y, x1)+ (y, x2))

= max
x1∈S1

(y, x1)+max
x2∈S2

(y, x2) = fS1 (y)+ fS2 (y)

which completes the proof. �

Lemma 6.9. (on SF for a linear transformation) Let

BS := {x ∈ Rn | x = Bz, z ∈ S}

where B ∈ Rn×n is an (n× n) matrix. Then

fBS (y) = fS (Bᵀy) (6.41)
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Proof. By (6.38), we have

fBS (y) = max
x∈BS

(y, x) = max
z∈S (y, Bz) = max

z∈S (B
ᵀy, z) = fS (Bᵀy)

which proves the lemma. �

Lemma 6.10. (on SF for closed sets) If two convex closed sets are related as S1 ⊇ S2,
then for all y ∈ S

fS1 (y) ≥ fS2 (y) (6.42)

Proof. It follows directly from the definition (6.38):

fS1 (y) = max
x∈S1

(y, x) ≥ max
x∈S2

(y, x) = fS2 (y)

�

Lemma 6.11. (on SF for the vector sum of two ellipsoids) Let S1 and S2 be two
pseudo-ellipsoids, that is, Si = ε (x̊i, Ai) (i = 1, 2). Then

fS1⊕S2 (y) = fS (y) = yᵀ (x̊1 + x̊2)+
√
yᵀA+

1 y +
√
yᵀA+

2 y (6.43)

Proof. It results from (6.39) and (6.40). �

To bound S1 ⊕ S2 by some pseudo-ellipsoid S∗S1⊕S2 means to find (x̊∗, A∗) such that

(see Lemma 6.11) for all y ∈ Rn

yᵀ (x̊1 + x̊2)+
√
yᵀA+

1 y +
√
yᵀA+

2 y ≤ yᵀx̊∗ +
√
yᵀ (A∗)+ y (6.44)

Lemma 6.12. The choice

x̊∗ = x̊1 + x̊2
A∗ = (

γ −1A+
1 + (1− γ )−1A+

2

)+
, γ ∈ (0, 1) (6.45)

is sufficient to satisfy (6.44).

Proof. Taking x̊∗ = x̊1 + x̊2, we should to prove that√
yᵀA+

1 y +
√
yᵀA+

2 y ≤
√
yᵀ (A∗)+ y

or, equivalently,

(√
yᵀA+

1 y +
√
yᵀA+

2 y

)2

≤ yᵀ (A∗)+ y
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for some A∗. Applying the inequality (12.2), for any ε > 0 we have(√
yᵀA+

1 y +
√
yᵀA+

2 y
)2 ≤ (1+ ε) yᵀA+

1 y +
(
1+ ε−1

)
yᵀA+

2 y

= yᵀ [
(1+ ε)A+

1 +
(
1+ ε−1

)
A+

2

]
y

Denoting γ −1 := (1+ ε) and taking into account the identity (6.17) we get (6.45). �

6.7.4 Pseudo-ellipsoids containing intersection of two pseudo-ellipsoids

If Si = ε (x̊i, Ai) (i = 1, 2) are two pseudo-ellipsoids, then S1 ∩ S2 is not a pseudo-

ellipsoid. Sure, there exists a lot of pseudo-ellipsoids S∗S1∩S2 (in fact, a set) containing

S1 ∩ S2. To bound S1 ∩ S2 by S∗S1∩S2 means to find (x̊∗, A∗) such that

S1 ∩ S2 ⊆ S∗S1∩S2
where

S1 ∩ S2 := {x ∈ Rn | (x − x̊1, A1 (x − x̊1)) ≤ 1

and (x − x̊2, A2 (x − x̊2)) ≤ 1}
S∗S1∩S2 := {x ∈ Rn | (x − x̊∗, A∗ (x − x̊∗)) ≤ 1}

(6.46)

Lemma 6.13. Let S1 ∩ S2 �= ∅. Then (x̊∗, A∗) can be selected as follows

x̊∗ =A+
γ bγ

bγ = γA1x̊1 + (1− γ )A2x̊2
Aγ = γA1 + (1− γ )A2, γ ∈ (0, 1)

(6.47)

and

A∗ = 1

βγ
Aγ

βγ = 1− αγ +
∥∥bγ∥∥2

A+γ
αγ = γ (x̊1, A1x̊1)+ (1− γ ) (x̊2, A2x̊2)

(6.48)

Proof. Notice that S∗S1∩S2 can be selected as

S1 ∩ S2 := {x ∈ Rn | γ (x − x̊1, A1 (x − x̊1))
+ (1− γ ) (x − x̊2, A2 (x − x̊2)) ≤ 1}, γ ∈ (0, 1)

Straightforward calculations imply

γ (x − x̊1, A1 (x − x̊1))+ (1− γ ) (x − x̊2, A2 (x − x̊2))
= (
x,Aγ x

)− 2
(
bγ , x

)+ αγ ≤ 1

Applying Lemma 6.5 we get (6.48). Lemma is proven. �
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7.1 Definitions

Let A ∈ Cn×n be a Hermitian matrix
(
A = A∗ := (

Ā
)T )

and x ∈ Cn.

Definition 7.1. The function

fA (x) := (Ax, x) (7.1)

is called

• the Hermitian form
• converting to the quadratic form if A ∈ Rn×n is a symmetric matrix (A = Aᵀ) and
x ∈ Rn.

If E = {
x(1), . . . , x(n)

}
is a basic in Cn such that

x =
n∑
i=1

αix
(i)

then fA (x) may be represented as

fA (x) := (Ax, x)=
(
A

n∑
i=1

αix
(i),

n∑
j=1

αjx
(j)

)

=
(

n∑
i=1

αiAx
(i),

n∑
j=1

αjx
(j)

)

=
n∑
i=1

n∑
j=1

γijαiᾱj

(7.2)

115
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where

γij =
(
Ax(i), x(j)

)
, i, j = 1, . . . , n

If the basis E is the standard basis (orthonormal in the sense of the standard inner product,

i.e.,
(
x(i), x(j)

)= δij ), then (7.2) becomes

fA (x) := (Ax, x) =
n∑
i=1

γii |αi |2 (7.3)

Conjecture 7.1. (Sylvester’s law of inertia for quadratic forms) The positive π (A)
and negative ν(A) squares in (7.3) are invariants of the Hermitian form fA (x) indepen-
dent of an orthogonal basis in Cn, namely,

fA (x) =
π(A)∑
i=1

∣∣α′i∣∣2 − ν(A)∑
j=1

∣∣α′j ∣∣2 = π(A)∑
i=1

∣∣α′′i ∣∣2 − ν(A)∑
j=1

∣∣α′′j ∣∣2
where

x =
n∑
i=1

α′ix
(i)′, x =

n∑
i=1

α′′i x
(i)′′

and
{
x(i)′

}
,
{
x(i)′′

}
are the orthogonal bases in Cn.

Proof. Suppose that T is a unitary matrix
(
T ∗ = T −1

)
transforming an orthogonal basis

E to another orthogonal one E ′, i.e.,(
x(1)

′
, . . . , x(n)

′) = T (
x(1), . . . , x(n)

)
(
x(i)

′
, x(j)

′) = (
T x(i), T x(j)

) = (
T ∗T x(i), x(j)

) = (
x(i), x(j)

) = δij
Then by (7.3)

fA (x) := (Ax, x) =
n∑
i=1

γ ′ii
∣∣α′i∣∣2

γij =
(
Ax(i)′, x(j)′

) = (
AT x(i), T x(j)

) = (
T ∗AT x(i), x(j)

)
Then by theorem on congruent Hermitian matrices there always exists a nonsingular

matrix P such that

PAP ∗ = diag [It ,−Ir−t , 0] := �0 (A)

and (7.3) under the transformation x = Px ′ becomes

fA (x) := (Ax, x)=
(
P ∗APx(i), x(j)

)
=

n∑
i=1

γii
∣∣α′i∣∣2 = π(A)∑

i=1

∣∣α′i∣∣2 − ν(A)∑
j=1

∣∣α′j ∣∣2
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For any other basis the unitary transformation U provides

fA (x) := (Ax, x) =
(
U ∗P ∗APUx ′′, x ′′

)
which by (7.3) does not change the invariant indices InA. Theorem is proven. �

Claim 7.1. If A = Aᵀ is real and x = u+ iv, then

fA (x) := (Ax, x) = fA (u)+ fA (v) (7.4)

Corollary 7.1. (on the extension)

• Any real quadratic fA (u) can be uniquely extended up to the corresponding Hermitian
form fA (x), using formula (7.4).

• It is very convenient to realize this extension by changing the product uiuj with Re xix∗j
(and, hence, |ui |2 with |xi |2).

• If

fA (u) = |aᵀu|2 + (bT u) (cT u) (7.5)

then

fA (x) = |a∗x|2 + Re (b∗u) (c∗u) (7.6)

Corollary 7.2. Evidently, by (7.4), fA (x) > 0 (fA (x) ≥ 0) for any x ∈ Cn if and only if
fA (u) > 0 (fA (u) ≥ 0) for all u ∈ Rn.

Claim 7.2. If x =
(
x(1)

x(2)

)
and A =

[
A11 A12

A∗
12 A22

]
, then

fA (x) := (Ax, x)
= (
A11x

(1), x(1)
)+ 2Re

(
A12x

(2), x(1)
)+ (

A22x
(2), x(2)

) (7.7)

7.2 Nonnegative definite matrices

7.2.1 Nonnegative definiteness

Definition 7.2. A symmetric matrix S ∈ Rn×n is said to be nonnegative definite if

xᵀSx ≥ 0 (7.8)

for all x ∈ Rn.

The next simple lemma holds.



118 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Lemma 7.1. (Bellman 1970) The following statements are equivalent:

1. S is nonnegative definite;
2. S may be represented as

S = HHᵀ (7.9)

for some matrix H ;
3. the eigenvalues of S are nonnegative, that is, for all i = 1, . . . , n

λi (S) ≥ 0 (7.10)

4. there is a symmetric matrix R ∈ Rn×n such that

S = R2 (7.11)

R is called the square root of S, and is denoted by the symbol S1/2 := R.

Definition 7.3. If S is nonnegative and nonsingular, it is said to be positive definite.

Remark 7.1. In the case when S is positive definite, S1/2 is also positive definite and for
all x �= 0

xᵀSx > 0

The statement “S is nonnegative definite” is abbreviated

S ≥ 0

and, similarly,

S > 0

means “S is positive definite”.

Remark 7.2. The abbreviation

A ≥ B (or A > B) (7.12)

applied to two symmetric matrices of the same size, means that

A− B ≥ 0 (or A− B > 0)
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Remark 7.3. Evidently, if A > 0 then for any quadratic nonsingular B (detB �= 0) it
follows that

BABᵀ > 0

and, inversely, if BABᵀ > 0 for some nonsingular matrix B, then A > 0.

Remark 7.4. If A ≥ B (or A > B), then for any quadratic nonsingular T (det T �= 0)

T ATᵀ ≥ T BTᵀ (or TATᵀ > TBTᵀ)

and, inversely, if TATᵀ ≥ T BTᵀ (or TATᵀ > TBTᵀ) for some nonsingular T , then
A ≥ B (or A > B).

Proposition 7.1. If

A > B > 0

then

B−1 > A−1 > 0

Proof. Let TA be an orthogonal transformation which transforms A to a diagonal matrix

�A := diag (λ1(A), . . . , λn(A)) and

�A = �1/2
A �

1/2
A , �

1/2
A = diag

(√
λ1(A), . . . ,

√
λn(A)

)
> 0

Then, by the previous remark,

TAAT
ᵀ
A = �A > TABTᵀ

A

In×n > �
−1/2
A TABT

ᵀ
A�

−1/2
A

Denoting by T an orthogonal transformation which transforms the right-hand side of the

last inequality to a diagonal matrix �, we obtain

In×n = T Tᵀ > T
(
�
−1/2
A TABT

ᵀ
A�

−1/2
A

)
Tᵀ = � = diag (λ1, . . . , λn)

Inverting this inequality by components, we have

In×n < �−1 =
[
T
(
�
−1/2
A TABT

ᵀ
A�

−1/2
A

)
Tᵀ

]−1 = T
(
�

1/2
A TAB

−1T
ᵀ
A�

1/2
A

)
Tᵀ

which implies

In×n < �
1/2
A TAB

−1T
ᵀ
A�

1/2
A
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and

�−1
A < TAB

−1T
ᵀ
A

Hence,

T
ᵀ
A�

−1
A TA = A−1 < B−1

Proposition is proven. �

Proposition 7.2. If S ≥ 0 and T ≥ 0, then

S + T ≥ 0

with strict inequality holding if and only if

N (S) ∩N (T ) = ∅

The proof of these statements is evident.

7.2.2 Nonnegative (positive) definiteness of a partitioned matrix

Theorem 7.1. (Albert 1972) Let S be a square matrix partitioned as

S =
[
S11 S12

S
ᵀ
12 S22

]

where S11 is a symmetric n× n matrix and S22 is a symmetric m×m matrix. Then

(a) S ≥ 0 if and only if

S11 ≥ 0

S11S
+
11S12 = S12

S22 − Sᵀ
12S

+
11S12 ≥ 0

(7.13)

(b) S > 0 if and only if (Schur’s complement)

S11 > 0

S22 > 0

S11 − S12S−1
22 S

ᵀ
12 > 0

S22 − Sᵀ
12S

−1
11 S12 > 0

(7.14)

Proof.

(a) Necessity. Suppose that S ≥ 0. Then there exists a matrix H with (n+m) rows such
that S = HHᵀ. Let us write H as a partitioned matrix
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H =
[
X

Y

]
, X ∈ Rn×n, Y ∈ Rm×m

Then

S = HHᵀ =
[
XXᵀ XYᵀ

YXᵀ YYᵀ

]

so that

S11 = XXᵀ ≥ 0, S12 = XYᵀ

By (6.8)

S11S
+
11 = (XXᵀ) (XXᵀ)+ = X [

Xᵀ (XXᵀ)+
] = XX+

so that

S11S
+
11S12 = XX+ (XYᵀ) = (

XX+X
)
Yᵀ = XYᵀ = S12

Finally, if we let

U := Y − Sᵀ
12S

+
11X

then

0 ≤ UUᵀ = S22 − Sᵀ
12S

+
11S12

Sufficiency. Let (7.13) hold. Define

U :=
[
In×n

...On×m

]
, V :=

[
Om×n

...Im×m

]

X := S1/211 U

Y := Sᵀ
12S

+
11S

1/2

11 U + (
S22 − Sᵀ

12S
+
11S12

)1/2
V

Since

UVᵀ = On×m

we can see that

0 ≤
⎡
⎣ X· · ·
Y

⎤
⎦
⎡
⎣ X· · ·
Y

⎤
⎦ᵀ

=
[
XXᵀ XYᵀ

YXᵀ YYᵀ

]
=

[
S11 S12
S

ᵀ
12 S22

]
= S
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(b) Necessity. Suppose that S > 0. Then by part (a), S11 ≥ 0. Assuming that S11 has a

zero eigenvalue with the corresponding eigenvector x̄ �= 0, we can see that for the

nonzero

(
x̄

0

)
we have

(
x̄

0

)ᵀ
S

(
x̄

0

)
= x̄ᵀS11x̄ = 0

which contradicts the fact that S > 0. So, S11 is nonsingular and S11 > 0. Similarly,

by (a)

S22 − Sᵀ
12S

+
11S12 = S22 − Sᵀ

12S
−1
11 S12 ≥ 0

and by the same argument (by contradiction) S22 > 0.

The eigenvalues of S−1 are reciprocals of S’s and so, S−1 > 0 if S > 0. Therefore

S−1 =
[
A B

Bᵀ C

]
> 0,

with 0 < A ∈ Rn×n, 0 < C ∈ Rm×m, so that A−1 > 0 and C−1 > 0. The condition

SS−1 = I(n+m)×(n+m)

dictates that(
S11 − S12S−1

22 S
ᵀ
12

)
A = In×n(

S22 − Sᵀ
12S

−1
11 S12

)
C = Im×m

or, equivalently,(
S11 − S12S−1

22 S
ᵀ
12

) = A−1 > 0(
S22 − Sᵀ

12S
−1
11 S12

) = C−1 > 0

This proves the necessity of (7.14).

Sufficiency. Suppose that (7.14) holds. By part (a), S ≥ 0. Define

A := (
S11 − S12S−1

22 S
ᵀ
12

)−1

C := (
S22 − Sᵀ

12S
−1
11 S12

)−1

B := −S−1
11 S12C

It is easy to show that

B = −S−1
11 S12C = −A [

A−1S−1
11 S12C

]
= −A

[(
S11 − S12S−1

22 S
ᵀ
12

)
S−1
11 S12

(
S22 − Sᵀ

12S
−1
11 S12

)−1
]

= −A
[(
S11S

−1
11 S12 − S12S−1

22 S
ᵀ
12S

−1
11 S12

) (
Im×m − S−1

22 S
ᵀ
12S

−1
11 S12

)−1
S−1
22

]
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= −A
[
S12

(
Im×m − S−1

22 S
ᵀ
12S

−1
11 S12

) (
Im×m − S−1

22 S
ᵀ
12S

−1
11 S12

)−1
S−1
22

]
= −AS12S−1

22

Then routine calculations verify that

S

[
A B

Bᵀ C

]
= I(n+m)×(n+m)

So, S is nonsingular.

�

Corollary 7.3. Suppose that in the previous theorem m=1, that is, the following repre-
sentation holds

Sn+1 =
[
Sn sn
sᵀn σn+1

]
sn ∈ Rn, σn+1 ∈ R

(7.15)

where 0 ≤ Sn ∈ Rn×n. Let

tn := S+n sn, αn := σn+1 − sᵀn S+n sn
βn := 1+ ‖tk‖2, Tn − tntᵀn /βn

Then

(a) Sn+1 ≥ 0 if and only if

Sntn = sn and αn ≥ 0 (7.16)

and

S+n+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
S+n + tntᵀn α−1

n −tnα−1
n

−tᵀn α−1
n α−1

n

]
if αn > 0[

TnS
+
n Tn TnS

+
n tnβ

−1
n(

TnS
+
n tnβ

−1
n

)T (
tᵀn S

+
n tn

)
β−2
n

]
if αn = 0

(7.17)

(b) Sn+1 > 0 if and only if

αn = σn+1 − sᵀn S−1
n sn > 0 (7.18)

and

S−1
n+1 =

[
S−1
n + [

S−1
n sns

ᵀ
n S

−1
n

]
α−1
n − (

S−1
n sn

)
α−1
n

− (
S−1
n sn

)T
α−1
n α−1

n

]
(7.19)

The proof of this corollary follows directly from the previous theorem and the appli-

cation of Cline’s formula (6.33).
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7.3 Sylvester criterion

Here we present a simple proof of the known criterion which gives a power instrument

for the numerical test of positive definiteness.

Theorem 7.2. (Sylvester criterion) A symmetric matrix S ∈ Rn×n is positive definite
if and only if all leading principal minors (1.12) are strictly positive, that is, for all
p = 1, 2, . . . , n

A

(
1 2 · · · p
1 2 · · · p

)
> 0 (7.20)

Proof. Let us prove this result by the induction method. For n = 2 the result is evident.

Indeed, for

S =
[
a11 a12
a12 a22

]

under the assumption that a11 �= 0, we have

xᵀSx = a11x21 + 2a12x1x2 + a22x22
= a11

(
x1 + a12

a11

)2
+
(
a22 − a

2
12

a11

)
x22

from which it follows that xᵀSx > 0 (x �= 0), or equivalently, S > 0 if and only if

a11 > 0, a22 − a
2
12

a11
= det S > 0

Let us represent S ∈ Rn×n in the form (7.15)

Sn =
[
Sn−1 sn−1

s
ᵀ
n−1 σn

]
sn−1 ∈ Rn−1, σn ∈ R

and suppose that Sn−1 > 0. This implies that det Sn−1 > 0. Then by (7.3) Sn > 0 if and

only if the condition (7.18) holds, that is, when

αn−1 = σn − sᵀn−1S
−1
n−1sn−1 > 0

But by the Schur’s formula

A

(
1 2 · · · n

1 2 · · · n

)
= det S = det

(
σn − sᵀn−1S

−1
n−1sn−1

)
(det Sn−1)

= (
σn − sᵀn−1S

−1
n−1sn−1

)
(det Sn−1) = αn−1 (det Sn−1) > 0

if and only if (7.18) holds, which proves the result. �
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7.4 The simultaneous transformation of a pair of quadratic forms

7.4.1 The case when one quadratic form is strictly positive

Theorem 7.3. For any two quadratic forms

fA (x) = (x,Ax), fB (x) = (x, Bx)
A = Aᵀ > 0, B = Bᵀ

when one quadratic form is strictly positive, i.e. (x,Ax) > 0 for any x �= 0, there exists
a nonsingular transformation T such that in new variables z is defined as

z = T −1x, x = T z

and the given quadratic forms are

fA (x) = (x,Ax) = (z, TᵀAT z) = (z, z) =
n∑
i=1

z2i

fB (x) = (x, Bx) = (z, TᵀBT z) =
n∑
i=1

βiz
2
i

TᵀAT = In×n, TᵀBT = diag (β1, β2, . . . , βn)

(7.21)

Proof. Let TA transform A to the diagonal forms, namely,

T
ᵀ
A ATA = diag (α1, α2, . . . , αn) := �A

with α1 > 0 (i = 1, . . . , n). Notice that this transformation exists by the spectral theorem

and is unitary, i.e. T
ᵀ
A = T −1

A . Then, defining �
1/2
A such that

�A = �1/2
A �

1/2
A , �

1/2
A = diag

(√
α1,

√
α2, . . . ,

√
αn
)

we have[
�
−1/2
A T

ᵀ
1

]
A
[
T1�

−1/2
A

]
= In×n

Hence,

B̃ :=
[
�
−1/2
A T

ᵀ
1

]
B
[
T1�

−1/2
A

]
is a symmetric matrix, i.e. B̃ = B̃ᵀ. Let TB̃ be a unitary matrix transforming B̃ to the

diagonal form, that is,

T
ᵀ
B̃
B̃TB̃ = diag

(
β̃1, β̃2, . . . , β̃n

)
:= �B̃
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Then the transformation T defined by

T :=
[
T1�

−1/2
A

]
TB̃

exactly realizes (7.21) since

TᵀAT = Tᵀ
B̃

([
�
−1/2
A T

ᵀ
1

]
A
[
T1�

−1/2
A

])
TB̃ = Tᵀ

B̃
TB̃ = In×n

�

Corollary 7.4.

T =
[
T1�

−1/2
A

]
TB̃ (7.22)

where the matrices T1, �
1/2
A and TB̃ realize the following transformations

T
ᵀ
A ATA = diag (α1, α2, . . . , αn) := �A

�
1/2
A = diag

(√
α1,

√
α2, . . . ,

√
αn
)

T
ᵀ
B̃

([
�
−1/2
A T

ᵀ
1

]
A
[
T1�

−1/2
A

])
TB̃ = diag

(
β̃1, β̃2, . . . , β̃n

)
:= �B̃

7.4.2 The case when both quadratic forms are nonnegative

Theorem 7.4. Let two quadratic forms

fA (x) = (x,Ax), fB (x) = (x, Bx)

be nonnegative, that is,

A = Aᵀ ≥ 0, B = Bᵀ ≥ 0

Then there exists a nonsingular matrix T such that

TATᵀ =

⎡
⎢⎢⎢⎢⎣
∑
1

0 0 0

0 I 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

(
T −1

)T
BT −1 =

⎡
⎢⎢⎢⎢⎢⎣

∑
1

0 0 0

0 0 0 0

0 0
∑
2

0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(7.23)
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with
∑
i (i = 1, 2) diagonal and positive definite, that is,

∑
i

= diag
(
σ
(i)
1 , . . . , σ

(i)
ni

)
, σ (i)s > 0 (s = 1, . . . , ni)

Proof. Since A is positive and semidefinite, then there exists a unitary matrix T1 such

that T1AT
ᵀ
1 =

[
I 0

0 0

]
. Then, let it be

(
T

ᵀ
1

)−1
BT −1

1 =
[
B11 B12

B21 B22

]
. Again, there exists

a unitary matrix U1 such that U1B11U
ᵀ
1 =

[(∑
1

)2
0

0 0

]
with

∑
1 > 0. Define the unitary

matrix T
ᵀ
2 by

(
T

ᵀ
2

)−1 =
[
U1 0

0 I

]
. Then we have

(
T

ᵀ
2

)−1 (
T

ᵀ
1

)−1
BT −1

1 (T2)
−1 =

⎡
⎢⎢⎣
(∑

1

)2

0 Q121

0 0 Q122

Q
ᵀ
121 Q

ᵀ
122 Q22

⎤
⎥⎥⎦

with Q122 = 0 since B ≥ 0. Define
(
T

ᵀ
3

)−1 =

⎡
⎢⎢⎣

I 0 0

0 I 0

−Qᵀ
121

(∑
1

)2

0 I

⎤
⎥⎥⎦. Then

(
T

ᵀ
3

)−1 (
T

ᵀ
2

)−1 (
T

ᵀ
1

)−1
BT −1

1 (T2)
−1 (T3)

−1

=

⎡
⎢⎢⎢⎣
(∑

1

)2

0 0

0 0 0

0 0

[
Q22 −Qᵀ

121

(∑
1

)2

Q121

]
⎤
⎥⎥⎥⎦

Next, define the unitary matrix U2 such that

U2

[
Q22 −Qᵀ

121

(∑
1

)2

Q121

]
U

ᵀ
2 =

[∑
2

0

0 0

]

with
∑

2 > 0, and define also the unitary matrix T4 such that
(
T

ᵀ
4

)−1 =⎡
⎢⎣
(∑

1

)−1/2

0 0

0 I 0

0 0 U2

⎤
⎥⎦. Then it is easy to check that for

T = T4T3T2T1 (7.24)

we get (7.23). �
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Corollary 7.5. The product of two nonnegative matrices is similar to a nonnegative
matrix, that is, for T defined by (7.24) it follows that

T (AB) T −1 =
[(∑

1

)2

0

0 0

]
(7.25)

Proof. Indeed,

T (AB) T −1 = [TATᵀ]
[(
T −1

)T
BT −1

]

=

⎡
⎢⎢⎣
∑

1
0 0 0

0 I 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎣
∑

1
0 0 0

0 0 0 0

0 0
∑

2
0

0 0 0 0

⎤
⎥⎥⎥⎦ =

[(∑
1

)2

0

0 0

]

which completes the proof. �

7.5 Simultaneous reduction of more than two quadratic forms

For the case of two quadratic forms define

T2 = T

where T is given by (7.22). Let us apply the induction method, namely, suppose that

the transformation Tk−1 transforms simultaneously one strictly positive definite form with

a matrix A = Aᵀ > 0 and (k − 2) another quadratic form with the matrices Bi = Bᵀ
i

(i = 1, . . . , k − 1) to the sum of pure positive quadratics and the rest to the sum of

quadratic elements (maybe with zero coefficients). Then the matrix

B̃k := Tk−1BkTk−1

is a symmetric one. Hence, by the spectral theorem, there exists a unitary transformation

TB̃n such that

T
ᵀ
B̃k
B̃kTB̃k = �B̃k := diag

(
β̃
(k)
1 , . . . , β̃

(k)
n

)
T

ᵀ
B̃k
TB̃k = In×n

Then the transformation

Tk := Tk−1TB̃k

will keep all previous quadratic forms in the same presentation and will transform the

last one to a diagonal form.
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7.6 A related maximum–minimum problem

7.6.1 Rayleigh quotient

Definition 7.4. The function fH (x) : Cn −→ R, defined by

fH (x) := (x,Hx)
(x, x)

, x �= 0 (7.26)

for any Hermitian matrix H , is known as the Rayleigh quotient.

Evidently, fH (x) may be represented in the normalized form FH (e) as

fH (x) = FH (e) := (e,He), ‖e‖ = 1

e = x

‖x‖ , x �= 0
(7.27)

Below we will present the main properties of the Rayleigh quotient in the normalized

form FH (e).

7.6.2 Main properties of the Rayleigh quotient

Theorem 7.5. The normalized Rayleigh quotient FH (e) (7.27) is invariant to a unitary
transformation of the argument as well as to unitary similarity transformation of the
matrix H , namely, for any unitary matrix U ∈ Cn×n

FUHU∗ (e) = FH (ẽ)
ẽ = U ∗e

keeping the property

‖ẽ‖ = 1

Proof. Since U is unitary then UU ∗ = In×n and hence

FUHU∗ (e) = (e, UHU ∗e) = (U ∗e,HU ∗e) = (ẽ, H ẽ) = FH (ẽ)

and

‖ẽ‖ =
√
(ẽ, ẽ) =√

(U ∗e, U ∗e) =√
(e, UU ∗e) =√

(e, e) = ‖e‖ = 1

Theorem is proven. �

Define the set FH as

FH := {f ∈ R | f = (e,He), ‖e‖ = 1} (7.28)

that is, FH is the set of all possible values of the normalized Rayleigh quotient

FH (e) (7.27).
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Lemma 7.2. FH contains the spectrum σ (H) of all eigenvalues of H , i.e.,

σ (H) ⊂ FH (7.29)

Proof. If λ ∈ σ (H), then there exists an eigenvector e of H which corresponds to this

λ, that is,

He = λe

and hence,

(e,He) = (e, λe) = λ (e, e) = λ

So, λ ∈ FH . Thus, σ (H) ⊂ FH . �

Let now λ1, λ2, . . . , λn be the eigenvalues of H .

Theorem 7.6. FH coincides with the convex hull co {λ1, λ2, . . . , λn} of the eigenvalues
of H , namely,

FH ≡ co {λ1, λ2, . . . , λn} (7.30)

where

co {λ1, λ2, . . . , λn}

:=
{
λ | λ =

n∑
i=1

αiλi,

n∑
i=1

αi = 1, αi ≥ 0 (i = 1, . . . , n)

}
(7.31)

Proof. Since H is Hermitian, there exists a unitary matrix U , such that

UHU ∗ = � = diag {λ1, λ2, . . . , λn}

Hence by theorem (7.5), one has FH = F�. So, it is sufficient to show that the field

of the eigenvalues of the diagonal matrix � coincides with co {λ1, λ2, . . . , λn}. Indeed,
by (7.31)

λj =
n∑
i=1

αiλi when αi = δij

�

Corollary 7.6.

FH ≡ co {λ1, λ2, . . . , λn} =
[
λ1 := min

i=1,...,n
λi, λn := max

i=1,...,n
λi

]
(7.32)
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Corollary 7.7.

min
e:‖e‖=1

(e,He) = min
x �=0

(x,Hx)

(x, x)
= λ1 := min

i=1,...,n
λi = λmin (H)

max
e:‖e‖=1

(e,He) = max
x �=0

(x,Hx)

(x, x)
= λn := max

i=1,...,n
λi = λmax (H)

(7.33)

Corollary 7.8. If H = ∥∥hij∥∥i,j=1,n
, then

λ1 ≤ hij ≤ λn
nλ1 ≤ trH ≤ nλn (7.34)

Corollary 7.9. (Stationary property) If λi is an eigenvalue of a symmetric matrix A =
Aᵀ with the corresponding eigenvector x(i), then for fA(x) = (x,Ax)

(x, x)
(x �= 0) it follows

that

fA(x
(i)) = λi (7.35)

and the stationary property holds, that is, for any i = 1, . . . , n one has

∂

∂x
fA(x) |x=x(i) = 0 (7.36)

Proof. The identity (7.35) follows directly from the simple calculation of fA(x
(i)). As for

(7.36) it is sufficient to notice that

∂

∂x
fA(x) = ∂

∂x

(x,Ax)

(x, x)
= 2Ax (x, x)− 2x (x,Ax)

(x, x)2

and hence

∂

∂x
fA(x) |x=x(i) = 2Ax(i)

(
x(i), x(i)

)− 2x(i)
(
x(i), Ax(i)

)
(
x(i), x(i)

)2
= 2

λix
(i)
(
x(i), x(i)

)− x(i) (x(i), λix(i))(
x(i), x(i)

)2
= 2λi

(
x(i)(

x(i), x(i)
) − x(i)(

x(i), x(i)
)) = 0

Corollary is proven. �
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7.7 The ratio of two quadratic forms

Consider the ratio r(x) of two quadratic forms, i.e.,

r(x) = (x,Hx)
(x,Gx)

, (x,Gx) > 0

H = Hᵀ, G = Gᵀ > 0

(7.37)

Theorem 7.7.

min
x:(x,Gx)>0

r(x) = λmin

(
G−1/2HG−1/2

)
(7.38)

and

max
x:(x,Gx)>0

r(x) = λmax

(
G−1/2HG−1/2

)
(7.39)

Proof. Using the presentation

G = G1/2G1/2

valid for any symmetric nonnegative matrix, for z = G1/2x we have

r(x)= (x,Hx)
(x,Gx)

= r(x) = (x,Hx)(
x,G1/2G1/2x

) = (x,Hx)(
G1/2x,G1/2x

)
=

(
G−1/2z,HG−1/2z

)
(z, z)

=
(
z,
[
G−1/2HG−1/2

]
z
)

(z, z)

The result follows from corollary (7.7). �



8 Linear Matrix Equations

Contents

8.1 General type of linear matrix equation . . . . . . . . . . . . . . . . . . . . 133

8.2 Sylvester matrix equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 Lyapunov matrix equation . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1 General type of linear matrix equation

8.1.1 General linear matrix equation

Here we consider the general linear matrix equation

A1XB1 + A2XB2 + · · · + ApXBp = C (8.1)

where Aj ∈ Cm×m, Bj ∈ Cn×n (j = 1, . . . , p) are the given matrices and X ∈ Cm×n is

the unknown matrix to be found.

8.1.2 Spreading operator and Kronecker product

Together with the Kronecker matrix product definition

A⊗ B := ∥∥aijB∥∥ ∈ Rn
2×n2

A ∈ Cn×n, B ∈ Cn×n
(8.2)

given before let us introduce the spreading operator col {·} for some matrix A ∈ Cm×n as

colA := (
a1,1, . . . , a1,n, a2,1, . . . , a2,n, . . . , am,1, . . . , am,n

)ᵀ
(8.3)

that is,

colA :=

⎡
⎢⎢⎢⎣
A∗1
A∗2
...

A∗n

⎤
⎥⎥⎥⎦ ∈ Cmn, A = [

A∗1 A∗2 · · ·A∗n
]
, A∗j ∈ Cm

133



134 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Let col−1
A be the operator inverse to colA. Evidently, for any A,B ∈ Cm×n and

α, β ∈ C

col {αA+ βB} = α col {A} + β col {B} (8.4)

8.1.3 Relation between the spreading operator and the Kronecker product

Lemma 8.1. For any matrices A ∈ Cm×m, B ∈ Cn×n and X ∈ Cm×n the following
properties hold

1.

col {AX} = (In×n ⊗ A) colX (8.5)

2.

col {XB} = (Bᵀ ⊗ Im×m) colX (8.6)

3.

col {AX +XB} = [(In×n ⊗ A)+ (Bᵀ ⊗ Im×m)] colX (8.7)

4.

col {AXB} = (Bᵀ ⊗ A) col {X} (8.8)

Proof. Properties 1–3 (8.5)–(8.7) follow directly from property 4 (8.8) and (8.4). So, let

us prove (8.8). By definition (8.3) the j th column (AXB)∗,j of the matrix AXB can be

expressed as

(AXB)∗,j = AX (B)∗,j =
n∑
s=1

bs,j (AX)∗,s =
n∑
s=1

(
bs,jA

)
X∗,j

= [
b1,jA b2,jA · · · bn,jA

]
colX

which corresponds to (8.8). �

Lemma 8.2. The eigenvalues of (A⊗ B) are

λiμj (i = 1, . . . , m; j = 1, . . . , n) (8.9)

where λi are the eigenvalues of A ∈ Cm×m and μj are the eigenvalues of B ∈ Cn×n. They
correspond to the following eigenvectors

ēij := x̄i ⊗ ȳj (8.10)

where x̄i and ȳj are the eigenvectors of A and B, that is,

Ax̄i = λix̄i , Bȳj = μj ȳj
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Proof. We have

(A⊗ B) ēij =

∥∥∥∥∥∥∥∥
a11B

... a12B
... · · · ... a1nB
· · ·

an1B
... an2B

... · · · ... annB

∥∥∥∥∥∥∥∥
⎛
⎝x1i ȳj· · ·
xni ȳj

⎞
⎠

=
∥∥∥∥∥∥
a11x1iBȳj + · · · + a1nxniBȳj

· · ·
an1x1iBȳj + · · · + annxniBȳj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
a11x1i

(
μj ȳj

)+ · · · + a1nxni
(
μj ȳj

)
· · ·

an1x1i
(
μj ȳj

)+ · · · + annxni
(
μj ȳj

)
∥∥∥∥∥∥ = Ax̄i ⊗ μj ȳj

= λix̄i ⊗ μj ȳj = λiμj
(
x̄i ⊗ ȳj

) = λiμj ēij
which proves the lemma. �

Corollary 8.1. The eigenvalues of the matrix (the Kronecker sum)

[(In×n ⊗ A)+ (B ⊗ Im×m)] (8.11)

are as follows

λi + μj (i = 1, . . . , m; j = 1, . . . , n) (8.12)

with the corresponding eigenvector

ẽij := ȳj ⊗ x̄i (8.13)

Proof. Let us check that the vector (8.13) is the eigenvector of the matrix (8.11) with the

eigenvalue
(
λi + μj

)
. By (8.9) and taking into account that for the unitary matrix In×n

any vector is an eigenvector with the eigenvalue equal to 1 and the relation

(A⊗ B) (x̄i ⊗ ȳj) = (Ax̄i)⊗ (
Bȳj

)
we get

[(In×n ⊗ A)+ (B ⊗ Im×m)] ẽij = (In×n ⊗ A) ẽij + (B ⊗ Im×m) ẽij
= (In×n ⊗ A)

(
ȳj ⊗ x̄i

)+ (B ⊗ Im×m) (ȳj ⊗ x̄i)
= (
In×nȳj

)⊗ (Ax̄i)+ (
Bȳj

)⊗ (Im×mx̄i)
= (1 · λi)

(
x̄i ⊗ ȳj

)+ (μi · 1) (x̄i ⊗ ȳj) = (
λi + μj

)
ēij

�
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Corollary 8.2. Since the spectrum of eigenvalues for a transposed matrix coincides with
the spectrum of eigenvalues for the original matrix then

λi + μj (i = 1, . . . , m; j = 1, . . . , n)

will be eigenvalues for the following matrices

[(In×n ⊗ A)+ (Bᵀ ⊗ Im×m)]

[(In×n ⊗ Aᵀ)+ (B ⊗ Im×m)]

[(In×n ⊗ Aᵀ)+ (Bᵀ ⊗ Im×m)]

8.1.4 Solution of a general linear matrix equation

Theorem 8.1. The general linear matrix equation (8.1) has the solution X ∈ Cm×n if
and only if the vector x = colX is the solution of the vector equation

Gx = c (8.14)

where

G :=
p∑
i=1

(
B

ᵀ
i ⊗ Ai

)
c := colC

(8.15)

Proof. By the property (8.8) and since the operator col is linear, applying this operator

to both sides of (8.1), we have

c = colC = col

{
p∑
i=1

(AiXBi)

}
=

p∑
i=1

col {AiXBi}

=
p∑
i=1

(
B

ᵀ
i ⊗ Ai

)
colX = Gx

�

Corollary 8.3. The general linear matrix equation (8.1) has the unique solution
X ∈ Cm×n given by

X = col−1
{
G−1c

}
(8.16)

if and only if

detG �= 0 (8.17)
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8.2 Sylvester matrix equation

Now we will consider an important particular case of (8.1).

Lemma 8.3. The Sylvester matrix equation

AX +XB = −Q

A ∈ Cm×m, B ∈ Cn×n and X,C ∈ Cm×n
(8.18)

has the unique solution

X = col−1
{
[(Bᵀ ⊗ A)]−1

colC
}

(8.19)

if and only if

λi + μj �= 0 for any i, j = 1, . . . , n (8.20)

where λi are the eigenvalues of A and μj are the eigenvalues of B.

Proof. This follows directly from (8.16). �

8.3 Lyapunov matrix equation

Lemma 8.4. Lyapunov (1892) The Lyapunov matrix equation

AP + PAᵀ = −Q

A,P,Q = Qᵀ ∈ Rn×n
(8.21)

has the unique symmetric solution P = Pᵀ if and only if the matrix A has no neutral
eigenvalues lying at the imaginary axis, i.e.,

Re λi �= 0 (i = 1, . . . , n) (8.22)

Proof. Equation (8.21) is a particular case of the Sylvester equation (8.18) with B = Aᵀ,
which by (8.20) implies the uniqueness of the solution providing for all (i, j = 1, . . . , n)

λi + λj �= 0

This condition obviously is fulfilled if and only if (8.22) holds. �
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9 Stable Matrices and Polynomials
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9.1 Basic definitions

Definition 9.1. A real valued n × n matrix is said to be stable if all its eigenvalues
belong to the left open complex semi-plane

C− := {z ∈ C | Re z < 0} (9.1)

that is,

λi (A) < 0 for any i = 1, . . . , n (9.2)

Denote the characteristic polynomial of a matrix A ∈ Rn×n by pA (λ), i.e.,

pA (λ) := det ‖A− λIn×n‖ = λn + a1λn−1 + · · · + an−1λ+ an (9.3)

Notice that pA (λ) is a monic polynomial whose leading coefficient (the coefficient of the

highest power) is 1. It is clear from (9.3) that the stability property of a matrix A ∈ Rn×n

is definitely related to the values of the coefficients ai (i = 1, . . . , n) in (9.3) since λi (A)

are the roots of the polynomial equation

pA (λ) =
n∏
i=1

[λ− λi (A)] = 0 (9.4)

Below we will present several results providing the verification of the matrix stability

property based only on the coefficients of the characteristic polynomial.

139
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9.2 Lyapunov stability

9.2.1 Lyapunov matrix equation for stable matrices

Lemma 9.1. Lyapunov (1892)

1. If the Lyapunov’s matrix equation (8.21)

AP + PAᵀ = −Q
A,P,Q = Qᵀ ∈ Rn×n

(9.5)

holds for some positive definite

Q = Qᵀ > 0

and

P = Pᵀ > 0

then A is stable.
2. Equation (8.21) has a positive definite solution

P = Pᵀ =
∞∫

t=0

eAtQeA
ᵀt dt > 0 (9.6)

if and only if matrix A is stable (Hurwitz) and
(a) or

Q = Qᵀ > 0

(if Q = Qᵀ ≥ 0, then P = Pᵀ ≥ 0),

(b) or Q has the structure as

Q = BBᵀ

such that the pair (A,B) is controllable, that is,

rank

[
B
... AB

... A2B
... · · · ... An−1B

]
= n (9.7)

Proof.

1(a) Claim 1 of this lemma follows directly from the previous lemma 8.4 if let in (8.21)

B = A, X = P
taking into account that the inequality (8.20) always fulfilled for different

(nonconjugated) eigenvalues and for complex conjugated eigenvalues

μj = λ̄i = ui − ivi
λi = ui + ivi
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The inequality (8.20) implies the existence of a solution P . The symmetry of P follows

from the following fact: applying the transposition procedure to both sides of (8.21)

we get

PᵀAᵀ + APᵀ = −Qᵀ = −Q

which coincides with (8.21). But this equation has a unique solution, hence P = Pᵀ.
1(b) Let λi be an eigenvalue of Aᵀ, that is,

Aᵀxi = λixi, xi �= 0

Then we also have

x∗i A = λ̄ix∗i
(here A∗ := (Aᵀ), i.e., the transposition together with the complex conjugation).

Multiplying the left-hand side of (8.21) by x∗i and the right-hand side by xi , it

follows that

x∗i (AP + PAᵀ) xi = λ̄ix∗i P xi + x∗i P λixi
= (
λ̄i + λi

)
x∗i P xi = −x∗i Qxi < 0

and, since, by the supposition, x∗i P xi > 0, we obtain
(
λ̄i + λi

) = 2 Re λi < 0, which

means that A is stable.

2. Sufficiency. Let A be stable. Defining the matrices

H (t) := eAtQ, U (t) := eAᵀt

it follows that

dH (t) := AeAtQ dt, dU (t) := eAᵀtAᵀdt

Then we have

T∫
t=0

d [H (t) U (t)]= H (T )U (T )−H (0) U (0)

= eATQeAᵀT −Q

=
T∫

t=0

H (t) dU (t)+
T∫

t=0

dH (t) U (t)

=
T∫

t=0

eAtQeA
ᵀtAᵀ dt +

T∫
t=0

AeAtQeA
ᵀt dt

=
⎡
⎣ T∫
t=0

eAtQeA
ᵀt dt

⎤
⎦Aᵀ + A

⎡
⎣ T∫
t=0

eAtQeA
ᵀt dt

⎤
⎦

(9.8)
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The stability of A implies

eAT ReA
ᵀT 
−→

T 
−→∞ 0

and, moreover, the integral

P := lim
T 
−→∞

⎡
⎣ T∫
t=0

eAtQeA
ᵀt dt

⎤
⎦

exists, since∥∥∥∥∥∥
T∫

t=0

eAtQeA
ᵀt dt

∥∥∥∥∥∥≤
T∫

t=0

∥∥eAtQeAᵀt∥∥ dt
≤ ‖Q‖

T∫
t=0

∥∥eAt∥∥2
dt ≤ ‖Q‖

T∫
t=0

e2λmaxAt dt

≤ ‖Q‖
T∫

t=0

e2αt dt ≤ ‖Q‖
∞∫

t=0

e−2|α|t dt = 1

2 |α| ‖Q‖ <∞

where

λmax (A) ≤ −min
i
Re |λi | := α < 0

So, taking T 
−→ ∞ in (9.8), we obtain (9.5), which means that (9.6) is the solution

of (9.5).

(a) If Q > 0, then

P =
∞∫

t=0

eAtQeA
ᵀt dt ≥ λmin (Q)

∞∫
t=0

e(A+A
ᵀ)t dt > 0

(b) If Q = BBᵀ, then for any x ∈ Rn

xᵀPx =
∞∫

t=0

xᵀeAtBBᵀeA
ᵀt x dt =

∞∫
t=0

∥∥BᵀeA
ᵀt x

∥∥2
dt (9.9)

Suppose that there exist x �= 0 and the interval (t0, t1) (t0 < t1) such that∥∥xᵀeAtB
∥∥2 = 0 for all t ∈ (t0, t1) (t0 < t1)

and, hence,

xᵀeAtB = 0 (9.10)

Then the sequent differentiation of (9.10) by t gives

xᵀeAtAB = 0, xᵀeAtA2B = 0,· · ·, xᵀeAtA(n−1)B = 0
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which may be rewritten in the matrix form as follows

xᵀeAt
[
B
... AB

... A2B
... · · · ... A(n−1)B

]
= 0

for all t ∈ (t0, t1) (t0 < t1). It means that

rank

[
B
... AB

... A2B
... · · · ... An−1B

]
< n

which is in contradiction to (9.7). So,

∥∥xᵀeAtB
∥∥2
> 0

at least at one interval (t0, t1) and, hence, by (9.9)

xᵀPx =
∞∫

t=0

∥∥BᵀeA
ᵀt x

∥∥2
dt ≥

t1∫
t=t0

∥∥BᵀeA
ᵀt x

∥∥2
dt > 0

for all x �= 0. It means that P > 0.

Necessity. Suppose that there exists a positive solution P > 0 given by (9.6). Then

this integral exists only if A is stable.

(a) But P may be positive only if Q > 0 (this is easily seen by contradiction).

(b) Let x∗i �= 0 be an unstable mode (a left eigenvector of A corresponding to an

unstable eigenvalue λi), that is,

x∗iA = λix∗i , Re λi ≥ 0

By the relation

0 < x∗iP xi =
∞∫

t=0

∥∥x∗ieAtB∥∥2
dt =

∞∫
t=0

∥∥∥∥∥x∗i
[ ∞∑
l=0

1

l! (At)
l

]
B

∥∥∥∥∥
2

dt

=
∞∫

t=0

∥∥∥∥∥
[ ∞∑
l=0

1

l!x
∗iAlt l

]
B

∥∥∥∥∥
2

dt =
∞∫

t=0

∥∥∥∥∥
[
x∗i

∞∑
l=0

1

l!λ
l
i t
l

]
B

∥∥∥∥∥
2

dt

=
∞∫

t=0

∥∥x∗ieλtB∥∥2
dt =

∞∫
t=0

e2λt
∥∥x∗iB∥∥2

dt

it follows that it should be

x∗iB �= 0

because if not, we get x∗iP xi = 0. But this means that the pair (A,B) is controllable

(see PBH-test below). Lemma is proven. �
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Remark 9.1. Notice that for Q = qI the matrix P as the solution of (9.5) can be
represented as

P = Pᵀ = q
∞∫

t=0

eAteA
ᵀt dt > 0

but never as q
∞∫
t=0

e(A+Aᵀ)t dt , that is,

P �= q
∞∫

t=0

e(A+A
ᵀ)t dt

since

eAteA
ᵀt �= e(A+Aᵀ)t

that may be verified by the use of the Taylor series expansion for the matrix exponent
(see Proposition 5.2).

9.3 Necessary condition of the matrix stability

Here we will present only a necessary condition of a matrix stability that gives the

simple rule how quickly can we detect if a matrix is unstable.

Let {λi (A)}mi=1 be the set of zeros (roots) of the characteristic polynomial (9.3)

pA (λ) = λn + a1λn−1 + · · · + an−1λ+ an

or, in another representation,

pA (λ) = (λ− λ1) (λ− λ2) · · · (λ− λm) (9.11)

Theorem 9.1. (Stodola’s rule) If a matrix A is stable (or, equivalently, its characteristic
polynomial pA (λ) (9.3) is Hurwitz) then all coefficients ai in (9.3) are strictly positive,
that is,

ai > 0 (i = 1, . . . , n) (9.12)

Proof. Since the roots {λi (A)}mi=1 of pA (λ) (9.11) in general are complex values, one

can represent (9.11) as follows

pA (λ) =
nr∏
j=1

(
λ− λj

) · nc/2∏
k=1

(λ− λk)
(
λ− λ̄k

)
(9.13)
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where

λj = −uj , j = 1, . . . , nr

λk = −uk + ivk, k = 1, . . . , nc/2

So, the first nr roots are purely real and the rest of them are complex. By the stability

property of A all real parts are strictly positive, i.e., uj > 0, j = 1, . . . , nr , and uk > 0,

k = 1, . . . , nc/2. Hence

pA (λ) =
nr∏
j=1

(
λ+ uj

) nc/2∏
k=1

(
λ2 + 2ukλ+ u2k + v2k

)
The right-hand side is a polynomial on λ with only positive coefficients which proves

the theorem. �

The next useful conclusion follows immediately.

Corollary 9.1. If the polynomial pA (λ) has coefficients of different signs (or some of
them are absent (ai = 0 for at least one i)) the corresponding matrix A is unstable.

Example 9.1. The polynomials

pA (λ)= λ5 + 3λ4 − λ3 + λ2 + λ+ 1

pA (λ)= λ5 + λ3 + λ2 + λ+ 1

and, hence, the corresponding matrices A, are unstable. Indeed, in the first polynomial
a2 = −1 < 0 and in the second one a1 = 0.

9.4 The Routh–Hurwitz criterion

In this section we will present the necessary and sufficient conditions (or, in another

words, the criterion) of a matrix stability.

Let us define the, so-called, Hurwitz matrix HA as follows:

HA :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 · · 0

1 a2 a4 ·
0 a1 a3 ·
· 1 a2 · · ·
· 0 a1 · · ·
· · 1 · an ·
· · · an−1 0

0 0 0 · · an−2 an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.14)

Here in the main diagonal the coefficients are assigned starting from a1. Each column

has the aligned coefficients in increasing order. Denote also by HA
i (i = 1, . . . , n) the

leading principal minors of H, that is,

HA
i := HA

(
1 2 · · · i

1 2 · · · i

)
(9.15)
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such that

HA
n = det HA

Lemma 9.2. (Orlando’s formula) Let λi (i = 1, . . . , n) be zeros of the polynomial
pA (λ). Then

HA
n−1 = (−1)n(n−1)/2

n∏
k=1

k−1∏
i=1

(λi + λk) (9.16)

Proof. The proof may be done by the induction by n. For n = 2, evidently,

Hn−1 = H1 = − (λ1 + λ2)

Suppose that (9.16) is valid for the polynomial of the order n. So, we need to prove that

(9.16) is true for any polynomial of the order (n+ 1). To do that let us introduce the

polynomial fA,h(λ) according to the following formula:

fA,h(λ) = (λ+ h) pA (λ)
= λn+1 + a1λn + · · · + an−1λ

2 + anλ
+hλn + ha1λn−1 + · · · + han−1λ+ han

= λn+1 + (a1 + h) λn + (ha1 + a2) λn−1

+ · · · + (han−1 + an) λ+ han
This polynomial has the roots

λi (i = 1, . . . , n), λn+1 = −h

Constructing the corresponding Hurwitz matrix HA,h for fA,h(λ) we get

HA,h :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a1+h) (ha2+ a3) (ha4+ a5) · · · 0

1 ha1+ a2 ha3+ a4 · ·
0 (a1+h) ha2+ a3 · ·
· 1 ha1+ a2 · · ·
· 0 (a1+h) · ·
· · · han−1+ an 0

0 0 0 · · han−3+ an−2 han

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

HA,h
n = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a1+h) (ha2+ a3) (ha4+ a5) · · · 0

1 ha1+ a2 ha3+ a4 ·
0 (a1+h) ha2+ a3 · ·
· 1 ha1+ a2 · ·
· 0 (a1+h) · · 0

· · 1 · · han
· · · · han−1+ an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Introduce the, so-called, “bordering” determinant:

D = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(a1+h) (ha2+ a3) (ha4+ a5) · · 0 0

1 ha1+ a2 ha3+ a4 · ·
0 (a1+h) ha2+ a3 · · ·
· 1 ha1+ a2 · · ·
· 0 (a1+h) · 0 ·
· · · · han−1+ an an−1

0 0 · · · 0 (−1)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.17)

Obviously,

D = (−1)n HA,h
n

Let us now apply some simple transformation to the determinant (9.17) which does not

change its value. First, adding (−h) times the column (r + 1) to the column r for all

r = 1, 2, . . . , n leads to

D = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a3 a5 · · · a2n−1 hn

1 a2 a4 · −hn−1

0 a1 a3 · · ·
0 1 a2 · · ·
· 0 a1 · · 0 ·
· · 1 · · 0 (−1)n−2 h2

· · · · an (−1)n−1 h

0 0 · · · an−3 an−1 (−1)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then replacing the first row by

1st row− a1 (2nd row) + a2 (3rd row) − · · · + (−1)n an
(
[n+ 1] st row

)
,

one can see that the last term of this row is exactly pA (h) and all others are zeros which

implies

D = (−1)n pA (h)H
A
n−1 (9.18)

Comparing (9.17) with (9.18) and using (9.16) and (9.4) for h = −λn+1, we get

HA,h
n = pA (h) |h=−λn+1

HA
n−1

=
n∏
i=1

[−λn+1 − λi (A)] (−1)n(n−1)/2

n∏
k=1

k−1∏
i=1

(λi + λk)

= (−1)n (−1)n(n−1)/2

n∏
i=1

[λn+1 + λi (A)]
n∏
k=1

k−1∏
i=1

(λi + λk)

= (−1)(n+1)n/2

n+1∏
k=1

k−1∏
i=1

(λi + λk)

Lemma is proven. �
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Lemma 9.3. Defining HA
0 := 1, for the leading minors

vj := V
(
1 2 · · · j
1 2 · · · j

)
(9.19)

of the n× n matrix

V :=

⎡
⎢⎢⎢⎣
a0a1 0 a0a3 · · ·
0 −a0a3 + a1a2 0 · · ·
a0a3 0 a0a5 − a1a4 + a2a3 · · ·
...

...
...

...

⎤
⎥⎥⎥⎦ (9.20)

with the elements vij given by

vij :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i∑
k=1

(−1)k+i ak−1ai+j−k if j ≥ i
vji if j < i

⎫⎪⎬
⎪⎭ for (i + j) even

0 for (i + j) odd

for all j = 1, . . . , n the following property holds

vj = HA
j H

A
j−1 (9.21)

where HA
j is the j th leading minor (9.15) of the Hurwitz matrix HA (9.14).

Proof. Permute the rows and columns of V symmetrically, bring odd numbered columns

and rows into the leading positions and even numbered rows and columns into the last

positions which is achieved with the permutation matrix

P := [
e1e3e5 · · · | e2e4e6 · · ·

]
and leads to the resulting matrix

Dn×n := PᵀVP

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D2m×2m =
[
Em×m 0

0 Fm×m

]
for n = 2m

D(2m+1)×(2m+1) =
[
E(m+1)×(m+1) 0

0 Fm×m

]
for n = 2m+ 1

(the subscript denotes the order of the square matrices). Thus we get
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det V =
{
v2m for n = 2m

v2m+1 for n = 2m+ 1

=
{

detD2m×2m = detEm×m det Fm×m for n = 2m

detD(2m+1)×(2m+1) = detE(m+1)×(m+1) det Fm×m for n = 2m+ 1

(9.22)

Then define the matrices

K2m×m :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 −a0
... 0 a1
· · −a0 a2
0 a3
−a0
a1 a3 · · · a2m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

K(2m+1)×(m+1) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 a0
... 0 0 −a1
· · 0 a0 a2
0 · 0 −a1 −a3
0 0 a0 a2 a4

...

a1 a3 · · · a2m−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which satisfy the identities

HAK2m×m =
[

0

Fm×m

]
for n = 2m

HAK(2m+1)×(m+1) =
[

0

E(m+1)×(m+1)

]
for n = 2m+ 1

Therefore it is easily deduced that by (9.22)

det HA = HA
2m = det Fm×m for n = 2m

det HA = HA
2m+1 = detE(m+1)×(m+1) for n = 2m

and

v2m = detEm×m det Fm×m = HA
2m−1H

A
2m for n = 2m

v2m+1 = detE(m+1)×(m+1) det Fm×m for n = 2m+ 1

Hence, in any case

vj = HA
j H

A
j−1

Lemma is proven. �
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Corollary 9.2. HA
j (j = 1, . . . , n) are positive if and only if vj (j = 1, . . . , n) are

positive too, or, equivalently by the Sylvester criterion, HA
j (j = 1, . . . , n) are positive

if and only if the matrix V (9.20) is positive definite.

Let us now introduce the companion matrix Acom defined by the coefficients of

pA (λ) (9.3):

Acom :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 · · · −an
1 0 · · 0 0

0 1 0 · · 0

0 0 · · · ·
· · · · · ·
0 0 · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.23)

Note that Acom is a stable matrix if and only if all zeros of pA (λ) have negative real

parts. Indeed,

γn := det (λIn×n − A) = det

⎡
⎢⎢⎢⎢⎢⎢⎣

λ+ a1 a2 · · · an
−1 λ · · 0 0

0 −1 λ · · 0

0 0 · · · ·
· · · · · ·
0 0 · 0 −1 λ

⎤
⎥⎥⎥⎥⎥⎥⎦

= λ det

⎡
⎢⎢⎢⎢⎣
λ+ a1 a2 · · an−1

−1 λ · · 0

0 −1 λ · ·
0 0 · · ·
· · · −1 λ

⎤
⎥⎥⎥⎥⎦

+ (−1)1+n an

⎡
⎢⎢⎢⎢⎣
−1 λ · · 0

0 −1 λ · ·
0 0 · · ·
· · · · λ

0 0 · 0 −1

⎤
⎥⎥⎥⎥⎦

= λγn−1 + (−1)1+n an (−1)n−1

= λγn−1 + an = λ [λγn−2 + an−1]+ an = λ2γn−2 + λan−1 + an
= · · · = pA (λ)

The claim is true.

Lemma 9.4. The matrices Acom (9.23) and V (9.20) are related as

Aᵀ
comV + VAcom = −W (9.24)
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where W is a nonnegative definite matrix equal to

W = 2

⎡
⎢⎢⎢⎢⎢⎢⎣

a21 0 a1a3 0 a1a5 · · ·
0 0 0 · 0 0

a1a3 0 a23 · a3a5 ·
· · · · · ·
· · · · · ·
· · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦ (9.25)

Proof. The direct computation of the left hand-side of (9.24) suffices for the verification

of this identity. To prove that W ≥ 0 it is sufficient to observe that for any x ∈ Cn

x∗Wx = 2 |a1x1 + a2x2 + · · · + anxn|2 (9.26)

Lemma is proven. �

Theorem 9.2. (The Routh–Hurwitz criterion) A matrix A is stable if and only if HA
i >

0 (i = 1, 2, . . . , n) where HA
i are defined in (9.15).

Proof.
(a) Necessity. By lemma (9.1) it follows that if A is stable and W (9.25) is nonnegative

definite then P = Pᵀ > 0 or, equivalently, vj ≥ 0 (j = 1, 2, . . . , n). Then by (9.2)

it follows that HA
j ≥ 0 (j = 1, . . . , n). Notice that if any HA

j = 0, then HA
n = 0.

But this fact leads to contradiction and so deduce that HA
j > 0 (j = 1, . . . , n). The

stability of A implies that there are no zero roots and so an �= 0. But HA
n = anHA

n−1

and so HA
n = 0 leads to HA

n−1 = 0. In this case from the Orlando’s formula (9.16) we

deduce that there are a pair of roots λi, λk such that λi + λk = 0. But this contradicts

the hypothesis that both λi, λk have negative real parts which completes the proof of

the necessity part.

(b) Sufficiency. Suppose now that HA
j > 0 (j = 1, . . . , n). We need to prove that A is

stable. By (9.2) it follows that V (22.175) is positive definite. Then by the first part

of Lemma 9.1 we have only to prove that a(i)∗Wa(i) > 0 for all right eigenvectors

a(i) associated with any given eigenvalue λi(A). Notice that we may take as a(i) the

following vector

a(i)ᵀ = (
λn−1
i (A), λn−2

i (A), . . . , λi(A), 1
)

and by (9.26) we may conclude that a(i)∗Wa(i) = 0 if and only if

a1λ
n−1
i (A)+ a2λn−2

i (A)+ · · · + an = 0

Now HA
n > 0 implies an �= 0 and hence λi(A) �= 0. But since pA (λi(A)) = 0 we

have
• for odd n

λni (A)+ a1λn−2
i (A)+ · · · + an−1λi(A) = 0

a1λ
n−1
i (A)+ a3λn−3

i (A)+ · · · + an = 0
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Hence

[
1 a2 a4 · · · an−1

a1 a3 a5 · · · an

]⎡⎢⎢⎣
λn−1
i (A)
...

λ2i (A)

1

⎤
⎥⎥⎦ = 0

• for even n

λni (A)+ a2λn−2
i (A)+ · · · + an = 0

a1λ
n−1
i (A)+ a3λn−3

i (A)+ · · · + an−1λi(A) = 0

Hence

[
1 a2 · · · an−2 an
a1 a3 · · · an−1 0

]⎡⎢⎢⎣
λni (A)
...

λ2i (A)

1

⎤
⎥⎥⎦ = 0

Thus in both cases for odd or even n we obtain

a1a2 − a3 = 0, a1a4 − a5 = 0, . . .

and the second row and column of V are zero which contradicts our deduction

that V is positive definite. Hence a(i)∗Wa(i) �= 0 and thus A is stable. Theorem is

proven. �

Example 9.2. The polynomial

p (λ) = λ4 + 2λ3 + 3λ2 + 2λ+ 1− αβ (9.27)

has the following Hurwitz matrix (9.14)

HA =

⎡
⎢⎢⎣
2 2 0 0

1 3 1− αβ 0

0 2 2 0

0 1 3 1− αβ

⎤
⎥⎥⎦

So, by the Routh–Hurwitz criterion the corresponding matrix A is stable if and only if all
principal minors HAi (i = 1, . . . , 4) are strictly positive, that is,
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HA1 = 2 > 0, HA2 = det

[
2 2

1 3

]
= 4 > 0

HA3 = det

⎡
⎣2 2 0

1 3 1− αβ
0 2 2

⎤
⎦ = 12− 4 (1− αβ)− 4 = 4 (1+ αβ) > 0

HA4 = HA = det

⎡
⎢⎢⎣
2 2 0 0

1 3 1− αβ 0

0 2 2 0

0 1 3 1− αβ

⎤
⎥⎥⎦ = (1− αβ)HA3 > 0

(9.28)

which give the following necessary and sufficient condition of stability:

1+ αβ > 0, (1− αβ) > 0

or, equivalently,

|αβ| < 1 (9.29)

9.5 The Liénard–Chipart criterion

The Routh–Hurwitz criterion may be represented in a form that requires at least

twice the corresponding numerical calculation less compared with the original one. This

simplified form is known as the Liénard–Chipart criterion.

Theorem 9.3. (The Liénard–Chipart criterion) A matrix A is stable if and only if
1. all coefficients ai in (9.3) are strictly positive, that is,

ai > 0 (i = 1, . . . , n)

(this means that the Stodola’s rule holds);
2.

HA
i > 0 (i = n− 1, n− 3, . . . , ) (9.30)

where HA
i are defined in (9.15).

Proof. As it has been shown before, a matrix A is stable if and only if the matrix V

(9.20) is strictly positive definite. But, in view of the relation (9.21) to guarantee that all

HA
i > 0 (i = 1, . . . , n) are positive, it is sufficient to check only the positivity of HA

i > 0

(i = n− 1, n− 3, . . . , ). Theorem is proven. �
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Example 9.3. Consider the same example (9.2) with the polynomial (9.27). The Stodola
rule implies that there should be

1− αβ > 0 (9.31)

and the Liénard–Chipart criterion demands that

HA3 = 4 (1+ αβ) > 0, HA1 = 2 > 0

or, equivalently,

1+ αβ > 0 (9.32)

Conditions (9.31) and (9.32) considered together lead to (9.29).

9.6 Geometric criteria

All criteria and rules concerning the matrix stability property presented above are

given in the so-called analytical form. But there exists another form of the stability

analysis called the geometric one. This form of the stability representation requires some

preliminaries related to the principle of argument variation discussed below.

9.6.1 The principle of argument variation

Consider the characteristic polynomial pA (λ) (9.3) of a matrix A in the form

pA (λ) =
n∏
j=1

[λ− λj (A)] (9.33)

Suppose that all roots λj (A) of this polynomial satisfy the condition

Re λj (A) �= 0, j = 1, . . . , n

This permits to represent (9.33) as

pA (λ) =
l∏
j=1

[λ− λj (A)]
r∏
k=1

[λ− λk (A)] (9.34)

where

l = the number of roots with negative (left) real parts

r = the number of roots with positive (right) real parts

Any complex number z ∈ C may be represented as

z = |z| ei arg z (9.35)



Stable matrices and polynomials 155

where arg z is the angle formed by the vector z in the complex plane with the real axis

measured in the clockwise (positive) direction. Moreover, if |z| <∞ and Re z �= 0, then

the simple complex function

f (iω) := iω − z = |iω − z| ei arg(iω−z)

has the following argument variation
∞
�

ω=−∞ arg f (iω) (when ω varies from −∞ to ∞):

∞
�

ω=−∞ arg f (iω) =
{
π if Re z < 0

−π if Re z > 0
(9.36)

Lemma 9.5. (The principle of argument variation) The polynomial (9.34) verifies the
following

∞
�

ω=−∞ argpA (iω) = (l − r) π (9.37)

Proof. By the evaluation of (9.34) using (9.35) we have

p (iω)=
l∏
j=1

[λ− λj (A)]
r∏
k=1

[λ− λk (A)]

=
n∏
j=1

(∣∣iω − λj (A)∣∣) exp i
(

l∑
j=1

arg(iω − λj (A))+
r∑
k=1

arg (iω − λk (A))
)

So,

argpA (iω) =
l∑
j=1

arg
(
iω − λj (A)

)+ r∑
k=1

arg
(
iω − λk (A)

)

and by (9.36) we derive (9.37). Lemma is proven. �

Corollary 9.3. For any stable polynomial its argpA (jω) is a monotonically increasing
function of ω.

Corollary 9.4. For the polynomials without neutral roots

∞
�
ω=0

argpA (iω) = (l − r) π
2

(9.38)

9.6.2 Mikhailov’s criterion

Based on the previous lemma (9.5) we may present the following important result.
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Theorem 9.4. (Mikhailov’s criterion) The polynomial pA (λ) (9.3) of order n isHurwitz
(or, equivalently the corresponding matrix A is stable) if and only if the godograph of
pA (λ) (the corresponding curve in the coordinates)

U (ω) := RepA (iω)

as the abscise and

V (ω) := Im pA (iω)

as the ordinate such that

pA (iω) = U (ω)+ iV (ω)

has rotation in the clockwise (positive) direction and passes exactly n quadrants in the
complex plane without crossing the origin when ω varies from 0 up to ∞.

Proof. By definition pA (λ) is Hurwitz if and only if it has the representation (9.34) with

l = n. Hence, by lemma (9.5) in view of (9.37) it follows that

∞
�
ω=∞ argpA (iω) = nπ

or, by corollary (9.38) to this lemma,

∞
�
ω=0

argp (iω) = nπ
2

The criterion is proven. �

Consider now several examples illustrating the application of Mikhailov’s criterion.

Example 9.4. Let us consider the characteristic polynomial

pA (λ) = λ5 + 5λ4 + 10λ3 + 11λ2 + 7λ+ 2 (9.39)

We need to determine whether it is Hurwitz or not applying the geometric criterion.
Taking λ = iω for (9.39) one has

pA (iω)= iω5 + 5ω4 − i10ω3 − 11ω2 + i7ω + 2

= [
5ω4 − 11ω2 + 2

]+ i [ω (ω4 − 10ω2 + 7
)]

So,

U (ω)= 5ω4 − 11ω2 + 2

V (ω)= ω (ω4 − 10ω2 + 7
)

The corresponding godograph and its zoom-form are depicted at Figs. 9.1 and 9.2
correspondingly.
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Fig. 9.1. The godograph of pA (iω).
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Fig. 9.2. The zoom-form of the godograph of pA (iω).

In view of the geometric form of this godograph we may conclude that this polynomial

is Hurwitz.

Using this geometric approach one may determine not only if a polynomial is stable or

not, but also determine the exact number (l) of stable, (r) unstable and (m) neutral roots.

Example 9.5. Suppose that the polynomial pA (λ) has the order n = 5 and its godograph
has the form as at Fig. 9.3. Notice that this godograph does not cross the origin (0, 0)
and therefore pA (λ) does not have neutral (with a real part equal to zero) roots, that is,
m = 0. Hence by (9.37) we conclude that

l + r +m = n = 5

m = 0, l − r = 3



158 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

V(�)

U(�)

�50

��

Fig. 9.3. The godograph of pA (iω).
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Fig. 9.4. The godograph of pA (iω).

which gives

l = 4, r = 1, m = 0

Example 9.6. Suppose that the godograph of pA (iω) is as at Fig. 9.4 and corresponds
to a polynomial pA (λ) of the order n = 6. One can see that this godograph crosses the
origin (0, 0). This means that pA (λ) has a root a with a real part equal to zero. But, as
we have only one cross which corresponds to a frequency ω = ω0 �= 0, it means that
there exist two complex conjugated roots such that

λi (A) = iω0, λ̄i (A) = −iω0
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This means that m = 2. So, by (9.37) we conclude that

l + r +m = n = 6
∞
�
ω=0

argp (iω) = π, l − r = 2, m = 2

This finally gives:

l = 3, r = 1, m = 2

9.7 Polynomial robust stability

9.7.1 Parametric uncertainty and robust stability

As shown before, the stability property of a matrix A ∈ Rn×n is characterized by the

root’s location of the corresponding characteristic polynomial pA (λ) (9.3). Evidently,

any variations �A of the matrix A, namely, A = A0 + �A, are transformed into

the variations of the coefficients aj (j = 1, . . . , n) of the corresponding characteristic

polynomial pA (λ). Denote the collection of its coefficients by

a := (a1, . . . , an)ᵀ ∈ Rn (9.40)

and suppose that this vector of coefficients belongs to a connected set A ∈ Rn that

corresponds to possible variations �A of the matrix A or maybe includes them, that is,

a ∈ A ∈ Rn (9.41)

Definition 9.2. A characteristic polynomial pA (λ) (9.3) is said to be robust stable, if
for any a ∈ A the roots of the corresponding polynomial belongs to the left-hand side of
the complex plane C, i.e.,

Re λj (A) < 0 (j = 1, . . . , n) (9.42)

for all a ∈ A.

Definition 9.3. Denote by QA (ω) the set of all values of the vector

pA (iω) = U (ω)+ iV (ω)

given in C under a fixed ω ∈ [0,∞) when the parameters a take all possible values in
A, that is,

QA (ω) := {z : z = pA (iω) | a ∈ A} (9.43)

The next result represents the criterion of the polynomial robust stability and is a

keystone in robust control theory.
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Theorem 9.5. (The criterion of polynomial robust stability) The characteristic poly-
nomial pA (λ) (9.3) is robust stable if and only if
1. The class A of polynomials pA (λ) (9.3) contains at least one Hurwitz polynomial
p∗A (λ), named a basic one.

2. The following principle of “zero-excluding” holds: the set QA (ω) does not contain
the origin (“zero-point”), i.e.,

0 /∈ QA (ω) (9.44)

Proof. Since the vector z = pA (jω) ∈ C is continually dependent on the vector parameter

a, then a “transition” from stable polynomial to unstable one (when we are varying the

coefficients a) may occur (this is always possible since the set A of parameters is a

connected set) only when one of its roots crosses the imaginary axis, or, in other words,

when there exists ω0 ∈ [0,∞) such that pA (iω0) = U (ω0) + iV (ω0) = 0. But this is

equivalent to the following identity

U (ω0) = V (ω0) = 0

which means exactly that 0 ∈ QA (ω). Evidently, to avoid this effect it is necessary and

sufficient to fulfill conditions 1 and 2 of this theorem. Theorem is proven. �

9.7.2 Kharitonov’s theorem

Theorem 9.6. Kharitonov (1978) Let the set A, characterizing a parametric uncer-
tainty, be defined as

A :={
a ∈ Rn : a−i ≤ ai ≤ a+i (i = 1, . . . n)

}
(9.45)

Then the polynomial pA (λ) (9.3) is robust stable if and only if four polynomials given

below are stable (Hurwitz):

p
(1)
A (λ) := 1+ a−1 λ+ a+2 λ2 + a+3 λ3 + a−4 λ4 + a−5 λ5 + · · ·
p
(2)
A (λ) := 1+ a+1 λ+ a+2 λ2 + a−3 λ3 + a−4 λ4 + a+5 λ5 + · · ·
p
(3)
A (λ) := 1+ a+1 λ+ a−2 λ2 + a−3 λ3 + a+4 λ4 + a+5 λ5 + · · ·
p
(4)
A (λ) := 1+ a−1 λ+ a−2 λ2 + a+3 λ3 + a+4 λ4 + a−5 λ5 + · · ·

(9.46)

Proof. For any a ∈ A

U (ω) = 1− a2ω2 + a4ω4 − · · ·
V (ω) = a1ω − a3ω3 + a5ω5 · · ·

and hence for any ω ∈ [0,∞)

U− (ω) ≤ U (ω) ≤ U+ (ω) and V − (ω) ≤ V (ω) ≤ V + (ω)
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where

U− (ω) = 1− a+2 ω2 + a−4 ω4 − · · ·
U+ (ω) = 1− a−2 ω2 + a+4 ω4 − · · ·

and

V − (ω) = a−1 ω − a+3 ω3 + a−5 ω5 · · ·
V + (ω) = a+1 ω − a−3 ω3 + a+5 ω5 · · ·

That’s why for any ω ∈ [0,∞) the set QA (ω) (9.43) is rectangular (see Fig. 9.5) with

width [U+ (ω)− U− (ω)] and height [V + (ω)− V − (ω)] and with the center in the point

p̊A (jω) corresponding to the stable polynomial with parameters åi = 1

2

(
a−i + a+i

)
.

Notice that the vertices of the set QA (ω) correspond exactly to the polynomials (9.46).

Suppose now that this rectangle touches the origin by one of its sides. Since the argument

monotonically increases the vertices of this touching side will rotate in the clock-wise

direction, and, hence, will become non-vertical which contradicts our previous concept.

So, the direct application of the previous Theorem 9.5 leads to the formulated result.

Theorem is proven. �

Example 9.7. Let us find the parameter β for which the polynomial

pA (λ) = 1+ a1λ+ a2λ2 + a3λ3
1− β ≤ a1 ≤ 1+ β
1.5 ≤ a2 ≤ 2, a3 = 1

is robust stable. To do this construct four polynomials (9.46):

p
(1)
A (λ) := 1+ (1− β) λ+ 2λ2 + λ3
p
(2)
A (λ) := 1+ (1+ β) λ+ 2λ2 + λ3
p
(3)
A (λ) := 1+ (1+ β) λ+ 1.5λ2 + λ3
p
(4)
A (λ) := 1+ (1− β) λ+ 1.5λ2 + λ3

QA(v)

V (�)

U (�)

�50

��

Fig. 9.5. Illustration of the Kharitonov’s criterion.
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The corresponding Hurwitz matrices HA are as follows:

⎡
⎣1− β 1 0

1 2 0

0 (1− β) 1

⎤
⎦,

⎡
⎣1+ β 1 0

1 2 0

0 (1+ β) 1

⎤
⎦

⎡
⎣1+ β 1 0

1 1.5 0

0 1+ β 1

⎤
⎦,

⎡
⎣1− β 1 0

1 1.5 0

0 1− β 1

⎤
⎦

By the Liénard–Chipart criterion we find that the conditions of the robust stability are

1− β > 0, 1+ β > 0 or, equivalently, |β| < 1

and

2 (1− β)− 1 > 0, 2 (1+ β)− 1 > 0

1.5 (1+ β)− 1 > 0, 1.5 (1− β)− 1 > 0

which leads to the following:

β < 0.5, β > −0.5, β >
2

3
− 1 = −1

3
, β < 1− 2

3
= 1

3

or, equivalently,

|β| < 0.5, |β| < 1

3

Finally, all constraints taken together give

|β| < 1

3

9.7.3 The Polyak–Tsypkin geometric criterion

Let the set A of all possible parameters a be defined as follows:

A := {
a ∈ Rn : ∣∣ai − a∗i ∣∣ ≤ γαi (i = 1, . . . , n) , γ > 0

}
(9.47)
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Construct the following polynomials:

Ua (ω) := 1− a2ω2 + a4ω4 − · · ·

Va (ω) := a1ω − a3ω3 + a5ω5 · · ·

Ta (ω) := 1

ω
Va (ω), ω > 0

S (ω) := 1+ α2ω2 + α4ω4 + · · ·

V (ω) := α1ω + α3ω3 + α5ω5 · · ·

T (ω) := 1

ω
V (ω), ω > 0

(9.48)

and define

X (ω) := Ua∗ (ω)
S (ω)

, Y (ω) := Ta∗ (ω)
T (ω)

(9.49)

Theorem 9.7. Polyak & Tsypkin (1990) The characteristic polynomial pA (λ) (9.3) is
robust stable if and only if the godograph

Z (iω) := X (ω)+ iY (ω) (9.50)

passes exactly n quadrants, when ω varies from 0 up to ∞, and does not cross the
quadrant �γ with the center in the origin and with the board equal to 2γ (see Fig. 9.6)

6�

�

6

X(�)

Y(�)

�50

�5�

Fig. 9.6. Illustration of the Polyak–Tsypkin criterion.
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such that

|X (0)|, |Y (0)|, |X (∞)|, |Y (∞)| > γ (9.51)

Proof. For any a ∈ A we have

|Ua (ω)− Ua∗ (ω)| ≤ γ S (ω)
|Va (ω)− Va∗ (ω)| ≤ γV (ω)

or

|Ta (ω)− Ta∗ (ω)| ≤ γ T (ω)

The condition that

0 ∈ QA (ω)

for some ω > 0 means that Uã (ω) = Vã (ω) = 0 for some ã ∈ A which implies

|Uã (ω)− Ua∗ (ω)| = |Ua∗ (ω)| ≤ γ S (ω)
|Vã (ω)− Va∗ (ω)| = |Va∗ (ω)| ≤ γV (ω)

and

|Tã (ω)− Ta∗ (ω)| = |Ta∗ (ω)| ≤ γ T (ω)

Since S (ω) > 0 and T (ω) > 0, we obtain

|X (ω)| =
∣∣∣∣Ua∗ (ω)S (ω)

∣∣∣∣ ≤ γ, |Y (ω)| =
∣∣∣∣Ta∗ (ω)T (ω)

∣∣∣∣ ≤ γ
which means that

Z (iω) ∈ �γ
Contrarily, the conditions that 0 /∈ QA (ω0) are

Z (iω) /∈ �γ
|X (0)|, |Y (0)|, |X (∞)|, |Y (∞)| > γ

Then the result follows from Theorem 9.5. Theorem is proven. �

Remark 9.2. The “maximal stability radius” γ = γmax corresponds to the maximal quad-
rant �γmax

which touches the godograph Z (jω) from inside.

9.8 Controllable, stabilizable, observable and detectable pairs

In this subsection we shall turn to some important concepts that will be used frequently

in the following.
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9.8.1 Controllability and a controllable pair of matrices

Definition 9.4. The linear stationary system

ẋ (t) = Ax (t)+ Bu (t), x (0) = x0
A ∈ Rn×n, B ∈ Rn×r

(9.52)

or the pair (A,B) is said to be controllable on a time-interval [0, T ] if, for any initial
state x0 and any terminal state xT , there exists a feasible (piecewise continuous) control
u (t) such that the solution of (9.52) satisfies

x (T ) = xT (9.53)

Otherwise, the system or pair (A,B) is said to be uncontrollable.

The next theorem represents some algebraic criteria (the necessary and sufficient

conditions) of the controllability.

Theorem 9.8. (The criteria of the controllability) The pair (A,B) is controllable if
and only if one of the following properties holds:

Criterion 1. The controllability grammian

Gc (t) :=
t∫

τ=0

eAτBBᵀeA
ᵀτ dτ (9.54)

is positive definite for any t ∈ [0,∞).
Criterion 2. The controllability matrix

C := [
B AB A2B · · · An−1B

]
(9.55)

has full rank or, in other words,

〈
A ImB

〉 := n∑
i=1

Im
〈
Ai−1B

〉 = Rn (9.56)

where ImB is the image (range) of B : Rr 
−→ Rn defined by

ImB := {y ∈ Rn : y = Bu, u ∈ Rr} B (9.57)

Criterion 3. The Hautus matrix

[
A− λI ... B

]
has full row rank for all λ ∈ C.
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Criterion 4. For any left eigenvalues λ and the corresponding eigenvectors x of the
matrix A, i.e., x∗A = λx∗, the following property holds: x∗B �= 0. In other words, all
modes of A are B-controllable.

Criterion 5. The eigenvalues of the matrix (A+ BK) can be freely assigned by a
suitable selection of K .

Proof. Criterion 1.
(a) Necessity. Suppose that the pair (A,B) is controllable, but for some t1 ∈ [0, T ] the

grammian of controllability Gc (T ) is singular, that is, there exists a vector x �= 0

such that

0= xᵀ

⎡
⎣ t1∫
τ=0

eAτBBᵀeA
ᵀτ dτ

⎤
⎦ x

=
⎡
⎣ t1∫
τ=0

xᵀeAτBBᵀeA
ᵀτ xdτ

⎤
⎦ =

t1∫
τ=0

∥∥BᵀeA
ᵀτ x

∥∥2
dτ

So,

xᵀeAτB = 0 (9.58)

for all τ ∈ [0, t1]. Select t1 as a terminal instant, that is, t1 = T and x (T ) = xT = 0.

Then by (9.59)

0 = x (t1) = eAt1x0 +
t1∫

τ=0

eA(t1−τ)Bu (τ) dτ

and pre-multiplying the last equation by xᵀ we obtain

0 = xᵀx (t1) = xᵀeAt1x0 +
t1∫

τ=0

xᵀeA(t1−τ)Bu (τ) dτ = xᵀeAt1x0

Selecting the initial conditions x0 = e−At1x, we obtain ‖x‖2 = 0, or x = 0, which

contradicts the assumption that x �= 0.

(b) Sufficiency. Suppose conversely: Gc (t) > 0 for all t ∈ [0, T ]. Hence, Gc (T ) > 0.

Define

u (t) := −BᵀeA
ᵀ(T−t)G−1

c (T )
[
eAT x0 − xT

]
Then, by (9.52),

x (t) = eAtx0 +
t∫

τ=0

eA(t−τ)Bu (τ) dτ (9.59)
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which gives

x (T )= eAT x0 −
⎡
⎣ T∫
τ=0

eA(T−τ)BBᵀeA
ᵀ(T−t)G−1

c (T )
[
eAT x0 − xT

]
dτ

⎤
⎦

= eAT x0 −
⎡
⎣ T∫
τ=0

eA(T−τ)BBᵀeA
ᵀ(T−t) dτ

⎤
⎦G−1

c (T )
[
eAT x0 − xT

]
T−τ=s= eAT x0

+
⎡
⎣ 0∫
s=T
eAsBBᵀeA

ᵀs ds

⎤
⎦G−1

c (T )
[
eAT x0 − xT

] = eAT x0
− Gc (T )G−1

c (T )
[
eAT x0 − xT

] = xT
So, the pair (A,B) is controllable. The first criterion is proven.

Criterion 2.
(a) Necessity. Suppose that Gc (t) > 0 for any t ∈ [0, T ], but the controllability matrix

C has no full rank, that is, there exists a nonzero-vector v ∈ Rn such that

v∗AiB = 0 for all i = 0, 1 . . . , n− 1

But by the Cayley–Hamilton theorem any matrix satisfies its own characteristic

equation, namely, if

det (A− λI) = a0λn + a1λn−1 + · · · + an−1λ+ an = 0, a0 �= 0

then

a0A
n + a1An−1 + · · · + an−1A+ anI = 0, a0 �= 0

or, equivalently,

An = −
(
a1

a0
An−1 + · · · + an−1

a0
A+ an

a0
I

)

and hence

v∗AnB = −
(
a1

a0
v∗An−1B + · · · + an−1

a0
v∗AB + an

a0
v∗B

)
= 0

By the same reason

v∗An+1B = −
(
a1

a0
v∗AnB + · · · + an−1

a0
v∗A2B + an

a0
v∗AB

)
= 0

and so on. So,

v∗AiB = 0 for any i ≥ 0 (9.60)
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But since eAt =
∞∑
i=0

1

i! (At)
i , in view of (9.60), for all t ≥ 0 we have

v∗eAtB =
∞∑
i=0

1

i!v
∗AiBti = 0

which implies

0 = v∗
t1≤T∫
t=0

eAtBBᵀeA
ᵀt dt = v∗Gc (t1)

for all t1 ≤ T which is in contradiction with the assumption thatGc (t1) is nonsingular.

So, C should have full rank.

(b) Sufficiency. Conversely, suppose now that C has full rank, but Gc (t) is singular for

some t = t1 ≤ T . Then, by (9.58), there exists a vector xᵀ �= 0 such that xᵀeAτB = 0

for all τ ∈ [0, t1]. Taking t = 0, we get xᵀB = 0. Evaluating the ith derivatives at

the point t = 0, we have

0 = xᵀ
(
d

dτ
eAτ

)
t=0

B = xᵀAiB, i = 0, 1, . . . , n− 1

which implies

[
B AB A2B . . . An−1B

] = xᵀC = 0

It means that C has no full rank. This is in contradiction with the initial assumption

that C has full rank. So, Gc (t) should be nonsingular for all t ∈ [0, T ]. The second

criterion is proven too.

Criterion 3.
(a) Necessity. On the contrary, suppose that [A− λI ... B] has no full row rank for some

λ ∈ C, that is, there exists a vector x∗ �= 0 such that x∗[A − λI ... B] = 0 but the

system is controllable (C has full rank). This is equivalent to the following:

x∗A = λx∗, x∗B = 0

which results in

x∗C = x∗ [B AB A2B · · · An−1B
]

=
[
x∗B︸︷︷︸

0

λx∗B︸︷︷︸
0

λ2x∗B︸︷︷︸
0

· · · λn−1x∗B︸︷︷︸
0

]
= 0

But this is in contradiction with the assumption that C has full rank.
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(b) Sufficiency. Suppose that [A− λI ... B] has full row rank for all λ ∈ C, but C has no

full rank, i.e., x∗C = 0 for some x �= 0. Representing this x as a linear combination

of the eigenvectors xi∗ of the matrix A as

x∗ =
n∑
i=1

αix
i∗ ,

(
n∑
i=1

α2i > 0

)

we get

0= x∗C =
n∑
i=1

αix
i∗C

=
n∑
i=1

αix
i∗
[
B AB A2B · · · An−1B

]
=

n∑
i=1

αix
i∗
[
B λiB λ2i B · · · λn−1

i B
]

=
n∑
i=1

αix
i∗ [I λiI λ2i I · · · λn−1

i I
]
B = x̄∗B

where

x̄∗ :=
n∑
i=1

αix
i∗ [I λiI λ2i I · · · λn−1

i I
]

So, there exists a vector x̃ �= 0 such that x̃∗B = 0 and

x̃∗A=
n∑
i=1

αix
i∗ [I λiI λ2i I · · · λn−1

i I
]
A

= x̃∗A =
n∑
i=1

αix
i∗A

[
I λiI λ2i I · · · λn−1

i I
]

=
n∑
i=1

αiλix
i∗ [I λiI λ2i I · · · λn−1

i I
] = λ̃x̃∗

where

λ̃ := x̃
∗Ax̃
x̃∗x̃

which is in contradiction with the assumption that the Hautus matrix [A− λ̃I ... B] has
full row rank.

Criterion 4. It directly follows from Criterion 3.

Criterion 5. The proof can be found in Zhou et al., 1996.
Theorem is proven. �
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9.8.2 Stabilizability and a stabilizable pair of matrices

Definition 9.5. The linear stationary system (9.52) or the pair (A,B) is said to be
stabilizable if there exists a state feedback u (t) = Kx (t) such that the closed-loop
system is stable, i.e., the matrix A + BK is stable (Hurwitz). Otherwise, the system or
pair (A,B) is said to be unstabilizable.

Theorem 9.9. (Two criteria of stabilizability) The pair (A,B) is stabilizable if and
only if

Criterion 1. The Hautus matrix [A− λI ... B] has the full rank for all Re λ ≥ 0.

Criterion 2. For all λ and x such that x∗A = λx∗ and Re λ ≥ 0, it follows that
x∗B �= 0.

Proof. This theorem is a consequence of the previous one. �

9.8.3 Observability and an observable pair of matrices

Let us consider the following stationary linear system supplied by an output model:

·
x (t) = Ax (t)+ Bu (t), x (0) = x0, t ∈ [0,∞]

y (t) = Cx (t)
A ∈ Rn×n, B ∈ Rn×r

⎫⎪⎬
⎪⎭ (9.61)

where y (t) ∈ Rm is treated as an output vector and C ∈ Rm×n is an output matrix.

Definition 9.6. The stationary linear system (9.61) or the pair (C,A) is said to be
observable if, for any time t1, the initial state x (0) = x0 can be determined from the
history of the input u (t) and the output y (t) within the interval [0, t1]. Otherwise, the
system or pair (C,A) is said to be unobservable.

Theorem 9.10. (The criteria of observability) The pair (C,A) is observable if and only
if one of the following criteria hold:

Criterion 1. The observability grammian

Go (t) :=
t∫

τ=0

eA
ᵀτCᵀCeAτdτ (9.62)

is positive definite for any t ∈ [0,∞).
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Criterion 2. The observability matrix

O :=

⎡
⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦ (9.63)

has the full column rank or, in other words,

n⋂
i=1

Ker
(
CAi−1

) = 0 (9.64)

where Ker (A) is the kernel or null space of A : Rn 
−→ Rmdefined by

Ker (A) = N (A) := {x ∈ Rn : Ax = 0} (9.65)

Criterion 3. The Hautus matrix[
A− λI
C

]

has full column rank for all λ ∈ C.
Criterion 4. Let λ and y be any eigenvalue and any corresponding right eigenvector

of A, that is, Ay = λy, then Cy �= 0.
Criterion 5. The eigenvalues of the matrix A+ LC can be freely assigned (complex

eigenvalues are in conjugated pairs) by a suitable choice of L.
Criterion 6. The pair (Aᵀ, Cᵀ) is controllable.

Proof. Criterion 1.
(a) Necessity. Suppose that the pair (C,A) is observable, but for some t1 the grammian

of observability G0 (t1) is singular, that is, there exists a vector x �= 0 such that

0= xᵀ

⎡
⎣ t1∫
τ=0

eA
ᵀτCᵀCeAτ dτ

⎤
⎦ x

=
⎡
⎣ t1∫
τ=0

xᵀeA
ᵀτCᵀCeAτx dτ

⎤
⎦ =

t1∫
τ=0

∥∥CeAτx∥∥2
dτ

So,

CeAτx = 0 (9.66)

for all τ ∈ [0, t1]. Then by (9.59)

x (t1) = eAt1x0 +
t1∫

τ=0

eA(t1−τ)Bu (τ) dτ
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and, hence,

y (t1) = Cx (t1) = CeAt1x0 +
t1∫

τ=0

CeA(t1−τ)Bu (τ) dτ

or

v (t1) := y (t1)−
t1∫

τ=0

CeA(t1−τ)Bu (τ) dτ = CeAt1x0

Selecting the initial conditions x0 = 0, we obtain v (t1) = 0. But we have the same

results for any x0 = x �= 0 satisfying (9.66) which means that x0 cannot be determined

from the history of the process. This contradicts that (C,A) is observable.

(b) Sufficiency. Suppose conversely: Go (t) > 0 for all t ∈ [0,∞]. Hence,

0 < xᵀ

⎡
⎣ t∫
τ=0

eA
ᵀτCᵀCeAτ dτ

⎤
⎦ x

=
⎡
⎣ t1∫
τ=0

xᵀeA
ᵀτCᵀCeAτ x dτ

⎤
⎦ =

t1∫
τ=0

∥∥CeAτx∥∥2
dτ

which implies that there exists a time τ0 ∈ [0, t] such that
∥∥CeAτ0x∥∥2

> 0 for any

x �= 0. This means that CeAτ0 is a full rank matrix
(
eA

ᵀτ0CᵀCeAτ0 > 0
)
. Then

v (τ0) := y (τ0)−
τ0∫

τ=0

CeA(τ0−τ)Bu (τ) dτ = CeAτ0x0

and, hence,

eA
ᵀτ0Cᵀv (τ0) = eAᵀτ0CᵀCeAτ0x0

and

x0 =
[
eA

ᵀτ0CᵀCeAτ0
]−1
eA

ᵀτ0Cᵀv (τ0)

So, the pair (C,A) is observable. The first criterion is proven.

Criterion 2.
(a) Necessity. Suppose that the pair (C,A) is observable, but that the observability matrix

O does not have full column rank, i.e., there exists a vector x̃ �= 0 such that Ox̃ = 0

or, equivalently,

CAix̃ = 0 ∀i = 0, 1, . . . , n− 1



Stable matrices and polynomials 173

Suppose now that x0 = x̃. Then, by the Cayley–Hamilton theorem

v (t) := y (t)−
t∫

τ=0

CeA(t−τ)Bu (τ) dτ = CeAtx0

= C
∞∑
i=0

1

i! (At)
i x0 =

n−1∑
i=0

t i

i!CA
ix0︸ ︷︷ ︸
0

+
2n−1∑
i=n

t i

i!CA
ix0︸ ︷︷ ︸
0

+ ...︸︷︷︸
0

= 0

(9.67)

which implies

v (t) = CeAtx0 = 0

and, hence, x0 cannot be determined from v (t) ≡ 0. We obtain the contradiction.

(b) Sufficiency. From (9.67) it follows that

ṽ :=

⎡
⎢⎢⎢⎢⎢⎣
v (0)

v̇ (0)

v̈ (0)
...

v(n−1) (0)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦ x0 = Ox0

and since O has a full rank, then OᵀO > 0 and hence

x0 = [OᵀO]
−1 Oᵀṽ

which means that x0 may be uniquely defined. This completes the proof.

Criteria 3–6. They follows from by the duality of Criterion 6 to the corresponding

criteria of controllability, since the controllability of the pair (Aᵀ, Cᵀ) is equivalent to

the existence of a matrix Lᵀ such that Aᵀ + CᵀLᵀ is stable. But then it follows that

(Aᵀ + CᵀLᵀ)ᵀ = A+ LC

is also stable which coincides with Criteria 6 of observability.

Theorem is proven. �

9.8.4 Detectability and a detectable pair of matrices

Definition 9.7. The stationary linear system (9.61) or the pair (C,A) is said to be
detectable if the matrix A+LC is stable (Hurwitz) for some L. Otherwise, the system or
pair (C,A) is said to be undetectable.

Theorem 9.11. (The criteria of detectability) The pair (C,A) is detectable if and only
if one of the following criteria holds:

Criterion 1. The Hautus matrix

[
A− λI
C

]
has full column rank for all Re λ ≥ 0.



174 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Criterion 2. Let λ and y be any eigenvalue and any corresponding right eigenvector
of A, such that Ay = λy, Re λ ≥ 0, then Cy �= 0.

Criterion 3. There exists a matrix L such that the matrix A+ LC is stable.
Criterion 4. The pair (Aᵀ, Cᵀ) is stabilizable.

Proof. It follows from the duality of Criterion 4 of this theorem to the corresponding

criterion of stabilizability. Theorem is proven. �

9.8.5 Popov–Belevitch–Hautus (PBH) test

Definition 9.8. Let λ be an eigenvalue of the matrix A, or equivalently, a mode of the
system (9.61). Then the mode λ is said to be
1. controllable if

x∗B �= 0

for all left eigenvectors x∗ of the matrix A associated with this λ, i.e.,

x∗A = λx∗, x∗ �= 0

2. observable if

Cx �= 0

for all right eigenvectors x of the matrix A associated with this λ, i.e.,

Ax = λx, x �= 0

Otherwise, the mode is called uncontrollable (unobservable).

Using this definition we may formulate the following test-rule (Popov–Belevitch–Hautus

PBH-test (Hautus & Silverman (1983)) for the verification of the properties discussed

above.

Claim 9.1. (PBH test) The system (9.61) is
1. controllable if and only if every mode is controllable;
2. stabilizable if and only if every unstable mode is controllable;
3. observable if and only if every mode is observable;
4. detectable if and only if every unstable mode is observable.
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10.1 Hamiltonian matrix

Let us consider the matrix Riccati equation1

PA+ AᵀP +Q− PBR−1BᵀP = 0 (10.1)

and the associated 2n× 2n Hamiltonian matrix:

H :=
[
A −BR−1Bᵀ

−Q −Aᵀ

]
(10.2)

Lemma 10.1. The spectrum σ (H) of the set of eigenvalues of H (10.2) is symmetric
about the imaginary axis.

Proof. To see this, introduce the 2n× 2n matrix:

J :=
[

0 −In×n
In×n 0

]
(10.3)

having the evident properties

J 2 =−I2n×2n

J−1 =−J
So, we have

J−1HJ = −JHJ = −Hᵀ (10.4)

which implies that λ is an eigenvalue of H (10.2) if and only if
(−λ̄) is too

(see Fig. 10.1). �

1 In the Russian technical literature this equation is known as the matrix Lurie equation.
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Fig. 10.1. Hamiltonian eigenvalues.

10.2 All solutions of the algebraic Riccati equation

10.2.1 Invariant subspaces

Definition 10.1. Let A : Cn 
−→ Cn be a linear transformation (matrix), λ be an eigen-
value of A and x be a corresponding eigenvector of A, that is, Ax = λx. So, A (αx) =
λ (αx) for any α ∈ R.

1. We say that the eigenvector x defines a one-dimensional subspace which is invariant
with respect to pre-multiplication by A since

Ak (αx) = λk (αx) k = 1, . . .

2. Generalizing the definition before, we say that a subspace S ⊂ Cn is invariant with
respect to the transformation A, or A-invariant, if

Ax ∈ S for any x ∈ S
or, in other words,

AS ⊂ S

3. If one of the eigenvalues has a multiplicity l, i.e. λ1 = λ2 = . . . = λl , then the
generalized eigenvectors xi (i = 1, . . . , l) are obtained by the following rule

(A− λ1I ) xi = xi−1, i = 1, . . . , l, x0 := 0 (10.5)

10.2.2 Main theorems on the solution presentation

Theorem 10.1. Let � ⊂ C2n be an n-dimensional invariant subspace of H , that is, if
z ∈ � then Hz ∈ �, and let P1, P2 ∈ Cn×n be two complex matrices such that

� = Im

[
P1

P2

]
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which means that the columns of

[
P1

P2

]
may be considered as a basis in �. If P1 is

invertible, then

P = P2P
−1
1 (10.6)

is a solution to the matrix Riccati equation (10.1) which is independent of a specific
choice of bases of �.

Proof. Since � is an invariant subspace of H , there exists a matrix � ∈ Cn×n such that

H

[
P1

P2

]
=

[
P1

P2

]
� (10.7)

Indeed, let the matrix

[
P1

P2

]
be formed by the eigenvectors of H such that

[
P1

P2

]
= [
v1 · · · vn

]
where each vector vi satisfies the equation

Hvi = λivi

Here λi are the corresponding eigenvalues. Combining these equations for all i = 1, . . . , n,

we obtain

H

[
P1

P2

]
= H [

v1 · · · vn
] = [

λ1v1 · · · λnvn
]

= [
v1 · · · vn

] ⎡⎣ λ1 0 · · · 0 0

0 · · · 0

0 0 · · · 0 λn

⎤
⎦ =

[
P1

P2

]
�

� = diag {λ1, . . . , λn}

In the extended form, the relation (10.7) is

[
A −BR−1Bᵀ

−Q −Aᵀ

] [
P1

P2

]
=

[
P1

P2

]
� (10.8)

Post-multiplying this equation by P−1
1 we get

[
A −BR−1Bᵀ

−Q −Aᵀ

][
In×n(
P2P

−1
1

)
]
=

[
In×n(
P2P

−1
1

)
]
P1�P

−1
1
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Then, the pre-multiplication of this equality by
[
− (
P2P

−1
1

) ... In×n ] implies

[
− (
P2P

−1
1

) ... In×n ]
[
A −BR−1Bᵀ

−Q −Aᵀ

] [
In×n(
P2P

−1
1

)]

=
[
− (
P2P

−1
1

) ... In×n ]
[
A− BR−1Bᵀ (

P2P
−1
1

)
−Q− Aᵀ (

P2P
−1
1

) ]

= − (
P2P

−1
1

)
A+ (

P2P
−1
1

)
BR−1Bᵀ (

P2P
−1
1

)−Q− Aᵀ (
P2P

−1
1

)
=

[
− (
P2P

−1
1

) ... In×n ]
[
In×n(
P2P

−1
1

)]P1�P
−1
1 = 0

which means that P := P2P
−1
1 satisfies (10.1). Let T be a nonsingular matrix. Then any

other basis from

[
P̃1

P̃2

]
spanning � can be represented as

[
P̃1

P̃2

]
=

[
P1

P2

]
T =

[
P1T

P2T

]
[
P1

P2

]
=

[
P̃1

P̃2

]
T −1 =

[
P̃1T

−1

P̃2T
−1

]

and, hence,

P = P2P
−1
1 =

(
P̃2T

−1

)(
P̃1T

−1

)−1

= P̃2T
−1T

(
P̃1

)−1 = P̃2

(
P̃1

)−1

which proves the theorem. �

Corollary 10.1. The relation (10.8) implies

AP1 − BR−1BᵀP2 = P1�

A− (
BR−1Bᵀ)P = P1�P

−1
1 (10.9)

Theorem 10.2. If P ∈ Cn×n is a solution to the matrix Riccati equation (10.1), then there
exist matrices P1, P2 ∈ Cn×n with P1 invertible such that (10.6) holds, that is,

P = P2P
−1
1

and the columns of

[
P1

P2

]
form a basis of �.
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Proof. Define

�̃ := A− (
BR−1Bᵀ)P

Pre-multiplying it by P gives

P�̃ := PA− P (
BR−1Bᵀ)P = −Q− AᵀP

These two relations may be rewritten as

[
A −BR−1Bᵀ

−Q −Aᵀ

] [
In×n
P

]
=

[
In×n
P

]
�̃

Hence, the columns of

[
In×n
P

]
span the invariant subspace � and defining P1 := In×n

and P2 = P completes the proof. �

10.2.3 Numerical example

Example 10.1. Let

A =
[ −3 2

−2 1

]
, B =

[
0

1

]
, R = I 2×2, Q = 0

H =

⎡
⎢⎢⎣

−3 2

−2 1

0 0

0 −1

0 0

0 0

3 2

−2 −1

⎤
⎥⎥⎦

Then the eigenvalues of H are 1, 1, (−1), (−1) and the eigenvector and the generalized
eigenvector (10.5) corresponding to λ1 = λ2 = 1 are

v1 = (1, 2, 2,−2)T , v2 = (−1,−3/2, 1, 0)T

and the eigenvector and the generalized eigenvector corresponding to λ3 = λ4 = −1 are

v3 = (1, 1, 0, 0)T , v4 = (1, 3/2, 0, 0)T

Several possible solutions of (10.1) are given below:

1. span{v1, v2} :=
{
z ∈ C2n×2n : z = αv1 + βv2, α, β ∈ R

}
is H-invariant: let[

P1

P2

]
= [

v1 v2
]
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then

P = P2P
−1
1 =

[
2 1

−2 0

] [
1 −1

2 −3/2

]−1

=
[

2 1

−2 0

] [ −3.0 2.0

−4.0 2.0

]
=
[ −10.0 6.0

6.0 −4.0

]

2. span {v1, v3} is H -invariant: let

[
P1

P2

]
= [

v1 v3
]
, then

P = P2P
−1
1 =

[
2 0

−2 0

] [
1 1

2 1

]−1

=
[

2 0

−2 0

] [ −1.0 1.0

2.0 −1.0

]
=
[ −2.0 2.0

2.0 −2.0

]

3. span {v3, v4} is H-invariant: let
[
P1

P2

]
= [

v3 v4
]
, then

P = P 2P
−1
1 =

[
0 0

0 0

] [
1 1

0 3/2

]−1

=
[
0 0

0 0

]

4. Notice that here span {v1, v4}, span {v2, v3} and span {v2, v4} are not H-invariant.

Remark 10.1. If a collection of eigenvectors of H forms a basis in Cn which defines a
solution of the Riccati matrix equation given by P = P 2P

−1
1 , then the number NRic of all

possible solutions of this equation is

NRic = (2n)!
n! (2n− n)! =

(2n)!
(n!)2

10.3 Hermitian and symmetric solutions

10.3.1 No pure imaginary eigenvalues

Theorem 10.3. Let � ⊂ C2n be an n-dimensional invariant subspace of H and let

P1, P2 ∈ Cn×n be two complex matrices such that � = Im

[
P1

P2

]
. Then the assumption

λi + λ̄j �= 0 for all i, j = 1, . . . , 2n (10.10)

where λi, λ̄j are the eigenvalues of H , implies
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1. P ∗
1 P2 is Hermitian, that is,

P ∗
1 P2 = P ∗

2 P1

2. if, in addition, P1 is nonsingular, the matrix P = P2P
−1
1 is Hermitian too, that is,

P ∗ = (
P2P

−1
1

)∗ = P
Remark 10.2. The condition (10.10) is equivalent to the restriction

Re λi �= 0 for all i = 1, . . . , 2n (10.11)

which means that H has no eigenvalues on the imaginary axis.

Proof. Since � is an invariant subspace of H , then there exists a matrix � such that

spectrums of the eigenvalues of � and H coincide, that is,

σ (�) = σ (H)

and (10.7) holds:

H

[
P1

P2

]
=

[
P1

P2

]
� (10.12)

Pre-multiplying this equation by

[
P1

P2

]∗
J, we get

[
P1

P2

]∗
JH

[
P1

P2

]
=

[
P1

P2

]∗
J

[
P1

P2

]
�

By (10.4), it follows that JH is symmetric and, hence, is Hermitian (since H is real).

So, we obtain that the left-hand side is Hermitian, and, as a result, the right-hand side is

Hermitian too:[
P1

P2

]∗
J

[
P1

P2

]
�= �∗

[
P1

P2

]∗
J ∗

[
P1

P2

]

= −�∗
[
P1

P2

]∗
J

[
P1

P2

]

which implies

X�+�∗X = 0

X := (−P ∗
1 P2 + P ∗

2 P1

)
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But this is a Lyapunov equation which has a unique solutionX = 0 if λi (�)+ λ̄j (�) �= 0.

But, since the spectrum of eigenvalues of � and H coincides, we obtain the proof of the

claim. Moreover, if P1 is nonsingular, then for P = P2P
−1
1 it follows that

P ∗ = (
P2P

−1
1

)∗ = (
P−1
1

)∗
P ∗
2 =

(
P−1
1

)∗ (
P ∗
1 P2P

−1
1

)
= (
P ∗
1

)−1
P ∗
1 P2P

−1
1 = P2P

−1
1 = P

Theorem is proven. �

Theorem 10.4. Suppose a Hamiltonian matrix H (10.2) has no pure imaginary eigen-
values and X− (H) and X+ (H) are n-dimensional invariant subspaces corresponding
to eigenvalues λi (H) (i = 1, . . . n) in Re s < 0 and to λi (H) (i = n+ 1, . . . , 2n) in
Re s > 0, respectively, that is, X− (H) has the basis

[
v1 · · · vn

] =
⎡
⎢⎢⎢⎢⎢⎢⎣

v1,1 · vn,1
· · ·
v1,n · vn,n
v1,n+1 · vn,n+1

· · ·
v1,2n · vn,2n

⎤
⎥⎥⎥⎥⎥⎥⎦ =

[
P1

P2

]

P1 =
⎡
⎣ v1,1 · vn,1

· · ·
v1,n · vn,n

⎤
⎦, P2 =

⎡
⎣ v1,n+1 · vn,n+1

· · ·
v1,2n · vn,2n

⎤
⎦

Then P1 is invertible, i.e. P
−1
1 exists if and only if the pair (A,B) is stabilizable.

Proof. Sufficiency. Let the pair (A,B) be stabilizable. We want to show that P1 is

nonsingular. Contrariwise, suppose that there exists a vector x0 �= 0 such that P1x0 = 0.

Then we have the following. First, notice that

x∗0P
∗
2

(
BR−1Bᵀ)P2x0 =

∥∥R−1/2BᵀP2x0
∥∥2 = 0 (10.13)

or, equivalently,

R−1/2BᵀP2x0 = 0 (10.14)

Indeed, the pre-multiplication of (10.12) by
[
I 0

]
implies

AP1 −
(
BR−1Bᵀ)P2 = P1� (10.15)

where� = diag (λ1, . . . , λn) is a diagonal matrix with elements from Re s < 0. Then, pre-

multiplying the last equality by x∗0P
∗
2 , post-multiplying by x0 and using the symmetricity

of P ∗
2 P1 = P ∗

1 P2 we get
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x∗0P
∗
2

[
AP1 −

(
BR−1Bᵀ)P2

]
x0

= −x∗0P ∗
2

(
BR−1Bᵀ)P2x0 = x∗0P ∗

2 P1�x0

= x∗0P ∗
1 P2�x0 = (P1x0)

∗ P2�x0 = 0

which implies (10.13). Pre-multiplying (10.12) by
[
I 0

]
, we get

−QP1 − AᵀP2 = P2� (10.16)

Post-multiplying (10.16) by x0 we obtain

(−QP1 − AᵀP2) x0 = −AᵀP2x0 = P2�x0 = λ0P2x0

where

λ0 = x
∗
0�x0

‖x0‖2

which implies

0 = AᵀP2x0 + P2λ0x0 = (Aᵀ + λ0I ) P2x0

Taking into account that, by (10.13),

(
BR−1Bᵀ)P2x0 = 0

it follows that

[ (Aᵀ + λ0I )
...
(
BR−1Bᵀ) ]P2x0 = 0

Then, the stabilizability of (A,B) (see Criterion 1 of stabilizability) implies that

P2x0 = 0. So,[
P1

P2

]
x0 = 0

and, since

[
P1

P2

]
forms the basis and, hence, has a full rank, we get x0 = 0, which is a

contradiction.

Necessity. Let P1 be invertible. Hence, by (10.15)

A− (
BR−1Bᵀ)P2P

−1
1 = P1�P

−1
1

Since the spectrum of the eigenvalues of P1�P
−1
1 coincides with one of �, we may

conclude that the matrix

Aclosed := A−
(
BR−1Bᵀ)P2P

−1
1
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is stable and, hence, the pair
(
A,BR−1Bᵀ) is stabilizable (in the corresponding definition

K = P2P
−1
1 ). It means that for all λ and x such that Ax = λx and Re λ ≥ 0, in other

words, for all unstable modes of A

x∗BR−1Bᵀ �= 0 (10.17)

which implies

x∗B �= 0

Indeed, by the contradiction, assuming that x∗B = 0, we obtain x∗BR−1Bᵀ = 0 which

violates (10.17). �

Corollary 10.2. The stabilizability of the pair (A,B) implies that the matrix

Aclosed := A−
(
BR−1Bᵀ)P2P

−1
1 (10.18)

is stable (Hurwitz).

Proof. Post-multiplying (10.12) by P−1
1 we get

H

[
I

P

]
=

[
I

P2

]
P1�P

−1
1 , P = P2P

−1
1

which after pre-multiplication by
[
I 0

]
gives

[
I 0

]
H

[
I

P2P
−1
1

]

= [
I 0

] [A− (
BR−1Bᵀ)P

−Q− AᵀP

]
= A− (

BR−1Bᵀ)P
= Aclosed =

[
I 0

] [ I
P2

]
P1�P

−1
1 = P1�P

−1
1

But P1�P
−1
1 is stable, and hence Aclosed is stable too. �

10.3.2 Unobservable modes

Theorem 10.5. Assuming that the pair (A,B) is stabilizable, the Hamiltonian matrix H
(10.2) has no pure imaginary eigenvalues if and only if the pair (C,A), whereQ = CᵀC,
has no unobservable mode on the imaginary axis, that is, for all λ and x1 �= 0 such that
Ax1 = λx1, λ = iω, it follows that Cx1 �= 0.
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Proof. Suppose that λ = iω is an eigenvalue and the corresponding eigenvector

[
x1
x2

]
�= 0.

Then

H

[
x1
x2

]
=

[
Ax1 − BR−1Bᵀx2
−CᵀCx1 − Aᵀx2

]
= iω

[
x1
x2

]
=

[
iωx1
iωx2

]

After rearranging, we have

(A− iωI) x1 = BR−1Bᵀx2
− (Aᵀ − iωI) x2 = CᵀCx1

(10.19)

which implies

(x2, (A− iωI) x1) =
(
x2, BR

−1Bᵀx2
) = ∥∥R−1/2Bᵀx2

∥∥
− (x1, (Aᵀ − iωI) x2) = − ((A− iωI) x1, x2) = (x1, CᵀCx1) = ‖Cx1‖2

As a result, we get

∥∥R−1/2Bᵀx2
∥∥+ ‖Cx1‖2 = 0

and, hence,

Bᵀx2 = 0, Cx1 = 0

In view of this, from (10.19) it follows that

(A− iωI) x1 = BR−1Bᵀx2 = 0

− (Aᵀ − iωI) x2 = CᵀCx1 = 0

Combining the four last equations we obtain

x∗2
[
(A− iωI) B ] = 0[

(A− iωI)
C

]
x1 = 0

The stabilizability of (A,B) provides the full range for the matrix
[
(A− iωI) B] and

implies that x2 = 0. So, it is clear that iω is an eigenvalue of H if and only if it is an

unobservable mode of (C,A), that is, the corresponding x1 = 0 too. �
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10.3.3 All real solutions

Theorem 10.6. Let � ⊂ C2n be an n-dimensional invariant subspace of H and let

P1, P2 ∈ Cn×n be two complex matrices such that the columns of

[
P1

P2

]
form a basis of

� and P1 is nonsingular. Then P = P2P
−1
1 is real if and only if � is conjugated

symmetric, i.e. z ∈ � implies that z̄ ∈ �.

Proof. Sufficiency. Since � is conjugated symmetric, then there exists a nonsingular

matrix N such that

[
P̄1

P̄2

]
=

[
P1

P2

]
N

Therefore,

P̄ = P̄2P̄
−1
1 = (P2N ) (P1N )−1 = P2NN−1P−1

1 = P2P
−1
1 = P

So, P is real.

Necessity. We have P̄ = P . By assumption P ∈ Rn×n and, hence,

Im

[
I

P

]
= � = Im

[
I

P̄

]

Therefore, � is a conjugated symmetric subspace. �

Remark 10.3. Based on this theorem, we may conclude that to form a basis in an
invariant conjugated symmetric subspace we need to use the corresponding pairs of the
complex conjugated symmetric eigenvectors or its linear nonsingular transformation
(if n is odd then there exists a real eigenvalue to which an eigenvector should be added
to complete a basis) which guarantees that P is real.

10.3.4 Numerical example

Example 10.2. Let

A =
[ −1 2

0 1

]
, B =

[
0

1

]
, R = I2×2, Q =

[
1 0

0 1

]

H =

⎡
⎢⎢⎣
−1 2 0 0

0 1 0 −1

−1 0 1 0

0 −1 −2 −1

⎤
⎥⎥⎦
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The eigenvalues λi and the corresponding eigenvectors vi are as follows:

λ1 = −1.4053+ 0.68902i v1 =

⎡
⎢⎢⎣

−0.4172− 0.50702i

0.25921− 4.0993× 10−2
i

−0.10449− 0.24073i

0.59522− 0.27720i

⎤
⎥⎥⎦

λ2 = −1.4053− 0.68902i v2 =

⎡
⎢⎢⎣

−0.50702− 0.4172i

−4.0993× 10−2+ 0.25921i

−0.24073− 0.10449i

−0.27720+ 0.59522i

⎤
⎥⎥⎦

λ3 = 1.4053+ 0.68902i v3 =

⎡
⎢⎢⎣
2.9196× 10−2+ 0.44054i

−0.11666+ 0.53987i

−0.49356− 0.24792i

0.41926− 0.1384i

⎤
⎥⎥⎦

λ4 = 1.4053− 0.68902i v4 =

⎡
⎢⎢⎣
−0.44054− 2.9196× 10−2

i

−0.53987+ 0.11666i

0.24792+ 0.49356i

0.1384− 0.41926i

⎤
⎥⎥⎦

Notice that (−iv2) = v̄1 and (iv4) = v̄3 which corresponds to the fact that the eigenvectors
stay the same being multiplied by a complex number. Then forming the basis in two-
dimensional subspace as[

v1 v2
]

=

⎡
⎢⎢⎣

−0.4172− 0.50702i −0.50702− 0.4172i

0.25921− 4.0993× 10−2
i −4.0993× 10−2+ 0.25921i

−0.10449− 0.24073i −0.24073− 0.10449i

0.59522− 0.27720i −0.27720 + 0.59522i

⎤
⎥⎥⎦

we may define

P1 :=
[ −0.4172− 0.50702i −0.50702− 0.4172i

0.25921− 4.0993× 10−2
i −4.0993× 10−2+ 0.25921i

]

P−1
1 =

[−0.13800+ 0.8726i 1.7068+ 1.4045i

−0.8726+ 0.13800i −1.4045− 1.7068i

]

and

P2:=
[−0.10449− 0.24073i −0.24073− 0.10449i

0.59522− 0.27720i −0.27720+ 0.59522i

]
Hence,

P = P 2P
−1
1 =

[
0.44896 0.31952

0.31949 2.8105

]
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and we may see that P is a real matrix. Also we have

Aclosed := A−
(
BR−1Bᵀ)P2P

−1
1

=
[ −1.0 2.0

−0.31949 −1.8105

]

with the eigenvalues:

λ1 (Aclosed) = −1.4053+ 0.68902i

λ2 (Aclosed) = −1.4053− 0.68902i

10.4 Nonnegative solutions

10.4.1 Main theorems on the algebraic Riccati equation solution

Theorem 10.7. The matrix Riccati equation (10.1)

PA+ AᵀP +Q− PBR−1BᵀP = 0 (10.20)

has a unique nonnegative definite solution P = Pᵀ ≥ 0 which provides stability to the
matrix

Aclosed := A− BR−1BᵀP (10.21)

corresponding to the original dynamic system

ẋ = Ax + Bu (10.22)

closed by the linear feedback control given by

u = −Kx = −R−1BᵀPx with K = R−1BᵀP (10.23)

if and only if the pair (A,B) is stabilizable and the pair (C,A) where

Q = CᵀC (10.24)

has no unobservable mode on the imaginary axis.

Proof. The existence of P = P2P
−1
1 and its symmetricity and reality are already proven.

We need to prove only that P ≥ 0. Let us represent (10.1) in the following form

PA+ AᵀP +Q−KᵀRK = 0

RK = BᵀP
(10.25)
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By (10.25) it follows that

PAclosed + Aᵀ
closedP = − (Q+KᵀRK)

Aclosed := A− BK, K = R−1BᵀP
(10.26)

Since (Q+KᵀRK) ≥ 0, by the Lyapunov Lemma 9.1 it follows that P ≥ 0. �

Example 10.3. Let us consider the following simple scalar dynamic system given by

ẋ = ax + bu, y = cx

with

a �= 0, b = 1, c = 0

Notice that this system is completely unobservable! The corresponding Riccati equation
(with R = r = 1) is 2ap − p2 = p (2a − p) = 0 and its solutions are p1 = 0, p2 = 2a.
The case a = 0 corresponds to the case when the Hamiltonian (22.70) has the eigenvalues
(0, i0) on the imaginary axis. That’s why this case is disregarded.

1. The case a < 0. There exists the unique nonnegative solution p = p1 = 0 of the
Riccati equation which makes the closed-loop system stable. Indeed,

aclosed := a − p = a < 0

2. The case a > 0. Here the unique nonnegative solution of the Riccati equation making
the closed-loop system stable is p = p2 = 2a, since

aclosed := a − p = −a < 0

So, the observability of a linear system is not necessary for making the closed-loop
system stable with a stationary feedback designed as in (10.26)!

Theorem 10.8. (On a positive definite solution) If under the assumptions of the previ-
ous theorem additionally the pair (C,A) is observable, i.e. the matrix O (9.63) has the
full column rank, then the solution P of the matrix Riccati equation (10.20) is strictly
positive, that is, P > 0.

Proof. Let us rewrite (10.20) as

PA+ AᵀP − PBR−1BᵀP = −Q (10.27)

Suppose that for some vector x̃ �= 0 the condition P x̃ = 0 holds. Then the post- and

pre-multiplication of (10.27) by x̃ and x̃∗ leads to the following identity

0 = −x̃∗Qx̃ = −‖Cx̃‖2 = 0
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This means that Cx̃ = 0, or, equivalently, x̃ belongs to the unobservable subspace.

Post-multiplying (10.27) by x̃ implies also that

PAx̃ = 0

Using this fact, the post- and pre-multiplication of (10.27) by Ax̃ and x̃∗Aᵀ leads to the

identity

0 = −x̃∗AᵀQAx̃ = −‖CAx̃‖2 = 0

This means that CAx̃ = 0, or, equivalently, Ax̃ belongs to the unobservable subspace.

Also it follows that

PA2x̃ = 0

Iterating this procedure we get that, for any k = 0, 1, . . . , n− 1, the following identities

hold:

CAkx̃ = 0, PAkx̃ = 0

This means exactly that Ox̃ := 0 where x̃ �= 0. So, O is not a full column rank that

contradicts the assumption of theorem, and, hence, P > 0. Theorem is proven. �

Corollary 10.3. If there exists a vector x̃ �= 0 such that P x̃ = 0, then the pair (C,A) is
unobservable.

Summary 10.1. The matrix Riccati equation (10.1) has a unique positive definite
solution:

1. if and only if the pair (A,B) is stabilizable and the pair (C,A) has no neutral (on
the imaginary axis) unobservable modes, that is,

if Ax = λx, λ = iω, then Cx �= 0

2. and if, in addition, the pair (C,A) is observable, that is,

rank O = n
The next simple example shows that the observability of the pair (C,A) is not neces-

sary for the existence of a positive definite solution.

Example 10.4. (Zhou, Doyle & Glover (1996)) Indeed, for

A =
[
1 0

0 2

]
, B =

[
1

1

]
, C = [

0 0
]

such that (A,B) is stabilizable, but (C,A) is not observable (even not detectable) the
solution of the Riccati equation (10.1) is

P =
[

18 −24

−24 36

]
> 0
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This chapter follows the fundamental book of Boyd et al. (1994) where there is shown

that a wide variety of problems arising in system and control theory can be reduced to

a few standard convex (or quasiconvex) optimization problems involving linear matrix
inequalities (LMIs). Here we will also touch briefly the, so-called, interior point method
Nesterov & Nemirovsky (1994) providing a powerful and efficient instrument to solve

numerical LMIs arising in control theory.

11.1 Matrices as variables and LMI problem

11.1.1 Matrix inequalities

Definition 11.1. A linear matrix inequality (LMI) has the block form

0< F (X) :=
[
F11 (X) F12 (X)

F21 (X) F22 (X)

]

=
[
S11 +G11XH 11 +Hᵀ

11XG
ᵀ
11 S12 +G12XH 12 +Hᵀ

12XG
ᵀ
12

S21 +G21XH 21 +Hᵀ
21XG

ᵀ
21 S22 +G22XH 22 +Hᵀ

22XG
ᵀ
22

]
(11.1)

where the matrices X ∈ Rn×n, Sii ∈ Rn×n (i = 1, 2) are symmetric and

Sij = Sji ∈ Rn×n, Gij = Gji ∈ Rn×n, Hij = Hji ∈ Rn×n (i, j = 1, 2)

such that each block Fij (X) is an affine transformation (mapping) from Rn×n to Rn×n.
This inequality means that F (X) is positive definite, i.e. uᵀF (X) u > 0 for all nonzero
u ∈ R2n. A nonstrict LMI has the form

F (X) ≥ 0 (11.2)

191



192 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Both inequalities (11.1) and (11.2) are closely related since the last one is equivalent to

the following inequality

F̃ (X) := F (X)+Q ≥ Q > 0

where Q ∈ R2n×2n is any positive definite matrix. So, without loss of generality we will

consider below only strict LMIs (11.1).

Multiple LMIs

F (1) (X) > 0, . . . , F (p) (X) > 0 (11.3)

can be expressed as a single LMI

diag
(
F (1) (X) , . . . , F (p) (X)

)
> 0 (11.4)

Therefore we will make no distinction between a set of LMIs (11.3) and a single

LMI (11.1).

Remark 11.1. Nonlinear (convex) inequalities may be converted to LMI form using Schur
complements. The basic idea of this relation is as follows: the LMI (11.1) is equivalent
(see (7.14)) to the following systems of matrix inequalities:

F11 (X) > 0

F22 (X) > 0

F11 (X)− F12 (X) F
−1
22 (X) F

ᵀ
12 (X) > 0

F22 (X)− Fᵀ
12 (X) F

−1
11 (X) F12 (X) > 0

(11.5)

11.1.2 LMI as a convex constraint

Lemma 11.1. The LMI (11.1) is a convex constraint on X, i.e., the set

{X | F(X) > 0} (11.6)

is convex.

Proof. Let for some X, Y ∈ Rn×n

F (X) > 0, F (Y ) > 0
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Define Z := λX + (1− λ) Y for some λ ∈ [0, 1]. Then

F(Z)=
[
S11 +G11ZH 11 +Hᵀ

11ZG
ᵀ
11 S12 +G12ZH 12 +Hᵀ

12ZG
ᵀ
12

S21 +G21ZH 21 +Hᵀ
21ZG

ᵀ
21 S22 +G22ZH 22 +Hᵀ

22ZG
ᵀ
22

]

= λ
[
S11 +G11XH 11 +Hᵀ

11XG
ᵀ
11 S12 +G12XH 12 +Hᵀ

12XG
ᵀ
12

S21 +G21XH 21 +Hᵀ
21XG

ᵀ
21 S22 +G22XH 22 +Hᵀ

22XG
ᵀ
22

]

+ (1− λ)
[
S11 + λG11YH 11 + λHᵀ

11YG
ᵀ
11 S12 + λG12YH 12 + λHᵀ

12YG
ᵀ
12

S21 +G21YH 21 +Hᵀ
21XG

ᵀ
21 S22 +G22YH 22 +Hᵀ

22YG
ᵀ
22

]

= λF(X)+ (1− λ) F (Y ) > 0

which proves the result. �

11.1.3 Feasible and infeasible LMI

Given an LMI F(X) > 0 (11.1), the corresponding LMI problem is to find a feasible

Xfeas such that F(Xfeas) > 0 or determine that this LMI is infeasible, or, in other words,

LMI has no solution. Represent LMI F(X) > 0 (11.1) in the form

0 < F(X) = S +G(X) (11.7)

where

S :=
[
S11 S12
S21 S22

]

G(X) :=
[
G11XH11 +Hᵀ

11XG
ᵀ
11 G12XH12 +Hᵀ

12XG
ᵀ
12

G21XH21 +Hᵀ
21XG

ᵀ
21 G22XH22 +Hᵀ

22XG
ᵀ
22

]
LMI F(X) > 0 (11.1) is infeasible means that the affine set

{
F(X) > 0 | X ∈ Rn×n

}
does not intersect the positive-definite cone. From convex analysis this is equivalent to

the existence of a linear functional l that is positive on the positive-definite cone and

nonpositive on the affine set of the matrix. By the Riss theorem 18.14 the linear functionals

that are positive on the positive-definite cone are of the form l = Tr(LF), L ≥ 0, L �= 0.

Here there is used the fact that the scalar product in the matrix space is Tr(·). Since l is
non-positive on the affine set

{
F(X) > 0 | X ∈ Rn×n

}
we may conclude that

Tr (LS) ≤ 0, Tr (LG) = 0 (11.8)

So, to prove that LMI (11.1) is infeasible means find a nonzero matrix L ≥ 0, L �= 0

which verifies (11.8) where S and G is the representation (11.7) of F(X).
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11.2 Nonlinear matrix inequalities equivalent to LMI

11.2.1 Matrix norm constraint

The matrix norm constraint

‖Z(X)‖ < 1 (11.9)

(where Z(X) ∈ Rn×q depends affinely on X), or, equivalently,

In×n − Z(X)Zᵀ(X) > 0

is represented as

[
In×n Z(X)

Zᵀ(X) In×n

]
> 0 (11.10)

11.2.2 Nonlinear weighted norm constraint

The nonlinear weighted norm constraint

cᵀ(X)P−1 (X) c(X) < 1 (11.11)

(where c(X) ∈ Rn, 0 < P(X) ∈ Rn×n depend affinely on X) is expressed as the

following LMI

[
P(X) c(X)

cᵀ(X) 1

]
> 0 (11.12)

11.2.3 Nonlinear trace norm constraint

The nonlinear trace norm constraint

Tr
(
Sᵀ(X)P−1 (X) S(X)

)
< 1 (11.13)

(where S(X) ∈ Rn×q, 0 < P(X) ∈ Rn×n depend affinely on X) is handled by introducing

a new (slack) variable Q = Qᵀ ∈ Rp×p and the following LMI in X

Tr(Q) < 1,

[
Q Sᵀ(X)
S(X) P (X)

]
> 0 (11.14)
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11.2.4 Lyapunov inequality

The Lyapunov inequality

XA+ AᵀX < 0 (11.15)

where A ∈ Rn×n is a stable matrix, is equivalent to the following LMI

[−XA− AᵀX 0n×n
0n×n In×n

]
> 0 (11.16)

11.2.5 Algebraic Riccati–Lurie’s matrix inequality

The algebraic Riccati–Lurie’s matrix inequality

XA+ AᵀX +XBR−1BᵀX +Q < 0 (11.17)

where A,B,Q = Qᵀ, R = Rᵀ > 0 are given matrices of appropriate sizes and

X = Xᵀ is variable, is a quadratic matrix inequality in X. It may be represented as the

following LMI:

[−XA− AᵀX −Q XB

BᵀX R

]
> 0 (11.18)

11.2.6 Quadratic inequalities and S-procedure

Let us consider the quadratic functions given by

Fi ( ζ ) = ζᵀAiζ + 2b
ᵀ
i ζ + ci (i = 0, 1, . . . , L)

with Ai = A
ᵀ
i (i = 0, 1, . . . , L). Consider also the following conditions on F0 (ζ ),

F1 (ζ ) , . . . , FL(ζ ):

F0 ( ζ ) ≥ 0 for all ζ such that Fi ( ζ ) ≥ 0 (i = 1, . . . , L) (11.19)

Obviously if there exist such numbers τi ≥ 0 (i = 1, . . . , L) such that for all ζ

F0 (ζ )−
L∑
i=1

τiFi (ζ ) ≥ 0 (11.20)

then (11.19) holds.
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Remark 11.2. It is a nontrivial fact that for L = 1 the converse also holds, provided
that there is some ζ 0 such that F0

(
ζ 0
)
> 0. The Farkaš lemma states the fact that

in the general case, when L ≥ 1 and when all functions Fi (ζ ) are affine, i.e. Ai = 0

(i = 0, 1, . . . , L), (11.19) and (11.20) are equivalent.

The last inequality (11.20) can be represented as

eᵀSe ≥ 0, e := ζ/ ‖ζ‖, ζ �= 0

S :=
[
A0 b0
b

ᵀ
0 c0

]
−

L∑
i=1

τi

[
Ai bi
b

ᵀ
i ci

]
(11.21)

which is equivalent to the LMI inequality S ≥ 0.

11.3 Some characteristics of linear stationary systems (LSS)

11.3.1 LSS and their transfer function

Let us consider a linear stationary system given by the following equations

ẋ (t) = Ax (t)+ Bww (t)
x (0)= x0 is fixed

z (t) = Czxx (t)+Dzww (t)

⎫⎬
⎭ (11.22)

where xt ∈ Rn is the state of the system at time t , zt ∈ Rm is its output and wt ∈ Rk is

an external input (or noise). The matrix A is assumed to be stable and the pair (A,Bw)

is controllable, or, equivalently, the controllability grammian Wc defined as

Wc :=
∞∫

t=0

eAtBwB
ᵀ
w e

Aᵀt dt (11.23)

is strictly positive definite, i.e. Wc > 0. Applying the Laplace transformation to (11.22)

we found that the transfer function of this LSS is equal to the following matrix

H (s) = Czx (sIn×n − A)−1 Bw +Dzw (11.24)

where s ∈ C.

11.3.2 H2 norm

The H2 norm of the LSS (11.22) is defined as

‖H (s)‖2 :=

√√√√√ 1

2π
Tr

⎛
⎝ ∞∫
ω=0

H (jω)H ∗ (jω) dω

⎞
⎠ (11.25)
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It is finite if and only if Dzw = 0. In this case it can be calculated as follows

‖H (s)‖22 = Tr
(
CzxWcC

ᵀ
zx

)
(11.26)

If Czx is an affine function of some matrix K , i.e. Czx = Czx (K), then the problem of

finding some K fulfilling the inequality

Tr
(
CzxWcC

ᵀ
zx

) ≤ γ 2 (11.27)

(here γ > 0 is a tolerance level of this LSS) is really LMI since by (11.14) the inequality

(11.27) can be rewritten as

Tr(Q) ≤ 1,

[
γ −1Q Czx (K)

Cᵀ
zx (K) W

−1
c

]
> 0 (11.28)

with a slack matrix variable Q.

11.3.3 Passivity and the positive-real lemma

The linear stationary system (11.22) with wt and zt of the same size is said to be

passive if

T∫
t=0

wᵀ
t zt dt ≥ 0 (11.29)

for all solutions of (11.22) (corresponding to all admissible w(·)) with x0 = 0 and all

T ≥ 0. Passivity can be equivalently expressed in terms of the transfer function (11.24),

namely, (11.22) is passive if and only if

H (s)+H ∗ (s) = 2ReH (s) ≥ 0 for all Re s > 0 (11.30)

that’s why the passivity property is sometimes called real-positiveness. It is said that the

system (11.22) has dissipation η ≥ 0 if

T∫
t=0

wᵀ
t zt dt ≥ η

T∫
t=0

wᵀ
t wt dt (11.31)

for all trajectories with x0 = 0 and all T ≥ 0.

Remark 11.3. Evidently, if (11.22) has dissipation η = 0, then it is passive (but not
inverse).
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Suppose that there exists a quadratic function V (x) := xᵀPx, P > 0, such that for

all xt and wt, satisfying (11.22), the following inequality holds

d

dt
V (xt )− 2wᵀ

t zt + 2ηwᵀ
t wt ≤ 0 (11.32)

Then, integrating this inequality within [0, T ]-interval with x0 = 0 yields

V (xt )−
T∫

t=0

wᵀ
t zt dt + η

T∫
t=0

wᵀ
t wt dt ≤ 0

and, since,

0 ≤ V (xT ) ≤
T∫

t=0

wᵀ
t zt dt − η

T∫
t=0

wᵀ
t wt dt

we obtain (11.31). So, if (11.32) holds, then one may guarantee the η-dissipation for

(11.22). Simple substitution

d

dt
V (xt )= 2x

ᵀ
t P ẋt = 2x

ᵀ
t P [Axt + Bwwt ]

= xᵀ
t [PA+ AᵀP ] xt + xᵀ

t [PBw]wt + wᵀ
t [Bᵀ

wP ] xt

and

zt = Czxxt +Dzwwt

into (11.32) implies

(
xt
wt

)ᵀ [
PA+ AᵀP PBw − Czx
Bᵀ
wP − Cᵀ

zx 2ηIn×n −
(
Dᵀ
zw +Dzw

)]( xt
wt

)
≤ 0

or, equivalently, as the following LMI

[−PA− AᵀP −PBw + Czx
−Bᵀ

wP + Cᵀ
zx −2ηIn×n +

(
Dᵀ
zw +Dzw

)] ≥ 0 (11.33)

So, if there exists a matrix P = Pᵀ > 0 satisfying (11.33) then the linear system (11.22)

is η-dissipative.

Lemma 11.2. (The positive-real lemma) Under the technical condition

Dᵀ
zw +Dzw > 2ηIn×n (11.34)
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the sufficient condition of η-dissipativity (11.33) is equivalent to the existence of the
positive definite solution P to the following Riccati inequality

PA+AᵀP
+ [PBw − Czx]

[(
Dᵀ
zw +Dzw

)− 2ηIn×n
]−1 [

Bᵀ
wP − Cᵀ

zx

] ≤ 0
(11.35)

Remark 11.4. It is possible to show that LMI (11.35) is feasible if and only if (11.22) is
passive.

11.3.4 Nonexpansivity and the bounded-real lemma

The linear stationary system (11.22) is said to be nonexpansive if

T∫
t=0

zᵀt zt dt ≤
T∫

t=0

wᵀ
t wt dt (11.36)

for all solutions of (11.22) (corresponding to all admissible w(·)) with x0 = 0 and all

T ≥ 0. Nonexpansivity can be equivalently expressed in terms of the transfer function

(11.24), namely, (11.22) is nonexpansive if and only if the following bounded-real
condition holds

H ∗ (s)H (s) ≤ I for all Re s > 0 (11.37)

that is why this condition is sometimes called nonexpansivity. This is sometimes exp-

ressed as

‖H‖∞ ≤ 1 (11.38)

where

‖H‖∞ := sup {λmax (H
∗ (s)H (s)) | Re s > 0}

= sup {λmax (H
∗ (iω)H (iω)) | ω ∈ (−∞,∞)} (11.39)

Suppose that there exists a quadratic function V (x) := xᵀPx, P > 0, such that for

all xt and wt, satisfying (11.22), the following inequality holds

d

dt
V (xt )− 2wᵀ

t wt + 2zᵀt zt ≤ 0 (11.40)

Then, integrating this inequality within the [0, T ]-interval with x0 = 0 yields

V (xt )−
T∫

t=0

wᵀ
t wt dt +

T∫
t=0

zᵀt zt dt ≤ 0
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and, since,

0 ≤ V (xT ) ≤
T∫

t=0

wᵀ
t wt dt −

T∫
t=0

zᵀt zt dt

we obtain (11.36). So, if (11.40) holds, then one may guarantee the nonexpansivity for

(11.22). Simple substitution

d

dt
V (xt )= 2x

ᵀ
t P ẋt = 2x

ᵀ
t P [Axt + Bwwt ]

= xᵀ
t [PA+ AᵀP ] xt + xᵀ

t [PBw]wt + wᵀ
t [Bᵀ

wP ] xt

and

zt = Czxxt +Dzwwt

into (11.40) implies

(
xt
wt

)ᵀ [
PA+ AᵀP + Cᵀ

zxCzx PBw + Cᵀ
zxDzw

Bᵀ
wP +Dᵀ

zwCzx Dᵀ
zwDzw − I

](
xt
wt

)
≤ 0

or, equivalently, as the LMI

[−PA− AᵀP − Cᵀ
zxCzx −PBw − Cᵀ

zxDzw
−Bᵀ

wP −Dᵀ
zwCzx I −Dᵀ

zwDzw

]
≥ 0 (11.41)

So, if there exists a matrix P = Pᵀ > 0 satisfying (11.41) then the linear system (11.22)

is nonexpansive.

Lemma 11.3. (The bounded-real lemma) Under the technical condition

Dᵀ
zwDzw �= I (11.42)

the sufficient condition of nonexpansivity (11.36) is equivalent to the existence of the
positive definite solution to the following Riccati inequality

PA+ AᵀP + Cᵀ
zxCzx[

PBw − Cᵀ
zxDzw

] [
I −Dᵀ

zwDzw
]−1 [

Bᵀ
wP −Dᵀ

zwCzx
] ≤ 0

(11.43)

Remark 11.5. It is possible to show that LMI (11.43) is feasible if and only if (11.22) is
nonexpansive.
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11.3.5 H∞ norm

The condition

‖H‖∞ ≤ γ, 0 < γ (11.44)

can be represented as

∥∥∥H̃∥∥∥
∞
≤ 1

with the transfer function H̃ (s) given by

H̃ (s) = C̃zx (sIn×n − A)−1 Bw + D̃zw
C̃zx := γ −1Czx, D̃zx := γ −1Dzx

(11.45)

Therefore, based on the bounded-real lemma (see (11.41)), the constraint (11.44) would

be valued if

[
PA+ AᵀP + C̃ᵀ

zxC̃zx PBw + C̃ᵀ
zxD̃zw

Bᵀ
wP + D̃ᵀ

zwC̃zx D̃ᵀ
zwD̃zw − I

]

=
[
PA+ AᵀP + γ −2Cᵀ

zxCzx PBw + γ −2Cᵀ
zxDzw

Bᵀ
wP + γ −2Dᵀ

zwCzx γ −2Dᵀ
zwDzw − I

]
≤ 0

which is equivalent to the feasibility of the following LMI

[
P̃A+ AᵀP̃ + Cᵀ

zxCzx P̃Bw + Cᵀ
zxDzw

Bᵀ
w P̃ +Dᵀ

zwCzx Dᵀ
zwDzw − γ 2I

]
≤ 0

0 < P̃ = γ 2P

(11.46)

11.3.6 γ -Entropy

The γ -entropy for the system (11.22) with the transfer function H (11.24) is defined

in the following way:

Iγ (H) :=⎧⎪⎪⎨
⎪⎪⎩
−γ 2

2π

∞∫
ω=−∞

log det
(
I − γ 2H (jω)H ∗ (jω)

)
dω if ‖H‖∞< γ

∞ otherwise

(11.47)
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When ‖H‖∞ < γ , Iγ (H) can be calculated as

Iγ (H) = Tr
(
Bᵀ
wPBw

)
(11.48)

where P is a symmetric matrix with smallest possible maximum singular value among

all solutions of the following algebraic Riccati equation

PA+ AᵀP + Cᵀ
zxCzx + γ −2PBwB

ᵀ
wP = 0

Therefore the γ -entropy constraint Iγ (H) < λ is equivalent to LMI in P, γ and λ,

namely,

⎡
⎣PA+ AᵀP PBw C

ᵀ
zx

Bᵀ
wP −γ 2I 0

Czx 0 −I

⎤
⎦ ≤ 0

D̃zw = 0, Tr
(
Bᵀ
wPBw

) ≤ λ
(11.49)

11.3.7 Stability of stationary time-delay systems

Consider a stationary time-delay system given by

ẋt = Axt +
L∑
i=1

Aixt−τi (11.50)

where xt ∈ Rn and τi > 0. If the Lyapunov–Krasovskii functional

V (x, t) := xᵀ
t P xt +

L∑
i=1

t∫
s=t−τi

xᵀ
s Pixs ds

P > 0, Pi > 0 (i = 1, . . . , L)

(11.51)

satisfies

d

dt
V (x, t) < 0

for every xt satisfying (11.50), then this system is asymptotically stable, namely,

xt → 0 as t →∞
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This can be verified by the simple calculation

d

dt
V (x, t) = yᵀ

t Wyt

W :=

⎡
⎢⎢⎢⎢⎢⎢⎣

[
PA+ AᵀP +

L∑
i=1

Pi

]
PA1 · · · PAL

A
ᵀ
1 P −P1 · · · 0
...

...
. . .

...

A
ᵀ
LP 0 · · · −PL

⎤
⎥⎥⎥⎥⎥⎥⎦

y
ᵀ
t = (

xt , xt−τ1 , · · ·, xt−τL
)

(11.52)

providing that the matrices P > 0, Pi > 0 (i = 1, . . . , L) are satisfying LMI W < 0.

11.3.8 Hybrid time-delay linear stability

Let us consider the following hybrid time-delay linear system given by

ẋ1 (t) = A0x1 (t)+ A1x2 (t − τ)
x2 (t) = A2x1 (t)+ A3x2 (t − τ)
x1 (0)= x10, x2 (θ) = ψ (θ) θ ∈ [−τ, 0]

(11.53)

where A0 ∈ Rn×n, A1 ∈ Rn×m, A2 ∈ Rm×n, A3 ∈ Rm×m are the given matrices of

the corresponding dimensions and ψ : R1 → Rm is a function from C [−τ, 0]. Notice
that the first equation in (11.53) is an ordinary differential equation and the second one

is a difference equation in continuous time that justifies the name “hybrid time-delay

system”.

We are interested in finding the conditions of asymptotic stability for this system.

Following Rasvan (1975), let us introduce the energetic (Lyapunov–Krasovskii-type)

functional

V (x1(t), x2) := xᵀ
1 (t) P x1 (t)+

t∫
θ=t−τ

x
ᵀ
2 (θ) Sx2 (θ) dθ

0 ≤ P = Pᵀ ∈ Rn×n, 0 ≤ S = Sᵀ ∈ Rm×m

(11.54)

Its derivative on the trajectories of (11.53) is as follows:

d

dt
V (x1(t), x2) = zᵀ (t)Wz (t) (11.55)
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where

zᵀ (t) := (x1(t), x2 (t − τ)) (11.56)

and

W =
[
A

ᵀ
0 P + PA0 + Aᵀ

2 SA2 PA1 + Aᵀ
2 SA3

A
ᵀ
1 P + Aᵀ

3 SA2 A
ᵀ
3 SA3 − S

]
(11.57)

As it is shown in Rasvan (1975), the existence of the matrices P and S such that the

following LMI holds

W < 0

implies the asymptotic stability of (11.53).

11.4 Optimization problems with LMI constraints

11.4.1 Eigenvalue problem (EVP)

The eigenvalue problem (EVP) consists of the minimization of the maximum eigenvalue

of an n× n matrix A(P ) that depends affinely on a variable, subject to LMI (symmetric)

constraint B(P ) > 0, i.e.,

λmax(A(P ))→ min
P=Pᵀ

B(P ) > 0
(11.58)

This problem can be equivalently represented as follows:

λ→ min
λ,P=Pᵀ[

λIn×n − A(P ) > 0 0

0 B(P )

]
> 0

(11.59)

11.4.2 Tolerance level optimization

The tolerance level optimization problem can be represented in the following manner:

γ → min
0<γ,P=Pᵀ

PA+ AᵀP + CᵀC + γ −1PBBᵀP < 0

(11.60)
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Equivalently, it can be rewritten as an optimization problem with LMI constraints:

γ → min
0<γ,0<P=Pᵀ

⎡
⎣−PA− AᵀP − CᵀC PB 0

BᵀP γ I 0

0 0 P

⎤
⎦ > 0

(11.61)

11.4.3 Maximization of the quadratic stability degree

The quadratic stability degree of a stable n×n matrix A is defined as a positive value

α satisfying the matrix inequality

AᵀP + PA < −αP

for some positive definite matrix P . The problem of the maximization of the quadratic

stability degree consists of the following optimization problem

α→ max
0<α,0<P=Pᵀ

AᵀP + PA+ αP < 0

(11.62)

which can be expressed as an optimization with LMI constraint, namely,

α→ max
0<α,P=Pᵀ[−AᵀP − PA− αP 0

0 P

]
> 0

(11.63)

11.4.4 Minimization of linear function Tr (CPCᵀ) under the Lyapunov-type
constraint

Lemma 11.4. (Polyak & Sherbakov (2002)) Let

1. the matrix A ∈ Rn×n be Hurwitz;
2. the pair (A,B) be controllable, i.e. there exists a matrix K such that (A+KB) is

Hurwitz.
Then for any matrix C ∈ Rk×n the solution of the problem

Tr (CPCᵀ)→ min
P≥0

(11.64)

under the constraint

AP + PAᵀ + BBᵀ ≤ 0 (11.65)
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is attained on the Lyapunov matrix equation

AP ∗ + P ∗Aᵀ + BBᵀ = 0 (11.66)

Proof. Suppose that the minimizing solution satisfies the equation

AP + PAᵀ + BBᵀ = −Q < 0

Then, by Lemma 9.1,

P =
∞∫

t=0

eAt (Q+ BBᵀ) eA
ᵀt dt ≥

∞∫
t=0

eAtBBᵀeA
ᵀt dt = P ∗

and, hence,

Tr (CPCᵀ) = Tr (CP ∗Cᵀ)+ Tr

⎛
⎝C ∞∫

t=0

eAtQeA
ᵀt dtCᵀ

⎞
⎠≥ Tr (CP ∗Cᵀ)

This means that P ∗ is a minimizer. Lemma is proven. �

11.4.5 The convex function log det A−1 (X) minimization

First notice that log det A−1 (X) is a convex function of A. We will encounter the

following:

log detA−1 (X)→ min
X=Xᵀ∈Rn×n

(11.67)

subjected to the following constraints

A(X) > 0, B(X) > 0 (11.68)

where A(X), B(X) are symmetric matrices that depend affinely on X.

Example 11.1. As an example of the problem (11.67)–(11.68) consider the following:
find a minimal ellipsoid

ε := {z | zᵀPz ≤ 1} , P > 0 (11.69)

containing the set of given points vi (i = 1, . . . , L), i.e. vi ∈ ε. Since the volume of ε is
proportional to (det P)−1/2, minimizing log det P−1 is the same as minimizing the volume
of ε, this problem is converted into the following:

log det P−1 → min
P∈Rn×n

P > 0, v
ᵀ
i P vi ≤ 1

(11.70)
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11.5 Numerical methods for LMI resolution

11.5.1 What does it mean “to solve LMI”?

There exist several efficient methods for LMI resolution. By “solve an LMI” we

mean here:

• determine whether or not the LMI (or the corresponding problem) is feasible;
• if it is, compute a feasible point with “an objective value” that exceeds the global

minimum by less than some prespecified accuracy.

What does “an objective value” mean? It depends on each concrete problem to be

solved. Here we will assume that the problem we are solving has at least one “optimal

point”, i.e., the constraints are feasible.

To realize the numerical methods described below, first, let us represent the matrix X ∈
Rn×n as the corresponding extended vector x ∈ Rn

2

obtained by the simple implementation

of the operator col, that is,

x := colX (11.71)

11.5.2 Ellipsoid algorithm

In a feasible problem, we may consider any feasible point as being optimal. The basic
idea of the ellipsoid algorithm is as follows:

1. One may start with an ellipsoid that is guaranteed to contain an optimal point.

2. Then the cutting plane for our problem is computed which passes through the center

point x(0) of the initial ellipsoid ε(0). This means that we need to find a nonzero vector

g(0) (namely, a vector orthogonal to the plane to be computed) such that an optimal

point lies in the half-space{
z ∈ Rn

2 | g(0)ᵀ (
z− x(0)) < 0

}
(11.72)

(Below, we shall present some examples of how to calculate g(0) in some concrete

problems.)

3. After this we may conclude that the sliced half-ellipsoid

ε(0) ∩
{
z ∈ Rn

2 | g(0)ᵀ (
z− x(0)) < 0

}
contains an optimal point.

4. Then we compute the ellipsoid ε(1) of a minimum volume that contains this sliced

half-ellipsoid. This ellipsoid ε(1) is guaranteed to contain an optimal point, but its

volume is expected to be less than the volume of the initial ellipsoid ε(0).

5. The process is then iterated.

More explicitly, this algorithm may be described as follows. Any ellipsoid ε may be

associated with some positive definite matrix, that is,

ε :=
{
z ∈ Rn

2 | (z− a)ᵀA−1 (z− a) ≤ 1
}

(11.73)
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where A = Aᵀ > 0. The minimum volume ellipsoid ε̃ containing the sliced half-ellipsoid

{
z ∈ Rn

2 | (z− a)ᵀA−1 (z− a) ≤ 1, gᵀ (z− a) < 0
}

is given by the matrix Ã and the vector ã, namely,

ε̃ :=
{
z ∈ Rn

2 | (z− ã)ᵀ Ã−1 (z− ã) ≤ 1
}

ã = a − Ag̃

m+ 1
, m := n2 > 1

Ã = m2

m2 − 1

(
A− 2

m+ 1
Ag̃g̃ᵀA

)

g̃ = g√
gᵀAg

(11.74)

(In the case of one variable (m = 1) the minimal length interval containing a half-interval

is the half-interval itself.) So, the ellipsoid algorithm starts with the initial points x(0) and

the initial matrix A(0). Then for each intermediate pair x(k) and A(k) (k = 0, 1, 2, . . .)

one may compute a vector g(k) and then calculate

x(k+1) = x(k) − A(k)g̃

m+ 1
, m := n2 > 1

A(k+1) = m2

m2 − 1

(
A(k) − 2

m+ 1
A(k)g̃g̃ᵀA(k)

)

g̃ = g(k)√
g(k)ᵀA(k)g(k)ᵀ

It turns out that the volume vol ε(k) = det A(k) of these ellipsoids decreases geometrically,

that is,

vol ε(k+1) ≤ e−k/2m vol ε(k)

This means that the recursion above generates a sequence of ellipsoids that is guaranteed

to contain an optimal point and converges to it geometrically. It may be proven that

this algorithm converges more quickly, namely, in “polynomial time” (see Nesterov &

Nemirovsky (1994) and references within).

The next examples illustrate the rule of selection of the nonzero orthogonal vector g

orthogonal to the cutting plane which is specified for each concrete problem.
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Example 11.2. If LMI is represented in the form

F (x) := F0 +
m∑
i=1

xiFi > 0 (11.75)

where Fi (i = 0, 1, 2, . . . , m) are symmetric matrices. If x is infeasible, this means that
there exists a nonzero vector u such that

uᵀF (x) u ≤ 0

Define g = (g1, . . . , gm)ᵀ by

gi = −uᵀFiu (11.76)

Then for any z satisfying gᵀ (z− x) ≥ 0 it follows

uᵀF (z) u= uᵀ
[
F0 +

m∑
i=1

ziFi

]
u = uᵀF0u+

m∑
i=1

ziu
ᵀFiu

= uᵀF0u−
m∑
i=1

zigi = uᵀF0u− gᵀz = uᵀF0u+ gᵀx − gᵀ (z− x)

= uᵀF (x) u− gᵀ (z− x) ≤ 0

So, any feasible point belongs to the half-plane

{z ∈ Rm | gᵀ (z− x) < 0}

or, in other words, this g, given by (11.76), is a cutting plane for this LMI problem at
the point x.

Example 11.3. If we deal with the minimization problem of linear function cᵀx subjected
LMI (11.75), that is,

cᵀx → min
x∈Rn

2

F (x) := F0 +
m∑
i=1

xiFi > 0

we encounter two possible situations:

1. x is infeasible, i.e., F (x) ≤ 0; in this case g can be taken as in the previous example
(11.76) since we are discarding the half-plane{

z ∈ Rn
2 | gᵀ (z− x) > 0

}
because all such points are infeasible;
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2. x is feasible, i.e., F (x) > 0; in this case g can be taken as

g = c
since we are discarding the half-plane

{
z ∈ Rn

2 | gᵀ (z− x) > 0
}

because all such points have an objective value larger than x and hence cannot be
optimal.

11.5.3 Interior-point method

For the LMI problem

F (x) := F0 +
m∑
i=1

xiFi > 0

let us define the, so-called, barrier function φ (x) for the feasible set:

φ (x) :=
{
log det F−1 (x) if F (x) > 0

∞ if F (x) ≤ 0
(11.77)

Suppose then that the feasible set is nonempty and bounded. This implies that the matrices

F1, . . . , Fm are linearly independent (otherwise the feasible set will contain a line, i.e. be

unbounded). It can be shown that φ (x) is strictly convex on the feasible set and, hence,

it has a unique minimizer which we denote by x∗, that is,

x∗ := argmin
x
φ (x)

This point is referred to as the analytical center of the LMI F (x) > 0. It is evident that

x∗ := arg max
F(x)>0

det F (x)

Remark 11.6. Two LMIs F (x) > 0 and T ᵀF (x) T > 0 have the same analytical center
provided T is nonsingular.

Let us apply Newton’s method for the search of the analytical center x∗ of LMI, starting

from a feasible initial point:

x(k+1) = x(k) − α(k)H−1
(
x(k)

)
g
(
x(k)

)
(11.78)
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where 0 < α(k) is a damping factor at the kth iteration, H
(
x(k)

)
is the Hessian and

g
(
x(k)

)
is the gradient, respectively, of φ (x) at the point x(k). In Nesterov & Nemirovsky

(1994) it is shown that if the damping factor is

α(k) :=
{

1 if δ
(
x(k)

) ≤ 1/4

1/
(
1+ δ (x(k))) otherwise

δ
(
x(k)

) :=√
gᵀ (

x(k)
)
H−1

(
x(k)

)
g
(
x(k)

) (11.79)

then this step length always results in x(k+1), that is,

F
(
x(k+1)

)
> 0

and convergence of x(k) to x∗ when k→∞.

There exist other interior-point methods (for details, see Boyd et al. (1994)).
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12.1 �-matrix inequalities

Lemma 12.1. For any matrices X, Y ∈ Rn×m and any symmetric positive definite matrix
� ∈ Rn×n the following inequalities hold

XT Y + Y TX ≤ XT�X + Y T�−1Y (12.1)

and

(X + Y )ᵀ (X + Y ) ≤ XT (In×n +�)X + Y T (In×n +�−1
)
Y (12.2)

Proof. Define

H := XT�X + Y T�−1Y −XT Y − Y TX

Then for any vector v we may introduce the vectors

v1 := �1/2Xv and v2 := �−1/2Yv

which implies

vTHv = vT1 v1 + vT2 v2 − vT1 v2 − vT2 v1 = ‖v1 − v2‖2 ≥ 0 (12.3)

or, in matrix form:

H ≥ 0

which is equivalent to (12.3). The inequality (12.2) is a direct consequence of (12.1). �

213
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12.2 Matrix Abel identities

12.2.1 Matrix summation by parts

Lemma 12.2. (Matrix summation by parts) For any matrices

At ∈ Rm×k, Bt ∈ Rk×l

and any integer numbers n0 and n ≥ n0 the following identity holds:

n∑
t=n0
AtBt = An

n∑
t=n0
Bt −

n∑
t=n0
(At − At−1)

t−1∑
s=n0
Bs (12.4)

(here
∑t

s=n0 Bs := 0 if t < n0).

Proof. Let us use induction. For n = n0 the identity (12.4) is true since

n0∑
t=n0
AtBt = An0Bn0 = An0

n0∑
t=n0
Bt −

n0∑
t=n0
(At − At−1)

t−1∑
s=n0
Bs

= An0Bn0 −
(
An0 − An0−1

) n0−1∑
s=n0
Bs = An0Bn0

Suppose now that it is valid for some n > n0 and then prove that it is also true for n+ 1,

we have

n+1∑
t=n0
AtBt = An+1Bn+1 +

n∑
t=n0
AtBt = An+1Bn+1

+An
n∑
t=n0
Bt −

n∑
t=n0
(At − At−1)

t−1∑
s=n0
Bs = An+1Bn+1 + An+1

n+1∑
t=n0
Bt

−An+1

(
Bn+1 +

n∑
t=n0
Bt

)
+ An

n∑
t=n0
Bt −

n∑
t=n0
(At − At−1)

t−1∑
s=n0
Bs

= An+1

n+1∑
t=n0
Bt − (An+1 − An)

n∑
t=n0
Bt −

n∑
t=n0
(At − At−1)

t−1∑
s=n0
Bs

= An+1

n+1∑
t=n0
Bt −

n+1∑
t=n0
(At − At−1)

t−1∑
s=n0
Bs

Lemma is proven. �
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12.2.2 Matrix product identity

Lemma 12.3. (Matrix product identity) For any n×n matrices At
(
t = t0, . . . , tf

)
the

following identity holds

tf∏
t=t0
At +

tf∑
t=t0

[(
tf∏

s=t+1

As

)
(In×n − At)

]
= In×n (12.5)

(here
∏t

s As := In×n if t < s and
∏tf
t=t0 At := Atf · · · At0 ).

Proof. Again let us use the induction method. For tf = t0 the identity (12.5) is valid

since

t0∏
t=t0
At +

t0∑
t=t0

[(
t0∏

s=t+1

As

)
(In×n − At)

]
= At0

+
(

t0∏
s=t0+1

As

)(
In×n − At0

) = At0 + In×n (In×n − At0) = In×n

Assuming that (12.5) is valid for some tf > t0 one can demonstrate that it is valid for

tf + 1. Indeed,

tf+1∏
t=t0
At +

tf+1∑
t=t0

[(
tf+1∏
s=t+1

As

)
(In×n − At)

]
= Atf+1

tf∏
t=t0
At

+
⎛
⎝ tf+1∏
s=tf+2

As

⎞
⎠(
In×n − Atf+1

)+ tf∑
t=t0

[(
tf+1∏
s=t+1

As

)
(In×n − At)

]

= Atf+1

tf∏
t=t0
At +

(
In×n − Atf+1

)

+Atf+1

tf∑
t=t0

[(
tf∏

s=t+1

As

)
(In×n − At)

]
= (
In×n − Atf+1

)

+Atf+1

(
tf∏
t=t0
At +

tf∑
t=t0

[(
tf∏

s=t+1

As

)
(In×n − At)

])

= (
In×n − Atf+1

)+ Atf+1In×n = In×n

Lemma is proven. �
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12.3 S-procedure and Finsler lemma

12.3.1 Daneš’ theorem

Let F(x) = xᵀFx and G(x) = xᵀGx be real quadratic forms with F,G ∈ Rn×n.
Consider the mapping Rn → R2 defined by

η1 = F(x), η2 = G(x) (12.6)

which transforms any point from Rn into the real plane R2. The following theorem

represents the important geometric result (Daneš 1972) arising in the theory of quadratic

forms.

Theorem 12.1. (Daneš’ theorem) The range

P := {
(η1, η2) ∈ R2 | η1 = F(x), η2 = G(x), x ∈ Rn

}
(12.7)

of the transformation (12.6) is a convex cone, i.e., the set P together with y ∈ R2 contains
also λy for any λ ≥ 0 (P is a cone) and together with vectors y(1), y(2) ∈ R2 contains
also y = αy(1) + (1− α) y(2) for any α ∈ [0, 1] (P is a convex set).

Proof. Let y = (η1, η2)ᵀ be a point in R2.

(a) Obviously, P is a cone since there exists a point x ∈ Rn such that

y = (F(x), G(x))

Then

λy =
(
F(
√
λx), G(

√
λx)

)
This means that λy ∈ P .

(b) Show now that P is a convex set. Let

y(1) = (
F(x(1)), G(x(1))

)
, y(2) = (

F(x(2)), G(x(2))
)

In other words, we need to show that for any point y(0) =
(
η
(0)
1 , η

(0)
2

)ᵀ ∈ [
y(1), y(2)

]
there exists a vector x(0) ∈ Rn such that

y(0) = (
F(x(0)), G(x(0))

)
Let Aη1 +Bη2 = C be the line L crossing the points y(1) and y(2). Consider the function

ϕ (ξ1, ξ2) := AF(ξ1x(1) + ξ2x(2))+ BG(ξ1x(1) + ξ2x(2))
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and the mapping R2 → R2:

y = (
F(ξ1x(1) + ξ2x(2)), G(ξ1x(1) + ξ2x(2))

)
Since the points (1, 0) and (0, 1) are transformed to the points y(1) and y(2), respectively,

then in view of the properties

F(x) = F(−x), G(x) = G(−x)

the points (−1, 0) and (0,−1) are transformed also to the same points y(1) and y(2).

Consider then the set M defined as

M := {(ξ1, ξ2) : ϕ (ξ1, ξ2) = C}

This set is nonempty since, evidently, (±1, 0), (0,±1) ∈ M. The function ϕ (ξ1, ξ2) may

be represented as

ϕ (ξ1, ξ2) = αξ 21 + 2βξ1ξ2 + γ ξ 22
where α, β, γ are some real numbers. If α = β = γ = 0 (and, hence, C = 0), then M
is the complete plane R2. Let |α| + |β| + |γ | > 0. Denote δ := αγ − β2. The curve

ϕ (ξ1, ξ2) = C is

• an ellipse, if δ > 0;
• a hyperbola, if δ < 0;
• a pair of parallel direct lines (maybe coincided), if δ = 0.

Notice also that this curve is symmetric with respect to an origin (0, 0). So, either

M is a connected set or it is represented by two sets symmetric with respect to the

origin.

Case 1: M is a connected set. Then the points (1, 0) and (0, 1) may be connected by a

continuous curve without leaving the set M. Let ξ1 = ξ1 (t), ξ2 = ξ2 (t) (0 ≤ t ≤ 1) be

this connecting curve and y = y(t) be the corresponding continuous line. Obviously, this

line lies in L and connects the points y(1) and y(2).

Case 2: M is two sets symmetric with respect the origin. In this case the points (1, 0)

and (0, 1) lie in different connected parts of the curve M = M1∪M2, say, (1, 0) ∈ M1

and (0, 1) ∈ M2. Then by symmetricity of the curve M with respect the origin, the

points (1, 0) and (−1, 0) belong to the different connected curves, i.e., (−1, 0) ∈ M2.

So, we may connect the points (−1, 0) ∈ M2 and (0, 1) ∈ M2 (whose images are y(1)

and y(2), respectively) by a continuous curve ξ1 = ξ1 (t), ξ2 = ξ2 (t) (0 ≤ t ≤ 1) staying

in M2 such that y = y(t) is again a continuous line lying in L.
In both cases y(t) ∈ L (0 ≤ t ≤ 1). This curve “covers” the interval

[
y(1), y(2)

]
, that

is, for any point y(0) ∈ [
y(1), y(2)

]
there exists t0 ∈ [0, 1], such that y(0) = y (t0). The

point y(0) = (ξ1 (t0), ξ2 (t0)) will correspond to the vector x(0) = ξ1 (t0) x(1) + ξ2 (t0) x(2)
verifying

y(0) = (
F(x(0)), G(x(0))

)
Theorem is proven. �
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12.3.2 S-procedure

In this subsection we follow Gelig et al. (1978).

Theorem 12.2. (S-procedure for two quadratic forms) Let

F(x) ≥ 0 for all x where G(x) ≥ 0 (12.8)

Then there exist real numbers

τ1 ≥ 0, τ2 ≥ 0, τ1 + τ2 > 0 (12.9)

such that for all x ∈ Rn

τ1F(x)− τ2G(x) ≥ 0 (12.10)

Proof. By Daneš’ theorem the set P is a convex cone. Define Q as

Q := {(η1, η2) : η1 < 0, η2 ≥ 0}

By the assumptions of this theorem P ∩Q = ∅. Since P and Q are both convex cones,

there exists (loosely) a plane separating them, that is, there exists τ1, τ1 (nonobligatory

nonnegative) |τ1| + |τ2| > 0 such that

τ1η1 − τ2η2 ≤ 0 if (η1, η2) ∈ Q
1η1 − τ2η2 ≥ 0 if (η1, η2) ∈ P (12.11)

Taking into account that (−1, 0) ∈ Q and (−ε, 1) ∈ Q (ε > 0), then τ1 (−1) ≤ 0 implies

τ1 ≥ 0 and −τ1ε − τ2 ≤ 0

Taking ε → 0 gives τ2 ≥ 0. Since (F(x),G(x)) ∈ P for any x ∈ Rn, then the second

inequality in (12.11) leads to (12.10). Theorem is proven. �

Corollary 12.1. Let there exist a vector x(0) such that

G(x(0)) > 0 (12.12)

Then the following two claims are equivalent:

1.

F(x) ≥ 0 for all x where G(x) ≥ 0

2. there exists τ ≥ 0 such that

F(x)− τG(x ≥ 0) for all x ∈ Rn (12.13)
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Proof. Since (12.10) holds it is sufficient to show that τ1 > 0. Suppose the converse,

namely, that τ1 = 0. Then by (12.10) it follows that τ2G(x) ≤ 0 for all x, and hence,

particularly, for x = x(0), that implies τ2 = 0. So, τ1 = τ2 = 0, but this contradicts the

condition (12.9). Hence, τ1 > 0. Defining τ := τ2/τ1 we obtain the main result. Corollary

is proven. �

Corollary 12.2. (The case of the strict basic inequality) Again let there exist a vector
x(0) such that

G(x(0)) > 0

Then the following two claims are equivalent:

1.

F(x) > 0 for all x where G(x) ≥ 0, x �= 0 (12.14)

2. there exists τ ≥ 0 such that

F(x)− τG(x) > 0 for all x ∈ Rn, x �= 0 (12.15)

Proof. Evidently, (12.15) implies (12.14). Indeed, if τ = 0, then F(x) > 0 for any x �= 0.

If τ > 0, then F(x) > τG (x) and F(x) > 0 for any x �= 0 such that G(x) ≥ 0. Now, let

(12.14) hold. Define the set J := {x : ‖x‖ = 1, G(x) ≥ 0}. It is bounded and closed. So,

by (12.14) F(x) > 0 for any x ∈ J . Hence, inf
x∈J

F(x) = ε > 0, and, as a result, F(x)−
ε ≥ 0 for any x ∈ J . If G(x) ≥ 0, x �= 0, then

x

‖x‖ ∈ J . That’s why F
(
x

‖x‖
)
−ε ≥ 0,

or equivalently, F(x)− ε ‖x‖2 ≥ 0. So, F̃(x) := F(x)− ε ‖x‖2 ≥ 0 under G(x) ≥ 0 and

the previous Corollary (12.1) there exists τ ≥ 0 such that F(x) − ε ‖x‖2 − τG(x) ≥ 0.

Hence, F(x)− τG(x) ≥ ε ‖x‖2 > 0. Corollary is proven. �

Remark 12.1. The claim, analogous to (12.2) where nonstrict constraint G(x) ≥ 0 is
changed to the strict one, i.e., G(x) > 0, is not correct which can be shown with a simple
counterexample.

The following matrix interpretation of Theorem 12.2 takes place.

Theorem 12.3. Let inequalities

Gi (x) := xᵀGix ≤ αi (i = 1, . . . , m) (12.16)

imply

F(x) := xᵀFx ≤ α0 (12.17)
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where αi (i = 0, 1, . . . , m) are some real numbers. If there exists τi ≥ 0 (i = 1, . . . , m)

such that

F ≤
m∑
i=1

τiGi , α0 ≥
m∑
i=1

τiαi (12.18)

then (12.16) implies (12.17). Inversely, if (12.16) implies (12.17) and, additionally, one
of the following conditions is fulfilled:
1.

m = 1

2.

m = 2, n ≥ 3

and there exists a vector x(0), μ1, μ2 such that

Gi (x(0)) < αi (i = 1, 2)

μ1G1 + μ2G2 > 0

then there exists τi ≥ 0 (i = 1, . . . , m) such that (12.18) holds.
For m > 2 the analogue result is not true.

Proof. Sufficiency is trivial. Necessity follows from the previous Theorem 12.2 and

Corollaries 12.1 and 12.2. The simple counterexample may show that this theorem is not

valid for m > 2. �

12.3.3 Finsler lemma

The following statement is a partial case of Theorems 12.2 and 12.3.

Lemma 12.4. (Finsler 1937) Let F(x) := xᵀFx ≥ 0 (or strictly > 0) for all x ∈ Rn,

x �= 0 and such that

G(x) := xᵀGx = 0 (12.19)

Then there exists a real τ such that

F + τG ≥ 0 (or strictly > 0) (12.20)

Proof. This lemma is a partial case of Corollary 12.2 if we can show that in here

the assumption (12.12) is not essential. Indeed, if (12.12) holds then Corollary 12.2

implies (12.20). If x(0) does not exist, where G(x(0)) > 0, we deal only with two

situations:

(a) there exist x(0) where G(x(0)) < 0,

(b) G(x) = 0 for all x.
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In case (a) changing G to (−G) we obtain the previous situation when (12.12) holds. In

case (b) (12.20) holds automatically. �

Below we will illustrate the role of the Finsler lemma in the quadratic stabilization

analysis (Polyak & Sherbakov 2002). Consider the linear plant

ẋ = Ax + Bu (12.21)

with the linear feedback given by

u = Kx (12.22)

The corresponding closed-loop system is

ẋ = Aclx
Acl := A+ BK (12.23)

The quadratic form V (x) = xᵀPx will be the Lyapunov function for (12.23) then and

only then when

A
ᵀ
clP + PAcl < 0, P > 0

or, equivalently, when there exist matrices K and P > 0 such that

(A+ BK)ᵀ P + P (A+ BK) < 0 (12.24)

This relation represents a nonlinear matrix inequality with respect to two matrices K

and P. Fortunately, the variable changing

Y := KQ, Q := P−1 (12.25)

transforms (12.24) into a linear one by pre- and post-multiplying (12.24) by Q:

QAᵀ + AQ+ YᵀBᵀ + BY < 0, Q > 0 (12.26)

Using the Finsler lemma 12.4 the variable Y may be excluded from (12.26). Indeed, the

quadratic function

F(x) := xᵀ (YᵀBᵀ + BY) x = 2 (Bᵀx, Yx)

is equal to zero at the subspace Bᵀx = 0, or when

G(x) := (Bᵀx, Bᵀx) = xᵀ (BBᵀ) x = 0
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Supposing additionally that G(x(0)) > 0 for some x(0) (but this is not a real constraint)

Lemma 12.4 implies that there exists a real τ such that

F(x)+ τG(x) ≥ 0

that is,

YᵀBᵀ + BY ≥ −τBBᵀ

We may take τ > 0 since BBᵀ ≥ 0. So, (12.26) implies

QAᵀ + AQ− τBBᵀ ≤ QAᵀ + AQ+ YᵀBᵀ + BY < 0, Q > 0

But the left inequality is reachable if we take

Y := −τ
2
Bᵀ

Since K = YQ−1 does not depend on τ , we may take τ = 2 and obtain the following

result.

Claim 12.1. If Q is the solution of the Lyapunov inequality

QAᵀ + AQ− 2BBᵀ < 0

then the regulator (12.22) with

K = −BᵀQ−1

stabilizes the system (12.21) and the quadratic function

V (x) = xᵀQ−1x

is the Lyapunov function for the closed system (12.23).

12.4 Farkaš lemma

12.4.1 Formulation of the lemma

The Farkaš lemma (Farkaš 1902) is a classical result belonging to a class of the,

so-called, “theorem of the alternative” which characterizes the optimality conditions of

different optimization problems.
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Lemma 12.5. (Farkaš 1902) Let A be a real m × n matrix and c be a real nonzero
vector. Then

1. either the primal system

Ax ≥ 0, cᵀx < 0 (12.27)

has a solution x ∈ Rn

2. or the dual system

Aᵀy = c, y ≥ 0 (12.28)

has a solution y ∈ Rm,
but never both.

The question of which of the two systems is solvable is answered by considering the

bounded least squares problem discussed below.

12.4.2 Axillary bounded least squares (LS) problem

Here we follow Dax (1997). Consider the following bounded LS problem:

minimize ‖Aᵀy − c‖2 by y ∈ Rm (12.29)

subject to y ≥ 0 (12.30)

where ‖·‖ denotes the Euclidean norm.

Lemma 12.6. The vector y∗ ∈ Rm solves the problem (12.29)–(12.30) if and only if y∗

and the residual vector

r∗ := Aᵀy∗ − c (12.31)

satisfy the conditions

y∗ ≥ 0, Ar∗ ≥ 0

(y∗)ᵀAr∗ = 0
(12.32)

Proof.
(a) Necessity. Assume that y∗ solves (12.29)–(12.30) and consider the one-parameter

quadratic function

fi (θ) :=
∥∥Aᵀ (

y∗ + θe(i))− c∥∥2 = ∥∥θa(i) + r∗∥∥2
, i = 1, . . . , m

(12.33)
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where
(
a(i)

)ᵀ
is the ith row of A, θ is a real variable and e(i) denotes the ith column

of the m×m unit matrix Im×m. Then, clearly, θ = 0 solves the problem

minimize fi (θ) = θ 2
∥∥a(i)∥∥2 + 2θ

(
a(i)

)ᵀ
r∗ + ‖r∗‖2

subject to y∗i + θ ≥ 0

since for any y (θ) := y∗ + θe(i)

‖Aᵀy (θ)− c‖2 ≥ ‖Aᵀy∗ − c‖2

and y (0) := y∗. Therefore, taking into account that

f
′
i (0) =

(
a(i)

)ᵀ
r∗

we have that y∗i > 0 implies
(
a(i)

)ᵀ
r∗ = 0, while y∗i = 0 implies

(
a(i)

)ᵀ
r∗ ≥ 0,

which constitute (12.32).

(b) Sufficiency. Conversely, assume that (12.32) holds and let z be an arbitrary point in

Rm such that z ≥ 0. Define also u := z − y∗. Then y∗i = 0 implies ui ≥ 0, while

(12.32) leads to

uᵀAr∗ ≥ 0

Hence, the identity

‖Aᵀz− c‖2 = ‖Aᵀy∗ − c‖2 + 2uᵀAr∗ + ‖Aᵀu‖2

shows that

‖Aᵀz− c‖2 ≥ ‖Aᵀy∗ − c‖2

Lemma is proven.

�
12.4.3 Proof of Farkaš lemma

Notice that cᵀx < 0 implies x �= 0, while Aᵀy = c means y �= 0.

1. First, show that it is not possible that both systems are solvable. This can be seen from

the following consideration: if both (12.27) and (12.28) hold then

cᵀx = (Aᵀy)ᵀ x = yᵀAx ≥ 0

which contradicts cᵀx < 0.

2. Assuming that y∗ exists and combining (12.31) and (12.32) gives

cᵀr∗ = (Aᵀy∗ − r∗)ᵀ r∗ = (Aᵀy∗)ᵀ r∗ − (r∗)ᵀ r∗ = −‖r∗‖2
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which leads to the following conclusion:

Conclusion 12.1. Let y∗ solve (12.29)–(12.30). If r∗ = 0 then y∗ solves (12.28). Other-
wise, r∗ solves (12.27) and cᵀr∗ = −‖r∗‖2.
3. It remains to establish the existence of a point y∗ solving (12.29)–(12.30). It follows

from the observation that

Z := {Aᵀy | y ≥ 0}

is a closed set in Rn. Using the closure of Z, we obtain that

B := {z ∈ Z | ‖z− c‖ ≤ ‖c‖}

is a nonempty closed bounded set of Rn. Note also that ϕ (x) := ‖x − c‖2 is a

continuous function on x. Therefore, by the well-known Weierstrass’ theorem, ϕ (x)

achieves its minimum over B. Denote it by z∗. Since B ⊆ Z, there exists y∗ ∈ Rm

such that y∗ ≥ 0 and z∗ = Aᵀy∗. Therefore, y∗ solves (12.29)–(12.30). However, y∗

is not necessarily unique. By (6.29) from Chapter 6 dealing with the pseudoinverse,

any vector

y∗ = u+ (Aᵀ)+ c with any u ≥ 0

is a solution of (12.29)–(12.30).

12.4.4 The steepest descent problem

Corollary 12.3. Let y∗ and r∗ �= 0 solve (12.29)–(12.30). Then the normalized vector
r∗/ ‖r∗‖ solves the steepest descent problem

minimize cᵀx

subject to Ax ≥ 0 and ‖x‖ = 1

Proof. Let x satisfy the constraints above. Then

(y∗)ᵀAx ≥ 0

while the Cauchy–Bounyakovski–Schwartz inequality gives∣∣(r∗)ᵀ x∣∣ ≤ ‖r∗‖ · ‖x‖ = ‖r∗‖

Combining these two relations shows that

cᵀx = (Aᵀy∗ − r∗)ᵀ x = (Aᵀy∗)ᵀ x − (r∗)ᵀ x
≥ − (r∗)ᵀ x ≥ − ∣∣(r∗)ᵀ x∣∣ ≥ −‖r∗‖



226 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Therefore, since (Aᵀy∗)ᵀ r∗ = 0 and

cᵀr∗/ ‖r∗‖ = [(Aᵀy∗)ᵀ r∗ − (r∗)ᵀ r∗] / ‖r∗‖ = −‖r∗‖

the claim is proven. �

12.5 Kantorovich matrix inequality

Theorem 12.4. If A is an n× n positive definite Hermitian matrix and e ∈ Cn is a unite
vector (i.e. e∗e = 1), then

1 ≤ (e∗Ae) (e∗A−1e
) ≤ 1

4

(√
λmax (A)

λmin (A)
+
√
λmin (A)

λmax (A)

)2

(12.34)

Proof. The left-hand side of (12.34) follows from the Cauchy–Bounyakovski–Schwartz

inequality

1 = √
e∗e = √

e∗A1/2A−1/2e =
√(
A1/2e,A−1/2e

)

≤ ∥∥A1/2e
∥∥ · ∥∥A−1/2e

∥∥ =√
(e∗Ae)

(
e∗A−1e

) ≤ (e∗Ae) (e∗A−1e
)

The right-hand side of (12.34) can be stated in the following manner using the matrix

� inequality (valid in a scalar case for any ε > 0):

√
(e∗Ae)

(
e∗A−1e

) ≤ 1

2

[
(εe∗Ae)+ ε−1

(
e∗A−1e

)]
= 1

2
e∗
[
εA+ ε−1A−1

]
e ≤ 1

2
λmax

(
εA+ ε−1A−1

)
= 1

2
λmax

(
T
[
εA+ ε−1A−1

]
T −1

)
= 1

2
λmax

(
diag

[
ελi + ε−1λ−1

i

]
i=1,...,n

)
= 1

2
max
i

(
ελi + ε−1λ−1

i

)
Here we have used TAT −1 = diag (λ1, . . . , λn). The function

f (λ) := ελ+ ε−1λ−1

is convex for all λ ∈ [λmin (A), λmax (A)] and therefore it takes its maximum in one of

the boundary points, that is,

max
i

(
ελi + ε−1λ−1

i

)
= max

{(
ελmax (A)+ ε−1λ−1

max (A)
)
,
(
ελmin (A)+ ε−1λ−1

min (A)
)}
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Taking ε := 1√
λmax (A) λmin (A)

we have

max
{(
ελmax (A)+ ε−1λ−1

max (A)
)
,
(
ελmin (A)+ ε−1λ−1

min (A)
)}

=
√
λmax (A)

λmin (A)
+
√
λmin (A)

λmax (A)

which implies

√
(e∗Ae)

(
e∗A−1e

) ≤ 1

2

(√
λmax (A)

λmin (A)
+
√
λmin (A)

λmax (A)

)

and, as the result, we obtain (12.34). �

Remark 12.2. The right-hand side of (12.34) is achievable for A = λI since in this case
λmax (A) = λmin (A) = λ and

1

4

(√
λmax (A)

λmin (A)
+
√
λmin (A)

λmax (A)

)2

= 1
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In this part of the book we will follow the following classical publications: Rudin (1976),

Apostol (1974), Fuchs & Shabat (1964) and Lavrentiev & Shabat (1987).

13.1 Ordered sets

13.1.1 Order

Definition 13.1. Let S be a set of elements. An order on S is a relation, denoted by <,
with the following properties:

1. If x ∈ S and y ∈ S then one and only one of the statements is true:

x < y, x = y, y < x

2. If x, y, z ∈ S and, in addition, x < y and y < z, then x < z.

The statement “x < y” is referred to as “x is less (or smaller) than y”. The notation

“x ≤ y” is the negation of “y > x”.

Definition 13.2. An ordered set is a set S in which an order is defined.

13.1.2 Infimum and supremum

Definition 13.3. Suppose S is an ordered set and E ⊂ S. If there exists an element
β ∈ S such that x ≤ β for any x ∈ E, we say that the subset E is bounded above and
call β an upper bound of E. A low bound is defined in the same way with “≥” in place
of “≤”.

231
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Definition 13.4. Suppose S is an ordered set and E ⊂ S is bounded above. Suppose
also there exists an α ∈ S such that

(a) α is an upper bound for E.
(b) If γ < α then γ is not an upper bound of E.

Then α is called the least upper bound of E or the supremum of E which will be
written as

α = supE = sup
x∈E
x (13.1)

The greatest lower bound, or infimum of E, which is bound below, is defined in the
same manner, namely,

α = inf E = inf
x∈E x (13.2)

This means that α is a low bound of E and there is no β > α which is low bound too.

13.2 Fields

13.2.1 Basic definition and main axioms

Definition 13.5. A field is a set F of elements with two operations:

1. Addition;
2. Multiplication.

Both mentioned operations should satisfy the following “field axioms”:

(A): Axioms for addition
(A1) If x, y ∈ F then (x + y) ∈ F .

(A2) x + y = y + x for all x, y ∈ F which means that addition is commutative.
(A3) (x + y) + z = y + (x + z) for all x, y, z ∈ F which means that addition is

associative.
(A4) F contains an element called 0 such that x + 0 = x for all x ∈ F .

(A5) For any x ∈ F there exists an element (−x) ∈ F such that x + (−x) = 0.

(M): Axioms for multiplication
(M1) If x, y ∈ F then xy ∈ F .

(M2) xy = yx for all x, y ∈ F which means that multiplication is commutative.
(M3) (xy) z = y (xz) for all x, y, z ∈ F which means that multiplication is

associative.
(M4) F contains an element called 1 such that 1x = x for all x ∈ F .

(M5) For any x ∈ F and x �= 0 there exists an element 1/x ∈ F such that

x (1/x) = 1.

(D): The distributive law
For all x, y, z ∈ F the following identity holds:

x (y + z) = xy + xz
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13.2.2 Some important properties

Proposition 13.1. (Resulting from axioms (A))
(a) If x + y = x + z then y = z (cancellation law).
(b) If x + y = x then y = 0.
(c) If x + y = 0 then y = −x.
(d) − (−x) = x.
Proposition 13.2. (Resulting from axioms (M))
(a) If xy = xz and x �= 0 then y = z.
(b) If xy = x and x �= 0 then y = 1.
(c) If xy = 1 and x �= 0 then y = 1/x.
(d) If x �= 0 then 1/(1/x) = x.

Proposition 13.3. (Resulting from (A), (M) and (D))
(a) 0x = 0.

(b) If x �= 0 and y �= 0 then xy �= 0.

(c) (−x) y = (−x) y = − (xy) .
(d) (−x) (−y) = xy.
Definition 13.6. An ordered field is a field F which is also an ordered set such that
(a) x + y < x + z if x, y, z ∈ F and y < z.
(b) xy > 0 if x, y ∈ F and x > 0, y > 0 or x < 0, y < 0.

If x > 0 we call x positive and if x < 0 we call x negative.

In every ordered field the following statements are true.

Proposition 13.4.
(a) If x > 0 then −x < 0.

(b) If x > 0 and y < z then xy < xz.
(c) If x < 0 and y < z then xy > xz.
(d) If x �= 0 then x2 := xx > 0.

(e) If 0 < x < y then 0 < 1/y < 1/x.

Below we will deal with two commonly used fields: real and complex. It will be
shown that the real field is an ordered field and the complex field is nonordered.

13.3 The real field

13.3.1 Basic properties

The following existence theorem holds.

Theorem 13.1. There exists an ordered field R which possesses the following properties:

• If E ⊂ R and E is not empty and bounded above, then supE exists in R;
• R contains the set Q of all rational numbers r (r = m/n where m, n are integers
(. . .− 1, 0, 1, . . .) and n �= 0) is a subfield.
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Proof of this theorem is rather long and tedious and therefore is omitted. It can be

found in the appendix to Chapter 1 of Rudin (1976).

Definition 13.7. The members of R are called real numbers and R itself is called the
real field.

The members of R have several simple properties given below.

Claim 13.1.
(a) Archimedean property: If x, y ∈ R and x > 0, then there exists a positive integer

number n such that nx > y.
(b) Q-density property in R: If x, y ∈ R and x < y, then there exists a rational

number p ∈ Q such that x < p < y.
(c) The root existence: For any nonnegative real x ∈ R (x ≥ 0) and any integer n > 0

there is one and only one real y ∈ R such that yn = x. This number y is written as

y = n
√
x = x1/n

13.3.2 Intervals

Definition 13.8.
• The open interval (a, b) is the set of real numbers x such that a < x < b, i.e.,

(a, b) := {x : a < x < b}
• The closed interval [a, b] is the set of real numbers x such that a ≤ x ≤ b, i.e.,

[a, b] := {x : a ≤ x ≤ b}

• The semi-open intervals [a, b) and (a, b] are the sets of real numbers such that a ≤
x < b and a < x ≤ b, i.e.,

[a, b) := {x : a ≤ x < b}
(a, b] := {x : a < x ≤ b}

13.3.3 Maximum and minimum elements

Definition 13.9. Let S be a set of real numbers.
(a) If a smallest upper bound α = sup S is also a member of S then α is called the largest

number or the maximum element of S and denoted by max S, that is, in this case

α = max S = sup S (13.3)

(b) If the greatest low bound β = inf S is also a member of S then β is called the smallest
number or the minimum element of S and denoted by max S, that is, in this case

β := min S = inf S (13.4)
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Example 13.1.

1. For S = [a, b] it follows that

max S = sup S = b
min S = inf S = a

2. For S = (a, b) it follows that
max S does not exist, sup S = b
min S does not exist, inf S = a

3. For S = [0, 1− 1/2, 1− 1/3, . . . , 1− 1/k, . . .) it follows that

max S does not exist, sup S = 1

min S = inf S = 0

13.3.4 Some properties of the supremum

Lemma 13.1. (Approximation property) Let S be a nonempty set of real numbers with
supremum, say b = sup S. Then S contains numbers arbitrarily close to its supremum,
that is, for every a < b there is some x ∈ S such that

a < x ≤ b

Proof. One has that x ≤ b for all x ∈ S. Supposing that x ≤ a for all x ∈ S we obtain that
a is an upper bound for S which is strictly less than b which contradicts the assumption

that b is the lowest upper bound. So, x > a. �

Lemma 13.2. (Additive property) Given nonempty sets A and B of R, let C denote the
set

C := {z ∈ R : z = x + y, x ∈ A, y ∈ B}

If each of A and B has a supremum, then C has a supremum too and

sup C = supA+ supB (13.5)

Proof. Denoting a := supA and b := supB we have that z = x + y ≤ a + b. Hence,
(a + b) is a supremum for C. So, C has a supremum, say c := sup C and c ≤ a+b. Show
next that a + b ≤ c. By Lemma 13.1 it follows that there exist x ∈ A and y ∈ B such

that

a − ε < x ≤ a, b − ε < y ≤ b

for any chosen ε > 0. Adding these inequalities we find a + b − 2ε < x + y or,

equivalently, a + b < x + y + 2ε. So, a + b < c + 2ε. Taking ε → 0, we obtain that

a + b ≤ c and together with c ≤ a + b states that c = a + b. �
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Lemma 13.3. (Comparison property) Given nonempty sets S and T of R such that
s ≤ t for any s ∈ S and t ∈ T . If T has an infimum β = inf T then S has a supremum and

sup S ≤ inf T (13.6)

Proof. sup S exists by the property s ≤ t . Denote α := sup S. By Lemma 13.1 for any

ε > 0 there exists s ∈ S such that α − ε < s and there is t such that β + ε > t . So,

α − ε < s ≤ t < β + ε

or, α < β + 2ε. Tending ε to zero leads to (13.6). �

Lemma 13.4. If A ⊆ B ⊂ R, then

supA ≤ supB
inf A ≥ inf B (13.7)

Proof. It evidently follows from (13.1) and (13.2). �

13.3.5 Absolute value and the triangle inequality

Definition 13.10. For any real number x the absolute value of x, denoted by |x|, is
defined as follows:

|x| =
{
x if x ≥ 0

−x if x < 0
(13.8)

Evidently, |x| ≥ 0 always.

Lemma 13.5. (The fundamental inequality) If |x| ≤ a then

−a ≤ x ≤ a (13.9)

Proof. This is a simple consequence of (13.8). �

Theorem 13.2. (The triangle inequality) For any real x, y ∈ R we have

|x + y| ≤ |x| + |y| (13.10)

Proof. Adding two inequalities

− |x| ≤ x ≤ |x|
− |y| ≤ y ≤ |y|
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gives

− |x| − |y| ≤ x + y ≤ |x| + |y|

which implies

|x + y| ≤ |x| + |y|

Theorem is proven. �

Corollary 13.1. For any real x, y, z ∈ R we have
1.

|x − z| ≤ |x − y| + |y − z| (13.11)

2.

|x ± y| ≥ |x| − |y| (13.12)

3. For any real numbers xi ∈ R
(
i = 1, n

)
∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ ≥ |x1| − |x2| − . . .− |xn|

Proof. The inequality (13.11) follows from (13.10) written as

|x̃ + ỹ| ≤ |x̃| + |ỹ| (13.13)

if we take x̃ := x − z and ỹ := − (y − z). The inequality (13.12) follows from (13.13)

if we take x̃ := x ± y and ỹ := ∓y. The third inequality may be easily proven by

induction. �

13.3.6 The Cauchy–Schwarz inequality

Theorem 13.3. (The Cauchy–Schwarz inequality) For any real numbers xi, yi ∈ R(
i = 1, n

)
the following inequality holds

(
n∑
i=1

xiyi

)2

≤
(

n∑
i=1

x2i

)(
n∑
i=1

y2i

)
(13.14)
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Proof. For any z ∈ R we have

0 ≤
n∑
i=1

(xiz+ yi)2 =
n∑
i=1

[
z2 (xi)

2 + 2zxiyi + y2i
]

= Az2 + 2Bz+ C

where

A :=
n∑
i=1

x2i , B :=
n∑
i=1

xiyi, C :=
n∑
i=1

y2i

This quadratic polynomial may be nonnegative for any z ∈ R if and only if

B2 − AC ≤ 0

which is equivalent to (13.14). �

13.3.7 The extended real number system

Definition 13.11. The extended real number system consists of the real field R and two
symbols: +∞ (or simply ∞) and −∞ which possess the following properties:

(a) for any real x ∈ R

−∞ < x <∞

(b) for any real x ∈ R

x +∞ =∞
x −∞ = −∞
x

∞ = x

−∞ = 0

(c) if x > 0 then

x · ∞ = ∞ and x · (−∞) = −∞

if x < 0 then

x · ∞ = −∞ and x · (−∞) = ∞

13.4 Euclidean spaces

Let us consider an integer positive k and let Rk be the set of all ordered k-tuples

x := (x1, x2, . . . , xk)
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where xi (i = 1, . . . , k) are real numbers, called the coordinates of x. The elements of

Rk are called points (or vectors). Defining two operations

x + y := (x1 + y1, x2 + y2, . . . , xk + yk)
αx := (αx1, αx2, . . . , αxk), α ∈ R

(13.15)

it is easy to see that they satisfy the commutative, associative and distributive law

that make Rk into a vector space over the vector field with 0 elements all of whose

coordinates are 0.

We also may define the, so-called, inner (scalar) product of two vectors x and y by

x · y = (x, y) :=
k∑
i=1

xiyi (13.16)

and the corresponding norm of x by

‖x‖=√(x, x) :=
(

k∑
i=1

x2i

)1/2

(13.17)

Definition 13.12. The vector space Rk with the above inner product (13.16) and norm
(13.17) is called Euclidean k-space.

The following properties of the norm (13.17) hold.

Remark 13.1. The Cauchy–Schwarz inequality (13.14) for the Euclidean k-space Rk

may be rewritten as

(x, y)2 ≤ ‖x‖2 ‖y‖2 (13.18)

or, equivalently,

|(x, y)| ≤ ‖x‖ ‖y‖ (13.19)

13.5 The complex field

13.5.1 Basic definition and properties

Definition 13.13.
(a) A complex number is an “ordered” pair x = (x1, x2) of real numbers where the first

member x1 is called the real part of the complex number and the second member x2 is
called the imaginary part. “Ordered” means that (x1, x2) and (x2, x1) are regarded
as distinct if x1 �= x2.
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(b) Two complex numbers x = (x1, x2) and y = (y1, y2) are said to be equal (we write
x = y) if and only if

x1 = y1 and x2 = y2

(c) The sum (x + y) and the product (xy) are defined by the equations

x + y = (x1 + y1, x2 + y2)
xy = (x1y1 − x2y2, x1y2 + x2y1) (13.20)

The set of all complex numbers is denoted by C.

It is easy to check that the main field operations, namely, addition and multiplication

(13.20) satisfy the commutative, associative and distributive laws.

The following properties hold in C.

Proposition 13.5.
1.

(x1, x2)+ (0, 0)= (x1, x2)
(x1, x2) (0, 0)= (0, 0)
(x1, x2) (1, 0)= (x1, x2)

(x1, x2)+ (−x1,−x2)= (0, 0)

2. Given two complex numbers x = (x1, x2) and y = (y1, y2) there exists a complex
number z = (z1, z2) such that x + z = y. In fact,

z := y − x = (y1 − x1, y2 − x2)

The complex number (−x1,−x2) is denoted by (−x).
3. For any two complex numbers x and y we have

(−x) y = x (−y) = − (xy) = (−1, 0) (xy)

4. Given two complex numbers x = (x1, x2) �= (0, 0) and y = (y1, y2) there exists a
complex number z = (z1, z2) such that

xz = y, namely, z := y/x = yx−1

x−1 :=
(

x1

x21 + x22
,− x2

x21 + x22

)

Remark 13.2. The complex number (x1, 0) = x1 is the real number x1. This identification
gives us the real field as a subfield of the complex field.
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13.5.2 The imaginary unite

Definition 13.14. The imaginary unite i is the complex number (0, 1), that is,

i := (0, 1) (13.21)

Lemma 13.6.

i2 = −1 (13.22)

Proof. Indeed, by (13.20) and (13.2)

i2 = (0, 1) (0, 1) = (−1, 0) = −1

Lemma is proven. �

Lemma 13.7. Any complex number x = (x1, x2) can be represented as

x = x1 + ix2 (13.23)

Proof. Since by (13.2)

x1 = (x1, 0)
ix2 = (0, 1) (x2, 0) = (0, x2)

it follows that

x1 + ix2 = (x1, 0)+ (0, x2) = (x1, x2) = x

Lemma is proven. �

13.5.3 The conjugate and absolute value of a complex number

Definition 13.15. If a and b are real and z = a + ib, then
(a) the complex number

z̄ = a − ib (13.24)

is called the conjugate of z and

a = Re z and b = Im z (13.25)

are referred to as the real and imaginary parts of z;
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(b) the nonnegative real number |z| given by

|z| = √
a2 + b2 (13.26)

is called the absolute value (or module) of the complex number z.

Proposition 13.6. If x and z are complex then

1.

x + z = x̄ + z̄

2.

xz = x̄z̄

3.

z+ z̄ = 2 Re z

z− z̄ = 2 Im z

4.

zz̄ = |z|2

5. The identity |z| = 0 implies that z = 0 = (0, 0).
6.

|z̄| = |z|
|xz| = |x| |z|

7.

|Re z| ≤ |z|

8.

|x/z| = |x| / |z| for z �= 0

9. The triangle inequality holds:

|x + z| ≤ |x| + |z|
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Proof. Propositions 1–7 can be checked directly using the definition only. The proof of

8 follows from the identity

|x/z| =
√(

x

z

)(
x

z

)
=

√(
x

z

)(
x

z

)
=

√
xx̄

zz̄
=

√
|x|2
|z|2

To prove 9 notice that xz̄ is the conjugate of x̄z, which is why by property 3

xz̄+ x̄z = 2 Re (xz̄)

and, hence,

|x + z|2 = (x + z) (x̄ + z̄)
= xx̄ + zz̄+ xz̄+ x̄z = |x|2 + |z|2 + 2 Re (xz̄)

≤ |x|2 + |z|2 + 2 |xz̄| = |x|2 + |z|2 + 2 |x| |z̄|
= (|x| + |z|)2

which proves 9. �

Theorem 13.4. (Schwarz inequality for complex numbers)
If ai, bi ∈ C

(
i = 1, n

)
then

∣∣∣∣∣
n∑
i=1

aib̄i

∣∣∣∣∣
2

≤
(

n∑
i=1

|ai |2
)(

n∑
i=1

|bi |2
)

(13.27)

Proof. Denote

A :=
n∑
i=1

|ai |2, B :=
n∑
i=1

|bi |2, C :=
n∑
i=1

aib̄i

Notice that A,B are real and C is complex. If B = 0 then all bi = 0 and the inequality

is trivial. Assume now that B > 0. Then by (13.6)

0 ≤
n∑
i=1

| Bai − Cbi |2 =
n∑
i=1

(Bai − Cbi)
(
Bāi − Cb̄i

)

= B2

n∑
i=1

|ai |2 − BC̄
n∑
i=1

aib̄i − BC
n∑
i=1

āibi + |C|2
n∑
i=1

|bi |2

= B2A− B |C|2 − B |C|2 + |C|2 B = B2A− B |C|2
= B (

BA− |C|2)
So, BA− |C|2 ≥ 0 coincides with (13.27). Theorem is proven. �
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13.5.4 The geometric representation of complex numbers

Let us consider the plane with Cartesian (Decartes) coordinates x (as the abscise) and

y (as the ordinate). So the complex number z = (x, y) may be considered as the point

on this plane or, equivalently, as the vector with the coordinates x and y (see Fig. 13.1).

In the polar coordinates (r, ϕ) the same vector is expressed as

z = x + iy = r (cosϕ + i sin ϕ) (13.28)

where r = |z| is the module of the complex number z and ϕ is its argument (or phase)
denoted by Arg z, that is,

ϕ = Arg z :=
⎧⎨
⎩ arctan

(y
x

)
+ 2πk for I and IV quadrants

arctan
(y
x

)
+ (2k + 1) π for II and III quadrants

(13.29)

where arctan
(y
x

)
means the principal (main) value of Arctan

(y
x

)
, i.e., the value which

is more than (−π/2) and does not exceed (π/2), and k = 0, 1, 2, . . . is any integer

number. As it follows from the definitions above, the module is uniquely defined while

the argument is not uniquely defined.

Proposition 13.7.
1. For any z1, z2 ∈ C

z1z2 = |z1| |z2| (cos (ϕ1 + ϕ2)+ i sin (ϕ1 + ϕ2)) (13.30)

z1

z2
= |z1|
|z2| (cos (ϕ1 − ϕ2)+ i sin (ϕ1 − ϕ2)), z2 �= 0 (13.31)

r

z 5 (x, y ) 5 x1iy

y

x



Fig. 13.1. The complex number z in the polar coordinates.
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2. For any z1, z2, . . . , zn ∈ C

n∏
i=1

zi =
n∏
i=1

|zi |
(
cos

(
n∑
i=1

ϕi

)
+ i sin

(
n∑
i=1

ϕi

))
(13.32)

Proof. The property (13.30) follows from (13.28) and the identities

cos (ϕ1) cos (ϕ2)− sin (ϕ1) sin (ϕ2) = cos (ϕ1 + ϕ2)
cos (ϕ1) sin (ϕ2)+ sin (ϕ1) cos (ϕ2) = sin (ϕ1 + ϕ2)

Indeed,

z1z2 = r1r2 (cosϕ1 + i sin ϕ1) (cosϕ2 + i sin ϕ2)
= r1r2 [cos (ϕ1) cos (ϕ2)− sin (ϕ1) sin (ϕ2)

i (cos (ϕ1) sin (ϕ2)+ sin (ϕ1) cos (ϕ2))]

= r1r2 (cos (ϕ1 + ϕ2)+ i sin (ϕ1 + ϕ2))

The property (13.31) related to the quotient
z1

z2
results from the relations

z1

z2
= z1z̄2
z2z̄2

= 1

|z2|2 z1z̄2
z1z̄2 = r1r2 (cosϕ1 − i sin ϕ1) (cosϕ2 − i sin ϕ2)

= r1r2 (cosϕ1 + i sin (−ϕ1)) (cosϕ2 + i sin (−ϕ2))

with the following application of (13.30). The identity (13.32) results from (13.30) by

induction. �

Example 13.2.

z−1 = r−1 (cosϕ + i sin (−ϕ)) = r−1 (cosϕ − i sin ϕ) (13.33)

13.6 Some simple complex functions

13.6.1 Power

Definition 13.16. The nth power of the complex number z is the product

zn := zn−1z, z0 = 1, n= 0, 1, 2, . . .

z−n := (
z−1

)n
, z �= 0, n= 1, 2, . . .

(13.34)
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By (13.32) and (13.33) it follows that

zn = rn [cos (nϕ)+ i sin (nϕ)]
z−n = r−n [cos (nϕ)− i sin (nϕ)] (13.35)

Example 13.3.

(a)

i4k+3 = i4ki3 = (
i4
)k
(−i) = −i

(b)

(1− i)−2 =
(

1

1− i
)2

=
(

1+ i
(1− i) (1+ i)

)2

=
(
1+ i
2

)2

= 1

4

(
1+ 2i + i2) = i

2

13.6.2 Roots

Definition 13.17. If two complex numbers w and z are related by the equation

wn = z, n = 1, 2, . . . (13.36)

then w is called a root of degree n of the number z and denoted as

w := n
√
z (13.37)

Lemma 13.8. (The Moivre–Laplace formula) There exist exactly n roots of n
√
z which

may be expressed as

wk := n
√
r

[
cos

(
ϕ + 2πk

n

)
+ i sin

(
ϕ + 2πk

n

)]
for z = r (cosϕ + i sin ϕ), k = 0, 1, 2, . . . , n− 1

(13.38)

Proof. Denoting w = ρ (cos θ + i sin θ), by (13.36) and (13.35) we derive

wn = ρn [cos (nθ)+ i sin (nθ)] = r (cosϕ + i sin ϕ) = z

This leads to the following relations:

ρ = n
√
r, nθ = ϕ + 2πk

which completes the proof. �
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Example 13.4.

4
√−1= cos

(
π + 2πk

n

)
+ i sin

(
π + 2πk

n

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cos
(π
4

)
+ i sin

(π
4

)
k = 0

cos
(π
4
+ π

2

)
+ i sin

(π
4
+ π

2

)
k = 1

cos
(π
4
+ π

)
+ i sin

(π
4
+ π

)
k = 2

cos

(
π

4
+ 3

2
π

)
+ i sin

(
π

4
+ 3

2
π

)
k = 3

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w1 = (1+ i) /
√
2, k = 0

w2 = (−1+ i) /√2, k = 1

w3 = (−1− i) /√2, k = 2

w4 = (1− i) /
√
2, k = 3

The roots in the complex plane are depicted at Fig. 13.2.

13.6.3 Complex exponential

Definition 13.18. (Euler’s formula) If z = x + iy is a complex number, we define the
complex exponent ez = ex+iy to be the complex number

ez = ex (cos y + i sin y) (13.39)

Re

W1

Im

W4
W3

W2

2 2Œw

Fig. 13.2. The roots of 4
√−1.
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Evidently, the complex exponent ez possesses the following properties which can be

easily proven using only the definition (13.39).

Proposition 13.8. For any complex numbers z, z1 and z2

1.

ez1+z2 = ez1ez2

2.

eze−z = e0 = 1

ez �= 0

3.

∣∣eiy∣∣ = 1

4. ez = 1 if and only if z = 2πn · i (n is an integer).
5. ez1 = ez2 if and only if z1 − z2 = 2πn · i (n is an integer).
6.

z = |z| eiArg z = |z| ei
arg z := arctg (y/x)

(13.40)

13.6.4 Complex logarithms

Definition 13.19. The number w is called the (natural) logarithm of the complex number
z �= 0 (the notation is w = Ln z) if ew = z.

Putting w = u+ iv from the definition above it follows that z = eueiv . Comparing this

with (13.39) implies

|z| = eu
v = Arg z = arg z+ 2πk

So, u = ln |z| and, thus,

w = Ln z = ln |z| + i Arg z = ln |z| + i (arg z+ 2πk) (13.41)

Formula (13.41) defines an infinite number of complex numbers which are logarithms of

the nonzero z ∈ C. Of these, the particular value corresponding to k = 0 is called the

principal value of the complex logarithm and is denoted by

ln z := ln |z| + i arg z (13.42)
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Example 13.5.

1.

Ln i =
(π
2
+ 2πk

)
i

ln i = π
2
i

2.

Ln (−1)= (2k + 1) πi

ln (−1)= πi

Lemma 13.9. If z1z2 �= 0 then

Ln (z1z2)= Lnz1 + Lnz1
= ln |z1| + ln |z2| + i [arg z1 + arg z1 + 2π (k1 + k2)]

where k1, k2 are integers.

Proof.

Ln (z1z2)= ln |z1z2| + iArg (z1z2)
= ln |z1| + ln |z2| + i [Arg (z1)+ Arg (z1)] �

13.6.5 Complex sines and cosines

Taking in Euler’s formula (13.39) x = 0 we have

eiy = cos y + i sin y
e−iy = cos y − i sin y

which implies

cos y = e
iy + e−iy

2
, sin y = e

iy − e−iy
2i

valid for any real y ∈ R. Extending these formulas to the complex plane C one may

suggest the following definition.

Definition 13.20. Given a complex number z, we define

cos z = e
iz + e−iz

2

sin z = e
iz − e−iz

2i

(13.43)
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Lemma 13.10. For z = x + iy

cos z= cos x cosh y − i sin x sinh y
sin z = sin x cosh y + i cos x sinh y (13.44)

where

cosh y := e
y + e−y

2
, sinh y := e

y − e−y
2

Proof. The result follows from the identities

2 cos z = eiz + e−iz = e−y+ix + ey−ix
= e−y [cos x + i sin x]+ ey [cos x − i sin x]
= cos x

(
ey + e−y)− i sin x (ey − e−y)

which gives the first representation in (13.44). The proof for sin z is similar. �

Exercise 13.1.

1. Defining

tan z := sin z

cos z
(13.45)

it is easy to show by direct calculation that

tan z = sin 2x + i sinh 2y
cos 2x + cosh 2y

(13.46)

2. For any complex z and n = 1, 2, . . .

zn − 1 =
n∏
k=1

(
z− e2πki/n) (13.47)
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14.1 Functions and sets

14.1.1 The function concept

Definition 14.1. Let us consider two sets A and B whose elements may be any objects
whatsoever. Suppose that with each element x ∈ A there is associated, in some manner,
an element y ∈ B which we denote by y = f (x).
1. Then f is said to be a function from A to B or a mapping of A into B.
2. If E ⊂ A then f (E) is defined to be the set of all elements f (x), x ∈ E and it is

called the image of E under f . The notation f (A) is called the range of f (evidently,
f (A) ⊆ B). If f (A) = B we say that f maps A onto B.

3. For D ⊂ B the notation f −1 (D) denotes the set of all x ∈ A such that f (x) ∈ B. We
call f −1 (D) the inverse image of D under f . So, if y ∈ D then f −1 (y) is the set of
all x ∈ A such that f (x) = y. If for each y ∈ B the set f −1 (y) consists of at most
one element of A then f is said to be one-to-one mapping of A to B.
The one-to-one mapping f means that f (x1) �= f (x2) if x1 �= x2 for any x1, x2 ∈ A.

We will often use the following notation for the mapping f :

f : A → B (14.1)

If, in particular, A = Rn and B = Rm we will write

f : Rn → Rm (14.2)

Definition 14.2. If for two sets A and B there exists a one-to-one mapping then we say
that these sets are equivalent and we write

A ∼ B (14.3)

251
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Claim 14.1. The relation of equivalency (∼) clearly has the following properties:

(a) it is reflexive, i.e., A ∼ A;
(b) it is symmetric, i.e., if A ∼ B then B ∼ A;
(c) it is transitive, i.e., if A ∼ B and B ∼ C then A ∼ C.

14.1.2 Finite, countable and uncountable sets

Denote by Jn the set of positive numbers 1, 2, . . . , n, that is,

Jn = {1, 2, . . . , n}

and by J we will denote the set of all positive numbers, namely,

J = {1, 2, . . .}

Definition 14.3. For any A we say:

1. A is finite if

A ∼ J n

for some finite n (the empty set ∅, which does not contain any element, is also
considered as finite);

2. A is countable (enumerable or denumerable) if

A ∼ J

3. A is uncountable if it is neither finite nor countable;
4. A is at most countable if it is both finite or countable.

Evidently, if A is infinite then it is equivalent to one of its subsets. Also it is clear that

any infinite subset of a countable set is countable.

Definition 14.4. By a sequence we mean a function f defined on the set J of all positive
integers. If xn = f (n) it is customary to denote the corresponding sequence by

{xn} := {x1, x2, . . .}

(sometimes this sequence starts with x0 but not with x1).

Claim 14.2.

1. The set N of all integers is countable;
2. The set Q of all rational numbers is countable;
3. The set R of all real numbers is uncountable.
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14.1.3 Algebra of sets

Definition 14.5. Let A and � be sets. Suppose that with each element α ∈ A there is
associated a subset Eα ⊂ �. Then
(a) The union of the sets Eα is defined to be the set S such that x ∈ S if and only if
x ∈ Eα at least for one α ∈ A. It will be denoted by

S :=
⋃
α∈A

Eα (14.4)

If A consists of all integers (1, 2, . . . , n), which means A = Jn, we will use the
notation

S :=
n⋃
α=1

Eα (14.5)

and if A consists of all integers (1, 2, . . .), which means A = J , we will use the
notation

S :=
∞⋃
α=1

Eα (14.6)

(b) The intersection of the sets Eα is defined as the set P such that x ∈ P if and only if
x ∈ Eα for every α ∈ A. It will be denoted by

S :=
⋂
α∈A

Eα (14.7)

If A consists of all integers (1, 2, . . . , n), which means A = Jn, we will use the
notation

S :=
n⋂
α=1

Eα (14.8)

and if A consists of all integers (1, 2, . . .), which means A = J , we will use the
notation

S :=
∞⋂
α=1

Eα (14.9)

If for two sets A and B we have A ∩ B = ∅, we say that these two sets are disjoint.
(c) The complement of A relative to B, denoted by B −A, is defined to be the set

B −A := {x : x ∈ B, but x /∈ A} (14.10)
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A A A

B B B

A:B A"B B2A

Fig. 14.1. Two sets relations.

The sets A ∪ B, A ∩ B and B −A are illustrated at Fig. 14.1. Using these graphic

illustrations it is possible to prove easily the following set-theoretical identities for union

and intersection.

Proposition 14.1.

1.

A ∪ (B ∪ C) = (A ∪ B) ∪ C, A ∩ (B ∩ C) = (A ∩ B) ∩ C

2.

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

3.

(A ∪ B) ∩ (A ∪ C) = A ∪ (B ∩ C)

4.

(A ∪ B) ∩ (B ∪ C) ∩ (C ∪A) = (A ∩ B) ∪ (A ∩ C) ∪ (B ∩ C)

5.

A ∩ (B − C) = (A ∩ B)− (A ∩ C)

6.

(A− C) ∩ (B − C) = (A ∩ B)− C

7.

(A− B) ∪ B = A

if and only if B ⊆ A.
8.

A ⊂ A ∪ B, A ∩ B ⊂ A
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9.

A ∪∅ = A, A ∩∅ = ∅

10.

A ∪ B = B, A ∩ B = A

if A ⊂ B.

The next relations generalize the previous unions and intersections to arbitrary ones.

Proposition 14.2.

1. Let f : S → T be a function and A,B any subsets of S. Then

f (A ∪ B) = f (A) ∪ f (B)

2. For any Y ⊆ T define f −1 (Y) as the largest subset of S which f maps into Y . Then
(a)

X ⊆ f −1 (f (X ))

(b)

f
(
f −1 (Y)

) ⊆ Y

and

f
(
f −1 (Y)

) = Y

if and only if T = f (S).
(c)

f −1 (Y1 ∪ Y2) = f −1 (Y1) ∪ f −1 (Y2)

(d)

f −1 (Y1 ∩ Y2) = f −1 (Y1) ∩ f −1 (Y2)

(e)

f −1 (T − Y) = S − f −1 (Y)

and for subsets B ⊆ A ⊆ S it follows that

f (A− B) = f (A)− f (B)
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14.2 Metric spaces

14.2.1 Metric definition and examples of metrics

Definition 14.6. A set X , whose elements we shall call points, is said to be a metric
space if with any two points p and q of X there is associated a real number d (p, q),
called a distance between p and q, such that
(a)

d (p, q) > 0 if p �= q
d (p, p) = 0

(14.11)

(b)

d (p, q) = d (q, p) (14.12)

(c) for any r ∈ X the following “triangle inequality” holds:

d (p, q) ≤ d (p, r)+ d (r, q) (14.13)

Any function with these properties is called a distance function or a metric.

Example 14.1. The following functions are metrics:

1. For any p, q from the Euclidean space Rn

(a) the Euclidean metric:

d (p, q) = ‖p − q‖ (14.14)

(b) the discrete metric:

d (p, q) =
{
0 if p = q
1 if p �= q (14.15)

(c) the weighted metric:

d (p, q) = ‖p − q‖Q :=
√
(p − q)ᵀQ(p − q)

Q = Qᵀ > 0
(14.16)

(d) the module metric:

d (p, q) =
n∑
i=1

|pi − qi | (14.17)

(e) the Chebyshev’s metric:

d (p, q) = max {|p1 − q1| , . . . , |pn − qn|} (14.18)
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(f) the Prokhorov’s metric:

d (p, q) = ‖p − q‖
1+ ‖p − q‖ ∈ [0, 1) (14.19)

2. For any z1 and z2 of the complex plane C

d (z1, z2)= |z1 − z2|
=

√
(Re (z1 − z2))2 + (Im (z1 − z2))2 (14.20)

14.2.2 Set structures

Let X be a metric space. All points and sets mentioned below will be understood to

be elements and subsets of X .

Definition 14.7.

(a) A neighborhood of a point x is a set Nr (x) consisting of all points y such that
d (x, y) < r where the number r is called the radius of Nr (x), that is,

Nr (x) := {y ∈ X : d (x, y) < r} (14.21)

(b) A point x ∈ X is a limit point of the set E ⊂ X if every neighborhood of x contains
a point y �= x such that y ∈ E .

(c) If x ∈ E and x is not a limit point of E then x is called an isolated point of E .
(d) E ⊂ X is closed if every limit of elements from E is a point of E .
(e) A point x ∈ E is an interior point of E if there is a neighborhood of Nr (x) of x such

that Nr (x) ⊂ E .
(f) E is open if every point of E is an interior point of E .
(g) The complement E c of E is the set of all points x ∈ X such that x /∈ E .
(h) E is bounded if there exist a real numberM and a point x ∈ E such that d (x, y) < M

for all y ∈ E .
(i) E is dense in X if every point x ∈ X is a limit point of E , or a point of E , or both.
(j) E is connected in X if it is not a union of two nonempty separated sets, that is, E

cannot be represented as E = A ∪ B where A �= ∅, B �= ∅ and A ∩ B = ∅.

Example 14.2. The set Jopen (p) defined as

Jopen := {x ∈ X , d (x, p) < r}

is an open set but the set Jclosed (p) defined as

Jclosed (p) := {x ∈ X , d (x, p) ≤ r}

is closed.
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The following claim seems to be evident and that is why they are given without proofs.

Claim 14.3.

1. Every neighborhood Nr (x) ⊂ E is an open set.
2. If x is a limit point of E then every neighborhood Nr (x) ⊂ E contains infinitely many

points of E .
3. A finite point set has no limit points.
Let us prove the following lemma concerning complement sets.

Lemma 14.1. Let {Eα} be a collection (finite or infinite) of sets Eα ⊆ X . Then

(⋃
α

Eα
)c

=
⋂
α

E cα (14.22)

Proof. If x ∈
(⋃
α

Eα
)c

then, evidently, x /∈ ⋃
α

Eα and, hence, x /∈ Eα for any α. This

means that x ∈ ⋂
α

E cα . Thus,(⋃
α

Eα
)c

⊆
⋂
α

E cα (14.23)

Conversely, if x ∈ ⋂
α

E cα then x ∈ E cα for every α and, hence, x /∈ ⋃
α

Eα . So, x ∈
(⋃
α

Eα
)c

which implies

⋂
α

E cα ⊆
(⋃

α

Eα
)c

(14.24)

Combining (14.23) and (14.24) gives (14.22). Lemma is proven. �

This lemma provides the following corollaries.

Corollary 14.1.

(a) A set E is open if and only if its complement E c is closed.
(b) A set E is closed if and only if its complement E c is open.
(c) For any collection {Eα} of open sets Eα the set

⋃
α

Eα is open.

(d) For any collection {Eα} of closed sets Eα the set
⋂
α

E cα is closed.

(e) For any finite collection {E1, . . . , En} of open sets Eα the set
⋂
α

E cα is open too.

(f) For any finite collection {E1, . . . , En} of closed sets Eα the set
⋃
α

Eα is closed too.

Definition 14.8. Let X be a metric space and E ⊂ X . Denote by E ′ the set of all limit
points of E . Then the set cl E defined as

cl E := E ∪ E ′ (14.25)

is called the closure of E .
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The next properties seem to be logical consequences of this definition.

Proposition 14.3. If X is a metric space and E ⊂ X , then

(a) cl E is closed;
(b) E = cl E if and only if E is closed;
(c) cl E ⊂ P for every closed set P ⊂ X such that E ⊂ P;
(d) If E is a nonempty set of real numbers which is bounded above, i.e., ∅ �= E ⊂ R and
y := sup E <∞. Then y ∈ cl E and, hence, y ∈ E if E is closed.

Proof.

(a) If x ∈ X and x /∈ cl E then x is neither a point of E nor a limit point of E . Hence x
has a neighborhood which does not intersect E . Therefore the complement E c of E is

an open set. So, cl E is closed.

(b) If E = cl E then by (a) it follows that E is closed. If E is closed then for E ′, defined
in (14.8), we have that E ′ ⊂ E . Hence, E = cl E .

(c) P is closed and P ⊃ E (defined in (14.8)) then P ⊃ P ′ and, hence, P ⊃ E ′. Thus
P ⊃ cl E .

(d) If y ∈ E then y ∈ cl E . Assume y /∈ E . Then for any ε > 0 there exists a point

x ∈ E such that y− ε < x < y, otherwise (y − ε) would be an upper bound of E that

contradicts the supposition sup E = y. Thus y is a limit point of E . Hence, y ∈ cl E .
The proposition is proven. �

Definition 14.9. Let E be a set of a metric space X . A point x ∈ E is called a boundary
point of E if any neighborhood Nr (x) of this point contains at least one point of E and
at least one point of X − E . The set of all boundary points of E is called the boundary
of the set E and is denoted by ∂E .

It is not difficult to verify that

∂E = cl E ∩ cl (X − E) (14.26)

Denoting by

int E := E − ∂E (14.27)

the set of all internal points of the set E , it is easily verified that

int E = X− cl (X − E)
int (X − E) = X− cl E

int (int E) = int E
If cl E ∩ clD = ∅ then ∂ (E ∪D) = ∂E ∪ ∂D

(14.28)
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14.2.3 Compact sets

Definition 14.10.

1. By an open cover of a set E in a metric space X we mean a collection {Gα} of open
subsets of X such that

E ⊂
⋃
α

Gα (14.29)

2. A subset K of a metric space X is said to be compact if every open cover of K
contains a finite subcover; more exactly, there are a finite number of indices α1, . . . , αn
such that

K ⊂ Gα1 ∪ · · · ∪ Gαn (14.30)

Remark 14.1. Evidently, every finite set is compact.

Theorem 14.1. A set K ⊂ Y ⊂ X is a compact relative to X if and only if K is a compact
relative to Y .

Proof. Necessity. Suppose K is a compact relative to X . Hence, by the definition (14.30)

there exists its finite subcover such that

K ⊂ Gα1 ∪ · · · ∪ Gαn (14.31)

where Gαi is an open set with respect to X . On the other hand K ⊂⋃
α

Vα where {Vα} is
a collection of sets open with respect to Y . But any open set Vα can be represented as

Vα = Y ∩ Gα . So, (14.31) implies

K ⊂ Vα1 ∪ · · · ∪ Vαn (14.32)

Sufficiency. Conversely, if K is a compact relative to Y then there exists a finite collection

{Vα} of open sets in Y such that (14.32) holds. Putting Vα = Y ∩ Gα for a special

choice of indices α1, . . . , αn it follows that Vα ⊂ Gα which implies (14.31). Theorem is

proven. �

Theorem 14.2. Compact sets of metric spaces are closed.

Proof. Suppose K is a compact subset of a metric space X . Let x ∈ X but x /∈ K
and y ∈ K. Consider the neighborhoods Nr (x)Nr (y) of these points with r <

1

2
d (x, y).

Since K is a compact there are finitely many points y1, . . . , yn such that

K ⊂ N r (y1) ∪ · · · ∪ Nr (yn) = N

If V = Nr1 (x) ∩ · · ·∩ Nrn (x), then evidently V is a neighborhood of x which does not

intersect N and, hence, V ⊂ Kc. So, x is an interior point of Kc. Theorem is proven. �
The following two propositions seem to be evident.
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Proposition 14.4.

1. Closed subsets of compact sets are compacts too.
2. If F is closed and K is compact then F ∩K is compact.

Theorem 14.3. If E is an infinite subset of a compact set K then E has a limit point in K.

Proof. If no point of K were a limit point of E then y ∈ K would have a neighborhood

Nr (y) which contains at most one point of E (namely, y if y ∈ E). It is clear that no

finite subcollection
{
Nrk (y)

}
can cover E . The same is true of K since E ⊂ K. But this

contradicts the compactness of K. Theorem is proven. �

The next theorem explains the compactness property especially in Rn and is often

applied in a control theory analysis.

Theorem 14.4. If a set E ⊂ Rn then the following three properties are equivalent:

(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point in E .

Proof. It is the consequence of all previous theorems and propositions and left for readers’

consideration. The details of the proof can be found in Chapter 2 of Rudin (1976). �

Remark 14.2. Notice that properties (b) and (c) are equivalent in any metric space, but
(a) is not.

14.2.4 Convergent sequences in metric spaces

14.2.4.1 Convergence
Definition 14.11. A sequence {xn} in a metric space X is said to converge if there is a
point x ∈ X which for any ε > 0 there exists an integer nε such that n ≥ nε implies that
d (xn, x) < ε. Here d (xn, x) is the metric (distance) in X . In this case we say that {xn}
converges to x, or that x is a limit of {xn}, and we write

lim
n→∞xn = x or xn →

n→∞ x (14.33)

If {xn} does not converge, it is usually said to diverge.

Example 14.3. The sequence {1/n} converges to 0 in R, but fails to converge in
R+ := {x ∈ R | x > 0}.

Theorem 14.5. Let {xn} be a sequence in a metric space X .

1. {xn} converges to x ∈ X if and only if every neighborhood Nε (x) of x contains all
but (excluding) finitely many of the terms of {xn}.

2. If x ′, x ′′ ∈ X and

xn →
n→∞ x

′ and xn →
n→∞ x

′′
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then

x ′ = x ′′

3. If {xn} converges then {xn} is bounded.
4. If E ⊂ X and x is a limit point of E then there is a sequence {xn} in E such that
x = lim

n→∞xn.

Proof.

1. (a) Necessity. Suppose xn →
n→∞ x and let Nε (x) (for some ε > 0) be a neighborhood

of x. The conditions d (y, x) < ε, y ∈ X imply y ∈ Nε (x). Corresponding to this

ε there exists a number nε such that for any n ≥ nε it follows that d (xn, x) < ε.
Thus, xn ∈ Nε (x). So, all xn are bounded.

(b) Sufficiency. Conversely, suppose every neighborhood of x contains all but finitely

many of the terms of {xn}. Fixing ε > 0 denoting by Nε (x) the set of all y ∈ X
such that d (y, x) < ε. By assumption there exists nε such that for any n ≥ nε it
follows that xn ∈ Nε (x). Thus d (xn, x) < ε if n ≥ nε and, hence, xn →

n→∞ x.

2. For the given ε > 0 there exist integers n′ and n′′ such that n ≥ n′ implies d (xn, x
′) <

ε/2 and n ≥ n′′ implies d (xn, x
′′) < ε/2. So, for n ≥ max {n′, n′′} it follows d (x ′, x ′′)

≤ d (x ′, xn)+ d (xn, x ′′) < ε. Taking ε small enough we conclude that d (x ′, x ′′) = 0.

3. Suppose xn →
n→∞ x. Then, evidently there exists an integer n0 such that for all n ≥ n0 we

have d (xn, x) < 1. Define r := max
{
1, d (x1, x) , . . . , d

(
xn0 , x

)}
. Then d (xn, x) < r

for all n = 1, 2, . . . .

4. For any integer n = 1, 2, . . . there exists a point xn ∈ E such that d (xn, x) < 1/n. For

any given ε > 0 define nε such that εnε > 1. Then for n ≥ nε one has d (xn, x) <

1/n < ε which means that xn →
n→∞ x.

This completes the proof. �

14.2.4.2 Subsequences
Definition 14.12. Given a sequence {xn} let us consider a sequence {nk} of positive
integers satisfying n1 < n2 < · · ·. Then the sequence

{
xnk

}
is called a subsequence

of {xn}.

Claim 14.4. If a sequence {xn} converges to x then any subsequence
{
xnk

}
of {xn}

converges to the same limit point x.

Proof. This result can be easily proven by contradiction. Indeed, assuming that two

different subsequences
{
xnk

}
and

{
xnj

}
have different limit points x ′ and x ′′, it follows

that there exist 0 < ε < d (x ′, x ′′) and a number kε such that for all k ≥ kε we shall have:
d
(
xnk , xnj

)
> ε which is in contradiction with the assumption that {xn} converges. �

Theorem 14.6.

(a) If {xn} is a sequence in a compact metric space X then it contains some subsequence{
xnk

}
convergent to a point of X .

(b) Any bounded sequence in Rn contains a convergent subsequence.
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Proof.

(a) Let E be the range of {xn}. If {xn} converges then the desired subsequence is this

sequence itself. Suppose that {xn} diverges. If E is finite then there is a point x ∈ E
and numbers n1 < n2 < · · · such that xn2 = xn2 = · · · = x. The subsequence

{
xnk

}
so obtained converges evidently to x. If E is infinite then by Theorem (14.3) E has

a limit point x ∈ X . Choose n1 so that d
(
xn1 , x

)
< 1, and, hence, there are integers

ni > ni−1 such that d
(
xni , x

)
< 1/i. This means that xni converges to x.

(b) This follows from (a) since Theorem (14.4) implies that every bounded subset of Rn

lies in a compact subset of Rn.

Theorem is proven. �

14.2.4.3 Cauchy sequences
Definition 14.13. A sequence {xn} in a metric space X is said to be a Cauchy (funda-
mental) sequence if for every ε > 0 there is an integer nε such that d (xn, xm) < ε if
both n ≥ nε and m ≥ nε.

Defining the diameter of E as

diam E := sup
x,y∈E

d (x, y) (14.34)

one may conclude that if Enε consists of the points
{
xnε , xnε+1, . . .

}
then {xn} is a Cauchy

sequence if and only if

lim
nε→∞diam E = 0 (14.35)

Theorem 14.7.

(a) If cl E is the closure of a set E in a metric space X then

diam E = diam cl E (14.36)

(b) If {Kn} is a sequence of compact sets inX such thatKn ⊃ Kn−1 (n = 2, 3, . . .) then the

setK :=
∞⋂
n=1

Kn consists exactly of one point.

Proof.

(a) Since E ⊆ cl E it follows that

diam E ≤ diam cl E (14.37)

Fix ε > 0 and select x, y ∈ cl E . By definition (14.25) there are two points x ′, y ′ ∈ E
such that both d (x, x ′) < ε and d (y, y ′) < ε which implies

d (x, y)≤ d (x, x ′)+ d (x ′, y ′)+ d (y ′, y)
< 2ε + d (x ′, y ′) ≤ 2ε + diam E
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As a result, we have

diam cl E ≤ 2ε + diam E

and since ε is arbitrary it follows that

diam cl E ≤ diam E (14.38)

The inequalities (14.37) and (14.38) give (14.36).

(b) If K contains more than one point then diam K > 0. But for each n we have that

Kn ⊃ K, so that diam Kn ≥ diam K. This contradicts that diam Kn →
n→∞ 0.

Theorem is proven. �
The next theorem explains the importance of fundamental sequence in the analysis of

metric spaces.

Theorem 14.8.

(a) Every convergent sequence {xn} given in a metric space X is a Cauchy sequence.
(b) If X is a compact metric space and if {xn} is a Cauchy sequence in X then {xn}

converges to some point in X .
(c) In Rn a sequence converges if and only if it is a Cauchy sequence.

Usually, claim (c) is referred to as the Cauchy criterion.

Proof.

(a) If xn → x then for any ε > 0 there exists an integer nε such that d (xn, x) < ε for

all n ≥ nε. So, d (xn, xm) ≤ d (xn, x) + d (x, xm) < 2ε if n,m ≥ nε. Thus {xn} is a
Cauchy sequence.

(b) Let {xn} be a Cauchy sequence and the set Enε contains the points xnε , xnε+1, xnε+2, . . .

Then by Theorem (14.7) and in view of (14.35) and (14.36)

lim
nε→∞diam cl Enε = lim

nε→∞diam Enε = 0 (14.39)

Being a closed subset of the compact space X each cl Enε is compact (see Proposition

14.4). And since En ⊃ En+1 then cl En ⊃ cl En+1. By Theorem (14.7b), there is a

unique point x ∈ X which lies in cl En. The expression (14.39) means that for any

ε > 0 there exists an integer nε such that diam cl En < ε if n ≥ nε. Since x ∈ cl En
then d (x, y) < ε for any y ∈ cl En which is equivalent to the following: d (x, xn) < ε

if n ≥ nε. But this means that xn → x.

(c) Let {xn} be a Cauchy sequence in Rn and define Enε as in statement (b) but with

xn ∈ Rn instead of xn. For some nε we have that diam Enε < 1. The range of {xn}
is the union of En and the finite set

{
x1, x2, . . . , xnε−1

}
. Hence, {xn} is bounded and

since every bounded subset in Rn has a compact closure in Rn, the statement follows

from statement (b).

Theorem is proven. �

Definition 14.14. A metric space where each Cauchy sequence converges is said to be
complete.
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Example 14.4.

1. By Theorem 14.8 it follows that all Euclidean spaces are complete.

2. The space of all rational numbers with the metric d (x, y) = |x − y| is not complete.
3. In Rn any convergent sequence is bounded but not any bounded sequence obligatory

converges.

There is a special case when bounded sequence obligatory converges. The next theorem

specifies such sequences.

Theorem 14.9. (Weierstrass theorem) Any monotonic sequence {sn} of real numbers,
namely, when

(a) {sn} is monotonically nondecreasing: sn ≤ sn+1;
(b) {sn} is monotonically nonincreasing: sn ≥ sn+1;

converges if and only if it is bounded.

Proof. If {sn} converges it is bounded by Theorem 14.5, claim 3. Suppose that {sn} is
bounded, namely, sup sn = s < ∞. Then sn ≤ s and for every ε > 0 there exists an

integer nε such that s− ε ≤ sn ≤ s for otherwise s− ε would be an upper bound for {sn}.
Since {sn} increases and ε is arbitrarily small this means sn → s. The case sn ≥ sn+1 is

considered analogously. Theorem is proven. �

14.2.4.4 Upper and lower limits in R

Definition 14.15. Let {sn} be a sequence of real numbers in R.

(a) If for every real M there exists an integer nM such that sn ≥ M for all n ≥ nM we
then write

sn →∞ (14.40)

(b) If for every real M there exists an integer nM such that sn ≤ M for all n ≥ nM we
then write

sn →−∞ (14.41)

(c) Define the upper limit of a sequence {sn} as

lim sup
n→∞

sn := lim
t→∞ sup

n≥t
sn (14.42)

which may be treated as the biggest limit of all possible subsequences.
(d) Define the lower limit of a sequence {sn} as

lim inf
n→∞ sn := lim

t→∞ inf
n≥t sn (14.43)

which may be treated as a lowest limit of all possible subsequences.
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The following theorem, whose proof is quite trivial, is often used in many practical

problems.

Theorem 14.10. Let {sn} and {tn} be two sequences of real numbers in R. Then the
following properties hold:
1.

lim inf
n→∞ sn ≤ lim sup

n→∞
sn (14.44)

2.

lim sup
n→∞

sn = ∞ if sn →∞
lim inf
n→∞ sn = −∞ if sn →−∞ (14.45)

3.

lim sup
n→∞

(sn + tn) ≤ lim sup
n→∞

sn + lim sup
n→∞

tn (14.46)

4.

lim inf
n→∞ (sn + tn) ≥ lim inf

n→∞ sn + lim inf
n→∞ tn (14.47)

5. If lim
n→∞sn = s then

lim inf
n→∞ sn = lim sup

n→∞
sn = s (14.48)

6. If sn ≤ tn for all n ≥ M which is fixed then

lim sup
n→∞

sn ≤ lim sup
n→∞

tn

lim inf
n→∞ sn ≤ lim inf

n→∞ tn
(14.49)

Example 14.5.

1.

lim sup
n→∞

sin
(π
2
n
)
= 1, lim inf

n→∞ sin
(π
2
n
)
= −1

2.

lim sup
n→∞

tan
(π
2
n
)
= ∞, lim inf

n→∞ tan
(π
2
n
)
= −∞
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3. For sn = (−1)n

1+ 1/n

lim sup
n→∞

sn = 1, lim inf
n→∞ sn = −1

14.2.5 Continuity and function limits in metric spaces

14.2.5.1 Continuity and limits of functions
Let X and Y be metric spaces and E ⊂ X , f maps E into Y and p ∈ X .

Definition 14.16.

(a) We write

lim
x→pf (x) = q (14.50)

if there is a point q ∈ Y such that for every ε > 0 there exists aδ = δ (ε, p) > 0 for
which dY (f (x), q) < ε for all x ∈ E for which dX (x, p) < δ. The symbols dY and
dX are referred to as the distance in X and Y , respectively. Notice that f may be
not defined at p since p may not belong to E .

(b) If, in addition, p ∈ E and dY (f (x), f (p)) < ε for every ε > 0 and for all x ∈ E
for which dX (x, p) < δ = δ (ε) then f is said to be continuous at the point p.

(c) If f is continuous at every point of E then f is said to be continuous on E .
(d) If for any x, y ∈ E ⊆ X

dY (f (x), f (y)) ≤ Lf dX (x, y), Lf <∞ (14.51)

then f is said to be Lipschitz continuous on E .

Remark 14.3. If p is a limit point of E then f is continuous at the point p if and
only if

lim
x→pf (x) = f (p) (14.52)

The proof of this result follows directly from the definition above.

The following properties related to continuity are evidently fulfilled.

Proposition 14.5.

1. If for metric spaces X ,Y,Z the following mappings are defined:

f : E ⊂ X → Y , g : f (E)→ Z

and

h (x) := g (f (x)), x ∈ E
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then h is continuous at a point p ∈ E if f is continuous at p and g is continuous
at f (p).

2. If f : X →Rn and f (x) := (f1 (x) , . . . , fn (x)) then f is continuous if and only if
all fi (x)

(
i = 1, n

)
are continuous.

3. If f, g : X →Rn are continuous mappings then f + g and (f, g) are continuous
too on X .

4. A mapping f : X → Y is continuous on X if and only if f −1 (V) is open (closed) in
X for every open (closed) set V ⊂ Y .

14.2.5.2 Continuity, compactness and connectedness
Theorem 14.11. If f : X → Y is a continuous mapping of a compact metric space X
into a metric space Y then f (X ) is compact.

Proof. Let {Vα} be an open cover of f (X ). By continuity of f and in view of Proposition

14.5 it follows that each of the sets f −1 (Vα) is open. By the compactness of X there are

finitely many indices α1, . . . , αn such that

X ⊂
n⋃
i=1

f −1
(
Vαi

)
(14.53)

Since f
(
f −1 (E)

) ⊂ E for any E ⊂ Y it follows that (14.53) implies that f (X )⊂
n⋃
α=1

Vαi .
This completes the proof. �

Corollary 14.2. If f : X → Rn is a continuous mapping of a compact metric space X
into Rn then f (X ) is closed and bounded, that is, it contains all its limit points and
‖f (x)‖ ≤ M <∞ for any x ∈ X .

Proof. It follows directly from Theorems 14.11 and 14.4. �

The next theorem is particularly important when f is real.

Theorem 14.12. (Weierstrass theorem) If f : X → Rn is a continuous mapping of a
compact metric space X into R and

M = sup
x∈X
f (x), m = inf

x∈X
f (x)

then there exist points xM, xm ∈ X such that

M = f (xM), m = f (xm)

This means that f attains its maximum (at xM ) and its minimum (at xm), that is,

M = sup
x∈X
f (x) = max

x∈X
f (x), m = inf

x∈X
f (x) = min

x∈X
f (x)
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Proof. By Theorem 14.11 and its corollary it follows that f (X ) is a closed and bounded

set (say, E) of real numbers. So, if M ∈ E then M ∈ cl E . Suppose M /∈ E . Then for

any ε > 0 there is a point y ∈ E such that M − ε < y < M , for otherwise (M − ε)
would be an upper bound. Thus y is a limit point of E . Hence, y ∈ cl E proves the

theorem. �

The next theorem deals with the continuity property for inverse continuous one-to-one

mappings.

Theorem 14.13. If f : X → Y is a continuous one-to-one mapping of a compact metric
space X into a metric space Y then the inverse mapping f −1 : Y → X defined by

f −1 (f (x)) = x ∈ X

is a continuous mapping too.

Proof. By Proposition 14.4, applied to f −1 instead of f , one can see that it is sufficient

to prove that f (V) is an open set of Y for any open set V ⊂ X . Fixing a set V we may

conclude that the complement Vc of V is closed in X and, hence, by Proposition 14.5 it

is a compact. As the result, f (Vc) is a compact subset of Y (14.11) and so, by Theorem

14.2, it is closed in Y . Since f is one-to-one and onto, f (V) is the complement of f (Vc)
and, hence, it is open. This completes the proof. �

14.2.5.3 Uniform continuity
Definition 14.17. Let f : X → Y be a mapping of a space X into a metric space Y .
A mapping f is said to be

(a) uniformly continuous on X if for any ε > 0 there exists δ = δ (ε) > 0 such that
dY (f (x), f (x

′)) < ε for all x, x ′ ∈ X for which dX (x, x
′) < δ.

(b) uniformly Lipschitz continuous on a (x, z)-set E with respect to x, if there exists a
positive constant Lf <∞ such that

dY
(
f (x, z), f

(
x ′, z

)) ≤ Lf dX
(
x, x ′

)
for all x, x ′, z ∈ E .

Remark 14.4. The difference between the concepts of continuity and uniform continuity
concerns two aspects:

(a) uniform continuity is a property of a function on a set, whereas continuity is defined
for a function in a single point;

(b) δ, participating in the definition (14.50) of continuity, is a functionof ε andapointp, that
is, δ = δ (ε, p), whereas δ, participating in the definition (14.17) of the uniform conti-
nuity, is a function of ε only serving for all points of a set (space) X , that is, δ = δ (ε).

Evidently, any uniformly continued function is continuous but not inverse. The next

theorem shows when both concepts coincide.

Theorem 14.14. If f : X → Y is a continuous mapping of a compact metric space X
into a metric space Y then f is uniformly continuous on X .
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Proof. Continuity means that for any point p ∈ X and any ε > 0 we can associate a

number δ (ε, p) such that

x ∈ X , dX (x, p) < δ (ε, p) implies dY (f (x), f (p)) < ε/2 (14.54)

Define the set

J (p) := {x ∈ X : dX (x, p) < δ (ε, p)/2}

Since p ∈ J (p) the collection of all sets J (p) is an open cover of X and by the

compactness of X there are a finite set of points p1, . . . , pn such that

X ⊂ J (p1) ∪ · · · ∪ J (pn) (14.55)

Put

δ̃ (ε) := 1

2
min {δ (ε, p1) , . . . , δ (ε, pn)} > 0

Now let x ∈ X satisfy the inequality dX (x, p) < δ̃ (ε). By the compactness (namely, by

(14.55)) there is an integer m (1 ≤ m ≤ n) such that p ∈ J (pm) implies

dX (x, pm) <
1

2
δ (ε, pm)

and, as the result,

dX (x, pm) ≤ dX (x, p)+ dX (p, pm) ≤ δ̃ (ε)+ 1

2
δ (ε, pm) ≤ δ (ε, pm)

Finally, by (14.54)

dY (f (x), f (p)) ≤ dY (f (x), f (pm))+ dY (f (pm), f (p)) ≤ ε

which completes the proof. �

Remark 14.5. The alternative proof of this theorem may be obtained in the
following manner: assuming that f is not uniformly continuous we conclude that there
exists ε > 0 and the sequences {xn}, {pn} on X such that dX (xn, pn) →

n→∞ 0 but

dY (f (xn), f (pn)) > ε. The last is in contradiction with Theorem 14.3.

Next examples show that compactness is essential in the hypotheses of the previous

theorems.

Example 14.6. If E is a noncompact in R then

1. There is a continuous function on E which is not bounded, for example,

f (x) = 1

x − 1
, E := {x ∈ R : |x| < 1}
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Here, E is a noncompact, f (x) is continuous on E , but evidently unbounded. It is easy
to check that it is not uniformly continuous.

2. There exists a continuous and bounded function on E which has no maximum, for
example,

f (x) = 1

1+ (x − 1)2
, E := {x ∈ R : |x| < 1}

Evidently,

sup
x∈E
f (x) = 1

whereas
1

2
≤ f (x) < 1 and, hence, has no maximum on E .

14.2.5.4 Continuity of a family of functions: equicontinuity
Definition 14.18. A family F of functions f (x) defined on some x set E is said to be
equicontinuous if for any ε > 0 there exists aδ = δ (ε), the same for all class F , such
that dX (x, y) < δ implies dY (f (x), f (y)) < ε for all x, y ∈ E and any f ∈ F .

The most frequently encountered equicontinuous families F occur when f ∈ F are

uniformly Lipschitz continuous on X ⊆ Rn and there exists an Lf > 0 which is a

Lipschitz constant for all f ∈ F . In this case δ = δ (ε) can be chosen as δ = ε/Lf .
The following claim can be easily proven.

Claim 14.5. If a sequence of continuous functions on a compact set X ⊆ Rn is uniformly
convergent on X , then it is uniformly bounded and equicontinuous.

The next two assertions are usually referred to as the Ascoli–Arzelà’s theorems (see

the reference in Hartman (2002)). They will be used below for the analysis of ordinary

differential equations.

Theorem 14.15. (on the propagation, Ascoli–Arzelà, 1883–1895) Let, on a compact
x-set of E , the sequence of functions {fn (x)}n=1,2,... be equicontinuous and convergent on
a dense subset of E . Then there exists a subsequence

{
fnk (x)

}
k=1,2,...

which is uniformly
convergent on E .

Another version of the same fact is as follows.

Theorem 14.16. (on the selection, Ascoli–Arzelà, 1883–1895) Let, on a compact x-set
of E ⊂ Rn, the sequence of functions {fn (x)}n=1,2,... be uniformly bounded and equicon-

tinuous. Then there exists a subsequence
{
fnk (x)

}
k=1,2,...

which is uniformly conver-
gent on E .

Proof. Let us consider the set of all rational numbers R ⊆ E . Since R is countable, all of

its elements can be designated by numbers, i.e., R = {
rj
}
(j = 1, . . . ). The numerical

vector-sequence {fn (r1)}n=1,2,... is norm-bounded, say, ‖fn (r1)‖ ≤ M . Hence, we can
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choose a convergent sequence
{
fnk (r2)

}
k=1,2,...

which is also bounded by the same M .

Continuing this process we obtain a subsequence
{
fp

(
rq
)}
p=1,2,...

that converges in a

point rq, q = 1, 2, . . . . Let fp := fp
(
rp
)
. Show that the sequence

{
fp
}
is uniformly

convergent on E to a continuous function f ∈ C (E). In fact, {fp} converges in any point

of R by the construction. To establish its convergence in any point of E , it is sufficient to
show that for any fixed x ∈ E the sequence

{
fp (x)

}
converges on itself. Since

{
fp (x)

}
is equicontinuous, for any ε > 0 there exists δ = δ (ε) such that for ‖x − x ′‖ < δ and
x, x ′ ∈ E there is

∥∥fp (x)− fp (x ′)∥∥ < ε. Choose rj such that
∥∥x − rj∥∥ < δ implies∥∥fp (x)− fp (rj)∥∥ < ε. But the sequence {fp (rj)} converges on itself. Hence, there is

a number p0 such that
∥∥fp (x)− fp′ (x ′)∥∥ < ε whenever p, p′ > p0. So,∥∥fp (x)− fp′ (x ′)∥∥ ≤ ∥∥fp (x)− fp (rj)∥∥

+∥∥fp (rj)− fp′ (rj)∥∥+ ∥∥fp′ (rj)− fp′ (x ′)∥∥ ≤ 3ε

Thus
{
fp (x)

}
converges at each x ∈ E . It remains to prove that

{
fp (x)

}
converges

uniformly on E and, therefore, its limit f is from C (E). Again, by the assumption on

equicontinuity, one can cover the set E with the finite δ-set containing, say, l-subsets.

In each of them select rational numbers, say, r1, . . . , rl . By the convergence of
{
fp (x)

}
there exists p0 such that

∥∥fp (rj)− fp′ (rj)∥∥ < ε whenever p, p′ > p0, so that

∥∥fp (x)− fp′ (x)∥∥ ≤ ∥∥fp (x)− fp (rj)∥∥
+∥∥fp (rj)− fp′ (rj)∥∥+ ∥∥fp′ (rj)− fp′ (x)∥∥ ≤ 3ε

where j is selected in such a way that rj belongs to the same δ-subset as x. Taking

p′ → ∞, this inequality implies
∥∥fp (x)− f (x)∥∥ ≤ 3ε for all x from the consid-

ered δ-subset, but this means the uniform converges on
{
fp (x)

}
exactly. Theorem is

proven. �

14.2.5.5 Connectedness
The definition of the connectedness of a set E has been given in Definition 14.7. Here

we will discuss its relation with the continuity property of a function f .

Lemma 14.2. If f : X → Y is a continuous mapping of a metric space X into a metric
space Y , and if E is a connected subset of X , then f (E) is connected.

Proof. On the contrary, assume that f (E) = A ∪ B with nonempty sets A,B ⊂ Y such

that A∩B = ∅. Put G = E∩ f −1 (A) and H = E∩ f −1 (B). Then E = G ∪H and both G
and H are nonempty. Since A ⊂ clA it follows that G ⊂f −1 (clA) and f (clG) ⊂ cl A.

Taking into account that f (H) = B and clA ∩ B = ∅ we may conclude that G ∩H = ∅.

By the same argument we conclude that G ∩ cl H = ∅. Thus, G and H are separated

which is impossible if E is connected. Lemma is proven. �

This theorem serves as an instrument to state the important result in R which is

known as the Bolzano theorem which concerns a global property of real-valued functions

continuous on a compact interval [a, b] ∈ R: if f (a) < 0 and f (b) > 0 then the graph of

the function f (x) must cross the x-axis somewhere in between. But this theorem as well
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as other results concerning the analysis of functions given on Rn will be considered in

detail below in Chapter 16.

14.2.5.6 Homeomorphisms
Definition 14.19. Let f : S → T be a function mapping points from one metric
space (S, dS) to another (T , dT ) such that it is one-to-one mapping or, in other words,
f −1 : T → S exists. If additionally f is continuous on S and f −1 on T then such
mapping f is called a topological mapping or homeomorphism, and the spaces (S, dS)
and (f (S), dT ) are said to be homeomorphic.

It is clear from this definition that if f is homeomorphic then f −1 is homeomorphic

too. The important particular case of a homeomorphism is the so-called isometry, i.e., it
is a one-to-one continuous mapping which preserves the metric, namely, which for all

x, x ′ ∈ S keeps the identity

dT (f (x), f (x
′)) = dS (x, x

′) (14.56)

14.2.6 The contraction principle and a fixed point theorem

Definition 14.20. Let X be a metric space with a metric d. If ϕ maps X into X and if
there is a number c ∈ [0, 1) such that

d (ϕ (x), ϕ (x ′)) ≤ cd (x, x ′) (14.57)

for all x, x ′ ∈ X , then ϕ is said to be a contraction of X into X .

Theorem 14.17. (The fixed point theorem) If X is a complete metric space and if
ϕ is a contraction of X into X , then there exists one and only one point x ∈ X
such that

ϕ (x) = x (14.58)

Proof. Pick x0 ∈ X arbitrarily and define the sequence {xn} recursively by setting xn+1 =
ϕ (xn), n = 0, 1, . . . . Then, since ϕ is a contraction, we have

d (xn+1, xn)= d (ϕ (xn), ϕ (xn−1))

≤ cd (xn, xn−1) ≤ · · · ≤ cnd (x1, x0)

Taking m > n and in view of the triangle inequality, it follows that

d (xm, xn)≤
m∑

i=n+1

d (xi, xi−1) ≤
(
cm−1 + · · · + cn) d (x1, x0)

≤ cn (cm−1−n + · · · + 1
)
d (x1, x0) ≤ cn (1− c)−1 d (x1, x0)
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Thus {xn} is a Cauchy sequence, and since X is a complete metric space, it should

converge, that is, there exists lim
n→∞xn := x. And, since ϕ is a contraction, it is continuous (in

fact, uniformly continuous). Therefore ϕ (x) = lim
n→∞ϕ (xn) = lim

n→∞xn = x. The uniqueness
follows from the following consideration. Assume that there exists another point y ∈ X
such that ϕ (y) = y. Then by (14.57) it follows that d (x, y) ≤ cd (ϕ (x), ϕ (y)) =
cd (x, y) which may only happen if d (x, y) = 0 which proves the theorem. �

14.3 Summary

The properties of sets which remain invariant under every topological mapping are

usually called the topological properties. Thus properties of being open, closed, or com-

pact are topological properties.
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15.1 Naive interpretation

15.1.1 What is the Riemann integration?

It is well known from elementary calculus that to find the area of the region under the

graph of a positive function f on the closed interval [a, b], one needs to subdivide the

interval into a finite number of subintervals, say n, with the kth subinterval �xk and to

consider the sums IRn defined as

IRn :=
n∑
i=1

f (tk)�xk, tk ∈ [xk−1, xk)

x0 = a < x1 < · · · < xn = b, �xk := xk − xk−1

(15.1)

Such sum is suggested to be considered as an approximation of the area by means of

rectangles (see Fig. 15.1).

Making the successive subdivisions finer and finer, or, in other words, taking n→∞
and if there exists some hope that these sums will tend to a limit IR (f ) then such sums

will converge to a real value of the square of the area under consideration. This, roughly

f (x)

a
x

xk21 xk b

Fig. 15.1. Riemann’s type of integration.

275
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f (x)

ba
x

fk

fk21

mesk

Fig. 15.2. Lebesgue’s type of integration.

speaking, is what is involved in Riemann’s definition of the definite integral
∫ b
x=a f (x) dx

which is studied in detail within the elementary calculus course. This type of integration

is well defined for the class of continuous or partially continuous functions.

15.1.2 What is the Lebesgue integration?

If a function has some more complex structure and admits any discontinuity of a

more complex nature then another generalizing integration method is required. One of

such method is the Lebesgue integration. It corresponds to the following approximation

scheme (see Fig. 15.2):

ILn :=
n∑
i=1

(fk − fk−1)mesk

f0 := inf
x∈[a,b]

f(x) < f1 < · · · < fn := sup
x∈[a,b]

f(x)

mesk is the longitude of all intervals where

fk−1 ≤ f (x) < fk

(15.2)

If a limit IL of ILn (when n→∞) exists it is called the Lebesgue integral of f(x) on

[a, b] and is denoted by IL (f ) := ∫ b
x=a f . It is closely related to a measure of a set. This

chapter considers both integration schemes in detail and rigorously from a mathematical

point of view.

15.2 The Riemann–Stieltjes integral

15.2.1 Riemann integral definition

Let [a, b] be a given interval and a partition Pn of [a, b] be defined as a finite

collection of points

a = x0 < x1 < · · · < xn = b
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We write

�xi := xi − xi−1, i = 1, . . . , n

Definition 15.1. Suppose f is a bounded real function defined on [a, b] and

Mi := sup
x∈[xi−1,xi )

f(x), mi := inf
x∈[xi−1,xi )

f(x) (15.3)

Then

U (Pn, f ) :=
n∑
i=1

Mi�xi (15.4)

and

L (Pn, f ) :=
n∑
i=1

mi�xi (15.5)

are called the upper and lower Darboux sums, respectively.

Definition 15.2.

1. The upper Riemann integral IU (f ) is defined as follows:

I u (f ) := lim sup
n→∞

sup
Pn

U (Pn, f ) (15.6)

where sup
Pn

is taken over all partitions Pn of the interval [a, b].

2. The lower Riemann integral IL (f ) is defined as follows:

I l (f ) := lim inf
n→∞ inf

Pn
L (Pn, f ) (15.7)

where inf
Pn

is taken over all partitions Pn of the interval [a, b].

3. If

I l (f ) = I u (f )
then the Riemann integral IR (f ), often written as

IR (f ) =
b∫

x=a
f (x) dx

is defined by

IR (f ) =
b∫

x=a
f(x) dx := I l (f ) = I u (f ) (15.8)



278 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Notice that for any partition Pn we have

min
i=1,...,n

Mi := m ≤ L (Pn, f ) ≤ U (Pn, f ) ≤ M := max
i=1,...,n

Mi

So, the numbers L (Pn, f ) and U (Pn, f ) form a bounded set and, hence, are correctly

defined. The question of the integrability of f (when (15.8) holds) is a delicate question

which will be discussed below.

15.2.2 Definition of Riemann–Stieltjes integral

We shall be working here with a compact set [a, b] ∈ R and all functions will be

assumed to be real-valued functions defined on [a, b]. Complex-valued functions will be

considered below in Chapter 18.

Let Pn := {a = x0, x1, . . . , xn = b} be a partition of [a, b], tk be a point within the

interval [xk−1, xk) and �αk := α (xk) − α (xk−1) where α : R → R is a real function

defined on [a, b].

Definition 15.3.

1. A partition P ′ of [a, b] is said to be finer than P (or a refinement of P ) if

P ⊆ P ′ (15.9)

2. A sum of the form

S (Pn, f, α) :=
n∑
k=1

f (tk)�αk (15.10)

is called a Riemann–Stieltjes sum of f with respect to α corresponding to a given
partition Pn.

3. We say that f is integrable in the Riemann sense with respect to α on [a, b] and we
will write f ∈ R[a,b] (α) if there exists a number IR−S having the following property:
for any ε > 0 there exists a partition Pε of [a, b] such that for any partition P finer
than Pε and for any choice of the points tk ∈ [xk−1, xk) we have

∣∣S (P, f, α)− IR−S∣∣ < ε (15.11)

4. When such number IR−S exists, it is uniquely determined and is denoted by

IR−S :=
b∫

x=a
f (x) dα (x) (15.12)

This is the Riemann–Stieltjes integral (or simply the Stieltjes integral) of f with
respect to α on [a, b].

5. The functions f and α are referred to as the integrand and the integrator, respectively.
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Remark 15.1. The letter x in (15.12) is a “dummy variable”, so it may be replaced by
any other convenient symbol, for example,

IR−S :=
b∫

x=a
f(x) dα (x) =

b∫
ζ=a
f(ζ ) dα (ζ ) (15.13)

Remark 15.2. By taking α (x) = x, the Riemann integral (15.8) is seen to be a special
(partial) case of the Riemann–Stieltjes integral (15.12).

15.2.3 Main properties of the Riemann–Stieltjes integral

Theorem 15.1. (on linear properties)

1. If f, g ∈ R[a,b] (α) then for any c1, c2 ∈ R

c1f + c2g ∈ R[a,b] (α) (15.14)

and

b∫
x=a

[c1f (x)+ c2g (x)] dα (x)

= c1
b∫

x=a
f (x) dα (x)+ c2

b∫
x=a
g (x) dα (x)

(15.15)

2. If f ∈ R[a,b] (α) and at the same time f ∈ R[a,b] (β) then for any c1, c2 ∈ R

f ∈ R[a,b] (c1α + c2β) (15.16)

and

b∫
x=a
f (x) d [c1α (x)+ c2β (x)]

= c1
b∫

x=a
f (x) dα (x)+ c2

b∫
x=a
f (x) dβ (x)

(15.17)

Proof. It follows directly from the linear property for the Riemann–Stieltjes sums (15.10)

S (P, c1f + c2g, α) and S (P, h, c1α + c2β). �
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Theorem 15.2. (on intervals summation) Assume that c ∈ [a, b]. If two of the three
integrals in the next identity exist then the third one also exists and

b∫
x=a
f (x) dα (x) =

c∫
x=a
f (x) dα (x)+

b∫
x=c
f (x) dα (x) (15.18)

Proof. If P is a partition of [a, b] and c ∈ P then we may introduce the corresponding

partitions of [a, c] and [c, b], respectively, as follows:

P ′ := P ∩ [a, c], P ′′ := P ∩ [c, b]

Then by the linear property for the Riemann–Stieltjes sums (15.10) we have

S (P, f, α) = S (P ′, f, α
)+ S (P ′′, f, α

)
which implies the proof of the desired result. �

Corollary 15.1.

1. If a < b and f ∈ R[a,b] (α) then

a∫
x=b
f (x) dα (x) = −

b∫
x=a
f (x) dα (x) (15.19)

whenever
∫ b
x=a f (x) dα (x) exists.

2.

a∫
x=a
f (x) dα (x) = 0 (15.20)

3. The identity (15.18) can be represented as

b∫
x=a
f (x) dα (x)+

c∫
x=b
f (x) dα (x)+

a∫
x=c
f (x) dα (x) = 0 (15.21)

Theorem 15.3. (on integration by parts) If f ∈ R[a,b] (α) then

1.

α ∈ R[a,b] (f ) (15.22)
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2.

b∫
x=a
f (x) dα (x)+

b∫
x=a
α (x) df (x)

= f (b) α (b)− f (a) α (a)
(15.23)

Proof. Since
b∫

x=a
f (x) dα (x) exists then for every ε > 0 there is a partition Pε of [a, b]

such that for every P ′ ⊇ Pε we have∣∣∣∣∣∣S
(
P ′, f, α

)− b∫
x=a
f (x) dα (x)

∣∣∣∣∣∣ < ε
Then for an arbitrary (P ⊇ Pε) Riemann–Stieltjes sum it follows that

S (Pn, α, f ) =
n∑
k=1

α (tk)�fk =
n∑
k=1

α (tk) f (xk)−
n∑
k=1

α (tk) f (xk−1)

Define

A := f (b) α (b)− f (a) α (a) =
n∑
k=1

f (xk) α (xk)−
n∑
k=1

f (xk−1) α (xk−1)

Subtracting the last two equations we derive

S (Pn, α, f )− A=
n∑
k=1

f (xk) [α (tk)− α (xk)]

+
n∑
k=1

f (xk−1) [α (xk−1)− α (tk)]

Two sums in the right-hand side can be considered as a single one of the form S (P ′, f, α)
where P ′ is a partition of [a, b] obtained by taking the points xk and tk together. So, for

such a partition it follows P ′ ⊇ Pε and, hence,

A− S (P, α, f )−
b∫

x=a
f (x) dα (x) =

n∑
k=1

f (xk) [α (xk)− α (tk)]

+
n∑
k=1

f (xk−1) [α (tk)− α (xk−1)]−
b∫

x=a
f (x) dα (x)

= S (P ′, α, f )−
b∫

x=a
f (x) dα (x)
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As the result, we obtain

∣∣∣∣∣∣A− S (Pn, α, f )−
b∫

x=a
f (x) dα (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣S (P ′, α, f )−
b∫

x=a
f (x) dα (x)

∣∣∣∣∣∣ < ε
which is exactly the statement that

∫ b
x=a α (x) df (x) exists and equals A − ∫ b

x=a f (x)
dα (x). The theorem is proven. �

Theorem 15.4. (on the change of variables) Let f ∈ R[a,b] (α) and let g : R → R be
a strictly monotonic increasing (or decreasing) function defined on the interval [c, d],
that is,

g (x) < g
(
x ′
)

if x < x ′

Assume that

g (c) = a, g (d) = b (15.24)

and

h (x) := f (g (x)), β (x) := α (g (x)) (15.25)

are the composite functions defined for any x ∈ [c, d]. Then

h ∈ R[c,d] (β) and

b∫
x=a
f (x) dα (x) =

d∫
x=c
h (x) dβ (x) (15.26)

or, equivalently,

g(d)∫
g(c)

f (t) dα (t) =
d∫

x=c
f (g (x)) dα (g (x)) (15.27)

Proof. By strict monotonicity it follows that for every partition Pn := {y0, y1, . . . , yn}
of [c, d] there corresponds one and only one partition P ′

n := {x0, x1, . . . , xn} of [a, b].
In fact,

P ′
n = g (Pn), Pn = g−1

(
P ′
n

)
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and, moreover, any refinement of Pn produces a corresponding refinement of P ′
n and

conversely. If Pn ⊇ Pε (ε > 0) then let us consider

S (Pn, h, β) :=
n∑
k=1

h (uk)�βk, uk ∈ [yk−1, yk), �βk := β (yk)− β (yk−1)

If putting tk := g (uk) and xk := g (yk) we obtain P ′
n ⊇ P ′

ε for which

∣∣∣∣∣∣S
(
P ′
n, f, α

)− b∫
a

f (t) dα (t)

∣∣∣∣∣∣ < ε
Then

S (Pn, h, β)=
n∑
k=1

h (g (uk)) [α (g (xk))− α (g (xk−1))]

=
n∑
k=1

f (tk) (α (xk)− α (xk−1)) = S
(
P ′
n, f, α

)

since tk ∈ [xk, xk−1). Therefore,

∣∣∣∣∣∣S (Pn, h, β)−
b∫
a

f (t) dα (t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣S
(
P ′
n, f, α

)− b∫
a

f (t) dα (t)

∣∣∣∣∣∣ < ε
which completes the proof of this theorem. �

Exercise 15.1. If f, f 2 ∈ R[a,b] (α) and g, g
2 ∈ R[a,b] (α) then

1

2

b∫
x=a

⎡
⎣ b∫
y=a

(
det

[
f (x) g (x)

f (y) g (y)

])2

dα (y)

⎤
⎦ dα (x)

=
⎡
⎣ b∫
x=a
f 2 (x) dα (x)

⎤
⎦
⎡
⎣ b∫
x=a
g2 (x) dα (x)

⎤
⎦

−
⎡
⎣ b∫
x=a
f (x) g (x) dα (x)

⎤
⎦2

(15.28)
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Exercise 15.2. If f, g, f · g ∈ R[a,b] (α) then

1

2

b∫
x=a

⎡
⎣ b∫
y=a
(f (y)− f (x)) (g (y)− f (x)) dα (y)

⎤
⎦ dα (x)

= [α (b)− α (a)]
b∫

x=a
f (x) g (x) dα (x)

−
⎡
⎣ b∫
x=a
f (x) dα (x)

⎤
⎦
⎡
⎣ b∫
x=a
g (x) dα (x)

⎤
⎦

(15.29)

15.2.4 Different types of integrators

15.2.4.1 Differentiable integrators
Theorem 15.5. (on a reduction to the Riemann integral) Given f ∈ R[a,b] (α) assume
that the integrator α (x) can be represented as

α (x) =
x∫

t=a
α′ (t) dt (15.30)

where α′ (t), called the derivative of α (x) at the point x ∈ [a, b], is a continuous function
on [a, b]. Then

1. There exists the Riemann integral

b∫
a

f (x) α′ (x) dx

2. The following identity holds

b∫
a

f (x) dα (x) =
b∫
a

f (x) α′ (x) dx (15.31)

Proof. For a partition Pn of [a, b] define

S (Pn, g, x) :=
n∑
k=1

g (tk)�xk

g (tk) := f (tk) α′ (tk), �xk := xk − xk−1

S (Pn, f, α) :=
n∑
k=1

f (tk)�αk
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By continuity of α′ (x) it follows that

�αk = α′
(
vk
)
�xk, vk ∈ [xk−1, xk]

and that α′ (x) is uniformly continuous on [a, b], that is, for any ε > 0 there exists

δ = δ (ε) > 0 such that 0 < |x − x ′| < δ implies |α′ (x)− α′ (x ′)| < ε. Hence,

|S (Pn, g, x)− S (Pn, f, α)| =
∣∣∣∣∣
n∑
k=1

f (tk)
[
α′ (tk)− α′

(
vk
)]
�xk

∣∣∣∣∣
≤

n∑
k=1

|f (tk)|
∣∣α′ (tk)− α′ (vk)∣∣ |�xk| ≤ ε n∑

k=1

|f (tk)| |�xk| ≤ εM (b − a)

whereM := sup
x∈[a,b]

f (x). On the other hand, since f ∈ R[a,b] (α), there exists a partition Pn

finer than Pε such that∣∣∣∣∣∣S (P, f, α)−
b∫
a

f (x) dα (x)

∣∣∣∣∣∣ < ε
which leads to the following:∣∣∣∣∣∣S (Pn, g, x)−

b∫
a

f (x) dα (x)

∣∣∣∣∣∣ =
∣∣[S (Pn, g, x)− S (Pn, f, α)]

+
⎡
⎣S (Pn, f, α)−

b∫
a

f (x) dα (x)

⎤
⎦
∣∣∣∣∣∣ ≤ |S (Pn, g, x)− S (Pn, f, α)|

+
∣∣∣∣∣∣S (Pn, f, α)−

b∫
a

f (x) dα (x)

∣∣∣∣∣∣ ≤ εM (b − a)+ ε = ε [1+M (b − a)]
The arbitrary of ε implies (15.31) which completes the proof. �

15.2.4.2 Step functions
If the integrator α (x) is a constant over the interval [a, b] then the integral∫ b
a
f (x) dα (x) exists and is equal to zero for any partially continuous function f (x). How-

ever, if α (x) is a constant except for a jump discontinuity at one point, then the integral∫ b
a
f (x) dα (x) not obligatory exists, but if it does exist, its value need not be zero. The

next theorem clarifies this situation.

Theorem 15.6. (on a single jump integrator) Given a < c < b let us assume that

(a) the values α (a), α (c) and α (b) are arbitrary;
(b) α (x) defined on [a, b] is a step function, i.e.,

α (x) =
{
α (a) if a ≤ x < c
α (b) if c < x ≤ b
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(c) f : R → R is defined on [a, b] in such a way that at least one of the functions f
or α is continuous from left at c (this means that there exists lim

x→c−0
f (x) = f (c) or

lim
x→c−0

α (x) = α (c)) and at least one is continuous from right at c.

Then the integral
∫ b
a
f (x) dα (x) exists, that is, f ∈ R[a,b] (α) and

b∫
a

f (x) dα (x) = f (c)�α

�α := α (c + 0)− α (c − 0)

(15.32)

where �α is the jump of the function α (x) at the point c.

Remark 15.3. The result also holds if c = a provided that

α (c − 0) := α (c)
and if c = b defining

α (c + 0) := α (b)
Proof. Supposing c ∈ Pn implies

S (Pn, f, α)= f (tk−1) [α (c)− α (c − 0)]

+f (tk) [α (c + 0)− α (c)] = [f (tk−1)− f (c)] [α (c)− α (c − 0)]

+ [f (tk)− f (c)] [α (c + 0)− α (c)]+ γ
γ := f (c) [α (c + 0)− α (c − 0)]

where tk−1 ≤ c ≤ tk . So, for � := S (Pn, f, α)− γ one has

|�| ≤ ∣∣[f (tk−1)− f (c)] [α (c)− α (c − 0)]
∣∣

+ [f (tk)− f (c)] [α (c + 0)− α (c)] ≤ ε (∣∣[α (c)− α (c − 0)]
∣∣)

+ ε (∣∣[α (c + 0)− α (c)]∣∣) ≤ ε · const
if |f (tk−1)− f (c)| < ε and |f (tk)− f (c)| < ε which may be done by the corresponding

partitioning of [a, b]. This proves the theorem. �

Next, let us consider a step function f (x) defined on [a, b] by a partition Pn :=
{a = x0, x1, . . . , xn = b} such that α (x) is a constant on each open subinterval (xk−1, xk)

and has jumps

�αk := α (xk + 0)− α (xk − 0), k = 2, . . . , n− 1

�α1 := α (x1 + 0)− α (x1)
�αn := α (xn)− α (xn − 0)

Then the following theorem provides the connecting link between the Riemann–Stieltjes

integral and finite sums depending on values of the integrator function jumps.
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Theorem 15.7. (on multiple jumps) If a function f defined on [a, b] in such a way that
neither f nor α are discontinuous from the right or from the left at each jump point xk
then

∫ b
a
f (x) dα (x) exists, that is, f ∈ R[a,b] (α) and

b∫
a

f (x) dα (x) =
n∑
k=1

f (xk)�αk (15.33)

Proof. Evidently, by the additivity property (15.18) the integral
∫ b
a
f (x) dα (x) can be

rewritten as a sum of integrals with a single jump that proves the theorem. �

Example 15.1. Denote by [x] the, so-called, greatest-integer function defined as the
unique integer satisfying the inequality

[x] ≤ x < [x]+ 1 (15.34)

Then any finite sum
∑n

k=1 ak can be represented as a Riemann–Stieltjes integral as
follows:

n∑
k=1

ak =
n∫

x=0

f (x) d [x]

f (x) = ak if x ∈ (k − 1, k], f (0) = 0

(15.35)

Example 15.2. (Euler’s summation formula) If f has a continuous derivative f ′ (see
(15.30)) on [a, b] then

[b]∑
k=[a]+1

f (n) =
b∫

x=a
f (x) dx +

b∫
x=a
f ′ (x) d

(
x − [x]

)
+f (a) (a − [a]

)− f (b) (b − [b]
) (15.36)

If a and b are integers then (15.36) becomes

b∑
k=a
f (n) =

b∫
x=a
f (x) dx +

b∫
x=a
f ′ (x)

(
x − [x]− 1/2

)
dx

+ [f (a)+ f (b)] /2
(15.37)
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Notice that (15.36) may be obtained using integration by part (15.23):

b∫
x=a
f (x) d

(
x − [x]

)

= −
b∫

x=a

(
x − [x]

)
df (x)+ f (b) (b − [b]

)− f (a) (a − [a]
)

= −
b∫

x=a

(
x − [x]

)
f ′ (x) dx + f (b) (b − [b]

)− f (a) (a − [a]
)

15.2.4.3 Monotonically nondecreasing integrators
When α is nondecreasing on [a, b], i.e., when α (x) ≤ α (x ′) if x ≤ x ′, the differences

�αk which appear in the Riemann–Stieltjes integral are all nonnegative which plays

a vital role in the development of the integration theory. For brevity, we will use the

abbreviation

“α ↑ on [a, b]” (15.38)

to mean that α (x) is nondecreasing on [a, b]. The following properties seem to be evident.

Proposition 15.1. Assume α ↑ on [a, b] and f, g ∈ R[a,b] (α). Then

1. If f (x) ≤ g (x) for all x ∈ [a, b] we have

b∫
x=a
f (x) dα (x) ≤

b∫
x=a
g (x) dα (x) (15.39)

2. If g (x) ≥ 0 for all x ∈ [a, b] it follows

0 ≤
b∫

x=a
g (x) dα (x) (15.40)

which can be obtained from (15.39) taking f (x) = 0;
3.

|f | ∈ R[a,b] (α) (15.41)

and ∣∣∣∣∣∣
b∫

x=a
f (x) dα (x)

∣∣∣∣∣∣ ≤
b∫

x=a
|f (x)| dα (x) (15.42)
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which follows from the inequality

||f (x)| − |f (y)|| ≤ |f (x)− f (y)|

4.

f 2 ∈ R[a,b] (α) (15.43)

5.

f · g ∈ R[a,b] (α) (15.44)

which follows from the identity

2f (x) g = (f (x)+ g (x))2 − f 2 (x)− g2 (x)

Proposition 15.2. (The Cauchy–Schwarz inequality) If f, f 2, g, g2 ∈ R[a,b] (α) and,

in addition, α ↑ on [a, b], then

⎡
⎣ b∫
x=a
f (x) g (x) dα (x)

⎤
⎦2

≤
⎡
⎣ b∫
x=a
f 2 (x) dα (x)

⎤
⎦
⎡
⎣ b∫
x=a
g2 (x) dα (x)

⎤
⎦

(15.45)

Proof. It follows directly from (15.28) since the left-hand side of this identity is

nonnegative. �

Proposition 15.3. If f, g, f · g ∈ R[a,b] (α), both f and g are either nondecreasing or
nonincreasing and α ↑ on [a, b], then

⎡
⎣ b∫
x=a
f (x) dα (x)

⎤
⎦
⎡
⎣ b∫
x=a
g (x) dα (x)

⎤
⎦

≤ [α (b)− α (a)]
b∫

x=a
f (x) g (x) dα (x)

(15.46)

Proof. It follows directly from (15.29) since the left-hand side of this identity is

nonnegative. �
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15.2.4.4 Integrators of bounded variation
Definition 15.4. If Pn is a partition of a compact interval [a, b], �αk := α (xk) −
α (xk−1) and there exists a positive number M such that

n∑
k=1

|�αk| ≤ M (15.47)

for all partitions Pn of the interval [a, b], then α is said to be of bounded variation on
[a, b].
Lemma 15.1. If α is monotonic on [a, b] then it is of bounded variation on [a, b].

Proof. Let α be nondecreasing. Then �αk ≥ 0 for all k = 1, . . . , n and, hence,

n∑
k=1

|�αk| =
n∑
k=1

�αk = α (xn)− α (x0) = α (b)− α (a)

If f is nonincreasing then �αk ≤ 0 and |�αk| = −�αk which gives

n∑
k=1

|�αk| = α (a)− α (b)

Lemma is proven. �

Lemma 15.2. If α is continuous on [a, b] and if α′ exists and is bounded (say,
sup
x∈[a,b]

|α′ (x)| ≤ M <∞) then α is of bounded variation on [a, b].

Proof. Since�αk = α (xk)−α (xk−1) = α′ (tk) (xk − xk−1)where tk ∈ (xk−1, xk) it follows

that

n∑
k=1

|�αk| =
n∑
k=1

∣∣α′ (tk) (xk − xk−1)
∣∣ = n∑

k=1

∣∣α′ (tk)∣∣ (xk − xk−1)

≤M
n∑
k=1

(xk − xk−1) = M (b − a) <∞

which completes the proof. �

Lemma 15.3. If α is of bounded variation on [a, b], say
∑n

k=1
|�αk| ≤ M for all

partitions of [a, b], then α is bounded on [a, b], namely,

α (x) ≤ α (a)+M (15.48)

Proof. For any x ∈ (a, b), using the special partition P := {a, x, b}, we find

|α (x)− α (a)| + |α (b)− α (x)| ≤ M
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which implies |α (x)− α (a)| ≤ M , or, equivalently, α (x) ≤ α (a) + M . The same

inequality is valid if x = a or x = b. Lemma is proven. �

To work more exactly with functions of bounded variations we need the following

definition.

Definition 15.5. For a function α of bounded variation on [a, b] the number

Vα [a, b] := sup
P

{
n∑
k=1

|�αk|
}

(15.49)

(where sup is taken over all possible partitions of [a, b]) is called the total variation of
α on the interval [a, b].

The following properties of Vα [a, b] are evident:

1. Since α is of bounded variation the number Vα [a, b] is finite;

2.

Vα [a, b] ≥ 0 (15.50)

3.

Vα [a, b] = 0

if and only if α (x) = const on [a, b];

4.

Vα+β [a, b] ≤ Vα [a, b]+ Vβ [a, b] (15.51)

5.

Vα·β [a, b] ≤ AVα [a, b]+ BVβ [a, b]

A := sup
x∈[a,b]

|β (x)|, B := sup
x∈[a,b]

|α (x)| (15.52)

6. If c ∈ (a, b) then

Vα [a, b] = Vα [a, c]+ Vα [c, b] (15.53)

7. If x ∈ (a, b) then the function

V (x) := Vα [a, x] (15.54)
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possesses the following properties:

(a)

V (a) = 0

(b) V (x) is a nondecreasing function on [a, b];

(c) [V (x)− α (x)] is a nondecreasing function on [a, b];

(d) Any point of continuity of α (x) is a point of continuity of V (x) and inversely.

The following theorem gives the simple and elegant characterization of functions of

bounded variations.

Theorem 15.8. (on a difference of increasing functions) Let α be defined on [a, b].
Then α is of bounded variation on [a, b] if and only if α can be represented as the
difference of two nondecreasing functions, namely, if and only if

α (x) = α+ (x)− α− (x) (15.55)

where α+ ↑ on [a, b] and α− ↑ on [a, b].

Proof. Define α+ (x) = V (x), where V (x) is the function (15.54), and α− (x) :=
V (x)− α (x). By the statement 7(b–c) of the previous claim it follows that both α+ (x)
and α− (x) are nondecreasing which proves the theorem. �

Corollary 15.2. If α (x) is continuous at the point x, then α+ (x) and α− (x) are also
continuous at x.

Example 15.3. Consider the function (see Fig. 15.3)

3

2

1

0 1 2 3 4

�(x)

x

Fig. 15.3. The function of bounded variation.
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α (x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if 0 ≤ x < 1

3 if 1 ≤ x < 2

1 if 2 ≤ x < 3

2 if 3 ≤ x ≤ 4

Define (see Fig. 15.4)

α+ (x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
0 if 0 ≤ x < 1

3 if 1 ≤ x < 2

4 if 2 ≤ x < 3

6 if 3 ≤ x ≤ 4

and (see Fig. 15.5)

α− (x) :=

⎧⎪⎨
⎪⎩
0 if 0 ≤ x < 2

3 if 3 ≤ x < 3

4 if 3 ≤ x ≤ 4

Then, it is clear that α (x) = α+ (x)− α− (x).

Corollary 15.3. (Royden 1968) For any function α (x) of bounded variation on [a, b]

and for each point c ∈ (a, b) there exist lim
x→c−0

α (x) and lim
x→c+0

α (x).

Corollary 15.4. (Royden 1968) Any monotone function and, hence, any function of
bounded variation on [a, b] can have only a countable number of discontinuities.

6

4

3

1

0 1 2 3 4

�1(x)

x

Fig. 15.4. The first nondecreasing function.
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4

3

1

0 1 2 3 4

�2(x)

x

Fig. 15.5. The second nondecreasing function.

Proof. It follows from the fact that for any monotone function α (x) the number of points

where

|α (x + 0)− α (x − 0)| > 1/sn

sn :=
n∑
k=1

[�αk]−, [x]− := min {0; x}

for any partition Pn is finite. �

Corollary 15.5. (Royden 1968) If α (x) is a function of bounded variation on [a, b], then
α′ (x) exists for almost all x ∈ [a, b], that is, α (x) is differentiable almost everywhere
on [a, b].

15.3 The Lebesgue–Stieltjes integral

The purpose of this section is to present the fundamental concepts of the Lebesgue

theory of measure and integration and to prove some crucial theorems in a rather general

setting without obscuring the main lines of the developments by a mass of comparatively

trivial detail.

15.3.1 Algebras, σ -algebras and additive functions of sets

Definition 15.6. A family F of subsets of � is called an algebra (or a ring) generated
by �, if for any finite n <∞ and for any subsets Ai ∈ �(i = 1, . . . , n)

1.

� ∈ F (15.56)
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2.

n⋃
k=1

Ak ∈ F (15.57)

3.

n⋂
k=1

Ak ∈ F (15.58)

4. for any A ∈ �

A �= �−A ∈ F (15.59)

Definition 15.7. A system F of subsets of � is called an σ -algebra (or a σ -ring) gen-
erated by �, if

1. it is algebra;
2. for any sequences of subsets {Ai}, Ai ∈ F

∞⋃
i=1

Ai ∈ F,
∞⋂
i=1

Ai ∈ F (15.60)

Definition 15.8.

1. A set function φ : F → R defined for every A ∈ F is said to be additive if A∩B = ∅

and B ∈ F implies

φ (A ∪ B) = φ (A)+ φ (B) (15.61)

2. A set function φ : F → R defined for every A from a σ -algebra F is said to be
countably additive if Ai ∩

i �=j Aj = ∅ and Ai ,Aj ∈ F implies

φ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

φ (Ai ) (15.62)

We shall also assume that

• the range of φ does not contain both (+∞) and (−∞), for if it did the right-hand side

of (15.61) could become meaningless;
• we exclude functions whose only value is (+∞) or (−∞).
Assuming, in addition, for an additive φ that

(a)

φ (∅) = 0 (15.63)
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(b) for all A ∈ F

φ (A) ≥ 0 (15.64)

the following properties are easily verified.

Proposition 15.4.

1. If Ai ∩
i �=j Aj = ∅ and Ai ,Aj ∈ F then

φ

(
n⋃
i=1

Ai

)
=

n∑
i=1

φ (Ai ) (15.65)

2. For any A1,A2 ∈ F we have

φ (A1 ∪A2)+ φ (A1 ∩A2) = φ (A1)+ φ (A2) (15.66)

3. If A1 ⊂ A2 ∈ F then

φ (A1) ≤ φ (A2) (15.67)

4. If B ⊂ A ∈ F and φ (B) <∞ then

φ (A− B) = φ (A)− φ (B) (15.68)

For countably additive φ the following result holds.

Theorem 15.9. Suppose φ is countably additive on σ -algebra F and Ai ∈ F
(i = 1, 2, . . .), A1 ⊂ A2 ⊂ · · ·, A := ⋃∞

i=1 Ai ∈ F . Then, as n→∞

φ (An)→ φ (A) (15.69)

Proof. Define B1 := A1 and Bn := An −An−1 (n = 2, 3, . . .). Then

Bi ∩
i �=j Bj = ∅, An = B1 ∪ B2 ∪ · · · ∪ Bn, A =

∞⋃
i=1

Bi

Hence, φ (An) =∑n

i=1 φ (Bi ) and φ (A) =
∑∞
i=1 φ (Bi ). Theorem is proven. �

15.3.2 Measure theory

This subsection deals with construction of the, so-called, Lebesgue measure which

plays the key role in the definition of the Lebesgue–Stieltjes integral.
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15.3.2.1 Intervals
Definition 15.9. Intervals in p-dimensional Euclidean space Rp are defined as follows:

1. the closed interval

[a, b] := {
x := {

x1, . . . , xp
} : ai ≤ xi ≤ bi (i = 1, f

)}
2. the semi-open interval

[a, b) := {
x := {

x1, . . . , xp
} : ai ≤ xi < bi (i = 1, f

)}
or

(a, b] := {
x := {

x1, . . . , xp
} : ai < xi ≤ bi (i = 1, f

)}
3. the open interval

(a, b) := {
x := {

x1, . . . , xp
} : ai < xi < bi (i = 1, f

)}
The possibility that ai = bi for any value of i is not ruled out; in particular, the empty

set is included among the intervals. If A is a union of a finite number of intervals it is

called an elementary set.

15.3.2.2 Additive set functions
Definition 15.10. If I is an interval, we define

m(I) :=
p∏
i=1

(bi − ai) (15.70)

and if A = I1 ∪ · · · ∪ Ip then we set

m(A) := m(I1)+ · · · +m (
Ip
)

(15.71)

We let E denote the family of elementary subsets of Rp.

At this point, the following properties should be easily verified.

Proposition 15.5.

1. E is algebra (ring), but not a σ -algebra;
2. If A ∈ E then A is a union of a finite number of disjoint intervals;
3. If A ∈ E then m(A) is well defined by (15.71) on E;
4. m is additive on E .

Remark 15.4. If p = 1, 2, 3 then m is length, area and volume, respectively.



298 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Definition 15.11. A nonnegative additive set function φ : E → R defined on E is said
to be regular if for every A ∈ E and every ε > 0 there exist sets F,G ∈ E such that F
is closed, G is open, F ⊂ A ⊂ G and

φ (G)− ε ≤ φ (A) ≤ φ (F)+ ε (15.72)

Example 15.4.

1. If A = I is an interval then m (15.70) is regular.

2. For p = 1 let α : R → R be a nondecreasing function possibly having discontinuity
points. Put

μ
(
[a, b]

) := α (b + 0)− α (a − 0)

μ
(
[a, b)

) := α (b − 0)− α (a − 0)

μ
(
(a, b]

) := α (b + 0)− α (a + 0)

μ ((a, b)) := α (b − 0)− α (a + 0)

(15.73)

μ is regular on E .

15.3.2.3 Countably additive set functions
Our next objective is to show that every regular set function on E can be extended to

a countably additive set function on σ -algebra containing E .

Definition 15.12. Define

μ∗ (E) := inf

∞∑
n=1

μ (An) (15.74)

where
⋃∞
i=1 Ai is a countable covering of E ⊂ Rp by open elementary sets An, that is,

E ⊂ ⋃∞
i=1 Ai , μ is additive, regular, nonnegative and finite on E , and inf being taken

over all countable coverings of E by open elementary set. μ∗ (E) is called the outer
measure of E corresponding to μ.

Theorem 15.10.

1. For every A ∈ E

μ∗ (A) = μ (A) (15.75)

2. The following subadditivity property holds: if E = ⋃∞
i=1 Ei then

μ∗ (E) ≤
∞∑
i=1

μ∗ (Ei) (15.76)
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Proof.

1. Choose A ∈ E and ε > 0. By the regularity of μ, A is contained in an open elementary

set G such that μ (G) ≤ μ (A)+ε. Since μ∗ (A) ≤ μ (G) and arbitrarity it follows that

μ∗ (A) ≤ μ (A) (15.77)

By the definition (15.74) there is a sequence {An} of open elementary sets whose

union contains A such that
∑∞
n=1 μ (An) ≤ μ∗ (A) + ε. The regularity of μ shows

also that A contains a closed elementary set such that μ (F) ≥ μ (A)− ε. Since F is

a compact we have F ⊂ A1∪ · · · ∪AN for some N . Hence,

μ (A)≤μ (F)+ ε ≤ μ (A1 ∪ · · · ∪AN)+ ε

≤
N∑
n=1

μ (An)+ ε ≤ μ∗ (A)+ 2ε
(15.78)

which, in conjunction with (15.77), proves (15.75).

2. Suppose E = ⋃∞
i=1 Ei and μ

∗ (En) <∞ for all n. Given ε > 0 there are covering sets

{Ank}k=1,2,... of En by open elementary sets such that
∑∞
k=1 μ (Ank) ≤ μ∗ (En) + 2−nε

which leads to the inequality

μ∗ (E)≤
∞∑
n=1

∞∑
k=1

μ (Ank) ≤
∞∑
n=1

μ∗ (En)

+
∞∑
n=1

2−nε =
∞∑
n=1

μ∗ (En)+ ε

and (15.76) follows. In the excluded case when μ∗ (En) = ∞ for some n, (15.76)

trivially holds. Theorem is proven.

�

15.3.2.4 μ-measurable sets
Definition 15.13.

1. For any A,B ⊂ Rp let us define the set S (A,B), called the symmetric difference of
A and B, as

S (A,B) := (A− B) ∪ (B −A) (15.79)

2. The distance function (metric) is defined as follows

d (A,B) := μ∗ (S (A,B)) (15.80)
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3. We will write An → A when n→∞ if

lim
n→∞d (An,A) = 0 (15.81)

4. If there is a sequence {An} of elementary sets such that An → A, we say that A is
finitely μ-measurable and write

A ∈ Mf in (μ) (15.82)

5. If A is the union of a countable collection of finitely μ-measurable sets, we say that
A is μ-measurable and write

A ∈ M (μ) (15.83)

Some properties of S (A,B) are summarized in the following claim.

Claim 15.1.

1.

S (A,A) = ∅ (15.84)

2.

S (A,B) = S (B,A) (15.85)

3.

S (A,B) ⊂ S (A, C) ∪ S (C,B) (15.86)

which follows from

(A− B) ⊂ (A− C) ∪ (C − B)
(B −A) ⊂ (C −A) ∪ (B − C)

4.

S (A1 ∪A2,B1 ∪ B2)

S (A1 ∩A2,B1 ∩ B2)

S (A1 −A2,B1 − B2)

⎫⎪⎬
⎪⎭ ⊂ S (A1,B1) ∪ S (A2,B2) (15.87)

which follows from
(A1 ∪A2)− (B1 ∪ B2) ⊂ (A1 − B1) ∪ (A2 − B2)

S (A1 ∩A2,B1 ∩ B2) = S
(
Ac

1 ∪Ac
2,Bc1 ∪ Bc2

) ⊂
S
(
Ac

1,Bc1
) ∪ S (Ac

2,Bc2
) = S (A1,B1) ∪ S (A2,B2)

where Ac := Rp −A is the complement of A
A1 −A2 = A1 ∩Ac

2

The next properties of d (A,B) can be checked directly from the definition (15.80).
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Claim 15.2.

1.

d (A,A) = 0 (15.88)

2.

d (A,B) = d (B,A) (15.89)

3.

d (A,B) ≤ d (A, C)+ d (C,B) (15.90)

4.

d (A1 ∪A2,B1 ∪ B2)

d (A1 ∩A2,B1 ∩ B2)

d (A1 −A2,B1 − B2)

⎫⎬
⎭ ≤ d (A1,B1)+ d (A2,B2) (15.91)

which follows from (15.87);
5.

|μ∗ (A)− μ∗ (B)| ≤ d (A,B) (15.92)

6. If d (A,B) = 0 this does not imply A = B. By this property d (A,B) is “quasi-
metric”.

The next theorem will enable us to obtain the desired extension of the measure μ

(15.73).

Theorem 15.11. (The main theorem on a measure extension) M (μ), defined by
(15.83), is a σ -algebra (σ -ring) and μ∗ (15.74) is countably additive on M (μ).

Proof.

(a) Let A,B ∈ Mf in (μ). Choose {An}, {Bn} such that An,Bn ∈ E and An → A,
Bn → B. Then by (15.91) and (15.92) An ∪ Bn → A ∪ B, An ∩ Bn → A ∩ B,
An − Bn → A − B, μ∗ (An) → μ∗ (A). Also, μ∗ (A) < ∞ since d (An,A) → 0.

This implies that Mf in (μ) is an algebra (ring). By (15.66) we have μ (An) + μ (Bn)
= μ (An ∪ Bn) + μ (An ∩ Bn). Letting n → ∞ we obtain μ∗ (A) + μ∗ (B) =
μ∗ (A ∪ B) + μ∗ (A ∩ B). If A∩B = ∅ then μ∗ (A ∩ B) = 0. So, μ∗ is additive on
Mf in (μ).
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(b) Let A ∈ M (μ). Then A can be represented as the union of countable collection

of disjoint sets of Mf in (μ) and for A = ⋃∞
n=1 A′

n with A′
n ∈ M (μ). Define A1 =

A′
1 and

An :=
(
A′

1 ∪A′
2 ∪ · · · ∪A′

n

)− (
A′

1 ∪A′
2 ∪ · · · ∪A′

n−1

)
Then A = ⋃∞

n=1 An is the required representation. By the subadditivity property

(15.76) μ∗ (A) ≤ ∑∞
i=1 μ

∗ (Ai ). On the other hand,

A ⊃ (A1 ∪A2 ∪ · · · ∪An)

and, by the additivity of μ∗on Mf in (μ), we have

μ∗ (A) ≥ μ∗ (A1 ∪A2 ∪ · · · ∪An) =
n∑
i=1

μ∗ (Ai )

which implies

μ∗ (A) =
∞∑
i=1

μ∗ (Ai ) (15.93)

Suppose μ∗ (A) is finite. Put Bn := A1 ∪ A2 ∪ · · · ∪ An. Then

d (A,Bn) := μ∗
( ∞⋃
i=n+1

Ai

)
=

∞∑
i=n+1

μ∗ (Ai )→ 0

as n→∞. This means that Bn → A and, since Bn ∈ Mf in (μ), it is easily seen that

A ∈ Mf in (μ). So, we have thus shown that A ∈ Mf in (μ) if A ∈ M (μ) and μ∗ (A)
<∞. Now it is evident that μ∗ is countably additive on M (μ). For if A = ⋃∞

i=1 Ai

where {Ai} is a sequence of disjoint sets of M (μ) we have just shown that (15.93)

holds if μ∗ (An) < ∞ for any n = 1, 2, . . ., and, in other cases, it looks trivial.

(c) Finally, we have to show that M (μ) is σ -algebra (σ -ring). If An ∈ M (μ), it is clear

that
⋃∞
i=1 Ai ∈ M (μ). Suppose A,B ∈ M (μ) where A = ⋃∞

i=1 Ai , B = ⋃∞
i=1 Bi and

An,Bn ∈ Mf in (μ). Then the identity An∩B = ⋃∞
i=1 (An ∩ Bi ) implies that (An ∩ B)

∈ M (μ). In view of μ∗ (An ∩ B) ≤ μ∗ (An) <∞ we have (An ∩ B) ∈ Mf in (μ) and,

hence, (An − B) ∈ Mf in (μ), and (A− B) ∈M (μ) since (A− B)=⋃∞
n=1 (An − B).

Theorem is proven. �

So, now we may replace μ∗ (A) by μ (A) if A ∈ M (μ) and thus μ, originally defined

only on E , is extended to a countable additive set function defined on the σ -algebra

M (μ).
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Corollary 15.6.

(a) If A is open, then A ∈ M (μ) since for every open set in Rp there is the union of a
countable collection of open intervals.

(b) Every closed set A is also in M (μ) which follows from previous comment by taking
complements.

(c) If A ∈ M (μ) and ε > 0 there exist a closed set F and an open set G such that

F ⊂ A ⊂ G (15.94)

and

μ (G −A) < ε, μ (A− F) < ε (15.95)

Now we are ready to give the main definition of this section.

Definition 15.14.

(a) Such extended set function μ∗ (15.74) is called a countably additive measure.
(b) The special case μ = m (see (15.74)) is called the Lebesgue measure on Rp.

15.3.2.5 Borel sets
Definition 15.15. E is said to be a Borel set if E can be obtained by a countable
number of operations, starting from open sets, each operation consisting of taking unions,
intersections, or complements.

The difference between a Borel set and σ -algebra (ring) (15.7) is that � in the case of

a Borel set must be an open set.

The following facts take place for Borel sets.

Claim 15.3.

1. The collection B of all Borel sets in Rp is a σ -algebra (ring). In fact, it is the smallest
σ -algebra (ring) which contains all open sets, that is, if E ∈ B then E ∈ M (μ).

2. If A ∈ M (μ), there exist Borel sets F and G such that F ⊂ A ⊂ G and

μ (G −A) = μ (A− F ) = 0 (15.96)

This follows from (15.95) if we take ε = 1/n and let n→∞.
3. If A = F ∪ (A− F) one can see that A ∈ M (μ) is the union of a Borel set and a

set of measure zero.
4. Borel sets are μ-measurable for every μ (for details see below), but the sets of measure

zero (that is, the sets E for which μ∗ (E) = 0) may be different for different μ’s.
5. For every μ the sets of measure zero from σ -algebra (ring).
6. In the case of the Lebesgue measure (μ = m) every countable set has measure zero.

But there are uncountable (in fact, perfect) sets of measure zero (see Rudin (1976)
Chapter 11 with the Cantor set as an example).
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15.3.3 Measurable spaces and functions

15.3.3.1 Measurable spaces
Consider X which is a set, not necessarily a subset, of a Euclidean space, or indeed of

any metric space.

Definition 15.16.

• X is said to be a measure space if there exist a σ -algebra (ring) M of subsets of X
(which are called measurable sets) and a nonnegative countable additive function μ
(which is called a measure) defined on M.

• If, in addition, X ∈ M then X is called a measurable space.

Example 15.5.

1. Take X = Rp, then M is the collection of all Lebesgue measurable subsets of Rp and
μ is the Lebesgue measure.

2. Let X be the set of all positive integers. Then M is the collection of all subsets of X
and μ (E) is the number of elements of E .

3. Another example is provided by probability theory where events are considered as sets
and the corresponding probability of the occurrence of events is a countably additive
set function.

15.3.3.2 Measurable functions
Definition 15.17. Let f : X → R be a function, defined on the measurable space X ,
with values in R. The function f is said to be measurable if the set {x | f (x) > a} is
measurable for every real a, that is, when for any a ∈ R

{x | f (x) > a} ⊂ X (15.97)

Example 15.6. If X = Rp with M = M (μ) defined in (15.83) then any continuous func-
tion f is measurable, since (15.97) is an open set.

Lemma 15.4. Each of the following four conditions implies the other three:

1. for every real a

{x | f (x) > a} is measurable (15.98)

2. for every real a

{x | f (x) ≥ a} is measurable (15.99)

3. for every real a

{x | f (x) < a} is measurable (15.100)
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4. for every real a

{x | f (x) ≤ a} is measurable (15.101)

Proof. The relations

{x | f (x) ≥ a} =
∞⋂
n=1

{x | f (x) ≥ a − 1/n}
{x | f (x) < a} = X − {x | f (x) ≥ a}
{x | f (x) ≤ a} =

∞⋂
n=1

{x | f (x) < a − 1/n}
{x | f (x) > a} = X − {x | f (x) ≤ a}

being applied successfully demonstrate that (15.15) implies (15.99), (15.99) implies

(15.100), (15.100) implies (15.101) and (15.101) implies (15.15). Lemma is proven. �

Lemma 15.5. If f is measurable then |f | is measurable.

Proof. It follows from the relation

{x | |f (x)| < a} = {x | f (x) < a} ∩ {x | f (x) > −a}

and the previous lemma. �

Theorem 15.12. Let {fn} be a sequence of measurable functions.
Then

g(x) := sup
n

fn (x)

and

h(x) := lim sup
n

fn (x)

are measurable too.

Proof. Indeed,

{x | g(x) > a} =
∞⋃
n=1

{x | fn(x) > a}

and

h(x) = lim
m→∞ sup

n≥m
fn (x) = inf

n
sup
n≥m
fn (x)

which implies the desired result. �
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Corollary 15.7.

(a) If f and g are measurable then max {f, g} and min {f, g} are measurable.
(b) If

f + := max {f, 0} and f − := −min {f, 0} (15.102)

then it follows that f + and f − are measurable.
(c) The limit of a convergent sequence of measurable functions is measurable.

Theorem 15.13. Let f and g be measurable real-valued functions defined on X , and let
F be real and continuous on R2. Put

h (x) := F (f (x), g (x))

Then h is measurable and, in particular, (f + g) and (f · g) are measurable.

Proof. Define Gn := {(u, v) | F (u, v) > a}. Then Gn is an open subset of R2 which can

be represented as Gn = ⋃∞
n=1

{x | fn(x) > a} where

In := {(u, v) | an < u < bn, cn < v < dn}

Since the set

{x | an < f (x) < bn} = {x | f (x) > an} ∩ {x | f (x) < bn}

is measurable, it follows that the set

{x | (f (x), g (x)) ∈ In} = {x | an < f (x) < bn} ∩ {x | cn < g (x) < dn}

is measurable too. Hence, the same is true for the set

{x | h (x) > a} = {x | (f (x), g (x)) ∈ Gn}

=
∞⋃
n=1

{x | (f (x), g (x)) ∈ In}

which completes the proof. �

Summary 15.1.

(a) Summing up, we may say that all ordinary operations of analysis, including limit
operations, being applied to measurable functions, lead to measurable functions as
well. In other words, all functions that are ordinarily met with are measurable. But this
is, however, only a rough statement since, for example, the function h(x) = f (g(x)),
where f is measurable and g is continuous, is not necessarily measurable.
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(b) The concrete measure has not been mentioned in the discussions above. In fact, the
class of measurable functions on X depends only on the σ -algebra (ring) M. That’s
why we may speak of Borel-measurable functions on Rp, that is, of functions for
which the set {x | f (x) > a} is always a Borel set, without reference to any particular
measure.

15.3.4 The Lebesgue–Stieltjes integration

15.3.4.1 Simple functions
Definition 15.18.

1. If the range of a real-valued function s : X → R, defined on X , is finite, we say that
s is a simple function.

2. Define the characteristic function χE of a set E ⊂ X as follows:

χE (x) :=
{
1 if x ∈ E
0 if x /∈ E (15.103)

It is evident that if the range of a simple function s consists of the distinct numbers

c1, c2, . . . , cn then s can be represented as a finite linear combination of characteristic

functions, namely,

s (x) =
n∑
i=1

ciχEi (x) (15.104)

where

Ei := {x | s (x) = ci}, i = 1, 2, . . . n (15.105)

It is clear by the construction that s is measurable if and only if the sets Ei (i = 1, 2, . . . n)

are measurable.

The next theorem shows that any function can be approximated by simple functions.

Theorem 15.14. Let f : X → R be a real function on X . There exists a sequence
{sn} of simple functions such that sn (x) → f (x) as n → ∞ for every x ∈ X . If f is
measurable, {sn} can be chosen to be a sequence of measurable functions. If f ≥ 0, {sn}
can be chosen as a monotonically nondecreasing sequence.

Proof. For f ≥ 0 define

En,i (x) := {x | (i − 1)/2n ≤ f (x) ≤ i/2n}
Fn (x) := {x | f (x) ≥ n}

for i = 1, 2, . . . , n2n and n = 1, 2, . . . . Put

sn (x) :=
n2n∑
i=1

(i − 1)

2n
χEn,i (x)+ nχFn (x)
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It is not difficult to see that such constructed sn (x) converges to f . In the general case, let

f = f + − f − (15.106)

and apply the preceding construction for f + and f −. Theorem is proven. �

Remark 15.5. The sequence sn (x) converges monotonically to f if f is bounded.

15.3.4.2 Integration
Here we shall define integration on a measurable space X in which M is the σ -algebra

(ring) of measurable sets and μ is the measure.

Definition 15.19. (Integral of a nonnegative function) Suppose

s (x) =
n∑
i=1

ciχEi (x), x ∈ X , ci ≥ 0 (15.107)

is measurable, and suppose E ⊂ M. Define

IE (s) :=
n∑
i=1

ciμ (E ∩ Ei ) (15.108)

If f is measurable and nonnegative, we define

∫
E

f dμ := sup IE (s) (15.109)

where the sup is taken over all measurable simple functions such that 0 ≤ s (x) ≤ f (x)
for all x ∈ X . The left-hand side member of (15.109) is called the Lebesgue–Stieltjes
(or, simply, Lebesgue) integral of f with respect to measure μ over the set E . It should
be noted that integrals may have the value (+ ∞).

Claim 15.4. It is easy to verify that

∫
E

s dμ = IE (s) (15.110)

Definition 15.20. (Integral of a measurable function) Let f be measurable. Consider
two Lebesgue integrals∫

E

f + dμ and
∫
E

f − dμ (15.111)
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where f + and f − are defined by (15.102). If at least one of the integrals in (15.111) is
finite, we may define

∫
E

f dμ :=
∫
E

f + dμ−
∫
E

f − dμ (15.112)

If both integrals in (15.102) are finite then the left-hand side in (15.112) is finite too, and
we say that f is integrable (or summable) on E in the Lebesgue sense with respect to
the measure μ. We write

f ∈ L (μ) on E (15.113)

Proposition 15.6. The following properties of the Lebesgue integral are evident:

1. If f is measurable and bounded on E and if μ (E) <∞, then f ∈ L (μ) on E .
2. If a ≤ f (x) ≤ b on E and if μ (E) <∞, then

aμ (E) ≤
∫
E

f dμ ≤ bμ (E) (15.114)

3. If f, g ∈ L (μ) on E and if f (x) ≤ g (x) for all x ∈ E , then
∫
E

f dμ ≤
∫
E

g dμ (15.115)

4. If f ∈ L (μ) on E , then cf ∈ L (μ) for every finite constant c, and

∫
E

cf dμ = c
∫
E

f dμ (15.116)

5. If μ (E) = 0 and f is measurable, then

∫
E

f dμ = 0 (15.117)

6. If f ∈ L (μ) on E , A ∈ M and A ⊂ E , then f ∈ L (μ) on A.

Theorem 15.15.

(a) Suppose f is measurable and nonnegative on X . For A ∈ M define

φ (A) =
∫
A

f dμ (15.118)

Then φ is countably additive on M.
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(b) The same conclusion is valid if f ∈ L (μ) on X .

Proof. Claim (b) follows from (a) if we write f = f + −f − and apply (a) to f + and f −.
To prove (a) we have to show that φ (A) can be represented as φ (A) = ∑∞

n=1 φ (An)

if An ∈ M, Ai ∩ Aj = ∅ if i �= j and A =⋃∞
n=1 An. This can be done if the simple

function approximation is applied that proves (a). �

Corollary 15.8. If A ∈ M, B ⊂ A and μ (A− B) = 0, then

∫
A

f dμ =
∫
B

f dμ (15.119)

that is, the sets of measure zero are negligible in integration.

Proof. It follows from Remark (15.117) and the representation A = B ∪ (A− B). �

Lemma 15.6. If f ∈ L (μ) on E then |f | ∈ L (μ) on E , and

∣∣∣∣∣∣
∫
E

f dμ

∣∣∣∣∣∣ ≤
∫
E

|f | dμ (15.120)

Proof. Let us represent E as E = A ∪ B where f (x) ≥ 0 on A and f (x) < 0 on B.
Then by Theorem 15.15 it follows that

∫
E

|f | dμ =
∫
A

|f | dμ+
∫
B

|f | dμ =
∫
A

f + dμ+
∫
A

f − dμ <∞

so that |f | ∈ L (μ) on E . Since f ≤ |f | and −f ≤ |f | one can see that

∫
E

f dμ ≤
∫
E

|f | dμ and −
∫
E

f dμ ≤
∫
E

|f | dμ

which proves (15.120). �

Lemma 15.7. Suppose f is measurable on E , |f | ≤ g and g ∈ L (μ) on E . Then
f ∈ L (μ) on E .

Proof. It follows from the inequalities f + ≤ g and f − ≤ g. �
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15.3.5 The “almost everywhere” concept

Definition 15.21. Let us write

f ∼ g on E (15.121)

if the set {x | f (x) �= g (x)} ∩ E has measure zero:

μ ({x | f (x) �= g (x)} ∩ E) = 0 (15.122)

Proposition 15.7. It is evident that on E
1. f ∼ f ;
2. f ∼ g implies g ∼ f ;
3. f ∼ g and g ∼ h imply f ∼ h which means that the relation “∼” is an equivalence

relation.
4. If f ∼ g on E then

∫
A

f dμ =
∫
A

g dμ (15.123)

provided the integrals exist for every A ⊂ E .

Definition 15.22. (The “almost everywhere” concept) If some property P holds for
every x ∈ E −A and if μ (A) = 0 then it is customary to say that P holds for almost all
x ∈ E , or that P holds almost everywhere on E .

This concept depends, of course, on the particular measure to be in use. In the literature,

unless something is said to the contrary, it usually refers to the Lebesgue measure.

Example 15.7. If f ∈ L (μ) on E it is clear that f (x) must be finite almost everywhere
on E .

15.3.5.1 Essential supremum and infimum
Definition 15.23. Let us consider a measurable function f : R → R defined on X .

(a) The essential supremum “ess sup f ” of f (sometimes denoted also by “vraimax f ”)
is defined as follows:

ess sup f := inf
c∈R

c (15.124)

such that

μ ({x | f (x) > c}) = 0 (15.125)
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(b) The essential infimum “ess inf f ” of f (sometimes denoted also by “vraimin f ”)
is defined as follows:

ess inf f := sup
c∈R

c (15.126)

such that

μ ({x | f (x) < c}) = 0 (15.127)

Example 15.8. Let us consider the function f : R → R defined on [0, 2π ] as

f (x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 if x = 0

sin x if x ∈ (0, π)
−2 if x = π
sin x if x ∈ (π, 2π)
3 if x = 2π

We have

sup
x∈[0,2π ]

f (x) = max
x∈[0,2π ]

f (x) = 5

ess sup
x∈[0,2π ]

f (x) = 1

inf
x∈[0,2π ]

f (x) = min
x∈[0,2π ]

f (x) = −2

essmin
x∈[0,2π]

f (x) = −1

15.3.6 “Atomic” measures and δ-function

15.3.6.1 The “delta-function”
Definition 15.24. The “Dirac delta-function” δ (x − x0) (which is not in reality a func-
tion, but a distribution or a measure) is defined as follows:

∫
X⊂R

f (x) δ (x − x0) dx := f (x0) (15.128)

where the integral is intended in Riemann sense and f : R → R is any continuous
function.

15.3.6.2 “Atomic” measures
Let us consider a continuous function f : R → R which takes some fixed values

{c1, . . . , cn} in the points {x1, . . . , xn}, that is,

f (xi) = ci (15.129)
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Consider also the sum

S :=
n∑
i=1

ciμi, μi ≥ 0 (i = 1, . . . , n) (15.130)

In fact, if some multipliers μi are negative, one can rewrite the product ciμi as

ciμi = (−ci) (−μi) = (−ci) |μi |

obtaining the previous case with nonnegative weights.

Using (15.128) and in view of the additivity property of the Riemann integral, S can

be represented as

S :=
n∑
i=1

ciμi =
∞∫

−∞
f (x)

n∑
i=1

μiδ (x − xi) dx (15.131)

Let us consider also the step function α (x) defined on [a, b] by a partition Pn :=
{a = x0, x1, . . . , xn = b} such that α (x) is a constant on each open subinterval (xk−1, xk)

and has jumps

μk := α (xk + 0)− α (xk − 0), k = 2, . . . , n− 1

μ1 := α (x1 + 0)− α (x1)
μn := α (xn)− α (xn − 0)

(15.132)

Then, using the Riemann–Stieltjes integral representation (15.12) with the integrator α (x)

of a step-function type, we can represent (15.131) as follows:

S :=
n∑
i=1

ciμi =
∞∫

−∞
f (x)

n∑
i=1

μiδ (x − xi) dx =
b∫
a

f (x) dα (x) (15.133)

So, symbolically, we can write

dα (x) :=
n∑
i=1

μiδ (x − xi) dx (15.134)

and

α′ (x) :=
{

0 if x ∈ (xk−1, xk)

μiδ (x − xi) if x = xk (15.135)

associating α (x) with the “measure” of points xi ∈ [a, x) supplied by the weights μi . In

fact, α (x) is the atomic measure concentrated in the isolated points {x1, . . . , xn}.
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15.4 Summary

Based on the presentations above, we may conclude that any sum S (15.130) with finite

or infinite n (if it exists) can be represented by the Riemann–Stieltjes integral (15.133)

with the integrator α (x) as the step-function (15.132). The same sum S (15.130) can be

symbolically treated as the Lebesgue integral with the measure μ (x) = α (x) referred to

as the “atomic” measure concentrated in the points {x1, . . . , xn} with the corresponding

nonnegative weights {μ1, . . . , μn}.
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16.1 Derivatives

16.1.1 Basic definitions and properties

16.1.1.1 Definition of a derivative
Definition 16.1. Let f : S → R be defined as a closed interval S ⊂ R and assume that
f is continuous at the point c ∈ S. Then
(a) f is said to have a right-hand derivative at c if the right-hand limit

lim
x→c+0

f (x)− f (c)
x − c (16.1)

exists as a finite value, or if the limit is (+∞) or (−∞). This limit will be denoted
as f ′+ (c) ;

(b) f is said to have a left-hand derivative at c if the right-hand limit

lim
x→c−0

f (x)− f (c)
x − c (16.2)

exists as a finite value, or if the limit is (+∞) or (−∞). This limit will be denoted
as f ′− (c) ;

(c) f is said to have a derivative f ′ (c) (or be differentiable) at c if

f ′+ (c) = f ′− (c) := f ′ (c) (16.3)

and |f ′ (c)| <∞; we say that f ′ (c) = +∞ (or −∞) if both the right- and left-hand
derivatives at c are +∞ (or −∞);

(d) f is said to be differentiable on S if it is differentiable at each point c ∈ S.

315
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16.1.1.2 Differentiability and continuity
Lemma 16.1. Let f be defined on [a, b]. If f is differentiable at a point c ∈ [a, b], then
f is continuous at c.

Proof. By the definition (16.3), for any ε > 0 there exists δ = δ (ε) such that the

inequality |x − c| ≤ δ implies∣∣∣∣f (x)− f (c)x − c − f ′ (c)
∣∣∣∣ ≤ ε

which is equivalent to the following inequalities

f (x)− f (c) ≤ [f ′ (c)+ ε] (x − c) ≤ [|f ′ (c)| + ε] |x − c| ≤ δ [|f ′ (c)| + ε]

Hence, |f (x)− f (c)| ≤ ε, if take δ := ε/ [|f ′ (c)| + ε] which proves the lemma. �

Remark 16.1. The converse of Lemma 16.1 is not true. To see this it is sufficient to
construct the continuous function which fails to be differential at an isolated point. For
example, f (x) = |x| which is not differentiable at the point x = 0 since

−1 = f ′− (c) �= f ′+ (c) = 1

The next claim describes the usual formulas for differentiation of the sum, difference,

product, quotient of two functions and function composition.

Claim 16.1. Suppose f and g are defined on [a, b] and are differentiable at a point
x ∈ [a, b]. Then

(a) for any α, β

[αf (x)± βg (x)]′ = αf ′ (x)± βg′ (x) (16.4)

(b)

[f (x) g (x)]
′ = f ′ (x) g (x)+ f (x) g′ (x) (16.5)

(c) if g (x) �= 0

[f (x)/g (x)]
′ = f

′ (x) g (x)− g′ (x) f (x)
g2 (x)

(16.6)

Proof.
(a) is evident by the property (16.3). For h = fg we have

h (t)− h (x) = f (t) [g (t)− g (x)]+ g (x) [f (t)− f (x)]
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If we divide by (t − x) and notice that f (t) → f (x) as t → x (b) follows. Taking

h = f/g, (c) follows from the identity

h (t)− h (x)
t − x = 1

g (t) g (x)

[
g (x)

f (t)− f (x)
t − x − f (x) g (t)− g (x)

t − x
]

letting t → x. �

Claim 16.2. (The chain rule) Suppose f is defined on [a, b] and g is defined on an
interval, containing the range of f , and g is differentiable at the point f (x). Then, the
function h (x) = g (f (x)) is differentiable at the point x and

h′ (x) = g′ (f (x)) f ′ (x) (16.7)

Proof. Let y = f (x). By the derivative definition, we have

f (t)− f (x) = (t − x) [f ′ (x)+ u (t)], u (t) →
t→x 0

g (s)− g (y) = (s − y) [g′ (y)+ v (s)], v (t) →
s→y 0

which leads to the following identity

h (t)− h (x) = g (f (t))− g (f (x))
= [f (t)− f (x)] [g′ (y)+ v (s)]
= (t − x) [f ′ (x)+ u (t)] [g′ (y)+ v (s)]

or, if t �= x
h (t)− h (x)
(t − x) = [f ′ (x)+ u (t)] [g′ (y)+ v (s)]

Letting t → x in view of the continuity of f (x) we obtain (16.7). �

16.1.1.3 Higher order derivatives
Definition 16.2. If f has a derivative on an interval, and if f ′ is itself differentiable, we
denote the derivative of f ′ by f ′′ and call f ′′ the second derivative of f . Continuing in
this manner, namely,

f (n) = (
f (n−1)

)′
, n = 1, 2, . . . (16.8)

we obtain the functions f ′, f ′′, . . . , f (n−1), f (n) each of which is the derivative of the pre-
vious one.

In order for f (n) (x) to exist at a point x, f (n−1) (t) must exist in a neighborhood of x

(or in a one-side neighborhood, if x is an endpoint of the interval on which f is defined).

Sure, since f (n−1) (t) must exist in a neighborhood of x, f (n−2) (t) must be differentiable

in that neighborhood.
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16.1.1.4 Rolle’s and generalized mean-value theorems
Theorem 16.1. (Rolle) Assume that f has a derivative (finite or infinite) at each point
of an open interval (a, b), and assume that f is continuous at both endpoints a and b.
If f (a) = f (b) then there exists at least one interior point c at which f ′ (c) = 0.

Proof. Suppose that f ′ (x) �= 0 in (a, b) and show that we obtain a contradiction. Indeed,

since f is continuous on a compact set [a, b], it attains its maximumM and its minimum

m somewhere in [a, b]. But, by the assumption, neither extreme value attains an interior

point (otherwise f ′ would vanish there). Since f (a) = f (b) it follows that M = m, and
hence f is constant on [a, b] which contradicts the assumption that f ′ (x) �= 0 on (a, b).

Therefore, f ′ (c) = 0 at least at one point in (a, b). �

This theorem serves as an instrument for proving the next important result.

Theorem 16.2. (The generalized mean-value theorem) Let f and g be two functions
each having a derivative (finite or infinite) at each point of an open interval (a, b) and
each is continuous at the endpoints a and b. Assume also that there is no interior point
x at which both f ′(x) and g′(x) are infinite. Then for some interior point c ∈ (a, b) the
following identity holds

f ′(c) [g(b)− g(a)] = g′(c) [f (b)− f (a)] (16.9)

Proof. Let

h (x) := f (x) [g(b)− g(b)]− g(x) [f (b)− f (a)]
Then h′ (x) is finite if both f ′(x) and g′(x) are finite and h′ (x) is infinite if one of f ′(x)
or g′(x) is infinite. Also, h (x) is continuous at the endpoints so that

h (a) = h (b) = f (a)g(b)− g(a)f (b)
By Rolle’s theorem 16.1 we have that h′ (c) for some interior point which proves the

assertion. �

Corollary 16.1. (The mean-value theorem) Let f be a function having a derivative
(finite or infinite) at each point of an open interval (a, b) and is continuous at the
endpoints a and b. Then there exists a point c ∈ (a, b) such that

f (b)− f (a) = f ′(c) (b − a) (16.10)

Proof. It is sufficient to take g (x) = x in (16.9). �

16.1.1.5 Taylor’s formula with remainder
Theorem 16.3. (Taylor) Suppose f is a real function on [a, b], n is a positive integer,
f (n−1) is continuous on [a, b], f (n) (t) exists for every t ∈ (a, b). Let x and c be distinct
points of [a, b], and define

P (t) :=
n−1∑
k=0

f (k) (c)

k! (t − c)k (16.11)
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Then there exists a point θ between x and c such that

f (x)= P (x)+ f
(n) (θ)

k! (x − c)n

=
n−1∑
k=0

f (k) (c)

k! (x − c)k + f
(n) (θ)

k! (x − c)n
(16.12)

Proof. Let M be the number defined by

f (x) = P (x)+M (x − c)n

and put

g (t) := f (t)− P (t)−M (t − c)n, t ∈ [a, b] (16.13)

We have to show that n!M = f (n) (θ) for some θ ∈ (x, c). By (16.11) and (16.13) it

follows that

g(n) (t) = f (n) (t)− n!M

Hence to complete the proof we have to show that g(n) (θ) = 0 for some θ ∈ (x, c).
The choice of M , which we have done above, shows that g (x) = 0, so that g′ (x1) = 0

for some x1 ∈ (x, c) by the mean-value theorem 16.1. Since g′ (c) = 0, we may conclude

similarly that g′′ (x2) = 0 for some x2 ∈ (x1, c). After n steps we arrive at the conclu-

sion that g(n) (xn) = 0 for some xn ∈ (xn−1, c), that is, between x and c. Theorem is

proven. �

Remark 16.2. For n = 1 Taylor’s formula (16.12) is just the mean-value theorem 16.1.

16.1.2 Derivative of multivariable functions

Definition 16.3. Let f : Rn → R be a real function mapping an open set E ⊂ Rn

into R.

1. If for ei :=
⎛
⎝0, 0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . 0

⎞
⎠ ∈ Rn and some x ∈ Rn there exists the limit

∂

∂xi
f (x) := lim

t→∞
f
(
x + tei)− f (x)

t
(16.14)

then
∂

∂xi
f (x) (sometimes denoted also as Dif (x)) is called the partial derivative of

the function f (x) at the point x.
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2. If there exist the partial derivatives
∂

∂xi
f (x) of the function f (x) at the point x for

all i = 1, . . . , n, then the vector

∇f (x) :=
(
∂

∂x1
f (x) , . . . ,

∂

∂xn
f (x)

)ᵀ
(16.15)

(often denoted also as
∂

∂x
f (x)) is called the gradient of the function f (x) at the

point x.
3. If for some u ∈ Rn and some x ∈ Rn there exists a vector a ∈ Rn such that

lim
t→∞

∣∣∣∣f (x + tu)− f (x)t
− aᵀu

∣∣∣∣ = 0 (16.16)

then the number aᵀu (often denoted also as Duf (x)) is called the directional deriva-
tive of the function f (x) in the direction u.

Remark 16.3. In fact, the vector a in (16.16) is the gradient ∇f (x), that is, a = ∇f (x)
and, therefore,

Duf (x) = ∇ᵀf (x) u = (∇f (x), u) (16.17)

Indeed, any u ∈ Rn can be represented as u =∑n

i=1 uie
i . Taking uj = δi,j we obtain

f (x + tu)− f (x)
t

− aᵀu = f (x + tu)− f (x)
t

−
n∑
i=1

ui
(
a, ei

) = f (x + tu)− f (x)
t

− ai

which, according to the definition (16.14), implies the identity ai = ∂

∂xi
f (x) that

proves (16.17).

16.1.2.1 Mixed partial derivatives
Definition 16.4. We call the function

Dk (Dif (x)) = ∂

∂xk

(
∂

∂xi
f (x)

)
= ∂2

∂xk∂xi
f (x) (16.18)

the second order ik-partial derivative of the function f (x) at point x. Higher order
partial derivatives are similarly defined.

The following example shows that in general

∂2

∂xk∂xi
f (x) �= ∂2

∂xi∂xk
f (x)
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Example 16.1. Let us consider the function

f (x, y) =
⎧⎨
⎩xy

x2 − y2
x2 + y2 if x2 + y2 > 0

0 if x = y = 0

Then one has

∂

∂x
f (x, y) =

⎧⎨
⎩y

x4 + 4x2y2 − y4(
x2 + y2)2 if x2 + y2 > 0

0 if x = y = 0

Hence,
∂

∂x
f (0, y) = −y and

∂2

∂y∂x
f (0, y) = −1

On the other hand,

∂

∂y
f (x, y) =

⎧⎨
⎩x

x4 + 4x2y2 − y4(
x2 + y2)2 if x2 + y2 > 0

0 if x = y = 0

which implies
∂

∂y
f (x, 0) = x and

∂2

∂x∂y
f (x, 0) = 1. So, we see that

−1 = ∂2

∂y∂x
f (0, 0) �= ∂2

∂x∂y
f (0, 0) = 1

It is not so difficult to prove the following result (see Theorem 12.13 in Apostol

(1974)).

Theorem 16.4. If both partial derivatives
∂2

∂y∂x
f (x, y) and

∂2

∂x∂y
f (x, y) exist in a

neighborhood of the point (x, y) and both are continuous at this point, then

∂2

∂y∂x
f (x, y) = ∂2

∂x∂y
f (x, y)

Corollary 16.2. A differential [P (x, y) dx +Q(x, y) dy], where
∂

∂y
P (x, y) and

∂

∂x
Q (x, y) exist and are continuous, can be represented as a complete differential of

some function f (x, y), namely,

P (x, y) dx +Q(x, y) dy = df (x, y) (16.19)
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if and only if

∂

∂y
P (x, y) = ∂

∂x
Q (x, y) (16.20)

Proof.

(a) Necessity. If df (x, y) is a complete differential satisfying (16.19) then

df (x, y)= ∂

∂x
f (x, y) dx + ∂

∂y
f (x, y) dy

= P (x, y) dx +Q(x, y) dy

and, hence,

P (x, y) = ∂

∂x
f (x, y), Q (x, y) = ∂

∂y
f (x, y)

But, by the condition of this corollary, both derivatives
∂

∂y
P (x, y) and

∂

∂x
Q (x, y)

exist and are continuous. So, by Theorem 16.4,

∂

∂y
P (x, y) = ∂2

∂y∂x
f (x, y) = ∂2

∂x∂y
f (x, y) = ∂

∂x
Q (x, y) (16.21)

(b) Sufficiency. Suppose (16.20) holds and there exists a function f (x, y) such that

P (x, y) = ∂

∂x
f (x, y) and Q(x, y) = ∂

∂y
f (x, y). If so, one has

∂

∂y
P (x, y) = ∂2

∂y∂x
f (x, y),

∂

∂x
Q (x, y) = ∂2

∂x∂y
f (x, y)

which gives

∂2

∂y∂x
f (x, y) = ∂

∂y
P (x, y) = ∂

∂x
Q (x, y) = ∂2

∂x∂y
f (x, y)

This means that any function f (x, y), for which (16.21) holds, exists which completes

the proof. �

16.1.2.2 Multivariable mean-value theorem
Theorem 16.5. Suppose that f : Rn → R is differentiable at each point of an open
convex set E ⊂ Rn. Denote by L (x, y) ⊆ E the line segment joining two points x, y ∈ Rn,
namely,

L (x, y) := {
tx + (1− t) y | t ∈ [0, 1]

}
(16.22)
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Then for any x, y ∈ Rn there exists a point z ∈ L (x, y) such that

f (y)− f (x) = (∇f (z), y − x) (16.23)

Proof. Let u := y − x. Since E is open and L (x, y) ⊆ E , then there is a δ > 0 such that

x+ tu ∈ E for some t ∈ (−δ, 1+ δ). Define on (−δ, 1+ δ) the real function F(t) by the

relation F(t) := f (x + tu). Then F(t) is differentiable on (−δ, 1+ δ) and by (16.16)

for any t ∈ (−δ, 1+ δ)
F

′
(t) = (∇f (x + tu), u)

By the usual mean-value theorem 16.1, we have

F (1)− F (0) = F ′
(θ), θ ∈ (0, 1)

or, equivalently,

f (x + u)− f (x) = f (y)− f (x) = (∇f (x + θu), u)

= (∇f (x (1− θ)+ θy), y − x) = (∇f (z), y − x)
which proves the theorem. �

16.1.2.3 Taylor’s formula
Theorem 16.6. Assume that f and all its partial (mixed) derivatives of order less than
m are differentiable at each point of an open set S ⊂ Rn. If x and y are two points
of S such that L (x, y) ⊂ S (L (x, y) is defined by (16.22)), then there exists a point
z ∈ L (x, y) such that

f (y)−f (x) = (∇f (x), y − x)

+ 1

2

(
y − x,

∥∥∥∥ ∂2

∂xi∂xk
f (x)

∥∥∥∥
i,k=1,...,n

(y − x)
)
+ . . .

+ 1

(m− 1)!
n∑
i1=1

. . .

n∑
im−1=1

∂(m−1)

∂xi1 . . . ∂xim−1

f (x)

m−1∏
s=1

(
yis − xis

)

+ 1

(m)!
n∑
i1=1

. . .

n∑
im−1=1

∂(m−1)

∂xi1 . . . ∂xim−1

f (z)

m−1∏
s=1

(
yis − xis

)

(16.24)

Proof. Define g (t) :=f (x + t (y − x)). Then f (y)−f (x)=g (1)− g (0). By applying

the one-dimensional Taylor formula (16.12) we obtain

g (1)− g (0) =
m−1∑
k=1

1

k!g
(k) (0)+ 1

m!g
(m) (θ), θ ∈ (0, 1)

Applying the chain rule (see Claim 16.2) we obtain the result. �
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16.1.2.4 Lemma on a finite increment
Lemma 16.2. (on a finite increment) If f is differentiable in open set S ⊂ Rn and its
gradient ∇f (x) satisfies the Lipschitz condition on S, that is, for all x, y ∈ S there
exists a positive constant L∇ such that

‖∇f (x)− ∇f (y)‖ ≤ L∇ ‖x − y‖

then for all x, y ∈ S the following inequality holds

|f (y)− f (x)− (∇f (x), y − x)| ≤ L∇
2
‖x − y‖2 (16.25)

Proof. It follows from the identities

1∫
t=0

(∇f (x + t (y − x)), y − x) dt =
1∫
t=0

d [f (x + t (y − x))]

= f (y)− f (x) f (y)− f (x)− (∇f (x), y − x)

=
1∫
t=0

(∇f (x + t (y − x))− ∇f (x), y − x) dt

Taking the module of both parts and applying the Cauchy–Schwartz inequality, we get

|f (y)− f (x)− (∇f (x), y − x)|

=
∣∣∣∣∣∣

1∫
t=0

(∇f (x + t (y − x))− ∇f (x), y − x) dt
∣∣∣∣∣∣

≤
1∫
t=0

‖∇f (x + t (y − x))− ∇f (x)‖ ‖y − x‖ dt

≤
1∫
t=0

L∇ t ‖y − x‖2 dt = L∇
2
‖x − y‖2

Lemma is proven. �
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16.1.3 Inverse function theorem

Theorem 16.7. (on the inverse function) Suppose f is a continuously differentiable

mapping from an open set E ⊂ Rn into Rn, the matrix
∂

∂x
f (x) :=

∥∥∥∥ ∂∂xk fi (x)
∥∥∥∥
i,k=1,...,n

is invertible in a point x = a ∈ E and f (a) = b. Then
(a) there exist open sets U and V in Rn such that a ∈ U , b ∈ V , f is one-to-one on

U and

f (U) = V (16.26)

(b) if f −1 is the inverse of f (which exists by (a)), defined on V by

f −1 (f (x)) = x, x ∈ U (16.27)

then f −1 is continuously differentiable on V .

Proof.

(a) Denote A := ∂

∂x
f (a) and choose λ so that

2λ
∥∥A−1

∥∥ = 1 (16.28)

where
∥∥A−1

∥∥ :=√
λmax

(
A−1

(
A−1

)ᵀ)
. Since

∂

∂x
f (x) is continuous in a, there

exists a ball U ⊂ E , with center in a, such that for all x ∈ U∥∥∥∥ ∂∂x f (x)− A
∥∥∥∥ < λ (16.29)

Let us associate to each point y ∈ Rn the function ϕy defined by

ϕy (x) := x + A−1 (y − f (x)) (16.30)

Note that y = f (x) if and only if x is a fixed point of ϕy . (16.28) and (16.29) imply∥∥∥∥ ∂∂x ϕy (x)
∥∥∥∥=

∥∥∥∥I − A−1
∂

∂x
f (x)

∥∥∥∥ =
∥∥∥∥A−1

(
A− ∂

∂x
f (x)

)∥∥∥∥
≤ ∥∥A−1

∥∥∥∥∥∥A− ∂

∂x
f (x)

∥∥∥∥ < ∥∥A−1
∥∥ λ = 1

2

Hence, by the mean-value theorem 16.5 it follows that

∥∥ϕy (x ′)− ϕy (x ′′)∥∥ ≤ sup
θ∈U

∥∥∥∥ ∂∂x f (θ)
∥∥∥∥∥∥x ′ − x ′′∥∥ < 1

2

∥∥x ′ − x ′′∥∥ (16.31)
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which means, by Theorem 14.17, that ϕy (x) has at most one fixed point in U . So,

y = f (x) for at most one point x ∈ U . And, since
∂

∂x
f (x) is invertible in U , we

conclude that f is one-to-one in U . Next, put f (U) = V and pick y0 ∈ V . Then
y0 = f (x0) for some x0 ∈ U . Let B be an open ball with the center in x0 and

radius r > 0, so small that its closure B̄ lies in U . Let us show that y ∈ V whenever

‖y − y0‖ < λr . Fix y such that ‖y − y0‖ < λr . By (16.30) we have∥∥ϕy (x0)− x0∥∥ = ∥∥A−1 (y − y0)
∥∥ ≤ ∥∥A−1

∥∥ ‖y − y0‖ < ∥∥A−1
∥∥ λr = r/2

If x ∈ B̄, then it follows from (16.31) that∥∥ϕy (x)− x0∥∥= ∥∥[ϕy (x)− ϕy (x0)]+ [ϕy (x0)− x0]
∥∥ ≤ ∥∥ϕy (x)− ϕy (x0)∥∥

+∥∥ϕy (x0)− x0∥∥ < 1

2
‖x − x0‖ + r/2 ≤ r

Hence, ϕy (x) ∈ B. Note that (16.31) also holds if x ′, x ′′ ∈ B̄. Thus ϕy (x) is a

contraction of B̄ into B. Being a closed subset of Rn, B̄ is complete. Then by the

fixed-point theorem 14.17 we conclude that ϕy (x) has a fixed point x ∈ B̄. For this
x it follows that f (x) = y. Thus y ∈ f (

B̄
) ⊂ f (U) = V which proves (a).

(b) Pick y ∈ V and y + z ∈ V . Then there exist x ∈ U and x + h ∈ U so that y = f (x)
and y + z = f (x + h). So,

ϕy (x + h)− ϕy (x) = h+ A−1 [f (x)− f (x + h)] = h− A−1z

By (16.31) we have

∥∥h− A−1z
∥∥ < 1

2
‖h‖

which, by the inequality ‖a − b‖ ≥ ‖a‖ − ‖b‖, implies

‖h‖ − ∥∥A−1z
∥∥ ≤ ∥∥h− A−1z

∥∥ < 1

2
‖h‖

and, therefore,

1

2
‖h‖ < ∥∥A−1z

∥∥
or, equivalently,

‖h‖ < 2
∥∥A−1z

∥∥ ≤ 2
∥∥A−1

∥∥ ‖z‖ = ‖z‖/λ (16.32)

Since
∂

∂x
f (x) has an inverse on U , say T , we get

g (y + z)− g (y)− T z = h− T z = −T
[
f (x + h)− f (x)− ∂

∂x
f (x) h

]
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which in view of (16.32) implies

‖g (y + z)− g (y)− T z‖
‖z‖ ≤ ‖T ‖

λ

∥∥∥∥f (x + h)− f (x)− ∂

∂x
f (x) h

∥∥∥∥
‖h‖

As z → 0, (16.32) shows that h → 0 and therefore the right-hand side of the last

inequality tends to zero which is true of the left. This proves that
∂

∂x
g (y) = T . But

T is chosen to be the inverse of
∂

∂x
f (x) = ∂

∂x
f (g (y)). Thus

∂

∂x
g (y) =

[
∂

∂x
f (g (y))

]−1

(16.33)

for y ∈ V . But both g and
∂

∂x
f (x) are locally continuous which together with

(16.33) implies that g is continuously differentiable on V .
Theorem is proven. �

Summary 16.1. The inverse function theorem 16.7 states, roughly speaking, that a
continuous differentiable mapping f (x) is invertible in a neighborhood of any point x

at which the linear transformation
∂

∂x
f (x) is invertible.

Corollary 16.3. The system of n equations

yi = fi (x1, . . . , xn), i = 1, . . . , n

can be solved for (x1, . . . , xn) in terms of (y1, . . . , yn) if
∂

∂x
f (x) is invertible in a

neighborhood of the point x = (x1, . . . , xn).

16.1.4 Implicit function theorem

For x ∈ Rn and y ∈ Rm let us consider the extended vector z := (xᵀ, yᵀ)ᵀ ∈ Rn+m.
Then any linear transformation A : Rn+m → Rn can be represented as

Az = [
Ax Ay

](x
y

)
= Axx + Ayy

Then the following result seems to be obvious.

Lemma 16.3. (A linear version) If Ax is invertible, then for every y ∈ Rm there exists
a unique x ∈ Rn such that

Axx + Ayy = 0 (16.34)
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This x can be calculated as

x = − (Ax)−1Ayy (16.35)

The theorem given below represents the, so-called, implicit function theorem for nonlinear

mappings.

Theorem 16.8. (The implicit function theorem) Let f be a continuously differentiable
mapping of an open set E ⊂ Rn+m into Rn such that

f (x̊, ẙ) = 0 (16.36)

for some point z̊ := (x̊ᵀ, ẙᵀ)ᵀ ∈ E . DenoteA := ∂

∂z
f (z̊) and assume thatAx := ∂

∂x
f (z̊)

is invertible. Then there exist open sets U ⊂ Rn+m and W ⊂ Rm with z̊ ∈ U and ẙ ∈ W ,
having the following properties:

1. To every y ∈ W there exists a unique x such that

z =
(
x

y

)
∈ U and f (x, y) = 0 (16.37)

2. If x is defined to be g (y), then g is continuously differentiable on W , g (y) = x, for
any y ∈ W

f (g (y), y) = 0 (16.38)

and

∂

∂y
g (ẙ) = − (Ax)−1Ay (16.39)

where Ay := ∂

∂y
f (z̊).

Proof. For z ∈ E define

F (x, y) :=
(
f (x)

y

)

Then F is a continuously differentiable mapping of E into Rn+m. Show now that
∂

∂z
F (z̊)

is an invertible element in Rn+m. Indeed, since f (z̊) = 0, we have

f (x̊ + h, ẙ + k) = A
(
h

k

)
+ r (h, k)
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where r (h, k) is a remainder that occurs in the definition of A = ∂

∂z
f (z̊). Again, since

F (x̊ + h, ẙ + k)− F (x̊, ẙ) =
(
f (x̊ + h, ẙ + k)

k

)

=
⎛
⎝A

(
h

k

)
k

⎞
⎠+

(
r (h, k)

0

)

it follows that
∂

∂z
F (z̊) is the linear operator on Rn+m that maps

(
h

k

)
to

⎛
⎝A

(
h

k

)
k

⎞
⎠.

It is seen that
∂

∂z
F (z̊) is one-to-one and hence it is invertible. So, the inverse function

theorem can therefore be applied to F that proves (1). To prove (2) define g (y) for

y ∈ W so that �(y) :=
(
g (y)

y

)
∈ U and (16.38) holds. Then F (g (y), y) =

(
0

y

)

and
∂

∂y
� (y) k =

⎛
⎝ ∂

∂y
g (y) k

k

⎞
⎠. In view of the identity f (� (y)) = 0 the chain rule

shows that

∂

∂z
f (� (y))

∂

∂y
� (y) = 0

Thus

A
∂

∂y
� (ẙ) = 0

which gives

Ax
∂

∂y
g (ẙ) k + Ayk = A ∂

∂y
� (ẙ) = 0

This completes the proof. �

Example 16.2. Let

f1 (x1, x2, y1, y2, y5)= 2ex1 + x2y1 − 4y2 + 3 = 0

f2 (x1, x2, y1, y2, y5)= x2 cos x1 − 6x1 + 2y1 − 4y3 = 0

and x̊ = (
0 1

)ᵀ
, ẙ = (

3 2 7
)
. Then

Ax =
[

2 3

−6 1

]
, Ay =

[
1 −4 0

2 0 −1

]

Notice that detAx = 20 �= 0 and hence Ax is invertible and x in a neighborhood of x̊, ẙ
can be represented as a function of y, that is, x = g (y).
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16.1.5 Vector and matrix differential calculus

16.1.5.1 Differentiation of scalar functions with respect to a vector
Assuming that x, y ∈ Rn, P ∈ Rn×n, A ∈ Rm×n, the direct calculation shows that

∂

∂x
(xᵀy) = ∂

∂x
(yᵀx) = y (16.40)

∂

∂x
(Px) = Pᵀ,

∂

∂x
(xᵀPy) = Py (16.41)

∂

∂x
(yᵀPx) = Pᵀy,

∂

∂x
(xᵀPx) = (P + Pᵀ) x

and
∂

∂x
(xᵀPx) = 2Px only when P = Pᵀ

⎫⎪⎬
⎪⎭ (16.42)

∂

∂xᵀ (Ax) = A (16.43)

∂

∂x
‖x‖2 = x

‖x‖2 , x �= 0 (16.44)

∂

∂x
(x ⊗ y) = e ⊗ y = col {In×n ⊗ y}

e := (1, 1, . . . , 1)ᵀ

}
(16.45)

16.1.5.2 Differentiation of scalar fun!ctions with respect to a matrix
For the matrices A,B and C the direct calculation implies

∂

∂A
tr (A) = A (16.46)

∂

∂A
tr (BAC) = BᵀCᵀ,

∂

∂A
tr (BAᵀC) = CB (16.47)

∂

∂A
tr (ABAᵀ) = ABᵀ + AB, ∂

∂A
tr (ABA) = AᵀBᵀ + BᵀAᵀ (16.48)

∂

∂A
tr (BACA)=CᵀAᵀBᵀ + BᵀAᵀCᵀ

∂

∂A
tr (BACAᵀ)=BAC + BᵀACᵀ

⎫⎪⎬
⎪⎭ (16.49)
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∂

∂A
tr (AᵀA) = 2A (16.50)

∂

∂A
tr (BAᵀAC)= ACB + ABᵀCᵀ

∂

∂A
tr (BAAᵀC) = CBA+ BᵀCᵀA

⎫⎪⎬
⎪⎭ (16.51)

∂

∂A
tr (BAᵀABᵀ) = 2ABᵀB,

∂

∂A
tr (BAAᵀBᵀ) = 2BᵀBA (16.52)

∂

∂A
tr
(
Bᵀ (AᵀA)2 B

)= ∂

∂A
tr (BᵀAᵀ (AAᵀ) AB)

= 2A (AᵀA)BᵀB + 2ABᵀB (AᵀA)

⎫⎪⎬
⎪⎭ (16.53)

∂

∂A
tr (exp (A)) = exp (A) (16.54)

∂

∂A
det (BAC) = det (BAC)

(
A−1

)ᵀ
(16.55)

∂

∂A
tr
(
Ak

) = k (Ak−1
)ᵀ
,

∂

∂A
tr
(
BAk

) = k−1∑
i=0

(
AiBAk−i−1

)ᵀ
(16.56)

∂

∂A
tr
(
BA−1C

) = − (
A−1CBA−1

)ᵀ
(16.57)

∂

∂A
log det (A) = − (Aᵀ)−1 (16.58)

∂

∂A
det (Aᵀ) = ∂

∂A
det (A) = (Aᵀ)−1 det (A) (16.59)

∂

∂A
det

(
Ak

)= ∂

∂A
[det (A)]

k

= k [det (A)]k−1 ∂

∂A
det (A)

= k [det (A)]k−1
(Aᵀ)−1 det (A) = k (Aᵀ)−1 det

(
Ak

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16.60)
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16.1.6 Nabla operator in three-dimensional space

Definition 16.5. Define

1. the differential nabla operator ∇ or gradient, acting to a differentiable function
ϕ : R3 → R1, by the following formula

∇ϕ (x, y, z) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂x
ϕ (x, y, z)

∂

∂y
ϕ (x, y, z)

∂

∂z
ϕ (x, y, z)

⎞
⎟⎟⎟⎟⎟⎟⎠ (16.61)

2. the differentiable operator div (divergence), acting to a differentiable function
f : R3 → R3, by the following formula

divf (x, y, z) := ∂

∂x
fx (x, y, z)+ ∂

∂y
fy (x, y, z)+ ∂

∂z
fz (x, y, z) (16.62)

3. the differentiable operator rot (rotor), acting to a differentiable function f : R3 → R3,
by the following formula

rotf (x, y, z) :=

⎡
⎢⎢⎣

i j k
∂

∂x

∂

∂y

∂

∂z
f1 (x, y, z) f2 (x, y, z) f3 (x, y, z)

⎤
⎥⎥⎦

= i
(
∂

∂y
f3 (x, y, z)− ∂

∂z
f2 (x, y, z)

)

+ j
(
∂

∂z
f1 (x, y, z)− ∂

∂x
f3 (x, y, z)

)

+k
(
∂

∂x
f2 (x, y, z)− ∂

∂y
f1 (x, y, z)

)

where (i, j,k) is the orthogonal basis in R3.

Remember some important properties of the scalar (a, b) and the vector product [a, b] of

the vectors a = (
ax, ay, az

)ᵀ
and b = (

bx, by, bz
)ᵀ

in R3 which are defined by

(a, b) := axbx + ayby + azbz (16.63)
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and

[a, b] :=
⎡
⎣ i j k
ax ay az
bx by bz

⎤
⎦

= i
(
aybz − azby

)+ j (azbx − axbz)+ k
(
axby − aybx

) (16.64)

It is necessary to check that

(a, a)= ‖a‖2
(a, b)= (b, a)
(a, b)= 0 if a ⊥ b

(a, b + c)= (a, b)+ (a, c)

(16.65)

and

[a, b] = − [b, a]

[a, (b + c)] = [a, b]+ [a, c]

[a, b] = 0 if a = λb, λ ∈ R(
a, [b, c]

) = (
b, [c, a]

) = (
c, [a, b]

)
[a, [b, c]] = b (a, c)− c (a, b)

[a, [b, c]]+ [b, [c, a]]+ [c, [a, b]] = 0

(16.66)

Notice also that the operators div and rot, using the definitions above, can be represented

in the following manner

div ϕ = (∇, ϕ)
rot ϕ = [∇, ϕ] (16.67)

Applying rules (16.65) and (16.66) one can prove that

div (αf + βg) = α div f + β div g

α, β ∈ R
(16.68)

div grad ϕ = (∇,∇ϕ) = �ϕ

�ϕ := ∂2

∂x2
fx (x, y, z)+ ∂2

∂y2
fy (x, y, z)+ ∂2

∂y2
fx (x, y, z)

where � is the Laplace operator

(16.69)



334 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

div rot f = (∇, [∇, f ]) = ([∇,∇], f ) = 0 (16.70)

rot rot f = [∇, [∇, f ]]
= ∇ (∇, f )− (∇,∇) f = grad div f −�f (16.71)

16.2 On Riemann–Stieltjes integrals

16.2.1 The necessary condition for existence of Riemann–Stieltjes integrals

Here we will examine the following statement: when α is of bounded variation on
[a, b], continuity of f is sufficient for the existence of the Riemann–Stieltjes inte-
gral

∫ b
x=a f (x) dα (x)? We conclude that: continuity of f throughout [a, b] is by no

means necessary, however! The next theorem shows that common discontinuities (from
the right or from the left) should be avoided if the integral

∫ b
x=a f (x) dα (x) is to exist.

Define

U (Pn, f, α) :=
n∑
i=1

Mi�αi

Mi := sup
{
f (x) : x ∈ [xi−1, xi]

}
L (Pn, f, α) :=

n∑
i=1

Mi�αi

mi := inf
{
f (x) : x ∈ [xi−1, xi]

}
(16.72)

which coincide with the upper and lower Darboux sums, respectively, (see (15.4) and

(15.5)) for the case α (x) = x.

Theorem 16.9. (The necessary condition) Assume that α ↑ on [a, b] and c ∈ (a, b).
Assume further that both f and α are discontinuous simultaneously from the right at
x = c, that is, assume that there exists ε > 0 such that for every δ > 0 there are values
of x and y within the interval (c, c + δ) for which

|f (x)− f (y)| ≥ ε and |α (x)− α (y)| ≥ ε

Then the integral
∫ b
x=a f (x) dα (x) cannot exist. The integral also fails to exist if f and

α are discontinuous simultaneously from the left at x = c.
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Proof. Let Pn be a partition of [a, b] containing the point c as a point of subdivision.

Then one has

U (Pn, f, α)− L (Pn, f, α) :=
n∑
i=1

(Mi −mi)�αi (16.73)

If the ith interval has c as its left endpoint then

U (Pn, f, α)− L (Pn, f, α) ≥ (Mi −mi) [αi (xi)− αi (c)]

since each term in (16.73) is nonnegative. If c is a common discontinuity point from the

right, we may assume that the point xi is chosen in such a way that [αi (xi)− αi (c)] ≥ ε.
Moreover, by the assumptions of the theorem (Mi −mi) ≥ ε. So,

U (Pn, f, α)− L (Pn, f, α) ≥ ε2 (16.74)

But by the definition (15.11) of the Riemann–Stieltjes integral there exists n such that

|U (Pn, f, α)− S (Pn, f, α)| < ε
2

2
, |L (Pn, f, α)− S (Pn, f, α)| < ε

2

2

and, hence,

U(Pn, f, α)− L (Pn, f, α) = [U (Pn, f, α)− S (Pn, f, α)]
+ [S (Pn, f, α)− L (Pn, f, α)] ≤ |U (Pn, f, α)− S (Pn, f, α)|
+ |S (Pn, f, α)− L (Pn, f, α)| < ε2

which is in contradiction with (16.74). If c is a common discontinuity from the left the

argument is similar. Theorem is proven. �

16.2.2 The sufficient conditions for existence of Riemann–Stieltjes integrals

Theorem 16.10. (First sufficient (Riemann’s) condition) Assume that α ↑ on [a, b].
If for any ε > 0 there exists a partition Pε of [a, b] such that Pn is finer than Pε implies

0 ≤ U (Pn, f, α)− L (Pn, f, α) < ε (16.75)

then f ∈ R[a,b] (α).

Proof. Since by α ↑ on [a, b] we have

U (Pn, f, α) ≤ S (Pn, f, α) ≤ L (Pn, f, α)

In view of (16.75) this means that S (Pn, f, α) has a limit when n → ∞ which, by the

definition (15.11), is the Riemann–Stieltjes integral. Theorem is proven. �
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Theorem 16.11. (Second sufficient condition) If f is continuous on [a, b] and α is of
bounded variation on [a, b], then f ∈ R[a,b] (α).

Proof. Since by (15.55) any α of bounded variation can be represented as α (x) =
α+ (x) − α− (x) (where α+ ↑ on [a, b] and α− ↑ on [a, b]), it suffices to prove the

theorem when α ↑ on [a, b] with α (a) < α (b). Continuity of f on [a, b] implies

uniform continuity, so that if ε > 0 is given, we can find δ = δ (ε) > 0 such that

|x − y| < δ implies |f (x)− f (y)| < ε/A where A = 2 [α (b)− α (a)]. If Pε is

a partition with the biggest interval less than δ, then any partition Pn finer than Pε
gives

Mi −mi ≤ ε/A (16.76)

since

Mi −mi = sup
{
f (x)− f (y) : x, y ∈ [xi−1, xi]

}
Multiplying (16.76) by �αi and summing, we obtain

U (Pn, f, α)− L (Pn, f, α) ≤ ε/A
n∑
i=1

�αi = ε
2
< ε

So, Riemann’s condition (16.75) holds. Theorem is proven. �

Corollary 16.4. For the special case of the Riemann integral when α (x) = x Theorem
16.11 together with (15.23) state that each of the following conditions is sufficient for
the existence of the Riemann integral

∫ b
x=a f (x) dx:

1. f is continuous on [a, b];
2. f is of bounded variation on [a, b].

The following theorem represents the criterion (the necessary and sufficient condition)

for the Riemann integrability.

Theorem 16.12. (Lebesgue’s criterion for integrability) Let f be defined and bounded
on [a, b]. Then it is the Riemann integrable on [a, b], which is f ∈ R[a,b] (x), if and only
if f is continuous almost everywhere on [a, b].

Proof. Necessity can be proven by contradiction assuming that the set of discontinuity

has a nonzero measure and demonstrating that in this case f is not integrable. Sufficiency
can be proven by demonstrating that Riemann’s condition (16.75) (when α (x) = x) is
satisfied assuming that the discontinuity points have measure zero. The detailed proof

can be found in Apostol (1974). �
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16.2.3 Mean-value theorems

Although integrals occur in a wide variety of problems (including control), there

are relatively few cases when the explicit value of the integral can be obtained. How-

ever, it is often sufficient to have an estimate for the integral rather than its exact

value. The mean-value theorems of this subsection are especially useful in making such

estimates.

Theorem 16.13. (First mean-value theorem) Assume that f ∈ R[a,b] (α) with α ↑ on
[a, b]. Denote

M := sup
x∈[a,b]

f (x), m := inf
x∈[a,b]

f (x)

Then there exists a real number c ∈ [m,M] such that

b∫
x=a
f (x) dα (x) = c

b∫
x=a
dα (x) = c [α (b)− α (a)] (16.77)

Proof. If a = b both sides of (16.77) are zero and the result holds trivially. Assume that

α (a) < α (b). By (16.72) we have

m [α (b)− α (a)]≤L (Pn, f, α) ≤
b∫
x=a
f (x) dα (x)

≤U (Pn, f, α) ≤ M [α (b)− α (a)]

which proves (16.77). Theorem is proven. �

Remark 16.4. Evidently, if f is continuous on [a, b] then there exists x0 ∈ [a, b] such
that c = f (x0).

Theorem 16.14. (Second mean-value theorem) Assume that α (x) is continuous on
[a, b] and f ↑ on [a, b]. Then there exists a point x0 ∈ [a, b] such that

b∫
x=a
f (x) dα (x) = f (a)

x0∫
x=a
dα (x)+ f (b)

a∫
x=x0

dα (x) (16.78)

Proof. Integrating by parts (see (15.23)) implies

b∫
x=a
f (x) dα (x) = f (b) α (b)− f (a) α (a)−

b∫
x=a
α (x) df (x)
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Applying (16.77) to the integral on the right-hand side of the last identity we have

b∫
x=a
f (x) dα (x)= f (b) α (b)− f (a) α (a)− c

b∫
x=a
df (x)

= f (b) α (b)− f (a) α (a)− α (x0) [f (b)− f (a)]
= f (b) [α (b)− α (x0)]+ f (a) [α (x0)− α (a)]

which is the statement we set out to prove. �

Corollary 16.5. (The Riemann integrals case) Let g be continuous on [a, b] and f ↑
on [a, b]. Then
1. there exists a point x0 ∈ [a, b] such that

b∫
x=a
f (x) g (x) dx = A

x0∫
x=a
g (x) dx + B

b∫
x=x0

g (x) dx (16.79)

where A ≤ f (a + 0) and B ≥ f (b − 0);
2. Bonnet’s theorem holds, namely, if, in addition, f (x) ≥ 0 on [a, b] then A = 0 in

(16.79) which gives

b∫
x=a
f (x) g (x) dx = B

b∫
x=x0

g (x) dx (16.80)

16.2.4 The integral as a function of the interval

Theorem 16.15. Let α : R → R be of bounded variation on [a, b] and f ∈ R[a,b] (α).
For any x ∈ [a, b] define

F (x) :=
x∫
s=a
f (s) dα (s) (16.81)

Then

(a) F is of bounded variation on [a, b] ;
(b) Every point of continuity of α is also a point of continuity of F ;
(c) If f ↑ on [a, b] then the derivative F ′ (x) exists at each point x ∈ (a, b) where α′ (x)

exists and where f is continuous. For such x

F ′ (x) = f (x) α′ (x) (16.82)
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Proof. It is sufficient to assume that α ↑ on [a, b]. If x �= y by (16.77) it follows that

F (y)− F (x) =
y∫
s=x
f (s) dα (s) = c [α (y)− α (x)]

where c ∈ [m,M]. So, statements (a) and (b) follow at once from this equation. To prove

(c) it is sufficient to divide both sides by (y − x) and observe that c → f (x) when

y → x. Theorem is proven. �

Corollary 16.6.

1. If f ∈ R[a,b] (α) then for any x ∈ [a, b] and the functions F and G defined as

F (x) :=
x∫
s=a
f (s) ds and G(x) :=

x∫
s=a
g (s) ds

we have

b∫
s=a
f (s) g (s) ds =

b∫
s=a
f (s) dG (s) =

b∫
s=a
g (s) dF (s) (16.83)

2. In the Riemann case, when α (x) = x, from (16.82) we obtain the, so-called, first
fundamental theorem of integral calculus:

F ′ (x) = f (x) (16.84)

16.2.5 Derivative integration

Theorem 16.16. Assume f ∈ R[a,b] (α) and g, defined on [a, b], has the derivative g′ in
(a, b) such that for each x ∈ (a, b)

g′ (x) = f (x) (16.85)

If in the endpoints

g (a)− g (a + 0) = g (b)− g (b − 0)

then the Newton–Leibniz formula (the second fundamental theorem of integral calculus)
holds, namely,

b∫
x=a
f (x) dx =

b∫
x=a
g′ (x) dx = g (b)− g (a) (16.86)
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Proof. For every partition Pn of [a, b] and in view of the mean-value theorem (16.77)

we have

g (b)− g (a) =
n∑
i=1

[g (xi)− g (xi−1)] =
n∑
i=1

g′ (ti)�xi =
n∑
i=1

f (ti)�xi

where ti ∈ [xi−1, xi]. But, since f is integrable, for any ε > 0 the partition Pn can be

selected so fine that∣∣∣∣∣∣g (b)− g (a)−
b∫
x=a
f (x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
i=1

f (ti)�xi −
b∫
x=a
f (x) dx

∣∣∣∣∣∣ < ε
which proves the theorem. �

16.2.6 Integrals depending on parameters and differentiation under integral sign

Theorem 16.17. Let f : R2 → R be continuous at each point (x, y) ∈ Q where

Q := {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d} (16.87)

Assume that α is of bounded variation on [a, b] and F is the function defined on [c, d]

by the equation

F (y) =
b∫
x=a
f (x, y) dα (x) (16.88)

Then F is continuous on [c, d], or, in other words, if y0 ∈ [c, d] then

lim
y→y0

b∫
x=a
f (x, y) dα (x)=

b∫
x=a

lim
y→y0

f (x, y) dα (x)

=
b∫
x=a
f (x, y0) dα (x)

(16.89)

Proof. Assume α ↑ on [a, b]. Since Q is a compact then f is uniformly continuous on

Q. Hence, for any ε > 0 there exists δ = δ (ε) such that for any pair of points z := (x, y)
and z′ := (x ′, y ′) such that ‖z− z′‖ < δ we have |f (x, y)− f (x ′, y ′)| ≤ ε. So, if

|y − y ′| < δ we have

∣∣F (y)− F (
y ′
)∣∣ ≤ b∫

x=a

∣∣f (x, y)− f (
x ′, y ′

)∣∣ dα (x) ≤ ε [α (b)− α (a)]
which establishes the continuity of F (y). �
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Corollary 16.7. (The Riemann integral case) If f is continuous on Q and g ∈ R[a,b]

(x) then function F (y), defined by (16.88), is continuous on [c, d], that is, if y0 ∈ [c, d]

then

lim
y→y0

b∫
x=a
g(x)f (x, y) dx =

b∫
x=a
g(x) lim

y→y0
f (x, y) dx

=
b∫
x=a
g(x)f (x, y0) dx

(16.90)

Proof. Define G(x) := ∫ x
s=a g(s)ds. Then by (16.83) F (y) may be represented as

F(y) = ∫ b
x=a f (x, y) dG(x). Now, applying Theorem 16.17, we obtained the desired

result. �

Theorem 16.17 permits to establish the following important result.

Theorem 16.18. Assume that α is of bounded variation on [a, b] and F defined on [c, d]

by the equation F (y) = ∫ b
x=a f (x, y) dα (x) exists for every y ∈ [c, d]. If the partial

derivative
∂

∂y
f (x, y) is continuous on Q (16.87) then F ′ (y) exists on [c, d] and it is

given by the formula

F ′ (y) =
b∫
x=a

∂

∂y
f (x, y) dα (x) (16.91)

Proof. Assuming that y0 ∈ (c, d) then we have

F (y)− F (y0)
y − y0 =

b∫
x=a

f (x, y)− f (x, y0)
y − y0 dα (x)

=
b∫
x=a

∂

∂y
f (x, ȳ) dα (x), ȳ ∈ [y0, y]

Since
∂

∂y
f (x, y) is continuous on Q, taking y0, y → y0 we obtain the validity of (16.91)

in the point y = y0. Theorem is proven. �
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The following statement can be checked directly.

Proposition 16.1. If ϕ1 (t) and ϕ2 (t) are differentiable on [a, b], the function f (t, τ ) ∈
R[a,b] (α) is differentiable on t and continuous on τ for any fixed t ∈ [a, b], then

d

dt

ϕ2(t)∫
τ=ϕ1(t)

f (t, τ ) dα (τ)

= ϕ′2 (t) f (t, ϕ2 (t)) α′ (ϕ2 (t))

− ϕ′1 (t) f (t, ϕ1 (t)) α′ (ϕ1 (t))+
ϕ2(t)∫
τ=ϕ1(t)

∂

∂t
f (t, τ ) dα (τ)

(16.92)

Particularly,

d

dt

ϕ2(t)∫
τ=ϕ1(t)

f (t, τ ) dτ

= ϕ′2 (t) f (t, ϕ2 (t))

−ϕ′1 (t) f (t, ϕ1 (t))+
ϕ2(t)∫
τ=ϕ1(t)

∂

∂t
f (t, τ ) dα (τ)

(16.93)

16.3 On Lebesgue integrals

16.3.1 Lebesgue’s monotone convergence theorem

Theorem 16.19. (The monotone convergence theorem) Suppose E ∈ M and let {fn}
be a sequence of measurable nonnegative functions such that for all x ∈ E

0 ≤ f1 (x) ≤ f2 (x) ≤ · · · ≤ (16.94)

Let f be defined by

fn (x) →
n→∞ f (x), x ∈ E (16.95)

Then ∫
E

fn dμ →
n→∞

∫
E

f dμ (16.96)
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Proof. By (16.94) it evidently follows that∫
E

fn dμ →
n→∞ α ≤

∫
E

f dμ (16.97)

for some α ≥ 0 since
∫

E fn dμ ≤ ∫
E f dμ. Choose c ∈ (0, 1), and let s be a simple

measurable function (15.104) such that 0 ≤ s ≤ f . Put

En := {x | fn (x) ≥ cs (x)}, n = 1, 2, . . .

By (16.94) E1 ⊂ E2 ⊂ · · · and by (16.95) it follows that E = ⋃∞
n=1 En. For every n we

have∫
E

fn dμ ≥
∫
En

fn dμ ≥ c
∫
En

s dμ

Let now n→∞. By Theorem 15.15 we obtain α ≥ c ∫En s dμ. Letting c→ 1 we see that

α ≥ ∫
En s dμ and (15.109) implies α ≥ ∫

En f dμ which together with (16.97) proves the

theorem. �

Corollary 16.8. Suppose fi (i = 1, 2) are Lebesgue measurable, that is, fi ∈ L (μ) on
E . Then f = (f1 + f2) ∈ L (μ) on E and

∫
E

f dμ =
∫
E

f1 dμ+
∫
E

f2 dμ (16.98)

Proof.

(a) Suppose, first, that f1 ≥ 0 and f2 ≥ 0. Choose monotonically increasing sequences{
s ′n
}
and

{
s ′′n
}
of nonnegative measurable simple functions which converge to f1

and f2, respectively. Since for simple functions (16.98) follows trivially, then for

sn = s ′n + s ′′n it follows that∫
E

sn dμ =
∫
E

s ′n dμ+
∫
E

s ′′n dμ

Taking n→∞ and applying Theorem 16.19 we obtain (16.98).

(b) If f1 ≥ 0 and f2 ≤ 0 let us put

A := {x | f (x) ≥ 0}, B := {x | f (x) < 0}

Then it follows that f, f1 and (−f2) are nonnegative on A. Hence, by the previous

consideration,∫
A

f1 dμ =
∫
A

f dμ+
∫
A

(−f2) dμ =
∫
A

f dμ−
∫
A

f2 dμ (16.99)
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Similarly, −f, f1 and (−f2) are nonnegative on B, so that∫
B

(−f2) dμ =
∫
B

f1 dμ+
∫
B

(−f ) dμ =
∫
B

f1 dμ−
∫
B

(f ) dμ

(16.100)

Adding (16.99) and (16.100) implies (16.98).

(c) In the general case, E can be discomposed into four sets Ei on each of which f1 and

f2 are of constant sign. By previous considerations we have proved that∫
Ei

f dμ =
∫
Ei

f1 dμ+
∫
Ei

f2 dμ
(
i = 1, 4

)

and (16.98) follows by adding these four equations. �

Corollary 16.9. Suppose E ∈ M and let {fn} be a sequence of measurable nonnegative
functions such that

f (x) =
∞∑
n=1

fn (x), x ∈ E (16.101)

Then

∫
E

f dμ =
∞∑
n=1

∫
E

fn dμ (16.102)

Proof. The partial sum of (16.101) forms a monotonically increasing sequence that

implies (16.102). �

16.3.2 Comparison with the Riemann integral

Let the measurable space X be the interval [a, b] of the real line with the measure

μ = m (the Lebesgue measure) and M be the family of Lebesgue-measurable subsets of

[a, b], that is, the Borel σ -algebra.

Theorem 16.20.

(a) If f ∈ R[a,b] (m) then f ∈ L (μ) on [a, b], that is, each function which is Riemann
integrable on an interval is also Lebesgue integrable, and also both integrals are
equal, i.e.,

b∫
x=a
f (x) dx =

∫
E=[a,b]

f dμ (16.103)
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(b) Suppose f is bounded on [a, b]. Then f ∈ R[a,b] (m) if and only if f is continuous
almost everywhere on [a, b].

Proof.
(a) follows from Theorem 16.12. To prove (b) suppose that {Pk} is a sequence of

partitions of [a, b] such that Pk+1 is a refinement of Pk . Using the definition (16.72)

for α(x) = x, namely,

L (Pn, f, x) :=
n∑
i=1

mi�xi, U (Pn, f, x) :=
n∑
i=1

Mi�xi

mi := inf
x∈(xi−1,xi ]

f (x), Mi := sup
x∈(xi−1,xi ]

f (x)

and defining

Un (x) =
n∑
i=1

Miχ
(
x ∈ (xi−1, xi]

)
Ln (x) =

n∑
i=1

miχ
(
x ∈ (xi−1, xi]

)

such that Ui (a) = Li (a) = f (a) we obtain

L1 (x) ≤ L2 (x) ≤ · · · ≤ f (x) ≤ · · · ≤ U2 (x) ≤ U1 (x) (16.104)

which leads to the existence of the limits

L (x) := lim
k→∞Lk (x), U (x) := lim

k→∞Uk (x)

for which for any x ∈ [a, b]

L (x) ≤ f (x) ≤ U (x)

By (16.104) and Theorem 16.19 it follows that there exist the integrals

IL := lim
k→∞L (Pn, f, x) =

b∫
x=a
L (x) dx,

IU := lim
k→∞U (Pn, f, x) =

b∫
x=a
U (x) dx

So far, nothing has been assumed about f except that it is bounded on [a, b]. To

complete the proof note that f ∈ R[a,b] (x) if and only if IL = IU , or equivalently, if
and only if

∫ b
x=a L (x) dx =

∫ b
x=a U (x) dx. But, in view of the fact that L (x) ≤ U (x),

this happens if and only if L (x) = U (x) for almost all x ∈ [a, b]. This implies that
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L (x) = f (x) = U (x) for almost all x ∈ [a, b], so far as f is measurable and (16.103)

follows. �

16.3.3 Fatou’s lemma

Lemma 16.4. Suppose E ∈ M and let {fn} be a sequence of measurable nonnegative
functions. Then

∫
E

lim inf
n→∞ fn dμ ≤ lim inf

n→∞

∫
E

fn dμ

≤ lim sup
n→∞

∫
E

fn dμ ≤
∫
E

lim sup
n→∞

fn dμ
(16.105)

Proof. The intermediate inequality

lim inf
n→∞

∫
E

fn dμ ≤ lim sup
n→∞

∫
E

fn dμ

trivially follows from the definitions of the upper and lower limits. Denote for all x ∈ E

g−n (x) := inf
k≥n fk (x), g

+
n (x) := sup

k≥n
fk (x)

f − (x) := lim inf
n→∞ fn (x) = lim

n→∞g
−
n (x)

f + (x) := lim sup
n→∞

fn (x) = lim
n→∞g

+
n (x)

(16.106)

Then g−n (x) and g
+
n (x) are measurable on E (see (15.12)) and

0 ≤ g−1 (x) ≤ g−2 (x) ≤ · · ·
g−n (x) ≤ fn (x), g−n (x)→ f − (x)

· · · ≥ g+2 (x) ≥ g+1 (x) ≥ 0

g+n (x) ≥ fn (x), g+n (x)→ f + (x)

The integration of the inequality g−n (x) ≤ fn (x) and the direct application of Theorem

16.19 for
{
g−1 (x)

}
leads to∫

E

f − dμ ≤ lim inf
n→∞

∫
E

fn dμ

Analogously, the integration of the inequality g+n (x) ≥ fn (x) in view of Theorem 16.19

gives

lim sup
n→∞

∫
E

fn dμ ≤
∫
E

f + dμ

Lemma is proven. �
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Strict inequalities may hold in (16.105) (see the example in Exercise 5 in Chapter 11

of Rudin (1976)).

16.3.4 Lebesgue’s dominated convergence

Theorem 16.21. (on a dominate convergence) Suppose E ∈ M and let {fn} be a
sequence of measurable functions such that for all x ∈ E

fn (x) →
n→∞ f (x) (16.107)

If there exists a function g ∈ L (μ) on E such that for n = 1, 2, . . .

|fn (x)| ≤ g (x) (16.108)

almost everywhere on E , then

lim
n→∞

∫
E

fn dμ =
∫
E

f dμ (16.109)

that is, the operation of lim
n→∞ and the Lebesgue integration can be interchanged if (16.107)

and (16.108) are fulfilled.

Proof. The inequality (16.108) and Theorem 15.7 imply that fn ∈ L (μ) and f ∈ L (μ)
on E . Since fn + g ≥ 0 the Fatou’s lemma 16.4 shows that∫

E

(f + g) dμ≤ lim inf
n→∞

∫
E

(fn + g) dμ

≤ lim inf
n→∞

∫
E

fn dμ+ lim inf
n→∞

∫
E

(g) dμ

or, equivalently,∫
E

f dμ ≤ lim inf
n→∞

∫
E

fn dμ (16.110)

Similarly, since g − fn ≥ 0 we have∫
E

(g − f ) dμ≤ lim inf
n→∞

∫
E

(g − fn) dμ

≤ lim inf
n→∞

∫
E

g dμ+ lim inf
n→∞

∫
E

(−fn) dμ
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so that

−
∫
E

f dμ ≤ lim inf
n→∞

∫
E

(−fn) dμ

which is the same as∫
E

f dμ ≥ lim inf
n→∞

∫
E

fn dμ (16.111)

Hence, (16.109) follows from (16.110) and (16.111). �

One important application of Theorem 16.21 refers to a bounded interval.

Theorem 16.22. (Apostol 1974) Let I be a bounded interval. Assume that {fn} is a
sequence of measurable functions in L (μ) on I which is boundedly convergent almost
everywhere on I. That is, assume there is a limit function f and positive constant M
such that

lim
n→∞fn (x) = f (x) and |fn (x)| ≤ M almost everywhere on I

Then f ∈ L (μ) and

lim
n→∞

∫
I

fn (x) dμ =
∫
I

f (x) dμ

Proof. It follows from Theorem 16.21 if we take g (x) := M for all x ∈ I. Then
g ∈ L (μ) on I, since I is a bounded interval. Theorem is proven. �

16.3.5 Fubini’s reduction theorem

The Lebesgue integral defined on subsets in R and described in Chapter 15 can be

generalized to provide a theory of Lebesgue integration for the function defined on subsets

of n-dimensional space Rn. A multiple integral in Rn can be evaluated by calculating

a succession of n one-dimensional integrals. This result is referred to as the Fubini’s
theorem.

Definition 16.6.
(a) If I := I1 × I2 × · · · × In is a bounded interval in Rn, where Ik := [ak, bk], then the

n-measure μ (I) of I may be defined by the equation

μ (I) := μ (I1) · · · μ (In) (16.112)

where μ (Ik) is the one-dimensional measure, or length, of Ik .
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(b) Analogously to the single-dimensional case, a property is said to be of zero n-measure
or, to hold almost everywhere on a set S ⊂ Rn, if it holds everywhere on S except
for a subset of zero n-measure.

If Pk is a partition of Ik , then the Cartesian product P := P1 × · · · × Pn is called a

partition of I . So that, if Pk decomposes Ik into mk one-dimensional subintervals, then P

decomposes I into m = m1 · · ·mn n-dimensional subintervals, say J1, . . . , Jm.

Definition 16.7.

(a) A function s defined on I is called a step function if a partition P of I exists such
that s is constant on the interior of each subinterval Jk , say,

s (x) = ck if x ∈ Jk
(b) The n-dimensional Lebesgue integral of s over I is defined by the relation

∫
I

s dμ :=
n∑
k=1

ckμ (Jk) (16.113)

Definition 16.8. A real-valued function f on I ∈ Rn is called an upper function on I ,
and we write f ∈ U (I), if there exists an increasing (nondecreasing) sequence {sn} of
step functions sn such that

(a) sn → f almost everywhere on I ,
(b) lim

n→∞
∫
I

sn dμ exists.

The sequence {sn} is said to generate f and the integral f over I is defined by the
equation

∫
I

f dμ := lim
n→∞

∫
I

sn dμ (16.114)

The integral
∫
I
f dμ is also denoted by

∫
I

f (x) dx
or=
∫
I

f (x1, . . . , xn) d (x1, . . . , xn) (16.115)

The notation∫
I

f (x1, . . . , xn) dx1 · · · dxn

is also used. Double integrals are often written with two integral signs, namely,∫∫
I

f (x, y) dx dy



350 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Theorem 16.23. (Fubini’s theorem for step functions) Let s be a step function on R2.
Then for each fixed y ∈ R the integral

∫
R
f (x, y) dx exists and, as a function of x, it

is Lebesgue integrable on R. Similarly, for each fixed x ∈ R the integral
∫

R
f (x, y) dy

exists and, as a function of y, it is Lebesgue integrable on R. Moreover, we have

∫∫
R2

f (x, y) dx dy

=
∫
R

⎡
⎣∫

R

f (x, y) dx

⎤
⎦ dy = ∫

R

⎡
⎣∫

R

f (x, y) dy

⎤
⎦ dy

(16.116)

Proof. There is a compact interval I = [a, b]× [c, d] such that s is a step function on I

and s (x, y) = 0 if (x, y) /∈ I . There is a partition P of I into mn subrectangles Iij =
[xi−1, xi]× [yi−1, yi] such that s is constant on Iij , say,

s (x, y) = cij if (x, y) ∈ int Iij

Then

∫∫
Iij

f (x, y) dx dy = cij (xi − xi−1) (yi − yi−1)

=
yi∫
yi−1

⎡
⎣ xi∫
xi−1

f (x, y) dx

⎤
⎦ dy = xi∫

xi−1

⎡
⎣ yi∫
yi−1

f (x, y) dy

⎤
⎦ dx

Summing on i and j we find

∫∫
I

f (x, y) dx dy

=
d∫
c

⎡
⎣ b∫
a

f (x, y) dx

⎤
⎦ dy = b∫

a

⎡
⎣ d∫
c

f (x, y) dy

⎤
⎦ dx

Since s vanishes outside I this proves (16.116). �

The next theorem is the extension of the previous result to the general class of Lebesgue

integrable functions.

Theorem 16.24. (Fubini’s theorem for double integrals) Assume f is Lebesgue inte-
grable on R2. Then (16.116) holds.
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Proof.

(a) First, let us prove this result for upper functions. If f ∈ U (
R2

)
then there exists an

increasing (nondecreasing) sequence {sn} of step functions sn such that sn (x, y) →
f (x, y) for all (x, y) ∈ R2 − S (S is a set of measure zero). Hence, by (16.114)∫∫

R2

f (x, y) dx dy = lim
n→∞

∫∫
R2

sn (x, y) dx dy

and (16.116) results from Theorem 16.23.

(b) To prove (16.116) for Lebesgue functions it is sufficient to notice that any f ∈ L (μ)
can be represented as f = u − v where u ∈ U (

R2
)
and v ∈ U (

R2
)
. Theorem is

proven.

�

Corollary 16.10. Assume that f is defined and bounded on a compact rectangle
I = [a, b]×[c, d], and also that f is continuous almost everywhere on I . Then f ∈ L (μ)
on I and∫∫

I

f (x, y) dx dy

=
d∫
c

⎡
⎣ b∫
a

f (x, y) dx

⎤
⎦ dy = b∫

a

⎡
⎣ d∫
c

f (x, y) dy

⎤
⎦ dx

(16.117)

Corollary 16.11. If f is Lebesgue integrable on Rm+k then the following extension of
the Fubini’s theorem 16.24 to high-dimensional integrals holds:

∫
Rm+ k

f dμ=
∫
Rk

⎡
⎣∫

Rm

f (x, y) dx

⎤
⎦ dy

=
∫
Rm

⎡
⎣∫

Rk

f (x, y) dy

⎤
⎦ dy

(16.118)

16.3.5.1 Tonelli–Hobson test for integrability in R2

Theorem 16.25. (The Tonelli–Hobson theorem) Assume that f is measurable on R2

and that at least one of two iterated integrals

∫
R

⎡
⎣∫

R

|f (x, y)| dx
⎤
⎦ dy or

∫
R

⎡
⎣∫

R

|f (x, y)| dy
⎤
⎦ dy
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exists. Then

(a) f ∈ L (μ) on R2;
(b) The formula (16.116) holds.

Proof. Part (b) follows from (a) because of the Fubini’s theorem (16.24). To prove (a)

assume that the iterated integral

∫
R

⎡
⎣∫

R

|f (x, y)| dx
⎤
⎦ dy

exists. Let {sn} be an increasing (nondecreasing) sequence of nonnegative step functions

defined by the formula

sn (x, y) =
{
n if |x| ≤ n and |y| ≤ n
0 if otherwise

Let also fn (x, y) := min {sn (x, y), |f (x, y)|}. Notice that both sn and |f | are measurable

on R2. So, fn is measurable and, since

0 ≤ |fn (x, y)| ≤ sn (x, y)

so fn is dominated by a Lebesgue integrable function. Therefore, by Theorem 16.21

fn ∈ L (μ) on R2. Hence, we can apply Fubini’s theorem 16.24 to fn along with the

inequality

0 ≤ fn (x, y) ≤ |fn (x, y)|

to obtain

∫
R2

fn dμ =
∫
R

⎡
⎣∫

R

fn (x, y) dx

⎤
⎦ dy ≤ ∫

R

⎡
⎣∫

R

|fn (x, y)| dx
⎤
⎦ dy

Since {fn} is increasing this shows that lim
n→∞

∫
R2 fn dμ exists. But {fn (x, y)} → |fn (x, y)|

almost everywhere on R2. So, |f | ∈ L (μ) on R2. Since f is measurable, it follows

that f ∈ L (μ) on R2 which proves (a). The proof is similar if the other integral exists.

Theorem is proven. �

16.3.6 Coordinate transformation in an integral

Definition 16.9. Let T be an open set of Rn. A vector function g : T → Rn is called
a coordinate transformation (or deffeomorphism) on T if it has the following three
properties:

(a) g ∈ C1 on T , that is, g is continuously differentiable (g has the first-order partials
which are continuous) on T ;

(b) g is globally one-to-one on T ;
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(c) for all t ∈ T the Jacobian determinant Jg (t) of the transformation g is not equal to
zero, that is,

Jg (t) := det

[
∂

∂tk
gi (t)

]
i,k=1,n

�= 0 (16.119)

Remark 16.5. The properties of the coordinate transformation g mentioned above pro-
vide the existence of g−1 which is also continuously differentiable on g (T ).

Remark 16.6. (The Jacobian chain rule) Assume that g is a coordinate transformation

on T and that h is a coordinate transformation on the image g (T ). Then the composition

k = h ◦ g := h (g (t)) (16.120)

is also a deffeomorphism on T with the Jacobian determinant Jk (t) satisfying the equation

Jk (t) = Jh (g (t)) Jg (t) (16.121)

Proof. It follows from the relations

[
∂

∂tk
hi (t)

]
i,k=1,n

=
[
∂

∂gs
hi (t)

]
i,s=1,n

[
∂

∂tk
gs (t)

]
s,k=1,n

det

[
∂

∂tk
hi (t)

]
i,k=1,n

= det

[
∂

∂gs
hi (g (t))

]
i,s=1,n

det

[
∂

∂tk
gs (t)

]
s,k=1,n

�

Theorem 16.26. Let T be an open subset of Rn, g be a coordinate transformation on
T and f be a real-valued function defined on the image g (T ) such that the Lebesgue
integral

∫
g(T ) f (x) dx exists. Then

∫
g(T )

f (x) dx =
∫
T

f (g (t))
∣∣Jg (t)∣∣ dt (16.122)

Proof. The proof is divided into three parts:

(a) Part 1 shows that (16.122) holds for every linear coordinate transformation

α : T → Rn with the corollary that

μ (α (A)) = |det α|μ (A) (16.123)

for any subset A ⊂ T .
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(b) In Part 2 one needs to consider a general coordinate transformation g : T → Rn and

show that (16.122) is valid when f is the characteristic function of a compact cube

K ⊂ g (T ) that gives

μ (K) =
∫

g−1(K)

∣∣Jg (t)∣∣ dt (16.124)

(c) In Part 3 equation (16.124) is used to deduce (16.122) in the general form. The details

of this proof can be found in Chapter 15.10 of Apostol (1974).

�

Example 16.3. (The spherical coordinates transformation) Let us take t := (ρ, θ, ϕ)
and

T := {
t : ρ > 0, θ ∈ [0, 2π ], ϕ ∈ [0, π ]

}
The coordinate transformation g maps each point t = (ρ, θ, ϕ) ∈ T onto the point
(x, y, z) in g (T ) given by the equations

⎛
⎝xy
z

⎞
⎠ =

⎛
⎝ρ cos θ sin ϕρ sin θ sin ϕ

ρ cosϕ

⎞
⎠

The Jacobian determinant is

Jg (t) = det

⎡
⎢⎢⎢⎢⎢⎣

∂x

∂ρ

∂x

∂θ

∂x

∂ϕ
∂y

∂ρ

∂y

∂θ

∂y

∂ϕ
∂z

∂ρ

∂z

∂θ

∂z

∂ϕ

⎤
⎥⎥⎥⎥⎥⎦

= det

⎡
⎣ cos θ sin ϕ sin θ sin ϕ cosϕ

−ρ sin θ sin ϕ ρ cos θ sin ϕ 0

ρ cos θ cosϕ ρ sin θ cosϕ −ρ sin θ

⎤
⎦ = −ρ2 sin θ

So, for any f to be a real-valued function defined on the image g (T ) we have

∫∫∫
g(T )

f (x, y, z) dx dy dz

=
∫∫∫

(ρ,θ,ϕ)∈T
f (ρ cos θ sin ϕ, ρ sin θ sin ϕ, ρ cosϕ) ρ2 |sin θ | dρ dθ dϕ
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16.4 Integral inequalities

16.4.1 Generalized Chebyshev inequality

Theorem 16.27. (The generalized Chebyshev inequality) Let g : R → R be a non-
negative nondecreasing function defined on the interval [0,∞), i.e.,

g(x) ≥ 0 ∀x ∈ [0,∞), g(x1) ≥ g(x2) ∀x1 ≥ x2 (16.125)

and ϕ ∈ L (μ) on E ⊂ R such that g (|ϕ|) ∈ L (μ) on E , that is,

∫
E

g (|ϕ|) dμ <∞ (16.126)

Then for any nonnegative value a ≥ 0 the following inequality holds:

∫
E

g (|ϕ|) dμ ≥ g(a)μ ({x | |ϕ (x)| ≥ a}) (16.127)

Proof. By the additivity property of the Lebesgue integral for E = E1 ∪ E2 where

E1 := {x | |ϕ (x)| ≥ a}
E2 := {x | |ϕ (x)| < a}

and in view of the assumptions of this theorem it follows that

∫
E

g (|ϕ|) dμ=
∫
E1

g (|ϕ|) dμ+
∫
E2

g (|ϕ|) dμ

≥
∫
E1

g (|ϕ|) dμ ≥
∫
E1

g (a) dμ = g (a) μ (E1)

which completes the proof. �

16.4.2 Markov and Chebyshev inequalities

Using the generalizedChebyshev inequality (16.127) one can obtain the following impor-

tant and commonly used integral relations known as Markov and Chebyshev inequalities.

Theorem 16.28. (The Markov inequality) Put in (16.127)

g(x) = xr, x ∈ [0,∞), r > 0 (16.128)
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Then for any a > 0 the inequality (16.127) becomes

μ ({x | |ϕ (x)| ≥ a}) ≤ a−r
∫
E

|ϕ|r dμ (16.129)

Two partial cases corresponding to r = 1, 2 present a special interest.

Corollary 16.12. (The first Chebyshev inequality) For r = 1 the Markov inequality
(16.129) becomes

μ ({x | |ϕ (x)| ≥ a}) ≤ 1

a

∫
E

|ϕ| dμ (16.130)

Corollary 16.13. (The second Chebyshev inequality) For r = 2 the Markov inequality
(16.129) becomes

μ ({x | |ϕ (x)| ≥ a}) ≤ 1

a2

∫
E

ϕ2 dμ (16.131)

16.4.3 Hölder inequality

Theorem 16.29. (The Hölder inequality) Let p and q be positive values such that

p > 1, q > 1, p−1 + q−1 = 1 (16.132)

and ϕ, η ∈ L (μ) on E ⊂ R such that

|ϕ|p ∈ L (μ), {|η|q ∈ L (μ)} (16.133)

Then the following inequality holds:

∫
E

|ϕη| dμ ≤
⎛
⎝∫

E

|ϕ|p dμ
⎞
⎠1/p⎛⎝∫

E

|η|q dμ
⎞
⎠1/q

(16.134)

Proof. If
∫

E |ϕ|p dμ = ∫
E |η|q dμ = 0 on E then ϕ (x) = η (x) = 0 almost everywhere

on E and (16.134) looks trivial. Suppose that
∫

E |ϕ|p dμ > 0 and
∫

E |η|q dμ > 0.

Since the function ln(x) is concave for any x, y, a, b > 0 the following inequality holds:

ln(ax + by) ≥ a ln(x)+ b ln(y) (16.135)
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or, equivalently,

ax + by ≥ xayb (16.136)

Taking a := 1/p, b := 1/q and

x
�= |ϕ|p∫

E

|ϕ|p dμ
, y

�= |η|p∫
E

|η|p dμ

implies

1/p
|ϕ|p∫

E

|ϕ|p dμ
+ 1/q

|η|p∫
E

|η|p dμ
≥ |ϕ|⎛

⎝∫
E

|ϕ|p dμ
⎞
⎠1/p

|η|⎛
⎝∫

E

|η|p dμ
⎞
⎠1/q

Integrating both sides of this inequality and using the assumption that p−1 + q−1 = 1

proves (16.134). �

Corollary 16.14. In the case of the Borel measure when

μ ({x | x < c ∈ (a, b)}) = c − a

on E = [a, b] we have

∫
E

ϕ dμ =
b∫
x=a
ϕ (x) dx,

∫
E

η dμ =
b∫
x=a
η (x) dx

and (16.134) becomes

b∫
x=a

|ϕ (x) η (x)| dx

≤
⎛
⎝ b∫
x=a

|ϕ (x)|p dx
⎞
⎠1/p⎛⎝ b∫

x=a
|η (x)|q dx

⎞
⎠1/q (16.137)

Corollary 16.15. In the vector case when

ϕ := (ϕ1, . . . , ϕn) ∈ Rn, η := (η1, . . . , ϕn) ∈ Rn
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which corresponds to the “atomic” measure concentrated in the points x = {x1, . . . , xn}
with the weights μ := (μ1, . . . , μn), μi ≥ 0 (i = 1, . . . , n) we have

dμ =
n∑
i=1

δ (x − xi) μi dx, ϕi := ϕ (xi), ηi := η (xi)

∫
E

ϕ dμ =
n∑
i=1

ϕiμi,

∫
E

η dμ =
n∑
i=1

ηiμi

(16.138)

and (16.134) becomes

n∑
i=1

|ϕiηi |μi ≤
(

n∑
i=1

|ϕi |p μi
)1/p( n∑

i=1

|ηi |q μi
)1/q

(16.139)

For the “atomic” uniform measure when μi := μ0/n (μ0 > 0) we have

μ0

n

n∑
i=1

|ϕiηi | ≤
(
μ0

n

n∑
i=1

|ϕi |p
)1/p(

μ0

n

n∑
i=1

|ηi |q
)1/q

(16.140)

or, equivalently,

n∑
i=1

|ϕiηi | ≤
(

n∑
i=1

|ϕi |p
)1/p( n∑

i=1

|ηi |q
)1/q

(16.141)

16.4.4 Cauchy–Bounyakovski–Schwarz inequality

The following particular case p = q = 2 of (16.134) is the most common in use.

Corollary 16.16. (The CBS inequality)

∫
E

|ϕη| dμ ≤
√√√√∫

E

|ϕ|2 dμ
√√√√∫

E

|η|2 dμ (16.142)

and the equality in (16.142) is reached if

ϕ (x) = kη (x) for any real k (16.143)

and almost all x ∈ E .

Proof. To prove (16.143) it is sufficient to substitute ϕ (x) = kη (x) into (16.142). �
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Corollary 16.17. 1. In the Borel measure case we have

b∫
x=a

|ϕ (x) η (x)| dx ≤

√√√√√ b∫
x=a

|ϕ (x)|2 dx

√√√√√ b∫
x=a

|η (x)|2 dx (16.144)

2. In the case of the “atomic” measure for any nonnegative μi ≥ 0 (i = 1, . . . , n)

we have

n∑
i=1

|ϕiηi |μi ≤
√√√√ n∑

i=1

|ϕi |2 μi
√√√√ n∑

i=1

|ηi |2 μi (16.145)

which for the uniform measure when

μi := μ0/n

becomes

μ0

n

n∑
i=1

|ϕiηi | ≤
√√√√μ0

n

n∑
i=1

|ϕi |2
√√√√μ0

n

n∑
i=1

|ηi |2 (16.146)

or, equivalently,

n∑
i=1

|ϕiηi | ≤
√√√√ n∑

i=1

|ϕi |2
√√√√ n∑

i=1

|ηi |2 (16.147)

16.4.5 Jensen inequality

Theorem 16.30. (The Jensen inequality) Let g∪ : R → R and g∩ : R → R be convex
downward (or, simply, convex) and convex upward (or, simply, concave), respectively
(see Fig. 16.1) and ϕ : R → R be a measurable function such that ϕ ∈ L (μ) on E ⊂ R.
Let also

∫
E dμ = 1. Then

g∪

⎛
⎝∫

E

ϕ dμ

⎞
⎠ ≤

∫
E

g∪ (ϕ) dμ (16.148)

and

g∩

⎛
⎝∫

E

ϕ dμ

⎞
⎠ ≥

∫
E

g∩ (ϕ) dμ (16.149)
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x0 x

g �(x) g �(x)

x0 x

Fig. 16.1. The convex g∪ (x) and concave g∩ (x) functions.

Proof. By the convexity (concavity) definition (see Fig. 16.1) we may conclude that

in both convexity and concavity cases there exists a number λ(x0) such that for any

x, x0 ∈ R the following inequalities are fulfilled:

g∪(x) ≥ g∪(x0)+ λ(x0)(x − x0)

g∩(x) ≤ g∩(x0)+ λ(x0)(x − x0)
(16.150)

Taking x := ϕ (x), x0 :=
∫

E ϕ dμ in (16.150) we obtain

g∪ (ϕ (x)) ≥ g∪
⎛
⎝∫

E

ϕ dμ

⎞
⎠+ λ

⎛
⎝∫

E

ϕ dμ

⎞
⎠
⎛
⎝ϕ (x)− ∫

E

ϕ dμ

⎞
⎠

g∩ (ϕ (x)) ≤ g∩
⎛
⎝∫

E

ϕ dμ

⎞
⎠+ λ

⎛
⎝∫

E

ϕ dμr

⎞
⎠
⎛
⎝ϕ (x)− ∫

E

ϕ dμ

⎞
⎠

The application of the Lebesgue integration to both sides of these inequalities leads to

(16.148) and (16.149), respectively. Theorem is proven. �

Corollary 16.18. 1. In the Borel measure case
(
when dμ = dx

b − a
)

we have

g∪

⎛
⎝ 1

b − a
b∫
x=a
ϕ (x) dx

⎞
⎠ ≤ 1

b − a
b∫
x=a
g∪ (ϕ (x)) dx

g∩

⎛
⎝ 1

b − a
b∫
x=a
ϕ (x) dx

⎞
⎠ ≥ 1

b − a
b∫
x=a
g∩ (ϕ (x)) dx

(16.151)
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2. In the case of the “atomic” measure for any nonnegative μi ≥ 0 (i = 1, . . . , n) such
that

∑n

i=1 μi = 1 we have

g∪

(
n∑
i=1

ϕiμi

)
≤

n∑
i=1

g∪ (ϕi) μi

g∩

(
n∑
i=1

ϕiμi

)
≥

n∑
i=1

g∩ (ϕi) μi

(16.152)

which for the uniform measure when μi := 1/n becomes

g∪

(
1

n

n∑
i=1

ϕi

)
≤ 1

n

n∑
i=1

g∪ (ϕi)

g∩

(
1

n

n∑
i=1

ϕi

)
≥ 1

n

n∑
i=1

g∩ (ϕi)

(16.153)

3. For any n = 1, 2, . . . ,
(a) any even k = 2s (s = 1, 2, . . .) and any ϕi ∈ R (i = 1, . . . n) it follows that

(
n∑
i=1

ϕi

)k
≤ nk−1

n∑
i=1

(ϕi)
k (16.154)

(b) any odd k = 2s − 1 (s = 1, 2, . . .) and any ϕi ≥ 0 (i = 1, . . . n) the inequality
(16.154) also holds.

Proof. Indeed, by (16.153) we have

(
1

n

n∑
i=1

ϕi

)k
≤ 1

n

n∑
i=1

(ϕi)
k

which implies (16.154) for an even k, since the function xk is convex in all axis R. For

an even k this function is convex only at the semi-axis [0,∞] which permits to use the

inequality (16.153) only within this region. �

Example 16.4. For g∩(x) := ln(|x|) we have

ln

⎛
⎝∫

E

|ϕ| dμ
⎞
⎠ ≥

∫
E

ln (|ϕ|) dμ (16.155)
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and

ln

(
n∑
i=1

|ϕi |μi
)
≥

n∑
i=1

ln (|ϕi |) μi

ln

(
1

n

n∑
i=1

|ϕi |
)
≥ 1

n

n∑
i=1

ln (|ϕi |)
(16.156)

valid for any μi > 0 (i = 0, 1, . . . , n) such that
∑n

i=1 μi = 1.

Corollary 16.19. (The weighted norm case) If ϕ : R→ Rn and P = Pᵀ ≥ 0 then

∥∥∥∥∥∥
1

b − a
b∫
x=a
ϕ (x) dx

∥∥∥∥∥∥
2

P

≤ 1

b − a
b∫
x=a

‖ϕ (x)‖2P dx (16.157)

Proof. By the definition of the weighted norm and using the matrix-root representation

we have

∥∥∥∥∥∥
b∫
x=a
ϕ (x) dx

∥∥∥∥∥∥
2

P

=
⎛
⎝ b∫
x=a
ϕ (x) dx, P

b∫
x=a
ϕ (x) dx

⎞
⎠

=
⎛
⎝P 1/2

b∫
x=a
ϕ (x) dx, P 1/2

b∫
x=a
ϕ (x) dx

⎞
⎠

=
⎛
⎝ b∫
x=a
z (x) dx,

b∫
x=a
z (x) dx

⎞
⎠

where z (x) := P 1/2ϕ (x). Hence, it follows that

∥∥∥∥∥∥
1

b − a
b∫
x=a
ϕ (x) dx

∥∥∥∥∥∥
2

P

=
n∑
i=1

⎛
⎝ 1

b − a
b∫
x=a
zi (x) dx

⎞
⎠2

Applying (16.151) for g∪ (s) = s2 to each term in the sum on the right-hand side we have

n∑
i=1

⎛
⎝ 1

b − a
b∫
x=a
zi (x) dx

⎞
⎠2

≤
n∑
i=1

1

b − a
b∫
x=a
z2i (x) dx =

1

b − a
b∫
x=a

n∑
i=1

z2i (x) dx
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= 1

b − a
b∫
x=a

‖z (x)‖2 dx = 1

b − a
b∫
x=a

∥∥P 1/2ϕ (x)
∥∥2
dx

= 1

b − a
b∫
x=a
(ϕ (x), Pϕ (x)) dx = 1

b − a
b∫
x=a

‖ϕ (x)‖2P dx

which proves (16.157). �

16.4.6 Lyapunov inequality

The inequality below is a particular case of the Jensen inequality (16.148).

Corollary 16.20. (The Lyapunov inequality) For any measurable function ϕ : R → R

such that |ϕ|t ∈ L (μ) on E ⊂ R (t > 0) and when
∫

E dμ = 1 the following inequality
holds

⎛
⎝∫

E

|ϕ|s dμ
⎞
⎠1/s

≤
⎛
⎝∫

E

|ϕ|t dμ
⎞
⎠1/t

(16.158)

where 0 < s ≤ t .

Proof. Define r := t

s
. Taking in (16.148) ϕ := |ϕ|s and g∪(x) := |x|r implies

∣∣∣∣∣∣
∫
E

|ϕ|s dμ
∣∣∣∣∣∣
t/s

=
∣∣∣∣∣∣
∫
E

|ϕ|s dμ
∣∣∣∣∣∣
r

≤
∫
E

(|ϕ|s)r dμ =
∫
E

|ϕ|t dμ

which completes the proof. �

Corollary 16.21. For any measurable function ϕ : R → R such that |ϕ|k ∈ L (μ) (k > 2

is an integer) on E ⊂ R the following inequalities hold

∫
E

|ϕ| dμ ≤
⎛
⎝∫

E

|ϕ|2 dμ
⎞
⎠1/2

≤ · · · ≤
⎛
⎝∫

E

|ϕ|k dμ
⎞
⎠1/k

(16.159)

Corollary 16.22.

1. In the Borel measure case we have

⎛
⎝ 1

b − a
b∫
x=a

|ϕ (x)|s dx
⎞
⎠1/s

≤
⎛
⎝ 1

b − a
b∫
x=a

|ϕ (x)|t dx
⎞
⎠1/t

(16.160)
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and

1

b − a
b∫
x=a

|ϕ (x)| dx ≤
⎛
⎝ 1

b − a
b∫
x=a

|ϕ (x)|2 dx
⎞
⎠1/2

≤ · · · ≤
⎛
⎝ 1

b − a
b∫
x=a

|ϕ (x)|k dx
⎞
⎠1/k

2. In the case of the “atomic” measure for any nonnegative μi ≥ 0 (i = 1, . . . , n) such
that

∑n

i=1μi = 1 we have

(
n∑
i=1

|ϕi |s μi
)1/s

≤
(

n∑
i=1

|ϕi |t μi
)1/t

(16.161)

and

n∑
i=1

|ϕi |μi ≤
(

n∑
i=1

|ϕi |2 μi
)1/2

≤ · · · ≤
(

n∑
i=1

|ϕi |k μi
)1/k

which for the uniform measure when μi := 1/n becomes

(
1

n

n∑
i=1

|ϕi |s
)1/s

≤
(
1

n

n∑
i=1

|ϕi |t
)1/t

(16.162)

and

1

n

n∑
i=1

|ϕi | ≤
(
1

n

n∑
i=1

|ϕi |2
)1/2

≤ · · · ≤
(
1

n

n∑
i=1

|ϕi |k
)1/k

16.4.7 Kulbac inequality

Theorem 16.31. (The continuous version) Suppose p : R → R and q : R → R are
any positive function on E ⊂ R such that the Lebesgue integral

IE(p, q) :=
∫
E

ln(
p(x)

q(x)
)p(x)dx (16.163)

is finite, that is, IE(p, q) <∞ and the following normalizing condition holds

∫
E

q(x) dx = 1,

∫
E

p(x) dx = 1 (16.164)
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Then

IE(p, q) ≥ 0 (16.165)

and IE(p, q) = 0 if and only if p(x) = q(x) almost everywhere on E .

Proof. Notice that (−ln(x)) is a convex function on (0,∞), i.e., −ln(x) = g∪(x). Hence,
by the Jensen inequality (16.151) we have

IE(p, q)=
∫
E

ln

(
p(x)

q(x)

)
p(x)dx =

∫
E

ln

(
−
(
q(x)

p(x)

))
p(x)dx

≥−ln

∫
E

(
q(x)

p(x)

)
p(x)dx = −ln

∫
E

q(x)dx = −ln 1 = 0

which proves (16.165). Evidently, IE(p, q) = 0 if p(x) = q(x) almost everywhere on E .
Suppose IE(p, q) = 0 and p(x) �= q(x) for some x ∈ E0 ⊂ E such that μ (E0) =∫

E0
dx > 0. Then the Jensen inequality (16.151) implies

0 = IE(p, q)= −
∫
E0

ln

(
q(x)

p(x)

)
p(x)dx ≥ −ln

⎛
⎝∫

E0

(
q(x)

p(x)

)
p(x)

⎞
⎠ dx

= −ln

⎛
⎝∫

E0

q(x)dx

⎞
⎠ = −ln α > 0

where α := ∫
E0
q(x)dx < 1 which can always be done selecting E0 small enough. The

last inequality represents a contradiction. So, μ (E0) = 0. Theorem is proven. �

Theorem 16.32. (The discrete version) Suppose p = (p1, . . . , pn) and q =
(q1, . . . , qn) are any vectors with positive components such that

n∑
i=1

qi = 1,

n∑
i=1

pi = 1 (16.166)

Define

I (p, q) :=
n∑
i=1

pi ln

(
pi

qi

)
(16.167)

Then

I (p, q) ≥ 0 (16.168)

and I (p, q) = 0 if and only if pi = qi for all i = 1, . . . , n.
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Proof. It practically repeats the proof of the previous theorem where instead of (16.151)

we have the inequality (16.152) where g∪ (·) := −ln (·), ϕi := qi

pi
and μi = pi . Theorem

is proven. �

16.4.8 Minkovski inequality

Theorem 16.33. (The Minkovski inequality) Suppose ϕ : R → R and η : R → R

are measurable functions such that |ϕ|p ∈ L (μ) and |η|p ∈ L (μ) on E ⊂ R for some
p ∈ [1,∞). Then the following inequality holds:

⎛
⎝∫

E

|ϕ + η|p dμ
⎞
⎠1/p

≤
⎛
⎝∫

E

|ϕ|p dμ
⎞
⎠1/p

+
⎛
⎝∫

E

|η|p dμ
⎞
⎠1/p

(16.169)

Proof. Consider the following inequality

|ϕ + η|p = |ϕ + η| |ϕ + η|p−1 ≤ |ϕ| |ϕ + η|p−1 + |η| |ϕ + η|p−1

which after integration becomes∫
E

|ϕ + η|p dμ ≤
∫
E

|ϕ| |ϕ + η|p−1 dμ+
∫
E

|η| |ϕ + η|p−1 dμ (16.170)

Applying the Hölder inequality (16.134) to each term in the right-hand side of (16.170)

we derive:

∫
E

|ϕ| |ϕ + η|p−1 dμ≤
⎛
⎝∫

E

|ϕ|p dμ
⎞
⎠1/p⎛⎝∫

E

|ϕ + η|(p−1)q dμ

⎞
⎠1/q

=
⎛
⎝∫

E

|ϕ|p dμ
⎞
⎠1/p⎛⎝∫

E

|ϕ + η|p dμ
⎞
⎠1/q

since p = (p − 1)q, and

∫
E

|η| |ϕ + η|p−1 dμ≤
⎛
⎝∫

E

|η|p dμ
⎞
⎠1/p⎛⎝∫

E

|ϕ + η|(p−1)q dμ

⎞
⎠1/q

=
⎛
⎝∫

E

|η|p dμ
⎞
⎠1/p⎛⎝∫

E

|ϕ + η|p dμ
⎞
⎠1/q
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Using these inequalities for the right-hand side estimation in (16.170) we get

∫
E

|ϕ + η|p dμ≤
⎡
⎣
⎛
⎝∫

E

|ϕ|pdμ
⎞
⎠1/p

+
⎛
⎝∫

E

|η|pdμ
⎞
⎠1/p⎤⎦

⎛
⎝∫

E

|ϕ + η|p dμ
⎞
⎠1/q

which implies

⎛
⎝∫

E

|ϕ + η|p dμ
⎞
⎠1−1/q

=
⎛
⎝∫

E

|ϕ + η|p dμ
⎞
⎠1/p

≤
⎡
⎣
⎛
⎝∫

E

|ϕ|p dμ
⎞
⎠1/p

+
⎛
⎝∫

E

|η|p dμ
⎞
⎠1/p⎤⎦

Theorem is proven. �

Corollary 16.23.

1. In the Borel measure case the inequality (16.134) becomes

⎛
⎝ b∫
x=a

|ϕ (x)+ η (x)|p dx
⎞
⎠1/p

≤
⎛
⎝ b∫
x=a

|ϕ (x)|p dx
⎞
⎠1/p

+
⎛
⎝ b∫
x=a

|η (x)|p dx
⎞
⎠1/p

(16.171)

2. In the case of the “atomic” measure for any nonnegative μi ≥ 0 (i = 1, . . . , n)

we have

(
n∑
i=1

|ϕi + ηi |p μi
)1/p

≤
(

n∑
i=1

|ϕi |p μi
)1/p

+
(

n∑
i=1

|ηi |p μi
)1/p

(16.172)
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which for the uniform measure when μi := μ0/n (μ0 > 0) becomes

(
μ0

n

n∑
i=1

|ϕi + ηi |p
)1/p

≤
(
μ0

n

n∑
i=1

|ϕi |p
)1/p

+
(
μ0

n

n∑
i=1

|ηi |p
)1/p

(16.173)

or, equivalently,

(
n∑
i=1

|ϕi + ηi |p
)1/p

≤
(

n∑
i=1

|ϕi |p
)1/p

+
(

n∑
i=1

|ηi |p
)1/p

(16.174)

16.5 Numerical sequences

16.5.1 Infinite series

16.5.1.1 Partial sums and sums
Let {an} be a sequence of real numbers. Form a new sequence {sn} where each term is

defined as follows:

sn :=
n∑
t=1

at (16.175)

Definition 16.10. The number sn is called the nth partial sum of the series. The series
is said to converge (or to diverge) accordingly as {sn} is convergent or divergent. If {sn}
converges to s, that is, there exists the limit lim

n→∞sn = s, then s is called the sum of series.

It is clear that every theorem about sequences {an} can be stated in terms of series

putting a1 := s1 and an := sn − sn−1 (for n > 1), and vice versa. But it is neverthe-

less useful to consider both concepts. So, the Cauchy criterion 14.8 can be restated as

follows.

16.5.1.2 Criterion for series convergence
Criterion 16.1. (The Cauchy criterion for series) The series sn = ∑n

t=1 at (16.175)
converges if and only if for every ε > 0 there is an integer n0 (ε) such that

∣∣∣∣∣
m∑
t=n
at

∣∣∣∣∣ ≤ ε (16.176)

if m ≥ n ≥ n0 (ε).
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Corollary 16.24. (The necessary condition of convergent) If the series sn = ∑n

t=1 at
(16.175) converges then

an →
n→∞ 0 (16.177)

Proof. Taking in (16.176) m := n+ 1 we obtain (16.177). �

Theorem 16.34. (The criterion for monotonic sequences) Suppose {an} is monotonic.
Then {an} converges if and only if it is bounded.

Proof.

(a) Necessity. Let {an} converges. Then it is bounded by Theorem 14.5.

(b) Sufficiency. Let {an} be bounded and suppose that an ≤ an+1 (the proof is analogous

in the other case). Let A be the range of {an}. If {an} is bounded, then there exist the

least upper bound a+ on A and for all n = 1, 2, . . . it follows an ≤ a+. For every
ε > 0 there exists an integer n0 (ε) such that

a+ − ε ≤ an0(ε) ≤ a+

for otherwise
(
a+ − ε) would be an upper bound. By monotonicity it follows that

a+ − ε ≤ an ≤ a+

for all n ≥ n0 (ε) which shows that {an} converges to a+. �

16.5.1.3 Sum of series and telescopic series
Lemma 16.5.

1. Let
{
san
}
and

{
sbn
}
be convergent series, namely,

san :=
n∑
t=1

at →
n→∞ s

a, sbn :=
n∑
t=1

bt →
n→∞ s

b

Then for every pair of constants α and β

∞∑
t=1

(αat + βbt) = α
∞∑
t=1

at + β
∞∑
t=1

bt = αsa + βsb (16.178)

2. If {an} and {bn} are two telescopic series such that

an := bn+1 − bn
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then
∑n

t=1 at converges if and only if lim
n→∞bn exists, in which case we have

∞∑
t=1

at = lim
n→∞bn − b1 (16.179)

Proof. The identity (16.178) results from

n∑
t=1

(αat + βbt) = α
n∑
t=1

at + β
n∑
t=1

bt

and (16.179) follows from the identity

n∑
t=1

at =
n∑
t=1

(bt+1 − bt ) = bn+1 − b1

�
16.5.1.4 Series of nonnegative terms
Theorem 16.35. (The “partial sum” criterion) A series of nonnegative terms converges
if and only if its partial sums form a bounded sequence.

Proof. It follows directly from Theorem 16.34. �

Theorem 16.36. (“2k-criterion”) Suppose a1 ≥ a2 ≥ · · · ≥ 0. The series
∑∞
n=1 an

converges if and only if the series
∑∞
k=1 2

ka2k converges.

Proof. According to Theorem 16.34 it is sufficient to consider boundedness of the fol-

lowing partial sums

sn := a1 + a2 + . . .+ an
tk := a1 + 2a2 + . . .+ 2ka2k

For n < 2k we have

sn ≤ a1 + (a2 + a3)+ . . .+ (a2k + . . . a2k+1−1)

≤ a1 + 2a2 + . . .+ 2ka2k = tk

On the other hand, for n ≥ 2k

sn ≥ a1 + (a2 + a3)+ . . .+ (a2k + . . . a2k+1−1)

≥ 1

2
a1 + a2 + . . .+ 2k−1a2k = 1

2
tk



Selected topics of real analysis 371

So that

1

2
tk ≤ sn ≤ tk

This means that the sequences {sn} and {tn} are either both bounded or unbounded. This

completes the proof. �

Corollary 16.25.

∞∑
n=1

1

n (log n)
p

{
<∞ if p > 1

= ∞ if p ≤ 1
(16.180)

Proof. Indeed, since the function log n is monotonically increasing it follows that the

function
1

n (log n)
p is monotonically decreasing. Applying Theorem 16.36 we obtain

∞∑
k=1

2k
1

2k (log 2k)
p =

∞∑
k=1

1

(k log 2)
p =

1

(log 2)
p

∞∑
k=1

1

kp

which, in view of Corollary 16.30 to Lemma 16.12 (see below), implies the desired

result. �

Corollary 16.26. Continuing the same procedure one can prove that

∞∑
n=1

1

n log n (log log n)
p

{
<∞ if p > 1

= ∞ if p ≤ 1
(16.181)

16.5.1.5 Alternating series
Definition 16.11. If an > 0 for all n, then the series

∑∞
n=1 (−1)n+1 an is called an

alternating series.

Theorem 16.37. (on the convegence of alternating series) If {an} is a non-increasing
sequence (an > 0) converging to zero, then the alternating series

∑∞
n=1 (−1)n+1 an con-

verges, that is,

sn :=
n∑
k=1

(−1)k+1 ak →
n→∞ s (16.182)

and for all n = 1, 2, . . .

0 < (−1)n (s − sn) < an+1 (16.183)
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Proof. Define bk := a2k−1 − a2k ≥ 0. Then

sn = (a1 − a2)+ (a3 − a4)+ . . .+
(
(−1)n an−1 + (−1)n+1 an

)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
k=1

bk if n = 2l

n−2∑
k=1

bk + an if n = 2l − 1

(l = 1, 2, . . .)

And, since an → 0, the series sn converges if and only if βn := ∑n

k=1 bk converges, that

is, sn → s if and only if βn → s. But βn is the series with nonnegative terms. So, it is

monotonically nondecreasing and bounded because of the inequality

βn = a1 − (a2 − a3)− . . .− (a2n−2 − a2n−1)− a2n < a1

Hence, βn converges. The inequality (16.183) is a consequence of the following relations:

(−1)n (s − sn)=
∞∑
k=1

(−1)k+1 an+k =
∞∑
k=1

(an+2k−1 − an+2k) > 0

(−1)n (s − sn)= an+1 −
∞∑
k=1

(an+2k − an+2k+1) < an+1

�
16.5.1.6 Absolutely convergent series
Definition 16.12. A series

∑∞
t=1 at is called absolutely convergent if

∞∑
t=1

|at | <∞ (16.184)

Lemma 16.6. Absolute convergence of
∑∞
t=1 at implies convergence.

Proof. It is sufficient to apply the Cauchy criterion (16.1) to the inequality∣∣∣∣∣
n+p∑
s=n
at

∣∣∣∣∣ ≤
n+p∑
s=n

|at |

�

16.5.1.7 The geometric series
Lemma 16.7. If |x| < 1 then the partial geometric series

Sn := 1+ x + x2 + x3 + . . .+ xn (16.185)
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converges:

Sn → (1− x)−1 (16.186)

If |x| ≥ 1, the series disconverges.

Proof. The result (16.186) follows from the identity

(1− x) Sn =
n∑
k=0

(
xk − xk+1

) = 1− xn+1

If |x| ≥ 1, the general term does not tend to zero and, hence, series cannot converge. �

16.5.1.8 Some tests of convergence
Theorem 16.38. (Integral test) Let f be a positive non-increasing function defined on
[1,∞) such that f (x) →

x→∞ 0. For integers n = 1, 2, . . . define

sn :=
n∑
k=1

f (k), tn :=
n∫
x=1

f (x) dx, dn := sn − tn (16.187)

Then

1.

0 < f (n+ 1) ≤ dn+1 ≤ dn ≤ f (1) (16.188)

2. there exists the limit

d := lim
n→∞dn (16.189)

3. the sequence {sn} converges if and only if the sequence {tn} converges;
4.

0 ≤ dn − d ≤ f (n) (16.190)
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Proof.

1. By monotonicity, one has

tn+1 =
n∑
k=1

k+1∫
k

f (x) dx ≤
n∑
k=1

k+1∫
k

f (k) dx =
n∑
k=1

f (k) = sn

This implies

f (n+ 1) = sn+1 − sn ≤ sn+1 − tn+1 = dn+1

In addition, we have

dn − dn+1 = (tn+1 − tn)− (sn+1 − sn)

=
n+1∫
n

f (x) dx − f (n+ 1) ≥
n+1∫
n

f (n+ 1) dx − f (n+ 1) = 0

which proves (1) since

dn+1 ≤ dn ≤ · · · ≤ d1 = f (1)

2. But (1) implies (2);

3. And (2) implies (3) since by (1) {sn} dominates {tn} and

lim
n→∞sn = d + lim

n→∞tn

4. To prove (16.190) notice that

dn − dn+1 =
n+1∫
n

f (x) dx − f (n+ 1) ≤
n+1∫
n

dx − f (n+ 1)

= f (n)− f (n+ 1)

Then summing these inequalities leads to the following inequality

dk − dn+1 =
n∑
r=k
(dr − dr+1) ≤

n∑
r=k

[f (r)− f (r + 1)]

= f (r)− f (n+ 1) ≤ f (k)
and, hence, when n→∞ we get

dk − d ≤ f (k)

Theorem is proven. �
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Theorem 16.39. (Dirichlet’s test) Let An := ∑n

k=1 ak be a partial sum of a bounded
series, namely, for any n = 1, 2, . . . let

|An| ≤ M <∞

and let {bn} be a non-increasing sequence of positive numbers converging to zero, i.e.,
bn ↓

n→∞
0. Then the series

∑∞
k=1 akbk converges, that is,

sn :=
n∑
k=1

akbk →
n→∞ s (16.191)

Proof. Notice that by the Abel formula (12.4)

n+p∑
k=n
akbk = bn+p

n+p∑
k=n
ak +

n+p∑
k=n
(bk−1 − bk)Ak−1

and, hence,

∣∣∣∣∣
n+p∑
k=n
akbk

∣∣∣∣∣≤ bn+p
∣∣∣∣∣
n+p∑
k=n
ak

∣∣∣∣∣+
n+p∑
k=n
(bk−1 − bk) |Ak−1|

≤ bn+pM +
n+p∑
k=n
(bk−1 − bk)M = Mbn−1

Since bn ↓
n→∞

0 for any ε > 0 there exists an integer n0 (ε) such that for all n ≥ n0 (ε)
we have 0 ≤ bn ≤ ε. Taking in the previous inequality n := n0 (ε)+ 1 we obtain

∣∣∣∣∣
n+p∑
k=n
akbk

∣∣∣∣∣ ≤ Mbn0(ε) ≤ Mε
This means that the Cauchy criterion (16.1) holds which proves the theorem. �

Corollary 16.27. (Abel’s test) The series
∑∞
k=1 akbk converges if

∑∞
k=1 ak converges and

if {bn} is a monotonically convergent sequence.

Proof. Denote b := lim
n→∞bn and A := lim

n→∞An. Assume that {bn} is monotonically nonin-

creasing. Then we have

sn :=
n∑
k=1

akbk =
n∑
k=1

ak (bk − b)+ b
n∑
k=1

ak
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So,
∑n

k=1 akbk if
∑n

k=1 ak (bk − b) converges. But the last satisfies the condition of

Theorem 16.39 since
n∑
k=1

ak is bounded (it is convergent) and (bn − b) ↓
n→∞

0. If {bn} is
monotonically nondecreasing then

sn :=
n∑
k=1

akbk = −
n∑
k=1

ak (b − bk)+ b
n∑
k=1

ak

and by the same arguments
{−∑n

k=1 ak (b − bk)
}
converges. Corollary is proven. �

16.5.1.9 Multiplication of series
Definition 16.13. Given two series

∑∞
k=0 ak and

∑∞
k=0 bk . Define

cn :=
n∑
k=0

akbn−k , n = 0, 1, 2, . . . (16.192)

The series
∑∞
k=0 ck is referred to as the Cauchy (or convoluting) product.

Lemma 16.8. (Mertens) If the series
∑∞
k=0 ak converges absolutely and the series∑∞

k=0 bk converges then
∑∞
k=0 ck also converges and

∞∑
k=0

ck =
( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
(16.193)

Proof. Define the partial sums

Cn :=
n∑
k=0

ck, An :=
n∑
k=0

ak, Bn :=
n∑
k=0

bk

and the series sums

A :=
∞∑
k=0

ak, B :=
∞∑
k=0

bk

Then

Cn =
n∑
k=0

k∑
s=0

asbk−s =
n∑
k=0

n∑
s=0

asbk−sχs≤k =
n∑
s=0

as

n∑
k=0

bk−sχs≤k
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=
n∑
s=0

as

n∑
k=s
bk−s =

n∑
s=0

as

n−s∑
τ=0

bτ =
n∑
s=0

asBn−s

=
n∑
s=0

asB +
n∑
s=0

as (Bn−s − B) = AnB +
n∑
s=0

as (Bn−s − B)

To complete the proof it is sufficient to show that

en :=
n∑
s=0

as (Bn−s − B) →
n→∞ 0

Define S :=
∑∞

s=0
|as | and select ε > 0. Let for all n ≥ n0 (ε) we have

|Bn − B| ≤ ε

2S
and

∞∑
s=n0(ε)+1

|as | ≤ ε

2M

where |Bn − B| ≤ M for all n. Then for n > 2n0 (ε) we have

|en| ≤
n∑
s=0

|as | |Bn−s − B| =
n0(ε)∑
s=0

|as | |Bn−s − B|

+
n∑

s=n0(ε)+1

|as | |Bn−s − B| ≤ ε

2S

n0(ε)∑
s=0

|as | +M
n∑

s=n0(ε)+1

|as |

≤ ε

2S

∞∑
s=0

|as | +M ε

2M
= ε

Hence, Cn → AB as n→∞ which proves the lemma. �

Remark 16.7. (Abel) The statement of this lemma remains valid if the series
∑∞
k=0 ak

converges (not obligatory absolutely).

16.5.1.10 Cesàro summability
Definition 16.14. (Cesàro sum) Let An := ∑n

k=0 ak be a partial sum of the series∑∞
k=0 ak and {sn} be the sequence of arithmetic means defined by

sn := A1 + . . .+ An
n

= 1

n

n∑
k=0

Ak = 1

n

n∑
k=0

k∑
s=0

as (16.194)
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The series
∑∞
k=0 ak is said to be Cesàro summable if {sn} converges. If lim

n→∞sn = S then

S is called the Cesàro sum (or (C, 1)-sum) of
∑∞
k=0 ak and we write

∞∑
k=0

ak = S (C, 1) (16.195)

Example 16.5. Let an = xn, 0 < x < 1. Then

An = 1− xn+1

1− x

sn = 1

1− x −
x

n (1− x)
n∑
k=1

xk = 1

1− x −
x
(
1− xn+1

)
n (1− x)2

Therefore,

sn → 1

1− x
and, hence,

∞∑
k=0

xk = 1

1− x (C, 1)

Claim 16.3. If
∑∞
k=0 ak is summable then it is also (C, 1)-summable.

Proof. It follows directly from (16.210) (see below). �

Example 16.6. Let an = (−1)n+1 n. Then

An = 1− 2+ 3− 4+ . . . (−1)n+1 n

=

⎧⎪⎨
⎪⎩

−n
2

if n = 2k

1+ n
2

if n = 2k + 1

(k = 1, 2, . . .)

and, therefore,

lim sup
n→∞

sn = 1

2
, lim inf

n→∞ sn = 0

and, hence,
∑∞
n=0 (−1)n+1 n is not (C, 1)-summable.
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16.5.2 Infinite products

Definition 16.15. We say that an infinite product
∏∞
n=1 un converges if there exists a

limit

π := lim
n→∞

∞∏
n=1

un (16.196)

finitely, that is, |π | <∞.

16.5.2.1 Cauchy criterion for a product
Theorem 16.40. (The Cauchy criterion for a product) The infinite product

∏∞
n=1 un

converges if and only if for every ε > 0 there exists an integer n0 (ε) such that n ≥ n0 (ε)
implies for all k = 1, 2, . . .

∣∣∣∣∣
n+k∏
t=n+1

ut − 1

∣∣∣∣∣ < ε (16.197)

Proof.

(a) Necessity. Denote πn :=∏n

t=1 ut and suppose that there exists the limit lim
n→∞πn = π .

Sure, we can assume that no un = 0 (since if they are, the results become trivial)

and, hence, we can assume that π �= 0. Therefore there exists M > 0 such that

|πn| > M . This means that {πn} satisfies the Cauchy criterion for convergence (see

Theorem 14.8). Hence, given ε > 0, there is n0 (ε) such that n ≥ n0 (ε) implies for

all k = 1, 2, . . .

|πn+k − πn| < εM

Dividing by |πn| we obtain (16.197).

(b) Sufficiency. Now assume that (16.197) holds. Denote qn := ∏n

t=n0(ε)+1 ut and take

ε = 1/2 in (16.197). Then evidently
1

2
< |qn| < 3

2
. So, if {qn} converges, it cannot

converge to 0. Let ε now be arbitrary. Then we can rewrite (16.197) as follows:∣∣∣∣qn+kqn − 1

∣∣∣∣ < ε, which gives

|qn+k − qn| < ε |qn| < ε 3
2

Therefore, {qn} satisfies the Cauchy criterion (see Theorem 14.8) and, hence, is

convergent. This means that πn converges too. Theorem is proven. �
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16.5.2.2 Relation between a product and a sum
Theorem 16.41. Assume un ≥ 0 (n = 1, 2, . . .). Then the product

∏∞
n=1 (1+ un) con-

verges, that is,

∞∏
n=1

(1+ un) <∞ (16.198)

if and only if the series
∑∞
n=1 un converges, that is,

∞∑
n=1

un <∞ (16.199)

Proof. Denote πn :=∏n

t=1 (1+ ut) and sn :=
∑n

t=1 ut . Based on the inequality

1+ x ≤ ex (16.200)

valid for any x, we have πn ≤ exp (sn). So, if {sn} converges, then {πn} converges too.
But, on the other hand, the following inequality seems to be obvious: πn ≥ sn implies the

convergence of {sn} if {πn} is convergent. Theorem is proven. �

Theorem 16.42. Assume un > 0 (n = 1, 2, . . .). Then

∞∏
n=1

(1− un) = 0 (16.201)

if and only if the series

∞∑
n=1

un = ∞ (16.202)

Proof. Again, by the inequality (16.200), the convergence of πn :=∏n

t=1 (1− ut) to zero

follows from the fact that sn →∞. On the other hand, by the inequality

ln (1− ut) ≥ −ut
valid for ut > 0, we have

πn = exp (ln πn) = exp

(
n∑
t=1

ln (1− ut)
)

≥ exp

(
−

n∑
t=1

ut

)
= exp (−sn)

So, if πn → 0, then sn →∞ which proves the theorem. �
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16.5.2.3 Some low estimates for a product
Lemma 16.9. (Nazin & Poznyak 1986) Let a ∈ [0, 1), β ∈ (0, 1). Then the following
low estimates hold:

(a)

∞∏
k=1

(
1+ aβk) ≥ exp

(
aβ

1− β
[
1− aβ

2 (1+ β)
])

(16.203)

(b)

∞∏
k=1

(
1− aβk) ≥ (1− a)1−1/ ln β (16.204)

(c)

∞∏
k=1

(
1− aβk−1

)k ≥ (1− a)1−1/ ln β+1/ ln2 β (16.205)

Proof.

(a) By the inequality

1+ x ≥ exp
(
x − x2/2)

valid for any x ≥ 0, we have

∞∏
k=1

(
1+ aβk) ≥ exp

( ∞∑
k=1

[
aβk − a2β2k/2

])

which implies (16.203).

(b) Applying the inequality

1− x ≥ exp

(
x

x − 1

)
(16.206)

valid for any x ∈ [0, 1), we have

∞∏
k=1

(
1− aβk)≥ exp

( ∞∑
k=1

aβk

aβk − 1

)

≥ exp

⎛
⎝ ∞∫
x=0

aβx

aβx − 1
dx

⎞
⎠ = (1− a)−1/ ln β

which gives (16.204).
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(c) In (16.206) take x := aβk−1 which implies

∞∏
k=1

(
1− aβk−1

)k = (1− a) exp
( ∞∑
k=2

k ln
(
1− aβk−1

))

≥ (1− a) exp
(
−

∞∑
k=2

k
aβk−1

1− aβk−1

)

≥ (1− a) exp
⎛
⎝− ∞∫

x=1

k
aβx−1

1− aβx−1
dx

⎞
⎠

= (1− a) exp
⎛
⎝− ∞∫

x=0

aβx

1− aβx dx −
∞∫
x=0

x
aβx

1− aβx dx
⎞
⎠

Since

∞∫
x=0

x
aβx

1− aβx dx =
1

ln β

∞∫
x=0

ln (1− aβx) dx ≤ 1

ln β

∞∫
x=0

aβx

1− aβx dx

we derive

∞∏
k=1

(
1− aβk−1

)k ≥ (1− a) exp
⎛
⎝−(

1− 1

ln β

) ∞∫
x=0

aβx

1− aβx dx
⎞
⎠

= (1− a) exp
(
−
(
1− 1

ln β

)
ln (1− a)

ln β

)
= (1− a)1−1/ ln β+1/ ln2 β

which proves (16.205). Lemma is proven. �

16.5.3 Teöplitz lemma

Lemma 16.10. (Teöplitz) Let {an} (n = 1, 2, . . .) be a sequence of nonnegative real
numbers such that

bn :=
n∑
t=1

at →∞ when n→∞ (16.207)

and {xn} (n = 1, 2, . . .) be a sequence of real numbers which converges to x∗, that is,

xn →
n→∞ x

∗ (16.208)
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Then

(a) there exists an integer n0 such that bn > 0 for all n ≥ n0;
(b)

1

bn

n∑
t=1

atxt → x∗ when n0 ≤ n→∞ (16.209)

Proof. The claim (a) results from (16.207). To prove (b) let us select ε > 0 and

n′0 (ε)≥ n0 such that for all n ≥ n′0 (ε)we have (in view of (16.208)) |xn − x∗| ≤ ε. Then it
follows that∣∣∣∣∣ 1bn

n∑
t=1

atxt − x∗
∣∣∣∣∣=

∣∣∣∣∣ 1bn
n∑
t=1

at (xt − x∗)
∣∣∣∣∣ ≤ 1

bn

n∑
t=1

at |xt − x∗|

= 1

bn

n′0(ε)−1∑
t=1

at |xt − x∗| + 1

bn

n∑
n′0(ε)

at |xt − x∗|

≤ 1

bn

n′0(ε)−1∑
t=1

at |xt − x∗| + ε

bn

n∑
n′0(ε)

at

≤ const

bn
+ ε→ ε when bn →∞

Since this is true for any ε > 0 we obtain the proof of the lemma. �

Corollary 16.28. If xn →
n→∞ x

∗ then

1

n

n∑
t=1

xt →
n→∞ x

∗ (16.210)

Proof. To prove (16.210) it is sufficient in (16.209) to take an = 1 for all

n = 1, 2, . . . . �

Corollary 16.29. Let {an} (n = 1, 2, . . .) be a sequence of nonnegative real numbers
such that

n∑
t=1

at →∞ when n→∞ (16.211)

and for some numerical nonzero sequence {bn} of real numbers there exists the limit

lim
n→∞b

−1
n

n∑
t=1

at = α (16.212)
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Let also {xn} (n = 1, 2, . . .) be a sequence of real numbers which converges to x∗,
that is,

xn →
n→∞ x

∗ (16.213)

Then

lim
n→∞b

−1
n

n∑
t=1

atxn = αx∗ (16.214)

Proof. Directly applying the Teöplitz lemma (16.10) we derive

b−1
n

n∑
t=1

atxn =
[
b−1
n

n∑
t=1

at

]⎡⎣( n∑
t=1

at

)−1 n∑
t=1

atxn

⎤
⎦→ αx∗

�

16.5.4 Kronecker lemma

Lemma 16.11. (Kronecker) Let {an} (n = 1, 2, . . .) be a sequence of nonnegative non-
decreasing real numbers such that

0 ≤ bn ≤ bn →∞ when n→∞ (16.215)

and {xn} (n = 1, 2, . . .) be a sequence of real numbers such that the series
∑n

t=1 xt
converges, that is,

sn :=
n∑
t=n0
xt →
n→∞ s

∗, |s∗| <∞ (16.216)

Then
(a) there exists an integer n0 such that bn > 0 for all n ≥ n0;
(b)

1

bn

n∑
t=1

btxt → 0 when n0 ≤ n→∞ (16.217)

Proof. Applying the Abel identity (12.4) for the scalar case, namely, using the identity

n∑
t=n0
αtβt = αn

n∑
t=n0
βt −

n∑
t=n0
(αt − αt−1)

t−1∑
s=n0
βs
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we derive

1

bn

n∑
t=n0
btxt = 1

bn

[
bn

n∑
t=n0
xt −

n∑
t=n0
(bt − bt−1)

t−1∑
s=n0
xs

]

= sn − 1

bn

n∑
t=n0
(bt − bt−1) st−1

Denote at := bt − bt−1. Then

bn =
n∑
t=n0
at + bn0 =

n∑
t=n0
at

[
1+ bn0/

n∑
t=n0
at

]

and hence, by the Teöplitz Lemma 16.10, we have

1

bn

n∑
t=n0
btxt = sn −

[
1+ bn0/

n∑
t=n0
at

]−1 ( n∑
t=n0
at

)−1 n∑
t=n0
atst−1

→ s∗ − s∗ = 0

which proves (16.217). �

16.5.5 Abel–Dini lemma

Lemma 16.12. (Abel–Dini) For any nonnegative number sequence {un}n=1,2,... such that

Sn :=
n∑
t=1

ut →∞ when n→∞ (16.218)

the following properties hold:

(a) There exists an integer n0 such that Sn > 0 for all n ≥ n0;
(b) The series

∑n

t=n0
ut

S
1+ρ
t

converges if ρ > 0 and it disconverges if ρ = 0, that is,

∞∑
t=n0

ut

S
1+ρ
t

{
<∞ if ρ > 0

= ∞ if ρ = 0
(16.219)

Proof. (a) follows from (16.218). Evidently ut = St − St−1, so

Vρ (n) :=
n∑
t=n0

ut

S
1+ρ
t

=
n∑
t=n0

St − St−1

S
1+ρ
t

To prove (b) for all positive S define the function Rρ (S) := S−(1+ρ) (see Fig. 16.2). The
dashed area corresponds exactly to the function Vρ (n).
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R� (S)

Sn0
Sn011 Sn

S

Fig. 16.2. The function Rρ (S).

For ρ > 0 we have

Vρ (n)≤
Sn∫
Sn0

Rρ (S) dS ≤
∞∫
Sn0

S−(1+ρ)dS

= −ρ−1S−ρ |∞S=Sn0= ρ−1S−ρn0 <∞

Taking n→∞ in the left-hand side of this inequality we obtain the result of this lemma

for the case ρ > 0. Consider now the case ρ = 0 and suppose that

∞∑
t=n0

ut

St
<∞ (16.220)

Then
ut

St
→ 0, or, equivalently,

St − St−1

St
= 1 − St−1

St
→ 0. This means that for any

ε > 0 there exists an integer k (ε) such that for all t ≥ k (ε) we have St−1

St
> 1−ε. In view

of this we have

Vρ (n)=
n∑
t=n0

(
St − St−1

St−1

)(
St−1

St

)
≥

n∑
t=k(ε)

(
St − St−1

St−1

)(
St−1

St

)

≥ (1− ε)
n∑

t=k(ε)

(
St − St−1

St−1

)
≥ (1− ε)

Sn∫
Sk(ε)

S−1dS

= (1− ε) ln Sn

Sk(ε)
→∞ since Sn →∞

which contradicts (16.220). So,
∑∞
t=n0

ut

St
= ∞. Lemma is proven. �
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Corollary 16.30.

∞∑
t=n0

1

n1+ρ

{
<∞ if ρ > 0

= ∞ if ρ = 0
(16.221)

Proof. It follows from Lemma 16.12 if we take ut ≡ 1. �

16.6 Recurrent inequalities

16.6.1 On the sum of a series estimation

Lemma 16.13. (Nazin & Poznyak 1986)1 Let the numerical sequences {γn} and {gn}
satisfy the conditions

0 < γn+1 ≤ γn, G := sup
n

∣∣∣∣∣
n∑
t=1

gt

∣∣∣∣∣ <∞ (16.222)

Then the following upper estimate holds

∣∣∣∣∣
n∑
t=1

gtγ
−1
t

∣∣∣∣∣ ≤ 2Gγ −1
n (16.223)

and, hence, for n→∞

1

hn

n∑
t=1

gtγ
−1
t → 0 (16.224)

where {hn} is any sequence of positive real numbers such that

hnγn → 0, hn > 0 (16.225)

Proof. Using the Abel identity (12.4) of the summation by part in the scalar form, namely,

n∑
t=1

αtβt = αn
n∑
t=1

βt −
n∑
t=1

(αt − αt−1)

t−1∑
s=1

βs

1 This lemma as well as Lemma 16.16 given below were first proven by A.V. Nazin (see the citations in

Nazin & Poznyak 1986).
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for αn := γ −1
n and βn := gn, we have∣∣∣∣∣

n∑
t=1

gtγ
−1
t

∣∣∣∣∣=
∣∣∣∣∣γ −1
n

n∑
t=1

gt −
n∑
t=1

(
γ −1
t − γ −1

t−1

) t−1∑
s=1

gs

∣∣∣∣∣ ≤ γ −1
n sup

n

∣∣∣∣∣
n∑
t=1

gt

∣∣∣∣∣
+

n∑
t=1

(
γ −1
t − γ −1

t−1

)
sup
t

∣∣∣∣∣
t−1∑
s=1

gs

∣∣∣∣∣ ≤ 2γ −1
n sup

n

∣∣∣∣∣
n∑
t=1

gt

∣∣∣∣∣
which implies (16.223). Lemma is proven. �

16.6.2 Linear recurrent inequalities

Lemma 16.14. (on linear recurrent inequalities) Let us consider a real numerical non-
negative sequence {un} which satisfies the following recurrent inequality

0 ≤ un+1 ≤ un (1− αn)+ βn (16.226)

where {αn} and {βn} are numerical sequences such that

0 < αn ≤ 1,

∞∑
n=1

αn = ∞
0 ≤ βn, lim sup

n→∞
(βn/αn) = p <∞

(16.227)

Then

lim sup
n→∞

un ≤ p (16.228)

Proof. By the definition of lim sup it follows that for any ε > 0 there exists an integer

n0 (ε) such that for any n ≥ n0 (ε) we have

∣∣∣∣sup
t≥n
(βt/αt )− p

∣∣∣∣ ≤ ε, which implies the

inequality

sup
t≥n
(βt/αt ) ≤ p + ε (16.229)

Taking n > n0 (ε) and making the recursion back up to n0 (ε) we obtain

un+1 ≤ un (1− αn)+ βn ≤ un−1 (1− αn) (1− αn−1)

+ [βn + βn−1 (1− αn)] ≤ · · · ≤ un0(ε)
n∏

t=n0(ε)
(1− αt)

+
n∑

t=n0(ε)
βt

n∏
t=t+1

(1− αt)
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(here we accept that
∏n

t=m (1− αt) := 1 if m > n). Applying the inequality (16.229) to

the right-hand side we derive

un+1 ≤ un0(ε)
n∏

t=n0(ε)
(1− αt)+

n∑
t=n0(ε)

βt

n∏
t=t+1

(1− αt)

= un0(ε)
n∏

t=n0(ε)
(1− αt)+

n∑
t=n0(ε)

(
βt

αt

)
αt

n∏
t=t+1

(1− αt)

≤ un0(ε)
n∏

t=n0(ε)
(1− αt)+ (p + ε)

n∑
t=n0(ε)

αt

n∏
t=t+1

(1− αt)

Using the Abel identity (12.5) (the scalar version)

n∏
t=n0(ε)

(1− αt)+
n∑

t=n0(ε)
αt

n∏
t=t+1

(1− αt) = 1

and the inequality 1− x ≤ e−x , valid for any x, we get

un+1 ≤ un0(ε)
n∏

t=n0(ε)
(1− αt)+ (p + ε)

[
1−

n∏
t=n0(ε)

(1− αt)
]

= (p + ε)+ (
un0(ε) − p − ε

) n∏
t=n0(ε)

(1− αt)

≤ (p + ε)+ (
un0(ε) − p − ε

) n∏
t=n0(ε)

exp (−αt)

= (p + ε)+ (
un0(ε) − p − ε

)
exp

(
−

n∑
t=n0(ε)

αt

)
→ (p + ε)

since exp
(−∑n

t=n0(ε) αt
) → 0 by the property (16.227). Since ε > 0 may be selected

arbitrarily small the statement (16.228) follows. Lemma is proven. �

Lemma 16.15. (Nazin & Poznyak 1986) Suppose that sequences {un} and {wn} for all
n ≥ n0 satisfy the following recurrent inequalities

un+1 ≤ un
(
1− cn−1

)+ dn−(p+1)

wn+1 ≥ wn
(
1− cn−1

)+ dn−(p+1)

(16.230)

where c > p > 0. Then

lim sup
n→∞

(npun) ≤ d

c − p ≤ lim inf
n→∞ (npwn) (16.231)

Moreover, there exist the sequences {un} and {wn} for which the identities in (16.231)
are attained.
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Proof. Without loss of generality we may accept that n0 ≥ c. Let us introduce the

sequence {yn} generated by the recurrent relation

yn+1 = yn
(
1− cn−1

)+ dn−(p+1) (16.232)

Show that

lim
n→∞ (n

pyn) = d

c − p (16.233)

For all n ≥ n0 from (16.232) we have

yn+1 = yn0
n∏

k=n0

(
1− c

k

)
+

n∑
k=n0

d

kp+1

n∏
m=k+1

(
1− c

m

)
(16.234)

Since

n−p − (n+ 1)−p = n−p − n−p (1+ n−1
)−p = n−p − n−p [1− pn−1 +O (

n−2
)]

= pn−(p+1) +O (
n−(p+2)

)
we have

d

np+1
= d

c − p
[
(c − p) 1

p

(
1

np
− 1

(n+ 1)p

)
+O (

n−(p+2)
)]

= d

c − p
[

1

(n+ 1)p
− 1

np
+ c

pnp

(
1− np

(n+ 1)p

)
+O (

n−(p+2)
)]

= d

c − p
[

1

(n+ 1)p
− 1

np
+ c

pnp

(
1− p 1

n
+O (

n−2
))+O (

n−(p+2)
)]

= d

c − p
[

1

(n+ 1)p
−
(
1− c

n

) 1

np
+O (

n−(p+2)
)]

Substitution of this identity into (16.234) implies

yn+1 = yn0
n∏

k=n0

(
1− c

k

)
+ d

c − p
[

1

(n+ 1)p
− 1

n0p

n∏
m=n0

(
1− c

m

)

+
n∑

k=n0
O
(
k−(p+2)

) n∏
m=k+1

(
1− c

m

)] (16.235)

Taking into account that

n∏
k=n0

(
1− c

k

)
≤ exp

(
−

n∑
k=n0

c

k

)
≤ const exp (−c ln n) = O (

n−c
)
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and

n∑
k=n0
O
(
k−(p+2)

) n∏
m=k+1

(
1− c

m

)

=
n∏

m=n0

(
1− c

m

) n∑
k=n0
O
(
k−2

)
k−p

k∏
m=n0

(
1− c

m

)−1

O
(
n−c

) n∑
k=n0
O
(
k−2

)
k−p = const

np+ε

n∑
k=n0
O
(
k−(2−ε)

) kc−p−ε
nc−p−ε

= o (n−p)

(here ε ∈ (0, c − p)) from (16.235) it follows that

yn+1 = d

c − p (n+ 1)−p + o (n−p) (16.236)

We also have yn ≥ un if yn0 = un0 and yn ≤ wn if yn0 = wn0 which together with (16.236)
leads to (16.231). �

Corollary 16.31. (Chung 1954) Let the sequence {un} of nonnegative real numbers sat-
isfy the following recurrent equation:

un+1 = un
(
1− cnn−1

)+ dnn−(p+1), n ≥ n0 (16.237)

where {cn} and {dn} are the sequences or real numbers such that

lim
n→∞cn = c > p > 0, lim

n→∞dn = d > 0 (16.238)

then

lim
n→∞n

pun = d

c − p (16.239)

Proof. By lim definition for any ε > 0 there exists a number n0 such that for all n ≥ n0

|cn − c| ≤ ε, |dn − d| ≤ ε

which implies

c − ε ≤ cn ≤ c + ε, d − ε ≤ dn ≤ d + ε
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Using these inequalities in (16.237) gives

un+1 ≤ un
(
1− c − ε

n

)
+ d + ε
np+1

un+1 ≥ un
(
1− c + ε

n

)
+ d − ε
np+1

Applying Lemma 16.15 we obtain

d − ε
c + ε − p ≤ lim inf

n→∞ npun ≤ lim sup
n→∞

npun ≤ d + ε
c − ε − p

Taking ε→+0 proves (16.239). �

16.6.3 Recurrent inequalities with root terms

The lemmas below seem to be extremely important for the Lyapunov-like stability

analysis for discrete time nonlinear systems.

Lemma 16.16. (Nazin & Poznyak 1986) Let the sequence {un} of nonnegative real
numbers satisfy the following recurrent equation:

un+1 ≤ un (1− αn)+ βn + δnurn, n ≥ n0 (16.240)

where r ∈ (0, 1) and {αn}, {βn}, {δn} are sequences of real numbers such that

lim inf
n→∞

(
nαnαn

) ≥ c, lim sup
n→∞

(ntβn) ≤ d, lim sup
n→∞

(nsδn) ≤ a (16.241)

for some c, d and a satisfying

a ≥ 0, c > 0, d ≥ 0, α ∈ (0, 1), t > α, s > α (16.242)

Then

(a) if s > rα + (1− r) t and under α = 1, c > t − 1, it follows that

lim sup
n→∞

(
nt−αun

) ≤ d

ĉ (α)

ĉ (α) = c − (t − 1) χ (α = 1)

χ (α = 1) =
{
1 if α = 1

0 if α �= 1

(16.243)
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(b) if s = rα + (1− r) t and under α = 1, c > t − 1, it follows that

lim sup
n→∞

(
nt−αun

) ≤ f (16.244)

where f > 0 is the root of the nonlinear equation

ĉ (α) f = d + af r (16.245)

(for r = 1/2 we have f =
(
a +√

a2 + 4ĉ (α) d

2ĉ (α)

)2

);

(c) if s < rα + (1− r) t and under α = 1, c > λ = s − α
1− r , it follows that

lim sup
n→∞

(
nλun

) ≤ (
a

c − λχ (α = 1)

)1/(1−r)
(16.246)

Proof. Let us use the inequality

xr ≤ (1− r) xr0 +
r

x1−r0

x (16.247)

valid for any x, x0 > 0. Indeed (see Fig. 16.3),

xr ≤ l (x) = c + kx
where the parameters of the linear function l (x) can be found from the following system

of linear equations

c + kx0 = xr0, (xr)′ |x=x0= k

which gives k = rxr−1
0 , c = (1− r) xr0 and, hence, xr ≤ c + kx = (1− r) xr0 + rxr−1

0 x.

Taking

x := un, x0 := f n−ρ (ρ := min {t − α, λ})

y

c

x0 x

l(x) 5 c 1kx

y 5xr

Fig. 16.3. Illustration of the inequality (16.247).
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and using the obtained inequality for urn in (16.240), for all n ≥ n0 we obtain

un+1 ≤ un
(
1− c + o(1)

n
+ r (a + o (1))
f 1−rns−(1−r)/ρ

)

+d + o(1)
nt

+ (1− r) (a + o (1)) f
r

ns+rρ

Now the results (16.243), (16.244) and (16.246) follow immediately if applied to

the last inequality Lemma 16.15 for the case α = 1 and Corollary 16.31 for the

case α < 1. �

Lemma 16.17. (Nazin & Poznyak 1986) Let the sequence {un} of nonnegative real
numbers satisfy the following recurrent equation:

un+1 ≤ un (1− αn)+ βn + δ̄nurn, n ≥ n0 (16.248)

where r ∈ (0, 1) and {αn}, {βn}, {δn} are sequences of nonnegative real numbers such
that

∞∑
n=n0

αn ≥ c, lim sup
n→∞

(βn/αn) = b, lim sup
n→∞

(
δ̄n/αn

) = d
αn ∈ (0, 1], βn ≥ 0, δ̄n ≥ 0

(16.249)

Then

lim sup
n→∞

un ≤ inf
c>r
u (c) (16.250)

where

u (c) :=
(
1− r

c

)−1 [
b + (1− r) cr/(1−r)d1/(1−r)] (16.251)

Proof. Using the inequality (16.247) for x = un and x0 = cδ̄n/αn, c > r in (16.248), we

derive

un+1 ≤ un
[
1− αn

(
1− r

c

)]
+ βn + (1− r)

(
cδ̄n/αn

)r/(1−r)
n

δ̄n
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or, equivalently,

un+1 ≤ un [1− α̃n]+ β̃n

α̃n := αn
(
1− r

c

)
, β̃n := βn + (1− r)

(
cδ̄n/αn

)r/(1−r)
n

δ̄n

Then applying Lemma 16.14 we obtain

lim sup
n→∞

un ≤ lim sup
(
β̃n/α̃n

)
:=

n→∞
u (c)

Taking inf
c>r

of the right-hand side we get (16.250) and (16.251). Lemma is proven. �
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17.1 Differentiation

17.1.1 Differentiability

Let f be a complex-valued function of a complex variable z. Any complex function

can be represented as follows

f (z)= u (x, y)+ iv (x, y)
z= x + iy (17.1)

We refer to u and v as the real and imaginary parts of f and write

u = Ref, v = Imf (17.2)

Example 17.1.

f (z) = z2 = (x + iy)2 = x2 − y2 + i2xy

u (x, y) = x2 − y2, v (x, y) = xy
Definition 17.1. If f is defined in some neighborhood of a finite point z and

lim
�z→0

f (z+�z)− f (z)
�z

exists finitely we say that the function f (z) is differentiable at

the point z. This limiting value is called the derivative of f (z) at z and we write

f ′ (z) := lim
�z→0

f (z+�z)− f (z)
�z

(17.3)

397
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17.1.2 Cauchy–Riemann conditions

The next theorem gives conditions which must be imposed on the functions u (x, y)

and v (x, y) in order that f (z) should be differentiable at the point z.

Theorem 17.1. (The necessary conditions of differentiability) Let f be defined in a
neighborhood of the point z ∈ C and be differentiable at z. Then

(a) the partial derivatives

∂

∂x
u(x, y),

∂

∂y
u(x, y),

∂

∂x
v(x, y),

∂

∂y
v (x, y)

exist;
(b) and the following relations hold:

∂

∂x
u (x, y) = ∂

∂y
v (x, y),

∂

∂y
u (x, y) = − ∂

∂x
v (x, y) (17.4)

Proof. Since f ′(z) exists then for any given ε > 0 there exists δ = δ (ε) > 0 such that∣∣∣∣f (z+�z)− f (z)�z
− f ′ (z)

∣∣∣∣ < ε (17.5)

whenever 0 < |�z| < δ. Representing �z as �z = teiα, where t = |�z| and α = arg z

(see (13.40)), we can see that (17.5) is fulfilled independently of α when 0 < t < δ. Let

us take α = 0. This means that �z = t = �x. This implies

f ′ (z)= lim
�x→0

[
u (x +�x, y)− u (x, y)

�x
+ i v (x +�x, y)− v (x, y)

�x

]

= ∂

∂x
u (x, y)+ i ∂

∂x
v (x, y)

(17.6)

Taking α = π/2 we find that �z = it = i�y and, therefore,

f ′ (z)= lim
�y→0

[
u (x, y +�y)− u (x, y)

i�y
+ i v (x, y +�y)− v (x, y)

i�y

]

= 1

i

∂

∂y
u (x, y)+ ∂

∂y
v (x, y) = −i ∂

∂y
u (x, y)+ ∂

∂y
v (x, y)

(17.7)

Comparing (17.6) with (17.7) we obtain (17.4). Theorem is proven. �

The conditions (17.4) are called the Cauchy–Riemann conditions. They are also

known as the d’Alembert–Euler conditions. The theorem given below shows that these

conditions are also sufficient to provide the differentiability.
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Theorem 17.2. (The sufficient conditions of differentiability) The Cauchy–Riemann
conditions (17.4) are also sufficient for the differentiability of f (z) provided the func-
tions u (x, y) and v (x, y) are totally differentiable (all partial derivatives exist) at the
considered point. The derivative f ′ (z) can be calculated as

f ′ (z) = ∂

∂x
u (x, y)+ i ∂

∂x
v (x, y) = ∂

∂y
v (x, y)− i ∂

∂y
u (x, y) (17.8)

Proof. By the total differentiability it follows that

�u := u (x +�x, y +�y)− u (x, y) = ∂u
∂x
�x + ∂u

∂y
�y + o (|�z|)

�v := v (x +�x, y +�y)− v (x, y) = ∂v

∂x
�x + ∂v

∂y
�y + o (|�z|)

Therefore

f (z+�z)− f (z)
�z

= �u+ i�v
�x + i�y

=

(
∂u

∂x
�x + ∂u

∂y
�y

)
+ i

(
∂v

∂x
�x + ∂v

∂y
�y

)
+ o (|�z|)

�x + i�y
Using now the Cauchy–Riemann conditions (17.4), the simple rearrangement gives

f (z+�z)− f (z)
�z

=

([
∂u

∂x
+ i ∂v
∂x

]
�x +

[
∂u

∂y
+ i ∂v
∂y

]
�y

)
+ o (|�z|)

�x + i�y

=

([
∂u

∂x
+ i ∂v
∂x

]
�x +

[
−i ∂u
∂y

+ ∂v
∂y

]
i�y

)
+ o (|�z|)

�x + i�y

=

([
∂u

∂x
+ i ∂v
∂x

]
�x +

[
i
∂v

∂x
+ ∂u
∂x

]
i�y

)
+ o (|�z|)

�x + i�y

=
[
∂u

∂x
+ i ∂v
∂x

]
+ o(1)

where o(1)→ 0 whenever |�z| → 0. So that f ′ (z) exists and is given by

f ′ (z) = ∂u
∂x

+ i ∂v
∂x

which completes the proof. �
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Example 17.2. For the same function f (z) = z2 as in Example 17.1 we have

∂u

∂x
= ∂v

∂x
= 2x,

∂u

∂y
= ∂v
∂y

= −2y

f ′ (z) = 2x − i2y

Definition 17.2. A function f (z), differentiable at each point of an open set D ⊂ C,
is called regular (or holomorphic) on D. Sure, here we assume that we deal with
a single-valued (or uniform) function since the notion of differentiability (17.3) has
been introduced only for single-valued functions. If a regular function f (z) possesses a
continuous derivative on D then it is called an analytic function.1

Below these definitions will be extensively used.

Example 17.3. It is easy to check that, as in real analysis,

d

dz
ez = ez, d

dz
ln z = 1

z

d

dz
sin z = cos z,

d

dz
cos z = −sin z

d

dz
tan z = 1

cos2 z
,

d

dz
cot z = − 1

sin2 z

(17.9)

17.1.3 Theorem on a constant complex function

An application of the Cauchy–Riemann equations (17.4) is given in the next lemma.

Lemma 17.1. Let f = u+ iv be a function with a derivative everywhere in an open disc
D ⊂ C centered at the point z = (a, b).
1. If any of u, v or |f |2 := u2 + v2 is constant on D, then f is constant on D.
2. Also, f is constant on D if f ′(z) = 0 for all z ∈ D.

Proof. Suppose u is a constant on D. By (17.4) it follows that
∂v

∂x
= ∂v
∂y

= 0. Therefore

v (x, y) = v (a, b)

So, v is a constant on D. By the same argument we show that u is a constant on D if v

is a constant. Now suppose that |f |2 := u2 + v2 is a constant. This, in view of (17.4),

implies

0 = u∂u
∂x

+ v ∂v
∂x

= u∂u
∂y

+ v ∂v
∂y

= −u∂v
∂x

+ v ∂u
∂x

1 It can be shown that the existence of f ′(z) on D automatically implies continuity of f ′(z) on D (Goursat

1900). So, regularity and analyticity can be considered as two definitions having an identical mathematical

sense.
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and, hence,

(
u2 + v2) ∂u

∂x
= |f |2 ∂u

∂x
= 0

If |f |2 = 0, then u = v = 0 and so f = 0. If |f |2 �= 0, then
∂u

∂x
= 0 and so u is

a constant. Hence, by the arguments above, v is also a constant that shows that f is a

constant too. Finally, if f ′ = 0 on D, then both
∂v

∂x
and

∂v

∂y
are equal zero. So, v is a

constant, and hence, u is a constant too. Lemma is proven. �

17.2 Integration

17.2.1 Paths and curves

Definition 17.3. A path (contour) in a complex plane is a complex-valued function
C = C (t), continuous on a compact interval [a, b] ∈ R. The image of [a, b] under C
(the graph of C) is said to be a curve described by C and it is said to join the points
C (a) and C (b). If

(a) C (a) �= C (b), the curve is called an arc with the endpoints C (a) and C (b);
(b) C (t) is one-to-one on [a, b], the curve is called a simple (or Jordan) arc;
(c) C (a) = C (b), the curve is a closed curve;
(d) C (a) = C (b) and C (t) is one-to-one on [a, b], the curve is called a simple (or

Jordan) closed curve.

These types of curves are shown in Fig. 17.1.

Definition 17.4.

(a) A path C is called rectifiable if it has a finite arc length.

an arc a Jordan arc

a Jordan closed
curve

a closed curve

Fig. 17.1. Types of curves in the complex plane.
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(b) A path C is called piecewise smooth if it has a bounded derivative C ′ which is
continuous everywhere on [a, b] except (possibly) a finite number of points for which
it is required that both right- and left-hand derivatives exist.

(c) A piecewise smooth closed path is called a circuit.
(d) The arc length �C (a, b) of a path C on [a, b] is defined by

�C (a, b) := sup
Pm

{
�Cm (a, b) : Pm ∈ P (a, b)

}
�CPm (a, b) :=

m∑
i=1

|C (ti)− C (ti−1)|
(17.10)

where P (a, b) is the set of all possible partitions of [a, b].

Lemma 17.2. A path C is rectifiable if and only if C (t) is of bounded variation on [a, b].

Proof. If Pm := {t0 = a, t1, t2, . . . , tm = b} is a partition of [a, b], and if C (t) is a function
of bounded variation on [a, b], that is, for all a ≤ ti−1 ≤ ti ≤ b

|C (ti)− C (ti−1)| ≤ M (ti − ti−1)

then

�C (a, b)= sup
Pm

{
m∑
i=1

|C (ti)− C (ti−1)|
}

≤ sup
Pm

{
M

m∑
i=1

(ti − ti−1)

}
= M (b − a) <∞

which proves this lemma. �

Corollary 17.1. The arc length �C (a, b) may be calculated as the Lebesgue integral

�C (a, b) =
b∫

t=a

∣∣C ′ (t)
∣∣ dt (17.11)

and

�C (a, b) = �C (a, c)+�C (c, b) (17.12)

Definition 17.5. If a ∈ C, r > 0 and the path C is defined by the equation

C (t) := a + reit , t ∈ [0, 2π ] (17.13)
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then this path is called a positively (counterclockwise) oriented circle (or a sphere in
C) with the center at a and the radius r . It is denoted by B (a, r) and is referred to as
C = B (a, r).

17.2.2 Contour integrals

Let C be a path in the complex plane C with domain [a, b], and f : C → C be a

complex-valued function

f (z) = u (x, y)+ iv(x, y), z = x + iy

defined on the graph of C.

Definition 17.6. The contour integral of f along C, denoted by
∫
C
f (z)dz, is

defined by

∫
C

f (z)dz :=
b∫

t=a
f (C (t))dC (t) = lim

m→∞ sup
Pm

s
(
Pm, ζ

(m)
k

)

s
(
Pm, ζ

(m)
k

)
:=

m∑
k=1

f (ζk) (zk − zk−1)

zk ∈ C, z0 = C(a), zk = C (tk), zm = C(b)

� (Pm) := max
k=1,...,m

|zk − zk−1| →
m→∞ 0

(17.14)

whenever the Riemann–Stieltjes integral
∫ b
t=a f (C (t))dC (t) on the right-hand side of

(17.14) exists. If the contour C is closed, that is, C(a) = C(b) (see Fig. 17.2), then the
integral (17.14) is denoted by

∮
C

f (z) dz :=
b=a∫
t=a
f (C (t))dC (t) (17.15)

Remark 17.1. If f (z) is a partially continuous bounded function, the integral (17.14)
always exists.
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Lemma 17.3. The calculation of the contour integral
∫
C
f (z) dz (17.14) can be realized

by the calculation of four real integrals according to the following formula:

∫
C

f (z) dz=
∫
C

[u (x, y) dx − v (x, y) dy]

+ i
∫
C

[u (x, y) dy + v (x, y) dx]
(17.16)

Proof. It follows from the presentation

m∑
k=1

f (ζk) (zk − zk−1) =
m∑
k=1

[uk�xk − vk�yk]+ i
m∑
k=1

[uk�yk + vk�xk]

uk := u(xk, yk), vk := v (xk, yk)

�xk := xk − xk−1, �yk := yk − yk−1, zk = xk + iyk = C (tk)

�

Denote by C− the same contour C but passed in the clockwise direction (see Fig. 17.2).

Then the following properties seem to be evident.

Proposition 17.1.

1. ∫
C

f (z) dz = −
∫
C−

f (z) dz (17.17)

C 5 C11C2

C1

D

C2

b

a

C1
2

Fig. 17.2. The closed contour C = C1 + C2 within the region D.
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2.

∫
C

f (z) dz =
b∫

t=a
f (C (t))C ′ (t) dt (17.18)

3. For any α, β ∈ C

∫
C

[αf (z)+ βg (z)] dz = α
∫
C

f (z) dz+ β
∫
C

g(z) dz (17.19)

4. ∫
C1+C2

f (z) dz =
∫
C1

f (z) dz+
∫
C2

f (z) dz (17.20)

17.2.3 Cauchy’s integral law

We investigate the conditions under which the integral
∫
C
f (z) dz along a path C

joining any two given points a and b in a domain D is independent of the particular path

C (in D), but depends on a and b only.

Lemma 17.4. It is necessary and sufficient that the integral of f (z) along a path joining
any two given points a and b in a domain D is independent of the particular path C
(in D) in that the integral of the same function f (z) around a closed path C in D (see
Fig. 17.2) should vanish, that is,

∮
C

f (z) dz = 0 (17.21)

Proof.

(a) Necessity. Suppose that the integral
∫
C
f (z) dz along any path C in D depends only

on the endpoints a and b, i.e.,
∫
C
f (z) dz = φ (a, b). Let us choose two distinct arcs

C1 and C2 of C joining a and b (see Fig. 17.2). Then we have∮
C

f (z) dz=
∫
C2

f (z) dz+
∫
C1

f (z) dz

=
∫
C2

f (z) dz−
∫
C−1

f (z) dz

= φ (a, b)− φ (a, b) = 0
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(b) Sufficiency. Suppose now that (17.21) holds for a domain D. Suppose a, b ∈ D and

select any two paths C−
1 and C2 in D joining a to b. Since C = C1 +C2 and (17.21)

holds, we get

0 =
∮
C

f (z) dz=
∫
C2

f (z) dz+
∫
C1

f (z) dz

=
∫
C2

f (z) dz−
∫
C−1

f (z) dz

Hence,
∫
C2
f (z) dz = ∫

C−1
f (z) dz for any paths C2 and C−

1 . This means that∫
C
f (z) dz = φ (a, b) exactly. The lemma is proven. �

17.2.3.1 Simply-connected domains
Now we are ready to formulate the following fundamental integral theorem.

Theorem 17.3. (Cauchy’s integral law) If f (z) is a regular function in a simply-
connected domain2 D, then the integral of f (z) along any path C in D depends only on
the endpoints of this path, or in other words, if C is any closed contour in D then

∮
C

f (z) dz = 0

Proof. By (17.16) it suffices to show that each of the real line integrals

∮
C

[u (x, y) dx − v (x, y) dy],
∮
C

[u (x, y) dy + v (x, y) dx]

vanishes. By Corollary 16.2 (from the Real Analysis chapter) it follows that

∮
C

[P (x, y) dx +Q(x, y) dy] = 0

along any closed contour in a simply-connected domain D if and only if the partial

derivative of the real functions P (x, y) and Q(x, y) exist and are continuous in D and

∂

∂y
P (x, y) = ∂

∂x
Q (x, y) (17.22)

2 We are reminded that a domain D in an open plane is simply connected if and only if any closed Jordan

contour C in D is reducible in D, that is, can be continuously shrunk to a point in D without leaving D.
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at each point of D. Indeed,

P (x, y) dx +Q(x, y) dy = dϕ (x, y)

and ∮
C

[P (x, y) dx +Q(x, y) dy] =
∮
C

dϕ (x, y)

= ϕ (x(a), y (a))− ϕ (x(b), y (b)) = 0

since a = b. But, in our case,

u (x, y) = P(x, y), v (x, y) = −Q(x, y)

for the first integral, and

v (x, y) = P(x, y), u (x, y) = Q(x, y)

So, (17.22) coincides exactly with the Cauchy–Riemann conditions (17.4) which proves

the theorem. �

Remark 17.2. The converse of Theorem 17.3 is also true, namely, if f (z) is continuous
in a simply-connected domain D and

∮
C
f (z) dz = 0 for every closed contour C in D,

then f (z) is regular in D. The proof can be found in Fuchs & Shabat (1964).

As it follows from the consideration above, Theorem 17.3 enables us to give an

equivalent alternative definition of a regular function: a single-valued function f(z) is
regular in D if it is continuous in D and its integral around any closed contour C in
D is equal to zero.

17.2.3.2 Multiply-connected domains
The Cauchy theorem 17.3 can be generalized so as to apply to multiply-connected

domains. Let D be an (n+ 1)-ply connected bounded domain whose frontier consists

of (n+ 1) disjoint contours C0 (the external boundary component), C1, . . . , Cn, and let

f (z) be regular at each point of the closed region D̄ (see Fig. 17.3 showing a case in

which n = 3).

By taking suitable (disjoint) cuts γ1, γ2, . . . γn we form from D a simply-connected

domain D′ whose boundary we denote by C. We will consider each cut γi (i = 1, . . . , n)

as two-edged as in Fig. 17.3.

Theorem 17.4. If f (z) is regular at each point of the closed region D̄ whose frontier C
consists of a finite number of disjoint contours Ci (i = 0, 1, . . . , n), that is, C = ⋃n

i=0 Ci ,
then the integral

∮
C
f (z) dz of f (z) around the boundary of D̄ (taken so that each

component of the boundary is traversed in a sense such that the interior D of D̄ remains
on the left) is equal to zero.
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D 

C0

C1

D

C2

C3

�3

�1

�2

Fig. 17.3. Multiply-connected domains (n = 3).

Proof. As C is piecewise smooth and f (z) is regular in the domain D∗ containing D̄ it

follows by Theorem 17.3 that
∮
C
f (z) dz = 0. So, C0 is traversed in the anti-clockwise

(positive) sense and Ci (i = 1, . . . , n) in the clockwise (negative) sense. Each of cuts

γ1, γ2, . . . γn is traversed twice: first, in one sense and then in the opposite sense. As the

integrals along the two edges of each cut conceal each other, it follows by the standard

properties of the contour integral (17.1) that

∮
C

f (z) dz =
∮
C0

f (z) dz−
n∑
i=1

∮
Ck

f (z) dz

=
∮
C0

f (z) dz+
n∑
i=1

x

∮
C−k

f (z) dz = 0

(17.23)

Theorem is proven. �

Corollary 17.2. Assuming that the conditions under which (17.23) holds are satisfied,
we have

∮
C0

f (z) dz =
n∑
i=1

∮
Ck

f (z) dz (17.24)

which for n = 1 gives

∮
C0

f (z) dz =
∮
C1

f (z) dz (17.25)
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17.2.4 Singular points and Cauchy’s residue theorem

17.2.4.1 Types of singularities
Definition 17.7. Consider a function f (z) which is regular (analytic) everywhere on
an open set D bounded by a closed contour C (here we are writing C for C0), except
at a finite number of isolated points a1, a2, . . . , an. These exceptional points are called
singular points (singularities) of f (z).

Isolated singularities are divided into three types according to the behavior of the

function in a deleted neighborhood of the point concerned.

Definition 17.8. An isolated singularity a of the function f (z) is said to be

1. a removable singularity, if lim
z→af (z) exists finitely;

2. a pole, if lim
z→af (z) = ±∞;

3. an essential singularity, f (z) does not tend to a limit (finite or infinite) as z→ a.

Remark 17.3. All of these notions are closely connected with the, so-called, Laurent
expansion of the function f (z) which will be discussed below. There will be shown that

• a removable singularity cannot contain the term
c

(z− a)n for any finite n ≥ 1 (for

example, the function
sin z

z
at the point z = a = 0 has a removable singularity);

• evidently, that a function f (z) defined in some deleted neighborhood of z = a has a

pole at z = a if and only if the function g (z) := 1

f (z)
is regular at a and has zero at

z = a, i.e., g (a) = 0 (while g (z) is not identically equal to zero);
• in the case of isolated essential singularity there exist (the Sokhotsky–Cazoratti theorem,
1868) at least two sequences

{
z′n
}

and
{
z′′n
}
, each converging to a, such that the

corresponding sequences
{
f
(
z′n
)}

and
{
f
(
z′′n
)}

tend to different limits as n → ∞
(for example, the function e1/z at the point z = a = 0 has an essential singularity and
is regular for all other z).

Definition 17.9. A function f (z) is called meromorphic (ratio type) if its singularities
are only poles.

From this definition it immediately follows that in any bounded closed domain of the

complex plane a meromorphic function may have only a finite number of poles: for,

otherwise, there would exist a sequence of distinct poles converging to a (finite) point in

the region; such point would necessarily be a nonisolated singularity that contradicts our

hypothesis that any finite singular point of this function must be a pole.

Example 17.4. Meromorphic functions are 1/ sin z, tan z, cot z.

17.2.4.2 Cauchy’s residue theorem
We enclose the ak by mutually disjoint circles Ck in D such that each circle Ck

enclosing no singular points other than the corresponding point ak . It follows readily
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from (17.25) that the integral of f (z) around Ck is equal to the integral around any other

contour C ′
k in D which also encloses ak , but does not enclose or pass through any other

singular point of f (z). Thus the value of this integral is a characteristic of f (z) and the

singular point ak .

Definition 17.10. The residue of f (z) at the singular point ak is denoted by res f (ak)

and is defined by

resf (ak) := 1

2πi

∮
Ck

f (z) dz (17.26)

Formula (17.24) leads immediately to the following result.

Theorem 17.5. (Cauchy’s residue theorem) Let D be an open domain bounded by a
closed contour C and let f (z) be regular (analytic) at all points of D̄ with the exception
of a finite number of singular points a1, a2, . . . , an contained in the domain D. Then the
integral of f (z) around C is 2πi times the sum of its residues at the singular points,
that is,

∮
C

f (z) dz = 2πi

n∑
k=1

resf (ak) (17.27)

Corollary 17.3. The residue of f (z) at a removable singularity is equal to zero.

The next subsection deals with method of residues calculating without integration.

17.2.5 Cauchy’s integral formula

17.2.5.1 Representation of an analytic function through its contour integral
The theorem below reveals a remarkable property of analytical functions: it relates the

value of an analytical function at a point with the value on a closed curve not containing

the point.

Theorem 17.6. (Cauchy’s integral formula) Assume f is regular (analytic) on an open
set D, and let C be any contour (circuit) in D which encloses a point z ∈ D but does
not cross it. Then

∮
C

f (w)

w − zdw = f (z)
∮
C

1

w − zdw (17.28)
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Proof. Define a new function g on D as follows:

g (w) :=
⎧⎨
⎩
f (w)− f (z)
w − z if w �= z
f ′ (z) if w = z

Then g (w) is regular (analytic) at each point w �= z in D and at the point z itself it is

continuous. Applying the Cauchy theorem 17.3 to g gives

0 =
∮
C

g (w) dw =
∮
C

f (w)− f (z)
w − z dw =

∮
C

f (w)

w − zdw − f (z)
∮
C

1

w − zdw

which proves (17.28). �

Example 17.5. If C = B (z, r) is a positively (counterclockwise) oriented circle (17.13)
with the center at a and the radius r , that is,

C = C (t) := z+ reit , t ∈ [0, 2π ]

then

C ′ (t) = ireit = i [C (t)− z]

and by (17.18) we derive that

∮
C

1

w − zdw =
2π∫

t=0

C ′ (t)
C (t)− zdt =

2π∫
t=0

i dt = 2πi (17.29)

In this case (17.28) becomes

∮
C

f (w)

w − zdw = 2πi f (z) (17.30)

Corollary 17.4. (Mean-value theorem) For C = B (z, r) it follows that

f (z) = 1

2π

2π∫
t=0

f
(
z+ reit) dt (17.31)
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Proof. By (17.18) and (17.30) we have

2πif (z)=
∮
C

f (w)

w − zdw

=
2π∫

t=0

f
(
z+ reit) C ′ (t)

C (t)− zdt

=
2π∫

t=0

f
(
z+ reit) i dt

which proves (17.31). �

The next theorem shows that formula (17.30) holds not only for positively oriented

circles (17.13) but for any circuit containing z as an internal point.

Theorem 17.7. If f is regular (analytic) on an open set D, and let C be any contour
(circuit) in D (not obligatory C = B (z, r)) which encloses a point z ∈ D but does not
cross it, then

∮
C

1

w − zdw = 2πin (C, z) (17.32)

where n (C, z) is an integer called the winding number (or index) of C with respect to z
which is the number of times the point C (t) “winds around” the point z as t varies over
the interval [a, b].

Proof. By (17.18) it follows that

∮
C

1

w − zdw =
b∫

t=a

C ′ (t)
C (t)− zdt

Define the complex-valued function F(x) by the equation

F(x) :=
x∫

t=a

C ′ (t)
C (t)− zdt, t ∈ [a, b]

To prove the theorem we must show that F (b) = 2πin for some integer n. Notice that

F(x) is continuous and F ′(x) = C ′ (x)
C (x)− z at each point where C ′ (t) exists, and, hence,

the function G(x) defined by

G(x) := e−F(x) [C (x)− z]
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is also continuous on [a, b] and, moreover, at each point, where C ′ (t) exists, we have

G′ (x)= e−F(x)C ′ (x)− F ′(x)e−F(x) [C (x)− z]

= e−F(x)C ′ (x)− C ′ (x)
C (x)− ze

−F(x) [C (x)− z] = 0

Therefore, G′ (x) = 0 for each t in [a, b] except (possibly) for a finite number of points.

By continuity of G(x) on [a, b] we conclude that G(x) is a constant throughout [a, b]

that implies G(a) = G(b) or, equivalently,

G(b) = e−F(b) [C (b)− z] = G(a) = e−F(a) [C (a)− z] = C (a)− z

Since C (a) = C (b) �= z we find e−F(b) = 1 that gives F(b) = 2πin exactly where n

is an integer and corresponds to the number of times the point C (t) “winds around” the

point z as t varies over the interval [a, b]. This completes the proof. �

Corollary 17.5. Cauchy’s integral formula (17.28) can now be restated in the form

1

2πi

∮
C

f (w)

w − zdw = n (C, z) f (z) (17.33)

Example 17.6. Let C be any contour enclosing the point a ∈ C. We need to calculate
J := ∮

C
(z− a)n dz for every integer n = . . . ,−1, 0, 1, . . . By (17.25) it follows that

J =
∮
C

(z− a)n dz =
∮

B(a,r)

(z− a)n dz

Letting z− a = reiϕ we get dz = reiϕi dϕ, and hence,

J =
∮

B(a,r)

(z− a)n dz =
2π∫

ϕ=0

rneinϕreiϕi dϕ = irn+1

2π∫
ϕ=0

ei(n+1)ϕ dϕ

Since∫
ekϕ dϕ = 1

k
ekϕ +K, k �= 0, K = const

one gets

J = irn+1

2π∫
ϕ=0

ei(n+1)ϕ dϕ = rn+1

n+ 1
ei(n+1)ϕ

∣∣∣∣ ϕ = 0

ϕ = 2π

= rn+1

n+ 1

(
ei2π(n+1) − 1

)
if n �= −1
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and J = 2πi if n = −1. So,

J =
∮
C

(z− a)n dz =
{

0 for n �= −1

2πi for n = −1
(17.34)

Notice that case n = −1 follows directly from (17.30) if we take f (z) = 1.

17.2.5.2 High-order derivatives integral representation
By definition, the analytical function is a function of a complex-variable differentiable at

any point of a domainD. The next theorem shows that an analytical function automatically

has a derivative of any order which in turn is analytical too.

Theorem 17.8. (The bounds for high-order derivatives) If f (z) is regular (analytical)
in an open domain D and is continuous in D̄, then it possesses the derivatives of all
orders at each point z ∈ D and the derivative of the order n can be calculated as

f (n)(z) = n!
2πi

∮
C

f (w)

(w − z)n+1
dw (17.35)

where C is the boundary of D, that is, C = D̄ �D.

Proof. By the derivative definition and using (17.32) for n (C, z) = 1, we have

f ′(z)= lim
h→0

f (z+ h)− f (z)
h

= 1

2πi
lim
h→0

1

h

∮
C

f (w)

[
1

(w − z− h) −
1

(w − z)
]
dw

= 1

2πi
lim
h→0

∮
C

f (w)

(w − z− h) (w − z)dw = 1

2πi

∮
C

f (w)

(w − z)2 dw

So, for n = 1 the theorem is proven. Let us use now the induction method, namely,

supposing that it is true for some fixed n and using the same calculations as before, we

can easily show that it is true also for (n+ 1) which completes the proof. �

Remark 17.4. Formula (17.35) may be obtained by the formal direct differentiation of
Cauchy’s formula (17.28) by z.

Remark 17.5. If the function ϕ (z) is continuous on the boundary C of an open domain
D, then the function

�(z) := 1

2πi

∮
C

ϕ (w)

(w − z)dw

is regular (analytical) in D.
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Example 17.7.

1

πi

∮
C

sin (w)

(w − z)3 dw = 2!
2πi

∮
C

sin (w)

(w − z)2+1
dw = sin(2)(z) = −sin z

17.2.5.3 Cauchy’s inequalities
Formula (17.35) leads directly to the following important inequalities known as

the Cauchy’s inequalities for the module of the nth derivative. Indeed, from (17.35) it

follows that

∣∣f (n)(z)∣∣ = n!
2π

∣∣∣∣∣∣
∮
C

f (w)

(w − z)n+1
dw

∣∣∣∣∣∣ ≤
n!
2π

Ml

rn+1
(17.36)

where r is the distance between the point z and the boundary C, i.e., r := inf
w∈C

‖z− w‖,
M is the supremum of the module of f (w) in D, i.e., M := sup

z∈D
|f (z)| and l is the

length of C, i.e., l := |∮
C
dw|. In particular, if f (w) is analytical in the disc D =

{w ∈ C : |w − z| < r}, then l = 2πr and we obtain

∣∣f (n)(z)∣∣ ≤ Mn!
rn

(17.37)

17.2.5.4 Liouville’s theorem
Definition 17.11. A function analytical everywhere on C is called an entire function.

Example 17.8. Entire functions are polynomials, sin z and cos z, and ez.

Theorem 17.9. (Liouville) Every bounded entire function is constant.

Proof. Suppose |f (z)| ≤ M for all z ∈ C. Then by (17.37) applied for n = 1 it follows

that
∣∣f (n)(z)∣∣ ≤ M

r
for every r > 0. Letting r →∞ implies f ′(z) = 0 for every z ∈ C

which completes the proof. �

17.2.6 Maximum modulus principle and Schwarz’s lemma

Theorem 17.10. (Maximum modulus principle) If a function f (z) is analytic and not
constant on an open region D and is continuous on D̄, then its module |f (z)| cannot
achieve its maxima in any point D, that is, every contour

C = B (a, r) := {z ∈ C | |z− a| = r} ⊂ D
contains points z such that

|f (z)| > |f (a)| (17.38)
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Proof. By continuity of |f (z)| it achieves its maximum M on D̄. Denote by E the set of

all extrema points, i.e.,

E := {
z ∈ D̄| |f (z)| = M}

Suppose that E = D. This means that |f (z)| = M for all points z ∈ D and, by

Lemma 17.1, it follows that f (z) = const on D that contradicts with the assumptions

of the theorem. Suppose now that E ⊂ D, namely, there exists a boundary point z0 ∈ E
such that it is an internal point of D. Let us construct a circuit C = B (z0, r) which

contains a point z1 ∈ D such that z1 /∈ E (this can always be done since z0 is a

boundary point). Then |f (z)| < M , and for any small enough ε > 0, by continuity

of f (z), there exists a set C1, which is a part of C where |f (z)| < M − ε. Denote
C2 := C\C1. Evidently that for any z ∈ C2 one has |f (z)| ≤ M . Then by Theorem 17.4 it

follows that

f (z0) = 1

2π

2π∫
=0

f (z) dϕ
ds=rdϕ= 1

2πr

⎛
⎝ ∫

C1

f (z) dz+
∫
C2

f (z) dz

⎞
⎠

which implies

|f (z0)| = M ≤ 1

2πr

(
[M − ε] l1 +Ml2

) = M − εl1

2πr

l1 :=
∫
C1

dz, l2 :=
∫
C2

f (z) dz

But the last inequality is impossible which leads to the contradiction. Theorem is

proven. �

Corollary 17.6. (Minimum modulus principle) If a function f (z) is analytical and not

constant on D, and it is continuous and nonequal to zero on D̄, then the minimum of
|f (z)| cannot be achieved on D.

Proof. It can be easily done if we apply Theorem 17.10 to the function g (z) =
1/f (z). �

Using the maximum modulus principle it is possibly easy to state the following useful

result.

Lemma 17.5. (Schwartz, around 1875) If function f (z) is analytical in the open
domain |z| < 1, it is continuous on |z| ≤ 1, and, in the addition,

f (0) = 0, |f (z)| ≤ 1
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then

|f (z)| ≤ |z| (17.39)

If at least in one internal point of the domain |z| < 1 the exact equality |f (z)| = |z|
holds, then this equality takes place at any point of this domain and, besides,

f (z) = eiαz (17.40)

where α is a real constant.

Proof. To prove this result it is sufficient to consider the function

ϕ (z) :=
⎧⎨
⎩
f (z)

z
if z �= 0

f ′ (0) if z = 0

which is analytical on the set 0 < |z| < 1 and continuous in |z| ≤ 1. Applying to this

function the maximum modulus principle 17.10 we derive that on the circle |z| = 1

we have

|ϕ (z)| =
∣∣∣∣f (z)z

∣∣∣∣ ≤ 1

and by this principle, |ϕ (z)| ≤ 1 everywhere on |z| ≤ 1, which gives |f (z)| ≤ |z|. So,
the first part of the lemma is proven. If in some internal point z0 we have |f (z0)| = |z0|,
then in this point |ϕ (z)| = 1 and, again by maximum modulus principle 17.10, it follows

that |ϕ (z)| ≡ 1 everywhere on |z| ≤ 1. By Lemma 17.1 we have that ϕ (z) = const

which can be represented as eiα which implies (17.40). �

17.2.7 Calculation of integrals and Jordan lemma

17.2.7.1 Real integral calculation using the Cauchy’s residue theorem
The main idea of integral calculus using Cauchy’s residue theorem consists of the

following. Assume we must calculate the usual (Riemann) integral
∫ b
x=a f (x) dx of the

real function f (x) over the given interval (finite or infinite) (a, b) ∈ R. Let us complete

this interval with some curve C ′ which together with (a, b) contains a domain D. Let us

then extend (analytically) our given function f (x) up to a function f (z) defined on D̄.

Hence, by Cauchy’s residue theorem (17.27)

∮
C′∪(a,b)

f (z) dz =
b∫

x=a
f (x) dx +

∮
C′

f (z) dz = 2πi

n∑
k=1

res f (ak)

which gives

b∫
x=a
f (x) dx = 2πi

n∑
k=1

resf (ak)−
∮
C′

f (z) dz (17.41)
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If the integral over C ′ can be calculated or expressed as a function of the integral∫ b
x=a f (x) dx, then the problem of the integral calculus might be solved! This technique

clearly shows that the integral of a real function f (x) can be calculated as the sum

of residues in its singular points that is significantly simpler especially in the case of

poles.

Remark 17.6. Usually to simplify calculations, the extended function f (z) is selected
in such a manner that on (a, b) it would be its real or imaginary part that permits to
calculate

∫ b
x=a f (x) dx by simple separation of real and imaginary parts.

17.2.7.2 Improper integrals and Jordan lemma
If the interval is infinite, then one may be considered an extended family of the contours

C ′
k ∪ (ak, bk) ⊂ C ′

k+1 ∪ (ak+1, bk+1) such that (ak, bk) → (a, b) as k → ∞. In this case

it is not obligatory to calculate the integral
∮
C′k
f (z) dz but it is sufficient only to find

its limit. Very often it turns out that this limit is equal to zero. This fact may be shown

using the lemma given below.

Lemma 17.6. (Jordan) If on some sequence
{
C ′
k

}
of contours cuts

C ′
k :=

{
z ∈ C | |z| = Rk, Im z > −a, Rk →

k→∞ ∞, a is fixed
}

the function g (z) tends to zero uniformly on arg z, then for any λ > 0

lim
k→∞

∮
C′k

g (z) eiλz dz = 0 (17.42)

Proof. Denote z = x + iy = reiϕ , Mk := max
C′k

|g (z)| and αk := arc sin
a

Rk
. By the

lemma assumption, Mk →
k→∞ 0 and αk →

k→∞ 0 such that αkRk →
k→∞ a. Let a > 0

(see Fig. 17.4).

y

E

B

AD
a

x

C'k

Rk
�k

Fig. 17.4. The contour C ′
k with cuts AB and CD.
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On the cuts AB and CD we have
∣∣eiλz∣∣ = e−λy ≤ eαλ, therefore

∣∣∣∣∣∣
∫

AB∪CD
g (z) eiλz dz

∣∣∣∣∣∣ ≤ Mke
αλαkRk →

k→∞ 0

Applying the inequality sin ϕ ≥ 2

π
ϕ valid3 for ϕ ∈ [0, 2π ] we get

∣∣ eiλz∣∣ = e−λRk sin ϕ ≤ e−2λRkπ ϕ

at the cut BE which implies

∣∣∣∣∣∣
∫
BE

g (z) eiλzdz

∣∣∣∣∣∣ ≤ MkRk

π/2∫
ϕ=0

e
−
2λRk

π
ϕ

dϕ = Mk

π

2λ

(
1− e−λRk) →

k→∞ 0

Analogously,
∣∣∫
EC
g (z) eiλz dz

∣∣ →
k→∞ 0 which proves the lemma for the case a > 0.

If a < 0, the proof is significantly simpler since there does not need to calculate integrals

over the cuts AB and CD. Lemma is proven. �

Example 17.9. Let us calculate the, so-called, Laplace integral
∫∞
t=0

cos t

t2 + b2 dt . Select
the auxiliary function f (z) = eiz

z2 + b2 and the contour C ′
Rk

as in Fig. 17.4 with a = 0.

Since the function g (z) := 1

z2 + b2 satisfies on C ′
Rk

the inequality |g (z)| < 1

R2
k − b2

,

then it converges uniformly to zero as Rk →∞ and hence, by the Jordan lemma (17.6),∫
C′Rk
f (z) dz = ∫

C′Rk
g (z) eiz dz →

k→∞ 0. Then, for any Rk > |b| by Cauchy’s residue

theorem (17.27) it follows that

Rk∫
t=−Rk

eit

t2 + b2 dt +
∫
C′Rk

f (z) dz = 2πi
e−|b|

2 |b|

3 To prove this inequality it is sufficient to notice that

(
sin ϕ

ϕ

)′
= cosϕ

ϕ2
(ϕ − tan ϕ) < 0 at (0, 2π) and,

hence, the function
sin ϕ

ϕ
decreases at this interval.
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since f (z) inside the joint contour has the unique singular point (pole of the multiplicity
one) z = |b| i. Separating the real and imaginary parts and using that the function f (z)
is even, we finally conclude that

∞∫
t=0

cos t

t2 + b2 dt = π
e−|b|

|b| (17.43)

17.3 Series expansions

In this section we will consider the problem of the representation of analytical functions

by power-series expansions and their generalizations (“negative power”). More exactly,

we will deal with a series given by

∞∑
n=−∞

cn (z− a)n = . . .+ c−n (z− a)−n . . .+ c−1 (z− a)−1

+ c0 + c1 (z− a)+ . . .+ cn (z− a)n + . . . (17.44)

where z is a complex variable, and cn and a are constants named coefficients and the

center of the series, respectively.

17.3.1 Taylor (power) series

Theorem 17.11. (O. Cauchy, 1831) A function f (z) can be represented by the corre-
sponding Taylor series

f (z) = f (a)+ f
′(a)
1! (z− a)+ . . .+ f

(n)(a)

n! (z− a)n + Rn
f (n)(a) are given by (17.35)

Rn = (z− a)
n+1

2πi

∮
C

f (w)

(w − z) (w − a)n+1
dw

(17.45)

in any open domain circle with a boundary C = B (a, r) where this function is analytical.
In any closed domain R̄, belonging to this circle, this Taylor series converges uniformly,
that is, Rn → 0 when n→∞ independently of z ∈ R̄.

Proof. Let us use the known formula of the geometric progression

1− qn+1

1− q = 1+ q + q2 + . . .+ qn

valid not only for real, but for complex variables q ∈ C (q �= 1), rewriting it as

1

1− q = 1+ q + q2 + . . .+ qn + qn+1

1− q (17.46)
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Fixing some point a ∈ D (D is the open domain where f (z) is analytical) and using

(17.46) we may write

1

(w − z) =
1

(w − a)

⎡
⎢⎣ 1

1− z− a
w − a

⎤
⎥⎦

= 1

(w − a)

⎡
⎢⎣1+ z− a

w − a + . . .
(
z− a
w − a

)n
+ 1

1− z− a
w − a

(
z− a
w − a

)n+1

⎤
⎥⎦

Multiplying both sides by
1

2πi
f (w) and integrating along the contour C = B (a, r),

lying in D and containing both points z and a, and applying Cauchy’s formula (17.28),

we obtain (17.45). Let us now consider any positive r ′ such that 0 < r ′ < r , where r is
the radius of the circle C = B (a, r), and the circle |z− a| ≤ kr ′ with any k satisfying

0 < k < 1. Let z belong to this last circle and C ′ = B (a, r ′). Then |w − a| = r ′, and
hence,

|w − z| = |(w − a)+ (a − z)|
≥ |w − a| − |z− a| ≥ r ′ − kr ′ = (1− k)r ′

Applying this inequality to (17.45) we have

|Rn| =
∣∣∣∣∣∣ (
z− a)n+1

2πi

∮
C

f (w)

(w − z) (w − a)n+1
dw

∣∣∣∣∣∣
≤ k

n+1 (r ′)n+1

2π
· M2πr ′

(1− k) (r ′)n+2
= Mk

n+1

1− k
where M = sup

z:|z−a|≤r ′
|f (z)| (the function f (z) is analytical within this circle and, hence,

it is bounded). Since k < 1, we obtain Rn → 0 when n → ∞ for every z satisfying

|z− a| ≤ kr ′. Theorem is proven. �

Claim 17.1. (The Cauchy–Adhamar formula) Every power (Taylor) series has a defi-
nite radius of convergence

R :=
{
z ∈ C | |z− a| < R,

∣∣∣∣∣
∞∑
n=0

cn (z− a)n
∣∣∣∣∣ <∞

}

which is finite or +∞ and may be calculated as

R = 1

lim sup
n→∞

n
√|cn| (17.47)
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Proof. To prove this result it is sufficient to show that for any z, for which |z− a| ≤ kR,
0 < k < 1, the series

∑∞
n=0 cn (z− a)n converges, and for any z, for which |z− a| > R,

this series disconverges. By the upper limit definition, for any ε > 0 there exists n0 (ε)

such that n
√|cn| < 1

R
+ ε for all n ≥ n0 (ε). Selecting ε such that

1

R
+ ε < 1

R

(
k + 1

2

) ,

we obtain

|cn (z− a)n| < knRn

Rn

(
k + 1

2

)n = (
2k

k + 1

)n
= qn

0 < q = 1− 1− k
1+ k < 1

for any n ≥ n0 (ε) and z satisfying |z− a| ≤ kR. So, we get∣∣∣∣∣
∞∑
n=0

cn (z− a)n
∣∣∣∣∣ ≤

∞∑
n=0

|cn (z− a)n| ≤
∞∑
n=0

qn = 1

1− q <∞

To prove the rest of the theorem, again notice that by the definition of the upper limit, for

any ε > 0 there exists a subsequence n = nk such that nk

√∣∣cnk ∣∣ > 1

R
− ε, or, equivalently,

∣∣ cnk (z− a)nk ∣∣ >
[(

1

R
− ε

)
|z− a|

]nk

But if |z− a| > R we can always select ε such that

(
1

R
− ε

)
|z− a| > 1. This means

that the term cnk (z− a)nk will tend to ∞ and, hence,
∑∞
n=0 cn (z− a)n disconverges.

Claim is proven. �

Example 17.10.

(a) The following series converge for any z ∈ C

ez = 1+ z+ 1

2!z
2 + 1

3!z
3 + . . . ;

sin z = 1− 1

3!z
3 + 1

5!z
5 − . . . ; cos z = 1− 1

2!z
2 + 1

4!z
4 − . . .

sinh z = z+ 1

3!z
3 + 1

5!z
5 + . . . ; cosh z = 1+ 1

2!z
2 + 1

4!z
4 + . . .
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(b) The following series converge for any z such that |z| < 1

ln (1+ z) = z− 1

2!z
2 + 1

3!z
3 + . . .

(1+ z)a = 1+ az+ a (a − 1)

2! z2 + a (a − 1) (a − 2)

3! z3 + . . .

Remark 17.7. If f (z) is regular at z = a and f (a) = 0 (f (z) is not zero identically),
then by Taylor’s theorem it may be presented by the power series (17.44) as follows

f (z) =
∞∑

n=N(f,a)
cn (z− a)n = cN (z− a)N + . . . (17.48)

where cN �= 0 and N (f, a) ≥ 1. The number N (f, a), appearing in (17.48), is called
the order of the zero of f (z) at z = a.

Lemma 17.7. (Parseval’s identity) For any function analytical on the disk |z− a| ≤ R
and any r ∈ [0, R) the following identity holds

1

2π

2π∫
θ=0

∣∣f (
a + reiθ)∣∣2 dθ = ∞∑

n=0

|cn|2 r2n (17.49)

Proof. By the direct calculation of the circuit integral of |f (z)|2 over the |z− a| = r
using the Taylor expansion f (z) =∑∞

n=0 cn (z− a)n gives (17.49). �

17.3.2 Laurent series

Suppose f (z) is regular in the annulus K defined by r < |z− a| < R, 0 ≤ r <
R ≤ ∞. We construct the annular domains K ′ and K ′′ defined by r ′ < |z− a| < R′ and
r ′′ < |z− a| < R′′ where r < r ′ < r ′′ < R′′ < R′ < R so that K contains K̄ ′ and K ′

contains K̄ ′′ (see Fig. 17.5).

As f (z) is regular on K̄ ′, by the Cauchy integral formula (17.30) it can be

represented as

f (z) = f1 (z)+ f2 (z)

f1 (z)= 1

2πi

∮
CR′

f (ζ )

ζ − zdζ, f2 (z) = − 1

2πi

∮
Cr′

f (ζ )

ζ − zdζ
(17.50)
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where CR′ and Cr ′ denote circles of the respective radii R
′ and r ′ with centers at the point

a (see Fig. 17.5). Then for all points ζ on CR′ it follows that

∣∣∣∣ z− aζ − a
∣∣∣∣ < R′′

R′ := q1 < 1.

So, the fraction 1/(ζ − z) can be expended as a geometric series uniformly convergent

on ζ on CR′ , that is,

1

(ζ − z) =
(

1

ζ − z
)
/

(
1− z− a

ζ − a
)

= 1

ζ − z +
z− a
(ζ − z)2 + . . .+

(z− a)n
(ζ − z)n+1

+ . . .

Substitution of this expansion in (17.50) gives

1 (z) = 1

2πi

∮
CR′

f (ζ )

ζ − zdζ =
∞∑
n=0

cn (z− a)n (17.51)

where

cn = 1

2πi

∮
CR′

f (ζ )

(ζ − z)n+1
dζ (17.52)

K

K"

Cr

CR'

CR

Cr'

Cr"

CR"

K'

Fig. 17.5. The annular domains.
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Notice that, in general, cn cannot be represented in the form
f (n) (a)

n! since f (z) is not

regular at z = a. Analogously, for any ζ on Cr ′ we have
∣∣∣∣ζ − az− a

∣∣∣∣ < r ′r ′′ := q2 < 1. Hence,

1

(ζ − z) = −
(

1

z− a
)
/

(
1− ζ − a

z− a
)

= − 1

z− a −
ζ − a
(z− a)2 − . . .−

(ζ − a)n−1

(z− a)n − . . .

and, as the result,

f2 (z) = − 1

2πi

∮
Cr′

f (ζ )

ζ − zdζ =
∞∑
n=0

c−n (z− a)−n (17.53)

with

c−n = 1

2πi

∮
Cr′

f (ζ ) (ζ − a)n−1 dζ (17.54)

Combining (17.52) and (17.54) in (17.50) we obtain the following result.

Theorem 17.12. (Laurent, 1843) Every function f (z) which is regular in the annulus
K := {z ∈ C | r < |z− a| < R} can be represented in this annulus by its Laurent series

f (z) =
∞∑

n=−∞
cn (z− a)n = f1 (z)+ f2 (z)

f1 (z) :=
∞∑
n=0

cn (z− a)n, f2 (z) :=
−∞∑
n=−1

cn (z− a)n

cn = 1

2πi

∮
CR′

f (ζ )

(ζ − z)n+1
dζ (n = 0,±1,±2, . . .)

(17.55)

The term f1 (z) is called the regular part of the Laurent series and the term f2 (z) is
called the principal part of the Laurent series, respectively.

Corollary 17.7. Cauchy’s inequalities for the Laurent series are as

|cn| < M/ρn (17.56)

if the function f (z) is bounded on the circle |z− a| = ρ ∈ (r, R), i.e., |f (z)| ≤ M .
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Example 17.11. The function

f (z) = 1

(z− 1) (z− 2)
= 1

z− 2
− 1

z− 1

is regular in the annulus (“rings”)

K1 := {z ∈ C | 0 ≤ |z| < 1}
K2 := {z ∈ C | 1 < |z| < 2}
K3 := {z ∈ C | 2 < |z|}

So, in K1

1

z− 2
= −1

2

(
1

1− z/2
)
= −1

2

(
1+ z

2
+ z

2

4
+ . . .

)
1

z− 1
= − 1

1− z = − (
1+ z+ z2 . . .)

f (z) = −1

2

(
1+ z

2
+ z

2

4
+ . . .

)
+ (

1+ z+ z2 . . .)
= 1

2
+ 3

4
z+ 7

8
z2 + . . .

In K2

1

z− 2
= −1

2

(
1

1− z/2
)
= −1

2

(
1+ z

2
+ z

2

4
+ . . .

)
1

z− 1
= 1

z

1

1− 1/z
= 1

z

(
1+ z−1 + z−2 . . .

)

f (z) = −1

2

(
1+ z

2
+ z

2

4
+ . . .

)
− (
z−1 + z−2 . . .

)
In K3

1

z− 2
= 1

z

(
1

1− 2/z

)
= 1

z

(
1+ 2

z
+ 4

z2
+ . . .

)
1

z− 1
= 1

z

1

1− 1/z
= 1

z

(
1+ z−1 + z−2 . . .

)
f (z) =

(
1

z
+ 2

z2
+ 4

z3
+ . . .

)
− (
z−1 + z−2 . . .

) = z−2 + 3z−3 + . . .

Example 17.12. Let us calculate Euler’s integral
∫∞
x=−∞

sin x

x
dx. Evidently,

IE =
∞∫

x=0

sin x

x
dt +

0∫
x=−∞

sin t

x
dt = 2

∞∫
x=0

sin x

x
dx
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Introduce the auxiliary function f (z) = e
iz

z
and select the contour

C := Cr ∪ [r, R] ∪ CR ∪ [−R,−r]

as it is shown in Fig. 17.6. Within this contour the function f (z) is regular and, hence,
by Cauchy’s residue theorem (17.27) it follows that

0=
∮
C

f (z) dz

=
∫
Cr

f (z) dz+
R∫
r

f (z) dz+
∫
CR

f (z) dz+
−r∫

−R
f (z) dz

(17.57)

By Jordan’s lemma (17.6) lim
R→∞

∫
CR
f (z) dz = 0. To estimate

∫
Cr
f (z) dz let us consider

the Laurent expansion (17.55) of f (z) in the neighborhood of the point z = 0:

f (z) =
1+ iz+ (iz)

2

2
+ . . .

z
= 1

z
+ P (z)

where P(z) is a function continuous in z = 0. Thus, using representation z = reiϕ , we
also have∫

Cr

f (z) dz=
∫
Cr

eiz

z
dz

=
∫
Cr

1

z
dz+

∫
Cr

P (z) dz

=
0∫

ϕ=π

1

reiϕ

(
reiϕidϕ

)+O (r)
= −iπ +O (r)

x

y

2R 2r r R

CR

Cr

Fig. 17.6. The contour C.
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So, (17.57) can be rewritten as

0 = −iπ +
R∫
r

f (z) dz+
−r∫

−R
f (z) dz+O

(
1

R

)
+O (r) (17.58)

where, in view of z = x + iy,
R∫
r

f (z) dz+
−r∫

−R
f (z) dz=

R∫
r

eix

x
dx +

−r∫
−R

eix

x
dx

=
R∫
r

eix − e−ix
x

dx =
R∫
r

2i
sin x

x
dx

Taking R→∞ and r → 0 from (17.58) we obtain
∫∞
0

sin x

x
dx = π

2
and, finally

∞∫
x=−∞

sin x

x
dx = π (17.59)

17.3.3 Fourier series

Let function f (z) be analytical in annulus

K := {z ∈ C | 1− ε < |z| < 1+ ε}

Thus within this annulus it may be represented by the Laurent expansion (17.55)

f (z)=
∞∑

n=−∞
cnz

n

cn = 1

2πi

∮
|z|=1

f (ζ )

ζ n+1
dζ = 1

2π

2π∫
θ=0

f
(
eiθ

)
e−inθ dθ

(17.60)

In particular, for the points z = eit of the unitary circle we obtain

ϕ (t) := f (
eit
)= ∞∑

n=−∞
cne

int = c0 +
∞∑
n=1

(
cne

int + c−ne−int
)

= a0
2
+

∞∑
n=1

[an cos (nt)+ bn sin (nt)]
(17.61)
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where a0 := 2c0, an := cn + c−n, bn := i (cn − c−n), and, hence, by (17.60),

a0 = 1

π

2π∫
θ=0

f
(
eiθ

)
dθ, an = 1

π

2π∫
θ=0

f
(
eiθ

)
cos (nt) dθ

bn = 1

π

2π∫
θ=0

f
(
eiθ

)
sin (nt) dθ

(17.62)

The series (17.60) is known as the Fourier series of the function ϕ (t) written in

complex form.

17.3.4 Principle of argument

Theorem 17.13. (The principle of the argument) Let D be the interior domain
bounded by a contour C and f (z) be a function having a finite number of multi-poles b1,
b2, . . . , bP with the respective orders p1, p2, . . . , pP and a finite number of multi-zeros
a1, a2, . . . , aN with the respective orders n1, n2, . . . , nN . Then the logarithmic derivative
f ′(z)/f (z) is regular on C, and has in D at most a finite number of singularities such
that the following identity holds

∮
C

f ′ (z)
f (z)

dz = 2πi
(
Nf − Pf

) = i �C arg f (z)
Nf := n1 + n2 + . . .+ nN, Pf := p1 + p2 + . . .+ pP

�C arg f (z) := 1

2π

(
Nf − Pf

) (17.63)

Proof. Considering the multi-connected domain Dε,μ (with the “joint” boundary Cε,μ),

obtained from D by excluding (deleting) all singularity points (in this case zeros and

poles), we conclude that the logarithmic derivative f ′ (z)/f (z) is regular on Dε,μ, and,

hence, by (17.23) the integral
∮
C

f ′ (z)
f (z)

dz can be represented as a finite sum of the

individual integrals taken over the contours

Czerok := {z ∈ C | |z− ak| = εk > 0}, k = 1, . . . , N

Cpoles := {z ∈ C | |z− bs | = μs > 0}, s = 1, . . . , P

Indeed, by (17.23)

0=
∮
Cε,μ

f ′ (z)
f (z)

dz

=
∮
C

f ′ (z)
f (z)

dz−
N∑
k=1

∮
Czerok

f ′ (z)
f (z)

dz−
P∑
s=1

∮
C
pole
s

f ′ (z)
f (z)

dz
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which implies

∮
C

f ′ (z)
f (z)

dz =
N∑
k=1

∮
Czerok

f ′ (z)
f (z)

dz+
P∑
s=1

∮
C
pole
s

f ′ (z)
f (z)

dz (17.64)

So, it is sufficient to consider the individual integrals
∮
Czerok

f ′ (z)
f (z)

dz and
∮
C
pole
s

f ′ (z)
f (z)

dz

for each fixed k and s. For the zero ak by (17.48) it follows that

f (z) = cnk (z− a)nk + cnk+1 (z− a)nk+1 + . . . (
cnk �= 0

)
and hence,

f ′ (z) = nkcnk (z− a)nk−1 + (nk + 1) cnk+1 (z− a)nk + . . .

f ′ (z)
f (z)

= nkcnk (z− a)
nk−1 + (nk + 1) cnk+1 (z− a)nk + . . .

cnk (z− a)nk + cnk+1 (z− a)nk+1 + . . .

= 1

z− a
nkcnk + (nk + 1) cnk+1 (z− a)+ . . .

cnk + cnk+1 (z− a)+ . . .

= 1

z− a
[
nk + c̃0 (z− a)+ c̃1 (z− a)2 + . . .

]
= nk

z− a + c̃0 + c̃1 (z− a)+ . . .

in some neighborhood of the point a. Thus, the logarithmic residue of a regular function

at a zero is equal to the order nk of that zero. Analogously, for the pole bk in some of its

deleted neighborhood we have

f (z) = c−pk
(z− a)pk +

c−pk+1

(z− a)pk−1
+ . . . (

cpk �= 0
)

and, hence,

f ′ (z) = − pkc−pk
(z− a)pk+1

− (pk − 1)
c−pk+1

(z− a)pk + . . .

f ′ (z)
f (z)

= − 1

z− bk
pkc−pk + (pk − 1) c−pk+1 (z− bk)+ . . .

c−pk + c−pk+1 (z− bk)+ . . .

= − pk

z− a + č0 (z− bk)+ č1 (z− bk)
2 + . . .

Thus, the logarithmic residue of f (z) at a pole is equal to the order pk of that pole

with the sign reversed. Combining these two logarithmic residues in (17.64) we derive
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the relation
∮
C

f ′ (z)
f (z)

dz = 2πi
(
Nf − Pf

)
. To complete the proof it is sufficient to notice

that
∮
C

f ′ (z)
f (z)

dz = �C ln f (z) where ln f (z) denotes a value of the logarithm which

varies continuously as z makes one complete circuit of C (starting from some fixed point,

z0, say) and �C ln f (z) denotes the corresponding variation of ln f (z). Since

�C ln f (z) = �C ln |f (z)| + i�C arg f (z)

�C ln |f (z)| = ln |f (z0)| − ln |f (z0)| = 0

we have
∮
C

f ′(z)
f (z)

dz = i�C arg f (z) which completes the proof. �

17.3.5 Rouché theorem

One of the important applications of the principle of the argument is the following

theorem.

Theorem 17.14. (Rouché) Let D be the interior domain bounded by a contour C. If
functions f (z) and g (z) are analytical on D, continuous on D̄ and satisfy the inequality

|f (z)| > |g (z)| (17.65)

at each point z on C, then the functions f (z) and [f (z)+ g (z)] have the same number
of zeros in D, each zero being counted according to its multiplicity.

Proof. Notice that by the assumption of this theorem |f (z)| > 0 on C and

|f (z)+ g (z)| ≥ |f (z)| − |g (z)| > 0

Hence, the functions f (z) and [f (z)+ g (z)] have no zeros on C and the principle of

the arguments is applicable to both. Based on the identity

arg [f (z)+ g (z)] = arg f (z)+ arg

(
1+ g (z)

f (z)

)

we derive

�C arg [f (z)+ g (z)] = �C arg f (z)+�C arg
(
1+ g (z)

f (z)

)
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But �C arg

(
1+ g (z)

f (z)

)
= 0 since the point w = 1 + g (z)

f (z)
always remains inside the

circle |w − 1| < 1. So, �C arg [f (z)+ g (z)] = �C arg f (z) and to complete the proof

one needs to apply the formula (17.63), namely, since Pf = Pf+g = 0 we have

Nf = Nf − Pf = 1

2πi

∮
C

f ′ (z)
f (z)

dz

= 1

2π
�C arg f (z)

= 1

2π
�C arg [f (z)+ g (z)]

= 1

2πi

∮
C

f ′ (z)+ g′ (z)
f (z)+ g (z) dz

= Nf+g − Pf+g = Nf+g
Theorem is proven. �

17.3.6 Fundamental algebra theorem

Theorem 17.15. (The fundamental theorem of algebra) Any polynomial of degree
n ≥ 1 has a zero (root), that is, for any n ≥ 1 there exists a point z0 ∈ C such that

pa (z0) = 0 (17.66)

where

pa (z) := a0zn + a1zn−1 + . . .+ an−1z+ an, a0 �= 0 (17.67)

Corollary 17.8. Every polynomial pa (z) (17.67) of degree n ≥ 1 has exactly n zeros
(roots), that is, for any z ∈ C the polynomial pa (z) can be represented as

pa (z) = a0
n∏
i=1

(z− zi) (17.68)

First proof. (based on Liouville’s theorem) Assume that pa (z) (17.67) has no zero

and prove that pa (z) is a constant. Let f (z) = 1/pa (z). Then f is analytic everywhere

on C since, by the assumption, pa (z) �= 0 in C. Since

pa (z) = zn
[
a0 + a1z−1 + . . .+ an−1z

−n+1 + anz−n
]→∞
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as |z| → ∞, so |f (z)| → 0 as |z| → ∞. Therefore, f (z) is bounded on C, and so, by

Liouville’s theorem 17.9, f (z) and hence pa (z) is a constant on C that is possible if

and only if ai = 0 for i = 0, 1, . . . , n − 1. This contradicts with the condition a0 �= 0.

Theorem is proven. �

Second proof. (based on the Rouché theorem) Let us put g (z) := a1zn−1 + . . . +
an−1z + an and select R large enough such that on the circle |z| = R there would be

|f (z)| > |g (z)| (this always may be done since |f (z)| = |a0|Rn and |g (z)| ≤ |a1|
Rn−1 + . . .+ |an−1|R + |an|). Then by the Rouché theorem (17.14) these two functions

f (z) and [f (z)+ g (z)] have the same number of roots. But f (z) := a0zn has exactly
n roots which completes the proof. �

Example 17.13. Let us define how many roots the polynomial

pa (z) = z8 − 4z5 + z2 − 1

has in the disc |z| < 1. Define f (z) := z8 − 4z5 and g (z) := z2 − 1. Notice that on the
circle |z| = 1 we have |f (z)| = ∣∣z3 − 4

∣∣ ≥ 4− ∣∣z3∣∣ = 3 and |g (z)| ≤ ∣∣z2∣∣+1 = 2. Thus,
by the Rouché theorem (17.14) the number of roots of pa (z) is equal to the number of
roots of f (z) := z8 − 4z5 = z5 (z3 − 4

)
in the disc |z| < 1 which is equal to 5 (since

z3 − 4 �= 0 within the disc).

17.4 Integral transformations

In this section we will consider the class of the, so-called, integral transformations
of an original complex function f (t) of a real argument (defined on R+) into the

corresponding function F (p), called the image, defined on the complex plane C. This

class of transformations is given by the relation

F (p) :=
∞∫

t=0

f (t)K (t, p) dt (17.69)

where the function K : R+ × C → C is called the kernel of the integral transformation

(17.69). Such sorts of transformations are actively applied in theory of differential equa-

tions and many other fields of physics and engineering practice. Let us briefly present

the most important of them. In any case, we will assume that the original function f (t)

satisfies the following conditions:

A1 It satisfies Hölder’s condition, i.e., for any t ∈ R+ (maybe with the exception of

some exclusive points) there exists positive constants L, h0 and α ≤ 1 such that for

all h : |h| ≤ h0

|f (t + h)− f (t)| ≤ L |h|α (17.70)
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A2

f (t) ≡ 0 if t < 0 (17.71)

A3 There exist such constants M > 0 and s0 ≥ 0 such that

|f (t)| ≤ Mes0t (17.72)

(the constant s0 is called the increment index of the function f ).4

17.4.1 Laplace transformation
(
K (t, p) = e−pt)

17.4.1.1 Direct Laplace transformation
Definition 17.12. The Laplace image of the function f (t) satisfying assumptions A1–A3
is called the complex function F : C → C of the complex variable p := s + iσ defined
by the relation

F (p) :=
∞∫

t=0

f (t) e−ptdt (17.73)

where the integral is taken over the positive semi-axis.5 We will write

F (p) = L {f } (17.74)

Theorem 17.16. For any original function f (t) satisfying assumptions A1–A3 its
Laplace image F(p) is correctly defined within the semi-plane Rep = s > s0, where s0
is the increment index of f , and F(p) is analytical (regular) within this semi-plane.

Proof. Indeed, for any p such that Rep = s > s0 the integral (17.73) converges

absolutely since by A3 (17.72) it is estimated from above by a convergent integral,

that is,∣∣∣∣∣∣
∞∫

t=0

f (t) e−pt dt

∣∣∣∣∣∣ ≤
∞∫

t=0

|f (t)| e−pt dt ≤
∞∫

t=0

Me−(s−s0)t dt = M

s − s0 <∞

(17.75)

4 More exactly,

s0 := inf

{
s ≥ 0 : lim sup

t→∞
|f (t)| e−s0 t ≤ M

}
5 It is known also as the, so-called, double-side Laplace transformation defined by

F (p) :=
∞∫

t=−∞
f (t) e−pt dt
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Then, for any p within the semi-plane Rep ≥ s1 > s0 we have

∣∣F ′(p)
∣∣ =

∣∣∣∣∣∣
d

dp

∞∫
t=0

f (t) e−pt dt

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∞∫
t=0

f (t) te−pt dt

∣∣∣∣∣∣ ≤
∞∫

t=0

|f (t)| te−pt dt ≤
∞∫

t=0

Mte−(s−s0)t dt

= M

(s1 − s0)2 <∞ (17.76)

which exactly means that the function F(p) possesses its derivative and, hence, is

analytical in any point of the semi-plane Rep > s0. Theorem is proven. �

Corollary 17.9. If p→∞ such that Rep = s →∞, then F(p) tends to zero, i.e.,

lim
s→∞F(p) = 0 (17.77)

Proof. It follows directly from (17.75). �

17.4.1.2 Inverse Laplace transformation
To obtain the main result on the inverse Laplace transformation we need the following

simple lemma.

Lemma 17.8. For any function φ (x) integrable (in Riemann sense) on the interval [α, β],
we have

lim
b→∞

β∫
x=α
φ (x) sin (bx) dx = 0 (17.78)

Proof. If φ (x) is continuously differentiable then the integration by parts implies

β∫
x=α
φ (x) sin (bx) dx = −φ (x) cos (bx)

b
|βα +

β∫
x=α
φ′ (x)

cos (bx)

b
dx →

b→∞ 0

If φ (x) is an integrable function then for any ε > 0 there exists a conti-

nuously differentiable function φε (x) and the constant bε > 0 such that
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∫ β
x=α |φ (x)− φε (x)| dx ≤ ε

2
and

∣∣∣∫ βx=α φε (x) sin (bx) dx∣∣∣ ≤ ε

2
. Therefore,∣∣∣∫ βx=α φ (x) sin (bx) dx∣∣∣ ≤ ∫ β

x=α |φ (x)− φε (x)| dx +
∣∣∣∫ βx=α φε (x) sin (bx) dx∣∣∣ ≤ ε.

Lemma is proven. �

The next theorem presents the main result on the inverse Laplace transformation.

Theorem 17.17. (on the inverse transformation) If f (t) is an original function satis-
fying assumptions A1–A3 and F(p) is its image, then in any point t ≥ 0 where it satisfies
Hölder’s condition (17.70) the following representation holds

f (t) = 1

2πi

a+i∞∫
a−i∞

F (p) ept dp := L−1 {F } (17.79)

Here the integral is taken over any line Rep = a > s0 and is understood in the main-
valued sense, that is, as the limit of the integral along the interval [a − ib, a + ib]
when b→∞.

Proof. Let us consider the integral

fb (t) := 1

2πi

a+ib∫
a−ib

F (p) ept dp = 1

2πi

a+ib∫
a−ib

ept

⎛
⎝ ∞∫
τ=0

f (τ) e−pτ dτ

⎞
⎠ dp

Since by (17.75) the integral
∫∞
τ=0
f (τ) e−pτ dτ converges uniformly on p in the semi-

plane Rep ≥ a, we may change the order of the integration which gives

fb (t)= 1

2πi

∞∫
τ=0

f (τ)

⎛
⎝ a+ib∫

a−ib
ep(t−τ) dp

⎞
⎠ dτ

= 1

π

∞∫
τ=0

f (τ) ea(t−τ)
sin b (t − τ)
t − τ dτ

= 1

π
eat

∞∫
τ=−t

f (x + t) e−a(x+t) sin bx
x
dx

Denote g (t) := f (t)e−at and notice that by A2 g (t) ≡ 0 for t < 0. Therefore,

fb (t) = e
at

π

∞∫
τ=−∞

g (x + t)− g (t)
x

e−a(x+t) sin bx dx + f (t)
π

∞∫
τ=−∞

sin bx

x
dx
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The second integral for any b > 0 is exactly the Euler’s integral (17.59) and, hence, it is

equal to π which leads to the following expression

fb (t) = 1

π
eat

∞∫
τ=−∞

g (x + t)− g (t)
x

e−a(x+t) sin bx dx + f (t)

The first integral by Lemma 17.8 tends to zero as b→∞ which completes the proof. �

Corollary 17.10. The original function f (t) is completely defined by its image F(p)
(see formula (17.79)) with the exception of the points of discontinuity.

17.4.1.3 Some properties of the Laplace transformation
1. By direct calculation using (17.73) it follows that

L {1} = 1

p
, L {ep0t} = 1

p − p0

, L {δ (t − τ)} = e−pτ (17.80)

2. Denoting G(p) := ∫∞
t=0
g (t) e−pt dt , for any complex numbers α and β we have

L {αf (t)+ βg (t)} = αF (p)+ βG (p) (17.81)

3.

L {sin (ωt)} = L
{
eiωt − e−iωt

2i

}

= 1

2i

(
1

p − iω − 1

p + iω
)
= ω

p2 + ω2

(17.82)

4.

L {cos (ωt)} = L
{
eiωt + e−iωt

2

}

= 1

2

(
1

p − iω + 1

p + iω
)
= p

p2 + ω2

(17.83)

5.

L {sinh (ωt)} = ω

p2 − ω2
,L {cosh (ωt)} = p

p2 − ω2
(17.84)



438 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

6. For any α > 0

L {f (αt)} = 1

α
F
(p
α

)
(17.85)

7. Differentiation of original functions: If a function f (t) is continuous for t > 0 and

f ′ (t) or, in general, f (n) (t) is an original function too, then

L {f ′ (t)} = pF(p)− f (0) (17.86)

or,

L
{
f (n) (t)

} = pnF (p)− pn−1f (0)

−pn−2f ′ (0)− . . .− f (n−1) (0)
(17.87)

Indeed, integrating by part we derive

L
{
f ′ (t)

} = ∞∫
t=0

f ′ (t) e−pt dt = [
f (t) e−pt

]∞
0
+ p

∞∫
t=0

f (t) e−pt dt

and, since Rep = s > s0, it follows that
∣∣f (t) e−pt ∣∣ ≤ Me−(s−s0)t . Therefore

[
f (t) e−pt

]∞
0
= −f (0)

which implies (17.86). Applying (17.86) n times we obtain (17.87).

8. Differentiation of images:

F (n) (p) = L {(−1)n tnf (t)} (17.88)

This can be obtained by the direct differentiation (since F (p) is analytical in Rep =
s > s0), that is,

F ′ (p) =−
∞∫

t=0

tf (t) e−pt dt, F ′′ (p) =
∞∫

t=0

t2f (t) e−pt dt

F (n) (p)= (−1)n

∞∫
t=0

tnf (t) e−pt dt
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Example 17.14.

L {tn} = n!
pn+1

, L {tnep0t} = n!
(p − p0)

n+1

L {t sin (ωt)} = 2pω(
p2 + ω2

)2
L {t cos (ωt)} = p2 − ω2(

p2 + ω2
)2

(17.89)

9. Integration of original functions:

L

⎧⎨
⎩

t∫
τ=0

f (τ) dτ

⎫⎬
⎭ = F(p)

p
(17.90)

It follows from (17.86) that if we take g (t) := ∫ t
τ=0
f (τ) dτ and calculate F(p)

= L {f (t)} = L {g′ (t)} = pG (p) that gives G(p) = F(p)
p

.

10. Integration of images: If the integral
∫∞
p
F (p) dp (the path of integrations completely

belongs to the semi-plane Rep ≥ a > s0) converges, then
∞∫
p

F (p) dp = L
{
f (t)

t

}
(17.91)

It follows from changing the order of integration:

∞∫
p

F (p) dp =
∞∫

t=0

f (t)

⎛
⎝ ∞∫
p

e−pt dp

⎞
⎠ dt = ∞∫

t=0

f (t)

t
e−pt dt

11. Theorem on delay effect: For any positive τ

L {f (t − τ)} = e−pτF (p) (17.92)

12. Theorem on shifting effect:

L {ep0t f (t)} = F (p − p0) (17.93)

13. Multiplication (Borel) theorem: Denoting the convolution (f ∗ g) of two functions by

(f ∗ g) :=
t∫

τ=0

f (τ) g (t − τ) dτ (17.94)
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we have

L {(f ∗ g)} = F(p)G(p) (17.95)

Indeed,

L {(f ∗ g)} =
∞∫

t=0

e−pt

⎛
⎝ t∫
τ=0

f (τ) g (t − τ) dτ
⎞
⎠ dt

=
∞∫

t=0

e−pt

⎛
⎝ ∞∫

τ=0

f (τ) g (t − τ) dτ
⎞
⎠ dt

=
∞∫

τ=0

f (τ)

⎛
⎝ ∞∫

t=0

e−ptg (t − τ) dt
⎞
⎠ dτ

=
∞∫

τ=0

f (τ)

⎛
⎝ ∞∫

t=τ
e−ptg (t − τ) dt

⎞
⎠ dτ

=
∞∫

τ=0

f (τ)

⎛
⎝ ∞∫

t ′=0

e−p(t
′+τ)g

(
t ′
)
dt ′

⎞
⎠ dτ

=
∞∫

τ=0

f (τ) e−pτ dτ

⎛
⎝ ∞∫

t ′=0

e−pt
′
g
(
t ′
)
dt ′

⎞
⎠ = F(p)G(p)

Corollary 17.11. (Duhammel’s integral)

L {f (0)g(t)+ (f ′ ∗ g)} = pF(p)G(p) (17.96)

14. Theorem on the inverse transformation: Let f (t) and g (t) have the increment indices

sf and sg , correspondingly. Then

L {f (t)g(t)} = 1

2πi

a+i∞∫
a−i∞

F (q)G(p − q)dq (17.97)

where a > sf and Rep > sg + a.
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Indeed,

L {f (t)g(t)} =
∞∫

t=0

f (t)g (t) e−pt dt

= 1

2πi

∞∫
t=0

⎡
⎣ a+i∞∫
a−i∞

F (q) eqtdq

⎤
⎦ g (t) e−pt dt

= 1

2πi

⎡
⎣ a+i∞∫
a−i∞

F (q)

∞∫
t=0

g (t) e−(p−q)tdt

⎤
⎦ dq

= 1

2πi

a+i∞∫
a−i∞

F (q)G(p − q) dq

15. First theorem on the expansion: If in a neighborhood of a point p such that |p| ≥ R
(R is large enough) the function F(p) may be presented by the Laurent series

F(p) =
∞∑
k=1

ck

pk
(17.98)

then its original f (t) = L−1 {F(p)} can be represented as

f (t) =
∞∑
k=1

ck

(k − 1)! t
k−1 (17.99)

This can be obtained using formulas (17.89).

16. Second theorem on the expansion: Let the function F(p) be a meromorphic in a semi-

plane Rep > s0, for any a > s0 the integral
∫ a+i∞
a−i∞ F(p) dp converges absolutely

and there exists a system of circles Cn (|p| = Rn →∞, R1 < R2 < . . . ) such that

F(p)→ 0 uniformly respectively argp. Then F(p) is the image of the function

f (t) =
∑
(pk)

res
pk
F (p)ept (17.100)

where the sum is taken over all singular points pk . This result may be proven using

Cauchy’s residue theorem (17.27) and the Jordan lemma (17.6).

Corollary 17.12. If F(p) = A(p)
B(p)

is rational such that

degA(p) < degB(p) =
Np∑
k=1

nk
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with pk is a pole of F (p) and nk is its multiplicity, then

f (t) =
Np∑
k=1

1

(nk − 1)! limp→pk
dnk−1

dpnk−1
[F(p) (p − pk)nk ept ] (17.101)

17.4.2 Other transformations

17.4.2.1 Heavyside transformation
It is given by (17.69) with

K (t, p) = pe−pt (17.102)

17.4.2.2 Fourier transformation K (t, iω) = 1√
2π
e−iωt

Main definitions
If in the double-side Laplace transformations [(in the direct one (17.73) put the incre-

ment index (17.72) s0 = 0 and in the inverse transformation (17.79)) put a = 0] such

that the integration is done over the imaginary axis (p = iω), we obtain the, so-called,

Fourier transformation:

F (ω) := 1√
2π

∞∫
t=−∞

f (t) e−iωtdt

f (t) = 1√
2π

∞∫
ω=−∞

F (ω) eiωtdω

(17.103)

In physics the function F (ω) is called the spectral function of the “oscillations” f (t).

Remark 17.8. The range of the application of the Fourier transformation (17.103) is
significantly narrower than one for the Laplace transformation (17.73) since the corre-
sponding first nonproper integral in (17.103) converges if the function f (t) is absolutely
integrable, i.e.,

∫∞
t=−∞ |f (t)| dt < ∞. In the case of the Laplace transformation (17.73)

such condition becomes as
∫∞
t=−∞

∣∣f (t) e−st ∣∣ dt <∞ (s > s0) which significantly extends
the class of the original functions. From a physical point of view the Fourier transfor-
mation (17.103) is more natural than the Laplace transformation (17.73) since formulas
(17.103) coincide (maybe some constants are different) with those of the representation
of the original function f (t) as the Fourier series (17.62)

f (t) =
∞∑

n=−∞
Gne

in(2π/T )t , Gn = 1

T

T∫
t=0

f (t) e−in(2π/T )t dt
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valid for periodical (with the period T ) functions f (t) treated as “oscillations”.

The auxiliary function hλ (ω)
According to Rudin (1973) put

H (t) := e−|t |, t ∈ (−∞,∞)

and notice that

0 < H (t) ≤ 1, H (λt)→ 1 as λ→ 0

Define also the following parametric family of functions

hλ (ω) := 1√
2π

∞∫
t=−∞

H (λt) eitω dt , λ > 0, ω ∈ R

A simple computation gives

hλ (ω) =
√

2

π

λ

λ2 + ω2

and, therefore,

∞∫
ω=−∞

hλ (ω) dω =
√
2π (17.104)

Proposition 17.2. If a function g : R+→ R is absolutely integrable on [0,∞), that is,

∞∫
t=0

|g (t)| dt <∞, g (t) = 0 for t < 0

and its Laplace transformation is G(p), then

(g � hλ) (ω) := 1√
2π

∞∫
y=−∞

g (ω − y) hλ (y) dy

= 1

2π

∞∫
t=−∞

H (λt)G (it) eitω dt

(17.105)



444 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Proof. The simple application of Fubini’s reduction theorem 16.24 gives

(g � hλ) (ω)= 1

2π

∞∫
y=−∞

g (ω − y)
⎡
⎣ ∞∫
t=−∞

H (λt) eity dt

⎤
⎦ dy

= 1

2π

∞∫
t=−∞

H (λt)

⎡
⎣ ∞∫
y=−∞

g (ω − y) eitydy
⎤
⎦ dt

= 1

2π

∞∫
t=−∞

H (λt)

⎡
⎣ ∞∫
y=−∞

g (y) eit(ω−y)dy

⎤
⎦ dt

= 12π

∞∫
t=−∞

H (λt) eitω

⎡
⎣ ∞∫
y=0

g (y) e−itydy

⎤
⎦ dt

= 1

2π

∞∫
t=−∞

H (λt) eitωG (it) dt

�

Proposition 17.3. If a function g : R → R is bounded almost everywhere, that is, ess sup
|g (ω)| < ∞, and it is continuous at a point ω, then

(g ∗ hλ) (ω) := 1√
2π

∞∫
y=−∞

g (ω − y) hλ (y) dy → g (ω) (17.106)

as λ→ 0.

Proof. In view of (17.104) and by the dominated convergence theorem we have

(g ∗ hλ) (ω)− g (ω)= 1√
2π

∞∫
x=−∞

[g (ω − y)− g (ω)]hλ (y) dy

= 1√
2π

∞∫
x=−∞

[g (ω − y)− g (ω)] λ−1hλ=1

(y
λ

)
dy

= 1√
2π

∞∫
s=−∞

[g (ω − λs)− g (ω)]hλ=1 (s) ds → 0 as λ→ 0

�
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Corollary 17.13. For any p ∈ [1,∞)

‖(g � hλ)− g‖Lp → 0 as λ→ 0

The Plancherel theorem
One of the most important results of the Fourier transformation theory is the next

theorem.

Theorem 17.18. (Plancherel, around 1800) If f (t) ∈ L2 [0,∞) and its Laplace trans-
formation (17.73) is F (p) ∈ H2,6 then the following identity (known as Parseval’s
identity) holds:

‖f ‖L2
:=

⎛
⎝ ∞∫
t=0

|f (t)|2 dt
⎞
⎠1/2

= ‖F‖H2
:=

⎛
⎝ 1

2π

∞∫
ω=−∞

F (jω) F∼ (jω) dω

⎞
⎠1/2

where F∼ (s) := F (−s)

(17.107)

Proof. Recalling that f (t) = 0 for t < 0, define the function

g (x) :=
(
f � f̃

)
(x)

where f̃ (x) := f (−x). Then

g (t) = 1√
2π

∞∫
y=−∞

f (t − y) f (−y) dy = 1√
2π

∞∫
y=0

f (t + y) f (y) dy

and, in view of (17.95), its Laplace transformation is

G(p) = 1√
2π
F (p) F (−p)

6 The exact definitions of the functional spaces L2 [0,∞) and H2 are given in Chapter 18.
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Indeed,

L {g} =
∞∫

t=0

e−pt

⎛
⎝ 1√

2π

∞∫
y=0

f (t + y) f (y) dy
⎞
⎠ dt

= 1√
2π

∞∫
y=0

f (y)

⎛
⎝ ∞∫

t=0

e−ptf (t + y) dt
⎞
⎠ dy

= 1√
2π

∞∫
y=0

f (y)

⎛
⎝ ∞∫

t=0

e−p(t
′−y)f

(
t ′
)
dt ′

⎞
⎠ dy

= 1√
2π

∞∫
y=0

f (y) epy

⎛
⎝ ∞∫

t=0

e−pt
′
f
(
t ′
)
dt ′

⎞
⎠ dy

= 1√
2π
F (p) F (−p)

It is easy to see that g (x) is a continuous function. But it is also bounded since

|g (x)| ≤ 1√
2π

√√√√√
∞∫

y=−∞
f 2 (x + y) dy

√√√√√
∞∫

y=−∞
f 2 (y) dy

≤ 1√
2π

∞∫
y=−∞

f 2 (y) dy <∞

Therefore, by Propositions 17.2 and 17.3, it follows that

(g ∗ hλ) (0) = 1

2π

∞∫
ω=−∞

H (λω)G (iω) dω

But

lim
λ→0
(g ∗ hλ) (0) = g (0) = 1√

2π

∞∫
y=0

f 2 (y) dy = 1√
2π

‖f ‖2L2
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and

lim
λ→0

1

2π

∞∫
ω=−∞

H (λω)G (iω) dω = 1

2π

∞∫
ω=−∞

G(iω) dω

1

2π

∞∫
ω=−∞

[
1√
2π
F (iω) F (−iω)

]
dω = 1√

2π
‖F‖2

H2

which completes the proof. �

Corollary 17.14. If f (t), g (t) ∈ L2 [0,∞) and their Laplace transformation (17.73)
are F(p),G(p) ∈ H2, then the following identity holds:

〈f, g〉L2
:=

⎛
⎝ ∞∫

t=0

f (t) g (t) dt

⎞
⎠1/2

= 〈F,G〉H2
:=

⎛
⎝ 1

2π

∞∫
ω=−∞

F (jω)G∼ (jω) dω

⎞
⎠1/2

where G∼ (s) := G(−s)

(17.108)

Proof. It completely repeats the proof of the previous theorem. �

17.4.2.3 Two-dimensional Fourier transformation
It is given by

G(σ, τ) := 1

2π

∞∫
x=−∞

∞∫
y=−∞

g (x, y) e−i(σx+τy) dx dy

g (x, y) = 1

2π

∞∫
σ=−∞

∞∫
τ=−∞

G(σ, τ) ei(σx+τy) dσ dτ

(17.109)
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17.4.2.4 Both-side Laplace transformation
If we refuse assumption A2 (17.71) and in the Fourier transformation (17.103) make

the integration in the range (−∞,∞), we obtain the, so-called, both-side Laplace trans-
formation given by

F (p) :=
∞∫

t=−∞
f (t) e−pt dt, f (t) = 1

2πi

a+i∞∫
a−i∞

F (p) ept dp (17.110)

17.4.2.5 Melline transformation
In (17.110) if we change p with (−p) and t with ln τ , we get

F (−p) :=
∞∫

t=−∞
f (ln τ) ep ln τ

dτ

τ
, f (ln τ) = 1

2πi

a+i∞∫
a−i∞

F (−p) e−p ln τ dp

Defining g (τ) := f (ln τ) and G(p) := F (−p) we obtain the, so-called, Melline trans-
formation:

G(p) :=
∞∫

τ=−∞
g (τ) τp−1 dτ, g (τ ) = 1

2πi

a+i∞∫
a−i∞

G(p)

τp
dp (17.111)

Denote this transformation by G(p) := M {g (τ)}.

Claim 17.2. It is easy to check that
1.

M {g (ατ)} = G(p)
αp

, α > 0 (17.112)

2.

M {ταg (τ )} = G(p + α) (17.113)

3.

M {f (τ) g (τ )} =
a+i∞∫
a−i∞

F(q)G(p − q) dq (17.114)
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4.

M {g′ (τ )} = − (p − 1)G(p − 1)

M {τg′ (τ )} = −pG(p)

M
{
τ 2g′ (τ )

}= (p + 1) pG(p)

(17.115)

This transformation turns out to be very useful for the solution of partial differential
equations of a heating type.

17.4.2.6 Hankel (Fourier–Bessel) transformation
Let us in (17.109) make the transformation to the polar coordinates, i.e., y = r sin ϕ,

σ = ρ cos θ, τ = ρ sin θ which gives

G(ρ, θ) = 1

2π

∞∫
r=−∞

r

⎡
⎣ ∞∫
ϕ=−∞

g (r, ϕ) e−irρ cos(ϕ−θ) dϕ

⎤
⎦ dr

g (r, ϕ) = 1

2π

∞∫
ρ=−∞

ρ

⎡
⎣ 2π∫
θ=0

G(ρ, θ) eirρ cos(ϕ−θ) dθ

⎤
⎦ dρ

Representing g (r, ϕ) as g (r, ϕ) = e−inϕg̃ (r) (where n is an integer) and (ϕ − θ) as
ϕ − θ = π

2
+ t , we derive

G(ρ, θ) = 1

2π
e−in(θ+π/2)

∞∫
r=0

g̃ (r) r

⎡
⎣ 2π∫
t=0

ei(rρ sin t−nt) dt

⎤
⎦ dr

Defining Jn (z) := 1

2π

∫ 2π

t=0
cos (nt − z sin t) dt, Gn (ρ) = ein(θ+π/2)G (ρ, θ), we may

write

Gn (ρ) =
2π∫

t=0

g (r) Jn (rρ) r dr (17.116)

and, hence, substituting θ − ϕ = t − π
2

we obtain

g̃ (r) = 1

2π

∞∫
ρ=−∞

Gn (ρ) ρ

⎡
⎣ 2π∫

θ=0

ei[n(ϕ−θ−π/2)+rρ cos(ϕ−θ)] dθ

⎤
⎦ dρ
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which, finally, implies

g̃ (r) =
∞∫

ρ=−∞
Gn (ρ) Jn (rρ) ρ dρ (17.117)

Formulas (17.116) and (17.117) are called the Hankel (Fourier–Bessel) transformation. It
is frequently used for the solution of the partial differential equation describing potential

electric two-dimensional fields.
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In Chapter 14 important concepts were introduced such as

1. Lineality of a space of elements;

2. Metric (or norm) in a space;

3. Compactness, convergence of a sequence of elements and Cauchy sequences;
4. Contraction principle.

As examples we have considered in detail the finite dimensional spaces Rn and Cn

of real and complex vectors (numbers). But the same definitions of lineality and norms

remain true if we consider as another example a functional space (where an element is

a function) or a space of sequences (where an element is a sequence of real or complex

vectors). The specific feature of such spaces is that they are all infinite dimensional. This
chapter deals with the analysis of such spaces which is called “functional analysis”.

Let us introduce two important additional concepts which we will use below.

Definition 18.1. The subset V of a linear normed space X is said to be dense in X if its
closure is equal to X .

This property means that every element x ∈ X may be approximated as closely as we

like by some element v ∈ V , that is, for any x ∈ X and any ε > 0 there exists an element

v ∈ V such that ‖x − v‖ < ε.
All normed linear spaces have dense subsets, but they need not be obligatory countable

subsets.

Definition 18.2. A normed linear space X is said to be separable if it contains at least
one dense subset which is countable.

The separable spaces have special properties that are important in different applications.

In particular, denoting the elements of such countable subsets by {ei}i=1, . . . it is possible

to represent each element x ∈ X as the convergent series

451
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x =
∞∑
i=1

ξiei (18.1)

where the scalars ξi ∈ R are called the coordinates of the element x in the basis {ei}i=1, . . ..

18.1 Linear and normed spaces of functions

Below we will introduce examples of some functional spaces with the corresponding

norm within. The lineality and main properties of a norm (metric) can be easily verified

that is why we leave this for the reader as an exercise.

18.1.1 Space mn of all bounded complex numbers

Let us consider a set m of sequences x := {xi}∞i=1 such that

xi ∈ Cn and sup
i

‖xi‖ <∞ (18.2)

where ‖xi‖ :=
√∑n

s=1 xis x̄is and introduce the norm in m as

‖x‖ := sup
i

‖xi‖ (18.3)

18.1.2 Space lnp of all summable complex sequences

By definition

lnp :=
⎧⎨
⎩x = {xi}∞i=1 | xi ∈ Cn, ‖x‖lnp :=

( ∞∑
i=1

‖xi‖p
)1/p

⎫⎬
⎭ <∞ (18.4)

18.1.3 Space C [a, b] of continuous functions

It is defined as follows

C [a, b] :=
{
f (t) | f is continuous for all t ∈ [a, b],

‖f ‖C[a,b] := max
t∈[a,b]

∣∣∣∣f (t)
∣∣∣∣ <∞

} (18.5)

18.1.4 Space Ck [a, b] of continuously differentiable functions

It contains all functions which are k-times differentiable and the kth derivative is

continuous, that is,



Topics of functional analysis 453

Ck [a, b] :=
{
f (t) | f (k) exists and is continuous

for all t ∈ [a, b], ‖f ‖Ck [a,b] :=
k∑
i=0

max
t∈[a,b]

∣∣f (i) (t)∣∣ <∞
} (18.6)

18.1.5 Lebesgue spaces Lp [a, b] (1 ≤ p <∞)

For each 1 ≤ p <∞ it is defined by the following way:

Lp [a, b] :=
⎧⎨
⎩f (t) : [a, b]→ C |

b∫
t=a

|f (t)|p dt <∞

(here the integral is understood in the Lebesgue sense),

‖f ‖p :=
⎛
⎝ b∫
t=a

|f (t)|p dt
⎞
⎠1/p

⎫⎪⎬
⎪⎭

(18.7)

Remark 18.1. Sure, here functions f (t) are not obligatory continuous.

18.1.6 Lebesgue spaces L∞ [a, b]

It contains all measurable functions from [a, b] to C, namely,

L∞ [a, b] :=
{
f (t) : [a, b]→ C |

‖f ‖∞ := ess sup
t∈[a,b]

|f (t)| <∞
} (18.8)

18.1.7 Sobolev spaces Slp (G)

It consists of all functions (for simplicity, real valued) f (t) defined on G which have

p-integrable continuous derivatives f (i) (t) (i = 1, . . . , l), that is,

Slp (G) :=
⎧⎨
⎩f (t) : G→ R |<∞ (i = 1, . . . , l)

(the integral is understood in the Lebesgue sense),

‖f ‖Slp(G) :=
⎛
⎝ ∫
t∈G

|f (t)|p dt +
l∑
i=1

∫
t∈G

∣∣f (i) (t)∣∣p dt
⎞
⎠1/p⎫⎬

⎭
(18.9)

More exactly, the Sobolev space is the completion (see definition below) of (18.9).
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18.1.8 Frequency domain spaces Lm×kp , RLm×kp , Lm×k∞ and RLm×k∞

By definition

1. The Lebesgue space Lm×kp is the space of all p-integrable complex matrices, i.e.,

Lm×kp :=
⎧⎨
⎩F : C → Cm×k |

‖F‖
L
m×k
p

:=
⎛
⎝ 1

2π

∞∫
ω=−∞

(tr {F (jω) F∼ (jω)})p−1
dω

⎞
⎠1/p

<∞
⎫⎬
⎭

(here F∼ (jω) := Fᵀ (−jω) )

(18.10)

2. The Lebesgue space RLm×kp is the subspace of Lm×kp containing only complex matrices

with rational elements, i.e., in

F = ∥∥Fi,j (s)∥∥i=1,m; j=1,k

each element Fi,j (s) represents the polynomial ratio

Fi,j (s) =
a0i,j + a1i,j s + . . .+ api,ji,j spi,ji,j

b0i,j + b1i,j s + . . .+ bqi,ji,j sqi,ji,j
pi,j and qi,j are positive integers

(18.11)

Remark 18.2. If pi,j ≤ qi,j for each element Fij of (18.11), then F (s) can be inter-
preted as a matrix transfer function of a linear (finite-dimensional) system.

3. The Lebesgue space Lm×k∞ is the space of all complex matrices bounded (almost

everywhere) on the imaginary axis elements, i.e.,

Lm×k∞ :=
{
F : C → Cm×k |

‖F‖
L
m×k∞ := ess sup

s:Re s>0
λ1/2max {F (s) F∼ (s)}

}
= ess sup

ω∈(−∞,∞)
λ1/2max {F (jω) F∼ (jω)} <∞

(18.12)

(the last equality may be regarded as the generalization of the maximum modulus

principle 17.10 for matrix functions).

4. The Lebesgue space RLm×k∞ is the subspace of Lm×k∞ containing only complex matrices

with rational elements given in the form (18.11).

18.1.9 Hardy spaces Hm×k
p , RHm×k

p , Hm×k
∞ and RHm×k

∞

The Hardy spaces Hm×k
p , RHm×k

p , Hm×k
∞ and RHm×k

∞ are subspaces of the corresponding

Lebesgue spaces Lm×kp , RLm×kp , Lm×k∞ and RLm×k∞ containing complex matrices with only

regular (holomorphic) (see Definition 17.2) elements on the open half-plane Re s > 0.
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Remark 18.3. If pi,j ≤ qi,j for each element Fij of, then F (s) ∈ RHm×k
p can be inter-

preted as a matrix transfer function of a stable linear (finite-dimensional) system.

Example 18.1.

1

2− s ∈ RL2 := RL1×1
2 ,

1− s
2− s ∈ RL∞ := RL1×1

∞

1

2+ s ∈ HL2 := HL1×1
2 ,

1− s
2+ s ∈ RH∞ := RH1×1

∞

e−s

2− s ∈ L2 := L1×1
2 ,

e−s

2+ s ∈ H2 := H1×1
2

e−s
1− s
2− s ∈ L∞ := L1×1

∞ , e−s
1− s
2+ s ∈ H∞ := H1×1

∞

18.2 Banach spaces

18.2.1 Basic definition

Remember that a linear normed (topological) space X is said to be complete (see

Definition 14.14) if every Cauchy (fundamental) sequence has a limit in the same space X .

The concept of a complete space is very important since even without evaluating the limit

one can determine whether a sequence is convergent or not. So, if a metric (topological)

space is not complete it is impossible to talk about a convergence, limits, differentiation

and so on.

Definition 18.3. A linear, normed and complete space is called a Banach space.

18.2.2 Examples of incomplete metric spaces

Sure, not all linear normed (metric) spaces are complete. The example given below

illustrates this fact.

Example 18.2. (of a noncomplete normed space) Let us consider the space CL [0, 1]

of all continuous functions f : [0, 1] → R which are absolutely integrable (in this case,
in the Riemann sense) on [0, 1], that is, for which

‖f ‖CL[0,1] :=
1∫

t=−1

|f (t)| dt <∞ (18.13)

Consider the sequence {fn} of the continuous functions

fn :=
{
nt if t ∈ [0, 1/n]

1 if t ∈ [1/n, 1]
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Then for n > m

‖fn − fm‖CL[0,1] =
1∫

t=0

|fn (t)− fm (t)| dt

=
1/n∫
t=0

|nt −mt | dt +
1/m∫

t=1/n

|1−mt | dt +
1∫

t=1/m

|1− 1| dt

(n−m)
2n2

+ (1−m/n)
2

2m
= 1

2

(
1

m
− 1

n

)
→ 0

as n,m→∞. So, {fn} is a Cauchy sequence. However, its pointwise limit is

fn (t)→
{
1 if 0 < t ≤ 1

0 if t = 0

In other words, the limit is a discontinuous function and, hence, it is not in CL [0, 1].
This means that the functional space CL [0, 1] is not complete.

Example 18.3. By the same reason, the spaces CLp [0, 1] (the space of continuous and
p-integrable functions) are not complete.

18.2.3 Completion of metric spaces

There exist two possibilities to correct the situation and to provide the completeness

property for a linear normed space if initially some is not complete:

• try to change the definition of a norm;
• try to extend the class of considered functions (it was suggested by Cauchy).

18.2.3.1 Changing of a norm
To illustrate the first approach related to changing of a norm let us consider again the

space of all functions continuous at the interval [0, 1], but instead of the Lebesgue norm

(18.13) we consider the Chebyshev type norm ‖f ‖C[a,b] as in (18.5). This means that

instead of the space CL [0, 1] we will consider the space C [a, b] (18.5). Evidently, that

this space is complete, since it is known that uniform convergent sequences of continuous

functions converge to a continuous function. Hence, C [a, b] is a Banach space under

this norm.

Claim 18.1. By the same reasons it is not difficult to show that all spaces Ck [a, b] (18.6)
are Banach.

Claim 18.2. The spaces Lp [a, b] (1 ≤ p <∞) (18.7), L∞ [a, b] (18.8), Lm×kp (23.19)
and Lm×k∞ (18.12) are Banach too.
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18.2.3.2 Completion

Theorem 18.1. Any linear normed space X with a norm ‖x‖X can be considered

as a linear manifold which is complete in some Banach space X̂ . This space X̂ is called
the completion of X .

Proof. Consider two fundamental sequences {xn} and
{
x ′n
}
with elements from X . We

say that they are equivalent if
∥∥xn− x ′n∥∥→ 0 as n→∞ and we will write {xn} ∼

{
x ′n
}
.

The set of all fundamental sequences may be separated ( factorized) at noncrossed classes:
{xn} and

{
x ′n
}
are included in the same class if and only if {xn} ∼

{
x ′n
}
. The set of all

such classes Xi we denoted by X̂ . So,

X̂ :=
⋃
i

Xi , Xi ∩
i �=j Xj = ∅

Let us make the space X̂ a normed space. To do that, define the operation of summing of
the classes Xi by the following manner: if {xn} ∈ Xi and {yn} ∈ Xj then class

(
Xi + Xj

)
may be defined as the class containing {xn + yn}. The operation of the multiplication by
a constant may be introduced as follows: we denoted by λXi the class containing {λxn}
if {xn} ∈ Xi . It is evident that X̂ is a linear space. Define now the norm in X̂ as

‖Xi‖ := lim
n→∞

‖xn‖X ({xn} ∈ Xi )

It easy to check the norm axioms for such norm and to show that

(a) X may be considered as a linear manifold in X̂ ;

(b) X is dense in X̂ , i.e., there exists {xn} ∈ X such that ‖xn − Xi‖X → 0 as n → ∞
for some Xi ∈ X ;

(c) X̂ is complete (Banach).

This completes the proof. �

This theorem can be interpreted as the following statement.

Corollary 18.1. For any linear norm space X there exists a Banach space X̂ and a
linear, injective map T : X → X̂ such that T (X ) is dense in X̂ and for all x ∈ X

‖T x‖X̂ = ‖x‖X

18.3 Hilbert spaces

18.3.1 Definition and examples

Definition 18.4. A Hilbert space H is an inner (scalar) product space that is complete
as a linear normed space under the induced norm

‖z‖H := √〈z, z〉 (18.14)
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Example 18.4. The following spaces are Hilbert

1. The space ln2 of all summable complex sequences (see (18.4) for p = 2) under the
inner product

〈x, y〉ln2 :=
∞∑
i=1

xiȳi (18.15)

2. The Lebesgue space L2 [a, b] of all integrable (in Lebesgue sense) complex functions
(see (18.7) for p = 2) under the inner product

〈x, y〉L2[a,b]
:=

b∫
t=a
x(t)ȳ(t) dt (18.16)

3. The Sobolev’s space Sl2 (G) of all l times differentiable on G quadratically integrable
(in Lebesgue sense) complex functions (see (18.9) for p = 2) under the inner product

〈x, y〉Slp(G) :=
l∑
i=0

〈
di

dt i
x,
di

dt i
y

〉
L2[a,b]

(18.17)

4. The frequency domain space Lm×k2 of all p-integrable complex matrices (23.19) under
the inner product

〈x, y〉
L
m×k
p

:=
∞∫

ω=−∞
tr{X (jω) Y∼ (jω)} dω (18.18)

5. The Hardy spaces Hm×k
2 (the subspace of Lm×k2 containing only holomorphic in the

right-hand semi-plan C+ := {s ∈ C |Res > 0} functions) under the inner product
(18.18).

18.3.2 Orthogonal complement

Definition 18.5. Let M be a subset of a Hilbert space H, i.e., M ⊂ H. Then the
distance between a point x ∈ H and M is defined by

ρ (x,M) := inf
y∈M

‖x − y‖ (18.19)

The following claim seems to be evident.

Claim 18.3. If x ∈ M, then ρ (x,M) = 0. If x /∈ M and M is a closed set (see
Definition 14.7), then ρ (x,M) > 0.
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Corollary 18.2. If M ⊂ H is a closed convex set and x /∈ M, then there exists a unique
element y ∈ M such that ρ (x,M) = ‖x − y‖.

Proof. Indeed, suppose that there exists another element y∗ ∈ M such that

ρ (x,M) = ‖x − y‖ = ‖x − y∗‖ := d

Then

4d2 = 2 ‖x − y‖2 + 2 ‖x − y∗‖2

= ‖x − y∗‖2 + 4

∥∥∥∥x − y + y∗2

∥∥∥∥2

≥ ‖x − y∗‖2 + 4 inf
y∈M

‖x − y‖2

≥ ‖x − y∗‖2 + 4d2

which gives ‖x − y∗‖2 ≤ 0, or, equivalently, y = y∗. �

Corollary 18.3. If M ⊂ H is a subspace of H (this means that it is a closed convex
linear manifold in H) then for any x ∈ H there exists a unique element xM ∈ M such
that

ρ (x,M) := inf
y∈M

‖x − y‖ = ‖x − xM‖ (18.20)

This element xM ∈ M is called the orthogonal projection of the element x ∈ H onto
the subspace M ⊂ H.

Lemma 18.1. Let ρ (x,M) = ‖x − xM‖ where M is a subspace of a Hilbert space H
with the inner product 〈x, y〉H. Then (x − xM) ⊥ M, that is, for any y ∈ M

〈x − xM, y〉H = 0 (18.21)

Proof. By the definition (18.20) for any λ ∈ C (here xM + λy ∈ M) we have

‖x − (xM + λy)‖ ≥ ‖x − xM‖

which implies

λ 〈x − xM, y〉H + λ̄ 〈y, x − xM〉H + λλ̄ ‖y‖2 ≥ 0

Taking λ = −〈x − xM, y〉H
‖y‖2 one has −|〈x − xM, y〉|2

‖y‖2 ≥ 0 which leads to the equality

〈x − xM, y〉H = 0. Lemma is proven. �
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Definition 18.6. If M is a subspace of a Hilbert space H then the orthogonal comple-
ment M⊥ is defined by

M⊥ := {
x ∈ H | 〈x, y〉H = 0 for all y ∈ M

}
(18.22)

It is easy to show that M⊥ is a closed linear subspace of H and that H can be uniquely

decomposed as the direct sum

H = M̄⊕M⊥
(18.23)

This means that any element x ∈ H has the unique representation

x = xM̄ + xM⊥ (18.24)

where xM ∈ M̄ and xM⊥ ∈ M⊥ such that ‖x‖2 = ‖xM‖2 + ‖xM⊥‖2.

Theorem 18.2. Let M be a subspace of a Hilbert space H. M is dense in H if and only
if M⊥ = {0}.
Proof.

(a) Necessity. Let M be dense in H. This means that M̄ = H. Assume that there exists

x0 ∈ H such that x0 ⊥ M. Let {yn} ⊂ M and yn → y ∈ H. Then 0 = 〈yn, x0〉 →
〈y, x0〉 = 0 since M is dense in H. Taking y = x0 we get that 〈x0, x0〉 = 0 which

gives x0 = 0.

(b) Sufficiency. Let M⊥ = {0}, that is, if 〈y, x0〉 = 0 for any y ∈ M, then x0 = 0.

Suppose that M is not dense in H. This means that there exists x0 /∈ M̄. Then by

the orthogonal decomposition x0 = y0 + z0 where y0 ∈ M̄ and z0 ∈
(
M̄

)⊥ = M⊥.
Here z0 �= 0 for which 〈z0, y〉H = 0 for any y ∈ M̄. By the assumption such element

z0 = 0. We get the contradiction. Theorem is proven. �

18.3.3 Fourier series in Hilbert spaces

Definition 18.7. An orthonormal system (set) {φn} of functions in a Hilbert space H is
a nonempty subset {φn | n ≥ 1} of H such that

〈φn, φm〉H = δn,m =
{
1 if n = m
0 if n �= m (18.25)

1. The series
∑∞
n=1 αkφn is called the series in H with respect to the system {φn} (18.25);

2. For any x ∈ H the representation (if it exists)

x (t) =
∞∑
n=1

αnφn (t) (18.26)

is called the Fourier expansion of x with respect to {φn}.
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Lemma 18.2. In (18.26)

αk = 〈x, φk〉H (18.27)

Proof. Pre-multiplying (18.26) by φk and using (18.25) we find

〈x, φk〉H =
∞∑
n=1

αn 〈φk, φn〉H =
∞∑
k=1

αkδk,n = αk

which proves (18.27). Lemma is proven. �

Corollary 18.4. (The Parseval equality)

‖x‖2 =
∞∑
n=1

|〈x, φn〉H|2 (18.28)

Proof. It follows from the relation

〈x, x〉H =
∞∑
n=1

∞∑
m=1

〈x, φn〉H 〈x, φm〉H 〈φn, φm〉H

=
∞∑
n=1

∞∑
m=1

〈x, φn〉H 〈x, φm〉Hδn.m =
∞∑
n=1

|〈x, φn〉H|2

�

Example 18.5.

1. Classical Fourier expansion. In H =L2 [0, 1] the corresponding orthogonal basis
{φn} is

{φn} =
{
1,

√
2 sin (2πnt),

√
2 cos (2πnt), n ≥ 1

}
which implies

x (t) = a0 +
√
2

∞∑
n=1

an sin (2πnt)+
√
2

∞∑
n=1

bn cos (2πnt)

where

a0 =
1∫

t=0

x (t) dt, an =
1∫

t=0

x (t)
√
2 cos (2πnt) dt

bn =
1∫

t=0

x (t)
√
2 sin (2πnt) dt
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2. Legendre expansion. In H =L2 [0, 1] the corresponding orthogonal basis {φn} is
{φn} = {pn} where

pk := 1

2kk!
dk

dtk

[(
t2 − 1

)k]
, k ≥ 1

18.3.4 Linear n-manifold approximation

Definition 18.8. The collection of the elements

un :=
n∑
k=1

ckφk ∈ H, ck ∈ C (k ≥ 1) (18.29)

is called the linear n-manifold generated by the system of functions {φk}k=1,n.

Theorem 18.3. The best L2-approximation of any elements x ∈ H by the element un
from the n-manifold (18.29) is given by the Fourier coefficients ck = αk (18.27), namely,

inf
ck :k=1,n

∥∥∥∥∥x −
n∑
k=1

ckφk

∥∥∥∥∥
2

L2

=
∥∥∥∥∥x −

n∑
k=1

αkφk

∥∥∥∥∥
2

L2

(18.30)

Proof. It follows from the identity

‖x − un‖2L2
=

∥∥∥∥∥x −
n∑
k=1

ckφk

∥∥∥∥∥
2

L2

=
∥∥∥∥∥

∞∑
n=1

αnφn (t)−
n∑
k=1

ckφk

∥∥∥∥∥
2

L2

=
∞∑

k=n+1

|αk|2 ‖φk‖2L2
+

n∑
k=1

|αk − ck|2 ‖φk‖2L2

which reaches the minimum if ck = αk
(
ck : k = 1, n

)
. Theorem is proven. �

18.4 Linear operators and functionals in Banach spaces

18.4.1 Operators and functionals

Definition 18.9.

1. Let X and Y be linear normed spaces (usually either Banach or Hilbert spaces)
and T : D → Y be a transformation (or operator) from a subset D ⊂ X to Y .
D = D (T ) is called the domain (image) of the operator T and values T (D) constitute
the range (the set of possible values) R (T ) of T . If the range of the operator T is
finite-dimensional then we say that the operator has finite range.
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2. If Y is a scalar field F (usually R) then the transformations T are called functionals.
3. A functional T is linear if it is additive, i.e., for any x, y ∈ D

T (x + y) = T x + Ty

and homogeneous, i.e., for any x ∈ D and any λ ∈ F

T (λx) = λT x

4. Operators for which the domain D and the range T (D) are in one-to-one correspon-
dence are called invertible. The inverse operator is denoted by T −1 : T (D)→ D, so
that

D ⊇T −1 (T (D))

Example 18.6.

1. The shift operator Tsh : lnp → lnp defined by

Tshxi = xi+1

for any i = 1, 2, . . . .

2. The integral operator Tg : L2 [a, b]→ R defined by

Tgf :=
b∫

t=a
f (t) g (t) dt

for any f, g ∈ L2 [a, b].

3. The differential operator Td : D (T ) = C1 [a, b] → C [a, b] defined by

Tdf := d

dt
f (t)

for any f ∈ C1 [a, b] and any t ∈ [a, b].

It is evident in the following claim.

Claim 18.4.

1. T is invertible if and only if it is injective, that is, T x = 0 implies x = 0. The set
{x ∈ D | T x = 0} is called the kernel of the operator and denoted by

ker T := {x ∈ D | T x = 0}

So, T is injective if and only if ker T = {0}.
2. If T is linear and invertible then T −1 is also linear.
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18.4.2 Continuity and boundedness

18.4.2.1 Continuity
Definition 18.10.

1. Let T : D (T )→ Y be a map (operator) between two linear normed spaces X (with
a norm ‖·‖X ) and Y (with a norm ‖·‖Y ). It is said to be continuous at x0 ∈ X if,
given ε > 0, there exists a δ = δ (ε) > 0 such that ‖T (x)− T (x0)‖Y < ε, whenever
‖x − x0‖X < δ.

2. T is semi-continuous at a point x0 ∈ X if it transforms any convergent sequence
{xn} ⊂ D (T ), xn → x0, n→∞ into a sequence {T (xn)} ⊂ R (T ) weakly convergent
to T (x0), i.e., ‖T (xn)→ T (x0)‖ → 0 when n→∞.

3. T is continuous (or semi-continuous) on D (T ) if it is continuous (or semi-continuous)
at every point in D (T ).

Lemma 18.3. Let X and Y be Banach spaces and A be a linear operator defined at X .
If A is continuous at the point 0 ∈ X , then A is continuous at any point x0 ∈ X .

Proof. This result follows from the identity Ax − Ax0 = A (x − x0). If x → x0, then

z := x − x0 → 0. By continuity at zero Az→ 0 that implies Ax −Ax0 → 0. Lemma is

proven. �

So, a linear operator A may be called continuous if it is continuous at the point

x0 = 0.

18.4.2.2 Boundedness

Definition 18.11.

1. A linear operator A : D (A) ⊂ X → Y between two linear normed spaces X (with
a norm ‖·‖X ) and Y (with a norm ‖·‖Y ) is said to be bounded if there exists a real
number c > 0 such that for all x ∈ D (A)

‖Ax‖Y ≤ c ‖x‖X (18.31)

The set of all bounded linear operators A : D (A) ⊂ X → Y is usually denoted by
L (X ,Y).

2. A linear operator A : D (A) ⊂ X → Y is called a compact operator if it maps any
bounded subset of X onto a compact set of Y .

3. The induced norm of a linear bounded operator A : D (A) ⊂ X → Y may be
introduced as follows

‖A‖ := sup
x∈D(A), x �=0

‖Ax‖Y
‖x‖X

= sup
x∈D(A), ‖x‖X=1

‖Ax‖Y (18.32)

(here it is assumed that if D (A) = {0} then by definition ‖A‖ = 0 since A0 = 0).

It seems to be evident that the continuity and boundedness for linear operators are

equivalent concepts.
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Claim 18.5. A linear operator A : D (A) ⊂ X → Y is continuous if and only if it is
bounded.

Example 18.7.

1. If β :=
( ∞∑
i,j=1

∣∣aij ∣∣q
)1/q

<∞ (q > 1), then the “weighting” operator A defined by

y = Axi :=
∞∑
j=1

aijxj (18.33)

making from lp to lq
(
p−1 + q−1 = 1

)
is linear and bounded since by the Hölder

inequality (16.134)

‖Axi‖qlq =
∞∑
i=1

∣∣∣∣∣
∞∑
j=1

aijxj

∣∣∣∣∣
q

≤
∞∑
i=1

( ∞∑
j=1

∣∣aij ∣∣q
)( ∞∑

j=1

∣∣xj ∣∣p
)q/p

= β
( ∞∑
j=1

∣∣xj ∣∣p
)q/p

= β ‖x‖qlp

2. If β := ∫ b
x=a

∫ b
s=a |K (x, s)|q ds dx <∞, then the integral operator A : X = Lp [a, b]

→ Y = Lq [a, b] = Y
(
p−1 + q−1 = 1

)
defined by

y = Af :=
b∫

s=a
K (x, s) f (s) ds (18.34)

is linear and bounded since by the Hölder inequality (16.134)

‖Af ‖qLq [a,b] :=
b∫

x=a

∣∣∣∣∣∣
b∫

s=a
K (x, s) f (s) ds

∣∣∣∣∣∣
q

dx

≤
b∫

x=a

⎛
⎝ b∫
s=a

|K (x, s)|q ds
⎞
⎠
⎛
⎝ b∫
s=a

|f (s)|p ds
⎞
⎠q/p

dx = β ‖f ‖qLp [a,b]

3. If β := max
t∈D̄

∑l

α=0
|aα (t)| <∞, then the differential operator A : D ⊂ X = Ck [a, b]

→ Y = C [a, b] = Y defined by

y = Af :=
l∑
α=0

aα (t) f
(α) (t) (18.35)
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is linear and bounded since

‖Af ‖C[a,b] := max
t∈D̄

∣∣∣∣∣
l∑
α=0

aα (t) f
(α) (t)

∣∣∣∣∣
≤ max

t∈D̄

(
l∑
α=0

|aα (t)|
l∑
α=0

∣∣f (α) (t)∣∣
)
≤ β ‖f ‖Cl [a,b]

18.4.2.3 Sequence of linear operators and uniform convergence
It is possible to introduce several different notions of a convergence in the space of

linear bounded operators L (X ,Y) acting from X to Y .

Definition 18.12. Let {An} ⊂ L (X ,Y) be a sequence of operators.

1. We say that
• An uniformly converges to A ∈ L (X ,Y) if ‖An − A‖ → 0 whenever n → ∞.
Here the norm ‖An − A‖ is understood as in (18.32);

• An strongly converges to A ∈ L (X ,Y) if ‖Anf − Af ‖Y → 0 whenever n→ ∞
for any f ∈ X .

2. If the operator A is dependent on the parameter α ∈ A, then
• A (α) is uniformly continuous at α0 ∈ A, if

‖A (α)− A (α0)‖ → 0 as α→ α0

• A (α) is strongly continuous at α0 ∈ A, if for all f ∈ X

‖A (α) f − A (α0) f ‖Y → 0 as α→ α0

In view of this definition the following claim seems to be evident.

Claim 18.6. An uniformly converges toA ∈ L (X ,Y) if and only ifAnf →Af uniformly
on f ∈ X in the ball ‖f ‖X ≤ 1.

Theorem 18.4. If X is a linear normed space and Y is a Banach space, then L (X ,Y)
is a Banach space too.

Proof. Let {An} be a fundamental sequence in the metric of L (X ,Y), that is, for any
ε > 0 there exists a number n0 = n0 (ε) such that for any n > n0 and any natural p we

have
∥∥An+p − A∥∥ < ε. Then the sequence {Anf } is also fundamental. But Y is complete,

and, hence, {Anf } converges. Denote y := lim
n→∞Anf . By this formula any element f ∈ X

is mapped into an element of Y , and, hence, it defines the operator y = Af . Let us

prove that the linear operator A is bounded (continuous). First, notice that {‖An‖} is also
fundamental. This follows from the inequality |‖An+p‖ − ‖An‖ | ≤ ‖An+p − An‖. But it
means that {‖An‖} is bounded, that is, there exists c > 0 such that ‖An‖ ≤ c for every
n ≥ 1. Hence, ‖Anf ‖ ≤ c ‖f ‖. Taking the limit in the right-hand side we obtain ‖Af ‖
≤ c ‖f ‖ which shows that A is bounded. Theorem is proven. �
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18.4.2.4 Extension of linear bounded operators
Bounded linear operators that map into a Banach space always have a unique extension

to the closure of their domain without changing of its norm value.

Theorem 18.5. Let A : D (A) ⊂ X → Y be a linear bounded operator (functional)
mapping the linear normed space X into a Banach space Y . Then it has a unique bounded
extension Ã : D (A)→ Y such that
1. Ãf = Af for any f ∈ D (A);
2.

∥∥Ã∥∥ = ‖A‖.

Proof. If f ∈ D (A), put Ãf = Af . Let f ∈ X , but x /∈ D (A). By the density of

D (A) in X , there exists the sequence {fn} ⊂ D (A) converging to x. Put Ãf = lim
n→∞Afn.

Let us show that this definition is correct, namely, that the limit exists and it does not

depend on the selection of the convergent sequence {fn}. The existence follows from

the completeness property of Y since ‖Afn − Afm‖ ≤ ‖A‖ ‖fn − fm‖X . Hence, lim
n→∞Afn

exists. Supposing that there exists another sequence
{
f ′n
} ⊂ D (A) converging to f we

may denote a := lim
n→∞Afn and b := lim

n→∞Af
′
n. Then we get

‖a − b‖ ≤ ‖a − Afn‖ +
∥∥Afn − Af ′n∥∥+ ∥∥Af ′n − b∥∥ →

n→∞ 0

But ‖Afn‖ ≤ ‖A‖ ‖fn‖ that for n → ∞ implies
∥∥Ãf ∥∥ ≤ ‖A‖ ‖f ‖, or, equivalently,∥∥Ã∥∥ ≤ ‖A‖. We also have

∥∥Ã∥∥ := sup
‖f ‖X≤1

∥∥Ãf ∥∥ ≥ sup
f∈D(A), ‖f ‖X≤1

∥∥Ãf ∥∥ = ‖A‖. So, we
have

∥∥Ã∥∥ = ‖A‖. The linearity property of Ã follows from the linearity of A. Theorem

is proven. �

Definition 18.13. The operator Ã constructed in Theorem 18.5 is called the extension
of A to the closure D (A) of its domain D (A) without increasing its norm.

The principally more complex case arises when D (A) = X . The following important

theorem says that any linear bounded functional (operator) can be extended to the whole
space X without increasing into a norm. A consequence of this result is the existence of

nontrivial linear bounded functionals on any normed linear space.

Theorem 18.6. (The Hahn–Banach theorem) Any linear bounded functional A : D (A)
⊂ X → Y defined on a linear subspace D (A) of a linear normed space X can be
extended to a linear bounded functional Ã defined on the whole X with the preservation
of the norm, i.e., Ãf = Af for any f ∈ D (A) such that

∥∥Ã∥∥ = ‖A‖.

Proof. Here we present only the main idea of the proof.

(a) If X is separable, then the proof is based on Theorem 18.5 using the following

lemma.

Lemma 18.4. Let X be a real normed space and L a linear manifold in X where there
is defined a linear functional A. If f0 /∈ L and L1 := {f + tf0 | f ∈ L, t ∈ R} is a linear
manifold containing all elements f + tf0, then there exists a linear bounded functional
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A1 defined on L1 such that it coincides with A on L and preserving the norm on L1,
namely, ‖A1‖ = ‖A‖.

Then, since X is separable, there exists a basis {fn}n≥1 such that we can construct the

sequence of s-manifolds

Ls≥1 :=
{

s∑
i=1

λifi | fi ∈ X , λi ∈ R

}

connected by Ls+1 = Ls + {fn+1}, L0 := ∅. Then we make the extension of A to each

of the subspaces Ls≥1 based on the lemma above. Finally we apply Theorem 18.5 to the

space X = ∪
s≥1

Ls using the density property of X .

(b) In general, the proof is based on Zorn’s lemma (see Yoshida (1979)). �

Corollary 18.5. Let X be a normed (topological) space and x ∈ X , x �= 0. Then there
exists a linear bounded functional f , defined on X , such that its value at any point x is
equal to

f (x) := 〈x, f 〉 = ‖x‖ (18.36)

and

‖f ‖ := sup
x∈D(f ),‖x‖≤1

〈x, f 〉 = 1 (18.37)

Proof. Consider the linear manifold L := {tx}, t ∈ R where we define f as follows:

〈tx, f 〉 = t ‖x‖. So, we have 〈x, f 〉 = ‖x‖. Then for any y = tx it follows |〈y, f 〉| =
|t | · ‖x‖ = ‖tx‖ = ‖y‖. This means that ‖f ‖ = 1 and completes the proof. �

Corollary 18.6. Let in a normed space X there be defined a linear manifold L and the
element x0 /∈ L having the distance d up to this manifold, that is, d := inf

x∈L
‖x − x0‖.

Then there exists a linear functional f defined on the whole X such that
1. 〈x, f 〉 = 0 for any x ∈ L
2. 〈x0, f 〉 = 1

3. ‖f ‖ = 1/d

Proof. Take L1 := L + {x0}. Then any element y ∈ L1 is uniquely defined by

y = x + tx0 where x ∈ L and t ∈ R. Define on L1 the functional f := t . Now, if y ∈
L, then t = 0 and 〈y, f 〉 = 0. So, statement 1 holds. If y = x0, then t = 1 and, hence,

〈x0, f 〉 = 1 which verifies statement 2. Finally,

|〈y, f 〉| = |t | = |t | · ‖y‖
‖y‖ = ‖y‖∥∥∥x

t
+ x0

∥∥∥ ≤ ‖y‖
d
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which gives ‖f ‖ ≤ 1/d . On the other hand, by the “inf” definition, there exists a sequence

{xn} ∈ L such that d = lim
n→∞

‖xn − x0‖. This implies

1 = 〈x0 − xn, f 〉 ≤ ‖xn − x0‖ · ‖f ‖

Taking limit in the last inequality we obtain 1 ≤ d ‖f ‖ which gives ‖f ‖ ≥ 1/d.

Combining both inequalities we conclude the statement 3. Corollary is proven. �

Corollary 18.7. A linear manifold L is not dense in a Banach space X if and
only if there exists a linear bounded functional f �= 0 such that 〈x, f 〉 = 0 for
any x ∈ L.

Proof.

(a) Necessity. Let L̄ �= X . Then there exists a point x0 ∈ X such that the distance

between x0 and L is positive, namely, ρ (x0,L) = d > 0. By Corollary 18.6 there

exists f such that 〈x0, f 〉 = 1, that is, f �= 0 but 〈x, f 〉 = 0 for any x ∈ L.
(b) Sufficiency. Let now L̄ = X . Then for any x ∈ X , in view of the density property,

there exists {xn} ∈ L such that xn → x when n → ∞. By the condition that there

exists f �= 0, = 0 for any x ∈ L, we have 〈x, f 〉 = lim
n→∞

〈xn, f 〉 = 0. Since x is

arbitrary, it follows that f = 0. Contradiction. Corollary is proven.

�

Corollary 18.8. Let {xk}n1 be a system of linearly independent elements in a normed
space X . Then there exists a system of linear bounded functionals {fl}n1 , defined on the
whole X , such that

〈xk, fl〉 = δkl (k, l = 1, . . . , n) (18.38)

These two systems {xk}n1 and {fl}n1 are called bi-orthogonal.

Proof. Take x1 and denote by L1 the linear span of the elements x2, . . . , xn. By linear

independency, it follows that ρ (x1, L1) > 0. By Corollary 18.6 we can find the linear

bounded functional f1 such that 〈x1, f1〉 = 1, 〈x, f1〉 = 0 on L1. Iterating this process

we construct the desired system {fl}n1. �

18.4.3 Compact operators

In this subsection we will consider a special subclass of bounded linear operators

having properties rather similar to those enjoyed by operators on finite-dimensional

spaces.

Definition 18.14. Let X and Y be normed linear spaces. An operator A ∈ L (X ,Y) is
said to be a compact operator if A maps a bounded set of X onto relative compact sets
of Y , that is, A is linear and for any bounded sequence {xn} in X the sequence {Axn}
has a convergence subsequence in Y .
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Claim 18.7. Let X and Y be normed linear spaces and A : X → Y be a linear operator.
Then the following assertions holds:
(a) If A is bounded, that is, A ∈ L (X ,Y) and dim (Ax) < ∞, then the operator A is

compact.
(b) If dim (X ) <∞, then A is compact.
(c) The range of A is separable if A is compact.
(d) If {An} is a sequence of compact operators from X to Banach space Y that converges

uniformly to A, then A is a compact operator.
(e) The identity operator I on the Banach space X is compact if and only if dim (X ) <∞.
(f) If A is a compact operator in L (X ,Y) whose range is a closed subspace of Y , then

the range of A is finite-dimensional.

Proof. It can be found in Rudin (1976) and Yoshida (1979). �

Example 18.8.

1. Let X = l2 and A : l2 → l2 be defined by Ax :=
(
x1,
x2

2
,
x3

3
, . . .

)
. Then A is compact.

Indeed, defining An by

Anx :=
(
x1,
x2

2
,
x3

3
, . . . ,

xn

n
, 0, 0, . . .

)
we have

‖Ax − Anx‖2 =
∞∑

k=n+1

1

k2
|xi |2 ≤ ‖x‖2

(n+ 1)2

and, hence, ‖A− An‖ ≤ (n+ 1)−1. This means that An converges uniformly to A and,
by the previous claim (d), A is compact.

2. Let k (t, s) ∈ L2

(
[a, b]× [a, b]

)
. Then the integral operator K : L2

(
[a, b]

) →
L2

(
[a, b]

)
defined by (Ku) (t) := ∫ b

s=a k (t, s) u (s) ds is a compact operator (see
Yoshida (1979)).

Theorem 18.7. (Approximation theorem) Let� :M⊂ X → Y be a compact operator
where X ,Y are Banach spaces and M is a bounded nonempty subset of X . Then for
every n = 1, 2, . . . there exists a continuous operator �n : M → Y such that

sup
x∈M

‖�(x)−�n (x)‖ ≤ n−1 and dim (span �n (M)) <∞ (18.39)

as well as �n (M) ⊆ co �(M) – the convex hull of �(M).

Proof. (see Zeidler (1995)). For every n there exists a finite (2n)−1-net for A (M) and

elements uj ∈ �(M) (j = 1, . . . , J ) such that for all x ∈ M

min
1≤j≤J

∥∥�(x)− uj∥∥ ≤ (2n)−1
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Define for all x ∈ M the, so-called, Schauder operator An by

�n (x) :=
J∑
j=1

aj (x) uj

(
J∑
j=1

aj (x)

)−1

where

aj (x) := max
{
n−1 − ∥∥�(x)− uj∥∥; 0}

are continuous functions. In view of this An is also continuous and, moreover,

‖�(x)−�n (x)‖ =�n (x) =
∥∥∥∥∥
J∑
j=1

aj (x)
(
uj −�n (x)

)∥∥∥∥∥
(

J∑
j=1

aj (x)

)−1

≤
J∑
j=1

aj (x)
∥∥(uj −�n (x))∥∥

(
J∑
j=1

aj (x)

)−1

≤
J∑
j=1

aj (x) n
−1

(
J∑
j=1

aj (x)

)−1

= n−1

Theorem is proven. �

18.4.4 Inverse operators

Many problems in the theory of ordinary and partial differential equations may be

presented as a linear equation Ax = y given in functional spaces X and Y where

A : X → Y is a linear operator. If there exists the inverse operator A−1 : R (A)→ D (A),
then the solution of this linear equation may be formally represented as x = A−1y.

So, it seems to be very important to notice under which conditions the inverse operator

exists.

18.4.4.1 Set of nulls and isomorphic operators
Let A : X → Y be a linear operator where X and Y are linear spaces such that

D (A) ⊆ X and R (A) ⊆ Y .

Definition 18.15. The subset N (A) ⊆ D (A) defined by

N (A) := {x ∈ D (A) | Ax = 0} (18.40)

is called the null space of the operator A.

Notice that

1. N (A) �= ∅ since 0 ∈ N (A).

2. N (A) is a linear subspace (manifold).

Theorem 18.8. An operator A is isomorphic (it transforms each point x ∈ D (A) only
into a unique point y ∈ R (A)) if and only if N (A) = {0}, that is, when the set of nulls
consists only of the single 0-element.
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Proof.

(a) Necessity. Let A be isomorphic. Suppose that N (A) �= {0}. Take z ∈ N (A) such

that z �= 0. Let also y ∈ R (A). Then the equation Ax = y has a solution. Consider

a point x∗ + z. By lineality of A it follows A (x∗ + z) = y. So, the element y has

at least two different images x∗ and x∗ + z. We have obtained the contradiction to

isomorphic property assumption.

(b) Sufficiency. Let N (A) = {0}. But assume that there exist at least two x1, x2 ∈ D (A)
such that Ax1 = Ax2 = y and x1 �= x2. The last implies A (x1 − x2) = 0. But this

means that (x1 − x2) ∈ N (A) = {0}, or, equivalently, x1 = x2. Contradiction. �

Claim 18.8. Evidently,

• if a linear operator A is isomorphic then there exists the inverse operator A−1;
• the operator A−1 is a linear operator too.

18.4.4.2 Bounded inverse operators
Theorem 18.9. An operator A−1 exists and, simultaneously, is bounded if and only if
the following inequality holds

‖Ax‖ ≥ m ‖x‖ (18.41)

for all x ∈ D (A) and some m > 0.

Proof.

(a) Necessity. Let A−1 exists and be bounded on D
(
A−1

) = R (A). This means that

there exists c > 0 such that for any y ∈ R (A) we have
∥∥A−1y

∥∥ ≤ c ‖y‖. Taking
y = Ax in the last inequality, we obtain (18.41).

(b) Sufficiency. Let now (18.41) hold. Then if Ax = 0 then by (18.41) we find that

x = 0. This means that N (A) = {0} and by Theorem 18.8 it follows that A−1 exists.

Then taking in (18.41) x = A−1y we get
∥∥A−1y

∥∥ ≤ m−1 ‖y‖ for all y ∈ R (A) which
proves the boundedness of A−1. �

Definition 18.16. A linear operator A : X → Y is said to be continuously invertible if
R (A) = Y , A is invertible and A−1 ∈ L (X ,Y) (that is, it is bounded).

Theorem 18.9 may be reformulated in the following manner.

Theorem 18.10. An operator A is continuously invertible if and only if R (A) = Y and
for some constant m > 0 the inequality (18.41) holds.

It is not so difficult to prove the following result.

Theorem 18.11. (Banach) If A ∈ L (X ,Y) (that is, A is linear bounded), R (A) = Y
and A is invertible, then it is continuously invertible.

Example 18.9. Let us consider in C [0, 1] the following simplest integral equation

(Ax) (t) := x (t)−
1∫

s=0

tsx (s) ds = y (t) (18.42)
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The linear operator A : C [0, 1] → C [0, 1] is defined by the left-hand side of (18.42).

Notice that x (t) = y (t) + ct , where c = ∫ 1

s=0
sx (s) ds. Integrating the equality

sx (s) = sy (s) + cs2 on [0, 1], we obtain c = 3

2

∫ 1

s=0
sy (s) ds. Hence, for any y (t)

in the right-hand side of (18.42) the solution is x (t) = y (t) + 3

2

∫ 1

s=0
tsy (s) ds :=(

A−1y
)
(t). Notice that A−1 is bounded, but this means by definition that the operator A

is continuously invertible.

Example 18.10. Let y (t) and ai (t) (i = 1, . . . , n) be continuous on [0, T ]. Consider the
following linear ordinary differential equation (ODE)

(Ax) (t) := x(n) (t)+ a1 (t) x(n−1) (t)+ . . .+ an (t) x (t) = y (t) (18.43)

under the initial conditions x (0) = x ′ (0) = . . . = x(n−1) (0) = 0 and define the operator
A as the left-hand side of (18.43) which is, evidently, linear with D (A) consisting of all
functions which are n-times continuously differentiable, i.e., x (t) ∈ Cn [0, T ]. We will
solve the Cauchy problem finding the corresponding x (t). Let x1 (t), x2 (t) , . . . , xn (t)
be the system of n linearly independent solutions of (18.43) when y (t) ≡ 0. Construct
the, so-called, Wronsky’s determinant

W (t) :=

∣∣∣∣∣∣∣∣∣
x1 (t) · · · xn (t)

x ′1 (t) · · · x ′n (t)
...

...
...

x
(n−1)
1 (t) x(n−1)

n (t)

∣∣∣∣∣∣∣∣∣
It is well known (see, for example, El’sgol’ts (1961)) that W (t) �= 0 for all t ∈ [0, T ].
According to the Lagrange approach dealing with the variation of arbitrary constants
we may find the solution of (18.43) for any y (t) in the form

x (t) = c1 (t) x1 (t)+ c2 (t) x2 (t)+ . . .+ cn (t) xn (t)

which leads to the following ODE-system for ci (t) (i = 1, . . . , n):

c′1 (t) x1 (t)+ c′2 (t) x2 (t)+ . . .+ c′n (t) xn (t) = 0

c′1 (t) x
′
1 (t)+ c′2 (t) x ′2 (t)+ . . .+ c′n (t) x ′n (t) = 0

· · ·
c′1 (t) x

(n−1)
1 (t)+ c′2 (t) x(n−1)

2 (t)+ . . .+ c′n (t) x(n−1)
n (t) = y (y)

⎫⎪⎪⎬
⎪⎪⎭

Resolving this system by Cramer’s rule we derive c′k (t) =
wk (t)

W (t)
y (t) (k = 1, . . . , n)

where wk (t) is the algebraic complement of the kth element of the last nth row. Taking
into account the initial conditions we conclude that

x (t) =
n∑
k=1

xk (t)

t∫
s=0

wk (s)

W (s)
y (s) ds := (

A−1y
)
(t)
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which implies the following estimate ‖x‖C[0,T ] ≤ c ‖y‖C[0,T ] with c = max
t∈[0,T ]

∑n

k=1
|xk (t)|∫ t

s=0

∣∣∣∣wk (s)W (s)

∣∣∣∣ ds that proves that the operator A is continuously invertible.

18.4.4.3 Bounds for
∥∥A−1

∥∥
Theorem 18.12. Let A ∈ L (X ,Y) be a linear bounded operator such that ‖I − A‖ < 1

where I is the identical operator (which is, obviously, continuously invertible). Then A
is continuously invertible and the following bounds hold:

∥∥A−1
∥∥ ≤ 1

1− ‖I − A‖ (18.44)

∥∥I − A−1
∥∥ ≤ ‖I − A‖

1− ‖I − A‖ (18.45)

Proof. Consider in L (X ,Y) the series
(
I + C + C2 + . . .) where C := I − A. Since∥∥Ck∥∥ ≤ ‖C‖k this series uniformly converges (by the Weierstrass rule), i.e.,

Sn := I + C + C2 + . . . Cn →
n→∞ S

It is easy to check that

(I − C) Sn = I − Cn+1

Sn (I − C) = I − Cn+1

Cn+1 →
n→∞ 0

Taking the limits in the last identities we obtain

(I − C) S = I, S (I − C) = I

which shows that the operator S is invertible and S−1 = I − C = A. So, S = A−1 and

‖Sn‖ ≤ ‖I‖ + ‖C‖ + ‖C‖2 + . . . ‖C‖n = 1− ‖C‖n+1

1− ‖C‖

‖I − Sn‖ ≤ ‖C‖ + ‖C‖2 + . . . ‖C‖n = ‖C‖ − ‖C‖n+1

1− ‖C‖
Taking n→∞ we obtain (18.44) and (18.45). �

18.5 Duality

Let X be a linear normed space and F be the real axis R, if X is real, and be the

complex plane C, if X is complex.
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18.5.1 Dual spaces

Definition 18.17. Consider the space L (X ,F) of all linear bounded functionals defined
on X . This space is called dual to X and is denoted by X ∗, so that

X ∗ := L (X ,F) (18.46)

The value of the linear functional f ∈ X ∗ on the element x ∈ X we will denote by f (x),
or 〈x, f 〉, that is,

f (x) = 〈x, f 〉 (18.47)

The notation 〈x, f 〉 is analogous to the usual scalar product and turns out to be very useful
in concrete calculations. In particular, the lineality of X and X ∗ implies the following

identities (for any scalars α1, α2, β1, β2, any elements x1, x2 ∈ X and any functionals

f, f1, f2 ∈ X ∗):

〈α1x1 + α2x2, f 〉 = α1 〈x1, f 〉 + α2 〈x2, f 〉
〈x, β1f1 + β2f2〉 = β̄1 〈x, f1〉 + β̄2 〈x, f2〉 (18.48)

(β̄ means the complex conjugated value to β. In a real case β̄ = β). If 〈x, f 〉 = 0

for any x ∈ X , then f = 0. This property can be considered as the definition of the

“null”-functional. Less trivial seems to be the next property.

Lemma 18.5. If 〈x, f 〉 = 0 for any f ∈ X ∗, then x = 0.

Proof. It is based on Corollary 18.5 of the Hahn–Banach theorem 18.6. Assuming the

existence of x �= 0, we can find f ∈ X ∗ such that f �= 0 and 〈x, f 〉 = ‖x‖ �= 0 which

contradicts the identity 〈x, f 〉 = 0 valid for any f ∈ X ∗. So, x = 0. �

Definition 18.18. In X ∗ one can introduce two types of convergence.

• Strong convergence (on the norm in X ∗):
fn →

n→∞ f (fn, f ∈ X ∗), if ‖fn − f ‖ →
n→∞ 0.

• Weak convergence (in the functional sense):
fn

∗→
n→∞ f (fn, f ∈ X ∗), if for any x ∈ X one has

〈x, fn〉 →
n→∞

〈x, f 〉 .

Remark 18.4.

1. Notice that the strong convergence of a functional sequence {fn} implies its weak
convergence.

2. (Banach–Shteingauss): fn
∗→

n→∞ f if and only if

(a) {‖fn‖} is bounded;
(b) 〈x, fn〉 →

n→∞
〈x, f 〉 on some dense linear manifold in X .

Claim 18.9. Independently of the fact whether the original topological space X is Banach
or not, the space X ∗ = L (X ,F) of all linear bounded functionals is always Banach.
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Proof. It can be easily seen from Definition 18.3. �

More exactly this statement can be formulated as follows.

Lemma 18.6. X ∗ is a Banach space with the norm

‖f ‖ = ‖f ‖X ∗ := sup
x∈X , ‖x‖X≤1

|f (x)| (18.49)

Furthermore, the following duality between two norms ‖·‖X and ‖·‖X ∗ takes place:

‖x‖X = sup
f∈X ∗, ‖f ‖X∗≤1

|f (x)| (18.50)

Proof. The details of the proof can be found in Yoshida (1979). �

Example 18.11. The spaces Lp [a, b] and Lq [a, b] are dual, that is,

L∗p [a, b] = Lq [a, b] (18.51)

where p−1 + q−1 = 1, 1 < p < ∞. Indeed, if x (t) ∈ Lp [a, b] and y (t) ∈ Lq [a, b],
then the functional

f (x) =
b∫

t=a
x (t) y (t) dt (18.52)

is evidently linear, and boundedness follows from the Hölder inequality (16.137).

Since the dual space of a linear normed space is always a Banach space, one can consider

the bounded linear functionals on X ∗, which we shall denote by X ∗∗. Moreover, each

element x ∈ X gives rise to a bounded linear functional f ∗ in X ∗ by f ∗ (f ) = f (x),
f ∈ X ∗. It can be shown that X ⊂ X ∗∗, called the natural embedding of X into X ∗∗.
Sometimes it happens that these spaces coincide. Notice that this is possible if X is

a Banach space (since X ∗∗ is always Banach).

Definition 18.19. If X = X ∗∗, the Banach space X is called reflexive.

Such spaces play an important role in different applications since they possess many

properties resembling those in Hilbert spaces.

Claim 18.10. Reflexive spaces are all Hilbert spaces, Rn, lnp, and Lp>1
(
Ḡ
)
.

Theorem 18.13. The Banach space X is reflexive if and only if any bounded (by a norm)
sequence of its elements contains a subsequence which weakly converges to some point
in X .

Proof. See Trenogin (1980), Section 17.5, and Yoshida (1979) p. 264, the Eberlein–

Shmulyan theorem. �
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18.5.2 Adjoint (dual) and self-adjoint operators

Let A ∈ L (X ,Y) where X and Y are Banach spaces. Construct the linear functional

ϕ (x) = 〈x, ϕ〉 := 〈Ax, f 〉 where x ∈ X and f ∈ Y∗.

Lemma 18.7. (1) D (ϕ) = X , (2) ϕ is a linear operator, (3) ϕ is bounded.

Proof. (1) is evident. (2) is valid since

ϕ (α1x1 + α2x2)= 〈A (α1x1 + α2x2), f 〉

= α1 〈A (x1), f 〉 + α2 〈A (x2), f 〉

= α1ϕ (x1)+ α2ϕ (x2)

And (3) holds since |ϕ (x)| = |〈Ax, f 〉| ≤ ‖Ax‖ ‖f ‖ ≤ ‖A‖ ‖f ‖ ‖x‖. �

From this lemma it follows that ϕ ∈ X ∗. So, the linear continuous operator ϕ = A∗f is

correctly defined.

Definition 18.20. The operator A∗ ∈ L (Y∗,X ∗) defined by

〈x,A∗f 〉 := 〈Ax, f 〉 (18.53)

is called the adjoint (or dual) operator of A.

Lemma 18.8. The representation 〈Ax, f 〉 = 〈x, ϕ〉 is unique (ϕ ∈ X ∗) for any x ∈ D (A)
if and only if D (A) = X .

Proof.

(a) Necessity. Suppose D (A) �= X . Then by Corollary 18.7 from the Hahn–Banach

theorem 18.6 there exists ϕ0 ∈ X ∗, ϕ0 �= 0 such that 〈x, ϕ0〉 = 0 for all x ∈ D (A). But
then 〈Ax, f 〉 = 〈x, ϕ + ϕ0〉 = 0 for all x ∈ D (A) which contradicts the assumption

of the uniqueness of the presentation.

(b) Sufficiency. Let D (A) = X . If 〈Ax, f 〉 = 〈x, ϕ1〉 = 〈x, ϕ2〉 then 〈x, ϕ1 − ϕ2〉 = 0

and by the same Corollary 18.7 it follows that ϕ1 − ϕ2 = 0 which means that the

representation is unique. �
Lemma 18.9. If A ∈ L (X ,Y) where X and Y are Banach spaces, then ‖A∗‖ = ‖A‖.

Proof. By property (3) of the previous lemma we have ‖ϕ‖ ≤ ‖A‖ ‖f ‖, i.e., ‖A∗‖ ≤
‖A‖. But, by Corollary 18.5 from the Hahn–Banach theorem 18.6, for any x0 such that

Ax0 �= 0 there exists a functional f0 ∈ Y∗ such that ‖f0‖ = 1 and |〈Ax0, f0〉| = ‖Ax0‖
which leads to the following estimate:

‖Ax0‖ = |〈Ax0, f0〉| = |〈x0, A∗f0〉| ≤ ‖A∗‖ ‖f0‖ ‖x0‖ = ‖A∗‖ ‖x0‖

So, ‖A∗‖ ≥ ‖A‖ and, hence, ‖A∗‖ = ‖A‖ which proves the lemma. �



478 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Example 18.12. Let X = Y = Rn be n-dimensional Euclidean spaces. Consider the
linear operator

y = Ax
(
yi :=

n∑
k=1

aikxk , i = 1, . . . , n

)
(18.54)

Let z ∈ (Rn)∗ = Rn. Since in Euclidean spaces the action of an operator is the corre-
sponding scalar product, then 〈Ax, z〉 = (Ax, z) = (x,Aᵀz) = 〈x,A∗z〉 . So,

A∗ = Aᵀ (18.55)

Example 18.13. Let X = Y = L2 [a, b]. Let us consider the integral operator y = Kx
given by

y (t) =
b∫

s=a
k (t, s) x (s) ds (18.56)

with the kernel k (t, s) which is continuous on [a, b] × [a, b]. We will consider the case
when all variables are real. Then we have

〈Kx, z〉 =
b∫

t=a

⎛
⎝ b∫
s=a
k (t, s) x (s) ds

⎞
⎠ z (t) dt

=
b∫

s=a

⎛
⎝ b∫
t=a
k (t, s) z (t) dt

⎞
⎠ x (s) ds

=
b∫

t=a

⎛
⎝ b∫
s=a
k (s, t) z (s) ds

⎞
⎠ x (t) dt = 〈x,K∗z〉

which shows that the operator K∗ (ω = K∗z) is defined by

ω (t) =
b∫

s=a
k (s, t) z (s) ds (18.57)

that is, K∗ is also integral with the kernel k (s, t) which is inverse to the kernel
k (t, s) of K .

Definition 18.21. The operator A ∈ L (X ,Y), where X and Y are Hilbert spaces, is
said to be self-adjoint (or Hermitian) if A∗ = A, that is, if it coincides with its adjoint
(dual) form.

Remark 18.5. Evidently for self-adjoint operators D (A) = D (A∗).
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Example 18.14.

1. In Rn, where any linear operator A is a matrix transformation, it will be self-adjoint
if it is symmetric, i.e., A = Aᵀ, or, equivalently, aij = aji .

2. In Cn, where any linear operator A is a complex matrix transformation, it will be
self-adjoint if it is Hermitian, i.e., A = A∗, or, equivalently, aij = āj i .

3. The integral operator K in Example 18.13 is self-adjoint in L2 [a, b] if its kernel is
symmetric, namely, if k(t, s) = k(s, t).

It is easy to check the following simple properties of self-adjoint operators.

Proposition 18.1. Let A and B be self-adjoint operators. Then

1. (αA+ βB) is also self-adjoint for any real α and β.
2. (AB) is self-adjoint if and only if these two operators commute, i.e., if AB = BA.

Indeed, (ABx, f ) = (Bx,Af ) = (x, BAf ).
3. The value (Ax, x) is always real for any x ∈ F (real or complex).
4. For any self-adjoint operator A we have

‖A‖ = sup
‖x‖≤1

|(Ax, x)| (18.58)

18.5.3 Riesz representation theorem for Hilbert spaces

Theorem 18.14. (F. Riesz) If H is a Hilbert space (complex or real) with a scalar
product (·, ·), then for any linear bounded functional f , defined on H, there exists the
unique element y ∈ H such that for all x ∈ H one has

f (x) = 〈x, f 〉 = (x, y) (18.59)

and, furthermore, ‖f ‖ = ‖y‖.

Proof. Let L be a subspace of H. If L = H, then for f = 0 one can take y = 0 and

the theorem is proven. If L �= H, there exists z0 ⊥ L, z0 �= 0 (it is sufficient to consider

the case f (z0) = 〈z0, f 〉 = 1; if not, instead of z0 we can consider z0/〈z0, f 〉). Let now
x ∈ H. Then x − 〈x, f 〉 z0 ∈ L, since

〈x − 〈x, f 〉 z0, f 〉 = 〈x, f 〉 − 〈x, f 〉 〈z0, f 〉 = 〈x, f 〉 − 〈x, f 〉 = 0

Hence, [x − 〈x, f 〉 z0] ⊥ z0 which implies

0 = (x − 〈x, f 〉 z0, z0) = (x, z0)− 〈x, f 〉 ‖z0‖2

or, equivalently, 〈x, f 〉 = (
x, z0/‖z0‖2

)
. So, we can take y = z0/‖z0‖2. Show now the

uniqueness of y. If 〈x, f 〉 = (x, y) = (x, ỹ), then (x, y − ỹ) = 0 for any x ∈ H. Taking

x = y − ỹ we obtain ‖y − ỹ‖2 = 0 which proves the identity y = ỹ. To complete

the proof we need to prove that ‖f ‖ = ‖y‖. By the Cauchy–Bounyakovski–Schwarz

inequality |〈x, f 〉| = |(x, y)| ≤ ‖f ‖ ‖y‖. By the definition of the norm ‖f ‖ it follows

that ‖f ‖ ≤ ‖y‖. On the other hand, 〈y, f 〉 = (y, y) ≤ ‖f ‖ ‖y‖ which leads to the inverse
inequality ‖y‖ ≤ ‖f ‖. So, ‖f ‖ = ‖y‖. Theorem is proven. �
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A different application of this theorem can be found in Riesz & Nagy (1978 (original

in French, 1955)).

18.5.4 Orthogonal projection operators in Hilbert spaces

Let M be a subspace of a Hilbert space H.

Definition 18.22. The operator P ∈ L (H,M) (y = Px), acting in H such that

y := argmin
z∈M

‖x − z‖ (18.60)

is called the orthogonal projection operator to the subspace M .

Lemma 18.10. The element y = Px is unique and (x − y, z) = 0 for any z ∈ M .

Proof. See subsection 18.3.2. �

The following evident properties of the projection operator hold.

Proposition 18.2.

1. x ∈ M if and only if Px = x.
2. Let M⊥ be the orthogonal complement to M , that is,

M⊥ := {z ∈ H � z ⊥ M} (18.61)

Then any x ∈ H can be represented as x = y + z where y ∈ M and z ⊥ M . Then
the operator P⊥ ∈ L

(
H,M⊥), defining the orthogonal projection any point from H

to M⊥, has the following representation:

P⊥ = I − P (18.62)

3. x ∈ M⊥ if and only if Px = 0.
4. P is a linear operator, i.e., for any real α and β we have

P (αx1 + βx2) = αP (x1)+ βP (x2) (18.63)

5.

‖P ‖ = 1 (18.64)

Indeed, ‖x‖2 = ‖Px + (I − P) x‖2 = ‖Px‖2 + ‖(I − P) x‖2 which implies ‖Px‖2
≤ ‖x‖2 and thus ‖P ‖ ≤ 1. On the other hand, if M �= {0}, take x0 ∈ M with
‖x0‖ = 1. Then 1 = ‖x0‖ = ‖Px0‖ ≤ ‖P ‖ ‖x0‖ = ‖P ‖. The inequalities ‖P ‖ ≤ 1

and ‖P ‖ ≥ 1 give (18.64).
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6.

P 2 = P (18.65)

since for any x ∈ M we have P 2 (Px) = Px.
7. P is self-adjoint, that is,

P ∗ = P (18.66)

8. For any x ∈ H

(Px, x) = (
P 2x, x

) = (Px, Px) = ‖Px‖2 (18.67)

which implies

(Px, x) ≥ 0 (18.68)

9. ‖Px‖ = ‖x‖ if and only if x ∈ M .
10. For any x ∈ H

(Px, x) ≤ ‖x‖2 (18.69)

which follows from (18.67), the Cauchy–Bounyakovsk–Schwarz inequality and
(18.64).

11. Let A = A∗ ∈ L (H,H) and A2 = A. Then A is obligatory an orthogonal projection
operator to some subspace M = {x ∈ H |Ax = x} ⊂ H. Indeed, since x = Ax +
(I − A) x it follows that Ax = A2x = A (Ax) ∈ M and (I − A) x ∈ M⊥.

The following lemma can be easily verified.

Lemma 18.11. Let P1 be the orthogonal projector to a subspace M1 and P2 be the
orthogonal projector to a subspaceM2. Then the following four statements are equivalent:

1.

M2 ⊂ M1

2.

P1P2 = P2P1 = P2

3. ‖P2x‖ ≤ ‖P1x‖ for any x ∈ H.
4. (P2x, x) ≤ (P1x, x) for any x ∈ H.

Corollary 18.9.

1. M2 ⊥ M1 if and only if P1P2 = 0.
2. P1P2 is a projector if and only if P1P2 = P2P1.
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3. Let Pi (1 = 1, . . . , N) be a projection operator. Then
∑N

i=1 Pi is a projection operator
too if and only if

PiPk = δikPi

4. P1 − P2 is a projection operator if and only if P1P2 = P2, or, equivalently, when
P1 ≥ P2.

18.6 Monotonic, nonnegative and coercive operators

Remember the following elementary lemma from real analysis.

Lemma 18.12. Let f : R → R be a continuous function such that

(x − y) [f (x)− f (y)] ≥ 0 (18.70)

for any x, y ∈ R and

xf (x)→∞ when |x| → ∞ (18.71)

Then the equation f (x) = 0 has a solution. If (17.80) holds in the strong sense, i.e.,

(x − y) [f (x)− f (y)] > 0 when x �= y (18.72)

then the equation f (x) = 0 has a unique solution.

Proof. For x < y from (17.80) it follows that f (x) is a nondecreasing function and, in

view of (17.81), there exist numbers a and b such that a < b, f (a) < 0 and f (b) < 0.

Then, considering f (x) on [a, b], by the theorem on intermediate values, there exists a

point ξ ∈ [a, b] such that f (ξ) = 0. If (18.72) is fulfilled, then f (x) is a monotonically

increasing function and the root of the function f (x) is unique. �

The following definitions and theorems represent the generalization of this lemma to

functional spaces and nonlinear operators.

18.6.1 Basic definitions and properties

Let X be a real separable normed space and X ∗ be a space dual to X . Consider a

nonlinear operator T : X → X ∗ (D (T ) = X , R (T ) ⊂ X ∗) and, as before, denoted by

f (x) = 〈x, f 〉 the value of the linear functional f ∈ X ∗ on the element x ∈ X .

Definition 18.23.

1. An operator T is said to be monotone if for any x, y ∈ D (T )

〈x − y, T (x)− T (y)〉 ≥ 0 (18.73)
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2. It is called strictly monotone if for any x �= y

〈x − y, T (x)− T (y)〉 > 0 (18.74)

and the equality is possible only if x = y.
3. It is called strongly monotone if for any x, y ∈ D (T )

〈x − y, T (x)− T (y)〉 ≥ α (‖x − y‖) ‖x − y‖ (18.75)

where the nonnegative function α (t), defined at t ≥ 0, satisfies the condition α (0) = 0

and α (t)→∞ when t →∞.
4. An operator T is called nonnegative if for all x ∈ D (T )

〈x, T (x)〉 ≥ 0 (18.76)

5. An operator T is positive if for all x ∈ D (T )

〈x, T (x)〉 > 0 (18.77)

6. An operator T is called coercive (or, strongly positive) if for all x ∈ D (T )

〈x, T (x)〉 ≥ γ (‖x‖) (18.78)

where function γ (t), defined at t ≥ 0, satisfies the condition γ (t)→∞ when t →∞.

Example 18.15. The function f (x) = x3 + x − 1 is the strictly monotone operator
in R.

The following lemma installs the relation between monotonicity and coercivity

properties.

Lemma 18.13. If an operator T : X → X ∗ is strongly monotone then it is coercive with

γ (‖t‖) = α (t)− ‖T (0)‖ (18.79)

Proof. By the definition (when y = 0) it follows that

〈x, T (x)− T (0)〉 ≥ α (‖x‖) ‖x‖

This implies

〈x, T (x)〉 ≥ 〈x, T (0)〉 + α (‖x‖) ‖x‖ ≥ α (‖x‖) ‖x‖
−‖x‖ ‖T (0)‖ = [α (‖x‖)− ‖T (0)‖] ‖x‖

which proves the lemma. �
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Remark 18.6. Notice that if an operator T : X → X ∗ is coercive then ‖T (x)‖ → ∞
when ‖x‖ → ∞. This follows from the inequalities

‖T (x)‖ ‖x‖ ≥ 〈x, T (x)〉 ≥ γ (‖x‖) ‖x‖

or, equivalently, from ‖T (x)‖ ≥ γ (‖x‖)→∞ when ‖x‖ → ∞.

The next theorem generalizes Lemma 18.12 to the nonlinear vector-function case.

Theorem 18.15. Trenogin (1980) Let T : Rn → Rn be a nonlinear operator (a vector
function) which is continuous everywhere in Rn and such that for any x, y ∈ X

〈x − y, T (x)− T (y)〉 ≥ c ‖x − y‖2, c > 0 (18.80)

(i.e., in (18.75) α (t) = ct). Then the system of nonlinear equations

T (x) = 0 (18.81)

has a unique solution x∗ ∈ Rn.

Proof. Let us apply the induction method. For n = 1 the result is true by Lemma

18.12. Let it be true in Rn−1 (n ≥ 2). Show that this result holds in Rn. Consider in

Rn a standard orthonormal basis {ei}ni=1

(
ei = (δik)nk=1

)
. Then T (x) can be represented

as T (x) = {Ti(x)}ni=1, x =
∑n

j=1 xjej . For some fixed t ∈ R define the operator Tt by

Tt : Rn−1 → Rn−1 for all x = ∑n−1

j=1 xjej acting as Tt(x) := {Ti(x + ten)}n−1
i=1 . Evidently,

Tt(x) is continuous on Rn−1 and, by the induction supposition, for any x, y ∈ Rn−1 it

satisfies the following inequality

〈x − y, Tt (x)− Tt(y)〉 = (t − t) [Tn(x + ten)− Tn(y + ten)]

+
n−1∑
t=1

(xi − yi) [Ti(x + ten)− Ti(y + ten)] ≥ c ‖x − y‖2

This means that the operator Tt also satisfies (18.80). By the induction supposition the

system of nonlinear equations

Ti(x + ten) = 0, i = 1, . . . , n− 1 (18.82)

has a unique solution x̂ ∈ Rn−1. This means exactly that there exists a vector-function

x̂ = ∑n−1

j=1 xjej : R → Rn−1 which solves the system of nonlinear equations Tt (x) = 0.

It is not difficult to check that the function x̂ = x̂ (t) is continuous. Consider then the

function ψ (t) := Tn(x + ten). It is also not difficult to check that this function satisfies

all conditions of Lemma 18.12. Hence, there exists such τ ∈ R that ψ (τ) = 0. This

exactly means that the equation (18.81) has a unique solution. �

The following proposition seems useful.
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Theorem 18.16. Trenogin (1980) Let T : Rn → Rn be a continuous monotonic operator
such that for all x ∈ Rn with ‖x‖ > λ the following inequality holds:

(x, T (x)) ≥ 0 (18.83)

Then the equation T (x) = 0 has a solution x∗ such that ‖x∗‖ ≤ λ.
Proof. Consider the sequence {εk}, 0 < εk →

k→∞ 0 and the associated sequence {Tk},
T : Rn → Rn of the operators defined by Tk (x) := εkx + T (x). Then, in view of

monotonicity of T , we have for all x, y ∈ Rn

〈x − y, Tk(x)− Tk(y)〉 = (x − y, Tk(x)− Tk(y))
= εk (x − y, (x − y)+ (x − y, T (x)− T (y)) ≥ εk ‖x − y‖2

Hence, by Theorem 18.15 it follows that the equation Tk(x) = 0 has the unique solution

x∗k such that
∥∥x∗k∥∥ ≤ λ. Indeed, if not, we obtain the contradiction: 0 = (

x∗k , Tk(x
∗
k )
)

≥ εk
∥∥x∗k∥∥2

> 0. Therefore, the sequence
{
x∗k
} ⊂ Rn is bounded. By the Bolzano–

Weierstrass theorem there exists a subsequence
{
x∗kt

}
convergent to some point x̄ ⊂ Rn

when kt →∞. This implies 0 = Tkt (x∗kt ) = εx∗kt x∗kt + T
(
x∗kt

)
. Since T (x) is continuous

then when kt →∞ we obtain T (x̄). Theorem is proven. �

18.6.2 Galerkin method for equations with monotone operators

The technique given below presents the constructive method for finding an approxi-

mative solution of the operator equation T (x) = 0 where T : X → X ∗ (D (T ) = X ,
R (T ) ⊂ X ∗). Let {ϕk}∞k=1 be a complete sequence of linearly independent elements from

X , and Xn be a subspace spanned on ϕ1, . . . , ϕn.

Definition 18.24. The element xn ∈ X having the construction

xn =
n∑
l=1

clϕl (18.84)

is said to be the Galerkin approximation to the solution of the equation T (x) = 0 with
the monotone operator T if it satisfies the following system of equations

〈ϕk, T (xn)〉 = 0, k = 1, . . . , n (18.85)

or, equivalently,

n∑
l=1

〈ϕl, T (xn)〉ϕl = 0 (18.86)

Remark 18.7.

1. It is easy to prove that xn is a solution of (18.85) if and only if 〈u, T (xn)〉 = 0 for any
u ∈ Xn.
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2. The system (18.85) can be represented in the operator form Jnc̄n = xn where the
operator Jn is defined by (18.85) with c̄n := (c1, . . . , cn). Notice that ‖Jn‖ ≤√∑n

l=1
‖ϕl‖2. In view of this, the equation (18.85) can be rewritten in the standard

basis as

〈ϕk, T (Jnc̄n)〉 = 0, k = 1, . . . , n (18.87)

Lemma 18.14. If an operator T : X → X ∗ (D (T ) = X , R (T ) ⊂ X ∗) is strictly
monotone (18.74) then

1. The equation (18.81) has a unique solution.
2. For any n the system (18.85) has a unique solution.

Proof. If u and v are two solutions of (18.81), then T (u) = T (v) = 0, and, hence,

〈x − y, T (u)− T (v)〉 = 0 which, in view of (18.74), takes place if and only if u = v.
Again, if x ′n and x ′′n are two solutions of (18.85) then

〈
x ′n, T

(
x ′′n
)〉 = 〈

x ′′n , T
(
x ′n
)〉 =〈

x ′n, T
(
x ′n
)〉 = 〈

x ′′n , T
(
x ′′n
)〉 = 0, or, equivalently,〈

x ′n − x ′′n , T
(
x ′n
)− T (

x ′′n
)〉 = 0

which, by (18.74), is possible if and only if x ′n = x ′′n . �

Lemma 18.15. Trenogin (1980) Let an operator T : X → X ∗ (D (T ) = X , R (T ) ⊂
X ∗) be monotone and semi-continuous, and there exists a constant λ > 0 such that for
all x ∈ X with ‖x‖ > λ we have 〈x, T (x)〉 > 0. Then for any n the system (18.85) has
the solution xn ∈ X such that ‖xn‖ ≤ λ.

Proof. It is sufficient to introduce in Rn the operator Tn defined by

Tn (c̄n) := {〈ϕk, T (Jnc̄n)〉}nk=1

and to check that it satisfies all condition of Theorem 18.16. �

Based on these two lemmas it is possible to prove the following main result on the
Galerkin approximations.

Proposition 18.3. Trenogin (1980) Let the conditions of Lemma 18.15 be fulfilled and
{xn} is the sequence of solutions of the system (18.85). Then the sequence {T (xn)} weakly
converges to zero.

18.6.3 Main theorems on the existence of solutions for equations with monotone
operators

Theorem 18.17. Trenogin (1980) Let T : X → X ∗ (D (T ) = X , R (T ) ⊂ X ∗) be an
operator, acting from a real separable reflexive Banach space X into its dual space X ∗,
which is monotone and semi-continuous. Let also there exist a constant λ > 0 such that
for all x ∈ X with ‖x‖ > λ we have 〈x, T (x)〉 > 0. Then the equation T (x) = 0 has
the solution x∗ such that ‖x∗‖ ≤ λ.
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Proof. By Lemma 18.15 for any n the Galerkin system (18.85) has the solution xn such

that ‖xn‖ ≤ λ. By reflexivity, from any sequence {xn} one can take out the subsequence

{xn′ } weakly convergent to some x0 ∈ X such that ‖x0‖ ≤ λ. Then, by monotonicity of

T , it follows that

Sn′ := 〈x − xn′ , T (x)− T (xn′)〉 ≥ 0

But Sn′ = 〈x − xn′ , T (x)〉 − 〈x, T (xn′)〉, and, by Proposition 18.3, 〈x, T (xn′)〉 → 0

weakly if n′ → ∞. Hence, Sn′ → 〈x − x0, T (x)〉, and, therefore for all x ∈ X

〈x − x0, T (x)〉 ≥ 0 (18.88)

If T (x0) = 0 then the theorem is proven. Let now T (x0) �= 0. Then, by Corollary 18.5

from the Hahn–Banach theorem 18.6 (for the case X = X ∗∗), it follows the existence of

the element z0 ∈ X such that 〈z0, T (x0)〉 = ‖T (x0)‖. Substitution of x := x0−tz0 (t > 0)

into (18.88) implies 〈z0, T (x0 − tz0)〉 ≤ 0, which for t → +0 gives 〈z0, T (x0)〉 =
‖T (x0)‖ ≤ 0. This is equivalent to the identity T (x0) = 0. So, the assumption that

T (x0) �= 0 is incorrect. Theorem is proven. �

Corollary 18.10. Let an operator T be, additionally, coercive. Then the equation

T (x) = y (18.89)

has a solution for any y ∈ X ∗.

Proof. For any fixed y ∈ X ∗ define the operator F(x) : X → X ∗ acting as F(x) :=
T (x)− y. It is monotone and semi-continuous too. So, we have

〈x, F (x)〉 = 〈x, T (x)〉 − 〈x, y〉 ≥ γ (‖x‖) ‖x‖ − ‖y‖ ‖x‖
= [γ (‖x‖)− ‖y‖] ‖x‖

and, therefore, there exists λ > 0 such that for all x ∈ X with ‖x‖ > λ one has 〈x, F (x)〉
> 0. Hence, the conditions of Theorem 18.17 hold which implies the existence of the

solution for the equation F (x) = 0. �

Corollary 18.11. If in Corollary 18.10 the operator is strictly monotone, then the solution
of (18.89) is unique, i.e., there exists the operator T −1 inverse to T .

Example 18.16. (Existence of the unique solution for ODE boundary problem)
Consider the following ODE boundary problem

Dx (t)− f (t, x) = 0, t ∈ (a, b)
Dx (t) :=

m∑
l=1

(−1)l Dl
{
Pl (x)D

lx (t)
}
,

D := d

dt
is the differentiation operator

Dkx (a) = Dkx (b) = 0, 0 ≤ k ≤ m− 1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(18.90)
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in the Sobolev space Sm2 (a, b) (18.9). Suppose that f (t, x) for all x1 and x2 satisfies the
condition

[f (t, x1)− f (t, x2)] (x1 − x2) ≥ 0

Let for the functions Pl (x) the following additional condition be fulfilled for some α > 0:

b∫
t=a

(
m∑
l=1

Pl (x)
[
Dlx (t)

]2)
dt ≥ α ‖x‖Sm2 (a,b)

Consider now in Sm2 (a, b) the bilinear form

b (x, z) :=
b∫

t=a

m∑
l=1

Pl (x)
[
Dlx (t)

] [
Dlz (t)

]
dt +

b∫
t=a
f (t, x (t)) z (t) dt

defining in Sm2 (a, b) the nonlinear operator

(T (x), z)Sm2 (a,b) = b (x, z)

which is continuous and strongly monotone since

b (x1, z)− b (x2, z) ≥ α ‖x1 − x2‖Sm2 (a,b)
Then by Theorem 18.17 and Corollary 18.10 it follows that the problem (18.90) has the
unique solution.

18.7 Differentiation of nonlinear operators

Consider a nonlinear operator � : X → Y acting from a Banach space X to another

Banach space Y and having a domain D (�) ⊂ X and a range R (T ) ⊂ Y .

18.7.1 Fréchet derivative

Definition 18.25. We say that an operator � : X → Y (D (�) ⊂ X , R (�) ⊂ Y) acting
in Banach spaces is Fréchet differentiable in a point x0 ∈ D (�), if there exists a linear
bounded operator �′ (x0) ∈ L (X ,Y) such that

�(x)−�(x0) = �′ (x0) (x − x0)+ ω (x − x0)
‖ω (x − x0)‖ = o (‖x − x0‖) (18.91)

or, equivalently,

lim
x→x0

�(x)−�(x0)− 〈x − x0,�′ (x0)〉
‖x − x0‖ = 0 (18.92)
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Definition 18.26. If the operator � : X → Y (D (�) ⊂ X , R (�) ⊂ Y), acting in
Banach spaces, is Fréchet-differentiable in a point x0 ∈ D (�) the expression

d� (x0 | h) := 〈h,�′ (x0)〉 (18.93)

is called the Fréchet differential of the operator � in the point x0 ∈ D (�) under the
variation h ∈ X , that is, the Fréchet differential of � in x0 is nothing more than the
value of the operator �′ (x0) at the element h ∈ X .

Remark 18.8. If originally �(x) is a linear operator, namely, if �(x) = Ax where A
∈ L (X ,Y), then �′ (x0) = A in any point x0 ∈ D (A).

Several simple propositions follow from these definitions.

Proposition 18.4.

1. If F,G : X → Y and both operators are Fréchet differentiable in x0 ∈ X then

(F +G)′ (x0) = F ′ (x0)+G′ (x0) (18.94)

and for any scalar α

(αF)′ (x0) = αF ′ (x0) (18.95)

2. If F : X → Y is Fréchet-differentiable in x0 ∈ D (A) and G : Z → X is Fréchet-
differentiable in z0 ∈ D (G) such that G(z0) = x0 then there is well-defined and
continuous in the point z0 the superposition (F ◦G) of the operators F andG, namely,

F (G (z)) := (F ◦G) (z) (18.96)

and

(F ◦G)′ (z0) = F ′ (x0)G′ (z0) (18.97)

Example 18.17. In finite-dimensional spaces F : X = Rk → Y = Rl and G : Z = Rm

→ X = Rk we have the systems of two algebraic nonlinear equations

y = F(x), x = G(z)
and, moreover,

F ′(x0) = A :=
∥∥∥∥∂fi (x0)∂xj

∥∥∥∥
i=1,...,k;j=1,...,l

where A is called the Jacobi matrix. Additionally, (18.97) is converted into the following
representation:

(F ◦G)′ (z0) =
∥∥∥∥∥

k∑
j=1

∂fi (x0)

∂xj

∂gj (z0)

∂zs

∥∥∥∥∥
i=1,...,l;s=1,...,m
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Example 18.18. If F is the nonlinear integral operator acting in C [a, b] and is
defined by

F(u) := u(x)−
b∫

t=a
f (x, t, u(t)) dt

then F ′(u0) exists in any point u0 ∈ C [a, b] such that

F ′(u0)h = h (x)−
b∫

t=a

∂f (x, t, u0(t))

∂u
h(t) dt

18.7.2 Gâteaux derivative

Definition 18.27. If for any h ∈ X there exists the limit

lim
t→+0

�(x0 + th)−�(x0)
t

= δ� (x0 | h) (18.98)

then the nonlinear operator δ� (x0 | h) is called the first variation of the operator �(x)
in the point x0 ∈ X at the direction h.

Definition 18.28. If in (18.98)

δ� (x0 | h) = Ax0 (h) =
〈
h,Ax0

〉
(18.99)

where Ax0 ∈ L (X ,Y) is a linear bounded operator then � is Gâteaux-differentiable in
a point x0 ∈ D (�) and the operator Ax0 := �′ (x0) is called the Gâteaux derivative of
� in the point x0 (independently on h). Moreover, the value

d� (x0 | h) :=
〈
h,Ax0

〉
(18.100)

is known as the Gâteaux differential of � in the point x0 at the direction h.

It is easy to check the following connections between the Gâteaux and Fréchet differ-

entiability.

Proposition 18.5.

1. Fréchet-differentiability implies Gâteaux-differentiability.
2. Gâteaux-differentiability does not guarantee Fréchet-differentiability. Indeed, for the

function

f (x, y) =
{
1 if y = x2
0 if y �= x2
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which, evidently, is not differentiable in the point (0, 0) in the Fréchet sense, the Gâteaux
differential in the point (0, 0) exists and is equal to zero since, in view of the properties

f (0, 0) = 0 and f (th, tg) = 0 for any (h, g), we have
f (th, tg)− f (0, 0)

t
= 0.

3. The existence of the first variation does not imply the existence of the Gâteaux
differential.

18.7.3 Relation with “variation principle”

The main justification of the concept of differentiability is related to the optimization

(or optimal control) theory in Banach spaces and is closely connected with the, so-called,

variation principle which allows us to replace a minimization problem by an equivalent

problem in which the loss function is linear.

Theorem 18.18. Aubin (1979) Let � : U → Y be a functional Gâteaux-differentiable
on a convex subset X of a topological space U . If x∗ ∈ X minimizes �(x) on X then

〈x∗,�′ (x∗)〉 = min
x∈X

〈x,�′ (x∗)〉 (18.101)

In particular, if x∗ is an interior point of X , i.e., x∗ ∈ int X , then this condition implies

�′ (x∗) = 0 (18.102)

Proof. Since X is convex then ỹ = x∗ + λ (x − x∗) ∈ X for any λ ∈ (0, 1] whenever
x ∈ X . Therefore, since x∗ is a minimizer of �(x) on X , we have

�(ỹ)−�(x∗)
λ

≥ 0.

Taking the limit λ→ +0 we deduce from the Gâteaux-differentiability of�(x) on X that

〈x − x∗,�′ (x∗)〉 ≥ 0 for any x ∈ X . In particular if x∗ ∈ int X then for any y ∈ X there

exists ε > 0 such that x = x∗ + εy ∈ X , and, hence, 〈x − x∗,�′ (x∗)〉 = ε 〈y,�′ (x∗)〉 ≥ 0

which is possible for any y ∈X if�′ (x∗) = 0. Theorem is proven. �

18.8 Fixed-point theorems

This section deals with the most important topics of functional analysis related with

• The existence principle;
• The convergence analysis.

18.8.1 Fixed points of a nonlinear operator

In this section we follow Trenogin (1980) and Zeidler (1995).

Let an operator � : X → Y (D (�) ⊂ X , R (�) ⊂ Y) acts in Banach space X .

Suppose that the set M� := D (�) ∩R (�) is not empty.

Definition 18.29. The point x∗ ∈ M� is called a fixed point of the operator � if it
satisfies the equality

�(x∗) = x∗ (18.103)
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Remark 18.9. Any operator equation (18.81): T (x) = 0 can be transformed to the form
(18.103). Indeed, one has

T̃ (x) := T (x)+ x = x

That’s why all results, concerning the existence of the solution to the operator equation
(18.81), can be considered as ones but with respect to the equation T̃ (x) = x. The
inverse statement is also true.

Example 18.19. The fixed points of the operator�(x) = x3 are {0,−1, 1} which follows
from the relation 0 = x3 − x = x (x2 − 1

) = x (x − 1) (x + 1).

Example 18.20. Let us try to find the fixed points of the operator

�(x) :=
1∫

s=0

x (t) x (s) ds + f (t) (18.104)

assuming that it acts in C [0, 1] (which is real) and that
∫ 1

t=0
f (t) dt ≤ 1/4. By the

definition (18.103) we have x (t)
∫ 1

s=0
x (s) ds + f (t) = x (t). Integrating this equation

leads to the following:

⎛
⎝ 1∫
t=0

x (t) dt

⎞
⎠2

+
1∫

t=0

f (t) dt =
1∫

t=0

x (t) dt

which gives

1∫
t=0

x (t) dt = 1

2
±

√√√√√1

4
−

1∫
t=0

f (t) dt (18.105)

So, any function x (t) ∈ C [0, 1] satisfying (18.105) is a fixed point of the operator
(18.104).

The main results related to the existence of the solution of the operator equation

�(x) = x (18.106)

are as follows:

• The contraction principle (see (14.17)) or the Banach theorem (1920) which states

that if the operator � : X→ X (X is a compact) is k-contractive, i.e., for all x, x ′ ∈ X∥∥�(x)−� (
x ′
)∥∥ ≤ k ∥∥x − x ′∥∥, k ∈ [0, 1)

then

(a) the solution of (18.106) exists and is unique;
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(b) the iterative method xn+1 = �(xn) exponentially converges to this solution.

• The Brouwer fixed-point theorem for finite-dimensional Banach space.
• The Schauder fixed-point theorem for infinite-dimensional Banach space.
• The Leray–Schauder principle which states that a priori estimates yield existence.

There are many other versions of these fixed-point theorems such as Kakutani, Ky-Fan

etc. related some generalizations of the theorems mentioned above. For details see Aubin

(1979) and Zeidler (1986).

18.8.2 Brouwer fixed-point theorem

To deal correctly with the Brouwer fixed-point theorem we need the preparations

considered below.

18.8.2.1 The Sperner lemma
Let

SN (x0, . . . , xN) :={
x ∈ X | x =

N∑
i=0

λixi, λi ≥ 0,

N∑
i=0

λi = 1

}
(18.107)

be an N -simplex in a finite-dimensional normed space X and {S1, . . . , SJ } be a

triangulation of SN consisting of N -simplices Sj (j = 1, . . . , J ) (see Fig. 18.1) such that

(a) SN =
J∪
j=1
Sj ;

(b) if j �= k, then the intersection Sj ∩
j �=k Sk or is empty or a common face of dimension

less than N .

Let one of the numbers (0, 1, . . . , N) be associated with each vertex v of the simplex

Sj . So, suppose that if v ∈ Sj := Sj
(
xi0 , . . . , xiN

)
, then one of the numbers i0, . . . , iN is

associated with v.

Definition 18.30. Sj is called a Sperner simplex if and only if all of its vertices carry
different numbers, i.e., the vertices of SN carry different numbers 0, 1, . . . , N .

Lemma 18.16. (Sperner) The number of Sperner simplices is always odd.

S1 S2

S3S4

S

u0 u1

u2

Fig. 18.1. N -simplex and its triangulation.
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Proof. It can be easily proven by induction that for N = 1 each Sj is a 1-simplex

(segment). In this case a 0-face (vertex) of Sj is called distinguished if and only if

it carries the number 0. So, one has exactly two possibilities (see Fig. 18.2a): (i) Sj
has precisely one distinguished (N − 1)-faces, i.e., Sj is a Sperner simplex; (ii) Sj has

precisely two or more distinguished (N − 1)-faces, i.e., Sj is not a Sperner simplex.

But since the distinguished 0-face occurs twice in the interior and once on the bound-

ary, the total number of distinguished 0-faces is odd. Hence, the number of Sperner

simplices is odd. Let now N = 2 (see Fig. 18.2b). Then Sj is 2-simplex and a 1-face

(segment) of Sj is called distinguished if and only if it carries the numbers 0, 1. Conditions

(i) and (ii) given above are satisfied for N = 2. The distinguished 1-faces occur twice in

the interior and, by the case N = 1, it follows that the number of the distinguished 1-faces

is odd. Therefore, the number of Sperner simplices is odd. Now let N ≥ 3. Supposing

that the lemma is true for (N − 1), as in the case N = 2, we easily obtain the result. �

18.8.2.2 The Knaster–Kuratowski–Mazurkiewicz (KKM) lemma
Lemma 18.17. (Knaster–Kuratowski–Mazurkiewicz) Let SN (x0, . . . , xN) be an N -
simplex in a finite-dimensional normed space X . Suppose we are given closed sets {Ci}Ni=1

in X such that

SN (x0, . . . , xN) ⊆
k⋃
m=0

Cim (18.108)

for all possible systems of indices {i0, . . . , ik} and all k = 0, . . . , N . Then there exists a
point v ∈ SN (x0, . . . , xN) such that v ∈ Cj for all j = 0, . . . , N .

Proof. Since for N = 0 the set S0 (x0) consists of a single point x0, and the statement

looks trivial. Let N ≥ 1. Let v be any vertex of Sj (j = 0, . . . , N) (for a triangulation

S1, . . . , SN ) such that v ∈ Sj
(
xi0 , . . . , xiN

)
. By the assumptions of this lemma there

exists a set Ck such that v ∈ Ck . We may associate the index k with the vertex v.

By the Sperner lemma 18.16 it follows that there exists a Sperner simplex Sj whose

vertices carry the numbers 0, . . . , N . Hence the vertices v0, . . . , vN satisfy the condi-

tion vk ∈ Ck (k = 0, . . . , N). Consider now a sequence of triangulations of simplex

SN (x0, . . . , xN) such that the diameters of the simplices of the triangulations tend to zero

x0 x1

(a)

(b)
0

0

2

0 1 10

2

11

x2

x1x0

Sperner
simplex

Fig. 18.2. The Sperner simplex.
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(selecting, for example, a sequence barycentric subdivision of S). So, there are points

v
(n)
k ∈ Ck (k = 0, . . . , N; n = 1, 2, . . .) such that lim

n→∞diam SN
(
v
(n)
0 , . . . , v

(n)
N

)
= 0. Since

the simplex SN (x0, . . . , xN) is a compact, there exists a subsequence
{
v
(s)
k

}
such that

v
(s)
k →

s→∞ v ∈ SN (x0, . . . , xN) for all k = 0, . . . , N . And since the set Ck is closed, this

implies v ∈ Ck for all k = 0, . . . , N . Lemma is proven. �

Now we are ready to formulate the main result of this section.

18.8.2.3 The Brouwer theorem
Theorem 18.19. (Brouwer 1912) The continuous operator � : M → M has at least
one fixed point when M is a compact, convex, nonempty set in a finite-dimensional
normed space over the field F (real or complex).

Proof.

(a) Consider this operator when M = SN and demonstrate that the continuous operator

� : SN → SN (N = 0, 1, . . .) has at least one fixed point when SN = SN (x0, . . . , xN)
is an N -simplex in a finite-dimensional normed space X . For N = 0 the set S0
consists of a single point and the statement is trivial. For N = 1 the statement is

also trivial. Let now N = 2. Then S2 = S2 (x0, x1, x2) and any point x in S2 can be

represented as

x =
2∑
i=0

λi (x) xi, λi ≥ 0,

2∑
i=0

λi = 1 (18.109)

We set

Ci := {x ∈ SN | λi (�x) ≤ λi (x), i = 0, 1, 2}

Since λi (x) and � are continuous on SN , the sets Ci are closed and the condition

(18.108) of Lemma 18.17 is fulfilled, that is, SN ∈ k∪
m=0
Cim (k = 0, 1, 2). Indeed, if

it is not true, then there exists a point x ∈ S2
(
xi0 , xi1 , xi2

)
such that x /∈ k∪

m=0
Cim ,

i.e., λim (�x) > λim (x) for all m = 0, . . . , k. But this is in contradiction to the

representation (18.109). Then by Lemma 18.17 there is a point y ∈ S2 such that y ∈
Cj (j = 0, 1, 2). This implies λi (�y) ≤ λi (y) for all j = 0, 1, 2. Since also �y ∈ S2
we have

2∑
i=0

λi (y) =
2∑
i=0

λi (�y) = 1

and, hence, λi (�y) = λi (y) for all j = 0, 1, 2 which is equivalent to the expression

�y = y. So, y is the desired fixed point of � in the case N = 2. In N ≥ 3 one can

use the same arguments as for N = 2.

(b) Now, when M is a compact, convex, nonempty set in a finite-dimensional

normed space, it is easy to show that M is homeomorphic to some N -simplex
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(N = 0, 1, 2, . . .). This means that there exist homeomorphisms � : M → B and

C : SN → B such that the map

C−1 ◦� : M �→BC
−1→SN

is the desired homeomorphism from the given set M onto the simplex SN . Using

now this fact shows that each continuous operator � : M → M has at least one

fixed point. This completes the proof.

�
Corollary 18.12. The continuous operator B : K → K has at least a fixed point when
K is a subset of a normed space that is homeomorphic to a set M as it is considered in
Theorem 18.19.

Proof. Let C : M → K be a homeomorphism. Then the operator

C−1 ◦ B ◦ C : M C→K B→KC−1→M

is continuous. By Theorem 18.19 there exists a fixed point x∗ of the operator

� := C−1◦B ◦C, i.e., C−1 (B (Cx∗)) = x∗. Let y = Cx. Then By = y, y ∈ K. Therefore

B has a fixed point. Corollary is proven. �

18.8.3 Schauder fixed-point theorem

This result represents the extension of the Brouwer fixed-point theorem 18.19 to a

infinite-dimensional Banach space.

Theorem 18.20. (Schauder 1930) The compact operator � : M → M has at least one
fixed point when M is a bounded, closed convex, nonempty subset of a Banach space X
over the field F (real or complex).

Proof. Zeidler (1995) Let x ∈ M. Replacing x with x − x0, if necessary, one may

assume that 0 ∈ M. By Theorem 18.7 on the approximation of compact operators it

follows that for every n = 1, 2, . . . there exists a finite-dimensional subspace Xn of X
and a continuous operator �n : M → Xn such that ‖�n (x)−�n (x)‖ ≤ n−1 for any x

∈ M. Define Mn := M∩Xn. Then Mn is a bounded, closed, convex subset of Xn with
0 ∈ Mn and �n (M) ⊆ M since M is convex. By the Brouwer fixed-point theorem

18.19 the operator �n : Mn → Mn has a fixed point, say xn, that is, for all n = 1, 2, . . .

we have �n (xn) = xn ∈ Mn. Moreover, ‖�(xn)− xn‖ ≤ n−1. Since Mn ⊆ M, the

sequence {xn} is bounded. The compactness of � : M → M implies the existence of a

sequence {x̃n} such that �(xn)→ v when n→∞. By the previous estimate

‖v − xn‖ =
∥∥[v −�(xn)]+ [�(xn)− xn]

∥∥
≤ ∥∥[v −�(xn)]∥∥+ ‖�(xn)− xn‖ →

n→∞ 0

So, xn → v. Since �(xn) ∈ M and the set M is closed, we get that v ∈ M. And, finally,

since the operator � : M → M is continuous, it follows that �(x) = x ∈ M. Theorem

is proven. �
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Example 18.21. (Existence of solution for integral equations) Let us solve the following
integral equation

u (t) = λ
b∫

y=a
F (t, y, u(y)) dy

−∞ < a < b <∞, t ∈ [a, b], λ ∈ R

(18.110)

Define

Qr :=
{
(t, y, u) ∈ R3 | t, y ∈ [a, b], |u| ≤ r}

Proposition 18.6. Zeidler (1995) Assume that

(a) The function F : Qr → R is continuous;

(b) |λ|μ ≤ r , μ := 1

b − a max
(t,x,u)∈Qr

|F (t, x, u)|;
Setting X := C [a, b] and M := {u ∈ X | ‖u‖ ≤ r}, it follows that the integral

equation (18.110) has at least one solution u ∈ M.

Proof. For all t ∈ [a, b] define the operator

(Au) (t) := λ
b∫

y=a
F (t, y, u(y)) dy

Then the integral equation (18.110) corresponds to the following fixed-point problem

Au = u ∈ M. Notice that the operator A : M → M is compact and for all u ∈ M

‖Au‖ ≤ |λ| max
t∈[a,b]

∣∣∣∣∣∣
b∫

y=a
F (t, y, u(y)) dy

∣∣∣∣∣∣ ≤ |λ|μ ≤ r

Hence, A (M) ⊆ M. Thus, by the Schauder fixed-point theorem 18.20 it follows that

equation (18.110) has a solution. �

18.8.4 The Leray–Schauder principle and a priori estimates

In this subsection we will again concern ourselves with the solution of the operator

equation

�(x) = x ∈ X (18.111)

using the properties of the associated parametrized equation

t� (x) = x ∈ X , t ∈ [0, 1) (18.112)
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For t = 0 equation (18.112) has the trivial solution x = 0, and for t = 1 coincides with

(18.111). Assume that the following condition holds:

(A) There is a number r > 0 such that if x is a solution of (18.112), then

‖x‖ ≤ r (18.113)

Remark 18.10. Here we do not assume that (18.112) has a solution and, evidently, that
the assumption (A) is trivially satisfied if the set �(X ) is bounded since ‖�(x)‖ ≤ r for
all x ∈ X .

Theorem 18.21. (Leray–Schauder 1934) If the compact operator � : X → X given on
the Banach space X over the field F (real or complex) satisfies assumption (A), then the
original equation (18.111) has a solution (nonobligatory unique).

Proof. Zeidler (1995) Define the subset

M := {x ∈ X | ‖x‖ ≤ 2r}

and the operator

B (x) :=
⎧⎨
⎩

�(x) if ‖�(x)‖ ≤ 2r

2r
� (x)

‖�(x)‖ if ‖�(x)‖ > 2r

Obviously, ‖B (x)‖ ≤ 2r for all x ∈ X which implies B (M) ⊆ M. Show that B : M
→ M is a compact operator. First, notice that B is continuous because of the continuity

of �. Then consider the sequences {un} ∈ M and {vn} such that (a) {vn} ∈ M or

(b) {vn} /∈ M. In case (a) the boundedness of M and the compactness of � imply that

there is a subsequence
{
vnk

}
such that B

(
vnk

) = �
(
vnk

) → z as n → ∞. In case

(b) we may choose this subsequence so that 1/
∥∥� (

vnk
)∥∥→ α and �

(
vnk

)→ z. Hence,

B
(
vnk

) → 2rαz. So, B is compact. The Schauder fixed-point theorem 18.20 being

applied to the compact operator B : M → M provides us with a point x ∈ M such that

x = B (x). So, if ‖�(x)‖ ≤ 2r , then B (x) = �(x) = x and we obtain the solution of the
original problem. Another case ‖�(x)‖ > 2r is impossible by assumption (A). Indeed,

suppose �(x) = x for ‖�(x)‖ > 2r . Then x = Bx = t� (x) with t := 2r/‖�(x)‖ < 1.

This forces ‖x‖ = t ‖�(x)‖ = 2r which contradicts with assumption (A). Theorem is

proven. �

Remark 18.11. Theorem 18.21 turns out to be very useful for the justification of the
existence of solutions for different types of partial differential equations (such as the
famous Navier–Stokes equations for viscous fluids, quasi-linear elliptic etc.).
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19 Ordinary Differential Equations
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19.1 Classes of ODE

In this chapter we will deal with the class of functions satisfying the following ordinary
differential equation

ẋ (t) = f (t, x (t)) for almost all t ∈ [t0, t0 + θ ]
x (t0) = x0

f : R× X → X
(19.1)

where f is a nonlinear function and X is a Banach space (any concrete space of functions).

Cauchy’s problem for (19.1) consists of resolving (19.1), or, in other words, in finding a

function x (t) which satisfies (19.1).

For simplicity we will also use the following abbreviations:

• ODE meaning an ordinary differential equation,
• DRHS meaning the discontinuous right-hand side.

Usually the following three classes of ODE (19.1) are considered:

1. Regular ODE:
f (t, x) is continuous in both variables. In this case x (t), satisfying (19.1), should be

continuous differentiable, i.e.,

x (t) ∈ C1 [t0, t0 + θ ] (19.2)

2. ODE of Carathéodory’s type:
f (t, x) in (19.1) is measurable in t and continuous in x.

3. ODE with discontinuous right-hand side:
f (t, x) in (19.1) is continuous in t and discontinuous in x. In fact, this type of ODE

equation is related to the differential inclusion:

ẋ (t) ∈ F (t, x (t)) (19.3)

where F (t, x) is a set in R× X . If this set for some pair (t, x) consists of one point,

then F (t, x) = f (t, x).
501
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19.2 Regular ODE

19.2.1 Theorems on existence

19.2.1.1 Theorem based on the contraction principle
Theorem 19.1. (on local existence and uniqueness) Let f (t, x) be continuous in t on
[t0, t0 + θ ], (θ ≥ 0) and for any t ∈ [t0, t0 + θ ] it satisfies the, so-called, local Lipschitz
condition in x, that is, there exist constants c, Lf > 0 such that

‖f (t, x)‖ ≤ c

‖f (t, x1)− f (t, x2)‖ ≤ Lf ‖x1 − x2‖
(19.4)

for all t ∈ [t0, t0 + θ] and all x, x1, x2 ∈ Br (x0) where

Br (x0) := {x ∈ X | ‖x − x0‖ ≤ r}

Then Cauchy’s problem (19.1) has a unique solution on the time-interval [t0, t0 + θ1],
where

θ1 < min
{
r/c, L−1

f , θ
}

(19.5)

Proof.

1. First, show that Cauchy’s problem (19.1) is equivalent to finding the continuous

solution to the following integral equation

x (t) = x0 +
t∫

s=t0

f (s, x (s)) ds (19.6)

Indeed, if x (t) is a solution of (19.1), then, obviously, it is a differentiable function

on [t0, t0 + θ1]. By integration of (19.1) on [t0, t0 + θ1] we obtain (19.6). Inversely,

suppose x (t) is a continuous function satisfying (19.6). Then, by the assumption (19.4)

of the theorem, it follows

‖f (s, x (s))− f (s0, x (s0))‖ =
∥∥[f (s, x (s))− f (s, x (s0))]

+ [f (s, x (s0))− f (s0, x (s0))]
∥∥ ≤ ‖f (s, x (s))− f (s, x (s0))‖

+‖f (s, x (s0))− f (s0, x (s0))‖ ≤ Lf ‖x (s)− x (s0)‖
+‖f (s, x (s0))− f (s0, x (s0))‖

This implies that if s, s0 ∈ [t0, t0 + θ1] and s → s0, then the right-hand side of the

last inequality tends to zero, and, hence, f (s, x (s)) is continuous at each point of the

interval [t0, t0 + θ1]. And, moreover, we also obtain that x (t) is differentiable on this

interval, satisfies (19.1) and x (t0) = x0.
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2. Using this equivalence, let us introduce the Banach space C [t0, t0 + θ1] of abstract
continuous functions x (t) with values in X and with the norm

‖x (t)‖C := max
t∈[t0,t0+θ1]

‖x (t)‖X (19.7)

Consider in C [t0, t0 + θ1] the ball Br (x0) and notice that the nonlinear operator

� : C [t0, t0 + θ1] → C [t0, t0 + θ1] defined by

�(x) = x0 +
t∫

s=t0

f (s, x (s)) ds (19.8)

transforms Br (x0) into Br (x0) since

‖�(x)− x0‖C = max
t∈[t0,t0+θ1]

∥∥∥∥∥∥
t∫

s=t0

f (s, x (s)) ds

∥∥∥∥∥∥
≤ max
t∈[t0,t0+θ1]

t∫
s=t0

‖f (s, x (s))‖ ds ≤ θ1c < r

Moreover, the operator � is a contraction (see Definition 14.20) on Br (x0). Indeed,

by the local Lipschitz condition (19.4), it follows that

‖�(x1)−�(x2)‖C = max
t∈[t0,t0+θ1]

∥∥∥∥∥∥
t∫

s=t0

[f (s, x1 (s))− f (s, x2 (s))] ds
∥∥∥∥∥∥

≤ max
t∈[t0,t0+θ1]

t∫
s=t0

‖f (s, x1 (s))− f (s, x2 (s))‖ ds

≤ θ1Lf ‖x1 − x2‖C = q ‖x1 − x2‖C
where q := θ1Lf < 1 for small enough r . Then, by Theorem (the contraction principle)

14.17, we conclude that (19.6) has a unique solution x (t) ∈ C [t0, t0 + θ1]. Theorem
is proven. �

Corollary 19.1. If in the conditions of Theorem 19.1 the Lipschitz condition (19.4) is
fulfilled not locally, but globally, that is, for all x1, x2 ∈ X (which corresponds with the
case r = ∞), then Cauchy’s problem (19.1) has a unique solution for [t0, t0 + θ ] for any
θ big enough.

Proof. It directly follows from Theorem 19.1 if we take r →∞. But here we prefer to

present also another proof based on another type of norm different from (19.7). Again, let

us use the integral equivalent form (19.6). Introduce in the Banach space C [t0, t0 + θ1]
the following norm equivalent to (19.7):

‖x (t)‖max := max
t∈[t0,t0+θ ]

∥∥e−Lf tx (t)∥∥X (19.9)
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Then

‖�(x1)−�(x2)‖ ≤ Lf
t∫

s=t0

e−Lf seLf s ‖x1 (s)− x2 (s)‖C ds

= Lf
t∫

s=t0

eLf s
(
e−Lf s ‖x1 (s)− x2 (s)‖C

)
ds

≤ Lf
t∫

s=t0

eLf s ‖x1 (t)− x2 (t)‖max ds

= Lf
t∫

s=t0

eLf s ds ‖x1 (t)− x2 (t)‖max =
(
eLf t − 1

) ‖x1 (t)− x2 (t)‖max

Multiplying this inequality by e−Lf t and taking max
t∈[t0,t0+θ ]

we get

‖�(x1)−�(x2)‖max ≤
(
1− e−Lf θ) ‖x1 (t)− x2 (t)‖max

Since q := 1− e−Lf θ < 1 we conclude that � is a contraction. Taking θ big enough we

obtain the result. Corollary is proven. �

Remark 19.1. Sure, the global Lipschitz condition (19.4) with r = ∞ holds for a very
narrow class of functions which is known as the class of “quasi-linear” functions, that
is why Corollary 19.1 is too conservative. On the other hand, the conditions of Theorem
19.1 for finite (small enough) r < ∞ are not so restrictively valid for any function
satisfying somewhat mild smoothness conditions.

Remark 19.2. The main disadvantage of Theorem 19.1 is that the solution of Cauchy’s
problem (19.1) exists only on the interval [t0, t0 + θ1] (where θ1 satisfies (19.5)), but not
at the complete interval [t0, t0 + θ ], which is very restrictive. For example, the Cauchy
problem

ẋ (t) = x2 (t), x (0) = 1

has the exact solution x (t) = 1

1− t which exists only on [0, 1) but not for all [0,∞).

The theorem presented below gives a constructive (direct) method of finding a unique

solution of the problem (19.1). It has several forms. Here we present the version of this

result which does not use any Lipschitz conditions: neither local, nor global.

Theorem 19.2. (Picard–Lindelöf 1890) Consider Cauchy’s problem (19.1) where the
function f (t, x) is continuous on

S := {
(t, x) ∈ R1+n | |t − t0| ≤ θ ≤ θ, ‖x − x0‖C ≤ r

}
(19.10)
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and the partial derivative
∂

∂x
f : S → Rn is also continuous on S. Define the numbers

M := max
(t,x)∈S

‖f (t, x)‖, L := max
(t,x)∈S

∥∥∥∥ ∂∂x f (t, x)
∥∥∥∥ (19.11)

and choose the real number θ such that

0 < θ ≤ r, θM ≤ r, q := θL < 1 (19.12)

Then

1. Cauchy’s problem (19.1) has a unique solution on S;
2. the sequence {xn (t)} of functions generated iteratively by

xn+1 (t) = x0 +
t∫

s=t0

f (s, xn (s)) ds

x0 (t) = x0, n = 0, 1, . . . ; t0 − θ ≤ t ≤ θ + t0
(19.13)

converges to x (t) in the Banach space X with the norm (19.7) geometrically as

‖xn+1 (t)− x (t)‖C ≤ qn+1 ‖x0 − x (t)‖C (19.14)

Proof. Consider the integral equation (19.6) and the integral operator � (19.8) given on

S. So, (19.6) can be represented as

�(x (t)) = x(t), x (t) ∈ Br (x0)

where � : M → X . For all t ∈ [t0, t0 + θ ] we have

‖�(x (t))− x0‖ = max
t∈[t0,t0+θ ]

∥∥∥∥∥∥
t∫

s=t0

f (s, xn (s)) ds

∥∥∥∥∥∥
≤ max
t∈[t0,t0+θ ]

(t − t0) max
(t,x)∈S

‖f (t, x)‖ ≤ θM ≤ r

i.e., �(M) ⊆ M . By the classical mean value theorem 16.5

‖f (t, x)− f (t, y)‖ =
∥∥∥∥ ∂∂x f (t, z) |z∈[x,y] (x − y)

∥∥∥∥ ≤ L ‖x − y‖
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and, hence,

‖�(x (t))−�(y (t))‖ = max
t∈[t0,t0+θ ]

∥∥∥∥∥∥
t∫

s=t0

[f (s, x (s))− f (s, y (s))] ds
∥∥∥∥∥∥

≤ θL max
t∈[t0,t0+θ ]

‖x (t)− y (t)‖ = q ‖x (t)− y (t)‖C

Applying now the contraction principle we obtain that (19.6) has a unique solution

x ∈ Br (x0). We also have

‖xn+1 (t)− x (t)‖C = max
t∈[t0,t0+θ ]

t∫
s=t0

[f (s, xn (s))− f (s, x (s))] ds

≤ q ‖xn (t)− x (t)‖C ≤ qn+1 ‖x0 − x (t)‖C
Theorem is proven. �

19.2.1.2 Theorem based on the Schauder fixed-point theorem
The next theorem to be proved drops the assumption of Lipschitz continuity but, also,

the assertion of uniqueness.

Theorem 19.3. (Peano 1890) Consider Cauchy’s problem (19.1) where the function
f (t, x) is continuous on S (19.10) where the real parameter θ is selected in such a
way that

0 < θ ≤ r, θM ≤ r (19.15)

Then Cauchy’s problem (19.1) has at least one solution on S.

Proof.

(a) For the Schauder fixed-point theorem use Zeidler (1995). By the same arguments as

in the proof of Theorem 19.2 it follows that the operator � : Br (x0) → Br (x0) is

compact (see Definition 18.14). So, by the Schauder fixed-point theorem 18.20 we

conclude that the operator equation �(x (t)) = x (t), x (t) ∈ Br (x0) has at least one
solution. This completes the proof.

(b) Direct proof (Hartman 2002). Let δ > 0 and x0(t) ∈ C1 [t0 − δ, t0] satisfy on

[t0 − δ, t0] the following conditions: x0(t) = x0, ‖x0(t)− x0‖ ≤ r and
∥∥x ′0(t)∥∥ ≤ d .

For 0 < ε ≤ δ define a function xε(t) on [t0 − δ, t0 + ε] by putting xε(t0) = x0 on

[t0 − δ, t0] and

xε(t) = x0 +
t∫

s=t0

f (s, xε (s − ε)) ds (19.16)

on [t0, t0 + ε]. Note that xε(t) is a C
0-function on [t0 − δ, t0 + ε] satisfying

‖xε(t)− x0‖ ≤ r and ‖xε(t)− xε(s)‖ ≤ d |t − s|
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Thus, for the family of functions
{
xεn(t)

}
, εn → 0 whereas for n → ∞ it follows

that the limit x(t) = lim
n→∞xεn(t) exists uniformly on [t0− δ, t0+ θ ], which implies that

∥∥f (
t, xεn (t − εn)

)− f (t, x (t))∥∥→ 0

uniformly as n → ∞. So, term-by-term integration of (19.16) with ε = εn gives

(19.6) and, hence, x (t) is a solution of (19.1). �

The following corollary of Peano’s existence theorem is often used.

Corollary 19.2. (Hartman 2002) Let f (t, x) be continuous on an open (t, x)-set of E

⊆ R1+n satisfying ‖f (t, x)‖ ≤ M. Let also E0 be a compact subset of E. Then there
exists a θ > 0, depending on E, E0 and M, such that if (t0, x0) ∈ E0, then (19.6) has a
solution on |t − t0| ≤ θ .

19.2.2 Differential inequalities, extension and uniqueness

The most important technique in ODE theory involves the “integration” of the, so-

called, differential inequalities. In this subsection we present results dealing with this

integration process which is extensively used throughout; there will be presented its

immediate application to the extension and uniqueness problems.

19.2.2.1 Bihari and Gronwall–Bellman inequalities
Lemma 19.1.(Bihari 1956) Let

1. v (t) and ξ (t) be nonnegative continuous functions on [t0,∞), that is,

v (t) ≥ 0, ξ (t) ≥ 0 ∀t ∈ [t0,∞), v (t), ξ (t) ∈ C [t0,∞) (19.17)

2. for any t ∈ [t0,∞) the following inequality holds

v (t) ≤ c +
t∫

τ=t0

ξ (τ )� (v (τ)) dτ (19.18)

where c is a positive constant (c > 0) and�(v) is a positive nondecreasing continuous
function, that is,

0 < �(v) ∈ C [t0,∞) ∀v ∈ (0, v̄), v̄ ≤ ∞ (19.19)

Denote

� (v) :=
v∫

s=c

ds

� (s)
(0 < v < v̄) (19.20)
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If in addition

t∫
τ=t0

ξ (τ ) dτ < �(v̄ − 0), t ∈ [t0,∞) (19.21)

then for any t ∈ [t0,∞)

v (t) ≤ �−1

⎛
⎝ t∫
τ=t0

ξ (τ ) dτ

⎞
⎠ (19.22)

where �−1 (y) is the function inverse to � (v), that is,

y = �(v), v = �−1 (y) (19.23)

In particular, if v̄ = ∞ and � (∞) = ∞, then the inequality (19.22) is fulfilled without
any constraints.

Proof. Since �(v) is a positive nondecreasing continuous function the inequality (19.18)

implies that

�(v (t)) ≤ �
⎛
⎝c + t∫

τ=t0

ξ (τ )� (v (τ)) dτ

⎞
⎠

and

ξ (t)� (v (t))

�

⎛
⎝c + t∫

τ=t0

ξ (τ )� (v (τ)) dτ

⎞
⎠

≤ ξ (t)

Integrating the last inequality, we obtain

t∫
s=t0

ξ (s)� (v (s))

�

⎛
⎝c + s∫

τ=t0

ξ (τ )� (v (τ)) dτ

⎞
⎠
ds ≤

t∫
s=t0

ξ (s) ds (19.24)

Denote

w (t) := c +
t∫

τ=t0

ξ (τ )� (v (τ)) dτ
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Then evidently

ẇ (t) = ξ (t)� (v (t))

Hence, in view of (19.20), the inequality (19.24) may be represented as

t∫
s=t0

ẇ (s)

� (w (s))
ds =

w(t)∫
w=w(t0)

dw

� (w)
= � (w (t))−� (w (t0)) ≤

t∫
s=t0

ξ (s) ds

Taking into account that w (t0) = c and � (w (t0)) = 0, from the last inequality it

follows that

� (w (t)) ≤
t∫

s=t0

ξ (s) ds (19.25)

Since

�´(v) = 1

�(v)
(0 < v < v̄)

the function � (v) has the uniquely defined continuous monotonically increasing inverse

function �−1 (y) defined within the open interval (�(+0),� (v̄ − 0)). Hence, (19.25)

directly implies

w (t) = c +
t∫

τ=t0

ξ (τ )� (v (τ)) dτ ≤ �−1

⎛
⎝ t∫
s=t0

ξ (s) ds

⎞
⎠

which, in view of (19.18), leads to (19.22). Indeed,

v (t) ≤ c +
t∫

τ=t0

ξ (τ )� (v (τ)) dτ ≤ �−1

⎛
⎝ t∫
s=t0

ξ (s) ds

⎞
⎠

The case v̄ = ∞ and � (∞) = ∞ is evident. Lemma is proven. �

Corollary 19.3. Taking in (19.22)

�(v) = vm (m > 0,m �= 1)

it follows that

v (t) ≤
⎡
⎣c1−m + (1−m) t∫

τ=t0

ξ (τ ) dτ

⎤
⎦

1
m−1

for 0 < m < 1 (19.26)
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and

v (t) ≤ c
⎡
⎣1− (1−m) cm−1

t∫
τ=t0

ξ (τ ) dτ

⎤
⎦− 1

m−1

for

m > 1 and

t∫
τ=t0

ξ (τ ) dτ <
1

(m− 1) cm−1

Corollary 19.4. (Gronwall 1919) If v (t) and ξ (t) are nonnegative continuous func-
tions on [t0,∞) verifying

v (t) ≤ c +
t∫

τ=t0

ξ (τ ) v (τ ) dτ (19.27)

then for any t ∈ [t0,∞) the following inequality holds:

v (t) ≤ c exp
⎛
⎝ t∫
s=t0

ξ (s) ds

⎞
⎠ (19.28)

This result remains true if c = 0.

Proof. Taking in (19.18) and (19.20)

�(v) = v

we obtain (19.193) and, hence, for the case c > 0

� (v) :=
v∫

s=c

ds

s
= ln

(v
c

)

and

�−1 (y) = c · exp (y)

which implies (19.28). The case c = 0 follows from (19.28) applying c→ 0. �
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19.2.2.2 Differential inequalities
Here we follow Hartman (2002) completely.

Definition 19.1. Let f (t, x) be a continuous function on a plane (t, x)-set E. By a
maximal solution x0(t) of Cauchy’s problem

ẋ(t) = f (t, x), x (t0) = x0 ∈ R (19.29)

is meant to be a solution of (19.29) on a maximal interval of existence such that if x (t)
is any solution of (19.29) then

x (t) ≤ x0(t) (19.30)

holds (by component-wise) on the common interval of existence of x (t) and x0(t). The
minimal solution is similarly defined.

Lemma 19.2. Let f (t, x) be a continuous function on a rectangle

S+ := {
(t, x) ∈ R2 | t0 ≤ t ≤ t0 + θ ≤ t0, ‖x − x0‖C ≤ r

}
(19.31)

and on S+

‖f (t, x)‖ ≤ M and α := min {θ; r/M}

Then Cauchy’s problem (19.29) has a solution on [t0, t0 + α) such that every solution
x = x(t) of ẋ(t) = f (t, x), x (t0) ≤ x0 satisfies (19.30) on [t0, t0 + α).

Proof. Let 0 < α′ < α. Then, by Peano’s existence theorem 19.3, the Cauchy problem

ẋ(t) = f (t, x)+ 1

n
, x(t0) = x0 (19.32)

has a solution x = xn(t) on [t0, t0 + α′] if n is sufficiently large. Then there exists

a subsequence {nk}k=1,2,... such that the limit x0 (t) = lim
k→∞xnk (t) exists uniformly on

[t0, t0 + α′] and x0 (t) is a solution of (19.29). To prove that (19.30) holds on [t0, t0 + α′]
it is sufficient to verify

x (t) ≤ xn(t) on [t0, t0 + α′] (19.33)

for large enough n. If this is not true, then there exists a t = t1 ∈ (t0, t0 + α′) such that

x (t1) > xn(t1). Hence there exists a largest t2 on [t0, t1) such that x (t2) = xn(t2) and
x (t) > xn(t). But by (19.32) x ′n(t2) = x ′ (t2) +

1

n
e, so that xn(t) > x (t) for t > t2 near

t2. This contradiction proves (19.33). Since α′ < α is arbitrary, the lemma follows. �

Corollary 19.5. Let f (t, x) be a continuous function on an open set E and (t0, x0) ∈
E ⊆ R2. Then Cauchy’s problem (19.29) has a maximal and minimal solution near (t0, x0).
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19.2.2.3 Right derivatives
Lemma 19.3.

1. If n = 1 and x ∈ C1 [a, b] then |x (t)| has a right derivative

DR |x (t)| := lim
0<h→0

1

h
[|x (t + h)| − |x (t)|] (19.34)

such that

DR |x (t)| =
{
x ′ (t) sign (x (t)) if x (t) �= 0

|x ′ (t)| if x (t) = 0
(19.35)

and

|DR |x (t)|| = |x ′ (t)| (19.36)

2. If n > 1 and x ∈ C1 [a, b] then ‖x (t)‖ has a right derivative

DR ‖x (t)‖ := lim
0<h→0

1

h
[‖x (t + h)‖ − ‖x (t)‖] (19.37)

such that on t ∈ [a, b)

‖DR ‖x (t)‖‖ = max
k=1,...,n

DR |xk (t)|

≤ ‖x ′ (t)‖ := max
{∣∣x ′1 (t)∣∣ , . . . , ∣∣x ′n (t)∣∣} (19.38)

Proof. Assertion (1) is clear when x (t) �= 0 and the case x (t) = 0 follows from the

identity

x (t + h) = x (t)+ hx ′ (t)+ o (h) = h [x ′ (t)+ o (1)]
so that, in general, when h→ 0

|x (t + h)| = |x (t)| + h
[ ∣∣x ′ (t)∣∣+ o (1) ]

The multidimensional case (2) follows from (1) if we take into account that

|xk (t + h)| = |xk (t)| + h
[ ∣∣x ′k (t)∣∣+ o (1) ]

Taking the max
k=1,...,n

of these identities, we obtain

‖x (t + h)‖ = ‖x (t)‖ + h
[
max
k=1,...,n

∣∣x ′k (t)∣∣+ o (1)
]

whereas h→ 0. This proves (19.38). �
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Example 19.1. Let x (t) := (t − t0)2. Then x ′ (t) := 2 (t − t0) is continuous and, hence,
x (t) ∈ C1. By Lemma 19.3 it follows that DR |x (t)| = 2 |t − t0|.

19.2.2.4 Differential inequalities
The next theorem deals with the integration of differential inequalities and is frequently

used in the ODE theory.

Theorem 19.4. (Hartman 2002) Let f (t, x) be continuous on an open (t, x)-set E ⊆ R

and x0(t) be the maximal solution of (19.6). Let v (t) be continuous on [t0, t0 + α] function
such that

v (t0) ≤ x0, (t, v) ∈ E

DRv (t) ≤ f (t, v (t))
}

(19.39)

Then, on the common interval of existence of x0(t) and v (t)

v (t) ≤ x0(t) (19.40)

Remark 19.3. If the inequalities (19.39) are reversed with the left derivative DLv (t)
instead of DRv (t), then the conclusion (19.40) must be replaced by v (t) ≥ x0(t) where
x0(t) is the minimal solution of (19.6).

Proof. It is sufficient to show that there exists a δ > 0 such that (19.40) holds for

[t0, t0 + δ]. Indeed, if this is the case and if v (t) and x0(t) are defined on [t0, t0 + β],
then it follows that the set of t-values, where (19.40) holds, cannot have an upper bound

different from β. In Lemma 19.2 let n > 0 be large enough and δ be chosen independent

of n such that (19.32) has a solution x = xn(t) on [t0, t0 + δ]. In view of Lemma 19.2

it is sufficient to verify that v (t) ≤ xn(t) on [t0, t0 + δ]. But the proof of this fact is

absolutely identical to the proof of (19.33). Theorem is proven. �

In fact, the following several consequences of this theorem are widely used in the ODE

theory.

Corollary 19.6. If v (t) is continuous on [t0, tf ] and DRv (t) ≤ 0 when t ∈ [t0, tf ], then

v (t) ≤ v (t0) for any t ∈ [t0, tf ] (19.41)

Corollary 19.7. (Lemma on differential inequalities) Let f (t, x), x0(t) be as in
Theorem 19.4 and g (t, x) be continuous on an open (t, x)-set E ⊆ R2 satisfying

g (t, x) ≤ f (t, x) (19.42)

Let also v (t) be a solution of the following ODE:

v̇ (t) = g(t, v (t)), v (t0) := v0 ≤ x0 (19.43)
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on [t0, t0 + α]. Then

v (t) ≤ x0(t) (19.44)

holds on any common interval of existence of v (t) and x0(t) to the right of t0.

Corollary 19.8. Let x0(t) be the maximal solution of

ẋ (t) = f (t, x (t)), x (t0) := x0 ∈ R

and x0(t) be the minimal solution of

ẋ (t) = −f (t, x (t)), x (t0) := x0 ≥ 0

Let also y = y (t) be a C1 vector valued function on [t0, t0 + α] such that

x0 ≤ ‖y (t0)‖ ≤ x0 (t, y) ∈ E ⊆ R2

d

dt
(‖y (t)‖) ≤ f (t, ‖y (t)‖) (19.45)

Then the first (second) of two inequalities

x0 (t) ≤ ‖y (t)‖ ≤ x0 (t) (19.46)

holds on any common interval of existence of x0 (t) and y (t) (or x0 (t) and y (t)).

Corollary 19.9. Let f (t, x) be continuous and nondecreasing on x when t ∈ [t0, t0 + α].
Let x0 (t) be a maximal solution of (19.6) which exists on [t0, t0 + α]. Let another
continuous function v (t) satisfy on [t0, t0 + α] the integral inequality

v (t) ≤ v0 +
t∫

s=t0

f (s, v (s)) ds (19.47)

where v0 ≤ x0. Then

v (t) ≤ x0 (t) (19.48)

holds on [t0, t0 + α]. This result is false if we omit: f (t, x) is nondecreasing on x.

Proof. Denote by V (t) the right-hand side of (19.47), so that v (t) ≤ V (t), and, by the

monotonicity property with respect to the second argument, we have

V̇ (t) = f (t, v (t)) ≤ f (t, V (t))

By Theorem 19.4 we have V (t) ≤ x0 (t) on [t0, t0 + α]. Thus v (t) ≤ x0 (t) which

completes the proof. �
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19.2.2.5 Existence of solutions on the complete axis [t0,∞)
Here we show that the condition ‖f (t, x)‖ ≤ k ‖x‖ guarantees the existence of the

solutions of ODE ẋ (t) = f (t, x (t)), x (t0) = x0 ∈ Rn for any t ≥ t0. In fact, the

following more general result holds.

Theorem 19.5. (Wintner 1945) Let for any t ≥ t0 and x ∈ Rn

(x, f (t, x)) ≤ � (‖x‖2) (19.49)

where the function � satisfies the condition

∞∫
s=s0

ds

� (s)
= ∞, � (s) > 0 as s ≥ s0 ≥ 0 (19.50)

Then Cauchy’s problem

ẋ (t) = f (t, x (t)), x (t0) = x0 ∈ Rn

has a solution on the complete semi-axis [t0,∞) for any x0 ∈ Rn.

Proof. Notice that for the function w (t) := ‖x (t)‖2 in view of (19.49) we have

d

dt
w (t)= 2 (x(t), ẋ (t)) = 2 (x(t), f (t, x (t)))

≤ 2�
(‖x (t)‖2) = 2� (w (t))

Then by Theorem 19.4 (see (19.44)) it follows that w (t0) ≤ s0 implies w (t) ≤ s (t),
where s (t) satisfies

ṡ (t) = 2�(s (t)), s (t0) = s0 := ‖x0‖2

But the solution of the last ODE is always bounded for any finite t ≥ t0. Indeed,
s(t)∫

s=s0

ds

� (s)
= 2 (t − t0) (19.51)

and � (s) > 0 as s ≥ s0 implies that ṡ (t) > 0, and, hence, s (t) > 0 for all t > t0. But

the solution s (t) can fail to exist on a bounded interval [t0, t0 + a] only if it exists on

[t0, t0 + α] with α < a and s (t) → ∞ if t → t0 + a. But this gives the contradiction

to (19.50) since the left-hand side of (19.51) tends to infinity and the right-hand side of

(19.51) remains finite and equal to 2a. �

Remark 19.4. The admissible choices of � (s) may be, for example, C, Cs, Cs ln s,…
for large enough s and C as a positive constant.
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Remark 19.5. Some generalizations of this theorem can be found in Hartman (2002).

Example 19.2. If A (t) is a continuous n×n matrix and g (t) is continuous on [t0, t0 + a]
vector function, then Cauchy’s problem

ẋ (t) = A (t) x (t)+ g(t), x (t0) = x0 ∈ Rn (19.52)

has a unique solution x (t) on [t0, t0 + a]. It follows from the Wintner theorem 19.5 if we
take � (s) := C (1+ s) with C > 0.

19.2.2.6 The continuous dependence of the solution on a parameter and on the
initial conditions

Theorem 19.6. If the right-hand side of ODE

ẋ (t) = f (t, x(t), μ), x (t0) = x0 ∈ Rn (19.53)

is continuous with respect to μ on [μ−, μ+] and satisfies the condition of Theorem 19.1
with the Lipschitz constant Lf which is independent of μ, then the solution x (t, μ)
of (19.53) depends continuously on μ ∈ [μ−, μ+] ∈ Rm as well as on x0 in some
neighborhoods.

Proof. The proof of this assertion repeats word by word the proof of Theorem 19.1.

Indeed, by the same reasons as in Theorem 19.1, the solution x (t, μ) is a continuous

function of both t and μ if Lf is independent of μ. As for the proof of the continuous

dependence of the solution on the initial conditions, it can be transformed to the proof of

the continuous dependence of the solution on the parameter. Indeed, putting

τ := t − t0, z := x (t, μ)− x0
we obtain that (19.53) is converted to

d

dτ
z = f (τ + t0, z+ x0, μ), z (0) = 0

where x0 may be considered as a new parameter so that f is continuous on x0 by the

assumption. This proves the theorem. �

19.2.3 Linear ODE

19.2.3.1 Linear vector ODE
Lemma 19.4. The solution x (t) of the linear ODE (or the corresponding Cauchy’s
problem)

ẋ (t) = A (t) x(t), x (t0) = x0 ∈ Rn×n, t ≥ t0 (19.54)

where A (t) is a continuous n× n-matrix function, may be presented as

x (t) = �(t, t0) x0 (19.55)
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where the matrix �(t, t0) is the, so-called, fundamental matrix of the system (19.54) and
satisfies the following matrix ODE

d

dt
� (t, t0) = A (t)�(t, t0), � (t0, t0) = I (19.56)

and fulfills the group property

�(t, t0) = �(t, s)� (s, t0) ∀s ∈ (t0, t) (19.57)

Proof. Assuming (19.55), the direct differentiation of (19.55) implies

ẋ (t) = d

dt
� (t, t0) x0 = A (t)� (t, t0) x0 = A (t) x (t)

So, (19.55) verifies (19.54). The uniqueness of such a presentation follows from Example

19.2. The property (19.57) results from the fact that

x (t) = �(t, s) xs = �(t, s)� (s, t0) x (t0) = �(t, t0) x (t0)

Lemma is proven. �

19.2.3.2 Liouville’s theorem
The next result serves as a demonstration that the transformation�(t, t0) is nonsingular

(or has its inverse) on any finite time interval.

Theorem 19.7. (Liouville 1836) If �(t, t0) is the solution to (19.56), then

det�(t, t0) = exp

⎧⎨
⎩

t∫
s=t0

trA (s) ds

⎫⎬
⎭ (19.58)

Proof. The usual expansion for the determinant det�(t, t0) and the rule for differentiating

the product of scalar functions show that

d

dt
det�(t, t0) =

n∑
j=1

det �̃j (t, t0)

where �̃j (t, t0) is the matrix obtained by replacing the j th row�j,1 (t, t0) , . . . , �j,n (t, t0)

of �(t, t0) by its derivatives �̇j,1 (t, t0) , . . . , �̇j,n (t, t0). But since

�̇j,k (t, t0) =
n∑
i=1

aj,i (t)�i,k(t, t0), A (t) =
∥∥aj,i (t)∥∥j.i=1,...,n
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it follows that

det �̃j (t, t0) = aj,j (t) det�(t, t0)

which gives

d

dt
det�(t, t0)=

n∑
j=1

d

dt
det �̃j (t, t0)

=
n∑
j=1

aj,j (t) det�(t, t0) = tr {A (t)} det�(t, t0)

and, as a result, we obtain (19.58) which completes the proof. �

Corollary 19.10. If for the system (19.54)

T∫
s=t0

trA (s) ds > −∞ (19.59)

then for any t ∈ [t0, T ]

det�(t, t0) > 0 (19.60)

Proof. It is the direct consequence of (19.58). �

Lemma 19.5. If (19.59) is fulfilled, namely,
∫ T
s=t0 trA (s) ds > −∞, then the solution

x (t) on [0, T ] of the linear nonautonomous ODE

ẋ (t) = A (t) x (t)+ g(t), x (t0) = x0 ∈ Rn×n, t ≥ t0 (19.61)

where A (t) and f (t) are assumed to be continuous matrix and vector functions, may be
presented by the Cauchy formula

x (t) = �(t, t0)
⎡
⎣x0 +

t∫
s=t0

�−1 (s, t0) g (s) ds

⎤
⎦ (19.62)

where �−1 (t, t0) exists for all t ∈ [t0, T ] and satisfies

d

dt
�−1 (t, t0) = −�−1 (t, t0) A(t), �

−1 (t0, t0) = I (19.63)
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Proof. By the previous corollary, �−1 (t, t0) exists within the interval [t0, T ]. The direct

derivation of (19.62) implies

ẋ (t)= �̇ (t, t0)
⎡
⎣x0 +

t∫
s=t0

�−1 (s, t0) g (s) ds

⎤
⎦+ �(t, t0)�

−1 (t, t0) g (t)

= A(t)� (t, t0)
⎡
⎣x0 +

t∫
s=t0

�−1 (s, t0) g (s) ds

⎤
⎦+ g (t) = A(t)x (t)+ g (t)

which coincides with (19.61). Notice that the integral in (19.62) is well defined in view

of the continuity property of the participating functions to be integrated. By identities

�(t, t0)�
−1 (t, t0) = I

d

dt

[
�(t, t0)�

−1 (t, t0)
] = �̇ (t, t0)�−1 (t, t0)+�(t, t0) d

dt
�−1 (t, t0) = 0

it follows that

d

dt
�−1 (t, t0)= −�−1 (t, t0)

[
�̇ (t, t0)

]
�−1 (t, t0)

= −�−1 (t, t0) [A (t)� (t, t0)]�
−1 (t, t0) = −�−1 (t, t0) A (t)

Lemma is proven. �

Remark 19.6. The solution (19.62) can be rewritten as

x (t) = �(t, t0) x0 +
t∫

s=t0

�(t, s) g (s) ds (19.64)

since by (19.57)

�(t, s) = �(t, t0)�−1 (s, t0) (19.65)

19.2.3.3 Bounds for norm of ODE solutions
Let ‖A‖ := sup

‖x‖=1

‖Ax‖ where ‖x‖ is Euclidean or Chebishev’s type.

Lemma 19.6. Let x (t) be a solution of (19.61). Then

‖x (t)‖ ≤ (‖x (t0)‖+
t∫

s=t0

‖g (s)‖ ds) exp(
t∫

s=t0

‖A (s)‖ ds) (19.66)
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Proof. By (19.61) it follows that

‖ẋ (t)‖ ≤ ‖A (t)‖ ‖x (t)‖ + ‖g (t)‖

Let v (t) be the unique solution of the following ODE:

v̇ (t) = ‖A (t)‖ v (t)+ ‖g (t)‖, v (t0) = ‖x (t0)‖

which solution is

v (t) = [v (t0)+
t∫

s=t0

‖f (s)‖ exp(−
s∫

r=t0

‖A (r)‖ dr)ds] exp(
t∫

s=t0

‖A (s)‖ ds)

Then, by Lemma 19.7, it follows that ‖x (t)‖ ≤ v (t) for any t ≥ t0 which gives

(19.66). �

Corollary 19.11. Similarly, if w (t) is the solution of

v̇ (t) = −‖A (t)‖ v (t)− ‖g (t)‖, w (t0) = ‖x (t0)‖

then ‖x (t)‖ ≥ v (t) for any t ≥ t0 that gives

‖x (t)‖ ≥ (‖x (t0)‖ −
t∫

s=t0

‖g (s)‖ ds) exp(−
t∫

s=t0

‖A (s)‖ ds) (19.67)

19.2.3.4 Stationary linear ODE
If in (19.1) A (t) = A is a constant matrix, then it is easy to check that

�(t, t0) := eA(t−t0) where eAt =
∞∑
k=0

1

k!A
ktk (19.68)

and (19.62), (19.64) become

x (t)= eA(t−t0)
⎡
⎣x0 +

t∫
s=t0

e−A(s−t0)g (s) ds

⎤
⎦

= eA(t−t0)x0 +
t∫

s=t0

eA(t−s)g (s) ds

(19.69)
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19.2.3.5 Linear ODE with periodic matrices
In this subsection we show that the case of variable, but periodic, coefficients can be

reduced to the case of constant coefficients.

Theorem 19.8. (Floquet 1883) Let in ODE

ẋ (t) = A (t) x (t) (19.70)

the matrix A (t) ∈ Rn×n (−∞ < t <∞) be continuous and periodic of period T , that is,
for any t

A (t + T ) = A (t) (19.71)

Then the fundamental matrix �(t, t0) of (19.70) has a representation of the form

�(t, t0) = �̃ (t − t0) = Z (t − t0) eR(t−t0)

Z (τ ) = Z (τ + T )
(19.72)

and R is a constant n× n matrix.

Proof. Since �̃ (τ ) is a fundamental matrix of (19.70), then �̃ (τ + T ) is fundamental

too. By the group property (19.57) it follows that �̃ (τ + T ) = �̃ (τ ) �̃ (T ). Since

det �̃ (T ) �= 0 one can represent �̃ (T ) as �̃ (T ) = eRT and hence

�̃ (τ + T ) = �̃ (τ ) eRT (19.73)

So, defining Z (τ) := �̃ (τ ) e−Rτ , we get

Z (τ + T )= �̃ (τ + T ) e−R(τ+T )

=
[
�̃ (τ + T ) e−RT

]
e−Rτ

= �̃ (τ ) e−Rτ = Z (τ)
which completes the proof. �

19.2.3.6 First integrals and related adjoint linear ODE
Definition 19.2. A function F = F (t, x) : R × Cn → C, belonging to C1 [R× Cn], is
called the first integral to ODE (19.1) if it is constant over trajectories of x (t) generated
by (19.1), that is, if for any t ≥ t0 and any x0 ∈ Cn

d

dt
F (t, x (t)) = ∂

∂t
F (t, x (t))+

(
∂

∂x
F (t, x (t)), ẋ (t)

)

= ∂

∂t
F (t, x)+

(
∂

∂x
F (t, x (t)), f (t, x (t))

)
= 0

(19.74)
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In the case of linear ODE (19.54) the condition (19.74) is converted into the following:

∂

∂t
F (t, x)+

(
∂

∂x
F (t, x (t)), A (t)

)
= 0 (19.75)

Let us try to find a first integral for (19.54) as a linear form of x (t), i.e., let us try to

satisfy (19.75) selecting F as

F (t, x) = (z(t), x (t)) := z∗ (t) x (t) (19.76)

where z∗ (t) ∈ Cn is from C1 [Cn].

The existence of the first integral for ODE (19.1) permits to decrease the order of the

system to be integrated since if the equation F (t, x (t)) = c can be resolved with respect

to one of the components, say,

xα (t) = ϕ (t, x1 (t) , . . . , xα−1(t), xα+1 (t) , . . . , xn (t))

then the order of ODE (19.1) becomes equal to (n− 1). If one can find all n first integrals

Fα (t, x (t)) = cα (α = 1, . . . , n) which are linearly independent, then the ODE system

(19.1) can be considered to be solved.

Lemma 19.7. A first integral F (t, x) for (19.54) is linear on x (t) as in (19.76) if and
only if

ż (t) = −A∗ (t) z (t), z (t0) = z0 ∈ Rn×n, t ≥ t0 (19.77)

Proof.

(a) Necessity. If a linear F (t, x) = (z(t), x (t)) is a first integral, then

d

dt
F (t, x (t))= (ż(t), x (t))+ (z(t), ẋ (t))

= (ż(t), x (t))+ (z(t), A (t) x (t))
= (ż(t), x (t))+ (A∗ (t) z(t), x (t))

= (ż (t)+ A∗ (t) z(t), x (t))

(19.78)

Suppose that ż (t ′)+ A∗ (t ′) z (t ′) �= 0 for some t ′ ≥ t0. Put

x
(
t ′
) := ż (t ′)+ A∗ (t ′) z (t ′)

Since x (t ′) = �(t ′, t0) x0 and �−1 (t ′, t0) always exists, then for x0 = �−1 (t ′, t0)
x (t ′) we obtain

d

dt
F (t ′, x (t ′))= (ż (t ′)+ A∗ (t ′) z(t ′), x (t ′))

= ‖ż (t ′)+ A∗ (t ′) z (t ′)‖2 �= 0
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which is in contradiction with the assumption that F (t, x (t)) is a first integral.

(b) Sufficiency. It directly results from (19.78).

Lemma is proven. �

Definition 19.3. The system (19.77) is called the ODE system adjoint to (19.54). For
the corresponding inhomogeneous system (19.61) the adjoint system is

ż (t) = −A∗ (t) z (t)− g̃(t), z (t0) = z0 ∈ Rn×n, t ≥ t0 (19.79)

There are several results concerning the joint behavior of (19.54) and (19.77).

Lemma 19.8. A matrix �(t, t0) is a fundamental matrix for the linear ODE (19.54) if
and only if (�∗ (t, t0))−1 = (

�−1 (t, t0)
)∗

is a fundamental matrix for the adjoint system
(19.77).

Proof. Since �(t, t0)�−1 (t, t0) = I by differentiation it follows that

d

dt
�−1 (t, t0) = −�−1 (t, t0)

d

dt
� (t, t0)�

−1 (t, t0) = −�−1 (t, t0) A (t)

and taking the complex conjugate transpose of the last identity gives

d

dt

(
�−1 (t, t0)

)∗ = −A∗ (t)
(
�−1 (t, t0)

)∗
The converse is proved similarly. �

Lemma 19.9. The direct (19.61) and the corresponding adjoint (19.79) linear systems
can be presented in the Hamiltonian form, i.e.,

ẋ (t) = ∂

∂z
H(z, x), ż (t) = − ∂

∂x
H (z, x) (19.80)

where

H (t, z, x) := (z, f (t, x)) = (z, A (t) x + g (t)) (19.81)

is called the Hamiltonian function for the system (19.61). In the stationary homogeneous
case when

ẋ (t) = Ax(t), x (t0) = x0 ∈ Rn×n, t ≥ t0 (19.82)

the Hamiltonian function is a first integral for (19.82).
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Proof. The representation (19.80) follows directly from (19.81). In the stationary, when
∂

∂t
H (t, z, x) = 0, we have

d

dt
H (t, z, x)= ∂

∂t
H (t, z, x)+

(
∂

∂z
H(z, x), ż

)
+
(
∂

∂x
H(z, x), ẋ

)

=
(
∂

∂z
H(z, x),− ∂

∂x
H (z, x)

)
+
(
∂

∂x
H(z, x),

∂

∂z
H (z, x)

)
= 0

So, H (t, z, x) is a constant. �

Lemma 19.10. If A (t) = −A∗ (t) is skew Hermitian, then

‖x (t)‖ = const
t

(19.83)

Proof. One has directly

d

dt
‖x (t)‖2 = (ẋ(t), x (t))+ (x(t), ẋ (t))

= (A (t) x(t), x (t))+ (x(t), A (t) x (t))
= (A (t) x(t), x (t))+ (A∗ (t) x(t), x (t))

= (
[A (t)+ A∗ (t)] x(t), x (t)

) = 0

which proves the result. �

Lemma 19.11. (Green’s formula) Let A (t), g (t) and g̃ (t) be continuous for t ∈ [a, b];
x (t) be a solution of (19.61) and z (t) be a solution of (19.79). Then for all t ∈ [a, b]

t∫
s=a

[gᵀ (s) z (s)− x (s)ᵀ g̃ (s)] ds = xᵀ (t) z (t)− xᵀ (a) z (a) (19.84)

Proof. The relation (19.84) is proved by showing that both sides have the same deriva-

tives, since (Ay, z) = (y,A∗z). �

19.2.4 Index of increment for ODE solutions

Definition 19.4. A number τ is called a Lyapunov order number (or the index of the
increment) for a vector function x (t) defined for t ≥ t0, if for every ε > 0 there exist
positive constants C0

ε and Cε such that

‖x (t)‖ ≤ Cεe(τ+ε)t for all large t

‖x (t)‖ ≤ C0
ε e
(τ−ε)t for some arbitrary large t

(19.85)
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which equivalently can be formulated as

τ = lim sup
t→∞

t−1 ln ‖x (t)‖ (19.86)

Lemma 19.12. If x (t) is the solution of (19.61), then it has the Lyapunov order number

τ ≤ lim sup
t→∞

t−1 ln

⎛
⎝‖x (t0)‖ +

t∫
s=t0

‖f (s)‖ ds
⎞
⎠

+ lim sup
t→∞

t−1

t∫
s=t0

‖A (s)‖ ds
(19.87)

Proof. It follows directly from (19.66). �

19.2.5 Riccati differential equation

Let us introduce the symmetric n×n matrix function P (t) = Pᵀ (t) ∈ C1 [0, T ] which

satisfies the following ODE:

−Ṗ (t) = P (t)A (t)+ A (t)ᵀ P (t)
−P (t) R (t) P (t)+Q(t)

P (T ) = G ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ (19.88)

with

A(t), Q (t) ∈ Rn×n, R (t) ∈ Rm×m (19.89)

Definition 19.5. We call ODE (19.88) the matrix Riccati differential equation.

Theorem 19.9. (on the structure of the solution) Let P (t) be a symmetric nonnegative
solution of (19.88) defined on [0, T ]. Then there exist two functional n × n matrices
X(t), Y (t) ∈ C1 [0, T ] satisfying the following linear ODE

(
Ẋ (t)

Ẏ (t)

)
= H (t)

(
X (t)

Y (t)

)

X (T ) = I, Y (T ) = P (T ) = G
(19.90)

with

H (t) =
[
A (t) −R (t)
−Q(t) −Aᵀ (t)

]
(19.91)
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where A (t) and Q(t) are as in (19.88) and such that P (t) may be uniquely represented
as

P (t) = Y (t)X−1 (t) (19.92)

for any finite t ∈ [0, T ].

Proof.

(a) Notice that the matrices X (t) and Y (t) exist since they are defined by the solution

to the ODE (19.90).

(b) Show that they satisfy the relation (19.92). Firstly, remark that X (T ) = I , so

detX (T ) = 1 > 0. From (19.90) it follows that X (t) is a continuous matrix function

and, hence, there exists a time τ such that for all t ∈ (T − τ, T ] detX (t) > 0. As a

result, X−1 (t) exists within the small semi-open interval (T − τ, T ]. Then, directly
using (19.90) and in view of the identities

X−1 (t) X (t) = I, d

dt

[
X−1 (t)

]
X (t)+X−1 (t) Ẋ (t) = 0

it follows that

d

dt

[
X−1 (t)

]= −X−1 (t) Ẋ (t) X−1 (t)

= −X−1 (t) [A (t)X (t)− R (t) Y (t)]X−1 (t)

= −X−1 (t) A (t)+X−1 (t) R (t) Y (t)X−1 (t)

(19.93)

and, hence, for all t ∈ (T − τ, T ] in view of (19.88)

d

dt

[
Y (t)X−1 (t)

]= Ẏ (t) X−1 (t)+ Y (t) d
dt

[
X−1 (t)

]
= [−Q(t)X (t)− Aᵀ (t) Y (t)]X−1 (t)

+Y (t) [−X−1 (t) A (t)+ X−1 (t) R (t) Y (t)X−1 (t)
]

= −Q(t)− Aᵀ (t) P (t)− P (t)A (t)

+P (t) R (t) P (t) = Ṗ (t)

which implies
d

dt

[
Y (t)X−1 (t)− P (t)] = 0, or,

Y (t)X−1 (t)− P (t) = const
t∈(T−τ,T ]

But for t = T we have
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const
t∈(T−τ,T ]

= Y (T )X−1 (T )− P (T ) = Y (T )− P (T ) = 0

So, for all t ∈ (T − τ, T ] it follows that P (t) = Y (t)X−1 (t).

(c) Show that detX (T − τ) > 0. The relations (19.90) and (19.92) lead to the following

presentation within t ∈ t ∈ (T − τ, T ]

Ẋ (t) = A (t)X (t)− R (t) Y (t) = [A (t)− R (t) P (t)]X (t)

and, by Liouville’s theorem 19.7, it follows that

detX (T − τ) = detX (0) exp

⎧⎨
⎩

T−τ∫
t=0

tr [A (t)− R (t) P (t)] dt
⎫⎬
⎭

1 = detX (T ) = detX (0) exp

⎧⎨
⎩

T∫
t=0

tr [A (t)− R (t) P (t)] dt
⎫⎬
⎭

detX (T − τ) = exp

⎧⎨
⎩−

T∫
t=T−τ

tr [A (t)− R (t) P (t)] dt
⎫⎬
⎭ > 0

By continuity, again there exists a time τ1 > τ that detX (t) > 0 for any

t ∈ [T − τ, T − τ1]. Repeating the same considerations we may conclude that

detX (t) > 0 for any t ∈ [0, T ].

(d) Show that the matrix G(t) := Y (t)X−1 (t) is symmetric. One has

d

dt
[Yᵀ (t) X (t)−Xᵀ (t) Y (t)] = Ẏᵀ (t) X (t)+ Yᵀ (t)

d

dt
[X (t)]

− d

dt
Xᵀ (t) Y (t)−Xᵀ (t) Ẏ (t) = [−Q(t)X (t)− Aᵀ (t) Y (t)]ᵀX (t)

+Yᵀ (t) [A (t)X (t)− R (t) Y (t)]− [A (t)X (t)− R (t) Y (t)]ᵀ Y (t)

−Xᵀ (t) [−Q(t)X (t)− Aᵀ (t) Y (t)] = 0

and Y (T )ᵀX (T ) − [X (T )]
ᵀ
Y (T ) = Yᵀ (T ) − Y (T ) = Gᵀ − G = 0 that implies

Yᵀ (t) X (t) − Xᵀ (t) Y (t) = 0 for any t ∈ [0, T ]. So, Yᵀ (t) = Xᵀ (t) Y (t)X−1 (t)

= Xᵀ (t) P (t) and, hence, by the transposition operation we get Y (t) = Pᵀ (t) X (t)
and P (t) = Y (t)X−1 (t) = Pᵀ (t). The symmetricity of P (t) is proven.

(e) The Riccati differential equation (19.88) is uniquely solvable with P (t) =
Y (t)X−1 (t) ≥ 0 on [0, T ] since the matrices X (t) and Y (t) are uniquely defined

by (19.92). �
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19.2.6 Linear first order partial DE

Consider the following linear first order partial DE

n∑
i=1

Xi (x, z)
∂z

∂xi
= Z (x, z) (19.94)

where x ∈ Rn is a vector of n independent real variables and z = z (x) is a real-valued

function of the class C1 (X ), x ∈ X ⊆ Rn. Defining

X (x, z) := (X1(x, z), . . . , Xn (x, z))
ᵀ,

∂z

∂x
:=

(
∂z

∂x1
, . . . ,

∂z

∂xn

)T

equation (19.94) can be rewritten as follows

(
X(x, z),

∂z

∂x

)
= Z (x, z) (19.95)

Any function z = z (x) ∈ C1 (X ) satisfying (19.95) is its solution. If so, then its full

differential dz is

dz =
(
∂z

∂x
, dx

)
=

n∑
i=1

∂z

∂xi
dxi (19.96)

Consider also the following auxiliary system of ODE:

dx1

X1 (x, z)
= · · · = dxn

Xn (x, z)
= dz

Z (x, z)
(19.97)

or, equivalently,

X−1
1 (x, z)

dx1

dz
= · · · = X−1

n (x, z)
dxn

dz
= Z−1 (x, z) (19.98)

or,

dx1

dz
= X1 (x, z) Z

−1 (x, z)

· · ·
dxn

dz
= Xn (x, z) Z−1 (x, z)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (19.99)

which is called the system of characteristic ODE related to (19.95). The following

important result, describing the natural connection of (19.95) and (19.98), is given below.

Lemma 19.13. If z = z (x) satisfies (19.97), then it satisfies (19.95) too.
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Proof. Indeed, by (19.99) and (19.96) we have

dxi =Xi (x, z) Z−1 (x, z) dz

dz=
n∑
i=1

∂z

∂xi
dxi =

n∑
i=1

∂z

∂xi
Xi (x, z) Z

−1 (x, z) dz

which implies (19.94). �

19.2.6.1 Cauchy’s method of characteristics
The method, presented here, permits to convert the solution of a linear first order partial

DE of a system of nonlinear ODE.

Suppose that we can solve the system (19.98) of ODE and its solution is

xi = xi(z, ci), i = 1, . . . , n (19.100)

where ci are some constants.

Definition 19.6. The solutions (19.100) are called the characteristics of (19.94).

Assume that this solution can be resolved with respect to the constants ci , namely,

there exist functions

ψi = ψi (x, z) = ci (i = 1, . . . , n) (19.101)

Since these functions are constants on the solutions of (19.98) they are the first integrals

of (19.98). Evidently, any arbitrary function � : Rn → R of constants ci (i = 1, . . . , n)

is a constant too, that is,

�(c1, . . . , cn) = const (19.102)

Without the loss of a generality we can take const = 0, so the equation (19.102) becomes

�(c1, . . . , cn) = 0 (19.103)

Theorem 19.10. (Cauchy’s method of characteristics) If the first integrals (19.74)
ψi (x, z) of the system (19.98) are independent, that is,

det

[
∂ψi (x, z)

∂xj

]
i,j=1,...,n

�= 0 (19.104)

then the solution z = z (x) of (19.97) can be found from the algebraic equation

�(ψ1 (x, z) , . . . , ψn (x, z)) = 0 (19.105)

where �(ψ1, . . . , ψn) is an arbitrary function of its arguments.
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Proof. By Theorem 16.8 on an implicit function, the systems (19.74) can be uniquely

resolved with respect to x if (19.104) is fulfilled. So, the obtained functions

(19.100) satisfy (19.99) and, hence, by Lemma 19.13 it follows that z = z (x)

satisfies (19.95). �

Example 19.3. Let us integrate the equation

n∑
i=1

xi
∂z

∂xi
= pz ( p is a constant) (19.106)

The system (19.97)

dx1

x1
= · · · = dxn

xn
= dz

pz

has the following first integrals

x
p

i − z = ci (i = 1, . . . , n)

So, z = z (x) can be found from the algebraic equation

�
(
x
p

1 − z, . . . , xpn − z
) = 0

where �(ψ1, . . . , ψn) is an arbitrary function, for example,

�(ψ1, . . . , ψn) :=
n∑
i=1

λiψi,

n∑
i=1

λi �= 0

which gives

z =
(

n∑
i=1

λi

)−1 n∑
i=1

λix
p

i

19.3 Carathéodory’s type ODE

19.3.1 Main definitions

The differential equation

ẋ (t) = f (t, x (t)), t ≥ t0 (19.107)

in the regular case (with the continuous right-hand side in both variables) is known to be

equivalent to the integral equation

x (t) = x (t0)+
t∫

s=t0

f (s, x (s)) ds (19.108)
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Definition 19.7. If the function f (t, x) is discontinuous in t and continuous in x ∈ Rn,
then the functions x (t), satisfying the integral equation (19.108) where the integral is
understood in the Lebesgue sense, is called the solution of ODE (19.107).

The material presented below follows Filippov (1988).

Let us define more exactly the conditions which the function f (t, x) should satisfy.

Condition 19.1. (Carathéodory’s conditions) In the domain D of the (t, x)-space let
the following conditions be fulfilled:

1. the function f (t, x) be defined and continuous in x for almost all t;
2. the function f (t, x) be measurable (see (15.97)) in t for each x;
3.

‖f (t, x)‖ ≤ m(t) (19.109)

where the function m(t) is summable (integrable in the Lebesgue sense) on each finite
interval (if t is unbounded in the domain D).

Definition 19.8.

(a) Equation (19.107), where the function f (t, x) satisfies conditions 19.1, is called
Carathéodory’s type ODE.

(b) A function x (t), defined on an open or closed interval l, is called a solution of
Carathéodory’s type ODE if

• it is absolutely continuous on each interval [α, β] ∈ l;
• it satisfies almost everywhere this equation or, which under conditions 19.1 is the
same thing, satisfies the integral equation (19.108).

19.3.2 Existence and uniqueness theorems

Theorem 19.11. (Filippov 1988) For t ∈ [t0, t0 + a] and x : ‖x − x0‖ ≤ b let the func-
tion f (t, x) satisfy Carathéodory’s conditions 19.1. Then on a closed interval [t0, t0 + d]
there exists a solution of Cauchy’s problem

ẋ (t) = f (t, x (t)), x (t0) = x0 (19.110)

In this case one can take an arbitrary number d such that

0 < d ≤ a, ϕ (t0 + d) ≤ b where ϕ (t) :=
t∫

s=t0

m(s) ds (19.111)

(m(t) is from (19.109)).



532 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

Proof. For integer k ≥ 1 define h := d/k, and on the intervals [t0 + ih, t0 + (i + 1) h]

(i = 1, 2, . . . , k) construct iteratively an approximate solution xk (t) as

xk (t) := x0 +
t∫

s=t0

f (s, xk−1 (s)) ds (t0 < t ≤ t0 + d) (19.112)

(for any initial approximation x0(s), for example, x0 (s) = const). Remember that if

f (t, x) satisfies Carathéodory’s conditions 19.1 and x (t) is measurable on [a, b], then the

composite function f (t, x (t)) is summable (integrable in the Lebesgue sense) on [a, b].

In view of this and by the condition (19.111) we obtain ‖xk (t)− x0‖ ≤ b. Moreover, for

any α, β : t0 ≤ α < β ≤ t0 + d

‖xk (β)− xk (α)‖ ≤
t∫

s=t0

m(s) ds = ϕ (β)− ϕ (α) (19.113)

The function ϕ (t) is continuous on the closed interval [t0, t0 + d] and therefore uniformly

continuous. Hence, for any ε > 0 there exists a δ = δ (ε) such that for all |β − α| < δ the
right-hand side of (19.113) is less than ε. Therefore, the functions xk (t) are equicontinuous

(see (14.18)) and uniformly bounded (see (14.17)). Let us choose (by the Arzelà’s theorem

14.16) from them a uniformly convergent subsequence having a limit x (t). Since

‖xk (s − h)− x (s)‖ ≤ ‖xk (s − h)− xk (s)‖ + ‖xk (s)− x (s)‖

and the first term on the right-hand side is less than ε for h = d/k < δ, it follows that
xk (s − h) tends to x(s), by the chosen subsequence. In view of continuity of f (t, x)

in x, and the estimate ‖f (t, x)‖ ≤ m(t) (19.109) one can pass to the limit under

the integral sign in (19.112). Therefore, we conclude that the limiting function x (t)

satisfies equation (19.108) and, hence, it is a solution of the problem (19.110). Theorem is

proven. �

Corollary 19.12. If Carathéodory’s conditions 19.1 are satisfied for t0 − a ≤ t ≤ t0 and
‖x − x0‖ ≤ b, then a solution exists on the closed interval [t0 − d, t0] where d satisfies
(19.111).

Proof. The case t ≤ t0 is reduced to the case t ≥ t0 by the simple substitution of

(−t) for t . �

Corollary 19.13. Let (t0, x0) ∈ D ⊆ R1+n and let there exist a summable function l (t)
(in fact, this is a Lipschitz constant) such that for any two points (t, x) and (t, y) of D

‖f (t, x)− f (t, y)‖ ≤ l (t) ‖x − y‖ (19.114)

Then in the domain D there exists at most one solution of the problem (19.110).
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Proof. Using (19.114) it is sufficient to check Carathéodory’s conditions 19.1. �

Theorem 19.12. (on the uniqueness) If in Corollary 19.13 instead of (19.114) there is
fulfilled the inequality

(f (t, x)− f (t, y), x − y) ≤ l (t) ‖x − y‖2 (19.115)

then in the domain D there exists the unique solution of the problem (19.110).

Proof. Let x (t) and y (t) be two solutions of (19.110). Define for t0 ≤ t ≤ t1 the function
z (t) := x (t)− y (t) for which it follows that

d

dt
‖z‖2 = 2

(
z,
d

dt
z

)
= 2 (f (t, x)− f (t, y), x − y)

almost everywhere. By (19.115) we obtain
d

dt
‖z‖2 ≤ l (t) ‖z‖2 and, hence,

d

dt

(
e−L(t) ‖z‖2) ≤ 0 where L (t) = ∫ t

s=t0 l (s) ds. Thus, the absolutely continuous func-

tion (i.e., it is a Lebesgue integral of some other function) e−L(t) ‖z‖2 does not increase,

and it follows from z (t0) = 0 that z (t) = 0 for any t ≥ t0. So, the uniqueness is

proven. �

Remark 19.7. The uniqueness of the solution of the problem (19.110) implies that if
there exists two solutions of this problem, the graphs of which lie in the domain D, then
these solutions coincide on the common part of their interval of existence.

Remark 19.8. Since the condition (19.114) implies the inequality (19.115) (this follows
from the Cauchy–Bounyakoski–Schwarz inequality), thus the uniqueness may be consid-
ered to be proven for t ≥ t0 also under the condition (19.114).

19.3.3 Variable structure and singular perturbed ODE

19.3.3.1 Variable structure ODE
In fact, if by the structure of ODE (19.107) ẋ (t) = f (t, x (t)) we will understand

the function f (t, x), then evidently any nonstationary system may be considered as

a dynamic system with a variable structure, since for different t1 �= t2 we will have

f (t1, x) �= f (t2, x). From this point of view such treatment seems to be naive and has

no correct mathematical sense. But if we consider the special class of ODE (19.107)

given by

ẋ (t) = f (t, x (t)) :=
N∑
i=1

χ
(
t ∈ [ti−1, ti)

)
f i (x (t)) (19.116)
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where χ (·) is the characteristic function of the corresponding event, namely,

χ
(
t ∈ [ti−1, ti)

) := {
1 if t ∈ [ti−1, ti)

0 if t /∈ [ti−1, ti)
, ti−1 < ti (19.117)

then ODE (19.116) can also be treated as ODE with “jumping” parameters (coefficients).

Evidently, if f i (x) are continuous on a compact D and, hence, are bounded, that is,

max
i=1,...,N

max
x∈D

∥∥f i (x)∥∥ ≤ M (19.118)

then the third Carathéodory’s condition (19.109) will be fulfilled on the time interval

[α, β], since

m(t) = M
N∑
i=1

χ
(
t ∈ [ti−1, ti)

) = MN <∞ (19.119)

Therefore, such ODE equation (19.116) has at most one solution. If, in addition, for each

i = 1, . . . , N the Lipschitz condition holds, i.e.,

(
f i (x)− f i(y), x − y) ≤ li ‖x − y‖2

then, as it follows from Theorem 19.12, this equation has a unique solution.

19.3.3.2 Singular perturbed ODE
Consider the following ODE containing a singular type of perturbation:

ẋ (t) = f (x (t))+
N∑
i=1

μiδ(t − ti), t, ti ≥ t0 (19.120)

where δ (t − ti) is the “Dirac delta-function” (15.128), μi is a real constant and f is a

continuous function. The ODE (19.120) must be understood as the integral equation

x (t) = x (t0)+
t∫

s=t0

f (x (s)) dt +
N∑
i=1

μi

t∫
s=t0

δ (t − ti) dt (19.121)

The last term, by the property (15.134), can be represented as

N∑
i=1

μi

t∫
s=t0

dχ (s > ti) =
N∑
i=1

μiχ (t > ti)
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where χ (t ≥ ti) is the “Heavyside’s (step) function” defined by (19.117). Let us apply

the following state transformation:

x̃ (t) := x (t)+
N∑
i=1

μiχ (t > ti)

New variable x̃ (t) satisfies (with μ0 := 0) the following ODE:

d

dt
x̃ (t)= f

(
x̃ (t)−

N∑
i=1

μiχ (t > ti)

)

=
N∑
i=1

χ (t > ti) f

(
x (t)−

i∑
s=1

μi

)

=
N∑
i=1

χ (t > ti) f̃
i (x (t))

(19.122)

where

f̃ i (x (t)) := f
(
x (t)−

i∑
s=1

μi

)

Claim 19.1. This means that the perturbed ODE (19.120) are equivalent to a variable
structure ODE (19.116).

19.4 ODE with DRHS

In this section we will follow Utkin (1992), Filippov (1988) and Geligle et al. (1978).

19.4.1 Why ODE with DRHS are important in control theory

Here we will present some motivating consideration justifying our further study of

ODE with DRHS. Let us start with the simplest scalar case dealing with the following

standard ODE which is affine (linear) on control:

ẋ (t) = f (x (t))+ u(t), x (t) = x0 is given (19.123)

where x(t), u (t) ∈ R are interpreted here as the state of the system (19.123) and,

respectively, the control action applied to it at time t ∈ [0, T ]. The function f : R −→ R

is a Lipschitz function satisfying the, so-called, Lipschitz condition, that is, for any

x, x ′ ∈ R∣∣f (x)− f (
x ′
)∣∣ ≤ L ∣∣x − x ′∣∣, 0 ≤ L <∞ (19.124)
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Problem 19.1. Let us try to stabilize this system at the point x∗ = 0 using the, so-called,
feedback control

u (t) := u (x (t)) (19.125)

considering the following informative situations

• the complete information case when the function f (x) is exactly known;
• the incomplete information case when it is only known that the function f (x) is
bounded as

|f (x)| ≤ f0 + f + |x|, f0 <∞, f + <∞ (19.126)

(this inequality is assumed to be valid for any x ∈ R).

There are two possibilities:

1. use any continuous control, namely, take u : R −→ R as a continuous function,

i.e., u ∈ C;
2. use a discontinuous control which will be defined below.

19.4.1.1 The complete information case
Evidently, at the stationary point x∗ = 0 any continuous control u (t) := u (x (t))

should satisfy the following identity

f (0)+ u (0) = 0 (19.127)

For example, this property may be fulfilled if we use the control u (x) containing the

nonlinear compensating term

ucomp (x) := −f (x)
and the linear correction term

ucor (x) := −kx, k > 0

that is, if

u (x) = ucomp (x)+ ucor (x) = −f (x)− kx (19.128)

The application of this control (19.128) to the system (19.123) implies that

ẋ (t) = −kx (t)
and, as the result, one gets

x (t) = x0 exp (−kt) →
t→0

0

So, this continuous control (19.128) in the complete information case solves the stabi-
lization problem (19.1).
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19.4.1.2 The incomplete information case
Several informative situations may be considered.

1. f (x) is unknown, but a priori it is known that f (0) = 0. In this situation the

Lipschitz condition (19.124) is transformed into

|f (x)| = |f (x)− f (0)| ≤ L |x|

which for the Lyapunov function candidate V (x) = x2/2 implies

V̇ (x (t))= x (t) ẋ (t)
= x (t) [f (x (t))+ u (x (t))] ≤ |x (t)| |f (x (t))|
+ x (t) u (x (t)) ≤ L |x (t)|2 + x (t) u (x (t))

(19.129)

Since f (x) is unknown let us select u (x) in (19.128) as

u (x) = ucor (x) = −kx
ucomp (x) := 0

(19.130)

The use of (19.130) in (19.129) leads to the following identity:

V̇ (x (t)) ≤ Lx2 (t)+ x (t) u (x (t)) = (L− k) x2 (t) = −2 (k − L)V (x (t))

Selecting k big enough (this method is known as the “high-gain control”) we get

V̇ (x (t))≤ −2 (k − L)V (x (t)) ≤ 0

V (x (t))≤ V (x0) exp
(−2 [k − L] t) →

t→0
0

This means that in the considered informative situation the “high-gain control” solves
the stabilization problem.

2. f (x) is unknown and it is admissible that f (0) �= 0. In this situation the condition

(19.127) never can be fulfilled since we do not know exactly the value f (0) and,

hence, neither the control (19.128) nor the control (19.130) can be applied. Let us try

to apply a discontinuous control, namely, let us take u (x) in the form of the, so-called,

sliding-mode (or relay) control:

u (x) = −kt sign(x), kt > 0 (19.131)

where

sign (x) :=
⎧⎨
⎩

1 if x > 0

−1 if x < 0

∈ [−1, 1] if x = 0

(19.132)
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1

21

sign (x)

x

Fig. 19.1. The signum function.

(see Fig. 19.1). Starting from some x0 �= 0, analogously to (19.129) and using (19.126),

we have

V̇ (x (t)) = x (t) ẋ (t) = x (t) [f (x (t))+ u (x (t))]

≤ |x (t)| |f (x (t))| + x (t) u (x (t)) ≤ |x (t)| (f0 + f + |x (t)|)
− ktx (t) sign (x (t)) = |x (t)| f0 + f + |x (t)|2 − kt |x (t)|

Taking

kt = k(x (t)) := k0 + k1 |x (t)|

k0 > f0, k
1 > f +

(19.133)

we have

V̇ (x (t)) ≤ − |x (t)| (k0 − f0)− (
k1 − f +) |x (t)|2

≤ − |x (t)| (k0 − f0) = −√2
(
k0 − f0

)√
V (x (t)) ≤ 0

Hence,

dV (x (t))√
V (x (t))

≤ −√2
(
k0 − f0

)
dt

which leads to the following identity

2
(√
V (x (t))−√

V (x0)
)
≤ −√2

(
k0 − f0

)
t

or, equivalently,

√
V (x (t)) ≤√

V (x0)− k
0 − f0√

2
t
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This means that the, so-called, “reaching phase”, during which the system (19.123)

controlled by the sliding-mode algorithm (19.131)–(19.133) reaches the origin, is

equal to

t∗ =
√
2V (x0)

k0 − f0 (19.134)

Conclusion 19.1. It follows from the considerations above that the discontinuous (in this
case, sliding-mode) control (19.131)–(19.133) can stabilize the class of the dynamic
systems (19.123), (19.124), (19.126) in finite time (19.134) without the exact knowledge
of its model. Besides, the reaching phase may be done as small as you wish by the

simple selection of the gain parameter k0 in (19.134). In other words, the discontinu-

ous control (19.131)–(19.133) is robust with respect to the presence of unmodeled
dynamics in (19.123) which means that it is capable of stabilizing a wide class of

“black/gray-box” systems.

Remark 19.9. Evidently, using such discontinuous control, the trajectories of the con-
trolled system cannot stay in the stationary point x∗ = 0 since it arrives at it in finite
time but with a nonzero rate, namely, with ẋ (t) such that

ẋ (t) =
{
f (0)+ k0 if x (t) −→ +0

f (0)− k0 if x (t) −→ −0

which provokes the, so-called, “chattering effect” (see Fig. 19.2). Simple engineering
considerations show that some sort of smoothing (or low-pass filtering) should be applied
to keep dynamics close to the stationary point x∗ = 0.

Remark 19.10. Notice that when x (t) = x∗ = 0 we only know that

ẋ (t) ∈ [
f (0)− k0, f (0)+ k0] (19.135)

This means that we deal with a differential inclusion (not an equation) (19.135). So, we
need to define what does it mean mathematically correctly a solution of a differential
inclusion and what is it itself.

All these questions, arising in the remarks above, will be considered below in detail

and be illustrated by the corresponding examples and figures.

x

t t0

Fig. 19.2. The “chattering effect”.
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19.4.2 ODE with DRHS and differential inclusions

19.4.2.1 General requirements to a solution
As it is well known, a solution of the differential equation

ẋ (t) = f (t, x (t)) (19.136)

with a continuous right-hand side is a function x (t) which has a derivative and satisfies

(19.136) everywhere on a given interval. This definition is not, however, valid for DE

with DRHS since in some points of discontinuity the derivative of x (t) does not exist.

That’s why the consideration of DE with DRHS requires a generalization of the concept

of a solution. Anyway, such a generalized concept should necessarily meet the following

requirements:

• For differential equations with a continuous right-hand side the definition of a solution

must be equivalent to the usual (standard) one.
• For the equation ẋ (t) = f (t) the solution should be the functions x (t)= ∫

f (t) dt + c
only.

• For any initial data x (t0) = xinit within a given region the solution x (t) should exist

(at least locally) for any t > t0 and admit the possibility to be continued up to the

boundary of this region or up to infinity (when (t, x)→∞).
• The limit of a uniformly convergent sequence of solutions should be a solution too.
• Under the commonly used changes of variables a solution must be transformed into a

solution.

19.4.2.2 The definition of a solution
Definition 19.9. A vector-valued function f (t, x), defined by a mapping f : R×Rn →
Rp, is said to be piecewise continuous in a finite domain G ⊆ Rn+1 if G consists of a
finite number of a domain Gi (i = 1, . . . , l), i.e.,

G =
l⋃
i=1

Gi

such that in each of them the function f (t, x) is continuous up to the boundary

Mi := Ḡi\Gi (i = 1, . . . , l) (19.137)

of a measure zero.

The most frequent case is the one where the set

M =
l⋃
i=1

Mi

of all discontinuity points consists of a finite number of hypersurfaces

0 = Sk (x) ∈ C1, k = 1, . . . , m

where Sk (x) is a smooth function.
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Definition 19.10. The set M defined as

M = {x ∈ Rn | S (x) = (S1 (x) , . . . , Sm (x))ᵀ = 0} (19.138)

is called a manifold in Rn. It is referred to as a smooth manifold if Sk (x) ∈ C1,

k = 1, . . . , m.

Now we are ready to formulate the main definition of this section.

Definition 19.11. (A solution in Filippov’s sense) A solution x (t) on a time interval
[t0, tf ] of ODE ẋ (t) = f (t, x (t)) with DRHS in Filippov’s sense is called a solution of
the differential inclusion

ẋ (t) ∈ F (t, x (t)) (19.139)

that is, an absolutely continuous on [t0, tf ] function x (t) (which can be represented as a
Lebesgue integral of another function) satisfying (19.139) almost everywhere on [t0, tf ],
where the set F (t, x) is the smallest convex closed set containing all limit values of the
vector-function f (t, x∗) for (t, x∗) /∈ M, x∗ → x, t = const.

Remark 19.11. The set F (t, x)
1. consists of one point f (t, x) at points of continuity of the function f (t, x);
2. is a segment (a convex polygon, or polyhedron), which in the case when (t, x) ∈ Mi

(19.137) has the vertices

fi (t, x) := lim
(t,x∗)∈Gi , x∗→x

f (t, x∗) (19.140)

All points fi (t, x) are contained in F (t, x), but it is not obligatory that all of them
are vertices.

Example 19.4. For the scalar differential inclusion

ẋ (t) ∈ −sign (x (t))

the set F (t, x) is as follows (see Fig. 19.3):

1

x

21

2sign(x)

�(t, 0) � [21, 1]

Fig. 19.3. The right-hand side of the differential inclusion ẋt = −sign (xt ).
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1. F (t, x) = −1 if x > 0;
2. F (t, x) = 1 if x < 0;
3. F (t, x) = [−1, 1] if x = 0.

19.4.2.3 Semi-continuous sets as functions
Definition 19.12. A multi-valued function (or a set) F = F (t, x) (t ∈ R, x ∈ Rn) is
said to be

• a semi-continuous in the point (t0, x0) if for any ε > 0 there exists δ = δ (t0, x0, ε)
such that the inclusion

(t, x) ∈ {z | ‖z− (t0, x0)‖ ≤ δ} (19.141)

implies

F (t, x) ∈ {f | ‖f − f (t0, x0)‖ ≤ ε} (19.142)

• a continuous in the point (t0, x0) if it is semi-continuous and, additionally, for any
ε > 0 there exists δ = δ (t0, x0, ε) such that the inclusion

(t0, x0) ∈ {z | ‖z− (t ′, x ′)‖ ≤ δ} (19.143)

implies

F (t0, x0) ∈ {f | ‖f − f (t ′, x ′)‖ ≤ ε} (19.144)

Example 19.5. Consider the multi-valued functions F (t, x) depicted at Fig. 19.4.

Here the functions (sets)F (t, x), corresponding to the plots (1)–(4), are semi-continuous.

�(t, x)

x0 x

1)

�(t, x)

x0 x

2)

�(t, x)

x0 x

3)

�(t, x)

x0 x

4) �(t, x)

x0 x

5) �(t, x)

x0 x

6)

Fig. 19.4. Multi-valued functions.
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19.4.2.4 Theorem on the local existence of solution
First, let us formulate some useful result which will be applied in the following

considerations.

Lemma 19.14. If x (t) is absolutely continuous on the interval t ∈ [α, β] and within this
interval ‖ẋ (t)‖ ≤ c, then

1

β − α
(
xβ − xα

) ⊂ Conv
a.a. t∈[α,β]

∪ ẋ (t) (19.145)

where Conv is a convex closed set containing ∪ ẋ (t) for almost all t ∈ [α, β].

Proof. By the definition of the Lebesgue integral

1

β − α
(
xβ − xα

) = 1

β − α
β∫

t=α
ẋ (t) dt = lim

k→∞sk

where

sk =
k∑
i=1

μi

|β − α| ẋ(ti), μi ≥ 0,

k∑
i=1

μi = |β − α|

are Lebesgue sums of the integral above. But sk ∈ Conv
a.a. t∈[α,β]

∪ ẋ (t). Hence, the same fact

is valid for the limit vectors lim
k→∞sk which proves the lemma. �

Theorem 19.13. (on the local existence) Suppose that

A1. a multi-valued function (set) F (t, x) is a semi-continuous at each point

(t, x) ∈ Dγ,ρ (t0, x0) := {(t, x) | ‖x − x0‖ ≤ γ, |t − t0| ≤ ρ}

A2. the set F (t, x) is a convex compact and sup ‖y‖ = c whenever

y ∈ F (t, x) and (t, x) ∈ Dγ,ρ (t0, x0)

Then for any t such that |t − t0| ≤ τ := ρ/c there exists an absolutely continuous
function x (t) (maybe not unique) such that

ẋ (t) ∈ F(t, x), x (t0) = x0

that is, the ODE ẋ (t) = f (t, x (t)) with DRHS has a local solution in Filippov’s sense
(see Definition 19.11).
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Proof. Divide the interval [t0 − τ, t0 + τ ] into 2m-parts t
(m)
i := t0 + j

τ

m
(i = 0,±1, . . .±m) and construct the, so-called, partially linear Euler’s curves

xm (t) := xm
(
t
(m)
i

)
+
(
t − t (m)i

)
f̂
(m)
i (t

(m)
i ), t ∈

[
t
(m)
i , t

(m+1)
i

]
xm

(
t
(m)
0

)
= x0, f̂ (m)i

(
t
(m)
i

)
∈ F

(
t
(m)
i , xm

(
t
(m)
i

))
By the assumption (A2) it follows that xm (t) is uniformly bounded and continuous

on Dγ,ρ (t0, x0). Then, by Arzelà’s theorem 14.16 there exists a subsequence
{
xmk (t)

}
which uniformly converges to some vector function x (t). This limit evidently has a

Lipschitz constant on Dγ,ρ (t0, x0) and satisfies the initial condition x (t0) = x0. In view

of Lemma 19.14, for any h > 0 we have

h−1 [xmk (t + h)− xmk (t)] ⊂ Conv
a.a.[t0−τ,t0+τ ]

mk⋃
i=−mk

f̂
(mk)
i

⊂ Conv
a.a. λ∈

[
t0− τ

mk
,t0+ τ

mk
+h

]
mk⋃

i=−mk
f̂
(mk)
i (λ) := Ak

Since F (t, x) is semi-continuous, it follows that sup
x∈Ak

inf
y∈A

‖x − y‖ → 0 whenever k→∞
(here A := Conv

a.a. λ∈[t,t+h]
∪mli=−ml f (λ, xλ)). The convexity of F (t, x) implies also that

sup
x∈A

inf
y∈F(t,x)

‖x − y‖ → 0 when h → 0 which, together with previous property, proves

the theorem. �

Remark 19.12. By the same reasons as for the case of regular ODE, we may conclude
that the solution of the differential inclusion (if it exists) is continuously dependent on t0
and x0.

19.4.3 Sliding mode control

19.4.3.1 Sliding mode surface
Consider the special case where the function f (t, x) is discontinuous on a smooth

surface S given by the equation

s (x) = 0, s : Rn→ R, s (·) ∈ C1 (19.146)

The surface separates its neighborhood (in Rn) into domains G+ and G−. For t = const

and for the point x∗ approaching the point x ∈ S from the domains G+ and G− let us

suppose that the function f (t, x∗) has the following limits:

lim
(t,x∗)∈G−, x∗→x

f (t, x∗) = f − (t, x)
lim

(t,x∗)∈G+, x∗→x
f (t, x∗) = f + (t, x) (19.147)

Then by Filippov’s definition, F (t, x) is a linear segment joining the endpoints of the

vectors f − (t, x) and f + (t, x). Two situations are possible.
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• If for t ∈ (t1, t2) this segment lies on one side of the plane P tangent to the surface S

at the point x, the solutions for these t pass from one side of the surface S to the other

one (see Fig. 19.5 depicted at the point x = 0);
• If this segment intersects the plane P , the intersection point is the endpoint of the

vector f 0 (t, x) which defines the velocity of the motion

ẋ (t) = f 0 (t, x (t)) (19.148)

along the surface S in Rn (see Fig. 19.6 depicted at the point x = 0). Such a solution,

lying on S for all t ∈ (t1, t2), is often called a sliding motion (or mode). Defining the

projections of the vectors f − (t, x) and f + (t, x) to the surface S (∇s (x) �= 0) as

p− (t, x) :=
(∇s(x), f − (t, x))

‖∇s (x)‖ , p+ (t, x) :=
(∇s(x), f + (t, x))

‖∇s (x)‖
one can find that when p− (t, x) < 0 and p+ (t, x) > 0

f 0 (t, x) = αf − (t, x)+ (1− α) f + (t, x)

Here α can be easily found from the equation

(∇s(x), f 0 (t, x)
) = 0

G2

f1 f 2

G1

x3

x2

x1 S(x) 5 0

P

Fig. 19.5. The sliding surface and the rate vector field at the point x = 0.

f 1

f 2

G1

G2

x3

x2

f 0

x1
S(x) 5 0

P

Fig. 19.6. The velocity of the motion.
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or, equivalently,

0= (∇s(x), αf − (t, x)+ (1− α) f + (t, x))
= αp− (t, x)+ (1− α) p+ (t, x)

which implies

α = p+ (t, x)
p+ (t, x)− p− (t, x)

Finally, we obtain that

f 0 (t, x) = p+ (t, x)
p+ (t, x)− p− (t, x)f

− (t, x)

+
(
1− p+ (t, x)

p+ (t, x)− p− (t, x)
)
f + (t, x)

(19.149)

19.4.3.2 Sliding mode surface as a desired dynamic
Let us consider in this subsection several examples demonstrating that a desired

dynamic behavior of a controlled system may be expressed not only in the traditional

manner, using some cost (or payoff ) functionals as possible performance indices, but

also representing a nominal (desired) dynamic in the form of a surface (or manifold) in

a space of coordinates.

First-order tracking system: consider a first-order system given by the following ODE:

ẋ (t) = f (t, x (t))+ u (t) (19.150)

where u (t) is a control action and f : R×R → R is supposed to be bounded, that is,

|f (t, x (t))| ≤ f + <∞

Assume that the desired dynamics (signal), which should be tracked, is given by a smooth

function r (t) (|ṙ (t)| ≤ ρ), such that the tracking error et is (see Fig. 19.7)

e (t) := x (t)− r (t)

Select a desired surface s as follows

s (e) = e = 0 (19.151)

which exactly corresponds to an “ideal tracking” process. Then, designing the control

u (t) as

u (t) := −k sign (e (t))
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controller
r e u x

plant

Fig. 19.7. A tracking system.

0

e

tf

t

Fig. 19.8. The finite time error cancellation.

we derive that

ė (t) = f (t, x (t))− ṙ (t)− k sign (e (t))

and for V (e) = e2/2 we have

V̇ (e (t))= e (t) ė (t) = e (t) [f (t, x (t))− ṙ (t)− k sign (e (t))]

= e (t) [f (t, x (t))− ṙ (t)]− k |e (t)| ≤ |e (t)| [f + + ρ]− k |e (t)|

= |e (t)| [f + + ρ − k] = −√2 [k − f + − ρ]√V (e (t))
and, hence,

√
V (et ) ≤

√
V (e0)− 1√

2

[
k − f + − ρ] t

So, taking k > f + +ρ implies the finite time convergence of et (with the reaching phase

tf =
√
2V (e0)

k−f+−ρ ) to the surface (19.151) (see Figs. 19.8 and 19.9).

Stabilization of a second order relay system: let us consider a second order relay system
given by the following ODE

ẍ (t)+ a2ẋ (t)+ a1x (t) = u (t)+ ξ (t)
u (t) = −k sign (s̃ (t))− the relay-control

s̃ (t) := ẋ (t)+ cx(t), c > 0

|ξ (t)| ≤ ξ+ − a bounded unknown disturbance

(19.152)
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r
r, x

tf
t

Fig. 19.9. The finite time tracking.

x 5 x2

x�

s(x) 5 x 1 cx 5 0

x 5 x1

x�

Fig. 19.10. The sliding motion on the sliding surface s(x) = x2 + cx1.

We may rewrite the dynamic (x1 := x) as

ẋ1 (t)= x2 (t)
ẋ2 (t)= −a1x1 (t)− a2x2 (t)+ u (t)+ ξ (t)
u (t) = −ksign (x2 (t)+ cx1 (t))

(19.153)

Here the sliding surface is

s (x) = x2 + cx1

So, the sliding motion, corresponding to the dynamics s̃ (t) := ẋ (t)+cx (t) = 0, is given

by (see Fig. 19.10)

x (t) = x0e−ct

Let us introduce the following Lyapunov function candidate:

V (s) = s2/2
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for which the following property holds:

V̇ (s)= sṡ = s (x (t))
[
∂s (x (t))

∂x1
ẋ1 (t)+ ∂s (x (t))

∂x2
ẋ2 (t)

]
= s (x (t)) [cx2 (t)− a1x1 (t)− a2x2 (t)+ u (t)+ ξ (t)]
≤ |s (x (t))| [|a1| |x1 (t)| + (c + |a2|) |x2 (t)| + ξ+]− ks (x (t)) sign (s (x (t)))
= − [k − |a1| |x1 (t)| − (c + |a2|) |x2 (t)| − ξ+] |s (x (t))| ≤ 0

if we take

k = |a1| |x1 (t)| + (c + |a2|) |x2 (t)| + ξ+ + ρ, ρ > 0 (19.154)

This implies V̇ (s) ≤ −ρ√2V (s), and, hence, the reaching time tf (see Fig. 19.9) is

tf =
√
2V (s0)

ρ
= |ẋ0 + cx0|

ρ
(19.155)

Sliding surface and a related LQ-problem: consider a linear multi-dimensional plant

given by the following ODE

ẋ (t) = A (t) x (t)+ B (t) u (t)+ ξ (t)
x0 is given, x (t) ∈ Rn, u (t) ∈ Rr

Bᵀ (t) B (t) > 0 rank [B (t)] = r for any t ∈ [ts, t1]

ξ (t) is known as external perturbation

(19.156)

A sliding mode is said to be taking place in this system (19.156) if there exists a finite

reaching time ts , such that the solution x (t) satisfies

σ (x, t) = 0 for all t ≥ ts (19.157)

where σ (x, t) : Rn×R+ → Rr is a sliding function and (21.65) defines a sliding surface
in Rn+1. For each t1 > 0 the quality of the system (19.156) motion in the sliding surface

(21.65) is characterized by the performance index (Utkin (1992))

Jts ,t1 =
1

2

t1∫
ts

(x(t), Qx (t)) dt, Q = Qᵀ ≥ 0 (19.158)

Below we will show that the system motion in the sliding surface (21.65) does not depend

on the control function u, that’s why (19.158) is a functional of x and σ (x, t) only. Let

us try to solve the following problem.
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Problem formulation: for the given linear system (19.156) and t1 > 0 define the optimal

sliding function σ = σ (x, t) (21.65) providing the optimization in the sense of (19.158)

in the sliding mode, that is,

Jts ,t1 → inf
σ∈� (19.159)

where � is the set of the admissible smooth (differentiable on all arguments) sliding

functions σ = σ (x, , t). So, we wish to minimize the performance index (19.158) varying

(optimizing) the sliding surface σ ∈ �.
Introduce a new state vector z defined by

z = T (t) x (19.160)

where the linear nonsingular transformations T (t) are given by

T (t) :=
[
I(n−r)×(n−r) −B1 (t) (B2 (t))

−1

0 (B2 (t))
−1

]
(19.161)

Here B
(n−r)×(n−r)
1 (t) ∈ Rr×r and B2 (t) ∈ Rr×r represent the matrices B (t) in the form

B (t) =
[
B1 (t)

B2 (t)

]
, det [B2 (t)] �= 0 ∀ t ≥ 0 (19.162)

Applying (19.162) to the system (19.156), we obtain (below we will omit the time

dependence)

ż =
(
ż1
ż2

)
=

(
Ã11z1 + Ã12z2

Ã21z1 + Ã22z2

)
+
(
0

u

)
+
(
ξ̃1

ξ̃2

)
(19.163)

where z1 ∈ Rn−r , z2 ∈ Rr and

Ã =
[
Ã11 Ã12

Ã21 Ã22

]
= TAT −1 + Ṫ T −1,

(
ξ̃1 (t)

ξ̃2 (t)

)
= T ξ (t) (19.164)

Using the operator T −1, it follows x = T −1z and, hence, the performance index (19.158)

in new variables z may be rewritten as

Jts ,t1 =
1

2

t1∫
ts

(x,Qx) dt = 1

2

t1∫
ts

(
z, Q̃αz

)
dt

= 1

2

t1∫
ts

[(
z1, Q̃

α
11z1

)
+ 2

(
z1, Q̃

α
12z2

)
+
(
z2, Q̃

α
22z2

)]
dt

Q̃ := (
T −1

)ᵀ
QT −1 =

[
Q̃11 Q̃12

Q̃21 Q̃22

]
(19.165)
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and the sliding function σ = σ (x, t) becomes

σ = σ (T −1z, t
) := σ̃ (z, t) (19.166)

Remark 19.13. The matrices Q̃11, Q̃12, Q̃21 and Q̃22 are supposed to be symmetric.
Otherwise, they can be symmetrized as follows:

Jts ,t1 =
1

2

t1∫
ts

[(
z1, Q̄11z1

)+ 2
(
z1, Q̄12z2

)+ (
z2, Q̄22z2

)]
dt

Q̄α11 :=
(
Q̃11 + Q̃ᵀ

11

)
/2, Q̄22 :=

(
Q̃22 + Q̃ᵀ

22

)
/2

Q̄12 =
(
Q̃12 + Q̃ᵀ

12 + Q̃21 + Q̃ᵀ
21

)
/2

(19.167)

Assumption (A1): we will look for the sliding function (19.166) in the form

σ̃ (z, t) := z2 + σ̃0 (z1, t) (19.168)

If the sliding mode exists for the system (19.163) in the sliding surface σ̃ (z, t) = 0 under

assumption (A1), then for all t ≥ ts the corresponding sliding mode dynamics, driven by

the unmatched disturbance ξ̃1 (t), are given by

ż1 = Ã11z1 + Ã12z2 + ξ̃1
z2 = −σ̃0 (z1, t)

(19.169)

with the initial conditions z1 (ts) = (T x (ts))1. Defining z2 as a virtual control, that is,

v := z2 = −σ̃0 (z1, t) (19.170)

the system (19.169) may be rewritten as

ż1 = Ã11z1 + Ã12v + ξ̃1 (19.171)

and the performance index (19.165) becomes

Jts ,t1 =
1

2

t1∫
ts

[(
z1, Q̃

α
11z1

)
+ 2

(
z1, Q̃

α
12v

)
+
(
v, Q̃α22v

)]
dt (19.172)

In view of (19.171) and (19.172), the sliding surface design problem (19.159) is reduced

to the following one:

Jts ,t1 → inf
v∈Rr (19.173)
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But this is the standard LQ-optimal control problem. This means that the optimal control

v∗t = v∗
(
z1,t , t

)
, optimizing the cost functional (19.172), defines the optimal sliding

surface σ ∗ (x, t) (see (19.171) and (19.168)) in the following manner:

v∗
(
z1,t , t

)=−σ̃0 (z1, t)
σ̃ (z, t)= z2 − v∗

(
z1,t , t

) = 0

or, equivalently,

σ ∗ (x, t) = (T x)2 − v∗ ((T x)1, t) = 0 (19.174)

19.4.3.3 Equivalent control method
Equivalent control construction: here a formal procedure will be described to obtain

sliding equations along the intersection of sets of discontinuity for a nonlinear system

given by

ẋ (t) = f (t, x(t), u (t))
x0 is given

x (t) ∈ Rn, u (t) ∈ Rr

(19.175)

and the manifold M (19.138) defined as

S (x) = (S1 (x) , . . . , Sm (x))ᵀ = 0 (19.176)

representing an intersection of m submanifolds Si (x) (i = 1, . . . , m).

Definition 19.13. Hereinafter the control u (t) will be referred to (according to V. Utkin)
as the equivalent control u(eq) (t) in the system (19.175) if it satisfies the equation

Ṡ (x (t)) = G(x (t)) ẋ (t) = G(x (t)) f (t, x(t), u (t)) = 0

G(x (t)) ∈ Rm×n, G (x (t)) = ∂

∂x
S (x (t))

(19.177)

It is quite obvious that, by virtue of the condition (19.177), a motion starting at

S (x (t0)) = 0 in time t0 will proceed along the trajectories

ẋ (t) = f (
t, x(t), u(eq) (t)

)
(19.178)

which lies on the manifold S (x) = 0.

Definition 19.14. The above procedure is called the equivalent control method (Utkin
1992; Utkin et al. 1999) and equation (19.178), obtained as a result of applying this
method, will be regarded as the sliding mode equation describing the motion on the
manifold S (x) = 0.
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From the geometric viewpoint, the equivalent control method implies a replacement

of the undefined discontinued control on the discontinuity boundary with a continuous

control which directs the velocity vector in the system state space along the discontinuity

surface intersection. In other words, it realizes the velocity f 0
(
t, x(t), u(eq) (t)

)
(19.149)

exactly corresponding to Filippov’s definition of the differential inclusion in the point

x = x (t).
Consider now the equivalent control procedure for an important particular case of a

nonlinear system which is affine on u, the right-hand side of whose differential equation

is a linear function of the control, that is,

ẋ (t) = f (t, x (t))+ B (t, x (t)) u (t) (19.179)

where f : R × Rn → Rn and B : R × Rn → Rn×r are all argument continuous vector

and matrix, respectively, and u (t) ∈ Rr is a control action. The corresponding equivalent

control should satisfy (19.177), namely,

Ṡ (x (t))= G(x (t)) ẋ (t) = G(x (t)) f (t, x(t), u (t))

= G(x (t)) f (t, x (t))+G(x (t)) B (t, x (t)) u (t) = 0

(19.180)

Assuming that the matrix G(x (t)) B (t, x (t)) is nonsingular for all x (t) and t , one can

find the equivalent control from (19.180) as

u(eq) (t) = − [G(x (t)) B (t, x (t))]
−1
G(x (t)) f (t, x (t)) (19.181)

Substitution of this control into (19.179) yields the following ODE:

ẋ (t) = f (t, x (t))
−B (t, x (t)) [G(x (t)) B (t, x (t))]−1

G(x (t)) f (t, x (t))
(19.182)

which describes the sliding mode motion on the manifold S (x) = 0. Below the corre-

sponding trajectories in (19.182) will be referred to as x (t) = x(sl) (t).

Remark 19.14. If we deal with an uncertain dynamic model (19.175) or, particularly,
with (19.179), then the equivalent control u(eq) (t) is not physically realizable.

Below we will show that u(eq) (t) may be successfully approximated (in some sense)

by the output of the first-order low-pass filter with the input equal to the corresponding

sliding mode control.
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Sliding mode control design: let us try to stabilize the system (19.179) by applying the

sliding mode approach. For the Lyapunov function V (x) := ‖S (x)‖2/2, considered on

the trajectories of the controlled system (19.179), we have

V̇ (x (t))= (
S(x (t)), Ṡ (x (t))

)
= (S(x (t)),G (x (t)) f (t, x (t))+G(x (t)) B (t, x (t)) u (t))

= (S(x (t)),G (x (t)) f (t, x (t)))+ (S(x (t)),G (x (t)) B (t, x (t)) u (t))

≤ ‖S (x (t))‖ ‖G(x (t)) f (t, x (t))‖ + (S(x (t)),G (x (t)) B (t, x (t)) u (t))

Taking u (t) as a sliding mode control, i.e.,

u (t)= u(sl) (t)

u(sl) (t) := −kt [G(x (t)) B (t, x (t))]−1
sign (S (x (t)))

kt > 0, sign (S (x)) := (sign (S1 (x)) , . . . , sign (Sm (x)))ᵀ
(19.183)

we obtain

V̇ (x (t)) ≤ ‖S (x)‖ ‖G(x (t)) f (t, x (t))‖ − kt
m∑
i=1

|Si (x (t))|

which, in view of the inequality, ‖S‖ ≥
m∑
i=1

|Si |, implies

V̇ (x (t)) ≤ −‖S (x)‖ (kt − ‖G(x (t)) f (t, x (t))‖)

Selecting

kt = ‖G(x (t)) f (t, x (t))‖ + ρ, ρ > 0 (19.184)

gives V̇ (x (t)) ≤ −ρ ‖S (x)‖ = −ρ√2V (x (t)) which provides the reaching phase in

time

tf =
√
2V (x0)

ρ
= ‖S (x0)‖

ρ
(19.185)

Remark 19.15. If the sliding motion on the manifold S(x) = 0 is stable then there exists
a constant k0 ∈ (0,∞) such that

‖G(x (t)) f (t, x (t))‖ ≤ k0
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and, hence, kt (19.184) may be selected as a constant

kt := k = k0 + ρ (19.186)

Low-pass filtering: to minimize the influence of the chattering effect arising after the

reaching phase let us consider the property of the signal obtained as an output of a

low-pass filter with the input equal to the sliding mode control, that is,

μu̇(av) (t)+ u(av) (t) = u(sl)(t), u
(av)
0 = 0, μ > 0 (19.187)

where u(sl) (t) is given by (19.183). The next simple lemma states the relation between

the, so-called, averaged control u(av) (t), which is the filtered output, and the input signal

u(sl) (t).

Lemma 19.15. If

g+ ≥ ‖GB (t, x (t))‖ := λ1/2max

(
[Bᵀ (t, x (t))Gᵀ] [GB (t, x (t))]

)
≥ λ1/2min

(
[Bᵀ (t, x (t))Gᵀ] [GB (t, x (t))]

) ≥ κIr×r , κ > 0

(19.188)

then for the low-pass filter (19.187) the following properties hold:
1. The difference between the input and output signals are bounded, i.e.,

u(av) (t) = u(sl) (t)+ ζ (t)

‖ζ (t)‖ ≤ 2c, c := (
g+ + ρ)m/κ∥∥u̇(av) (t)∥∥ ≤ 2c/μ

(19.189)

2. The amplitude-frequency characteristic A (ω) of the filter is

A (ω) = 1√
1+ (μω)2 , ω ∈ [0,∞) (19.190)

whose plot is depicted at Fig. 19.11 for μ = 0.01, where y = A (ω) and x = ω.
Proof.

1. The solution of the ODE (19.183) and its derivative are as follows:∥∥∥kt [GB (t, xt )]−1
∥∥∥ ≤ (‖Gf (t, xt )‖ + ρ)∥∥∥[GB (t, xt )]−1

∥∥∥
= (‖Gf (t, xt )‖ + ρ)
λ
1/2

min

(
[Bᵀ (t, xt )Gᵀ] [GB (t, xt )]

) ≤ κ−1
(
g+ + ρ)

∥∥u(sl)t ∥∥ ≤ κ−1
(
g+ + ρ)m := c
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Fig. 19.11. The amplitude-phase characteristic of the low-pass filter.

and by (19.187)

u
(av)
t = 1

μ

t∫
s=0

e−(t−s)/μu(sl)s ds

u̇
(av)
t = 1

μ

⎡
⎣u(sl)t − 1

μ

t∫
s=0

e−(t−s)/μu(sl)s ds

⎤
⎦

(19.191)

which implies

μ

∥∥∥u̇(av)t

∥∥∥ ≤ ∥∥∥u(sl)t ∥∥∥+ 1

μ

t∫
s=0

e−(t−s)/μ
∥∥u(sl)s ∥∥ ds ≤ c + c

μ

t∫
s=0

e−(t−s)/μds

= c + c
t∫

s=0

e−(t−s)/μd (s/μ)

= c + c
t/μ∫
s̃=0

e−(t/μ−s̃)ds̃ = c + c (1− e−t/μ) ≤ 2c

Hence, (19.189) holds.

2. Applying the Fourier transformation to (19.187) leads to the following identity:

μjωU(av) (jω)+ U(av) (jω) = U(sl) (jω)

or, equivalently,

U(av) (jω) = 1

1+ μjωU
(sl) (jω) = 1− μjω

1+ (μω)2U
(sl) (jω)
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So, the amplitude-frequency characteristic

A (ω) :=
√
[ReU(av) (jω)]

2 + [ImU(av) (jω)]
2

of the filter (19.187) is as in (19.190). Lemma is proven. �

19.4.3.4 The realizable approximation of the equivalent control
By (19.191) u

(av)
t may be represented as u

(av)
t = ∫ t

s=0
u(sl)s d

(
e−(t−s)/μ

)
. Consider

the dynamics x
(av)
t of the system (19.175) controlled by u

(av)
t (19.191) at two time intervals:

during the reaching phase and during the sliding mode regime.

1. Reaching phase (t ∈ [0, tf ]). Here the integration by part implies

u(av)t =
t∫

s=0

u(sl)s d
(
e−(t−s)/μ

) = u(sl)t − u(sl)0 e
−t/μ −

t∫
s=0

u̇(sl)s e
−(t−s)/μ ds

Supposing that u
(sl)
t (19.183) is bounded almost everywhere, i.e.,

∥∥∥u̇(sl)t ∥∥∥ ≤ d . The
above identity leads to the following estimation:

∥∥∥u(av)t − u(sl)t
∥∥∥ ≤ ∥∥∥u(sl)0

∥∥∥ e−t/μ + d t∫
s=0

e−(t−s)/μ ds

=
∥∥∥u(sl)0

∥∥∥ e−t/μ + μd t∫
s=0

e−(t−s)/μd (s/μ)

=
∥∥∥u(sl)0

∥∥∥ e−t/μ + μd
t/μ∫
s̃=0

e−(t/μ−s̃)ds̃

=
∥∥∥u(sl)0

∥∥∥ e−t/μ + μd (1− e−t/μ) = μd +O (
e−t/μ

)
So, u

(av)
t may be represented as

u
(av)
t = u(sl)t + ξt (19.192)

where ξt may be done as small as you wish taking μ tending to zero, since

‖ξt‖ ≤ μd +O
(
e−t/μ

)
As a result, the trajectories x

(sl)
t and x

(av)
t will differ slightly. Indeed,

ẋ
(sl)
t = f

(
t, x

(sl)
t

)
− B

(
t, x

(sl)
t

)
u
(sl)
t

ẋ
(av)
t = f

(
t, x

(av)
t

)
− B

(
t, x

(av)
t

)
u
(av)
t
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Defining

B̃ = B(t, x(av)t ), G̃ = G(x(av)t ), f̃ = f (
t, x(av)t

)
and omitting the arguments for simplicity, the last equation may be represented as

ẋ(sl)t = f − Bu(sl)t , ẋ(av)t = f̃ − B̃u(av)t

Hence by (19.192), the difference �t := x(sl)t − x(av)t satisfies

�t = �0 −
t∫

s=0

[(
f − f̃

)
− Bu(sl)s + B̃u(av)s

]
ds

= �0 −
t∫

s=0

[(
f − f̃

)
− Bu(sl)s + B̃ (

u(sl)s + ξs
)]
ds

Taking into account that �0 = 0 (the system starts with the same initial conditions

independently on an applied control) and that f (t, x) and B (x) are Lipschitz (with

the constant Lf and LB) on x it follows that

‖�t‖ ≤
t∫

s=0

[∥∥∥f − f̃ ∥∥∥+ ∥∥∥(B̃ − B) u(sl)s + B̃ξs
∥∥∥] ds

≤
t∫

s=0

[
Lf ‖�s‖ + LB ‖�s‖

∥∥u(sl)s ∥∥+ ∥∥B̃∥∥ ‖ξs‖] ds

≤
t∫

s=0

[(
Lf + LB

∥∥u(sl)s ∥∥) ‖�s‖ + ∥∥B̃∥∥ (μd +O (
e−s/μ

))]
ds

Since O
(
e−t/μ

) = μO (
1

μ
e−t/μ

)
= μo (1) ≤ με and

∥∥u(sl)s ∥∥ ≤ u(sl)+ <∞, ∥∥B̃∥∥ ≤ B+ <∞

we finally have

‖�t‖ ≤
t∫

s=0

[(
Lf + LBu(sl)+

) ‖�s‖ + B+μ (d + ε)] ds
≤ B+μ (d + ε) tf +

t∫
s=0

(
Lf + LBu(sl)+

) ‖�s‖ ds



Ordinary differential equations 559

Now let us apply the Gronwall lemma which says that if v (t) and ξ (t) are nonnegative

continuous functions on [t0,∞) verifying

v (t) ≤ c +
t∫

s=t0

ξ (s) v (s) ds (19.193)

then for any t ∈ [t0,∞) the following inequality holds:

v (t) ≤ c exp
⎛
⎝ t∫
s=t0

ξ (s) ds

⎞
⎠ (19.194)

This result remains true if c = 0. In our case

v (t) = ‖�t‖ , c = B+μ (d + ε) tf , ξ (s) = Lf + LBu(sl)+

for any s ∈ [0, tf
)
. So,

‖�t‖ ≤ δ := B+μ (d + ε) tf exp
((
Lf + LBu(sl)+

)
tf

)
(19.195)

Claim 19.2. For any finite reaching time tf and any small value δ > 0 there exists a
small enough μ such that ‖�t‖ is less than δ.

2. Sliding mode phase (t > tf ). During the sliding mode phase we have

S
(
x(sl)t

) = Ṡ (x(sl)t ) = G (
f − Bu(eq)t

) = 0 (19.196)

if ut = u(eq)t for all t > tf . Applying ut = u(av)t we cannot guarantee (19.196) already.

Indeed,

S
(
x(av)t

) = S (x(av)tf

)
+

t∫
s=tf

Ṡ
(
x(av)s

)
ds

and, by (19.195),∥∥∥S (x(av)tf

)∥∥∥ = ∥∥∥S (x(av)tf

)
-S

(
x(sl)tf

)∥∥∥≤∥∥∥G(
(sl)
tf

)
�tf

∥∥∥≤O(μ)
Hence, in view of (19.196),

∥∥∥S (x(av)t

)∥∥∥ = O(μ).
Claim 19.3. During the sliding-mode phase∥∥∥S (x(av)t

)∥∥∥ = O(μ) (19.197)
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This chapter deals with the basic notions concerning the stability property of

certain solutions or sets of solutions of the different classes of ordinary differential

equations (ODE).

In the famous work of A.M. Lyapunov (Lyapunov 1892) there is given some very

simple (but philosophically very profound) theorems (hereafter referred to as the direct
Lyapunov’s method) for deciding the stability or instability of an equilibrium point of an

ODE. The idea of this approach consists of the generalization of the concept of “energy”

and its “power” the usefulness of which lies in the fact that the decision on stability can

be made by investigating the differential equation itself (in fact, its right-hand side only)

but not by finding its exact solution.

The purpose of this chapter is to give an introduction to some of the fundamental ideas

and problems in the field which can be successfully applied to some problems arising in

automatic control theory.

20.1 Basic definitions

20.1.1 Origin as an equilibrium

Definition 20.1. The vector-valued function y (t, y0, t0) ∈ Rn is said to be the dynamic
motion satisfying

ẏ (t) = g (t, y (t)), y (t0) = y0

if

• there exists no other function satisfying this ODE with the same initial conditions;
• it is differentiable in t for all t ≥ t0.

561
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Remark 20.1. Evidently, by this definition, y (t0, y0, t0) = y0.

Consider the, so-called, nominal dynamic motion y∗ (t, y0, t0) satisfying

ẏ∗ (t) = g∗ (t, y∗ (t)), y∗ (t0) = y∗0 ∈ Rn

and the dynamic motion in deviations x (t, x0, t0) ∈ Rn, defined by

x (t, x0, t0) := y (t, y0, t0)− y∗ (t, y0, t0)
ẋ (t)= f (t, x (t))
x (t0)= x0 := y0 − y∗0

f (t, x) := g (t, x − y∗)− g∗ (t, y∗)
(20.1)

Definition 20.2. Supposing that equation (20.1)admits thedynamicmotionx (t, 0, t0) ≡ 0.
We will also call it the trivial solution or the equilibriumwhich can be expressed by

f (t, 0) = 0, t ≥ t0 (20.2)

Further we will assume that the solution, belonging to the initial point x0 in a certain
neighborhood ‖x0‖ < δ of the origin, exists for all t ≥ t0 and is uniquely determined by
the initial values x0, t0.1

In this chapter we will study different aspects of stability of the equilibrium point

x = 0.

20.1.2 Positive definite functions

First, let us introduce the following definitions which will be intensively used hereafter.

Definition 20.3. A real function V = V (t, x), specified in the domain ‖x‖ ≤ h

(x ∈ Rn, h > 0) for all t ≥ t0, is called positive-definite if there exists a real continuous
function W (x) defined for ‖x‖ ≤ h such that

1.

W (0) = 0 (20.3)

2. for ‖x‖ > 0

W (x) > 0 (20.4)

3. for all t ≥ t0
V (t, x) ≥ W (x) (20.5)

1 We may assume that f (t, x) is an n-dimensional vector function which is locally (uniformly on t) Lipschitz

on x in a neighborhood of the point x = 0.
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If the properties (2)–(3) are replaced by W (x) < 0 and V (t, x) ≤ W (x), then the
function V (t, x) will be negative-definite.

Example 20.1.

V (t, x) = x21 + x22 + x1x2 sin t

is precisely such a function. Indeed,

V (t, x)= x21 + x22 + x1x2 sin t ≥ x21 + x22 − |x1| |x2|
= (|x1| − |x2|)2 + |x1| |x2| ≥ |x1| |x2| := W (x)

So, all conditions of Definition 20.3 are fulfilled for the function W (x).

Definition 20.4. Denote by x̄ (t, x0, t0) the dynamic motion (trajectory) which satisfies
(20.1) when x (t0) = x0. Then, if there exists the time derivative of the function V̄ (t) :=
V (t, x̄ (t, x0, t0)), then the function V (t, x) is said to be differentiable along the integral
curves (or the path) x̄ (t, x0, t0) of the system (20.1).

Claim 20.1. The full time derivative of the differentiable function V̄ (t) is calculated as
follows

d

dt
V̄ (t) = d

dt
V (t, x̄ (t, x0, t0)) = ∂

∂t
V (t, x̄ (t, x0, t0))

+
n∑
i=1

∂V

∂xi
(t, x̄ (t, x0, t0)) fi (t, x̄ (t, x0, t0))

(20.6)

In short (20.6) is written as

d

dt
V (t, x̄) = ∂

∂t
V (t, x̄)+

n∑
i=1

∂V

∂xi
(t, x̄) fi (t, x̄) (20.7)

20.2 Lyapunov stability

20.2.1 Main definitions and examples

Definition 20.5. The equilibrium zero-point (or zero-state) x = 0 of the system given by
ODE (20.1) is said to be
1. Lyapunov stable, or locally stable, if for any ε > 0 there exist t ′0 ≥ t0 ≥ 0 and δ =
δ
(
t ′0, ε

)
> 0 such that for all t ≥ t0 we have

∥∥x̄ (t, x0, t ′0)∥∥ < ε whenever x (t ′0) = x0
and ‖x0‖ < δ;

2. uniformly Lyapunov stable, or uniformly locally stable, if it is Lyapunov stable for
any t ′0 ≥ t0, that is, δ is independent on t ′0;
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3. asymptotically locally stable if it is locally stable and, additionally, x̄
(
t, x0, t

′
0

) → 0

as t →∞;
4. asymptotically uniformly locally stable if it is uniformly locally stable and, addition-

ally, x̄
(
t, x0, t

′
0

)→ 0 as t →∞.
5. exponentially locally stable if

• it is asymptotically uniformly locally stable, and,
• additionally, there exists two positive constants α and β such that

‖x (t0)‖ ≤ α ‖x (t0)‖ e−β(t−t0) (20.8)

Definition 20.6. The equilibrium zero-point (or zero-state) x = 0 of the system given by
ODE (20.1) is said to be unstable if at least one of two requirements holds:

• either the solution x (t) of (20.1) is noncontinuable in t from t = t0 up to ∞ in any
neighborhood of the zero-state x = 0; or

• when for any δ > 0 and any t ′ ≥ t0 there exists ε = ε (δ, t ′) and t ′′ ≥ t ′ such that
‖x (t ′′)‖ > ε in spite of the fact that ‖x (t ′)‖ < δ.
The illustrations of Lyapunov and asymptotic types of stability are given by Figs. 20.1

and 20.2.

Example 20.2. (The linear oscillator) Consider themodel of the linear oscillator given by

ẍ (t)+ dẋ (t)+ ω2x (t) = 0

t ≥ t0 := 0, ω > 0, x (0) = x0, ẋ (0) = ẋ0 are given
(20.9)

(a) The no-friction case d = 0: x1 (t) := x (t), x2 (t) := ẋ (t)

ẋ1 (t) = x2 (t), ẋ2 (t) = −ω2x1 (t)

t

xt

xt0 �



Fig. 20.1. Lyapunov’s stability illustration.
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xt t

xt0

Fig. 20.2. Asymptotic local stability illustration.

and

x1 (t) = x (t) = x0 cosωt + ẋ0
ω

sinωt

x2 (t) = ẋ (t) = −x0ω sinωt + ẋ0
ω

cosωt

So, for |x0| ≤ δ and |ẋ0| ≤ δ we have

|x (t)| ≤ |x0| +
∣∣∣∣ ẋ0ω

∣∣∣∣ ≤ δ (1+ ω−1
) ≤ ε

|ẋ (t)| = |x0ω| + |ẋ0| ≤ δ (ω + 1) ≤ ε

if δ := ε/max
{
1+ ω−1; 1+ ω}

This means that the state

(
0

0

)
is uniformly locally stable.

(b) The friction case d > 0: x1 (t) := x (t), x2 (t) := ẋ (t)

ẋ1 (t) = x2 (t), ẋ2 (t) = −ω2x1 (t)− dx2 (t)

and

x1 (t) = x (t) = c1eλ1t + c2eλ2t
x2 (t) = ẋ (t) = c1λ1eλ1t + c2λ2eλ2t

λ1,2 = −d
2
±
√(

d

2

)2

− ω2
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In any case, Re λi < 0 (i = 1, 2) which implies

|x1 (t)| = |x (t)| ≤ |c1| eRe λ1t + |c2| eRe λ2t → 0 as t →∞
|x2 (t)| = |ẋ (t)| ≤ |λ1| |c1| eRe λ1t + |λ2| |c2| eRe λ2t

≤ max
i=1,2

(|λi | |ci |) emax
i=1,2

(Re λi )t → 0 as t →∞

Therefore the stationary state

(
0

0

)
is exponentially locally stable with α =max

i=1,2
(|λi | |ci |)

and β = −max
i=1,2

(Re λi).2

20.2.2 Criteria of stability: nonconstructive theory

The theory, designed by A.M. Lyapunov (Doctor thesis 1892, the first translations from

Russian are in Lyapunov 1907), says that if for a system (20.1) there exists a Lyapunov
(positive-definite “energetic”) function, then the zero-state is Lyapunov stable. So,
this theory deals with the, so-called, sufficient conditions of stability. But there exists

another concept (see Zubov 1962, 1964) which states that if the zero-state of (20.1) is
locally stable, then obligatory there exists a corresponding Lyapunov function. This
means exactly that the existence of a Laypunov function is also a necessary condition of

stability.

In this subsection we will present the “joint result” (due to Zubov (1962)) on the

necessary and sufficient conditions of local stability or, in other words, the criterion of
local, asymptotic and exponential stability for nonlinear systems governed by (20.1).

20.2.2.1 Criterion of Lyapunov (local) stability
Theorem 20.1. (The criterion of stability (Zubov 1964)) The zero-state of the system
(20.1) is Lyapunov (or, locally) stable if and only if there exists a function V (t, x), called
the Lyapunov function, satisfying the following conditions:

1. V (t, x) is defined for ‖x‖ ≤ h and t ≥ t0;
2. V (t, 0) = 0 for all t ≥ t0 and is continuous in x for all t ≥ t0 in the point x = 0;
3. V (t, x) is positive-definite, that is, there exists a function W (x) such that

V (t, x) ≥ W (x) for all t ≥ t0
W (0) = 0, W (x) > 0 for ‖x‖ > 0

4. the function V̄ (t) := V (t, x̄ (t, x0, t0)) does not increase3 in t ≥ t0 for all x0 satisfying
‖x0‖ ≤ h.

2 In fact, here it is proven more accurately: this state is globally exponentially stable (the exact definition in

subsection 20.2.3), since the property
∥∥x̄ (t, x0, t ′0)∥∥ ≤ α exp (−βt) →

t→∞ 0 is true for any x0 and any t ′0 ≥ 0.

3 Notice that here it is not required for V̄t to be t-differentiable.
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Proof.

(a) Sufficiency. Suppose that there exists a function V (t, x) satisfying all conditions (1)–

(4) of Theorem 20.1. Take ε < h and consider the sphere ‖x‖ = ε. By condition (3)

inf
x:‖x‖=ε

W (x) := λ > 0

By the continuity of V (t, x) (the properties (1)–(2)) it follows that there is a number

δ = δ (t0, ε) > 0 such that V (t0, x) < λ as ‖x‖ < δ. Take any point x0 satisfying

‖x0‖ < δ. Then V (t0, x0) < λ and by property (4) the function V (t, x̄ (t, x0, t0)) is

not increasing for t ≥ t0 which implies

V (t, x̄ (t, x0, t0)) ≤ V (t0, x0) < λ (20.10)

Hence, ‖x (t, x0, t0)‖ < ε for all t ≥ t0, otherwise there exists an instant time t̃ > t0
such that

∥∥x (t̃ , x0, t0)∥∥ = ε and, therefore,
V
(
t̃ , x̄

(
t̃ , x0, t0

)) ≥ W (
x̄
(
t̃ , x0, t0

)) ≥ λ
which contradicts (20.10). The sufficiency is proven.

(b) Necessity. Let the stationary zero-point be Lyapunov stable. Consider the solution

x̄ (t, x0, t0) of (20.1) for ‖x0‖ ≤ h. Define the function V (t, x) as follows

V (t, x) := sup
s≥t

‖x̄ (s, x, t)‖ (20.11)

where x̄ (s, x, t) is the solution (20.1) started at the point x at time t . So, the condition

(1) of Theorem 20.1 holds. Since x = 0 is a stationary point (an equilibrium), then

V (t, 0) = 0 which follows from (20.11). Additionally, this function is continuous at

the point x = 0 for any t ≥ t0. Indeed, for ε > 0, by the stability property, there

exists δ = δ (t0, ε) such that ‖x̄ (t, x0, t0)‖ < ε whenever ‖x0‖ < δ. By (20.11),

V (t0, x0) < ε which proves the fulfillment of condition (2) of Theorem 20.1. One

can see also that when ‖x0‖ > 0

V (t0, x0) ≥ ‖x̄ (t0, x0, t0)‖ = ‖x0‖ := W (x0) > 0

So, V (t, x) is positive-definite and condition (3) is also fulfilled. To demonstrate the

validity of condition (4) it is sufficient to establish that

V
(
t ′, x̄

(
t ′, x0, t0

)) ≤ V (
t ′′, x̄

(
t ′′, x0, t0

))
if t ′′ ≥ t ′ ≥ t0

To do this, it is sufficient to notice that by formula (20.11)

V (t ′, x̄ (t ′, x0, t0)) = sup
s≥t ′

‖x̄ (s, x̄ (t ′, x0, t0), t ′)‖
≥ sup
s≥t ′′

‖x̄ (s, x̄ (t ′, x0, t0), t ′)‖ = sup
s≥t ′′

‖x̄ (s, x̄ (t ′′, x0, t0), t ′′)‖
= V (t ′′, x̄ (t ′′, x0, t0))

which means that the function does not increase along the solutions x (t, x0, t0). This

completes the proof of the necessity of the conditions of Theorem 20.1. �
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Remark 20.2. Condition (4) of Theorem 20.1 seems to be restrictive since the integral
curves x̄ (t, x0, t0) are not given analytically and, therefore, are unknown if we do not
know the exact analytical solution of (20.1). However, this problem can be slightly
simplified if we remember the following fact:

“By one of the Lebesgue theorems (see Corollary 15.5), the derivative of a monotone
function exists almost everywhere.”

Therefore, by the condition (4) the function V̄ (t) := V (t, x̄ (t, x0, t0)) is monotone on
any integral curve x̄ (t, x0, t0) and, hence, there exists the derivative

d

dt
V̄ (t). Admitting

also the existence of the partial derivatives
∂V (t, x)

∂t
and

∂V (t, x)

∂xi
for all t ≥ t0 and

all x in a neighborhood of the origin, condition (4) can be verified by checking the
inequality

d

dt
V̄ (t) = ∂V (t, x)

∂t
+

n∑
i=1

∂V (t, x)

∂xi
fi (t, x) ≤ 0 (20.12)

Sure, the derivatives
∂V (t, x)

∂t
and

∂V (t, x)

∂xi
of the function V (t, x), as it is defined

in (20.11), cannot be calculated analytically. So, this means that Theorem 20.1 makes
only a “philosophical sense”, but not a practical one: it says that any system with the
stable zero-state has a Lyapunov function.

Corollary 20.1. (Lyapunov 1892)4 If the function V (t, x) is positive-definite and con-
tinuous in x at x = 0 uniformly in t for all t ≥ t0 and

d

dt
V (t, x̄ (t, x0, t0)) ≤ 0 (20.13)

then the stationary point x = 0 of the system (20.1) is uniformly local stable.

Proof. In the proof of Theorem 20.1 a number δ = δ (t0, ε) is selected from the condition

(20.10) such that V (t0, x0) < λ for ‖x0‖ < δ. Since V (t, x) is continuous in x at the

point x = 0 uniformly in t for all t ≥ t0, then there exists a number δ = δ (ε) such that

V (t0, x0) < λ for all ‖x0‖ < δ (ε) at all t0 which proves the corollary. �

20.2.2.2 Criterion of asymptotic stability
Theorem 20.2. (The criterion of AS (Zubov 1964)) The state x = 0 of the system
(20.1) is asymptotically stable if and only if all assumptions of Theorem 20.1 hold and
in the condition (4) the function V̄ (t) := V (t, x̄ (t, x0, t0)) decreases monotonically up
to zero, that is,

V̄ (t) := V (t, x̄ (t, x0, t0)) ↓ 0 as t →∞ (20.14)

4 This result is referred to as the second Lyapunov’s theorem (method).



Elements of stability theory 569

Proof.

(a) Necessity. If x = 0 is asymptotically stable, then ‖x̄ (s, x, t)‖ → 0 as t → ∞, and,

therefore, by the construction (20.11), it follows that

V̄ (t) := V (t, x̄ (t, x0, t0)) = sup
s≥t

‖x̄ (s, x, t)‖ →
t→∞ 0

Monotonicity results from the inequality

V̄ (t) := V (t, x̄ (t, x0, t0)) = sup
s≥t

‖x̄ (s, x, t)‖
≥ sup
s≥t ′>t

‖x̄ (s, x, t)‖ = V (t ′, x̄ (t ′, x0, t0)) = V̄ (t ′)

(b) Sufficiency. If sup
s≥t

‖x̄ (s, x, t)‖ →
t→∞ 0, then it follows that

x̄ (t, x0, t0) →
t→∞ 0

Theorem is proven. �

20.2.2.3 Criterion of exponential stability
Theorem 20.3. (on exponential stability) For any solution x̄ (t, x0, t0) of (20.1) to be
exponentially stable (see Definition 20.5) it is necessary and sufficient that there exist
two positive-definite functions V (t, x) and W (t, x) such that

1. for any x and any t ≥ t0 there exists β̄ > 0 for which

W (t, x) ≥ β̄V (t, x) (20.15)

2. the functions V (t, x) and W (t, x) are related by

d

dt
V (t, x̄ (t, x0, t0)) = −W (t, x̄ (t, x0, t0)) (20.16)

Proof.

(a) Necessity. Let the solution x̄ (t, x0, t0) of (20.1) be exponentially stable with some

α > 0 and β > 0. Define W (t, x) and V (t0, x0)

W (t, x) := ‖x‖2, V (t, x) :=
∞∫

s=t
W (s, x̄ (s, x, t)) ds (20.17)

The relation (20.16) is evident. Show that V (t, x), as it is defined above, satisfies the

condition (20.15). By (20.8) we have

V (t, x) =
∞∫

s=t
‖x̄ (s, x, t)‖2 ds

≤
∞∫

s=t
α2 ‖x‖2 exp (−2β (s − t)) ds ≤ α2

2β
‖x‖2 = α2

2β
W (t, x)

This means that V (t, x) satisfies (20.15) with β̄ := 2β

α2
.
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(b) Sufficiency. Show that (20.16) and (20.15) imply (20.8). Considering

V (t, x̄ (t, x0, t0)) �= 0 (if not, we already have the stability since x̄ (s, x0, t0) = 0 for

all s ≥ t) and integrating (20.16) lead to

t∫
s=t0

dV

V
= −

t∫
s=t0

W (s, x̄ (s, x0, t0))

V (s, x̄ (s, x0, t0))
ds

and, hence, by (20.15)

V (t, x̄ (t, x0, t0)) = V (t0, x0) exp
⎛
⎝− t∫

s=t0

W (s, x̄ (s, x0, t0))

V (s, x̄ (s, x0, t0))
ds

⎞
⎠

V (t0, x0) exp

⎛
⎝− t∫

s=t0

β ds

⎞
⎠ = V (t0, x0) exp

(−β̄ [t − t0])
(20.18)

which corresponds to the exponential stability (20.8) with α = V (t0, x0) and β = β̄.
Theorem is proven. �

20.2.2.4 Criterion of instability
Theorem 20.4. (Criterion of instability (Zubov 1964)) For the state x = 0 of the sys-
tem (20.1) to be unstable, it is necessary and sufficient that there exist two scalar con-
tinuous functions V (t, x) and W (t, x) ≥ 0, defined in (t, x)-domain � (which includes
the point x = 0), such that

1. V (t, x) is bounded in �;
2. for any t ≥ t0 and δ > 0 there exists x (t ′) : ‖x (t ′)‖ < δ, t ′ ≥ t such that in this point

the inequality V (t ′, x (t ′)) > 0 holds;
3. there exists the time derivative

d

dt
V (t, x̄ (t, x0, t0))

= λV (t, x̄ (t, x0, t0))+W (t, x̄ (t, x0, t0)) , λ > 0

(20.19)

Proof.

(a) Necessity. Suppose there is instability. This means exactly that there exists ε > 0

such that for any t ≥ t0 and any δ > 0 it is possible to find x (t ′) : ‖x (t ′)‖ < δ such
that the inequality

∥∥x̄ (t̃ , x (t ′), t ′)∥∥ < ε fails to hold for all t̃ ≥ t ′ ≥ t . Take any

point (x (t ′), t ′) satisfying the inequalities ‖x (t ′)‖ < δ, t ′ ≥ t0 and 0 < δ < ε. Then

two cases may occur: either (1)
∥∥x̄ (t̃ , x (t ′), t ′)∥∥ ≤ ε for all t̃ ≥ t ′, or (2) there exists

an instant t̄ = t̄ (x (t ′), t ′) when ∥∥x̄ (t̄, x (t ′), t ′)∥∥ = ε and
∥∥x̄ (t̃ , x (t ′), t ′)∥∥ < ε for

all t ′ ≤ t̃ < t̄ . Let V (
t̃ , x (t ′)

) = 0 in the first case and V
(
t̃ , x (t ′)

) = e−(t̄−t̃) = et̃−t̄
in the second one. Thus the function V (t, x) is defined at any point of the set
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{(t, x) | ‖x (t ′)‖ < ε, t ≥ t0} and is bounded therein since V (t, x) < 1. So, condition

(1) holds. The second type points exist in a neighborhood of the point x = 0 and,

hence, by the construction, condition (2) holds too. Show that condition (3) is also

satisfied. Indeed, in the first case, when V (t ′, x (t ′)) = 0 for all t̃ ≥ t ′, we have
d

dt
V (t, x̄ (t, x0, t0)) = V (t, x̄ (t, x0, t0)) along any such motion. In the second case,

when V
(
t̃ , x (t ′)

) = et̃−t̄, we also have
d

dt
V (t, x̄ (t, x0, t0)) = V (t, x̄ (t, x0, t0)) and,

hence, condition (3) holds with λ = 1 and W = 0.

(b) Sufficiency. Suppose that all the conditions of the theorem hold. Show that x = 0

is unstable. Assume conversely that x = 0 is stable and, hence, V (t, x) is bounded

(uniformly on t0) in �. By property (2) there exists a point (t ′, x (t ′)) ∈ � such

that V (t ′, x (t ′)) > 0. But, by property (3), integrating ODE (20.19) with the initial

condition V (t ′, x (t ′)) implies

V
(
t, x̄

(
t, x

(
t ′
)
, t ′

)) ≥ V (
t ′, x

(
t ′
))
eλ(t−t

′) for t ≥ t ′

which contradicts the boundedness of V (t, x) on �. So, the point x = 0 is unstable.

Theorem is proven. �

Example 20.3. (The “mathematical point” in a potential field) Consider a mathemat-
ical point with mass m which can move in the (x, y)-plane over the potential convex
curve  =  (x) which corresponds to its vertical position, i.e., y =  (x). Then its
velocity v (t), the kinetic T and the potential V energies are as follows

v2 (t) := ẋ2 (t)+ ẏ2 (t)
T = m

2
v2 (t) = m

2
ẋ2 (t)

(
1+ [ ′ (x (t))]2

)
V = mgy (t) = mg (x (t))

So, the Lagrange dynamic equation (see, for example, Gantmacher (1990))

d

dt

∂

∂ẋ
L− ∂

∂x
L = 0, L := T − V

for this case becomes

ẍ (t)

(
1+ [ ′ (x (t))]2

)
+ ′ (x (t))

[
ẋ2 (t) ′′ (x (t))+ g] = 0

and, hence, for x1 (t) := x (t), x2 (t) := ẋ (t) we have

ẋ1 (t) = x2 (t)
ẋ2 (t) = φ (x1 (t), x2 (t)) := − ′ (x1 (t))

[
x22 (t) 

′′ (x1 (t))+ g
](

1+ [ ′ (x1 (t))]
2
)

⎫⎪⎬
⎪⎭

In view of convexity  ′′ (x1 (t)) ≥ 0. This results in the conclusion that the set of

all possible stationary points consists of all points

(
x1 :  ′ (x1) = 0

x2 = ẋ1 = 0

)
. If the function
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 =  (x) is strictly convex (see Definition 21.2) with the minimum in x = 0, then
the zero-state is (globally) uniformly asymptotically stable (see Fig. 20.3a). If it is only
convex such that the minimum is attained in a neighborhood of x = 0 (see Fig. 20.3b),
then the zero-state is unstable.

Remark 20.3. All criteria presented above are nonconstructive in the sense that each of
them demands the exact knowledge of the solution x̄ (t, x0, t0) of (20.1).

The next subsection deals only with the sufficient conditions of global asymptotic
stability which are based on some properties of the right-hand side of ODE (20.1) which

makes them constructive and easily verified.

20.2.3 Sufficient conditions of asymptotic stability: constructive theory

This constructive theory of stability, more precisely, asymptotic stability, exists due

to fundamental investigations of Lyapunov (1892), Barbashin (1951), Krasovskii (1952),

Antosiewicz (1958), Letov (1962), Rumyantzev (1963), Chetaev (1965), Zubov (1964),

Halanay (1966) and others.

20.2.3.1 Sufficient conditions for asymptotic stability: General result
Theorem 20.5. (on asymptotic local stability (Zubov 1964)) Assume that there exists
a positive-definite function V (t, x) which is continuous in the point x = 0 uniformly on
t for all t ≥ t0 and satisfying the following ODE

d

dt
V (t, x̄ (t, x0, t0)) = −W (t, x̄ (t, x0, t0)) (20.20)

on the trajectories of the system (20.1) where W (t, x) is a positive-definite function (see
Definition 20.3). Then the stationary point x = 0 of the system (20.1) is asymptotically
locally stable uniformly on t0.

Proof. Suppose that such function V (t, x) exists. Show that x̄ (t, x0, t0)→ 0 as t →∞
whenever ‖x0‖ is small enough, that is, show that for any ε > 0 there exists T =
T (ε) such that ‖x̄ (t, x0, t0)‖ < ε for all t > T . Notice that by the uniform continuity

y 5 �(x)

0

(b)(a)

0

x x

y 5 �(x)

Fig. 20.3. Potential surfaces.
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V (t, x) and by Corollary 20.1 all trajectories x̄ (t, x0, t0) of (20.1) remain within the

region where ‖x̄ (t, x0, t0)‖ < ε if ‖x0‖ < δ. So, the function W (t, x̄ (t, x0, t0)) remains

bounded too. Suppose that ‖x̄ (t, x0, t0)‖ does not converge to zero. By monotonicity of

V (t, x̄ (t, x0, t0)), this means that there exists ε > 0 and a moment T = T (ε) such that

for all t ≥ T (ε) we have ‖x̄ (t, x0, t0)‖ > ε. SinceW (t, x) is a positive-definite function,
it follows that

W (t, x̄ (t, x0, t0)) > α > 0

for all t ≥ T (ε) and, hence, by (20.20) we have

V (t, x̄ (t, x0, t0)) = V (t0, x̄ (t0, x0, t0))−
t∫

s=t0

W (s, x̄ (s, x0, t0)) ds

≤ V (t0, x̄ (t0, x0, t0))− αt →−∞

which contradicts the condition that V (t, x) is a positive-definite function. The fact that

this result is uniform on t0 follows from Corollary 20.1. Theorem is proven. �

20.2.3.2 Asymptotic stability for stationary system
Consider the stationary (autonomous) ODE

ẋ (t) = f (x (t)), f (0) = 0, t ≥ t0 (20.21)

Notice that the right-hand side of (20.21) can be represented as follows:

f (x) = Ax + h (x)
h (x) := f (x)− Ax (20.22)

Below we will give three very important results concerning the asymptotic stability

property of the zero-state x = 0 for the stationary systems governed by (20.21).

Theorem 20.6. (Lyapunov 1892)5 If
1. the matrix A ∈ Rn×n in (20.22) is stable (Hurwitz), i.e., for all i = 1, . . . , n

Re λi (A) < 0 (20.23)

2. and

h (x)

‖x‖ → 0 whenever ‖x‖ → 0 (20.24)

then the stationary point x = 0 is exponentially locally stable.

5 This result is referred to as the first Lyapunov’s theorem (method).
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Proof. By the Lyapunov Lemma 9.1 for any 0 < Q = Qᵀ ∈ Rn×n and a given stable A

there exists 0 < P = Pᵀ ∈ Rn×n such that

AP + PAᵀ = −Q

Then for the Lyapunov function V (x) := xᵀPx we have

d

dt
V (t, x̄ (t, x0, t0)) = 2xᵀ (t) P ẋ (t)

= 2xᵀ (t) P [Ax (t)+ h (x (t))] = 2xᵀ (t) PAx (t)

+ 2xᵀ (t) Ph (x (t)) = xᵀ (t) [PA+ AᵀP ] x (t)

+ 2x (t)ᵀ Ph (x (t)) = −xᵀ (t)Qx (t)+ 2xᵀ (t) Ph (x (t))

≤ −xᵀ (t)Qx (t)+ 2 ‖x (t)‖ ‖P ‖ = −xᵀ (t)Qx (t)

+ 2 ‖x (t)‖2 ‖P ‖ ‖h (x (t))‖ / ‖x (t)‖ ≤ −xᵀ (t)Qx (t)

+ xᵀ (t)Qx (t)
(
2 ‖P ‖ λmax

(
Q−1

) ‖h (x (t))‖ / ‖x (t)‖)
By assumption (2) of this theorem, for ε <

[
2 ‖P ‖ λmax

(
Q−1

)]−1
always exists δ such

that if ‖x (t0)‖ ≤ δ, then ‖h (x (t0))‖ / ‖x (t0)‖ ≤ ε. Taking the corresponding x (t0) from

the last differential inequality we find that

d

dt
V (t, x̄ (t, x0, t0))

≤ −xᵀ (t)Qx (t)
[
1− 2 ‖P ‖ λmax

(
Q−1

)
ε
] = −αV (t, x̄ (t, x0, t0))

α := 1− 2 ‖P ‖ λmax

(
Q−1

)
ε > 0

and, hence,

V (t, x̄ (t, x0, t0)) ≤ V (t0, x̄ (t0, x0, t0)) e−αt → 0 as t →∞

Theorem is proven. �

Remark 20.4. If the function f (x) is differentiable at x = 0, then the matrix A in the
Lyapunov theorem 20.6 is

A = ∂

∂x
f (x) |x=0 (20.25)

that is, A is the linear approximation of the nonlinear vector function f (x) in the origin.

Example 20.4. Consider the second-order ODE

ẍ (t)+ βẋ (t)− k
(

a

c − x (t) − x (t)
)
= 0, a, c, β, k > 0
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which can be rewritten as the following extended first-order ODE

x1 (t) := x (t), x2 (t) := ẋ (t)
ẋ1 (t) = f1 (x1 (t), x2 (t)) := x2 (t)

ẋ2 (t) = f2 (x1 (t), x2 (t)) := k
(

a

c − x1 (t) − x1 (t)
)
− βx2 (t)

⎫⎪⎬
⎪⎭

The stationary points

x∗1 =
1

2

(
c +√

c2 − 4a
)
, x∗2 = 0

x∗∗1 = 1

2

(
c −√

c2 − 4a
)
, x∗∗2 = 0

exist if c2 ≥ 4a. Using the Taylor expansion in a small neighborhood of the stationary
points, the function f (x1, x2) can be represented as

f (x1, x2) = f2
(
x∗.∗∗1 , x∗.∗∗2

)︸ ︷︷ ︸
0

+ A(∗,∗∗)x + o (‖x‖) = A(∗,∗∗)x + o (‖x‖)

where

A(∗) = ∂

∂x
f (x) |x=x∗ =

[
0 1

b∗ −β
]
, b∗ := −k

(
1+ a(

c − x∗1
)2
)

A(∗∗) = ∂

∂x
f (x) |x=x∗∗ =

⎡
⎣ 0 1

b∗∗ −β

⎤
⎦, b∗∗ := −k

(
1+ a(

c − x∗2
)2
)

In both cases the eigenvalues of A satisfy the quadratic equation

λ2 + βλ− b = 0

and are equal

λ1,2 = −β ±√
β2 + 4b

2
, b = b∗.∗∗ = −kc

2

2a

(
1±

√
1− 4a

c2

)
≤ 0

Hence, the points x∗,∗∗ are exponentially locally stable by the Lyapunov theorem 20.6
when c2 > 4a, since Re λ1,2 < 0.

Example 20.5. (Lefschetz 1965) For which a, b and f (0) the following system

x(3) (t)+ f (ẋ (t)) ẍ (t)+ aẋ (t)+ bx (t) = 0 (20.26)
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is asymptotically locally stable? Here the function f (z) is assumed to be differentiable
in the point z = 0. Let us apply the Lyapunov theorem 20.6 and represent (20.26) in the
matrix form:

x1 (t) := x (t), x2 (t) := ẋ (t), x3 (t) := ẍ (t)

x̄ (t) := (x1 (t), x2 (t), x3 (t))ᵀ⎛
⎝ ẋ1 (t)ẋ2 (t)

ẋ3 (t)

⎞
⎠ = A

⎛
⎝x1 (t)x2 (t)

x3 (t)

⎞
⎠+ h (x̄ (t))

where

A =
⎡
⎣ 0 1 0

0 0 1

−b −a −f (0)

⎤
⎦, h (x̄) =

⎛
⎝ 0

0

[−f ′ (0) x2 + o (‖x2‖)] x3

⎞
⎠

Firstly, notice that

h (x̄) / ‖x̄‖ → 0 as ‖x̄‖ → 0

So, to answer the initial question we should try to find the conditions when the matrix A
is stable. The corresponding characteristic polynomial is

pA (λ) = λ2 (f (0)+ λ)+ b + aλ

and it is Hurwitz if and only if (see Criterion 9.3)

f (0) > 0, a > 0, b > 0, af (0) > b

which gives the relation among the parameters guaranteeing the exponential local
stability.

20.3 Asymptotic global stability

20.3.1 Definition of asymptotic global stability

Definition 20.7. The equilibrium zero-point (or zero-state) x = 0 of the system given by
ODE (20.1) is said to be asymptotically globally stable6 if x̄ (t, x0, t0)→ 0 when t →∞
for any initial state x0 = x (t0) of a bounded norm.

6 Sometimes such asymptotically globally stable systems are called, by R. Kalman, mono-stable (or having

the dichotomy property) systems.
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20.3.2 Asymptotic global stability for stationary systems

Theorem 20.7. (Barbashin & Krasovskii 1952) To guarantee the asymptotic global
stability of the unique stationary point x = 0 of (20.21) with the continuous right-hand
side it is sufficient to show the existence of a differentiable function V = V (x) such that
(a) V (0) = 0 and for any x �= 0

V (x) > 0 (20.27)

(b) for ‖x‖ → ∞

V (x)→∞ (20.28)

(c) for any t0, x0 ∈ R and any x̄ (t, x0, t0) �= 0

d

dt
V (x̄ (t, x0, t0)) < 0 (20.29)

Proof. By assumption (c) V (x̄ (t, x0, t0)) monotonically decreases and is bounded from

below. Therefore, by the Weierstrass theorem 14.9 V (x̄ (t, x0, t0)) ↓ V ∗ monotonically.

By property (b) x̄ (t, x0, t0) remains to be bounded. Suppose that V ∗ > 0. Hence, by

property (a) there exist ε > 0 and T = T (ε) ≥ t0 such that inf
t≥T (ε)

‖x̄ (t, x0, t0)‖ > ε.
Therefore, by (20.29) we get

sup
t≥T (ε)

d

dt
V (x̄ (t, x0, t0)) < −ε′, ε′ > 0

which implies the inequality

0 < V ∗ < V (x̄ (t, x0, t0)) = V (x̄ (T , x (T ), T ))

+
t∫

s=T

d

dt
V (x̄ (s, x0, t0)) ds ≤ V (x̄ (T , x (T ), T ))− ε′ (t − T )

making the right-hand side negative for large enough t . This leads to the contradiction.

So, V ∗ = 0. Theorem is proven. �

Theorem 20.8. (Krasovskii 1952) Assume that
(a) the function f (x) in (20.21) is differentiable everywhere in x and the stationary point
x = 0 (where f (x) = 0) is unique;

(b) there exists a positive-definite matrix B = Bᵀ > 0 such that the functional matrix
M (x) defined by

M (x) := ∂

∂x
f (x)ᵀ B + B ∂

∂x
f (x) (20.30)
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is strictly negative on x, that is, for all x ∈ Rn

λmax (M (x)) ≤ −c, c > 0 (20.31)

Then the point x = 0 is asymptotically globally stable.

Proof. Take in Theorem 20.7

V (x) := 1

2
f (x)ᵀ Bf (x) ≥ 0

Notice that V (x) is nonnegative in Rn. Then

d

dt
V (x̄ (t, x0, t0))= f ᵀ (x̄ (t, x0, t0))M (x̄ (t, x0, t0)) f (x̄ (t, x0, t0))

≤ λmax (M (x)) ‖f (x̄ (t, x0, t0))‖2

≤ −c ‖f (x̄ (t, x0, t0))‖2 < 0

if x̄ (t, x0, t0) �= 0. Hence, by Theorem 20.7 we have the asymptotic global stability that

proves the desired result. �

Example 20.6. Consider the following ODE:

ẋ1,t = −ax1,t + bx2,t , a > 1/4, −a < b
ẋ2,t = sin x1,t − x2,t

}
(20.32)

Let us demonstrate how Theorem 20.8 works. The stationary points here satisfy the
relation

−ax∗1 + bx∗2 = 0, sin x∗1 − x∗2 = 0

and are equal to x∗1 = x∗2 = 0. It is the unique equilibrium point since the derivative
of the function φ (x1) := −ax1 + b sin x1, which zeros we are interested in, at the point
x1 = 0 is

φ′ (x1) := −a + b cos x1 < −a − b < 0

and remains negative for all x1 (see the corresponding graphics of φ (x1)). Then we have

∂

∂x
f (x) =

[ −a b

cos x1 −1

]

Taking in Theorem 20.8 B = I we get

M (x) =
[ −2a b + cos x1
b + cos x1 −2

]
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This matrix will be strictly negative. Indeed, by the Sylvester criteria 7.20 we have

−2a < 0

4a − (b + cos x1)
2 = 4a − b2 − 2b cos x1 − cos2 x1

≤ 4a − b2 − 2b cos x1 ≤ −4a − b2 + 2 |b| < 0 as a > 1/4

So, the state x∗1 = x∗2 = 0 is asymptotically globally stable.

20.3.3 Asymptotic global stability for nonstationary system

Let us consider again the general ODE (20.1). The results below deal with the asym-

ptotic stability of the origin on the trajectories of this system.

We need a definition to use throughout this subsection.

Definition 20.8. The class K of functions f : R → R is said to be Hahn’s class if it
contains all nonnegative functions satisfying the following conditions:

1. f ∈ C (−∞,∞), i.e., f is continuous in R;
2. f is strictly monotone, i.e., for any x ∈ R and any ε > 0

f (x + ε) > f (x) (20.33)

3.

f (0) = 0 (20.34)

Theorem 20.9. (Antosiewicz 1958) If

1. the stationary point x∗ = 0 of (20.1) is uniformly (on t0) locally stable;
2. there exists a function V (t, x) which is continuously differentiable in both variables

and, additionally,
(a) for any x ∈ Rn and any t ≥ t0

V (t, x) ≥ a (‖x‖) (20.35)

(b) for any t ≥ t0

V (t, 0) = 0 (20.36)

(c) for any x ∈ Rn and any t ≥ t0

d

dt
V (t, x̄ (t, x0, t0)) ≤ −b (‖x̄ (t, x0, t0)‖) (20.37)

where the functions a (·), b (·) are from Hahn’s class K, then the stationary point
x∗ = 0 of (20.1) is asymptotically globally stable.
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Proof. By the conditions of the theorem it follows that any trajectory x̄ (t, x0, t0)

obligatory will arrive at some small neighborhood � containing the point x = 0 and will

never leave it. Indeed, by condition (2c)
d

dt
V (t, x̄ (t, x0, t0)) < 0 whenever ‖x‖ > 0 and,

hence, decreases reaching � in a finite time t ′ uniformly on t0. By condition (1) after

this moment it will always belong to �. Suppose that ‖x̄ (t, x0, t0)‖ does not converge

to zero. By monotonicity of V (t, x̄ (t, x0, t0)) (see the condition (20.37)), this means

that there exists ε > 0 and a moment T = T (ε) such that for all t ≥ T (ε) we have

‖x̄ (t, x0, t0)‖ > ε. Since b (‖x‖) belongs to Hahn’s class K, it follows that

b (‖x̄ (t, x0, t0)‖) > α > 0

and, hence, by (20.37)

V (t, x̄ (t, x0, t0))≤ V (t0, x̄ (t0, x0, t0))

−
t∫

s=t ′
b
(∥∥x̄ (s, x (t ′), t ′)∥∥) ds ≤ V (t0, x0)− αt →−∞

which contradicts the assumption (20.35) that V (t, x) ≥ a (‖x‖). So, ‖x̄ (t, x0, t0)‖ → 0

as t →∞. Theorem is proven. �

Corollary 20.2. (Halanay 1966) The result of Theorem 20.9 remains true if instead of
assumption (2c) there is

d

dt
V (t, x̄ (t, x0, t0)) ≤ −cV (t, x̄ (t, x0, t0)), c (·) ∈ K (20.38)

Proof. It is sufficient to take in Theorem 20.9

b (‖x‖) := c (a (‖x‖))

since c (V (t, x)) ≥ c (a (‖x‖)). �

Theorem 20.10. (Chetaev 1965) Let there exist the function k (·) ∈ C, a (·) ∈ K and
V (t, x) ∈ C1 such that

1. for any x ∈ Rn and any t ≥ t0

V (t, x) ≥ k (t) a (‖x‖) (20.39)

2. for any t ≥ t0

d

dt
V (t, x̄ (t, x0, t0)) ≤ 0 (20.40)
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3. k (·) ∈ K, i.e., for any t ≥ t0 k (t) ≥ 0 and k (t)→ ∞ as t →∞.
Then the stationary point x∗ = 0 of (20.1) is asymptotically globally stable.

Proof. Evidently, by condition (2), V (t, x̄ (t, x0, t0)) is a nondecreasing function of t

and, hence, in view of condition (1),

∞ > lim sup
t→∞

V (t, x̄ (t, x0, t0)) ≥ lim inf
t→∞

V (t, x̄ (t, x0, t0))

≥ lim inf
t→∞

k (t) a (‖x̄ (t, x0, t0)‖) ≥ 0

But, by condition (3), k (t) → ∞ and, hence, a (‖x̄ (t, x0, t0)‖) → 0 as t → ∞. And

since a (·) ∈ K it follows that ‖x̄ (t, x0, t0)‖ → 0 as t →∞. Theorem is proven. �

20.4 Stability of linear systems

20.4.1 Asymptotic and exponential stability of linear time-varying systems

Consider the linear time-varying system given by the following ODE:

ẋ (t) = A (t) x (t), x (t0) = x0, t ≥ t0 (20.41)

Its solution can be presented as

x (t) = �(t, t0) x0 (20.42)

where �(t, t0) is the corresponding fundamental matrix defined by (19.56). This presen-

tation, evidently, implies the following proposition.

Proposition 20.1. The system (20.41) is
(a) locally stable if and only if

c := sup
t≥t0

‖�(t, t0)‖ <∞ (20.43)

(b) asymptotically globally stable if and only if

‖�(t, t0)‖ → 0 whereas t →∞ (20.44)

Let A (t) satisfy the inequality

∞∫
s=t

tr A (s) ds > −∞ (20.45)
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which by the Liouville’s theorem 19.7 implies that det�(t, t0) �= 0 for all t ≥ t0, and as

a result there exists a constant a > 0 such that

∞∫
s=t
�ᵀ (s, t)� (s, t) ds ≥ a (20.46)

Below we present the criterion of exponential stability expressed in terms of Lyapunov’s
approach (see Theorem 20.3). It is interesting to note that for the class of linear systems
this approach turns out to be constructive.

Theorem 20.11. (on exponential stability (Zubov 1964)) For the solution x̄ (t, x0, t0)
of (20.41) satisfying (20.45) to be exponentially globally stable (see Definition 20.5) it
is necessary and sufficient to show the existence of two quadratic forms

V (t, x) = xᵀP(t)x and W (t, x) = xᵀQ(t)x (20.47)

such that
1. both quadratic forms are positive definite and increase no quicker than the quadratic

function, i.e.,

a1 ‖x‖2 ≤ V (t, x) ≤ a2 ‖x‖2
b2 ‖x‖2 ≥ W (t, x) ≥ b1 ‖x‖2

a1, a2, b1, b2 are positive constants

(20.48)

2. V (t, x) and W (t, x) are related as

d

dt
V (t, x̄ (t, x0, t0)) = −W (t, x̄ (t, x0, t0)) (20.49)

Proof.

(a) Necessity. Let ‖x̄ (t, x0, t0)‖ ≤ α exp (−β (t − t0)). Define
W (t, x) := ‖x‖2

V (t, x) :=
∞∫

t=t
W (s, x̄ (s, x, t)) ds

(20.50)

Evidently, in this case b1 = b2 = 1. Show that V (t, x) as it is defined above satisfies

the conditions (20.48) and (20.49). By (20.42) and in view of (20.46) we have

V (t, x)=
∞∫

s=t
x̄ᵀ (s, x, t) x̄ (s, x, t) ds

= xᵀ

⎡
⎣ ∞∫
s=t
�ᵀ (s, t)� (s, t) ds

⎤
⎦ x ≥ a ‖x‖2
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By the inequality (20.8) one has

a ‖x‖2 ≤ V (t, x) ≤
∞∫

s=t
α2 ‖x‖2 e−2β(s−t)ds = 1

2β
α2 ‖x‖2

This means that V (t, x) satisfies (20.48) with a1 = a and a2 = 1

2β
α2. Obviously,

V (t, x), as it is defined in (20.50), satisfies (20.49).

(b) Sufficiency. Show that (20.49) together with (20.47) and (20.48) imply (20.8). Inte-

grating (20.49) for V �= 0 leads to

t∫
s=t0

dV

V
= −

t∫
s=t0

W (s, x̄ (s, x0, t0))

V (s, x̄ (s, x0, t0))
ds

and, hence,

V (t, x̄ (t, x0, t0)) = V (t0, x0) exp
⎛
⎝− t∫

s=t0

W (s, x̄ (s, x0, t0))

V (s, x̄ (s, x0, t0))
ds

⎞
⎠ (20.51)

Notice that

b1

a2
≤ x̄

ᵀQ(s)x̄
x̄ᵀP(s)x̄

= W (s, x̄ (s, x0, t0))
V (s, x̄ (s, x0, t0))

Application of these estimates in (20.51) gives

a1 ‖x̄ (t, x0, t0)‖2 ≤ V (t, x̄ (t, x0, t0)) ≤ V (t0, x0) exp
(
−b1
a2

[t − t0]
)

Using the estimates (20.15) for V (t0, x0) implies

a1 ‖x̄ (t, x0, t0)‖2 ≤ V (t, x̄ (t, x0, t0)) ≤ a2 ‖x0‖2 exp
(
−b1
a2

[t − t0]
)

and, therefore, we obtain the exponential global stability (20.8) for the zero-state

x = 0 with

α :=
√
a2

a1
, β := b1

2a2

Theorem is proven. �

Remark 20.5. Since

d

dt
V (t, x̄ (t, x0, t0))= dx̄

ᵀ

dt
P (t)x̄ + x̄ᵀ d

dt
P (t)x̄ + x̄ᵀP(t)

dx̄

dt

= x̄ᵀ
[
Aᵀ (t) P (t)+ d

dt
P (t)+ P(t)A (t)

]
x̄
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and

W (t, x̄ (t, x0, t0)) = x̄ᵀQ(t)x̄

in view of (20.49), we have

x̄ᵀ
[
Aᵀ (t) P (t)+ d

dt
P (t)+ P(t)A (t)

]
x̄ = −x̄ᵀQ(t)x̄

which is true on any trajectory x̄ = x̄ (t, x0, t0). This transforms the nonconstructive form
of Theorem 20.3 into the constructive one as in Theorem 20.11.

Corollary 20.3. For any solution x̄ (t, x0, t0) of (20.41) satisfying (20.45) to be expo-
nentially stable (see Definition 20.5) it is necessary and sufficient that there exist two
symmetric positive definite matrices P(t) and Q(t) such that

d

dt
P (t)+ Aᵀ (t) P (t)+ P(t)A (t)+Q(t) = 0 (20.52)

Equation (20.52) is known as the differential Lyapunov equation. If A (t) = A is a
constant matrix then we may take P(t) = P , Q(t) = Q and (20.52) is converted into the
algebraic Lyapunov equation

AᵀP + PA+Q = 0 (20.53)

Its property is seen in Lemma 9.1.

20.4.2 Stability of linear system with periodic coefficients

Consider again the linear system (20.41) where the matrix A (t) is periodic with the

period T, i.e., for any t ≥ t0

A (t) = A (t + T ) (20.54)

Proposition 20.2. For equation (20.41) the fundamental matrix is

�(t, t0) = �̃ (t − t0) = Z (t − t0) eR(t−t0)

Z (τ ) = Z (τ + T )

and, hence, all stability properties depend on the properties of the matrix R. But according
to (19.73) for τ = 0 it follows that

eRT = �̃−1 (0) �̃ (T )

So, we can derive the following results.
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Corollary 20.4.
1. the system (20.41) is exponentially stable if and only if

Re λi (R) < 0 for all i = 1, . . . , n

2. the system (20.41) is Lyapunov stable if and only if

Re λi (R) ≤ 0 for all i = 1, . . . , n

and the multiplicity μi of the eigenvalues Re λi (B) = 0 does not exceed 1, i.e.,

μi = 1

20.4.3 BIBO stability of linear time-varying systems

Consider again a linear nonstationary system governed by the following ODE

ẋ (t) = A (t) x (t)+ ω (t), x (t0) = x0 ∈ Rn, t ≥ t0 (20.55)

where ωt is an exogenous input from L∞ (see 22.154), i.e.,

‖ω‖L∞ := ess sup
t≥t0

‖ω (t)‖ <∞ (20.56)

Below we present the criterion explaining when ‖x‖L∞ is also bounded for any x0. Such

systems are called BIBO (bounded input–bounded output) stable.

Theorem 20.12. (Criterion of BIBO stability) For the system (20.55) ‖x‖L∞ < ∞
whereas ‖ω‖L∞ < ∞ if and only if the corresponding fundamental matrix �(t, t0)
satisfies the following conditions:
1.

c := sup
t≥t0

‖�(t, t0)‖ <∞

2.

∞∫
t=t0

‖�(t, t0)‖ dt <∞ (20.57)

Proof. By (19.64) we have

x (t) = �(t, t0) x0 +
t∫

s=t0

�(t, s) ω (s) ds
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Sufficiency follows directly from this formula since

‖x (t)‖ ≤ ‖�(t, t0) x0‖ +
∥∥∥∥∥∥

t∫
s=t0

�(t, s) ω (s) ds

∥∥∥∥∥∥
≤ c ‖x0‖ + ‖ω‖L∞

t∫
s=t0

‖�(t, s)‖ ds <∞

Let us prove necessity. Suppose that ‖x‖L∞ < ∞. Taking ω (t) ≡ 0 we have x (t) =
�(t, t0) x0 that proves the necessity of which condition (1). Take now x0 = 0 and suppose

that condition (2) is violated, that is, there exists at least one element (i0, j0) of the matrix

�(t, t0) such that

t∫
s=t0

∣∣�i0j0 (t, s)∣∣ ds →∞ as t →∞

Hence,

‖x (t)‖ =
∥∥∥∥∥∥

t∫
s=t0

�(t, s) ω (s) ds

∥∥∥∥∥∥

=

√√√√√ n∑
i=1

∣∣∣∣∣∣
t∫

s=t0

n∑
j=1

�ij (t, s) ωj (s) ds

∣∣∣∣∣∣
2

≥

√√√√√
∣∣∣∣∣∣
n∑
j=1

t∫
s=t0

�i0j (t, s) ωj (s) ds

∣∣∣∣∣∣
2

Taking then

ωj (s) :=
{
sign �i0j0 (t, s) if j = j0

0 if j �= j0

from the last inequality we obtain

‖x (t)‖ ≥
t∫

s=t0

∣∣�i0j0 (t, s)∣∣ ds →∞ as t →∞

But this contradicts the assumption that ‖x‖L∞ < ∞. Theorem is proven. �

Example 20.7. Consider the system given by

ẋ (t)+ [a + sin (ω0t)] x (t) = ω (t), x (t0) = x0 ∈ R, a > 0
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The corresponding transition matrix (in this case it is a scalar function) is as follows

�(t, s)= exp

⎧⎨
⎩−

t∫
τ=s

[a + sin (ω0τ)] dτ

⎫⎬
⎭

= exp

{
−a (t − s)+ 1

ω0

[cos (ω0t)− cos (ω0s)]

}

So, it is bounded and, hence, the first condition of the theorem is fulfilled. Let us check
the second one:

∞∫
t=t0

|�(t, t0)| dt = lim
t→∞

t∫
s=t0

exp

{
a (s − t)+ [cos (ω0t)− cos (ω0s)]

ω0

}
ds

< exp

{
2

ω0

}
lim sup
t→∞

t∫
s=t0

exp {−a (t − s)} ds = 1

a
exp

{
2

ω0

}
<∞

This means that the second condition (20.57) of the theorem is also valid for any a > 0,
and, hence, this system is BIBO stable for any a > 0.

20.5 Absolute stability

20.5.1 Linear systems with nonlinear feedbacks

Consider the dynamic system given by the following ODE:

ẋ (t) = Ax (t)+ bu (t), t ≥ t0
u (t) = ϕ (y (t)), y (t) = cᵀx (t)

A ∈ Rn×n; b, c ∈ Rn; u (t), y (t) ∈ R

(20.58)

It can be interpreted (see Fig. 20.4) as a linear system given by the transfer function

H (s) = cᵀ (sI − A)−1 b (20.59)

with a nonlinear feedback

u = ϕ (y) (20.60)

We will consider the class F of continuous functions ϕ (y) (nonlinear feedbacks)

satisfying

0 ≤ ϕ (y)
y

≤ k for y �= 0, ϕ (0) = 0 (20.61)
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yu Linear system
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Fig. 20.4. A linear system with a nonliner feedback.


(y)

ky
u

y

Fig. 20.5. A function u = ϕ(y) from the class F .

Definition 20.9. The nonlinear system (20.58) is said to be absolutely stable in the class
F if the solution x (t) ≡ 0 (or zero-state) is asymptotically globally stable (see Definition
20.7) for any nonlinear feedback (20.60) satisfying (20.61).

In this section we are interested in finding the conditions guaranteeing the absolute

stability of the system (20.58) in the class F .

20.5.2 Aizerman and Kalman conjectures

Proposition 20.3. (Conjecture of M.A. Aizeman, 1949) Let the system (20.58) be stable
for any

ϕ (y) = αy, α ∈ [0, k]

It seems to be true that this system remains stable for any feedback ϕ (y) satisfying
(20.61), namely, for any ϕ (y) such that

0 ≤ ϕ (y)
y

≤ k for y �= 0, ϕ (0) = 0
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Proposition 20.4. (Conjecture of R. Kalman, 1957) Let the system (20.58) be stable for
any

ϕ (y) = αy, α ∈ [0, k]

It seems to be natural to admit that this system remains stable for any feedback ϕ (y)
satisfying the conditions:

ϕ (y) is differentiable, ϕ (0) = 0

0 ≤ ϕ′ (y) ≤ k

Claim 20.2. Conjectures of Both M.A. Aizerman and R. Kalman are not valid.

Proof. See a number of counterexamples in Pliss (1964). �

Counterexample (Pliss 1964) Let

H (s) = s2[
(s + 0.5)

2 + (0.9)2] [(s + 0.5)
2 + (1.1)2]

The closed-loop system is stable for any u = ky with

k ∈ [−0, 7124,∞)

It follows for example from the Routh–Hurwitz criterion (see Theorem 9.2), applied to
the closed-loop system. But for

ϕ (y) =
{
y3 for |y| ≤ √|k|
ky for |y| > √|k|

in this system auto-oscillations arise, and, hence, there is no asymptotic stability.
These conjectures were proposed before the keystone result of V.M. Popov who found

the exact conditions of absolute stability of the linear system (20.58) with any feedback

satisfying (20.61).

20.5.3 Analysis of absolute stability

To guarantee the absolute stability of the system (20.58)–(20.61), according to the

Barbashin–Krasovskii theorem 20.7, it is sufficient that there exists the Lyapunov function

V (x) such that

(a) V (0) = 0 and

V (x) > 0 for any x �= 0

(b)

V (x)→∞ whereas ‖x‖ → ∞
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(c) for any t ≥ t0
d

dt
V (t, x̄ (t, x0, t0)) < 0

In Lurie & Postnikov (1944) it was suggested that the function V (x) as a quadratic
form plus the integral of the nonlinear feedback be found, that is,

V (x) = xᵀPx + q
y=cᵀx∫
y=0

ϕ (y) dy (20.62)

where P = Pᵀ is a real matrix and q is a real number.

Remark 20.6. Notice that if

P = Pᵀ > 0 and q ≥ 0 (20.63)

the function V (x) (20.62) satisfies conditions (a) and (b) given above. Indeed, by the

condition (20.61) we have yϕ (y) ≥ 0 for any y ∈ R, and, therefore,
∫ y

y=0

ϕ (y) dy ≥ 0.

Below we shall see that q is also admitted to be negative.

Calculating the time derivative of (20.62) on the trajectories of (20.58) we obtain

d

dt
V (t, x̄ (t, x0, t0))= 2xᵀ (t) P (Ax (t)+ bu (t))+ qu (t) ẏ (t)

ẏ (t)= cᵀ (Ax (t)+ bu (t))
(20.64)

The right-hand side is a quadratic form of variables x and u, namely,

Q0 (x, u) := 2xᵀP (Ax + bu)+ qucᵀ (Ax + bu) (20.65)

So, (20.64) is

d

dt
V (t, x̄ (t, x0, t0)) = Q0 (x (t), u (t)) (20.66)

Therefore, to fulfill condition (c), given above, one must fulfill the condition

Q0 (x, u) < 0 for all real x ∈ Rn and all u ∈ R

which, by (7.6), is equivalent to fulfilling of the following inequality:

Q0 (z, u) < 0

for all complex z ∈ Cn and all complex u ∈ C
(20.67)
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Next, return to the constraints (20.61), and notice that they can be rewritten as

0 ≤ u/y ≤ k, 0 ≤ u2 ≤ kuy, uy ≥ k−1u2

or, equivalently, as

Q1 (x, u) := u
(
k−1u− y) ≤ 0, y = cᵀx (20.68)

Notice thatQ1 (x, u) is also a quadratic form of x and u, and in fact defines the constraint

for these variables.

Theorem 20.13. (Gelig et al. 1978) Suppose that

• the matrix A in (20.58) has no pure imaginary eigenvalues;
• the nonlinear feedback ϕ (y) is from the class F (20.61).

To guarantee the existence of the function V (x) of the form (20.62) for which

d

dt
V (t, x̄ (t, x0, t0)) < 0

in any points x = x (t) ∈ Rn and any u = u (t) ∈ R satisfying the constraints (20.61), it is
necessary and sufficient that for all ω ∈ [−∞,∞] the following “frequency inequality”
(it is known as Popov’s inequality) would be fulfilled:

k−1 − Re [(1+ q̃iω)H (iω)] > 0 (20.69)

where the complex function H (s) is the transfer function (20.59) of the linear subsystem
and q̃ is a real number.

Remark 20.7. In fact, the frequency inequality (20.69) is the necessary and sufficient
condition for fulfilling only condition (c) of the Barbashin–Krasovskii theorem 20.7 which,
together with conditions (a) and (b), is sufficient for asymptotic global stability of the
zero-state of the system given by (20.58).

Proof.

(a) Sufficiency. Evidently, inside the constraint (20.68) there exists a point (x̊, ů) such

that Q1 (x̊, ů) < 0. Hence, S-procedure (see subsection 12.3.2) may be applied in its

version given in Corollary 12.2, that is, for some τ ≥ 0 and any (x, u) (‖x‖ + |u| �= 0)

define the quadratic form

Qτ (x, u) := Q0 (x, u)− τQ1 (x, u) (20.70)

Obviously,

d

dt
V (t, x) = Qτ (x, u)+ τQ1 (x, u)
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and, hence, the condition

Qτ (x, u) < 0 (‖x‖ + |u| �= 0) (20.71)

is sufficient to guarantee that
d

dt
V (t, x) < 0. Expanding the quadratic formQτ (x, u)

up to its Hermitian form (20.67) (see by (7.6)) we get that the condition (20.71) is

equivalent to the following

Qτ (z, u) = Q0 (z, u)− τQ1 (z, u)

= 2Re z∗P (Az+ bu)+ q Re [u∗cᵀ (Az+ bu)]

−τRe [u∗ (k−1u− y)] < 0

(‖z‖ + |u| �= 0)

Let now z and u be connected in such a way that (after the application of the Laplace

transformation (17.73))

iωz = Az+ bu

where ω is a real number for which det [A− iωI ] �= 0. Then

Rez∗P (Az+ bu) = Reiω (z∗Pz) = 0

and

Qτ (z, u) = q Re [iωu∗y]− τRe u∗ (k−1u− y)
By (20.59), we also have that

y = H (iω) u

So, finally, we obtain

Qτ (z, u) = Qτ (z, u) = Re
[
qiωH (iω)+ τH (iω)− τk−1

] |u|2 < 0

whereas (|u| �= 0). Since for ω = 0 it follows that τ > 0, dividing by τ and denoting

q̃ = q/τ we get (20.69).

(b) Necessity. It follows directly from the properties of S-procedure (see Theorem 12.3),

if we take into account that it gives necessary and sufficient conditions of the “equiv-

alency” of the sets defined by the inequalities Q0 (x, u) < 0 under the constraints

Q1 (x, u) < 0 and Qτ (x, u) < 0 (‖x‖ + |u| �= 0). Theorem is proven. �

Remark 20.8. Theorem 20.13 still does not guarantee the global asymptotic stability
for each admissible nonlinear feedback, since we have still not proved the validity of
properties (a) and (b) of the Barbashin–Krasovskii theorem 20.7 for the Lyapunov function
(20.62).
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20.5.4 Popov’s sufficient conditions

The next theorem gives such additional conditions.

Theorem 20.14. (Sufficient conditions (Popov 1961)) Let

(a) in (20.58) the matrix A is stable (Hurwitz);
(b) for some q̃ (not obligatory nonnegative) and for all ω ∈ [−∞,∞] Popov’s frequency

condition (20.69) holds.
Then the system (20.58), (20.61) is absolutely stable in class F .

Proof. To complete the proof we need to prove the validity of conditions (a) and (b). Let

(20.69) hold. For u = 0 the inequality (20.71) implies

Qτ (x, u) = 2xᵀPAx = xᵀ (PA+ AᵀP) x < 0

or, equivalently,

PA+ AᵀP < 0

So, by the Lyapunov Lemma 9.1, it follows that P > 0.

(a) For q = q̃r ≥ 0, by the condition (20.61) we have yϕ (y) ≥ 0 for any y ∈ R, and,

therefore,

∫ y

y=0

ϕ (y) dy ≥ 0. Hence we derive that V (0) = 0, V (x) > 0 for any x �= 0

and V (x)→∞ whereas ‖x‖ → ∞.

(b) Let q = q̃r < 0. Taking u = μy (0 ≤ μ ≤ k) we get d
dt
V (t, x) < 0 for the system

(20.58), (20.68) with u = μy. Then, the matrix Aμ := A + μbcᵀ of the corresponding

closed-loop system has no eigenvalues on the imaginary axis since Aμ is Hurwitz for

any μ : 0 ≤ μ ≤ k. For such a system the direct substitution shows that the Lyapunov

function (20.62) is

Vμ (x) = xᵀ
(
P + qμ

2
ccᵀ

)
x

and, since
d

dt
V (t, x) < 0, it follows (by the same Lyapunov Lemma 9.1) that

P + qμ
2
ccᵀ > 0

which gives k �= ∞. For μ = k we get

Vk (x) = xᵀ
(
P + qk

2
ccᵀ

)
x > 0 for x �= 0
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Let now ϕ ∈ F . In this case the form V (x) (20.62) can be represented as

V (x)= xᵀPx + q
y=cᵀx∫
y=0

ϕ (y) dy

= xᵀ
(
P + qk

2
ccᵀ

)
x − q

y=cᵀx∫
y=0

[ky − ϕ (y)] dy

So, V (0) = 0, V (x) > 0 for any x �= 0 and V (x)→∞ whereas ‖x‖ → ∞ completes

the proof. �

Remark 20.9. As it is mentioned in Gelig, Leonov & Yakubovich (1978), Popov’s
frequency condition (20.69) guarantees the absolute stability for the system (20.58),
(20.61) with a much wider class of nonlinear feedback, namely, for all nolinearities that
satisfy the condition

tn∫
t=t0

[
u (t)

(
y (t)− k−1u (t)

)+ qu (t) ẏ (t)] dt ≥ −γ > −∞ (20.72)

for some {tn}, tn → ∞. It may include also unstable linear systems (where A is not
obligatory stable).

Remark 20.10. For q̃ = 0 in (20.69) the corresponding Popov’s frequency condition is
called “the circle criterion” which is valid also for a much wider class of nolinearities
including multi-valued functions such as hysteresis elements.

20.5.5 Geometric interpretation of Popov’s conditions

Let us represent the transfer function H (iω) as

H (iω)=U (ω)+ iV (ω)

U (ω) := Re H (iω), V (ω) := Im H (iω)

(20.73)

Then Popov’s frequency condition (20.69) can be represented as follows:

q̃ωV (ω) > U (ω)− k−1 (20.74)

Definition 20.10. The line

q̃ωV (ω) = U (ω)− k−1 (20.75)

in the plane (U (ω), ωV (ω)) is called Popov’s line, with tanψ = q̃ (see Fig. 20.6).
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Fig. 20.6. The geometric interpretation of Popov’s “criterion”.

Claim 20.3. Popov’s frequency condition (20.69) is fulfilled if there exists a real number
q̃ such that the “modified godograph” (U (ω), ωV (ω)) of the transfer function H (iω)
lies “above” Popov’s line (see versions (a)–(c) of Fig. 20.6) for all ω ∈ [0,∞]. If such
a line does not exist (it cannot be drawn), then such a system cannot be referred to as
absolutely stable.

Example 20.8.

H (iω) = 1− iω
2+ iω = 2− ω2

4+ ω2
− i 3ω

4+ ω2

U (ω) = 2− ω2

4+ ω2
, ωV (ω) = − 3ω2

4+ ω2

The corresponding godograph is depicted at Fig. 20.7. The Popov’s line can be drawn
with q̃ < 0 crossing the point (k−1, 0) for any k > 0.5.

20.5.6 Yakubovich–Kalman lemma

As mentioned above, Popov’s frequency condition (20.69) can be generalized for a

significantly wide class of dynamic systems. All of them are based on the verification of

negativity (positivity) of some Hermitian (quadratic) forms obtained as a time-derivative

of a Lyapunov function (usually of the form (20.62)) on the trajectories of a linear

system resembling (20.58) and (20.61). This verification can be done using the, so-called,

“Yakubovich–Kalman lemma” known also as the “frequency theorem”. Its simplified

version oriented to the systems governed by (20.58) and (20.61) is given below.

Lemma 20.1. (Yakubovich 1973) Let the pair (A, b) in (20.58) be controllable (see
Criterion 3 in Theorem (9.8)) and

�(s) = (sI − A)−1 (20.76)
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Fig. 20.7. Analysis of the admissible zone for the nonlinar feedback.

Let

G(x, u) := x∗Gx + 2Re (x∗gu)− |γ |2 u∗u

be a Hermitian form of (x, u) where x ∈ Cn and u ∈ C.
1. If

G [�(iω) bu, u] ≤ 0 (20.77)

for all u ∈ C and all ω ∈ [−∞,∞], then there exist a Hermitian matrix P = P ∗ ∈
Cn×n, a vector h ∈ Cn and a constant γ ∈ C such that the following identity holds

2Re x∗P (Ax + bu)+G(x, u) = − |h∗x − γ u|2 (20.78)

where P, h and γ satisfy the equations (the “resolving Lourie’s equations”)

PA+ AᵀP + hh∗ +G = 0

Pb − hγ + g = 0

}
(20.79)

(If A, b and G are real, then P = Pᵀ, h and γ can be also real.)
2. If

G [�(iω) bu, u] < 0 (20.80)

for all ω ∈ [−∞,∞] and all u �= 0, then there exists a Hermitian matrix P = P ∗ ∈
Cn×n such that

2Rex∗P (Ax + bu)+G(x, u) < 0 (20.81)

whenever ‖x‖ + |u| �= 0.
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3. If for all u ∈ C

G(0, u) ≡ − |γ |2 |u|2, γ �= 0 (20.82)

then

det
(
sI − (

A− bk̄∗)) = |γ |−1 gh (s)

k̄ := |γ |−1 h
(20.83)

where the polynomial gh (s) can be selected as stable (Hurwitz) by the corresponding
selection of h.

Proof. To prove (1) it is sufficient to compare the vector and matrix parameters in both

parts of equation (20.78) which leads to (20.79). Indeed, the right-hand side of (20.78) is

− |h∗x − γ u|2 = x∗hh∗x − |γ |2 u∗u+ 2x∗ (hγ ) u
=−x∗ (hh∗) x − |γ |2 u∗u+ 2Re x∗ (hγ ) u

(20.84)

In turn, using the identity

2Re x∗PAx = x∗ (PA+ AᵀP) x

the left-hand side of (20.78) can be represented as

2Re x∗P (Ax + bu)+G(x, u) = 2Re x∗PAx
+ 2Re x∗Pbu+ x∗Gx + 2Re (x∗gu)− |γ |2 u∗u
= x∗ (PA+ AᵀP +G) x + 2Re

(
x∗ [g + Pb] u)− |γ |2 u∗u

(20.85)

Comparing the coefficients in (20.84) and (20.85) we get

PA+ AᵀP +G = −hh∗
g + Pb = hγ

which coincides with (20.79).

To prove (2) let us rewrite (20.81) as follows

G [�(iω) bu, u] = − (iω) |u|2

where  (iω) is continuous and satisfies

 (iω) ≥  0 > 0

Introduce also the regularized Hermitian form Gε (x, u) defined by

Gε (x, u) = G(x, u)+ ε
(‖x‖2 + |u|2), ε > 0
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Then, evidently,

Gε (x, u) ≤ − 0 |u|2 + ε (1+ c)
(‖x‖2 + |u|2) ≤ 0

where the constant c satisfies the inequality ‖�(iω) b‖2 ≤ c. But, by property (1) it

follows that there exists P = P ∗ such that

2Re x∗P (Ax + bu)+Gε (x, u) = − |h∗x − γ u|2 ≤ 0

which proves (20.81). Property (3) follows directly from the assumptions of the

theorem. �

Remark 20.11. This lemma is also valid when b = B is a matrix. This generalization
can be found in Vidyasagar (1993).

Corollary 20.5. The matrix algebraic Riccati equation

PA+ AᵀP −KᵀPK +Q = 0

RK = BᵀP
(20.86)

has a unique positive definite solution P = Pᵀ > 0 and the corresponding K such that
the matrix [A− BK] is stable, if R > 0, the pair (A,B) is controllable and one of two
conditions is fulfilled:
(a)

Q > 0

(b)

Q = CᵀC
the pair (C,A) is observable

Proof. The existence of P and K satisfying (20.86) is equivalent to fulfilling the identity

2Re [x∗ (−P) (Ax + By)]− (x∗Qx + y∗Ry)
= − (y +Kx)∗ R (y +Kx)

valid for all complex x and y. By the Yakubovich–Kalman Lemma 20.1 to have this

identity it is sufficient that

G [�(iω) by, y] = − (x∗Qx + y∗Ry) ≤ 0

Since R > 0 this property holds. Moreover, the strict condition (20.80) also holds and

G(0, y) = −y∗Ry < 0
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if y �= 0. Hence, from Lemma 20.1 it follows also that there exists a unique solution P,

K for which Ā := [A− BK] is stable. Since (20.86) is equivalent to

P Ā+ ĀᵀP = −KᵀRK −Q = Q̄, K = R−1BᵀP

then for Q > 0 we have Q̄ > 0 and, by the Lyapunov Lemma 9.1, there exists P > 0

resolving the last matrix equation. If Q = CᵀC, the existence of the positive definite

solution also follows from Lemma 9.1 (statement (2)). �

Remark 20.12. It seems to be useful to compare the statement of Corollary 20.5 with
Theorem 10.7 which gives the same conditions for the existence of a strictly positive
solution of the matrix Riccati equation making the closed-loop system stable.
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This chapter deals with the simplest problems of optimization in finite-dimensional spaces

starting with unconstrained optimization of smooth convex functions and proceeds to

investigate the influence of different complicating factors such as nonsmoothness, singu-

larity of a minimum point and constraints of equality and inequality types. Each class of

problems is analyzed in a similar way: first, the necessary conditions of extremality are

derived, then sufficient conditions of an extremum are proved, followed by the results

concerning existence, uniqueness and the stability of a solution. Finally some numerical

methods (with their analysis) are presented. The selected method of the presentation

follows (Polyak 1987).

21.1 Some properties of smooth functions

21.1.1 Differentiability remainder

Definition 21.1. The function f : Rn → R is said to be

1. differentiable at a point x ∈ Rn if there exists a vector a ∈ Rn such that for all y ∈ Rn

f (x + y) = f (x)+ (a, y)+ o (‖y‖)
a = ∇f (x) =

[
∂

∂xj
f (x)

]
i=1,...,n

(21.1)

(the vector a is usually called the gradient of f (x) at the point x ∈ Rn);
2. twice differentiable at a point x ∈ Rn if there exists a symmetric matrix H ∈ Rn×n

such that for all y ∈ Rn

f (x + y)= f (x)+ (∇f (x), y)+ (Hy, y)+ o (‖y‖2)
H =∇2f (x) =

[
∂2

∂xi∂xj
f (x)

]
i,j=1,...,n

(21.2)

(the matrix H is called the matrix of second derivatives of Hessian of f (x) at the
point x ∈ Rn).

601
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Lemma 21.1. (on a finite increment)

1. If f (x) is differentiable on [x, x + y], then

f (x + y) = f (x)+ (∇f (x), y)

+
1∫

τ=0

(∇f (x + τy)− ∇f (x), y) dτ (21.3)

2. If f (x) is twice differentiable on [x, x + y], then

f (x + y) = f (x)+ (∇f (x), y)+ 1

2

(∇2f (x) y, y
)

+
1∫

t=0

t∫
τ=0

([∇2f (x + τy)− ∇2f (x)
]
y, y

)
dτ dt

(21.4)

Proof. For any x, y ∈ Rn define the function

φ (τ) := f (x + τy) (21.5)

which is, obviously, differentiable (twice differentiable) if f (x) is differentiable (twice

differentiable). The identity (21.3) follows from the Newton–Leibniz formula

φ (1) = φ (0)+
1∫

τ=0

φ′ (τ ) dτ (21.6)

and (21.4) results from the Taylor formula

φ (1) = φ (0)+ φ′ (0)+
1∫

t=0

t∫
τ=0

φ′′ (τ ) dτ dt

Lemma is proven. �

Corollary 21.1.

(a) If ∇f (x) satisfies the Lipschitz condition on [x, x + y], that is,

‖∇f (u)− ∇f (v)‖ ≤ Lf ‖u− v‖, u, v ∈ [x, x + y] (21.7)

then for all x, y ∈ Rn

|f (x + y)− f (x)− (∇f (x), y)| ≤ Lf
2
‖y‖2 (21.8)
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(b) If for all x, y ∈ Rn

∥∥∇2f (x + τy)∥∥ ≤ L∇2 , τ ∈ [0, 1] (21.9)

then for all x, y ∈ Rn

|f (x + y)− f (x)− (∇f (x), y)| ≤ L∇2

2
‖y‖2 (21.10)

(c) If for all x, y ∈ Rn

∥∥∇2f (x + y)− ∇2f (x)
∥∥ ≤ L∇2 ‖y‖ (21.11)

then for all x, y ∈ Rn

∣∣∣∣f (x + y)− f (x)− (∇f (x), y)− 1

2

(∇2f (x) y, y
)∣∣∣∣

≤ L∇2

6
‖y‖3

(21.12)

Proof. The inequality (21.8) follows directly from (21.3), (21.7) and (21.11) if we take

into account that

∣∣∣∣∣∣
1∫

τ=0

(∇f (x + τy)− ∇f (x), y) dτ
∣∣∣∣∣∣ ≤

1∫
τ=0

|(∇f (x + τy)− ∇f (x), y)| dτ

≤
1∫

τ=0

‖∇f (x + τy)− ∇f (x)‖ ‖y‖ dτ ≤
1∫

τ=0

Lf τ ‖y‖2 dτ ≤ Lf
2
‖y‖2

The inequalities (21.10) and (21.12) result from (21.4) and (21.9) since

∣∣∣∣∣∣
1∫

t=0

t∫
τ=0

(∇2f (x + τy) y, y) dτ dt
∣∣∣∣∣∣ ≤

1∫
t=0

t∫
τ=0

∣∣(∇2f (x + τy) y, y)∣∣ dτ dt

≤
1∫

t=0

t∫
τ=0

∥∥∇2f (x + τy)∥∥ ‖y‖2 dτ dt ≤ 1∫
t=0

t∫
τ=0

L∇2 ‖y‖2 dτ dt ≤ L∇2

2
‖y‖2
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and ∣∣∣∣∣∣
1∫

t=0

t∫
τ=0

([∇2f (x + τy)− ∇2f (x)
]
y, y

)
dτ dt

∣∣∣∣∣∣
≤

1∫
t=0

t∫
τ=0

∣∣([∇2f (x + τy)− ∇2f (x)
]
y, y

)∣∣ dτ dt
≤

1∫
t=0

t∫
τ=0

∥∥∇2f (x + τy)− ∇2f (x)
∥∥ ‖y‖2 dτ dt

≤
1∫

t=0

t∫
τ=0

L∇2 ‖y‖3 τdτ dt ≤ L∇2

6
‖y‖3

which proves the corollary. �

Exercise 21.1. It is easy to check that

1.

∇ ∥∥[Ax − b]+∥∥2 = 2Aᵀ [Ax − b]+ (21.13)

where

[z]+ :=
(
[z1]+ , . . . , [zn]+

)
[zi]+ :=

{
zi if zi ≥ 0

0 if zi < 0

(21.14)

2. If x �= 0

∇ ‖x‖ = x

‖x‖
∇2 ‖x‖ = 1

‖x‖I −
xxᵀ

‖x‖3
(21.15)

3.

∇2 (c, x)2 = 2ccᵀ (21.16)

The following lemma will be useful in the considerations below.

Lemma 21.2. (Polyak 1987) Let

(a) f (x) be differentiable on Rn;
(b) ∇f (x) satisfy the Lipschitz condition (21.7) with the constant Lf ;
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(c) f (x) be bounded from below, i.e., f (x) ≥ f ∗ > −∞ for all x ∈ Rn.

Then

‖∇f (x)‖2 ≤ 2Lf (f (x)− f ∗) (21.17)

Proof. Putting in (21.8) y := −L−1
f ∇f (x) we obtain

f ∗ ≤ f (x + y) = f (x − L−1
f ∇f (x))

≤ f (x)− (∇f (x), L−1
f ∇f (x)

)+ Lf
2

∥∥L−1∇f (x)∥∥2

= f (x)− 1

2Lf

∥∥L−1
f ∇f (x)

∥∥2

which implies (21.17). Lemma is proven. �

21.1.2 Convex functions

21.1.2.1 Main definition
Definition 21.2. A scalar valued function f (x) defined on Rn is said to be

1. convex (see Fig. 21.1) if for any x, y ∈ Rn and any α ∈ [0, 1]

f (αx + (1− α) y) ≤ αf (x)+ (1− α) f (y) (21.18)

2. strictly convex if for any x �= y ∈ Rn and any α ∈ [0, 1]

f (αx + (1− α) y) < αf (x)+ (1− α) f (y) (21.19)

f (x)

f (y)

�x 1y(12�)

�f (x)1(12�) f (y)

(y)

yx

f(�x 1y(12�) )

Fig. 21.1. A convex function.
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3. strongly convex with the constant l > 0 if for any x, y ∈ Rn and any α ∈ [0, 1]

f (αx + (1− α) y) ≤ αf (x)+ (1− α) f (y)

− lα (1− α) ‖x − y‖2
(21.20)

4. concave (strictly, strongly with the given constant) if the function [−f (x)] is convex
(strictly, strongly with the same constant).

21.1.2.2 Some properties of convex (not obligatory differentiable) functions
Claim 21.1. From Definition 21.2 it follows directly that

(a) the affine function f (x) = (a, x)+ b is both convex and concave;
(b) if the functions fi (x) are convex (concave) then the functions

f (x) =
k∑
i=1

γifi (x), γi ≥ 0 (i = 1, . . . , k)

and

f (x) = max
i=1,...,k

fi (x)

are convex (concave) too.

Claim 21.2. If f (x) is convex on Rn, then for any x(1), . . . , x(k) ∈ Rn and any
α1, . . . , αk such that αi ≥ 0 (i = 1, . . . , k),

∑k

i=1 αi = 1 the following inequality holds

f

(
k∑
i=1

αix
(i)

)
≤

k∑
i=1

αif
(
x(i)

)
(21.21)

Proof. It follows directly from the Jensen inequality (16.152). �

Lemma 21.3. Any convex function is continuous.

Proof. Let us prove this result by contradiction. Suppose that there exists a point x where

a convex function f (x) is discontinuous. This means that in any δ-neighborhood of x,

containing x as an internal point, there are always two points x ′ and x ′′ such that

|f (x ′)− f (αx ′′ + (1− α) x ′)| > ε > 0 for any 0 < α− < α < α+ < 1. Assuming that

f (x ′)≥ f (x ′′), we have f (x ′)+ ε > f (x ′′). But, by the convexity property, we also have

f
(
αx ′′ + (1− α) x ′) ≤ αf (

x ′′
)+ (1− α) f (

x ′
)

for any α ∈ [0, 1], or equivalently,

f (x ′)+ ε > f (x ′′) ≥ f (x ′)
+ 1

α
[f (αx ′′ + (1− α) x ′)− f (x ′)] ≥ f (x ′)+ ε

α

which, for α satisfying 0 < α− < α < α+ < 1, implies contradiction. �
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Corollary 21.2. If f (x) is convex, then the set

Qα := {x ∈ Rn | f (x) ≤ α} (21.22)

is convex and closed.

Lemma 21.4. Any convex function f (x) at any arbitrary point has a one side deriva-
tive in any direction y and this derivative is uniformly bounded with respect to this
direction.

Proof. One has

f ′+ (x, y) := lim
α→+0

f (x + αy)− f (x)
α

= lim
α→+0

f ((1− α) x + α (x + y))− f (x)
α

≤ lim
α→+0

αf (x + y)+ (1− α) f (x)− f (x)
α

≤ f (x + y)− f (x) ≤ max
z:‖z‖=‖y‖

[f (x + z)− f (x)]

(21.23)

which completes the proof. �

Corollary 21.3. (Rademacher theorem) Any convex function is differentiable almost
everywhere (excepting a set of measure zero).

21.1.2.3 Some properties of convex differentiable functions
Lemma 21.5. If a function f (x) on Rn is differentiable, then

1. its convexity is equivalent to the inequality

f (x + z) ≥ f (x)+ (∇f (x), z) (21.24)

valid for all x, y ∈ Rn;
2. its strict convexity is equivalent to the inequality

f (x + z) > f (x)+ (∇f (x), z) (21.25)

valid for all x ∈ Rn and all z �= 0 (z ∈ Rn);
3. its strong convexity is equivalent to the inequality

f (x + z) ≥ f (x)+ (∇f (x), z)+ l

2
‖z‖2 (21.26)

valid for all x, z ∈ Rn.
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Proof.

(a) Necessity. Suppose that (21.18), (21.19) and (21.20) hold. Show that (21.24), (21.25)

and (21.26) result from them. Taking there 1−α = δ→ 0 and substituting y = z+x
we obtain the result. Indeed, from (21.18) we have

1

δ
[f (x + δ (y − x))− f (x)] ≤ f (y)− f (x)

and, when δ→ 0 in the left-hand side of this inequality, it follows that

(∇f (x), (y − x)) ≤ f (y)− f (x)

which leads to (21.24) if we take y = z+ x. The inequalities (21.19) and (21.20) are

derived analogously.

(b) Sufficiency. Suppose that (21.24) holds. Define the function

gα (x, y) := αf (x)+ (1− α) f (y)− f (αx + (1− α) y)

To prove (21.18) we need to prove that for all x, z ∈ Rn and all α ∈ [0, 1]

gα (x, y) ≥ 0 (21.27)

First, notice that all x, z ∈ Rn

gα=0 (x, y) = gα=1 (x, y) = 0 (21.28)

All stationarypointsα∗ ∈ [0, 1] (if theyexist) of the functiongα (x, y) satisfy the identity

g′α=α∗ (x, y) = f (x)− f (y)− (∇f (α∗x + (1− α∗) y), x − y) = 0

or, equivalently,

f (x)− f (y) = (∇f (α∗x + (1− α∗) y), x − y)

For any stationary point α∗, after the application of the inequality (21.24) and in view

of the last identity, we have

gα=α∗ (x, y) := α∗f (x)+ (1− α∗) f (y)− f (α∗x + (1− α∗) y)
= α∗ [f (x)− f (y)]+ f (y)− f (α∗x + (1− α∗) y)
≥ α∗ [f (x)− f (y)]− (∇f (α∗x + (1− α∗) y), α∗x − y) = 0

(21.29)

which, together with (21.28), implies (21.27). Indeed, if we assume that there exists

a point α′ such that gα=α′ (x, y) < 0, then, by the continuity and taking into account

(21.28), it follows that there should be a minimum point α∗ where also gα=α∗ (x, y) < 0

which contradicts with (21.29). So, for all α ∈ [0, 1] it follows that gα (x, y) ≥ 0.

The validity of (21.19) and (21.20) may be proven by the same manner. Lemma is

proven. �
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Corollary 21.4. If a convex function f (x) is differentiable on Rn then for any
x, y ∈ Rn

(∇f (x), (y − x)) ≤ f (y)− f (x) (21.30)

and

(∇f (x)− ∇f (y), (x − y)) ≥ 0 (21.31)

which means that the gradient of a convex function is a monotone operator.

Proof. The inequality (21.30) is proven just above. Changing y to x and x to y we

also have

(∇f (y), (x − y)) ≤ f (x)− f (y)

Adding this inequality with (21.30) we obtain (21.31). �

Corollary 21.5. If a function f (x) is twice differentiable on Rn, then

1. its convexity is equivalent to the matrix inequality

∇2f (x) ≥ 0 (21.32)

valid for all x ∈ Rn;
2. the matrix inequality

∇2f (x) > 0 (21.33)

valid for all x ∈ Rn implies its strict convexity;
3. its strong convexity is equivalent to the matrix inequality

lI ≤ ∇2f (x) ≤ Lf I (21.34)

valid for all x ∈ Rn;
4. if x∗ is an optimal (minimal) point of strongly convex function f (x) (with a constant
l > 0), then (taking x = x∗, y = x and ∇f (x∗) = 0) the inequalities above lead to
the following ones:

f (x) ≥ f (x∗)+ l

2
‖x − x∗‖2 (21.35)

(∇f (x), (x − x∗)) ≥ l ‖x − x∗‖2 (21.36)

‖∇f (x)‖ ≥ l ‖x − x∗‖ (21.37)
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Example 21.1.

1. The function f (x) = x2 is strongly convex (and, hence, convex and strictly convex)
with l = 2.

2. The functions f (x) = x4 and f (x) = ex are strictly convex (and, hence, convex, but
not strongly convex).

The next two lemmas will be used hereinafter.

Lemma 21.6. (Polyak 1987) Let

(a) f (x) be convex and twice differentiable on Rn;
(b) ∇f (x) satisfies the Lipschitz condition (21.7) with the constant Lf .

Then for all x, y ∈ Rn

(∇f (x)− ∇f (y), x − y) ≥ L−1
f ‖∇f (x)− ∇f (y)‖2 (21.38)

Proof. By (21.6) we have

∇f (y)=∇f (x)+
1∫

τ=0

d

dτ
∇f (x + τ (y − x)) dτ

=∇f (x)+
1∫

τ=0

∇2f (x + τ (y − x)) (y − x) dτ = A (y − x)

where, by the strict convexity condition and the property (21.32),

A = Aᵀ :=
1∫

τ=0

∇2f (x + τ (y − x)) dτ ≥ 0

which, implies (in view of the inequalities ‖A‖ I ≥ A and ‖A‖ ≤ Lf )

(∇f (y)− ∇f (x), (y − x)) = (y − x)ᵀA (y − x)

= 1

‖A‖ (y − x)
ᵀA1/2 (‖A‖ I )A1/2 (y − x)

≥ 1

‖A‖ (y − x)
ᵀA1/2AA1/2 (y − x)

= 1

‖A‖ (y − x)
ᵀAᵀA (y − x) = 1

‖A‖ ‖A (y − x)‖
2

≥ 1

Lf
‖A (y − x)‖2 = 1

Lf
‖∇f (y)− ∇f (x)‖2

Lemma is proven. �
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Lemma 21.7. If

1. the function f (x) is differentiable strongly convex on Rn (see (21.20)) with the constant
l > 0,

2. x∗ is its minimum point, then for all x ∈ Rn

‖∇f (x)‖2 ≥ 2l [f (x)− f (x∗)] (21.39)

Proof. The inequality (21.26) can be rewritten as follows

∥∥∥∥∥
√

1

2l
∇f (x)

∥∥∥∥∥
2

≥ f (x)− f (x + z)+
∥∥∥∥∥
√

1

2l
∇f (x)+

√
l

2
z

∥∥∥∥∥
2

which, for z := x∗ − x, leads to the following inequality

1

2l
‖∇f (x)‖2 ≥ f (x)− f (x∗)+

∥∥∥∥∥
√

1

2l
∇f (x)+

√
l

2
z

∥∥∥∥∥
2

≥ f (x)− f (x∗)

which completes the proof. �

21.2 Unconstrained optimization

21.2.1 Extremum conditions

Definition 21.3.

• The point x∗ is called a local minimum of f (x) on Rn if there exists δ > 0 such that
f (x) ≥ f (x∗) for all x satisfying ‖x − x∗‖ ≤ δ.

• The point x∗ is called a global minimum (simply minimum) of the function f (x) on
Rn if f (x) ≥ f (x∗) for all x ∈ Rn.

21.2.1.1 Necessary conditions
Theorem 21.1. (on necessary conditions) Let x∗ be a local minimum of f (x) on Rn.

1. The first-order necessary condition (Fermat). If f (x) is differentiable at x∗, then

∇f (x∗) = 0 (21.40)

2. The second-order necessary condition. If f (x) is twice differentiable at x∗, then

∇2f (x∗) ≥ 0 (21.41)

Proof. To prove (1) suppose that ∇f (x∗) �= 0. Then τ > 0 we have

f (x∗ − τ∇f (x∗))= f (x∗)+ (∇f (x∗),−τ∇f (x∗))+ o (τ)
= f (x∗)− τ ‖∇f (x∗)‖2 + o (τ) > f (x∗)
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for small enough τ which contradicts the fact that x∗ is a minimum. So, (21.40) holds.

To prove (2) let us use (21.2) which for any y ∈ Rn and a small positive τ > 0

gives

f (x∗)≤ f (x∗ + τy)
= f (x∗)+ (∇f (x∗), τy)+ (∇2f (x∗) τy, τy

)+ o (τ 2)
= f (x∗)+ τ 2 (∇2f (x∗) y, y

)+ o (τ 2)
or, equivalently,

0 ≤ τ 2 (∇2f (x∗) y, y
)+ o (τ 2)

Dividing by τ 2 and tending τ to zero implies
(∇2f (x∗) y, y

)
which is equivalent to

(21.41). Theorem is proven. �

21.2.1.2 Sufficient conditions
Theorem 21.2.

1. The first-order sufficient condition. Let f (x) be a convex on Rn function differentiable
at a point x∗ such that the first-order necessary condition (21.40) holds, that is,
∇f (x∗) = 0. Then x∗ is a global minimum point of f (x) on Rn.

2. The second-order sufficient condition. Let f (x) be twice differentiable at a point
x∗ and

∇f (x∗) = 0, ∇2f (x∗) > 0 (21.42)

Then x∗ is a local minimum point.

Proof. The first-order sufficient condition follows directly from (21.24) since for any

z ∈ Rn

f (x∗ + z) ≥ f (x∗)+ (∇f (x∗), z) = f (x∗)

The second-order sufficient condition follows from the Taylor formula (21.2) since

f (x∗ + τz)=f (x∗)+ (∇f (x∗), τz)
+τ 2 (∇2f (x∗) y, y

)+ o (τ 2 ‖y‖2) ≥ f (x∗)
+τ 2λmin

(∇2f (x∗)
) ‖y‖2 + o (τ 2 ‖y‖2) ≥ f (x∗)

for small enough τ > 0 which proves the result. �

21.2.2 Existence, uniqueness and stability of a minimum

21.2.2.1 Existence of a minimum
Theorem 21.3. (Weierstrass) If
(a) f (x) is continuous on Rn,
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(b) the set

Qα := {x ∈ Rn | f (x) ≤ α} (21.43)

is nonempty and bounded for some α ∈ R.
Then there exists a global minimum of f (x) on Rn.

Proof. For some vector-sequence
{
x(k)

}
we have

f
(
x(k)

)→ inf
x∈Rn
f (x) < α as k→∞

Then x(k) ∈ Qα for large enough k. But the set Qα is a compact and, hence, the sequence{
x(k)

}
has a limit x∗ ∈ Qα . But from the continuity of f (x) it follows that f (x∗) =

inf
x∈Rn
f (x) which proves the theorem. �

21.2.2.2 Uniqueness of a minimum
Definition 21.4.

1. A minimum point is called locally unique if there are no other minimum points in
some neighborhood of this point.

2. x∗ is said to be a nonsingular minimum point if the second-order sufficient conditions
(21.42) hold, that is, if ∇f (x∗) = 0, ∇2f (x∗) > 0.

Theorem 21.4. A nonsingular minimum point is locally unique.

Proof. Suppose that x∗ is a nonsingular minimum point, but there exists another minimum

point x∗∗ �= x∗ in any small neighborhood of x∗, that is, f (x∗) = f (x∗∗)when ‖x∗∗ − x∗‖
< δ for any small enough δ. Then we have

f (x∗∗)= f (x∗ + (x∗∗ − x∗)) = f (x∗)+ (∇f (x∗), x∗∗ − x∗)
+ (∇2f (x∗) (x∗∗ − x∗), (x∗∗ − x∗))+ o (‖x∗∗ − x∗‖2)

= f (x∗)+ (∇2f (x∗) (x∗∗ − x∗), (x∗∗ − x∗))+ o (‖x∗∗ − x∗‖2) > f (x∗)
since(∇2f (x∗) (x∗∗ − x∗), (x∗∗ − x∗)) > o (‖x∗∗ − x∗‖2)
So, we have obtained the contradiction that x∗ is a minimum point. Theorem is proven.

�
Proposition 21.1. A minimum point of a strictly convex function is globally unique.

Proof. It follows directly from the definition (21.19). Indeed, putting in (21.19) y := x∗
we get (for α > 0)

0 <
1

α
[f (y + α (x − y))− f (y)]

= 1

α
[f (x∗ + α (x − x∗))− f (x∗)] < f (x)− f (x∗)

�
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21.2.2.3 Stability of a minimum
Definition 21.5. A local minimum point x∗ of f (x) is called

(a) locally stable if every local minimizing sequence converges to x∗, that is, there exists
δ > 0 such that

f
(
x(k)

) →
k→∞ f (x

∗),
∥∥x(k) − x∗∥∥ ≤ δ

implies

x(k) →
k→∞ x

∗

(b) globally stable if any minimizing sequence converges to x∗.

Theorem 21.5. (Polyak 1987) A local minimum point x∗ of a continuous function f (x)
is locally stable if it is locally unique.

Proof. Let
{
x(k)

}
be a local minimizing sequence. By the compactness of a unit sphere

in Rn, from any sequence there can be extracted a convergent subsequence, namely, there

exists
{
x(ki )

}
such that x(ki ) → x̄. But from the definition of a local minimizing sequence

one gets ‖x̄ − x∗‖ ≤ δ. By the continuity property, we have

f (x̄) = lim
i→∞f

(
x(ki )

) = f (x∗)
which implies x̄ = x∗ since x∗ is a local minimum point. The same is true for any other

convergent subsequence, so, x(k) → x∗, and therefore x∗ is locally stable. �

The next result turns out to be often useful in different applications.

Lemma 21.8. (on regularized (perturbed) functions) The stability property implies
that a minimum point of a nonperturbed functions is closed to a minimum point of a
perturbed function, namely, if x∗ is a nonsingular minimum point of f (x) and g (x) is
continuously differentiable in a neighborhood of x∗, then, for sufficiently small ε > 0,
the function Fε (x) := f (x)+ εg (x) has a local minimum point x∗ε in a neighborhood of
x∗, and

x∗ε = x∗ − ε
[∇2f (x∗)

]−1 ∇g (x∗)+ o (ε) (21.44)

Proof. By Definition 21.4 it follows that x∗ε satisfies

∇Fε
(
x∗ε
) = ∇f (

x∗ε
)+ ε∇g (x∗ε ) = 0
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and, hence, we have

0= ∇Fε
(
x∗ε
) = ∇f (

x∗ε
)+ ε∇g (x∗ε )

= ∇f (
x∗ + (

x∗ε − x∗
))+ ε∇g (x∗ε ) = ∇2f (x∗)

(
x∗ε − x∗

)
+ ε [∇g (x∗)+ (∇g (x∗ε )− ∇g (x∗))]+ o(∥∥x∗ε − x∗∥∥2

)
By the continuity property of ∇g (x) at the point x = x∗ it follows that for any ε̃ > 0

there exists δ̃ > 0 such that ‖x̃ − x∗‖ ≤ δ̃ implies ‖∇g (x̃)− ∇g (x∗)‖ < ε̃. Taking
here x̃ := x∗ε , δ̃ := kε (where, maybe, k < 1) and ε̃ := ε, from the last identity it

follows that

0 = ∇2f (x∗)
(
x∗ε − x∗

)+ ε∇g (x∗)+ o (ε)
which implies (21.44). Lemma is proven. �

Remark 21.1. When g (x) ≥ 0 for all x ∈ Rn then g (x) is usually called a regularizing
term and the function Fε (x) is called the regularized function.

21.2.3 Some numerical procedure of optimization

Let us consider the following numerical procedure for finding a minimum point

x∗ ∈ Rn of the function f (x) on Rn using only the value of its gradient ∇f (xn) in a

current point xn:

xn+1 = xn − γnHn+1∇f (xn)

x0 = x̊, n = 0, 1, 2, . . .

0 < γn ∈ R, 0 < Hn = Hᵀ
n ∈ Rn×n

(21.45)

21.2.3.1 Strong (argument) convergence
Theorem 21.6. (on strong (argument) convergence)
Assume that

1. x∗ is an optimal point of strongly convex differentiable function f (x) with a constant
l > 0 (such point always exists by Proposition (21.1));

2. ∇f (x) satisfies the Lipschitz condition (21.7) with the constant Lf ;
3. for any n = 0, 1, . . .

αn := λmax

(
H 1/2
n H

−1
n+1H

1/2
n

)− 2γnlλmin (Hn)

+ γ 2
n L

2
f λmax (Hn+1) λmax (Hn) ≤ q < 1

(21.46)

Then for the sequence {xn} generated by (21.45) with any initial conditions x̊ we have
the following exponential convergence:

Wn := ‖xn − x∗‖2H−1
n
= O (qn) = O ([

eln q
]n)→ 0 (21.47)

whereas n→∞.
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Proof. We have the following recursion:

Wn+1 := ‖xn+1 − x∗‖2H−1
n+1

= ‖(xn − x∗)− γnHn+1∇f (xn)‖2H−1
n+1

= ‖xn − x∗‖2H−1
n+1

− 2
(
γnH

−1
n+1Hn+1∇f (xn), xn − x∗

)+ ‖γnHn+1∇f (xn)‖2H−1
n+1

= ‖xn − x∗‖2
H
−1/2
n

(
H

1/2
n H−1

n+1H
1/2
n

)
H
−1/2
1

− 2γn (∇f (xn), xn − x∗)+ γ 2
n ‖∇f (xn)‖2Hn+1

(21.48)

Recall that

H−1
n+1 = H−1/2

n

(
H 1/2
n H

−1
n+1H

1/2
n

)
H−1/2
n ≤ λmax

(
H 1/2
n H

−1
n+1H

1/2
n

)
H−1
n

By the condition (21.36),

(∇f (xn), xn − x∗) ≥ l ‖xn − x∗‖2

and by (21.7)

‖∇f (xn)− ∇f (x∗)‖ = ‖∇f (xn)‖ ≤ Lf ‖xn − x∗‖

We also have

‖xn − x∗‖2 =
(
(xn − x∗),H−1/2

n HnH
−1/2
n (xn − x∗)

)
λmin (Hn)Wn ≤ ‖xn − x∗‖2 ≤ λmax (Hn)Wn

Substitution of these inequalities into (21.48) implies

Wn+1 ≤ λmax

(
H 1/2
n H

−1
n+1H

1/2
n

) ‖xn − x∗‖2H−1
n

− 2γnl ‖xn − x∗‖2 + γ 2
n L

2
f λmax (Hn+1) ‖xn − x∗‖2

≤ λmax

(
H 1/2
n H

−1
n+1H

1/2
n

)
Wn − 2γnlλmin (Hn)Wn

+ γ 2
n L

2
f λmax (Hn+1) λmax (Hn)Wn

= αnWn ≤ qWn ≤ · · · ≤ qnW0 → 0

Theorem is proven. �

Corollary 21.6. (on the gradient method convergence) If in
(21.45) we take

γn := γ, Hn := I (21.49)



Finite-dimensional optimization 617

we get the gradient method

xn+1 = xn − γ∇f (xn), x0 = x̊, n = 0, 1, 2, . . .

0 < γ < 2l/L2
f

(21.50)

which converges exponentially as

Wn := ‖xn − x∗‖2 = O (qn)

with

q = 1− γ (2l − γL2
f

)
Corollary 21.7. (on the modified Newton’s method) If in (21.45) we take

γn := γ, Hn :=
[∇2f (xn−1)

]−1
(21.51)

we get the modified Newton’s method

xn+1 = xn − γ
[∇2f (xn)

]−1 ∇f (xn)
x0 = x̊, n = 0, 1, 2, . . .

γ = l3/L3
f

(21.52)

which converges exponentially as

Wn := ‖xn − x∗‖2H−1
n
= O (qn)

with

αn := λmax

(
H 1/2
n H

−1
n+1H

1/2
n

)− 2γ lλmin (Hn)

+ γ 2L2
f λmax (Hn+1) λmax (Hn)

≤ Lf /l − 2γ l/Lf + γ 2L2
f / l

2 = Lf /l − l4/L4
f := q < 1

within the class of strongly convex functions satisfying

0.755 ≤ l/Lf < 1

Proof. It follows from the estimates (in view of (21.34)) that

λmax (Hn+1) = λmax

([∇2f (xn)
]−1

)
= 1

λmin

(
[∇2f (xn)]

) ≤ l−1

λmin (Hn) = 1

λmax

(
[∇2f (xn)]

) ≥ 1/Lf

(21.53)
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and

λmax

(
H 1/2
n H

−1
n+1H

1/2
n

) ≤ λmax

(
H−1
n+1

)
λmax (Hn)

= λmax

(∇2f (xn)
)
λmax

([∇2f (xn)
]−1

)
≤ Lf 1

λmin

(∇2f (xn)
) ≤ Lf /l

if we use them in (21.46). Moreover, defining x := l/Lf < 1, we get

q = Lf /l − l4/L4
f = x−1 − x4 < 1

if x ≥ 0.755. �

Below we show that there exist other modifications of Newton’s method working

within much wider classes of functions.

21.2.3.2 Weak (functional) convergence
Theorem 21.7. (on weak (functional) convergence) Assume that

1. the function f (x) is differentiable and is bounded from below, i.e.,

f (x) ≥ f ∗ > −∞ (21.54)

2. ∇f (x) satisfies the Lipschitz condition (21.7) with the constant Lf ;
3. for all n = 0, 1, 2, . . .

λmax (Hn+1) ≤ λ+

γn ≤ γ̄ := 2 (1− κ)

Lf λ+
, κ ∈ (0, 1)

γnλmin (Hn+1) ≥ c− > 0

(21.55)

Then for the sequence {xn} generated by (21.45) with any initial conditions x̊ we have
the following property:

f (xn+1) ≤ f (xn)
‖∇f (xn)‖ → 0 as n→∞ (21.56)

whereas n→∞.

Proof. By (21.3) and (21.53) we have

f (xn+1)= f (xn)− γn ‖∇f (xn)‖2Hn+1

− γn
1∫

τ=0

(∇f (xn − τγnHn+1∇f (xn))− ∇f (xn),Hn+1∇f (xn)) dτ

≤ f (xn)− γn ‖∇f (xn)‖2Hn+1
+ γ 2

n

Lf

2
‖Hn+1∇f (xn)‖2

≤ f (xn)− γn
(
1− γn Lf

2
λmax (Hn+1)

)
‖∇f (xn)‖2Hn+1

≤ f (xn)
− γnκ ‖∇f (xn)‖2Hn+1

≤ f (xn)− κγnλmin (Hn+1) ‖∇f (xn)‖2
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or, equivalently,

c− ‖∇f (xn)‖2 ≤ γnλmin (Hn+1) ‖∇f (xn)‖2

≤ κ−1 [f (xn)− f (xn+1)]

(21.57)

We also have

f (xn+1) ≤ f (xn)

which, by the Weierstrass theorem 14.9 in view of the boundedness from below, implies

the existence of the limit

lim
n→∞f (xn) = f̄ > −∞

Summing the inequalities (21.57) on n = 0, 1, .., T and taking T →∞, we get

∞∑
n=0

‖∇f (xn)‖2 ≤ (κc−)−1
[
f (x0)− f̄

]
<∞

which implies ‖∇f (xn)‖ → 0 as n→∞. Theorem is proven. �

Corollary 21.8. (on the gradient method) If in (21.45) we take

γn := γ, Hn := I

we get the gradient method

xn+1 = xn − γ∇f (xn), x0 = x̊, n = 0, 1, 2, . . .

0 < γn ≤ γ̄ := 2 (1− κ)

Lf

for which

lim
n→∞f (xn) = f̄ > −∞, f (xn+1) ≤ f (xn)
‖∇f (xn)‖ → 0 as n→∞

(21.58)

for any initial conditions x̊ ∈ Rn.

Corollary 21.9. (on the modified Newton’s method) If in
(21.45) we take

γn := γ, Hn :=
[∇2f (xn−1)

]−1
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and if we get the modified Newton’s method

xn+1 = xn − γ
[∇2f (xn)

]−1 ∇f (xn)
x0 = x̊, n = 0, 1, 2, . . .

0 < γ ≤ γ̄ := 2 (1− κ)

Lf λ+

then again (21.58) is valid.

Remark 21.2. (One more modification) Let the function f (x) be twice differentiable,
its second derivative satisfies the Lipschitz condition with the constant L∇2 and be strongly
convex (with the constant l > 0) on Rn. Taking in (21.45)

γn :=

⎧⎪⎪⎨
⎪⎪⎩
γ ≤ γ̄ = 2 (1− κ) l

L∇2

, κ ∈ (0, 1) if ‖∇f (xn)‖ ≥ 2l2

L∇2

1 if ‖∇f (xn)‖ < 2l2

L∇2

Hn :=
[∇2f (xn−1)

]−1

we get the modified Newton’s method with a switched step-parameter for which, at the
end of optimization, we obtain the, so-called, “quadratic” exponential convergence

‖xn − x∗‖ ≤ 2l

Lf
q2

n

, q = Lf
2l2

‖∇f (xn∗)‖

xn∗ := inf
n=0,1,2,...

{
xn | L∇2

2l2
‖∇f (xn)‖ < 1

} (21.59)

starting from xn∗ which is sufficiently close to the minimum point x∗ such that

L∇2

2l2
‖∇f (xn∗)‖ < 1

Proof. First, notice that in this case λmax (Hn+1) ≤ λ+ = l−1. Evidently, by Theorem

21.7 we have ‖∇f (xn)‖ → 0 as n → ∞, and, hence, there exists the number n∗ for

which
L∇2

2l2
‖∇f (xn∗)‖ < 1. Consider n ≥ n∗. Taking x = xn and y := −γ [∇2f (xn)

]−1

∇f (xn) in the inequality
∥∥∇f (x + y)− ∇f (x)− ∇2f (x) y

∥∥ ≤ L∇2

2
‖y‖2 we get

xn+1 = x + y and∥∥∥∇f (xn+1)− ∇f (xn)− ∇2f (xn)

(
− [∇2f (xn)

]−1 ∇f (xn)
)∥∥∥

= ‖∇f (xn+1)‖ ≤ L∇2

2

∥∥∥[∇2f (xn)
]−1

∥∥∥2 ‖∇f (xn)‖2 ≤ L∇2

2l2
‖∇f (xn)‖2

Denoting zn := ‖∇f (xn)‖ we obtain zn+1 ≤
(
L∇2/2l2

)
z2n. Integrating this inequality

we get zn ≤ 2l2

L∇2

q2
n

. Applying then the inequality (21.37) we get (21.59). Corollary is

proven. �
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Many other methods of unconstrained optimization can be found in (Polyak 1987) and

the references within.

21.3 Constrained optimization

21.3.1 Elements of convex analysis

21.3.1.1 Convex sets
Definition 21.6.

1. A set Q ⊆ Rn is convex if it contains any segment with the endpoints lying in Q, i.e.,
λx + (1− λ) y ∈ Q for any λ ∈ [0, 1] whenever x, y ∈ Q.

2. The convex hull conv Q of a set Q ⊆ Rn is an intersection of all convex sets
containing Q, or, equivalently, Carathéodory’s lemma, see Rockafellar (1970),

conv Q =
{
x =

n+1∑
i=1

λixi | xi ∈ Q, λi ≥ 0,

n+1∑
i=1

λi = 1

}
(21.60)

Claim 21.3.

• It is easy to check that
• if Q is bounded and closed then

conv Q = Q
• if Q is convex then the sets

αQ := {x = αx ′ ∈ Rn | α ∈ R, x ′ ∈ Q}
AQ := {

x = Ax ′ ∈ Rn | A ∈ Rn×m, x ′ ∈ Q}
are convex too;

• if Q1 and Q2 are convex then Q1 ∩Q2 is convex.

Claim 21.4. For a convex function f (x) the set

Qα := {x ∈ Rn | f (x) ≤ α} (21.61)

is convex.

Proof. Let x ′, x ′′ ∈ Qα . Then, by the convexity property (21.18),

f (λx ′ + (1− λ) x ′′)≤ λf (x ′)+ (1− λ) f (x ′′)
≤ λα + (1− λ) α = α

which means that z := λx ′ + (1− λ) x ′′ ∈ Qα . �

Definition 21.7. A function f (x) is called quasi-convex if the setsQα (21.61) are convex
for any α.
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Remark 21.3. If the setsQα are convex, then f (x) is not obligatory convex, for example,
f (x) = e−x2 .

21.3.1.2 Projections and their properties
Definition 21.8. The projection of the point x ∈ Rn onto the set Q ⊆ Rn is a point
πQ {x} ∈ Q such that

πQ {x} = argmin
y∈Q

‖x − y‖ (21.62)

Proposition 21.2. The following assertions seem to be evident:

(a) If x ∈ Q then

πQ {x} = x
(b)

πQ {x} = argmin
y∈Q

‖x − y‖2

(c) If Q is closed convex then πQ {x} is unique, since φ (y) := ‖x − y‖2 is a strictly
convex function and, hence, has a unique minimum point.

Lemma 21.9. If Q is closed convex then

1. for all x ∈ Rn and all y ∈ Q
(
x − πQ {x}, y − πQ {x}

) ≤ 0 (21.63)

2. for all x, y ∈ Rn

∥∥πQ {x} − πQ {y}∥∥ ≤ ‖x − y‖ (21.64)

Proof.

1. Since, by Definition 21.8 and in view of the closeness and the convexity of Q, for any

y ∈ Q we have∥∥x − πQ {x}∥∥2 ≤ ‖x − y‖2

and ∥∥x − πQ {x}∥∥2 = ∥∥(x − y)+ (
y − πQ {x}

)∥∥2 = ‖x − y‖2

+ 2
(
x − πQ {x}, y − πQ {x}

)+ ∥∥y − πQ {x}∥∥2 ≤ ‖x − y‖2

or, equivalently,

2
(
x − πQ {x}, y − πQ {x}

) ≤ −∥∥y − πQ {x}∥∥2 ≤ 0
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2. By Definition 21.8 we have∥∥πQ {x} − πQ {y}∥∥2 ≤ ∥∥x − πQ {y}∥∥2

∥∥πQ {y} − πQ {x}∥∥2 ≤ ∥∥y − πQ {x}∥∥2

Summing both inequalities with the weights α ∈ [0, 1] and (1− α) one gets:∥∥πQ {x} − πQ {y}∥∥2 ≤ α ∥∥x − πQ {y}∥∥2 + (1− α)∥∥y − πQ {x}∥∥2

= α ∥∥(x − y)+ (
y − πQ {y}

)∥∥2 + (1− α)∥∥(y − x)+ (
x − πQ {x}

)∥∥2

= ‖x − y‖2 + α ∥∥y − πQ {y}∥∥2 + (1− α)∥∥x − πQ {x}∥∥2

+ 2α
(
x − y, y − πQ {y}

)+ 2 (1− α) (y − x, x − πQ {x})
= ‖x − y‖2 + α ∥∥y − πQ {y}∥∥2 + (1− α)∥∥x − πQ {x}∥∥2

+ 2α
(
[x − πQ {y}]− [y − πQ {y}], y − πQ {y}

)
+ 2 (1− α) ([y − πQ {x}]− [x − πQ {x}], x − πQ {x}

) = ‖x − y‖2
+ 2

(
α [x − πQ {x}], [y − πQ {y}]

)+ 2
(
x − πQ {x}, (1− α) [y − πQ {y}]

)
− α ∥∥y − πQ {y}∥∥2 − (1− α)∥∥x − πQ {x}∥∥2 ≤ ‖x − y‖2
+ 2

√
α
∥∥x − πQ {x}∥∥∥∥y − πQ {y}∥∥

+ 2
√
1− α ∥∥x − πQ {x}∥∥∥∥y − πQ {y}∥∥

− α ∥∥y − πQ {y}∥∥2 − (1− α)∥∥x − πQ {x}∥∥2 ≤ ‖x − y‖2

−
(√

1− α ∥∥x − πQ {x}∥∥2 −√
α
∥∥x − πQ {x}∥∥)2 ≤ ‖x − y‖2

Lemma is proven. �

21.3.1.3 Separation theorems
Here we will formulate and prove the theorem, named the separation theorem, see

Fig. 21.2 for a finite dimensional space (in infinite dimensional spaces this result is known
as the Hahn–Banach theorem), which plays a key role in constrained optimization.

Q

x1

x2

a

0

(a ,x)

Fig. 21.2. Illustration of the separation theorem.
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Theorem 21.8. (Alexeev et al. 1979)
Let Q ⊆ Rn be a convex subspace (or a set) of Rn which does not contain the point 0,
that is, 0 /∈ Q. Then there exists a vector a = (a1, . . . , an)ᵀ ∈ Rn such that for any x =
(x1, . . . , xn)

ᵀ ∈ Q the following inequality holds:

(a, x) =
n∑
i=1

aixi ≥ 0 (21.65)

In other words, the plane
∑n

i=1 αixi = 0 separates the space Rn in two subspaces, one
of which contains the set Q completely.

Proof. Let linQ be a minimal linear subspace of Rn containing Q. Only two cases are

possible:

linQ �= Rn or linQ = Rn

1. If lin Q �= Rn, then lin Q is a proper subspace in Rn and, therefore, there exists a

hyperplane
∑n

i=1 αixi = 0 containing Q as well as the point 0. This plane may be

selected as the one we are interested in.

2. If lin Q = Rn, then from vectors belonging toQ we may select n-linearly independent

ones forming a basis in Rn. Denote them by

e1, . . . , en
(
ei ∈ Q, i = 1, . . . , n

)
Consider then the two convex sets (more exactly cones): a nonnegative “orthant” K1

and a “convex cone” K2 defined by

K1 :=
{
x ∈ Rn : x =

n∑
i=1

βie
i, βi < 0

}

K2 :=

⎧⎪⎨
⎪⎩x ∈ Rn : x =

s∑
i=1

ai ē
i , ai ≥ 0, ēi ∈ Q

i =, 1, . . . , s (s ∈ N is any natural number)

⎫⎪⎬
⎪⎭

(21.66)

These two cones are not crossed, that is, they do not contain a common point. Indeed,

suppose that there exists a vector

x̄ = −
n∑
i=1

β̄ie
i, β̄i > 0

which also belongs to K2. Then one is obliged to find s ∈ N, āi ≥ 0 and ēi such that

x̄ =∑s

i=1 āi ē
i . But this is possible only if 0 ∈ Q, since, in this case, the point 0 might

be represented as a convex combination of some points from Q, i.e.,

0 =

s∑
i=1

āi ē
i − x̄

s∑
i=1

āi +
n∑
i=1

β̄i

=

s∑
i=1

āi ē
i +

n∑
i=1

β̄ie
i

s∑
i=1

āi +
n∑
i=1

β̄i

(21.67)
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=
s∑
i=1

(
āi + β̄i

)
s∑
j=1

(
āi + β̄j

)ei

But this contradicts with the assumption that 0 /∈ Q. So,

K1 ∩K2 = ∅ (21.68)

3. Since K1 is an open set, then any point x ∈ K1 cannot belong to conv K2 in the same

time. Note that conv K2 is a closed and convex set. Let us consider any point x0 ∈ K1,

for example, x0 = −∑n

i=1 ē
i and try to find the point y0 ∈ conv K2 closer to x0.

Such point obligatory exists, namely, it is the point minimizes the continuous function

f (y) := ‖x − y‖ within all y belonging to the compact

conv K2 ∩
{
x ∈ K1 :

∥∥x − ∥∥x0∥∥∥∥ ≤ ε − small enough
}

4. Then let us construct the hyperplane H orthogonal to the (x0–y0) and show that this

is the plane that we are interested in, that is, show that 0 ∈ H and Q belongs to a half

closed subspace separated by this surface, namely,

intH ∩ convK2 = ∅

and, since, Q ⊆ convK2, then

Q ⊆ (
Rn�intH

)
By contradiction, let us suppose that there exists a point ỹ ∈ (

intH ∩ K̄2

)
. Then the

angle ∠x0y0ỹ is less than π/2, and, besides, since convK2 is convex, it follows that[
y0, ỹ

] ∈ convK2. Let us take the point ỹ ′ ∈ (
y0, ỹ

)
such that

(
x0, ỹ ′

) ⊥ (
y0, ỹ

)
and

show that ỹ ′ is not a point from convK2 close to x0. Indeed, the points y0, ỹ and ỹ ′

belong to the same line and ỹ ′ ∈ intH . But, if ỹ ′ ∈ [
y0, ỹ

]
and ỹ ′ ∈ convK2, then

obligatory
∥∥x0 − ỹ ′∥∥ < ∥∥x0 − y0∥∥ (a shortest distance is less than any other one). At

the same time, ỹ ′ ∈ (
y0, ỹ

)
, so

∥∥x0 − ỹ∥∥ < ∥∥x0 − y0∥∥. Also we have 0 ∈ H , since

if not, the line [0,∞), crossing y0 and belonging to K̄2, should obligatory have the

common points with convK2. Theorem is proven. �

Definition 21.9. The convex sets Q1 and Q2 in Rn are said to be disjoint (or separable)
if there exists a number α and a vector a ∈ Rn (a �= 0) such that (a, x) ≥ α for all
x ∈ Q1 and (a, x) ≤ α for all x ∈ Q2. These sets are called strictly disjoint (or strictly
separable) if (a, x) ≥ α1 for all x ∈ Q1 and (a, x) ≤ α2 for all x ∈ Q2 and α2 < α1.

Lemma 21.10. (Polyak 1987) If Q1, Q2 be convex disjoint (separable) sets in Rn and,
additionally, Q2 be closed and bounded. Then Q1 and Q2 are strictly separable.

Proof. First, notice that the function

ϕ1 (x) :=
∥∥x − πQ1

(x)
∥∥
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is convex. So, by the properties of Q2, this function attains its minimum on Q2.

Denote

a2 := argmin
x∈∈Q2

ϕ1 (x), a1 :=πQ2
(a2)

Then a2 �= a1 and

‖a1 − a2‖ = min {‖x − y‖ : x ∈ Q1, y ∈ Q2}
a2 = πQ2

(a1)

Hence, by the disjointedness definition,

(a1 − a2, x) ≥ (a1 − a2, a1) := α1 for all x ∈ Q1

(a1 − a2, x) ≥ (a1 − a2, a2) := α2 for all x ∈ Q2

which implies

α1 − α2 = ‖a1 − a2‖2 > 0

Lemma is proven. �

21.3.1.4 Subgradient
Definition 21.10. A vector a ∈ Rn for which

f (x + y) ≥ f (x)+ (a, y) (21.69)

for all y ∈ Rn is called the subgradient of the convex function f (x) at the point
x ∈ Rn and is denoted by a = ∂f (x). Sure, in the nonsmooth points there exist a set of
subgradients denoted by Df (x) (see Fig. 21.3).

f (x 1 y )

f (x )1 (a9, y )

f (x ) f (x)  1 (a99, y )

a9

a9
a99

a99

x

x 1 y

Fig. 21.3. Subgradients.
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The following properties of the subgradients of convex functions seem to be evident.

Claim 21.5.

1. Analogously to (21.31) the subgradient of a convex function is a monotone operator,
i.e., for any x, y ∈ Rn and any ∂f (x) ∈ Df (x), ∂f (y) ∈ Df (y)

(∂f (x)− ∂f (y), x − y) ≥ 0 (21.70)

2. f ′+ (x, y), as it is defined in (21.23), for any x, y ∈ Rn can be calculated as
follows

f ′+ (x, y) = max
a∈Df (x)

(a, y) (21.71)

3.

∂

(
m∑
i=1

γifi (x)

)
=

m∑
i=1

γi∂fi (x), γi ≥ 0 (21.72)

4. For the convex functions f1 (x) and f2 (x) we have

Dmax {f1 (x); f2 (x)} = Conv [Df1 (x) ∪Df2 (x)] (21.73)

5. For any matrix A ∈ Rn×n and any x ∈ Rn

∂f (Ax) = Aᵀ∂f (x) (21.74)

Exercise 21.2. The following relations seem to be useful:

1.

∂ ‖x‖ =
⎧⎨
⎩

x

‖x‖ if x �= 0

a with ‖a‖ ≤ 1 if x = 0

(21.75)

2.

∂

m∑
i=1

∥∥(ai, x)− bi∥∥ = m∑
i=1

ai sign
∥∥(ai, x)− bi∥∥ (21.76)

Lemma 21.11. The set Df (x) at any point x ∈ Rn is nonempty, convex, closed and
bounded.

Proof. Consider in Rn+1 the set Qα := {x, α : f (x) ≤ α} (which is called the epigraph

of f (x)). Obviously, this set is convex, and, by Lemma 21.3, it has an interior point,

since the points {x, f (x)} form its boundary. By the convexity of Qα , there exists a

supporting hyperplane for Qα at the point x, given by {a,−1} for some a. Thus, a is

a subgradient of f (x) at x. The convexity, closedness and boundedness follow from

Lemma 21.4. �
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21.3.2 Optimization on convex sets

Here we will be interested in the following optimization problem

min
x∈Qf (x) (21.77)

where Q is a convex (not obligatory bounded) set and f (x) is assumed to be smooth

(differentiable) on Q if any special assumptions are accepted.

Definition 21.11. We say that the point x∗ ∈ Q is

(a) a local minimum of f (x) on Q if f (x∗) ≤ f (x) for all x ∈ Q and such that
‖x − x∗‖ ≤ δ, δ > 0;

(b) a global minimum of f (x) on Q if f (x∗) ≤ f (x) for all x ∈ Q.

21.3.2.1 Necessary first-order minimum condition
Theorem 21.9. (The necessary condition) Let

1. f (x) be differentiable at the global minimum point x∗;
2. the set Q be a convex set.

Then for all x ∈ Q

(∇f (x∗), x − x∗) ≥ 0 (21.78)

Proof. We will prove this theorem by contradiction. Suppose that (∇f (x∗), x̊ − x∗) < 0

for some x̊ ∈ Q. Then, by the convexity of Q, the point xα := x∗ + α (x̊ − x∗) ∈ Q for

all α ∈ [0, 1], and, hence, for small enough α

f (xα) = f (x∗)+ α (∇f (x∗), x̊ − x∗)+ o (α) < f (x∗)

which contradicts the assumption that x∗ is a minimum point. Theorem is proven. �

21.3.2.2 Sufficient first-order minimum condition
Theorem 21.10. (The sufficient condition of optimality) Let

1. f (x) be differentiable at the point x∗ ∈ Q;
2. the set Q be a convex set;
3. for all x ∈ Q the following inequality holds

(∇f (x∗), x − x∗) ≥ ρ ‖x − x∗‖, > 0 (21.79)

Then the point x∗ is a local minimum point on Q.

Proof. Take ε ≥ ε1 > 0, so that

|f (x)− f (x∗)− (∇f (x∗), x − x∗)| ≤ α
2
‖x − x∗‖
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for all x ∈ Q such that ‖x − x∗‖ ≤ ε1. Then, by (21.79),

f (x) ≥ f (x∗)+ (∇f (x∗), x − x∗)
− α

2
‖x − x∗‖ ≥ f (x∗)+ α

2
‖x − x∗‖

which means the local optimality of x∗. Theorem is proven. �

Remark 21.4. Notice that x∗ in (21.79) cannot be an interior point of Q, and, therefore,
under the conditions of Theorem 21.10 the minimum is attained at a boundary point ofQ.

21.3.2.3 Criterion of optimality for convex (not obligatory differentiable) functions
Theorem 21.11. (The criterion of optimality) Let

1. f (x) be convex on Rn;
2. Q ⊆ Rn be a convex set.

Then the point x∗ ∈ Q is a global minimum on Q if and only if

(∂f (x∗), x − x∗) ≥ 0 (21.80)

for some subgradient ∂f (x∗) ∈ Df (x∗) and all x ∈ Q.

Proof.

(a) Necessity. Suppose that there is no such subgradient. Then the sets Df (x∗) and
S := {y ∈ Rn : (y, x − x∗) ≥ 0, x ∈ Q} do not intersect. Notice that S is convex

and closed. By Lemma 21.11, the set Df (x∗) is convex, closed and bounded. So,

in the separation lemma 21.10, there exists c ∈ Rn such that (c, a) ≤ −α < 0 for

all a ∈ Df (x∗) and (c, y) > 0 for all y ∈ S. Denote by � the closure of the cone

generated by all feasible directions, i.e.,

� :=
{
x ∈ Rn : x = lim

k→∞λk
(
xk − x∗), λk > 0, xk ∈ Q

}
If c �= �, then again there exists a vector b such that (b, x) ≥ 0 for all x ∈ �
and (c, b) < 0. But b ∈ S and, therefore, the inequality (c, b) < 0 contradicts the

condition (c, y) > 0 for all y ∈ S. So, c = �, and, hence, one can find the sequences

λk > 0 and xk ∈ Q such that λk
(
xk − x∗)→ c. Taking k large enough such that∥∥λk (xk − x∗)− c∥∥ ≤ α/(2a+), a+ := max

a∈Df (x∗)
‖a‖, α > 0

we obtain

f ′+
(
x, λk

(
xk − x∗)) := lim

α→+0

f
(
x + αλk

(
xk − x∗))− f (x)
α

= max
a∈Df (x∗)

(
a, λk

(
xk − x∗))

= max
a∈Df (x∗)

(a, c)+ max
a∈Df (x∗)

(
a, λk

(
xk − x∗)− c)

= −α + 1

2
α = −1

2
α
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and, hence, f ′+
(
x, λk

(
xk − x∗)) < 0. Therefore, for sufficiently small γ > 0, it

follows that

f
(
x∗ + γ (xk − x∗)) < f (x∗)

which contradicts the assumption that x∗ is a minimum point. The necessity is proven.

(b) Sufficiency. Let (21.80) hold for all x ∈ Q and some subgradient ∂f (x∗). Then

f (x) ≥ f (x∗)+ (∂f (x∗), x − x∗) ≥ f (x∗)

i.e., x∗ is a global minimum point on Q. Lemma is proven. �

Remark 21.5. In the case of no constraints, the criterion (21.80) becomes

0 ∈ Df (x∗) (21.81)

21.3.3 Mathematical programing and Lagrange principle

21.3.3.1 Nonlinear programing problem
The general problem of nonlinear programing is formulated as follows:

min
x∈Rn
f (x)

gi (x) ≤ 0, i = 1, . . . , r

hj (x) = 0, j = 1, . . . , r ′

(21.82)

Notice that any equality constraint hi (x) = 0 can be represented as two inequality-type

constraints:

{x ∈ Rn | hi (x) = 0} = {x ∈ Rn | hi (x) ≤ 0, −hi (x) ≤ 0}

So, the general nonlinear programing problem (21.82) can be represented as

min
x∈Rn
f (x)

gi (x) ≤ 0, i = 1, . . . , m

(21.83)

where m = r + 2r ′ with

gi(x) =
{
hj (x) if i = r + j
−hj (x) if i = r + r ′ + j

(
j = 1, . . . , r ′

)
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21.3.3.2 Lagrange principle
The theorem below follows the scheme of presentation given in (Alexeev et al. 1979)

where the same result is formulated in a more general case in Banach (not obligatory

in finite dimensional) space. It permits to represent the given constraint optimization
problem as another (but already) unconstrained optimization problem.

Theorem 21.12. (Lagrange principle) Consider the general nonlinear programing
problem (21.83) where the functions f (x) and gi (x) (i = 1, . . . , m) are assumed to be
differentiable but not convex.

A. (Necessary conditions, Karush–John). If x∗ is a local minimum point, then there exist
nonnegative constants μ∗ ≥ 0 and ν∗i ≥ 0 (i = 1, . . . , m) such that the following two
conditions hold:

1. “local minimality condition to Lagrange function”

L (x, μ, ν) := μf (x)+
m∑
i=1

νigi (x) (21.84)

namely,

L (x∗, μ∗, ν∗) ≤ L (x, μ∗, ν∗) (21.85)

or, equivalently,

μ∗∇f (x∗)+
m∑
i=1

ν∗i ∇gi (x∗) = 0 (21.86)

2. “complementary slackness”:

ν∗i gi(x
∗) = 0 (i = 1, . . . , m) (21.87)

B. (Sufficient conditions). If μ∗ > 0 (the regular case), or equivalently, if the vec-
tors ∇gi (x∗) (i = 1, . . . , m), corresponding to the active indices for which ν∗i > 0,
are linearly independent, then conditions (1)–(2) above turn out to be sufficient to
guarantee that x∗ is a local minimum point;

C. To guarantee the existence of μ∗ > 0 it is sufficient that the, so-called, Slater’s
condition holds, namely, that in a neighborhood �(x∗) of x∗ there exists x̄
such that

gi (x̄) < 0 (i = 1, . . . , m) (21.88)

Proof. First, define the set

C := {
η ∈ Rm+1 | ∃ x ∈ �(x∗) :

f (x)− f (x∗) < η0, gi(x) ≤ ηi (i = 1, . . . , m)
(21.89)



632 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

A. The set C is nonempty and convex. Indeed, the vector η with positive components

belongs to C since in (21.89) we may take x = x∗. So, C is nonempty. Let us show

that it is convex. To do that we need to prove the existence of a vector xα ∈ �(x∗)
(�(x∗) can always be selected as a convex set) such that for any ηα := η + α (η′ − η),
α ∈ [0, 1] we have

f (xα)− f (x∗) < ηα0 , gi(x
α) ≤ ηαi (i = 1, . . . , m)

if for some x, x ′ ∈ �(x∗)

f (x)− f (x∗) < η0, gi(x) ≤ ηi (i = 1, . . . , m)

f (x ′)− f (x∗) < η′0, gi(x
′) ≤ η′i (i = 1, . . . , m)

Denote xα := x + α (x ′ − x), α ∈ [0, 1] which, by the convexity of �(x∗), also
belongs to�(x∗). Since the functions f (x) and gi(x) (i = 1, . . . , m) are differentiable

in �(x∗), it follows that

f (x)− f (x∗) = (∇f (x∗), x − x∗)+ o (‖x − x∗‖) < η0
f (x ′)− f (x∗) = (∇f (x∗), x ′ − x∗)+ o (‖x ′ − x∗‖) < η0
o (‖xα − x∗‖) = o (‖x ′ − x∗‖)+ o (‖x − x∗‖)

and, hence,

f (xα)− f (x∗)= (∇f (x∗), xα − x∗)+ o (‖xα − x∗‖)
= α [(∇f (x∗), x ′ − x∗)+ o (‖x ′ − x∗‖)]
+ (1− α) [(∇f (x∗), x − x∗)+ o (‖x − x∗‖)]
< αη′0 + (1− α) η0 = ηα0

Analogously, gi(x
α) ≤ ηαi , which implies ηα ∈ C. So, C is nonempty and convex.

B. The point 0 does not belong to C. Indeed, if so, in view of the definition (21.89),

there exists a point x̄ ∈ X0 satisfying

f (x̄)− f (x∗) < 0

gi(x̄) ≤ 0 (i = 1, . . . , m)
(21.90)

which is in contradiction to the fact that x∗ is a local solution of the problem. So, 0 /∈ C.
Based on this fact and taking into account the convexity property of C, we may apply

the separation principle (see Theorem 21.8): there exist constants
(
μ∗, ν∗1 , . . . , ν

∗
m

)
such that for all η ∈ C

μ∗η0 +
m∑
i=1

ν∗i ηi ≥ 0 (21.91)

C. Multipliers μ∗ and ν∗i (i = 1, . . . , m) in (21.91) are nonnegative. In (A) we have

already mentioned that any vector η ∈ RL+1 with positive components belongs to
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C, and, particularly, the vector

⎛
⎝ε, . . . , ε, 1︸ ︷︷ ︸

l0

, ε, . . . , ε

⎞
⎠ (ε > 0). Substitution of this

vector into (21.91) leads to the following inequalities

ν∗i0 ≥ −μ∗ε − ε
m∑
i=l0
ν∗l if 1 ≤ l0 ≤ m

μ∗ ≥ −ε
m∑
i=1

ν∗l if l0 = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(21.92)

Tending ε to zero in (21.92) implies the nonnegativity property for the multipliers

μ∗ and ν∗i (i = 1, . . . , m).

D. Multipliers ν∗i (i = 1, . . . , m) satisfy the complementary slackness condition (21.87).

Indeed, if gl0 (x
∗) = 0, then the identity ν∗l0gl0 (x

∗) = 0 is trivial. Suppose that

gl0 (x
∗) < 0. Then the point⎛
⎜⎝δ, 0, . . . , 0, gl0 (x∗)︸ ︷︷ ︸

l0

, 0, . . . , 0

⎞
⎟⎠ (δ > 0) (21.93)

belongs to the set C. To check this it is sufficient to take x = x∗ in (21.89). Substitution
of this point into (21.91) implies

ν∗l0gl0 (x
∗) ≥ −μ∗δ (21.94)

Tending δ to zero we obtain that ν∗l0gl0 (x
∗) ≥ 0, and since gl0 (x

∗) < 0, it follows

that ν∗l0 ≤ 0. But in (C) it has been proven that ν∗l0 ≥ 0. So, ν∗l0 = 0, and, hence,

ν∗l0gl0 (x
∗) = 0.

E. Minimality condition to Lagrange function. As it follows from (21.89), for x ∈ �(x∗)
the point

(f (x)− f (x∗)+ δ, g1 (x) , . . . , gm (x))

belongs to C for any δ > 0. Substitution of this point into (21.91), in view of (D),

yields

L (x, μ∗, ν∗) :=μ∗f (x)+
m∑
i=1

ν∗i gi (x)

=
(
μ∗ [f (x)− f (x∗)+ δ]+

m∑
i=1

ν∗i gi (x)

)
+μ∗f (x∗)− μ∗δ ≥ μ∗f (x∗)− μ∗δ

= μ∗f (x∗)+
m∑
i=1

ν∗i gi (x
∗)− μ∗δ = L (x∗, μ∗, ν∗)− μ∗δ

(21.95)

Taking δ→ 0 we obtain (21.85).
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F. If μ∗ > 0 (the regular case), then the conditions (A1) and (A2) are sufficient for the
optimality. Indeed, in this case it is clear that we may take μ∗ = 1, and, hence, for

any x satisfying gi (x) ≤ 0 (i = 1, . . . , m)

f (x)≥ f (x)+
m∑
i=1

ν∗i gi (x) = L (x, 1, ν∗)

≥L (x∗, 1, ν∗) = f (x∗)+
m∑
i=1

ν∗i gi (x
∗) = f (x∗)

This means that x∗ is the optimal solution. Notice also that, by (21.86), if μ∗ = 0 it

follows that

m∑
i=1

ν∗i ∇gi (x∗) =
m∑

i:ν∗i >0
ν∗i ∇gi (x∗) = 0

which means linear dependence of the vectors ∇gi (x∗) corresponding to the active

constraints.

G. Slater’s condition of the regularity. Suppose that Slater’s condition is fulfilled, but

μ∗ = 0. We directly obtain the contradiction. Indeed, since not all ν∗i are equal to

zero simultaneously, it follows that

L (x̄, 0, ν∗) =
L∑
l=1

ν∗i gi (x̄) < 0 = L (x∗, 0, ν∗)

which is in contradiction with (E). Theorem is proven. �

21.3.3.3 Convex programing
Theorem 21.13. (Kuhn & Tucker 1951) Suppose that

1. all functions f (x) and gi (x) (i = 1, . . . , m) in the general nonlinear programing
problem (21.83) are differentiable1 and convex in Rn;

2. Slater’s condition (“the existence of an internal point”) holds, i.e., there exists x̄ ∈ Rn

such that

gi (x̄) < 0 (i = 1, . . . , m) (21.96)

Then, for a point x∗ ∈ Rn to be a global solution of (21.83) it is necessary and
sufficient to show the existence of nonnegative constants ν∗i ≥ 0 (i = 1, . . . , m) such
that the, so-called, saddle-point property for the Lagrange function (21.84) holds for any
x ∈ Rn and any νi ≥ 0 (i = 1, . . . , m)

L (x, 1, ν∗) ≥ L (x∗, 1, ν∗) ≥ L (x∗, 1, ν) (21.97)

1 Here we present the version of the theorem dealing with differential functions. In fact the same result

remains valid without the assumption on differentiability (see (Polyak 1987)).
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or, in another form,

min
x∈Rn

L (x, 1, ν∗)= min
x∈Rn

max
ν≥0
L (x, 1, ν)

=L (x∗, 1, ν∗)
=max

ν≥0
min
x∈Rn

L (x, 1, ν) = max
ν≥0

L (x∗, 1, ν)
(21.98)

Proof.

(a) Necessity. By Slater’s condition (see item C in Theorem 21.12) we deal with the

regular case, and, therefore, we may take μ∗ = 1. If x∗ is a global minimum of

(21.83), then, in view of the convexity condition, it is a local minimum also. Hence,

by Theorem 21.12, we have L (x∗, 1, ν∗) ≤ L (x, 1, ν∗). On the other hand,

L (x∗, 1, ν∗)= f (x∗)+
m∑
i=1

ν∗i gi (x
∗) = f (x∗)

≥ f (x∗)+
m∑
i=1

νigi (x
∗) = L (x∗ (T ), 1, ν)

(21.99)

which proves the necessity.

(b) Sufficiency. Suppose that (21.97) holds. Then

L (x∗, 1, ν∗)= f (x∗)+
m∑
i=1

ν∗i gi (x
∗)

≥ L (x∗, 1, ν) = f (x∗)+
m∑
i=1

νigi (x
∗)

which implies

m∑
i=1

ν∗i gi (x
∗) ≥

m∑
i=1

νigi (x
∗)

for all νi ≥ 0 (i = 1, . . . , m). This is possible if and only if (this can be proven by

the contradiction)

gi (x
∗) ≤ 0, ν∗i gi (x

∗) = 0 (i = 1, . . . , m)

So, we have

L (x∗, 1, ν∗)= f (x∗)+
m∑
i=1

ν∗i gi (x
∗) = f (x∗)

≤ L (x, 1, ν∗) = f (x)+
m∑
i=1

ν∗i gi (x) ≤ f (x)+
m∑
i=1

ν∗i gi (x
∗) = f (x)

which means that x∗ is a solution of (21.83). Theorem is proven. �
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Remark 21.6. The construction of the Lagrange function in the form (21.84)

L (x, μ, ν) = μf (x)+
m∑
i=1

νigi (x)

with μ ≥ 0 is very essential. Indeed, the usage of this form only as L (x, 1, ν), when
the regularity conditions are not valid, may provoke a serious error in the optimization
process. The following counterexample demonstrates this effect. Consider the simple
constrained optimization problem formulated as

h0(x) := x1 → min
x∈R2

g (x) := x21 + x22 ≤ 0

}
(21.100)

This problem evidently has the unique solution x1 = x2 = 0. But the direct usage of the
Lagrange principle with μ = 1 leads to the following contradiction:

L (x, 1, ν∗) = x1 + ν∗
(
x21 + x22

)→ min
x∈R2

∂

∂x1
L (x∗, 1, ν∗) = 1+ 2ν∗x∗1 = 0

∂

∂x2
L (x∗, 1, ν∗) = 2ν∗x∗2 = 0

ν∗ �= 0, x∗2 = 0, x∗1 = − 1

2ν∗
�= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(21.101)

Notice that for this example Slater’s condition (21.96) is not valid.

21.3.4 Method of subgradient projection to simplest convex sets

Let us consider the constrained optimization problem (21.77)

min
x∈Q f (x)

where the function f (x) is supposed to be convex, and the set Q is convex and having a

simple structure such that the projection operation πQ {x} (21.62) can be easily realized.

Consider also the following iterative procedure:

xn+1 = πQ {xn − γn∂f (xn)} (21.102)

where ∂f (xn) is any subgradient form Df (xn), and γn ≥ 0 is “the step of the procedure”.

Denote by x∗ ∈ Q the solution of the constrained optimization problem (21.77) with the

convex f .

Theorem 21.14. (on strong convergence) Suppose that

1. f (x) has on Q a unique global minimum point x∗, that is,

f (x) > f (x∗) for all x ∈ Q, x �= x∗ (21.103)
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2. for any x ∈ Q and any ∂f (x) ∈ Df (x)

‖∂f (x)‖2 ≤ c0 + c1 ‖x − x∗‖2 (21.104)

3. the step size γn satisfies the conditions

γn ≥ 0,

∞∑
n=0

γn = ∞,
∞∑
n=0

γ 2
n <∞ (21.105)

Then for any initial value x0 ∈ Q the vector sequence {xn}, generated by the procedure
(21.102), converges to x∗ whereas n→∞.

Proof. By the projection operator property (21.64), and in view of the inequality (21.70)

(∂f (x)− ∂f (y), x − y) ≥ 0

it follows that

‖xn+1 − x∗‖2 =
∥∥πQ {xn − γn∂f (xn)} − x∗∥∥2

≤ ‖xn − γn∂f (xn)− x∗‖2 = ‖xn − x∗‖2 − 2γn (∂f (xn), xn − x∗)
+ γ 2

n ‖∂f (xn)‖2 = ‖xn − x∗‖2 − 2γn (∂f (xn)− ∂f (x∗), xn − x∗)
− 2γn (∂f (x

∗), xn − x∗)+ γ 2
n

(
c0 + c1 ‖x − x∗‖2

)
≤ (

1+ c1γ 2
n

) ‖xn − x∗‖2 − 2γn (∂f (x
∗), xn − x∗)+ γ 2

n c0

So, defining vn := ‖xn − x∗‖2, we have

vn+1 ≤
(
1+ c1γ 2

n

)
vn + γ 2

n c0 − 2γn (∂f (x
∗), xn − x∗) (21.106)

By (21.80) it follows that (∂f (x∗), xn − x∗) ≥ 0, and hence, (21.106) implies

vn+1 ≤
(
1+ c1γ 2

n

)
vn + γ 2

n c0 (21.107)

Let us consider the sequence (Gladishev’s transformation) {wn} defined by

wn := vn
∞∏
i=n

(
1+ c1γ 2

i

)+ c0 ∞∑
i=n
γ 2
i

∞∏
s=n+1

(
1+ c1γ 2

s

)
(21.108)

The variable wn is correctly defined since, in view of the inequality 1 + x ≤ ex , it

follows that

∞∏
i=n

(
1+ c1γ 2

i

) ≤ exp

(
c1

∞∑
i=n
γ 2
i

)
<∞
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For this variable, using (21.107), we have

wn+1 = vn+1

∞∏
i=n+1

(
1+ c1γ 2

i

)+ c0 ∞∑
i=n+1

γ 2
i

∞∏
s=n+2

(
1+ c1γ 2

s

)
≤ vn

∞∏
i=n

(
1+ c1γ 2

i

)+ γ 2
n c0

∞∏
i=n+1

(
1+ c1γ 2

i

)+ c0 ∞∑
i=n+1

γ 2
i

∞∏
s=n+2

(
1+ c1γ 2

s

)
= vn

∞∏
i=n

(
1+ c1γ 2

i

)+ c0 ∞∑
i=n
γ 2
i

∞∏
s=n+1

(
1+ c1γ 2

s

) = wn
So, 0 ≤ wn+1 ≤ wn, and, hence, by the Weierstrass theorem, this sequence converges, i.e.,

wn → w∗ as n→∞

In view of (21.108), it follows that vn also converges (in fact, to the same limit point),

that is

vn → v∗ as n→∞

Returning to (21.106), after summing these inequalities, we obtain

vn+1 ≤ v0 + c1
n∑
i=0

γ 2
i vi + c0

n∑
i=0

γ 2
i − 2

n∑
i=0

γi (∂f (x
∗), xi − x∗)

or, equivalently,

2

n∑
i=0

γi (∂f (x
∗), xi − x∗)≤ v0 + c1

n∑
i=0

γ 2
i vi + c0

n∑
i=0

γ 2
i − vn+1

≤ v0 + c1
n∑
i=0

γ 2
i vi + c0

n∑
i=0

γ 2
i ≤ const <∞

Taking n→∞, we get

∞∑
i=0

γn (∂f (x
∗), xn − x∗) <∞

Since, by the assumption of this theorem,
∑∞
i=0 γn = ∞, we may conclude that there

exists a subsequence {nk} such that
(
∂f (x∗), xnk − x∗

)→ 0 whereas k→∞. But, by the

uniqueness of the global minimum (see the condition (21.103)), we derive that xnk → x∗

as k→∞, or equivalently, vnk → 0. But {vn} converges, and, therefore, all subsequences
have the same limit v∗, which implies v∗ = 0. Theorem is proven. �
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21.3.5 Arrow–Hurwicz–Uzawa method with regularization

Consider again the general non-linear convex programing problem in the form

(21.83), i.e.,

min
x∈Q⊂Rn

f (x)

gi (x) ≤ 0, i = 1, . . . , m
(21.109)

when all functions are assumed to be convex (not obligatory strictly convex), the set Q

is a convex compact, and Slater’s condition (21.96) is fulfilled. Additionally, we will

assume that

Q
⋂( ⋂

i=1,...,m

{x ∈ Rn : gi (x) ≤ 0}
)
�= ∅

Associate with this problem the following regularized Lagrange function

Lδ (x, 1, ν) := L (x, 1, ν)+ δ
2

(‖x‖2 − ‖ν‖2), δ ≥ 0

L (x, 1, ν) = f (x)+
m∑
i=1

νigi (x)
(21.110)

First, notice that the function Lδ (x, 1, ν) for δ > 0 is strictly convex on x for any fixed ν,

and it is strictly concave on ν for any fixed x, and, hence, it has the unique saddle point

(x∗ (δ), ν∗ (δ)) for which the following inequalities hold: for any ν with nonnegative

components and any x ∈ Rn

Lδ (x, 1, ν
∗ (δ)) ≥ Lδ (x∗ (δ), 1, ν∗ (δ)) ≥ Lδ (x∗ (δ), 1, ν) (21.111)

As for the function L (x, 1, ν), it may have several (not obligatory unique) saddle points

(x∗, ν∗). The next proposition describes the dependence of the saddle point (x∗ (δ), ν∗ (δ))
of the regularized Lagrange function (21.110) on the regularizing parameter δ and analyses

its asymptotic behavior when δ→ 0.

Proposition 21.3.

1. For any x ∈ Rn and any ν with nonnegative components the following inequality
holds:

(
x − x∗ (δ), ∂

∂x
Lδ (x, 1, ν)

)
−
(
ν − ν∗ (δ), ∂

∂ν
Lδ (x, 1, ν)

)
≥ δ

2

(‖x − x∗ (δ)‖2 + ‖ν − ν∗ (δ)‖2) (21.112)
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2. For any δ, δ′ > 0 there exists 0 < c < ∞ such that the following “Lipschitz-type”
continuity property holds:

∥∥x∗ (δ)− x∗ (δ′)∥∥+ ∥∥ν∗ (δ)− ν∗ (δ′)∥∥ ≤ c ∣∣δ − δ′∣∣ (21.113)

3. When 0 < δn → 0

(x∗ (δn), ν∗ (δn))→ (x∗∗, ν∗∗) as n→∞
(x∗∗, ν∗∗) = argmin

(x∗,ν∗)

(‖x∗‖2 + ‖ν∗‖2) (21.114)

Proof.
1. In view of (21.30) for any x, y ∈ Rn we have

(∇f (x), (y − x)) ≤ f (y)− f (x)
(∇f (x), (x − y)) ≥ f (x)− f (y)

So, since L (x, 1, ν) is convex on x for any fixed ν, and it is linear on ν, in view of

(21.30) it follows that(
x − x∗ (δ), ∂

∂x
Lδ (x, 1, ν)

)

=
(
x − x∗ (δ), ∂

∂x
L (x, 1, ν)

)
+ δ (x − x∗ (δ), x)

≥ L (x, 1, ν)− L (x∗ (δ), 1, ν)+ δ (x − x∗ (δ), x)

(21.115)

and (
ν − ν∗ (δ), ∂

∂ν
Lδ (x, 1, ν)

)

=
(
ν − ν∗ (δ), ∂

∂ν
L (x, 1, ν)

)
− δ (ν − ν∗ (δ), ν)

=
m∑
i=1

(
νi − ν∗i (δ)

)
gi (x)− δ (ν − ν∗ (δ), ν)

(21.116)

which leads to the following relation:(
x − x∗ (δ), ∂

∂x
Lδ (x, 1, ν)

)
−
(
ν − ν∗ (δ), ∂

∂ν
Lδ (x, 1, ν)

)
≥ L (x, 1, ν)− L (x∗ (δ), 1, ν)+ δ (x − x∗ (δ), x)
−

m∑
i=1

(
νi − ν∗i (δ)

)
gi (x)+ δ (ν − ν∗ (δ), ν)

=
[
f (x)+

m∑
i=1

ν∗i (δ) gi (x)+
δ

2
‖x‖2 − δ

2
‖ν∗‖2

]
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−
[
L (x∗ (δ), 1, ν)+ δ

2
‖x∗ (δ)‖2 − δ

2
‖ν‖2

]
+
[
δ

2
‖x‖2 − δ (x∗ (δ), x)+ δ

2
‖x∗ (δ)‖2

]
+
[
δ

2
‖ν‖2 − δ (ν∗ (δ), ν)+ δ

2
‖ν∗‖2

]
= Lδ (x, 1, ν∗ (δ))

− Lδ (x∗ (δ), 1, ν)+ δ
2

(‖x − x∗ (δ)‖2 + ‖ν − ν∗ (δ)‖2)
≥ δ

2

(‖x − x∗ (δ)‖2 + ‖ν − ν∗ (δ)‖2)

(21.117)

which proves (21.112).

2. The inequality (21.113) results from the linear dependence of the regularized Lagrange

function on δ.

3. Taking in (21.117) x = x∗, ν = ν∗ (one of the saddle points of the nonregularized

Lagrange function) and applying the inequalities

L (x∗, 1, ν∗)− L (x∗ (δ), 1, ν∗) ≤ 0
m∑
i=1

(
ν∗i − ν∗i (δ)

)
gi (x

∗) = −
m∑
i=1

ν∗i (δ) gi (x
∗) ≥ 0

leads to the following relation:

0≤L (x∗, 1, ν∗)− L (x∗ (δ), 1, ν∗)+ δ (x∗ − x∗ (δ), x∗)

−
m∑
i=1

(
ν∗i − ν∗i (δ)

)
gi (x

∗)+ δ (ν∗ − ν∗ (δ), ν∗)

≤ δ (x∗ − x∗ (δ), x∗)+ δ (ν∗ − ν∗ (δ), ν∗)

Dividing both sides by δ > 0 we obtain

0 ≤ (x∗ − x∗ (δ), x∗)+ (ν∗ − ν∗ (δ), ν∗) (21.118)

which is valid for any saddle point (x∗, ν∗) of the nonregularized Lagrange function.

We also have

Lδ (x
∗ (δ), 1, ν∗)=L (x∗ (δ), 1, ν∗)+ δ

2
‖x∗ (δ)‖2 − δ

2
‖ν∗‖2

≤ L (x∗, 1, ν∗ (δ))+ δ
2
‖x∗‖2 − δ

2
‖ν∗ (δ)‖2

=Lδ (x∗, 1, ν∗ (δ))

Dividing by δ > 0 implies

‖x∗ (δ)‖2 + ‖ν∗ (δ)‖2 ≤ 2

δ
[L (x∗ (δ), 1, ν∗)− L (x∗, 1, ν∗ (δ))]

+‖x∗‖2 + ‖ν∗‖2 <∞
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This means that the left-hand side is uniformly bounded on δ, and, hence, if δ → 0,

there exists a subsequence δk (k→∞) on which there exist the limits

x∗ (δk)→ x̃∗, ν∗ (δk)→ ν̃∗ as k→∞

Suppose that there exist two limit points for two different convergent subsequences,

i.e., there exist the limits

x∗ (δk′)→ x̄∗, ν∗ (δk′)→ ν̄∗ as k′ → ∞

Then for δ = δk → 0 and δ = δk′ → 0 in (21.118) we have

0 ≤ (x∗ − x̃∗, x∗)+ (ν∗ − ν̃∗, ν∗)
0 ≤ (x∗ − x̄∗, x∗)+ (ν∗ − ν̄∗, ν∗)

From these inequalities it follows that points (x̃∗, ν̃∗) and (x̄∗, ν̄∗) correspond to the

minimum point of the function

s (x∗, ν∗) := 1

2

(‖x∗‖2 + ‖ν∗‖2)
defined for all possible saddle points of the nonregularized Lagrange function. But the

function s (x∗, ν∗) is strictly convex, and, hence, its minimum is unique which gives

x̃∗ = x̄∗, ν̃∗ = ν̄∗. Proposition is proven. �

Consider the following numerical procedure2

xn+1 = πQ
{
xn − γn ∂

∂x
Lδn (xn, 1, νn)

}

νn+1 =
[
νn + γn ∂

∂ν
Lδn (xn, 1, νn)

]
+

(21.119)

where the operator [·]+ acts from Rn into Rn as follows:

[x]+ =
(
[x1]+ , . . . , [xn]+

)
[xi]+ :=

{
xi if xi ≥ 0

0 if xi < 0

(21.120)

Theorem 21.15. Assume that

1. f (x) and gi (x) (i = 1, . . . , m) are convex and differentiable in Rn;
2. the estimates (xn, νn) are generated by the procedure (21.119);

2 In Arrow et al. (1958) this procedure is considered with δ = 0, that is why the corresponding convergence

analysis looks incomplete.
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3. the step size γn and the regularizing parameter δn satisfy the following conditions:

0 < γn → 0, 0 < δn → 0 as n→∞
∞∑
n=0

γnδn = ∞
γn

δn
→ λ which is small enough,

|δn+1 − δn|
γnδn

→ 0 as n→∞

Then for any initial value x0 ∈ Q and any ν0 with nonnegative components the vector
sequences {xn}, {νn}, generated by the procedure (21.119), converge as n → ∞ to
x∗∗, ν∗∗ defined by (21.114).

Proof. Using the property (21.64) of the projection operator we get the following recur-

sion for the variable wn := ‖xn − x∗ (δn)‖2 + ‖νn − ν∗ (δn)‖2:

wn+1 ≤
∥∥∥∥xn − γn ∂∂x Lδn (xn, 1, νn)− x∗ (δn+1)

∥∥∥∥2

+
∥∥∥∥νn + γn ∂∂ν Lδn (xn, 1, νn)− ν∗ (δn+1)

∥∥∥∥2

=
∥∥∥∥[xn − x∗ (δn)]− γn ∂∂x Lδn (xn, 1, νn)+ [x∗ (δn)− x∗ (δn+1)]

∥∥∥∥2

+
∥∥∥∥[νn − ν∗ (δn)]+ γn ∂∂ν Lδn (xn, 1, νn)+ [ν∗ (δn)− ν∗ (δn+1)]

∥∥∥∥2

=wn + ‖x∗ (δn)− x∗ (δn+1)‖2 + ‖ν∗ (δn)− ν∗ (δn+1)‖2

− 2γ n

[(
xn− x∗ (δn), ∂

∂x
Lδn (xn, 1, νn)

)
−
(
νn− ν∗ (δn), ∂

∂ν
Lδn (xn, 1, νn)

)]

+ 2

(
x∗ (δn)− x∗ (δn+1), [xn − x∗ (δn)]− γn ∂

∂x
Lδn (xn, 1, νn)

)

+ 2

(
ν∗ (δn)− ν∗ (δn+1), [νn − ν∗ (δn)]+ γn ∂

∂ν
Lδn (xn, 1, νn)

)

+ γ 2
n

(∥∥∥∥ ∂∂x Lδn (xn, 1, νn)
∥∥∥∥2

+
∥∥∥∥ ∂∂ν Lδn (xn, 1, νn)

∥∥∥∥2
)

Taking into account that

∥∥∥∥ ∂∂x Lδn (xn, 1, νn)
∥∥∥∥2

≤ c0 + c1 ‖νn‖2 ≤ C0 + C1wn∥∥∥∥ ∂∂ν Lδn (xn, 1, νn)
∥∥∥∥2

≤ c2
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and applying the inequalities (21.112) and (21.113) the last recursion can be estimated as

follows:

wn+1 ≤wn + c2 |δn+1 − δn|2 − γnδnwn
+ 2 ‖x∗ (δn)− x∗ (δn+1)‖

(‖xn − x∗ (δn)‖ + γn (√C0 +√
C1

√
wn

))
+ 2 ‖ν∗ (δn)− ν∗ (δn+1)‖

(‖νn − ν∗ (δn)‖ + γn√c2)
+ γ 2

n (C0 + C1wn + c2) ≤ wn
(
1− γnδn + C1γ

2
n

)+ c2 |δn+1 − δn|2
+ C2 |δn+1 − δn|√wn + C3 |δn+1 − δn| + γ 2

n (C0 + c2)
≤wn

(
1− γnδn [1− C1γn/δn]

)+ C2 |δn+1 − δn|√wn
+ C4 |δn+1 − δn| + γ 2

n C5

(21.121)

Here ci (i = 1, 2) and Ci (i = 0, . . . , 5) are positive constants. By Lemma 16.17 applied

for the case r = 1/2 and for

αn := γnδn − C1γ
2
n = γnδn [1− C1γn/δn] = γnδn [1+ o(1)]

βn :=C4 |δn+1 − δn| + γ 2
n C5, δ̄n := C2 |δn+1 − δn|

in view of the conditions of this theorem, we have

c is any large real number, b = 0, d = 0

and, hence, u(c) = 0 which proves the theorem. �

Corollary 21.10. Within the class of numerical sequences

γn := γ0

(n+ n0)γ , γ0, n0, γ > 0

δn := δ0

(n+ n0)δ , δ0, δ > 0

(21.122)

the conditions of Theorem 21.15 are satisfied if

γ + δ ≤ 1, γ ≥ δ, γ < 1 (21.123)

Proof. It follows from the estimates that

γnδn = O
(

1

nγ+δ

)

|δn+1 − δn| =O
(

1

nδ
− 1

(n+ 1)δ

)

=O
(

1

(n+ 1)δ

[(
1+ 1

n

)δ
− 1

])
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= O
(

1

(n+ 1)δ

[(
1

n

)δ
+ o(1)

])
= O

(
1

nδ+1

)

and

|δn+1 − δn|
γnδn

= O
(

1

n1−γ

)

which implies (21.123). Corollary is proven. �

Corollary 21.11. Within the class (21.122) of the parameters of the procedure (21.119)
the rate κ of convergence

‖xn − x∗∗‖2 + ‖νn − ν∗∗‖2 = O
(

1

nκ

)

is equal to

κ = min {γ − δ; 1− γ ; δ} (21.124)

The maximal rate κ∗ of convergence is attained for

γ = γ ∗ = 2/3, δ = δ∗ = 1/3 (21.125)

Proof. By Lemma 16.16 and in view of (21.121) it follows that for κ0 characterizing the

rate of convergence

wn := ‖xn − x∗ (δn)‖2 + ‖νn − ν∗ (δn)‖2 = O
(

1

nκ0

)

we have κ0 = min {γ − δ; 1− γ }. But, by (21.113), it follows that

‖xn − x∗∗‖2 + ‖νn − ν∗∗‖2 = wn +O (δn)

= O
(

1

nκ0

)
+O

(
1

nδ

)
= O

(
1

nmin{κ0;δ}

)

which implies (21.124). The maximal value κ∗ of κ is attained when γ − δ = 1−γ = δ,
i.e., when (21.125) holds which completes the proof. �

Remark 21.7. Many other numerical methods, solving the general nonlinear programing
problem (21.83), are discussed in (Polyak 1987).
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Since the fabric of the universe is most perfect, and is the work of a most wise Creator,
nothing whatsoever takes place in the universe in which some form of maximum and
minimum does not appear.

Leonard Euler, 1744.

22.1 Basic lemmas of variation calculus

The following lemmas represent the basic instrument for proving the main results of

variation calculus theory and optimal control theory (see, for example, Gel’fand & Fomin

(1961), Ivanov & Faldin (1981) and Troutman (1996)).

22.1.1 Du Bois–Reymond lemma

First, let us prove the following simple auxiliary result.

Lemma 22.1. If 0 ≤ p ∈ C [a, b] and
∫ b
x=a p (x) dx = 0, then p (x) = 0 for all

x ∈ [a, b].

Proof. Since p (x) ≥ 0, for any x ∈ [a, b] we have

0 ≤ P (x) :=
x∫

t=a
p (t) dt ≤

b∫
t=a
p (t) dt = 0

So, P (x) ≡ 0 on [a, b], and, hence, P ′ (x) ≡ 0 too. This exactly means p (x)= P ′ (x) ≡ 0

which proves the statement of this lemma. �
647
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Lemma 22.2. (Du Bois–Reymond) If h ∈ C [a, b] is a continuous on [a, b] scalar
function of the scalar argument and

b∫
x=a
h (x) v′ (x) dx = 0 (22.1)

for all v ∈ D1 :=
{
v ∈ C1 [a, b] : v (a) = v (b) = 0

}
. Then

h (x) = c = const on [a, b]

Proof. For a constant c, the function v (x) := ∫ x
t=a [h (t)− c] dt is in C1 [a, b] (it has

a continuous derivative) and v′ (x) = h (x) − c so that v (a) = 0. It will be in D1 if,

additionally, it satisfies the condition v (b) = 0, that is, if v (b) := ∫ b
t=a [h (t)− c] dt = 0,

or c = (b − a)−1
∫ b
t=a h (t) dt . Thus, for these c and v (x), in view of (22.1), we have

0 ≤
b∫

x=a
[h (x)− c]2 dx =

b∫
x=a

[h (x)− c] v′ (x) dx

=
b∫

x=a
h (x) v′ (x) dx − cv (x) |x=bx=a = 0

and, by Lemma 22.1, it follows that [h (x)− c]2 ≡ 0 which completes the proof. �

The next lemma generalizes Lemma 22.2.

Lemma 22.3. If h ∈ C [a, b] and for some m = 1, 2, . . .

b∫
x=a
h (x) v(m) (x) dx = 0

for all v ∈ Dm where

Dm :=
{
v ∈ Cm [a, b] : v(k) (a) = v(k) (b) = 0, k = 0, 1, . . . , m− 1

}
Then on [a, b] the function h (x) is a polynomial of a degree l < m, that is,

h (x) = c0 + c1x + . . .+ clxl

Proof. By a translation, we may assume that a = 0. The function

H (x) :=
x∫

t1=0

⎛
⎝· · ·

⎛
⎝ tm−2∫
tm−1=0

⎛
⎝ tm−1∫
t=0

h (t) dt

⎞
⎠ dtm−1

⎞
⎠ · · ·

⎞
⎠ dt1
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is in Cm [0, b] with the derivative H(m) (x) = h (x), and, fulfilling the identities

H (0) = H ′ (0) = . . . = H(m−1) (0) = 0

Then, if q is a polynomial of a degree l < m, then P (x) := xmq (x) vanishes at x = 0

together with P (i) (x) for i < m, while p (x) := P (m) (x) is another polynomial of the

degree l < m. Define v (x) := H (x) −P (x), so that v(m) (x) = h (x) −p (x). Show
next that with the proper choice of q (x) we can make v(k) (b) = 0 (k = 0, 1, . . . , m−1).

Supposing that this choice has been made, the resulting v ∈ Dm, and, moreover,

b∫
x=0

p (x) v(m) (x) dx = −
b∫

x=0

p′ (x) v(m−1) (x) dx

= · · · = (−1)m

b∫
x=0

p(m) (x) v (x) dx = 0

since the boundary term vanishes. By the assumptions of this lemma it follows that

0 ≤
b∫

x=0

[h (x)− p (x)]2 dx =
b∫

x=0

[h (x)− p (x)] v(m) (x) dx

=
b∫

x=0

h (x) v(m) (x) dx = 0

So, by Lemma 22.1, we get h (x) = p (x) on [0, b]. Lemma is proven. �

Lemma 22.4. If g, h ∈ C [a, b] and

b∫
x=a

[g (x) v (x)+ h (x) v′ (x)] dx = 0

for all v ∈ D1 :=
{
v ∈ C1 [a, b] : v (a) = v (b) = 0

}
. Then h ∈ C1 [a, b] and

h′ (x) = g (x) for all x ∈ [a, b]

Proof. Denote G(x) := ∫ x
t=a g (t) dt for x ∈ [a, b]. Then G ∈ C1 [a, b] and G′ (x) =

g (x). The integration by part implies

0 =
b∫

x=a
[g (x) v (x)+ h (x) v′ (x)] dx =

b∫
x=a

[h (x)−G(x)] v′ (x) dx

+ G′ (x) v (x) |x=bx=a =
b∫

x=a
[h (x)−G(x)] v′ (x) dx
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By Lemma 22.2, it follows that h (x)−G(x) ≡ c = const, so that

h (x) = G(x)+ c, h′ (x) = G′ (x) = g (x)

which proves the lemma. �

Corollary 22.1. If g ∈ C [a, b] and
∫ b
x=a g (x) v (x) dx = 0 for all v ∈ D1, then g (x) ≡ 0

on [a, b].

Proof. It is sufficient to put h (x) ≡ 0 in Lemma 22.4. �

This corollary also admits the following generalization.

22.1.2 Lagrange lemma

Lemma 22.5. (Lagrange) If g ∈ C [a, b] and for some m = 0, 1, . . .

b∫
x=a
g (x) v (x) dx = 0

for all v ∈ Dm where

Dm :=
{
v ∈ Cm [a, b] : v(k) (a) = v(k) (b) = 0, k = 0, 1, . . . , m− 1

}
then g (x) ≡ 0 on [a, b].

Proof. Suppose, by contradiction, that g (c) > 0 for some c ∈ (a, b). Then by continuity,

there exists an interval [α, β] ⊆ (a, b) which contains c and such that

|g (x)− g (c)| ≤ g (c)/2

or, equivalently, g (x) ≥ g (c)/2 > 0. On the other hand, the function

v (x) :=
{
(x − a) (β − x)m+1 for x ∈ [α, β]

0 for x /∈ [α, β]

is inCm [a, b] and nonnegative. This implies that the product g (x) v (x) is also continuous,

nonnegative, and not identically zero. Thus,
∫ b
x=a g (x) v (x) dx > 0, which contradicts

the hypotheses of this lemma. Lemma is proven. �

The vector-valued version of Lemma 22.4 is also admitted.

Lemma 22.6. If d = 1, 2, 3, . . . and G,H ∈ (
C [a, b]

)n
(G(x),H (x) ∈ Rn) so that

b∫
x=a

[
(G (x),H (x))+ (

H (x), V ′ (x)
)]
dx = 0
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for any V ∈ D1 :=
{
v ∈ (

C1 [a, b]
)n : V (a) = V (b) = 0̄

}
(here 0̄ is the zero-vector),

then H ∈ (
C1 [a, b]

)n
and H ′ (x) = G(x) on [a, b].

Proof. It follows directly from Lemma 22.4 after its application to each individual

component taking V (x) =
⎛
⎝0, . . . , v (x)︸ ︷︷ ︸

i

, 0, . . . , 0

⎞
⎠ᵀ

for i = 1, . . . , n. �

Corollary 22.2. If H ∈ (
C [a, b]

)n
and

∫ b
x=a (G (x),H (x)) dx = 0 for all V ∈ D1, then

H (x) = const ∈ Rn on [a, b].

Proof. It is sufficient to take G(x) ≡ 0 in Lemma 22.6. �

22.1.3 Lemma on quadratic functionals

Lemma 22.7. (Gel’fand & Fomin 1961) If q, p ∈ C [a, b] and

I (y) =
b∫

x=a

[
q (x) y2 (x)+ p (x) (y ′ (x))2] dx ≥ 0 (22.2)

for any function y ∈ D1 :=
{
y ∈ C1 [a, b] : y (a) = y (b) = 0

}
, then p (x) ≥ 0 on [a, b].

Proof. By the contradiction method, suppose that there exists x0 ∈ (a, b) such that

p (x0) < 0. Select the function

y (x) = yσ (x) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
σ

(
1+ x − x0

σ

)
if x0 − σ ≤ x ≤ x0

√
σ

(
1− x − x0

σ

)
if x0 ≤ x ≤ x0 + σ

0 if x /∈ [x0 − σ, x0 + σ ]

(here σ > 0 is small enough). Then
(
y ′σ (x)

)2 = σ−1 and, by the mean-value theorem,

∣∣∣∣∣∣
b∫

x=a
q (x) y2σ (x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

x0+σ∫
x=x0−σ

q (x) y2σ (x) dx

∣∣∣∣∣∣ ≤ |q (x0)| 2σ 2

and

b∫
x=a
p (x)

(
y ′σ (x)

)2
dx =

x0+σ∫
x=x0−σ

p (x)
(
y ′σ (x)

)2
dx = 2p (x̄)
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where x̄ ∈ [x0 − σ, x0 + σ ]. For small enough σ , so that p (x̄) < 0, we have

I (y)≤
∣∣∣∣∣∣

b∫
x=a
q (x) y2σ (x) dx

∣∣∣∣∣∣+
b∫

x=a
p (x)

(
y ′σ (x)

)2
dx

≤ |q (x0)| 2σ 2 + 2p (x̄) < 0

which contradicts the hypotheses of this lemma. So, p (x0) ≥ 0 for any internal point of

the interval [a, b]. As for the boundary points a, b, the values p (a), p (b) also cannot

be negative since, if so, by the continuity property, p (x) should be negative in a small

internal neighborhood which is impossible. Lemma is proven. �

22.2 Functionals and their variations

Here we will briefly remember the main definitions of the first and second variation

of functionals in some functional Banach space B.

Definition 22.1. The functional J (y) defined in a Banach space B with a norm ‖·‖B is
said to be

1. strongly differentiable (in the Fréchet sense) at the “point” y0 ∈ B, if there exists a
linear (with respect to variation h ∈ B) functional ϕ1 (y0, h) such that for any h ∈ B

�J (y0, h) := J (y0 + h)− J (y0)

= ϕ1 (y0, h)+ α (y0, h) ‖h‖B

(22.3)

where α (y0, h)→ 0 as ‖h‖B → 0;
2 twice strongly differentiable (in the Fréchet sense) at the “point” y0 ∈ B, if�J (y0, h)
(22.3) can be represented as

�J (y0, h) = ϕ1 (y0, h)+ 1

2
ϕ2 (y0, h)+ α (y0, h) ‖h‖2B (22.4)

where ϕ1 (y0, h) is a linear (with respect to the variation h ∈ B) functional, ϕ2 (y0, h)
is a quadratic functional with respect to the variation h ∈ B, i.e., for any λ1, λ2 ∈ R

and any h, h1, h2, h̃, h̃1, h̃2 ∈ B

ϕ2 (y0, h) := ϕ̃2
(
y0, h, h̃

)
|h=h̃∈B

ϕ̃2

(
y0, λ1h1 + λ2h2, h̃

)
= λ1ϕ̃2

(
y0, h1, h̃

)
+ λ2ϕ̃2

(
y0, h2, h̃

)
ϕ̃2

(
y0, h, λ1h̃1 + λ2h̃2

)
= λ1ϕ̃2

(
y0, h, h̃1

)
+ λ2ϕ̃2

(
y0, h, h̃2

)
and, again, α (y0, h)→ 0 as ‖h‖B → 0.
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Definition 22.2. The functionals ϕ1 (y0, h) and ϕ2 (y0, h), defined above, are called the
first and second strong differentials of J (y) and are denoted (according to (18.93)) by

d� (x0 | h) = 〈h,�′ (x0)〉 := ϕ1 (y0, h)

d2�(x0 | h) := ϕ2 (y0, h)
(22.5)

There exist other differentials, namely, weak differentials (in the Gâteaux sense). For

details concerning these functionals and their relation with strong ones see section 18.7.2.

Below we shall use only Fréchet differentials.

22.3 Extremum conditions

22.3.1 Extremal curves

The, so-called, variation principle (see Theorem 18.18) will be actively used in this

section for the solution of various problems of variation calculus theory.

Definition 22.3.

1. A functional J (y), defined in a Banach space B with a norm ‖·‖B, has a local
extremum in a region G (defining some additional constraints to the class of admissible
functions) at the curve (function) y0 ∈ B ∩ G, if there exists a neighborhood

�δ :=
{
y ∈ B ∩ G | ‖y − y0‖B < δ

}
such that for all y ∈ �δ one has J (y) ≥ J (y0). The function y0 is said to be an
extremal curve.

2. If J (y) ≥ J (y0) for all y ∈ B ∩ G, then the extremal curve y0 is said to be a global
extremum of the functional J (y) on B ∩ G.

22.3.2 Necessary conditions

Reformulate here Theorem 18.18 for the case of the Fréchet differential existence.

Theorem 22.1. (on the necessary conditions) Let the curve y0 ∈ int (B ∩ G) be a local
extremal (minimal) curve of the functional J (y) which is assumed to be strongly (Fréchet)
differentiable at the “point” y0.

1. (The first-type necessary conditions) Then for any admissible h ∈ B ∩ G

ϕ1 (y0, h) ≡ 0 (22.6)

2. (The second-type necessary conditions) If, additionally, J (y) is twice strongly
(Fréchet) differentiable at the “point” y0, then for any admissible h ∈ B ∩ G

ϕ2 (y0, h) ≥ 0 (22.7)
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Proof. Let J (y) ≥ J (y0) for all y within some �δ .

1. Then, by Definition 22.3 and in view of the property (22.3), for any (y0 + h) ∈ �δ
we have

�J (y0, h) := J (y0 + h)− J (y0) = ϕ1 (y0, h)+ α (y0, h) ‖h‖B ≥ 0

If ϕ1 (y0, h0) < 0 for some admissible h0, then for small enough α it follows that

�J (y0, h) = ϕ1 (y0, h)+ α (y0, h) ‖h‖B < 0

which contradicts the optimality of y0 in �δ . Suppose that ϕ1 (y0, h) > 0 for some

admissible h0. Since the strong (Fréchet) differential is linear on h and y0 ∈ int (B ∩ G),
it follows that (y0 − h0) ∈ �δ and, therefore,

ϕ1 (y0,−h0) = −ϕ1 (y0, h0) < 0

and, as the result, again

�J (y0, h) = −ϕ1 (y0, h)+ α (y0, h) ‖h‖B < 0

for small enough α, which contradicts the optimality of y0 in �δ .

2. According to the first-type necessary condition (22.6) in view of the optimality of the

curve y0 ∈ int (B ∩ G) we have

�J (y0, h) = 1

2
ϕ2 (y0, h)+ α (y0, h) ‖h‖2B ≥ 0

Again, if for some admissible h0 ((y0 − h0) ∈ �δ) we suppose ϕ2 (y0, h0) < 0, then

for small enough ε > 0 we have

�J (y0, εh0)= 1

2
ϕ2 (y0, εh0)+ α (y0, εh0) ‖εh0‖2B

= ε2
[
1

2
ϕ2 (y0, h0)+ α (y0, εh0) ‖h0‖2B

]
< 0

since α (y0, εh0) → 0 whereas ε → 0 for any h0. But the last inequality contradicts

the condition of optimality of the curve y0. �

22.3.3 Sufficient conditions

Theorem 22.2. (on the sufficient conditions) Let

1. the functional J (y) be twice strongly (Fréchet) differentiable in B ∩ G;
2. for some y0 ∈ B ∩ G and any admissible h : (y0 − h) ∈ B ∩ G, h ∈ �δ

ϕ1 (y0, h) ≡ 0
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and

ϕ2 (y0, h) ≥ k ‖h‖2B, k > 0

Then y0 is the unique local minimal curve of the functional J (y) on B ∩ G.

Proof.

1. By (22.4) and in view of the condition of this theorem, for any admissible h

�J (y0, h) = 1

2
ϕ2 (y0, h)+ α (y0, h) ‖h‖2B

For any small enough ε > 0 it follows that

�J (y0, εh) = 1

2
ϕ2 (y0, εh)+ α (y0, εh) ‖εh‖2B

= ε2
[
1

2
ϕ2 (y0, h)+ α (y0, εh) ‖h‖2B

]

≥ ε2
[
1

2
k ‖h‖2B + α (y0, εh) ‖h‖2B

]
= ε2 ‖h‖2B

[
1

2
k + α (y0, εh)

]
≥ 0

(22.8)

since α (y0, εh) → 0 whereas ε → 0 for any admissible h. This means that y0 is a

local extremal (minimum) curve.

2. Suppose that in �δ there exists two extremal curves y0 and y ′0 such that J (y0) =
J
(
y ′0
) ≤ J (y). Then, taking h := y ′0 − y0 in (22.8), we get

�J (y0, h) = 0 = 1

2
ϕ2 (y0, h)+ α (y0, h) ‖h‖2B

≥ ‖h‖2B
[
1

2
k + α (y0, h)

]

For small enough δ and any h ∈: �δ , we have 1

2
k+α (y0, h) > 0 which together with

the previous inequality leads to the following conclusions: 0 = ‖h‖2B, or, equivalently,
y ′0 = y0. Theorem is proven. �

22.4 Optimization of integral functionals

In this section we will consider the following main problem of variation calculus:

b∫
x=a
F
(
x, y, y ′

)
dx → min

y∈C1[a,b]
(22.9)

where the function F : R3→ R is assumed to be twice differentiable in all arguments.
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22.4.1 Curves with fixed boundary points

22.4.1.1 Scalar case
Here, we will additionally suppose that we are looking for the extremum (minimum)

of the integral function in (22.9) over all continuously differentiable curves y ∈ C1 [a, b]

satisfying the following boundary conditions:

y (a) = α, y (b) = β (22.10)

The necessary conditions for this problem are given below.

1. The first-type necessary condition (22.6):

0 = ϕ1 (y, h)=
b∫

x=a

(
∂

∂y
Fh+ ∂

∂y ′
Fh′

)
dx

=
b∫

x=a

(
∂

∂y
F − d

dx

∂

∂y ′
F

)
h dx

(22.11)

where the variation curves h ∈ C1 [a, b] and satisfies the boundary conditions

h(a) = h(b).
2. The second-type necessary condition (22.7):

0≤ ϕ2 (y, h)

=
b∫

x=a

[
∂2

∂y2
Fh2 + 2

∂2

∂y∂y ′
Fhh′ + ∂2

∂y ′∂y ′
F
(
h′
)2]
dx

=
b∫

x=a

[(
∂2

∂y2
F − d

dx

∂2

∂y∂y ′
F

)
h2 + ∂2

∂y ′∂y ′
F
(
h′
)2]
dx

(22.12)

where y(x) satisfies (22.11) and the variation curves h ∈ C1 [a, b] and fulfills the

boundary conditions h(a) = h(b).
In (22.11) and (22.12) the following relations obtained by the integration by parts are

used:

b∫
x=a

∂

∂y ′
Fh′ dx =

(
∂

∂y ′
F

)
h |x=bx=a −

b∫
x=a

(
d

dx

∂

∂y ′
F

)
h dx

=
b∫

x=a

(
− d
dx

∂

∂y ′
F

)
h dx
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and

b∫
x=a

2
∂2

∂y ∂y ′
Fhh′dx =

(
∂2

∂y ∂y ′
F

)
h2 |x=bx=a −

b∫
x=a

(
d

dx

∂2

∂y ∂y ′
F

)
h2dx

=
b∫

x=a

(
− d
dx

∂2

∂y ∂y ′
F

)
h2 dx

Theorem 22.3. (Euler–Lagrange) The first-type necessary condition for a curve y ∈
C1 [a, b], satisfying (22.10), to be an extremal curve is:

∂

∂y
F (x, y, y ′)− d

dx

∂

∂y ′
F (x, y, y ′) = 0 (22.13)

Proof. It follows directly from (22.11) if we apply Lemma 22.4. �

The condition (22.13) is referred to as the Euler–Lagrange condition.

Theorem 22.4. (Legendre) The second-type necessary condition for a curve y ∈
C1 [a, b], satisfying (22.10) and (22.13), to be an extremal (minimizing) curve is:

∂2

∂y ′ ∂y ′
F (x, y, y ′) ≥ 0 (22.14)

Proof. It follows directly from (22.12) if we apply Lemma 22.7. �

The condition (22.14) is often referred to as the Legendre condition.
The sufficient conditions, guaranteeing that a curve y (x) is minimizing for the func-

tional J (y), may be formulated in the following manner.

Theorem 22.5. (Jacobi) If for some curve y ∈ C1 [a, b], verifying (22.10), the following
conditions are fulfilled:

1. it satisfies the Euler–Lagrange necessary condition (22.13);
2. it satisfies the strong Legendre condition

∂2

∂y ′ ∂y ′
F (x, y, y ′) ≥ k > 0 (22.15)

3. there exists a function u ∈ C1 [a, b], which is not equal to zero on [a, b], and satisfying
the next ODE (the Jacobi ODE):

Qu− d

dx
(Pu′) = 0

Q := ∂2

∂y2
F − d

dx

∂2

∂y ∂y ′
F, P := ∂2

∂y ′∂y ′
F

(22.16)

then this curve provides the local minimum to the functional J (y).
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Proof. It follows directly from Theorem 22.2 if we define ‖h‖2B for B = C1 [a, b]

(see (18.6)) as

‖h‖C1[a,b] := max
x∈[a,b]

|h (t)| + max
x∈[a,b]

∣∣h′ (x)∣∣
Indeed, by the assumptions of this theorem, we have

ϕ2 (y, h)=
b∫

x=a

[
Qh2 + P (

h′
)2]
dx =

b∫
x=a

[
(Qu)

h2

u
+ P (

h′
)2]
dx

=
b∫

x=a

[
d

dx

(
Pu′

) h2
u
+ P (

h′
)2]
dx =

(
Pu′

h2

u

)
|x=bx=a

+
b∫

x=a

[
−Pu′ d

dx

(
h2

u

)
+ P (

h′
)2]
dx =

b∫
x=a
P

[(
h′
)2 − u′ d

dx

(
h2

u

)]
dx

=
b∫

x=a
P

[(
h′
)2 − 2h′

(
hu′

u

)
+ h

2

u2

(
u′
)2]
dx =

b∫
x=a
P

(
h′ − hu

′

u

)2

dx

≥ k
b∫

x=a

(
h′ − hu

′

u

)2

dx = k ‖h‖2C1[a,b]

b∫
x=a

(
h̃′ − h̃u

′

u

)2

dx

where h̃ := h/‖h‖C1[a,b] satisfies∥∥∥h̃∥∥∥
C1[a,b]

≤ 1,

∥∥∥h̃′∥∥∥
C1[a,b]

≤ 1

Notice also that

κ := inf
h̃:‖h̃‖C1[a,b]≤1, ‖h̃′‖C1[a,b]≤1, h̃(a)=h̃(b)=0

b∫
x=a

(
h̃′ − h̃u

′

u

)2

dx > 0

since, if not, one has h̃′ − h̃u
′

u
= 0, and, as a result, h̃ = u. But, by the assumption of this

theorem, u (a) �= 0 and u (b) �= 0, which contradicts with h̃ (a) = h̃ (b) = 0. So, finally,

it follows that

ϕ2 (y, h) ≥ k ‖h‖2C1[a,b]

b∫
x=a

(
h̃′ − h̃u

′

u

)2

dx ≥ kκ ‖h‖2C1[a,b]

Theorem is proven. �

Example 22.1. (“Brachistochrone” problem) The problem (formulated by Johann
Bernoulli, 1696) consists of finding the curve AB (see Fig. 22.1) such that, during the
sliding over of this curve in a gravity field with the initial velocity equal to zero, the
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a b0

xb

a

Fig. 22.1. Illustration of the Brachistochrone problem.

material point of the mass m can realize the sliding from the initial point A to the final
point B in the shortest time.

So, we have to minimize J (y) = T (y) where y(x) is the altitude of the point at the
curve at the point x ∈ [a, b] which satisfies the relation

mgy + mv
2

2
= E = const

Since, by the initial condition, when y = y(a) = α we have v = 0 which implies
E = mgα. That is why

v =
√
2

(
E

m
− gy

)
= √

2g (α − y)

v = ds
dt

=
√
1+ (y ′)2 dx

dt

which leads to the following formula for the functional T (y):

T (y) =
b∫

x=a

dx

v
= 1√

2g

b∫
x=a

√
1+ (y ′)2
(α − y) dx

Since the function F (y, y ′) =
√

1+ (y ′)2
(α − y) does not depend on x, the first-type Euler–

Lagrange condition (22.13) for this functional has the first integral

F
(
y, y ′

)− y ′ ∂
∂y ′
F
(
y, y ′

) = 1

c
(22.17)

Indeed,

0 = ∂

∂y
F − d

dx

∂

∂y ′
F = ∂

∂y
F −

(
∂2

∂y ∂y ′
F

)
y ′ −

(
∂2

∂y ′ ∂y ′
F

)
y ′′
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Multiplying both sides by y ′ we get

0 = d

dx

(
F − y ′ ∂

∂y ′
F

)

which implies (22.17). In our case it is equivalent to the following ODE:

1

c
=

√
1+ (y ′)2
(α − y) − (y

′)2
(
1+ (y ′)2)−1/2

√
(α − y)

=

√
1+ (y ′)2

(
1− (y ′)2

1+ (y ′)2
)

√
(α − y) = 1√

(α − y)
√
1+ (y ′)2

Squaring gives

c2 = (α − y)
[
1+ (

y ′
)2]

or,

1 = y ′
√

(α − y)
c2 − (α − y) (22.18)

With the introduction of the dependent variable θ = θ (x) such that

(α − y) = c2 sin2 θ
2
= c

2

2
(1− cos θ), θ ∈ [0, 2π ]

then

c2 − (α − y) = c2 cos2 θ
2
, y ′ = c2θ ′ sin θ

2
cos
θ

2

By substitution of these expressions into (22.18) yields

1 = c2θ ′ sin2 θ
2

or 1 = c
2

2
θ ′ (1− cos θ)

Integrating gives
c2

2
[θ − sin θ ] = x − c1. Denoting c2 := c2

2
, we get the parametric

(Brachistochrone) curve (of the cycloid type)

x = c2 [θ − sin θ ]+ c1, c2 > 0

y = α − c2 (1− cos θ), θ ∈ [0, 2π ]
(22.19)

The constants c1 and c2 can be found from the boundary conditions

θ = θA = 0 : A = c1, y (A) = α
θ = θB : B = A+ c2 [θB − sin θB], y (B) = β = α − c2 (1− cos θB)
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Example 22.2. Let us try to answer the following question: which stable linear system
of the first order, given by

ẋ (t) = ax (t), x (0) = x0, x (∞) = 0 (22.20)

provides the minimum of the functional

J (x) :=
∞∫

t=0

[
α0x

2 (t)+ α1ẋ2 (t)
]
dt (22.21)

where α0, α1 > 0.

1. Variation calculus application. The first-type necessary condition of the optimality
for this functional is

α0x (t)− α1ẍ (t) = 0

since F = α0x2 + α1ẋ2. Its general solution is

x (t) = c1e−kt + c2ekt , k :=√
α0/α1

Taking into account the boundary conditions we get: c2 = 0, c1 = x0 which gives
x (t) = x0e−kt , or, equivalently, ẋ (t) = −kx (t). So, the optimal a = a∗ in (22.20) is
a = a∗ = −√α0/α1. Let us show that the obtained curve is minimizing. To do this
we need to check conditions (2) and (3) of the Jacobi theorem 22.5. First, notice that
∂2

∂ẋ ∂ẋ
F = 2α1 > 0. So, condition (2) is fulfilled. The Jacobi equation (22.16) is as

follows

α0u− α1u′′ = 0

Q := ∂2

∂y2
F − d

dx

∂2

∂y ∂y ′
F = 2α0, P := ∂2

∂y ′ ∂y ′
F = 2α1

It has a nontrivial solution u (t) = u0e−kt > 0 or u0 > 0. This means that condition
(3) is also valid. So, the curve ẋ (t) = −kx (t), x (0) = x0 is minimizing.

2. Direct method.1 Assuming that the minimal value of the cost functional (22.21) is finite,
i.e., x (t)→ 0 with t →∞, we can represent it in the following equivalent form

J (x) :=
∞∫

t=0

[
α0x

2 (t)+ 2
√
α0α1x (t) ẋ (t)+ α1ẋ2 (t)

]
dt

− 2
√
α0α1

∞∫
t=0

x (t) ẋ (t) dt =
∞∫

t=0

[√
α0x (t)+√

α1ẋ (t)
]2
dt

+ √
α0α1x

2 (0) ≥ √
α0α1x

2 (0)

1 The author has been informed of this elegant and simple solution by Prof. V. Utkin.
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The last inequality becomes the equality when

√
α0x (t)+√

α1ẋ (t) = 0

or, equivalently, when

ẋ (t) = −kx (t), k =√
α0/α1

which coincides with the previous result.

22.4.1.2 Vector case
Consider the following optimization problem

b∫
x=a
F
(
x, y1, . . . yn, y

′
1, . . . , y

′
n

)
dx → min

yi∈C1[a,b]
(22.22)

where the function F : R2n+1→ R is assumed to be twice differentiable in all arguments,

and the functions yi satisfy the following boundary conditions

yi (a) = αi, yi (b) = βi (i = 1, . . . , n) (22.23)

Theorem 22.6. (The Euler–Lagrange vector form) The first-type necessary condition
for curve yi ∈ C1 [a, b], satisfying (22.23), to be extremal curves is:

∂

∂yi
F (x, y, y′)− d

dx

∂

∂y ′i
F (x, y, y′) = 0

y := (y1, . . . yn)ᵀ, y′ := (
y ′1, . . . y

′
n

)ᵀ
(22.24)

Proof. It follows directly from the identity

0 = ϕ1 (y, h)=
b∫

x=a

n∑
i=1

(
∂

∂yi
Fhi + ∂

∂y ′i
Fh′i

)
dx

=
b∫

x=a

n∑
i=1

(
∂

∂yi
Fi − d

dx

∂

∂y ′i
F

)
hi dx

if we take into account the independence of the variation functions hi (i = 1, . . . , n),

and apply Lemma 22.4. �

Theorem 22.7. (The Legendre vector form) The second-type necessary condition for
curve yi ∈ C1 [a, b], satisfying (22.23) and (22.24), to be extremal curves is:

∇2
y′,y′F (x, y, y

′) ≥ 0 (22.25)
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where the matrix in (22.25) is defined by

∇2
y′,y′F

(
x, y, y′

) := [
∂2

∂y ′i ∂y ′j
F
(
x, y, y′

)]
i,j=1,...,n

Proof. It follows directly from (22.7) and the relation

0 ≤ ϕ2 (y, h)=
b∫

x=a

[(∇2
y,yF

(
x, y, y′

)
h,h

)
+ 2

(∇2
y,y′F (x, y, y

′)h,h′
)+ (∇2

y′,y′F (x, y, y
′)h′,h′

)]
dx

=
b∫

x=a

[([
∇2

y,yF
(
x, y, y′

)− d

dx
∇2

y,y′F
(
x, y, y′

)]
h,h

)

+ (∇2
y′,y′F (x, y, y

′)h′,h′
) ]
dx

if we apply the vector version of Lemma 22.7. �
The next theorem gives the sufficient conditions for the vector function y to be a

minimizer in the problem (22.22).

Theorem 22.8. (The Jacobi vector form) If for some vector function y ∈ (
C1 [a, b]

)n
,

verifying (22.23), the following conditions are fulfilled:

1. it satisfies the Euler–Lagrange necessary condition (22.24);
2. it satisfies the strong Legendre vector condition

∇2
y′,y′F (x, y, y

′) ≥ kIn×n, k > 0 (22.26)

3. there exists vector functions ui ∈ (
C1 [a, b]

)n
(i = 1, . . . , n), such that

det
[
u1 (x) · · · un (x)] �= 0 for all x ∈ [a, b]

ui (a) = 0,
d

dx
ui (a) = ei :=

⎛
⎝0, . . . , 1︸ ︷︷ ︸

i

, 0, . . . , 0

⎞
⎠ᵀ

(22.27)

and satisfying the next ODE (the Jacobi vector form ODE):

Qu− d

dx

(
Pu′

) = 0 (22.28)

with

Q := ∇2
y,yF (x, y, y

′)− d

dx
∇2

y,y′F (x, y, y
′)

P := ∇2
y′,y′F (x, y, y

′)

then this vector function provides the local minimum to the functional J (y).
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Proof. It follows directly from the vector form of Theorem 22.2 if we define ‖h‖2B for

B = (
C1 [a, b]

)n
(see (18.6)) as

‖h‖2
(C1[a,b])

n :=
n∑
i=1

(
max
x∈[a,b]

∣∣hi (t)∣∣+ max
x∈[a,b]

∣∣∣∣ ddx hi (x)
∣∣∣∣
)

and, practically, repeat the proof of Theorem 22.5. �

22.4.1.3 Integral functional depending on derivatives of an order more than one
Let us consider the first-type necessary condition of the optimality for the integral

functions

J (y) =
b∫

x=a
F (x, y, y(1), . . . , y(n)) dx (22.29)

within the functions y ∈ Cn [a, b], satisfying the boundary conditions

y(i) (a) = αi, y(i) (b) = βi (i = 1, . . . , n) (22.30)

First, notice that

ϕ1 (y, h) =
b∫

x=a

[
n∑
i=0

∂F

∂y(i)
h(i)

]
dx, y(0) := y

where the variation functions h(i) satisfy the conditions

h(i) (a) = h(i) (b) = 0 (i = 1, . . . , n)

Integrating each integral term
∫ b
x=a

∂F

∂y(i)
h(i) dx of this equality i-times we derive

ϕ1 (y, h) =
b∫

x=a

[
∂F

∂y
+

n∑
i=1

(−1)i
d

dxi

∂F

∂y(i)

]
h dx (22.31)

Theorem 22.9. (Euler–Poisson) Let the curve y ∈ Cn [a, b], satisfying (22.30), be an
extremal (minimum or maximum) curve for the functional (22.29). Then it should satisfy
the following ODE:

∂F

∂y
+

n∑
i=1

(−1)i
d

dxi

∂F

∂y(i)
= 0 (22.32)

Proof. It follows directly from (22.31) applying the Lagrange lemma 22.5. �
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22.4.2 Curves with non-fixed boundary points

Problem formulation: among all smooth curves y = y (x) with the boundary points

(x0, y0) and (x1, y1), belonging to the given curves (“sliding surfaces”) y = ϕ (x) and
y = ψ (x), find one which minimizes the functional

J (y) =
x1:y(x1)=ψ(x1)∫

x=x0:y(x0)=ϕ(x0)
F (x, y (x), y ′ (x)) dx (22.33)

Realizing the function variation (y + h) such that

h (xi) ' δy (xi)− y ′ (xi) δxi, i = 0, 1

δy (x0) ' ϕ′ (x0) δx0, δy (x1) ' ψ ′ (x1) δx1
(22.34)

and integrating by parts, we derive

ϕ1 (y0, h)=
x1∫

x=x0

(
∂F

∂y
h+ ∂F

∂y ′
h′
)
dx + F (

x, y, y ′
)
δx |x=x1x=x0

=
x1∫

x=x0

(
∂F

∂y
− d

dx

∂F

∂y ′

)
h dx + ∂F

∂y ′
h |x=x1x=x0 + F

(
x, y, y ′

)
δx |x=x1x=x0

(22.35)

Remark 22.1. Since the problem in 22.4.2 contains as a partial case the problem (22.9)
with fixed boundary points, then any solution of the problem in 22.4.2 should satisfy the
Euler–Lagrange condition (22.13), which simplifies (22.35) up to

ϕ1 (y0, h) = ∂F
∂y ′
h |x=x1x=x0 +F

(
x, y, y ′

)
δx |x=x1x=x0 (22.36)

Applications (22.34) to (22.36) imply

ϕ1 (y0, h)= ∂F
∂y ′
δy |x=x1x=x0 +

(
F − ∂F

∂y ′
y ′
)
δx |x=x1x=x0

=
(
∂F

∂y ′
ψ ′ + F − ∂F

∂y ′
y ′
)
|x=x1 δx1

+
(
∂F

∂y ′
ϕ′ + F − ∂F

∂y ′
y ′
)
|x=x0 δx0

(22.37)

Theorem 22.10. If some curve y = y(x) ∈ C1 with the boundary points (x0, y0) and
(x1, y1), belonging to the given curves (“sliding surfaces”) y = ϕ (x) and y = ψ (x)
provides an extremum to the functional (22.33), then
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1. it satisfies the Euler–Lagrange condition (22.13), i.e.,

∂F

∂y
− d

dx

∂F

∂y ′
= 0

2. it should, additionally, satisfy the, so-called, transversality conditions

[
F + ∂F

∂y ′
(ψ ′ − y ′)

]
|x=x1= 0[

F + ∂F
∂y ′
(ψ ′ − y ′)

]
|x=x0= 0

(22.38)

Proof. The relations (22.38) result from (22.37) if we take into account that the variations

δx0 and δx1 are independent. �

Example 22.3.

J (y) =
x1:y(x1)=2−x∫
x0=0:y(x0)=0

√
1+ (y ′ (x))2

x
dx

The Euler–Lagrange condition (22.13) is − d
dx

y ′

x
√
1+ (y ′)2 = 0, which leads to the fol-

lowing relation

y ′

x
√
1+ (y ′)2 = c1, y ′ = ± xc1√

1− x2c21
y = ∓ 1

c1

√
1− x2c21 + c2, (y − c2)2 = 1/c21 − x2

The boundary condition y (0) = 0 gives c21 = 1/c22. So, finally, the Euler–Lagrange
condition (22.13) is (y − c2)2 + x2 = c22. The transversality conditions (22.38) imply

0 = y ′ = − x

y − c2 = 1, which, together with y = 2 − x, gives c2 = 2. Finally, the

extremal curve is as follows:

(y − 2)2 + x2 = 4

22.4.3 Curves with a nonsmoothness point

If an extremal curve has a nonsmooth point x∗ ∈ [a, b] in the problem (22.9) with a

fixed boundary point, that is,

y (x) is continuous in x∗

y ′ (x) |x→x∗−0 �= y ′ (x) |x→x∗+0

then
ϕ1 (y0, h) = ϕ1,1 (y0, h)+ ϕ1,2 (y0, h) = 0
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where (we can consider at each semi-interval [a, x∗] and [x∗, b] the boundary point x∗

as a non-fixed one)

ϕ1,1 (y0, h) = ∂F
∂y ′
δy |x=x∗−0 +

(
F − ∂F

∂y ′
y ′
)
δx |x=x∗−0

ϕ1,2 (y0, h) = −∂F
∂y ′
δy |x=x∗+0 −

(
F − ∂F

∂y ′
y ′
)
δx |x=x∗+0

which gives

0= ϕ1 (y0, h)

=
(
∂F

∂y ′
|x=x∗−0 −∂F

∂y ′
|x=x∗+0

)
δy

+
[(
F − ∂F

∂y ′
y ′
)
|x=x∗−0 −

(
F − ∂F

∂y ′
y ′
)
|x=x∗+0

]
δx

Since here δy and δx are admitted to be arbitrary, we obtain the, so-called, Weierstrass–
Erdmann conditions:

∂F

∂y ′
|x=x∗−0 = ∂F

∂y ′
|x=x∗+0

(
F − ∂F

∂y ′
y ′
)
|x=x∗−0 =

(
F − ∂F

∂y ′
y ′
)
|x=x∗+0

(22.39)

Example 22.4. Consider the functional

J (y) =
b∫

x=a

(
y ′
)2 (

1− y ′)2 dx
The boundary points are assumed to be fixed. The Euler–Lagrange condition (22.13)
gives y = c1x + c2. The Weierstrass–Erdmann conditions (22.39) are

2y ′ (1− y ′) (1− 2y ′) |x=x∗−0 = 2y ′ (1− y ′) (1− 2y ′) |x=x∗+0

− (y ′)2 (1− y ′) (1− 3y ′) |x=x∗−0 = − (y ′)2 (1− y ′) (1− 3y ′) |x=x∗+0

which are fulfilled for extremal curves such that

y ′ |x=x∗−0 = 0, y ′ |x=x∗+0 = 1 or y ′ |x=x∗−0 = 1, y ′ |x=x∗+0 = 0
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22.5 Optimal control problem

22.5.1 Controlled plant, cost functionals and terminal set

Consider the controlled plant given by the following system of ordinary differential

equations (ODE)

·
x (t) = f (x (t), u (t), t), a.e. t ∈ [0, T ]

x (0) = x0
}

(22.40)

where x = (
x1, . . . , xn

)T ∈ Rn is its state vector, u = (
u1, . . . , ur

)T ∈ Rr is the control

that may run over a given control region U ⊂ Rr with the cost functional

J (u (·)) := h0(x (T ))+
T∫

t=0

h (x (t), u (t), t) dt (22.41)

containing the integral term as well as the terminal one and with the terminal set
M ⊆ Rn given by the inequalities

M = {x ∈ Rn : gl(x) ≤ 0 (l = 1, . . . , L)} (22.42)

The time process or horizon T is supposed to be fixed or nonfixed and may be finite or

infinite.

Definition 22.4.

(a) The function (22.41) is said to be given in Bolza form.
(b) If in (22.41) h0(x) = 0 we obtain the cost functional in Lagrange form, that is,

J (u (·)) =
T∫

t=0

h (x (t), u (t), t) dt (22.43)

(c) If in (22.41) h(x, u, t) = 0 we obtain the cost functional in Mayer form, that is,

J (u (·)) = h0(x (T )) (22.44)

Usually the following assumptions are assumed to be in force:

(A1) (U, d) is a separable metric space (with the metric d) and T > 0.

(A2) The maps

f : Rn × U × [0, T ]→ Rn

h : Rn × U × [0, T ]→ R

h0 : Rn × U × [0, T ]→ R

gl : Rn → Rn (l = 1, . . . , L)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (22.45)
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are measurable and there exist a constant L and a continuity modulus ω̄ : [0,∞)→
[0,∞) such that for ϕ = f (x, u, t), h (x, u, t), h0 (x, u, t), gl (x) (l = 1, . . . , L)

the following inequalities hold:∥∥ϕ (x, u, t)− ϕ (x̂, û, t)∥∥ ≤ L∥∥x − x̂∥∥+ ω̄ (d (u, û))
∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U

‖ϕ (0, u, t)‖ ≤ L ∀u, t ∈ U × [0, T ]

⎫⎪⎬
⎪⎭ (22.46)

(A3) The maps f, h, h0 and gl (l = 1, . . . , L) are from C1 in x and there exists a

continuity modulus ω̄ : [0,∞)→ [0,∞) such that for ϕ = f (x, u, t), h (x, u, t),
h0 (x, u, t), gl (x) (l = 1, . . . , L) the following inequalities hold:∥∥∥∥ ∂∂x ϕ (x, u, t)− ∂

∂x
ϕ
(
x̂, û, t

)∥∥∥∥
≤ ω̄ (∥∥x − x̂∥∥+ d (u, û))

∀t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (22.47)

22.5.2 Feasible and admissible control

Definition 22.5. A function u(t), t0 ≤ t ≤ T , is said to be

(a) a feasible control if it is measurable and u(t) ∈ U for all t ∈ [0, T ]. Denote the
set of all feasible controls by

U [0, T ] := {
u (·) : [0, T ]→ U | u (t) is measurable

}
(22.48)

(b) an admissible or realizing the terminal condition (22.42), if the corresponding
trajectory x(t) satisfies the terminal condition, that is, satisfies the inclusion
x(T ) ∈ M. Denote the set of all admissible controls by

Uadmis [0, T ] :=
{
u (·) : u (·) ∈ U [0, T ], x(T ) ∈ M

}
(22.49)

In view of Theorem 19.1 on the existence and the uniqueness of an ODE solution, it

follows that under assumptions (A1)–(A2) for any u (t) ∈ U [0, T ] equation (1.4) admits

a unique solution x (·) := x (·, u (·)) and the functional (22.41) is well defined.

22.5.3 Problem setting in the general Bolza form

Based on the definitions given above, the optimal control problem (OCP) can be

formulated as follows.

Problem 22.1. (OCP in Bolza form)

Minimize (22.41) over Uadmis [0, T ] (22.50)
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Problem 22.2. (OCP with a fixed terminal term) If in the problem (22.50)

M = {
x ∈ Rn : g1(x) = x − xf ≤ 0, g2(x) = − (

x − xf
) ≤ 0

}
(22.51)

then it is called the optimal control problem with fixed terminal term xf .

Definition 22.6. Any control u∗ (·) ∈ Uadmis [0, T ] satisfying

J (u∗ (·)) = inf
u(·)∈Uadmis [0,T ]

J (u (·)) (22.52)

is called an optimal control. The corresponding state trajectories x∗ (·) := x∗ (·, u∗ (·))
are called an optimal state trajectory, and (x∗ (·), u∗ (·)) is called an optimal pair.

22.5.4 Mayer form representation

Summary 22.1. Introduce (n+ 1)-dimensional space Rn+1 of the variables x =
(x1, . . . , xn, xn+1)

ᵀ where the first n coordinates satisfy (22.40) and the component xn+1

is given by

xn+1 (t) :=
t∫

τ=0

h (x (τ), u (τ ), τ ) dτ (22.53)

or, in the differential form,

ẋn+1 (t) = h (x (t), u (t), t) (22.54)

with the initial condition for the last component given by

xn+1 (0) = 0 (22.55)

As a result, the initial optimization problem in the Bolza form (22.50) can be reformulated
in the space Rn+1 as the Mayer problem with the cost functional J (u (·))

J (u (·)) = h0(x (T ))+ xn+1 (T ) (22.56)

where the function h0(x) does not depend on the last coordinate xn+1 (t), that is,

∂

∂xn+1

h0(x) = 0 (22.57)

Summary 22.2. From the relations above it follows that the Mayer problem with the
cost function (22.56) is equivalent to the initial optimization control problem (22.50) in
the Bolza form.

There exist two principal approaches to solving optimal control problems:

• the first one is the maximum principle (MP) of L. Pontryagin (Boltyanski et al. 1956;
Pontryagin et al. 1969 (translated from Russian));
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• and the second one is the dynamic programing method (DPM) of R. Bellman (1957).

We will touch on both of them below.

22.6 Maximum principle

The maximum principle is a basic instrument to derive a set of necessary conditions
which should satisfy any optimal control. As an optimal control problem may be regarded

as an optimization problem in the corresponding infinite dimensional (Hilbert or, in

general, Banach) space, the necessary conditions (resembling the Kuhn–Tucker conditions
in the finite-dimensional optimization) take place. They are known as the maximum
principle which is really a milestone in modern optimal control theory. It states that any

dynamic system closed by an optimal control strategy or, simply, by an optimal control

is a Hamiltonian (with the doubled dimension) system given by a system of the forward–

backward ordinary differential equations and, in addition, an optimal control maximizes

the function called Hamiltonian. Its mathematical importance consists of the following

fact: the maximization of the Hamiltonian with respect to a control variable given in a

finite-dimensional space looks and really is much easier than the original optimization

problem formulated in an infinite-dimensional space. The key idea of the original version

of the maximum principle comes from classical variations calculus. To derive the main

MP formulation, first one needs to perturb slightly an optimal control using the so-called

needle-shape (spike) variations and, second, to consider the first-order term in a Taylor

expansion with respect to this perturbation. Tending perturbations to zero, some variation

inequalities may be obtained. Then the final result follows directly from duality.

22.6.1 Needle-shape variations

Let (x∗ (·), u∗ (·)) be the given optimal pair for the problem (22.52) and Mε ⊆ [0, T ]

be a measurable set of the time interval with Lebesgue measure |Mε| = ε > 0. Let now

u (·) ∈ Uadmis [0, T ] be any given admissible control.

Definition 22.7. Define the following control

uε (t) :=
⎧⎨
⎩

u∗ (t) if t ∈ [0, T ]�Mε

u (t) ∈ Uadmis [0, T ] if t ∈ Mε

(22.58)

Evidently uε (·) ∈ Uadmis [0, T ]. Below uε (·) is referred to as a needle-shape or spike
variation of the optimal control u∗ (t).

The next lemma plays a key role in proving the basic MP theorem.

Lemma 22.8. (The variational equation) Let xε (·) := x (·, uε (·)) be the solution of
(22.52) for the plant model given by (22.40) under the control uε (·) and �ε (·) be the
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solution to the following differential equation

�̇ε (t) = ∂

∂x
f (x∗ (t), u∗ (t), t)�ε (t)

+ [f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t)]χMε (t)
�ε (0) = 0

(22.59)

where χMε (t) is the characteristic function of the set Mε, that is

χMε (t) :=
{
1 if t ∈ Mε

0 if t /∈ Mε

(22.60)

Then

max
t∈[0,T ]

‖xε (t)− x∗ (t)‖ = O (ε)

max
t∈[0,T ]

‖�ε (t)‖ = O (ε)

max
t∈[0,T ]

‖xε (t)− x∗ (t)−�ε (t)‖ = o (ε)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(22.61)

and the following variational equations hold
(a) for the cost function given in Bolza form (22.41)

J (uε (·))− J (u∗ (·)) =
(
∂

∂x
h0 (x

∗ (T )),�ε (T )
)

+
T∫

t=0

{(
∂

∂x
h (x∗ (t), u∗ (t), t),�ε (t)

)

+ [h (x∗ (t), uε (t), t)− h (x∗ (t), u∗ (t), t)]χMε (t)
}
dt + o (ε)

(22.62)

(b) for the cost function given in Mayer form (22.44)

J (uε (·))− J (u∗ (·)) =
(
∂

∂x
h0 (x

∗ (T )),�ε (T )
)
+ o (ε) (22.63)

Proof. Define δε (t) := xε (t)− x∗ (t). Then assumption (A2) (22.46) for any t ∈ [0, T ]

implies

‖δε (t)‖ ≤
t∫

s=0

L ‖δε (s)‖ ds +Kε (22.64)

which, by the Gronwall lemma 19.4, leads to the first relation in (22.61). Define

ηε (t) := xε (t)− x∗ (t)−�ε (t) = δε (t)−�ε (t) (22.65)
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Then

η̇ε (t)= [f (xε (t), uε (t), t)− f (x∗ (t), u∗ (t), t)]

− ∂

∂x
f (x∗ (t), u∗ (t), t)�ε (t)

− [f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t)]χMε (t)

=
1∫

θ=0

[
∂

∂x
f (x∗ (t)+ θδε (t), uε (t), t)− ∂

∂x
f (x∗ (t), u∗ (t), t)

]
dθδε (t)

− [f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t)]χMε (t)

+ ∂

∂x
f (x∗ (t), u∗ (t), t) ηε (t)

(22.66)

Integrating the last identity (22.66) and in view of (A2) (22.46) and (A3) (22.47), we

obtain

‖ηε (t)‖ ≤
t∫

s=0

1∫
θ=0

[ω̄ (θ ‖δε (s)‖ + d (uε (s), u∗ (s)))] ‖δε (s)‖ dθds

+
t∫

s=0

ω̄ (d (uε (s), u∗ (s))) χMε (s) ds +
t∫

s=0

∂

∂x
f (x∗ (s), u∗(s), s) ηε (s) ds

≤ Const · ε · o (1)+ Const ·
t∫

s=0

‖ηε (s)‖ ds

(22.67)

The last inequality in (22.67) by the Gronwall lemma directly implies the third relation in

(22.61). The second relation follows from the first and third ones. The same manipulations

lead to (22.62) and (22.63). �

22.6.2 Adjoint variables and MP formulation

The classical format of MP formulation gives a set of first-order necessary conditions
for optimal pairs.

Theorem 22.11. (MP for Mayer form with a fixed horizon) If under assumptions
(A1)–(A3) a pair (x∗ (·), u∗ (·)) is optimal then there exist the vector functions ψ(t),
satisfying the system of the adjoint equations

ψ̇(t) = − ∂
∂x
f (x∗ (t), u∗ (t), t)ᵀ ψ(t) a.e. t ∈ [0, T ] (22.68)
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and nonnegative constants μ ≥ 0 and νl ≥ 0 (l = 1, . . . , L) such that the following four
conditions hold:

(a) (the maximality condition): for almost all t ∈ [0, T ]

H(ψ(t), x∗(t), u∗(t), t) = max
u∈U H(ψ(t), x

∗(t), u, t) (22.69)

where the Hamiltonian is defined by

H(ψ, x, u, t) := ψᵀf (x, u, t)

t, x, u, ψ ∈ [0, T ]× Rn × Rr × Rn
(22.70)

(b) (transversality condition): the equality

ψ(T )+ μ ∂
∂x
h0(x

∗ (T ))+
L∑
l=1

νl
∂

∂x
gl(x

∗(T )) = 0 (22.71)

holds;
(c) (complementary slackness conditions): either the equality gl(x∗(T )) = 0 holds, or
νl = 0, that is, for any (l = 1, . . . , L)

νlgl(x
∗(T )) = 0 (22.72)

(d) (nontriviality condition): at least one of the numbers |ψ(T )| and νl is distinct from
zero, that is,

‖ψ(T )‖ + μ+
L∑
l=1

νl > 0 (22.73)

Proof. Letψ(t) be the solution of (22.68) corresponding to the terminal conditionψ(T ) =
b and t̄ ∈ [0, T ]. Define Mε := [t̄ , t̄ + ε] ⊆ [0, T ]. If u∗(t) is an optimal control, then

according to the Lagrange principle (see Theorem 21.12), formulated for a Banach space,

there exist constants μ ≥ 0 and νl ≥ 0 (l = 1, . . . , L) such that for any ε ≥ 0

L (uε (·), μ, ν)− L (u∗ (·), μ, ν) ≥ 0 (22.74)

where

L (u (·), μ, ν) := μJ (u (·))+
L∑
l=1

νlgl (x (T )) (22.75)

Taking into account that ψ(T ) = b and �ε (0) = 0, by the differential chain rule, applied

to the term ψ(t)ᵀ�ε (t), and, in view of (22.59) and (22.68), we obtain

bᵀ�ε (T ) = ψ(T )ᵀ�ε (T )− ψ(0)ᵀ�ε (0)

=
T∫

t=0

d (ψ(t)ᵀ�ε (t)) =
T∫

t=0

(
ψ̇(t)ᵀ�ε (t)+ ψ(t)ᵀ�̇ε (t)) dt
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=
T∫

t=0

[
−�ε (t)ᵀ ∂

∂x
f (x∗ (t), u∗ (t), t)ᵀ ψ(t)

+ ψ(t)ᵀ ∂
∂x
f (x∗ (t), u∗ (t), t)�ε (t)

+ ψ(t)ᵀ [f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t)]χMε (t)
]
dt

=
T∫

t=0

ψ(t)ᵀ [f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t)]χMε (t) dt
(22.76)

The variational equality (22.62) together with (22.74) and (22.76) implies

0 ≤ L (uε (·), μ, ν)− L (u∗ (·), μ, ν)

= μ
(
∂

∂x
h0 (x

∗ (T )),�ε (T )
)
+ bᵀ�ε (T )

−
T∫

t=0

ψ(t)ᵀ (f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t)) χMε (t) dt

+
L∑
l=1

νl [gl (x (T ))− gl (x∗ (T ))]+ o (ε)

=
(
μ
∂

∂x
h0 (x

∗ (T ))+ b +
L∑
l=1

νl
∂

∂x
gl (x

∗ (T )),�ε (T )

)

−
t̄+ε∫
t=t̄

[ψ(t)ᵀ (f (x∗ (t), uε (t), t)− f (x∗ (t), u∗ (t), t))] dt + o (ε)

=
(
μ
∂

∂x
h0 (x

∗ (T ))+ b +
L∑
l=1

νl
∂

∂x
gl (x

∗ (T )),�ε (T )

)

−
t̄+ε∫
t=t̄

[H(ψ (t), x∗ (t), uε (t), t)−H(ψ (t), x∗ (t), u∗ (t), t)] dt

(22.77)

1. Tending ε to zero from (22.77) it follows that

0 ≤
(
μ
∂

∂x
h0 (x

∗ (T ))+ b +
L∑
l=1

νl
∂

∂x
gl (x

∗ (T )),�ε (T )

)
|ε=0



676 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

which should be valid for any �ε (T ) |ε=0. This is possible only if (this can be proved

by contradiction)

μ
∂

∂x
h0 (x

∗ (T ))+ b +
L∑
l=1

νl
∂

∂x
gl (x

∗ (T )) = 0 (22.78)

which is equivalent to (22.71). So, the transversality condition is proven.

2. In view of (22.78), the inequality (22.77) may be simplified to the following one

0 ≤ −
t̄+ε∫
t=t̄

[H(ψ (t), x∗ (t), uε (t), t)−H(ψ (t), x∗ (t), u∗ (t), t)] dt

(22.79)

This inequality together with separability of metric space U directly leads to the

maximality condition (22.69).

3. Suppose that (22.72) does not hold, that is, there exist an index l0 and a multiplier ν̃l0
such that νlgl(x

∗(T )) < 0. This gives

L (u∗ (·), μ, ν̃) := μJ (u∗ (·))+
L∑
l=1

ν̃lgl (x
∗ (T ))

= μJ (u∗ (·))+ ν̃l0gl0 (x∗ (T )) < μJ (u∗ (·)) = L (u∗ (·), μ, ν)

It means that u∗ (·) is not optimal control. We obtain the contradiction. So, the com-

plementary slackness condition is proven too.

4. Suppose that (22.73) is not valid, i.e., |ψ(T )| + μ + ∑L

l=1 νl = 0. This implies

ψ(T ) = 0, μ = νl = 0 (l = 1, . . . , L), and, hence, in view of (22.68) and

by the Gronwall lemma 19.4, it follows that ψ(t) = 0 for all t ∈ [0, T ]. So,

H(ψ(t), x(t), u(t), t) = 0 for any u(t) (not only for u∗(t)). This means that the

application of any admissible control keeps the cost function unchangeable which

corresponds to a trivial situation. So, the nontriviality condition is proven too. �

22.6.3 The regular case

In the, so-called, regular case, when μ > 0 (this means that the nontriviality condition

holds automatically), the variable ψ(t) and constants νl may be normalized and change

to ψ̃(t) := ψ(t)/μ and ν̃l := νl/μ. In this new variable the MP formulation looks as

follows.

Theorem 22.12. (MP in the regular case) If under assumptions (A1)–(A3) a pair
(x∗ (·), u∗ (·)) is optimal, then there exists a vector function ψ̃(t) satisfying the system of
the adjoint equations

d

dt
ψ̃(t) = − ∂

∂x
f (x∗ (t), u∗ (t), t)ᵀ ψ̃(t) a.e. t ∈ [0, T ]
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and νl ≥ 0 (l = 1, . . . , L) such that the following three conditions hold:

(a) (the maximality condition): for almost all t ∈ [0, T ]

H(ψ̃(t), x∗(t), u∗(t), t) = max
u∈U H(ψ̃(t), x

∗(t), u, t) (22.80)

where the Hamiltonian is defined by

H(ψ, x, u, t) := ψ̃ᵀf (x, u, t)

t, x, u, ψ ∈ [0, T ]× Rn × Rr × Rn

(b) (transversality condition): for every α ∈ A, the equalities

ψ̃(T )+ ∂

∂x
h0(x

∗ (T ))+
L∑
l=1

ν̃l
∂

∂x
gl(x

∗(T )) = 0

hold;
(c) (complementary slackness conditions): either the equality gl(x∗(T )) = 0 holds, or
νl = 0, that is, for any (l = 1, . . . , L) νlgl(x

∗(T )) = 0.

Remark 22.2. This means that without loss of generality we may put μ = 1. It may be

shown that the regularity property takes place if the vectors
∂

∂x
gl(x

∗(T )) are linearly

independent. The verification of this property is usually not so simple a task.

22.6.4 Hamiltonian form and constancy property

Corollary 22.3. (Hamiltonian for the Bolza problem) Hamiltonian for the Bolza prob-
lem has the form

H(ψ, x, u, t) := ψᵀf (x, u, t)− μh (x (t), u (t), t)
t, x, u, ψ ∈ [0, T ]× Rn × Rr × Rn

(22.81)

Proof. It follows from (22.53)–(22.57). Indeed, since the Mayer’s form representation

(ẋn+1 (t) = h (x (t), u (t), t)) implies ψ̇n+1 (t) = 0, then ψn+1 (T ) = −μ. �

Corollary 22.4. (Hamiltonian form) Equations (22.40) and (22.68) may be represented
in the, so-called, Hamiltonian form (the forward–backward ODE form):

ẋ∗ (t) = ∂

∂ψ
H(ψ(t), x∗(t), u∗ (t), t), x∗(0) = x0

ψ̇ (t) = − ∂
∂x
H(ψ(t), x∗(t), u∗ (t), t)

ψ(T ) = −μ ∂
∂x
h0 (x

∗ (T ))−
L∑
l=1

νl
∂

∂x
gl (x

∗ (T ))

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(22.82)

Proof. It directly follows from comparison of the right-hand side of (22.70) with (22.40)

and (22.68). �
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Corollary 22.5. (Constancy property) For stationary systems when in (22.40), (22.41)

f = f (x (t), u (t)), h = h (x (t), u (t)) (22.83)

it follows that for all t ∈ [t0, T ]

H(ψ(t), x∗(t), u∗ (ψ(t), x∗(t))) = const (22.84)

Proof. One can see that in this case the Hamiltonian H = H(ψ(t), x(t), u(t)) does not
depend on t directly, that is,

∂

∂t
H = 0. Hence, u∗(t) is a function of ψ(t) and x∗(t) only,

i.e., u∗(t) = u∗ (ψ(t), x∗(t)). Denote

H(ψ(t), x∗(t), u∗ (ψ(t), x∗(t))) := H̃ (ψ(t), x∗(t))

Then (22.82) becomes

ẋ (t) = ∂

∂ψ
H̃ (ψ(t), x∗(t)), ψ̇ (t) = − ∂

∂x
H̃ (ψ(t), x∗(t))

which implies

d

dt
H̃ (ψ(t), x∗(t)) = ∂

∂ψ
H̃ (ψ(t), x∗(t))ᵀ ψ̇(t)

+ ∂

∂x
H̃ (ψ(t), x∗(t))ᵀ ẋ(t) = 0

and hence H̃ (ψ(t), x∗(t)) = const for any t ∈ [t0, T ]. �

22.6.5 Nonfixed horizon optimal control problem and zero property

Consider the following generalization of the optimal control problem (22.40), (22.44),

(22.50) permitting terminal time to be free. In view of this, the optimization problem may

be formulated in the following manner: minimize

J (u (·)) = h0(x (T ), T ) (22.85)

over u (·) ∈ Uadmis [0, T ] and T ≥ 0 with the terminal set M (T ) given by

M (T ) = {x (T ) ∈ Rn : gl(x (T ), T ) ≤ 0 (l = 1, . . . , L)} (22.86)

Theorem 22.13. (MP for non fixed horizon case) If under assumptions (A1)–(A3) the
pair (T ∗, u∗ (·)) is a solution of the problem (22.85), (22.86) and x∗ (t) is the corre-
sponding optimal trajectory, then there exist the vector functions ψ(t), satisfying the
system of the adjoint equations (22.68), and nonnegative constants μ ≥ 0 and νl ≥ 0
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(l = 1, . . . , L) such that all four conditions of the previous Theorem 22.11 are fulfilled
and, in addition, the following condition to the terminal time holds:

H(ψ (T ), x (T ), u (T ), T ) := ψᵀ (t) f (x (T ), u (T − 0), T )

= μ ∂
∂T
h0(x

∗ (T ), T )+
L∑
l=1

νl
∂

∂T
gl(x

∗(T ), T )
(22.87)

Proof. Since (T ∗, u∗ (·)) is a solution of the problem then evidently u∗ (·) is a solution

of the problem (22.40), (22.44), (22.50) with the fixed horizon T = T ∗ and, hence, all

four properties of the Theorem 22.11 with T = T ∗ should be fulfilled. Let us find the

additional condition to the terminal time T ∗ which should be satisfied too.

(a) Consider again the needle-shape variation defined as

uε (t) :=

⎧⎪⎨
⎪⎩
u∗ (t) if t ∈ [0, T ∗]�

(
Mε ∧ (T ∗ − ε, T ∗]

)
u (t) ∈ Uadmis [0, T

∗] if t ∈ Mε ⊆ [0, T ∗ − ε)
u (t) ∈ Uadmis [0, T

∗] if t ∈ [T ∗ − ε, T ∗]
(22.88)

Then, for L (u (·), μ, ν, T ),

L (u (·), μ, ν, T ) := μJ (u (·), T )+
L∑
l=1

νlgl (x(T ), T ) (22.89)

it follows that

0 ≤ L (uε (·), μ, ν, T ∗ − ε)− L (u∗ (·), μ, ν, T ∗)

= μh0 (x (T ∗ − ε), T ∗ − ε)+
L∑
l=1

νlgl (x (T
∗ − ε), T ∗ − ε)

−μh0 (x∗ (T ∗), T ∗)−
L∑
l=1

νlgl (x
∗ (T ∗), T ∗)

Hence, applying the transversality condition (22.71) we obtain:

0≤ −ε
(
μ
∂

∂T
h0 (x(T

∗), T ∗)+ νl ∂
∂T
gl (x (T

∗), T ∗)
)
+ o (ε)

−ε
(
μ
∂

∂x
h0 (x (T

∗), T ∗)

+
L∑
l=1

νl
∂

∂x
gl (x (T

∗), T ∗), f (x (T ∗), u∗ (T ∗ − 0), T ∗)

)

= − ε
(
μ
∂

∂T
h0 (x (T

∗), T ∗)+ νl ∂
∂T
gl (x (T

∗), T ∗)
)

+ ε ψᵀ (T ∗) f (x (T ∗), u∗ (T ∗ − 0), T ∗)+ o (ε)

= − ε
(
μ
∂

∂T
h0 (x (T

∗), T ∗)+ νl ∂
∂T
gl (x (T

∗), T ∗)
)

+ ε H(ψ (T ∗), x∗ (T ∗), u∗ (T − 0), T ∗)+ o (ε)
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which, by dividing by ε and tending ε to zero, implies

H(ψ (T ∗), x∗ (T ∗), u∗ (T − 0), T ∗)

≥ μ ∂
∂T
h0 (x (T

∗), T ∗)+ νl ∂
∂T
gl (x (T

∗), T ∗)
(22.90)

(b) Analogously, for the needle–shape variation

uε (t) :=

⎧⎪⎨
⎪⎩
u∗ (t) if t ∈ [0, T ∗)�Mε

u (t) ∈ Uadmis [0, T ∗] if t ∈ Mε

u∗ (T ∗ − 0) if t ∈ [T ∗, T ∗ + ε]
(22.91)

it follows that

0≤ L (uε (·), μ, ν, T ∗ + ε)− L (u∗ (·), μ, ν, T ∗)

= ε
(
μ
∂

∂T
h0 (x (T

∗), T ∗)+ νl ∂
∂T
gl (x (T

∗), T ∗)
)

− ε H(ψ (T ∗), x∗ (T ∗), u∗ (T − 0), T ∗)+ o (ε)

and

H(ψ (T ∗), x∗ (T ∗), u∗ (T − 0), T ∗)

≤ μ ∂
∂T
h0 (x (T

∗), T ∗)+ νl ∂
∂T
gl (x (T

∗), T ∗)
(22.92)

Combining (22.88) and (22.91), we obtain (22.87). Theorem is proven. �

Corollary 22.6. (Zero property) If under the conditions of Theorem 22.13 the functions
h0 (x, T ), gl (x, T ) (l = 1, . . . , L) do not depend on T directly, that is,

∂

∂T
h0 (x, T ) = ∂

∂T
gl (x, T ) = 0 (l = 1, . . . , L)

then

H(ψ (T ∗), x∗ (T ∗), u∗ (T − 0), T ∗) = 0 (22.93)

If, in addition, the stationary case is considered (see (22.83)), then (22.93) holds for all
t ∈ [0, T ∗], that is,

H(ψ(t), x∗(t), u∗ (ψ(t), x∗(t))) = 0 (22.94)

Proof. The result directly follows from (22.84) and (22.93). �
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22.6.6 Joint optimal control and parametric optimization problem

Consider the nonlinear plant given by

·
xa (t) = f (xa (t), u (t), t; a), a.e. t ∈ [0, T ]

xa (0) = x0
}

(22.95)

at the fixed horizon T , where a ∈ Rp is a vector of parameters which also can be selected

to optimize the functional (22.44) which in this case is

J (u (·), a) = h0(xa (T )) (22.96)

(A4) It will be supposed that the right-hand side of (22.95) is differentiable on a at all

a ∈ Rp.

In view of this OCP is formulated as follows:

Minimize J (u (·), a) (22.96)

over u (·) ∈ Uadmis [0, T ] and a ∈ Rp
(22.97)

Theorem 22.14. (Joint OC and parametric optimization) If under assumptions
(A1)–(A3) and (A4) the pair (u∗ (·), a∗) is a solution of the problem (22.85), (22.86) and
x∗ (t) is the corresponding optimal trajectory, then there exist the vector functions ψ(t)
satisfying the system of the adjoint equations (22.68) with x∗ (t), u∗ (t), a∗ and nonnega-
tive constants μ ≥ 0 and νl ≥ 0 (l = 1, . . . , L) such that all four conditions of Theorem
22.11 are fulfilled and, in addition, the following condition to the optimal parameter
holds:

T∫
t=0

∂

∂a
H(ψ(t), x∗ (t), u∗ (t), t; a∗)dt = 0 (22.98)

Proof. For this problem L (u (·), μ, ν, a) is defined by

L (u (·), μ, ν, a) := μh0(x (T ))+
L∑
l=1

νlgl (x (T )) (22.99)

Introduce the matrix �a (t) = ∂

∂a
x∗ (t) ∈ Rn×p, called the matrix of sensitivity (with

respect to parameter variations), which satisfies the following differential equation:

�̇a (t)= d

dt

∂

∂a
x∗ (t) = ∂

∂a
ẋ∗ (t) = ∂

∂a
f (x∗ (t), u∗ (t), t; a∗)

= ∂

∂a
f (x∗ (t), u∗ (t), t; a∗)

+ ∂

∂x
f (x∗ (t), u∗ (t), t; a∗)�a(t), �a (0) = 0

(22.100)
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In view of this and using (22.68), it follows that

0 ≤ L (u∗ (·), μ, ν, a)− L (u∗ (·), μ, ν, a∗)

= (a − a∗)ᵀ�a(T )ᵀ
(
μ
∂

∂x
h0 (x

∗ (T ))+
L∑
l=1

νl
∂

∂x
gl (x

∗ (T ))

)

+ o (‖a − a∗‖) = (a − a∗)ᵀ�a(T )ᵀψ(T )+ o (‖a − a∗‖)
= (a − a∗)ᵀ [�a(T )ᵀψ(T )−�a(0)ᵀψ(0)]+ o (‖a − a∗‖)

= (a − a∗)ᵀ
T∫

t=0

d [�a(t)ᵀψ(t)]+ o (‖a − a∗‖)

= (a − a∗)ᵀ
T∫

t=0

[
−�a (t)ᵀ ∂

∂x
f (x∗ (t), u∗ (t), t; a∗)ᵀ ψ(t)

+�a (t)ᵀ ∂

∂x
f (x∗ (t), u∗ (t), t; a∗)ᵀ ψ(t)

+ ∂

∂a
f (x∗ (t), u∗ (t), t; a∗)ᵀ ψ(t)

]
dt + o (‖a − a∗‖)

= (a − a∗)ᵀ
T∫

t=0

∂

∂a
f (x∗ (t), u∗ (t), t; a∗)ᵀ ψ(t)dt + o (‖a − a∗‖)

But this inequality is possible for any a ∈ Rp in a small neighborhood of a∗ if and

only if the relation (22.98) holds (which may be proved by contradiction). Theorem is

proven. �

22.6.7 Sufficient conditions of optimality

The necessary and sufficient conditions of the constrained concave optimization

problem on x ∈ X ⊆ Rn is (see (21.80))

(∂f (x∗), x − x∗) ≤ 0

which should be valid for all x ∈ X (X is supposed to be a convex set and f (x) is

concave on X).

Here we will also need an additional assumption concerning the control region.

(A4) The control domain U is supposed to be a convex body (i.e., it is convex and has a

nonempty interior).

Lemma 22.9. (on a mixed subgradient) Let ϕ be a convex (or concave) function on
Rn × U where U is a convex body. Assuming that ϕ (x, u) is differentiable in x and
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is continuous in (x, u), the following inclusion turns out to be valid for any (x∗, u∗) ∈
Rn × U:

{(ϕx (x∗, u∗), r) | r ∈ ∂uϕ (x∗, u∗)} ⊆ ∂x,uϕ (x∗, u∗) (22.101)

Proof. For any y ∈ Rn, in view of the convexity of ϕ and its differentiability on x, it

follows that

ϕ (x∗ + y, u∗)− ϕ (x∗, u∗) ≥ (ϕx (x∗, u∗), y) (22.102)

Similarly, in view of the convexity of ϕ in u, there exists a vector r ∈ Rr such that for

any x∗, y ∈ Rn and any ū ∈ U

ϕ (x∗ + y, u∗ + ū)− ϕ (x∗ + y, u∗) ≥ (r, ū) (22.103)

So, taking into account the previous inequalities (22.102)–(22.103), we derive

ϕ (x∗ + y, u∗ + ū)− ϕ (x∗, u∗)
= [ϕ (x∗ + y, u∗ + ū)− ϕ (x∗ + y, u∗)]
+ [ϕ (x∗ + y, u∗)− ϕ (x∗, u∗)] ≥ (r, ū)+ (ϕx(x∗, u∗), y)

(22.104)

Then, by the definition of subgradient (21.69), it means that

(ϕx (x
∗, u∗); r) ⊆ ∂dx,uϕ (x∗, u∗)

The concavity case is very similar if we note that (−ϕ) is convex. �

Now we are ready to formulate the central result of this subsection.

Theorem 22.15. (Sufficient condition of optimality) Let, under assumptions (A1)–(A4),
the pair (x∗ (·), u∗ (·)) be an admissible pair and ψ (t) be the corresponding adjoint
variable satisfying (22.68). Assume that

1. h0(x) and gl (x) (l = 1, . . . , L) are convex;
2. H(ψ(t), x, u, t) is concave in (x, u) for any fixed t ∈ [0, T ] and any ψ(t) ∈ Rn.

Then this pair (x∗ (·), u∗ (·)) is optimal in the sense of the cost functional J (u (·)) =
h0(x (T )) (22.44) if

H(ψ(t), x∗(t), u∗(t), t) = max
u∈U H(ψ(t), x∗(t), u, t) (22.105)

at almost all t ∈ [0, T ].

Proof. By (22.105) and in view of the criterion of optimality (21.80), it follows for any

u ∈ U that

(∂uH(ψ(t), x
∗(t), u∗(t), t), u− u∗(t)) ≤ 0 (22.106)
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Then, by concavity of H(ψ(t), x, u, t) in (x, u), for any admissible pair (x, u) and

applying the integration operation, in view of (22.106) we get

T∫
t=0

H(ψ(t), x(t), u, t)dt −
T∫

t=0

H(ψ(t), x∗(t), u∗(t), t)dt

≤
T∫

t=0

[(
∂

∂x
H(ψ(t), x∗(t), u∗(t), t), x(t)− x∗(t)

)

+ (∂uH(ψ(t), x
∗(t), u∗(t), t), u− u∗(t))] dt

≤
T∫

t=0

(
∂

∂x
H(ψ(t), x∗(t), u∗(t), t), x(t)− x∗(t)

)
dt

(22.107)

Let us introduce the “sensitivity” process δ (t) := x (t) − x∗ (t) which evidently

satisfies

δ̇ (t) = η (t) a.e. t ∈ [0, T ], δ (0) = 0

η (t) := f (x(t), u(t), t)− f (x∗(t), u∗(t), t)
(22.108)

Then, in view of (22.68) and (22.107), it follows that

∂

∂x
h0 (x

∗(T ))ᵀ δ (T ) = − [ψ (T )ᵀ δ (T )− ψ (0)ᵀ δ (0)]

= −
T∫

t=0

d [ψ (t)ᵀ δ (t)] =
T∫

t=0

∂

∂x
H(ψ(t), x∗(t), u∗(t), t)ᵀδ (t) dt

−
T∫

t=0

ψ (t)ᵀ (f (x(t), u(t), t)− f (x∗(t), u∗(t), t)) dt

≥
T∫

t=0

[H(ψ(t), x(t), u, t)−H(ψ(t), x∗(t), u∗, t)] dt
(22.109)

−
T∫

t=0

ψ (t)ᵀ (f (x(t), u(t), t)− f (x∗(t), u∗(t), t)) dt = 0

The convexity of h0 (x) and gl (x) (l = 1, . . . , L) and the complementary slackness

condition yield

(
∂

∂x
gl (x

∗(T )), δ (T )
)
≥ 0 and, hence,
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∂

∂x
h0 (x

∗(T )) δ (T )

≤
[
∂

∂x
h0 (x

∗(T ))+
L∑
l=1

νl
∂

∂x
gl (x

∗(T ))

]ᵀ

δ (T )

≤ h0 (x(T ))− h0 (x∗(T ))+
L∑
l=1

νlgl (x
∗(T ))

= h0 (x(T ))− h0 (x∗(T ))

(22.110)

Combining (22.109) with (22.110), we derive

J (u(·))− J (u∗(·))
= h0 (x(T ))− h0 (x∗(T )) ≥ ∂

∂x
h0 (x

∗(T )) δ (T ) ≥ 0

and, since u(·) is arbitrarily admissible, the desired result follows. �

Remark 22.3. Notice that to check the concavity property of H(ψ(t), x, u, t) (22.70) in
(x, u) for any fixed t ∈ [0, T ] and any ψ(t) ∈ Rn is not a simple task since it depends on
the sign of the ψi(t) components. So, the theorem given above may be applied directly
practically only for a very narrow class of particular problems where the concavity
property may be analytically checked.

Example 22.5. Consider the following variation calculus problem:

T∫
t=0

|ẋ (t)| dt → inf
x∈C1[0,T ]

ẋ (t) ≥ a > 0, x (0) = 0, x (T ) = ξ
(22.111)

It can be represented as an optimal control problem. Indeed, denoting ẋ := u, the initial
problem (22.111) can be represented as

T∫
t=0

|u (t)| dt → inf
u∈C[0,T ]

ẋ (t) = u (t), u (t) ≥ a > 0, x (0) = 0, x (T ) = ξ
(22.112)

According to (22.81), the corresponding Hamiltonian function is

H(ψ, x, u, t) := ψu− μ |u (t)|
where ψ = ψ (t) satisfies the following adjoint ODE (22.68) ψ̇ (t) = 0 with the transver-
sality condition ψ(T ) = 0, which gives ψ (t) = 0 for all t ∈ [0, T ]. The nontriviality
condition (22.73) implies μ > 0. So, by the maximality condition (22.80), it follows that

argmax
u≥a H(ψ, x, u, t) = argmin

u≥a μ
|u (t)| = a
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This leads to the following form for the optimal control: u (t) = a. The corresponding
optimal curve is x(t) = at + c. The boundary conditions imply c = 0, aT = ξ .
So, finally, we may conclude that the initial problem (22.111) has the unique solution
x (t) = at if and only if the terminal value x (T ) = ξ > 0 is equal to ξ = aT . In any
other cases the solution does not exist.

Example 22.6. Consider the following variation calculus problem

T → inf
x∈C2[0,T ]

|ẍ (t)| ≤ 2

x (0) = 1, x (T ) = −1, ẋ (0) = ẋ (T ) = 0

(22.113)

Let us introduce u (t) := ẍ (t) ∈ C[−1, T ], x1 (t) := x (t) and x2 (t) := ẋ (t). Then the
initial problem (22.113) can be represented as the following optimal control problem:

T → inf
u∈C[0,T ]

ẋ1 = x2, ẋ2 = u, |u (t)| ≤ 2

x1 (0) = 1, x1 (T ) = −1, x2 (0) = x2 (T ) = 0

(22.114)

By (22.81), the corresponding Hamiltonian function is

H(ψ, x, u, t) := ψ1x2 + ψ2u− μ, μ ≥ 0

since T = ∫ T
t=0
h dt with h = 1. Here ψ = ψ (t) satisfies the following system of the

adjoint ODE (22.68)

ψ̇1 (t) = 0, ψ̇2 (t) = −ψ1

which solution is a ramp function

ψ1 (t) = c1
ψ2 (t) = −c1t + c2, c1, c2 = const

So, by the maximality condition (22.80), it follows that

u∗ (t)= argmax|u|≤2
H(ψ, x, u, t)

= argmax|u|≤2
H(ψ2u) = 2 signψ2 = 2 sign (c2 − c1t)

The corresponding optimal curve is

x1 (t) = 2

t∫
s=0

s∫
τ=0

sign (c2 − c1τ) dτ ds + c3t + c4

x2 (t) =
t∫

τ=0

sign (c2 − c1τ) dτ + c3
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By the boundary conditions it follows that

c4 = 1, c3 = 0

−1 = 2

T∫
s=0

⎡
⎣ s∫
τ=0

sign (c2 − c1τ) dτ
⎤
⎦ ds + 1

0 =
T∫

τ=0

sign (c2 − c1τ) dτ

Changing the time scale as τ ′ := τ/T leads to

0 =
1∫

τ ′=0

sign
(
c2 − c′1τ ′

)
dτ ′, c′1 = c1T

which implies 2c2 = c′1. Since sign (ab) = sign (a) sign (b)

−1=
T∫

s=0

⎡
⎣ s∫
τ=0

sign

[
c1

(
T

2
− τ

)]
dτ

⎤
⎦ ds

=
T∫

s=0

⎡
⎣ T∫
τ=0

χs≥τ sign
[
c1

(
T

2
− τ

)]
dτ

⎤
⎦ ds

=
T∫

τ=0

⎛
⎝ T∫
s=0

χs≥τ ds

⎞
⎠ sign

[
c1

(
T

2
− τ

)]
dτ =

T∫
τ=0

(T − τ) sign
[
c1

(
T

2
− τ

)]
dτ

=
T/2∫
τ=0

(T − τ)sign
[
c1

(
T

2
− τ

)]
dτ +

T∫
τ=T/2

[T − τ ] sign
[
c1

(
T

2
− τ

)]
dτ

sign c1

⎛
⎝ T/2∫
τ=0

(T − τ) dτ −
T∫

τ=T/2
(T − τ) dτ

⎞
⎠ = T

2

4
sign c1

This leads to the following conclusion

c1 < 0, T = 2

Many other interesting examples can be found in Alexeev et al. (1984).

22.7 Dynamic programing

The dynamic programing method is another powerful approach to solving opti-

mal control problems. It provides sufficient conditions for testing if some control is opti-

mal or not. The basic idea of this approach consists of considering a family of optimal
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control problems with different initial conditions (times and states) and of obtaining some

relationships among them via the, so-called, Hamilton–Jacoby–Bellman equation (HJB)

which is a nonlinear first-order partial differential equation. The optimal control can be

designed by maximization (or minimization) of the generalized Hamiltonian involved in

this equation. If this HJB equation is solvable (analytically or even numerically) then the

corresponding optimal controllers turn out to be given by a nonlinear feedback depending

on the optimized plant nonlinearity as well as the solution of the corresponding HJB equa-

tion. Such approach actually provides the solutions to the whole family of optimization

problems, and, in particular, to the original problem. Such a technique is called “invariant

embedding”. The major drawback of the classical HJB method is that it requires that

this partial differential equation admits a smooth enough solution. Unfortunately this is

not the case even for some very simple situations. To overcome this problem the so-

called viscosity solutions have been introduced (Crandall & Lions 1983). These solutions

are some sort of nonsmooth solutions with a key function to replace the conventional

derivatives by set-valued super/sub-differentials maintaining the uniqueness of solutions

under very mild conditions. These approaches not only save the DPM as a mathematical

method, but make it a powerful tool in tackling optimal control. In this section we do

not touch on this approach. But we will discuss the gap between necessary (MP) and

sufficient (DPM) conditions.

22.7.1 Bellman’s principle of optimality

Claim 22.1. (Bellman’s principle (BP) of optimality) “Any tail of an optimal trajec-
tory is optimal too.”2

In other words, if some trajectory in the phase space connects the initial x (0) and terminal

x (T ) points and is optimal in the sense of some cost functional, then the sub-trajectory,

connecting any intermediate point x (t ′) of the same trajectory with the same terminal

point x (T ), should also be optimal (see Fig. 22.2).

22.7.2 Sufficient conditions for BP fulfilling

Theorem 22.16. (Sufficient condition for BP fulfilling) Let

1. the performance index (a cost functional) J (u (·)) with u (·) ∈ Uadmis [0, T ] be sepa-
rable for any time t ′ ∈ (0, T ) such that

J (u (·)) = J1 (u1 (·), J2 (u2 (·))) (22.115)

where u1 (·) is the control within the time interval [0, t ′) called the initial control
strategy and u2 (·) is the control within the time interval [t ′, T ] called the terminal
control strategy;

2 Bellman’s principle of optimality, formulated in Bellman (1960), is as follows: “An optimal policy has the

property that whatever the initial state and the initial decisions it must constitute an optimal policy with regards

to the state resulting from the first decision.”
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0

x(0)

x1

x(t')

x(T)

x2

Fig. 22.2. Illustration of Bellman’s principle of optimality.

2. the functional J1 (u1 (·), J2 (u2 (·))) is monotonically nondecreasing with respect to
its second argument J2 (u2 (·)), that is,

J1 (u1 (·), J2 (u2 (·))) ≥ J1
(
u1 (·), J2

(
u′2 (·)

))
if J2 (u2 (·)) ≥ J2

(
u′2 (·)

) (22.116)

Then Bellman’s principle of optimality takes place for this functional.

Proof. For any admissible control strategies u1 (·), u2 (·) the following inequality holds

J ∗ := inf
u∈Uadmis[0,T ]

J (u (·))
= inf
u1∈Uadmis[0,t

′), u2∈Uadmis[t
′,T ]
J1 (u1 (·), J2 (u2 (·)))

≤ J1 (u1 (·), J2 (u2 (·)))
(22.117)

Select

u2 (·) = arg inf
u2∈Uadmis[t

′,T ]
J2 (u2 (·)) (22.118)

Then (22.117) and (22.118) imply

J ∗ ≤ J1
(
u1 (·), inf

u2∈Uadmis[t
′,T ]
J2 (u2 (·))

)
(22.119)

So,

u1 (·) = arg inf
u1∈Uadmis[t

′,T ]
J1

(
u1 (·), inf

u2∈Uadmis[t
′,T ]
J2 (u2 (·))

)
(22.120)

leads to

J ∗ ≤ inf
u1∈Uadmis[t

′,T ]
J1

(
u1 (·), inf

u2∈Uadmis[t
′,T ]
J2 (u2 (·))

)
(22.121)
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Since J1 (u1 (·), J2 (u2 (·))) is monotonically nondecreasing with respect to the second

argument, from (22.121) we obtain

inf
u1∈Uadmis [t ′,T ]

J1

(
u1(·), inf

u2∈Uadmis [t ′,T ]
J2 (u2 (·))

)
≤ inf
u1∈Uadmis [t ′,T ]

inf
u2∈Uadmis [t ′,T ]

J1 (u1(·), J2 (u2 (·)))
= inf
u∈Uadmis [0,T ]

J (u (·)) = J ∗
(22.122)

Combining (22.121) and (22.122), we finally derive that

J ∗ = inf
u1∈Uadmis [t ′,T ]

J1

(
u1 (·), inf

u2∈Uadmis [t ′,T ]
J2 (u2 (·))

)
(22.123)

This proves the desired result. �

Summary 22.3. In strict mathematical form this fact may be expressed as follows: under
the assumptions of the theorem above for any time t ′ ∈ (0, T )

inf
u∈Uadmis [0,T ]

J (u (·))

= inf
u1∈Uadmis [t ′,T ]

J1

(
u1 (·), inf

u2∈Uadmis [t ′,T ]
J2 (u2 (·))

)
(22.124)

Corollary 22.7. For the cost functional

J (u (·)) := h0 (x (T ))+
T∫

t=0

h (x (t), u (t), t) dt

given in the Bolza form (22.41) Bellman’s principle holds.

Proof. For any t ′ ∈ (0, T ) from (22.41) obviously it follows that

J (u (·)) = J1 (u1 (·))+ J2 (u2 (·)) (22.125)

where

J1 (u1 (·)) :=
t ′∫

t=0

h (x (t), u1 (t), t) dt

J2 (u2 (·)) := h0 (x (T ))+
T∫

t=t ′
h (x (t), u2 (t), t) dt

(22.126)

The representation (22.125) evidently yields the validity (22.115) and (22.116) for this

functional. �
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22.7.3 Invariant embedding

22.7.3.1 System description and basic assumptions
Let (s, y) ∈ [0, T )× Rn be “an initial time and state pair” to the following controlled

system over [s, T ]:

·
x (t) = f (x (t), u (t), t), a.e. t ∈ [s, T ]

x (s) = y

}
(22.127)

where x ∈ Rn is its state vector, and u ∈ Rr is the control that may run over a given

control region U ⊂ Rr with the cost functional in the Bolza form

J (s, y; u (·)) := h0 (x (T ))+
T∫

t=s
h (x (t), u (t), t) dt (22.128)

containing the integral term as well as the terminal one and with the terminal set M ⊆
Rn given by the inequalities (22.42). Here, as before, u (·) ∈ Uadmis [s, T ]. For s = 0 and

y = x0 this plant coincides with the original one given by (22.40).

Suppose also that assumption (A1) is accepted and, instead of (A2), its small modifi-

cation holds:

(A2′) The maps

f : Rn × U × [0, T ]→ Rn

h : Rn × U × [0, T ]→ R

h0 : Rn × U × [0, T ]→ R

gl : Rn → Rn (l = 1, . . . , L)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (22.129)

are uniformly continuous in (x, u, t) including t (before in (A2) they were assumed to

be only measurable) and there exists a constant L such that for ϕ = f (x, u, t), h (x, u, t),
h0 (x, u, t), gl (x) (l = 1, . . . , L) the following inequalities hold:

∥∥ϕ (x, u, t)− ϕ (x̂, û, t)∥∥ ≤ L∥∥x − x̂∥∥
∀t ∈ [0, T ], x, x̂ ∈ Rn, u ∈ U
‖ϕ (0, u, t)‖ ≤ L ∀u, t ∈ U × [0, T ]

⎫⎪⎬
⎪⎭ (22.130)

It is evident that under assumptions (A1)–(A2′) for any (s, y) ∈ [0, T ) × Rn and any

u (·) ∈ Uadmis [s, T ] the optimization problem

J (s, y; u (·))→ min
u(·)∈Uadmis[s,T ]

(22.131)

formulated for the plant (22.127) and for the cost functional J (s, y; u (·)) (22.128),

admits a unique solution x (·) := x (·, s, y, u (·)) and the functional (22.128) is well

defined.
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Definition 22.8. (The value function) The function V (s, y) defined for any (s, y) ∈
[0, T )× Rn as

V (s, y) := inf
u(·)∈Uadmis[s,T ]

J (s, y; u (·))
V (T , y) = h0(y)

}
(22.132)

is called the value function of the optimization problem (22.131).

22.7.3.2 Dynamic programing equation in the integral form
Theorem 22.17. Under assumptions (A1)–(A2′) for any (s, y) ∈ [0, T )×Rn the following
relation holds

V (s, y)= inf
u(·)∈Uadmis[s,T ]

{ ŝ∫
t=s
h (x (t, s, y, u (·)), u (t), t) dt

+ V (
ŝ, x

(
ŝ, s, y, u (·)))} ∀ŝ ∈ [s, T ]

(22.133)

Proof. The result follows directly from BP of optimality (22.124), but, in view of the

great importance of this result, we present the proof again, using the concrete form of the

Bolza cost functional (22.128). Denoting the right-hand side of (22.133) by V̄ (s, y) and

taking into account the definition (22.132), for any u (·) ∈ Uadmis [s, T ] we have

V (s, y) ≤ J (s, y; u (·))

=
ŝ∫

t=s
h (x (t, s, y, u (·)), u (t), t) dt + J (ŝ, x(ŝ); u (·))

and, taking infimum over u (·) ∈ Uadmis [s, T ], it follows that

V (s, y) ≤ V̄ (s, y) (22.134)

Hence, for any ε > 0 there exists a control uε (·) ∈ Uadmis [s, T ] such that for xε (·) :=
x (·, s, y, uε (·))

V (s, y) + ε ≥ J (s, y; uε (·))

≥
ŝ∫

t=s
h (x (t, s, y, uε (·)), uε (t), t) dt + V

(
ŝ, xε

(
ŝ
)) ≥ V̄ (s, y) (22.135)

Tending ε → 0 the inequalities (22.134), (22.135) imply the result (22.133) of this

theorem. �

Finding a solution V (s, y) to equation (22.133), we would be able to solve the origin

optimal control problem putting s = 0 and y = x0. Unfortunately, this equation is very

difficult to handle because of overcomplicated operations involved on its right-hand side.

That’s why in the next subsection we will explore this equation further, trying to get

another equation for the function V (s, y) with a simpler and more practically used form.
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22.7.4 Hamilton–Jacoby–Bellman equation

To simplify the sequent calculations and following Young & Zhou (1999) we will

consider the original optimization problem without any terminal set, that is, M = Rn.

This may be expressed with the constraint function equal to

g (x) := 0 · ‖x‖2 − ε ≤ 0 (ε > 0) (22.136)

which is true for any x ∈ Rn. Slater’s condition (21.88) is evidently valid (also for any

x ∈ Rn). So, we deal here with the regular case. Denote by C1
(
[0, T )× Rn

)
the set of

all continuously differentiable functions v : [0, T )× Rn → R.

Theorem 22.18. (The HJB equation) Suppose that under assumptions (A1)–(A2′)
the value function V (s, y) (22.132) is continuously differentiable, that is, V ∈
C1

(
[0, T )× Rn

)
. Then V (s, y) is a solution to the following terminal value problem of

a first-order partial differential equation, named below the Hamilton–Jacoby–Bellman
(HJB) equation associated with the original optimization problem (22.131) without
terminal set (M = Rn):

− ∂
∂t
V (t, x)+ sup

u∈U
H(− ∂

∂x
V (t, x), x(t), u(t), t) = 0

(t, x) ∈ [0, T )× Rn, V (T , x) = h0 (x), x ∈ Rn

⎫⎬
⎭ (22.137)

where

H(ψ, x, u, t) := ψᵀf (x, u, t)− h (x (t), u (t), t)
t, x, u, ψ ∈ [0, T ]× Rn × Rr × Rn

(22.138)

is the same as in (22.81) with μ = 1 corresponding to the regular optimization problem.

Proof. Fixing u (t) ≡ u ∈ U , by (22.133) with ŝ ↓ s we obtain

V (s, y)− V
(
ŝ, x

(
ŝ, s, y, u (·)))

ŝ − s

− 1

ŝ − s
ŝ∫

t=s
h (x (t, s, y, u (·)), u (t), t) dt ≤ 0

which implies

− ∂
∂t
V (s, y)− ∂

∂x
V (s, y)ᵀ f (s, y, u)− h (s, u, t) ≤ 0

resulting in the following inequality

0 ≥ − ∂
∂t
V (s, y)+ sup

u∈U
H(− ∂

∂x
V (t, x), x(t), u(t), t) (22.139)
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On the other hand, for any ε > 0 and s, closed to ŝ, there exists a control u (·) := uε,ŝ (·)
∈ Uadmis [s, T ] for which

V (s, y) + ε (ŝ − s) ≥ ŝ∫
t=s
h (x (t, s, y, u (·)), u (t), t) dt + V (

ŝ, x
(
ŝ
))

(22.140)

Since V ∈ C1
(
[0, T )× Rn

)
, the last inequality leads to the following

−ε ≤ −V
(
ŝ, x

(
ŝ
))− V (s, y)
ŝ − s − 1

ŝ − s
ŝ∫

t=s
h (x (t, s, y, u (·)), u (t), t) dt

= 1

ŝ − s
ŝ∫

t=s

[
− ∂
∂t
V (t, x (t, s, y, u (·)))

− ∂

∂x
V (t, x (t, s, y, u (·)))ᵀ f (t, x (t, s, y, u (·)), u)

− h (x (t, s, y, u (·)), u (t), t)
]
dt

= 1

ŝ − s
ŝ∫

t=s

[
− ∂
∂t
V (t, x (t, s, y, u (·)))

+ H(− ∂
∂x
V (t, x (t, s, y, u (·))), x (t, s, y, u (·)), u(t), t)

]
dt

≤ 1

ŝ − s
ŝ∫

t=s

[
− ∂
∂t
V (t, x (t, s, y, u (·)))

+ sup
u∈U
H(− ∂

∂x
V (t, x (t, s, y, u (·))), x (t, s, y, u (·)), u(t), t)

]
dt

(22.141)

which for ŝ ↓ s gives

−ε ≤ − ∂
∂t
V (s, y)+ sup

u∈U
H(− ∂

∂x
V (s, y), y, u, s) (22.142)

Here the uniform continuity property of the functions f and h has been used, namely,

lim
t↓s sup

y∈Rn,u∈U
‖ϕ (t, y, u)− ϕ (s, y, u)‖ = 0, ϕ = f, h (22.143)

Combining (22.139) and (22.142) when ε→ 0 we obtain (22.137). �
The theorem below, representing the sufficient conditions of optimality, is known as

the verification rule.
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Theorem 22.19. (The verification rule) Accept the following assumptions:

1. Let u∗(·) := u∗
(
t, x,

∂

∂x
V (t, x)

)
be a solution to the following optimization problem

H(− ∂
∂x
V (t, x), x, u, t)→ sup

u∈U
(22.144)

with fixed values x, t and
∂

∂x
V (t, x);

2. Suppose that we can obtain the solution V (t, x) to the HJB equation

− ∂
∂t
V (t, x)+H(− ∂

∂x
V (t, x), x, u∗ (·), t) = 0

V (T , x) = h0 (x), (t, x) ∈ [0, T )× Rn

⎫⎪⎬
⎪⎭ (22.145)

which for any (t, x) ∈ [0, T ) × Rn is unique and smooth, that is, V ∈
C1

(
[0, T )× Rn

)
;

3. Suppose that for any (s, x) ∈ [0, T ) × Rn there exists (a.e. t ∈ [s, T ]) a solution
x∗ (s, x) to the following ODE (ordinary differential equation)

·
x
∗
(t) = f

(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
, t

)
x∗ (s) = x

(22.146)

Then with (s, x) = (0, x0) the pair(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

))
(22.147)

is optimal, that is, u∗
(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
is an optimal control.

Proof. The relations (22.138) and (22.145) imply

d

dt
V (t, x∗ (t)) = − ∂

∂t
V (t, x∗ (t))

+ ∂

∂x
V (t, x∗ (t))ᵀ f

(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
, t

)

= −h
(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
, t

)
(22.148)

Integrating this equality by t within [s, T ] leads to the following relation

V (T , x∗ (T ))− V (s, x∗ (s))

= −
T∫

t=s
h

(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
, t

)
dt
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which, in view of the identity V (T , x∗ (T )) = h0 (x∗ (T )), is equal to the following one

V (s, x∗ (s)) = h0 (x∗ (T ))

+
T∫

t=s
h

(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
, t

)
dt

(22.149)

By (22.133), this last equation means exactly that(
x∗ (t), u∗

(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

))

is an optimal pair and u∗
(
t, x∗ (t),

∂

∂x
V (t, x∗ (t))

)
is an optimal control. �

22.8 Linear quadratic optimal control

22.8.1 Nonstationary linear systems and quadratic criterion

Consider in this section the dynamic plants (22.40) in their partial representation when

at each time t ∈ [0, T ] the right-hand side of the mathematical model is a linear function

with respect to the state vector x (t) and the control action u (t) as well, namely, for

almost all t ∈ [0, T ]

·
x (t) = A (t) x (t)+ B (t) u (t)+ d (t)
x (0) = x0

}
(22.150)

Here the functional matrices A (t) ∈ Rn×n and B (t) ∈ Rn×r are supposed to be bounded

almost everywhere and the shifting vector function d (t) ∈ Rn is quadratically integrable,

that is,

A (·) ∈ L∞ (
0, T ;Rn×n), B (·) ∈ L∞ (

0, T ;Rn×r), d (·) ∈ L2 (0, T ;Rn)
(22.151)

The admissible control is assumed to be quadratically integrable on [0, T ] and the terminal

set M coincides with all space Rn (no terminal constraints), i.e.,

Uadmis [0, T ] :=
{
u (·) : u (·) ∈ L2 (0, T ;Rr ), M = Rn

}
(22.152)

The cost functional is considered in the form (22.41) with quadratic functions inside,

that is,

J (u (·))= 1

2
xᵀ (T )Gx (T )+ 1

2

T∫
t=0

[xᵀ (t)Q (t) x (t)

+ 2uᵀ (t) S (t) x (t)+ uᵀ (t) R (t) u (t)] dt

(22.153)
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where

G ∈ Rn×n, Q (·) ∈ L∞ (
0, T ;Rn×n)

S (·) ∈ L∞ (
0, T ;Rn×r), R (·) ∈ L∞ (

0, T ;Rr×r) (22.154)

such that for almost all t ∈ [0, T ]

G ≥ 0, Q (t) ≥ 0, R (t) ≥ δI, δ > 0 (22.155)

Note that all coefficients (except G) in (22.150) and (22.153) are dependent on time t .

22.8.2 Linear quadratic problem

Problem 22.3. (Linear quadratic (LQ) problem) For the dynamic model (22.150) find
an admissible control u∗ (·) ∈ Uadmis [0, T ] such that

J (u∗ (·)) = inf
u(·)∈Uadmis [0,T ]

J (u (·)) (22.156)

where the cost function J (u (·)) is given by (22.153).

We will refer to this problem as the linear quadratic optimal control problem (LQ).

22.8.3 Maximum principle for LQ problem

22.8.3.1 MP formulation
Theorem 22.20. (Maximum principle for LQ problem) If a pair (x∗(t), u∗ (·)) is opti-
mal, then

1. there exists a solution ψ (t) to the following ODE on [0, T ]

ψ̇ (t) = −Aᵀ (t) ψ(t)+Q(t) x∗ (t)+ Sᵀ (t) u∗ (t)

ψ(T ) = −Gx∗ (T )

⎫⎬
⎭ (22.157)

2. the optimal control u∗ (·) ∈ Uadmis [0, T ] is as follows

u∗ (t) = R−1 (t) [Bᵀ (t) ψ(t)− S (t) x∗ (t)] (22.158)

Proof. Since in this problem we have no terminal conditions, we deal with the regular

case and may take μ = 1. Then by (22.81) and (22.82) it follows that

H(ψ, x, u, t) := ψᵀ [A (t) x + B (t) u+ d (t)]

− 1

2
xᵀ (t)Q (t) x (t)− uᵀ (t) S (t) x (t)− 1

2
uᵀ (t) R (t) u (t)

(22.159)
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So,

ψ̇(t)= − ∂
∂x
H(ψ(t), x∗(t), u∗ (t), t)

= −Aᵀ (t) ψ(t)+Q(t) x∗ (t)+ Sᵀ (t) u∗ (t)

ψ(T )= − ∂
∂x
h0 (x

∗ (T )) = −Gx∗ (T )

which proves claim (1) (22.157) of this theorem. Besides, by MP implementation,

we have

u∗ (t) ∈ Argmin
u∈Rr

H (ψ, x∗, u, t)

or, equivalently,

∂

∂u
H(ψ, x∗, u∗, t) = Bᵀ (t) ψ(t)− R (t) u∗ (t)− S (t) x∗ (t) = 0 (22.160)

which leads to claim (2) (22.158). �

22.8.4 Sufficiency condition

Theorem 22.21. (on the sufficiency of MP) If the control u∗ (t) is as in (22.158) and

Q(t)− S (t) R−1 (t) Sᵀ (t) ≥ 0 (22.161)

then it is a unique optimal one.

Proof. It follows directly from Theorem 22.15 on the sufficient conditions of optimality.

The uniqueness is the result of equation (22.160) which has a unique solution if R (t) ≥ δI
a.e. t ∈ [0, T ], δ > 0 (22.155). Besides, the Hessian of the functionH(ψ, x, u, t) (22.159)

is as follows∥∥∥∥∥∥∥∥
∂2

∂x2
H(ψ, x, u, t)

∂2

∂x∂u
H(ψ, x, u, t)

∂2

∂u∂x
H(ψ, x, u, t)

∂2

∂u2
H(ψ, x, u, t)

∥∥∥∥∥∥∥∥ = −
∥∥∥∥ Q(t) S (t)

Sᵀ (t) R (t)

∥∥∥∥

Let us show that

∥∥∥∥ Q(t) S (t)

Sᵀ (t) R (t)

∥∥∥∥ ≥ 0. A symmetric block-matrix

[
M11 M12

M
ᵀ
12 M22

]
with

M22 > 0 is nonnegative definite, that is,[
M11 M12

M
ᵀ
12 M22

]
≥ 0

if and only if

M11 ≥ 0, M11 −M12M
−1
22 M

ᵀ
12 ≥ 0
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So, by the assumption (22.161) of the theorem we have that∥∥∥∥∥∥∥∥
∂2

∂x2
H(ψ, x, u, t)

∂2

∂x∂u
H(ψ, x, u, t)

∂2

∂u∂x
H(ψ, x, u, t)

∂2

∂u2
H(ψ, x, u, t)

∥∥∥∥∥∥∥∥ ≤ 0

This means that the function H(ψ, x, u, t) is concave (not obligatory strictly) on (x, u)

for any fixed ψ(t) and any t ∈ [0, T ]. �

Corollary 22.8. If S (t) ≡ 0, then the control u∗ (t) (22.158) is always uniquely optimal.

Proof. Under this assumption the inequality (22.161) always holds. �

22.8.5 Riccati differential equation and feedback optimal control

22.8.5.1 Riccati differential equation
Let us introduce the symmetric matrix function P (t) = Pᵀ (t) ∈ C1

(
0, T ;Rn×n) and

the vector function p (t) ∈C1 (0, T ;Rn)which satisfy (a.e. t ∈ [0, T ]) the following ODE:

−Ṗ (t) = P (t)A (t)+ Aᵀ (t) P (t)+Q(t)
− [Bᵀ (t) P (t)+ S (t)]ᵀ R−1 (t) [Bᵀ (t) P (t)+ S (t)]

= P (t) Ã (t)+ Ã (t)ᵀ P (t)− P (t) [B (t) R−1 (t) Bᵀ (t)
]
P (t)+ Q̃ (t)

P (T ) =G

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(22.162)

with

Ã (t) = A (t)− B (t) R−1 (t) S (t)

Q̃ (t)= Q(t)− Sᵀ (t) R−1 (t) S (t)
(22.163)

and

−ṗ (t) = [(
A (t)− B (t) R−1 (t) S (t)

)ᵀ

− P (t) B (t) R−1 (t) Bᵀ (t)
]
p (t) + P (t) d (t)

p (T ) = 0

⎫⎪⎪⎬
⎪⎪⎭ (22.164)

Definition 22.9. We refer to ODE (22.162) as the Riccati differential equation and p (t)
is referred to as the shifting vector associated with the problem (22.156).

22.8.6 Linear feedback control

Theorem 22.22. (on a linear feedback control) Assume that

P (t) = Pᵀ (t) ∈ C1
(
0, T ;Rn×n)
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is a solution of (22.162) and

p (t) ∈ C1 (0, T ;Rn)

verifies (22.164). Then the optimal control u∗ (·) ∈ Uadmis [0, T ] for the problem (22.156)
has the linear feedback form

u∗ (t) = −R−1 (t) [(Bᵀ (t) P (t)+ S (t)) x∗ (t)+ Bᵀ (t) p (t)] (22.165)

and the optimal cost function J (u∗ (·)) is as follows

J (u∗ (·)) = 1

2
x

ᵀ
0 P (0) x0 + pᵀ (0) x0

+ 1

2

T∫
t=0

[
2pᵀ (t) d (t)− ∥∥R−1/2 (t) Bᵀ (t) p (t)

∥∥2
]
dt

(22.166)

Proof.

1. Let us try to find the solution of ODE (22.157) in the form

ψ (t) = −P (t) x∗ (t)− p (t) (22.167)

The direct substitution of (22.167) into (22.157) leads to the following identity (t will

be suppressed for simplicity):(
Q− SᵀR−1S

)
x∗ − (

Aᵀ − SᵀR−1Bᵀ) [−P (t) x∗ − p] = ψ̇
= −Ṗ x∗ − P [Ax∗ + B (u∗)+ d]− ṗ = −Ṗ x∗
−P [

Ax∗ + BR−1 [Bᵀ (−Px∗ − p)− Sx∗]+ d]− ṗ
= −Ṗ x∗ − P (

A− BR−1 [BᵀP + S]) x∗ + PBR−1p − Pd − ṗ

This yields

0= (
Ṗ (t)+ P (t)A (t)+ Aᵀ (t) P (t)+Q(t)
− [Bᵀ (t) P (t)+ S (t)]ᵀ R−1 (t) [Bᵀ (t) P (t)+ S (t)]) x∗

ṗ (t)+ [(
A (t)− B (t) R−1 (t) S (t)

)ᵀ

−P (t) B (t) R−1 (t) Bᵀ (t)
]
p (t)+ P (t) d (t)

(22.168)

But, in view of (22.162) and (22.164), the right-hand side of (22.168) is identically

zero. The transversality condition ψ(T ) = −Gx∗ (T ) in (22.162) implies

ψ(T ) = −P (T ) x∗ (T )− p (T ) = −Gx∗ (T )

which holds for any x∗ (T ) if P (T ) = G and p (T ) = 0.



Variational calculus and optimal control 701

2. To prove (22.166) let us apply the chain integration rule for xᵀ (t) P (t) x (t) and for

pᵀ (t) x (t), respectively. In view of (22.150) and (22.162) we obtain

xᵀ (T ) P (T ) x (T )− xᵀ (s) P (s) x (s)

= x∗ᵀ (T )Gx∗ (T )− x∗ᵀ (s) P (s) x∗ (s)

=
T∫

t=s

d

dt
[xᵀ (t) P (t) x (t)] dt =

T∫
t=s

[
2xᵀ (t) P (t) ẋ (t)+ xᵀ (t) Ṗ (t) x (t)

]
dt

=
T∫

t=s

{
xᵀ (t)

(
[P (t) B (t)+ Sᵀ (t)]R−1 (t) [P (t) B (t)+ Sᵀ (t)]ᵀ

−Q(t)) x (t)+ 2u∗ᵀ (t) Bᵀ (t) P (t) x (t)+ 2dᵀ (t) P (t) x (t)} dt
(22.169)

and, applying (22.164),

pᵀ (T ) x (T )− pᵀ (s) x (s) = −pᵀ (s) x (s)

=
T∫

t=s

d

dt
[pᵀ (t) x (t)] dt =

T∫
t=s

[ṗᵀ (t) x (t)+ pᵀ (t) ẋ (t)] dt

=
T∫

t=s

{
xᵀ (t)

(
[P (t) B (t)+ Sᵀ (t)]R−1 (t) B (t) p (t)− P (t) d (t))

+ pᵀ (t) [B (t) u∗ (t)+ d (t)]} dt
(22.170)

Summing (22.169) and (22.170) and denoting

J ∗ (s, x (s)) := 1

2
xᵀ (s) P (s) x (s)

+ 1

2

T∫
t=s

[xᵀ (t)Q (t) x (t)+ u∗ᵀ (t) R (t) u∗ (t)+ 2u∗ᵀ (t) S (t) x (t)]

we get

J ∗ (s, x (s))− 1

2
xᵀ (s) P (s) x (s)− pᵀ (s) x (s)

= 1

2

T∫
t=s

{u∗ᵀ (t) R (t) u∗ (t)

+ xᵀ (t) [P (t) B (t)+ Sᵀ (t)]R−1 (t) [P (t) B (t)+ Sᵀ (t)]ᵀ x (t)

+ 2xᵀ (t) [P (t) B (t)+ Sᵀ (t)]ᵀ u∗ (t)

+ 2xᵀ (t) [P (t) B (t)+ Sᵀ (t)]ᵀ R−1 (t) Bᵀ (t) p (t)
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+ 2u∗
ᵀ
(t) Bᵀ (t) p (t)+ 2pᵀ (t) d (t)

}
dt

= 1

2

T∫
t=s

{∥∥R−1/2 (t) [R (t) u∗ (t)+ [P (t) B (t)+ Sᵀ (t)]ᵀ xᵀ (t)]

+ Bᵀ (t) p (t)‖2 − ∥∥R−1/2 (t) Bᵀ (t) p (t)
∥∥2 + 2pᵀ (t) d (t)

}
dt

(22.171)

which, taking s = 0, x (s) = x0, and in view of

R (t) u∗ (t)+ [P (t) B (t)+ Sᵀ (t)]ᵀ xᵀ (t) = 0

yields (22.166). Theorem is proven. �

Theorem 22.23. (on the uniqueness of the optimal control) The optimal control u∗ (·)
∈ Uadmis [0, T ] is unique if and only if the corresponding Riccati differential equation
(22.162) has a unique solution P (t) ≥ 0 on [0, T ].

Proof.

1. Necessity. Assume that u∗ (·) ∈ Uadmis [0, T ] is unique and is given by (22.165). But

this is possible only if P (t) is uniquely defined (p (t) will be uniquely defined

automatically). So, the corresponding Riccati differential equation (22.162) should

have a unique solution P (t) ≥ 0 on [0, T ].

2. Sufficiency. If the corresponding Riccati differential equation (22.162) has a unique

solution P (t) ≥ 0 on [0, T ], then, by the previous theorem, u∗ (·) is uniquely defined

by (22.165) and the dynamics x∗ (t) is given by

ẋ∗ (t)= [
A (t)− B (t) R−1 (t) (Bᵀ (t) P (t)+ S (t))] x∗ (t)
−B (t) R−1 (t) Bᵀ (t) p (t)+ d (t)

(22.172)

So, the uniqueness of (22.165) follows from the uniqueness of the solution of

ODE (22.172). �

22.8.7 Stationary systems on the infinite horizon

22.8.7.1 Stationary systems and the infinite horizon cost function
Let us consider a stationary linear plant given by the following ODE

·
x (t) = Ax (t)+ Bu (t), t ∈ [0,∞]

x (0) = x0, A ∈ Rn×n, B ∈ Rn×r

}
(22.173)

supplied by the quadratic cost function in the Lagrange form, namely,

J (u (·)) =
∞∫

t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt (22.174)
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where 0 ≤ Q = Qᵀ ∈ Rn×n, and 0 < R = Rᵀ ∈ Rr×r are the weighting matrices.

The problem is as before: find a control u∗ (·) minimizing J (u (·)) over all controls
within the class of admissible control strategies consisting of all u (·) such that
• the solution of (22.173) exists;
• u (·) ∈ L2 (0,∞;Rr ) (otherwise, the criterion (22.174) does not exist).

We will try to solve this problem by two methods: the, so-called, direct method
and DPM.

22.8.7.2 Direct method
Let us introduce the function V : Rn 
−→ R as follows

V (x) := xᵀPx (22.175)

where the matrix P is a symmetric matrix P = Pᵀ ∈ Rn×n. Then, in view of (22.173),

we obtain

V̇ (x (t)) = 2xᵀ (t) P ẋ (t) = 2xᵀ (t) P [Ax (t)+ Bu (t)]
The integration of this equation leads to the following:

V (x (T ))− V (x (0)) = xᵀ (T ) Px (T )− xᵀ
0 Px0

=
T∫

t=0

2xᵀ (t) P [Ax (t)+ Bu (t)] dt

Adding and subtracting the terms xᵀ (t)Qx (t) and uᵀ (t) Ru (t), the last identity may

be rewritten in the following form

xᵀ (T ) Px (T )− xᵀ
0 Px0

=
T∫

t=0

(
2xᵀ (t) P [Ax (t)+ Bu (t)]+ xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)

)
dt

−
T∫

t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt =
T∫

t=0

(
xᵀ (t) [PA+ AᵀP +Q] x (t)

+ 2
(
R−1/2BᵀPx (t)

)ᵀ
R1/2u (t)+ ∥∥R1/2u (t)

∥∥2
)
dt

−
T∫

t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt

=
T∫

t=0

(
xᵀ (t)

[
PA+ AP +Q− PBR−1BᵀP

]
x (t)

+ ∥∥R−1/2BᵀPx (t)+ R1/2u (t)
∥∥2
)
dt −

T∫
t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt
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which implies

T∫
t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt = xᵀ
0 Px0 − xᵀ (T ) Px (T )

+
T∫

t=0

∥∥R−1/2BᵀPx (t)+ R1/2u (t)
∥∥2
dt

+
T∫

t=0

xᵀ (t)
[
PA+ AᵀP +Q− PBR−1BᵀP

]
x (t) dt

(22.176)

Selecting (if it is possible) the matrix P as a solution to the following matrix Riccati
equation

PA+ AᵀP +Q− PBR−1BᵀP = 0 (22.177)

from (22.176) we get

T∫
t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt = xᵀ
0 Px0 − xᵀ (T ) Px (T )

+
T∫

t=0

∥∥R−1/2BᵀPx (t)+ R1/2u (t)
∥∥2
dt

≥ xᵀ
0 Px0 − xᵀ (T ) Px (T )

(22.178)

Theorem 22.24. If for the system (22.173) the pair (A,B) is stabilizable and the pair(
Q1/2, A

)
is observable then the optimal control u∗ (t) minimizing (22.174) is given by

u∗ (t) = −R−1BᵀPx (t) (22.179)

where P is the unique positive definite solution of (22.177) making the closed-loop system
asymptotically stable. Moreover, the minimal value of the cost functional is

J (u (·)) =
∞∫

t=0

[xᵀ (t)Qx (t)+ uᵀ (t) Ru (t)] dt = xᵀ
0 Px0 (22.180)

Proof. First, notice that the dynamic system (22.173) closed by an optimal control should

be stable. Indeed, suppose that there exists at least one unstable mode of the controlled sys-

tem. Then, by the observability of the pair (C,A), it follows that the vector y (t) = Cx (t)
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(Q := CᵀC) should tend to infinity and, hence,
∫ T
t=0
xᵀ (t)Qx (t) dt tends to infinity

with T → ∞ that cannot correspond to an optimal control. So, the term xᵀ (T ) Px (T )
has to tend to zero and can be disregarded. By Theorem 10.8 there exists the unique

positive definite solution P of (22.177) which makes the closed-loop system stable since

ẋ (t) = Ax (t)+ Bu∗ (t) = (
A− BR−1BᵀP

)
x (t) = Aclosedx (t)

where Aclosed is defined in (10.26). Taking this P in (22.179) and in view of (22.178)

under u (·) = u∗ (·) the equality (22.180) holds. Theorem is proven. �

Does the optimal control stabilize nonobservable systems?
Proposition 22.1. The optimal control does not necessarily stabilize a nonobservable
linear stationary system.

The next simple example illustrates the statement given above.

Example 22.7. Consider the following linear second-order controllable time invariant
system

ẋ1 (t) = x2 (t), ẋ2 (t) = x1 (t)+ u, x1 (0) = x10, x2 (0) = x20

Let the cost functional be J (u (·))= ∫∞
t=0

[
xᵀ (t)Qx (t)+ u2 (t)] dt with x (t) := [

x1 (t)

x2 (t)

]
and Q :=

[
1 −1

−1 1

]
≥ 0. In our case this system can be represented in the form

(22.173) with A =
[
0 1

1 0

]
and B =

[
0

1

]
. Notice that this system is unobservable since

the column rank of the observability matrix O =
[
C

CA

]
=

[
1 −1

−1 1

]
is incomplete

and equal to 1. The statement of the proposition becomes evident if we define y (t) :=
x1 (t) − x2 (t) and represent this system as

ẏ (t) = −y (t)− u

J (u (·)) =
∞∫

t=0

[
y2 (t)+ u2 (t)] dt (22.181)

with

ẋ2 (t) = y (t)+ x2 (t)+ u

According to Theorem 22.24 the optimal control in (22.181) is u∗ (t) = py (t) where
p = √

2− 1. As it is expected, in the optimal system y (t)→ 0 as t →∞. Evidently, the
second component x2 (t)→∞, and, hence, the optimal system is unstable which proves
the above proposition. This effect appears due to instability of the unobservable state
component x2 (t)!
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The revealed fact permits to indicate the class of stable unobservable optimal systems.

If the pair (C,A) is unobservable then there exists a nonsingular linear transformation

T x =
(
x1
x2

)
such that the system (22.173) can be represented in the, so-called, canonical

observability form

ẋ1 = A11 + B1u, ẋ2 = A21x1 + A22x2 + B2u

y = C1x1
(22.182)

with x1 and x2 being the observable and unobservable state components. Let us show

how this transformation can be found. Select T in the form T =
(
v

w

)
where the matrix

v ∈ Rk×n consists of k basis row vectors of the observability matrix (9.63)

O :=

⎡
⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAn−1

⎤
⎥⎥⎥⎥⎥⎦

Since the system is unobservable then k < n. The matrix w ∈ R(n−k)×n is an arbitrary

one such that det T �= 0. Denote

T −1 := (
N1 N2

)
, N1 ∈ Rn×k

The identity T T −1 = I implies

I =
(
v

w

)(
N1 N2

) = (
vN1 vN2

wN1 wN2

)

and

vN2 = 0 (22.183)

Since vA and vC are in the same basis there exist matrices LA and LC such that

vA = LAv, C = LCv

Then(
ẋ1
ẋ2

)
= TAT −1

(
x1
x2

)
+ T Bu

y = CT −1

(
x1
x2

)
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In view of (22.183) and the relations

TAT −1 =
(
v

w

)
A
(
N1 N2

)

=
⎛
⎝LAv
wA

⎞
⎠(
N1 N2

) = (
LAvN1 0

wAN1 wAN2

)

CT −1 = (
LCvN1 LCvN2

) = (
CN1 0

)
we finally get (22.182) and the cost functional (22.174) becomes

J (u (·)) =
∞∫

t=0

[x
ᵀ
1 (t)Q1x1 (t)+ uᵀ (t) Ru (t)] dt

where Q1 = Cᵀ
1 C1 and the pair (C1, A11) is observable. Then, by Theorem 22.24, the

optimal control is

u∗ (t) = −R−1B
ᵀ
1 P1x1 (t)

with P1 being the positive-definite solution to the reduced order Riccati equation

P1A11 + Aᵀ
11P1 +Q− P1B1R

−1B
ᵀ
1 P1 = 0

which makes the first subsystem (with respect to x1) stable. It is evident that the optimal

system (22.173) is stable if the matrix A22 is Hurwitz (stable). According to the PBH test

9.1, such systems are called detectable. Finally we may formulate the following claim.

Claim 22.2. The linear time invariant system (22.173) optimal in the sense of the cost
functional (22.174) is stable if and only if this system is stabilizable and detectable.

22.8.7.3 DPM approach
Consider the following HBJ equation (22.137):

−h̄+ sup
u∈U
H(− ∂

∂x
V (x), x, u) = 0

x ∈ Rn, h̄ = const, V (0) = 0

⎫⎬
⎭ (22.184a)

with

H(ψ, x, u) := ψᵀ (Ax + Bu)− xᵀQx − uᵀRu

x, u,ψ ∈ [0,∞]× Rn × Rr × Rn
(22.185)

Theorem 22.25. (Verification rule for LQ-problem) If the control u∗ is a maximizing
vector for (22.185) with some h̄ = const, that is,

u∗ = −1

2
R−1Bᵀ ∂

∂x
V (x)
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where V (x) is a solution to the following HJ equation:

− ∂
∂x
V ᵀ (x)Ax − xᵀQx + 1

4

∂

∂x
V ᵀ (x) BR−1Bᵀ ∂

∂x
V (x) = h̄

and the closed-loop system is stable, then such u∗ is an optimal control.

Proof. It is evident that only admissible control may be stabilizing (if not, the cost

function does not exist). By (22.185) for any stabilizing u (·) it follows that

H(− ∂
∂x
V (x∗), x∗, u∗) = h̄, H(− ∂

∂x
V (x), x, u) ≤ h̄

and, hence,

H(− ∂
∂x
V (x), x, u) ≤ H(− ∂

∂x
V (x∗), x∗, u∗)

which, after integration, leads to the following inequality

∞∫
t=0

[
− ∂
∂x
V ᵀ (x) (Ax + Bu)− xᵀQx − uᵀRu

]
dt

≤
∞∫

t=0

[
− ∂
∂x
V ᵀ (x∗) (Ax∗ + Bu∗)− x∗ᵀQx∗ − u∗ᵀRu∗

]
dt

or, equivalently,

T∫
t=0

[x∗ᵀQx∗ + u∗ᵀRu∗] dt ≤
T∫

t=0

[xᵀQx + uᵀRu] dt +
∞∫

t=0

d (V (x)− V (x∗))

V (x(0))=Vᵀ(x∗(0))=
T∫

t=0

[xᵀQx + uᵀRu] dt + V (x (T ))− V ᵀ (x∗ (T ))

Within the class of stabilizing strategies we have

V (x (T ))− V ᵀ (x∗ (T )) →
T→∞ 0

which, in view of the last inequality, shows that u∗ (·) is an optimal control. �

Try to find the solution to (22.185) as V (x) = xᵀPx with P = Pᵀ ≥ 0. This implies
∂

∂x
V (x) = 2Px, and, hence,

−2xᵀP
(
Ax − BR−1BᵀPx

)− xᵀQx − xᵀPBR−1BᵀPx

= xᵀ (−PA− AᵀP −Q+ PBR−1BᵀP
)
x = 0

The last equation is identically fulfilled for any x ∈ Rn if P is the solution to the same

Riccati matrix equation as in (22.177) for a stabilizable and observable system. So, finally,

the optimal control is u∗ (t) = −R−1BᵀPx (t) which naturally coincides with (22.179).
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22.9 Linear-time optimization

22.9.1 General result

For this problem the cost functional is

J (u (·)) = T (22.186)

It can be obtained from the Bolza form functional

J (u (·)) := h0(x (T ))+
T∫

t=0

h (x (t), u (t), t) dt

if we put h0(x) ≡ 0, h (x, u, t) ≡ 1. Then for a linear plant, given by (22.150), the

Hamiltonian (22.81) is

H(ψ, x, u, t) := ψᵀ [A (t) x + B (t) u+ d (t)]− μ (22.187)

and, hence, the maximality condition (22.69) becomes as follows:

u∗ (t) ∈ Argmax
u∈U ψ

ᵀ (t) [A (t) x (t)+ B (t) u (t)+ d (t)]
= Argmax

u∈U ψ
ᵀ (t) B (t) u (t) = Argmax

u∈U [Bᵀ (t) ψ (t)]ᵀ u (t)

= Argmax
u∈U

r∑
k=1

[Bᵀ (t) ψ (t)]k uk (t)

(22.188)

Theorem 22.26. (on linear time-optimal control) If the set U of the admissible control
values is a polytope defined by

U := {
u ∈ Rr : u−k ≤ uk (t) ≤ u+k , k = 1, . . . , r

}
(22.189)

then the optimal control (22.188) is as follows

u∗k (t) =
⎧⎨
⎩

u+k if [Bᵀ (t) ψ (t)]k > 0

u−k if [Bᵀ (t) ψ (t)]k < 0

any ū ∈ U if [Bᵀ (t) ψ (t)]k = 0

(22.190)

and it is unique.

Proof. Formula (22.190) follows directly from (22.188), (22.189) and the uniqueness

is the consequence of the theorem on the sufficient condition of the optimality which

demands the concavity (and not obligatory strict) of the Hamiltonian with respect to

(x, u) for any fixed ψ , which is evidently fulfilled for the Hamiltonian function (22.187)

which is linear on x and u. �
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22.9.2 Theorem on n-intervals for stationary linear systems

Consider in detail the partial case of linear systems (22.150) when the matrices of the

system are constant, that is, A (t) = A, B (t) = B. For this case the result below has

been obtained in Feldbaum (1953) and is known as the theorem on n-intervals. But first,
let us prove an axillary lemma.

Lemma 22.10. If λ1, λ2, . . . , λm are real numbers and f1 (t), . . . , fm (t) are the polyno-
mials with real coefficients and having the orders k1, . . . , km, correspondingly. Then the
function

ϕ (t) =
m∑
i=1

fi (t) e
λi t (22.191)

has a number of real roots which does not exceed

n0 := k1 + . . .+ km +m− 1 (22.192)

Proof. To prove this result let us use the induction method.

1. For m = 1 the lemma is true. Indeed, in this case the function ϕ (t) = f1 (t) eλ1t has
the number of roots coinciding with k1 since e

λ1t > 0 for any t .

2. Suppose that this lemma is valid for m− 1 > 0. Then let us prove that it holds for m.

Multiplying (22.191) by e−λmt we obtain

ϕ (t) e−λmt =
m−1∑
i=1

fi (t) e
(λi−λm)t + fm (t) (22.193)

Differentiation by t the relation (22.193) (km + 1)-times implies

d(km+1)

dt (km+1)

(
ϕ (t) e−λmt

) = m−1∑
i=1

f̃i (t) e
(λi−λm)t := ϕkm+1 (t)

where f̃i (t) are the polynomials of the same order as fi (t). By the supposition before,

the function ϕ1 (t) has a number of roots which do not exceed

nkm+1 := k1 + . . .+ km−1 +m− 2

Since between two roots of continuously differentiable function, there is at least one

root of its derivative, then the function ϕkm (t) :=
dkm

dtkm

(
ϕ (t) e−λmt

)
will have nkm =

nkm+1+1. Continuing this process, finally we get that the function ϕ0 (t) := ϕ (t) e−λmt
will have

n0 = n1 + 1 = n2 + 2 = . . . = nkm+1 + (km + 1)

= (k1 + . . .+ km−1 +m− 2)+ (km + 1) = k1 + . . .+ km +m− 1
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And, since e−λmt > 0 always, we may conclude that ϕ (t) has the same number of roots

as ϕ0 (t). Lemma is proven. �

Now we are ready to prove the main result of this section.

Theorem 22.27. (Feldbaum 1953) If the matrix A ∈ Rn×n has only real eigenvalues,
then the number of switches of any component of the optimal control (22.190) does not
exceed (n− 1), that is, a number of the intervals, where each component of the optimal
program (22.190) is constant, does not exceed n.

Proof. Let λ1, λ2, . . . , λm be the different eigenvalues of the matrix A and r1, r2, . . . , rm
are their multiplicity numbers, correspondingly. Then a general solution of the adjoint

system of equations ψ̇(t) = −Aᵀψ(t) may be represented as

ψi(t) =
m∑
j=1

pij (t) e
−λj t , i = 1, . . . , n (22.194)

where pij (t) are polynomials on t whose order does not exceed
(
rj − 1

)
. Substituting

(22.194) into (22.188) implies

u∗k (t)=
u+k
2

[
1+ sign

(
n∑
i=1

bikψi (t)

)]
+ u

−
k

2

[
1− sign

(
n∑
i=1

bikψi (t)

)]

= u
+
k

2

[
1+ sign

(
n∑
i=1

bik

m∑
j=1

pij (t) e
−λj t

)]

+ u
−
k

2

[
1− sign

(
n∑
i=1

bik

m∑
j=1

pij (t) e
−λj t

)]

= u
+
k

2

[
1+ sign

(
m∑
j=1

p̃kj (t) e
−λj t

)]
+ u

−
k

2

[
1− sign

(
m∑
j=1

p̃kj (t) e
−λj t

)]

where p̃kj (t) are the polynomials on t , whose order does not exceed
(
rj − 1

)
, equal to

p̃kj (t) :=
n∑
i=1

bikpij (t) (22.195)

Now the number of switches is defined by the number of the roots of the polynomials

(22.195). Applying directly the lemma above, we obtain that the polynomial function∑m

j=1 p̃kj (t) e
−λj t has a number of real roots which do not exceed

(r1 − 1)+ (r2 − 1)+ . . .+ (rk − 1)+ (k − 1) = r1 + . . .+ rk − 1 = n− 1

Theorem is proven. �
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In this chapter we will present the material following Francis (1987), Zhou et al. (1996),
Curtain & Zwart (1995) and Poznyak (1991).

23.1 H2-optimization

23.1.1 Kalman canonical decompositions

The class of finite dimensional linear time invariant dynamic systems consists of

systems described by the following ODE with constant coefficients:

ẋ (t) = Ax (t)+ Bu (t), x (t0) = x0
y (t) = Cx (t)+Du (t)

(23.1)

where x (t) ∈ Rn is associated with the system state, u (t) ∈ Rr is the input, and y (t) ∈ Rp

is the system output. A,B,C and D are appropriately dimensioned real constant matrices.

If r = p = 1, then a dynamic system (23.1) is called SISO (single input–single output),

otherwise it is called MIMO (multiple input–multiple output). In compact form (23.1)

can be rewritten as

(
ẋ

y

)
=

[
A B

C D

](
x

u

)
(23.2)

where

[
A B

C D

]
will be referred to as a state space realization. The corresponding transfer

matrix G(s) from u to y which connected their Laplace transformations U (s) and Y (s)

(with zero-initial conditions) is defined by

Y (s) = G(s)U (s) (23.3)

713
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and is equal to

G(s) = C (sI − A)−1 B +D (23.4)

Proposition 23.1. The transfer matrix G(s) is not changed under any nonsingular coor-
dinate transformation x̃ = T x (det T �= 0) which converts (23.1) into

d

dt
x̃ (t)= TAT −1x̃ (t)+ T Bu (t)

y (t)= CT −1x̃ (t)+Du (t)
(23.5)

Proof. Evidently,

G(s) = C (sI − A)−1 B +D = CT −1
(
sI − TAT −1

)−1
T B +D �

Proposition 23.2. The corresponding controllability C̃ and observability
∼
O matrices are

related to the original ones C (9.55) and O (9.63) by

C̃ =T C,
∼
O = OT (23.6)

This implies that the controllability and observability properties are invariant under the
similarity (nonsingular) coordinate transformations.

Proof. It follows directly from the definitions (9.55) and (9.63). �

The next theorems, known as the Kalman decompositions, show (see the details in

Zhou et al. (1996)) that any linear system (23.1) can be transformed by a similarity

transformation into a system having two groups of the coordinates such that one of them

is obligatory controllable, or observable, or both properties hold simultaneously.

Theorem 23.1. (on the controllable canonical form) If the controllability matrix has
rank kc < n, then there exists a similarity transformation

x̃ =
(
x̃c
x̃unc

)
= T x

such that

d

dt

(
x̃c
x̃unc

)
=

[
Ãc Ã12

0 Ãunc

](
x̃c
x̃unc

)
+
[
B̃c
0

]
u

y = [
C̃c C̃unc

]( x̃c
x̃unc

)
+Du

where Ãc ∈ Rkc×kc and the pair
(
Ãc, B̃c

)
is controllable (see Criteria 9.8). Moreover,

G(s) = C (sI − A)−1 B +D = C̃c
(
sI − Ãc

)−1

B̃c +D
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Proof. Since the pair (A,B) is uncontrollable and the rank of the controllability matrix

C is equal to kc < n, there exist kc linearly independent columns, say,
(
v1, . . . , vkc

)
of C such that vi := BAji

(
ji ∈ [0, n− 1]

)
. Adding any linearly independent (among

themselves and with
(
v1, . . . , vkc

) )
vectors

(
vkc+1, . . . , vn

)
one can form the matrix

Q := [
v1 · · · vkc vkc+1 · · · vn

]
(23.7)

which is nonsingular by the construction. Then the matrix

T = Q−1 (23.8)

will give the desired decomposition. Indeed, since by the Cayley–Hamilton theorem 3.1

any vector vi can be represented as a linear combination of the columns of C, which
implies

AT −1 = [
Av1 · · ·Avkc Avkc+1 · · ·Avn

]
= [
v1 · · · vkc vkc+1 · · · vn

] [Ãc Ã12

0 Ãunc

]
= Q

[
Ãc Ã12

0 Ãunc

]

By the same way, each column of the matrix B is a linear combination of vectors(
v1, . . . , vkc

)
, which also leads to the following relation

B = Q
[
B̃c
0

]
= T −1

[
B̃c
0

]

Notice also that C can be represented as

C = T −1

[
B̃c ÃcB̃c · · ·

(
Ãc

)kc−1

B̃c · · ·
(
Ãc

)n−1

B̃c

0 0 · · · 0 · · · 0

]

Again, by the Cayley–Hamilton theorem 3.1 any matrix
(
Ãc

)i
with i > kc can be

represented as a linear combination of the matrices
(
Ãc

)j
(j = 1, . . . , kc), which

is why

rank
[
B̃c ÃcB̃c · · ·

(
Ãc

)kc−1

B̃c

]
= kc

So, the pair
(
Ãc, B̃c

)
is controllable. Theorem is proven. �

Corollary 23.1. According to Theorem 23.1 the state space {x̃} may be partitioned in

two orthogonal subspaces

{(
x̃c
0

)}
and

(
0

x̃unc

)
where the first subspace is controllable
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from the input and the second one is completely uncontrollable from the input. Moreover,
since

x = T −1x̃ = [
v1 · · · vkc vkc+1 · · · vn

]( x̃c
x̃unc

)

it follows that the controllable subspace is the span of the vectors vi (i = 1, . . . , kc), or
equivalently Im C.

Theorem 23.2. (on the observable canonical form) If the observability matrix has rank
ko < n, then there exists a similarity transformation

x̃ =
(
x̃o
x̃uno

)
= T x

such that

d

dt

(
x̃0
x̃uno

)
=

[
Ão 0

Ã21 Ãuno

](
x̃o
x̃uno

)
+
[
B̃o

B̃uno

]
u

y = [
C̃o 0

]( x̃o
x̃uno

)
+Du

where Ão ∈ Rko×ko and the pair
(
C̃o, Ão

)
is observable (see Criteria 9.10). Moreover,

G(s) = C (sI − A)−1 B +D = C̃o
(
sI − Ão

)−1

B̃o +D

Proof. By duality of the controllability and observability properties (see Criterion 6

in Theorem 9.10) the proof of this theorem can be converted to the proof of the

previous one. �

Combining the two above theorems one can get the following joint result.

Theorem 23.3. (The Kalman canonical decomposition) The state vector x of any finite
dimensional linear time invariant dynamic system, given by (23.1), may be transformed
by a nonsingular transformation T (det T �= 0) into the new states

x̃ =

⎛
⎜⎜⎝

x̃c,o
x̃c,uno
x̃unc,o
x̃unc,uno

⎞
⎟⎟⎠ = T x
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such that

d

dt

⎛
⎜⎜⎝

x̃c,o
x̃c,uno
x̃unc,o
x̃unc,uno

⎞
⎟⎟⎠

=

⎡
⎢⎢⎣
Ãc,o 0 Ã13 0

Ã21 Ãc,uno Ã23 Ã24

0 0 Ãunc,o 0

0 0 Ã43 Ãunc,uno

⎤
⎥⎥⎦
⎛
⎜⎜⎝

x̃c,o
x̃c,uno
x̃unc,o
x̃unc,uno

⎞
⎟⎟⎠+

⎡
⎢⎢⎣
B̃c,o

B̃c,uno
0

0

⎤
⎥⎥⎦ u

y = [
C̃o 0

] [
C̃c,o 0 C̃unc,o 0

]
⎛
⎜⎜⎝

x̃c,o
x̃c,uno
x̃unc,o
x̃unc,uno

⎞
⎟⎟⎠+Du

where the vector x̃c,o is controllable and observable, x̃c,uno is controllable but unobserv-
able, x̃unc,o is uncontrollable but observable, and, finally, x̃unc,uno is both uncontrollable
and unobservable. Moreover,

G(s) = C (sI − A)−1 B +D = C̃c,o
(
sI − Ãco

)−1

B̃co +D

23.1.2 Minimal and balanced realizations

Criteria for the minimality of transfer matrix realizations

Definition 23.1. A state space realization

[
A B

C D

]
of the transfer matrix function G(s)

is said to be a minimal realization of G(s) if the matrix A has the smallest possible
dimension. Sometimes, this minimal dimension of A is called the McMillan degree
of G(s).

Lemma 23.1. (The criterion of minimality of a realization) A state space realization[
A B

C D

]
of the transfer matrix function G(s) is minimal if and only if the pair (A,B)

is controllable and the pair (C,A) is observable.

Proof.

1. Necessity. First, show that if

[
A B

C D

]
is minimal then the pair (A,B) is controllable

and the pair (C,A) is observable. On the contrary, supposing that (A,B) is uncontrol-

lable and/or (C,A) is unobservable, by Theorem 23.3 there exists another realization

with a smaller McMillan degree that contradicts the minimality of the considered

realization. This fact proves necessity.
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2. Sufficiency. Let now the pair (A,B) be controllable and the pair (C,A) be observ-

able. Suppose that the given realization is not minimal and there exists another real-

ization

[
Ã B̃

C̃ D

]
which is minimal with order nmin < n. Since by Theorem 23.3

G(s) = C (sI − A)−1 B +D = C̃
(
sI − Ã

)−1

B̃ +D

for any i = 0, 1, . . . one has CAiB = C̃ÃiB̃ which implies

OC = ∼
O

∼
C (23.9)

By the controllability and observability assumptions

rank (O) = rank (O) = n

and, hence, by the Sylvester inequality (2.24) we also have that rank (OC) = n. By
the same reasons,

rank

( ∼
O
)
= rank

(∼
C
)
= k = rank

( ∼
O

∼
C
)

which contradicts the identity rank(OC) = rank

( ∼
O

∼
C
)
resulting from (23.9). Suffi-

ciency is proven. �

Corollary 23.2. If

[
Ai Bi
Ci Di

]
(i = 1, 2) are two minimal realizations with the

controllability Ci and observability Oi matrices respectively, then there exists the unique
nonsingular coordinate transformation

x(2) = T x(1)

T = (
Oᵀ

2 O2

)−1 Oᵀ
2 O1 or T −1 = C1Cᵀ

2

(
C2Cᵀ

2

)−1
(23.10)

such that in the compact forms presentation (23.2) the corresponding matrices are
related as

A2 = TA1T
−1, B2 = T B1, C2 = C1T

−1 (23.11)

Proof. It directly follows from (23.9) and (23.5). �

Balanced realization for a transfer matrix
In spite of the fact that there are infinitely many different state space realizations

for a given transfer matrix, some particular realizations turn out to be very useful for

control engineering practice. First, let us prove the following lemma on the relation of

the structure of a state space realization with the solutions of the corresponding matrix

Riccati equations.
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Lemma 23.2. Let

[
A B

C D

]
be a state space realization of a (not necessarily stable)

transfer matrix G(s). Suppose that there exists symmetric matrices

P =
[
P1 0

0 0

]
and Q =

[
Q1 0

0 0

]
(23.12)

with P1, Q1 nonsingular, that is, P1 > 0 and Q1 > 0, such that

AP + PAᵀ + BBᵀ = 0

AQ+QAᵀ + CᵀC = 0

(23.13)

(in fact, P and Q are the controllability (9.54) and observability (9.62) grammians,
respectively).

1. If the partition of the state space realization, compatible with P , is

⎡
⎣A11 A12

A21 A22

B1

B2

C1 C2 D

⎤
⎦,

then

[
A11 B1

C1 D

]
is also the realization of G(s), and, moreover, the pair (A11, B1) is

controllable, A11 is stable and P1 > 0 satisfies the following matrix Lyapunov equation

A11P1 + P1A
ᵀ
11 + B1B

ᵀ
1 = 0 (23.14)

2. If the partition of the state space realization, compatible with Q, is

⎡
⎣A11 A12

A21 A22

B1

B2

C1 C2 D

⎤
⎦,

then

[
A11 B1

C1 D

]
is also the realization of G(s), and, moreover, the pair (C1, A11, ) is

observable, A11 is stable and Q1 > 0 satisfies the following matrix Lyapunov equation

A
ᵀ
11Q1 +Q1A11 + Cᵀ

1 C1 = 0 (23.15)

Proof.

1. Substituting (23.12) into (23.13) implies

0 = AP + PAᵀ + BBᵀ =
[
A11P1 + P1A

ᵀ
11 + B1B

ᵀ
1 P1A

ᵀ
21 + B1B

ᵀ
2

A21P1 + B2B
ᵀ
1 B2B

ᵀ
2

]

which, since P1 is nonsingular, gives B2 = 0 and A21 = 0. Hence,⎡
⎣A11 A12 B1

A21 A22 B2

C1 C2 D

⎤
⎦ =

⎡
⎣A11 A12 B1

0 A22 0

C1 C2 D

⎤
⎦
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and, by Lemma 2.2, one has

G(s) = C (sI − A)−1 B +D

= [
C1 C2

] [(sI − A11)
−1 − (sI − A)−1A12 (sI − A22)

−1

0 (sI − A22)
−1

] [
B1

0

]

= [
C1 C2

] [(sI − A11)
−1 B1

0

]
= C1 (sI − A11)

−1 B1

and, hence,

[
A11 B1

C1 D

]
is also a realization. From Lemma 9.1, it follows that the pair

(A11, B1) is controllable and A11 is stable if and only if P1 > 0.

2. The second part of the theorem results from duality and can be proven following the

analogous procedure. �

Definition 23.2. A minimal

[
A B

C D

]
state space realization of a transfer matrix G(s) is

said to be balanced, if two grammians P and Q are equal, that is,

P = Q (23.16)

Proposition 23.3. (The construction of a balanced realization) Let

[
A B

C D

]
be a min-

imal realization of G(s). Then the following procedure leads to a balanced realization:

1. Using (23.13), compute the controllability P > 0 and the observability grammians
Q > 0.

2. Using the Cholesky factorization (4.31), find matrix R such that

P = RᵀR

3. Diagonalize RQRᵀ getting

RQRᵀ = U!2Uᵀ

4. Let T = RᵀU!−1/2 and obtain new Pbal and Qbal as

Pbal := T PT ᵀ = (T ᵀ)−1QT −1 := Qbal = ! (23.17)

Proof. The validity of this construction follows from Theorem (7.4) ifA = P and B = Q.

Taking into account that for minimal realization A > 0 and B > 0, we get (23.17). �

Corollary 23.3.

PbalQbal = !2 = diag
(
σ 2
1 , . . . , σ

2
n

)
(23.18)
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where, with the decreasing order number, σ1 ≥ . . . ≥ σn are called the Hankel singular
values of a time invariant linear system with transfer matrix G(s).

23.1.3 H2 norm and its computing

It was mentioned in sections 18.1.8 and 18.1.9 that the Lebesgue space Lm×k2 (or

simply L2) consists of all quadratically integrable complex (m× k) matrices, i.e.,

Lm×k2 := {
F : C → Cm×k |

‖F‖2
L
m×k
2

:= 1

2π

∞∫
ω=−∞

tr {F (jω) F∼ (jω)} dω <∞
⎫⎬
⎭

(with F
∼
(jω) := Fᵀ (−jω))

(23.19)

L2 space is (see (18.18)) a Hilbert space with the scalar (inner) product defined by

〈X, Y 〉L2
:= 1

2π

∞∫
ω=−∞

tr
{
X (jω) Y

∼
(jω)

}
dω (23.20)

The Hardy space Hm×k
2 (or, simply, H2) is the subspace of Lm×kp consisting of all

quadratically integrable complex (m× k) matrices with only regular (holomorphic)

(see Definition 17.2) elements on the open half-plane Re s > 0. Evidently, H2 is also a

Hilbert space with the same scalar product (23.20).

Lemma 23.3.

L2 = H2 ⊕H⊥
2 (23.21)

such that if X ∈ H2 and Y ∈ H⊥
2 then

〈X, Y 〉L2
= 0 (23.22)

Proof. It is a direct consequence from Lemma 18.1 on the orthogonal complement of a

subset of a Hilbert space. �

The next theorems state the relation between Lm×k2 [0,∞) and Hm×k
2 .
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Theorem 23.4. If f (t), g (t) ∈ Lm×k2 [0,∞) and their Laplace transformation (17.73)
are F (p),G(p) ∈ Hm×k

2 , then the following identities hold:

1.

〈f, g〉L2
:=

∞∫
t=0

tr {f (t) gᵀ (t)} dt

= 〈F,G〉H2
:= 1

2π

∞∫
ω=−∞

tr
{
F (jω)G

∼
(jω)

}
dω

(23.23)

where

G
∼
(jω) := Gᵀ (−jω) (23.24)

2.

‖f ‖L2
:=

⎛
⎝ ∞∫

t=0

tr {f (t) f ᵀ (t)} dt
⎞
⎠1/2

= ‖F‖H2
:=

⎛
⎝ 1

2π

∞∫
ω=−∞

tr
{
F (jω)G

∼
(jω)

}
dω

⎞
⎠1/2

(23.25)

The identities (23.23) and (23.25) will be referred to as the generalized Parseval’s
identities.

Proof. It is a direct consequence of the Plancherel theorem 17.18 and its Corollary

17.14. �

Remark 23.1. It is obvious from the manipulations above that L2-norm ‖f ‖L2
is finite if

and only if the corresponding transfer matrix F (p) is strictly proper, i.e., F (∞) = 0.

Sure, ‖F‖H2
can be computed, in principle, directly from its definition (23.25). But there

exist two other possibilities to realize this computation.

1. The first computational method
By the residue Theorem 17.5, ‖F‖2

H2
is equal to the sum of the residues of

tr
{
F (jω)G

∼
(jω)

}
at its poles ak (k = 1, . . . , n) in the left half-plane of the complex

plane C, i.e.,
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‖F‖2
H2
= 1

2π

∞∫
ω=−∞

tr
{
F (jω)G

∼
(jω)

}
dω

= i
n∑
k=1

res
(
tr
{
FG

∼})
(ak)

(23.26)

2. The second computational method
It turns out to be useful in many applications to have an alternative characterization

of ‖F‖2
H2

using the advantages of the state space representation.

Theorem 23.5. Let a transfer matrix G(s) have a state space realization

[
A B

C 0

]
with

the matrix A stable (Hurwitz). Then ‖G‖2
H2

can be computed as follows:

‖G‖2
H2
= tr {BᵀQB} = tr {CPCᵀ} (23.27)

where P is the controllability (9.54) and Q is the observability (9.62) grammians,
respectively, which can be obtained from the following matrix Lyapunov equations

AP + PAᵀ + BBᵀ = 0

AᵀQ+QA+ CᵀC = 0
(23.28)

Proof. Since A is stable it follows that

g (t) = L−1 (G) =
{
CeAtB if t ≥ 0

0 if t < 0

and, by Parseval’s identity (23.25) and the Lyapunov Lemma 9.1, we have

‖G‖2
H2
= ‖g‖2L2

=
∞∫

t=0

tr {g (t) gᵀ (t)} dt

=
∞∫

t=0

tr
{
BᵀeA

ᵀtCᵀCeAtB
}
dt

= tr

⎧⎨
⎩Bᵀ

⎛
⎝ ∞∫

t=0

eA
ᵀtCᵀCeAtdt

⎞
⎠B

⎫⎬
⎭ = tr {BᵀPB}

=
∞∫

t=0

tr
{
CeAtBBᵀeA

ᵀtCᵀ} dt
= tr

⎧⎨
⎩C

⎛
⎝ ∞∫

t=0

eAtBBᵀeA
ᵀt dt

⎞
⎠Cᵀ

⎫⎬
⎭ = tr {CQCᵀ}

which proves the theorem. �
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Example 23.1. If the state space realization ofG(p) is

[−1 1

2 0

]
then by (23.28) P = 1/2

and Q = 2. So, by (23.27), ‖G‖2
H2
= 2.

Remark 23.2. To compute the norm ‖G‖2
RL2

it is possible to use the following procedure:

1. Separation: represent G(p) as

G(p) = G+ (p)+G− (p) (23.29)

where G+ (p) ∈ RH2, i.e., it contains only stable elements, and G− (p) ∈ RH⊥
2 .

2. Representation:

‖G‖2
RL2

= ‖G+‖2H2
+ ‖G−‖2H2

(23.30)

3. Calculation: using state space representations of G+ (s) and G− (−s) (which corre-
spond to a stable system) calculate ‖G+‖2H2

, ‖G− (s)‖2H2
= ‖G− (−s)‖2H2

and, finally,
‖G‖2

RL2
applying (23.30).

23.1.4 H2 optimal control problem and its solution

Consider a linear dynamic system given by

ẋ (t) = Ax (t)+ Bũ (t), x (0) = x0
A ∈ Rn×n, B ∈ Rn×r

(23.31)

Problem 23.1. The problem, called LQR (linear quadratic regulation), consists of finding
a feedback control ũ (t) = Kx (t) ∈ Lr2 [0,∞) which
1. provides the property x (t) ∈ Ln2 [0,∞);
2. minimizes the quadratic performance index

J (u (·)) :=
∞∫

t=0

(
x (t)

ũ (t)

)ᵀ (
Q S̃

S̃ᵀ R

)(
x (t)

ũ (t)

)
dt (23.32)

where it is supposed that

(
Q S̃

S̃ᵀ R

)
≥ 0, Q = Qᵀ ≥ 0, R = Rᵀ > 0 (23.33)

Denote

u (t) := R1/2ũ (t) (23.34)
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permits to represent (23.32) as follows

J (u (·)) =
∞∫

t=0

(
x (t)

u (t)

)ᵀ (
Q S

Sᵀ I

)(
x (t)

u (t)

)
dt, S = S̃R−1/2

and the factorization(
Q S

Sᵀ I

)
=

(
C

D

)(
C D

)
Q = CᵀC, I = DᵀD, S = CᵀD

leads to(
x

u

)ᵀ (
Q S

Sᵀ I

)(
x

u

)
= ‖Cx +Du‖2

Defining

z (t) := Cx (t)+Du (t) (23.35)

we can reformulate Problem 23.1 as the following L2 problem:

Problem 23.2. (LQR-L2 optimization)

‖z‖2L2
→ min

u∈Ln2 [0,∞)

ẋ = Ax + Bu
z = Cx +Du
u = Kx

(23.36)

Under a fixed feedback u = Kx the given linear controlled system can be represented
as an uncontrolled system with a singular input:

ẋ = AKx + x0δ (t), x (0) = 0

z = CKx
AK := A+ BK, CK := C +DK

(23.37)

The associated transfer matrix GK (s) from the singular input x0δ (t) to the “output” z is

GK (s) = CK (Is − AK)−1 (23.38)

with the state space realization

[
AK I

CK 0

]
.
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Theorem 23.6. (Zhou et al. 1996) If the pair (A,B) is controllable and (C,A) is
detectable, then the solution of the LQR problem is given by

K = K∗ := − (BᵀX +DᵀC) (23.39)

and the corresponding optimal performance index J (u (·)) (23.32) is

J (u (·)) = ‖z‖2L2
= ‖GK∗ (s) x0‖2H2

= xᵀ
0 Xx0 (23.40)

where X is the stabilizing solution of the following matrix Riccati equation

(A− BDᵀC)X +X (A− BDᵀC)ᵀ

−XBBᵀX + (DᵀC)ᵀ (DᵀC) = 0

(23.41)

(In fact, X is the observability grammian of (CK∗ , AK∗) satisfying the matrix Lyapunov
equation

A
ᵀ
K∗X +XAK∗ − Cᵀ

K∗CK∗ = 0 (23.42)

coinciding with (23.41)).

Proof. First, notice that under the conditions of this theorem and by Theorem 10.7 the

Riccati equation (23.41) has the unique stabilizing nonnegative definite solution X. If

K = K∗ is fixed, then the relation (23.40) results from the Plancherel theorem 17.18 and

the formula (23.27) if B = I . To prove the inequality ‖GK (s) x0‖2L2
≥ ‖GK∗ (s) x0‖2L2

for any stabilizing feedback u = Kx, let us consider in (23.36)

u (t) = K∗x (t)+ v (t)

which gives

ẋ =AK∗x + Bv, x (0) = x0
z =CK∗x +Dv

or, equivalently,

ẋ =AKx + x0δ (t)+ Bv, x (0) = 0

z =CK∗x +Dv
Applying the Laplace transformation to this relation, in the frequency domain we have

Z (s)=CK∗ (I s − AK∗)−1 [x0 + BV (s)]+DV (s)

=GK∗ (s) x0 + U (s) V (s)
(23.43)

where

V (s) := L {v}, U (s) := [GK∗ (s) B +D] ∈ RH∞
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(since AK∗ is a stable matrix). Using (23.42) it is not difficult to check that

U
∼
(s) U (s) = I, U

∼
(s)GK∼ (s) ∈ RH⊥

∞

Indeed, the space realizations of U (s) and U
∼
(s) are

U (s) =⇒
[
AK∼ B

CK∗ D

]
, U

∼
(s) =⇒

[−Aᵀ
K∗ −Cᵀ

K∗

Bᵀ Dᵀ

]

So,

U
∼
(s) U (s) =⇒

⎡
⎣−Aᵀ

K∗ −Cᵀ
K∗CK∗

0 AK∗

−Cᵀ
K∗D

B

Bᵀ DᵀCK∗ I

⎤
⎦

Define the matrix

T :=
[
I −X
0 I

]

which is nonsingular for any X ≥ 0. Then, the application of this similarity state trans-

formation (which does not change U (s)) to the state vector leads to the following state

space realization:⎡
⎣−Aᵀ

K∗ −Cᵀ
K∗CK∗

0 AK∗

−Cᵀ
K∗D

B

Bᵀ DᵀCK∗ I

⎤
⎦ T=⇒

⎡
⎣−Aᵀ

K∗ 0

0 AK∗

0

B

Bᵀ 0 I

⎤
⎦

which gives U
∼
(s) U (s) = I . Also

U
∼
(s)GK∗ (s) =⇒

⎡
⎣−Aᵀ

K∗ 0

0 AK∗

−X
I

Bᵀ 0 0

⎤
⎦ T=⇒

[−Aᵀ
K∗ −X

Bᵀ 0

]

which is equivalent to U
∼
(s)GK∗ (s) ∈ RH⊥

∞. Taking these properties into account and

in view of (23.43) we obtain

Z (s) = GK∗ (s) x0 + U (s) V (s)

and

‖Z (s)‖2
L2
= ‖GK∗ (s) x0 + U (s) V (s)‖2L2

= ‖GK∗ (s) x0‖2L2
+ ‖U (s) V (s)‖2

L2
+ 2 〈GK∗ (s) x0, U (s) V (s)〉L2

= ‖GK∗ (s) x0‖2L2
+ ‖U (s) V (s)‖2

L2
+ 2 〈U ∗ (s)GK∗ (s) x0, V (s)〉L2

= ‖GK∗ (s) x0‖2L2
+ ‖U (s) V (s)‖2

L2
≥ ‖GK∗ (s) x0‖2L2
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where the equality is attained when U (s) V (s) = 0 for any V (s) which is possible if and

only if U (s) ≡ 0. By the stability ofGK∗ (s) we get that ‖GK∗ (s) x0‖2L2
= ‖GK∗ (s) x0‖2H2

.

Theorem is proven. �

23.2 H∞-optimization

23.2.1 L∞, H∞ norms

As it has already been mentioned in section 18.1,

1. the Lebesgue space Lm×k∞ is the space of all complex matrices bounded (almost

everywhere) on the imaginary axis elements, i.e.,

Lm×k∞ := {
F : C → Cm×k |

‖F‖
L
m×k∞ := ess sup

ω∈(−∞,∞)
σ̄ (F (iω)) <∞

}
(23.44)

where

σ̄ (F (iω)) := λ1/2max {F (iω) F ∗ (iω)}

= λ1/2max {F ∗ (iω) F (iω)}
(23.45)

is the largest singular value of the matrix F (iω). The space Lm×k∞ with the norm

‖F‖
L
m×k∞ (23.44) is a Banach space;

2. the rational subspace of Lm×k∞ , denoted by RLm×k∞ , consists of all proper and (with real

coefficients) rational transfer matrices, defined on C, with no poles on the imaginary

axis;

3. theHardy spaces Hm×k
∞ and RHm×k

∞ are closed subspaces of the corresponding Lebesgue

spaces Lm×k∞ and RLm×k∞ containing complex matrices with only regular (holomorphic)

(see Definition 17.2) elements on the open half-plane Re s > 0. The Hm×k
∞ norm is

defined as

Hm×k
∞ := {

F : C → Cm×k |
‖F‖

H
m×k∞ := ess sup

ω∈(−∞,∞)
σ̄ (F (iω)) <∞

}
(23.46)

4. the rational subspace of Hm×k
∞ , denoted by RHm×k

∞ , consists of all proper and rational
stable transfer matrices with real coefficients.

An engineering interpretation of theH∞ norm ‖F‖
H
m×k∞ (23.46) of a scalar transfer function

is the distance in the complex plane C from the origin to the farthest point on the Nyquist

plot (x := ReF (iω), y := ImF (iω)) of F , and it also appears as the peak value in the

Bode magnitude plot of |F(iω|.
Example 23.2. For

F (s) = 1− s
(1+ s) (1+ 2s)



H2 and H∞ optimization 729

(in fact, F (s) ∈ RH2 ⊂ RH∞) we have

F (iω) = ReF (iω)+ iImF (iω)

ReF (iω) = 1+ 3ω2(
1+ ω2

) (
1+ 4ω2

)
ImF (iω) = −2ω

(
2− ω2

)(
1+ ω2

) (
1+ 4ω2

)

|F (iω)| =
√(

1+ 3ω2
)2 + 4ω2

(
2− ω2

)2(
1+ ω2

) (
1+ 4ω2

)

The Nyquist plot is given in Fig. 23.1, and the Bode magnitude plot is depicted in

Fig. 23.2.

Example 23.3. For

F (s) = s − 1

s + 1
∈ RH∞

it follows that

F (iω) F
∼
(iω) = iω − 1

iω + 1

−iω − 1

−iω + 1
= 1 = σ̄ 2 (F (iω))

‖F‖H∞ = ess sup
ω∈(−∞,∞)

σ̄ (F (iω)) = 1

0.0

20.1

20.2

20.3

20.4

20.5

20.6

20.7

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Re F (i �)

Im F (i �) ��F ��H`
51,22

� 5 0

Fig. 23.1. The Nyquist plot of F (iω).
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�

�F (i �)�
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Fig. 23.2. The Bode magnitude plot |F (iω)|.

Example 23.4. For

F (s) = 1

s + 1

(
s −s
0 1

)
∈ RH∞

we have

F (iω) F
∼
(iω)= 1

1+ ω2

(
iω −iω
0 1

)(−iω 0

iω 1

)

= 1

1+ ω2

(
2ω2 −iω
iω 1

)

and

σ̄ 2 (F (iω)) = 1+ 2ω2 +√
1+ 4ω4

2 [1+ ω2]
= 1/2+ ω2 +√

1/4+ ω4

1+ ω2

So,

‖F‖2
H∞ = ess sup

ω∈(−∞,∞)
σ̄ 2 (F (iω))

= 1+ max
ω∈(−∞,∞)

√
1/4+ ω4 − 1/2

1+ ω2
= 2

The following inequality turns out to be important in the considerations below.
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Lemma 23.4. [on a relation between L2 and L∞ norms] For any g(s) ∈ Lk2 and any
G(s) ∈ Lm×k∞

‖G(s) g(s)‖
L
m
2
≤ ‖G(s)‖

L
m×k∞ ‖g(s)‖

L
k
2

(23.47)

Proof. By the definition (23.19) it follows that

‖G(s) g(s)‖2
L
m
2
:= 1

2π

∞∫
ω=−∞

[
g
∼
(iω)G

∼
(iω)G (iω) g(iω)

]
dω

≤ 1

2π

∞∫
ω=−∞

[
g
∼
(iω)λ

(
maxG

∼
(iω)G (iω)

)
g(iω)

]
dω

≤ 1

2π

∞∫
ω=−∞

tr
{
G

∼
(iω)G (iω)

}
g
∼
(iω) g(iω)dω

≤ 1

2π

∞∫
ω=−∞

[
ess sup
ω∈(−∞,∞)

tr
{
G

∼
(iω)G (iω)

}]
g
∼
(iω) g(iω)dω

≤ 1

2π

∞∫
ω=−∞

‖G(s)‖
L
m×k∞ g

∼
(iω)g(iω)dω

which proves the lemma. �

23.2.2 Laurent, Toeplitz and Hankel operators

Main definitions
Definition 23.3. For G ∈ Lm×k∞ we may define the Laurent (or, multiplication) operator

�G : Lk2 → Lm2 (23.48)

acting as

�GF := GF ∈ Lm2 if F ∈ Lk2

Lemma 23.5. �G is a linear bounded operator, that is,

‖�GF‖L
m
2
≤ ‖G‖

L
m×k∞ ‖F‖L

k
2

(23.49)
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Proof. Directly, by the definition (23.19) and in view of (18.32), characterizing the

operator norm, it follows that

‖�GF‖L
m
2
:=

∞∫
ω=−∞

‖�GF (jω)‖2 dω

=
∞∫

ω=−∞
‖F (jω)‖2

‖�GF (jω)‖2
‖F (jω)‖2

dω

≤
∞∫

ω=−∞
‖F (jω)‖2

(
ess sup
ω∈(−∞,∞)

‖�GF (jω)‖2
‖F (jω)‖2

)
dω

=
(
ess sup
ω∈(−∞,∞)

‖�GF (jω)‖2
‖F (jω)‖2

) ∞∫
ω=−∞

‖F (jω)‖2 dω = ‖G‖
L
m×k∞ ‖F‖L

m
2

which completes the proof. �

By the orthogonal decomposition of the Hilbert space Lk2 (see (18.23)) it follows that

Lk2 =
(
Hk

2

)⊥ ⊕ Hk
2 (23.50)

where
(
Hk

2

)⊥
is the orthogonal completion in Lk2 of Hk

2, that is,
(
Hk

2

)⊥
is given by

(
Hk

2

)⊥ := {
F : C− → Ck, F is holomorphic (see Definition 17.2)

and ‖F‖2
L
m×k
p

:= sup
ζ<0

∞∫
ω=−∞

‖F (ζ + jω)‖2 dω} (23.51)

In view of the decomposition (23.50) the Laurent operator �G (23.48) can be represented

in the “block form”

�G =
[
�11
G �12

G

�21
G �22

G

]
(23.52)

where its “projections” �
ij

G (i, j = 1, 2) act as

�11
G : (Hk

2

)⊥ → (
Hm

2

)⊥
�12
G : Hk

2 →
(
Hm

2

)⊥
�21
G : (Hk

2

)⊥ → Hm
2

�22
G : Hk

2 → Hm
2

(23.53)

so that((
Hm

2

)⊥
Hm

2

)
⇐=

[
�11
G �

12
G

�21
G �

22
G

]((
Hk

2

)⊥
Hk

2

)
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Definition 23.4.
(a) The Hankel operator �G associated with G ∈ Lm×k∞ is defined by

�G := �21
G : (Hk

2

)⊥ → Hm
2 (23.54)

that is,

�GF =  (�GF (−s)) ∈ Hm
2 for F (s) ∈ Hk

2 (23.55)

where  is the orthogonal projection operator from Lm2 onto Hm
2 .

(b) The Toeplitz operator TG associated with G ∈ Lm×k∞ is defined by

�G := �22
G : Hk

2 → Hm
2 (23.56)

that is,

�GF =  (�GF (s)) ∈ Hm
2 for F (s) ∈ Hk

2 (23.57)

Example 23.5. (See Curtain & Zwart (1995)) Consider G(s) = 1

s + a with Re a > 0.

Any F ∈ H2 can be represented as

F(s) = F(a)+ (s − a)X (s) for any s ∈ C+ := {s ∈ C |Re s > 0}

where X (s) ∈ H2. So, we have

�GF =  (�GF (−s)) =  
(

1

s + aF (−s)
)

=  
(

1

s + a [F (a)+ (−s − a)X (−s)]
)
= F (a)
s + a

Properties of Hankel operator �G
Proposition 23.4. The Hankel operator �G (23.54) associated with G ∈ Lm×k∞ has the
following properties:
1.

‖�G‖ ≤ ‖G‖
L
m×k∞ (23.58)

2. if G1,G2 ∈ Lm×k∞ then

�G1+G2
= �G1

+ �G2 (23.59)
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Proof.

1. By (23.55) and (23.49) it follows that

‖�GF‖H
m
2
= ‖ (�GF (−s))‖H

m
2

≤ ‖�GF (−s)‖H
m
2
≤ ‖G‖

L
m×k∞ ‖F‖L

k
2

which implies

‖�G‖ = sup
F∈

L
k
2

‖�GF‖H
m
2

‖F‖L
k
2

≤ ‖G‖
L
m×k∞

2. The property (23.59) easily follows from the fact that the Laurent (multiplication)

operator �G (23.48) satisfies a similar relation, namely,

�G1+G2
= �G1

+�G2

Proposition is proven. �

Remark 23.3. If G(s) ∈ RLm×k∞ then G(s) can be decomposed into a “strictly causal
part” Gc (s) ∈ RHm×k

2 and an “anticausal part” Guntc (s), where Guntc (s) ∈
(
RHm×k

2

)⊥
,

such that for all s ∈ C

G(s) = Gc (s)+Guntc (s)+G(∞) (23.60)

Hence, one can check that if F ∈ (
Hk

2

)⊥
then

�GF =  (�GF (−s)) =  
(
[Gc (s)+Guntc (s)+G(∞)]F (−s)

)
=  (Gc (s) F (−s))+ 

(
[Guntc (s)+G(∞)]F (−s)

) =  (Gc (s) F (−s))
or, shortly,

�GF =  (Gc (s) F (−s)) = �GcF (23.61)

that is, the Hankel operator �G associated with G(s) ∈ RLm×k∞ depends only on the
strictly causal part Gc(s) of G(s).

Remark 23.4. Particularly, if G(s) is antistable, i.e., G
∼
(s) ∈ RHm×k

∞ , then Gc (s) = 0

and

�G = 0 (23.62)
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Hankel operator in the time domain
Here we will introduce the time domain Hankel operator which has a natural relation

with the corresponding Hankel operator �G (23.54) defined in the frequency domain.

Definition 23.5. Let g (t) ∈ Lm×k1 [0,∞). Then the time domain Hankel operator �g is
defined by

�g : Lk2 [0,∞)→ Lm2 [0,∞)

(
�gu

)
(t) :=

∞∫
τ=0

g (t + τ) u (τ) dτ, t ≥ 0

(23.63)

Proposition 23.5. 1. For t ≥ 0

(
�gu

)
(t)=

∞∫
τ=−∞

g̃ (τ ) ũ (t − τ) dτ

=
0∫

τ=−∞
g̃ (t − τ) ũ (τ ) dτ

(23.64)

where

g̃ (τ ) :=
{
g (τ) if τ ≥ 0

0 if τ < 0

ũ (τ ) =
{

0 if τ ≥ 0

u (−τ) if τ < 0

2.

∥∥�g∥∥ ≤
∞∫

τ=0

‖g (τ)‖ dτ (23.65)
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Proof.

1. Indeed,

(
�gu

)
(t)=

∞∫
τ=0

g (t + τ) u (τ) dτ =
∞∫

s=t
g (s) u (s − t) ds

=
∞∫

s=t
g (s) ũ (t − s) ds =

∞∫
s=0

g (s) ũ (t − s) ds

=
∞∫

s=0

g̃ (s) ũ (t − s) ds =
∞∫

s=−∞
g̃ (s) ũ (t − s) ds

t−s=τ=
∞∫

s=−∞
g̃ (t − τ) ũ (τ ) dτ =

0∫
s=−∞

g̃ (t − τ) ũ (τ ) dτ

2. Define the operator �̃g : Lk2 [0,∞)→ Lm2 (−∞,∞) by the relation

(
�̃gu

)
(t) :=

∞∫
s=−∞

g̃ (s) ũ (t − s) ds

Then∥∥∥�̃gu∥∥∥2

Lm2 (−∞,∞)
=

∞∫
t=−∞

∥∥∥(�̃gu) (t)∥∥∥2

dt

=
∞∫

t=−∞

∥∥∥∥∥∥
∞∫

s=0

g (s) ũ (t − s) ds
∥∥∥∥∥∥
2

dt ≤
∞∫

t=−∞

⎛
⎝ ∞∫
s=0

‖g (s)‖ ‖ũ (s − t)‖ ds
⎞
⎠2

dt

=
∞∫

t=−∞

∞∫
s=0

∞∫
s′=0

‖g (s)‖∥∥g (s ′)∥∥ ‖ũ (s − t)‖∥∥ũ (s ′ − t)∥∥ ds ds ′ dt
=

∞∫
s=0

∞∫
s′=0

‖g (s)‖∥∥g (s ′)∥∥
⎡
⎣ ∞∫
t=−∞

‖ũ (s − t)‖∥∥ũ (s ′ − t)∥∥ dt
⎤
⎦ ds ds ′

=
∞∫

s=0

∞∫
s′=0

‖g (s)‖∥∥g (s ′)∥∥ ‖u‖2
Lk2[0,∞) ds ds

′ = ‖g‖2
Lm×k1 [0,∞) ‖u‖2Lk2[0,∞)

The result (23.65) follows then from the inequalities

∞∫
t=0

∥∥(�gu) (t)∥∥2
dt ≤

∞∫
t=−∞

∥∥∥(�̃gu) (t)∥∥∥2

dt ≤ ‖g‖2
Lm×k1 [0,∞) ‖u‖2Lk2[0,∞)

The proposition is proven. �
The relation (23.64) permits to interpret the Hankel operator �g , associated with the

transition function g, as the map from the past inputs u (t) |t<0 to the further output

y (t) |y≥0, that is,
(
y (t) |y≥0

) = �g (u (t) |t<0) (see Fig. 23.3).
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u(t) y(t)

t t

�g

Fig. 23.3. Time domain interpreation of the Hankel operator.

Lemma 23.6. The frequency domain Hankel operator �G (23.54) is the Laplace-
transformed version of the time domain operator �g (23.63) where g (t) is the inverse
(bilateral) Laplace transformation of G(s), that is, if U (s) = L {u} (s) then

L
{
�gu

} = �GU (23.66)

and

∥∥�g∥∥ = ‖�G‖ (23.67)

Proof. From (23.64) by the property (17.95) we have

(
�gu

)
(t) =

∞∫
τ=−∞

g̃ (τ ) ũ (t − τ) dτ =
∞∫

s=−∞
g̃ (t − s) ũ (s) ds

and, hence,

L
{
�gu

}= L

⎧⎨
⎩

∞∫
τ=−∞

g̃ (τ ) ũ (t − τ) dτ
⎫⎬
⎭

= L {g̃}L {ũ} =  (�GU (−s)) = �GU

The equality (23.67) is true because of the isomorphism property between L2 and L2

spaces (see the Plancherel theorem 17.18). �
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The norm of Hankel operator �G acting from
(
RHk

2

)⊥
onto RHm

2

Suppose that G(s) ∈ RHm×k
∞ has a minimal state space realization

[
A B

C 0

]
with A

stable. Then, according to (9.54), (9.62) and Lemma 9.1, the controllability Gc and

observability Go grammians are given by

Gc :=
∞∫

τ=0

eAτBBᵀeA
ᵀτ dτ, Go :=

∞∫
τ=0

eA
ᵀτCᵀCeAτdτ (23.68)

and satisfy the matrix Lyapunov equations

AGc +GcAᵀ = −BB ,T AᵀGo +GoA = −CᵀC (23.69)

Let us define also the controllability �c and the observability �o operators which are

defined, respectively, as

�c : Lk2 (−∞, 0]→ Cn

�cu (t) :=
0∫

τ=−∞
e−AτBu (τ) dτ

(23.70)

and

�0 : Cn → Lm2 [0,∞)

�ox0 := CeAtx0, t ≥ 0

(23.71)

Lemma 23.7. For any G(s) ∈ RHm×k
∞ with a minimal state space realization

[
A B

C 0

]
we have

�g = �o�c (23.72)

and for any z ∈ Cm

�c�
∗
c z = Gcz

�∗
o�oz = Goz

(23.73)
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Proof. This fact can be easily checked directly using the representation of �g in the form

(23.64). Indeed, assuming that x (−∞) = 0 and in view of (23.64), we get

(�o�cu) (t)= CeAt
0∫

τ=−∞
e−AτBu (τ) dτ

=
0∫

τ=−∞
CeA(t−τ)Bu (τ) dτ =

0∫
τ=−∞

g̃ (t − τ) ũ (τ ) dτ = (
�gu

)
(t)

The relation (23.73) results from the definitions (23.68), (23.70) and (23.71) which

completes the proof. �

Theorem 23.7. (on the norm of the Hankel operator) For any G(s) ∈ RHm×k
∞ with a

minimal state space realization

[
A B

C 0

]
1. the operators �∗g�g , �

∗
G�G and the matrix GcGo have the same positive eigenvalues;

2.

∥∥�g∥∥ = ‖�G‖ = √
λmax (GcGo) (23.74)

Proof.

1(a) If σ 2 is an eigenvalue of �∗g�g corresponding to an eigenvector (function) 0 �= u ∈
Lk2 (−∞, 0], then by definition

�∗g�gu = �∗
c �

∗
o�o�cu = σ 2u

and in view of (23.73), after the pre-multiplication of the last identity by �c and defining

z := �cu, it follows that

�c�
∗
g�gu = �c�∗

c �
∗
o�oz = GcGoz = σ 2�cu = σ 2z

So, σ 2 is an eigenvalue of GcGo. Since both matrices Gc and Go are strictly positive it

follows that σ 2 > 0.

1(b) To show that the operator �∗G�G has the same eigenvalues let us rewrite equations

(23.69) in the following form

− (sI − A)Gc +Gc (sI + Aᵀ) = −BBᵀ

(sI + Aᵀ)Go −Go (sI − A) = −CᵀC
(23.75)

Pre- and post-multiplying the first equation in (23.75) byC (sI − A)−1 and (sI + Aᵀ)−1 v,

respectively, where

v := 1√
λmax (GcGo)

Gow (23.76)
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and w is an eigenvector corresponding to λmax (GcGo), namely,

GcGow = λmax (GcGo)w

we get

−CGc (sI + Aᵀ)−1 v + C (sI − A)−1Gcv

= −C (sI − A)−1 BBᵀ (sI + Aᵀ)−1 v

(23.77)

Notice that

−CGc (sI + Aᵀ)−1 v = −CGc (sI − (−A)ᵀ) v ∈
(
RHm

2

)⊥
C (sI − A)−1Gcv ∈ RHm

2

Define two vector functions

f(s) := C (sI − A)−1w ∈ RHm
2

g(s) := −Bᵀ (sI + Aᵀ)−1 v ∈ (
RHk

2

)⊥ (23.78)

which will be referred to as the Schmidt pair of vectors corresponding to the transfer

matrix G(s) ∈ RHm×k
∞ with a minimal state space realization

[
A B

C 0

]
. Then

Gcv =
√
λmax (GcGo)w

and

C (sI − A)−1Gcv =
√
λmax (GcGo)C (sI − A)−1w =√

λmax (GcGo)f(s)

Notice that the right-hand side in (23.77) is

−C (sI − A)−1 BBᵀ (sI + Aᵀ)−1 v = C (sI − A)−1 Bg(s) = G(s)g(s)

which implies

−CGc (sI + Aᵀ)−1 v +√
λmax (GcGo)f(s) = G(s)g(s)

Projecting this equality to RHm
2 and in view of (23.54) we get

√
λmax (GcGo)f(s) =  G(s)g(s) := �Gg(s) (23.79)
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Analogously, pre- and post-multiplying the second equation in (23.75) bywᵀ (sI + Aᵀ)−1

and (sI − A)−1 B, respectively, we get

wᵀGo (sI − A)−1 B − wᵀ (sI + Aᵀ)−1GoB

= −wᵀ (sI + Aᵀ)−1 CᵀC (sI − A)−1 B = fᵀ(−s)G (s) = f
∼
(s)G (s)

Since by definition Gow = √
λmax (GcGo)v the last equality becomes as follows√

λmax (GcGo)gᵀ(−s)− wᵀ (sI + Aᵀ)−1GoB = f
∼
(s)G (s)

Projecting this identity to RHm
2 we obtain

√
λmax (GcGo)gᵀ(−s)= √

λmax (GcGo)g
∼
(s)

=  (
f
∼
(s)G (s)

) := f
∼
(s)�G

Taking the conjugation operation from both sides of this equality we have

�∗Gf(s) = √
λmax (GcGo)g(s) (23.80)

The relations (23.79) and (23.80) lead to the following identity

�∗G�Gg(s) =√
λmax (GcGo)�

∗
Gf(s) = λmax (GcGo)g(s) (23.81)

This means that g(s) is the eigenvector of �∗G�G corresponding to the eigenvalue

λmax (GcGo). Evidently, the other eigenvectors are

gi (s) := −Bᵀ (sI + Aᵀ)−1 vi, vi = 1√
λmax (GcGo)

Gowi

GcGowi = λiwi (i = 1, . . . , n)

such that λi0 = λmax (GcGo) for an index i0. This shows that

λmax

(
�∗G�G

) = λmax (GcGo)

and, hence,

∥∥�∗G�G∥∥ := sup
U∈(RH

k
2)

⊥

U ∗�∗G�GU
U

∼
U

= λmax

(
�∗G�G

) = λmax (GcGo) (23.82)

2. (23.74) follows from (23.82) and the relation (23.67). Theorem is proven. �

Corollary 23.4. For any s ∈ C

f
∼
(s)f(s) = g

∼
(s)g(s) (23.83)
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Proof. It results directly from (23.79) and (23.80) since

f
∼
(s)f(s)= 1√

λmax (GcGo)
f
∼
(s) (�Gg(s))

= 1√
λmax (GcGo)

(
f
∼
(s)�G

)
g(s) = g

∼
(s)g(s)

Corollary is proven. �

Example 23.6. For

G(s) = 1− s
1+ s = Gc (s)+G(∞)

Gc (s) = 2

1+ s , G (∞) = −1

in view of the relation (23.61) �G = �Gc it follows that the minimal state space realization
of Gc (s) is

[−1 1

2 0

]
. So

A = −1, B = 1 and C = 2

and, hence, by (23.69)

Gc = B2

2 |A| =
1

2
, Go = C2

2 |A| = 2

Using (23.74) we get

‖�G‖ =
∥∥�Gc∥∥ =√

GcGo = 1

23.2.3 Nehari problem in RLm×k∞

Nehari problem formulation
The Nehari problem deals with the approximation of a transfer matrix G(s) ∈ RLm×k∞

by an anticausal transfer matrix X ∈ (
RHm×k

∞
)⊥

where the approximation is done

with respect to L∞ norm. It is naturally formulated in frequency domain terms in the

following way:

Given a matrix-valued function G(s) ∈ RLm×k∞ , find the L∞ distance of G from the

set of unstable matrix valued functions X (s) ∈ (
RHm×k

∞
)⊥

and define one of X0 (s) ∈(
RHm×k

∞
)⊥

where this minimal distance is achieved, that is, for the given G(s) ∈ RLm×k∞
calculate

γopt = dist
(
G,

(
RHm×k

∞
)⊥) := inf

X(s)∈(RH
m×k∞ )

⊥
‖G(s)−X (s)‖

L
m×k∞ (23.84)
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and find any X0 (s) ∈
(
RHm×k

∞
)⊥

, referred to as an optimal element, such that

‖G(s)−X0 (s)‖L
m×k∞ = γopt (23.85)

Even this problem is formulated in Banach space RLm×k∞ , it admits a precise and elegant

solution in terms of the Hankel operator �G of the matrix-valued function G(s).

Theorem 23.8. (Nehari 1957) Let G(s) ∈ RLm×k∞ . Then

γopt = inf
X(s)∈(RH

m×k∞ )
⊥
‖G(s)−X (s)‖

L
m×k∞ =

inf
X(s)∈(RH

m×k∞ )
⊥
‖Gc(s)−X (s)‖L

m×k∞ = ‖�G‖ =
∥∥�Gc∥∥ (23.86)

where Gc ∈ RHm×k
2 is the causal part G(s). If there exists an optimal element X0 (s) ∈(

RHm×k
∞

)⊥
such that (23.85) holds, then it should satisfy the identity

[G(s)−X0 (s)]g(s) = �Gcg(s) (23.87)

where g(s) is defined by (23.78) for a minimal state-space realization of Gc(s).

Proof. By (23.58), (23.59), (23.61) and (23.62) for any X (s) ∈ (
RHm×k

∞
)⊥

it follows that

‖G(s)−X (s)‖
L
m×k∞ ≥ ‖�G−X‖ = ‖�G − �X‖ = ‖�G‖ =

∥∥�Gc∥∥
which states the inequality

γopt = inf
X(s)∈(RH

m×k∞ )
⊥
‖G(s)−X (s)‖

L
m×k∞ ≥ ‖�G‖ (23.88)

Suppose that there exists X0 (s) ∈
(
RHm×k

∞
)⊥

such that

‖G(s)−X0 (s)‖2Lm×k∞ = ‖�G‖2 =
∥∥�Gc∥∥2 = sup

U∈(RH
k
2)

⊥

U
∼
�∗Gc�GcU
U

∼
U

= λmax

(
�∗Gc�Gc

) (23.81)= g
∼
(s)�∗Gc�Gcg(s)
g∼
(s)g(s)

(23.89)

Denote

h (s) := [G(s)−X0 (s)]g(s)
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and consider

∥∥h (s)− �Gcg(s)∥∥2

L
m
2

= ‖h (s)‖2
L
m
2
+ ∥∥�Gcg(s)∥∥2

L
m
2

−2
〈
h (s), �Gcg(s)

〉2
L
m
2 L

m
2

(23.90)

Using the presentation

h (s) =  h (s)+ ⊥h (s)
 h (s) ∈ RHm

2 ,  ⊥h (s) ∈ (
RHm

2

)⊥
and remembering that

g(s) ∈ (
RHk

2

)⊥
, X0 (s) ∈

(
RHm×k

∞
)⊥
, X0 (s)g(s) ∈

(
RHm

∞
)⊥

we derive〈
h(s), �Gcg(s)

〉
L
m
2

= 〈
 h (s)+ ⊥h (s), �Gcg(s)

〉
L
m
2

= 〈
 h (s), �Gcg(s)

〉
L
m
2

= 〈
 [G(s)−X0 (s)]g(s), �Gcg(s)

〉
L
m
2

= 〈
 [G(s)−X0 (s)]g(s), �Gcg(s)

〉
L
m
2

= 〈
 G(s)g(s), �Gcg(s)

〉
L
m
2

= 〈
�Gg(s), �Gcg(s)

〉
L
m
2

= ∥∥�Gcg(s)∥∥2

L
m
2

So, (23.90) becomes

∥∥h (s)− �Gcg(s)∥∥2

L
m
2

= ‖h (s)‖2
L
m
2
− ∥∥�Gcg(s)∥∥2

L
m
2

which, by (23.47) and (23.89), implies

∥∥h (s)− �Gcg(s)∥∥2

L
m
2

= ‖h (s)‖2
L
m
2
− ∥∥�Gcg(s)∥∥2

L
m
2

≤ ‖G(s)−X0 (s)‖2Lm×k∞

−‖�Gg(s)‖2
L
m
2
≤ ‖�G‖2 −

∥∥�Gcg(s)∥∥2

L
m
2

= λmax (GcGo)− λmax (GcGo) = 0

This means that if (23.89) holds then obligatory (23.87) holds too. Theorem is proven. �

Corollary 23.5. In a multidimensional case (when k+m > 2) the Nehari problem (23.84)
has infinitely many solutions, and at least one of them, referred to as the central optimal
element, is given by

X0 (s) = G(s)−√
λmax (GcGo)

f(s)g
∼
(s)

g∼
(s)g(s)

(23.91)
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Proof. The direct substitution of (23.91) into (23.87) and (23.86) shows that X0 (s) given

by (23.91) is a solution of the Nehari problem. Indeed,

[G(s)−X0 (s)]g(s)= √
λmax (GcGo)

f(s)g
∼
(s)

g∼
(s)g(s)

g(s)

= √
λmax (GcGo)f(s) = �Gcg(s)

and, by (23.79) and (23.80),

‖G(s)−X0 (s)‖2Lm×k∞ = λmax (GcGo)

∥∥∥∥ f(s)g
∼
(s)

g∼
(s)g(s)

∥∥∥∥2

L
m×k∞

= λmax (GcGo) ess sup
ω∈(−∞,∞)

λmax

(
f(s)g

∼
(s)

g∼
(s)g(s)

g(s)f
∼
(s)

g∼
(s)g(s)

)

= λmax (GcGo) ess sup
ω∈(−∞,∞)

λmax

(
f(s)f

∼
(s)

g∼
(s)g(s)

)

λmax (GcGo) ess sup
ω∈(−∞,∞)

(
f
∼
(s)f(s)

g∼
(s)g(s)

)
= λmax (GcGo) =

∥∥�Gc∥∥2

which proves the desired result. �

Corollary 23.6. The transfer matrix [G(s)−X0 (s)] with X0 (s) given by (23.91) is an
all-pass transfer matrix, that is,

tr
(
[G(s)−X0 (s)]

∼
[G(s)−X0 (s)]

)
= const

s
(23.92)

Proof. Indeed, by (23.91), we have

tr
(
[G(s)−X0 (s)]

∼
[G(s)−X0 (s)]

)

= λmax (GcGo) tr

(
g(s)f

∼
(s)

g∼
(s)g(s)

f(s)g
∼
(s)

g∼
(s)g(s)

)
= λmax (GcGo)

�

Corollary 23.7. (Adamjan et al. 1971) In the scalar case (m = k = 1) the Nehari
problem (23.84) has the unique solution given by

X0 (s) = G(s)−√
λmax (GcGo)

f(s)
g(s)

(23.93)
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Proof. This fact follows directly from (23.87) since it is the unique central element.

Indeed,

[G(s)−X0 (s)]g(s) = �Gcg(s) =
√
λmax (GcGo)f(s)

and in the scalar case

G(s)−X0 (s)g(s) = �Gcg(s)g(s)
=√

λmax (GcGo)
f(s)
g(s)

�

Example 23.7. Let

G(s) = (1+ s)2 (5+ s)
(1+ 10s) (s − 1) (s − 5)

It can be represented as

G(s) = Gc(s)+Guntc(s)+G(∞)

Gc(s) = a

1+ 10s
, a = 0.70749

Guntc(s) = b + cs
(s − 1) (s − 5)

, b = 0.96257, c = 1.2193

G(∞) = 0.1

The minimal state-space realization of Gc(s) is[
A B

C 0

]
=

[−0.1 0.1

a 0

]

which gives

Gc = 0.05, G0 = 5a2

∥∥�Gc(s)∥∥ = √
GcG0 = 0.5a = 0.35375

w = 1, v = 10a, f(s) = a

s + 0.1
, g(s) := − a

s − 0.1
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and, finally,

X0 (s)= G(s)−√
λmax (GcGo)

f(s)
g(s)

= 0.45374+ b + cs
(s − 1) (s − 5)

= 0.45374s2 − 1.5031s + 3.2313

(s − 1) (s − 5)

Remark 23.5. The problem dealing with the approximation of a transfer matrix G(s) ∈
RLm×k∞ by a causal transfer matrix X (s) ∈ RHm×k

∞ , where the approximation is done
with respect to L∞ norm, is equivalent to the Nehari problem (23.84) where the given
transfer matrix G(s) ∈ RLm×k∞ is changed to

Ḡ(s) := G(−s) ∈ RLm×k∞ (23.94)

Indeed, changing variable s to (−s) it follows that

dist
(
G,RHm×k

∞
) := inf

X(s)∈RH
m×k∞

‖G(s)−X (s)‖
L
m×k∞

= inf
X(−s)∈(RH

m×k∞ )
⊥
‖G(−s)−X (−s)‖

L
m×k∞

= inf
X(−s):=X̄(s)∈(RH

m×k∞ )
⊥

∥∥Ḡ(s)− X̄ (s)∥∥
L
m×k∞

= dist
(
Ḡ,

(
RHm×k

∞
)⊥)

(23.95)

23.2.4 Model-matching (MMP) problem

A controlled system is said to be robust if it possesses a guaranteeing working quality

in spite of the presence of some uncertain factors (usually related to environment pertur-

bations) which may affect it during a normal regime. Formally, the problem of synthesis

of robust controlled systems belongs to the class of the, so-called, min–max optimization

problems where max is taken over the set of uncertainties or disturbances and min is

taken over the set of admissible controllers. In this subsection we will consider one of the

most important min–max control problems and show its close relationship to the Nehari

problem discussed above.
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MMP problem formulation
Consider a multi-connected linear system which block scheme is presented in Fig. 23.4.

Suppose that all blocks in Fig. 23.4 are stable, that is,

T1 ∈ RHm1×k1
∞ , T2 ∈ RHm2×k2

∞ , T3 ∈ RHm3×k3
∞ , Q ∈ RHmq×kq

∞

k1 = k2, m2 = kq, mq = k3, m3 = m1

Problem 23.3. (MMP) The model-matching problem (MMP) consists of finding a stable
block with the transfer matrix Q(s) which for the worst external perturbation ξ of a
bounded energy, i.e.,

ξ ∈ Lk12 :
∞∫

t=0

‖ξ (t)‖2 dt ≤ C <∞ (23.96)

would provide the “best approximation” of the given plant with the transfer matrix T1 (s)
by the model with the transfer function T2 (s)Q (s) T3(s), namely, the MMP problem is

J (Q) := sup

ξ∈Lk12 :

∞∫
t=0

‖ξ (t)‖2 dt ≤ C

∞∫
t=0

‖ε (t)‖2 dt → inf
Q∈RH

mq×kq∞

ε (t) := y (t)− ŷ (t)

(23.97)

where

y (t) := L−1 {T1 (s)� (s)}

ŷ (t) := L−1
{
[T2 (s)Q (s) T3 (s)]�(s)

}

Stable plant

Model

T2 Q

T1

T3

�
e5 y 2y

y

e

y

Fig. 23.4. The block scheme for the MMP problem.



H2 and H∞ optimization 749

are the inverse Laplace transformations (17.79) of the corresponding vector function
defined on C and

�(s) := L {ξ (t)}

is the Laplace transformation (17.74) of ξ (t).

One can see that it is a min–max optimization problem.

The equivalent MMP problem formulation in the frequency domain
Lemma 23.8. (on the equivalency) The MMP problem (23.97) in the time domain is
equivalent to the following MMP problem in the frequency domain:

J (Q)= C ‖T1 (s)− T2 (s)Q (s) T3 (s)‖2
RH

m1×k1∞

→ inf
Q∈RH

mq×kq∞

(23.98)

Proof. By Parseval’s identity (17.107) it follows that

J (Q)= sup

�: 1
2π

∞∫
ω=−∞

‖�(iω)‖2dω≤C

1

2π

∞∫
ω=−∞

‖E (iω)‖2 dω

= sup
�:‖�‖2

L
k1
2

≤C
‖E‖2

L
k1
2

= sup
�:‖�‖2

L
k1
2

≤C

∥∥[T1 (s)− T2 (s)Q (s) T3 (s)]�(s)∥∥2

L
k1
2

= C ‖T1 (s)− T2 (s)Q (s) T3 (s)‖2
RH

m1×k1∞

where E (iω) := L {ε (t)} is the Laplace transformation (17.74) of ε (t). But by (23.47)

∥∥[T1 (s)− T2 (s)Q (s) T3 (s)]�(s)∥∥2

L
k1
2≤ ‖T1 (s)− T2 (s)Q (s) T3 (s)‖2

RH
m1×k1∞

‖�(s)‖2
L
k1
2

(23.99)

and the equality is attained. Indeed, if

ω0 := argmax ess sup
ω∈(−∞,∞)

σ̄ (T1 (iω)− T2 (iω)Q (iω) T3 (iω))

is finite, then the equality in (23.99) is attained when

�(iω)�
∼
(iω) = 2πδ (ω − ω0) Ik1×k1



750 Advanced Mathematical Tools for Automatic Control Engineers: Volume 1

If |ω0| = ∞, then ess sup
ω∈(−∞,∞)

σ̄ (T1 (iω)− T2 (iω)Q (iω) T3 (iω)) can be approximated

with any desired accuracy since the functional

[T1 (s)− T2 (s)Q (s) T3 (s)]

is bounded everywhere in the right semi-plane of C. In view of this,

sup
�:‖�‖2

L
k1
2

≤C

∥∥[T1 (s)− T2 (s)Q (s) T3 (s)]�(s)∥∥2

L
k1
2

= ess sup
ω∈(−∞,∞)

σ̄ (T1 (iω)− T2 (iω)Q (iω) T3 (iω)) sup
�:‖�‖2

L
k1
2

≤C
‖�(s)‖2

L
k1
2

= C ‖T1 (s)− T2 (s)Q (s) T3 (s)‖2
RH

m1×k1∞
(23.100)

which completes the proof. �

Inner–outer factorization
Definition 23.6. A transfer (m× k) matrix N (s) is called
1. inner if for all s ∈ C

N (s) ∈ RHm×k
∞ (23.101)

i.e., N (s) is stable, and

N
∼
(s)N (s) = Nᵀ (−s)N (s) = Ik×k (23.102)

2. co-inner if for all s ∈ C

N (s) ∈ RHm×k
∞ (23.103)

i.e., N (s) is stable, and

N (s)N
∼
(s) = N (s)Nᵀ (−s) = Im×m (23.104)

Remark 23.6. Observe that for N (s) to be inner it must be “tall”, i.e., the number of
rows should be more or equal to the number of columns. Sure that by duality, for N (s)
to be co-inner (or, equivalently, for Nᵀ (−s) to be inner) the number of columns should
be more or equal to the number of rows.

Example 23.8. In the scalar case (m = k = 1) the following functions are inners:

1,
a − s
a + s ,

1− as + bs2
1+ as + bs2 (a is any real number)
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Proposition 23.6. If N (s) is inner and F (s) ∈ Lk2 then

‖NF‖L
k
2
= ‖F‖L

k
2

(23.105)

that is, the multiplication of any vector F (s) ∈ Lk2 by an inner N does not change the
Lk2 norm of F . Analogously, if Ñ (s) is co-inner and F (s) ∈ Lk2 then

∥∥∥FÑ∥∥∥
L
k
2

= ‖F‖L
k
2

(23.106)

Proof. Indeed,

‖NF‖2
L
k
2
:= 1

2π

∞∫
ω=−∞

tr
{
N (jω) F (jω) F

∼
(jω)N

∼
(jω)

}
dω

= 1

2π

∞∫
ω=−∞

tr
{
N

∼
(jω)N (jω) F (jω) F

∼
(jω)

}
dω

= 1

2π

∞∫
ω=−∞

tr
{
F (jω) F

∼
(jω)

}
dω = ‖F‖2

L
k
2

For the co-inner case the proof is similar. �

The next lemma presents the state-space characterization of inner transfer functions.

Lemma 23.9. (Zhou et al. 1996) Suppose that a transfer matrix N (s) ∈ RHm×k
∞ has a

state-space realization

[
A B

C D

]
and X = Xᵀ ≥ 0 satisfies the matrix Lyapunov equation

AᵀX +XᵀA+ CᵀC = 0 (23.107)

Then the following properties hold:
(a) the relation

DᵀC + BᵀX = 0 (23.108)

implies

N
∼
(s)N (s) = DᵀD (23.109)

(b) if the pair (A,B) is controllable and (23.109) holds then (23.108) holds too.
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Proof. Notice that the state-space realization of N
∼
(s)N (s) is⎡

⎣ A 0

−CᵀC −Aᵀ
B

−CᵀD
DᵀC Bᵀ DᵀD

⎤
⎦ (23.110)

Define the matrix

T :=
[
I 0

−X I

]

which is nonsingular for any X ≥ 0. Notice that

T −1 =
[
I 0

X I

]

Then, the application of this similarity state transformation (which does not change

the corresponding transfer matrix) to the state vector leads to the following state-space

realization and corresponds to the multiplication of (23.110) by T and post-multiplication

by T −1 yields that N
∼
(s)N (s) also has the state-space realization⎡

⎣ A 0

− (AᵀX +XᵀA+ CᵀC) −Aᵀ
B

− (XBᵀ + CᵀD)
BᵀX +DᵀC Bᵀ DᵀD

⎤
⎦

=
⎡
⎣ A 0

0 −Aᵀ
B

− (XBᵀ + CᵀD)
BᵀX +DᵀC Bᵀ DᵀD

⎤
⎦

= [
BᵀX +DᵀC Bᵀ ] [(sI−A 0

0 −Aᵀ

)]−1 (
B

− (XBᵀ +CᵀD)

)

[
BᵀX +DᵀC Bᵀ ]((sI − A)−1 0

0 (sI + Aᵀ)−1

)

×
⎛
⎝ B

− (XBᵀ +CᵀD)

⎞
⎠+DᵀD

Then (a) and (b) follow easily. �

One can see that adding the simple conditionDᵀD = I provides that N∼
(s)N (s) = I .

The next corollary of the theorem above evidently states the more exact result.

Corollary 23.8. Suppose N (s) has a state-space realization

[
A B

C D

]
which is minimal

and stable (A is Hurwitz). Let Go be the corresponding observability grammian. Then
N (s) is an inner if and only if
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1.

BᵀGo +DᵀC = 0

2.

DᵀD = I (23.111)

Definition 23.7. We say that for G(s) ∈ LHm×k
∞ there exist

(a) a right co-prime factorization (RCF) if

G(s) = N (s)M−1 (s) (23.112)

where N (s) ∈ RHm×p
∞ is an inner and M (s) ∈ RHk×p

∞ (i.e., M (s) is stable);
(b) a left co-prime factorization (LCF) if

G(s) = M̃−1 (s) Ñ (s) (23.113)

where Ñ (s) ∈ RHp×k
∞ is a co-inner and M̃ (s) ∈ RHp×m

∞ (i.e., M̃ (s) is stable)

Remark 23.7. It is not difficult to show (see Zhou et al. (1996)) that

(a) two matrices N (s) and M (s) in (23.112) are right-co-prime over RH∞ if they have
the same number of columns and there exist matrices X and Y (of the corresponding
size) in RH∞ such that

[
X Y

] [M
N

]
= XM + YN = I (23.114)

(b) two matrices M̃ (s) and Ñ (s) in (23.113) are left-co-prime over RH∞ if they have
the same number of rows and there exist matrices X̃ and Ỹ (of the corresponding
size) in RH∞ such that

[
M̃ Ñ

] [X̃
Ỹ

]
= M̃X̃ + Ñ Ỹ = I (23.115)

The relations (23.114) and (23.115) are often called the Bezout identities.

The next theorems show when such factorizations exist.

Theorem 23.9. (Zhou et al. 1996) Suppose G(s) ∈ LHm×k
∞ and m ≥ k. Then there

exists an RCF G(s) = N (s)M−1 (s) such that N (s) is an inner if and only if

G
∼
(iω)G (iω) = Gᵀ (−iω)G (iω) > 0 (23.116)
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for all ω ∈ [−∞,∞] (including at ±∞). Furthermore, if G(s) ∈ RHm×k
∞ and its

state-space realization

[
A B

C D

]
has the stabilizable pair (A,B) such that the transfer

matrix G(iω) = C (iω − A)−1 B + D has the full column rank for all ω ∈ [−∞,∞],

then a particular state-space realization of the desired RCF

(
M (s)

N (s)

)
∈ RHk×p+m×p

∞ is

⎡
⎣ A+ BF BR−1/2

F

C +DF
R−1/2

DR−1/2

⎤
⎦ (23.117)

where

R = DᵀD > 0

F = −R−1 (BᵀX +DᵀC)
(23.118)

and X ≥ 0 is a solution of the following Riccati equation

(
A− BR−1DᵀC

)
X +X (

A− BR−1DᵀC
)ᵀ

− XBR−1BᵀX − Cᵀ (
I −DR−1Dᵀ)C = 0

(23.119)

Proof. (a) Necessity. Suppose G = NM−1 with N an inner and M (s) ∈ RHk×p
∞ . Then

G
∼
(iω)G (iω)= (

M−1 (iω)
)∼
N

∼
(iω)N (iω)M−1 (iω)

= (
M−1 (iω)

)∼
M−1 (iω) > 0

for any ω ∈ [−∞,∞] since M (s) ∈ RHk×p
∞ , that is, M (s) is “stable”.

(b) Sufficiency. First notice that if G = NM−1 is an RCF, then G = (NZ) (MZ)−1 is

also RCF for any nonsingular matrix Z ∈ Rp×p. Suppose now that N has its state-space

realization as[
A+ BF BZ

C +DF DZ

]

For N to be an inner, as it follows from Corollary 23.8, we should have

(DZ)ᵀDZ = I

Select F in such a manner that the following matrix identities have been fulfilled:

(BZ)ᵀX + (DZ)ᵀ (C +DF) = 0

(A+ BF)ᵀX +X (A+ BF)+ (C +DF)ᵀ (C +DF) = 0

(23.120)
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Take Z = R−1/2 where R := DᵀD > 0 by the assumption of the theorem. Then the first

equation in (23.120) becomes(
BR−1/2

)ᵀ
X + (

DR−1/2
)ᵀ
(C +DF)

= R−1/2BᵀX + R−1/2Dᵀ (C +DF) = 0

which implies

R−1/2DᵀDF = −R−1/2 (BᵀX +DᵀC)

Then, pre-multiplication of the last equation by R−1/2 gives

F = −R−1 (BᵀX +DᵀC)

Substituting this F into the second equation in (23.120) gives exactly (23.119). The

existence of a nonnegative solution X ≥ 0 for (23.119) guarantees the fulfilling of

(23.116).1 �

Remark 23.8. Notice that if G(s) = N (s)M−1 (s) ∈ RHm×k
∞ , then M−1 (s) ∈ RHp×k

∞
and M−1 (s) is called an outer, so

G(s) = Ginn (s)Gout (s) (23.121)

where

Ginn (s) := N (s), Gout (s) = M−1 (s)

The factorization (23.121) is referred to as an inner–outer factorization. In an anal-
ogous way the co-outer can be introduced such that the following co-inner–co-outer
factorization takes place:

G(s) = M̃−1 (s) Ñ (s) = G̃out (s) G̃inn (s)

G̃inn (s) := Ñ (s), G̃out (s) = M̃−1 (s)

(23.122)

Remark 23.9. The analogue result is valid for LCF (23.113), namely, supposing G(s) ∈
LHm×k

∞ and m ≤ k, one concludes that there exists an RCF G(s) = M̃−1 (s) Ñ (s) where
Ñ (s) ∈ RHp×k

∞ is a co-inner and M̃ (s) ∈ RHp×m
∞ (i.e., M̃ (s) is stable) if and only if

G(iω)G
∼
(iω) = G(iω)Gᵀ (−iω) > 0 (23.123)

for all ω ∈ [−∞,∞] (including at ±∞).

1 For details see Theorem 13.19 in Zhou et al. (1996).
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Lemma 23.10. For any F (s) ∈ LHm×k
∞ and any inner N (s) ∈ RHp×m

∞ (or any co-inner
Ñ (s) ∈ RHk×p

∞ )

‖F‖
L
m×k∞ = ‖N (s) F‖

L
m×k∞ =

∥∥∥FÑ (s)∥∥∥
L
m×k∞

(23.124)

that is, the pre-multiplication by an inner or the post-multiplication by a co-inner pre-
serves the L∞ norm of any transfer matrix.

Proof. It follows directly from the definition (23.44) since

‖NF‖
L
m×k∞ := ess sup

ω∈(−∞,∞)
σ̄ (N (iω) F (iω))

= ess sup
ω∈(−∞,∞)

λ1/2max

{
F

∼
(iω)N

∼
(iω)N (iω) F (iω)

}

= ess sup
ω∈(−∞,∞)

λ1/2max

{
F

∼
(iω) F (iω)

} = ‖F‖
L
m×k∞

and

∥∥∥FÑ∥∥∥
L
m×k∞

:= ess sup
ω∈(−∞,∞)

σ̄
(
F (iω) Ñ (iω)

)

= ess sup
ω∈(−∞,∞)

λ1/2max

{
F (iω) Ñ (iω) Ñ

∼
(iω) F

∼
(iω)

}

= ess sup
ω∈(−∞,∞)

λ1/2max

{
F (iω) F

∼
(iω)

} = ‖F‖
L
m×k∞

�

Now we are ready to give the solution to the MMP problem (23.98) showing its

equivalence to the Nehari problem (23.95).

Theorem 23.10. The MMP problem (23.98) is equivalent to the Nehari problem
(23.95) with

X (s) = M−1
2 (s)Q (s) M̃−1

3 (s) ∈ RHp2×p1
∞

G(s) = N∼
2 (s) T1 (s) Ñ

∼
3 (s)

(23.125)
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and one of its solutions is

X (s) =M2 (s)

[
N

∼
2 (−s) T1 (−s) Ñ∼

3 (−s)

−√
λmax (GcGo)

f(−s)g∼
(−s)

g∼
(−s)g(−s)

]
M̃3 (s)

(23.126)

where f(s) and g
∼
(s) is the Schmidt pair (23.78) for N

∼
2 (s) T1 (s) Ñ

∼
3 (s) and Gc,Go its

grammians (23.68).

Proof. Using RCF and LCF for T2 (s) = N2 (s)M
−1
2 (s) and for T3 (s) = M̃−1

3 (s) Ñ3 (s),

respectively, and applying the property (23.124), we get

J (Q)= C ‖T1 (s)− T2 (s)Q (s) T3 (s)‖2
RH

m1×k1∞

= C
∥∥∥T1 (s)−N2 (s)M

−1
2 (s)Q (s) M̃−1

3 (s) Ñ3 (s)

∥∥∥2

RH
m1×k1∞

= C
∥∥∥N∼

2 (s) T1 (s) Ñ
∼
3 (s)−M−1

2 (s)Q (s) M̃−1
3 (s)

∥∥∥2

RH
p2×p1∞

which is exactly (23.95) with (23.125). The solution (23.126) results from (23.126). �

23.2.5 Some control problems converted to MMP

H∞–control robust with respect to external perturbations–Problem formulation
Problem 23.4. For the linear system given in the frequency domain by Fig. 23.5

G(s)

K(s)

w

u

z

y

Fig. 23.5. The block scheme of a linear system with an external input perturbation and an internal feedback.
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G(s) :=
[
Gwz (s) Guz (s)

Gwy (s) Guy (s)

]
(
Z (s)

Y (s)

)
= G(s)

(
W (s)

U (s)

)

U (s) := L {u}, Y (s) := L {y}
Z (s) := L {z}, W (s) := L {w}

(23.127)

(z (t) ∈ Rn is associated with the part of coordinates forming a cost function, u (t) ∈ Rr

is the controlled input, y (t) ∈ Rp is the system output which may be used for feedback
designing and w (t) ∈ Rp is an external perturbation) design a feedback (dynamic)
controller with a transfer matrix K (s) given by

U (s) = K (s) [Y (s)+W (s)] (23.128)

such that
1. K (s) is proper and stable, i.e.,

K (s) ∈ RHr×p
∞ (23.129)

2. it minimizes the following min–max criterion

J (K)→ min
K(s)∈RH

r×p∞
(23.130)

J (K) := sup
W∈L

n
2 :‖W‖2

L
n
2
≤cw

‖Z‖2
H
n+r
2

where supremum is taken over all external perturbations of a bounded energy.
Here the large symbols are the Laplace transformation of the small ones.

Notice that

Z (s)=Gwz (s)W (s)+Guz (s) U (s)
=Gwz (s)W (s)+Guz (s)K (s) Y (s)

and

Y (s)=Gwy (s)W (s)+Guy (s) U (s)
=Gwy (s)W (s)+Guy (s)K (s) Y (s)
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which leads to the following relations

Y (s) = [I −Guy (s)K (s)]−1
Gwy (s)W (s)

Z (s) =
(
Gwy (s)+Guy (s)K (s) [I −Guy (s)K (s)]−1

Gwy (s)

)
W (s)

U (s) = K (s) [I −Guy (s)K (s)]−1
Gwy (s)W (s)

Remark 23.10. 1. The cost functional J (K) (23.130) exists (finite) if and only if the
closed-loop system is stable, that is, when Z (s) ∈ L

n+r
2 and Y (s) ∈ L

p

2 if W (s) ∈ L
n

2.
2. By Lemma 23.4 it is possible if and only if the transfer functions from W (s) to Z (s)

and Y (s) are stable, namely when

Gwy (s)+Guy (s)K (s) [I −Guy (s)K (s)]−1
Gwy (s) ∈ RH

(n+r)×n
∞

[I −Guy (s)K (s)]−1
Gwy (s) ∈ RH

p×n
∞

Parametrization of all stabilizing stationary feedbacks
Problem 23.5. Characterize the set of all stabilizing feedbacks K (s) which provides the
stability for K (s) itself as well as for [I −Guy (s)K (s)]−1 supposing that the transfer
matrices

Gwy (s) and Guy (s)

are stable, that is, we will try to find

K (s) ∈ RHr×p
∞

such that

[I −Guy (s)K (s)]−1 ∈ RHp×p
∞ (23.131)

providing

Gwy (s) ∈ RHp×p
∞ , Guy (s) ∈ RHp×r

∞

Proposition 23.7. K (s) stabilizes G(s) if and only if it stabilizes Guy (s).

Proof. It follows directly from (23.131). �
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Theorem 23.11. (Youla parametrization, 1961) The set of all (proper real rational)
transfer matrices K (s) stabilizing Guy (s) is parametrized by the formula

K (s)= [Y (s)−M(s)Q(s)] [X(s)−N(s)Q(s)]−1

=
[
X̃(s)−Q(s)Ñ(s)

]−1 [
Ỹ (s)−Q(s)M̃(s)

] (23.132)

where the matrix Q(s) ∈ RH∞ (provided that two inverted matrices exist) and all other
matrices are also from RH∞ and define the, so-called, double-co-prime factorization of
Guy (s), namely,

Guy (s) = N(s)M−1(s) = M̃−1(s)Ñ(s)

[
X̃(s) −Ỹ (s)
−Ñ(s) M̃(s)

] [
M(s) Y (s)

N(s) X(s)

]
= I

(23.133)

Proof. It can be found in Francis (1987) as well as in Zhou et al. (1996). �

Corollary 23.9. If K (s) is as in (23.132), then

[I −Guy (s)K (s)]−1 = M (s)
(
X̃ (s)−Q(s) Ñ (s)

)
K (s) [I −Guy (s)K (s)]−1 = N (s)

(
X̃ (s)−Q(s) Ñ (s)

) (23.134)

Proof. Substituting Guy (s) = N(s)M−1(s) = M̃−1(s)Ñ(s) and using the second identity

in (23.133) imply the desired relations (23.134). �

The solution of H∞ – linear robust control problem
Theorem 23.12. The problem 23.4 is equivalent to the model matching problem (23.98)
with

T1(s)= Gwy(s)+Guy(s)N(s)X̃(s)Gwy(s)

T2(s)= Guy(s)N(s)

T3(s)= Ñ(s)Gwy(s)

(23.135)

Proof. The cost functional (23.130) can be represented as

J (K) := sup
W∈L

n
2 :‖W‖2

L
n
2
≤cw

‖Z‖2
H
n+r
2

= sup
W∈L

n
2 :‖W‖2

L
n
2
≤cw

‖TW‖2
H
n+r
2
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where (omitting the argument)

T = Gwy +GuyK [I −GuyK]
−1
Gwy

which in view of (23.134) becomes

T = Gwy +GuyN
(
X̃ −QÑ

)
Gwy

=
[
Gwy +GuyNX̃Gwy

]
− [GuyN ]Q

[
ÑGwy

]
which completes the proof. �

Robust filtering problem: consider a linear system which block scheme is given at

Fig. 23.6.

Problem 23.6. Find a filter F (s) ∈ RHm×n
∞ if it exists which minimizes

J (F ) := sup
w:‖w‖2

Lk
2
[0,∞)≤c

∥∥x − x̂∥∥2

Ln2 [0,∞)
‖w‖2

Lk2[0,∞)
(23.136)

Here w (t) ∈ Lk2 [0,∞) is an external noise, x (t) ∈ Ln2 [0,∞) is a state vector,
y (t) ∈ Lm2 [0,∞) is an output of the system and x̂ (t) ∈ Ln2 [0,∞) is a state estimate.
For physical reasons it is supposed that all transfer matrices are stable, that is,

G(s) ∈ RHk×n
∞ , F (s) ∈ RHn×m

∞ , H (s) ∈ RHn×m
∞

F(s)

G(s)
yxw

H(s)

x

e5 x 2x

Fig. 23.6. Filtering problem illustration.
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As before, in view of (17.107) and (23.100), we have

J (F )= sup
W :‖W‖2

L
k
2

≤c

∥∥∥X (s)− X̂ (s)∥∥∥2

L
n
2

‖W‖2
L
k
2

= sup
W :‖W‖2

L
k
2

≤c
‖X (s)− F (s) Y (s)‖2

L
n
2

= sup
W :‖W‖2

L
k
2

≤c

∥∥[G(s)− F (s)H (s)]W (s)∥∥2

L
n
2

= c ‖G(s)− F (s)H (s)‖2
RH

k×n∞

Using the left-co-prime factorization (23.113)

H (s) = M̃−1(s)Ñ(s)

and applying the property (23.106), we derive

J (F )= c
∥∥∥G(s)− F (s) M̃−1(s)Ñ(s)

∥∥∥2

RH
k×n∞

= c
∥∥∥[G(s)− F (s) M̃−1(s)Ñ(s)

]
Ñ∼(s)

∥∥∥2

RH
k×n∞

= c
∥∥∥G(s) Ñ∼(s)− F (s) M̃−1(s)

∥∥∥2

RH
k×n∞

(23.137)

which leads to the following result.

Theorem 23.13. The robust filtering problem (23.6) is equivalent to the model matching
problem (23.98) with

T1(s) = G(s) Ñ∼(s)

T2(s) = I, Q (s) = F (s)

T3(s) = M̃−1(s)

(23.138)

Proof. It results from (23.137). �
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Adjoint equations, 673

Algebras, 294

sigma, 295

Algebraic complement, 11

Algebraic Riccati–Lurie’s matrix inequality,

195

All stabilizing feedbacks, 759

All-pass transfer matrix, 745

Almost everywhere concept, 311

Analytical center of the LMI, 210

Arc, 401

length, 402

simple (Jordan), 401

Arrow–Hurwicz–Uzawa method, 639

Axioms

field, 232

Barrier function, 210

Bellman’s principle of optimality, 688

Bezout identities, 753

Block-matrix

inversion, 31

Boundary of a set, 259

Bounded LS problem, 223

Bounded real condition, 199

Brachistochrone, 658

Canonical observability form, 706

Cauchy (fundamental) sequence, 263

Cauchy criterion, 264

for a series, 368

Cauchy formula, 410

Cauchy integral theorem, 87

Cauchy’s inequalities, 415

Cauchy’s integral formula, 410

Cauchy’s integral law, 406

Cauchy’s problem, 501

Cauchy’s residue theorem, 409

Cauchy–Adhamar formula, 421

Cauchy–Riemann conditions, 398

Cayley transformation, 52

Central optimal element, 744

Cesàro summability, 378

Chain rule, 317

Characteristic equation, 44

Characteristic polynomial, 44, 139

Cholesky factorization, 73

Circuit, 402

Cline’s formulas, 109

Co-inner, 750

Cofactor

complementary, 13

Cofactor of a matrix, 11

Commutation, 22

Companion matrix, 150

Complement of A relative to B, 253

Complementary slackness conditions, 677

Complete differential, 321

Completion, 457

Complex exponent, 248

Complex number, 239

Complex sines and cosines, 249

Condition

Euler–Lagrange, 657

Legandre, 657

maximality, 674, 677

nontriviality, 674

strong Legendre, 657

strong Legendre vector, 663

transversality, 674

Conditions

complementary slackness, 674

Euler–Poisson, 664

Weierstrass–Erdmann, 667

Congruent matrices, 70

Conjugate, 241

Conjugated symmetric, 186

Continuous dependence of the solutions of

ODE, 516

Contour

reducible, 406

Contraction, 273

Contraction principle, 273

Control

admissible, 669

feasible, 669
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Controllability, 165

Controllability grammian, 196

Controllable mode, 174

Convergence, 261

Convex body, 682

Convex hull, 130

Convex optimization problem, 191

Coordinate transformation, 352

Coordinate transformation in an integral, 352

Cost fucntional

in the Bolza form, 668

in the Lagrange form, 668

in the Mayer form, 668

Cramer’s rule, 18

Criterion

2k, 370

circle, 594

Kronecker–Capelli, 17

Criterion of polynomial robust stability, 160

Curve

piecewise smooth, 402

rectifiable, 401

Cutting plane, 207

D’Alembert–Euler conditions, 398

Damping factor, 211

Daneš’ theorem, 216

Darboux sums, 277

Decomposition

Kalman, 714

Kalman canonical, 716

polar, 63

singular-value, 66, 68

Def complete space, 455

Defect, 42

Deffeomorphism, 352

Delta-function, 42, 312

Derivative, 284, 315

directional, 320

Fréchet, 488

Gâteaux, 490

mixed partial, 320

partial, 319

right, 512

Detectability, 173

Determinant, 4

homogeneous, 6

Vandermonde, 12

Wronsky, 473

Diagonal

main, 4

secondary, 4

Dichotomy, 576

Differential inclusion, 541

Disjoint sets, 253

Dissipation, 197

Distance function, 256, 299

Divergence, 332

Domain

simply-connected, 406

Dynamic Programming Method, 687

Eigenvalue, 44

Eigenvalue problem, 204

Eigenvector, 44

Eigenvectors

generalized, 54, 176

Elementary transformations, 32

Ellipsoid, 207

Ellipsoid algorithm, 207

Elliptic cylinder, 109

Equation

Hamilton–Jacobi–Bellman, 688

matrix Riccati, 704

Riccati, 598

Equivalent control, 552

Equivalent control method, 552

Euclidean k-space, 239

Euclidean, 89

Euler’s formula, 247

Expansion

Fourier, 460

Legendre, 111

Factorization

co-inner-co-outer, 755

double-co-prime, 760

inner-outer, 755

left co-prime, 753

polar, 63

right co-prime, 753

Farkaš’ lemma, 222

Feasible LMI, 193

Field, 232

ordered, 233

Finsler lemma, 216

First integral of ODE, 521

Fixed point, 491

Formula

Binet–Cauchy, 14

Cauchy, 518

Green, 524

Newton–Leibniz, 339

Schur’s, 30

Frequency inequality, 591
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Frequency theorem, 595

Function, 251

absolutely continuous, 533

analytic, 400

characteristic, 307

concave, 359, 606

continuous, 267, 542

convex, 359, 605

delta, 312

entire, 415

equicontinuous, 271

Hahn, 579

holomorphic, 400

integrable in the Lebesgue

sense, 309

Legendre, 111

Lipschitz continuous, 267

Lyapunov, 566

measurable, 304

meromorphic, 409

negative-definite, 563

of bounded variation, 290

piecewise continuous, 540

positive-definite, 562

quasi-convex, 621

regular, 400

semi-continuous, 542

simple, 307

spectral, 442

strictly convex, 605

strongly convex, 606

Functional

linear, 463

Lyapunov–Krasovski, 202

separable, 688

Functionals, 463

Functions of a matrix, 79

Fundamental theorem of algebra, 432

Gamma-entropy, 201

Gauss’s method, 16

Gauss’s method of determinant evaluation, 9

Gauss’s rule, 16

Godograph, 156

Gradient, 320, 332

Gradient method, 617, 619

Gram–Schmidt orthogonalization, 60

Grammian

controllability, 165, 719, 723

observability, 170, 719, 723

Greatest-integer function, 287

Greville’s formula, 106

Group property, 517

H-inf norm, 201

H2 norm, 196

H2 optimal control, 724

Hölder’s condition, 433

Hamilton–Jacoby–Bellman (HJB), 693

Hamiltonian, 523, 674, 677

Hamiltonian form, 677

Hamiltonian matrix, 175

Hankel singular values, 721

Hermitian form, 115

Homeomorphism, 273

Horizon, 668

Identity

Cauchy, 15

Image, 42, 165

Imaginary unit, 241

Inequality

Frobenius’s, 37

Popov’s, 591

Inertia of a square matrix, 70

Infeasible LMI, 193

Infimum, 232

essential, 311

Infinite products, 379

Inner, 750

Inner (scalar) product, 239

Inner–outer factorization, 755

Instability, 564, 570

Integer numbers, 233

Integral

contour, 403

Duhammel, 440

Lebesgue, 308

Lebesgue–Stieltjes, 308

Integral inequality

first Chebyshev, 356

second Chebyshev, 356

Cauchy–Bounyakovski–Schwartz, 358

generalized Chebyshev, 355

Hölder, 356

Jensen, 359

Kulbac, 364

Lyapunov, 363

Markov, 355

Minkowski, 366

Integral transformations, 433

kernel, 433

Integrand, 278

Integrator, 278

Interior point method, 191, 210

Interior point of a set, 257
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Internal points of a set, 259

Intersection of the sets, 253

Interval, 297

Invariant embedding, 688, 691

Inverse image of the function, 251

Isolated point, 257

Isometry, 273

Jordan

block, 62

chain, 56

form, 62

normal canonical representation, 62

Kantorovich’s matrix inequality, 226

Kernel, 42, 98, 171

Kharitonov’s theorem, 160

Kronecker product, 26

Kronecker sum,

Lagrange principle, 631

Laplace image, 434

Least square problem, 107

Lemma

Abel-Dini, 385

Bihari, 507

Du Bois–Reymond, 647

Fatou’s, 346

Gronwall, 510

Jordan, 418

KKM, 494

Kronecker, 384

Lagrange, 650

Mertens, 376

on a finite increment, 324

on quadratic functionals, 651

Schwartz, 416

Sperner, 493

Teöplitz, 382

Yakubovich–Klaman, 595

Liénard–Chipart criterion, 153

Limit point of a set, 257

Linear conbination, 41

Linear manifold, 97

Linear matrix inequalities, 191

Linear partial DE

method of characteristics, 529

Linear recurrent inequalities, 388

Linear stationary system, 196

Linear system

MIMO, 713

SISO, 713

Linear transformation, 42

Linearly dependent, 42

Linearly independent, 42

Liouville’s theorem, 415

Lipschitz condition, 324

LMI, 191

Low-pass filter, 555

Lower limit, 265

LQ problem, 697

Lyapunov equation

algebraic, 584

differential, 584

Lyapunov inequality, 195

Lyapunov order number, 524

Lyapunov stability, 566

Manifold, 541

Mapping, 251

Matrices

equivalent, 36

Matrix

adjoint, 21

block-diagonal, 30

companion, 10

controllability, 165

diagonal, 4, 182

difference, 20

fundamental, 517

Hautus, 165, 170

Hermitian, 21

Householder, 51

idempotent, 77

inverse, 21

Jacobi, 489

low triangular, 5

multiplication by scalar, 20

Newton’s bynom, 22

Nonnegative definite, 117

nonsingular, 21

normal, 21, 67

observability, 170

orthogonal, 21

partitioning, 29

Positive definite, 118

power, 22

product, 19

real normal, 21

rectangular, 3

simple, 36

singular, 21

skew-hermitian, 21

Square root, 118

Stable matrix, 139
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sum, 19

symmetric, 21

transpose, 6

transposed, 20

unitary, 21

upper triangular, 6

Matrix Abel identities, 214

Matrix exponent, 81

Frobenius (Euclidian), 91

Hölder, 91

induced matrix norm, 93

maximal singular-value, 92

spectral norm, 93

Trace, 91

Weighted Chebyshev, 91, 93

Matrix norm constraint, 194

Matrix or submultiplicative norm, 91

Matrix Riccati equation, 175, 188

Maximum modulus principle, 415

Maximum principle, 670

Maximum–minimum problem, 129

McMillan degree, 717

Mean-value theorem, 318, 322

Measure, 304

atomic, 312

countably additive, 303

Lebesque, 303

outer, 298

zero, 303

Method

Arrow–Hurwicz–Uzawa, 639

Galerkin, 485

Metric, 256

Chebyshev’s, 256

discrete, 256

Euclidian, 256

module, 256

Prokhorov’s, 257

weighted, 256

Metric space, 256

complete, 264

Mikhailov’s criterion, 156

Minimal ellipsoid, 206

Minimum

global, 611, 628

local, 611, 628

Minimum modulus principle, 416

Minimum point

locally unique, 613

nonsingular, 613

Minimum volume ellipsoid, 208

Minor

complementary, 13

leading principle, 13

of some order, 13

principle, 13

Minor of a matrix, 10

Mixed subgradient, 682

Mode, 174

Model-matching (MMP) problem, 747

Moivre–Laplace formula, 246

Monic polynomial, 139

Monotonic sequence, 265

Moore–Penrose pseudoinverse, 102

Multiplicity

algebraic, 54

geometric, 54

Necessary conditions of a matrix stability, 144

Nehari problem, 742

Nehari theorem, 743

Neighborhood of a point, 257

Newton’s method

modified, 617, 620

Nonexspansivity, 199

Nonlinear trace norm constraint, 194

Nonlinear weighted norm constraint, 194

Nonstrict LMI, 191

Norm, 88

Chebyshev, 89

Hölder, 89

Modul-sum, 89

weighted, 89

S-norm, 92

Norm equivalency, 89

Normal equations, 99

Normed linear space, 89

Compatible, 93

Null space, 42, 98, 171

Null space of an operator, 471

Number of inversions, 3

Observability, 170

Observable mode, 174

ODE, 501, 695

adjoint, 523, 676

Carathéodory’s type, 531

Jacobi, 657

Jacobi vector form, 663

singular perturbed, 534

variable structure, 533

with jumping parameters, 534

ODE solution

in Filippov’s sense, 541

maximal, 511

minimal, 511
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One-to-one mapping, 251

Open cover of a set, 260

Operator, 462

adjoint (dual), 477

coercive, 483

compact, 464, 469

continuously invertible, 472

differential, 463, 465

Hankel, 733

Hankel in the time domain, 735

Hermitian, 181

integral, 463, 465

invertible, 463

isomorphic, 471

Laplace, 333

Laurent, 731

linear continuous, 464

monotone, 482

monotone strictly, 483

monotone strongly, 483

nonnegative, 483

orthogonal projection, 480

positive, 483

self-adjoint (or Hermitian), 478

semi-continuous, 464

shift, 463

strongly continuous, 466

Toeplitz, 733

uniformly continuous, 466

weighting, 465

Operator nabla, 332

Optimal control, 670

Optimal control problem

in the Bolz form, 669

with a fixed terminal term,

670

Optimal pair, 670

Optimal state trajectory, 670

Optimality

sufficient conditions, 694

Order, 231

Order of a zero, 423

Ordered set, 231

Orlando’s formula, 146

Orthogonal complement, 460

Orthogonal completion, 42

Orthogonality, 42

Orthonormality, 42

Outer, 755

Pair

controllable, 165

detectable, 173

observable, 170

stabilizable, 170, 188

uncontrollable, 165

undetectable, 173

unobservable, 170

unstabilizable, 170

Parametric optimization, 681

Parseval’s identities

generalized, 722

Parseval’s identity, 423, 445

Passivity, 197

Permutation, 3

Pole, 409

Polyak–Tsypkin geometric criterion, 162

Polytope, 709

Popov’s line, 594

Popov–Belevitch–Hautus test, 174

Positive definiteness

strictly, 124

Principal value of the complex logarithm, 248

Principle of “zero-excluding”, 160

Principle of argument, 429

Principle of argument variation, 154

Problem

LQR, 724

Programming

dynamic, 671

Projection

orthogonal, 459

Projection to the manifold, 97

Projector, 77

complementary, 77

Pseudo-ellipsoid, 109

Pseudoinverse, 102

Quadratic form, 115

Quadratic stability degree, 205

Range, 42, 98

Range of function, 251

Rank, 17, 36

Ratio of two quadratic forms, 132

Rational numbers, 233

Rayleigh quotient, 129

Reaching phase, 539

Real-positiveness, 197

Realization

balanced, 720

minimal, 717

Refinement, 278

Residue, 410

Resolvent, 86
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Resolving Lourie’s equations, 596

Riccati differential equation, 699

Riccati matrix ODE, 525

Riemann integral, 277

Riemann–Stieltjes integral, 278

Riemann–Stieltjes sum, 278

Robust filtering problem, 761

Robust stability, 159

Rotor, 332

Rouché theorem, 431

Routh–Hurwitz criterion, 151

Row-echelon form, 16

Rule

Sylvester’s, 38

S-procedure, 195, 218

Saddle-point property, 634

Sarrius’s rule, 5

Scalar product, 41

Schmidt pair, 740

Schur’s complement, 120

Sensitivity matrix, 681

Sequence, 252

monotonically nondecreasing, 265

monotonically nonincreasing, 265

Series

alternating, 371

Fourier, 429

geometric, 372

Laurent, 425

nth partial sum, 368

sum, 368

Taylor, 420

telescopic, 369

Series convergence

Abel’s test, 375

Dirichlet’s test, 375

integral test, 373

Set

Borel, 303

bounded, 257

bounded above, 231

closed, 257

closure, 258

compact, 260

complement, 257

connected, 257

dense, 257

diameter, 263

elementary, 297

finitely μ-measurable, 300

low bound, 231

μ-measurable, 300

open, 257

relative compact, 469

separable, 625

strictly separable, 625

Set function

additive, 295

countably additive, 295

regular, 298

Shifting vector, 696, 699

Signature of a Hermitian matrix, 71

Simplex

Sperner, 493

Simultaneous reduction of more than two

quadratic forms, 128

Simultaneous transformation of pair of

quadratic forms, 125

Singular points, 409

Singular value, 67

Singularity

essential, 409

removable, 409

Slater’s condition, 631, 634

Sliding mode control, 554

Sliding mode equation, 552

Sliding motion, 545

Space

Banach, 455

bounded complex numbers, 452

continuous functions, 452

continuously differentiable functions, 452

dense, 451

dual, 475

frequency domain, 454

Hardy, 454

Hilbert, 457

homeomorphic, 273

Lebesgue, 453

measurable, 304

reflexive, 476

separable, 451

Sobolev, 453

summable complex sequences, 452

Span, 41

Spectral radius, 45, 92

Spectral theorem, 61

Spectrum, 45

of a unitary matrix, 51

Square root of a matrix, 84

Stability

absolute in the class, 588

asymptotic global, 576

asymptotically local, 564



774 Index

asymptotically uniformly local, 564

BIBO, 585

exponential, 569, 582, 584

exponential local, 564

Lyapunov (local), 563

uniformly local, 563

Stabilizability, 170

Stationary property, 131

Stationary time-delay system, 202

Steepest descent problem, 225

Stieltjes integral, 278

Stodola’s rule, 144

Subadditivity, 298

Subgradient, 626

Subsequence, 262

Subspace

A-invariant, 176

Support function, 111

Supremum, 232

essential, 311

Sylvester criterion, 124

Symbol

Kronecker, 42

Symmetric difference, 299

System

hybrid, 203

robust, 747

Systems

stationary, 678

Taylor’s formula, 318, 323

Terminal set, 668, 691

Theorem

first Lyapunov, 573

first mean-value, 337

second Lyapunov, 568

second mean-value, 337

Antosevitch, 579

Ascoli–Arzelà, 271

Bonnet’s, 338

Brouwer, 495

Cayley–Hamilton, 53

Chetaev, 580

Fermat, 611

fixed point, 273

Fubini’s, 348

Hahn–Banach, 467

Halanay, 580

implicit function, 327

inverse function, 325

Karush–John, 631

Krasovskii, 577

Kuhn–Tucker, 634

Laplace, 14

Lebesgue’s dominated convergence, 347

Lebesgue’s monotone convergence, 342

Leray–Schauder, 498

Liuoville, 517

on n-intervals, 710

on separation, 624

Peano, 506

Picard–Lindelöf, 504

Plancherel, 445

Rademacher, 607

Riesz, 479

Rolle’s, 318

Schauder, 496

Tonelli-Hobson, 351

Wintner, 515

Tolerance level optimization, 204

Topological mapping, 273

Topological properties, 274

Total variation, 291

Trace, 38

Transfer function, 196

Transformation

both-side Laplace, 448

Fourier, 442

Gladishev’s, 637

Hankel (Fourier–Bessel), 449

Laplace, 434, 435

Melline, 448

two-dimensional Fourier, 447

Transversality condition, 677

Transversality conditions, 666

Triangle inequality, 88

Uncontrollable mode, 174

Uniform continuity, 269

Union of the sets, 253

Unitary equivalentness, 69

Unobservable mode, 174

Upper function, 349

Upper limit, 265

Value function, 692

Variation

needle-shape

spike, 671

Variation principle, 491

Variation principle, 653

Verification rule, 694

Viscosity solutions, 688

Weierstrass theorem, 265, 268, 612

Winding number, 412
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