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Preface

This book contains four parts:

• Basics of Probability
• Discrete Time Processes
• Continuous Time Processes
• Applications.

The first part concerns the basics of Probability Theory which, in fact, is the probability
space. The key idea behind probability space is the stabilization of the relative frequencies
when one performs ‘independent’ repetition of a random experiment and records whether
each time ‘event’, say A, occurs or not. Define the characteristic function of event A during
trial t = 1, 2, . . . by χ (At ), namely,

χ (At ) :=

{
1 if A occurs, i.e., At = A
0 if not

(1)

Denoted by

rn (A) :=
1
n

n∑
t=1

χ (At ) (2)

the relative frequency of event A after the first n trials, because of the dawn of history one
can observe the stabilization of the relative frequencies; that is, it seems natural that as
n→∞

rn (A) converges to some real number called the probability of A.

Although games of chance have been performed for thousands of years, probability
theory, as a science, originated in the middle of the 17th century with Pascal (1623–
1662), Fermat (1601–1655) and Huygens (1629–1695). The real history of probability
theory began with the works of James Bernoulli (1654–1705) and De Moivre (1667–
1754). Bernoulli was probably the first to realize the importance of consideration of infinite
sequences of random trials and made a clear distinction between the probability of an event
and the frequency of its realization. In 1812 there appeared Laplace’s (1749–1827) great
treatise containing the analytical theory of probability with application to the analysis of
observation errors. Then limit theorems were studied by Poisson (1781–1840) and Gauss
(1777–1855).

The next important period in the development of probability theory is associated with
the names of P.L. Chebyshev (1857–1894), A.A. Markov (1856–1922) and A.M. Lyapunov

xv
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(1857–1918), who developed effective methods for proving limit theorems for sums of
independent but arbitrarily distributed random variables. Before Chebyshev the main
interest had been in the calculation of the probabilities of random events. He, probably,
was the first to understand clearly and exploit the full strength of the concepts of random
variables. The number of Chebyshev’s publications on probability theory is not large –
four in all – but it would be hard to overestimate their role and in the development of the
classical Russian school of that subject.

The modern period in the development of probability theory began with its axiomati-
zation due to the publications of S.N. Bernstein (1880–1968), R. von Mises (1883–1953)
and E. Borel (1871–1956). But the first mathematically rigorous treatment of probability
theory came only in the 1930s by the Russian mathematician A.N. Kolmogorov (1903–
1987) in his seminal paper (Kolmogorov, 1933). His first observation was that a number
of rules that hold for relative frequencies rn (A) should also hold for probabilities. This
immediately raises the question: which is the minimal set of such rules? According to Kol-
mogorov, the answer is based on several axiomatic concepts. These fundamental concepts
are:

(1) σ -algebra

(2) probability measure

(3) probability space

(4) distribution function.

In this volume we will discuss each of these principal notions in details.
The second part deals with discrete time processes, or, more exactly, random sequences

where the main role is played by Martingale Theory, which takes a central place in
Discrete-Time Stochastic Process Theory because of the asymptotic properties of mar-
tingales providing a key prototype of probabilistic behavior which is of wide applicability.
The first appearance of a martingale as a mathematical term was due to J. Ville (1939).
The major breakthrough was associated with the classic book Stochastic Processes by
J. Doob (1953). Other recent books are J. Neveu (1975), R. Liptser and A. Shiryaev (1989)
and D. Williams (1991). The martingale is a sequence {ξn,Fn}n≥1 of random variables
ξn associated with a corresponding prehistory (σ -algebra) Fn−1 such that the conditional
mathematical expectation of ξn under fixed Fn−1 is equal to ξn−1 with probability 1, that
is,

E {ξn/Fn−1}
a.s.
= ξn−1

Martingales are probably the most inventive and generalized of sums of independent
random variables with zero-mean. Indeed, any random variable ξn (maybe, dependent)
can be expressed as a sum of ‘martingale-differences’

1n := E {ξn/Fk} − E {ξn/Fk−1} , E {ξn/F0} = 0, k = 1, . . . , n

because of the representation

ξn = (ξn − E {ξn/Fn−1})+ (E {ξn/Fn−1} − E {ξn/Fn−2})

+ . . .+ (E {ξn/F1} − E {ξn/F0}) =

n∑
k=1

1k
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In some sense martingales occupy the intermediate place between independent and
dependent sequences. The independence assumption has proved inadequate for handling
contemporary developments in many fields.

Then, based on such considerations, there are presented and discussed in detail the
three most important probabilistic laws: the Weak Law of Large Numbers (LLN) and its
strong version known as the Strong Law of Large Numbers (SLLN), the Central Limit
Theorem (CLT), and, finally, the Law of the Iterated Logarithm (LIL). All of them may
be interpreted as invariant principles or invariant laws because of the independence of
the formulated results of the distribution of random variables forming considered random
sequences.

The third part discusses Continuous-Time Processes basically governed by stochastic
differential equations. The notion of the mean-square continuity property is introduced
along with its relation with some properties of the corresponding auto-covariance matrix
function. Then processes with orthogonal and independent Increments are introduced, and,
as a particular case, the Wiener process or Brownian motion is considered. A detailed
analysis and discussion of an invariance principle and LIL for Brownian motion are
presented.

The so-called Markov Processes are then introduced. A stochastic dynamic system
satisfies the Markov property if the probable (future) state of the system is independent
of the (past) behavior of the system. The relation of such systems to diffusion processes is
deeply analyzed. The ergodicity property of such systems is also discussed.

Next, the most important constructions of stochastic integrals are studied: namely
• a time-integral of a sample path of a second order (s.o.) stochastic process;
• the so-called Wiener integral of a deterministic function with respect to a station-

ary orthogonal increment random process such that this integral is associated with the
Lebesgue integral, it is usually referred to as a stochastic integral with respect to an
‘orthogonal random measure’ ;
• the so-called Itô integral of a random function with respect to a stationary orthogonal

increment random process;
• and, finally, the so-called Stratonovich integral of a random function with respect to an

s.o. stationary orthogonal increment random process where the ‘summation’ on the right-
hand side is taken in a special sense.

All of these different types of stochastic integral are required for the mathematically
rigorous definition of a solution of a stochastic differential equation. We discuss the
class of the so-called Stochastic Differential Equation, introduced by K. Itô, whose
basic theory was developed independently by Itô and I. Gihman during 1940s. There
the Itô-type integral calculus is applied. The principal motivation for choosing the Itô
approach (as opposed to the Stratonovich calculus as another very popular interpretation
of stochastic integration) is that the Itô method extends to a broader class of equations
and transformation the probability law of the Wiener process in a more natural way. This
approach implements the so-called diffusion approximation which arises from random
difference equation models and has wide application to control problems in engineering
sciences, motivated by the need for more sophisticated models which spurred further work
on these types of equation in the 1950s and 1960s.
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The fourth part is dedicated to applications. The vitality and principal source of inspi-
ration of Probability Theory comes from its applications. The mathematical modeling of
physical reality and the inherent ‘nondeterminism’ of many systems provide an expanding
domain of rich pickings in which, in particular, martingale limit results are demonstrably
of great usefulness. The applications presented here reflect the author’s interest, although
it is hoped that they are diverse enough to establish beyond any doubt the usefulness of the
methodology.

First, we apply the stochastic technique presented to Identification of Dynamics Models
containing stochastic perturbations. Here, identification is associated with on-line parame-
ters estimating of some practically important models such as NARMAX and other autore-
gression widely applied in mathematical economics over last two decades.

Then the problems of Filtering, Prediction and Smoothing are considered. We
concentrate on the problem of estimation for discrete-time and continuous-time processes
based on some available observations of these processes which are obviously statistically
dependent on the processes considered. The physical device generating any one of these
estimates from the observed data is called a filter. In detail, the so-called Kalman filter is
analyzed and discussed.

In certain statistical applications (such as bioassay, sensitivity testing, or fatigue tri-
als) some problems arising can be conveniently attacked using the so-called Stochastic
Approximation Method (SAM), which requires minimum distributional assumptions. SAM
is closely related to recursive Least Squares and to the estimation of parameters of a nonlin-
ear regression. The control engineering literature also contains many applications of SAM,
basically related to identification problems (see, for example, Ya.Z. Tsypkin, 1971 and G.
Saridis, 1977). Quite a large number of stochastic approximation schemes have been dis-
cussed in the literature, but they essentially amount to modifications of two basic schemes:
the Robbins–Monro procedure dealing with a nonlinear regression problem when only
measurements of a regression function corrupted by noise are available, and the Kiefer–
Wolfowitz procedure dealing with an optimization problem when only measurements of a
function to be optimized corrupted by noise are available in any predetermined point. We
present some extensions of these methods related to the stochastic gradient algorithm, its
robustification and the conditions when these procedures work under correlated (depen-
dent) noises.

Finally, a version of the Robust Stochastic Maximum Principle (RSMP) is designed,
being applied to the min-max Mayer Problem formulated for stochastic differential
equations with the control-dependent diffusion term. The parametric families of first and
second order adjoint stochastic processes are introduced to construct the corresponding
Hamiltonian formalism. The Hamiltonian function used for the construction of the robust
optimal control is shown to be equal to the Lebesgue integral over a parametric set (which
may be a compact or a finite set) of the standard stochastic Hamiltonians corresponding to a
fixed value of the uncertain parameter. Robust stochastic LQ control designing is discussed
in detail.



Preface xix

Acknowledgements

I feel deep gratitude to my colleagues and students over the years, without whose evident
collaboration, comments, enjoyment and expressed appreciation the current work would
not have been undertaken. I wish also to acknowledge the editors of Elsevier Limited for
being so cooperative during the production process of both volumes of the book.

Alexander S. Poznyak
Avandaro, Mexico



This page intentionally left blank



Notations and Symbols

A ∪ B := {x : x ∈ A or x ∈ B}— the union of sets.

A ∩ B := {x : x ∈ A and x ∈ B}— the intersection of sets.

Ac
= Ā := {x : x /∈ A} := {z ∈ C | Re z < 0}— the complement to a set A.

A \ B := A ∩ Bc — the difference of sets.

A− B := (A \ B)∪ (B \ A) , A M B := (A − B)∪ (B − A)— the symmetric difference
of sets.

∅ — the empty set.

P(�) := {A : A ⊂ �}— the power set.

lim
n→∞

An :=
∞⋃

n=1
An for A1 ⊂ A2 ⊂ · · ·.

lim
n→∞

An :=
∞⋂

n=1
An for A1 ⊃ A2 ⊃ · · ·.

A∗ = lim inf
n→∞

An :=
∞⋃

n=1

∞⋂
m=n

Am .

A∗ = lim sup
n→∞

An :=
∞⋂

n=1

∞⋃
m=n

Am .

(�,F) — a measurable space.

µ = µ(A) ∈ [0,∞) — a finite additive measure.

(�,F ,P) — a probability space.

P — a probability measure.

B := B(R) — Borel σ -algebra.

F = F(x) — a distribution function.

P{(a, b]} := F(b)− F(a).

f (x) =
d

dx
F(x) ≥ 0 — the density function.

P {A/B} := P {B ∩ A} /P {B} (P {B} > 0) the conditional probability.

xxi



xxii Notations and symbols

ξ = ξ(ω), defined on (�,F) (ω : ξ(ω) ∈ B) ∈ F — F -measurable (or, Borel measur-
able) function or random variable.

IA(ω) :=

{
1 if ω ∈ A
0 if ω 6∈ A

— the indicator-function of a set A.

ξ+ := max {ξ ; 0}.

ξ− := −min {ξ ; 0}.

E{ξ} :=
∫

ω∈�

ξ(ω)P (dω)
or
=
∫
�

ξdP — mathematical expectation.

m := E{ξ}.

var ξ := E
{
(ξ − E{ξ})2

}
.

med (ξ) : P {ξ ≤ med (ξ)} = P {ξ > med (ξ)} =
1
2

— the median.

λα (ξ) : P {ξ ≥ λα (ξ)} ≥ α — the α-quantile.

cov (ξ, η) := E {(ξ − E {ξ}) (η − E {η})}— the covariance of ξ and η.

ρξ,η :=
cov (ξ, η)
√

var ξ
√

var η
— the correlation coefficient of ξ and η.

g∪ : R→ R — a convex downward (or, simply, convex) function.

g∩ : R→ R — a convex upward (or, simply, concave) function.

ϕ (t) :=
∫

Rn
ei(t,x)d F (x) = ϕ (t) := E

{
etξ
}

— the characteristic function of

n-dimensional distribution function F = F (x1, x2. . . . , xn) given on (Rn,B(Rn)),
or equivalently, a random vector ξ having this distribution.

ξk
a.s.
→ 0 — the convergence with probability 1 (or, almost sure).

ξn ↑ ξ — monotonically (non-decreasing) converges to ξ .

ξn ↓ ξ — monotonically (non-increasing) converges to ξ .

ξn
d
→

n→∞
ξ — the convergence in distribution.

ξn
P
→

n→∞
ξ — the convergence in probability.

ξn
L p

→
n→∞

ξ — the convergence in mean of the order p.

l.i.m.
n→∞

ξn = ξ — the mean-square convergence.
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ξn
∀ω∈�
→

n→∞
ξ — the pointly convergence.

ξn
c.c.
→

n→∞
ξ — the complete convergence.

d (F,G) := sup
A∈R
|F (A)− G (A)|— the variational distance between the distributions F

and G.

d (ξ, η) := sup
A∈R
|P {ξ ∈ A} − P {η ∈ A}| — the distributional distance between two

random variables ξ and η.

η (ω) = E {ξ/F0}— the conditional mathematical expectation of ξ (ω) with respect to a
sigma-algebra F0.

Fn := σ (x1, x2, . . . , xn) — a sigma-algebra constructed from all sets {ω : xi (ω) ≤ ci ,

i = 1, 2, . . . , n} where xi = xi (ω) (i = 1, 2, . . . , n) are random variables, defined
on (�,F ,P), and ci ∈ R are any constants.

〈M〉n =
n∑

j=1
E
{(
1M j

)2
| F j−1

} (
1M j := M j − M j−1

)
— the quadratic variation of a

square integrable martingale.

τ ∧ n := min {τ, n}.

[z]+ :=
{

z if z ≥ 0
0 if z < 0

.

x+ := max {0; x}.

x− := −min {0; x}.

N (0, 1) — the standard Gaussian distribution with zero-mean and variance equal to one.

α(H,G) := sup
A∈H, B∈G

|P {A ∩ B} − P {A}P {B}|— the coefficient of strong mixing.

φ(H,G) := sup
A∈H, B∈G

|P {A/B} − P {A}|— the coefficient of uniform strong mixing .

ψ(H,G) := sup
A∈H, B∈G,P{A}>0,P{B}>0

∣∣∣∣ P {A ∩ B}

P {A}P {B}
− 1

∣∣∣∣ — the coefficient of relative

uniform strong mixing.

ρ(H,G) := sup
x∈H, y∈G

∣∣ρx,y
∣∣ — the coefficient of correlative mixing.

n∨
i=m

Fi — the sigma-algebra generated by the union of the sigma-algebras Fi .

αn := sup
k≥1

α(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi ) — strong mixing coefficient.
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φn := sup
k≥1

φ(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi ) — the uniform strong mixing coefficient.

ψn := sup
k≥1

ψ(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi ) — the relative uniform strong mixing coefficient.

ρn := sup
k≥1

ρ(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi ) — the correlative mixing coefficient.

qn,m :=

√
E
{
|E {xn | Fn−m}|

2
}

— the quadratic norm of a conditional mathemati-

cal expectation.

colX :=
(
x1,1, . . . , x1,N , . . . , xM,1, . . . , xM,N

)ᵀ — the spreading operator.

⊗ is the Kronecker product.

N̊t := Nt − E {Nt }— a centered random variable.

{Wt (ω)}t≥0 , W0 (ω)
a.s.
= 0 — a Wiener process or Brownian motion (BM) is a zero-mean

s.o. scalar process with stationary normal independent increments.

F[t1,t2] := σ {x (t, ω) , t1 ≤ t ≤ t2}— a minimal sigma-algebra generated by the ‘inter-
vals’ (rectangles, etc.).

P {s, x, t, A} the transition probability or transition function of a stochastic process
{x (t, ω)}t∈[t0,T ] where t0 ≤ s ≤ t ≤ T , x ∈ Rn and A ∈ Bn .

πi, j (s, t) := P {x (t, ω) = j | x (s, ω) = i} — the transition probabilities of a given
Markov chain defining the conditional probability for a process {x (t, ω)}t∈T to be
in the state j at time t under the condition that it was in the state i at time s < t .

I[a,b] (x) =
b∫

τ=a
x (τ, ω) dτ — the time-integral of a sample path of a second order (s.o.)

stochastic process {x (t, ω)}t≥0.

I W
[a,b] ( f ) =

b∫
τ=a

f (τ ) dWτ (ω) — the Wiener integral of a deterministic function f (t)

with respect to an s.o. stationary orthogonal increment random process Wτ (ω).

I[a,b] (g) =
b∫

τ=a
g (τ, ω) dWτ (ω) — the Itô integral of a random function g (t, ω) with

respect to an s.o. stationary orthogonal increment random process Wt (ω).

I S
[a,b] (g) =

b∫
τ=a

g (τ, ω)
λ=1/2
◦ dWτ (ω) — the Stratonovich integral of a random function

g (t, ω) with respect to an s.o. stationary orthogonal increment random process
Wt (ω), where the ‘summation’ in the right-hand side is taken in a special sense.
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W[0,t] := σ {x (0, ω) , Ws (ω) , 0 ≤ s ≤ t} — is a minimal sigma-algebra (sub-sigma-
algebra of F ) generated by x (0, ω) and Ws (ω) (0 ≤ s ≤ t).

oω (1)
a.s.
→

n→∞
0 — a random sequence tending to zero with probability one (a.s.).

q : qzn = zn−1 — the delay operator.

IF (c, n) := E
{
∇c ln pyn (yn

| c)∇ᵀc ln pyn (yn
| c)

}
— the Fisher information matrix.

R ẙ,ẙ := E {ẙ ẙᵀ}— an auto-covariation matrix.



This page intentionally left blank



List of Figures

1.1 Venn diagram 5

1.2 The decomposition of a sample space � into subsets A(i)1 and Ā(i)1 , i.e.,
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1 Probability Space

Contents

1.1 Set operations, algebras and sigma-algebras . . . . . . . . . . . . . . . . . . . . . 3
1.2 Measurable and probability spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Borel algebra and probability measures . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Independence and conditional probability . . . . . . . . . . . . . . . . . . . . . . 26

1.1 Set operations, algebras and sigma-algebras

It will be convenient to start with some useful definitions in algebra of sets. This will
serve as a refresher and also as a way of collecting a few important facts that we will often
use throughout.

1.1.1 Set operations, set limits and collections of sets

Let A, A1, A2, . . . and B, B1, B2, . . . be sets.

Definition 1.1. There are defined the following operations over sets:

1. the union of sets:

A ∪ B := {x : x ∈ A or x ∈ B} (1.1)

2. the intersection of sets:

A ∩ B := {x : x ∈ A and x ∈ B} (1.2)

3. the complement to a set:

Ac
= Ā := {x : x /∈ A} (1.3)

4. the difference of sets:

A \ B := A ∩ Bc (1.4)

3
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5. the symmetric difference of sets:

A − B := (A \ B) ∪ (B \ A) (1.5)

Also some additional terminology (definitions) will be used.

Definition 1.2.

1. The empty set ∅ is a set which does not contain elements.
2. A is a subset of B, denoted by A ⊂ B, if x ∈ A then obligatory x ∈ B.
3. The power set P(�), generated by a set �, is a collection of all subsets of �, that is,

P(�) := {A : A ⊂ �} (1.6)

4. A sequence {An, n ≥ 1} of sets is non-decreasing, that denoted by {An ↗}, if

A1 ⊂ A2 ⊂ · · · (1.7)

5. A sequence {An, n ≥ 1} of sets is non-increasing, that denoted by {An ↘}, if

A1 ⊃ A2 ⊃ · · · (1.8)

Lemma 1.1. (the de Morgan formulas) The following relations hold:

(
n⋃

k=1

Ak

)c

=

n⋂
k=1

Ac
k,

(
n⋂

k=1

Ak

)c

=

n⋃
k=1

Ak (1.9)

Proof. The first formula reflects the fact that an element that does not belongs to any Ak
whatsoever belongs to all complements, and therefore to their intersection. The second
formula means that an element that does not belong to every Ak belongs to at least one of
the complements. �

Corollary 1.1. The formula (1.9) for the case of two sets is as follows:

A1 ∪ A2 = Ā1 ∩ Ā2; A1 ∩ A2 = Ā1 ∪ Ā2 (1.10)

and may be easily illustrated by the so-called Venn diagram (see Fig. 1.1).

Define below the limits of sets. Not every sequence of sets has a limit. One possibility
when a limit exists is the ‘monotone’ sequences of sets (see (1.7) and (1.8)).

Definition 1.3. Let {An, n ≥ 1} be a sequence of subsets from �.
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A1∩A2

A1

A2

Fig. 1.1. Venn diagram.

1. If it is non-decreasing, i.e., A1 ⊂ A2 ⊂ · · ·, then define a limit as

lim
n→∞

An :=

∞⋃
n=1

An (1.11)

2. If it is non-increasing, i.e., A1 ⊃ A2 ⊃ · · ·, then define a limit as

lim
n→∞

An :=

∞⋂
n=1

An (1.12)

This definition looks correct since both
∞⋃

n=1
An and

∞⋂
n=1

An always exist.

Definition 1.4. Let {An, n ≥ 1} be a sequence of subsets from �. Then by the definition

A∗ = lim inf
n→∞

An :=

∞⋃
n=1

∞⋂
m=n

Am

A∗ = lim sup
n→∞

An :=

∞⋂
n=1

∞⋃
m=n

Am

(1.13)

Remark 1.1. The following inclusion holds:

A∗ ⊆ A∗ (1.14)

Indeed, since
∞⋂

m=n
Am ⊂

∞⋃
m=n

Am , one has

(
∞⋂

m=2

Am

)
∪

(
∞⋂

m=1

Am

)
=
∞⋂

m=2

Am ⊂

∞⋃
m=2

Am=

(
∞⋃

m=2

Am

)
∩

(
∞⋃

m=1

Am

)
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and, hence,(
∞⋂

m=n
Am

)
∪ · · · ∪

(
∞⋂

m=1

Am

)
≡

∞⋂
m=n

Am ⊂

∞⋃
m=n

Am =

(
∞⋃

m=n
Am

)
∩ · · · ∩

(
∞⋃

m=1

Am

)
Taking limits in both sides of the last inclusion implies (1.14).

1.1.2 Algebras and sigma-algebras

Let�
1
= {ω} be a set of points ω and be named as a sample space or space of elementary

events.
The next definition concern the notion of an algebra and a σ -algebra of all possible

events generated by a given set � of elementary events ω.

Definition 1.5. A system A of subsets of � is called an algebra if

1.

� ⊂ A

2. for any finite n <∞ and for any subsets Ai ∈ A (i = 1, . . . , n)

n⋃
i=1

Ai ∈ A,
n⋂

i=1

Ai ∈ A

3. for all A ∈ A its complement Ā is also from A, that is,

Ā
1
= {ω ∈ �|ω 6∈ A} = � \ A ∈ A

Corollary 1.2. A contains the empty set ∅, that is,

∅ ⊂ A

Proof. Indeed, if A contains some set A, then by (3), it contains also Ā := � \ A. But by
(2), A contains their union A ∪� \ A = � and its complement �̄ := � \� = ∅. �

Definition 1.6. The collection F of subsets from � is called an σ -algebra (a power set)
or an event space if

1. it is not empty, i.e.,

F 6= ∅

2. it is algebra;
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3. for any sequences of subsets {Ai }, Ai ∈ F it follows

∞⋃
i=1

Ai ∈ F ,
∞⋂

i=1

Ai ∈ F

If, for example,� is a set whose points correspond to the possible outcomes of a random
experiment, certain subsets of � will be called ‘events’. Intuitively, we can consider A as
an event if the question ‘Does any elementary realization ω really belong to a set A?’ has
a definite yes or no answer after the experiment is performed and ‘the output’ corresponds
to the point ω ∈ �. So, if we can answer the question ‘Is really ω ∈ A?’ we can certainly
answer the question ‘Is really ω ∈ Ā?’, and if for each i = 1, . . . , n we can decide whether
or not ω belongs to Ai , then we can definitely determine whether or not ω belongs to

n⋃
i=1

Ai or
n⋂

i=1
Ai .

The next example illustrates this point of view and concentrates on the physical sense of
the considered class of sets.

Example 1.1. (A toss of two coins) Two fair coins are continuously flipped. The elemen-
tary events corresponding to the described situation can be presented as follows:

� = {ω} = {H H︸︷︷︸
ω1

, H T︸︷︷︸
ω2

, T H︸︷︷︸
ω3

, T T︸︷︷︸
ω4

}

where the elementary event, for example, H T , means that the first coin flipped with the
pattern H and the second one flipped with the pattern T . Consider now a fixed number n
of two coins tossed and define an event A1 by the following way: we will say that the event
A1 has been realizable during the experiment (toss) i , if there appeared at least one H,
i.e.,

A(i)1
1
= {ω(i) ∈ � : ω(i) = ω1 = H H, ω(i) = ω2 = H T, ω(i) = ω3 = T H}

The next events have the following interpretation:

•

Ā(i)1
1
= {ω(i) ∈ � : ω(i) = T T = ω4}

•

n⋃
i=1

A(i)1 =

n∑
i=1

[
χ(ω(i) = ω1)+ χ(ω

(i)
= ω2)+ χ(ω

(i)
= ω3)

]
where the characteristic function (an indicator) χ(·) of an event is defined by (1) and in
this case is as follows:

χ(ω(i) = ωk)
1
=

{
1 if ω(i) = ωk

0 if ω(i) 6= ωk
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A1
A1

HH

TT

HT
TH

Ω

Fig. 1.2. The decomposition of a sample space � into subsets A(i)1 and Ā(i)1 , i.e., � = A(i)1 ∪ Ā(i)1 .

i.e., the event
n⋃

i=1
A(i)1 consists of the fact that after n experiments (tosses) at least one

H has appeared in its realization:

•

n⋂
i=1

A(i)1 =
n∏

i=1

[
χ(ω(i) = ω1)+ χ(ω

(i)
= ω2)+ χ(ω

(i)
= ω3)

]
i.e., at each experiment

there appears at least one H.
• It is easy to conclude that for any i = 1, . . . , n

� = {A(i)1 , Ā(i)1 }

(see Fig. 1.2). This example shows that σ -algebra F in this case presents the combina-
tion of the following sets:

F 1
=

{
A(1)1 , Ā(1)1 , A(2)1 , Ā(2)1 , . . . , A(n)1 , Ā(n)1 ,

A(1)1 ∪A(2)1 , A(1)1 ∪ Ā(2)1 , Ā(1)1 ∪A(2)1 , Ā(1)1 ∪ Ā(2)1 ,

A(1)1 ∩A(2)1 , A(1)1 ∩ Ā(2)1 , Ā(1)1 ∩A(2)1 , Ā(1)1 ∩ Ā(2)1 ,

A(1)1 ∪A(2)1 , A(1)1 ∪ Ā(2)1 , Ā(1)1 ∩A(2)1 , Ā(1)1 ∩ Ā(2)1 ,

· · ·

n⋃
i=1

A(i)1 ,

n⋃
i=1

A(i)1 ,

n⋂
i=1

A(i)1 ,

n⋂
i=1

A(i)1 , . . . ,

n⋃
i=1

Ā(i)1 ,

n⋃
i=11

Ā(i)1 ,

n⋂
i=1

Ā(i)1 ,

n⋂
i=1

Ā(i)1 , . . . ,

· · ·

∞⋃
i=1

A(i)1 ,

∞⋃
i=1

A(i)1 ,

∞⋂
i=1

A(i)1 ,

∞⋂
i=1

A(i)1

}
i.e. F (σ -algebra of events initiated by an elementary set �) consists of all possible
results of infinite numbers of experiments i = 1, 2, . . . .

Remark 1.2. Let an A be a collection of subsets of�. Evidently the power set P(�) (1.6)
is a σ -algebra. But then, there exists at least one σ -algebra containing A. Since, moreover,
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the intersection of any numbers of σ -algebras is, again, a σ -algebra, there exists a smallest
σ -algebra containing A. In fact, the smallest σ -algebra containing A equals

F∗ = ∩
G∈{σ -algebra ⊃A}

G (1.15)

Below, we will always assume that we deal with a smallest σ -algebra F∗ when we mention
a σ -algebra.

1.2 Measurable and probability spaces

Length, area and volume, as well as probability, are an instance of the measure concept
that we are going to discuss in this section. In general, the measure is a set function which
defines an assignment of a number µ(A) to each set A of events in a certain class. Some
structure must be imposed on the class of sets on which µ is defined and probability
considerations provide a good motivation for the type of structure required.

1.2.1 Measurable spaces and finite additive measures

Definition 1.7. The pair (�,F) is called a measurable space.

The definition given above presents only the notion commonly used in mathematical
literature, not more. But the next one establishes the central definitions of this book that
play a key role in Probability and Stochastic Processes theories.

Definition 1.8. Any nonnegative function of set A ∈ F

µ = µ(A) ∈ [0,∞) (1.16)

is called a finite additive measure if for any finite collection {Ai , i = 1, . . . , n} of all pair-
wise disjoint subsets

A1, A2, . . . , An (Ai ∩ A j = ∅) (1.17)

the following properties hold:

•

µ

(
n⋃

i=1

Ai

)
=

n∑
i=1

µ(Ai ) (1.18)

•

µ(�) <∞ (1.19)
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If, keeping (1.19), for any collection {An, n ≥ 1} of pair-wise disjoint subsets instead of
(1.18) the following property holds:

µ

(
∞⋃

i=1

Ai

)
=

∞∑
i=1

µ(Ai ) (1.20)

then such measure is called a countable additive measure.

1.2.2 The Kolmogorov axioms and the probability space

Now we have sufficient mathematical notions at our disposal to introduce a formal
definition of a probability space which is the central one in Modern Probability Theory.

Definition 1.9. An ordered triple (�,F ,P) is called a probability space if

• � is a sample space;
• F is a σ -algebra of measurable subsets (events) of �;
• P is a probability measure on F , that is, P satisfies the following Kolmogorov axioms

(Kolmogorov, 1933):

1. for any A ∈ F there exists a number

P {A} ≥ 0 (1.21)

called the probability of the event A;
2. the probability measure is normalized, i.e.,

P {�} = 1 (1.22)

3. P is a countable additive measure satisfying (1.20), namely,

P

{
∞⋃

i=1

Ai

}
=

∞∑
i=1

P {Ai } (1.23)

Departing from the Kolmogorov axioms only, one can derive the following properties of
the probability measure.

Lemma 1.2. Let A, A1, A2, . . . be measurable sets from F . Then

1.

P{∅} = 0 (1.24)
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2.

P{A1 ∪ A2} = P{A1} + P{A2} − P{A1 ∩ A2} (1.25)

3. if A ⊆ B ∈ F then

P{A} ≤ P{B} (1.26)

4.

P{ Ā} = 1− P{A} (1.27)

5.

P{A1 ∪ A2} ≤ P{A1} + P{A2} (1.28)

6.

P

{
∞⋃

i=1

Ai

}
≤

∞∑
i=1

P{Ai } (1.29)

(here Ai , A j are not obligatory disjoint).

Proof. To clarify the proof of this lemma let us give ‘a physical interpretation’ of P{A} as
‘a square’ (in two dimensional case) and as ‘a volume’ (in general case) of a corresponding
set A. Then the properties 1–5 becomes evident. To prove 6, define new sets Bi by

B1
1
= ∅̄ ∩ A1, B2

1
= Ā1 ∩ A2, . . . ,

Bn
1
= Ā1 ∩ Ā2 ∩ · · · ∩ Ān−1 ∩ An (n ≥ 2)

Then the following properties seem to be evident:

•

Bi ∩ B j = ∅ i 6= j

Indeed (for example, for i < j)

Bi ∩ B j =

i−1⋂
s=1

Ās ∩ Ai

j−1⋂
l=1

Āl ∩ A j

=

i−1⋂
s=1

Ās ∩

Ai ∩ Āi︸ ︷︷ ︸
∅

j−1⋂
l 6=i

Āl

 ∩ A j = ∅
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A1 = B1

A2

B2

Fig. 1.3. Illustration of the fact: A1 ∪ A2 = B1 ∪ B2.

•

∞⋃
i=1

Ai =

∞⋃
i=1

Bi

since

A1 ∪ A2 = A1 ∪
(

Ā1 ∩ A2
)
= B1 ∪ B2

(see Fig. 1.3).
Then, by the induction, we derive

n+1⋃
i=1

Bi =

(
n⋃

i=1

Bi

)
∪ Bn+1 =

n⋃
i=1

Ai ∪

[
n⋂

i=1

Āi ∩ An+1

]

=

n⋃
i=1

Ai ∪

[
n⋃

i=1

Āi ∩ An+1

]
=

n⋃
i=1

Ai ∪ An+1 =

n+1⋃
i=1

Ai

Bi ⊆ Ai

Taking into account these properties we derive

P

{
∞⋃

i=1

Ai

}
= P

{
∞⋃

i=1

Bi

}
=

∞∑
i=1

P{Bi } ≤

∞∑
i=1

P{Ai }

The lemma is proven. �

Based on Lemma 1.2 it is not difficult to prove its following extension.

Proposition 1.1. (the Benferroni inequalities)

•

P

{
n⋃

i=1

Ai

}
≤

n∑
i=1

P{Ai } (1.30)
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•

P

{
n⋃

i=1

Ai

}
≥

n∑
i=1

P{Ai } −
∑

1≤i< j≤n

P{Ai ∩ Ai } (1.31)

•

P

{
n⋃

i=1

Ai

}
≤

n∑
i=1

P{Ai } −
∑

1≤i< j≤n

P{Ai ∩ A j }

+

∑
1≤i< j<k≤n

P{Ai ∩ A j ∩ Ak}

(1.32)

The last two inequalities (1.31) and (1.32) lead to the following relation.

Proposition 1.2. (the inclusion–exclusion formula)

P

{
n⋃

i=1

Ai

}
=

n∑
i=1

P{Ai } −
∑

1≤i< j≤n

P{Ai ∩ A j }

+

∑
1≤i< j<k≤n

P{Ai ∩ A j ∩ Ak} + . . .+

(−1)n+1 P{A1 ∩ A1 ∩ · · · ∩ An}

(1.33)

Proof. Let us apply the induction. For n = 2 the relation is true in view of (1.25).

Supposing that (1.33) holds for (n − 1), denoting B :=
n−1⋃
i=1

Ai and using (1.25) we get

P

{
n⋃

i=1

Ai

}
= P {B ∪ An} = P{B} + P{An} − P{B}P{An}= P

{
n−1⋃
i=1

Ai

}

+P{An} − P

{
n−1⋃
i=1

Ai

}
P{An} = P

{
n−1⋃
i=1

Ai

}
(1− P{An})+ P{An}

×

(
n−1∑
i=1

P{Ai } −
∑

1≤i< j≤n−1

P{Ai ∩ A j } +
∑

1≤i< j<k≤n−1

P{Ai ∩ A j ∩ Ak}

+ . . .+ (−1)n P{A1 ∩ A1 ∩ · · · ∩ An−1}
)
(1− P{An})+ P{An}

which after the arrangements of the corresponding terms leads to (1.33). Lemma proven.
�
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Theorem 1.1. Let A and {An, n ≥ 1} be subsets from � such that An ↗ A or An ↘ A as
n→∞, and sets A∗ and A∗ are defined by (1.13). Then

1. P{An} monotonically converges to P{A}, namely,
- An ↗ A implies

P{An} ↗ P{A} (1.34)

- An ↘ A implies

P{An} ↘ P{A} (1.35)

2.

P{A∗} ≤ lim inf
n→∞

P{An} ≤ lim sup P{An} ≤
n→∞

P{A∗} (1.36)

3. An → ∅ as n→∞ implies

P{An} → 0 (1.37)

Proof.
1. Define B1 := A1 and Bn := An ∩ Ān−1 for n ≥ 2. Then by the construction {Bn, n ≥ 1}
are disjoint sets, and

An =

n⋃
k=1

Bk,

∞⋃
n=1

An =

∞⋃
k=1

Bk

So, by Lemma 1.2 it follows

P{An} =

n∑
k=1

P{Ak} ↗

∞∑
k=1

P{Ak}

= P

{
∞⋃

k=1

Bk

}
= P

{
∞⋃

n=1

An

}
= P{A}

The case An ↘ A follows similarly by considering complements Ān ↗ Ā.
2. It follows directly from the statement 1 of this theorem if we take into account that

A∗ ↖
∞⋂

m=n
Am ⊂ An ⊂

∞⋃
m=n

Am ↘ A∗

3. It results from 1–2 and (1.24). �
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1.2.3 Sets of a null measure and completeness

Here we will introduce the notion of a null set or a set of a null measure which we will
use below.

Definition 1.10. A set A is set to be a null set if there exists B ∈ F such that

A ⊂ B and P{B} = 0 (1.38)

that is, a set is a null set if it is contained in a measurable set of zero-probability.

In fact, the set A in this definition is not obligatory measurable, namely, it is not
obligatory that A ∈ F . The concept of completeness takes care of that problem.

Definition 1.11. A probability space (�,F ,P) is said to be complete if every null set is
measurable, that is, the property A ⊂ B ∈ F with P{B} = 0 implies A ∈ F (sure with
P{A} = 0).

Remark 1.3. It seems to be evident that it is always possible to extend a given σ -algebra
adding within null sets making, thus, the corresponding probability space complete. To
avoid any distraction from the main line, we will assume from now on (without further
explicit mentioning) that all probability spaces are complete. This property turns out to be
very important for the correct definition of stochastic integration in the theory of stochastic
processes.

1.3 Borel algebra and probability measures

Now we consider some examples of measurable space (�,F) which are extremely
important in Probability and Stochastic Processes theories.

1.3.1 The measurable space (R,B(R))

1.3.1.1 Borel-measurable space defined on the real line

Let R = (−∞,∞) be the real line and

(a, b]
1
= {x ∈ R : a < x ≤ b}

be the interval ‘open from left’ and ‘closed from right’.

Definition 1.12. If � = R and contains also single tons {a} (a ∈ R) then the smallest
σ -algebra F of subsets from R consisting of all intervals

(a, b), [a, b], [a, b), (a, b], (−∞, b], (−∞, b),

[a,∞), (a,∞), {a, b : −∞ < a < b <∞}
(1.39)
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is called Borel σ -algebra and denoted by

B := B(R) (1.40)

Remark 1.4. A σ -algebra that contains all intervals of a given type contains also all
intervals of any other type (as in (1.39)). Indeed, define B(R) as a smallest σ -field
containing all open sets (a, b) of R. Since a set is open if and only if its complement is
closed, B(R) is the smallest σ -field containing also all closed sets of R. Similarly, if B0
is the field of finite disjoint units of right semi-closed intervals (a, b], then B(R) is the
smallest σ -field containing the sets from B0. So, B(R) may be considered as the smallest
σ -field that contains the class of all intervals of R.

Now let’s introduce the probability measure on Borel subsets of a Borel σ -algebra.
Consider the event

A := (−∞, x], x ∈ R

and define the function F(x) in the following way:

F(x) := P{A} = P{(−∞, x]} (1.41)

where P{A} is a probability measure, defined on (R,B(R)).

Lemma 1.3. The function F(x) (1.41) possesses the following properties:

1. F(x) is a non-decreasing function;
2.

F(−∞) = 0, F(+∞) = 1

F(−∞) := lim
x↓−∞

F(x), F(+∞) := lim
x↑+∞

F(x)
(1.42)

3. F(x) is continuous on the right and has a limit on the left at each point x ∈ R.
4. F(x) may have at most a countable number of jumps.

Proof. The property 1 follows from the property 3 of Lemma 1.2. Since (−∞,−∞] = ∅,
then by the property 1 of Lemma 1.2, it follows that

F(−∞) = P{(−∞,−∞]} = P{∅} = 0

Again, in view of the fact that

F(+∞) = P{(−∞,+∞]} = P{�} = 1

we prove the property 2. The last statement 3 results directly from the properties of
probability measures (Lemma 1.2). To prove 4 for n ≥ 1 denote

J(n)F :=

{
x : F has a jump at x of magnitude form

(
1

n + 1
,

1
n

)}
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F(x)
1

0 x

Fig. 1.4. A distribution function F(x).

The total number of points in J(n)F is at most equal to (n + 1) since F is non-decreasing
and does not exceed 1. The conclusion 4 then follows from the fact that the set JF of all

discontinuities of F is JF =
∞⋃

n=1
J(n)F . Lemma is proven. �

Definition 1.13. A function F = F(x) defined by (1.41) and, hence, satisfying the
conditions 1–4 of Lemma 1.3 is called a distribution function (given on the real line R).

A typical behavior of a distribution function F(x) is depicted in Fig. 1.4.
The next lemma states a correspondence (‘isomorphism’) between a class of distribution

functions and a class of probability measures.

Lemma 1.4. Any probability measure P (a Borel measure) corresponds (by (1.41)) to
some distribution function F(x), and the converse is also true, i.e., for each distribution
function F(x) there exists a unique probability measure P on (R,B(R)) such that

P{(a, b]} := F(b)− F(a) ∀a, b : −∞ ≤ a < b ≤ ∞ (1.43)

Proof. The first statement follows from Definition (1.41). It is easy to check that P{(a, b]},
defined by (1.43), possesses all properties of a probability measure (see Lemma 1.3). The
formulae (1.43) defines it uniquely. �

1.3.1.2 Examples of Borel measures

Consider in detail different probability measures the construction of which is based on
(1.41).

Discrete measures are the special Borel measures P for which the corresponding distribu-
tion functions F = F(x) are piecewise constant with ‘jumps’ at the points xi (i = 1, 2, . . .)
(see Fig. 1.5).

Here, as well as for any distribution function, the following properties hold:

1F(xi ) := F(xi )− F(xi − 0) ≥ 0 (i = 1, 2, . . .)∑
i

1F(xi ) = 1
(1.44)
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F(x)
1

0 x

Fig. 1.5. A distribution function F(x) corresponding to a discrete measure.

Table 1.1
Examples of some discrete distributions.

Distribution Probabilities Parameters

Discrete uniform pi = 1/n,
(
i = 1, n

)
n

Bernoulli p1 = p, p0 = q p = 1− q ∈ [0, 1]

Binomial

P

an event occurs

i-time in n trials


= C i

n pi qn−i (i = 1, . . . , n)

p = 1− q ∈ [0, 1]

C i
n :=

n!

i ! (n − i)!

Poisson P {i = λ} = e−λ
(λ)i

i !
λ > 0

Definition 1.14. The set of non-negative numbers (p1, p2, . . .) satisfying

pi := P{(xi − 0, xi )} = 1F(xi ) ≥ 0∑
i

pi = 1
(1.45)

is said to be a discrete probability distribution and the corresponding distribution function
F = F(x) is called a discrete distribution function.

Table 1.1 represents some types of discrete probability distributions commonly used in
Probability Theory.

The following asymptotic relation between the binomial and Poisson distributions takes
place.

Lemma 1.5. (Poisson, 1781–1840) If

n→∞, p→ 0, np→ λ (1.46)
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then

n!

i ! (n − i)!
pi (1− p)n−i

→ e−λ
(λ)i

i !
(1.47)

Proof. For i = 0 and np→ λ one has

Pn (i) |i=0 :=
n!

i ! (n − i)!
pi (1− p)n−i

|i=0

= (1− p)n =

(
1−

λ+ o (1)
n

)n

→ e−λ := P∞ (0)

For any fixed i > 0 and np→ λ we have

Pn (i)

Pn (i − 1)
=

C i
n pi qn−i

C i−1
n pi−1qn−i+1

=
p

i (n − i) (1− p)

=
[λ+ o (1)] /n

i (n − i) (1− [λ+ o (1)] /n)
→

λ

i

which implies

P∞ (i) = P∞ (i − 1)
λ

i

= P∞ (i − 2)
λ2

i (i − 1)
= . . . = P∞ (0)

λi

i !
= e−λ

λi

i !

The lemma is proven. �

Absolutely continuous measures are those distribution functions which could be presented
as an integral of some other positive function, that is, there exists a non-negative Lebesgue
integrable function f (u) such that

F(x) =

x∫
−∞

f (u)du, f (u) ≥ 0 for all u ∈ R (1.48)

Definition 1.15. The function f = f (u) in (1.48) is called the density function of the
distribution function F = F(x), and in this case F = F(x) is called an absolutely
continuous distribution function.

Two main properties of absolutely continuous distribution functions are

• an absolutely continuous distribution functions is differentiable for any x ∈ R such that

d

dx
F(x) = f (x) ≥ 0 (1.49)
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Table 1.2
Examples of some absolutely continuous distribution functions.

Distribution Density f (x) Parameters

Uniform on [a, b]
1

b − a
, x ∈ [a, b] a, b ∈ R, a < b

Normal (Gaussian) 1
√

2πσ
e
−
(x − a)2

2σ 2 , x ∈ R
a ∈ R, σ > 0

Cauchy
a

π
(
x2 + a2

) , x ∈ R a > 0

Gamma
xα−1e−x/β

0 (α) βα
, x ≥ 0 α > 0, β > 0

• a density function is normalized by

∞∫
−∞

f (x)dx = 1 (1.50)

The ‘normalization’ property (1.50) results from Lemma 1.3 taking into account that
F(+∞) = 1.

Table 1.2 represents some typical examples of density functions f = f (x).

Continuous singular measures are measures with continuous distribution functions F(x)
which are differentiable and having the derivative F ′(x) = 0 almost everywhere (except
points of increasing of zero Lebesgue measure).

Consider now an example of a singular measure.
The continuous function F1(x) (see Fig. 1.6) is a partially linear non-decreasing function

satisfying

F1(0) = 0, F1(1/3) = 1/2, F1(2/3) = 1/2, F1(1) = 1

Next, define the function F2(x) by

F1(0) = 0, F1(1/9) = 1/4, F1(2/9) = 1/4, F1(1/3) = 1/2

F1(2/3) = 1/2, F1(7/9) = 3/4, F1(8/9) = 3/4, F1(1) = 1

Continuing this process we construct the sequence {Fn(x)} of the continuous functions
which converges to a non-decreasing continuous function F(x), known as the Cantor
measure:

F(x) := lim
n→∞

Fn(x) ∀x ∈ R
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F1(x)

F2(x)

0 11/9

1/4

1/2

3/4

1

1/3 2/3 8/9

Fig. 1.6. An example of singular distribution function F(x) corresponding to a singular continuous
measure.

This function practically always is constant (excluding points of zero measure). Indeed,
the total length of the intervals(

1
3
,

2
3

)
,

(
1
9
,

2
9

)
,

(
7
9
,

8
9

)
, . . .

where this function is constant, is equal:

1
3
+

2
9
+

4
27
+ · · · =

1
3

(
1+

2
3
+

4
9
+ · · ·

)
=

1
3

∞∑
n=0

(
2
3

)n

=
1
3

(
1

1− 2/3

)
= 1

Hence, ‘the length of increasing intervals’ is equal to 0, or, more exactly, the Lebesgue
measure of increasing intervals is equal to zero.

Remark 1.5. Obviously, discrete distributions (probabilistic measures) are singular but
not continuous.

In fact, these three types of distribution function form any distribution function as their
linear combination.

Theorem 1.2. Any distribution function can be decomposed into a convex combination of
three pure types: a discrete one, an absolutely continuous one, and a continuous singular
one, that is, if F(x) is a distribution function, then for any x ∈ R

F(x) = λ1 Fdiscrete(x)+ λ2 Fabs.cont(x)+ λ3 Fcont.sing

λ1 + λ2 + λ3 = 1, λi ≥ 0 (i = 1, 2, 3)
(1.51)

where
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(a)

Fabs.cont(x) =

x∫
−∞

f (u)du, f (x) = F ′abs.cont(x) (1.52)

(b) Fdiscrete(x) is a pure jump function with at most a countable number of jumps;
(c) Fcont.sing(x) is continuous and F ′cont.sing(x) = 0 almost everywhere (a.e.).

Such decomposition is unique.

To prove this theorem we need the following two preliminary results: the first one shows
that any distribution function can be split into absolutely continuous components and a
singular one; the second one provides the decomposition of a distribution function into a
discrete component and a continuous one.

Theorem 1.3. (Lebesgue decomposition theorem) Every distribution function F (x) can
be decomposed into a convex combination of an absolutely continuous distribution func-
tion Fabs.cont(x) and a singular one Fsing(x) (including discrete and continuous singular
components), that is, for all x ∈ R there exists α ∈ [0, 1] such that

F (x) = αFabs.cont(x)+ (1− α) Fsing(x) (1.53)

Proof. If F (x) is a distribution function, and hence, it is a monotonically non-decreasing
function, then, by the Lebesgue theorem, it is differentiable almost everywhere and equates

to F∗abs.cont(x) =
x∫
−∞

F ′ (s) ds. Evidently that F∗abs.cont(x) is non-decreasing continuous

and

F∗abs.cont(−∞) = 0, F∗abs.cont(+∞) ≤ 1

Define then F∗sing(x) := F (x)−F∗abs.cont(x)which is also non-decreasing with F∗sing(−∞) =

Fcont.sing(x) = 0 and F∗sing(+∞) ≤ 1. Putting then

Fabs.cont(x) :=
F∗abs.cont(x)

F∗abs.cont(+∞)
, Fsing(x) :=

F∗sing(x)

F∗sing(+∞)

we complete the proof. �

Theorem 1.4. Every distribution function F (x) can be represented as a convex combina-
tion of discrete distribution function Fdiscrete(x) and a continuous one Fcont(x), that is, for
all x ∈ R there exists β ∈ [0, 1] such that

F (x) = βFdiscrete(x)+ (1− β) Fcont(x) (1.54)
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Proof. By the property 4 in Lemma 1.3 it follows that F (x) may have at most a countable
number of jumps. Let

{
x j
}

be those jumps (if they exist). Denote the values of the jumps
by

p j := F
(
x j + 0

)
− F

(
x j − 0

)
and define the sum of all jumps to the left of x as

F∗discrete(x) :=
∑
x j≤x

p j , x ∈ R

Then define

F∗cont(x) := F(x)− F∗discrete(x)

By the construction both functions F∗discrete(x) and F∗cont(x) are non-negative, non-decreasing
and satisfying

lim
x→−∞

F∗discrete(x) = lim
x→−∞

F∗cont(x) = 0

lim
x→∞

F∗discrete(x) ≤ 1, lim
x→∞

F∗cont(x) ≤ 1

Notice also that F∗cont(x) is right-continuous (since F(x) is right-continuous). But F∗cont(x)
is also left-continuous. Indeed,

F∗cont(x)− F∗cont(x − 0) = F(x)− F∗discrete(x)

−
[
F(x − 0)− F∗discrete(x − 0)

]
=

{
p j − p j when x = x j for some j

0 otherwise

which proves the left-continuity. Therefore, F∗cont(x) is continuous. Using then the normal-
ization factor, namely, putting

Fdiscrete(x) =
F∗discrete(x)

F∗discrete(+∞)
, Fcont(x) =

F∗cont(x)

F∗cont(+∞)

we finish the proof. �

Proof. (Theorem 1.2) By Theorems 1.3 and 1.4 we know that

F (x) = αFabs.cont(x)+ (1− α) Fsing(x)
Fsing(x) = βFdiscrete(x)+ (1− β) Fcont.sing(x)

that implies

F (x) = αFabs.cont(x)+ (1− α)
[
βFdiscrete(x)+ (1− β) Fcont.sing(x)

]
= αFabs.cont(x)+ (1− α) βFdiscrete(x)+ (1− α) (1− β) Fcont.sing(x)

Taking λ1 := α, λ2 := (1− α) β and λ3 := (1− α) (1− β) we have

λ1 + λ2 + λ3 = α + (1− α) β + (1− α) (1− β) = 1

The uniqueness can be proven by contradiction. The theorem is proven. �
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1.3.2 The measurable space (RN ,B(RN ))

This section deals with a simple generalization of the previous single dimensional case
(N = 1). In fact, for Borel sets in higher finite dimensions the definitions below extend
ones to higher dimensional rectangles.

Theorem 1.5. An N -dimensional distribution function F : RN
→ R is a function

F = F(x) := F(x1, x2, . . . , xN ) with the following properties:

1. for any a, b ∈ RN (bi ≥ ai , i = 1, . . . , N )

1a,b F(x) := F(b1, b2, . . . , bN )− F(a1, a2, . . . , aN )

= F(b)− F(a) ≥ 0

2. F(x) is a continuous function on right, i.e.,

F(x (k)) ↓ F(x) i f x (k) ↓ x

and has a bounded limit on left;
3.

F(+∞,+∞, . . . ,+∞) = 1

and

lim
x↓y

F(x) = 0

if at least one of coordinate yi of a vector y ∈ RN is equal to (−∞).

The complete analog of Lemma 1.4 also takes place.

Lemma 1.6. For each distribution function F = F(x), x ∈ RN there exists a unique
probability measure P on

(
RN ,B(RN )

)
such that for any a, b : −∞ ≤ ai < bi ≤ ∞, i =

1, . . . , N

P{(a, b]} = 1a,b F(x) = F(b)− F(a) (1.55)

and the converse is also true.

Proof. It completely repeats the proof of Lemma 1.4, and therefore, it is omitted. �

Analogously to the single dimensional case, there exist discrete, absolutely continuous
and singular measures of Borel cylinders in RN . So, for an absolutely continuous measure
there exists a function f : RN

→ R such that the following presentation holds:

F(x) =

x1∫
u1=−∞

· · ·

xN∫
un=−∞

f (u1, . . . , uN )du1 · · · duN (1.56)
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where a corresponding function of a distribution density f (x) satisfies the ‘normalization
conditions’:

f (x1, . . . , xN ) ≥ 0
∞∫

u1=−∞

· · ·

∞∫
un=−∞

f (u1, . . . , uN )du1 · · · duN = 1
(1.57)

The next example represents one of the distribution functions most commonly used in
theoretical considerations.

Example 1.2. (N-dimensional Gaussian distribution)

f (x) =
| det R|−1/2

(2π)N/2 exp
{
−

1
2
(x − a)T R−1(x − a)

}
(1.58)

where R = RT > 0, a ∈ RN .

1.3.3 The measurable space (RT ,B(RT ))

This type of measurable space is a generalization of finite dimensional spaces (RN ,

B(RN )) up to infinite dimensional ones.
Let T be a set of indices t ∈ T and Rt is a real line in R associated with the index t . One

can correctly define the finite dimensional space (Rτ ,B(Rτ )) where τ := [t1, t2, . . . , tn].
Let Pτ be a probability measure on (Rτ ,B(Rτ )).

Definition 1.16. We say that the family Pτ of probability measures (where τ runs through
all finite unordered sets) is consistent if for all collections τ = [t1, t2, . . . , tn] and
σ = [s1, s2, . . . , sk] such that for σ ⊆ τ the following property holds:

Pσ
{

xs : (xs1 , . . . , xsk ) ∈ B
}
= Pτ

{
(xt1 , . . . , xtn ) : (xs1 , . . . , xsk ) ∈ B

}
for each B ∈ B(Rσ ).

The following result known as Kolmogorov’s theorem on the extension of measures on(
RT ,B(RT )

)
takes place.

Theorem 1.6. (The Kolmogorov theorem) Let {Pτ } be a consistent family of proba-
bility measures on (Rτ ,B(Rτ )). Then there exists a unique probability measure P on(
RT ,B(RT )

)
such that

P {Jτ (B)} = Pτ {B} (1.59)

for all unordered sets τ = [t1, t2, . . . , tn] of different indices ti ∈ T, B ∈ B(RT ), where

Jτ (B)
1
=

{
x ∈ RT

: (xt1 , . . . , xtn ) ∈ B
}
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Proof. For details of this proof see Shiryayev (1984) (Theorem 2.3.4). �

Remark. In other words, a measure P on
(
RT ,B(RT )

)
is defined correctly if there are

defined any ‘finite dimensional’ measure Pτ for all sets τ = [t1, t2, . . . , tn].

1.3.4 Wiener measure on (R[0,∞],B(R[0,∞]))

This subsection deals with the most commonly used example of ‘infinite dimensional
measures’ defined in the previous subsection for partial case of the set T . Let T := [0,∞).
Then RT is a space of all real function x = x(t), t ≥ 0. Consider now the following family
{φt (y|x)}t≥0 of all Gaussian (normal) densities (as the function of y for any fixed x):

φt (y|x) :=
1
√

2π t
exp

{
−
(y − x)2

2t

}
, y, x ∈ R, t > 0 (1.60)

For each τ = [t1, t2, . . . , tn], (t1 < t2 < · · · < tn) and each set B = I1 × · · · × In, Ik :=

(ak, bk] let us construct the measure Pτ {B} according to the following definition:

Pτ {I1 × · · · × In}

:=

∫
I1

· · ·

∫
In

φt1(y1|0)φt2−t1(y2|y1) · · ·φtn−tn−1(yn|yn−1)dy1 · · · dyn (1.61)

Here the integration in (1.61) is in the usual Riemann sense.
If we will interpret φtk−tk−1(ak |ak−1) as the probability that ‘a particle’, starting at the

point ak−1, at the time interval tk − tk−1 arrives to a neighborhood of the point ak , then the
product of densities describes a certain independence of the increments of the displacement
of ‘the moving particles’ in time interval (0, t1], (t1, t2], . . . , (tn−1, tn]. The family of such
measures Pτ (constructed by this way) is easily seen to be a consistent one, and hence, can
be extended up to the measurable space

(
R[0,∞],B(R[0,∞])

)
by Theorem 1.6. The measure

we obtain is known as the Wiener measure.

1.4 Independence and conditional probability

1.4.1 Independence

One of the central concepts of Probability Theory is independence. In different applica-
tions it means, for example, that

• some successive experiments do not influence each other;
• the future does not depend on the past;
• knowledge of the outcomes so far does not provide any information on future experi-

ments.
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Definition 1.17. The events {Ak, k = 1, . . . , n} are said to be independent if and only if

P

{⋂
k

Aik

}
=

∏
k

P
{

Aik

}
(1.62)

where intersections and products, respectively, are taken over all subsets of {1, . . . , n}. The
{An, n ≥ 1} are independent if {Ak, k = 1, . . . , n} are independent for all n.

Proposition 1.3. If A ⊂ � and B ⊂ � are independent, then so are
A and Bc, Ac and B, Ac and Bc.

Proof. One has

P
{

A ∩ Bc}
= P {A} − P {A ∩ B}

= P {A} − P {A}P {B} = P {A} (1− P {B}) = P {A}P
{

Bc}
Analogously,

P
{

Ac
∩ B

}
= P {B} − P {A ∩ B}

= P {B} − P {A}P {B} = P {B} (1− P {A}) = P {B}P
{

Ac}
and

P
{

Ac
∩ Bc}

= P
{

Ac}
− P

{
Ac
∩ B

}
= P

{
Ac}
− P

{
Ac}P {B} = P

{
Ac} (1− P {B}) = P

{
Ac}P

{
Bc}

which completes the proof. �

Lemma 1.7. If {Ak, k = 1, . . . , n} is the collection of independent events, then

•

P

{
n⋃

i=1

Ai

}
= 1−

n∏
i=1

(1− P{Ai }) (1.63)

•

P

{
n⋃

i=1

Ai

}
≥ 1− exp

{
−

n∑
i=1

P{Ai }

}
(1.64)

Proof. It can be done by induction. For n = 2 in view of the relation

P{A1} + P{A2} = 1
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It is evident (see (1.25)) that

P{A1 ∪ A2} = P{A1} + P{A2} − P{A1 ∩ A2}

= P{A1} + P{A2} − P{A1}P{A2}

= 1− (1− P{A2}) (1− P{A1})

Supposing that (1.63) holds for (n − 1) and denoting B :=
n−1⋃
i=1

Ai we have

n⋃
i=1

Ai = B ∪ An, P{B} + P{An} = 1

and

P

{
n⋃

i=1

Ai

}
= P{B} + P{An} − P{B ∩ An}

= 1− P{B}P{An} = 1− (1− P{An}) (1− P{B})

= 1− (1− P{An})

n−1∏
i=1

(1− P{Ai }) = 1
n∏

i=1

(1− P{Ai })

that proves the validity of (1.63) for any integer n. The inequality (1.64) follows from the
inequality

1− x ≤ exp {−x}

valid for any x ∈ R being applied to (1.63) since

P

{
n⋃

i=1

Ai

}
= 1−

n∏
i=1

(1− P{Ai })

≥ 1− exp {−P{An}}

n−1∏
i=1

(1− P{Ai })

≥ · · · ≥ 1−
n∏

i=1

exp {−P{Ai }} = 1− exp

{
−

n∑
i=1

P{Ai }

}

The lemma is proven. �

Corollary 1.3. In the setup of Lemma 1.7 (when {Ak, k ≥ 1} is the collection of indepen-
dent events) the property

n∑
i=1

P{Ai } = ∞ (1.65)

implies that
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P

{
∞⋃

i=1

Ai

}
= 1 (1.66)

Proof. It results from (1.64) and the relations

1 ≥ P

{
∞⋃

i=1

Ai

}
≥ 1− exp

{
−

n∑
i=1

P{Ai }

}
= 1 �

1.4.2 Pair-wise independence

This independence concept is slightly weaker that the independence of a collection (see
Definition 1.17).

Definition 1.18. The events {Ak, k = 1, . . . , n} are pair-wise independent if and only if

P
{

Ai ∩ A j
}
= P {Ai }P

{
A j
}

(1.67)

for all i 6= j (i, j = 1, . . . , n).

Proposition 1.4. Pair-wise independence of events does not imply their independence.

Proof. It is sufficient to consider the following counter-example. Let� = {ω1, ω2, ω3, ω4}

with all outcomes ωi which are equiprobable. It is easy to verify that the events

A := {ω1, ω2} , B := {ω1, ω3} , C := {ω1, ω4}

are pair-wise independent, whereas

P {A ∩ B ∩ C} =
1
4
6= P {A}P {B}P {C} =

(
1
2

)3

=
1
8

�

1.4.3 Definition of conditional probability

Definition 1.19. If (�,F ,P) is a probability space and A, B ∈ F are two events, then
the conditional probability of the event A ∈ F with respect to the event B ∈ F is called
the function of sets P {A/B} such that the relation

P {B ∩ A} = P {A/B}P {B} (1.68)

is valid for any sets A, B ∈ F . Thus the conditional probability P {A/B} is the probability
of A given that we know that B has occurred.

Several useful corollaries, directly following from this definition, are summarized below.
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1.4.4 Bayes’s formula

Corollary 1.4. (Bayes’s formula) For any two events (sets) A, B ∈ F the following
connections hold:

P {B/A}P {A} = P {A/B}P {B} (1.69)

or, in other form,

P {B/A} =
P {A/B}P {B}

P {A}
if P {A} 6= 0

P {A/B} =
P {B/A}P {A}

P {B}
if P {B} 6= 0

(1.70)

Proof. It follows from (1.68) and the fact that for any two events A, B ∈ F one has
P {B ∩ A} = P {A ∩ B}. Corollary is proved. �

Corollary 1.5. (Law of total probability) If {Bi }i=1,...,N is a partition of the set � of
elementary events, i.e.,

Bi ∈ F , Bi

⋂
i 6= j

B j = ∅,

N⋃
i=1

Bi = � (1.71)

then for any event A ∈ F

P {A} =
N∑

i=1

P {A/Bi }P {Bi } (1.72)

Proof. Because {Bi }i=1,...,N is a partition of � we can conclude that
N∑

i=1
χ (ω ∈ Bi ) = 1.

Then using this identity we derive

χ (ω ∈ A) = χ (ω ∈ A)
N∑

i=1

χ (ω ∈ Bi )

=

N∑
i=1

χ (ω ∈ A) χ (ω ∈ Bi )

=

N∑
i=1

χ ((ω ∈ A) ∩ (ω ∈ Bi )) χ (ω ∈ Bi )

=

N∑
i=1

χ ((ω ∈ A) ∩ (ω ∈ Bi ))
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Here we have used

χ (ω ∈ A) χ (ω ∈ Bi )

= χ ((ω ∈ A) ∩ (ω ∈ Bi )) χ (ω ∈ Bi )

= χ ((ω ∈ A) ∩ (ω ∈ Bi ))

for any sets A, Bi ∈ F . This exactly means that P {A} =
N∑

i=1
P {A ∩ Bi }. Applying then the

formula (1.68) to the right-hand side of this relation for B = Bi we finally obtain (1.72).
The corollary is proven. �

Corollary 1.6. (Generalized Bayes formula) If {Bi }i=1,...,N is a partition of � (see
(1.71)) and if P {A} 6= 0, then for any i = 1, . . . , N

P {Bi/A} =
P {A/Bi }P {Bi }

P {A}
=

P {A/Bi }P {Bi }

N∑
j=1

P
{

A/B j
}
P
{

B j
} (1.73)

Proof. It results from the relations

P {A} =
N∑

j=1
P
{

A/B j
}
P
{

B j
}

P
{

B j/A
}
P {A} = P

{
A/B j

}
P
{

B j
}

�
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2 Random Variables
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In this chapter a connection between measure theory and the basic notion of probability
theory – a random variable – is established. In fact, random variables are the functions from
the probability space to some other measurable space. The definition of a random variable
as a measurable function is presented. Several simple examples of random variables are
considered. The transformation of distributions for the class of functionally connected
random variables is also analyzed.

2.1 Measurable functions and random variables

If any real-valued function describes a connection between points of reals and corre-
sponding points of real line, a random variable states connection between any arbitrary set
of possible outcomes of experiments and extended reals. Here we are going to develop a
much more general definition of a measurable function, which realizes this more general
notion, provided that certain ‘measurability’ conditions are satisfied. Probability consider-
ations may be used to motivate the concept of measurability.

2.1.1 Measurable functions

Let now (�,F) be a measurable space, and (R,B(R)) be a real line with the system
B(R) of Borel sets. The following definition is the central one in this section.

Definition 2.1. A real function ξ = ξ(ω) defined on (�,F) is said to be an F -measurable
(or Borel measurable) function or random variable if the following inclusion holds:

(ω : ξ(ω) ∈ B) ∈ F (2.1)

for each set B ∈ B(R) or, equivalently, if the inverse image is a measurable set in �, i.e.

ξ−1(B) := (ω : ξ(ω) ∈ B) ∈ F (2.2)

33
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–∞ +∞
–∞ +∞

–∞ +∞

 : 

an usual function

Ω

ω
ξ : Ω

ξ

a b
a random variable

(Borel measurable function)

Fig. 2.1. Usual and F -measurable functions.

–∞ +∞
–∞

ω
a b

ξ[ω]

A random variable
(Borel function)

Fig. 2.2. A Borel function.

Remark 2.1. Fig. 2.1 illustrates the main properties of usual functions, which state
correspondence between each point in R (argument) and some point of R (value function),
and an F -measurable function, which state correspondence between each set B of possible
values of function in R and some set B of corresponding realizations ω (‘a random factor’)
from ⊗.

2.1.2 Borel functions and multidimensional random variables

Analogous definitions could be done in the case of a multidimensional ‘random factor’
when we consider situations involving more that one random variable associated with the
same experiment.

Definition 2.2. When

(�,F) =
(
RN ,B(RN )

)
(2.3)

then B(RN )-measurable functions are called Borel functions.

In fact, this is a simple generalization of the previous definition to the N -dimensional
random factor. It is illustrated by Fig. 2.2. So, if a random factor ω can be measured by
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some physical device in R-scale, then the following ‘termini’ are synonyms:

An F -measurable function = A Borel function︸ ︷︷ ︸
the mathematical terminus

= A random variable︸ ︷︷ ︸
the engineering terminus

So far we have described the map from � to
(
RN

)
. To complete the picture we have

to define a third component in the triplet (�,F ,P), namely, the appropriate probability
measure.

Definition 2.3. To each random variable ξ = ξ(ω) we associate an induced probability
measure P through the relation

P {B} := P {ω : ξ(ω) ∈ B} = P
{
ξ−1(B)

}
(2.4)

for all B ∈ B.

The next definition is the central one in this chapter.

Definition 2.4. We say that the random variable ξ = ξ(ω) is given on the probability
space (�,F ,P) if

• ξ(ω) is F -measurable on (�,F);
• its distribution function Fξ (x) is defined by

Fξ (x) := P{ω : ξ(ω) ≤ x} ∀x ∈ RN (2.5)

where the event {ω : ξ(ω) ≤ x} is to be interpreted component-wise, that is,

{ω : ξ(ω) ≤ x} :=
N⋂

k=1

{ω : ξk(ω) ≤ xk} (2.6)

Intuitively, a random variable is a quantity that is measured in connection with a random
experiment: if (�,F ,P) is a probability space and the outcome of the experiment
corresponds to the point ω ∈ �, a measuring process is carried out to obtain a number
ξ(ω). Thus, ξ = ξ(ω) is a function from the sample space � to the reals (or extended reals
including ±∞) RN .

Remark 2.2. If we are interested in a random variable ξ defined on a given probability
space, we generally want to know the probability of all events involving ξ . The numbers
Fξ (x) completely characterize the random variable ξ in the sense that they provide the
probabilities of all events using the information on ξ . It is useful to understand that this
information may be captured by a single function Fξ (x) from RN to R.
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x1

A1 A2 A3

x2

x3

x4

Fig. 2.3. An example of a simple random variable.

2.1.3 Indicators and discrete variables

Consider now the simplest example of a random variable, which we will often use
hereafter.

Let A ∈ F be some event from a given σ -algebra F of all possible events. Define the
function

IA(ω) :=

{
1 if ω ∈ A
0 if ω 6∈ A

(2.7)

which we will call the indicator-function of a set A.

Definition 2.5. A random variable ξ = ξ(ω) with values in R is called a discrete random
variable if it has the representation

ξ(ω) =

∞∑
i=1

xi IAi (ω) (2.8)

where

• xi is a fixed point from R,
•

Ai ∈ F :
∞⋃

i=1

Ai = � (2.9)

If a sum in (2.8) is finite then ξ(ω) is called a simple random variable.

Example 2.1. Let xi = i (i = 1, . . . , n) and Ai := {ω : ω ∈ [i − 1, i)}. Then the random
variable ξ(ω) is a simple random variable (see Fig. 2.3).
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2.2 Transformation of distributions

This section describes some helpful rules for the calculation of distribution functions of
random variables in the case of their functional transformations.

2.2.1 Functionally connected random variables

The following lemma gives a rigorous mathematical proof of the trivial ‘physically
clear’ fact:

‘Any deterministic function of a random variable is also a random variable.’

Lemma 2.1. Let ξ = ξ(ω) be a random variable, defined on (�,F ,P), and φ = φ(x) be
a Borel function. Then the function η(ω) = φ(ξ(ω)) is a random function defined on the
same probability space (�,F ,P).

Proof. It follows from the relations:

{ω : η(ω) ∈ B} = {ω : φ(ξ(ω)) ∈ B} = {ω : ξ(ω) ∈ φ−1(B)} ∈ F

Lemma is proven. �

The following examples represent some random variables, constructed by applying a
simple deterministic transformation to a given random variable:

•

ξ+ := max {ξ ; 0} (2.10)

•

ξ− := −min {ξ ; 0} (2.11)

•

|ξ | := ξ+ + ξ− (ξ = ξ+ − ξ−) (2.12)

ξn (n = 1, 2, . . . ) (2.13)

All of these functions are also random variables given on the same probability space
(�,F ,P) if ξ = ξ(ω) is a random variable defined on (�,F ,P). The proof of this fact is
similar to the one given below.

Proposition 2.1. Let ξ1, ξ2 . . . be random variables. Then the following quantities are
random variables too:
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1.

max {ξ1, ξ2} and min {ξ1, ξ2} (2.14)

2.

sup
n
ξn and inf

n
ξn (2.15)

3.

lim sup
n

ξn and lim inf
n

ξn (2.16)

4. If {ξn (ω)} converges for all ω ∈ �, then lim
n→∞

ξn (ω) is a random variable too.

Proof.
1. For any x ∈ R we have

{ω : max {ξ1, ξ2} (ω) ≤ x} = {ω : max {ξ1 (ω) , ξ2 (ω)} ≤ x}

= {ω : ξ1 (ω) ≤ x} ∩ {ω : ξ2 (ω) ≤ x} ∈ F

and

{ω : min {ξ1, ξ2} (ω) ≤ x} = {ω : min {ξ1 (ω) , ξ2 (ω)} ≤ x}

= {ω : ξ1 (ω) ≤ x} ∪ {ω : ξ2 (ω) ≤ x} ∈ F

that proves (2.14).
2. Since a countable intersection of measurable sets is measurable, then{

ω : sup
n
ξn (ω) ≤ x

}
=

⋂
n
{ω : ξn (ω) ≤ x} ∈ F

and, similarly, since a countable union of measurable sets is measurable, it follows{
ω : inf

n
ξn (ω) ≤ x

}
=

⋃
n
{ω : ξn (ω) ≤ x} ∈ F

that proves (2.15).
3. To prove (2.16) notice that{

ω : lim sup
n

ξn (ω) ≤ x

}
=

{
ω : lim

n→∞
sup
m≥n

ξn (ω) ≤ x

}
=

{
ω : inf

n→∞
sup
m≥n

ξn (ω) ≤ x

}
=

{
ω :

∞⋃
n=1

∞⋂
m=n

ξn (ω) ≤ x

}
∈ F
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and

{
ω : lim inf

n
ξn (ω) ≤ x

}
=

{
ω : lim

n→∞
inf

m≥n
ξn (ω) ≤ x

}
=

{
ω : sup

n→∞
inf

m≥n
ξn (ω) ≤ x

}
=

{
ω :

∞⋂
n=1

∞⋃
m=n

ξn (ω) ≤ x

}
∈ F

since by 2 inf
m≥n

ξn (ω) is a random variable, and again by 2 inf
n→∞

sup
m≥n

ξn (ω) ≤ x is a random

variable too. Similarly for lim inf
n

ξn (ω).

4. Since in this case inf
n→∞

sup
m≥n

ξn (ω) = lim
n→∞

inf
m≥n

ξn (ω) the results is true. �

2.2.2 Transformation of densities

The following theorem gives the formula for calculation of the density pφ(x) (1.49) of
the distribution for the random variable φ(ξ(ω)), if it is available a density pξ (x) of the
distribution for a random variable ξ(ω).

Theorem 2.1. Let ξ = ξ(ω) be a random value defined on the probability space (�,F ,P)
and its distribution function Fξ (x) is absolutely continuous on R, i.e., ξ(ω) has a density
of this distribution

pξ (x) :=
d

dx
Fξ (x) (2.17)

Let y = φ(x) be a strictly monotonic (increasing or decreasing) function on R, which is
differentiable and its derivative is not equal to zero, that is,

φ
′

(x) : φ
′

(x) 6= 0 ∀x ∈ R (2.18)

Then η(ω) = φ(ξ(ω)) is also a random variable defined on (�,F ,P) and having the
absolutely continuous distribution function Fη(y) with the density of distribution pη(y)
equal to

pη(y) =
d

dx
Fξ (x) =

pξ (x)

|φ
′
(x)|

∣∣∣∣
x=φ−1(y)

, y ∈ R (2.19)
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 =  (x)η φ

y +Δy =
 (x+Δ x)φ

φy =  (x)
Δx x

x (x+Δx)

Fig. 2.4. A strictly monotonically increasing function.

Proof. Let φ(x) be a strictly monotonically increasing function. Then (see Fig. 2.4) by the
mean-value theorem one has

P{ω : y = φ(x) < η ≤ φ(x +1x) = y +1y}

= P{ω : x < ξ ≤ x +1x}

= P{ω : φ−1(y) < ξ ≤ φ−1(y +1y)} =

φ−1(y+1y)∫
φ−1(y)

pξ (x)dx

= pξ (θ)|φ
−1(y +1y)− φ−1(y)|, θ ∈ [φ−1(y);φ−1(y +1y)]

Taking 1y → 0 we obtain:

lim
1y→0

1
1y

P{ω : y = φ(x) < η ≤ φ(x +1x) = y +1y}

= pη(y) = pξ (φ
−1(y))

∣∣∣∣ d

dy
φ−1(y)

∣∣∣∣ = pξ (x)

|φ
′
(x)|

∣∣∣∣
x=φ−1(y)

, y ∈ R

Analogous considerations holds for a monotonically decreasing function. The theorem is
proven. �

For the more general class of functions, which are partially strictly monotonic (see
Fig. 2.5), the following result holds.

Theorem 2.2. Let, instead of (2.18), a function y = φ(x) be a partially strictly monotonic
at each semi-open interval X i := (xi−1, xi ] and differentiable on X i function with a
nonzero derivative on int X i , i.e.,

φ
′

(x) : φ
′

(x) 6= 0 ∀x ∈ X i

X i

⋂
i 6= j

X j = ∅,
⋃

i

X i = R
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y = (x)φ

X1 X2 X3

Fig. 2.5. A partially strictly monotonically increasing function.

y

x

y=ax+b

Fig. 2.6. A linear (affine) transformation.

Then η(ω) = φ(ξ(ω)) is also a random variable, defined on (�,F ,P), and having the
absolutely continuous distribution function Fη(y) with the density of distribution pη(y)
equal to

pη(y) =
∑

i

χ (x ∈ int X i )
pξ (x)

|φ
′
(x)|

∣∣∣∣
x=φ−1(y)

(2.20)

for any y ∈ R such that x = φ−1(y) ∈ intX i0 for some i = i0.

Proof. It follows from the equality

P{ω : y < η ≤ y +1y} =
∑

i

P{ω : x < ξ ≤ x +1x, x, (x +1x) ∈ X i }

after the application of the formula (2.19) to each term of the last expression and tending
1y to zero. �

Example 2.2. (The class of linear (affine) transformations) Let (see Fig. 2.6):

y = φ(x) = ax + b, a 6= 0 (2.21)
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y

b

c
x

y = a(x–c)2 + b

Fig. 2.7. A quadratic transformation.

As in this case we deal with a strictly monotonic functions, we can use the formula
(2.19):

pη(y) =
pξ (x)

|φ
′
(x)|

∣∣∣∣
x=φ−1(y)

=
1
a

pξ

(
y − b

a

)
(2.22)

Example 2.3. (The class of quadratic transformations) Let now (see Fig. 2.7)

y = φ(x) = a(x − c)2 + b, a > 0 (2.23)

The real line in this case could be separated in two regions:

X1 = {x : −∞ < x ≤ c}, X2 = {x : c < x <∞}

Applying to this class of transformation the formula (2.20), for any y > b we obtain:

pη(y) = χ (x ∈ X1)
pξ (x)

|φ
′
(x)|

∣∣∣∣
x=−

√
y−b

a +c
+ χ (x ∈ X2)

pξ (x)

|φ
′
(x)|

∣∣∣∣
x=
√

y−b
a +c

=

χ

(
−

√
y − b

a
+ c ∈ X1

)
pξ

(
−

√
y − b

a
+ c

)
2
√

a(y − b)

+

χ

(√
y − b

a
+ c ∈ X2

)
pξ

(√
y − b

a
+ c

)
2
√

a(y − b)
(2.24)

2.3 Continuous random variables

This section introduces two useful notions, which help to simplify the terminology in
the next texts, and also present a very important theorem on monotone convergence, which
plays a key role for the construction of Lebesgue integral or, in other words, the operator
of mathematical expectation.
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2.3.1 Continuous variables

The following definitions will be useful hereafter.

Definition 2.6. A random variable ξ = ξ(ω) given on a probability space (�,F ,P) is
said to be

• continuous, if its distribution function Fξ (x) is continuous for all x ∈ R;
• absolutely continuous, if there exists a nonnegative function fξ (x), called its density,

such that

Fξ (x) =

x∫
−∞

fξ (u)du, x ∈ R (2.25)

Surely, the definition of absolutely continuous random variable is closely related to the
definition of absolutely continuous measures, given in Chapter 1 (see (1.48)).

2.3.2 Theorem on monotone approximation

This theorem gives a simple approximating presentation for any random variable, using
the notion of a simple random variable with a finite number of terms in (2.8).

Theorem 2.3. (on monotone approximation) For each random variable ξ = ξ(ω)

given on a probability space (�,F ,P), there is a sequence of simple random variables
ξ1, ξ2, . . . having the structure

ξn(ω) =

N (n)∑
k=1

xk,n IAk,n (ω) (2.26)

(where N (n) is some given monotonically increasing function of n, {xk,n} are given
numbers, and IAk,n (ω) are indicators of the sets Ak,n) such that for all ω ∈ �

|ξn(ω)| ≤ |ξ(ω)| (2.27)

and

|ξn(ω)− ξ(ω)| →
n→∞

0 (2.28)

If ξ(ω) ≥ 0 for all ω ∈ �, then there exists a sequence {ξn(ω)}n≥1 of simple random
variables ξ1, ξ2, . . . such that

ξn(ω) ↑
n→∞

ξ(ω) (2.29)

that is, for each ω ∈ � the sequence {ξn(ω)}n≥1 converges to ξ(ω) monotonically from
below.
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ξ

ξ ω( )

ξ ω( )n

1 2 3 (n–1) n

Fig. 2.8. A monotone approximation from down.

Proof. Define IAk,n as an indicator of the set

Ak,n :=

{
ω :

k − 1
2n ≤ ξ (ω) <

k

2n

}
and N (n) := n2n . Put then

ξn(ω) :=

N (n)∑
k=1

k − 1
2n IAk,n (ω)+ nI {ω : ξ(ω) ≥ n}

Then, for a non-negative random variable ξ(ω) ≥ 0 and any ω ∈ � we have (see Fig. 2.8)
ξn(ω) ≤ ξ(ω), ξn(ω) ↑ ξ(ω).

In general case (when ξ(ω) is not obligatory non-negative) we have

ξ(ω) = ξ+(ω)− ξ−(ω)

and one can define two sequences such that

ξ+n (ω) ↑ ξ
+(ω)

ξ−n (ω) ↑ ξ
−(ω)

for which the following statements hold: for any ω ∈ �

ξn(ω) := ξ
+
n (ω)− ξ

−
n (ω) →n→∞

ξ(ω)

|ξn(ω)| = ξ
+
n (ω)+ ξ

−
n (ω) ≤ ξ

+(ω)+ ξ−(ω) = |ξ(ω)|

Theorem is proven. �

Hereafter we will use only the simple random variable ξn(ω), defined on the (�,F ,P)
by the formula
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ξn(ω) := ξ
+
n (ω)− ξ

−
n (ω)

ξ+n (ω) :=

N (n)∑
k=1

k − 1
2n IA+k,n

(ω)+ nI {ω : ξ+(ω) ≥ n}

A+k,n :=

{
ω :

k − 1
2n ≤ ξ+(ω) <

k

2n

}

ξ−n (ω) :=

N (n)∑
k=1

k − 1
2n IA−k,n

(ω)+ nI {ω : ξ−(ω) ≥ n}

A−k,n :=

{
ω :

k − 1
2n ≤ ξ−(ω) <

k

2n

}
(2.30)
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This chapter introduces the most important notion in probability theory – mathematical
expectation or (in mathematical language) a Lebesgue Integral taken with respect to
a probabilistic measure (see, for example, Chapters 15 and 16 in Poznyak (2008)).
Physically, this operator presents some sort of ‘averaging’, or a probabilistic version of ‘the
center of gravity of a physical body’. In fact, it compresses the information on a random
variable in to a single number.

There exist two possibilities to introduce the operator of the mathematical expectation:

• using the so-called axiomatic approach, suggested by Whittle (Whittle, 1984), which
is based on some evident properties of ‘an averaging operation’, and showing then that
it is exactly the Lebesgue–Stieltjes integration;
• introducing directly the mathematical expectation operator as the Lebesgue–Stieltjes

integration with respect to a distribution function or probability measure.

Here we will present both of these approaches and demonstrate their internal inter-
connection.

3.1 Definition of mathematical expectation

3.1.1 Whittle axioms

Definition 3.1. (the Whittle axioms) The operator E{·} defining the correspondence
between each random value x(ω) (given on a probability space (�,F ,P)) and a real
variable

x(ω)
E
→ m ∈ R (3.1)

is called the mathematical expectation of the random variable x(ω), or, its ‘average
value’ with respect to all possible realizations ω ∈ �, if it has the following properties:

A1. ‘the average value’ of a non-negative random variable is also non-negative, i.e., if
x(ω) ≥ 0 for all ω ∈ � then

E{x(ω)} ≥ 0 (3.2)

47
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A2. ‘the average value’ of the sum of two random variables is equal to the corresponding
sum of their average values, i.e., for any c1, c2 ∈ R and any random variables x1(ω)

and x2(ω) defined on (�,F ,P)

E{c1x1(ω)+ c2x2(ω)} = c1E{x1(ω)} + c2E{x2(ω)} (3.3)

A3. ‘the average value of a constant’ is the same constant (scaling property), i.e.,

E{1} = 1 (3.4)

A4. if any sequence of simple random variables ξn(ω) monotonically converges to a
random variable ξn(ω) for all ω ∈ �, i.e.,

ξn(ω) ≤ ξn+1(ω), ξn(ω) ↑ ξ(ω)

or

ξn(ω) ≥ ξn+1(ω), ξn(ω) ↓ ξ(ω)

then the corresponding sequence of their average values also converges monotonically
to the average value of the limit random variable, that is,

lim
n→∞

E{ξn(ω)} = E{ξ(ω)} (3.5)

A5. the probability of any event A ∈ � is equal to ‘the average value’ of its characteristic
function, i.e.,

P{A} := E{χ (ω ∈ A)} (3.6)

All axioms presented above have very clear ‘physical interpretation’, if we will consider
the operator of mathematical expectation as some sort of ‘averaging over the ensemble
of all possible realizations ω’. Indeed,

• the axiom A1 illustrates the evident fact that ‘the average value of any group of
non-negative plants is also non-negative’;
• the axiom A2 reflects the additivity property: ‘the average of the sum of elements is

equal to the sum of their average values’;
• the axiom A3 is also absolutely clear: ‘averaging of any constant leads to the same

constant’;
• the axiom A4 is not so evident as any other, but it also doesn’t provoke any negative

‘emotions‘: ‘if any sequence of random variables monotonically converges to a limit
variable, then the corresponding sequence of average values converges to the average
value of the limit variable’;
• the last axiom A5 introduces the natural connection between a given measure P (par-

ticipating in the probability space (�,F ,P) definition), and the considered ‘averaging
method’: ‘the probability of any event A ∈ � is equal to the average value of its char-
acteristic function’.
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3.1.2 Mathematical expectation as the Lebesgue integral

This subsection gives the description of the mathematical expectation operator (3.1)
based on the Lebesgue integral definition (see Chapters 15, 16 in Poznyak (2008)).

A. Let (�,F ,P) be a probability space and ξ = ξ (ω) be a simple random variable,
that is,

ξ (ω) =

n∑
i=1

xi IAi (ω) (3.7)

Definition 3.2. The mathematical expectation E{ξ} of the simple random variable ξ (3.7)
is defined by

E{ξ} :=
n∑

i=1

xiP (Ai ) (3.8)

This definition is consistence in the sense that E{ξ} does not depend on the particular
representation of ξ in the form (3.7).

B. Let now ξ = ξ (ω) be a non-negative random variable, i.e., ξ(ω) ≥ 0. Then by
Theorem 2.3 on the monotone approximation it follows that for all ω ∈ � there exists a
sequence {ξn(ω)}n≥1 of simple random variables ξ1, ξ2, . . . such that

ξn(ω) ↑
n→∞

ξ(ω) (3.9)

that is, for each ω ∈ � the sequence {ξn(ω)}n≥1 converges to ξ(ω) monotonically from
below. Based on the definition (3.8) we may conclude that

E{ξn} ≤ E{ξn+1} (3.10)

and hence, lim
n→∞

E{ξn} exists (possibly, with the value +∞).

Definition 3.3. The mathematical expectation E{ξ} of a non-negative random variable
ξ(ω) is defined by

E{ξ} = lim
n→∞

E{ξn} (3.11)

To see that this definition is consistent, we need to show that the limit in (3.11) is
independent of the approximating sequence {ξn}, or, in other words, it is independent of
the partition of �.
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Lemma 3.1. Let {Ak : k = 1, . . . , n} and
{

B j : j = 1, . . . ,m
}

be two partitions of �,
such that

X =
n∑

k=1

xk IAk (ω) and Y =
m∑

j=1

y j IB j (ω) (3.12)

Then

n∑
i=1

xkP (Ak) =

m∑
j=1

y jP
(
B j
)

(3.13)

Proof. One has

P (Ak) =

m∑
j=1

P
(

Ak ∩ B j
)

and P
(
B j
)
=

m∑
k=1

P
(

Ak ∩ B j
)

that implies

n∑
k=1

xkP (Ak) =

n∑
k=1

m∑
j=1

xkP
(

Ak ∩ B j
)

m∑
j=1

y jP
(
B j
)
=

m∑
j=1

n∑
k=1

y jP
(

Ak ∩ B j
)

Since the sets
{

Ak ∩ B j : k = 1, . . . , n; j = 1, . . . ,m
}

also form a partition of� it follows
that xk = y j whenever Ak ∩ B j 6= ∅ that proves the lemma. �

C. In general case, any random variable ξ(ω) (not obligatory non-negative) can be
represented as

ξ(ω) = ξ+(ω)− ξ−(ω)

ξ+(ω) := max {ξ(ω); 0} , ξ−(ω) := −min {ξ(ω); 0}
(3.14)

Definition 3.4. The mathematical expectation E{ξ} of a random variable ξ(ω) given on a
probability space (�,F ,P), or, its ‘average value’ with respect to all possible realizations
ω ∈ �, is defined by

E{ξ} := E{ξ+} − E{ξ−} (3.15)

It is also called the Lebesgue–Stieltjes (or, simply, Lebesgue) integral of the F -measurable
function ξ(ω) with respect to the probability measure P for which we shall use the notation
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E{ξ} :=

∫
ω∈�

ξ(ω)P (dω)
or
=

∫
�

ξdP (3.16)

We say that the expectation E{ξ} is finite if both

E{ξ+} <∞ and E{ξ−} <∞

Remark 3.1. It is easy to verify that the mathematical expectation E{ξ} defined by (3.15)
satisfies all Whittle axioms A1–A5, and inverse. So, both definitions (3.1) and (3.15) are
equivalent.

3.1.3 Moments, mean, variance, median and α-quantile

Definition 3.5. If ξ is a random variable then the

• moments are

E{ξn
}, n = 1, 2, . . . (3.17)

• central moments are

E
{
(ξ − E{ξ})n

}
, n = 1, 2, . . . (3.18)

• absolute moments are

E{|ξ |n}, n = 1, 2, . . . (3.19)

• absolute central moments are

E
{
|ξ − E{ξ}|n

}
, n = 1, 2, . . . (3.20)

The first moment E{ξ} is called mean and the second central moment is called variance.
They are denoted by

m := E{ξ}

var ξ := E
{
(ξ − E{ξ})2

} (3.21)

All definitions above are true provided the relevant quantities exist.

Definition 3.6. The median, denoted by med (ξ), of a random variable ξ is called a real
number such that

P {ξ ≤ med (ξ)} = P {ξ > med (ξ)} =
1
2

(3.22)
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or, in other words, it is a kind of ‘center’ of the given distribution P in the sense that a half
of the probability mass lies to the left-hand side of it and a half of it on the right.

Remark 3.2. A median always exists in contrast to moments or absolute moments which
need not.

Definition 3.7. The α-quantile of a random variable ξ is called a real number λα (ξ) such
that

P {ξ ≥ λα (ξ)} ≥ α (3.23)

Remark 3.3. The median is thus a 0.5-quantile.

3.2 Calculation of mathematical expectation

In this section we will present the rules of the mathematical expectation calculation for
discrete, continuous and absolutely continuous random variables.

3.2.1 Discrete variables

Lemma 3.2. If ξn(ω) is a simple random variable (a finite discrete variable) (2.26), i.e.,

ξn(ω) =

N (n)∑
k=1

xk,n IAk,n (ω) (3.24)

then

E{ξn(ω)} =

N (n)∑
k=1

xk,nP{Ak,n(ω)} (3.25)

Proof. It results directly from (3.8). �

Lemma 3.3. If ξ(ω) is a discrete random variable (2.8), i.e.,

ξ(ω) =

∞∑
i=1

xi IAi (ω) (3.26)

then

E{ξ(ω)} =
∞∑

i=1

xiP{Ai (ω)} (3.27)
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Proof. It follows from Definition 3.3 and Lemma 3.1. �

The following examples illustrate these rules.

Example 3.1. (the toss of a die) The sample space in this case is

� = {ω} = {1; 2; 3; 4; 5; 6}

The measure is given by

P{ω = i} =
1
6
∀i = 1, . . . , 6

Take x(ω) = ω. Applying the previous lemma we obtain:

E{x(ω)} = E

{
6∑

i=1

iχ(ω = i)

}
=

6∑
i=1

iP{ω = i}

=

6∑
i=1

i

6
=

1
6
(1+ 2+ 3+ 4+ 5+ 6) =

21
6
= 3.5

Example 3.2. (Bernoulli’s variable) Bernoulli’s variable is a binary variable defined by

x(ω) =

{
1 with the probability p
0 with the probability q

where q = 1− p ∈ [0, 1]. Then by the previous lemma

E{x(ω)} = E{1χ(x(ω) = 1)+ 0χ(x(ω) = 0)}

= E{χ(x(ω) = 1)} = p

3.2.2 Continuous variables

Lemma 3.4. If ξ(ω) is a continuous random variable (2.5), i.e., its distribution function
Fξ (x) is a continuous function, then

E{ξ(ω)} =

+∞∫
−∞

x Fξ (dx) (3.28)

where

Fξ (dx) := Fξ (x + dx)− Fξ (x) = P{ω : ξ(ω) ∈ (x, x + dx]} (3.29)
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Proof. Consider a simple random variable {ξn(ω)} (3.9), which monotonically from below
converges to ξ(ω). Then using the axioms by Definition 3.3:

E{ξ(ω)} = lim
n→∞

E{ξn(ω)}

= lim
n→∞

E

{
N (n)∑
k=1

xk,n IAk,n ({ω ∈ Ak,n} = {ξn(ω) = xk,n})

}

= lim
n→∞

N (n)∑
k=1

xk,nE{IAk,n ({ω ∈ Ak,n} = {ξn(ω) = xk,n})}

= lim
n→∞

N (n)∑
k=1

xk,nP{ω : ξn(ω) = xk,n}

Taking into account the relation

P{ω : ξn(ω) = xk,n} =
∑

j

P{ω : x j ≤ ω ≤ x j +1 j,n|ξn(ω) = xk,n} (3.30)

when (1 j,n →
n→∞

0 for all j) we get:

E{ξ(ω)} = lim
n→∞

N (n)∑
k=1

xk,nP{ω : ξn(ω) = xk,n}

= lim
n→∞

N (n)∑
k=1

xk,n

∑
j

P{ω : x j ≤ ω ≤ x j +1 j,n|ξn(ω) = xk,n}

=

+∞∫
−∞

xP{ω : ξ(ω) ∈ (x, x + dx]} (3.31)

The relation (3.29) leads to the presentation (3.28). Lemma is proven. �

3.2.3 Absolutely continuous variables

Lemma 3.5. If ξ(ω) is an absolutely continuous random variable (2.5),i.e., its distribu-
tion function Fξ (x) can be expressed in the form

Fξ (x) =

x∫
−∞

fξ (u)du (3.32)

then

E{ξ(ω)} =

+∞∫
−∞

x fξ (x)dx (3.33)
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a b

x

f (x)ξ

Fig. 3.1. A uniform distribution.

Proof. From (3.30) and (3.32) it follows that

P{ω : ξn(ω) = xk,n}

=

∑
j

P{ω : x j ≤ ω ≤ x j +1 j,n|ξn(ω) = xk,n} =
∑

j

x j+1 j,n∫
x j

fξ (u)du

Substitution of this expression into (3.31) gives

E{ξ(ω)} = lim
n→∞

N (n)∑
k=1

xk,nP{ω : ξn(ω) = xk,n}

= lim
n→∞

N (n)∑
k=1

xk,n

∑
j

P{ω : x j ≤ ω ≤ x j +1 j,n|ξn(ω) = xk,n}

= lim
n→∞

N (n)∑
k=1

xk,n

∑
j

x j+1 j,n∫
x j

fξ (u)du

= lim
n→∞

∑
j

N (n)∑
k=1

xk,n fξ (xk,n)1 j,n =

+∞∫
−∞

x fξ (x)dx

Lemma is proven. �

Example 3.3. (A uniform distribution) In this situation a random variable ξ(ω) has the
density (see Fig. 3.1)

fξ (x) =
1

b − a
, x ∈ [a, b], a < b (3.34)



56 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

f (x)ξ

a

x

Fig. 3.2. A Gaussian distribution.

By (3.33) we directly obtain:

E{ξ(ω)} =

b∫
a

x
1

b − a
dx =

1
b − a

b2
− a2

2
=

b + a

2

E{ξ2(ω)} =

b∫
a

x2 1
b − a

dx =
1

b − a

b3
− a3

3
=

b2
+ ab + a2

3

var ξ = E{(ξ(ω)− E{ξ(ω)})2}

=
b2
+ ab + a2

3
−
(b − a)2

4
=
(b − a)2

12

3.2.3.1 Gaussian random variables

A Gaussian or normal random variable ξ(ω) has the density (see Fig. 3.2)

fξ (x) =
1

√
2πσ

exp

(
−
(x − a)2

2σ 2

)
, x ∈ [−∞,∞], σ > 0 (3.35)

By (3.33) we directly obtain

E{ξ(ω)} =

∞∫
−∞

x fξ (x)dx =
1

√
2πσ

∞∫
−∞

x exp

(
−
(x − a)2

2σ 2

)
dx

Changing variables in this integral

x̄ :=
x − a

σ
, x = σ x̄ + a, dx = σdx̄

we get
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E{ξ(ω)} =
1

√
2πσ

∞∫
x̄=−∞

(σ x̄ + a) exp

(
−
(x̄)2

2

)
σdx̄ =

1
√

2π
(σ I0 + aI1) (3.36)

where

I0 :=

∞∫
x̄=−∞

x̄e−
(x̄)2

2 dx̄, I1 :=

∞∫
x̄=−∞

e−
(x̄)2

2 dx̄

Taking into account that the function g(x̄) := x̄e−
(x̄)2

2 is the odd function, i.e., g(−x̄) =

−g(x̄), we conclude that I0 = 0. To calculate I1 let us represent it as I1 = 2
∞∫

x̄=0
e−

(x̄)2
2 dx̄ .

Then changing variables as x̄ = ut, u ≥ 0, dx̄ = udt we obtain I1 = 2u
∞∫

t=0
e−

u2t2
2 dt or,

in another form,

I1e−
u2
2 = 2ue−

u2
2

∞∫
t=0

e−
u2t2

2 dt

Integrating then both sides of this inequality from u = 0 up to u = ∞ we derive:

∞∫
u=0

I1e−
u2
2 du =

1
2

I 2
1 = 2

∞∫
u=0

ue−
u2
2

 ∞∫
t=0

e−
u2t2

2 dt

 du

= 2

∞∫
t=0

 ∞∫
u=0

ue−
u2(1+t)2

2 du

 dt

= 2

∞∫
t=0

 ∞∫
v=u2/2=0

e−v(1+t)2dv

 dt

= 2

∞∫
t=0

dt

1+ t2 = 2 arctan{t} |t=∞t=0 = 2
π

2
= π

Hence, I 2
1 = 2π and therefore

I1 =
√

2π (3.37)

Substituting (3.37) into (3.36) we finally derive that

E{ξ(ω)} = a (3.38)
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To calculate the second moment m2 := E{ξ2(ω)} of a Gaussian random variable ξ(ω)
let us differentiate both sides of the formula (3.38) with respect to the parameter a:

d

da
E{ξ(ω)} =

1
√

2πσ

∞∫
−∞

x
(x − a)

σ 2 e−
(x−a)2

2σ2 dx

=
1

σ 2

∞∫
−∞

x2 (x − a)

σ 2 e−
(x−a)2

2σ2 dx −
a

σ 2

∞∫
−∞

x
(x − a)

σ 2 e−
(x−a)2

2σ2 dx

=
m2

σ 2 −
a2

σ 2 = 1

from which it follows that

m2 = σ
2
+ a2 (3.39)

Combining then (3.38) and (3.39) we get

E{(ξ(ω)− a)2} = m2 − a2
= σ 2 (3.40)

i.e., the parameters a and σ 2 in the Gaussian distribution (3.35) have ‘the direct physical
sense’:

• a is a mathematical expectation of the corresponding Gaussian random variable or, in
other words, the center of the Gaussian distribution;
• σ 2 is the variance of this Gaussian distribution or its ‘variance’.

Since the Gaussian density function fξ (x) (3.35), even in the case a = 0, σ 2
= 1, is not

a simple function, its integral

8(x) = P {ξ < x} =

x∫
−∞

fξ (t)dt =

x∫
−∞

1
√

2π
exp

(
−

t2

2

)
dt (3.41)

can be calculated only numerically. In many applications the following estimations turn
out to be useful.

Lemma 3.6. (the Mill’s ratio) Let fξ (x) =
1
√

2π
exp

(
−

x2

2

)
be the ‘standard’ (nor-

malized) normal density and 8(x) the corresponding distribution function. Then for any
x > 0 (

1− x−2
) fξ (x)

x
< 1−8(x) <

fξ (x)

x
(3.42)
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and, in particular,

lim
x→∞

x [1−8(x)]
fξ (x)

= 1 (3.43)

Proof. Using the identity
d

dx
fξ (x) = −x fξ (x), partial integration yields

0 <
∫
∞

x
t−2 fξ (t)dt =

fξ (x)

x
− [1−8(x)]

that proves the right-most inequality. Similarly,

0 <
∫
∞

x
3t−4 fξ (t)dt =

fξ (x)

x3 −

∫
∞

x
t−2 fξ (t)dt

=
fξ (x)

x3 −
fξ (x)

x
+ [1−8(x)]

that gives the left-hand inequality. �

3.2.3.2 Resumé

Summary 3.1. In general the mathematical expectation E{ξ(ω)} can be presented by the
unique formula

E{ξ(ω)} =

+∞∫
−∞

x Fξ (dx) (3.44)

where

•

Fξ (dx) =
∑

s
δ(x − xs)dx (3.45)

for discrete random variables in the given points xs ;
•

Fξ (dx) = P{ξ(ω) ∈ (x; x + dx]} (3.46)

for continuous random variables;
•

Fξ (dx) = pξ (x)dx (3.47)

for absolutely continuous random variables.
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3.3 Covariance, correlation and independence

3.3.1 Covariance

Definition 3.8. Let ξ, η be random variables defined on the probability space (�,F ,P)
such that E {ξ} , E {η} and E {ξη} exist. Then the covariance of ξ and η is

cov (ξ, η) := E {(ξ − E {ξ}) (η − E {η})} (3.48)

Proposition 3.1. It is easy to check that

1.

cov (ξ, η) = E {ξη} − E {ξ}E {η} (3.49)

2. for any a, b ∈ R

cov (aξ, bη) = abcov (ξ, η) (3.50)

3.3.2 Correlation

Definition 3.9. Let ξ, η be random variables defined on the probability space (�,F ,P)
such that var ξ ∈ (0,∞) and var η ∈ (0,∞). Then the correlation coefficient of ξ and η
is

ρξ,η :=
cov (ξ, η)
√

var ξ
√

var η
(3.51)

and the random variables ξ, η are said to be uncorrelated if and only if

ρξ,η = 0 (3.52)

Proposition 3.2.

−1 ≤ ρξ,η ≤ 1 (3.53)

that follows directly from the Cauchy–Bounyakovski–Schwartz inequality (see (4.16)
below) if (ξ − E {ξ}) is taken instead of ξ and E {η − E {η}} is taken instead of η.
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3.3.3 Relation with independence

Proposition 3.3. If ξ, η are independent, then they are uncorrelated, that is, ρξ,η = 0
since in this case E {ξη} = E {ξ}E {η} that follows from Fubini’s theorem (see Poznyak
(2008)).

Proposition 3.4.

(a) If ξ, η are uncorrelated then they are not obligatory independent.
(b) Uncorrelation implies independence if both variables are Gaussian.

Proof. To prove (a) it is sufficient to construct an example. Let the pair (ξ, η) have the joint
density given by

fξ,η (x, y) :=

{
π−1 for x2

+ y2
≤ 1

0 for otherwise

from which it follows that

fξ (x) =

∞∫
−∞

fξ,η (x, y) dy =

√
1−x2∫

−

√
1−x2

π−1dy =

{
2
π

√
1− x2 for |x | ≤ 1
0 for otherwise

fη (y) =

∞∫
−∞

fξ,η (x, y) dx =

√
1−y2∫

−

√
1−y2

π−1dy =

{
2
π

√
1− y2 for |y| ≤ 1
0 for otherwise

So the joint density fξ,η (x, y) is not equal to the product of the marginal ones fξ (x) and
fη (y). To prove (b) let us show that this is true for Gaussian distributions. Indeed, in the
general Gaussian case

fξ,η (x, y) :=
1

2π
√

det R
exp

(
−

1
2

(
x−E {ξ}
y−E {η}

)ᵀ
R−1

(
x−E {ξ}
y−E {η}

))
where

R = E

{(
ξ−E {ξ}
η−E {η}

)(
ξ−E {ξ}
η−E {η}

)ᵀ}
= E

{(
(ξ−E {ξ})2 (ξ−E {ξ}) (η−E {η})

(ξ−E {ξ}) (η−E {η}) (η−E {η})2

)}
=

(
var ξ E {ξη} − E {ξ}E {η}

E {ξη} − E {ξ}E {η} var η

)
If the random variables ξ, η are uncorrelated then E {ξη} = E {ξ}E {η} and

R =

(
var ξ 0

0 var η

)
, R−1

=


1

var ξ
0

0
1

var η
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and hence,

fξ,η (x, y) :=
1

2π
√
(var ξ) (var η)

exp

(
−

1
2

[
(x−E {ξ})2

var ξ
+
(y−E {η})2

var η

])

=
1

√
2π (var ξ)

exp

(
−
(x−E {ξ})2

2var ξ

)
1

√
2π (var η)

exp

(
−
(y−E {η})2

2var η

)
= fξ (x) fη (y)

that exactly means independence. Proposition is proven. �
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The inequalities discussed below play an important role in probability theory and are
intensively used in the subsequent chapters of the book.

4.1 Moment-type inequalities

Each of the inequalities considered below is a special case of the corresponding integral
inequalities from Section 16.4 in Poznyak (2008) when the Lebesgue measure within is a
probabilistic measure (see Lemma 1.4).

4.1.1 Generalized Chebyshev inequality

Theorem 4.1. (the generalized Chebyshev inequality) Let g : R→ R be a nonnegative
non-decreasing function defined on the interval [0,∞), i.e.,

g(x) ≥ 0 ∀x ∈ [0,∞), g(x1) ≥ g(x2) ∀x1 ≥ x2 (4.1)

and ξ = ξ (ω) be a random variable defined on the probability space (�,F ,P) such that

E {g (|ξ |)} <∞ (4.2)

Then for any nonnegative value a ≥ 0 the following inequality holds:

E {g (|ξ |)} ≥ g(a)P{|ξ | ≥ a} (4.3)

Proof. By (3.44) and under the assumption of the theorem it follows that

E {g (|ξ |)} =

∞∫
0

g (x) F|ξ |(dx) ≥

∞∫
a

g (x) F|ξ |(dx)

≥

∞∫
a

g (a) F|ξ |(dx) = g (a)

∞∫
a

F|ξ |(dx) = g (a)P{|ξ | ≥ a} (4.4)

�
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Claim 4.1. The inequality (4.3) remains valid without the use of the module sign
within, i.e.,

E {g (ξ)} ≥ g(a)P{ξ ≥ a} (4.5)

which can be proven by repeating (4.4) where the integral is taken over (−∞,∞).

4.1.1.1 Cantelli’s inequalities

Theorem 4.2. (Cantelli’s inequalities) For any random variable with bounded variance

var ξ := E
{
(ξ − E{ξ})2

}
= σ 2 and any a ≥ 0 it follows that

P{|ξ − E{ξ}| ≥ a} ≤
2σ 2

a2 + σ 2

P{ξ − E{ξ} ≥ a} ≤
σ 2

a2 + σ 2

(4.6)

Proof. Letting in (4.3) g(a) := a2
+ σ 2 and using [ξ − E{ξ}] instead of ξ , one has

E {g (|ξ |)} = E
{
|ξ − E{ξ}|2 + σ 2

}
= 2σ 2

P{ξ ≥ a} ≤
E {g (ξ)}

g(a)

E {g (ξ)} = E
{
(ξ − E{ξ})2 + σ 2

}
= 2σ 2

that proves the first inequality in (4.6). The second one follows from the consideration

E {g (ξ)} = 2σ 2
=

0∫
−∞

g (x) Fξ (dx)+

∞∫
0

g (x) Fξ (dx)

=

∞∫
0

g (−x) Fξ (dx)+

∞∫
0

g (x) Fξ (dx) = 2

∞∫
0

g (x) Fξ (dx)

≥ 2

∞∫
a

g (x) Fξ (dx) ≥ 2g(a)P{ξ ≥ a}

that complete the proof. �

4.1.1.2 Markov and Chebyshev inequalities

Using the generalized Chebyshev inequality (4.3) one can obtain the following impor-
tant and commonly used integral relations known as the Markov and the Chebyshev
inequalities.
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Theorem 4.3. (the Markov inequality) Put in (4.3)

g(x) = xr , x ∈ [0,∞), r > 0 (4.7)

Then for any a > 0 the inequality (4.3) becomes

P{|ξ | ≥ a} ≤ a−rE
{
|ξ |r

}
(4.8)

Two partial cases corresponding r = 1, 2 present a special interest.

Corollary 4.1. (the first Chebyshev inequality) For r = 1 the Markov inequality (4.8)
becomes

P{|ξ | ≥ a} ≤
1
a

E {|ξ |} (4.9)

Corollary 4.2. (the second Chebyshev inequality) For r = 2 the Markov inequality (4.8)
becomes

P{|ξ | ≥ a} ≤
1

a2 E
{
ξ2
}

(4.10)

4.1.2 Hölder inequality

Theorem 4.4. (the Hölder inequality) Let p and q be positive values such that

p > 1, q > 1, p−1
+ q−1

= 1 (4.11)

and ξ, η be random variables defined on the probability space (�,F ,P) such that

E
{
|ξ |p

}
<∞, E

{
|η|q

}
<∞ (4.12)

Then the following inequality holds:

E {|ξη|} ≤
(
E
{
|ξ |p

})1/p (
E
{
|η|q

})1/q (4.13)

Proof. If E
{
|ξ |p

}
= E

{
|η|q

}
= 0 then ξ = η = 0 almost everywhere and (13.73) looks

trivial. Suppose that both E
{
|ξ |p

}
> 0 and

∫
E

E
{
|η|q

}
> 0. Since the function ln(x) is

concave for any x, y, a, b > 0 the following inequality holds (a + b = 1):

ln(ax + by) ≥ a ln(x)+ b ln(y) (4.14)
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or, equivalently,

ax + by ≥ xa yb (4.15)

Taking a := 1/p, b := 1/q and x :=
|ξ |p

E
{
|ξ |p

} , y :=
|η|p

E
{
|η|p

} implies

1/p
|ξ |p

E
{
|ξ |p

} + 1/q
|η|p

E
{
|η|p

} ≥ |ξ |(
E
{
|ξ |p

})1/p

|η|(
E
{
|η|p

})1/q
Applying the operator E {·} to both sides of this inequality and using the assumption that
p−1
+ q−1

= 1 proves (13.73). �

4.1.3 Cauchy–Bounyakovski–Schwartz inequality

The following particular case p = q = 2 of (13.73) is the most common in use.

Corollary 4.3. (The CBS inequality)

E {|ξη|} ≤
√

E
{
|ξ |2

}√
E
{
|η|2

}
(4.16)

and the equality in (4.16) is reached if

ξ (ω) = kη (ω) for any real k (4.17)

and almost all ω ∈ �.

Proof. To prove (4.17) it is sufficient to substitute ξ (ω) = kη (ω) in to (4.16). �

4.1.4 Jensen inequality

Theorem 4.5. (the Jensen inequality) Let g∪ : R → R and g∩ : R → R be convex
downward (or, simply, convex) and convex upward (or, simply, concave), respectively, and
ξ be randomly variable defined on the probability space (�,F ,P) such that

max {g∩(E {ξ}), E {g∪ (ξ)}} <∞ (4.18)

Then

g∪(E {ξ}) ≤ E {g∪ (ξ)} (4.19)

and

g∩(E {ξ}) ≥ E {g∩ (ξ)} (4.20)
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Proof. By the convexity (concavity) definition we may conclude that in both convexity
and concavity cases there exists a number λ(x0) such that for any x, x0 ∈ R the following
inequalities are fulfilled:

g∪(x) ≥ g∪(x0)+ λ(x0)(x − x0)

g∩(x) ≤ g∩(x0)+ λ(x0)(x − x0)
(4.21)

Taking x := ξ , x0 := E {ξ} in (4.21) we obtain

g∪(ξ) ≥ g∪(E {ξ})+ λ(E {ξ})(ξ − E {ξ})

g∩(ξ) ≤ g∩(E {ξ})+ λ(E {ξ} (ξ − E {ξ})

The application of E {·} to both sides of these inequalities leads to (4.19) and (4.20),
respectively. Theorem is proven. �

Example 4.1. For g∩(x) := ln(|x |) one has

ln(E {|ξ |}) ≥ E {ln (|ξ |)} (4.22)

4.1.5 Lyapunov inequality

The inequality below is a particular case of the Jensen inequality (4.19).

Corollary 4.4. (the Lyapunov inequality) For a random variable ξ defined on the
probability space (�,F ,P) such that E

{
|ξ |t

}
<∞ (t > 0) the following inequality holds:

(
E
{
|ξ |s

})1/s
≤
(
E
{
|ξ |t

})1/t (4.23)

where 0 < s ≤ t .

Proof. Define r :=
t

s
. Taking in (4.19) ξ := |ξ |s and g∪(x) := |x |r implies

(
E
{
|ξ |s

})t/s
=
(
E
{
|ξ |s

})r
≤ E

{(
|ξ |s

)r}
= E

{
|ξ |t

}
that completes the proof. �

Corollary 4.5. For any random variable ξ defined on the probability space (�,F ,P) such
that E

{
|ξ |k

}
<∞ (k > 2 is integer) the following inequalities hold:

E {|ξ |} ≤
(
E
{
|ξ |2

})1/2
≤ · · · ≤

(
E
{
|ξ |k

})1/k
(4.24)
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4.1.6 Kulbac inequality

Theorem 4.6. (the continuous version) Suppose p : R → R and q : R → R be any
positive density functions given on E ⊂ R such that the Lebesgue integral

IE (p, q) :=
∫

E

ln
(

p(x)

q(x)

)
p(x)dx (4.25)

is finite, that is, IE (p, q) <∞. Then

IE (p, q) ≥ 0 (4.26)

and IE (p, q) = 0 if and only if p(x) = q(x) almost everywhere on E .

Proof. Notice that (− ln(x)) is a convex function on (0,∞), i.e.,− ln(x) = g∪(x). Hence,
by the Jensen inequality (4.19) we have

IE (p, q) =
∫

E

ln
(

p(x)

q(x)

)
p(x)dx =

∫
E

ln
(
−

(
q(x)

p(x)

))
p(x)dx

≥ − ln
∫

E

(
q(x)

p(x)

)
p(x)dx = − ln

∫
E

q(x)dx = − ln 1 = 0

that proves (4.26). Evidently, IE (p, q) = 0 if p(x) = q(x) almost everywhere on E .
Suppose IE (p, q) = 0 and p(x) 6= q(x) for some x ∈ E0 ⊂ E such that µ (E0) =∫

E0

dx > 0. Then the Jensen inequality (4.19) implies

0 = IE (p, q) = −
∫

E0

ln
(

q(x)

p(x)

)
p(x)dx

≥ − ln

∫
E0

(
q(x)

p(x)

)
p(x)

 dx = − ln

∫
E0

q(x)dx

 = − lnα > 0

where α :=
∫

E0

q(x)dx < 1 which always can be done selecting E0 to be small enough. The

last inequality represents a contradiction. So, µ (E0) = 0. Theorem is proven. �

4.1.7 Minkowski inequality

Theorem 4.7. (the Minkovski inequality) Suppose ξ, η be random variables defined on
the probability space (�,F ,P) such that

E
{
|ξ |p

}
<∞, E

{
|η|p

}
<∞ (4.27)
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for some p ∈ [1,∞). Then the following inequality holds:

(
E
{
|ξ + η|p

})1/p
≤
(
E
{
|ξ |p

})1/p
+
(
E
{
|η|p

})1/p (4.28)

Proof. Consider the following inequality

|ξ + η|p = |ξ + η| |ξ + η|p−1
≤ |ξ | |ξ + η|p−1

+ |η| |ξ + η|p−1

which after the application E {·} becomes

E
{
|ξ + η|p

}
≤ E

{
|ξ | |ξ + η|p−1

}
+ E

{
|η| |ξ + η|p−1

}
(4.29)

Applying the Hölder inequality (13.73) to each term in the right-hand side of (4.29) we
derive:

E
{
|ξ | |ξ + η|p−1

}
≤
(
E
{
|ξ |p

})1/p
(
E
{
|ξ + η|(p−1)q

})1/q

=
(
E
{
|ξ |p

})1/p (
E
{
|ξ + η|p

})1/q
since p = (p − 1)q, and

E
{
|η| |ξ + η|p−1

}
≤
(
E
{
|η|p

})1/p
(
E
{
|ξ + η|(p−1)q

})1/q

=
(
E
{
|η|p

})1/p (
E
{
|ξ + η|p

})1/q
Using these inequalities for the right-hand side estimation in (4.29) we get

E
{
|ξ + η|p

}
≤

[(
E
{
|ξ |p

})1/p
+
(
E
{
|η|p

})1/p
] (

E
{
|ξ + η|p

})1/q
that implies(

E
{
|ξ + η|p

})1−1/q
=
(
E
{
|ξ + η|p

})1/p

≤
(
E
{
|ξ |p

})1/p
+
(
E
{
|η|p

})1/p

Theorem is proven. �

4.1.8 r-Moment inequality

First, prove the next simple lemma.

Lemma 4.1. For x, y ≥ 0 and r > 0 the following inequality holds:

(x + y)r ≤


2r (xr

+ yr ) for r > 0

xr
+ yr for 0 < r ≤ 1

2r−1 (xr
+ yr ) for r ≥ 1

(4.30)
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Proof. The general case (r > 0) follows from the following chain of evident inequalities:

(x + y)r ≤ (2 max {x, y})r = 2r (max {x, y})r ≤ 2r (xr
+ yr )

For r ∈ (0, 1] in view of the inequality x1/r
≤ x , valid for x ∈ [0, 1], we have(

xr

xr + yr

)1/r

+

(
yr

xr + yr

)1/r

≤
xr

xr + yr +
yr

xr + yr = 1

or, equivalently,

x + y ≤
(
xr
+ yr )1/r

that implies the desired result. For r ≥ 1 in view of the convexity of the function |x |r it
follows that(

x + y

2

)r

≤
1
2

xr
+

1
2

yr

that implies the third inequality in (4.30). �

Theorem 4.8. (on the r -moments of a sum) Let ξ and η be random variables with
bounded r-moments, that is, E

{
|ξ |r

}
<∞ and E

{
|η|r

}
<∞ for some r > 0. Then

E
{
|ξ + η|r

}
≤


2r
(
E
{
|ξ |r

}
+ E

{
|η|r

})
for r > 0

E
{
|ξ |r

}
+ E

{
|η|r

}
for 0 < r ≤ 1

2r−1
(
E
{
|ξ |r

}
+ E

{
|η|r

})
for r ≥ 1

(4.31)

Proof. By the triangle inequality

E
{
|ξ + η|r

}
≤ E

{
(|ξ | + |η|)r

}
and, letting in (4.30) x := |ξ |, y := |η| and taking then the mathematical expectation from
both sides of (4.30) we get (4.31). �

4.1.9 Exponential inequalities

The theorem given below deals with bounded random variables.

Theorem 4.9. (on exponential estimates (Gut, 2005))

1. Suppose that P{|ξ | ≤ b} = 1 for some b > 0, E {ξ} = 0 and var ξ = E{ξ2
} = σ 2. Then

for any t ∈
(
0, b−1

)
and x > 0 the following inequalities hold:

P{ξ > x} ≤ exp
{
−t x + t2σ 2

}
P{|ξ | > x} ≤ 2 exp

{
−t x + t2σ 2

} (4.32)
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2. If ξ1, ξ2, . . . , ξn are independent random variables with

E {ξk} = 0, var ξk = E{ξ2
k } = σ

2
k

and such that P{|ξk | ≤ b} = 1 for all k = 1, . . . , n, then for any t ∈
(
0, b−1

)
, x > 0

and Sn :=
∑n

k=1 ξk:

P{Sn > x} ≤ exp

{
−t x + t2

n∑
k=1

σ 2
k

}

P{|Sn| > x} ≤ 2 exp

{
−t x + t2

n∑
k=1

σ 2
k

} (4.33)

3. If in the previous item 2, in addition, ξ1, ξ2, . . . , ξn are identically distributed
(
σ 2

k = σ
2
)

then

P{Sn > x} ≤ exp
{
−t x + nt2σ 2

}
P{|Sn| > x} ≤ 2 exp

{
−t x + nt2σ 2

} (4.34)

Proof.

1. Applying the inequality (4.5) for g (x) = et x and using the simple estimate (for |x | ≤ 1)

ex
= 1+ x + x2

∞∑
k=2

xk−2

k!
≤ 1+ x + x2

∞∑
k=2

1
k!

= 1+ x + x2 (e − 2) ≤ 1+ x + x2

one has

P{ξ > x} ≤
E
{
etξ
}

et x ≤ e−t x
(

1+ tE {ξ} + t2E
{
ξ2
})

= e−t x
(

1+ t2E
{
ξ2
})
= e−t x

(
1+ t2σ 2

)
Finally, in view of the inequality ex

≥ 1+ x , it follows that

P{ξ > x} ≤ e−t x
(

1+ t2σ 2
)
≤ e−t x et2σ 2

= e−t x+t2σ 2

that proves the first inequality in (4.32). The second inequality follows from the consider-
ation

P{|ξ | > x} = P{(ξ > x) ∩ (ξ ≥ 0) ∪ (ξ < −x) ∩ (ξ < 0)}

≤ P{(ξ > x) ∩ (ξ ≥ 0)} + P{(ξ < −x) ∩ (ξ < 0)}

= 2P{(ξ > x) ∩ (ξ ≥ 0)} ≤ 2P{ξ > x} (4.35)

2. Changing ξ by Sn in (4.32) and taking into account that all ξ1, ξ2, . . . , ξn are indepen-
dent, we derive that var Sn = E{S2

n} =
∑n

k=1 σ
2
k that implies (4.33).

3. The inequalities (4.34) follow from (4.33) if we take σ 2
k = σ

2 (k = 1, . . . , n). �
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4.2 Probability inequalities for maxima of partial sums

4.2.1 Classical Kolmogorov-type inequalities

Theorem 4.10. (the Kolmogorov inequality) Let ξ1, ξ2, . . . , ξn be independent random
variables with

E {ξk} = 0, var ξk = E{ξ2
k } = σ

2
k (4.36)

for all k = 1, . . . , n and

Sk :=

k∑
s=1

ξs (4.37)

be the partial sum. Then for any x > 0

P

{
max

1≤k≤n
|Sk | > x

}
≤ x−2

n∑
k=1

var ξk (4.38)

In particular, if ξ1, ξ2, . . . , ξn are identically distributed then

P

{
max

1≤k≤n
|Sk | > x

}
≤ x−2n var ξ1 (4.39)

Proof. Define the sets

Ak :=

{
ω ∈ � | max

1≤s≤k−1
|Ss | ≤ x, |Sk | > x

}
(k = 1, . . . , n) (4.40)

Notice that{
ω ∈ � | max

1≤k≤n
|Sk | > x

}
=

n⋃
k=1

Ak

Ak

⋂
k 6= j

A j = ∅ (k, j = 1, . . . , n)

So, using disjoining of {Ak}, it follows that

n∑
k=1

var ξk = E{S2
n} ≥ E

{
S2

n

n∑
k=1

χ (Ak)

}
=

n∑
k=1

E
{

S2
nχ (Ak)

}
=

n∑
k=1

E
{[

S2
k + 2Sk (Sn − Sk)+ (Sn − Sk)

2
]
χ (Ak)

}
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≥

n∑
k=1

E
{[

S2
k + 2Sk (Sn − Sk)

]
χ (Ak)

}
=

n∑
k=1

E
{

S2
kχ (Ak)

}
+ 2

n∑
k=1

E {Sk (Sn − Sk) χ (Ak)}

=

n∑
k=1

E
{

S2
kχ (Ak)

}
+ 2

n∑
k=1

E {χ (Ak) Sk} E {(Sn − Sk)}︸ ︷︷ ︸
0

=

n∑
k=1

E
{

S2
kχ (Ak)

}
≥

n∑
k=1

E
{

x2χ (Ak)
}

≥ x2
n∑

k=1

E {χ (Ak)} = x2
n∑

k=1

P{Ak}

= x2P

{
n⋃

k=1

Ak

}
= x2P

{
max

1≤k≤n
|Sk | > x

}
that directly leads to (4.38). The inequality (4.39) is a trivial consequence of (4.38). �

4.2.2 Hájek–Renyi inequality

The following result is a generalization of the Kolmogorov theorem (4.10).

Theorem 4.11. (Hájek and Renyi, 1955) If in the Kolmogorov theorem (4.10) we addi-
tionally consider a set {ck, k = 1, . . . , n} of positive, non-increasing real numbers, then
for any x > 0

P

{
max

1≤k≤n
ck |Sk | > x

}
≤ x−2

n∑
k=1

c2
k var ξk (4.41)

Proof. Notice that for monotonic sequence {ck, k = 1, . . . , n}

max
1≤k≤n

ck |Sk | = max
1≤k≤n

∣∣∣∣∣ n∑
k=1

ckξk

∣∣∣∣∣ = max
1≤k≤n

∣∣∣∣∣ n∑
k=1

ξ̃k

∣∣∣∣∣
where ξ̃k := ckξk . Then (4.41) follows directly from (4.38) being applied to S̃k :=

∑k
r=1 ξ̃r

if we take into account that var ξ̃k = c2
k var ξk . �

4.2.3 Relation of a maxima of partial sum probabilities with a distribution of the last
partial sum

The following results state the relation between tail probabilities and the distribution of
the last partial sum.
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Theorem 4.12. (Lévy, 1937) If ξ1, ξ2, . . . , ξn are independent random variables, then for
any x ∈ R

P

{
max

1≤k≤n
(Sk −med (Sk − Sn)) > x

}
≤ 2P{Sn > x}

P

{
max

1≤k≤n
|Sk −med (Sk − Sn)| > x

}
≤ 2P{|Sn| > x}

(4.42)

where Sk and med (ξ) are defined in (4.37) and (3.22), respectively.

Proof. Define sets

Ak :=

{
max

1≤ j≤k−1

(
S j −med

(
S j − Sn

))
≤ x, Sk −med (Sk − Sn) > x

}
Bk := {Sn − Sk −med (Sn − Sk) ≥ 0}

Notice that {Ak} are disjoint, Ak and Bk (they are independent since they contain no
common summand), P{Bk} ≥ 1/2 and {Sn > x} ⊃

⋃n
k=1{Ak ∩ Bk}. Hence

P{Sn > x} ≥
n∑

k=1

P{Ak ∩ Bk} =

n∑
k=1

P{Ak}P{Bk}

≥

n∑
k=1

P{Ak}
1
2
=

1
2
P

{
n⋃

k=1

Ak

}

=
1
2
P

{
max

1≤k≤n
(Sk −med (Sk − Sn)) > x

}
that proves the first assertion in (4.42). The second one follows by considering the other
tail and addition. �

Corollary 4.6. For the independent random variables ξk (1 ≤ k ≤ n) with symmetric
distributions (that implies med (Sk − Sn) = 0) it follows that

P

{
max

1≤k≤n
Sk > x

}
≤ 2P{Sn > x}

P

{
max

1≤k≤n
|Sk | > x

}
≤ 2P{|Sn| > x}

(4.43)

and also

P{Sk > x} ≤ 2P{Sn > x}

P{|Sk | > x} ≤ 2P{|Sn| > x}
(4.44)

since { max
1≤k≤n

Sk > x} ⊃ {Sk > x} and { max
1≤k≤n

|Sk | > x} ⊃ {|Sk | > x}.
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Another efficient inequality, concerning the same class of estimates, was given by
Kahane (1985) and extended by Hoffman-Jörgensen (1974) and Jain (1975).

Theorem 4.13. (KHJ inequality) For the independent random variables ξk (1 ≤ k ≤ n)
with symmetric distributions and any x, y > 0 it follows that

P{|Sn| > 2x + y} ≤ P

{
max

1≤k≤n
|ξk | > y

}
+ 4 [P{|Sn| > x}]2

≤

n∑
k=1

P{|ξk | > y} + 4 [P{|Sn| > x}]2
(4.45)

Proof. Define ζn := max
1≤k≤n

|ξk | and, as before, define the sets

Ak :=

{
max

1≤ j≤k−1

∣∣S j
∣∣ ≤ x, |Sk | > x

}
, k = 1, . . . , n

which are obviously disjoint. Since {|Sn| > 2x + y} ⊂
⋃n

k=1 Ak , it follows that

P{|Sn| > 2x + y} = P

{
{|Sn| > 2x + y} ∩

{
n⋃

k=1

Ak

}}

=

n∑
k=1

P{{|Sn| > 2x + y} ∩ Ak} (4.46)

By the triangle inequality for any k = 1, . . . , n one has

|Sk | = |Sk−1 + ξk | ≤ |Sk−1| + |ξk | ≤ |Sk−1| + |ξk | + |Sn − Sk |

that on the set {{|Sn| > 2x + y} ∩ Ak} gives

|Sn − Sk | ≥ |Sk | − |Sk−1| − |ξk | > 2x + y − x − ζn = x + y − ζn

The independence of Sn − Sk and Ak implies

P{{|Sn| > 2x + y} ∩ Ak} ≤ P{{|Sn − Sk | > x + y − ζn} ∩ Ak}

= P{{|Sn − Sk | > x + y − ζn} ∩ Ak ∩ {ζn > y}}

+P{{|Sn − Sk | > x + y − ζn} ∩ Ak ∩ {ζn ≤ y}}

≤ P{Ak ∩ {ζn > y}} + P{{|Sn − Sk | > x} ∩ Ak}

= P{Ak ∩ {ζn > y}} + P{|Sn − Sk | > x}P {Ak}

Applying then to the second term in the right-hand side the Lévy inequality (4.44) we
derive

P{{|Sn| > 2x + y} ∩ Ak} ≤ P{Ak ∩ {ζn > y}} + 2P{|Sn| > x}P {Ak}
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Joining this inequality with (4.46) and in view of the Lévy inequality (4.43) yields

P{|Sn| > 2x + y} ≤
n∑

k=1

P{Ak ∩ {ζn > y}} + 2P{|Sn| > x}
n∑

k=1

P {Ak}

= P

{
n⋃

k=1

Ak ∩ {ζn > y}

}
+ 2P{|Sn| > x}P

{
n⋃

k=1

Ak

}

≤ P{ζn > y} + 2P{|Sn| > x}P

{
max

1≤k≤n
|Sk | > x

}
≤ P{ζn > y} + 4 [P{|Sn| > x}]2

The relation (4.45) follows from the last inequality if we take into account which P{ζn >

y} ≤
∑n

k=1 P {|ξk | > y} which completes the proof. �

Corollary 4.7. In particular, for identically distributed ξk (1 ≤ k ≤ n) (when x = y)

P{|Sn| > 3x} ≤ nP{|ξ1| > x} + 4 [P{|Sn| > x}]2 (4.47)

Proof. Taking x = y in (4.45) implies the desired result. �

Corollary 4.8. Under the conditions of Theorem 4.13,

P{|Sn| > 2x + y} ≤ 2P

{
max

1≤k≤n
|ξk | > y

}
+ 8 [P{|Sn| > x}]2

≤ 2
n∑

k=1

P{|ξk | > y} + 8 [P{|Sn| > x}]2
(4.48)

Proof. It follows directly from (4.45) if we again apply the Lévy inequality (4.43) to the
second term. �

Theorem 4.14. (Jain, 1975) Under the conditions of Theorem 4.13 for any integer j ≥ 1

P{|Sn| > 3 j x} ≤ C jP

{
max

1≤k≤n
|ξk | > x

}
+ D j [P{|Sn| > x}]2 j

(4.49)

where C j , D j are positive constants depending only on j . Particularly, for identically
distributed ξk (1 ≤ k ≤ n)

P{|Sn| > 3 j x} ≤ C j nP{|ξ1| > y} + D j [P{|Sn| > x}]2 j
(4.50)

Proof. It follows by induction if we take into account that iterating (4.45) implies (4.50)
with C2 = 9 and D2 = 128. Continuing the same procedure for arbitrary j > 2 proves the
final result. �



Basic probabilistic inequalities 77

The next result is the avoidance of the symmetry assumption.

Theorem 4.15. (Etemadi, 1981) If ξk (1 ≤ k ≤ n) are independent random variables
then for all x > 0

P

{
max

1≤k≤n
|Sk | > 3x

}
≤ 3 max

1≤k≤n
P{|Sk | > x} (4.51)

Proof. The proof follows the ideas of the previous Theorem 4.13. Again, analogously
define the sets

Ak :=

{
max

1≤ j≤k−1

∣∣S j
∣∣ ≤ 3x, |Sk | > 3x

}
, k = 1, . . . , n

As before, Ak are disjoint, but now
⋃n

k=1 Ak = { max
1≤k≤n

|Sk | > 3x}. In view of the fact that

P

{
max

1≤k≤n
|Sk | > 3x

}
= P

{{
max

1≤k≤n
|Sk | > 3x

}
∩ {|Sn| > x}

}
+P

{{
max

1≤k≤n
|Sk | > 3x

}
∩ {|Sn| ≤ x}

}
≤ P{|Sn| > x} +

n∑
k=1

P{Ak ∩ {|Sn − Sk | > 2x}}

≤ P{|Sn| > x} +
n∑

k=1

P{Ak}P{|Sn − Sk | > 2x}

This implies

P

{
max

1≤k≤n
|Sk | > 3x

}
≤ P{|Sn| > x} + max

1≤k≤n
P{{|Sn − Sk | > 2x}}P

{
n⋃

k=1

Ak

}
≤ P{|Sn| > x} + max

1≤k≤n
P{{|Sn − Sk | > 2x}}

≤ P{|Sn| > x} + max
1≤k≤n

(P{{|Sn| > x}} + P{|Sk | > x})

= 2P{|Sn| > x} + max
1≤k≤n

(P{{|Sk | > x}})

≤ 3 max
1≤k≤n

(P{{|Sk | > x}})

which completes the proof. �

The following inequality (see Skorohod, 1956) also seems to be useful.

Theorem 4.16. (the Skorohod–Ottaviany inequality) For independent random vari-
ables ξk (1 ≤ k ≤ n) and for all x, y > 0

P

{
max

1≤k≤n
|Sk | > x + y

}
≤

1
1− β

P{|Sn| > x} (4.52)



78 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

where

β := max
1≤k≤n

P{|Sn − Sk | > y} (4.53)

Proof. Define

Ak :=

{
max

1≤ j≤k−1

∣∣S j
∣∣ ≤ x + y, |Sk | > x + y

}
, k = 1, . . . , n

So, as in the proof above and in view of (4.53) it follows that

P{|Sn| > x} =
n∑

k=1

P{{|Sn| > x} ∩ Ak} +

n∑
k=1

P{{|Sn| > x} ∩ Ac
k}

≥

n∑
k=1

P{{|Sn| > x} ∩ Ak} ≥

n∑
k=1

P{{|Sn − Sk | ≤ y} ∩ Ak}

=

n∑
k=1

P{|Sn − Sk | ≤ y}P{Ak} ≥ (1− β)
n∑

k=1

P{Ak}

= (1− β)P

{
n⋃

k=1

Ak

}
= (1− β)P

{
max

1≤k≤n
|Sk | > x + y

}
that proves (4.52). �

4.2.3.1 Maxima of partial sums for bounded random variables

The next results deal with bounded random variables.

Theorem 4.17. (the ‘joint’ Kolmogorov inequality) Let ξ1, ξ2, . . . , ξn be independent
zero-mean bounded random variables such that

E {ξk} = 0, sup
n
|ξn| ≤ ξ

+ (4.54)

Then

P

{
max

1≤k≤n
|Sk | ≤ x

} n∑
k=1

var ξk ≥
(
x + ξ+

)2 (4.55)

Proof. Let the events {Ak} be defined as in (4.40) and

Bk :=

{
ω ∈ � | max

1≤s≤k
|Ss | ≤ x

}
(k = 1, . . . , n) (4.56)
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Then it is evident that

Ak ∩ Bk = ∅ (k = 1, . . . , n) ,
k⋃

s=1

As = Bc
k , Bk−1 = Bk ∪ Ak−1

Thus

Skχ (Bk−1) =
[
Sk−1 + ξk

]
χ (Bk−1) = Sk

[
χ (Bk)+ χ (Ak−1)

]
and squaring with the following mathematical expectation application gives

E
{
(Skχ (Bk−1))

2
}
= E

{
(Sk−1χ (Bk−1))

2
}
+ E

{
(ξkχ (Bk−1))

2
}

+ 2E {Sk−1ξkχ (Bk−1)}

= E
{

S2
k−1χ (Bk−1)

}
+ E

{
ξ2

k

}
= E

{
S2

k−1χ (Bk−1)
}
+ var ξkP{Bk}

On the other hand,

E
{
(Skχ (Bk−1))

2
}
= E

{
(Sk [χ (Bk)+ χ (Ak)])2

}
= E

{
S2

kχ (Bk)
}
+ E

{
S2

kχ (Ak)
}
+ 2E

{
S2

kχ (Bk) χ (Ak)
}

= E
{

S2
kχ (Bk)

}
+ E

{
S2

kχ (Ak)
}

= E
{

S2
kχ (Bk)

}
+ E

{[
Sk−1 + ξk

]2
χ (Ak)

}
≤ E

{
S2

kχ (Bk)
}
+
(
x + ξ+

)2
P{Ak}

Joining these inequalities implies, and taking into account that Bk ⊃ Bn (or equivalently,
P{Bk} ≥ P{Bk}),

E
{

S2
k−1χ (Bk−1)

}
+ var ξkP{Bk} ≤ E

{
S2

kχ (Bk)
}
+
(
x + ξ+

)2
P{Ak}

and

var ξkP{Bn} ≤ var ξkP{Bk} ≤ E
{

S2
kχ (Bk)

}
− E

{
S2

k−1χ (Bk−1)
}
+
(
x + ξ+

)2
P{Ak}

that after summation leads to the following relation (here B0 = ∅):

P{Bn}

n∑
k=1

var ξk ≤ E
{

S2
nχ (Bn)

}
+
(
x + ξ+

)2 n∑
k=1

P{Ak}

≤ E
{

S2
nχ (Bn)

}
+
(
x + ξ+

)2
P

{
n⋃

k=1

Ak

}
≤ x2P{Bn} +

(
x + ξ+

)2
P{Bc

n}
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= x2P{Bn} +
(
x + ξ+

)2
(1− P{Bn})

=
(
x + ξ+

)2
−
(
x + ξ+

)2
P{Bn}

[
1−

x2(
x + ξ+

)2
]
≤
(
x + ξ+

)2
that gives (4.55). �

Corollary 4.9. Under the assumptions of Theorem 4.17 and when

n∑
k=1

var ξk > 0 (4.57)

it follows that

P

{
max

1≤k≤n
|Sk | > x

}
≥ 1−

(
x + ξ+

)2∑n
k=1 var ξk

(4.58)

Corollary 4.10. If ξ1, ξ2, . . . , ξn are independent with non zero-mean bounded random
variables such that

E {ξk} 6= 0, sup
n
|ξn| ≤ ξ

+ (4.59)

and when (4.57) holds, one has

P

{
max

1≤k≤n
|Sk − E {Sk}| > x

}
≥ 1−

(
x + 2ξ+

)2∑n
k=1 var ξk

(4.60)

Proof. The result follows from (4.58) if we take into account that |Sk − E {Sk}| ≤ 2ξ+. �

4.3 Inequalities between moments of sums and summands

The inequality below suggests a relation between quantities of the order p in the sense
that it states an upper bound for the p-moment of a sum through the p-moments of its
summands.

Theorem 4.18. (Gut, 2005) Let p ≥ 1 and ξ1, ξ2, . . . , ξn be independent random
variables such that E

{
|ξk |

p} < ∞ for all k = 1, . . . , n. Then the following inequality
for the summand Sn :=

∑n
k=1 ξk holds:

E
{
|Sn|

p}
≤ max

{
2p

n∑
k=1

E
{
|ξk |

p} , 2p2

(
n∑

k=1

E {|ξk |}

)p}
(4.61)
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Proof. Letting

S̄n :=

n∑
k=1

|ξk | , S( j)
n :=

n∑
k=1,k 6= j

ξk

E
{
|Sn|

p}
≤ E

{
S̄ p

n
}
= E

{
S̄ p−1

n

n∑
k=1

|ξk |

}
=

n∑
k=1

E
{

S̄ p−1
n |ξk |

}
≤ 2p−1

n∑
k=1

E
{(

S̄ p−1
n + |ξk |

p−1
)
|ξk |

}
= 2p−1

n∑
k=1

(
E
{

S̄ p−1
n

}
E {|ξk |} + E

{
|ξk |

p})
= 2p−1

(
n∑

k=1

[
E
{
|ξk |

p}
+ E

{
S̄ p−1

n

}] n∑
k=1

E {|ξk |}

)

≤ 2p−1

(
n∑

k=1

E
{
|ξk |

p}
+
[
E
{

S̄ p
n
}](p−1)/p

n∑
k=1

E {|ξk |}

)

≤ 2p max

{
n∑

k=1

E
{
|ξk |

p} , [E {S̄ p
n
}](p−1)/p

n∑
k=1

E {|ξk |}

}

Thus

E
{∣∣S̄n

∣∣p
}
≤ 2p

n∑
k=1

E
{
|ξk |

p}
and

E
{∣∣S̄n

∣∣p
}
≤ 2p

[
E
{(

S̄n
)p
}](p−1)/p n∑

k=1

E {|ξk |}

or equivalently(
E
{∣∣S̄n

∣∣p
})1−(p−1)/p

=

(
E
{∣∣S̄n

∣∣p
})1/p

≤ 2p
n∑

k=1

E {|ξk |}

that completes the proof. �
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The method of characteristic functions is one of the tools in analytical probabilistic the-
ory. Adding of independent variables is a frequent component of probabilistic calculations.
Mathematically this corresponds to convolving functions. Analogous to the deterministic
analysis, where the Laplace or Fourier transformations transform convolution into multi-
plication, the method of characteristic functions converts adding of independent variables
into multiplications of transforms. Below it will be shown that the so-called continuity
property permits us to determine limits of distributions based on limits of transforms. This
will appear clearly in the proof of the central limit theorem which, in some sense, general-
izes the De Moivre–Laplace theorem used frequently in complex analysis. The material of
this chapter follows Shiryayev (1984) and Gut (2005).

5.1 Definitions and examples

Here we will use complex numbers where x̄ := u − iv is the complex conjugate to the
complex numbers x = u + iv, and |x |2 = u2

+ v2.

Definition 5.1.

1. Let F = F (x1, x2 . . . , xn) be an n-dimensional distribution function in (Rn,B(Rn))

(2.3). Its characteristic function ϕ : Rn
→ C is defined by

ϕ (t) :=
∫
Rn

ei(t,x)d F (x) (5.1)

2. If ξ = (ξ1, ξ2, . . . , ξn) is a random vector defined on the probability space (�,F ,P)
with values in Rn , then its characteristic function ϕξ : Rn

→ C is

ϕξ (t) :=
∫
Rn

ei(t,x)d Fξ (x) = E{ei(t,ξ)
} (5.2)

83
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where Fξ (x) = Fξ (x1, x2 . . . , xn) is the distribution function of the random vector
ξ = (ξ1, ξ2, . . . , ξn).

Remark 5.1. If Fξ (x) has the density fξ (x), namely, if d Fξ (x) = fξ (x) dx, then

ϕξ (t) :=
∫
Rn

ei(t,x) fξ (x) dx (5.3)

that is, in this case the characteristic function ϕξ (t) is just the Fourier transform (with a
minus sign in the exponent and a factor 1/

√
2π ) of the density function fξ (x).

5.1.1 Some examples of characteristic functions

5.1.1.1 Bernoulli random variable

Let ξ be a Bernoulli random variable taking two values: 0 and 1. The characteristics of
this random variable are as follows:

P {ξ = 1} = p > 0, P {ξ = 0} = q, p + q = 1 (5.4)

Proposition 5.1. For the Bernoulli random variable ξ satisfying (5.4)

ϕξ (t) = pei t
+ q (5.5)

Proof. It follows directly from Definition (5.2). Indeed,

ϕξ (t) = E{ei tξ
}

= ei tξ
|ξ=1 P {ξ = 1} + ei tξ

|ξ=0 P {ξ = 0} = pei t
+ q �

5.1.1.2 Gaussian random variable

Proposition 5.2.

1. If ξ is a normalized Gaussian scalar random variable, i.e., ξ ∼ N (0, 1) having
E{ξ} = 0 and E{ξ2

} = 1, then

ϕξ (t) = e−t2/2 (5.6)

2. If η is a Gaussian scalar random variable, i.e., η ∼ N
(
m, σ 2

) (
|m| <∞, σ 2 > 0

)
having E{η} = m and E{(η − m)2} = σ 2, then

ϕη (t) = ei tmϕξ (σ t) = ei tm−t2σ 2/2 (5.7)
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3. If ξ is a normalized Gaussian random vector, i.e., ξ ∼ N (0, I) having E{ξ} = 0 and
E{ξξᵀ} = I := diag (1, 1, . . . , 1) ∈ Rn×n , then

ϕξ (t) = e−‖t‖
2/2, t ∈ Rn (5.8)

4. If η is a Gaussian random vector, i.e., η ∼ N (m,R) having E{η} = 0 and
E{(η − m) (η − m)ᵀ} = R = Rᵀ > 0 ∈ Rn×n , then

ϕη (t) = ei(t,m)ϕξ

(
R1/2t

)
= ei(t,m)−(t,Rt)/2, t ∈ Rn (5.9)

Proof.

1. From (5.3) for

fξ (x) =
1
√

2π
e−x2/2

it follows that

ϕξ (t) :=
1
√

2π

∫
R

ei t x e−x2/2dx

=
1
√

2π

∫
R

∞∑
k=0

(i t x)k

k!
e−x2/2dx =

∞∑
k=0

(i t)k

k!

1
√

2π

∫
R

xke−x2/2dx

Since

1
√

2π

∫
R

xke−x2/2dx =


0 if k = 2l − 1, (l = 1, 2, . . .)
(2l)!

l!
if k = 2l, (l = 1, 2, . . .)

1 if k = 0

one has

ϕξ (t) =
∞∑

l=0

(i t)2l

(2l)!

1
√

2π

∫
R

x2le−x2/2dx =
∞∑

l=0

(
−t2)l
(2l)!

1
√

2π

∫
R

x2le−x2/2dx

=

∞∑
l=0

(
−t2/2

)l
l!

(
l!

(2l)!

)
1
√

2π

∫
R

x2le−x2/2dx =
∞∑

l=0

(
−

t2

2

)l
1
l!
= e−t2/2
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2. Define ξ := (η − m) /σ . It is evident that ξ ∼ N (0, 1), since

E{ξ} =
1
σ

E{η − m} =
m − m

σ
= 0

E{ξ2
} =

1

σ 2 E{(η − m)2} =
σ 2

σ 2 = 1

Hence

ϕη (t) = E{ei tη
} = E{ei t(σξ+m)

} = ei tmϕξ (σ t) = ei tm−t2σ 2/2

3. For

fξ (x) =
1

(2π)n/2
e−‖x‖

2/2, x ∈ Rn

it follows that

ϕξ (t) =
∫
Rn

ei(t,x) fξ (x) dx =
∫
Rn

ei(t,x) 1

(2π)n/2
e−‖x‖

2/2dx

=
1

(2π)n/2

∫
Rn

exp

(
i

n∑
k=1

tk xk

)
exp

(
−

n∑
k=1

x2
k /2

)
dx

=
1

(2π)n/2

∫
Rn

exp

(
i

n∑
k=1

tk xk −

n∑
k=1

x2
k /2

)
dx

=

∫
Rn

n∏
k=1

1
√

2π
exp

(
i tk xk − x2

k /2
)

dx1 · · · dxk

=

n∏
k=1

ϕξ (tk) =
n∏

k=1

e−t2
k /2 = exp

(
−

n∑
k=1

t2
k /2

)
= e−‖t‖

2/2

4. If x ∈ Rn and

fξ (x) =
1

(2π)n/2 (det R)1/2
exp

{
−

1
2
(x −m)ᵀR−1 (x −m)

}
then

ξ := R−1/2 (η −m) ∼ N (0, I)

since

E{ξ} = R−1/2E{η −m} = R−1/2 (m−m) = 0

E{ξξᵀ} = R−1/2E{(η −m) (η −m)ᵀ}R−1/2

= R−1/2RR−1/2
= I
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and therefore

ϕη (t) = E{ei(t,η)
} = E{ei

(
t,
(
R1/2ξ+m

))
}

= ei(t,m)E{ei
(
R1/2t,ξ

)
} = ei(t,m)ϕξ

(
R1/2t

)
= ei(t,m)−(t,Rt)/2

Proposition is proven. �

5.1.1.3 Poisson random variable

For a Poisson random variable ξ

P {ξ = k} =
e−λλk

k!
, k = 0, 1, . . . (5.10)

the following formula holds.

Proposition 5.3. For a Poisson random variable ξ satisfying (5.10) it follows that

ϕξ (t) = exp
{
λ
(

ei t
− 1

)}
(5.11)

Proof. The direct calculation implies

ϕξ (t) = E{ei tξ
} =

∞∑
k=0

ei tk e−λλk

k!

= e−λ
∞∑

k=0

(
λei t

)k
k!

= exp
{
λ
(

ei t
− 1

)}
�

The characteristic functions for other random variables can be found in Chapter 4 of Gut
(2005).

5.1.2 A linear transformed random vector and the sum of independent random vectors

5.1.2.1 A linear transformed random vector

Lemma 5.1. If ξ = (ξ1, ξ2, . . . , ξn) is a random vector defined on the probability space
(�,F ,P) with values in Rn , then the characteristic function ϕη : Rn

→ C of the random
vector

η = Aξ + b

A ∈ Rm×n, b ∈ Rm
(5.12)

is

ϕη (t) := ei(t,b)ϕξ
(

Aᵀt
)

(5.13)
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where Fξ (x) = Fξ (x1, x2 . . . , xn) is the distribution function of the random vector
ξ = (ξ1, ξ2, . . . , ξn).

Proof. It follows from the relations

ϕη (t) :=
∫
Rn

ei(t,x)d Fη (x) = E{ei(t,η)
}

= E{ei(t,Aξ+b)
} = ei(t,b)E{ei(Aᵀt,ξ)

} = ei(t,b)ϕξ
(

Aᵀt
)

�

5.1.2.2 The sum of independent random vectors

Lemma 5.2. (on multiplication) If ξ1, ξ2, . . . , ξn are independent random vectors defined

on the probability space (�,F ,P) with values in Rn , and Sn :=
n∑

k=1
ξk is their partial sum,

then the characteristic function ϕSn : Rn
→ C of the random vector Sn is

ϕSn (t) =
n∏

k=1

ϕξk (t) (5.14)

Proof. It is trivial since

ϕSn (t) := E{ei(t,Sn)} = E

{
exp

{
i

(
t,

n∑
k=1

ξk

)}}

= E

{
n∏

k=1

exp {i (t, ξk)}

}
=

n∏
k=1

E{exp {i (t, ξk)}} =

n∏
k=1

ϕξk (t) �

5.2 Basic properties of characteristic functions

5.2.1 Simple properties

Several simple properties of the characteristic function ϕξ (t) (5.2) are presented below.

Lemma 5.3. Let ξ = (ξ1, ξ2, . . . , ξn) be a random vector defined on the probability space
(�,F,P) with values in Rn . Then

(a) ∣∣ϕξ (t)∣∣ ≤ ϕξ (0) = 1 (5.15)

(b)

ϕξ (t) = ϕξ (−t) = ϕ−ξ (t) (5.16)

(c) ϕξ (t) is uniformly continuous on Rn .
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(d) ϕξ (t) is real-valued in the case n = 1 if and only if Fξ (x) is symmetric, namely,∫
B

d Fξ (x) =
∫
−B

d Fξ (x) (5.17)

where B ∈ B(R) and −B := {−x : x ∈ B}.

Proof.

(a) The first fact is obvious since

∣∣ϕξ (t)∣∣ =
∣∣∣∣∣∣
∫
Rn

ei(t,x)d Fξ (x)

∣∣∣∣∣∣ ≤
∫
Rn

∣∣∣ei(t,x)
∣∣∣ d Fξ (x)

=

∫
Rn

1d Fξ (x) =
∫
Rn

∣∣∣ei(0,x)
∣∣∣ d Fξ (x) = 1

(b) The second property results from the identities

ϕξ (t) =
∫
Rn

e−i(t,x)d Fξ (x) =
∫
Rn

ei(−t,x)d Fξ (x)

= ϕξ (−t) =
∫
Rn

ei(t,−x)d Fξ (x) = ϕ−ξ (t)

(c) As for the third property, notice that for all h ∈ Rn

∣∣ϕξ (t + h)− ϕξ (t)
∣∣ =

∣∣∣∣∣∣
∫
Rn

ei(t,x)
[
ei(h,x)

− 1
]

d Fξ (x)

∣∣∣∣∣∣
≤

∫
Rn

∣∣∣ei(t,x)
∣∣∣ ∣∣∣ei(h,x)

− 1
∣∣∣ d Fξ (x) ≤

∫
Rn

∣∣∣ei(h,x)
− 1

∣∣∣ d Fξ (x)

≤

∫
Rn

∣∣∣ei(h,x)
− 1

∣∣∣χ (‖x‖ ≤ a) d Fξ (x)

+

∫
Rn

∣∣∣ei(h,x)
− 1

∣∣∣χ (‖x‖ > a) d Fξ (x)

Since by the Euler formula∣∣∣ei z
− 1

∣∣∣ = √(cos z − 1)2 + sin2 z

=

√
2 (1− cos z) =

√
4 sin2 z

2
= 2

∣∣∣sin
z

2

∣∣∣ ≤ min (2, |z|) (5.18)
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then for any a > 0 it follows that∣∣ϕξ (t + h)− ϕξ (t)
∣∣ ≤ ∫

Rn

∣∣∣ei(h,x)
− 1

∣∣∣χ (‖x‖ ≤ a) d Fξ (x)

+

∫
Rn

∣∣∣ei(h,x)-1
∣∣∣χ (‖x‖ > a) d Fξ (x) ≤

∫
Rn

|(h, x)|χ (‖x‖ ≤ a) d Fξ (x)

2
∫
Rn

χ (‖x‖ > a) d Fξ (x) ≤ ‖h‖ a + 2P {‖x‖ > a}

Taking then a so large that 2P {‖x‖ > a} ≤ ε/2 and h so small that ‖h‖ a ≤ ε/2
we state that

∣∣ϕξ (t + h)− ϕξ (t)
∣∣ ≤ ε independently on t which means exactly the

uniform continuity.
(d) Let Fξ (x) be symmetric. Then for a bounded and odd Borel function g (x) it follows

that
∫
R

g (x) d Fξ (x) = 0. As a result,
∫

Rn
sin (t x) d Fξ (x) = 0, and hence, ϕξ (t) =

E{cos (t, ξ)} is real. Conversely, if ϕξ (t) is a real function, then by (5.16)

ϕ−ξ (t) = ϕξ (−t) = ϕξ (t) = ϕξ (t)

Therefore, Fξ (x) and F−ξ (x) are the same, and for each B ∈ B(R)

P {ξ ∈ B} = P {−ξ ∈ B} = P {ξ ∈ −B}

that proves the result. �

5.2.2 Relations with moments

The next lemma describes not so trivial properties of characteristic functions stating the
relation between the derivatives of ϕξ (t) (n = 1) and the moments E{ξ k

} of the random
variable ξ .

Lemma 5.4. (Shiryayev, 1984) If ξ is a random variable defined on the probability space
(�,F ,P) with values in R and ϕξ (t) = E{ei tξ

} its characteristic function, then

(a) If E{|ξ |n} <∞ for some integer n ≥ 1, then ϕ(r)ξ (t) exists for every r ≤ n and

ϕ
(r)
ξ (t) =

∫
R

(i x)r ei t x d Fξ (x) (5.19)

ϕ
(r)
ξ (0) = irE{ξ r

} (5.20)

ϕξ (t) =
n∑

r=0

(i t)r

r !
E{ξ r
} +

(i t)n

n!
On (t) (5.21)

where |On (t)| ≤ 3E{|ξ |n} and On (t)→ 0 whenever t → 0.
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(b) If ϕ(2n)
ξ (0) exists (finite) then E{ξ2n

} <∞.

(c) If E{|ξ |n} <∞ for all integer n ≥ 1 and

R−1
:= lim sup
n→∞

n−1 (E{|ξ |n})1/n
<∞ (5.22)

then

ϕξ (t) =
∞∑

n=0

(i t)n

n!
E{ξn
} (5.23)

for all t : |t | < R.

Proof.

(a) If E{|ξ |n} < ∞, then by the Lyapunov inequality (4.23) it follows that E{|ξ |r } < ∞
for all integer positive r < n. Since

ϕξ (t + h)− ϕξ (t)

h
= E

{
ei tξ

(
ei tξ
− 1

h

)}
and in view of the inequality (5.18) for z := i x providing the estimate∣∣eihx

− 1
∣∣

h
≤ |x |

it follows that lim
t→0

E

{
ei tξ

(
ei tξ
− 1

h

)}
exists and it is equal to

lim
t→0

E

{
ei tξ

(
ei tξ
− 1

h

)}
= iE{ξei tξ

} = i
∫
R

xei t x d Fξ (x)

Hence, ϕ′ξ (t) exists and

ϕ′ξ (t) = i
∫
R

xei t x d Fξ (x) = iE{ξei tξ
}

The existence of ϕ(r)ξ (t) for r ≥ 2 follows by induction. The formula (5.20) follows
directly from (5.19). To establish (5.21) notice that

eiy
= cos y + i sin y =

n−1∑
k=1

(iy)k

k!
+
(iy)n

n!
[cos (θ1 y)+ i sin (θ2 y)]
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for real y ∈ R and |θi | ≤ 1 (i = 1, 2). Letting in this formula y := tξ one has

ei tξ
=

n−1∑
k=1

(i tξ)k

k!
+
(i tξ)n

n!
[cos (θ1 (ω) tξ)+ i sin (θ2 (ω) tξ)]

E
{

ei tξ
}
=

n−1∑
k=1

(i t)k

k!
E{ξ k
} +

(i t)n

n!
E{ξn
} + On (t)

where

On (t) :=
(i t)n

n!
E{ξn [cos (θ1 (ω) tξ)+ i sin (θ2 (ω) tξ)− 1]}

Evidently |On (t)| ≤ 3E{|ξ |n} and On (t)→ 0 when t → 0.
(b) This property also can be proven by induction. Suppose that ϕ′′ξ (0) exist (finite). Show

that E{ξ2
} < ∞. By the L’Hôpital rule and by the Fatou lemma (Lemma 16.4 in

Poznyak (2008)) it follows that

ϕ′′ξ (0) = lim
h→0

1
2

[
ϕ′ξ (2h)− ϕ′ξ (0)

2h
+
ϕ′ξ (0)− ϕ

′
ξ (−2h)

2h

]

= lim
h→0

2ϕ′ξ (2h)− 2ϕ′ξ (−2h)

8h
= lim

h→0

ϕξ (2h)− 2ϕξ (0)+ ϕξ (−2h)

4h2

= lim
t→0

∫
R

(
eihx
− e−ihx

2h

)2

d Fξ (x) = −lim
t→0

∫
R

(
sin (hx)

hx

)2

x2d Fξ (x)

≤ −

∫
R

lim
h→0

(
sin (hx)

hx

)2

x2d Fξ (x) = −
∫
R

x2d Fξ (x) = −E{ξ2
}

which implies E{ξ2
} ≤ ϕ′′ξ (0) <∞. Let now ϕ

(2k+2)
ξ (0) exists and E{ξ2k

} <∞. If

E{ξ2k
} =

∫
R

x2kd Fξ (x) = 0

then obviously
∫
R

x2k+2d Fξ (x) = 0. So we may suppose that
∫
R

x2kd Fξ (x) > 0. Then

by (5.19)

ϕ
(2k)
ξ (t) =

∫
R

(i x)2k ei t x d Fξ (x)

and hence

(−1)k ϕ(2k)
ξ (t) =

∫
R

ei t x dGξ (x)
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with Gξ (x) =
x∫
−∞

u2kd Fξ (x). This means that the function (−1)k ϕ(2k)
ξ (t)G−1

ξ (∞)

is the characteristic function of the probability distribution Gξ (x)G−1
ξ (∞), and

moreover, we have proved that

G−1
ξ (∞)

∫
R

x2dGξ (x) <∞

But since G−1
ξ (∞) > 0 we have∫

R

x2k+2d Fξ (x) =
∫
R

x2dGξ (x) <∞

that proves this item.

(c) Let t0 ∈ (0, R). Then by the assumption

lim sup
n→∞

n−1 (E{|ξ |n})1/n
< t−1

0

or equivalently,

lim sup
n→∞

n−1 (E{|ξ |n tn
0 }
)1/n

< 1

Hence, by Stirling’s formula (see the details in Khan (1974))

lim
n→∞

(n

e

)n√
2πn

n!
= 1

it follows that

lim
n→∞

(
E{|ξ |n tn

0 }

n!

)1/n

< 1

Therefore, by the Cauchy test (see Criterion 16.1 in Poznyak (2008)) the series
∞∑

r=0

E{|ξ |r tr
0 }

r !
converges, which means that the series

∞∑
r=0

(i t)r
E{ξ r
}

r !
converges too.

But by (5.21)

ϕξ (t) =
n∑

r=0

(i t)r

r !
E{ξ r
} + Dn (t)

where Dn (t) :=
(i t)n

n!
On (t) , |Dn (t)| ≤ 3

|t |n

n!
E{|ξ |n}. Therefore (5.23) holds for all

|t | < R which completes the proof. �
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5.3 Uniqueness and inversion

5.3.1 Uniqueness

Here we will show that the characteristic function is uniquely determined by the
distribution function. The proof will be done for a single-dimensional case.

Theorem 5.1. (on uniqueness) Let F and G be distribution functions with the same
characteristic function, i.e.,

ϕ (t) =
∫
R

ei(t,x)d F (x) =
∫
R

ei(t,x)dG (x) (5.24)

for all t ∈ Rn . Then

F (x) = G (x) (5.25)

Proof. From (5.24) it follows∫
R

ei t x d M (x) = 0, M (x) := F (x)− G (x)

Suppose that there exists x0 ∈ R such that M (x0) 6= 0. If x0 is a unique isolated point,
then

0 =
∫
R

ei t x d M (x) = ei t x0

that never can be fulfilled since
∣∣ei(t,x0)

∣∣ = 1. If x0 is a point of continuity, then suppose
that there exists a small neighborhood �ε := {x : ‖x − x0‖ ≤ ε} such that M (x) 6= 0
(for example, M (x) > 0) for all x ∈ �ε and

∫
�ε

d M (x) 6= 0. Then, by the generalized

mean-value theorem (see, for example, Poznyak (2008))

0 =
∫
R

ei t x d M (x) =
∫
R

[cos (t x)+ i sin (t x)] d M (x)

= cos
(
t x ′0
) ∫
�ε

d M (x)+ i sin
(
t x ′′0

) ∫
�ε

d M (x)

=
[
cos

(
t x ′0
)
+ i sin

(
t x ′′0

)] ∫
�ε

d M (x)

that implies cos
(
t x ′0
)
+ i sin

(
t x ′′0

)
= 0 for all t ∈ R, which is impossible (even x ′0 6= x ′′0 ).

The proof is complete. �
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5.3.2 Inversion formula

The previous theorem declares that a distribution function F = F(x) is uniquely
determined by its characteristic function ϕ = ϕ (t). It is an existence result only. Here
we will present the theorem which gives a representation of F in terms of ϕ and provides
a formula for explicitly computing the distribution F based on ϕ.

Theorem 5.2. (the general inverse theorem (Gut, 2005)) Let ξ ∈ R be a random vari-
able with the distribution function Fξ (x) and the characteristic function ϕξ (t). Then for
all a < b

(a)

Fξ (b)− Fξ (a)+
1
2
P{ξ = a} −

1
2
P{ξ = b}

= lim
T→∞

1
2π

T∫
−T

e−i tb
− e−i ta

(−i t)
ϕξ (t) dt

(5.26)

(b) In particular, if a and b are both the points of continuity of Fξ (x), then

Fξ (b)− Fξ (a) = lim
T→∞

1
2π

T∫
−T

e−i tb
− e−i ta

(−i t)
ϕξ (t) dt (5.27)

(c) If
∫
R

∣∣ϕξ (t)∣∣ dt < ∞, and the distribution function Fξ (x) has the density fξ (x), i.e.,

Fξ (x) =
x∫
−∞

fξ (y)dy is absolutely continuous, then

fξ (x) =
1

2π

∫
R

e−i t xϕξ (t) dt (5.28)

(d) If the distribution Fξ (x) has point masses concentrated in the points ai with P{ξ =
ai } (i = 1, 2, . . .), then they can be recovered as follows:

P{ξ = ai } = lim
T→∞

1
2π

T∫
−T

e−i taiϕξ (t) dt (5.29)
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Proof.

(a) Again, using the inequality (5.18) for z = −t (b − a), we have

∣∣∣∣e−i tb
− e−i ta

t

∣∣∣∣ = ∣∣∣e−i ta
∣∣∣ ∣∣∣∣e−i t(b−a) − 1

t

∣∣∣∣
=

∣∣∣∣e−i t(b−a) − 1
t

∣∣∣∣ ≤ b − a

and hence,∣∣∣∣∣∣
T∫
−T

e−i tb
− e−i ta

t
ϕξ (t) dt

∣∣∣∣∣∣ =
T∫
−T

∣∣∣∣e−i tb
− e−i ta

t

∣∣∣∣ ∣∣ϕξ (t)∣∣ dt

≤

T∫
−T

∣∣∣∣e−i tb
− e−i ta

t

∣∣∣∣ 1dt ≤ 2T (b − a)

that shows that the integral in the right-hand side of (5.26) exists. Applying Fubini’s
theorem, the Euler formula (see both, for example, in Poznyak (2008)) and symmetry,
we obtain

1
2π

T∫
−T

e−i tb
− e−i ta

(−i t)
ϕξ (t) dt =

1
2π

T∫
−T

e−i tb
− e−i ta

(−i t)

 ∞∫
−∞

ei t x d Fξ (x)

 dt

=
1
π

∞∫
−∞

 T∫
−T

e−i t(x−a) − e−i t(x−b)

2i t
dt

 d Fξ (x)

=
1
π

∞∫
−∞

 T∫
−T

[
sin t (x − a)

t
−

sin t (x − b)

t

]
dt

 d Fξ (x)

=
1
π

∞∫
−∞

H (a, b, t, x, T ) d Fξ (x)

where H (a, b, t, x, T ) is the inner integral. Taking into account that

T∫
0

sin x

x
dx


π∫
0

sin x

x
dx ≤ π for all T > 0

→
π

2
as T →∞
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it follows that

lim
T→∞

H (a, b, t, x, T ) =



0 if x < a
π

2
if x = a

π if a < x < b
π

2
if x = b

0 if x > b

So, by the dominating convergence theorem (see Theorem 16.21 in Poznyak (2008))

lim
T→∞

1
2π

T∫
−T

e−i tb
− e−i ta

(−i t)
ϕξ (t) dt =

1
π

∞∫
−∞

lim
T→∞

H (a, b, t, x, T ) d Fξ (x)

=
1
2
P{ξ = a} + P{a < ξ < b} +

1
2
P{ξ = b}

which proves (5.26).
(b) If a and b both are the points of continuity of Fξ (x) then P{ξ = a} = P{ξ = b} = 0

that in view of (5.26) proves (5.27).
(c) Letting in (5.27) a = x and b = x + h (h > 0) we get

Fξ (x + h)− Fξ (x)+
1
2
P{ξ = x} −

1
2
P{ξ = x + h}

≤ lim
T→∞

1
2π

T∫
−T

∣∣∣∣e−i tb
− e−i ta

(−i t)

∣∣∣∣ ∣∣ϕξ (t)∣∣ dt

≤ lim
T→∞

1
2π

T∫
−T

h
∣∣ϕξ (t)∣∣ dt ≤

h

2π

∞∫
−∞

∣∣ϕξ (t)∣∣ dt = O (h) →
h→0

0

that leads to the relation

F (x + h)− F (x)

h
=

1
2π

∞∫
−∞

e−i t(x+h) − e−i t x

(−i th)
ϕξ (t) dt

=
1

2π

∞∫
−∞

e−i t x 1− e−i th

(i th)
ϕξ (t) dt

Letting h→ 0 and observing that
1− e−i th

(i th)
→ 1 we obtain (5.28).

(d) By proceeding along the lines of the item (a) we have

1
2T

T∫
−T

e−i taiϕξ (t) dt =
1

2T

T∫
−T

e−i tai

 ∞∫
−∞

ei t x d F (x)

 dt
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=
1

2T

∞∫
−∞

 T∫
−T

ei t(x−ai )dt

 d F (x)

=
1

2T

∞∫
−∞

 T∫
−T

[cos t (x − ai )+ i sin t (x − ai )] dt

 d F (x)

=
1
T

∞∫
−∞

(
sin T (x − ai )

(x − ai )
+ 0

)
d F (x)

=

∫
R/a

sin T (x − ai )

T (x − ai )
d F (x)+ 1 · P{ξ = ai } →

T→∞
P{ξ = ai }

Theorem is proven. �

5.3.3 Parseval’s-type relation

Lemma 5.5. (on the Parseval’s-type relation (Gut, 2005)) Let ξ and η be random vari-
ables with the distributions Fξ (x) and Fη (x) having the characteristic functions ϕξ (x)
and ϕη (x), respectively. Then

1.

∞∫
−∞

e−iyuϕξ (y) d Fη (y) =

∞∫
−∞

ϕη (x − u) d Fξ (x) (5.30)

2.

∞∫
−∞

ϕξ (y) d Fη (y) =

∞∫
−∞

ϕη (x) d Fξ (x) (5.31)

Proof. Multiplying both sides of the relation ϕξ (y) =
∞∫
−∞

ei xyd Fξ (x) by e−iyu and

integrating with respect to Fη (y), and applying Fubini’s theorem yields

∞∫
−∞

e−iyuϕξ (y) d Fη (y) =

∞∫
−∞

e−iyu

 ∞∫
−∞

ei xyd Fξ (x)

 d Fη (y)

=

∞∫
−∞

 ∞∫
−∞

ei x(y−u)d Fη (y)

 Fξ (x) =

∞∫
−∞

ϕη (x − u) d Fξ (x)
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that proves (5.30). The formula (5.31) follows from (5.30) if we take u = 0. Lemma is
proven. �

Remark 5.2. The usefulness of the relation (5.31) is related to the idea to join two
distributions: if the left-hand side is a ‘difficult’ integral for calculation, then the right-
hand side is an ‘easy’ integral.
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6 Random Sequences

Contents
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This chapter introduces the main definitions and discusses the main properties of random
sequences which, in the engineering language, are, in fact, discrete-time random processes.
Two concepts will be discussed below: the first concept tackles the properties of infinitely
often events and is also closely connected with the convergence concept, and the second one
is based on some properties of the Lebesgue integral with respect to a probabilistic measure
and is related to the possibility to take limits under the sign of ‘mathematical expectation’.
Finally, we will discuss various modes of convergence of sequences of random variables
and relate them into a hierarchical scheme.

6.1 Random process in discrete and continuous time

Definition 6.1. Let T ⊆ R be a subset of the real line R. A set of random variables

{ξt (ω) , t ∈ T }

defined on a probability space (�,F ,P) for any fixed t ∈ T is called a random process
with time domain T . If

(a) T = {. . . , 0, 1, 2, . . .}, then we call the collection

{. . . , ξ0 (ω) , ξ1 (ω) , ξ2 (ω) , . . .}

a random sequence, or a discrete-time random process;
(b) T = (−∞,∞) or T ∈ [a, b] (−∞ < a < b <∞), then we call

ξt (ω) , t ∈ T

a random function, or a continuous-time random process.

Possible realizations (corresponding different trajectories ω1 and ω2 both from �) of
random discrete-time and continuous-time processes are shown in Fig. 6.1.

In this part of the book we will consider only discrete-time processes. Continuous-time
processes generated by stochastic differential equations will be considered in the next part.

103
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–3 –2 –1 1 2 3a b
0

3( 2)ξ ω

–3( 1)ξ ω

t( 2)ξ ω

t( 1)ξ ω
t

Fig. 6.1. Realizations of a continuous and discrete time process.

6.2 Infinitely often events

6.2.1 Main definition

Recall here the definitions (1.13) of the sets A∗ and A∗:

A∗ = lim inf
n→∞

An :=

∞⋃
n=1

∞⋂
m=n

Am, A∗ = lim sup
n→∞

An :=

∞⋂
n=1

∞⋃
m=n

Am

where {An, n ≥ 1} are a sequence of subsets from �.

Remark 6.1.

(a) Directly from the definition (1.13) it follows that if ω ∈ A∗ then ω ∈
∞⋂

m=n
Am for some

n, that is, there exists n such that ω ∈ Am for all m ≥ n. In particular, if An is an event
when something special occurs at time n, then lim inf

n→∞
Ac

n is the event that starting from

some n this special property never occurs.

(b) Similarly, if ω ∈ A∗, then ω ∈
∞⋃

m=n
Am for every n. This means that no matter how

large n is, there is always some m ≥ n such that ω ∈ Am , or equivalently, for infinitely
many values of m.

A convenient way to express the fact that ω ∈ A∗ is

ω ∈ A∗ is equivalent to ω ∈ {An i.o.} = {An infinitely often}

6.2.2 Tail events and the Kolmogorov zero–one law

One of the magic results on probability theory concerns situations where the probability
of an event may be only 0 or 1. To state the corresponding theorem we need to define the
σ -algebra containing information about ‘what happens at infinity’.
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Let {Ak, k ≥ 1} be arbitrary events. Following Gut (2005), define the σ -algebra:

An
k := σ (Ak, Ak+1, . . . , An) , k ≤ n

Definition 6.2. The tail-σ -algebra (or σ -algebra of remote events) is defined by

T :=
∞⋂

k=0

A∞k+1 (6.1)

which is a σ -algebra itself since it is an intersection of other σ -algebras.

Considering k as a time-index, we may conclude that A∞k+1 contains the information
beyond time k, and therefore, T contains the information ‘beyond time k for all k’.

To prove the ‘zero–one’ statement we need the following intermediate approximation
lemma which states that any set in a σ -algebra can be arbitrarily well approximated by
another set that belongs to an algebra that generates the a σ -algebra.

Lemma 6.1. (on an approximation of events) Let F0 be an algebra that generates the
σ -algebra F , that is, F = σ (F0). Then for any set A ∈ F and any ε > 0 there exists
Aε ∈ F0 such that

P {A M Aε} < ε (6.2)

where

A M B := (A − B) ∪ (B − A) (6.3)

is the symmetric set difference.

Proof. (Gut, 2005) For ε > 0 define

G := {A ∈ F : P {A M Aε} < ε for some Aε ∈ F0}

1. If A ∈ G, then Ac
∈ G since Ac M (Aε)c = A M Aε.

2. If An ∈ G (n ≥ 1), then so does the union. Namely, set A =
∞⋃

n=1
An , let ε be given and

choose n∗ such that P

{
A\

n∗⋃
n=1

An

}
< ε/2. Next, let

{
Ak,ε ⊂ F0, k = 1, . . . , n∗

}
be such

that

P
{

A M Ak,ε
}
< ε/

(
2n∗

)
for all k = 1, . . . , n∗

Since(
n∗⋃

k=1

Ak

)
M

(
n∗⋃

k=1

Ak,ε

)
⊂

n∗⋃
k=1

(
Ak M Ak,ε

)
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it follows that

P

{(
n∗⋃

k=1

Ak

)
M

(
n∗⋃

k=1

Ak,ε

)}
≤

n∗∑
k=1

P
{

Ak M Ak,ε
}
< n∗ε/

(
2n∗

)
= ε/2

so that, finally,

P

{
A M

(
n∗⋃

k=1

Ak,ε

)}
< ε/2+ ε/2 = ε

that completes the proof. �

Remark 6.2. The general description of this result reveals that it reduces an infinite setting
to a finite one.

Now we are ready to formulate and prove the main result of this subsection.

Theorem 6.1. (the Kolmogorov zero–one law) If {Ak, k ≥ 1} are independent events,
then the tail-σ -algebra is trivial, i.e., it contains only the sets of probability 0 or one,
that is, if A ∈ T then P {A} = 0 or P {A} = 1.

Proof.
(a) The idea of the proof lies in the following concept. If A ∈ T , then A ∈ A∞k+1 for all
k ≥ 0, and, hence, A is independent of Ak

1, which is true for all k. This implies that in the
same time A ∈ σ (A1, A2, . . .) and A is independent of σ (A1, A2, . . .). This means that A
is ‘independent of itself ’, and therefore,

P {A} = P {A ∩ A} = P2
{A}

that is possible when P {A} = 0 or P {A} = 1.
(b) To realize the proof more rigorously (following Breiman (1992), Theorem 3.12), let us
use the fact (see Lemma 6.1) that for every set A ∈

⋃
n≥1

An
1 and any ε > 0 there is a set B

∈ An
1 for some n such that P {A M B} ≤ ε. Let E ∈ T . Then there exists En ∈ An

1 such
that P {E M En} → 0 as n→∞. This implies

P {En} → P {E}

and

P {E ∩ En} → P {E}

But E ∈ A∞n+1, So, E and En are in independent σ -fields. Thus

P {E ∩ En} = P {E}P {En}

Taking limits in this equations gives

P {E} = P2
{E}

that leads to the statement of this theorem. �
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6.2.3 The Borel–Cantelli lemma

The results presented here deal with the same ‘zero–one’ law, but in terms of proba-
bilities of current events, and therefore, provide much more wider possibilities of their
applications.

Lemma 6.2. (Borel–Cantelli) Let (�,F ,P) be a probability space and {Ak, k ≥ 1} is a
sequence of events Ak ∈ F .

1. If

∞∑
k=1

P {Ak} <∞ (6.4)

then

P {Ak i.o.} = 0 (6.5)

or, equivalently,

P

{
ω :

∞∑
k=1

χ {Ak} <∞

}
= 1 (6.6)

which means that there may occur only a finite number of events Ak .
2. If {Ak, k ≥ 1} are independent events and

∞∑
k=1

P {Ak} = ∞ (6.7)

then

P {Ak i.o.} = 1 (6.8)

or, equivalently,

P

{
ω :

∞∑
k=1

χ {Ak} = ∞

}
= 1 (6.9)

which means that there may occur an infinite number of events Ak .
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Proof.

1. By the definition (1.13) and in view of the property (1.29) it follows that

P {Ak i.o.} = P

{
lim sup

n→∞
An

}
= P

{
∞⋂

n=1

∞⋃
m=n

Am

}

≤ P

{
∞⋃

m=n
Am

}
≤

∞∑
m=n

P {Am} → 0 whereas n→∞

that proves (6.5).
2. By independence of {Ak, k ≥ 1} we have

P {Ak i.o.} = P

{
lim sup

n→∞
An

}
= P

{
∞⋂

n=1

∞⋃
m=n

Am

}

≥ 1− P

{
∞⋂

m=n
Ac

m

}
= 1−

∞∏
m=n

P
{

Ac
m

}
= 1−

∞∏
m=n

(
1− P

{
Ac

m

})
Applying the inequality 1− x ≤ exp (−x) valid for any x ∈ R yields

1 ≥ P {Ak i.o.} ≥ 1−
∞∏

m=n

(
1− P

{
Ac

m

})
≥ 1−

∞∏
m=n

exp
(
−P

{
Ac

m

})
= 1− exp

(
−

∞∑
m=n

P
{

Ac
m

})
= 1− 0

that completes the proof. �

Remark 6.3.

1. In the case of independent events this lemma represents, in fact, a version of the
‘zero–one’ law since P {Ak i.o.} may have only 0 or 1 values, and the convergence

or divergence of the series
∞∑

k=1
P {Ak} is the decisive factor.

2. From the computational point of view Lemma 6.2 turns out to be very useful since
• it is sufficient to prove that P {Ak i.o.} > 0 to conclude that, in fact, P {Ak i.o.} = 1;
• it is sufficient to prove that P {Ak i.o.} < 1 to conclude that, in fact, P {Ak i.o.} = 0.

Corollary 6.1. If {Ak, k ≥ 1} are arbitrary events,
{

Aks , s ≥ 1
}

is a subsequence of
independent events and

∞∑
s=1

P
{

Aks

}
= ∞

then

P {Ak i.o.} = 1
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or, equivalently,

P

{
ω :

∞∑
k=1

χ {Ak} = ∞

}
= 1

Proof. It follows from the fact that

{Ak i.o.} ⊃ {As i.o.}

and, as the result,

P {Ak i.o.} ≥ P
{

Aks i.o.
}
= 1 �

Corollary 6.2. Let ξ1, ξ2, . . . be a sequence of arbitrary random variables defined on
(�,F ,P).

1. If for any ε > 0

∞∑
k=1

P {|ξk | > ε} <∞ (6.10)

then with probability 1 (or, almost sure)

ξk
a.s.
→ 0 (6.11)

2. If {Ak, k ≥ 1} are independent events and there exists ε0 > 0 such that

∞∑
k=1

P {|ξk | > ε} = ∞ (6.12)

then

ξk
a.s.9 0 (6.13)

Proof. It follows directly from Lemma 6.2 if we let

Ak := {|ξk | > ε}, k = 1, 2, . . .

In the first case we conclude that for any ε > 0 the number of the events Ak := {|ξk | > ε}

is finite with probability 1, which means the convergence to zero. In the second case,
analogously, with probability 1 the events Ak := {|ξk | > ε} occur infinitely many times,
which means that {ξk} does not converge to 0. �



110 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

6.3 Properties of Lebesgue integral with probabilistic measure

In this section we consider three fundamental theorems on ‘taking limits’ under the
expectation sign, or in other words, under the Lebesgue integral with probabilistic measure.
In fact, all three theorems which we are intending to discuss below can be found in
Chapter 16 (Section 3) of Poznyak (2008) where they concern the Lebesgue integral with
respect to a ‘general’ countably additive measure. Nevertheless, here we repeat the results
discussed before using the ‘probabilistic language’interpreting the Lebesgue integral as the
mathematical expectation operator.

The following example shows that it is not permitted in general to reverse the order
of taking limit and computing an integral, or in probabilistic terms, the mathematical
expectation, that is, in general

lim
n→∞

E {ξn} 6= E
{

lim
n→∞

ξn

}
(6.14)

Example 6.1. (Gut, 2005) Let α > 0, and consider a binary random variable

ξn =

{
0 with probability 1− n−2

nα with probability n−2 , n = 1, 2, . . .

Notice that P {ξn = 0} → 1 as n → ∞. Moreover, by the Borel–Cantelli Lemma 6.2 it
follows that ξn = nα only a finite number of times with probability one, since

∞∑
n=1

P
{
ξn = nα

}
=

∞∑
n=1

n−2 <∞

Hence, ξn
a.s
→ 0 as n→∞, and therefore

E
{

lim
n→∞

ξn

}
= 0

On the other hand,

lim
n→∞

E {ξn} = lim
n→∞

[
0
(
1− n−2

)
+ nα

(
n−2

)]
= lim

n→∞
nα−2

=


0 if α ∈ (0, 2)

1 if α = 2

∞ if α > 2

So the justification of the equality in (6.14) may vary and depends on the parameter α.

Below we discuss this problem in detail.

6.3.1 Lemma on monotone convergence

Lemma 6.3. (on monotone convergence) Let η, {ξn}n≥1 be random variables defined
on (�,F ,P).
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1. If

ξn ≥ η for all n ≥ 1 (6.15)

E {η} > −∞ (6.16)

and {ξn} monotonically (non-decreasing) converges to ξ , that is,

ξn ↑ ξ (6.17)

then E {ξn} also monotonically converges to E {ξ}, that is,

E {ξn} ↑ E {ξ} (6.18)

2. If

ξn ≤ η for all n ≥ 1 (6.19)

E {η} <∞ (6.20)

and {ξn} monotonically (non-increasing) converges to ξ , that is,

ξn ↓ ξ (6.21)

then E {ξn} also monotonically converges to E {ξ}, that is,

E {ξn} ↓ E {ξ} (6.22)

Proof.

1. Suppose firstly that η ≥ 0. By Theorem 2.3 for each n ≥ 1 there exists a sequence
{ξ
(k)
n }k≥1 of simple random variables ξ (k)n such that ξ (k)n ↑

k→∞
ξn . Put ζ (k) := max

1≤n≤k
ξ
(k)
n .

Then

ζ (k−1)
≤ ζ (k) = max

1≤n≤k
ξ (k)n ≤ max

1≤n≤k
ξn = ξk < ξ

Let ζ := lim
k→∞

ζ (k) which exists by the condition (6.17). Since

ξ (k)n ≤ ζ
(k)
≤ ξk

for any n ∈ [1, k], then taking limits as k →∞ we get

ξn ≤ ζ ≤ ξ
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and, therefore, tending n → ∞, implies ζ = ξ . The random variables ζ (k) are simple,
nonnegative and ζ (k) ↑

k→∞
ζ . Therefore, by Definition (3.11),

E {ξ} = E {ζ } = lim
k→∞

E
{
ζ (k)

}
≤ lim

k→∞
E {ξk}

On the other hand, since ξn ≤ ξn+1 ≤ ξ it follows that

lim
n→∞

E {ξn} ≤ E {ξ}

that leads to the conclusion that lim
n→∞

E {ξn} = E {ξ}. Let now η be any random variable

but satisfying (6.16). If E {η} = ∞, then evidently E {ξn} = E {ξ} = ∞. Let E {η} <∞.
Then |E {η}| <∞. Obviously

0 ≤ (ξn − η) ↑ (ξ − η)

and therefore, by the previous consideration done for nonnegative variables,

E {ξn}n − E {η} ↑ E {ξ} − E {η}

Remembering that |E {η}| <∞, this gives E {ξn}n ↑ E {ξ}.
2. The proof of this item follows from the previous one by replacing the original variables

with their negatives since 0 ≤ (2ξ − ξn) ↑ ξ . �

Corollary 6.3. If {ξn}n≥1 are nonnegative random variables, then

E

{
∞∑

n=1

ξn

}
=

∞∑
n=1

E {ξn} (6.23)

Proof. It follows from the fact that the sequence of partial sums Sn :=
n∑

k=1
ξk satisfies the

conditions of Lemma 6.3. �

6.3.2 Fatou’s lemma

Lemma 6.4. (Fatou’s lemma) Let η, {ξn}n≥1 be random variables defined on (�,F ,P).

1. If ξn ≥ η for all n ≥ 1, E {η} > −∞, then

E
{

lim inf
n→∞

ξn

}
≤ lim inf

n→∞
E {ξn} (6.24)

2. If ξn ≤ η for all n ≥ 1, E {η} <∞, then

lim sup
n→∞

E {ξn} ≤ E

{
lim sup

n→∞
ξn

}
(6.25)
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3. If |ξn| ≤ η for all n ≥ 1, E {η} <∞, then

E
{

lim inf
n→∞

ξn

}
≤ lim inf

n→∞
E {ξn}

≤ lim sup
n→∞

E {ξn} ≤ E

{
lim sup

n→∞
ξn

} (6.26)

Proof.

1. Denote ζn := inf
m≥n

ξm . Then evidently

lim inf
n→∞

ξn := lim
n→∞

inf
m≥n

ξm = lim
n→∞

ζn

It is also clear that ζn ↑ lim inf
n→∞

ξn and ζn ≥ η for all n ≥ 1. Therefore by Lemma 6.3 it

follows that

E
{

lim inf
n→∞

ξn

}
= E

{
lim

n→∞
ζn

}
= lim

n→∞
E {ζn}

≤ lim inf
n→∞

E {ζn} ≤ lim inf
n→∞

E {ξn}

which establishes (6.24).
2. The relation (6.25) results from (6.24) if we take into account that (2η − ξn) ≥ η and,

instead of ξn in item 1 consider (2η − ξn).
3. The third item results from the first two. �

6.3.3 The Lebesgue dominated convergence theorem

Theorem 6.2. (the Lebesgue dominated convergence) Let η, {ξn}n≥1 be random vari-
ables defined on (�,F ,P) such that

|ξn| ≤ η for all n ≥ 1, E {η} <∞ and ξn
a.s.
→

n→∞
ξ (6.27)

Then

E {|ξ |} <∞, E {ξn} → E {ξ} (6.28)

and

E {|ξn − ξ |} → 0 (6.29)

as n→∞.

Proof. Since |ξn| ≤ η it follows that |ξn − ξ | ≤ 2η. In view of the fact that by replacing ξn
with |ξn − ξ | we find that the proof reduces to showing the following fact: if 0 ≤ ξn ≤ η
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and ξn → 0 almost surely, then E {ξn} → 0. But this follows from the Fatou’s Lemma 6.4
(see (6.26)) since in this case

0 = E
{

lim inf
n→∞

|ξn − ξ |
}
= E

{
lim

n→∞
|ξn − ξ |

}
= lim

n→∞
E {|ξn − ξ |}

= lim sup
n→∞

E {|ξn − ξ |} = E

{
lim sup

n→∞
|ξn − ξ |

}
= 0

that proves the theorem. �

Corollary 6.4. Let η, {ξn, n = 1, 2, . . .} be random variables such that

|ξn| ≤ η for all n ≥ 1, E {ηp} <∞ and ξn
a.s.
→

n→∞
ξ (6.30)

for some p > 0. Then

E
{
|ξ |p

}
<∞, E

{
|ξn − ξ |

p}
→

n→∞
0 (6.31)

Proof. The result follows from the relations

|ξn| ≤ η, |ξn − ξ |
p
≤ (|ξn| + |ξ |)

p
≤ (2η)p

if instead of |ξn| take |ξn − ξ |
p. �

6.3.4 Uniform integrability

In this subsection we will introduce a concept which permits us to use a somewhat
‘weaker’ condition than |ξn| ≤ η and E {η} < ∞ to ensure the validity of the relations
(6.26), (6.28) and (6.29). To do that, and following Shiryayev (1984), let us introduce one
more definition.

Definition 6.3. A family of random variables {ξn}n≥1 is said to be uniformly integrable if

sup
n

∫
{ω:|ξn |>c}

|ξn (ω)|P (dω) = sup
n

E {|ξn|χ (|ξn| > c)} → 0 (6.32)

as c→∞.

Remark 6.4. Obviously the conditions |ξn| ≤ η (n ≥ 1) and E {η}<∞ imply the uniform
integrability of the family {ξn}n≥1. Indeed,

sup
n

∫
{ω:|ξn |>c}

|ξn (ω)|P (dω) ≤ sup
n

∫
{ω:|ξn |>c}

η (ω)P (dω)

= sup
n

E {ηχ (|ξn| > c)} ≤ E {ηχ (η > c)} →
c→∞

0
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The next theorem shows that both the Fatou Lemma 6.4 and the Lebesgue dominated
convergence theorem 6.2 remain valid if instead of |ξn| ≤ η and E {η} < ∞ they require
only the uniform integrability property of the family {ξn}n≥1.

Theorem 6.3. (Shiryayev, 1984) Let {ξn}n≥1 be a uniformly integrable family of random

variables. Then the relations in (6.26) hold. If, additionally, ξn
a.s.
→

n→∞
ξ then both properties

(6.28) and (6.29) are valid too.

Proof. For each c > 0 we have

E {ξn} = E {ξnχ (ξn < −c)} + E {ξnχ (ξn ≥ −c)} (6.33)

By the assumed uniform integrability for any ε > 0 there exists c so large that

sup
n
|E {ξnχ (ξn < −c)}| < ε (6.34)

By Fatou’s Lemma 6.4 it follows that

lim inf
n→∞

E {ξnχ (ξn ≥ −c)} ≥ E
{

lim inf
n→∞

[ξnχ (ξn ≥ −c)]
}

But always

ξnχ (ξn ≥ −c) ≥ ξn

and therefore

lim inf
n→∞

E {ξnχ (ξn ≥ −c)} ≥ E
{

lim inf
n→∞

ξn

}
(6.35)

The relations (6.33)–(6.35) lead to the following inequality:

lim inf
n→∞

E {ξn} ≥ E
{

lim inf
n→∞

ξn

}
− ε

Since ε is arbitrarily small we obtain

lim inf
n→∞

E {ξn} ≥ E
{

lim inf
n→∞

ξn

}
The inequality

lim inf
n→∞

E {ξn} ≤ lim sup
n→∞

E {ξn}

is evident by the definition. But the relation

lim sup
n→∞

E {ξn} ≤ E

{
lim sup

n→∞
ξn

}
may be proven similarly. Thus the relations in (6.26) are proven. The conclusions (6.28)
and (6.29) are deduced from (6.26) as in Theorem 6.2. �
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The significance of the uniform integrability concept is revealed by the following
theorem which, in fact, is the criterion for taking limits under the expectation operator.

Theorem 6.4. Let

0 ≤ ξn, E {ξn} <∞

and

ξn
a.s.
→

n→∞
ξ

Then

E {ξn} →
n→∞

E {ξ}

if and only if {ξn}n≥1 is uniformly integrable.

Proof. Notice, first, that sufficiency follows from the second part of Theorem 6.3. To prove
necessity consider the set

A = {a : P {ξ = a} > 0}

Then for any a /∈ A

ξnχ (ξn < a)
a.s.
→ ξχ (ξ < a)

that implies

E {ξnχ (ξn < a)} → E {ξχ (ξ < a)}

For any ε > 0 there exists a0 ∈ A so large that E {ξχ (ξ ≥ a0)} < ε/2. Choose N0 also so
large that

E {ξnχ (ξn ≥ a0)} ≤ E {ξχ (ξ ≥ a0/2)} + ε/2

for all n ≥ N0. Then we get that

E {ξnχ (ξn ≥ a0)} ≤ ε

Choose then a1 ≥ a0 so large that

E {ξnχ (ξn ≥ a1)} ≤ ε

for all n ≤ N0. Hence, obviously, we have

sup
n

E {ξnχ (ξn ≥ a1)} ≤ ε

that proves the uniform integrability of {ξn}n≥1. �

The following proposition provides the simple test for checking the uniform
integrability.
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Theorem 6.5. (the uniform integrability test) Let {ξn}n≥1 be a family of absolutely
integrable random variables and G : R+ → R be a nonnegative increasing function
such that

t−1G (t)→∞ as t →∞ (6.36)

and

M := sup
n

E {G (ξn)} <∞ (6.37)

Then the family {ξn}n≥1 is uniformly integrable.

Proof. For any ε > 0 one may define a := M/ε and taking c so large that t−1G (t) ≥ a
for t > c, we derive

E {|ξn|χ (|ξn| ≥ c)} ≤
1
a

E {G (|ξn|) χ (|ξn| ≥ c)}

≤
1
a

E {G (|ξn|)} ≤
1
a

sup
n

E {G (ξn)} ≤ M/a ≤ ε

uniformly on n ≥ 1. Theorem is proven. �

6.4 Convergence

6.4.1 Various modes of convergence

The following definition introduces six principal convergence concepts in probability
theory.

Definition 6.4. The sequence {ξn}n≥1 of random variables, defined on the probability
space (�,F ,P), converges to a random variable ξ (also defined on (�,F ,P)):

1. in distribution, that is denoted by

ξn
d
→

n→∞
ξ (6.38)

if and only if

E { f (ξn)} →
n→∞

E { f (ξ)} (6.39)

for any bounded continuous function f (x), or equivalently, if and only if we have the
convergence of distribution functions
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Fξn (x) →n→∞
Fξ (x) (6.40)

at any point x where Fξ (x) is continuous.
2. in probability, that is denoted by

ξn
P
→

n→∞
ξ (6.41)

if and only if for any ε > 0

P {ω : |ξn − ξ | > ε} →
n→∞

0 (6.42)

3. with probability one or almost surely (a.s.), that is denoted by

ξn
a.s.
→

n→∞
ξ (6.43)

if and only if

P
{
ω : lim

n→∞
ξn (ω) = ξ (ω)

}
= 1 (6.44)

i.e., the set of sample points ω ∈ � for which ξn (ω) does not converge to ξ (ω) has
probability zero;

4. in mean of the order p, that is denoted by

ξn
L p

→
n→∞

ξ (6.45)

if and only if for some p > 0

E
{
|ξn − ξ |

p}
→

n→∞
0 (6.46)

For p = 2 this is mean-square convergence, that is denoted by

l.i.m.
n→∞

ξn = ξ (6.47)

5. pointly, that is denoted by

ξn
∀ω∈�
→

n→∞
ξ (6.48)
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if and only if

lim
n→∞

ξn (ω) = ξ (ω) for all ω ∈ � (6.49)

6. completely, that is denoted by

ξn
c.c.
→

n→∞
ξ (6.50)

if and only if for any ε > 0

∞∑
n=1

P {|ξn − ξ | > ε} <∞ (6.51)

or equivalently, by the Borel–Cantelli Lemma 6.2, if and only if |ξn − ξ | ≤ ε (a.s.) after
a finite (maybe random) number n0 (ω) of steps.1

6.4.2 Fundamental sequences

A set of random sequences represents in one or another sense a sequence of functions
from some ‘functional space’. But the analysis of a convergence in any functional space
is closely related with the concept of a fundamental (or Cauchy) sequence (see, for
example, Chapter 14 in Poznyak (2008)). So, as can be seen from below, it would be
useful to introduce similar concepts for some of the convergence modes and to formulate
the corresponding criteria of convergence using these concepts. Here we will do it for the
first five kinds of convergence.

Definition 6.5. We say that a sequence {ξn}n≥1 of random variables is a fundamental (or
Cauchy) sequence

1. in distribution if

|ξn − ξm |
d
→

m,n→∞
0 (6.52)

2. in probability if for any ε > 0

P {ω : |ξn − ξm | > ε} →
m,n→∞

0 (6.53)

1This concept was introduced in Hsu and Robbins (1947).
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3. with probability one or almost surely (a.s.) if {ξn (ω)}n≥1 is fundamental for almost all
ω ∈ �, that is, when

|ξn − ξm |
a.s.
→

m,n→∞
0 (6.54)

4. in L P sense if

E
{
|ξn − ξm |

p}
→

m,n→∞
0 (6.55)

5. pointly, if

|ξn − ξm |
∀ω∈�
→

m,n→∞
0 (6.56)

The importance of the fundamental concept lies in the Cauchy criterion (see Theorem
14.8 in Poznyak (2008)):

(a) Every convergent sequence {xn} given in a metric space X is a Cauchy sequence.
(b) If X is a compact metric space and if {xn} is a Cauchy sequence in X then {xn}

converges to some point in X .
(c) In Rn a sequence converges if and only if it is a Cauchy sequence.

Since the space of random variables (for example with bounded second moments such

that
∞∑

n=1
E
{
ξ2

n

}
< ∞) is a Hilbert space with the scalar product

(
ξ̄ , η̄

)
:=

∞∑
n=1

E {ξnηn},

then it becomes evident that the concept of a fundamental sequence serves as a principal
instrument for the convergence criteria design. The theorem below illustrates this fact.

Theorem 6.6. (Shiryayev, 1984)

(a) A necessary and sufficient condition that ξn
a.s.
→

n→∞
ξ is that for every ε > 0

P

{
sup
k≥n
|ξk − ξ | ≥ ε

}
→

n→∞
0 (6.57)

(b) The sequence {ξn}n≥1 of random variables is a fundamental (or Cauchy) sequence
with probability one if and only if for every ε > 0

P

{
sup
l,k≥n
|ξk − ξl | ≥ ε

}
→

n→∞
0 (6.58)
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or equivalently,

P

{
sup
k≥0
|ξn+k − ξn| ≥ ε

}
→

n→∞
0 (6.59)

Proof.

(a) Define two sets

Aεn = {ω : |ξn − ξ | ≥ ε}, Aε =lim sup Aεn :=
n→∞

∞⋂
n=1

⋃
k≥n

Aεk

Then one has

{ω : ξn 9 ξ} =
⋃
ε>0

Aε =
∞⋃

m=1

A1/m

P
{

Aε
}
= lim

n→∞
P

{⋃
k≥n

Aεk

}

The necessity in (a) follows from the following chain of implications:

0 = P {ω : ξn 9 ξ} = P

{⋃
ε>0

Aε
}
= P

{
∞⋃

m=1

A1/m

}

and therefore, P
{

A1/m
}
= 0 (m ≥ 1), that gives P {Aε} = 0, and hence,

P

{⋃
k≥n

Aεk

}
→

n→∞
0

that implies

P

{
sup
k≥n
|ξk − ξ | ≥ ε

}
→

n→∞
0

The sufficiency results from the back consideration.
(b) Define now the sets

Bεk,t := {ω : |ξk − ξl | ≥ ε}, Bε :=
∞⋂

n=1

⋃
l,k≥n

Bεk,l

Then{
ω : {ξn (ω)}n≥1 is not fundamental

}
=

⋃
ε>0

Bε



122 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

Repeating the considerations as in (a) one can show that

P
{
ω : {ξn (ω)}n≥1 is not fundamental

}
= 0

that implies (6.58). The conclusion (6.59) follows from the inequality

sup
k≥0
|ξn+k − ξn| ≤ sup

l,k≥0
|ξn+k − ξn+l |

that completes the proof. �

Corollary 6.5. (the relation with complete convergence) A sufficient condition that ξn
a.s.
→

n→∞
ξ is that it completely converges, namely,

∞∑
n=1

P {|ξn − ξ | > ε} <∞

for every ε < 0.

Proof. It follows from the relations

P

{
sup
k≥n
|ξk − ξ | ≥ ε

}
= P

{
ω :

⋃
k≥n

|ξk − ξ | ≥ ε

}
≤

∑
k≥n

P {|ξn − ξ | > ε} �

6.4.3 Distributional convergence

Definition 6.6.

(a) The variational distance between the distributions F and G is

d (F,G) := sup
A∈R
|F (A)− G (A)| (6.60)

(b) The distributional distance between two random variables ξ and η, both defined on a
probability space (�,F ,P), is

d (ξ, η) := sup
A∈R
|P {ξ ∈ A} − P {η ∈ A}| (6.61)

(c) If ξ and {ξn}n≥1 are random variables such that

d (ξn, ξ) →
n→∞

0 (6.62)

we say that ξn converges to ξ in total variation as n→∞.

Lemma 6.5. If ξn converges to ξ in total variation then ξn
d
→

n→∞
ξ .
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Proof. Indeed,∣∣Fξn (x)− Fξ (x)
∣∣ = |P {ξn ≤ x} − P {ξ ≤ x}|

≤ sup
x∈R
|P {ξn ≤ x} − P {ξ ≤ x}|

which establishes the desired result. �

The next theorem deals with convergence in probability for absolutely continuous
random sequences.

Proposition 6.1. (Scheffé’s Lemma) Suppose {ξn}n≥1 is a sequence of absolutely con-
tinuous random variables with density functions

{
fξn

}
n≥1. Then

d (ξn, ξ) ≤

∞∫
−∞

∣∣ fξn (x)− fξ (x)
∣∣ dx (6.63)

and, hence, if fξn (x) →n→∞
fξ (x) almost everywhere, then

d (ξn, ξ) →
n→∞

0

and in particular,

ξn
d
→

n→∞
ξ

Proof. By the triangle inequality

|P {ξn ≤ x} − P {ξ ≤ x}| =

∣∣∣∣∣∣
x∫

−∞

[
fξn (x)− fξ (x)

]
dx

∣∣∣∣∣∣
≤

x∫
−∞

∣∣ fξn (x)− fξ (x)
∣∣ dx ≤

∞∫
−∞

∣∣ fξn (x)− fξ (x)
∣∣ dx

Applying sup
x∈R

to both sides of the last inequality proves (6.63). The convergence follows

automatically from Lemma 6.5. �

6.4.4 Relations between convergence concepts

In this subsection we will discuss the relations between the convergence concepts
defined before.

Theorem 6.7. The following implications hold (see Fig. 6.2).
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Pointly convergence

Complete convergence

L p convergence a.s convergence

Convergence 
in probability

Convergence 
in distribution

2 3
1

4

6 5

7

Fig. 6.2. Various modes of convergence and their interconnection.

Proof. The implications 1–3 are trivial. 4 follows from Corollary 6.5. 5 results from the
relations

lim
n→∞

P {|ξn − ξ | > ε} = 1− lim
n→∞

P {|ξn − ξ | ≤ ε} = 1− 1 = 0

The implication 6 follows from the Markov inequality (4.8), namely,

P {|ξn − ξ | > ε > 0} ≤ ε−pE
{
|ξn − ξ |

p}
To prove 7 let us consider a function f (x) which is continuous and bounded: | f (x)| ≤ C .
Let ε and N be such that P {|ξn| > N } ≤ ε/4C . Taking δ > 0 satisfying

| f (x)− f (y)| ≤ ε/2C for any x : |x | ≤ N , |x − y| ≤ δ

we obtain

E {| f (ξn)− f (ξ)|} =
∫

{ω:|ξn(ω)−ξ(ω)|≤δ, |ξn(ω)|≤N }

| f (ξn)− f (ξ)|P (dω)

+

∫
{ω:|ξn(ω)−ξ(ω)|≤δ, |ξn(ω)|>N }

| f (ξn)− f (ξ)|P (dω)

+

∫
{ω:|ξn(ω)−ξ(ω)|>δ}

| f (ξn)− f (ξ)|P (dω)

≤ ε/2C + (ε/2C) (ε/4C)+ 2CP {|ξn − ξ | > δ}

= ε Const+ o (1)

Since ε is arbitrary the required implication follows. �

The following two examples clearly show that a.s.-convergence does not imply L p-
convergence, and, inversely, L p-convergence does not obligatorily imply a.s.-convergence.
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Example 6.2. Here we will show that even though ξn
a.s.
→

n→∞
ξ , nevertheless ξn

L P

9
n→∞

ξ . Let

ξn (ω) :=


n2 if ω ∈

[
0,

1
n

]
0 if ω ∈

(
1
n
, 1
] , ω ∈ � = [0, 1]

Evidently

P
{
ω : lim

n→∞
ξn (ω) = 0

}
= 1

But

E
{
|ξn|

p}
= n2p

(
1
n

)
+ 0

(
1−

1
n

)
= n2p−1 9

n→∞
0

if

p ≥ 1/2

Example 6.3. This example shows that even though ξn
L P

→
n→∞

ξ , nevertheless ξn
a.s.9

n→∞
ξ .

Let

ξn (ω) :=

{
1 with probability pn →

n→∞
0

0 with probability qn := 1− pn

and {ξn}n≥1 be a sequence of independent random variables. Then

E
{
|ξn|

p}
= 1p pn + 0pqn = pn →

n→∞
0

But, on the other hand, by the Borel–Cantelli Lemma, 6.2, if

∞∑
n=1

pn = ∞

then

P

{
ω :

∞∑
n=1

χ (ξn (ω) = 1) = ∞

}
= 1

which means that ‘almost always’ there exists an infinite subsequence ξnk (ω) = 1 (k ≥ 1),
or equivalently, ξn

a.s.9
n→∞

ξ .

6.4.5 Some converses

Under some additional conditions there exist the converses to some of the arrows in
Theorem 6.7. Below we will present some of them.
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6.4.5.1 When p-mean convergence implies a.s. convergence

Theorem 6.8. If ξn
L p

→
n→∞

ξ (p > 0) such that

∞∑
n=1

E
{
|ξn − ξ |

p} <∞ (6.64)

then ξn
a.s.
→

n→∞
ξ .

Proof. Using Markov’s inequality (4.8) it follows that

n∗∑
n=1

P {ω : |ξn (ω)− ξ (ω)| ≥ ε > 0}

≤

n∗∑
n=1

ε−pE
{
|ξn − ξ |

p}
≤ ε−p

∞∑
n=1

E
{
|ξn − ξ |

p} <∞
Taking then n∗→∞ we get

n∗∑
n=1

P {ω : |ξn (ω)− ξ (ω)| ≥ ε > 0} <∞

and hence, by the Borel–Cantelli Lemma, 6.2

P

{
ω :

∞∑
n=1

χ (|ξn (ω)− ξ (ω)| ≥ ε > 0) <∞

}
= 1

In other words, for any ε > 0 there exists n0 = n0 (ω) such that for all n ≥ n0 (ω)

|ξn (ω)− ξ (ω)|
a.s.
< ε

which exactly means that ξn
a.s.
→

n→∞
ξ . Theorem is proven. �

Theorem 6.9. If 0 ≤ ξn
a.s.
→

n→∞
ξ and

E {ξn} →
n→∞

E {ξ} (6.65)

then

E {|ξn − ξ |} →
n→∞

0 (6.66)

that is, ξn
L1

→
n→∞

ξ .
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Proof. In view of the identity

|a − b| = b − a + 2 [a − b]χ (a ≥ b)

valid for any a, b ∈ R, it follows that

E {|ξn − ξ |} = E {ξ − ξn} + 2E {(ξn − ξ) χ (ξn ≥ ξ)} (6.67)

But

0 ≤ (ξn − ξ) χ (ξn ≥ ξ) := ζn

and, by lemma on monotone convergence 6.3, it follows that

0 = E
{

lim
n→∞

ζn

}
= lim

n→∞
E {ζn}

So, taking limits in (6.67) and in view of (6.65), we obtain

lim
n→∞

E {|ξn − ξ |} = lim
n→∞

E {ξ − ξn} + 2 lim
n→∞

E {ζn} = 0

that completes the proof. �

Exercise 6.1. Let

ξn (ω) =

 1 with probability pn ≤ 1/2
0 with probability 1− 2pn
−1 with probability pn ≤ 1/2

and

pn =
1

2nα
, α ≥ 0, n = 1, 2, . . .

Define for which α we have ξn
L2

→
n→∞

0 and for which ξn
a.s.
→

n→∞
0.

Solution

(a) One has

E
{
ξ2

n

}
= 12 pn + 02 (1− 2pn)+ (−1)2 pn = 2pn = 1/nα →

n→∞
0

for any α > 0.
(b) But

∞∑
n=1

E
{
ξ2

n

}
=

∞∑
n=1

1/nα <∞

for any α > 1, which by Theorem 6.8 implies ξn
a.s.
→

n→∞
0. �
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6.4.5.2 When convergence in probability implies convergence in p-mean: uniform
integrability

If one knows that there takes place the convergences in probability then a natural
question is whether there exist some additional conditions guaranteeing the convergence in
p-mean. The following concept turns out to be adequate to answer correctly this question.

Definition 6.7. A sequence {ξn}n≥1 of random variables is called uniformly integrable if

εn (a) := E {|ξn|χ (|ξn| > a)} =

∞∫
|x |>a

|x | d Fξn (x) →a→∞
0 (6.68)

uniformly in n.

The requirement that a sequence is uniformly integrable exactly means that the contri-
butions in the tails of the integrals tend to zero uniformly for all members of this sequence.

Claim 6.1. If a sequence {ξn}n≥1 is uniformly integrable then

E {|ξn|} ≤ a + εn (a)

for a large enough (εn (a) →
a→∞

0 uniformly in n), and, hence, the first absolute moments

are uniformly bounded.

Proof. Indeed,

E {|ξn|} = E {|ξn|χ (|ξn| ≤ a)} + E {|ξn|χ (|ξn| > a)}

≤ aP {ω : |ξn (ω)| ≤ a} + εn (a) ≤ a + εn (a)

which proves the claim. �

The following theorem gives the criterion of uniform integrability.

Theorem 6.10. (the criterion of uniform integrability) The sequence {ξn}n≥1 of ran-
dom variables is uniformly integrable if and only if

(a)

sup
n

E {|ξn|} <∞ (6.69)

(b) for any ε > 0 there exists δ = δ (ε) such that for any set A with the measure P {A} < δ

E {|ξn|χ (A)} < ε (6.70)

uniformly in n.
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Proof.
Necessity. Let {ξn}n≥1 be uniformly integrable. By Claim 6.1

E {|ξn|} ≤ a + εn (a) ≤ a + sup
n
εn (a) <∞

Taking sup
n

in the left-hand side of this inequality implies (6.69). So, the necessity of (a) is

proven. Let now ε > 0 be given and a set A be such that P {A} < δ. Then

E {|ξn|χ (A)} = E {|ξn|χ (A) ∩ χ (|ξn| ≤ a)} + E {|ξn|χ (A) ∩ χ (|ξn| > a)}

≤ aP {ω : |ξn (ω)| ≤ a} + E {|ξn|χ (|ξn| > a)} ≤ aδ + sup
n
εn (a) ≤ ε

if one chooses a large enough to make E {|ξn|χ (|ξn| > a)} ≤ ε/2 with δ ensuring aδ ≤
ε/2 that proves (b).
Sufficiency. Suppose that both conditions (6.69) and (6.70) of the theorem are fulfilled.
Define the sets

An := {ω : |ξn (ω)| > a}

Then by Markov’s inequality (4.8) it follows that

P {An} ≤ a−1E {|ξn|} ≤ a−1sup
n

E {|ξn|} < δ

uniformly in n for sufficiently large a that by (6.70) shows that

E {|ξn|χ (|ξn| > a)} = E {|ξn|χ (An)} < ε

uniformly in n. This establishes the uniform integrability. �

In fact this is not a simple task for verifying uniform integrability for some given
sequences. The theorem below gives the convenient and constructive condition sufficient
for guaranteeing uniform integrability.

Theorem 6.11. Let {ξn}n≥1 be a sequence of random variables and g : R → R be a
non-negative increasing function such that

g (t)

t
→∞ as t →∞ (6.71)

If

sup
n

E {g (ξn)} <∞ (6.72)

then {ξn}n≥1 is uniformly integrable.
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Proof. By the assumption of the theorem
g (t)

t
> b for all t > a where a = a(b) is large

enough. Hence, given ε > 0,

E {|ξn|χ (|ξn| ≤ a)} ≤ b−1E {g (ξn) χ (|ξn| ≤ a)}

≤ b−1E {g (ξn)} ≤ b−1sup
n

E {g (ξn)} < ε

independently on ε for a large enough b that proves uniform integrability. �

Corollary 6.6. If for some p > 1

sup
n

E
{
|ξn|

p} <∞ (6.73)

then {ξn}n≥1 is uniformly integrable.

Proof. It results from Theorem 6.11 if we let g (t) := |t |p. �

Now we are ready to answer the question when the convergences in probability
guarantee the convergence in p-mean.

Theorem 6.12. Let ξ and {ξn}n≥1 be random variables. Suppose that ξn
P
→

n→∞
ξ and p >

0. If
{
|ξn|

p}
n≥1 is uniformly integrable, that is,

E
{
|ξn|

p χ (|ξn| > a)
}
→

a→∞
0

uniformly in n, then ξn
L p

→
n→∞

ξ and E
{
|ξn|

p}
→

n→∞
E
{
|ξ |p

}
.

Proof. First notice that if
{
|ξn|

p}
n≥1 is uniformly integrable then

{
|ξn − ξ |

p}
n≥1 is

uniformly integrable too. Indeed, by the inequality (4.30),

|ξn − ξ |
p
≤ 2p (

|ξn|
p
+ |ξ |p

)
and hence,

|ξn − ξ |
p χ (|ξn − ξ | > a) ≤ 2p (

|ξn|
p
+ |ξ |p

)
χ (|ξn − ξ | > a)

≤ 2p max
{
|ξn|

p , |ξ |p
}
χ (2 max {|ξn| , |ξ |} > a)

≤ 2p [
|ξn|

p χ (|ξn| > a/2)+ |ξ |p χ (|ξ | > a/2)
]

Taking expectation and letting a→∞ implies

E
{
|ξn − ξ |

p χ (|ξn − ξ | > a)
}
→

a→∞
0

uniformly in n. Hence one has

E
{
|ξn − ξ |

p}
= E

{
|ξn − ξ |

p χ (|ξn − ξ | ≤ ε)
}

+E
{
|ξn − ξ |

p χ (|ξn − ξ | > ε)
}
≤ ε p

+ E
{
|ξn − ξ |

p χ (|ξn − ξ | > ε)
}
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By Theorem 6.10 and by the assumption on uniform integrability we have

E
{
|ξn − ξ |

p χ (|ξn − ξ | > ε)
}
→

n→∞
0

that means

lim sup
n→∞

E
{
|ξn − ξ |

p}
≤ ε p

By the arbitrariness of ε we have ξn
L p

→
n→∞

ξ . The convergence E
{
|ξn|

p}
→

n→∞
E
{
|ξ |p

}
follows from the inequality∣∣E {|ξn|

p}
− E

{
|ξ |p

}∣∣ ≤ E
{
|ξn − ξ |

p}
→

n→∞
0

that proves the theorem. �

6.4.5.3 When a.s. convergence implies convergence in p-mean

Here also the concept of uniform integrability works.

Theorem 6.13. Let ξ and {ξn}n≥1 be random variables. Suppose that ξn
a.s.
→

n→∞
ξ and p >

0. If
{
|ξn|

p}
n≥1 is uniformly integrable, then ξn

L p .
→

n→∞
ξ and E

{
|ξn|

p}
→

n→∞
E
{
|ξ |p

}
.

Proof. It follows directly from the previous theorem if we take into account that a.s.
convergence implies convergence in probability. �
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The term ‘martingale’ in a non-mathematical context means ‘a horse’s harness’. It also
independently originated in Gambling Theory.1 The first appearance of a martingale as
a mathematical term was due to Ville (1939). The major breakthrough was related in
the classical book ‘Stochastic Processes’ (Doob, 1953). Other more recent books are
by Nevue (1975), Williams (1991) and Liptser and Shiryayev (1989). Martingales are
probably the most inventive and generalized sums of independent random variables with
zero-mean. In some sense they occupy the intermediate place between independent and
dependent sequences. The independence assumption has proved inadequate for handling
contemporary developments in many fields. On the other hand, relevant martingales can
almost always be constructed, for example by devices such as centering by subtracting
conditional mathematical expectations given by past and then summing. Below we will
discuss this construction in detail. But first, to do that mathematically rigorously, we should
start with a conditional mathematical expectation introduction which is a corner-stone in
Martingale Theory.

7.1 Conditional expectation relative to a sigma-algebra

7.1.1 Main definition

In this section we will introduce the so-called, conditional mathematical expectations
with respect to σ -algebras which naturally arise whenever one needs to consider mathe-
matical expectations in relation to increasing information patterns.

Definition 7.1. A random variable η = η (ω), defined on (�,F ,P) and considered
within the equivalence class of random variables,2 is called the conditional mathematical
expectation of a random variable ξ = ξ (ω) (also defined on (�,F ,P)) relative to a
sub-σ -algebra F0 ⊆ F if

1The famous ‘gambling strategy’ is to double one’s stake as long as one loses and leaves as soon as one wins.
This strategy was often called a martingale. Unfortunately, the gambler will have spent an infinite amount of
money ‘on average’ when he (she) finally wins.

2The equivalence class of a random variable is the collection of random variables that differ from this variable
on a null set.

133
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1. η (ω) is F0-measurable, i.e., for any c ∈ R

{ω : η (ω) ≤ c} ∈ F0 (7.1)

2. for any A ∈ F0∫
A

η (ω)P (dω) =
∫
A

ξ (ω)P (dω) (7.2)

The conditional mathematical expectation η (ω) is denoted by

η (ω) = E {ξ/F0} (7.3)

7.1.2 Some properties of conditional expectation

7.1.2.1 Basic properties

The lemma below shows that practically all properties valid for usual (complete)
mathematical expectation remain valid for conditional expectations.

Lemma 7.1. Let ξ and θ be integrable random variables, F0 ⊂ F and c, c1, c2 be real
numbers. The following properties for E {ξ/F0} hold:

1. If ξ
a.s.
= c, then

E {ξ/F0}
a.s.
= c (7.4)

2. If ξ
a.s.
≤ θ , then

E {ξ/F0}
a.s.
≤ E {θ/F0} (7.5)

3.

|E {ξ/F0}|
a.s.
≤ E {|ξ | /F0} (7.6)

4.

E {c1ξ + c2θ/F0}
a.s.
= c1E {ξ/F0} + c2E {θ/F0} (7.7)

5. If ξ ∈ F0 (ξ is measurable with respect to F0), then

E {ξ/F0}
a.s.
= ξ (7.8)
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6. If F0 = F∗ := {∅, �} is the trivial sigma-algebra, then

E {ξ/F∗}
a.s.
= E {ξ} (7.9)

7.

E {E {ξ/F0}} = E {ξ} (7.10)

8. If F0 ⊆ F1 ⊆ F , then the following smoothing property holds:

E {ξ/F0}
a.s.
= E {E {ξ/F0} /F1}

a.s.
= E {E {ξ/F1} /F0}

(7.11)

9. If θ ∈ F0, and such that E {|θ |} <∞, E {|θξ |} <∞, then

E {θξ/F0}
a.s.
= θE {ξ/F0} (7.12)

Proof.

1. As c is always measurable with respect to any sigma algebra F0, it is sufficient to check
that the property (7.2):∫

A

ξ (ω)P (dω) =
∫
A

cP (dω)

which is true for any A ⊂ F0 since ξ
a.s.
= c.

2. As ξ
a.s.
≤ θ then for any A ⊂ F0∫

A

ξ (ω)P (dω) ≤
∫
A

θ (ω)P (dω)

and hence, by (7.2),∫
A

E {ξ/F0}P (dω) =
∫
A

ξ (ω)P (dω)

≤

∫
A

θ (ω)P (dω) =
∫
A

E {θ/F0}P (dω)

Since this inequality is valid for any A ⊂ F0 we obtain (7.5).
3. Taking into account the representation (2.12) we have

|E {ξ/F0}| =
∣∣E {ξ+/F0

}
− E

{
ξ−/F0

}∣∣
a.s.
≤
∣∣E {ξ+/F0

}
+ E

{
ξ−/F0

}∣∣ = |E {|ξ | /F0}| = E {|ξ | /F0}

that proves (7.6).



136 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

4. The formula (7.7) follows from (7.2) and the identity∫
A

E {c1ξ + c2θ/F0}P (dω)
a.s.
=

∫
A

(c1ξ + c2θ)P (dω)

= c1

∫
A

ξP (dω)+ c2

∫
A

θP (dω)

= c1

∫
A

E {ξ/F0}P (dω)+ c2

∫
A

E {θ/F0}P (dω)

valid for any A ⊂ F0.
5. If ξ ∈ F0 then by (7.2)∫

A

E {ξ/F0}P (dω) =
∫
A

ξ (ω)P (dω)

for any A ⊂ F0 that means (7.8).
6. By (7.2) it follows that for any A ⊂ F∗ = {∅, �}∫

A

E {ξ/F∗}P (dω)
a.s.
=

∫
A

ξ (ω)P (dω)

=

∫
A:A=∅

ξ (ω)P (dω)

︸ ︷︷ ︸
0

+

∫
A:A=�

ξ (ω)P (dω)

=

∫
A:A=�

ξ (ω)P (dω) = E {ξ}

and, since the constant E {ξ} is measurable with respect to any F0 (in particular with
respect to F∗), applying the property (7.8) we get

∫
A

E {ξ}P (dω) =
∫
A


∫
A

E {ξ/F∗}P (dω)

P (dω)

=


∫
A

E {ξ/F∗}P (dω)


that implies (7.9).

7. It follows from (7.2) setting A = �.
8. Since E {ξ/F0} ∈ F1 the first equality in (7.11) follows directly from the property (7.8).

Let A ∈ F0; then evidently A ∈ F1. Applying then (7.2) three times we obtain (a.s.)



Martingales 137

for any A ∈ F0 ⊆ F1∫
A∈F0⊆F1

E {E {ξ/F1} /F0}P (dω) =
∫

A∈F0⊆F1

E {ξ/F1}P (dω)

=

∫
A∈F0⊆F1

ξP (dω) =
∫

A∈F0⊆F1

E {ξ/F0}P (dω)

that leads to the second identity in (7.11).
9. Suppose, first, that both θ and ξ are nonnegative. If additionally we assume that θ is a

simple variable, namely, θ = χ (3) where 3 ∈ F0, then by (7.2) we get∫
A∈F0

θE {ξ/F0}P (dω)
a.s.
=

∫
A∩3∈F0

E {ξ/F0}P (dω)

a.s.
=

∫
A∩3∈F0

ξP (dω)
a.s.
=

∫
A∈F0

θξP (dω)

=

∫
A∈F0

E {θξ} /F0P (dω)

which corresponds to (7.12). Then, if {θn, n ≥ 1} is simple random variables such that
θn ↑ θ almost surely whenever n→∞, then one has (a.s.)

θnξ ↑ θξ and θnE {ξ/F0} ↑ θE {ξ/F0}

which, by Theorem 2.3 on monotone approximation, implies (7.12). The general case
follows from the decompositions (2.12), i.e., θ = θ+ − θ− and ξ = ξ+ − ξ−. �

Remark 7.1. By the property (7.6), E {ξ/F0} exists if ξ is integrable, i.e., when E {|ξ |} <
∞.

7.1.2.2 Sigma-algebras generated by a sequence of measurable data

Definition 7.2. A sigma-algebra

Fn := σ (x1, x2, . . . , xn)

constructed from all sets

{ω : xi (ω) ≤ ci , i = 1, 2, . . . , n}

where xi = xi (ω) (i = 1, 2, . . . , n) are random variables, defined on (�,F ,P), and
ci ∈ R are any constants, is called the sigma-algebras generated by a sequence of
measurable data (x1, x2, . . . , xn).
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Evidently

F1 ⊆ F2 ⊆ · · · ⊆ Fn (7.13)

and E {ξ/Fn} ∈ Fn can be treated as a conditional expectation under the given prehistory
(x1, x2, . . . , xn).

Example 7.1. Consider the recursion

xn+1 = Axn + ξn, n = 1, 2, . . . , n f

where
{
ξn, 1 ≤ n ≤ n f

}
is a sequence of integrable random vectors from Rn independent

of (x1, x2, . . . , xn), A ∈ Rn×n is a deterministic matrix and x1 is an integrable random
variable.

(a) If Fn = σ (x1, x2, . . . , xn) then

E {xn+1/Fn}
a.s.
= E {Axn + ξn/Fn}

a.s.
= AE {xn/Fn} + E {ξn/Fn}

a.s.
= Axn + E {ξn}

since xn ∈ Fn and ξn is independent on (x1, x2, . . . , xn);
(b) If Fn = σ (x1, ξ1, ξ2, . . . , ξn) then

E {xn+1/Fn}
a.s.
= E {Axn + ξn/Fn}

a.s.
= Axn + ξn

since xn = Axn−1 + ξn−1 ∈ Fn and ξn ∈ Fn .

7.2 Martingales and related concepts

In this section we will study a class of random sequences for which the dependence
property is defined in terms of conditional mathematical expectations.

7.2.1 Martingales, submartingales and supermartingales

Definition 7.3. A sequence of random variables {xn}n≥1, given on a probability space
(�,F ,P), is said to be adapted to a sequence of increasing σ -algebras {Fn}n≥1, or, in
other words, to the filtration (flow)

F1 ⊆ F2 ⊆ · · · ⊆ Fn ⊆ · · · (7.14)

if xn is Fn measurable, i.e., xn ∈ Fn for every n = 1, 2, . . .. The sequence {xn,Fn}n≥1 of
the pairs is called a stochastic sequence and {Fn}n≥1 – a natural filtration.

Definition 7.4. If a stochastic sequence {xn,Fn}n≥1 has the property

xn ∈ Fn−1 (7.15)

for every n = 1, 2, . . . then it is called a predictable sequence.
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Here is the main definition of this chapter.

Definition 7.5. A stochastic sequence {xn,Fn}n≥1 of absolutely integrable random vari-

ables (such that E {| xn |}
a.s.
< ∞ for all n ≥ 1) is called

(a) a martingale if for all n ≥ 1

E {xn+1 | Fn}
a.s.
= xn (7.16)

(b) a submartingale if

E {xn+1 | Fn}
a.s.
≥ xn (7.17)

(c) a supermartingale if the sequence {−xn,Fn}n≥1 is a submartingale, that is, if

E {xn+1 | Fn}
a.s.
≤ xn (7.18)

(d) a martingale-difference if for all n ≥ 1

E {xn+1 | Fn}
a.s.
= 0 (7.19)

Remark 7.2. Sometimes, the sequences {xn}n≥1 themselves (but not only {xn,Fn}n≥1)
are called martingales, submartingales, supermartingales or martingale-difference if the
properties (7.16), (7.17), (7.18) and (7.19) are fulfilled, respectively.

Based on the properties (see Lemma 7.1) of the conditional mathematical expectation it
follows that the definition equivalent to the previous one is as given below.

Definition 7.6. A stochastic sequence {xn,Fn}n≥1 of absolutely integrable random vari-

ables (such that E {| xn |}
a.s.
< ∞ for all n ≥ 1) is called

(a) a martingale if for all A ⊂ Fn and all n ≥ 1∫
A

xn+1 (ω)P (dω) =
∫
A

xn (ω)P (dω) (7.20)

or, equivalently,∫
A

xn (ω)P (dω) =
∫
A

xm (ω)P (dω) , 0 ≤ m ≤ n (7.21)
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(b) a submartingale if for all A ⊂ Fn and all n ≥ 1∫
A

xn+1 (ω)P (dω) ≥
∫
A

xn (ω)P (dω) (7.22)

or, equivalently,∫
A

xn (ω)P (dω) ≥
∫
A

xm (ω)P (dω) , 0 ≤ m ≤ n (7.23)

(c) a supermartingale if the sequence {−xn,Fn}n≥1 is a submartingale, that is, if for all
A ⊂ Fn and all n ≥ 1∫

A

xn+1 (ω)P (dω) ≤
∫
A

xn (ω)P (dω) (7.24)

or, equivalently,∫
A

xn (ω)P (dω) ≤
∫
A

xm (ω)P (dω) , 0 ≤ m ≤ n (7.25)

(d) a martingale-difference if for all A ⊂ Fn and all n ≥ 1∫
A

xn (ω)P (dω) = 0 (7.26)

7.2.2 Some examples

Example 7.2.

(a) Consider a sequence {ξn}n≥1 of independent integrable random variables ξn with zero-
mean. Define Fn = σ (ξ1, . . . , ξn) and

Sn :=

n∑
t=1

ξt (7.27)

Then {Sn,Fn}n≥1 is a martingale. Indeed,

E {Sn+1 | Fn} = E {Sn + xn+1 | Fn}

a.s.
= Sn + E {xn+1} = Sn
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(b) If additionally E
{
ξ2

t

}
= σ 2

t (t = 1, . . . , n) then {xn,Fn}n≥1 with

xn := S2
n − s2

n , s2
n :=

n∑
t=1

σ 2
t

is a martingale too since

E {xn+1 | Fn} = E
{

S2
n+1 − s2

n+1 | Fn

}
= E

{
S2

n + 2Snξn+1 + ξ
2
n+1 − s2

n − σ
2
n+1 | Fn

}
a.s.
=

(
S2

n − s2
n

)
+ 2SnE {ξn+1 | Fn} + E

{
ξ2

n+1 | Fn

}
− σ 2

n+1

= xn + 2SnE {ξn+1} + E
{
ξ2

n+1

}
− σ 2

n+1 = xn

(c) {xn,Fn}n≥1 with

xn :=
et Sn

n∏
k=1

ψk (t)
=

n∏
k=1

etξk

ψk (t)
, ψk (t) := E

{
etξk

}
, t ∈ R

is called an exponential martingale since

E {xn+1 | Fn} = E

{
n+1∏
k=1

(
etξk

ψk (t)

)
| Fn

}

= E

{
n∏

k=1

(
etξk

ψk (t)

)
etξn+1

ψn+1 (t)
| Fn

}
a.s.
= xnE

{
etξn+1

ψn+1 (t)
| Fn

}
= xnE

{
etξn+1

ψn+1 (t)

}
= xn

Example 7.3. If {ξn,Fn}n≥1 is a martingale-difference and {yn}n≥1 is Fn-predictable, i.e.,
yn ∈ Fn−1, then {xn,Fn}n≥1 with

xn :=

n∑
t=1

ξt yt

is a martingale because of the relation

E {xn+1 | Fn} = E {xn + ξn+1 yn+1 | Fn}

a.s.
= xn + yn+1E {ξn+1 | Fn} = xn

Example 7.4. If
{
ξ ′n,Fn

}
n≥1 and

{
ξ ′′n ,Fn

}
n≥1 are both submartingales (martingales or

supermartingales) then {xn,Fn}n≥1 where

xn = c′ξ ′n + c′′ξ ′′n with c′, c′′ ≥ 0
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is a submartingale (martingale or supermartingale). Indeed, in the case of submartingales
we have

E {xn+1 | Fn} = E
{
c′ξ ′n+1 + c′′ξ ′′n+1 | Fn

}
= c′E

{
ξ ′n+1 | Fn

}
+ c′′E

{
ξ ′′n+1 | Fn

}
a.s.
≥ c′ξ ′n + c′′ξ ′′n = xn

Other cases (martingales or supermartingales) are proved analogously.

Example 7.5. If
{
ξ ′n,Fn

}
n≥1 and

{
ξ ′′n ,Fn

}
n≥1 are both martingales then {xn,Fn}n≥1 is

(a) a submartingale if

xn := max
{
ξ ′n, ξ

′′
n

}
(b) a supermartingale if

xn := min
{
ξ ′n, ξ

′′
n

}
Indeed, since

max
{
ξ ′n+1, ξ

′′

n+1

}
≥ ξ ′n+1, max

{
ξ ′n+1, ξ

′′

n+1

}
≥ ξ ′′n+1

it follows that

E {xn+1 | Fn} = E
{
max

{
ξ ′n+1, ξ

′′

n+1

}
| Fn

}
≥ E

{
ξ ′n+1 | Fn

} a.s.
= ξ ′n

and

E {xn+1 | Fn} = E
{
max

{
ξ ′n+1, ξ

′′

n+1

}
| Fn

}
≥ E

{
ξ ′′n+1 | Fn

} a.s.
= ξ ′′n

Therefore,

E {xn+1 | Fn}
a.s.
≥ max

{
ξ ′n, ξ

′′
n

}
= xn

Analogously, for xn := min
{
ξ ′n, ξ

′′
n

}
it follows

E {xn+1 | Fn}
a.s.
≤ min

{
ξ ′n, ξ

′′
n

}
= xn

Example 7.6. If g∪ : R → R is a convex function and {xn,Fn}n≥1 is a martingale such
that E {|g∪ (xn)|} < ∞ then {g∪ (xn) ,Fn}n≥1 is a submartingale since, by the Jensen
inequality, it follows that

E {g∪ (xn+1) | Fn}
a.s.
≥ g∪ (E {xn+1 | Fn})

a.s.
= g∪ (xn)

For example, this is true if

g∪ (x) = |x |
r , r ≥ 1 (7.28)
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7.2.3 Decompositions of submartingales and quadratic variation

7.2.3.1 Doob’s decomposition

Theorem 7.1. (Doob, 1953) Any submartingale {xn,Fn}n≥0 can be uniquely decom-
posed into a sum of a martingale {Mn,Fn}n≥0 and a predictable non-decreasing process
{An,Fn−1}n≥0 (F−1 := F0, A0 = 0), i.e.,

xn = Mn + An, n ≥ 0

An ∈ Fn−1, An+1 ≥ An

(7.29)

Proof. Since A0 = 0 let M0 = x0 and

Mn = M0 +

n−1∑
j=0

(
x j+1 − E

{
x j+1 | F j

})
An = xn − Mn =

n−1∑
j=0

(
E
{

x j+1 | F j
}
− x j

) (7.30)

Evidently {Mn,Fn}n≥0 is a martingale. Indeed,

E {Mn | Fn−1} = E {Mn−1 + (xn − E {xn | Fn−1}) | Fn−1}
a.s.
= Mn−1

It is evident also that {An,Fn−1}n≥0 is a predictable process since

An =

n−1∑
j=0

(
E
{

x j+1 | F j
}
− x j

)
∈ Fn−1

Let us prove that {An}n≥0 is a non-decreasing sequence. One has

An+1 − An = (xn+1 − xn)− (Mn+1 − Mn)

= (xn+1 − xn)− (xn+1 − E {xn+1 | Fn})

= E {xn+1 | Fn} − xn
a.s.
≥ 0

by the submartingale property. This proves the existence of the decomposition. It remains
to prove the uniqueness. Suppose that there exists another decomposition xn = M ′n + A′n .
Then

A′n+1 − A′n = E
{

A′n+1 − A′n | Fn
}

= E
{
(xn+1 − xn)−

(
M ′n+1 − M ′n

)
| Fn

}
= E {xn+1 | Fn} − xn −

(
E
{

M ′n+1 | Fn
}
− M ′n

)
= E {xn+1 | Fn} − xn = An+1 − An

Taking into account that A0 = A′0 = 0 we obtain the uniqueness. Theorem is proven. �

Remark 7.3. From the decomposition (7.29) it follows that the sequence {An,Fn−1}n≥0
compensates {xn,Fn}n≥0 so that it becomes a martingale {Mn,Fn}n≥0. That is why
{An,Fn−1}n≥0 is called a predictable compensator of the submartingale {xn,Fn}n≥0.
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7.2.3.2 Quadratic variation of a martingale

Consider a square integrable martingale {Mn,Fn}n≥0 (E {Mn} <∞, n ≥ 0). Notice that
the sequence

{
M2

n ,Fn
}

n≥0 is a submartingale since, by the Jensen inequality,

E
{

M2
n+1 | Fn

} a.s.
≥ (E {Mn+1 | Fn})

2
= M2

n

Therefore, by Theorem 7.1 it follows that there exists a martingale {mn,Fn}n≥0 such that

M2
n = mn + 〈M〉n (7.31)

where the sequence
{
〈M〉n ,Fn−1

}
n≥0 is a predictable non-decreasing sequence.

Definition 7.7. The predictable non-decreasing sequence
{
〈M〉n ,Fn−1

}
n≥0 satisfying

(7.31) is called the quadratic variation of {Mn,Fn}n≥0.

This definition is justified by the following property.

Lemma 7.2. For a square integrable martingale {Mn,Fn}n≥0 one has

〈M〉n =
n∑

j=1

E
{(
1M j

)2
| F j−1

}
1M j := M j − M j−1

(7.32)

Proof. Indeed, from (7.30) it follows that

〈M〉n =
n−1∑
j=0

(
E
{

M2
j+1 | F j

}
− M2

j

)
=

n−1∑
j=0

E
{

M2
j+1 − M2

j | F j

}

=

n−1∑
j=0

E
{

M2
j+1 − 2M j+1 M j + M2

j | F j

}
=

n−1∑
j=0

E
{(

M j+1 − M j
)2
| F j

}
which proves the desired result. �

Example 7.7. If Mn =
n∑

t=1
ξt (M0 = 0) where {ξn}n≥1 is square integrable

(
E
{
ξ2

t

}
=

σ 2
t <∞

)
independent zero-mean (E {ξt } = 0) random variable, then

〈M〉n =
n∑

t=1

σ 2
t (7.33)



Martingales 145

Indeed,

〈M〉n =
n−1∑
j=0

E
{

M2
j+1 − M2

j | F j

}
=

n−1∑
j=0

(
E
{

M2
j+1

}
− E

{
M2

j

})
= E

{
M2

n

}
− E

{
M2

0

}
= E

{
M2

n

}
=

n∑
t=1

E
{
ξ2

t

}
=

n∑
t=1

σ 2
t

Example 7.8. If Mn =
∑n

t=1 ξt (M0 = 0) and Nn =
∑n

t=1 ηt (N0 = 0) where {ξn}n≥1
and {ηn}n≥1 are square integrable martingale-differences, that is,

E {ξt | Ft−1} = E {ηt | Ft−1}
a.s.
= 0

E
{
ξ2

t | Ft−1
} a.s.
< ∞, E

{
η2

t | Ft−1
}
∞

then for the random variable 〈M, N 〉 defined by

〈M, N 〉 :=
1
4
(〈M + N 〉n − 〈M − N 〉n) (7.34)

the following property holds:

〈M, N 〉 =
n∑

t=1

E {ξtηt | Ft−1} (7.35)

Indeed, using the relations of the previous example, it follows

〈M, N 〉 =
1
4
(〈M + N 〉n − 〈M − N 〉n)

=
1
4

n−1∑
j=0

E
{(

M j+1 + N j+1
)2
−
(
M j + N j

)2
−
(
M j+1 − N j+1

)2
+
(
M j − N j

)2
| F j

}
=

1
4

(
n−1∑
j=0

E
{
4M j+1 N j+1 − 4M j N j | F j

})

=

n−1∑
j=0

E
{

M j+1 N j+1 − M j N j | F j
}

=

n−1∑
j=0

E
{(

M j + ξ j+1
) (

N j + η j+1
)
− M j N j | F j

}
=

n−1∑
j=0

E
{

M jη j+1 + ξ j+1η j+1 + ξ j+1 N j | F j
}
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=

n−1∑
j=0

(
M jE

{
η j+1 | F j

}
+ N jE

{
ξ j+1 | F j

}
+ E

{
ξ j+1η j+1 | F j

})
=

n−1∑
j=0

E
{
ξ j+1η j+1 | F j

}
7.2.4 Markov and stopping times

In this subsection we will consider the properties of the conditional mathematical
expectation taken with respect to a sigma-algebra at a random time (defined by a random
event depending on a prehistory of the process). We also will discuss the conditions when
the preservation of the martingale property takes place under time-change at a random time.

7.2.4.1 Definition of a Markov and stopping times

Definition 7.8. A random variable τ = τ (ω) defined on (�,F ,P) and taking values in
the set N := {0, 1, . . .} is called a Markov time with respect to a σ -algebra Fn (or, in other
words, a random variable independent of the future) if for each n ∈ N

{τ = n} ∈ Fn (7.36)

If, additionally,

P {ω : τ (ω) <∞} = 1 (7.37)

then this Markov time is called a stopping time.

For any stochastic sequence {xn,Fn}n≥0 and a Markov time τ (with respect to a
σ -algebra Fn) we can represent xτ as

xτ =
∞∑

n=0

xnχ (τ (ω) = n) (7.38)

Proposition 7.1. Obviously by (7.38)

xτ = 0

on the set

{ω : τ (ω) = ∞}

The following lemma clarifies the definition above and gives a criterion when a random
time is, in fact, a Markov time.

Lemma 7.3. A random time τ = τ (ω) is a Markov time if and only if one of the two
properties holds: for all n ∈ N

{τ ≤ n} ∈ Fn

{τ > n} ∈ Fn
(7.39)
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Proof. It results directly from the relations

{τ ≤ n} =
n⋃

k=0

{τ ≤ k}

{τ = n} = {τ ≤ n}r {τ ≤ n − 1}

{τ > n} = {τ ≤ n}c �

Example 7.9. The typical stopping times are first entrance times, that is, the first time of a
‘random walk’ when the random trajectory reaches a certain region. Formally, this can be
written as

τB := inf {n ∈ N : xn ∈ B} (7.40)

where {xn,Fn}n≥0 is a stochastic sequence and B ∈ B (R).

The next definition will be central in this subsection.

Definition 7.9. Every system {Fn}n≥0 and the corresponding Markov time τ generates
together a collection of sets

Fτ := {A ∈ F∞ : A ∩ {τ = n} ∈ Fn for all n ∈ N} (7.41)

which is called the pre-τ -sigma-algebra.

Proposition 7.2. Fτ is a σ -algebra.

Proof. To prove it we have to show that � complements countable unions of sets from Fτ

belonging to Fτ . Evidently � ∈ Fτ and Fτ is closed under countable unions. Moreover, if
A ∈ Fτ then

Ac
∩ {τ = n} = {�r A} ∩ {τ = n}

= (� ∩ {τ = n})r (A ∩ {τ = n})

= {τ = n}r (A ∩ {τ = n}) ∈ Fτ

and therefore Ac
∈ Fτ . Hence, Fτ is a σ -algebra. �

7.2.4.2 Stopping times properties

The next proposition gives some general facts on stopping times.

Proposition 7.3. If τ is a Markov (stopping) time then the following facts are true:

1. every positive integer k is a Markov (stopping) time;
2. if τ = k then Fτ = Fk;
3. Fτ ⊂ F∞, τ ∈ Fτ and τ ∈ F∞;
4. {τ = +∞} ∈ F∞
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Proof. Suppose τ = k. We have

{τ = n} = �χ (n = k)+ ∅χ (n 6= k)

that proves 1 since both � and ∅ belong to Fn . For A ∈ F∞ we have

A ∩ {τ = n} = Aχ (n = k)+ ∅χ (n 6= k)

that in view of (7.41) proves 2. As Fτ are defined as sets of F∞ it follows that Fτ ⊂ F∞.
For all integers m and n

{τ = m} ∩ {τ = n} = {τ = n}χ (m = n)+ ∅χ (n 6= k) ∈ Fn

that implies {τ = m} ∈ Fτ . This exactly means that τ ∈ Fτ . The fact τ ∈ F∞ results from
the previous two. The fact 4 follows from the observation that

{τ = +∞} =

(⋃
n
{τ = n}

)c

∈ F∞

Proposition is proven. �

The following lemma (Gut, 2005) concerns the relation between Markov times and their
convergent sequences.

Lemma 7.4. If τ , τ1 and τ2 are Markov times then the following properties hold:

1. τ1 + τ2, min {τ1, τ2} and max {τ1, τ2} are Markov times;
2. τM := min {τ,M} is a Markov time (evidently, bounded);
3. τ1 − τ2 is not a Markov time;
4. if {τk}k≥1 are Markov (stopping) times then so are

∑
k≥1

τk , min
k
{τk} and max

k
{τk};

5. if {τk}k≥1 are Markov (stopping) times then τk ↑ τ and τk ↓ τ are stopping times too;
6. if A ∈ Fτ1 then

A ∩ {τ1 ≤ τ2} ∈ Fτ2

7. if τ1 ≤ τ2 then

Fτ1 ⊆ Fτ2

Proof.

1. For all n ∈ N in view of Lemma 7.3 we have

{τ1 + τ2 = n} =
n⋃

k=0

({τ1 = k} ∩ {τ2 = n − k}) ∈ Fn

{min {τ1, τ2} > n} = {τ1 > n} ∩ {τ2 > n} ∈ Fn

{max {τ1, τ2} ≤ n} = {τ1 ≤ n} ∩ {τ2 ≤ n} ∈ Fn

that proves the first item.
2. Since M is a Markov (evidently, stopping) time and τM ≤ M it follows that τM is a

stopping time too.
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3. τ1 − τ2 is not a Markov time since it may be negative.
4. The result follows by deduction from 1.
5. It results from monotonicity since

{τ = n} =
⋂

k

{τk = n} ∈ Fn

{τ = n} =
⋃

k

{τk = n} ∈ Fn

respectively.
6. We have

A ∩ {τ1 ≤ τ2} ∩ {τ2 = n} = (A ∩ {τ1 ≤ n}) ∩ {τ2 = n} ∈ Fn

that proves the item.
7. Since

A ∩ {τ2 = n} = (A ∩ {τ1 ≤ n})︸ ︷︷ ︸
∈Fτ1

∩ {τ2 = n} ∈ Fτ2

we get the item. �

7.2.4.3 Theorems on martingale properties for stopping times

The next question seems to be natural: if {xn,Fn}n≥0 is a martingale and τ1
a.s.
≤ τ2

are both stopping times, is it true that E
{

xτ2 | Fτ1

} a.s.
= xτ1? The theorem given below

describes the typical situation when this is true.

Theorem 7.2. (Doob, 1953) Let {xn,Fn}n≥0 be a martingale (or submartingale) and

τ1
a.s.
≤ τ2 (7.42)

are both stopping times for which

E
{∣∣xτi

∣∣} <∞, i = 1, 2 (7.43)

and

lim inf
n→∞

∫
{τ1>n}

|xn| dP = 0 (7.44)

Then in the martingale case

E
{

xτ2 | Fτ1

} a.s.
= xτ1 (7.45)
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and in the submartingale case

E
{

xτ2 | Fτ1

} a.s.
≥ xτ1 (7.46)

Proof. It is sufficient to show that for any A ∈ Fτ1 with probability 1 we have∫
A∩{τ1≤τ2}

xτ2dP=
(≥)

∫
A∩{τ1≤τ2}

xτ1dP

In turn, to demonstrate this it is sufficient to show that for any n ≥ 0 and B :=
A ∩ {τ1 = n} ∈ Fn with probability 1∫

B∩{τ2≥n}

xτ2dP=
(≥)

∫
B∩{τ2≥n}

xτ1dP =

∫
B∩{τ2≥n}

xndP (7.47)

In fact, we have∫
B∩{τ2≥n}

xndP =

∫
B∩{τ2=n}

xndP+

∫
B∩{τ2>n}

xndP
a.s.
=

∫
B∩{τ2=n}

xτ2dP

+

∫
B∩{τ2>n}

E {xn+1 | Fn} dP

a.s.
=

∫
B∩{τ2=n}

xτ2dP+

∫
B∩{τ2>n+1}

xn+1dP

=
(≤)

∫
B∩{n≤τ2≤n+1}

xτ2dP+

∫
B∩{τ2≥n+2}

xn+2dP

=
(≤)
· · · =

(≤)

∫
B∩{n≤τ2≤m}

xτ2dP+

∫
B∩{τ2≥m}

xmdP

Hence, ∫
B∩{n≤τ2≤m}

xτ2dP=
(≥)

∫
B∩{τ2≥n}

xndP−

∫
B∩{τ2≥m}

xmdP

and ∫
B∩{n≤τ2}

xτ2dP =
(≥)

lim sup
m→∞

 ∫
B∩{τ2≥n}

xndP−

∫
B∩{τ2≥m}

xmdP


=

∫
B∩{τ2≥n}

xndP− lim inf
m→∞

∫
B∩{τ2≥m}

xmdP =

∫
B∩{τ2≥n}

xndP
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in view of the assumption (7.44) and the presentation xm = 2x+m − |xm |. So, (7.47) is
established that proves (7.45) and (7.46). �

Corollary 7.1. Under the assumptions of Theorem 7.2 the following relations hold:

E
{

xτ2

}
=
(≥)

E
{

xτ1

}
(7.48)

Proof. It results from (7.45) and (7.46) taking the mathematical expectation of both
sides. �

The following properties can be easily checked.

Corollary 7.2.

1. If the random variables {xn}n≥0 are uniformly integrable (see (6.32)), or, in particular,
if

|xn| ≤ C <∞ for all n ≥ 0 (7.49)

then the conditions (7.43) and (7.44) are satisfied.
2. If there exists a constant N such that

P {τ1 ≤ N } = P {τ2 ≤ N } = 1 (7.50)

then the conditions (7.43) and (7.44) are satisfied too. Hence, if, in addition, P {τ1 ≤ τ2}

≤ 1 and {xn,Fn}n≥0 is a martingale (or submartingale) then

E {xN } =
(≥)

E
{

xτ2

}
=
(≥)

E
{

xτ1

}
=
(≥)

E {x0} (7.51)

3. If {xn,Fn}n≥0 is a martingale (or submartingale) and τ is a stopping time then for

τ ∧ n := min {τ, n} (7.52)

it follows that

E {xτ∧n} =
(≥)

E {xn} (7.53)

The following proposition is often used in various applications.

Theorem 7.3. (Shiryayev, 1984) Let {xn,Fn}n≥0 be a martingale (or submartingale)
and τ be a stopping time such that

1.

E {τ } <∞ (7.54)
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2. for some n ≥ 0 and for some constant C

E {|xn+1 − xn| | Fn} ≤ C
({
τ

a.s.
≥ n

})
(7.55)

Then both

E {|xτ |} <∞ (7.56)

and

E {xτ } =
(≥)

E {x0} (7.57)

Proof. To state the result it is sufficient to verify that the hypotheses (7.43) and (7.44) of
Theorem 7.2 are satisfied with τ2 = τ . Define

y0 := |x0| , yk := |xk − xk−1| for k ≥ 1

Then

|xτ | =

∣∣∣∣∣ τ∑
k=1

(xk − xk−1)+ x0

∣∣∣∣∣ ≤ τ∑
k=1

|xk − xk−1| + |x0| =

τ∑
k=0

yk

and

E {|xτ |} ≤ E

{
τ∑

k=0

yk

}
=

∫
�

(
τ∑

k=0

yk

)
dP =

∞∑
n=0

∫
{τ=n}

(
n∑

k=0

yk

)
dP

=

∞∑
n=0

n∑
k=0

∫
{τ=n}

ykdP =
∞∑

k=0

∞∑
n=k

∫
{τ=n}

ykdP =
∞∑

k=0

∫
{τ≥k}

ykdP

But

{τ ≥ k} = � \ {τ < k} ∈ Fk−1

and therefore for k ≥ 1∫
{τ≥k}

ykdP =

∫
{τ≥k}

E {yk | Fk−1} dP ≤ CP {τ ≥ j}

Hence,

E {|xτ |} ≤ E

{
τ∑

k=0

yk

}
≤ E {|x0|} + E

{
τ∑

k=1

yk

}

= E {|x0|} + C
∞∑

k=1

P {τ ≥ j} = E {|x0|} + CE {τ } <∞ (7.58)
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Moreover, if τ ≥ n then
∑n

k=1 yk ≤
∑τ

k=1 yk and therefore

∫
{τ>n}

|xn| dP ≤

∫
{τ>n}

∣∣∣∣∣ n∑
k=1

(xk − xk−1)+ x0

∣∣∣∣∣ dP

≤

∫
{τ>n}

(
n∑

k=1

|xk − xk−1| + |x0|

)
dP

=

∫
{τ>n}

n∑
k=0

ykdP ≤

∫
{τ>n}

τ∑
k=0

ykdP

By (7.58) we obtain that E
{∑τ

k=0 yk
}
<∞ and whereas n →∞ it follows {τ > n} ↓ ∅

by the dominated convergence theorem yields

lim inf
n→∞

∫
{τ>n}

|xn| dP ≤ lim inf
n→∞

∫
{τ>n}

τ∑
k=0

ykdP = 0

Hence both conditions (7.43) and (7.44) of Theorem 7.2 are fulfilled, which completes the
proof. �

7.2.4.4 Stopped martingale

Theorem 7.4. If {xn,Fn}n≥0 is a martingale (or submartingale) and τ is stopping time
then {xτ∧n,Fn}n≥0 is a martingale (or submartingale) too and called the stopped martin-
gale (submartingale).

Proof. We have

xτ∧(n+1) = xτχ (τ < n)+ xnχ (τ ≥ n)

=

n−1∑
k=1

xkχ (τ = k)+ xnχ (τ ≥ n) ∈ Fn

since each term in the right-hand side of the last inequality is Fn-measurable. Hence,

E
{

xτ∧(n+1) | Fn
}
=

n∑
k=1

E {xkχ (τ = k) | Fn}

+E {xn+1χ (τ ≥ n + 1) | Fn}

=

n∑
k=1

xkχ (τ = k)+ E {xn+1χ (τ > n) | Fn}

=

n∑
k=1

xkχ (τ = k)+ χ (τ > n)E {xn+1 | Fn}
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a.s.
=
(≥)

n∑
k=1

xkχ (τ = k)+ χ (τ > n) xn

=

n−1∑
k=1

xkχ (τ = k)+ χ (τ ≥ n) xn = xτ∧n

that completes the proof. �

Corollary 7.3. In the case when {xn,Fn}n≥0 is a supermartingale and τ is stopping time
it follows that {xτ∧n,Fn}n≥0 is a stopped supermartingale, that is,

E
{

xτ∧(n+1) | Fn
} a.s.
≤ xτ∧n (7.59)

Proof. It is similar to that of Theorem 7.4. �

7.2.4.5 Wald’s identities

Theorem 7.5. (Wald, 1947) Let {ξn}n≥0 be independent identically distributed random
variables with E {|ξn|} < ∞, E {ξn} = µ and τ be a stopping time (with respect to Fn =

σ (ξ1, ξ2, . . . , ξn)) with E {τ } <∞. Then

E {ξ1 + ξ2 + · · · + ξτ } = µE {τ } (7.60)

If, additionally, E
{
ξ2

n

}
= σ 2 <∞ then

E
{

[(ξ1 + ξ2 + · · · + ξτ )− µE {τ }]2
}
= (var ξ1)E {τ } (7.61)

Proof. Evidently {xn,Fn}n≥0 with xn = (ξ1 + ξ2 + · · · + ξτ ) − µE {τ } is a martingale
such that

E {|xn+1 − xn| | Fn} = E {|ξn+1 − E {ξ1}| | Fn}

a.s.
= E {|ξn+1 − E {ξ1}|} ≤ 2E {|ξ1|} <∞

Then by Theorem 7.3 E {xτ } = E {x0} = 0 proves (7.60). Similar considerations applied
to the martingale {yn,Fn}n≥0 with yn = x2

n − nvar ξ1 lead to (7.61). Theorem is proven.�

Corollary 7.4. If τ is independent of {ξn}n≥0 and var τ <∞ then

var (ξ1 + ξ2 + · · · + ξτ ) = σ
2E {τ } + µ2var τ (7.62)

Proof. The result follows directly from the definition (3.21) of the variance and
Theorem 7.5. �
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Theorem 7.6. (Wald’s Fundamental identity (Wald, 1947)) Let {ξn}n≥0 be independent
identically distributed random variables, Sn = ξ1+ ξ2+· · ·+ ξn be a partial sum (n ≥ 1),
and ϕ (t) := E

{
etξn

}
, t ∈ R and ϕ (t0) exist for some t0 6= 0 such that ϕ (t0) ≥ 1. If τ ≥ 1

is a stopping time (with respect to Fn = σ (ξ1, ξ2, . . . , ξn)); then

E

{
etξn

[ϕ (t0)]τ

}
= 1 (7.63)

Proof. Define yn := et Sn [ϕ (t0)]−n . It is easy to check that {yn,Fn}n≥0 is a martingale
with E {yn} = 1. Hence on the set {τ ≥ n} we have

E {|yn+1 − yn| | Fn} = ynE

{∣∣∣∣etξn+1

ϕ (t0)
− 1

∣∣∣∣ | Fn

}
a.s
= ynE

{∣∣∣∣etξn+1

ϕ (t0)
− 1

∣∣∣∣} ≤ Const <∞

So, Theorem 7.3 is applicable which leads to (7.63). Theorem is proven. �

Example 7.10. (Shiryayev, 1984) Let {ξn}n≥0 be independent Bernoulli random vari-
ables with

P {ξn = 1} = p and P {ξn = −1} = q

Let also Sn = ξ1 + ξ2 + · · · + ξn and

τ := inf {n ≥ 1 : Sn = B or Sn = A}

where B and (−A) are positive integers. Denote

α = P {Sn = A} and β = P {Sn = B}

so that

α + β = 1 (7.64)

It is not difficult to show that P {τ <∞} = 1 and E {τ } <∞. Consider two cases.

1. The case p = q = 1/2 : from (7.61) it follows that

E {Sn} = αA + βB = µE {τ } = 0 since µ = 0

that together with (7.64) implies

α =
B

B + |A|
, β =

|A|

B + |A|
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2. The case p 6= q (p > 0): notice that
{
(q/p)Sn ,Fn

}
n≥0 with Fn = σ (ξ1, ξ2, . . . , ξn)

is a martingale. Indeed,

E
{
(q/p)Sn+1 | Fn

}
= E

{
(q/p)Sn (q/p)ξn+1 | Fn

}
a.s.
= (q/p)Sn E

{
(q/p)ξn+1 | Fn

}
= (q/p)Sn

[
(q/p) p + (q/p)−1 q

]
= (q/p)Sn

So,

E
{
(q/p)Sτ

}
= E

{
(q/p)ξ1

}
=

[
(q/p) p + (q/p)−1 q

]
= 1

and therefore

α (q/p)A
+ β (q/p)B

= 1

that together with (7.64) yields

α =
[
(q/p)B

− 1
] [
(q/p)B

− (q/p)|A|
]−1

β =
[
1− (q/p)|A|

] [
(q/p)B

− (q/p)|A|
]−1

(7.65)

Finally, by (7.61) one finds

E {Sn} = (p − q)E {τ } = 0

that leads to the expression

E {τ } =
E {Sn}

p − q
=
αA + βB

p − q

where α and β are given by (7.65).

7.3 Main martingale inequalities

Let {xn,Fn}n≥0 be a stochastic sequence. Define

xmax
n := max

j=1,...,n
x j , x∗n := max

j=1,...,n

∣∣x j
∣∣ (7.66)

and

‖xn‖L p :=
(
E
{
|xn|

p})1/p (7.67)

Notice that, evidently,

‖xn‖L p ≤
∥∥x∗n

∥∥
L p

(7.68)
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7.3.1 Doob’s inequality of the Kolmogorov type

Here we present the inequalities of the Kolmogorov type but derived for martingales and
submartingales.

Theorem 7.7. (Doob, 1953)

1. Suppose {xn,Fn}n≥0 is a submartingale. Then for any ε > 0 and all integers n ≥ 0

εP
{

xmax
n > ε

}
≤

∫
{ω:xmax

n >ε}

xndP ≤ E
{

x+n
}
≤ E {|xn|} (7.69)

2. If {xn,Fn}n≥0 is a martingale then for any ε > 0 and all integers n ≥ 0

εP
{

x∗n > ε
}
≤

∫
{ω: xmax

n >ε}

|xn| dP ≤ E {|xn|} (7.70)

Proof. Define

τ := min
k
{k : xk > ε}

and

3n :=
{
ω : xmax

n > ε
}
= {ω : xτ∧n > ε}

By Theorem 7.4 the submartingale property is preserved for {xτ∧n,Fn}n≥0 and since
3n ∈ Fn we have

εP
{

xmax
n > ε

}
≤

∫
{ω:xmax

n >ε}

xτ∧ndP ≤

∫
{ω:xmax

n >ε}

xndP

=

∫
�

xnχ
{
ω : xmax

n > ε
}

dP ≤

∫
�

xnχ
{
ω : xmax

n ≥ 0
}

dP

=

∫
�

max {xn; 0} = E
{

x+n
}
≤ E {|xn|}

that proves (7.69). The inequality (7.70) follows from (7.69) since

(a) {|xn| ,Fn}n≥0 is a submartingale because of the relation

E {|xn+1| | Fn} ≥ E {xn+1 | Fn}
a.s.
= xn

which implies

E {|xn+1| | Fn} = |E {|xn+1| | Fn}| ≥ |xn|
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(b)
{

x∗n ,Fn
}

n≥0 is a submartingale because of the relation

x∗n+1 ≥ x∗n

Theorem is proven. �

Corollary 7.5. Let {xn,Fn}n≥0 be a p-integrable martingale (p ≥ 1). Then {|xn|
p,Fn}n≥0

is a submartingale and

P
{

x∗n > ε
}
≤ ε−pE

{
|xn|

p} (7.71)

Proof. Since a conditional mathematical expectation is a Lebesgue integral (with respect
to a conditional measure) the Jensen inequality (4.19) is also valid. Therefore, in view of
the martingale property ({|xn| ,Fn}n≥0 is a submartingale), it follows that

E
{
|xn+1|

p
| Fn

}
≥ (E {|xn+1| | Fn})

p a.s.
≥ |xn|

p

So,
{
|xn|

p ,Fn
}

n≥0 is a submartingale too. Hence, applying directly (7.70) we get

P
{

x∗n > ε
}
= P

{
max

j=1,...,n

∣∣x j
∣∣p
> ε p

}
≤ ε−pE

{
|xn|

p}
that proves (7.71). �

Corollary 7.6. If in the previous corollary xn := Sn =
n∑

k=1
ξk where {ξn}n≥0 is a sequence

of independent random variables with E {ξk} = 0 and var ξk = E
{
ξ2

k

}
< ∞, then

{xn,Fn}n≥0 is a martingale and the inequality (7.71) becomes

P

{
max
k=1,n
|Sk | > ε

}
≤ ε−2E

{
S2

n

}
= ε−2

n∑
k=1

var ξk

that coincides with the Kolmogorov inequality (4.38).

7.3.2 Doob’s moment inequalities

The inequalities below relate moments of maxima to moments of the last element in a
finite sequence. But first, let us prove the following auxiliary result.

Lemma 7.5. Let x and y be non-negative random variables such that

P {y > v} ≤ v−1
∫

{ω:y≥v}

xdP, v pP {y > v} →
v→∞

0 for p ≥ 1 (7.72)
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then

E {y p} ≤


(

p

p − 1

)p

E {x p} if p > 1

e

e − 1

[
1+ E

{
x log+ (x)

}]
if p = 1

(7.73)

Proof. Let q satisfy p−1
+ q−1

= 1.
(a) Consider the case p > 1. We have

E
{

y p}
=

∞∫
v=0

v pdP {y ≤ v} =

∞∫
v=0

v pd (1− P {y > v})

= −

∞∫
v=0

v pdP {y > v} = −v pP {y > v} |v=∞v=0 +

∞∫
v=0

P {y > v} dv p

=

∞∫
v=0

P {y > v} dv p
= p

∞∫
v=0

v p−1P {y > v} dv

≤ p

∞∫
v=0

v p−2

 ∫
{ω:y≥v}

xdP

 dv = p
∫
�

x

 y∫
v=0

v p−2dv

 dP

=
p

p − 1
E
{

xy p−1
}

Applying then the Hölder inequality (13.73) we get

E
{

y p}
≤

p

p − 1
E
{

xy p−1
}

≤
p

p − 1
‖x‖L p

∥∥∥y p−1
∥∥∥

Lq
=

p

p − 1
‖x‖L p

‖y‖p−1
L p

(b) If ‖y‖L p
= 0, obviously, (7.73) holds. If not, the division of the last inequality by

‖y‖p−1
L p

completes the proof for the case p > 1.
(c) Let now p = 1. In this case we have

E {y} =

∞∫
v=0

vdP {y ≤ v} =

∞∫
v=0

P {y > v} dv

=

1∫
v=0

P {y > v} dv +

∞∫
v=1

P {y > v} dv ≤ 1+

∞∫
v=1

P {y > v} dv
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≤ 1+

∞∫
v=1

v−1
∫

{ω:y≥v}

xdP

 dv = 1+
∫
�

x

 y∫
v=1

v−1dv

 dP

= 1+ E
{

x log+ y
}

Using the inequality3

a log+ b ≤ a log+ a + b/e (7.74)

valid for any a, b > 0 we obtain (taking a = x and b = y)

E {y} ≤ 1+ E
{

x log+ y
}
≤ 1+ E

{
x log+ x

}
+ E {y} /e

which after simple rearrangements leads to (7.73). Lemma is proven. �

Now we are ready to formulate the following result.

Theorem 7.8. (Doob’s moment maximal inequality)

1. If {xn,Fn}n≥0 is a non-negative submartingale then

E
{(

xmax
n

)p}
≤


(

p

p − 1

)p

E
{
(xn)

p} if p > 1

e

e − 1

[
1+ E

{
xn log+ (xn)

}]
if p = 1

(7.75)

2. If {xn,Fn}n≥0 is a martingale then

E
{(

x∗n
)p}
≤


(

p

p − 1

)p

E
{
|xn|

p} if p > 1

e

e − 1

[
1+ E

{
|xn| log+ (|xn|)

}]
if p = 1

(7.76)

Proof. Letting y := xmax
n and x := xn in Lemma 7.5 and using Theorem 7.7 we

immediately get (7.75). The inequality (7.76) follows directly from (7.75) if we take into
account that {|xn| ,Fn}n≥0 is a submartingale. �

3If a > 0, b ≤ 1 the left-hand side of (7.74) is equal to 0, and, hence, there is nothing to prove. For a > b the
inequality is also trivial. So, consider the case 1 < a ≤ b. Then

a log+ b = a log b ≤ a log a + a log (b/a) = a log+ a + b
log+ (b/a)
(b/a)

≤ a log+ a + b/e

since
log c

c
≤ e−1 for c ≥ 1.
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7.4 Convergence

One of the most important theorems is the convergence theorem which was formulated
and proven by Doob (1953) using the so-called upcrossing and downcrossing lemma given
below.

7.4.1 ‘Up-down’ crossing lemma

Lemma 7.6. (on ‘up-down’ crossing (Doob, 1953)) For any nonnegative real variables
a and b (a < b) define the random sequence {βn}n≥0 where βn represents the number of
times where the process {ξn} drops below (downcrossing) a or rises above (upcrossing) b
during the time n. Then

E {βn(a, b)} ≤ (b − a)−1 E
{
[a − ξn]+

}
(7.77)

Proof. Let the random sequence of times {τn}n≥0 correspond to the ‘first times’ when {ξn}

leaves the interval [a, b], namely (for k = 1, 2, . . .)

τ1 := min
{
n | ξn < a, ξt ≥ a ∀t = 1, n − 1

}
τ2k := min

{
n | τ2k−1, ξn > b, ξt ≤ b ∀t = τ2k−1, n − 1

}
τ2k+1 := min

{
n | τ2k, ξn < a, ξn ≥ a ∀t = τ2k, n − 1

}
Define also the characteristic function

χn :=

{
1, τ2k−1 < n ≤ τ2k
0, τ2k < n ≤ τ2k+1

of the event that the random process {βn}n≥0 is inside of the [a, b]-interval. Then we have

n−1∑
t=1

χt (ξt+1 − ξt ) ≥

{
(b − a)βn(a, b), τ2k < n ≤ τ2k+1

(b − a)βn(a, b)+ ξn − ξτ2k−1
, τ2k−1 < n ≤ τ2k

Notice that ξ2k−1 < a. So, one has

(b − a)βn(a, b) ≤
n∑

t=1

χt (ξt+1 − ξt )+max {0, a − ξn}

Taking into account that the random variable χt is Ft -measurable, we derive:

E {χt (ξt+1 − ξt )} = E {E {χt (ξt+1 − ξt ) | Ft }}

= E {χt E {(ξt+1 − ξt ) | Ft }} ≤ 0

and, therefore

(b − a)E {βn(a, b)} ≤ E
{
[a − ξn]+

}
that proves (7.77). �

7.4.2 Doob’s theorem on sub (super) martingale almost sure convergence

Now due to Doob (1953) the main result on sub (super) martingales convergence can be
formulated.
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Theorem 7.9. (on sub (super) martingale convergence) Let {xn,Fn}n≥0 be a nonnega-
tive sub (super) martingale such that

sup
n≥0

E {xn} <∞ (7.78)

Then the random sequence {xn}n≥0 converges with probability one to a nonnegative
integrable random variable, that is, there exists a nonnegative integrable random x (defined
on the same probability space satisfying E {x} <∞) such that

xn
a.s.
→

n→∞
x (7.79)

Proof. This theorem may be proved by contradiction. Indeed, assume that the limit x does
not exist, i.e.,

P

{
lim inf
n→∞

xn < lim sup
n→∞

xn

}
> 0

Hence, there exist numbers a and b such that

P

{
lim inf
n→∞

ξn ≤ a < b < lim sup
n→∞

ξn

}
> 0

and, as a result, P
{

lim
n→∞

βn(a, b) = ∞
}
> 0. But by the assumption

sup
n

E
{
[a − ξn]+

}
= sup

n
E {max {0, a − ξn}}

≤ sup
n

E {|a − ξn|} ≤ sup
n

E {|a| + |ξn|} = |a| + sup
n

E {|ξn|} <∞

Finally, in view of Fatou’s Lemma 6.4 we obtain the contradiction:

∞ > (b − a)−1 sup
n

E
{
[a − ξn]+

}
≥ lim inf

n→∞
E {βn(a, b)} ≥ E

{
lim inf
n→∞

βn(a, b)
}
= ∞

Theorem is proven. �

7.4.3 Martingale decomposition and almost sure convergence

Lemma 7.7. (The martingale decomposition) For any martingale {xn,Fn}n≥0 such that

sup
n

E
{

x+n
}
<∞, x+n := max {0; xn}

sup
n

E
{

x−n
}
<∞, x−n := −min {0; xn}

(7.80)
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there exists two nonnegative submartingales
{

M (i)
n ,Fn

}
n≥0

(i = 1, 2) such that

xn = M (1)
n − M (2)

n (7.81)

The decomposition (7.81) is not unique.

Proof. This decomposition immediately follows from the presentation xn = x+n − x−n
(2.12) since

E
{

x+n | Fn−1
}
≥ max {0;E {xn | Fn−1}}

a.s.
= max {0; xn−1} = x+n−1

and

E
{

x−n | Fn−1
}
= E {−min {xn; 0} | Fn−1}

≥ −min {E {{xn} | Fn−1} ; 0}
a.s.
≥ −min {xn; 0} = x−n−1

Non-uniqueness results from the presentation

xn = M (1)
n + a −

(
M (2)

n + a
)

valid for any a ≥ 0. Lemma is proven. �

Theorem 7.10. (on the martingale convergence) Let {xn,Fn}n≥0 be a martingale such
that

sup
n≥0

E {|xn|} <∞ (7.82)

Then the random sequence {xn}n≥0 converges with probability one to an integrable random
variable, that is, there exists an integrable random x (defined on the same probability space
satisfying E {|x |} <∞) such that

xn
a.s.
→

n→∞
x (7.83)

Proof. It follows from (7.81) if we take into account that both nonnegative supermartin-

gales
{

M (i)
n ,Fn

}
n≥0

(i = 1, 2) satisfy (7.78) since

|xn| = x+n + x−n

and hence,

|xn| ≥ x+n , |xn| ≥ x−n

so that, by the assumption (7.82),

sup
n≥0

E
{

x+n
}
≤ sup

n≥0
E {|xn|} <∞

sup
n≥0

E
{

x−n
}
≤ sup

n≥0
E {|xn|} <∞
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Therefore, by Doob’s Theorem 7.9

M (i)
n

a.s.
→

n→∞
M
∗(i) (i = 1, 2)

where both random variables M
∗(i) (i = 1, 2) are integrable, and hence,

xn
a.s.
→

n→∞
x = M

∗(1)
− M

∗(2)

theorem is proven. �

7.4.4 Robbins–Siegmund theorem and its corollaries

Based on Doob’s theorem on the supermartingale convergence, the following keystone
convergence theorem for nonnegative ‘almost supermartingales’, having many applica-
tions in stochastic processes theory, can be proven.

7.4.4.1 Robbins–Siegmund theorem and its generalization

Theorem 7.11. (Siegmund and Robbins, 1971) Let {Fn}n≥0 be a sequence of σ -algebras
and xn , αn , βn and ξn be Fn-measurable nonnegative random variables such that for all
n = 1, 2, . . . there exists E {xn+1/Fn} and the following inequality verified:

E {xn+1 | Fn} ≤ xn(1+ αn)+ βn − ξn (7.84)

with probability one. Then, for all ω ∈ �0 where

�0 :=

{
ω ∈ �

∣∣∣∣∣ ∞∑
n=1

αn <∞,

∞∑
n=1

βn <∞

}
(7.85)

the limit

lim
n→∞

xn = x∗(ω) (7.86)

exists, and the sum

∞∑
n=1

ξn <∞ (7.87)

converges.
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Proof.

(a) Consider the following sequences:

x̃n := xn

n−1∏
t=1

(1+ αt )
−1 , β̃n := βn

n−1∏
t=1

(1+ αt )
−1 (7.88)

and

ξ̃n := ξn

n−1∏
t=1

(1+ αt )
−1

Then, in view of (7.84) with probability one it follows that

E {̃xn+1 | Fn} = E {xn+1 | Fn}

n−1∏
t=1

(1+ αt )
−1
≤ x̃n + β̃n − ξ̃n (7.89)

Let us introduce also the following random variables:

un := x̃n −

n−1∑
t=1

(
β̃t − ξ̃t

)
which by (15.23), obviously, satisfy

E {un+1 | Fn}
a.s.
≤ un

and the random time τ , defined by

τ = τ(a) :=


inf

{
n

∣∣∣∣∣ n−1∑
t=1

β̃t ≥ a

}
, a = const > 0 if

∞∑
t=1

β̃t ≥ a

+∞ if
∞∑

t=1

β̃t < a

Note that for any a > 0 the random variable τ(a) is a Markov time with respect to
σ -algebras flow {Fn}n≥0 since by the conditions of this theorem, the set

(ω : τ(a) = n) =

(
n−1∑
t=1

β̃t < a

)⋂(
n∑

t=1

β̃t ≥ a

)
∈ Fn

The stopping process

uτ∧n := uτχ (τ < n)+ unχ (τ ≥ n)

τ ∧ n := τχ(τ < n)+ uχ (τ ≥ n)

obviously has a lower bound:

uτ∧n ≥

(τ∧n)−1∑
t=1

β̃t ≥ −a
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Since for each n = 1, 2, . . . the random variables

uτχ(τ < n + 1) =
n∑

i=1

ui χ(τ = i)

and the random variables

χ(τ ≥ n + 1) = 1− χ(τ ≤ n)

are Fn-measurable, then (with probability 1) it follows

E
{
u
τ∧(n+1) | Fn

}
= uτχ (τ ≤ n)+ χ(τ < n)E {un+1 | Fn}

a.s.
≤ uτχ (τ ≤ n)+ unχ (τ > n) = uτ∧n

This implies that {uτ∧n,Fn}n≥0 is a supermartingale having a lower bound. Hence, by
Doob’s Theorem 7.9 it converges with probability one, that is,

lim
n→∞

uτ∧n
a.s.
= u∗(ω)

(b) Extract the desirable result from this fact. Let us introduce the monotone (on a) family
of sets

�a = �0 ∩ {ω|τ(a) = ∞}

Obviously,

�a ↑ �0 as a ↑ ∞

Thus, since βn ≥ 0 and for any a > 0 and for almost all ω ∈ �a the equality

uτ∧n = u∞∧n = un

remains true, we obtain that the limit exists, that is,

lim
n→∞

un = u∗(ω)

almost sure over set �0. Note that both left- and right-hand sides of the last identity do not
depend on parameter a. Therefore, almost sure over set �0

x̃n +

n−1∑
t=1

ξ̃t →
n→∞

u∗(ω)+
∞∑

t=1

β̃t

Since Sn =
∑n

t=1 ξ̃t represents a monotone, bounded (for almost all ω ∈ �0) from
the above sequence, we may conclude that it has a finite limit S∞ (ω) over set �0, and
consequently, variable x̃n has also finite (for almost all ω ∈ �0) limit x̃∞(ω). Therefore,
by definition (7.88),

xn →
n→∞

x̃∞(ω)
∞∏

t=1

(1+ αt ) = x∗(ω)
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and, therefore,

∞∑
n=1

ξn =

∞∑
n=1

ξ̃n

t∏
m=1

(1+ αm) ≤ S∞
∞∏

m=1

(1+ αm) <∞

for almost all ω ∈ �0 since, by the relation 1+ z ≤ ez ,

∞∏
m=1

(1+ αm) <∞ if
∞∑

m=1

αm <∞

Theorem is proven. �

The next results represents a generalized version of Theorem 7.11 for ‘almost super-
martingales’ involving root-terms.

Theorem 7.12. (Devyaterikov and Poznyak, 1984) Let {Fn}n≥0 be a sequence of
σ -algebras and xn , αn , βn , γn and ξn be Fn-measurable nonnegative random variables
such that for all n = 1, 2, . . . there exists E {xn+1/Fn} and the following inequality
verified:

E {xn+1 | Fn} ≤ xn(1+ αn)+ βn + γn xr
n − ξn, r ∈ (0, 1) (7.90)

with probability one. Then, for all ω ∈ �0 where

�0 :=

{
ω ∈ �

∣∣∣∣∣ ∞∑
n=1

αn <∞,

∞∑
n=1

βn <∞,

∞∑
n=1

γn

(
γn

αn

)r/(1−r)

<∞

}
(7.91)

the limit

lim
n→∞

xn = x∗(ω)

exists, and the sum

∞∑
n=1

ξn <∞

converges.

Proof. Using the inequality (see Lemma 16.16, formula 16.247 in Poznyak (2008))

xr
≤ (1− r) xr

0 +
r

x1−r
0

x

valid for any x, x0 > 0 letting

x := xn, x0 :=

(
r
γn

αn

)1/(1−r)
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we get

E {xn+1 | Fn} ≤ xn(1+ αn)+ βn

+ γn

(1− r)

(
r
γn

αn

)r/(1−r)

+
r(

r
γn

αn

) xn

− ξn

= xn(1+ 2αn)+ βn + γn (1− r)

(
r
γn

αn

)r/(1−r)

− ξn

or, equivalently,

E {xn+1 | Fn} ≤ xn(1+ ᾱn)+ β̄n − ξn

ᾱn := 2αn, β̄n := βn + (1− r) rr/(1−r)γn

(
γn

αn

)r/(1−r)

which after the direct application of the Robbins–Siegmund Theorem 7.11 implies the
desired result. �

7.4.4.2 Some corollaries

The following results are the simple corollaries of Theorem 7.11.

Lemma 7.8. Let {Fn}n≥0 be a sequence of σ -algebras and ηn , θn be Fn-measurable
nonnegative random variables such that

1.

∞∑
t=1

E {θt } <∞ (7.92)

2. for all n = 1, 2, . . .

E {ηn+1 | Fn}
a.s.
≤ ηn + θn (7.93)

Then

lim
n→∞

ηn
a.s.
= η (7.94)

Proof. By the assumption 1 it follows that
∞∑

n=1

θn <∞

Applying then the Robbins–Siegmund Theorem 7.11 for

αn = 0, βn = θn, ξn = 0

we derive the assertion of this lemma. Lemma is proven. �
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Lemma 7.9. Let {Fn}n≥0 be a sequence of σ -algebras and ηn , θn , λn , and νn be
Fn-measurable nonnegative random variables such that

1.

∞∑
n=1

θn
a.s.
< ∞ (7.95)

2.

∞∑
n=1

λn
a.s.
= ∞,

∞∑
n=1

νn
a.s.
< ∞ (7.96)

3.

E(ηn+1 | Fn)
a.s.
≤ (1− λn+1 + νn+1)ηn + θn (7.97)

Then

lim
n→∞

ηn
a.s.
= 0 (7.98)

Proof. By the assumptions and the Robbins–Siegmund Theorem 7.11 it follows that

ηn
a.s.
→

n→∞
η∗ and

∑
∞

n=1 λn+1ηn
a.s.
< ∞. As

∑
∞

n=1 λn
a.s.
= ∞, we conclude that there exists

a subsequence ηnk which tends to zero with probability 1. Since all subsequences of a
convergence sequence have the same limit, it follows that η∗

a.s.
= 0. Lemma is proven. �

Lemma 7.10. Let {vn}n≥0 be a sequence of random variables adapted to a sequence
{Fn}n≥0 of σ -algebras Fn , {Fn} ⊆ Fn+1 (n = 0, 1, 2, . . .) such that the random variables
E(vn | Fn−1) exist and for some positive monotonically increasing sequence {an}n≥0 the
following series converges:

∞∑
t=1

a−2
t E

{
(vt − E {vt | Ft−1})

2
| Ft−1)

}
a.s.
< ∞ (7.99)

Then

lim
n→∞

(
1
an

n∑
t=1

vt −
1
an

n∑
t=1

E {vt | Ft−1}

)
a.s.
= 0 (7.100)
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Proof. Consider the sequence {Sn}n≥1 with the random elements

Sn (ω) :=

n∑
t=1

a−1
t {vt − E(vt | Ft−1)}

for which the following relation holds:

E
{

S2
n | Fn−1)

}
a.s.
= S2

n−1 + a−2
n E

{
(vt − E {vt | Ft−1})

2
| Fn−1)

}
By the assumption (7.99) of this lemma and in view of the Robbins–Siegmund
Theorem 7.11 we conclude that S2

n converges for almost all ω ∈ �, that is, the limit

S∞ (ω) :=
∞∑

t=1

a−1
t

[
vt − E(vt | Ft−1)

]
exists. But in view of the Kronecker Lemma (see Poznyak (2008)) we conclude that the
random sequence with elements given by

1
an

n∑
t=1

at

(
a−1

t

[
vt − E(vt | Ft−1)

])
=

1
an

n∑
t=1

[
vt − E(vt | Ft−1)

]
tends to zero for almost all the random events ω ∈ � which implies (7.100). Lemma is
proven. �

Corollary 7.7. For random variables

vn (ω) = χn (ω) = {0; 1} (7.101)

and

an = n (n = 1, 2, . . .) (7.102)

(and without considering the assumption (7.99)) it follows that

lim
n→∞

(
1
n

n∑
t=1

χt −
1
n

n∑
t=1

P {χt = 1 | Ft−1)}

)
a.s.
= 0 (7.103)

Proof. It results from the relation P {χt = 1 | Ft−1} = E {vt | Ft−1}. �

Lemma 7.11. (on the almost-sure convergence rate) Let {vn}n≥0 be a sequence of ran-
dom variables adapted to {Fn}n≥0 of σ -algebras Fn , {Fn} ⊆ Fn+1 (n = 0, 1, . . .) such
that the random variables E(vn | Fn−1) exist and

∞∑
t=1

t−2ηtE
{
(vt − E(vt | Ft−1))

2
| Ft−1)

}
a.s.
< ∞ (7.104)
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where the deterministic sequence {ηt } satisfies

lim
n→∞

(
ηn

ηn−1
− 1

)
n := λ < 2 (7.105)

Then

ηn S2
n

a.s.
→

n→∞
0 (7.106)

where

Sn :=
1
n

n∑
t=1

(vt − E {vt | Ft−1}) (7.107)

or, in other words,

Sn
a.s.
= oω(1/

√
ηn) (7.108)

Proof. One has

Sn = Sn−1

(
1−

1
n

)
+

1
n
(vn − E {vn/Fn−1})

and therefore for large enough n

E
{

S2
n | Fn−1)

}
a.s.
= S2

n−1

(
1−

1
n

)2

+ n−2E
{
(vn − E {vn/Fn−1})

2
| Fn−1)

}
= S2

n−1

(
1−

2+ o(1)
n

)2

+ n−2E
{
(vn − E(vn | Fn−1))

2
| Fn−1)

}
Hence, for Wn := ηn S2

n , it follows that

E {Wn | Fn−1)}
a.s.
= Wn−1

(
1−

2− λ+ o(1)
n

)
+ ηnn−2E

{
(vn − E {vn | Fn−1})

2
| Fn−1)

}
In view of Lemma 7.9 with

λn+1 :=
2− λ+ o(1)

n
, νn+1 := 0

θn := ηnn−2E
{
(vn − E {vn | Fn−1})

2
| Fn−1)

}
by the assumptions of this lemma, it follows Wn

a.s.
→

n→∞
0 that proves the lemma. �
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Corollary 7.8. If in the assumptions of this lemma

n−~ηn = O(1) (7.109)

then

λ = ~ (7.110)

and for ~ < 2

Sn
a.s.
= oω

(
n
−
~
2

)
(7.111)

Lemma 7.12. (Nazin and Poznyak, 1986) Let {un}n≥0 be a sequence of nonnegative
random variables un measurable for all n = 1, 2 . . . , with respect to the σ -algebra Fn
and the following inequality

E {un+1 | Fn}
a.s.
≤ un(1− αn)+ βn (7.112)

holds, where {αn}, {βn} are sequences of deterministic variables such that

αn ∈ (0, 1], βn ≥ 0,
∞∑

n=1

αn = ∞ (7.113)

and for some nonnegative increasing sequence {νn}n≥1 the following series converges

∞∑
n=1

βnνn <∞ (7.114)

and, the limit

lim
n→∞

νn+1 − νn

αnνn
:= µ < 1 (7.115)

exists. Then

un = oω

(
1
νn

)
a.s.
→

n→∞
0 (7.116)
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Proof. Let ũn be the sequence defined as ũn := unνn . Then, based on the assumptions of
this lemma, we have

E(̃un+1 | Fn)
a.s.
≤ ũn(1− αn)

(
νn+1

νn

)
+ νn+1βn

= ũn(1− αn)

(
νn+1 − νn

νn
− 1

)
+ νn+1βn

and, therefore,

E(̃un+1 | Fn)
a.s.
≤ ũn [1− αn(1− µ+ o(1))]+ νn+1βn

Then, from this inequality and Lemma 7.9 we obtain

νn ũn
a.s.
→ 0

which is equivalent to (7.116). Lemma is proven. �
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8 Limit Theorems as Invariant Laws
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The probability theory has its greatest impact through its limit theorems:

• the weak law of large numbers (LLN) and its strong version known as the strong law of
large numbers (SLLN),
• the central limit theorem (CLT),
• the law of the iterated logarithm (LIL).

All of these limit theorems may be interpreted as some sort of invariant principles or
invariant laws because of the independence of the formulated results (principles) of the
distribution of random variables forming considered random sequences.

If {xn}n≥1 is a stationary sequence of quadratically integrable (E{xn} = µ, E{x2
n} =

σ 2 > 0) random (not obligatory independent) variables defined on the probability space
(�,F ,P) then denoting

Sn :=

n∑
t=1

xt (8.1)

we can formulate these three principle invariant laws as follows:

1. (a) LLN:

n−1Sn
P
→

n→∞
µ (8.2)

(b) SLLN:

n−1Sn
a.s.
→

n→∞
µ (8.3)

2. CLT:
√

n

σ

(
n−1Sn − µ

)
d
→

n→∞
N (0, 1) (8.4)

where N (0, 1) is the standard Gaussian distribution.

175



176 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

3. LIL:

lim sup
n→∞

√
n

σ
√

2 ln ln n

(
n−1Sn − µ

) a.s
= 1

lim inf
n→∞

√
n

σ
√

2 ln ln n

(
n−1Sn − µ

) a.s.
= −1

(8.5)

Remark 8.1. The LNN (8.2) and SLLN (8.3) state the weak and strong convergences,
respectively, of the arithmetic average n−1Sn to the arithmetic average of its mathematical
expectation, i.e., n−1E {Sn} = µ. This result embodies the idea of probability as a strong
limit of relative frequencies (taking xn := χ (A) and µ := P {A}, A ⊂ �) and on these
grounds may be regarded as the most basic in probability theory, in fact, the underpinning
of the axiomatic theory as a physical realistic subject.

Remark 8.2. The convergences (8.2) and (8.3) are not the end of the story: we may hope
to say something about the ‘rate of convergence’. The CLT (8.4) and LIL (8.5) may
conveniently be interpreted as the rate results about SLLN (8.3). Their usual expressions
suppress this basic relationship. So, the CLT (8.4) tells us just the right rate at which
to magnify the difference

(
n−1Sn − µ

)
which is tending to zero, in order to obtain

convergence in distribution to a nondegenerate (in fact, Gaussian) law. The delicacy of

LIL (8.5) consists in the fact that the norming of

√
n

σ

(
n−1Sn − µ

)
(as it is in CLT (8.4)) by

√
2 ln ln n (as it is in LIL (8.5)) provides a boundary between convergence in probability

and convergence with probability one (a.s.) to zero.

Remark 8.3. None of the laws (8.2), (8.3), (8.4) and (8.5) depends on the distributions
P {xn ≤ v} which justifies the name ‘invariant laws’.

The central question discussed in this chapter is: ‘Under which conditions do the
invariant laws (8.2)–(8.5) hold?’ The classical results concerning these laws deal with
sums of independent random variables (Petrov, 1975). Here we wish to consider not only
independent but also dependent sequences and therefore below we will give different
characteristics of stochastic dependency and discuss their interconnection.

8.1 Characteristics of dependence

There exist many notations of dependence. The most important of them are given below.

8.1.1 Main concepts of dependence

8.1.1.1 m-dependence

Definition 8.1. The random variables {xn}n≥1 defined on the probability space (�,F ,P)
are said to be m-dependent if xt and xk are independent whenever |t − k| > m.
Independence is treated as 0-dependence.
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Example 8.1. (Peak numbers) We say that there is a peak at xk if

xk−1 < xk and xk+1 < xk

Define

χk :=

{
1 if there is a peak at xk
0 if otherwise

Then for independent x1, x2, . . . uniformly distributed on [0, 1], i.e., having the distribution
pU (0,1)(v) = 1, for k ≥ 2

P {χk = 1} = P {χ (xk−1 < xk) χ (xk+1 < xk)}

=

1∫
v=0

P {χ (xk−1 < v) χ (xk+1 < v) | xk = v} pU (0,1)(v)dv

=

1∫
v=0

P {χ (xk−1 < v) χ (xk+1 < v)} dv

=

1∫
v=0

P {χ (xk−1 < v)}P {χ (xk+1 < v)} dv

=

1∫
v=0

P2
{χ (xk < v)} dv

=

1∫
v=0

v2dv = 1/3

We also have

P {χk = 1, χk+1 = 1} = 0

P {χk = 1, χk+2 = 1} = 2/15

P {χk = 1, χt = 1} = 0 for |k − t | > 2 (k, t ≥ 2)

So the sequence {χk}k≥2 of the peak-indicators is 2-dependent.

8.1.1.2 Markov dependence

Definition 8.2. The random variables {xn}n≥1 defined on the probability space (�,F ,P)
are said to be Markov (or one-step) dependent if ‘the future depends on where one is now,
but not on how one got there’, or more exactly, if

P {xk ≤ v | xk−1, xk−2, . . . , x1} = P {xk ≤ v | xk−1} (8.6)
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Example 8.2. Consider the dynamic plant given by

xn+1 = Axn + ξn, n ≥ 0

where {ξn}n≥0 is a sequence of independent random variables. Then

P {xk ≤ v | xk−1, xk−2, . . . , x1} = P {Axk−1 + ξk−1 ≤ v | xk−1, xk−2, . . . , x1}

= P {ξk−1 ≤ v − Axk−1 | xk−1, xk−2, . . . , x1} = P {ξk−1 ≤ v − Axk−1}

So {xn}n≥0 is a Markov-dependent sequence.

8.1.1.3 Martingale dependence

Definition 8.3. The random variables {xn}n≥1 defined on the probability space (�,F ,P)
are said to be martingale-dependent if

E {xk | Fk−1}
a.s.
= xk−1 (8.7)

or, equivalently, if

E {xk − xk−1 | Fk−1}
a.s.
= 0 (8.8)

where Fk−1 = σ (x1, x2, . . . xk−1).

Example 8.3. The sums Sn (8.1) of independent random variables {xn}n≥1 are martingale-
dependent since

E {Sk | Fk−1} = E {Sk−1 + xk | Fk−1}

a.s.
= Sk−1 + E {xk | Fk−1}

a.s.
= Sk−1 + E {xk} = Sk−1

8.1.1.4 Mixed sequences

Let H and G be sub-σ -algebras of F . The following values are some measures of
dependence of these σ -algebras:

1. the coefficient of strong mixing (Rosenblatt, 1956):

α(H,G) := sup
A∈H,B∈G

|P {A ∩ B} − P {A}P {B}| (8.9)

2. the coefficient of uniform strong mixing (Ibragimov, 1962):

φ(H,G) := sup
A∈H,B∈G,P{B}>0

P−1
{B} |P {A ∩ B} − P {A}P {B}|

= sup
A∈H,B∈G

|P {A/B} − P {A}| (8.10)
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3. the coefficient of relative uniform strong mixing (Blum et al., 1963):

ψ(H,G) := sup
A∈H,B∈G,P{B}>0

P−1
{A}P−1

{B} |P {A ∩ B} − P {A}P {B}|

= sup
A∈H,B∈G,P{A}>0, P{B}>0

∣∣∣∣ P {A ∩ B}

P {A}P {B}
− 1

∣∣∣∣ (8.11)

4. the coefficient of correlative mixing (Iosifecsu and Theodorescu, 1969):

ρ(H,G) := sup
x∈H,y∈G

∣∣ρx,y
∣∣

ρx,y :=
cov (x, x)
√

var x
√

var y
- the correlation coefficient (3.51)

(8.12)

Proposition 8.1. It is not difficult to show that the following relations hold:

α(H,G) ≤ 1/4, ψ(H,G) ≤ 1, ρ(H,G) ≤ 1

4α(H,G) ≤ 2φ(H,G) ≤ ψ(H,G)

4α(H,G) ≤ ρ(H,G) ≤ ψ(H,G), ρ(H,G) ≤ 2
√
φ(H,G)

(8.13)

To extend these notions to random variables let us define the following σ -algebras:

n∨
i=m

Fi := σ

(
n⋃

i=m

Fi

)
(8.14)

that is,
n∨

i=m
Fi is the sigma-algebra generated by the union of the sigma-algebras

Fi (i = m, . . . , n).
Introduce the following mixing coefficients for the random sequence {xn}n≥1:

αn := sup
k≥1

α

(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi

)
,

φn := sup
k≥1

φ

(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi

)

ψn := sup
k≥1

ψ

(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi

)

ρn := sup
k≥1

ρ

(
k∨

i=1
Fi ,

∞∨
i=k+n

Fi

)
(8.15)
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Definition 8.4. The sequence of random variables {xn}n≥1 is said to be

(a) α-mixing or strong mixing if

αn →
n→∞

0

(b) φ, ψ and ρ-mixing if

φn, ψn, ρn →
n→∞

0

respectively.

Remark 8.4. Obviously, in view of the relations in (8.13), φ, ψ and ρ-mixing imply α-
mixing or strong mixing. This means that proving some invariant law for ψ-mixing we,
in the same time, obtain the validity of the considered invariant law for all other types of
mixing, i.e., for α, φ, and ρ-mixing too.

8.1.1.5 Mixingale-difference sequences

In McLeish (1975) there was introduced the concept of mixingales (or asymptotic
martingales) which are sufficiently like martingale differences to satisfy a convergence
theorem.

Definition 8.5. Let {xn}n≥1 be a sequence of square-integrable random variables defined
on a probability space (�,F ,P), and let {Fn}n≥1 be an increasing sequence of sub-
σ -fields of F . Then {xn,Fn} is called a mixingale (difference) sequence if there exist
sequences {cn}n≥1 and {ψm}m≥0 of nonnegative real numbers such that

1.

ψm →
m→∞

0 (8.16)

2.

qn,m :=

√
E
{
|E {xn | Fn−m}|

2
}
≤ ψmcn (8.17)

3. √
E
{
|xn − E {xn | Fn+m}|

2
}
≤ ψm+1cn (8.18)

The following examples give an idea of the scope of mixingales.

Example 8.4. (A martingale as a mixingale) Let {xn,Fn} be a martingale, that is,

E {xn | Fn−1}
a.s.
= 0, E {xn | Fn+m}

a.s.
= xn for m ≥ 0
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Then {xn,Fn} in the same time is a mixingale with cn =

√
E
{

x2
n

}
and

ψ0 = 1, ψm = 0 for m ≥ 1

Example 8.5. (Linear process as a mixingale) Let

xn =

∞∑
t=−∞

αt−nξt ,

∞∑
t=−∞

α2
t <∞ (8.19)

be a linear process generated by a sequence {ξt }t≥−∞ of independent zero-mean random
variables with the finite variance σ 2. The sequence {αt }t≥−∞ is deterministic. Define
Fn := σ (. . . , ξn−1, ξn). Then {xn,Fn} is a mixingale with

cn = σ and ψ2
m =

−m∑
i=−∞

α2
i

Indeed,

qn,m :=

√
E
{
|E {xn | Fn−m}|

2
}
=

√√√√√E


∣∣∣∣∣ n−m∑
t=−∞

αt−nξt

∣∣∣∣∣
2


= σ

√√√√ n−m∑
t=−∞

α2
t−n = σ

√√√√ −m∑
i=−∞

α2
i = σ = cnψm

8.1.1.6 Correlated sequences

Definition 8.6. The double-index sequence
{
ρn,m

}
m,n≥1 is said to be a correlation sequence

if ρn,m are defined by

ρn,m := E {(xn − E {xn}) (xm − E {xm})} (8.20)

Usually, ρn,m is called a correlation function.

Example 8.6. (Martingale-difference) Let {xn,Fn}n≥0 be a martingale-difference, that
is,

E {xn} = 0, E {xn | Fn−k}
a.s.
= 0 (k ≥ 1)

Let, for example, m < n. Then

ρn,m := E {(xn − E {xn}) (xm − E {xm})} = ρn,m := E {xn xm}

= E {E {xn xm | Fm}} = E {xmE {xn | Fm}} = E {xm · 0} = 0

The partial case of a martingale-difference is a sequence of independent random variables.
So, for them, ρn,m = 0 if n 6= m.
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8.1.2 Some inequalities for the covariance and mixing coefficients

Lemma 8.1. Let A ∈ H and B ∈ G. Then

|P {A ∩ B} − P {A}P {B}| ≤ φ(H,G)P {B} (8.21)

Proof. Since

|P {A ∩ B} − P {A}P {B}| =

∣∣∣∣∣∣
∫
B

[P {A/B} − P {A}] P (dω)

∣∣∣∣∣∣
≤

∫
B

|P {A/B} − P {A}|P (dω)

≤

∫
B

sup
A∈H, B∈G

|P {A/B} − P {A}|P (dω)

≤ φ(H,G)
∫
B

P (dω) = φ(H,G)P {B}

the desired inequality (8.21) is proven. �

Theorem 8.1. (Ibragimov, 1962) Suppose that x and y are random variables which are
H and G measurable, i.e., x ∈ H and y ∈ G, and they have bounded p and q moments,
respectively, namely

E
{
|x |p

}
<∞ and E

{
|x |q

}
p, q > 1, p−1

+ q−1
= 1

(8.22)

Then

|E {xy} − E {x}E {y}| ≤ 2φ1/p(H,G)E1/p {
|x |p

}
E1/q {

|y|q
}

(8.23)

The result continue to hold for p = 1 and q = ∞ where

E1/∞ {
|y|∞

}
:= ess sup |y| = inf {C | P {|y| > C} = 0} (8.24)

namely,

|E {xy} − E {x}E {y}| ≤ 2φ(H,G)E {|x |} ess sup |y| (8.25)

Proof. It suffices to consider only the case of simple random variables (since the general
case follows from Theorem 2.3 on monotone approximation):

x =
∑

i

ai IAi (ω), Ai1

⋂
i1 6=i2

Ai2 = ∅, Ai ⊂ H

y =
∑

j

b j IB j (ω), B j1

⋂
j1 6= j2

A j2 = ∅, B j ⊂ G
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So, one has

E {xy} − E {x}E {y} =
∑

i

∑
j

ai b jP
{

Ai ∩ B j
}
−

∑
i

∑
j

ai b jP {Ai }P
{

B j
}

=

∑
i

∑
j

ai b j
[
P
{

Ai ∩ B j
}
− P {Ai }P

{
B j
}]

=

∑
i

∑
j

aiP {Ai } b j
[
P
{

B j/Ai
}
− P

{
B j
}]

=

∑
i

aiP {Ai }
∑

j

b j
[
P
{

B j/Ai
}
− P

{
B j
}]

=

∑
i

aiP
1/p
{Ai }

∑
j

b j
[
P
{

B j/Ai
}
− P

{
B j
}]

P1/q
{Ai }

By the Hölder inequality (13.73) it follows that

|E {xy} − E {x}E {y}| ≤

(∑
i

(
|ai |P

1/p
{Ai }

)p
)1/p

·

(∑
i

[∑
j

∣∣b j
∣∣ [P {B j/Ai

}
− P

{
B j
}]

P1/q
{Ai }

]q)1/q

≤

(∑
i

(
|ai |

p P {Ai }
))1/p

·

(∑
i

P {Ai }

[∑
j

∣∣b j
∣∣ [P {B j/Ai

}
− P

{
B j
}]]q)1/q

≤ E1/p {
|x |p

}(∑
i

P {Ai } ·

[∑
j

∣∣b j
∣∣ ∣∣P {B j/Ai

}
−P

{
B j
}∣∣1/q ∣∣P {B j/Ai

}
− P

{
B j
}∣∣1/p

]q)1/q

Applying secondly the Hölder inequality (13.73) we also have∑
j

(∣∣b j
∣∣ ∣∣P {B j/Ai

}
− P

{
B j
}∣∣1/q) (∣∣P {B j/Ai

}
− P

{
B j
}∣∣1/p

)

≤

(∑
j

∣∣b j
∣∣q ∣∣P {B j/Ai

}
− P

{
B j
}∣∣)1/q (∑

j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣)1/p

≤

(∑
j

∣∣b j
∣∣q (P {B j/Ai

}
+ P

{
B j
}))1/q (∑

j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣)1/p
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that implies

(∑
i

P {Ai }

[∑
j

∣∣b j
∣∣ ∣∣P {B j/Ai

}
− P

{
B j
}∣∣1/q ∣∣P {B j/Ai

}
− P

{
B j
}∣∣1/p

]q)1/q

≤

∑
i

P {Ai }

(∑
j

∣∣b j
∣∣q (P {B j/Ai

}
+ P

{
B j
}))1/q

·

(∑
j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣)1/p

q1/q

=

(∑
i

P {Ai }

(∑
j

∣∣b j
∣∣q (P {B j/Ai

}
+ P

{
B j
}))

·

(∑
j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣)q/p

1/q

≤

[∑
i

P {Ai }

(∑
j

∣∣b j
∣∣q (P {B j/Ai

}
+ P

{
B j
}))

γ q/p

]1/q

=

(∑
j

∣∣b j
∣∣q (∑

i

P {Ai }P
{

B j/Ai
}
+ P

{
B j
}))1/q

γ 1/p

= 21/qE1/q {
|y|q

}
γ 1/p

where

γ := sup
i

∑
j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣

Further, if C+i (respectively, C−i ) is the union of those B j for which P
{

B j/Ai
}
−P

{
B j
}
≥

0 (respectively, P
{

B j/Ai
}
− P

{
B j
}
< 0) then C+i , C−i are elements of G, and by

Lemma 8.1 it follows that

γ := sup
i

∑
j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣ = sup

i

∣∣[P {C+i /Ai
}
− P

{
C+i

}]
+
[
P
{
C+i /Ai

}
− P

{
C+i

}]∣∣ ≤ 2φ(H,G)

and, therefore,

|E {xy} − E {x}E {y}| ≤ E1/p {
|x |p

}
21/qE1/q {

|y|q
}
γ 1/p

≤ 21/q+1/pE1/p {
|x |p

}
E1/q {

|y|q
}
φ(H,G)1/p
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that gives (8.23). The case p = 1 and q = ∞ can be considered similar if we take into

account that
∣∣b j
∣∣ a.s.
≤ ess sup |y| implies

|E {xy} − E {x}E {y}| ≤

∣∣∣∣∣∑
i

aiP {Ai }
∑

j

b j
[
P
{

B j/Ai
}
− P

{
B j
}]∣∣∣∣∣

≤ ess sup |y|

∣∣∣∣∣∑
i

|ai |P {Ai }
∑

j

∣∣P {B j/Ai
}
− P

{
B j
}∣∣∣∣∣∣∣

≤ 2φ(H,G)E {|x |} ess sup |y|

Theorem is proven. �

Corollary 8.1. If x and y are H and G measurable, respectively, i.e., x ∈ H and y ∈ G,
and they have second bounded moments, then

|E {xy} − E {x}E {y}| ≤ 2
√
φ(H,G) (var x + var y) (8.26)

Proof. Notice that

E {xy} − E {x}E {y} = E {(x − E {x}) (y − E {y})} = E {x̊ ẙ}

x̊ := x − E {x} , E {x̊} = 0, ẙ := y − E {y} , E {ẙ} = 0

Then (8.25), applied for x̊ and ẙ under p = q = 2, gives

|E {xy} − E {x}E {y}| = |E {x̊ ẙ}| ≤ 2
√
φ(H,G)E1/2

{
|x̊ |2

}
E1/2

{
|ẙ|2

}
that, after the elementary inequality 2ab ≤ a2

+ b2 application, implies (8.26). �

Example 8.7. (Uniformly mixing processes) Let {xn}n≥1 be a centered process satisfy-
ing the uniform mixing condition, namely,

φn := sup
k≥1

φ

(
k∨

i=1

Fi ,

∞∨
i=k+n

Fi

)
→

n→∞
0

where φ(H,G) := sup
A∈H,B∈G

|P {A/B} − P {A}| as in (8.10). Then, by Ibragimov’s formula

(8.23) taken for p = q = 2, if we put Fn := σ (x1 . . . , xn) it follows that

E
{
|E {xn | Fn−m}|

2
}
= E {E {xnE {xn | Fn−m} | Fn−m}}

= E {xnE {xn | Fn−m}} ≤ 2
√
φmE1/2

{
x2

n

}
E1/2

{
|E {xn | Fn−m}|

2
}

so that√
E
{
|E {xn | Fn−m}|

2
}
≤ 2

√
φmE1/2

{
x2

n

}
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or equivalently

E
{
|E {xn | Fn−m}|

2
}
≤ 4φmE

{
x2

n

}
(8.27)

and hence, {xn,Fn}n≥1 is a mixingale with

cn = 2E1/2
{

x2
n

}
and ψm =

√
φm

Corollary 8.2. If xi are Hi measurable with the second bound moments then∣∣∣∣∣var

(
n∑

i=1

xi

)
−

n∑
i=1

var xi

∣∣∣∣∣ ≤
4 max

{
max

1≤i<n

n∑
j=i+1

√
φ(H j ,H j ), max

1≤i<n

j+1∑
i=1

√
φ(H j ,H j )

}
n∑

i=1

var xi

Proof. It follows from the previous corollary taking into account that∣∣∣∣∣var

(
n∑

i=1

xi

)
−

n∑
i=1

var xi

∣∣∣∣∣ ≤ 2
n∑

1≤i< j≤n

∣∣E {xi x j
}
− E {xi }E

{
x j
}∣∣ �

8.1.3 Analog of Doob’s inequality for mixingales

The key to a mixingale convergence theorem lies in establishing a mixingale analog of
Doob’s theorem 7.7 of the Kolmogorov type.

Theorem 8.2. (McLeish, 1975) If {xn,Fn} is a mixingale (see Definition 8.5) with some
{cn}n≥1 and with

ψm = O

(
1

√
m log2 m

)
→

m→∞
0 (8.28)

then there exists a constant K (depending only on {ψm}) such that for Si :=
i∑

j=1
x j it

follows that

E

{
max

1≤i≤n
Si

}
≤ K

n∑
i=1

c2
i (8.29)
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Proof. By the properties (8.17) and (8.18)

E {xn | Fn−m}
a.s.
→

m→∞
0

xn − E {xn | Fn+m}
a.s.
→

m→∞
0

so that xi can be represented as

xi
a.s.
=

∞∑
m=−∞

[
E {xi | Fi+m} − E {xi | Fi+m−1}

]
Define

yn,k :=

n∑
i=1

[
E {xi | Fi+k} − E {xi | Fi+k−1}

]
Then Sn can be represented as

Sn :=

n∑
i=1

xi =

n∑
i=1

∞∑
m=−∞

[
E {xi | Fi+m} − E {xi | Fi+m−1}

]
=

∞∑
m=−∞

n∑
i=1

[
E {xi | Fi+m} − E {xi | Fi+m−1}

]
=

∞∑
m=−∞

yn,m

Setting

a0 = a1 = a−1 := 1

an = a−n :=
1

n log2 n
for n ≥ 2

by the Cauchy–Bounyakovski–Schwartz inequality one has

Sn =

(
∞∑

m=−∞

yn,m

)2

=

(
∞∑

m=−∞

√
am

[
a−1/2

m yn,m

])2

≤

(
∞∑

m=−∞

am

)(
∞∑

m=−∞

a−1
m y2

n,m

)
that implies

max
1≤i≤n

Si ≤

(
∞∑

m=−∞

am

)(
∞∑

m=−∞

a−1
m max

1≤i≤n
y2

i,m

)
and

E

{
max

1≤i≤n
Si

}
≤

(
∞∑

m=−∞

am

)(
∞∑

m=−∞

a−1
m E

{
max

1≤i≤n
y2

i,m

})
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Here notice that
∞∑

m=−∞
am converges by Corollary 16.25 in Poznyak (2008). For each k

the sequence
{

yi,k,Fi+k
} (

i = 1, n
)

is a martingale, and, therefore, by Doob’s moment
inequality (7.75) applied for p = 2 it follows that

E

{
max

1≤i≤n
Si

}
≤ 4

(
∞∑

m=−∞

am

)(
∞∑

m=−∞

a−1
m E

{
y2

n,m

})
(8.30)

Defining now for m ≥ 0

zi,m := xi − E {xi | Fi+m}

we get

E
{

y2
n,m

}
=

n∑
i=1

[
E
{
(E {xi | Fi+m})

2
}
− E

{
(E {xi | Fi+m−1})

2
}]

=

n∑
i=1

(
E
{

z2
i,m−1

}
− E

{
z2

i,m

})
Substituting this identity into (8.30) for m ≥ 1 we deduce that

E

{
max

1≤i≤n
Si

}
≤ 4

(
∞∑

m=−∞

am

)
n∑

i=1

[
a−1

0 E
{
(E {xi | Fi })

2
}
+ a−1

1 E
{

z2
i,0

}
+

∞∑
m=1

(
a−1

m+1 − a−1
m

)
E
{

z2
i,m

}
+

∞∑
m=1

(
a−1

m − a−1
m−1

)
E
{
(E {xi | Fi−m})

2
}]

Bounding the right-hand side of this inequality using the mixingale properties (8.17) and
(8.18) we finally get

E

{
max

1≤i≤n
Si

}
≤ 4

(
∞∑

m=−∞

am

)(
n∑

i=1

c2
i

)

·

[
a−1

0

(
ψ2

0 + ψ
2
1

)
+ 2

∞∑
m=1

(
a−1

m − a−1
m−1

)
ψ2

m

]
that completes the proof. �

Corollary 8.3. The constant K in (8.28) is equal to

K = 4

(
3+

∞∑
m=2

1

m log2 m

)

×

[(
ψ2

0 + ψ
2
1

)
+ 2

∞∑
m=2

[
m log2 m − (m − 1) log2 (m − 1)

]
ψ2

m

]
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8.2 Law of large numbers

Consider a sequence {xn}n≥1 of random variables defined on the probability space
(�,F ,P) and having finite first moments (mathematical expectations) {mn}n≥1, namely,

E {xn} = mn (n ≥ 1) (8.31)

In the most general form, the law of large numbers concerns the conditions providing the
asymptotic equivalence between the arithmetic-average of {xn}n≥1 and its mathematical
expectation, that is, this law deals with the conditions guaranteeing that

n−1Sn − n−1E {Sn} = n−1Sn − n−1
n∑

t=1

mt →
n→∞

0

Sn :=

n∑
t=1

xt

(8.32)

in some probabilistic sense. Rewriting (8.32) in the equivalent form, using the centered
random variables x̊n := xn − mn (n ≥ 1), one has

n−1 S̊n →
n→∞

0, S̊n :=
n∑

t=1
x̊t (8.33)

So, without the loss of generality we will suppose that a sequence {xn}n≥1 consists of
centered random variables and the symbol ‘◦’ upon the variable xn will be omitted for
simplicity.

8.2.1 Weak law of large numbers

As has been mentioned in (8.2) we will be interested in the conditions guaranteeing

n−1Sn
P
→

n→∞
0 (8.34)

The theorem below deals with a martingale version of the classical degenerate conver-
gence criterion.

Theorem 8.3. (on weak LLN (Hall and Heyde, 1980)) Let {xn,Fn}n≥1 be a martingale-

difference
(
E {xn | Fn−1}

a.s.
= 0, n ≥ 1

)
and {bn}n≥1 a sequence of positive constants with

0 < bn ↑
n→∞

∞ (8.35)

Then, writing

xni := xiχ (|xi | ≤ bn), 1 ≤ i ≤ n (8.36)
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we have that (8.34) holds, namely,

b−1
n Sn

P
→

n→∞
0 (8.37)

if as n→∞

1.

n∑
t=1

P {|xi | > bn} → 0 (8.38)

2.

b−1
n

n∑
t=1

E {xni | Fn−1}
P
→ 0 (8.39)

3.

b−2
n

n∑
t=1

[
E
{

x2
ni

}
− E

{
(E {xni | Fn−1})

2
}]
→ 0 (8.40)

Proof. Define

Snn :=

n∑
i=1

xni

On account of (8.38)

P {Sn/bn 6= Snn/bn} ≤

n∑
i=1

P {xi 6= xni } =

n∑
t=1

P {|xi | > bn} → 0

So, it is sufficient to prove

b−1
n Snn

P
→

n→∞
0

But by (8.39) and the identity

b−1
n Snn = b−1

n

n∑
i=1

[
xni − E {xni | Fn−1}

]
+ b−1

n

n∑
i=1

E {xni | Fn−1}

it is sufficient to prove

b−1
n

n∑
i=1

[
xni − E {xni | Fn−1}

] P
→

n→∞
0

By the second Chebyshev inequality (4.10) and in view of the condition (8.40) for any
ε > 0 it follows that
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P

{∣∣∣∣∣b−1
n

n∑
i=1

[
xni − E {xni | Fn−1}

]∣∣∣∣∣ > ε

}

≤
1

ε2 E


(

b−1
n

n∑
i=1

[
xni − E {xni | Fn−1}

])2


=
1

ε2 b−2
n

n∑
t=1

[
E
{

x2
ni

}
− E

{
(E {xni | Fn−1})

2
}]
→

n→∞
0

that corresponds to the convergence on probability (6.42). Theorem is proven. �

Remark 8.5. In the particular case when xn are independent, the above conditions are
also necessary (as well as sufficient) for (8.37) (see Loéve (1977)).

Remark 8.6. LLN in the form (8.34) follows from (8.37) if we put bn = n.

8.2.2 Strong law of large numbers

8.2.2.1 Teöplitz and Kronecker Lemmas as auxiliary instruments

As a prelude of the results of this section let us remember the lemmas of Teöplitz and
Kronecker which will be often used below.

Lemma 8.2. (Teöplitz) Let {an} (n = 1, 2, . . .) be a sequence of nonnegative real num-
bers such that

bn :=

n∑
t=1

at →∞ when n→∞ (8.41)

and {xn} (n = 1, 2, . . .) be a sequence of real numbers which converges to x∗, that is,

xn →
n→∞

x∗ (8.42)

Then

(a) there exists an integer n0 such that bn > 0 for all n ≥ n0;

(b)

1
bn

n∑
t=1

at xt → x∗ when n0 ≤ n→∞ (8.43)

Proof. The claim (a) results from (8.41). To prove (b) let us select ε > 0 and n′0 (ε) ≥ n0
such that for all n ≥ n′0 (ε) we have (in view of (8.42)) |xn − x∗| ≤ ε. Then it follows that
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bn

n∑
t=1

at xt − x∗
∣∣∣∣∣ =

∣∣∣∣∣ 1
bn

n∑
t=1

at
(
xt − x∗

)∣∣∣∣∣ ≤ 1
bn

n∑
t=1

at
∣∣xt − x∗

∣∣
=

1
bn

n′0(ε)−1∑
t=1

at
∣∣xt − x∗

∣∣+ 1
bn

n∑
n′0(ε)

at
∣∣xt − x∗

∣∣
≤

1
bn

n′0(ε)−1∑
t=1

at
∣∣xt − x∗

∣∣+ ε

bn

n∑
n′0(ε)

at ≤
const

bn
+ ε→ ε when bn →∞

Since this is true for any ε > 0 we obtain the proof of the lemma. �

Corollary 8.4. If xn →
n→∞

x∗ then

1
n

n∑
t=1

xt →
n→∞

x∗ (8.44)

Proof. To prove (8.44) it is sufficient in (8.43) to take an = 1 for all n = 1, 2, . . . . �

Corollary 8.5. Let {an} (n = 1, 2, . . .) be a sequence of nonnegative real numbers such
that

n∑
t=1

at →∞ when n→∞ (8.45)

and for some numerical non-zero sequence {bn} of real numbers there exists the limit

lim
n→∞

b−1
n

n∑
t=1

at = α (8.46)

Let also {xn} (n = 1, 2, . . .) be a sequence of real numbers which converges to x∗, that is,

xn →
n→∞

x∗ (8.47)

Then

lim
n→∞

b−1
n

n∑
t=1

at xn = αx∗ (8.48)

Proof. Directly applying the Teöplitz Lemma 8.2 we derive

b−1
n

n∑
t=1

at xn =

[
b−1

n

n∑
t=1

at

]( n∑
t=1

at

)−1 n∑
t=1

at xn

→ αx∗ �
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Lemma 8.3. (Kronecker) Let {an} (n = 1, 2, . . .) be a sequence of nonnegative non-
decreasing real numbers such that

0 ≤ bn ≤ bn →∞ when n→∞ (8.49)

and {xn} (n = 1, 2, . . .) be a sequence of real numbers such that the series
n∑

t=1
xt converges,

that is,

sn :=

n∑
t=n0

xt →
n→∞

s∗,
∣∣s∗∣∣ <∞ (8.50)

Then

(a) there exists an integer n0 such that bn > 0 for all n ≥ n0;
(b)

1
bn

n∑
t=1

bt xt → 0 when n0 ≤ n→∞ (8.51)

Proof. Applying Abel’s identity (see Lemma 12.2 in Poznyak (2008)) for the scalar case,
namely, using the identity

n∑
t=n0

αtβt = αn

n∑
t=n0

βt −

n∑
t=n0

(αt − αt−1)

t−1∑
s=n0

βs

we derive

1
bn

n∑
t=n0

bt xt =
1
bn

[
bn

n∑
t=n0

xt −

n∑
t=n0

(bt − bt−1)

t−1∑
s=n0

xs

]

= sn −
1
bn

n∑
t=n0

(bt − bt−1) st−1

Denote at := bt − bt−1. Then

bn =

n∑
t=n0

at + bn0 =

n∑
t=n0

at

[
1+ bn0

/
n∑

t=n0

at

]
and hence, by the Teöplitz Lemma 8.2, we have

1
bn

n∑
t=n0

bt xt = sn −

[
1+ bn0

/
n∑

t=n0

at

]−1 ( n∑
t=n0

at

)−1 n∑
t=n0

at st−1

→ s∗ − s∗ = 0

that proves (8.51). �
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8.2.2.2 Matrix versions of Teöplitz and Kronecker lemmas

Lemma 8.4. (MT-lemma, Poznyak and Tchikin (1985)) Let
{

As,n
}

1≤s≤n be a family of

triangular matrices As,n ∈ RN×M such that for some matrix norm ‖·‖

1.

sup
n

∥∥As,n − A
∥∥ <∞, 1 ≤ s ≤ n (8.52)

2. ∥∥As,n − A
∥∥→ 0 whenever n ≥ s →∞ (8.53)

and {Bn}n≥1 be a sequence of nonsingular matrices Bn ∈ RN×N satisfying

3.

‖Bn‖ →
n→∞

0 (8.54)

4.

lim sup
n→∞

n∑
s=1

∥∥∥Bn

(
B−1

s − B−1
s−1

)∥∥∥ <∞ (8.55)

Then∥∥∥∥∥Bn

n∑
s=1

(
B−1

s − B−1
s−1

)
As,n − A

∥∥∥∥∥ →n→∞ 0 (8.56)

Proof. By the assumption (8.53) it follows that for any ε > 0 there exists an integer s (ε)
such that for all n ≥ s ≥ s (ε) we have

∥∥As,n − A
∥∥ < ε. Then by the assumptions of the

lemma

lim sup
n→∞

∥∥∥∥∥Bn

n∑
t=1

(
B−1

s − B−1
s−1

)
As,n − A

∥∥∥∥∥
≤ lim sup

n→∞

∥∥∥∥∥Bn

n∑
t=s(ε)+1

(
B−1

s − B−1
s−1

) (
As,n − A

)∥∥∥∥∥
+ lim sup

n→∞

∥∥∥∥∥Bn

s(ε)∑
t=1

(
B−1

s − B−1
s−1

) (
As,n − A

)∥∥∥∥∥
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= lim sup
n→∞

∥∥∥∥∥Bn

n∑
t=s(ε)+1

(
B−1

s − B−1
s−1

) (
As,n − A

)∥∥∥∥∥
≤ εlim sup

n→∞

n∑
s=1

∥∥∥Bn

(
B−1

s − B−1
s−1

)∥∥∥ = O (ε)

which, in view of an arbitrary small ε, completes the proof. �

Corollary 8.6. (Poznyak and Tchikin, 1985)

1. For a sequence {Rn}n≥1 of squared matrices Rn ∈ RN×N there exists the limit

lim
n→∞

n∑
t=1

Rt := R (8.57)

2. The sequence {Bn}n≥1 of nonsingular matrices Bn ∈ RN×N satisfies the conditions
(8.54) and (8.55).
Then

Bn

n∑
t=1

B−1
t Rn−t →

n→∞
R (8.58)

Proof. Define Sk,n :=
n−1∑

t=n−k
Rt and S0,n := 0, B−1

0 := 0. Then, by the Abel’s identity (see

Lemma 12.2 in Poznyak (2008))

n∑
t=1

B−1
t Rn−t = B−1

n

n∑
t=1

Rn−t −

n∑
t=1

(
B−1

t − B−1
t−1

) t−1∑
s=1

Rn−t

= B−1
t Sn,n −

n∑
t=1

(
B−1

t − B−1
t−1

)
St−1,n

=

n∑
t=1

(
B−1

t − B−1
t−1

) (
Sn,n − St−1,n

)
=

n∑
t=1

(
B−1

t − B−1
t−1

)
(R − Tn−t )

where

Tm :=

∞∑
s=m+1

Rs →
m→∞

0 (m := 0, 1, . . .)

But

lim sup
n→∞

∥∥∥∥∥Bn

n∑
t=1

B−1
t Rn−t − R

∥∥∥∥∥
= lim sup

n→∞

∥∥∥∥∥Bn

n∑
t=1

(
B−1

t − B−1
t−1

)
Tn−t

∥∥∥∥∥ = 0



196 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

which follows from the lemma above if taken within A := 0 and As,n := Tn−s . Corollary
is proven. �

Lemma 8.5. (MK-lemma, Poznyak and Tchikin (1985)) Let {Bn}n≥1 be a sequence of
nonsingular matrices Bn ∈ RN×N satisfying (8.54) and (8.55). Then

(a) for any sequence {An}n≥1 of matrix An ∈ RN×M such that the limit of Cn :=
n∑

s=1
As

exists when n→∞ the following property holds:

Bn

n∑
s=1

B−1
s As →

n→∞
0 (8.59)

(b) for any family
{

As,n
}

1≤s≤n of triangular matrices As,n ∈ RN×M such that

∞∑
n=s+1

∥∥As,n
∥∥ →

n→∞
0 (8.60)

it follows that

Bn

n∑
s=t+1

B−1
s At,s →

n>t→∞
0 (8.61)

Proof. (a) By the matrix Abel identity (see Lemma 12.2 in Poznyak (2008)) it follows that

Bn

n∑
s=1

B−1
s As = Cn − Bn

n∑
s=1

(
B−1

s − B−1
s−1

)
Cs−1

where C0 := 0 and B−1
0 . Since lim

n→∞
Cn := C∞ exists then all conditions of Lemma 8.4

are fulfilled and therefore by this lemma

Bn

n∑
s=1

(
B−1

s − B−1
s−1

)
Cs−1 →

n→∞
C∞

that implies (8.59).
(b) Analogously,

Bn

n∑
s=t+1

B−1
s At,s = Ct,n − Bn

n∑
s=t+1

(
B−1

s − B−1
s−1

)
Ct,s−1

Ct,n :=

n∑
s=t+1

At,s →
n>t→∞

0



Limit theorems as invariant laws 197

Hence, for any ε > 0 there exists a number t0 (ε) such that for all n > t ≥ t0 (ε)∥∥Ct,n
∥∥ ≤ ε

and then∥∥∥∥∥Bn

n∑
s=t+1

B−1
s At,s

∥∥∥∥∥ ≤ ∥∥Ct,n
∥∥

+

n∑
s=t+1

∥∥∥Bn

(
B−1

s − B−1
s−1

)∥∥∥ ∥∥Ct,s−1
∥∥ ≤ ε + εConst

that proves the desired result. �

8.2.2.3 SLLN via a series convergence

Lemma 8.6. To guarantee the SLLN fulfilling, namely,

n−1Sn
a.s.
→

n→∞
0 (8.62)

it is sufficient that the series

S̃n :=

n∑
t=1

xt

t
(8.63)

converges (a.s.).

Proof. It follows directly from the Kronecker Lemma if we take into account the trivial
identity

n−1Sn = n−1
n∑

t=1

t
( xt

t

)
that proves the lemma. �

Now we embark on SLLN discussion for martingales.

Lemma 8.7. Let {xn,Fn}n≥1 be a martingale-difference, that is,

E {xn | Fn−1}
a.s
= 0

with E{sup
n

n−1 |xn|} <∞. Then for S̃n :=
n∑

t=1
t−1xt

lim sup
n→∞

S̃n
a.s.
= +∞

lim inf
n→∞

S̃n
a.s.
= −∞
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on the set {
∞∑

n=1
n−1xn diverges} and the limit lim

n→∞
S̃n exists and (a.s.) finite on the set

{

∞∑
n=1

n−1xn converges}.

Proof. Let τa := min
{

n : S̃n > a
}

with τa = ∞ if no such n exists. Random variables

τa∧n (n ≥ 1) form a non-decreasing sequence of stopping times and so
{

S̃τa∧n ,Fn

}
n≥1

is

a martingale. Also we have

S̃+τa∧n
:= max

{
0; S̃τa∧n

}
≤ S̃+τa∧(n−1)

+ n−1x+τa∧(n−1)
≤ a + sup

n
n−1x+τa∧(n−1)

and since E{sup
n

n−1 |xn|} <∞ it follows that

E
{∣∣∣S̃τa∧n

∣∣∣} ≤ 2E
{

S̃+τa∧n

}
is bounded as n → ∞. Therefore, by the supermartingale convergence Theorem 7.10{

S̃τa∧n

}
converges (a.s.) to a finite limit as n→∞. �

8.2.2.4 SLLN for mixingale sequences

First, let us prove an auxiliary result which will be used hereafter.

Theorem 8.4. If {xn,Fn} is a mixingale such that

∞∑
n=1

c2
n <∞ and ψn = O

(
1

√
n log2 n

)
as n→∞ (8.64)

then the series Sn =
n∑

t=1
xt converges a.s. to a finite limit as n→∞.

Proof. (McLeish, 1975) By the second Chebyshev inequality (4.10) and by Theorem 8.2
we have that for each m′ > m

P

{
max

m<n≤m′
|Sn − Sm | > ε

}
≤ ε−2 K

m′∑
t=m

c2
t

so that, taking m′→∞,

P
{

max
m<n
|Sn − Sm | > ε

}
≤ ε−2 K

∞∑
t=m

c2
t →m→∞

0

Therefore, by the condition (6.58), Sn converges (a.s.) to a limit random variable with finite
variance. Theorem is proven. �
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Now we are ready to formulate the main result concerning SLLN for mixingales.

Theorem 8.5. Let {xn,Fn} be a mixingale (see Definition 8.5) and {bn} be a sequence of
positive constants increasing to∞, i.e., 0 < bn ↑

n→∞
∞ such that

∞∑
n=1

c2
n

b2
n
<∞ and ψn = O

(
1

√
n log2 n

)
as n→∞ (8.65)

Then

1
bn

Sn
a.s.
→

n→∞
0 (8.66)

Proof. By Lemma 8.6 the property (8.66) will be guaranteed if the series
n∑

t=1

xt

bt
converges

(a.s.). But if {xn,Fn} is a mixingale, then {x̃n,Fn}, where x̃n := xt/bt , is also mixingale
with

ψ̃n = ψn and c̃n = cn/bt

So, the desired result (8.66) follows directly from Theorem 8.4. �

8.2.2.5 SLLN for martingale-differences

Theorem 8.6. Let {xn,Fn}n≥1 be a martingale-difference, that is,

E {xn | Fn−1}
a.s
= 0

with E
{

x2
n | Fn−1

}
satisfying

∞∑
n=1

b−2
n E

{
x2

n | Fn−1

}
a.s.
< ∞

for some sequence {bn}n≥1 of positive constants monotonically increasing to ∞, i.e.,
0 < bn ↑

n→∞
∞. Then

b−1
n Sn

a.s.
→

n→∞
0

Proof. Since

sn := b−1
n Sn = b−1

n

(
bn−1b−1

n−1Sn−1 + xn

)
= b−1

n bn−1sn−1 + b−1
n xn
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then the following relation holds:

s2
n =

(
b−1

n bn−1

)2
vn−1 + 2b−2

n bn−1sn−1xn + b−2
n x2

n

and, by the martingale-difference property,

E
{

s2
n | Fn−1

}
a.s.
=

(
b−1

n bn−1

)2
s2

n−1 + b−2
n E

{
x2

n | Fn−1

}
=

(
1−

bn − bn−1

bn

)2

s2
n−1 + b−2

n E
{

x2
n | Fn−1

}
=

(
1− 2

bn − bn−1

bn

[
1−

bn − bn−1

2bn

])
s2

n−1 + b−2
n E

{
x2

n | Fn−1

}
=

(
1− 2

bn − bn−1

bn

[
1
2
+

bn−1

2bn

])
s2

n−1 + b−2
n E

{
x2

n | Fn−1

}
≤

(
1−

bn − bn−1

bn

)
s2

n−1 + b−2
n E

{
x2

n | Fn−1

}
Taking in Lemma 7.9

ηn := s2
n , νn := 0, λn :=

bn − bn−1

bn
, θn := b−2

n E
{

x2
n | Fn−1

}
we obtain ηn = s2

n
a.s.
→

n→∞
0 that proves the desired result. �

Corollary 8.7. (The Kolmogorov sufficient condition) If {xn} is a sequence of indepen-
dent random variables with zero-mean and finite variances σ 2

n < ∞ (n = 1, 2, ..) satisfy-
ing the condition

∞∑
n=1

n−2σ 2
n <∞ (8.67)

then

n−1Sn
a.s.
→

n→∞
0 (8.68)

Proof. Letting in Theorem 8.6 bn = n and taking into account that in this case E{x2
n |

Fn−1} = σ
2
n we obtain (8.68). �

Theorem 8.7. Let r > 1 and {xn} be a sequence of independent identically distributed
absolutely integrable random variables with zero-mean, namely,

E {xn} = 0, m1 := E {|xn|} <∞ (8.69)

Then

n−r Sn
a.s.
→

n→∞
0 (8.70)
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Proof. By the Kronecker lemma 8.3 it is sufficient to prove the convergence (a.s.) of the

series
n∑

t=1
t−r xt as n → ∞. But it converges if it converges absolutely, i.e., if the series

n∑
t=1

t−r |xt | converges (a.s.) as n → ∞. But the series of nonnegative random variables

converges almost surely if the series of its mathematical expectations converges, that is,

when
∞∑

t=1
t−rE {|xt |} <∞. But

∞∑
t=1

t−rE {|xt |} =

∞∑
t=1

t−r m1 = m1

∞∑
t=1

t−r <∞

if r > 1, which proves the theorem. �

Theorem given below deals with a more delicate case when we are interested in the
statement n−αSn

a.s.
→

n→∞
0 with α ∈ (0, 1).

Theorem 8.8. (Marcinkiewicz and Zygmund, 1937) Let r > 0 and {xn}n≥1 be a sequ-
ence of independent identically distributed random variables with zero-mean and finite
absolute r-moment, namely,

E {xn} = 0, mr :=
(
E
{
|xn|

r})1/r
<∞ (8.71)

Then

n−1/r Sn
a.s.
→

n→∞
0 (8.72)

Proof. First represent Sn as the sum of two terms:

Sn = S′n + S′′n

where

S′n =
n∑

t=1

[
xt − xtχ

(
|xt | ≤ t1/r+ε

)]
, ε > 0

S′′n =
n∑

t=1

xtχ
(
|xt | ≤ t1/r+ε

)
So, by this presentation it is sufficient to prove that n−1/r S′n

a.s.
→

n→∞
0 and n−1/r S′′n

a.s.
→

n→∞
0.

(a) Let us prove that n−1/r S′n
a.s.
→

n→∞
0. One has

v′n := n−1/r
∣∣S′n∣∣ ≤ n−1/r

[
(n − 1)1/r vn−1 + |xn|χ

(
|xn| > n1/r+ε

)]
= (1− 1/n)1/r v′n−1 + n−1/r

|xn|χ
(
|xn| > n1/r+ε

)
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By the Hölder inequality (13.73) for p = r and q = r/ (r − 1) and by the Markov
inequality (4.8) it follows that

E
{
|xn|χ

(
|xn| > n1/r+ε

)}
≤
(
E
{
|xn|

r})1/r
(
E
{
χq
(
|xn| > n1/r+ε

)})1/q

= mrP
1/q

{
|xn| > n1/r

}
≤ mr

(
E
{
|xn|

r}(
n1/r+ε

)r
)1/q

= mr

(
mr

r

n1+εr

)1/q

(8.73)

and therefore

E
{
v′n
}
≤ (1− 1/n)1/r E

{
v′n−1

}
+ n−1/r mr

(
mr

r

n1+εr

)1/q

≤

(
1−

[
r−1
+ o (1)

]
n

)
E {vn−1} +

m1+r/q
r

n1/r+1/q+εr/q

=

(
1−

[
r−1
+ o (1)

]
n

)
E
{
v′n−1

}
+

mr
r

n1+εr/q

Hence, by Lemma 16.14 in Poznyak (2008), it follows that E
{
v′n
}
→ 0 as n → ∞, but

for nonnegative random variables v′n this means that v′n
a.s.
→

n→∞
0. So, we have proved the

asymptotic closeness of the arithmetic average of a sequence of random variables and its
truncated analog for any r > 0.

(b) Let us show that n−1/r S′′n
a.s.
→

n→∞
0. First, notice that S′′n can be represented as

S′′n =
n∑

t=1

(yt − E {yt })+

n∑
t=1

E {yt } , yt := xtχ
(
|xt | ≤ n1/r+ε

)
where, by the Töeplitz Lemma 8.2,

n−1/r
n∑

t=1

E {yt } = n−1/r
n∑

t=1

[
n1/r
− (n − 1)1/r

] E {yt }

n1/r − (n − 1)1/r
→

n→∞
0

since for r > 1 it follows that∣∣∣∣ E {yt }

n1/r − (n − 1)1/r

∣∣∣∣ = |E {yt }|

n1/r (1− (1− 1/n))1/r
=

|E {yt }|[
r−1 + o (1)

]
n1/r−1

→
n→∞

0

we take into account (8.73):

|E {yt }| ≤ E {|yt |} < mr

(
mr

r

n1+εr

)1/q

But v′′n := n−1/r
n∑

t=1
(yt − E {yt })

a.s.
→

n→∞
0 if, by the Kronecker lemma 8.3, the series

n∑
t=1

t−1/r (yt − E {yt }) converges that is true when

∞∑
n=1

n−2/rE
{
(yn − E {yn})

2
}
<∞
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Estimating the terms of this series we get∣∣∣E {(yn − E {yn})
2
}∣∣∣ = ∣∣∣E {y2

n

}
− E2
{yn}

∣∣∣ ≤ E
{

y2
n

}
+ E2
{yn}

By (8.73),

E2
{yn} ≤ E2

{|yn|} < m2
r

(
mr

r

n1+εr

)2/q

→
n→∞

0

and

E
{

y2
n

}
= E

{
x2

nχ
(
|xn| > n1/r+ε

)}
≤

(
E
{
|xn|

2(r/2)
})2/r

·

(
E
{
χq
(
|xn| > n1/r+ε

)})1/q
= m2

r P
1/q

{
|xn| > n1/r

}
≤ m2

r

(
E
{
|xn|

r}(
n1/r+ε

)r
)1/q

= m2
r

(
mr

r

n1+εr

)1/q

=
m2+r/q

r

n1/q+εr/q

So, each term in the series
∞∑

n=1
n−2/rE

{
(yn − E {yn})

2
}

is estimated as

1

n2/r

[
m2+r/q

r

n1/q+εr/q + m2
r

(
mr

r

n1+εr

)2/q
]
=

const

n2/r+1/q+εr/q +
const

n2/r+2/q+2εr/q

=
const (1+ o(1))
n2/r+1/q+εr/q =

const (1+ o(1))
n1/r+1+εr/q

Therefore this series converges for any r > 0 that completes the proof. �

8.2.2.6 SLLN for mixing sequences

Theorem 8.9. Let {xn}n≥1 be an φ-mixing sequence (8.10) such that E {xn} = 0 and

∞∑
s=1

b−2
s E

{
x2

s

}
<∞ (8.74)

and

∞∑
n=1

√
E
{

x2
n

}
b−1

n

n−1∑
t=1

b−1
t

√
φn−t

√
E
{

x2
t
}
<∞ (8.75)

Then

b−1
n Sn

a.s.
→

n→∞
0 (8.76)
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Proof. By the Kronecker lemma 8.3 the property (8.76) holds if the series sn :=
n∑

t=1

1
bt

xt

converges (a.s.) as n→∞. Then

s2
n :=

(
sn−1 + b−1

n |xn|

)2
= s2

n−1 + 2b−1
n sn−1 |xn| + b−2

n x2
n

= s2
n−1 + 2b−1

n

n−1∑
t=1

b−1
t xt xn + b−2

n x2
n

that (for Fn := σ (x1, . . . , xn)) implies

E
{

s2
n | Fn−1

}
= s2

n−1 + 2b−1
n

n−1∑
t=1

b−1
t E {xt xn | Fn−1} + b−2

n E
{

x2
n | Fn−1

}
By the Robbins–Siegmund Theorem 7.11 s2

n converges (a.s.) if

∞∑
n=1

b−2
n E

{
x2

n | Fn−1

}
a.s.
< ∞,

∞∑
n=1

b−1
n

n−1∑
t=1

b−1
t |E {xt xn | Fn−1}|

a.s.
< ∞

that is true if
∞∑

n=1

b−2
n E

{
x2

n

}
<∞,

∞∑
n=1

b−1
n

n−1∑
t=1

b−1
t E {|xtE {xn | Fn−1}|} <∞

The first series converges by the assumption (8.74). To prove the convergence of the second
series notice that by the Cauchy–Bounyakovski–Schwartz inequality (4.16) and in view of
the mixing property (8.26) we have

|E {xtE {xn | Ft }}| ≤

√
E
{

x2
t
}√

E
{
|E {xn | Ft }|

2
}

≤

√
E
{

x2
t
}√

4φn−tE
{

x2
n

}
= 2

√
φn−t

√
E
{

x2
t
}
E
{

x2
n

}
that implies

b−1
n

n−1∑
t=1

b−1
t E {|xtE {xn | Fn−1}|} ≤ 2b−1

n

n−1∑
t=1

b−1
t

√
φn−t

√
E
{

x2
t
}
E
{

x2
n

}
= 2

√
E
{

x2
n

}
b−1

n

n−1∑
t=1

b−1
t

√
φn−t

√
E
{

x2
t
}

and therefore, by the assumption (8.75)

∞∑
n=1

b−1
n

n−1∑
t=1

b−1
t E {|xtE {xn | Fn−1}|}

≤ 2
∞∑

n=1

√
E
{

x2
n

}
b−1

n

n−1∑
t=1

b−1
t

√
φn−t

√
E
{

x2
t
}
<∞

that proves the theorem. �
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Corollary 8.8. For bn := n and for E
{

x2
n

}
≤ σ 2 (n = 1, . . .) the conditions of

Theorem 8.9 will be fulfilled if

∞∑
n=1

n−1
n−1∑
t=1

t−1
√
φn−t <∞ (8.77)

which is true, for example, if the sequence {φn}n≥1 of the uniform strong mixing coefficients
satisfies

∞∑
n=1

√
φn <∞ (8.78)

Proof. The condition (8.77) directly follows from (8.75) if we substitute there bn := n and
use the estimate E

{
x2

n

}
≤ σ 2. To prove that

rn :=

n∑
t=1

t−1
t−1∑
s=1

s−1
√
φt−s

=

n0∑
t=1

t−1
t−1∑
s=1

s−1
√
φt−s +

n∑
t=n0+1

t−1
t−1∑
s=1

s−1
√
φt−s

≤ Const (n0)+

n∑
t=n0+1

t−1
t−1∑
k=1

(t − k)−1
√
φk

= Const (n0)+

n∑
t=n0+1

t−1
n∑

k=1

χ (k ≤ t − 1) (t − k)−1
√
φk

= Const (n0)+

n∑
k=1

√
φk

n∑
t=n0+1

t−1χ (k ≤ t − 1) (t − k)−1

≤ Const (n0)+

n∑
k=1

√
φkβk

where

βk :=

∞∑
t=n0+1

t−1χ (k ≤ t − 1) (t − k)−1
=

∞∑
t=(n0+1)∨(k+1)

t−1 (t − k)−1

The series in the right-hand side converges for any k and the sequence {βk}k≥1 is
monotonically non-increasing. Therefore, by the Abel Test (see Corollary 16.27 in Poznyak
(2008)), the result of the theorem follows. �

8.2.2.7 SLLN for correlated sequences

Let all random sequences considered below be defined on the probability space (�,F,P).
For the given centered quadratic-integrable Rn-valued random process {ξn}n≥|, given by
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ξn ∈ Rn, E {ξn} = 0, E
{
ξᵀn ξn

}
= σ 2

n <∞ (8.79)

introduce the special characteristic, the so-called ‘double averaged’ correlation function
Rn defined by

Rn := n−2
n∑

t=1

n∑
s=1

ρt,s = n−2E
{

Sᵀn Sn
}
, Sn :=

n∑
t=1

ξt (8.80)

where

ρt,s := E{ξ
ᵀ
t ξs} (8.81)

is the corresponding correlation function.

Theorem 8.10. (Poznyak, 1992) 1 If for the vector process {ξn} (8.79) the following series
converges:

∞∑
n =1

(
σn

n

√
Rn−1 +

1

n2 σ
2
n

)
<∞ (8.82)

then ‘the strong law of large numbers’ holds for this process, that is,

n−1Sn
a.s.
→ 0

Remark 8.7. If the given process {ξt } has a bounded variance, that is, σ 2
n ≤ σ̄

2 <∞ and
a ‘double averaged’ correlation function Rn, decreasing as

Rn = O
(
n−ε

)
(ε > 0)

then the conditions of this theorem are fulfilled automatically.

Proof. Define S̃n := n−1Sn for any n = 1, 2, . . . . Then∥∥∥S̃n

∥∥∥2
=

(
1−

1
n

)2 ∥∥∥S̃n−1

∥∥∥2
+ vn ≤

(
1−

1
n

)
S̃2

n−1 + vn

where

vn := 2
1
n

(
1−

1
n

)
S̃ᵀn−1ξn +

1

n2
‖ξn‖

2

then the back iterations imply

S̃2
n ≤ π

2
n S̃1 + πn

n∑
t=2

π−1
t vt

1The English version of this result can be found in Poznyak (2001).
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with

πn :=

n∏
t=2

(
1− t−1

)
By the Kronecker lemma 8.3, S̃n tends to zero if with probability 1 the following sequence

r (1)n :=

n∑
t=1

vt

converges. To fulfill this, it is sufficient to show that under the conditions of this theorem
the series

r (2)n :=

n∑
t=1

1

t2
‖ξt‖

2, r (3)n :=

n∑
t=1

1
t
|S̃ᵀt−1ξt |

converge with probability 1. But this takes place if

∞∑
t=1

1

t2 σ
2
n <∞,

∞∑
t=1

1
t
E{|S̃ᵀt−1ξt |} <∞

By the Cauchy–Bounyakovski–Schwartz inequality (4.16), it follows

∞∑
t=1

1
t
E{|S̃ᵀt−1ξt |} ≤

∞∑
t=1

1
t

√
E{‖S̃t−1‖

2}σ 2
n

that together with the identity E{‖S̃t−1‖
2
} = Rt−1 directly leads to the result of this

theorem. The theorem is proven. �

Below, two partial cases, most important for the identification and adaptive control
applications, are considered in detail.

8.2.2.8 The Cramer–Lidbetter condition

Corollary 8.9. Assume that the correlation coefficients ρt,s (8.81) of the given random
process (8.79) satisfy the so-called Cramer–Lidbetter condition (Cramer and Lidbetter,
1969), that is,

|ρt,s | ≤ K
tα + sα

1+ |t − s|β
(8.83)

where K , α, β are nonnegative constants satisfying

2 α < min{1, β} (8.84)

Then the strong law of large numbers holds, that is,

n−1Sn
a.s.
→ 0
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Proof. Since

E{‖ξt‖
2
} = σ 2

t = ρt,t ≤ 2K tα

then

Rn ≤
K

n2

n∑
t=1

n∑
s=1

tα + sα

1+ |t − s|β

=
2K

n2

(
n∑

t=1

tα +
n∑

t=1

∑
s<t

tα + sα

1+ (t − s)β

)
≤

2K

n1−α + 2K In

where

In :=
1

n2

n∑
t=1

∑
s<t

tα + sα

1+ (t − s)β
= I ′n + I ′′n

I ′n :=
1

n2

n∑
t=1

tα
∑
s<t

1
1+ (t − s)β

≤
1

n2

n∫
0

tα
{

tβ−1
−1

1−β , β 6= 1
ln t, β = 1

}
dt

≤ Const


nα−β , β < 1
nα+ε−1, β = 1
nα−1, β > 1

 , ε > 0

I ′′n :=
1

n2

n∑
t=1

∑
s<t

sα

1+ (t − s)β
≤

1

n2

n∑
t=1

tα
∑
s<t

1
1+ (t − s)β

= I ′n

So, finally, the following upper estimate for the ‘double averaged’ correlation function Rn
holds:

Rn ≤ Const


nmax{α−1,α−β}, β < 1
nα+ε−1, β = 1
nα−1, β > 1

 , ε > 0

The substitution of the right-hand side of the last inequality in (8.82) implies the desired
result. �

8.2.2.9 Dependent processes generated by stable forming filters

Corollary 8.10. Consider a centered random independent vector process {ξn}n≥1 with
finite variances σ 2

n satisfying

∞∑
n=1

1
n (n − 1)

σn

√√√√n−1∑
r=0

σ 2
r <∞ (8.85)

and generating the random vector sequence {ζn} according to the following expression:

ζn =

n∑
t=0

hn,tξt (8.86)
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where the impulse response matrix function hn,t for any t ≤ n satisfies

∥∥hn,t
∥∥ ≤ ĥ(n − t), H :=

∞∑
τ=0

ĥ(τ ) <∞ (8.87)

(such impulse function characterizes a stable, maybe, nonstationary forming filter). Then
for the random sequence {ζn} the strong law of large numbers holds, that is,

1
n

n∑
t=1

ζt
a.s.
→ 0

Proof. The inequality

Rn ≤
H2

n2

n∑
r=0

σ 2
r

implies

1
n

√
Rn−1σ 2

n ≤
H

n (n − 1)
σn

√√√√n−1∑
r=0

σ 2
r

that, together with the accepted assumptions, proves this corollary. �

8.3 Central limit theorem

If the LLN states that under certain conditions the arithmetic mean of difference between
random variables {xn}n≥1 and their mathematical expectations converges to zero (in some
probabilistic sense), that is,

n−1
n∑

t=1

(xt − E {xt }) →
n→∞

0 (8.88)

the Central Limit Theorem (CLT) , which will be discussed in this section, concerns the
distributional rate of convergence of the same difference. So, below we will analyze the
conditions providing the distributional convergence of the normalized difference of random
variables and their mathematical expectations to the standard normal distribution, namely,

P

{
1
sn

n∑
t=1

(xt − E {xt }) ≤ x

}
→

n→∞

1
2π

x∫
t=−∞

e−t2/2dt

s2
n :=

n∑
k=1

σ 2
k =

n∑
k=1

E
{
(xt − µt )

2
}
, µt := E {xt }

(8.89)
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that can be rewritten as

1
sn

n∑
t=1

(xt − E {xt })
d
→

n→∞
N (0, 1) (8.90)

Notice that if random variables are identically distributed with E {xn} = µ and σ 2
n = σ

2

then

sn = σ
√

n

and (8.90) becomes

1

σ
√

n

n∑
t=1

(xt − µ) =
√

n

[
n−1

n∑
t=1

(xt − E {xt })

σ

]
d
→

n→∞
N (0, 1)

which shows that the distributional rate of convergence in LLN (8.88) has the order
N
(
0, n−1

)
.

We start with the simplest case of independent identically distributed (i.i.d.) random
variables, and then will present the general result concerning independent random variables
known as Lindeberg–Lévy–Feller theorem (see Lindeberg (1922), Lévy (1937) and Feller
(1935)). We will conclude this section by presenting a version of CLM for dependent
sequences, which helps a great deal in the analysis of the convergence rate of different
procedures in concrete applications.

8.3.1 The i.i.d. case

Theorem 8.11. Let {xn}n≥1 be i.i.d. random variables with E {xn} = µ and σ 2
k = σ

2 > 0.
Then

1

σ
√

n

n∑
t=1

(xt − µ)
d
→

n→∞
N (0, 1) (8.91)

Proof. Using the definition (5.3) of characteristic functions it is suffices to prove that

ϕ Sn−nµ
σ
√

n
(t) →

n→∞
e−t2/2

uniformly on t ∈ R. Since (xt − µ) /σ is zero-mean and has variance equal to 1, without
loss of generality we may assume that µ = 1 and σ = 1. Therefore, taking into account
the i.i.d. property of {xn}n≥1, one has

ϕ Sn−nµ
σ
√

n
(t) = ϕSn/

√
n (t) = ϕSn

(
t/
√

n
)

=
[
ϕxn

(
t/
√

n
)]n
=

[
1− t2/2n + o

(
t2/n

)]n
→

n→∞
e−t2/2

that completes the proof. �
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8.3.2 General case of independent random variables

To present the generalization of the previous theorem to the case of independent but not
obligatory identically distributed random variables we will need two fundamental concepts
known as the Lindeberg conditions, involved in the formulation of the generalized CLT.

8.3.2.1 Lindeberg conditions

Definition 8.7. The following properties of independent random variables {xn}n≥1 are
called

1. the first Lindeberg condition

L(1)n := max
1≤k≤n

σ 2
k /s

2
n →n→∞

0 (8.92)

2. the second Lindeberg condition

L(2)n := s−2
n

n∑
k=1

E
{
|xk − µk |

2 χ (|xk − µk | /sn > ε)
}
→

n→∞
0 (8.93)

Lemma 8.8.

1. The condition (8.92) implies

s2
n ↑

n→∞
∞ (8.94)

2. The condition (8.93) implies (8.92).

Proof. Excluding the case when all σk = 0 we conclude that there exists an integer n0
such that σn0 > 0, and therefore by (8.92) we have

σ 2
n0

s2
n
≤ L(1)n →

n→∞
0

that proves the assertion 1. To prove 2. it suffices to note that for any ε > 0

L(1)n ≤ s−2
n max

1≤k≤n
E
{
|xk − µk |

2 χ (|xk − µk | ≤ εsn)
}

+ s−2
n max

1≤k≤n
E
{
|xk − µk |

2 χ (|xk − µk | > εsn)
}
≤ ε2
+ L(2)n ↓

n→∞
ε2

providing

lim sup L(1)n ≤ ε
2

that proves the theorem. �

Now we are ready to present the legendary result.
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8.3.2.2 CLT in the Lindeberg–Lévy–Feller form

Theorem 8.12. (Lindeberg–Lévy–Feller) If for the sequence {xn} of independent ran-
dom variables the first Lindeberg condition (8.93) satisfied, then

1
sn

n∑
t=1

(xt − µt )
d
→

n→∞
N (0, 1) (8.95)

To give the proof of this theorem we shall need the auxiliary lemma given below.

Lemma 8.9. (Gut, 2005) Under the second Lindeberg condition (8.93) the following
properties hold:

1. ∣∣∣∣∣ n∑
k=1

(
lnϕxk (t/sn)+

[
1− ϕxk (t/sn)

])∣∣∣∣∣ →n→∞ 0 (8.96)

2. ∣∣∣∣∣ n∑
k=1

(
ϕxk (t/sn)−

[
1−

σ 2
k

2s2
n

t2

])∣∣∣∣∣ →n→∞ 0 (8.97)

Proof.
1. Notice that in view of Lemma 8.8∣∣1− ϕxk (t/sn)

∣∣ ≤ E

{
x2

k

2s2
n

t2

}
≤

t2

2
L(1)n → 0

uniformly on k = 1, 2, . . . , n whereas n→∞. Therefore∣∣∣∣∣ n∑
k=1

(
lnϕxk (t/sn)+

[
1− ϕxk (t/sn)

])∣∣∣∣∣
≤

n∑
k=1

∣∣ln [1− (1− ϕxk (t/sn)
)]
+
[
1− ϕxk (t/sn)

]∣∣
≤

n∑
k=1

∣∣1− ϕxk (t/sn)
∣∣2 ≤ max

1≤k≤n

∣∣1− ϕxk (t/sn)
∣∣ n∑

k=1

∣∣1− ϕxk (t/sn)
∣∣

≤
t2

2
L(1)n

n∑
k=1

E

{
x2

k

2s2
n

t2

}
≤

t4

4
L(1)n →

n→∞
0

2. Applying the estimate∣∣∣∣∣ϕxk (t/sn)−

[
1−

σ 2
k

2s2
n

t2

]∣∣∣∣∣ ≤ E

{
min

{
x2

k

2s2
n

t2
;
|xk |

3

6s3
n

t3

}}
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yields∣∣∣∣∣ n∑
k=1

(
ϕxk (t/sn)−

[
1−

σ 2
k

2s2
n

t2

])∣∣∣∣∣ ≤ n∑
k=1

∣∣∣∣∣ϕxk (t/sn)−

[
1−

σ 2
k

2s2
n

t2

]∣∣∣∣∣
≤

n∑
k=1

E

{
min

{
x2

k

2s2
n

t2
;
|xk |

3

6s3
n

t3

}}
≤

n∑
k=1

E

{
x2

k

2s2
n

t2χ (|xk | > εsn)

}

+

n∑
k=1

E

{
|xk |

3

6s3
n

t3χ (|xk | ≤ εsn)

}
≤

n∑
k=1

E

{
εsn
|xk |

2

6s3
n

t3χ (|xk | ≤ εsn)

}

+ t2L(2)n ≤
εt3

6
+ t2L(2)n →

n→∞

εt3

6
which, due to the arbitrariness of ε, proves (8.97). �

Proof of Theorem 8.12.
1. Assuming µk = 0, in view of the independency of {xn}n≥1 and applying Lemma 8.9,
one has

ϕSn/sn (t) = ϕSn (t/sn) =

n∏
k=1

ϕxk (t/sn) = exp

{
n∑

k=1

lnϕxk (t/sn)

}

= exp

{
−

n∑
k=1

[
1− ϕxk (t/sn)

]}
+ o (1)

= exp

{
−

n∑
k=1

[
1− 1+

i t

sn
0+

(i t)2

2s2
n
σ 2

k

]}
+ o (1)

= exp

{
−

t2

2s2
n

n∑
k=1

σ 2
k

}
+ o (1) = exp

{
−

t2

2

}
+ o (1) →

n→∞
exp

{
−

t2

2

}
that completes the proof of the theorem. �

Remark 8.8. It can be proven (see pp. 337–338 in Gut (2005)) that if (8.92) and (8.95)
are satisfied then so is (8.93).

8.3.2.3 Lyapunov’s condition as a relaxing property

The verification of the second Lindeberg condition (8.93) is not a simple task. A slightly
stronger, but definitely simpler, condition was given in Lyapunov (1900).

Theorem 8.13. (Lyapunov, 1900) Let {xn}n≥1 are given as before in Theorem 8.12, and,
in addition, for some r > 2

E
{
|xn|

r} <∞ for all k ≥ 1

and

βn (r) :=
1
sr

n

n∑
k=1

E
{
(xk − µk)

r}
→

n→∞
0 (8.98)
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Then the second Lindeberg condition (8.93), and therefore, the CLT (8.95) holds.

Proof. For any ε > 0

L(2)n := s−2
n

n∑
k=1

E
{
|xk − µk |

2 χ (|xk − µk | > εsn)
}

≤ s−2
n

n∑
k=1

1

(εsn)
r−2 E

{
|xk − µk |

r χ (|xk − µk | > εsn)
}

≤
1

(ε)r−2 sr
n

n∑
k=1

1

(εsn)
r−2 E

{
|xk − µk |

r}
=

1

(ε)r−2 βn (r) →
n→∞

0

that proves the desired result. �

8.3.3 CLT for martingale arrays (or double sequences)

Consider the following triangular array
{

xn, j
}

1≤ j≤n of random variables xn, j :

x1,1
x2,1 x2,2
x3,1 x3,2 x3,3
· · · ·

xn,1 xn,2 · · xn,n
· · · · · ·

Below we will consider basically the so-called martingale arrays where

E
{

xn, j | Fn, j−1
} a.s.
= 0

which is usually obtained from ordinary martingales (E
{
ξ j | F j−1

} a.s.
= 0) by the following

construction:

Sn :=

n∑
j=1

ξ j , s2
n :=

n∑
j=1

σ 2
j

xn, j := ξ j/sn, Fn, j := F j

1
sn

Sn =

n∑
j=1

ξ j/sn =

n∑
j=1

xn, j

so that the distributions in different rows typically are not the same and the rows are not
independent.

To present the vectorial version of CLT for triangular arrays we shall need the following
auxiliary technical result.

Lemma 8.10. Let ξ and η be random vectors from Rm with finite second moments. Define
their characteristic functions

ϕξ (u) := E
{

eiuᵀξ
}
, ϕη (u) := E

{
eiuᵀη

}
, u ∈ Rm
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and the corresponding covariation matrices

cov (ξ, ξ) := E
{
ξξᵀ

}
, cov (η, η) := E

{
ηηᵀ

}
Then for any u ∈ Rm and any ε > 0 such that

‖u‖ ≥ ε−1
(
ε ≤ ‖u‖−1

)
the following inequalities hold:

∣∣ϕξ (u)− ϕη (u)∣∣ ≤ ∣∣uᵀE {ξ − η}∣∣+ ‖u‖22
‖cov (ξ, ξ)− cov (η, η)‖

+
ε

6
‖u‖3

[
E
{
‖ξ‖2

}
+ E

{
‖η‖2

}]
+
‖u‖2

2

[
E
{
‖ξ‖2 χ (‖ξ‖ > ε)

}
+ E

{
‖η‖2 χ (‖η‖ > ε)

}]
(8.99)

Proof. Using the Taylor expansion for the exponent exp {iuᵀx} up to the term of the third
order in the region where ‖x‖ ≤ ε and up to the term of the second order in the region
where ‖x‖ > ε we obtain

exp
{
iuᵀx

}
=

[
1+ iuᵀx −

(uᵀx)2

2
− i

(uᵀx)3

6
c1

]
χ (‖x‖ ≤ ε)

+

[
1+ iuᵀx −

(uᵀx)2

2
c2

]
χ (‖x‖ > ε) = 1+ iuᵀx −

(uᵀx)2

2

+
1− c2

2

(
uᵀx

)2
χ (‖x‖ > ε)− i

c1

6

(
uᵀx

)3
χ (‖x‖ ≤ ε)

where ci = ci (u, x) ∈ (0, 1) (i = 1, 2). Therefore∣∣ϕξ (u)− ϕη (u)∣∣ ≤ ∣∣uᵀE {ξ − η}∣∣+ 1
2

∣∣∣E {(uᵀξ)2}− E
{(

uᵀη
)2}∣∣∣

+
1
2
E
{(

uᵀξ
)2
χ (‖ξ‖ > ε)

}
+ E

{(
uᵀη

)2
χ (‖η‖ > ε)

}
+

1
6
E
{(

uᵀξ
)2
χ (‖ξ‖ ≤ ε)

}
+ E

{(
uᵀη

)2
χ (‖η‖ ≤ ε)

}
Using then the following evident relations

E
{(

uᵀξ
)2}
= uᵀcov (ξ, ξ) u, E

{(
uᵀη

)2}
= uᵀcov (η, η) u

E
{(

uᵀξ
)2
χ (‖ξ‖ ≤ ε)

}
≤ ‖u‖2 E

{
‖ξ‖2 χ (‖ξ‖ > ε)

}
E
{(

uᵀη
)2
χ (‖η‖ ≤ ε)

}
≤ ‖u‖2 E

{
‖η‖2 χ (‖η‖ > ε)

}
E
{(

uᵀξ
)3
χ (‖ξ‖ ≤ ε)

}
= ε ‖u‖3 E

{
‖ξ‖2

}
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E
{(

uᵀη
)3
χ (‖η‖ ≤ ε)

}
= ε ‖u‖3 E

{
‖η‖2

}
the result follows. �

The next theorem represents the version of CLT for triangular vector-arrays.

Theorem 8.14. (Sacks, 1958) Suppose that for a triangular vector array
{

xn, j
}

1≤ j≤n of
random vectors xn, j ∈ Rm the following properties hold:

1.

E
{

xn, j | Fn, j−1
} a.s.
= 0 (8.100)

2.

sup
n≥1

n∑
j=1

E
{∥∥xn, j

∥∥2
}
<∞, lim

n→∞
Kn = K

Kn :=

n∑
j=1

Kn, j , Kn, j := E
{

xn, j xᵀn, j

} (8.101)

3.

lim
n→∞

n∑
j=1

E
{∥∥Kn, j − Ln, j

∥∥} = 0

Ln, j := E
{

xn, j xᵀn, j | Fn, j−1

}
Fn, j := σ

(
xn,1, xn,2, . . . , xn, j

)
(8.102)

4. for any ε > 0

lim
n→∞

n∑
j=1

E
{∥∥xn, j

∥∥2
χ
(∣∣xn, j

∣∣ > ε
)}
= 0 (8.103)

Then

yn :=

n∑
j=1

xn, j
d
→

n→∞
N (0, K ) (8.104)

Proof. Introduce the Gaussian triangular array
{
ηn, j

}
1≤ j≤n which contains Gaussian

centered random variables ηn, j which are independent within this array and of the given
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array
{

xn, j
}

1≤ j≤n as well. Suppose that, by the construction, the covariation matrices of
ηn, j and xn, j coincide, that is, for all j = 1, . . . , n and all n = 1, 2, . . .

E
{
ηn, jη

ᵀ
n, j

}
= Kn, j

Define

ϕyn (u) := E
{

eiuᵀyn
}

ϕzn (u) := E
{

eiuᵀzn
}
, zn :=

n∑
j=1

ηn, j

First, notice that zn is also a Gaussian random variable with zero-mean and the covariation
matrix Kn which converges to a limit K and, therefore, ϕzn (u) converges to the charac-
teristic function of the Gaussian random vector with the covariation matrix K . So, it is
sufficient to show that∣∣ϕyn (u)− ϕzn (u)

∣∣ →
n→∞

0

for any u ∈ Rm (u 6= 0). Let us use the following identity:

ϕyn (u)− ϕzn (u) =
n∑

j=1

[
exp

(
iuᵀ

(
j∑

s=1

xn,s +

n∑
s= j+1

ηn,s

))

− exp

(
iuᵀ

(
j−1∑
s=1

xn,s +

n∑
s= j

ηn,s

))]

=

n∑
j=1

[
exp

{
iuᵀxn, j

}
− exp

{
iuᵀηn, j

}]
exp

{
iuᵀvn, j

}
(8.105)

where

vn, j :=

j−1∑
s=1

xn,s +

n∑
s= j+1

ηn,s

Define then the conditional mathematical expectation of ϕxn,k (u) as

ϕ̃xn, j (u) := E
{

eiuᵀxn, j | Fn, j−1

}
Then using the identity (8.105) and that |exp (i z)| = 1 for any z ∈ R, it follows that∣∣ϕyn (u)− ϕzn (u)

∣∣
=

∣∣∣∣∣E
{

n∑
j=1

E
[
exp

{
iuᵀxn, j

}
− exp

{
iuᵀηn, j

}]
exp

{
iuᵀvn, j

}
| Fn, j−1

}∣∣∣∣∣
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{

n∑
j=1

exp

{
iuᵀ

j−1∑
s=1

xn,s

} [
ϕ̃xn, j (u)− ϕηn, j (u)

]}

× E

{
n∑

j=1

exp

{
iuᵀ

n∑
s= j+1

ηn,s

}}∣∣∣∣∣ ≤ n∑
j=1

E
{∣∣ϕ̃xn, j (u)− ϕηn, j (u)

∣∣}
Then by Lemma 8.10 we get

∣∣ϕ̃xn, j (u)− ϕηn, j (u)
∣∣ ≤ ε

6
‖u‖3

[
E
{∥∥xn, j

∥∥2
}
+ E

{∥∥ηn, j
∥∥2
}]

+
‖u‖2

2

[
E
{∥∥xn, j

∥∥2
χ
(∥∥xn, j

∥∥ > ε
)}
+ E

{∥∥ηn, j
∥∥2
χ (‖η‖ > ε)

}]
and hence,

∣∣ϕyn (u)− ϕzn (u)
∣∣ ≤ n∑

j=1

E
{∣∣ϕ̃xn, j (u)− ϕηn, j (u)

∣∣}
≤
ε

6
‖u‖3 2

n∑
j=1

E
{∥∥xn, j

∥∥2
}

+
‖u‖2

2

n∑
j=1

[
E
{∥∥xn, j

∥∥2
χ
(∥∥xn, j

∥∥ > ε
)}
+ E

{∥∥ηn, j
∥∥2
χ (‖η‖ > ε)

}]

Therefore, by the assumptions of the theorem, it is sufficient to demonstrate that for the
Gaussian vector processes

{
ηn, j

}
we have

n∑
j=1

E
{∥∥ηn, j

∥∥2
χ
(∥∥ηn, j

∥∥ > ε
)}
→

n→∞
0

Since
∥∥Kn, j

∥∥ ≤ E
{∥∥xn, j

∥∥2
}

then for any ε > 0 it follows that

max
1≤ j≤n

∥∥Kn, j
∥∥ ≤ max

1≤ j≤n
E
{∥∥xn, j

∥∥2
}
≤ ε2
+ max

1≤ j≤n
E
{∥∥xn, j

∥∥2
χ
(∥∥ηn, j

∥∥ > ε
)}

≤ ε2
+

n∑
j=1

E
{∥∥xn, j

∥∥2
χ
(∥∥ηn, j

∥∥ > ε
)}

and, hence, by the property (8.103)

max
1≤ j≤n

∥∥Kn, j
∥∥ →

n→∞
0
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Then, by the CBS inequality (4.16) and the Chebyshev inequality (4.10) one has

n∑
j=1

E
{∥∥ηn, j

∥∥2
χ
(∥∥ηn, j

∥∥ > ε
)}
≤

n∑
j=1

√
E
{∥∥ηn, j

∥∥4
}

P
{∥∥ηn, j

∥∥ > ε
}

≤ ε−2
n∑

j=1

√
E
{∥∥ηn, j

∥∥4
}
E
{∥∥ηn, j

∥∥2
}
≤ Const · ε−2 max

1≤ j≤n

∥∥Kn, j
∥∥ →

n→∞
0

that completes the proof. �

The next result represents a useful version of Theorem 8.14, which is frequently used in
Stochastic Optimization Theory (Nevel’son and Khas’minski, 1972).

Theorem 8.15. If the random sequence {ζn}n≥1
(
ζn ∈ RN

)
satisfies the following proper-

ties for some sequences of deterministic nonsingular matrices {An}n≥1
(

An ∈ RN×N
)

1.

E
{
ξk, jξ

ᵀ
k, j | F k, j−1

}
a.s.
= 4k, j , 1 ≤ j ≤ k

ξk, j := E
{
ζk | Fk, j

}
− E

{
ζk | Fk, j−1

} (8.106)

where 4k, j ∈ RN×N is a nonnegative deterministic matrix
2.

1
n

A−1
n max

1≤ j≤n

(
n∑

k= j+1

Ak4k, j Aᵀk

)(
A−1

n

)ᵀ
→

n→∞
0 (8.107)

3. there exists the limit

Vn :=
1
n

A−1
n

n∑
k=1

Ak

(
k∑

j=1

4k, j

)
Aᵀk

(
A−1

n

)ᵀ
→

n→∞
K (8.108)

then

yn :=
1
√

n
A−1

n

n∑
k=1

Akζk
d
→

n→∞
N (0, K ) (8.109)

Proof. Notice that ζn for any n ≥ 1 can be represented as

ζk =

k∑
j=1

ξk, j

ξk, j := E
{
ζk | Fk, j

}
− E

{
ζk | Fk, j−1

}
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Fk, j := σ
(
ζ1, . . . , ζ j

)
, E

{
ζk | Fk,0

}
= E {ζk} = 0

that leads to the following expression for yn :

yn :=
1
√

n
A−1

n

n∑
k=1

Ak

k∑
j=1

ξk, j

=
1
√

n
A−1

n

n∑
k=1

Ak

n∑
j=1

χ j≤kξk, j =

n∑
j=1

xn, j

with

xn, j :=
1
√

n
A−1

n

n∑
k=1

Akχ j≤kξk, j =
1
√

n
A−1

n

n∑
k= j+1

Akξk, j

and to complete the proof one has to check the conditions of Theorem 8.14 for the
triangular vector array

{
xn, j

}
1≤ j≤n of random vectors xn, j ∈ RN .

1. Evidently

E
{
ξk, j | Fk, j−1

} a.s.
= 0, Fk, j−1 ⊂ Fn, j−1 (k = j + 1, . . . , n)

and hence,

E
{

xn, j | Fn, j−1
}
= E

{
1
√

n
A−1

n

n∑
k= j+1

Akξk, j | Fn, j−1

}

=
1
√

n
A−1

n

n∑
k= j+1

AkE
{
ξk, j | Fn, j−1

}
=

1
√

n
A−1

n

n∑
k= j+1

AkE
{
E
{
ξk, j | Fk, j−1

}
| Fn, j−1

} a.s.
= 0

that gives the condition (8.100).
2. For k > s (s < j) one has E

{
ξk, j | Fk,s

} a.s.
= 0 and therefore

E
{
ξk, jξ

ᵀ
s, j

}
= E

{
E
{
ξk, jξ

ᵀ
s, j | Fk, j−1

}}
= E

{
E
{
E
{
ξk, jξ

ᵀ
s, j | Fk,s

}
| Fk, j−1

}}
= E

{
E
{
E
{
ξk, j | Fk,s

}
ξ
ᵀ
s, j | Fk, j−1

}}
= 0

By the same reason, for s > k it follows E
{
ξk, jξ

ᵀ
s, j

}
= 0. So,

E
{
ξk, jξ

ᵀ
s, j

}
= E

{
ξk, jξ

ᵀ
k, j

}
δk,s
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and therefore, by the assumption (8.106), it follows that

Ln, j := E
{

xn, j xᵀn, j | Fn, j−1

}
=

1
n

A−1
n

n∑
k= j+1

n∑
s= j+1

AkE
{
ξk, jξ

ᵀ
s, j | Fn, j−1

}
Aᵀs
(

A−1
n

)ᵀ
=

1
n

A−1
n

n∑
k= j+1

AkE
{
ξk, jξ

ᵀ
k, j | Fk, j−1

}
Aᵀk

(
A−1

n

)ᵀ
=

1
n

A−1
n

n∑
k= j+1

Ak4k, j Aᵀk

(
A−1

n

)ᵀ
and

Kn, j := E
{

xn, j xᵀn, j

}
= E

{
Ln, j

}
=

1
n

A−1
n

n∑
k= j+1

Ak4k, j Aᵀk

(
A−1

n

)ᵀ a.s.
= Ln, j

that proves the fulfilling of (8.102).
3. Since by the assumption (8.107)

Kn, j ≤ max
1≤ j≤n

Kn, j =
1
n

A−1
n max

1≤ j≤n

(
n∑

k= j+1

Ak4k, j Aᵀk

)(
A−1

n

)ᵀ
→

n→∞
0

then, by the CBS inequality (4.16) and the Chebyshev inequality (4.10), it follows that

n∑
j=1

E
{∥∥xn, j

∥∥2
χ
(∥∥xn, j

∥∥ > ε
)}
≤

n∑
j=1

√
E
{∥∥xn, j

∥∥4
}

P
{∥∥xn, j

∥∥ > ε
}

≤ ε−2
n∑

j=1

√
E
{∥∥xn, j

∥∥4
}
E
{∥∥xn, j

∥∥2
}
≤ Const · ε−2 max

1≤ j≤n

∥∥Kn, j
∥∥ →

n→∞
0

that proves the fulfilling of the condition (8.103).
4. The condition (8.101) results from (8.108) since

n∑
j=1

Kn, j =
1
n

A−1
n

[
n∑

j=1

n∑
k= j+1

AkE
{
ξk j,ξ

ᵀ
k, j

}
Aᵀk

](
A−1

n

)ᵀ
=

1
n

A−1
n

n∑
k=1

Ak

k∑
j=1

4k, j Aᵀk

(
A−1

n

)ᵀ
→

n→∞
K

Finally, the identity yn =
n∑

j=1
xn, j leads to (8.109) that completes the proof. �
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Remark 8.9. Obviously K in (8.108) can be also calculated using the covariation matri-
ces 2k,s := E

{
ζkζ
ᵀ
s
}

of the given sequence {ζn}n≥1 as

K = lim
n→∞

E
{

yn yᵀn
}
= lim

n→∞

1
n

A−1
n

n∑
k=1

n∑
s=1

Ak2k,s Aᵀs
(

A−1
n

)ᵀ
(8.110)

Define

Rk :=

k∑
j=1

4k, j (8.111)

Then

Vn :=
1
n

A−1
n

(
n∑

k=1

Ak Rk Aᵀk

)(
A−1

n

)ᵀ
which can be represented in the following recurrent form

Vn =

(
1−

1
n

)
A−1

n An−1Vn−1

(
A−1

n An−1

)ᵀ
+

1
n

Rn (8.112)

The condition (8.108) means exactly that there exists the limit K = lim
n→∞

Vn . The next

lemma states the conditions to the matrix sequence {An}n≥1 which guarantee the existence
of this limit.

Lemma 8.11. (Poznyak and Tchikin, 1985) Let

1. there exist the limit

A := lim
n→∞

n
(

A−1
n An−1 − I

)
(8.113)

such that the matrix

(
A −

1
2

I

)
is Hurwitz;

2. there exist the limit

R := lim
n→∞

1
n

n∑
t=1

Rt = lim
n→∞

1
n

n∑
t=1

t∑
s=1

4t,s > 0 (8.114)

Then {Vn}n≥1 converges to K , that is,

Vn →
n→∞

K = K ᵀ > 0 (8.115)
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where K satisfies the following algebraic matrix Lyapunov equation(
A −

1
2

I

)
K + K ᵀ

(
A −

1
2

I

)ᵀ
= −R (8.116)

Proof. By the assumption (8.113) it follows that

Vn

=

(
1−

1
n

)(
n
[
A−1

n An−1 − I
]

n
+ I

)
Vn−1

(
n
[
A−1

n An−1 − I
]

n
+ I

)ᵀ
+

1
n

Rn

=

(
1−

1
n

)(
A

n
+ I

(
1+ o

(
n−1

)))
Vn−1

(
Aᵀ

n
+ I

(
1+ o

(
n−1

)))
+

1
n

Rn

= Vn−1 +
1
n

[(
A −

(
1+ o

(
n−1

))
2

I

)
Vn−1

+ Vn−1

(
A −

(
1+ o

(
n−1

))
2

I

)ᵀ]
+

1
n

Rn

For the symmetric matrix 1n := Vn − K we have

1n = 1n−1 +
1
n

[(
A −

(
1+ o

(
n−1

))
2

I

)
1n−1

+1n−1

(
A −

(
1+ o

(
n−1

))
2

I

)ᵀ]
+

1
n

[
Rn − R

(
1+ o

(
n−1

))]
Using the operator Dn : RN×N

→ RN×N acting as

Dn X := col−1 (DncolX) , X ∈ RM×N

Dn := I ⊗

(
A −

(
1+ o

(
n−1

))
2

I

)
+

(
A −

(
1+ o

(
n−1

))
2

I

)
⊗ I

colX :=
(
x1,1, . . . , x1,N , . . . , xM,1, . . . , xM,N

)ᵀ - the spreading operator

⊗ is the Kronecker product (see Chapter 8 in Poznyak (2008))

the last recurrence can be rewritten as

1n =

(
I +

1
n

Dn

)
1n−1 +

1
n

[
Rn − R

(
1+ o

(
n−1

))]
(8.117)

Since

Dn → D∞ := I ⊗

(
A −

1
2

I

)
+

(
A −

1
2

I

)
⊗ I
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and by the assumption (8.113)

Re λi (D∞) ≤ λ0 < 0

it follows that for any α > 0 there exists the matrix Q = Qᵀ > 0 satisfying the Lyapunov
matrix equation

Dᵀ∞Q + QD∞ = −α I

Define in the matrix space RN×N the following scalar product

〈X, Y 〉 := (colX)ᵀ QcolX

and the norm

‖X‖2Q := 〈X, X〉

Then for large enough n and some 0 < α0 < α we get∥∥∥∥(I +
1
n

Dn

)
X

∥∥∥∥2

Q
=

〈(
I +

1
n

Dn

)
X,

(
I +

1
n

Dn

)
X

〉
= ‖X‖2Q +

1
n

[〈Dn X, X〉 + 〈X,Dn X〉]+
1

n2
‖Dn X‖2Q

= ‖X‖2Q +
1
n

[
(colX)ᵀ

(
Dᵀn Q + QDn

)
colX

]
+

1

n2
‖Dn X‖2Q

= ‖X‖2Q −
α + o (1)

n
Tr
(
XᵀX

)
+

1

n2
‖Dn X‖2Q

≤ ‖X‖2Q

(
1−

α + o (1)
n

)
≤ ‖X‖2Q

(
1−

α0

n

)
(8.118)

Using the inequality (8.118) show now that the process {1n}n≥1 may be ‘dominated’ by
the following auxiliary process:

1̃n =

(
1−

1
n

)
1̃n−1 +

1
n

[
Rn − R

(
1+ o

(
n−1

))]
, 1̃0 = 0 (8.119)

Indeed,∥∥∥1n − 1̃n

∥∥∥
Q
=

∥∥∥∥1n−1 − 1̃n−1 +
1
n

Dn1n−1 −
1
n
1̃n−1

∥∥∥∥
Q

=

∥∥∥∥(I +
1
n

Dn

)(
1n−1 − 1̃n−1

)
+

1
n
(Dn + I ) 1̃n−1

∥∥∥∥
Q

≤

∥∥∥∥(I +
1
n

Dn

)(
1n−1 − 1̃n−1

)∥∥∥∥
Q
+

∥∥∥∥1
n
(Dn + I ) 1̃n−1

∥∥∥∥
Q

≤

∥∥∥∥(I +
1
n

Dn

)(
1n−1 − 1̃n−1

)∥∥∥∥
Q
+

∥∥∥∥1
n
(Dn + I ) 1̃n−1

∥∥∥∥
Q
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≤

(
1−

α0

n

)1/2 ∥∥∥(1n−1 − 1̃n−1

)∥∥∥
Q
+

Const
n

∥∥∥1̃n−1

∥∥∥
Q

≤

(
1−

α0

2n

) ∥∥∥(1n−1 − 1̃n−1

)∥∥∥
Q
+

Const
n

∥∥∥1̃n−1

∥∥∥
Q

which, in view of Lemma 16.14 in Poznyak (2008), we obtain

lim sup
n→∞

∥∥∥1n − 1̃n

∥∥∥
Q
≤ Constlim sup

n→∞

∥∥∥1̃n

∥∥∥
Q

This exactly means that if 1̃n →
n→∞

0, then also 1n →
n→∞

0 which is referred to as

‘dominating’. But by the assumption (8.114)

1̃n =

(
1−

1
n

)
1̃n−1 +

1
n

[
Rn − R

(
1+ o

(
n−1

))]
=

1
n

n∑
t=1

[
Rn − R

(
1+ o

(
n−1

))]
=

1
n

n∑
t=1

Rn − R (1+ o (1)) →
n→∞

0

that proves the desired result. �

8.4 Logarithmic iterative law

8.4.1 Brief survey

The logarithmic iterative law (LIL) for sum of independent random variables grew from
early efforts of Hausdorff (1913) and Hardy and Littlewood (1914) to determine the rate of
convergence in the Law of Large Numbers (LLN) for normal sequences. The similar law
for Bernoulli variables was obtained by Khintchine (1924), and for more general sequences
(independent, but not obligatory identically distributed) by Kolmogorov (1929).

In fact, the LIL’s principal importance in applications is still as a rate of convergence.
Consider a sequence {xt }t≥1 of independent identically distributed (i.i.d.) random variables
with zero mean and unit variance, and let

Sn :=

n∑
t=1

xt (8.120)

By Theorem 8.11 it follows that

n−1/2Sn
d
→

n→∞
N (0, 1)

although it is well known that the sequence
{
n−1/2Sn

}
n≥1 has as its set of (a.s.) limit points

the whole real line. In Hartman and Wintner (1941) there was presented the version of LIL
describing this behavior in much more detail, asserting that

lim sup
n→∞

1
√

2n ln ln n
Sn

a.s
= 1

lim inf
n→∞

1
√

2n ln ln n
Sn

a.s.
= −1
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In Strassen (1964) this result was extended to obtain a rate of convergence considering the
set K as a set of absolutely continuous functions x ∈ C [0, 1] with x (0) = 0 and whose
derivatives ẋ were such that

1∫
t=0

ẋ2 (t) dt ≤ 1 (8.121)

Then there was shown that K is compact and the sequence{
ξn (t)

√
2n ln ln n

}
with

ξn (t) := n−1/2
{Si + (nt − i) xi }, t ∈ [0, 1]

is relatively compact with a.s. limit set K . Later on, in Stout (1970b) there was obtained
the martingale analog of Kolmogorov’s LIL and in Stout (1970a) the analog of the
Hartman–Wintner law. A further extension was provided by Hall and Heyde (1976). The
comprehensive survey on different versions of LIL can be found in Bingham (1986).

Here we will present the same approach as in Hall and Heyde (1980) applying the so-
called Skorokhod representation, which provides sharp results without the technicalities
involved in estimating some tail probabilities.

8.4.2 Main result on the relative compactness

Let {xt }t≥1 be a sequence of martingale-differences so that {Sn,Fn} with Sn given by
(8.120) is a zero-mean, squared-integrable martingale and suppose that the σ -field Fn is
generated by {S1, . . . , Sn}. Let ξn (t) be the random function of C [0, 1] defined by

ξn (t) := U−1
n

[
Si + x−2

i+1

(
tU 2

n −U 2
i

)
xi+1

]
U 2

i :=

i∑
t=1

x2
t ,U

2
i ≤ tU 2

n < U 2
i+1, i ≤ n + 1

(8.122)

which is obtained by linear interpolating between the points

(0, 0) ,
(

U−2
n U 2

1 ,U
−1
n S1

)
, . . . ,

(
1,U−1

n Sn

)
Define also

ζn (t) := (2 ln ln Un)
−1/2 ξn (t) (8.123)

supposing that x2
1

a.s.
> 0 and adopting the convention that ln ln x = 1 if 0 < x ≤

ee. Analogously to Strassen (1964), we would expect that under certain conditions the
sequence {ζn (t)}n≥1 would be relatively compact with limit set K (8.121).
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Remark 8.10. {Un}n≥1 is just one possible norming sequences. Another one would be the
sequence {Vn}n≥1 with

V 2
n :=

n∑
i=1

E
{

x2
i | Fi−1

}
(8.124)

Below we shall accordingly formulate LIL for a general norming sequence {Wn}n≥1
where Wn is a non-decreasing positive random variable such that

0 < W1 ≤ W2 ≤ · · ·

defining the continuous [0, 1] function by

ζn (t) :=
[
φ
(

W 2
n

)]−1
[

Si +

(
W 2

i+1 −W 2
i

)−1 (
tW 2

n −W 2
i

)
xi+1

]
φ (t) := (2t ln ln t)1/2

(8.125)

Theorem 8.16. (Hall and Heyde, 1980) Let {Zn}n≥1 be a sequence of non-negative ran-
dom variables and suppose that Zn , as well as Wn , is Fn−1-measurable. If

1. [
φ
(

W 2
n

)]−1 n∑
i=1

[
xiχ (|xi | > Zi )− E {xiχ (|xi | > Zi ) | Fi−1}

a.s.
→

n→∞

]
0 (8.126)

2.

W−2
n

n∑
i=1

[
E
{

x2
i χ (|xi | ≤ Zi ) | Fi−1

}
− E2

{xiχ (|xi | ≤ Zi ) | Fi−1}

]
a.s.
→

n→∞
1 (8.127)

3.

∞∑
i=1

W−4
i E

{
x4

i χ (|xi | ≤ Zi ) | Fi−1

}
a.s.
< ∞ (8.128)

4.

W−1
n+1Wn

a.s.
→

n→∞
1, Wn

a.s.
→

n→∞
∞ (8.129)

then with probability 1 the sequence {ζn (t)}n≥1 is relatively compact in C [0, 1] and its set
of a.s. limit points coincides with K (8.121).
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Proof. 1. In Strassen (1964) (see also Theorem 9.5 in this book) the approach was based on
a limit law for Brownian motion which states that with probability 1 the sequence {αu (t)}
with

αu (t) := (2u ln ln u)−1/2 W (ut) , u > e, t ∈ [0, 1]

W (t) , t ≥ 0 is standard Brownian motion2
(8.130)

is relatively compact and the set of its a.s. limit points coincides with K (8.121). Below
we present the auxiliary result needed for the proof of this theorem which also follows the
Strassen approach via a limit theorem for Brownian motion.

Lemma 8.12. Let W (t) , t ≥ 0 be standard Brownian motion. Let also {Tn}n≥1 and
{Wn}n≥1 be non-decreasing sequences of positive random variables. Set

S∗(t) := W (Tn) and x∗n := S∗n − S∗n−1

and let ζ ∗n (t) be the random element of C [0, 1] defined by

ζ ∗n (t) :=
[
φ
(

W 2
n

)]−1
[

S∗i +
(

W 2
i+1 −W 2

i

)−1 (
tW 2

n −W 2
i

)
x∗i+1

]
for W 2

i ≤ tW 2
n < W 2

i+1, i ≤ n − 1 (8.131)

If

Tn
a.s.
→

n→∞
∞, T−1

n+1Tn
a.s.
→

n→∞
∞, T−1

n W 2
n

a.s.
→

n→∞
∞ (8.132)

then with probability 1 the sequence
{
ζ ∗n (t)

}
n≥1 is relatively compact and the set of its a.s.

limit points coincides with K (8.121).

Proof of Lemma 8.12. For t ∈ [0,∞) define β (t) by

β (t) := S∗p +
(

W 2
p+1 −W 2

p

)−1 (
t −W 2

p

)
x∗p+1

where

p = p(t) := max
{

i ≥ 1 | W 2
i ≤ t

}
Then

ζ ∗n (t) :=
[
φ
(

W 2
n

)]−1
β
(

W 2
n t
)

2Standard Brownian motion W (t) is a random process with independent increments which are normally
distributed with N (0, 1) and W (0)

a.s.
= 0.
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By Strassen (1964) with (8.130) it is sufficient to prove that under the conditions (8.132) it
follows that

lim
t→∞

[φ (t)]−1
|β (t)−W (t)|

a.s.
= 0 (8.133)

Suppose that
∣∣1− t−1s

∣∣ ≤ ε < 1/2 and let u = t (1+ ε). Then for large enough t

[φ (t)]−1
|W (s)−W (t)| ≤ 2 [φ (u)]−1

|W (s)−W (t)|

= 2
∣∣∣αu

(
u−1s

)
− αu

(
u−1t

)∣∣∣ ≤ 4 sup
1−2ε≤r≤1

|αu (r)− αu (1)|

where αu is as in (8.130). Let Kε denote the set of functions distant less than ε from K . By
Strassen (1964) it follows that if λ is sufficiently large, then

P
{
αt(1+ε) ∈ Kε for all t > λ

}
≥ 1− ε

and if αu ∈ Kε, then for some x ∈ K

sup
1−2ε≤r≤1

|αu (r)− αu (1)| ≤ 2ε + sup
1−2ε≤r≤1

|x (r)− x (1)|

But

|x (r)− x (1)| =

∣∣∣∣∣∣
1∫

r

ẋ (t) dt

∣∣∣∣∣∣
≤

 1∫
r

12dt

 1∫
r

ẋ2 (t) dt

1/2

≤ (1− r)1/2

and hence,

sup
1−2ε≤r≤1

|αu (r)− αu (1)| ≤ 2ε + (2ε)1/2

if αu ∈ Kε. Since

|β (t)−W (t)| ≤ max
{∣∣W (

Tp(t)
)
−W (t)

∣∣ , ∣∣W (
Tp(t)+1

)
−W (t)

∣∣}
then combining the results above one can deduce that if λ is sufficiently large,

P
{

[φ (t)]−1
|β (t)−W (t)| > 4

(
2ε + (2ε)1/2

)
for some t > λ

}
≥ 1− ε − P

{∣∣∣1− t−1Tp(t)

∣∣∣ > ε for some t > λ
}

−P
{∣∣∣1− t−1Tp(t)+1

∣∣∣ > ε for some t > λ
}

Therefore the desired result (8.133) will follow if we show that

t−1Tp(t)
a.s.
→

t→∞
1 and t−1Tp(t)+1

a.s.
→

t→∞
1
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The conditions (8.132) imply that W−2
n+1W 2

n
a.s.
→

n→∞
1, and hence

1 ≥ t−1W 2
p(t) ≥ W−2

p(t)+1W 2
p(t)

a.s.
→

t→∞
1

so that t−1W 2
p(t)

a.s.
→

t→∞
1. Similarly, t−1W 2

p(t)+1
a.s.
→

t→∞
1. These properties, combined with

(8.132), give the required result. �
To establish Theorem 8.16 we first define

x̃i := xiχ (ci < |xi | ≤ Zi )+
1
2

xiχ (|xi | ≤ ci )

+
1
2

sign (xi ) ci

(
1+ Zi |xi |

−1
)
χ (|xi | > Zi )

where {ci }i≥1 is a monotone sequence of positive constants such that ci →
i→∞

0 so fast that

∞∑
i=1

ci <∞,

∞∑
i=1

ci Zi W
−2
i

a.s.
< ∞

If zi (ω) < ci , let χ (ci < |xi | ≤ Zi ) ≡ 0. Set also

x∗i := x̃i − E {x̃i | Fi−1}

It is easy to check that (x̃1, . . . , x̃n) and hence
(
x∗1 , . . . ., x∗n

)
also generate the σ -field Fn .

Define

S∗n :=
n∑

i=1

x∗i

V ∗n :=
n∑

i=1

E
{(

x∗i
)2
| Fi−1

}
and ζ ∗n (t) as in (8.131). Then from the definition of x∗i it follows that∣∣xi − x∗i −

[
xiχ (|xi | > Zi )− E {xiχ (|xi | > Zi ) | Fi−1}

]∣∣ ≤ 3ci

and so

sup
t∈[0,1]

∣∣ζn (t)− ζ
∗
n (t)

∣∣ ≤ [φ (W 2
n

)]−1
sup

1≤ j≤n

∣∣∣∣∣
j∑

i=1

(
xi − x∗i

)∣∣∣∣∣
≤

[
φ
(

W 2
n

)]−1
sup

1≤ j≤n

∣∣∣∣∣
j∑

i=1

[
xiχ (|xi | > Zi )− E {xiχ (|xi | > Zi ) | Fi−1}

]∣∣∣∣∣
+

[
φ
(

W 2
n

)]−1 n∑
i=1

3ci
a.s.
→

n→∞
1 (8.134)

in view of assumption (8.126).
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Next we introduce the so-called Skorokhod representation. By extending the original
probability space if necessary, one may suppose that there exists a Brownian motion W (t)
and a sequence {Tn}n≥1 of nonnegative random variables defined on this probability space
such that S∗n = W (Tn) almost surely for all n ≥ 1. Let

τn := Tn − Tn−1, n ≥ 1, T0 := 0

if Gn is the σ -field generated by (x1, . . . ., xn) and W (u) for u < Tn, then τn is Gn-
measurable, so that

E {τn | Gn−1} = E
{(

x∗n
)2
| Gn−1

}
a.s.
= E

{(
x∗n
)2
| Fn−1

}
and for some constant L

E
{
τ 2

n | Gn−1

}
≤ LE

{(
x∗n
)4
| Gn−1

}
a.s.
= LE

{(
x∗n
)4
| Fn−1

}
In view of the assumptions (8.129), (8.134) and Lemma 8.12 it suffices to prove that

W−2
n Tn

a.s.
→

n→∞
1 (8.135)

To this end, first, we will show that

Tn −
(
V ∗n
)2
= o (Wn) (8.136)

Taking into account that

E
{(

x∗i
)4
| Fi−1

}
= E

{
(x̃i )

4
| Fi−1

}
− 4E

{
(x̃i )

3
| Fi−1

}
E {x̃i | Fi−1}

+ 6E
{
(x̃i )

2
| Fi−1

} [
E {x̃i | Fi−1}

]2
− 3

[
E {x̃i | Fi−1}

]4
≤ 11

[
E {x̃i | Fi−1}

]4
≤ 11

[
E {x̃iχ (|xi | ≤ Zi ) | Fi−1}

]4
+ 11c4

i

and in view of (8.128) it follows that

∞∑
i=1

W−4
i E

{(
x∗i
)4
| Fi−1

}
a.s.
< ∞

and therefore, by the strong law of large numbers we get

n∑
i=1

[
τi − E {τi | Gi−1}

] a.s.
= o

(
W 2

n

)
which implies (8.136). Next we have∣∣∣E {(x̃i )

2
| Fi−1

}
− E

{
x2

i χ (|xi | ≤ Zi ) | Fi−1

}∣∣∣ ≤ 2c2
i (8.137)

E
{(

x∗i
)2
| Fi−1

}
= E

{
(x̃i )

2
| Fi−1

}
−
[
E {x̃i | Fi−1}

]2 (8.138)
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|E {x̃i | Fi−1} − E {xiχ (|xi | ≤ Zi ) | Fi−1}| ≤ 2ci (8.139)

The last relation (8.139) implies

n∑
i=1

[
E
{
(x̃i )

2
| Fi−1

}
−
[
E {x̃i | Fi−1}

]2] a.s.
= o

(
W 2

n

)
(8.140)

since

n∑
i=1

ci |E {xiχ (|xi | ≤ Zi ) | Fi−1}|
a.s.
= o

(
W 2

n

)

by virtue of the Kronecker’s lemma and in view of the fact that
∞∑

i=1
ci Zi W−2

i
a.s.
< ∞. The

conditions (8.127), (8.137), (8.138) and (8.140) now imply that(
V ∗n
)2
−W 2

n
a.s.
= o

(
W 2

n

)
Combined with (8.136) this fact establishes (8.135) and completes the proof. �

Corollary 8.11. If {Sn,Fn} is a martingale with uniformly bounded differences, i.e. |xn| ≤

C for all n ≥ 1, then Theorem 8.16 remains valid with Wn = Vn (8.124) on the set
{Vn →∞}.

Proof. Let Zn := C + 1 and

W 2
n = V 2

n :=

n∑
i=1

E
{

x2
i | Fi−1

}
The condition (8.126) and (8.127) hold trivially while (8.129) holds on the set {Vn →∞}.
The series in (8.128) reduces to

∞∑
i=1

V−4
i E

{
x4

i | Fi−1

}
≤ C2

∞∑
i=1

V−4
i E

{
x2

i | Fi−1

}
which is finite on the set {Vn →∞}. This results from the following consideration: for any
sequence {an}n≥1 of nonnegative numbers an > 0 such that an/bn → 0 as → ∞ with

bn :=
n∑

i=1
ai and b0 = 0 it follows that

n∑
i=1

b−2
i ai =

n∑
i=1

b−2
i (bi − bi−1) =

n∑
i=1

bi

(
b−2

i − b−2
i+1

)
+ b−1

n

≤ 2
n∑

i=1

(
b−1

i − b−1
i+1

)
+ b−1

n = 2b−1
1 + b−1

n

that completes the proof. �
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Corollary 8.12. If

1.

s−2
n U 2

n
a.s.
→

n→∞
η2 (8.141)

where

s2
n := E

{
V 2

n

}
2. for all ε > 0

∞∑
i=1

s−1
i E {|xi |χ (|xi | > εsi )} <∞ (8.142)

3. for some δ > 0

∞∑
i=1

s−4
i E

{
x4

i χ (|xi | ≤ δsi )
}
<∞ (8.143)

then Theorem 8.16 holds with Wn = Un , namely, the sequence

ζn (t) :=
[
φ
(

U 2
n

)]−1
[

Si +

(
U 2

i+1 −U 2
i

)−1 (
tU 2

n −U 2
i

)
xi+1

]
φ (t) := (2t ln ln t)1/2, Si :=

i∑
t=1

xt

U 2
i :=

i∑
t=1

x2
t ,U

2
i ≤ tU 2

n < U 2
i+1, i ≤ n + 1

(8.144)

is relatively compact in C [0, 1] and the set of a.s. limit points coincides with K (8.121).

Proof. First we shall establish the validity of this theorem for Wn = Un−1 (not for
Wn = Un). Let Z j := δs j in Theorem 8.16. By (8.141) it suffices to verify the conditions
(8.126)–(8.129) of this theorem with Wn replaced by sn (taking into account that the limit
in (8.127) should be η2 rather than 1). The condition (8.142) implies

∞∑
i=1

s−1
i |xi |χ (|xi | > εsi )

a.s.
< ∞

that, by Kronecker’s Lemma 8.3, leads to

s−1
n max

i≤n
|xi |χ (|xi | > εsi ) ≤ s−1

n

n∑
i=1

s−1
i |xi |χ (|xi | > εsi )

a.s.
→

n→∞
0
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Then for any ε > 0 one has

s−1
n max

i≤n
|xi | ≤ ε + s−1

n max
i≤n
|xi |χ (|xi | > εsi )

a.s.
→

n→∞
ε

and hence

s−1
n max

i≤n
x2

i
a.s.
→

n→∞
0 (8.145)

Combined with (8.141) this implies

1− s−2
n+1s2

n = U−2
n s2

n

(
s−2

n+1x2
n+1 + s−2

n U 2
n − s−2

n+1U 2
n+1

)
a.s.
→

n→∞
0

the condition (8.126) follows from (8.141)–(8.142) and Kronecker’s Lemma 8.3, while
(8.128) results from (8.141) and (8.143). To prove the validity of (8.127) note that

s−2
n

n∑
i=1

(
E
{

x2
i χ (|xi | ≤ δsi ) | Fi−1

}
−
[
E {xiχ (|xi | ≤ δsi ) | Fi−1}

]2)
= s−2

n U−2
n − s−2

n

n∑
i=1

x2
i χ (|xi | > δsi )− s−2

n

n∑
i=1

[
E {xiχ (|xi | ≤ δsi ) | Fi−1}

]2
+ s−2

n

n∑
i=1

(
E
{

x2
i χ (|xi | ≤ δsi ) | Fi−1

}
− x2

i χ (|xi | ≤ δsi )
)

The first term in the right-hand side converges (a.s.) to η2. The second one is dominated by

s−1
n max

i≤n
x2

i

[
s−1

n

n∑
i=1

|xi |χ (|xi | > δsi )

]
a.s.
→

n→∞
0

and the absolute values of the third one are dominated by

s−2
n

n∑
i=1

|E {xiχ (|xi | ≤ δsi ) | Fi−1}E {xiχ (|xi | > δsi ) | Fi−1}|

≤ δs−1
n

n∑
i=1

E {|xi |χ (|xi | > δsi ) | Fi−1}
a.s.
→

n→∞
0

(by (8.142) and Kronecker’s Lemma 8.3). So, to establish (8.127) it suffices to show that
the series

∞∑
i=1

s−2
i

(
E
{

x2
i χ (|xi | ≤ δsi ) | Fi−1

}
− x2

i χ (|xi | ≤ δsi )
)

converges (a.s.). Since the terms in this series are martingale-differences, it suffices to
establish the corresponding mean square series convergence which, in turn, is dominated
as

∞∑
i=1

s−4
i E

{[
E
{

x2
i χ (|xi | ≤ δsi ) | Fi−1

}
− x2

i χ (|xi | ≤ δsi )
]2
}

≤

∞∑
i=1

s−4
i E

{
x4

i χ (|xi | ≤ δsi )
}
<∞
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that prove (8.127) for the case Wn = Un−1. The condition (8.145) ensures that the results
remains true when Wn = Un . Corollary is proven. �

8.4.3 The classical form of LIL

Here we will show that the functional form of the LIL formulated in Theorem 8.16
implies the classical form.

Theorem 8.17. (the classical form of the LIL, Stout (1970a)) If Theorem 8.16 is valid
then

lim sup
n→∞

[
φ
(
U 2

n

)]−1
Sn

a.s.
= 1

lim inf
n→∞

[
φ
(
U 2

n

)]−1
Sn

a.s.
= −1

(8.146)

Proof. First note that for any x (·) ∈ K , by the Cauchy–Schwartz inequality, it follows that

x2 (t) =

 t∫
s=0

ẋ (s) ds

2

≤

 t∫
s=0

12ds

 t∫
s=0

ẋ2 (s) ds

 ≤ t

So, |x (t)| ≤
√

t , and hence,

sup
t∈[0,1]

|x (t)| ≤ 1

that implies

lim sup sup
t∈[0,1]

n→∞

|ζn (t)|
a.s.
≤ 1

Letting then t = 1 we get

lim sup
n→∞

[
φ
(

U 2
n

)]−1
|Sn|

a.s.
≤ 1

If we show that

lim sup
n→∞

[
φ
(

U 2
n

)]−1
|Sn|

a.s.
≥ 1 (8.147)

then the LIL will follow by symmetry. Let now x (t) ≡ t for all t ∈ [0, 1]. Then x ∈ K
and so for all ω ∈ � there is a subsequent nk = nk (ω) such that

ζnk (t) (ω)→ x (t)
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the convergence being in the uniform metric on [0, 1]. In particularly, since x (1) = 1 it
follows that

ζnk (1) (ω)→ x (1) = 1

that is,[
φ
(

U 2
nk

)]−1
Snk

a.s.
→

k→∞
1

which implies (8.147). �
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9 Basic Properties of Continuous Time
Processes
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The purpose of this chapter is to introduce and review the basic definitions and facts
concerning continuous time stochastic processes that are important in understanding
random effects in different engineering applications such as filtering, identification, signal
processing, stochastic control and so on.

9.1 Main definitions

9.1.1 Sample path or trajectory

Definition 9.1. Let (�,F ,P) be a probability space, and T be an arbitrary set. A family

{x (t, ω)}, ω ∈ �, t ∈ T

of random N-vectors x (t, ω) is called a stochastic process with the index (or parameter)
set T and the state space RN . Hereafter we will associate T with the time interval so that

T :=
[
t0, t f

]
where t0 is admitted to be (−∞) and t f may be (+∞). In any case T ⊆ R.

Since stochastic processes are functions of two variables, the usual notation suppresses
the probability space variable, namely,

x (t) = x (t, ·)

denotes a random n-vector defined for each fixed t ∈ T on the probability space (�,F ,P).

Definition 9.2. For each fixed ω ∈ � the N-vector valued function x (·, ω), defined on T ,
is called a sample path, trajectory or realization of the process {x (t, ω)}.

The theory of stochastic continuous time stochastic processes relates these inherent
random and sample path structures.

239
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9.1.2 Finite-joint distributions

The individual random vectors (or, even, variables) of the given process are usually
dependent. Therefore understanding the stochastic process requires knowing the uncount-
ably many (since T is an interval) joint distributions of these random vectors. The collec-
tion of such joint distributions constitutes the probability law of the process.

Definition 9.3. The functional family

Ft1,...,tn : R
N
× RN

· · · × RN
→ [0, 1] | ti ∈ T (i = 1, . . . , n), ti 6= t j (i 6= j)

is called the family of n-finite joint (finite-dimensional) distributions if Ft1,...,tn is defined
by

Ft1,...,tn (x1, . . . , xn) = Fx(t1),...,x(tn) (x1, . . . , xn)

:= P {x (t1) ≤ x1, . . . , x (tn) ≤ xn}, xi ∈ RN (i = 1, . . . , n)

Evidently, the n-finite joint (finite-dimensional) distribution Ft1,...,tn satisfies the follow-
ing properties.

Claim 9.1. For any Ft1,...,tn (x1, . . . , xn) the following properties hold:

1. it is individually nondecreasing and continuous from the right, that is, for any i =
1, . . . , n the relation xi < yi implies

Ft1,...,tn (x1, . . . , xi , . . . , xn) ≤ Ft1,...,tn (x1, . . . , yi , . . . , xn)

and

lim
yi→xi+0

Ft1,...,tn (x1, . . . , yi , . . . , xn) = Ft1,...,tn (x1, . . . , xi , . . . , xn)

2.

lim
xi→−∞,i=1,...,n

Ft1,...,tn (x1, . . . , xn) = 0

and

lim
xi→+∞,i=1,...,n

Ft1,...,tn (x1, . . . , xn) = 1

3. the symmetry property, that is,

Fti1 ,...,tin

(
xi1 , . . . , xin

)
= Ft1,...,tn (x1, . . . , xn)

where {i1, . . . , in} is any permutation of the integers {1, . . . , n}
4. the compatibility property, that is,

lim
xi→+∞,m+1≤i≤n

Ft1,...,tn (x1, . . . , xn) = Ft1,...,tm (x1, . . . , xm)
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One may ask, conversely, when a given collection of distribution functions uniquely
(in some probabilistic sense) determines a stochastic process. The following existence or
consistency of Kolmogorov’s theorem (see also Theorem 1.6 in this book) answers this
question.

Theorem 9.1. (Kolmogorov, 1933) For any collection K of distributions

Ft1,...,tn : R
N
× RN

· · · × RN
→ [0, 1]

ti ∈
[
t0, t f

]
(i = 1, . . . , n) , ti 6= t j (i 6= j)

satisfying the properties in Claim 9.1 there exists a stochastic process

{x (t, ω)}, ω ∈ �, t ∈
[
t0, t f

]
whose family of finite-dimensional distributions coincides with this collection K. Further-
more, the process is unique in the probabilistic sense, namely, maybe there exists another
stochastic process

{y (t, ω)}, ω ∈ �, t ∈
[
t0, t f

]
but obligatory such that for each t ∈

[
t0, t f

]
P {x (t, ω) 6= y (t, ω)} = 0 (9.1)

Each process {y (t, ω)} satisfying (9.1) is referred to as a P-equivalent version of the
process {x (t, ω)}.

9.2 Second-order processes

The equivalent version concept provides the opportunity to introduce such important
notions as the ‘continuity’ of a stochastic process meaning the existence of a continuous
equivalent version of the given random process which, as it is well-known, has absolutely
non-smooth behavior.

9.2.1 Quadratic-mean continuity

Definition 9.4. A stochastic process {x (t, ω)}, ω ∈ �, t ∈
[
t0, t f

]
, given for each

t ∈
[
t0, t f

]
on a probability space (�,F ,P), is said to be a second-order (s.o.) process if

E
{
‖x (t, ω)‖2

}
<∞ for all t ∈

[
t0, t f

]
(9.2)

Definition 9.5. An s.o. stochastic process {x (t, ω)} is called mean square continuous at
t ∈

[
t0, t f

]
if

E
{
‖x (t + h, ω)− x (t, ω)‖2

}
→

h→0
0 (9.3)

and mean square continuous on T =
[
t0, t f

]
if (9.3) holds respectively for all t ∈ T .
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The next result (given without the proof) represents the sufficient conditions when a
stochastic process has an equivalent continuous version.

Theorem 9.2. (Loéve, 1977) Suppose {x (t, ω)} is an s.o. stochastic process such that
there exist positive constants β,C and h0 such that

E
{
‖x (t + h, ω)− x (t, ω)‖2

}
≤ C |h|1+β

whenever t, t + h ∈ T =
[
t0, t f

]
and |h| ≤ h0. Then there exists an s.o. stochastic

process {y (t, ω)} (with the same index set T ) which is mean square continuous on T and
is stochastically equivalent to {x (t, ω)}.

9.2.2 Separable stochastic processes

As it follows from the previous considerations a stochastic process given on a time
interval constitutes an uncountable family of random variables, leading to the fact that
equivalent processes need not have the same sample paths. This situation also implies a
more general problem: the sets associated with any uncountable subsets of random vectors
(or variables) may not be measurable, that is, for a random process {x (t, ω)} , ω ∈ �, t ∈[
t0, t f

]
, given for each t ∈

[
t0, t f

]
on a probability space (�,F ,P), the set{

ω : x (t, ω) ≤ c at all t ∈
[
t0, t f

]
, c ∈ R

}
=

⋂
t∈[t0,t f ]

{ω : x (t, ω) ≤ c} (9.4)

may not be F -measurable, and hence, could not be assigned a probability!
From applications and practical points of view it seems to be very important to be able

to associate a probability to the event as (9.4). The concept of separability introduced by
Doob (1953) provides a solution to this dilemma.

Definition 9.6. Suppose there exists a countable dense subset Tcount ⊂ T =
[
t0, t f

]
such

that for every open subinterval Topen ⊂ T and any closed subinterval Xclosed ⊂ R the
following property holds:

{
ω : x (t, ω) ∈ Xclosed at all t ∈ Topen ∩ T

}
=
{
ω : x (t, ω) ∈ Xclosed at all t ∈ Topen ∩ Tcount

} (9.5)

Then such stochastic process {x (t, ω)} , ω ∈ �, t ∈ T , given for each t ∈ T on a
probability space (�,F ,P), is said to be separable.

Remark 9.1. If {x (t, ω)} is separable, taking Xclosed := [−∞, c] and Topen = (−∞,∞)

in (9.5) the sets (9.4) can be represented as{
ω : x (t, ω) ≤ c at all t ∈

[
t0, t f

]
, c ∈ R

}
=

⋂
t∈Tcount

{ω : x (t, ω) ≤ c}

Obviously, this set is F -measurable since there are only countable many sets in the
intersection.
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It is not so difficult to see that separable equivalent processes have the same sample paths
with probability 1. The considerations above imply the following statement.

Claim 9.2. Any (scalar) stochastic process {x (t, ω)} has an equivalent extended real-
valued process {y (t, ω)} which is separable.

Another difficulty arises when we deal with a vector stochastic process, namely, even
though a process is measurable on each variable separately, it may not be product-
measurable, which prevents the application of Fubini’s theorem on changing of the order
of integration. The following statement relates the properties of mean-square continuity,
separability and product-measurability.

Claim 9.3. If a vector stochastic process {x (t, ω)} is mean-square continuous then it is
product-measurable and, in addition, it is separable with respect to any countable dense
subset S ⊂ T .

9.2.3 Criterion of mean-square continuity

The next lemma relates the mean-square continuity property with some properties of the
corresponding auto-covariance matrix function.

Lemma 9.1.

1. An s.o. vector stochastic process {x (t, ω)} , t ∈
[
t0, t f

]
is mean-square continuous if

and only if the auto-covariance matrix

ρ (t, s) := E
{

x (t, ω) xᵀ (s, ω)
}

(9.6)

is continuous at the diagonal point (t, t).
2. If ρ (t, t) is a continuous matrix on

[
t0, t f

]
then ρ (t, s) is continuous at any point

(t, s) ∈
[
t0, t f

]
×
[
t0, t f

]
, i.e.,

‖ρ (t + h, s + g)− ρ (t, s)‖ →
h,g→0

0

where the matrix norm is defined by

‖A‖ := λ1/2
max

(
AᵀA

)
Proof. First, notice that

E
{
[x (t + h, ω)− x (t, ω)] [x (t + h, ω)− x (t, ω)]ᵀ

}
= ρ (t + h, t + h)− ρ (t + h, t)− ρ (t, t + h)+ ρ (t, t) (9.7)

1. Sufficiency. Suppose that an s.o. vector stochastic process {x (t, ω)}, t ∈
[
t0, t f

]
has a

continuous ρ(t, t). Shows that

E
{
‖x (t + h, ω)− x (t, ω)‖2

}
→

h→0
0
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Then by (9.7)

0 ≤ tr {[ρ (t + h, t + h)− ρ (t + h, t)]− [ρ (t, t + h)− ρ (t, t)]} →
h→0

0

tr {[ρ (t + h, t + h)− ρ (t, t)+ ρ (t, t)− ρ (t + h, t)]− [ρ (t, t + h)

− ρ (t, t)]} →
h→0

0

lim
h→0

tr
{

[ρ (t + h, t + h)− ρ (t, t)]} = 2 lim
h→0

tr{ρ (t, t + h)− ρ (t, t)

}
= 0

that exactly means the continuity of ρ (t, t) at any t ∈
[
t0, t f

]
.

Necessity. It follows from the Cauchy–Schwarz inequality and the relation

‖ρ (t + h, t + h)− ρ (t, s)‖ =
∥∥E {x (t + h, ω) [x (t + h, ω)− x (t, ω)]ᵀ

}
−E

{
[x (t, ω)− x (t + h, ω)] xᵀ (t, ω)

}∥∥
≤

√
E
{
‖x (t + h, ω)‖2

}√
E
{
‖x (t + h, ω)− x (t, ω)‖2

}
+

√
E
{
‖x (t, ω)‖2

}√
E
{
‖x (t + h, ω)− x (t, ω)‖2

}
→

h→0
0

2. It is sufficient to notice that

‖ρ (t + h, s + v)− ρ (t, s)‖ =
∥∥E {x (t + h, ω) [x (s + v, ω)− x (s, ω)]ᵀ

}
−E

{
[x (t, ω)− x (t + h, ω)] xᵀ (s, ω)

}∥∥
≤

√
E
{
‖x (t + h, ω)‖2

}√
E
{
‖x (s + v, ω)− x (s, ω)‖2

}
+

√
E
{
‖x (s, ω)‖2

}√
E
{
‖x (t + h, ω)− x (t, ω)‖2

}
=
√

trρ (t + h, t + h)
√

trρ (s + v, s)+
√

trρ (s, s)
√

trρ (t + h, t) →
v,h→0

0

Lemma is proven. �

9.3 Processes with orthogonal and independent increments

9.3.1 Processes with orthogonal increments

Definition 9.7. A second order (s.o.) vector stochastic process

{x (t, ω)}, t ∈
[
t0, t f

]
is called a process with orthogonal increments (o.i.) if for any non-overlapping open
intervals (s, t) ∈

[
t0, t f

]
and

(
s′, t ′

)
∈
[
t0, t f

]
such that

(s, t) ∩
(
s′, t ′

)
= ∅ (9.8)
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the following property holds:

E
{
[x (t, ω)− x (s, ω)]

[
x
(
t ′, ω

)
− x

(
s′, ω

)]ᵀ}
= 0 (9.9)

Below, for simplicity we will consider scalar random processes.

Lemma 9.2. Let {x (t, ω)} , t ∈
[
t0, t f

]
be an o.i.-scalar random process with

x (t0, ω)
a.s.
= 0 (9.10)

and

σ 2 (t) := ρ (t, t) = E
{

x2 (t, ω)
}

(9.11)

Then

1. σ 2 (t) is a non-decreasing function of t
2. for any s, t ∈

[
t0, t f

]
ρ (t, s) = E {x (t, ω) x (s, ω)} = σ 2 (t ∧ s) (9.12)

where

t ∧ s := min {t, s} =
1
2
(t + s − |t − s|) (9.13)

Proof. Take t0 ≤ s < t ≤ t f . Then by (9.10)

x (t, ω) = [x (t, ω)− x (s, ω)]+ [x (s, ω)− x (t0, ω)]

and by (9.9)

σ 2 (t) = E
{

[x (t, ω)− x (s, ω)]2
}
+ E

{
x2 (s, ω)

}
≥ σ 2 (s)

that proves 1. Also

ρ (t, s) = E {x (s, ω) [x (t, ω)− x (s, ω)]} + E
{

x2 (s, ω)
}

= E {[x (s, ω)− x (t0, ω)] [x (t, ω)− x (s, ω)]} + E
{

x2 (s, ω)
}
= σ 2 (s)

Analogously, if t0 ≤ t < s ≤ t f then

ρ (t, s) = σ 2 (t)

Lemma is proven. �
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9.3.2 Processes with stationary orthogonal increments

Next, we consider a specific subclass of second order processes with orthogonal
increments (s.o.o.i.) which will attract our attention during the rest of the book.

Definition 9.8. An s.o.o.i. vector random process

{x (t, ω)} , t ∈
[
t0, t f

]
, x (t0, ω)

a.s.
= 0 (9.14)

is said to have stationary (in the wide sense) increments if the mathematical expectation
and auto-covariance matrix of its increments depend only on the time distance |t − s|, that
is, if for any s, t ∈

[
t0, t f

]
and any h such that t + h, s + h ∈

[
t0, t f

]
it follows that

E {x (t, ω)− x (s, ω)} = E {x (t + h, ω)− x (s + h, ω)}

ρ (t, s) := E
{
[x (t, ω)− x (s, ω)] [x (t, ω)− x (s, ω)]ᵀ

}
= E

{
[x (t + h, ω)− x (s + h, ω)] [x (t + h, ω)− x (s + h, ω)]ᵀ

}
= ρ (t − s)

(9.15)

Lemma 9.3. If {x (t, ω)} , t ∈
[
t0, t f

]
, x (t0, ω)

a.s.
= 0 is an s.o.o.i. scalar random process

with stationary increments then for any s, t, r, (t + r) ∈
[
t0, t f

]
(a)

σ 2 (t) = σ 2 (t − s)+ σ 2 (s) (9.16)

(b)

σ 2 (t + r) = σ 2 (t)+ σ 2 (r) (9.17)

(c)

σ 2 (t) = σ 2t, σ 2
:= σ 2 (1) (9.18)

Proof. The property (a) results from the relation

σ 2 (t) = E
{

[x (t, ω)− x (s, ω)]2
}
+ E

{
x2 (s, ω)

}
= ρ (t, s)+ σ 2 (s) = ρ (t − s)+ σ 2 (s)

The property (b) follows from (a) if we put there t → t + r and s → r . In turn, (c)
results from (b) if we into account that for r = 1

σ 2 (t + 1) = σ 2 (t)+ σ 2 (1) = · · · = (t + 1) σ 2 (1)

Lemma is proven. �
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Lemma 9.4. (Criterion of increment stationarity) An s.o.o.i. scalar random process

{x (t, ω)}, t ∈
[
t0, t f

]
, x (t0, ω)

a.s.
= 0

is a process with stationary increments if and only if

ρ (t, s) = σ 2
· (t ∧ s) (9.19)

for some nonnegative constant σ 2.

Proof. Necessity. It follows from the property (9.12) in Lemma 9.2 and the property (9.18)
in Lemma 9.3.
Sufficiency. It results from the following relation valid for any s ≤ t ≤ s′ ≤ t ′:

E
{[

x
(
t ′, ω

)
− x

(
s′, ω

)]
[x (t, ω)− x (s, ω)]

}
= E

{
x
(
t ′, ω

)
x (t, ω)

}
−E

{
x
(
s′, ω

)
x (t, ω)

}
− E

{
x
(
t ′, ω

)
x (s, ω)

}
+ E

{
x
(
s′, ω

)
x (s, ω)

}
= σ 2

·
[(

t ′ ∧ t
)
−
(
s′ ∧ t

)
−
(
t ′ ∧ s

)
+
(
s′ ∧ s

)]
= σ 2

· [t − t − s + s] = 0

Lemma is proven. �

9.3.3 Processes with independent increments

Definition 9.9. A scalar random process

{x (t, ω)}, t ∈
[
t0, t f

]
, x (t0, ω)

a.s.
= 0

is said to be a process with independent increments if for any integer n = 0, 1, .. and all
0 = t0 < t1 < · · · < tn the following random variables

x (t1, ω)− x (t0, ω), x (t2, ω)− x (t1, ω), . . . , x (tn, ω)− x (tn−1, ω)

represent an independent collection.

The theorem below gives the criterion (the necessary and sufficient conditions) for a
random process to be a process with independent increments.

Theorem 9.3. A scalar random process {x (t, ω)} , t ∈
[
t0, t f

]
, x (t0, ω)

a.s.
= 0 is a process

with independent increments if and only if the following property for the corresponding
characteristic functions

ϕxt (v) :=

∫
Rn

ei(v,xt )d Fxt (v) = E{ei(v,xt )} (9.20)

holds:

ϕxt−xs (v) = ϕxt−xu (v) ϕxu−xs (v) (9.21)

for any 0 ≤ s < u < t <∞ and any v ∈ R.
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Nt

T0 T1 T2 T3

Fig. 9.1. Poisson process.

Proof. (main ideas).
(a) Necessity. The property (9.21) obviously results from the fact (see Lemma 5.2) that the
characteristic function of a sum of independent random variables is equal to the product of
corresponding characteristic functions.
(b) Sufficiency. Assume that (9.21) holds for some random variables ξ (t, s, ω), namely,

ϕξt,s (v) = ϕξt,u (v) ϕξu,s (v)

Define by recurrence

x
(
t j , ω

)
= x

(
t j−1, ω

)
+ ξ

(
t j , t j−1, ω

)
taking x (t0, ω)

a.s.
= 0. Then x (tn, ω) evidently may be defined as

x (tn, ω) =
n∑

j=1

[
x
(
t j , ω

)
− x

(
t j−1, ω

)]
=

n∑
j=1

ξ
(
t j , t j−1, ω

)
that completes the proof. �

9.3.4 Poisson process

Let {si }i≥0 be a sequence of independent identically distributed (i.i.d.) random variables
whose distributions for all i are exponential and given by

P {si > t} = e−λt, λ > 0, t ≥ 0 (9.22)

Let

Tn :=

n∑
i=0

si (9.23)

Definition 9.10. The continuous-time process {Nt }t≥0 defined by

Nt = n if Tn−1 ≤ t < Tn (9.24)

is called the Poisson process with the rate λ (see Fig. 9.1).
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The next lemma states the form of the distribution for the Poisson process.

Lemma 9.5. (on the Poisson distribution) For the Poisson process with the rate λ,

pn (t) := P {Nt = n} =
(λt)n

n!
e−λt (9.25)

Proof. The direct calculation gives

p0 (t) = P {Nt = 0} = P {t < s0} = e−λt

and by (1.68)

p1 (t) = P {Nt = 1} = P {s0 ≤ t < s0 + s1}

=

∞∫
v=0

P {s0 ≤ t < s0 + s1 | s0 = v} dP {s0 ≤ v}

=

∞∫
v=0

P {0 ≤ t − v < s1} dP {s0 ≤ v}

=

t∫
v=0

e−λ(t−v)d
(
1− e−λv

)
=

t∫
v=0

e−λ(t−v)λe−λvdv

= λ

t∫
v=0

e−λt dv = λte−λt

Then let us use the induction method assuming that (9.25) is valid for some n. We show
that it remains to be true for (n + 1). First, notice that

pn+1 (t) = P {Nt = n + 1} = P {Tn ≤ t < Tn+1}

=

∞∫
v=0

P {Tn ≤ t < Tn + sn+1 | Tn = v} dP {Tn ≤ v}

=

t∫
v=0

P {0 ≤ t − v < sn+1 | Tn = v} dP {Tn ≤ v}

=

t∫
v=0

P {0 ≤ t − v < sn+1} dP {Tn ≤ v}

=

t∫
v=0

e−λ(t−v)
dP {Tn ≤ v}

dv
dv (9.26)
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But, by the Bayes formula (1.69) and in view of (9.23) and by independency of sn ,

P {Tn ≤ v} =

v∫
w=0

P {Tn−1 + sn ≤ v | Tn−1 = w} dP {Tn−1 ≤ w}

=

v∫
w=0

P {sn ≤ v − w | Tn−1 = w} dP {Tn−1 ≤ w}

=

v∫
w=0

P {sn ≤ v − w} dP {Tn−1 ≤ w}

that, by the assumption that (9.25) holds, implies

d

dv
P {Tn ≤ v} = P {sn ≤ 0}︸ ︷︷ ︸

0

d

dv
P {Tn−1 ≤ 0}

+

v∫
w=0

d

dv

[
1− e−λ(v−w)

]
dP {Tn−1 ≤ w} = λpn (v) = λ

(λv)n

n!
e−λv (9.27)

Substituting (9.27) into (9.26) leads to the following relation:

pn+1 (t) =

t∫
v=0

e−λ(t−v)
dP {Tn ≤ v}

dv
dv =

t∫
v=0

e−λ(t−v)λ
(λv)n

n!
e−λvdv

=
λn+1

n!
e−λt

t∫
v=0

vndv =
λn+1

n!
e−λt tn+1

n + 1
=
(λt)n+1

(n + 1)!
e−λt

that completes the proof. �

Lemma 9.6. The Poisson process {Nt }t≥0 (9.24) is an s.o. process such that

E {Nt } = e−λt
∞∑

n=0

n
(λt)n

n!
= λt

E
{

N 2
t

}
= e−λt

∞∑
n=0

n2 (λt)n

n!
= λt (λt + 1)

(9.28)

Proof. Show that the Poisson process (9.24) is the second order process (s.o.), i.e., it has a
bounded second moment for any fixed t . It follows from the following calculation:

E
{

N 2
t

}
=

∞∑
n=0

n2P {Nt = n} =
∞∑

n=0

n2 (λt)n

n!
e−λt
= e−λt

∞∑
n=0

n2 (λt)n

n!
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eλt
=

∞∑
n=0

(λt)n

n!

d

dt
eλt
= λeλt

= λ

∞∑
n=0

n
(λt)n−1

n!
=

1
t

∞∑
n=0

n
(λt)n

n!

that leads to the first formula in (9.28). Then we have

d2

dt2 eλt
= λ2eλt

= λ2
∞∑

n=0

n (n − 1)
(λt)n−2

n!

=
1

t2

∞∑
n=0

n (n − 1)
(λt)n

n!
=

1

t2

∞∑
n=0

n2 (λt)n

n!
−

1

t2

∞∑
n=0

n
(λt)n

n!

implying

∞∑
n=0

n
(λt)n

n!
= (λt) eλt

∞∑
n=0

n2 (λt)n−1

n!
= (λt)2 eλt

+

∞∑
n=0

n
(λt)n

n!

= (λt) [(λt)+ 1] eλt

and, as the result,

E
{

N 2
t

}
= e−λt

∞∑
n=0

n2 (λt)n

n!
= λt (λt + 1) �

Lemma 9.7. The Poisson process {Nt }t≥0 (9.24) is an s.o. process with independent
increments.

Proof. (a) To prove this lemma it is sufficient to show that

P
{

Nt1 − Nt0 = k1; Nt2 − Nt1 = k2; · · ·; Ntn − Ntn−1 = kn
}

=

n∏
j=1

qk j

(
λ
(
t j − t j−1

))
(9.29)

for all n ≥ 2, 0 = t0 < t1 < · · · < tn and k1, k2, . . . , kn > 0 where

qk (µ) =


µk

k!
e−µ for µ > 0

0 for µ < 0
δk,0 for µ = 0

(k = 0, 1, . . .)

Indeed, assuming the validity of (9.29), one has

P
{

Nt2 − Nt1 = k2
}
=

∞∑
k1=0

P
{

Nt2 − Nt1 = k2 | Nt1 = k1
}
P
{

Nt1 = k1
}
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=

∞∑
k1=0

P
{

Nt2 − Nt1 = k2
}
P
{

Nt1 = k1
}

= qk2 (λ (t2 − t1))
∞∑

k1=0

qk1 (λ (t1)) = qk2 (λ (t2 − t1))

So, it is sufficient to check the property (9.29). Denote the event in the right-hand side of
(9.29) by A, that is,

A :=
{
ω : Nt1 − Nt0 = k1; Nt2 − Nt1 = k2; · · ·; Ntn − Ntn−1 = kn

}
(b) If k1 = k2 = . . . = kn = 0 then

P {A} = P {s1 > tn} = e−λtn = e−λt1e−λ(t2−t1) · · · e−λ(tn−tn−1)

and the property (9.29) holds. Next, let us consider an induction. Let for some m ≥ 2 we
have

k1 = k2 = . . . = kn = 0, km ≥ 1, k j ≥ 0 for m < j ≤ n

Then

A0 :=
{
ω : tm−1 < s1 ≤ tm, Tkm ≤ tm, Tkm+1 > tm,

. . . , Tkm+···+kn ≤ tn, Tkm+···+kn > tn
}

and

P {A0} = E {χ (ω ∈ A0)} = E {E {χ (ω ∈ A0) | s1}} (9.30)

Therefore, we have

E {χ (ω ∈ A0) | s1 = z}

= χ (tm−1 < z ≤ tm) · P
{
ω : T km−1≤ tm−z, T km> tm−z, . . . ,

Tkm+···+kn−1≤ tn−z,Tkm+···+kn−1> tn−z
}

= χ (tm−1 < z ≤ tm)

·P
{
ω : N tm−z= km − 1, Ntm+1−z − Ntm−z = km+1,

. . . , Ntn−z − Ntm−1−z = km+1
}

= χ (tm−1 < z ≤ tm) qkm−1 (λ (tm − z)) ·
n∏

j=m+1

qk j

(
λ
[(

t j − z
)
−
(
t j−1 − z

)])
and, by (9.30), it follows that

P {A} = E

{
χ (tm−1 < s1 ≤ tm) qkm−1 (λ (tm − s1))

·

n∏
j=m+1

qk j

(
λ
[(

t j − s1
)
−
(
t j−1 − s1

)])}
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=

tm∫
z=tm−1

λe−λz [λ (tm − z)]km−1

(km − 1)!
e−λ(tm−z)dz

n∏
j=m+1

qk j

(
λ
[
t j − t j−1

])

= λ
e−λtm

(km − 1)!

tm∫
z=tm−1

[λ (tm − z)]km−1 dz
n∏

j=m+1

qk j

(
λ
[
t j − t j−1

])

= e−λt1e−λ(t2−t1) · · · e−λ(tm−tm−1)

[
λ (tm − tm−1)

]km

km !

n∏
j=m+1

qk j

(
λ
[
t j − t j−1

])
So, now the property (9.29) is proven for the considered case.
(c) Let now k1 ≥ 1. Analogously, for

Ak1 :=
{
ω : 0 ≤ z ≤ t1, z + sk1+1 > t1, z + sk1+1 + · · · sk1+k2 ≤ t2,

z + sk1+1 + · · · sk1+k2+1 > t2, . . . , z + sk1+1 + · · · sk1+k2+···kn ≤ tn,

z + sk1+1 + · · · sk1+k2+···kn+1 > tn
}

it follows that

E
{
χ
(
ω ∈ Ak1

)
| Tk1 = z

}
= χ (0 ≤ z ≤ t1) · P

{
ω : s1> t1−z, . . . , T k2≤ t2−z, . . . , Tk2+1 > t2 − z,

. . . T k2+···+kn≤ tn−z, T km+···+kn+1> tn−z
}
= χ (0 ≤ z ≤ t1)

·P
{
ω : N t1−z= 0, Nt2−z = k2, . . . , Ntn−z = k2 + · · · + kn

}
= χ (0 ≤ z ≤ t1) e−λ(t1−z)

n∏
j=2

qk j

(
λ
[
t j − t j−1

])
So, now we have

P
{

Ak1

}
= E

{
χ
(
ω ∈ Ak1

)}
= E

{
E
{
χ
(
ω ∈ Ak1

)
| s1
}}

= E
{
χ (0 ≤ s1 ≤ t1) e−λ(t1−s1)

}
=

t1∫
z=0

λ
(λz)k1−1

(k1 − 1)!
e−λze−λ(t1−z)dz = e−λt1

t1∫
z=0

λ
(λz)k1−1

(k1 − 1)!
dz

=
(λt1)k1

k1!
e−λt1

that completes the proof. �

Theorem 9.4. (on the asymptotic behavior) For the Poisson continuous-time process
{Nt }t≥0 (9.24) with the rate λ the following property holds:

1
t

Nt
a.s.
→

t→∞
λ (9.31)
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Proof. (the main scheme) By the property (9.28) to prove (9.28) it is equivalent to prove

1
t

N̊t
a.s.
→

t→∞
0, N̊t := Nt − E {Nt }

To do that it is necessary and sufficient to show that (see (6.57))

P

{
sup
k≥n

1
tk

∣∣∣N̊tk

∣∣∣ ≥ ε} →
n→∞

0

for any subsequence {tk}k≥1 taking into account that {Nt }t≥0 can be represented as

Nt = max

{
m : Tm :=

m∑
i=0

si ≤ t

}
�

9.3.5 Wiener process or Brownian motion

Definition 9.11.

1. Wiener process or Brownian motion (BM) is a zero-mean s.o. scalar process

{Wt (ω)}t≥0, W0 (ω)
a.s.
= 0

with stationary normal independent increments.
2. If, additionally,

E
{

W 2
1 (ω)

}
= 1 (9.32)

then {Wt (ω)}t≥0 is a standard Brownian motion (SMB).

Proposition 9.1.

1. As it follows from Lemma 9.4, for an SBM

ρ (t, s) = E{Wt (ω)Ws (ω)} = σ
2
· (t ∧ s) = t ∧ s (9.33)

since

σ 2
= ρ (1, 1) = 1

It is also true that (even σ 2
= ρ (1, 1) 6= 1)

σ 2
t = ρ (t, t) = σ 2t (9.34)

So, BM{
W̊t (ω)

}
t≥0

, W̊t (ω) :=
1
σ

Wt (ω) (9.35)

is always SBM.
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2. From the normality of BM’s increments one has

d

dx
P {Wt (ω) ≤ x} =

1
√

2π t
exp

{
−

x2

2σ 2t

}
(9.36)

Remark 9.2. Being a process with independent increments, a Wiener process or a Brow-
nian motion (BM) is also a process with orthogonal increments.

Proof. The independency of increments, taken for (s, t) ∩
(
s′, t ′

)
= ∅, implies

E
{
[Wt (ω)−Ws (ω)] [Wt ′ (ω)−Ws′ (ω)]

ᵀ}
= 0

E {[Wt (ω)−Ws (ω)]}E
{
[Wt ′ (ω)−Ws′ (ω)]

ᵀ}
= [E {Wt (ω)} − E {Ws (ω)}] [E {Wt ′ (ω)} − E {Ws′ (ω)}]

ᵀ
= 0

which proves this remark. �

9.3.6 An invariance principle and LIL for Brownian motion

Let {Wt }t≥0 be a standard Brownian motion (SBM) in Rk . Below we will omit the
argument ω. Define

ζn (t) := (2n ln ln n)−1/2 Wnt (9.37)

for t ∈ [0, 1] and n ≥ 3. Let Ck [0, 1] be the Banach space of continuous maps from [0, 1]
to Rk endowed with the supremum norm ‖·‖, using the usual Euclidian norm in Rk . Then
ζn (t) is a random variable with values in Ck [0, 1].

Definition 9.12. Define the set K as the set of absolutely continuous function x (·) ∈
Ck [0, 1] such that x (0) = 0 and

1∫
t=0

‖ẋ (t)‖2 dt ≤ 1 (9.38)

(here ẋ (t) may be determined almost everywhere with respect to the Lebesgue measure).

Remark 9.3. K is a norm-compact subset of C. In fact, for any a ≤ b

‖x (b)− x (a)‖ =

∥∥∥∥∥∥
b∫

t=a

ẋ (t) dt

∥∥∥∥∥∥
≤

 b∫
t=a

12dt

b∫
t=a

‖ẋ (t)‖2 dt

1/2

≤
√

b − a

so that K is relatively norm-compact.
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Remark 9.4. Considering x (t) as the motion of a mass point with the mass 2 from time 0
to time 1, then K consists of those motions for which the mean kinetic energy is less than
(or equal to) 1.

Theorem 9.5. (Strassen, 1964) With probability 1 the sequence {ζn (·)}n≥3 is relatively
norm-compact and the set of its norms-limit points coincides with K .

Proof.

1. Let ε > 0, Kε be the set of all points in Ck [0, 1] which have a distance less than ε
from K . Then for any positive integer m and r > 1 it follows that

P {ζn (·) /∈ Kε} ≤ (I )+ (I I )

(I ) := P

{
2m

2m∑
i=1

(
ζn

(
i

2m

)
− ζn

(
i − 1
2m

))2

> r2

}

(I I ) := P

{[
2m

2m∑
i=1

(
ζn

(
i

2m

)
− ζn

(
i − 1
2m

))2

≤ r2

]
∨ [ζn (·) /∈ Kε]

}
But for large enough n

(I ) = P
{
χ2

2mk > 2r2 ln ln n
}

=
1

0 (mk)

∞∫
2r2 ln ln n

tmk−1e−t dt '

(
2r2 ln ln n

)mk−1
e−r2 ln ln n

0 (mk)

(recall that k is the dimension of the Brownian motion W ). Let also ηn be the random
vector with values in Ck [0, 1] obtained by linearly interpolating the points ζn

( i
2m

)
at

i
2m (i = 1, . . . , 2m). Then 2m

2m∑
i=1

(
ζn
( i

2m

)
− ζn

(
i−1
2m

))2
≤ r2 just means that 1

r ηn ∈ K .

So, one has

(I I ) = P

{
1
r
ηn ∈ K ∨ [ζn (·) /∈ Kε]

}
≤ P

{
1
r
ηn ∈ K ∨

[∥∥∥∥1
r
ηn − ζn (·)

∥∥∥∥ ≥ ε]}
Define

T =

min
{

t ∈ [0, 1] :

∥∥∥∥1
r
ηn − ζn (·)

∥∥∥∥ ≥ ε} if
this set is
nonempty

2 if otherwise

and let F be its distribution function, so that

(I I ) ≤

1∫
t=0

P

{
1
r
ηn ∈ K

∣∣∣∣ T = t

}
d F (t)
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=

1∫
t=0

P

{[
1
r
ηn ∈ K

]
∨

[∥∥∥∥1
r
ηn − ζn (·)

∥∥∥∥ = ε]∣∣∣∣ T = t

}
d F (t)

If i (t) is the smallest i with i
2m ≥ t , the statement 1

r ηn ∈ K implies

∥∥∥∥ηn

(
i (t)

2m

)
− ηn (t)

∥∥∥∥ ≤ r

i(t)/2m∫
t

∥∥∥∥1
r
η̇n (s)

∥∥∥∥ ds

≤ r

i(t)/2m∫
t

∥∥∥∥1
r
η̇n (s)

∥∥∥∥2

ds
1

2m
≤

r
√

2m

Two statements

1
r
ηn ∈ K ,

∥∥∥∥1
r
ηn − ζn (·)

∥∥∥∥ = ε
hold together therefore, and because of the relation ηn

(
i(t)
2m

)
= ζn

(
i(t)
2m

)
, imply∥∥∥∥ζn

(
i (t)

2m

)
− ζn (t)

∥∥∥∥ ≥ ‖ηn (t)− ζn (t)‖ −

∥∥∥∥ηn

(
i (t)

2m

)
− ηn (t)

∥∥∥∥
≥ rε − (r − 1)−

r
√

2m
≥ ε/2

if r is chosen close enough to 1 and m is sufficiently large. Then

(I I ) ≤

1∫
t=0

P

{∥∥∥∥ζn

(
i (t)

2m

)
− ζn (t)

∥∥∥∥ ≥ ε/2 | T = t

}
d F (t)

≤ P

{∥∥∥∥ζn

(
1

2m

)∥∥∥∥ ≥ ε/2}
1∫

t=0

d F (t) ≤ P
{∥∥∥ζ ( n

2m

)∥∥∥ ≥ ε/2√2n ln ln n
}

'
1

0 (k/2)

[(
ε2m ln ln n

)
/2
]k/2−1

exp
{
−ε2m ln ln n/2

}
By choosing m and r appropriately and using the above estimates for (I ) and (I I ), it is
easily seen that for r > 1 and sufficiently large n one has

P {ζn (·) /∈ Kε} ≤ exp
{
−r2 ln ln n

}
(9.39)

If n j :=
[
c j
]
+ 1 where c > 1, then∑

j

P
{
ζn j (·) /∈ Kε

}
≤ (log c)−r2 ∑

j

j−r2
<∞
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so that eventually ζn j (·) ∈ Kε a.s., and for c sufficiently close to 1 this implies that
eventually ζn (·) ∈ K2ε with probability 1. This shows that a.s. at most the points of
K are limit points of {ζn}n≥3 and also that a.s. this sequence is relatively compact (for
{ζn : n ≥ 3} is totally bounded).

2. To prove the theorem it is therefore sufficient (because of the compactness of K ) to
show the following fact: given x ∈ K and ε > 0, the probability that ζn is infinitely often
in the open ε-sphere {x}ε around x equals 1. Let now m ≥ 1 be an integer, δ ∈ (0, 1) and
x l , ζ l

n be the l-th coordinate of x and ζn respectively. Denote the event∣∣∣∣ζ l
n

(
i

2m

)
− ζ l

n

(
i − 1
2m

)
−

[
x l
(

i

2m

)
− x l

(
i − 1
2m

)]∣∣∣∣ < δ

by An . Then, defining ϕm,n (δ) :=
√

2m ln ln n
(∣∣∣x l

( i
2m

)
− x l

(
i−1
2m

)∣∣∣+ δ), we have

P {An} ≥

m∏
i=2

k∏
l=1

1
√

2π

ϕn(δ)∫
ϕn(0)

e−s2/2ds

≥ Const
m∏

i=2

k∏
l=1

exp
{
−m

[
x l
( i

2m

)
− x l

(
i−1
2m

)]2
ln ln n

}
√

m ln ln n
, Const > 0

The last inequality for sufficiently large n is based on the estimate

1
√

2π

b∫
a

e−s2/2ds ≥
1

b
√

2π
e−a2/2

(
1− e−

(
b2
−a2)/2)

valid for any a ≤ [0, b). So, by summing up the exponents and using Cauchy–Schwartz’s
inequality we get

P {An} ≥
Const

ln n
√

m ln ln n
(9.40)

Putting then n j = m j we see that An j ’s are mutually independent and

∞∑
j=1

P
{

An j

}
≥ Const

∞∑
j=1

1

j
√

ln j
= ∞

Hence, by Borel–Cantelli’s Lemma 6.2 infinitely many events An happen almost surely.
By what we previously have proved ζn is eventually close to K , and therefore (a.s.) we
have eventually

‖ζn (t)− ζn (s)‖ ≤
√
|t − s| + δ (9.41)

for all s, t ∈ [0, 1]. Now if y ∈ Ck [0, 1] the following two statements

‖y (t)− y (s)‖ ≤
√
|t − s| + δ, ∀s, t ∈ [0, 1]
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(

i

2m

)
− yl

(
i − 1
2m

)
−

[
x l
(

i

2m

)
− x l

(
i − 1
2m

)]∣∣∣∣ < δ

2 ≤ i ≤ m, l = 1, . . . , k

imply

‖y (t)− x (t)‖ < ε

provided m is sufficiently large and δ is sufficiently small. Looking at the definition of An
and in view of the fact that it happens infinitely often (a.s.) and by (9.41) we conclude that

P {|ζn − x | < ε infinitely often} = 1

This completes the proof. �

The discreteness of n is inessential for the previous considerations. So, if u > e is real
and we put

ζu (t) := (2u ln ln u)−1/2 Wut (9.42)

for t ∈ [0, 1] we have the following statement.

Corollary 9.1. With probability 1 the net {ζu (·)}u≥e is relatively norm-compact and the
set of its norms-limit points coincides with K , so putting t = 1 and u = τ we conclude
that

P

{
lim sup
τ→∞

‖Wτ‖
√

2τ ln ln τ
= 1

}
= 1 (9.43)

This corollary proves the fact that almost all trajectories of a standard Wiener process
{Wt (ω)}t≥0 remain to be inside of the ‘ε-tube’

Q1+ε :=

{
(t, y) : |y| ≤ (1+ ε)

√
2t ln ln t (for t ≥ e)

}
for any ε > 0, and in the same time with probability 1 they ‘get out’ of the ‘tube’

Q1−ε :=

{
(t, y) : |y| ≤ (1− ε)

√
2t ln ln t (for t ≥ e)

}
infinitely often (see Fig. 9.2).

9.3.7 ‘White noise’ and its interpretation

Gaussian ‘white’ noise {N (t, ω)}t∈(−∞,∞), in fact, is a model for a ‘completely’
random process whose individual random variable

N
(
t = t ′, ω

)
is normally distributed. As such, it is an idealization of stochastic phenomena encountered
in engineering system analysis.
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Fig. 9.2. The illustration of LIL for a standard Wiener process Wt (ω).

Definition 9.13. Gaussian ‘white’ noise {N (t, ω)}t∈(−∞,∞) is defined (basically, in
application literature) as a scalar stationary Gaussian process with zero-mean mathe-
matical expectation and a constant spectral density function f (λ) on the entire real line.
that is,

E {N (t, ω)} = 0 for any t ∈ (−∞,∞) (9.44)

and if

C (t) := E {N (s, ω)N (s + t, ω)} (9.45)

then

f (λ) :=
1

2π

∞∫
t=−∞

e−iλt C (t) dt =
c

2π
, λ ∈ R, c = const (9.46)

Remark 9.5. Since the spectral density function may be interpreted as measuring the
relative contribution of frequency λ to the oscillatory make-up of C (t), the last equation
(9.46), yielding that all frequencies are present equally, justifies the name ‘white’ noise in
analogy with white light in physics.

Remark 9.6. The formula (9.46) also implies that

C (t) = δ (t)

where δ (t) is the Dirac delta-function verifying the identity
∞∫

t=−∞

ϕ (t) δ (t − t0) = ϕ (t0)

for any continuous function ϕ : R→ R, and hence, {N (t, ω)}t∈(−∞,∞) is uncorrelated at
distinct times, so as a consequence, it is independent at distinct times since it is Gaussian.
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Remark 9.7. Since

C(t) =

∞∫
t=−∞

eiλt f (λ) dλ

then, in particular,

var (N (s, ω)) = C(0) =

∞∫
t=−∞

f (λ) dλ = ∞

So, the nature of the covariance C(t) indicates that such a process cannot be realized, and
that ‘white’ noise is not a stochastic process in the usual sense.

The relation between Gaussian white noise {N (t, ω)}t∈(−∞,∞) and the standard scalar
Wiener process {Wt }t≥0 can be understood formally as follows:

N (t, ω)
a.s.
= Ẇt (9.47)

where Ẇt is the time-derivative of the Wiener process Wt . We have to emphasize that the
formula (9.47) should be understood ‘symbolically’ since, as we have already established,
the Wiener process is never differentiable. The symbolic sense of the relation (9.47) means
that the time integration of white noise processes has a specific format, namely,

t∫
τ=0

β (τ, ω)N (τ, ω) dτ

it should be understood as
=

t∫
τ=0

β (τ, ω)
λ=1/2
◦ dW τ (ω)

where the right-hand side is the Stratonovich integral which will be introduced and
discussed in detail in Chapter 11.
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A stochastic dynamic system satisfies the Markov property,1

if the probable (future) state of the system at any time t > s is independent of the (past)
behavior of the system at times t < s, given the present state at time s.

This property can be nicely illustrated by considering a classical movement of a particle
whose trajectory after time s depends only on its coordinates (position) and velocity at time
s, so that its behavior before time s has absolutely no affect on its dynamic after time s.
In fact, this property for stochastic systems is completely shared with one for solutions of
initial value problems involving ordinary differential equations. So, stochastic processes
satisfying this property arise naturally as solutions of stochastic differential equations
obtained from ordinary ones but containing a stochastic perturbation term in the right-hand
side. These equations will be considered in Chapter 13.

In this chapter the Markov property is made precise and the basic properties of Markov
processes are discussed.

10.1 Definition of Markov property

10.1.1 Main definition

Let x (t, ω) ∈ Rn be a stochastic process defined on (�,F ,P) with state space Rn and
the index set J := [t0, T ] ⊆ [0,∞) where T = ∞ may be considered. For any t1, t2 ∈ J
define

F[t1,t2] := σ {x (t, ω) , t1 ≤ t ≤ t2} (10.1)

where σ {x (t, ω) , t1 ≤ t ≤ t2} is a minimal sigma-algebra generated by the set of ‘inter-
vals’ (rectangles, etc.) of the form

1This definition was introduced by A.A. Markov in 1906.
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{ω : x (τ1, ω) ∈ B1, . . . , x (τm, ω) ∈ Bm}

t1 ≤ τ1 < τ2 < · · · < τm ≤ t2
Bi ∈ Bn is a Borel sets of the dimension n

m is any positive integer

(10.2)

Definition 10.1. {x (t, ω)}t∈J is called a Markov process (MP) if the following Markov
property holds: for any t0 ≤ τ ≤ t ≤ T and all A ∈ Bn

P
{

x (t, ω) ∈ A | F[t0,τ ]
} a.s.
= P {x (t, ω) ∈ A | x (τ, ω)} (10.3)

The statement below, based on the properties of the conditional mathematical expecta-
tions, seems to be evident.

Claim 10.1. The following are each equivalent to the Markov property (10.3):

• for any t0 ≤ τ ≤ t ≤ T and all A ∈ F[t,T ]

P
{

A | F[t0,τ ]
} a.s.
= P {A | x (τ, ω)} (10.4)

• for any t0 ≤ τ ≤ t ≤ T and all Y ∈ F[t,T ]

E
{
Y | F[t0,τ ]

} a.s.
= E {Y | x (τ, ω)} (10.5)

• for any t0 ≤ t1 ≤ t ≤ t2 ≤ T and all A1 ∈ F[t0,t1] and A2 ∈ F[t2,T ]

P {A1 ∩ A2 | x (t, ω)}
a.s.
= P {A1 | x (t, ω)}P {A2 | x (t, ω)} (10.6)

10.1.2 Criterion for a process to have the Markov property

Lemma 10.1. A stochastic process x (t, ω) ∈ Rn , defined on (�,F ,P), with state space
Rn and the index set J := [t0, T ] ⊆ [0,∞) is a Markov process if and only if for any
t ∈ J and all bounded F ∈ F[t0,t] (F from Rk) and G ∈ F[t,T ] (F from Rl ) the following
identity holds:

E {FGᵀ | x (t, ω)}
a.s.
= E {F | x (t, ω)}E {Gᵀ | x (t, ω)} (10.7)

Proof. Obviously (10.3) is a partial case of (10.6) when k = l = 1, t1 = t = t2 and

F = χ
(
ω ∈ A1 ∈ F[t0,t]

)
, G = χ

(
ω ∈ A2 ∈ F[t,T ]

)
By the linear property of the conditional mathematical expectation, namely,

E
{
αS1 + βS2 | F[t0,t]

} a.s.
= αE

{
S1 | F[t0,t]

}
+ βE

{
S2 | F[t0,t]

}
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valid for all α, β ∈ R, by the boundedness property for the considered vector-functions F
and G, it seems to be evident that the property is valid for ‘simple’ functions having the
representation

F :=
M∑

i=1

ciχ
(
ω ∈ Ai ∈ F[t0,t]

)
, G =

N∑
j=1

χ
(
ω ∈ A j ∈ F[t,T ]

)
Then by Theorem 2.3 on the monotone approximation it follows that any F[t0,t] (or F[t,T ])
measurable bounded function h such that

sup
ω∈�

‖h (ω)‖ ≤ H <∞

may be uniformly on ω ∈ � (for almost all ω) approximated by a system of ‘simple’
functions that proves the desired result (10.7). �

Lemma 10.2. A stochastic process x (t, ω) ∈ R, defined on (�,F ,P), with state space
Rn and the index set J := [t0, T ] ⊆ [0,∞) is a Markov process if and only if for any
integer m, n and any

t0 ≤ s1 < · · · < sm ≤ t ≤ t1 < · · · < tn ≤ T

and any bounded (scalar valued) functions

gi (ω, x (si , ω)) ∈ F[t0,si ] (i = 1, . . . ,m)

f j
(
ω, x

(
t j , ω

))
∈ F[t j ,T ] ( j = 1, . . . , n)

the following property holds:

E

{
m∏

i=1

gi (ω, x (si , ω))

n∏
j=1

g j
(
ω, x

(
t j , ω

))
∣∣∣∣∣ x (s1, ω) , . . . , x (sm, ω) ; x (t, ω)

}
a.s.
= E

{
m∏

i=1

gi (ω, x (si , ω))

n∏
j=1

g j
(
ω, x

(
t j , ω

)) ∣∣∣∣∣ x (t, ω)

} (10.8)

Proof. First, notice that (10.7) holds in the component-wise sense; therefore it is sufficient
to check this property for scalar valued functions. Remember that for the conditional
mathematical expectation the following ‘smoothing’ property (7.11) holds: if we F0 ⊆

F1 ⊆ F , then

E {ξ/F0}
a.s.
= E {E {ξ/F0} /F1}

a.s.
= E {E {ξ/F1} /F0}

(a) Suppose that (10.7) holds. Then taking

F :=
m∏

i=1

gi (ω, x (si , ω)) , G :=
n∏

j=1

g j
(
ω, x

(
t j , ω

))
we obtain (10.8), and hence, the necessity property follows.
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(b) Let now (10.8) hold. Then (the arguments are omitted) taking

fi = χ
−

i := χ
(
ω ∈ A−i ∈ F[t0,si ]

)
g j = χ

+

j := χ
(
ω ∈ A+j ∈ F[t0,t j ]

)
Å1 := A−1 × · · · × A−m, Å2 := A+1 × · · · × A+n

we have

P
{

Å1 ∩ Å2 | x (t, ω)
}

= E

{
m∏

i=1

χ−i

n∏
j=1

χ+j

∣∣∣∣∣ x (s1, ω) , . . . , x (sm, ω) ; x (t, ω)

}

= E

{
m∏

i=1

fi

n∏
j=1

g j

∣∣∣∣∣ x (s1, ω) , . . . , x (sm, ω) ; x (t, ω)

}

= E

{
m∏

i=1

fi

n∏
j=1

g j

∣∣∣∣∣ x (t, ω)

}

= E

{
E

{
m∏

i=1

χ−i

n∏
j=1

χ+j

∣∣∣∣∣ x (s1, ω) , . . . , x (sm, ω)

} ∣∣∣∣∣ x (t, ω)

}

= E

{
m∏

i=1

χ−i E

{
n∏

j=1

χ+j

∣∣∣∣∣ x (s1, ω) , . . . , x (sm, ω)

} ∣∣∣∣∣ x (t, ω)

}

= E

{
m∏

i=1

χ−i

∣∣∣∣∣ x (t, ω)

}
E

{
n∏

j=1

χ+j

∣∣∣∣∣ x (t, ω)

}

= P
{

Å1

∣∣∣ x (t, ω)
}

P
{

Å2

∣∣∣ x (t, ω)
}

which proves the sufficiency property. �

The following corollary evidently follows.

Corollary 10.1. A stochastic process x (t, ω) ∈ R, defined on (�,F ,P), with state space
Rn and the index set J := [t0, T ] ⊆ [0,∞) is a Markov process if and only if for any
integer m and n = 1 the property (10.8) holds.

The next criterion is most important in applications.

Corollary 10.2. A stochastic process x (t, ω) ∈ R, defined on (�,F ,P), with state space
Rn and the index set J := [t0, T ] ⊆ [0,∞) is a Markov process if and only if for any
integer m, all

t0 ≤ s1 < · · · < sm ≤ t ≤ u ≤ T
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and any A ∈ Bn

P {x (u, ω) ∈ A | x (s1, ω) , . . . , x (sm, ω) , x (t, ω)}
a.s.
= P {x (u, ω) ∈ A | x (t, ω)}

(10.9)

Proof. It follows directly from Lemma 10.2 if we take there n = 1 and

gi (ω, x (si , ω)) := χ (ω : x (si , ω) ∈ A) �

10.2 Chapman–Kolmogorov equation and transition function

10.2.1 Transition probability and its four main properties

Definition 10.2. A function P {s, x, t, A} as a function of four variables, with t0 ≤ s ≤
t ≤ T , x ∈ Rn and A ∈ Bn is called the transition probability or transition function of a
stochastic process {x (t, ω)}t∈[t0,T ] if the following four properties are satisfied:

1. For any fixed s ≤ t and any fixed x ∈ Rn the function P {s, x, t, ·} is a probability on
Bn;

2. For any fixed s ≤ t and any fixed set A ∈ Bn the function P {s, ·, t, A} is
Bn-measurable;

3. For all s ∈ [t0, T ], all x ∈ Rn and all A ∈ Bn

P {s, x, s, A} = χ (ω : x (s, ω) ∈ A) (10.10)

4. For any fixed s < u < t , any A ∈ Bn and all x ∈ Rn (except possibly for a Px -null set)

P {s, x, t, A} =
∫

u∈Rn

P {u, y, t, A}P {s, x, u, dy} (10.11)

which is known as the Chapman–Kolmogorov equation.

Remark 10.1. By the property 3 (10.10) the relation (10.11) will be fulfilled also for
s ≤ u ≤ t .

10.2.2 Two-step interpretation of the Chapman–Kolmogorov equation

A Markov process {x (t, ω)}t∈[t0,T ] is said to have the transition function P {s, x, t, A}
if for all s ≤ t (both from [t0, T ]) and all A ∈ Bn

P {x (t, ω) ∈ A | x (s, ω) = x}
a.s.
= P {s, x, t, A} (10.12)
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(on the probabilistic measure Px(s,ω)). In fact, it defines the probability to meet the
stochastic process within a set A if at time s it has a value x , i.e., x (s, ω) = x .

The Chapman–Kolmogorov equation (10.11) indicates that transition probability (10.12)
can be decomposed into the state-space integral of products of probabilities to and from
a location in state space, attained at an arbitrary intermediate fixed time in the parameter
or index set, that is, the one-step transition probability can be rewritten in terms of all
possible combinations of two-step transition probabilities with respect to any arbitrary
intermediate time. This fact can be easily understood using the properties of the conditional
mathematical expectation:

P {s, x, t, A}
a.s.
= P {x (t, ω) ∈ A | x (s, ω) = x}

= E {χ (ω : x (t, ω) ∈ A) | x (s, ω) = x}

= E {E {χ (ω : x (t, ω) ∈ A) | x (s, ω) = x; x (u, ω)} | x (s, ω) = x}

= E {E {χ (ω : x (t, ω) ∈ A) | x (u, ω)} | x (s, ω) = x}

= E {P {x (t, ω) ∈ A | x (u, ω)} | x (s, ω) = x}

= E {P {u, x (u, ω) , t, A} | x (s, ω) = x}

The importance of the transition probabilities for Markov processes is that all finite-
dimensional distributions of the process can be obtained from them and the initial
distribution at time t0, namely, for t0 ≤ t1 ≤ · · · ≤ tm ≤ T and Ai ∈ Bn one has

P {x (t1, ω) ∈ A1, . . . , x (tm, ω) ∈ Am} =

∫
Rn

∫
A1

· · ·

∫
Am−1

P {tm−1, x (tm−1, ω) , tm, Am}P
{
tm−2, xm−2, tm−1, dxm−1

}
× · · · P {t0, x0, t1, dx1}P {x (t0, ω) ∈ dx0}

(10.13)

This means exactly the following fact.

Claim 10.2. A probability transition function P {s, x, t, A} and an initial distribution
P {x (t0, ω) ∈ A0} determines uniquely (up to stochastic equivalence) a Markov process.

10.2.3 Homogeneous Markov processes

Definition 10.3. A Markov process {x (t, ω)}t∈[t0,T ] is called homogeneous (with respect
to time index) if for all x ∈ Rn, A ∈ Bn and any s, s + h ∈ [t0, T ]

P {s, x, s + h, A} = P {0, x, h, A} (10.14)

The right-hand side of (10.14) exactly defines the conditional probability for a stochastic
process {x (t, ω)}t∈[t0,T ] to appear in the set A after time h starting from the state x
independently of the time [s, s + h] ∈ [t0, T ] when this transition occurs.
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For a homogeneous Markov process {x (t, ω)}t∈[t0,T ] the properties in Definition 10.2
can be rewritten in the following form:

1′. For any fixed t and any fixed x ∈ Rn the function P {0, x, t, ·} is a probability on Bn ;
2′. For any fixed t and any fixed set A ∈ Bn the function P {0, ·, t, A} is Bn-measurable;
3′. For all x ∈ Rn and all A ∈ Bn

P {0, x, 0, A} = χ (ω : x (0, ω) ∈ A)

4′. For any fixed s < t , any A ∈ Bn and all x ∈ Rn (except possibly for a Px -null set)

P {0, x, s + t, A} =
∫

u∈Rn

P {0, y, t, A}P {0, x, s, dy}

In fact, the last property (4′) permits the application of the power apparatus of the semi-
group theory to analyze the behavior of homogenous Markov processes, but this is out with
the scope of this book.

Below we will present the following interesting fact.

Lemma 10.3. Any homogeneous Markov process is a stochastic process with a stationary
increment.

Proof. Obviously for any t0 ≤ s + u < t + u ≤ T , any x ∈ Rn and all A ∈ Bn

P {s + u, x, t + u, A} = P {x (t + u, ω) ∈ A | x (s + u, ω) = x}

= P {x (t + u, ω)− x (s + u, ω) ∈ A − x | x (s + u, ω) = x}

by Definition 10.3

= P {s, x, t, A}

= P {x (t, ω) ∈ A | x (s, ω) = x}

= P {x (t, ω)− x (s, ω) ∈ A − x | x (s, ω) = x} = P {s, x, t, A}

which proves the statement. �

Since P {s, x, t, A} for homogeneous Markov processes depends only on (t − s), x and
A, one can use the notation

P {s, x, t, A} := P {t − s, x, A}

and the Chapman–Kolmogorov equation in 4′ becomes

P {t + s, x, A} =
∫

u∈Rn

P {s, y, A}P {t, x, dy} (10.15)

10.2.4 Process with independent increments as MP

Here we show that a wide class of stochastic processes considered before, namely,
processes with independent increments, are, in fact, Markov processes.
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Theorem 10.1. Let {x (t, ω)}t∈[t0,T ] be a process with independent increment (see Defi-
nition 9.9) taking values in Rn and such that x (t, ω) is Ft -measurable with

Ft = σ ({x (τ, ω)} , τ ∈ [t0, t]) , t ∈ [t0, T ]

Then {x (t, ω)}t∈[t0,T ] is a Markov process.

Proof. For

t0 ≤ s1 < · · · < sm ≤ t ≤ u ≤ T

define

ς1 := x (s1, ω) , ς2 := x (s2, ω)− x (s1, ω) , . . . ,

ςm := x (sm, ω)− x (sm−1, ω) , ςm+1 := x (t, ω)− x (sm, ω)

ς := x (u, ω)− x (t, ω)

Then for any bounded, Bn-measurable function g we have

E {g (x (u, ω)) | x (s1, ω) , . . . , x (sm, ω) , x (t, ω)}

= E

{
g

(
ς +

m+1∑
i=1

ςi

)∣∣∣∣∣ ς1, . . . , ςm+1

}
so that

E

{
g

(
ς +

m+1∑
i=1

ςi

)∣∣∣∣∣ ς1 = y1, . . . , ςm+1 = ym+1

}

= E

{
g

(
ς +

m+1∑
i=1

yi

)}
a.s.
= ψ

(
m+1∑
i=1

yi

)
where ψ is a Borel function. On the other hand, by the properties of the conditional
mathematical expectation,

E {g (x (u, ω)) | x (t, ω)} = E

{
g

(
ς +

m+1∑
i=1

ςi

)∣∣∣∣∣ m+1∑
i=1

ςi

}

E

{
E

{
g

(
ς +

m+1∑
i=1

ςi

)∣∣∣∣∣ ς1, . . . , ςm+1

}∣∣∣∣∣ m+1∑
i=1

ςi

}

= E

{
ψ

(
m+1∑
i=1

ςi

)∣∣∣∣∣ m+1∑
i=1

ςi

}
a.s.
= ψ

(
m+1∑
i=1

ςi

)
which means that

E {g (x (u, ω)) | x (s1, ω) , . . . , x (sm, ω) , x (t, ω)}
a.s.
= E {g (x (u, ω)) | x (t, ω)}

Theorem is proven. �
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Proposition 10.1. Both a Brownian motion Wt (or Wiener process) (see Definition 9.11)
and a Poisson process Nt (9.24) are Markov processes.

This result follows directly from the property of the Wiener process as well as Poisson
process that both are processes with independent increments.

Example 10.1. For a standard Wiener process Wt (ω), defined by (Definition 9.11), is a
homogeneous Markov process with the transition (stationary) probability

P {t, x, A} =
∫

y∈A

(2π t)−n/2 exp
{
− |y − x |2 /2t

}
dy (10.16)

It is possible to show that a standard Wiener process satisfies the so-called ‘strong
Markov property’, the exact definition of which is given below.

10.2.5 Strong Markov property

Consider a continuous-time stochastic Markov process {x (t, ω)}t∈[t0,T ], taking values
in Rn , and a closed set F ⊂ Rn . Let

τ = τ (ω) := inf {t : x (t, ω) ∈ F} (10.17)

be a Markov time (see Chapter 7, Section 2.4) called the first hitting time of the set F or
the first exit time of the complementary set Fc.

Definition 10.4. A continuous-time stochastic Markov process is called a strong Markov
process, or having the strong Markov property, if the Markov property (10.3) holds for
any Markov time, namely, when for any Markov time τ (10.17), and any Borel set A ∈ Bn ,

P
{

x (t + τ, ω) ∈ A | F[t0,τ ]
} a.s.
= P {x (t + τ, ω) ∈ A | x (τ, ω)} (10.18)

for any t > 0 such that t + τ ∈ [t0, T ].

10.3 Diffusion processes

10.3.1 Main definition

Definition 10.5. A continuous-time stochastic Markov process {x (t, ω)}t∈[t0,T ], taking
values in Rn , is called a diffusion process if its transition probability P {s, x, t, A} (see
Definition 10.2) is smooth enough in the sense that is satisfies the following three conditions
for every s ∈ [t0, T ], x ∈ Rn and ε > 0:

lim
t→s+0

1
t − s

∫
|y−x |>ε

P {s, x, t, dy} = 0 (10.19)
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lim
t→s+0

1
t − s

∫
|y−x |≤ε

(y − x)P {s, x, t, dy} = a (s, x) (10.20)

lim
t→s+0

1
t − s

∫
|y−x |≤ε

(y − x) (y − x)ᵀ P {s, x, t, dy} = B (s, x) (10.21)

where a (s, x) and B (s, x) represent well-defined Rn and Rn×n-valued functions respec-
tively. These functions are called the coefficients of the given diffusion process:

• a (s, x) is referred to as the drift vector;
• B (s, x) is referred to as the diffusion matrix which is symmetric and nonnegative

definite for each admissible s, x.

Obviously, the properties (10.19)–(10.21) can be rewritten, similarly, as follows:

P {|x (t + h, ω)− x (t, ω)| > ε | x (s, ω) = x} = o (h)

E {[x (t + h, ω)− x (t, ω)]×
χ (|x (t + h, ω)− x (t, ω)| ≤ ε) | x (s, ω) = x} = a (s, x) h + o (h)

E {[x (t + h, ω)− x (t, ω)] [x (t + h, ω)− x (t, ω)]ᵀ×
χ (|x (t + h, ω)− x (t, ω)| ≤ ε) | x (s, ω) = x}

= B (s, x) h + o (h)

(10.22)

10.3.2 Kolmogorov´s backward and forward differential equation

Let us consider a scalar random Markov process {x (t, ω)}t∈[t0,T ] with transition function
P {s, x, t, A} where in this case

A := {y ≤ x (t, ω) ≤ y +1y}

Suppose also that there exists a function p {s, x, t, y} such that

P
{
s, x, t, y′ ≤ x (t, ω) ≤ y′′

}
=

y′′∫
y′

p (s, x, t, y) dy (10.23)

This function p {s, x, t, y} is called the density of transition probability of the given
Markov process, and, in fact, it defines the conditional density of the probability for the
random variable x (t, ω) for the given t ∈ [t0, T ] and any values x (τ, ω) (τ ≤ s) including
the condition x (s, ω) = x for τ = s.

Lemma 10.4. The density p(s, x, t, y) of transition probability also satisfies the Chapman
–Kolmogorov equation for densities:
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p (s, x, t, y) =
∫

z∈Rn

p (s, x, u, z) p (u, z, t, y) dz (10.24)

valid for any s ≤ u ≤ t .

Proof. The joint density of distribution for the random variable x (u, ω) and x (t, ω), in
view of independence of x (t, ω) on x (s, ω) = x , is equal to

p (s, x, u, z) p (u, z, t, y) , z, y ∈ R

Integrating by z this product, we obtain (10.24). �

10.3.2.1 Kolmogorov’s backward equation

Theorem 10.2. Let the density p (s, x, t, y) of transition probability for a Markov process,
with the drift vector a (s, x) and the diffusion matrix b (s, x), have the derivatives

∂

∂s
p (s, x, t, y) ,

∂

∂x
p (s, x, t, y) and

∂2

∂x2 p (s, x, t, y)

which are uniformly continuous in y at any finite interval y′ ≤ y ≤ y′′. Then for any
t ∈ [a, b] and any y ∈ R it satisfies the following partial differential equation

−
∂

∂s
p (s, x, t, y) = a (s, x)

∂

∂x
p (s, x, t, y)

+
1
2

b (s, x)
∂2

∂x2 p (s, x, t, y)
(10.25)

known as the Kolmogorov backward equation.

Proof. Consider any continuous function φc (x) which is equal to zero outside some finite
interval, i.e.,

φ[a,b] (x) :=

{
φ (x) if a ≤ x ≤ b

0 if x ∈ [a, b]

and denote

ϕ (s, x, t) :=

∞∫
y=−∞

φ[a,b] (y) p {s, x, t, y} dy = Es,x
{
φ[a,b] (x (t, ω))

}
(10.26)

From the Chapman–Kolmogorov equation for densities (10.24) it follows that for any
t0 ≤ s ≤ u ≤ t ≤ T

ϕ (s, x, t) =

∞∫
y=−∞

φ[a,b] (y) p (s, x, t, y) dy
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=

∞∫
y=−∞

φ[a,b] (y)

 ∫
z∈Rn

p (s, x, u, z) p (u, z, t, y) dz

 dy

=

∫
z∈Rn

p (s, x, u, z)

 ∞∫
y=−∞

φ[a,b] (y) p (u, z, t, y) dy

 dz

=

∫
z∈Rn

p (s, x, u, z) ϕ (u, z, t) dz (10.27)

Obviously, ϕ (s, x, t) has continuous partial derivatives ∂
∂sϕ (s, x, t), ∂

∂x ϕ (s, x, t) and
∂2

∂x2 ϕ (s, x, t), and therefore it can be approximated by the first two terms of the Taylor
expansion in the neighborhood of the point x (under a fixed u and t):

ϕ (u, z, t)− ϕ (u, x, t) =
∂ϕ (u, x, t)

∂x
(z − x)

+
1
2

[
∂2ϕ (u, x, t)

∂x2 + O (δε (u, x, t))

]
(z − x)2

where

δε (u, x, t) = sup
|z−x |≤ε=b−a

∣∣∣∣∣∂2ϕ (u, z, t)

∂x2 −
∂2ϕ (u, x, t)

∂x2

∣∣∣∣∣ →ε→0
0

The presentations (10.19)–(10.21) imply

ϕ (s, x, t)− ϕ (u, x, t) =
∫

z∈Rn

[ϕ (s, z, t)− ϕ (u, x, t)] p (s, x, u, z) dz

=

∫
|z−x |≤ε

[ϕ (s, z, t)− ϕ (u, x, t)] p (s, x, u, z) dz + o (|u − s|)

=
∂ϕ (u, x, t)

∂x

∫
|z−x |≤ε

(z − x) p (s, x, u, z) dz

+
1
2

[
∂2ϕ (u, x, t)

∂x2 + O (δε (u, x, t))

] ∫
|z−x |≤ε

(z − x)2 p (s, x, u, z) dz

=
∂ϕ (u, x, t)

∂x
a (s, x)

+
1
2

[
∂2ϕ (u, x, t)

∂x2 + O (δε (u, x, t))

]
b (s, x)+ o (|u − s|)
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which leads to the following identity

0 = lim
u↓s
[ϕ (s, x, t)− ϕ (u, x, t)] = −

∂ϕ (s, x, t)

∂t

+
∂ϕ (s, x, t)

∂x
a (s, x)+

1
2
∂2ϕ (s, x, t)

∂x2 b (s, x)

Taking into account the definition (10.26), the last equation can be rewritten as

∞∫
y=−∞

φ[a,b] (y)

[
∂p (s, x, t, y)

∂t
+
∂p (s, x, t, y)

∂x
a (s, x)

+
1
2
∂2 p (s, x, t, y)

∂x2 b (s, x)

]
dy = 0

Remembering that φ[a,b] (y) is any continuous function, equal to zero outside of [a, b], and
extending this interval, we obtain (10.25). Theorem is proven. �

Remark 10.2. Notice that the density p (s, x, t, y) (10.23) of transition probability coin-
cides with the so-called fundamental solution of the elliptic partial differential equation
(10.25) which is characterized by the condition (10.27), namely, when for any continuous
bounded function we have

ϕ (s, x, t) =
∫

z∈Rn

ϕ (u, z, t) p (s, x, u, z) dz

Resulting from the multi-dimensional Taylor series expansion, the following generaliza-
tion of the Kolmogorov equation (10.25) for continuous-time stochastic Markov processes
{x (t, ω)}t∈[t0,T ], taking values in Rn , seems to be evident:

−
∂

∂s
p (s, x, t, y) = aᵀ (s, x)

∂

∂x
p (s, x, t, y)

+
1
2

tr

{
b (s, x)

∂2

∂x2 p (s, x, t, y)

}
(10.28)

10.3.2.2 Kolmogorov’s (or Fokker–Planck) forward equation

Theorem 10.3. Suppose that the density p (s, x, t, y) of transition probability for a
Markov process, with the drift vector a (s, x) and the diffusion matrix b (s, x), has the
derivatives

∂

∂t
p (s, x, t, y) ,

∂

∂y
[a (t, y) p (s, x, t, y)] and

∂2

∂y2 [b (t, y) p (s, x, t, y)]

which are uniformly continuous in y at any finite interval y′ ≤ y ≤ y′′. Then for any
t ∈ [a, b] and any y ∈ R it satisfies the following partial differential equation:
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∂

∂t
p (s, x, t, y) = −

∂

∂y
[a (t, y) p (s, x, t, y)]

+
1
2
∂2

∂y2 [b (t, y) p (s, x, t, y)]
(10.29)

known as Kolmogorov’s or the Fokker–Planck forward equation.

Proof. Analogously to the proof of the previous theorem and in view of the accepted
assumptions, we have that for any twice differential function ϕ (x) the following identity
holds:

lim
1t→0

1
1t

 ∞∫
y=−∞

ϕ (y) p (s, x, t +1t, y) dy − ϕ (x)


= a (t, x) ϕ′ (x)+

1
2

b (t, x) ϕ′′ (x)

Therefore

∂

∂t

∞∫
y=−∞

ϕ (y) p (s, x, t, y) dy

= lim
1t→0

1
1t

 ∞∫
y=−∞

ϕ (y) p (s, x, t +1t, y) dy −

∞∫
z=−∞

ϕ (z) p (s, x, t, z) dz


=

∞∫
z=−∞

p (s, x, t, z) lim
1t→0

1
1t

 ∞∫
y=−∞

ϕ (y) p (s, x, t +1t, y) dy − ϕ (z)

 dz

=

∞∫
z=−∞

p (s, x, t, z)

[
a (t, z) ϕ′ (z)+

1
2

b (t, z) ϕ′′ (z)

]
dz

Integrating the right-hand side of this equation by parts implies

∂

∂t

∞∫
y=−∞

ϕ (y) p (s, x, t, y) dy =

∞∫
y=−∞

ϕ (y)
∂

∂t
p (s, x, t, y) dy

=

∞∫
y=−∞

(
−
∂

∂y
[a (t, y) p (s, x, t, y)]+

1
2
∂2

∂y2 [b (t, y) p (s, x, t, y)]

)
ϕ (y) dy

Since the last integral relation holds for any continuous bounded function ϕ (y) the relation
(10.29) follows. Theorem is proven. �

As will be shown below, the solutions of stochastic differential equations are Markov
diffusion processes.
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10.4 Markov chains

10.4.1 Main definitions

Let the phase space of a Markov process {x (t, ω)}t∈T be discrete, that is,

x (t, ω) ∈ X := {(1, 2, . . . , r) or N ∪ {0}}
N = 1, 2, . . . is a countable set

Definition 10.6. A Markov process {x (t, ω)}t∈T with a discrete phase space X is said to
be a Markov chain

(a) in continuous time if

T := [t0, T ) , T is admitted to be∞

(b) in discrete time if

T := {t0, t1, . . . , tT } , T is admitted to be∞

The main Markov property (10.9) for this particular case looks as follows: for any
i, j ∈ X and any s1 < · · · < sm < s ≤ t ∈ T

P {x (t, ω) = j | x (s1, ω) = ii , . . . , x (sm, ω) = im, x (s, ω) = i}
a.s.
= P {x (t, ω) = j | x (s, ω) = i} (10.30)

if

P {x (s1, ω) = ii , . . . , x (sm, ω) = im, x (s, ω) = i} 6= 0

Definition 10.7. Let

Xs := {i ∈ X : P {x (s, ω) = i} 6= 0, s ∈ T }

For s ≤ t (s, t ∈ T ) and i ∈ Xs , j ∈ X define the conditional probabilities

πi, j (s, t) := P {x (t, ω) = j | x (s, ω) = i} (10.31)

which we will call the transition probabilities of a given Markov chain defining the
conditional probability for a process {x (t, ω)}t∈T to be in the state j at time t under
the condition that it was in the state i at time s < t .

Definition 10.7 obviously implies that the function πi, j (s, t) (10.31) for any i ∈ Xs ,
j ∈ X and any s ≤ t (s, t ∈ T ) should satisfy the following four conditions:

1. πi, j (s, t) is a conditional probability, and hence, is nonnegative, that is,

πi, j (s, t) ≥ 0 (10.32)
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2. starting from any state i ∈ Xs the Markov chain will obligatorily occur in some state
j ∈ Xt , i.e.,

∑
j∈Xt

πi, j (s, t) = 1 (10.33)

3. if no transitions, the chain remains in its starting state with probability 1, that is,

πi, j (s, s) = δi j (10.34)

for any i, j ∈ Xs , j ∈ X and any s ∈ T ;
4. the chain can occur in the state j ∈ Xt passing through any intermediate state

k ∈ Xu (s ≤ u ≤ t), i.e.,

πi, j (s, t) =
∑

k∈Xu

πi,k (s, u) πk, j (u, t) (10.35)

The relation (10.35) is known as the Markov equation, and in fact, represents the
discrete analog of the Chapman–Kolmogorov equation (10.11).

Since for homogeneous Markov chains the transition probabilities πi, j (s, t) depend only
on the difference (t − s), below we will use the notation

πi, j (t − s) := πi, j (s, t) (10.36)

In this case the Markov equation becomes

πi, j (h1 + h2) =
∑
k∈X

πi,k (h1) πk, j (h2) (10.37)

valid for any h1, h2 ≥ 0.

10.4.2 Expectation time before changing a state

10.4.2.1 Exponential law

Consider now a homogeneous Markov chain {x (t, ω)}t∈T with a discrete phase space
X and suppose that at time s ∈ T it is in a state, say, x (s, ω) = i .

Consider now the time τ (after the time s) just before changing the current state i , i.e.,
τ > s. By the homogeneity property it follows that distribution function of the time τ1
(after the time s1 := s + u, x (s + u, ω) = i) is the same as for the τ (after the time s,
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x (s, ω) = i) that leads to the following identity:

P {τ > v | x (s, ω) = i} = P {τ1 > v | x (s1, ω) = i}

P {τ > v + u | x (s + u, ω) = i}

= P {τ > u + v | x (s, ω) = i, τ > u ≥ s}
(10.38)

since the event {x (s, ω) = i, τ > u} includes as a subset the event {x (s + u, ω) = i}.

Lemma 10.5. The expectation time τ (of the homogeneous Markov chain {x (t, ω)}t∈T
with a discrete phase space X ) to be in the current state x (s, ω) = i before its changing
has the exponential distribution

P {τ > v | x (s, ω) = i} = e−λi t (10.39)

where λi is a nonnegative constant whose inverse value characterizes the average expec-
tation time before the changing the state x (s, ω) = i , namely,

1
λi
= E {τ | x (s, ω) = i} (10.40)

The constant λi is usually called the ‘exit density’.

Proof. Define the function fi (u) as

fi (u) := P {τ > u | x (s, ω) = i}

By formula (1.68) of the conditional probability we have

fi (u + v) := P {τ > u + v | x (s, ω) = i}

= P {τ > u + v | x (s, ω) = i, τ > u}P {τ > u | x (s, ω) = i}

= P {τ > u + v | x (s, ω) = i, τ > u} fi (u)

Applying (10.38) one has

fi (u + v) := P {τ > u + v | x (s, ω) = i}

= P {τ > u + v | x (s, ω) = i, τ > u} fi (u)

= P {τ > v | x (s, ω) = i} fi (u) = fi (v) fi (u)

which means that

ln fi (u + v) = ln fi (u)+ ln fi (v) (10.41)

such that

fi (0) = P {τ > 0 | x (s, ω) = i} = 1
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Differentiation of (10.41) by u gives

f ′i (u + v)

fi (u + v)
=

f ′i (u)

fi (u)

which for u = 0 becomes

f ′i (v)

fi (v)
=

f ′i (0)

fi (0)
= f ′i (0) := −λi

The last ODE implies

fi (v) = e−λi t

or, equivalently (10.39). To prove (10.40) it is sufficient to notice that

E {τ | x (s, ω) = i} =

∞∫
t=0

td [− fi (t)]

=
[
−te−λi t

]∞
t=0 −

∞∫
t=0

[
−e−λi t

]
dt =

∞∫
t=0

e−λi t dt = λ−1
i

Lemma is proven. �

Remark 10.3. For discrete time Markov chains the relation (10.41) applying for u = t =
1, 2, . . . and v = 1 becomes

ln fi (t + 1) = ln fi (t)+ ln fi (1)

= ln fi (t − 1)+ 2 ln fi (1) = · · · = (t + 1) ln fi (1)

fi (1) = 1− P {τ = 1 | x (s, ω) = i}

and therefore,

fi (t) = [ fi (1)]t
= [1− P {τ = 1 | x (s, ω) = i}]t

= q t
= e(ln q)t = e−|ln q|t

q = 1− P {τ = 1 | x (s, ω) = i}

(10.42)

10.4.2.2 Returnable (recurrent) and non-returnable (non-recurrent) states

Definition 10.8. If in (10.40)

(a)

λi = 0 (10.43)
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or equivalently,

E {τ | x (s, ω) = i} = ∞ (10.44)

then the state i is called absorbing (non-recurrent) or null since after some time the
process never can not leave this state with probability 1;

(b)

λi > 0 (10.45)

or equivalently,

E {τ | x (s, ω) = i} <∞ (10.46)

then the state i is called non-absorbing (recurrent) or positive since the process
returns to this state infinitely many times with probability 1.

10.4.3 Ergodic theorem

The result below shows that there exists the class of homogeneous Markov chains, called
ergodic, which satisfy some additional conditions provided that after a long time such
chains ‘forget’ the initial states from which they have started.

Theorem 10.4. (The ergodic theorem) Let for some state j0 ∈ X of a homogeneous
Markov chain and some h > 0, δ ∈ (0, 1) for all i ∈ X

πi, j0 (h) ≥ δ (10.47)

Then for any initial state distribution P {x (0, ω) = i} (i ∈ X ) for any i, j ∈ X there exists
the limit

p∗j := lim
t→∞

πi, j (t) (10.48)

such that for any t ≥ 0 this limit is reachable with an exponential rate, namely,∣∣∣πi, j (t)− p∗j

∣∣∣ ≤ (1− δ)[t/h]
= e−α[t/h] (10.49)

where α := |ln (1− δ)| and [z] is the integer part of z ∈ R.

Proof.

(a) For any t ≥ 0 define

m j (t) := inf
i∈X

πi, j (t) and M j (t) := sup
i∈X

πi, j (t)
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which evidently satisfy

m j (t) ≤ πi, j (t) ≤ M j (t)

for any i, j ∈ X and any t ≥ 0. Show that m j (t) monotonically increases and M j (t)
monotonically decreases such that

M j (t)− m j (t) →
t→∞

0 (10.50)

since, having (10.50), we obtain (10.48). Using the property (10.37) one has

m j (s + t) := inf
i∈X

∑
k∈X

πi,k (s) πk, j (t) ≥ m j (t) inf
i∈X

∑
k∈X

πi,k (s) = m j (t)

M j (s + t) := sup
i∈X

∑
k∈X

πi,k (s) πk, j (t) ≤ M j (t) sup
i∈X

∑
k∈X

πi,k (s) = M j (t)

Next, for 0 ≤ h ≤ t

M j (t)− m j (t) = sup
i∈X

πi, j (t)+ sup
l∈X

[
−πl, j (t)

]
= sup

i,l∈X

[
πi, j (t)− πl, j (t)

]
= sup

i,l∈X

∑
k∈X

[
πi,k (h)− πl,k (h)

]
πk, j (t − h)

= sup
i,l∈X

∑
k∈X+

[
πi,k (h)− πl,k (h)

]
πk, j (t − h)

+

∑
k∈X+

[
πi,k (h)− πl,k (h)

]
πk, j (t − h)


≤ sup

i,l∈X

M j (t − h)
∑

k∈X+

[
πi,k (h)− πl,k (h)

]

+ m j (t − h)
∑

k∈X−

[
πi,k (h)− πl,k (h)

]
Here

X+ :=
{
k ∈ X : πi,k (h)− πl,k (h) ≥ 0

}
X− :=

{
k ∈ X : πi,k (h)− πl,k (h) < 0

}
So, evidently∑

k∈X+

[
πi,k (h)− πl,k (h)

]
+

∑
k∈X−

[
πi,k (h)− πl,k (h)

]
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=

∑
k∈X+

πi,k (h)+
∑

k∈X−
πi,k (h)−

∑
k∈X+

πl,k (h)−
∑

k∈X−
πl,k (h)

=

∑
k∈X

πi,k (h)−
∑
k∈X

πl,k (h) = 1− 1 = 0

and therefore

M j (t)− m j (t) ≤
[
M j (t − h)− m j (t − h)

] ∑
k∈X+

[
πi,k (h)− πl,k (h)

]
(10.51)

Now notice that if j0 /∈ X+ then∑
k∈X+

[
πi,k (h)− πl,k (h)

]
≤

∑
k∈X+

πi,k (h) ≤ 1− πi, j0 (h) ≤ 1− δ

and if j0 ∈ X+ then∑
k∈X+

[
πi,k (h)− πl,k (h)

]
≤

∑
k∈X+

πi,k (h)− πi, j0 (h) ≤ 1− δ

Therefore (10.51) leads to

M j (t)− m j (t) ≤ (1− δ)
[
M j (t − h)− m j (t − h)

]
Iterating back this inequality [t/h]-times and using the estimate

M j (v)− m j (v) ≤ 1 if v = t − h [t/h]

we get

M j (t)− m j (t) ≤ (1− δ)[t/h] (10.52)

which proves (10.50) and, consequently, (10.48).
(b) In view of the inequality∣∣∣πi, j (t)− p∗j

∣∣∣ ≤ M j (t)− m j (t)

and using (10.52) we obtain (10.49). Theorem is proven. �

Corollary 10.3. (On a stationary state distribution) Suppose that (10.47) holds. Then
for any j ∈ X and for any

p j (t) := P {x (t, ω) = j} (10.53)

the following property holds∣∣∣p j (t)− p∗j

∣∣∣ ≤ (1− δ)[t/h] (10.54)

where p∗j as in (10.48).
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Proof. The existence of p∗j follows from Theorem 10.4, and the formula (10.54) results
from ∣∣∣p j (t)− p∗j

∣∣∣ = ∣∣∣∣∣∑
i∈X

πi, j (t) pi (0)− p∗j

∣∣∣∣∣ =
∣∣∣∣∣∑
i∈X

[
πi, j (t)− p∗j

]
pi (0)

∣∣∣∣∣
≤

∑
i∈X

∣∣∣πi, j (t)− p∗j

∣∣∣ pi (0) ≤ (1− δ)[t/h]
∑
i∈X

pi (0) = (1− δ)[t/h]

which proves the corollary. �

Definition 10.9. Homogeneous Markov chains, satisfying (10.47), are called ergodic.2

For ergodic Markov chains the following property holds.

Corollary 10.4. For any j ∈ X of an ergodic Markov chain the values p∗j ( j ∈ X ) satisfy

p∗j =
∑
i∈X

p∗i πi, j (t) (10.55)

or equivalently, in the vector format

p∗ = 5ᵀ (t) p∗

p∗ :=
(

p∗1, . . . , p∗n, . . .
)ᵀ
, 5 (t) :=

∥∥πi, j (t)
∥∥

i, j∈X
(10.56)

that is, the vector p∗ is the eigenvector of the matrix5ᵀ (t) corresponding to its eigenvalue
equal to 1.

Proof. By (10.48) we have

p∗j = lim
s→∞

p j (s + t) = lim
s→∞

∑
i∈X

πi, j (t) pi (s)

≥ lim
s→∞

∑
i≤N

πi, j (t) pi (s) =
∑
i≤N

πi, j (t) lim
s→∞

pi (s) =
∑
i≤N

πi, j (t) p∗i

Hence, tending N →∞ we get

p∗j ≥
∑
i≤N

πi, j (t) p∗i (10.57)

Suppose p∗j >
∑

i≤N
πi, j (t) p∗i for some j = j∗ and some t = t∗ ≥ 0. But, using (10.48),

we have∑
i≤N

p∗i = lim
t→∞

∑
i≤N

πi, j (t) ≤ 1 (10.58)

2Information concerning the class of controllable ergodic Markov chains can be found in Poznyak et al.
(2000).
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Hence, by the supposition∑
j∈X

p∗j ≥
∑
j≤N

p∗j =
∑

j≤N , j 6= j∗

p∗j + p∗j∗

>
∑

j≤N , j 6= j∗

∑
i∈X , j 6= j∗

πi, j∗ (t∗) p∗i +
∑

i∈X , j∗

πi, j∗ (t∗) p∗i

=

∑
i∈X , j 6= j∗

∑
j≤N , j 6= j∗

πi, j∗ (t∗) p∗i +
∑

i∈X , j∗

πi, j∗ (t∗) p∗i

=

∑
i∈X

∑
j≤N

πi, j (t∗) p∗i →N→∞

∑
i∈X

∑
j∈X

πi, j (t∗) p∗i =
∑
i∈X

p∗i

which leads to a contradiction since
∑
j∈X

p∗j >
∑

i∈X
p∗i and concludes the proof. �

Corollary 10.5. For any ergodic Markov chain

(a) or ∑
j∈X

p∗j = 1 (10.59)

i.e., p∗j ( j ∈ X ) form the probability distribution which is unique and called stationary
one;

(b) or ∑
j∈X

p∗j = 0 (10.60)

i.e., all p∗j = 0 ( j ∈ X ).

Proof. The case (b) is evident. Let us prove (a). If
∑
j∈X

p∗j > 0, then take

pi (0) := p∗i /
∑
l∈X

p∗l

and, then

p j (t) =
∑
i∈X

πi, j (t) pi (0) =
∑
i∈X

πi, j (t) p∗i /
∑
l∈X

p∗l = p∗j/
∑
l∈X

p∗l = p j (0)

which, by (10.54), implies

lim
t→∞

p j (t) = p∗j = p j (0)

Therefore∑
j∈X

p∗j =
∑
j∈X

p j (0) = 1
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which proves (10.59). Suppose now that there exist two stationary distributions p∗ and p∗∗

which, obviously, both satisfy (10.54). Then∣∣∣p∗∗j − p∗j

∣∣∣ = ∣∣∣[p∗∗j − p j (t)
]
+

[
p j (t)− p∗j

]∣∣∣
≤

∣∣∣p∗∗j − p j (t)
∣∣∣+ ∣∣∣p j (t)− p∗j

∣∣∣ ≤ 2 (1− δ)[t/h]
→

t→∞
0

and hence, p∗∗j = p∗j for any j ∈ X . Corollary is proven. �
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In this section we will study the following most important constructions of stochastic
integrals:

• the time-integral of a sample path of a second order (s.o.) stochastic process
{x (t, ω)}t≥0, i.e.,

I[a,b] (x) =

b∫
τ=a

x (τ, ω) dτ (11.1)

• the so-called Wiener integral of a deterministic function f (t) with respect to an s.o.
stationary orthogonal increment random process Wτ (ω), i.e.,

I W
[a,b] ( f ) =

b∫
τ=a

f (τ ) dWτ (ω) (11.2)

In this case, I W
t ( f ), being associated with the Lebesgue integral, is usually referred

to as a stochastic integral with respect to an ‘orthogonal random measure’ x (τ, ω) =
Wτ (ω).
• the so-called Itô integral of a random function g (t, ω) with respect to an s.o. stationary

orthogonal increment random process Wt (ω), i.e.,

I[a,b] (g) =

b∫
τ=a

g (τ, ω) dWτ (ω) (11.3)

Obviously, the Wiener integral (11.2) is a partial case of the Itô integral (11.3) when
g (t, ω) = f (t).
• the so-called Stratonovich integral of a random function g (t, ω) with respect to an s.o.

stationary orthogonal increment random process Wt (ω), i.e.,

287
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I S
[a,b] (g) =

b∫
τ=a

g (τ, ω)
λ=1/2
◦ dWτ (ω) (11.4)

where the summation in the right-hand side is taken in a special sense discussed below.

11.1 Time-integral of a sample-path

11.1.1 Integration of a simple stochastic trajectory

Here we will discuss how to understand (11.1)

I[a,b] (x) =

b∫
τ=a

x (τ, ω) dτ, x (τ, ω) ∈ R (11.5)

Define the usual partial Darboux sum as

yn (ω) :=

kn−1∑
i=0

x
(
tn
i , ω

) [
tn
i+1 − tn

i

]
(11.6)

where the partition
{
tn
i

}
i=0,kn

of the time-interval [a, b] is defined as follows:

a = tn
0 < tn

1 < · · · < tn
kn
= b (11.7)

such that

δn := max
i=0,kn

∣∣tn
i+1 − tn

i

∣∣ →
n→∞

0 (11.8)

Then one has

E
{

y2
n (ω)

}
= E

{
kn−1∑
i=0

kn−1∑
j=0

x
(
tn
i , ω

)
x
(

tn
j , ω

) [
tn
i+1 − tn

i

] [
tn

j+1 − tn
j

]}

=

kn−1∑
i=0

kn−1∑
j=0

E
{

x
(
tn
i , ω

)
x
(

tn
j , ω

)} [
tn
i+1 − tn

i

] [
tn

j+1 − tn
j

]

=

kn−1∑
i=0

kn−1∑
j=0

ρ
(

tn
i , tn

j

) [
tn
i+1 − tn

i

] [
tn

j+1 − tn
j

]
where

ρ
(

tn
i , tn

j

)
:= E

{
x
(
tn
i , ω

)
x
(

tn
j , ω

)}
(11.9)
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Lemma 11.1. If {x (t, ω)}t≥0 is a second-order mean-square continuous process, then
there exists a unique (in a stochastic sense) mean-square limit of the partial Darboux sums
(11.6), i.e., there exists

y (ω) = l.i.m.yn (ω) :=

b∫
τ=a

x (τ, ω) dτ = I[a,b] (ω) (11.10)

which is called the time-integral on the interval [a, b] of a second-order stochastic mean-
square continuous process {x (t, ω)}t≥0.

Proof. By Lemma 9.1 and considering that {x (t, ω)}t≥0 is a second-order mean-square

continuous process it follows that ρ
(

tn
i , tn

j

)
is continuous with respect to both arguments.

So

E
{

y2
n (ω)

}
→

b∫
t=a

b∫
t=a

ρ (t, s) dt ds

where the right-hand side is the usual Riemann integral of a continuous function. But this
implies that a limit also exists

y (ω) = l.i.m.yn (ω) :=

b∫
τ=a

x (τ, ω) dτ = I[a,b] (x)

or equivalently, E
{
(yn (ω)− y (ω))2

}
→

n→∞
0. To prove the uniqueness assume that two

limits exist

y (ω) = l.i.m.yn (ω) , y′ (ω) = l.i.m.yn (ω)

such that E
{(

y′ (ω)− y (ω)
)2}

> 0. Then it follows that

0 ←
n→∞

E
{
(yn (ω)− y (ω))2

}
= E

{([
yn (ω)− y′ (ω)

]
+
[
y′ (ω)− y (ω)

])2}
= E

{(
yn (ω)− y′ (ω)

)2}
+ E

{(
y′ (ω)− y (ω)

)2}
+ 2E

{[
yn (ω)− y′ (ω)

] [
y′ (ω)− y (ω)

]}
→

n→∞
E
{(

y′ (ω)− y (ω)
)2}

> 0

since by the Cauchy–Schwartz inequality

E
{[

yn (ω)− y′ (ω)
] [

y′ (ω)− y (ω)
]}

≤ E
{(

yn (ω)− y′ (ω)
)2}

E
{(

y′ (ω)− y (ω)
)2}
→

n→∞
0

which leads to a contradiction. Lemma is proven. �
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Remark 11.1. There exist infinitely many random variables ỹ (ω) which can be consid-
ered as the time-integral of {x (t, ω)}t≥0 on the interval [a, b] and which differ in terms of
y(ω) (11.10) at the subset �0 ⊂ � zero-measure, i.e.,

P {ω ∈ �0 | ỹ (ω) 6= y(ω)} = 0

This means that when we are writing
b∫

τ=a
x (τ, ω) dτ we deal with a family of random

variable such that

E


b∫

τ=a

x (τ, ω) dτ

 =
b∫

τ=a

E {x (τ, ω)} dτ

E


 b∫
τ=a

x (τ, ω) dτ

2
 =

b∫
t=a

b∫
t=a

E {x (t, ω) x (s, ω)} dt ds

(11.11)

11.1.2 Integration of the product of a random process and a deterministic function

To deal with integrals
b∫

τ=a
g (t) x (τ, ω) dτ we may follow the same scheme as above.

Lemma 11.2. Suppose that

1. {x (t, ω)}t≥0 is a second-order mean-square continuous process;
2. g : [a, b]→ R is a quadratically integrable partially continuous function on [a, b], i.e.,

g ∈ L2 [a, b] which means

b∫
t=a

g2 (t) dt <∞

Then there exists a family of random variables

y (ω) = l.i.m.yn (ω) :=

b∫
τ=a

g (t) x (τ, ω) dτ (11.12)

where

yn (ω) :=

kn−1∑
i=0

g
(
tn
i

)
x
(
tn
i , ω

) [
tn
i+1 − tn

i

]
such that
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E


b∫

τ=a

g (τ ) x (τ, ω) dτ

 =
b∫

τ=a

g (τ )E {x (τ, ω)} dτ

E


 b∫
τ=a

g (τ ) x (τ, ω) dτ

2


=

b∫
t=a

b∫
t=a

g (t) g (s)E {x (t, ω) x (s, ω)} dt ds

(11.13)

Proof. Following the proof of the previous lemma we have

E
{

y2
n (ω)

}
= E

{
kn−1∑
i=0

kn−1∑
j=0

g
(
tn
i

)
g
(

tn
j

)
x
(
tn
i , ω

)
x
(

tn
j , ω

) [
tn
i+1 − tn

i

] [
tn

j+1 − tn
j

]}

=

kn−1∑
i=0

kn−1∑
j=0

E
{

x
(
tn
i , ω

)
x
(

tn
j , ω

)}
g
(
tn
i

)
g
(

tn
j

) [
tn
i+1 − tn

i

] [
tn

j+1 − tn
j

]

=

kn−1∑
i=0

kn−1∑
j=0

ρ
(

tn
i , tn

j

)
g
(
tn
i

)
g
(

tn
j

) [
tn
i+1 − tn

i

] [
tn

j+1 − tn
j

]

→
n→∞

b∫
t=a

b∫
t=a

g (t) g (s) ρ (t, s) dt ds

The right-hand side exists since

b∫
t=a

b∫
t=a

g (t) g (s) ρ (t, s) dt ds

=

b∫
t=a

b∫
t=a

g (t) g (s)E {x (t, ω) x (s, ω)} dt ds

≤

b∫
t=a

b∫
t=a

g (t) g (s)
√

E
{

x2 (t, ω)
}
E
{

x2 (s, ω)
}
dt ds

=

 b∫
t=a

g (t)
√

E
{

x2 (t, ω)
}
dt

2

≤

b∫
t=a

g2 (t) dt

b∫
t=a

E
{

x2 (t, ω)
}

dt <∞

Lemma is proven. �
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11.2 λ-stochastic integrals

11.2.1 General discussion

Here we will discuss the question how should the integral

b∫
τ=a

g (τ, ω) dWτ (ω)

be defined. We start with the simplest case when

g (t, ω) = Wt (ω)

where {Wt (ω)}t≥0 is a standard one-dimensional Wiener process. It seems reasonable to
start by defining the integral for random step functions considered as an approximation of
{Wt (ω)}t≥0. Specifically, for any fixed λ ∈ [0, 1] the random step function approximation
ϕλn (t, ω) may be defined as

ϕλn (t, ω) := λWtn
k
(ω)+ (1− λ)Wtn

k−1
(ω)

t ∈
[
tn
k−1, tn

k

)
, k = 0, . . . , n

a = tn
0 < tn

1 < · · · < tn
kn
= b

(11.14)

where
{
tn
k

}
k=0,kn

is a sequence of partitions of the given interval [a, b], for which the
following definition is natural:

b∫
τ=a

ϕλn (τ, ω) dWτ (ω) :=

n∑
k=1

ϕλn (tk−1, ω)1W n
k (ω)

1W n
k (ω) := Wtn

k
(ω)−Wtn

k−1
(ω)

(11.15)

Below we will show that taking in (11.8) δn → 0 as n→∞ we get

b∫
τ=a

Wτ (ω)
λ∈[0,1]
◦ dWτ (ω)

:= l.i.m

b∫
τ=a

ϕλn (τ, ω) dWτ (ω)

=
1
2

[
W 2

b (ω)−W 2
a (ω)

]
+ (λ− 1/2) (b − a)

(11.16)

that demonstrates that there are infinitely many (indexed by the parameter λ) definitions,
using the random step function approximations (11.14), leading to distinct stochastic inte-
grals understood as their mean square limits of the random step function approximations.
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The symbol
(
λ∈[0,1]
◦

)
emphasizes the fact that the integral

b∫
τ=a

Wτ (ω) dWτ (ω) interpreta-

tion may be different, yielding

• for λ = 0 the so called Itô (non-anticipating) integral calculus;
• for λ = 1/2 the so called Stratonovich integral calculus.

Let us discuss all these possibilities in detail.

11.2.2 Variation of the sample path of a standard one-dimensional Wiener process

To begin, the next result has a consequence that {Wt (ω)}t≥0 is of unbounded variation
on any finite-time interval with probability 1 which shows that

the definition of a stochastic integral
b∫

τ=a
Wτ (ω) dWτ (ω)

as a Stieltjes integral is impossible!

Lemma 11.3. For 1W n
k (ω) (11.15) and δn →

n→∞
0 the following property holds:

l.i.m
n∑

k=1

(
1W n

k (ω)
)2
= b − a (11.17)

If, additionally, δn (11.8) satisfies

∞∑
n=0

δn <∞ (11.18)

then

lim
n→∞

n∑
k=1

(
1W n

k (ω)
)2 a.s
= b − a (11.19)

Proof. Define

Sn (ω) :=

n∑
k=1

(
1W n

k (ω)
)2

So, from (9.33) for any n one has

E {Sn (ω)} =

n∑
k=1

E
{(
1W n

k (ω)
)2}

=

n∑
k=1

E

{(
Wtn

k
(ω)−Wtn

k−1
(ω)

)2
}
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=

n∑
k=1

E
{

W 2
tn
k
(ω)+W 2

tn
k−1
(ω)− 2Wtn

k
(ω)Wtn

k−1
(ω)

}
=

n∑
k=1

E
{

W 2
tn
k
(ω)+W 2

tn
k−1
(ω)− 2Wtn

k
(ω)Wtn

k−1
(ω)

}
=

n∑
k=1

(
tn
k + tn

k−1 − 2tn
k ∧ tn

k−1

)
=

n∑
k=1

(
tn
k − tn

k−1

)
= tn

n − tn
0 = b − a

Now, since
(
1W n

i (ω)
)2 and

(
1W n

j (ω)
)2

are independent if i 6= j and since 1W n
i (ω)

are Gaussian (so, E
{(
1W n

k (ω)
)4}
= 3

(
tn
k − tn

k−1

)2) then one has

var (Sn (ω)) =

n∑
k=1

var
((
1W n

k (ω)
)2)

=

n∑
k=1

[
E
{(
1W n

k (ω)
)4}
−
(
tn
k − tn

k−1

)2]
= 2

n∑
k=1

(
tn
k − tn

k−1

)2
≤ 2δn (b − a)→ 0 as δn → 0 (11.20)

Therefore, the first part of the lemma is verified. Then, by Fatou’s Lemma 6.4 and in view
of (11.20) we have

E

{
∞∑

n=1

(Sn (ω)− E {Sn (ω)})
2

}
= E

{
lim inf
N→∞

N∑
n=1

(Sn (ω)− E {Sn (ω)})
2

}

≤ lim inf
N→∞

E

{
N∑

n=1

(Sn (ω)− E {Sn (ω)})
2

}

=

∞∑
n=1

var (Sn (ω)) ≤ 2 (b − a)
∞∑

n=1

δn <∞

and, hence, by Theorem 6.8

P

{
ω :

∞∑
n=1

(Sn (ω)− E {Sn (ω)})
2 <∞

}
= 1

which completes the proof. �

Corollary 11.1. For m-dimensional standard Wiener process {Wt (ω)}t≥0 it follows that

l.i.m
δn →

n→∞
0

n∑
k=1

1W n
k (ω)

[
1W n

k (ω)
]ᵀ
= (b − a) Im×m

l.i.m
δn →

n→∞
0

n∑
k=1

∥∥1W n
k (ω)

∥∥2
= m (b − a)

(11.21)
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Proof. The first formula in (11.21) is evident. The second one is obtained by taking the
trace of the first relation. �

Corollary 11.2. If δn satisfies (11.18) then the sample paths of {Wt (ω)}t≥0 are of
unbounded variation on every finite interval with probability 1, that is,

n∑
k=1

∥∥1W n
k (ω)

∥∥ a.s.
→

n→∞
∞ (11.22)

Proof. Since
n∑

k=1

∥∥1W n
k (ω)

∥∥2
≤ max

k=1,...,n

∥∥1W n
k (ω)

∥∥ n∑
k=1

∥∥1W n
k (ω)

∥∥
and, due to uniformity of the partition and the continuity of sample paths,

max
k=1,...,n

∥∥1W n
k (ω)

∥∥ a.s.
→

n→∞
0

for large enough n it follows that

n∑
k=1

∥∥1W n
k (ω)

∥∥ ≥
n∑

k=1

∥∥1W n
k (ω)

∥∥2

max
k=1,...,n

∥∥1W n
k (ω)

∥∥ a.s.
=

b − a + oω (1)

max
k=1,...,n

∥∥1W n
k (ω)

∥∥ a.s.
→

n→∞
∞

which establishes the corollary. �

The last corollary exactly confirms the fact that the definition of a stochastic integral
b∫

τ=a
Wτ (ω) dWτ (ω) as a Stieltjes integral is impossible.

11.2.3 Mean square λ-approximation

Theorem 11.1. As (11.8) holds, that is, as

δn := max
i=0,kn

∣∣tn
i+1 − tn

i

∣∣ →
n→∞

0

then

l.i.m
δn →

n→∞
0

n∑
k=1

ϕλn (tk−1, ω)1W n
k (ω)

=
1
2

[
W 2

b (ω)−W 2
a (ω)

]
+

(
λ−

1
2

)
(b − a)

(11.23)

where

ϕλn (t, ω) := λWtn
k
(ω)+ (1− λ)Wtn

k−1
(ω)

t ∈
[
tn
k−1, tn

k

)
, k = 0, . . . , n, a = tn

0 < tn
1 < · · · < tn

kn
= b
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Proof.

(a) Case λ = 0. We have
n∑

k=1

ϕλn (tk−1, ω)1W n
k (ω) =

n∑
k=1

Wtn
k−1
(ω)1W n

k (ω)

and
n∑

k=1

Wtn
k−1
(ω)1W n

k (ω) =

n∑
k=1

Wtn
k−1
(ω)

[
Wtn

k
(ω)−Wtn

k−1
(ω)

]
=

n∑
k=1

[
Wtn

k−1
(ω)−Wtn

k
(ω)+Wtn

k
(ω)

]
×

[
Wtn

k
(ω)−Wtn

k−1
(ω)

]
=

n∑
k=1

Wtn
k
(ω)1W n

k (ω)−

n∑
k=1

(
1W n

k (ω)
)2 (11.24)

Also one has
n∑

k=1

Wtn
k−1
(ω)1W n

k (ω) =

n∑
k=1

Wtn
k−1
(ω)

[
Wtn

k
(ω)−Wtn

k−1
(ω)

]
=

n∑
k=1

Wtn
k−1
(ω)Wtn

k
(ω)−

n∑
k=1

W 2
tn
k−1
(ω)

= −

n∑
k=1

1W n
k (ω)Wtn

k
(ω)+

n∑
k=1

W 2
tn
k
(ω)

−

n∑
k=1

W 2
tn
k−1
(ω) (11.25)

Adding both sides of (11.24) and (11.25) we obtain

2
n∑

k=1

Wtn
k−1
(ω)1W n

k (ω) =

n∑
k=1

W 2
tn
k
(ω)−

n∑
k=1

W 2
tn
k−1
(ω)

= W 2
b (ω)−W 2

a (ω)−

n∑
k=1

(
1W n

k (ω)
)2 (11.26)

Then taking into account the property (11.17) it follows that

l.i.m
δn →

n→∞
0

n∑
k=1

ϕλ=0
n (tk−1, ω)1W n

k (ω) =
1
2

[
W 2

b (ω)−W 2
a (ω)

]
−

1
2
(b − a) (11.27)

(b) Case λ = 1. Notice that

Wtn
k
(ω)1W n

k (ω) = Wtn
k−1
(ω)1W n

k (ω)+
(
1W n

k (ω)
)2
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Again, by the property (11.17) and in view of (11.27) it follows that

l.i.m
δn →

n→∞
0

n∑
k=1

ϕλ=1
n (tk−1, ω)1W n

k (ω)

= l.i.m
δn →

n→∞
0

n∑
k=1

ϕλ=0
n (tk−1, ω)1W n

k (ω)+ l.i.m
δn →

n→∞
0

n∑
k=1

(
1W n

k (ω)
)2

=
1
2

[
W 2

b (ω)−W 2
a (ω)

]
−

1
2
(b − a)+ (b − a)

=
1
2

[
W 2

b (ω)−W 2
a (ω)

]
+

1
2
(b − a) (11.28)

The theorem now follows by adding (11.27), multiplied by (1− λ), and (11.28), multiplied
by λ. �

11.2.4 Itô (non-anticipating) case (λ = 0)

When the random variable

ϕλn (t, ω) := λWtn
k
(ω)+ (1− λ)Wtn

k−1
(ω)

is measurable with respect to the σ -algebra, generated by Wtn
k−1
(ω), we deal with the

so-called non-anticipating case when, in fact ϕλn (t, ω) is independent of 1W n
k (ω). This

occurs only when

λ = 0 (11.29)

which leads to the Itô case with the random step function

ϕλ=0
n (t, ω) = Wtn

k−1
(ω) , tn

k−1 ≤ t < tn
k

in (11.23), namely,

b∫
τ=a

Wτ (ω) dWτ (ω) :=

b∫
τ=a

Wτ (ω)
λ=0
◦ dWτ (ω)

= l.i.m
δn →

n→∞
0

b∫
τ=a

ϕλ=0
n (τ, ω) dWτ (ω)

=
1
2

[
W 2

b (ω)−W 2
a (ω)

]
−
(b − a)

2

(11.30)

Remark 11.2. Notice that (11.30) holds with probability 1 if we take {δn}n≥1 such that
∞∑

n=1
δn <∞.
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To conclude this section the following important properties of the integral (11.30) are
verified below.

Lemma 11.4. The integral (11.30), interpreted in the Itô sense, satisfies

E


b∫

τ=a

Wτ (ω) dWτ (ω)

 = 0 (11.31)

and

E


 b∫
τ=a

Wτ (ω) dWτ (ω)

2
 =

(
b2
− a2

)
2

(11.32)

Proof.

(a) Since Wtn
k−1
(ω) and1W n

k (ω) are independent with mean-zero for any k and n, one has

E

{
n∑

k=1

Wtn
k−1
(ω)1W n

k (ω)

}
=

n∑
k=1

E
{

Wtn
k−1
(ω)

}
E
{
1W n

k (ω)
}
= 0

Then (11.31) follows proceeding to the limit (in the mean square sense) when δn →
n→∞

0.

(b) One has[
n∑

k=1

Wtn
k−1
(ω)1W n

k (ω)

]2

=

n∑
k=1

[
Wtn

k−1
(ω)

]2 [
1W n

k (ω)
]2

+ 2
n∑

k=1

n∑
j=1

k< j

Wtn
k−1
(ω)1W n

k (ω)Wtn
j−1
(ω)1W n

j (ω)

Taking into account that Wtn
k−1
(ω)1W n

k (ω)Wtn
j−1
(ω) and1W n

j (ω) are independent with
the latter having mean-zero, it follows that

E


[

n∑
k=1

Wtn
k−1
(ω)1W n

k (ω)

]2
 = n∑

k=1

E

{[
Wtn

k−1
(ω)

]2
}

E
{[
1W n

k (ω)
]2}

=

n∑
k=1

tn
k−1

(
tn
k+1 − tn

k

)
→

δn →
n→∞

0

b∫
a

tdt

=

(
b2
− a2

)
2

which gives (11.32). �
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11.2.5 Stratonovich case (λ = 1/2)

Taking in (11.23)

λ = 1/2 (11.33)

the random step function becomes

ϕλ=0
n (t, ω) =

1
2

[
Wtn

k
(ω)+Wtn

k−1
(ω)

]
, tn

k−1 ≤ t < tn
k

and therefore

b∫
τ=a

Wτ (ω)
λ=1/2
◦ dWτ (ω)

= l.i.m
δn →

n→∞
0

b∫
τ=a

ϕ
λ=1/2
n (τ, ω) dWτ (ω) =

1
2

[
W 2

b (ω)−W 2
a (ω)

] (11.34)

which indicates that the corresponding stochastic calculus in this case will be analogous to
the Riemann–Stieltjes calculus.

11.3 The Itô stochastic integral

In this section we will introduce the Itô stochastic integral for a fairly general class of
non-anticipation random functions in such a way as to preserve the basic Wiener process
properties such as (11.31) and (11.32). The properties of the developing integral will
follow the lines of general Lebesgue-type integration theory in such a way that, for a fixed
parameter interval, this integral will be defined as a continuous linear random function
(or, in other words, linear mapping) transforming a space of random functions (complete
metric space) into a space of random variables.

11.3.1 The class of quadratically integrable random non-anticipating step functions

Let {Wt (ω)}t≥0 be a standard Wiener process defined on the probability space (�,F ,P),
and let {F(t) : t ∈ [a, b]} be a family (flow) of sub-σ -algebras of F satisfying

•

F(t1) ⊆ F(t2) if t1 ≤ t2 (11.35)

• Wt (ω) is F(t)-measurable, i.e.,

Wt (ω) ∈ F(t) (11.36)

• For any s > 0[
Wt+s (ω)−Wt (ω)

]
is independent of F(t) (11.37)
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Definition 11.1. A random function f (t, ω) is said to be non-anticipating if f (t, ω) is
F(t)-measurable.

Definition 11.2. Denote by L2 [a, b] the class of random functions f (t, ω) satisfying the
conditions:

1. f (t, ω) is measurable on [a, b]×�;
2. f (t, ω) is non-anticipating, that is, f (t, ω) is F(t)-measurable;
3.

b∫
t=a

E
{

f 2 (t, ω)
}

dt <∞ (11.38)

Let also E denotes de subclass of L2 [a, b] consisting of the random step functions,
namely, E is the class of random functions f (t, ω) satisfying the conditions 1–3 given
above together with

f (t, ω) = f (ti , ω) , ti ≤ t < ti+1 (11.39)

for some partition a = t0 < t1 < · · · < tn = b.

The space L2 [a, b] equipped with the scalar product

〈 f, g〉 :=

b∫
t=a

E { f (t, ω) g (t, ω)} dt (11.40)

and the corresponding norm

‖ f ‖L2[a,b] :=

 b∫
t=a

E
{

f 2 (t, ω)
}

dt

1/2

(11.41)

forms a real Hilbert space.

Lemma 11.5. E is dense in L2 [a, b].

Proof. Proving the lemma requires that for any f ∈ L2 [a, b] there exists a sequence
{ fn} ⊆ E such that

‖ fn − f ‖L2[a,b] →n→∞
0 (11.42)
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(a) First, by setting f (t, ω) ≡ 0 for all ω ∈ � if t 6= [a, b], we may consider f (t, ω) on
the entire line (−∞,∞). Then by Fubini’s theorem and the property 3 (11.38) it follows
that

E


∞∫

t=−∞

f 2 (t, ω) dt

 =
∞∫

t=−∞

E
{

f 2 (t, ω)
}

dt <∞

so that with probability 1,

∞∫
t=−∞

f 2 (t, ω) dt
a.s.
< ∞

Now, by the application of the dominated convergence Theorem 6.2, it follows that

E


∞∫

t=−∞

| f (t + h, ω)− f (t, ω)|2 dt

 →h→0
0 (11.43)

This results from the following consideration:

∞∫
t=−∞

| f (t + h, ω)− f (t, ω)|2 dt ≤ 4

∞∫
t=−∞

f 2 (t, ω) dt <∞ (11.44)

which, by the dominated convergence Theorem 6.2 for the Lebesgue integration along the
sample paths, implies

∞∫
t=−∞

| f (t + h, ω)− f (t, ω)|2 dt
a.s.
→

h→0
0 (11.45)

Then, by (11.44), it follows that

E


∞∫

t=−∞

| f (t + h, ω)− f (t, ω)|2 dt

 ≤ 4E


∞∫

t=−∞

f 2 (t, ω) dt

 <∞

So the last expression permits the application of the dominated convergence Theorem 6.2
in the probability space yielding (11.43).
(b) Define then the functions

ϕ j (t) := [ j t] /t

where j = 1, 2, . . . and [·] means the ‘greatest integer in’ function. Since

ϕ j (t)→ t as j →∞
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the expression (11.43) can be replaced by

E


∞∫

s=−∞

∣∣ f
(
s + ϕ j (t) , ω

)
− f (s + t, ω)

∣∣2 ds

 <∞

for any fixed t . Again, the application of the dominated convergence Theorem 6.2 together
with Fubini’s theorem yields

∞∫
s=−∞

b∫
t=a−1

E
{∣∣ f

(
s + ϕ j (t) , ω

)
− f (s + t, ω)

∣∣2} dt ds

=

b∫
t=a−1

∞∫
s=−∞

E
{∣∣ f

(
s + ϕ j (t) , ω

)
− f (s + t, ω)

∣∣2} dsdt →
j→∞

0

Hence, there exists a sub-sequence { jn} such that

b∫
t=a−1

E
{∣∣ f

(
s + ϕ jn (t) , ω

)
− f (s + t, ω)

∣∣2} dt →
n→∞

0

for almost all s. Fixing then such s ∈ [0, 1] and replacing t by (t − s) in the last formula,
one has

b+s∫
t=a−1+s

E
{∣∣ f

(
s + ϕ jn (t − s) , ω

)
− f (t, ω)

∣∣2} dt →
n→∞

0

which in view of the property

f (t, ω) ≡ 0 for all ω ∈ � if t 6= [a, b]

and the identity

b+s∫
t=a−1+s

(·) =

a∫
t=a−1+s

(·)

︸ ︷︷ ︸
0

+

b∫
t=a

(·)+

b+s∫
t=b

(·)

︸ ︷︷ ︸
0

=

b∫
t=a

(·)

implies

b∫
t=a

E
{∣∣ f

(
s + ϕ jn (t − s) , ω

)
− f (t, ω)

∣∣2} dt →
n→∞

0 (11.46)

Finally, taking

fn (t, ω) := f
(
s + ϕ jn (t − s) , ω

)
we have that fn (t, ω) ∈ E , and therefore, (11.46) states (11.42). The proof is complete. �
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Denoting now by L2 (�) the usual Hilbert space of random variables f on (�,F ,P)
with finite second moments and norm

‖ f ‖2 :=
(
E
{

f 2
})1/2

<∞ (11.47)

we may define the Itô integral I[a,b] (ω) on E as

I[a,b] ( f ) :=
n∑

k=1

f (tk−1, ω)1W n
k (ω) (11.48)

where f (t, ω) = f (tk−1, ω) for tk−1 ≤ t < tk is in E and 1W n
k (ω) := Wtn

k
(ω) −

Wtn
k−1
(ω) as in (11.15).

Definition 11.3. The Itô integral I[a,b] ( f ) on L2 [a, b] is defined as the extension of
(11.48) given on E when n → ∞ as a continuous linear random functional action from
L2 [a, b] on L2 (�).

The next theorem constitutes the central result of this section concerning the main
properties of the Itô integral.

Theorem 11.2. The Itô integral

I[a,b] ( f ) =

b∫
τ=a

f (τ, ω) dWτ (ω) (11.49)

on L2 [a, b] satisfies

E


b∫

τ=a

f (τ, ω) dWτ (ω)

 = 0 (11.50)

and

∥∥I[a,b] ( f )
∥∥

2 =

E


 b∫
τ=a

f (τ, ω) dWτ (ω)

2



1/2

=

 b∫
τ=a

E
{

f 2 (τ, ω)
}

dτ

1/2

= ‖ f ‖L2[a,b]

(11.51)
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Proof. For f (t, ω) ∈ E I[a,b] (ω) (11.48) is obviously linear random functional. It also
follows that∥∥I[a,b] ( f )

∥∥2
2 = E


(

n∑
k=1

f (tk−1, ω)1W n
k (ω)

)2


=

n∑
k=1

E
{

f 2 (tk−1, ω)
}

E
{[
1W n

k (ω)
]2}

=

n∑
k=1

E
{

f 2 (tk−1, ω)
}
1tk = ‖ f ‖2L2[a,b]

since f (tk−1, ω) and 1W n
k (ω) are independent and E

{
1W n

k (ω)
}
= 0.

Let now f (t, ω) ∈ L2 [a, b]. Choosing { fn} ⊆ E such that fn → f whereas n → ∞,
and since { fn} is a Cauchy sequence (because of the density property of E ⊆ L2 [a, b])
one can define

b∫
τ=a

f (τ, ω) dWτ (ω) := lim
n→∞

b∫
τ=a

fn (τ, ω) dWτ (ω)

which completes the proof. �

Remark 11.3. The properties (11.50) and (11.51) of the Itô stochastic integral are
precisely the extensions of the properties (11.31) and (11.32), respectively, of the integral

b∫
τ=a

Wτ (ω) dWτ (ω) when in
b∫

τ=a
f (τ, ω) dWτ (ω) one takes f (τ, ω) = Wτ (ω).

11.3.2 The Itô stochastic integral as the function of the upper limit

Definition 11.4. Let B ⊆ [a, b] be a Borel set. Then the generalized Itô stochastic integral∫
τ∈B

f (τ, ω) dWτ (ω) may be defined as follows:

∫
τ∈B

f (τ, ω) dWτ (ω) :=

b∫
τ=a

χ (t ∈ B) f (τ, ω) dWτ (ω) (11.52)

where χ (t ∈ B) is the characteristic function of the event {t ∈ B}.
Claim 11.1. The following additivity property seems to be evident:∫

τ∈B1∪B2

f (τ, ω) dWτ (ω)

=

∫
τ∈B1

f (τ, ω) dWτ (ω)+

∫
τ∈B2

f (τ, ω) dWτ (ω)

(11.53)

for any Borel disjoint subsets B1,B2 ⊆ B such that B1 ∩ B2 = ∅.
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Proof. It results directly from the additivity property of the sum in (11.48). �

Corollary 11.3. For any t1, t2 ∈ [a, b] such that a ≤ t1 < t2 ≤ b one has

t2∫
τ=a

f (τ, ω) dWτ (ω)

=

t1∫
τ=a

f (τ, ω) dWτ (ω)+

t2∫
τ=t1

f (τ, ω) dWτ (ω)

(11.54)

Setting

x (t, ω) :=

t∫
τ=a

f (τ, ω) dWτ (ω) (11.55)

the relation (11.54) becomes

x (t2, ω) = x (t1, ω)+

t2∫
τ=t1

f (τ, ω) dWτ (ω)

which shows that {x (t, ω)}t∈[a,b] is a Markov process.

Lemma 11.6. The stochastic process {x (t, ω)}t∈[a,b] given by (11.55) is a martingale with
respect to the flow of sub-σ -algebras {F (t)}t∈[a,b] satisfying (11.35)–(11.37), that is, for
any s > 0 (t + s ∈ [a, b]) and t ∈ [a, b]

E {x (t + s, ω) | F (t)}
a.s.
= x (t, ω) (11.56)

Proof.

(a) First, notice that E {|x (t, ω)|} <∞ follows from x (t, ω) ∈ L2 (�). Since [Wt+s (ω)−

Wt (ω)] is independent of F (t), then for step functions fn ∈ E the independence of the
increment

[xn (t + s, ω)− xn (t, ω)]

of F (t) with

xn (t, ω) :=

t∫
τ=a

fn (τ, ω) dWτ (ω)

and the mean-zero property (11.50) imply

E {xn (t + s, ω)− xn (t, ω) | F (t)}
a.s.
= E {xn (t + s, ω)− xn (t, ω)} = 0 (11.57)

And since xn (t, ω) is measurable with respect to F (t) the result (11.56) follows.
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(b) For a general process f (t, ω) ∈ L2 [a, b] the stochastic integral x (t, ω) is also from
L2 (�), and hence, there exists a sequence { fn (t, ω)}n≥1 of step functions such that
fn (t, ω)→ f (t, ω) in L2 [a, b] and xn (t, ω) → x (t, ω) in L2 (�). The result follows
from (11.57) by passage to the limit. Lemma is proven. �

Corollary 11.4. The stochastic process
{
|x (t, ω)|p

}
t∈[a,b] with p ≥ 1, given by (11.55)

with f (t, ω) ∈ L2 [a, b], is a submartingale, that is,

E
{
|x (t + s, ω)|p | F (t)

} a.s.
≥ |x (t, ω)|p (11.58)

such that for any r > 0

P

{
sup

t∈[a,b]
|x (t, ω)| > r

}
≤

1

r2

b∫
τ=a

E
{

f 2 (τ, ω)
}

dτ (11.59)

and

E

{
sup

t∈[a,b]
|x (t, ω)|2

}
≤ 4E


b∫

τ=a

f 2 (τ, ω) dτ

 (11.60)

Proof. The properties (11.58) and (11.59) follow from (7.28), the Doob inequality (7.71)
and the inequality (7.75) for the moments of the maximum modulus for p = 2. �

The next sub-section is the main one in this section.

11.3.3 The Itô formula

11.3.3.1 One-dimensional case

Theorem 11.3. (Ito, 1951) Suppose {x (t, ω)}t∈[a,b] has the stochastic differential

x (t, ω)
a.s.
= x (a, ω)+

t∫
τ=a

f (τ, ω) dτ +

t∫
τ=a

g (τ, ω) dWτ (ω) (11.61)

or, equivalently, in the symbolic form

dx (t, ω) = f (t, ω) dt + g (t, ω) dWt (ω) (11.62)

Here { f (t, ω)}t∈[a,b] is a second-order mean-square continuous process, the first integral
in the right-hand side of (11.61) is the usual time-integral (11.10) and the second
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integral is the Itô integral of the function g (τ, ω) ∈ L2 [a, b]. If V = V (t, x) is a real
valued deterministic function defined for all t ∈ [a, b] and x ∈ R with continuous

partial derivatives
∂

∂t
V (t, x),

∂

∂x
V (t, x) and

∂2

∂x2 V (t, x), then the stochastic process

{V (t, x (t, ω))}t∈[a,b] has a stochastic differential dV (t, x (t, ω)) on [a, b] given by the
symbolic form

dV (t, x (t, ω)) = v1(t, x (t, ω)) dt + v2(t, x (t, ω)) dWt (ω) (11.63)

with

v1(t, x) =
∂

∂t
V (t, x)+

∂

∂x
V (t, x) f +

1
2
∂2V (t, x)

∂x2 g2

v2(t, x) =
∂V (t, x)

∂x
g

(11.64)

or, equivalently, in the ‘open form’

V (t, x (t, ω))
a.s.
= V (a, x (a, ω))

+

t∫
τ=a

[
∂

∂τ
V (τ, x (τ, ω))+

∂V (τ, x (τ, ω))

∂x
f (τ, ω) dτ

+
1
2
∂2V (τ, x (τ, ω))

∂x2 g2 (τ, ω)

]
dτ

+

t∫
τ=a

∂V (τ, x (τ, ω))

∂x
g (τ, ω) dWτ (ω)

(11.65)

Remark 11.4. The stochastic differential (11.63) differs from ‘usual differential’ (obtained
by the standard calculus) only as regards the specific term

1
2
∂2V (t, x)

∂x2 g2 (11.66)

which is referred to as the Itô term, the expression (11.65) as the Itô formula.

Proof. (a) We start with the simplest case when f (t, ω) and g (t, ω) are constants, i.e.,

f (t, ω) = f0, g (t, ω) = g0 (11.67)

Then for a fixed partition (11.7)

V (t, x (t, ω))− V (s, x (s, ω)) =
n∑

k=1

1V n
k (ω)

1V n
k (ω) := V

(
tn
k , x

(
tn
k , ω

))
− V

(
tn
k−1, x

(
tn
k−1, ω

))
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By Taylor’s formula there exist constants θ1 and θ2 (not exceeding 1) such that

1V n
k (ω) =

∂

∂t
V
(
tn
k−1 + θ11tk, x

(
tn
k−1, ω

))
1tk

+
∂

∂x
V
(
tn
k−1, x

(
tn
k−1, ω

))
1xk

+
1
2
∂2

∂x2 V
(
tn
k−1, x (tk−1, ω)+ θ21xk

)
(1xk)

2

where

1tk :=
(
tn
k − tn

k−1

)
, 1xk := x

(
tn
k−1, ω

)
As δn := max

i=0,kn

∣∣tn
i+1 − tn

i

∣∣ →
n→∞

0, by the continuity of x
(
tn
k , ω

)
, one has

∂

∂t
V
(
tn
k−1 + θ11tk, x

(
tn
k−1, ω

)) a.s.
→

∂

∂t
V
(
tn
k−1, x

(
tn
k−1, ω

))
∂2

∂x2 V (tn
k−1, x (tk−1, ω)+ θ21xk)

a.s.
→

∂2

∂x2 V
(
tn
k−1, x (tk−1, ω)

)
By (11.67) it follows that

1xk = f01tk + g01W n
k (ω)

so that

n∑
k=1

(
(1xk)

2
−
[
g01W n

k (ω)
]2)
= f 2

0

n∑
k=1

(1tk)
2
+ 2 f0g0

n∑
k=1

1W n
k (ω)1tk (11.68)

In view of the estimates, resulting from (11.19),

n∑
k=1

(1tk)
2
≤ δn

n∑
k=1

1tk = δn (b − a)∣∣∣∣∣ n∑
k=1

1W n
k (ω)1tk

∣∣∣∣∣ ≤
[

n∑
k=1

(
1W n

k (ω)
)2 n∑

k=1

(1tk)
2

]1/2

≤

√
δn (b − a)

(
n∑

k=1

(
1W n

k (ω)
)2)1/2

it follows that the right-hand side of the identity (11.68) tends to zero with probability 1

which, after taking the limits where n→∞ (δn → 0,
∞∑

n=1
δn <∞), implies

V (t, x (t, ω))− V (s, x (s, ω))

a.s.
= lim

δn →
n→∞

0

n∑
k=1

1V n
k (ω)
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= lim
δn →

n→∞
0

n∑
k=1

[
∂

∂t
V
(
tn
k−1, x

(
tn
k−1, ω

))
+
∂

∂x
V
(
tn
k−1, x

(
tn
k−1, ω

))
f0

+
1
2
∂2

∂x2 V (tn
k−1, x (tk−1, ω) g2

0

]
1tk

+ lim
δn →

n→∞
0

n∑
k=1

∂

∂x
V
(
tn
k−1, x

(
tn
k−1, ω

))
g01W n

k (ω)

+ lim
δn →

n→∞
0

n∑
k=1

[
1
2
∂2

∂x2 V (tn
k−1, x (tk−1, ω) g2

0

] [(
1W n

k (ω)
)2
−1tk

]
(11.69)

The first two limits on the right-hand side of (11.69) are the terms on the right-hand side
of (11.65). It remains to show that the last limit in (11.69) is zero. Let

βk :=
(
1W n

k (ω)
)2
−1tk

Since {βk}k≥1 is the sequence of independent random variables, for all k ≥ 1 it follows
that

E {βk} = 0, E
{
β2

k

}
= 2 (1tk)

2

Setting χk (N ) the characteristic function of the event

{ω : |x (ti , ω)| ≤ N for all i ≤ k}

we get

E


(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2


= E


(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2

χk (N )


+E


(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2

[1− χk (N )]


≤ E


(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2

χk (N )


= E


(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 χk (N )

)2
E

{
β2

k

}
By the continuity property of ∂

2V (t,x)
∂x2 on [a, b]× [−N , N ], it follows that∣∣∣∣∣∂2V (tn

k−1, x (tk−1, ω)

∂x2 χk (N )

∣∣∣∣∣ ≤ C = const
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that’s why

l.i.m
δn →

n→∞
0

n∑
k=1

E


(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2
 ≤ 2C lim

δn →
n→∞

0

n∑
k=1

(1tk)
2
= 0

But, we also have

∞∑
n=1

E

 n∑
k=1

(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2

2

≤ 4C2 (b − a)2
∞∑

n=1

δ2
n <∞

which, by Theorem 6.8, implies

n∑
k=1

(
∂2V (tn

k−1, x (tk−1, ω)

∂x2 βk

)2

→
δn →

n→∞
0

0

So, the validity of the Itô formula (11.65) for the case of the constant functions f and g is
proven.
(b) Obviously the case, when f and g are step functions fn and gn , results from the
previous one if take into account the additivity property (11.54) of the Itô integral. We have

V (t, x (t, ω))
a.s.
= V (a, x (a, ω))

+

t∫
τ=a

[
∂

∂τ
V (τ, x (τ, ω))+

∂V (τ, x (τ, ω))

∂x
fn (τ, ω) dτ

+
1
2
∂2V (τ, x (τ, ω))

∂x2 g2
n (τ, ω)

]
dτ

+

t∫
τ=a

∂

∂x
V (τ, x (τ, ω))gn (τ, ω) dWτ (ω) (11.70)

(c) For the general case suppose that
t∫

τ=a

| fn(τ, x (τ, ω))− f (τ, x (τ, ω))| dt
a.s.
→

n→∞
0

t∫
τ=a

|gn(τ, x (τ, ω))− g(τ, x (τ, ω))| dt
a.s.
→

n→∞
0

This can be done considering
∞∑

n=1
δ2

n < ∞ (see Lemma 11.3). Hence, the right-hand side

of (11.70) tends with probability 1 to that of (11.65). Theorem is proven. �

Remark 11.5. The appearance of the additional Itô term is related to the fact that the term(
1W n

k (ω)
)2 behaves like 1tk , or roughly speaking,

(dWt (ω))
2
∼ dt

The application of the Itô formula (11.65) is illustrated by the corollary given below.
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Corollary 11.5. For any twice continuously differential function h = h (x) and a standard
Wiener process {Wt (ω)}t∈[a,b] the following identity for any t ∈ [a, b] holds:

t∫
τ=a

∂h(Wτ (ω))

∂x
dWτ (ω)

a.s.
= h(Wt (ω))− h(Wa (ω))

−
1
2

t∫
τ=a

∂2h(Wτ (ω))

∂x2 dτ

(11.71)

Proof. Define {x (t, ω)}t∈[a,b] as a stochastic process as follows:

x (t, ω) = Wt (ω)

Then its stochastic differential is

dx (t, ω) = dWt (ω)

that is, in (11.62) f (t, ω) ≡ 0 and g (t, ω) ≡ 1. Then, taking V (t, x) = h(x) and using
the identity (11.65) one has

h(x (t, ω))
a.s.
= h(x (a, ω))+

t∫
τ=a

1
2
∂2h(x (τ, ω))

∂x2 dτ

+

t∫
τ=a

∂h(x (τ, ω))

∂x
dWτ (ω)

which completes the proof. �

Example 11.1. Let h (x) = xn+1 (n is any positive integer). Then (11.71) becomes

t∫
τ=a

W n
τ (ω) dWτ (ω)

a.s.
=

1
n + 1

[
W n+1

t (ω))−W n+1
a (ω))

]
−

n

2

t∫
τ=a

W n−1
τ (ω))dτ

(11.72)

Notice that for n = 1 the formula (11.72) coincides with (11.30) valid with probability 1
when t = b.

11.3.3.2 Multi-dimensional case

Consider now n-dimensional stochastic vector process {X (t, ω)}t∈[a,b] with the stochas-
tic differential

d X (t, ω) = F (t, ω) dt + G (t, ω) dWt (ω)

X (t, ω) = (x1 (t, ω) , . . . , xn (t, ω))
ᵀ (11.73)
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where

Wt (ω) =
(
W1,t (ω) , . . . ,Wm,t (ω)

)ᵀ
is an m-dimensional standard Wiener process with independent components,

F (t, ω) = ( f1 (t, ω) , . . . , fn (t, ω))
ᵀ

is an n-dimensional vector function with components which are second-order mean-square
continuous processes,

G (t, ω) =
[
gi j (t, ω)

]
i=1,n; j=1,m ∈ Rn×m

is an n×m-matrix function with components gi j (t, ω) ∈ L2 [a, b]. In the component-wise
form (11.73) looks like

dxi (t, ω) = fi (t, ω) dt +
m∑

j=1

gi j (t, ω) dW j,t (ω) , i = 1, n (11.74)

since (in the symbolic form)

dxi (t, ω) dx j (t, ω) = fi (t, ω) f j (t, ω) (dt)2

+

m∑
k=1

[ fi (t, ω) gik (t, ω)] dWk,t (ω) dt

+

m∑
k=1

m∑
k=1

k 6=h

[
gik (t, ω) g jh (t, ω)

]
dWk,t (ω) dWh,t (ω)

+

m∑
k=1

[
gik (t, ω) g jk (t, ω)

] (
dWk,t (ω)

)2
due to the independence of Wk,t (ω) and Wh,t (ω) and the mean-square calculus the
dWk,t (ω) dWh,t (ω) terms, for k 6= h, vanish. Thus the contribution of each of these

second-order terms to the stochastic differential is 1
2
∂2V (t,X)
∂xi ∂x j

m∑
k=1

[
gik (t, ω) g jk (t, ω)

]
dt .

So the Itô formula is established rigorously, similarly to the one-dimensional case (11.65)
and looks as follows:

dV (t, X (t, ω)) =

[
∂

∂t
V (t, X (t, ω))+

n∑
i=1

∂

∂xi
V (t, X (t, ω)) fi (t, ω)

+
1
2

n∑
i=1

n∑
j=1

∂2V (t, X (t, ω))

∂xi∂x j

m∑
k=1

[
gik (t, ω) g jk (t, ω)

]]
dt

+

n∑
i=1

∂V (t, X (t, ω))

∂xi

m∑
k=1

g jk (t, ω) dWk,t (ω)
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or, in the equivalent vector-matrix notations,

dV =

[
Vt + V ᵀx F +

1
2

tr
{
GGᵀVxx

}]
dt + V ᵀx GdW (11.75)

where Vt , Vx and Vxx denote the partial derivative on t , the gradient of V and the Hessian-
matrix (the second partial derivatives) of V respectively, and tr {·} is sum of the main
diagonal entries.

Example 11.2. Let n = 2 and

V (t, X) =
1
2

Xᵀ
[

0 1
1 0

]
X = x1x2

Then the application of (11.75) implies (the arguments are omitted)

1. W1 6= W2 : m = 2, G (t, ω) =

[
g1 (t, ω) 0

0 g2 (t, ω)

]
and therefore

dV = [x2 f1 + x1 f2] dt + x2g1dW1 + x1g2dW2 (11.76)

2. W1 = W2 = W : m = 1, G (t, ω) =

[
g1 (t, ω)
g2 (t, ω)

]
and therefore

dV =

[
x2 f1 + x1 f2 +

1
2

tr

{[
g2

1 g1g2

g1g2 g2
2

][
0 1
1 0

]}]
dt

+ x2g1dW1 + x1g2dW2

= [x2 f1 + x1 f2 + g1g2] dt + x2g1dW1 + x1g2dW2 (11.77)

Example 11.3. For G (t, ω) ∈ Rn×m and X (t, ω) satisfying

d X (t, ω) = G (t, ω) dWt (ω)

for V (t, X) = ‖X‖2k one has

Vx = 2k ‖X‖2k−1 X
‖X‖
= 2k ‖X‖2k−2 X

Vxx = 2k (2k − 2) ‖X‖2k−3 X
‖X‖ Xᵀ + 2k ‖X‖2k−2 I

= 4k (k − 1) ‖X‖2k−4 X Xᵀ + 2k ‖X‖2k−2 I

1
2

tr {GGᵀVxx } = 2k (k − 1) ‖X‖2k−4 (GᵀX)2

+ k ‖X‖2k−2 tr {GGᵀ}
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and therefore

d ‖X‖2k
=

[
1
2

tr
{
GGᵀVxx

}]
dt + V ᵀx GdW

=

[
2k (k − 1) ‖X‖2k−4 (GᵀX

)2
+ k ‖X‖2k−2 tr

{
GGᵀ

}]
dt

+ 2k ‖X‖2k−2 (GᵀX
)

dW (11.78)

The next lemma generalizes the example above.

Lemma 11.7. Let x (t, ω) ∈ Rn and y (t, ω) ∈ Rn be the stochastic processes satisfying

dx (t, ω) = F x (t, ω) dt + Gx (t, ω) dW x
t (ω)

x (0, ω) = x0 (ω)

dy (t, ω) = F y (t, ω) dt + G y (t, ω) dW y
t (ω)

y (0, ω) = y0 (ω)

(11.79)

where W x
t (ω) ∈ Rnx and W y

t (ω) ∈ Rny are standard Wiener processes. Then

d [xᵀ (t, ω) y (t, ω)]

= (xᵀ (t, ω) F y (t, ω)+ yᵀ (t, ω) F x (t, ω)

+ tr
[
Gxᵀ (t, ω)G y (t, ω)

]
dt

+
[
xᵀ (t, ω)G y (t, ω) dW y

+ yᵀ (t, ω)Gx (t, ω) dW x
] (11.80)

Proof. Define

z (t, ω) :=
(
xᵀ (t, ω) , yᵀ (t, ω)

)ᵀ
∈ R2n

Wt (ω) :=
(
W x

t (ω)
ᵀ ,W y

t (ω)
ᵀ)ᵀ
∈ Rnx+ny

which, obviously, satisfies

dz (t, ω) = F z (t, ω) dt + Gz (t, ω) dWt (ω)

z (0, ω) = z0 (ω) =

(
x0 (ω)

y0 (ω)

)
F z (t, ω) :=

(
F x (t, ω)
F y (t, ω)

)
, Gz (t, ω) :=

(
Gx (t, ω) 0

0 G y (t, ω)

)
Then applying the Itô formula (11.75)

dV =

[
Vt + V ᵀx F +

1
2

tr
{
GGᵀVxx

}]
dt + V ᵀx GdW

to the function

V (t, z) =
1
2

zᵀ
[

0 In×n
In×n 0

]
z = xᵀy
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we get (omitting arguments)

dV = zᵀ
[

0 In×n
In×n 0

]
F zdt

+
1
2

tr
{

GzGzᵀ
[

0 In×n
In×n 0

]}
dt + zᵀ

[
0 In×n

In×n 0

]
GzdW

=
(
xᵀF y

+ yF x) dt + tr
[
GxᵀG y] dt +

[
xᵀG ydW y

+ yᵀGx dW x]
which complete the proof. �

11.3.3.3 Estimation of moments of a stochastic integral

One of the most important applications of the vector-form Itô formula (11.75) is related
to the following estimate for the even order moments of stochastic Itô integral.

Theorem 11.4. (Gut, 2005) Suppose G = G (t, ω) is an n × m-matrix function with
components gi j (t, ω) ∈ L2 [a, b] given on the interval [a, b]. If for a given positive
integer k

b∫
t=a

E
{
‖G (t, ω)‖2k

}
dt <∞ (11.81)

then

E


∥∥∥∥∥∥

b∫
t=a

G (t, ω) dWt (ω)

∥∥∥∥∥∥
2k


≤ [k (2k − 1)]k (b − a)k−1

b∫
t=a

E
{
‖G (t, ω)‖2k

}
dt

(11.82)

Proof. Applying the integral version of (11.78) for

X (t, ω) :=

t∫
τ=a

G (τ, ω) dWτ (ω)

it follows that∥∥∥∥∥∥
t∫

τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k

= 2k

t∫
s=a

∥∥∥∥∥∥
s∫

r=a

G (r, ω) dWr (ω)

∥∥∥∥∥∥
2k−2

×

 s∫
r=a

G (r, ω) dWr (ω)

ᵀ G (s, ω) dWs (ω)
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+

t∫
s=a

k

∥∥∥∥∥∥
s∫

r=a

G (r, ω) dWr (ω)

∥∥∥∥∥∥
2k−2

tr
{
G (r, ω)Gᵀ (r, ω)

}

+ 2k (k − 1)

∥∥∥∥∥∥
s∫

r=a

G (r, ω) dWr (ω)

∥∥∥∥∥∥
2k−4

×

∥∥∥∥∥∥
 s∫

r=a

G (r, ω) dWr (ω)

ᵀ G (r, ω)

∥∥∥∥∥∥
2
 ds

Taking the expected value of this relation and taking into account that the expectation of
the first term in the right-hand side is zero and the second and third terms are the same
except for the constant factors k and 2k (k − 1), for t = b by the Hölder inequality (13.73)
one has

E


∥∥∥∥∥∥

b∫
t=a

G (t, ω) dWt (ω)

∥∥∥∥∥∥
2k


= k(2k − 1)

b∫
t=a

E


∥∥∥∥∥∥

t∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k−2

tr
{
G (t, ω)Gᵀ (t, ω)

} dt

≤ k(2k − 1)

 b∫
t=a

E


∥∥∥∥∥∥

t∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k
 dt


(2k−2)/2k

×

 b∫
t=a

E
{

tr
{
G (t, ω)Gᵀ (t, ω)

}2k
}

dt

2/2k

Since E

{∥∥∥∥ t∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥2k
}

is a nondecreasing function we have

E


∥∥∥∥∥∥

t∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k
 ≤ E


∥∥∥∥∥∥

b∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k


Hence

E


∥∥∥∥∥∥

b∫
t=a

G (t, ω) dWt (ω)

∥∥∥∥∥∥
2k
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≤ k(2k − 1)

E


∥∥∥∥∥∥

b∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k
 (b − a)


(2k−2)/2k

×

 b∫
t=a

E
{

tr
{
G (t, ω)Gᵀ (t, ω)

}2k
}

dt

2/2k

Raising then both sides to the k-th power and dividing both sides byE


∥∥∥∥∥∥

b∫
τ=a

G (τ, ω) dWτ (ω)

∥∥∥∥∥∥
2k



k−1

yields the result. �

11.4 The Stratonovich stochastic integral

11.4.1 Main property of λ-stochastic integrals

In Section 11.2.3 it is indicated that there are infinitely many possible choices for the
interpretation of the λ-stochastic integral1

b∫
τ=a

Wτ (ω)
λ∈[0,1]
◦ dWτ (ω) := l.i.m

δn →
n→∞

0

b∫
τ=a

ϕλn (τ, ω) dWτ (ω)

=
1
2

[
W 2

b (ω)−W 2
a (ω)

]
+

(
λ−

1
2

)
(b − a)

(11.83)

However, only two stochastic integrals (Ito, 1951) with λ = 0 and Stratonovich (1966)
with λ = 1/2 have gained acceptance in the theoretical and application literature. The
first one has been investigated just above. Here we will present the definition and the basic
properties of the Stratonovich stochastic integral including a basic theorem showing that
this integral satisfies the usual rules of calculus.

Suppose {x (t, ω)}t∈[a,b] has the stochastic differential (11.61), i.e.,

x (t, ω)
a.s.
= x (a, ω)+

t∫
τ=a

f (τ, ω) dτ +

t∫
τ=a

g (τ, ω) dWτ (ω)

or, equivalently, in the symbolic form (11.62)

dx (t, ω) = f (t, ω) dt + g (t, ω) dWt (ω)

1If the mesh size δn of the corresponding partitions of the interval [a, b] tends to zero such that
∞∑

n=1
δn < ∞

then the definition (11.83) can be understood with probability 1.
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Here { f (t, ω)}t∈[a,b] is a second-order mean-square continuous process, the first integral
in the right-hand side of (11.61) is the usual simple-path time-integral (11.10) and the
second integral is the Itô integral of the function g (t, ω) ∈ L2 [a, b].

First, let us introduce a one-parametric family of stochastic integrals

I λ[a,b] (h) :=

b∫
τ=a

h (τ, x (τ, ω))
λ∈[0,1]
◦ dWτ (ω) (11.84)

containing the Stratonovich I S
[a,b] (g) (11.4) as well as the Itô (11.3) integrals, and for any

fixed λ ∈ [0, 1] relates each integral in this family to the Itô integral.

Definition 11.5. The λ-stochastic integral I λ[a,b] (h) of a function h (t, x (t, ω)) from

L2 [a, b] is defined for any λ ∈ [0, 1] as

I λ[a,b] (h) := l.i.m
δn →

n→∞
0

n∑
k=1

h (tk, λx (tk, ω)+ (1− λ) x (tk−1, ω))1W n
k (ω) (11.85)

given on E when n → ∞ as a continuous linear random functional action from L2 [a, b]
on L2 (�).

Theorem 11.5. For any function h ∈ L2 [a, b], namely, such that

b∫
τ=a

E
{

h2 (τ, x (τ, ω))
}

dt <∞ (11.86)

which is, additionally, differentiable on x, and any fixed λ ∈ [0, 1], the stochastic integral
(11.84) exists, and satisfies

I λ[a,b] (g) :=

b∫
τ=a

h (τ, x (τ, ω))
λ∈[0,1]
◦ dWτ (ω)

=

b∫
τ=a

h (τ, x (τ, ω)) dWτ (ω)

+ λ

b∫
τ=a

∂

∂x
h (τ, x (τ, ω)) g (τ, ω) dτ

(11.87)

where the integrals on the right-hand side are the corresponding Itô integral (11.49) and
the ordinary time-integral (11.5) along the sample paths, respectively.
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Proof. The existence of the first integral on the right-hand side of (11.87) as the mean-
square limit (as the mesh size δn →

n→∞
0) of

n∑
k=1

h (tk, x (tk−1, ω))1W n
k (ω) (11.88)

results from the condition (11.86) and the properties of the Itô integral (11.49). Therefore,
to establish (11.87) it is sufficient to show that an a.s.-limit of the difference of the sums
in (11.85) with any λ ∈ [0, 1] and in (11.88) agrees with the ordinary sample-path time-
integral in (11.87); that is, for sequences of the partition δn →

n→∞
0 we have to show that

n∑
k=1

[
h (tk, λx (tk, ω)+ (1− λ) x (tk−1, ω))− h (tk, x (tk−1, ω))

]
1W n

k (ω)

a.s.
→

δn →
n→∞

0
λ

b∫
τ=a

∂

∂x
h (τ, x (τ, ω)) g (τ, ω) dτ

By mean-value theorem (valid in view of the differentiability of h (t, x) on x) we have

h (tk, λx (tk, ω)+ (1− λ) x (tk−1, ω))− h (tk, x (tk−1, ω))

= λ
∂

∂x
h (tk, θk)

[
x (tk, ω)− x (tk−1, ω)

]
, θk ∈ [0, λ]

where
∂

∂x
h (tk, θk) :=

∂

∂x
h (tk, θk x (tk, ω)+ (1− θk) x (tk−1, ω))

Therefore, to prove the result it suffices to show that
n∑

k=1

∂

∂x
h (tk, θk)

[
x (tk, ω)− x (tk−1, ω)

]
1W n

k (ω)

a.s.
→

δn →
n→∞

0

b∫
τ=a

∂

∂x
h (τ, x (τ, ω)) g (τ, ω) dτ

By the continuity property of h (t, x) on both arguments
∂

∂x
h (tk, θk)

a.s.
→

δn →
n→∞

0

∂

∂x
h (t, x (t, ω))

But
n∑

k=1

[
x (tk, ω)− x (tk−1, ω)

]
1W n

k (ω)

=

n∑
k=1

[
f (tk, ω)1tk + g (tk, ω)1W n

k (ω)
]
1W n

k (ω)

a.s.
→

δn →
n→∞

0

b∫
τ=a

g (τ, ω) dτ
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in view of the properties (dWt (ω))
2
∼ dt and (11.35) if the mesh size δn of the

corresponding partitions of the interval [a, b] tends to zero such that
∞∑

n=1
δn <∞. Theorem

is proven. �

Corollary 11.6. In the Stratonovich case (when λ = 1/2) the relation (11.87) becomes

I S
[a,b] (g) :=

b∫
τ=a

h (τ, x (τ, ω))
λ=1/2
◦ dWτ (ω)

=

b∫
τ=a

h (τ, x (τ, ω)) dWτ (ω)

+
1
2

b∫
τ=a

∂

∂x
h (τ, x (τ, ω)) g (τ, ω) dτ

(11.89)

which states the direct relation between the Stratonovich (11.4) in the left-hand side and
Itô (11.3) in the right-hand side integrals.

11.4.2 The Stratonovich differential

Now it becomes possible to define the Stratonovich differential analogously to (11.61).

Definition 11.6. The stochastic Stratonovich differential

dS x (t, ω) = f (t, x (t, ω)) dt + g (t, x (t, ω))
λ=1/2
◦ dWt (ω) (11.90)

is defined as a stochastic process {x (t, ω)}t≥0 satisfying

x (t, ω)
a.s.
= x (a, ω)+

t∫
τ=a

f (τ, x (τ, ω)) dτ

+

t∫
τ=a

g (τ, x (τ, ω))
λ=1/2
◦ dWτ (ω)

(11.91)

Using the relation (11.89) for

h (t, x) = g (t, x)

one can express (11.91) as follows:
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x (t, ω)
a.s.
= x (a, ω)+

t∫
τ=a

f (τ, x (τ, ω)) dτ

+

t∫
τ=a

g (τ, x (τ, ω))
λ=1/2
◦ dWτ (ω) = x (a, ω)

+

t∫
τ=a

(
f (τ, x (τ, ω))+

1
2

[
∂

∂x
g (τ, x (τ, ω))

]
g (τ, x (τ, ω))

)
dτ

+

b∫
τ=a

g (τ, x (τ, ω)) dWτ (ω)

(11.92)

Thus x (t, ω) has also the Itô differential (11.61) which satisfies, as it follows from (11.92),

dx (t, ω) = g (t, x (t, ω)) dWt (ω)

+

(
f (τ, x (t, ω))+

1
2

[
∂

∂x
g (t, x (τ, ω))

]
g (t, x (τ, ω))

)
dt

(11.93)

The theorem below shows that the Stratonovich stochastic integral satisfies the usual
rules of calculus.

Theorem 11.6. Suppose that the functions g (x) and h (x) are continuously differentiable
and twice continuously differentiable respectively. Let also in (11.90) f (t, x) ≡ 0, that is,

dS x (t, ω) = g (x (t, ω))
λ=1/2
◦ dWt (ω) (11.94)

Then for the Stratonovich differential (11.94) the usual chain-rule of calculus holds, i.e.,

dSh(x (t, ω)) =
∂

∂x
h(x (t, ω)) dS x (t, ω) (11.95)

Proof. First, notice that from (11.93) for f (t, x) ≡ 0 it follows that

dx (t, ω) = g (x (t, ω)) dWt (ω)+
1
2

[
∂

∂x
g (x (t, ω))

]
g (x (t, ω)) dt

By the Itô formula (11.65) the stochastic differential (11.61) for h is (omitting arguments)

dh =
1
2

[
h′g′g + h′′g2

]
dt + h′gdW
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By (11.87) the Itô term h′gdW can be replaced by

h′gdW = h′g
λ=1/2
◦ dW −

1
2

(
h′g
)′ gdt

= h′g
λ=1/2
◦ dW −

1
2

[
h′′g + h′g′

]
gdt

which gives

dh =
1
2

[
h′g′g + h′′g2

]
dt + h′gdW

=
1
2

[
h′g′g + h′′g2

]
dt + h′g

λ=1/2
◦ dW −

1
2

[
h′′g + h′g′

]
gdt

= h′g
λ=1/2
◦ dW = h′dS x

Theorem is proven. �

11.4.3 Multidimensional case

Analogously to the Itô integral, the Stratonovich differential properties (11.90) and
(11.95) can be extended for the multidimensional case in the following way.

The vector-form Stratonovich differential of

X (t, ω) = (x1 (t, ω) , . . . , xn (t, ω))
ᵀ

is expressed as

dS X (t, ω) = F (t, ω) dt + G (t, ω)
λ=1/2
◦ dWt (ω)

where

Wt (ω) =
(
W1,t (ω) , . . . ,Wm,t (ω)

)ᵀ
F (t, ω) = ( f1 (t, ω) , . . . , fn (t, ω))

ᵀ

G (t, ω) =
[
gi j (t, ω)

]
i=1,n; j=1,m ∈ Rn×m, gi j (t, ω) ∈ L2 [a, b]

or equivalently, in the component-wise form as

dS xi (t, ω) = fi (t, ω) dt +
m∑

j=1

gi j (t, ω)
λ=1/2
◦ dW j,t (ω) , i = 1, n

which for V = V (t, x) by (11.95) implies the following Stratonovich differentiation rule

dS V = Vt dt + V ᵀx dS X (t, ω) (11.96)
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12.1 Solution as a stochastic process

In this chapter we will discuss the class of so-called stochastic differential equations,
introduced by K. Itô, whose basic theory was developed independently by Itô and
I. Gihman during the 1940s. The extended version of this theory can be found in Ito
(1951) and Gihman and Skorohod (1972). There the Itô-type integral calculus is applied.
The principal motivation for choosing the Itô approach (as opposed to the Stratonovich
calculus as another very popular interpretation of the stochastic integration) is that the
Itô method extends to a broader class of equations and transforms the probability law
of the Wiener process in a more natural way. This approach implements the so-called
diffusion approximation, which arises from random difference equation models and has
a wide application to control problems in engineering sciences motivated by the need for
more sophisticated models, which spurred further work on these types of equations in the
1950s and 1960s.

12.1.1 Definition of a solution

Here we consider the single-dimensional case.

Definition 12.1. By a solution x (t, ω) of the stochastic differential equation

dx (t, ω) = f (t, x (t, ω)) dt + g (t, x (t, ω)) dWt (ω) (12.1)

with a specific initial condition

x (0, ω) = x0 (ω) (12.2)

is meant a stochastic process {x (t, ω)}t≥0 defined on a probability space (�,F ,P) having
the stochastic differential (12.1) as it was defined in the previous chapter, or equivalently,

323
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for all t ∈ [0, T ] (T <∞) the process {x (t, ω)}t≥0 satisfies the following stochastic
integral equation

x (t, ω)
a.s.
= x0 (ω)+

t∫
τ=0

f (τ, x (τ, ω)) dτ +

t∫
τ=0

g (τ, x (τ, ω)) dWτ (ω) (12.3)

Here the first integral in the right-hand side is an ordinary one along paths (11.1), and
the second one is the Itô stochastic integral (11.3).

12.1.2 Existence and uniqueness

In this subsection the simplest version of the existence and uniqueness theorem is
presented provided certain additional conditions concerning the dependence of f and on
the variable x are imposed.

12.1.2.1 Result with the global Lipschitz condition

Theorem 12.1. Let

1. the functions f (t, x) and g (t, x) be assumed to be measurable with respect to t ∈
[0, T ] and x ∈ R, i.e., for any c ∈ R

{(t, x) | f (t, x) < c} ∈ [0, T ]× R
{(t, x) | g (t, x) < c} ∈ [0, T ]× R

(12.4)

2. both functions satisfy the uniform global Lipschitz condition on the variable x for all
t ∈ [0, T ], namely, for all t ∈ [0, T ] and all x, y ∈ R there exists a positive constant K
such that
(a)

| f (t, x)− f (t, y)| + |g (t, x)− g (t, y)| ≤ K |x − y| (12.5)

(b)

| f (t, x)|2 + |g (t, x)|2 ≤ K
(
1+ x2

)
(12.6)

3. x0 (ω) be independent of Wt (ω) for all t > 0 and have a bounded second moment,
i.e.,

E
{

x2
0 (ω)

}
<∞ (12.7)

Then there exists a solution x (t, ω) of (12.3) defined for all t ∈ [0, T ] which is
continuous with probability 1 and has the second bounded moment, that is,
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sup
t∈[0,T ]

E
{

x2 (t, ω)
}
<∞ (12.8)

Furthermore, a solution with these properties is pathwise unique which means that if
x (t, ω) and y (t, ω) are two solutions then

P

{
sup

t∈[0,T ]
|x (t, ω)− y (t, ω)| = 0

}
= 1 (12.9)

Proof.

(a) An auxiliary result. Suppose that two stochastic processes yi (t, ω) (i = 1, 2) with
bounded second moments, namely, satisfying

sup
t∈[0,T ]

E
{

y2
i (t, ω)

}
<∞, (i = 1, 2) (12.10)

possess the following property: the σ -algebra generated by yi (s, ω) (i = 1, 2) and Ws (ω)

with s ≤ t is independent of the increment
[
Wt+h (ω)−Wt (ω)

]
for any h > 0. Show that

if zi (t, ω) (i = 1, 2) are defined by

zi (t, ω)
a.s.
= x0 (ω)+

t∫
τ=0

f (τ, yi (τ, ω)) dτ +

t∫
τ=0

g (τ, yi (τ, ω)) dWτ (ω) (12.11)

then for some L > 0

E
{
|z1 (t, ω)− z2 (t, ω)|

2
}
≤ L

t∫
τ=0

E
{
|y1 (t, ω)− y2 (t, ω)|

2
}

dτ (12.12)

Obviously, from (12.11) by the inequality |a + b|2 ≤ 2
(
|a|2 + |b|2

)
one has

|z1 (t, ω)− z2 (t, ω)|
2

≤ 2

 t∫
τ=0

[ f (τ, y1 (τ, ω))− f (τ, y2 (τ, ω))] dτ

2

+ 2

 t∫
τ=0

[g (τ, y1 (τ, ω))− g (τ, y2 (τ, ω))] dWτ (ω)

2

(12.13)

Using the Cauchy–Schwartz inequality argument t∫
τ=0

h (τ ) dτ

2

≤

t∫
τ=0

12dτ

t∫
τ=0

h2 (τ ) dτ = t

t∫
τ=0

h2 (τ ) dτ
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and applying the assumption (12.5) we get t∫
τ=0

[ f (τ, y1 (τ, ω))− f (τ, y2 (τ, ω))] dτ

2

≤ K 2t

t∫
τ=0

[y1 (τ, ω)− y2 (τ, ω)]2 dτ (12.14)

Again, by the assumptions (12.5) and (12.10)

E


t∫

τ=0

[g (τ, y1 (τ, ω))− g (τ, y2 (τ, ω))]2 dτ


≤ K 2E


t∫

τ=0

[y1 (τ, ω)− y2 (τ, ω)]2 dτ


≤ 2K 2E


t∫

τ=0

[
y2

1 (τ, ω)+ y2
2 (τ, ω)

]
dτ


≤ 2K 2 E


T∫

τ=0

[
y2

1 (τ, ω)+ y2
2 (τ, ω)

]
dτ


= 2K 2

T∫
τ=0

E
{[

y2
1 (τ, ω)+ y2

2 (τ, ω)
]

dτ
}

4K 2T max
i=1,2

sup
t∈[0,T ]

E
{

y2
i (t, ω)

}
<∞

which means that

[g (τ, y1 (τ, ω))− g (τ, y2 (τ, ω))] ∈ L2 [0, T ]

and therefore, by the property (11.51) of the Itô integral it follows that

E


 t∫
τ=0

[g (τ, y1 (τ, ω))− g (τ, y2 (τ, ω))] dWτ (ω)

2


= E


t∫

τ=0

[g (τ, y1 (τ, ω))− g (τ, y2 (τ, ω))]2 dτ


≤ K 2E


t∫

τ=0

[y1 (τ, ω)− y2 (τ, ω)]2 dτ

 (12.15)
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The result (12.12) follows now by taking the expected value in (12.13), using (12.14) and
(12.15), and setting L := 2 (T + 1) K 2.
(b) Uniform mean-square boundedness of {xn (t, ω)}n≥0. Consider then the sequence
{xn (t, ω)}n≥0 of successive approximations xn (t, ω) defined by

xn (t, ω)
a.s.
= x0 (ω)+

t∫
τ=0

f (τ, xn−1 (τ, ω)) dτ

+

t∫
τ=0

g (τ, xn−1 (τ, ω)) dWτ (ω) (12.16)

and show that it converges to the unique solution of (12.3). First, let us demonstrate that
{xn (t, ω)}n≥0 is uniformly on t mean-square bounded on [0, T ], i.e., for all n

sup
t∈[0,T ]

E
{

x2
n (t, ω)

}
≤ Const <∞ (12.17)

The relation (12.16) implies

E
{

x2
n (t, ω)

}
≤ 3

E
{

x2
0 (ω)

}
+ E


 t∫
τ=0

f (τ, xn−1 (τ, ω)) dτ

2


+ E


 t∫
τ=0

g (τ, xn−1 (τ, ω)) dWτ (ω)

2



≤ 3

E
{

x2
0 (ω)

}
+ T E


t∫

τ=0

f 2 (τ, xn−1 (τ, ω)) dτ


+ E


t∫

τ=0

g2 (τ, xn−1 (τ, ω)) dτ




Applying then the assumption (12.6) we derive

E
{

x2
n (t, ω)

}
≤ 3

E
{

x2
0 (ω)

}
+ T K 2

t∫
τ=0

[
1+ E

{
x2

n−1 (τ, ω)
}]

dτ

+ K 2

t∫
τ=0

[
1+ E

{
x2

n−1 (τ, ω)
}]

dτ


≤ 3

E
{

x2
0 (ω)

}
+ L

t∫
τ=0

[
1+ E

{
x2

n−1 (τ, ω)
}]

dτ
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≤ 3

E
{

x2
0 (ω)

}
+ Lt

+ L

t∫
τ=0

3

E
{

x2
0 (ω)

}
+ Lτ +

τ∫
s=0

E
{

x2
n−2 (s, ω)

}
ds

 dτ


≤ 3

E
{

x2
0 (ω)

}
[1+ 3Lt]+ Lt +

3 (Lt)2

2

+ 3L2

t∫
τ=0

 τ∫
s=0

E
{

x2
n−2 (s, ω)

}
ds

 dτ


Using the identity

t∫
τ=0

(t − τ)m

 τ∫
s=0

h (s) ds

 dτ =

t∫
τ=0

(t − τ)m+1

m + 1
h (τ ) dτ (12.18)

for m = 0, which results from integration by parts, the last term in the inequality above
can be represented as

t∫
τ=0

 τ∫
s=0

E
{

x2
n−2 (s, ω)

}
ds

 dτ =

t∫
τ=0

(t − τ)E
{

x2
n−2 (τ, ω)

}
dτ

and, the continuation of the iterations back leads to

E
{

x2
n (t, ω)

}
≤ 3

(
1+ 3Lt + · · · +

(3Lt)n−1

(n − 1)!

)
E
{

x2
0 (ω)

}

+ 3Lt + · · · +
(3Lt)n

n!
+ (3L)n

t∫
τ=0

(t − τ)n−1

(n − 1)!
E
{

x2
0 (ω)

}
dτ

≤

(
3E
{

x2
0 (ω)

}
+ 1

)
e3LT

:= Const <∞

which implies (12.17).
(c) Uniform mean-square and a.s. convergence of {xn (t, ω)}n≥0. Using (12.11) being
applied to (12.16) with

z1 (t, ω) := xn (t, ω) , y1 (τ, ω) := xn−1 (t, ω)

z2 (t, ω) := xn−1 (t, ω) , y2 (τ, ω) := xn−2 (t, ω)

by the estimate (12.12) one has

E
{
|xn (t, ω)− xn−1 (t, ω)|

2
}
≤ L

t∫
τ=0

E
{
|xn−1 (τ, ω)− xn−2 (τ, ω)|

2
}

dτ (12.19)
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Iterating (12.19) and making use the identity (12.18) we arrive at

E
{
|xn (t, ω)− xn−1 (t, ω)|

2
}

≤ Ln−1

t∫
τ=0

(t − τ)n−2

(n − 2)!
E
{
|x1 (τ, ω)− x0 (τ, ω)|

2
}

dτ (12.20)

Directly from (12.16) it follows that

E
{
|x1 (t, ω)− x0 (t, ω)|2

}
≤ L

t∫
τ=0

[
1+ E

{
|x0 (t, ω)|

2
}]

dτ

≤ LT
[
1+ E

{
|x0 (t, ω)|2

}]
:= Const <∞

Substitution of this last inequality into (12.20) leads to

sup
t∈[0,T ]

E
{
|xn (t, ω)− xn−1 (t, ω)|

2
}
≤ Const

(LT )n−1

(n − 1)!
, n ≥ 1 (12.21)

and, hence, to

∞∑
n=1

sup
t∈[0,T ]

E
{
|xn (t, ω)− xn−1 (t, ω)|

2
}

≤ Const
∞∑

n=1

(LT )n−1

(n − 1)!
= Const eLT <∞ (12.22)

which establishes uniform (on t ∈ [0, T ]) mean square convergence of {xn (t, ω)}n≥0 since

xn (t, ω) = x0 (t, ω)+
n∑

k=1

[
xk (t, ω)− xk−1 (t, ω)

]
L2

→
n→∞

x0 (t, ω)+
∞∑

k=1

[
xk (t, ω)− xk−1 (t, ω)

] (12.23)

But we also have

xn (t, ω) = x0 (t, ω)+
n∑

k=1

[
xk (t, ω)− xk−1 (t, ω)

]
a.s.
→

n→∞
x0 (t, ω)+

∞∑
k=1

[
xk (t, ω)− xk−1 (t, ω)

] (12.24)

Indeed, for

Yn := sup
t∈[0,T ]

|xn (t, ω)− xn−1 (t, ω)|
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we have

Yn ≤

T∫
t=0

| f (t, xn (t, ω))− f (t, xn−1 (t, ω))| dt

+ sup
t∈[0,T ]

∣∣∣∣∣∣
t∫

τ=0

[
g (τ, xn (t, ω))− g (τ, xn−1 (t, ω))

]
dWτ (ω)

∣∣∣∣∣∣
and hence, applying the inequalities above,

E
{

Y 2
n

}
≤ 2K 2T

T∫
t=0

E
{
|xn (t, ω)− xn−1 (t, ω)|

2
}

dt

+ 8K 2

T∫
t=0

E
{
|xn (t, ω)− xn−1 (t, ω)|

2
}

dt ≤ Const
(LT )n−1

(n − 1)!

So,
∞∑

n=1

E
{

Y 2
n

}
≤ Const

∞∑
n=1

(LT )n−1

(n − 1)!
= ConsteLT <∞

and, by Chebyshev’s inequality (4.10),
∞∑

n=1

P
{

Yn > n−2
}
≤

∞∑
n=1

n4E
{

Y 2
n

}
≤ Const

∞∑
n=1

n4 (LT )n−1

(n − 1)!
<∞

which, applying the Borel–Cantelli Lemma 6.2 implies

P
{
ω : Yn ≤ n−2 for sufficiently large n

}
= 1

and therefore∣∣∣∣∣ ∞∑
k=1

[
xk (t, ω)− xk−1 (t, ω)

]∣∣∣∣∣ ≤ ∞∑
k=1

Yk
a.s.
≤

n−1∑
k=1

Yk +

∞∑
k=n

Yk
a.s.
< ∞

which means that (12.24) holds. We have proved uniform, almost sure convergence of
{xn (t, ω)}n≥0, that is, there exists

x (t, ω) := lim
n→∞

xn (t, ω) a.s.

(d) To show that x (t, ω)
a.s.
= lim

n→∞
xn (t, ω) satisfies (12.3) it is sufficient to take a limit in

(12.16).
(e) Almost sure uniqueness. Suppose that x (t, ω) and y (t, ω) are both solutions satisfying
(12.3). Then, by the property (12.12),

E
{
|x (t, ω)− y (t, ω)|2

}
≤ L

t∫
τ=0

E
{
|x (τ, ω)− y (τ, ω)|2

}
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By the Gronwall lemma (see, for example, Corollary 19.4 in Poznyak (2008))1 we have

E
{
|x (t, ω)− y (t, ω)|2

}
= 0

for any t ∈ [0, T ], which implies

P {ω : |x (t, ω)− y (t, ω)| = 0} = 0

Theorem is proven. �

Remark 12.1. The assumption 2 in Theorem 12.1 essentially requires that the functions f
and g satisfy a Lipschitz condition and exhibit linear growth in the state variable, which is
fairy restrictive. The conditions 2(a) and 2(b) facilitate an elementary proof of the existence
and uniqueness of the solution (12.3) which is analogous to the classical Picard iteration
proof (see Chapter 19 in Poznyak (2008)) designed in the ordinary differential equations
theory. However, it is possible to show (Protter, 1977) that Theorem 12.1 remains valid
even if the hypothesis 2(b) is removed: the global Lipschitz condition 2(a) suffices to
guarantee the existence and uniqueness of the solution.

Remark 12.2. Notice also that if the Lipschitz condition 2(a) holds for a function f and

1. either f is independent of t ,
2. or for some t the function f is bounded on x,

then f will satisfy the growth condition 2(b) automatically.

12.1.2.2 Result with the local Lipschitz condition

Keeping the condition 2(b), the condition 2(a) can be relaxed to the local Lipshitz
condition:

Condition 12.1. (2a′) For any N > 0 there exists a constant KN such that for all
t ∈ [0, T ] and x, y satisfying |x | ≤ N, |y| ≤ N, the local Lipschitz condition holds,
namely,

| f (t, x)− f (t, y)| + |g (t, x)− g(t, y)| ≤ KN |x − y| (12.25)

1The Gronwall lemma states that if

x (t) ≤ v(t)+ L

t∫
s=0

x (s) ds

then

x (t) ≤ v(t)+ L

t∫
s=0

eL(t−s)v (s) ds

for any measurable bounded functions x (t) and v(t).
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Remark 12.3. Note that the condition (12.25) holds whenever f and g are continuously
differentiable in the second variable.

We present the corresponding statement without proof.

Theorem 12.2. (Gihman and Skorohod, 1972) The conclusion of Theorem 1 remains
valid if the hypotheses other than 2(a) are satisfied, and 2(a′) holds.

The local Lipschitz condition 2(a′), by itself, does not suffice to give global existence,
however. The condition of global growth 2(b) cannot be removed from Theorem 12.2,
which can be seen from the following simple ordinary value problem:

dx (t, ω) = xα (t, ω) dt, x (0, ω) = x0 (ω) , α > 1

which has the solution

x (t, ω) =


0 if x0 (ω) = 0[

1/xα−1
0 (ω)− (α − 1) t

]1/(1−α)
if x0 (ω) 6= 0

and exhibits an ‘explosion’ at time

t∗ =
[
(α − 1) xα−1

0 (ω)
]−1

12.1.3 Dependence on parameters and on initial conditions

In this section we present the result which gives the conditions when the solutions
x (t, ω) of (12.3) respond smoothly to smooth changes in the coefficient functions and
initial conditions.

Theorem 12.3. (Gihman and Skorohod, 1972) Suppose that the functions fn (t, x),
gn (t, x) and xn (0, ω) satisfy the conditions of Theorem 12.1 uniformly in n, that is, for the
same K . Let xn (t, ω) be the solution of the stochastic integral equation

xn (t, ω)
a.s.
= xn (0, ω)+

t∫
τ=0

fn (τ, xn (τ, ω)) dτ

+

t∫
τ=0

gn (τ, xn (τ, ω)) dWτ (ω)

(12.26)

for all n = 0, 1, . . . . If

1. for each N and each t ∈ [0, T ]

lim
n→∞

sup
x :|x |≤N

(| fn (t, x)− f0 (t, x)|

+ |gn (t, x)− g0 (t, x)|) = 0
(12.27)
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2.

lim
n→∞

E
{
|xn (0, ω)− x0 (0, ω)|2

}
= 0 (12.28)

Then

lim
n→∞

sup
t∈[0,T ]

E
{
|xn (t, ω)− x0 (t, ω)|2

}
= 0 (12.29)

Proof. The equation (12.26) can be represented as follows:

xn (t, ω)− x0 (t, ω)
a.s.
=

t∫
τ=0

| fn (τ, xn (τ, ω))− fn (τ, x0 (τ, ω))| dτ

+

t∫
τ=0

|gn (τ, xn (τ, ω))− gn (τ, x0 (τ, ω))| dWτ (ω)

+1yn (t, ω)

where

1yn (t, ω)
a.s.
= xn (0, ω)− x0 (0, ω)

+

t∫
τ=0

[ fn (τ, x0 (τ, ω))− f0 (τ, x0 (τ, ω))] dτ

+

t∫
τ=0

[gn (τ, x0 (τ, ω))− gn (τ, x0 (τ, ω))] dWτ (ω)

which, in view of the global Lipschitz condition and the estimates of the previous
Theorem 12.1, leads to

E
{
|xn (t, ω)− x0 (t, ω)|

2
}
≤ 3E

{
[1yn (t, ω)]2

}
+ L

t∫
τ=0

E
{
|xn (τ, ω)− x0 (τ, ω)|

2
}

dτ

with L = 3 (T + 1) K 2. Applying again the Gronwall lemma we obtain

E
{
|xn (t, ω)− x0 (t, ω)|

2
}
≤ 3E

{
[1yn (t, ω)]2

}
+ L

t∫
τ=0

eL(t−τ)E
{

[1yn (τ, ω)]2
}

dτ
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So, to demonstrate (12.29) it is sufficient to show that

sup
t∈[0,T ]

E
{

[1yn (t, ω)]2
}
→

n→∞
0 (12.30)

Toward establishing (12.30), the Cauchy–Schwartz inequality argument can be applied
which gives

E


 t∫
τ=0

[ fn (τ, x0 (τ, ω))− f0 (τ, x0 (τ, ω))] dτ

2


≤ T E


t∫

τ=0

[ fn (τ, x0 (τ, ω))− f0 (τ, x0 (τ, ω))]2 dτ


By assumption (12.27) and the Lebesgue dominated convergence, Theorem 6.2, the right-
hand side of the last inequality tends to zero, so that as n→∞,

sup
t∈[0,T ]

E


 t∫
τ=0

[ fn (τ, x0 (τ, ω))− f0 (τ, x0 (τ, ω))] dτ

2
 →n→∞ 0 (12.31)

Since

hn (t, ω) := gn (t, x0 (t, ω))− g0 (t, x0 (t, ω)) ∈ L2 [0, T ]

one can apply Doob’s inequality (11.71) for the moment of the maximum modulus
(supremum) of a submartingale, which implies

E

 sup
t∈[0,T ]

 t∫
τ=0

hn (τ, ω) dWτ (ω)

2
 ≤ 4E


t∫

τ=0

|hn (τ, ω)|
2 dτ

 →n→∞ 0 (12.32)

by assumption (12.27) and, again, by the Lebesgue dominated convergence theorem 6.2.
The property (12.32) together with (12.31) proves (12.30). Theorem is proven. �

The next corollary represents the more practical conditions to the functions involved
which guarantees the continue dependence of the solution on an initial value.

Corollary 12.1. (Gihman and Skorohod, 1972) Assume that functions f (t, x) and
g (t, x) satisfy the conditions of Theorem 12.1. For any z ∈ R let x (t, ω | z) denote the
solution of (12.3) defined for all t ∈ [0, T ] with the initial value

x (0, ω) = x0 (ω) = z (12.33)
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namely

x (t, ω | z)
a.s.
= z +

t∫
τ=0

f (τ, x (τ, ω | z)) dτ

+

t∫
τ=0

g (τ, x (τ, ω | z)) dWτ (ω)

(12.34)

Suppose also that for all t ∈ [0, T ] and all x ∈ R there exist the derivatives

∂

∂x
f (t, x) and

∂

∂x
g (t, x)

which are continuous and bounded. Then the derivative of the solution with respect to the
initial value (the ‘coefficient of sensibility’)

y (t, ω | z) :=
∂

∂z
x (t, ω | z)

exists (in the mean-square sense) and satisfies the following linear stochastic integral
equation called ‘the sensitivity equation’

y (t, ω | z) = 1+

t∫
τ=0

∂

∂x
f (τ, x (τ, ω | z)) y (τ, ω | z) dτ

+

t∫
τ=0

∂

∂x
g (τ, x (τ, ω | z)) y (τ, ω | z) dWτ (ω)

(12.35)

Proof. (the main scheme) By the conditions to the derivatives of the functions involved, it
follows that for different z the solution of (12.34) satisfies all conditions of Theorem 12.3.
Then, taking the limit in [x (t, ω | z + δ)− x (t, ω | z)] /δ when δ → 0, we obtain the
desired result. �

12.1.4 Moments of solutions

The result below demonstrates that the upper estimates for the even order moments of
the solution of (12.3) are similar to the estimates obtained for the moments of stochastic
integrals given in Theorem 11.4.

Theorem 12.4. (Gut, 2005) Suppose that the functions f (t, x) and g (t, x) satisfy the
conditions of Theorem 12.1 guaranteeing the existence and uniqueness of solutions of
(12.3). If for some positive integer n we have

E
{
|x0 (ω)|

2n} <∞ (12.36)
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then for any t ∈ [0, T ] the solution x (t, ω) of (12.3) with the initial value x (0, ω) = x0 (ω)

satisfies the inequalities

E
{
|x (t, ω)|2n}

≤
(
1+ E

{
|x0 (ω)|

2n}) eCt

E
{
|x (t, ω)− x (0, ω)|2n}

≤ D
(
1+ E

{
|x0 (ω)|

2n}) tneCt
(12.37)

where C = 2n (2n + 1) K 2 and D is constant depending only on n, K and T .

Proof. Define the following truncated functions:

fN (t, x) :=

{
f (t, x) if |x | ≤ N

f (t, N x/ |x |) if |x | > N

gN (t, x) :=

{
g (t, x) if |x | ≤ N

g (t, N x/ |x |) if |x | > N

and

xN ,0 (ω) :=

{
x0 (ω) if |x0 (ω)| ≤ N

N x0 (ω) / |x0 (ω)| if |x0 (ω)| > N

The truncated process {xN (0, ω)}t≥0, which is the solution of the stochastic initial value
problem

dxN (t, ω) = fN (t, xN (t, ω)) dt + gN (t, xN (t, ω)) dWt (ω)

xN (0, ω) = xN ,0 (ω)
(12.38)

converges uniformly on [0, T ] with probability 1 to x (t, ω) as n → ∞. By applying the
Itô formula (11.65) to V (t, x) = |x |2n when x = xN (t, ω), one obtains

|xN (t, ω)|
2n
=
∣∣xN ,0 (ω)

∣∣2n

+

t∫
τ=0

2n |xN (τ, ω)|
2n−2 xN (τ, ω) fN (τ, xN (τ, ω)) dτ

+

t∫
τ=0

n |xN (τ, ω)|
2n−2
|gN (τ, xN (τ, ω))|

2 dτ

+

t∫
τ=0

2n (n − 1) |xN (τ, ω)|
2n−4
|xN (τ, ω) gN (τ, xN (τ, ω))|

2 dτ

+

t∫
τ=0

2n |xN (τ, ω)|
2n−2 xN (τ, ω) gN (τ, xN (τ, ω)) dWτ (ω)
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Notice that the expected value of the last integral is zero due to the boundedness of the
integrand. So, applying the growth condition, we get

E
{
|xN (t, ω)|

2n
}
= E

{∣∣xN ,0 (ω)
∣∣2n
}

+

t∫
τ=0

E
{

2n |xN (τ, ω)|
2n−2 xN (τ, ω) fN (τ, xN (τ, ω))

}
dτ

+

t∫
τ=0

nE
{
|xN (τ, ω)|

2n−2
|gN (τ, xN (τ, ω))|

2
}

dτ

+

t∫
τ=0

2n (n − 1)E
{
|xN (τ, ω)|

2n−4
|xN (τ, ω) gN (τ, xN (τ, ω))|

2
}

dτ

≤ E
{∣∣xN ,0 (ω)

∣∣2n
}

+ (2n + 1) K 2

t∫
τ=0

E
{(

1+ |xN (τ, ω)|
2
)
|xN (τ, ω)|

2n−2
}

dτ

Now, making use of the inequality(
1+ x2

)
x2n−2

≤ 1+ 2x2n

we obtain from the last relation

E
{
|xN (t, ω)|

2n
}
≤ E

{∣∣xN ,0 (ω)
∣∣2n
}
+ (2n + 1) nK 2t

+ (2n + 1) 2nK 2

t∫
τ=0

E
{
|xN (τ, ω)|

2n
}

dτ

Applying again the Gronwall lemma we derive

E
{
|xN (t, ω)|

2n
}
≤ h (t)

+ (2n + 1) 2nK 2

t∫
τ=0

exp
{
(2n + 1) 2nK 2 (t − τ)

}
h (τ ) dτ

where

h (t) := E
{∣∣xN ,0 (ω)

∣∣2n
}
+ (2n + 1) nK 2t

Carrying out the integration in the last inequality yields (12.37) for xN (t, ω). Letting
N →∞ obtains the desired result for x (t, ω).

The second inequality in (12.37) follows directly from the first one and the relation
(12.3). Theorem is proven. �
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12.2 Solutions as diffusion processes

Diffusion processes (see Definition 10.5) are Markov processes whose probability law
is specified by the drift and diffusion coefficients (10.20) and (10.21) corresponding to the
conditional ‘infinitesimal’ mean and variance of the process, respectively.

Here we will show that

• any solution of a stochastic differential equation (12.1) (if it exists) is a diffusion Markov
process (Definition 10.5) with the drift coefficient f (t, x (t, ω)) and the diffusion
coefficient g2 (t, x (t, ω));
• inversely, under some conditions being specified, a diffusion process (Definition 10.5)

dy (t, ω) = a (t, y (t, ω)) dt + b (t, y (t, ω)) dWt (ω) , b (t, y) ≥ 0

shares the same probability law as the solution of the stochastic differential equation
(12.1)

dy (t, ω) = a (t, y (t, ω)) dt +
√

b (t, y (t, ω))dW̃t (ω)

(where W̃t (ω) is another Wiener process).

Consider again the stochastic differential equation (12.1)

dx (t, ω) = f (t, x (t, ω)) dt + g (t, x (t, ω)) dWt (ω)

defined on the interval [0, T ] with a specific initial condition x (0, ω) = x0 (ω).

12.2.1 General Markov property

Theorem 12.5. The solution x (t, ω) of (12.1) with x (0, ω) = x0 (ω) is a Markov process
on the interval [0, T ] with the initial distribution

P {x (0, ω) ∈ A} = P0 {A}

and the transition probabilities given by

P {s, x, t, A} = P {x (t, ω) ∈ A | x (s, ω) = x} for all 0 ≤ s ≤ t ≤ T

Proof. Let, as before, x (t, ω) ∈ Rn be a stochastic process defined on (�,F ,P)with state
space Rn and the index set := [0, T ]. For any 0 ≤ s ≤ t ≤ T define

W[0,t] := σ {x (0, ω) ,Ws (ω) , 0 ≤ s ≤ t} (12.39)

as a minimal sigma-algebra (sub-sigma-algebra of F ) generated by x (0, ω) and Ws (ω)

(0 ≤ s ≤ t). To verify the Markov property for the given process {x (t, ω)}t∈J one needs
to show (10.3), namely,

P
{

x (t, ω) ∈ A | F[0,s]
} a.s.
= P {x (t, ω) ∈ A | x (s, ω)} (12.40)

where F[0,s] := σ {x (t, ω) , t1 ≤ t ≤ t2} is defined by (12.39). Notice that since x (t, ω)
is W[0,t]-measurable, it follows that F[0,s] ⊆ W[0,t]. Therefore, to prove (12.40) it is
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sufficient to establish the stronger condition

P
{

x (t, ω) ∈ A | W[0,s]
} a.s.
= P {x (t, ω) ∈ A | x (s, ω)} (12.41)

In turn, to verify (12.41), it suffices to prove that for every bounded measurable function

h (x, ω) :=
N∑

i=1

hi (x) Hi (ω) (12.42)

(where Hi (ω) is a random variable independent of W[0,s]) the following property holds:

E
{
h (x (s, ω) , ω) | W[0,s]

} a.s.
= E {h (x (s, ω) , ω) | x (s, ω)} (12.43)

This would imply that the property (12.43) holds for the class of all bounded measurable
functions h (x, ω) (not only given by (12.42)) since the subclass (12.42) is dense within
this class. Then, in particular, taking

h (x, ω) = χ (x (s, ω) ∈ A)

together with the semigroup property

x (t, ω | x (0, ω)) = x0) = x (t, ω | x (s, ω | x (0, ω) = x0)))

this leads to (12.41). But, in view of independency Hi (ω) of x (s, ω), we have

E
{
h (x (s, ω) , ω) | W[0,s]

}
=

N∑
i=1

E
{
hi (x (s, ω)) Hi (ω) | W[0,s]

}
a.s.
=

N∑
i=1

hi (x (s, ω))E
{

Hi (ω) | W[0,s]
}

=

N∑
i=1

hi (x (s, ω))E {Hi (ω)}

= E {h (x (s, ω) , ω) | x (s, ω)}

which completes the proof. �

12.2.2 Solution as a diffusion process

Theorem 12.6. Assume that f and g in (12.1) satisfy the conditions of Theorem 12.1
guaranteeing the existence and the uniqueness of a solution x (t, ω) of (12.3) defined
for all t ∈ [0, T ]. Then any solution of (12.1) is a diffusion process on [0, T ] with drift
coefficient f (t, x) and diffusion coefficient g2 (t, x).

Proof. We need to verify the properties (10.22), namely,

P {|x (t + h, ω)− x (t, ω)| > ε | x (s, ω) = x} = o (h)
E {[x (t + h, ω)− x (t, ω)]

× χ (|x (t + h, ω)− x (t, ω)| ≤ ε) | x (s, ω) = x}

= a (s, x) h + o (h)
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E {[x (t + h, ω)− x (t, ω)] [x (t + h, ω)− x (t, ω)]ᵀ

χ (|x (t + h, ω)− x (t, ω)| ≤ ε) | x (s, ω) = x}

= B (s, x) h + o (h)

To prove the first one notice that by the Markov inequality (4.8) and using the property
(12.37) it follows (for r = 4)

P {|x (t + h, ω)− x (t, ω)| > ε | x (s, ω) = x}

≤ ε−4E
{
|x (t + h, ω)− x (t, ω)|4

}
=≤ ε−4Ch2

where C = C(T ) is a constant. This inequality implies the desired result. The proof of the
last two properties can be done similarly invoking the Cauchy–Schwartz inequality (4.16)
using the Lipschitz condition. Indeed, we have

E {[x (t + h, ω)− x (t, ω)]

× χ (|x (t + h, ω)− x (t, ω)| ≤ ε) | x (s, ω) = x}

=

t∫
u=s

E { f (u, x (u, ω)) χ (|x (t + h, ω)− x (t, ω)| ≤ ε)} du =

t∫
u=s

f (u, x) du

+

t∫
u=s

[E { f (u, x (u, ω)) χ (|x (t + h, ω)− x (t, ω)| ≤ ε)} − f (u, x)] du

and ∣∣∣∣∣∣
t∫

u=s

[E { f (u, x (u, ω)) χ (|x (t + h, ω)− x (t, ω)| ≤ ε)} − f (u, x)] du

∣∣∣∣∣∣
≤

t∫
u=s

E {| f (u, x (u, ω))− f (u, x)|} du

≤ (t − s)1/2

 t∫
u=s

E
{
| f (u, x (u, ω))− f (u, x)|2

}
du

1/2

≤ O
(
(t − s)3/2

)
By the continuity of f (u, x) we also have

t∫
u=s

f (u, x) du = f (s, x) (t − s)+

t∫
u=s

[ f (u, x)− f (s, x)] du

= f (s, x) (t − s)+ o(t − s)

which together with the relations above implies the second desired result. The third one
can be proven similarly. Theorem is proven. �
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Remark 12.4. In the vector case the drift coefficient a (t, x) of the process {x (t, ω)}t∈[0,T ]
is a vector function f (t, x) and the diffusion matrix B (t, x) is G (t, x)Gᵀ (t, x), that is,

a (t, x) = f (t, x)

B (t, x) = G (t, x)Gᵀ (t, x)
(12.44)

Let us now show the inversion.

Theorem 12.7. Suppose that {y (t, ω)}t∈[0,T ] is a diffusion process

dy (t, ω) = a (t, y (t, ω)) dt + b (t, y (t, ω)) dWt (ω) , b (t, y) ≥ 0

with a (t, y) and b (t, y) satisfying the conditions in Theorem 12.1. Then there exists a
Wiener process W̃t (ω) for which y (t, ω) solves the stochastic differential equation

dy (t, ω) = a (t, y (t, ω)) dt +
√

b (t, y (t, ω))dW̃t (ω) (12.45)

Proof. (the principal scheme) Let

z (t, ω) := g (t, y (t, ω)) (12.46)

where

g (t, y) =

y∫
v=0

dv
√

b (t, v)
(12.47)

Define the function

ā (t, z) :=

[
∂

∂t
g (t, y)+ a (t, y)

∂

∂y
g (t, y)+

1
2

b (t, y)
∂2

∂y2 g (t, y)

]
y=g−1(t,z)

Then z (t, ω) is a diffusion process with the drift ā (t, z) and the diffusion coefficient unity.
Define then

W̃t (ω) = z (t, ω)− z (0, ω)−
∫

ā (u, z (u, ω)) du (12.48)

which, in fact, is a Wiener process that can be shown using the accepted assumptions. Then
(12.48) is equivalent to the stochastic differential equation

dz (t, ω) = ā (t, z (t, ω)) dt + dW̃t (ω)

Next, applying the Itô rule (11.65) to (12.46) and (12.47), we find that y (t, ω) is a solution
of (12.45). �
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12.3 Reducing by change of variables

Here we will discuss the method which provides a technique for solving a class of
stochastic differential equations by quadratures. This method is related to a change of
variables which leads to a simplification (or reducing) of the stochastic differential equation
initially given.

12.3.1 General description of the method

Consider, as usual, the vector stochastic differential equation

dx (t, ω) = f (t, x (t, ω)) dt + G (t, x (t, ω)) dWt (ω)

x (t, ω) ∈ Rn, Wt (ω) ∈ RL , x (0, ω) = x0 (ω)
(12.49)

and a smooth vector valued function H : R× Rn
→ Rn transforming the state vector x

into a new state vector y as

y = H (t, x) (12.50)

and suppose that for all t ≥ 0 and all x ∈ Rn the following condition holds:

det
[
∂

∂x
H (t, x)

]
6= 0 (12.51)

which leads to the existence of the inverse function H−1
: R× Rn

→ Rn such that

x = H−1 (t, y) (12.52)

By Itô formula (11.64) implementation it follows that

dy (t, ω) = f̃ (t, y (t, ω)) dt + G̃ (t, y (t, ω)) dWt (ω) (12.53)

where

f̃ (t, y) =

[
∂

∂t
H (t, x)+

∂

∂x
H (t, x)ᵀ f (t, x)

+
1
2

tr

(
G (t, x)G (t, x)

∂2

∂x2 H (t, x)

)]
x=H−1(t,y)

G̃ (t, y) =

([
∂

∂x
H (t, x)

]
G (t, x)

)∣∣∣∣
x=H−1(t,y)

(12.54)

The simplification or reducing of the initial stochastic differential equation will take place
if the new drift vector f̃ (t, y) and the new diffusion matrix G̃ (t, y) are independent of y,
namely, if

f̃ (t, y) := f̄ (t) , G̃ (t, y) = Ḡ(t) (12.55)
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or equivalently, if for all t ≥ 0

∂

∂y
f̃ (t, y) = 0,

∂

∂y
G̃ (t, y) = 0 (12.56)

In this case the change of variables (12.50) permits the explicit representation of the
solution x (t, ω) as

x (t, ω) = H−1 (t, y (t, ω))

y (t, ω) = H (0, x0 (ω))+

t∫
s=0

f̄ (s) ds +

t∫
s=0

Ḡ(s)dWs (ω)
(12.57)

12.3.2 Scalar stochastic differential equations

In the scalar case the condition (12.56) can be easily verified leading to the following
result.

Theorem 12.8. (on the reducibility) The scalar (n = L = 1) stochastic differential equa-
tion (12.49) is reducible if and only if the functions f and G satisfy the equation

∂

∂x

[
G

(
G−2 ∂

∂t
G −

∂

∂x

[
f

G

]
+

1
2
∂2

∂x2 G

)]
= 0 (12.58)

Proof. Evidently (12.56) is fulfilled if and only if

∂

∂t
H (t, x)+ f (t, x)

∂

∂x
H (t, x)+

1
2

G2 (t, x)
∂2

∂x2 H (t, x) = ϕ (t)[
∂

∂x
H (t, x)

]
G (t, x) = g (t)

Differentiation of the first equation on x gives

∂2

∂x∂t
H (t, x)+

∂

∂x

[
f (t, x)

∂

∂x
H (t, x)+

1
2

G2 (t, x)
∂2

∂x2 H (t, x)

]
= 0 (12.59)

From the second equation it follows that

∂

∂x
H (t, x) =

g (t)

G (t, x)
(12.60)
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and

∂2

∂t∂x
H (t, x) =

g′ (t)G (t, x)− g (t) ∂
∂t G (t, x)

G2 (t, x)

∂2

∂x2 H (t, x) = −
g (t)

G2 (t, x)

∂

∂x
G (t, x)

Substitution of these relations into (12.59) implies

g′ (t)

G (t, x)
− g (t)

[
∂
∂t G (t, x)

G2 (t, x)
−
∂

∂x

(
f (t, x)

G (t, x)

)
+

1
2
∂2

∂x2 G (t, x)

]
= 0

or equivalently,

g′ (t)

g (t)
= G (t, x)

[
∂
∂t G (t, x)

G2 (t, x)
−
∂

∂x

(
f (t, x)

G (t, x)

)
+

1
2
∂2

∂x2 G (t, x)

]

Since the left-hand side is independent of x the property (12.58) follows. Theorem is
proven. �

Corollary 12.2. For stationary (autonomous) scalar stochastic differential equations (12.49)
with

f = f (x), G = G(x)

the condition (12.58) becomes

G

(
∂

∂x

[
f

G

]
−

1
2
∂2

∂x2 G

)
= const (12.61)

and (12.60) gives

H (t, x) = g (t)

x∫
v=a

dv

G (v)
(12.62)

for arbitrary a.

Example 12.1. Consider the autonomous equation

dx (t, ω) = [ f0(t)+ a0x (t, ω)] dt + GdWt (ω)
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with the constant diffusion coefficient G > 0 and a constant parameter a0 = const in the
drift. Then the condition (12.61) holds, and therefore, by (12.62) with a = 0 and (12.54) it
follows that

H (t, x) = g (t)
x

G
= y

x (t, ω) =
G

g (t)
y (t, ω)

y (t, ω) = H (0, x0 (ω))+

t∫
s=0

f̄ (s) ds +

t∫
s=0

Ḡ(s)dWs (ω)

where (with g (t) = e−a0t )

f̄ (t) = g′ (t)
x

G
+

g (t)

G
[ f0(t)+ a0x (t, ω)] =

e−a0t

G
f0(t)

and

Ḡ (t) = e−a0t

So, finally,

x (t, ω) = ea0t x (0, ω)+

t∫
s=0

ea0(t−s) f0(s)ds

+

t∫
s=0

ea0(t−s)GdWs (ω)

(12.63)

which practically coincides with the solution of the usual (non-stochastic) differential
equation.

Example 12.2. Consider the scalar non-autonomouse linear stochastic equation

dx̊ (t, ω) = a(t)x̊ (t, ω) dt + g1(t)x̊ (t, ω) dW (ω)

x̊ (0, ω) = x̊0 (ω)
(12.64)

The reducibility condition (12.58) is fulfilled automatically since in this case

f = a(t)x̊, G = g1(t)x̊

So, by (12.60)

H (t, x̊) = g (t)

x̊∫
v=a

dv

G (t, v)
=

g (t)

g1(t)

x̊∫
v=a

dv

v

=
g (t)

g1(t)
ln x̊/x̊0 = ln x̊/x̊0
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with a = x̊0, g (t) = g1(t) and for x̊/x̊0 > 0. Therefore, the explicit solution (12.57)
becomes

x̊ (t, ω) = x̊0 (ω) exp {y (t, ω)}

y (t, ω) =

t∫
s=0

f̄ (s) ds +

t∫
s=0

Ḡ(s)dWs (ω)

f̃ (t, y) =

[
∂

∂t
H (t, x)+

∂

∂x
H (t, x̊)ᵀ f (t, x)

+
1
2

tr

(
G (t, x)G (t, x)

∂2

∂x2 H (t, x)

)]
x=H−1(t,y)

= a(t)−
1
2

g2
1(t) = f̄ (t)

G̃ (t, y) =

([
∂

∂x
H (t, x)

]
G (t, x)

)
|x=H−1(t,y)= g1 (t) = Ḡ(t)

and finally,

x̊ (t, ω) = x̊0 (ω)

· exp


t∫

s=0

[
a(s)−

1
2

g2
1(s)

]
ds +

t∫
s=0

g1 (s) dWs (ω)

 (12.65)

12.4 Linear stochastic differential equations

12.4.1 Fundamental matrix

Consider here the general vector linear stochastic differential equation given by

dx (t, ω) = [a0(t)+ A(t)x (t, ω)] dt

+

m∑
i=1

[
g0,i (t)+ G1,i (t)x (t, ω)

]
dWi,t (ω)

(12.66)

with x (0, ω) = x0 (ω) where
{x (t, ω)}t∈[0,T ] is a random n-vector process,
Wi,t (ω) is a standard Wiener process (Wi,t (ω) ∈ R, i = 1, . . . ,m), i.e., for

Wt (ω) :=
(
W1,t (ω) , . . . ,W1,m (ω)

)ᵀ
one has

E
{
Wt (ω)W ᵀt (ω)

}
= t · Im×m

A(t) and g0,i (t) are n × n matrix function and n-vector of t ∈ [0, T ], and a0(t) and
G1,i (t) are n-vector and n × n-matrix functions, respectively.
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A1. Suppose that the functions a0(t), A(t) and g0,i (t), G1,i (t) (i = 1, . . . ,m) are
measurable and bounded on [0, T ].

If the the assumption A1 is fulfilled then by Theorem 12.1 there exists a unique solution
x (t, ω) satisfying (12.66).

Definition 12.2. The matrix 8ω (t, s) ∈ Rn×n (which is stochastic, in general) is called
the fundamental matrix of the homogeneous version of the linear stochastic equation

dx̊ (t, ω) = A(t)x̊ (t, ω) dt +
m∑

i=1

G1,i (t)x̊ (t, ω) dWi,t (ω)

x̊ (0, ω) = x̊0 (ω)

(12.67)

if x̊ (t, ω), satisfying (12.67), for any s ∈ [0, t] and any x̊s (ω) = x̊ (s, ω) can be
represented as

x̊ (t, ω)
a.s.
= 8ω (t, s) x̊ (s, ω) (12.68)

The basic properties of the fundamental matrix 8ω (t, s) are presented in the following
lemma.

Lemma 12.1. For the fundamental matrix 8ω (t, s), associated with the homogeneous
linear stochastic equation (12.67) the following ‘semigroup’ properties hold:

1. for any 0 ≤ t0 ≤ s ≤ t ≤ T

8ω (t, t0)
a.s.
= 8ω (t, s)8ω (s, t0)

8ω (t, s) = 8ω (t, t0)8−1
ω (s, t0)

(12.69)

2.

8ω (t, s)
a.s.
= I +

t∫
τ=s

A(τ )8ω (τ, s) dτ

+

t∫
τ=s

m∑
i=1

G1,i (τ )8ω (τ, s) dWi,τ (ω)

(12.70)

or equivalently, taking s = 0

d8ω (t, 0) = A(t)8ω (t, 0) dt

+

m∑
i=1

G1,i (t)8ω (t, 0) dWi,t (ω) , 8ω (0, 0) = I
(12.71)
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Proof.

1. The property (12.69) results directly from (12.68) since

x̊ (t, ω)
a.s.
= 8ω (t, t0) x̊ (t0, ω)

a.s.
= [8ω (t, t0)8ω (t0, s)] x̊ (s, ω)

The inverse matrix 8−1
ω (s, t0) always exists since for t = t0 one has

det8ω (t0, t0) = 1
a.s.
= det8ω (t0, s) det8ω (s, t0)

and therefore, det8ω (t0, s) 6= 0 and

det8ω (s, t0) = 1/ det8ω (t0, s) 6= 0

2. The relations (12.67) and (12.68) imply

x̊ (t, ω)− x̊ (s, ω)
a.s
= [8ω (t, s)− I ] x̊ (s, ω)

a.s.
=

t∫
τ=s

A(τ )x̊ (τ, ω) dτ +

t∫
τ=s

m∑
i=1

G1,i (τ )x̊ (τ, ω) dWi,τ (ω)

=

t∫
τ=s

A(τ )8ω (τ, s) x̊ (s, ω) dτ +

t∫
τ=s

m∑
i=1

G1,i (τ )8ω (τ, s) x̊ (s, ω) dWi,τ (ω)

=

 t∫
τ=s

A(τ )8ω (τ, s) dτ +

t∫
τ=s

m∑
i=1

G1,i (τ )8ω (τ, s) dWi,τ (ω)

 x̊ (s, ω)

and since x̊ (s, ω) is any n-vector, the relation (12.70) follows. Lemma is proven. �

Remark 12.5. In general, an explicit expression for the transition matrix8ω (t, s) cannot
be given. However, if G1,i (t) = 0 for all t ∈ [0, T ] and A(τ ) = A = const then, as follows
from (12.70),

8ω (t, s) = I +

t∫
τ=s

A(τ )8ω (τ, s) dτ

and hence,

∂

∂t
8ω (t, s) = A(t)8ω (t, s) , 8ω (t, t) = I

or, equivalently,

8ω (t, s) = eA(t−s) (12.72)
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12.4.2 General solution

12.4.2.1 Scalar case

Consider the stochastic linear differential equation

dx (t, ω) = [a0(t)+ a1(t)x (t, ω)] dt + [g0(t)+ g1(t)x (t, ω)] dWt (ω) (12.73)

whose homogeneous version is

dx̊ (t, ω) = a1(t)x̊ (t, ω) dt + g1(t)x̊ (t, ω) dW (ω)

x̊ (0, ω) = x̊0 (ω)
(12.74)

According to (12.65) its solution is

x̊ (t, ω) = x̊0 (ω) exp


t∫

s=0

[
a1(s)−

1
2

g2
1(s)

]
ds +

t∫
s=0

g1 (s) dWs (ω)


In terms of fundamental solution8ω (t, s) (which in this case coincides with x̊ (t, ω) under
the condition that x̊0 (ω) = 1) it can be represented as

x̊ (t, ω) = 8ω (t, 0) x̊0 (ω)

8ω (t, 0) = exp


t∫

s=0

[
a1(s)−

1
2

g2
1(s)

]
ds +

t∫
s=0

g1 (s) dWs (ω)

 (12.75)

where the differential of 8ω (t, 0) is

d8ω (t, 0) = 8ω (t, 0) [a1(t)dt + g1(t)W (ω)] , 8ω (0, 0) = I

Let us try to find the solution to (12.73), using the classical ‘variation of parameters
technique’, as

x (t, ω) = 8ω (t, 0) y (t, ω)

so that the problem is to determine

y (t, ω) = 8−1
ω (t, 0) x (t, ω) , y (0, ω) = x (0, ω)

where

8−1
ω (t, 0) = exp

−
t∫

s=0

[
a1(s)−

1
2

g2
1(s)

]
ds −

t∫
s=0

g1 (s) dWs (ω)

 = ez(t,ω)

z (t, ω) = −

t∫
s=0

[
a1(s)−

1
2

g2
1(s)

]
ds −

t∫
s=0

g1 (s) dWs (ω)

dz (t, ω) = −

[
a1(t)−

1
2

g2
1(t)

]
dt − g1 (t) dWt (ω)



350 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

with its differential (by the Itô formula)

d8−1
ω (t, 0) =

[
∂

∂z
ez(t,ω)

]
dz (t, ω)+

1
2

g2
1 (t)

[
∂2

∂z2 ez(t,ω)

]
= ez(t,ω)

([
−a1(t)+ g2

1(t)
]

dt − g1 (t) dWt (ω)
)

= 8−1
ω (t, 0)

([
−a1(t)+ g2

1(t)
]

dt − g1 (t) dWt (ω)
)

and applying the Itô formula (in fact, (11.77)) we get

dy (t, ω) = d8−1
ω (t, 0) x (t, ω)+8−1

ω (t, 0) dx (t, ω)

− [g0(t)+ g1(t)x (t, ω)]8−1
ω (t, 0) g1(t)dt

= 8−1
ω (t, 0)

([
−a1(t)+ g2

1(t)
]

dt − g1 (t) dWt (ω)
)

x (t, ω)

+8−1
ω (t, 0) [a0(t)+ a1(t)x (t, ω)] dt

+8−1
ω (t, 0) [g0(t)+ g1(t)x (t, ω)] dWt (ω)

− [g0(t)+ g1(t)x (t, ω)]8−1
ω (t, 0) g1(t)dt

= 8−1
ω (t, 0) [a0(t)− g0(t)g1(t)] dt +8−1

ω (t, 0) g0(t)dWt (ω) (12.76)

Therefore

y (t, ω) = x (0, ω)+

t∫
s=0

8−1
ω (s, 0) [a0(s)− g0(s)g1(s)] ds

+

t∫
s=0

8−1
ω (s, 0) g0(s)dWs (ω) ds

which establishes the following result.

Theorem 12.9. The solution x (t, ω) of the linear stochastic differential equation (12.73)
is

x (t, ω) = 8ω (t, 0)

x (0, ω)

+

t∫
s=0

8−1
ω (s, 0) [a0(s)− g0(s)g1(s)] ds

+

t∫
s=0

8−1
ω (s, 0) g0(s)dWs (ω) ds


(12.77)

where 8ω (t, 0) is defined by (12.75).
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12.4.2.2 Vector case

The following theorem covers the preceding linear vector system case and is similar to
the scalar case given above. That’s why we give it without the proof.

Theorem 12.10. The solution of (12.66) with the fundamental matrix8ω (t, s), associated
with the homogeneous linear stochastic equation (12.67), can be represented as

x (t, ω)
a.s.
= 8ω (t, 0)

x0 (ω)

+

t∫
s=0

8−1
ω (s, 0)

[
a0(s)−

m∑
i=1

G1,i (s)g0,i (s)

]
ds

+

t∫
s=0

8−1
ω (s, 0)

m∑
i=1

g0,i (s)dWi,s (ω)


(12.78)

where 8ω (t, 0) satisfies (12.71).

The next result is based on the direct use of formula (12.78) and concerns the differential
equations for the first and the second moments of process (12.66) denoted by

m (t) := E {x (t, ω)}

Q (t) := E {x (t, ω) xᵀ (t, ω)}
(12.79)

Theorem 12.11. (on the first and second moments) The first two moments (12.79) of the
solution x (t, ω) for (12.66)

dx (t, ω) = [a0(t)+ A(t)x (t, ω)] dt

+

m∑
i=1

[
g0,i (t)+ G1,i (t)x (t, ω)

]
dWi,t (ω)

assuming that tr {Q(0)} < ∞, are the unique solutions to the following initial value
problems:

(a)

ṁ (t) = A(t)m (t)+ a0(t)

m (0) = E {x (0, ω)}
(12.80)
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(b)

Q̇ (t) = A(t)Q (t)+ Q (t) Aᵀ(t)+
m∑

i=1

G1,i (t)Q (t)Gᵀ1,i (t)

+ a0(t)mᵀ (t)+ m (t) aᵀ0 (t)

+

m∑
i=1

[
G1,i (t)m (t) gᵀ0,i (t)+ g0,i (t)m

ᵀ (t)Gᵀ1,i (t)+ g0,i (t)g
ᵀ
0,i (t)

]
Q (0) = E {x (0, ω) xᵀ (0, ω)}

(12.81)

Proof. The assertion (a) can be verified directly taking the expected value of the integral
form of (12.66). To provide the assertion (b) it is sufficient to use Itô’s rule for the product,
namely,

d
[
x (t, ω) xᵀ (t, ω)

]
= x (t, ω) dxᵀ (t, ω)+ [dx (t, ω)] xᵀ (t, ω)

+

m∑
i=1

[
g0,i (t)+ G1,i (t)x (t, ω)

]
×
[
g0,i (t)+ G1,i (t)x (t, ω)

]ᵀ dt

Substituting the integral forms for d [x (t, ω) xᵀ (t, ω)], dx (t, ω) and dxᵀ (t, ω) into the
equation above and taking the expected value leads to the integral equation equivalent
(12.81). Theorem is proven. �

Corollary 12.3. (a0(t) = 0, G1,i (t) = 0 (i, . . . ,m)) If in (12.66)

a0(t) = 0, G1,i (t) = 0 (i, . . . ,m)

namely, if

dx (t, ω) = A(t)x (t, ω) dt +
m∑

i=1

g0,i (t)dWi,t (ω) (12.82)

then

x (t, ω)
a.s.
= 8ω (t, 0) x0 (ω)+

t∫
s=0

8−1
ω (s, 0)

m∑
i=1

g0,i (s)dWi,s (ω) (12.83)

and

Q̇ (t) = A(t)Q (t)+ Q (t) Aᵀ(t)+
m∑

i=1

g0,i (t)g
ᵀ
0,i (t)

Q (0) = E {x (0, ω) xᵀ (0, ω)}

(12.84)
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Corollary 12.4. (a special case) For the vector linear stochastic differential equation

dx (t, ω) = [A(t)x (t, ω)+ b(t)] dt + C (t) dWt (ω)

Wt (ω) – is m-dimensional standard Wiener process
C (t) ∈ Rn×m

(12.85)

its solution is given by

x (t, ω)
a.s.
= 8ω (t, 0) x0 (ω)

+8ω (t, 0)

 t∫
s=0

8−1
ω (s, 0)C (s) dWs (ω)+

t∫
s=0

8−1
ω (s, 0) b(s)ds


8ω (t, 0) :

d

dt
8ω (t, 0) = A(t)8ω (t, 0) , 8ω (0, 0) = I

(12.86)

and its first two moments are the solutions to the following initial value problems:

ṁ (t) = A(t)m (t)+ b(t), m (0) = E {x (0, ω)} (12.87)

and

Q̇ (t) = A(t)Q (t)+ Q (t) Aᵀ(t)

+ b(t)mᵀ (t)+ m (t) bᵀ(t)+ C (t)Cᵀ (t)

Q (0) = E {x (0, ω) xᵀ (0, ω)}

(12.88)

Proof. Formula (12.86) may be checked by direct differentiation. Equation (12.87) follows
directly from (12.86) taking into account that

m(t) = E {x (t, ω)}

= E

8ω (t, 0) x0 (ω)+8ω (t, 0)

t∫
s=0

8−1
ω (s, 0) b(s)ds


= 8ω (t, 0)

m (0)+

t∫
s=0

8−1
ω (s, 0) b(s)ds


ṁ(t) =

d

dt
8ω (t, 0)

m (0)+

t∫
s=0

8−1
ω (s, 0) b(s)ds

+ b(t)

= A(t)8ω (t, 0)

m (0)+

t∫
s=0

8−1
ω (s, 0) b(s)ds

+ b(t)

= A(t)m(t)+ b(t)



354 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

Equation (12.88) results from the following representation

Q (t) := E {x (t, ω) xᵀ (t, ω)} = E
{
8ω (t, 0) x0 (ω) xᵀ0 (ω)8

ᵀ
ω (t, 0)

}
+E

8ω (t, 0)

t∫
s=0

t∫
τ=0

8−1
ω (s, 0)C (s) dWs (ω)

· dW ᵀτ (ω)Cᵀ (τ )
[
8−1
ω (τ, 0)

]ᵀ
8
ᵀ
ω (t, 0)


+8ω (t, 0) x0 (ω)

8ω (t, 0)

t∫
s=0

8−1
ω (s, 0) b(s)ds

ᵀ

+8ω (t, 0)

t∫
s=0

8−1
ω (s, 0) b(s)ds [8ω (t, 0) x0 (ω)]ᵀ

= 8ω (t, 0) Q (0)8ᵀω (t, 0)

+8ω (t, 0)

t∫
s=0

8−1
ω (s, 0)C (s)Cᵀ (s)

[
8−1
ω (s, 0)

]ᵀ
ds8ᵀω (t, 0)

+8ω (t, 0) x0 (ω)

[
8ω (t, 0)

t∫
s=0

8−1
ω (s, 0) b(s)ds

]ᵀ
+8ω (t, 0)

t∫
s=0

8−1
ω (s, 0) b(s)ds [8ω (t, 0) x0 (ω)]ᵀ

with the following direct calculation of Q̇ (t) leading to (12.88). Corollary is proven. �
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This chapter contains four parts dealing with the principal identification processes of
aspects of different dynamic and static stochastic models. The first part includes the intro-
duction to the problem, its formulation, consideration of different particular models and
the description of the least square method (LSM) derived in nonrecurrent and recurrent
form. The second part discusses the convergence analysis of LSM. There it is shown that a
direct application of LSM to the identification of autoregression processes with correlated
noises leads to incorrect results. Some other versions dealing with ‘whitening’ or ‘instru-
mental variables’ (IV) are required. The analysis of IV-methodology is also presented. The
information bounds of these methods characterizing the ‘rate of estimation’ are derived in
the third part. They are based on the Cramér–Rao inequalities. The asymptotically optimal
as well as some of their robust versions are considered in the fourth part.

13.1 Introduction

13.1.1 Parameters estimation as a component of identification theory

Modern identification theory (Ljung, 1987, 1999) basically deals with the problem of the
efficient extraction of signal and some dynamic properties of systems based on available
data or measurements.

Dynamic system identification is traditionally concerned with two issues:

• estimation of parameters based on direct and complete state space measurements;
• state space estimation (filtering or observation) of completely known nonlinear dynam-

ics.

In this chapter we will consider the first option dealing with parameters identification.
The next chapter will be concerned with state estimation processes.

Parameters identification for different classes of dynamic systems has been extensively
studied during the last three decades. Basically, the class of dynamic systems whose

357
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dynamics depends linearly on the unknown parameters was considered, and external noise
was assumed to be of a stochastic nature (see, for example, Ljung and Soderstrom (1983),
Chen and Guo (1991)). In an earlier paper (Poznyak, 1980) the convergence properties
of a matrix version of LSM (discrete time procedure) in the presence of stochastic noise
and a nonlinear state-space coordinate transformation were studied. In Caines (1988) a
comprehensive survey of different identification procedures is given including a family of
observer-based parameter identifiers which exploit some parameter relations to improve an
identification performance.

Remark 13.1. A general feature of the publications mentioned above is that exact state
space vector measurements are assumed to be available.

13.1.2 Problem formulation

Let (�,F , P) be a probability space, i.e.,

• � be a space of elementary events ω;
• F be a sigma-algebra (or a collection of all possible events generated by �);
• P be a probabilistic measure on �.

Consider the sequence {xn}n=0,1,2,... of random vectors xn = xn (ω) ∈ RN defined on
(�,F , P) and related by the recursion

xn+1 = Axn + Bun + Dζn

x0 is a given random variable
(13.1)

where
xn ∈ RN is the state random vector available (measurable) at time n;
A ∈ RN×N , B ∈ RN×K and D ∈ RN×M are constant matrices,
un ∈ RK is an input signal (stochastic or deterministic) available (measurable) at time n;
ζn ∈ RM is an external random perturbation (or noise) which is not available during the

process.
The main problem dealing with the identification of the parameters in (13.1) may be

formulated as follows:

Problem 13.1. Based on the available information {xt+1, xt , ut }t=0,...,n construct esti-

mates
{

Ât , B̂t

}
t=0,...,n

and, maybe,
{

D̂t

}
t=0,...,n

if possible, which are

(a) asymptotically consistent, that is, in some probabilistic sense{
Ât , B̂t

}
t=0,...,n

→
n→∞

{A, B}{
D̂t

}
t=0,...,n

→
n→∞

{D}
(13.2)

(b) asymptotically (or locally) optimal, which means that there do not exist some other
estimates which are better (in some strict probabilistic sense) than these ones.
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13.2 Some models of dynamic processes

Here we will present several partial models which are commonly used in the mathemat-
ical and engineering literature and which can be represented in the form (13.1).

13.2.1 Autoregression (AR) model

The so-called scalar autoregression (AR) model is given by

yn+1 = a0 yn + a1 yn−1 + . . .+ aLa yn−La + ξn

y0, y−1, . . . , y−La are given
(13.3)

where {ξn} is the sequence of statistically independent random variables defined on
(�,F , P) with zero means and bounded second moments, i.e.,

E {ξn} = 0, E
{
ξ2

n

}
= σ 2

n

P
{
ξn ∈ 4, ξt ∈ 4

′
}
= P {ξn ∈ 4}P

{
ξt ∈ 4

′
}

for any n 6= t

E {η} :=

∫
ω∈�

η (ω) d P {ω} is the Lebesgue integral

(13.4)

It can be rewritten in the form (13.1) with

xn :=
(
yn, yn−1, . . . yn−La

)ᵀ
∈ RN , N = La + 1

A =


a0 a1 · · · · · · aLa

1 0 · · · · · · 0
0 1 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 1 0


B = 0, D = I, ζn =

(
ξn 0 · · · 0

)ᵀ
(13.5)

13.2.2 Regression (R) model

The so-called scalar regression (R) model is given by

yn+1 = b0vn + b1vn−1 + . . .+ bLbvn−Lb + ξn (13.6)

where {ξn} is the sequence of statistically independent random variables defined on
(�,F , P) with zero means and bounded second moments, and {vn} is a sequence of mea-
surable (available) scalar inputs which may be deterministic or stochastic either in nature.

In the last case the input sequence is supposed to be independent of the noise sequence
{ξn}.
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It can also be rewritten in the form (13.1) with

xn := yn ∈ R, N = 1

A = 0, B =
[
b0 b1 · · · bLb

]
, D = 1, ζn = ξn

un :=
(
vn, vn−1, . . . vn−Lb

)ᵀ
∈ RK , K = Lb + 1

(13.7)

13.2.3 Regression–autoregression (RAR) model

The so-called scalar regression–autoregression (RAR) model represents the combina-
tion of AR (13.3) and R (13.6) models and is given by

yn+1 = a0 yn + a1 yn−1 + . . .+ aLa yn−La

+ b0vn + b1vn−1 + . . .+ bLbvn−Lb + ξn

=

La∑
s=0

as yn−s +

Lb∑
l=0

blvn−l + ξn

y0, y−1, . . . , y−La are given

(13.8)

In the general matrix form (13.1) it can be also presented as follows:

xn :=
(
yn, yn−1, . . . yn−La

)ᵀ
∈ RN , N = La + 1

un :=
(
vn, vn−1, . . . vn−Lb

)ᵀ
∈ RK , K = Lb + 1

A =


a0 a1 · · · · · · aLa

1 0 · · · · · · 0
0 1 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 1 0

 , D = I, ζn =


ξn
0
...

0



B =


b0 b1 · · · · · · bLb

0 0 · · · · · · 0
0 0 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 0 0



(13.9)

13.2.4 Autoregression–moving average (ARMA) model

The scalar autoregression–moving average (ARMA) model is given by

yn+1 = a0 yn + a1 yn−1 + . . .+ aLa yn−La

+ d0ξn + . . . dLd ξn−Ld =

La∑
s=0

as yn−s +

Ld∑
l=0

dlξn−l

y0, y−1, . . . , y−La are given

(13.10)
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where {ξn} is the sequence of statistically independent random variables defined on
(�,F , P) with zero means and bounded second moments.

In the general matrix form (13.1) it can be presented as follows:

xn :=
(
yn, yn−1, . . . yn−La

)ᵀ
∈ RN , N = La + 1

ζn :=
(
ξn, ξn−1, . . . ξn−Ld

)ᵀ
∈ RM , M = Ld + 1

A =



a0 a1 · · · · · · aLa

1 0 · · · · · · 0

0 1 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 1 0


, B = 0

D =



d0 d1 · · · · · · dLd

0 0 · · · · · · 0

0 0 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 0 0


, ζn =


ξn

ξn−1
...

ξn−Ld



(13.11)

Remark 13.2. Notice that in ARMA models, written in the general matrix form (13.11),
the generalized noise vector sequence {ζn} is not independent, but is correlated since for
s : 1 ≤ s ≤ Ld and σ 2

n 6= 0 (for all n = 0, 1, . . .)

E
{
ζnζ
ᵀ
n−s

}
= E




ξn
ξn−1
...

ξn−Ld

(ξn−s ξn−1−s · · · ξn−Ld−s
)


=


0 0 · · · 0 σ 2

n−s 0 · · · 0

0 · · · · · · · · · 0 σ 2
n−s−1 0 · · ·

0 · · · · · · · · · · · · 0
. . . 0

0 · · · · · · · · · · · · · · · · · · σ 2
n−Ld

 6= 0

In the uncorrelated case, there should be found

E
{
ζnζ
ᵀ
n−s

}
= 0 if s 6= 0

13.2.5 Regression–autoregression–moving average (RARMA or ARMAX) model

The so-called scalar regression–autoregression–moving average (RARMA or ARMAX)
model represents the combination of ARMA (13.10) and R (13.6) models and is given
by
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yn+1 = a0 yn + a1 yn−1 + . . .+ aLa yn−La

+ b0vn + b1vn−1 + . . .+ bLbvn−Lb

+ d0ξn + . . . dLd ξn−Ld

=

La∑
s=0

as yn−s +

Lb∑
k=0

bkvn−k +

Ld∑
l=0

dlξn−l

y0, y−1, . . . , y−La are given

(13.12)

Remark 13.3. Here the measurable inputs {vn} being independent of {ξn} are interpreted
as ‘exogenous’ inputs, which explains the appearance of the capital ‘X’ in the abbreviation
ARMAX.

In the general matrix form (13.1) it can be presented as follows:

xn :=
(
yn, yn−1, . . . yn−La

)ᵀ
∈ RN , N = La + 1

un :=
(
vn, vn−1, . . . vn−Lb

)ᵀ
∈ RK , K = Lb + 1

ζn :=
(
ξn, ξn−1, . . . ξn−Ld

)ᵀ
∈ RM , M = Ld + 1

A =


a0 a1 · · · · · · aLa

1 0 · · · · · · 0

0 1 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 1 0

 , B =


b0 b1 · · · · · · bLb

0 0 · · · · · · 0

0 0 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 0 0



D =


d0 d1 · · · · · · dLd

0 0 · · · · · · 0

0 0 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 0 0

 , ζn =


ξn
ξn−1
...

ξn−Ld


(13.13)

13.2.6 Nonlinear regression–autoregression–moving average (NRARMAX) model

The nonlinear regression–autoregression–moving average (NRARMA or NARMAX)
model represents the following nonlinear modification of the ARMAX (13.12) model:

yn+1 = a0ϕ0 (yn)+ a1ϕ1 (yn−1)+ . . .+ aLaϕLa

(
yn−La

)
+ b0vn + b1vn−1 + . . .+ bLbvn−Lb

+ d0ξn + . . . dLd ξn−Ld

=

La∑
s=0

asϕs (yn−s)+

Lb∑
k=0

bkvn−k +

Ld∑
l=0

dlξn−l

y0, y−1, . . . , y−La are given

(13.14)
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Here in the right-hand side of the recursion (13.14) the nonlinear functions

ϕs : R→ R

participate. Usually they should be selected (if we construct a model) in such a way that
the Lm-stability (the boundedness of E

{
|xn|

m} <∞) would be guaranteed.

13.3 LSM estimating

13.3.1 LSM deriving

Rewrite the general matrix recursion (13.1)

xn+1 = Axn + Bun + Dζn

in the extended form

xn+1 = Czn + Dζn

C :=
[
A B

]
∈ RN×(N+K ), zn :=

[
xn
un

]
(13.15)

Here we will treat the vector zn ∈ RN+K as the ‘generalized measurable (available) input’
at time n.

Definition 13.1. The matrix Cn ∈ RN×(N+K ) is said to be the L SM-estimate of the
matrix C in (13.15) at time n if

Cn := arg min
C∈RN×(N+K )

n∑
t=0

‖xt+1 − Czt‖
2 (13.16)

Theorem 13.1. If there exists a time n0 ≥ 0 such that

n0∑
t=0

zt z
ᵀ
t > 0 (13.17)

then the L SM-estimate Cn of the matrix C in (13.15) for all n ≥ n0 is uniquely defined
and is given by

Cn = V ᵀn Z−1
n

Vn :=

n∑
t=0

zt x
ᵀ
t+1, Zn :=

n∑
t=0

zt z
ᵀ
t = Zᵀn > 0

(13.18)

Proof. Using the identities

tr (AB) = tr (B A)
tr (A + B) = tr (A)+ tr (B)
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one has

Jn (C) :=
n∑

t=0

‖xt+1 − Czt‖
2
=

n∑
t=0

(
‖xt+1‖

2
− 2xᵀt+1Czt + ‖Czt‖

2
)

=

n∑
t=0

‖xt+1‖
2
− 2

n∑
t=0

tr
(
xᵀt+1Czt

)
+

n∑
t=0

tr
(
(Czt )

ᵀ Czt
)

=

n∑
t=0

‖xt+1‖
2
− 2

n∑
t=0

tr
(
Czt x

ᵀ
t+1

)
+

n∑
t=0

tr
(
zᵀt CᵀCzt

)
=

n∑
t=0

‖xt+1‖
2
− 2tr

(
C

n∑
t=0

zt x
ᵀ
t+1

)
+ tr

(
CᵀC

n∑
t=0

zt z
ᵀ
t

)

=

n∑
t=0

‖xt+1‖
2
− 2tr (CVn)+ tr

(
C ZnCᵀ

)
To calculate min

C∈RN×(N+K )
Jn (C) let us use the formulas (see (16.47) in Poznyak (2008))

∂

∂A
tr (B AC) = BᵀCᵀ,

∂

∂A
tr
(

AB Aᵀ
)
= ABᵀ + AB

that gives

∂

∂C
Jn (C) = −2V ᵀn + 2C Zn = 0

and hence,

Cn = V ᵀn Z−1
n

which is exactly (13.18). The uniqueness results from the uniqueness of the representation
of the last formula. �

Corollary 13.1. If N = 1, that is, C = cᵀ then

Cn = cᵀn = arg min
C∈R1×(1+K )

n∑
t=0

∥∥xt+1 − cᵀzt
∥∥2 (13.19)

and

cn =
(
cᵀn
)ᵀ
= Z−1

n Vn ∈ R(1+K ) (13.20)

Corollary 13.2. The LSM-estimate (13.18) can be derived using the so-called system of
the ‘normal equation’ obtained by the multiplication of the right-hand side by zᵀn each
equation (13.15), that is,

xn+1 = Czn + Dζn : z
ᵀ
n



Parametric identification 365

xn = Czn−1 + Dζn−1 : z
ᵀ
n−1

. . .

xn0+1 = Czn0 + Dζn0 : z
ᵀ
n0

which after the summation gives

n∑
t=n0

xt+1zᵀt = C
n∑

t=n0

zt z
ᵀ
t + D

n∑
t=n0

ζt z
ᵀ
t

Then the LSM-estimate (13.18) can be defined as the matrix Cn satisfying the identity
called the ‘normal form equation’:

n∑
t=n0

xt+1zᵀt = Cn

n∑
t=n0

zt z
ᵀ
t (13.21)

that leads to (13.18) since (13.21) is evidently equivalent to

V ᵀn = Cn Zn (13.22)

or, if Zn > 0,

Cn = V ᵀn Z−1
n (13.23)

Also the following relations hold:

V ᵀn = C Zn + D
n∑

t=n0

ζt z
ᵀ
t

or

C = V ᵀn Z−1
n + D

[
n∑

t=n0

ζt z
ᵀ
t

]
Z−1

n (13.24)

13.3.2 Recurrent matrix version of LSM

Lemma 13.1. The LSM-estimate Cn (13.18) can be represented recursively by

Cn+1 = Cn + (xn+2 − Cnzn+1) zᵀn+10n+1

0n+1 = 0n −
0nzn+1zᵀn+10n

1+ zᵀn+10nzn+1
, n ≥ n0

Cn0 = V ᵀn0
Z−1

n0
, 0n0 =

(
n0∑

t=0

zt z
ᵀ
t

)−1

= Z−1
n0

(13.25)
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Proof. Indeed, by definition (13.18)

Cn+1 = V ᵀn+1 Z−1
n+1 =

(
Vn + zn+1xᵀn+2

)ᵀ Z−1
n+1

= V ᵀn Z−1
n+1 +

(
zn+1xᵀn+2

)ᵀ Z−1
n+1

=

(
V ᵀn Z−1

n

)
Zn Z−1

n+1 + xn+2zᵀn+1 Z−1
n+1

= Cn Zn Z−1
n+1 + xn+2zᵀn+1 Z−1

n+1 (13.26)

Notice also that

I = Zn+1 Z−1
n+1 =

(
Zn + zn+1zᵀn+1

)
Z−1

n+1 = Zn Z−1
n+1 + zn+1zᵀn+1 Z−1

n+1

which implies

Zn Z−1
n+1 = I − zn+1zᵀn+1 Z−1

n+1

Substitution of the last identity into (13.26) gives

Cn+1 = Cn Zn Z−1
n+1 + xn+2zᵀn+1 Z−1

n+1 = Cn

(
I − zn+1zᵀn+1 Z−1

n+1

)
+ xn+2zᵀn+1 Z−1

n+1 = Cn + (xn+2 − Cnzn+1) zᵀn+1 Z−1
n+1 (13.27)

Defining 0n := Z−1
n and using the Sherman–Morrison formula (see (2.8) in Poznyak

(2008))

(
A + uvᵀ

)−1
= A−1

−
A−1uvᵀA−1

1+ vᵀA−1u
, vᵀA−1u 6= −1 (13.28)

we get

0n+1 = Z−1
n+1 =

(
Zn + zn+1zᵀn+1

)−1

= Z−1
n −

Z−1
n zn+1zᵀn+1 Z−1

n

1+ zᵀn+1 Z−1
n zn+1

= 0n −
0nzn+1zᵀn+10n

1+ zᵀn+10nzn+1

that together with (13.27) leads to (13.25). �

Corollary 13.3. For N = 1 the recurrent version of the LSM procedure (13.25) is as
follows:

cn+1 = cn + 0n+1zn+1 (xn+2 − cnzn+1)

0n+1 = 0n −
0nzn+1zᵀn+10n

1+ zᵀn+10nzn+1
, n ≥ n0

cn0 = Z−1
n0

Vn0 , 0n0 =

(
n0∑

t=0

zt z
ᵀ
t

)−1

= Z−1
n0

(13.29)
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Corollary 13.4. The algorithm (13.25) is asymptotically equivalent to the following one:

cn+1 = cn + 0n+1zn+1 (xn+2 − cnzn+1)

0n+1 = 0n −
0nzn+1zᵀn+10n

1+ zᵀn+10nzn+1
, n = 0, 1, . . .

00 := ρ
−1 I, 0 < ρ � 1 (small enough)

(13.30)

since for large enough n,

n0n =

(
1
n

n∑
t=n0

zt z
ᵀ
t

)−1

'

(
1
n

[
n∑

t=1

zt z
ᵀ
t + ρ I

])−1

13.4 Convergence analysis

13.4.1 Unbiased estimates

Definition 13.2. A matrix function Cn = Cn (x1, z1, . . . , xn, zn, xn+1), depending on the
available information and treated as an estimate of a matrix C at time n, is said to be

• unbiased at time n if

E {Cn} = C (13.31)

• asymptotically unbiased if

E {Cn} − C → 0 (13.32)

whereas n→∞.

Lemma 13.2. The LSM-estimate (13.18) is unbiased if and only if

DE

{(
n∑

t=n0

ζt z
ᵀ
t

)
Z−1

n

}
= 0 (13.33)

Proof. It follows directly from (13.23) and (13.24) since

C = V ᵀn Z−1
n + D

[
n∑

t=n0

ζt z
ᵀ
t

]
Z−1

n = Cn + D

[
n∑

t=n0

ζt z
ᵀ
t

]
Z−1

n (13.34)

Lemma is proven. �
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Corollary 13.5. If for the regression R-model (13.7) the ‘input vectors’ zt are statistically
independent of the ‘noise-vector’ ζt which has a zero-mean value (i.e., E {ζt } = 0), then
the corresponding LSM-estimate (13.18) is unbiased.

Proof. Indeed,

DE

{[
n∑

t=n0

ζt z
ᵀ
t

]
Z−1

n

}
= DE

{[
n∑

t=n0

ζt

(
zᵀt Z−1

n

)]}
= D

n∑
t=n0

E
{
ζt

(
zᵀt Z−1

n

)}
= D

n∑
t=n0

E {ζt }E
{

zᵀt Z−1
n

}
= 0

which proves the desired result. �

13.4.2 Asymptotic consistency

13.4.2.1 Strong LNL for dynamic models

Lemma 13.3. If the dynamic model (13.15) is stable, that is, if

‖A‖ :=
√
λmax (AᵀA) < 1 (13.35)

and the 4th moments E{‖ζn‖
4
}, E{‖un‖

4
} and E{‖x0‖

4
} are uniformly (in n) bounded,

namely,

lim sup
n→∞

E{‖ζn‖
4
+ ‖un‖

4
} + E{‖x0‖

4
} <∞ (13.36)

then for this model the strong large number law (see Corollary 8.10) holds:

∥∥∥∥∥1
n

n∑
t=n0

ζt z
ᵀ
t −

1
n

n∑
t=n0

E
{
ζt z
ᵀ
t
}∥∥∥∥∥ a.s.
→

n→∞
0∥∥∥∥1

n
Zn −

1
n
E {Zn}

∥∥∥∥ a.s.
→

n→∞
0

(13.37)

or equivalently,

1
n

n∑
t=n0

ζt z
ᵀ
t

a.s.
=

1
n

n∑
t=n0

E
{
ζt z
ᵀ
t
}
+ oω (1)

1
n

Zn
a.s.
=

1
n
E {Zn} + oω (1)

oω (1)
a.s.
→

n→∞
0

(13.38)
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and, hence, by (13.34)

C − Cn = D

[
n∑

t=n0

ζt z
ᵀ
t

]
Z−1

n = D

[
1
n

n∑
t=n0

ζt z
ᵀ
t

](
1
n

Zn

)−1

a.s.
= D

[
1
n
E

{
n∑

t=n0

ζt z
ᵀ
t

}
+ oω (1)

](
1
n
E {Zn} + oω (1)

)−1

a.s.
= D

[
1
n
E

{
n∑

t=n0

ζt z
ᵀ
t

}](
1
n
E {Zn}

)−1

+ oω (1) (13.39)

Proof. It follows from the fact that for any stable model the existence of a moment for
the input sequences implies the existence of the corresponding moment for the output
sequence. So, by the Cauchy–Schwartz inequality,

σ 2
ζt zᵀt
:= E

{∥∥(ζt z
ᵀ
t
)ᵀ (

ζt z
ᵀ
t
)∥∥} ≤ √E

{∥∥(ζt z
ᵀ
t
)ᵀ∥∥2

}√
E
{∥∥(ζt z

ᵀ
t
)∥∥2
}

= E
{∥∥(ζt z

ᵀ
t
)ᵀ∥∥2

}
≤ E

{
‖ζt‖

2
‖zt‖

2
}
≤

√
E
{
‖ζt‖

4}√E
{
‖zt‖

4}
≤ lim sup

n→∞

√
E
{
‖ζt‖

4}lim sup
n→∞

√
E
{
‖zt‖

4} <∞
And hence, in this case,

∑
n∈N+

1
n (n − 1)

σ 2
ζt zᵀt

√√√√n−1∑
r=0

σ 2
ζr zᵀr
≤ Const

∑
n∈N+

√
n

n (n − 1)

= Const
∑

n∈N+

1
√

n (n − 1)
= O

( ∑
n∈N+

1

n3/2

)
<∞

Therefore, Corollary 8.10 holds. The relation (13.39) results directly from (13.34). Lemma
is proven. �

Definition 13.3. An estimate Cn = Cn (x0; x1, z1; . . . ; xn, zn, xn+1) of the matrix C in
(13.15) is said to be asymptotic consistent, or simply, consistent

• with probability one (or, almost sure) if

Cn
a.s.
→

n→∞
C (13.40)

or equivalently, if

P {ω ∈ � : Cn → C whereas n→∞} = 1

• in probability if for any ε > 0

P {ω ∈ � : ‖Cn − C‖ > ε} → 0 whereas n→∞ (13.41)
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• in mean-square if

E
{
‖Cn − C‖2

}
→ 0 whereas n→∞ (13.42)

The matrix norm above is intended to be as in (13.35), namely,

‖Cn − C‖ :=
√
λmax ((Cn − C)ᵀ (Cn − C)) (13.43)

Remark 13.4. The mean-square consistency implies consistency in probability since by
the Chebyshev inequality (4.10) it follows that

P {ω ∈ � : ‖Cn − C‖ > ε} ≤ ε−2E
{
‖Cn − C‖2

}
and, if the right-hand side of this inequality tends to zero, then the left-hand side tends to
zero too.

13.4.2.2 Convergence analysis for static models

For the regression (static) R-models (13.7)

xn = Bun + ξn (13.44)

where the noise sequence is independent of the regression inputs {un}, the identification
error (13.39) with C = B becomes

C − Cn
a.s.
= D

[
E

{
1
n

n∑
t=n0

ζt z
ᵀ
t

}](
E

{
1
n

Zn

})−1

+ oω (1)

=

[
E

{
1
n

n∑
t=n0

ξt u
ᵀ
t

}](
E

{
1
n

n∑
t=n0

ut u
ᵀ
t

})−1

+ oω (1)

= oω (1)
a.s.
→

n→∞
0 (13.45)

since

E

{
1
n

n∑
t=n0

ζt z
ᵀ
t

}
=

1
n

n∑
t=n0

E
{
ζt z
ᵀ
t
}
=

1
n

n∑
t=n0

E {ζt }︸ ︷︷ ︸
0

E
{
zᵀt
}
= 0

We also have

(C − Cn)
ᵀ (C − Cn) =

(
Z−1

n

)ᵀ [ n∑
t=n0

ztξt

][
n∑

t=n0

ξt z
ᵀ
t

]
Z−1

n

=

(
Z−1

n

)ᵀ [ n∑
t=n0

n∑
s=n0

ξtξs
(
zt z
ᵀ
s

)]
Z−1

n
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and hence,

E
{
‖Cn − C‖2

}
:= E

{
λmax

(
(C − Cn)

ᵀ (C − Cn)
)}

≤ E
{
tr
(
(C − Cn)

ᵀ (C − Cn)
)}

= E

{
tr

((
Z−1

n

)ᵀ [ n∑
t=n0

n∑
s=n0

ξtξs
(
zt z
ᵀ
s

)]
Z−1

n

)}

= E

{
tr

([
n∑

t=n0

n∑
s=n0

ξtξs
(
zt z
ᵀ
s

)]
Z−1

n

(
Z−1

n

)ᵀ)}

= E

{
tr

([
n∑

t=n0

n∑
s=n0

ξtξs

[(
zt z
ᵀ
s

)
Z−1

n

(
Z−1

n

)ᵀ]])}

= tr

([
n∑

t=n0

n∑
s=n0

E {ξtξs}E
{(

zt z
ᵀ
s

)
Z−1

n

(
Z−1

n

)ᵀ}])
Since {ξn} is a sequence of independent variables, then

E {ξtξs} = σ
2
t δt,s

δt,s :=

{
1 if t = s
0 if t 6= s

is the Kronecker symbol

and hence,

E
{
‖Cn − C‖2

}
= tr

([
n∑

t=n0

n∑
s=n0

σ 2
t δt,sE

{(
zt z
ᵀ
s

)
Z−1

n

(
Z−1

n

)ᵀ}])

= tr

([
n∑

t=n0

σ 2
t E
{(

zt z
ᵀ
t
)

Z−1
n

(
Z−1

n

)ᵀ}])

For stationary noises, when σ 2
t = σ

2, it follows that

E
{
‖Cn − C‖2

}
= tr

([
n∑

t=n0

σ 2
t E
{(

zt z
ᵀ
t
)

Z−1
n

(
Z−1

n

)ᵀ}])

= σ 2tr


E


[

n∑
t=n0

(
zt z
ᵀ
t
)]

︸ ︷︷ ︸
Zn

Z−1
n

(
Z−1

n

)ᵀ





= σ 2tr
([

E
{(

Z−1
n

)ᵀ}])
= σ 2tr

(
E
{

Z−1
n

})
=
σ 2

n
tr

([
E

{(
1
n

Zn

)−1
}])

(13.46)

The considerations above lead to the following statement.
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Claim 13.1. For the R-model (13.44) with independent noise sequence {ξn} the LSM-
estimates (13.25) are

• consistent with probability one, which results from (13.45) if the regression inputs un
as well as the noise ξn have 4th bounded moments;
• consistent in the mean-square sense, which results from (13.46) if the so-called

persistent excitation condition holds, namely, if

lim sup
n→∞

tr

(
E

{(
1
n

Zn

)−1
})

<∞ (13.47)

which is equivalent to the following inequality:

lim inf
n→∞

λmin

(
1
n
E {Zn}

)
> 0 (13.48)

since

E
{
‖Cn − C‖2

}
=
σ 2

n
tr

([
E

{(
1
n

Zn

)−1
}])

≤
σ 2

n
NE

{
λmax

(
1
n

Zn

)−1
}
≤
σ 2

n
NE

{
λ−1

min

(
1
n

Zn

)}
=
σ 2

n
NE

{
λ−1

min

(
1
n
E {Zn} + oω (1)

)}
'
σ 2

n
N

[
λ−1

min

(
1
n
E {Zn} + E {oω (1)}

)]
'
σ 2

n
N

[
lim inf
n→∞

λmin

(
1
n
E {Zn}

)
+ E {oω (1)}

]−1

→
n→∞

0

13.4.2.3 Why LSM does not work for dynamic models with correlated noises

Consider, first, the ARMA model (13.10) given by

xn+1 = Axn + Dζn (13.49)

where

xn :=


yn

yn−1
...

yn−La

 ∈ RN , A =


a0 a1 · · · · · · aLa

1 0 · · · · · · 0
0 1 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 1 0
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ζn =


ξn
ξn−1
...

ξn−Ld

 , D =


d0 d1 · · · · · · dLd

0 0 · · · · · · 0
0 0 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 0 0


The LSM-formula (13.18) becomes as follows:

Cn = V ᵀn Z−1
n

Vn :=

n∑
t=0

xt x
ᵀ
t+1, Zn :=

n∑
t=0

xt x
ᵀ
t = Zᵀn > 0

(13.50)

and the corresponding estimation error (13.45) is

C − Cn
a.s.
=

[
1
n

n∑
t=n0

E
{
ζt x
ᵀ
t
}](1

n

n∑
t=n0

E
{

xt x
ᵀ
t
})−1

+ oω (1)

=
1
n

n∑
t=n0


E {ξt yt } E {ξt yt−1} · · · E

{
ξt yt−La

}
E {ξt−1 yt } E {ξt−1 yt−1} · · · E

{
ξt−1 yt−La

}
...

...
...

...

E
{
ξt−Ld yt

}
E
{
ξt−Ld yt−1

}
· · · E

{
ξt−Ld yt−La

}
 ·

·

(
1
n

n∑
t=n0

E
{

xt x
ᵀ
t
})−1

+ oω (1)

=
1
n

n∑
t=n0


0 0 · · · 0

E {ξt−1 yt } 0 · · · 0
...

...
...

...

E
{
ξt−Ld yt

}
E
{
ξt−Ld yt−1

}
· · · E

{
ξt−Ld yt−La

}
 ·

·

(
1
n

n∑
t=n0

E
{

xt x
ᵀ
t
})−1

+ oω (1)
a.s.9 0 as n→∞

Claim 13.2. For dynamic models (in particular, for ARMA models) the LS method does
not work properly; namely, it leads to biased estimates!

Example 13.1. Consider a simplest stable ARMA model with 1-step correlated noise given
by

yn+1 = ayn + ξn + dξn−1, y0 is given

|a| < 1, d ∈ R, E {ξn} = 0, E
{
ξ2

n

}
= σ 2 > 0

(13.51)
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Then the LS estimate (13.50) is

an =

[
1
n

n∑
t=1

yt yt+1

][
1
n

n∑
t=1

y2
t

]−1

and under the conditions of LNL it becomes

an
a.s.
=

1
n

n∑
t=1

E {yt yt+1}

1
n

n∑
t=1

E
{

y2
t
} + oω(1)

or, equivalently,

an
a.s.
=

1
n

n∑
t=1

E {yt (ayt + ξt + dξt−1)}

1
n

n∑
t=1

E
{

y2
t
} + oω(1)

= aE

1
n

n∑
t=1

E {yt (ξt + dξt−1)}

1
n

n∑
t=1

E
{

y2
t
} + oω(1) = a + d

1
n

n∑
t=1

E {ytξt−1}

1
n

n∑
t=1

E
{

y2
t
} + oω(1)

So, the corresponding identification error becomes

an − a
a.s.
= d

1
n

n∑
t=1

E {ytξt−1}

1
n

n∑
t=1

E
{

y2
t
} + oω(1)

For stable models with |a| < 1 there exist limits

lim
n→∞

E {ynξn−1} and lim
n→∞

E
{

y2
n

}
and hence, by the Kronecker lemma

an − a
a.s.
= d

lim
n→∞

E {ynξn−1}

lim
n→∞

E
{

y2
n

} + oω(1) (13.52)

Let us calculate these limits. From (13.51) it follows

E {yn+1ξn} = aE {ynξn} + E
{
ξ2

n

}
+ dE {ξn−1ξn} = σ

2 (13.53)

E
{

y2
n+1

}
= a2E

{
y2

n

}
+ E

{
ξ2

n

}
+ d2E

{
ξ2

n−1

}
+ 2aE {ynξn} + 2adE {ynξn−1} + 2dE {ξn−1ξn}

= a2E
{

y2
n

}
+

(
1+ d2

)
σ 2
+ 2adE {ynξn−1}

= a2E
{

y2
n

}
+

(
1+ d2

)
σ 2
+ 2adσ 2 (13.54)
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Since, for the stable linear recursion

zn+1 = āzn + c, |ā| < 1

we have

zn+1 = āzn + c = ā (āzn−1 + c)+ c

= ā2zn−1 + c + āc = . . . = ānz1 + c + āc + ā2c + . . .+ ānc

= ānz1 + c

(
1− ān+1

1− ā

)
→

n→∞

c

1− ā

then, for (13.54), we get

E
{

y2
n

}
→

(
1+ d2

)
+ 2ad

1− a2 σ 2

=

(
1− a2

)
+
(
a2
+ 2ad + d2

)
1− a2 σ 2

=

[
1+

(a + d)2

1− a2

]
σ 2 (13.55)

Substitution the obtained limits (13.53) and (13.55) in to (13.52) implies

an − a
a.s.
= d

σ 2[
1+ (a+d)2

1−a2

]
σ 2
+ oω(1)

= d
1

1+ (a+d)2

1−a2

+ oω(1)
a.s.
→

n→∞
d

1

1+ (a+d)2

1−a2

The derivative calculation of the limit value with respect to d givesd
1

1+ (a+d)2

1−a2

′ = (a2
− 1

) d2
− 1(

d2 + 2ad + 1
)2

So, the extremal points are d = ±1 and henced
1

1+ (a+d)2

1−a2


d=1

=
1
2
−

1
2

a,

d
1

1+ (a+d)2

1−a2


d=−1

= −
1
2

a −
1
2

These relations imply the following conclusion: the maximum bias of the LSM estimate is

max
d

lim
n→∞
|an − a| =

1
2

max {|1− a| ; |1+ a|}

The illustrative graphics (x := d, y := |an − a| for a = 0.5) are shown in Fig. 13.1

Conclusion 13.1. Be careful: the LS method does not work for identification of parame-
ters of dynamic models with correlated noises!
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Fig. 13.1. The bias dependence on the correlation coefficient d .

The next section presents the technique (see, for example, Soderstrom and Stoica (1980),
Poznyak and Tsypkin (1989) and Kaz’min and Poznyak (1992)) which corrects the LSM
in this situation.

13.4.2.4 Instrumental variables method as a corrected version of LS method

Consider again the ARMA model (13.10) given by

xn+1 = Axn + Dζn

with the noise component Dζn as

D =


d1 · · · · · · dLd

0 0 · · · · · · 0
0 0 0 · · · · · ·

0 0
. . . 0 0

0 0 · · · 0 0

 , ζn =


ξn
ξn−1
...

ξn−Ld



Dζn =



Ld∑
s=0

dsξn−s

0
...

0


Define the new auxiliary sequence {vn} of random variables.

Definition 13.4. We call the sequence {vn} of random vectors vn ∈ RN a sequence of
instrumental variables (IV) if it is obtained as the output of a stable forming filter H (q)
with the input sequence {xn}, that is,

vn = H (q) xn (13.56)
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where

H (q) =
P (q)

Q (q)

P (q) :=
kP∑

s=0

fsqs, Q (q) :=
kQ∑

s=0

gsqs

Q (q) is stable polynomial

q : qzn = zn−1 is the delay operator

(13.57)

Construct the estimating procedure, analogously to (13.50), as follows:

Cn = An = V ᵀn Z−1
n

Vn :=

n∑
t=0

vt x
ᵀ
t+1, Zn :=

n∑
t=0

xtv
ᵀ
t

(13.58)

with the instrumental variable vn formed as

vn = xn−Ld (13.59)

that corresponds to the forming filter

H (q) = q Ld (13.60)

Lemma 13.4. The instrumental variable vn is uncorrelated with the noise ζn .

Proof. Indeed, since the components ξn−s (s = 0, . . . , Ld) of the vector ζn are indepen-
dent random variables it follows that

E
{
ζnv
ᵀ
n

}
= E

{
ζn xᵀn−Ld

}
=


E
{
ξn xᵀn−Ld

}
...

E
{
ξn−Ld xᵀn−Ld

}
 = 0 �

For the instrumental variable estimates (13.58) the identification error is as follows:

A − An
a.s.
= A −

[
n∑

t=n0

xt+1v
ᵀ
t

](
n∑

t=n0

xtv
ᵀ
t

)−1

= A −

[
n∑

t=n0

(Axt + ζt ) v
ᵀ
t

](
n∑

t=n0

xtv
ᵀ
t

)−1

= A − A

[
n∑

t=n0

xtv
ᵀ
t

](
n∑

t=n0

xtv
ᵀ
t

)−1

+

[
n∑

t=n0

ζtv
ᵀ
t

](
n∑

t=n0

xtv
ᵀ
t

)−1
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=

[
1
n

n∑
t=n0

ζtv
ᵀ
t

](
1
n

n∑
t=n0

xtv
ᵀ
t

)−1

=

[
1
n

n∑
t=n0

E
{
ζtv
ᵀ
t
}](1

n

n∑
t=n0

E
{

xtv
ᵀ
t
})−1

+ oω (1) (13.61)

which implies the following proposition.

Proposition 13.1. The method of IV variables is consistent with probability one if and only
if

1. the analog of the ‘persistent excitation’ condition is fulfilled, i.e.,

lim inf
n→∞

∣∣∣∣∣det

(
1
n

n∑
t=n0

E
{

xtv
ᵀ
t
})∣∣∣∣∣ > 0 (13.62)

(for example, if no signals, that is, xt ≡ 0, the matrix
n∑

t=n0

E
{

xtv
ᵀ
t
}

is not invertible);

2. the instrumental variables are asymptotically uncorrelated with the noise, i.e.,

lim
n→∞

1
n

n∑
t=n0

E
{
ζtv
ᵀ
t
}
= 0 (13.63)

Proof. It follows directly from (13.61). �

Example 13.2. Consider the same example as in (13.51), namely,

yn+1 = ayn + ξn + dξn−1, y0 is given

|a| < 1, d ∈ R, E {ξn} = 0, E
{
ξ2

n

}
= σ 2 > 0

but with the parameter estimations obtained by the IV method:

an =

n∑
t=1

yt−1 yt+1

n∑
t=1

yt yt−1

=

1
n

n∑
t=1

yt−1 yt+1

1
n

n∑
t=1

yt yt−1

Obviously

an =

1
n

n∑
t=1

yt−1 (ayt + ξt + dξt−1)

1
n

n∑
t=1

yt−1 yt
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= a +

1
n

n∑
t=1

yt−1ξt

1
n

n∑
t=1

yt−1 yt

+ d

1
n

n∑
t=1

yt−1ξt−1

1
n

n∑
t=1

yt−1 yt

= a +

1
n

n∑
t=1

E {yt−1ξt }

1
n

n∑
t=1

E {yt−1 yt }

+ d

1
n

n∑
t=1

E {yt−1ξt−1}

1
n

n∑
t=1

E {yt−1 yt }

+ oω(1) (13.64)

Since

1
n

n∑
t=1

E {yt−1 yt } =
1
n

n∑
t=1

E {yt−1 (ayt−1 + ξt−1 + dξt−2)}

= a
1
n

n∑
t=1

E
{

y2
t−1

}
+ d

1
n

n∑
t=1

E {yt−1ξt−2} = a
σ 2
ξ

1− a2 + d2σ 2
ξ + o (1)

then if(
a

1− a2 + d2
)
σ 2
ξ 6= 0

it follows that

lim inf
n→∞

1
n

n∑
t=1

E {yt−1 yt } 6= 0

But we also have

1
n

n∑
t=1

E {yt−1ξt−1} =
1
n

n∑
t=1

E {yt−1ξt } = 0

Therefore, by (13.64), it follows that

an = a + oω(1)
a.s.
→

n→∞
a

Corollary 13.6. This exactly means that the corrected version of LSM-estimating with
use of the instrumental variables (as the delayed state variables) guarantees the consis-
tency property with probability one.

13.4.2.5 ‘Whitening’ process

The general dynamic NARMAX model (13.14)

xn+1 = Czn + Dζn
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can be represented also as follows:

xn+1 = Czn + D


ξn
ξn−1
...

ξn−Ld

 = Czn +


d0

d1q
...

dLd q Ld

 ξn

and for the scalar state-case it becomes

xn+1 = cᵀzn + H(q)ξn

H(q) =
Ld∑

s=0

dsqs (13.65)

Supposing that the polynomial H(q) is Hurwitz (stable), we may apply to both sides of
(13.65) the transformation H−1(q) that implies

x̃n+1 = cᵀ z̃n + ξn + oω(1) (13.66)

where the sequences {x̃n} and {z̃n} are defined as

x̃n := H−1(q)xn, z̃n = H−1(q)zn (13.67)

or, equivalently,

H(q)x̃n := xn, H(q)z̃n = H−1(q)zn

This means that {x̃n} and {z̃n} are the outputs of the following regression models

d0 x̃n + d1 x̃n−1 + . . .+ dLd x̃n−Ld = xn

d0 z̃n + d1 z̃n−1 + . . .+ dLd z̃n−Ld = zn
(13.68)

(with zero’s initial conditions). Evidently z̃n and ξn are non-correlated since we have
asymptotically a standard ‘white noise’ case, and hence, the classical LSM-algorithm
(13.25) can be directly applied to (13.66).

Summary 13.1. To identify the parameters c in the scalar state-variable NARMAX model
(13.65) one might apply the following procedure, called LSM with whitening, consisting
of two parallel processes:

• Form the auxiliary sequences {x̃n} and {z̃n} using (13.68);
• Apply the classical LSM procedure (13.25)

Cn = Ṽ ᵀn Z̃−1
n

Ṽn :=

n∑
t=0

x̃t x̃
ᵀ
t+1, Z̃n :=

n∑
t=0

x̃t x̃
ᵀ
t = Z̃ᵀn > 0

(13.69)
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or, its recurrent version

Cn+1 = Cn + (x̃n+2 − Cn z̃n+1) z̃ᵀn+10̃n+1

0̃n+1 = 0̃n −
0̃n z̃n+1 z̃ᵀn+10̃n

1+ z̃ᵀn+10n z̃n+1
, n ≥ n0

Cn0 = Ṽ ᵀn0
Z̃−1

n0
, 0n0 =

(
n0∑

t=0

z̃t z̃
ᵀ
t

)−1

= Z−1
n0

(13.70)

13.5 Information bounds for identification methods

Here we will present the approach to the analysis of the rates of convergence for the
parameter estimating procedures and pay especial attention to the question:

‘Which identification algorithm is better and in which situations?’

13.5.1 Cauchy–Schwartz inequality for stochastic matrices

Here we present the relation which serves as the basic instrument for deriving the
so-called information bounds characterizing the limiting possibilities of an estimating
procedure under a given information situation.

13.5.1.1 Stochastic Hölder and Cauchy–Schwartz inequalities

We start with the stochastic Hölder inequality 4.4 which says that for any positive p and
q such that

p > 1, q > 1, p−1
+ q−1

= 1 (13.71)

and any scalar random variables ξ, η defined on (�,F , P) and having p and q finite
absolute moments, i.e.,

E
{
|ξ |p

}
<∞, E

{
|η|q

}
<∞ (13.72)

the following inequality holds:

E {|ξη|} ≤
(
E
{
|ξ |p

})1/p (
E
{
|η|q

})1/q (13.73)

The stochastic Cauchy–Schwartz inequality (4.16) results from (13.73) letting p = q =
2, which leads to

(E {ξη})2 ≤ (E {|ξη|})2 ≤ E
{
|ξ |2

}
E
{
|η|2

}
(13.74)
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and if additionally E
{
|η|2

}
> 0, then

E
{
|ξ |2

}
≥ E {|ξη|}

[
E
{
|η|2

}]−1
E {|ξη|}

≥ E {ξη}
[
E
{
|η|2

}]−1
E {ξη}

(13.75)

Below we shall show that the last inequality (13.75) admits the generalization for the
vector case.

13.5.1.2 Nonnegative definiteness of a symmetric block-matrix

Lemma 13.5. Let S be a symmetric nonnegative definite block-matrix such that

S =

S11 S12

S21 S22

 ≥ 0

0 ≤ S11 = Sᵀ11 ∈ RN×N

0 < S22 = Sᵀ22 ∈ RM×M , S12 = Sᵀ21

Then obligatorily

S11 ≥ S12S−1
22 Sᵀ21 (13.76)

Proof. Since S ≥ 0, it follows that for any x ∈ RN and y ∈ RM

0 ≤
(

x
y

)ᵀ [S11 S12
S21 S22

](
x
y

)
= xᵀS11x + xᵀS12 y + yᵀS21x + yᵀS22 y

Using the presentation

S22 = S1/2
22 S1/2

22

((
S1/2

22

)ᵀ
= S1/2

22 > 0
)

and letting

y = −S−1
22 Sᵀ21x

one gets

0 ≤ xᵀS11x − xᵀS12S−1
22 Sᵀ21x − xᵀS21S−1

22 S21x

+ xᵀS21S−1
22 S22S−1

22 Sᵀ21x = xᵀS11x − xᵀS12S−1
22 Sᵀ21x − zᵀS21S−1

22 S21x

+ zᵀS21S−1
22 Sᵀ21x = xᵀS11x − xᵀS12S−1

22 Sᵀ21x = xᵀ
[

S11 − S12S−1
22 Sᵀ21

]
x

Since this inequality is valid for any x ∈ RN (13.76) follows. Lemma is proven. �
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13.5.1.3 Main inequality for stochastic vectors

Theorem 13.2. Let ξ ∈ RN , η ∈ RM be random vectors defined on (�,F , P) such that
their second moments exists, i.e.,

E
{
‖ξ‖2

}
<∞, E

{
‖η‖2

}
<∞ (13.77)

and additionally, the covariation matrix E {ηηᵀ} is non-singular, namely,

E
{
ηηᵀ

}
> 0 (13.78)

Then the following matrix inequality holds:

E
{
ξξᵀ

}
≥ E

{
ξηᵀ

} [
E
{
ηηᵀ

}]−1
E
{
ηξᵀ

}
(13.79)

Proof. Since

0 ≤
(
ξ

η

)(
ξ

η

)ᵀ
=

(
ξξᵀ ξηᵀ

ηξᵀ ηηᵀ

)
and applying the mathematical expectation to both sides of this inequality, we derive

0 ≤
(

E {ξξᵀ} E {ξηᵀ}
E {ηξᵀ} E {ηηᵀ}

)
The desired result (13.79) follows from this inequality and Lemma 13.5. �

Remark 13.5. The inequality (13.75) results from (13.79) if we consider the case N =
M = 1.

Now we are ready to formulate the main result of this section.

13.5.2 Fisher information matrix

Definition 13.5. The collection yn
:= {y1, . . . , yn} of random vectors y ∈ RN defined

on (�,F , P) is called regular with respect to a vector parameter c ∈ C ⊆ RK if the
following regularity conditions hold: there exists the joint distribution density function

pyn (v | c) := pyn (v1, . . . , vn | c)

depending on the vector parameter c such that

1.

sup
c∈C

E
{∥∥∇c ln pyn

(
yn
| c
)∥∥2
}
<∞ (13.80)
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2. for any c ∈ C the Fisher information matrix IF (c, n) defined by

IF (c, n) := E
{
∇c ln pyn

(
yn
| c
)
∇
ᵀ
c ln pyn

(
yn
| c
)}

(13.81)

is strictly positive, that is,

IF (c, n) > 0 (13.82)

The next lemma combines several important properties of IF (c, n).

Lemma 13.6. (on some properties of IF(c, n))

1. If random vectors y1, . . . , yn are independent then

IF (c, n) =
n∑

t=1

It
F (c) (13.83)

where It
F (c) is the Fisher information matrix of the random vector yt and is given by

It
F (c) = E

{
∇c ln pyt (yt | c)∇

ᵀ
c ln pyt (yt | c)

}
=

∫
v∈RN

[
∇c ln pyt (v | c)∇

ᵀ
c ln pyt (v | c)

]
pyt (v | c) dv

=

∫
v∈RN : pyt (v|c)>0

∇c pyt (v | c)∇
ᵀ
c pyt (v | c)

pyt (v | c)
dv

(13.84)

2. If random vectors y1, . . . , yn are independent and identically distributed then

IF (c, n) = n I1
F (c) (13.85)

Proof.

1. Since for a collection yn of independent random vectors y1, . . . , yn satisfying

pyn (v1, . . . , vn | c) =
n∏

t=1

pyt (vt | c)

one has

ln pyn (v1, . . . , vn | c) =
n∑

t=1

ln pyt (vt | c)
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and therefore,

∇c ln pyn
(
yn
| c
)
=

n∑
t=1

∇c ln pyt (vt | c)

By (13.81) it follows that

IF (c, n) := E
{
∇c ln pyn

(
yn
| c
)
∇
ᵀ
c ln pyn

(
yn
| c
)}

= E

{
n∑

t=1

∇c ln pyt (yt | c)
n∑

t=1

∇
ᵀ
c ln pyt (yt | c)

}

= E

{
n∑

t=1

n∑
s=1

∇c ln pyt (yt | c)∇
ᵀ
c ln pys (ys | c)

}

=

n∑
t=1

n∑
s=1

E
{
∇c ln pyt (yt | c)∇

ᵀ
c ln pys (ys | c)

}
=

n∑
t=1

n∑
s=1

s 6=t

E
{
∇c ln pyt (yt | c)

}
E
{
∇
ᵀ
c ln pys (ys | c)

}

+

n∑
t=1

E
{
∇c ln pyt (yt | c)∇

ᵀ
c ln pyt (yt | c)

}
(13.86)

Notice that

E
{
∇c ln pyt (yt | c)

}
=

∫
v∈RN

∇c ln pyt (v | c) pyt (v | c) dv

= E

∫
v∈RN

∇c pyt (v | c) dv = 0

which results by differentiating on c the identity∫
v∈RN

pyt (v | c) dv = 1

Hence (13.86) is

IF (c, n) =
n∑

t=1

It
F (c)

2. The formula (13.85) is the evident sequence of (13.83).
Lemma is proven. �

Example 13.3. Consider a Gaussian random variable y ∈ R having the distribution
density function

py (v | c) =
1

√
2πσ

exp

{
−
(v − c)2

2σ 2

}
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Then

I1
F (c) =

∫
v∈R:py(v|c)>0

( d
dc py (v | c)

)2
py (v | c)

dv

= I1
F (c) =

∫
v∈R:py(v|c)>0

( d
dv py (v | c)

)2
py (v | c)

dv

=

∫
v∈R:pyt (v|c)>0

(
1

√
2πσ

exp
{
−
(v−c)2

2σ 2

} (
(v−c)
σ 2

))2

py (v | c)
dv

=

∫
v∈R

(v − c)2
1

σ 4 py (v | c) dv = σ−2 (13.87)

Example 13.4. For a Laplace random variable y ∈ R having the distribution density
function

py (v | c) =
1

2a
exp

{
−
|v − c|

a

}
one has

I1
F (c) =

∫
v∈R:py(v|c)>0

( d
dv py (v | c)

)2
py (v | c)

dv

=

∫
v∈R:pyt (v|c)>0

(
1

2a exp
{
−
|v−c|

a

} (
sign(v−c)

a

))2

py (v | c)
dv

=
1

a2

∫
v∈R

py (v | c) dv = a−2 (13.88)

Example 13.5. For a random variable y ∈ R having the distribution density function

py (v | c) =

{π
a

cos2
( π

2a
(v − c)

)
for |v − c| ≤ a

0 for |v − c| > a

]
one has

I1
F (c) =

∫
v∈R:py(v|c)>0

( d
dv py (v | c)

)2
py (v | c)

dv
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=

∫
v∈R:pyt (v|c)>0

(
π
a cos

(
π
2a (v − c)

)
sin
(
π
2a (v − c)

)
2 π

2a

)2
py (v | c)

dv

=

(π
a

)2
∫

v:|v−c|≤a

sin2
( π

2a
(v − c)

)
py (v | c) dv

=

(π
a

)2
∫

v:|v−c|≤a

[
1− cos2

( π
2a
(v − c)

)]
py (v | c) dv

=

(π
a

)2
−

(π
a

)2
∫

v:|v−c|≤a

cos3
( π

2a
(v − c)

)
dv =

(π
a

)2

Exercise 13.1. Show that for any absolutely continuous and quadratically integrable
random variable ζ with a symmetric distribution pζ (v) the following inequality holds:

IF
(

pζ
)
σ 2
ζ ≥ 1 (13.89)

where

IF
(

pζ
)
:=

∫
v∈R: pζ (v)>0

[
d

dv
ln pζ (v)

]2

pζ (v) dv

σ 2
ζ := E

{
(ζ − E {ζ })2

}
Indeed, letting in (13.74)

ξ :=
d

dv
ln pζ (v) |v=ζ , η := ζ − E {ζ }

we obtain

E
{
|ξ |2

}
= IF

(
pζ
)
, E

{
|η|2

}
= σ 2

ζ

Since ∫
v∈R

d

dv
pζ (v) dv =

∫
v∈R

dpζ (v) = pζ (∞)− pζ (−∞) = 0− 0 = 0

and, in view of the symmetricity property, after differentiating by c both parts of the identity∫
v∈R

vpζ (v − c) dv =
∫
v∈R

(v − c) pζ (v − c) dv + c = c

we get∫
v∈R

v
d

dv
pζ (v) dv =

∫
v∈R

v
d

dc
pζ (v − c) |c=0 dv = 1
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Therefore

E {ξη} =

∫
v∈R: pζ (v)>0

(v − E {ζ })
d

dv
ln pζ (v) pζ (v) dv

=

∫
v∈R

(v − E {ζ })
d

dv
pζ (v) dv

=

∫
v∈R

v
d

dv
pζ (v) dv + E {ζ }

∫
v∈R

d

dv
pζ (v) dv = 1

which implies (13.89).
Notice that, in view of (13.87),

IF
(

pζ
)
σ 2
ζ = 1

only for Gaussian random variables.

13.5.3 Cramér–Rao inequality

The main theorem of this section is as follows (see Cramér (1957)).

Theorem 13.3. (Cramer–Rao, 1946) For any parameter estimate (a function of avail-
able data) cn = cn (y1, y2, . . . , yn) which is unbiased and quadratically integrable, i.e.,
for any c ∈ C ⊆ RK

E {cn} = c, sup
c∈C

E
{
‖cn − c‖2

}
<∞ (13.90)

under regular observations yn the following information bound holds:

E
{
(cn − c) (cn − c)ᵀ

}
≥ I−1

F (c, n) (13.91)

that exactly means that under regular observations it is impossible to reach the quality of
estimating E {(cn − c) (cn − c)ᵀ} better than I−1

F (c, n).

Proof. Let us put in (13.79)

ξ := cn − c, η := ∇c ln pyn
(
yn
| c
)

By the unbiased property

0 = E {cn − c} =
∫

v∈RN

(cn − c) pyn (v | c) dv = 0
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Differentiating this identity implies

0 = −I
∫

v∈RN

pyn (v | c) dv +
∫

v∈RN

(cn − c)∇ᵀc pyn (v | c) dv

or equivalently,

E
{
ξηᵀ

}
= E

{
(cn − c)∇ᵀc ln pyn

(
yn
| c
)}
= I

Analogously

E
{
ηξᵀ

}
= E

{
∇c ln pyn

(
yn
| c
)
(cn − c)ᵀ

}
= I

Noticing that

E
{
ηηᵀ

}
= E

{
∇c ln pyn

(
yn
| c
)
∇
ᵀ
c ln pyn

(
yn
| c
)}
= IF (c, n)

and using (13.79) leads to (13.91). Theorem is proven. �

13.6 Efficient estimates

13.6.1 Efficient and asymptotic efficient estimates

13.6.1.1 The main definition

Based on the Cramer–Rao inequality (13.91) we may introduce the following important
definitions.

Definition 13.6. An unbiased and quadratically integrable parameter estimate cn =

cn (y1, y2, . . . , yn), constructed based on regular observations, is said to be

(a) efficient, if it verifies the exact equality in (13.91);
(b) asymptotically efficient, if it ensures the equality

lim
n→∞

n E
{
(cn − c) (cn − c)ᵀ

}
= lim

n→∞
nI−1

F (c, n) (13.92)

(provided that both above limits exist).

13.6.1.2 Information bound in the general scalar-output case

Here we will calculate the information bound

I := lim
n→∞

nI−1
F (c, n) (13.93)

for the measuring scheme (13.15) with white noise, i.e.,

xn+1 = Czn + ξn (13.94)

generating the data set (x1, z0; x2, z1; . . . ; xn+1, zn) where xn ∈ R.
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Theorem 13.4. If in (13.94) with i.i.d. centered ‘noise’ sequence {ξn} the generalized
inputs {zn} satisfy the following conditions:

1. ‘strong law of large number’ (SLNL) for {zn}∥∥∥∥∥1
n

n∑
t=0

{
zt z
ᵀ
t
}
−

1
n

n∑
t=0

E
{
zt z
ᵀ
t
}∥∥∥∥∥ a.s.
→

n→∞
0 (13.95)

2. the convergence of ‘averaged’ inputs covariation

1
n

n∑
t=0

E
{
zt z
ᵀ
t
}
→

n→∞
R > 0 (13.96)

3. zn (under a fixed prehistory zn−1
:= (z1, . . . , zn−1) and fixed xn) does not depend on

c, that is,

∇c ln pzn

(
vz

n | xn, zt−1, c
)
= 0 (n = 1, . . .)

then the information bound under the regular data yn :=
(
xᵀn+1, zᵀn

)ᵀ
∈ R1+K is

I = lim
n→∞

nI−1
F (c, n) = R−1 I−1

F

(
pξ1

)
(13.97)

where

IF
(

pξ1

)
:= E

{[(
ln pξ1 (ξ1)

)′]2
}

(13.98)

Proof. By the Bayes formula (1.69) and by definition (13.81) we have

pyn (v1, . . . , vn | c)=pyn

(
vn | yn−1, c

)
pyn−1 (v1, . . . , vn−1 | c)

= · · · =

[
n∏

t=1

pyt

(
vt | yt−1, c

)]
py1 (v1 | y0, c)

=

n∏
t=0

pxt+1

(
vx

t | zt , yt−1, c
)

pzt

(
vz

t | yt−1, c
)

and hence,

IF (c, n) = E
{
∇c ln pyn

(
yn
| c
)
∇
ᵀ
c ln pyn

(
yn
| c
)}

= E

{
n∑

t=1

∇c ln pyt

(
vt | yt−1, c

) n∑
t=1

∇
ᵀ
c ln pyt

(
vt | yt−1, c

)}
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=

n∑
t=1

n∑
s=1

E
{
∇c ln pyt

(
vt | yt−1, c

)
∇
ᵀ
c ln pys

(
vs | ys−1, c

)}
=

n∑
t=1

n∑
s=1

E
{[
∇c ln pxt+1

(
vx

t | zt , yt−1, c
)
+∇c ln pzt

(
vz

t | yt−1, c
)]

·

[
∇c

(
ln pxs+1

(
vx

s | zs, ys−1, c
)
+∇c ln pzs

(
vz

s | ys−1, c
))]ᵀ}

Taking into account that

pxt+1

(
vx

t | zt , yt−1, c
)
= pξt

(
vx

t − cᵀzt | zt , yt−1, c
)
= pξt

(
vx

t − cᵀzt
)

∇c ln pxt+1

(
vx

t | zt , yt−1, c
)
= −

zt

pξt

(
vx

t − cᵀzt
) p′ξt

(
vx

t − cᵀzt
)

∇c ln pzt

(
vz

t | yt−1, c
)
= ∇c ln pzt

(
vz

t | xt , zt−1, c
)
= 0 (t = 1, . . .)

and since {ξt }t≥1 is i.i.d. centered sequence, it follows that for t 6= s

E
{
∇c ln pxt+1

(
vx

t | zt , yt−1, c
)
∇
ᵀ
c ln pxs+1

(
vx

s | zs, ys−1, c
)}

= E
{
∇c ln pxt+1

(
vx

t | zt , yt−1, c
)}

E
{
∇
ᵀ
c ln pxs+1

(
vx

s | zs, ys−1, c
)}
= 0

and, as a result,

IF (c, n) =
n∑

t=1

E

{
zt z
ᵀ
t

[(
ln pξt (ξt )

)′]2
}
= E

{
n∑

t=1

zt z
ᵀ
t

}
IF
(

pξt

)
which implies (13.97). Theorem is proven. �

Below, based on the definitions and statements above, we will analyze some partial
models and corresponding asymptotically efficient algorithms.

13.6.1.3 LSM for R-models under Gaussian noises

Consider the regression model (13.6)

yn+1 =

Lb∑
t=0

btvn−t + ξn = (b, vn)+ ξn

bᵀ =
(
b0, . . . , bLb

)
, vᵀn =

(
vn, vn−1, . . . , vn−Lb

)
with stationary white-noise terms ξn having Gaussian distribution pξ (x) = N

(
0, σ 2

)
.

Applying the LSM algorithm (13.20) for the identification of the vector b we obtain

bn = Z−1
n Vn

Vn :=

n∑
t=0

vt yt+1, Zn :=

n∑
t=0

vt v
ᵀ
t = Zᵀn > 0
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Then we can get the expression (13.45) for the identification error in the following form:

1n := bn − b = Z−1
n Vn − b =Z−1

n

(
n∑

t=0

vt yt+1

)
− b

= Z−1
n

(
n∑

t=0

vt
[
vᵀt b+ ξt

])
− b = Z−1

n

n∑
t=0

vtξt

Supposing that {vt } is a deterministic regressor, we derive the following expression for the
error covariance matrix:

E
{
(bn − b) (bn − b)ᵀ

}
= E

{
1n1

ᵀ
n

}
= E

{(
Z−1

n

n∑
t=0

vtξt

)(
n∑

t=0

ξt v
ᵀ
t Z−1

n

)}

= Z−1
n E

{
n∑

t=0

n∑
s=0

vt vᵀs ξtξs

}
Z−1

n = Z−1
n

n∑
t=0

n∑
s=0

vt vᵀs E {ξtξs} Z−1
n

= Z−1
n

(
n∑

t=0

vt v
ᵀ
t

)
Z−1

n σ 2
= Z−1

n σ 2
= σ 2

(
n∑

t=0

vt v
ᵀ
t

)−1

(13.99)

Using the definition of the Fisher information matrix (13.81) and taking into account
that the noise sequence is independent and stationary (13.83), one can easily realize the
following calculation:

IF (b, n) =
n∑

t=1

It
F (b)

=

n∑
t=1

∫
v∈RN

∇b pyt+1 (v | b)∇
ᵀ
b pyt+1 (v | b)

pyt+1 (v | b)
dv

=

n∑
t=1

∫
v∈RN

∇b pξt

(
v − vᵀt b | b

)
∇
ᵀ
b pξt

(
v − vᵀt b | b

)
pξt

(
v − vᵀt b | b

) dv

=

n∑
t=1

∫
v∈RN

p′ξt

(
v − vᵀt b | b

)
vt v
ᵀ
t p′ξt

(
v − vᵀt b | b

)
pξt

(
v − vᵀt b | b

) dv

=

n∑
t=1

vt v
ᵀ
t

∫
v∈RN

[
p′ξt

(
v − vᵀt b | b

)]2

pξt

(
v − vᵀt b | b

) dv
(13.87)
= σ−2

n∑
t=1

vt v
ᵀ
t (13.100)

Comparing (13.99) with (13.100) we conclude that

E
{
(bn − b) (bn − b)ᵀ

}
= σ 2

(
n∑

t=0

vt v
ᵀ
t

)−1

= I−1
F (b, n)

which exactly means the following.
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Claim 13.3. The LSM estimate (13.20) being applied to an R-model identification with
deterministic regressors and under Gaussian stationary noises is effective, that is, in this
situation there does not exist any other estimate better than LSM. Under noises with
other distributions LSM estimates are non-effective.

Claim 13.4. It is not difficult to check that the LSM estimate (13.20) being applied to
an R-model identification with stochastic regressors, which are independent of Gaussian
stationary noises, is asymptotically effective, that is, in this situation there does not exist
(see inequality (13.89)) any other estimate better (asymptotically) than LSM. Under
noises with other distributions LSM estimates are non-asymptotically effective.

13.6.1.4 LSM for AR models under Gaussian noises

For the AR model (13.3), analogously to the previous example, we have

yn+1 =

La∑
s=0

as yn−s + ξn = aᵀvn + ξn

aᵀ =
(
a0, . . . , aLa

)
, vᵀn =

(
yn, yn−1, . . . , yn−La

)
and

E
{
(an − a) (an − a)ᵀ

}
= E

{(
Z−1

n

n∑
t=0

vtξt

)(
n∑

t=0

ξt v
ᵀ
t Z−1

n

)}

= E

{
Z−1

n

n∑
t=0

n∑
s=0

vt vᵀs ξtξs Z−1
n

}
=

n∑
t=0

n∑
s=0

E
{

Z−1
n vt vᵀs E {ξtξs} Z−1

n

}
= σ 2

n∑
t=0

E
{

Z−1
n vt v

ᵀ
t Z−1

n

}
= σ 2E

{
Z−1

n

(
n∑

t=0

vt v
ᵀ
t

)
Z−1

n

}
= σ 2E

{
Z−1

n

}
(13.101)

or equivalently,

nE
{
(an − a) (an − a)ᵀ

}
= σ 2E


(

1
n

n∑
t=0

vt v
ᵀ
t

)−1


Also, by Bayes’ rule, it follows that

pyn+1 (v | a) = pyn+1

(
vn+1 | yn, a

)
pyn

(
vn | yn−1, a

)
· · · py0

(
v0 | y−1, a

)
and hence,

ln pyn+1 (v | a) =
n∑

t=0

ln pyt+1

(
vt+1 | yt , a

)
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Notice that py0

(
v0 | y−1, a

)
does not depends on a. So,

∇a ln pyn+1 (v | a) =
n∑

t=1

∇a ln pyt+1

(
vt+1 | yt , a

)
=

n∑
t=0

∇a ln pξt

(
vt+1 − vᵀt a | yt , a

)
and therefore, by the noise independence property

IF (a, n) = E


n∑

t=1

∫
v∈RN

∇a pyt+1 (vt+1 | a)∇
ᵀ
a pyt+1 (vt+1 | a)

pyt+1 (vt+1 | a)
dvt+1


=

n∑
t=1

E


∫

v∈RN

∇a pξt

(
vt+1 − vᵀt a | a

)
∇
ᵀ
a pξt

(
vt+1 − vᵀt a | a

)
pξt

(
vt+1 − vᵀt a | a

) dvt+1


=

n∑
t=1

E


∫

v∈RN

p′ξt

(
v − vᵀt a | a

)
vt v
ᵀ
t p′ξt

(
v − vᵀt a | a

)
pξt

(
v − vᵀt a | a

) dv


=

n∑
t=1

E

vt v
ᵀ
t

∫
v∈RN

[
p′ξt

(
v − vᵀt a | a

)]2

pξt

(
v − vᵀt a | a

) dv

 (13.87)
= σ−2

n∑
t=1

E
{
vt v
ᵀ
t
}

By the strong large number law

1
n

n∑
t=0

vt v
ᵀ
t

a.s.
=

1
n

n∑
t=0

E
{
vt v
ᵀ
t
}
+ oω (1)

For a stable auto-regression (when the polynomial pa (q) =
La∑

s=0
asqs is Hurwitz, i.e.,

having all roots inside the united circle)

1
n

n∑
t=0

E
{
vt v
ᵀ
t
}
→ R

R : R = AR A +4

(13.102)

where

A =

∥∥∥∥∥∥∥∥∥∥∥

a0 a1 · · · · · · aLa

1 0 · · · · · · 0
0 1 0 · · · 0

0 · · ·
. . . 0 0

0 · · · 0 1 0

∥∥∥∥∥∥∥∥∥∥∥
, 4 = σ 2

∥∥∥∥∥∥∥∥∥∥∥

1 0 · · · · · · 0
0 0 · · · · · · 0
0 0 0 · · · 0

0 · · ·
. . . 0 0

0 · · · 0 0 0

∥∥∥∥∥∥∥∥∥∥∥
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Hence, for large enough n,

nE
{
(an − a) (an − a)ᵀ

}
= σ 2E


(

1
n

n∑
t=0

vt v
ᵀ
t

)−1
 = σ 2 R−1

+ o(1)

nI−1
F (a, n)

(13.87)
= σ 2

(
1
n

n∑
t=1

E
{
vt v
ᵀ
t
})−1

= σ 2 R−1
+ o(1)

which implies

lim
n→∞

nE
{
(an − a) (an − a)ᵀ

}
= lim

n→∞
nI−1

F (a, n) = σ 2 R−1 (13.103)

This identity exactly means the following.

Claim 13.5. The LSM estimate (13.20) being applied to an AR-model identification with
Gaussian stationary noises is asymptotically effective, that is, in this situation there does
not exist (see inequality (13.89)) any other estimate better than LSM. Under noises with
other distributions LSM estimates are non-asymptotically effective.

The natural question is: ‘Which type of estimates are effective or asymptotically effective
when noises are of a non-Gaussian nature?’. The next section gives an answer to this
question.

13.6.2 Recurrent LSM with a nonlinear residual transformation

13.6.2.1 Nonlinear residual transformation
Let us consider the LSM algorithm in its recurrent form (13.29) where instead of the

scalar residual (xn+2 − cnzn+1) its nonlinear transformation ϕ (xn+2 − cnzn+1) is used,
namely,

cn+1 = cn + 0n+1zn+1ϕ
(
xn+2 − cᵀn zn+1

)
0n+1 = 0n −

0nzn+1zᵀn+10n

1+ zᵀn+10nzn+1
, n ≥ n0

cn0 = Z−1
n0

Vn0 , 0n0 =

(
n0∑

t=0

zt z
ᵀ
t

)−1

= Z−1
n0

(13.104)

where ϕ : R → R is a function to be selected to obtain a higher convergence rate under
a non-Gaussian regular noise. If a process (13.15) under white noise disturbances to be
identified is stable (converges to a stationary process), then

n0n := nZ−1
n =

(
1
n

n∑
t=0

vt v
ᵀ
t

)−1
a.s.
→

n→∞

lim
n→∞

(
1
n

n∑
t=0

E
{
vt v
ᵀ
t
})−1

= lim
n→∞

(
E
{
vt v
ᵀ
t
})−1
:= R−1
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and hence,

0n
a.s.
'

1
n + 1

R−1

Claim 13.6. Procedure (13.104) is asymptotically equivalent to the following one:

cn+1 = cn +
1

n + 1
R−1zn+1ϕ

(
xn+2 − cᵀn zn+1

)
(13.105)

13.6.2.2 Convergence analysis and asymptotic normality

Theorem 13.5. (on an almost-sure convergence) If

1. the conditions of Theorem 13.4 are fulfilled, and additionally,

sup
n

E
{
‖zn‖

4
}
<∞ (13.106)

2. in the model (13.15) the scalar noise sequence {ξn}n≥1 is i.i.d. and such that

E {ξn} = 0, E
{
ξ2

n

}
= σ 2 > 0, E

{
ξ4

n

}
= E

{
ξ4

1

}
<∞ (13.107)

3. a nonlinear residual transformation ϕ : R→ R provides for all x ∈ R the existence of
the functions

ψ (x) := E {ϕ (x + ξn)}

S (x) := E
{
ϕ2 (x + ξn)

} (13.108)

satisfying

xψ (x) ≥ δx2, δ > 0

S (x) ≤ k0 + k1x2, 0 ≤ k0, k1 <∞

(13.109)

then under any initial conditions c0 the sequence {cn}n≥0, generated by the procedure
(13.105), converges with probability one to the value C = c participating in (13.15).

Proof. Define 1n := cn − c for which we have

1n+1 = 1n +
1

n + 1
R−1zn+1ϕ

(
−1ᵀn zn+1 + ξn

)
(13.110)
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and hence,

‖1n+1‖
2
R = ‖1n‖

2
R +

2
n + 1

1ᵀn zn+1ϕ
(
−1ᵀn zn+1 + ξn

)
+

1

(n + 1)2

∥∥∥R−1zn+1

∥∥∥2

R
ϕ2 (
−1ᵀn zn+1 + ξn

)
Taking conditional mathematical expectation E {·/Fn} of both sides of the last relation
(with Fn := (ξ0, z0, x1; . . . ; ξn−1, zn, xn+1; zn+1)) we obtain

E
{
‖1n+1‖

2
R /Fn

}
a.s.
= ‖1n‖

2
R +

2
n + 1

1ᵀn zn+1ψ
(
−1ᵀn zn+1

)
+

1

(n + 1)2
‖zn+1‖

2
R−1 S

(
−1ᵀn zn+1

)
By the assumptions of this theorem the last relation implies

E
{
‖1n+1‖

2
R /Fn

} a.s.
≤ ‖1n‖

2
R −

2δ
n + 1

(
1ᵀn zn+1

)2
+

1

(n + 1)2
‖zn+1‖

2
R−1

[
k0 + k1

(
1ᵀn zn+1

)2]
≤ ‖1n‖

2
R

[
1+

k1

(n + 1)2

∥∥∥R−1
∥∥∥ ‖zn+1‖

4
]

−
2δ

n + 1

(
1ᵀn zn+1

)2
+

k0

(n + 1)2
‖zn+1‖

2
R−1 (13.111)

Therefore, the direct application of the Robbins–Siegmund theorem 7.11 guarantees that

‖1n‖
2
R

a.s.
→

n→∞
w (13.112)

and

∞∑
n=1

1
n

(
1
ᵀ
n−1zn

)2 a.s.
< ∞ (13.113)

By the Abel identity (see Lemma 12.2 in Poznyak (2008))

n∑
t=n0

At Bt = An

n∑
t=n0

Bt −

n∑
t=n0

(At − At−1)

t−1∑
s=n0

Bs

valid for any matrices At and Bt of the corresponding dimensions, we have

N∑
n=n0

1
n

(
1
ᵀ
n−1zn

)2
=

N∑
n=n0

1
n

(
1
ᵀ
n−1znzᵀn1n−1

)
=

N∑
n=n0

1
n

tr
{
1
ᵀ
n−1znzᵀn1n−1

}
= tr

{
N∑

n=n0

(
1
n
1n−11

ᵀ
n−1

) (
znzᵀn

)}
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tr

{
1N−11

ᵀ
N−1

1
N

N∑
n=n0

znzᵀn

−

N∑
n=n0

[(
1
n
1n−11

ᵀ
n−1

)
−

(
1

n − 1
1n−21

ᵀ
n−2

)] n−1∑
s=n0

(
zs zᵀs

)}
Taking into account that by the assumption 1.

1
N

N∑
n=n0

znzᵀn
a.s.
→

N→∞
R

for large enough n0 we get

N∑
n=n0

1
n

(
1
ᵀ
n−1zn

)2
= tr

{
1N−11

ᵀ
N−1 (R+oω (1))

−

N∑
n=n0

[(
n − 1

n
1n−11

ᵀ
n−1

)
−
(
1n−21

ᵀ
n−2

)] 1
n − 1

n−1∑
s=n0

(
zs zᵀs

)}

= tr

{
‖1n‖

2
R + oω (1)

−

N∑
n=n0

[(
n − 1

n
1n−11

ᵀ
n−1

)
−
(
1n−21

ᵀ
n−2

)]
(R+ oω (1))

}
= ‖1n‖

2
R + oω (1)

−

N∑
n=n0

[
n − 1

n

(
‖1n‖

2
R+oω (1)

)
−

(
‖1n‖

2
R + oω (1)

)]

= ‖1n‖
2
R + oω (1)+

N∑
n=n0

1
n

(
‖1n‖

2
R + oω (1)

)
So, for N →∞ we have

∞∑
n=n0

1
n

(
1
ᵀ
n−1zn

)2
= w+

∞∑
n=n0

1
n

(
‖1n‖

2
R + oω (1)

)
a.s.
< ∞ (13.114)

Since
∑
∞

n=n0

1
n
= ∞, from the last estimation it follows that there exists a subsequence{∥∥1nk

∥∥2
R

}
k≥1

which converges to zero. But
{
‖1n‖

2
R
}

n≥1 converges itself, and therefore

all its subsequences have the same limit which implies that w = 0. Theorem is proven. �

One can represent recursion (13.110), corresponding to procedure (13.105), as follows:

1n+1 = 1n +
1

n + 1
R−1zn+1

[
ψ
(
−1ᵀn zn+1

)
+ ζn

]
(13.115)
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where

ζn := ϕ
(
−1ᵀn zn+1 + ξn

)
− ψ

(
−1ᵀn zn+1

)
is a martingale-difference (see Definition 7.5) since

E {ζn/Fn}
a.s.
= 0

If, additionally, we suppose that ψ ′ (x) is differentiable in x = 0 and ψ ′ (0) > 0, taking
into account that 1n

a.s.
→

n→∞
0, from (13.115) we get

1n+1 = 1n +
1

n + 1
R−1zn+1

[
−ψ ′ (0)1ᵀn zn+1 + oω (1)+ ζn

]
= 1n −

ψ ′ (0)
n + 1

R−1zn+1zᵀn+11n +
1

n + 1
R−1zn+1 (oω (1)+ ζn)

The Lemma 13.7 below shows that two processes

1n+1 = 1n −
ψ ′ (0)
n + 1

R−1zn+1zᵀn+11n +
1

n + 1
R−1zn+1 (oω (1)+ ζn) (13.116)

and

1̃n+1 =

(
1−

ψ ′ (0)
n + 1

)
1̃n +

1
n + 1

R−1zn+1 (oω (1)+ ζn) (13.117)

are
√

n-equivalent, that is,

√
n
(
1n − 1̃n

)
a.s.
→

n→∞
0 (13.118)

Lemma 13.7. Under the conditions of Theorem 13.5 and if ψ ′ (x) is differentiable in
x = 0 and ψ ′ (0) > 0, two processes (13.116) and (13.117) are

√
n-equivalent in the

sense of (13.118).

Proof. For 2n :=
√

n
(
1n − 1̃n

)
applying the representation√

1+
1
n
= 1+

1+ o(1)
2n

one has

2n+1 =
√

n + 1
[(

I−
ψ ′ (0)
n + 1

R−1zn+1zᵀn+1

)
1n−

(
1−
ψ ′ (0)
n + 1

)
1̃n

]
=
√

n + 1
[((

1−
ψ ′ (0)
n + 1

)
−
ψ ′ (0)
n + 1

[
R−1zn+1zᵀn+1 − I

])
1n

−

(
1−

ψ ′ (0)
n + 1

)
1̃n

]
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=

√
n + 1
√

n

[(
1−

ψ ′ (0)
n + 1

)
2n −

ψ ′ (0)
n + 1

[
R−1zn+1zᵀn+1 − I

]
1n

]
=

(
1−

ψ ′ (0)
√

n (n + 1)

)
2n −

ψ ′ (0)
√

n (n + 1)

[
R−1zn+1zᵀn+1 − I

]
1n

=

(
1−

ψ ′ (0)+ o(1)
n

)
2n −

ψ ′ (0)+ o(1)
n

[
R−1zn+1zᵀn+1 − I

]
1n

This implies

‖2n+1‖ ≤

[
1−

ψ ′ (0)+ o(1)
n

]
‖2n‖

−
ψ ′ (0)+ o(1)

n

(∥∥∥R−1
∥∥∥ ‖zn+1‖

21n + 1
)
‖1n‖

By property (13.114) the series of the second terms converges with probability one. So, by
Lemma 7.9, it follows ‖2n‖

a.s.
→

n→∞
0. Lemma is proven. �

Now we are ready to formulate the main result concerning the rate of convergence using
the asymptotic normality property for the normalized (by

√
n) identification error.

Theorem 13.6. (on asymptotic normality) Let the conditions of Lemma 13.7 hold, and
additionally,

ψ (0) = 0, S(0) > 0 and 2ψ ′ (0) > 1 (13.119)

Then

√
n (cn − c)

d
→

n→∞
N (0, V ) (13.120)

with

V =
S(0)

2ψ ′ (0)− 1
R−1 (13.121)

Proof. By Lemma 13.7 it is sufficient to prove

√
n1̃n

d
→

n→∞
N (0, V )

Rewrite (13.117) as

1̃n =

(
1−

ψ ′ (0)
n

)
1̃n−1 +

1
n

R−1zn (oω (1)+ ζn−1)

= · · · = πn1̃1 +

n∑
t=1

πnπ
−1
t

1
t

R−1zt (oω (1)+ ζt−1)
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with

πn :=

n∏
t=1

(
1−

ψ ′ (0)
t

)
= exp

n∑
t=1

ln
(

1−
ψ ′ (0)

t

)
1+x≤exp x
≤ exp

n∑
t=1

ln exp
(
−
ψ ′ (0)

t

)
= exp

(
−ψ ′ (0)

n∑
t=1

1
t

)
≤ exp

(
−ψ ′ (0) ln n

)
= n−ψ

′(0)

We also have that

√
nπn ≤ n−ψ

′(0)+1/2
→

n→∞
0 (13.122)

which says that
{
1̃n

}
n≥1

is
√

n-equivalent to the process {zn}n≥1

zn := πn

n∑
t=1

1
t

R−1zt (oω (1)+ ζt−1) =
1
n

A−1
n

n∑
k=1

Akζk

with

A−1
k := kπk, ζk := R−1zk (oω (1)+ ζk−1)

Applying then Theorem 8.15 for yn :=
√

nzn we get

yn :=
1
√

n
A−1

n

n∑
k=1

Akζk
d
→

n→∞
N (0, K )

with V = lim
n→∞

E
{

yn yᵀn
}

which (by Lemma 8.11) is the solution of the following Lyapunov

matrix equation(
A −

1
2

I

)
V + V

(
A −

1
2

I

)ᵀ
= −R (13.123)

where A and R are defined as

A := lim
n→∞

n
(

A−1
n An−1 − I

)
= lim

n→∞
n

(
n

n − 1
πnπ

−1
n−1 − 1

)
= lim

n→∞
n

(
n

n − 1

[
1−

ψ ′ (0)
n

]
− 1

)
= lim

n→∞
n

([
1+

1+ o(1)
n

] [
1−

ψ ′ (0)
n

]
− 1

)
= lim

n→∞
n

(
1− ψ ′ (0)+ o(1)

n

)
= 1− ψ ′ (0)
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and

R := lim
n→∞

1
n

n∑
t=1

Rt = lim
n→∞

1
n

n∑
t=1

t∑
s=1

E
{
ζtζ
ᵀ
s

}
= lim

n→∞

1
n

n∑
t=1

E
{
ζtζ
ᵀ
t
}

= R−1 lim
n→∞

1
n

n∑
t=1

E
{
zt (oω (1)+ ζt−1) zᵀt (oω (1)+ ζt−1)

}
R−1

= R−1 lim
n→∞

1
n

n∑
t=1

E
{

zt z
ᵀ
t ζ

2
t−1

}
R−1
= R−1 lim

n→∞

1
n

n∑
t=1

E
{
ζ 2

t−1

}
= R−1E

{
ϕ2 (ξ1)

}
= R−1S (0)

since

ζn = ϕ
(
−1

ᵀ
n zn+1 + ξn

)
− ψ

(
−1

ᵀ
n zn+1

)∣∣∣ζ 2
n − ϕ

2 (ξn)

∣∣∣ a.s.
→

n→∞
0

Notice that both conditions of Lemma 8.11 are fulfilled since

A −
1
2

I = 1− ψ ′ (0)−
1
2
=

1
2
− ψ ′ (0) < 0

and

R = R−1S (0) > 0

Substitution these relations into (13.123) leads to(
A −

1
2

I

)
V + V

(
A −

1
2

I

)ᵀ
= 2

[
1
2
− ψ ′ (0)

]
V = −R = −R−1S (0)

which proves (13.121). Theorem is proven. �

Remark 13.6. Theorem 13.6 above shows that the procedure (13.104) with nonlinear
residual transformation ϕ (·) provides the asymptotic equivalence (on distribution) of the
normalized identification error

√
n1n to a Gaussian centered vector with the covariance

matrix V (13.121), i.e.,

√
n1n

d
→

n→∞
N (0, V )

or equivalently,

1n
d
→

n→∞
N
(

0, n−1V
)

(13.124)

which shows that asymptotically the rate of convergence of the identification procedure
(13.104) is n−1V .
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13.6.3 The best selection of nonlinear residual transformation

13.6.3.1 Low bound for the normalized error covariation matrix

Lemma 13.8. Under any regular noise distribution pξ (when IF
(

pξ
)
> 0) and for

any nonlinear residual transformation ϕ, satisfying the conditions (13.119), the following
inequalities hold:

S(0)
2ψ ′ (0)− 1

≥
S(0)

[ψ ′ (0)]2 ≥ I−1
F

(
pξ
)

(13.125)

Proof. The first inequality results from evident relations

0 ≤
[
1− ψ ′ (0)

]2
= 1− 2ψ ′ (0)+

[
ψ ′ (0)

]2[
ψ ′ (0)

]2
≥ 2ψ ′ (0)− 1

The second one follows directly from the Cauchy–Schwartz matrix stochastic inequality
(13.79)

E
{
ξξᵀ

}
≥ E

{
ξηᵀ

} [
E
{
ηηᵀ

}]−1
E
{
ηξᵀ

}
if we put there

ξ := ϕ (ξ1) , η :=
(
ln pξ1 (ξ1)

)′
and use the property

E
{
ξηᵀ

}
= E

{
ϕ (ξ1)

(
ln pξ1 (ξ1)

)′}
=

∫
v∈R

ϕ (v)
(
ln pξ1 (v)

)′ pξ1 (v) dv =
∫
v∈R

ϕ (v) p′ξ1
(v) dx

= −

∫
v∈R

ϕ′ (v) pξ1 (v) dx = −

 d

dx

∫
v∈R

ϕ (x + v) pξ1 (v) dx


x=0

= −

[
d

dx
ψ (x)

]
x=0
= −ψ ′ (0)

Lemma is proven. �

Corollary 13.7. Any admissible selection of nonlinear transformation ϕ in (13.104) can
not provide the covariation V (13.121) of the normalized identification error less than[
IF
(

pξ
)

R
]−1, that is,

V =
S(0)

2ψ ′ (0)− 1
R−1
≥
[
IF
(

pξ
)

R
]−1 (13.126)
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13.6.3.2 Recurrent maximum likelihood algorithm

Select in (13.104) or in (13.105)

ϕ (v) = ϕ∗ (v) := −I−1
F

(
pξ
) d

dv
ln pξ (v) (13.127)

(in this case I−1
F

(
pξ
)
= I−1

F

(
pξ
)

is a scalar). Then the algorithm (13.104) becomes

cn = cn−1 − 0n I−1
F

(
pξ
)

zn
d

dv
ln pξ

(
xn+1 − cᵀn−1zn

)
0n+1 = 0n −

0nzn+1zᵀn+10n

1+ zᵀn+10nzn+1
, n ≥ n0

cn0 = Z−1
n0

Vn0 , 0n0 =

(
n0∑

t=0

zt z
ᵀ
t

)−1

= Z−1
n0

(13.128)

It is called the recurrent version of the maximum likelihood estimating procedure (see Hall
and Heyde (1976) and Devyaterikov and Poznyak (1985)).

Theorem 13.7. If for the scalar model (13.15) the conditions of Theorem 13.4 hold, then
procedure (13.128) is asymptotically efficient (the best one) under any regular (not only
Gaussian) i.i.d. noise in the dynamics of the system.

Proof. As we already mentioned above, this procedure is asymptotically equivalent to the
following one:

cn = cn−1 −
1
n

R−1 I−1
F

(
pξ
)

zn
d

dv
ln pξ

(
xn+1 − cᵀn−1zn

)
(13.129)

for which we have

S(0) = E
{
ϕ2 (ξ1)

}
= E

{[
−I−1

F

(
pξ
) (

ln pξ1 (ξ1)
)′]2

}
= I−1

F

(
pξ
)

and

ψ ′ (0) =

− d

dx

∫
v∈R

I−1
F

(
pξ
)
ϕ (x + v) pξ1 (v) dx


x=0

= −I−1
F

(
pξ
) d

dx

∫
v∈R

(
ln pξ1 (x + v)

)′ pξ1 (v) dx


x=0

= −I−1
F

(
pξ
)− d

dx

∫
v∈R

(
ln pξ1 (x + v)

)
p′ξ1
(v) dx


x=0
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= −I−1
F

(
pξ
)− ∫

v∈R

p′ξ1
(x + v)

pξ1 (x + v)
p′ξ1
(v) dx


x=0

= 1

Therefore

V =
S(0)

2ψ ′ (0)− 1
R−1
=

I−1
F

(
pξ
)

2 · 1− 1
R−1
=
[
IF
(

pξ
)

R
]−1

which proves the theorem. �

13.6.4 Asymptotically efficient procedure under correlated noise

If the model is given

xn+1 = Czn + Dζn

C :=
[
A B

]
∈ RN×(N+K ), zn :=

[
xn
un

]
(13.130)

where ζn is the colored noise generated by a forming filter (13.57) as

ζn = H (q) ξn =
P (q)

Q (q)
ξn

P (q) :=
kP∑

s=0

fsqs, Q (q) :=
kQ∑

s=0

gsqs

Q (q) is stable, qzn = zn−1 is the delay operator

(13.131)

then the following result holds.

Theorem 13.8. For any stable scalar (N = 1) model (13.15) the recurrent LSM-procedure
(13.29) with nonlinear residual transformation applied to the whited signals, that is,

cn+1 = cn − 0n+1 z̃n+1I−1
F

(
pξ
) d

dv
ln pξ

(
x̃n+2 − cᵀn z̃n+1

)
0n+1 = 0n −

0n z̃n+1 z̃ᵀn+10n

1+ z̃ᵀn+10n z̃n+1
, n ≥ n0

cn0 = Z̃−1
n0

Vn0 , 0n0 =

(
n0∑

t=0

z̃t z̃
ᵀ
t

)−1

= Z̃−1
n0

z̃n = H−1 (q) zn, x̃n = H−1 (q) xn

(13.132)

is asymptotically efficient (the best one) under any regular (not only Gaussian) colored
noise generated by the forming stable (Q (q) is stable) and minimal phase (P (q) is stable)
filter (13.131).
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Proof. Applying the ‘whitening operation’ to both sides of (13.130) for N = 1 one gets

H−1(q) : xn+1 = cᵀzn + H(q)ξn

or, equivalently
(
up to terms Oω

(
e−αn

) a.s.
→

n→∞
0
)
,

H−1(q)xn+1 = x̃n+1 = cᵀH−1(q)zn + ξn = cᵀ z̃n + ξn

Then the desired result follows directly from Theorem 13.7. �

Finally, we may conclude that the joint procedure (13.132) realizing the recurrent max-
imum likelihood algorithm together with parallel ‘whitening’ is asymptotically effective
(the best one) for correlated noise generated by a stable, minimum-phase filter under an
i.i.d. input noise with the density function pξ .

13.7 Robustification of identification procedures

13.7.1 The Huber robustness

The numerical estimating procedure (13.128) is asymptotically efficient only if the
exact information of a noise density distribution function pξ is available. This assumption
practically never can be realized exactly since it is, in fact, a statistical one by its nature and
can be ensured only with some ‘level of admissibility’. This exactly means that in practice
we deal not with an exact noise density pξ , but with a class of possible noises and their
densities; namely, we are dealing with a class of noises, the corresponding densities of
which belong to some class P , i.e.,

pξ ∈ P (13.133)

As has been mentioned above, the recurrent estimation procedure (13.104) with nonlin-
ear residual transformation ϕ provides the convergence rate equal (in a ‘distribution sense’)
to

1n
d
→

n→∞
N
(

0, n−1V
)

V =
S(0)

2ψ ′ (0)− 1
R−1

(13.134)

that is,

• the order of the convergence is 1/n, and
• the constant (in fact, the matrix) of convergence is V .

As follows from (13.134), V depends on a real noise density distribution pξ (since S(0),
ψ ′ (0) and R may be dependent on pξ ) and on a nonlinear function ϕ (through S(0) and
ψ ′ (0)). That’s why, to emphasize this dependence, we will use the notation

V = V
(

pξ , ϕ
)
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Following Huber (1975) and Tsypkin (1984), let us introduce the main definition of this
section.

Definition 13.7. The pair of functions (p∗ξ , ϕ
∗) defines the estimating procedure (13.128)

with the nonlinear residual transformation ϕ∗ which is robust with respect to a distribution
pξ , belonging to a class P , if for any admissible ϕ, satisfying the assumptions of
Theorem 13.6, and any noise distribution pξ ∈ P the following ‘saddle-point’ inequalities
hold:

V
(

pξ , ϕ
∗
)
≤ V

(
p∗ξ , ϕ

∗

)
≤ V

(
ϕ, p∗ξ

)
(13.135)

Here both inequalities should be treated in a ‘matrix sense’, that is,

A = Aᵀ ≤ B = Bᵀ if B − A ≥ 0

In other words,

• the distribution p∗ξ is the ‘worst’ within the class P , and
• the nonlinear transformation ϕ∗ is ‘the best one’ oriented on the ‘worst’ noise with the

distribution p∗ξ .

This can be expressed mathematically as follows:

ϕ∗ := arg inf
ϕ

sup
pξ∈P

V
(

pξ , ϕ
)

p∗ξ := arg sup
pξ∈P

inf
ϕ

V
(

pξ , ϕ
) (13.136)

so that

inf
ϕ

sup
pξ∈P

V
(

pξ , ϕ
)
= sup

pξ∈P
inf
ϕ

V
(

pξ , ϕ
)
:= V ∗ (13.137)

According to (13.126), for any fixed pξ ∈ P

inf
ϕ

V
(

pξ , ϕ
)
=
[
IF
(

pξ
)

R
]−1 (13.138)

where inf
ϕ

is achieved for

ϕ (v) = ϕ∗ (v) := −I−1
F

(
pξ
) d

dv
ln pξ (v) (13.139)

So, finally, the robust procedure designing is reduced to the solution of the problem:

sup
pξ∈P

inf
ϕ

V
(

pξ , ϕ
)
= sup

pξ∈P

[
IF
(

pξ
)

R
]−1 (13.140)

Below we will consider in more detail the robust procedure designing for two basic
models: the static regression (R-model) and dynamic autoregression model (AR-model).
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13.7.2 Robust identification of static (regression) models

For static models (R-models) where the generalized inputs are independent of the state
of the system, the matrix R does not depend on pξ , and therefore, the problem (13.140) is
reduced to the following one:

sup
pξ∈P

[
IF
(

pξ
)]−1 or inf

pξ∈P
IF
(

pξ
)

(13.141)

Consider now several most significant classes P of a priori informative noise distribu-
tions and solutions of the problem (13.141) within these classes.

Class P1 (of all symmetric distributions nonsingular in the point x = 0):

P1 :=

{
pξ : pξ (0) ≥

1
2a

> 0
}

(13.142)

We deal with this class if there is no a priori information on noise distribution.

Lemma 13.9. (on class P1)

p∗ξ (x) = arg inf
pξ∈P1

IF
(

pξ
)
=

1
2a

exp
{
−
|x |

a

}
(13.143)

that is, the value for P1 distribution density is the Laplace one given by (13.143).

Proof. By the Cauchy–Schwarz inequality∫
R

f ϕpξdx

2

≤

∫
R

f 2 pξdx

∫
R

ϕ2 pξdx

 (13.144)

valid for any f, ϕ, and any noise distribution density pξ (for which the integrals have a
sense), for f := p′ξ (x)/pξ (x) after integrating by parts it follows that

IF (pξ ) ≥

∫
R

pξ (x) dϕ (x)

2/∫
R

ϕ2 (x) pξ (x) dx (13.145)

where the equality is attained when

p′ξ (x)/pξ (x) = λϕ (x) , λ is any constant

Taking ϕ (x) := sign(x) in (13.145) and using the identity[
sign(x)

]′
= 2δ (x) pξ (0)
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a

–a

x
0

*(x)ϕ

Fig. 13.2. The nonlinear transformation ϕ∗ for the class P1.

leads to

IF (pξ ) ≥ 4p2
ξ (0) ≥

1

a2 for any pξ ∈ P1

where the equality is attained when

p′ξ (x)/pξ (x) = λsign(x)

or equivalently, for

pξ (x) =
λ

2
exp {− |x | /λ}

For λ = a we have

pξ (x) =
a

2
exp {− |x | /a} = p∗ξ (x)

and in view of (13.88)

IF (pξ ) ≥ 4p2
ξ (0) ≥

1

a2 = IF (p
∗
ξ )

So, the noise distribution value within P1 is p∗ξ (x). Lemma is proven. �

Corollary 13.8. The robustness of P1 version of the procedure (13.128) contains

ϕ(x) = ϕ∗(x) = −I−1
F

(
p∗ξ
) d

dv
ln p∗ξ (v) = a sign(x) (13.146)

(see Fig. 13.2).

Class P2 (of all symmetric distributions with a bounded variance):

P2 :=

pξ :
∫
R

x2 pξ (x) ds ≤ σ 2 <∞

 (13.147)
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Lemma 13.10. (on class P2)

p∗ξ (x) = arg inf
pξ∈P2

IF
(

pξ
)
=

1
√

2πσ
exp

{
−

x2

2σ 2

}
(13.148)

that is, the P2 distribution density value is the Gaussian one given by (13.148).

Proof. Taking in (13.145) ϕ (x) = x for all pξ ∈ P2 we get

IF (pξ ) ≥ 1

/∫
R

x2 pξ (x) dx ≥ 1/σ 2

where the equality is attained when

p′ξ (x)/pξ (x) = λx, λ is any constant

or equivalently, for

pξ (x) =
1

√
2π/λ

exp

{
−
λx2

2

}

For λ = σ−2 we have

pξ (x) =
1

√
2πσ

exp

{
−

x2

2σ 2

}
= p∗ξ (x)

and in view of (13.87)

IF (pξ ) ≥ 1

/∫
R

x2 pξ (x) dx ≥ 1/σ 2
= IF (p

∗
ξ )

So, the noise distribution value within P1 is p∗ξ (x). Lemma is proven. �

Corollary 13.9. The robustness of P2 version of the procedure (13.128) contains

ϕ(x) = ϕ∗(x) = −I−1
F

(
p∗ξ
) d

dv
ln p∗ξ (v) = x (13.149)

(see Fig. 13.3) which means that the standard LSM algorithm (13.29) is the robustness
within the class P2.

Class P3 (of all symmetric ‘approximately normal’ distributions):

P2 :=

{
pξ : pξ (x) = (1− α) pN (0,σ 2) (x)+ αq (x)

}
(13.150)
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*(x)ϕ

x
0

Fig. 13.3. The ‘nonlinear’ transformation ϕ∗ for the class P2.

where pN (0,σ ) (x) is the centered Gaussian distribution density with variance σ 2 and q (x)
is another distribution density. The parameter α ∈ [0, 1] characterizes the level of the effect
of a ‘dirtying’ distribution q (x) to the basic one pN (0,σ ) (x).

Lemma 13.11. (on class P3)

p∗ξ (x) = arg inf
pξ∈P3

IF
(

pξ
)

=


1− α
√

2πσ
exp

{
−

x2

2σ 2

}
for |x | ≤ 1

1− α
√

2πσ
exp

{
−
1 |x |

σ 2 +
12

2σ 2

}
for |x | > 1

(13.151)

where 1 is a solution of the transcendent equation

1
1− α

=

1∫
−1

pN (0,σ ) (x) dx + 2pN (0,σ ) (1)
σ 2

1
(13.152)

that is, the value of P3 distribution density is the Gaussian one for |x | ≤ 1 and the Laplace
type for |x | > 1.

Proof. (without details) From (13.150) it follows that

pξ (x) ≥ (1− α) pN (0,σ 2) (x)

So, we need to solve the following variational problem:

inf
pξ :pξ≥(1−α)pN(0,σ2)

IF
(

pξ
)

As is shown in Tsypkin and Polyak (1977), its solution is (13.151). �
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*(x)ϕ

0
x

Δ
–Δ

Fig. 13.4. The nonlinear transformation ϕ∗ for class P3.

Corollary 13.10. The robustness of P3 version of the procedure (13.128) contains

ϕ(x) = ϕ∗(x) = −I−1
F

(
p∗ξ

) d

dv
ln p∗ξ (v)

=

{
x for |x | ≤ 1

1 sign (x) for |x | > 1

(13.153)

(see Fig. 13.4).

Class P4 (of all symmetric ‘approximately uniform’ distributions):

P4 :=
{

pξ : pξ (x) = (1− α) pU (0,a) (x)+ αq (x)
}

(13.154)

where

pU (0,a) (x) :=
1

2a
χ (|x | ≤ a)

is the centered uniform distribution and q (x) is another distribution density. The parameter
α ∈ [0, 1] characterizes the level of the effect of a ‘dirtying’ distribution q (x) to the basic
one pU (0,a) (x).

Lemma 13.12. (on class P4)

p∗ξ (x) = arg inf
pξ∈P4

IF
(

pξ
)

=


1− α

2a
for |x | ≤ a

1− α
2a

exp
{
− (1− α)

|x | − a

αa

}
for |x | > a

(13.155)

that is, the value of P4 distribution density is the uniform one for |x | ≤ a and the Laplace
type for |x | > a.
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Proof. From (13.154) it follows that

pξ (±a) ≥
(1− α)

2a
Taking in (13.145)

ϕ (x) =
0 for |x | ≤ a
sign(x) for |x | > a

we get

IF (pξ ) ≥
[

pξ (−a)+ pξ (a)
]2/ −a∫

−∞

pξ (x) dx +

∞∫
a

pξ (x) dx


≥
(1− α)2

αa2

so that the equality is attained when

p′ξ (x)/pξ (x) = λϕ (x) , λ is any constant

or equivalently, for

pξ (x) =

{
Const for |x | ≤ a

λ
α

2
exp {−λ (|x | − a)} for |x | > a

For λ = (1−α)
αa we have

pξ (x) =


1− α

2a
for |x | ≤ a

1− α
2a

exp
{
− (1− α)

|x | − a

αa

}
for |x | > a

= p∗ξ (x)

and in view of (13.87)

IF (pξ ) ≥
[

pξ (−a)+ pξ (a)
]2/ −a∫

−∞

pξ (x) dx +

∞∫
a

pξ (x) dx


≥
(1− α)2

αa2 = IF (p
∗
ξ )

So, the value of the noise distribution within P1 is p∗ξ (x). Lemma is proven. �

Corollary 13.11. The robustness of P4 version of the procedure (13.128) contains

ϕ(x) = ϕ∗(x) = −I−1
F

(
p∗ξ

) d

dv
ln p∗ξ (v)

=

 0 for |x | ≤ a
1− α
αa

sign (x) for |x | > a

(13.156)

(see Fig. 13.5).
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*(x)ϕ

0

x
a

–a

Fig. 13.5. The nonlinear transformation ϕ∗ for class P4.

Some other classes of uncertainty are analyzed in Tsypkin (1984) and Devyaterikov and
Poznyak (1985).

13.7.3 Robust identification of dynamic (autoregression) models

In the case of the dynamic autoregression model (AR-model) where the generalized
inputs are dependent on the state of the system, the matrix R depends on pξ too, and
therefore the problem we deal with is the complete problem (13.140), namely,

sup
pξ∈P

[
IF
(

pξ
)

R
]−1 (13.157)

For the AR-model (13.3)

yn+1 =

La∑
s=0

as yn−s + ξn = aᵀvn + ξn

aᵀ =
(
a0, . . . , aLa

)
, vᵀn =

(
yn, yn−1, . . . , yn−La

)
we have

1
n

n∑
t=0

E
{
vt v
ᵀ
t
}
→ R

where R satisfies (13.102), i.e.

R = AR A + σ 240

with

A =

∥∥∥∥∥∥∥∥∥∥∥

a0 a1 · · · · · · aLa

1 0 · · · · · · 0
0 1 0 · · · 0

0 · · ·
. . . 0 0

0 · · · 0 1 0

∥∥∥∥∥∥∥∥∥∥∥
, 40 :=

∥∥∥∥∥∥∥∥∥∥∥

1 0 · · · · · · 0
0 0 · · · · · · 0
0 0 0 · · · 0

0 · · ·
. . . 0 0

0 · · · 0 0 0

∥∥∥∥∥∥∥∥∥∥∥
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Obviously, R can be represented as

R =σ 2 R0

where R0 is the solution of

R = AR A +40

so that the problem (13.157) is reduced to

sup
pξ∈P

[
σ 2 (pξ

)
IF
(

pξ
)]−1

or equivalently, to

inf
pξ∈P

[
σ 2 (pξ

)
IF
(

pξ
)]

(13.158)

Consider now some classes P of a priori informative noise distributions and solutions
of the problem (13.158) within these classes.

Class P AR
1 (containing among others the Gaussian distribution pN

(
0,σ 2

0

) (x)).
Lemma 13.13. (on class P AR

1 )

p∗ξ (x) = arg inf
pξ∈P AR

1

[
σ 2 (pξ

)
IF
(

pξ
)]
= pN

(
0,σ 2

0

) (x) (13.159)

that is, the value of P AR
1 distribution density is exactly the Gaussian distribution pN

(
0,σ 2

0

) (x).
Proof. Taking in (13.144)

f (x) = x, ϕ (x) = p′ξ (x) /pξ (x)

we get

σ 2 IF
(

pξ
)
≥

∫
R

xp′ξ (x) dx

2

=

∫
R

pξ (x) dx

2

= 1

such that the equality is attained when

p′ξ (x) /pξ (x) = λx

which leads to

pξ (x) =
1

√
2π/λ

exp

{
−
λx2

2

}
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But since

IF

(
pN

(
0,σ 2

0

)) = σ−2
0

from the inequality above we have

σ 2 (pξ
)

IF
(

pξ
)
≥ 1 = σ 2

0 IF

(
pN

(
0,σ 2

0

))
which means that

p∗ξ (x) = pN
(
0,σ 2

0

) (x)
Lemma is proven. �

Corollary 13.12. The robust on P AR
1 version of the procedure (13.128) contains

ϕ(x) = ϕ∗(x) = −I−1
F

(
p∗ξ
) d

dv
ln p∗ξ (v) = x

Class P AR
2 (containing all centered distributions with a variance not less than a given

value):

P AR
2 :=

pξ :
∫
R

x2 pξ (x) dx ≥ σ 2
0

 (13.160)

Lemma 13.14. (on class P AR
2 )

p∗ξ (x) = arg inf
pξ∈P AR

2 :σ
2(pξ )=σ 2

0

IF
(

pξ
)

(13.161)

that is, the value of P AR
2 distribution density p∗ξ (x) coincides with the value distribution

density on the classes Pi characterizing distribution uncertainties for static (R-models)
provided that

σ 2
(

p∗ξ (x)
)
= σ 2

0 (13.162)

Proof. It follows directly from the inequality

σ 2 (pξ
)

IF
(

pξ
)
≥ σ 2

0 IF
(

pξ
)

�
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In this chapter we will concentrate on the problem of states estimation for discrete-time
and continuous-time processes based on some available observations of these processes
which are obviously statistically dependent. Below we will suppose that an unobservable
process x = x (t, ω) and an observable process y = y (t, ω) are jointly distributed on some
underlying probability space.

The objective is to form an estimate of the process x (t, ω) at time [t + τ ], that is,
x (t + τ, ω) using the observations {y(s, ω), s ∈ [0, t]} where the time argument t may
belong to discrete set {t0 = 0, t1, t2, . . .} or an interval [0, T ]. This estimate x̂ (t + τ, ω) is
required to be optimal with respect to the least square criterion. For

• τ = 0 this task is usually called filtering;
• τ > 0 it is called prediction;
• τ < 0 it is referred to as smoothing.

The physical device generating any one of these estimates from the observed data is
called a filter.

14.1 Estimation of random vectors

We start with simple (but fundamental) results concerning an estimates construction
when available measurements and random processes to be estimated are finite collections,
or, in other words, finite-dimensional vectors.

14.1.1 Problem formulation

Consider a collection of random variables{
xi = xi (ω) ∈ R, i = 1, n; yi = yi (ω) ∈ R, i = 1,m

}
defined on a probability space (�,F ,P) such that the variables, namely,{

yi = yi (ω) ∈ R, i = 1,m
}

417
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generates a σ -algebra

Fm := σ
(
yi = yi (ω) ∈ R, i = 1,m

)
We will refer to them as ‘available data’ or ‘measurement’. Define

x = x (ω) = (x1 (ω) , . . . , xn (ω)) ∈ Rn

y = y (ω) = (y1 (ω) , . . . , ym (ω)) ∈ Rm

and consider the following problem:

Problem 14.1. (on least square estimate) Based on the available data y ∼ Fm obtain
the best mean-square estimate

x̂ = x̂ (y) ∈ Rn, x̂ ∼ Fm (14.1)

of the vector x ∈ Rn (which may be statistically dependent on y), namely, we will find

x̂∗ := arg min
x̂∼Fm

E
{∥∥x − x̂

∥∥2
}

(14.2)

14.1.2 Gauss–Markov theorem

The theorem (known also as the ‘Orthogonal Projection Theorem’ treating the result as
a projection to the subspace of given data) below is a keystone in ‘theory of random vectors
estimation’ which is more frequently referred to as ‘filtering theory’, or simply, ‘filtering’.

Theorem 14.1. (Gauss–Markov) Within a class of random Fm-measurable vectors x̂
with bounded second moments the best mean-square estimate x̂∗ of the random vector
x ∈ Rn is its conditional mathematical expectation E {x/Fm}, that is,

x̂∗ = arg min
x̂∼Fm

E
{∥∥x − x̂

∥∥2
}

a.s.
= E {x/Fm} (14.3)

Proof. The following identities hold:

E
{∥∥x − x̂

∥∥2
}
= E

{∥∥(x − x̂∗
)
+
(
x̂∗ − x̂

)∥∥2
}

= E
{∥∥x − x̂∗

∥∥2
}
+ E

{∥∥x̂∗ − x̂
∥∥2
}
+ 2E

{(
x − x̂∗

)ᵀ (x̂∗ − x̂
)}

Notice that

E
{(

x − x̂∗
)ᵀ (x̂∗ − x̂

)}
= E

{
E
{(

x − x̂∗
)ᵀ (x̂∗ − x̂

)
/Fm

}}
= E

{
E
{(

x − x̂∗
)ᵀ
/Fm

} (
x̂∗ − x̂

)}
= E

{(
E {x/Fm} − x̂∗

)ᵀ (x̂∗ − x̂
)}
= 0

Therefore

E
{∥∥x − x̂

∥∥2
}
= E

{∥∥x − x̂∗
∥∥2
}
+ E

{∥∥x̂∗ − x̂
∥∥2
}
≥ E

{∥∥x − x̂∗
∥∥2
}

where the right-hand side does not depend on x̂ . But this lower bound is achieved if x̂∗
a.s.
=

x̂ . Theorem is proven. �
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Example 14.1. Suppose that two random variables (x, y) ∈ R+ × R have the joint
distribution density f (x, y) on R+ × R given by

f (x, y) =
1
√

2π

β

0 (α)
xα−1/2 exp

{
−

(
β +

y2

2

)
x

}
, α, β ∈ R+

where

0 (α) :=

∞∫
t=0

tα−1e−t dt

Then

x̂∗
a.s.
= E {x/σ (y)} =

∞∫
x=0

x f (x/y)dx =
α + 1/2

β + y2/2

and one can observe that this ‘best estimate’ is not linear in the observation y.

14.1.3 Linear unbiased estimates

Definition 14.1.

(a) The class K y of all linear estimates x̂ ∼ Fm
(
x̂ = x̂ (y) ∈ Rn

)
, based on available

data y ∈ Rm , is defined by the following relation:

x̂ = K y + x̃ (14.4)

where K ∈ Rn×m is a constant (deterministic) matrix and x̃ ∈ Rn is a constant
(deterministic) vector.

(b) A linear estimate x̂ ∈ K y is called unbiased if

E
{

x̂
}
= E {x} := x̄ (14.5)

Lemma 14.1. (on a structure of linear unbiased estimates) Any linear unbiased esti-
mate has the following representation:

x̂ = x̄ + K (y − ȳ) (14.6)

where

ȳ := E {y} (14.7)

Proof. From (14.4), (14.5) and (14.7) it follows that

x̄ = E
{

x̂
}
= KE {y} + x̃ = K ȳ + x̃

and hence, x̃ = x̄ − K ȳ (which implies structure). Lemma is proven. �



420 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

The next results concerns the ‘best’ selection of the matrix K in (14.6) which guarantees

the minimum of the mean-square error E
{∥∥x − x̂

∥∥2
}

within the class of all linear unbiased

estimates.
First, define the so-called centered random vectors:

x̊ := x − x̄, ẙ := y − ȳ (14.8)

Theorem 14.2. For any available data y ∈ Rm with a nonsingular auto-covariation

R ẙ,ẙ := E
{

ẙ ẙᵀ
}
> 0 (14.9)

the best linear unbiased estimate, minimizing E
{∥∥x − x̂

∥∥2
}

, is given by (14.6) with

K = K ∗ = Rx̊,ẙ R−1
ẙ,ẙ (14.10)

where Rx̊,ẙ := E {x̊ ẙᵀ}, that is,

x̂ = x̄ + Rx̊,ẙ R−1
ẙ,ẙ (y − ȳ) (14.11)

Proof. One has

E
{∥∥x − x̂

∥∥2
}
= E

{
tr
∥∥x − x̂

∥∥2
}
= E

{
tr
{(

x − x̂
) (

x − x̂
)ᵀ}}

= E
{
tr
{
(x − x̄ − K ẙ) (x − x̄ − K ẙ)ᵀ

}}
= tr

{
E
{
(x̊ − K ẙ) (x̊ − K ẙ)ᵀ

}}
= tr

{
E
{

x̊ x̊ᵀ
}
− E

{
x̊ ẙᵀ

}
K ᵀ − KE

{
ẙ x̊ᵀ

}
+ KE

{
ẙ ẙᵀ

}
K ᵀ
}

= tr
{

Rx̊,x̊ − Rx̊,ẙ K ᵀ − K Rᵀx̊,ẙ + K R ẙ,ẙ K ᵀ
}

= tr
{

Rx̊,x̊ − Rx̊,ẙ R−1
ẙ,ẙ Rᵀx̊,ẙ

}
+ tr

{(
K R1/2

ẙ,ẙ − Rx̊,ẙ R−1/2
ẙ,ẙ

) (
K R1/2

ẙ,ẙ − Rx̊,ẙ R−1/2
ẙ,ẙ

)ᵀ}
≥ tr

{
Rx̊,x̊ − Rx̊,ẙ R−1

ẙ,ẙ Rᵀx̊,ẙ

}
So, the right-hand side of the last inequality is independent of K and the equality is attained
if and only if

K R1/2
ẙ,ẙ − Rx̊,ẙ R−1/2

ẙ,ẙ = 0 (14.12)

which implies (15.37). Theorem is proven. �
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Corollary 14.1. Under the conditions of Theorem 14.2

min
K : x̂=x̄+K (y−ȳ)

E
{∥∥x − x̂

∥∥2
}
= tr

{
Rx̊,x̊ − Rx̊,ẙ R−1

ẙ,ẙ Rᵀx̊,ẙ

}
(14.13)

Corollary 14.2. The optimal gain-matrix selection K = K ∗ (15.37) provides the property

E
{(

x̊ − K ∗ ẙ
)

ẙᵀ
}
= 0 (14.14)

that is, the vectors (x̊ − K ∗ ẙ) and ẙ are not correlated.

Proof. Multiplying both sides of (14.12) by R1/2
ẙ,ẙ leads directly to (14.14). �

14.1.4 Lemma on normal correlation

Here we will consider Theorem 14.2 when both vectors x and y are Gaussian.

Lemma 14.2. (on a normal correlation) In the Gaussian case when both vectors x and
y are Gaussian and such that R ẙ,ẙ > 0 the best estimate (14.3)

x̂∗ = arg min
x̂∼Fm

E
{∥∥x − x̂

∥∥2
}

a.s.
= E {x/Fm}

within the class of all possible (maybe, nonlinear) quadratically integrable Fm-measurable
functions coincides with the best linear unbiased estimate (14.11), namely,

x̂∗
a.s.
= E {x/Fm} = x̄ + K ∗ (y − ȳ)

K ∗ = Rx̊,ẙ R−1
ẙ,ẙ

(14.15)

Proof. Indeed, if both vectors x̊ and ẙ are Gaussian then the vector
[
x̊ − K ∗ ẙ

]
is

also Gaussian. This, in view of (14.14), implies that the vectors
[
x̊ − K ∗ ẙ

]
and ẙ are

independent since, only for Gaussian vectors, an uncorrelation means their independence.
Using this fact we conclude that

E {x̊ − K ∗ ẙ/Fm} = E {x̊ − K ∗ ẙ/σ (y)}
a.s.
= E {x̊ − K ∗ ẙ} = E {x̊} − K ∗E {ẙ} = 0

which leads to the following identity

E {x̊/Fm} = K ∗E {ẙ/Fm} = K ∗ ẙ

equivalent to (14.15). Lemma is proven. �
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14.2 State-estimating of linear discrete-time processes

Here we will consider only linear discrete-time processes given by linear recurrent
equations with constant or time-varying parameters. The problem to be solved is to
estimate linearly xn+τ from measurements

{
y0,y1, . . . , yn

}
.

14.2.1 Description of linear stochastic models

Consider here a linear discrete-time stochastic process given by the following linear
recurrent equation:

xn+1 = An xn + bn + ξn

yn = Hn xn + hn + wn, n = 1, 2, . . .
(14.16)

where

• xn ∈ Rn is the current state of the process, x0 is a random vector with a finite second
moment;
• yn ∈ Rm is the current measurable (available) output;
• bn ∈ Rn and hn ∈ Rm are measurable (available) vectors depending on the available

data {y1, . . . , yn}, treated below as measurable inputs;
• An ∈ Rn×n , Hn ∈ Rm×n are known deterministic matrices;
• ξn ∈ Rn and wn ∈ Rm are unmeasurable independent random vectors, referred to

below as the state and output noise (may be, non-stationary), respectively, both defined
on a probability space (�,F ,P), which are centered and having known auto-covariance
4n and Wn , i.e., for all n = 0, 1, . . .

E {ξn} = 0, E {wn} = 0

E
{
ξnξ
ᵀ
n
}
= 4n, E

{
wnw

ᵀ
n
}
= Wn

E {ξlξs} = 4sδl.s, E
{
wlw

ᵀ
s
}
= Wsδl.s

E
{
ξlw
ᵀ
s
}
= 0, l, s = 0, 1, . . .

(14.17)

Below we will denote by

σ
(
yn)
:= F (y1, . . . , yn) = Fn

a sigma-algebra generated by the available data-collection (a prehistory) of the considered
process (14.16).

14.2.2 Discrete-time Kalman filtering

Here we will be interesting in the filtering problem, that is,

Problem 14.2.

x̄n|n := arg min
x̂∼Fn

E
{∥∥xn − x̂

∥∥2
}

(14.18)
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Theorem 14.3. (Kalman, 1960) The best mean-square linear unbiased estimate x̄n|n
(14.18) of the state xn generated by (14.16)–(14.17), based on the available data
{y1, . . . , yn}, is given by the following recurrent scheme (the ‘Kalman filter’):

x̄n|n = x̄n|n−1 + K ∗n
(
yn − ȳn|n−1

)
x̄n|n−1 := An−1 x̄n−1|n−1 + bn−1

ȳn|n−1 = Hn x̄n|n−1 + hn

(14.19)

where

K ∗n = Sᵀn D−1
n

Sn = Hn
(
4n−1 + An−1 Pn−1 Aᵀn−1

)
Dn = Wn + Sn Hᵀn

Pn := E
{(

xn − x̄n|n
) (

xn − x̄n|n
)ᵀ}

Pn = An−1 Pn−1 Aᵀn−1 +4n − Sᵀn D−1
n Sn

x̄0|0 = E {x0} , P0 = cov {x0} := E
{(

x0 − x̄0|0
) (

x0 − x̄0|0
)ᵀ}

(14.20)

provided that Dn > 0.

Proof. Any state estimate x̂n is linear with respect to the last observation yn if it may be
represented as

x̂n = Kn yn + cn (14.21)

where Kn ∈ Rn×m and cn ∈ Rn are Fn−1 := F (y1, . . . , yn−1)-measurable matrix and
vector, respectively. Define x̂n|n−1 := E

{
x̂n/Fn−1

}
which leads to

x̂n|n−1
a.s.
= Kn ȳn|n−1 + cn

where ȳn|n−1 := E {yn/Fn−1}. Therefore cn
a.s.
= x̂n|n−1 − Kn ȳn|n−1 and, hence, by (14.21)

x̂n
a.s.
= x̂n|n−1 + Kn

(
yn − ȳn|n−1

)
(14.22)

By the Gauss–Markov theorem 14.1 the best mean-square estimate of xn is

x̂∗n = x̄n|n := E {xn/Fn}

which by (14.22) gives

x̄n|n = x̄n|n−1 + Kn
(
yn − ȳn|n−1

)
x̄n|n−1 = E {E {xn/Fn} /Fn−1} = E {xn/Fn−1}

(14.23)



424 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

Now notice that x̄n|n−1 and ȳn|n−1 can be easily obtained, applying E {·/Fn−1} to (14.16):

x̄n|n−1
a.s.
= An−1 x̄n−1|n−1 + bn−1

x̄0|0 = E {x0/F0} = E {x0/F0}

ȳn|n−1
a.s.
= Hn x̄n|n−1 + hn

(14.24)

For the state estimation error1n := xn − x̄n|n , using (14.16), (14.23) and (14.24), one has

1n = An−1xn−1 + bn−1 + ξn−1 −
[
x̄n|n−1 + Kn

(
yn − ȳn|n−1

)]
= An−1xn−1 + bn−1 + ξn−1 − An−1 x̄n−1|n−1

− bn−1 − Kn
(
Hn xn + hn + wn − Hn

[
An−1 x̄n−1|n−1 + bn−1

]
− hn

)
= (I − Kn Hn) An−11n−1 + (I − Kn Hn) ξn−1 − Knwn (14.25)

The relation (14.25) implies

Pn := E
{
1n1

ᵀ
n
}

= (I − Kn Hn) An−1 Pn−1 Aᵀn−1 (I − Kn Hn)
ᵀ
+ KnWn K ᵀn

+ (I − Kn Hn)4n−1 (I − Kn Hn)
ᵀ

= An−1 Pn−1 Aᵀn−1 − Kn Sn − Sᵀn K ᵀn + Kn Dn Kn +4n−1

= An−1 Pn−1 Aᵀn−1 +4n−1 − Sᵀn D−1
n Sn(

Kn D1/2
n − Sᵀn D−1/2

n

) (
Kn D1/2

n − Sᵀn D−1/2
n

)ᵀ
≥ An−1 Pn−1 Aᵀn−1 +4n−1 − Sᵀn D−1

n Sn

where the equality is attained when Kn D1/2
n − Sᵀn D−1/2

n = 0 which completes the
proof. �

Corollary 14.3. Assuming that ξn , wn are Gaussian and bn , hn are measurable vectors
linearly depending on the available data {y1, . . . , yn}, it follows that the Kalman filter
(14.19)–(14.20) is optimal not only among all linear estimates but among all possible
(may be, nonlinear) estimates which may be constructed based on available data.

Proof. This results from the fact that in this case the sequence {xn}n≥0 is Gaussian, and
hence, by Lemma 14.2, x̄n|n = E {xn/Fn} coincides with x̂n = x̂n|n−1 + Kn

(
yn − ȳn|n−1

)
where Kn minimizes

E
{
‖1n‖

2
}
= tr E

{
1n1

ᵀ
n

}
= tr Pn �

Corollary 14.4. The relations (14.20) can be represented in more compact format as

K ∗n = Pn|n−1 Hᵀn
[
Wn + Hn Pn|n−1 Hᵀn

]−1

Pn|n−1 = An−1 Pn−1 Aᵀn−1 +4n−1

Pn =
(
I − K ∗n Hn

)
Pn|n−1

(14.26)
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14.2.3 Discrete-time prediction and smoothing

Consider below the sub-class dynamic models (14.16)–(14.17) where the ‘input’ vectors
bn ∈ Rn and hn ∈ Rm are deterministic and measurable (available). By the Gauss–Markov
theorem 14.1 the best mean-square estimate x̂∗n+τ of the model state vector xn+τ for any
τ = −n, . . . ,−1, 0, 1, . . . is

x̂∗n+τ = x̄n+τ |n := E {xn+τ /Fn} (14.27)

14.2.3.1 Prediction

This case corresponds to τ = 1, 2, . . . in (14.27). Taking into account that the noises ξn ,
wn are independent and centered, the application of the operator E {·/Fn} to both sides of
(14.16) with the following back-iteration implies

x̄n+τ |n = E {xn+τ /Fn} = An+τ−1E {xn+τ−1/Fn} + bn+τ−1

= An+τ−1
[
An+τ−2E {xn+τ−2/Fn} + bn+τ−2

]
+ bn+τ−1

=
[
An+τ−1 · · · An

]
E {xn/Fn}

+
[
An+τ−1 · · · An+1

]
bn + · · · + An+τ−1bn+τ−2 + bn+τ−1

=

(
τ−1∏
k=0

An+k

)
x̄n|n +

τ−1∑
k=0

(
τ−2∏
s=k

An+1+s

)
bn+k

(here we accept that
m∏

s=k
As = I if m < k). So, we are ready to formulate the main result

dealing with a prediction design.

Theorem 14.4. (on prediction) If within the sub-class dynamic models (14.16)–(14.17)
the ‘input’ vectors bn ∈ Rn and hn ∈ Rm are deterministic and measurable (available)
then the best mean square prediction for τ -steps ahead (τ = 1, 2, . . .)

x̄n+τ |n := E {xn+τ /Fn} = arg min
x̂∼Fn

E
{∥∥xn+τ − x̂

∥∥2
}

(14.28)

as a function of the available data {y1, . . . , yn} is given by

x̄n+τ |n =

(
τ−1∏
k=0

An+k

)
x̄n|n +

τ−1∑
k=0

(
τ−2∏
s=k

An+1+s

)
bn+k (14.29)

where x̄n|n is the state estimation generated by the recurrent Kalman filter (14.19)–(14.26).
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The formula (14.29) can be rewritten in the recurrent form as follows:

x̄n+τ |n = P A
n,n+τ−1 x̄n|n +

τ−1∑
k=0

(
τ−2∏
s=k

An+1+s

)
bn+k

P A
n,n+τ−1 = An+τ−1 P A

n,n+τ−2, P A
n,n = An

Sn,n+τ−1 = An+τ−1Sn,n+τ−2 + bn+τ−1, Sn,n = bn

(14.30)

where

P A
n,n+τ−1 :=

(
τ−1∏
k=0

An+k

)

Sn,n+τ−1 :=

τ−1∑
k=0

(
τ−2∏
s=k

An+1+s

)
bn+k

= An+τ−1

τ−2∑
k=0

(
τ−3∏
s=k

An+1+s

)
bn+k + bn+τ−1

(14.31)

14.2.3.2 Smoothing

This case corresponds to τ = −1,−2, . . . , n in (14.27). Again, taking into account that
the noises ξn , wn are independent and centered, the application of the operator E {·/Fn} to
both sides of (14.16) with the following forward-iteration implies

x̄n|n = E {xn/Fn} = An−1E {xn−1/Fn} + bn−1

= An−1
[
An−2E {xn−2/Fn} + bn−2

]
+ bn−1

=
[
An−1 · · · An−τ

]
E {xn−τ /Fn}

+
[
An−1 · · · An−τ+1

]
bn−τ + · · · + An−1bn−2 + bn−1

=

(
−1∏

k=−τ

An+k

)
x̄n−τ |n +

τ∑
k=1

(
−2∏

s=−k

An+s+1

)
bn−k (14.32)

which leads to the following formulation of the main result dealing with a smoothing
design.

Theorem 14.5. (on smoothing) If within the sub-class dynamic models (14.16)–(14.17)
the ‘input’ vectors bn ∈ Rn , hn ∈ Rm are deterministic and measurable (available) and

det An+k 6= 0 for all k = −τ, . . . ,−1 (14.33)

then the best mean square smoothing for τ -steps back (τ = 1, 2, . . . , n)

x̄n−τ |n := E {xn−τ /Fn} = arg min
x̂∼Fn

E
{∥∥xn−τ − x̂

∥∥2
}

(14.34)
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as a function of the available data {y1, . . . , yn} is given by

x̄n−τ |n =

(
−1∏

k=−τ

An+k

)−1 [
x̄n|n −

τ∑
k=1

(
−2∏

s=−k

An+s+1

)
bn−k

]
(14.35)

where x̄n|n is the state estimation generated by the recurrent Kalman’s filter (14.19)–
(14.26).

Proof. It follows from (14.32) if take into account that the matrix

(
−1∏

k=−τ
An+k

)
is non-

singular if (14.33) holds. �

14.3 State-estimating of linear continuous-time processes

14.3.1 Structure of an observer for linear stochastic processes

Consider here a linear stochastic process1 given by

dx (t, ω) = [A(t)x (t, ω)+ b (t)] dt + C (t) dVt (ω)

x (0, ω) = x0 (ω)

dy (t, ω) = H(t)x (t, ω) dt + D (t) dWt (ω), t ≥ 0
(14.36)

where

• x (t, ω) ∈ Rn is the current state of the process, x0 (ω) is a random vector with a finite
second moment;
• b(t) ∈ Rn is known measurable input;
• y (t, ω) ∈ Rm is the current measurable (available) output;
• A(t) ∈ Rn×n , H(t) ∈ Rm×n are known deterministic matrices;
• Vt (ω) ∈ Rkv and Wt (ω) ∈ Rkw are unmeasurable independent standard Wiener

processes, referred below to as the state and output noise, respectively; namely, they

1If the second equation in (14.36) has another form, namely,

dy (t, ω) = H(t) dx (t, ω)+ D (t) dWt (ω), t ≥ 0

then, by the first equation in (14.36), it follows that

dy (t, ω) = H̃(t)x (t, ω) dt + D̃ (t) dW̃t (ω)

H̃(t) := H(t)A(t), D̃ (t) :=
[
C (t) D (t)

]
dW̃t (ω) =

(
dVt (ω)
dWt (ω)

)
So, the considered version is equivalent to the original one given in (14.36).
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are centered Gaussian vector processes with orthogonal independent increments such
that

E

{(
Vt (ω)

Wt (ω)

)(
Vt (ω)

Wt (ω)

)ᵀ}
=

(
Ikv×kv 0

0 Ikw×kw

)
t (14.37)

Matrices C (t) ∈ Rn×kv and D (t) ∈ Rm×kw are supposed to be deterministic and known.
Moreover, to simplify the presentation the following assumption will be in force hereafter:

A1. For all t ∈ [0, T ]

D (t) Dᵀ (t) > 0 (14.38)

The problem under consideration is as follows.

Problem 14.3. Design a process

x̂ (t, ω) = x̂ (y (τ, ω), τ ∈ [0, t]) ∈ Rn (14.39)

referred to as a state estimate (or, a state observer) such that an estimation error

1x (t, ω) := x̂ (t, ω)− x (t, ω) (14.40)

would be as small as possible (in some probabilistic sense).

Here we will use the following definition.

Definition 14.2. We say that a ‘state estimate’ x̂ (t, ω) is generated by a global (full order)
linear differential observer (or, a filter) if it satisfies the following three conditions:

1. (OSDE property): the function x̂t is the solution of the following ordinary linear
stochastic differential equation

dx̂ (t, ω) =
[
G (t) x̂ (t, ω)+ b(t)

]
dt + L (t) dyt (t, ω), x̂0 is fixed (14.41)

where G (t) ∈ Rn×n , L(t) ∈ Rm×n are some deterministic matrices;
2. (The exact mapping property): the trajectories x (t, ω) of the given system (14.36) and

x̂ (t, ω) (14.41) coincide for all t ≥ 0 with probability one, that is,

x (t, ω) = x̂ (t, ω), dx (t, ω) = dx̂ (t, ω) (14.42)

if the initial states (14.41) coincide, i.e.,

x (0, ω)
a.s.
= x̂ (0, ω)

and when there are no disturbances at all, that is, for all t ≥ 0

C (t) = 0 and D (t) = 0



Filtering, prediction and smoothing 429

3. (The asymptotic consistency property): if the initial states of the original model and
the estimating model do not coincide with some positive probability, that is,

E
{∥∥x (0, ω)− x̂ (0, ω)

∥∥2
}
> 0

but still there are no disturbances, namely,

C (t) = 0 and D (t) = 0

then the estimates x̂ (t, ω) should satisfy (if we are interested in the state estimation on
a infinite time-interval)

E
{∥∥x (t, ω)− x̂ (t, ω)

∥∥2
}
→

t→∞
0 (14.43)

Lemma 14.3. Both models (14.36) and (14.41) satisfy the condition 2 in 14.2 if and only
if G (t) and L (t) in (14.41) are as follows:

G (t) = A(t)− L (t) H(t) (14.44)

for almost all t ≥ 0.

Proof. Since by the condition 2 C (t) = 0 and D (t) = 0, it follows that

d (1x (t, ω)) = G (t) x̂ (t, ω) dt + [L (t) H(t)− A(t)] x (t, ω) dt

= [θ (t)− b (t)] dt + G (t)1x (t, ω) dt

+ [L (t) H(t)− A(t)+ G (t)] x (t, ω) dt (14.45)

(a) Necessity. Putting 1x (t, ω)
a.s.
= 0 and d (1x (t, ω))

a.s.
= 0, we get

[L (t) H(t)− A(t)+ G (t)] x (t, ω)
a.s.
= 0

which should be valid for any initial conditions x (0, ω)
a.s.
= x̂ (0, ω), and hence, for any

x(t, ω). This implies the identity

L (t) H(t)− A(t)+ G (t) = 0

for almost all t ≥ 0.
(b) Sufficiency. Suppose that (14.44) holds. Then by (14.45) we have

d (1x (t, ω)) = G (t)1x (t, ω) dt (14.46)

which, in view of the condition 1x (0, ω)
a.s.
= 0 implies

1x (t, ω) = 8G (t, 0)1x (0, ω)
a.s.
= 0

where 8G (t, 0) is the fundamental matrix of the linear vector equation (14.46). Lemma is
proven. �
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Using (14.44), one can represent the linear observer (filter) as

dx̂ (t, ω) =
[
A(t)x̂ (t, ω)+ b(t)

]
dt

+ L (t)
[
dyt (t, ω)− H(t)x̂ (t, ω) dt

]
, x̂0 is fixed

(14.47)

Claim 14.1. Any global linear differential observer (or, a filter) GL (14.41) should have
the structure (14.47)2 which repeats the linear regular part

A(t)x̂ (t, ω)+ b(t) (14.48)

and additionally, contains the correction term

L (t)
[
dyt (t, ω)− H(t)x̂ (t, ω) dt

]
(14.49)

where the matrix L (t) is referred to as the observer gain-matrix. The quality of the state
estimating process (or filtering) obviously depends on the selection of this observer gain-
matrix L (t).

Lemma 14.4. Both models (14.36) and (14.41) satisfy condition 3 in 14.2 if and only if
the linear time-varying system

d (1x (t, ω)) = G (t)1x (t, ω) dt (14.50)

is asymptotically stable, or in other words, when

8G (t, 0) →
t→∞

0 (14.51)

with 8G (t, 0) satisfying

d

dt
8G (t, 0) = [A(t)− L (t) H(t)]8G (t, 0)

8G (0, 0) = I
(14.52)

Proof. By (14.45) we have

d (1x (t, ω)) = G (t)1x (t, ω) dt

which leads to

1x (t, ω) = 8G (t, 0)1x (0, ω) (14.53)

2 This system is referred to as ‘Luenberger-structure observer’.
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and, as the result, to

E
{
‖1x (t, ω)‖2

}
= E

{
‖8G (t, 0)1x (0, ω)‖2

}
≤ ‖8G (t, 0)‖2 E

{
‖1x (0, ω)‖2

}
(14.54)

(a) Necessity. Evidently, it results from (14.53).
(b) Sufficiency follows from (14.54).
Lemma is proven. �

Remark 14.1. In a stationary case, when all matrices A(t), L (t) and H(t) are constant,
i.e.,

A(t) = A, L (t) = L , H(t) = H

the existence of the gain-matrix L, providing the Hurwitz property (stability) for the matrix
G = A − L H, is guaranteed by the condition that the pair (A, H) is observable (see, for
example, Poznyak (2008)). The observer (or filter) (14.47) with constant gain-matrix L is
called the Luenberger-type observer.

Remark 14.2. Obviously, if we consider the state estimation on a finite time-interval
[0, T ] (T <∞) then property 3 in Definition 14.2 is not essential.

So, below we will design the gain matrix L (t) such that the mean-square state estimation

error E
{∥∥x (t, ω)− x̂ (t, ω)

∥∥2
}

should be as low as possible within the class of global

linear differential observers (14.41) subjected to the constraint (14.51).

14.3.2 Continuous-time linear filtering

14.3.2.1 First two moments of the estimation error

Under noise presence the dynamics of the state estimation error 1x (t, ω) is governed
by the linear stochastic differential equation:

d (1x (t, ω)) = G (t)1x (t, ω) dt + Gν (t) dv (t, ω) (14.55)

where

G (t) = A(t)− L (t) H(t)

Gν (t) :=
[
L (t) D (t) [−C (t)]

]
v (t, ω) :=

(
Wt (ω)

Vt (ω)

) (14.56)

Lemma 14.5. The first two moments

m (t) := E {1x (t, ω)}

Q (t) := E {[1x (t, ω)] [1x (t, ω)]ᵀ}
(14.57)
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of 1x (t, ω) satisfy the following ODEs:

ṁ (t) = G (t)m (t), m (0) = E {1x (0, ω)} (14.58)

and

Q̇ (t) = G (t) Q (t)+ G (t) Qᵀ(t)

+ L (t) D (t) Dᵀ (t) Lᵀ (t)+ C (t)Cᵀ (t)
Q (0) = E {x (0, ω) xᵀ (0, ω)}

(14.59)

Proof. It directly follows from Corollary 12.4 (see relations (12.85)–(12.88)). �

14.3.2.2 Mean-square gain-matrix optimization

The rigorous derivation of the optimal state-observer (known as the continuous-time
Kalman filter) for linear stochastic models (14.36) can be found in Davis (1977). Here we
will present another method of derivation which (on our opinion) is more relevant to an
engineering audience.

Theorem 14.6. (on the continuous-time Kalman filter) If

1. all matrices A (t) , C (t), H (t) and D (t) in (14.36) are continuous almost everywhere
(a.e.) on some interval [0, T ];

2. and the assumption A.1 (14.38) holds

then the best (in mean-square sense) gain-matrix L (t) = L∗ (t) in the global linear
observer (14.47) given by

dx̂ (t, ω) =
[
A(t)x̂ (t, ω)+ b(t)

]
dt

+ L (t)
[
dyt (t, ω)− H(t)x̂ (t, ω) dt

]
x̂0 is fixed

(14.60)

is as follows:

L (t) = L∗ (t) := P (t) Hᵀ(t)
[
D (t) Dᵀ (t)

]−1 (14.61)

where P (t) satisfies the following differential Riccati equation

Ṗ (t) = A(t)P (t)+ P (t) A(t)ᵀ + C (t)Cᵀ (t)

− P (t) Hᵀ(t) [D (t) Dᵀ (t)]−1 H(t)P (t)

P (0) = E {1x (0, ω)1ᵀx (0, ω)}

(14.62)
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so that for all t ≥ 0

P (t) = E
{
1x (t, ω)1ᵀx (t, ω)

}
(14.63)

Proof.

1. The relation (14.59) can be represented as

Q̇ (t) = A(t)Q (t)+ Q (t) A(t)ᵀ + C (t)Cᵀ (t)

− L (t) H(t)Q (t)− Q (t) [L (t) H(t)]ᵀ + L (t) D (t) Dᵀ (t) Lᵀ (t)

= A(t)Q (t)+ Q (t) A(t)ᵀ + C (t)Cᵀ (t)

− Q (t) Hᵀ(t)
[
D (t) Dᵀ (t)

]−1 H(t)Q (t)+R(t | L (t)) (14.64)

where the matrix 0 ≤ R(t | L (t)) ∈ Rn×n is

R(t | L (t)) =
(
L (t) [D (t) Dᵀ (t)]1/2

− Q (t) Hᵀ(t) [D (t) Dᵀ (t)]−1/2)
·
(
L (t) [D (t) Dᵀ (t)]1/2

− Q (t) Hᵀ(t) [D (t) Dᵀ (t)]−1/2)ᵀ
Taking L(t) = L∗(t) as in (14.61) provides

R(t | L (t)) = 0

for all t ≥ 0. Then (14.64) becomes

Q̇ (t) = A(t)Q (t)+ Q (t) A(t)ᵀ + C (t)Cᵀ (t)

− Q (t) Hᵀ(t)
[
D (t) Dᵀ (t)

]−1 H(t)Q (t) := S (t | Q (t)) (14.65)

Denote Q (t) = P(t) if it satisfies (14.65).
2. Let us prove an auxiliary statement.

Auxiliary statement. If

1.

Q (0) ≥ P (0) (14.66)

2. all matrices A(t), C (t), H (t) and D (t) in (14.36) are continuous almost everywhere
(a.e.) on some interval [0, T ],

3. and the assumption A.1 (14.38) holds

then

Q (t) ≥ P (t) (14.67)

for any L(t), that is, for any z ∈ Rn

zᵀ1(t) z ≥ 0
1ᵀ (t) = 1(t) := Q (t)− P (t)

(14.68)
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Proof of auxiliary statement. Since

Q̇ (t) = S (t | Q (t))+R(t | L (t))

R(t | L (t)) ≥ 0

Ṗ (t) = S (t | P (t))

for a time-partition 0 = t0 < t1 < · · · < tk < · · · and any t ∈ [tk, tk+1) we have

1(t) := Q (t)− P (t) = Q (tk)− P (tk)

+

t∫
s=tk

[S (s | Q (s))− S (s | P (s))] ds +

t∫
s=tk

R(s | L (s))ds

≥ Q (tk)− P (tk)+

t∫
s=tk

[S (s | Q (s))− S (s | P (s))] ds (14.69)

Now we can apply the induction method.
(a) Consider k = 0. If L (t) = L∗ (t) almost everywhere (a.e.) on [t0, t1), then S (t | Q (t))
a.a.
= S (t | P (t)) and (14.69) leads to

1(t) ≥ 1(t0) ≥ 0

Consider now the situation when L (t) 6= L∗ (t) at some set T ⊂ [t0, t1) of a non-zero
Lebesgue measure. Since Q (t) and P (t) are absolutely continuous and S (t | Q (t)) is
(a.e.)-continuous function of t by the assumptions A.2–A.3, then for any z ∈ z ∈ Rn and
small enough (but non-zero) t1 we have

zᵀ [S (t | Q (t))− S (t | P (t))] z

= zᵀS (t | Q (t)) z − min
L(t)

zᵀS (t | Q (t)) z ≥ 0

and therefore,

t1∫
s=t0

[S (s | Q (s))− S (s | P (s))] ds ≥ 0

and hence,

1(t) ≥ 1(t0)+

t1∫
s=t0

[S (s | Q (s))− S (s | P (s))] ds ≥ 1(t0) ≥ 0

(b) Suppose 1(tk) ≥ 0 for some k > 0. Then repeating the same consideration as for the
case k = 0 we obtain the desired result. �

Now the proof of the main theorem follows directly if we take into account that under
the accepted conditions the auxiliary statement holds for any L(t). Theorem is proven. �



Filtering, prediction and smoothing 435

Remark 14.3. In general, the global linear observer (14.47) generates a class of linear
estimates x̂ (t, ω) of the state x (t, ω), based on the measurements y (τ, ω) |τ∈[0,t], which
minimizes the mean-square estimation error E {1x (t, ω)1ᵀx (t, ω)}, and, therefore, tak-
ing into account that both Wiener processes in (14.36) are Gaussian provided that x (t, ω)
is Gaussian too, we may conclude (see Lemma 14.2) that

x̂ (t, ω) = E {x (t, ω) | y (τ, ω) , τ ∈ [0, t]} (14.70)

Example 14.2. (the Ornstein–Uhlenback process) Consider the Ornstein–Uhlenback pro-
cess {x (t, ω)} satisfying the following linear stochastic differential equation:

dx (t, ω) = −αx (t, ω) dt + σdVt (ω)

x (0, ω)
a.s.
= 0 ∈ R, α ≥ 0, σ > 0

E
{

x2
0 (ω)

}
= q0, t ≥ 0

(14.71)

provided that the measurable information {y (t, ω)} is generated by

dy (t, ω) = x (t, ω) dt + gdWt (ω), g > 0 (14.72)

Both scalar Wiener processes Vt (ω) and Wt (ω) are standard Gaussian independent
processes, namely,

E {Vt (ω)} = E {Wt (ω)} = 0

E
{

V 2
t (ω)

}
= E

{
W 2

t (ω)
}
= t

According to Theorem 14.6, the best state estimate of this process x̂(t, ω), constructed
based on y (τ, ω) |τ∈[0,t], is given by

dx̂ (t, ω) = −α x̂ (t, ω) dt

+ p (t) g−2 (t)
[
dy (t, ω)− x̂ (t, ω) dt

]
ṗ (t) = −2αp (t)− p2 (t) g−2

+ σ 2

x̂ (0, ω)
a.s.
= 0, p (0) = q0

(14.73)

The function p (t) can be expressed analytically (using the solution for the Bernoulli
differential equation) as

p (t) = p1 +
(p1 − p2)

(q0 − p2)

(q0 − p1)
e2βt − 1

β =

√
α2 + σ 2g−2

p1 = g2 (β − α), p2 = −g2 (β + α)

(14.74)
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14.3.3 Continuous-time prediction and smoothing

14.3.3.1 Prediction

By (14.36) it follows that for any τ > 0

x (t + τ, ω) = 8(t + τ, t) x (t, ω)

+8(t + τ, t)

t+τ∫
s=t

8−1 (s, t) b (s) ds

+8(t + τ, t)

t+τ∫
s=t

8−1 (s, t)C (s) dVs (ω)

and, taking into account that the last two terms are independent of {y(s, ω), s ∈ [0, t]} and
in view of (14.70), one has

E {x (t + τ, ω) | y(s, ω), s ∈ [0, t]} = 8(t + τ, t)E {x (t, ω) | y(s, ω), s ∈ [0, t]}

+8(t + τ, t)

t+τ∫
s=t

8−1 (s, t) b (s) ds

= 8(t + τ, t) x̂ (t, ω)+8(t + τ, t)

t+τ∫
s=t

8−1 (s, t) b (s) ds

Here 8(t, s) is the transition matrix of (14.36) satisfying for any t, s ≥ 0

∂

∂t
8(t, s) = A(t)8(t, s), 8 (t, t) = I (14.75)

As a result, we may conclude that the ‘best’ (in mean-square sense) prediction

x̂ (t + τ | t) = E {x (t + τ, ω) | y(s, ω), s ∈ [0, t]}

is given by

x̂ (t + τ | t) = 8(t + τ, t) x̂ (t, ω)

+8(t + τ, t)

t+τ∫
s=t

8−1 (s, t) b (s) ds
(14.76)

where8(t + τ, t) satisfies (14.75) and x̂ (t, ω) is the Kalman filtering state estimate given
by (14.60).
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14.3.3.2 Smoothing

Analogously, by (14.36) it follows that for any τ > 0

x (t, ω) = 8(t, t − τ) x (t − τ, ω)+8(t, t − τ)

t∫
s=t−τ

8−1 (s, t − τ) b (s) ds

+8(t, t − τ)

t∫
s=t−τ

8−1 (s, t − τ)C (s) dVs (ω)

which leads to

x̂ (t, ω) = E {x (t, ω) | y(s, ω), s ∈ [0, t]}

= 8(t, t − τ)E {x (t − τ, ω) | y(s, ω), s ∈ [0, t]}

+8(t, t − τ)

t∫
s=t−τ

8−1 (s, t − τ) b (s) ds

So, the ‘best’ smoothing-estimate

x̂ (t − τ, ω) = E {x (t − τ, ω) | y(s, ω), s ∈ [0, t]}

is given by

x̂ (t − τ, ω) = 8−1 (t, t − τ) x̂ (t, ω)−

t∫
s=t−τ

8−1 (s, t − τ) b (s) ds (14.77)

where again x̂ (t, ω) is the Kalman filtering state estimate given by (14.60).
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15.1 Outline of chapter

In certain statistical applications (such as bioassay, sensitivity testing, or fatigue trials)
some problems arising can be conveniently attacked using the so-called stochastic approx-
imation method (SAM) which requires minimum distributional assumptions. Traditionally,
referring to publications on SAM, the book by Wasan (1969) is mentioned. SAM is closely
related to recursive least squares (see Chapter 13 of this book) and to the estimation of
parameters of a nonlinear regression (Albert and Gardner, 1967). A comprehensive dis-
cussion of both stochastic approximation and recursive estimation and their relationship
is provided by Nevel’son and Khas’minski (1972). More recent material can be found in
Kushner and Yin (1997). The control engineering literature also contains many applications
of SAM, basically related to identification problems (see, for example, Tsypkin (1971) and
Saridis (1977)).

Quite a large number of stochastic approximation schemes have been discussed in the
literature, but they essentially amount to modifications of two basic schemes:

• the Robbins–Monro procedure (Robbins and Monro, 1951), dealing with a nonlinear
regression problem when only measurements of a regression function corrupted by
noise are available,
• the Kiefer–Wolfowitz procedure (Kiefer and Wolfowitz, 1952), dealing with an opti-

mization problem when only measurements of a function to be optimized corrupted by
noise are available in any predetermined point.

When noise in measurements is an independent process or a martingale-difference, it is
standard practice to iterate the approximation procedure and obtain as the end product a
martingale plus other terms which are asymptotically negligible.

In this chapter we shall give strong laws of convergence as well as asymptotic normality
theorem and iterated logarithm results for both the Robbins–Monro and the Kiefer–
Wolfowitz procedures. We also will present some extensions related to the stochastic
gradient algorithm, its robustification and the conditions when these procedures work under
correlated noises.

439
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15.2 Stochastic nonlinear regression

15.2.1 Nonlinear regression problem

Consider the problem of finding a root of nonlinear vector-function f : RN
→ RN

(which is referred to as a nonlinear regression function)

f (x) = 0 (15.1)

based on sequence measurements

yn = f (xn−1)+ ξn (15.2)

where

• the points {xn}n≥0 (where these measurements are realized) can be predetermined by a
special rule (an active experiment), suggested by a designer, or can be defined a priori
(a passive experiment); and
• {ξn}n≥1 is a stochastic noise sequence disturbing the observations {yn}n≥1.

The following assumptions (and their combinations), concerning the regression function,
will be in force throughout this section:

A1 The root x∗ ∈ RN of the equation (15.1), satisfying

f (x∗) = 0 (15.3)

exists and is unique.
A2 For some positive constants k, K and for all x ∈ RN

k ‖x − x∗‖2 ≤ ( f (x), x − x∗) ≤ K ‖x − x∗‖2 (15.4)

A3 For all x ∈ RN as x → x∗

(a)

f (x) = A1 (x − x∗)+ o (‖x − x∗‖)
A1 = ∇ f (x∗), det∇ f (x∗) 6= 0

(15.5)

(b)

f (x) = A1 (x − x∗)

+ (A2(x − x∗), (x − x∗))+ o
(
‖x − x∗‖2

)
A1 = ∇ f (x∗), det∇ f (x∗) 6= 0, ‖A2‖ <∞

(15.6)

The illustration of a nonlinear regression f (x) satisfying the assumption A1–A2 in the
scalar case (N = 1) is given in Fig. 15.1.
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f(x) K(x–x*)

k(x–x*)

x*
x0

Fig. 15.1. A nonlinear regression function.

15.2.2 Robbins–Monro procedure and convergence with probability one

To find a root of the nonlinear regression (15.1) consider the following recurrent
procedure:

xn = xn−1 − 0n yn

n = 1, 2, . . .
(15.7)

where 0n ∈ RN×N is the gain matrix referred to as a current ‘step-size’ of the procedure.

Theorem 15.1. (Robbins and Monro, 1951)1 Suppose that the assumptions A1–A2 are
satisfied and the noise sequence is a martingale-difference with a bounded conditional
covariation, i.e.,

E {ξn | Fn−1}
a.s.
= 0, E

{
ξnξ
ᵀ
n | Fn−1

} a.s.
≤ 4 <∞ (15.8)

where Fn := σ (x0, ξ1, . . . , ξn). If

0n = γn I (15.9)

with the scalar sequence {γn}n≥1 satisfying

γn ≤
2k

K
(1− ρ) ,

∞∑
n=1

γn = 0,
∞∑

n=1

γ 2
n <∞ (15.10)

for some ρ ∈ (0, 1), then

xn
a.s.
→

n→∞
x∗ (15.11)

under any fixed initial conditions x0.

1In the original paper (Robbins and Monro, 1951) only the scalar case N = 1 was considered.



442 Advanced Mathematical Tools for Automatic Control Engineers: Volume 2

Proof. For v̄n := ‖xn − x∗‖2 in view of (15.7) it follows that

v̄n =
∥∥(xn−1 − x∗

)
− γn yn

∥∥2

= v̄n−1 − 2γn
(
yn, xn−1 − x∗

)
+ γ 2

n ‖yn‖
2 (15.12)

Taking from both sides the conditional mathematical expectation and observing that xn−1
is Fn−1-measurable we get

E {v̄n | Fn−1} ≤ v̄n−1 − 2γn
(

f (xn−1), xn−1 − x∗
)
+ γ 2

n

[
‖ f (xn−1)‖

2
+ tr4

]
which, in view of A2 and (15.10), implies

E {v̄n | Fn−1} ≤ v̄n−1 − 2kγn v̄n−1 + γ
2
n

[
Kvn−1 + tr4

]
= v̄n−1

[
1− 2kγn

(
1− γn

K

2k

)]
+ γ 2

n tr4

≤ v̄n−1 (1− 2kργn)+ γ
2
n tr4 (15.13)

Applying then Lemma 7.9 with

ηn := v̄n, λn+1 := 2kργn, νn = 0, θn := γ
2
n tr4

we conclude (15.11). Theorem is proven. �

Lemma 15.1. The conditions (15.10) are satisfied, for example, if

γn :=
a

(n + b)γ
, a > 0, b ≥ 0,

1
2
< γ ≤ 1 (15.14)

and the best rate of the convergence (15.11) n~
∗

with ~∗ < 1 is achieved for

γ = γ ∗ = 1,
1

2kρ
< γ0 (15.15)

namely,

‖xn − x∗‖2
a.s.
= oω

(
1

n~∗

)
(15.16)

Proof. It follows directly from Lemma 7.12 with

vn := n~ , αn := 2kργn, βn := γ
2
n tr4

being applied to (15.13) if we notice that

vn+1 − vn

αnvn
=
(n + 1)~ − n~

(2kργn) n~
=
(n + b)γ

2kργ0

(
~ + o(n−1)

n

)

=
~

2kργ0

(
1+ o(n−1)

n1−γ

)
→ µ =

 0 if γ < 1
~

2kργ0
if γ = γ ∗ = 1
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and
∞∑

n=1

βnvn = a2tr4
∞∑

n=1

n~

(n + b)2γ
≤ a2tr4

∞∑
n=1

1

n2γ−~ <∞

if 2γ − ~ > 1, or equivalently, when ~ < 2γ − 1. Therefore, maximum admissible ~ is

~ = ~∗ < 2γ ∗ − 1 = 1

Lemma is proven. �

Theorem 15.2. The Theorem 15.1 remains valid if instead of (15.9) we take

0n = γn0, 0 < 0 = 0ᵀ ∈ RN×N

γn ≤
k

K
(1− ρ)

(15.17)

Proof. It practically repeats the proof of Theorem 15.1 with only one difference: instead
of v̄n := ‖xn − x∗‖2 one can consider

v̄n (0) :=
∥∥xn − x∗

∥∥2
0−1

which leads to the following relations:

v̄n (0) =
∥∥(xn−1 − x∗

)
− γn0yn

∥∥2
0−1 = v̄n−1 (0)

− 2γn

(
0−10yn, xn−1 − x∗

)
+ γ 2

n ‖0yn‖
2
0−1

= v̄n−1 (0)− 2γn
(
yn, xn−1 − x∗

)
+ γ 2

n yᵀn0yn

and, therefore,

E {v̄n (0) | Fn−1} ≤ v̄n−1 (0)− 2γn
(

f (xn−1), xn−1 − x∗
)

+ 2γ 2
n

[
‖ f (xn−1)‖

2
+ tr {40}

]
≤ v̄n−1 (0)− 2kγn v̄n−1 (0)+ 2γ 2

n

[
Kvn−1 + tr {40}

]
= v̄n−1 (1− 2kργn)+ γ

2
n tr {40} (15.18)

Then the result follows directly from Lemma 7.9 with

ηn := v̄n, λn+1 := 2kργn, νn = 0, θn := γ
2
n tr {40}

Theorem is proven. �

Corollary 15.1. Under the conditions of Theorem 15.2

E {v̄n (0)} ≤ O(ν−1
n ) (15.19)
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where the numerical sequence {νn}n≥1 satisfies the conditions

0 < νn < νn+1

lim
n→∞

νn − νn−1

α̃νn−1
= µ < 1, lim sup

n→∞
νnγn = p

(15.20)

Proof. Taking the mathematical expectation from both sides of (15.18) leads to

E {v̄n (0)} ≤ E {v̄n−1 (0)} (1− α̃n)+ β̃n

α̃n := 2kργn, β̃n := γ
2
n tr {40}

For wn := νnE {v̄n (0)} it follows (for large enough n)

wn ≤ wn−1 (1− α̃n)
νn

νn−1
+ νnβ̃n

= wn−1 (1− α̃n)

(
1+

νn − νn−1

νn−1

)
+ νnβ̃n

= wn−1

(
1− α̃n + α̃n

[
νn − νn−1

α̃νn−1

]
− α̃n

νn − νn−1

νn−1

)
+ νnβ̃n

= wn−1
(
1− α̃n

[
1− [µ+ o(1)] (1− α̃n)

])
+ νnβ̃n

= wn−1 (1− α̃n [1− µ+ o(1)])+ νnβ̃n

By Lemma 16.14 from Poznyak (2008) it follows that

lim sup
n→∞

wn ≤ lim sup
n→∞

νnβ̃n

α̃n (1− µ)
= Const · p

which implies (15.19). Corollary is proven. �

15.2.3 Asymptotic normality

From this point we will consider the class of the gain matrices

0n =
0

n + b
, 0 < 0 = 0ᵀ ∈ RN×N , b ≥ 0 (15.21)

Lemma 15.2. (on
√

n-equivalence) If

1. ∥∥xn − x∗
∥∥ a.s.
→

n→∞
0

2. the assumption A3(a) holds,
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3. 0n is as in (15.21) with b = 0, and, additionally,

λ− := λmin
(

Aᵀ10 + 0A1
)
> 0 (15.22)

then the process {xn}n≥1, generated by (15.7), and the linear recurrence

x̃n = x̃n−1 − 0n
[
A1 (x̃n − x∗)+ ξn

]
x̃0 = x0, A1 = ∇ f (x∗)

(15.23)

are
√

n-equivalent, namely,

√
n (xn − x̃n)

a.s.
→

n→∞
0 (15.24)

Proof. One has

wn :=
√

n (xn − x̃n)

=
√

n
(
xn−1 − x̃n−1 − 0n

[
f (xn−1)− A1

(
x̃n − x∗

)])
=
√

n
(
xn−1 − x̃n−1 − 0n

(
A1
[
xn−1 − x̃n

]
+ o

(∥∥xn − x∗
∥∥)))

=
√

n [I − 0n A1]
[
xn−1 − x̃n

]
+
√

n0no
(∥∥xn − x∗

∥∥)
=

√
n

√
n − 1

[I − 0n A1]wn−1 +
√

n0no
(∥∥xn − x∗

∥∥)
The approximation

√
n

√
n − 1

=

√
1+

1
n − 1

= 1+
1+ o(n−1)

2n

and the representation

o
(∥∥x − x∗

∥∥) = ∥∥x − x∗
∥∥ o (1)

imply

wn =

[
1+

1+ o(n−1)

2n

][
I −

0

n + b
A1

]
wn−1 +

√
n0

n + b
o
(∥∥xn − x∗

∥∥)
=

[
I −

0
(
1+ o(n−1)

)
n

A1 −
1+ o(n−1)

2n2 0A1

]
wn−1 +

0

n
wn−1o (1)

=

[
I −

0A1

n
(1+ o (1))

]
wn−1

and, hence,

‖wn‖
2
≤

∥∥∥∥I −
0A1

n
(1+ o (1))

∥∥∥∥2

‖wn−1‖
2
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where∥∥∥∥I −
0

n
(A1 + o (1))

∥∥∥∥2

= λmax

([
I −

0A1

n
(1+ o (1))

]ᵀ [
I −

0A1

n
(1+ o (1))

])
= λmax

([
I −

1+ o (1)
n

[
Aᵀ10 + 0A1

]
+

Aᵀ10
2 A1

n2 (1+ o (1))2
])

≤ λmax

([
I −

1+ o (1)
n

[
Aᵀ10 + 0A1

]])
+ O

(
1

n2

)
= 1−

1+ o (1)
n

λmin
(

Aᵀ10 + 0A1
)
+ O

(
1

n2

)
= 1−

λ− + o (1)
n

Using the inequality 1+ x ≤ ex valid for any x ∈ R we get

1−
λ− + o (1)

n
≤ exp

{
−
λ− + o (1)

n

}
which implies

‖wn‖
2
≤

(
1−

λ− + o (1)
n

)
‖wn−1‖

2

≤

n∏
k=n0

(
1−

λ− + o (1)
k

)
‖wk−1‖

2

Select n0 large enough such that for all n ≥ n0

λ− + o (1) ≥ c > 0

Then the last inequalities imply (a.s.)

‖wn‖
2
≤ exp

{
−

n∑
k=n0

λ− + o (1)
k

}
≤ exp

{
−c

n∑
k=n0

1
k

}
→

n→∞
0

which completes the proof. Lemma is proven. �

The lemma above permits us to analyze the rate of convergence of the original procedure
(15.7) using the

√
n-equivalent procedure (15.23):

x̃n = x̃n−1 −
1
n
0
[
∇ f (x∗) (x̃n − x∗)+ ξn

]
(15.25)

For 1̃n := x̃n − x∗ the recurrence (15.25) gives

1̃n =

[
I −

1
n
0∇ f (x∗)

]
1̃n−1 −

1
n
0ξn (15.26)
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so that, for θn =
√

n1̃n it follows

θn =

√
1+

1
n

[
I −

1
n
0∇ f (x∗)

]
θn−1 −

1+ O
(
n−1

)
√

n
0ξn

=

(
1+

1+ O
(
n−1

)
2n

)[
I −

1
n
0∇ f (x∗)

]
θn−1 −

1+ O
(
n−1

)
√

n
0ξn

=

(
I +

1+ O
(
n−1

)
n

[
1
2

I − 0∇ f (x∗)

])
θn−1 −

1+ O
(
n−1

)
√

n
0ξn

or, in another form,

θn = Bnθn−1 + ζn

Bn := I +
1+ O

(
n−1

)
n

[
1
2

I − 0∇ f (x∗)

]
ξ̃n := −

1+ O
(
n−1

)
√

n
0ξn

Iterating back gives

θn =

(
n∏

t=n0

Bt

)
θn0−1 +

n∑
t=n0

(
n∏

s=t+1

Bt

)
ξ̃t

=

n∏
t=n0

Btθn0−1 +
1
√

n

(
√

n
n∏

t=n0

Bt

)
n∑

t=n0

√
t

(
√

t
t∏

s=n0

Bt

)−1

ξ̃t

=

n∏
t=n0

Btθn0−1 +
1
√

n
A−1

n,n0

n∑
t=n0

At,n0ζn

where

A−1
n,n0
:=
√

n
n∏

t=n0

Bt , ζn :=
√

nξ̃n = −

(
1+ O

(
n−1

))
0ξn

Suppose that

A4 the matrix

S :=

[
1
2

I − 0∇ f (x∗)

]
(15.27)

is Hurwitz (stable).
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Then
∏n

t=n0
Bt → 0 when n→∞, and therefore for some α > 0

θn =
1
√

n
A−1

n,n0

n∑
t=n0

At,n0ζn + Oω
(
e−αn) (15.28)

Now we are ready to formulate the main result on the asymptotic normality of the
procedure (15.7).

Theorem 15.3. (on asymptotic normality) If under the assumptions A1, A2 and A3(a)

in the stochastic nonlinear regression procedure (15.7) with the gain matrix 0n =
0

n + b
as in (15.21) where the matrix 0 satisfies

λ− := λmin (∇
ᵀ f (x∗)0 + 0ᵀ∇ f (x∗)) > 0

S :=

[
1
2

I − 0∇ f (x∗)

]
is Hurwitz

(15.29)

there exists a limit

R := lim
n→∞

1
n

n∑
t=1

E
{
ξtξ
ᵀ
t
}
> 0 (15.30)

then

√
n (xn − x∗)

d
→

n→∞
N (0, K ) (15.31)

where the matrix K = K ᵀ > 0 is the solution of the following algebraic matrix Lyapunov
equation:

SK + K Sᵀ = −0R0ᵀ (15.32)

Proof. Let us verify condition 1 of Lemma 8.11:

A := lim
n→∞

n
(

A−1
n An−1 − I

)
= lim

n→∞
n

√n
n∏

t=n0

Bt
1

√
n − 1

(
n−1∏
t=n0

Bt

)−1

− I

 = lim
n→∞

n

(√
n

n − 1
Bn − I

)

= lim
n→∞

n

((
1+

1+ O
(
n−1

)
2n

)(
I +

1+ O
(
n−1

)
n

[
1
2

I − 0∇ f (x∗)

])
− I

)
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= lim
n→∞

((
1+ O

(
n−1

)
2

)
I +

(
1+ O

(
n−1

)) [1
2

I − 0∇ f (x∗)

])
= I − 0∇ f (x∗)

and therefore, by assumption A4 the matrix

A −
1
2

I =
1
2

I − 0∇ f (x∗) = S

is Hurwitz. So, condition 1 of Lemma 8.11 is fulfilled. Condition 2 is fulfilled too by the
assumption of this theorem concerning the properties of {ξn}n≥1. Then the desired result
follows directly from Theorem 8.15 and Lemma 8.11. Theorem is proven. �

15.2.4 Logarithmic iterative law

Theorem 15.4. (on LIL) If in Theorem 15.3 the condition A3(a) is strengthened to A3(b)
then for large enough n

xn = x∗ + K 1/2ζ̄n (ω)
√

2n−1 ln ln n (15.33)

where ζ̄n (ω) is a random vector that has its set of limit points confined in n-dimensional
sphere {x : ‖x‖ ≤ 1} such that

lim sup
n→∞

∥∥ζ̄n (ω)
∥∥ a.s.
= 1 (15.34)

Proof. Here we do not give a complete detailed proof, but consider this result only as an
illustration of Theorem 8.16 in Chapter 8 (see details in Hall and Heyde (1980)). �

15.2.5 Step-size optimization

As follows from (15.32) the matrix K , defining the rate of convergence of the procedure
(15.7)–(15.21) depends on the selection of matrix 0, namely,

K = K (0) (15.35)

and to optimize the convergence rate one has to select the step-size parameter 0 to try to
solve the matrix minimization problem:

K (0)→ min
0

subject to (15.29)
(15.36)

The following lemma gives the solution of this problem in the case of stationary noises,
and therefore, defines the optimal parametric matrix 0 = 0∗ defining the best form of the
stochastic nonlinear regression procedure (15.7)–(15.21).
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Lemma 15.3. Under conditions of Theorem 15.3 when

R = 4ξ := E
{
ξnξ
ᵀ
n

}
> 0 for any n = 1, 2, . . .

for any admissible 0 satisfying (15.29) the following matrix inequality holds:

K (0) ≥ K ∗ =
[
∇ f (x∗)

]−1
4ξ
[
∇
ᵀ f (x∗)

]−1 (15.37)

where the equality is achieved for

0∗ =
[
∇ f (x∗)

]−1 (15.38)

so that K ∗ = K (0∗).

Proof. For the nonnegative definite matrix H , equal to

0 ≤ H :=
∫

t∈T

(
F (t)
G (t)

)(
F (t)
G (t)

)ᵀ
dt

=



∫
t∈T

F (t) F (t)ᵀ dt
∫

t∈T

F (t)G (t)ᵀ dt

∫
t∈T

G (t) F (t)ᵀ dt
∫

t∈T

G (t)G (t)ᵀ dt

 (15.39)

where F (t) ∈ RNF×M , G (t) ∈ RNG×M are functional quadratically integrable matrices,
by the Schur complement (see Lemma 13.5) application, it follows that∫

t∈T

F (t) F (t)ᵀ dt

≥

∫
t∈T

F (t)G (t)ᵀ dt

∫
t∈T

G (t)G (t)ᵀ dt

−1 ∫
t∈T

G (t) F (t)ᵀ dt (15.40)

provided that
∫

t∈T
G (t)G (t)ᵀ dt > 0. Now notice that the solution K of the matrix

Lyapunov equation can be expressed (see, for example, Lemma 9.1 in Poznyak (2008))
as

K =

∞∫
t=0

eSt04ξ0
ᵀeSᵀt dt

(here we have used the fact that the matrix S is Hurwitz). Putting

F(t) := eSt04
1/2
ξ and G(t) := e−

1
2 I t4

−1/2
ξ
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in (15.40) we obtain

K =

∞∫
t=0

F(t)Fᵀ(t)dt

≥

∞∫
t=0

eSt0e−
1
2 I t dt

 ∞∫
t=0

e−
1
2 I t4−1

ξ e−
1
2 I t dt

−1 ∞∫
t=0

e−
1
2 I t0ᵀeSᵀt dt

Since 0 and e−
1
2 I t commute, i.e.,

0e−
1
2 I t
= e−

1
2 I t0

and applying the formula

∞∫
t=0

eAt dt = −A−1 (if A is Hurwitz)

we get

K =

∞∫
t=0

F(t)Fᵀ(t)dt

≥

∞∫
t=0

e

(
S− 1

2 I
)

t
dt0

 ∞∫
t=0

e−
1
2 I t4−1

ξ e−
1
2 I t dt

−1

0ᵀ

∞∫
t=0

e

(
S− 1

2 I
)ᵀ

t
dt

=

(
S −

1
2

I

)−1

0

 ∞∫
t=0

e−
1
2 I t4−1

ξ e−
1
2 I t dt

−1

0ᵀ
(

Sᵀ −
1
2

I

)−1

=
(
0∇ f (x∗)

)−1
0

 ∞∫
t=0

e−
1
2 I t4−1

ξ e−
1
2 I t dt

−1

0ᵀ
(
∇
ᵀ f (x∗)0ᵀ

)−1

=
(
∇ f (x∗)

)−1 (R∗)−1 [
∇
ᵀ f (x∗)

]−1

where

R∗ =

∞∫
t=0

e−
1
2 I t4−1

ξ e−
1
2 I t dt

is the solution of the matrix Lyapunov equation(
−

1
2

I

)
R∗ + R∗

(
−

1
2

I

)ᵀ
= −4−1

ξ
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which can be found analytically:

R∗ = 4−1
ξ

Therefore,

K ≥
(
∇ f (x∗)

)−1
(
4−1
ξ

)−1 [
∇
ᵀ f (x∗)

]−1
=
(
∇ f (x∗)

)−1
4ξ

[
∇
ᵀ f (x∗)

]−1

which proves (15.37). Direct substitution (15.38) into (15.32) leads to K ∗ = K (0∗)which
concludes the proof. �

Now one can make the following conclusion.

Conclusion 15.1. The best convergence rate of the procedure (15.7)–(15.21) is achieved
for 0 = 0∗ (15.38) and this procedure is

xn = xn−1 −

[
∇ f (x∗)

]−1

n
yn (15.41)

Obviously, it is unrealizable since x∗ and, hence, ∇ f (x∗) is a priori unknown. The
question is: ‘Is it really possible to find any realizable approximation of this optimal
procedure?’ The positive answer was given in Ruppert (1988) and rigorously proven in
Polyak (1990). The next subsection introduces the reader to the details of this problem.

15.2.6 Ruppert–Polyak version with averaging

Consider the following version of the recurrent procedure (15.7)–(15.21) with the
additional averaging

xn = xn−1 −
0

n
yn, n = 1, 2, . . .

x̄n :=
1
n

n∑
t=1

xt = x̄n−1 −
1
n
(x̄n−1 − xn)

(15.42)

Suppose that the conditions of Lemma 15.2 are fulfilled. Therefore, we have the conver-
gence with probability one, i.e.,∥∥xn − x∗

∥∥ a.s.
→

n→∞
0

and, moreover, we know that
√

n (xn − x̃n)
a.s.
→

n→∞
0

where the process {x̃n}n≥1 is generated by (15.25):

x̃n = x̃n−1 −
1
n
0
[
∇ f (x∗)

(
x̃n − x∗

)
+ ξn

]
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So, for 1n := xn − x∗, 1̃n := x̃n − x∗ and 1̄n := x̄n − x∗ we have (see (15.26))

1̃n =

[
I −

1
n
0∇ f (x∗)

]
1̃n−1 −

1
n
0ξn

1̄n :=
1
n

n∑
t=1

1t = 1̄n−1

(
1−

1
n

)
+

1
n
1n

Taking into account that

√
n
(
1n − 1̃n

)
a.s.
→

n→∞
0

we derive that

1
n
1n =

1
n

(
1n − 1̃n

)
+

1
n
1̃n

a.s.
=

1
n
1̃n +

oω (1)

(n)3/2

and, hence,

1̃n =

[
I −

1
n
0∇ f (x∗)

]
1̃n−1 −

1
n
0ξn

1̄n :=
1
n

n∑
t=1

1t =
1
n

n∑
t=1

t

(
1
t
1t

)
=

1
n

n∑
t=1

t

(
1
t
1̃t +

oω (1)

(t)3/2

)
=

1
n

n∑
t=1

1̃t +
1
n

n∑
t=1

oω (1)

(t)3/2

(15.43)

One can see that by the Kronecker Lemma 8.3

√
n1̄n −

1
√

n

n∑
t=1

1̃t =
1
√

n

n∑
t=1

√
t

(
oω (1)

t2

)
a.s.
→

n→∞
0

Hence,

Proposition 15.1. To analyze the properties of the sequence{√
n1̄n

}
n≥1

it is sufficient to consider instead the sequence{
1
√

n

n∑
t=1

1̃t

}
n≥1

The next theorem analyzes the property of this last sequence.

Theorem 15.5. Under the conditions of Lemma 15.2 for any admissible matrices 0 the
following

√
n-equivalence holds:
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1
√

n

n∑
t=1

1̃t − 1̆n
p
→

n→∞
0 (15.44)

where

1̆n := −
[
∇ f (x∗)

]−1 1
√

n

n∑
t=1

ξt (15.45)

Proof. The relations (15.43) imply

1̃n−1 = n
[
0∇ f (x∗)

]−1
(
1̃n−1 − 1̃n

)
−
[
∇ f (x∗)

]−1
ξn

and therefore,

θ̃n :=
1
√

n

n∑
t=1

1̃t − 1̆n =
1
√

n

n∑
t=1

(
1̃t +

[
∇ f (x∗)

]−1
ξt

)
=

1
√

n

n∑
t=1

(
1̃t−1 +

[
∇ f (x∗)

]−1
ξt

)
+

1
√

n

n∑
t=1

(
1̃t − 1̃t−1

)
=
[
0∇ f (x∗)

]−1 1
√

n

n∑
t=1

t
(
1̃t−1 − 1̃t

)
+

1
√

n

(
1̃n − 1̃0

)
Show that

θ̃n
P
→

n→∞
0 (15.46)

By Theorem 15.2 1̃n
a.s.
→

n→∞
0 which implies

1
√

n

(
1̃n − 1̃0

)
a.s.
→

n→∞
0

So, to prove (15.46) it is sufficient to show that

θ̃ ′n :=
1
√

n

n∑
t=1

t
(
1̃t−1 − 1̃t

)
P
→

n→∞
0 (15.47)

Integration (summation) by part, applying the Abel identity (see Lemma 12.2 in Poznyak
(2008)), gives

1
√

n

n∑
t=1

t
(
1̃t−1 − 1̃t

)
=
√

n
n∑

t=1

(
1̃t−1 − 1̃t

)
−

1
√

n

n∑
t=1

[t − (t − 1)]
t−1∑
s=1

(
1̃s−1 − 1̃t

)
√

n
(
1̃0 − 1̃n

)
−

1
√

n

n∑
t=1

(
1̃0 − 1̃t

)
= −
√

n1̃n +
1
√

n

n∑
t=1

1̃t
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Then, by the Chebyshev inequality (4.9) and in view of (15.19) for νn = n, we derive

P
{√

n
∥∥∥1̃n

∥∥∥ > ε
}
= P

{∥∥∥1̃n

∥∥∥ > ε
√

n

}
≤

n

ε2 E

{∥∥∥1̃n

∥∥∥2
}

Since by (15.19) E

{∥∥∥1̃n

∥∥∥2
}
= O

(
n−1

)
for any small enough ε > 0 there exists a number

n0 (ε) such that for all n ≥ n0 (ε) we have

E

{∥∥∥1̃n

∥∥∥2
}
≤ εn−1 (15.48)

we may conclude that

P
{√

n
∥∥∥1̃n

∥∥∥ > ε
}
≤

n

ε2 E

{∥∥∥1̃n

∥∥∥2
}
≤
ε

ε2 = ε0

if we take ε = ε2ε0. Since ε0 is arbitrary we conclude that for any given ε > 0

P
{√

n
∥∥∥1̃n

∥∥∥ > ε
}
→

n→∞
0

Analogously,

1
√

n

n∑
t=1

1̃t =
1
√

n

n∑
t=n0(ε)

1̃t + Oω
(

n−1/2
)

and in view of (15.48),

P

{
1
√

n

∥∥∥∥∥ n∑
t=n0(ε)

1̃t

∥∥∥∥∥ > ε

}
≤ P

{
n∑

t=n0(ε)

∥∥∥1̃t

∥∥∥ > √nε

}

≤
1
√

nε
E

{
n∑

t=n0(ε)

∥∥∥1̃t

∥∥∥} = 1
√

nε

n∑
t=n0(ε)

E
{∥∥∥1̃t

∥∥∥}
≤

ε
√

nε

n∑
t=n0(ε)

O

(
1
√

t

)
= C

ε
√

nε

(√
n −

√
n0 (ε)

)
≤ C

ε

ε
≤ ε0, C ∈ (0,∞)

and take ε = C−1εε0. Since ε0 is arbitrary we conclude that for any given ε > 0

P

{
1
√

n

∥∥∥∥∥ n∑
t=n0(ε)

1̃t

∥∥∥∥∥ > ε

}
→

n→∞
0

Therefore θ̃ ′n
P
→

n→∞
0 which completes the proof. �

So, now we may formulate the following conclusion.
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Conclusion 15.2. Under the conditions of Lemma 15.2 for any admissible matrices 0 in
procedure (15.42)

√
n (x̄n − x∗)− 1̆n

P
→

n→∞
0

1̆n =
1
√

n

n∑
t=1

(
−
[
∇ f (x∗)

]−1
ξt

)
d
→

n→∞
N
(
0, K ∗

)
K ∗ =

[
∇ f (x∗)

]−1
4ξ
[
∇
ᵀ f (x∗)

]−1

which means that

√
n (x̄n − x∗)

d
→

n→∞
N (0, K ∗)

or, in other words, the Ruppert–Polyak procedure (15.42), containing averaging, converges
with the maximum possible convergence rate K ∗ even if it does not involve any informa-
tion on

[
∇ f (x∗)

]−1 which is required (as follows from (15.41)) for the realization of the

best gain matrix 0∗ =
[
∇ f (x∗)

]−1 (15.38).

Some generalizations related with nonlinear transformation of measurements can be
found in Nazin (2001).

15.2.7 Convergence under dependent noises

Consider again procedure (15.7)

xn = xn−1 − γn0yn

yn = f (xn−1)+ ζn, 0 < 0 = 0ᵀ ∈ RN×N (15.49)

where {γn}n≥1 satisfies (15.10) and {ζn}n≥1 is a centered noise sequence which now may
be dependent such that there exist its characteristics

‖ζn‖L p
:=

(∥∥ζ1,n
∥∥

L p
, . . . ,

∥∥ζ1,N
∥∥

L p

)
∥∥ζi,n

∥∥
L p
:=
(
E
{∣∣ζi,n

∣∣p})1/p
, p ≥ 2

q(q)n,m := ‖E {ζn | Fm}‖Lq
, q =

p

p − 1
, n > m

4t,k := E
{
ζnζ
ᵀ
k

}
, t, k = 1, 2, . . . ; σ 2

t := tr
{
4t,t

}
(15.50)

Remark 15.1. For independent (or martingale-difference) centered sequences {ζn}n≥1 we
have

q(q)n,m = 0 (n > m) , 4t,k = 0 (t 6= k) (15.51)

First, let us show the following fact (hereafter we follow Poznyak and Tchikin (1985)).
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Lemma 15.4. Let {xn}n≥1 be generated by (15.49) and {un}n≥1 governed by

un = un−1 − γn (un−1 + 0ζn) , u0
a.s.
= 0 (15.52)

Then under the conditions A1 and A2

lim sup
n→∞

‖(xn − x∗)− un‖
2
0−1 ≤ Const · lim sup

n→∞
‖un‖

2 (15.53)

for all ω ∈ �.

Proof. Define wn := (xn − x∗)− un . Then, by (15.49) and (15.52), it follows that

‖wn‖
2
0−1 := ‖wn−1 − γn0yn + γn (un−1 + 0ζn)‖

2
0−1

= ‖wn−1 − γn (0 f (xn−1)− un−1)‖
2
0−1

= ‖wn−1‖
2
0−1 − 2γn

(
wn−1, 0

−1 (0 f (xn−1)− un−1)
)

+ γ 2
n ‖0 f (xn−1)− un−1‖

2
0−1

= ‖wn−1‖
2
0−1 − 2γn

(
xn−1 − x∗, f (xn−1)

)
+ 2γn (un−1, f (xn−1))+ 2γn (wn−1, un−1)

+ γ 2
n ‖0 f (xn−1)− un−1‖

2
0−1

Then, by the assumption A2 and in view of the λ-inequality (see Lemma 12.1 in Poznyak
(2008))

2 (a, b) ≤ ε ‖a‖2 + ε−1
‖b‖2, ε > 0

with ε = εn , we get

‖wn‖
2
0−1 ≤ ‖wn−1‖

2
0−1 − 2γnk

∥∥xn−1 − x∗
∥∥2

+ γn

(
ε ‖un−1‖

2
+ 2ε−1

[
K
∥∥xn−1 − x∗

∥∥2
+ ‖0‖ ‖wn‖

2
0−1

])
+ 2γ 2

n

∥∥∥0−1
∥∥∥ (K

∥∥xn−1 − x∗
∥∥2
+ ‖un−1‖

2
)

= ‖wn−1‖
2
0−1

(
1+ 2γnε

−1
‖0‖

)
− 2γnk

∥∥xn−1 − x∗
∥∥2
(

1− 2ε−1 K

k
− γn

∥∥∥0−1
∥∥∥ K

)
+ γn

(
ε + 2γn

∥∥∥0−1
∥∥∥) ‖un−1‖

2
≤ ‖wn‖

2
0−1

(
1+ 2γnε

−1
‖0‖

)
− 2γnk

(
1− 2ε−1 K

k
− γn

∥∥∥0−1
∥∥∥ K

)(
‖wn−1‖

2
+ ‖un−1‖

2
)

+ 2γnk

(
1− 2ε−1 K

k
− γn

∥∥∥0−1
∥∥∥ K

)(
ε1 ‖wn−1‖

2
+ ε−1

1 ‖un−1‖
2
)

+ γn

(
ε + 2γn

∥∥∥0−1
∥∥∥) ‖un−1‖

2
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= ‖wn‖
2
0−1

(
1+ 2γn

[
ε−1
‖0‖ − k

(
1− 2ε−1 K

k
− γn

∥∥∥0−1
∥∥∥ K

)
(1− ε1)

])
+ γn ‖un−1‖

2
[

2k

(
ε−1

1 −

(
1− 2ε−1 K

k
− γn

∥∥∥0−1
∥∥∥ K

))
+ ε + 2γn

∥∥∥0−1
∥∥∥]

Taking ε and ε1 such that

c0 := 1− 2ε−1 K

k
− γn

∥∥0−1
∥∥ K ≥ c0 > 0

k

(
1− 2ε−1 K

k
− γn

∥∥0−1
∥∥ K

)
(1− ε1)− ε

−1 ‖0‖ ≥ c > 0

we finally obtain

‖wn‖
2
0−1 ≤ ‖wn−1‖

2
0−1 (1− 2γnc)+ βnγn ‖un−1‖

2

βn := 2k

(
ε−1

1 −

(
1− 2ε−1 K

k
− γn

∥∥0−1
∥∥ K

))
+ ε + 2γn

∥∥0−1
∥∥

and by Lemma 16.14 in Poznyak (2008) on linear recurrent inequalities it follows that

lim sup
n→∞

‖wn‖
2
0−1 ≤ Constlim sup

n→∞
‖un−1‖

2

Const = c−1
[

k

(
ε−1

1 −

(
1− 2ε−1 K

k

))
+ ε/2

]
which completes the proof. �

Conclusion 15.3. This theorem shows that to prove any type of convergence to zero for
{xn − x∗}n≥1 it is sufficient to show the corresponding convergence to zero for {un}n≥1.

The last result permits us to formulate the following important statement concerning the
convergence of the Robbins–Monro procedure under dependent noise sequences.

Theorem 15.6. Under conditions A1–A2 procedure (15.49), where {γn}n≥1 satisfies (15.10)
and is monotonically decreasing such that

nγn →
n→∞

const (15.54)

provides the convergence

xn − x∗ →
n→∞

0 (15.55)

(a) with probability one (or a.s.) if∥∥∥∥∥ ∞∑
n=1

γnζn

∥∥∥∥∥ a.s.
< ∞ (15.56)
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(b) in mean-square sense if

∥∥∥∥∥ ∞∑
n=1

γnζn

∥∥∥∥∥
L2

<∞ (15.57)

or, in other words, the convergence (in some probabilistic sense) of the series
∑
∞

n=1 γnζn
implies the corresponding convergence of procedure (15.49).

Proof. Using the conclusion above it is sufficient to state the convergence of sequence
{un}n≥1 (15.52) for which we have

un = un−1 − γn (un−1 + 0ζn)

= un−1 (1− γn)− γn0ζn = −0πn

n∑
t=1

π−1
t γtζt

where

πn :=

n∏
s=1

(1− γs)

Since (by the inequality 1+ x ≤ ex valid for any x ∈ R)

πn ≤ exp

{
−

n∑
s=1

γs

}
→

n→∞
0

then by the Kronecker Lemma 8.3 the desired result, concerning a.s.-convergence, follows.
As for mean-square convergence, notice that by the Abel identity (see Lemma 12.2 in
Poznyak (2008))

πn

n∑
t=n0

π−1
t γtζt = sn − πn

n∑
t=n0

(
π−1

t − π
−1
t−1

)
st−1

where

sn :=

n∑
t=n0

γtζt
L2
→

n→∞
s∗

Therefore,

πn

n∑
t=n0

π−1
t γtζt =

[
sn − s∗

]
−
πn

πn0

s∗

−πn

n∑
t=n0

(
π−1

t − π
−1
t−1

) [
st−1 − s∗

]
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and hence, in view of the Jensen inequality (see Corollary 16.18 in Poznyak (2008))(
n∑

t=1

ϕt

)2

≤ n

(
n∑

t=1

ϕ2
t

)

and taking into account that π−1
t − π

−1
t−1 > 0, we get∥∥∥∥∥πn

n∑
t=1

π−1
t γtζt

∥∥∥∥∥
2

L2

≤ 3 ‖sn − s∗‖2L2
+ 3

πn

πn0

‖s∗‖2

+ 3

∥∥∥∥∥πn

n∑
t=n0

(
π−1

t − π
−1
t−1

) [
st−1 − s∗

]∥∥∥∥∥
2

L2

≤ 3 ‖sn − s∗‖2L2
+ 3

πn

πn0

‖s∗‖2

+ 3π2
n (n − n0)

n∑
t=n0

π−2
t

(
π−1

t − π
−1
t−1

) ∥∥st−1 − s∗
∥∥2

L2

3
∥∥sn − s∗

∥∥2
L2
+ 3

πn

πn0

∥∥s∗
∥∥2
+ 3π2

n (n − n0)

n∑
t=n0

π−2
t γ 2

t

∥∥st−1 − s∗
∥∥2

L2

= 3 ‖sn − s∗‖2L2
+ 3

πn

πn0

‖s∗‖2

+ 3 [const+ 0(1)]π2
n (n − n0)

n∑
t=n0

[πt (t − n0)]−2
∥∥st−1 − s∗

∥∥2
L2
→

n→∞
0

by the Teöplitz Lemma 8.2 being applied to the third term. Theorem is proven. �

Corollary 15.2. (on a.s.-convergence) Procedure (15.49) provides the convergence xn −

x∗
a.s.
→

n→∞
0 if

∞∑
n=1

[
γ 2

n σ
2
n + γnq(2)n,n−1

n−1∑
t=1

γtσt

]
<∞ (15.58)

Proof. Consider the series
{

sn :=
n∑

t=1
γtζt

}
n≥1

. Then for Fn := σ (ζ1, . . . , ζn) we have

E
{
‖sn‖

2
| Fn−1

}
a.s
= ‖sn−1‖

2
+ 2γn

n−1∑
t=1

γtζ
ᵀ
t E {ζn | Fn−1} + γ

2
n E
{
‖ζn‖

2
| Fn−1

}
which permits us to conclude that (in view of Lemma 7.8)

lim sup
n→∞

s2
n

a.s.
< ∞
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if
∞∑

t=1

[
γ 2

n E
{
‖ζn‖

2
| Fn−1

}
+ γn

n−1∑
t=1

γt ‖ζt‖ ‖E {ζn | Fn−1}‖

]
a.s.
< ∞

But any series of nonnegative random variables converges with probability one if the
corresponding series of mathematical expectations converges, namely, when

∞∑
t=1

[
γ 2

n σ
2
n + γn

n−1∑
t=1

γtE {‖ζt‖ ‖E {ζn | Fn−1}‖}

]
<∞ (15.59)

Taking into account the Cauchy–Schwartz inequality

E {‖ζt‖ ‖E {ζn | Fn−1}‖} ≤

√
E
{
‖E {ζn | Fn−1}‖

2
}√

E
{
‖ζt‖

2}
≤ q(2)n,n−1σt

we conclude that series (15.59) converges if

∞∑
t=1

[
γ 2

n σ
2
n + γnq(2)n,n−1

n−1∑
t=1

γtσt

]
<∞

which takes place by (15.58). Corollary is proven. �

Corollary 15.3. (on a mean-square convergence) Procedure (15.49) provides the con-

vergence E
{
‖xn − x∗‖2

}
→

n→∞
0 if

∞∑
t=1

∞∑
s=1

γtγs tr
{
4t,s

}
<∞ (15.60)

Proof. Again, for the series
{
sn :=

∑n
t=1 γtζt

}
n≥1 we have

E
{

s2
n

}
a.s
=

n∑
t=1

n∑
s=1

γtγsE
{
ζ
ᵀ
t ζs

}
=

n∑
t=1

n∑
s=1

γtγstr
{
4t,s

}
which prove the corollary. �

Remark 15.2. When {ζn}n≥1 is the sequence of independent random variables one has

q(2)n,n−1 = 0

and the conditions (15.58) become

∞∑
n=1

γ 2
n σ

2
n <∞ (15.61)
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15.3 Stochastic optimization

15.3.1 Stochastic gradient method

Here we will consider the following optimization problem: for a differentiable function
f : RN

→ R find its minimum, that is,

f (x)→ min
x∈RN

(15.62)

provided that at any point xn ∈ RN its measurable gradient ∇ f (xn), disturbed by a
stochastic noise ζn , namely, the vector

yn = ∇ f (xn)+ ζn (15.63)

is available.
First, notice that if a minimum point x∗ is unique, i.e.,

f (x) > f
(
x∗
)
, x 6= x∗

then the optimality condition for a point x to be an extremum point is

∇ f (x) = 0 (15.64)

which exactly coincides with the stochastic nonlinear regression problem (15.1)–(15.2)
considered above. This means that we do not need to prove any new results concerning the
stochastic minimization procedure

xn = xn−1 − γn0yn

yn = ∇ f (xn−1)+ ζn, 0 < 0 = 0ᵀ ∈ RN×N (15.65)

Assuming that the function f is strongly convex, and, hence (see Chapter 21 in Poznyak
(2008)), satisfies the inequalities

k ‖x − x∗‖2 ≤ (∇ f (x), x − x∗) ≤ K ‖x − x∗‖2 (15.66)

for some positive constants k, K and for all x ∈ RN , it is sufficient to change in all
statements above the vector function f to the gradient ∇ f (x) and we do not need to re-
prove all of the theorems on convergence and the rate of convergence. So, below we will
formulate the main theorems concerning the properties of the stochastic gradient procedure
(15.65).

Theorem 15.7. (on convergence under dependent noises) Let {γn}n≥1 in (15.65) sat-
isfy the conditions (15.10) and (15.54) and {ζn}n≥1 be a centered noise sequence which
may be dependent on the characteristics (15.50). Suppose also that the function f is dif-
ferentiable and its gradient satisfies the Lipschitz condition. Then
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(a) xn − x∗
a.s.
→

n→∞
0 if

∞∑
n=1

[
γ 2

n σ
2
n + γnq(2)n,n−1

n−1∑
t=1

γtσt

]
<∞ (15.67)

(b) E
{
‖xn − x∗‖2

}
→

n→∞
0 if

∞∑
t=1

∞∑
s=1

γtγs tr
{
4t,s

}
<∞ (15.68)

Theorem 15.8. (on asymptotic normality) If under the assumptions of Theorem 15.7
the function f is twice differentiable in the optimal point and in the stochastic gradient

procedure (15.65) with 0n =
0

n + b
the matrix 0 satisfies

λ− := λmin
(
∇

2 f (x∗)0 + 0ᵀ∇2 f (x∗)
)
> 0

S :=

[
1
2

I − 0∇2 f (x∗)

]
is Hurwitz

(15.69)

there exists a limit

R := lim
n→∞

1
n

n∑
t=1

E
{
ξtξ
ᵀ
t
}
> 0 (15.70)

and {ξt }t≥1 is a martingale-difference sequence (q(2)n,n−1 = 0), then

√
n (xn − x∗)

d
→

n→∞
N (0, K ) (15.71)

where the matrix K = K ᵀ > 0 is the solution of the following algebraic matrix Lyapunov
equation:

SK + K Sᵀ = −0R0ᵀ (15.72)

and the best rate of the convergence is achieved for

0∗ =
[
∇

2 f (x∗)
]−1

(15.73)
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so that

K (0) ≥ K ∗ = K (0∗) =
(
∇

2 f (x∗)
)−1

4ξ
[
∇

2 f (x∗)
]−1

(15.74)

if {ξt }t≥1 is supposed to be independent and stationary providing 4ξ = R.

Theorem 15.9. (on LIL for stochastic gradient) If in Theorem 15.8 the condition of
twice differentiability in the optimal point is strengthened to its continuity (∇2 f (x) ∈ C2),
then for large enough n

xn = x∗ + K 1/2ζ̄n (ω)
√

2n−1 ln ln n (15.75)

where ζ̄n (ω) is a random vector having its set of limit points confined in n-dimensional
sphere {x : ‖x‖ ≤ 1} such that

lim sup
n→∞

∥∥ζ̄n (ω)
∥∥ a.s.
= 1 (15.76)

Theorem 15.10. (The Ruppert–Polyak extension) For any admissible matrices 0 in
procedure (15.65) for the averaged vectors

x̄n :=
1
n

n∑
t=1

xt = x̄n−1 −
1
n
(x̄n−1 − xn) (15.77)

we have

√
n (x̄n − x∗)− 1̆n

P
→

n→∞
0

1̆n =
1
√

n

n∑
t=1

(
−

[
∇

2 f (x∗)
]−1

ξt

)
d
→

n→∞
N
(
0, K ∗

)
K ∗ =

[
∇

2 f (x∗)
]−1

4ξ
[
∇

2 f (x∗)
]−1

which means that

√
n (x̄n − x∗)

d
→

n→∞
N (0, K ∗)

or, in other words, the Ruppert–Polyak extension of the procedure (15.65), containing
averaging (15.77), converges with the maximum possible convergence rate K ∗ even if

it does not involve any information on
[
∇

2 f (x∗)
]−1

which is required for the realization

of the best gain matrix 0∗ =
[
∇ f (x∗)

]−1 (15.73).
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15.3.2 Kiefer–Wolfowitz procedure

As has been done above, we will consider the optimization problem (15.62) provided
that at any point x ∈ RN there is measurable only the corresponding value of the minimized
function f (x), disturbed by a stochastic scalar noise ζn ; namely, the scalar

yn (x) = f (x)+ ζn (15.78)

is available.
Consider the recurrent procedure which generates the stochastic sequence {xn}n≥0

according to the following rule:

xn = xn−1 −
γn

2αn
0Yn

0 ≤ γn,

∞∑
n=1

γn = 0

0 < αn, 0 < 0 = 0ᵀ ∈ RN×N

Yn :=

N∑
i=1

[
yn (xn−1 + αnei )− yn (xn−1 − αnei )

]
ei ∈ RN

eᵀi :=

0, 0, . . . , 0, 1,︸ ︷︷ ︸
i

0, . . . , 0

 ∈ RN

(15.79)

We shall call this scheme the generalized version of the Kiefer–Wolfowitz procedure which
originally was suggested in Kiefer and Wolfowitz (1952) for the scalar case N = 1.

Before the presentation of the convergence analysis of the procedure (15.79) we will
need the following auxiliary result.

Lemma 15.5. (on a gradient approximation) If

A1, the minimized function f : RN
→ R, is differentiable and its gradient satisfies the

Lipschitz condition

then

1
2αn

Yn = ∇ f (xn−1)+ ζ̄n

ζ̄n = wn +
1

2αn

N∑
i=1

(
ζ+i,n − ζ

−

i,n

)
ei

(15.80)

where wn is the vector satisfying

‖wn‖ ≤
N L∇

2
αn (15.81)
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and ζ+i,n, ζ
−

i,n are noises in the measurements of the function f in the points f (xn−1 + αnei )

and f (xn−1 − αnei ) respectively.

Proof. By assumption A1 (see Chapter 21 in Poznyak (2008)), it follows that

yn (xn−1 + αnei ) = f (xn−1 + αnei )+ ζ
+

i,n

= f (xn−1)+ (∇ f (xn−1) , αnei )+ w
+

i,n + ζ
+

i,n

= f (xn−1)+ αn
∂

∂xi
f (xn−1)+ w

+

i,n + ζ
+

i,n

where ζ+i,n is the noise of measurement, w+i,n is a value satisfying∣∣∣w+i,n∣∣∣ ≤ L∇
2
‖αnei‖

2
=

L∇
2
α2

n

and L∇ is the Lipschitz constant for the gradient ∇ f (x). Analogously

yn (xn−1 − αnei ) = f (xn−1 − αnei )+ ζ
−

i,n

= f (xn−1)− (∇ f (xn−1) , αnei )+ w
−

i,n + ζ
−

i,n

= f (xn−1)− αn
∂

∂xi
f (xn−1)+ w

−

i,n + ζ
−

i,n∣∣∣w−i,n∣∣∣ ≤ L∇
2
‖αnei‖

2
=

L∇
2
α2

n

Then

1
2αn

Yn :=
1

2αn

N∑
i=1

[
2αn

∂

∂xi
f (xn−1)+ w

+

i,n − w
−

i,n + ζ
+

i,n − ζ
−

i,n

]

=

N∑
i=1

[
∂

∂xi
f (xn−1)+

1
2αn

(
w+i,n − w

−

i,n + ζ
+

i,n − ζ
−

i,n

)]
ei

= ∇ f (xn−1)+ ζ̄n

which implies (15.80) with

wn :=
1

2αn

N∑
i=1

(
w+i,n − w

−

i,n

)
ei

Lemma is proven. �

By this lemma one can apply now Theorem 15.7 on the convergence of the stochastic
gradient procedure where instead of {ζn}n≥1 the sequence

{
ζ̄n
}

n≥1 is used. So, we get

Theorem 15.11. (KW-procedure under dependent noises) Let f : RN
→ R be a

strongly convex function satisfying assumption A1 of Lemma 15.5 and x∗ be its minimum
point. Suppose that there exist

q(2)n,n−1 := max
i

max
{∥∥∥E {ζ+i,n | Fn−1

}∥∥∥
L2
,

∥∥∥E {ζ−i,n | Fn−1

}∥∥∥
L2

}
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is4++t,k := E
{
ζ+i,tζ

+ᵀ
s,k

}
, is4−−t,k := E

{
ζ−i,tζ

−ᵀ
s,k

}
, t, k = 1, 2, . . . ;

is4+−t,k := E
{
ζ+i,tζ

−ᵀ
s,k

}
, is4−+t,k := E

{
ζ−i,tζ

+ᵀ
s,k

}
σ 2

t := max
i

max
{
E
{(
ζ+i,t − ζ

−

i,t

)ᵀ (
ζ+i,t − ζ

−

i,t

)}}
Then for the KW-procedure (15.79)

(a) xn − x∗
a.s.
→

n→∞
0 if

∞∑
n=1

[
γnαn +

γ 2
n

α2
n
σ 2

n +
γn

αn
q(2)n,n−1

n−1∑
t=1

γt

αt
σt

]
<∞ (15.82)

(b) E
{
‖xn − x∗‖2

}
→

n→∞
0 if

∞∑
n=1

γnαn <∞

∞∑
t=1

∞∑
s=1

γtγs

αtαs
tr
{

is4++t,k +
is 4−−t,k −

is 4+−t,k −
is 4−+t,k

}
<∞

(15.83)

Proof. We have convergence if the series
∞∑

s=1

γt ζ̄t =

∞∑
s=1

γtwt +

∞∑
s=1

γt
1

2αt

N∑
i=1

(
ζ+i,t − ζ

−

i,t

)
ei

converges in the corresponding probabilistic sense for which, obviously, the convergence
of two series is sufficient∥∥∥∥∥ ∞∑

s=1

γtwt

∥∥∥∥∥ ≤ ∞∑
s=1

γt ‖wt‖ ≤
N L∇

2

∞∑
s=1

γtαn <∞

and ∥∥∥∥∥ ∞∑
s=1

γt
1

2αt

N∑
i=1

(
ζ+i,t − ζ

−

i,t

)
ei

∥∥∥∥∥ ≤ 1
2

N∑
i=1

∥∥∥∥∥ ∞∑
s=1

γt

αt

(
ζ+i,t − ζ

−

i,t

)
ei

∥∥∥∥∥
≤

1
2

N∑
i=1

(∥∥∥∥∥ ∞∑
s=1

γt

αt
ζ+i,t ei

∥∥∥∥∥+
∥∥∥∥∥ ∞∑

s=1

γt

αt
ζ−i,t ei

∥∥∥∥∥
)

The proof results directly from Corollaries 15.2 and 15.3 where {γn}n≥1 is changed to{
γtα
−1
t

}
n≥1

. Here we need to take into account that

E
{(
ζ+i,t − ζ

−

i,t

) (
ζ+s,k − ζ

−

s,k

)ᵀ}
= tr

{
is4++t,k +

is4−−t,k −
is4+−t,k −

is4−+t,k

}
Theorem is proven. �
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Corollary 15.4. If in Theorem 15.11 the measurement noises ζ+i,t , ζ
−

i,t are martingale-

differences (or independent) then q(2)n,n−1 = 0 and the conditions of the convergence with
probability one (15.82) become

∞∑
n=1

[
γnαn + γ

2
n α
−2
n σ 2

n

]
<∞ (15.84)

Some other properties (such as asymptotic normality, LIL, the optimal selection of the
gain matrix 0, the version with averaging) can be considered analogously to those in the
previous sections.

15.3.3 Random search method

Again as before, we will consider the optimization problem (15.62) under available
measurements (15.78).

Consider the following recurrence, generating the stochastic sequence {xn}n≥0 according
to the rule:

xn = xn−1 −
γn

αn
N0Yn

0 ≤ γn,

∞∑
n=1

γn = 0

0 < αn, 0 < 0 = 0ᵀ ∈ RN×N

Yn := vn yn (xn−1 + αnvn) , vn ∈ RN

yn (xn−1 + αnvn) = f (xn−1 + αnvn)+ ζn

(15.85)

where {vn}n≥1 is a sequence of independent random vectors uniformly distributed on the
unite N -dimensional sphere so that

‖vn‖
2
= 1, E {vn} = 0, E

{
vnv
ᵀ
n
}
= N−1 I (15.86)

This random sequence is especially introduced providing the so-called ‘minimum point
search property’ justifying the name of the procedure (15.85) as the random search
procedure.

To analyze the property of the random search procedure (15.85) we need to introduce
two σ -algebras:

Gn−1 := (x0; ζ1, v1; . . . ; ζn−1, vn−1; ζn)

Fn−1 := (x0; ζ1, v1; . . . ; ζn−1, vn−1; )

Obviously,

Fn−1 ⊂ Gn−1
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so that

E {· | Fn−1}
a.s.
= E {E {· | Gn−1} | Fn−1}

If f : RN
→ R is a strongly convex function, satisfying assumption A1 of Lemma 15.5,

then

α−1
n NE {Yn | Gn−1}

= α−1
n NE

{
vn
[

f (xn−1 + αnvn)+ ζn
]
| Gn−1

}
= α−1

n NE {vn f (xn−1 + αnvn) | Gn−1}

= α−1
n NE

{
vn f (xn−1)+ αnvnv

ᵀ
n∇ f (xn−1)+ vnwn | Gn−1

}
= ∇ f (xn−1)+ α

−1
n NE {vnwn | Gn−1}

where

|wn| ≤
L∇
2
‖αnvn‖

2
=

L∇
2
α2

n

which gives under the definition

ζ̄n := α
−1
n NE {vnwn | Gn−1}

the following estimate∥∥ζ̄n
∥∥ ≤ α−1

n NE {‖vn‖ |wn| | Gn−1} ≤
L∇
2

Nαn

This means that the procedure (15.85) can be represented as

xn = xn−1 − γn0
[
∇ f (xn−1)+ ζ̄n

]
ζ̄n := α

−1
n NE {vnwn | Gn−1} ,

∥∥ζ̄n
∥∥ ≤ L∇

2
Nαn

(15.87)

Now applying the results concerning the stochastic gradient method we may formulate
the following statement.

Theorem 15.12. (on random search method convergence) Let f : RN
→ R be a

strongly convex function satisfying assumption A1 of Lemma 15.5 and x∗ be its minimum
point. Then, irrespective of whether noise sequence measurement {ζn}n≥1 is dependent

or not, for the Random Search procedure (15.85) xn − x∗
a.s.
→

n→∞
0 and, in the same time,

E
{
‖xn − x∗‖2

}
→

n→∞
0 if

∥∥∥∥∥ ∞∑
n=1

γn ζ̄n

∥∥∥∥∥ <∞ (15.88)
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in the corresponding probabilistic sense, which takes place if, additional to the properties

0 ≤ γn ,
∞∑

n=1
γn = 0, the sequences {γn}n≥1 and {αn}n≥1 satisfy

∞∑
n=1

γnαn <∞ (15.89)

Other properties (such as asymptotic normality, LIL, the optimal selection of the gain
matrix 0, the version with averaging and so on) can be considered in a way analogous to
that done in the previous sections.
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This chapter deals with a version of the robust stochastic maximum principle (RSMP)
applied to the min-max Mayer problem formulated for stochastic differential equations
with the control-dependent diffusion term. The parametric families of first- and second-
order adjoint stochastic processes are introduced to construct the corresponding Hamilto-
nian formalism. The Hamiltonian function used for the construction of the robust optimal
control is shown to be equal to the Lebesgue integral over a parametric set (which may be
a compact or a finite set) of the standard stochastic Hamiltonians corresponding to a fixed
value of the uncertain parameter. The chapter deals with a cost function given at finite hori-
zon and containing the mathematical expectation of a terminal term. A terminal condition,
covered by a vector function, is also considered. The optimal control strategies, adapted
for available information, for the wide class of uncertain systems given by a stochastic dif-
ferential equation with unknown parameters from a given uncertainty set, are constructed.
This problem belongs to the class of min-max stochastic optimization problems. Robust
stochastic LQ control designing is discussed in detail. Two numerical examples, dealing
with production planning and reinsurance-dividend management, illustrate the theoretical
results.

16.1 Introduction

During the last decade, the min-max control problem, dealing with different classes
of nonlinear systems, has received much attention from many researchers because of its
theoretical and practical importance. Basically, the results in this area are based on two
classical approaches:

• Maximum principle (MP) (Pontryagin et al., 1969, translated from Russian); and
• dynamic programming method (DP) (Bellman, 1960).

471
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In the case of a complete model description, both of them can be directly applied to
construct optimal control.

Various forms of the stochastic maximum principle have been published in the literature
(Kushner, 1972; Fleming and Rishel, 1975; Bismut, 1977, 1978; Haussman, 1981). All
of these publications have usually dealt with systems whose diffusion coefficients did not
contain control variables and the control region of which was assumed to be convex. In
Bensoussan (1983) the case of diffusion coefficients that depend smoothly on a control
variable, was considered. Later this approach was extended to the class of partially
observable systems (Haussman, 1982; Bensoussan, 1992), where optimal control consists
of two basic components: state estimation and control via the estimates obtained. The most
advanced results concerning the maximum principle for nonlinear stochastic differential
equations with controlled diffusion terms were obtained by the Fudan University group,
led by X. Li (see Zhou (1991) and Yong and Zhou (1999); and see the bibliography within).

Faced with some uncertainties (parametric type, unmodeled dynamics, external pertur-
bations etc.) the results above cannot be applied. There are two ways to overcome uncer-
tainty problems:

• The first is to apply the adaptive approach (Duncan et al., 1999) to identify the
uncertainty on-line and then use the resulting estimates to construct a control strategy
(Duncan and Varaiya, 1971);
• The second one, which will be considered in this chapter, is to obtain a solution

suitable for a class of given models by formulating a corresponding min-max control
problem, where the maximization is taken over a set of possible uncertainties and the
minimization is taken over all of the control strategies within a given set.

For stochastic uncertain systems, min-max control of a class of dynamic systems
with mixed uncertainties was investigated in different publications. Robust (non-optimal)
control for linear time-varying systems given by stochastic differential equations was
studied in Poznyak and Taksar (1996) and Taksar et al. (1998) where the solution is based
on the stochastic Lyapunov analysis with martingale technique implementation. Other
problems dealing with discrete time models of deterministic and/or simplest stochastic
nature and their corresponding solutions are discussed in Yaz (1991), Blom and Everdij
(1993), Bernhard (1994) and Boukas et al. (1999). In Ugrinovskii and Petersen (1997) the
finite horizon min-max optimal control problems of nonlinear continuous time systems
with stochastic uncertainty are considered. The original problem was converted into an
unconstrained stochastic game problem and a stochastic version of the S-procedure has
been designed to obtain a solution.

In this chapter we explore the possibilities of the MP approach for a class of min-
max control problems for uncertain systems given by a system of stochastic differential
equations. Here we will follow Poznyak (2002a,b).

16.2 Problem setting

16.2.1 Stochastic uncertain systems

Let
(
�,F , {Ft }t≥0 ,P

)
be a given filtered probability space, that is,
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• the probability space (�,F ,P) is complete;

• the sigma-algebra F0 contains all the P-null sets in F ;

• the filtration {Ft }t≥0 is right continuous: Ft+ :=
⋂
s>t

Fs = Ft .

On this probability space an m-dimensional standard Brownian motion is defined, i.e.,
(W (t) , t ≥ 0) (with W (0) = 0) is an {Ft }t≥0-adapted Rm-valued process such that

E {W (t)−W (s) | Fs} = 0 P-a.s.

E
{
[W (t)−W (s)] [W (t)−W (s)]ᵀ | Fs

}
= (t − s) I P-a.s.

P {ω ∈ � : W (0) = 0} = 1

Consider the stochastic nonlinear controlled continuous-time process with the dynamics
x (t) given by

x (t) = x (0)+

t∫
s=0

bα (s, x (s) , u (s)) dt

+

t∫
s=0

σα (s, x (s) , u (s)) dW (s)

(16.1)

or, in the abstract (symbolic) form,

dx (t) = bα (t, x (t) , u (t)) dt + σα (t, x (t) , u (t)) dW (t)

x (0) = x0, t ∈ [0, T ] (T > 0)
(16.2)

The first integral in (16.1) is a stochastic ordinary integral and the second one is an Itô
integral. In the above u (t) ∈ U is a control at time t and

bα : [0, T ]× Rn
×U → Rn

σα : [0, T ]× Rn
×U → Rn×m

The parameter α is supposed to be a priori unknown and running a given parametric set A
from a space with a countable additive measure m.

For any α ∈ A denote

bα (t, x, u) :=
(
bα1 (t, x, u) , . . . , bαn (t, x, u)

)ᵀ
σα (t, x, u) :=

(
σ 1α (t, x, u) , . . . , σ nα (t, x, u)

)
σ jα (t, x, u) :=

(
σ

jα
1 (t, x, u) , . . . , σ jα

m (t, x, u)
)ᵀ
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It is assumed that

A1: {Ft }t≥0 is the natural filtration generated by (W (t) , t ≥ 0) and augmented by the
P-null sets from F .
A2: (U, d) is a separable metric space with a metric d .

The following definition is used subsequently.

Definition 16.1. The function f : [0, T ] × Rn
× U → Rn×m is said to be an Lφ

(
C2
)
-

mapping if

1. it is Borel measurable;

2. it is C2 in x for any t ∈ [0, T ] and any u ∈ U;

3. there exist a constant L and a modulus of continuity φ : [0,∞)→ [0,∞) such that for
any t ∈ [0, T ] and for any x, u, x̂, u ∈ Rn

×U × Rn
×U

∥∥ f (t, x, u)− f
(
t, x̂, û

)∥∥ ≤ L
∥∥x − x̂

∥∥+ φ (d (u, û
))

‖ f (t, 0, u)‖ ≤ L∥∥ fx (t, x, u)− fx
(
t, x̂, û

)∥∥ ≤ L
∥∥x − x̂

∥∥+ φ (d (u, û
))∥∥ fxx (t, x, u)− fxx

(
t, x̂, û

)∥∥ ≤ φ (∥∥x − x̂
∥∥+ d

(
u, û

)) (16.3)

(here fx (·, x, ·) and fxx (·, x, ·) are the partial derivatives of the first and the second
order).

In view of this definition, it is also assumed that
A3: for any α ∈ A both bα (t, x, u) and σα (t, x, u) are Lφ

(
C2
)
-mappings.

Let A0 ⊂ A be measurable subsets with a finite measure, that is,

m(A0) <∞

The following assumption concerning the right-hand side of (16.2) will be in force
throughout:
A4: All components bα (t, x, u), σα (t, x, u) are measurable with respect to α, that is, for
any i = 1, . . . , n, j = 1, . . . ,m, c ∈ R1, x ∈ Rn , u ∈ U and t ∈ [0, T ]{

α : bαi (t, x, u) ≤ c
}
∈ A{

α : σ iα
j (t, x, u) ≤ c

}
∈ A

Moreover, every considered function of α is assumed to be measurable with respect to α.
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The only sources of uncertainty in this system description are

• the system random noise W (t);
• the a priori unknown parameter α ∈ A.

It is assumed that the past information is available for the controller.
To emphasize the dependence of the random trajectories on the parameter α ∈ A

equation (16.2) is rewritten as{
dxα (t) = bα

(
t, xα (t) , u (t)

)
dt + σα

(
t, xα (t) , u (t)

)
dW (t)

xα (0) = x0, t ∈ [0, T ] (T > 0)
(16.4)

16.2.2 Terminal condition, feasible and admissible controls

The following definitions will be used throughout this chapter.

Definition 16.2. A stochastic control u (·) is called feasible in the stochastic sense (or,
s-feasible) for the system (16.4) if

1. u(·) ∈ U [0, T ] :=
{
u : [0, T ]×�→ U | u(·) is {Ft }t≥0 -adapted

}
2. xα (t) is the unique solution of (16.4) in the sense that for any xα (t) and x̂α(t),

satisfying (16.4),

P
{
ω ∈ � : xα (t) = x̂α (t)

}
= 1

The set of all s-feasible controls is denoted by U s
feas [0, T ]. The pair (xα (t) ; u(·)), where

xα (t) is the solution of (16.4) corresponding to this u(·), is called an s-feasible pair.

The assumptions A1–A4 guarantee that any u(·) from U [0, T ] is s-feasible.
In addition, it is required that the following terminal state constraints are satisfied:

E
{

h j (xα (T ))} ≥ 0 ( j = 1, . . . , l) (16.5)

where h j
: Rn
→ R are given functions.

A5: For j = 1, . . . , l the functions h j are Lφ
(
C2
)
-mappings.

Definition 16.3. The control u(·) and the pair (xα (t) ; u(·)) are called an s-admissible
control or realizing the terminal condition (16.5) and an s-admissible pair, respectively,
if

1. u(·) ∈ U s
feas [0, T ]

2. xα (t) is the solution of (16.4), corresponding to this u(·), such that the inequalities
(16.5) are satisfied.

The set of all s-admissible controls is denoted by U s
adm [0, T ].
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16.2.3 Highest cost function and robust optimal control

Definition 16.4. For any scalar-valued function ϕ(α) bounded on A define the m-truth
(or m-essential) maximum of ϕ(α) on A as follows:

m - ess sup
α∈A

ϕ(α) := maxϕ+

such that

m
{
α ∈ A : ϕ(α) > ϕ+

}
= 0

It can be easily shown (see, for example, Yoshida (1979)) that the following integral
presentation for the truth maximum holds:

m - ess sup
α∈A

ϕ(α) = sup
A0⊂A:m(A0)>0

1
m(A0)

∫
A0

ϕ(α)dm (16.6)

where the Lebesgue–Stiltijes integral is taken over all subsets A0 ⊂ A with positive
measure m(A0).

Consider the cost function h
α

containing a terminal term, that is,

h
α

:= E
{

h0(x
α

(T ))
}

(16.7)

Here h0(x) is a positive, bounded and smooth cost function defined on Rn . The end time-
point T is assumed to be finite and x

α
(t) ∈ Rn .

If an admissible control is applied, for every α ∈ A we deal with the cost value h
α
=

E
{
h0(x

α
(T ))

}
calculated at the terminal point xα(T ) ∈ Rn . Since the realized value of α

is a priori unknown, define the worst (highest) cost

F = sup
A0⊂A:m(A0)>0

1
m(A0)

∫
A0

E
{

h0(x
α

(T ))
}

dm

= m - ess sup
α∈A

hα
(16.8)

The function F depends only on the considered admissible control u(t), t0 ≤ t ≤ t1.

Definition 16.5. The control ū(t), 0 ≤ t ≤ T is said to be robust optimal if
(i) it satisfies the terminal condition, that is, it is admissible;
(i i) it achieves the minimal worst (highest) cost F0 (among all admissible controls

satisfying the terminal condition).

If the dynamics x̄α (t) correspond to this robust optimal control
−
u (t) then

(
x̄α (·) ,

−
u (·)

)
is called an α-robust optimal pair.
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Thus the robust optimization problem consists of finding an admissible control action
u(t), 0 ≤ t ≤ T, which provides

F0
:= F = min

u(t)
m - ess sup

α∈A
h
α

= min
u(t)

max
λ∈3

∫
λ∈3

λ (α) E
{

h0(x
α

(T ))
}

dm (α) (16.9)

where the minimum is taken over all admissible control strategies and the maximum over
all functions λ (α) within the so-called set of ‘distribution densities’ 3 defined by

3 :=


λ = λ (α) = µ (α)

 ∫
α∈A

µ (α) dm (α)

−1

≥ 0∫
α∈A

λ (α) dm (α) = 1


(16.10)

This is the stochastic min-max Bolza problem.

16.3 Robust stochastic maximum principle

16.3.1 First- and second-order adjoint processes

The adjoint equations and the associated Hamiltonian function are introduced in this
section to present the necessary conditions of the robust optimality for the considered
class of partially unknown stochastic systems – called the robust stochastic maximum
principle (RSMP). If in the deterministic case (Boltyanskii and Poznyak, 1999) the adjoint
equations are backward ordinary differential equations and represent, in some sense, the
same forward equation but in reverse time, in the stochastic case such interpretation is not
applicable because any time reversal may destroy the non-anticipativeness of the stochastic
solutions, that is, any obtained robust control should not depend on the future. To avoid
these problems the approach given in Zhou (1991) is used that takes into account the adjoint
equations introduced for any fixed value of the parameter α and, hence, some of the results
from Zhou (1991) may be applied directly without any changes.

So, for any α ∈ A and any admissible control u(·) ∈ U s
adm [0, T ] consider

• the 1-st order vector adjoint equations:

dψα (t) = −

[
bαx
(
t, xα (t) , u (t)

)ᵀ
ψα (t)

+

m∑
j=1

σ
α j
x
(
t, xα (t) , u (t)

)ᵀ qαj (t)

]
dt + qα(t)dW (t)

ψα(T ) = cα, t ∈ [0, T ]

(16.11)
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• the 2-nd order matrix adjoint equations:

d9α (t) = −
[
bαx (t, xα (t) , u (t))ᵀ9α (t)

+ 9α (t) bαx
(
t, xα (t) , u (t)

)]
+

m∑
j=1

σ
α j
x
(
t, xα (t) , u (t)

)ᵀ
9α (t) σα j

x
(
t, xα (t) , u (t)

)
+

m∑
j=1

(
σ
α j
x
(
t, xα (t) , u (t)

)ᵀ Qα
j (t)

+ Qα
j (t) σ

α j
x
(
t, xα (t) , u (t)

))
+ Hα

xx

(
t, xα(t), u (t) , ψα (t) , qα(t)

)]
dt

+

m∑
j=1

Qα
j (t) dW j (t)

9α(T ) = Cα, t ∈ [0, T ]

(16.12)

Here cα ∈ L2
FT
(�,Rn) is a square integrable FT -measurable Rn-valued random vector,

ψα (t) ∈ L2
Ft
(�,Rn) is a square integrable {Ft }t≥0-adapted Rn-valued vector random

process and

qα(t) ∈ L2
Ft

(
�,Rn×m)

is a square integrable {Ft }t≥0-adapted Rn×m-valued matrix random process. Similarly,
Cα
∈ L2

FT

(
�,Rn×n

)
is a square integrable FT -measurable Rn×n-valued random matrix,

9α (t) ∈ L2
Ft

(
�,Rn×n

)
is a square integrable {Ft }t≥0-adapted Rn×n-valued matrix

random process and Qα
j (t) ∈ L2

Ft

(
�,Rn×m

)
is a square integrable {Ft }t≥0-adapted

Rn×n-valued matrix random process. bαx (t, xα, u) and Hα
xx (t, xα, u, ψα, qα) are the first

and, correspondingly, the second derivatives of these functions by xα . The function
Hα (t, x, u, ψ, q) is defined as

Hα (t, x, u, ψ, q) := bα (t, x, u)ᵀ ψ + tr
[
qᵀσα

]
(16.13)

As it is seen from (16.12), if Cα
= Cαᵀ then for any t ∈ [0, T ] the random matrix

9α (t) is symmetric (but not necessarily positive or negative definite). In (16.11) and
(16.12), which are the backward stochastic differential equations with the {Ft }t≥0-adapted
solutions, the unknown variables to be selected are the pair of terminal conditions cα,Cα

and the collection
(

qα, Qα
j ( j = 1, . . . , l)

)
of {Ft }t≥0-adapted stochastic matrices. Note

that the equations (16.4) and (16.11) can be rewritten in Hamiltonian form as

dxα (t) = Hα
ψ

(
t, xα (t) , u (t)

)ᵀ
ψα (t) , qα (t))dt

+ σα
(
t, xα (t) , u (t)

)
dW (t)

xα (0) = x0, t ∈ [0, T ]
(16.14)
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dψα (t) = −Hα
x

(
t, xα (t) , u (t)

)ᵀ
ψα (t) , qα (t))dt

+ qα(t)dW (t)

ψα(T ) = cα, t ∈ [0, T ]

(16.15)

16.3.2 Main result

Now the main result of this chapter can be formulated.

Theorem 16.1. (robust stochastic maximum principle) Let A1–A5 be fulfilled and(
x̄α (·) ,

−
u (·)

)
be the α-robust optimal pairs (α ∈ A). The parametric uncertainty set A

is a space with countable additive measure m (α) which is assumed to be given. Then for
every ε > 0 there exist collections of terminal conditions cα,(ε),Cα,(ε), {Ft }t≥0 -adapted
stochastic matrices(

qα,(ε), Qα,(ε)
j ( j = 1, . . . , l)

)
in (16.11) and (16.12), and nonnegative constants µ(ε)α and ν(ε)α j ( j = 1, . . . , l) such that
the following conditions are fulfilled:
1. (Complementary slackness condition): for any α ∈ A

(i)

∣∣∣∣E {h0 (x̄α (T ))}−max
α∈A

E
{

h0 (x̄α (T ))}∣∣∣∣< ε

or µ(ε)α = 0;

(i i)
∣∣∣E {h j (x̄α (T ))}∣∣∣< ε or ν(ε)α j = 0( j = 1, . . . , l);

(16.16)

2. (Transversality condition): for any α ∈ A the inequality∥∥∥∥∥cα,(ε) + µ(ε)α h0
x

(
x̄α (T )

)
+

l∑
j=1

ν
(ε)
α j h j

x
(
x̄α (T )

)∥∥∥∥∥ < ε P-a.s. (16.17)∥∥∥∥∥Cα,(ε)
+ µ(ε)α h0

xx

(
x̄α (T )

)
+

l∑
j=1

ν
(ε)
α j h j

xx
(
x̄α (T )

)∥∥∥∥∥ < ε P-a.s. (16.18)

hold;
3. (Nontriviality condition): there exists a set A0 ⊂ A with positive measure m (A0) > 0

such that for every α ∈ A0 either cα,(ε)
a.s.
6= 0 or, at least, one of the numbers µ(ε)α , ν

(ε)
α j

( j = 1, . . . , l) is distinct from 0, that is, with probability one

∀α ∈ A0 ∈ A :
∣∣∣cα,(ε)∣∣∣+ µ(ε)α + l∑

j=1

ν
(ε)
α j > 0 (16.19)
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4. (Maximality condition): the robust optimal control
−
u (·) for almost all t ∈ [0, T ]

maximizes the generalized Hamiltonian function

H
(

t, x̄� (t) , u, ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)
)

:=

∫
A

Hα
(

t, x̄α (t) , u, ψα,(ε) (t) ,9α,(ε) (t) , qα,(ε) (t)
)

dm (α)
(16.20)

where

Hα
(

t, x̄α (t) , u, ψα,(ε) (t) ,9α,(ε) (t) , qα,(ε) (t)
)

:= Hα
(

t, x̄α (t) , u, ψα,(ε) (t) , qα,(ε) (t)
)
−

1
2

tr
[
σ̄αᵀ9α,(ε) (t) σ̄α

]
+

1
2

tr
[(
σα
(
t, x̄α (t) , u

)
− σ̄α

)ᵀ
9α,(ε) (t)

(
σα
(
t, x̄α (t) , u

)
− σ̄α

)] (16.21)

the function Hα
(
t, x̄α (t) , u, ψα,(ε) (t) , qα,(ε) (t)

)
is given by (16.13),

σ̄α := σα
(

t, x̄α (t) ,
−
u (t)

)
(16.22)

x̄� (t) :=
(
x̄1ᵀ (t) , . . . , x̄ Nᵀ (t)

)ᵀ
, ψ�,(ε) (t)

:=
(
ψ1,(ε)ᵀ (t) , . . . , ψN ,(ε)ᵀ (t)

)ᵀ
q�,(ε) (t) :=

(
q1,(ε) (t) , . . . , q N ,(ε) (t)

)
, 9�,(ε) (t)

:=
(
91,(ε) (t) , . . . , 9N ,(ε) (t)

)
and ψ i,(ε)ᵀ (t), 9 i,(ε) (t) verify (16.11) and (16.12) with the terminal conditions cα,(ε) and
Cα,(ε), respectively, i.e., for almost all t ∈ [0, T ]

−
u (t) = arg max

u∈U
H
(

t, x̄� (t) , u, ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)
)

(16.23)

16.4 Proof of Theorem 16.1

16.4.1 Formalism

Consider the random vector space R� with the coordinates xα,i ∈ L2
FT
(�,R) (α ∈ A,

i = 1, . . . , n). For each fixed α ∈ A we may consider

xα :=
(

xα,1, . . . , xα,ni
)ᵀ
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as an element of a Hilbert (and, hence, self-conjugate) space Rα with the usual scalar
product given by

〈
xα, x̃α

〉
:=

√√√√ n∑
i=1

E
{

xα,i x̃α,i
}
,

∥∥x̃α
∥∥ := √〈xα, xα〉

However, in the whole space R� introduce the norm of the element x� =
(
xα,i

)
in another

way:

∥∥x�
∥∥ := m - ess sup

α∈A

√√√√ n∑
i=1

E
{(

xα,i
)2}

= sup
A0⊂A:m(A0)>0

1
m(A0)

∫
P

√√√√ n∑
i=1

E
{(

xα,i
)2}dm (16.24)

Consider the set R� of all functions from L2
FT
(�,R) for any fixed α ∈ A, measurable

on A and with values in Rn , identifying every two functions which coincide almost
everywhere. With the norm (16.24), R� is a Banach space. Now we describe its conjugate
space R�. Consider the set of all measurable functions a(α) ∈ L2

FT
(�,R) defined

on A with values in Rn . It consists of all covariant random vectors a� =
(
aα,i

)
(α ∈ A, i = 1, . . . , n) with the norm

‖a�‖ := m - ess sup
α∈A

√√√√ n∑
i=1

E
{(

aα,i
)2} (16.25)

The set of all such functions a(α) is a linear normed space. In general, this normed space
is not complete. The following example illustrates this fact.

Example 16.1. Consider the case when A is the segment [0, 1] ⊂ R with the usual

Lebesgue measure. Let ϕk(α) be the function on [0, 1] that it is equal to 0 for α >
1
k

and

is equal to k for 0 ≤ α ≤
1
k

. Then
∫

A
ϕk(α)dα = 1, and the sequence ϕk(α) k = 1, 2, . . . is

a fundamental one in the norm (16.25). But their limit function lim
k→∞

ϕk(α) does not exist

among measurable and summable functions. Such a limit is the Dirak function ϕ(0)(α)
which is equal to 0 for every α > 0 and is equal to infinity at α = 0 (with the normalization
agreement that

∫
A
ϕ(0)(α)dα = 1).

This example shows that the linear normed space of all measurable, summable functions
with the norm (16.25) is, in general, incomplete. The complementation of this space is a
Banach space, and we denote it by R�. This is the conjugate space for R�. The scalar
product of x� ∈ R� and a� ∈ R� can be defined as
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〈
a�, x�

〉
E :=

∫
A

n∑
i=1

E
{

aα,i xα,i
}

dm

for which the Cauchy–Schwartz inequality evidently holds:〈
a�, x�

〉
E ≤ ‖a�‖ ·

∥∥x�
∥∥

16.4.2 Proof of Properties 1–3

In this subsection consider the vector x� (T ) only.
The index α ∈ A is said to be ε ∧ h0-active if the given ε > 0

E
{

h0 (x̄α (T ))} > max
α∈A

E
{

h0 (x̄α (T ))}− ε (16.26)

and, it is ε ∧ h j -active if

E
{

h j (x̄α (T ))} > − ε (16.27)

First, assume that there exists a set of a positive measure G ⊂ A and a set �̄ ⊆ �(
P
{
ω ∈ �̄

}
> 0

)
such that for all ε∧h0-active indices α ∈ A we have that

∥∥h0
x (x̄

α (T ))
∥∥ <

ε for all ω ∈ �̄ ⊆ � and almost everywhere on G. Then selecting (without violation of the
transversality and nontriviality conditions)

µ(ε)α 6= 0, µ
(ε)

α̃ 6=α
= 0, ν

(ε)
α j = 0 (∀α ∈ A, j = 1, . . . , l)

it follows that

cα,(ε) = ψα,(ε) (T ) = 0, Cα,(ε)
= 9α,(ε) (T ) = 0

for almost all ω ∈ �̄ and almost everywhere on G. In this situation, the only nonanticipa-
tive matrices qα,(ε) (t) = 0 and Qα,(ε)

j (t) = 0 are admissible, and for all t ∈ [0, T ], as a
result,

Hα (t, x, u, ψ, q) = 0, ψα,(ε) (t) = 0

9α,(ε) (t) = 0

and for almost all ω ∈ �̄ and almost everywhere on G. Thus, all conditions 1–4 of the
theorem are satisfied automatically whether or not the control is robust optimal or not. So,
it can be assumed that∥∥∥h0

x

(
x̄α (T )

)∥∥∥ ≥ ε (P-a.s.)

for all ε ∧ h0-active indices α ∈ A. Similarly, it can be assumed that∥∥∥h0
x

(
x̄α (T )

)∥∥∥ ≥ ε (P-a.s.)

for all ε ∧ h j -active indices α ∈ A.
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Denote by �1 ⊆ R� the controllability region, that is, the set of all points z� ∈ R�
such that there exists a feasible control u (t) ∈ U s

feas [0, T ] for which the trajectories

x� (t) =
(
xα,i (t)

)
, corresponding to (16.4), satisfy x� (T ) = z� with probability 1:

�1 :=

{
z� ∈ R� : x� (T ) a.s.

= z�, u (t) ∈ U s
feas [0, T ] , xα (0) = x0

}
(16.28)

Let �2, j ⊆ R� denote the set of all points z� ∈ R� satisfying the terminal condition (16.5)
for some fixed index j and any α ∈ A, that is,

�2 j :=

{
z� ∈ R� : E

{
h j (zα)} ≥ 0 ∀α ∈ A

}
(16.29)

Finally, denote by �(ε)0 ⊆ R� the set, containing the optimal point x̄� (T ) (corresponding

to the given robust optimal control
−
u (·)) as well as all points z� ∈ R� satisfying for all

α ∈ A

E
{

h0 (zα)} ≤ max
α∈A

E
{

h0 (x̄α (T ))}− ε
that is, ∀α ∈ A

�
(ε)
0 :=

{
x̄� (T ) ∪ z� ∈ R� : E

{
h0 (zα)} ≤ max

α∈A
E
{

h0 (x̄α (T ))}− ε} (16.30)

In view of these definitions, if only the control
−
u (·) is robust optimal (locally), then

�
(ε)
0 ∩�1 ∩�21 ∩ · · · ∩�2l =

{
x̄� (T )

}
P-a.s. (16.31)

Hence, if K �0 , K �1 , K �21, . . . , K �2l are the cones (the local tents) of the sets �(ε)0 , �1,

�21, . . . , �2l at their common point x̄� (T ), then these cones are separable and the
Neustad Theorem 1 in Kushner (1972) is satisfied, that is, for any point z� ∈ R� there
exist linear independent functionals ls

(
x̄� (T ) , z�

)
(s = 0, 1, 2 j; j = 1, . . . , l) satisfying

l0
(
x̄� (T ) , z�

)
+ l1

(
x̄� (T ) , z�

)
+

l∑
j=1

l2s
(
x̄� (T ) , z�

)
≥ 0 (16.32)

The implementation of the Riesz representation theorem for linear functionals (Yoshida,
1979) implies the existence of the covariant random vectors vs

�

(
z�
)
(s = 0, 1, 2 j;

j = 1, . . . , l) belonging to the polar cones Ks�, respectively, not equal to zero simulta-
neously and satisfying

ls
(
x̄� (T ) , z�

)
=
〈
vs
�

(
z�
)
, z� − x̄� (T )

〉
E (16.33)
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The relations (16.32) and (16.33), and taking into account that they hold for any z� ∈ R�,
imply the property

v0
�

(
x̄� (T )

)
+ v1
�

(
x̄� (T )

)
+

l∑
j=1

v
s j
�

(
x̄� (T )

)
= 0 P-a.s. (16.34)

Consider then the possible structures of these vectors.
(a) Denote

�α0 :=

{
zα ∈ Rα:

{
E
{

h0 (zα)} > max
α∈A

E
{

h0 (x̄α (T ))}− ε} ∪ {x̄α (T )
}}

Taking into account that h0 (zα) is Lφ
(
C2
)
-mapping and in view of the identity

h(x)− h(x̄) = hx (x̄)
ᵀ (x − x̄)

+

1∫
θ=0

tr
[
θhxx (θ x̄ + (1− θ) x) (x − x̄) (x − x̄)ᵀ

]
dθ (16.35)

which is valid for any twice differentiable function h : Rn
→ R and x, x́ ∈ Rn , it follows

that

E
{

h0 (x̄α (T ))} = E
{

h0 (zα)}+ 〈h0
x

(
zα
)
,
(
x̄α (T )− zα

)〉
E

+E
{

O
(∥∥zα − x̄α (T )

∥∥2
)}

(16.36)

So, the corresponding cone K α
0 at the point x̄� (T ) may be described as

K α
0 :=

{{
zα ∈ Rα:

〈
h0

x (z
α) , (x̄α (T )− zα)

〉
E ≥ 0

}
if α is ε ∧ h0-active

Rα if α is ε ∧ h0-inactive

Then the direct sum K �0 := ⊕
α∈A

K α
0 is a convex cone with apex point x̄α (T ) and, at the

same time, it is the tent �(ε)0 at the same apex point. The polar cone K0� can be presented
as

K0� = conv

(⋃
α∈A

K0α

)
(here K0α is a the polar cone to K α

0 ⊆ Rα). Since

v0
�

(
z�
)
=

(
v0
α

(
zα
))
∈ K0�

then K0α should have the form

v0
α

(
z�
)
= µ(ε)α h0

x

(
z�
)

(16.37)

whereµ(ε)α ≥ 0 andµ(ε)α = 0 if α is ε∧h0-inactive. So, the statement (1-i) (Complementary
slackness) is proven.
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(b) Now consider the set �2 j , containing all random vectors z� admissible by the terminal
condition (16.5) for some fixed index j and any α ∈ A. Defining for any α and the fixed
index j the set

�α2 j :=

{
zα ∈ Rα : E

{
h j (zα)} ≥ −ε}

in view of (16.36) applied for the function h j , it follows that

K α
2 j :=

{{
zα ∈ Rα:

〈
h j

x (zα)
ᵀ (zα − x̄α (T ))

〉
E
≥ 0

}
if α is ε ∧ h j -active

Rα if α is ε ∧ h j -inactive

Let �2 j = ⊕
α∈A

�α2 j and K �2 j = ⊕
α∈A

K α
2 j . By analogy with the above,

K2 j� = conv

(⋃
α∈A

K2 jα

)
is the polar cone, and hence, K2 jα should consist of all

v2 j
α

(
zα
)
= ν

(ε)
α j h j

x
(
zα
)

(16.38)

where ν(ε)α j ≥ 0 and ν(ε)α j = 0 if α is ε∧h j -inactive. So, the statement (1-ii) (Complementary
slackness) is also proven.
(c) Consider the polar cone K1�. Let us introduce the so-called needle-shape (or spike)

variation uδ (t) (δ > 0) of the robust optimal control
−
u (t) at the time region [0, T ] as

follows:

uδ (t) :=

{
−
u (t) if [0, T + δ] \Tδn

u (t) ∈ U s
feas [0, T ] if t ∈ Tδn

(16.39)

where Tδ ⊆ [0, T ] is a measurable set with the Lebesgue measure |Tδ| = δ, u (t) being any

s-feasible control. Here it is assumed that
−
u (t) =

−
u (T ) for any t ∈ [T, T + δ]. It is clear

from this construction that uδ (t) ∈ U s
feas [0, T ] and, hence, the corresponding trajectories

x� (t) =
(
xα,i (t)

)
, given by (16.4), also make sense. Denote by

1α := lim
δ→0

δ−1 [xα (T )− x̄α (T )
]

the corresponding displacement vector (here the limit exists because of the differentiability
of the vector xα (t) at the point t = T ). By the definition, 1α is a tangent vector of the
controllability region �1. Moreover, the vector

g� (β) |β=±1

:= lim
δ→0

δ−1

 T+βδ∫
s=T

b� (s, x (s) , u (s)) dt +

T+βδ∫
s=T

σ � (s, x (s) , u (s)) dW (s)
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is also the tangent vector for �1, since

x� (T + βδ) = x� (T )+

T+βδ∫
s=T

bα (s, x (s) , u (s)) dt

+

T+βδ∫
s=T

σα (s, x (s) , u (s)) dW (s)

Denoting by Q1 the cone (linear combination of vectors with non-negative coefficients)
generated by all displacement vectors 1α and the vectors g� (±1), it is concluded that
K �1 = x̄α (T )+ Q1. Hence

v1
�

(
zα
)
= c�,(ε) ∈ K1� (16.40)

(d) Substituting (16.37), (16.38) and (16.40) into (16.34), the transversality condition
(16.17) is obtained. Since at least one of the vectors

v0
�

(
zα
)
, v1
�

(
zα
)
, v21
�

(
zα
)
, . . . , v2l

�

(
zα
)

should be distinct from zero at the point zα = x̄α (T ), the nontriviality condition is
obtained too. The transversality condition (16.18) can be satisfied by the corresponding
selection of the matrices Cα,(ε). The statement 3 is also proven.

16.4.3 Proof of Property 4 (maximality condition)

This part of the proof seems to be more delicate and needs some additional constructions.
In view of (16.33), (16.34), (16.37), (16.38) and (16.40), for z = xα (T ) the inequality
(16.32) can be represented as follows:

0 ≤ Fδ
(
uδ (·)

)
:= l0

(
x̄� (T ) , xα (T )

)
+ l1

(
x̄� (T ) , xα (T )

)
+

l∑
j=1

l2s
(
x̄� (T ) , xα (T )

)
=

∑
α∈A

[
µ(ε)α

〈
h0

x

(
xα (T )

)
, xα (T )− x̄α (T )

〉
E

+

〈
cα,(ε), xα (T )− x̄α (T )

〉
E

+

l∑
j=1

ν
(ε)
α j

〈
h j

x
(
xα (T )

)
, xα (T )− x̄α (T )

〉
E

]
(16.41)

valid for any s-feasible control uδ (t).
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As has been shown in Zhou (1991) and Yong and Zhou (1999), any uδ (t) ∈ U s
feas [0, T ]

provides the following trajectory variation:

xα (t)− x̄α (t) = yδα(t)+ zδα(t)+ oδαω (t) (16.42)

where yδα(t), zδα(t) and oδα (t) are {Ft }t≥0-adapted stochastic vector processes satisfying
(for the simplification of the calculations given below, the argument dependence is omitted)
the following equations:

dyδα = bαx yδαdt +
m∑

j=1

[
σ
α j
x yδα +1σα jχTδ

]
dW j

yδα(0) = 0

(16.43)

where

bαx := bαx
(

t, x̄α (t) ,
−
u (t)

)
, σ

α j
x := σ

α j
x

(
t, x̄α (t) ,

−
u (t)

)
1σα j

:=

[
σα j (t, x̄α (t) , uε (t))− σα j

(
t, x̄α (t) ,

−
u (t)

)] (16.44)

(χTδ is the characteristic function of the set Tδ),

dzδα =

[
bαx zδα +

1
2

Bα (t)+1bαχTδ

]
dt

+

m∑
j=1

[
σ
α j
x zδα +

1
2
4α j (t)+1σα j

x (t) χTδ

]
dW j

zδα(0) = 0

(16.45)

where

Bα (t) :=


tr
[
bα1

xx

(
t, x̄α (t) ,

−
u (t)

)
Y δα (t)

]
· · ·

tr
[
bαn

xx

(
t, x̄α (t) ,

−
u (t)

)
Y δα (t)

]


1bα := bα
(
t, x̄α (t) , uδ (t)

)
− bα

(
t, x̄α (t) ,

−
u (t)

)
σ
α j
x := σ

α j
x

(
t, x̄α (t) ,

−
u (t)

)
(16.46)

4α j (t) :=


tr
[
σ
α1 j
xx

(
t, x̄α (t) ,

−
u (t)

)
Y δα (t)

]
· · ·

tr
[
σ
αnj
xx

(
t, x̄α (t) ,

−
u (t)

)
Y δα (t)

]
 ( j = 1, . . . ,m)

1σ
α j
x := σ

α j
x
(
t, x̄α (t) , uδ (t)

)
− σ

α j
x

(
t, x̄α (t) ,

−
u (t)

)
Y εα (t) := yεα (t) yεαᵀ (t)

(16.47)
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and

sup
t∈[0,T ]

E
{
‖xα (t)− x̄α (t)‖2k

}
= O

(
δk
)

sup
t∈[0,T ]

E
{∥∥yδα (t)

∥∥2k
}
= O

(
δk
)

sup
t∈[0,T ]

E
{∥∥zδα (t)

∥∥2k
}
= O

(
δ2k
)

sup
t∈[0,T ]

E
∥∥oδαω (t)

∥∥2k
= o

(
δ2k
)

(16.48)

hold for any α ∈ A and k ≥ 1. The structures (16.43), (16.44), (16.45), (16.46) and (16.47)
and the properties (16.48) are guaranteed by the assumptions A1–A4.

Taking into account these properties and the identity

hx (x) = hx (x̄)+

1∫
θ=0

hxx (x̄ + θ (x − x̄)) (x − x̄) dθ (16.49)

valid for any Lφ
(
C2
)
-mapping h(x), and substituting (16.42) into (16.41), it follows that

0 ≤ Fδ
(
uδ (·)

)
=

∫
α∈A

[
µ(ε)α

〈
h0

x

(
x̄α (T )

)
, yδα(T )+ zδα(T )

〉
E

+

〈
cα,(ε), yδα(T )+ zδα(T )

〉
E
+ ν

(ε)
α j

〈
h j

x
(
x̄α (T )

)
, yδα(T )+ zδα(T )

〉
E

+µ(ε)α

〈
h0

xx

(
x̄α (T )

)
yδα(T ), yδα(T )

〉
E

+ ν
(ε)
α j

〈
h j

xx
(
x̄α (T )

)
yδα(T ), yδα(T )

〉
E

]
dm + o (δ) (16.50)

In view of the transversality conditions, the last expression (16.50) can be represented as
follows:

0 ≤ Fδ
(
uδ (·)

)
= −

∫
α∈A

E
{

tr
[
9α,(ε) (T ) Y δα (t)

]}
dm + o (δ) (16.51)

The following fact (see Lemma 4.6 in Yong and Zhou (1999) for the quadratic matrix
case) is used.

Lemma 16.1. Let

Y (·) ,9 j (·) ∈ L2
F
(
0, T ;Rn×r ) , P (·) ∈ L2

F
(
0, T ;Rr×n)

satisfy

dY (t) = 8(t) Y (t)+
m∑

j=1

9 j (t) dW j

d P (t) = 2(t) P (t)+
m∑

j=1

Q j (t) dW j
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with

8(·) ∈ L2
F
(
0, T ;Rn×n

)
, 9 j (·) ∈ L2

F
(
0, T ;Rn×r

)
Q j (·) ∈ L2

F
(
0, T ;Rr×n

)
,2 (·) ∈ L2

F
(
0, T ;Rr×r

)
Then

E {tr [P (T ) Y (T )]− tr [P (0) Y (0)]}

= E


T∫

t=0

(
tr [2(t) Y (t)]+ tr [P (t)8 (t)]+

m∑
j=1

Q j (t)9 j (t)

)
dt

 (16.52)

The proof is based on the direct application of Ito’s formula.
(a) The evaluation of the term E

{
ψα,(ε) (T )ᵀ yδα(T )

}
. Applying directly (16.52) and

taking into account that yδα(0) = 0, it follows that

E
{
ψα,(ε) (T )ᵀ yδα(T )

}
= E

{
tr
[

yδα(T )ψα,(ε) (T )ᵀ
]}

= E


T∫

t=0

tr

[
m∑

j=1

qα j,(ε) (t)ᵀ1σα j

]
χTδdt


= E


T∫

t=0

tr
[
qα,(ε) (t)ᵀ1σα

]
χTδdt

 (16.53)

(b) The evaluation of the term E
{
ψα,(ε) (T )ᵀ zδα(T )

}
. In a similar way, applying directly

(16.52) and taking into account that zδα(0) = 0, it follows that

E
{
ψα,(ε) (T )ᵀ zδα(T )

}
= E

{
tr
[
zδα(T )ψα,(ε) (T )ᵀ

]}
= E


T∫

t=0

tr

[(
1
2

Bαψα,(ε) (t)ᵀ +
1
2

m∑
j=1

qα j,(ε)ᵀ4α j

)

+

(
1bαψα,(ε)ᵀ +

m∑
j=1

qα j,(ε)ᵀ1σ
α j
x (t) yδα

)
χTδ

]
dt


The equalities

tr

[
Bα (t) ψα,(ε) (T )ᵀ +

m∑
j=1

qα j,(ε) (t)ᵀ4α j (t)

]
= tr

[
Hα

xx (t) Y δα (t)
]

E


T∫

t=0

tr

[
m∑

j=1

qα j,(ε) (t)ᵀ1σα j
x (t) yδα(t)

]
χTδdt

 = o (δ)
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imply

E
{
ψα,(ε) (T )ᵀ zδα(T )

}
= E


T∫

t=0

tr
[

1
2

Hα
xx (t) Y δα (t)+1bα (t) ψα,(ε) (t)ᵀ χTδ

]
dt

+ o (δ) (16.54)

(c) The evaluation of the term 1
2E
{
tr
[
9α,(ε) (T ) Y δα (T )

]}
. Using (16.43) and applying

the Itô formula to Y δα (t) = yδα(t)yδα(t)ᵀ, it follows that (for details see Yong and Zhou
(1999))

dY δα (t) =

[
bαx Y δα + Y δαbαᵀx +

m∑
j=1

(
σ
α j
x Y δασα jᵀ

x + Bα2 j + Bαᵀ2 j

)]
dt

+

m∑
j=1

(
σ
α j
x Y δα + Y δασα jᵀ

x +

(
1σα j yδαᵀ + yδα1σα jᵀ

)
χTδ

)]
dW j

Y δα (0) = 0

(16.55)

where

Bα2 j :=

(
1σα j1σα jᵀ

+ σ
α j
x yδα1σα jᵀ

)
χTδ

Again, applying directly (16.52) and taking into account that Y δα(0) = 0 and

E


T∫

t=0

m∑
j=1

Qα,(ε)
j (t)

(
1σα j yδαᵀ + yδα1σα jᵀ

)
χTδdt

 = o (δ)

it follows that

E
{

tr
[
9α,(ε) (T ) Y δα (T )

]}
= E

T∫
t=0

(
−tr

[
Hα

xx Y δα (t)
]
+ tr

[
1σαᵀ9α,(ε)1σα

]
χTδ

)
dt + o (δ) (16.56)

In view of definition (16.21)

δH := H
(

t, x̄� (t) , uδ (t) , ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)
)

−H
(

t, x̄� (t) ,
−
u (t) , ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)

)
=

∫
α∈A

(
1bαᵀψ (ε) + tr

[
qα,(ε)ᵀ1σα

]
+

1
2

tr
[
1σαᵀ9α,(ε)1σα

])
dm (16.57)
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Using (16.53), (16.54), (16.56) and (16.57), it follows that

E


T∫

t=0

δH (t) χTδn dt

 = E


T∫

t=0

∫
α∈A

(
1bαᵀψ (ε) + tr

[
qα,(ε)ᵀ1σα

]

+
1
2

tr
[
1σαᵀ9α,(ε)1σα

])
dmχTδn

dt


=

〈
ψ�,(ε) (T ) , yδα(T )+ zδα(T )

〉
E

+
1
2

∫
α∈A

E
{

tr
[
9α,(ε)(T )Y δα(T )

]}
dm + o(δn) (16.58)

Since

yδα(T )+ zδα(T ) = δ1α + oδα (T )

where 1α ∈ K α
1 is a displacement vector, and ψα,(ε) (T ) = cα,(ε) ∈ K1α, then〈

ψ�,(ε) (T ) , yδα(T )+ zδα(T )
〉

E
= δ

〈
cα,(ε),1α

〉
E
+ o (δ) ≤ 0 (16.59)

for sufficiently small δ > 0 and any fixed ε > 0. In view of (16.51) and (16.59), the
right-hand side of (16.58) can be estimated as

E


T∫

t=0

δH (t) χTδn dt

 = δ 〈c�,(ε),1�〉E
+

1
2

∫
α∈A

E
{

tr
[
9α,(ε) (T ) Y εα (T )

]}
dm + o (δ) ≤ o (δn)

Dividing by δn , it follows that

δ−1
n E


T∫

t=0

δH (t) χTδdt

 ≤ o(1) (16.60)

Using Lemma 1 from Kushner (1972) for

Tδ = [t0 − δnβ1, t0 + δnβ2] (β1, β2 ≥ 0;β1 + β2 > 0)

and {δn} so that δn → 0, and in view of (16.60), it follows that

δ−1
n E


T∫

t=0

δH (t) χTδn dt

→ (β1 + β2)E {δH (t0)} ≤ 0 (16.61)

for almost all t0 ∈ [0, T ]. Here if t0 = 0 then β1 = 0 and if t0 = T then β2 = 0, but if
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t0 ∈ (0, T ) then β1, β2 > 0. The inequality (16.61) implies

E {δH (t)} ≤ 0 (16.62)

from which (16.23) follows directly. Indeed, assume that there exist the control ǔ (t) ∈
U s

feas [0, T ] and a time t0 ∈ (0, T ) (not belonging to a set of null measure) such that

P {ω ∈ �0 (ρ)} ≥ p > 0 (16.63)

where �0 (ρ) := {ω ∈ � : δH (t0) > ρ > 0}. Then (16.62) can be rewritten as

0 ≥ E {δH (t)} = E {χ (ω ∈ �0 (ρ)) δH (t)}

+E {χ (ω /∈ �0 (ρ)) δH (t)}

≥ ρP {ω ∈ �0 (ρ)} + E {χ (ω /∈ �0 (ρ)) δH (t)}

≥ ρp + E {χ (ω /∈ �0 (ρ)) δH (t)}

Since this inequality should be also valid for the control û(t) satisfying

û(t) =

{
ǔ (t) for almost all ω ∈ �0 (ρ)
−
u (t) for almost all ω 6= �0 (ρ)

there is the contradiction

0 ≥ E {δH (t)} ≥ ρp + E {χ (ω /∈ �0 (ρ)) δH (t)} = ρp > 0

This completes the proof. �

16.5 Discussion

16.5.1 The important comment on Hamiltonian structure

The Hamiltonian function H used for the construction of the robust optimal control
−
u (t) is equal to (see (16.20)) the Lebesgue integral over the uncertainty set of the standard
stochastic Hamiltonians Hα corresponding to each fixed value of the uncertain parameter.

16.5.2 RSMP for the control-independent diffusion term

From the Hamiltonian structure (16.21) it follows that if σα j (t, x̄α (t) , u (t)) does not
depend on u (t), then

arg max
u∈U

H
(

t, x̄� (t) , u, ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)
)

= arg max
u∈U

∫
A

Hα
(

t, x̄α (t) , u, ψα,(ε) (t) ,9α,(ε) (t) , qα,(ε) (t)
)

dm (α)

= arg max
u∈U

∫
A

Hα
(

t, x̄α (t) , u, ψα,(ε) (t) , qα,(ε) (t)
)

dm (α) (16.64)

So, it follows that the 2nd order adjoint process does not participate in the robust optimal
constructions.
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16.5.3 The standard stochastic maximum principle

If the stochastic plant is completely known, that is, there is no parametric uncertainty
(A = α0, dm (α) = δ (α − α0) dα), then from (16.64)

arg max
u∈U

H
(

t, x̄� (t) , u, ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)
)

= arg max
u∈U

∫
A

Hα
(

t, x̄α (t) , u, ψα,(ε) (t) ,9α,(ε) (t) , qα,(ε) (t)
)

dm (α)

= arg max
u∈U

Hα0
(

t, x̄α0 (t) , u, ψα0,(ε) (t) ,9α0,(ε) (t) , qα0,(ε) (t)
)

(16.65)

and if ε→ 0, it follows that, in this case, RSMP converts to stochastic maximum principle
(see Fleming and Rishel (1975), Zhou (1991) and Yong and Zhou (1999)).

16.5.4 Deterministic systems

In the deterministic case, when there are no stochastics(
σα
(
t, x̄α (t) , u (t)

)
≡ 0

)
the robust maximum principle for min-max problems (in Mayer form) stated in Boltyanskii
and Poznyak (1999) is obtained directly, that is, for ε→ 0 it follows that

arg max
u∈U

H
(

t, x̄� (t) , u, ψ�,(ε) (t) ,9�,(ε) (t) , q�,(ε) (t)
)

= arg max
u∈U

∫
A

bα (t, x̄ (t) , u)ᵀ ψα (t) dm (α) (16.66)

When, in addition, there are no parametric uncertainties (A = α0, dm(α) = δ(α −

α0)dα), the classical maximum principle for optimal control problems (in Mayer form), is
obtained (Pontryagin et al., 1969), that is,

arg max
u∈U

H
(

t, x̄� (t) , u, ψ�,(0) (t) ,9�,(0) (t) , q�,(0) (t)
)

= arg max
u∈U

H (t, x̄ (t) , u, ψ (t) ,9 (t) , q (t))

= arg max
u∈U

b (t, x̄ (t) , u)ᵀ ψ (t) (16.67)

16.5.5 Comment on possible non-fixed horizon extension

Consider the case when the function h0(x) is positive. Let us introduce a new variable
xn+1 (associated with time t) with the equation

ẋn+1
≡ 1 (16.68)
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and consider the variable vector x̄ = (x1, . . . , xn, xn+1) ∈ Rn+1. For the plant (16.1),
combined with (16.68), the initial conditions are as follows:

x(t0) = x0 ∈ Rn, xn+1(t0) = 0 (for all α ∈ A)
Furthermore, we determine the terminal set M for the plant (16.1) and (16.68) by the
inequality

M :=

{
x ∈ Rn+1

: hl+1(x) = τ − xn+1
≤ 0

}
assuming that the numbers t0, τ are fixed (t0 < τ). Let now u(t), x̄(t), 0 ≤ t ≤ T , be an
admissible control that satisfies the terminal condition. Then T ≥ τ , since otherwise the
terminal condition x(t1) ∈ M would not be satisfied. The function h0(x) is defined only
on Rn , but we prolong it in to Rn+1, setting

h0(x̄) =

{
h0(x) for xn+1

≤ τ

h0(x)+ (xn+1
− τ)2 for xn+1 > τ

If now T > τ , then (for every α ∈ A)

h0(x(t1)) = h0(x(τ ))+ (t1 − τ)
2 > h0(x(τ ))

Thus F0 may attain its minimum only for T = τ , that is, we have the problem with fixing
time T = τ . By this, we may make the following conclusion.

Conclusion 16.1. The theorem above gives the robust maximum principle only for the
problem with a fixed horizon. The non-fixed horizon case demands a special construction
and implies another formulation of RMP.

16.5.6 The case of absolutely continuous measures for uncertainty set

Consider now the case of an absolutely continuous measure m (A0); that is, consider the
situation when there exists a summable (the Lebesgue integral∫

Rs
p(x)

(
dx1
∨ · · · ∨ dxn

)
is finite and s-fold) nonnegative function p(x), given on Rs and named the density of a
measure m (A0), such that for every measurable subset A0 ⊂ Rs we have

m(A0) =

∫
A0

p(x) dx, dx := dx1
∨ · · · ∨ dxn

By this initial agreement, Rs is a space with the countable additive measure. Now it is
possible to consider controlled object (16.1) with the set of uncertainty A = Rs . In this
case ∫

A0

f (x) dm =
∫

A0

f (x)p(x)dx (16.69)

The statements of the robust maximum principle for this special case are obtained from the
main theorem with evident variation. It is possible also to consider a particular case when
p(x) is defined only on a ball A ⊂ Rs (or on another subset of Rs) and integral (16.69) is
defined only for A0 ⊂ A.
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16.5.7 Uniform density case

If no a priori information on some or other parameter values and the distance on a
compact A ⊂ Rs is defined in the natural way as ‖α1 − α2‖, then the maximum condition
(16.23) can be formulated (and proved) as follows:

u(t) ∈ Arg max
u∈U

H�(ψ(t), x(t), u)

= Arg max
u∈U

∫
A

Hα
(

t, x̄α (t) , u, ψα,(ε) (t) ,9α,(ε) (t) , qα,(ε) (t)
)

dα

almost everywhere on [t0, t1] (16.70)

which represents, evidently, a partial case of the general condition (16.23) with a uniform
absolutely continuous measure, that is, when

dm (α) = p(α)dα =
1

m (A)
dα

with p(α) = m−1 (A).

16.5.8 Can the complementary slackness inequalities be replaced by equalities?

It is naturally to ask: is it possible, in a general case, to replace the inequalities by the
equalities as it was done above or not? Below we present an example that gives the negative
answer. Consider the case of the absolutely continuous measure for s = 1

(
Rs
= R1

)
with

the density p(x) = e−x2
. Furthermore, take, for the simplicity, n = 1. Consider the family

of the simple controlled plants given by

ẋα,1 = f α(x, u) = −
α2

1+ α2 + u

with t0 = 0, t1 =
1
2
, xα,1 (0) = 1, α ∈ [−1, 1], U = [−1, 1] and no noise at all. The

terminal set M is defined by the inequality h1(x) ≤ 0 with h1(x) = x . Finally, we take
the cost function as h0(x) = 1 − x . It is evident (applying the main theorem) that the

optimal control is as follows: u(t) ≡ −1, 0 ≤ t ≤
1
2

and F0
= 1. But the complementary

slackness condition in the form of (16.16) implies that µ(0)α = ν
(0)
α = 0 for all α and any

ε = 0. Consequently the transversality condition gives ψ (0)(t) ≡ 0. But this contradicts
the nontriviality condition. Thus

Claim 16.1. The inequalities in the main theorem cannot be replaced by equalities
(16.16).

16.6 Finite uncertainty set

If the uncertainty set A is finite, the robust maximum principle, proved above, gives the
result contained in Poznyak et al. (2002a,b). In this case, the integrals may be replaced by
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finite sums and the number ε in formulation of the main theorem is superfluous and may be
omitted, which is why in the complementary slackness condition we have the equalities.

Now, because of special importance, we will present the particular version of Theo-
rem 16.1 when the parametric set A is finite.

16.6.1 Main result

Theorem 16.2. (Poznyak et al., 2002b) Let the assumptions A1–A5 be fulfilled and(
x̄ (·) ,

−
u (·)

)
be the robust optimal dynamics. Then there exist collections of terminal conditions cα,Cα ,
{Ft }t≥0-adapted stochastic matrices(

qα, Qα
j ( j = 1, . . . , l)

)
in (16.11) and (16.12), and nonnegative constants µα and να j ( j = 1, . . . , l) such that the
following conditions are satisfied:
1. (Complementary slackness condition): For any α ∈ A

(i) µα

[
E
{

h0 (xα (T ))}−max
α∈A

E
{

h0 (xα (T ))}] = 0

(i i) να jE
{

h j (xα (T ))} = 0 ( j = 1, . . . , l)
(16.71)

2. (Transversality condition): For any α ∈ A with probability one

cα + µαh0
x

(
xα (T )

)
+

l∑
j=1

να j h
j
x
(
xα (T )

)
= 0

Cα
+ µαh0

xx

(
xα (T )

)
+

l∑
j=1

να j h
j
xx
(
xα (T )

)
= 0

(16.72)

3. (Nontriviality condition): There exists α ∈ A such that cα 6= 0 or, at least, one of the
numbers µα, να j ( j = 1, . . . , l) is distinct from 0, that is,

∃α ∈ A :
∣∣cα∣∣+ µα + l∑

j=1

να j > 0 (16.73)

4. (Maximality condition): The robust optimal control
−
u (·) for almost all t ∈ [0, T ]

maximizes the Hamiltonian function
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H
(
t, x̄� (t) , u, ψ� (t) ,9� (t) , q� (t)

)
:=

∑
α∈A

Hα
(
t, x̄α (t) , u, ψα (t) ,9α (t) , qα (t)

) (16.74)

where

Hα
(
t, x̄α (t) , u, ψα (t) ,9α (t) , qα (t)

)
:= Hα

(
t, x̄α (t) , u, ψα (t) , qα (t)

)
−

1
2

tr
[
σ̄αᵀ9α (t) σ̄α

]
+

1
2

tr
[(
σα
(
t, x̄α (t) , u

)
−σ̄α

)ᵀ
9α (t)

(
σα
(
t, x̄α (t) , u

)
−σ̄α

)] (16.75)

with

σ̄α := σα
(

t, x̄α (t) ,
−
u (t)

)
x̄� (t) :=

(
x̄1ᵀ (t) , . . . , x̄ Nᵀ (t)

)ᵀ
, ψ� (t) :=

(
ψ1ᵀ (t) , . . . , ψNᵀ (t)

)ᵀ
q� (t) :=

(
q1 (t) , . . . , q N (t)

)
, 9� (t) :=

(
91 (t) , . . . , 9N (t)

)
i.e., for almost all t ∈ [0, T ]

−
u (t) = arg max

u∈U
H
(
t, x̄� (t) , u, ψ� (t) ,9� (t) , q� (t)

)
(16.76)

16.6.2 Min-max production planning

Consider the stochastic process

z (t) = z (0)+

t∫
s=0

ξα (s) ds +

t∫
s=0

σα (s) dW (s) (16.77)

which is treated (see Zhou (1991)) as ‘the market demand process’ at time t where

• ξα (s) is the expected demand rate at the given environment conditions α ∈ A;

• the term
t∫

s=0
σα (s) dW (s) represents the demand fluctuation due to environmental

uncertainties.

The set A = {α1, α2, α3} may contain the elements αi (i = 1, 2, 3) corresponding to

• ‘very-stable market environment’ (α = α1);
• ‘normal market environment’ (α = α2 > α1);
• ‘very-unstable market environment’ (α = α3 > α2).
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To meet the demand the factory serving this market should adjust its production rate all
the time t ∈ [0, T ] (T is a planned working period) to accommodate any possible changes
in the current market situation.

Let y(t) be the inventory product level kept in the buffer of the capacity y+. Then this
system ‘inventory-demands’, in view of (16.77), can be written as

dy(t) = [u (t)− z (t)] dt, y(0) = y0

dz (t) = ξα (t) dt + σα (t) dW (t) , z (0) = z0
(16.78)

where u (t) is the control (or the production rate) at time t subject to the constraint

0 ≤ u (t) ≤ u+ (16.79)

The control processes u (t), introduced in (16.78), should be nonanticipative, i.e., should
be dependent on the past information only. All processes in (16.78) are assumed to be
{Ft }t≥0-adapted R-valued random processes. To avoid misleading, it is assumed that the
maximal possible demands during the time [0, T ] can not exceed the maximal production
level, i.e.,

u+T ≥ max
α∈A

E


T∫

t=0

z (t) dt


= max

α∈A

z0T + E


T∫

t=0

t∫
st=0

ξα (s) ds


 (16.80)

Introduce the following cost function h0(y) defined by

h0(y) =
λ1

2

[
y − y+

]2
+
+
λ2

2
[−y]2

+

[z]+ :=
{

z if z > 0
0 if z ≤ 0

(16.81)

where the term
[
y − y+

]2
+

corresponds to losses, related to ‘extra production storage’,

the term [−y]2
+ reflects ‘losses due to a deficit’ and λ1, λ2 are two nonnegative weighting

parameters.
This problem can be rewritten in standard form as follows:

max
α∈A

E
{

h0(xα1 (T ))
}
→ min

u(·)∈U s
ad [0,T ]

U =
{
u : 0 ≤ u ≤ u+

} (16.82)
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and

d

(
xα1 (t)
xα2 (t)

)
=

(
u (t)− xα2 (t)

ξα(t)

)
dt +

(
0

σα(t)

)
dW (t)

xα1 (0) = y0, xα2 (0) = z0

(16.83)

where for any fixed α ∈ A

xα1 (t) = y(t), xα2 (t) = z(t)

In this problem formulation there are no terminal constraints.
In view of the technique suggested above, and taking into account that the diffusion term

does not depend on control, it follows that

d

(
ψα1 (t)
ψα2 (t)

)
= −

(
0 0
0 1

)(
ψα1 (t)
ψα2 (t)

)
dt +

(
qα1 (t)
qα2 (t)

)
dW (t)(

ψα1 (T )
ψα2 (T )

)
= −µα

(
λ1
[
xα1 (T )− y+

]
+
− λ2

[
−xα1 (T )

]
+

0

)
From these equations the following equality is obtained:

qα1 (t) = 0, ψα1 (t) = ψ
α
1 (T ) = −µα

(
λ1
[
xα1 (T )− y+

]
+
− λ2

[
−xα1 (T )

]
+

)
qα2 (t) = 0, ψα2 (t) = ψ

α
1 (T ) [T − t]

So, we have

H =
∑
α∈A

(
ψα1 (t)

[
u (t)− xα2 (t)

]
+ ψα1 (t) ξ

α(t)
)

and the maximality condition leads to

−
u (t) = arg max

u∈U

∑
α∈A

ψα1 (t) u (t) = u+sgn

[∑
α∈A

ψα1 (t)

]

sgn [v] :=
{
v if v > 0
0 if v ≤ 0

} (16.84)

Under this control it follows that

xα1 (T ) = y0 + T u+sgn

[∑
α∈A

ψα1 (T )

]
− ZαT

ZαT :=

T∫
t=0

xα2 (t) dt =

T∫
t=0

t∫
s=0

ξα(s)ds +

T∫
t=0

t∫
s=0

σα(s)dW (s)

(16.85)
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(x)ϕ

x

Fig. 16.1. ϕ(x)-function.

and for any α ∈ A

Jα := E
{

h0(xα1 (T ))
}

= E

{
h0(y0 + T u+sgn

[∑
α∈A

ψα1 (T )

]
− ZαT )

}
(16.86)

Since at least one active index exists, it follows that
∑
α∈A

µα > 0 and for any α ∈ A

xα1 (T ) = y0 + T u+ϕ (x)− ZαT

ϕ (x) := sgn

[∑
α∈A

µα

(
λ2
[
−xα1 (T )

]
+
− λ1

[
xα1 (T )− y+

]
+

)]

= sgn

[∑
α∈A

να

(
λ2
[
−xα1 (T )

]
+
− λ1

[
xα1 (T )− y+

]
+

)]
= sgn [x]

x :=
∑
α∈A

να

(
λ2
[
−xα1 (T )

]
+
− λ1

[
xα1 (T )− y+

]
+

)
(16.87)

where να := µα/
∑
α∈A

µα is the component of the vector ν = (ν1, . . . , νN ) (N = 3)

satisfying

ν ∈ SN :=

{
ν = (ν1, . . . , νN ) | να ≥ 0,

N∑
α=1

να = 1

}

Multiplying both sides by µα , summing then over α ∈ A and dividing by
∑
α∈A

µα , equation

(16.87) can be transformed to (see Figs. 16.1–16.3)
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Z

x

y0 + Tu+

y0
y0

0

Fig. 16.2. Z(x) mapping.

y0 + Tu+

y0

y0

x

Z
0

Fig. 16.3. x(Z) mapping.



Z = y0 + T u+ϕ(x)− x

x = (y0 − Z)
[
1− χ[y0;y0+T u+] (x)

]
+ T u+ϕ

(
Z − y0 − T u+

)
x :=

∑
α∈A

να

(
λ2
[
−xα1 (T )

]
+
− λ1

[
xα1 (T )− y+

]
+

)
Z :=

∑
α∈A

vαZαT

(16.88)

where χ[y0;y0+T u+] (x) is the characteristic function of the interval [y0; y0 + T u+].
Below we present the procedure for calculating Jα from (16.86). First, let us find the

density px (v; ν) of the distribution function of the random variable x related to x = x (Z)
from (16.88) with Z having density equal to pZ (v; ν):

px (v; ν) =
d

dv
P {x ≤ v} =

d

dv

∞∫
s=−∞

sgn [v − x (s)] pZ (s; ν) ds

=

∞∫
s=−∞

δ (v − x (s)) pZ (s; ν) ds =

y0−0∫
s=−∞

δ (v − x (s)) pZ (s; ν) ds
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+

y0+T u+∫
s=y0

δ (v − x (s)) pZ (s; ν) ds

+

∞∫
s=y0+T u++0

δ (v − x (s)) pZ (s; ν) ds

=

y0−0∫
s=−∞

δ (v − [y0 − s]) pZ (s; ν) ds +

y0+T u+∫
s=y0

δ (v) pZ (s; ν) ds

+

∞∫
s=y0+T u++0

δ
(
v −

[
y0 + T u+ − s

])
pZ (s; ν) ds

=

∞∫
s=−∞

χ (s < y0) δ (s − [y0 − v]) pZ (s; ν) ds + δ (v)

y0+T u+∫
s=y0

pZ (s; ν) ds

+

∞∫
s=−∞

χ
(
s > y0 + T u+

)
δ
(
s −

[
y0 + T u+ − v

])
pZ (s; ν) ds

Hence

px (v; ν) = χ (v < 0) pZ (y0 − v; ν)+ δ (v)

y0+T u+∫
s=y0

pZ (s; ν) ds

+χ (v > 0) pZ
(
y0 + T u+ − v; ν

)
(16.89)

Note that, in view of (16.85) and (16.88), ZαT and Z have the following Gaussian
distributions:

pZαT
(s) = N

E

T∫
t=0

t∫
s=0

ξα(s)ds,

T∫
t=0

t∫
s=0

E
(
σα(s)

)2 ds


pZ (s; ν) = N

∑
α∈A

ναE

T∫
t=0

t∫
s=0

ξα(s)ds,
∑
α∈A

ν2
α

T∫
t=0

t∫
s=0

E
(
σα(s)

)2 ds


(16.90)

Then for each α we calculate

Jα (ν) := E
{

h0(xα1 (T ))
}
=

∞∫
v=−∞

h0(v)pxα1 (T )
(v; ν) dv (16.91)
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as a function of the vector ν. The integral in (16.91) can be calculated numerically for any
ν ∈ SN and the worst case cost function in this problem is

min
u(·)∈U s

ad [0,T ]
max
α∈A

Jα = min
ν∈SN

max
α∈A

Jα (ν)

The expression for the robust optimal control
−
u (t) is evaluated from (16.84) as follows:

−
u (t) = u+sgn

[
x∗
]

(16.92)

where the random variable x∗ has the distribution px (v; ν
∗) given by (16.89) with

ν∗ := arg min
ν∈SN

max
α∈A

Jα (ν) (16.93)

Finally,
−
u (t) is the binomial {Ft }t≥0-adapted random process since it depends on only the

first two moments

E


T∫

t=0

t∫
s=0

ξα(s)ds

 ,
T∫

t=0

t∫
s=0

E
{(
σα(s)

)2} ds

of the entering random processes and it is given by

−
u (t) =

−
u (0) =

{
u+ with the probability P∗

0 with the probability 1− P∗

P∗ =

0−∫
v=−∞

px
(
v; ν∗

)
dv

(16.94)

The derived robust optimal control (16.94) is unique if the optimization problem (16.93)
has a unique solution.

16.6.3 Min-max reinsurance–dividend management

Consider the following {Ft }t≥0-adapted R-valued random processes

dy(t) =
[
a(t)µ̃α − δα − c(t)

]
dt − a(t)σαdW (t)

y(0) = y0
(16.95)

where, according to Taksar and Zhou (1998),

• y(t) is the value of the liquid assets of a company at time t ;
• c(t) is the dividend rate paid out to the shareholders at time t ;
• µ̃α is the difference between premium rate and expected payment on claims per unit

time (‘safety loading’);
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• δα is the rate of the debt repayment;
• [1− a(t)] is the reinsurance fraction;

• σα :=

√
λαE

{
η2
}

(λα is the intensity of Poisson process, η is the size of claim).

The controls are

u1(t) := a(t) ∈ [0, 1] and u2(t) := c(t) ∈
[
0, c+

]
The finite parametric set A describes the possible different environmental situations. The
payoff-cost function is as follows:

J = min
α∈A

E


T∫

t=0

e−γ t c(t)dt

→ max
a(·),c(·)

, γ ∈
[
0, c+/k

]
(16.96)

At time T it is natural to satisfy

kE {y(T )} ≥ E


T∫

t=0

e−γ t c(t)dt

 ≥ k0, k0 > 0 (16.97)

This problem can be rewritten in the standard form in the following way: for any fixed
parameter α ∈ A define

xα1 (t) := y(t), xα2 (t) :=

t∫
s=0

e−γ su2(s)ds

and then the problem is as follows:

max
α∈A

E
{
h0 (xα (T ))

}
→ min

u(·)∈U s
ad [0,T ]

E
{
h1 (xα (T ))

}
≥ 0

h0 (x) = − x2, h1 (x) = kx1 − x2, h2 (x) = x2 − k0

U =
{
u ∈ R2

: 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ c+
}

with the dynamic models given by

d

(
xα1 (t)
xα2 (t)

)
=

(
u1(t)µ̃α − δα − u2(t)

e−γ t u2(t)

)
dt +

(
−u1(t)σα

0

)
dW (t)

xα1 (0) = y0, xα2 (0) = 0

Following the technique suggested above, we obtain

d

(
ψα1 (t)
ψα2 (t)

)
=

(
qα1 (t)
qα2 (t)

)
dW (t)(

ψα1 (T )
ψα2 (T )

)
=

(
−kνα1

µα + να1 − να2

)
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d9α(t) = Qα (t) dW (t)
9α(T ) = 0

and, hence,

qα1 (t) = qα2 (t) = Qα (t)

ψα1 (t) = ψ
α
1 (T ) = −kνα

ψα2 (t) = ψ
α
2 (T ) = µα + ν12 − να2

Then

H =
∑
α∈A

(
ψα1 (t)

[
u1(t)µ̃

α
− δα − u2(t)

]
+ ψα2 (t) e−γ t u2(t)

)
=

∑
α∈A

(
−kνα1

[
u1(t)µ̃

α
− δα − u2(t)

]
+ [µα + να1 − να2] e−γ t u2(t)

)
and the robust optimal control, maximizing this Hamiltonian, is

−
u (t) =

sgn

[
−

∑
α∈A

να1µ̃
α

]
c+ sgn [φ (t)]


φ (t) =

∑
α∈A

(
e−γ t [µα + να1 − να2]+ kνα1

)
There are two cases to be considered:

• the first one, corresponding to the switching of
−
u2(t) from 0 to c+ and;

• the second – the switching of
−
u2(t) from c+ to 0.

1. The switching of
−
u2(t) from 0 to c+. With this control, the expectation of the state is

E

{(
xα1 (T )
xα2 (T )

)}
=

(
y0
0

)
+ E


T∫

t=0

(
u1(t)µ̃

α
−δα−u2(t)

e−γ t u2(t)

)
dt


=

(
y0
0

)
+


(

sgn

[
−
∑
α∈A

να1µ̃
α

]
µ̃α − δα

)
T − c+τ

c+γ−1
[
1− e−γ τ

]


where

τ := inf {t ∈ [0, T ] : φ (t) = 0}

The robust optimal control corresponds to the selection of the minimizing parameters
µα, να1, να2:

arg min
{µα,να1,να2}

max
α∈A

E
{
−xα2 (T )

}
= arg min

{µα,να1,να2}
max
α∈A

(
c+γ−1 [e−γ τ − 1

])
(16.98)
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According to the existing constraints for any α ∈ A there is the inequality

kE
{

xα1 (T )
}
≥ E

{
xα2 (T )

}
≥ k0

or, in another form, since E
{

xα2 (T )
}

does not depend on α ∈ A,

k
[
y0 + Tρ − c+τ

]
≥ c+γ−1 [1− e−γ τ

]
≥ k0

where

ρ := min
α∈A

(
sgn

[
−

∑
α∈A

να1µ̃
α

]
µ̃α − δα

)

From these two constraints it follows that

τ1 ≤ τ ≤ τ2

where

τ1 = −γ
−1 ln

(
1− k0γ /c

+
)

and τ2 is the solution of

k
(
y0 + ρT − c+τ

)
= c+γ−1 [1− e−γ τ

]
The goal now is

min
{µα,να1,να2}

min
τ1≤τ≤τ2

max
α∈A

E
{
−xα2 (T )

}
= min
{µα,να1,να2}

min
τ1≤τ≤τ2

(
−c+γ−1 [1− e−γ τ

])
= c+γ−1 min

{µα,να1,να2}
min

τ1≤τ≤τ2

(
e−γ τ − 1

)
It may be done by the variation of the unknown nonnegative parameters µα, να1 and να2
involved in the switching function φ (t). The optimal parameter selection should satisfy
the equality

τ1 ≤ τ
(
µ∗α, ν

∗

α1, ν
∗

α2

)
= max
{µα,να1,να2}

τ2

Finally, the robust optimal control is equal to

−
u (t) =

 sgn

[∑
α∈A

ν∗α1

[
−µ̃α

]
+

]
c+ sgn

[
t − τ

(
µ∗α, ν

∗

α1, ν
∗

α2

)]
 (16.99)

and the corresponding worst case cost function (or the best payoff) is
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J ∗0→1 := min
u(·)∈U s

ad [0,T ]
max
α∈A

E
{
h0 (xα (T ))

}
= c+γ−1

[
e−γ τ(µ

∗
α,ν
∗

α1,ν
∗

α2) − 1
] (16.100)

2. The switching of
−
u2(t) from c+ to 0. Analogously, the expectation of the state is

E

{(
xα1 (T )
xα2 (T )

)}
=

(
y0
0

)
+ E


T∫

t=0

(
u1(t)µ̃

α
−δα−u2(t)

e−γ t u2(t)

)
dt


=

(
y0
0

)
+


(

sgn

[
−
∑
α∈A

να1µ̃
α

]
µ̃α − δα

)
T − c+ [T − τ ]

c+γ−1
[
e−γ τ − e−γ T

]


By the same reasons, the minimizing parameters µ̃α, να1, να2 satisfy (16.98) and the
constraints can be rewritten as follows:

k
(
y0 + ρT − c+ [T − τ ]

)
≥ c+γ−1

[
e−γ τ − e−γ T

]
≥ k0

From these two constraints it follows that

τ4 ≤ τ ≤ τ3

where

τ3 = −γ
−1 ln

(
k0γ /c

+
+ e−γ T

)
and τ4 is the solution of

k
(
y0 + ρT − c+ [T − τ ]

)
= c+γ−1

[
e−γ τ − e−γ T

]
(if there is no solution then τ4 := T ). Our goal is

min
{µα,να1,να2}

min
τ4≤τ≤τ3

max
α∈A

E
{
−xα2 (T )

}
= min
{µα,να1,να2}

min
τ4≤τ≤τ3

c+γ−1
[
e−γ T

− e−γ τ
]

The robust optimal control is equal to

−
u (t) =

 sgn

[∑
α∈A

ν∗α1

[
−µ̃α

]
+

]
c+ sgn

[
τ
(
µ∗α, ν

∗

α1, ν
∗

α2

)
− t
]
 (16.101)

where the optimal parameter selection
(
µ∗α, ν

∗

α1, ν
∗

α2

)
should satisfy the inequality

τ
(
µ∗α, ν

∗

α1, ν
∗

α2

)
= min
{µα,να1,να2}

τ4 ≤ τ3
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and the corresponding worst case cost function (or the best payoff) is

J ∗1→0 := min
u(·)∈U s

ad [0,T ]
max
α∈A

E
{
h0 (xα (T ))

}
= c+γ−1

[
e−γ T

− e−γ τ(µ
∗
α,ν
∗

α1,ν
∗

α2)
] (16.102)

At the last step compare J ∗0→1 with J ∗1→0 and select the case with the minimal worst
cost function, i.e.,

J ∗ = J ∗0→1 ∧ J ∗1→0 (16.103)

with the corresponding switching rule (0 → 1 or 1 → 0) and the robust optimal control
−
u (t) given by (16.99) or (16.101).

16.7 Min-Max LQ-control

In this section we will present robust stochastic control designing in detail for the class
of linear quadratic min-max stochastic problems.

16.7.1 Stochastic uncertain linear system

Let
(
�,F , {Ft }t≥0 ,P

)
be a given filtered probability space where an m-dimensional

standard Brownian motion(
W (t) =

(
W 1 (t) , . . . ,W m (t)

)
, t ≥ 0

)
(with W (0) = 0) is defined. {Ft }t≥0 is assumed to be the natural filtration generated by
(W (t) , t ≥ 0) and augmented by the P-null sets from F . Consider the stochastic linear
controlled continuous-time system with the dynamics x (t) ∈ Rn given by

dx (t) =
[
Aα (t) x (t)+ Bα (t) u (t)+ bα (t)

]
dt

+

m∑
i=1

[
Cα

i (t) x (t)+ Dα
i (t) u (t)+ σαi (t)

]
dW i (t)

x (0) = x0, t ∈ [0, T ] (T > 0)

(16.104)

In the above, u (t) ∈ Rk is a stochastic control at time t, and

Aα,Cα
j : [0, T ]→ Rn×n

Bα, Dα
j (t) : [0, T ]→ R

bα, σαj : [0, T ]→ Rn

are the known deterministic Borel measurable functions of suitable sizes.
α is a parameter taking values from the finite set A = {α1, . . . , αN }. The initial state x0

is assumed to be a square-integrable random vector with the a priori known mean m0 and
covariance matrix X0.
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The only sources of uncertainty in this system description are

• the system random noise W (t);
• the unknown parameter α ∈ A.

It is assumed that the past information is available for the controller.
To emphasize the dependence of the random trajectories on the parameter α ∈ A

equation (16.2) is rewritten as

dxα (t) =
[
Aα (t) xα (t)+ Bα (t) u (t)+ bα (t)

]
dt

+

m∑
i=1

[
Cα

i (t) xα (t)+ Dα
i (t) u (t)+ σαi (t)

]
dW i (t)

x (0) = x0, t ∈ [0, T ] (T > 0)

(16.105)

16.7.2 Feasible and admissible control

The following definitions will be used throughout.
A stochastic control u (·) is called feasible in the stochastic sense (or, s-feasible) for the

system (16.105) if

1. u(·) ∈ U [0, T ]
:=
{
u : [0, T ]×�→ Rk

| u(·) is {Ft }t≥0 -adapted
}

2. xα (t) is the unique solution of (16.105) in the sense that for any xα (t) and x̂α (t) ,
satisfying (16.105),

P
{
ω ∈ � : xα (t) = x̂α (t)

}
= 1

The pair (xα (t) ; u(·)), where xα (t) is the solution of (16.105) corresponding to this
u(·), is called an s-feasible pair. The measurability of all deterministic functions in
(16.105) guarantees that any u(·) ∈ U [0, T ] is s-feasible. Since any additional constraints
are absent it follows that any s-feasible control is admissible (or, s-admissible). The set of
all s-admissible controls is denoted by U s

adm [0, T ].

16.7.3 Min-max stochastic control problem setting

For any s-admissible control u(·) ∈ U s
adm [0, T ] and for any α ∈ A define the α-cost

function

Jα (u (·)) := E

{
1
2

xα (T )ᵀ Gxα (T )

}
+E

T∫
t=0

[
1
2

xα (t)ᵀ Q̄ (t) xα (t)+ u (t)ᵀ S (t) xα (t)

+
1
2

u (t)ᵀ R (t) u (t) dt

] (16.106)
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where for all t ∈ [0, T ]

Q̄ (t) = Q̄ᵀ (t) ≥ 0, S (t) , R (t) = Rᵀ (t) > 0

are the known Borel measurable Rn×n, Rn×k, Rk×k valued deterministic matrices, respec-
tively, and G is the given Rn×n deterministic matrix.

Since the value of the parameter α is unknown, define the worst (highest) cost as
follows:

J (u (·)) = max
α∈A

Jα (u (·)) (16.107)

The stochastic control
−
u (·) is robust optimal (in min-max sense) if

1. it is admissible, that is,
−
u(·) ∈ U s

adm [0, T ]

and
2. it provides the minimal worst cost, that is,
−
u(·) = arg min

u(·)∈U s
adm[0,T ]

max
α∈A

Jα (u (·))

If the solution x̄ (t) corresponds to this robust optimal control
−
u (t) then

(
x̄ (·) ,

−
u (·)

)
is

called the robust optimal dynamics.
Thus the robust (with respect to the unknown parameter) optimal stochastic control

problem (in Bolza form) consists in finding the robust optimal control
−
u (t) according to

the definition given above, that is,

J
(
−
u (·)

)
= min

u(·)∈U s
adm[0,T ]

max
α∈A

Jα (u (·)) (16.108)

16.7.4 The problem presentation in Mayer form

To apply directly Theorem 16.2 let us present this problem in the so-called Mayer form
introducing the new variable xαn+1 (t) as follows:

xαn+1 (t) :=
1
2

t∫
s=0

[
xα (s)ᵀ Q̄ (s) xα (s)+ u (s)ᵀ S (s) xα (s) + u (s)ᵀ R (s) u (s) ds

which satisfies

dxαn+1 (t) = bn+1 (t, xα (t) , u (t))

:= +xα (t)ᵀ Q̄ (t) xα (t) /2+ u (t)ᵀ S (t) x (t)

+ u (t)ᵀ R (t) u (t) /2+ σ ᵀn+1 (t) dW (t)

xn+1 (0) = 0, σ ᵀn+1 (t) ≡ 0
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16.7.5 Adjoint equations

According to (16.11) and (16.12), we have

• the 1st order vector adjoint equations:

dψα (t) = −

[
Aα (t)ᵀ ψα (t)+

m∑
i=1

Cα
i (t)

ᵀ qαi (t)

+
(
Q̄ (t) xα (t)+ S (t)ᵀ u (t)

)
ψαn+1 (t)

]
dt

+

m∑
i=1

qαi (t)dW i (t), t ∈ [0, T ]

ψα(T ) = cα

(16.109)

dψαn+1 (t) = qαn+1(t)
ᵀdW (t), t ∈ [0, T ]

ψαn+1 (T ) = cαn+1

and
• the 2nd order matrix adjoint equations:

d9α (t) = −

[
Aα (t)ᵀ9α (t)

+9α (t) Aα (t)+
m∑

i=1

Cα
i (t)

ᵀ9α (t)Cα
i (t)

+

m∑
i=1

(
Cα

i (t)
ᵀ Qα

i (t)+ Qα
i (t)Cα

i (t)
)

+ ψαn+1 (t) Q̄ (t)

]
dt +

m∑
i=1

Qα
i (t) dW i (t)

9α(T ) = Cα
ψ , t ∈ [0, T ]

(16.110)

d9αn+1 (t) = Qα
n+1 (t) dW (t), t ∈ [0, T ]

9αn+1(T ) = Cα
ψ,n+1

Here

• cα ∈ L2
FT
(�,Rn) is a square integrable FT -measurable Rn-valued random vector;

• cαn+1 ∈ L2
FT
(�,R), ψα (t) ∈ L2

Ft
(�,Rn) is a square integrable {Ft }t≥0-adapted

Rn-valued vector random process;
• ψαn+1 (t) ∈ L2

Ft
(�,R), qαi (t) ∈ L2

Ft
(�,Rn) and qαn+1(t) ∈ L2

Ft
(�,Rm).

Similarly,
• Cα

i ∈ L2
FT

(
�,Rn×n

)
, Cα

n+1 ∈ L2
FT
(�,R), 9α (t) ∈ L2

Ft

(
�,Rn×n

)
;

9αn+1 (t) ∈ L2
Ft
(�,R), Qα

j (t) ∈ L2
Ft

(
�,Rn×m

)
and Qα

n+1(t) ∈ L2
Ft
(�,Rm).
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16.7.6 Hamiltonian form

The Hamiltonian function Hα is defined as

Hα
= Hα (t, x, u, ψ, q, ψn+1) := tr [qαᵀσα]

+ [Aα (t) xα + Bα (t) u + bα (t)]ᵀ ψα + bαn+1 (t, x, u) ψαn+1

σα :=
(
σα1 , . . . , σ

α
m

)
,qα :=

(
qα1 , . . . , qαm

)
σαi := Cα

i (t) xα (t)+ Dα
i (t) u (t)+ σαi (t)

W ᵀ :=
(
W ᵀ1 , . . . ,W ᵀm

)
(16.111)

Note that the equations in (16.105) and (16.109) can be rewritten in Hamiltonian form as

dxα (t) = Hα
ψdt + σαdW (t)

xα (0) = x0, t ∈ [0, T ]
(16.112)

dxαn+1 (t) = Hα
ψn+1

dt

xα (0) = x0, t ∈ [0, T ]

dψα (t) = −Hα
x dt + qα(t)dW (t)

ψα(T ) = cα, t ∈ [0, T ]
(16.113)

dψαn+1 (t) = −Hα
xn+1

dt + qαn+1 (t) dW (t)

ψαn+1(T ) = cαn+1, t ∈ [0, T ]

Rewrite the cost function Jα (u (·)) as

Jα (u (·)) = E
{

h0 (xα (T ) , xαn+1 (T )
)}

h0 (xα (T ) , xαn+1 (T )
)
:= E

{
1
2

xα (T )ᵀ Gxα (T )

}
+ E

{
xαn+1 (T )

}

16.7.7 Basic theorem

Now we are ready to formulate the main result of this section.

Theorem 16.3. Let
(

x̄ (·) ,
−
u (·)

)
be the robust optimal dynamics. Then there exist collec-

tions of terminal conditions

cα, cαn+1,Cα,Cα
n+1

{Ft }t≥0-adapted stochastic matrices
(

qα, Qα
j ( j = 1, . . . , l)

)
and vectors

(
qαn+1, Qα

n+1

)
in (16.109) and (16.110), and nonnegative constants µα such that the following conditions
are satisfied:
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1. (Complementary slackness condition): for any α ∈ A

µα

[
E
{

h0 (xα (T ) , xαn+1 (T )
)}
−max
α∈A

E
{

h0 (xα (T ) , xαn+1 (T )
)}]
= 0 (16.114)

2. (Transversality condition): for any α ∈ A with probability one

cα + µαh0
x

(
xα (T ) , xαn+1 (T )

)
= 0

cαn+1 + µα = 0
(16.115)

Cα
ψ,n+1 + µαh0

xx

(
xα (T )

)
= 0

Cα
ψ,n+1 = 0

(16.116)

3. (Nontriviality condition): there exists α ∈ A such that cα, cαn+1 6= 0 or, at least, µα is
distinct from 0, that is,

∃α :
∣∣cα∣∣+ ∣∣cαn+1

∣∣+ µα > 0 (16.117)

4. (Maximality condition): the robust optimal control
−
u (·) for almost all t ∈ [0, T ]

maximizes the Hamiltonian function

H̄ =
∑
α∈A

H̄α
(
t, x̄α(t), u, ψα(t),9α(t),qα(t)

)
(16.118)

where

H̄α
(
t, x̄α, u, ψα, 9α,qα

)
:= Hα (t, x̄α, u, ψα,qα)−

1
2

tr
[
σ̄αᵀ9α σ̄α

]
+

1
2

tr
[
(σα (t, x̄α, u)− σ̄α)ᵀ9α (σα (t, x̄α, u)− σ̄α)

] (16.119)

and the function Hα (t, x̄α, u, ψα,qα) is given by (16.111),

σ̄α = σα
(

t, x̄α (t) ,
−
u (t)

)
(16.120)

that is, for almost all t ∈ [0, T ]

−
u (t) = arg max

u∈U
H̄ (16.121)
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By the transversality condition it follows that the only {Ft }t≥0-adapted variables allowed
are

qαn+1 (t) ≡ 0, Qα
n+1 (t) ≡ 0 P-a.s.

and, as a result, we derive

cα = −µαGxα (T ) , Cα
= −µαG

ψαn+1(t) = ψ
α
n+1(T ) = cαn+1 = −µα

9αn+1(t) = 9
α
n+1(T ) = 0

So, the adjoint equations become

dψα (t) = −

[
Aα (t)ᵀ ψα (t)+

m∑
i=1

Cα
i (t)

ᵀ qαi (t)

− µα
(
Q̄ (t) xα (t)+ S (t)ᵀ u (t)

)]
dt

+

m∑
i=1

qαi (t)dW i (t), t ∈ [0, T ]

ψα(T ) = −µαGxα (T )
ψαn+1(t) = ψ

α
n+1(T ) = cαn+1 = −µα

(16.122)

d9α (t) = −

[
Aα (t)ᵀ9α (t)

+9α (t) Aα (t)+
m∑

i=1

Cα
i (t)

ᵀ9α (t)Cα
i (t)

+

m∑
i=1

(
Cα

i (t)
ᵀ Qα

i (t)+ Qα
i (t)Cα

i (t)
)

− µα Q̄ (t)

]
dt +

m∑
i=1

Qα
i (t) dW i (t)

9α(T ) = −µαG, t ∈ [0, T ]
9αn+1 (t) = 9

α(T ) = 0

(16.123)

The Hamiltonian H̄ is quadratic in u and, hence, the maximum exists if for almost all
t ∈ [0, T ] with probability one

∇
2
u H̄ = −

∑
α∈A

µαR +
∑
α∈A

m∑
i=1

Dα
i (t)

ᵀ9α (t) Dα
i (t) ≤ 0 (16.124)

and the maximizing vector
−
u (t) satisfies∑

α∈A

µαR (t)
−
u (t) =

∑
α∈A

[
Bα (t)ᵀ ψα (t)− µαS x̄α (t)+

m∑
i=1

Dα
i (t)

ᵀ qαi (t)

]
(16.125)
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16.7.8 Normalized form for the adjoint equations

Since at least one active index exists it follows that∑
α∈A

µ (α) > 0

If µ (α) = 0, then with the probability one

qαi (t) = 0, Qα
i (t) = 0

ψ̇α (t) = ψα (t) = 0

9̇α (t) = 9α (t) = 0

Therefore, the following normalized adjoint variable ψ̃α (t) can be introduced:

ψ̃α,i (t) =

{
ψα,i (t) µ−1 (α) if µ (α) > 0

0 if µ (α) = 0
, i = 1, . . . , n + 1

9̃α,i (t) =

{
9α,i (t) µ−1 (α) if µ (α) > 0

0 if µ (α) = 0
, i = 1, . . . , n + 1

ψαᵀ :=
(
ψα,1, . . . , ψα,n

)
, 9α :=

(
9α,1, . . . , 9α,n

)ᵀ (16.126)

satisfying

dψ̃α (t) = −

[
Aα (t)ᵀ ψ̃ (t)+

m∑
i=1

Cα
i (t)

ᵀ q̃αi (t)

−
(
Q̄ (t) xα (t)+ S (t)ᵀ u (t)

)]
dt

+

m∑
i=1

q̃αi (t)dW i (t), t ∈ [0, T ]

dψ̃α,n+1 (t) = 0

(16.127)

and

d9̃α (t) = −

[
Aα (t)ᵀ 9̃α (t)

+ 9̃α (t) Aα (t)+
m∑

i=1

Cα
i (t)

ᵀ 9̃α (t)Cα
i (t)

+

m∑
i=1

(
Cα

i (t)
ᵀ Q̃α

i (t)+ Q̃α
i (t)Cα

i (t)
)

− Q̄ (t)

]
dt +

m∑
i=1i

Q̃α (t) dW i (t)

d9̃αn+1 (t) = 0

(16.128)
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with the transversality conditions given by

ψ̃α (t1) = −Gxα (t1)

ψ̃α,n+1 (t1) = cαn+1 = −1

9̃α(T ) = −G, 9̃αn+1 (T ) = 0

(16.129)

Here

q̃αi (t) =

{
qαi (t) µ

−1 (α) if µ (α) > 0

0 if µ (α) = 0
, i = 1, . . . , n + 1

9̃α,i (t) =

{
ψα,i (t) µ−1 (α) if µ (α) > 0

0 if µ (α) = 0
, i = 1, . . . , n + 1

The robust optimal control (16.125) becomes (if R > 0) as follows:

−

u (t) =

∑
α∈A

µα∑
α∈A

µαR (t)

[
Bα (t)ᵀ ψ̃α (t)− S x̄α (t)+

m∑
i=1

Dα
i (t)

ᵀ q̃αi (t)

]

= R−1 (t)
∑
α∈A

λα

[
Bα (t)ᵀ ψ̃α (t)− S x̄α (t)+

m∑
i=1

Dα
i (t)

ᵀ q̃αi (t)

]
(16.130)

where the vector λ := (λ1, . . . , λN )
ᵀ belongs to the simplex SN defined as

SN
:=

λ ∈ RN=|A|
: λα =

µ (α)

N∑
α=1

µ (α)

≥ 0,
N∑
α=1

λα = 1

 (16.131)

Remark 16.1. Since the control action can vary in the whole space Rk , that is, there are
no constraints, from the Hamiltonian structure (16.119) it follows that the robust control
(16.130) does not depend on the second adjoint variables 9̃α(t). This means that these
variables can be omitted below. If the control u is restricted to a compact U ⊂ Rk , then
the robust optimal control obligatory is a function of the second adjoint variables.

16.7.9 The extended form for the closed-loop system

For simplicity, the time argument in the expressions below is omitted.
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Introduce the block-diagonal RnN×nN valued matrices A, Q, G,3 and the extended
matrix B as follows:

A :=

A1 0 · · 0
· · ·

0 · · 0 AN

 , Q :=

Q̄ 0 · · 0
· · ·

0 · · 0 Q̄


G :=

G 0 · · 0
0 · 0
0 · · 0 G

 , Ci :=

C1
i 0 · · 0
· · ·

0 · · 0 C N
i


3 :=

λ1 In×n 0 · · 0
0 · 0
0 · · 0 λN In×n


(16.132)

Bᵀ :=
[
B1ᵀ
·· B Nᵀ

]
∈ Rr×nN

Dᵀi :=
[

D1ᵀ
i ·· DNᵀ

i

]
∈ Rr×nN

S :=
[
S1
·· SN

]
∈ Rr×nN

θ i :=

[
σ

1ᵀ
i ·· σ

Nᵀ
i

]ᵀ
∈ RnN

In view of (16.132), the dynamic equations (16.105), (16.127), (16.128) and the corre-
sponding robust optimal control (16.130) can be represented as follows:

dx = (Ax+ Bu + b) dt +
m∑

i=1

(Ci x+ Di u +2i ) dW i

dψ =

(
−Aᵀψ −

m∑
i=1

Cᵀi qi +Qx+ Sᵀu

)
dt +

m∑
i=1

qi dW i

x (0) =
[
xᵀ0 xᵀ0 · · xᵀ0

]ᵀ
, ψ (T ) = −Gx (T )

u = R−1

(
Bᵀ3ψ − S3x +

m∑
i=1

Dᵀi 3qi

)
(16.133)

where

xᵀ :=
(

x1ᵀ, . . . , x Nᵀ
)
∈ R1×nN

ψᵀ :=
(
ψ̃
ᵀ
1, . . . , ψ̃

ᵀ
N

)
∈ R1×nN

bᵀ :=
(

b1ᵀ, . . . , bNᵀ
)
∈ R1×nN

qi :=

[
q̃1ᵀ

i ·· q̃ Nᵀ
i

]ᵀ
∈ RnN×1

and

X0 := E
{
x (0) xᵀ (0)

}
=

X0 · X0
· · ·

X0 · X0
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mᵀ0 := E {x (0)}ᵀ =
[
mᵀ0 mᵀ0 · · mᵀ0

]ᵀ
The problem now is to find the parametric matrix 3 given in the N -dimensional simplex
and {Ft }t≥0-adapted extended stochastic vectors qi ∈ L2

Ft

(
�,RnN

)
minimizing the

performance index (16.107).

16.7.10 Riccati equation and robust optimal control

Theorem 16.4. The robust optimal control (16.130) achieving (16.108) is equal to

u = −R−1
3 (Wλx+ vλ) (16.134)

where

vλ := Bᵀpλ +
m∑

i=1

Dᵀi P
λ
θ i

Wλ := BᵀPλ + S3+
m∑

i=1

Dᵀi PλCi

(16.135)

and the matrix Pλ = PλT
∈ RnN×nN is the solution of the differential matrix Riccati

equation

−Ṗλ = PλA+ AᵀPλ +3Q+

(
m∑

i=1

Cᵀi PλCi

)
−WᵀλR−1

3 Wλ

Pλ (t1) = 3G

(16.136)

R−1
3 :=

[
R +

m∑
i=1

Dᵀi PλDi

]−1

(16.137)

the shifting vector pλ satisfies

−ṗλ = Pλb+ Aᵀpλ +
m∑

i=1

Cᵀi Pλθ i

−WᵀλR−1
3

(
Bᵀpλ +

m∑
i=1

Dᵀi Pλθ i

)
pλ (t1) = 0

(16.138)

the matrix 3 = 3 (λ∗) is defined by (16.132) with the weight vector λ = λ∗ solving the
following finite dimensional optimization problem

λ∗ = arg min
λ∈SN

Jt1 (λ) (16.139)
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Jt1 (λ) =
1
2

tr {X0Pλ (0)} +mᵀ0pλ (0)

+
1
2

t1∫
t=0

[
m∑

i=1

θ
ᵀ
i Pλθ i + 2pᵀb− vᵀR−1

3 v

]
dt

+
1
2

max
i=1,N

E


t1∫
0

(
x iᵀQx i

+ 2uᵀSx i
)

dt + x iᵀ (t1)Gx i (t1)


−

1
2

N∑
i=1

λiE


t1∫
0

(
x iᵀQx i

+ 2uᵀSx i
)

dt + x iᵀ (t1)Gx i (t1)



(16.140)

and

J (ū (·)) = min
u(·)∈U s

adm[0,T ]
max
α∈A

Jα (u (·)) = Jt1

(
λ∗
)

(16.141)

Proof. Since the robust optimal control (16.133) is proportional to3ψ , it is natural to find
ψ satisfying

3ψ (t) = −Pλ (t) x− pλ (t) (16.142)

where Pλ (t) and pλ (t) are a differentiable deterministic matrix and vector, respectively.
The commutation of the operators

3kA = A3k, 3kQ = Q3k, 3kCi = Ci3
k (k ≥ 0)

implies

3dψ = −Ṗλxdt

−Pλ

[
(Ax+ Bu + b) dt +

m∑
i=1

(Ci x+ Di u + θ i ) dW i

]
− dpλ

= 3

[(
−Aᵀψ −

m∑
i=1

Cᵀi qi +Qx+ Sᵀu

)
dt +

m∑
i=1

qi dW i

]
(16.143)

from which it follows that

3qi = −Pλ (Ci x+ Di u + θ i ) (16.144)

The substitution of (16.142) and (16.144) into (16.133) leads to

u = −R−1

(
Bᵀ
[
Pλx+ pλ

]
+ S3x+

m∑
i=1

Dᵀi Pλ (Ci x+ Di u + θ i )

)
which is equivalent to (16.134). Then, (16.143), (16.144) and the matrix commutations

3Aᵀ = Aᵀ3, 3Cᵀi = Cᵀi 3
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imply

−

(
Ṗλ + PλA+ AᵀPλ +3Q+

(
m∑

i=1

Cᵀi PλCi

)
−WᵀλR−1

3 Wλ

)
x

= Pλb+ ṗλ + Aᵀpλ +
m∑

i=1

Cᵀi Pλθ i −WᵀλR−1
3

(
Bᵀpλ +

m∑
i=1

Dᵀi Pλθ i

)
This equation is satisfied identically under the conditions (16.136) and (16.138) of this
theorem. This implies:

Jt1 (λ) := max
αεA

Jα = max
νεSN

N∑
i=1

νi J i

=
1
2

N∑
i=1

νiE


t1∫
0

[
uᵀRu + x iᵀ Q̄x

i
+ 2uᵀSx i

]
dt + x iᵀ(t1)Gx i (t1)


=

1
2
E

t1∫
0

uᵀRudt +
1
2

max
νεSN

E


t1∫
0

(
xᵀQνx+ 2uᵀSνx

)
dt + xᵀ(t1)Gνx(t1)


(16.145)

where

Qν :=


ν1 Q̄ 0 · 0

0 · · ·

· · · 0
0 · 0 νN Q̄

 , Gν :=


ν1G 0 · 0

0 · · ·

· · · 0
0 · 0 νN G



Sν :=


ν1S 0 · 0
0 · · ·

· · · 0
0 · 0 νN S


and, hence, in view of (16.133), (16.143) and (16.144), it follows that

E

t1∫
0

uᵀRudt = E

t1∫
0

uᵀ
(

Bᵀ3ψ − S3x+
m∑

i=1

Dᵀi 3qi

)
dt

= E

t1∫
0

(
uᵀBᵀ3ψ + uᵀ

m∑
i=1

Dᵀi 3qi

)
dt − E

t1∫
0

uᵀS3xdt

= E

t1∫
0

([
uᵀBᵀ + bᵀ + xᵀAᵀ

]
3ψ − uᵀ

m∑
i=1

Dᵀi Pλ (Ci x+ Di u + θ i )

)
dt
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− E

t1∫
0

[
bᵀ + xᵀAᵀ

]
3ψdt − E

t1∫
0

uᵀS3xdt

= E

t1∫
0

dxᵀ3ψ − E

t1∫
0

uᵀ
m∑

i=1

Dᵀi Pλ (Ci x+ Di u + θ i ) dt − E

t1∫
0

bᵀ3ψdt

−E

t1∫
0

uᵀS3xdt + E

t1∫
0

xᵀ3

[
−Aᵀψ −

m∑
i=1

Cᵀi qi +Qx+ Sᵀu

]
dt

+E

t1∫
0

xᵀ3

[
m∑

i=1

Cᵀi qi −Qx− Sᵀu

]
dt = E

t1∫
0

(
dxᵀ3ψ + xᵀ3dψ

)

−E

t1∫
0

uᵀ
m∑

i=1

Dᵀi Pλ (Ci x+ Di u + θ i ) dt − E

t1∫
0

bᵀ3ψdt

−E

t1∫
0

xᵀ
m∑

i=1

Cᵀi Pλ (Ci x+ Di u + θ i ) dt − E

t1∫
0

xᵀ3Qxdt − 2E

t1∫
0

uᵀS3xdt

The application of the Itô formula and the use of (16.136) and (16.138) imply

E

t1∫
0

uᵀRudt = E

t1∫
0

d
(
xᵀ
[
−Pλx− pλ

])

+E

t1∫
0

m∑
i=1

(Ci x+ Di u + θ i )
ᵀ Pλ (Ci x+ Di u + θ i ) dt

+E

t1∫
0

bᵀ
[
Pλx+ pλ

]
dt

−E

t1∫
0

m∑
i=1

(
uᵀDᵀi + xᵀCᵀi

)
Pλ (Ci x+ Di u + θ i ) dt

−E

t1∫
0

xᵀ3Qxdt − 2E

t1∫
0

uᵀS3xdt
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= Exᵀ (0)Pλ (0) x (0)− Exᵀ (t1)3Gx (t1)

+Exᵀ (0)pλ (0)+ E

t1∫
0

m∑
i=1

θ
ᵀ
i Pλ (Ci x+ Di u + θ i ) dt

+E

t1∫
0

bᵀ [Pλx+ pλ] dt − E

t1∫
0

xᵀ3Qxdt − 2E

t1∫
0

uᵀS3xdt (16.146)

The use of (16.133) and (16.138) leads to the identity

−E
{
xᵀ (0)pλ (0)

}
= E

{
xᵀ (t1)p (t1)− xᵀ (0)pλ (0)

}
= E

t1∫
t=0

d
(
xᵀpλ

)
= E

t1∫
t=0

[
pᵀλ (Ax+ Bu + b)

+ xᵀ
(
−Pλb− Aᵀpλ −

m∑
i=1

Cᵀi Pλθ i +WᵀλR−1
3

(
Bᵀpλ +

m∑
i=1

Dᵀi Pλθ i

))]
dt

= E

t1∫
t=0

[
pᵀλ
(

b− BR−1
3 vλ

)

− xᵀ
(

Pλb+
m∑

i=1

Cᵀi Pλθ i −WᵀλR−1
3

m∑
i=1

Dᵀi Pλθ i

)]
dt

The substitution of this identity into (16.146) implies

E

t1∫
0

uᵀRudt = Exᵀ (0)Pλ (0) x (0)

−Exᵀ (t1)3Gx (t1)+ Exᵀ (0)pλ (0)

+E

t1∫
0

[(
m∑

i=1

θ
ᵀ
i PλCi −

(
m∑

i=1

θ
ᵀ
i PλDi

)
R−1
3 Wλ + bᵀPλ

)
x

−

m∑
i=1

θ
ᵀ
i PλDi R−1

3 vλ +
m∑

i=1

θ
ᵀ
i Pλθ i dt

]

+E

t1∫
0

bᵀpλdt − E

t1∫
0

xᵀ3Qxdt − 2E

t1∫
0

uᵀS3xdt
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= Exᵀ (0)Pλ (0) x (0)− Exᵀ (t1)3Gx (t1)+ 2Exᵀ (0)pλ (0)

+ 2

t1∫
0

bᵀpλdt −

t1∫
t=0

vᵀλR−1
3 vλdt +

t1∫
t=0

m∑
i=1

θ
ᵀ
i Pλθ i dt

−E

t1∫
0

xᵀ3Qxdt − 2E

t1∫
0

uᵀS3xdt

which is equivalent to the following expression

E

t1∫
0

uᵀRudt = tr {X0Pλ (0)}

−Exᵀ (t1)3Gx (t1)+ 2mᵀpλ (0)

−

t1∫
t=0

vλR−1
3 vλdt +

t1∫
0

m∑
i=1

θ
ᵀ
i Pλθ i dt + 2

t1∫
0

bᵀpλdt

−E

t1∫
0

xᵀ3Qxdt − 2E

t1∫
0

uᵀS3xdt (16.147)

The relation (16.146) together with (16.145) leads to (16.139). The theorem is proven. �

16.7.11 Linear stationary systems with infinite horizon

Consider the class of linear stationary controllable systems (16.105) without exogenous
input:

Aα (t) ≡ Aα, Bα (t) ≡ Bα, σαi (t) ≡ σ
α
i

b (t) = 0, Cα
i (t) ≡ 0, Dα

i (t) ≡ 0

and containing the only integral term (G = 0) with S (t) ≡ 0, that is,

dx (t) =
[
Aαx (t)+ Bαu (t)

]
dt +

m∑
i=1

σαi dW i (t)

x (0) = x0, t ∈ [0, T ] (T > 0)

Jα (u (·)) =
1
2
E

T∫
t=0

[
xα (t)ᵀ Q̄ (t) xα (t)

+ u (t)ᵀ R (t) u (t) dt
]

(16.148)
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Then, from (16.138) and (16.140) it follows that p (t) ≡ 0, v (t) ≡ 0 and, hence,

Jt1 (λ) =
1
2

tr {X0Pλ (0)}

+
1
2

t1∫
t=0

tr

{(
m∑

i=1

θ iθ
ᵀ
i

)
Pλ

}
dt

+
1
2

max
i=1,N

E


t1∫
0

[
x iᵀQx i

−

N∑
j=1

λ j x jᵀQx j dt

]
dt

 (16.149)

and

min
u(·)∈U s

adm[0,T ]
max
α∈A

Jα (u (·)) = min
λ∈SN

Jt1 (λ)

Nothing changes, if instead of Jα (u (·)) we will deal initially with the so-called ‘time-
averaged’ cost function

min
u(·)∈U s

adm[0,T ]
max
α∈A

1
t1

Jα (u (·)) =
1
t1

Jt1

(
λ∗
)

making the formal substitution

Q →
1
t1

Q, R→
1
t1

R, G →
1
t1

G

Indeed, this transforms (16.136) to the following equation

−Ṗλ = PλA+ AᵀPλ − PλB
(

1
t1

R

)−1

BᵀPλ +
1
t1
3Q

Pλ (t1) =
1
t1
3G = 0

or

d

dt
P̃λ + P̃λA+ AᵀP̃λ − P̃λBR−1BᵀP̃λ +3Q = 0

P̃ := t1P (t ∈ [0, t1]) , P̃ (t1) = 0
(16.150)

and, hence, the robust optimal control (16.134) remains the same

u = −

(
1
t1

R

)−1

BᵀPλx = −R−1BᵀP̃λx

For any t ≥ 0 and some ε > 0 let us define another matrix function, say P̄λ, as follows:

P̄λ :=


P̃λ if t ∈ [0, t1]

P̃λ
[
1− sin

(
π
2ε (t − t1)

)]
+ P̃st sin

(
π
2ε (t − t1)

)
if t ∈ (t1, t1 + ε]

P̃st if t > t1 + ε
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where P̃st is the solution to the algebraic Riccati equation

P̃st A+ AᵀP̃st − P̃st BR−1BᵀP̃st +3Q = 0 (16.151)

This matrix function P̄λ is differentiable for all t ∈ [0.∞). If the algebraic Riccati equation
(16.151) has a positive definite solution P̃st (when the pair

(
A,R1/2

)
is controllable and

the pair
(
Q1/2,A

)
is observable, see, for example, Poznyak (2008)) for any λ ∈ SN , then

P̄λ (t) →
t→∞

P̃st for any P̃ (t1). Tending t1 to∞ leads to the following result.

Corollary 16.1. The robust optimal control ū (·) solving the min-max problem

J (ū(·)) := min
u(·)∈U s

adm[0,∞]
max
α∈A

lim sup
t1→∞

E

 1
2t1

t1∫
t=0

(∥∥xα (t)
∥∥2

Q̄ + ‖u (t)‖
2
R

)
dt

 (16.152)

is given by

u = −R−1BᵀP̃st (3) x (16.153)

where the matrix 3 = 3 (λ∗) is defined by (16.132) with the weight vector λ = λ∗ solving
the following finite dimensional optimization problem

λ∗ = arg min
λ∈SN

J∞ (λ)

J∞ (λ) =
1
2

tr

{(
m∑

i=1

θ iθ
ᵀ
i

)
P̃st (3)

}
+ max

i=1,N
tr

{
X i Q −

N∑
j=1

λ j X j Q

}

X i
:= lim sup

t→∞

1
2t1

t1∫
0

E
{

x i (t) x iᵀ (t)
}

dt

(16.154)

and

J (ū(·)) = J∞
(
λ∗
)

(16.155)

The application of the robust optimal control (16.153) provides for the corresponding
closed loop system, the so-called ‘ergodicity’ property that implies the existence of the
limit (not only upper limit) for the averaged cost function t−1

1 Jt1 (λ
∗) when t1 →∞, that

is,

X i
= lim

t→∞
E
{

x i (t) x iᵀ (t)
}
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and t

t−1
1 Jt1

(
λ∗
)
→

t→∞
J∞ (λ)

Below we show that the matrices X i may be calculated as the solution of the algebraic
Lyapunov matrix equation.

16.7.12 Numerical example

Let us consider one dimensional (double-structured) plant given by

dxα (t) =
[
aαxα (t)+ bαu (t)

]
dt + σαdW

xα (0) = x0, α = 1, 2

and the performance index defined as

hα = lim sup
t1→∞

1
2t1

t1∫
t=0

E
{

q
[
xα (t)

]2
+ r [u (t)]2

}
dt, q ≥ 0, r > 0

To solve the min-max problem

max
α=1,2

hα → min
u(·)

according to Corollary given above, let us apply the robust control (16.130)

u = −r−1BᵀP̃st (3) x

= −r−1
[

b1

b2

]ᵀ [
P̃11

(
λ∗
)

P̃12
(
λ∗
)

P̃21
(
λ∗
)

P̃22
(
λ∗
) ] [x1

x2

]
(16.156)

where

λ∗ = arg min
λ∈S2

J∞ (λ)

J∞ (λ) =
1
2

tr
{
θθᵀP̃st (3)

}
+ q max

i=1,2
tr

{
X i
−

2∑
j=1

λ j X j

}

=
1
2

(
σ 1

σ 2

)ᵀ
P̃st (3)

(
σ 1

σ 2

)
+ q max

i=1,2
tr

{
X i
−

2∑
j=1

λ j X j

}
λ1 + λ2 = 1, λi ≥ 0

Here, if λi > 0, the matrix X =
[

X1
·

· X2

]
is the solution of the following Lyapunov

matrix equation

X
(

A− BBᵀP̃st (3)
)ᵀ
+

(
A− BBᵀP̃st (3)

)
X = −

(
σ 1

σ 2

)(
σ 1

σ 2

)ᵀ
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J∞( )λ

λ

J(
) λ

0.0 0.2 0.4 0.80.6 1.0
0.65868

0.65870

0.65872

0.65874

0.65876

0.65878

0.65880 J∞( )λ

Fig. 16.4. The dependence of the performance index J∞ on the weighting parameter λ.

So, for

a1 = 2 b1 = 1 σ1 = 0.1 q = 1
a2 = 2.15 b2 = 0.2 σ2 = 0.1 r = 1

the function J∞ (λ) is shown at Fig. 16.4. One can see that the minimum value is achieved
at

λ = λ∗ ∼=

(
0.63
0.37

)

16.8 Conclusion

• The min-max linear quadratic problems formulated for stochastic differential equations,
containing in general a control-dependent diffusion term, are shown to be solved by the
robust maximum principle formulated in this chapter.
• The corresponding Hamiltonian formalism is constructed based on the parametric

families of the first and second order adjoint stochastic processes.
• The robust optimal control maximizes the Hamiltonian function (at every time t) which

is equal to the sum (in general, an integral) of the standard stochastic Hamiltonians
corresponding to each value of an uncertain parameter from a given compact (or,
particular, finite) set.
• In the case of finite uncertainty set the construction of the min-max optimal controller

is reduced to an optimization problem in a finite-dimensional simplex.
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Index

absorbing or null state, 281
admissible control, 475
algebra, 6
approximation

from down, 44
Asymptotic consistency, 369
auto-covariance matrix, 243
averaging

on the ensemble of possible realizations, 48
axioms

Whittle, 47

Bayes formulas, 30
generalized, 31

Borel function, 34
Brownian motion, 254, 255

standard, 254

Cantor measure, 20
centered random vector, 420
Central Limit Theorem, 175, 209
Chapman–Kolmogorov equation, 267, 272
characteristic function, 83

Bernoulli random variable, 84
Gaussian random variable, 84
Poisson random variable, 87

characteristic function of an event, xv
coefficient of sensibility, 335
compatibility property, 240
compensator, 143
conditional expectation

under the given prehistory, 138
conditional mathematical expectation

relative to a sigma-algebra, 133
convergence

almost sure (a.s.), 118
by points, 118
complete, 119
in distribution, 117
in mean of the order p, 118
in probability, 118
in total variation, 122
mean-square, 118
monotonical, 48
with probability one, 118

correlated sequences, 181
correlation, 60
correlation coefficient, 60
correlation function, 181
covariance, 60
Cramer–Lidbetter condition, 207

decomposition theorem, 21
density function, 19
density of transition probability, 272
diffusion matrix, 272
diffusion process, 271
discrete-time random processes, 103
distance between the distributions, 122
distribution

absolutely continuous, 54
Gaussian, 25
uniform, 55

distribution function, xvi, 17
absolutely continuous, 19
discrete, 18
Gaussian, 56
N -dimensional, 24

Doob’s inequality
for mixingales, 186

drift vector, 272

empty set, 4, 6
event space, 6
exit density, 279
expectation time, 279
exponential inequalities, 70

feasible pair, 475
filtering, 417
filtering theory, 418
filtration

natural, 138
Fisher information matrix, 383
formula

inclusion-exclusion, 13
function

Borel measurable, 33
characteristic, 48
concave, 66
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convex, 66
indicator, 36
monotonic, 39
partially strictly monotonic, 40

fundamental matrix, 347

Gaussian ‘white’ noise, 259
global linear differential observer, 428

Huber’s robustness, 406

independence, 26
pair-wise, 29

inequalities
Benferroni, 12
Doob’s for moments, 158

inequality
Cantelly, 64
Doob’s for maximum, 157
Etemadi, 77
Hájek–Rényi, 73
Jain, 76
‘joint’ Kolmogorov, 78
Kahane–Hoffman-Jörgensen, 75
Kolmogorov, 72
Lévy, 74
Skorohod–Ottaviany, 77
sum-summands, 80

inequality for maxima of partial sums
Kolmogorov, 72

information bounds, 381, 390
instrumental variables, 376
integral

Lebesgue, 50
invariant laws, 175
Itô formula, 306, 307
Itô stochastic integral, 299
Itô term, 307

Kalman filter, 423
Kalman filtering

continuous-time, 431
discrete-time, 422

Kiefer–Wolfowitz procedure, 439, 465
Kolmogorov

axioms, 10
backward and forward, 272

Kolmogorov’s (or Fokker–Planck) forward
equation, 275

Kolmogorov’s backward equation, 273

lambda-stochastic integrals, 292
law

Kolmogorov Zero-One, 104
law of large numbers, 189

strong, 191
weak, 189

law of the iterated logarithm (LIL), 176
least square estimate, 363
Lebesgue decomposition theorem, 22
Lebesgue dominated convergence theorem, 113
lemma

Borel–Cantelli, 107
Doob’s on supermartingale convergence, 161
Fatou, 112
Kronecker, 193
on ‘up-down’ crossing, 161
on monotone convergence, 110
on normal correlation, 421
Scheffé, 123
Teöplitz, 191

Lindeberg conditions, 211
linear estimates, 419
linear unbiased estimates, 419
Lipschitz condition

global, 324
local, 331
uniform global, 324

logarithmic iterative law, 225
Luenberger-structure observer, 430
Luenberger-type observer, 431
Lyapunov’s condition, 213

m-dependence, 176
Markov chains

ergodic, 284
in continuous time, 277
in discrete time, 277
stationary distribution of states, 285

Markov dependence, 177
Markov equation, 278
Markov process, 263, 264

homogeneous, 268
transition function, 267

Markov property, 263
Markov time, 146
martingale, 133, 139

exponential, 141
stopped, 153

martingale array, 214
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martingale decomposition, 162
martingale dependence, 178
martingale-difference, 139, 140
mathematical expectation, 47, 50
matrix Kronecker lemma, 196
matrix Teöplitz lemma, 194
mean, 51
mean square continuity, 241
measure, 9

Borel, 17
continuous singular, 20
countable additive, 10
discrete, 17
finite additive, 9
probability, 10
Wiener, 26

median, 51
mesurable space, 9
method

characteristic functions, 83
Mill’s ratio, 58
min-max LQ-control, 508
mixed sequences, 178
mixing

correlative, 179
relative uniform strong, 179
strong, 178
uniform strong, 178

mixingale-difference sequences, 180
mixingales, 180
moment-type inequalities

1st Chebyshev, 65
2nd Chebyshev, 65
Cauchy–Bounyakovski–Schwartz, 66
generalized Chebyshev, 63
Hölder, 65
Jensen, 66
Kulbac, 68
Lyapunov, 67
Markov, 65
Minkowski, 68
r -moment, 69

moments, 51
absolute, 51
absolute central, 51
central, 51

Nolinear regression problem, 440
non-absorbing or positive state, 281
non-decreasing sequence of sets, 4

normal equations, 364
null set, 15

observer gain-matrix, 430
Ornstein–Uhlenback process, 435
orthogonal projection theorem, 418

parametric identification, 357
Parseval’s-type relation, 98
persistent excitation condition, 372
Poisson process, 248
power set, 4
prediction, 425, 436
probability, 10

conditional, 29
probability measure, xvi
probability space, xv, xvi

complete, 15
filtered, 472

probability theory, xv
production planning, 497

quadratic variation of a martingale, 144
quantile, 52

random process, 103
with independent increments, 247
with stationary increments, 246

random search method, 468
random sequence

uniformly integrable, 128
random sequences, 103
random variable, 33

absolutely continuous, 43, 54
Bernoulli, 53
continuous, 43, 53
discrete, 36, 52
equivalence class, 133
finite discrete, 52
Gaussian, 56
i.i.d., 210
simple, 36, 49
uncorrelated, 60

rate of convergence, 402
realization of a random process, 239
regularity conditions, 383
reinsurance-dividend management, 503
residual

nonlinear transformation, 395
returnable and non-returnable states, 280
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Robbins–Monro procedure, 439
robust identification procedures, 406
robust optimal control, 476
Robust stochastic control, 471
Robust stochastic maximum Principle, 471, 477
Ruppert–Polyak algorithm, 452

sample path, 239
second-order process, 241
semigroup property, 347
sequence

fundamental (or Cauchy), 119
sequence of random variables

adapted to a sequence of increasing sigma-
algebras, 138

sets
complement, 3
difference, 3
intersection, 3
symmetric difference, 4
union, 3

sigma algebra, xvi, 6
Borel, 16
flow, 138
generated by a sequence of measurable data,

137
pre-tau, 147
smallest, 9
trivial, 135

Skorokhod representation, 231
smoothing, 426, 437
s.o.o.i., 246
space

of elementary events, 6
probability, 10

stable forming filter, 208
state estimate, 428
Stirling formula, 93
stochastic approximation, 439
stochastic control

feasible, 475
stochastic differential equation, 323
stochastic gradient method, 462
stochastic Hölder Inequality, 381
stochastic integral

Itô, 299
Stratonovich, 317

stochastic lambda-integral, 322
stochastic process, 239

separable, 242
with orthogonal increments, 244

stochastic sequence, 138
predictable, 138

stopping time, 146
Stratonovich differentiation rule, 322
Stratonovich stochastic differential, 320
Stratonovich stochastic integral, 317
strong law of large numbers, 175
strong Markov property, 271
submartingale, 139, 140
subset, 4
supermartingale, 139, 140
symmetric set difference, 105
symmetry property, 240

theorem
Doob’s on the supermartingale convergence,

162
Gauss–Markov, 418
Lindeberg–Lévy–Feller, 212
on monotone convergence, 43
Robbins–Siegmund, 164
Sacks, 216

trajectory of a random process, 239
transformation

linear, 41
quadratic, 42

transition probabilities, 277

uniform integrability, 114
uniform integrability test, 117

variance, 51, 58
Venn diagram, 4

Wald’s identities, 154
weak law of large numbers, 175
white noise, 259
Wiener process, 254, 255
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